]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/dev.c
powerpc/mm: Ensure cpumask update is ordered
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147
148 #include "net-sysfs.h"
149
150 /* Instead of increasing this, you should create a hash table. */
151 #define MAX_GRO_SKBS 8
152
153 /* This should be increased if a protocol with a bigger head is added. */
154 #define GRO_MAX_HEAD (MAX_HEADER + 128)
155
156 static DEFINE_SPINLOCK(ptype_lock);
157 static DEFINE_SPINLOCK(offload_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly; /* Taps */
160 static struct list_head offload_base __read_mostly;
161
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164 struct net_device *dev,
165 struct netdev_notifier_info *info);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167
168 /*
169 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170 * semaphore.
171 *
172 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173 *
174 * Writers must hold the rtnl semaphore while they loop through the
175 * dev_base_head list, and hold dev_base_lock for writing when they do the
176 * actual updates. This allows pure readers to access the list even
177 * while a writer is preparing to update it.
178 *
179 * To put it another way, dev_base_lock is held for writing only to
180 * protect against pure readers; the rtnl semaphore provides the
181 * protection against other writers.
182 *
183 * See, for example usages, register_netdevice() and
184 * unregister_netdevice(), which must be called with the rtnl
185 * semaphore held.
186 */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189
190 /* protects napi_hash addition/deletion and napi_gen_id */
191 static DEFINE_SPINLOCK(napi_hash_lock);
192
193 static unsigned int napi_gen_id = NR_CPUS;
194 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
195
196 static seqcount_t devnet_rename_seq;
197
198 static inline void dev_base_seq_inc(struct net *net)
199 {
200 while (++net->dev_base_seq == 0)
201 ;
202 }
203
204 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
205 {
206 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
207
208 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
209 }
210
211 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
212 {
213 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
214 }
215
216 static inline void rps_lock(struct softnet_data *sd)
217 {
218 #ifdef CONFIG_RPS
219 spin_lock(&sd->input_pkt_queue.lock);
220 #endif
221 }
222
223 static inline void rps_unlock(struct softnet_data *sd)
224 {
225 #ifdef CONFIG_RPS
226 spin_unlock(&sd->input_pkt_queue.lock);
227 #endif
228 }
229
230 /* Device list insertion */
231 static void list_netdevice(struct net_device *dev)
232 {
233 struct net *net = dev_net(dev);
234
235 ASSERT_RTNL();
236
237 write_lock_bh(&dev_base_lock);
238 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
239 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
240 hlist_add_head_rcu(&dev->index_hlist,
241 dev_index_hash(net, dev->ifindex));
242 write_unlock_bh(&dev_base_lock);
243
244 dev_base_seq_inc(net);
245 }
246
247 /* Device list removal
248 * caller must respect a RCU grace period before freeing/reusing dev
249 */
250 static void unlist_netdevice(struct net_device *dev)
251 {
252 ASSERT_RTNL();
253
254 /* Unlink dev from the device chain */
255 write_lock_bh(&dev_base_lock);
256 list_del_rcu(&dev->dev_list);
257 hlist_del_rcu(&dev->name_hlist);
258 hlist_del_rcu(&dev->index_hlist);
259 write_unlock_bh(&dev_base_lock);
260
261 dev_base_seq_inc(dev_net(dev));
262 }
263
264 /*
265 * Our notifier list
266 */
267
268 static RAW_NOTIFIER_HEAD(netdev_chain);
269
270 /*
271 * Device drivers call our routines to queue packets here. We empty the
272 * queue in the local softnet handler.
273 */
274
275 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
276 EXPORT_PER_CPU_SYMBOL(softnet_data);
277
278 #ifdef CONFIG_LOCKDEP
279 /*
280 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
281 * according to dev->type
282 */
283 static const unsigned short netdev_lock_type[] = {
284 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
285 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
286 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
287 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
288 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
289 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
290 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
291 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
292 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
293 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
294 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
295 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
296 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
297 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
298 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
299
300 static const char *const netdev_lock_name[] = {
301 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
302 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
303 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
304 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
305 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
306 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
307 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
308 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
309 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
310 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
311 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
312 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
313 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
314 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
315 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
316
317 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
318 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
319
320 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
321 {
322 int i;
323
324 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
325 if (netdev_lock_type[i] == dev_type)
326 return i;
327 /* the last key is used by default */
328 return ARRAY_SIZE(netdev_lock_type) - 1;
329 }
330
331 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
332 unsigned short dev_type)
333 {
334 int i;
335
336 i = netdev_lock_pos(dev_type);
337 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
338 netdev_lock_name[i]);
339 }
340
341 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
342 {
343 int i;
344
345 i = netdev_lock_pos(dev->type);
346 lockdep_set_class_and_name(&dev->addr_list_lock,
347 &netdev_addr_lock_key[i],
348 netdev_lock_name[i]);
349 }
350 #else
351 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
352 unsigned short dev_type)
353 {
354 }
355 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
356 {
357 }
358 #endif
359
360 /*******************************************************************************
361 *
362 * Protocol management and registration routines
363 *
364 *******************************************************************************/
365
366
367 /*
368 * Add a protocol ID to the list. Now that the input handler is
369 * smarter we can dispense with all the messy stuff that used to be
370 * here.
371 *
372 * BEWARE!!! Protocol handlers, mangling input packets,
373 * MUST BE last in hash buckets and checking protocol handlers
374 * MUST start from promiscuous ptype_all chain in net_bh.
375 * It is true now, do not change it.
376 * Explanation follows: if protocol handler, mangling packet, will
377 * be the first on list, it is not able to sense, that packet
378 * is cloned and should be copied-on-write, so that it will
379 * change it and subsequent readers will get broken packet.
380 * --ANK (980803)
381 */
382
383 static inline struct list_head *ptype_head(const struct packet_type *pt)
384 {
385 if (pt->type == htons(ETH_P_ALL))
386 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
387 else
388 return pt->dev ? &pt->dev->ptype_specific :
389 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
390 }
391
392 /**
393 * dev_add_pack - add packet handler
394 * @pt: packet type declaration
395 *
396 * Add a protocol handler to the networking stack. The passed &packet_type
397 * is linked into kernel lists and may not be freed until it has been
398 * removed from the kernel lists.
399 *
400 * This call does not sleep therefore it can not
401 * guarantee all CPU's that are in middle of receiving packets
402 * will see the new packet type (until the next received packet).
403 */
404
405 void dev_add_pack(struct packet_type *pt)
406 {
407 struct list_head *head = ptype_head(pt);
408
409 spin_lock(&ptype_lock);
410 list_add_rcu(&pt->list, head);
411 spin_unlock(&ptype_lock);
412 }
413 EXPORT_SYMBOL(dev_add_pack);
414
415 /**
416 * __dev_remove_pack - remove packet handler
417 * @pt: packet type declaration
418 *
419 * Remove a protocol handler that was previously added to the kernel
420 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
421 * from the kernel lists and can be freed or reused once this function
422 * returns.
423 *
424 * The packet type might still be in use by receivers
425 * and must not be freed until after all the CPU's have gone
426 * through a quiescent state.
427 */
428 void __dev_remove_pack(struct packet_type *pt)
429 {
430 struct list_head *head = ptype_head(pt);
431 struct packet_type *pt1;
432
433 spin_lock(&ptype_lock);
434
435 list_for_each_entry(pt1, head, list) {
436 if (pt == pt1) {
437 list_del_rcu(&pt->list);
438 goto out;
439 }
440 }
441
442 pr_warn("dev_remove_pack: %p not found\n", pt);
443 out:
444 spin_unlock(&ptype_lock);
445 }
446 EXPORT_SYMBOL(__dev_remove_pack);
447
448 /**
449 * dev_remove_pack - remove packet handler
450 * @pt: packet type declaration
451 *
452 * Remove a protocol handler that was previously added to the kernel
453 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
454 * from the kernel lists and can be freed or reused once this function
455 * returns.
456 *
457 * This call sleeps to guarantee that no CPU is looking at the packet
458 * type after return.
459 */
460 void dev_remove_pack(struct packet_type *pt)
461 {
462 __dev_remove_pack(pt);
463
464 synchronize_net();
465 }
466 EXPORT_SYMBOL(dev_remove_pack);
467
468
469 /**
470 * dev_add_offload - register offload handlers
471 * @po: protocol offload declaration
472 *
473 * Add protocol offload handlers to the networking stack. The passed
474 * &proto_offload is linked into kernel lists and may not be freed until
475 * it has been removed from the kernel lists.
476 *
477 * This call does not sleep therefore it can not
478 * guarantee all CPU's that are in middle of receiving packets
479 * will see the new offload handlers (until the next received packet).
480 */
481 void dev_add_offload(struct packet_offload *po)
482 {
483 struct packet_offload *elem;
484
485 spin_lock(&offload_lock);
486 list_for_each_entry(elem, &offload_base, list) {
487 if (po->priority < elem->priority)
488 break;
489 }
490 list_add_rcu(&po->list, elem->list.prev);
491 spin_unlock(&offload_lock);
492 }
493 EXPORT_SYMBOL(dev_add_offload);
494
495 /**
496 * __dev_remove_offload - remove offload handler
497 * @po: packet offload declaration
498 *
499 * Remove a protocol offload handler that was previously added to the
500 * kernel offload handlers by dev_add_offload(). The passed &offload_type
501 * is removed from the kernel lists and can be freed or reused once this
502 * function returns.
503 *
504 * The packet type might still be in use by receivers
505 * and must not be freed until after all the CPU's have gone
506 * through a quiescent state.
507 */
508 static void __dev_remove_offload(struct packet_offload *po)
509 {
510 struct list_head *head = &offload_base;
511 struct packet_offload *po1;
512
513 spin_lock(&offload_lock);
514
515 list_for_each_entry(po1, head, list) {
516 if (po == po1) {
517 list_del_rcu(&po->list);
518 goto out;
519 }
520 }
521
522 pr_warn("dev_remove_offload: %p not found\n", po);
523 out:
524 spin_unlock(&offload_lock);
525 }
526
527 /**
528 * dev_remove_offload - remove packet offload handler
529 * @po: packet offload declaration
530 *
531 * Remove a packet offload handler that was previously added to the kernel
532 * offload handlers by dev_add_offload(). The passed &offload_type is
533 * removed from the kernel lists and can be freed or reused once this
534 * function returns.
535 *
536 * This call sleeps to guarantee that no CPU is looking at the packet
537 * type after return.
538 */
539 void dev_remove_offload(struct packet_offload *po)
540 {
541 __dev_remove_offload(po);
542
543 synchronize_net();
544 }
545 EXPORT_SYMBOL(dev_remove_offload);
546
547 /******************************************************************************
548 *
549 * Device Boot-time Settings Routines
550 *
551 ******************************************************************************/
552
553 /* Boot time configuration table */
554 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
555
556 /**
557 * netdev_boot_setup_add - add new setup entry
558 * @name: name of the device
559 * @map: configured settings for the device
560 *
561 * Adds new setup entry to the dev_boot_setup list. The function
562 * returns 0 on error and 1 on success. This is a generic routine to
563 * all netdevices.
564 */
565 static int netdev_boot_setup_add(char *name, struct ifmap *map)
566 {
567 struct netdev_boot_setup *s;
568 int i;
569
570 s = dev_boot_setup;
571 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
572 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
573 memset(s[i].name, 0, sizeof(s[i].name));
574 strlcpy(s[i].name, name, IFNAMSIZ);
575 memcpy(&s[i].map, map, sizeof(s[i].map));
576 break;
577 }
578 }
579
580 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
581 }
582
583 /**
584 * netdev_boot_setup_check - check boot time settings
585 * @dev: the netdevice
586 *
587 * Check boot time settings for the device.
588 * The found settings are set for the device to be used
589 * later in the device probing.
590 * Returns 0 if no settings found, 1 if they are.
591 */
592 int netdev_boot_setup_check(struct net_device *dev)
593 {
594 struct netdev_boot_setup *s = dev_boot_setup;
595 int i;
596
597 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
598 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
599 !strcmp(dev->name, s[i].name)) {
600 dev->irq = s[i].map.irq;
601 dev->base_addr = s[i].map.base_addr;
602 dev->mem_start = s[i].map.mem_start;
603 dev->mem_end = s[i].map.mem_end;
604 return 1;
605 }
606 }
607 return 0;
608 }
609 EXPORT_SYMBOL(netdev_boot_setup_check);
610
611
612 /**
613 * netdev_boot_base - get address from boot time settings
614 * @prefix: prefix for network device
615 * @unit: id for network device
616 *
617 * Check boot time settings for the base address of device.
618 * The found settings are set for the device to be used
619 * later in the device probing.
620 * Returns 0 if no settings found.
621 */
622 unsigned long netdev_boot_base(const char *prefix, int unit)
623 {
624 const struct netdev_boot_setup *s = dev_boot_setup;
625 char name[IFNAMSIZ];
626 int i;
627
628 sprintf(name, "%s%d", prefix, unit);
629
630 /*
631 * If device already registered then return base of 1
632 * to indicate not to probe for this interface
633 */
634 if (__dev_get_by_name(&init_net, name))
635 return 1;
636
637 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
638 if (!strcmp(name, s[i].name))
639 return s[i].map.base_addr;
640 return 0;
641 }
642
643 /*
644 * Saves at boot time configured settings for any netdevice.
645 */
646 int __init netdev_boot_setup(char *str)
647 {
648 int ints[5];
649 struct ifmap map;
650
651 str = get_options(str, ARRAY_SIZE(ints), ints);
652 if (!str || !*str)
653 return 0;
654
655 /* Save settings */
656 memset(&map, 0, sizeof(map));
657 if (ints[0] > 0)
658 map.irq = ints[1];
659 if (ints[0] > 1)
660 map.base_addr = ints[2];
661 if (ints[0] > 2)
662 map.mem_start = ints[3];
663 if (ints[0] > 3)
664 map.mem_end = ints[4];
665
666 /* Add new entry to the list */
667 return netdev_boot_setup_add(str, &map);
668 }
669
670 __setup("netdev=", netdev_boot_setup);
671
672 /*******************************************************************************
673 *
674 * Device Interface Subroutines
675 *
676 *******************************************************************************/
677
678 /**
679 * dev_get_iflink - get 'iflink' value of a interface
680 * @dev: targeted interface
681 *
682 * Indicates the ifindex the interface is linked to.
683 * Physical interfaces have the same 'ifindex' and 'iflink' values.
684 */
685
686 int dev_get_iflink(const struct net_device *dev)
687 {
688 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
689 return dev->netdev_ops->ndo_get_iflink(dev);
690
691 return dev->ifindex;
692 }
693 EXPORT_SYMBOL(dev_get_iflink);
694
695 /**
696 * dev_fill_metadata_dst - Retrieve tunnel egress information.
697 * @dev: targeted interface
698 * @skb: The packet.
699 *
700 * For better visibility of tunnel traffic OVS needs to retrieve
701 * egress tunnel information for a packet. Following API allows
702 * user to get this info.
703 */
704 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
705 {
706 struct ip_tunnel_info *info;
707
708 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
709 return -EINVAL;
710
711 info = skb_tunnel_info_unclone(skb);
712 if (!info)
713 return -ENOMEM;
714 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
715 return -EINVAL;
716
717 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
718 }
719 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
720
721 /**
722 * __dev_get_by_name - find a device by its name
723 * @net: the applicable net namespace
724 * @name: name to find
725 *
726 * Find an interface by name. Must be called under RTNL semaphore
727 * or @dev_base_lock. If the name is found a pointer to the device
728 * is returned. If the name is not found then %NULL is returned. The
729 * reference counters are not incremented so the caller must be
730 * careful with locks.
731 */
732
733 struct net_device *__dev_get_by_name(struct net *net, const char *name)
734 {
735 struct net_device *dev;
736 struct hlist_head *head = dev_name_hash(net, name);
737
738 hlist_for_each_entry(dev, head, name_hlist)
739 if (!strncmp(dev->name, name, IFNAMSIZ))
740 return dev;
741
742 return NULL;
743 }
744 EXPORT_SYMBOL(__dev_get_by_name);
745
746 /**
747 * dev_get_by_name_rcu - find a device by its name
748 * @net: the applicable net namespace
749 * @name: name to find
750 *
751 * Find an interface by name.
752 * If the name is found a pointer to the device is returned.
753 * If the name is not found then %NULL is returned.
754 * The reference counters are not incremented so the caller must be
755 * careful with locks. The caller must hold RCU lock.
756 */
757
758 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
759 {
760 struct net_device *dev;
761 struct hlist_head *head = dev_name_hash(net, name);
762
763 hlist_for_each_entry_rcu(dev, head, name_hlist)
764 if (!strncmp(dev->name, name, IFNAMSIZ))
765 return dev;
766
767 return NULL;
768 }
769 EXPORT_SYMBOL(dev_get_by_name_rcu);
770
771 /**
772 * dev_get_by_name - find a device by its name
773 * @net: the applicable net namespace
774 * @name: name to find
775 *
776 * Find an interface by name. This can be called from any
777 * context and does its own locking. The returned handle has
778 * the usage count incremented and the caller must use dev_put() to
779 * release it when it is no longer needed. %NULL is returned if no
780 * matching device is found.
781 */
782
783 struct net_device *dev_get_by_name(struct net *net, const char *name)
784 {
785 struct net_device *dev;
786
787 rcu_read_lock();
788 dev = dev_get_by_name_rcu(net, name);
789 if (dev)
790 dev_hold(dev);
791 rcu_read_unlock();
792 return dev;
793 }
794 EXPORT_SYMBOL(dev_get_by_name);
795
796 /**
797 * __dev_get_by_index - find a device by its ifindex
798 * @net: the applicable net namespace
799 * @ifindex: index of device
800 *
801 * Search for an interface by index. Returns %NULL if the device
802 * is not found or a pointer to the device. The device has not
803 * had its reference counter increased so the caller must be careful
804 * about locking. The caller must hold either the RTNL semaphore
805 * or @dev_base_lock.
806 */
807
808 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
809 {
810 struct net_device *dev;
811 struct hlist_head *head = dev_index_hash(net, ifindex);
812
813 hlist_for_each_entry(dev, head, index_hlist)
814 if (dev->ifindex == ifindex)
815 return dev;
816
817 return NULL;
818 }
819 EXPORT_SYMBOL(__dev_get_by_index);
820
821 /**
822 * dev_get_by_index_rcu - find a device by its ifindex
823 * @net: the applicable net namespace
824 * @ifindex: index of device
825 *
826 * Search for an interface by index. Returns %NULL if the device
827 * is not found or a pointer to the device. The device has not
828 * had its reference counter increased so the caller must be careful
829 * about locking. The caller must hold RCU lock.
830 */
831
832 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
833 {
834 struct net_device *dev;
835 struct hlist_head *head = dev_index_hash(net, ifindex);
836
837 hlist_for_each_entry_rcu(dev, head, index_hlist)
838 if (dev->ifindex == ifindex)
839 return dev;
840
841 return NULL;
842 }
843 EXPORT_SYMBOL(dev_get_by_index_rcu);
844
845
846 /**
847 * dev_get_by_index - find a device by its ifindex
848 * @net: the applicable net namespace
849 * @ifindex: index of device
850 *
851 * Search for an interface by index. Returns NULL if the device
852 * is not found or a pointer to the device. The device returned has
853 * had a reference added and the pointer is safe until the user calls
854 * dev_put to indicate they have finished with it.
855 */
856
857 struct net_device *dev_get_by_index(struct net *net, int ifindex)
858 {
859 struct net_device *dev;
860
861 rcu_read_lock();
862 dev = dev_get_by_index_rcu(net, ifindex);
863 if (dev)
864 dev_hold(dev);
865 rcu_read_unlock();
866 return dev;
867 }
868 EXPORT_SYMBOL(dev_get_by_index);
869
870 /**
871 * dev_get_by_napi_id - find a device by napi_id
872 * @napi_id: ID of the NAPI struct
873 *
874 * Search for an interface by NAPI ID. Returns %NULL if the device
875 * is not found or a pointer to the device. The device has not had
876 * its reference counter increased so the caller must be careful
877 * about locking. The caller must hold RCU lock.
878 */
879
880 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
881 {
882 struct napi_struct *napi;
883
884 WARN_ON_ONCE(!rcu_read_lock_held());
885
886 if (napi_id < MIN_NAPI_ID)
887 return NULL;
888
889 napi = napi_by_id(napi_id);
890
891 return napi ? napi->dev : NULL;
892 }
893 EXPORT_SYMBOL(dev_get_by_napi_id);
894
895 /**
896 * netdev_get_name - get a netdevice name, knowing its ifindex.
897 * @net: network namespace
898 * @name: a pointer to the buffer where the name will be stored.
899 * @ifindex: the ifindex of the interface to get the name from.
900 *
901 * The use of raw_seqcount_begin() and cond_resched() before
902 * retrying is required as we want to give the writers a chance
903 * to complete when CONFIG_PREEMPT is not set.
904 */
905 int netdev_get_name(struct net *net, char *name, int ifindex)
906 {
907 struct net_device *dev;
908 unsigned int seq;
909
910 retry:
911 seq = raw_seqcount_begin(&devnet_rename_seq);
912 rcu_read_lock();
913 dev = dev_get_by_index_rcu(net, ifindex);
914 if (!dev) {
915 rcu_read_unlock();
916 return -ENODEV;
917 }
918
919 strcpy(name, dev->name);
920 rcu_read_unlock();
921 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
922 cond_resched();
923 goto retry;
924 }
925
926 return 0;
927 }
928
929 /**
930 * dev_getbyhwaddr_rcu - find a device by its hardware address
931 * @net: the applicable net namespace
932 * @type: media type of device
933 * @ha: hardware address
934 *
935 * Search for an interface by MAC address. Returns NULL if the device
936 * is not found or a pointer to the device.
937 * The caller must hold RCU or RTNL.
938 * The returned device has not had its ref count increased
939 * and the caller must therefore be careful about locking
940 *
941 */
942
943 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
944 const char *ha)
945 {
946 struct net_device *dev;
947
948 for_each_netdev_rcu(net, dev)
949 if (dev->type == type &&
950 !memcmp(dev->dev_addr, ha, dev->addr_len))
951 return dev;
952
953 return NULL;
954 }
955 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
956
957 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
958 {
959 struct net_device *dev;
960
961 ASSERT_RTNL();
962 for_each_netdev(net, dev)
963 if (dev->type == type)
964 return dev;
965
966 return NULL;
967 }
968 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
969
970 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
971 {
972 struct net_device *dev, *ret = NULL;
973
974 rcu_read_lock();
975 for_each_netdev_rcu(net, dev)
976 if (dev->type == type) {
977 dev_hold(dev);
978 ret = dev;
979 break;
980 }
981 rcu_read_unlock();
982 return ret;
983 }
984 EXPORT_SYMBOL(dev_getfirstbyhwtype);
985
986 /**
987 * __dev_get_by_flags - find any device with given flags
988 * @net: the applicable net namespace
989 * @if_flags: IFF_* values
990 * @mask: bitmask of bits in if_flags to check
991 *
992 * Search for any interface with the given flags. Returns NULL if a device
993 * is not found or a pointer to the device. Must be called inside
994 * rtnl_lock(), and result refcount is unchanged.
995 */
996
997 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
998 unsigned short mask)
999 {
1000 struct net_device *dev, *ret;
1001
1002 ASSERT_RTNL();
1003
1004 ret = NULL;
1005 for_each_netdev(net, dev) {
1006 if (((dev->flags ^ if_flags) & mask) == 0) {
1007 ret = dev;
1008 break;
1009 }
1010 }
1011 return ret;
1012 }
1013 EXPORT_SYMBOL(__dev_get_by_flags);
1014
1015 /**
1016 * dev_valid_name - check if name is okay for network device
1017 * @name: name string
1018 *
1019 * Network device names need to be valid file names to
1020 * to allow sysfs to work. We also disallow any kind of
1021 * whitespace.
1022 */
1023 bool dev_valid_name(const char *name)
1024 {
1025 if (*name == '\0')
1026 return false;
1027 if (strlen(name) >= IFNAMSIZ)
1028 return false;
1029 if (!strcmp(name, ".") || !strcmp(name, ".."))
1030 return false;
1031
1032 while (*name) {
1033 if (*name == '/' || *name == ':' || isspace(*name))
1034 return false;
1035 name++;
1036 }
1037 return true;
1038 }
1039 EXPORT_SYMBOL(dev_valid_name);
1040
1041 /**
1042 * __dev_alloc_name - allocate a name for a device
1043 * @net: network namespace to allocate the device name in
1044 * @name: name format string
1045 * @buf: scratch buffer and result name string
1046 *
1047 * Passed a format string - eg "lt%d" it will try and find a suitable
1048 * id. It scans list of devices to build up a free map, then chooses
1049 * the first empty slot. The caller must hold the dev_base or rtnl lock
1050 * while allocating the name and adding the device in order to avoid
1051 * duplicates.
1052 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1053 * Returns the number of the unit assigned or a negative errno code.
1054 */
1055
1056 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1057 {
1058 int i = 0;
1059 const char *p;
1060 const int max_netdevices = 8*PAGE_SIZE;
1061 unsigned long *inuse;
1062 struct net_device *d;
1063
1064 p = strnchr(name, IFNAMSIZ-1, '%');
1065 if (p) {
1066 /*
1067 * Verify the string as this thing may have come from
1068 * the user. There must be either one "%d" and no other "%"
1069 * characters.
1070 */
1071 if (p[1] != 'd' || strchr(p + 2, '%'))
1072 return -EINVAL;
1073
1074 /* Use one page as a bit array of possible slots */
1075 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1076 if (!inuse)
1077 return -ENOMEM;
1078
1079 for_each_netdev(net, d) {
1080 if (!sscanf(d->name, name, &i))
1081 continue;
1082 if (i < 0 || i >= max_netdevices)
1083 continue;
1084
1085 /* avoid cases where sscanf is not exact inverse of printf */
1086 snprintf(buf, IFNAMSIZ, name, i);
1087 if (!strncmp(buf, d->name, IFNAMSIZ))
1088 set_bit(i, inuse);
1089 }
1090
1091 i = find_first_zero_bit(inuse, max_netdevices);
1092 free_page((unsigned long) inuse);
1093 }
1094
1095 if (buf != name)
1096 snprintf(buf, IFNAMSIZ, name, i);
1097 if (!__dev_get_by_name(net, buf))
1098 return i;
1099
1100 /* It is possible to run out of possible slots
1101 * when the name is long and there isn't enough space left
1102 * for the digits, or if all bits are used.
1103 */
1104 return -ENFILE;
1105 }
1106
1107 /**
1108 * dev_alloc_name - allocate a name for a device
1109 * @dev: device
1110 * @name: name format string
1111 *
1112 * Passed a format string - eg "lt%d" it will try and find a suitable
1113 * id. It scans list of devices to build up a free map, then chooses
1114 * the first empty slot. The caller must hold the dev_base or rtnl lock
1115 * while allocating the name and adding the device in order to avoid
1116 * duplicates.
1117 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118 * Returns the number of the unit assigned or a negative errno code.
1119 */
1120
1121 int dev_alloc_name(struct net_device *dev, const char *name)
1122 {
1123 char buf[IFNAMSIZ];
1124 struct net *net;
1125 int ret;
1126
1127 BUG_ON(!dev_net(dev));
1128 net = dev_net(dev);
1129 ret = __dev_alloc_name(net, name, buf);
1130 if (ret >= 0)
1131 strlcpy(dev->name, buf, IFNAMSIZ);
1132 return ret;
1133 }
1134 EXPORT_SYMBOL(dev_alloc_name);
1135
1136 static int dev_alloc_name_ns(struct net *net,
1137 struct net_device *dev,
1138 const char *name)
1139 {
1140 char buf[IFNAMSIZ];
1141 int ret;
1142
1143 ret = __dev_alloc_name(net, name, buf);
1144 if (ret >= 0)
1145 strlcpy(dev->name, buf, IFNAMSIZ);
1146 return ret;
1147 }
1148
1149 static int dev_get_valid_name(struct net *net,
1150 struct net_device *dev,
1151 const char *name)
1152 {
1153 BUG_ON(!net);
1154
1155 if (!dev_valid_name(name))
1156 return -EINVAL;
1157
1158 if (strchr(name, '%'))
1159 return dev_alloc_name_ns(net, dev, name);
1160 else if (__dev_get_by_name(net, name))
1161 return -EEXIST;
1162 else if (dev->name != name)
1163 strlcpy(dev->name, name, IFNAMSIZ);
1164
1165 return 0;
1166 }
1167
1168 /**
1169 * dev_change_name - change name of a device
1170 * @dev: device
1171 * @newname: name (or format string) must be at least IFNAMSIZ
1172 *
1173 * Change name of a device, can pass format strings "eth%d".
1174 * for wildcarding.
1175 */
1176 int dev_change_name(struct net_device *dev, const char *newname)
1177 {
1178 unsigned char old_assign_type;
1179 char oldname[IFNAMSIZ];
1180 int err = 0;
1181 int ret;
1182 struct net *net;
1183
1184 ASSERT_RTNL();
1185 BUG_ON(!dev_net(dev));
1186
1187 net = dev_net(dev);
1188 if (dev->flags & IFF_UP)
1189 return -EBUSY;
1190
1191 write_seqcount_begin(&devnet_rename_seq);
1192
1193 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1194 write_seqcount_end(&devnet_rename_seq);
1195 return 0;
1196 }
1197
1198 memcpy(oldname, dev->name, IFNAMSIZ);
1199
1200 err = dev_get_valid_name(net, dev, newname);
1201 if (err < 0) {
1202 write_seqcount_end(&devnet_rename_seq);
1203 return err;
1204 }
1205
1206 if (oldname[0] && !strchr(oldname, '%'))
1207 netdev_info(dev, "renamed from %s\n", oldname);
1208
1209 old_assign_type = dev->name_assign_type;
1210 dev->name_assign_type = NET_NAME_RENAMED;
1211
1212 rollback:
1213 ret = device_rename(&dev->dev, dev->name);
1214 if (ret) {
1215 memcpy(dev->name, oldname, IFNAMSIZ);
1216 dev->name_assign_type = old_assign_type;
1217 write_seqcount_end(&devnet_rename_seq);
1218 return ret;
1219 }
1220
1221 write_seqcount_end(&devnet_rename_seq);
1222
1223 netdev_adjacent_rename_links(dev, oldname);
1224
1225 write_lock_bh(&dev_base_lock);
1226 hlist_del_rcu(&dev->name_hlist);
1227 write_unlock_bh(&dev_base_lock);
1228
1229 synchronize_rcu();
1230
1231 write_lock_bh(&dev_base_lock);
1232 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1233 write_unlock_bh(&dev_base_lock);
1234
1235 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1236 ret = notifier_to_errno(ret);
1237
1238 if (ret) {
1239 /* err >= 0 after dev_alloc_name() or stores the first errno */
1240 if (err >= 0) {
1241 err = ret;
1242 write_seqcount_begin(&devnet_rename_seq);
1243 memcpy(dev->name, oldname, IFNAMSIZ);
1244 memcpy(oldname, newname, IFNAMSIZ);
1245 dev->name_assign_type = old_assign_type;
1246 old_assign_type = NET_NAME_RENAMED;
1247 goto rollback;
1248 } else {
1249 pr_err("%s: name change rollback failed: %d\n",
1250 dev->name, ret);
1251 }
1252 }
1253
1254 return err;
1255 }
1256
1257 /**
1258 * dev_set_alias - change ifalias of a device
1259 * @dev: device
1260 * @alias: name up to IFALIASZ
1261 * @len: limit of bytes to copy from info
1262 *
1263 * Set ifalias for a device,
1264 */
1265 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1266 {
1267 char *new_ifalias;
1268
1269 ASSERT_RTNL();
1270
1271 if (len >= IFALIASZ)
1272 return -EINVAL;
1273
1274 if (!len) {
1275 kfree(dev->ifalias);
1276 dev->ifalias = NULL;
1277 return 0;
1278 }
1279
1280 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1281 if (!new_ifalias)
1282 return -ENOMEM;
1283 dev->ifalias = new_ifalias;
1284 memcpy(dev->ifalias, alias, len);
1285 dev->ifalias[len] = 0;
1286
1287 return len;
1288 }
1289
1290
1291 /**
1292 * netdev_features_change - device changes features
1293 * @dev: device to cause notification
1294 *
1295 * Called to indicate a device has changed features.
1296 */
1297 void netdev_features_change(struct net_device *dev)
1298 {
1299 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1300 }
1301 EXPORT_SYMBOL(netdev_features_change);
1302
1303 /**
1304 * netdev_state_change - device changes state
1305 * @dev: device to cause notification
1306 *
1307 * Called to indicate a device has changed state. This function calls
1308 * the notifier chains for netdev_chain and sends a NEWLINK message
1309 * to the routing socket.
1310 */
1311 void netdev_state_change(struct net_device *dev)
1312 {
1313 if (dev->flags & IFF_UP) {
1314 struct netdev_notifier_change_info change_info;
1315
1316 change_info.flags_changed = 0;
1317 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1318 &change_info.info);
1319 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1320 }
1321 }
1322 EXPORT_SYMBOL(netdev_state_change);
1323
1324 /**
1325 * netdev_notify_peers - notify network peers about existence of @dev
1326 * @dev: network device
1327 *
1328 * Generate traffic such that interested network peers are aware of
1329 * @dev, such as by generating a gratuitous ARP. This may be used when
1330 * a device wants to inform the rest of the network about some sort of
1331 * reconfiguration such as a failover event or virtual machine
1332 * migration.
1333 */
1334 void netdev_notify_peers(struct net_device *dev)
1335 {
1336 rtnl_lock();
1337 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1338 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1339 rtnl_unlock();
1340 }
1341 EXPORT_SYMBOL(netdev_notify_peers);
1342
1343 static int __dev_open(struct net_device *dev)
1344 {
1345 const struct net_device_ops *ops = dev->netdev_ops;
1346 int ret;
1347
1348 ASSERT_RTNL();
1349
1350 if (!netif_device_present(dev))
1351 return -ENODEV;
1352
1353 /* Block netpoll from trying to do any rx path servicing.
1354 * If we don't do this there is a chance ndo_poll_controller
1355 * or ndo_poll may be running while we open the device
1356 */
1357 netpoll_poll_disable(dev);
1358
1359 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1360 ret = notifier_to_errno(ret);
1361 if (ret)
1362 return ret;
1363
1364 set_bit(__LINK_STATE_START, &dev->state);
1365
1366 if (ops->ndo_validate_addr)
1367 ret = ops->ndo_validate_addr(dev);
1368
1369 if (!ret && ops->ndo_open)
1370 ret = ops->ndo_open(dev);
1371
1372 netpoll_poll_enable(dev);
1373
1374 if (ret)
1375 clear_bit(__LINK_STATE_START, &dev->state);
1376 else {
1377 dev->flags |= IFF_UP;
1378 dev_set_rx_mode(dev);
1379 dev_activate(dev);
1380 add_device_randomness(dev->dev_addr, dev->addr_len);
1381 }
1382
1383 return ret;
1384 }
1385
1386 /**
1387 * dev_open - prepare an interface for use.
1388 * @dev: device to open
1389 *
1390 * Takes a device from down to up state. The device's private open
1391 * function is invoked and then the multicast lists are loaded. Finally
1392 * the device is moved into the up state and a %NETDEV_UP message is
1393 * sent to the netdev notifier chain.
1394 *
1395 * Calling this function on an active interface is a nop. On a failure
1396 * a negative errno code is returned.
1397 */
1398 int dev_open(struct net_device *dev)
1399 {
1400 int ret;
1401
1402 if (dev->flags & IFF_UP)
1403 return 0;
1404
1405 ret = __dev_open(dev);
1406 if (ret < 0)
1407 return ret;
1408
1409 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1410 call_netdevice_notifiers(NETDEV_UP, dev);
1411
1412 return ret;
1413 }
1414 EXPORT_SYMBOL(dev_open);
1415
1416 static int __dev_close_many(struct list_head *head)
1417 {
1418 struct net_device *dev;
1419
1420 ASSERT_RTNL();
1421 might_sleep();
1422
1423 list_for_each_entry(dev, head, close_list) {
1424 /* Temporarily disable netpoll until the interface is down */
1425 netpoll_poll_disable(dev);
1426
1427 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1428
1429 clear_bit(__LINK_STATE_START, &dev->state);
1430
1431 /* Synchronize to scheduled poll. We cannot touch poll list, it
1432 * can be even on different cpu. So just clear netif_running().
1433 *
1434 * dev->stop() will invoke napi_disable() on all of it's
1435 * napi_struct instances on this device.
1436 */
1437 smp_mb__after_atomic(); /* Commit netif_running(). */
1438 }
1439
1440 dev_deactivate_many(head);
1441
1442 list_for_each_entry(dev, head, close_list) {
1443 const struct net_device_ops *ops = dev->netdev_ops;
1444
1445 /*
1446 * Call the device specific close. This cannot fail.
1447 * Only if device is UP
1448 *
1449 * We allow it to be called even after a DETACH hot-plug
1450 * event.
1451 */
1452 if (ops->ndo_stop)
1453 ops->ndo_stop(dev);
1454
1455 dev->flags &= ~IFF_UP;
1456 netpoll_poll_enable(dev);
1457 }
1458
1459 return 0;
1460 }
1461
1462 static int __dev_close(struct net_device *dev)
1463 {
1464 int retval;
1465 LIST_HEAD(single);
1466
1467 list_add(&dev->close_list, &single);
1468 retval = __dev_close_many(&single);
1469 list_del(&single);
1470
1471 return retval;
1472 }
1473
1474 int dev_close_many(struct list_head *head, bool unlink)
1475 {
1476 struct net_device *dev, *tmp;
1477
1478 /* Remove the devices that don't need to be closed */
1479 list_for_each_entry_safe(dev, tmp, head, close_list)
1480 if (!(dev->flags & IFF_UP))
1481 list_del_init(&dev->close_list);
1482
1483 __dev_close_many(head);
1484
1485 list_for_each_entry_safe(dev, tmp, head, close_list) {
1486 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1487 call_netdevice_notifiers(NETDEV_DOWN, dev);
1488 if (unlink)
1489 list_del_init(&dev->close_list);
1490 }
1491
1492 return 0;
1493 }
1494 EXPORT_SYMBOL(dev_close_many);
1495
1496 /**
1497 * dev_close - shutdown an interface.
1498 * @dev: device to shutdown
1499 *
1500 * This function moves an active device into down state. A
1501 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1502 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1503 * chain.
1504 */
1505 int dev_close(struct net_device *dev)
1506 {
1507 if (dev->flags & IFF_UP) {
1508 LIST_HEAD(single);
1509
1510 list_add(&dev->close_list, &single);
1511 dev_close_many(&single, true);
1512 list_del(&single);
1513 }
1514 return 0;
1515 }
1516 EXPORT_SYMBOL(dev_close);
1517
1518
1519 /**
1520 * dev_disable_lro - disable Large Receive Offload on a device
1521 * @dev: device
1522 *
1523 * Disable Large Receive Offload (LRO) on a net device. Must be
1524 * called under RTNL. This is needed if received packets may be
1525 * forwarded to another interface.
1526 */
1527 void dev_disable_lro(struct net_device *dev)
1528 {
1529 struct net_device *lower_dev;
1530 struct list_head *iter;
1531
1532 dev->wanted_features &= ~NETIF_F_LRO;
1533 netdev_update_features(dev);
1534
1535 if (unlikely(dev->features & NETIF_F_LRO))
1536 netdev_WARN(dev, "failed to disable LRO!\n");
1537
1538 netdev_for_each_lower_dev(dev, lower_dev, iter)
1539 dev_disable_lro(lower_dev);
1540 }
1541 EXPORT_SYMBOL(dev_disable_lro);
1542
1543 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1544 struct net_device *dev)
1545 {
1546 struct netdev_notifier_info info;
1547
1548 netdev_notifier_info_init(&info, dev);
1549 return nb->notifier_call(nb, val, &info);
1550 }
1551
1552 static int dev_boot_phase = 1;
1553
1554 /**
1555 * register_netdevice_notifier - register a network notifier block
1556 * @nb: notifier
1557 *
1558 * Register a notifier to be called when network device events occur.
1559 * The notifier passed is linked into the kernel structures and must
1560 * not be reused until it has been unregistered. A negative errno code
1561 * is returned on a failure.
1562 *
1563 * When registered all registration and up events are replayed
1564 * to the new notifier to allow device to have a race free
1565 * view of the network device list.
1566 */
1567
1568 int register_netdevice_notifier(struct notifier_block *nb)
1569 {
1570 struct net_device *dev;
1571 struct net_device *last;
1572 struct net *net;
1573 int err;
1574
1575 rtnl_lock();
1576 err = raw_notifier_chain_register(&netdev_chain, nb);
1577 if (err)
1578 goto unlock;
1579 if (dev_boot_phase)
1580 goto unlock;
1581 for_each_net(net) {
1582 for_each_netdev(net, dev) {
1583 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1584 err = notifier_to_errno(err);
1585 if (err)
1586 goto rollback;
1587
1588 if (!(dev->flags & IFF_UP))
1589 continue;
1590
1591 call_netdevice_notifier(nb, NETDEV_UP, dev);
1592 }
1593 }
1594
1595 unlock:
1596 rtnl_unlock();
1597 return err;
1598
1599 rollback:
1600 last = dev;
1601 for_each_net(net) {
1602 for_each_netdev(net, dev) {
1603 if (dev == last)
1604 goto outroll;
1605
1606 if (dev->flags & IFF_UP) {
1607 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1608 dev);
1609 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1610 }
1611 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1612 }
1613 }
1614
1615 outroll:
1616 raw_notifier_chain_unregister(&netdev_chain, nb);
1617 goto unlock;
1618 }
1619 EXPORT_SYMBOL(register_netdevice_notifier);
1620
1621 /**
1622 * unregister_netdevice_notifier - unregister a network notifier block
1623 * @nb: notifier
1624 *
1625 * Unregister a notifier previously registered by
1626 * register_netdevice_notifier(). The notifier is unlinked into the
1627 * kernel structures and may then be reused. A negative errno code
1628 * is returned on a failure.
1629 *
1630 * After unregistering unregister and down device events are synthesized
1631 * for all devices on the device list to the removed notifier to remove
1632 * the need for special case cleanup code.
1633 */
1634
1635 int unregister_netdevice_notifier(struct notifier_block *nb)
1636 {
1637 struct net_device *dev;
1638 struct net *net;
1639 int err;
1640
1641 rtnl_lock();
1642 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1643 if (err)
1644 goto unlock;
1645
1646 for_each_net(net) {
1647 for_each_netdev(net, dev) {
1648 if (dev->flags & IFF_UP) {
1649 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1650 dev);
1651 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1652 }
1653 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1654 }
1655 }
1656 unlock:
1657 rtnl_unlock();
1658 return err;
1659 }
1660 EXPORT_SYMBOL(unregister_netdevice_notifier);
1661
1662 /**
1663 * call_netdevice_notifiers_info - call all network notifier blocks
1664 * @val: value passed unmodified to notifier function
1665 * @dev: net_device pointer passed unmodified to notifier function
1666 * @info: notifier information data
1667 *
1668 * Call all network notifier blocks. Parameters and return value
1669 * are as for raw_notifier_call_chain().
1670 */
1671
1672 static int call_netdevice_notifiers_info(unsigned long val,
1673 struct net_device *dev,
1674 struct netdev_notifier_info *info)
1675 {
1676 ASSERT_RTNL();
1677 netdev_notifier_info_init(info, dev);
1678 return raw_notifier_call_chain(&netdev_chain, val, info);
1679 }
1680
1681 /**
1682 * call_netdevice_notifiers - call all network notifier blocks
1683 * @val: value passed unmodified to notifier function
1684 * @dev: net_device pointer passed unmodified to notifier function
1685 *
1686 * Call all network notifier blocks. Parameters and return value
1687 * are as for raw_notifier_call_chain().
1688 */
1689
1690 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1691 {
1692 struct netdev_notifier_info info;
1693
1694 return call_netdevice_notifiers_info(val, dev, &info);
1695 }
1696 EXPORT_SYMBOL(call_netdevice_notifiers);
1697
1698 #ifdef CONFIG_NET_INGRESS
1699 static struct static_key ingress_needed __read_mostly;
1700
1701 void net_inc_ingress_queue(void)
1702 {
1703 static_key_slow_inc(&ingress_needed);
1704 }
1705 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1706
1707 void net_dec_ingress_queue(void)
1708 {
1709 static_key_slow_dec(&ingress_needed);
1710 }
1711 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1712 #endif
1713
1714 #ifdef CONFIG_NET_EGRESS
1715 static struct static_key egress_needed __read_mostly;
1716
1717 void net_inc_egress_queue(void)
1718 {
1719 static_key_slow_inc(&egress_needed);
1720 }
1721 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1722
1723 void net_dec_egress_queue(void)
1724 {
1725 static_key_slow_dec(&egress_needed);
1726 }
1727 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1728 #endif
1729
1730 static struct static_key netstamp_needed __read_mostly;
1731 #ifdef HAVE_JUMP_LABEL
1732 static atomic_t netstamp_needed_deferred;
1733 static atomic_t netstamp_wanted;
1734 static void netstamp_clear(struct work_struct *work)
1735 {
1736 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1737 int wanted;
1738
1739 wanted = atomic_add_return(deferred, &netstamp_wanted);
1740 if (wanted > 0)
1741 static_key_enable(&netstamp_needed);
1742 else
1743 static_key_disable(&netstamp_needed);
1744 }
1745 static DECLARE_WORK(netstamp_work, netstamp_clear);
1746 #endif
1747
1748 void net_enable_timestamp(void)
1749 {
1750 #ifdef HAVE_JUMP_LABEL
1751 int wanted;
1752
1753 while (1) {
1754 wanted = atomic_read(&netstamp_wanted);
1755 if (wanted <= 0)
1756 break;
1757 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1758 return;
1759 }
1760 atomic_inc(&netstamp_needed_deferred);
1761 schedule_work(&netstamp_work);
1762 #else
1763 static_key_slow_inc(&netstamp_needed);
1764 #endif
1765 }
1766 EXPORT_SYMBOL(net_enable_timestamp);
1767
1768 void net_disable_timestamp(void)
1769 {
1770 #ifdef HAVE_JUMP_LABEL
1771 int wanted;
1772
1773 while (1) {
1774 wanted = atomic_read(&netstamp_wanted);
1775 if (wanted <= 1)
1776 break;
1777 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1778 return;
1779 }
1780 atomic_dec(&netstamp_needed_deferred);
1781 schedule_work(&netstamp_work);
1782 #else
1783 static_key_slow_dec(&netstamp_needed);
1784 #endif
1785 }
1786 EXPORT_SYMBOL(net_disable_timestamp);
1787
1788 static inline void net_timestamp_set(struct sk_buff *skb)
1789 {
1790 skb->tstamp = 0;
1791 if (static_key_false(&netstamp_needed))
1792 __net_timestamp(skb);
1793 }
1794
1795 #define net_timestamp_check(COND, SKB) \
1796 if (static_key_false(&netstamp_needed)) { \
1797 if ((COND) && !(SKB)->tstamp) \
1798 __net_timestamp(SKB); \
1799 } \
1800
1801 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1802 {
1803 unsigned int len;
1804
1805 if (!(dev->flags & IFF_UP))
1806 return false;
1807
1808 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1809 if (skb->len <= len)
1810 return true;
1811
1812 /* if TSO is enabled, we don't care about the length as the packet
1813 * could be forwarded without being segmented before
1814 */
1815 if (skb_is_gso(skb))
1816 return true;
1817
1818 return false;
1819 }
1820 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1821
1822 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1823 {
1824 int ret = ____dev_forward_skb(dev, skb);
1825
1826 if (likely(!ret)) {
1827 skb->protocol = eth_type_trans(skb, dev);
1828 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1829 }
1830
1831 return ret;
1832 }
1833 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1834
1835 /**
1836 * dev_forward_skb - loopback an skb to another netif
1837 *
1838 * @dev: destination network device
1839 * @skb: buffer to forward
1840 *
1841 * return values:
1842 * NET_RX_SUCCESS (no congestion)
1843 * NET_RX_DROP (packet was dropped, but freed)
1844 *
1845 * dev_forward_skb can be used for injecting an skb from the
1846 * start_xmit function of one device into the receive queue
1847 * of another device.
1848 *
1849 * The receiving device may be in another namespace, so
1850 * we have to clear all information in the skb that could
1851 * impact namespace isolation.
1852 */
1853 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1854 {
1855 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1856 }
1857 EXPORT_SYMBOL_GPL(dev_forward_skb);
1858
1859 static inline int deliver_skb(struct sk_buff *skb,
1860 struct packet_type *pt_prev,
1861 struct net_device *orig_dev)
1862 {
1863 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1864 return -ENOMEM;
1865 refcount_inc(&skb->users);
1866 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1867 }
1868
1869 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1870 struct packet_type **pt,
1871 struct net_device *orig_dev,
1872 __be16 type,
1873 struct list_head *ptype_list)
1874 {
1875 struct packet_type *ptype, *pt_prev = *pt;
1876
1877 list_for_each_entry_rcu(ptype, ptype_list, list) {
1878 if (ptype->type != type)
1879 continue;
1880 if (pt_prev)
1881 deliver_skb(skb, pt_prev, orig_dev);
1882 pt_prev = ptype;
1883 }
1884 *pt = pt_prev;
1885 }
1886
1887 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1888 {
1889 if (!ptype->af_packet_priv || !skb->sk)
1890 return false;
1891
1892 if (ptype->id_match)
1893 return ptype->id_match(ptype, skb->sk);
1894 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1895 return true;
1896
1897 return false;
1898 }
1899
1900 /*
1901 * Support routine. Sends outgoing frames to any network
1902 * taps currently in use.
1903 */
1904
1905 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1906 {
1907 struct packet_type *ptype;
1908 struct sk_buff *skb2 = NULL;
1909 struct packet_type *pt_prev = NULL;
1910 struct list_head *ptype_list = &ptype_all;
1911
1912 rcu_read_lock();
1913 again:
1914 list_for_each_entry_rcu(ptype, ptype_list, list) {
1915 /* Never send packets back to the socket
1916 * they originated from - MvS (miquels@drinkel.ow.org)
1917 */
1918 if (skb_loop_sk(ptype, skb))
1919 continue;
1920
1921 if (pt_prev) {
1922 deliver_skb(skb2, pt_prev, skb->dev);
1923 pt_prev = ptype;
1924 continue;
1925 }
1926
1927 /* need to clone skb, done only once */
1928 skb2 = skb_clone(skb, GFP_ATOMIC);
1929 if (!skb2)
1930 goto out_unlock;
1931
1932 net_timestamp_set(skb2);
1933
1934 /* skb->nh should be correctly
1935 * set by sender, so that the second statement is
1936 * just protection against buggy protocols.
1937 */
1938 skb_reset_mac_header(skb2);
1939
1940 if (skb_network_header(skb2) < skb2->data ||
1941 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1942 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1943 ntohs(skb2->protocol),
1944 dev->name);
1945 skb_reset_network_header(skb2);
1946 }
1947
1948 skb2->transport_header = skb2->network_header;
1949 skb2->pkt_type = PACKET_OUTGOING;
1950 pt_prev = ptype;
1951 }
1952
1953 if (ptype_list == &ptype_all) {
1954 ptype_list = &dev->ptype_all;
1955 goto again;
1956 }
1957 out_unlock:
1958 if (pt_prev)
1959 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1960 rcu_read_unlock();
1961 }
1962 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1963
1964 /**
1965 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1966 * @dev: Network device
1967 * @txq: number of queues available
1968 *
1969 * If real_num_tx_queues is changed the tc mappings may no longer be
1970 * valid. To resolve this verify the tc mapping remains valid and if
1971 * not NULL the mapping. With no priorities mapping to this
1972 * offset/count pair it will no longer be used. In the worst case TC0
1973 * is invalid nothing can be done so disable priority mappings. If is
1974 * expected that drivers will fix this mapping if they can before
1975 * calling netif_set_real_num_tx_queues.
1976 */
1977 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1978 {
1979 int i;
1980 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1981
1982 /* If TC0 is invalidated disable TC mapping */
1983 if (tc->offset + tc->count > txq) {
1984 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1985 dev->num_tc = 0;
1986 return;
1987 }
1988
1989 /* Invalidated prio to tc mappings set to TC0 */
1990 for (i = 1; i < TC_BITMASK + 1; i++) {
1991 int q = netdev_get_prio_tc_map(dev, i);
1992
1993 tc = &dev->tc_to_txq[q];
1994 if (tc->offset + tc->count > txq) {
1995 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1996 i, q);
1997 netdev_set_prio_tc_map(dev, i, 0);
1998 }
1999 }
2000 }
2001
2002 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2003 {
2004 if (dev->num_tc) {
2005 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2006 int i;
2007
2008 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2009 if ((txq - tc->offset) < tc->count)
2010 return i;
2011 }
2012
2013 return -1;
2014 }
2015
2016 return 0;
2017 }
2018
2019 #ifdef CONFIG_XPS
2020 static DEFINE_MUTEX(xps_map_mutex);
2021 #define xmap_dereference(P) \
2022 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2023
2024 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2025 int tci, u16 index)
2026 {
2027 struct xps_map *map = NULL;
2028 int pos;
2029
2030 if (dev_maps)
2031 map = xmap_dereference(dev_maps->cpu_map[tci]);
2032 if (!map)
2033 return false;
2034
2035 for (pos = map->len; pos--;) {
2036 if (map->queues[pos] != index)
2037 continue;
2038
2039 if (map->len > 1) {
2040 map->queues[pos] = map->queues[--map->len];
2041 break;
2042 }
2043
2044 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2045 kfree_rcu(map, rcu);
2046 return false;
2047 }
2048
2049 return true;
2050 }
2051
2052 static bool remove_xps_queue_cpu(struct net_device *dev,
2053 struct xps_dev_maps *dev_maps,
2054 int cpu, u16 offset, u16 count)
2055 {
2056 int num_tc = dev->num_tc ? : 1;
2057 bool active = false;
2058 int tci;
2059
2060 for (tci = cpu * num_tc; num_tc--; tci++) {
2061 int i, j;
2062
2063 for (i = count, j = offset; i--; j++) {
2064 if (!remove_xps_queue(dev_maps, cpu, j))
2065 break;
2066 }
2067
2068 active |= i < 0;
2069 }
2070
2071 return active;
2072 }
2073
2074 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2075 u16 count)
2076 {
2077 struct xps_dev_maps *dev_maps;
2078 int cpu, i;
2079 bool active = false;
2080
2081 mutex_lock(&xps_map_mutex);
2082 dev_maps = xmap_dereference(dev->xps_maps);
2083
2084 if (!dev_maps)
2085 goto out_no_maps;
2086
2087 for_each_possible_cpu(cpu)
2088 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2089 offset, count);
2090
2091 if (!active) {
2092 RCU_INIT_POINTER(dev->xps_maps, NULL);
2093 kfree_rcu(dev_maps, rcu);
2094 }
2095
2096 for (i = offset + (count - 1); count--; i--)
2097 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2098 NUMA_NO_NODE);
2099
2100 out_no_maps:
2101 mutex_unlock(&xps_map_mutex);
2102 }
2103
2104 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2105 {
2106 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2107 }
2108
2109 static struct xps_map *expand_xps_map(struct xps_map *map,
2110 int cpu, u16 index)
2111 {
2112 struct xps_map *new_map;
2113 int alloc_len = XPS_MIN_MAP_ALLOC;
2114 int i, pos;
2115
2116 for (pos = 0; map && pos < map->len; pos++) {
2117 if (map->queues[pos] != index)
2118 continue;
2119 return map;
2120 }
2121
2122 /* Need to add queue to this CPU's existing map */
2123 if (map) {
2124 if (pos < map->alloc_len)
2125 return map;
2126
2127 alloc_len = map->alloc_len * 2;
2128 }
2129
2130 /* Need to allocate new map to store queue on this CPU's map */
2131 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2132 cpu_to_node(cpu));
2133 if (!new_map)
2134 return NULL;
2135
2136 for (i = 0; i < pos; i++)
2137 new_map->queues[i] = map->queues[i];
2138 new_map->alloc_len = alloc_len;
2139 new_map->len = pos;
2140
2141 return new_map;
2142 }
2143
2144 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2145 u16 index)
2146 {
2147 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2148 int i, cpu, tci, numa_node_id = -2;
2149 int maps_sz, num_tc = 1, tc = 0;
2150 struct xps_map *map, *new_map;
2151 bool active = false;
2152
2153 if (dev->num_tc) {
2154 num_tc = dev->num_tc;
2155 tc = netdev_txq_to_tc(dev, index);
2156 if (tc < 0)
2157 return -EINVAL;
2158 }
2159
2160 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2161 if (maps_sz < L1_CACHE_BYTES)
2162 maps_sz = L1_CACHE_BYTES;
2163
2164 mutex_lock(&xps_map_mutex);
2165
2166 dev_maps = xmap_dereference(dev->xps_maps);
2167
2168 /* allocate memory for queue storage */
2169 for_each_cpu_and(cpu, cpu_online_mask, mask) {
2170 if (!new_dev_maps)
2171 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2172 if (!new_dev_maps) {
2173 mutex_unlock(&xps_map_mutex);
2174 return -ENOMEM;
2175 }
2176
2177 tci = cpu * num_tc + tc;
2178 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2179 NULL;
2180
2181 map = expand_xps_map(map, cpu, index);
2182 if (!map)
2183 goto error;
2184
2185 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2186 }
2187
2188 if (!new_dev_maps)
2189 goto out_no_new_maps;
2190
2191 for_each_possible_cpu(cpu) {
2192 /* copy maps belonging to foreign traffic classes */
2193 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2194 /* fill in the new device map from the old device map */
2195 map = xmap_dereference(dev_maps->cpu_map[tci]);
2196 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2197 }
2198
2199 /* We need to explicitly update tci as prevous loop
2200 * could break out early if dev_maps is NULL.
2201 */
2202 tci = cpu * num_tc + tc;
2203
2204 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2205 /* add queue to CPU maps */
2206 int pos = 0;
2207
2208 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2209 while ((pos < map->len) && (map->queues[pos] != index))
2210 pos++;
2211
2212 if (pos == map->len)
2213 map->queues[map->len++] = index;
2214 #ifdef CONFIG_NUMA
2215 if (numa_node_id == -2)
2216 numa_node_id = cpu_to_node(cpu);
2217 else if (numa_node_id != cpu_to_node(cpu))
2218 numa_node_id = -1;
2219 #endif
2220 } else if (dev_maps) {
2221 /* fill in the new device map from the old device map */
2222 map = xmap_dereference(dev_maps->cpu_map[tci]);
2223 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2224 }
2225
2226 /* copy maps belonging to foreign traffic classes */
2227 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2228 /* fill in the new device map from the old device map */
2229 map = xmap_dereference(dev_maps->cpu_map[tci]);
2230 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2231 }
2232 }
2233
2234 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2235
2236 /* Cleanup old maps */
2237 if (!dev_maps)
2238 goto out_no_old_maps;
2239
2240 for_each_possible_cpu(cpu) {
2241 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2242 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2243 map = xmap_dereference(dev_maps->cpu_map[tci]);
2244 if (map && map != new_map)
2245 kfree_rcu(map, rcu);
2246 }
2247 }
2248
2249 kfree_rcu(dev_maps, rcu);
2250
2251 out_no_old_maps:
2252 dev_maps = new_dev_maps;
2253 active = true;
2254
2255 out_no_new_maps:
2256 /* update Tx queue numa node */
2257 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2258 (numa_node_id >= 0) ? numa_node_id :
2259 NUMA_NO_NODE);
2260
2261 if (!dev_maps)
2262 goto out_no_maps;
2263
2264 /* removes queue from unused CPUs */
2265 for_each_possible_cpu(cpu) {
2266 for (i = tc, tci = cpu * num_tc; i--; tci++)
2267 active |= remove_xps_queue(dev_maps, tci, index);
2268 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2269 active |= remove_xps_queue(dev_maps, tci, index);
2270 for (i = num_tc - tc, tci++; --i; tci++)
2271 active |= remove_xps_queue(dev_maps, tci, index);
2272 }
2273
2274 /* free map if not active */
2275 if (!active) {
2276 RCU_INIT_POINTER(dev->xps_maps, NULL);
2277 kfree_rcu(dev_maps, rcu);
2278 }
2279
2280 out_no_maps:
2281 mutex_unlock(&xps_map_mutex);
2282
2283 return 0;
2284 error:
2285 /* remove any maps that we added */
2286 for_each_possible_cpu(cpu) {
2287 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2288 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2289 map = dev_maps ?
2290 xmap_dereference(dev_maps->cpu_map[tci]) :
2291 NULL;
2292 if (new_map && new_map != map)
2293 kfree(new_map);
2294 }
2295 }
2296
2297 mutex_unlock(&xps_map_mutex);
2298
2299 kfree(new_dev_maps);
2300 return -ENOMEM;
2301 }
2302 EXPORT_SYMBOL(netif_set_xps_queue);
2303
2304 #endif
2305 void netdev_reset_tc(struct net_device *dev)
2306 {
2307 #ifdef CONFIG_XPS
2308 netif_reset_xps_queues_gt(dev, 0);
2309 #endif
2310 dev->num_tc = 0;
2311 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2312 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2313 }
2314 EXPORT_SYMBOL(netdev_reset_tc);
2315
2316 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2317 {
2318 if (tc >= dev->num_tc)
2319 return -EINVAL;
2320
2321 #ifdef CONFIG_XPS
2322 netif_reset_xps_queues(dev, offset, count);
2323 #endif
2324 dev->tc_to_txq[tc].count = count;
2325 dev->tc_to_txq[tc].offset = offset;
2326 return 0;
2327 }
2328 EXPORT_SYMBOL(netdev_set_tc_queue);
2329
2330 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2331 {
2332 if (num_tc > TC_MAX_QUEUE)
2333 return -EINVAL;
2334
2335 #ifdef CONFIG_XPS
2336 netif_reset_xps_queues_gt(dev, 0);
2337 #endif
2338 dev->num_tc = num_tc;
2339 return 0;
2340 }
2341 EXPORT_SYMBOL(netdev_set_num_tc);
2342
2343 /*
2344 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2345 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2346 */
2347 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2348 {
2349 int rc;
2350
2351 if (txq < 1 || txq > dev->num_tx_queues)
2352 return -EINVAL;
2353
2354 if (dev->reg_state == NETREG_REGISTERED ||
2355 dev->reg_state == NETREG_UNREGISTERING) {
2356 ASSERT_RTNL();
2357
2358 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2359 txq);
2360 if (rc)
2361 return rc;
2362
2363 if (dev->num_tc)
2364 netif_setup_tc(dev, txq);
2365
2366 if (txq < dev->real_num_tx_queues) {
2367 qdisc_reset_all_tx_gt(dev, txq);
2368 #ifdef CONFIG_XPS
2369 netif_reset_xps_queues_gt(dev, txq);
2370 #endif
2371 }
2372 }
2373
2374 dev->real_num_tx_queues = txq;
2375 return 0;
2376 }
2377 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2378
2379 #ifdef CONFIG_SYSFS
2380 /**
2381 * netif_set_real_num_rx_queues - set actual number of RX queues used
2382 * @dev: Network device
2383 * @rxq: Actual number of RX queues
2384 *
2385 * This must be called either with the rtnl_lock held or before
2386 * registration of the net device. Returns 0 on success, or a
2387 * negative error code. If called before registration, it always
2388 * succeeds.
2389 */
2390 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2391 {
2392 int rc;
2393
2394 if (rxq < 1 || rxq > dev->num_rx_queues)
2395 return -EINVAL;
2396
2397 if (dev->reg_state == NETREG_REGISTERED) {
2398 ASSERT_RTNL();
2399
2400 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2401 rxq);
2402 if (rc)
2403 return rc;
2404 }
2405
2406 dev->real_num_rx_queues = rxq;
2407 return 0;
2408 }
2409 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2410 #endif
2411
2412 /**
2413 * netif_get_num_default_rss_queues - default number of RSS queues
2414 *
2415 * This routine should set an upper limit on the number of RSS queues
2416 * used by default by multiqueue devices.
2417 */
2418 int netif_get_num_default_rss_queues(void)
2419 {
2420 return is_kdump_kernel() ?
2421 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2422 }
2423 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2424
2425 static void __netif_reschedule(struct Qdisc *q)
2426 {
2427 struct softnet_data *sd;
2428 unsigned long flags;
2429
2430 local_irq_save(flags);
2431 sd = this_cpu_ptr(&softnet_data);
2432 q->next_sched = NULL;
2433 *sd->output_queue_tailp = q;
2434 sd->output_queue_tailp = &q->next_sched;
2435 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2436 local_irq_restore(flags);
2437 }
2438
2439 void __netif_schedule(struct Qdisc *q)
2440 {
2441 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2442 __netif_reschedule(q);
2443 }
2444 EXPORT_SYMBOL(__netif_schedule);
2445
2446 struct dev_kfree_skb_cb {
2447 enum skb_free_reason reason;
2448 };
2449
2450 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2451 {
2452 return (struct dev_kfree_skb_cb *)skb->cb;
2453 }
2454
2455 void netif_schedule_queue(struct netdev_queue *txq)
2456 {
2457 rcu_read_lock();
2458 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2459 struct Qdisc *q = rcu_dereference(txq->qdisc);
2460
2461 __netif_schedule(q);
2462 }
2463 rcu_read_unlock();
2464 }
2465 EXPORT_SYMBOL(netif_schedule_queue);
2466
2467 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2468 {
2469 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2470 struct Qdisc *q;
2471
2472 rcu_read_lock();
2473 q = rcu_dereference(dev_queue->qdisc);
2474 __netif_schedule(q);
2475 rcu_read_unlock();
2476 }
2477 }
2478 EXPORT_SYMBOL(netif_tx_wake_queue);
2479
2480 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2481 {
2482 unsigned long flags;
2483
2484 if (unlikely(!skb))
2485 return;
2486
2487 if (likely(refcount_read(&skb->users) == 1)) {
2488 smp_rmb();
2489 refcount_set(&skb->users, 0);
2490 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2491 return;
2492 }
2493 get_kfree_skb_cb(skb)->reason = reason;
2494 local_irq_save(flags);
2495 skb->next = __this_cpu_read(softnet_data.completion_queue);
2496 __this_cpu_write(softnet_data.completion_queue, skb);
2497 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2498 local_irq_restore(flags);
2499 }
2500 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2501
2502 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2503 {
2504 if (in_irq() || irqs_disabled())
2505 __dev_kfree_skb_irq(skb, reason);
2506 else
2507 dev_kfree_skb(skb);
2508 }
2509 EXPORT_SYMBOL(__dev_kfree_skb_any);
2510
2511
2512 /**
2513 * netif_device_detach - mark device as removed
2514 * @dev: network device
2515 *
2516 * Mark device as removed from system and therefore no longer available.
2517 */
2518 void netif_device_detach(struct net_device *dev)
2519 {
2520 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2521 netif_running(dev)) {
2522 netif_tx_stop_all_queues(dev);
2523 }
2524 }
2525 EXPORT_SYMBOL(netif_device_detach);
2526
2527 /**
2528 * netif_device_attach - mark device as attached
2529 * @dev: network device
2530 *
2531 * Mark device as attached from system and restart if needed.
2532 */
2533 void netif_device_attach(struct net_device *dev)
2534 {
2535 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2536 netif_running(dev)) {
2537 netif_tx_wake_all_queues(dev);
2538 __netdev_watchdog_up(dev);
2539 }
2540 }
2541 EXPORT_SYMBOL(netif_device_attach);
2542
2543 /*
2544 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2545 * to be used as a distribution range.
2546 */
2547 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2548 unsigned int num_tx_queues)
2549 {
2550 u32 hash;
2551 u16 qoffset = 0;
2552 u16 qcount = num_tx_queues;
2553
2554 if (skb_rx_queue_recorded(skb)) {
2555 hash = skb_get_rx_queue(skb);
2556 while (unlikely(hash >= num_tx_queues))
2557 hash -= num_tx_queues;
2558 return hash;
2559 }
2560
2561 if (dev->num_tc) {
2562 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2563
2564 qoffset = dev->tc_to_txq[tc].offset;
2565 qcount = dev->tc_to_txq[tc].count;
2566 }
2567
2568 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2569 }
2570 EXPORT_SYMBOL(__skb_tx_hash);
2571
2572 static void skb_warn_bad_offload(const struct sk_buff *skb)
2573 {
2574 static const netdev_features_t null_features;
2575 struct net_device *dev = skb->dev;
2576 const char *name = "";
2577
2578 if (!net_ratelimit())
2579 return;
2580
2581 if (dev) {
2582 if (dev->dev.parent)
2583 name = dev_driver_string(dev->dev.parent);
2584 else
2585 name = netdev_name(dev);
2586 }
2587 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2588 "gso_type=%d ip_summed=%d\n",
2589 name, dev ? &dev->features : &null_features,
2590 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2591 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2592 skb_shinfo(skb)->gso_type, skb->ip_summed);
2593 }
2594
2595 /*
2596 * Invalidate hardware checksum when packet is to be mangled, and
2597 * complete checksum manually on outgoing path.
2598 */
2599 int skb_checksum_help(struct sk_buff *skb)
2600 {
2601 __wsum csum;
2602 int ret = 0, offset;
2603
2604 if (skb->ip_summed == CHECKSUM_COMPLETE)
2605 goto out_set_summed;
2606
2607 if (unlikely(skb_shinfo(skb)->gso_size)) {
2608 skb_warn_bad_offload(skb);
2609 return -EINVAL;
2610 }
2611
2612 /* Before computing a checksum, we should make sure no frag could
2613 * be modified by an external entity : checksum could be wrong.
2614 */
2615 if (skb_has_shared_frag(skb)) {
2616 ret = __skb_linearize(skb);
2617 if (ret)
2618 goto out;
2619 }
2620
2621 offset = skb_checksum_start_offset(skb);
2622 BUG_ON(offset >= skb_headlen(skb));
2623 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2624
2625 offset += skb->csum_offset;
2626 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2627
2628 if (skb_cloned(skb) &&
2629 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2630 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2631 if (ret)
2632 goto out;
2633 }
2634
2635 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2636 out_set_summed:
2637 skb->ip_summed = CHECKSUM_NONE;
2638 out:
2639 return ret;
2640 }
2641 EXPORT_SYMBOL(skb_checksum_help);
2642
2643 int skb_crc32c_csum_help(struct sk_buff *skb)
2644 {
2645 __le32 crc32c_csum;
2646 int ret = 0, offset, start;
2647
2648 if (skb->ip_summed != CHECKSUM_PARTIAL)
2649 goto out;
2650
2651 if (unlikely(skb_is_gso(skb)))
2652 goto out;
2653
2654 /* Before computing a checksum, we should make sure no frag could
2655 * be modified by an external entity : checksum could be wrong.
2656 */
2657 if (unlikely(skb_has_shared_frag(skb))) {
2658 ret = __skb_linearize(skb);
2659 if (ret)
2660 goto out;
2661 }
2662 start = skb_checksum_start_offset(skb);
2663 offset = start + offsetof(struct sctphdr, checksum);
2664 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2665 ret = -EINVAL;
2666 goto out;
2667 }
2668 if (skb_cloned(skb) &&
2669 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2670 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2671 if (ret)
2672 goto out;
2673 }
2674 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2675 skb->len - start, ~(__u32)0,
2676 crc32c_csum_stub));
2677 *(__le32 *)(skb->data + offset) = crc32c_csum;
2678 skb->ip_summed = CHECKSUM_NONE;
2679 skb->csum_not_inet = 0;
2680 out:
2681 return ret;
2682 }
2683
2684 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2685 {
2686 __be16 type = skb->protocol;
2687
2688 /* Tunnel gso handlers can set protocol to ethernet. */
2689 if (type == htons(ETH_P_TEB)) {
2690 struct ethhdr *eth;
2691
2692 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2693 return 0;
2694
2695 eth = (struct ethhdr *)skb_mac_header(skb);
2696 type = eth->h_proto;
2697 }
2698
2699 return __vlan_get_protocol(skb, type, depth);
2700 }
2701
2702 /**
2703 * skb_mac_gso_segment - mac layer segmentation handler.
2704 * @skb: buffer to segment
2705 * @features: features for the output path (see dev->features)
2706 */
2707 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2708 netdev_features_t features)
2709 {
2710 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2711 struct packet_offload *ptype;
2712 int vlan_depth = skb->mac_len;
2713 __be16 type = skb_network_protocol(skb, &vlan_depth);
2714
2715 if (unlikely(!type))
2716 return ERR_PTR(-EINVAL);
2717
2718 __skb_pull(skb, vlan_depth);
2719
2720 rcu_read_lock();
2721 list_for_each_entry_rcu(ptype, &offload_base, list) {
2722 if (ptype->type == type && ptype->callbacks.gso_segment) {
2723 segs = ptype->callbacks.gso_segment(skb, features);
2724 break;
2725 }
2726 }
2727 rcu_read_unlock();
2728
2729 __skb_push(skb, skb->data - skb_mac_header(skb));
2730
2731 return segs;
2732 }
2733 EXPORT_SYMBOL(skb_mac_gso_segment);
2734
2735
2736 /* openvswitch calls this on rx path, so we need a different check.
2737 */
2738 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2739 {
2740 if (tx_path)
2741 return skb->ip_summed != CHECKSUM_PARTIAL &&
2742 skb->ip_summed != CHECKSUM_NONE;
2743
2744 return skb->ip_summed == CHECKSUM_NONE;
2745 }
2746
2747 /**
2748 * __skb_gso_segment - Perform segmentation on skb.
2749 * @skb: buffer to segment
2750 * @features: features for the output path (see dev->features)
2751 * @tx_path: whether it is called in TX path
2752 *
2753 * This function segments the given skb and returns a list of segments.
2754 *
2755 * It may return NULL if the skb requires no segmentation. This is
2756 * only possible when GSO is used for verifying header integrity.
2757 *
2758 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2759 */
2760 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2761 netdev_features_t features, bool tx_path)
2762 {
2763 struct sk_buff *segs;
2764
2765 if (unlikely(skb_needs_check(skb, tx_path))) {
2766 int err;
2767
2768 /* We're going to init ->check field in TCP or UDP header */
2769 err = skb_cow_head(skb, 0);
2770 if (err < 0)
2771 return ERR_PTR(err);
2772 }
2773
2774 /* Only report GSO partial support if it will enable us to
2775 * support segmentation on this frame without needing additional
2776 * work.
2777 */
2778 if (features & NETIF_F_GSO_PARTIAL) {
2779 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2780 struct net_device *dev = skb->dev;
2781
2782 partial_features |= dev->features & dev->gso_partial_features;
2783 if (!skb_gso_ok(skb, features | partial_features))
2784 features &= ~NETIF_F_GSO_PARTIAL;
2785 }
2786
2787 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2788 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2789
2790 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2791 SKB_GSO_CB(skb)->encap_level = 0;
2792
2793 skb_reset_mac_header(skb);
2794 skb_reset_mac_len(skb);
2795
2796 segs = skb_mac_gso_segment(skb, features);
2797
2798 if (unlikely(skb_needs_check(skb, tx_path)))
2799 skb_warn_bad_offload(skb);
2800
2801 return segs;
2802 }
2803 EXPORT_SYMBOL(__skb_gso_segment);
2804
2805 /* Take action when hardware reception checksum errors are detected. */
2806 #ifdef CONFIG_BUG
2807 void netdev_rx_csum_fault(struct net_device *dev)
2808 {
2809 if (net_ratelimit()) {
2810 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2811 dump_stack();
2812 }
2813 }
2814 EXPORT_SYMBOL(netdev_rx_csum_fault);
2815 #endif
2816
2817 /* Actually, we should eliminate this check as soon as we know, that:
2818 * 1. IOMMU is present and allows to map all the memory.
2819 * 2. No high memory really exists on this machine.
2820 */
2821
2822 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2823 {
2824 #ifdef CONFIG_HIGHMEM
2825 int i;
2826
2827 if (!(dev->features & NETIF_F_HIGHDMA)) {
2828 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2829 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2830
2831 if (PageHighMem(skb_frag_page(frag)))
2832 return 1;
2833 }
2834 }
2835
2836 if (PCI_DMA_BUS_IS_PHYS) {
2837 struct device *pdev = dev->dev.parent;
2838
2839 if (!pdev)
2840 return 0;
2841 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2842 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2843 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2844
2845 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2846 return 1;
2847 }
2848 }
2849 #endif
2850 return 0;
2851 }
2852
2853 /* If MPLS offload request, verify we are testing hardware MPLS features
2854 * instead of standard features for the netdev.
2855 */
2856 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2857 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2858 netdev_features_t features,
2859 __be16 type)
2860 {
2861 if (eth_p_mpls(type))
2862 features &= skb->dev->mpls_features;
2863
2864 return features;
2865 }
2866 #else
2867 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2868 netdev_features_t features,
2869 __be16 type)
2870 {
2871 return features;
2872 }
2873 #endif
2874
2875 static netdev_features_t harmonize_features(struct sk_buff *skb,
2876 netdev_features_t features)
2877 {
2878 int tmp;
2879 __be16 type;
2880
2881 type = skb_network_protocol(skb, &tmp);
2882 features = net_mpls_features(skb, features, type);
2883
2884 if (skb->ip_summed != CHECKSUM_NONE &&
2885 !can_checksum_protocol(features, type)) {
2886 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2887 }
2888 if (illegal_highdma(skb->dev, skb))
2889 features &= ~NETIF_F_SG;
2890
2891 return features;
2892 }
2893
2894 netdev_features_t passthru_features_check(struct sk_buff *skb,
2895 struct net_device *dev,
2896 netdev_features_t features)
2897 {
2898 return features;
2899 }
2900 EXPORT_SYMBOL(passthru_features_check);
2901
2902 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2903 struct net_device *dev,
2904 netdev_features_t features)
2905 {
2906 return vlan_features_check(skb, features);
2907 }
2908
2909 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2910 struct net_device *dev,
2911 netdev_features_t features)
2912 {
2913 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2914
2915 if (gso_segs > dev->gso_max_segs)
2916 return features & ~NETIF_F_GSO_MASK;
2917
2918 /* Support for GSO partial features requires software
2919 * intervention before we can actually process the packets
2920 * so we need to strip support for any partial features now
2921 * and we can pull them back in after we have partially
2922 * segmented the frame.
2923 */
2924 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2925 features &= ~dev->gso_partial_features;
2926
2927 /* Make sure to clear the IPv4 ID mangling feature if the
2928 * IPv4 header has the potential to be fragmented.
2929 */
2930 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2931 struct iphdr *iph = skb->encapsulation ?
2932 inner_ip_hdr(skb) : ip_hdr(skb);
2933
2934 if (!(iph->frag_off & htons(IP_DF)))
2935 features &= ~NETIF_F_TSO_MANGLEID;
2936 }
2937
2938 return features;
2939 }
2940
2941 netdev_features_t netif_skb_features(struct sk_buff *skb)
2942 {
2943 struct net_device *dev = skb->dev;
2944 netdev_features_t features = dev->features;
2945
2946 if (skb_is_gso(skb))
2947 features = gso_features_check(skb, dev, features);
2948
2949 /* If encapsulation offload request, verify we are testing
2950 * hardware encapsulation features instead of standard
2951 * features for the netdev
2952 */
2953 if (skb->encapsulation)
2954 features &= dev->hw_enc_features;
2955
2956 if (skb_vlan_tagged(skb))
2957 features = netdev_intersect_features(features,
2958 dev->vlan_features |
2959 NETIF_F_HW_VLAN_CTAG_TX |
2960 NETIF_F_HW_VLAN_STAG_TX);
2961
2962 if (dev->netdev_ops->ndo_features_check)
2963 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2964 features);
2965 else
2966 features &= dflt_features_check(skb, dev, features);
2967
2968 return harmonize_features(skb, features);
2969 }
2970 EXPORT_SYMBOL(netif_skb_features);
2971
2972 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2973 struct netdev_queue *txq, bool more)
2974 {
2975 unsigned int len;
2976 int rc;
2977
2978 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2979 dev_queue_xmit_nit(skb, dev);
2980
2981 len = skb->len;
2982 trace_net_dev_start_xmit(skb, dev);
2983 rc = netdev_start_xmit(skb, dev, txq, more);
2984 trace_net_dev_xmit(skb, rc, dev, len);
2985
2986 return rc;
2987 }
2988
2989 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2990 struct netdev_queue *txq, int *ret)
2991 {
2992 struct sk_buff *skb = first;
2993 int rc = NETDEV_TX_OK;
2994
2995 while (skb) {
2996 struct sk_buff *next = skb->next;
2997
2998 skb->next = NULL;
2999 rc = xmit_one(skb, dev, txq, next != NULL);
3000 if (unlikely(!dev_xmit_complete(rc))) {
3001 skb->next = next;
3002 goto out;
3003 }
3004
3005 skb = next;
3006 if (netif_xmit_stopped(txq) && skb) {
3007 rc = NETDEV_TX_BUSY;
3008 break;
3009 }
3010 }
3011
3012 out:
3013 *ret = rc;
3014 return skb;
3015 }
3016
3017 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3018 netdev_features_t features)
3019 {
3020 if (skb_vlan_tag_present(skb) &&
3021 !vlan_hw_offload_capable(features, skb->vlan_proto))
3022 skb = __vlan_hwaccel_push_inside(skb);
3023 return skb;
3024 }
3025
3026 int skb_csum_hwoffload_help(struct sk_buff *skb,
3027 const netdev_features_t features)
3028 {
3029 if (unlikely(skb->csum_not_inet))
3030 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3031 skb_crc32c_csum_help(skb);
3032
3033 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3034 }
3035 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3036
3037 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
3038 {
3039 netdev_features_t features;
3040
3041 features = netif_skb_features(skb);
3042 skb = validate_xmit_vlan(skb, features);
3043 if (unlikely(!skb))
3044 goto out_null;
3045
3046 if (netif_needs_gso(skb, features)) {
3047 struct sk_buff *segs;
3048
3049 segs = skb_gso_segment(skb, features);
3050 if (IS_ERR(segs)) {
3051 goto out_kfree_skb;
3052 } else if (segs) {
3053 consume_skb(skb);
3054 skb = segs;
3055 }
3056 } else {
3057 if (skb_needs_linearize(skb, features) &&
3058 __skb_linearize(skb))
3059 goto out_kfree_skb;
3060
3061 if (validate_xmit_xfrm(skb, features))
3062 goto out_kfree_skb;
3063
3064 /* If packet is not checksummed and device does not
3065 * support checksumming for this protocol, complete
3066 * checksumming here.
3067 */
3068 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3069 if (skb->encapsulation)
3070 skb_set_inner_transport_header(skb,
3071 skb_checksum_start_offset(skb));
3072 else
3073 skb_set_transport_header(skb,
3074 skb_checksum_start_offset(skb));
3075 if (skb_csum_hwoffload_help(skb, features))
3076 goto out_kfree_skb;
3077 }
3078 }
3079
3080 return skb;
3081
3082 out_kfree_skb:
3083 kfree_skb(skb);
3084 out_null:
3085 atomic_long_inc(&dev->tx_dropped);
3086 return NULL;
3087 }
3088
3089 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3090 {
3091 struct sk_buff *next, *head = NULL, *tail;
3092
3093 for (; skb != NULL; skb = next) {
3094 next = skb->next;
3095 skb->next = NULL;
3096
3097 /* in case skb wont be segmented, point to itself */
3098 skb->prev = skb;
3099
3100 skb = validate_xmit_skb(skb, dev);
3101 if (!skb)
3102 continue;
3103
3104 if (!head)
3105 head = skb;
3106 else
3107 tail->next = skb;
3108 /* If skb was segmented, skb->prev points to
3109 * the last segment. If not, it still contains skb.
3110 */
3111 tail = skb->prev;
3112 }
3113 return head;
3114 }
3115 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3116
3117 static void qdisc_pkt_len_init(struct sk_buff *skb)
3118 {
3119 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3120
3121 qdisc_skb_cb(skb)->pkt_len = skb->len;
3122
3123 /* To get more precise estimation of bytes sent on wire,
3124 * we add to pkt_len the headers size of all segments
3125 */
3126 if (shinfo->gso_size) {
3127 unsigned int hdr_len;
3128 u16 gso_segs = shinfo->gso_segs;
3129
3130 /* mac layer + network layer */
3131 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3132
3133 /* + transport layer */
3134 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3135 hdr_len += tcp_hdrlen(skb);
3136 else
3137 hdr_len += sizeof(struct udphdr);
3138
3139 if (shinfo->gso_type & SKB_GSO_DODGY)
3140 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3141 shinfo->gso_size);
3142
3143 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3144 }
3145 }
3146
3147 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3148 struct net_device *dev,
3149 struct netdev_queue *txq)
3150 {
3151 spinlock_t *root_lock = qdisc_lock(q);
3152 struct sk_buff *to_free = NULL;
3153 bool contended;
3154 int rc;
3155
3156 qdisc_calculate_pkt_len(skb, q);
3157 /*
3158 * Heuristic to force contended enqueues to serialize on a
3159 * separate lock before trying to get qdisc main lock.
3160 * This permits qdisc->running owner to get the lock more
3161 * often and dequeue packets faster.
3162 */
3163 contended = qdisc_is_running(q);
3164 if (unlikely(contended))
3165 spin_lock(&q->busylock);
3166
3167 spin_lock(root_lock);
3168 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3169 __qdisc_drop(skb, &to_free);
3170 rc = NET_XMIT_DROP;
3171 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3172 qdisc_run_begin(q)) {
3173 /*
3174 * This is a work-conserving queue; there are no old skbs
3175 * waiting to be sent out; and the qdisc is not running -
3176 * xmit the skb directly.
3177 */
3178
3179 qdisc_bstats_update(q, skb);
3180
3181 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3182 if (unlikely(contended)) {
3183 spin_unlock(&q->busylock);
3184 contended = false;
3185 }
3186 __qdisc_run(q);
3187 } else
3188 qdisc_run_end(q);
3189
3190 rc = NET_XMIT_SUCCESS;
3191 } else {
3192 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3193 if (qdisc_run_begin(q)) {
3194 if (unlikely(contended)) {
3195 spin_unlock(&q->busylock);
3196 contended = false;
3197 }
3198 __qdisc_run(q);
3199 }
3200 }
3201 spin_unlock(root_lock);
3202 if (unlikely(to_free))
3203 kfree_skb_list(to_free);
3204 if (unlikely(contended))
3205 spin_unlock(&q->busylock);
3206 return rc;
3207 }
3208
3209 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3210 static void skb_update_prio(struct sk_buff *skb)
3211 {
3212 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3213
3214 if (!skb->priority && skb->sk && map) {
3215 unsigned int prioidx =
3216 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3217
3218 if (prioidx < map->priomap_len)
3219 skb->priority = map->priomap[prioidx];
3220 }
3221 }
3222 #else
3223 #define skb_update_prio(skb)
3224 #endif
3225
3226 DEFINE_PER_CPU(int, xmit_recursion);
3227 EXPORT_SYMBOL(xmit_recursion);
3228
3229 /**
3230 * dev_loopback_xmit - loop back @skb
3231 * @net: network namespace this loopback is happening in
3232 * @sk: sk needed to be a netfilter okfn
3233 * @skb: buffer to transmit
3234 */
3235 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3236 {
3237 skb_reset_mac_header(skb);
3238 __skb_pull(skb, skb_network_offset(skb));
3239 skb->pkt_type = PACKET_LOOPBACK;
3240 skb->ip_summed = CHECKSUM_UNNECESSARY;
3241 WARN_ON(!skb_dst(skb));
3242 skb_dst_force(skb);
3243 netif_rx_ni(skb);
3244 return 0;
3245 }
3246 EXPORT_SYMBOL(dev_loopback_xmit);
3247
3248 #ifdef CONFIG_NET_EGRESS
3249 static struct sk_buff *
3250 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3251 {
3252 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3253 struct tcf_result cl_res;
3254
3255 if (!cl)
3256 return skb;
3257
3258 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3259 qdisc_bstats_cpu_update(cl->q, skb);
3260
3261 switch (tcf_classify(skb, cl, &cl_res, false)) {
3262 case TC_ACT_OK:
3263 case TC_ACT_RECLASSIFY:
3264 skb->tc_index = TC_H_MIN(cl_res.classid);
3265 break;
3266 case TC_ACT_SHOT:
3267 qdisc_qstats_cpu_drop(cl->q);
3268 *ret = NET_XMIT_DROP;
3269 kfree_skb(skb);
3270 return NULL;
3271 case TC_ACT_STOLEN:
3272 case TC_ACT_QUEUED:
3273 case TC_ACT_TRAP:
3274 *ret = NET_XMIT_SUCCESS;
3275 consume_skb(skb);
3276 return NULL;
3277 case TC_ACT_REDIRECT:
3278 /* No need to push/pop skb's mac_header here on egress! */
3279 skb_do_redirect(skb);
3280 *ret = NET_XMIT_SUCCESS;
3281 return NULL;
3282 default:
3283 break;
3284 }
3285
3286 return skb;
3287 }
3288 #endif /* CONFIG_NET_EGRESS */
3289
3290 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3291 {
3292 #ifdef CONFIG_XPS
3293 struct xps_dev_maps *dev_maps;
3294 struct xps_map *map;
3295 int queue_index = -1;
3296
3297 rcu_read_lock();
3298 dev_maps = rcu_dereference(dev->xps_maps);
3299 if (dev_maps) {
3300 unsigned int tci = skb->sender_cpu - 1;
3301
3302 if (dev->num_tc) {
3303 tci *= dev->num_tc;
3304 tci += netdev_get_prio_tc_map(dev, skb->priority);
3305 }
3306
3307 map = rcu_dereference(dev_maps->cpu_map[tci]);
3308 if (map) {
3309 if (map->len == 1)
3310 queue_index = map->queues[0];
3311 else
3312 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3313 map->len)];
3314 if (unlikely(queue_index >= dev->real_num_tx_queues))
3315 queue_index = -1;
3316 }
3317 }
3318 rcu_read_unlock();
3319
3320 return queue_index;
3321 #else
3322 return -1;
3323 #endif
3324 }
3325
3326 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3327 {
3328 struct sock *sk = skb->sk;
3329 int queue_index = sk_tx_queue_get(sk);
3330
3331 if (queue_index < 0 || skb->ooo_okay ||
3332 queue_index >= dev->real_num_tx_queues) {
3333 int new_index = get_xps_queue(dev, skb);
3334
3335 if (new_index < 0)
3336 new_index = skb_tx_hash(dev, skb);
3337
3338 if (queue_index != new_index && sk &&
3339 sk_fullsock(sk) &&
3340 rcu_access_pointer(sk->sk_dst_cache))
3341 sk_tx_queue_set(sk, new_index);
3342
3343 queue_index = new_index;
3344 }
3345
3346 return queue_index;
3347 }
3348
3349 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3350 struct sk_buff *skb,
3351 void *accel_priv)
3352 {
3353 int queue_index = 0;
3354
3355 #ifdef CONFIG_XPS
3356 u32 sender_cpu = skb->sender_cpu - 1;
3357
3358 if (sender_cpu >= (u32)NR_CPUS)
3359 skb->sender_cpu = raw_smp_processor_id() + 1;
3360 #endif
3361
3362 if (dev->real_num_tx_queues != 1) {
3363 const struct net_device_ops *ops = dev->netdev_ops;
3364
3365 if (ops->ndo_select_queue)
3366 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3367 __netdev_pick_tx);
3368 else
3369 queue_index = __netdev_pick_tx(dev, skb);
3370
3371 if (!accel_priv)
3372 queue_index = netdev_cap_txqueue(dev, queue_index);
3373 }
3374
3375 skb_set_queue_mapping(skb, queue_index);
3376 return netdev_get_tx_queue(dev, queue_index);
3377 }
3378
3379 /**
3380 * __dev_queue_xmit - transmit a buffer
3381 * @skb: buffer to transmit
3382 * @accel_priv: private data used for L2 forwarding offload
3383 *
3384 * Queue a buffer for transmission to a network device. The caller must
3385 * have set the device and priority and built the buffer before calling
3386 * this function. The function can be called from an interrupt.
3387 *
3388 * A negative errno code is returned on a failure. A success does not
3389 * guarantee the frame will be transmitted as it may be dropped due
3390 * to congestion or traffic shaping.
3391 *
3392 * -----------------------------------------------------------------------------------
3393 * I notice this method can also return errors from the queue disciplines,
3394 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3395 * be positive.
3396 *
3397 * Regardless of the return value, the skb is consumed, so it is currently
3398 * difficult to retry a send to this method. (You can bump the ref count
3399 * before sending to hold a reference for retry if you are careful.)
3400 *
3401 * When calling this method, interrupts MUST be enabled. This is because
3402 * the BH enable code must have IRQs enabled so that it will not deadlock.
3403 * --BLG
3404 */
3405 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3406 {
3407 struct net_device *dev = skb->dev;
3408 struct netdev_queue *txq;
3409 struct Qdisc *q;
3410 int rc = -ENOMEM;
3411
3412 skb_reset_mac_header(skb);
3413
3414 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3415 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3416
3417 /* Disable soft irqs for various locks below. Also
3418 * stops preemption for RCU.
3419 */
3420 rcu_read_lock_bh();
3421
3422 skb_update_prio(skb);
3423
3424 qdisc_pkt_len_init(skb);
3425 #ifdef CONFIG_NET_CLS_ACT
3426 skb->tc_at_ingress = 0;
3427 # ifdef CONFIG_NET_EGRESS
3428 if (static_key_false(&egress_needed)) {
3429 skb = sch_handle_egress(skb, &rc, dev);
3430 if (!skb)
3431 goto out;
3432 }
3433 # endif
3434 #endif
3435 /* If device/qdisc don't need skb->dst, release it right now while
3436 * its hot in this cpu cache.
3437 */
3438 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3439 skb_dst_drop(skb);
3440 else
3441 skb_dst_force(skb);
3442
3443 txq = netdev_pick_tx(dev, skb, accel_priv);
3444 q = rcu_dereference_bh(txq->qdisc);
3445
3446 trace_net_dev_queue(skb);
3447 if (q->enqueue) {
3448 rc = __dev_xmit_skb(skb, q, dev, txq);
3449 goto out;
3450 }
3451
3452 /* The device has no queue. Common case for software devices:
3453 * loopback, all the sorts of tunnels...
3454
3455 * Really, it is unlikely that netif_tx_lock protection is necessary
3456 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3457 * counters.)
3458 * However, it is possible, that they rely on protection
3459 * made by us here.
3460
3461 * Check this and shot the lock. It is not prone from deadlocks.
3462 *Either shot noqueue qdisc, it is even simpler 8)
3463 */
3464 if (dev->flags & IFF_UP) {
3465 int cpu = smp_processor_id(); /* ok because BHs are off */
3466
3467 if (txq->xmit_lock_owner != cpu) {
3468 if (unlikely(__this_cpu_read(xmit_recursion) >
3469 XMIT_RECURSION_LIMIT))
3470 goto recursion_alert;
3471
3472 skb = validate_xmit_skb(skb, dev);
3473 if (!skb)
3474 goto out;
3475
3476 HARD_TX_LOCK(dev, txq, cpu);
3477
3478 if (!netif_xmit_stopped(txq)) {
3479 __this_cpu_inc(xmit_recursion);
3480 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3481 __this_cpu_dec(xmit_recursion);
3482 if (dev_xmit_complete(rc)) {
3483 HARD_TX_UNLOCK(dev, txq);
3484 goto out;
3485 }
3486 }
3487 HARD_TX_UNLOCK(dev, txq);
3488 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3489 dev->name);
3490 } else {
3491 /* Recursion is detected! It is possible,
3492 * unfortunately
3493 */
3494 recursion_alert:
3495 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3496 dev->name);
3497 }
3498 }
3499
3500 rc = -ENETDOWN;
3501 rcu_read_unlock_bh();
3502
3503 atomic_long_inc(&dev->tx_dropped);
3504 kfree_skb_list(skb);
3505 return rc;
3506 out:
3507 rcu_read_unlock_bh();
3508 return rc;
3509 }
3510
3511 int dev_queue_xmit(struct sk_buff *skb)
3512 {
3513 return __dev_queue_xmit(skb, NULL);
3514 }
3515 EXPORT_SYMBOL(dev_queue_xmit);
3516
3517 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3518 {
3519 return __dev_queue_xmit(skb, accel_priv);
3520 }
3521 EXPORT_SYMBOL(dev_queue_xmit_accel);
3522
3523
3524 /*************************************************************************
3525 * Receiver routines
3526 *************************************************************************/
3527
3528 int netdev_max_backlog __read_mostly = 1000;
3529 EXPORT_SYMBOL(netdev_max_backlog);
3530
3531 int netdev_tstamp_prequeue __read_mostly = 1;
3532 int netdev_budget __read_mostly = 300;
3533 unsigned int __read_mostly netdev_budget_usecs = 2000;
3534 int weight_p __read_mostly = 64; /* old backlog weight */
3535 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3536 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3537 int dev_rx_weight __read_mostly = 64;
3538 int dev_tx_weight __read_mostly = 64;
3539
3540 /* Called with irq disabled */
3541 static inline void ____napi_schedule(struct softnet_data *sd,
3542 struct napi_struct *napi)
3543 {
3544 list_add_tail(&napi->poll_list, &sd->poll_list);
3545 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3546 }
3547
3548 #ifdef CONFIG_RPS
3549
3550 /* One global table that all flow-based protocols share. */
3551 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3552 EXPORT_SYMBOL(rps_sock_flow_table);
3553 u32 rps_cpu_mask __read_mostly;
3554 EXPORT_SYMBOL(rps_cpu_mask);
3555
3556 struct static_key rps_needed __read_mostly;
3557 EXPORT_SYMBOL(rps_needed);
3558 struct static_key rfs_needed __read_mostly;
3559 EXPORT_SYMBOL(rfs_needed);
3560
3561 static struct rps_dev_flow *
3562 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3563 struct rps_dev_flow *rflow, u16 next_cpu)
3564 {
3565 if (next_cpu < nr_cpu_ids) {
3566 #ifdef CONFIG_RFS_ACCEL
3567 struct netdev_rx_queue *rxqueue;
3568 struct rps_dev_flow_table *flow_table;
3569 struct rps_dev_flow *old_rflow;
3570 u32 flow_id;
3571 u16 rxq_index;
3572 int rc;
3573
3574 /* Should we steer this flow to a different hardware queue? */
3575 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3576 !(dev->features & NETIF_F_NTUPLE))
3577 goto out;
3578 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3579 if (rxq_index == skb_get_rx_queue(skb))
3580 goto out;
3581
3582 rxqueue = dev->_rx + rxq_index;
3583 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3584 if (!flow_table)
3585 goto out;
3586 flow_id = skb_get_hash(skb) & flow_table->mask;
3587 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3588 rxq_index, flow_id);
3589 if (rc < 0)
3590 goto out;
3591 old_rflow = rflow;
3592 rflow = &flow_table->flows[flow_id];
3593 rflow->filter = rc;
3594 if (old_rflow->filter == rflow->filter)
3595 old_rflow->filter = RPS_NO_FILTER;
3596 out:
3597 #endif
3598 rflow->last_qtail =
3599 per_cpu(softnet_data, next_cpu).input_queue_head;
3600 }
3601
3602 rflow->cpu = next_cpu;
3603 return rflow;
3604 }
3605
3606 /*
3607 * get_rps_cpu is called from netif_receive_skb and returns the target
3608 * CPU from the RPS map of the receiving queue for a given skb.
3609 * rcu_read_lock must be held on entry.
3610 */
3611 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3612 struct rps_dev_flow **rflowp)
3613 {
3614 const struct rps_sock_flow_table *sock_flow_table;
3615 struct netdev_rx_queue *rxqueue = dev->_rx;
3616 struct rps_dev_flow_table *flow_table;
3617 struct rps_map *map;
3618 int cpu = -1;
3619 u32 tcpu;
3620 u32 hash;
3621
3622 if (skb_rx_queue_recorded(skb)) {
3623 u16 index = skb_get_rx_queue(skb);
3624
3625 if (unlikely(index >= dev->real_num_rx_queues)) {
3626 WARN_ONCE(dev->real_num_rx_queues > 1,
3627 "%s received packet on queue %u, but number "
3628 "of RX queues is %u\n",
3629 dev->name, index, dev->real_num_rx_queues);
3630 goto done;
3631 }
3632 rxqueue += index;
3633 }
3634
3635 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3636
3637 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3638 map = rcu_dereference(rxqueue->rps_map);
3639 if (!flow_table && !map)
3640 goto done;
3641
3642 skb_reset_network_header(skb);
3643 hash = skb_get_hash(skb);
3644 if (!hash)
3645 goto done;
3646
3647 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3648 if (flow_table && sock_flow_table) {
3649 struct rps_dev_flow *rflow;
3650 u32 next_cpu;
3651 u32 ident;
3652
3653 /* First check into global flow table if there is a match */
3654 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3655 if ((ident ^ hash) & ~rps_cpu_mask)
3656 goto try_rps;
3657
3658 next_cpu = ident & rps_cpu_mask;
3659
3660 /* OK, now we know there is a match,
3661 * we can look at the local (per receive queue) flow table
3662 */
3663 rflow = &flow_table->flows[hash & flow_table->mask];
3664 tcpu = rflow->cpu;
3665
3666 /*
3667 * If the desired CPU (where last recvmsg was done) is
3668 * different from current CPU (one in the rx-queue flow
3669 * table entry), switch if one of the following holds:
3670 * - Current CPU is unset (>= nr_cpu_ids).
3671 * - Current CPU is offline.
3672 * - The current CPU's queue tail has advanced beyond the
3673 * last packet that was enqueued using this table entry.
3674 * This guarantees that all previous packets for the flow
3675 * have been dequeued, thus preserving in order delivery.
3676 */
3677 if (unlikely(tcpu != next_cpu) &&
3678 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3679 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3680 rflow->last_qtail)) >= 0)) {
3681 tcpu = next_cpu;
3682 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3683 }
3684
3685 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3686 *rflowp = rflow;
3687 cpu = tcpu;
3688 goto done;
3689 }
3690 }
3691
3692 try_rps:
3693
3694 if (map) {
3695 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3696 if (cpu_online(tcpu)) {
3697 cpu = tcpu;
3698 goto done;
3699 }
3700 }
3701
3702 done:
3703 return cpu;
3704 }
3705
3706 #ifdef CONFIG_RFS_ACCEL
3707
3708 /**
3709 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3710 * @dev: Device on which the filter was set
3711 * @rxq_index: RX queue index
3712 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3713 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3714 *
3715 * Drivers that implement ndo_rx_flow_steer() should periodically call
3716 * this function for each installed filter and remove the filters for
3717 * which it returns %true.
3718 */
3719 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3720 u32 flow_id, u16 filter_id)
3721 {
3722 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3723 struct rps_dev_flow_table *flow_table;
3724 struct rps_dev_flow *rflow;
3725 bool expire = true;
3726 unsigned int cpu;
3727
3728 rcu_read_lock();
3729 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3730 if (flow_table && flow_id <= flow_table->mask) {
3731 rflow = &flow_table->flows[flow_id];
3732 cpu = ACCESS_ONCE(rflow->cpu);
3733 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3734 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3735 rflow->last_qtail) <
3736 (int)(10 * flow_table->mask)))
3737 expire = false;
3738 }
3739 rcu_read_unlock();
3740 return expire;
3741 }
3742 EXPORT_SYMBOL(rps_may_expire_flow);
3743
3744 #endif /* CONFIG_RFS_ACCEL */
3745
3746 /* Called from hardirq (IPI) context */
3747 static void rps_trigger_softirq(void *data)
3748 {
3749 struct softnet_data *sd = data;
3750
3751 ____napi_schedule(sd, &sd->backlog);
3752 sd->received_rps++;
3753 }
3754
3755 #endif /* CONFIG_RPS */
3756
3757 /*
3758 * Check if this softnet_data structure is another cpu one
3759 * If yes, queue it to our IPI list and return 1
3760 * If no, return 0
3761 */
3762 static int rps_ipi_queued(struct softnet_data *sd)
3763 {
3764 #ifdef CONFIG_RPS
3765 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3766
3767 if (sd != mysd) {
3768 sd->rps_ipi_next = mysd->rps_ipi_list;
3769 mysd->rps_ipi_list = sd;
3770
3771 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3772 return 1;
3773 }
3774 #endif /* CONFIG_RPS */
3775 return 0;
3776 }
3777
3778 #ifdef CONFIG_NET_FLOW_LIMIT
3779 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3780 #endif
3781
3782 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3783 {
3784 #ifdef CONFIG_NET_FLOW_LIMIT
3785 struct sd_flow_limit *fl;
3786 struct softnet_data *sd;
3787 unsigned int old_flow, new_flow;
3788
3789 if (qlen < (netdev_max_backlog >> 1))
3790 return false;
3791
3792 sd = this_cpu_ptr(&softnet_data);
3793
3794 rcu_read_lock();
3795 fl = rcu_dereference(sd->flow_limit);
3796 if (fl) {
3797 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3798 old_flow = fl->history[fl->history_head];
3799 fl->history[fl->history_head] = new_flow;
3800
3801 fl->history_head++;
3802 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3803
3804 if (likely(fl->buckets[old_flow]))
3805 fl->buckets[old_flow]--;
3806
3807 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3808 fl->count++;
3809 rcu_read_unlock();
3810 return true;
3811 }
3812 }
3813 rcu_read_unlock();
3814 #endif
3815 return false;
3816 }
3817
3818 /*
3819 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3820 * queue (may be a remote CPU queue).
3821 */
3822 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3823 unsigned int *qtail)
3824 {
3825 struct softnet_data *sd;
3826 unsigned long flags;
3827 unsigned int qlen;
3828
3829 sd = &per_cpu(softnet_data, cpu);
3830
3831 local_irq_save(flags);
3832
3833 rps_lock(sd);
3834 if (!netif_running(skb->dev))
3835 goto drop;
3836 qlen = skb_queue_len(&sd->input_pkt_queue);
3837 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3838 if (qlen) {
3839 enqueue:
3840 __skb_queue_tail(&sd->input_pkt_queue, skb);
3841 input_queue_tail_incr_save(sd, qtail);
3842 rps_unlock(sd);
3843 local_irq_restore(flags);
3844 return NET_RX_SUCCESS;
3845 }
3846
3847 /* Schedule NAPI for backlog device
3848 * We can use non atomic operation since we own the queue lock
3849 */
3850 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3851 if (!rps_ipi_queued(sd))
3852 ____napi_schedule(sd, &sd->backlog);
3853 }
3854 goto enqueue;
3855 }
3856
3857 drop:
3858 sd->dropped++;
3859 rps_unlock(sd);
3860
3861 local_irq_restore(flags);
3862
3863 atomic_long_inc(&skb->dev->rx_dropped);
3864 kfree_skb(skb);
3865 return NET_RX_DROP;
3866 }
3867
3868 static int netif_rx_internal(struct sk_buff *skb)
3869 {
3870 int ret;
3871
3872 net_timestamp_check(netdev_tstamp_prequeue, skb);
3873
3874 trace_netif_rx(skb);
3875 #ifdef CONFIG_RPS
3876 if (static_key_false(&rps_needed)) {
3877 struct rps_dev_flow voidflow, *rflow = &voidflow;
3878 int cpu;
3879
3880 preempt_disable();
3881 rcu_read_lock();
3882
3883 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3884 if (cpu < 0)
3885 cpu = smp_processor_id();
3886
3887 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3888
3889 rcu_read_unlock();
3890 preempt_enable();
3891 } else
3892 #endif
3893 {
3894 unsigned int qtail;
3895
3896 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3897 put_cpu();
3898 }
3899 return ret;
3900 }
3901
3902 /**
3903 * netif_rx - post buffer to the network code
3904 * @skb: buffer to post
3905 *
3906 * This function receives a packet from a device driver and queues it for
3907 * the upper (protocol) levels to process. It always succeeds. The buffer
3908 * may be dropped during processing for congestion control or by the
3909 * protocol layers.
3910 *
3911 * return values:
3912 * NET_RX_SUCCESS (no congestion)
3913 * NET_RX_DROP (packet was dropped)
3914 *
3915 */
3916
3917 int netif_rx(struct sk_buff *skb)
3918 {
3919 trace_netif_rx_entry(skb);
3920
3921 return netif_rx_internal(skb);
3922 }
3923 EXPORT_SYMBOL(netif_rx);
3924
3925 int netif_rx_ni(struct sk_buff *skb)
3926 {
3927 int err;
3928
3929 trace_netif_rx_ni_entry(skb);
3930
3931 preempt_disable();
3932 err = netif_rx_internal(skb);
3933 if (local_softirq_pending())
3934 do_softirq();
3935 preempt_enable();
3936
3937 return err;
3938 }
3939 EXPORT_SYMBOL(netif_rx_ni);
3940
3941 static __latent_entropy void net_tx_action(struct softirq_action *h)
3942 {
3943 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3944
3945 if (sd->completion_queue) {
3946 struct sk_buff *clist;
3947
3948 local_irq_disable();
3949 clist = sd->completion_queue;
3950 sd->completion_queue = NULL;
3951 local_irq_enable();
3952
3953 while (clist) {
3954 struct sk_buff *skb = clist;
3955
3956 clist = clist->next;
3957
3958 WARN_ON(refcount_read(&skb->users));
3959 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3960 trace_consume_skb(skb);
3961 else
3962 trace_kfree_skb(skb, net_tx_action);
3963
3964 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3965 __kfree_skb(skb);
3966 else
3967 __kfree_skb_defer(skb);
3968 }
3969
3970 __kfree_skb_flush();
3971 }
3972
3973 if (sd->output_queue) {
3974 struct Qdisc *head;
3975
3976 local_irq_disable();
3977 head = sd->output_queue;
3978 sd->output_queue = NULL;
3979 sd->output_queue_tailp = &sd->output_queue;
3980 local_irq_enable();
3981
3982 while (head) {
3983 struct Qdisc *q = head;
3984 spinlock_t *root_lock;
3985
3986 head = head->next_sched;
3987
3988 root_lock = qdisc_lock(q);
3989 spin_lock(root_lock);
3990 /* We need to make sure head->next_sched is read
3991 * before clearing __QDISC_STATE_SCHED
3992 */
3993 smp_mb__before_atomic();
3994 clear_bit(__QDISC_STATE_SCHED, &q->state);
3995 qdisc_run(q);
3996 spin_unlock(root_lock);
3997 }
3998 }
3999 }
4000
4001 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4002 /* This hook is defined here for ATM LANE */
4003 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4004 unsigned char *addr) __read_mostly;
4005 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4006 #endif
4007
4008 static inline struct sk_buff *
4009 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4010 struct net_device *orig_dev)
4011 {
4012 #ifdef CONFIG_NET_CLS_ACT
4013 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
4014 struct tcf_result cl_res;
4015
4016 /* If there's at least one ingress present somewhere (so
4017 * we get here via enabled static key), remaining devices
4018 * that are not configured with an ingress qdisc will bail
4019 * out here.
4020 */
4021 if (!cl)
4022 return skb;
4023 if (*pt_prev) {
4024 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4025 *pt_prev = NULL;
4026 }
4027
4028 qdisc_skb_cb(skb)->pkt_len = skb->len;
4029 skb->tc_at_ingress = 1;
4030 qdisc_bstats_cpu_update(cl->q, skb);
4031
4032 switch (tcf_classify(skb, cl, &cl_res, false)) {
4033 case TC_ACT_OK:
4034 case TC_ACT_RECLASSIFY:
4035 skb->tc_index = TC_H_MIN(cl_res.classid);
4036 break;
4037 case TC_ACT_SHOT:
4038 qdisc_qstats_cpu_drop(cl->q);
4039 kfree_skb(skb);
4040 return NULL;
4041 case TC_ACT_STOLEN:
4042 case TC_ACT_QUEUED:
4043 case TC_ACT_TRAP:
4044 consume_skb(skb);
4045 return NULL;
4046 case TC_ACT_REDIRECT:
4047 /* skb_mac_header check was done by cls/act_bpf, so
4048 * we can safely push the L2 header back before
4049 * redirecting to another netdev
4050 */
4051 __skb_push(skb, skb->mac_len);
4052 skb_do_redirect(skb);
4053 return NULL;
4054 default:
4055 break;
4056 }
4057 #endif /* CONFIG_NET_CLS_ACT */
4058 return skb;
4059 }
4060
4061 /**
4062 * netdev_is_rx_handler_busy - check if receive handler is registered
4063 * @dev: device to check
4064 *
4065 * Check if a receive handler is already registered for a given device.
4066 * Return true if there one.
4067 *
4068 * The caller must hold the rtnl_mutex.
4069 */
4070 bool netdev_is_rx_handler_busy(struct net_device *dev)
4071 {
4072 ASSERT_RTNL();
4073 return dev && rtnl_dereference(dev->rx_handler);
4074 }
4075 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4076
4077 /**
4078 * netdev_rx_handler_register - register receive handler
4079 * @dev: device to register a handler for
4080 * @rx_handler: receive handler to register
4081 * @rx_handler_data: data pointer that is used by rx handler
4082 *
4083 * Register a receive handler for a device. This handler will then be
4084 * called from __netif_receive_skb. A negative errno code is returned
4085 * on a failure.
4086 *
4087 * The caller must hold the rtnl_mutex.
4088 *
4089 * For a general description of rx_handler, see enum rx_handler_result.
4090 */
4091 int netdev_rx_handler_register(struct net_device *dev,
4092 rx_handler_func_t *rx_handler,
4093 void *rx_handler_data)
4094 {
4095 if (netdev_is_rx_handler_busy(dev))
4096 return -EBUSY;
4097
4098 /* Note: rx_handler_data must be set before rx_handler */
4099 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4100 rcu_assign_pointer(dev->rx_handler, rx_handler);
4101
4102 return 0;
4103 }
4104 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4105
4106 /**
4107 * netdev_rx_handler_unregister - unregister receive handler
4108 * @dev: device to unregister a handler from
4109 *
4110 * Unregister a receive handler from a device.
4111 *
4112 * The caller must hold the rtnl_mutex.
4113 */
4114 void netdev_rx_handler_unregister(struct net_device *dev)
4115 {
4116
4117 ASSERT_RTNL();
4118 RCU_INIT_POINTER(dev->rx_handler, NULL);
4119 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4120 * section has a guarantee to see a non NULL rx_handler_data
4121 * as well.
4122 */
4123 synchronize_net();
4124 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4125 }
4126 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4127
4128 /*
4129 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4130 * the special handling of PFMEMALLOC skbs.
4131 */
4132 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4133 {
4134 switch (skb->protocol) {
4135 case htons(ETH_P_ARP):
4136 case htons(ETH_P_IP):
4137 case htons(ETH_P_IPV6):
4138 case htons(ETH_P_8021Q):
4139 case htons(ETH_P_8021AD):
4140 return true;
4141 default:
4142 return false;
4143 }
4144 }
4145
4146 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4147 int *ret, struct net_device *orig_dev)
4148 {
4149 #ifdef CONFIG_NETFILTER_INGRESS
4150 if (nf_hook_ingress_active(skb)) {
4151 int ingress_retval;
4152
4153 if (*pt_prev) {
4154 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4155 *pt_prev = NULL;
4156 }
4157
4158 rcu_read_lock();
4159 ingress_retval = nf_hook_ingress(skb);
4160 rcu_read_unlock();
4161 return ingress_retval;
4162 }
4163 #endif /* CONFIG_NETFILTER_INGRESS */
4164 return 0;
4165 }
4166
4167 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4168 {
4169 struct packet_type *ptype, *pt_prev;
4170 rx_handler_func_t *rx_handler;
4171 struct net_device *orig_dev;
4172 bool deliver_exact = false;
4173 int ret = NET_RX_DROP;
4174 __be16 type;
4175
4176 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4177
4178 trace_netif_receive_skb(skb);
4179
4180 orig_dev = skb->dev;
4181
4182 skb_reset_network_header(skb);
4183 if (!skb_transport_header_was_set(skb))
4184 skb_reset_transport_header(skb);
4185 skb_reset_mac_len(skb);
4186
4187 pt_prev = NULL;
4188
4189 another_round:
4190 skb->skb_iif = skb->dev->ifindex;
4191
4192 __this_cpu_inc(softnet_data.processed);
4193
4194 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4195 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4196 skb = skb_vlan_untag(skb);
4197 if (unlikely(!skb))
4198 goto out;
4199 }
4200
4201 if (skb_skip_tc_classify(skb))
4202 goto skip_classify;
4203
4204 if (pfmemalloc)
4205 goto skip_taps;
4206
4207 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4208 if (pt_prev)
4209 ret = deliver_skb(skb, pt_prev, orig_dev);
4210 pt_prev = ptype;
4211 }
4212
4213 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4214 if (pt_prev)
4215 ret = deliver_skb(skb, pt_prev, orig_dev);
4216 pt_prev = ptype;
4217 }
4218
4219 skip_taps:
4220 #ifdef CONFIG_NET_INGRESS
4221 if (static_key_false(&ingress_needed)) {
4222 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4223 if (!skb)
4224 goto out;
4225
4226 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4227 goto out;
4228 }
4229 #endif
4230 skb_reset_tc(skb);
4231 skip_classify:
4232 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4233 goto drop;
4234
4235 if (skb_vlan_tag_present(skb)) {
4236 if (pt_prev) {
4237 ret = deliver_skb(skb, pt_prev, orig_dev);
4238 pt_prev = NULL;
4239 }
4240 if (vlan_do_receive(&skb))
4241 goto another_round;
4242 else if (unlikely(!skb))
4243 goto out;
4244 }
4245
4246 rx_handler = rcu_dereference(skb->dev->rx_handler);
4247 if (rx_handler) {
4248 if (pt_prev) {
4249 ret = deliver_skb(skb, pt_prev, orig_dev);
4250 pt_prev = NULL;
4251 }
4252 switch (rx_handler(&skb)) {
4253 case RX_HANDLER_CONSUMED:
4254 ret = NET_RX_SUCCESS;
4255 goto out;
4256 case RX_HANDLER_ANOTHER:
4257 goto another_round;
4258 case RX_HANDLER_EXACT:
4259 deliver_exact = true;
4260 case RX_HANDLER_PASS:
4261 break;
4262 default:
4263 BUG();
4264 }
4265 }
4266
4267 if (unlikely(skb_vlan_tag_present(skb))) {
4268 if (skb_vlan_tag_get_id(skb))
4269 skb->pkt_type = PACKET_OTHERHOST;
4270 /* Note: we might in the future use prio bits
4271 * and set skb->priority like in vlan_do_receive()
4272 * For the time being, just ignore Priority Code Point
4273 */
4274 skb->vlan_tci = 0;
4275 }
4276
4277 type = skb->protocol;
4278
4279 /* deliver only exact match when indicated */
4280 if (likely(!deliver_exact)) {
4281 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4282 &ptype_base[ntohs(type) &
4283 PTYPE_HASH_MASK]);
4284 }
4285
4286 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4287 &orig_dev->ptype_specific);
4288
4289 if (unlikely(skb->dev != orig_dev)) {
4290 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4291 &skb->dev->ptype_specific);
4292 }
4293
4294 if (pt_prev) {
4295 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4296 goto drop;
4297 else
4298 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4299 } else {
4300 drop:
4301 if (!deliver_exact)
4302 atomic_long_inc(&skb->dev->rx_dropped);
4303 else
4304 atomic_long_inc(&skb->dev->rx_nohandler);
4305 kfree_skb(skb);
4306 /* Jamal, now you will not able to escape explaining
4307 * me how you were going to use this. :-)
4308 */
4309 ret = NET_RX_DROP;
4310 }
4311
4312 out:
4313 return ret;
4314 }
4315
4316 static int __netif_receive_skb(struct sk_buff *skb)
4317 {
4318 int ret;
4319
4320 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4321 unsigned int noreclaim_flag;
4322
4323 /*
4324 * PFMEMALLOC skbs are special, they should
4325 * - be delivered to SOCK_MEMALLOC sockets only
4326 * - stay away from userspace
4327 * - have bounded memory usage
4328 *
4329 * Use PF_MEMALLOC as this saves us from propagating the allocation
4330 * context down to all allocation sites.
4331 */
4332 noreclaim_flag = memalloc_noreclaim_save();
4333 ret = __netif_receive_skb_core(skb, true);
4334 memalloc_noreclaim_restore(noreclaim_flag);
4335 } else
4336 ret = __netif_receive_skb_core(skb, false);
4337
4338 return ret;
4339 }
4340
4341 static struct static_key generic_xdp_needed __read_mostly;
4342
4343 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4344 {
4345 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4346 struct bpf_prog *new = xdp->prog;
4347 int ret = 0;
4348
4349 switch (xdp->command) {
4350 case XDP_SETUP_PROG:
4351 rcu_assign_pointer(dev->xdp_prog, new);
4352 if (old)
4353 bpf_prog_put(old);
4354
4355 if (old && !new) {
4356 static_key_slow_dec(&generic_xdp_needed);
4357 } else if (new && !old) {
4358 static_key_slow_inc(&generic_xdp_needed);
4359 dev_disable_lro(dev);
4360 }
4361 break;
4362
4363 case XDP_QUERY_PROG:
4364 xdp->prog_attached = !!old;
4365 xdp->prog_id = old ? old->aux->id : 0;
4366 break;
4367
4368 default:
4369 ret = -EINVAL;
4370 break;
4371 }
4372
4373 return ret;
4374 }
4375
4376 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4377 struct bpf_prog *xdp_prog)
4378 {
4379 struct xdp_buff xdp;
4380 u32 act = XDP_DROP;
4381 void *orig_data;
4382 int hlen, off;
4383 u32 mac_len;
4384
4385 /* Reinjected packets coming from act_mirred or similar should
4386 * not get XDP generic processing.
4387 */
4388 if (skb_cloned(skb))
4389 return XDP_PASS;
4390
4391 if (skb_linearize(skb))
4392 goto do_drop;
4393
4394 /* The XDP program wants to see the packet starting at the MAC
4395 * header.
4396 */
4397 mac_len = skb->data - skb_mac_header(skb);
4398 hlen = skb_headlen(skb) + mac_len;
4399 xdp.data = skb->data - mac_len;
4400 xdp.data_end = xdp.data + hlen;
4401 xdp.data_hard_start = skb->data - skb_headroom(skb);
4402 orig_data = xdp.data;
4403
4404 act = bpf_prog_run_xdp(xdp_prog, &xdp);
4405
4406 off = xdp.data - orig_data;
4407 if (off > 0)
4408 __skb_pull(skb, off);
4409 else if (off < 0)
4410 __skb_push(skb, -off);
4411
4412 switch (act) {
4413 case XDP_TX:
4414 __skb_push(skb, mac_len);
4415 /* fall through */
4416 case XDP_PASS:
4417 break;
4418
4419 default:
4420 bpf_warn_invalid_xdp_action(act);
4421 /* fall through */
4422 case XDP_ABORTED:
4423 trace_xdp_exception(skb->dev, xdp_prog, act);
4424 /* fall through */
4425 case XDP_DROP:
4426 do_drop:
4427 kfree_skb(skb);
4428 break;
4429 }
4430
4431 return act;
4432 }
4433
4434 /* When doing generic XDP we have to bypass the qdisc layer and the
4435 * network taps in order to match in-driver-XDP behavior.
4436 */
4437 static void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4438 {
4439 struct net_device *dev = skb->dev;
4440 struct netdev_queue *txq;
4441 bool free_skb = true;
4442 int cpu, rc;
4443
4444 txq = netdev_pick_tx(dev, skb, NULL);
4445 cpu = smp_processor_id();
4446 HARD_TX_LOCK(dev, txq, cpu);
4447 if (!netif_xmit_stopped(txq)) {
4448 rc = netdev_start_xmit(skb, dev, txq, 0);
4449 if (dev_xmit_complete(rc))
4450 free_skb = false;
4451 }
4452 HARD_TX_UNLOCK(dev, txq);
4453 if (free_skb) {
4454 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4455 kfree_skb(skb);
4456 }
4457 }
4458
4459 static int netif_receive_skb_internal(struct sk_buff *skb)
4460 {
4461 int ret;
4462
4463 net_timestamp_check(netdev_tstamp_prequeue, skb);
4464
4465 if (skb_defer_rx_timestamp(skb))
4466 return NET_RX_SUCCESS;
4467
4468 rcu_read_lock();
4469
4470 if (static_key_false(&generic_xdp_needed)) {
4471 struct bpf_prog *xdp_prog = rcu_dereference(skb->dev->xdp_prog);
4472
4473 if (xdp_prog) {
4474 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4475
4476 if (act != XDP_PASS) {
4477 rcu_read_unlock();
4478 if (act == XDP_TX)
4479 generic_xdp_tx(skb, xdp_prog);
4480 return NET_RX_DROP;
4481 }
4482 }
4483 }
4484
4485 #ifdef CONFIG_RPS
4486 if (static_key_false(&rps_needed)) {
4487 struct rps_dev_flow voidflow, *rflow = &voidflow;
4488 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4489
4490 if (cpu >= 0) {
4491 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4492 rcu_read_unlock();
4493 return ret;
4494 }
4495 }
4496 #endif
4497 ret = __netif_receive_skb(skb);
4498 rcu_read_unlock();
4499 return ret;
4500 }
4501
4502 /**
4503 * netif_receive_skb - process receive buffer from network
4504 * @skb: buffer to process
4505 *
4506 * netif_receive_skb() is the main receive data processing function.
4507 * It always succeeds. The buffer may be dropped during processing
4508 * for congestion control or by the protocol layers.
4509 *
4510 * This function may only be called from softirq context and interrupts
4511 * should be enabled.
4512 *
4513 * Return values (usually ignored):
4514 * NET_RX_SUCCESS: no congestion
4515 * NET_RX_DROP: packet was dropped
4516 */
4517 int netif_receive_skb(struct sk_buff *skb)
4518 {
4519 trace_netif_receive_skb_entry(skb);
4520
4521 return netif_receive_skb_internal(skb);
4522 }
4523 EXPORT_SYMBOL(netif_receive_skb);
4524
4525 DEFINE_PER_CPU(struct work_struct, flush_works);
4526
4527 /* Network device is going away, flush any packets still pending */
4528 static void flush_backlog(struct work_struct *work)
4529 {
4530 struct sk_buff *skb, *tmp;
4531 struct softnet_data *sd;
4532
4533 local_bh_disable();
4534 sd = this_cpu_ptr(&softnet_data);
4535
4536 local_irq_disable();
4537 rps_lock(sd);
4538 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4539 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4540 __skb_unlink(skb, &sd->input_pkt_queue);
4541 kfree_skb(skb);
4542 input_queue_head_incr(sd);
4543 }
4544 }
4545 rps_unlock(sd);
4546 local_irq_enable();
4547
4548 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4549 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4550 __skb_unlink(skb, &sd->process_queue);
4551 kfree_skb(skb);
4552 input_queue_head_incr(sd);
4553 }
4554 }
4555 local_bh_enable();
4556 }
4557
4558 static void flush_all_backlogs(void)
4559 {
4560 unsigned int cpu;
4561
4562 get_online_cpus();
4563
4564 for_each_online_cpu(cpu)
4565 queue_work_on(cpu, system_highpri_wq,
4566 per_cpu_ptr(&flush_works, cpu));
4567
4568 for_each_online_cpu(cpu)
4569 flush_work(per_cpu_ptr(&flush_works, cpu));
4570
4571 put_online_cpus();
4572 }
4573
4574 static int napi_gro_complete(struct sk_buff *skb)
4575 {
4576 struct packet_offload *ptype;
4577 __be16 type = skb->protocol;
4578 struct list_head *head = &offload_base;
4579 int err = -ENOENT;
4580
4581 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4582
4583 if (NAPI_GRO_CB(skb)->count == 1) {
4584 skb_shinfo(skb)->gso_size = 0;
4585 goto out;
4586 }
4587
4588 rcu_read_lock();
4589 list_for_each_entry_rcu(ptype, head, list) {
4590 if (ptype->type != type || !ptype->callbacks.gro_complete)
4591 continue;
4592
4593 err = ptype->callbacks.gro_complete(skb, 0);
4594 break;
4595 }
4596 rcu_read_unlock();
4597
4598 if (err) {
4599 WARN_ON(&ptype->list == head);
4600 kfree_skb(skb);
4601 return NET_RX_SUCCESS;
4602 }
4603
4604 out:
4605 return netif_receive_skb_internal(skb);
4606 }
4607
4608 /* napi->gro_list contains packets ordered by age.
4609 * youngest packets at the head of it.
4610 * Complete skbs in reverse order to reduce latencies.
4611 */
4612 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4613 {
4614 struct sk_buff *skb, *prev = NULL;
4615
4616 /* scan list and build reverse chain */
4617 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4618 skb->prev = prev;
4619 prev = skb;
4620 }
4621
4622 for (skb = prev; skb; skb = prev) {
4623 skb->next = NULL;
4624
4625 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4626 return;
4627
4628 prev = skb->prev;
4629 napi_gro_complete(skb);
4630 napi->gro_count--;
4631 }
4632
4633 napi->gro_list = NULL;
4634 }
4635 EXPORT_SYMBOL(napi_gro_flush);
4636
4637 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4638 {
4639 struct sk_buff *p;
4640 unsigned int maclen = skb->dev->hard_header_len;
4641 u32 hash = skb_get_hash_raw(skb);
4642
4643 for (p = napi->gro_list; p; p = p->next) {
4644 unsigned long diffs;
4645
4646 NAPI_GRO_CB(p)->flush = 0;
4647
4648 if (hash != skb_get_hash_raw(p)) {
4649 NAPI_GRO_CB(p)->same_flow = 0;
4650 continue;
4651 }
4652
4653 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4654 diffs |= p->vlan_tci ^ skb->vlan_tci;
4655 diffs |= skb_metadata_dst_cmp(p, skb);
4656 if (maclen == ETH_HLEN)
4657 diffs |= compare_ether_header(skb_mac_header(p),
4658 skb_mac_header(skb));
4659 else if (!diffs)
4660 diffs = memcmp(skb_mac_header(p),
4661 skb_mac_header(skb),
4662 maclen);
4663 NAPI_GRO_CB(p)->same_flow = !diffs;
4664 }
4665 }
4666
4667 static void skb_gro_reset_offset(struct sk_buff *skb)
4668 {
4669 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4670 const skb_frag_t *frag0 = &pinfo->frags[0];
4671
4672 NAPI_GRO_CB(skb)->data_offset = 0;
4673 NAPI_GRO_CB(skb)->frag0 = NULL;
4674 NAPI_GRO_CB(skb)->frag0_len = 0;
4675
4676 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4677 pinfo->nr_frags &&
4678 !PageHighMem(skb_frag_page(frag0))) {
4679 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4680 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4681 skb_frag_size(frag0),
4682 skb->end - skb->tail);
4683 }
4684 }
4685
4686 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4687 {
4688 struct skb_shared_info *pinfo = skb_shinfo(skb);
4689
4690 BUG_ON(skb->end - skb->tail < grow);
4691
4692 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4693
4694 skb->data_len -= grow;
4695 skb->tail += grow;
4696
4697 pinfo->frags[0].page_offset += grow;
4698 skb_frag_size_sub(&pinfo->frags[0], grow);
4699
4700 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4701 skb_frag_unref(skb, 0);
4702 memmove(pinfo->frags, pinfo->frags + 1,
4703 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4704 }
4705 }
4706
4707 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4708 {
4709 struct sk_buff **pp = NULL;
4710 struct packet_offload *ptype;
4711 __be16 type = skb->protocol;
4712 struct list_head *head = &offload_base;
4713 int same_flow;
4714 enum gro_result ret;
4715 int grow;
4716
4717 if (netif_elide_gro(skb->dev))
4718 goto normal;
4719
4720 gro_list_prepare(napi, skb);
4721
4722 rcu_read_lock();
4723 list_for_each_entry_rcu(ptype, head, list) {
4724 if (ptype->type != type || !ptype->callbacks.gro_receive)
4725 continue;
4726
4727 skb_set_network_header(skb, skb_gro_offset(skb));
4728 skb_reset_mac_len(skb);
4729 NAPI_GRO_CB(skb)->same_flow = 0;
4730 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4731 NAPI_GRO_CB(skb)->free = 0;
4732 NAPI_GRO_CB(skb)->encap_mark = 0;
4733 NAPI_GRO_CB(skb)->recursion_counter = 0;
4734 NAPI_GRO_CB(skb)->is_fou = 0;
4735 NAPI_GRO_CB(skb)->is_atomic = 1;
4736 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4737
4738 /* Setup for GRO checksum validation */
4739 switch (skb->ip_summed) {
4740 case CHECKSUM_COMPLETE:
4741 NAPI_GRO_CB(skb)->csum = skb->csum;
4742 NAPI_GRO_CB(skb)->csum_valid = 1;
4743 NAPI_GRO_CB(skb)->csum_cnt = 0;
4744 break;
4745 case CHECKSUM_UNNECESSARY:
4746 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4747 NAPI_GRO_CB(skb)->csum_valid = 0;
4748 break;
4749 default:
4750 NAPI_GRO_CB(skb)->csum_cnt = 0;
4751 NAPI_GRO_CB(skb)->csum_valid = 0;
4752 }
4753
4754 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4755 break;
4756 }
4757 rcu_read_unlock();
4758
4759 if (&ptype->list == head)
4760 goto normal;
4761
4762 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4763 ret = GRO_CONSUMED;
4764 goto ok;
4765 }
4766
4767 same_flow = NAPI_GRO_CB(skb)->same_flow;
4768 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4769
4770 if (pp) {
4771 struct sk_buff *nskb = *pp;
4772
4773 *pp = nskb->next;
4774 nskb->next = NULL;
4775 napi_gro_complete(nskb);
4776 napi->gro_count--;
4777 }
4778
4779 if (same_flow)
4780 goto ok;
4781
4782 if (NAPI_GRO_CB(skb)->flush)
4783 goto normal;
4784
4785 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4786 struct sk_buff *nskb = napi->gro_list;
4787
4788 /* locate the end of the list to select the 'oldest' flow */
4789 while (nskb->next) {
4790 pp = &nskb->next;
4791 nskb = *pp;
4792 }
4793 *pp = NULL;
4794 nskb->next = NULL;
4795 napi_gro_complete(nskb);
4796 } else {
4797 napi->gro_count++;
4798 }
4799 NAPI_GRO_CB(skb)->count = 1;
4800 NAPI_GRO_CB(skb)->age = jiffies;
4801 NAPI_GRO_CB(skb)->last = skb;
4802 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4803 skb->next = napi->gro_list;
4804 napi->gro_list = skb;
4805 ret = GRO_HELD;
4806
4807 pull:
4808 grow = skb_gro_offset(skb) - skb_headlen(skb);
4809 if (grow > 0)
4810 gro_pull_from_frag0(skb, grow);
4811 ok:
4812 return ret;
4813
4814 normal:
4815 ret = GRO_NORMAL;
4816 goto pull;
4817 }
4818
4819 struct packet_offload *gro_find_receive_by_type(__be16 type)
4820 {
4821 struct list_head *offload_head = &offload_base;
4822 struct packet_offload *ptype;
4823
4824 list_for_each_entry_rcu(ptype, offload_head, list) {
4825 if (ptype->type != type || !ptype->callbacks.gro_receive)
4826 continue;
4827 return ptype;
4828 }
4829 return NULL;
4830 }
4831 EXPORT_SYMBOL(gro_find_receive_by_type);
4832
4833 struct packet_offload *gro_find_complete_by_type(__be16 type)
4834 {
4835 struct list_head *offload_head = &offload_base;
4836 struct packet_offload *ptype;
4837
4838 list_for_each_entry_rcu(ptype, offload_head, list) {
4839 if (ptype->type != type || !ptype->callbacks.gro_complete)
4840 continue;
4841 return ptype;
4842 }
4843 return NULL;
4844 }
4845 EXPORT_SYMBOL(gro_find_complete_by_type);
4846
4847 static void napi_skb_free_stolen_head(struct sk_buff *skb)
4848 {
4849 skb_dst_drop(skb);
4850 secpath_reset(skb);
4851 kmem_cache_free(skbuff_head_cache, skb);
4852 }
4853
4854 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4855 {
4856 switch (ret) {
4857 case GRO_NORMAL:
4858 if (netif_receive_skb_internal(skb))
4859 ret = GRO_DROP;
4860 break;
4861
4862 case GRO_DROP:
4863 kfree_skb(skb);
4864 break;
4865
4866 case GRO_MERGED_FREE:
4867 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4868 napi_skb_free_stolen_head(skb);
4869 else
4870 __kfree_skb(skb);
4871 break;
4872
4873 case GRO_HELD:
4874 case GRO_MERGED:
4875 case GRO_CONSUMED:
4876 break;
4877 }
4878
4879 return ret;
4880 }
4881
4882 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4883 {
4884 skb_mark_napi_id(skb, napi);
4885 trace_napi_gro_receive_entry(skb);
4886
4887 skb_gro_reset_offset(skb);
4888
4889 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4890 }
4891 EXPORT_SYMBOL(napi_gro_receive);
4892
4893 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4894 {
4895 if (unlikely(skb->pfmemalloc)) {
4896 consume_skb(skb);
4897 return;
4898 }
4899 __skb_pull(skb, skb_headlen(skb));
4900 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4901 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4902 skb->vlan_tci = 0;
4903 skb->dev = napi->dev;
4904 skb->skb_iif = 0;
4905 skb->encapsulation = 0;
4906 skb_shinfo(skb)->gso_type = 0;
4907 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4908 secpath_reset(skb);
4909
4910 napi->skb = skb;
4911 }
4912
4913 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4914 {
4915 struct sk_buff *skb = napi->skb;
4916
4917 if (!skb) {
4918 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4919 if (skb) {
4920 napi->skb = skb;
4921 skb_mark_napi_id(skb, napi);
4922 }
4923 }
4924 return skb;
4925 }
4926 EXPORT_SYMBOL(napi_get_frags);
4927
4928 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4929 struct sk_buff *skb,
4930 gro_result_t ret)
4931 {
4932 switch (ret) {
4933 case GRO_NORMAL:
4934 case GRO_HELD:
4935 __skb_push(skb, ETH_HLEN);
4936 skb->protocol = eth_type_trans(skb, skb->dev);
4937 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4938 ret = GRO_DROP;
4939 break;
4940
4941 case GRO_DROP:
4942 napi_reuse_skb(napi, skb);
4943 break;
4944
4945 case GRO_MERGED_FREE:
4946 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4947 napi_skb_free_stolen_head(skb);
4948 else
4949 napi_reuse_skb(napi, skb);
4950 break;
4951
4952 case GRO_MERGED:
4953 case GRO_CONSUMED:
4954 break;
4955 }
4956
4957 return ret;
4958 }
4959
4960 /* Upper GRO stack assumes network header starts at gro_offset=0
4961 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4962 * We copy ethernet header into skb->data to have a common layout.
4963 */
4964 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4965 {
4966 struct sk_buff *skb = napi->skb;
4967 const struct ethhdr *eth;
4968 unsigned int hlen = sizeof(*eth);
4969
4970 napi->skb = NULL;
4971
4972 skb_reset_mac_header(skb);
4973 skb_gro_reset_offset(skb);
4974
4975 eth = skb_gro_header_fast(skb, 0);
4976 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4977 eth = skb_gro_header_slow(skb, hlen, 0);
4978 if (unlikely(!eth)) {
4979 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4980 __func__, napi->dev->name);
4981 napi_reuse_skb(napi, skb);
4982 return NULL;
4983 }
4984 } else {
4985 gro_pull_from_frag0(skb, hlen);
4986 NAPI_GRO_CB(skb)->frag0 += hlen;
4987 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4988 }
4989 __skb_pull(skb, hlen);
4990
4991 /*
4992 * This works because the only protocols we care about don't require
4993 * special handling.
4994 * We'll fix it up properly in napi_frags_finish()
4995 */
4996 skb->protocol = eth->h_proto;
4997
4998 return skb;
4999 }
5000
5001 gro_result_t napi_gro_frags(struct napi_struct *napi)
5002 {
5003 struct sk_buff *skb = napi_frags_skb(napi);
5004
5005 if (!skb)
5006 return GRO_DROP;
5007
5008 trace_napi_gro_frags_entry(skb);
5009
5010 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5011 }
5012 EXPORT_SYMBOL(napi_gro_frags);
5013
5014 /* Compute the checksum from gro_offset and return the folded value
5015 * after adding in any pseudo checksum.
5016 */
5017 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5018 {
5019 __wsum wsum;
5020 __sum16 sum;
5021
5022 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5023
5024 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5025 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5026 if (likely(!sum)) {
5027 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5028 !skb->csum_complete_sw)
5029 netdev_rx_csum_fault(skb->dev);
5030 }
5031
5032 NAPI_GRO_CB(skb)->csum = wsum;
5033 NAPI_GRO_CB(skb)->csum_valid = 1;
5034
5035 return sum;
5036 }
5037 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5038
5039 static void net_rps_send_ipi(struct softnet_data *remsd)
5040 {
5041 #ifdef CONFIG_RPS
5042 while (remsd) {
5043 struct softnet_data *next = remsd->rps_ipi_next;
5044
5045 if (cpu_online(remsd->cpu))
5046 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5047 remsd = next;
5048 }
5049 #endif
5050 }
5051
5052 /*
5053 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5054 * Note: called with local irq disabled, but exits with local irq enabled.
5055 */
5056 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5057 {
5058 #ifdef CONFIG_RPS
5059 struct softnet_data *remsd = sd->rps_ipi_list;
5060
5061 if (remsd) {
5062 sd->rps_ipi_list = NULL;
5063
5064 local_irq_enable();
5065
5066 /* Send pending IPI's to kick RPS processing on remote cpus. */
5067 net_rps_send_ipi(remsd);
5068 } else
5069 #endif
5070 local_irq_enable();
5071 }
5072
5073 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5074 {
5075 #ifdef CONFIG_RPS
5076 return sd->rps_ipi_list != NULL;
5077 #else
5078 return false;
5079 #endif
5080 }
5081
5082 static int process_backlog(struct napi_struct *napi, int quota)
5083 {
5084 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5085 bool again = true;
5086 int work = 0;
5087
5088 /* Check if we have pending ipi, its better to send them now,
5089 * not waiting net_rx_action() end.
5090 */
5091 if (sd_has_rps_ipi_waiting(sd)) {
5092 local_irq_disable();
5093 net_rps_action_and_irq_enable(sd);
5094 }
5095
5096 napi->weight = dev_rx_weight;
5097 while (again) {
5098 struct sk_buff *skb;
5099
5100 while ((skb = __skb_dequeue(&sd->process_queue))) {
5101 rcu_read_lock();
5102 __netif_receive_skb(skb);
5103 rcu_read_unlock();
5104 input_queue_head_incr(sd);
5105 if (++work >= quota)
5106 return work;
5107
5108 }
5109
5110 local_irq_disable();
5111 rps_lock(sd);
5112 if (skb_queue_empty(&sd->input_pkt_queue)) {
5113 /*
5114 * Inline a custom version of __napi_complete().
5115 * only current cpu owns and manipulates this napi,
5116 * and NAPI_STATE_SCHED is the only possible flag set
5117 * on backlog.
5118 * We can use a plain write instead of clear_bit(),
5119 * and we dont need an smp_mb() memory barrier.
5120 */
5121 napi->state = 0;
5122 again = false;
5123 } else {
5124 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5125 &sd->process_queue);
5126 }
5127 rps_unlock(sd);
5128 local_irq_enable();
5129 }
5130
5131 return work;
5132 }
5133
5134 /**
5135 * __napi_schedule - schedule for receive
5136 * @n: entry to schedule
5137 *
5138 * The entry's receive function will be scheduled to run.
5139 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5140 */
5141 void __napi_schedule(struct napi_struct *n)
5142 {
5143 unsigned long flags;
5144
5145 local_irq_save(flags);
5146 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5147 local_irq_restore(flags);
5148 }
5149 EXPORT_SYMBOL(__napi_schedule);
5150
5151 /**
5152 * napi_schedule_prep - check if napi can be scheduled
5153 * @n: napi context
5154 *
5155 * Test if NAPI routine is already running, and if not mark
5156 * it as running. This is used as a condition variable
5157 * insure only one NAPI poll instance runs. We also make
5158 * sure there is no pending NAPI disable.
5159 */
5160 bool napi_schedule_prep(struct napi_struct *n)
5161 {
5162 unsigned long val, new;
5163
5164 do {
5165 val = READ_ONCE(n->state);
5166 if (unlikely(val & NAPIF_STATE_DISABLE))
5167 return false;
5168 new = val | NAPIF_STATE_SCHED;
5169
5170 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5171 * This was suggested by Alexander Duyck, as compiler
5172 * emits better code than :
5173 * if (val & NAPIF_STATE_SCHED)
5174 * new |= NAPIF_STATE_MISSED;
5175 */
5176 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5177 NAPIF_STATE_MISSED;
5178 } while (cmpxchg(&n->state, val, new) != val);
5179
5180 return !(val & NAPIF_STATE_SCHED);
5181 }
5182 EXPORT_SYMBOL(napi_schedule_prep);
5183
5184 /**
5185 * __napi_schedule_irqoff - schedule for receive
5186 * @n: entry to schedule
5187 *
5188 * Variant of __napi_schedule() assuming hard irqs are masked
5189 */
5190 void __napi_schedule_irqoff(struct napi_struct *n)
5191 {
5192 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5193 }
5194 EXPORT_SYMBOL(__napi_schedule_irqoff);
5195
5196 bool napi_complete_done(struct napi_struct *n, int work_done)
5197 {
5198 unsigned long flags, val, new;
5199
5200 /*
5201 * 1) Don't let napi dequeue from the cpu poll list
5202 * just in case its running on a different cpu.
5203 * 2) If we are busy polling, do nothing here, we have
5204 * the guarantee we will be called later.
5205 */
5206 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5207 NAPIF_STATE_IN_BUSY_POLL)))
5208 return false;
5209
5210 if (n->gro_list) {
5211 unsigned long timeout = 0;
5212
5213 if (work_done)
5214 timeout = n->dev->gro_flush_timeout;
5215
5216 if (timeout)
5217 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5218 HRTIMER_MODE_REL_PINNED);
5219 else
5220 napi_gro_flush(n, false);
5221 }
5222 if (unlikely(!list_empty(&n->poll_list))) {
5223 /* If n->poll_list is not empty, we need to mask irqs */
5224 local_irq_save(flags);
5225 list_del_init(&n->poll_list);
5226 local_irq_restore(flags);
5227 }
5228
5229 do {
5230 val = READ_ONCE(n->state);
5231
5232 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5233
5234 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5235
5236 /* If STATE_MISSED was set, leave STATE_SCHED set,
5237 * because we will call napi->poll() one more time.
5238 * This C code was suggested by Alexander Duyck to help gcc.
5239 */
5240 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5241 NAPIF_STATE_SCHED;
5242 } while (cmpxchg(&n->state, val, new) != val);
5243
5244 if (unlikely(val & NAPIF_STATE_MISSED)) {
5245 __napi_schedule(n);
5246 return false;
5247 }
5248
5249 return true;
5250 }
5251 EXPORT_SYMBOL(napi_complete_done);
5252
5253 /* must be called under rcu_read_lock(), as we dont take a reference */
5254 static struct napi_struct *napi_by_id(unsigned int napi_id)
5255 {
5256 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5257 struct napi_struct *napi;
5258
5259 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5260 if (napi->napi_id == napi_id)
5261 return napi;
5262
5263 return NULL;
5264 }
5265
5266 #if defined(CONFIG_NET_RX_BUSY_POLL)
5267
5268 #define BUSY_POLL_BUDGET 8
5269
5270 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5271 {
5272 int rc;
5273
5274 /* Busy polling means there is a high chance device driver hard irq
5275 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5276 * set in napi_schedule_prep().
5277 * Since we are about to call napi->poll() once more, we can safely
5278 * clear NAPI_STATE_MISSED.
5279 *
5280 * Note: x86 could use a single "lock and ..." instruction
5281 * to perform these two clear_bit()
5282 */
5283 clear_bit(NAPI_STATE_MISSED, &napi->state);
5284 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5285
5286 local_bh_disable();
5287
5288 /* All we really want here is to re-enable device interrupts.
5289 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5290 */
5291 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5292 netpoll_poll_unlock(have_poll_lock);
5293 if (rc == BUSY_POLL_BUDGET)
5294 __napi_schedule(napi);
5295 local_bh_enable();
5296 }
5297
5298 void napi_busy_loop(unsigned int napi_id,
5299 bool (*loop_end)(void *, unsigned long),
5300 void *loop_end_arg)
5301 {
5302 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5303 int (*napi_poll)(struct napi_struct *napi, int budget);
5304 void *have_poll_lock = NULL;
5305 struct napi_struct *napi;
5306
5307 restart:
5308 napi_poll = NULL;
5309
5310 rcu_read_lock();
5311
5312 napi = napi_by_id(napi_id);
5313 if (!napi)
5314 goto out;
5315
5316 preempt_disable();
5317 for (;;) {
5318 int work = 0;
5319
5320 local_bh_disable();
5321 if (!napi_poll) {
5322 unsigned long val = READ_ONCE(napi->state);
5323
5324 /* If multiple threads are competing for this napi,
5325 * we avoid dirtying napi->state as much as we can.
5326 */
5327 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5328 NAPIF_STATE_IN_BUSY_POLL))
5329 goto count;
5330 if (cmpxchg(&napi->state, val,
5331 val | NAPIF_STATE_IN_BUSY_POLL |
5332 NAPIF_STATE_SCHED) != val)
5333 goto count;
5334 have_poll_lock = netpoll_poll_lock(napi);
5335 napi_poll = napi->poll;
5336 }
5337 work = napi_poll(napi, BUSY_POLL_BUDGET);
5338 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5339 count:
5340 if (work > 0)
5341 __NET_ADD_STATS(dev_net(napi->dev),
5342 LINUX_MIB_BUSYPOLLRXPACKETS, work);
5343 local_bh_enable();
5344
5345 if (!loop_end || loop_end(loop_end_arg, start_time))
5346 break;
5347
5348 if (unlikely(need_resched())) {
5349 if (napi_poll)
5350 busy_poll_stop(napi, have_poll_lock);
5351 preempt_enable();
5352 rcu_read_unlock();
5353 cond_resched();
5354 if (loop_end(loop_end_arg, start_time))
5355 return;
5356 goto restart;
5357 }
5358 cpu_relax();
5359 }
5360 if (napi_poll)
5361 busy_poll_stop(napi, have_poll_lock);
5362 preempt_enable();
5363 out:
5364 rcu_read_unlock();
5365 }
5366 EXPORT_SYMBOL(napi_busy_loop);
5367
5368 #endif /* CONFIG_NET_RX_BUSY_POLL */
5369
5370 static void napi_hash_add(struct napi_struct *napi)
5371 {
5372 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5373 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5374 return;
5375
5376 spin_lock(&napi_hash_lock);
5377
5378 /* 0..NR_CPUS range is reserved for sender_cpu use */
5379 do {
5380 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5381 napi_gen_id = MIN_NAPI_ID;
5382 } while (napi_by_id(napi_gen_id));
5383 napi->napi_id = napi_gen_id;
5384
5385 hlist_add_head_rcu(&napi->napi_hash_node,
5386 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5387
5388 spin_unlock(&napi_hash_lock);
5389 }
5390
5391 /* Warning : caller is responsible to make sure rcu grace period
5392 * is respected before freeing memory containing @napi
5393 */
5394 bool napi_hash_del(struct napi_struct *napi)
5395 {
5396 bool rcu_sync_needed = false;
5397
5398 spin_lock(&napi_hash_lock);
5399
5400 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5401 rcu_sync_needed = true;
5402 hlist_del_rcu(&napi->napi_hash_node);
5403 }
5404 spin_unlock(&napi_hash_lock);
5405 return rcu_sync_needed;
5406 }
5407 EXPORT_SYMBOL_GPL(napi_hash_del);
5408
5409 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5410 {
5411 struct napi_struct *napi;
5412
5413 napi = container_of(timer, struct napi_struct, timer);
5414
5415 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5416 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5417 */
5418 if (napi->gro_list && !napi_disable_pending(napi) &&
5419 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5420 __napi_schedule_irqoff(napi);
5421
5422 return HRTIMER_NORESTART;
5423 }
5424
5425 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5426 int (*poll)(struct napi_struct *, int), int weight)
5427 {
5428 INIT_LIST_HEAD(&napi->poll_list);
5429 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5430 napi->timer.function = napi_watchdog;
5431 napi->gro_count = 0;
5432 napi->gro_list = NULL;
5433 napi->skb = NULL;
5434 napi->poll = poll;
5435 if (weight > NAPI_POLL_WEIGHT)
5436 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5437 weight, dev->name);
5438 napi->weight = weight;
5439 list_add(&napi->dev_list, &dev->napi_list);
5440 napi->dev = dev;
5441 #ifdef CONFIG_NETPOLL
5442 napi->poll_owner = -1;
5443 #endif
5444 set_bit(NAPI_STATE_SCHED, &napi->state);
5445 napi_hash_add(napi);
5446 }
5447 EXPORT_SYMBOL(netif_napi_add);
5448
5449 void napi_disable(struct napi_struct *n)
5450 {
5451 might_sleep();
5452 set_bit(NAPI_STATE_DISABLE, &n->state);
5453
5454 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5455 msleep(1);
5456 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5457 msleep(1);
5458
5459 hrtimer_cancel(&n->timer);
5460
5461 clear_bit(NAPI_STATE_DISABLE, &n->state);
5462 }
5463 EXPORT_SYMBOL(napi_disable);
5464
5465 /* Must be called in process context */
5466 void netif_napi_del(struct napi_struct *napi)
5467 {
5468 might_sleep();
5469 if (napi_hash_del(napi))
5470 synchronize_net();
5471 list_del_init(&napi->dev_list);
5472 napi_free_frags(napi);
5473
5474 kfree_skb_list(napi->gro_list);
5475 napi->gro_list = NULL;
5476 napi->gro_count = 0;
5477 }
5478 EXPORT_SYMBOL(netif_napi_del);
5479
5480 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5481 {
5482 void *have;
5483 int work, weight;
5484
5485 list_del_init(&n->poll_list);
5486
5487 have = netpoll_poll_lock(n);
5488
5489 weight = n->weight;
5490
5491 /* This NAPI_STATE_SCHED test is for avoiding a race
5492 * with netpoll's poll_napi(). Only the entity which
5493 * obtains the lock and sees NAPI_STATE_SCHED set will
5494 * actually make the ->poll() call. Therefore we avoid
5495 * accidentally calling ->poll() when NAPI is not scheduled.
5496 */
5497 work = 0;
5498 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5499 work = n->poll(n, weight);
5500 trace_napi_poll(n, work, weight);
5501 }
5502
5503 WARN_ON_ONCE(work > weight);
5504
5505 if (likely(work < weight))
5506 goto out_unlock;
5507
5508 /* Drivers must not modify the NAPI state if they
5509 * consume the entire weight. In such cases this code
5510 * still "owns" the NAPI instance and therefore can
5511 * move the instance around on the list at-will.
5512 */
5513 if (unlikely(napi_disable_pending(n))) {
5514 napi_complete(n);
5515 goto out_unlock;
5516 }
5517
5518 if (n->gro_list) {
5519 /* flush too old packets
5520 * If HZ < 1000, flush all packets.
5521 */
5522 napi_gro_flush(n, HZ >= 1000);
5523 }
5524
5525 /* Some drivers may have called napi_schedule
5526 * prior to exhausting their budget.
5527 */
5528 if (unlikely(!list_empty(&n->poll_list))) {
5529 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5530 n->dev ? n->dev->name : "backlog");
5531 goto out_unlock;
5532 }
5533
5534 list_add_tail(&n->poll_list, repoll);
5535
5536 out_unlock:
5537 netpoll_poll_unlock(have);
5538
5539 return work;
5540 }
5541
5542 static __latent_entropy void net_rx_action(struct softirq_action *h)
5543 {
5544 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5545 unsigned long time_limit = jiffies +
5546 usecs_to_jiffies(netdev_budget_usecs);
5547 int budget = netdev_budget;
5548 LIST_HEAD(list);
5549 LIST_HEAD(repoll);
5550
5551 local_irq_disable();
5552 list_splice_init(&sd->poll_list, &list);
5553 local_irq_enable();
5554
5555 for (;;) {
5556 struct napi_struct *n;
5557
5558 if (list_empty(&list)) {
5559 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5560 goto out;
5561 break;
5562 }
5563
5564 n = list_first_entry(&list, struct napi_struct, poll_list);
5565 budget -= napi_poll(n, &repoll);
5566
5567 /* If softirq window is exhausted then punt.
5568 * Allow this to run for 2 jiffies since which will allow
5569 * an average latency of 1.5/HZ.
5570 */
5571 if (unlikely(budget <= 0 ||
5572 time_after_eq(jiffies, time_limit))) {
5573 sd->time_squeeze++;
5574 break;
5575 }
5576 }
5577
5578 local_irq_disable();
5579
5580 list_splice_tail_init(&sd->poll_list, &list);
5581 list_splice_tail(&repoll, &list);
5582 list_splice(&list, &sd->poll_list);
5583 if (!list_empty(&sd->poll_list))
5584 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5585
5586 net_rps_action_and_irq_enable(sd);
5587 out:
5588 __kfree_skb_flush();
5589 }
5590
5591 struct netdev_adjacent {
5592 struct net_device *dev;
5593
5594 /* upper master flag, there can only be one master device per list */
5595 bool master;
5596
5597 /* counter for the number of times this device was added to us */
5598 u16 ref_nr;
5599
5600 /* private field for the users */
5601 void *private;
5602
5603 struct list_head list;
5604 struct rcu_head rcu;
5605 };
5606
5607 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5608 struct list_head *adj_list)
5609 {
5610 struct netdev_adjacent *adj;
5611
5612 list_for_each_entry(adj, adj_list, list) {
5613 if (adj->dev == adj_dev)
5614 return adj;
5615 }
5616 return NULL;
5617 }
5618
5619 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5620 {
5621 struct net_device *dev = data;
5622
5623 return upper_dev == dev;
5624 }
5625
5626 /**
5627 * netdev_has_upper_dev - Check if device is linked to an upper device
5628 * @dev: device
5629 * @upper_dev: upper device to check
5630 *
5631 * Find out if a device is linked to specified upper device and return true
5632 * in case it is. Note that this checks only immediate upper device,
5633 * not through a complete stack of devices. The caller must hold the RTNL lock.
5634 */
5635 bool netdev_has_upper_dev(struct net_device *dev,
5636 struct net_device *upper_dev)
5637 {
5638 ASSERT_RTNL();
5639
5640 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5641 upper_dev);
5642 }
5643 EXPORT_SYMBOL(netdev_has_upper_dev);
5644
5645 /**
5646 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5647 * @dev: device
5648 * @upper_dev: upper device to check
5649 *
5650 * Find out if a device is linked to specified upper device and return true
5651 * in case it is. Note that this checks the entire upper device chain.
5652 * The caller must hold rcu lock.
5653 */
5654
5655 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5656 struct net_device *upper_dev)
5657 {
5658 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5659 upper_dev);
5660 }
5661 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5662
5663 /**
5664 * netdev_has_any_upper_dev - Check if device is linked to some device
5665 * @dev: device
5666 *
5667 * Find out if a device is linked to an upper device and return true in case
5668 * it is. The caller must hold the RTNL lock.
5669 */
5670 static bool netdev_has_any_upper_dev(struct net_device *dev)
5671 {
5672 ASSERT_RTNL();
5673
5674 return !list_empty(&dev->adj_list.upper);
5675 }
5676
5677 /**
5678 * netdev_master_upper_dev_get - Get master upper device
5679 * @dev: device
5680 *
5681 * Find a master upper device and return pointer to it or NULL in case
5682 * it's not there. The caller must hold the RTNL lock.
5683 */
5684 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5685 {
5686 struct netdev_adjacent *upper;
5687
5688 ASSERT_RTNL();
5689
5690 if (list_empty(&dev->adj_list.upper))
5691 return NULL;
5692
5693 upper = list_first_entry(&dev->adj_list.upper,
5694 struct netdev_adjacent, list);
5695 if (likely(upper->master))
5696 return upper->dev;
5697 return NULL;
5698 }
5699 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5700
5701 /**
5702 * netdev_has_any_lower_dev - Check if device is linked to some device
5703 * @dev: device
5704 *
5705 * Find out if a device is linked to a lower device and return true in case
5706 * it is. The caller must hold the RTNL lock.
5707 */
5708 static bool netdev_has_any_lower_dev(struct net_device *dev)
5709 {
5710 ASSERT_RTNL();
5711
5712 return !list_empty(&dev->adj_list.lower);
5713 }
5714
5715 void *netdev_adjacent_get_private(struct list_head *adj_list)
5716 {
5717 struct netdev_adjacent *adj;
5718
5719 adj = list_entry(adj_list, struct netdev_adjacent, list);
5720
5721 return adj->private;
5722 }
5723 EXPORT_SYMBOL(netdev_adjacent_get_private);
5724
5725 /**
5726 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5727 * @dev: device
5728 * @iter: list_head ** of the current position
5729 *
5730 * Gets the next device from the dev's upper list, starting from iter
5731 * position. The caller must hold RCU read lock.
5732 */
5733 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5734 struct list_head **iter)
5735 {
5736 struct netdev_adjacent *upper;
5737
5738 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5739
5740 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5741
5742 if (&upper->list == &dev->adj_list.upper)
5743 return NULL;
5744
5745 *iter = &upper->list;
5746
5747 return upper->dev;
5748 }
5749 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5750
5751 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5752 struct list_head **iter)
5753 {
5754 struct netdev_adjacent *upper;
5755
5756 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5757
5758 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5759
5760 if (&upper->list == &dev->adj_list.upper)
5761 return NULL;
5762
5763 *iter = &upper->list;
5764
5765 return upper->dev;
5766 }
5767
5768 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5769 int (*fn)(struct net_device *dev,
5770 void *data),
5771 void *data)
5772 {
5773 struct net_device *udev;
5774 struct list_head *iter;
5775 int ret;
5776
5777 for (iter = &dev->adj_list.upper,
5778 udev = netdev_next_upper_dev_rcu(dev, &iter);
5779 udev;
5780 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5781 /* first is the upper device itself */
5782 ret = fn(udev, data);
5783 if (ret)
5784 return ret;
5785
5786 /* then look at all of its upper devices */
5787 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5788 if (ret)
5789 return ret;
5790 }
5791
5792 return 0;
5793 }
5794 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5795
5796 /**
5797 * netdev_lower_get_next_private - Get the next ->private from the
5798 * lower neighbour list
5799 * @dev: device
5800 * @iter: list_head ** of the current position
5801 *
5802 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5803 * list, starting from iter position. The caller must hold either hold the
5804 * RTNL lock or its own locking that guarantees that the neighbour lower
5805 * list will remain unchanged.
5806 */
5807 void *netdev_lower_get_next_private(struct net_device *dev,
5808 struct list_head **iter)
5809 {
5810 struct netdev_adjacent *lower;
5811
5812 lower = list_entry(*iter, struct netdev_adjacent, list);
5813
5814 if (&lower->list == &dev->adj_list.lower)
5815 return NULL;
5816
5817 *iter = lower->list.next;
5818
5819 return lower->private;
5820 }
5821 EXPORT_SYMBOL(netdev_lower_get_next_private);
5822
5823 /**
5824 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5825 * lower neighbour list, RCU
5826 * variant
5827 * @dev: device
5828 * @iter: list_head ** of the current position
5829 *
5830 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5831 * list, starting from iter position. The caller must hold RCU read lock.
5832 */
5833 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5834 struct list_head **iter)
5835 {
5836 struct netdev_adjacent *lower;
5837
5838 WARN_ON_ONCE(!rcu_read_lock_held());
5839
5840 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5841
5842 if (&lower->list == &dev->adj_list.lower)
5843 return NULL;
5844
5845 *iter = &lower->list;
5846
5847 return lower->private;
5848 }
5849 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5850
5851 /**
5852 * netdev_lower_get_next - Get the next device from the lower neighbour
5853 * list
5854 * @dev: device
5855 * @iter: list_head ** of the current position
5856 *
5857 * Gets the next netdev_adjacent from the dev's lower neighbour
5858 * list, starting from iter position. The caller must hold RTNL lock or
5859 * its own locking that guarantees that the neighbour lower
5860 * list will remain unchanged.
5861 */
5862 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5863 {
5864 struct netdev_adjacent *lower;
5865
5866 lower = list_entry(*iter, struct netdev_adjacent, list);
5867
5868 if (&lower->list == &dev->adj_list.lower)
5869 return NULL;
5870
5871 *iter = lower->list.next;
5872
5873 return lower->dev;
5874 }
5875 EXPORT_SYMBOL(netdev_lower_get_next);
5876
5877 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5878 struct list_head **iter)
5879 {
5880 struct netdev_adjacent *lower;
5881
5882 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5883
5884 if (&lower->list == &dev->adj_list.lower)
5885 return NULL;
5886
5887 *iter = &lower->list;
5888
5889 return lower->dev;
5890 }
5891
5892 int netdev_walk_all_lower_dev(struct net_device *dev,
5893 int (*fn)(struct net_device *dev,
5894 void *data),
5895 void *data)
5896 {
5897 struct net_device *ldev;
5898 struct list_head *iter;
5899 int ret;
5900
5901 for (iter = &dev->adj_list.lower,
5902 ldev = netdev_next_lower_dev(dev, &iter);
5903 ldev;
5904 ldev = netdev_next_lower_dev(dev, &iter)) {
5905 /* first is the lower device itself */
5906 ret = fn(ldev, data);
5907 if (ret)
5908 return ret;
5909
5910 /* then look at all of its lower devices */
5911 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5912 if (ret)
5913 return ret;
5914 }
5915
5916 return 0;
5917 }
5918 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5919
5920 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5921 struct list_head **iter)
5922 {
5923 struct netdev_adjacent *lower;
5924
5925 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5926 if (&lower->list == &dev->adj_list.lower)
5927 return NULL;
5928
5929 *iter = &lower->list;
5930
5931 return lower->dev;
5932 }
5933
5934 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5935 int (*fn)(struct net_device *dev,
5936 void *data),
5937 void *data)
5938 {
5939 struct net_device *ldev;
5940 struct list_head *iter;
5941 int ret;
5942
5943 for (iter = &dev->adj_list.lower,
5944 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5945 ldev;
5946 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5947 /* first is the lower device itself */
5948 ret = fn(ldev, data);
5949 if (ret)
5950 return ret;
5951
5952 /* then look at all of its lower devices */
5953 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5954 if (ret)
5955 return ret;
5956 }
5957
5958 return 0;
5959 }
5960 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5961
5962 /**
5963 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5964 * lower neighbour list, RCU
5965 * variant
5966 * @dev: device
5967 *
5968 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5969 * list. The caller must hold RCU read lock.
5970 */
5971 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5972 {
5973 struct netdev_adjacent *lower;
5974
5975 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5976 struct netdev_adjacent, list);
5977 if (lower)
5978 return lower->private;
5979 return NULL;
5980 }
5981 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5982
5983 /**
5984 * netdev_master_upper_dev_get_rcu - Get master upper device
5985 * @dev: device
5986 *
5987 * Find a master upper device and return pointer to it or NULL in case
5988 * it's not there. The caller must hold the RCU read lock.
5989 */
5990 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5991 {
5992 struct netdev_adjacent *upper;
5993
5994 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5995 struct netdev_adjacent, list);
5996 if (upper && likely(upper->master))
5997 return upper->dev;
5998 return NULL;
5999 }
6000 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6001
6002 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6003 struct net_device *adj_dev,
6004 struct list_head *dev_list)
6005 {
6006 char linkname[IFNAMSIZ+7];
6007
6008 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6009 "upper_%s" : "lower_%s", adj_dev->name);
6010 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6011 linkname);
6012 }
6013 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6014 char *name,
6015 struct list_head *dev_list)
6016 {
6017 char linkname[IFNAMSIZ+7];
6018
6019 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6020 "upper_%s" : "lower_%s", name);
6021 sysfs_remove_link(&(dev->dev.kobj), linkname);
6022 }
6023
6024 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6025 struct net_device *adj_dev,
6026 struct list_head *dev_list)
6027 {
6028 return (dev_list == &dev->adj_list.upper ||
6029 dev_list == &dev->adj_list.lower) &&
6030 net_eq(dev_net(dev), dev_net(adj_dev));
6031 }
6032
6033 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6034 struct net_device *adj_dev,
6035 struct list_head *dev_list,
6036 void *private, bool master)
6037 {
6038 struct netdev_adjacent *adj;
6039 int ret;
6040
6041 adj = __netdev_find_adj(adj_dev, dev_list);
6042
6043 if (adj) {
6044 adj->ref_nr += 1;
6045 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6046 dev->name, adj_dev->name, adj->ref_nr);
6047
6048 return 0;
6049 }
6050
6051 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6052 if (!adj)
6053 return -ENOMEM;
6054
6055 adj->dev = adj_dev;
6056 adj->master = master;
6057 adj->ref_nr = 1;
6058 adj->private = private;
6059 dev_hold(adj_dev);
6060
6061 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6062 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6063
6064 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6065 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6066 if (ret)
6067 goto free_adj;
6068 }
6069
6070 /* Ensure that master link is always the first item in list. */
6071 if (master) {
6072 ret = sysfs_create_link(&(dev->dev.kobj),
6073 &(adj_dev->dev.kobj), "master");
6074 if (ret)
6075 goto remove_symlinks;
6076
6077 list_add_rcu(&adj->list, dev_list);
6078 } else {
6079 list_add_tail_rcu(&adj->list, dev_list);
6080 }
6081
6082 return 0;
6083
6084 remove_symlinks:
6085 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6086 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6087 free_adj:
6088 kfree(adj);
6089 dev_put(adj_dev);
6090
6091 return ret;
6092 }
6093
6094 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6095 struct net_device *adj_dev,
6096 u16 ref_nr,
6097 struct list_head *dev_list)
6098 {
6099 struct netdev_adjacent *adj;
6100
6101 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6102 dev->name, adj_dev->name, ref_nr);
6103
6104 adj = __netdev_find_adj(adj_dev, dev_list);
6105
6106 if (!adj) {
6107 pr_err("Adjacency does not exist for device %s from %s\n",
6108 dev->name, adj_dev->name);
6109 WARN_ON(1);
6110 return;
6111 }
6112
6113 if (adj->ref_nr > ref_nr) {
6114 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6115 dev->name, adj_dev->name, ref_nr,
6116 adj->ref_nr - ref_nr);
6117 adj->ref_nr -= ref_nr;
6118 return;
6119 }
6120
6121 if (adj->master)
6122 sysfs_remove_link(&(dev->dev.kobj), "master");
6123
6124 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6125 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6126
6127 list_del_rcu(&adj->list);
6128 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6129 adj_dev->name, dev->name, adj_dev->name);
6130 dev_put(adj_dev);
6131 kfree_rcu(adj, rcu);
6132 }
6133
6134 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6135 struct net_device *upper_dev,
6136 struct list_head *up_list,
6137 struct list_head *down_list,
6138 void *private, bool master)
6139 {
6140 int ret;
6141
6142 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6143 private, master);
6144 if (ret)
6145 return ret;
6146
6147 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6148 private, false);
6149 if (ret) {
6150 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6151 return ret;
6152 }
6153
6154 return 0;
6155 }
6156
6157 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6158 struct net_device *upper_dev,
6159 u16 ref_nr,
6160 struct list_head *up_list,
6161 struct list_head *down_list)
6162 {
6163 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6164 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6165 }
6166
6167 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6168 struct net_device *upper_dev,
6169 void *private, bool master)
6170 {
6171 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6172 &dev->adj_list.upper,
6173 &upper_dev->adj_list.lower,
6174 private, master);
6175 }
6176
6177 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6178 struct net_device *upper_dev)
6179 {
6180 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6181 &dev->adj_list.upper,
6182 &upper_dev->adj_list.lower);
6183 }
6184
6185 static int __netdev_upper_dev_link(struct net_device *dev,
6186 struct net_device *upper_dev, bool master,
6187 void *upper_priv, void *upper_info)
6188 {
6189 struct netdev_notifier_changeupper_info changeupper_info;
6190 int ret = 0;
6191
6192 ASSERT_RTNL();
6193
6194 if (dev == upper_dev)
6195 return -EBUSY;
6196
6197 /* To prevent loops, check if dev is not upper device to upper_dev. */
6198 if (netdev_has_upper_dev(upper_dev, dev))
6199 return -EBUSY;
6200
6201 if (netdev_has_upper_dev(dev, upper_dev))
6202 return -EEXIST;
6203
6204 if (master && netdev_master_upper_dev_get(dev))
6205 return -EBUSY;
6206
6207 changeupper_info.upper_dev = upper_dev;
6208 changeupper_info.master = master;
6209 changeupper_info.linking = true;
6210 changeupper_info.upper_info = upper_info;
6211
6212 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6213 &changeupper_info.info);
6214 ret = notifier_to_errno(ret);
6215 if (ret)
6216 return ret;
6217
6218 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6219 master);
6220 if (ret)
6221 return ret;
6222
6223 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6224 &changeupper_info.info);
6225 ret = notifier_to_errno(ret);
6226 if (ret)
6227 goto rollback;
6228
6229 return 0;
6230
6231 rollback:
6232 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6233
6234 return ret;
6235 }
6236
6237 /**
6238 * netdev_upper_dev_link - Add a link to the upper device
6239 * @dev: device
6240 * @upper_dev: new upper device
6241 *
6242 * Adds a link to device which is upper to this one. The caller must hold
6243 * the RTNL lock. On a failure a negative errno code is returned.
6244 * On success the reference counts are adjusted and the function
6245 * returns zero.
6246 */
6247 int netdev_upper_dev_link(struct net_device *dev,
6248 struct net_device *upper_dev)
6249 {
6250 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6251 }
6252 EXPORT_SYMBOL(netdev_upper_dev_link);
6253
6254 /**
6255 * netdev_master_upper_dev_link - Add a master link to the upper device
6256 * @dev: device
6257 * @upper_dev: new upper device
6258 * @upper_priv: upper device private
6259 * @upper_info: upper info to be passed down via notifier
6260 *
6261 * Adds a link to device which is upper to this one. In this case, only
6262 * one master upper device can be linked, although other non-master devices
6263 * might be linked as well. The caller must hold the RTNL lock.
6264 * On a failure a negative errno code is returned. On success the reference
6265 * counts are adjusted and the function returns zero.
6266 */
6267 int netdev_master_upper_dev_link(struct net_device *dev,
6268 struct net_device *upper_dev,
6269 void *upper_priv, void *upper_info)
6270 {
6271 return __netdev_upper_dev_link(dev, upper_dev, true,
6272 upper_priv, upper_info);
6273 }
6274 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6275
6276 /**
6277 * netdev_upper_dev_unlink - Removes a link to upper device
6278 * @dev: device
6279 * @upper_dev: new upper device
6280 *
6281 * Removes a link to device which is upper to this one. The caller must hold
6282 * the RTNL lock.
6283 */
6284 void netdev_upper_dev_unlink(struct net_device *dev,
6285 struct net_device *upper_dev)
6286 {
6287 struct netdev_notifier_changeupper_info changeupper_info;
6288
6289 ASSERT_RTNL();
6290
6291 changeupper_info.upper_dev = upper_dev;
6292 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6293 changeupper_info.linking = false;
6294
6295 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6296 &changeupper_info.info);
6297
6298 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6299
6300 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6301 &changeupper_info.info);
6302 }
6303 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6304
6305 /**
6306 * netdev_bonding_info_change - Dispatch event about slave change
6307 * @dev: device
6308 * @bonding_info: info to dispatch
6309 *
6310 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6311 * The caller must hold the RTNL lock.
6312 */
6313 void netdev_bonding_info_change(struct net_device *dev,
6314 struct netdev_bonding_info *bonding_info)
6315 {
6316 struct netdev_notifier_bonding_info info;
6317
6318 memcpy(&info.bonding_info, bonding_info,
6319 sizeof(struct netdev_bonding_info));
6320 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6321 &info.info);
6322 }
6323 EXPORT_SYMBOL(netdev_bonding_info_change);
6324
6325 static void netdev_adjacent_add_links(struct net_device *dev)
6326 {
6327 struct netdev_adjacent *iter;
6328
6329 struct net *net = dev_net(dev);
6330
6331 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6332 if (!net_eq(net, dev_net(iter->dev)))
6333 continue;
6334 netdev_adjacent_sysfs_add(iter->dev, dev,
6335 &iter->dev->adj_list.lower);
6336 netdev_adjacent_sysfs_add(dev, iter->dev,
6337 &dev->adj_list.upper);
6338 }
6339
6340 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6341 if (!net_eq(net, dev_net(iter->dev)))
6342 continue;
6343 netdev_adjacent_sysfs_add(iter->dev, dev,
6344 &iter->dev->adj_list.upper);
6345 netdev_adjacent_sysfs_add(dev, iter->dev,
6346 &dev->adj_list.lower);
6347 }
6348 }
6349
6350 static void netdev_adjacent_del_links(struct net_device *dev)
6351 {
6352 struct netdev_adjacent *iter;
6353
6354 struct net *net = dev_net(dev);
6355
6356 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6357 if (!net_eq(net, dev_net(iter->dev)))
6358 continue;
6359 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6360 &iter->dev->adj_list.lower);
6361 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6362 &dev->adj_list.upper);
6363 }
6364
6365 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6366 if (!net_eq(net, dev_net(iter->dev)))
6367 continue;
6368 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6369 &iter->dev->adj_list.upper);
6370 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6371 &dev->adj_list.lower);
6372 }
6373 }
6374
6375 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6376 {
6377 struct netdev_adjacent *iter;
6378
6379 struct net *net = dev_net(dev);
6380
6381 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6382 if (!net_eq(net, dev_net(iter->dev)))
6383 continue;
6384 netdev_adjacent_sysfs_del(iter->dev, oldname,
6385 &iter->dev->adj_list.lower);
6386 netdev_adjacent_sysfs_add(iter->dev, dev,
6387 &iter->dev->adj_list.lower);
6388 }
6389
6390 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6391 if (!net_eq(net, dev_net(iter->dev)))
6392 continue;
6393 netdev_adjacent_sysfs_del(iter->dev, oldname,
6394 &iter->dev->adj_list.upper);
6395 netdev_adjacent_sysfs_add(iter->dev, dev,
6396 &iter->dev->adj_list.upper);
6397 }
6398 }
6399
6400 void *netdev_lower_dev_get_private(struct net_device *dev,
6401 struct net_device *lower_dev)
6402 {
6403 struct netdev_adjacent *lower;
6404
6405 if (!lower_dev)
6406 return NULL;
6407 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6408 if (!lower)
6409 return NULL;
6410
6411 return lower->private;
6412 }
6413 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6414
6415
6416 int dev_get_nest_level(struct net_device *dev)
6417 {
6418 struct net_device *lower = NULL;
6419 struct list_head *iter;
6420 int max_nest = -1;
6421 int nest;
6422
6423 ASSERT_RTNL();
6424
6425 netdev_for_each_lower_dev(dev, lower, iter) {
6426 nest = dev_get_nest_level(lower);
6427 if (max_nest < nest)
6428 max_nest = nest;
6429 }
6430
6431 return max_nest + 1;
6432 }
6433 EXPORT_SYMBOL(dev_get_nest_level);
6434
6435 /**
6436 * netdev_lower_change - Dispatch event about lower device state change
6437 * @lower_dev: device
6438 * @lower_state_info: state to dispatch
6439 *
6440 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6441 * The caller must hold the RTNL lock.
6442 */
6443 void netdev_lower_state_changed(struct net_device *lower_dev,
6444 void *lower_state_info)
6445 {
6446 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6447
6448 ASSERT_RTNL();
6449 changelowerstate_info.lower_state_info = lower_state_info;
6450 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6451 &changelowerstate_info.info);
6452 }
6453 EXPORT_SYMBOL(netdev_lower_state_changed);
6454
6455 static void dev_change_rx_flags(struct net_device *dev, int flags)
6456 {
6457 const struct net_device_ops *ops = dev->netdev_ops;
6458
6459 if (ops->ndo_change_rx_flags)
6460 ops->ndo_change_rx_flags(dev, flags);
6461 }
6462
6463 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6464 {
6465 unsigned int old_flags = dev->flags;
6466 kuid_t uid;
6467 kgid_t gid;
6468
6469 ASSERT_RTNL();
6470
6471 dev->flags |= IFF_PROMISC;
6472 dev->promiscuity += inc;
6473 if (dev->promiscuity == 0) {
6474 /*
6475 * Avoid overflow.
6476 * If inc causes overflow, untouch promisc and return error.
6477 */
6478 if (inc < 0)
6479 dev->flags &= ~IFF_PROMISC;
6480 else {
6481 dev->promiscuity -= inc;
6482 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6483 dev->name);
6484 return -EOVERFLOW;
6485 }
6486 }
6487 if (dev->flags != old_flags) {
6488 pr_info("device %s %s promiscuous mode\n",
6489 dev->name,
6490 dev->flags & IFF_PROMISC ? "entered" : "left");
6491 if (audit_enabled) {
6492 current_uid_gid(&uid, &gid);
6493 audit_log(current->audit_context, GFP_ATOMIC,
6494 AUDIT_ANOM_PROMISCUOUS,
6495 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6496 dev->name, (dev->flags & IFF_PROMISC),
6497 (old_flags & IFF_PROMISC),
6498 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6499 from_kuid(&init_user_ns, uid),
6500 from_kgid(&init_user_ns, gid),
6501 audit_get_sessionid(current));
6502 }
6503
6504 dev_change_rx_flags(dev, IFF_PROMISC);
6505 }
6506 if (notify)
6507 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6508 return 0;
6509 }
6510
6511 /**
6512 * dev_set_promiscuity - update promiscuity count on a device
6513 * @dev: device
6514 * @inc: modifier
6515 *
6516 * Add or remove promiscuity from a device. While the count in the device
6517 * remains above zero the interface remains promiscuous. Once it hits zero
6518 * the device reverts back to normal filtering operation. A negative inc
6519 * value is used to drop promiscuity on the device.
6520 * Return 0 if successful or a negative errno code on error.
6521 */
6522 int dev_set_promiscuity(struct net_device *dev, int inc)
6523 {
6524 unsigned int old_flags = dev->flags;
6525 int err;
6526
6527 err = __dev_set_promiscuity(dev, inc, true);
6528 if (err < 0)
6529 return err;
6530 if (dev->flags != old_flags)
6531 dev_set_rx_mode(dev);
6532 return err;
6533 }
6534 EXPORT_SYMBOL(dev_set_promiscuity);
6535
6536 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6537 {
6538 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6539
6540 ASSERT_RTNL();
6541
6542 dev->flags |= IFF_ALLMULTI;
6543 dev->allmulti += inc;
6544 if (dev->allmulti == 0) {
6545 /*
6546 * Avoid overflow.
6547 * If inc causes overflow, untouch allmulti and return error.
6548 */
6549 if (inc < 0)
6550 dev->flags &= ~IFF_ALLMULTI;
6551 else {
6552 dev->allmulti -= inc;
6553 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6554 dev->name);
6555 return -EOVERFLOW;
6556 }
6557 }
6558 if (dev->flags ^ old_flags) {
6559 dev_change_rx_flags(dev, IFF_ALLMULTI);
6560 dev_set_rx_mode(dev);
6561 if (notify)
6562 __dev_notify_flags(dev, old_flags,
6563 dev->gflags ^ old_gflags);
6564 }
6565 return 0;
6566 }
6567
6568 /**
6569 * dev_set_allmulti - update allmulti count on a device
6570 * @dev: device
6571 * @inc: modifier
6572 *
6573 * Add or remove reception of all multicast frames to a device. While the
6574 * count in the device remains above zero the interface remains listening
6575 * to all interfaces. Once it hits zero the device reverts back to normal
6576 * filtering operation. A negative @inc value is used to drop the counter
6577 * when releasing a resource needing all multicasts.
6578 * Return 0 if successful or a negative errno code on error.
6579 */
6580
6581 int dev_set_allmulti(struct net_device *dev, int inc)
6582 {
6583 return __dev_set_allmulti(dev, inc, true);
6584 }
6585 EXPORT_SYMBOL(dev_set_allmulti);
6586
6587 /*
6588 * Upload unicast and multicast address lists to device and
6589 * configure RX filtering. When the device doesn't support unicast
6590 * filtering it is put in promiscuous mode while unicast addresses
6591 * are present.
6592 */
6593 void __dev_set_rx_mode(struct net_device *dev)
6594 {
6595 const struct net_device_ops *ops = dev->netdev_ops;
6596
6597 /* dev_open will call this function so the list will stay sane. */
6598 if (!(dev->flags&IFF_UP))
6599 return;
6600
6601 if (!netif_device_present(dev))
6602 return;
6603
6604 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6605 /* Unicast addresses changes may only happen under the rtnl,
6606 * therefore calling __dev_set_promiscuity here is safe.
6607 */
6608 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6609 __dev_set_promiscuity(dev, 1, false);
6610 dev->uc_promisc = true;
6611 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6612 __dev_set_promiscuity(dev, -1, false);
6613 dev->uc_promisc = false;
6614 }
6615 }
6616
6617 if (ops->ndo_set_rx_mode)
6618 ops->ndo_set_rx_mode(dev);
6619 }
6620
6621 void dev_set_rx_mode(struct net_device *dev)
6622 {
6623 netif_addr_lock_bh(dev);
6624 __dev_set_rx_mode(dev);
6625 netif_addr_unlock_bh(dev);
6626 }
6627
6628 /**
6629 * dev_get_flags - get flags reported to userspace
6630 * @dev: device
6631 *
6632 * Get the combination of flag bits exported through APIs to userspace.
6633 */
6634 unsigned int dev_get_flags(const struct net_device *dev)
6635 {
6636 unsigned int flags;
6637
6638 flags = (dev->flags & ~(IFF_PROMISC |
6639 IFF_ALLMULTI |
6640 IFF_RUNNING |
6641 IFF_LOWER_UP |
6642 IFF_DORMANT)) |
6643 (dev->gflags & (IFF_PROMISC |
6644 IFF_ALLMULTI));
6645
6646 if (netif_running(dev)) {
6647 if (netif_oper_up(dev))
6648 flags |= IFF_RUNNING;
6649 if (netif_carrier_ok(dev))
6650 flags |= IFF_LOWER_UP;
6651 if (netif_dormant(dev))
6652 flags |= IFF_DORMANT;
6653 }
6654
6655 return flags;
6656 }
6657 EXPORT_SYMBOL(dev_get_flags);
6658
6659 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6660 {
6661 unsigned int old_flags = dev->flags;
6662 int ret;
6663
6664 ASSERT_RTNL();
6665
6666 /*
6667 * Set the flags on our device.
6668 */
6669
6670 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6671 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6672 IFF_AUTOMEDIA)) |
6673 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6674 IFF_ALLMULTI));
6675
6676 /*
6677 * Load in the correct multicast list now the flags have changed.
6678 */
6679
6680 if ((old_flags ^ flags) & IFF_MULTICAST)
6681 dev_change_rx_flags(dev, IFF_MULTICAST);
6682
6683 dev_set_rx_mode(dev);
6684
6685 /*
6686 * Have we downed the interface. We handle IFF_UP ourselves
6687 * according to user attempts to set it, rather than blindly
6688 * setting it.
6689 */
6690
6691 ret = 0;
6692 if ((old_flags ^ flags) & IFF_UP)
6693 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6694
6695 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6696 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6697 unsigned int old_flags = dev->flags;
6698
6699 dev->gflags ^= IFF_PROMISC;
6700
6701 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6702 if (dev->flags != old_flags)
6703 dev_set_rx_mode(dev);
6704 }
6705
6706 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6707 * is important. Some (broken) drivers set IFF_PROMISC, when
6708 * IFF_ALLMULTI is requested not asking us and not reporting.
6709 */
6710 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6711 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6712
6713 dev->gflags ^= IFF_ALLMULTI;
6714 __dev_set_allmulti(dev, inc, false);
6715 }
6716
6717 return ret;
6718 }
6719
6720 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6721 unsigned int gchanges)
6722 {
6723 unsigned int changes = dev->flags ^ old_flags;
6724
6725 if (gchanges)
6726 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6727
6728 if (changes & IFF_UP) {
6729 if (dev->flags & IFF_UP)
6730 call_netdevice_notifiers(NETDEV_UP, dev);
6731 else
6732 call_netdevice_notifiers(NETDEV_DOWN, dev);
6733 }
6734
6735 if (dev->flags & IFF_UP &&
6736 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6737 struct netdev_notifier_change_info change_info;
6738
6739 change_info.flags_changed = changes;
6740 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6741 &change_info.info);
6742 }
6743 }
6744
6745 /**
6746 * dev_change_flags - change device settings
6747 * @dev: device
6748 * @flags: device state flags
6749 *
6750 * Change settings on device based state flags. The flags are
6751 * in the userspace exported format.
6752 */
6753 int dev_change_flags(struct net_device *dev, unsigned int flags)
6754 {
6755 int ret;
6756 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6757
6758 ret = __dev_change_flags(dev, flags);
6759 if (ret < 0)
6760 return ret;
6761
6762 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6763 __dev_notify_flags(dev, old_flags, changes);
6764 return ret;
6765 }
6766 EXPORT_SYMBOL(dev_change_flags);
6767
6768 int __dev_set_mtu(struct net_device *dev, int new_mtu)
6769 {
6770 const struct net_device_ops *ops = dev->netdev_ops;
6771
6772 if (ops->ndo_change_mtu)
6773 return ops->ndo_change_mtu(dev, new_mtu);
6774
6775 dev->mtu = new_mtu;
6776 return 0;
6777 }
6778 EXPORT_SYMBOL(__dev_set_mtu);
6779
6780 /**
6781 * dev_set_mtu - Change maximum transfer unit
6782 * @dev: device
6783 * @new_mtu: new transfer unit
6784 *
6785 * Change the maximum transfer size of the network device.
6786 */
6787 int dev_set_mtu(struct net_device *dev, int new_mtu)
6788 {
6789 int err, orig_mtu;
6790
6791 if (new_mtu == dev->mtu)
6792 return 0;
6793
6794 /* MTU must be positive, and in range */
6795 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6796 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6797 dev->name, new_mtu, dev->min_mtu);
6798 return -EINVAL;
6799 }
6800
6801 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6802 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6803 dev->name, new_mtu, dev->max_mtu);
6804 return -EINVAL;
6805 }
6806
6807 if (!netif_device_present(dev))
6808 return -ENODEV;
6809
6810 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6811 err = notifier_to_errno(err);
6812 if (err)
6813 return err;
6814
6815 orig_mtu = dev->mtu;
6816 err = __dev_set_mtu(dev, new_mtu);
6817
6818 if (!err) {
6819 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6820 err = notifier_to_errno(err);
6821 if (err) {
6822 /* setting mtu back and notifying everyone again,
6823 * so that they have a chance to revert changes.
6824 */
6825 __dev_set_mtu(dev, orig_mtu);
6826 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6827 }
6828 }
6829 return err;
6830 }
6831 EXPORT_SYMBOL(dev_set_mtu);
6832
6833 /**
6834 * dev_set_group - Change group this device belongs to
6835 * @dev: device
6836 * @new_group: group this device should belong to
6837 */
6838 void dev_set_group(struct net_device *dev, int new_group)
6839 {
6840 dev->group = new_group;
6841 }
6842 EXPORT_SYMBOL(dev_set_group);
6843
6844 /**
6845 * dev_set_mac_address - Change Media Access Control Address
6846 * @dev: device
6847 * @sa: new address
6848 *
6849 * Change the hardware (MAC) address of the device
6850 */
6851 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6852 {
6853 const struct net_device_ops *ops = dev->netdev_ops;
6854 int err;
6855
6856 if (!ops->ndo_set_mac_address)
6857 return -EOPNOTSUPP;
6858 if (sa->sa_family != dev->type)
6859 return -EINVAL;
6860 if (!netif_device_present(dev))
6861 return -ENODEV;
6862 err = ops->ndo_set_mac_address(dev, sa);
6863 if (err)
6864 return err;
6865 dev->addr_assign_type = NET_ADDR_SET;
6866 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6867 add_device_randomness(dev->dev_addr, dev->addr_len);
6868 return 0;
6869 }
6870 EXPORT_SYMBOL(dev_set_mac_address);
6871
6872 /**
6873 * dev_change_carrier - Change device carrier
6874 * @dev: device
6875 * @new_carrier: new value
6876 *
6877 * Change device carrier
6878 */
6879 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6880 {
6881 const struct net_device_ops *ops = dev->netdev_ops;
6882
6883 if (!ops->ndo_change_carrier)
6884 return -EOPNOTSUPP;
6885 if (!netif_device_present(dev))
6886 return -ENODEV;
6887 return ops->ndo_change_carrier(dev, new_carrier);
6888 }
6889 EXPORT_SYMBOL(dev_change_carrier);
6890
6891 /**
6892 * dev_get_phys_port_id - Get device physical port ID
6893 * @dev: device
6894 * @ppid: port ID
6895 *
6896 * Get device physical port ID
6897 */
6898 int dev_get_phys_port_id(struct net_device *dev,
6899 struct netdev_phys_item_id *ppid)
6900 {
6901 const struct net_device_ops *ops = dev->netdev_ops;
6902
6903 if (!ops->ndo_get_phys_port_id)
6904 return -EOPNOTSUPP;
6905 return ops->ndo_get_phys_port_id(dev, ppid);
6906 }
6907 EXPORT_SYMBOL(dev_get_phys_port_id);
6908
6909 /**
6910 * dev_get_phys_port_name - Get device physical port name
6911 * @dev: device
6912 * @name: port name
6913 * @len: limit of bytes to copy to name
6914 *
6915 * Get device physical port name
6916 */
6917 int dev_get_phys_port_name(struct net_device *dev,
6918 char *name, size_t len)
6919 {
6920 const struct net_device_ops *ops = dev->netdev_ops;
6921
6922 if (!ops->ndo_get_phys_port_name)
6923 return -EOPNOTSUPP;
6924 return ops->ndo_get_phys_port_name(dev, name, len);
6925 }
6926 EXPORT_SYMBOL(dev_get_phys_port_name);
6927
6928 /**
6929 * dev_change_proto_down - update protocol port state information
6930 * @dev: device
6931 * @proto_down: new value
6932 *
6933 * This info can be used by switch drivers to set the phys state of the
6934 * port.
6935 */
6936 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6937 {
6938 const struct net_device_ops *ops = dev->netdev_ops;
6939
6940 if (!ops->ndo_change_proto_down)
6941 return -EOPNOTSUPP;
6942 if (!netif_device_present(dev))
6943 return -ENODEV;
6944 return ops->ndo_change_proto_down(dev, proto_down);
6945 }
6946 EXPORT_SYMBOL(dev_change_proto_down);
6947
6948 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id)
6949 {
6950 struct netdev_xdp xdp;
6951
6952 memset(&xdp, 0, sizeof(xdp));
6953 xdp.command = XDP_QUERY_PROG;
6954
6955 /* Query must always succeed. */
6956 WARN_ON(xdp_op(dev, &xdp) < 0);
6957 if (prog_id)
6958 *prog_id = xdp.prog_id;
6959
6960 return xdp.prog_attached;
6961 }
6962
6963 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
6964 struct netlink_ext_ack *extack, u32 flags,
6965 struct bpf_prog *prog)
6966 {
6967 struct netdev_xdp xdp;
6968
6969 memset(&xdp, 0, sizeof(xdp));
6970 if (flags & XDP_FLAGS_HW_MODE)
6971 xdp.command = XDP_SETUP_PROG_HW;
6972 else
6973 xdp.command = XDP_SETUP_PROG;
6974 xdp.extack = extack;
6975 xdp.flags = flags;
6976 xdp.prog = prog;
6977
6978 return xdp_op(dev, &xdp);
6979 }
6980
6981 /**
6982 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6983 * @dev: device
6984 * @extack: netlink extended ack
6985 * @fd: new program fd or negative value to clear
6986 * @flags: xdp-related flags
6987 *
6988 * Set or clear a bpf program for a device
6989 */
6990 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
6991 int fd, u32 flags)
6992 {
6993 const struct net_device_ops *ops = dev->netdev_ops;
6994 struct bpf_prog *prog = NULL;
6995 xdp_op_t xdp_op, xdp_chk;
6996 int err;
6997
6998 ASSERT_RTNL();
6999
7000 xdp_op = xdp_chk = ops->ndo_xdp;
7001 if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7002 return -EOPNOTSUPP;
7003 if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
7004 xdp_op = generic_xdp_install;
7005 if (xdp_op == xdp_chk)
7006 xdp_chk = generic_xdp_install;
7007
7008 if (fd >= 0) {
7009 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL))
7010 return -EEXIST;
7011 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7012 __dev_xdp_attached(dev, xdp_op, NULL))
7013 return -EBUSY;
7014
7015 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
7016 if (IS_ERR(prog))
7017 return PTR_ERR(prog);
7018 }
7019
7020 err = dev_xdp_install(dev, xdp_op, extack, flags, prog);
7021 if (err < 0 && prog)
7022 bpf_prog_put(prog);
7023
7024 return err;
7025 }
7026
7027 /**
7028 * dev_new_index - allocate an ifindex
7029 * @net: the applicable net namespace
7030 *
7031 * Returns a suitable unique value for a new device interface
7032 * number. The caller must hold the rtnl semaphore or the
7033 * dev_base_lock to be sure it remains unique.
7034 */
7035 static int dev_new_index(struct net *net)
7036 {
7037 int ifindex = net->ifindex;
7038
7039 for (;;) {
7040 if (++ifindex <= 0)
7041 ifindex = 1;
7042 if (!__dev_get_by_index(net, ifindex))
7043 return net->ifindex = ifindex;
7044 }
7045 }
7046
7047 /* Delayed registration/unregisteration */
7048 static LIST_HEAD(net_todo_list);
7049 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7050
7051 static void net_set_todo(struct net_device *dev)
7052 {
7053 list_add_tail(&dev->todo_list, &net_todo_list);
7054 dev_net(dev)->dev_unreg_count++;
7055 }
7056
7057 static void rollback_registered_many(struct list_head *head)
7058 {
7059 struct net_device *dev, *tmp;
7060 LIST_HEAD(close_head);
7061
7062 BUG_ON(dev_boot_phase);
7063 ASSERT_RTNL();
7064
7065 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7066 /* Some devices call without registering
7067 * for initialization unwind. Remove those
7068 * devices and proceed with the remaining.
7069 */
7070 if (dev->reg_state == NETREG_UNINITIALIZED) {
7071 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7072 dev->name, dev);
7073
7074 WARN_ON(1);
7075 list_del(&dev->unreg_list);
7076 continue;
7077 }
7078 dev->dismantle = true;
7079 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7080 }
7081
7082 /* If device is running, close it first. */
7083 list_for_each_entry(dev, head, unreg_list)
7084 list_add_tail(&dev->close_list, &close_head);
7085 dev_close_many(&close_head, true);
7086
7087 list_for_each_entry(dev, head, unreg_list) {
7088 /* And unlink it from device chain. */
7089 unlist_netdevice(dev);
7090
7091 dev->reg_state = NETREG_UNREGISTERING;
7092 }
7093 flush_all_backlogs();
7094
7095 synchronize_net();
7096
7097 list_for_each_entry(dev, head, unreg_list) {
7098 struct sk_buff *skb = NULL;
7099
7100 /* Shutdown queueing discipline. */
7101 dev_shutdown(dev);
7102
7103
7104 /* Notify protocols, that we are about to destroy
7105 * this device. They should clean all the things.
7106 */
7107 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7108
7109 if (!dev->rtnl_link_ops ||
7110 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7111 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7112 GFP_KERNEL);
7113
7114 /*
7115 * Flush the unicast and multicast chains
7116 */
7117 dev_uc_flush(dev);
7118 dev_mc_flush(dev);
7119
7120 if (dev->netdev_ops->ndo_uninit)
7121 dev->netdev_ops->ndo_uninit(dev);
7122
7123 if (skb)
7124 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7125
7126 /* Notifier chain MUST detach us all upper devices. */
7127 WARN_ON(netdev_has_any_upper_dev(dev));
7128 WARN_ON(netdev_has_any_lower_dev(dev));
7129
7130 /* Remove entries from kobject tree */
7131 netdev_unregister_kobject(dev);
7132 #ifdef CONFIG_XPS
7133 /* Remove XPS queueing entries */
7134 netif_reset_xps_queues_gt(dev, 0);
7135 #endif
7136 }
7137
7138 synchronize_net();
7139
7140 list_for_each_entry(dev, head, unreg_list)
7141 dev_put(dev);
7142 }
7143
7144 static void rollback_registered(struct net_device *dev)
7145 {
7146 LIST_HEAD(single);
7147
7148 list_add(&dev->unreg_list, &single);
7149 rollback_registered_many(&single);
7150 list_del(&single);
7151 }
7152
7153 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7154 struct net_device *upper, netdev_features_t features)
7155 {
7156 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7157 netdev_features_t feature;
7158 int feature_bit;
7159
7160 for_each_netdev_feature(&upper_disables, feature_bit) {
7161 feature = __NETIF_F_BIT(feature_bit);
7162 if (!(upper->wanted_features & feature)
7163 && (features & feature)) {
7164 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7165 &feature, upper->name);
7166 features &= ~feature;
7167 }
7168 }
7169
7170 return features;
7171 }
7172
7173 static void netdev_sync_lower_features(struct net_device *upper,
7174 struct net_device *lower, netdev_features_t features)
7175 {
7176 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7177 netdev_features_t feature;
7178 int feature_bit;
7179
7180 for_each_netdev_feature(&upper_disables, feature_bit) {
7181 feature = __NETIF_F_BIT(feature_bit);
7182 if (!(features & feature) && (lower->features & feature)) {
7183 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7184 &feature, lower->name);
7185 lower->wanted_features &= ~feature;
7186 netdev_update_features(lower);
7187
7188 if (unlikely(lower->features & feature))
7189 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7190 &feature, lower->name);
7191 }
7192 }
7193 }
7194
7195 static netdev_features_t netdev_fix_features(struct net_device *dev,
7196 netdev_features_t features)
7197 {
7198 /* Fix illegal checksum combinations */
7199 if ((features & NETIF_F_HW_CSUM) &&
7200 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7201 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7202 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7203 }
7204
7205 /* TSO requires that SG is present as well. */
7206 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7207 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7208 features &= ~NETIF_F_ALL_TSO;
7209 }
7210
7211 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7212 !(features & NETIF_F_IP_CSUM)) {
7213 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7214 features &= ~NETIF_F_TSO;
7215 features &= ~NETIF_F_TSO_ECN;
7216 }
7217
7218 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7219 !(features & NETIF_F_IPV6_CSUM)) {
7220 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7221 features &= ~NETIF_F_TSO6;
7222 }
7223
7224 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7225 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7226 features &= ~NETIF_F_TSO_MANGLEID;
7227
7228 /* TSO ECN requires that TSO is present as well. */
7229 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7230 features &= ~NETIF_F_TSO_ECN;
7231
7232 /* Software GSO depends on SG. */
7233 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7234 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7235 features &= ~NETIF_F_GSO;
7236 }
7237
7238 /* UFO needs SG and checksumming */
7239 if (features & NETIF_F_UFO) {
7240 /* maybe split UFO into V4 and V6? */
7241 if (!(features & NETIF_F_HW_CSUM) &&
7242 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
7243 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
7244 netdev_dbg(dev,
7245 "Dropping NETIF_F_UFO since no checksum offload features.\n");
7246 features &= ~NETIF_F_UFO;
7247 }
7248
7249 if (!(features & NETIF_F_SG)) {
7250 netdev_dbg(dev,
7251 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
7252 features &= ~NETIF_F_UFO;
7253 }
7254 }
7255
7256 /* GSO partial features require GSO partial be set */
7257 if ((features & dev->gso_partial_features) &&
7258 !(features & NETIF_F_GSO_PARTIAL)) {
7259 netdev_dbg(dev,
7260 "Dropping partially supported GSO features since no GSO partial.\n");
7261 features &= ~dev->gso_partial_features;
7262 }
7263
7264 return features;
7265 }
7266
7267 int __netdev_update_features(struct net_device *dev)
7268 {
7269 struct net_device *upper, *lower;
7270 netdev_features_t features;
7271 struct list_head *iter;
7272 int err = -1;
7273
7274 ASSERT_RTNL();
7275
7276 features = netdev_get_wanted_features(dev);
7277
7278 if (dev->netdev_ops->ndo_fix_features)
7279 features = dev->netdev_ops->ndo_fix_features(dev, features);
7280
7281 /* driver might be less strict about feature dependencies */
7282 features = netdev_fix_features(dev, features);
7283
7284 /* some features can't be enabled if they're off an an upper device */
7285 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7286 features = netdev_sync_upper_features(dev, upper, features);
7287
7288 if (dev->features == features)
7289 goto sync_lower;
7290
7291 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7292 &dev->features, &features);
7293
7294 if (dev->netdev_ops->ndo_set_features)
7295 err = dev->netdev_ops->ndo_set_features(dev, features);
7296 else
7297 err = 0;
7298
7299 if (unlikely(err < 0)) {
7300 netdev_err(dev,
7301 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7302 err, &features, &dev->features);
7303 /* return non-0 since some features might have changed and
7304 * it's better to fire a spurious notification than miss it
7305 */
7306 return -1;
7307 }
7308
7309 sync_lower:
7310 /* some features must be disabled on lower devices when disabled
7311 * on an upper device (think: bonding master or bridge)
7312 */
7313 netdev_for_each_lower_dev(dev, lower, iter)
7314 netdev_sync_lower_features(dev, lower, features);
7315
7316 if (!err)
7317 dev->features = features;
7318
7319 return err < 0 ? 0 : 1;
7320 }
7321
7322 /**
7323 * netdev_update_features - recalculate device features
7324 * @dev: the device to check
7325 *
7326 * Recalculate dev->features set and send notifications if it
7327 * has changed. Should be called after driver or hardware dependent
7328 * conditions might have changed that influence the features.
7329 */
7330 void netdev_update_features(struct net_device *dev)
7331 {
7332 if (__netdev_update_features(dev))
7333 netdev_features_change(dev);
7334 }
7335 EXPORT_SYMBOL(netdev_update_features);
7336
7337 /**
7338 * netdev_change_features - recalculate device features
7339 * @dev: the device to check
7340 *
7341 * Recalculate dev->features set and send notifications even
7342 * if they have not changed. Should be called instead of
7343 * netdev_update_features() if also dev->vlan_features might
7344 * have changed to allow the changes to be propagated to stacked
7345 * VLAN devices.
7346 */
7347 void netdev_change_features(struct net_device *dev)
7348 {
7349 __netdev_update_features(dev);
7350 netdev_features_change(dev);
7351 }
7352 EXPORT_SYMBOL(netdev_change_features);
7353
7354 /**
7355 * netif_stacked_transfer_operstate - transfer operstate
7356 * @rootdev: the root or lower level device to transfer state from
7357 * @dev: the device to transfer operstate to
7358 *
7359 * Transfer operational state from root to device. This is normally
7360 * called when a stacking relationship exists between the root
7361 * device and the device(a leaf device).
7362 */
7363 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7364 struct net_device *dev)
7365 {
7366 if (rootdev->operstate == IF_OPER_DORMANT)
7367 netif_dormant_on(dev);
7368 else
7369 netif_dormant_off(dev);
7370
7371 if (netif_carrier_ok(rootdev))
7372 netif_carrier_on(dev);
7373 else
7374 netif_carrier_off(dev);
7375 }
7376 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7377
7378 #ifdef CONFIG_SYSFS
7379 static int netif_alloc_rx_queues(struct net_device *dev)
7380 {
7381 unsigned int i, count = dev->num_rx_queues;
7382 struct netdev_rx_queue *rx;
7383 size_t sz = count * sizeof(*rx);
7384
7385 BUG_ON(count < 1);
7386
7387 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7388 if (!rx)
7389 return -ENOMEM;
7390
7391 dev->_rx = rx;
7392
7393 for (i = 0; i < count; i++)
7394 rx[i].dev = dev;
7395 return 0;
7396 }
7397 #endif
7398
7399 static void netdev_init_one_queue(struct net_device *dev,
7400 struct netdev_queue *queue, void *_unused)
7401 {
7402 /* Initialize queue lock */
7403 spin_lock_init(&queue->_xmit_lock);
7404 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7405 queue->xmit_lock_owner = -1;
7406 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7407 queue->dev = dev;
7408 #ifdef CONFIG_BQL
7409 dql_init(&queue->dql, HZ);
7410 #endif
7411 }
7412
7413 static void netif_free_tx_queues(struct net_device *dev)
7414 {
7415 kvfree(dev->_tx);
7416 }
7417
7418 static int netif_alloc_netdev_queues(struct net_device *dev)
7419 {
7420 unsigned int count = dev->num_tx_queues;
7421 struct netdev_queue *tx;
7422 size_t sz = count * sizeof(*tx);
7423
7424 if (count < 1 || count > 0xffff)
7425 return -EINVAL;
7426
7427 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7428 if (!tx)
7429 return -ENOMEM;
7430
7431 dev->_tx = tx;
7432
7433 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7434 spin_lock_init(&dev->tx_global_lock);
7435
7436 return 0;
7437 }
7438
7439 void netif_tx_stop_all_queues(struct net_device *dev)
7440 {
7441 unsigned int i;
7442
7443 for (i = 0; i < dev->num_tx_queues; i++) {
7444 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7445
7446 netif_tx_stop_queue(txq);
7447 }
7448 }
7449 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7450
7451 /**
7452 * register_netdevice - register a network device
7453 * @dev: device to register
7454 *
7455 * Take a completed network device structure and add it to the kernel
7456 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7457 * chain. 0 is returned on success. A negative errno code is returned
7458 * on a failure to set up the device, or if the name is a duplicate.
7459 *
7460 * Callers must hold the rtnl semaphore. You may want
7461 * register_netdev() instead of this.
7462 *
7463 * BUGS:
7464 * The locking appears insufficient to guarantee two parallel registers
7465 * will not get the same name.
7466 */
7467
7468 int register_netdevice(struct net_device *dev)
7469 {
7470 int ret;
7471 struct net *net = dev_net(dev);
7472
7473 BUG_ON(dev_boot_phase);
7474 ASSERT_RTNL();
7475
7476 might_sleep();
7477
7478 /* When net_device's are persistent, this will be fatal. */
7479 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7480 BUG_ON(!net);
7481
7482 spin_lock_init(&dev->addr_list_lock);
7483 netdev_set_addr_lockdep_class(dev);
7484
7485 ret = dev_get_valid_name(net, dev, dev->name);
7486 if (ret < 0)
7487 goto out;
7488
7489 /* Init, if this function is available */
7490 if (dev->netdev_ops->ndo_init) {
7491 ret = dev->netdev_ops->ndo_init(dev);
7492 if (ret) {
7493 if (ret > 0)
7494 ret = -EIO;
7495 goto out;
7496 }
7497 }
7498
7499 if (((dev->hw_features | dev->features) &
7500 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7501 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7502 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7503 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7504 ret = -EINVAL;
7505 goto err_uninit;
7506 }
7507
7508 ret = -EBUSY;
7509 if (!dev->ifindex)
7510 dev->ifindex = dev_new_index(net);
7511 else if (__dev_get_by_index(net, dev->ifindex))
7512 goto err_uninit;
7513
7514 /* Transfer changeable features to wanted_features and enable
7515 * software offloads (GSO and GRO).
7516 */
7517 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7518 dev->features |= NETIF_F_SOFT_FEATURES;
7519 dev->wanted_features = dev->features & dev->hw_features;
7520
7521 if (!(dev->flags & IFF_LOOPBACK))
7522 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7523
7524 /* If IPv4 TCP segmentation offload is supported we should also
7525 * allow the device to enable segmenting the frame with the option
7526 * of ignoring a static IP ID value. This doesn't enable the
7527 * feature itself but allows the user to enable it later.
7528 */
7529 if (dev->hw_features & NETIF_F_TSO)
7530 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7531 if (dev->vlan_features & NETIF_F_TSO)
7532 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7533 if (dev->mpls_features & NETIF_F_TSO)
7534 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7535 if (dev->hw_enc_features & NETIF_F_TSO)
7536 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7537
7538 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7539 */
7540 dev->vlan_features |= NETIF_F_HIGHDMA;
7541
7542 /* Make NETIF_F_SG inheritable to tunnel devices.
7543 */
7544 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7545
7546 /* Make NETIF_F_SG inheritable to MPLS.
7547 */
7548 dev->mpls_features |= NETIF_F_SG;
7549
7550 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7551 ret = notifier_to_errno(ret);
7552 if (ret)
7553 goto err_uninit;
7554
7555 ret = netdev_register_kobject(dev);
7556 if (ret)
7557 goto err_uninit;
7558 dev->reg_state = NETREG_REGISTERED;
7559
7560 __netdev_update_features(dev);
7561
7562 /*
7563 * Default initial state at registry is that the
7564 * device is present.
7565 */
7566
7567 set_bit(__LINK_STATE_PRESENT, &dev->state);
7568
7569 linkwatch_init_dev(dev);
7570
7571 dev_init_scheduler(dev);
7572 dev_hold(dev);
7573 list_netdevice(dev);
7574 add_device_randomness(dev->dev_addr, dev->addr_len);
7575
7576 /* If the device has permanent device address, driver should
7577 * set dev_addr and also addr_assign_type should be set to
7578 * NET_ADDR_PERM (default value).
7579 */
7580 if (dev->addr_assign_type == NET_ADDR_PERM)
7581 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7582
7583 /* Notify protocols, that a new device appeared. */
7584 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7585 ret = notifier_to_errno(ret);
7586 if (ret) {
7587 rollback_registered(dev);
7588 dev->reg_state = NETREG_UNREGISTERED;
7589 }
7590 /*
7591 * Prevent userspace races by waiting until the network
7592 * device is fully setup before sending notifications.
7593 */
7594 if (!dev->rtnl_link_ops ||
7595 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7596 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7597
7598 out:
7599 return ret;
7600
7601 err_uninit:
7602 if (dev->netdev_ops->ndo_uninit)
7603 dev->netdev_ops->ndo_uninit(dev);
7604 if (dev->priv_destructor)
7605 dev->priv_destructor(dev);
7606 goto out;
7607 }
7608 EXPORT_SYMBOL(register_netdevice);
7609
7610 /**
7611 * init_dummy_netdev - init a dummy network device for NAPI
7612 * @dev: device to init
7613 *
7614 * This takes a network device structure and initialize the minimum
7615 * amount of fields so it can be used to schedule NAPI polls without
7616 * registering a full blown interface. This is to be used by drivers
7617 * that need to tie several hardware interfaces to a single NAPI
7618 * poll scheduler due to HW limitations.
7619 */
7620 int init_dummy_netdev(struct net_device *dev)
7621 {
7622 /* Clear everything. Note we don't initialize spinlocks
7623 * are they aren't supposed to be taken by any of the
7624 * NAPI code and this dummy netdev is supposed to be
7625 * only ever used for NAPI polls
7626 */
7627 memset(dev, 0, sizeof(struct net_device));
7628
7629 /* make sure we BUG if trying to hit standard
7630 * register/unregister code path
7631 */
7632 dev->reg_state = NETREG_DUMMY;
7633
7634 /* NAPI wants this */
7635 INIT_LIST_HEAD(&dev->napi_list);
7636
7637 /* a dummy interface is started by default */
7638 set_bit(__LINK_STATE_PRESENT, &dev->state);
7639 set_bit(__LINK_STATE_START, &dev->state);
7640
7641 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7642 * because users of this 'device' dont need to change
7643 * its refcount.
7644 */
7645
7646 return 0;
7647 }
7648 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7649
7650
7651 /**
7652 * register_netdev - register a network device
7653 * @dev: device to register
7654 *
7655 * Take a completed network device structure and add it to the kernel
7656 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7657 * chain. 0 is returned on success. A negative errno code is returned
7658 * on a failure to set up the device, or if the name is a duplicate.
7659 *
7660 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7661 * and expands the device name if you passed a format string to
7662 * alloc_netdev.
7663 */
7664 int register_netdev(struct net_device *dev)
7665 {
7666 int err;
7667
7668 rtnl_lock();
7669 err = register_netdevice(dev);
7670 rtnl_unlock();
7671 return err;
7672 }
7673 EXPORT_SYMBOL(register_netdev);
7674
7675 int netdev_refcnt_read(const struct net_device *dev)
7676 {
7677 int i, refcnt = 0;
7678
7679 for_each_possible_cpu(i)
7680 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7681 return refcnt;
7682 }
7683 EXPORT_SYMBOL(netdev_refcnt_read);
7684
7685 /**
7686 * netdev_wait_allrefs - wait until all references are gone.
7687 * @dev: target net_device
7688 *
7689 * This is called when unregistering network devices.
7690 *
7691 * Any protocol or device that holds a reference should register
7692 * for netdevice notification, and cleanup and put back the
7693 * reference if they receive an UNREGISTER event.
7694 * We can get stuck here if buggy protocols don't correctly
7695 * call dev_put.
7696 */
7697 static void netdev_wait_allrefs(struct net_device *dev)
7698 {
7699 unsigned long rebroadcast_time, warning_time;
7700 int refcnt;
7701
7702 linkwatch_forget_dev(dev);
7703
7704 rebroadcast_time = warning_time = jiffies;
7705 refcnt = netdev_refcnt_read(dev);
7706
7707 while (refcnt != 0) {
7708 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7709 rtnl_lock();
7710
7711 /* Rebroadcast unregister notification */
7712 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7713
7714 __rtnl_unlock();
7715 rcu_barrier();
7716 rtnl_lock();
7717
7718 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7719 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7720 &dev->state)) {
7721 /* We must not have linkwatch events
7722 * pending on unregister. If this
7723 * happens, we simply run the queue
7724 * unscheduled, resulting in a noop
7725 * for this device.
7726 */
7727 linkwatch_run_queue();
7728 }
7729
7730 __rtnl_unlock();
7731
7732 rebroadcast_time = jiffies;
7733 }
7734
7735 msleep(250);
7736
7737 refcnt = netdev_refcnt_read(dev);
7738
7739 if (time_after(jiffies, warning_time + 10 * HZ)) {
7740 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7741 dev->name, refcnt);
7742 warning_time = jiffies;
7743 }
7744 }
7745 }
7746
7747 /* The sequence is:
7748 *
7749 * rtnl_lock();
7750 * ...
7751 * register_netdevice(x1);
7752 * register_netdevice(x2);
7753 * ...
7754 * unregister_netdevice(y1);
7755 * unregister_netdevice(y2);
7756 * ...
7757 * rtnl_unlock();
7758 * free_netdev(y1);
7759 * free_netdev(y2);
7760 *
7761 * We are invoked by rtnl_unlock().
7762 * This allows us to deal with problems:
7763 * 1) We can delete sysfs objects which invoke hotplug
7764 * without deadlocking with linkwatch via keventd.
7765 * 2) Since we run with the RTNL semaphore not held, we can sleep
7766 * safely in order to wait for the netdev refcnt to drop to zero.
7767 *
7768 * We must not return until all unregister events added during
7769 * the interval the lock was held have been completed.
7770 */
7771 void netdev_run_todo(void)
7772 {
7773 struct list_head list;
7774
7775 /* Snapshot list, allow later requests */
7776 list_replace_init(&net_todo_list, &list);
7777
7778 __rtnl_unlock();
7779
7780
7781 /* Wait for rcu callbacks to finish before next phase */
7782 if (!list_empty(&list))
7783 rcu_barrier();
7784
7785 while (!list_empty(&list)) {
7786 struct net_device *dev
7787 = list_first_entry(&list, struct net_device, todo_list);
7788 list_del(&dev->todo_list);
7789
7790 rtnl_lock();
7791 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7792 __rtnl_unlock();
7793
7794 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7795 pr_err("network todo '%s' but state %d\n",
7796 dev->name, dev->reg_state);
7797 dump_stack();
7798 continue;
7799 }
7800
7801 dev->reg_state = NETREG_UNREGISTERED;
7802
7803 netdev_wait_allrefs(dev);
7804
7805 /* paranoia */
7806 BUG_ON(netdev_refcnt_read(dev));
7807 BUG_ON(!list_empty(&dev->ptype_all));
7808 BUG_ON(!list_empty(&dev->ptype_specific));
7809 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7810 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7811 WARN_ON(dev->dn_ptr);
7812
7813 if (dev->priv_destructor)
7814 dev->priv_destructor(dev);
7815 if (dev->needs_free_netdev)
7816 free_netdev(dev);
7817
7818 /* Report a network device has been unregistered */
7819 rtnl_lock();
7820 dev_net(dev)->dev_unreg_count--;
7821 __rtnl_unlock();
7822 wake_up(&netdev_unregistering_wq);
7823
7824 /* Free network device */
7825 kobject_put(&dev->dev.kobj);
7826 }
7827 }
7828
7829 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7830 * all the same fields in the same order as net_device_stats, with only
7831 * the type differing, but rtnl_link_stats64 may have additional fields
7832 * at the end for newer counters.
7833 */
7834 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7835 const struct net_device_stats *netdev_stats)
7836 {
7837 #if BITS_PER_LONG == 64
7838 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7839 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
7840 /* zero out counters that only exist in rtnl_link_stats64 */
7841 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7842 sizeof(*stats64) - sizeof(*netdev_stats));
7843 #else
7844 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7845 const unsigned long *src = (const unsigned long *)netdev_stats;
7846 u64 *dst = (u64 *)stats64;
7847
7848 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7849 for (i = 0; i < n; i++)
7850 dst[i] = src[i];
7851 /* zero out counters that only exist in rtnl_link_stats64 */
7852 memset((char *)stats64 + n * sizeof(u64), 0,
7853 sizeof(*stats64) - n * sizeof(u64));
7854 #endif
7855 }
7856 EXPORT_SYMBOL(netdev_stats_to_stats64);
7857
7858 /**
7859 * dev_get_stats - get network device statistics
7860 * @dev: device to get statistics from
7861 * @storage: place to store stats
7862 *
7863 * Get network statistics from device. Return @storage.
7864 * The device driver may provide its own method by setting
7865 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7866 * otherwise the internal statistics structure is used.
7867 */
7868 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7869 struct rtnl_link_stats64 *storage)
7870 {
7871 const struct net_device_ops *ops = dev->netdev_ops;
7872
7873 if (ops->ndo_get_stats64) {
7874 memset(storage, 0, sizeof(*storage));
7875 ops->ndo_get_stats64(dev, storage);
7876 } else if (ops->ndo_get_stats) {
7877 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7878 } else {
7879 netdev_stats_to_stats64(storage, &dev->stats);
7880 }
7881 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
7882 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
7883 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
7884 return storage;
7885 }
7886 EXPORT_SYMBOL(dev_get_stats);
7887
7888 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7889 {
7890 struct netdev_queue *queue = dev_ingress_queue(dev);
7891
7892 #ifdef CONFIG_NET_CLS_ACT
7893 if (queue)
7894 return queue;
7895 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7896 if (!queue)
7897 return NULL;
7898 netdev_init_one_queue(dev, queue, NULL);
7899 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7900 queue->qdisc_sleeping = &noop_qdisc;
7901 rcu_assign_pointer(dev->ingress_queue, queue);
7902 #endif
7903 return queue;
7904 }
7905
7906 static const struct ethtool_ops default_ethtool_ops;
7907
7908 void netdev_set_default_ethtool_ops(struct net_device *dev,
7909 const struct ethtool_ops *ops)
7910 {
7911 if (dev->ethtool_ops == &default_ethtool_ops)
7912 dev->ethtool_ops = ops;
7913 }
7914 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7915
7916 void netdev_freemem(struct net_device *dev)
7917 {
7918 char *addr = (char *)dev - dev->padded;
7919
7920 kvfree(addr);
7921 }
7922
7923 /**
7924 * alloc_netdev_mqs - allocate network device
7925 * @sizeof_priv: size of private data to allocate space for
7926 * @name: device name format string
7927 * @name_assign_type: origin of device name
7928 * @setup: callback to initialize device
7929 * @txqs: the number of TX subqueues to allocate
7930 * @rxqs: the number of RX subqueues to allocate
7931 *
7932 * Allocates a struct net_device with private data area for driver use
7933 * and performs basic initialization. Also allocates subqueue structs
7934 * for each queue on the device.
7935 */
7936 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7937 unsigned char name_assign_type,
7938 void (*setup)(struct net_device *),
7939 unsigned int txqs, unsigned int rxqs)
7940 {
7941 struct net_device *dev;
7942 size_t alloc_size;
7943 struct net_device *p;
7944
7945 BUG_ON(strlen(name) >= sizeof(dev->name));
7946
7947 if (txqs < 1) {
7948 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7949 return NULL;
7950 }
7951
7952 #ifdef CONFIG_SYSFS
7953 if (rxqs < 1) {
7954 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7955 return NULL;
7956 }
7957 #endif
7958
7959 alloc_size = sizeof(struct net_device);
7960 if (sizeof_priv) {
7961 /* ensure 32-byte alignment of private area */
7962 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7963 alloc_size += sizeof_priv;
7964 }
7965 /* ensure 32-byte alignment of whole construct */
7966 alloc_size += NETDEV_ALIGN - 1;
7967
7968 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7969 if (!p)
7970 return NULL;
7971
7972 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7973 dev->padded = (char *)dev - (char *)p;
7974
7975 dev->pcpu_refcnt = alloc_percpu(int);
7976 if (!dev->pcpu_refcnt)
7977 goto free_dev;
7978
7979 if (dev_addr_init(dev))
7980 goto free_pcpu;
7981
7982 dev_mc_init(dev);
7983 dev_uc_init(dev);
7984
7985 dev_net_set(dev, &init_net);
7986
7987 dev->gso_max_size = GSO_MAX_SIZE;
7988 dev->gso_max_segs = GSO_MAX_SEGS;
7989
7990 INIT_LIST_HEAD(&dev->napi_list);
7991 INIT_LIST_HEAD(&dev->unreg_list);
7992 INIT_LIST_HEAD(&dev->close_list);
7993 INIT_LIST_HEAD(&dev->link_watch_list);
7994 INIT_LIST_HEAD(&dev->adj_list.upper);
7995 INIT_LIST_HEAD(&dev->adj_list.lower);
7996 INIT_LIST_HEAD(&dev->ptype_all);
7997 INIT_LIST_HEAD(&dev->ptype_specific);
7998 #ifdef CONFIG_NET_SCHED
7999 hash_init(dev->qdisc_hash);
8000 #endif
8001 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8002 setup(dev);
8003
8004 if (!dev->tx_queue_len) {
8005 dev->priv_flags |= IFF_NO_QUEUE;
8006 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8007 }
8008
8009 dev->num_tx_queues = txqs;
8010 dev->real_num_tx_queues = txqs;
8011 if (netif_alloc_netdev_queues(dev))
8012 goto free_all;
8013
8014 #ifdef CONFIG_SYSFS
8015 dev->num_rx_queues = rxqs;
8016 dev->real_num_rx_queues = rxqs;
8017 if (netif_alloc_rx_queues(dev))
8018 goto free_all;
8019 #endif
8020
8021 strcpy(dev->name, name);
8022 dev->name_assign_type = name_assign_type;
8023 dev->group = INIT_NETDEV_GROUP;
8024 if (!dev->ethtool_ops)
8025 dev->ethtool_ops = &default_ethtool_ops;
8026
8027 nf_hook_ingress_init(dev);
8028
8029 return dev;
8030
8031 free_all:
8032 free_netdev(dev);
8033 return NULL;
8034
8035 free_pcpu:
8036 free_percpu(dev->pcpu_refcnt);
8037 free_dev:
8038 netdev_freemem(dev);
8039 return NULL;
8040 }
8041 EXPORT_SYMBOL(alloc_netdev_mqs);
8042
8043 /**
8044 * free_netdev - free network device
8045 * @dev: device
8046 *
8047 * This function does the last stage of destroying an allocated device
8048 * interface. The reference to the device object is released. If this
8049 * is the last reference then it will be freed.Must be called in process
8050 * context.
8051 */
8052 void free_netdev(struct net_device *dev)
8053 {
8054 struct napi_struct *p, *n;
8055 struct bpf_prog *prog;
8056
8057 might_sleep();
8058 netif_free_tx_queues(dev);
8059 #ifdef CONFIG_SYSFS
8060 kvfree(dev->_rx);
8061 #endif
8062
8063 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8064
8065 /* Flush device addresses */
8066 dev_addr_flush(dev);
8067
8068 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8069 netif_napi_del(p);
8070
8071 free_percpu(dev->pcpu_refcnt);
8072 dev->pcpu_refcnt = NULL;
8073
8074 prog = rcu_dereference_protected(dev->xdp_prog, 1);
8075 if (prog) {
8076 bpf_prog_put(prog);
8077 static_key_slow_dec(&generic_xdp_needed);
8078 }
8079
8080 /* Compatibility with error handling in drivers */
8081 if (dev->reg_state == NETREG_UNINITIALIZED) {
8082 netdev_freemem(dev);
8083 return;
8084 }
8085
8086 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8087 dev->reg_state = NETREG_RELEASED;
8088
8089 /* will free via device release */
8090 put_device(&dev->dev);
8091 }
8092 EXPORT_SYMBOL(free_netdev);
8093
8094 /**
8095 * synchronize_net - Synchronize with packet receive processing
8096 *
8097 * Wait for packets currently being received to be done.
8098 * Does not block later packets from starting.
8099 */
8100 void synchronize_net(void)
8101 {
8102 might_sleep();
8103 if (rtnl_is_locked())
8104 synchronize_rcu_expedited();
8105 else
8106 synchronize_rcu();
8107 }
8108 EXPORT_SYMBOL(synchronize_net);
8109
8110 /**
8111 * unregister_netdevice_queue - remove device from the kernel
8112 * @dev: device
8113 * @head: list
8114 *
8115 * This function shuts down a device interface and removes it
8116 * from the kernel tables.
8117 * If head not NULL, device is queued to be unregistered later.
8118 *
8119 * Callers must hold the rtnl semaphore. You may want
8120 * unregister_netdev() instead of this.
8121 */
8122
8123 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8124 {
8125 ASSERT_RTNL();
8126
8127 if (head) {
8128 list_move_tail(&dev->unreg_list, head);
8129 } else {
8130 rollback_registered(dev);
8131 /* Finish processing unregister after unlock */
8132 net_set_todo(dev);
8133 }
8134 }
8135 EXPORT_SYMBOL(unregister_netdevice_queue);
8136
8137 /**
8138 * unregister_netdevice_many - unregister many devices
8139 * @head: list of devices
8140 *
8141 * Note: As most callers use a stack allocated list_head,
8142 * we force a list_del() to make sure stack wont be corrupted later.
8143 */
8144 void unregister_netdevice_many(struct list_head *head)
8145 {
8146 struct net_device *dev;
8147
8148 if (!list_empty(head)) {
8149 rollback_registered_many(head);
8150 list_for_each_entry(dev, head, unreg_list)
8151 net_set_todo(dev);
8152 list_del(head);
8153 }
8154 }
8155 EXPORT_SYMBOL(unregister_netdevice_many);
8156
8157 /**
8158 * unregister_netdev - remove device from the kernel
8159 * @dev: device
8160 *
8161 * This function shuts down a device interface and removes it
8162 * from the kernel tables.
8163 *
8164 * This is just a wrapper for unregister_netdevice that takes
8165 * the rtnl semaphore. In general you want to use this and not
8166 * unregister_netdevice.
8167 */
8168 void unregister_netdev(struct net_device *dev)
8169 {
8170 rtnl_lock();
8171 unregister_netdevice(dev);
8172 rtnl_unlock();
8173 }
8174 EXPORT_SYMBOL(unregister_netdev);
8175
8176 /**
8177 * dev_change_net_namespace - move device to different nethost namespace
8178 * @dev: device
8179 * @net: network namespace
8180 * @pat: If not NULL name pattern to try if the current device name
8181 * is already taken in the destination network namespace.
8182 *
8183 * This function shuts down a device interface and moves it
8184 * to a new network namespace. On success 0 is returned, on
8185 * a failure a netagive errno code is returned.
8186 *
8187 * Callers must hold the rtnl semaphore.
8188 */
8189
8190 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8191 {
8192 int err;
8193
8194 ASSERT_RTNL();
8195
8196 /* Don't allow namespace local devices to be moved. */
8197 err = -EINVAL;
8198 if (dev->features & NETIF_F_NETNS_LOCAL)
8199 goto out;
8200
8201 /* Ensure the device has been registrered */
8202 if (dev->reg_state != NETREG_REGISTERED)
8203 goto out;
8204
8205 /* Get out if there is nothing todo */
8206 err = 0;
8207 if (net_eq(dev_net(dev), net))
8208 goto out;
8209
8210 /* Pick the destination device name, and ensure
8211 * we can use it in the destination network namespace.
8212 */
8213 err = -EEXIST;
8214 if (__dev_get_by_name(net, dev->name)) {
8215 /* We get here if we can't use the current device name */
8216 if (!pat)
8217 goto out;
8218 if (dev_get_valid_name(net, dev, pat) < 0)
8219 goto out;
8220 }
8221
8222 /*
8223 * And now a mini version of register_netdevice unregister_netdevice.
8224 */
8225
8226 /* If device is running close it first. */
8227 dev_close(dev);
8228
8229 /* And unlink it from device chain */
8230 err = -ENODEV;
8231 unlist_netdevice(dev);
8232
8233 synchronize_net();
8234
8235 /* Shutdown queueing discipline. */
8236 dev_shutdown(dev);
8237
8238 /* Notify protocols, that we are about to destroy
8239 * this device. They should clean all the things.
8240 *
8241 * Note that dev->reg_state stays at NETREG_REGISTERED.
8242 * This is wanted because this way 8021q and macvlan know
8243 * the device is just moving and can keep their slaves up.
8244 */
8245 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8246 rcu_barrier();
8247 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8248 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
8249
8250 /*
8251 * Flush the unicast and multicast chains
8252 */
8253 dev_uc_flush(dev);
8254 dev_mc_flush(dev);
8255
8256 /* Send a netdev-removed uevent to the old namespace */
8257 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8258 netdev_adjacent_del_links(dev);
8259
8260 /* Actually switch the network namespace */
8261 dev_net_set(dev, net);
8262
8263 /* If there is an ifindex conflict assign a new one */
8264 if (__dev_get_by_index(net, dev->ifindex))
8265 dev->ifindex = dev_new_index(net);
8266
8267 /* Send a netdev-add uevent to the new namespace */
8268 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8269 netdev_adjacent_add_links(dev);
8270
8271 /* Fixup kobjects */
8272 err = device_rename(&dev->dev, dev->name);
8273 WARN_ON(err);
8274
8275 /* Add the device back in the hashes */
8276 list_netdevice(dev);
8277
8278 /* Notify protocols, that a new device appeared. */
8279 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8280
8281 /*
8282 * Prevent userspace races by waiting until the network
8283 * device is fully setup before sending notifications.
8284 */
8285 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8286
8287 synchronize_net();
8288 err = 0;
8289 out:
8290 return err;
8291 }
8292 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8293
8294 static int dev_cpu_dead(unsigned int oldcpu)
8295 {
8296 struct sk_buff **list_skb;
8297 struct sk_buff *skb;
8298 unsigned int cpu;
8299 struct softnet_data *sd, *oldsd, *remsd = NULL;
8300
8301 local_irq_disable();
8302 cpu = smp_processor_id();
8303 sd = &per_cpu(softnet_data, cpu);
8304 oldsd = &per_cpu(softnet_data, oldcpu);
8305
8306 /* Find end of our completion_queue. */
8307 list_skb = &sd->completion_queue;
8308 while (*list_skb)
8309 list_skb = &(*list_skb)->next;
8310 /* Append completion queue from offline CPU. */
8311 *list_skb = oldsd->completion_queue;
8312 oldsd->completion_queue = NULL;
8313
8314 /* Append output queue from offline CPU. */
8315 if (oldsd->output_queue) {
8316 *sd->output_queue_tailp = oldsd->output_queue;
8317 sd->output_queue_tailp = oldsd->output_queue_tailp;
8318 oldsd->output_queue = NULL;
8319 oldsd->output_queue_tailp = &oldsd->output_queue;
8320 }
8321 /* Append NAPI poll list from offline CPU, with one exception :
8322 * process_backlog() must be called by cpu owning percpu backlog.
8323 * We properly handle process_queue & input_pkt_queue later.
8324 */
8325 while (!list_empty(&oldsd->poll_list)) {
8326 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8327 struct napi_struct,
8328 poll_list);
8329
8330 list_del_init(&napi->poll_list);
8331 if (napi->poll == process_backlog)
8332 napi->state = 0;
8333 else
8334 ____napi_schedule(sd, napi);
8335 }
8336
8337 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8338 local_irq_enable();
8339
8340 #ifdef CONFIG_RPS
8341 remsd = oldsd->rps_ipi_list;
8342 oldsd->rps_ipi_list = NULL;
8343 #endif
8344 /* send out pending IPI's on offline CPU */
8345 net_rps_send_ipi(remsd);
8346
8347 /* Process offline CPU's input_pkt_queue */
8348 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8349 netif_rx_ni(skb);
8350 input_queue_head_incr(oldsd);
8351 }
8352 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8353 netif_rx_ni(skb);
8354 input_queue_head_incr(oldsd);
8355 }
8356
8357 return 0;
8358 }
8359
8360 /**
8361 * netdev_increment_features - increment feature set by one
8362 * @all: current feature set
8363 * @one: new feature set
8364 * @mask: mask feature set
8365 *
8366 * Computes a new feature set after adding a device with feature set
8367 * @one to the master device with current feature set @all. Will not
8368 * enable anything that is off in @mask. Returns the new feature set.
8369 */
8370 netdev_features_t netdev_increment_features(netdev_features_t all,
8371 netdev_features_t one, netdev_features_t mask)
8372 {
8373 if (mask & NETIF_F_HW_CSUM)
8374 mask |= NETIF_F_CSUM_MASK;
8375 mask |= NETIF_F_VLAN_CHALLENGED;
8376
8377 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8378 all &= one | ~NETIF_F_ALL_FOR_ALL;
8379
8380 /* If one device supports hw checksumming, set for all. */
8381 if (all & NETIF_F_HW_CSUM)
8382 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8383
8384 return all;
8385 }
8386 EXPORT_SYMBOL(netdev_increment_features);
8387
8388 static struct hlist_head * __net_init netdev_create_hash(void)
8389 {
8390 int i;
8391 struct hlist_head *hash;
8392
8393 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8394 if (hash != NULL)
8395 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8396 INIT_HLIST_HEAD(&hash[i]);
8397
8398 return hash;
8399 }
8400
8401 /* Initialize per network namespace state */
8402 static int __net_init netdev_init(struct net *net)
8403 {
8404 if (net != &init_net)
8405 INIT_LIST_HEAD(&net->dev_base_head);
8406
8407 net->dev_name_head = netdev_create_hash();
8408 if (net->dev_name_head == NULL)
8409 goto err_name;
8410
8411 net->dev_index_head = netdev_create_hash();
8412 if (net->dev_index_head == NULL)
8413 goto err_idx;
8414
8415 return 0;
8416
8417 err_idx:
8418 kfree(net->dev_name_head);
8419 err_name:
8420 return -ENOMEM;
8421 }
8422
8423 /**
8424 * netdev_drivername - network driver for the device
8425 * @dev: network device
8426 *
8427 * Determine network driver for device.
8428 */
8429 const char *netdev_drivername(const struct net_device *dev)
8430 {
8431 const struct device_driver *driver;
8432 const struct device *parent;
8433 const char *empty = "";
8434
8435 parent = dev->dev.parent;
8436 if (!parent)
8437 return empty;
8438
8439 driver = parent->driver;
8440 if (driver && driver->name)
8441 return driver->name;
8442 return empty;
8443 }
8444
8445 static void __netdev_printk(const char *level, const struct net_device *dev,
8446 struct va_format *vaf)
8447 {
8448 if (dev && dev->dev.parent) {
8449 dev_printk_emit(level[1] - '0',
8450 dev->dev.parent,
8451 "%s %s %s%s: %pV",
8452 dev_driver_string(dev->dev.parent),
8453 dev_name(dev->dev.parent),
8454 netdev_name(dev), netdev_reg_state(dev),
8455 vaf);
8456 } else if (dev) {
8457 printk("%s%s%s: %pV",
8458 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8459 } else {
8460 printk("%s(NULL net_device): %pV", level, vaf);
8461 }
8462 }
8463
8464 void netdev_printk(const char *level, const struct net_device *dev,
8465 const char *format, ...)
8466 {
8467 struct va_format vaf;
8468 va_list args;
8469
8470 va_start(args, format);
8471
8472 vaf.fmt = format;
8473 vaf.va = &args;
8474
8475 __netdev_printk(level, dev, &vaf);
8476
8477 va_end(args);
8478 }
8479 EXPORT_SYMBOL(netdev_printk);
8480
8481 #define define_netdev_printk_level(func, level) \
8482 void func(const struct net_device *dev, const char *fmt, ...) \
8483 { \
8484 struct va_format vaf; \
8485 va_list args; \
8486 \
8487 va_start(args, fmt); \
8488 \
8489 vaf.fmt = fmt; \
8490 vaf.va = &args; \
8491 \
8492 __netdev_printk(level, dev, &vaf); \
8493 \
8494 va_end(args); \
8495 } \
8496 EXPORT_SYMBOL(func);
8497
8498 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8499 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8500 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8501 define_netdev_printk_level(netdev_err, KERN_ERR);
8502 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8503 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8504 define_netdev_printk_level(netdev_info, KERN_INFO);
8505
8506 static void __net_exit netdev_exit(struct net *net)
8507 {
8508 kfree(net->dev_name_head);
8509 kfree(net->dev_index_head);
8510 }
8511
8512 static struct pernet_operations __net_initdata netdev_net_ops = {
8513 .init = netdev_init,
8514 .exit = netdev_exit,
8515 };
8516
8517 static void __net_exit default_device_exit(struct net *net)
8518 {
8519 struct net_device *dev, *aux;
8520 /*
8521 * Push all migratable network devices back to the
8522 * initial network namespace
8523 */
8524 rtnl_lock();
8525 for_each_netdev_safe(net, dev, aux) {
8526 int err;
8527 char fb_name[IFNAMSIZ];
8528
8529 /* Ignore unmoveable devices (i.e. loopback) */
8530 if (dev->features & NETIF_F_NETNS_LOCAL)
8531 continue;
8532
8533 /* Leave virtual devices for the generic cleanup */
8534 if (dev->rtnl_link_ops)
8535 continue;
8536
8537 /* Push remaining network devices to init_net */
8538 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8539 err = dev_change_net_namespace(dev, &init_net, fb_name);
8540 if (err) {
8541 pr_emerg("%s: failed to move %s to init_net: %d\n",
8542 __func__, dev->name, err);
8543 BUG();
8544 }
8545 }
8546 rtnl_unlock();
8547 }
8548
8549 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8550 {
8551 /* Return with the rtnl_lock held when there are no network
8552 * devices unregistering in any network namespace in net_list.
8553 */
8554 struct net *net;
8555 bool unregistering;
8556 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8557
8558 add_wait_queue(&netdev_unregistering_wq, &wait);
8559 for (;;) {
8560 unregistering = false;
8561 rtnl_lock();
8562 list_for_each_entry(net, net_list, exit_list) {
8563 if (net->dev_unreg_count > 0) {
8564 unregistering = true;
8565 break;
8566 }
8567 }
8568 if (!unregistering)
8569 break;
8570 __rtnl_unlock();
8571
8572 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8573 }
8574 remove_wait_queue(&netdev_unregistering_wq, &wait);
8575 }
8576
8577 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8578 {
8579 /* At exit all network devices most be removed from a network
8580 * namespace. Do this in the reverse order of registration.
8581 * Do this across as many network namespaces as possible to
8582 * improve batching efficiency.
8583 */
8584 struct net_device *dev;
8585 struct net *net;
8586 LIST_HEAD(dev_kill_list);
8587
8588 /* To prevent network device cleanup code from dereferencing
8589 * loopback devices or network devices that have been freed
8590 * wait here for all pending unregistrations to complete,
8591 * before unregistring the loopback device and allowing the
8592 * network namespace be freed.
8593 *
8594 * The netdev todo list containing all network devices
8595 * unregistrations that happen in default_device_exit_batch
8596 * will run in the rtnl_unlock() at the end of
8597 * default_device_exit_batch.
8598 */
8599 rtnl_lock_unregistering(net_list);
8600 list_for_each_entry(net, net_list, exit_list) {
8601 for_each_netdev_reverse(net, dev) {
8602 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8603 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8604 else
8605 unregister_netdevice_queue(dev, &dev_kill_list);
8606 }
8607 }
8608 unregister_netdevice_many(&dev_kill_list);
8609 rtnl_unlock();
8610 }
8611
8612 static struct pernet_operations __net_initdata default_device_ops = {
8613 .exit = default_device_exit,
8614 .exit_batch = default_device_exit_batch,
8615 };
8616
8617 /*
8618 * Initialize the DEV module. At boot time this walks the device list and
8619 * unhooks any devices that fail to initialise (normally hardware not
8620 * present) and leaves us with a valid list of present and active devices.
8621 *
8622 */
8623
8624 /*
8625 * This is called single threaded during boot, so no need
8626 * to take the rtnl semaphore.
8627 */
8628 static int __init net_dev_init(void)
8629 {
8630 int i, rc = -ENOMEM;
8631
8632 BUG_ON(!dev_boot_phase);
8633
8634 if (dev_proc_init())
8635 goto out;
8636
8637 if (netdev_kobject_init())
8638 goto out;
8639
8640 INIT_LIST_HEAD(&ptype_all);
8641 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8642 INIT_LIST_HEAD(&ptype_base[i]);
8643
8644 INIT_LIST_HEAD(&offload_base);
8645
8646 if (register_pernet_subsys(&netdev_net_ops))
8647 goto out;
8648
8649 /*
8650 * Initialise the packet receive queues.
8651 */
8652
8653 for_each_possible_cpu(i) {
8654 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8655 struct softnet_data *sd = &per_cpu(softnet_data, i);
8656
8657 INIT_WORK(flush, flush_backlog);
8658
8659 skb_queue_head_init(&sd->input_pkt_queue);
8660 skb_queue_head_init(&sd->process_queue);
8661 INIT_LIST_HEAD(&sd->poll_list);
8662 sd->output_queue_tailp = &sd->output_queue;
8663 #ifdef CONFIG_RPS
8664 sd->csd.func = rps_trigger_softirq;
8665 sd->csd.info = sd;
8666 sd->cpu = i;
8667 #endif
8668
8669 sd->backlog.poll = process_backlog;
8670 sd->backlog.weight = weight_p;
8671 }
8672
8673 dev_boot_phase = 0;
8674
8675 /* The loopback device is special if any other network devices
8676 * is present in a network namespace the loopback device must
8677 * be present. Since we now dynamically allocate and free the
8678 * loopback device ensure this invariant is maintained by
8679 * keeping the loopback device as the first device on the
8680 * list of network devices. Ensuring the loopback devices
8681 * is the first device that appears and the last network device
8682 * that disappears.
8683 */
8684 if (register_pernet_device(&loopback_net_ops))
8685 goto out;
8686
8687 if (register_pernet_device(&default_device_ops))
8688 goto out;
8689
8690 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8691 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8692
8693 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8694 NULL, dev_cpu_dead);
8695 WARN_ON(rc < 0);
8696 rc = 0;
8697 out:
8698 return rc;
8699 }
8700
8701 subsys_initcall(net_dev_init);