]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/core/dev.c
ASoC: wm_adsp: add support for DSP region lock
[mirror_ubuntu-bionic-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/crash_dump.h>
143
144 #include "net-sysfs.h"
145
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
148
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
151
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly; /* Taps */
156 static struct list_head offload_base __read_mostly;
157
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160 struct net_device *dev,
161 struct netdev_notifier_info *info);
162
163 /*
164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
165 * semaphore.
166 *
167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
168 *
169 * Writers must hold the rtnl semaphore while they loop through the
170 * dev_base_head list, and hold dev_base_lock for writing when they do the
171 * actual updates. This allows pure readers to access the list even
172 * while a writer is preparing to update it.
173 *
174 * To put it another way, dev_base_lock is held for writing only to
175 * protect against pure readers; the rtnl semaphore provides the
176 * protection against other writers.
177 *
178 * See, for example usages, register_netdevice() and
179 * unregister_netdevice(), which must be called with the rtnl
180 * semaphore held.
181 */
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
184
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
187
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
190
191 static seqcount_t devnet_rename_seq;
192
193 static inline void dev_base_seq_inc(struct net *net)
194 {
195 while (++net->dev_base_seq == 0)
196 ;
197 }
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214 spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static void list_netdevice(struct net_device *dev)
227 {
228 struct net *net = dev_net(dev);
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238
239 dev_base_seq_inc(net);
240 }
241
242 /* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
251 list_del_rcu(&dev->dev_list);
252 hlist_del_rcu(&dev->name_hlist);
253 hlist_del_rcu(&dev->index_hlist);
254 write_unlock_bh(&dev_base_lock);
255
256 dev_base_seq_inc(dev_net(dev));
257 }
258
259 /*
260 * Our notifier list
261 */
262
263 static RAW_NOTIFIER_HEAD(netdev_chain);
264
265 /*
266 * Device drivers call our routines to queue packets here. We empty the
267 * queue in the local softnet handler.
268 */
269
270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
271 EXPORT_PER_CPU_SYMBOL(softnet_data);
272
273 #ifdef CONFIG_LOCKDEP
274 /*
275 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276 * according to dev->type
277 */
278 static const unsigned short netdev_lock_type[] = {
279 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
291 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294
295 static const char *const netdev_lock_name[] = {
296 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
328 {
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356 *
357 * Protocol management and registration routines
358 *
359 *******************************************************************************/
360
361
362 /*
363 * Add a protocol ID to the list. Now that the input handler is
364 * smarter we can dispense with all the messy stuff that used to be
365 * here.
366 *
367 * BEWARE!!! Protocol handlers, mangling input packets,
368 * MUST BE last in hash buckets and checking protocol handlers
369 * MUST start from promiscuous ptype_all chain in net_bh.
370 * It is true now, do not change it.
371 * Explanation follows: if protocol handler, mangling packet, will
372 * be the first on list, it is not able to sense, that packet
373 * is cloned and should be copied-on-write, so that it will
374 * change it and subsequent readers will get broken packet.
375 * --ANK (980803)
376 */
377
378 static inline struct list_head *ptype_head(const struct packet_type *pt)
379 {
380 if (pt->type == htons(ETH_P_ALL))
381 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
382 else
383 return pt->dev ? &pt->dev->ptype_specific :
384 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
385 }
386
387 /**
388 * dev_add_pack - add packet handler
389 * @pt: packet type declaration
390 *
391 * Add a protocol handler to the networking stack. The passed &packet_type
392 * is linked into kernel lists and may not be freed until it has been
393 * removed from the kernel lists.
394 *
395 * This call does not sleep therefore it can not
396 * guarantee all CPU's that are in middle of receiving packets
397 * will see the new packet type (until the next received packet).
398 */
399
400 void dev_add_pack(struct packet_type *pt)
401 {
402 struct list_head *head = ptype_head(pt);
403
404 spin_lock(&ptype_lock);
405 list_add_rcu(&pt->list, head);
406 spin_unlock(&ptype_lock);
407 }
408 EXPORT_SYMBOL(dev_add_pack);
409
410 /**
411 * __dev_remove_pack - remove packet handler
412 * @pt: packet type declaration
413 *
414 * Remove a protocol handler that was previously added to the kernel
415 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
416 * from the kernel lists and can be freed or reused once this function
417 * returns.
418 *
419 * The packet type might still be in use by receivers
420 * and must not be freed until after all the CPU's have gone
421 * through a quiescent state.
422 */
423 void __dev_remove_pack(struct packet_type *pt)
424 {
425 struct list_head *head = ptype_head(pt);
426 struct packet_type *pt1;
427
428 spin_lock(&ptype_lock);
429
430 list_for_each_entry(pt1, head, list) {
431 if (pt == pt1) {
432 list_del_rcu(&pt->list);
433 goto out;
434 }
435 }
436
437 pr_warn("dev_remove_pack: %p not found\n", pt);
438 out:
439 spin_unlock(&ptype_lock);
440 }
441 EXPORT_SYMBOL(__dev_remove_pack);
442
443 /**
444 * dev_remove_pack - remove packet handler
445 * @pt: packet type declaration
446 *
447 * Remove a protocol handler that was previously added to the kernel
448 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
449 * from the kernel lists and can be freed or reused once this function
450 * returns.
451 *
452 * This call sleeps to guarantee that no CPU is looking at the packet
453 * type after return.
454 */
455 void dev_remove_pack(struct packet_type *pt)
456 {
457 __dev_remove_pack(pt);
458
459 synchronize_net();
460 }
461 EXPORT_SYMBOL(dev_remove_pack);
462
463
464 /**
465 * dev_add_offload - register offload handlers
466 * @po: protocol offload declaration
467 *
468 * Add protocol offload handlers to the networking stack. The passed
469 * &proto_offload is linked into kernel lists and may not be freed until
470 * it has been removed from the kernel lists.
471 *
472 * This call does not sleep therefore it can not
473 * guarantee all CPU's that are in middle of receiving packets
474 * will see the new offload handlers (until the next received packet).
475 */
476 void dev_add_offload(struct packet_offload *po)
477 {
478 struct packet_offload *elem;
479
480 spin_lock(&offload_lock);
481 list_for_each_entry(elem, &offload_base, list) {
482 if (po->priority < elem->priority)
483 break;
484 }
485 list_add_rcu(&po->list, elem->list.prev);
486 spin_unlock(&offload_lock);
487 }
488 EXPORT_SYMBOL(dev_add_offload);
489
490 /**
491 * __dev_remove_offload - remove offload handler
492 * @po: packet offload declaration
493 *
494 * Remove a protocol offload handler that was previously added to the
495 * kernel offload handlers by dev_add_offload(). The passed &offload_type
496 * is removed from the kernel lists and can be freed or reused once this
497 * function returns.
498 *
499 * The packet type might still be in use by receivers
500 * and must not be freed until after all the CPU's have gone
501 * through a quiescent state.
502 */
503 static void __dev_remove_offload(struct packet_offload *po)
504 {
505 struct list_head *head = &offload_base;
506 struct packet_offload *po1;
507
508 spin_lock(&offload_lock);
509
510 list_for_each_entry(po1, head, list) {
511 if (po == po1) {
512 list_del_rcu(&po->list);
513 goto out;
514 }
515 }
516
517 pr_warn("dev_remove_offload: %p not found\n", po);
518 out:
519 spin_unlock(&offload_lock);
520 }
521
522 /**
523 * dev_remove_offload - remove packet offload handler
524 * @po: packet offload declaration
525 *
526 * Remove a packet offload handler that was previously added to the kernel
527 * offload handlers by dev_add_offload(). The passed &offload_type is
528 * removed from the kernel lists and can be freed or reused once this
529 * function returns.
530 *
531 * This call sleeps to guarantee that no CPU is looking at the packet
532 * type after return.
533 */
534 void dev_remove_offload(struct packet_offload *po)
535 {
536 __dev_remove_offload(po);
537
538 synchronize_net();
539 }
540 EXPORT_SYMBOL(dev_remove_offload);
541
542 /******************************************************************************
543 *
544 * Device Boot-time Settings Routines
545 *
546 ******************************************************************************/
547
548 /* Boot time configuration table */
549 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
550
551 /**
552 * netdev_boot_setup_add - add new setup entry
553 * @name: name of the device
554 * @map: configured settings for the device
555 *
556 * Adds new setup entry to the dev_boot_setup list. The function
557 * returns 0 on error and 1 on success. This is a generic routine to
558 * all netdevices.
559 */
560 static int netdev_boot_setup_add(char *name, struct ifmap *map)
561 {
562 struct netdev_boot_setup *s;
563 int i;
564
565 s = dev_boot_setup;
566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
567 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
568 memset(s[i].name, 0, sizeof(s[i].name));
569 strlcpy(s[i].name, name, IFNAMSIZ);
570 memcpy(&s[i].map, map, sizeof(s[i].map));
571 break;
572 }
573 }
574
575 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
576 }
577
578 /**
579 * netdev_boot_setup_check - check boot time settings
580 * @dev: the netdevice
581 *
582 * Check boot time settings for the device.
583 * The found settings are set for the device to be used
584 * later in the device probing.
585 * Returns 0 if no settings found, 1 if they are.
586 */
587 int netdev_boot_setup_check(struct net_device *dev)
588 {
589 struct netdev_boot_setup *s = dev_boot_setup;
590 int i;
591
592 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
593 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
594 !strcmp(dev->name, s[i].name)) {
595 dev->irq = s[i].map.irq;
596 dev->base_addr = s[i].map.base_addr;
597 dev->mem_start = s[i].map.mem_start;
598 dev->mem_end = s[i].map.mem_end;
599 return 1;
600 }
601 }
602 return 0;
603 }
604 EXPORT_SYMBOL(netdev_boot_setup_check);
605
606
607 /**
608 * netdev_boot_base - get address from boot time settings
609 * @prefix: prefix for network device
610 * @unit: id for network device
611 *
612 * Check boot time settings for the base address of device.
613 * The found settings are set for the device to be used
614 * later in the device probing.
615 * Returns 0 if no settings found.
616 */
617 unsigned long netdev_boot_base(const char *prefix, int unit)
618 {
619 const struct netdev_boot_setup *s = dev_boot_setup;
620 char name[IFNAMSIZ];
621 int i;
622
623 sprintf(name, "%s%d", prefix, unit);
624
625 /*
626 * If device already registered then return base of 1
627 * to indicate not to probe for this interface
628 */
629 if (__dev_get_by_name(&init_net, name))
630 return 1;
631
632 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
633 if (!strcmp(name, s[i].name))
634 return s[i].map.base_addr;
635 return 0;
636 }
637
638 /*
639 * Saves at boot time configured settings for any netdevice.
640 */
641 int __init netdev_boot_setup(char *str)
642 {
643 int ints[5];
644 struct ifmap map;
645
646 str = get_options(str, ARRAY_SIZE(ints), ints);
647 if (!str || !*str)
648 return 0;
649
650 /* Save settings */
651 memset(&map, 0, sizeof(map));
652 if (ints[0] > 0)
653 map.irq = ints[1];
654 if (ints[0] > 1)
655 map.base_addr = ints[2];
656 if (ints[0] > 2)
657 map.mem_start = ints[3];
658 if (ints[0] > 3)
659 map.mem_end = ints[4];
660
661 /* Add new entry to the list */
662 return netdev_boot_setup_add(str, &map);
663 }
664
665 __setup("netdev=", netdev_boot_setup);
666
667 /*******************************************************************************
668 *
669 * Device Interface Subroutines
670 *
671 *******************************************************************************/
672
673 /**
674 * dev_get_iflink - get 'iflink' value of a interface
675 * @dev: targeted interface
676 *
677 * Indicates the ifindex the interface is linked to.
678 * Physical interfaces have the same 'ifindex' and 'iflink' values.
679 */
680
681 int dev_get_iflink(const struct net_device *dev)
682 {
683 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
684 return dev->netdev_ops->ndo_get_iflink(dev);
685
686 return dev->ifindex;
687 }
688 EXPORT_SYMBOL(dev_get_iflink);
689
690 /**
691 * dev_fill_metadata_dst - Retrieve tunnel egress information.
692 * @dev: targeted interface
693 * @skb: The packet.
694 *
695 * For better visibility of tunnel traffic OVS needs to retrieve
696 * egress tunnel information for a packet. Following API allows
697 * user to get this info.
698 */
699 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
700 {
701 struct ip_tunnel_info *info;
702
703 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
704 return -EINVAL;
705
706 info = skb_tunnel_info_unclone(skb);
707 if (!info)
708 return -ENOMEM;
709 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
710 return -EINVAL;
711
712 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
713 }
714 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
715
716 /**
717 * __dev_get_by_name - find a device by its name
718 * @net: the applicable net namespace
719 * @name: name to find
720 *
721 * Find an interface by name. Must be called under RTNL semaphore
722 * or @dev_base_lock. If the name is found a pointer to the device
723 * is returned. If the name is not found then %NULL is returned. The
724 * reference counters are not incremented so the caller must be
725 * careful with locks.
726 */
727
728 struct net_device *__dev_get_by_name(struct net *net, const char *name)
729 {
730 struct net_device *dev;
731 struct hlist_head *head = dev_name_hash(net, name);
732
733 hlist_for_each_entry(dev, head, name_hlist)
734 if (!strncmp(dev->name, name, IFNAMSIZ))
735 return dev;
736
737 return NULL;
738 }
739 EXPORT_SYMBOL(__dev_get_by_name);
740
741 /**
742 * dev_get_by_name_rcu - find a device by its name
743 * @net: the applicable net namespace
744 * @name: name to find
745 *
746 * Find an interface by name.
747 * If the name is found a pointer to the device is returned.
748 * If the name is not found then %NULL is returned.
749 * The reference counters are not incremented so the caller must be
750 * careful with locks. The caller must hold RCU lock.
751 */
752
753 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
754 {
755 struct net_device *dev;
756 struct hlist_head *head = dev_name_hash(net, name);
757
758 hlist_for_each_entry_rcu(dev, head, name_hlist)
759 if (!strncmp(dev->name, name, IFNAMSIZ))
760 return dev;
761
762 return NULL;
763 }
764 EXPORT_SYMBOL(dev_get_by_name_rcu);
765
766 /**
767 * dev_get_by_name - find a device by its name
768 * @net: the applicable net namespace
769 * @name: name to find
770 *
771 * Find an interface by name. This can be called from any
772 * context and does its own locking. The returned handle has
773 * the usage count incremented and the caller must use dev_put() to
774 * release it when it is no longer needed. %NULL is returned if no
775 * matching device is found.
776 */
777
778 struct net_device *dev_get_by_name(struct net *net, const char *name)
779 {
780 struct net_device *dev;
781
782 rcu_read_lock();
783 dev = dev_get_by_name_rcu(net, name);
784 if (dev)
785 dev_hold(dev);
786 rcu_read_unlock();
787 return dev;
788 }
789 EXPORT_SYMBOL(dev_get_by_name);
790
791 /**
792 * __dev_get_by_index - find a device by its ifindex
793 * @net: the applicable net namespace
794 * @ifindex: index of device
795 *
796 * Search for an interface by index. Returns %NULL if the device
797 * is not found or a pointer to the device. The device has not
798 * had its reference counter increased so the caller must be careful
799 * about locking. The caller must hold either the RTNL semaphore
800 * or @dev_base_lock.
801 */
802
803 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
804 {
805 struct net_device *dev;
806 struct hlist_head *head = dev_index_hash(net, ifindex);
807
808 hlist_for_each_entry(dev, head, index_hlist)
809 if (dev->ifindex == ifindex)
810 return dev;
811
812 return NULL;
813 }
814 EXPORT_SYMBOL(__dev_get_by_index);
815
816 /**
817 * dev_get_by_index_rcu - find a device by its ifindex
818 * @net: the applicable net namespace
819 * @ifindex: index of device
820 *
821 * Search for an interface by index. Returns %NULL if the device
822 * is not found or a pointer to the device. The device has not
823 * had its reference counter increased so the caller must be careful
824 * about locking. The caller must hold RCU lock.
825 */
826
827 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
828 {
829 struct net_device *dev;
830 struct hlist_head *head = dev_index_hash(net, ifindex);
831
832 hlist_for_each_entry_rcu(dev, head, index_hlist)
833 if (dev->ifindex == ifindex)
834 return dev;
835
836 return NULL;
837 }
838 EXPORT_SYMBOL(dev_get_by_index_rcu);
839
840
841 /**
842 * dev_get_by_index - find a device by its ifindex
843 * @net: the applicable net namespace
844 * @ifindex: index of device
845 *
846 * Search for an interface by index. Returns NULL if the device
847 * is not found or a pointer to the device. The device returned has
848 * had a reference added and the pointer is safe until the user calls
849 * dev_put to indicate they have finished with it.
850 */
851
852 struct net_device *dev_get_by_index(struct net *net, int ifindex)
853 {
854 struct net_device *dev;
855
856 rcu_read_lock();
857 dev = dev_get_by_index_rcu(net, ifindex);
858 if (dev)
859 dev_hold(dev);
860 rcu_read_unlock();
861 return dev;
862 }
863 EXPORT_SYMBOL(dev_get_by_index);
864
865 /**
866 * netdev_get_name - get a netdevice name, knowing its ifindex.
867 * @net: network namespace
868 * @name: a pointer to the buffer where the name will be stored.
869 * @ifindex: the ifindex of the interface to get the name from.
870 *
871 * The use of raw_seqcount_begin() and cond_resched() before
872 * retrying is required as we want to give the writers a chance
873 * to complete when CONFIG_PREEMPT is not set.
874 */
875 int netdev_get_name(struct net *net, char *name, int ifindex)
876 {
877 struct net_device *dev;
878 unsigned int seq;
879
880 retry:
881 seq = raw_seqcount_begin(&devnet_rename_seq);
882 rcu_read_lock();
883 dev = dev_get_by_index_rcu(net, ifindex);
884 if (!dev) {
885 rcu_read_unlock();
886 return -ENODEV;
887 }
888
889 strcpy(name, dev->name);
890 rcu_read_unlock();
891 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
892 cond_resched();
893 goto retry;
894 }
895
896 return 0;
897 }
898
899 /**
900 * dev_getbyhwaddr_rcu - find a device by its hardware address
901 * @net: the applicable net namespace
902 * @type: media type of device
903 * @ha: hardware address
904 *
905 * Search for an interface by MAC address. Returns NULL if the device
906 * is not found or a pointer to the device.
907 * The caller must hold RCU or RTNL.
908 * The returned device has not had its ref count increased
909 * and the caller must therefore be careful about locking
910 *
911 */
912
913 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
914 const char *ha)
915 {
916 struct net_device *dev;
917
918 for_each_netdev_rcu(net, dev)
919 if (dev->type == type &&
920 !memcmp(dev->dev_addr, ha, dev->addr_len))
921 return dev;
922
923 return NULL;
924 }
925 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
926
927 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
928 {
929 struct net_device *dev;
930
931 ASSERT_RTNL();
932 for_each_netdev(net, dev)
933 if (dev->type == type)
934 return dev;
935
936 return NULL;
937 }
938 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
939
940 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
941 {
942 struct net_device *dev, *ret = NULL;
943
944 rcu_read_lock();
945 for_each_netdev_rcu(net, dev)
946 if (dev->type == type) {
947 dev_hold(dev);
948 ret = dev;
949 break;
950 }
951 rcu_read_unlock();
952 return ret;
953 }
954 EXPORT_SYMBOL(dev_getfirstbyhwtype);
955
956 /**
957 * __dev_get_by_flags - find any device with given flags
958 * @net: the applicable net namespace
959 * @if_flags: IFF_* values
960 * @mask: bitmask of bits in if_flags to check
961 *
962 * Search for any interface with the given flags. Returns NULL if a device
963 * is not found or a pointer to the device. Must be called inside
964 * rtnl_lock(), and result refcount is unchanged.
965 */
966
967 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
968 unsigned short mask)
969 {
970 struct net_device *dev, *ret;
971
972 ASSERT_RTNL();
973
974 ret = NULL;
975 for_each_netdev(net, dev) {
976 if (((dev->flags ^ if_flags) & mask) == 0) {
977 ret = dev;
978 break;
979 }
980 }
981 return ret;
982 }
983 EXPORT_SYMBOL(__dev_get_by_flags);
984
985 /**
986 * dev_valid_name - check if name is okay for network device
987 * @name: name string
988 *
989 * Network device names need to be valid file names to
990 * to allow sysfs to work. We also disallow any kind of
991 * whitespace.
992 */
993 bool dev_valid_name(const char *name)
994 {
995 if (*name == '\0')
996 return false;
997 if (strlen(name) >= IFNAMSIZ)
998 return false;
999 if (!strcmp(name, ".") || !strcmp(name, ".."))
1000 return false;
1001
1002 while (*name) {
1003 if (*name == '/' || *name == ':' || isspace(*name))
1004 return false;
1005 name++;
1006 }
1007 return true;
1008 }
1009 EXPORT_SYMBOL(dev_valid_name);
1010
1011 /**
1012 * __dev_alloc_name - allocate a name for a device
1013 * @net: network namespace to allocate the device name in
1014 * @name: name format string
1015 * @buf: scratch buffer and result name string
1016 *
1017 * Passed a format string - eg "lt%d" it will try and find a suitable
1018 * id. It scans list of devices to build up a free map, then chooses
1019 * the first empty slot. The caller must hold the dev_base or rtnl lock
1020 * while allocating the name and adding the device in order to avoid
1021 * duplicates.
1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023 * Returns the number of the unit assigned or a negative errno code.
1024 */
1025
1026 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1027 {
1028 int i = 0;
1029 const char *p;
1030 const int max_netdevices = 8*PAGE_SIZE;
1031 unsigned long *inuse;
1032 struct net_device *d;
1033
1034 p = strnchr(name, IFNAMSIZ-1, '%');
1035 if (p) {
1036 /*
1037 * Verify the string as this thing may have come from
1038 * the user. There must be either one "%d" and no other "%"
1039 * characters.
1040 */
1041 if (p[1] != 'd' || strchr(p + 2, '%'))
1042 return -EINVAL;
1043
1044 /* Use one page as a bit array of possible slots */
1045 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1046 if (!inuse)
1047 return -ENOMEM;
1048
1049 for_each_netdev(net, d) {
1050 if (!sscanf(d->name, name, &i))
1051 continue;
1052 if (i < 0 || i >= max_netdevices)
1053 continue;
1054
1055 /* avoid cases where sscanf is not exact inverse of printf */
1056 snprintf(buf, IFNAMSIZ, name, i);
1057 if (!strncmp(buf, d->name, IFNAMSIZ))
1058 set_bit(i, inuse);
1059 }
1060
1061 i = find_first_zero_bit(inuse, max_netdevices);
1062 free_page((unsigned long) inuse);
1063 }
1064
1065 if (buf != name)
1066 snprintf(buf, IFNAMSIZ, name, i);
1067 if (!__dev_get_by_name(net, buf))
1068 return i;
1069
1070 /* It is possible to run out of possible slots
1071 * when the name is long and there isn't enough space left
1072 * for the digits, or if all bits are used.
1073 */
1074 return -ENFILE;
1075 }
1076
1077 /**
1078 * dev_alloc_name - allocate a name for a device
1079 * @dev: device
1080 * @name: name format string
1081 *
1082 * Passed a format string - eg "lt%d" it will try and find a suitable
1083 * id. It scans list of devices to build up a free map, then chooses
1084 * the first empty slot. The caller must hold the dev_base or rtnl lock
1085 * while allocating the name and adding the device in order to avoid
1086 * duplicates.
1087 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1088 * Returns the number of the unit assigned or a negative errno code.
1089 */
1090
1091 int dev_alloc_name(struct net_device *dev, const char *name)
1092 {
1093 char buf[IFNAMSIZ];
1094 struct net *net;
1095 int ret;
1096
1097 BUG_ON(!dev_net(dev));
1098 net = dev_net(dev);
1099 ret = __dev_alloc_name(net, name, buf);
1100 if (ret >= 0)
1101 strlcpy(dev->name, buf, IFNAMSIZ);
1102 return ret;
1103 }
1104 EXPORT_SYMBOL(dev_alloc_name);
1105
1106 static int dev_alloc_name_ns(struct net *net,
1107 struct net_device *dev,
1108 const char *name)
1109 {
1110 char buf[IFNAMSIZ];
1111 int ret;
1112
1113 ret = __dev_alloc_name(net, name, buf);
1114 if (ret >= 0)
1115 strlcpy(dev->name, buf, IFNAMSIZ);
1116 return ret;
1117 }
1118
1119 static int dev_get_valid_name(struct net *net,
1120 struct net_device *dev,
1121 const char *name)
1122 {
1123 BUG_ON(!net);
1124
1125 if (!dev_valid_name(name))
1126 return -EINVAL;
1127
1128 if (strchr(name, '%'))
1129 return dev_alloc_name_ns(net, dev, name);
1130 else if (__dev_get_by_name(net, name))
1131 return -EEXIST;
1132 else if (dev->name != name)
1133 strlcpy(dev->name, name, IFNAMSIZ);
1134
1135 return 0;
1136 }
1137
1138 /**
1139 * dev_change_name - change name of a device
1140 * @dev: device
1141 * @newname: name (or format string) must be at least IFNAMSIZ
1142 *
1143 * Change name of a device, can pass format strings "eth%d".
1144 * for wildcarding.
1145 */
1146 int dev_change_name(struct net_device *dev, const char *newname)
1147 {
1148 unsigned char old_assign_type;
1149 char oldname[IFNAMSIZ];
1150 int err = 0;
1151 int ret;
1152 struct net *net;
1153
1154 ASSERT_RTNL();
1155 BUG_ON(!dev_net(dev));
1156
1157 net = dev_net(dev);
1158 if (dev->flags & IFF_UP)
1159 return -EBUSY;
1160
1161 write_seqcount_begin(&devnet_rename_seq);
1162
1163 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1164 write_seqcount_end(&devnet_rename_seq);
1165 return 0;
1166 }
1167
1168 memcpy(oldname, dev->name, IFNAMSIZ);
1169
1170 err = dev_get_valid_name(net, dev, newname);
1171 if (err < 0) {
1172 write_seqcount_end(&devnet_rename_seq);
1173 return err;
1174 }
1175
1176 if (oldname[0] && !strchr(oldname, '%'))
1177 netdev_info(dev, "renamed from %s\n", oldname);
1178
1179 old_assign_type = dev->name_assign_type;
1180 dev->name_assign_type = NET_NAME_RENAMED;
1181
1182 rollback:
1183 ret = device_rename(&dev->dev, dev->name);
1184 if (ret) {
1185 memcpy(dev->name, oldname, IFNAMSIZ);
1186 dev->name_assign_type = old_assign_type;
1187 write_seqcount_end(&devnet_rename_seq);
1188 return ret;
1189 }
1190
1191 write_seqcount_end(&devnet_rename_seq);
1192
1193 netdev_adjacent_rename_links(dev, oldname);
1194
1195 write_lock_bh(&dev_base_lock);
1196 hlist_del_rcu(&dev->name_hlist);
1197 write_unlock_bh(&dev_base_lock);
1198
1199 synchronize_rcu();
1200
1201 write_lock_bh(&dev_base_lock);
1202 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1203 write_unlock_bh(&dev_base_lock);
1204
1205 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1206 ret = notifier_to_errno(ret);
1207
1208 if (ret) {
1209 /* err >= 0 after dev_alloc_name() or stores the first errno */
1210 if (err >= 0) {
1211 err = ret;
1212 write_seqcount_begin(&devnet_rename_seq);
1213 memcpy(dev->name, oldname, IFNAMSIZ);
1214 memcpy(oldname, newname, IFNAMSIZ);
1215 dev->name_assign_type = old_assign_type;
1216 old_assign_type = NET_NAME_RENAMED;
1217 goto rollback;
1218 } else {
1219 pr_err("%s: name change rollback failed: %d\n",
1220 dev->name, ret);
1221 }
1222 }
1223
1224 return err;
1225 }
1226
1227 /**
1228 * dev_set_alias - change ifalias of a device
1229 * @dev: device
1230 * @alias: name up to IFALIASZ
1231 * @len: limit of bytes to copy from info
1232 *
1233 * Set ifalias for a device,
1234 */
1235 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1236 {
1237 char *new_ifalias;
1238
1239 ASSERT_RTNL();
1240
1241 if (len >= IFALIASZ)
1242 return -EINVAL;
1243
1244 if (!len) {
1245 kfree(dev->ifalias);
1246 dev->ifalias = NULL;
1247 return 0;
1248 }
1249
1250 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1251 if (!new_ifalias)
1252 return -ENOMEM;
1253 dev->ifalias = new_ifalias;
1254
1255 strlcpy(dev->ifalias, alias, len+1);
1256 return len;
1257 }
1258
1259
1260 /**
1261 * netdev_features_change - device changes features
1262 * @dev: device to cause notification
1263 *
1264 * Called to indicate a device has changed features.
1265 */
1266 void netdev_features_change(struct net_device *dev)
1267 {
1268 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1269 }
1270 EXPORT_SYMBOL(netdev_features_change);
1271
1272 /**
1273 * netdev_state_change - device changes state
1274 * @dev: device to cause notification
1275 *
1276 * Called to indicate a device has changed state. This function calls
1277 * the notifier chains for netdev_chain and sends a NEWLINK message
1278 * to the routing socket.
1279 */
1280 void netdev_state_change(struct net_device *dev)
1281 {
1282 if (dev->flags & IFF_UP) {
1283 struct netdev_notifier_change_info change_info;
1284
1285 change_info.flags_changed = 0;
1286 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1287 &change_info.info);
1288 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1289 }
1290 }
1291 EXPORT_SYMBOL(netdev_state_change);
1292
1293 /**
1294 * netdev_notify_peers - notify network peers about existence of @dev
1295 * @dev: network device
1296 *
1297 * Generate traffic such that interested network peers are aware of
1298 * @dev, such as by generating a gratuitous ARP. This may be used when
1299 * a device wants to inform the rest of the network about some sort of
1300 * reconfiguration such as a failover event or virtual machine
1301 * migration.
1302 */
1303 void netdev_notify_peers(struct net_device *dev)
1304 {
1305 rtnl_lock();
1306 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1307 rtnl_unlock();
1308 }
1309 EXPORT_SYMBOL(netdev_notify_peers);
1310
1311 static int __dev_open(struct net_device *dev)
1312 {
1313 const struct net_device_ops *ops = dev->netdev_ops;
1314 int ret;
1315
1316 ASSERT_RTNL();
1317
1318 if (!netif_device_present(dev))
1319 return -ENODEV;
1320
1321 /* Block netpoll from trying to do any rx path servicing.
1322 * If we don't do this there is a chance ndo_poll_controller
1323 * or ndo_poll may be running while we open the device
1324 */
1325 netpoll_poll_disable(dev);
1326
1327 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1328 ret = notifier_to_errno(ret);
1329 if (ret)
1330 return ret;
1331
1332 set_bit(__LINK_STATE_START, &dev->state);
1333
1334 if (ops->ndo_validate_addr)
1335 ret = ops->ndo_validate_addr(dev);
1336
1337 if (!ret && ops->ndo_open)
1338 ret = ops->ndo_open(dev);
1339
1340 netpoll_poll_enable(dev);
1341
1342 if (ret)
1343 clear_bit(__LINK_STATE_START, &dev->state);
1344 else {
1345 dev->flags |= IFF_UP;
1346 dev_set_rx_mode(dev);
1347 dev_activate(dev);
1348 add_device_randomness(dev->dev_addr, dev->addr_len);
1349 }
1350
1351 return ret;
1352 }
1353
1354 /**
1355 * dev_open - prepare an interface for use.
1356 * @dev: device to open
1357 *
1358 * Takes a device from down to up state. The device's private open
1359 * function is invoked and then the multicast lists are loaded. Finally
1360 * the device is moved into the up state and a %NETDEV_UP message is
1361 * sent to the netdev notifier chain.
1362 *
1363 * Calling this function on an active interface is a nop. On a failure
1364 * a negative errno code is returned.
1365 */
1366 int dev_open(struct net_device *dev)
1367 {
1368 int ret;
1369
1370 if (dev->flags & IFF_UP)
1371 return 0;
1372
1373 ret = __dev_open(dev);
1374 if (ret < 0)
1375 return ret;
1376
1377 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1378 call_netdevice_notifiers(NETDEV_UP, dev);
1379
1380 return ret;
1381 }
1382 EXPORT_SYMBOL(dev_open);
1383
1384 static int __dev_close_many(struct list_head *head)
1385 {
1386 struct net_device *dev;
1387
1388 ASSERT_RTNL();
1389 might_sleep();
1390
1391 list_for_each_entry(dev, head, close_list) {
1392 /* Temporarily disable netpoll until the interface is down */
1393 netpoll_poll_disable(dev);
1394
1395 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1396
1397 clear_bit(__LINK_STATE_START, &dev->state);
1398
1399 /* Synchronize to scheduled poll. We cannot touch poll list, it
1400 * can be even on different cpu. So just clear netif_running().
1401 *
1402 * dev->stop() will invoke napi_disable() on all of it's
1403 * napi_struct instances on this device.
1404 */
1405 smp_mb__after_atomic(); /* Commit netif_running(). */
1406 }
1407
1408 dev_deactivate_many(head);
1409
1410 list_for_each_entry(dev, head, close_list) {
1411 const struct net_device_ops *ops = dev->netdev_ops;
1412
1413 /*
1414 * Call the device specific close. This cannot fail.
1415 * Only if device is UP
1416 *
1417 * We allow it to be called even after a DETACH hot-plug
1418 * event.
1419 */
1420 if (ops->ndo_stop)
1421 ops->ndo_stop(dev);
1422
1423 dev->flags &= ~IFF_UP;
1424 netpoll_poll_enable(dev);
1425 }
1426
1427 return 0;
1428 }
1429
1430 static int __dev_close(struct net_device *dev)
1431 {
1432 int retval;
1433 LIST_HEAD(single);
1434
1435 list_add(&dev->close_list, &single);
1436 retval = __dev_close_many(&single);
1437 list_del(&single);
1438
1439 return retval;
1440 }
1441
1442 int dev_close_many(struct list_head *head, bool unlink)
1443 {
1444 struct net_device *dev, *tmp;
1445
1446 /* Remove the devices that don't need to be closed */
1447 list_for_each_entry_safe(dev, tmp, head, close_list)
1448 if (!(dev->flags & IFF_UP))
1449 list_del_init(&dev->close_list);
1450
1451 __dev_close_many(head);
1452
1453 list_for_each_entry_safe(dev, tmp, head, close_list) {
1454 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1455 call_netdevice_notifiers(NETDEV_DOWN, dev);
1456 if (unlink)
1457 list_del_init(&dev->close_list);
1458 }
1459
1460 return 0;
1461 }
1462 EXPORT_SYMBOL(dev_close_many);
1463
1464 /**
1465 * dev_close - shutdown an interface.
1466 * @dev: device to shutdown
1467 *
1468 * This function moves an active device into down state. A
1469 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1470 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1471 * chain.
1472 */
1473 int dev_close(struct net_device *dev)
1474 {
1475 if (dev->flags & IFF_UP) {
1476 LIST_HEAD(single);
1477
1478 list_add(&dev->close_list, &single);
1479 dev_close_many(&single, true);
1480 list_del(&single);
1481 }
1482 return 0;
1483 }
1484 EXPORT_SYMBOL(dev_close);
1485
1486
1487 /**
1488 * dev_disable_lro - disable Large Receive Offload on a device
1489 * @dev: device
1490 *
1491 * Disable Large Receive Offload (LRO) on a net device. Must be
1492 * called under RTNL. This is needed if received packets may be
1493 * forwarded to another interface.
1494 */
1495 void dev_disable_lro(struct net_device *dev)
1496 {
1497 struct net_device *lower_dev;
1498 struct list_head *iter;
1499
1500 dev->wanted_features &= ~NETIF_F_LRO;
1501 netdev_update_features(dev);
1502
1503 if (unlikely(dev->features & NETIF_F_LRO))
1504 netdev_WARN(dev, "failed to disable LRO!\n");
1505
1506 netdev_for_each_lower_dev(dev, lower_dev, iter)
1507 dev_disable_lro(lower_dev);
1508 }
1509 EXPORT_SYMBOL(dev_disable_lro);
1510
1511 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1512 struct net_device *dev)
1513 {
1514 struct netdev_notifier_info info;
1515
1516 netdev_notifier_info_init(&info, dev);
1517 return nb->notifier_call(nb, val, &info);
1518 }
1519
1520 static int dev_boot_phase = 1;
1521
1522 /**
1523 * register_netdevice_notifier - register a network notifier block
1524 * @nb: notifier
1525 *
1526 * Register a notifier to be called when network device events occur.
1527 * The notifier passed is linked into the kernel structures and must
1528 * not be reused until it has been unregistered. A negative errno code
1529 * is returned on a failure.
1530 *
1531 * When registered all registration and up events are replayed
1532 * to the new notifier to allow device to have a race free
1533 * view of the network device list.
1534 */
1535
1536 int register_netdevice_notifier(struct notifier_block *nb)
1537 {
1538 struct net_device *dev;
1539 struct net_device *last;
1540 struct net *net;
1541 int err;
1542
1543 rtnl_lock();
1544 err = raw_notifier_chain_register(&netdev_chain, nb);
1545 if (err)
1546 goto unlock;
1547 if (dev_boot_phase)
1548 goto unlock;
1549 for_each_net(net) {
1550 for_each_netdev(net, dev) {
1551 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1552 err = notifier_to_errno(err);
1553 if (err)
1554 goto rollback;
1555
1556 if (!(dev->flags & IFF_UP))
1557 continue;
1558
1559 call_netdevice_notifier(nb, NETDEV_UP, dev);
1560 }
1561 }
1562
1563 unlock:
1564 rtnl_unlock();
1565 return err;
1566
1567 rollback:
1568 last = dev;
1569 for_each_net(net) {
1570 for_each_netdev(net, dev) {
1571 if (dev == last)
1572 goto outroll;
1573
1574 if (dev->flags & IFF_UP) {
1575 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1576 dev);
1577 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1578 }
1579 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1580 }
1581 }
1582
1583 outroll:
1584 raw_notifier_chain_unregister(&netdev_chain, nb);
1585 goto unlock;
1586 }
1587 EXPORT_SYMBOL(register_netdevice_notifier);
1588
1589 /**
1590 * unregister_netdevice_notifier - unregister a network notifier block
1591 * @nb: notifier
1592 *
1593 * Unregister a notifier previously registered by
1594 * register_netdevice_notifier(). The notifier is unlinked into the
1595 * kernel structures and may then be reused. A negative errno code
1596 * is returned on a failure.
1597 *
1598 * After unregistering unregister and down device events are synthesized
1599 * for all devices on the device list to the removed notifier to remove
1600 * the need for special case cleanup code.
1601 */
1602
1603 int unregister_netdevice_notifier(struct notifier_block *nb)
1604 {
1605 struct net_device *dev;
1606 struct net *net;
1607 int err;
1608
1609 rtnl_lock();
1610 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1611 if (err)
1612 goto unlock;
1613
1614 for_each_net(net) {
1615 for_each_netdev(net, dev) {
1616 if (dev->flags & IFF_UP) {
1617 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1618 dev);
1619 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1620 }
1621 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1622 }
1623 }
1624 unlock:
1625 rtnl_unlock();
1626 return err;
1627 }
1628 EXPORT_SYMBOL(unregister_netdevice_notifier);
1629
1630 /**
1631 * call_netdevice_notifiers_info - call all network notifier blocks
1632 * @val: value passed unmodified to notifier function
1633 * @dev: net_device pointer passed unmodified to notifier function
1634 * @info: notifier information data
1635 *
1636 * Call all network notifier blocks. Parameters and return value
1637 * are as for raw_notifier_call_chain().
1638 */
1639
1640 static int call_netdevice_notifiers_info(unsigned long val,
1641 struct net_device *dev,
1642 struct netdev_notifier_info *info)
1643 {
1644 ASSERT_RTNL();
1645 netdev_notifier_info_init(info, dev);
1646 return raw_notifier_call_chain(&netdev_chain, val, info);
1647 }
1648
1649 /**
1650 * call_netdevice_notifiers - call all network notifier blocks
1651 * @val: value passed unmodified to notifier function
1652 * @dev: net_device pointer passed unmodified to notifier function
1653 *
1654 * Call all network notifier blocks. Parameters and return value
1655 * are as for raw_notifier_call_chain().
1656 */
1657
1658 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1659 {
1660 struct netdev_notifier_info info;
1661
1662 return call_netdevice_notifiers_info(val, dev, &info);
1663 }
1664 EXPORT_SYMBOL(call_netdevice_notifiers);
1665
1666 #ifdef CONFIG_NET_INGRESS
1667 static struct static_key ingress_needed __read_mostly;
1668
1669 void net_inc_ingress_queue(void)
1670 {
1671 static_key_slow_inc(&ingress_needed);
1672 }
1673 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1674
1675 void net_dec_ingress_queue(void)
1676 {
1677 static_key_slow_dec(&ingress_needed);
1678 }
1679 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1680 #endif
1681
1682 #ifdef CONFIG_NET_EGRESS
1683 static struct static_key egress_needed __read_mostly;
1684
1685 void net_inc_egress_queue(void)
1686 {
1687 static_key_slow_inc(&egress_needed);
1688 }
1689 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1690
1691 void net_dec_egress_queue(void)
1692 {
1693 static_key_slow_dec(&egress_needed);
1694 }
1695 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1696 #endif
1697
1698 static struct static_key netstamp_needed __read_mostly;
1699 #ifdef HAVE_JUMP_LABEL
1700 static atomic_t netstamp_needed_deferred;
1701 static atomic_t netstamp_wanted;
1702 static void netstamp_clear(struct work_struct *work)
1703 {
1704 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1705 int wanted;
1706
1707 wanted = atomic_add_return(deferred, &netstamp_wanted);
1708 if (wanted > 0)
1709 static_key_enable(&netstamp_needed);
1710 else
1711 static_key_disable(&netstamp_needed);
1712 }
1713 static DECLARE_WORK(netstamp_work, netstamp_clear);
1714 #endif
1715
1716 void net_enable_timestamp(void)
1717 {
1718 #ifdef HAVE_JUMP_LABEL
1719 int wanted;
1720
1721 while (1) {
1722 wanted = atomic_read(&netstamp_wanted);
1723 if (wanted <= 0)
1724 break;
1725 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1726 return;
1727 }
1728 atomic_inc(&netstamp_needed_deferred);
1729 schedule_work(&netstamp_work);
1730 #else
1731 static_key_slow_inc(&netstamp_needed);
1732 #endif
1733 }
1734 EXPORT_SYMBOL(net_enable_timestamp);
1735
1736 void net_disable_timestamp(void)
1737 {
1738 #ifdef HAVE_JUMP_LABEL
1739 int wanted;
1740
1741 while (1) {
1742 wanted = atomic_read(&netstamp_wanted);
1743 if (wanted <= 1)
1744 break;
1745 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1746 return;
1747 }
1748 atomic_dec(&netstamp_needed_deferred);
1749 schedule_work(&netstamp_work);
1750 #else
1751 static_key_slow_dec(&netstamp_needed);
1752 #endif
1753 }
1754 EXPORT_SYMBOL(net_disable_timestamp);
1755
1756 static inline void net_timestamp_set(struct sk_buff *skb)
1757 {
1758 skb->tstamp = 0;
1759 if (static_key_false(&netstamp_needed))
1760 __net_timestamp(skb);
1761 }
1762
1763 #define net_timestamp_check(COND, SKB) \
1764 if (static_key_false(&netstamp_needed)) { \
1765 if ((COND) && !(SKB)->tstamp) \
1766 __net_timestamp(SKB); \
1767 } \
1768
1769 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1770 {
1771 unsigned int len;
1772
1773 if (!(dev->flags & IFF_UP))
1774 return false;
1775
1776 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1777 if (skb->len <= len)
1778 return true;
1779
1780 /* if TSO is enabled, we don't care about the length as the packet
1781 * could be forwarded without being segmented before
1782 */
1783 if (skb_is_gso(skb))
1784 return true;
1785
1786 return false;
1787 }
1788 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1789
1790 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1791 {
1792 int ret = ____dev_forward_skb(dev, skb);
1793
1794 if (likely(!ret)) {
1795 skb->protocol = eth_type_trans(skb, dev);
1796 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1797 }
1798
1799 return ret;
1800 }
1801 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1802
1803 /**
1804 * dev_forward_skb - loopback an skb to another netif
1805 *
1806 * @dev: destination network device
1807 * @skb: buffer to forward
1808 *
1809 * return values:
1810 * NET_RX_SUCCESS (no congestion)
1811 * NET_RX_DROP (packet was dropped, but freed)
1812 *
1813 * dev_forward_skb can be used for injecting an skb from the
1814 * start_xmit function of one device into the receive queue
1815 * of another device.
1816 *
1817 * The receiving device may be in another namespace, so
1818 * we have to clear all information in the skb that could
1819 * impact namespace isolation.
1820 */
1821 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1822 {
1823 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1824 }
1825 EXPORT_SYMBOL_GPL(dev_forward_skb);
1826
1827 static inline int deliver_skb(struct sk_buff *skb,
1828 struct packet_type *pt_prev,
1829 struct net_device *orig_dev)
1830 {
1831 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1832 return -ENOMEM;
1833 atomic_inc(&skb->users);
1834 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1835 }
1836
1837 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1838 struct packet_type **pt,
1839 struct net_device *orig_dev,
1840 __be16 type,
1841 struct list_head *ptype_list)
1842 {
1843 struct packet_type *ptype, *pt_prev = *pt;
1844
1845 list_for_each_entry_rcu(ptype, ptype_list, list) {
1846 if (ptype->type != type)
1847 continue;
1848 if (pt_prev)
1849 deliver_skb(skb, pt_prev, orig_dev);
1850 pt_prev = ptype;
1851 }
1852 *pt = pt_prev;
1853 }
1854
1855 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1856 {
1857 if (!ptype->af_packet_priv || !skb->sk)
1858 return false;
1859
1860 if (ptype->id_match)
1861 return ptype->id_match(ptype, skb->sk);
1862 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1863 return true;
1864
1865 return false;
1866 }
1867
1868 /*
1869 * Support routine. Sends outgoing frames to any network
1870 * taps currently in use.
1871 */
1872
1873 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1874 {
1875 struct packet_type *ptype;
1876 struct sk_buff *skb2 = NULL;
1877 struct packet_type *pt_prev = NULL;
1878 struct list_head *ptype_list = &ptype_all;
1879
1880 rcu_read_lock();
1881 again:
1882 list_for_each_entry_rcu(ptype, ptype_list, list) {
1883 /* Never send packets back to the socket
1884 * they originated from - MvS (miquels@drinkel.ow.org)
1885 */
1886 if (skb_loop_sk(ptype, skb))
1887 continue;
1888
1889 if (pt_prev) {
1890 deliver_skb(skb2, pt_prev, skb->dev);
1891 pt_prev = ptype;
1892 continue;
1893 }
1894
1895 /* need to clone skb, done only once */
1896 skb2 = skb_clone(skb, GFP_ATOMIC);
1897 if (!skb2)
1898 goto out_unlock;
1899
1900 net_timestamp_set(skb2);
1901
1902 /* skb->nh should be correctly
1903 * set by sender, so that the second statement is
1904 * just protection against buggy protocols.
1905 */
1906 skb_reset_mac_header(skb2);
1907
1908 if (skb_network_header(skb2) < skb2->data ||
1909 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1910 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1911 ntohs(skb2->protocol),
1912 dev->name);
1913 skb_reset_network_header(skb2);
1914 }
1915
1916 skb2->transport_header = skb2->network_header;
1917 skb2->pkt_type = PACKET_OUTGOING;
1918 pt_prev = ptype;
1919 }
1920
1921 if (ptype_list == &ptype_all) {
1922 ptype_list = &dev->ptype_all;
1923 goto again;
1924 }
1925 out_unlock:
1926 if (pt_prev)
1927 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1928 rcu_read_unlock();
1929 }
1930 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1931
1932 /**
1933 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1934 * @dev: Network device
1935 * @txq: number of queues available
1936 *
1937 * If real_num_tx_queues is changed the tc mappings may no longer be
1938 * valid. To resolve this verify the tc mapping remains valid and if
1939 * not NULL the mapping. With no priorities mapping to this
1940 * offset/count pair it will no longer be used. In the worst case TC0
1941 * is invalid nothing can be done so disable priority mappings. If is
1942 * expected that drivers will fix this mapping if they can before
1943 * calling netif_set_real_num_tx_queues.
1944 */
1945 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1946 {
1947 int i;
1948 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1949
1950 /* If TC0 is invalidated disable TC mapping */
1951 if (tc->offset + tc->count > txq) {
1952 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1953 dev->num_tc = 0;
1954 return;
1955 }
1956
1957 /* Invalidated prio to tc mappings set to TC0 */
1958 for (i = 1; i < TC_BITMASK + 1; i++) {
1959 int q = netdev_get_prio_tc_map(dev, i);
1960
1961 tc = &dev->tc_to_txq[q];
1962 if (tc->offset + tc->count > txq) {
1963 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1964 i, q);
1965 netdev_set_prio_tc_map(dev, i, 0);
1966 }
1967 }
1968 }
1969
1970 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1971 {
1972 if (dev->num_tc) {
1973 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1974 int i;
1975
1976 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1977 if ((txq - tc->offset) < tc->count)
1978 return i;
1979 }
1980
1981 return -1;
1982 }
1983
1984 return 0;
1985 }
1986
1987 #ifdef CONFIG_XPS
1988 static DEFINE_MUTEX(xps_map_mutex);
1989 #define xmap_dereference(P) \
1990 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1991
1992 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1993 int tci, u16 index)
1994 {
1995 struct xps_map *map = NULL;
1996 int pos;
1997
1998 if (dev_maps)
1999 map = xmap_dereference(dev_maps->cpu_map[tci]);
2000 if (!map)
2001 return false;
2002
2003 for (pos = map->len; pos--;) {
2004 if (map->queues[pos] != index)
2005 continue;
2006
2007 if (map->len > 1) {
2008 map->queues[pos] = map->queues[--map->len];
2009 break;
2010 }
2011
2012 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2013 kfree_rcu(map, rcu);
2014 return false;
2015 }
2016
2017 return true;
2018 }
2019
2020 static bool remove_xps_queue_cpu(struct net_device *dev,
2021 struct xps_dev_maps *dev_maps,
2022 int cpu, u16 offset, u16 count)
2023 {
2024 int num_tc = dev->num_tc ? : 1;
2025 bool active = false;
2026 int tci;
2027
2028 for (tci = cpu * num_tc; num_tc--; tci++) {
2029 int i, j;
2030
2031 for (i = count, j = offset; i--; j++) {
2032 if (!remove_xps_queue(dev_maps, cpu, j))
2033 break;
2034 }
2035
2036 active |= i < 0;
2037 }
2038
2039 return active;
2040 }
2041
2042 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2043 u16 count)
2044 {
2045 struct xps_dev_maps *dev_maps;
2046 int cpu, i;
2047 bool active = false;
2048
2049 mutex_lock(&xps_map_mutex);
2050 dev_maps = xmap_dereference(dev->xps_maps);
2051
2052 if (!dev_maps)
2053 goto out_no_maps;
2054
2055 for_each_possible_cpu(cpu)
2056 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2057 offset, count);
2058
2059 if (!active) {
2060 RCU_INIT_POINTER(dev->xps_maps, NULL);
2061 kfree_rcu(dev_maps, rcu);
2062 }
2063
2064 for (i = offset + (count - 1); count--; i--)
2065 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2066 NUMA_NO_NODE);
2067
2068 out_no_maps:
2069 mutex_unlock(&xps_map_mutex);
2070 }
2071
2072 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2073 {
2074 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2075 }
2076
2077 static struct xps_map *expand_xps_map(struct xps_map *map,
2078 int cpu, u16 index)
2079 {
2080 struct xps_map *new_map;
2081 int alloc_len = XPS_MIN_MAP_ALLOC;
2082 int i, pos;
2083
2084 for (pos = 0; map && pos < map->len; pos++) {
2085 if (map->queues[pos] != index)
2086 continue;
2087 return map;
2088 }
2089
2090 /* Need to add queue to this CPU's existing map */
2091 if (map) {
2092 if (pos < map->alloc_len)
2093 return map;
2094
2095 alloc_len = map->alloc_len * 2;
2096 }
2097
2098 /* Need to allocate new map to store queue on this CPU's map */
2099 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2100 cpu_to_node(cpu));
2101 if (!new_map)
2102 return NULL;
2103
2104 for (i = 0; i < pos; i++)
2105 new_map->queues[i] = map->queues[i];
2106 new_map->alloc_len = alloc_len;
2107 new_map->len = pos;
2108
2109 return new_map;
2110 }
2111
2112 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2113 u16 index)
2114 {
2115 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2116 int i, cpu, tci, numa_node_id = -2;
2117 int maps_sz, num_tc = 1, tc = 0;
2118 struct xps_map *map, *new_map;
2119 bool active = false;
2120
2121 if (dev->num_tc) {
2122 num_tc = dev->num_tc;
2123 tc = netdev_txq_to_tc(dev, index);
2124 if (tc < 0)
2125 return -EINVAL;
2126 }
2127
2128 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2129 if (maps_sz < L1_CACHE_BYTES)
2130 maps_sz = L1_CACHE_BYTES;
2131
2132 mutex_lock(&xps_map_mutex);
2133
2134 dev_maps = xmap_dereference(dev->xps_maps);
2135
2136 /* allocate memory for queue storage */
2137 for_each_cpu_and(cpu, cpu_online_mask, mask) {
2138 if (!new_dev_maps)
2139 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2140 if (!new_dev_maps) {
2141 mutex_unlock(&xps_map_mutex);
2142 return -ENOMEM;
2143 }
2144
2145 tci = cpu * num_tc + tc;
2146 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2147 NULL;
2148
2149 map = expand_xps_map(map, cpu, index);
2150 if (!map)
2151 goto error;
2152
2153 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2154 }
2155
2156 if (!new_dev_maps)
2157 goto out_no_new_maps;
2158
2159 for_each_possible_cpu(cpu) {
2160 /* copy maps belonging to foreign traffic classes */
2161 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2162 /* fill in the new device map from the old device map */
2163 map = xmap_dereference(dev_maps->cpu_map[tci]);
2164 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2165 }
2166
2167 /* We need to explicitly update tci as prevous loop
2168 * could break out early if dev_maps is NULL.
2169 */
2170 tci = cpu * num_tc + tc;
2171
2172 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2173 /* add queue to CPU maps */
2174 int pos = 0;
2175
2176 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2177 while ((pos < map->len) && (map->queues[pos] != index))
2178 pos++;
2179
2180 if (pos == map->len)
2181 map->queues[map->len++] = index;
2182 #ifdef CONFIG_NUMA
2183 if (numa_node_id == -2)
2184 numa_node_id = cpu_to_node(cpu);
2185 else if (numa_node_id != cpu_to_node(cpu))
2186 numa_node_id = -1;
2187 #endif
2188 } else if (dev_maps) {
2189 /* fill in the new device map from the old device map */
2190 map = xmap_dereference(dev_maps->cpu_map[tci]);
2191 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2192 }
2193
2194 /* copy maps belonging to foreign traffic classes */
2195 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2196 /* fill in the new device map from the old device map */
2197 map = xmap_dereference(dev_maps->cpu_map[tci]);
2198 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2199 }
2200 }
2201
2202 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2203
2204 /* Cleanup old maps */
2205 if (!dev_maps)
2206 goto out_no_old_maps;
2207
2208 for_each_possible_cpu(cpu) {
2209 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2210 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2211 map = xmap_dereference(dev_maps->cpu_map[tci]);
2212 if (map && map != new_map)
2213 kfree_rcu(map, rcu);
2214 }
2215 }
2216
2217 kfree_rcu(dev_maps, rcu);
2218
2219 out_no_old_maps:
2220 dev_maps = new_dev_maps;
2221 active = true;
2222
2223 out_no_new_maps:
2224 /* update Tx queue numa node */
2225 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2226 (numa_node_id >= 0) ? numa_node_id :
2227 NUMA_NO_NODE);
2228
2229 if (!dev_maps)
2230 goto out_no_maps;
2231
2232 /* removes queue from unused CPUs */
2233 for_each_possible_cpu(cpu) {
2234 for (i = tc, tci = cpu * num_tc; i--; tci++)
2235 active |= remove_xps_queue(dev_maps, tci, index);
2236 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2237 active |= remove_xps_queue(dev_maps, tci, index);
2238 for (i = num_tc - tc, tci++; --i; tci++)
2239 active |= remove_xps_queue(dev_maps, tci, index);
2240 }
2241
2242 /* free map if not active */
2243 if (!active) {
2244 RCU_INIT_POINTER(dev->xps_maps, NULL);
2245 kfree_rcu(dev_maps, rcu);
2246 }
2247
2248 out_no_maps:
2249 mutex_unlock(&xps_map_mutex);
2250
2251 return 0;
2252 error:
2253 /* remove any maps that we added */
2254 for_each_possible_cpu(cpu) {
2255 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2256 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2257 map = dev_maps ?
2258 xmap_dereference(dev_maps->cpu_map[tci]) :
2259 NULL;
2260 if (new_map && new_map != map)
2261 kfree(new_map);
2262 }
2263 }
2264
2265 mutex_unlock(&xps_map_mutex);
2266
2267 kfree(new_dev_maps);
2268 return -ENOMEM;
2269 }
2270 EXPORT_SYMBOL(netif_set_xps_queue);
2271
2272 #endif
2273 void netdev_reset_tc(struct net_device *dev)
2274 {
2275 #ifdef CONFIG_XPS
2276 netif_reset_xps_queues_gt(dev, 0);
2277 #endif
2278 dev->num_tc = 0;
2279 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2280 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2281 }
2282 EXPORT_SYMBOL(netdev_reset_tc);
2283
2284 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2285 {
2286 if (tc >= dev->num_tc)
2287 return -EINVAL;
2288
2289 #ifdef CONFIG_XPS
2290 netif_reset_xps_queues(dev, offset, count);
2291 #endif
2292 dev->tc_to_txq[tc].count = count;
2293 dev->tc_to_txq[tc].offset = offset;
2294 return 0;
2295 }
2296 EXPORT_SYMBOL(netdev_set_tc_queue);
2297
2298 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2299 {
2300 if (num_tc > TC_MAX_QUEUE)
2301 return -EINVAL;
2302
2303 #ifdef CONFIG_XPS
2304 netif_reset_xps_queues_gt(dev, 0);
2305 #endif
2306 dev->num_tc = num_tc;
2307 return 0;
2308 }
2309 EXPORT_SYMBOL(netdev_set_num_tc);
2310
2311 /*
2312 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2313 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2314 */
2315 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2316 {
2317 int rc;
2318
2319 if (txq < 1 || txq > dev->num_tx_queues)
2320 return -EINVAL;
2321
2322 if (dev->reg_state == NETREG_REGISTERED ||
2323 dev->reg_state == NETREG_UNREGISTERING) {
2324 ASSERT_RTNL();
2325
2326 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2327 txq);
2328 if (rc)
2329 return rc;
2330
2331 if (dev->num_tc)
2332 netif_setup_tc(dev, txq);
2333
2334 if (txq < dev->real_num_tx_queues) {
2335 qdisc_reset_all_tx_gt(dev, txq);
2336 #ifdef CONFIG_XPS
2337 netif_reset_xps_queues_gt(dev, txq);
2338 #endif
2339 }
2340 }
2341
2342 dev->real_num_tx_queues = txq;
2343 return 0;
2344 }
2345 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2346
2347 #ifdef CONFIG_SYSFS
2348 /**
2349 * netif_set_real_num_rx_queues - set actual number of RX queues used
2350 * @dev: Network device
2351 * @rxq: Actual number of RX queues
2352 *
2353 * This must be called either with the rtnl_lock held or before
2354 * registration of the net device. Returns 0 on success, or a
2355 * negative error code. If called before registration, it always
2356 * succeeds.
2357 */
2358 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2359 {
2360 int rc;
2361
2362 if (rxq < 1 || rxq > dev->num_rx_queues)
2363 return -EINVAL;
2364
2365 if (dev->reg_state == NETREG_REGISTERED) {
2366 ASSERT_RTNL();
2367
2368 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2369 rxq);
2370 if (rc)
2371 return rc;
2372 }
2373
2374 dev->real_num_rx_queues = rxq;
2375 return 0;
2376 }
2377 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2378 #endif
2379
2380 /**
2381 * netif_get_num_default_rss_queues - default number of RSS queues
2382 *
2383 * This routine should set an upper limit on the number of RSS queues
2384 * used by default by multiqueue devices.
2385 */
2386 int netif_get_num_default_rss_queues(void)
2387 {
2388 return is_kdump_kernel() ?
2389 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2390 }
2391 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2392
2393 static void __netif_reschedule(struct Qdisc *q)
2394 {
2395 struct softnet_data *sd;
2396 unsigned long flags;
2397
2398 local_irq_save(flags);
2399 sd = this_cpu_ptr(&softnet_data);
2400 q->next_sched = NULL;
2401 *sd->output_queue_tailp = q;
2402 sd->output_queue_tailp = &q->next_sched;
2403 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2404 local_irq_restore(flags);
2405 }
2406
2407 void __netif_schedule(struct Qdisc *q)
2408 {
2409 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2410 __netif_reschedule(q);
2411 }
2412 EXPORT_SYMBOL(__netif_schedule);
2413
2414 struct dev_kfree_skb_cb {
2415 enum skb_free_reason reason;
2416 };
2417
2418 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2419 {
2420 return (struct dev_kfree_skb_cb *)skb->cb;
2421 }
2422
2423 void netif_schedule_queue(struct netdev_queue *txq)
2424 {
2425 rcu_read_lock();
2426 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2427 struct Qdisc *q = rcu_dereference(txq->qdisc);
2428
2429 __netif_schedule(q);
2430 }
2431 rcu_read_unlock();
2432 }
2433 EXPORT_SYMBOL(netif_schedule_queue);
2434
2435 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2436 {
2437 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2438 struct Qdisc *q;
2439
2440 rcu_read_lock();
2441 q = rcu_dereference(dev_queue->qdisc);
2442 __netif_schedule(q);
2443 rcu_read_unlock();
2444 }
2445 }
2446 EXPORT_SYMBOL(netif_tx_wake_queue);
2447
2448 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2449 {
2450 unsigned long flags;
2451
2452 if (likely(atomic_read(&skb->users) == 1)) {
2453 smp_rmb();
2454 atomic_set(&skb->users, 0);
2455 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2456 return;
2457 }
2458 get_kfree_skb_cb(skb)->reason = reason;
2459 local_irq_save(flags);
2460 skb->next = __this_cpu_read(softnet_data.completion_queue);
2461 __this_cpu_write(softnet_data.completion_queue, skb);
2462 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2463 local_irq_restore(flags);
2464 }
2465 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2466
2467 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2468 {
2469 if (in_irq() || irqs_disabled())
2470 __dev_kfree_skb_irq(skb, reason);
2471 else
2472 dev_kfree_skb(skb);
2473 }
2474 EXPORT_SYMBOL(__dev_kfree_skb_any);
2475
2476
2477 /**
2478 * netif_device_detach - mark device as removed
2479 * @dev: network device
2480 *
2481 * Mark device as removed from system and therefore no longer available.
2482 */
2483 void netif_device_detach(struct net_device *dev)
2484 {
2485 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2486 netif_running(dev)) {
2487 netif_tx_stop_all_queues(dev);
2488 }
2489 }
2490 EXPORT_SYMBOL(netif_device_detach);
2491
2492 /**
2493 * netif_device_attach - mark device as attached
2494 * @dev: network device
2495 *
2496 * Mark device as attached from system and restart if needed.
2497 */
2498 void netif_device_attach(struct net_device *dev)
2499 {
2500 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2501 netif_running(dev)) {
2502 netif_tx_wake_all_queues(dev);
2503 __netdev_watchdog_up(dev);
2504 }
2505 }
2506 EXPORT_SYMBOL(netif_device_attach);
2507
2508 /*
2509 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2510 * to be used as a distribution range.
2511 */
2512 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2513 unsigned int num_tx_queues)
2514 {
2515 u32 hash;
2516 u16 qoffset = 0;
2517 u16 qcount = num_tx_queues;
2518
2519 if (skb_rx_queue_recorded(skb)) {
2520 hash = skb_get_rx_queue(skb);
2521 while (unlikely(hash >= num_tx_queues))
2522 hash -= num_tx_queues;
2523 return hash;
2524 }
2525
2526 if (dev->num_tc) {
2527 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2528
2529 qoffset = dev->tc_to_txq[tc].offset;
2530 qcount = dev->tc_to_txq[tc].count;
2531 }
2532
2533 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2534 }
2535 EXPORT_SYMBOL(__skb_tx_hash);
2536
2537 static void skb_warn_bad_offload(const struct sk_buff *skb)
2538 {
2539 static const netdev_features_t null_features;
2540 struct net_device *dev = skb->dev;
2541 const char *name = "";
2542
2543 if (!net_ratelimit())
2544 return;
2545
2546 if (dev) {
2547 if (dev->dev.parent)
2548 name = dev_driver_string(dev->dev.parent);
2549 else
2550 name = netdev_name(dev);
2551 }
2552 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2553 "gso_type=%d ip_summed=%d\n",
2554 name, dev ? &dev->features : &null_features,
2555 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2556 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2557 skb_shinfo(skb)->gso_type, skb->ip_summed);
2558 }
2559
2560 /*
2561 * Invalidate hardware checksum when packet is to be mangled, and
2562 * complete checksum manually on outgoing path.
2563 */
2564 int skb_checksum_help(struct sk_buff *skb)
2565 {
2566 __wsum csum;
2567 int ret = 0, offset;
2568
2569 if (skb->ip_summed == CHECKSUM_COMPLETE)
2570 goto out_set_summed;
2571
2572 if (unlikely(skb_shinfo(skb)->gso_size)) {
2573 skb_warn_bad_offload(skb);
2574 return -EINVAL;
2575 }
2576
2577 /* Before computing a checksum, we should make sure no frag could
2578 * be modified by an external entity : checksum could be wrong.
2579 */
2580 if (skb_has_shared_frag(skb)) {
2581 ret = __skb_linearize(skb);
2582 if (ret)
2583 goto out;
2584 }
2585
2586 offset = skb_checksum_start_offset(skb);
2587 BUG_ON(offset >= skb_headlen(skb));
2588 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2589
2590 offset += skb->csum_offset;
2591 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2592
2593 if (skb_cloned(skb) &&
2594 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2595 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2596 if (ret)
2597 goto out;
2598 }
2599
2600 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2601 out_set_summed:
2602 skb->ip_summed = CHECKSUM_NONE;
2603 out:
2604 return ret;
2605 }
2606 EXPORT_SYMBOL(skb_checksum_help);
2607
2608 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2609 {
2610 __be16 type = skb->protocol;
2611
2612 /* Tunnel gso handlers can set protocol to ethernet. */
2613 if (type == htons(ETH_P_TEB)) {
2614 struct ethhdr *eth;
2615
2616 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2617 return 0;
2618
2619 eth = (struct ethhdr *)skb_mac_header(skb);
2620 type = eth->h_proto;
2621 }
2622
2623 return __vlan_get_protocol(skb, type, depth);
2624 }
2625
2626 /**
2627 * skb_mac_gso_segment - mac layer segmentation handler.
2628 * @skb: buffer to segment
2629 * @features: features for the output path (see dev->features)
2630 */
2631 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2632 netdev_features_t features)
2633 {
2634 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2635 struct packet_offload *ptype;
2636 int vlan_depth = skb->mac_len;
2637 __be16 type = skb_network_protocol(skb, &vlan_depth);
2638
2639 if (unlikely(!type))
2640 return ERR_PTR(-EINVAL);
2641
2642 __skb_pull(skb, vlan_depth);
2643
2644 rcu_read_lock();
2645 list_for_each_entry_rcu(ptype, &offload_base, list) {
2646 if (ptype->type == type && ptype->callbacks.gso_segment) {
2647 segs = ptype->callbacks.gso_segment(skb, features);
2648 break;
2649 }
2650 }
2651 rcu_read_unlock();
2652
2653 __skb_push(skb, skb->data - skb_mac_header(skb));
2654
2655 return segs;
2656 }
2657 EXPORT_SYMBOL(skb_mac_gso_segment);
2658
2659
2660 /* openvswitch calls this on rx path, so we need a different check.
2661 */
2662 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2663 {
2664 if (tx_path)
2665 return skb->ip_summed != CHECKSUM_PARTIAL &&
2666 skb->ip_summed != CHECKSUM_NONE;
2667
2668 return skb->ip_summed == CHECKSUM_NONE;
2669 }
2670
2671 /**
2672 * __skb_gso_segment - Perform segmentation on skb.
2673 * @skb: buffer to segment
2674 * @features: features for the output path (see dev->features)
2675 * @tx_path: whether it is called in TX path
2676 *
2677 * This function segments the given skb and returns a list of segments.
2678 *
2679 * It may return NULL if the skb requires no segmentation. This is
2680 * only possible when GSO is used for verifying header integrity.
2681 *
2682 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2683 */
2684 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2685 netdev_features_t features, bool tx_path)
2686 {
2687 struct sk_buff *segs;
2688
2689 if (unlikely(skb_needs_check(skb, tx_path))) {
2690 int err;
2691
2692 /* We're going to init ->check field in TCP or UDP header */
2693 err = skb_cow_head(skb, 0);
2694 if (err < 0)
2695 return ERR_PTR(err);
2696 }
2697
2698 /* Only report GSO partial support if it will enable us to
2699 * support segmentation on this frame without needing additional
2700 * work.
2701 */
2702 if (features & NETIF_F_GSO_PARTIAL) {
2703 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2704 struct net_device *dev = skb->dev;
2705
2706 partial_features |= dev->features & dev->gso_partial_features;
2707 if (!skb_gso_ok(skb, features | partial_features))
2708 features &= ~NETIF_F_GSO_PARTIAL;
2709 }
2710
2711 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2712 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2713
2714 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2715 SKB_GSO_CB(skb)->encap_level = 0;
2716
2717 skb_reset_mac_header(skb);
2718 skb_reset_mac_len(skb);
2719
2720 segs = skb_mac_gso_segment(skb, features);
2721
2722 if (unlikely(skb_needs_check(skb, tx_path)))
2723 skb_warn_bad_offload(skb);
2724
2725 return segs;
2726 }
2727 EXPORT_SYMBOL(__skb_gso_segment);
2728
2729 /* Take action when hardware reception checksum errors are detected. */
2730 #ifdef CONFIG_BUG
2731 void netdev_rx_csum_fault(struct net_device *dev)
2732 {
2733 if (net_ratelimit()) {
2734 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2735 dump_stack();
2736 }
2737 }
2738 EXPORT_SYMBOL(netdev_rx_csum_fault);
2739 #endif
2740
2741 /* Actually, we should eliminate this check as soon as we know, that:
2742 * 1. IOMMU is present and allows to map all the memory.
2743 * 2. No high memory really exists on this machine.
2744 */
2745
2746 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2747 {
2748 #ifdef CONFIG_HIGHMEM
2749 int i;
2750
2751 if (!(dev->features & NETIF_F_HIGHDMA)) {
2752 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2753 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2754
2755 if (PageHighMem(skb_frag_page(frag)))
2756 return 1;
2757 }
2758 }
2759
2760 if (PCI_DMA_BUS_IS_PHYS) {
2761 struct device *pdev = dev->dev.parent;
2762
2763 if (!pdev)
2764 return 0;
2765 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2766 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2767 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2768
2769 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2770 return 1;
2771 }
2772 }
2773 #endif
2774 return 0;
2775 }
2776
2777 /* If MPLS offload request, verify we are testing hardware MPLS features
2778 * instead of standard features for the netdev.
2779 */
2780 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2781 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2782 netdev_features_t features,
2783 __be16 type)
2784 {
2785 if (eth_p_mpls(type))
2786 features &= skb->dev->mpls_features;
2787
2788 return features;
2789 }
2790 #else
2791 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2792 netdev_features_t features,
2793 __be16 type)
2794 {
2795 return features;
2796 }
2797 #endif
2798
2799 static netdev_features_t harmonize_features(struct sk_buff *skb,
2800 netdev_features_t features)
2801 {
2802 int tmp;
2803 __be16 type;
2804
2805 type = skb_network_protocol(skb, &tmp);
2806 features = net_mpls_features(skb, features, type);
2807
2808 if (skb->ip_summed != CHECKSUM_NONE &&
2809 !can_checksum_protocol(features, type)) {
2810 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2811 }
2812 if (illegal_highdma(skb->dev, skb))
2813 features &= ~NETIF_F_SG;
2814
2815 return features;
2816 }
2817
2818 netdev_features_t passthru_features_check(struct sk_buff *skb,
2819 struct net_device *dev,
2820 netdev_features_t features)
2821 {
2822 return features;
2823 }
2824 EXPORT_SYMBOL(passthru_features_check);
2825
2826 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2827 struct net_device *dev,
2828 netdev_features_t features)
2829 {
2830 return vlan_features_check(skb, features);
2831 }
2832
2833 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2834 struct net_device *dev,
2835 netdev_features_t features)
2836 {
2837 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2838
2839 if (gso_segs > dev->gso_max_segs)
2840 return features & ~NETIF_F_GSO_MASK;
2841
2842 /* Support for GSO partial features requires software
2843 * intervention before we can actually process the packets
2844 * so we need to strip support for any partial features now
2845 * and we can pull them back in after we have partially
2846 * segmented the frame.
2847 */
2848 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2849 features &= ~dev->gso_partial_features;
2850
2851 /* Make sure to clear the IPv4 ID mangling feature if the
2852 * IPv4 header has the potential to be fragmented.
2853 */
2854 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2855 struct iphdr *iph = skb->encapsulation ?
2856 inner_ip_hdr(skb) : ip_hdr(skb);
2857
2858 if (!(iph->frag_off & htons(IP_DF)))
2859 features &= ~NETIF_F_TSO_MANGLEID;
2860 }
2861
2862 return features;
2863 }
2864
2865 netdev_features_t netif_skb_features(struct sk_buff *skb)
2866 {
2867 struct net_device *dev = skb->dev;
2868 netdev_features_t features = dev->features;
2869
2870 if (skb_is_gso(skb))
2871 features = gso_features_check(skb, dev, features);
2872
2873 /* If encapsulation offload request, verify we are testing
2874 * hardware encapsulation features instead of standard
2875 * features for the netdev
2876 */
2877 if (skb->encapsulation)
2878 features &= dev->hw_enc_features;
2879
2880 if (skb_vlan_tagged(skb))
2881 features = netdev_intersect_features(features,
2882 dev->vlan_features |
2883 NETIF_F_HW_VLAN_CTAG_TX |
2884 NETIF_F_HW_VLAN_STAG_TX);
2885
2886 if (dev->netdev_ops->ndo_features_check)
2887 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2888 features);
2889 else
2890 features &= dflt_features_check(skb, dev, features);
2891
2892 return harmonize_features(skb, features);
2893 }
2894 EXPORT_SYMBOL(netif_skb_features);
2895
2896 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2897 struct netdev_queue *txq, bool more)
2898 {
2899 unsigned int len;
2900 int rc;
2901
2902 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2903 dev_queue_xmit_nit(skb, dev);
2904
2905 len = skb->len;
2906 trace_net_dev_start_xmit(skb, dev);
2907 rc = netdev_start_xmit(skb, dev, txq, more);
2908 trace_net_dev_xmit(skb, rc, dev, len);
2909
2910 return rc;
2911 }
2912
2913 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2914 struct netdev_queue *txq, int *ret)
2915 {
2916 struct sk_buff *skb = first;
2917 int rc = NETDEV_TX_OK;
2918
2919 while (skb) {
2920 struct sk_buff *next = skb->next;
2921
2922 skb->next = NULL;
2923 rc = xmit_one(skb, dev, txq, next != NULL);
2924 if (unlikely(!dev_xmit_complete(rc))) {
2925 skb->next = next;
2926 goto out;
2927 }
2928
2929 skb = next;
2930 if (netif_xmit_stopped(txq) && skb) {
2931 rc = NETDEV_TX_BUSY;
2932 break;
2933 }
2934 }
2935
2936 out:
2937 *ret = rc;
2938 return skb;
2939 }
2940
2941 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2942 netdev_features_t features)
2943 {
2944 if (skb_vlan_tag_present(skb) &&
2945 !vlan_hw_offload_capable(features, skb->vlan_proto))
2946 skb = __vlan_hwaccel_push_inside(skb);
2947 return skb;
2948 }
2949
2950 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2951 {
2952 netdev_features_t features;
2953
2954 features = netif_skb_features(skb);
2955 skb = validate_xmit_vlan(skb, features);
2956 if (unlikely(!skb))
2957 goto out_null;
2958
2959 if (netif_needs_gso(skb, features)) {
2960 struct sk_buff *segs;
2961
2962 segs = skb_gso_segment(skb, features);
2963 if (IS_ERR(segs)) {
2964 goto out_kfree_skb;
2965 } else if (segs) {
2966 consume_skb(skb);
2967 skb = segs;
2968 }
2969 } else {
2970 if (skb_needs_linearize(skb, features) &&
2971 __skb_linearize(skb))
2972 goto out_kfree_skb;
2973
2974 /* If packet is not checksummed and device does not
2975 * support checksumming for this protocol, complete
2976 * checksumming here.
2977 */
2978 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2979 if (skb->encapsulation)
2980 skb_set_inner_transport_header(skb,
2981 skb_checksum_start_offset(skb));
2982 else
2983 skb_set_transport_header(skb,
2984 skb_checksum_start_offset(skb));
2985 if (!(features & NETIF_F_CSUM_MASK) &&
2986 skb_checksum_help(skb))
2987 goto out_kfree_skb;
2988 }
2989 }
2990
2991 return skb;
2992
2993 out_kfree_skb:
2994 kfree_skb(skb);
2995 out_null:
2996 atomic_long_inc(&dev->tx_dropped);
2997 return NULL;
2998 }
2999
3000 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3001 {
3002 struct sk_buff *next, *head = NULL, *tail;
3003
3004 for (; skb != NULL; skb = next) {
3005 next = skb->next;
3006 skb->next = NULL;
3007
3008 /* in case skb wont be segmented, point to itself */
3009 skb->prev = skb;
3010
3011 skb = validate_xmit_skb(skb, dev);
3012 if (!skb)
3013 continue;
3014
3015 if (!head)
3016 head = skb;
3017 else
3018 tail->next = skb;
3019 /* If skb was segmented, skb->prev points to
3020 * the last segment. If not, it still contains skb.
3021 */
3022 tail = skb->prev;
3023 }
3024 return head;
3025 }
3026 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3027
3028 static void qdisc_pkt_len_init(struct sk_buff *skb)
3029 {
3030 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3031
3032 qdisc_skb_cb(skb)->pkt_len = skb->len;
3033
3034 /* To get more precise estimation of bytes sent on wire,
3035 * we add to pkt_len the headers size of all segments
3036 */
3037 if (shinfo->gso_size) {
3038 unsigned int hdr_len;
3039 u16 gso_segs = shinfo->gso_segs;
3040
3041 /* mac layer + network layer */
3042 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3043
3044 /* + transport layer */
3045 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3046 hdr_len += tcp_hdrlen(skb);
3047 else
3048 hdr_len += sizeof(struct udphdr);
3049
3050 if (shinfo->gso_type & SKB_GSO_DODGY)
3051 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3052 shinfo->gso_size);
3053
3054 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3055 }
3056 }
3057
3058 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3059 struct net_device *dev,
3060 struct netdev_queue *txq)
3061 {
3062 spinlock_t *root_lock = qdisc_lock(q);
3063 struct sk_buff *to_free = NULL;
3064 bool contended;
3065 int rc;
3066
3067 qdisc_calculate_pkt_len(skb, q);
3068 /*
3069 * Heuristic to force contended enqueues to serialize on a
3070 * separate lock before trying to get qdisc main lock.
3071 * This permits qdisc->running owner to get the lock more
3072 * often and dequeue packets faster.
3073 */
3074 contended = qdisc_is_running(q);
3075 if (unlikely(contended))
3076 spin_lock(&q->busylock);
3077
3078 spin_lock(root_lock);
3079 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3080 __qdisc_drop(skb, &to_free);
3081 rc = NET_XMIT_DROP;
3082 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3083 qdisc_run_begin(q)) {
3084 /*
3085 * This is a work-conserving queue; there are no old skbs
3086 * waiting to be sent out; and the qdisc is not running -
3087 * xmit the skb directly.
3088 */
3089
3090 qdisc_bstats_update(q, skb);
3091
3092 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3093 if (unlikely(contended)) {
3094 spin_unlock(&q->busylock);
3095 contended = false;
3096 }
3097 __qdisc_run(q);
3098 } else
3099 qdisc_run_end(q);
3100
3101 rc = NET_XMIT_SUCCESS;
3102 } else {
3103 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3104 if (qdisc_run_begin(q)) {
3105 if (unlikely(contended)) {
3106 spin_unlock(&q->busylock);
3107 contended = false;
3108 }
3109 __qdisc_run(q);
3110 }
3111 }
3112 spin_unlock(root_lock);
3113 if (unlikely(to_free))
3114 kfree_skb_list(to_free);
3115 if (unlikely(contended))
3116 spin_unlock(&q->busylock);
3117 return rc;
3118 }
3119
3120 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3121 static void skb_update_prio(struct sk_buff *skb)
3122 {
3123 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3124
3125 if (!skb->priority && skb->sk && map) {
3126 unsigned int prioidx =
3127 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3128
3129 if (prioidx < map->priomap_len)
3130 skb->priority = map->priomap[prioidx];
3131 }
3132 }
3133 #else
3134 #define skb_update_prio(skb)
3135 #endif
3136
3137 DEFINE_PER_CPU(int, xmit_recursion);
3138 EXPORT_SYMBOL(xmit_recursion);
3139
3140 /**
3141 * dev_loopback_xmit - loop back @skb
3142 * @net: network namespace this loopback is happening in
3143 * @sk: sk needed to be a netfilter okfn
3144 * @skb: buffer to transmit
3145 */
3146 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3147 {
3148 skb_reset_mac_header(skb);
3149 __skb_pull(skb, skb_network_offset(skb));
3150 skb->pkt_type = PACKET_LOOPBACK;
3151 skb->ip_summed = CHECKSUM_UNNECESSARY;
3152 WARN_ON(!skb_dst(skb));
3153 skb_dst_force(skb);
3154 netif_rx_ni(skb);
3155 return 0;
3156 }
3157 EXPORT_SYMBOL(dev_loopback_xmit);
3158
3159 #ifdef CONFIG_NET_EGRESS
3160 static struct sk_buff *
3161 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3162 {
3163 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3164 struct tcf_result cl_res;
3165
3166 if (!cl)
3167 return skb;
3168
3169 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3170 qdisc_bstats_cpu_update(cl->q, skb);
3171
3172 switch (tc_classify(skb, cl, &cl_res, false)) {
3173 case TC_ACT_OK:
3174 case TC_ACT_RECLASSIFY:
3175 skb->tc_index = TC_H_MIN(cl_res.classid);
3176 break;
3177 case TC_ACT_SHOT:
3178 qdisc_qstats_cpu_drop(cl->q);
3179 *ret = NET_XMIT_DROP;
3180 kfree_skb(skb);
3181 return NULL;
3182 case TC_ACT_STOLEN:
3183 case TC_ACT_QUEUED:
3184 *ret = NET_XMIT_SUCCESS;
3185 consume_skb(skb);
3186 return NULL;
3187 case TC_ACT_REDIRECT:
3188 /* No need to push/pop skb's mac_header here on egress! */
3189 skb_do_redirect(skb);
3190 *ret = NET_XMIT_SUCCESS;
3191 return NULL;
3192 default:
3193 break;
3194 }
3195
3196 return skb;
3197 }
3198 #endif /* CONFIG_NET_EGRESS */
3199
3200 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3201 {
3202 #ifdef CONFIG_XPS
3203 struct xps_dev_maps *dev_maps;
3204 struct xps_map *map;
3205 int queue_index = -1;
3206
3207 rcu_read_lock();
3208 dev_maps = rcu_dereference(dev->xps_maps);
3209 if (dev_maps) {
3210 unsigned int tci = skb->sender_cpu - 1;
3211
3212 if (dev->num_tc) {
3213 tci *= dev->num_tc;
3214 tci += netdev_get_prio_tc_map(dev, skb->priority);
3215 }
3216
3217 map = rcu_dereference(dev_maps->cpu_map[tci]);
3218 if (map) {
3219 if (map->len == 1)
3220 queue_index = map->queues[0];
3221 else
3222 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3223 map->len)];
3224 if (unlikely(queue_index >= dev->real_num_tx_queues))
3225 queue_index = -1;
3226 }
3227 }
3228 rcu_read_unlock();
3229
3230 return queue_index;
3231 #else
3232 return -1;
3233 #endif
3234 }
3235
3236 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3237 {
3238 struct sock *sk = skb->sk;
3239 int queue_index = sk_tx_queue_get(sk);
3240
3241 if (queue_index < 0 || skb->ooo_okay ||
3242 queue_index >= dev->real_num_tx_queues) {
3243 int new_index = get_xps_queue(dev, skb);
3244
3245 if (new_index < 0)
3246 new_index = skb_tx_hash(dev, skb);
3247
3248 if (queue_index != new_index && sk &&
3249 sk_fullsock(sk) &&
3250 rcu_access_pointer(sk->sk_dst_cache))
3251 sk_tx_queue_set(sk, new_index);
3252
3253 queue_index = new_index;
3254 }
3255
3256 return queue_index;
3257 }
3258
3259 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3260 struct sk_buff *skb,
3261 void *accel_priv)
3262 {
3263 int queue_index = 0;
3264
3265 #ifdef CONFIG_XPS
3266 u32 sender_cpu = skb->sender_cpu - 1;
3267
3268 if (sender_cpu >= (u32)NR_CPUS)
3269 skb->sender_cpu = raw_smp_processor_id() + 1;
3270 #endif
3271
3272 if (dev->real_num_tx_queues != 1) {
3273 const struct net_device_ops *ops = dev->netdev_ops;
3274
3275 if (ops->ndo_select_queue)
3276 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3277 __netdev_pick_tx);
3278 else
3279 queue_index = __netdev_pick_tx(dev, skb);
3280
3281 if (!accel_priv)
3282 queue_index = netdev_cap_txqueue(dev, queue_index);
3283 }
3284
3285 skb_set_queue_mapping(skb, queue_index);
3286 return netdev_get_tx_queue(dev, queue_index);
3287 }
3288
3289 /**
3290 * __dev_queue_xmit - transmit a buffer
3291 * @skb: buffer to transmit
3292 * @accel_priv: private data used for L2 forwarding offload
3293 *
3294 * Queue a buffer for transmission to a network device. The caller must
3295 * have set the device and priority and built the buffer before calling
3296 * this function. The function can be called from an interrupt.
3297 *
3298 * A negative errno code is returned on a failure. A success does not
3299 * guarantee the frame will be transmitted as it may be dropped due
3300 * to congestion or traffic shaping.
3301 *
3302 * -----------------------------------------------------------------------------------
3303 * I notice this method can also return errors from the queue disciplines,
3304 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3305 * be positive.
3306 *
3307 * Regardless of the return value, the skb is consumed, so it is currently
3308 * difficult to retry a send to this method. (You can bump the ref count
3309 * before sending to hold a reference for retry if you are careful.)
3310 *
3311 * When calling this method, interrupts MUST be enabled. This is because
3312 * the BH enable code must have IRQs enabled so that it will not deadlock.
3313 * --BLG
3314 */
3315 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3316 {
3317 struct net_device *dev = skb->dev;
3318 struct netdev_queue *txq;
3319 struct Qdisc *q;
3320 int rc = -ENOMEM;
3321
3322 skb_reset_mac_header(skb);
3323
3324 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3325 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3326
3327 /* Disable soft irqs for various locks below. Also
3328 * stops preemption for RCU.
3329 */
3330 rcu_read_lock_bh();
3331
3332 skb_update_prio(skb);
3333
3334 qdisc_pkt_len_init(skb);
3335 #ifdef CONFIG_NET_CLS_ACT
3336 skb->tc_at_ingress = 0;
3337 # ifdef CONFIG_NET_EGRESS
3338 if (static_key_false(&egress_needed)) {
3339 skb = sch_handle_egress(skb, &rc, dev);
3340 if (!skb)
3341 goto out;
3342 }
3343 # endif
3344 #endif
3345 /* If device/qdisc don't need skb->dst, release it right now while
3346 * its hot in this cpu cache.
3347 */
3348 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3349 skb_dst_drop(skb);
3350 else
3351 skb_dst_force(skb);
3352
3353 txq = netdev_pick_tx(dev, skb, accel_priv);
3354 q = rcu_dereference_bh(txq->qdisc);
3355
3356 trace_net_dev_queue(skb);
3357 if (q->enqueue) {
3358 rc = __dev_xmit_skb(skb, q, dev, txq);
3359 goto out;
3360 }
3361
3362 /* The device has no queue. Common case for software devices:
3363 * loopback, all the sorts of tunnels...
3364
3365 * Really, it is unlikely that netif_tx_lock protection is necessary
3366 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3367 * counters.)
3368 * However, it is possible, that they rely on protection
3369 * made by us here.
3370
3371 * Check this and shot the lock. It is not prone from deadlocks.
3372 *Either shot noqueue qdisc, it is even simpler 8)
3373 */
3374 if (dev->flags & IFF_UP) {
3375 int cpu = smp_processor_id(); /* ok because BHs are off */
3376
3377 if (txq->xmit_lock_owner != cpu) {
3378 if (unlikely(__this_cpu_read(xmit_recursion) >
3379 XMIT_RECURSION_LIMIT))
3380 goto recursion_alert;
3381
3382 skb = validate_xmit_skb(skb, dev);
3383 if (!skb)
3384 goto out;
3385
3386 HARD_TX_LOCK(dev, txq, cpu);
3387
3388 if (!netif_xmit_stopped(txq)) {
3389 __this_cpu_inc(xmit_recursion);
3390 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3391 __this_cpu_dec(xmit_recursion);
3392 if (dev_xmit_complete(rc)) {
3393 HARD_TX_UNLOCK(dev, txq);
3394 goto out;
3395 }
3396 }
3397 HARD_TX_UNLOCK(dev, txq);
3398 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3399 dev->name);
3400 } else {
3401 /* Recursion is detected! It is possible,
3402 * unfortunately
3403 */
3404 recursion_alert:
3405 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3406 dev->name);
3407 }
3408 }
3409
3410 rc = -ENETDOWN;
3411 rcu_read_unlock_bh();
3412
3413 atomic_long_inc(&dev->tx_dropped);
3414 kfree_skb_list(skb);
3415 return rc;
3416 out:
3417 rcu_read_unlock_bh();
3418 return rc;
3419 }
3420
3421 int dev_queue_xmit(struct sk_buff *skb)
3422 {
3423 return __dev_queue_xmit(skb, NULL);
3424 }
3425 EXPORT_SYMBOL(dev_queue_xmit);
3426
3427 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3428 {
3429 return __dev_queue_xmit(skb, accel_priv);
3430 }
3431 EXPORT_SYMBOL(dev_queue_xmit_accel);
3432
3433
3434 /*************************************************************************
3435 * Receiver routines
3436 *************************************************************************/
3437
3438 int netdev_max_backlog __read_mostly = 1000;
3439 EXPORT_SYMBOL(netdev_max_backlog);
3440
3441 int netdev_tstamp_prequeue __read_mostly = 1;
3442 int netdev_budget __read_mostly = 300;
3443 int weight_p __read_mostly = 64; /* old backlog weight */
3444 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3445 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3446 int dev_rx_weight __read_mostly = 64;
3447 int dev_tx_weight __read_mostly = 64;
3448
3449 /* Called with irq disabled */
3450 static inline void ____napi_schedule(struct softnet_data *sd,
3451 struct napi_struct *napi)
3452 {
3453 list_add_tail(&napi->poll_list, &sd->poll_list);
3454 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3455 }
3456
3457 #ifdef CONFIG_RPS
3458
3459 /* One global table that all flow-based protocols share. */
3460 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3461 EXPORT_SYMBOL(rps_sock_flow_table);
3462 u32 rps_cpu_mask __read_mostly;
3463 EXPORT_SYMBOL(rps_cpu_mask);
3464
3465 struct static_key rps_needed __read_mostly;
3466 EXPORT_SYMBOL(rps_needed);
3467 struct static_key rfs_needed __read_mostly;
3468 EXPORT_SYMBOL(rfs_needed);
3469
3470 static struct rps_dev_flow *
3471 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3472 struct rps_dev_flow *rflow, u16 next_cpu)
3473 {
3474 if (next_cpu < nr_cpu_ids) {
3475 #ifdef CONFIG_RFS_ACCEL
3476 struct netdev_rx_queue *rxqueue;
3477 struct rps_dev_flow_table *flow_table;
3478 struct rps_dev_flow *old_rflow;
3479 u32 flow_id;
3480 u16 rxq_index;
3481 int rc;
3482
3483 /* Should we steer this flow to a different hardware queue? */
3484 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3485 !(dev->features & NETIF_F_NTUPLE))
3486 goto out;
3487 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3488 if (rxq_index == skb_get_rx_queue(skb))
3489 goto out;
3490
3491 rxqueue = dev->_rx + rxq_index;
3492 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3493 if (!flow_table)
3494 goto out;
3495 flow_id = skb_get_hash(skb) & flow_table->mask;
3496 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3497 rxq_index, flow_id);
3498 if (rc < 0)
3499 goto out;
3500 old_rflow = rflow;
3501 rflow = &flow_table->flows[flow_id];
3502 rflow->filter = rc;
3503 if (old_rflow->filter == rflow->filter)
3504 old_rflow->filter = RPS_NO_FILTER;
3505 out:
3506 #endif
3507 rflow->last_qtail =
3508 per_cpu(softnet_data, next_cpu).input_queue_head;
3509 }
3510
3511 rflow->cpu = next_cpu;
3512 return rflow;
3513 }
3514
3515 /*
3516 * get_rps_cpu is called from netif_receive_skb and returns the target
3517 * CPU from the RPS map of the receiving queue for a given skb.
3518 * rcu_read_lock must be held on entry.
3519 */
3520 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3521 struct rps_dev_flow **rflowp)
3522 {
3523 const struct rps_sock_flow_table *sock_flow_table;
3524 struct netdev_rx_queue *rxqueue = dev->_rx;
3525 struct rps_dev_flow_table *flow_table;
3526 struct rps_map *map;
3527 int cpu = -1;
3528 u32 tcpu;
3529 u32 hash;
3530
3531 if (skb_rx_queue_recorded(skb)) {
3532 u16 index = skb_get_rx_queue(skb);
3533
3534 if (unlikely(index >= dev->real_num_rx_queues)) {
3535 WARN_ONCE(dev->real_num_rx_queues > 1,
3536 "%s received packet on queue %u, but number "
3537 "of RX queues is %u\n",
3538 dev->name, index, dev->real_num_rx_queues);
3539 goto done;
3540 }
3541 rxqueue += index;
3542 }
3543
3544 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3545
3546 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3547 map = rcu_dereference(rxqueue->rps_map);
3548 if (!flow_table && !map)
3549 goto done;
3550
3551 skb_reset_network_header(skb);
3552 hash = skb_get_hash(skb);
3553 if (!hash)
3554 goto done;
3555
3556 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3557 if (flow_table && sock_flow_table) {
3558 struct rps_dev_flow *rflow;
3559 u32 next_cpu;
3560 u32 ident;
3561
3562 /* First check into global flow table if there is a match */
3563 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3564 if ((ident ^ hash) & ~rps_cpu_mask)
3565 goto try_rps;
3566
3567 next_cpu = ident & rps_cpu_mask;
3568
3569 /* OK, now we know there is a match,
3570 * we can look at the local (per receive queue) flow table
3571 */
3572 rflow = &flow_table->flows[hash & flow_table->mask];
3573 tcpu = rflow->cpu;
3574
3575 /*
3576 * If the desired CPU (where last recvmsg was done) is
3577 * different from current CPU (one in the rx-queue flow
3578 * table entry), switch if one of the following holds:
3579 * - Current CPU is unset (>= nr_cpu_ids).
3580 * - Current CPU is offline.
3581 * - The current CPU's queue tail has advanced beyond the
3582 * last packet that was enqueued using this table entry.
3583 * This guarantees that all previous packets for the flow
3584 * have been dequeued, thus preserving in order delivery.
3585 */
3586 if (unlikely(tcpu != next_cpu) &&
3587 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3588 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3589 rflow->last_qtail)) >= 0)) {
3590 tcpu = next_cpu;
3591 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3592 }
3593
3594 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3595 *rflowp = rflow;
3596 cpu = tcpu;
3597 goto done;
3598 }
3599 }
3600
3601 try_rps:
3602
3603 if (map) {
3604 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3605 if (cpu_online(tcpu)) {
3606 cpu = tcpu;
3607 goto done;
3608 }
3609 }
3610
3611 done:
3612 return cpu;
3613 }
3614
3615 #ifdef CONFIG_RFS_ACCEL
3616
3617 /**
3618 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3619 * @dev: Device on which the filter was set
3620 * @rxq_index: RX queue index
3621 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3622 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3623 *
3624 * Drivers that implement ndo_rx_flow_steer() should periodically call
3625 * this function for each installed filter and remove the filters for
3626 * which it returns %true.
3627 */
3628 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3629 u32 flow_id, u16 filter_id)
3630 {
3631 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3632 struct rps_dev_flow_table *flow_table;
3633 struct rps_dev_flow *rflow;
3634 bool expire = true;
3635 unsigned int cpu;
3636
3637 rcu_read_lock();
3638 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3639 if (flow_table && flow_id <= flow_table->mask) {
3640 rflow = &flow_table->flows[flow_id];
3641 cpu = ACCESS_ONCE(rflow->cpu);
3642 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3643 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3644 rflow->last_qtail) <
3645 (int)(10 * flow_table->mask)))
3646 expire = false;
3647 }
3648 rcu_read_unlock();
3649 return expire;
3650 }
3651 EXPORT_SYMBOL(rps_may_expire_flow);
3652
3653 #endif /* CONFIG_RFS_ACCEL */
3654
3655 /* Called from hardirq (IPI) context */
3656 static void rps_trigger_softirq(void *data)
3657 {
3658 struct softnet_data *sd = data;
3659
3660 ____napi_schedule(sd, &sd->backlog);
3661 sd->received_rps++;
3662 }
3663
3664 #endif /* CONFIG_RPS */
3665
3666 /*
3667 * Check if this softnet_data structure is another cpu one
3668 * If yes, queue it to our IPI list and return 1
3669 * If no, return 0
3670 */
3671 static int rps_ipi_queued(struct softnet_data *sd)
3672 {
3673 #ifdef CONFIG_RPS
3674 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3675
3676 if (sd != mysd) {
3677 sd->rps_ipi_next = mysd->rps_ipi_list;
3678 mysd->rps_ipi_list = sd;
3679
3680 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3681 return 1;
3682 }
3683 #endif /* CONFIG_RPS */
3684 return 0;
3685 }
3686
3687 #ifdef CONFIG_NET_FLOW_LIMIT
3688 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3689 #endif
3690
3691 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3692 {
3693 #ifdef CONFIG_NET_FLOW_LIMIT
3694 struct sd_flow_limit *fl;
3695 struct softnet_data *sd;
3696 unsigned int old_flow, new_flow;
3697
3698 if (qlen < (netdev_max_backlog >> 1))
3699 return false;
3700
3701 sd = this_cpu_ptr(&softnet_data);
3702
3703 rcu_read_lock();
3704 fl = rcu_dereference(sd->flow_limit);
3705 if (fl) {
3706 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3707 old_flow = fl->history[fl->history_head];
3708 fl->history[fl->history_head] = new_flow;
3709
3710 fl->history_head++;
3711 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3712
3713 if (likely(fl->buckets[old_flow]))
3714 fl->buckets[old_flow]--;
3715
3716 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3717 fl->count++;
3718 rcu_read_unlock();
3719 return true;
3720 }
3721 }
3722 rcu_read_unlock();
3723 #endif
3724 return false;
3725 }
3726
3727 /*
3728 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3729 * queue (may be a remote CPU queue).
3730 */
3731 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3732 unsigned int *qtail)
3733 {
3734 struct softnet_data *sd;
3735 unsigned long flags;
3736 unsigned int qlen;
3737
3738 sd = &per_cpu(softnet_data, cpu);
3739
3740 local_irq_save(flags);
3741
3742 rps_lock(sd);
3743 if (!netif_running(skb->dev))
3744 goto drop;
3745 qlen = skb_queue_len(&sd->input_pkt_queue);
3746 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3747 if (qlen) {
3748 enqueue:
3749 __skb_queue_tail(&sd->input_pkt_queue, skb);
3750 input_queue_tail_incr_save(sd, qtail);
3751 rps_unlock(sd);
3752 local_irq_restore(flags);
3753 return NET_RX_SUCCESS;
3754 }
3755
3756 /* Schedule NAPI for backlog device
3757 * We can use non atomic operation since we own the queue lock
3758 */
3759 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3760 if (!rps_ipi_queued(sd))
3761 ____napi_schedule(sd, &sd->backlog);
3762 }
3763 goto enqueue;
3764 }
3765
3766 drop:
3767 sd->dropped++;
3768 rps_unlock(sd);
3769
3770 local_irq_restore(flags);
3771
3772 atomic_long_inc(&skb->dev->rx_dropped);
3773 kfree_skb(skb);
3774 return NET_RX_DROP;
3775 }
3776
3777 static int netif_rx_internal(struct sk_buff *skb)
3778 {
3779 int ret;
3780
3781 net_timestamp_check(netdev_tstamp_prequeue, skb);
3782
3783 trace_netif_rx(skb);
3784 #ifdef CONFIG_RPS
3785 if (static_key_false(&rps_needed)) {
3786 struct rps_dev_flow voidflow, *rflow = &voidflow;
3787 int cpu;
3788
3789 preempt_disable();
3790 rcu_read_lock();
3791
3792 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3793 if (cpu < 0)
3794 cpu = smp_processor_id();
3795
3796 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3797
3798 rcu_read_unlock();
3799 preempt_enable();
3800 } else
3801 #endif
3802 {
3803 unsigned int qtail;
3804
3805 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3806 put_cpu();
3807 }
3808 return ret;
3809 }
3810
3811 /**
3812 * netif_rx - post buffer to the network code
3813 * @skb: buffer to post
3814 *
3815 * This function receives a packet from a device driver and queues it for
3816 * the upper (protocol) levels to process. It always succeeds. The buffer
3817 * may be dropped during processing for congestion control or by the
3818 * protocol layers.
3819 *
3820 * return values:
3821 * NET_RX_SUCCESS (no congestion)
3822 * NET_RX_DROP (packet was dropped)
3823 *
3824 */
3825
3826 int netif_rx(struct sk_buff *skb)
3827 {
3828 trace_netif_rx_entry(skb);
3829
3830 return netif_rx_internal(skb);
3831 }
3832 EXPORT_SYMBOL(netif_rx);
3833
3834 int netif_rx_ni(struct sk_buff *skb)
3835 {
3836 int err;
3837
3838 trace_netif_rx_ni_entry(skb);
3839
3840 preempt_disable();
3841 err = netif_rx_internal(skb);
3842 if (local_softirq_pending())
3843 do_softirq();
3844 preempt_enable();
3845
3846 return err;
3847 }
3848 EXPORT_SYMBOL(netif_rx_ni);
3849
3850 static __latent_entropy void net_tx_action(struct softirq_action *h)
3851 {
3852 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3853
3854 if (sd->completion_queue) {
3855 struct sk_buff *clist;
3856
3857 local_irq_disable();
3858 clist = sd->completion_queue;
3859 sd->completion_queue = NULL;
3860 local_irq_enable();
3861
3862 while (clist) {
3863 struct sk_buff *skb = clist;
3864
3865 clist = clist->next;
3866
3867 WARN_ON(atomic_read(&skb->users));
3868 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3869 trace_consume_skb(skb);
3870 else
3871 trace_kfree_skb(skb, net_tx_action);
3872
3873 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3874 __kfree_skb(skb);
3875 else
3876 __kfree_skb_defer(skb);
3877 }
3878
3879 __kfree_skb_flush();
3880 }
3881
3882 if (sd->output_queue) {
3883 struct Qdisc *head;
3884
3885 local_irq_disable();
3886 head = sd->output_queue;
3887 sd->output_queue = NULL;
3888 sd->output_queue_tailp = &sd->output_queue;
3889 local_irq_enable();
3890
3891 while (head) {
3892 struct Qdisc *q = head;
3893 spinlock_t *root_lock;
3894
3895 head = head->next_sched;
3896
3897 root_lock = qdisc_lock(q);
3898 spin_lock(root_lock);
3899 /* We need to make sure head->next_sched is read
3900 * before clearing __QDISC_STATE_SCHED
3901 */
3902 smp_mb__before_atomic();
3903 clear_bit(__QDISC_STATE_SCHED, &q->state);
3904 qdisc_run(q);
3905 spin_unlock(root_lock);
3906 }
3907 }
3908 }
3909
3910 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3911 /* This hook is defined here for ATM LANE */
3912 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3913 unsigned char *addr) __read_mostly;
3914 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3915 #endif
3916
3917 static inline struct sk_buff *
3918 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3919 struct net_device *orig_dev)
3920 {
3921 #ifdef CONFIG_NET_CLS_ACT
3922 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3923 struct tcf_result cl_res;
3924
3925 /* If there's at least one ingress present somewhere (so
3926 * we get here via enabled static key), remaining devices
3927 * that are not configured with an ingress qdisc will bail
3928 * out here.
3929 */
3930 if (!cl)
3931 return skb;
3932 if (*pt_prev) {
3933 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3934 *pt_prev = NULL;
3935 }
3936
3937 qdisc_skb_cb(skb)->pkt_len = skb->len;
3938 skb->tc_at_ingress = 1;
3939 qdisc_bstats_cpu_update(cl->q, skb);
3940
3941 switch (tc_classify(skb, cl, &cl_res, false)) {
3942 case TC_ACT_OK:
3943 case TC_ACT_RECLASSIFY:
3944 skb->tc_index = TC_H_MIN(cl_res.classid);
3945 break;
3946 case TC_ACT_SHOT:
3947 qdisc_qstats_cpu_drop(cl->q);
3948 kfree_skb(skb);
3949 return NULL;
3950 case TC_ACT_STOLEN:
3951 case TC_ACT_QUEUED:
3952 consume_skb(skb);
3953 return NULL;
3954 case TC_ACT_REDIRECT:
3955 /* skb_mac_header check was done by cls/act_bpf, so
3956 * we can safely push the L2 header back before
3957 * redirecting to another netdev
3958 */
3959 __skb_push(skb, skb->mac_len);
3960 skb_do_redirect(skb);
3961 return NULL;
3962 default:
3963 break;
3964 }
3965 #endif /* CONFIG_NET_CLS_ACT */
3966 return skb;
3967 }
3968
3969 /**
3970 * netdev_is_rx_handler_busy - check if receive handler is registered
3971 * @dev: device to check
3972 *
3973 * Check if a receive handler is already registered for a given device.
3974 * Return true if there one.
3975 *
3976 * The caller must hold the rtnl_mutex.
3977 */
3978 bool netdev_is_rx_handler_busy(struct net_device *dev)
3979 {
3980 ASSERT_RTNL();
3981 return dev && rtnl_dereference(dev->rx_handler);
3982 }
3983 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3984
3985 /**
3986 * netdev_rx_handler_register - register receive handler
3987 * @dev: device to register a handler for
3988 * @rx_handler: receive handler to register
3989 * @rx_handler_data: data pointer that is used by rx handler
3990 *
3991 * Register a receive handler for a device. This handler will then be
3992 * called from __netif_receive_skb. A negative errno code is returned
3993 * on a failure.
3994 *
3995 * The caller must hold the rtnl_mutex.
3996 *
3997 * For a general description of rx_handler, see enum rx_handler_result.
3998 */
3999 int netdev_rx_handler_register(struct net_device *dev,
4000 rx_handler_func_t *rx_handler,
4001 void *rx_handler_data)
4002 {
4003 if (netdev_is_rx_handler_busy(dev))
4004 return -EBUSY;
4005
4006 /* Note: rx_handler_data must be set before rx_handler */
4007 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4008 rcu_assign_pointer(dev->rx_handler, rx_handler);
4009
4010 return 0;
4011 }
4012 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4013
4014 /**
4015 * netdev_rx_handler_unregister - unregister receive handler
4016 * @dev: device to unregister a handler from
4017 *
4018 * Unregister a receive handler from a device.
4019 *
4020 * The caller must hold the rtnl_mutex.
4021 */
4022 void netdev_rx_handler_unregister(struct net_device *dev)
4023 {
4024
4025 ASSERT_RTNL();
4026 RCU_INIT_POINTER(dev->rx_handler, NULL);
4027 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4028 * section has a guarantee to see a non NULL rx_handler_data
4029 * as well.
4030 */
4031 synchronize_net();
4032 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4033 }
4034 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4035
4036 /*
4037 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4038 * the special handling of PFMEMALLOC skbs.
4039 */
4040 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4041 {
4042 switch (skb->protocol) {
4043 case htons(ETH_P_ARP):
4044 case htons(ETH_P_IP):
4045 case htons(ETH_P_IPV6):
4046 case htons(ETH_P_8021Q):
4047 case htons(ETH_P_8021AD):
4048 return true;
4049 default:
4050 return false;
4051 }
4052 }
4053
4054 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4055 int *ret, struct net_device *orig_dev)
4056 {
4057 #ifdef CONFIG_NETFILTER_INGRESS
4058 if (nf_hook_ingress_active(skb)) {
4059 int ingress_retval;
4060
4061 if (*pt_prev) {
4062 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4063 *pt_prev = NULL;
4064 }
4065
4066 rcu_read_lock();
4067 ingress_retval = nf_hook_ingress(skb);
4068 rcu_read_unlock();
4069 return ingress_retval;
4070 }
4071 #endif /* CONFIG_NETFILTER_INGRESS */
4072 return 0;
4073 }
4074
4075 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4076 {
4077 struct packet_type *ptype, *pt_prev;
4078 rx_handler_func_t *rx_handler;
4079 struct net_device *orig_dev;
4080 bool deliver_exact = false;
4081 int ret = NET_RX_DROP;
4082 __be16 type;
4083
4084 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4085
4086 trace_netif_receive_skb(skb);
4087
4088 orig_dev = skb->dev;
4089
4090 skb_reset_network_header(skb);
4091 if (!skb_transport_header_was_set(skb))
4092 skb_reset_transport_header(skb);
4093 skb_reset_mac_len(skb);
4094
4095 pt_prev = NULL;
4096
4097 another_round:
4098 skb->skb_iif = skb->dev->ifindex;
4099
4100 __this_cpu_inc(softnet_data.processed);
4101
4102 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4103 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4104 skb = skb_vlan_untag(skb);
4105 if (unlikely(!skb))
4106 goto out;
4107 }
4108
4109 if (skb_skip_tc_classify(skb))
4110 goto skip_classify;
4111
4112 if (pfmemalloc)
4113 goto skip_taps;
4114
4115 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4116 if (pt_prev)
4117 ret = deliver_skb(skb, pt_prev, orig_dev);
4118 pt_prev = ptype;
4119 }
4120
4121 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4122 if (pt_prev)
4123 ret = deliver_skb(skb, pt_prev, orig_dev);
4124 pt_prev = ptype;
4125 }
4126
4127 skip_taps:
4128 #ifdef CONFIG_NET_INGRESS
4129 if (static_key_false(&ingress_needed)) {
4130 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4131 if (!skb)
4132 goto out;
4133
4134 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4135 goto out;
4136 }
4137 #endif
4138 skb_reset_tc(skb);
4139 skip_classify:
4140 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4141 goto drop;
4142
4143 if (skb_vlan_tag_present(skb)) {
4144 if (pt_prev) {
4145 ret = deliver_skb(skb, pt_prev, orig_dev);
4146 pt_prev = NULL;
4147 }
4148 if (vlan_do_receive(&skb))
4149 goto another_round;
4150 else if (unlikely(!skb))
4151 goto out;
4152 }
4153
4154 rx_handler = rcu_dereference(skb->dev->rx_handler);
4155 if (rx_handler) {
4156 if (pt_prev) {
4157 ret = deliver_skb(skb, pt_prev, orig_dev);
4158 pt_prev = NULL;
4159 }
4160 switch (rx_handler(&skb)) {
4161 case RX_HANDLER_CONSUMED:
4162 ret = NET_RX_SUCCESS;
4163 goto out;
4164 case RX_HANDLER_ANOTHER:
4165 goto another_round;
4166 case RX_HANDLER_EXACT:
4167 deliver_exact = true;
4168 case RX_HANDLER_PASS:
4169 break;
4170 default:
4171 BUG();
4172 }
4173 }
4174
4175 if (unlikely(skb_vlan_tag_present(skb))) {
4176 if (skb_vlan_tag_get_id(skb))
4177 skb->pkt_type = PACKET_OTHERHOST;
4178 /* Note: we might in the future use prio bits
4179 * and set skb->priority like in vlan_do_receive()
4180 * For the time being, just ignore Priority Code Point
4181 */
4182 skb->vlan_tci = 0;
4183 }
4184
4185 type = skb->protocol;
4186
4187 /* deliver only exact match when indicated */
4188 if (likely(!deliver_exact)) {
4189 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4190 &ptype_base[ntohs(type) &
4191 PTYPE_HASH_MASK]);
4192 }
4193
4194 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4195 &orig_dev->ptype_specific);
4196
4197 if (unlikely(skb->dev != orig_dev)) {
4198 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4199 &skb->dev->ptype_specific);
4200 }
4201
4202 if (pt_prev) {
4203 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4204 goto drop;
4205 else
4206 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4207 } else {
4208 drop:
4209 if (!deliver_exact)
4210 atomic_long_inc(&skb->dev->rx_dropped);
4211 else
4212 atomic_long_inc(&skb->dev->rx_nohandler);
4213 kfree_skb(skb);
4214 /* Jamal, now you will not able to escape explaining
4215 * me how you were going to use this. :-)
4216 */
4217 ret = NET_RX_DROP;
4218 }
4219
4220 out:
4221 return ret;
4222 }
4223
4224 static int __netif_receive_skb(struct sk_buff *skb)
4225 {
4226 int ret;
4227
4228 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4229 unsigned long pflags = current->flags;
4230
4231 /*
4232 * PFMEMALLOC skbs are special, they should
4233 * - be delivered to SOCK_MEMALLOC sockets only
4234 * - stay away from userspace
4235 * - have bounded memory usage
4236 *
4237 * Use PF_MEMALLOC as this saves us from propagating the allocation
4238 * context down to all allocation sites.
4239 */
4240 current->flags |= PF_MEMALLOC;
4241 ret = __netif_receive_skb_core(skb, true);
4242 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4243 } else
4244 ret = __netif_receive_skb_core(skb, false);
4245
4246 return ret;
4247 }
4248
4249 static int netif_receive_skb_internal(struct sk_buff *skb)
4250 {
4251 int ret;
4252
4253 net_timestamp_check(netdev_tstamp_prequeue, skb);
4254
4255 if (skb_defer_rx_timestamp(skb))
4256 return NET_RX_SUCCESS;
4257
4258 rcu_read_lock();
4259
4260 #ifdef CONFIG_RPS
4261 if (static_key_false(&rps_needed)) {
4262 struct rps_dev_flow voidflow, *rflow = &voidflow;
4263 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4264
4265 if (cpu >= 0) {
4266 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4267 rcu_read_unlock();
4268 return ret;
4269 }
4270 }
4271 #endif
4272 ret = __netif_receive_skb(skb);
4273 rcu_read_unlock();
4274 return ret;
4275 }
4276
4277 /**
4278 * netif_receive_skb - process receive buffer from network
4279 * @skb: buffer to process
4280 *
4281 * netif_receive_skb() is the main receive data processing function.
4282 * It always succeeds. The buffer may be dropped during processing
4283 * for congestion control or by the protocol layers.
4284 *
4285 * This function may only be called from softirq context and interrupts
4286 * should be enabled.
4287 *
4288 * Return values (usually ignored):
4289 * NET_RX_SUCCESS: no congestion
4290 * NET_RX_DROP: packet was dropped
4291 */
4292 int netif_receive_skb(struct sk_buff *skb)
4293 {
4294 trace_netif_receive_skb_entry(skb);
4295
4296 return netif_receive_skb_internal(skb);
4297 }
4298 EXPORT_SYMBOL(netif_receive_skb);
4299
4300 DEFINE_PER_CPU(struct work_struct, flush_works);
4301
4302 /* Network device is going away, flush any packets still pending */
4303 static void flush_backlog(struct work_struct *work)
4304 {
4305 struct sk_buff *skb, *tmp;
4306 struct softnet_data *sd;
4307
4308 local_bh_disable();
4309 sd = this_cpu_ptr(&softnet_data);
4310
4311 local_irq_disable();
4312 rps_lock(sd);
4313 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4314 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4315 __skb_unlink(skb, &sd->input_pkt_queue);
4316 kfree_skb(skb);
4317 input_queue_head_incr(sd);
4318 }
4319 }
4320 rps_unlock(sd);
4321 local_irq_enable();
4322
4323 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4324 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4325 __skb_unlink(skb, &sd->process_queue);
4326 kfree_skb(skb);
4327 input_queue_head_incr(sd);
4328 }
4329 }
4330 local_bh_enable();
4331 }
4332
4333 static void flush_all_backlogs(void)
4334 {
4335 unsigned int cpu;
4336
4337 get_online_cpus();
4338
4339 for_each_online_cpu(cpu)
4340 queue_work_on(cpu, system_highpri_wq,
4341 per_cpu_ptr(&flush_works, cpu));
4342
4343 for_each_online_cpu(cpu)
4344 flush_work(per_cpu_ptr(&flush_works, cpu));
4345
4346 put_online_cpus();
4347 }
4348
4349 static int napi_gro_complete(struct sk_buff *skb)
4350 {
4351 struct packet_offload *ptype;
4352 __be16 type = skb->protocol;
4353 struct list_head *head = &offload_base;
4354 int err = -ENOENT;
4355
4356 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4357
4358 if (NAPI_GRO_CB(skb)->count == 1) {
4359 skb_shinfo(skb)->gso_size = 0;
4360 goto out;
4361 }
4362
4363 rcu_read_lock();
4364 list_for_each_entry_rcu(ptype, head, list) {
4365 if (ptype->type != type || !ptype->callbacks.gro_complete)
4366 continue;
4367
4368 err = ptype->callbacks.gro_complete(skb, 0);
4369 break;
4370 }
4371 rcu_read_unlock();
4372
4373 if (err) {
4374 WARN_ON(&ptype->list == head);
4375 kfree_skb(skb);
4376 return NET_RX_SUCCESS;
4377 }
4378
4379 out:
4380 return netif_receive_skb_internal(skb);
4381 }
4382
4383 /* napi->gro_list contains packets ordered by age.
4384 * youngest packets at the head of it.
4385 * Complete skbs in reverse order to reduce latencies.
4386 */
4387 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4388 {
4389 struct sk_buff *skb, *prev = NULL;
4390
4391 /* scan list and build reverse chain */
4392 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4393 skb->prev = prev;
4394 prev = skb;
4395 }
4396
4397 for (skb = prev; skb; skb = prev) {
4398 skb->next = NULL;
4399
4400 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4401 return;
4402
4403 prev = skb->prev;
4404 napi_gro_complete(skb);
4405 napi->gro_count--;
4406 }
4407
4408 napi->gro_list = NULL;
4409 }
4410 EXPORT_SYMBOL(napi_gro_flush);
4411
4412 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4413 {
4414 struct sk_buff *p;
4415 unsigned int maclen = skb->dev->hard_header_len;
4416 u32 hash = skb_get_hash_raw(skb);
4417
4418 for (p = napi->gro_list; p; p = p->next) {
4419 unsigned long diffs;
4420
4421 NAPI_GRO_CB(p)->flush = 0;
4422
4423 if (hash != skb_get_hash_raw(p)) {
4424 NAPI_GRO_CB(p)->same_flow = 0;
4425 continue;
4426 }
4427
4428 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4429 diffs |= p->vlan_tci ^ skb->vlan_tci;
4430 diffs |= skb_metadata_dst_cmp(p, skb);
4431 if (maclen == ETH_HLEN)
4432 diffs |= compare_ether_header(skb_mac_header(p),
4433 skb_mac_header(skb));
4434 else if (!diffs)
4435 diffs = memcmp(skb_mac_header(p),
4436 skb_mac_header(skb),
4437 maclen);
4438 NAPI_GRO_CB(p)->same_flow = !diffs;
4439 }
4440 }
4441
4442 static void skb_gro_reset_offset(struct sk_buff *skb)
4443 {
4444 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4445 const skb_frag_t *frag0 = &pinfo->frags[0];
4446
4447 NAPI_GRO_CB(skb)->data_offset = 0;
4448 NAPI_GRO_CB(skb)->frag0 = NULL;
4449 NAPI_GRO_CB(skb)->frag0_len = 0;
4450
4451 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4452 pinfo->nr_frags &&
4453 !PageHighMem(skb_frag_page(frag0))) {
4454 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4455 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4456 skb_frag_size(frag0),
4457 skb->end - skb->tail);
4458 }
4459 }
4460
4461 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4462 {
4463 struct skb_shared_info *pinfo = skb_shinfo(skb);
4464
4465 BUG_ON(skb->end - skb->tail < grow);
4466
4467 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4468
4469 skb->data_len -= grow;
4470 skb->tail += grow;
4471
4472 pinfo->frags[0].page_offset += grow;
4473 skb_frag_size_sub(&pinfo->frags[0], grow);
4474
4475 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4476 skb_frag_unref(skb, 0);
4477 memmove(pinfo->frags, pinfo->frags + 1,
4478 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4479 }
4480 }
4481
4482 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4483 {
4484 struct sk_buff **pp = NULL;
4485 struct packet_offload *ptype;
4486 __be16 type = skb->protocol;
4487 struct list_head *head = &offload_base;
4488 int same_flow;
4489 enum gro_result ret;
4490 int grow;
4491
4492 if (!(skb->dev->features & NETIF_F_GRO))
4493 goto normal;
4494
4495 if (skb->csum_bad)
4496 goto normal;
4497
4498 gro_list_prepare(napi, skb);
4499
4500 rcu_read_lock();
4501 list_for_each_entry_rcu(ptype, head, list) {
4502 if (ptype->type != type || !ptype->callbacks.gro_receive)
4503 continue;
4504
4505 skb_set_network_header(skb, skb_gro_offset(skb));
4506 skb_reset_mac_len(skb);
4507 NAPI_GRO_CB(skb)->same_flow = 0;
4508 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4509 NAPI_GRO_CB(skb)->free = 0;
4510 NAPI_GRO_CB(skb)->encap_mark = 0;
4511 NAPI_GRO_CB(skb)->recursion_counter = 0;
4512 NAPI_GRO_CB(skb)->is_fou = 0;
4513 NAPI_GRO_CB(skb)->is_atomic = 1;
4514 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4515
4516 /* Setup for GRO checksum validation */
4517 switch (skb->ip_summed) {
4518 case CHECKSUM_COMPLETE:
4519 NAPI_GRO_CB(skb)->csum = skb->csum;
4520 NAPI_GRO_CB(skb)->csum_valid = 1;
4521 NAPI_GRO_CB(skb)->csum_cnt = 0;
4522 break;
4523 case CHECKSUM_UNNECESSARY:
4524 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4525 NAPI_GRO_CB(skb)->csum_valid = 0;
4526 break;
4527 default:
4528 NAPI_GRO_CB(skb)->csum_cnt = 0;
4529 NAPI_GRO_CB(skb)->csum_valid = 0;
4530 }
4531
4532 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4533 break;
4534 }
4535 rcu_read_unlock();
4536
4537 if (&ptype->list == head)
4538 goto normal;
4539
4540 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4541 ret = GRO_CONSUMED;
4542 goto ok;
4543 }
4544
4545 same_flow = NAPI_GRO_CB(skb)->same_flow;
4546 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4547
4548 if (pp) {
4549 struct sk_buff *nskb = *pp;
4550
4551 *pp = nskb->next;
4552 nskb->next = NULL;
4553 napi_gro_complete(nskb);
4554 napi->gro_count--;
4555 }
4556
4557 if (same_flow)
4558 goto ok;
4559
4560 if (NAPI_GRO_CB(skb)->flush)
4561 goto normal;
4562
4563 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4564 struct sk_buff *nskb = napi->gro_list;
4565
4566 /* locate the end of the list to select the 'oldest' flow */
4567 while (nskb->next) {
4568 pp = &nskb->next;
4569 nskb = *pp;
4570 }
4571 *pp = NULL;
4572 nskb->next = NULL;
4573 napi_gro_complete(nskb);
4574 } else {
4575 napi->gro_count++;
4576 }
4577 NAPI_GRO_CB(skb)->count = 1;
4578 NAPI_GRO_CB(skb)->age = jiffies;
4579 NAPI_GRO_CB(skb)->last = skb;
4580 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4581 skb->next = napi->gro_list;
4582 napi->gro_list = skb;
4583 ret = GRO_HELD;
4584
4585 pull:
4586 grow = skb_gro_offset(skb) - skb_headlen(skb);
4587 if (grow > 0)
4588 gro_pull_from_frag0(skb, grow);
4589 ok:
4590 return ret;
4591
4592 normal:
4593 ret = GRO_NORMAL;
4594 goto pull;
4595 }
4596
4597 struct packet_offload *gro_find_receive_by_type(__be16 type)
4598 {
4599 struct list_head *offload_head = &offload_base;
4600 struct packet_offload *ptype;
4601
4602 list_for_each_entry_rcu(ptype, offload_head, list) {
4603 if (ptype->type != type || !ptype->callbacks.gro_receive)
4604 continue;
4605 return ptype;
4606 }
4607 return NULL;
4608 }
4609 EXPORT_SYMBOL(gro_find_receive_by_type);
4610
4611 struct packet_offload *gro_find_complete_by_type(__be16 type)
4612 {
4613 struct list_head *offload_head = &offload_base;
4614 struct packet_offload *ptype;
4615
4616 list_for_each_entry_rcu(ptype, offload_head, list) {
4617 if (ptype->type != type || !ptype->callbacks.gro_complete)
4618 continue;
4619 return ptype;
4620 }
4621 return NULL;
4622 }
4623 EXPORT_SYMBOL(gro_find_complete_by_type);
4624
4625 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4626 {
4627 switch (ret) {
4628 case GRO_NORMAL:
4629 if (netif_receive_skb_internal(skb))
4630 ret = GRO_DROP;
4631 break;
4632
4633 case GRO_DROP:
4634 kfree_skb(skb);
4635 break;
4636
4637 case GRO_MERGED_FREE:
4638 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4639 skb_dst_drop(skb);
4640 secpath_reset(skb);
4641 kmem_cache_free(skbuff_head_cache, skb);
4642 } else {
4643 __kfree_skb(skb);
4644 }
4645 break;
4646
4647 case GRO_HELD:
4648 case GRO_MERGED:
4649 case GRO_CONSUMED:
4650 break;
4651 }
4652
4653 return ret;
4654 }
4655
4656 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4657 {
4658 skb_mark_napi_id(skb, napi);
4659 trace_napi_gro_receive_entry(skb);
4660
4661 skb_gro_reset_offset(skb);
4662
4663 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4664 }
4665 EXPORT_SYMBOL(napi_gro_receive);
4666
4667 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4668 {
4669 if (unlikely(skb->pfmemalloc)) {
4670 consume_skb(skb);
4671 return;
4672 }
4673 __skb_pull(skb, skb_headlen(skb));
4674 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4675 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4676 skb->vlan_tci = 0;
4677 skb->dev = napi->dev;
4678 skb->skb_iif = 0;
4679 skb->encapsulation = 0;
4680 skb_shinfo(skb)->gso_type = 0;
4681 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4682 secpath_reset(skb);
4683
4684 napi->skb = skb;
4685 }
4686
4687 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4688 {
4689 struct sk_buff *skb = napi->skb;
4690
4691 if (!skb) {
4692 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4693 if (skb) {
4694 napi->skb = skb;
4695 skb_mark_napi_id(skb, napi);
4696 }
4697 }
4698 return skb;
4699 }
4700 EXPORT_SYMBOL(napi_get_frags);
4701
4702 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4703 struct sk_buff *skb,
4704 gro_result_t ret)
4705 {
4706 switch (ret) {
4707 case GRO_NORMAL:
4708 case GRO_HELD:
4709 __skb_push(skb, ETH_HLEN);
4710 skb->protocol = eth_type_trans(skb, skb->dev);
4711 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4712 ret = GRO_DROP;
4713 break;
4714
4715 case GRO_DROP:
4716 case GRO_MERGED_FREE:
4717 napi_reuse_skb(napi, skb);
4718 break;
4719
4720 case GRO_MERGED:
4721 case GRO_CONSUMED:
4722 break;
4723 }
4724
4725 return ret;
4726 }
4727
4728 /* Upper GRO stack assumes network header starts at gro_offset=0
4729 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4730 * We copy ethernet header into skb->data to have a common layout.
4731 */
4732 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4733 {
4734 struct sk_buff *skb = napi->skb;
4735 const struct ethhdr *eth;
4736 unsigned int hlen = sizeof(*eth);
4737
4738 napi->skb = NULL;
4739
4740 skb_reset_mac_header(skb);
4741 skb_gro_reset_offset(skb);
4742
4743 eth = skb_gro_header_fast(skb, 0);
4744 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4745 eth = skb_gro_header_slow(skb, hlen, 0);
4746 if (unlikely(!eth)) {
4747 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4748 __func__, napi->dev->name);
4749 napi_reuse_skb(napi, skb);
4750 return NULL;
4751 }
4752 } else {
4753 gro_pull_from_frag0(skb, hlen);
4754 NAPI_GRO_CB(skb)->frag0 += hlen;
4755 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4756 }
4757 __skb_pull(skb, hlen);
4758
4759 /*
4760 * This works because the only protocols we care about don't require
4761 * special handling.
4762 * We'll fix it up properly in napi_frags_finish()
4763 */
4764 skb->protocol = eth->h_proto;
4765
4766 return skb;
4767 }
4768
4769 gro_result_t napi_gro_frags(struct napi_struct *napi)
4770 {
4771 struct sk_buff *skb = napi_frags_skb(napi);
4772
4773 if (!skb)
4774 return GRO_DROP;
4775
4776 trace_napi_gro_frags_entry(skb);
4777
4778 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4779 }
4780 EXPORT_SYMBOL(napi_gro_frags);
4781
4782 /* Compute the checksum from gro_offset and return the folded value
4783 * after adding in any pseudo checksum.
4784 */
4785 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4786 {
4787 __wsum wsum;
4788 __sum16 sum;
4789
4790 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4791
4792 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4793 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4794 if (likely(!sum)) {
4795 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4796 !skb->csum_complete_sw)
4797 netdev_rx_csum_fault(skb->dev);
4798 }
4799
4800 NAPI_GRO_CB(skb)->csum = wsum;
4801 NAPI_GRO_CB(skb)->csum_valid = 1;
4802
4803 return sum;
4804 }
4805 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4806
4807 /*
4808 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4809 * Note: called with local irq disabled, but exits with local irq enabled.
4810 */
4811 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4812 {
4813 #ifdef CONFIG_RPS
4814 struct softnet_data *remsd = sd->rps_ipi_list;
4815
4816 if (remsd) {
4817 sd->rps_ipi_list = NULL;
4818
4819 local_irq_enable();
4820
4821 /* Send pending IPI's to kick RPS processing on remote cpus. */
4822 while (remsd) {
4823 struct softnet_data *next = remsd->rps_ipi_next;
4824
4825 if (cpu_online(remsd->cpu))
4826 smp_call_function_single_async(remsd->cpu,
4827 &remsd->csd);
4828 remsd = next;
4829 }
4830 } else
4831 #endif
4832 local_irq_enable();
4833 }
4834
4835 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4836 {
4837 #ifdef CONFIG_RPS
4838 return sd->rps_ipi_list != NULL;
4839 #else
4840 return false;
4841 #endif
4842 }
4843
4844 static int process_backlog(struct napi_struct *napi, int quota)
4845 {
4846 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4847 bool again = true;
4848 int work = 0;
4849
4850 /* Check if we have pending ipi, its better to send them now,
4851 * not waiting net_rx_action() end.
4852 */
4853 if (sd_has_rps_ipi_waiting(sd)) {
4854 local_irq_disable();
4855 net_rps_action_and_irq_enable(sd);
4856 }
4857
4858 napi->weight = dev_rx_weight;
4859 while (again) {
4860 struct sk_buff *skb;
4861
4862 while ((skb = __skb_dequeue(&sd->process_queue))) {
4863 rcu_read_lock();
4864 __netif_receive_skb(skb);
4865 rcu_read_unlock();
4866 input_queue_head_incr(sd);
4867 if (++work >= quota)
4868 return work;
4869
4870 }
4871
4872 local_irq_disable();
4873 rps_lock(sd);
4874 if (skb_queue_empty(&sd->input_pkt_queue)) {
4875 /*
4876 * Inline a custom version of __napi_complete().
4877 * only current cpu owns and manipulates this napi,
4878 * and NAPI_STATE_SCHED is the only possible flag set
4879 * on backlog.
4880 * We can use a plain write instead of clear_bit(),
4881 * and we dont need an smp_mb() memory barrier.
4882 */
4883 napi->state = 0;
4884 again = false;
4885 } else {
4886 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4887 &sd->process_queue);
4888 }
4889 rps_unlock(sd);
4890 local_irq_enable();
4891 }
4892
4893 return work;
4894 }
4895
4896 /**
4897 * __napi_schedule - schedule for receive
4898 * @n: entry to schedule
4899 *
4900 * The entry's receive function will be scheduled to run.
4901 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4902 */
4903 void __napi_schedule(struct napi_struct *n)
4904 {
4905 unsigned long flags;
4906
4907 local_irq_save(flags);
4908 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4909 local_irq_restore(flags);
4910 }
4911 EXPORT_SYMBOL(__napi_schedule);
4912
4913 /**
4914 * napi_schedule_prep - check if napi can be scheduled
4915 * @n: napi context
4916 *
4917 * Test if NAPI routine is already running, and if not mark
4918 * it as running. This is used as a condition variable
4919 * insure only one NAPI poll instance runs. We also make
4920 * sure there is no pending NAPI disable.
4921 */
4922 bool napi_schedule_prep(struct napi_struct *n)
4923 {
4924 unsigned long val, new;
4925
4926 do {
4927 val = READ_ONCE(n->state);
4928 if (unlikely(val & NAPIF_STATE_DISABLE))
4929 return false;
4930 new = val | NAPIF_STATE_SCHED;
4931
4932 /* Sets STATE_MISSED bit if STATE_SCHED was already set
4933 * This was suggested by Alexander Duyck, as compiler
4934 * emits better code than :
4935 * if (val & NAPIF_STATE_SCHED)
4936 * new |= NAPIF_STATE_MISSED;
4937 */
4938 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
4939 NAPIF_STATE_MISSED;
4940 } while (cmpxchg(&n->state, val, new) != val);
4941
4942 return !(val & NAPIF_STATE_SCHED);
4943 }
4944 EXPORT_SYMBOL(napi_schedule_prep);
4945
4946 /**
4947 * __napi_schedule_irqoff - schedule for receive
4948 * @n: entry to schedule
4949 *
4950 * Variant of __napi_schedule() assuming hard irqs are masked
4951 */
4952 void __napi_schedule_irqoff(struct napi_struct *n)
4953 {
4954 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4955 }
4956 EXPORT_SYMBOL(__napi_schedule_irqoff);
4957
4958 bool napi_complete_done(struct napi_struct *n, int work_done)
4959 {
4960 unsigned long flags, val, new;
4961
4962 /*
4963 * 1) Don't let napi dequeue from the cpu poll list
4964 * just in case its running on a different cpu.
4965 * 2) If we are busy polling, do nothing here, we have
4966 * the guarantee we will be called later.
4967 */
4968 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4969 NAPIF_STATE_IN_BUSY_POLL)))
4970 return false;
4971
4972 if (n->gro_list) {
4973 unsigned long timeout = 0;
4974
4975 if (work_done)
4976 timeout = n->dev->gro_flush_timeout;
4977
4978 if (timeout)
4979 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4980 HRTIMER_MODE_REL_PINNED);
4981 else
4982 napi_gro_flush(n, false);
4983 }
4984 if (unlikely(!list_empty(&n->poll_list))) {
4985 /* If n->poll_list is not empty, we need to mask irqs */
4986 local_irq_save(flags);
4987 list_del_init(&n->poll_list);
4988 local_irq_restore(flags);
4989 }
4990
4991 do {
4992 val = READ_ONCE(n->state);
4993
4994 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
4995
4996 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
4997
4998 /* If STATE_MISSED was set, leave STATE_SCHED set,
4999 * because we will call napi->poll() one more time.
5000 * This C code was suggested by Alexander Duyck to help gcc.
5001 */
5002 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5003 NAPIF_STATE_SCHED;
5004 } while (cmpxchg(&n->state, val, new) != val);
5005
5006 if (unlikely(val & NAPIF_STATE_MISSED)) {
5007 __napi_schedule(n);
5008 return false;
5009 }
5010
5011 return true;
5012 }
5013 EXPORT_SYMBOL(napi_complete_done);
5014
5015 /* must be called under rcu_read_lock(), as we dont take a reference */
5016 static struct napi_struct *napi_by_id(unsigned int napi_id)
5017 {
5018 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5019 struct napi_struct *napi;
5020
5021 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5022 if (napi->napi_id == napi_id)
5023 return napi;
5024
5025 return NULL;
5026 }
5027
5028 #if defined(CONFIG_NET_RX_BUSY_POLL)
5029
5030 #define BUSY_POLL_BUDGET 8
5031
5032 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5033 {
5034 int rc;
5035
5036 /* Busy polling means there is a high chance device driver hard irq
5037 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5038 * set in napi_schedule_prep().
5039 * Since we are about to call napi->poll() once more, we can safely
5040 * clear NAPI_STATE_MISSED.
5041 *
5042 * Note: x86 could use a single "lock and ..." instruction
5043 * to perform these two clear_bit()
5044 */
5045 clear_bit(NAPI_STATE_MISSED, &napi->state);
5046 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5047
5048 local_bh_disable();
5049
5050 /* All we really want here is to re-enable device interrupts.
5051 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5052 */
5053 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5054 netpoll_poll_unlock(have_poll_lock);
5055 if (rc == BUSY_POLL_BUDGET)
5056 __napi_schedule(napi);
5057 local_bh_enable();
5058 if (local_softirq_pending())
5059 do_softirq();
5060 }
5061
5062 bool sk_busy_loop(struct sock *sk, int nonblock)
5063 {
5064 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
5065 int (*napi_poll)(struct napi_struct *napi, int budget);
5066 void *have_poll_lock = NULL;
5067 struct napi_struct *napi;
5068 int rc;
5069
5070 restart:
5071 rc = false;
5072 napi_poll = NULL;
5073
5074 rcu_read_lock();
5075
5076 napi = napi_by_id(sk->sk_napi_id);
5077 if (!napi)
5078 goto out;
5079
5080 preempt_disable();
5081 for (;;) {
5082 rc = 0;
5083 local_bh_disable();
5084 if (!napi_poll) {
5085 unsigned long val = READ_ONCE(napi->state);
5086
5087 /* If multiple threads are competing for this napi,
5088 * we avoid dirtying napi->state as much as we can.
5089 */
5090 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5091 NAPIF_STATE_IN_BUSY_POLL))
5092 goto count;
5093 if (cmpxchg(&napi->state, val,
5094 val | NAPIF_STATE_IN_BUSY_POLL |
5095 NAPIF_STATE_SCHED) != val)
5096 goto count;
5097 have_poll_lock = netpoll_poll_lock(napi);
5098 napi_poll = napi->poll;
5099 }
5100 rc = napi_poll(napi, BUSY_POLL_BUDGET);
5101 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5102 count:
5103 if (rc > 0)
5104 __NET_ADD_STATS(sock_net(sk),
5105 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5106 local_bh_enable();
5107
5108 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5109 busy_loop_timeout(end_time))
5110 break;
5111
5112 if (unlikely(need_resched())) {
5113 if (napi_poll)
5114 busy_poll_stop(napi, have_poll_lock);
5115 preempt_enable();
5116 rcu_read_unlock();
5117 cond_resched();
5118 rc = !skb_queue_empty(&sk->sk_receive_queue);
5119 if (rc || busy_loop_timeout(end_time))
5120 return rc;
5121 goto restart;
5122 }
5123 cpu_relax();
5124 }
5125 if (napi_poll)
5126 busy_poll_stop(napi, have_poll_lock);
5127 preempt_enable();
5128 rc = !skb_queue_empty(&sk->sk_receive_queue);
5129 out:
5130 rcu_read_unlock();
5131 return rc;
5132 }
5133 EXPORT_SYMBOL(sk_busy_loop);
5134
5135 #endif /* CONFIG_NET_RX_BUSY_POLL */
5136
5137 static void napi_hash_add(struct napi_struct *napi)
5138 {
5139 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5140 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5141 return;
5142
5143 spin_lock(&napi_hash_lock);
5144
5145 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5146 do {
5147 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5148 napi_gen_id = NR_CPUS + 1;
5149 } while (napi_by_id(napi_gen_id));
5150 napi->napi_id = napi_gen_id;
5151
5152 hlist_add_head_rcu(&napi->napi_hash_node,
5153 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5154
5155 spin_unlock(&napi_hash_lock);
5156 }
5157
5158 /* Warning : caller is responsible to make sure rcu grace period
5159 * is respected before freeing memory containing @napi
5160 */
5161 bool napi_hash_del(struct napi_struct *napi)
5162 {
5163 bool rcu_sync_needed = false;
5164
5165 spin_lock(&napi_hash_lock);
5166
5167 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5168 rcu_sync_needed = true;
5169 hlist_del_rcu(&napi->napi_hash_node);
5170 }
5171 spin_unlock(&napi_hash_lock);
5172 return rcu_sync_needed;
5173 }
5174 EXPORT_SYMBOL_GPL(napi_hash_del);
5175
5176 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5177 {
5178 struct napi_struct *napi;
5179
5180 napi = container_of(timer, struct napi_struct, timer);
5181
5182 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5183 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5184 */
5185 if (napi->gro_list && !napi_disable_pending(napi) &&
5186 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5187 __napi_schedule_irqoff(napi);
5188
5189 return HRTIMER_NORESTART;
5190 }
5191
5192 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5193 int (*poll)(struct napi_struct *, int), int weight)
5194 {
5195 INIT_LIST_HEAD(&napi->poll_list);
5196 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5197 napi->timer.function = napi_watchdog;
5198 napi->gro_count = 0;
5199 napi->gro_list = NULL;
5200 napi->skb = NULL;
5201 napi->poll = poll;
5202 if (weight > NAPI_POLL_WEIGHT)
5203 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5204 weight, dev->name);
5205 napi->weight = weight;
5206 list_add(&napi->dev_list, &dev->napi_list);
5207 napi->dev = dev;
5208 #ifdef CONFIG_NETPOLL
5209 napi->poll_owner = -1;
5210 #endif
5211 set_bit(NAPI_STATE_SCHED, &napi->state);
5212 napi_hash_add(napi);
5213 }
5214 EXPORT_SYMBOL(netif_napi_add);
5215
5216 void napi_disable(struct napi_struct *n)
5217 {
5218 might_sleep();
5219 set_bit(NAPI_STATE_DISABLE, &n->state);
5220
5221 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5222 msleep(1);
5223 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5224 msleep(1);
5225
5226 hrtimer_cancel(&n->timer);
5227
5228 clear_bit(NAPI_STATE_DISABLE, &n->state);
5229 }
5230 EXPORT_SYMBOL(napi_disable);
5231
5232 /* Must be called in process context */
5233 void netif_napi_del(struct napi_struct *napi)
5234 {
5235 might_sleep();
5236 if (napi_hash_del(napi))
5237 synchronize_net();
5238 list_del_init(&napi->dev_list);
5239 napi_free_frags(napi);
5240
5241 kfree_skb_list(napi->gro_list);
5242 napi->gro_list = NULL;
5243 napi->gro_count = 0;
5244 }
5245 EXPORT_SYMBOL(netif_napi_del);
5246
5247 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5248 {
5249 void *have;
5250 int work, weight;
5251
5252 list_del_init(&n->poll_list);
5253
5254 have = netpoll_poll_lock(n);
5255
5256 weight = n->weight;
5257
5258 /* This NAPI_STATE_SCHED test is for avoiding a race
5259 * with netpoll's poll_napi(). Only the entity which
5260 * obtains the lock and sees NAPI_STATE_SCHED set will
5261 * actually make the ->poll() call. Therefore we avoid
5262 * accidentally calling ->poll() when NAPI is not scheduled.
5263 */
5264 work = 0;
5265 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5266 work = n->poll(n, weight);
5267 trace_napi_poll(n, work, weight);
5268 }
5269
5270 WARN_ON_ONCE(work > weight);
5271
5272 if (likely(work < weight))
5273 goto out_unlock;
5274
5275 /* Drivers must not modify the NAPI state if they
5276 * consume the entire weight. In such cases this code
5277 * still "owns" the NAPI instance and therefore can
5278 * move the instance around on the list at-will.
5279 */
5280 if (unlikely(napi_disable_pending(n))) {
5281 napi_complete(n);
5282 goto out_unlock;
5283 }
5284
5285 if (n->gro_list) {
5286 /* flush too old packets
5287 * If HZ < 1000, flush all packets.
5288 */
5289 napi_gro_flush(n, HZ >= 1000);
5290 }
5291
5292 /* Some drivers may have called napi_schedule
5293 * prior to exhausting their budget.
5294 */
5295 if (unlikely(!list_empty(&n->poll_list))) {
5296 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5297 n->dev ? n->dev->name : "backlog");
5298 goto out_unlock;
5299 }
5300
5301 list_add_tail(&n->poll_list, repoll);
5302
5303 out_unlock:
5304 netpoll_poll_unlock(have);
5305
5306 return work;
5307 }
5308
5309 static __latent_entropy void net_rx_action(struct softirq_action *h)
5310 {
5311 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5312 unsigned long time_limit = jiffies + 2;
5313 int budget = netdev_budget;
5314 LIST_HEAD(list);
5315 LIST_HEAD(repoll);
5316
5317 local_irq_disable();
5318 list_splice_init(&sd->poll_list, &list);
5319 local_irq_enable();
5320
5321 for (;;) {
5322 struct napi_struct *n;
5323
5324 if (list_empty(&list)) {
5325 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5326 goto out;
5327 break;
5328 }
5329
5330 n = list_first_entry(&list, struct napi_struct, poll_list);
5331 budget -= napi_poll(n, &repoll);
5332
5333 /* If softirq window is exhausted then punt.
5334 * Allow this to run for 2 jiffies since which will allow
5335 * an average latency of 1.5/HZ.
5336 */
5337 if (unlikely(budget <= 0 ||
5338 time_after_eq(jiffies, time_limit))) {
5339 sd->time_squeeze++;
5340 break;
5341 }
5342 }
5343
5344 local_irq_disable();
5345
5346 list_splice_tail_init(&sd->poll_list, &list);
5347 list_splice_tail(&repoll, &list);
5348 list_splice(&list, &sd->poll_list);
5349 if (!list_empty(&sd->poll_list))
5350 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5351
5352 net_rps_action_and_irq_enable(sd);
5353 out:
5354 __kfree_skb_flush();
5355 }
5356
5357 struct netdev_adjacent {
5358 struct net_device *dev;
5359
5360 /* upper master flag, there can only be one master device per list */
5361 bool master;
5362
5363 /* counter for the number of times this device was added to us */
5364 u16 ref_nr;
5365
5366 /* private field for the users */
5367 void *private;
5368
5369 struct list_head list;
5370 struct rcu_head rcu;
5371 };
5372
5373 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5374 struct list_head *adj_list)
5375 {
5376 struct netdev_adjacent *adj;
5377
5378 list_for_each_entry(adj, adj_list, list) {
5379 if (adj->dev == adj_dev)
5380 return adj;
5381 }
5382 return NULL;
5383 }
5384
5385 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5386 {
5387 struct net_device *dev = data;
5388
5389 return upper_dev == dev;
5390 }
5391
5392 /**
5393 * netdev_has_upper_dev - Check if device is linked to an upper device
5394 * @dev: device
5395 * @upper_dev: upper device to check
5396 *
5397 * Find out if a device is linked to specified upper device and return true
5398 * in case it is. Note that this checks only immediate upper device,
5399 * not through a complete stack of devices. The caller must hold the RTNL lock.
5400 */
5401 bool netdev_has_upper_dev(struct net_device *dev,
5402 struct net_device *upper_dev)
5403 {
5404 ASSERT_RTNL();
5405
5406 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5407 upper_dev);
5408 }
5409 EXPORT_SYMBOL(netdev_has_upper_dev);
5410
5411 /**
5412 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5413 * @dev: device
5414 * @upper_dev: upper device to check
5415 *
5416 * Find out if a device is linked to specified upper device and return true
5417 * in case it is. Note that this checks the entire upper device chain.
5418 * The caller must hold rcu lock.
5419 */
5420
5421 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5422 struct net_device *upper_dev)
5423 {
5424 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5425 upper_dev);
5426 }
5427 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5428
5429 /**
5430 * netdev_has_any_upper_dev - Check if device is linked to some device
5431 * @dev: device
5432 *
5433 * Find out if a device is linked to an upper device and return true in case
5434 * it is. The caller must hold the RTNL lock.
5435 */
5436 static bool netdev_has_any_upper_dev(struct net_device *dev)
5437 {
5438 ASSERT_RTNL();
5439
5440 return !list_empty(&dev->adj_list.upper);
5441 }
5442
5443 /**
5444 * netdev_master_upper_dev_get - Get master upper device
5445 * @dev: device
5446 *
5447 * Find a master upper device and return pointer to it or NULL in case
5448 * it's not there. The caller must hold the RTNL lock.
5449 */
5450 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5451 {
5452 struct netdev_adjacent *upper;
5453
5454 ASSERT_RTNL();
5455
5456 if (list_empty(&dev->adj_list.upper))
5457 return NULL;
5458
5459 upper = list_first_entry(&dev->adj_list.upper,
5460 struct netdev_adjacent, list);
5461 if (likely(upper->master))
5462 return upper->dev;
5463 return NULL;
5464 }
5465 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5466
5467 /**
5468 * netdev_has_any_lower_dev - Check if device is linked to some device
5469 * @dev: device
5470 *
5471 * Find out if a device is linked to a lower device and return true in case
5472 * it is. The caller must hold the RTNL lock.
5473 */
5474 static bool netdev_has_any_lower_dev(struct net_device *dev)
5475 {
5476 ASSERT_RTNL();
5477
5478 return !list_empty(&dev->adj_list.lower);
5479 }
5480
5481 void *netdev_adjacent_get_private(struct list_head *adj_list)
5482 {
5483 struct netdev_adjacent *adj;
5484
5485 adj = list_entry(adj_list, struct netdev_adjacent, list);
5486
5487 return adj->private;
5488 }
5489 EXPORT_SYMBOL(netdev_adjacent_get_private);
5490
5491 /**
5492 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5493 * @dev: device
5494 * @iter: list_head ** of the current position
5495 *
5496 * Gets the next device from the dev's upper list, starting from iter
5497 * position. The caller must hold RCU read lock.
5498 */
5499 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5500 struct list_head **iter)
5501 {
5502 struct netdev_adjacent *upper;
5503
5504 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5505
5506 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5507
5508 if (&upper->list == &dev->adj_list.upper)
5509 return NULL;
5510
5511 *iter = &upper->list;
5512
5513 return upper->dev;
5514 }
5515 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5516
5517 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5518 struct list_head **iter)
5519 {
5520 struct netdev_adjacent *upper;
5521
5522 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5523
5524 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5525
5526 if (&upper->list == &dev->adj_list.upper)
5527 return NULL;
5528
5529 *iter = &upper->list;
5530
5531 return upper->dev;
5532 }
5533
5534 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5535 int (*fn)(struct net_device *dev,
5536 void *data),
5537 void *data)
5538 {
5539 struct net_device *udev;
5540 struct list_head *iter;
5541 int ret;
5542
5543 for (iter = &dev->adj_list.upper,
5544 udev = netdev_next_upper_dev_rcu(dev, &iter);
5545 udev;
5546 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5547 /* first is the upper device itself */
5548 ret = fn(udev, data);
5549 if (ret)
5550 return ret;
5551
5552 /* then look at all of its upper devices */
5553 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5554 if (ret)
5555 return ret;
5556 }
5557
5558 return 0;
5559 }
5560 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5561
5562 /**
5563 * netdev_lower_get_next_private - Get the next ->private from the
5564 * lower neighbour list
5565 * @dev: device
5566 * @iter: list_head ** of the current position
5567 *
5568 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5569 * list, starting from iter position. The caller must hold either hold the
5570 * RTNL lock or its own locking that guarantees that the neighbour lower
5571 * list will remain unchanged.
5572 */
5573 void *netdev_lower_get_next_private(struct net_device *dev,
5574 struct list_head **iter)
5575 {
5576 struct netdev_adjacent *lower;
5577
5578 lower = list_entry(*iter, struct netdev_adjacent, list);
5579
5580 if (&lower->list == &dev->adj_list.lower)
5581 return NULL;
5582
5583 *iter = lower->list.next;
5584
5585 return lower->private;
5586 }
5587 EXPORT_SYMBOL(netdev_lower_get_next_private);
5588
5589 /**
5590 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5591 * lower neighbour list, RCU
5592 * variant
5593 * @dev: device
5594 * @iter: list_head ** of the current position
5595 *
5596 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5597 * list, starting from iter position. The caller must hold RCU read lock.
5598 */
5599 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5600 struct list_head **iter)
5601 {
5602 struct netdev_adjacent *lower;
5603
5604 WARN_ON_ONCE(!rcu_read_lock_held());
5605
5606 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5607
5608 if (&lower->list == &dev->adj_list.lower)
5609 return NULL;
5610
5611 *iter = &lower->list;
5612
5613 return lower->private;
5614 }
5615 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5616
5617 /**
5618 * netdev_lower_get_next - Get the next device from the lower neighbour
5619 * list
5620 * @dev: device
5621 * @iter: list_head ** of the current position
5622 *
5623 * Gets the next netdev_adjacent from the dev's lower neighbour
5624 * list, starting from iter position. The caller must hold RTNL lock or
5625 * its own locking that guarantees that the neighbour lower
5626 * list will remain unchanged.
5627 */
5628 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5629 {
5630 struct netdev_adjacent *lower;
5631
5632 lower = list_entry(*iter, struct netdev_adjacent, list);
5633
5634 if (&lower->list == &dev->adj_list.lower)
5635 return NULL;
5636
5637 *iter = lower->list.next;
5638
5639 return lower->dev;
5640 }
5641 EXPORT_SYMBOL(netdev_lower_get_next);
5642
5643 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5644 struct list_head **iter)
5645 {
5646 struct netdev_adjacent *lower;
5647
5648 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5649
5650 if (&lower->list == &dev->adj_list.lower)
5651 return NULL;
5652
5653 *iter = &lower->list;
5654
5655 return lower->dev;
5656 }
5657
5658 int netdev_walk_all_lower_dev(struct net_device *dev,
5659 int (*fn)(struct net_device *dev,
5660 void *data),
5661 void *data)
5662 {
5663 struct net_device *ldev;
5664 struct list_head *iter;
5665 int ret;
5666
5667 for (iter = &dev->adj_list.lower,
5668 ldev = netdev_next_lower_dev(dev, &iter);
5669 ldev;
5670 ldev = netdev_next_lower_dev(dev, &iter)) {
5671 /* first is the lower device itself */
5672 ret = fn(ldev, data);
5673 if (ret)
5674 return ret;
5675
5676 /* then look at all of its lower devices */
5677 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5678 if (ret)
5679 return ret;
5680 }
5681
5682 return 0;
5683 }
5684 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5685
5686 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5687 struct list_head **iter)
5688 {
5689 struct netdev_adjacent *lower;
5690
5691 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5692 if (&lower->list == &dev->adj_list.lower)
5693 return NULL;
5694
5695 *iter = &lower->list;
5696
5697 return lower->dev;
5698 }
5699
5700 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5701 int (*fn)(struct net_device *dev,
5702 void *data),
5703 void *data)
5704 {
5705 struct net_device *ldev;
5706 struct list_head *iter;
5707 int ret;
5708
5709 for (iter = &dev->adj_list.lower,
5710 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5711 ldev;
5712 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5713 /* first is the lower device itself */
5714 ret = fn(ldev, data);
5715 if (ret)
5716 return ret;
5717
5718 /* then look at all of its lower devices */
5719 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5720 if (ret)
5721 return ret;
5722 }
5723
5724 return 0;
5725 }
5726 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5727
5728 /**
5729 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5730 * lower neighbour list, RCU
5731 * variant
5732 * @dev: device
5733 *
5734 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5735 * list. The caller must hold RCU read lock.
5736 */
5737 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5738 {
5739 struct netdev_adjacent *lower;
5740
5741 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5742 struct netdev_adjacent, list);
5743 if (lower)
5744 return lower->private;
5745 return NULL;
5746 }
5747 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5748
5749 /**
5750 * netdev_master_upper_dev_get_rcu - Get master upper device
5751 * @dev: device
5752 *
5753 * Find a master upper device and return pointer to it or NULL in case
5754 * it's not there. The caller must hold the RCU read lock.
5755 */
5756 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5757 {
5758 struct netdev_adjacent *upper;
5759
5760 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5761 struct netdev_adjacent, list);
5762 if (upper && likely(upper->master))
5763 return upper->dev;
5764 return NULL;
5765 }
5766 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5767
5768 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5769 struct net_device *adj_dev,
5770 struct list_head *dev_list)
5771 {
5772 char linkname[IFNAMSIZ+7];
5773
5774 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5775 "upper_%s" : "lower_%s", adj_dev->name);
5776 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5777 linkname);
5778 }
5779 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5780 char *name,
5781 struct list_head *dev_list)
5782 {
5783 char linkname[IFNAMSIZ+7];
5784
5785 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5786 "upper_%s" : "lower_%s", name);
5787 sysfs_remove_link(&(dev->dev.kobj), linkname);
5788 }
5789
5790 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5791 struct net_device *adj_dev,
5792 struct list_head *dev_list)
5793 {
5794 return (dev_list == &dev->adj_list.upper ||
5795 dev_list == &dev->adj_list.lower) &&
5796 net_eq(dev_net(dev), dev_net(adj_dev));
5797 }
5798
5799 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5800 struct net_device *adj_dev,
5801 struct list_head *dev_list,
5802 void *private, bool master)
5803 {
5804 struct netdev_adjacent *adj;
5805 int ret;
5806
5807 adj = __netdev_find_adj(adj_dev, dev_list);
5808
5809 if (adj) {
5810 adj->ref_nr += 1;
5811 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5812 dev->name, adj_dev->name, adj->ref_nr);
5813
5814 return 0;
5815 }
5816
5817 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5818 if (!adj)
5819 return -ENOMEM;
5820
5821 adj->dev = adj_dev;
5822 adj->master = master;
5823 adj->ref_nr = 1;
5824 adj->private = private;
5825 dev_hold(adj_dev);
5826
5827 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5828 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5829
5830 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5831 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5832 if (ret)
5833 goto free_adj;
5834 }
5835
5836 /* Ensure that master link is always the first item in list. */
5837 if (master) {
5838 ret = sysfs_create_link(&(dev->dev.kobj),
5839 &(adj_dev->dev.kobj), "master");
5840 if (ret)
5841 goto remove_symlinks;
5842
5843 list_add_rcu(&adj->list, dev_list);
5844 } else {
5845 list_add_tail_rcu(&adj->list, dev_list);
5846 }
5847
5848 return 0;
5849
5850 remove_symlinks:
5851 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5852 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5853 free_adj:
5854 kfree(adj);
5855 dev_put(adj_dev);
5856
5857 return ret;
5858 }
5859
5860 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5861 struct net_device *adj_dev,
5862 u16 ref_nr,
5863 struct list_head *dev_list)
5864 {
5865 struct netdev_adjacent *adj;
5866
5867 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5868 dev->name, adj_dev->name, ref_nr);
5869
5870 adj = __netdev_find_adj(adj_dev, dev_list);
5871
5872 if (!adj) {
5873 pr_err("Adjacency does not exist for device %s from %s\n",
5874 dev->name, adj_dev->name);
5875 WARN_ON(1);
5876 return;
5877 }
5878
5879 if (adj->ref_nr > ref_nr) {
5880 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5881 dev->name, adj_dev->name, ref_nr,
5882 adj->ref_nr - ref_nr);
5883 adj->ref_nr -= ref_nr;
5884 return;
5885 }
5886
5887 if (adj->master)
5888 sysfs_remove_link(&(dev->dev.kobj), "master");
5889
5890 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5891 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5892
5893 list_del_rcu(&adj->list);
5894 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
5895 adj_dev->name, dev->name, adj_dev->name);
5896 dev_put(adj_dev);
5897 kfree_rcu(adj, rcu);
5898 }
5899
5900 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5901 struct net_device *upper_dev,
5902 struct list_head *up_list,
5903 struct list_head *down_list,
5904 void *private, bool master)
5905 {
5906 int ret;
5907
5908 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
5909 private, master);
5910 if (ret)
5911 return ret;
5912
5913 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
5914 private, false);
5915 if (ret) {
5916 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5917 return ret;
5918 }
5919
5920 return 0;
5921 }
5922
5923 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5924 struct net_device *upper_dev,
5925 u16 ref_nr,
5926 struct list_head *up_list,
5927 struct list_head *down_list)
5928 {
5929 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5930 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5931 }
5932
5933 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5934 struct net_device *upper_dev,
5935 void *private, bool master)
5936 {
5937 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5938 &dev->adj_list.upper,
5939 &upper_dev->adj_list.lower,
5940 private, master);
5941 }
5942
5943 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5944 struct net_device *upper_dev)
5945 {
5946 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5947 &dev->adj_list.upper,
5948 &upper_dev->adj_list.lower);
5949 }
5950
5951 static int __netdev_upper_dev_link(struct net_device *dev,
5952 struct net_device *upper_dev, bool master,
5953 void *upper_priv, void *upper_info)
5954 {
5955 struct netdev_notifier_changeupper_info changeupper_info;
5956 int ret = 0;
5957
5958 ASSERT_RTNL();
5959
5960 if (dev == upper_dev)
5961 return -EBUSY;
5962
5963 /* To prevent loops, check if dev is not upper device to upper_dev. */
5964 if (netdev_has_upper_dev(upper_dev, dev))
5965 return -EBUSY;
5966
5967 if (netdev_has_upper_dev(dev, upper_dev))
5968 return -EEXIST;
5969
5970 if (master && netdev_master_upper_dev_get(dev))
5971 return -EBUSY;
5972
5973 changeupper_info.upper_dev = upper_dev;
5974 changeupper_info.master = master;
5975 changeupper_info.linking = true;
5976 changeupper_info.upper_info = upper_info;
5977
5978 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5979 &changeupper_info.info);
5980 ret = notifier_to_errno(ret);
5981 if (ret)
5982 return ret;
5983
5984 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5985 master);
5986 if (ret)
5987 return ret;
5988
5989 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5990 &changeupper_info.info);
5991 ret = notifier_to_errno(ret);
5992 if (ret)
5993 goto rollback;
5994
5995 return 0;
5996
5997 rollback:
5998 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5999
6000 return ret;
6001 }
6002
6003 /**
6004 * netdev_upper_dev_link - Add a link to the upper device
6005 * @dev: device
6006 * @upper_dev: new upper device
6007 *
6008 * Adds a link to device which is upper to this one. The caller must hold
6009 * the RTNL lock. On a failure a negative errno code is returned.
6010 * On success the reference counts are adjusted and the function
6011 * returns zero.
6012 */
6013 int netdev_upper_dev_link(struct net_device *dev,
6014 struct net_device *upper_dev)
6015 {
6016 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6017 }
6018 EXPORT_SYMBOL(netdev_upper_dev_link);
6019
6020 /**
6021 * netdev_master_upper_dev_link - Add a master link to the upper device
6022 * @dev: device
6023 * @upper_dev: new upper device
6024 * @upper_priv: upper device private
6025 * @upper_info: upper info to be passed down via notifier
6026 *
6027 * Adds a link to device which is upper to this one. In this case, only
6028 * one master upper device can be linked, although other non-master devices
6029 * might be linked as well. The caller must hold the RTNL lock.
6030 * On a failure a negative errno code is returned. On success the reference
6031 * counts are adjusted and the function returns zero.
6032 */
6033 int netdev_master_upper_dev_link(struct net_device *dev,
6034 struct net_device *upper_dev,
6035 void *upper_priv, void *upper_info)
6036 {
6037 return __netdev_upper_dev_link(dev, upper_dev, true,
6038 upper_priv, upper_info);
6039 }
6040 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6041
6042 /**
6043 * netdev_upper_dev_unlink - Removes a link to upper device
6044 * @dev: device
6045 * @upper_dev: new upper device
6046 *
6047 * Removes a link to device which is upper to this one. The caller must hold
6048 * the RTNL lock.
6049 */
6050 void netdev_upper_dev_unlink(struct net_device *dev,
6051 struct net_device *upper_dev)
6052 {
6053 struct netdev_notifier_changeupper_info changeupper_info;
6054
6055 ASSERT_RTNL();
6056
6057 changeupper_info.upper_dev = upper_dev;
6058 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6059 changeupper_info.linking = false;
6060
6061 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6062 &changeupper_info.info);
6063
6064 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6065
6066 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6067 &changeupper_info.info);
6068 }
6069 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6070
6071 /**
6072 * netdev_bonding_info_change - Dispatch event about slave change
6073 * @dev: device
6074 * @bonding_info: info to dispatch
6075 *
6076 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6077 * The caller must hold the RTNL lock.
6078 */
6079 void netdev_bonding_info_change(struct net_device *dev,
6080 struct netdev_bonding_info *bonding_info)
6081 {
6082 struct netdev_notifier_bonding_info info;
6083
6084 memcpy(&info.bonding_info, bonding_info,
6085 sizeof(struct netdev_bonding_info));
6086 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6087 &info.info);
6088 }
6089 EXPORT_SYMBOL(netdev_bonding_info_change);
6090
6091 static void netdev_adjacent_add_links(struct net_device *dev)
6092 {
6093 struct netdev_adjacent *iter;
6094
6095 struct net *net = dev_net(dev);
6096
6097 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6098 if (!net_eq(net, dev_net(iter->dev)))
6099 continue;
6100 netdev_adjacent_sysfs_add(iter->dev, dev,
6101 &iter->dev->adj_list.lower);
6102 netdev_adjacent_sysfs_add(dev, iter->dev,
6103 &dev->adj_list.upper);
6104 }
6105
6106 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6107 if (!net_eq(net, dev_net(iter->dev)))
6108 continue;
6109 netdev_adjacent_sysfs_add(iter->dev, dev,
6110 &iter->dev->adj_list.upper);
6111 netdev_adjacent_sysfs_add(dev, iter->dev,
6112 &dev->adj_list.lower);
6113 }
6114 }
6115
6116 static void netdev_adjacent_del_links(struct net_device *dev)
6117 {
6118 struct netdev_adjacent *iter;
6119
6120 struct net *net = dev_net(dev);
6121
6122 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6123 if (!net_eq(net, dev_net(iter->dev)))
6124 continue;
6125 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6126 &iter->dev->adj_list.lower);
6127 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6128 &dev->adj_list.upper);
6129 }
6130
6131 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6132 if (!net_eq(net, dev_net(iter->dev)))
6133 continue;
6134 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6135 &iter->dev->adj_list.upper);
6136 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6137 &dev->adj_list.lower);
6138 }
6139 }
6140
6141 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6142 {
6143 struct netdev_adjacent *iter;
6144
6145 struct net *net = dev_net(dev);
6146
6147 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6148 if (!net_eq(net, dev_net(iter->dev)))
6149 continue;
6150 netdev_adjacent_sysfs_del(iter->dev, oldname,
6151 &iter->dev->adj_list.lower);
6152 netdev_adjacent_sysfs_add(iter->dev, dev,
6153 &iter->dev->adj_list.lower);
6154 }
6155
6156 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6157 if (!net_eq(net, dev_net(iter->dev)))
6158 continue;
6159 netdev_adjacent_sysfs_del(iter->dev, oldname,
6160 &iter->dev->adj_list.upper);
6161 netdev_adjacent_sysfs_add(iter->dev, dev,
6162 &iter->dev->adj_list.upper);
6163 }
6164 }
6165
6166 void *netdev_lower_dev_get_private(struct net_device *dev,
6167 struct net_device *lower_dev)
6168 {
6169 struct netdev_adjacent *lower;
6170
6171 if (!lower_dev)
6172 return NULL;
6173 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6174 if (!lower)
6175 return NULL;
6176
6177 return lower->private;
6178 }
6179 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6180
6181
6182 int dev_get_nest_level(struct net_device *dev)
6183 {
6184 struct net_device *lower = NULL;
6185 struct list_head *iter;
6186 int max_nest = -1;
6187 int nest;
6188
6189 ASSERT_RTNL();
6190
6191 netdev_for_each_lower_dev(dev, lower, iter) {
6192 nest = dev_get_nest_level(lower);
6193 if (max_nest < nest)
6194 max_nest = nest;
6195 }
6196
6197 return max_nest + 1;
6198 }
6199 EXPORT_SYMBOL(dev_get_nest_level);
6200
6201 /**
6202 * netdev_lower_change - Dispatch event about lower device state change
6203 * @lower_dev: device
6204 * @lower_state_info: state to dispatch
6205 *
6206 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6207 * The caller must hold the RTNL lock.
6208 */
6209 void netdev_lower_state_changed(struct net_device *lower_dev,
6210 void *lower_state_info)
6211 {
6212 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6213
6214 ASSERT_RTNL();
6215 changelowerstate_info.lower_state_info = lower_state_info;
6216 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6217 &changelowerstate_info.info);
6218 }
6219 EXPORT_SYMBOL(netdev_lower_state_changed);
6220
6221 static void dev_change_rx_flags(struct net_device *dev, int flags)
6222 {
6223 const struct net_device_ops *ops = dev->netdev_ops;
6224
6225 if (ops->ndo_change_rx_flags)
6226 ops->ndo_change_rx_flags(dev, flags);
6227 }
6228
6229 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6230 {
6231 unsigned int old_flags = dev->flags;
6232 kuid_t uid;
6233 kgid_t gid;
6234
6235 ASSERT_RTNL();
6236
6237 dev->flags |= IFF_PROMISC;
6238 dev->promiscuity += inc;
6239 if (dev->promiscuity == 0) {
6240 /*
6241 * Avoid overflow.
6242 * If inc causes overflow, untouch promisc and return error.
6243 */
6244 if (inc < 0)
6245 dev->flags &= ~IFF_PROMISC;
6246 else {
6247 dev->promiscuity -= inc;
6248 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6249 dev->name);
6250 return -EOVERFLOW;
6251 }
6252 }
6253 if (dev->flags != old_flags) {
6254 pr_info("device %s %s promiscuous mode\n",
6255 dev->name,
6256 dev->flags & IFF_PROMISC ? "entered" : "left");
6257 if (audit_enabled) {
6258 current_uid_gid(&uid, &gid);
6259 audit_log(current->audit_context, GFP_ATOMIC,
6260 AUDIT_ANOM_PROMISCUOUS,
6261 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6262 dev->name, (dev->flags & IFF_PROMISC),
6263 (old_flags & IFF_PROMISC),
6264 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6265 from_kuid(&init_user_ns, uid),
6266 from_kgid(&init_user_ns, gid),
6267 audit_get_sessionid(current));
6268 }
6269
6270 dev_change_rx_flags(dev, IFF_PROMISC);
6271 }
6272 if (notify)
6273 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6274 return 0;
6275 }
6276
6277 /**
6278 * dev_set_promiscuity - update promiscuity count on a device
6279 * @dev: device
6280 * @inc: modifier
6281 *
6282 * Add or remove promiscuity from a device. While the count in the device
6283 * remains above zero the interface remains promiscuous. Once it hits zero
6284 * the device reverts back to normal filtering operation. A negative inc
6285 * value is used to drop promiscuity on the device.
6286 * Return 0 if successful or a negative errno code on error.
6287 */
6288 int dev_set_promiscuity(struct net_device *dev, int inc)
6289 {
6290 unsigned int old_flags = dev->flags;
6291 int err;
6292
6293 err = __dev_set_promiscuity(dev, inc, true);
6294 if (err < 0)
6295 return err;
6296 if (dev->flags != old_flags)
6297 dev_set_rx_mode(dev);
6298 return err;
6299 }
6300 EXPORT_SYMBOL(dev_set_promiscuity);
6301
6302 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6303 {
6304 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6305
6306 ASSERT_RTNL();
6307
6308 dev->flags |= IFF_ALLMULTI;
6309 dev->allmulti += inc;
6310 if (dev->allmulti == 0) {
6311 /*
6312 * Avoid overflow.
6313 * If inc causes overflow, untouch allmulti and return error.
6314 */
6315 if (inc < 0)
6316 dev->flags &= ~IFF_ALLMULTI;
6317 else {
6318 dev->allmulti -= inc;
6319 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6320 dev->name);
6321 return -EOVERFLOW;
6322 }
6323 }
6324 if (dev->flags ^ old_flags) {
6325 dev_change_rx_flags(dev, IFF_ALLMULTI);
6326 dev_set_rx_mode(dev);
6327 if (notify)
6328 __dev_notify_flags(dev, old_flags,
6329 dev->gflags ^ old_gflags);
6330 }
6331 return 0;
6332 }
6333
6334 /**
6335 * dev_set_allmulti - update allmulti count on a device
6336 * @dev: device
6337 * @inc: modifier
6338 *
6339 * Add or remove reception of all multicast frames to a device. While the
6340 * count in the device remains above zero the interface remains listening
6341 * to all interfaces. Once it hits zero the device reverts back to normal
6342 * filtering operation. A negative @inc value is used to drop the counter
6343 * when releasing a resource needing all multicasts.
6344 * Return 0 if successful or a negative errno code on error.
6345 */
6346
6347 int dev_set_allmulti(struct net_device *dev, int inc)
6348 {
6349 return __dev_set_allmulti(dev, inc, true);
6350 }
6351 EXPORT_SYMBOL(dev_set_allmulti);
6352
6353 /*
6354 * Upload unicast and multicast address lists to device and
6355 * configure RX filtering. When the device doesn't support unicast
6356 * filtering it is put in promiscuous mode while unicast addresses
6357 * are present.
6358 */
6359 void __dev_set_rx_mode(struct net_device *dev)
6360 {
6361 const struct net_device_ops *ops = dev->netdev_ops;
6362
6363 /* dev_open will call this function so the list will stay sane. */
6364 if (!(dev->flags&IFF_UP))
6365 return;
6366
6367 if (!netif_device_present(dev))
6368 return;
6369
6370 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6371 /* Unicast addresses changes may only happen under the rtnl,
6372 * therefore calling __dev_set_promiscuity here is safe.
6373 */
6374 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6375 __dev_set_promiscuity(dev, 1, false);
6376 dev->uc_promisc = true;
6377 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6378 __dev_set_promiscuity(dev, -1, false);
6379 dev->uc_promisc = false;
6380 }
6381 }
6382
6383 if (ops->ndo_set_rx_mode)
6384 ops->ndo_set_rx_mode(dev);
6385 }
6386
6387 void dev_set_rx_mode(struct net_device *dev)
6388 {
6389 netif_addr_lock_bh(dev);
6390 __dev_set_rx_mode(dev);
6391 netif_addr_unlock_bh(dev);
6392 }
6393
6394 /**
6395 * dev_get_flags - get flags reported to userspace
6396 * @dev: device
6397 *
6398 * Get the combination of flag bits exported through APIs to userspace.
6399 */
6400 unsigned int dev_get_flags(const struct net_device *dev)
6401 {
6402 unsigned int flags;
6403
6404 flags = (dev->flags & ~(IFF_PROMISC |
6405 IFF_ALLMULTI |
6406 IFF_RUNNING |
6407 IFF_LOWER_UP |
6408 IFF_DORMANT)) |
6409 (dev->gflags & (IFF_PROMISC |
6410 IFF_ALLMULTI));
6411
6412 if (netif_running(dev)) {
6413 if (netif_oper_up(dev))
6414 flags |= IFF_RUNNING;
6415 if (netif_carrier_ok(dev))
6416 flags |= IFF_LOWER_UP;
6417 if (netif_dormant(dev))
6418 flags |= IFF_DORMANT;
6419 }
6420
6421 return flags;
6422 }
6423 EXPORT_SYMBOL(dev_get_flags);
6424
6425 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6426 {
6427 unsigned int old_flags = dev->flags;
6428 int ret;
6429
6430 ASSERT_RTNL();
6431
6432 /*
6433 * Set the flags on our device.
6434 */
6435
6436 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6437 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6438 IFF_AUTOMEDIA)) |
6439 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6440 IFF_ALLMULTI));
6441
6442 /*
6443 * Load in the correct multicast list now the flags have changed.
6444 */
6445
6446 if ((old_flags ^ flags) & IFF_MULTICAST)
6447 dev_change_rx_flags(dev, IFF_MULTICAST);
6448
6449 dev_set_rx_mode(dev);
6450
6451 /*
6452 * Have we downed the interface. We handle IFF_UP ourselves
6453 * according to user attempts to set it, rather than blindly
6454 * setting it.
6455 */
6456
6457 ret = 0;
6458 if ((old_flags ^ flags) & IFF_UP)
6459 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6460
6461 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6462 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6463 unsigned int old_flags = dev->flags;
6464
6465 dev->gflags ^= IFF_PROMISC;
6466
6467 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6468 if (dev->flags != old_flags)
6469 dev_set_rx_mode(dev);
6470 }
6471
6472 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6473 * is important. Some (broken) drivers set IFF_PROMISC, when
6474 * IFF_ALLMULTI is requested not asking us and not reporting.
6475 */
6476 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6477 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6478
6479 dev->gflags ^= IFF_ALLMULTI;
6480 __dev_set_allmulti(dev, inc, false);
6481 }
6482
6483 return ret;
6484 }
6485
6486 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6487 unsigned int gchanges)
6488 {
6489 unsigned int changes = dev->flags ^ old_flags;
6490
6491 if (gchanges)
6492 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6493
6494 if (changes & IFF_UP) {
6495 if (dev->flags & IFF_UP)
6496 call_netdevice_notifiers(NETDEV_UP, dev);
6497 else
6498 call_netdevice_notifiers(NETDEV_DOWN, dev);
6499 }
6500
6501 if (dev->flags & IFF_UP &&
6502 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6503 struct netdev_notifier_change_info change_info;
6504
6505 change_info.flags_changed = changes;
6506 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6507 &change_info.info);
6508 }
6509 }
6510
6511 /**
6512 * dev_change_flags - change device settings
6513 * @dev: device
6514 * @flags: device state flags
6515 *
6516 * Change settings on device based state flags. The flags are
6517 * in the userspace exported format.
6518 */
6519 int dev_change_flags(struct net_device *dev, unsigned int flags)
6520 {
6521 int ret;
6522 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6523
6524 ret = __dev_change_flags(dev, flags);
6525 if (ret < 0)
6526 return ret;
6527
6528 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6529 __dev_notify_flags(dev, old_flags, changes);
6530 return ret;
6531 }
6532 EXPORT_SYMBOL(dev_change_flags);
6533
6534 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6535 {
6536 const struct net_device_ops *ops = dev->netdev_ops;
6537
6538 if (ops->ndo_change_mtu)
6539 return ops->ndo_change_mtu(dev, new_mtu);
6540
6541 dev->mtu = new_mtu;
6542 return 0;
6543 }
6544
6545 /**
6546 * dev_set_mtu - Change maximum transfer unit
6547 * @dev: device
6548 * @new_mtu: new transfer unit
6549 *
6550 * Change the maximum transfer size of the network device.
6551 */
6552 int dev_set_mtu(struct net_device *dev, int new_mtu)
6553 {
6554 int err, orig_mtu;
6555
6556 if (new_mtu == dev->mtu)
6557 return 0;
6558
6559 /* MTU must be positive, and in range */
6560 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6561 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6562 dev->name, new_mtu, dev->min_mtu);
6563 return -EINVAL;
6564 }
6565
6566 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6567 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6568 dev->name, new_mtu, dev->max_mtu);
6569 return -EINVAL;
6570 }
6571
6572 if (!netif_device_present(dev))
6573 return -ENODEV;
6574
6575 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6576 err = notifier_to_errno(err);
6577 if (err)
6578 return err;
6579
6580 orig_mtu = dev->mtu;
6581 err = __dev_set_mtu(dev, new_mtu);
6582
6583 if (!err) {
6584 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6585 err = notifier_to_errno(err);
6586 if (err) {
6587 /* setting mtu back and notifying everyone again,
6588 * so that they have a chance to revert changes.
6589 */
6590 __dev_set_mtu(dev, orig_mtu);
6591 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6592 }
6593 }
6594 return err;
6595 }
6596 EXPORT_SYMBOL(dev_set_mtu);
6597
6598 /**
6599 * dev_set_group - Change group this device belongs to
6600 * @dev: device
6601 * @new_group: group this device should belong to
6602 */
6603 void dev_set_group(struct net_device *dev, int new_group)
6604 {
6605 dev->group = new_group;
6606 }
6607 EXPORT_SYMBOL(dev_set_group);
6608
6609 /**
6610 * dev_set_mac_address - Change Media Access Control Address
6611 * @dev: device
6612 * @sa: new address
6613 *
6614 * Change the hardware (MAC) address of the device
6615 */
6616 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6617 {
6618 const struct net_device_ops *ops = dev->netdev_ops;
6619 int err;
6620
6621 if (!ops->ndo_set_mac_address)
6622 return -EOPNOTSUPP;
6623 if (sa->sa_family != dev->type)
6624 return -EINVAL;
6625 if (!netif_device_present(dev))
6626 return -ENODEV;
6627 err = ops->ndo_set_mac_address(dev, sa);
6628 if (err)
6629 return err;
6630 dev->addr_assign_type = NET_ADDR_SET;
6631 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6632 add_device_randomness(dev->dev_addr, dev->addr_len);
6633 return 0;
6634 }
6635 EXPORT_SYMBOL(dev_set_mac_address);
6636
6637 /**
6638 * dev_change_carrier - Change device carrier
6639 * @dev: device
6640 * @new_carrier: new value
6641 *
6642 * Change device carrier
6643 */
6644 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6645 {
6646 const struct net_device_ops *ops = dev->netdev_ops;
6647
6648 if (!ops->ndo_change_carrier)
6649 return -EOPNOTSUPP;
6650 if (!netif_device_present(dev))
6651 return -ENODEV;
6652 return ops->ndo_change_carrier(dev, new_carrier);
6653 }
6654 EXPORT_SYMBOL(dev_change_carrier);
6655
6656 /**
6657 * dev_get_phys_port_id - Get device physical port ID
6658 * @dev: device
6659 * @ppid: port ID
6660 *
6661 * Get device physical port ID
6662 */
6663 int dev_get_phys_port_id(struct net_device *dev,
6664 struct netdev_phys_item_id *ppid)
6665 {
6666 const struct net_device_ops *ops = dev->netdev_ops;
6667
6668 if (!ops->ndo_get_phys_port_id)
6669 return -EOPNOTSUPP;
6670 return ops->ndo_get_phys_port_id(dev, ppid);
6671 }
6672 EXPORT_SYMBOL(dev_get_phys_port_id);
6673
6674 /**
6675 * dev_get_phys_port_name - Get device physical port name
6676 * @dev: device
6677 * @name: port name
6678 * @len: limit of bytes to copy to name
6679 *
6680 * Get device physical port name
6681 */
6682 int dev_get_phys_port_name(struct net_device *dev,
6683 char *name, size_t len)
6684 {
6685 const struct net_device_ops *ops = dev->netdev_ops;
6686
6687 if (!ops->ndo_get_phys_port_name)
6688 return -EOPNOTSUPP;
6689 return ops->ndo_get_phys_port_name(dev, name, len);
6690 }
6691 EXPORT_SYMBOL(dev_get_phys_port_name);
6692
6693 /**
6694 * dev_change_proto_down - update protocol port state information
6695 * @dev: device
6696 * @proto_down: new value
6697 *
6698 * This info can be used by switch drivers to set the phys state of the
6699 * port.
6700 */
6701 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6702 {
6703 const struct net_device_ops *ops = dev->netdev_ops;
6704
6705 if (!ops->ndo_change_proto_down)
6706 return -EOPNOTSUPP;
6707 if (!netif_device_present(dev))
6708 return -ENODEV;
6709 return ops->ndo_change_proto_down(dev, proto_down);
6710 }
6711 EXPORT_SYMBOL(dev_change_proto_down);
6712
6713 /**
6714 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6715 * @dev: device
6716 * @fd: new program fd or negative value to clear
6717 * @flags: xdp-related flags
6718 *
6719 * Set or clear a bpf program for a device
6720 */
6721 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
6722 {
6723 const struct net_device_ops *ops = dev->netdev_ops;
6724 struct bpf_prog *prog = NULL;
6725 struct netdev_xdp xdp;
6726 int err;
6727
6728 ASSERT_RTNL();
6729
6730 if (!ops->ndo_xdp)
6731 return -EOPNOTSUPP;
6732 if (fd >= 0) {
6733 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6734 memset(&xdp, 0, sizeof(xdp));
6735 xdp.command = XDP_QUERY_PROG;
6736
6737 err = ops->ndo_xdp(dev, &xdp);
6738 if (err < 0)
6739 return err;
6740 if (xdp.prog_attached)
6741 return -EBUSY;
6742 }
6743
6744 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6745 if (IS_ERR(prog))
6746 return PTR_ERR(prog);
6747 }
6748
6749 memset(&xdp, 0, sizeof(xdp));
6750 xdp.command = XDP_SETUP_PROG;
6751 xdp.prog = prog;
6752
6753 err = ops->ndo_xdp(dev, &xdp);
6754 if (err < 0 && prog)
6755 bpf_prog_put(prog);
6756
6757 return err;
6758 }
6759 EXPORT_SYMBOL(dev_change_xdp_fd);
6760
6761 /**
6762 * dev_new_index - allocate an ifindex
6763 * @net: the applicable net namespace
6764 *
6765 * Returns a suitable unique value for a new device interface
6766 * number. The caller must hold the rtnl semaphore or the
6767 * dev_base_lock to be sure it remains unique.
6768 */
6769 static int dev_new_index(struct net *net)
6770 {
6771 int ifindex = net->ifindex;
6772
6773 for (;;) {
6774 if (++ifindex <= 0)
6775 ifindex = 1;
6776 if (!__dev_get_by_index(net, ifindex))
6777 return net->ifindex = ifindex;
6778 }
6779 }
6780
6781 /* Delayed registration/unregisteration */
6782 static LIST_HEAD(net_todo_list);
6783 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6784
6785 static void net_set_todo(struct net_device *dev)
6786 {
6787 list_add_tail(&dev->todo_list, &net_todo_list);
6788 dev_net(dev)->dev_unreg_count++;
6789 }
6790
6791 static void rollback_registered_many(struct list_head *head)
6792 {
6793 struct net_device *dev, *tmp;
6794 LIST_HEAD(close_head);
6795
6796 BUG_ON(dev_boot_phase);
6797 ASSERT_RTNL();
6798
6799 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6800 /* Some devices call without registering
6801 * for initialization unwind. Remove those
6802 * devices and proceed with the remaining.
6803 */
6804 if (dev->reg_state == NETREG_UNINITIALIZED) {
6805 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6806 dev->name, dev);
6807
6808 WARN_ON(1);
6809 list_del(&dev->unreg_list);
6810 continue;
6811 }
6812 dev->dismantle = true;
6813 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6814 }
6815
6816 /* If device is running, close it first. */
6817 list_for_each_entry(dev, head, unreg_list)
6818 list_add_tail(&dev->close_list, &close_head);
6819 dev_close_many(&close_head, true);
6820
6821 list_for_each_entry(dev, head, unreg_list) {
6822 /* And unlink it from device chain. */
6823 unlist_netdevice(dev);
6824
6825 dev->reg_state = NETREG_UNREGISTERING;
6826 }
6827 flush_all_backlogs();
6828
6829 synchronize_net();
6830
6831 list_for_each_entry(dev, head, unreg_list) {
6832 struct sk_buff *skb = NULL;
6833
6834 /* Shutdown queueing discipline. */
6835 dev_shutdown(dev);
6836
6837
6838 /* Notify protocols, that we are about to destroy
6839 * this device. They should clean all the things.
6840 */
6841 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6842
6843 if (!dev->rtnl_link_ops ||
6844 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6845 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6846 GFP_KERNEL);
6847
6848 /*
6849 * Flush the unicast and multicast chains
6850 */
6851 dev_uc_flush(dev);
6852 dev_mc_flush(dev);
6853
6854 if (dev->netdev_ops->ndo_uninit)
6855 dev->netdev_ops->ndo_uninit(dev);
6856
6857 if (skb)
6858 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6859
6860 /* Notifier chain MUST detach us all upper devices. */
6861 WARN_ON(netdev_has_any_upper_dev(dev));
6862 WARN_ON(netdev_has_any_lower_dev(dev));
6863
6864 /* Remove entries from kobject tree */
6865 netdev_unregister_kobject(dev);
6866 #ifdef CONFIG_XPS
6867 /* Remove XPS queueing entries */
6868 netif_reset_xps_queues_gt(dev, 0);
6869 #endif
6870 }
6871
6872 synchronize_net();
6873
6874 list_for_each_entry(dev, head, unreg_list)
6875 dev_put(dev);
6876 }
6877
6878 static void rollback_registered(struct net_device *dev)
6879 {
6880 LIST_HEAD(single);
6881
6882 list_add(&dev->unreg_list, &single);
6883 rollback_registered_many(&single);
6884 list_del(&single);
6885 }
6886
6887 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6888 struct net_device *upper, netdev_features_t features)
6889 {
6890 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6891 netdev_features_t feature;
6892 int feature_bit;
6893
6894 for_each_netdev_feature(&upper_disables, feature_bit) {
6895 feature = __NETIF_F_BIT(feature_bit);
6896 if (!(upper->wanted_features & feature)
6897 && (features & feature)) {
6898 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6899 &feature, upper->name);
6900 features &= ~feature;
6901 }
6902 }
6903
6904 return features;
6905 }
6906
6907 static void netdev_sync_lower_features(struct net_device *upper,
6908 struct net_device *lower, netdev_features_t features)
6909 {
6910 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6911 netdev_features_t feature;
6912 int feature_bit;
6913
6914 for_each_netdev_feature(&upper_disables, feature_bit) {
6915 feature = __NETIF_F_BIT(feature_bit);
6916 if (!(features & feature) && (lower->features & feature)) {
6917 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6918 &feature, lower->name);
6919 lower->wanted_features &= ~feature;
6920 netdev_update_features(lower);
6921
6922 if (unlikely(lower->features & feature))
6923 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6924 &feature, lower->name);
6925 }
6926 }
6927 }
6928
6929 static netdev_features_t netdev_fix_features(struct net_device *dev,
6930 netdev_features_t features)
6931 {
6932 /* Fix illegal checksum combinations */
6933 if ((features & NETIF_F_HW_CSUM) &&
6934 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6935 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6936 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6937 }
6938
6939 /* TSO requires that SG is present as well. */
6940 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6941 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6942 features &= ~NETIF_F_ALL_TSO;
6943 }
6944
6945 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6946 !(features & NETIF_F_IP_CSUM)) {
6947 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6948 features &= ~NETIF_F_TSO;
6949 features &= ~NETIF_F_TSO_ECN;
6950 }
6951
6952 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6953 !(features & NETIF_F_IPV6_CSUM)) {
6954 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6955 features &= ~NETIF_F_TSO6;
6956 }
6957
6958 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6959 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6960 features &= ~NETIF_F_TSO_MANGLEID;
6961
6962 /* TSO ECN requires that TSO is present as well. */
6963 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6964 features &= ~NETIF_F_TSO_ECN;
6965
6966 /* Software GSO depends on SG. */
6967 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6968 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6969 features &= ~NETIF_F_GSO;
6970 }
6971
6972 /* UFO needs SG and checksumming */
6973 if (features & NETIF_F_UFO) {
6974 /* maybe split UFO into V4 and V6? */
6975 if (!(features & NETIF_F_HW_CSUM) &&
6976 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6977 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6978 netdev_dbg(dev,
6979 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6980 features &= ~NETIF_F_UFO;
6981 }
6982
6983 if (!(features & NETIF_F_SG)) {
6984 netdev_dbg(dev,
6985 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6986 features &= ~NETIF_F_UFO;
6987 }
6988 }
6989
6990 /* GSO partial features require GSO partial be set */
6991 if ((features & dev->gso_partial_features) &&
6992 !(features & NETIF_F_GSO_PARTIAL)) {
6993 netdev_dbg(dev,
6994 "Dropping partially supported GSO features since no GSO partial.\n");
6995 features &= ~dev->gso_partial_features;
6996 }
6997
6998 return features;
6999 }
7000
7001 int __netdev_update_features(struct net_device *dev)
7002 {
7003 struct net_device *upper, *lower;
7004 netdev_features_t features;
7005 struct list_head *iter;
7006 int err = -1;
7007
7008 ASSERT_RTNL();
7009
7010 features = netdev_get_wanted_features(dev);
7011
7012 if (dev->netdev_ops->ndo_fix_features)
7013 features = dev->netdev_ops->ndo_fix_features(dev, features);
7014
7015 /* driver might be less strict about feature dependencies */
7016 features = netdev_fix_features(dev, features);
7017
7018 /* some features can't be enabled if they're off an an upper device */
7019 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7020 features = netdev_sync_upper_features(dev, upper, features);
7021
7022 if (dev->features == features)
7023 goto sync_lower;
7024
7025 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7026 &dev->features, &features);
7027
7028 if (dev->netdev_ops->ndo_set_features)
7029 err = dev->netdev_ops->ndo_set_features(dev, features);
7030 else
7031 err = 0;
7032
7033 if (unlikely(err < 0)) {
7034 netdev_err(dev,
7035 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7036 err, &features, &dev->features);
7037 /* return non-0 since some features might have changed and
7038 * it's better to fire a spurious notification than miss it
7039 */
7040 return -1;
7041 }
7042
7043 sync_lower:
7044 /* some features must be disabled on lower devices when disabled
7045 * on an upper device (think: bonding master or bridge)
7046 */
7047 netdev_for_each_lower_dev(dev, lower, iter)
7048 netdev_sync_lower_features(dev, lower, features);
7049
7050 if (!err)
7051 dev->features = features;
7052
7053 return err < 0 ? 0 : 1;
7054 }
7055
7056 /**
7057 * netdev_update_features - recalculate device features
7058 * @dev: the device to check
7059 *
7060 * Recalculate dev->features set and send notifications if it
7061 * has changed. Should be called after driver or hardware dependent
7062 * conditions might have changed that influence the features.
7063 */
7064 void netdev_update_features(struct net_device *dev)
7065 {
7066 if (__netdev_update_features(dev))
7067 netdev_features_change(dev);
7068 }
7069 EXPORT_SYMBOL(netdev_update_features);
7070
7071 /**
7072 * netdev_change_features - recalculate device features
7073 * @dev: the device to check
7074 *
7075 * Recalculate dev->features set and send notifications even
7076 * if they have not changed. Should be called instead of
7077 * netdev_update_features() if also dev->vlan_features might
7078 * have changed to allow the changes to be propagated to stacked
7079 * VLAN devices.
7080 */
7081 void netdev_change_features(struct net_device *dev)
7082 {
7083 __netdev_update_features(dev);
7084 netdev_features_change(dev);
7085 }
7086 EXPORT_SYMBOL(netdev_change_features);
7087
7088 /**
7089 * netif_stacked_transfer_operstate - transfer operstate
7090 * @rootdev: the root or lower level device to transfer state from
7091 * @dev: the device to transfer operstate to
7092 *
7093 * Transfer operational state from root to device. This is normally
7094 * called when a stacking relationship exists between the root
7095 * device and the device(a leaf device).
7096 */
7097 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7098 struct net_device *dev)
7099 {
7100 if (rootdev->operstate == IF_OPER_DORMANT)
7101 netif_dormant_on(dev);
7102 else
7103 netif_dormant_off(dev);
7104
7105 if (netif_carrier_ok(rootdev)) {
7106 if (!netif_carrier_ok(dev))
7107 netif_carrier_on(dev);
7108 } else {
7109 if (netif_carrier_ok(dev))
7110 netif_carrier_off(dev);
7111 }
7112 }
7113 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7114
7115 #ifdef CONFIG_SYSFS
7116 static int netif_alloc_rx_queues(struct net_device *dev)
7117 {
7118 unsigned int i, count = dev->num_rx_queues;
7119 struct netdev_rx_queue *rx;
7120 size_t sz = count * sizeof(*rx);
7121
7122 BUG_ON(count < 1);
7123
7124 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7125 if (!rx) {
7126 rx = vzalloc(sz);
7127 if (!rx)
7128 return -ENOMEM;
7129 }
7130 dev->_rx = rx;
7131
7132 for (i = 0; i < count; i++)
7133 rx[i].dev = dev;
7134 return 0;
7135 }
7136 #endif
7137
7138 static void netdev_init_one_queue(struct net_device *dev,
7139 struct netdev_queue *queue, void *_unused)
7140 {
7141 /* Initialize queue lock */
7142 spin_lock_init(&queue->_xmit_lock);
7143 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7144 queue->xmit_lock_owner = -1;
7145 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7146 queue->dev = dev;
7147 #ifdef CONFIG_BQL
7148 dql_init(&queue->dql, HZ);
7149 #endif
7150 }
7151
7152 static void netif_free_tx_queues(struct net_device *dev)
7153 {
7154 kvfree(dev->_tx);
7155 }
7156
7157 static int netif_alloc_netdev_queues(struct net_device *dev)
7158 {
7159 unsigned int count = dev->num_tx_queues;
7160 struct netdev_queue *tx;
7161 size_t sz = count * sizeof(*tx);
7162
7163 if (count < 1 || count > 0xffff)
7164 return -EINVAL;
7165
7166 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7167 if (!tx) {
7168 tx = vzalloc(sz);
7169 if (!tx)
7170 return -ENOMEM;
7171 }
7172 dev->_tx = tx;
7173
7174 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7175 spin_lock_init(&dev->tx_global_lock);
7176
7177 return 0;
7178 }
7179
7180 void netif_tx_stop_all_queues(struct net_device *dev)
7181 {
7182 unsigned int i;
7183
7184 for (i = 0; i < dev->num_tx_queues; i++) {
7185 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7186
7187 netif_tx_stop_queue(txq);
7188 }
7189 }
7190 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7191
7192 /**
7193 * register_netdevice - register a network device
7194 * @dev: device to register
7195 *
7196 * Take a completed network device structure and add it to the kernel
7197 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7198 * chain. 0 is returned on success. A negative errno code is returned
7199 * on a failure to set up the device, or if the name is a duplicate.
7200 *
7201 * Callers must hold the rtnl semaphore. You may want
7202 * register_netdev() instead of this.
7203 *
7204 * BUGS:
7205 * The locking appears insufficient to guarantee two parallel registers
7206 * will not get the same name.
7207 */
7208
7209 int register_netdevice(struct net_device *dev)
7210 {
7211 int ret;
7212 struct net *net = dev_net(dev);
7213
7214 BUG_ON(dev_boot_phase);
7215 ASSERT_RTNL();
7216
7217 might_sleep();
7218
7219 /* When net_device's are persistent, this will be fatal. */
7220 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7221 BUG_ON(!net);
7222
7223 spin_lock_init(&dev->addr_list_lock);
7224 netdev_set_addr_lockdep_class(dev);
7225
7226 ret = dev_get_valid_name(net, dev, dev->name);
7227 if (ret < 0)
7228 goto out;
7229
7230 /* Init, if this function is available */
7231 if (dev->netdev_ops->ndo_init) {
7232 ret = dev->netdev_ops->ndo_init(dev);
7233 if (ret) {
7234 if (ret > 0)
7235 ret = -EIO;
7236 goto out;
7237 }
7238 }
7239
7240 if (((dev->hw_features | dev->features) &
7241 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7242 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7243 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7244 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7245 ret = -EINVAL;
7246 goto err_uninit;
7247 }
7248
7249 ret = -EBUSY;
7250 if (!dev->ifindex)
7251 dev->ifindex = dev_new_index(net);
7252 else if (__dev_get_by_index(net, dev->ifindex))
7253 goto err_uninit;
7254
7255 /* Transfer changeable features to wanted_features and enable
7256 * software offloads (GSO and GRO).
7257 */
7258 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7259 dev->features |= NETIF_F_SOFT_FEATURES;
7260 dev->wanted_features = dev->features & dev->hw_features;
7261
7262 if (!(dev->flags & IFF_LOOPBACK))
7263 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7264
7265 /* If IPv4 TCP segmentation offload is supported we should also
7266 * allow the device to enable segmenting the frame with the option
7267 * of ignoring a static IP ID value. This doesn't enable the
7268 * feature itself but allows the user to enable it later.
7269 */
7270 if (dev->hw_features & NETIF_F_TSO)
7271 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7272 if (dev->vlan_features & NETIF_F_TSO)
7273 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7274 if (dev->mpls_features & NETIF_F_TSO)
7275 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7276 if (dev->hw_enc_features & NETIF_F_TSO)
7277 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7278
7279 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7280 */
7281 dev->vlan_features |= NETIF_F_HIGHDMA;
7282
7283 /* Make NETIF_F_SG inheritable to tunnel devices.
7284 */
7285 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7286
7287 /* Make NETIF_F_SG inheritable to MPLS.
7288 */
7289 dev->mpls_features |= NETIF_F_SG;
7290
7291 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7292 ret = notifier_to_errno(ret);
7293 if (ret)
7294 goto err_uninit;
7295
7296 ret = netdev_register_kobject(dev);
7297 if (ret)
7298 goto err_uninit;
7299 dev->reg_state = NETREG_REGISTERED;
7300
7301 __netdev_update_features(dev);
7302
7303 /*
7304 * Default initial state at registry is that the
7305 * device is present.
7306 */
7307
7308 set_bit(__LINK_STATE_PRESENT, &dev->state);
7309
7310 linkwatch_init_dev(dev);
7311
7312 dev_init_scheduler(dev);
7313 dev_hold(dev);
7314 list_netdevice(dev);
7315 add_device_randomness(dev->dev_addr, dev->addr_len);
7316
7317 /* If the device has permanent device address, driver should
7318 * set dev_addr and also addr_assign_type should be set to
7319 * NET_ADDR_PERM (default value).
7320 */
7321 if (dev->addr_assign_type == NET_ADDR_PERM)
7322 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7323
7324 /* Notify protocols, that a new device appeared. */
7325 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7326 ret = notifier_to_errno(ret);
7327 if (ret) {
7328 rollback_registered(dev);
7329 dev->reg_state = NETREG_UNREGISTERED;
7330 }
7331 /*
7332 * Prevent userspace races by waiting until the network
7333 * device is fully setup before sending notifications.
7334 */
7335 if (!dev->rtnl_link_ops ||
7336 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7337 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7338
7339 out:
7340 return ret;
7341
7342 err_uninit:
7343 if (dev->netdev_ops->ndo_uninit)
7344 dev->netdev_ops->ndo_uninit(dev);
7345 goto out;
7346 }
7347 EXPORT_SYMBOL(register_netdevice);
7348
7349 /**
7350 * init_dummy_netdev - init a dummy network device for NAPI
7351 * @dev: device to init
7352 *
7353 * This takes a network device structure and initialize the minimum
7354 * amount of fields so it can be used to schedule NAPI polls without
7355 * registering a full blown interface. This is to be used by drivers
7356 * that need to tie several hardware interfaces to a single NAPI
7357 * poll scheduler due to HW limitations.
7358 */
7359 int init_dummy_netdev(struct net_device *dev)
7360 {
7361 /* Clear everything. Note we don't initialize spinlocks
7362 * are they aren't supposed to be taken by any of the
7363 * NAPI code and this dummy netdev is supposed to be
7364 * only ever used for NAPI polls
7365 */
7366 memset(dev, 0, sizeof(struct net_device));
7367
7368 /* make sure we BUG if trying to hit standard
7369 * register/unregister code path
7370 */
7371 dev->reg_state = NETREG_DUMMY;
7372
7373 /* NAPI wants this */
7374 INIT_LIST_HEAD(&dev->napi_list);
7375
7376 /* a dummy interface is started by default */
7377 set_bit(__LINK_STATE_PRESENT, &dev->state);
7378 set_bit(__LINK_STATE_START, &dev->state);
7379
7380 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7381 * because users of this 'device' dont need to change
7382 * its refcount.
7383 */
7384
7385 return 0;
7386 }
7387 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7388
7389
7390 /**
7391 * register_netdev - register a network device
7392 * @dev: device to register
7393 *
7394 * Take a completed network device structure and add it to the kernel
7395 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7396 * chain. 0 is returned on success. A negative errno code is returned
7397 * on a failure to set up the device, or if the name is a duplicate.
7398 *
7399 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7400 * and expands the device name if you passed a format string to
7401 * alloc_netdev.
7402 */
7403 int register_netdev(struct net_device *dev)
7404 {
7405 int err;
7406
7407 rtnl_lock();
7408 err = register_netdevice(dev);
7409 rtnl_unlock();
7410 return err;
7411 }
7412 EXPORT_SYMBOL(register_netdev);
7413
7414 int netdev_refcnt_read(const struct net_device *dev)
7415 {
7416 int i, refcnt = 0;
7417
7418 for_each_possible_cpu(i)
7419 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7420 return refcnt;
7421 }
7422 EXPORT_SYMBOL(netdev_refcnt_read);
7423
7424 /**
7425 * netdev_wait_allrefs - wait until all references are gone.
7426 * @dev: target net_device
7427 *
7428 * This is called when unregistering network devices.
7429 *
7430 * Any protocol or device that holds a reference should register
7431 * for netdevice notification, and cleanup and put back the
7432 * reference if they receive an UNREGISTER event.
7433 * We can get stuck here if buggy protocols don't correctly
7434 * call dev_put.
7435 */
7436 static void netdev_wait_allrefs(struct net_device *dev)
7437 {
7438 unsigned long rebroadcast_time, warning_time;
7439 int refcnt;
7440
7441 linkwatch_forget_dev(dev);
7442
7443 rebroadcast_time = warning_time = jiffies;
7444 refcnt = netdev_refcnt_read(dev);
7445
7446 while (refcnt != 0) {
7447 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7448 rtnl_lock();
7449
7450 /* Rebroadcast unregister notification */
7451 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7452
7453 __rtnl_unlock();
7454 rcu_barrier();
7455 rtnl_lock();
7456
7457 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7458 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7459 &dev->state)) {
7460 /* We must not have linkwatch events
7461 * pending on unregister. If this
7462 * happens, we simply run the queue
7463 * unscheduled, resulting in a noop
7464 * for this device.
7465 */
7466 linkwatch_run_queue();
7467 }
7468
7469 __rtnl_unlock();
7470
7471 rebroadcast_time = jiffies;
7472 }
7473
7474 msleep(250);
7475
7476 refcnt = netdev_refcnt_read(dev);
7477
7478 if (time_after(jiffies, warning_time + 10 * HZ)) {
7479 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7480 dev->name, refcnt);
7481 warning_time = jiffies;
7482 }
7483 }
7484 }
7485
7486 /* The sequence is:
7487 *
7488 * rtnl_lock();
7489 * ...
7490 * register_netdevice(x1);
7491 * register_netdevice(x2);
7492 * ...
7493 * unregister_netdevice(y1);
7494 * unregister_netdevice(y2);
7495 * ...
7496 * rtnl_unlock();
7497 * free_netdev(y1);
7498 * free_netdev(y2);
7499 *
7500 * We are invoked by rtnl_unlock().
7501 * This allows us to deal with problems:
7502 * 1) We can delete sysfs objects which invoke hotplug
7503 * without deadlocking with linkwatch via keventd.
7504 * 2) Since we run with the RTNL semaphore not held, we can sleep
7505 * safely in order to wait for the netdev refcnt to drop to zero.
7506 *
7507 * We must not return until all unregister events added during
7508 * the interval the lock was held have been completed.
7509 */
7510 void netdev_run_todo(void)
7511 {
7512 struct list_head list;
7513
7514 /* Snapshot list, allow later requests */
7515 list_replace_init(&net_todo_list, &list);
7516
7517 __rtnl_unlock();
7518
7519
7520 /* Wait for rcu callbacks to finish before next phase */
7521 if (!list_empty(&list))
7522 rcu_barrier();
7523
7524 while (!list_empty(&list)) {
7525 struct net_device *dev
7526 = list_first_entry(&list, struct net_device, todo_list);
7527 list_del(&dev->todo_list);
7528
7529 rtnl_lock();
7530 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7531 __rtnl_unlock();
7532
7533 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7534 pr_err("network todo '%s' but state %d\n",
7535 dev->name, dev->reg_state);
7536 dump_stack();
7537 continue;
7538 }
7539
7540 dev->reg_state = NETREG_UNREGISTERED;
7541
7542 netdev_wait_allrefs(dev);
7543
7544 /* paranoia */
7545 BUG_ON(netdev_refcnt_read(dev));
7546 BUG_ON(!list_empty(&dev->ptype_all));
7547 BUG_ON(!list_empty(&dev->ptype_specific));
7548 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7549 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7550 WARN_ON(dev->dn_ptr);
7551
7552 if (dev->destructor)
7553 dev->destructor(dev);
7554
7555 /* Report a network device has been unregistered */
7556 rtnl_lock();
7557 dev_net(dev)->dev_unreg_count--;
7558 __rtnl_unlock();
7559 wake_up(&netdev_unregistering_wq);
7560
7561 /* Free network device */
7562 kobject_put(&dev->dev.kobj);
7563 }
7564 }
7565
7566 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7567 * all the same fields in the same order as net_device_stats, with only
7568 * the type differing, but rtnl_link_stats64 may have additional fields
7569 * at the end for newer counters.
7570 */
7571 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7572 const struct net_device_stats *netdev_stats)
7573 {
7574 #if BITS_PER_LONG == 64
7575 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7576 memcpy(stats64, netdev_stats, sizeof(*stats64));
7577 /* zero out counters that only exist in rtnl_link_stats64 */
7578 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7579 sizeof(*stats64) - sizeof(*netdev_stats));
7580 #else
7581 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7582 const unsigned long *src = (const unsigned long *)netdev_stats;
7583 u64 *dst = (u64 *)stats64;
7584
7585 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7586 for (i = 0; i < n; i++)
7587 dst[i] = src[i];
7588 /* zero out counters that only exist in rtnl_link_stats64 */
7589 memset((char *)stats64 + n * sizeof(u64), 0,
7590 sizeof(*stats64) - n * sizeof(u64));
7591 #endif
7592 }
7593 EXPORT_SYMBOL(netdev_stats_to_stats64);
7594
7595 /**
7596 * dev_get_stats - get network device statistics
7597 * @dev: device to get statistics from
7598 * @storage: place to store stats
7599 *
7600 * Get network statistics from device. Return @storage.
7601 * The device driver may provide its own method by setting
7602 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7603 * otherwise the internal statistics structure is used.
7604 */
7605 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7606 struct rtnl_link_stats64 *storage)
7607 {
7608 const struct net_device_ops *ops = dev->netdev_ops;
7609
7610 if (ops->ndo_get_stats64) {
7611 memset(storage, 0, sizeof(*storage));
7612 ops->ndo_get_stats64(dev, storage);
7613 } else if (ops->ndo_get_stats) {
7614 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7615 } else {
7616 netdev_stats_to_stats64(storage, &dev->stats);
7617 }
7618 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7619 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7620 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7621 return storage;
7622 }
7623 EXPORT_SYMBOL(dev_get_stats);
7624
7625 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7626 {
7627 struct netdev_queue *queue = dev_ingress_queue(dev);
7628
7629 #ifdef CONFIG_NET_CLS_ACT
7630 if (queue)
7631 return queue;
7632 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7633 if (!queue)
7634 return NULL;
7635 netdev_init_one_queue(dev, queue, NULL);
7636 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7637 queue->qdisc_sleeping = &noop_qdisc;
7638 rcu_assign_pointer(dev->ingress_queue, queue);
7639 #endif
7640 return queue;
7641 }
7642
7643 static const struct ethtool_ops default_ethtool_ops;
7644
7645 void netdev_set_default_ethtool_ops(struct net_device *dev,
7646 const struct ethtool_ops *ops)
7647 {
7648 if (dev->ethtool_ops == &default_ethtool_ops)
7649 dev->ethtool_ops = ops;
7650 }
7651 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7652
7653 void netdev_freemem(struct net_device *dev)
7654 {
7655 char *addr = (char *)dev - dev->padded;
7656
7657 kvfree(addr);
7658 }
7659
7660 /**
7661 * alloc_netdev_mqs - allocate network device
7662 * @sizeof_priv: size of private data to allocate space for
7663 * @name: device name format string
7664 * @name_assign_type: origin of device name
7665 * @setup: callback to initialize device
7666 * @txqs: the number of TX subqueues to allocate
7667 * @rxqs: the number of RX subqueues to allocate
7668 *
7669 * Allocates a struct net_device with private data area for driver use
7670 * and performs basic initialization. Also allocates subqueue structs
7671 * for each queue on the device.
7672 */
7673 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7674 unsigned char name_assign_type,
7675 void (*setup)(struct net_device *),
7676 unsigned int txqs, unsigned int rxqs)
7677 {
7678 struct net_device *dev;
7679 size_t alloc_size;
7680 struct net_device *p;
7681
7682 BUG_ON(strlen(name) >= sizeof(dev->name));
7683
7684 if (txqs < 1) {
7685 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7686 return NULL;
7687 }
7688
7689 #ifdef CONFIG_SYSFS
7690 if (rxqs < 1) {
7691 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7692 return NULL;
7693 }
7694 #endif
7695
7696 alloc_size = sizeof(struct net_device);
7697 if (sizeof_priv) {
7698 /* ensure 32-byte alignment of private area */
7699 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7700 alloc_size += sizeof_priv;
7701 }
7702 /* ensure 32-byte alignment of whole construct */
7703 alloc_size += NETDEV_ALIGN - 1;
7704
7705 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7706 if (!p)
7707 p = vzalloc(alloc_size);
7708 if (!p)
7709 return NULL;
7710
7711 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7712 dev->padded = (char *)dev - (char *)p;
7713
7714 dev->pcpu_refcnt = alloc_percpu(int);
7715 if (!dev->pcpu_refcnt)
7716 goto free_dev;
7717
7718 if (dev_addr_init(dev))
7719 goto free_pcpu;
7720
7721 dev_mc_init(dev);
7722 dev_uc_init(dev);
7723
7724 dev_net_set(dev, &init_net);
7725
7726 dev->gso_max_size = GSO_MAX_SIZE;
7727 dev->gso_max_segs = GSO_MAX_SEGS;
7728
7729 INIT_LIST_HEAD(&dev->napi_list);
7730 INIT_LIST_HEAD(&dev->unreg_list);
7731 INIT_LIST_HEAD(&dev->close_list);
7732 INIT_LIST_HEAD(&dev->link_watch_list);
7733 INIT_LIST_HEAD(&dev->adj_list.upper);
7734 INIT_LIST_HEAD(&dev->adj_list.lower);
7735 INIT_LIST_HEAD(&dev->ptype_all);
7736 INIT_LIST_HEAD(&dev->ptype_specific);
7737 #ifdef CONFIG_NET_SCHED
7738 hash_init(dev->qdisc_hash);
7739 #endif
7740 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7741 setup(dev);
7742
7743 if (!dev->tx_queue_len) {
7744 dev->priv_flags |= IFF_NO_QUEUE;
7745 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7746 }
7747
7748 dev->num_tx_queues = txqs;
7749 dev->real_num_tx_queues = txqs;
7750 if (netif_alloc_netdev_queues(dev))
7751 goto free_all;
7752
7753 #ifdef CONFIG_SYSFS
7754 dev->num_rx_queues = rxqs;
7755 dev->real_num_rx_queues = rxqs;
7756 if (netif_alloc_rx_queues(dev))
7757 goto free_all;
7758 #endif
7759
7760 strcpy(dev->name, name);
7761 dev->name_assign_type = name_assign_type;
7762 dev->group = INIT_NETDEV_GROUP;
7763 if (!dev->ethtool_ops)
7764 dev->ethtool_ops = &default_ethtool_ops;
7765
7766 nf_hook_ingress_init(dev);
7767
7768 return dev;
7769
7770 free_all:
7771 free_netdev(dev);
7772 return NULL;
7773
7774 free_pcpu:
7775 free_percpu(dev->pcpu_refcnt);
7776 free_dev:
7777 netdev_freemem(dev);
7778 return NULL;
7779 }
7780 EXPORT_SYMBOL(alloc_netdev_mqs);
7781
7782 /**
7783 * free_netdev - free network device
7784 * @dev: device
7785 *
7786 * This function does the last stage of destroying an allocated device
7787 * interface. The reference to the device object is released. If this
7788 * is the last reference then it will be freed.Must be called in process
7789 * context.
7790 */
7791 void free_netdev(struct net_device *dev)
7792 {
7793 struct napi_struct *p, *n;
7794
7795 might_sleep();
7796 netif_free_tx_queues(dev);
7797 #ifdef CONFIG_SYSFS
7798 kvfree(dev->_rx);
7799 #endif
7800
7801 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7802
7803 /* Flush device addresses */
7804 dev_addr_flush(dev);
7805
7806 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7807 netif_napi_del(p);
7808
7809 free_percpu(dev->pcpu_refcnt);
7810 dev->pcpu_refcnt = NULL;
7811
7812 /* Compatibility with error handling in drivers */
7813 if (dev->reg_state == NETREG_UNINITIALIZED) {
7814 netdev_freemem(dev);
7815 return;
7816 }
7817
7818 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7819 dev->reg_state = NETREG_RELEASED;
7820
7821 /* will free via device release */
7822 put_device(&dev->dev);
7823 }
7824 EXPORT_SYMBOL(free_netdev);
7825
7826 /**
7827 * synchronize_net - Synchronize with packet receive processing
7828 *
7829 * Wait for packets currently being received to be done.
7830 * Does not block later packets from starting.
7831 */
7832 void synchronize_net(void)
7833 {
7834 might_sleep();
7835 if (rtnl_is_locked())
7836 synchronize_rcu_expedited();
7837 else
7838 synchronize_rcu();
7839 }
7840 EXPORT_SYMBOL(synchronize_net);
7841
7842 /**
7843 * unregister_netdevice_queue - remove device from the kernel
7844 * @dev: device
7845 * @head: list
7846 *
7847 * This function shuts down a device interface and removes it
7848 * from the kernel tables.
7849 * If head not NULL, device is queued to be unregistered later.
7850 *
7851 * Callers must hold the rtnl semaphore. You may want
7852 * unregister_netdev() instead of this.
7853 */
7854
7855 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7856 {
7857 ASSERT_RTNL();
7858
7859 if (head) {
7860 list_move_tail(&dev->unreg_list, head);
7861 } else {
7862 rollback_registered(dev);
7863 /* Finish processing unregister after unlock */
7864 net_set_todo(dev);
7865 }
7866 }
7867 EXPORT_SYMBOL(unregister_netdevice_queue);
7868
7869 /**
7870 * unregister_netdevice_many - unregister many devices
7871 * @head: list of devices
7872 *
7873 * Note: As most callers use a stack allocated list_head,
7874 * we force a list_del() to make sure stack wont be corrupted later.
7875 */
7876 void unregister_netdevice_many(struct list_head *head)
7877 {
7878 struct net_device *dev;
7879
7880 if (!list_empty(head)) {
7881 rollback_registered_many(head);
7882 list_for_each_entry(dev, head, unreg_list)
7883 net_set_todo(dev);
7884 list_del(head);
7885 }
7886 }
7887 EXPORT_SYMBOL(unregister_netdevice_many);
7888
7889 /**
7890 * unregister_netdev - remove device from the kernel
7891 * @dev: device
7892 *
7893 * This function shuts down a device interface and removes it
7894 * from the kernel tables.
7895 *
7896 * This is just a wrapper for unregister_netdevice that takes
7897 * the rtnl semaphore. In general you want to use this and not
7898 * unregister_netdevice.
7899 */
7900 void unregister_netdev(struct net_device *dev)
7901 {
7902 rtnl_lock();
7903 unregister_netdevice(dev);
7904 rtnl_unlock();
7905 }
7906 EXPORT_SYMBOL(unregister_netdev);
7907
7908 /**
7909 * dev_change_net_namespace - move device to different nethost namespace
7910 * @dev: device
7911 * @net: network namespace
7912 * @pat: If not NULL name pattern to try if the current device name
7913 * is already taken in the destination network namespace.
7914 *
7915 * This function shuts down a device interface and moves it
7916 * to a new network namespace. On success 0 is returned, on
7917 * a failure a netagive errno code is returned.
7918 *
7919 * Callers must hold the rtnl semaphore.
7920 */
7921
7922 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7923 {
7924 int err;
7925
7926 ASSERT_RTNL();
7927
7928 /* Don't allow namespace local devices to be moved. */
7929 err = -EINVAL;
7930 if (dev->features & NETIF_F_NETNS_LOCAL)
7931 goto out;
7932
7933 /* Ensure the device has been registrered */
7934 if (dev->reg_state != NETREG_REGISTERED)
7935 goto out;
7936
7937 /* Get out if there is nothing todo */
7938 err = 0;
7939 if (net_eq(dev_net(dev), net))
7940 goto out;
7941
7942 /* Pick the destination device name, and ensure
7943 * we can use it in the destination network namespace.
7944 */
7945 err = -EEXIST;
7946 if (__dev_get_by_name(net, dev->name)) {
7947 /* We get here if we can't use the current device name */
7948 if (!pat)
7949 goto out;
7950 if (dev_get_valid_name(net, dev, pat) < 0)
7951 goto out;
7952 }
7953
7954 /*
7955 * And now a mini version of register_netdevice unregister_netdevice.
7956 */
7957
7958 /* If device is running close it first. */
7959 dev_close(dev);
7960
7961 /* And unlink it from device chain */
7962 err = -ENODEV;
7963 unlist_netdevice(dev);
7964
7965 synchronize_net();
7966
7967 /* Shutdown queueing discipline. */
7968 dev_shutdown(dev);
7969
7970 /* Notify protocols, that we are about to destroy
7971 * this device. They should clean all the things.
7972 *
7973 * Note that dev->reg_state stays at NETREG_REGISTERED.
7974 * This is wanted because this way 8021q and macvlan know
7975 * the device is just moving and can keep their slaves up.
7976 */
7977 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7978 rcu_barrier();
7979 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7980 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7981
7982 /*
7983 * Flush the unicast and multicast chains
7984 */
7985 dev_uc_flush(dev);
7986 dev_mc_flush(dev);
7987
7988 /* Send a netdev-removed uevent to the old namespace */
7989 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7990 netdev_adjacent_del_links(dev);
7991
7992 /* Actually switch the network namespace */
7993 dev_net_set(dev, net);
7994
7995 /* If there is an ifindex conflict assign a new one */
7996 if (__dev_get_by_index(net, dev->ifindex))
7997 dev->ifindex = dev_new_index(net);
7998
7999 /* Send a netdev-add uevent to the new namespace */
8000 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8001 netdev_adjacent_add_links(dev);
8002
8003 /* Fixup kobjects */
8004 err = device_rename(&dev->dev, dev->name);
8005 WARN_ON(err);
8006
8007 /* Add the device back in the hashes */
8008 list_netdevice(dev);
8009
8010 /* Notify protocols, that a new device appeared. */
8011 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8012
8013 /*
8014 * Prevent userspace races by waiting until the network
8015 * device is fully setup before sending notifications.
8016 */
8017 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8018
8019 synchronize_net();
8020 err = 0;
8021 out:
8022 return err;
8023 }
8024 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8025
8026 static int dev_cpu_dead(unsigned int oldcpu)
8027 {
8028 struct sk_buff **list_skb;
8029 struct sk_buff *skb;
8030 unsigned int cpu;
8031 struct softnet_data *sd, *oldsd;
8032
8033 local_irq_disable();
8034 cpu = smp_processor_id();
8035 sd = &per_cpu(softnet_data, cpu);
8036 oldsd = &per_cpu(softnet_data, oldcpu);
8037
8038 /* Find end of our completion_queue. */
8039 list_skb = &sd->completion_queue;
8040 while (*list_skb)
8041 list_skb = &(*list_skb)->next;
8042 /* Append completion queue from offline CPU. */
8043 *list_skb = oldsd->completion_queue;
8044 oldsd->completion_queue = NULL;
8045
8046 /* Append output queue from offline CPU. */
8047 if (oldsd->output_queue) {
8048 *sd->output_queue_tailp = oldsd->output_queue;
8049 sd->output_queue_tailp = oldsd->output_queue_tailp;
8050 oldsd->output_queue = NULL;
8051 oldsd->output_queue_tailp = &oldsd->output_queue;
8052 }
8053 /* Append NAPI poll list from offline CPU, with one exception :
8054 * process_backlog() must be called by cpu owning percpu backlog.
8055 * We properly handle process_queue & input_pkt_queue later.
8056 */
8057 while (!list_empty(&oldsd->poll_list)) {
8058 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8059 struct napi_struct,
8060 poll_list);
8061
8062 list_del_init(&napi->poll_list);
8063 if (napi->poll == process_backlog)
8064 napi->state = 0;
8065 else
8066 ____napi_schedule(sd, napi);
8067 }
8068
8069 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8070 local_irq_enable();
8071
8072 /* Process offline CPU's input_pkt_queue */
8073 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8074 netif_rx_ni(skb);
8075 input_queue_head_incr(oldsd);
8076 }
8077 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8078 netif_rx_ni(skb);
8079 input_queue_head_incr(oldsd);
8080 }
8081
8082 return 0;
8083 }
8084
8085 /**
8086 * netdev_increment_features - increment feature set by one
8087 * @all: current feature set
8088 * @one: new feature set
8089 * @mask: mask feature set
8090 *
8091 * Computes a new feature set after adding a device with feature set
8092 * @one to the master device with current feature set @all. Will not
8093 * enable anything that is off in @mask. Returns the new feature set.
8094 */
8095 netdev_features_t netdev_increment_features(netdev_features_t all,
8096 netdev_features_t one, netdev_features_t mask)
8097 {
8098 if (mask & NETIF_F_HW_CSUM)
8099 mask |= NETIF_F_CSUM_MASK;
8100 mask |= NETIF_F_VLAN_CHALLENGED;
8101
8102 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8103 all &= one | ~NETIF_F_ALL_FOR_ALL;
8104
8105 /* If one device supports hw checksumming, set for all. */
8106 if (all & NETIF_F_HW_CSUM)
8107 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8108
8109 return all;
8110 }
8111 EXPORT_SYMBOL(netdev_increment_features);
8112
8113 static struct hlist_head * __net_init netdev_create_hash(void)
8114 {
8115 int i;
8116 struct hlist_head *hash;
8117
8118 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8119 if (hash != NULL)
8120 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8121 INIT_HLIST_HEAD(&hash[i]);
8122
8123 return hash;
8124 }
8125
8126 /* Initialize per network namespace state */
8127 static int __net_init netdev_init(struct net *net)
8128 {
8129 if (net != &init_net)
8130 INIT_LIST_HEAD(&net->dev_base_head);
8131
8132 net->dev_name_head = netdev_create_hash();
8133 if (net->dev_name_head == NULL)
8134 goto err_name;
8135
8136 net->dev_index_head = netdev_create_hash();
8137 if (net->dev_index_head == NULL)
8138 goto err_idx;
8139
8140 return 0;
8141
8142 err_idx:
8143 kfree(net->dev_name_head);
8144 err_name:
8145 return -ENOMEM;
8146 }
8147
8148 /**
8149 * netdev_drivername - network driver for the device
8150 * @dev: network device
8151 *
8152 * Determine network driver for device.
8153 */
8154 const char *netdev_drivername(const struct net_device *dev)
8155 {
8156 const struct device_driver *driver;
8157 const struct device *parent;
8158 const char *empty = "";
8159
8160 parent = dev->dev.parent;
8161 if (!parent)
8162 return empty;
8163
8164 driver = parent->driver;
8165 if (driver && driver->name)
8166 return driver->name;
8167 return empty;
8168 }
8169
8170 static void __netdev_printk(const char *level, const struct net_device *dev,
8171 struct va_format *vaf)
8172 {
8173 if (dev && dev->dev.parent) {
8174 dev_printk_emit(level[1] - '0',
8175 dev->dev.parent,
8176 "%s %s %s%s: %pV",
8177 dev_driver_string(dev->dev.parent),
8178 dev_name(dev->dev.parent),
8179 netdev_name(dev), netdev_reg_state(dev),
8180 vaf);
8181 } else if (dev) {
8182 printk("%s%s%s: %pV",
8183 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8184 } else {
8185 printk("%s(NULL net_device): %pV", level, vaf);
8186 }
8187 }
8188
8189 void netdev_printk(const char *level, const struct net_device *dev,
8190 const char *format, ...)
8191 {
8192 struct va_format vaf;
8193 va_list args;
8194
8195 va_start(args, format);
8196
8197 vaf.fmt = format;
8198 vaf.va = &args;
8199
8200 __netdev_printk(level, dev, &vaf);
8201
8202 va_end(args);
8203 }
8204 EXPORT_SYMBOL(netdev_printk);
8205
8206 #define define_netdev_printk_level(func, level) \
8207 void func(const struct net_device *dev, const char *fmt, ...) \
8208 { \
8209 struct va_format vaf; \
8210 va_list args; \
8211 \
8212 va_start(args, fmt); \
8213 \
8214 vaf.fmt = fmt; \
8215 vaf.va = &args; \
8216 \
8217 __netdev_printk(level, dev, &vaf); \
8218 \
8219 va_end(args); \
8220 } \
8221 EXPORT_SYMBOL(func);
8222
8223 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8224 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8225 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8226 define_netdev_printk_level(netdev_err, KERN_ERR);
8227 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8228 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8229 define_netdev_printk_level(netdev_info, KERN_INFO);
8230
8231 static void __net_exit netdev_exit(struct net *net)
8232 {
8233 kfree(net->dev_name_head);
8234 kfree(net->dev_index_head);
8235 }
8236
8237 static struct pernet_operations __net_initdata netdev_net_ops = {
8238 .init = netdev_init,
8239 .exit = netdev_exit,
8240 };
8241
8242 static void __net_exit default_device_exit(struct net *net)
8243 {
8244 struct net_device *dev, *aux;
8245 /*
8246 * Push all migratable network devices back to the
8247 * initial network namespace
8248 */
8249 rtnl_lock();
8250 for_each_netdev_safe(net, dev, aux) {
8251 int err;
8252 char fb_name[IFNAMSIZ];
8253
8254 /* Ignore unmoveable devices (i.e. loopback) */
8255 if (dev->features & NETIF_F_NETNS_LOCAL)
8256 continue;
8257
8258 /* Leave virtual devices for the generic cleanup */
8259 if (dev->rtnl_link_ops)
8260 continue;
8261
8262 /* Push remaining network devices to init_net */
8263 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8264 err = dev_change_net_namespace(dev, &init_net, fb_name);
8265 if (err) {
8266 pr_emerg("%s: failed to move %s to init_net: %d\n",
8267 __func__, dev->name, err);
8268 BUG();
8269 }
8270 }
8271 rtnl_unlock();
8272 }
8273
8274 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8275 {
8276 /* Return with the rtnl_lock held when there are no network
8277 * devices unregistering in any network namespace in net_list.
8278 */
8279 struct net *net;
8280 bool unregistering;
8281 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8282
8283 add_wait_queue(&netdev_unregistering_wq, &wait);
8284 for (;;) {
8285 unregistering = false;
8286 rtnl_lock();
8287 list_for_each_entry(net, net_list, exit_list) {
8288 if (net->dev_unreg_count > 0) {
8289 unregistering = true;
8290 break;
8291 }
8292 }
8293 if (!unregistering)
8294 break;
8295 __rtnl_unlock();
8296
8297 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8298 }
8299 remove_wait_queue(&netdev_unregistering_wq, &wait);
8300 }
8301
8302 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8303 {
8304 /* At exit all network devices most be removed from a network
8305 * namespace. Do this in the reverse order of registration.
8306 * Do this across as many network namespaces as possible to
8307 * improve batching efficiency.
8308 */
8309 struct net_device *dev;
8310 struct net *net;
8311 LIST_HEAD(dev_kill_list);
8312
8313 /* To prevent network device cleanup code from dereferencing
8314 * loopback devices or network devices that have been freed
8315 * wait here for all pending unregistrations to complete,
8316 * before unregistring the loopback device and allowing the
8317 * network namespace be freed.
8318 *
8319 * The netdev todo list containing all network devices
8320 * unregistrations that happen in default_device_exit_batch
8321 * will run in the rtnl_unlock() at the end of
8322 * default_device_exit_batch.
8323 */
8324 rtnl_lock_unregistering(net_list);
8325 list_for_each_entry(net, net_list, exit_list) {
8326 for_each_netdev_reverse(net, dev) {
8327 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8328 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8329 else
8330 unregister_netdevice_queue(dev, &dev_kill_list);
8331 }
8332 }
8333 unregister_netdevice_many(&dev_kill_list);
8334 rtnl_unlock();
8335 }
8336
8337 static struct pernet_operations __net_initdata default_device_ops = {
8338 .exit = default_device_exit,
8339 .exit_batch = default_device_exit_batch,
8340 };
8341
8342 /*
8343 * Initialize the DEV module. At boot time this walks the device list and
8344 * unhooks any devices that fail to initialise (normally hardware not
8345 * present) and leaves us with a valid list of present and active devices.
8346 *
8347 */
8348
8349 /*
8350 * This is called single threaded during boot, so no need
8351 * to take the rtnl semaphore.
8352 */
8353 static int __init net_dev_init(void)
8354 {
8355 int i, rc = -ENOMEM;
8356
8357 BUG_ON(!dev_boot_phase);
8358
8359 if (dev_proc_init())
8360 goto out;
8361
8362 if (netdev_kobject_init())
8363 goto out;
8364
8365 INIT_LIST_HEAD(&ptype_all);
8366 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8367 INIT_LIST_HEAD(&ptype_base[i]);
8368
8369 INIT_LIST_HEAD(&offload_base);
8370
8371 if (register_pernet_subsys(&netdev_net_ops))
8372 goto out;
8373
8374 /*
8375 * Initialise the packet receive queues.
8376 */
8377
8378 for_each_possible_cpu(i) {
8379 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8380 struct softnet_data *sd = &per_cpu(softnet_data, i);
8381
8382 INIT_WORK(flush, flush_backlog);
8383
8384 skb_queue_head_init(&sd->input_pkt_queue);
8385 skb_queue_head_init(&sd->process_queue);
8386 INIT_LIST_HEAD(&sd->poll_list);
8387 sd->output_queue_tailp = &sd->output_queue;
8388 #ifdef CONFIG_RPS
8389 sd->csd.func = rps_trigger_softirq;
8390 sd->csd.info = sd;
8391 sd->cpu = i;
8392 #endif
8393
8394 sd->backlog.poll = process_backlog;
8395 sd->backlog.weight = weight_p;
8396 }
8397
8398 dev_boot_phase = 0;
8399
8400 /* The loopback device is special if any other network devices
8401 * is present in a network namespace the loopback device must
8402 * be present. Since we now dynamically allocate and free the
8403 * loopback device ensure this invariant is maintained by
8404 * keeping the loopback device as the first device on the
8405 * list of network devices. Ensuring the loopback devices
8406 * is the first device that appears and the last network device
8407 * that disappears.
8408 */
8409 if (register_pernet_device(&loopback_net_ops))
8410 goto out;
8411
8412 if (register_pernet_device(&default_device_ops))
8413 goto out;
8414
8415 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8416 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8417
8418 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8419 NULL, dev_cpu_dead);
8420 WARN_ON(rc < 0);
8421 dst_subsys_init();
8422 rc = 0;
8423 out:
8424 return rc;
8425 }
8426
8427 subsys_initcall(net_dev_init);