]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/dev.c
hlist: drop the node parameter from iterators
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132
133 #include "net-sysfs.h"
134
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
137
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
140
141 static DEFINE_SPINLOCK(ptype_lock);
142 static DEFINE_SPINLOCK(offload_lock);
143 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
144 struct list_head ptype_all __read_mostly; /* Taps */
145 static struct list_head offload_base __read_mostly;
146
147 /*
148 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
149 * semaphore.
150 *
151 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
152 *
153 * Writers must hold the rtnl semaphore while they loop through the
154 * dev_base_head list, and hold dev_base_lock for writing when they do the
155 * actual updates. This allows pure readers to access the list even
156 * while a writer is preparing to update it.
157 *
158 * To put it another way, dev_base_lock is held for writing only to
159 * protect against pure readers; the rtnl semaphore provides the
160 * protection against other writers.
161 *
162 * See, for example usages, register_netdevice() and
163 * unregister_netdevice(), which must be called with the rtnl
164 * semaphore held.
165 */
166 DEFINE_RWLOCK(dev_base_lock);
167 EXPORT_SYMBOL(dev_base_lock);
168
169 seqcount_t devnet_rename_seq;
170
171 static inline void dev_base_seq_inc(struct net *net)
172 {
173 while (++net->dev_base_seq == 0);
174 }
175
176 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
177 {
178 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
179
180 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
181 }
182
183 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
184 {
185 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
186 }
187
188 static inline void rps_lock(struct softnet_data *sd)
189 {
190 #ifdef CONFIG_RPS
191 spin_lock(&sd->input_pkt_queue.lock);
192 #endif
193 }
194
195 static inline void rps_unlock(struct softnet_data *sd)
196 {
197 #ifdef CONFIG_RPS
198 spin_unlock(&sd->input_pkt_queue.lock);
199 #endif
200 }
201
202 /* Device list insertion */
203 static int list_netdevice(struct net_device *dev)
204 {
205 struct net *net = dev_net(dev);
206
207 ASSERT_RTNL();
208
209 write_lock_bh(&dev_base_lock);
210 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
211 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
212 hlist_add_head_rcu(&dev->index_hlist,
213 dev_index_hash(net, dev->ifindex));
214 write_unlock_bh(&dev_base_lock);
215
216 dev_base_seq_inc(net);
217
218 return 0;
219 }
220
221 /* Device list removal
222 * caller must respect a RCU grace period before freeing/reusing dev
223 */
224 static void unlist_netdevice(struct net_device *dev)
225 {
226 ASSERT_RTNL();
227
228 /* Unlink dev from the device chain */
229 write_lock_bh(&dev_base_lock);
230 list_del_rcu(&dev->dev_list);
231 hlist_del_rcu(&dev->name_hlist);
232 hlist_del_rcu(&dev->index_hlist);
233 write_unlock_bh(&dev_base_lock);
234
235 dev_base_seq_inc(dev_net(dev));
236 }
237
238 /*
239 * Our notifier list
240 */
241
242 static RAW_NOTIFIER_HEAD(netdev_chain);
243
244 /*
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
247 */
248
249 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
250 EXPORT_PER_CPU_SYMBOL(softnet_data);
251
252 #ifdef CONFIG_LOCKDEP
253 /*
254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255 * according to dev->type
256 */
257 static const unsigned short netdev_lock_type[] =
258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
271 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
272 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
273
274 static const char *const netdev_lock_name[] =
275 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
276 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
277 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
278 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
279 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
280 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
281 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
282 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
283 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
284 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
285 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
286 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
287 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
288 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
289 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
290
291 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
292 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
293
294 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
295 {
296 int i;
297
298 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
299 if (netdev_lock_type[i] == dev_type)
300 return i;
301 /* the last key is used by default */
302 return ARRAY_SIZE(netdev_lock_type) - 1;
303 }
304
305 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
306 unsigned short dev_type)
307 {
308 int i;
309
310 i = netdev_lock_pos(dev_type);
311 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
312 netdev_lock_name[i]);
313 }
314
315 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
316 {
317 int i;
318
319 i = netdev_lock_pos(dev->type);
320 lockdep_set_class_and_name(&dev->addr_list_lock,
321 &netdev_addr_lock_key[i],
322 netdev_lock_name[i]);
323 }
324 #else
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327 {
328 }
329 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
330 {
331 }
332 #endif
333
334 /*******************************************************************************
335
336 Protocol management and registration routines
337
338 *******************************************************************************/
339
340 /*
341 * Add a protocol ID to the list. Now that the input handler is
342 * smarter we can dispense with all the messy stuff that used to be
343 * here.
344 *
345 * BEWARE!!! Protocol handlers, mangling input packets,
346 * MUST BE last in hash buckets and checking protocol handlers
347 * MUST start from promiscuous ptype_all chain in net_bh.
348 * It is true now, do not change it.
349 * Explanation follows: if protocol handler, mangling packet, will
350 * be the first on list, it is not able to sense, that packet
351 * is cloned and should be copied-on-write, so that it will
352 * change it and subsequent readers will get broken packet.
353 * --ANK (980803)
354 */
355
356 static inline struct list_head *ptype_head(const struct packet_type *pt)
357 {
358 if (pt->type == htons(ETH_P_ALL))
359 return &ptype_all;
360 else
361 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
362 }
363
364 /**
365 * dev_add_pack - add packet handler
366 * @pt: packet type declaration
367 *
368 * Add a protocol handler to the networking stack. The passed &packet_type
369 * is linked into kernel lists and may not be freed until it has been
370 * removed from the kernel lists.
371 *
372 * This call does not sleep therefore it can not
373 * guarantee all CPU's that are in middle of receiving packets
374 * will see the new packet type (until the next received packet).
375 */
376
377 void dev_add_pack(struct packet_type *pt)
378 {
379 struct list_head *head = ptype_head(pt);
380
381 spin_lock(&ptype_lock);
382 list_add_rcu(&pt->list, head);
383 spin_unlock(&ptype_lock);
384 }
385 EXPORT_SYMBOL(dev_add_pack);
386
387 /**
388 * __dev_remove_pack - remove packet handler
389 * @pt: packet type declaration
390 *
391 * Remove a protocol handler that was previously added to the kernel
392 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
393 * from the kernel lists and can be freed or reused once this function
394 * returns.
395 *
396 * The packet type might still be in use by receivers
397 * and must not be freed until after all the CPU's have gone
398 * through a quiescent state.
399 */
400 void __dev_remove_pack(struct packet_type *pt)
401 {
402 struct list_head *head = ptype_head(pt);
403 struct packet_type *pt1;
404
405 spin_lock(&ptype_lock);
406
407 list_for_each_entry(pt1, head, list) {
408 if (pt == pt1) {
409 list_del_rcu(&pt->list);
410 goto out;
411 }
412 }
413
414 pr_warn("dev_remove_pack: %p not found\n", pt);
415 out:
416 spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(__dev_remove_pack);
419
420 /**
421 * dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * This call sleeps to guarantee that no CPU is looking at the packet
430 * type after return.
431 */
432 void dev_remove_pack(struct packet_type *pt)
433 {
434 __dev_remove_pack(pt);
435
436 synchronize_net();
437 }
438 EXPORT_SYMBOL(dev_remove_pack);
439
440
441 /**
442 * dev_add_offload - register offload handlers
443 * @po: protocol offload declaration
444 *
445 * Add protocol offload handlers to the networking stack. The passed
446 * &proto_offload is linked into kernel lists and may not be freed until
447 * it has been removed from the kernel lists.
448 *
449 * This call does not sleep therefore it can not
450 * guarantee all CPU's that are in middle of receiving packets
451 * will see the new offload handlers (until the next received packet).
452 */
453 void dev_add_offload(struct packet_offload *po)
454 {
455 struct list_head *head = &offload_base;
456
457 spin_lock(&offload_lock);
458 list_add_rcu(&po->list, head);
459 spin_unlock(&offload_lock);
460 }
461 EXPORT_SYMBOL(dev_add_offload);
462
463 /**
464 * __dev_remove_offload - remove offload handler
465 * @po: packet offload declaration
466 *
467 * Remove a protocol offload handler that was previously added to the
468 * kernel offload handlers by dev_add_offload(). The passed &offload_type
469 * is removed from the kernel lists and can be freed or reused once this
470 * function returns.
471 *
472 * The packet type might still be in use by receivers
473 * and must not be freed until after all the CPU's have gone
474 * through a quiescent state.
475 */
476 void __dev_remove_offload(struct packet_offload *po)
477 {
478 struct list_head *head = &offload_base;
479 struct packet_offload *po1;
480
481 spin_lock(&offload_lock);
482
483 list_for_each_entry(po1, head, list) {
484 if (po == po1) {
485 list_del_rcu(&po->list);
486 goto out;
487 }
488 }
489
490 pr_warn("dev_remove_offload: %p not found\n", po);
491 out:
492 spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(__dev_remove_offload);
495
496 /**
497 * dev_remove_offload - remove packet offload handler
498 * @po: packet offload declaration
499 *
500 * Remove a packet offload handler that was previously added to the kernel
501 * offload handlers by dev_add_offload(). The passed &offload_type is
502 * removed from the kernel lists and can be freed or reused once this
503 * function returns.
504 *
505 * This call sleeps to guarantee that no CPU is looking at the packet
506 * type after return.
507 */
508 void dev_remove_offload(struct packet_offload *po)
509 {
510 __dev_remove_offload(po);
511
512 synchronize_net();
513 }
514 EXPORT_SYMBOL(dev_remove_offload);
515
516 /******************************************************************************
517
518 Device Boot-time Settings Routines
519
520 *******************************************************************************/
521
522 /* Boot time configuration table */
523 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
524
525 /**
526 * netdev_boot_setup_add - add new setup entry
527 * @name: name of the device
528 * @map: configured settings for the device
529 *
530 * Adds new setup entry to the dev_boot_setup list. The function
531 * returns 0 on error and 1 on success. This is a generic routine to
532 * all netdevices.
533 */
534 static int netdev_boot_setup_add(char *name, struct ifmap *map)
535 {
536 struct netdev_boot_setup *s;
537 int i;
538
539 s = dev_boot_setup;
540 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
541 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
542 memset(s[i].name, 0, sizeof(s[i].name));
543 strlcpy(s[i].name, name, IFNAMSIZ);
544 memcpy(&s[i].map, map, sizeof(s[i].map));
545 break;
546 }
547 }
548
549 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
550 }
551
552 /**
553 * netdev_boot_setup_check - check boot time settings
554 * @dev: the netdevice
555 *
556 * Check boot time settings for the device.
557 * The found settings are set for the device to be used
558 * later in the device probing.
559 * Returns 0 if no settings found, 1 if they are.
560 */
561 int netdev_boot_setup_check(struct net_device *dev)
562 {
563 struct netdev_boot_setup *s = dev_boot_setup;
564 int i;
565
566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
567 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
568 !strcmp(dev->name, s[i].name)) {
569 dev->irq = s[i].map.irq;
570 dev->base_addr = s[i].map.base_addr;
571 dev->mem_start = s[i].map.mem_start;
572 dev->mem_end = s[i].map.mem_end;
573 return 1;
574 }
575 }
576 return 0;
577 }
578 EXPORT_SYMBOL(netdev_boot_setup_check);
579
580
581 /**
582 * netdev_boot_base - get address from boot time settings
583 * @prefix: prefix for network device
584 * @unit: id for network device
585 *
586 * Check boot time settings for the base address of device.
587 * The found settings are set for the device to be used
588 * later in the device probing.
589 * Returns 0 if no settings found.
590 */
591 unsigned long netdev_boot_base(const char *prefix, int unit)
592 {
593 const struct netdev_boot_setup *s = dev_boot_setup;
594 char name[IFNAMSIZ];
595 int i;
596
597 sprintf(name, "%s%d", prefix, unit);
598
599 /*
600 * If device already registered then return base of 1
601 * to indicate not to probe for this interface
602 */
603 if (__dev_get_by_name(&init_net, name))
604 return 1;
605
606 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
607 if (!strcmp(name, s[i].name))
608 return s[i].map.base_addr;
609 return 0;
610 }
611
612 /*
613 * Saves at boot time configured settings for any netdevice.
614 */
615 int __init netdev_boot_setup(char *str)
616 {
617 int ints[5];
618 struct ifmap map;
619
620 str = get_options(str, ARRAY_SIZE(ints), ints);
621 if (!str || !*str)
622 return 0;
623
624 /* Save settings */
625 memset(&map, 0, sizeof(map));
626 if (ints[0] > 0)
627 map.irq = ints[1];
628 if (ints[0] > 1)
629 map.base_addr = ints[2];
630 if (ints[0] > 2)
631 map.mem_start = ints[3];
632 if (ints[0] > 3)
633 map.mem_end = ints[4];
634
635 /* Add new entry to the list */
636 return netdev_boot_setup_add(str, &map);
637 }
638
639 __setup("netdev=", netdev_boot_setup);
640
641 /*******************************************************************************
642
643 Device Interface Subroutines
644
645 *******************************************************************************/
646
647 /**
648 * __dev_get_by_name - find a device by its name
649 * @net: the applicable net namespace
650 * @name: name to find
651 *
652 * Find an interface by name. Must be called under RTNL semaphore
653 * or @dev_base_lock. If the name is found a pointer to the device
654 * is returned. If the name is not found then %NULL is returned. The
655 * reference counters are not incremented so the caller must be
656 * careful with locks.
657 */
658
659 struct net_device *__dev_get_by_name(struct net *net, const char *name)
660 {
661 struct net_device *dev;
662 struct hlist_head *head = dev_name_hash(net, name);
663
664 hlist_for_each_entry(dev, head, name_hlist)
665 if (!strncmp(dev->name, name, IFNAMSIZ))
666 return dev;
667
668 return NULL;
669 }
670 EXPORT_SYMBOL(__dev_get_by_name);
671
672 /**
673 * dev_get_by_name_rcu - find a device by its name
674 * @net: the applicable net namespace
675 * @name: name to find
676 *
677 * Find an interface by name.
678 * If the name is found a pointer to the device is returned.
679 * If the name is not found then %NULL is returned.
680 * The reference counters are not incremented so the caller must be
681 * careful with locks. The caller must hold RCU lock.
682 */
683
684 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
685 {
686 struct net_device *dev;
687 struct hlist_head *head = dev_name_hash(net, name);
688
689 hlist_for_each_entry_rcu(dev, head, name_hlist)
690 if (!strncmp(dev->name, name, IFNAMSIZ))
691 return dev;
692
693 return NULL;
694 }
695 EXPORT_SYMBOL(dev_get_by_name_rcu);
696
697 /**
698 * dev_get_by_name - find a device by its name
699 * @net: the applicable net namespace
700 * @name: name to find
701 *
702 * Find an interface by name. This can be called from any
703 * context and does its own locking. The returned handle has
704 * the usage count incremented and the caller must use dev_put() to
705 * release it when it is no longer needed. %NULL is returned if no
706 * matching device is found.
707 */
708
709 struct net_device *dev_get_by_name(struct net *net, const char *name)
710 {
711 struct net_device *dev;
712
713 rcu_read_lock();
714 dev = dev_get_by_name_rcu(net, name);
715 if (dev)
716 dev_hold(dev);
717 rcu_read_unlock();
718 return dev;
719 }
720 EXPORT_SYMBOL(dev_get_by_name);
721
722 /**
723 * __dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns %NULL if the device
728 * is not found or a pointer to the device. The device has not
729 * had its reference counter increased so the caller must be careful
730 * about locking. The caller must hold either the RTNL semaphore
731 * or @dev_base_lock.
732 */
733
734 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
735 {
736 struct net_device *dev;
737 struct hlist_head *head = dev_index_hash(net, ifindex);
738
739 hlist_for_each_entry(dev, head, index_hlist)
740 if (dev->ifindex == ifindex)
741 return dev;
742
743 return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_index);
746
747 /**
748 * dev_get_by_index_rcu - find a device by its ifindex
749 * @net: the applicable net namespace
750 * @ifindex: index of device
751 *
752 * Search for an interface by index. Returns %NULL if the device
753 * is not found or a pointer to the device. The device has not
754 * had its reference counter increased so the caller must be careful
755 * about locking. The caller must hold RCU lock.
756 */
757
758 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
759 {
760 struct net_device *dev;
761 struct hlist_head *head = dev_index_hash(net, ifindex);
762
763 hlist_for_each_entry_rcu(dev, head, index_hlist)
764 if (dev->ifindex == ifindex)
765 return dev;
766
767 return NULL;
768 }
769 EXPORT_SYMBOL(dev_get_by_index_rcu);
770
771
772 /**
773 * dev_get_by_index - find a device by its ifindex
774 * @net: the applicable net namespace
775 * @ifindex: index of device
776 *
777 * Search for an interface by index. Returns NULL if the device
778 * is not found or a pointer to the device. The device returned has
779 * had a reference added and the pointer is safe until the user calls
780 * dev_put to indicate they have finished with it.
781 */
782
783 struct net_device *dev_get_by_index(struct net *net, int ifindex)
784 {
785 struct net_device *dev;
786
787 rcu_read_lock();
788 dev = dev_get_by_index_rcu(net, ifindex);
789 if (dev)
790 dev_hold(dev);
791 rcu_read_unlock();
792 return dev;
793 }
794 EXPORT_SYMBOL(dev_get_by_index);
795
796 /**
797 * dev_getbyhwaddr_rcu - find a device by its hardware address
798 * @net: the applicable net namespace
799 * @type: media type of device
800 * @ha: hardware address
801 *
802 * Search for an interface by MAC address. Returns NULL if the device
803 * is not found or a pointer to the device.
804 * The caller must hold RCU or RTNL.
805 * The returned device has not had its ref count increased
806 * and the caller must therefore be careful about locking
807 *
808 */
809
810 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
811 const char *ha)
812 {
813 struct net_device *dev;
814
815 for_each_netdev_rcu(net, dev)
816 if (dev->type == type &&
817 !memcmp(dev->dev_addr, ha, dev->addr_len))
818 return dev;
819
820 return NULL;
821 }
822 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
823
824 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
825 {
826 struct net_device *dev;
827
828 ASSERT_RTNL();
829 for_each_netdev(net, dev)
830 if (dev->type == type)
831 return dev;
832
833 return NULL;
834 }
835 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
836
837 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
838 {
839 struct net_device *dev, *ret = NULL;
840
841 rcu_read_lock();
842 for_each_netdev_rcu(net, dev)
843 if (dev->type == type) {
844 dev_hold(dev);
845 ret = dev;
846 break;
847 }
848 rcu_read_unlock();
849 return ret;
850 }
851 EXPORT_SYMBOL(dev_getfirstbyhwtype);
852
853 /**
854 * dev_get_by_flags_rcu - find any device with given flags
855 * @net: the applicable net namespace
856 * @if_flags: IFF_* values
857 * @mask: bitmask of bits in if_flags to check
858 *
859 * Search for any interface with the given flags. Returns NULL if a device
860 * is not found or a pointer to the device. Must be called inside
861 * rcu_read_lock(), and result refcount is unchanged.
862 */
863
864 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
865 unsigned short mask)
866 {
867 struct net_device *dev, *ret;
868
869 ret = NULL;
870 for_each_netdev_rcu(net, dev) {
871 if (((dev->flags ^ if_flags) & mask) == 0) {
872 ret = dev;
873 break;
874 }
875 }
876 return ret;
877 }
878 EXPORT_SYMBOL(dev_get_by_flags_rcu);
879
880 /**
881 * dev_valid_name - check if name is okay for network device
882 * @name: name string
883 *
884 * Network device names need to be valid file names to
885 * to allow sysfs to work. We also disallow any kind of
886 * whitespace.
887 */
888 bool dev_valid_name(const char *name)
889 {
890 if (*name == '\0')
891 return false;
892 if (strlen(name) >= IFNAMSIZ)
893 return false;
894 if (!strcmp(name, ".") || !strcmp(name, ".."))
895 return false;
896
897 while (*name) {
898 if (*name == '/' || isspace(*name))
899 return false;
900 name++;
901 }
902 return true;
903 }
904 EXPORT_SYMBOL(dev_valid_name);
905
906 /**
907 * __dev_alloc_name - allocate a name for a device
908 * @net: network namespace to allocate the device name in
909 * @name: name format string
910 * @buf: scratch buffer and result name string
911 *
912 * Passed a format string - eg "lt%d" it will try and find a suitable
913 * id. It scans list of devices to build up a free map, then chooses
914 * the first empty slot. The caller must hold the dev_base or rtnl lock
915 * while allocating the name and adding the device in order to avoid
916 * duplicates.
917 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
918 * Returns the number of the unit assigned or a negative errno code.
919 */
920
921 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
922 {
923 int i = 0;
924 const char *p;
925 const int max_netdevices = 8*PAGE_SIZE;
926 unsigned long *inuse;
927 struct net_device *d;
928
929 p = strnchr(name, IFNAMSIZ-1, '%');
930 if (p) {
931 /*
932 * Verify the string as this thing may have come from
933 * the user. There must be either one "%d" and no other "%"
934 * characters.
935 */
936 if (p[1] != 'd' || strchr(p + 2, '%'))
937 return -EINVAL;
938
939 /* Use one page as a bit array of possible slots */
940 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
941 if (!inuse)
942 return -ENOMEM;
943
944 for_each_netdev(net, d) {
945 if (!sscanf(d->name, name, &i))
946 continue;
947 if (i < 0 || i >= max_netdevices)
948 continue;
949
950 /* avoid cases where sscanf is not exact inverse of printf */
951 snprintf(buf, IFNAMSIZ, name, i);
952 if (!strncmp(buf, d->name, IFNAMSIZ))
953 set_bit(i, inuse);
954 }
955
956 i = find_first_zero_bit(inuse, max_netdevices);
957 free_page((unsigned long) inuse);
958 }
959
960 if (buf != name)
961 snprintf(buf, IFNAMSIZ, name, i);
962 if (!__dev_get_by_name(net, buf))
963 return i;
964
965 /* It is possible to run out of possible slots
966 * when the name is long and there isn't enough space left
967 * for the digits, or if all bits are used.
968 */
969 return -ENFILE;
970 }
971
972 /**
973 * dev_alloc_name - allocate a name for a device
974 * @dev: device
975 * @name: name format string
976 *
977 * Passed a format string - eg "lt%d" it will try and find a suitable
978 * id. It scans list of devices to build up a free map, then chooses
979 * the first empty slot. The caller must hold the dev_base or rtnl lock
980 * while allocating the name and adding the device in order to avoid
981 * duplicates.
982 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
983 * Returns the number of the unit assigned or a negative errno code.
984 */
985
986 int dev_alloc_name(struct net_device *dev, const char *name)
987 {
988 char buf[IFNAMSIZ];
989 struct net *net;
990 int ret;
991
992 BUG_ON(!dev_net(dev));
993 net = dev_net(dev);
994 ret = __dev_alloc_name(net, name, buf);
995 if (ret >= 0)
996 strlcpy(dev->name, buf, IFNAMSIZ);
997 return ret;
998 }
999 EXPORT_SYMBOL(dev_alloc_name);
1000
1001 static int dev_alloc_name_ns(struct net *net,
1002 struct net_device *dev,
1003 const char *name)
1004 {
1005 char buf[IFNAMSIZ];
1006 int ret;
1007
1008 ret = __dev_alloc_name(net, name, buf);
1009 if (ret >= 0)
1010 strlcpy(dev->name, buf, IFNAMSIZ);
1011 return ret;
1012 }
1013
1014 static int dev_get_valid_name(struct net *net,
1015 struct net_device *dev,
1016 const char *name)
1017 {
1018 BUG_ON(!net);
1019
1020 if (!dev_valid_name(name))
1021 return -EINVAL;
1022
1023 if (strchr(name, '%'))
1024 return dev_alloc_name_ns(net, dev, name);
1025 else if (__dev_get_by_name(net, name))
1026 return -EEXIST;
1027 else if (dev->name != name)
1028 strlcpy(dev->name, name, IFNAMSIZ);
1029
1030 return 0;
1031 }
1032
1033 /**
1034 * dev_change_name - change name of a device
1035 * @dev: device
1036 * @newname: name (or format string) must be at least IFNAMSIZ
1037 *
1038 * Change name of a device, can pass format strings "eth%d".
1039 * for wildcarding.
1040 */
1041 int dev_change_name(struct net_device *dev, const char *newname)
1042 {
1043 char oldname[IFNAMSIZ];
1044 int err = 0;
1045 int ret;
1046 struct net *net;
1047
1048 ASSERT_RTNL();
1049 BUG_ON(!dev_net(dev));
1050
1051 net = dev_net(dev);
1052 if (dev->flags & IFF_UP)
1053 return -EBUSY;
1054
1055 write_seqcount_begin(&devnet_rename_seq);
1056
1057 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1058 write_seqcount_end(&devnet_rename_seq);
1059 return 0;
1060 }
1061
1062 memcpy(oldname, dev->name, IFNAMSIZ);
1063
1064 err = dev_get_valid_name(net, dev, newname);
1065 if (err < 0) {
1066 write_seqcount_end(&devnet_rename_seq);
1067 return err;
1068 }
1069
1070 rollback:
1071 ret = device_rename(&dev->dev, dev->name);
1072 if (ret) {
1073 memcpy(dev->name, oldname, IFNAMSIZ);
1074 write_seqcount_end(&devnet_rename_seq);
1075 return ret;
1076 }
1077
1078 write_seqcount_end(&devnet_rename_seq);
1079
1080 write_lock_bh(&dev_base_lock);
1081 hlist_del_rcu(&dev->name_hlist);
1082 write_unlock_bh(&dev_base_lock);
1083
1084 synchronize_rcu();
1085
1086 write_lock_bh(&dev_base_lock);
1087 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1088 write_unlock_bh(&dev_base_lock);
1089
1090 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1091 ret = notifier_to_errno(ret);
1092
1093 if (ret) {
1094 /* err >= 0 after dev_alloc_name() or stores the first errno */
1095 if (err >= 0) {
1096 err = ret;
1097 write_seqcount_begin(&devnet_rename_seq);
1098 memcpy(dev->name, oldname, IFNAMSIZ);
1099 goto rollback;
1100 } else {
1101 pr_err("%s: name change rollback failed: %d\n",
1102 dev->name, ret);
1103 }
1104 }
1105
1106 return err;
1107 }
1108
1109 /**
1110 * dev_set_alias - change ifalias of a device
1111 * @dev: device
1112 * @alias: name up to IFALIASZ
1113 * @len: limit of bytes to copy from info
1114 *
1115 * Set ifalias for a device,
1116 */
1117 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1118 {
1119 char *new_ifalias;
1120
1121 ASSERT_RTNL();
1122
1123 if (len >= IFALIASZ)
1124 return -EINVAL;
1125
1126 if (!len) {
1127 kfree(dev->ifalias);
1128 dev->ifalias = NULL;
1129 return 0;
1130 }
1131
1132 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1133 if (!new_ifalias)
1134 return -ENOMEM;
1135 dev->ifalias = new_ifalias;
1136
1137 strlcpy(dev->ifalias, alias, len+1);
1138 return len;
1139 }
1140
1141
1142 /**
1143 * netdev_features_change - device changes features
1144 * @dev: device to cause notification
1145 *
1146 * Called to indicate a device has changed features.
1147 */
1148 void netdev_features_change(struct net_device *dev)
1149 {
1150 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1151 }
1152 EXPORT_SYMBOL(netdev_features_change);
1153
1154 /**
1155 * netdev_state_change - device changes state
1156 * @dev: device to cause notification
1157 *
1158 * Called to indicate a device has changed state. This function calls
1159 * the notifier chains for netdev_chain and sends a NEWLINK message
1160 * to the routing socket.
1161 */
1162 void netdev_state_change(struct net_device *dev)
1163 {
1164 if (dev->flags & IFF_UP) {
1165 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1166 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1167 }
1168 }
1169 EXPORT_SYMBOL(netdev_state_change);
1170
1171 /**
1172 * netdev_notify_peers - notify network peers about existence of @dev
1173 * @dev: network device
1174 *
1175 * Generate traffic such that interested network peers are aware of
1176 * @dev, such as by generating a gratuitous ARP. This may be used when
1177 * a device wants to inform the rest of the network about some sort of
1178 * reconfiguration such as a failover event or virtual machine
1179 * migration.
1180 */
1181 void netdev_notify_peers(struct net_device *dev)
1182 {
1183 rtnl_lock();
1184 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1185 rtnl_unlock();
1186 }
1187 EXPORT_SYMBOL(netdev_notify_peers);
1188
1189 static int __dev_open(struct net_device *dev)
1190 {
1191 const struct net_device_ops *ops = dev->netdev_ops;
1192 int ret;
1193
1194 ASSERT_RTNL();
1195
1196 if (!netif_device_present(dev))
1197 return -ENODEV;
1198
1199 /* Block netpoll from trying to do any rx path servicing.
1200 * If we don't do this there is a chance ndo_poll_controller
1201 * or ndo_poll may be running while we open the device
1202 */
1203 ret = netpoll_rx_disable(dev);
1204 if (ret)
1205 return ret;
1206
1207 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1208 ret = notifier_to_errno(ret);
1209 if (ret)
1210 return ret;
1211
1212 set_bit(__LINK_STATE_START, &dev->state);
1213
1214 if (ops->ndo_validate_addr)
1215 ret = ops->ndo_validate_addr(dev);
1216
1217 if (!ret && ops->ndo_open)
1218 ret = ops->ndo_open(dev);
1219
1220 netpoll_rx_enable(dev);
1221
1222 if (ret)
1223 clear_bit(__LINK_STATE_START, &dev->state);
1224 else {
1225 dev->flags |= IFF_UP;
1226 net_dmaengine_get();
1227 dev_set_rx_mode(dev);
1228 dev_activate(dev);
1229 add_device_randomness(dev->dev_addr, dev->addr_len);
1230 }
1231
1232 return ret;
1233 }
1234
1235 /**
1236 * dev_open - prepare an interface for use.
1237 * @dev: device to open
1238 *
1239 * Takes a device from down to up state. The device's private open
1240 * function is invoked and then the multicast lists are loaded. Finally
1241 * the device is moved into the up state and a %NETDEV_UP message is
1242 * sent to the netdev notifier chain.
1243 *
1244 * Calling this function on an active interface is a nop. On a failure
1245 * a negative errno code is returned.
1246 */
1247 int dev_open(struct net_device *dev)
1248 {
1249 int ret;
1250
1251 if (dev->flags & IFF_UP)
1252 return 0;
1253
1254 ret = __dev_open(dev);
1255 if (ret < 0)
1256 return ret;
1257
1258 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1259 call_netdevice_notifiers(NETDEV_UP, dev);
1260
1261 return ret;
1262 }
1263 EXPORT_SYMBOL(dev_open);
1264
1265 static int __dev_close_many(struct list_head *head)
1266 {
1267 struct net_device *dev;
1268
1269 ASSERT_RTNL();
1270 might_sleep();
1271
1272 list_for_each_entry(dev, head, unreg_list) {
1273 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1274
1275 clear_bit(__LINK_STATE_START, &dev->state);
1276
1277 /* Synchronize to scheduled poll. We cannot touch poll list, it
1278 * can be even on different cpu. So just clear netif_running().
1279 *
1280 * dev->stop() will invoke napi_disable() on all of it's
1281 * napi_struct instances on this device.
1282 */
1283 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1284 }
1285
1286 dev_deactivate_many(head);
1287
1288 list_for_each_entry(dev, head, unreg_list) {
1289 const struct net_device_ops *ops = dev->netdev_ops;
1290
1291 /*
1292 * Call the device specific close. This cannot fail.
1293 * Only if device is UP
1294 *
1295 * We allow it to be called even after a DETACH hot-plug
1296 * event.
1297 */
1298 if (ops->ndo_stop)
1299 ops->ndo_stop(dev);
1300
1301 dev->flags &= ~IFF_UP;
1302 net_dmaengine_put();
1303 }
1304
1305 return 0;
1306 }
1307
1308 static int __dev_close(struct net_device *dev)
1309 {
1310 int retval;
1311 LIST_HEAD(single);
1312
1313 /* Temporarily disable netpoll until the interface is down */
1314 retval = netpoll_rx_disable(dev);
1315 if (retval)
1316 return retval;
1317
1318 list_add(&dev->unreg_list, &single);
1319 retval = __dev_close_many(&single);
1320 list_del(&single);
1321
1322 netpoll_rx_enable(dev);
1323 return retval;
1324 }
1325
1326 static int dev_close_many(struct list_head *head)
1327 {
1328 struct net_device *dev, *tmp;
1329 LIST_HEAD(tmp_list);
1330
1331 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1332 if (!(dev->flags & IFF_UP))
1333 list_move(&dev->unreg_list, &tmp_list);
1334
1335 __dev_close_many(head);
1336
1337 list_for_each_entry(dev, head, unreg_list) {
1338 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1339 call_netdevice_notifiers(NETDEV_DOWN, dev);
1340 }
1341
1342 /* rollback_registered_many needs the complete original list */
1343 list_splice(&tmp_list, head);
1344 return 0;
1345 }
1346
1347 /**
1348 * dev_close - shutdown an interface.
1349 * @dev: device to shutdown
1350 *
1351 * This function moves an active device into down state. A
1352 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1353 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1354 * chain.
1355 */
1356 int dev_close(struct net_device *dev)
1357 {
1358 int ret = 0;
1359 if (dev->flags & IFF_UP) {
1360 LIST_HEAD(single);
1361
1362 /* Block netpoll rx while the interface is going down */
1363 ret = netpoll_rx_disable(dev);
1364 if (ret)
1365 return ret;
1366
1367 list_add(&dev->unreg_list, &single);
1368 dev_close_many(&single);
1369 list_del(&single);
1370
1371 netpoll_rx_enable(dev);
1372 }
1373 return ret;
1374 }
1375 EXPORT_SYMBOL(dev_close);
1376
1377
1378 /**
1379 * dev_disable_lro - disable Large Receive Offload on a device
1380 * @dev: device
1381 *
1382 * Disable Large Receive Offload (LRO) on a net device. Must be
1383 * called under RTNL. This is needed if received packets may be
1384 * forwarded to another interface.
1385 */
1386 void dev_disable_lro(struct net_device *dev)
1387 {
1388 /*
1389 * If we're trying to disable lro on a vlan device
1390 * use the underlying physical device instead
1391 */
1392 if (is_vlan_dev(dev))
1393 dev = vlan_dev_real_dev(dev);
1394
1395 dev->wanted_features &= ~NETIF_F_LRO;
1396 netdev_update_features(dev);
1397
1398 if (unlikely(dev->features & NETIF_F_LRO))
1399 netdev_WARN(dev, "failed to disable LRO!\n");
1400 }
1401 EXPORT_SYMBOL(dev_disable_lro);
1402
1403
1404 static int dev_boot_phase = 1;
1405
1406 /**
1407 * register_netdevice_notifier - register a network notifier block
1408 * @nb: notifier
1409 *
1410 * Register a notifier to be called when network device events occur.
1411 * The notifier passed is linked into the kernel structures and must
1412 * not be reused until it has been unregistered. A negative errno code
1413 * is returned on a failure.
1414 *
1415 * When registered all registration and up events are replayed
1416 * to the new notifier to allow device to have a race free
1417 * view of the network device list.
1418 */
1419
1420 int register_netdevice_notifier(struct notifier_block *nb)
1421 {
1422 struct net_device *dev;
1423 struct net_device *last;
1424 struct net *net;
1425 int err;
1426
1427 rtnl_lock();
1428 err = raw_notifier_chain_register(&netdev_chain, nb);
1429 if (err)
1430 goto unlock;
1431 if (dev_boot_phase)
1432 goto unlock;
1433 for_each_net(net) {
1434 for_each_netdev(net, dev) {
1435 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1436 err = notifier_to_errno(err);
1437 if (err)
1438 goto rollback;
1439
1440 if (!(dev->flags & IFF_UP))
1441 continue;
1442
1443 nb->notifier_call(nb, NETDEV_UP, dev);
1444 }
1445 }
1446
1447 unlock:
1448 rtnl_unlock();
1449 return err;
1450
1451 rollback:
1452 last = dev;
1453 for_each_net(net) {
1454 for_each_netdev(net, dev) {
1455 if (dev == last)
1456 goto outroll;
1457
1458 if (dev->flags & IFF_UP) {
1459 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1460 nb->notifier_call(nb, NETDEV_DOWN, dev);
1461 }
1462 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1463 }
1464 }
1465
1466 outroll:
1467 raw_notifier_chain_unregister(&netdev_chain, nb);
1468 goto unlock;
1469 }
1470 EXPORT_SYMBOL(register_netdevice_notifier);
1471
1472 /**
1473 * unregister_netdevice_notifier - unregister a network notifier block
1474 * @nb: notifier
1475 *
1476 * Unregister a notifier previously registered by
1477 * register_netdevice_notifier(). The notifier is unlinked into the
1478 * kernel structures and may then be reused. A negative errno code
1479 * is returned on a failure.
1480 *
1481 * After unregistering unregister and down device events are synthesized
1482 * for all devices on the device list to the removed notifier to remove
1483 * the need for special case cleanup code.
1484 */
1485
1486 int unregister_netdevice_notifier(struct notifier_block *nb)
1487 {
1488 struct net_device *dev;
1489 struct net *net;
1490 int err;
1491
1492 rtnl_lock();
1493 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1494 if (err)
1495 goto unlock;
1496
1497 for_each_net(net) {
1498 for_each_netdev(net, dev) {
1499 if (dev->flags & IFF_UP) {
1500 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1501 nb->notifier_call(nb, NETDEV_DOWN, dev);
1502 }
1503 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1504 }
1505 }
1506 unlock:
1507 rtnl_unlock();
1508 return err;
1509 }
1510 EXPORT_SYMBOL(unregister_netdevice_notifier);
1511
1512 /**
1513 * call_netdevice_notifiers - call all network notifier blocks
1514 * @val: value passed unmodified to notifier function
1515 * @dev: net_device pointer passed unmodified to notifier function
1516 *
1517 * Call all network notifier blocks. Parameters and return value
1518 * are as for raw_notifier_call_chain().
1519 */
1520
1521 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1522 {
1523 ASSERT_RTNL();
1524 return raw_notifier_call_chain(&netdev_chain, val, dev);
1525 }
1526 EXPORT_SYMBOL(call_netdevice_notifiers);
1527
1528 static struct static_key netstamp_needed __read_mostly;
1529 #ifdef HAVE_JUMP_LABEL
1530 /* We are not allowed to call static_key_slow_dec() from irq context
1531 * If net_disable_timestamp() is called from irq context, defer the
1532 * static_key_slow_dec() calls.
1533 */
1534 static atomic_t netstamp_needed_deferred;
1535 #endif
1536
1537 void net_enable_timestamp(void)
1538 {
1539 #ifdef HAVE_JUMP_LABEL
1540 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1541
1542 if (deferred) {
1543 while (--deferred)
1544 static_key_slow_dec(&netstamp_needed);
1545 return;
1546 }
1547 #endif
1548 WARN_ON(in_interrupt());
1549 static_key_slow_inc(&netstamp_needed);
1550 }
1551 EXPORT_SYMBOL(net_enable_timestamp);
1552
1553 void net_disable_timestamp(void)
1554 {
1555 #ifdef HAVE_JUMP_LABEL
1556 if (in_interrupt()) {
1557 atomic_inc(&netstamp_needed_deferred);
1558 return;
1559 }
1560 #endif
1561 static_key_slow_dec(&netstamp_needed);
1562 }
1563 EXPORT_SYMBOL(net_disable_timestamp);
1564
1565 static inline void net_timestamp_set(struct sk_buff *skb)
1566 {
1567 skb->tstamp.tv64 = 0;
1568 if (static_key_false(&netstamp_needed))
1569 __net_timestamp(skb);
1570 }
1571
1572 #define net_timestamp_check(COND, SKB) \
1573 if (static_key_false(&netstamp_needed)) { \
1574 if ((COND) && !(SKB)->tstamp.tv64) \
1575 __net_timestamp(SKB); \
1576 } \
1577
1578 static inline bool is_skb_forwardable(struct net_device *dev,
1579 struct sk_buff *skb)
1580 {
1581 unsigned int len;
1582
1583 if (!(dev->flags & IFF_UP))
1584 return false;
1585
1586 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1587 if (skb->len <= len)
1588 return true;
1589
1590 /* if TSO is enabled, we don't care about the length as the packet
1591 * could be forwarded without being segmented before
1592 */
1593 if (skb_is_gso(skb))
1594 return true;
1595
1596 return false;
1597 }
1598
1599 /**
1600 * dev_forward_skb - loopback an skb to another netif
1601 *
1602 * @dev: destination network device
1603 * @skb: buffer to forward
1604 *
1605 * return values:
1606 * NET_RX_SUCCESS (no congestion)
1607 * NET_RX_DROP (packet was dropped, but freed)
1608 *
1609 * dev_forward_skb can be used for injecting an skb from the
1610 * start_xmit function of one device into the receive queue
1611 * of another device.
1612 *
1613 * The receiving device may be in another namespace, so
1614 * we have to clear all information in the skb that could
1615 * impact namespace isolation.
1616 */
1617 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1618 {
1619 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1620 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1621 atomic_long_inc(&dev->rx_dropped);
1622 kfree_skb(skb);
1623 return NET_RX_DROP;
1624 }
1625 }
1626
1627 skb_orphan(skb);
1628 nf_reset(skb);
1629
1630 if (unlikely(!is_skb_forwardable(dev, skb))) {
1631 atomic_long_inc(&dev->rx_dropped);
1632 kfree_skb(skb);
1633 return NET_RX_DROP;
1634 }
1635 skb->skb_iif = 0;
1636 skb->dev = dev;
1637 skb_dst_drop(skb);
1638 skb->tstamp.tv64 = 0;
1639 skb->pkt_type = PACKET_HOST;
1640 skb->protocol = eth_type_trans(skb, dev);
1641 skb->mark = 0;
1642 secpath_reset(skb);
1643 nf_reset(skb);
1644 return netif_rx(skb);
1645 }
1646 EXPORT_SYMBOL_GPL(dev_forward_skb);
1647
1648 static inline int deliver_skb(struct sk_buff *skb,
1649 struct packet_type *pt_prev,
1650 struct net_device *orig_dev)
1651 {
1652 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1653 return -ENOMEM;
1654 atomic_inc(&skb->users);
1655 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1656 }
1657
1658 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1659 {
1660 if (!ptype->af_packet_priv || !skb->sk)
1661 return false;
1662
1663 if (ptype->id_match)
1664 return ptype->id_match(ptype, skb->sk);
1665 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1666 return true;
1667
1668 return false;
1669 }
1670
1671 /*
1672 * Support routine. Sends outgoing frames to any network
1673 * taps currently in use.
1674 */
1675
1676 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1677 {
1678 struct packet_type *ptype;
1679 struct sk_buff *skb2 = NULL;
1680 struct packet_type *pt_prev = NULL;
1681
1682 rcu_read_lock();
1683 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1684 /* Never send packets back to the socket
1685 * they originated from - MvS (miquels@drinkel.ow.org)
1686 */
1687 if ((ptype->dev == dev || !ptype->dev) &&
1688 (!skb_loop_sk(ptype, skb))) {
1689 if (pt_prev) {
1690 deliver_skb(skb2, pt_prev, skb->dev);
1691 pt_prev = ptype;
1692 continue;
1693 }
1694
1695 skb2 = skb_clone(skb, GFP_ATOMIC);
1696 if (!skb2)
1697 break;
1698
1699 net_timestamp_set(skb2);
1700
1701 /* skb->nh should be correctly
1702 set by sender, so that the second statement is
1703 just protection against buggy protocols.
1704 */
1705 skb_reset_mac_header(skb2);
1706
1707 if (skb_network_header(skb2) < skb2->data ||
1708 skb2->network_header > skb2->tail) {
1709 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1710 ntohs(skb2->protocol),
1711 dev->name);
1712 skb_reset_network_header(skb2);
1713 }
1714
1715 skb2->transport_header = skb2->network_header;
1716 skb2->pkt_type = PACKET_OUTGOING;
1717 pt_prev = ptype;
1718 }
1719 }
1720 if (pt_prev)
1721 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1722 rcu_read_unlock();
1723 }
1724
1725 /**
1726 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1727 * @dev: Network device
1728 * @txq: number of queues available
1729 *
1730 * If real_num_tx_queues is changed the tc mappings may no longer be
1731 * valid. To resolve this verify the tc mapping remains valid and if
1732 * not NULL the mapping. With no priorities mapping to this
1733 * offset/count pair it will no longer be used. In the worst case TC0
1734 * is invalid nothing can be done so disable priority mappings. If is
1735 * expected that drivers will fix this mapping if they can before
1736 * calling netif_set_real_num_tx_queues.
1737 */
1738 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1739 {
1740 int i;
1741 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1742
1743 /* If TC0 is invalidated disable TC mapping */
1744 if (tc->offset + tc->count > txq) {
1745 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1746 dev->num_tc = 0;
1747 return;
1748 }
1749
1750 /* Invalidated prio to tc mappings set to TC0 */
1751 for (i = 1; i < TC_BITMASK + 1; i++) {
1752 int q = netdev_get_prio_tc_map(dev, i);
1753
1754 tc = &dev->tc_to_txq[q];
1755 if (tc->offset + tc->count > txq) {
1756 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1757 i, q);
1758 netdev_set_prio_tc_map(dev, i, 0);
1759 }
1760 }
1761 }
1762
1763 #ifdef CONFIG_XPS
1764 static DEFINE_MUTEX(xps_map_mutex);
1765 #define xmap_dereference(P) \
1766 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1767
1768 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1769 int cpu, u16 index)
1770 {
1771 struct xps_map *map = NULL;
1772 int pos;
1773
1774 if (dev_maps)
1775 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1776
1777 for (pos = 0; map && pos < map->len; pos++) {
1778 if (map->queues[pos] == index) {
1779 if (map->len > 1) {
1780 map->queues[pos] = map->queues[--map->len];
1781 } else {
1782 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1783 kfree_rcu(map, rcu);
1784 map = NULL;
1785 }
1786 break;
1787 }
1788 }
1789
1790 return map;
1791 }
1792
1793 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1794 {
1795 struct xps_dev_maps *dev_maps;
1796 int cpu, i;
1797 bool active = false;
1798
1799 mutex_lock(&xps_map_mutex);
1800 dev_maps = xmap_dereference(dev->xps_maps);
1801
1802 if (!dev_maps)
1803 goto out_no_maps;
1804
1805 for_each_possible_cpu(cpu) {
1806 for (i = index; i < dev->num_tx_queues; i++) {
1807 if (!remove_xps_queue(dev_maps, cpu, i))
1808 break;
1809 }
1810 if (i == dev->num_tx_queues)
1811 active = true;
1812 }
1813
1814 if (!active) {
1815 RCU_INIT_POINTER(dev->xps_maps, NULL);
1816 kfree_rcu(dev_maps, rcu);
1817 }
1818
1819 for (i = index; i < dev->num_tx_queues; i++)
1820 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1821 NUMA_NO_NODE);
1822
1823 out_no_maps:
1824 mutex_unlock(&xps_map_mutex);
1825 }
1826
1827 static struct xps_map *expand_xps_map(struct xps_map *map,
1828 int cpu, u16 index)
1829 {
1830 struct xps_map *new_map;
1831 int alloc_len = XPS_MIN_MAP_ALLOC;
1832 int i, pos;
1833
1834 for (pos = 0; map && pos < map->len; pos++) {
1835 if (map->queues[pos] != index)
1836 continue;
1837 return map;
1838 }
1839
1840 /* Need to add queue to this CPU's existing map */
1841 if (map) {
1842 if (pos < map->alloc_len)
1843 return map;
1844
1845 alloc_len = map->alloc_len * 2;
1846 }
1847
1848 /* Need to allocate new map to store queue on this CPU's map */
1849 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1850 cpu_to_node(cpu));
1851 if (!new_map)
1852 return NULL;
1853
1854 for (i = 0; i < pos; i++)
1855 new_map->queues[i] = map->queues[i];
1856 new_map->alloc_len = alloc_len;
1857 new_map->len = pos;
1858
1859 return new_map;
1860 }
1861
1862 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index)
1863 {
1864 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1865 struct xps_map *map, *new_map;
1866 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1867 int cpu, numa_node_id = -2;
1868 bool active = false;
1869
1870 mutex_lock(&xps_map_mutex);
1871
1872 dev_maps = xmap_dereference(dev->xps_maps);
1873
1874 /* allocate memory for queue storage */
1875 for_each_online_cpu(cpu) {
1876 if (!cpumask_test_cpu(cpu, mask))
1877 continue;
1878
1879 if (!new_dev_maps)
1880 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1881 if (!new_dev_maps) {
1882 mutex_unlock(&xps_map_mutex);
1883 return -ENOMEM;
1884 }
1885
1886 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1887 NULL;
1888
1889 map = expand_xps_map(map, cpu, index);
1890 if (!map)
1891 goto error;
1892
1893 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1894 }
1895
1896 if (!new_dev_maps)
1897 goto out_no_new_maps;
1898
1899 for_each_possible_cpu(cpu) {
1900 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1901 /* add queue to CPU maps */
1902 int pos = 0;
1903
1904 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1905 while ((pos < map->len) && (map->queues[pos] != index))
1906 pos++;
1907
1908 if (pos == map->len)
1909 map->queues[map->len++] = index;
1910 #ifdef CONFIG_NUMA
1911 if (numa_node_id == -2)
1912 numa_node_id = cpu_to_node(cpu);
1913 else if (numa_node_id != cpu_to_node(cpu))
1914 numa_node_id = -1;
1915 #endif
1916 } else if (dev_maps) {
1917 /* fill in the new device map from the old device map */
1918 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1919 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1920 }
1921
1922 }
1923
1924 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1925
1926 /* Cleanup old maps */
1927 if (dev_maps) {
1928 for_each_possible_cpu(cpu) {
1929 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1930 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1931 if (map && map != new_map)
1932 kfree_rcu(map, rcu);
1933 }
1934
1935 kfree_rcu(dev_maps, rcu);
1936 }
1937
1938 dev_maps = new_dev_maps;
1939 active = true;
1940
1941 out_no_new_maps:
1942 /* update Tx queue numa node */
1943 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
1944 (numa_node_id >= 0) ? numa_node_id :
1945 NUMA_NO_NODE);
1946
1947 if (!dev_maps)
1948 goto out_no_maps;
1949
1950 /* removes queue from unused CPUs */
1951 for_each_possible_cpu(cpu) {
1952 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
1953 continue;
1954
1955 if (remove_xps_queue(dev_maps, cpu, index))
1956 active = true;
1957 }
1958
1959 /* free map if not active */
1960 if (!active) {
1961 RCU_INIT_POINTER(dev->xps_maps, NULL);
1962 kfree_rcu(dev_maps, rcu);
1963 }
1964
1965 out_no_maps:
1966 mutex_unlock(&xps_map_mutex);
1967
1968 return 0;
1969 error:
1970 /* remove any maps that we added */
1971 for_each_possible_cpu(cpu) {
1972 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1973 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1974 NULL;
1975 if (new_map && new_map != map)
1976 kfree(new_map);
1977 }
1978
1979 mutex_unlock(&xps_map_mutex);
1980
1981 kfree(new_dev_maps);
1982 return -ENOMEM;
1983 }
1984 EXPORT_SYMBOL(netif_set_xps_queue);
1985
1986 #endif
1987 /*
1988 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1989 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1990 */
1991 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1992 {
1993 int rc;
1994
1995 if (txq < 1 || txq > dev->num_tx_queues)
1996 return -EINVAL;
1997
1998 if (dev->reg_state == NETREG_REGISTERED ||
1999 dev->reg_state == NETREG_UNREGISTERING) {
2000 ASSERT_RTNL();
2001
2002 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2003 txq);
2004 if (rc)
2005 return rc;
2006
2007 if (dev->num_tc)
2008 netif_setup_tc(dev, txq);
2009
2010 if (txq < dev->real_num_tx_queues) {
2011 qdisc_reset_all_tx_gt(dev, txq);
2012 #ifdef CONFIG_XPS
2013 netif_reset_xps_queues_gt(dev, txq);
2014 #endif
2015 }
2016 }
2017
2018 dev->real_num_tx_queues = txq;
2019 return 0;
2020 }
2021 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2022
2023 #ifdef CONFIG_RPS
2024 /**
2025 * netif_set_real_num_rx_queues - set actual number of RX queues used
2026 * @dev: Network device
2027 * @rxq: Actual number of RX queues
2028 *
2029 * This must be called either with the rtnl_lock held or before
2030 * registration of the net device. Returns 0 on success, or a
2031 * negative error code. If called before registration, it always
2032 * succeeds.
2033 */
2034 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2035 {
2036 int rc;
2037
2038 if (rxq < 1 || rxq > dev->num_rx_queues)
2039 return -EINVAL;
2040
2041 if (dev->reg_state == NETREG_REGISTERED) {
2042 ASSERT_RTNL();
2043
2044 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2045 rxq);
2046 if (rc)
2047 return rc;
2048 }
2049
2050 dev->real_num_rx_queues = rxq;
2051 return 0;
2052 }
2053 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2054 #endif
2055
2056 /**
2057 * netif_get_num_default_rss_queues - default number of RSS queues
2058 *
2059 * This routine should set an upper limit on the number of RSS queues
2060 * used by default by multiqueue devices.
2061 */
2062 int netif_get_num_default_rss_queues(void)
2063 {
2064 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2065 }
2066 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2067
2068 static inline void __netif_reschedule(struct Qdisc *q)
2069 {
2070 struct softnet_data *sd;
2071 unsigned long flags;
2072
2073 local_irq_save(flags);
2074 sd = &__get_cpu_var(softnet_data);
2075 q->next_sched = NULL;
2076 *sd->output_queue_tailp = q;
2077 sd->output_queue_tailp = &q->next_sched;
2078 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2079 local_irq_restore(flags);
2080 }
2081
2082 void __netif_schedule(struct Qdisc *q)
2083 {
2084 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2085 __netif_reschedule(q);
2086 }
2087 EXPORT_SYMBOL(__netif_schedule);
2088
2089 void dev_kfree_skb_irq(struct sk_buff *skb)
2090 {
2091 if (atomic_dec_and_test(&skb->users)) {
2092 struct softnet_data *sd;
2093 unsigned long flags;
2094
2095 local_irq_save(flags);
2096 sd = &__get_cpu_var(softnet_data);
2097 skb->next = sd->completion_queue;
2098 sd->completion_queue = skb;
2099 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2100 local_irq_restore(flags);
2101 }
2102 }
2103 EXPORT_SYMBOL(dev_kfree_skb_irq);
2104
2105 void dev_kfree_skb_any(struct sk_buff *skb)
2106 {
2107 if (in_irq() || irqs_disabled())
2108 dev_kfree_skb_irq(skb);
2109 else
2110 dev_kfree_skb(skb);
2111 }
2112 EXPORT_SYMBOL(dev_kfree_skb_any);
2113
2114
2115 /**
2116 * netif_device_detach - mark device as removed
2117 * @dev: network device
2118 *
2119 * Mark device as removed from system and therefore no longer available.
2120 */
2121 void netif_device_detach(struct net_device *dev)
2122 {
2123 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2124 netif_running(dev)) {
2125 netif_tx_stop_all_queues(dev);
2126 }
2127 }
2128 EXPORT_SYMBOL(netif_device_detach);
2129
2130 /**
2131 * netif_device_attach - mark device as attached
2132 * @dev: network device
2133 *
2134 * Mark device as attached from system and restart if needed.
2135 */
2136 void netif_device_attach(struct net_device *dev)
2137 {
2138 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2139 netif_running(dev)) {
2140 netif_tx_wake_all_queues(dev);
2141 __netdev_watchdog_up(dev);
2142 }
2143 }
2144 EXPORT_SYMBOL(netif_device_attach);
2145
2146 static void skb_warn_bad_offload(const struct sk_buff *skb)
2147 {
2148 static const netdev_features_t null_features = 0;
2149 struct net_device *dev = skb->dev;
2150 const char *driver = "";
2151
2152 if (dev && dev->dev.parent)
2153 driver = dev_driver_string(dev->dev.parent);
2154
2155 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2156 "gso_type=%d ip_summed=%d\n",
2157 driver, dev ? &dev->features : &null_features,
2158 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2159 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2160 skb_shinfo(skb)->gso_type, skb->ip_summed);
2161 }
2162
2163 /*
2164 * Invalidate hardware checksum when packet is to be mangled, and
2165 * complete checksum manually on outgoing path.
2166 */
2167 int skb_checksum_help(struct sk_buff *skb)
2168 {
2169 __wsum csum;
2170 int ret = 0, offset;
2171
2172 if (skb->ip_summed == CHECKSUM_COMPLETE)
2173 goto out_set_summed;
2174
2175 if (unlikely(skb_shinfo(skb)->gso_size)) {
2176 skb_warn_bad_offload(skb);
2177 return -EINVAL;
2178 }
2179
2180 /* Before computing a checksum, we should make sure no frag could
2181 * be modified by an external entity : checksum could be wrong.
2182 */
2183 if (skb_has_shared_frag(skb)) {
2184 ret = __skb_linearize(skb);
2185 if (ret)
2186 goto out;
2187 }
2188
2189 offset = skb_checksum_start_offset(skb);
2190 BUG_ON(offset >= skb_headlen(skb));
2191 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2192
2193 offset += skb->csum_offset;
2194 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2195
2196 if (skb_cloned(skb) &&
2197 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2198 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2199 if (ret)
2200 goto out;
2201 }
2202
2203 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2204 out_set_summed:
2205 skb->ip_summed = CHECKSUM_NONE;
2206 out:
2207 return ret;
2208 }
2209 EXPORT_SYMBOL(skb_checksum_help);
2210
2211 /**
2212 * skb_mac_gso_segment - mac layer segmentation handler.
2213 * @skb: buffer to segment
2214 * @features: features for the output path (see dev->features)
2215 */
2216 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2217 netdev_features_t features)
2218 {
2219 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2220 struct packet_offload *ptype;
2221 __be16 type = skb->protocol;
2222
2223 while (type == htons(ETH_P_8021Q)) {
2224 int vlan_depth = ETH_HLEN;
2225 struct vlan_hdr *vh;
2226
2227 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2228 return ERR_PTR(-EINVAL);
2229
2230 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2231 type = vh->h_vlan_encapsulated_proto;
2232 vlan_depth += VLAN_HLEN;
2233 }
2234
2235 __skb_pull(skb, skb->mac_len);
2236
2237 rcu_read_lock();
2238 list_for_each_entry_rcu(ptype, &offload_base, list) {
2239 if (ptype->type == type && ptype->callbacks.gso_segment) {
2240 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2241 int err;
2242
2243 err = ptype->callbacks.gso_send_check(skb);
2244 segs = ERR_PTR(err);
2245 if (err || skb_gso_ok(skb, features))
2246 break;
2247 __skb_push(skb, (skb->data -
2248 skb_network_header(skb)));
2249 }
2250 segs = ptype->callbacks.gso_segment(skb, features);
2251 break;
2252 }
2253 }
2254 rcu_read_unlock();
2255
2256 __skb_push(skb, skb->data - skb_mac_header(skb));
2257
2258 return segs;
2259 }
2260 EXPORT_SYMBOL(skb_mac_gso_segment);
2261
2262
2263 /* openvswitch calls this on rx path, so we need a different check.
2264 */
2265 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2266 {
2267 if (tx_path)
2268 return skb->ip_summed != CHECKSUM_PARTIAL;
2269 else
2270 return skb->ip_summed == CHECKSUM_NONE;
2271 }
2272
2273 /**
2274 * __skb_gso_segment - Perform segmentation on skb.
2275 * @skb: buffer to segment
2276 * @features: features for the output path (see dev->features)
2277 * @tx_path: whether it is called in TX path
2278 *
2279 * This function segments the given skb and returns a list of segments.
2280 *
2281 * It may return NULL if the skb requires no segmentation. This is
2282 * only possible when GSO is used for verifying header integrity.
2283 */
2284 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2285 netdev_features_t features, bool tx_path)
2286 {
2287 if (unlikely(skb_needs_check(skb, tx_path))) {
2288 int err;
2289
2290 skb_warn_bad_offload(skb);
2291
2292 if (skb_header_cloned(skb) &&
2293 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2294 return ERR_PTR(err);
2295 }
2296
2297 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2298 skb_reset_mac_header(skb);
2299 skb_reset_mac_len(skb);
2300
2301 return skb_mac_gso_segment(skb, features);
2302 }
2303 EXPORT_SYMBOL(__skb_gso_segment);
2304
2305 /* Take action when hardware reception checksum errors are detected. */
2306 #ifdef CONFIG_BUG
2307 void netdev_rx_csum_fault(struct net_device *dev)
2308 {
2309 if (net_ratelimit()) {
2310 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2311 dump_stack();
2312 }
2313 }
2314 EXPORT_SYMBOL(netdev_rx_csum_fault);
2315 #endif
2316
2317 /* Actually, we should eliminate this check as soon as we know, that:
2318 * 1. IOMMU is present and allows to map all the memory.
2319 * 2. No high memory really exists on this machine.
2320 */
2321
2322 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2323 {
2324 #ifdef CONFIG_HIGHMEM
2325 int i;
2326 if (!(dev->features & NETIF_F_HIGHDMA)) {
2327 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2328 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2329 if (PageHighMem(skb_frag_page(frag)))
2330 return 1;
2331 }
2332 }
2333
2334 if (PCI_DMA_BUS_IS_PHYS) {
2335 struct device *pdev = dev->dev.parent;
2336
2337 if (!pdev)
2338 return 0;
2339 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2340 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2341 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2342 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2343 return 1;
2344 }
2345 }
2346 #endif
2347 return 0;
2348 }
2349
2350 struct dev_gso_cb {
2351 void (*destructor)(struct sk_buff *skb);
2352 };
2353
2354 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2355
2356 static void dev_gso_skb_destructor(struct sk_buff *skb)
2357 {
2358 struct dev_gso_cb *cb;
2359
2360 do {
2361 struct sk_buff *nskb = skb->next;
2362
2363 skb->next = nskb->next;
2364 nskb->next = NULL;
2365 kfree_skb(nskb);
2366 } while (skb->next);
2367
2368 cb = DEV_GSO_CB(skb);
2369 if (cb->destructor)
2370 cb->destructor(skb);
2371 }
2372
2373 /**
2374 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2375 * @skb: buffer to segment
2376 * @features: device features as applicable to this skb
2377 *
2378 * This function segments the given skb and stores the list of segments
2379 * in skb->next.
2380 */
2381 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2382 {
2383 struct sk_buff *segs;
2384
2385 segs = skb_gso_segment(skb, features);
2386
2387 /* Verifying header integrity only. */
2388 if (!segs)
2389 return 0;
2390
2391 if (IS_ERR(segs))
2392 return PTR_ERR(segs);
2393
2394 skb->next = segs;
2395 DEV_GSO_CB(skb)->destructor = skb->destructor;
2396 skb->destructor = dev_gso_skb_destructor;
2397
2398 return 0;
2399 }
2400
2401 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2402 {
2403 return ((features & NETIF_F_GEN_CSUM) ||
2404 ((features & NETIF_F_V4_CSUM) &&
2405 protocol == htons(ETH_P_IP)) ||
2406 ((features & NETIF_F_V6_CSUM) &&
2407 protocol == htons(ETH_P_IPV6)) ||
2408 ((features & NETIF_F_FCOE_CRC) &&
2409 protocol == htons(ETH_P_FCOE)));
2410 }
2411
2412 static netdev_features_t harmonize_features(struct sk_buff *skb,
2413 __be16 protocol, netdev_features_t features)
2414 {
2415 if (skb->ip_summed != CHECKSUM_NONE &&
2416 !can_checksum_protocol(features, protocol)) {
2417 features &= ~NETIF_F_ALL_CSUM;
2418 features &= ~NETIF_F_SG;
2419 } else if (illegal_highdma(skb->dev, skb)) {
2420 features &= ~NETIF_F_SG;
2421 }
2422
2423 return features;
2424 }
2425
2426 netdev_features_t netif_skb_features(struct sk_buff *skb)
2427 {
2428 __be16 protocol = skb->protocol;
2429 netdev_features_t features = skb->dev->features;
2430
2431 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2432 features &= ~NETIF_F_GSO_MASK;
2433
2434 if (protocol == htons(ETH_P_8021Q)) {
2435 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2436 protocol = veh->h_vlan_encapsulated_proto;
2437 } else if (!vlan_tx_tag_present(skb)) {
2438 return harmonize_features(skb, protocol, features);
2439 }
2440
2441 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2442
2443 if (protocol != htons(ETH_P_8021Q)) {
2444 return harmonize_features(skb, protocol, features);
2445 } else {
2446 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2447 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2448 return harmonize_features(skb, protocol, features);
2449 }
2450 }
2451 EXPORT_SYMBOL(netif_skb_features);
2452
2453 /*
2454 * Returns true if either:
2455 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2456 * 2. skb is fragmented and the device does not support SG.
2457 */
2458 static inline int skb_needs_linearize(struct sk_buff *skb,
2459 int features)
2460 {
2461 return skb_is_nonlinear(skb) &&
2462 ((skb_has_frag_list(skb) &&
2463 !(features & NETIF_F_FRAGLIST)) ||
2464 (skb_shinfo(skb)->nr_frags &&
2465 !(features & NETIF_F_SG)));
2466 }
2467
2468 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2469 struct netdev_queue *txq)
2470 {
2471 const struct net_device_ops *ops = dev->netdev_ops;
2472 int rc = NETDEV_TX_OK;
2473 unsigned int skb_len;
2474
2475 if (likely(!skb->next)) {
2476 netdev_features_t features;
2477
2478 /*
2479 * If device doesn't need skb->dst, release it right now while
2480 * its hot in this cpu cache
2481 */
2482 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2483 skb_dst_drop(skb);
2484
2485 features = netif_skb_features(skb);
2486
2487 if (vlan_tx_tag_present(skb) &&
2488 !(features & NETIF_F_HW_VLAN_TX)) {
2489 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2490 if (unlikely(!skb))
2491 goto out;
2492
2493 skb->vlan_tci = 0;
2494 }
2495
2496 /* If encapsulation offload request, verify we are testing
2497 * hardware encapsulation features instead of standard
2498 * features for the netdev
2499 */
2500 if (skb->encapsulation)
2501 features &= dev->hw_enc_features;
2502
2503 if (netif_needs_gso(skb, features)) {
2504 if (unlikely(dev_gso_segment(skb, features)))
2505 goto out_kfree_skb;
2506 if (skb->next)
2507 goto gso;
2508 } else {
2509 if (skb_needs_linearize(skb, features) &&
2510 __skb_linearize(skb))
2511 goto out_kfree_skb;
2512
2513 /* If packet is not checksummed and device does not
2514 * support checksumming for this protocol, complete
2515 * checksumming here.
2516 */
2517 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2518 if (skb->encapsulation)
2519 skb_set_inner_transport_header(skb,
2520 skb_checksum_start_offset(skb));
2521 else
2522 skb_set_transport_header(skb,
2523 skb_checksum_start_offset(skb));
2524 if (!(features & NETIF_F_ALL_CSUM) &&
2525 skb_checksum_help(skb))
2526 goto out_kfree_skb;
2527 }
2528 }
2529
2530 if (!list_empty(&ptype_all))
2531 dev_queue_xmit_nit(skb, dev);
2532
2533 skb_len = skb->len;
2534 rc = ops->ndo_start_xmit(skb, dev);
2535 trace_net_dev_xmit(skb, rc, dev, skb_len);
2536 if (rc == NETDEV_TX_OK)
2537 txq_trans_update(txq);
2538 return rc;
2539 }
2540
2541 gso:
2542 do {
2543 struct sk_buff *nskb = skb->next;
2544
2545 skb->next = nskb->next;
2546 nskb->next = NULL;
2547
2548 /*
2549 * If device doesn't need nskb->dst, release it right now while
2550 * its hot in this cpu cache
2551 */
2552 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2553 skb_dst_drop(nskb);
2554
2555 if (!list_empty(&ptype_all))
2556 dev_queue_xmit_nit(nskb, dev);
2557
2558 skb_len = nskb->len;
2559 rc = ops->ndo_start_xmit(nskb, dev);
2560 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2561 if (unlikely(rc != NETDEV_TX_OK)) {
2562 if (rc & ~NETDEV_TX_MASK)
2563 goto out_kfree_gso_skb;
2564 nskb->next = skb->next;
2565 skb->next = nskb;
2566 return rc;
2567 }
2568 txq_trans_update(txq);
2569 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2570 return NETDEV_TX_BUSY;
2571 } while (skb->next);
2572
2573 out_kfree_gso_skb:
2574 if (likely(skb->next == NULL))
2575 skb->destructor = DEV_GSO_CB(skb)->destructor;
2576 out_kfree_skb:
2577 kfree_skb(skb);
2578 out:
2579 return rc;
2580 }
2581
2582 static void qdisc_pkt_len_init(struct sk_buff *skb)
2583 {
2584 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2585
2586 qdisc_skb_cb(skb)->pkt_len = skb->len;
2587
2588 /* To get more precise estimation of bytes sent on wire,
2589 * we add to pkt_len the headers size of all segments
2590 */
2591 if (shinfo->gso_size) {
2592 unsigned int hdr_len;
2593
2594 /* mac layer + network layer */
2595 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2596
2597 /* + transport layer */
2598 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2599 hdr_len += tcp_hdrlen(skb);
2600 else
2601 hdr_len += sizeof(struct udphdr);
2602 qdisc_skb_cb(skb)->pkt_len += (shinfo->gso_segs - 1) * hdr_len;
2603 }
2604 }
2605
2606 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2607 struct net_device *dev,
2608 struct netdev_queue *txq)
2609 {
2610 spinlock_t *root_lock = qdisc_lock(q);
2611 bool contended;
2612 int rc;
2613
2614 qdisc_pkt_len_init(skb);
2615 qdisc_calculate_pkt_len(skb, q);
2616 /*
2617 * Heuristic to force contended enqueues to serialize on a
2618 * separate lock before trying to get qdisc main lock.
2619 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2620 * and dequeue packets faster.
2621 */
2622 contended = qdisc_is_running(q);
2623 if (unlikely(contended))
2624 spin_lock(&q->busylock);
2625
2626 spin_lock(root_lock);
2627 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2628 kfree_skb(skb);
2629 rc = NET_XMIT_DROP;
2630 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2631 qdisc_run_begin(q)) {
2632 /*
2633 * This is a work-conserving queue; there are no old skbs
2634 * waiting to be sent out; and the qdisc is not running -
2635 * xmit the skb directly.
2636 */
2637 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2638 skb_dst_force(skb);
2639
2640 qdisc_bstats_update(q, skb);
2641
2642 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2643 if (unlikely(contended)) {
2644 spin_unlock(&q->busylock);
2645 contended = false;
2646 }
2647 __qdisc_run(q);
2648 } else
2649 qdisc_run_end(q);
2650
2651 rc = NET_XMIT_SUCCESS;
2652 } else {
2653 skb_dst_force(skb);
2654 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2655 if (qdisc_run_begin(q)) {
2656 if (unlikely(contended)) {
2657 spin_unlock(&q->busylock);
2658 contended = false;
2659 }
2660 __qdisc_run(q);
2661 }
2662 }
2663 spin_unlock(root_lock);
2664 if (unlikely(contended))
2665 spin_unlock(&q->busylock);
2666 return rc;
2667 }
2668
2669 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2670 static void skb_update_prio(struct sk_buff *skb)
2671 {
2672 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2673
2674 if (!skb->priority && skb->sk && map) {
2675 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2676
2677 if (prioidx < map->priomap_len)
2678 skb->priority = map->priomap[prioidx];
2679 }
2680 }
2681 #else
2682 #define skb_update_prio(skb)
2683 #endif
2684
2685 static DEFINE_PER_CPU(int, xmit_recursion);
2686 #define RECURSION_LIMIT 10
2687
2688 /**
2689 * dev_loopback_xmit - loop back @skb
2690 * @skb: buffer to transmit
2691 */
2692 int dev_loopback_xmit(struct sk_buff *skb)
2693 {
2694 skb_reset_mac_header(skb);
2695 __skb_pull(skb, skb_network_offset(skb));
2696 skb->pkt_type = PACKET_LOOPBACK;
2697 skb->ip_summed = CHECKSUM_UNNECESSARY;
2698 WARN_ON(!skb_dst(skb));
2699 skb_dst_force(skb);
2700 netif_rx_ni(skb);
2701 return 0;
2702 }
2703 EXPORT_SYMBOL(dev_loopback_xmit);
2704
2705 /**
2706 * dev_queue_xmit - transmit a buffer
2707 * @skb: buffer to transmit
2708 *
2709 * Queue a buffer for transmission to a network device. The caller must
2710 * have set the device and priority and built the buffer before calling
2711 * this function. The function can be called from an interrupt.
2712 *
2713 * A negative errno code is returned on a failure. A success does not
2714 * guarantee the frame will be transmitted as it may be dropped due
2715 * to congestion or traffic shaping.
2716 *
2717 * -----------------------------------------------------------------------------------
2718 * I notice this method can also return errors from the queue disciplines,
2719 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2720 * be positive.
2721 *
2722 * Regardless of the return value, the skb is consumed, so it is currently
2723 * difficult to retry a send to this method. (You can bump the ref count
2724 * before sending to hold a reference for retry if you are careful.)
2725 *
2726 * When calling this method, interrupts MUST be enabled. This is because
2727 * the BH enable code must have IRQs enabled so that it will not deadlock.
2728 * --BLG
2729 */
2730 int dev_queue_xmit(struct sk_buff *skb)
2731 {
2732 struct net_device *dev = skb->dev;
2733 struct netdev_queue *txq;
2734 struct Qdisc *q;
2735 int rc = -ENOMEM;
2736
2737 skb_reset_mac_header(skb);
2738
2739 /* Disable soft irqs for various locks below. Also
2740 * stops preemption for RCU.
2741 */
2742 rcu_read_lock_bh();
2743
2744 skb_update_prio(skb);
2745
2746 txq = netdev_pick_tx(dev, skb);
2747 q = rcu_dereference_bh(txq->qdisc);
2748
2749 #ifdef CONFIG_NET_CLS_ACT
2750 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2751 #endif
2752 trace_net_dev_queue(skb);
2753 if (q->enqueue) {
2754 rc = __dev_xmit_skb(skb, q, dev, txq);
2755 goto out;
2756 }
2757
2758 /* The device has no queue. Common case for software devices:
2759 loopback, all the sorts of tunnels...
2760
2761 Really, it is unlikely that netif_tx_lock protection is necessary
2762 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2763 counters.)
2764 However, it is possible, that they rely on protection
2765 made by us here.
2766
2767 Check this and shot the lock. It is not prone from deadlocks.
2768 Either shot noqueue qdisc, it is even simpler 8)
2769 */
2770 if (dev->flags & IFF_UP) {
2771 int cpu = smp_processor_id(); /* ok because BHs are off */
2772
2773 if (txq->xmit_lock_owner != cpu) {
2774
2775 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2776 goto recursion_alert;
2777
2778 HARD_TX_LOCK(dev, txq, cpu);
2779
2780 if (!netif_xmit_stopped(txq)) {
2781 __this_cpu_inc(xmit_recursion);
2782 rc = dev_hard_start_xmit(skb, dev, txq);
2783 __this_cpu_dec(xmit_recursion);
2784 if (dev_xmit_complete(rc)) {
2785 HARD_TX_UNLOCK(dev, txq);
2786 goto out;
2787 }
2788 }
2789 HARD_TX_UNLOCK(dev, txq);
2790 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2791 dev->name);
2792 } else {
2793 /* Recursion is detected! It is possible,
2794 * unfortunately
2795 */
2796 recursion_alert:
2797 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2798 dev->name);
2799 }
2800 }
2801
2802 rc = -ENETDOWN;
2803 rcu_read_unlock_bh();
2804
2805 kfree_skb(skb);
2806 return rc;
2807 out:
2808 rcu_read_unlock_bh();
2809 return rc;
2810 }
2811 EXPORT_SYMBOL(dev_queue_xmit);
2812
2813
2814 /*=======================================================================
2815 Receiver routines
2816 =======================================================================*/
2817
2818 int netdev_max_backlog __read_mostly = 1000;
2819 EXPORT_SYMBOL(netdev_max_backlog);
2820
2821 int netdev_tstamp_prequeue __read_mostly = 1;
2822 int netdev_budget __read_mostly = 300;
2823 int weight_p __read_mostly = 64; /* old backlog weight */
2824
2825 /* Called with irq disabled */
2826 static inline void ____napi_schedule(struct softnet_data *sd,
2827 struct napi_struct *napi)
2828 {
2829 list_add_tail(&napi->poll_list, &sd->poll_list);
2830 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2831 }
2832
2833 #ifdef CONFIG_RPS
2834
2835 /* One global table that all flow-based protocols share. */
2836 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2837 EXPORT_SYMBOL(rps_sock_flow_table);
2838
2839 struct static_key rps_needed __read_mostly;
2840
2841 static struct rps_dev_flow *
2842 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2843 struct rps_dev_flow *rflow, u16 next_cpu)
2844 {
2845 if (next_cpu != RPS_NO_CPU) {
2846 #ifdef CONFIG_RFS_ACCEL
2847 struct netdev_rx_queue *rxqueue;
2848 struct rps_dev_flow_table *flow_table;
2849 struct rps_dev_flow *old_rflow;
2850 u32 flow_id;
2851 u16 rxq_index;
2852 int rc;
2853
2854 /* Should we steer this flow to a different hardware queue? */
2855 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2856 !(dev->features & NETIF_F_NTUPLE))
2857 goto out;
2858 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2859 if (rxq_index == skb_get_rx_queue(skb))
2860 goto out;
2861
2862 rxqueue = dev->_rx + rxq_index;
2863 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2864 if (!flow_table)
2865 goto out;
2866 flow_id = skb->rxhash & flow_table->mask;
2867 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2868 rxq_index, flow_id);
2869 if (rc < 0)
2870 goto out;
2871 old_rflow = rflow;
2872 rflow = &flow_table->flows[flow_id];
2873 rflow->filter = rc;
2874 if (old_rflow->filter == rflow->filter)
2875 old_rflow->filter = RPS_NO_FILTER;
2876 out:
2877 #endif
2878 rflow->last_qtail =
2879 per_cpu(softnet_data, next_cpu).input_queue_head;
2880 }
2881
2882 rflow->cpu = next_cpu;
2883 return rflow;
2884 }
2885
2886 /*
2887 * get_rps_cpu is called from netif_receive_skb and returns the target
2888 * CPU from the RPS map of the receiving queue for a given skb.
2889 * rcu_read_lock must be held on entry.
2890 */
2891 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2892 struct rps_dev_flow **rflowp)
2893 {
2894 struct netdev_rx_queue *rxqueue;
2895 struct rps_map *map;
2896 struct rps_dev_flow_table *flow_table;
2897 struct rps_sock_flow_table *sock_flow_table;
2898 int cpu = -1;
2899 u16 tcpu;
2900
2901 if (skb_rx_queue_recorded(skb)) {
2902 u16 index = skb_get_rx_queue(skb);
2903 if (unlikely(index >= dev->real_num_rx_queues)) {
2904 WARN_ONCE(dev->real_num_rx_queues > 1,
2905 "%s received packet on queue %u, but number "
2906 "of RX queues is %u\n",
2907 dev->name, index, dev->real_num_rx_queues);
2908 goto done;
2909 }
2910 rxqueue = dev->_rx + index;
2911 } else
2912 rxqueue = dev->_rx;
2913
2914 map = rcu_dereference(rxqueue->rps_map);
2915 if (map) {
2916 if (map->len == 1 &&
2917 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2918 tcpu = map->cpus[0];
2919 if (cpu_online(tcpu))
2920 cpu = tcpu;
2921 goto done;
2922 }
2923 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2924 goto done;
2925 }
2926
2927 skb_reset_network_header(skb);
2928 if (!skb_get_rxhash(skb))
2929 goto done;
2930
2931 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2932 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2933 if (flow_table && sock_flow_table) {
2934 u16 next_cpu;
2935 struct rps_dev_flow *rflow;
2936
2937 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2938 tcpu = rflow->cpu;
2939
2940 next_cpu = sock_flow_table->ents[skb->rxhash &
2941 sock_flow_table->mask];
2942
2943 /*
2944 * If the desired CPU (where last recvmsg was done) is
2945 * different from current CPU (one in the rx-queue flow
2946 * table entry), switch if one of the following holds:
2947 * - Current CPU is unset (equal to RPS_NO_CPU).
2948 * - Current CPU is offline.
2949 * - The current CPU's queue tail has advanced beyond the
2950 * last packet that was enqueued using this table entry.
2951 * This guarantees that all previous packets for the flow
2952 * have been dequeued, thus preserving in order delivery.
2953 */
2954 if (unlikely(tcpu != next_cpu) &&
2955 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2956 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2957 rflow->last_qtail)) >= 0)) {
2958 tcpu = next_cpu;
2959 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2960 }
2961
2962 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2963 *rflowp = rflow;
2964 cpu = tcpu;
2965 goto done;
2966 }
2967 }
2968
2969 if (map) {
2970 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2971
2972 if (cpu_online(tcpu)) {
2973 cpu = tcpu;
2974 goto done;
2975 }
2976 }
2977
2978 done:
2979 return cpu;
2980 }
2981
2982 #ifdef CONFIG_RFS_ACCEL
2983
2984 /**
2985 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2986 * @dev: Device on which the filter was set
2987 * @rxq_index: RX queue index
2988 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2989 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2990 *
2991 * Drivers that implement ndo_rx_flow_steer() should periodically call
2992 * this function for each installed filter and remove the filters for
2993 * which it returns %true.
2994 */
2995 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2996 u32 flow_id, u16 filter_id)
2997 {
2998 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2999 struct rps_dev_flow_table *flow_table;
3000 struct rps_dev_flow *rflow;
3001 bool expire = true;
3002 int cpu;
3003
3004 rcu_read_lock();
3005 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3006 if (flow_table && flow_id <= flow_table->mask) {
3007 rflow = &flow_table->flows[flow_id];
3008 cpu = ACCESS_ONCE(rflow->cpu);
3009 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3010 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3011 rflow->last_qtail) <
3012 (int)(10 * flow_table->mask)))
3013 expire = false;
3014 }
3015 rcu_read_unlock();
3016 return expire;
3017 }
3018 EXPORT_SYMBOL(rps_may_expire_flow);
3019
3020 #endif /* CONFIG_RFS_ACCEL */
3021
3022 /* Called from hardirq (IPI) context */
3023 static void rps_trigger_softirq(void *data)
3024 {
3025 struct softnet_data *sd = data;
3026
3027 ____napi_schedule(sd, &sd->backlog);
3028 sd->received_rps++;
3029 }
3030
3031 #endif /* CONFIG_RPS */
3032
3033 /*
3034 * Check if this softnet_data structure is another cpu one
3035 * If yes, queue it to our IPI list and return 1
3036 * If no, return 0
3037 */
3038 static int rps_ipi_queued(struct softnet_data *sd)
3039 {
3040 #ifdef CONFIG_RPS
3041 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3042
3043 if (sd != mysd) {
3044 sd->rps_ipi_next = mysd->rps_ipi_list;
3045 mysd->rps_ipi_list = sd;
3046
3047 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3048 return 1;
3049 }
3050 #endif /* CONFIG_RPS */
3051 return 0;
3052 }
3053
3054 /*
3055 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3056 * queue (may be a remote CPU queue).
3057 */
3058 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3059 unsigned int *qtail)
3060 {
3061 struct softnet_data *sd;
3062 unsigned long flags;
3063
3064 sd = &per_cpu(softnet_data, cpu);
3065
3066 local_irq_save(flags);
3067
3068 rps_lock(sd);
3069 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
3070 if (skb_queue_len(&sd->input_pkt_queue)) {
3071 enqueue:
3072 __skb_queue_tail(&sd->input_pkt_queue, skb);
3073 input_queue_tail_incr_save(sd, qtail);
3074 rps_unlock(sd);
3075 local_irq_restore(flags);
3076 return NET_RX_SUCCESS;
3077 }
3078
3079 /* Schedule NAPI for backlog device
3080 * We can use non atomic operation since we own the queue lock
3081 */
3082 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3083 if (!rps_ipi_queued(sd))
3084 ____napi_schedule(sd, &sd->backlog);
3085 }
3086 goto enqueue;
3087 }
3088
3089 sd->dropped++;
3090 rps_unlock(sd);
3091
3092 local_irq_restore(flags);
3093
3094 atomic_long_inc(&skb->dev->rx_dropped);
3095 kfree_skb(skb);
3096 return NET_RX_DROP;
3097 }
3098
3099 /**
3100 * netif_rx - post buffer to the network code
3101 * @skb: buffer to post
3102 *
3103 * This function receives a packet from a device driver and queues it for
3104 * the upper (protocol) levels to process. It always succeeds. The buffer
3105 * may be dropped during processing for congestion control or by the
3106 * protocol layers.
3107 *
3108 * return values:
3109 * NET_RX_SUCCESS (no congestion)
3110 * NET_RX_DROP (packet was dropped)
3111 *
3112 */
3113
3114 int netif_rx(struct sk_buff *skb)
3115 {
3116 int ret;
3117
3118 /* if netpoll wants it, pretend we never saw it */
3119 if (netpoll_rx(skb))
3120 return NET_RX_DROP;
3121
3122 net_timestamp_check(netdev_tstamp_prequeue, skb);
3123
3124 trace_netif_rx(skb);
3125 #ifdef CONFIG_RPS
3126 if (static_key_false(&rps_needed)) {
3127 struct rps_dev_flow voidflow, *rflow = &voidflow;
3128 int cpu;
3129
3130 preempt_disable();
3131 rcu_read_lock();
3132
3133 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3134 if (cpu < 0)
3135 cpu = smp_processor_id();
3136
3137 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3138
3139 rcu_read_unlock();
3140 preempt_enable();
3141 } else
3142 #endif
3143 {
3144 unsigned int qtail;
3145 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3146 put_cpu();
3147 }
3148 return ret;
3149 }
3150 EXPORT_SYMBOL(netif_rx);
3151
3152 int netif_rx_ni(struct sk_buff *skb)
3153 {
3154 int err;
3155
3156 preempt_disable();
3157 err = netif_rx(skb);
3158 if (local_softirq_pending())
3159 do_softirq();
3160 preempt_enable();
3161
3162 return err;
3163 }
3164 EXPORT_SYMBOL(netif_rx_ni);
3165
3166 static void net_tx_action(struct softirq_action *h)
3167 {
3168 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3169
3170 if (sd->completion_queue) {
3171 struct sk_buff *clist;
3172
3173 local_irq_disable();
3174 clist = sd->completion_queue;
3175 sd->completion_queue = NULL;
3176 local_irq_enable();
3177
3178 while (clist) {
3179 struct sk_buff *skb = clist;
3180 clist = clist->next;
3181
3182 WARN_ON(atomic_read(&skb->users));
3183 trace_kfree_skb(skb, net_tx_action);
3184 __kfree_skb(skb);
3185 }
3186 }
3187
3188 if (sd->output_queue) {
3189 struct Qdisc *head;
3190
3191 local_irq_disable();
3192 head = sd->output_queue;
3193 sd->output_queue = NULL;
3194 sd->output_queue_tailp = &sd->output_queue;
3195 local_irq_enable();
3196
3197 while (head) {
3198 struct Qdisc *q = head;
3199 spinlock_t *root_lock;
3200
3201 head = head->next_sched;
3202
3203 root_lock = qdisc_lock(q);
3204 if (spin_trylock(root_lock)) {
3205 smp_mb__before_clear_bit();
3206 clear_bit(__QDISC_STATE_SCHED,
3207 &q->state);
3208 qdisc_run(q);
3209 spin_unlock(root_lock);
3210 } else {
3211 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3212 &q->state)) {
3213 __netif_reschedule(q);
3214 } else {
3215 smp_mb__before_clear_bit();
3216 clear_bit(__QDISC_STATE_SCHED,
3217 &q->state);
3218 }
3219 }
3220 }
3221 }
3222 }
3223
3224 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3225 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3226 /* This hook is defined here for ATM LANE */
3227 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3228 unsigned char *addr) __read_mostly;
3229 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3230 #endif
3231
3232 #ifdef CONFIG_NET_CLS_ACT
3233 /* TODO: Maybe we should just force sch_ingress to be compiled in
3234 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3235 * a compare and 2 stores extra right now if we dont have it on
3236 * but have CONFIG_NET_CLS_ACT
3237 * NOTE: This doesn't stop any functionality; if you dont have
3238 * the ingress scheduler, you just can't add policies on ingress.
3239 *
3240 */
3241 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3242 {
3243 struct net_device *dev = skb->dev;
3244 u32 ttl = G_TC_RTTL(skb->tc_verd);
3245 int result = TC_ACT_OK;
3246 struct Qdisc *q;
3247
3248 if (unlikely(MAX_RED_LOOP < ttl++)) {
3249 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3250 skb->skb_iif, dev->ifindex);
3251 return TC_ACT_SHOT;
3252 }
3253
3254 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3255 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3256
3257 q = rxq->qdisc;
3258 if (q != &noop_qdisc) {
3259 spin_lock(qdisc_lock(q));
3260 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3261 result = qdisc_enqueue_root(skb, q);
3262 spin_unlock(qdisc_lock(q));
3263 }
3264
3265 return result;
3266 }
3267
3268 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3269 struct packet_type **pt_prev,
3270 int *ret, struct net_device *orig_dev)
3271 {
3272 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3273
3274 if (!rxq || rxq->qdisc == &noop_qdisc)
3275 goto out;
3276
3277 if (*pt_prev) {
3278 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3279 *pt_prev = NULL;
3280 }
3281
3282 switch (ing_filter(skb, rxq)) {
3283 case TC_ACT_SHOT:
3284 case TC_ACT_STOLEN:
3285 kfree_skb(skb);
3286 return NULL;
3287 }
3288
3289 out:
3290 skb->tc_verd = 0;
3291 return skb;
3292 }
3293 #endif
3294
3295 /**
3296 * netdev_rx_handler_register - register receive handler
3297 * @dev: device to register a handler for
3298 * @rx_handler: receive handler to register
3299 * @rx_handler_data: data pointer that is used by rx handler
3300 *
3301 * Register a receive hander for a device. This handler will then be
3302 * called from __netif_receive_skb. A negative errno code is returned
3303 * on a failure.
3304 *
3305 * The caller must hold the rtnl_mutex.
3306 *
3307 * For a general description of rx_handler, see enum rx_handler_result.
3308 */
3309 int netdev_rx_handler_register(struct net_device *dev,
3310 rx_handler_func_t *rx_handler,
3311 void *rx_handler_data)
3312 {
3313 ASSERT_RTNL();
3314
3315 if (dev->rx_handler)
3316 return -EBUSY;
3317
3318 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3319 rcu_assign_pointer(dev->rx_handler, rx_handler);
3320
3321 return 0;
3322 }
3323 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3324
3325 /**
3326 * netdev_rx_handler_unregister - unregister receive handler
3327 * @dev: device to unregister a handler from
3328 *
3329 * Unregister a receive hander from a device.
3330 *
3331 * The caller must hold the rtnl_mutex.
3332 */
3333 void netdev_rx_handler_unregister(struct net_device *dev)
3334 {
3335
3336 ASSERT_RTNL();
3337 RCU_INIT_POINTER(dev->rx_handler, NULL);
3338 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3339 }
3340 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3341
3342 /*
3343 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3344 * the special handling of PFMEMALLOC skbs.
3345 */
3346 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3347 {
3348 switch (skb->protocol) {
3349 case __constant_htons(ETH_P_ARP):
3350 case __constant_htons(ETH_P_IP):
3351 case __constant_htons(ETH_P_IPV6):
3352 case __constant_htons(ETH_P_8021Q):
3353 return true;
3354 default:
3355 return false;
3356 }
3357 }
3358
3359 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3360 {
3361 struct packet_type *ptype, *pt_prev;
3362 rx_handler_func_t *rx_handler;
3363 struct net_device *orig_dev;
3364 struct net_device *null_or_dev;
3365 bool deliver_exact = false;
3366 int ret = NET_RX_DROP;
3367 __be16 type;
3368
3369 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3370
3371 trace_netif_receive_skb(skb);
3372
3373 /* if we've gotten here through NAPI, check netpoll */
3374 if (netpoll_receive_skb(skb))
3375 goto out;
3376
3377 orig_dev = skb->dev;
3378
3379 skb_reset_network_header(skb);
3380 if (!skb_transport_header_was_set(skb))
3381 skb_reset_transport_header(skb);
3382 skb_reset_mac_len(skb);
3383
3384 pt_prev = NULL;
3385
3386 rcu_read_lock();
3387
3388 another_round:
3389 skb->skb_iif = skb->dev->ifindex;
3390
3391 __this_cpu_inc(softnet_data.processed);
3392
3393 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3394 skb = vlan_untag(skb);
3395 if (unlikely(!skb))
3396 goto unlock;
3397 }
3398
3399 #ifdef CONFIG_NET_CLS_ACT
3400 if (skb->tc_verd & TC_NCLS) {
3401 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3402 goto ncls;
3403 }
3404 #endif
3405
3406 if (pfmemalloc)
3407 goto skip_taps;
3408
3409 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3410 if (!ptype->dev || ptype->dev == skb->dev) {
3411 if (pt_prev)
3412 ret = deliver_skb(skb, pt_prev, orig_dev);
3413 pt_prev = ptype;
3414 }
3415 }
3416
3417 skip_taps:
3418 #ifdef CONFIG_NET_CLS_ACT
3419 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3420 if (!skb)
3421 goto unlock;
3422 ncls:
3423 #endif
3424
3425 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3426 goto drop;
3427
3428 if (vlan_tx_tag_present(skb)) {
3429 if (pt_prev) {
3430 ret = deliver_skb(skb, pt_prev, orig_dev);
3431 pt_prev = NULL;
3432 }
3433 if (vlan_do_receive(&skb))
3434 goto another_round;
3435 else if (unlikely(!skb))
3436 goto unlock;
3437 }
3438
3439 rx_handler = rcu_dereference(skb->dev->rx_handler);
3440 if (rx_handler) {
3441 if (pt_prev) {
3442 ret = deliver_skb(skb, pt_prev, orig_dev);
3443 pt_prev = NULL;
3444 }
3445 switch (rx_handler(&skb)) {
3446 case RX_HANDLER_CONSUMED:
3447 goto unlock;
3448 case RX_HANDLER_ANOTHER:
3449 goto another_round;
3450 case RX_HANDLER_EXACT:
3451 deliver_exact = true;
3452 case RX_HANDLER_PASS:
3453 break;
3454 default:
3455 BUG();
3456 }
3457 }
3458
3459 if (vlan_tx_nonzero_tag_present(skb))
3460 skb->pkt_type = PACKET_OTHERHOST;
3461
3462 /* deliver only exact match when indicated */
3463 null_or_dev = deliver_exact ? skb->dev : NULL;
3464
3465 type = skb->protocol;
3466 list_for_each_entry_rcu(ptype,
3467 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3468 if (ptype->type == type &&
3469 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3470 ptype->dev == orig_dev)) {
3471 if (pt_prev)
3472 ret = deliver_skb(skb, pt_prev, orig_dev);
3473 pt_prev = ptype;
3474 }
3475 }
3476
3477 if (pt_prev) {
3478 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3479 goto drop;
3480 else
3481 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3482 } else {
3483 drop:
3484 atomic_long_inc(&skb->dev->rx_dropped);
3485 kfree_skb(skb);
3486 /* Jamal, now you will not able to escape explaining
3487 * me how you were going to use this. :-)
3488 */
3489 ret = NET_RX_DROP;
3490 }
3491
3492 unlock:
3493 rcu_read_unlock();
3494 out:
3495 return ret;
3496 }
3497
3498 static int __netif_receive_skb(struct sk_buff *skb)
3499 {
3500 int ret;
3501
3502 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3503 unsigned long pflags = current->flags;
3504
3505 /*
3506 * PFMEMALLOC skbs are special, they should
3507 * - be delivered to SOCK_MEMALLOC sockets only
3508 * - stay away from userspace
3509 * - have bounded memory usage
3510 *
3511 * Use PF_MEMALLOC as this saves us from propagating the allocation
3512 * context down to all allocation sites.
3513 */
3514 current->flags |= PF_MEMALLOC;
3515 ret = __netif_receive_skb_core(skb, true);
3516 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3517 } else
3518 ret = __netif_receive_skb_core(skb, false);
3519
3520 return ret;
3521 }
3522
3523 /**
3524 * netif_receive_skb - process receive buffer from network
3525 * @skb: buffer to process
3526 *
3527 * netif_receive_skb() is the main receive data processing function.
3528 * It always succeeds. The buffer may be dropped during processing
3529 * for congestion control or by the protocol layers.
3530 *
3531 * This function may only be called from softirq context and interrupts
3532 * should be enabled.
3533 *
3534 * Return values (usually ignored):
3535 * NET_RX_SUCCESS: no congestion
3536 * NET_RX_DROP: packet was dropped
3537 */
3538 int netif_receive_skb(struct sk_buff *skb)
3539 {
3540 net_timestamp_check(netdev_tstamp_prequeue, skb);
3541
3542 if (skb_defer_rx_timestamp(skb))
3543 return NET_RX_SUCCESS;
3544
3545 #ifdef CONFIG_RPS
3546 if (static_key_false(&rps_needed)) {
3547 struct rps_dev_flow voidflow, *rflow = &voidflow;
3548 int cpu, ret;
3549
3550 rcu_read_lock();
3551
3552 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3553
3554 if (cpu >= 0) {
3555 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3556 rcu_read_unlock();
3557 return ret;
3558 }
3559 rcu_read_unlock();
3560 }
3561 #endif
3562 return __netif_receive_skb(skb);
3563 }
3564 EXPORT_SYMBOL(netif_receive_skb);
3565
3566 /* Network device is going away, flush any packets still pending
3567 * Called with irqs disabled.
3568 */
3569 static void flush_backlog(void *arg)
3570 {
3571 struct net_device *dev = arg;
3572 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3573 struct sk_buff *skb, *tmp;
3574
3575 rps_lock(sd);
3576 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3577 if (skb->dev == dev) {
3578 __skb_unlink(skb, &sd->input_pkt_queue);
3579 kfree_skb(skb);
3580 input_queue_head_incr(sd);
3581 }
3582 }
3583 rps_unlock(sd);
3584
3585 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3586 if (skb->dev == dev) {
3587 __skb_unlink(skb, &sd->process_queue);
3588 kfree_skb(skb);
3589 input_queue_head_incr(sd);
3590 }
3591 }
3592 }
3593
3594 static int napi_gro_complete(struct sk_buff *skb)
3595 {
3596 struct packet_offload *ptype;
3597 __be16 type = skb->protocol;
3598 struct list_head *head = &offload_base;
3599 int err = -ENOENT;
3600
3601 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3602
3603 if (NAPI_GRO_CB(skb)->count == 1) {
3604 skb_shinfo(skb)->gso_size = 0;
3605 goto out;
3606 }
3607
3608 rcu_read_lock();
3609 list_for_each_entry_rcu(ptype, head, list) {
3610 if (ptype->type != type || !ptype->callbacks.gro_complete)
3611 continue;
3612
3613 err = ptype->callbacks.gro_complete(skb);
3614 break;
3615 }
3616 rcu_read_unlock();
3617
3618 if (err) {
3619 WARN_ON(&ptype->list == head);
3620 kfree_skb(skb);
3621 return NET_RX_SUCCESS;
3622 }
3623
3624 out:
3625 return netif_receive_skb(skb);
3626 }
3627
3628 /* napi->gro_list contains packets ordered by age.
3629 * youngest packets at the head of it.
3630 * Complete skbs in reverse order to reduce latencies.
3631 */
3632 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3633 {
3634 struct sk_buff *skb, *prev = NULL;
3635
3636 /* scan list and build reverse chain */
3637 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3638 skb->prev = prev;
3639 prev = skb;
3640 }
3641
3642 for (skb = prev; skb; skb = prev) {
3643 skb->next = NULL;
3644
3645 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3646 return;
3647
3648 prev = skb->prev;
3649 napi_gro_complete(skb);
3650 napi->gro_count--;
3651 }
3652
3653 napi->gro_list = NULL;
3654 }
3655 EXPORT_SYMBOL(napi_gro_flush);
3656
3657 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3658 {
3659 struct sk_buff *p;
3660 unsigned int maclen = skb->dev->hard_header_len;
3661
3662 for (p = napi->gro_list; p; p = p->next) {
3663 unsigned long diffs;
3664
3665 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3666 diffs |= p->vlan_tci ^ skb->vlan_tci;
3667 if (maclen == ETH_HLEN)
3668 diffs |= compare_ether_header(skb_mac_header(p),
3669 skb_gro_mac_header(skb));
3670 else if (!diffs)
3671 diffs = memcmp(skb_mac_header(p),
3672 skb_gro_mac_header(skb),
3673 maclen);
3674 NAPI_GRO_CB(p)->same_flow = !diffs;
3675 NAPI_GRO_CB(p)->flush = 0;
3676 }
3677 }
3678
3679 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3680 {
3681 struct sk_buff **pp = NULL;
3682 struct packet_offload *ptype;
3683 __be16 type = skb->protocol;
3684 struct list_head *head = &offload_base;
3685 int same_flow;
3686 enum gro_result ret;
3687
3688 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3689 goto normal;
3690
3691 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3692 goto normal;
3693
3694 gro_list_prepare(napi, skb);
3695
3696 rcu_read_lock();
3697 list_for_each_entry_rcu(ptype, head, list) {
3698 if (ptype->type != type || !ptype->callbacks.gro_receive)
3699 continue;
3700
3701 skb_set_network_header(skb, skb_gro_offset(skb));
3702 skb_reset_mac_len(skb);
3703 NAPI_GRO_CB(skb)->same_flow = 0;
3704 NAPI_GRO_CB(skb)->flush = 0;
3705 NAPI_GRO_CB(skb)->free = 0;
3706
3707 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3708 break;
3709 }
3710 rcu_read_unlock();
3711
3712 if (&ptype->list == head)
3713 goto normal;
3714
3715 same_flow = NAPI_GRO_CB(skb)->same_flow;
3716 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3717
3718 if (pp) {
3719 struct sk_buff *nskb = *pp;
3720
3721 *pp = nskb->next;
3722 nskb->next = NULL;
3723 napi_gro_complete(nskb);
3724 napi->gro_count--;
3725 }
3726
3727 if (same_flow)
3728 goto ok;
3729
3730 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3731 goto normal;
3732
3733 napi->gro_count++;
3734 NAPI_GRO_CB(skb)->count = 1;
3735 NAPI_GRO_CB(skb)->age = jiffies;
3736 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3737 skb->next = napi->gro_list;
3738 napi->gro_list = skb;
3739 ret = GRO_HELD;
3740
3741 pull:
3742 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3743 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3744
3745 BUG_ON(skb->end - skb->tail < grow);
3746
3747 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3748
3749 skb->tail += grow;
3750 skb->data_len -= grow;
3751
3752 skb_shinfo(skb)->frags[0].page_offset += grow;
3753 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3754
3755 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3756 skb_frag_unref(skb, 0);
3757 memmove(skb_shinfo(skb)->frags,
3758 skb_shinfo(skb)->frags + 1,
3759 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3760 }
3761 }
3762
3763 ok:
3764 return ret;
3765
3766 normal:
3767 ret = GRO_NORMAL;
3768 goto pull;
3769 }
3770
3771
3772 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3773 {
3774 switch (ret) {
3775 case GRO_NORMAL:
3776 if (netif_receive_skb(skb))
3777 ret = GRO_DROP;
3778 break;
3779
3780 case GRO_DROP:
3781 kfree_skb(skb);
3782 break;
3783
3784 case GRO_MERGED_FREE:
3785 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3786 kmem_cache_free(skbuff_head_cache, skb);
3787 else
3788 __kfree_skb(skb);
3789 break;
3790
3791 case GRO_HELD:
3792 case GRO_MERGED:
3793 break;
3794 }
3795
3796 return ret;
3797 }
3798
3799 static void skb_gro_reset_offset(struct sk_buff *skb)
3800 {
3801 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3802 const skb_frag_t *frag0 = &pinfo->frags[0];
3803
3804 NAPI_GRO_CB(skb)->data_offset = 0;
3805 NAPI_GRO_CB(skb)->frag0 = NULL;
3806 NAPI_GRO_CB(skb)->frag0_len = 0;
3807
3808 if (skb->mac_header == skb->tail &&
3809 pinfo->nr_frags &&
3810 !PageHighMem(skb_frag_page(frag0))) {
3811 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3812 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3813 }
3814 }
3815
3816 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3817 {
3818 skb_gro_reset_offset(skb);
3819
3820 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3821 }
3822 EXPORT_SYMBOL(napi_gro_receive);
3823
3824 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3825 {
3826 __skb_pull(skb, skb_headlen(skb));
3827 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3828 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3829 skb->vlan_tci = 0;
3830 skb->dev = napi->dev;
3831 skb->skb_iif = 0;
3832
3833 napi->skb = skb;
3834 }
3835
3836 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3837 {
3838 struct sk_buff *skb = napi->skb;
3839
3840 if (!skb) {
3841 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3842 if (skb)
3843 napi->skb = skb;
3844 }
3845 return skb;
3846 }
3847 EXPORT_SYMBOL(napi_get_frags);
3848
3849 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3850 gro_result_t ret)
3851 {
3852 switch (ret) {
3853 case GRO_NORMAL:
3854 case GRO_HELD:
3855 skb->protocol = eth_type_trans(skb, skb->dev);
3856
3857 if (ret == GRO_HELD)
3858 skb_gro_pull(skb, -ETH_HLEN);
3859 else if (netif_receive_skb(skb))
3860 ret = GRO_DROP;
3861 break;
3862
3863 case GRO_DROP:
3864 case GRO_MERGED_FREE:
3865 napi_reuse_skb(napi, skb);
3866 break;
3867
3868 case GRO_MERGED:
3869 break;
3870 }
3871
3872 return ret;
3873 }
3874
3875 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3876 {
3877 struct sk_buff *skb = napi->skb;
3878 struct ethhdr *eth;
3879 unsigned int hlen;
3880 unsigned int off;
3881
3882 napi->skb = NULL;
3883
3884 skb_reset_mac_header(skb);
3885 skb_gro_reset_offset(skb);
3886
3887 off = skb_gro_offset(skb);
3888 hlen = off + sizeof(*eth);
3889 eth = skb_gro_header_fast(skb, off);
3890 if (skb_gro_header_hard(skb, hlen)) {
3891 eth = skb_gro_header_slow(skb, hlen, off);
3892 if (unlikely(!eth)) {
3893 napi_reuse_skb(napi, skb);
3894 skb = NULL;
3895 goto out;
3896 }
3897 }
3898
3899 skb_gro_pull(skb, sizeof(*eth));
3900
3901 /*
3902 * This works because the only protocols we care about don't require
3903 * special handling. We'll fix it up properly at the end.
3904 */
3905 skb->protocol = eth->h_proto;
3906
3907 out:
3908 return skb;
3909 }
3910
3911 gro_result_t napi_gro_frags(struct napi_struct *napi)
3912 {
3913 struct sk_buff *skb = napi_frags_skb(napi);
3914
3915 if (!skb)
3916 return GRO_DROP;
3917
3918 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
3919 }
3920 EXPORT_SYMBOL(napi_gro_frags);
3921
3922 /*
3923 * net_rps_action sends any pending IPI's for rps.
3924 * Note: called with local irq disabled, but exits with local irq enabled.
3925 */
3926 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3927 {
3928 #ifdef CONFIG_RPS
3929 struct softnet_data *remsd = sd->rps_ipi_list;
3930
3931 if (remsd) {
3932 sd->rps_ipi_list = NULL;
3933
3934 local_irq_enable();
3935
3936 /* Send pending IPI's to kick RPS processing on remote cpus. */
3937 while (remsd) {
3938 struct softnet_data *next = remsd->rps_ipi_next;
3939
3940 if (cpu_online(remsd->cpu))
3941 __smp_call_function_single(remsd->cpu,
3942 &remsd->csd, 0);
3943 remsd = next;
3944 }
3945 } else
3946 #endif
3947 local_irq_enable();
3948 }
3949
3950 static int process_backlog(struct napi_struct *napi, int quota)
3951 {
3952 int work = 0;
3953 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3954
3955 #ifdef CONFIG_RPS
3956 /* Check if we have pending ipi, its better to send them now,
3957 * not waiting net_rx_action() end.
3958 */
3959 if (sd->rps_ipi_list) {
3960 local_irq_disable();
3961 net_rps_action_and_irq_enable(sd);
3962 }
3963 #endif
3964 napi->weight = weight_p;
3965 local_irq_disable();
3966 while (work < quota) {
3967 struct sk_buff *skb;
3968 unsigned int qlen;
3969
3970 while ((skb = __skb_dequeue(&sd->process_queue))) {
3971 local_irq_enable();
3972 __netif_receive_skb(skb);
3973 local_irq_disable();
3974 input_queue_head_incr(sd);
3975 if (++work >= quota) {
3976 local_irq_enable();
3977 return work;
3978 }
3979 }
3980
3981 rps_lock(sd);
3982 qlen = skb_queue_len(&sd->input_pkt_queue);
3983 if (qlen)
3984 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3985 &sd->process_queue);
3986
3987 if (qlen < quota - work) {
3988 /*
3989 * Inline a custom version of __napi_complete().
3990 * only current cpu owns and manipulates this napi,
3991 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3992 * we can use a plain write instead of clear_bit(),
3993 * and we dont need an smp_mb() memory barrier.
3994 */
3995 list_del(&napi->poll_list);
3996 napi->state = 0;
3997
3998 quota = work + qlen;
3999 }
4000 rps_unlock(sd);
4001 }
4002 local_irq_enable();
4003
4004 return work;
4005 }
4006
4007 /**
4008 * __napi_schedule - schedule for receive
4009 * @n: entry to schedule
4010 *
4011 * The entry's receive function will be scheduled to run
4012 */
4013 void __napi_schedule(struct napi_struct *n)
4014 {
4015 unsigned long flags;
4016
4017 local_irq_save(flags);
4018 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4019 local_irq_restore(flags);
4020 }
4021 EXPORT_SYMBOL(__napi_schedule);
4022
4023 void __napi_complete(struct napi_struct *n)
4024 {
4025 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4026 BUG_ON(n->gro_list);
4027
4028 list_del(&n->poll_list);
4029 smp_mb__before_clear_bit();
4030 clear_bit(NAPI_STATE_SCHED, &n->state);
4031 }
4032 EXPORT_SYMBOL(__napi_complete);
4033
4034 void napi_complete(struct napi_struct *n)
4035 {
4036 unsigned long flags;
4037
4038 /*
4039 * don't let napi dequeue from the cpu poll list
4040 * just in case its running on a different cpu
4041 */
4042 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4043 return;
4044
4045 napi_gro_flush(n, false);
4046 local_irq_save(flags);
4047 __napi_complete(n);
4048 local_irq_restore(flags);
4049 }
4050 EXPORT_SYMBOL(napi_complete);
4051
4052 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4053 int (*poll)(struct napi_struct *, int), int weight)
4054 {
4055 INIT_LIST_HEAD(&napi->poll_list);
4056 napi->gro_count = 0;
4057 napi->gro_list = NULL;
4058 napi->skb = NULL;
4059 napi->poll = poll;
4060 napi->weight = weight;
4061 list_add(&napi->dev_list, &dev->napi_list);
4062 napi->dev = dev;
4063 #ifdef CONFIG_NETPOLL
4064 spin_lock_init(&napi->poll_lock);
4065 napi->poll_owner = -1;
4066 #endif
4067 set_bit(NAPI_STATE_SCHED, &napi->state);
4068 }
4069 EXPORT_SYMBOL(netif_napi_add);
4070
4071 void netif_napi_del(struct napi_struct *napi)
4072 {
4073 struct sk_buff *skb, *next;
4074
4075 list_del_init(&napi->dev_list);
4076 napi_free_frags(napi);
4077
4078 for (skb = napi->gro_list; skb; skb = next) {
4079 next = skb->next;
4080 skb->next = NULL;
4081 kfree_skb(skb);
4082 }
4083
4084 napi->gro_list = NULL;
4085 napi->gro_count = 0;
4086 }
4087 EXPORT_SYMBOL(netif_napi_del);
4088
4089 static void net_rx_action(struct softirq_action *h)
4090 {
4091 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4092 unsigned long time_limit = jiffies + 2;
4093 int budget = netdev_budget;
4094 void *have;
4095
4096 local_irq_disable();
4097
4098 while (!list_empty(&sd->poll_list)) {
4099 struct napi_struct *n;
4100 int work, weight;
4101
4102 /* If softirq window is exhuasted then punt.
4103 * Allow this to run for 2 jiffies since which will allow
4104 * an average latency of 1.5/HZ.
4105 */
4106 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
4107 goto softnet_break;
4108
4109 local_irq_enable();
4110
4111 /* Even though interrupts have been re-enabled, this
4112 * access is safe because interrupts can only add new
4113 * entries to the tail of this list, and only ->poll()
4114 * calls can remove this head entry from the list.
4115 */
4116 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4117
4118 have = netpoll_poll_lock(n);
4119
4120 weight = n->weight;
4121
4122 /* This NAPI_STATE_SCHED test is for avoiding a race
4123 * with netpoll's poll_napi(). Only the entity which
4124 * obtains the lock and sees NAPI_STATE_SCHED set will
4125 * actually make the ->poll() call. Therefore we avoid
4126 * accidentally calling ->poll() when NAPI is not scheduled.
4127 */
4128 work = 0;
4129 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4130 work = n->poll(n, weight);
4131 trace_napi_poll(n);
4132 }
4133
4134 WARN_ON_ONCE(work > weight);
4135
4136 budget -= work;
4137
4138 local_irq_disable();
4139
4140 /* Drivers must not modify the NAPI state if they
4141 * consume the entire weight. In such cases this code
4142 * still "owns" the NAPI instance and therefore can
4143 * move the instance around on the list at-will.
4144 */
4145 if (unlikely(work == weight)) {
4146 if (unlikely(napi_disable_pending(n))) {
4147 local_irq_enable();
4148 napi_complete(n);
4149 local_irq_disable();
4150 } else {
4151 if (n->gro_list) {
4152 /* flush too old packets
4153 * If HZ < 1000, flush all packets.
4154 */
4155 local_irq_enable();
4156 napi_gro_flush(n, HZ >= 1000);
4157 local_irq_disable();
4158 }
4159 list_move_tail(&n->poll_list, &sd->poll_list);
4160 }
4161 }
4162
4163 netpoll_poll_unlock(have);
4164 }
4165 out:
4166 net_rps_action_and_irq_enable(sd);
4167
4168 #ifdef CONFIG_NET_DMA
4169 /*
4170 * There may not be any more sk_buffs coming right now, so push
4171 * any pending DMA copies to hardware
4172 */
4173 dma_issue_pending_all();
4174 #endif
4175
4176 return;
4177
4178 softnet_break:
4179 sd->time_squeeze++;
4180 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4181 goto out;
4182 }
4183
4184 struct netdev_upper {
4185 struct net_device *dev;
4186 bool master;
4187 struct list_head list;
4188 struct rcu_head rcu;
4189 struct list_head search_list;
4190 };
4191
4192 static void __append_search_uppers(struct list_head *search_list,
4193 struct net_device *dev)
4194 {
4195 struct netdev_upper *upper;
4196
4197 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4198 /* check if this upper is not already in search list */
4199 if (list_empty(&upper->search_list))
4200 list_add_tail(&upper->search_list, search_list);
4201 }
4202 }
4203
4204 static bool __netdev_search_upper_dev(struct net_device *dev,
4205 struct net_device *upper_dev)
4206 {
4207 LIST_HEAD(search_list);
4208 struct netdev_upper *upper;
4209 struct netdev_upper *tmp;
4210 bool ret = false;
4211
4212 __append_search_uppers(&search_list, dev);
4213 list_for_each_entry(upper, &search_list, search_list) {
4214 if (upper->dev == upper_dev) {
4215 ret = true;
4216 break;
4217 }
4218 __append_search_uppers(&search_list, upper->dev);
4219 }
4220 list_for_each_entry_safe(upper, tmp, &search_list, search_list)
4221 INIT_LIST_HEAD(&upper->search_list);
4222 return ret;
4223 }
4224
4225 static struct netdev_upper *__netdev_find_upper(struct net_device *dev,
4226 struct net_device *upper_dev)
4227 {
4228 struct netdev_upper *upper;
4229
4230 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4231 if (upper->dev == upper_dev)
4232 return upper;
4233 }
4234 return NULL;
4235 }
4236
4237 /**
4238 * netdev_has_upper_dev - Check if device is linked to an upper device
4239 * @dev: device
4240 * @upper_dev: upper device to check
4241 *
4242 * Find out if a device is linked to specified upper device and return true
4243 * in case it is. Note that this checks only immediate upper device,
4244 * not through a complete stack of devices. The caller must hold the RTNL lock.
4245 */
4246 bool netdev_has_upper_dev(struct net_device *dev,
4247 struct net_device *upper_dev)
4248 {
4249 ASSERT_RTNL();
4250
4251 return __netdev_find_upper(dev, upper_dev);
4252 }
4253 EXPORT_SYMBOL(netdev_has_upper_dev);
4254
4255 /**
4256 * netdev_has_any_upper_dev - Check if device is linked to some device
4257 * @dev: device
4258 *
4259 * Find out if a device is linked to an upper device and return true in case
4260 * it is. The caller must hold the RTNL lock.
4261 */
4262 bool netdev_has_any_upper_dev(struct net_device *dev)
4263 {
4264 ASSERT_RTNL();
4265
4266 return !list_empty(&dev->upper_dev_list);
4267 }
4268 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4269
4270 /**
4271 * netdev_master_upper_dev_get - Get master upper device
4272 * @dev: device
4273 *
4274 * Find a master upper device and return pointer to it or NULL in case
4275 * it's not there. The caller must hold the RTNL lock.
4276 */
4277 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4278 {
4279 struct netdev_upper *upper;
4280
4281 ASSERT_RTNL();
4282
4283 if (list_empty(&dev->upper_dev_list))
4284 return NULL;
4285
4286 upper = list_first_entry(&dev->upper_dev_list,
4287 struct netdev_upper, list);
4288 if (likely(upper->master))
4289 return upper->dev;
4290 return NULL;
4291 }
4292 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4293
4294 /**
4295 * netdev_master_upper_dev_get_rcu - Get master upper device
4296 * @dev: device
4297 *
4298 * Find a master upper device and return pointer to it or NULL in case
4299 * it's not there. The caller must hold the RCU read lock.
4300 */
4301 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4302 {
4303 struct netdev_upper *upper;
4304
4305 upper = list_first_or_null_rcu(&dev->upper_dev_list,
4306 struct netdev_upper, list);
4307 if (upper && likely(upper->master))
4308 return upper->dev;
4309 return NULL;
4310 }
4311 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4312
4313 static int __netdev_upper_dev_link(struct net_device *dev,
4314 struct net_device *upper_dev, bool master)
4315 {
4316 struct netdev_upper *upper;
4317
4318 ASSERT_RTNL();
4319
4320 if (dev == upper_dev)
4321 return -EBUSY;
4322
4323 /* To prevent loops, check if dev is not upper device to upper_dev. */
4324 if (__netdev_search_upper_dev(upper_dev, dev))
4325 return -EBUSY;
4326
4327 if (__netdev_find_upper(dev, upper_dev))
4328 return -EEXIST;
4329
4330 if (master && netdev_master_upper_dev_get(dev))
4331 return -EBUSY;
4332
4333 upper = kmalloc(sizeof(*upper), GFP_KERNEL);
4334 if (!upper)
4335 return -ENOMEM;
4336
4337 upper->dev = upper_dev;
4338 upper->master = master;
4339 INIT_LIST_HEAD(&upper->search_list);
4340
4341 /* Ensure that master upper link is always the first item in list. */
4342 if (master)
4343 list_add_rcu(&upper->list, &dev->upper_dev_list);
4344 else
4345 list_add_tail_rcu(&upper->list, &dev->upper_dev_list);
4346 dev_hold(upper_dev);
4347
4348 return 0;
4349 }
4350
4351 /**
4352 * netdev_upper_dev_link - Add a link to the upper device
4353 * @dev: device
4354 * @upper_dev: new upper device
4355 *
4356 * Adds a link to device which is upper to this one. The caller must hold
4357 * the RTNL lock. On a failure a negative errno code is returned.
4358 * On success the reference counts are adjusted and the function
4359 * returns zero.
4360 */
4361 int netdev_upper_dev_link(struct net_device *dev,
4362 struct net_device *upper_dev)
4363 {
4364 return __netdev_upper_dev_link(dev, upper_dev, false);
4365 }
4366 EXPORT_SYMBOL(netdev_upper_dev_link);
4367
4368 /**
4369 * netdev_master_upper_dev_link - Add a master link to the upper device
4370 * @dev: device
4371 * @upper_dev: new upper device
4372 *
4373 * Adds a link to device which is upper to this one. In this case, only
4374 * one master upper device can be linked, although other non-master devices
4375 * might be linked as well. The caller must hold the RTNL lock.
4376 * On a failure a negative errno code is returned. On success the reference
4377 * counts are adjusted and the function returns zero.
4378 */
4379 int netdev_master_upper_dev_link(struct net_device *dev,
4380 struct net_device *upper_dev)
4381 {
4382 return __netdev_upper_dev_link(dev, upper_dev, true);
4383 }
4384 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4385
4386 /**
4387 * netdev_upper_dev_unlink - Removes a link to upper device
4388 * @dev: device
4389 * @upper_dev: new upper device
4390 *
4391 * Removes a link to device which is upper to this one. The caller must hold
4392 * the RTNL lock.
4393 */
4394 void netdev_upper_dev_unlink(struct net_device *dev,
4395 struct net_device *upper_dev)
4396 {
4397 struct netdev_upper *upper;
4398
4399 ASSERT_RTNL();
4400
4401 upper = __netdev_find_upper(dev, upper_dev);
4402 if (!upper)
4403 return;
4404 list_del_rcu(&upper->list);
4405 dev_put(upper_dev);
4406 kfree_rcu(upper, rcu);
4407 }
4408 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4409
4410 static void dev_change_rx_flags(struct net_device *dev, int flags)
4411 {
4412 const struct net_device_ops *ops = dev->netdev_ops;
4413
4414 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4415 ops->ndo_change_rx_flags(dev, flags);
4416 }
4417
4418 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4419 {
4420 unsigned int old_flags = dev->flags;
4421 kuid_t uid;
4422 kgid_t gid;
4423
4424 ASSERT_RTNL();
4425
4426 dev->flags |= IFF_PROMISC;
4427 dev->promiscuity += inc;
4428 if (dev->promiscuity == 0) {
4429 /*
4430 * Avoid overflow.
4431 * If inc causes overflow, untouch promisc and return error.
4432 */
4433 if (inc < 0)
4434 dev->flags &= ~IFF_PROMISC;
4435 else {
4436 dev->promiscuity -= inc;
4437 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4438 dev->name);
4439 return -EOVERFLOW;
4440 }
4441 }
4442 if (dev->flags != old_flags) {
4443 pr_info("device %s %s promiscuous mode\n",
4444 dev->name,
4445 dev->flags & IFF_PROMISC ? "entered" : "left");
4446 if (audit_enabled) {
4447 current_uid_gid(&uid, &gid);
4448 audit_log(current->audit_context, GFP_ATOMIC,
4449 AUDIT_ANOM_PROMISCUOUS,
4450 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4451 dev->name, (dev->flags & IFF_PROMISC),
4452 (old_flags & IFF_PROMISC),
4453 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4454 from_kuid(&init_user_ns, uid),
4455 from_kgid(&init_user_ns, gid),
4456 audit_get_sessionid(current));
4457 }
4458
4459 dev_change_rx_flags(dev, IFF_PROMISC);
4460 }
4461 return 0;
4462 }
4463
4464 /**
4465 * dev_set_promiscuity - update promiscuity count on a device
4466 * @dev: device
4467 * @inc: modifier
4468 *
4469 * Add or remove promiscuity from a device. While the count in the device
4470 * remains above zero the interface remains promiscuous. Once it hits zero
4471 * the device reverts back to normal filtering operation. A negative inc
4472 * value is used to drop promiscuity on the device.
4473 * Return 0 if successful or a negative errno code on error.
4474 */
4475 int dev_set_promiscuity(struct net_device *dev, int inc)
4476 {
4477 unsigned int old_flags = dev->flags;
4478 int err;
4479
4480 err = __dev_set_promiscuity(dev, inc);
4481 if (err < 0)
4482 return err;
4483 if (dev->flags != old_flags)
4484 dev_set_rx_mode(dev);
4485 return err;
4486 }
4487 EXPORT_SYMBOL(dev_set_promiscuity);
4488
4489 /**
4490 * dev_set_allmulti - update allmulti count on a device
4491 * @dev: device
4492 * @inc: modifier
4493 *
4494 * Add or remove reception of all multicast frames to a device. While the
4495 * count in the device remains above zero the interface remains listening
4496 * to all interfaces. Once it hits zero the device reverts back to normal
4497 * filtering operation. A negative @inc value is used to drop the counter
4498 * when releasing a resource needing all multicasts.
4499 * Return 0 if successful or a negative errno code on error.
4500 */
4501
4502 int dev_set_allmulti(struct net_device *dev, int inc)
4503 {
4504 unsigned int old_flags = dev->flags;
4505
4506 ASSERT_RTNL();
4507
4508 dev->flags |= IFF_ALLMULTI;
4509 dev->allmulti += inc;
4510 if (dev->allmulti == 0) {
4511 /*
4512 * Avoid overflow.
4513 * If inc causes overflow, untouch allmulti and return error.
4514 */
4515 if (inc < 0)
4516 dev->flags &= ~IFF_ALLMULTI;
4517 else {
4518 dev->allmulti -= inc;
4519 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4520 dev->name);
4521 return -EOVERFLOW;
4522 }
4523 }
4524 if (dev->flags ^ old_flags) {
4525 dev_change_rx_flags(dev, IFF_ALLMULTI);
4526 dev_set_rx_mode(dev);
4527 }
4528 return 0;
4529 }
4530 EXPORT_SYMBOL(dev_set_allmulti);
4531
4532 /*
4533 * Upload unicast and multicast address lists to device and
4534 * configure RX filtering. When the device doesn't support unicast
4535 * filtering it is put in promiscuous mode while unicast addresses
4536 * are present.
4537 */
4538 void __dev_set_rx_mode(struct net_device *dev)
4539 {
4540 const struct net_device_ops *ops = dev->netdev_ops;
4541
4542 /* dev_open will call this function so the list will stay sane. */
4543 if (!(dev->flags&IFF_UP))
4544 return;
4545
4546 if (!netif_device_present(dev))
4547 return;
4548
4549 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4550 /* Unicast addresses changes may only happen under the rtnl,
4551 * therefore calling __dev_set_promiscuity here is safe.
4552 */
4553 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4554 __dev_set_promiscuity(dev, 1);
4555 dev->uc_promisc = true;
4556 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4557 __dev_set_promiscuity(dev, -1);
4558 dev->uc_promisc = false;
4559 }
4560 }
4561
4562 if (ops->ndo_set_rx_mode)
4563 ops->ndo_set_rx_mode(dev);
4564 }
4565
4566 void dev_set_rx_mode(struct net_device *dev)
4567 {
4568 netif_addr_lock_bh(dev);
4569 __dev_set_rx_mode(dev);
4570 netif_addr_unlock_bh(dev);
4571 }
4572
4573 /**
4574 * dev_get_flags - get flags reported to userspace
4575 * @dev: device
4576 *
4577 * Get the combination of flag bits exported through APIs to userspace.
4578 */
4579 unsigned int dev_get_flags(const struct net_device *dev)
4580 {
4581 unsigned int flags;
4582
4583 flags = (dev->flags & ~(IFF_PROMISC |
4584 IFF_ALLMULTI |
4585 IFF_RUNNING |
4586 IFF_LOWER_UP |
4587 IFF_DORMANT)) |
4588 (dev->gflags & (IFF_PROMISC |
4589 IFF_ALLMULTI));
4590
4591 if (netif_running(dev)) {
4592 if (netif_oper_up(dev))
4593 flags |= IFF_RUNNING;
4594 if (netif_carrier_ok(dev))
4595 flags |= IFF_LOWER_UP;
4596 if (netif_dormant(dev))
4597 flags |= IFF_DORMANT;
4598 }
4599
4600 return flags;
4601 }
4602 EXPORT_SYMBOL(dev_get_flags);
4603
4604 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4605 {
4606 unsigned int old_flags = dev->flags;
4607 int ret;
4608
4609 ASSERT_RTNL();
4610
4611 /*
4612 * Set the flags on our device.
4613 */
4614
4615 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4616 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4617 IFF_AUTOMEDIA)) |
4618 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4619 IFF_ALLMULTI));
4620
4621 /*
4622 * Load in the correct multicast list now the flags have changed.
4623 */
4624
4625 if ((old_flags ^ flags) & IFF_MULTICAST)
4626 dev_change_rx_flags(dev, IFF_MULTICAST);
4627
4628 dev_set_rx_mode(dev);
4629
4630 /*
4631 * Have we downed the interface. We handle IFF_UP ourselves
4632 * according to user attempts to set it, rather than blindly
4633 * setting it.
4634 */
4635
4636 ret = 0;
4637 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4638 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4639
4640 if (!ret)
4641 dev_set_rx_mode(dev);
4642 }
4643
4644 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4645 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4646
4647 dev->gflags ^= IFF_PROMISC;
4648 dev_set_promiscuity(dev, inc);
4649 }
4650
4651 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4652 is important. Some (broken) drivers set IFF_PROMISC, when
4653 IFF_ALLMULTI is requested not asking us and not reporting.
4654 */
4655 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4656 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4657
4658 dev->gflags ^= IFF_ALLMULTI;
4659 dev_set_allmulti(dev, inc);
4660 }
4661
4662 return ret;
4663 }
4664
4665 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4666 {
4667 unsigned int changes = dev->flags ^ old_flags;
4668
4669 if (changes & IFF_UP) {
4670 if (dev->flags & IFF_UP)
4671 call_netdevice_notifiers(NETDEV_UP, dev);
4672 else
4673 call_netdevice_notifiers(NETDEV_DOWN, dev);
4674 }
4675
4676 if (dev->flags & IFF_UP &&
4677 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4678 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4679 }
4680
4681 /**
4682 * dev_change_flags - change device settings
4683 * @dev: device
4684 * @flags: device state flags
4685 *
4686 * Change settings on device based state flags. The flags are
4687 * in the userspace exported format.
4688 */
4689 int dev_change_flags(struct net_device *dev, unsigned int flags)
4690 {
4691 int ret;
4692 unsigned int changes, old_flags = dev->flags;
4693
4694 ret = __dev_change_flags(dev, flags);
4695 if (ret < 0)
4696 return ret;
4697
4698 changes = old_flags ^ dev->flags;
4699 if (changes)
4700 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4701
4702 __dev_notify_flags(dev, old_flags);
4703 return ret;
4704 }
4705 EXPORT_SYMBOL(dev_change_flags);
4706
4707 /**
4708 * dev_set_mtu - Change maximum transfer unit
4709 * @dev: device
4710 * @new_mtu: new transfer unit
4711 *
4712 * Change the maximum transfer size of the network device.
4713 */
4714 int dev_set_mtu(struct net_device *dev, int new_mtu)
4715 {
4716 const struct net_device_ops *ops = dev->netdev_ops;
4717 int err;
4718
4719 if (new_mtu == dev->mtu)
4720 return 0;
4721
4722 /* MTU must be positive. */
4723 if (new_mtu < 0)
4724 return -EINVAL;
4725
4726 if (!netif_device_present(dev))
4727 return -ENODEV;
4728
4729 err = 0;
4730 if (ops->ndo_change_mtu)
4731 err = ops->ndo_change_mtu(dev, new_mtu);
4732 else
4733 dev->mtu = new_mtu;
4734
4735 if (!err)
4736 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4737 return err;
4738 }
4739 EXPORT_SYMBOL(dev_set_mtu);
4740
4741 /**
4742 * dev_set_group - Change group this device belongs to
4743 * @dev: device
4744 * @new_group: group this device should belong to
4745 */
4746 void dev_set_group(struct net_device *dev, int new_group)
4747 {
4748 dev->group = new_group;
4749 }
4750 EXPORT_SYMBOL(dev_set_group);
4751
4752 /**
4753 * dev_set_mac_address - Change Media Access Control Address
4754 * @dev: device
4755 * @sa: new address
4756 *
4757 * Change the hardware (MAC) address of the device
4758 */
4759 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4760 {
4761 const struct net_device_ops *ops = dev->netdev_ops;
4762 int err;
4763
4764 if (!ops->ndo_set_mac_address)
4765 return -EOPNOTSUPP;
4766 if (sa->sa_family != dev->type)
4767 return -EINVAL;
4768 if (!netif_device_present(dev))
4769 return -ENODEV;
4770 err = ops->ndo_set_mac_address(dev, sa);
4771 if (err)
4772 return err;
4773 dev->addr_assign_type = NET_ADDR_SET;
4774 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4775 add_device_randomness(dev->dev_addr, dev->addr_len);
4776 return 0;
4777 }
4778 EXPORT_SYMBOL(dev_set_mac_address);
4779
4780 /**
4781 * dev_change_carrier - Change device carrier
4782 * @dev: device
4783 * @new_carries: new value
4784 *
4785 * Change device carrier
4786 */
4787 int dev_change_carrier(struct net_device *dev, bool new_carrier)
4788 {
4789 const struct net_device_ops *ops = dev->netdev_ops;
4790
4791 if (!ops->ndo_change_carrier)
4792 return -EOPNOTSUPP;
4793 if (!netif_device_present(dev))
4794 return -ENODEV;
4795 return ops->ndo_change_carrier(dev, new_carrier);
4796 }
4797 EXPORT_SYMBOL(dev_change_carrier);
4798
4799 /**
4800 * dev_new_index - allocate an ifindex
4801 * @net: the applicable net namespace
4802 *
4803 * Returns a suitable unique value for a new device interface
4804 * number. The caller must hold the rtnl semaphore or the
4805 * dev_base_lock to be sure it remains unique.
4806 */
4807 static int dev_new_index(struct net *net)
4808 {
4809 int ifindex = net->ifindex;
4810 for (;;) {
4811 if (++ifindex <= 0)
4812 ifindex = 1;
4813 if (!__dev_get_by_index(net, ifindex))
4814 return net->ifindex = ifindex;
4815 }
4816 }
4817
4818 /* Delayed registration/unregisteration */
4819 static LIST_HEAD(net_todo_list);
4820
4821 static void net_set_todo(struct net_device *dev)
4822 {
4823 list_add_tail(&dev->todo_list, &net_todo_list);
4824 }
4825
4826 static void rollback_registered_many(struct list_head *head)
4827 {
4828 struct net_device *dev, *tmp;
4829
4830 BUG_ON(dev_boot_phase);
4831 ASSERT_RTNL();
4832
4833 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4834 /* Some devices call without registering
4835 * for initialization unwind. Remove those
4836 * devices and proceed with the remaining.
4837 */
4838 if (dev->reg_state == NETREG_UNINITIALIZED) {
4839 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
4840 dev->name, dev);
4841
4842 WARN_ON(1);
4843 list_del(&dev->unreg_list);
4844 continue;
4845 }
4846 dev->dismantle = true;
4847 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4848 }
4849
4850 /* If device is running, close it first. */
4851 dev_close_many(head);
4852
4853 list_for_each_entry(dev, head, unreg_list) {
4854 /* And unlink it from device chain. */
4855 unlist_netdevice(dev);
4856
4857 dev->reg_state = NETREG_UNREGISTERING;
4858 }
4859
4860 synchronize_net();
4861
4862 list_for_each_entry(dev, head, unreg_list) {
4863 /* Shutdown queueing discipline. */
4864 dev_shutdown(dev);
4865
4866
4867 /* Notify protocols, that we are about to destroy
4868 this device. They should clean all the things.
4869 */
4870 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4871
4872 if (!dev->rtnl_link_ops ||
4873 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4874 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4875
4876 /*
4877 * Flush the unicast and multicast chains
4878 */
4879 dev_uc_flush(dev);
4880 dev_mc_flush(dev);
4881
4882 if (dev->netdev_ops->ndo_uninit)
4883 dev->netdev_ops->ndo_uninit(dev);
4884
4885 /* Notifier chain MUST detach us all upper devices. */
4886 WARN_ON(netdev_has_any_upper_dev(dev));
4887
4888 /* Remove entries from kobject tree */
4889 netdev_unregister_kobject(dev);
4890 #ifdef CONFIG_XPS
4891 /* Remove XPS queueing entries */
4892 netif_reset_xps_queues_gt(dev, 0);
4893 #endif
4894 }
4895
4896 synchronize_net();
4897
4898 list_for_each_entry(dev, head, unreg_list)
4899 dev_put(dev);
4900 }
4901
4902 static void rollback_registered(struct net_device *dev)
4903 {
4904 LIST_HEAD(single);
4905
4906 list_add(&dev->unreg_list, &single);
4907 rollback_registered_many(&single);
4908 list_del(&single);
4909 }
4910
4911 static netdev_features_t netdev_fix_features(struct net_device *dev,
4912 netdev_features_t features)
4913 {
4914 /* Fix illegal checksum combinations */
4915 if ((features & NETIF_F_HW_CSUM) &&
4916 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4917 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
4918 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4919 }
4920
4921 /* Fix illegal SG+CSUM combinations. */
4922 if ((features & NETIF_F_SG) &&
4923 !(features & NETIF_F_ALL_CSUM)) {
4924 netdev_dbg(dev,
4925 "Dropping NETIF_F_SG since no checksum feature.\n");
4926 features &= ~NETIF_F_SG;
4927 }
4928
4929 /* TSO requires that SG is present as well. */
4930 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
4931 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
4932 features &= ~NETIF_F_ALL_TSO;
4933 }
4934
4935 /* TSO ECN requires that TSO is present as well. */
4936 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
4937 features &= ~NETIF_F_TSO_ECN;
4938
4939 /* Software GSO depends on SG. */
4940 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
4941 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
4942 features &= ~NETIF_F_GSO;
4943 }
4944
4945 /* UFO needs SG and checksumming */
4946 if (features & NETIF_F_UFO) {
4947 /* maybe split UFO into V4 and V6? */
4948 if (!((features & NETIF_F_GEN_CSUM) ||
4949 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
4950 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4951 netdev_dbg(dev,
4952 "Dropping NETIF_F_UFO since no checksum offload features.\n");
4953 features &= ~NETIF_F_UFO;
4954 }
4955
4956 if (!(features & NETIF_F_SG)) {
4957 netdev_dbg(dev,
4958 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
4959 features &= ~NETIF_F_UFO;
4960 }
4961 }
4962
4963 return features;
4964 }
4965
4966 int __netdev_update_features(struct net_device *dev)
4967 {
4968 netdev_features_t features;
4969 int err = 0;
4970
4971 ASSERT_RTNL();
4972
4973 features = netdev_get_wanted_features(dev);
4974
4975 if (dev->netdev_ops->ndo_fix_features)
4976 features = dev->netdev_ops->ndo_fix_features(dev, features);
4977
4978 /* driver might be less strict about feature dependencies */
4979 features = netdev_fix_features(dev, features);
4980
4981 if (dev->features == features)
4982 return 0;
4983
4984 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
4985 &dev->features, &features);
4986
4987 if (dev->netdev_ops->ndo_set_features)
4988 err = dev->netdev_ops->ndo_set_features(dev, features);
4989
4990 if (unlikely(err < 0)) {
4991 netdev_err(dev,
4992 "set_features() failed (%d); wanted %pNF, left %pNF\n",
4993 err, &features, &dev->features);
4994 return -1;
4995 }
4996
4997 if (!err)
4998 dev->features = features;
4999
5000 return 1;
5001 }
5002
5003 /**
5004 * netdev_update_features - recalculate device features
5005 * @dev: the device to check
5006 *
5007 * Recalculate dev->features set and send notifications if it
5008 * has changed. Should be called after driver or hardware dependent
5009 * conditions might have changed that influence the features.
5010 */
5011 void netdev_update_features(struct net_device *dev)
5012 {
5013 if (__netdev_update_features(dev))
5014 netdev_features_change(dev);
5015 }
5016 EXPORT_SYMBOL(netdev_update_features);
5017
5018 /**
5019 * netdev_change_features - recalculate device features
5020 * @dev: the device to check
5021 *
5022 * Recalculate dev->features set and send notifications even
5023 * if they have not changed. Should be called instead of
5024 * netdev_update_features() if also dev->vlan_features might
5025 * have changed to allow the changes to be propagated to stacked
5026 * VLAN devices.
5027 */
5028 void netdev_change_features(struct net_device *dev)
5029 {
5030 __netdev_update_features(dev);
5031 netdev_features_change(dev);
5032 }
5033 EXPORT_SYMBOL(netdev_change_features);
5034
5035 /**
5036 * netif_stacked_transfer_operstate - transfer operstate
5037 * @rootdev: the root or lower level device to transfer state from
5038 * @dev: the device to transfer operstate to
5039 *
5040 * Transfer operational state from root to device. This is normally
5041 * called when a stacking relationship exists between the root
5042 * device and the device(a leaf device).
5043 */
5044 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5045 struct net_device *dev)
5046 {
5047 if (rootdev->operstate == IF_OPER_DORMANT)
5048 netif_dormant_on(dev);
5049 else
5050 netif_dormant_off(dev);
5051
5052 if (netif_carrier_ok(rootdev)) {
5053 if (!netif_carrier_ok(dev))
5054 netif_carrier_on(dev);
5055 } else {
5056 if (netif_carrier_ok(dev))
5057 netif_carrier_off(dev);
5058 }
5059 }
5060 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5061
5062 #ifdef CONFIG_RPS
5063 static int netif_alloc_rx_queues(struct net_device *dev)
5064 {
5065 unsigned int i, count = dev->num_rx_queues;
5066 struct netdev_rx_queue *rx;
5067
5068 BUG_ON(count < 1);
5069
5070 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5071 if (!rx)
5072 return -ENOMEM;
5073
5074 dev->_rx = rx;
5075
5076 for (i = 0; i < count; i++)
5077 rx[i].dev = dev;
5078 return 0;
5079 }
5080 #endif
5081
5082 static void netdev_init_one_queue(struct net_device *dev,
5083 struct netdev_queue *queue, void *_unused)
5084 {
5085 /* Initialize queue lock */
5086 spin_lock_init(&queue->_xmit_lock);
5087 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5088 queue->xmit_lock_owner = -1;
5089 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5090 queue->dev = dev;
5091 #ifdef CONFIG_BQL
5092 dql_init(&queue->dql, HZ);
5093 #endif
5094 }
5095
5096 static int netif_alloc_netdev_queues(struct net_device *dev)
5097 {
5098 unsigned int count = dev->num_tx_queues;
5099 struct netdev_queue *tx;
5100
5101 BUG_ON(count < 1);
5102
5103 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5104 if (!tx)
5105 return -ENOMEM;
5106
5107 dev->_tx = tx;
5108
5109 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5110 spin_lock_init(&dev->tx_global_lock);
5111
5112 return 0;
5113 }
5114
5115 /**
5116 * register_netdevice - register a network device
5117 * @dev: device to register
5118 *
5119 * Take a completed network device structure and add it to the kernel
5120 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5121 * chain. 0 is returned on success. A negative errno code is returned
5122 * on a failure to set up the device, or if the name is a duplicate.
5123 *
5124 * Callers must hold the rtnl semaphore. You may want
5125 * register_netdev() instead of this.
5126 *
5127 * BUGS:
5128 * The locking appears insufficient to guarantee two parallel registers
5129 * will not get the same name.
5130 */
5131
5132 int register_netdevice(struct net_device *dev)
5133 {
5134 int ret;
5135 struct net *net = dev_net(dev);
5136
5137 BUG_ON(dev_boot_phase);
5138 ASSERT_RTNL();
5139
5140 might_sleep();
5141
5142 /* When net_device's are persistent, this will be fatal. */
5143 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5144 BUG_ON(!net);
5145
5146 spin_lock_init(&dev->addr_list_lock);
5147 netdev_set_addr_lockdep_class(dev);
5148
5149 dev->iflink = -1;
5150
5151 ret = dev_get_valid_name(net, dev, dev->name);
5152 if (ret < 0)
5153 goto out;
5154
5155 /* Init, if this function is available */
5156 if (dev->netdev_ops->ndo_init) {
5157 ret = dev->netdev_ops->ndo_init(dev);
5158 if (ret) {
5159 if (ret > 0)
5160 ret = -EIO;
5161 goto out;
5162 }
5163 }
5164
5165 if (((dev->hw_features | dev->features) & NETIF_F_HW_VLAN_FILTER) &&
5166 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5167 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5168 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5169 ret = -EINVAL;
5170 goto err_uninit;
5171 }
5172
5173 ret = -EBUSY;
5174 if (!dev->ifindex)
5175 dev->ifindex = dev_new_index(net);
5176 else if (__dev_get_by_index(net, dev->ifindex))
5177 goto err_uninit;
5178
5179 if (dev->iflink == -1)
5180 dev->iflink = dev->ifindex;
5181
5182 /* Transfer changeable features to wanted_features and enable
5183 * software offloads (GSO and GRO).
5184 */
5185 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5186 dev->features |= NETIF_F_SOFT_FEATURES;
5187 dev->wanted_features = dev->features & dev->hw_features;
5188
5189 /* Turn on no cache copy if HW is doing checksum */
5190 if (!(dev->flags & IFF_LOOPBACK)) {
5191 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5192 if (dev->features & NETIF_F_ALL_CSUM) {
5193 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5194 dev->features |= NETIF_F_NOCACHE_COPY;
5195 }
5196 }
5197
5198 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5199 */
5200 dev->vlan_features |= NETIF_F_HIGHDMA;
5201
5202 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5203 ret = notifier_to_errno(ret);
5204 if (ret)
5205 goto err_uninit;
5206
5207 ret = netdev_register_kobject(dev);
5208 if (ret)
5209 goto err_uninit;
5210 dev->reg_state = NETREG_REGISTERED;
5211
5212 __netdev_update_features(dev);
5213
5214 /*
5215 * Default initial state at registry is that the
5216 * device is present.
5217 */
5218
5219 set_bit(__LINK_STATE_PRESENT, &dev->state);
5220
5221 linkwatch_init_dev(dev);
5222
5223 dev_init_scheduler(dev);
5224 dev_hold(dev);
5225 list_netdevice(dev);
5226 add_device_randomness(dev->dev_addr, dev->addr_len);
5227
5228 /* If the device has permanent device address, driver should
5229 * set dev_addr and also addr_assign_type should be set to
5230 * NET_ADDR_PERM (default value).
5231 */
5232 if (dev->addr_assign_type == NET_ADDR_PERM)
5233 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5234
5235 /* Notify protocols, that a new device appeared. */
5236 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5237 ret = notifier_to_errno(ret);
5238 if (ret) {
5239 rollback_registered(dev);
5240 dev->reg_state = NETREG_UNREGISTERED;
5241 }
5242 /*
5243 * Prevent userspace races by waiting until the network
5244 * device is fully setup before sending notifications.
5245 */
5246 if (!dev->rtnl_link_ops ||
5247 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5248 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5249
5250 out:
5251 return ret;
5252
5253 err_uninit:
5254 if (dev->netdev_ops->ndo_uninit)
5255 dev->netdev_ops->ndo_uninit(dev);
5256 goto out;
5257 }
5258 EXPORT_SYMBOL(register_netdevice);
5259
5260 /**
5261 * init_dummy_netdev - init a dummy network device for NAPI
5262 * @dev: device to init
5263 *
5264 * This takes a network device structure and initialize the minimum
5265 * amount of fields so it can be used to schedule NAPI polls without
5266 * registering a full blown interface. This is to be used by drivers
5267 * that need to tie several hardware interfaces to a single NAPI
5268 * poll scheduler due to HW limitations.
5269 */
5270 int init_dummy_netdev(struct net_device *dev)
5271 {
5272 /* Clear everything. Note we don't initialize spinlocks
5273 * are they aren't supposed to be taken by any of the
5274 * NAPI code and this dummy netdev is supposed to be
5275 * only ever used for NAPI polls
5276 */
5277 memset(dev, 0, sizeof(struct net_device));
5278
5279 /* make sure we BUG if trying to hit standard
5280 * register/unregister code path
5281 */
5282 dev->reg_state = NETREG_DUMMY;
5283
5284 /* NAPI wants this */
5285 INIT_LIST_HEAD(&dev->napi_list);
5286
5287 /* a dummy interface is started by default */
5288 set_bit(__LINK_STATE_PRESENT, &dev->state);
5289 set_bit(__LINK_STATE_START, &dev->state);
5290
5291 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5292 * because users of this 'device' dont need to change
5293 * its refcount.
5294 */
5295
5296 return 0;
5297 }
5298 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5299
5300
5301 /**
5302 * register_netdev - register a network device
5303 * @dev: device to register
5304 *
5305 * Take a completed network device structure and add it to the kernel
5306 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5307 * chain. 0 is returned on success. A negative errno code is returned
5308 * on a failure to set up the device, or if the name is a duplicate.
5309 *
5310 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5311 * and expands the device name if you passed a format string to
5312 * alloc_netdev.
5313 */
5314 int register_netdev(struct net_device *dev)
5315 {
5316 int err;
5317
5318 rtnl_lock();
5319 err = register_netdevice(dev);
5320 rtnl_unlock();
5321 return err;
5322 }
5323 EXPORT_SYMBOL(register_netdev);
5324
5325 int netdev_refcnt_read(const struct net_device *dev)
5326 {
5327 int i, refcnt = 0;
5328
5329 for_each_possible_cpu(i)
5330 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5331 return refcnt;
5332 }
5333 EXPORT_SYMBOL(netdev_refcnt_read);
5334
5335 /**
5336 * netdev_wait_allrefs - wait until all references are gone.
5337 * @dev: target net_device
5338 *
5339 * This is called when unregistering network devices.
5340 *
5341 * Any protocol or device that holds a reference should register
5342 * for netdevice notification, and cleanup and put back the
5343 * reference if they receive an UNREGISTER event.
5344 * We can get stuck here if buggy protocols don't correctly
5345 * call dev_put.
5346 */
5347 static void netdev_wait_allrefs(struct net_device *dev)
5348 {
5349 unsigned long rebroadcast_time, warning_time;
5350 int refcnt;
5351
5352 linkwatch_forget_dev(dev);
5353
5354 rebroadcast_time = warning_time = jiffies;
5355 refcnt = netdev_refcnt_read(dev);
5356
5357 while (refcnt != 0) {
5358 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5359 rtnl_lock();
5360
5361 /* Rebroadcast unregister notification */
5362 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5363
5364 __rtnl_unlock();
5365 rcu_barrier();
5366 rtnl_lock();
5367
5368 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5369 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5370 &dev->state)) {
5371 /* We must not have linkwatch events
5372 * pending on unregister. If this
5373 * happens, we simply run the queue
5374 * unscheduled, resulting in a noop
5375 * for this device.
5376 */
5377 linkwatch_run_queue();
5378 }
5379
5380 __rtnl_unlock();
5381
5382 rebroadcast_time = jiffies;
5383 }
5384
5385 msleep(250);
5386
5387 refcnt = netdev_refcnt_read(dev);
5388
5389 if (time_after(jiffies, warning_time + 10 * HZ)) {
5390 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5391 dev->name, refcnt);
5392 warning_time = jiffies;
5393 }
5394 }
5395 }
5396
5397 /* The sequence is:
5398 *
5399 * rtnl_lock();
5400 * ...
5401 * register_netdevice(x1);
5402 * register_netdevice(x2);
5403 * ...
5404 * unregister_netdevice(y1);
5405 * unregister_netdevice(y2);
5406 * ...
5407 * rtnl_unlock();
5408 * free_netdev(y1);
5409 * free_netdev(y2);
5410 *
5411 * We are invoked by rtnl_unlock().
5412 * This allows us to deal with problems:
5413 * 1) We can delete sysfs objects which invoke hotplug
5414 * without deadlocking with linkwatch via keventd.
5415 * 2) Since we run with the RTNL semaphore not held, we can sleep
5416 * safely in order to wait for the netdev refcnt to drop to zero.
5417 *
5418 * We must not return until all unregister events added during
5419 * the interval the lock was held have been completed.
5420 */
5421 void netdev_run_todo(void)
5422 {
5423 struct list_head list;
5424
5425 /* Snapshot list, allow later requests */
5426 list_replace_init(&net_todo_list, &list);
5427
5428 __rtnl_unlock();
5429
5430
5431 /* Wait for rcu callbacks to finish before next phase */
5432 if (!list_empty(&list))
5433 rcu_barrier();
5434
5435 while (!list_empty(&list)) {
5436 struct net_device *dev
5437 = list_first_entry(&list, struct net_device, todo_list);
5438 list_del(&dev->todo_list);
5439
5440 rtnl_lock();
5441 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5442 __rtnl_unlock();
5443
5444 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5445 pr_err("network todo '%s' but state %d\n",
5446 dev->name, dev->reg_state);
5447 dump_stack();
5448 continue;
5449 }
5450
5451 dev->reg_state = NETREG_UNREGISTERED;
5452
5453 on_each_cpu(flush_backlog, dev, 1);
5454
5455 netdev_wait_allrefs(dev);
5456
5457 /* paranoia */
5458 BUG_ON(netdev_refcnt_read(dev));
5459 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5460 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5461 WARN_ON(dev->dn_ptr);
5462
5463 if (dev->destructor)
5464 dev->destructor(dev);
5465
5466 /* Free network device */
5467 kobject_put(&dev->dev.kobj);
5468 }
5469 }
5470
5471 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5472 * fields in the same order, with only the type differing.
5473 */
5474 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5475 const struct net_device_stats *netdev_stats)
5476 {
5477 #if BITS_PER_LONG == 64
5478 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5479 memcpy(stats64, netdev_stats, sizeof(*stats64));
5480 #else
5481 size_t i, n = sizeof(*stats64) / sizeof(u64);
5482 const unsigned long *src = (const unsigned long *)netdev_stats;
5483 u64 *dst = (u64 *)stats64;
5484
5485 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5486 sizeof(*stats64) / sizeof(u64));
5487 for (i = 0; i < n; i++)
5488 dst[i] = src[i];
5489 #endif
5490 }
5491 EXPORT_SYMBOL(netdev_stats_to_stats64);
5492
5493 /**
5494 * dev_get_stats - get network device statistics
5495 * @dev: device to get statistics from
5496 * @storage: place to store stats
5497 *
5498 * Get network statistics from device. Return @storage.
5499 * The device driver may provide its own method by setting
5500 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5501 * otherwise the internal statistics structure is used.
5502 */
5503 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5504 struct rtnl_link_stats64 *storage)
5505 {
5506 const struct net_device_ops *ops = dev->netdev_ops;
5507
5508 if (ops->ndo_get_stats64) {
5509 memset(storage, 0, sizeof(*storage));
5510 ops->ndo_get_stats64(dev, storage);
5511 } else if (ops->ndo_get_stats) {
5512 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5513 } else {
5514 netdev_stats_to_stats64(storage, &dev->stats);
5515 }
5516 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5517 return storage;
5518 }
5519 EXPORT_SYMBOL(dev_get_stats);
5520
5521 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5522 {
5523 struct netdev_queue *queue = dev_ingress_queue(dev);
5524
5525 #ifdef CONFIG_NET_CLS_ACT
5526 if (queue)
5527 return queue;
5528 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5529 if (!queue)
5530 return NULL;
5531 netdev_init_one_queue(dev, queue, NULL);
5532 queue->qdisc = &noop_qdisc;
5533 queue->qdisc_sleeping = &noop_qdisc;
5534 rcu_assign_pointer(dev->ingress_queue, queue);
5535 #endif
5536 return queue;
5537 }
5538
5539 static const struct ethtool_ops default_ethtool_ops;
5540
5541 void netdev_set_default_ethtool_ops(struct net_device *dev,
5542 const struct ethtool_ops *ops)
5543 {
5544 if (dev->ethtool_ops == &default_ethtool_ops)
5545 dev->ethtool_ops = ops;
5546 }
5547 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
5548
5549 /**
5550 * alloc_netdev_mqs - allocate network device
5551 * @sizeof_priv: size of private data to allocate space for
5552 * @name: device name format string
5553 * @setup: callback to initialize device
5554 * @txqs: the number of TX subqueues to allocate
5555 * @rxqs: the number of RX subqueues to allocate
5556 *
5557 * Allocates a struct net_device with private data area for driver use
5558 * and performs basic initialization. Also allocates subquue structs
5559 * for each queue on the device.
5560 */
5561 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5562 void (*setup)(struct net_device *),
5563 unsigned int txqs, unsigned int rxqs)
5564 {
5565 struct net_device *dev;
5566 size_t alloc_size;
5567 struct net_device *p;
5568
5569 BUG_ON(strlen(name) >= sizeof(dev->name));
5570
5571 if (txqs < 1) {
5572 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5573 return NULL;
5574 }
5575
5576 #ifdef CONFIG_RPS
5577 if (rxqs < 1) {
5578 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5579 return NULL;
5580 }
5581 #endif
5582
5583 alloc_size = sizeof(struct net_device);
5584 if (sizeof_priv) {
5585 /* ensure 32-byte alignment of private area */
5586 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5587 alloc_size += sizeof_priv;
5588 }
5589 /* ensure 32-byte alignment of whole construct */
5590 alloc_size += NETDEV_ALIGN - 1;
5591
5592 p = kzalloc(alloc_size, GFP_KERNEL);
5593 if (!p)
5594 return NULL;
5595
5596 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5597 dev->padded = (char *)dev - (char *)p;
5598
5599 dev->pcpu_refcnt = alloc_percpu(int);
5600 if (!dev->pcpu_refcnt)
5601 goto free_p;
5602
5603 if (dev_addr_init(dev))
5604 goto free_pcpu;
5605
5606 dev_mc_init(dev);
5607 dev_uc_init(dev);
5608
5609 dev_net_set(dev, &init_net);
5610
5611 dev->gso_max_size = GSO_MAX_SIZE;
5612 dev->gso_max_segs = GSO_MAX_SEGS;
5613
5614 INIT_LIST_HEAD(&dev->napi_list);
5615 INIT_LIST_HEAD(&dev->unreg_list);
5616 INIT_LIST_HEAD(&dev->link_watch_list);
5617 INIT_LIST_HEAD(&dev->upper_dev_list);
5618 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5619 setup(dev);
5620
5621 dev->num_tx_queues = txqs;
5622 dev->real_num_tx_queues = txqs;
5623 if (netif_alloc_netdev_queues(dev))
5624 goto free_all;
5625
5626 #ifdef CONFIG_RPS
5627 dev->num_rx_queues = rxqs;
5628 dev->real_num_rx_queues = rxqs;
5629 if (netif_alloc_rx_queues(dev))
5630 goto free_all;
5631 #endif
5632
5633 strcpy(dev->name, name);
5634 dev->group = INIT_NETDEV_GROUP;
5635 if (!dev->ethtool_ops)
5636 dev->ethtool_ops = &default_ethtool_ops;
5637 return dev;
5638
5639 free_all:
5640 free_netdev(dev);
5641 return NULL;
5642
5643 free_pcpu:
5644 free_percpu(dev->pcpu_refcnt);
5645 kfree(dev->_tx);
5646 #ifdef CONFIG_RPS
5647 kfree(dev->_rx);
5648 #endif
5649
5650 free_p:
5651 kfree(p);
5652 return NULL;
5653 }
5654 EXPORT_SYMBOL(alloc_netdev_mqs);
5655
5656 /**
5657 * free_netdev - free network device
5658 * @dev: device
5659 *
5660 * This function does the last stage of destroying an allocated device
5661 * interface. The reference to the device object is released.
5662 * If this is the last reference then it will be freed.
5663 */
5664 void free_netdev(struct net_device *dev)
5665 {
5666 struct napi_struct *p, *n;
5667
5668 release_net(dev_net(dev));
5669
5670 kfree(dev->_tx);
5671 #ifdef CONFIG_RPS
5672 kfree(dev->_rx);
5673 #endif
5674
5675 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5676
5677 /* Flush device addresses */
5678 dev_addr_flush(dev);
5679
5680 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5681 netif_napi_del(p);
5682
5683 free_percpu(dev->pcpu_refcnt);
5684 dev->pcpu_refcnt = NULL;
5685
5686 /* Compatibility with error handling in drivers */
5687 if (dev->reg_state == NETREG_UNINITIALIZED) {
5688 kfree((char *)dev - dev->padded);
5689 return;
5690 }
5691
5692 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5693 dev->reg_state = NETREG_RELEASED;
5694
5695 /* will free via device release */
5696 put_device(&dev->dev);
5697 }
5698 EXPORT_SYMBOL(free_netdev);
5699
5700 /**
5701 * synchronize_net - Synchronize with packet receive processing
5702 *
5703 * Wait for packets currently being received to be done.
5704 * Does not block later packets from starting.
5705 */
5706 void synchronize_net(void)
5707 {
5708 might_sleep();
5709 if (rtnl_is_locked())
5710 synchronize_rcu_expedited();
5711 else
5712 synchronize_rcu();
5713 }
5714 EXPORT_SYMBOL(synchronize_net);
5715
5716 /**
5717 * unregister_netdevice_queue - remove device from the kernel
5718 * @dev: device
5719 * @head: list
5720 *
5721 * This function shuts down a device interface and removes it
5722 * from the kernel tables.
5723 * If head not NULL, device is queued to be unregistered later.
5724 *
5725 * Callers must hold the rtnl semaphore. You may want
5726 * unregister_netdev() instead of this.
5727 */
5728
5729 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5730 {
5731 ASSERT_RTNL();
5732
5733 if (head) {
5734 list_move_tail(&dev->unreg_list, head);
5735 } else {
5736 rollback_registered(dev);
5737 /* Finish processing unregister after unlock */
5738 net_set_todo(dev);
5739 }
5740 }
5741 EXPORT_SYMBOL(unregister_netdevice_queue);
5742
5743 /**
5744 * unregister_netdevice_many - unregister many devices
5745 * @head: list of devices
5746 */
5747 void unregister_netdevice_many(struct list_head *head)
5748 {
5749 struct net_device *dev;
5750
5751 if (!list_empty(head)) {
5752 rollback_registered_many(head);
5753 list_for_each_entry(dev, head, unreg_list)
5754 net_set_todo(dev);
5755 }
5756 }
5757 EXPORT_SYMBOL(unregister_netdevice_many);
5758
5759 /**
5760 * unregister_netdev - remove device from the kernel
5761 * @dev: device
5762 *
5763 * This function shuts down a device interface and removes it
5764 * from the kernel tables.
5765 *
5766 * This is just a wrapper for unregister_netdevice that takes
5767 * the rtnl semaphore. In general you want to use this and not
5768 * unregister_netdevice.
5769 */
5770 void unregister_netdev(struct net_device *dev)
5771 {
5772 rtnl_lock();
5773 unregister_netdevice(dev);
5774 rtnl_unlock();
5775 }
5776 EXPORT_SYMBOL(unregister_netdev);
5777
5778 /**
5779 * dev_change_net_namespace - move device to different nethost namespace
5780 * @dev: device
5781 * @net: network namespace
5782 * @pat: If not NULL name pattern to try if the current device name
5783 * is already taken in the destination network namespace.
5784 *
5785 * This function shuts down a device interface and moves it
5786 * to a new network namespace. On success 0 is returned, on
5787 * a failure a netagive errno code is returned.
5788 *
5789 * Callers must hold the rtnl semaphore.
5790 */
5791
5792 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5793 {
5794 int err;
5795
5796 ASSERT_RTNL();
5797
5798 /* Don't allow namespace local devices to be moved. */
5799 err = -EINVAL;
5800 if (dev->features & NETIF_F_NETNS_LOCAL)
5801 goto out;
5802
5803 /* Ensure the device has been registrered */
5804 if (dev->reg_state != NETREG_REGISTERED)
5805 goto out;
5806
5807 /* Get out if there is nothing todo */
5808 err = 0;
5809 if (net_eq(dev_net(dev), net))
5810 goto out;
5811
5812 /* Pick the destination device name, and ensure
5813 * we can use it in the destination network namespace.
5814 */
5815 err = -EEXIST;
5816 if (__dev_get_by_name(net, dev->name)) {
5817 /* We get here if we can't use the current device name */
5818 if (!pat)
5819 goto out;
5820 if (dev_get_valid_name(net, dev, pat) < 0)
5821 goto out;
5822 }
5823
5824 /*
5825 * And now a mini version of register_netdevice unregister_netdevice.
5826 */
5827
5828 /* If device is running close it first. */
5829 dev_close(dev);
5830
5831 /* And unlink it from device chain */
5832 err = -ENODEV;
5833 unlist_netdevice(dev);
5834
5835 synchronize_net();
5836
5837 /* Shutdown queueing discipline. */
5838 dev_shutdown(dev);
5839
5840 /* Notify protocols, that we are about to destroy
5841 this device. They should clean all the things.
5842
5843 Note that dev->reg_state stays at NETREG_REGISTERED.
5844 This is wanted because this way 8021q and macvlan know
5845 the device is just moving and can keep their slaves up.
5846 */
5847 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5848 rcu_barrier();
5849 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5850 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5851
5852 /*
5853 * Flush the unicast and multicast chains
5854 */
5855 dev_uc_flush(dev);
5856 dev_mc_flush(dev);
5857
5858 /* Send a netdev-removed uevent to the old namespace */
5859 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
5860
5861 /* Actually switch the network namespace */
5862 dev_net_set(dev, net);
5863
5864 /* If there is an ifindex conflict assign a new one */
5865 if (__dev_get_by_index(net, dev->ifindex)) {
5866 int iflink = (dev->iflink == dev->ifindex);
5867 dev->ifindex = dev_new_index(net);
5868 if (iflink)
5869 dev->iflink = dev->ifindex;
5870 }
5871
5872 /* Send a netdev-add uevent to the new namespace */
5873 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
5874
5875 /* Fixup kobjects */
5876 err = device_rename(&dev->dev, dev->name);
5877 WARN_ON(err);
5878
5879 /* Add the device back in the hashes */
5880 list_netdevice(dev);
5881
5882 /* Notify protocols, that a new device appeared. */
5883 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5884
5885 /*
5886 * Prevent userspace races by waiting until the network
5887 * device is fully setup before sending notifications.
5888 */
5889 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5890
5891 synchronize_net();
5892 err = 0;
5893 out:
5894 return err;
5895 }
5896 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5897
5898 static int dev_cpu_callback(struct notifier_block *nfb,
5899 unsigned long action,
5900 void *ocpu)
5901 {
5902 struct sk_buff **list_skb;
5903 struct sk_buff *skb;
5904 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5905 struct softnet_data *sd, *oldsd;
5906
5907 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5908 return NOTIFY_OK;
5909
5910 local_irq_disable();
5911 cpu = smp_processor_id();
5912 sd = &per_cpu(softnet_data, cpu);
5913 oldsd = &per_cpu(softnet_data, oldcpu);
5914
5915 /* Find end of our completion_queue. */
5916 list_skb = &sd->completion_queue;
5917 while (*list_skb)
5918 list_skb = &(*list_skb)->next;
5919 /* Append completion queue from offline CPU. */
5920 *list_skb = oldsd->completion_queue;
5921 oldsd->completion_queue = NULL;
5922
5923 /* Append output queue from offline CPU. */
5924 if (oldsd->output_queue) {
5925 *sd->output_queue_tailp = oldsd->output_queue;
5926 sd->output_queue_tailp = oldsd->output_queue_tailp;
5927 oldsd->output_queue = NULL;
5928 oldsd->output_queue_tailp = &oldsd->output_queue;
5929 }
5930 /* Append NAPI poll list from offline CPU. */
5931 if (!list_empty(&oldsd->poll_list)) {
5932 list_splice_init(&oldsd->poll_list, &sd->poll_list);
5933 raise_softirq_irqoff(NET_RX_SOFTIRQ);
5934 }
5935
5936 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5937 local_irq_enable();
5938
5939 /* Process offline CPU's input_pkt_queue */
5940 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5941 netif_rx(skb);
5942 input_queue_head_incr(oldsd);
5943 }
5944 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5945 netif_rx(skb);
5946 input_queue_head_incr(oldsd);
5947 }
5948
5949 return NOTIFY_OK;
5950 }
5951
5952
5953 /**
5954 * netdev_increment_features - increment feature set by one
5955 * @all: current feature set
5956 * @one: new feature set
5957 * @mask: mask feature set
5958 *
5959 * Computes a new feature set after adding a device with feature set
5960 * @one to the master device with current feature set @all. Will not
5961 * enable anything that is off in @mask. Returns the new feature set.
5962 */
5963 netdev_features_t netdev_increment_features(netdev_features_t all,
5964 netdev_features_t one, netdev_features_t mask)
5965 {
5966 if (mask & NETIF_F_GEN_CSUM)
5967 mask |= NETIF_F_ALL_CSUM;
5968 mask |= NETIF_F_VLAN_CHALLENGED;
5969
5970 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
5971 all &= one | ~NETIF_F_ALL_FOR_ALL;
5972
5973 /* If one device supports hw checksumming, set for all. */
5974 if (all & NETIF_F_GEN_CSUM)
5975 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
5976
5977 return all;
5978 }
5979 EXPORT_SYMBOL(netdev_increment_features);
5980
5981 static struct hlist_head *netdev_create_hash(void)
5982 {
5983 int i;
5984 struct hlist_head *hash;
5985
5986 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5987 if (hash != NULL)
5988 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5989 INIT_HLIST_HEAD(&hash[i]);
5990
5991 return hash;
5992 }
5993
5994 /* Initialize per network namespace state */
5995 static int __net_init netdev_init(struct net *net)
5996 {
5997 if (net != &init_net)
5998 INIT_LIST_HEAD(&net->dev_base_head);
5999
6000 net->dev_name_head = netdev_create_hash();
6001 if (net->dev_name_head == NULL)
6002 goto err_name;
6003
6004 net->dev_index_head = netdev_create_hash();
6005 if (net->dev_index_head == NULL)
6006 goto err_idx;
6007
6008 return 0;
6009
6010 err_idx:
6011 kfree(net->dev_name_head);
6012 err_name:
6013 return -ENOMEM;
6014 }
6015
6016 /**
6017 * netdev_drivername - network driver for the device
6018 * @dev: network device
6019 *
6020 * Determine network driver for device.
6021 */
6022 const char *netdev_drivername(const struct net_device *dev)
6023 {
6024 const struct device_driver *driver;
6025 const struct device *parent;
6026 const char *empty = "";
6027
6028 parent = dev->dev.parent;
6029 if (!parent)
6030 return empty;
6031
6032 driver = parent->driver;
6033 if (driver && driver->name)
6034 return driver->name;
6035 return empty;
6036 }
6037
6038 static int __netdev_printk(const char *level, const struct net_device *dev,
6039 struct va_format *vaf)
6040 {
6041 int r;
6042
6043 if (dev && dev->dev.parent) {
6044 r = dev_printk_emit(level[1] - '0',
6045 dev->dev.parent,
6046 "%s %s %s: %pV",
6047 dev_driver_string(dev->dev.parent),
6048 dev_name(dev->dev.parent),
6049 netdev_name(dev), vaf);
6050 } else if (dev) {
6051 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6052 } else {
6053 r = printk("%s(NULL net_device): %pV", level, vaf);
6054 }
6055
6056 return r;
6057 }
6058
6059 int netdev_printk(const char *level, const struct net_device *dev,
6060 const char *format, ...)
6061 {
6062 struct va_format vaf;
6063 va_list args;
6064 int r;
6065
6066 va_start(args, format);
6067
6068 vaf.fmt = format;
6069 vaf.va = &args;
6070
6071 r = __netdev_printk(level, dev, &vaf);
6072
6073 va_end(args);
6074
6075 return r;
6076 }
6077 EXPORT_SYMBOL(netdev_printk);
6078
6079 #define define_netdev_printk_level(func, level) \
6080 int func(const struct net_device *dev, const char *fmt, ...) \
6081 { \
6082 int r; \
6083 struct va_format vaf; \
6084 va_list args; \
6085 \
6086 va_start(args, fmt); \
6087 \
6088 vaf.fmt = fmt; \
6089 vaf.va = &args; \
6090 \
6091 r = __netdev_printk(level, dev, &vaf); \
6092 \
6093 va_end(args); \
6094 \
6095 return r; \
6096 } \
6097 EXPORT_SYMBOL(func);
6098
6099 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6100 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6101 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6102 define_netdev_printk_level(netdev_err, KERN_ERR);
6103 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6104 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6105 define_netdev_printk_level(netdev_info, KERN_INFO);
6106
6107 static void __net_exit netdev_exit(struct net *net)
6108 {
6109 kfree(net->dev_name_head);
6110 kfree(net->dev_index_head);
6111 }
6112
6113 static struct pernet_operations __net_initdata netdev_net_ops = {
6114 .init = netdev_init,
6115 .exit = netdev_exit,
6116 };
6117
6118 static void __net_exit default_device_exit(struct net *net)
6119 {
6120 struct net_device *dev, *aux;
6121 /*
6122 * Push all migratable network devices back to the
6123 * initial network namespace
6124 */
6125 rtnl_lock();
6126 for_each_netdev_safe(net, dev, aux) {
6127 int err;
6128 char fb_name[IFNAMSIZ];
6129
6130 /* Ignore unmoveable devices (i.e. loopback) */
6131 if (dev->features & NETIF_F_NETNS_LOCAL)
6132 continue;
6133
6134 /* Leave virtual devices for the generic cleanup */
6135 if (dev->rtnl_link_ops)
6136 continue;
6137
6138 /* Push remaining network devices to init_net */
6139 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6140 err = dev_change_net_namespace(dev, &init_net, fb_name);
6141 if (err) {
6142 pr_emerg("%s: failed to move %s to init_net: %d\n",
6143 __func__, dev->name, err);
6144 BUG();
6145 }
6146 }
6147 rtnl_unlock();
6148 }
6149
6150 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6151 {
6152 /* At exit all network devices most be removed from a network
6153 * namespace. Do this in the reverse order of registration.
6154 * Do this across as many network namespaces as possible to
6155 * improve batching efficiency.
6156 */
6157 struct net_device *dev;
6158 struct net *net;
6159 LIST_HEAD(dev_kill_list);
6160
6161 rtnl_lock();
6162 list_for_each_entry(net, net_list, exit_list) {
6163 for_each_netdev_reverse(net, dev) {
6164 if (dev->rtnl_link_ops)
6165 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6166 else
6167 unregister_netdevice_queue(dev, &dev_kill_list);
6168 }
6169 }
6170 unregister_netdevice_many(&dev_kill_list);
6171 list_del(&dev_kill_list);
6172 rtnl_unlock();
6173 }
6174
6175 static struct pernet_operations __net_initdata default_device_ops = {
6176 .exit = default_device_exit,
6177 .exit_batch = default_device_exit_batch,
6178 };
6179
6180 /*
6181 * Initialize the DEV module. At boot time this walks the device list and
6182 * unhooks any devices that fail to initialise (normally hardware not
6183 * present) and leaves us with a valid list of present and active devices.
6184 *
6185 */
6186
6187 /*
6188 * This is called single threaded during boot, so no need
6189 * to take the rtnl semaphore.
6190 */
6191 static int __init net_dev_init(void)
6192 {
6193 int i, rc = -ENOMEM;
6194
6195 BUG_ON(!dev_boot_phase);
6196
6197 if (dev_proc_init())
6198 goto out;
6199
6200 if (netdev_kobject_init())
6201 goto out;
6202
6203 INIT_LIST_HEAD(&ptype_all);
6204 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6205 INIT_LIST_HEAD(&ptype_base[i]);
6206
6207 INIT_LIST_HEAD(&offload_base);
6208
6209 if (register_pernet_subsys(&netdev_net_ops))
6210 goto out;
6211
6212 /*
6213 * Initialise the packet receive queues.
6214 */
6215
6216 for_each_possible_cpu(i) {
6217 struct softnet_data *sd = &per_cpu(softnet_data, i);
6218
6219 memset(sd, 0, sizeof(*sd));
6220 skb_queue_head_init(&sd->input_pkt_queue);
6221 skb_queue_head_init(&sd->process_queue);
6222 sd->completion_queue = NULL;
6223 INIT_LIST_HEAD(&sd->poll_list);
6224 sd->output_queue = NULL;
6225 sd->output_queue_tailp = &sd->output_queue;
6226 #ifdef CONFIG_RPS
6227 sd->csd.func = rps_trigger_softirq;
6228 sd->csd.info = sd;
6229 sd->csd.flags = 0;
6230 sd->cpu = i;
6231 #endif
6232
6233 sd->backlog.poll = process_backlog;
6234 sd->backlog.weight = weight_p;
6235 sd->backlog.gro_list = NULL;
6236 sd->backlog.gro_count = 0;
6237 }
6238
6239 dev_boot_phase = 0;
6240
6241 /* The loopback device is special if any other network devices
6242 * is present in a network namespace the loopback device must
6243 * be present. Since we now dynamically allocate and free the
6244 * loopback device ensure this invariant is maintained by
6245 * keeping the loopback device as the first device on the
6246 * list of network devices. Ensuring the loopback devices
6247 * is the first device that appears and the last network device
6248 * that disappears.
6249 */
6250 if (register_pernet_device(&loopback_net_ops))
6251 goto out;
6252
6253 if (register_pernet_device(&default_device_ops))
6254 goto out;
6255
6256 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6257 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6258
6259 hotcpu_notifier(dev_cpu_callback, 0);
6260 dst_init();
6261 rc = 0;
6262 out:
6263 return rc;
6264 }
6265
6266 subsys_initcall(net_dev_init);