]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/dev.c
net: make dev->master general
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136
137 #include "net-sysfs.h"
138
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144
145 /*
146 * The list of packet types we will receive (as opposed to discard)
147 * and the routines to invoke.
148 *
149 * Why 16. Because with 16 the only overlap we get on a hash of the
150 * low nibble of the protocol value is RARP/SNAP/X.25.
151 *
152 * NOTE: That is no longer true with the addition of VLAN tags. Not
153 * sure which should go first, but I bet it won't make much
154 * difference if we are running VLANs. The good news is that
155 * this protocol won't be in the list unless compiled in, so
156 * the average user (w/out VLANs) will not be adversely affected.
157 * --BLG
158 *
159 * 0800 IP
160 * 8100 802.1Q VLAN
161 * 0001 802.3
162 * 0002 AX.25
163 * 0004 802.2
164 * 8035 RARP
165 * 0005 SNAP
166 * 0805 X.25
167 * 0806 ARP
168 * 8137 IPX
169 * 0009 Localtalk
170 * 86DD IPv6
171 */
172
173 #define PTYPE_HASH_SIZE (16)
174 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
175
176 static DEFINE_SPINLOCK(ptype_lock);
177 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
178 static struct list_head ptype_all __read_mostly; /* Taps */
179
180 /*
181 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
182 * semaphore.
183 *
184 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
185 *
186 * Writers must hold the rtnl semaphore while they loop through the
187 * dev_base_head list, and hold dev_base_lock for writing when they do the
188 * actual updates. This allows pure readers to access the list even
189 * while a writer is preparing to update it.
190 *
191 * To put it another way, dev_base_lock is held for writing only to
192 * protect against pure readers; the rtnl semaphore provides the
193 * protection against other writers.
194 *
195 * See, for example usages, register_netdevice() and
196 * unregister_netdevice(), which must be called with the rtnl
197 * semaphore held.
198 */
199 DEFINE_RWLOCK(dev_base_lock);
200 EXPORT_SYMBOL(dev_base_lock);
201
202 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
203 {
204 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
205 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
206 }
207
208 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
209 {
210 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
211 }
212
213 static inline void rps_lock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216 spin_lock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219
220 static inline void rps_unlock(struct softnet_data *sd)
221 {
222 #ifdef CONFIG_RPS
223 spin_unlock(&sd->input_pkt_queue.lock);
224 #endif
225 }
226
227 /* Device list insertion */
228 static int list_netdevice(struct net_device *dev)
229 {
230 struct net *net = dev_net(dev);
231
232 ASSERT_RTNL();
233
234 write_lock_bh(&dev_base_lock);
235 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
236 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
237 hlist_add_head_rcu(&dev->index_hlist,
238 dev_index_hash(net, dev->ifindex));
239 write_unlock_bh(&dev_base_lock);
240 return 0;
241 }
242
243 /* Device list removal
244 * caller must respect a RCU grace period before freeing/reusing dev
245 */
246 static void unlist_netdevice(struct net_device *dev)
247 {
248 ASSERT_RTNL();
249
250 /* Unlink dev from the device chain */
251 write_lock_bh(&dev_base_lock);
252 list_del_rcu(&dev->dev_list);
253 hlist_del_rcu(&dev->name_hlist);
254 hlist_del_rcu(&dev->index_hlist);
255 write_unlock_bh(&dev_base_lock);
256 }
257
258 /*
259 * Our notifier list
260 */
261
262 static RAW_NOTIFIER_HEAD(netdev_chain);
263
264 /*
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
267 */
268
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
271
272 #ifdef CONFIG_LOCKDEP
273 /*
274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275 * according to dev->type
276 */
277 static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
291 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
292 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
293 ARPHRD_VOID, ARPHRD_NONE};
294
295 static const char *const netdev_lock_name[] =
296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
309 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
310 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
311 "_xmit_VOID", "_xmit_NONE"};
312
313 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
315
316 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
317 {
318 int i;
319
320 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
321 if (netdev_lock_type[i] == dev_type)
322 return i;
323 /* the last key is used by default */
324 return ARRAY_SIZE(netdev_lock_type) - 1;
325 }
326
327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
328 unsigned short dev_type)
329 {
330 int i;
331
332 i = netdev_lock_pos(dev_type);
333 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
334 netdev_lock_name[i]);
335 }
336
337 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
338 {
339 int i;
340
341 i = netdev_lock_pos(dev->type);
342 lockdep_set_class_and_name(&dev->addr_list_lock,
343 &netdev_addr_lock_key[i],
344 netdev_lock_name[i]);
345 }
346 #else
347 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
348 unsigned short dev_type)
349 {
350 }
351 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
352 {
353 }
354 #endif
355
356 /*******************************************************************************
357
358 Protocol management and registration routines
359
360 *******************************************************************************/
361
362 /*
363 * Add a protocol ID to the list. Now that the input handler is
364 * smarter we can dispense with all the messy stuff that used to be
365 * here.
366 *
367 * BEWARE!!! Protocol handlers, mangling input packets,
368 * MUST BE last in hash buckets and checking protocol handlers
369 * MUST start from promiscuous ptype_all chain in net_bh.
370 * It is true now, do not change it.
371 * Explanation follows: if protocol handler, mangling packet, will
372 * be the first on list, it is not able to sense, that packet
373 * is cloned and should be copied-on-write, so that it will
374 * change it and subsequent readers will get broken packet.
375 * --ANK (980803)
376 */
377
378 static inline struct list_head *ptype_head(const struct packet_type *pt)
379 {
380 if (pt->type == htons(ETH_P_ALL))
381 return &ptype_all;
382 else
383 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 }
385
386 /**
387 * dev_add_pack - add packet handler
388 * @pt: packet type declaration
389 *
390 * Add a protocol handler to the networking stack. The passed &packet_type
391 * is linked into kernel lists and may not be freed until it has been
392 * removed from the kernel lists.
393 *
394 * This call does not sleep therefore it can not
395 * guarantee all CPU's that are in middle of receiving packets
396 * will see the new packet type (until the next received packet).
397 */
398
399 void dev_add_pack(struct packet_type *pt)
400 {
401 struct list_head *head = ptype_head(pt);
402
403 spin_lock(&ptype_lock);
404 list_add_rcu(&pt->list, head);
405 spin_unlock(&ptype_lock);
406 }
407 EXPORT_SYMBOL(dev_add_pack);
408
409 /**
410 * __dev_remove_pack - remove packet handler
411 * @pt: packet type declaration
412 *
413 * Remove a protocol handler that was previously added to the kernel
414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
415 * from the kernel lists and can be freed or reused once this function
416 * returns.
417 *
418 * The packet type might still be in use by receivers
419 * and must not be freed until after all the CPU's have gone
420 * through a quiescent state.
421 */
422 void __dev_remove_pack(struct packet_type *pt)
423 {
424 struct list_head *head = ptype_head(pt);
425 struct packet_type *pt1;
426
427 spin_lock(&ptype_lock);
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437 out:
438 spin_unlock(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462 /******************************************************************************
463
464 Device Boot-time Settings Routines
465
466 *******************************************************************************/
467
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470
471 /**
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
475 *
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
479 */
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
481 {
482 struct netdev_boot_setup *s;
483 int i;
484
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
492 }
493 }
494
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496 }
497
498 /**
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
501 *
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
506 */
507 int netdev_boot_setup_check(struct net_device *dev)
508 {
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
511
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
520 }
521 }
522 return 0;
523 }
524 EXPORT_SYMBOL(netdev_boot_setup_check);
525
526
527 /**
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
531 *
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
536 */
537 unsigned long netdev_boot_base(const char *prefix, int unit)
538 {
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
542
543 sprintf(name, "%s%d", prefix, unit);
544
545 /*
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
548 */
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
551
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
556 }
557
558 /*
559 * Saves at boot time configured settings for any netdevice.
560 */
561 int __init netdev_boot_setup(char *str)
562 {
563 int ints[5];
564 struct ifmap map;
565
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
569
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
580
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
583 }
584
585 __setup("netdev=", netdev_boot_setup);
586
587 /*******************************************************************************
588
589 Device Interface Subroutines
590
591 *******************************************************************************/
592
593 /**
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
597 *
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
603 */
604
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
606 {
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
610
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
614
615 return NULL;
616 }
617 EXPORT_SYMBOL(__dev_get_by_name);
618
619 /**
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
623 *
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
629 */
630
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632 {
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
636
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
640
641 return NULL;
642 }
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
644
645 /**
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
649 *
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
655 */
656
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
658 {
659 struct net_device *dev;
660
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
667 }
668 EXPORT_SYMBOL(dev_get_by_name);
669
670 /**
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
674 *
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
680 */
681
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683 {
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
687
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
691
692 return NULL;
693 }
694 EXPORT_SYMBOL(__dev_get_by_index);
695
696 /**
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
700 *
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
705 */
706
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708 {
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
712
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
716
717 return NULL;
718 }
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
720
721
722 /**
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
731 */
732
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
734 {
735 struct net_device *dev;
736
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
743 }
744 EXPORT_SYMBOL(dev_get_by_index);
745
746 /**
747 * dev_getbyhwaddr_rcu - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
751 *
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device.
754 * The caller must hold RCU or RTNL.
755 * The returned device has not had its ref count increased
756 * and the caller must therefore be careful about locking
757 *
758 */
759
760 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
761 const char *ha)
762 {
763 struct net_device *dev;
764
765 for_each_netdev_rcu(net, dev)
766 if (dev->type == type &&
767 !memcmp(dev->dev_addr, ha, dev->addr_len))
768 return dev;
769
770 return NULL;
771 }
772 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
773
774 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
775 {
776 struct net_device *dev;
777
778 ASSERT_RTNL();
779 for_each_netdev(net, dev)
780 if (dev->type == type)
781 return dev;
782
783 return NULL;
784 }
785 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
786
787 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
788 {
789 struct net_device *dev, *ret = NULL;
790
791 rcu_read_lock();
792 for_each_netdev_rcu(net, dev)
793 if (dev->type == type) {
794 dev_hold(dev);
795 ret = dev;
796 break;
797 }
798 rcu_read_unlock();
799 return ret;
800 }
801 EXPORT_SYMBOL(dev_getfirstbyhwtype);
802
803 /**
804 * dev_get_by_flags_rcu - find any device with given flags
805 * @net: the applicable net namespace
806 * @if_flags: IFF_* values
807 * @mask: bitmask of bits in if_flags to check
808 *
809 * Search for any interface with the given flags. Returns NULL if a device
810 * is not found or a pointer to the device. Must be called inside
811 * rcu_read_lock(), and result refcount is unchanged.
812 */
813
814 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
815 unsigned short mask)
816 {
817 struct net_device *dev, *ret;
818
819 ret = NULL;
820 for_each_netdev_rcu(net, dev) {
821 if (((dev->flags ^ if_flags) & mask) == 0) {
822 ret = dev;
823 break;
824 }
825 }
826 return ret;
827 }
828 EXPORT_SYMBOL(dev_get_by_flags_rcu);
829
830 /**
831 * dev_valid_name - check if name is okay for network device
832 * @name: name string
833 *
834 * Network device names need to be valid file names to
835 * to allow sysfs to work. We also disallow any kind of
836 * whitespace.
837 */
838 int dev_valid_name(const char *name)
839 {
840 if (*name == '\0')
841 return 0;
842 if (strlen(name) >= IFNAMSIZ)
843 return 0;
844 if (!strcmp(name, ".") || !strcmp(name, ".."))
845 return 0;
846
847 while (*name) {
848 if (*name == '/' || isspace(*name))
849 return 0;
850 name++;
851 }
852 return 1;
853 }
854 EXPORT_SYMBOL(dev_valid_name);
855
856 /**
857 * __dev_alloc_name - allocate a name for a device
858 * @net: network namespace to allocate the device name in
859 * @name: name format string
860 * @buf: scratch buffer and result name string
861 *
862 * Passed a format string - eg "lt%d" it will try and find a suitable
863 * id. It scans list of devices to build up a free map, then chooses
864 * the first empty slot. The caller must hold the dev_base or rtnl lock
865 * while allocating the name and adding the device in order to avoid
866 * duplicates.
867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
868 * Returns the number of the unit assigned or a negative errno code.
869 */
870
871 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
872 {
873 int i = 0;
874 const char *p;
875 const int max_netdevices = 8*PAGE_SIZE;
876 unsigned long *inuse;
877 struct net_device *d;
878
879 p = strnchr(name, IFNAMSIZ-1, '%');
880 if (p) {
881 /*
882 * Verify the string as this thing may have come from
883 * the user. There must be either one "%d" and no other "%"
884 * characters.
885 */
886 if (p[1] != 'd' || strchr(p + 2, '%'))
887 return -EINVAL;
888
889 /* Use one page as a bit array of possible slots */
890 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
891 if (!inuse)
892 return -ENOMEM;
893
894 for_each_netdev(net, d) {
895 if (!sscanf(d->name, name, &i))
896 continue;
897 if (i < 0 || i >= max_netdevices)
898 continue;
899
900 /* avoid cases where sscanf is not exact inverse of printf */
901 snprintf(buf, IFNAMSIZ, name, i);
902 if (!strncmp(buf, d->name, IFNAMSIZ))
903 set_bit(i, inuse);
904 }
905
906 i = find_first_zero_bit(inuse, max_netdevices);
907 free_page((unsigned long) inuse);
908 }
909
910 if (buf != name)
911 snprintf(buf, IFNAMSIZ, name, i);
912 if (!__dev_get_by_name(net, buf))
913 return i;
914
915 /* It is possible to run out of possible slots
916 * when the name is long and there isn't enough space left
917 * for the digits, or if all bits are used.
918 */
919 return -ENFILE;
920 }
921
922 /**
923 * dev_alloc_name - allocate a name for a device
924 * @dev: device
925 * @name: name format string
926 *
927 * Passed a format string - eg "lt%d" it will try and find a suitable
928 * id. It scans list of devices to build up a free map, then chooses
929 * the first empty slot. The caller must hold the dev_base or rtnl lock
930 * while allocating the name and adding the device in order to avoid
931 * duplicates.
932 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
933 * Returns the number of the unit assigned or a negative errno code.
934 */
935
936 int dev_alloc_name(struct net_device *dev, const char *name)
937 {
938 char buf[IFNAMSIZ];
939 struct net *net;
940 int ret;
941
942 BUG_ON(!dev_net(dev));
943 net = dev_net(dev);
944 ret = __dev_alloc_name(net, name, buf);
945 if (ret >= 0)
946 strlcpy(dev->name, buf, IFNAMSIZ);
947 return ret;
948 }
949 EXPORT_SYMBOL(dev_alloc_name);
950
951 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
952 {
953 struct net *net;
954
955 BUG_ON(!dev_net(dev));
956 net = dev_net(dev);
957
958 if (!dev_valid_name(name))
959 return -EINVAL;
960
961 if (fmt && strchr(name, '%'))
962 return dev_alloc_name(dev, name);
963 else if (__dev_get_by_name(net, name))
964 return -EEXIST;
965 else if (dev->name != name)
966 strlcpy(dev->name, name, IFNAMSIZ);
967
968 return 0;
969 }
970
971 /**
972 * dev_change_name - change name of a device
973 * @dev: device
974 * @newname: name (or format string) must be at least IFNAMSIZ
975 *
976 * Change name of a device, can pass format strings "eth%d".
977 * for wildcarding.
978 */
979 int dev_change_name(struct net_device *dev, const char *newname)
980 {
981 char oldname[IFNAMSIZ];
982 int err = 0;
983 int ret;
984 struct net *net;
985
986 ASSERT_RTNL();
987 BUG_ON(!dev_net(dev));
988
989 net = dev_net(dev);
990 if (dev->flags & IFF_UP)
991 return -EBUSY;
992
993 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
994 return 0;
995
996 memcpy(oldname, dev->name, IFNAMSIZ);
997
998 err = dev_get_valid_name(dev, newname, 1);
999 if (err < 0)
1000 return err;
1001
1002 rollback:
1003 ret = device_rename(&dev->dev, dev->name);
1004 if (ret) {
1005 memcpy(dev->name, oldname, IFNAMSIZ);
1006 return ret;
1007 }
1008
1009 write_lock_bh(&dev_base_lock);
1010 hlist_del(&dev->name_hlist);
1011 write_unlock_bh(&dev_base_lock);
1012
1013 synchronize_rcu();
1014
1015 write_lock_bh(&dev_base_lock);
1016 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1017 write_unlock_bh(&dev_base_lock);
1018
1019 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1020 ret = notifier_to_errno(ret);
1021
1022 if (ret) {
1023 /* err >= 0 after dev_alloc_name() or stores the first errno */
1024 if (err >= 0) {
1025 err = ret;
1026 memcpy(dev->name, oldname, IFNAMSIZ);
1027 goto rollback;
1028 } else {
1029 printk(KERN_ERR
1030 "%s: name change rollback failed: %d.\n",
1031 dev->name, ret);
1032 }
1033 }
1034
1035 return err;
1036 }
1037
1038 /**
1039 * dev_set_alias - change ifalias of a device
1040 * @dev: device
1041 * @alias: name up to IFALIASZ
1042 * @len: limit of bytes to copy from info
1043 *
1044 * Set ifalias for a device,
1045 */
1046 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1047 {
1048 ASSERT_RTNL();
1049
1050 if (len >= IFALIASZ)
1051 return -EINVAL;
1052
1053 if (!len) {
1054 if (dev->ifalias) {
1055 kfree(dev->ifalias);
1056 dev->ifalias = NULL;
1057 }
1058 return 0;
1059 }
1060
1061 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1062 if (!dev->ifalias)
1063 return -ENOMEM;
1064
1065 strlcpy(dev->ifalias, alias, len+1);
1066 return len;
1067 }
1068
1069
1070 /**
1071 * netdev_features_change - device changes features
1072 * @dev: device to cause notification
1073 *
1074 * Called to indicate a device has changed features.
1075 */
1076 void netdev_features_change(struct net_device *dev)
1077 {
1078 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1079 }
1080 EXPORT_SYMBOL(netdev_features_change);
1081
1082 /**
1083 * netdev_state_change - device changes state
1084 * @dev: device to cause notification
1085 *
1086 * Called to indicate a device has changed state. This function calls
1087 * the notifier chains for netdev_chain and sends a NEWLINK message
1088 * to the routing socket.
1089 */
1090 void netdev_state_change(struct net_device *dev)
1091 {
1092 if (dev->flags & IFF_UP) {
1093 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1094 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1095 }
1096 }
1097 EXPORT_SYMBOL(netdev_state_change);
1098
1099 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1100 {
1101 return call_netdevice_notifiers(event, dev);
1102 }
1103 EXPORT_SYMBOL(netdev_bonding_change);
1104
1105 /**
1106 * dev_load - load a network module
1107 * @net: the applicable net namespace
1108 * @name: name of interface
1109 *
1110 * If a network interface is not present and the process has suitable
1111 * privileges this function loads the module. If module loading is not
1112 * available in this kernel then it becomes a nop.
1113 */
1114
1115 void dev_load(struct net *net, const char *name)
1116 {
1117 struct net_device *dev;
1118
1119 rcu_read_lock();
1120 dev = dev_get_by_name_rcu(net, name);
1121 rcu_read_unlock();
1122
1123 if (!dev && capable(CAP_NET_ADMIN))
1124 request_module("%s", name);
1125 }
1126 EXPORT_SYMBOL(dev_load);
1127
1128 static int __dev_open(struct net_device *dev)
1129 {
1130 const struct net_device_ops *ops = dev->netdev_ops;
1131 int ret;
1132
1133 ASSERT_RTNL();
1134
1135 /*
1136 * Is it even present?
1137 */
1138 if (!netif_device_present(dev))
1139 return -ENODEV;
1140
1141 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1142 ret = notifier_to_errno(ret);
1143 if (ret)
1144 return ret;
1145
1146 /*
1147 * Call device private open method
1148 */
1149 set_bit(__LINK_STATE_START, &dev->state);
1150
1151 if (ops->ndo_validate_addr)
1152 ret = ops->ndo_validate_addr(dev);
1153
1154 if (!ret && ops->ndo_open)
1155 ret = ops->ndo_open(dev);
1156
1157 /*
1158 * If it went open OK then:
1159 */
1160
1161 if (ret)
1162 clear_bit(__LINK_STATE_START, &dev->state);
1163 else {
1164 /*
1165 * Set the flags.
1166 */
1167 dev->flags |= IFF_UP;
1168
1169 /*
1170 * Enable NET_DMA
1171 */
1172 net_dmaengine_get();
1173
1174 /*
1175 * Initialize multicasting status
1176 */
1177 dev_set_rx_mode(dev);
1178
1179 /*
1180 * Wakeup transmit queue engine
1181 */
1182 dev_activate(dev);
1183 }
1184
1185 return ret;
1186 }
1187
1188 /**
1189 * dev_open - prepare an interface for use.
1190 * @dev: device to open
1191 *
1192 * Takes a device from down to up state. The device's private open
1193 * function is invoked and then the multicast lists are loaded. Finally
1194 * the device is moved into the up state and a %NETDEV_UP message is
1195 * sent to the netdev notifier chain.
1196 *
1197 * Calling this function on an active interface is a nop. On a failure
1198 * a negative errno code is returned.
1199 */
1200 int dev_open(struct net_device *dev)
1201 {
1202 int ret;
1203
1204 /*
1205 * Is it already up?
1206 */
1207 if (dev->flags & IFF_UP)
1208 return 0;
1209
1210 /*
1211 * Open device
1212 */
1213 ret = __dev_open(dev);
1214 if (ret < 0)
1215 return ret;
1216
1217 /*
1218 * ... and announce new interface.
1219 */
1220 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1221 call_netdevice_notifiers(NETDEV_UP, dev);
1222
1223 return ret;
1224 }
1225 EXPORT_SYMBOL(dev_open);
1226
1227 static int __dev_close_many(struct list_head *head)
1228 {
1229 struct net_device *dev;
1230
1231 ASSERT_RTNL();
1232 might_sleep();
1233
1234 list_for_each_entry(dev, head, unreg_list) {
1235 /*
1236 * Tell people we are going down, so that they can
1237 * prepare to death, when device is still operating.
1238 */
1239 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1240
1241 clear_bit(__LINK_STATE_START, &dev->state);
1242
1243 /* Synchronize to scheduled poll. We cannot touch poll list, it
1244 * can be even on different cpu. So just clear netif_running().
1245 *
1246 * dev->stop() will invoke napi_disable() on all of it's
1247 * napi_struct instances on this device.
1248 */
1249 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1250 }
1251
1252 dev_deactivate_many(head);
1253
1254 list_for_each_entry(dev, head, unreg_list) {
1255 const struct net_device_ops *ops = dev->netdev_ops;
1256
1257 /*
1258 * Call the device specific close. This cannot fail.
1259 * Only if device is UP
1260 *
1261 * We allow it to be called even after a DETACH hot-plug
1262 * event.
1263 */
1264 if (ops->ndo_stop)
1265 ops->ndo_stop(dev);
1266
1267 /*
1268 * Device is now down.
1269 */
1270
1271 dev->flags &= ~IFF_UP;
1272
1273 /*
1274 * Shutdown NET_DMA
1275 */
1276 net_dmaengine_put();
1277 }
1278
1279 return 0;
1280 }
1281
1282 static int __dev_close(struct net_device *dev)
1283 {
1284 LIST_HEAD(single);
1285
1286 list_add(&dev->unreg_list, &single);
1287 return __dev_close_many(&single);
1288 }
1289
1290 static int dev_close_many(struct list_head *head)
1291 {
1292 struct net_device *dev, *tmp;
1293 LIST_HEAD(tmp_list);
1294
1295 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1296 if (!(dev->flags & IFF_UP))
1297 list_move(&dev->unreg_list, &tmp_list);
1298
1299 __dev_close_many(head);
1300
1301 /*
1302 * Tell people we are down
1303 */
1304 list_for_each_entry(dev, head, unreg_list) {
1305 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1306 call_netdevice_notifiers(NETDEV_DOWN, dev);
1307 }
1308
1309 /* rollback_registered_many needs the complete original list */
1310 list_splice(&tmp_list, head);
1311 return 0;
1312 }
1313
1314 /**
1315 * dev_close - shutdown an interface.
1316 * @dev: device to shutdown
1317 *
1318 * This function moves an active device into down state. A
1319 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1320 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1321 * chain.
1322 */
1323 int dev_close(struct net_device *dev)
1324 {
1325 LIST_HEAD(single);
1326
1327 list_add(&dev->unreg_list, &single);
1328 dev_close_many(&single);
1329
1330 return 0;
1331 }
1332 EXPORT_SYMBOL(dev_close);
1333
1334
1335 /**
1336 * dev_disable_lro - disable Large Receive Offload on a device
1337 * @dev: device
1338 *
1339 * Disable Large Receive Offload (LRO) on a net device. Must be
1340 * called under RTNL. This is needed if received packets may be
1341 * forwarded to another interface.
1342 */
1343 void dev_disable_lro(struct net_device *dev)
1344 {
1345 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1346 dev->ethtool_ops->set_flags) {
1347 u32 flags = dev->ethtool_ops->get_flags(dev);
1348 if (flags & ETH_FLAG_LRO) {
1349 flags &= ~ETH_FLAG_LRO;
1350 dev->ethtool_ops->set_flags(dev, flags);
1351 }
1352 }
1353 WARN_ON(dev->features & NETIF_F_LRO);
1354 }
1355 EXPORT_SYMBOL(dev_disable_lro);
1356
1357
1358 static int dev_boot_phase = 1;
1359
1360 /*
1361 * Device change register/unregister. These are not inline or static
1362 * as we export them to the world.
1363 */
1364
1365 /**
1366 * register_netdevice_notifier - register a network notifier block
1367 * @nb: notifier
1368 *
1369 * Register a notifier to be called when network device events occur.
1370 * The notifier passed is linked into the kernel structures and must
1371 * not be reused until it has been unregistered. A negative errno code
1372 * is returned on a failure.
1373 *
1374 * When registered all registration and up events are replayed
1375 * to the new notifier to allow device to have a race free
1376 * view of the network device list.
1377 */
1378
1379 int register_netdevice_notifier(struct notifier_block *nb)
1380 {
1381 struct net_device *dev;
1382 struct net_device *last;
1383 struct net *net;
1384 int err;
1385
1386 rtnl_lock();
1387 err = raw_notifier_chain_register(&netdev_chain, nb);
1388 if (err)
1389 goto unlock;
1390 if (dev_boot_phase)
1391 goto unlock;
1392 for_each_net(net) {
1393 for_each_netdev(net, dev) {
1394 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1395 err = notifier_to_errno(err);
1396 if (err)
1397 goto rollback;
1398
1399 if (!(dev->flags & IFF_UP))
1400 continue;
1401
1402 nb->notifier_call(nb, NETDEV_UP, dev);
1403 }
1404 }
1405
1406 unlock:
1407 rtnl_unlock();
1408 return err;
1409
1410 rollback:
1411 last = dev;
1412 for_each_net(net) {
1413 for_each_netdev(net, dev) {
1414 if (dev == last)
1415 break;
1416
1417 if (dev->flags & IFF_UP) {
1418 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1419 nb->notifier_call(nb, NETDEV_DOWN, dev);
1420 }
1421 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1422 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1423 }
1424 }
1425
1426 raw_notifier_chain_unregister(&netdev_chain, nb);
1427 goto unlock;
1428 }
1429 EXPORT_SYMBOL(register_netdevice_notifier);
1430
1431 /**
1432 * unregister_netdevice_notifier - unregister a network notifier block
1433 * @nb: notifier
1434 *
1435 * Unregister a notifier previously registered by
1436 * register_netdevice_notifier(). The notifier is unlinked into the
1437 * kernel structures and may then be reused. A negative errno code
1438 * is returned on a failure.
1439 */
1440
1441 int unregister_netdevice_notifier(struct notifier_block *nb)
1442 {
1443 int err;
1444
1445 rtnl_lock();
1446 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1447 rtnl_unlock();
1448 return err;
1449 }
1450 EXPORT_SYMBOL(unregister_netdevice_notifier);
1451
1452 /**
1453 * call_netdevice_notifiers - call all network notifier blocks
1454 * @val: value passed unmodified to notifier function
1455 * @dev: net_device pointer passed unmodified to notifier function
1456 *
1457 * Call all network notifier blocks. Parameters and return value
1458 * are as for raw_notifier_call_chain().
1459 */
1460
1461 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1462 {
1463 ASSERT_RTNL();
1464 return raw_notifier_call_chain(&netdev_chain, val, dev);
1465 }
1466
1467 /* When > 0 there are consumers of rx skb time stamps */
1468 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1469
1470 void net_enable_timestamp(void)
1471 {
1472 atomic_inc(&netstamp_needed);
1473 }
1474 EXPORT_SYMBOL(net_enable_timestamp);
1475
1476 void net_disable_timestamp(void)
1477 {
1478 atomic_dec(&netstamp_needed);
1479 }
1480 EXPORT_SYMBOL(net_disable_timestamp);
1481
1482 static inline void net_timestamp_set(struct sk_buff *skb)
1483 {
1484 if (atomic_read(&netstamp_needed))
1485 __net_timestamp(skb);
1486 else
1487 skb->tstamp.tv64 = 0;
1488 }
1489
1490 static inline void net_timestamp_check(struct sk_buff *skb)
1491 {
1492 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1493 __net_timestamp(skb);
1494 }
1495
1496 /**
1497 * dev_forward_skb - loopback an skb to another netif
1498 *
1499 * @dev: destination network device
1500 * @skb: buffer to forward
1501 *
1502 * return values:
1503 * NET_RX_SUCCESS (no congestion)
1504 * NET_RX_DROP (packet was dropped, but freed)
1505 *
1506 * dev_forward_skb can be used for injecting an skb from the
1507 * start_xmit function of one device into the receive queue
1508 * of another device.
1509 *
1510 * The receiving device may be in another namespace, so
1511 * we have to clear all information in the skb that could
1512 * impact namespace isolation.
1513 */
1514 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1515 {
1516 skb_orphan(skb);
1517 nf_reset(skb);
1518
1519 if (unlikely(!(dev->flags & IFF_UP) ||
1520 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1521 atomic_long_inc(&dev->rx_dropped);
1522 kfree_skb(skb);
1523 return NET_RX_DROP;
1524 }
1525 skb_set_dev(skb, dev);
1526 skb->tstamp.tv64 = 0;
1527 skb->pkt_type = PACKET_HOST;
1528 skb->protocol = eth_type_trans(skb, dev);
1529 return netif_rx(skb);
1530 }
1531 EXPORT_SYMBOL_GPL(dev_forward_skb);
1532
1533 static inline int deliver_skb(struct sk_buff *skb,
1534 struct packet_type *pt_prev,
1535 struct net_device *orig_dev)
1536 {
1537 atomic_inc(&skb->users);
1538 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1539 }
1540
1541 /*
1542 * Support routine. Sends outgoing frames to any network
1543 * taps currently in use.
1544 */
1545
1546 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1547 {
1548 struct packet_type *ptype;
1549 struct sk_buff *skb2 = NULL;
1550 struct packet_type *pt_prev = NULL;
1551
1552 rcu_read_lock();
1553 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1554 /* Never send packets back to the socket
1555 * they originated from - MvS (miquels@drinkel.ow.org)
1556 */
1557 if ((ptype->dev == dev || !ptype->dev) &&
1558 (ptype->af_packet_priv == NULL ||
1559 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1560 if (pt_prev) {
1561 deliver_skb(skb2, pt_prev, skb->dev);
1562 pt_prev = ptype;
1563 continue;
1564 }
1565
1566 skb2 = skb_clone(skb, GFP_ATOMIC);
1567 if (!skb2)
1568 break;
1569
1570 net_timestamp_set(skb2);
1571
1572 /* skb->nh should be correctly
1573 set by sender, so that the second statement is
1574 just protection against buggy protocols.
1575 */
1576 skb_reset_mac_header(skb2);
1577
1578 if (skb_network_header(skb2) < skb2->data ||
1579 skb2->network_header > skb2->tail) {
1580 if (net_ratelimit())
1581 printk(KERN_CRIT "protocol %04x is "
1582 "buggy, dev %s\n",
1583 ntohs(skb2->protocol),
1584 dev->name);
1585 skb_reset_network_header(skb2);
1586 }
1587
1588 skb2->transport_header = skb2->network_header;
1589 skb2->pkt_type = PACKET_OUTGOING;
1590 pt_prev = ptype;
1591 }
1592 }
1593 if (pt_prev)
1594 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1595 rcu_read_unlock();
1596 }
1597
1598 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1599 * @dev: Network device
1600 * @txq: number of queues available
1601 *
1602 * If real_num_tx_queues is changed the tc mappings may no longer be
1603 * valid. To resolve this verify the tc mapping remains valid and if
1604 * not NULL the mapping. With no priorities mapping to this
1605 * offset/count pair it will no longer be used. In the worst case TC0
1606 * is invalid nothing can be done so disable priority mappings. If is
1607 * expected that drivers will fix this mapping if they can before
1608 * calling netif_set_real_num_tx_queues.
1609 */
1610 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1611 {
1612 int i;
1613 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1614
1615 /* If TC0 is invalidated disable TC mapping */
1616 if (tc->offset + tc->count > txq) {
1617 pr_warning("Number of in use tx queues changed "
1618 "invalidating tc mappings. Priority "
1619 "traffic classification disabled!\n");
1620 dev->num_tc = 0;
1621 return;
1622 }
1623
1624 /* Invalidated prio to tc mappings set to TC0 */
1625 for (i = 1; i < TC_BITMASK + 1; i++) {
1626 int q = netdev_get_prio_tc_map(dev, i);
1627
1628 tc = &dev->tc_to_txq[q];
1629 if (tc->offset + tc->count > txq) {
1630 pr_warning("Number of in use tx queues "
1631 "changed. Priority %i to tc "
1632 "mapping %i is no longer valid "
1633 "setting map to 0\n",
1634 i, q);
1635 netdev_set_prio_tc_map(dev, i, 0);
1636 }
1637 }
1638 }
1639
1640 /*
1641 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1642 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1643 */
1644 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1645 {
1646 int rc;
1647
1648 if (txq < 1 || txq > dev->num_tx_queues)
1649 return -EINVAL;
1650
1651 if (dev->reg_state == NETREG_REGISTERED) {
1652 ASSERT_RTNL();
1653
1654 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1655 txq);
1656 if (rc)
1657 return rc;
1658
1659 if (dev->num_tc)
1660 netif_setup_tc(dev, txq);
1661
1662 if (txq < dev->real_num_tx_queues)
1663 qdisc_reset_all_tx_gt(dev, txq);
1664 }
1665
1666 dev->real_num_tx_queues = txq;
1667 return 0;
1668 }
1669 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1670
1671 #ifdef CONFIG_RPS
1672 /**
1673 * netif_set_real_num_rx_queues - set actual number of RX queues used
1674 * @dev: Network device
1675 * @rxq: Actual number of RX queues
1676 *
1677 * This must be called either with the rtnl_lock held or before
1678 * registration of the net device. Returns 0 on success, or a
1679 * negative error code. If called before registration, it always
1680 * succeeds.
1681 */
1682 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1683 {
1684 int rc;
1685
1686 if (rxq < 1 || rxq > dev->num_rx_queues)
1687 return -EINVAL;
1688
1689 if (dev->reg_state == NETREG_REGISTERED) {
1690 ASSERT_RTNL();
1691
1692 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1693 rxq);
1694 if (rc)
1695 return rc;
1696 }
1697
1698 dev->real_num_rx_queues = rxq;
1699 return 0;
1700 }
1701 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1702 #endif
1703
1704 static inline void __netif_reschedule(struct Qdisc *q)
1705 {
1706 struct softnet_data *sd;
1707 unsigned long flags;
1708
1709 local_irq_save(flags);
1710 sd = &__get_cpu_var(softnet_data);
1711 q->next_sched = NULL;
1712 *sd->output_queue_tailp = q;
1713 sd->output_queue_tailp = &q->next_sched;
1714 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1715 local_irq_restore(flags);
1716 }
1717
1718 void __netif_schedule(struct Qdisc *q)
1719 {
1720 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1721 __netif_reschedule(q);
1722 }
1723 EXPORT_SYMBOL(__netif_schedule);
1724
1725 void dev_kfree_skb_irq(struct sk_buff *skb)
1726 {
1727 if (atomic_dec_and_test(&skb->users)) {
1728 struct softnet_data *sd;
1729 unsigned long flags;
1730
1731 local_irq_save(flags);
1732 sd = &__get_cpu_var(softnet_data);
1733 skb->next = sd->completion_queue;
1734 sd->completion_queue = skb;
1735 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1736 local_irq_restore(flags);
1737 }
1738 }
1739 EXPORT_SYMBOL(dev_kfree_skb_irq);
1740
1741 void dev_kfree_skb_any(struct sk_buff *skb)
1742 {
1743 if (in_irq() || irqs_disabled())
1744 dev_kfree_skb_irq(skb);
1745 else
1746 dev_kfree_skb(skb);
1747 }
1748 EXPORT_SYMBOL(dev_kfree_skb_any);
1749
1750
1751 /**
1752 * netif_device_detach - mark device as removed
1753 * @dev: network device
1754 *
1755 * Mark device as removed from system and therefore no longer available.
1756 */
1757 void netif_device_detach(struct net_device *dev)
1758 {
1759 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1760 netif_running(dev)) {
1761 netif_tx_stop_all_queues(dev);
1762 }
1763 }
1764 EXPORT_SYMBOL(netif_device_detach);
1765
1766 /**
1767 * netif_device_attach - mark device as attached
1768 * @dev: network device
1769 *
1770 * Mark device as attached from system and restart if needed.
1771 */
1772 void netif_device_attach(struct net_device *dev)
1773 {
1774 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1775 netif_running(dev)) {
1776 netif_tx_wake_all_queues(dev);
1777 __netdev_watchdog_up(dev);
1778 }
1779 }
1780 EXPORT_SYMBOL(netif_device_attach);
1781
1782 /**
1783 * skb_dev_set -- assign a new device to a buffer
1784 * @skb: buffer for the new device
1785 * @dev: network device
1786 *
1787 * If an skb is owned by a device already, we have to reset
1788 * all data private to the namespace a device belongs to
1789 * before assigning it a new device.
1790 */
1791 #ifdef CONFIG_NET_NS
1792 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1793 {
1794 skb_dst_drop(skb);
1795 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1796 secpath_reset(skb);
1797 nf_reset(skb);
1798 skb_init_secmark(skb);
1799 skb->mark = 0;
1800 skb->priority = 0;
1801 skb->nf_trace = 0;
1802 skb->ipvs_property = 0;
1803 #ifdef CONFIG_NET_SCHED
1804 skb->tc_index = 0;
1805 #endif
1806 }
1807 skb->dev = dev;
1808 }
1809 EXPORT_SYMBOL(skb_set_dev);
1810 #endif /* CONFIG_NET_NS */
1811
1812 /*
1813 * Invalidate hardware checksum when packet is to be mangled, and
1814 * complete checksum manually on outgoing path.
1815 */
1816 int skb_checksum_help(struct sk_buff *skb)
1817 {
1818 __wsum csum;
1819 int ret = 0, offset;
1820
1821 if (skb->ip_summed == CHECKSUM_COMPLETE)
1822 goto out_set_summed;
1823
1824 if (unlikely(skb_shinfo(skb)->gso_size)) {
1825 /* Let GSO fix up the checksum. */
1826 goto out_set_summed;
1827 }
1828
1829 offset = skb_checksum_start_offset(skb);
1830 BUG_ON(offset >= skb_headlen(skb));
1831 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1832
1833 offset += skb->csum_offset;
1834 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1835
1836 if (skb_cloned(skb) &&
1837 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1838 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1839 if (ret)
1840 goto out;
1841 }
1842
1843 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1844 out_set_summed:
1845 skb->ip_summed = CHECKSUM_NONE;
1846 out:
1847 return ret;
1848 }
1849 EXPORT_SYMBOL(skb_checksum_help);
1850
1851 /**
1852 * skb_gso_segment - Perform segmentation on skb.
1853 * @skb: buffer to segment
1854 * @features: features for the output path (see dev->features)
1855 *
1856 * This function segments the given skb and returns a list of segments.
1857 *
1858 * It may return NULL if the skb requires no segmentation. This is
1859 * only possible when GSO is used for verifying header integrity.
1860 */
1861 struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features)
1862 {
1863 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1864 struct packet_type *ptype;
1865 __be16 type = skb->protocol;
1866 int vlan_depth = ETH_HLEN;
1867 int err;
1868
1869 while (type == htons(ETH_P_8021Q)) {
1870 struct vlan_hdr *vh;
1871
1872 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1873 return ERR_PTR(-EINVAL);
1874
1875 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1876 type = vh->h_vlan_encapsulated_proto;
1877 vlan_depth += VLAN_HLEN;
1878 }
1879
1880 skb_reset_mac_header(skb);
1881 skb->mac_len = skb->network_header - skb->mac_header;
1882 __skb_pull(skb, skb->mac_len);
1883
1884 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1885 struct net_device *dev = skb->dev;
1886 struct ethtool_drvinfo info = {};
1887
1888 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1889 dev->ethtool_ops->get_drvinfo(dev, &info);
1890
1891 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1892 info.driver, dev ? dev->features : 0L,
1893 skb->sk ? skb->sk->sk_route_caps : 0L,
1894 skb->len, skb->data_len, skb->ip_summed);
1895
1896 if (skb_header_cloned(skb) &&
1897 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1898 return ERR_PTR(err);
1899 }
1900
1901 rcu_read_lock();
1902 list_for_each_entry_rcu(ptype,
1903 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1904 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1905 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1906 err = ptype->gso_send_check(skb);
1907 segs = ERR_PTR(err);
1908 if (err || skb_gso_ok(skb, features))
1909 break;
1910 __skb_push(skb, (skb->data -
1911 skb_network_header(skb)));
1912 }
1913 segs = ptype->gso_segment(skb, features);
1914 break;
1915 }
1916 }
1917 rcu_read_unlock();
1918
1919 __skb_push(skb, skb->data - skb_mac_header(skb));
1920
1921 return segs;
1922 }
1923 EXPORT_SYMBOL(skb_gso_segment);
1924
1925 /* Take action when hardware reception checksum errors are detected. */
1926 #ifdef CONFIG_BUG
1927 void netdev_rx_csum_fault(struct net_device *dev)
1928 {
1929 if (net_ratelimit()) {
1930 printk(KERN_ERR "%s: hw csum failure.\n",
1931 dev ? dev->name : "<unknown>");
1932 dump_stack();
1933 }
1934 }
1935 EXPORT_SYMBOL(netdev_rx_csum_fault);
1936 #endif
1937
1938 /* Actually, we should eliminate this check as soon as we know, that:
1939 * 1. IOMMU is present and allows to map all the memory.
1940 * 2. No high memory really exists on this machine.
1941 */
1942
1943 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1944 {
1945 #ifdef CONFIG_HIGHMEM
1946 int i;
1947 if (!(dev->features & NETIF_F_HIGHDMA)) {
1948 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1949 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1950 return 1;
1951 }
1952
1953 if (PCI_DMA_BUS_IS_PHYS) {
1954 struct device *pdev = dev->dev.parent;
1955
1956 if (!pdev)
1957 return 0;
1958 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1959 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1960 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1961 return 1;
1962 }
1963 }
1964 #endif
1965 return 0;
1966 }
1967
1968 struct dev_gso_cb {
1969 void (*destructor)(struct sk_buff *skb);
1970 };
1971
1972 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1973
1974 static void dev_gso_skb_destructor(struct sk_buff *skb)
1975 {
1976 struct dev_gso_cb *cb;
1977
1978 do {
1979 struct sk_buff *nskb = skb->next;
1980
1981 skb->next = nskb->next;
1982 nskb->next = NULL;
1983 kfree_skb(nskb);
1984 } while (skb->next);
1985
1986 cb = DEV_GSO_CB(skb);
1987 if (cb->destructor)
1988 cb->destructor(skb);
1989 }
1990
1991 /**
1992 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1993 * @skb: buffer to segment
1994 * @features: device features as applicable to this skb
1995 *
1996 * This function segments the given skb and stores the list of segments
1997 * in skb->next.
1998 */
1999 static int dev_gso_segment(struct sk_buff *skb, int features)
2000 {
2001 struct sk_buff *segs;
2002
2003 segs = skb_gso_segment(skb, features);
2004
2005 /* Verifying header integrity only. */
2006 if (!segs)
2007 return 0;
2008
2009 if (IS_ERR(segs))
2010 return PTR_ERR(segs);
2011
2012 skb->next = segs;
2013 DEV_GSO_CB(skb)->destructor = skb->destructor;
2014 skb->destructor = dev_gso_skb_destructor;
2015
2016 return 0;
2017 }
2018
2019 /*
2020 * Try to orphan skb early, right before transmission by the device.
2021 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2022 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2023 */
2024 static inline void skb_orphan_try(struct sk_buff *skb)
2025 {
2026 struct sock *sk = skb->sk;
2027
2028 if (sk && !skb_shinfo(skb)->tx_flags) {
2029 /* skb_tx_hash() wont be able to get sk.
2030 * We copy sk_hash into skb->rxhash
2031 */
2032 if (!skb->rxhash)
2033 skb->rxhash = sk->sk_hash;
2034 skb_orphan(skb);
2035 }
2036 }
2037
2038 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
2039 {
2040 return ((features & NETIF_F_GEN_CSUM) ||
2041 ((features & NETIF_F_V4_CSUM) &&
2042 protocol == htons(ETH_P_IP)) ||
2043 ((features & NETIF_F_V6_CSUM) &&
2044 protocol == htons(ETH_P_IPV6)) ||
2045 ((features & NETIF_F_FCOE_CRC) &&
2046 protocol == htons(ETH_P_FCOE)));
2047 }
2048
2049 static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features)
2050 {
2051 if (!can_checksum_protocol(features, protocol)) {
2052 features &= ~NETIF_F_ALL_CSUM;
2053 features &= ~NETIF_F_SG;
2054 } else if (illegal_highdma(skb->dev, skb)) {
2055 features &= ~NETIF_F_SG;
2056 }
2057
2058 return features;
2059 }
2060
2061 u32 netif_skb_features(struct sk_buff *skb)
2062 {
2063 __be16 protocol = skb->protocol;
2064 u32 features = skb->dev->features;
2065
2066 if (protocol == htons(ETH_P_8021Q)) {
2067 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2068 protocol = veh->h_vlan_encapsulated_proto;
2069 } else if (!vlan_tx_tag_present(skb)) {
2070 return harmonize_features(skb, protocol, features);
2071 }
2072
2073 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2074
2075 if (protocol != htons(ETH_P_8021Q)) {
2076 return harmonize_features(skb, protocol, features);
2077 } else {
2078 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2079 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2080 return harmonize_features(skb, protocol, features);
2081 }
2082 }
2083 EXPORT_SYMBOL(netif_skb_features);
2084
2085 /*
2086 * Returns true if either:
2087 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2088 * 2. skb is fragmented and the device does not support SG, or if
2089 * at least one of fragments is in highmem and device does not
2090 * support DMA from it.
2091 */
2092 static inline int skb_needs_linearize(struct sk_buff *skb,
2093 int features)
2094 {
2095 return skb_is_nonlinear(skb) &&
2096 ((skb_has_frag_list(skb) &&
2097 !(features & NETIF_F_FRAGLIST)) ||
2098 (skb_shinfo(skb)->nr_frags &&
2099 !(features & NETIF_F_SG)));
2100 }
2101
2102 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2103 struct netdev_queue *txq)
2104 {
2105 const struct net_device_ops *ops = dev->netdev_ops;
2106 int rc = NETDEV_TX_OK;
2107
2108 if (likely(!skb->next)) {
2109 u32 features;
2110
2111 /*
2112 * If device doesnt need skb->dst, release it right now while
2113 * its hot in this cpu cache
2114 */
2115 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2116 skb_dst_drop(skb);
2117
2118 if (!list_empty(&ptype_all))
2119 dev_queue_xmit_nit(skb, dev);
2120
2121 skb_orphan_try(skb);
2122
2123 features = netif_skb_features(skb);
2124
2125 if (vlan_tx_tag_present(skb) &&
2126 !(features & NETIF_F_HW_VLAN_TX)) {
2127 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2128 if (unlikely(!skb))
2129 goto out;
2130
2131 skb->vlan_tci = 0;
2132 }
2133
2134 if (netif_needs_gso(skb, features)) {
2135 if (unlikely(dev_gso_segment(skb, features)))
2136 goto out_kfree_skb;
2137 if (skb->next)
2138 goto gso;
2139 } else {
2140 if (skb_needs_linearize(skb, features) &&
2141 __skb_linearize(skb))
2142 goto out_kfree_skb;
2143
2144 /* If packet is not checksummed and device does not
2145 * support checksumming for this protocol, complete
2146 * checksumming here.
2147 */
2148 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2149 skb_set_transport_header(skb,
2150 skb_checksum_start_offset(skb));
2151 if (!(features & NETIF_F_ALL_CSUM) &&
2152 skb_checksum_help(skb))
2153 goto out_kfree_skb;
2154 }
2155 }
2156
2157 rc = ops->ndo_start_xmit(skb, dev);
2158 trace_net_dev_xmit(skb, rc);
2159 if (rc == NETDEV_TX_OK)
2160 txq_trans_update(txq);
2161 return rc;
2162 }
2163
2164 gso:
2165 do {
2166 struct sk_buff *nskb = skb->next;
2167
2168 skb->next = nskb->next;
2169 nskb->next = NULL;
2170
2171 /*
2172 * If device doesnt need nskb->dst, release it right now while
2173 * its hot in this cpu cache
2174 */
2175 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2176 skb_dst_drop(nskb);
2177
2178 rc = ops->ndo_start_xmit(nskb, dev);
2179 trace_net_dev_xmit(nskb, rc);
2180 if (unlikely(rc != NETDEV_TX_OK)) {
2181 if (rc & ~NETDEV_TX_MASK)
2182 goto out_kfree_gso_skb;
2183 nskb->next = skb->next;
2184 skb->next = nskb;
2185 return rc;
2186 }
2187 txq_trans_update(txq);
2188 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2189 return NETDEV_TX_BUSY;
2190 } while (skb->next);
2191
2192 out_kfree_gso_skb:
2193 if (likely(skb->next == NULL))
2194 skb->destructor = DEV_GSO_CB(skb)->destructor;
2195 out_kfree_skb:
2196 kfree_skb(skb);
2197 out:
2198 return rc;
2199 }
2200
2201 static u32 hashrnd __read_mostly;
2202
2203 /*
2204 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2205 * to be used as a distribution range.
2206 */
2207 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2208 unsigned int num_tx_queues)
2209 {
2210 u32 hash;
2211 u16 qoffset = 0;
2212 u16 qcount = num_tx_queues;
2213
2214 if (skb_rx_queue_recorded(skb)) {
2215 hash = skb_get_rx_queue(skb);
2216 while (unlikely(hash >= num_tx_queues))
2217 hash -= num_tx_queues;
2218 return hash;
2219 }
2220
2221 if (dev->num_tc) {
2222 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2223 qoffset = dev->tc_to_txq[tc].offset;
2224 qcount = dev->tc_to_txq[tc].count;
2225 }
2226
2227 if (skb->sk && skb->sk->sk_hash)
2228 hash = skb->sk->sk_hash;
2229 else
2230 hash = (__force u16) skb->protocol ^ skb->rxhash;
2231 hash = jhash_1word(hash, hashrnd);
2232
2233 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2234 }
2235 EXPORT_SYMBOL(__skb_tx_hash);
2236
2237 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2238 {
2239 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2240 if (net_ratelimit()) {
2241 pr_warning("%s selects TX queue %d, but "
2242 "real number of TX queues is %d\n",
2243 dev->name, queue_index, dev->real_num_tx_queues);
2244 }
2245 return 0;
2246 }
2247 return queue_index;
2248 }
2249
2250 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2251 {
2252 #ifdef CONFIG_XPS
2253 struct xps_dev_maps *dev_maps;
2254 struct xps_map *map;
2255 int queue_index = -1;
2256
2257 rcu_read_lock();
2258 dev_maps = rcu_dereference(dev->xps_maps);
2259 if (dev_maps) {
2260 map = rcu_dereference(
2261 dev_maps->cpu_map[raw_smp_processor_id()]);
2262 if (map) {
2263 if (map->len == 1)
2264 queue_index = map->queues[0];
2265 else {
2266 u32 hash;
2267 if (skb->sk && skb->sk->sk_hash)
2268 hash = skb->sk->sk_hash;
2269 else
2270 hash = (__force u16) skb->protocol ^
2271 skb->rxhash;
2272 hash = jhash_1word(hash, hashrnd);
2273 queue_index = map->queues[
2274 ((u64)hash * map->len) >> 32];
2275 }
2276 if (unlikely(queue_index >= dev->real_num_tx_queues))
2277 queue_index = -1;
2278 }
2279 }
2280 rcu_read_unlock();
2281
2282 return queue_index;
2283 #else
2284 return -1;
2285 #endif
2286 }
2287
2288 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2289 struct sk_buff *skb)
2290 {
2291 int queue_index;
2292 const struct net_device_ops *ops = dev->netdev_ops;
2293
2294 if (dev->real_num_tx_queues == 1)
2295 queue_index = 0;
2296 else if (ops->ndo_select_queue) {
2297 queue_index = ops->ndo_select_queue(dev, skb);
2298 queue_index = dev_cap_txqueue(dev, queue_index);
2299 } else {
2300 struct sock *sk = skb->sk;
2301 queue_index = sk_tx_queue_get(sk);
2302
2303 if (queue_index < 0 || skb->ooo_okay ||
2304 queue_index >= dev->real_num_tx_queues) {
2305 int old_index = queue_index;
2306
2307 queue_index = get_xps_queue(dev, skb);
2308 if (queue_index < 0)
2309 queue_index = skb_tx_hash(dev, skb);
2310
2311 if (queue_index != old_index && sk) {
2312 struct dst_entry *dst =
2313 rcu_dereference_check(sk->sk_dst_cache, 1);
2314
2315 if (dst && skb_dst(skb) == dst)
2316 sk_tx_queue_set(sk, queue_index);
2317 }
2318 }
2319 }
2320
2321 skb_set_queue_mapping(skb, queue_index);
2322 return netdev_get_tx_queue(dev, queue_index);
2323 }
2324
2325 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2326 struct net_device *dev,
2327 struct netdev_queue *txq)
2328 {
2329 spinlock_t *root_lock = qdisc_lock(q);
2330 bool contended;
2331 int rc;
2332
2333 qdisc_skb_cb(skb)->pkt_len = skb->len;
2334 qdisc_calculate_pkt_len(skb, q);
2335 /*
2336 * Heuristic to force contended enqueues to serialize on a
2337 * separate lock before trying to get qdisc main lock.
2338 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2339 * and dequeue packets faster.
2340 */
2341 contended = qdisc_is_running(q);
2342 if (unlikely(contended))
2343 spin_lock(&q->busylock);
2344
2345 spin_lock(root_lock);
2346 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2347 kfree_skb(skb);
2348 rc = NET_XMIT_DROP;
2349 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2350 qdisc_run_begin(q)) {
2351 /*
2352 * This is a work-conserving queue; there are no old skbs
2353 * waiting to be sent out; and the qdisc is not running -
2354 * xmit the skb directly.
2355 */
2356 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2357 skb_dst_force(skb);
2358
2359 qdisc_bstats_update(q, skb);
2360
2361 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2362 if (unlikely(contended)) {
2363 spin_unlock(&q->busylock);
2364 contended = false;
2365 }
2366 __qdisc_run(q);
2367 } else
2368 qdisc_run_end(q);
2369
2370 rc = NET_XMIT_SUCCESS;
2371 } else {
2372 skb_dst_force(skb);
2373 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2374 if (qdisc_run_begin(q)) {
2375 if (unlikely(contended)) {
2376 spin_unlock(&q->busylock);
2377 contended = false;
2378 }
2379 __qdisc_run(q);
2380 }
2381 }
2382 spin_unlock(root_lock);
2383 if (unlikely(contended))
2384 spin_unlock(&q->busylock);
2385 return rc;
2386 }
2387
2388 static DEFINE_PER_CPU(int, xmit_recursion);
2389 #define RECURSION_LIMIT 10
2390
2391 /**
2392 * dev_queue_xmit - transmit a buffer
2393 * @skb: buffer to transmit
2394 *
2395 * Queue a buffer for transmission to a network device. The caller must
2396 * have set the device and priority and built the buffer before calling
2397 * this function. The function can be called from an interrupt.
2398 *
2399 * A negative errno code is returned on a failure. A success does not
2400 * guarantee the frame will be transmitted as it may be dropped due
2401 * to congestion or traffic shaping.
2402 *
2403 * -----------------------------------------------------------------------------------
2404 * I notice this method can also return errors from the queue disciplines,
2405 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2406 * be positive.
2407 *
2408 * Regardless of the return value, the skb is consumed, so it is currently
2409 * difficult to retry a send to this method. (You can bump the ref count
2410 * before sending to hold a reference for retry if you are careful.)
2411 *
2412 * When calling this method, interrupts MUST be enabled. This is because
2413 * the BH enable code must have IRQs enabled so that it will not deadlock.
2414 * --BLG
2415 */
2416 int dev_queue_xmit(struct sk_buff *skb)
2417 {
2418 struct net_device *dev = skb->dev;
2419 struct netdev_queue *txq;
2420 struct Qdisc *q;
2421 int rc = -ENOMEM;
2422
2423 /* Disable soft irqs for various locks below. Also
2424 * stops preemption for RCU.
2425 */
2426 rcu_read_lock_bh();
2427
2428 txq = dev_pick_tx(dev, skb);
2429 q = rcu_dereference_bh(txq->qdisc);
2430
2431 #ifdef CONFIG_NET_CLS_ACT
2432 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2433 #endif
2434 trace_net_dev_queue(skb);
2435 if (q->enqueue) {
2436 rc = __dev_xmit_skb(skb, q, dev, txq);
2437 goto out;
2438 }
2439
2440 /* The device has no queue. Common case for software devices:
2441 loopback, all the sorts of tunnels...
2442
2443 Really, it is unlikely that netif_tx_lock protection is necessary
2444 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2445 counters.)
2446 However, it is possible, that they rely on protection
2447 made by us here.
2448
2449 Check this and shot the lock. It is not prone from deadlocks.
2450 Either shot noqueue qdisc, it is even simpler 8)
2451 */
2452 if (dev->flags & IFF_UP) {
2453 int cpu = smp_processor_id(); /* ok because BHs are off */
2454
2455 if (txq->xmit_lock_owner != cpu) {
2456
2457 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2458 goto recursion_alert;
2459
2460 HARD_TX_LOCK(dev, txq, cpu);
2461
2462 if (!netif_tx_queue_stopped(txq)) {
2463 __this_cpu_inc(xmit_recursion);
2464 rc = dev_hard_start_xmit(skb, dev, txq);
2465 __this_cpu_dec(xmit_recursion);
2466 if (dev_xmit_complete(rc)) {
2467 HARD_TX_UNLOCK(dev, txq);
2468 goto out;
2469 }
2470 }
2471 HARD_TX_UNLOCK(dev, txq);
2472 if (net_ratelimit())
2473 printk(KERN_CRIT "Virtual device %s asks to "
2474 "queue packet!\n", dev->name);
2475 } else {
2476 /* Recursion is detected! It is possible,
2477 * unfortunately
2478 */
2479 recursion_alert:
2480 if (net_ratelimit())
2481 printk(KERN_CRIT "Dead loop on virtual device "
2482 "%s, fix it urgently!\n", dev->name);
2483 }
2484 }
2485
2486 rc = -ENETDOWN;
2487 rcu_read_unlock_bh();
2488
2489 kfree_skb(skb);
2490 return rc;
2491 out:
2492 rcu_read_unlock_bh();
2493 return rc;
2494 }
2495 EXPORT_SYMBOL(dev_queue_xmit);
2496
2497
2498 /*=======================================================================
2499 Receiver routines
2500 =======================================================================*/
2501
2502 int netdev_max_backlog __read_mostly = 1000;
2503 int netdev_tstamp_prequeue __read_mostly = 1;
2504 int netdev_budget __read_mostly = 300;
2505 int weight_p __read_mostly = 64; /* old backlog weight */
2506
2507 /* Called with irq disabled */
2508 static inline void ____napi_schedule(struct softnet_data *sd,
2509 struct napi_struct *napi)
2510 {
2511 list_add_tail(&napi->poll_list, &sd->poll_list);
2512 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2513 }
2514
2515 /*
2516 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2517 * and src/dst port numbers. Returns a non-zero hash number on success
2518 * and 0 on failure.
2519 */
2520 __u32 __skb_get_rxhash(struct sk_buff *skb)
2521 {
2522 int nhoff, hash = 0, poff;
2523 struct ipv6hdr *ip6;
2524 struct iphdr *ip;
2525 u8 ip_proto;
2526 u32 addr1, addr2, ihl;
2527 union {
2528 u32 v32;
2529 u16 v16[2];
2530 } ports;
2531
2532 nhoff = skb_network_offset(skb);
2533
2534 switch (skb->protocol) {
2535 case __constant_htons(ETH_P_IP):
2536 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2537 goto done;
2538
2539 ip = (struct iphdr *) (skb->data + nhoff);
2540 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2541 ip_proto = 0;
2542 else
2543 ip_proto = ip->protocol;
2544 addr1 = (__force u32) ip->saddr;
2545 addr2 = (__force u32) ip->daddr;
2546 ihl = ip->ihl;
2547 break;
2548 case __constant_htons(ETH_P_IPV6):
2549 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2550 goto done;
2551
2552 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2553 ip_proto = ip6->nexthdr;
2554 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2555 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2556 ihl = (40 >> 2);
2557 break;
2558 default:
2559 goto done;
2560 }
2561
2562 ports.v32 = 0;
2563 poff = proto_ports_offset(ip_proto);
2564 if (poff >= 0) {
2565 nhoff += ihl * 4 + poff;
2566 if (pskb_may_pull(skb, nhoff + 4)) {
2567 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2568 if (ports.v16[1] < ports.v16[0])
2569 swap(ports.v16[0], ports.v16[1]);
2570 }
2571 }
2572
2573 /* get a consistent hash (same value on both flow directions) */
2574 if (addr2 < addr1)
2575 swap(addr1, addr2);
2576
2577 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2578 if (!hash)
2579 hash = 1;
2580
2581 done:
2582 return hash;
2583 }
2584 EXPORT_SYMBOL(__skb_get_rxhash);
2585
2586 #ifdef CONFIG_RPS
2587
2588 /* One global table that all flow-based protocols share. */
2589 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2590 EXPORT_SYMBOL(rps_sock_flow_table);
2591
2592 static struct rps_dev_flow *
2593 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2594 struct rps_dev_flow *rflow, u16 next_cpu)
2595 {
2596 u16 tcpu;
2597
2598 tcpu = rflow->cpu = next_cpu;
2599 if (tcpu != RPS_NO_CPU) {
2600 #ifdef CONFIG_RFS_ACCEL
2601 struct netdev_rx_queue *rxqueue;
2602 struct rps_dev_flow_table *flow_table;
2603 struct rps_dev_flow *old_rflow;
2604 u32 flow_id;
2605 u16 rxq_index;
2606 int rc;
2607
2608 /* Should we steer this flow to a different hardware queue? */
2609 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap)
2610 goto out;
2611 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2612 if (rxq_index == skb_get_rx_queue(skb))
2613 goto out;
2614
2615 rxqueue = dev->_rx + rxq_index;
2616 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2617 if (!flow_table)
2618 goto out;
2619 flow_id = skb->rxhash & flow_table->mask;
2620 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2621 rxq_index, flow_id);
2622 if (rc < 0)
2623 goto out;
2624 old_rflow = rflow;
2625 rflow = &flow_table->flows[flow_id];
2626 rflow->cpu = next_cpu;
2627 rflow->filter = rc;
2628 if (old_rflow->filter == rflow->filter)
2629 old_rflow->filter = RPS_NO_FILTER;
2630 out:
2631 #endif
2632 rflow->last_qtail =
2633 per_cpu(softnet_data, tcpu).input_queue_head;
2634 }
2635
2636 return rflow;
2637 }
2638
2639 /*
2640 * get_rps_cpu is called from netif_receive_skb and returns the target
2641 * CPU from the RPS map of the receiving queue for a given skb.
2642 * rcu_read_lock must be held on entry.
2643 */
2644 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2645 struct rps_dev_flow **rflowp)
2646 {
2647 struct netdev_rx_queue *rxqueue;
2648 struct rps_map *map;
2649 struct rps_dev_flow_table *flow_table;
2650 struct rps_sock_flow_table *sock_flow_table;
2651 int cpu = -1;
2652 u16 tcpu;
2653
2654 if (skb_rx_queue_recorded(skb)) {
2655 u16 index = skb_get_rx_queue(skb);
2656 if (unlikely(index >= dev->real_num_rx_queues)) {
2657 WARN_ONCE(dev->real_num_rx_queues > 1,
2658 "%s received packet on queue %u, but number "
2659 "of RX queues is %u\n",
2660 dev->name, index, dev->real_num_rx_queues);
2661 goto done;
2662 }
2663 rxqueue = dev->_rx + index;
2664 } else
2665 rxqueue = dev->_rx;
2666
2667 map = rcu_dereference(rxqueue->rps_map);
2668 if (map) {
2669 if (map->len == 1 &&
2670 !rcu_dereference_raw(rxqueue->rps_flow_table)) {
2671 tcpu = map->cpus[0];
2672 if (cpu_online(tcpu))
2673 cpu = tcpu;
2674 goto done;
2675 }
2676 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2677 goto done;
2678 }
2679
2680 skb_reset_network_header(skb);
2681 if (!skb_get_rxhash(skb))
2682 goto done;
2683
2684 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2685 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2686 if (flow_table && sock_flow_table) {
2687 u16 next_cpu;
2688 struct rps_dev_flow *rflow;
2689
2690 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2691 tcpu = rflow->cpu;
2692
2693 next_cpu = sock_flow_table->ents[skb->rxhash &
2694 sock_flow_table->mask];
2695
2696 /*
2697 * If the desired CPU (where last recvmsg was done) is
2698 * different from current CPU (one in the rx-queue flow
2699 * table entry), switch if one of the following holds:
2700 * - Current CPU is unset (equal to RPS_NO_CPU).
2701 * - Current CPU is offline.
2702 * - The current CPU's queue tail has advanced beyond the
2703 * last packet that was enqueued using this table entry.
2704 * This guarantees that all previous packets for the flow
2705 * have been dequeued, thus preserving in order delivery.
2706 */
2707 if (unlikely(tcpu != next_cpu) &&
2708 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2709 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2710 rflow->last_qtail)) >= 0))
2711 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2712
2713 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2714 *rflowp = rflow;
2715 cpu = tcpu;
2716 goto done;
2717 }
2718 }
2719
2720 if (map) {
2721 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2722
2723 if (cpu_online(tcpu)) {
2724 cpu = tcpu;
2725 goto done;
2726 }
2727 }
2728
2729 done:
2730 return cpu;
2731 }
2732
2733 #ifdef CONFIG_RFS_ACCEL
2734
2735 /**
2736 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2737 * @dev: Device on which the filter was set
2738 * @rxq_index: RX queue index
2739 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2740 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2741 *
2742 * Drivers that implement ndo_rx_flow_steer() should periodically call
2743 * this function for each installed filter and remove the filters for
2744 * which it returns %true.
2745 */
2746 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2747 u32 flow_id, u16 filter_id)
2748 {
2749 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2750 struct rps_dev_flow_table *flow_table;
2751 struct rps_dev_flow *rflow;
2752 bool expire = true;
2753 int cpu;
2754
2755 rcu_read_lock();
2756 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2757 if (flow_table && flow_id <= flow_table->mask) {
2758 rflow = &flow_table->flows[flow_id];
2759 cpu = ACCESS_ONCE(rflow->cpu);
2760 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2761 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2762 rflow->last_qtail) <
2763 (int)(10 * flow_table->mask)))
2764 expire = false;
2765 }
2766 rcu_read_unlock();
2767 return expire;
2768 }
2769 EXPORT_SYMBOL(rps_may_expire_flow);
2770
2771 #endif /* CONFIG_RFS_ACCEL */
2772
2773 /* Called from hardirq (IPI) context */
2774 static void rps_trigger_softirq(void *data)
2775 {
2776 struct softnet_data *sd = data;
2777
2778 ____napi_schedule(sd, &sd->backlog);
2779 sd->received_rps++;
2780 }
2781
2782 #endif /* CONFIG_RPS */
2783
2784 /*
2785 * Check if this softnet_data structure is another cpu one
2786 * If yes, queue it to our IPI list and return 1
2787 * If no, return 0
2788 */
2789 static int rps_ipi_queued(struct softnet_data *sd)
2790 {
2791 #ifdef CONFIG_RPS
2792 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2793
2794 if (sd != mysd) {
2795 sd->rps_ipi_next = mysd->rps_ipi_list;
2796 mysd->rps_ipi_list = sd;
2797
2798 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2799 return 1;
2800 }
2801 #endif /* CONFIG_RPS */
2802 return 0;
2803 }
2804
2805 /*
2806 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2807 * queue (may be a remote CPU queue).
2808 */
2809 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2810 unsigned int *qtail)
2811 {
2812 struct softnet_data *sd;
2813 unsigned long flags;
2814
2815 sd = &per_cpu(softnet_data, cpu);
2816
2817 local_irq_save(flags);
2818
2819 rps_lock(sd);
2820 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2821 if (skb_queue_len(&sd->input_pkt_queue)) {
2822 enqueue:
2823 __skb_queue_tail(&sd->input_pkt_queue, skb);
2824 input_queue_tail_incr_save(sd, qtail);
2825 rps_unlock(sd);
2826 local_irq_restore(flags);
2827 return NET_RX_SUCCESS;
2828 }
2829
2830 /* Schedule NAPI for backlog device
2831 * We can use non atomic operation since we own the queue lock
2832 */
2833 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2834 if (!rps_ipi_queued(sd))
2835 ____napi_schedule(sd, &sd->backlog);
2836 }
2837 goto enqueue;
2838 }
2839
2840 sd->dropped++;
2841 rps_unlock(sd);
2842
2843 local_irq_restore(flags);
2844
2845 atomic_long_inc(&skb->dev->rx_dropped);
2846 kfree_skb(skb);
2847 return NET_RX_DROP;
2848 }
2849
2850 /**
2851 * netif_rx - post buffer to the network code
2852 * @skb: buffer to post
2853 *
2854 * This function receives a packet from a device driver and queues it for
2855 * the upper (protocol) levels to process. It always succeeds. The buffer
2856 * may be dropped during processing for congestion control or by the
2857 * protocol layers.
2858 *
2859 * return values:
2860 * NET_RX_SUCCESS (no congestion)
2861 * NET_RX_DROP (packet was dropped)
2862 *
2863 */
2864
2865 int netif_rx(struct sk_buff *skb)
2866 {
2867 int ret;
2868
2869 /* if netpoll wants it, pretend we never saw it */
2870 if (netpoll_rx(skb))
2871 return NET_RX_DROP;
2872
2873 if (netdev_tstamp_prequeue)
2874 net_timestamp_check(skb);
2875
2876 trace_netif_rx(skb);
2877 #ifdef CONFIG_RPS
2878 {
2879 struct rps_dev_flow voidflow, *rflow = &voidflow;
2880 int cpu;
2881
2882 preempt_disable();
2883 rcu_read_lock();
2884
2885 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2886 if (cpu < 0)
2887 cpu = smp_processor_id();
2888
2889 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2890
2891 rcu_read_unlock();
2892 preempt_enable();
2893 }
2894 #else
2895 {
2896 unsigned int qtail;
2897 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2898 put_cpu();
2899 }
2900 #endif
2901 return ret;
2902 }
2903 EXPORT_SYMBOL(netif_rx);
2904
2905 int netif_rx_ni(struct sk_buff *skb)
2906 {
2907 int err;
2908
2909 preempt_disable();
2910 err = netif_rx(skb);
2911 if (local_softirq_pending())
2912 do_softirq();
2913 preempt_enable();
2914
2915 return err;
2916 }
2917 EXPORT_SYMBOL(netif_rx_ni);
2918
2919 static void net_tx_action(struct softirq_action *h)
2920 {
2921 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2922
2923 if (sd->completion_queue) {
2924 struct sk_buff *clist;
2925
2926 local_irq_disable();
2927 clist = sd->completion_queue;
2928 sd->completion_queue = NULL;
2929 local_irq_enable();
2930
2931 while (clist) {
2932 struct sk_buff *skb = clist;
2933 clist = clist->next;
2934
2935 WARN_ON(atomic_read(&skb->users));
2936 trace_kfree_skb(skb, net_tx_action);
2937 __kfree_skb(skb);
2938 }
2939 }
2940
2941 if (sd->output_queue) {
2942 struct Qdisc *head;
2943
2944 local_irq_disable();
2945 head = sd->output_queue;
2946 sd->output_queue = NULL;
2947 sd->output_queue_tailp = &sd->output_queue;
2948 local_irq_enable();
2949
2950 while (head) {
2951 struct Qdisc *q = head;
2952 spinlock_t *root_lock;
2953
2954 head = head->next_sched;
2955
2956 root_lock = qdisc_lock(q);
2957 if (spin_trylock(root_lock)) {
2958 smp_mb__before_clear_bit();
2959 clear_bit(__QDISC_STATE_SCHED,
2960 &q->state);
2961 qdisc_run(q);
2962 spin_unlock(root_lock);
2963 } else {
2964 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2965 &q->state)) {
2966 __netif_reschedule(q);
2967 } else {
2968 smp_mb__before_clear_bit();
2969 clear_bit(__QDISC_STATE_SCHED,
2970 &q->state);
2971 }
2972 }
2973 }
2974 }
2975 }
2976
2977 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2978 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2979 /* This hook is defined here for ATM LANE */
2980 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2981 unsigned char *addr) __read_mostly;
2982 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2983 #endif
2984
2985 #ifdef CONFIG_NET_CLS_ACT
2986 /* TODO: Maybe we should just force sch_ingress to be compiled in
2987 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2988 * a compare and 2 stores extra right now if we dont have it on
2989 * but have CONFIG_NET_CLS_ACT
2990 * NOTE: This doesnt stop any functionality; if you dont have
2991 * the ingress scheduler, you just cant add policies on ingress.
2992 *
2993 */
2994 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2995 {
2996 struct net_device *dev = skb->dev;
2997 u32 ttl = G_TC_RTTL(skb->tc_verd);
2998 int result = TC_ACT_OK;
2999 struct Qdisc *q;
3000
3001 if (unlikely(MAX_RED_LOOP < ttl++)) {
3002 if (net_ratelimit())
3003 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
3004 skb->skb_iif, dev->ifindex);
3005 return TC_ACT_SHOT;
3006 }
3007
3008 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3009 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3010
3011 q = rxq->qdisc;
3012 if (q != &noop_qdisc) {
3013 spin_lock(qdisc_lock(q));
3014 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3015 result = qdisc_enqueue_root(skb, q);
3016 spin_unlock(qdisc_lock(q));
3017 }
3018
3019 return result;
3020 }
3021
3022 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3023 struct packet_type **pt_prev,
3024 int *ret, struct net_device *orig_dev)
3025 {
3026 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3027
3028 if (!rxq || rxq->qdisc == &noop_qdisc)
3029 goto out;
3030
3031 if (*pt_prev) {
3032 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3033 *pt_prev = NULL;
3034 }
3035
3036 switch (ing_filter(skb, rxq)) {
3037 case TC_ACT_SHOT:
3038 case TC_ACT_STOLEN:
3039 kfree_skb(skb);
3040 return NULL;
3041 }
3042
3043 out:
3044 skb->tc_verd = 0;
3045 return skb;
3046 }
3047 #endif
3048
3049 /**
3050 * netdev_rx_handler_register - register receive handler
3051 * @dev: device to register a handler for
3052 * @rx_handler: receive handler to register
3053 * @rx_handler_data: data pointer that is used by rx handler
3054 *
3055 * Register a receive hander for a device. This handler will then be
3056 * called from __netif_receive_skb. A negative errno code is returned
3057 * on a failure.
3058 *
3059 * The caller must hold the rtnl_mutex.
3060 */
3061 int netdev_rx_handler_register(struct net_device *dev,
3062 rx_handler_func_t *rx_handler,
3063 void *rx_handler_data)
3064 {
3065 ASSERT_RTNL();
3066
3067 if (dev->rx_handler)
3068 return -EBUSY;
3069
3070 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3071 rcu_assign_pointer(dev->rx_handler, rx_handler);
3072
3073 return 0;
3074 }
3075 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3076
3077 /**
3078 * netdev_rx_handler_unregister - unregister receive handler
3079 * @dev: device to unregister a handler from
3080 *
3081 * Unregister a receive hander from a device.
3082 *
3083 * The caller must hold the rtnl_mutex.
3084 */
3085 void netdev_rx_handler_unregister(struct net_device *dev)
3086 {
3087
3088 ASSERT_RTNL();
3089 rcu_assign_pointer(dev->rx_handler, NULL);
3090 rcu_assign_pointer(dev->rx_handler_data, NULL);
3091 }
3092 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3093
3094 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
3095 struct net_device *master)
3096 {
3097 if (skb->pkt_type == PACKET_HOST) {
3098 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
3099
3100 memcpy(dest, master->dev_addr, ETH_ALEN);
3101 }
3102 }
3103
3104 /* On bonding slaves other than the currently active slave, suppress
3105 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
3106 * ARP on active-backup slaves with arp_validate enabled.
3107 */
3108 static int __skb_bond_should_drop(struct sk_buff *skb,
3109 struct net_device *master)
3110 {
3111 struct net_device *dev = skb->dev;
3112
3113 if (master->priv_flags & IFF_MASTER_ARPMON)
3114 dev->last_rx = jiffies;
3115
3116 if ((master->priv_flags & IFF_MASTER_ALB) &&
3117 (master->priv_flags & IFF_BRIDGE_PORT)) {
3118 /* Do address unmangle. The local destination address
3119 * will be always the one master has. Provides the right
3120 * functionality in a bridge.
3121 */
3122 skb_bond_set_mac_by_master(skb, master);
3123 }
3124
3125 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
3126 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
3127 skb->protocol == __cpu_to_be16(ETH_P_ARP))
3128 return 0;
3129
3130 if (master->priv_flags & IFF_MASTER_ALB) {
3131 if (skb->pkt_type != PACKET_BROADCAST &&
3132 skb->pkt_type != PACKET_MULTICAST)
3133 return 0;
3134 }
3135 if (master->priv_flags & IFF_MASTER_8023AD &&
3136 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
3137 return 0;
3138
3139 return 1;
3140 }
3141 return 0;
3142 }
3143
3144 static int __netif_receive_skb(struct sk_buff *skb)
3145 {
3146 struct packet_type *ptype, *pt_prev;
3147 rx_handler_func_t *rx_handler;
3148 struct net_device *orig_dev;
3149 struct net_device *null_or_orig;
3150 struct net_device *orig_or_bond;
3151 int ret = NET_RX_DROP;
3152 __be16 type;
3153
3154 if (!netdev_tstamp_prequeue)
3155 net_timestamp_check(skb);
3156
3157 trace_netif_receive_skb(skb);
3158
3159 /* if we've gotten here through NAPI, check netpoll */
3160 if (netpoll_receive_skb(skb))
3161 return NET_RX_DROP;
3162
3163 if (!skb->skb_iif)
3164 skb->skb_iif = skb->dev->ifindex;
3165
3166 /*
3167 * bonding note: skbs received on inactive slaves should only
3168 * be delivered to pkt handlers that are exact matches. Also
3169 * the deliver_no_wcard flag will be set. If packet handlers
3170 * are sensitive to duplicate packets these skbs will need to
3171 * be dropped at the handler.
3172 */
3173 null_or_orig = NULL;
3174 orig_dev = skb->dev;
3175 if (skb->deliver_no_wcard)
3176 null_or_orig = orig_dev;
3177 else if (netif_is_bond_slave(orig_dev)) {
3178 struct net_device *bond_master = ACCESS_ONCE(orig_dev->master);
3179
3180 if (likely(bond_master)) {
3181 if (__skb_bond_should_drop(skb, bond_master)) {
3182 skb->deliver_no_wcard = 1;
3183 /* deliver only exact match */
3184 null_or_orig = orig_dev;
3185 } else
3186 skb->dev = bond_master;
3187 }
3188 }
3189
3190 __this_cpu_inc(softnet_data.processed);
3191 skb_reset_network_header(skb);
3192 skb_reset_transport_header(skb);
3193 skb->mac_len = skb->network_header - skb->mac_header;
3194
3195 pt_prev = NULL;
3196
3197 rcu_read_lock();
3198
3199 #ifdef CONFIG_NET_CLS_ACT
3200 if (skb->tc_verd & TC_NCLS) {
3201 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3202 goto ncls;
3203 }
3204 #endif
3205
3206 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3207 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
3208 ptype->dev == orig_dev) {
3209 if (pt_prev)
3210 ret = deliver_skb(skb, pt_prev, orig_dev);
3211 pt_prev = ptype;
3212 }
3213 }
3214
3215 #ifdef CONFIG_NET_CLS_ACT
3216 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3217 if (!skb)
3218 goto out;
3219 ncls:
3220 #endif
3221
3222 /* Handle special case of bridge or macvlan */
3223 rx_handler = rcu_dereference(skb->dev->rx_handler);
3224 if (rx_handler) {
3225 if (pt_prev) {
3226 ret = deliver_skb(skb, pt_prev, orig_dev);
3227 pt_prev = NULL;
3228 }
3229 skb = rx_handler(skb);
3230 if (!skb)
3231 goto out;
3232 }
3233
3234 if (vlan_tx_tag_present(skb)) {
3235 if (pt_prev) {
3236 ret = deliver_skb(skb, pt_prev, orig_dev);
3237 pt_prev = NULL;
3238 }
3239 if (vlan_hwaccel_do_receive(&skb)) {
3240 ret = __netif_receive_skb(skb);
3241 goto out;
3242 } else if (unlikely(!skb))
3243 goto out;
3244 }
3245
3246 /*
3247 * Make sure frames received on VLAN interfaces stacked on
3248 * bonding interfaces still make their way to any base bonding
3249 * device that may have registered for a specific ptype. The
3250 * handler may have to adjust skb->dev and orig_dev.
3251 */
3252 orig_or_bond = orig_dev;
3253 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
3254 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
3255 orig_or_bond = vlan_dev_real_dev(skb->dev);
3256 }
3257
3258 type = skb->protocol;
3259 list_for_each_entry_rcu(ptype,
3260 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3261 if (ptype->type == type && (ptype->dev == null_or_orig ||
3262 ptype->dev == skb->dev || ptype->dev == orig_dev ||
3263 ptype->dev == orig_or_bond)) {
3264 if (pt_prev)
3265 ret = deliver_skb(skb, pt_prev, orig_dev);
3266 pt_prev = ptype;
3267 }
3268 }
3269
3270 if (pt_prev) {
3271 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3272 } else {
3273 atomic_long_inc(&skb->dev->rx_dropped);
3274 kfree_skb(skb);
3275 /* Jamal, now you will not able to escape explaining
3276 * me how you were going to use this. :-)
3277 */
3278 ret = NET_RX_DROP;
3279 }
3280
3281 out:
3282 rcu_read_unlock();
3283 return ret;
3284 }
3285
3286 /**
3287 * netif_receive_skb - process receive buffer from network
3288 * @skb: buffer to process
3289 *
3290 * netif_receive_skb() is the main receive data processing function.
3291 * It always succeeds. The buffer may be dropped during processing
3292 * for congestion control or by the protocol layers.
3293 *
3294 * This function may only be called from softirq context and interrupts
3295 * should be enabled.
3296 *
3297 * Return values (usually ignored):
3298 * NET_RX_SUCCESS: no congestion
3299 * NET_RX_DROP: packet was dropped
3300 */
3301 int netif_receive_skb(struct sk_buff *skb)
3302 {
3303 if (netdev_tstamp_prequeue)
3304 net_timestamp_check(skb);
3305
3306 if (skb_defer_rx_timestamp(skb))
3307 return NET_RX_SUCCESS;
3308
3309 #ifdef CONFIG_RPS
3310 {
3311 struct rps_dev_flow voidflow, *rflow = &voidflow;
3312 int cpu, ret;
3313
3314 rcu_read_lock();
3315
3316 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3317
3318 if (cpu >= 0) {
3319 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3320 rcu_read_unlock();
3321 } else {
3322 rcu_read_unlock();
3323 ret = __netif_receive_skb(skb);
3324 }
3325
3326 return ret;
3327 }
3328 #else
3329 return __netif_receive_skb(skb);
3330 #endif
3331 }
3332 EXPORT_SYMBOL(netif_receive_skb);
3333
3334 /* Network device is going away, flush any packets still pending
3335 * Called with irqs disabled.
3336 */
3337 static void flush_backlog(void *arg)
3338 {
3339 struct net_device *dev = arg;
3340 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3341 struct sk_buff *skb, *tmp;
3342
3343 rps_lock(sd);
3344 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3345 if (skb->dev == dev) {
3346 __skb_unlink(skb, &sd->input_pkt_queue);
3347 kfree_skb(skb);
3348 input_queue_head_incr(sd);
3349 }
3350 }
3351 rps_unlock(sd);
3352
3353 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3354 if (skb->dev == dev) {
3355 __skb_unlink(skb, &sd->process_queue);
3356 kfree_skb(skb);
3357 input_queue_head_incr(sd);
3358 }
3359 }
3360 }
3361
3362 static int napi_gro_complete(struct sk_buff *skb)
3363 {
3364 struct packet_type *ptype;
3365 __be16 type = skb->protocol;
3366 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3367 int err = -ENOENT;
3368
3369 if (NAPI_GRO_CB(skb)->count == 1) {
3370 skb_shinfo(skb)->gso_size = 0;
3371 goto out;
3372 }
3373
3374 rcu_read_lock();
3375 list_for_each_entry_rcu(ptype, head, list) {
3376 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3377 continue;
3378
3379 err = ptype->gro_complete(skb);
3380 break;
3381 }
3382 rcu_read_unlock();
3383
3384 if (err) {
3385 WARN_ON(&ptype->list == head);
3386 kfree_skb(skb);
3387 return NET_RX_SUCCESS;
3388 }
3389
3390 out:
3391 return netif_receive_skb(skb);
3392 }
3393
3394 inline void napi_gro_flush(struct napi_struct *napi)
3395 {
3396 struct sk_buff *skb, *next;
3397
3398 for (skb = napi->gro_list; skb; skb = next) {
3399 next = skb->next;
3400 skb->next = NULL;
3401 napi_gro_complete(skb);
3402 }
3403
3404 napi->gro_count = 0;
3405 napi->gro_list = NULL;
3406 }
3407 EXPORT_SYMBOL(napi_gro_flush);
3408
3409 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3410 {
3411 struct sk_buff **pp = NULL;
3412 struct packet_type *ptype;
3413 __be16 type = skb->protocol;
3414 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3415 int same_flow;
3416 int mac_len;
3417 enum gro_result ret;
3418
3419 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3420 goto normal;
3421
3422 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3423 goto normal;
3424
3425 rcu_read_lock();
3426 list_for_each_entry_rcu(ptype, head, list) {
3427 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3428 continue;
3429
3430 skb_set_network_header(skb, skb_gro_offset(skb));
3431 mac_len = skb->network_header - skb->mac_header;
3432 skb->mac_len = mac_len;
3433 NAPI_GRO_CB(skb)->same_flow = 0;
3434 NAPI_GRO_CB(skb)->flush = 0;
3435 NAPI_GRO_CB(skb)->free = 0;
3436
3437 pp = ptype->gro_receive(&napi->gro_list, skb);
3438 break;
3439 }
3440 rcu_read_unlock();
3441
3442 if (&ptype->list == head)
3443 goto normal;
3444
3445 same_flow = NAPI_GRO_CB(skb)->same_flow;
3446 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3447
3448 if (pp) {
3449 struct sk_buff *nskb = *pp;
3450
3451 *pp = nskb->next;
3452 nskb->next = NULL;
3453 napi_gro_complete(nskb);
3454 napi->gro_count--;
3455 }
3456
3457 if (same_flow)
3458 goto ok;
3459
3460 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3461 goto normal;
3462
3463 napi->gro_count++;
3464 NAPI_GRO_CB(skb)->count = 1;
3465 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3466 skb->next = napi->gro_list;
3467 napi->gro_list = skb;
3468 ret = GRO_HELD;
3469
3470 pull:
3471 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3472 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3473
3474 BUG_ON(skb->end - skb->tail < grow);
3475
3476 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3477
3478 skb->tail += grow;
3479 skb->data_len -= grow;
3480
3481 skb_shinfo(skb)->frags[0].page_offset += grow;
3482 skb_shinfo(skb)->frags[0].size -= grow;
3483
3484 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3485 put_page(skb_shinfo(skb)->frags[0].page);
3486 memmove(skb_shinfo(skb)->frags,
3487 skb_shinfo(skb)->frags + 1,
3488 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3489 }
3490 }
3491
3492 ok:
3493 return ret;
3494
3495 normal:
3496 ret = GRO_NORMAL;
3497 goto pull;
3498 }
3499 EXPORT_SYMBOL(dev_gro_receive);
3500
3501 static inline gro_result_t
3502 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3503 {
3504 struct sk_buff *p;
3505
3506 for (p = napi->gro_list; p; p = p->next) {
3507 unsigned long diffs;
3508
3509 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3510 diffs |= p->vlan_tci ^ skb->vlan_tci;
3511 diffs |= compare_ether_header(skb_mac_header(p),
3512 skb_gro_mac_header(skb));
3513 NAPI_GRO_CB(p)->same_flow = !diffs;
3514 NAPI_GRO_CB(p)->flush = 0;
3515 }
3516
3517 return dev_gro_receive(napi, skb);
3518 }
3519
3520 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3521 {
3522 switch (ret) {
3523 case GRO_NORMAL:
3524 if (netif_receive_skb(skb))
3525 ret = GRO_DROP;
3526 break;
3527
3528 case GRO_DROP:
3529 case GRO_MERGED_FREE:
3530 kfree_skb(skb);
3531 break;
3532
3533 case GRO_HELD:
3534 case GRO_MERGED:
3535 break;
3536 }
3537
3538 return ret;
3539 }
3540 EXPORT_SYMBOL(napi_skb_finish);
3541
3542 void skb_gro_reset_offset(struct sk_buff *skb)
3543 {
3544 NAPI_GRO_CB(skb)->data_offset = 0;
3545 NAPI_GRO_CB(skb)->frag0 = NULL;
3546 NAPI_GRO_CB(skb)->frag0_len = 0;
3547
3548 if (skb->mac_header == skb->tail &&
3549 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3550 NAPI_GRO_CB(skb)->frag0 =
3551 page_address(skb_shinfo(skb)->frags[0].page) +
3552 skb_shinfo(skb)->frags[0].page_offset;
3553 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3554 }
3555 }
3556 EXPORT_SYMBOL(skb_gro_reset_offset);
3557
3558 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3559 {
3560 skb_gro_reset_offset(skb);
3561
3562 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3563 }
3564 EXPORT_SYMBOL(napi_gro_receive);
3565
3566 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3567 {
3568 __skb_pull(skb, skb_headlen(skb));
3569 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3570 skb->vlan_tci = 0;
3571 skb->dev = napi->dev;
3572 skb->skb_iif = 0;
3573
3574 napi->skb = skb;
3575 }
3576
3577 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3578 {
3579 struct sk_buff *skb = napi->skb;
3580
3581 if (!skb) {
3582 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3583 if (skb)
3584 napi->skb = skb;
3585 }
3586 return skb;
3587 }
3588 EXPORT_SYMBOL(napi_get_frags);
3589
3590 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3591 gro_result_t ret)
3592 {
3593 switch (ret) {
3594 case GRO_NORMAL:
3595 case GRO_HELD:
3596 skb->protocol = eth_type_trans(skb, skb->dev);
3597
3598 if (ret == GRO_HELD)
3599 skb_gro_pull(skb, -ETH_HLEN);
3600 else if (netif_receive_skb(skb))
3601 ret = GRO_DROP;
3602 break;
3603
3604 case GRO_DROP:
3605 case GRO_MERGED_FREE:
3606 napi_reuse_skb(napi, skb);
3607 break;
3608
3609 case GRO_MERGED:
3610 break;
3611 }
3612
3613 return ret;
3614 }
3615 EXPORT_SYMBOL(napi_frags_finish);
3616
3617 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3618 {
3619 struct sk_buff *skb = napi->skb;
3620 struct ethhdr *eth;
3621 unsigned int hlen;
3622 unsigned int off;
3623
3624 napi->skb = NULL;
3625
3626 skb_reset_mac_header(skb);
3627 skb_gro_reset_offset(skb);
3628
3629 off = skb_gro_offset(skb);
3630 hlen = off + sizeof(*eth);
3631 eth = skb_gro_header_fast(skb, off);
3632 if (skb_gro_header_hard(skb, hlen)) {
3633 eth = skb_gro_header_slow(skb, hlen, off);
3634 if (unlikely(!eth)) {
3635 napi_reuse_skb(napi, skb);
3636 skb = NULL;
3637 goto out;
3638 }
3639 }
3640
3641 skb_gro_pull(skb, sizeof(*eth));
3642
3643 /*
3644 * This works because the only protocols we care about don't require
3645 * special handling. We'll fix it up properly at the end.
3646 */
3647 skb->protocol = eth->h_proto;
3648
3649 out:
3650 return skb;
3651 }
3652 EXPORT_SYMBOL(napi_frags_skb);
3653
3654 gro_result_t napi_gro_frags(struct napi_struct *napi)
3655 {
3656 struct sk_buff *skb = napi_frags_skb(napi);
3657
3658 if (!skb)
3659 return GRO_DROP;
3660
3661 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3662 }
3663 EXPORT_SYMBOL(napi_gro_frags);
3664
3665 /*
3666 * net_rps_action sends any pending IPI's for rps.
3667 * Note: called with local irq disabled, but exits with local irq enabled.
3668 */
3669 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3670 {
3671 #ifdef CONFIG_RPS
3672 struct softnet_data *remsd = sd->rps_ipi_list;
3673
3674 if (remsd) {
3675 sd->rps_ipi_list = NULL;
3676
3677 local_irq_enable();
3678
3679 /* Send pending IPI's to kick RPS processing on remote cpus. */
3680 while (remsd) {
3681 struct softnet_data *next = remsd->rps_ipi_next;
3682
3683 if (cpu_online(remsd->cpu))
3684 __smp_call_function_single(remsd->cpu,
3685 &remsd->csd, 0);
3686 remsd = next;
3687 }
3688 } else
3689 #endif
3690 local_irq_enable();
3691 }
3692
3693 static int process_backlog(struct napi_struct *napi, int quota)
3694 {
3695 int work = 0;
3696 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3697
3698 #ifdef CONFIG_RPS
3699 /* Check if we have pending ipi, its better to send them now,
3700 * not waiting net_rx_action() end.
3701 */
3702 if (sd->rps_ipi_list) {
3703 local_irq_disable();
3704 net_rps_action_and_irq_enable(sd);
3705 }
3706 #endif
3707 napi->weight = weight_p;
3708 local_irq_disable();
3709 while (work < quota) {
3710 struct sk_buff *skb;
3711 unsigned int qlen;
3712
3713 while ((skb = __skb_dequeue(&sd->process_queue))) {
3714 local_irq_enable();
3715 __netif_receive_skb(skb);
3716 local_irq_disable();
3717 input_queue_head_incr(sd);
3718 if (++work >= quota) {
3719 local_irq_enable();
3720 return work;
3721 }
3722 }
3723
3724 rps_lock(sd);
3725 qlen = skb_queue_len(&sd->input_pkt_queue);
3726 if (qlen)
3727 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3728 &sd->process_queue);
3729
3730 if (qlen < quota - work) {
3731 /*
3732 * Inline a custom version of __napi_complete().
3733 * only current cpu owns and manipulates this napi,
3734 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3735 * we can use a plain write instead of clear_bit(),
3736 * and we dont need an smp_mb() memory barrier.
3737 */
3738 list_del(&napi->poll_list);
3739 napi->state = 0;
3740
3741 quota = work + qlen;
3742 }
3743 rps_unlock(sd);
3744 }
3745 local_irq_enable();
3746
3747 return work;
3748 }
3749
3750 /**
3751 * __napi_schedule - schedule for receive
3752 * @n: entry to schedule
3753 *
3754 * The entry's receive function will be scheduled to run
3755 */
3756 void __napi_schedule(struct napi_struct *n)
3757 {
3758 unsigned long flags;
3759
3760 local_irq_save(flags);
3761 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3762 local_irq_restore(flags);
3763 }
3764 EXPORT_SYMBOL(__napi_schedule);
3765
3766 void __napi_complete(struct napi_struct *n)
3767 {
3768 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3769 BUG_ON(n->gro_list);
3770
3771 list_del(&n->poll_list);
3772 smp_mb__before_clear_bit();
3773 clear_bit(NAPI_STATE_SCHED, &n->state);
3774 }
3775 EXPORT_SYMBOL(__napi_complete);
3776
3777 void napi_complete(struct napi_struct *n)
3778 {
3779 unsigned long flags;
3780
3781 /*
3782 * don't let napi dequeue from the cpu poll list
3783 * just in case its running on a different cpu
3784 */
3785 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3786 return;
3787
3788 napi_gro_flush(n);
3789 local_irq_save(flags);
3790 __napi_complete(n);
3791 local_irq_restore(flags);
3792 }
3793 EXPORT_SYMBOL(napi_complete);
3794
3795 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3796 int (*poll)(struct napi_struct *, int), int weight)
3797 {
3798 INIT_LIST_HEAD(&napi->poll_list);
3799 napi->gro_count = 0;
3800 napi->gro_list = NULL;
3801 napi->skb = NULL;
3802 napi->poll = poll;
3803 napi->weight = weight;
3804 list_add(&napi->dev_list, &dev->napi_list);
3805 napi->dev = dev;
3806 #ifdef CONFIG_NETPOLL
3807 spin_lock_init(&napi->poll_lock);
3808 napi->poll_owner = -1;
3809 #endif
3810 set_bit(NAPI_STATE_SCHED, &napi->state);
3811 }
3812 EXPORT_SYMBOL(netif_napi_add);
3813
3814 void netif_napi_del(struct napi_struct *napi)
3815 {
3816 struct sk_buff *skb, *next;
3817
3818 list_del_init(&napi->dev_list);
3819 napi_free_frags(napi);
3820
3821 for (skb = napi->gro_list; skb; skb = next) {
3822 next = skb->next;
3823 skb->next = NULL;
3824 kfree_skb(skb);
3825 }
3826
3827 napi->gro_list = NULL;
3828 napi->gro_count = 0;
3829 }
3830 EXPORT_SYMBOL(netif_napi_del);
3831
3832 static void net_rx_action(struct softirq_action *h)
3833 {
3834 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3835 unsigned long time_limit = jiffies + 2;
3836 int budget = netdev_budget;
3837 void *have;
3838
3839 local_irq_disable();
3840
3841 while (!list_empty(&sd->poll_list)) {
3842 struct napi_struct *n;
3843 int work, weight;
3844
3845 /* If softirq window is exhuasted then punt.
3846 * Allow this to run for 2 jiffies since which will allow
3847 * an average latency of 1.5/HZ.
3848 */
3849 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3850 goto softnet_break;
3851
3852 local_irq_enable();
3853
3854 /* Even though interrupts have been re-enabled, this
3855 * access is safe because interrupts can only add new
3856 * entries to the tail of this list, and only ->poll()
3857 * calls can remove this head entry from the list.
3858 */
3859 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3860
3861 have = netpoll_poll_lock(n);
3862
3863 weight = n->weight;
3864
3865 /* This NAPI_STATE_SCHED test is for avoiding a race
3866 * with netpoll's poll_napi(). Only the entity which
3867 * obtains the lock and sees NAPI_STATE_SCHED set will
3868 * actually make the ->poll() call. Therefore we avoid
3869 * accidently calling ->poll() when NAPI is not scheduled.
3870 */
3871 work = 0;
3872 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3873 work = n->poll(n, weight);
3874 trace_napi_poll(n);
3875 }
3876
3877 WARN_ON_ONCE(work > weight);
3878
3879 budget -= work;
3880
3881 local_irq_disable();
3882
3883 /* Drivers must not modify the NAPI state if they
3884 * consume the entire weight. In such cases this code
3885 * still "owns" the NAPI instance and therefore can
3886 * move the instance around on the list at-will.
3887 */
3888 if (unlikely(work == weight)) {
3889 if (unlikely(napi_disable_pending(n))) {
3890 local_irq_enable();
3891 napi_complete(n);
3892 local_irq_disable();
3893 } else
3894 list_move_tail(&n->poll_list, &sd->poll_list);
3895 }
3896
3897 netpoll_poll_unlock(have);
3898 }
3899 out:
3900 net_rps_action_and_irq_enable(sd);
3901
3902 #ifdef CONFIG_NET_DMA
3903 /*
3904 * There may not be any more sk_buffs coming right now, so push
3905 * any pending DMA copies to hardware
3906 */
3907 dma_issue_pending_all();
3908 #endif
3909
3910 return;
3911
3912 softnet_break:
3913 sd->time_squeeze++;
3914 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3915 goto out;
3916 }
3917
3918 static gifconf_func_t *gifconf_list[NPROTO];
3919
3920 /**
3921 * register_gifconf - register a SIOCGIF handler
3922 * @family: Address family
3923 * @gifconf: Function handler
3924 *
3925 * Register protocol dependent address dumping routines. The handler
3926 * that is passed must not be freed or reused until it has been replaced
3927 * by another handler.
3928 */
3929 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3930 {
3931 if (family >= NPROTO)
3932 return -EINVAL;
3933 gifconf_list[family] = gifconf;
3934 return 0;
3935 }
3936 EXPORT_SYMBOL(register_gifconf);
3937
3938
3939 /*
3940 * Map an interface index to its name (SIOCGIFNAME)
3941 */
3942
3943 /*
3944 * We need this ioctl for efficient implementation of the
3945 * if_indextoname() function required by the IPv6 API. Without
3946 * it, we would have to search all the interfaces to find a
3947 * match. --pb
3948 */
3949
3950 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3951 {
3952 struct net_device *dev;
3953 struct ifreq ifr;
3954
3955 /*
3956 * Fetch the caller's info block.
3957 */
3958
3959 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3960 return -EFAULT;
3961
3962 rcu_read_lock();
3963 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3964 if (!dev) {
3965 rcu_read_unlock();
3966 return -ENODEV;
3967 }
3968
3969 strcpy(ifr.ifr_name, dev->name);
3970 rcu_read_unlock();
3971
3972 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3973 return -EFAULT;
3974 return 0;
3975 }
3976
3977 /*
3978 * Perform a SIOCGIFCONF call. This structure will change
3979 * size eventually, and there is nothing I can do about it.
3980 * Thus we will need a 'compatibility mode'.
3981 */
3982
3983 static int dev_ifconf(struct net *net, char __user *arg)
3984 {
3985 struct ifconf ifc;
3986 struct net_device *dev;
3987 char __user *pos;
3988 int len;
3989 int total;
3990 int i;
3991
3992 /*
3993 * Fetch the caller's info block.
3994 */
3995
3996 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3997 return -EFAULT;
3998
3999 pos = ifc.ifc_buf;
4000 len = ifc.ifc_len;
4001
4002 /*
4003 * Loop over the interfaces, and write an info block for each.
4004 */
4005
4006 total = 0;
4007 for_each_netdev(net, dev) {
4008 for (i = 0; i < NPROTO; i++) {
4009 if (gifconf_list[i]) {
4010 int done;
4011 if (!pos)
4012 done = gifconf_list[i](dev, NULL, 0);
4013 else
4014 done = gifconf_list[i](dev, pos + total,
4015 len - total);
4016 if (done < 0)
4017 return -EFAULT;
4018 total += done;
4019 }
4020 }
4021 }
4022
4023 /*
4024 * All done. Write the updated control block back to the caller.
4025 */
4026 ifc.ifc_len = total;
4027
4028 /*
4029 * Both BSD and Solaris return 0 here, so we do too.
4030 */
4031 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4032 }
4033
4034 #ifdef CONFIG_PROC_FS
4035 /*
4036 * This is invoked by the /proc filesystem handler to display a device
4037 * in detail.
4038 */
4039 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4040 __acquires(RCU)
4041 {
4042 struct net *net = seq_file_net(seq);
4043 loff_t off;
4044 struct net_device *dev;
4045
4046 rcu_read_lock();
4047 if (!*pos)
4048 return SEQ_START_TOKEN;
4049
4050 off = 1;
4051 for_each_netdev_rcu(net, dev)
4052 if (off++ == *pos)
4053 return dev;
4054
4055 return NULL;
4056 }
4057
4058 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4059 {
4060 struct net_device *dev = v;
4061
4062 if (v == SEQ_START_TOKEN)
4063 dev = first_net_device_rcu(seq_file_net(seq));
4064 else
4065 dev = next_net_device_rcu(dev);
4066
4067 ++*pos;
4068 return dev;
4069 }
4070
4071 void dev_seq_stop(struct seq_file *seq, void *v)
4072 __releases(RCU)
4073 {
4074 rcu_read_unlock();
4075 }
4076
4077 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4078 {
4079 struct rtnl_link_stats64 temp;
4080 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4081
4082 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4083 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4084 dev->name, stats->rx_bytes, stats->rx_packets,
4085 stats->rx_errors,
4086 stats->rx_dropped + stats->rx_missed_errors,
4087 stats->rx_fifo_errors,
4088 stats->rx_length_errors + stats->rx_over_errors +
4089 stats->rx_crc_errors + stats->rx_frame_errors,
4090 stats->rx_compressed, stats->multicast,
4091 stats->tx_bytes, stats->tx_packets,
4092 stats->tx_errors, stats->tx_dropped,
4093 stats->tx_fifo_errors, stats->collisions,
4094 stats->tx_carrier_errors +
4095 stats->tx_aborted_errors +
4096 stats->tx_window_errors +
4097 stats->tx_heartbeat_errors,
4098 stats->tx_compressed);
4099 }
4100
4101 /*
4102 * Called from the PROCfs module. This now uses the new arbitrary sized
4103 * /proc/net interface to create /proc/net/dev
4104 */
4105 static int dev_seq_show(struct seq_file *seq, void *v)
4106 {
4107 if (v == SEQ_START_TOKEN)
4108 seq_puts(seq, "Inter-| Receive "
4109 " | Transmit\n"
4110 " face |bytes packets errs drop fifo frame "
4111 "compressed multicast|bytes packets errs "
4112 "drop fifo colls carrier compressed\n");
4113 else
4114 dev_seq_printf_stats(seq, v);
4115 return 0;
4116 }
4117
4118 static struct softnet_data *softnet_get_online(loff_t *pos)
4119 {
4120 struct softnet_data *sd = NULL;
4121
4122 while (*pos < nr_cpu_ids)
4123 if (cpu_online(*pos)) {
4124 sd = &per_cpu(softnet_data, *pos);
4125 break;
4126 } else
4127 ++*pos;
4128 return sd;
4129 }
4130
4131 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4132 {
4133 return softnet_get_online(pos);
4134 }
4135
4136 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4137 {
4138 ++*pos;
4139 return softnet_get_online(pos);
4140 }
4141
4142 static void softnet_seq_stop(struct seq_file *seq, void *v)
4143 {
4144 }
4145
4146 static int softnet_seq_show(struct seq_file *seq, void *v)
4147 {
4148 struct softnet_data *sd = v;
4149
4150 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4151 sd->processed, sd->dropped, sd->time_squeeze, 0,
4152 0, 0, 0, 0, /* was fastroute */
4153 sd->cpu_collision, sd->received_rps);
4154 return 0;
4155 }
4156
4157 static const struct seq_operations dev_seq_ops = {
4158 .start = dev_seq_start,
4159 .next = dev_seq_next,
4160 .stop = dev_seq_stop,
4161 .show = dev_seq_show,
4162 };
4163
4164 static int dev_seq_open(struct inode *inode, struct file *file)
4165 {
4166 return seq_open_net(inode, file, &dev_seq_ops,
4167 sizeof(struct seq_net_private));
4168 }
4169
4170 static const struct file_operations dev_seq_fops = {
4171 .owner = THIS_MODULE,
4172 .open = dev_seq_open,
4173 .read = seq_read,
4174 .llseek = seq_lseek,
4175 .release = seq_release_net,
4176 };
4177
4178 static const struct seq_operations softnet_seq_ops = {
4179 .start = softnet_seq_start,
4180 .next = softnet_seq_next,
4181 .stop = softnet_seq_stop,
4182 .show = softnet_seq_show,
4183 };
4184
4185 static int softnet_seq_open(struct inode *inode, struct file *file)
4186 {
4187 return seq_open(file, &softnet_seq_ops);
4188 }
4189
4190 static const struct file_operations softnet_seq_fops = {
4191 .owner = THIS_MODULE,
4192 .open = softnet_seq_open,
4193 .read = seq_read,
4194 .llseek = seq_lseek,
4195 .release = seq_release,
4196 };
4197
4198 static void *ptype_get_idx(loff_t pos)
4199 {
4200 struct packet_type *pt = NULL;
4201 loff_t i = 0;
4202 int t;
4203
4204 list_for_each_entry_rcu(pt, &ptype_all, list) {
4205 if (i == pos)
4206 return pt;
4207 ++i;
4208 }
4209
4210 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4211 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4212 if (i == pos)
4213 return pt;
4214 ++i;
4215 }
4216 }
4217 return NULL;
4218 }
4219
4220 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4221 __acquires(RCU)
4222 {
4223 rcu_read_lock();
4224 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4225 }
4226
4227 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4228 {
4229 struct packet_type *pt;
4230 struct list_head *nxt;
4231 int hash;
4232
4233 ++*pos;
4234 if (v == SEQ_START_TOKEN)
4235 return ptype_get_idx(0);
4236
4237 pt = v;
4238 nxt = pt->list.next;
4239 if (pt->type == htons(ETH_P_ALL)) {
4240 if (nxt != &ptype_all)
4241 goto found;
4242 hash = 0;
4243 nxt = ptype_base[0].next;
4244 } else
4245 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4246
4247 while (nxt == &ptype_base[hash]) {
4248 if (++hash >= PTYPE_HASH_SIZE)
4249 return NULL;
4250 nxt = ptype_base[hash].next;
4251 }
4252 found:
4253 return list_entry(nxt, struct packet_type, list);
4254 }
4255
4256 static void ptype_seq_stop(struct seq_file *seq, void *v)
4257 __releases(RCU)
4258 {
4259 rcu_read_unlock();
4260 }
4261
4262 static int ptype_seq_show(struct seq_file *seq, void *v)
4263 {
4264 struct packet_type *pt = v;
4265
4266 if (v == SEQ_START_TOKEN)
4267 seq_puts(seq, "Type Device Function\n");
4268 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4269 if (pt->type == htons(ETH_P_ALL))
4270 seq_puts(seq, "ALL ");
4271 else
4272 seq_printf(seq, "%04x", ntohs(pt->type));
4273
4274 seq_printf(seq, " %-8s %pF\n",
4275 pt->dev ? pt->dev->name : "", pt->func);
4276 }
4277
4278 return 0;
4279 }
4280
4281 static const struct seq_operations ptype_seq_ops = {
4282 .start = ptype_seq_start,
4283 .next = ptype_seq_next,
4284 .stop = ptype_seq_stop,
4285 .show = ptype_seq_show,
4286 };
4287
4288 static int ptype_seq_open(struct inode *inode, struct file *file)
4289 {
4290 return seq_open_net(inode, file, &ptype_seq_ops,
4291 sizeof(struct seq_net_private));
4292 }
4293
4294 static const struct file_operations ptype_seq_fops = {
4295 .owner = THIS_MODULE,
4296 .open = ptype_seq_open,
4297 .read = seq_read,
4298 .llseek = seq_lseek,
4299 .release = seq_release_net,
4300 };
4301
4302
4303 static int __net_init dev_proc_net_init(struct net *net)
4304 {
4305 int rc = -ENOMEM;
4306
4307 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4308 goto out;
4309 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4310 goto out_dev;
4311 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4312 goto out_softnet;
4313
4314 if (wext_proc_init(net))
4315 goto out_ptype;
4316 rc = 0;
4317 out:
4318 return rc;
4319 out_ptype:
4320 proc_net_remove(net, "ptype");
4321 out_softnet:
4322 proc_net_remove(net, "softnet_stat");
4323 out_dev:
4324 proc_net_remove(net, "dev");
4325 goto out;
4326 }
4327
4328 static void __net_exit dev_proc_net_exit(struct net *net)
4329 {
4330 wext_proc_exit(net);
4331
4332 proc_net_remove(net, "ptype");
4333 proc_net_remove(net, "softnet_stat");
4334 proc_net_remove(net, "dev");
4335 }
4336
4337 static struct pernet_operations __net_initdata dev_proc_ops = {
4338 .init = dev_proc_net_init,
4339 .exit = dev_proc_net_exit,
4340 };
4341
4342 static int __init dev_proc_init(void)
4343 {
4344 return register_pernet_subsys(&dev_proc_ops);
4345 }
4346 #else
4347 #define dev_proc_init() 0
4348 #endif /* CONFIG_PROC_FS */
4349
4350
4351 /**
4352 * netdev_set_master - set up master pointer
4353 * @slave: slave device
4354 * @master: new master device
4355 *
4356 * Changes the master device of the slave. Pass %NULL to break the
4357 * bonding. The caller must hold the RTNL semaphore. On a failure
4358 * a negative errno code is returned. On success the reference counts
4359 * are adjusted and the function returns zero.
4360 */
4361 int netdev_set_master(struct net_device *slave, struct net_device *master)
4362 {
4363 struct net_device *old = slave->master;
4364
4365 ASSERT_RTNL();
4366
4367 if (master) {
4368 if (old)
4369 return -EBUSY;
4370 dev_hold(master);
4371 }
4372
4373 slave->master = master;
4374
4375 if (old) {
4376 synchronize_net();
4377 dev_put(old);
4378 }
4379 return 0;
4380 }
4381 EXPORT_SYMBOL(netdev_set_master);
4382
4383 /**
4384 * netdev_set_bond_master - set up bonding master/slave pair
4385 * @slave: slave device
4386 * @master: new master device
4387 *
4388 * Changes the master device of the slave. Pass %NULL to break the
4389 * bonding. The caller must hold the RTNL semaphore. On a failure
4390 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4391 * to the routing socket and the function returns zero.
4392 */
4393 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4394 {
4395 int err;
4396
4397 ASSERT_RTNL();
4398
4399 err = netdev_set_master(slave, master);
4400 if (err)
4401 return err;
4402 if (master)
4403 slave->flags |= IFF_SLAVE;
4404 else
4405 slave->flags &= ~IFF_SLAVE;
4406
4407 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4408 return 0;
4409 }
4410 EXPORT_SYMBOL(netdev_set_bond_master);
4411
4412 static void dev_change_rx_flags(struct net_device *dev, int flags)
4413 {
4414 const struct net_device_ops *ops = dev->netdev_ops;
4415
4416 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4417 ops->ndo_change_rx_flags(dev, flags);
4418 }
4419
4420 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4421 {
4422 unsigned short old_flags = dev->flags;
4423 uid_t uid;
4424 gid_t gid;
4425
4426 ASSERT_RTNL();
4427
4428 dev->flags |= IFF_PROMISC;
4429 dev->promiscuity += inc;
4430 if (dev->promiscuity == 0) {
4431 /*
4432 * Avoid overflow.
4433 * If inc causes overflow, untouch promisc and return error.
4434 */
4435 if (inc < 0)
4436 dev->flags &= ~IFF_PROMISC;
4437 else {
4438 dev->promiscuity -= inc;
4439 printk(KERN_WARNING "%s: promiscuity touches roof, "
4440 "set promiscuity failed, promiscuity feature "
4441 "of device might be broken.\n", dev->name);
4442 return -EOVERFLOW;
4443 }
4444 }
4445 if (dev->flags != old_flags) {
4446 printk(KERN_INFO "device %s %s promiscuous mode\n",
4447 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4448 "left");
4449 if (audit_enabled) {
4450 current_uid_gid(&uid, &gid);
4451 audit_log(current->audit_context, GFP_ATOMIC,
4452 AUDIT_ANOM_PROMISCUOUS,
4453 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4454 dev->name, (dev->flags & IFF_PROMISC),
4455 (old_flags & IFF_PROMISC),
4456 audit_get_loginuid(current),
4457 uid, gid,
4458 audit_get_sessionid(current));
4459 }
4460
4461 dev_change_rx_flags(dev, IFF_PROMISC);
4462 }
4463 return 0;
4464 }
4465
4466 /**
4467 * dev_set_promiscuity - update promiscuity count on a device
4468 * @dev: device
4469 * @inc: modifier
4470 *
4471 * Add or remove promiscuity from a device. While the count in the device
4472 * remains above zero the interface remains promiscuous. Once it hits zero
4473 * the device reverts back to normal filtering operation. A negative inc
4474 * value is used to drop promiscuity on the device.
4475 * Return 0 if successful or a negative errno code on error.
4476 */
4477 int dev_set_promiscuity(struct net_device *dev, int inc)
4478 {
4479 unsigned short old_flags = dev->flags;
4480 int err;
4481
4482 err = __dev_set_promiscuity(dev, inc);
4483 if (err < 0)
4484 return err;
4485 if (dev->flags != old_flags)
4486 dev_set_rx_mode(dev);
4487 return err;
4488 }
4489 EXPORT_SYMBOL(dev_set_promiscuity);
4490
4491 /**
4492 * dev_set_allmulti - update allmulti count on a device
4493 * @dev: device
4494 * @inc: modifier
4495 *
4496 * Add or remove reception of all multicast frames to a device. While the
4497 * count in the device remains above zero the interface remains listening
4498 * to all interfaces. Once it hits zero the device reverts back to normal
4499 * filtering operation. A negative @inc value is used to drop the counter
4500 * when releasing a resource needing all multicasts.
4501 * Return 0 if successful or a negative errno code on error.
4502 */
4503
4504 int dev_set_allmulti(struct net_device *dev, int inc)
4505 {
4506 unsigned short old_flags = dev->flags;
4507
4508 ASSERT_RTNL();
4509
4510 dev->flags |= IFF_ALLMULTI;
4511 dev->allmulti += inc;
4512 if (dev->allmulti == 0) {
4513 /*
4514 * Avoid overflow.
4515 * If inc causes overflow, untouch allmulti and return error.
4516 */
4517 if (inc < 0)
4518 dev->flags &= ~IFF_ALLMULTI;
4519 else {
4520 dev->allmulti -= inc;
4521 printk(KERN_WARNING "%s: allmulti touches roof, "
4522 "set allmulti failed, allmulti feature of "
4523 "device might be broken.\n", dev->name);
4524 return -EOVERFLOW;
4525 }
4526 }
4527 if (dev->flags ^ old_flags) {
4528 dev_change_rx_flags(dev, IFF_ALLMULTI);
4529 dev_set_rx_mode(dev);
4530 }
4531 return 0;
4532 }
4533 EXPORT_SYMBOL(dev_set_allmulti);
4534
4535 /*
4536 * Upload unicast and multicast address lists to device and
4537 * configure RX filtering. When the device doesn't support unicast
4538 * filtering it is put in promiscuous mode while unicast addresses
4539 * are present.
4540 */
4541 void __dev_set_rx_mode(struct net_device *dev)
4542 {
4543 const struct net_device_ops *ops = dev->netdev_ops;
4544
4545 /* dev_open will call this function so the list will stay sane. */
4546 if (!(dev->flags&IFF_UP))
4547 return;
4548
4549 if (!netif_device_present(dev))
4550 return;
4551
4552 if (ops->ndo_set_rx_mode)
4553 ops->ndo_set_rx_mode(dev);
4554 else {
4555 /* Unicast addresses changes may only happen under the rtnl,
4556 * therefore calling __dev_set_promiscuity here is safe.
4557 */
4558 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4559 __dev_set_promiscuity(dev, 1);
4560 dev->uc_promisc = 1;
4561 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4562 __dev_set_promiscuity(dev, -1);
4563 dev->uc_promisc = 0;
4564 }
4565
4566 if (ops->ndo_set_multicast_list)
4567 ops->ndo_set_multicast_list(dev);
4568 }
4569 }
4570
4571 void dev_set_rx_mode(struct net_device *dev)
4572 {
4573 netif_addr_lock_bh(dev);
4574 __dev_set_rx_mode(dev);
4575 netif_addr_unlock_bh(dev);
4576 }
4577
4578 /**
4579 * dev_get_flags - get flags reported to userspace
4580 * @dev: device
4581 *
4582 * Get the combination of flag bits exported through APIs to userspace.
4583 */
4584 unsigned dev_get_flags(const struct net_device *dev)
4585 {
4586 unsigned flags;
4587
4588 flags = (dev->flags & ~(IFF_PROMISC |
4589 IFF_ALLMULTI |
4590 IFF_RUNNING |
4591 IFF_LOWER_UP |
4592 IFF_DORMANT)) |
4593 (dev->gflags & (IFF_PROMISC |
4594 IFF_ALLMULTI));
4595
4596 if (netif_running(dev)) {
4597 if (netif_oper_up(dev))
4598 flags |= IFF_RUNNING;
4599 if (netif_carrier_ok(dev))
4600 flags |= IFF_LOWER_UP;
4601 if (netif_dormant(dev))
4602 flags |= IFF_DORMANT;
4603 }
4604
4605 return flags;
4606 }
4607 EXPORT_SYMBOL(dev_get_flags);
4608
4609 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4610 {
4611 int old_flags = dev->flags;
4612 int ret;
4613
4614 ASSERT_RTNL();
4615
4616 /*
4617 * Set the flags on our device.
4618 */
4619
4620 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4621 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4622 IFF_AUTOMEDIA)) |
4623 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4624 IFF_ALLMULTI));
4625
4626 /*
4627 * Load in the correct multicast list now the flags have changed.
4628 */
4629
4630 if ((old_flags ^ flags) & IFF_MULTICAST)
4631 dev_change_rx_flags(dev, IFF_MULTICAST);
4632
4633 dev_set_rx_mode(dev);
4634
4635 /*
4636 * Have we downed the interface. We handle IFF_UP ourselves
4637 * according to user attempts to set it, rather than blindly
4638 * setting it.
4639 */
4640
4641 ret = 0;
4642 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4643 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4644
4645 if (!ret)
4646 dev_set_rx_mode(dev);
4647 }
4648
4649 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4650 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4651
4652 dev->gflags ^= IFF_PROMISC;
4653 dev_set_promiscuity(dev, inc);
4654 }
4655
4656 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4657 is important. Some (broken) drivers set IFF_PROMISC, when
4658 IFF_ALLMULTI is requested not asking us and not reporting.
4659 */
4660 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4661 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4662
4663 dev->gflags ^= IFF_ALLMULTI;
4664 dev_set_allmulti(dev, inc);
4665 }
4666
4667 return ret;
4668 }
4669
4670 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4671 {
4672 unsigned int changes = dev->flags ^ old_flags;
4673
4674 if (changes & IFF_UP) {
4675 if (dev->flags & IFF_UP)
4676 call_netdevice_notifiers(NETDEV_UP, dev);
4677 else
4678 call_netdevice_notifiers(NETDEV_DOWN, dev);
4679 }
4680
4681 if (dev->flags & IFF_UP &&
4682 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4683 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4684 }
4685
4686 /**
4687 * dev_change_flags - change device settings
4688 * @dev: device
4689 * @flags: device state flags
4690 *
4691 * Change settings on device based state flags. The flags are
4692 * in the userspace exported format.
4693 */
4694 int dev_change_flags(struct net_device *dev, unsigned flags)
4695 {
4696 int ret, changes;
4697 int old_flags = dev->flags;
4698
4699 ret = __dev_change_flags(dev, flags);
4700 if (ret < 0)
4701 return ret;
4702
4703 changes = old_flags ^ dev->flags;
4704 if (changes)
4705 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4706
4707 __dev_notify_flags(dev, old_flags);
4708 return ret;
4709 }
4710 EXPORT_SYMBOL(dev_change_flags);
4711
4712 /**
4713 * dev_set_mtu - Change maximum transfer unit
4714 * @dev: device
4715 * @new_mtu: new transfer unit
4716 *
4717 * Change the maximum transfer size of the network device.
4718 */
4719 int dev_set_mtu(struct net_device *dev, int new_mtu)
4720 {
4721 const struct net_device_ops *ops = dev->netdev_ops;
4722 int err;
4723
4724 if (new_mtu == dev->mtu)
4725 return 0;
4726
4727 /* MTU must be positive. */
4728 if (new_mtu < 0)
4729 return -EINVAL;
4730
4731 if (!netif_device_present(dev))
4732 return -ENODEV;
4733
4734 err = 0;
4735 if (ops->ndo_change_mtu)
4736 err = ops->ndo_change_mtu(dev, new_mtu);
4737 else
4738 dev->mtu = new_mtu;
4739
4740 if (!err && dev->flags & IFF_UP)
4741 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4742 return err;
4743 }
4744 EXPORT_SYMBOL(dev_set_mtu);
4745
4746 /**
4747 * dev_set_group - Change group this device belongs to
4748 * @dev: device
4749 * @new_group: group this device should belong to
4750 */
4751 void dev_set_group(struct net_device *dev, int new_group)
4752 {
4753 dev->group = new_group;
4754 }
4755 EXPORT_SYMBOL(dev_set_group);
4756
4757 /**
4758 * dev_set_mac_address - Change Media Access Control Address
4759 * @dev: device
4760 * @sa: new address
4761 *
4762 * Change the hardware (MAC) address of the device
4763 */
4764 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4765 {
4766 const struct net_device_ops *ops = dev->netdev_ops;
4767 int err;
4768
4769 if (!ops->ndo_set_mac_address)
4770 return -EOPNOTSUPP;
4771 if (sa->sa_family != dev->type)
4772 return -EINVAL;
4773 if (!netif_device_present(dev))
4774 return -ENODEV;
4775 err = ops->ndo_set_mac_address(dev, sa);
4776 if (!err)
4777 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4778 return err;
4779 }
4780 EXPORT_SYMBOL(dev_set_mac_address);
4781
4782 /*
4783 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4784 */
4785 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4786 {
4787 int err;
4788 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4789
4790 if (!dev)
4791 return -ENODEV;
4792
4793 switch (cmd) {
4794 case SIOCGIFFLAGS: /* Get interface flags */
4795 ifr->ifr_flags = (short) dev_get_flags(dev);
4796 return 0;
4797
4798 case SIOCGIFMETRIC: /* Get the metric on the interface
4799 (currently unused) */
4800 ifr->ifr_metric = 0;
4801 return 0;
4802
4803 case SIOCGIFMTU: /* Get the MTU of a device */
4804 ifr->ifr_mtu = dev->mtu;
4805 return 0;
4806
4807 case SIOCGIFHWADDR:
4808 if (!dev->addr_len)
4809 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4810 else
4811 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4812 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4813 ifr->ifr_hwaddr.sa_family = dev->type;
4814 return 0;
4815
4816 case SIOCGIFSLAVE:
4817 err = -EINVAL;
4818 break;
4819
4820 case SIOCGIFMAP:
4821 ifr->ifr_map.mem_start = dev->mem_start;
4822 ifr->ifr_map.mem_end = dev->mem_end;
4823 ifr->ifr_map.base_addr = dev->base_addr;
4824 ifr->ifr_map.irq = dev->irq;
4825 ifr->ifr_map.dma = dev->dma;
4826 ifr->ifr_map.port = dev->if_port;
4827 return 0;
4828
4829 case SIOCGIFINDEX:
4830 ifr->ifr_ifindex = dev->ifindex;
4831 return 0;
4832
4833 case SIOCGIFTXQLEN:
4834 ifr->ifr_qlen = dev->tx_queue_len;
4835 return 0;
4836
4837 default:
4838 /* dev_ioctl() should ensure this case
4839 * is never reached
4840 */
4841 WARN_ON(1);
4842 err = -EINVAL;
4843 break;
4844
4845 }
4846 return err;
4847 }
4848
4849 /*
4850 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4851 */
4852 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4853 {
4854 int err;
4855 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4856 const struct net_device_ops *ops;
4857
4858 if (!dev)
4859 return -ENODEV;
4860
4861 ops = dev->netdev_ops;
4862
4863 switch (cmd) {
4864 case SIOCSIFFLAGS: /* Set interface flags */
4865 return dev_change_flags(dev, ifr->ifr_flags);
4866
4867 case SIOCSIFMETRIC: /* Set the metric on the interface
4868 (currently unused) */
4869 return -EOPNOTSUPP;
4870
4871 case SIOCSIFMTU: /* Set the MTU of a device */
4872 return dev_set_mtu(dev, ifr->ifr_mtu);
4873
4874 case SIOCSIFHWADDR:
4875 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4876
4877 case SIOCSIFHWBROADCAST:
4878 if (ifr->ifr_hwaddr.sa_family != dev->type)
4879 return -EINVAL;
4880 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4881 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4882 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4883 return 0;
4884
4885 case SIOCSIFMAP:
4886 if (ops->ndo_set_config) {
4887 if (!netif_device_present(dev))
4888 return -ENODEV;
4889 return ops->ndo_set_config(dev, &ifr->ifr_map);
4890 }
4891 return -EOPNOTSUPP;
4892
4893 case SIOCADDMULTI:
4894 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4895 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4896 return -EINVAL;
4897 if (!netif_device_present(dev))
4898 return -ENODEV;
4899 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4900
4901 case SIOCDELMULTI:
4902 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4903 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4904 return -EINVAL;
4905 if (!netif_device_present(dev))
4906 return -ENODEV;
4907 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4908
4909 case SIOCSIFTXQLEN:
4910 if (ifr->ifr_qlen < 0)
4911 return -EINVAL;
4912 dev->tx_queue_len = ifr->ifr_qlen;
4913 return 0;
4914
4915 case SIOCSIFNAME:
4916 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4917 return dev_change_name(dev, ifr->ifr_newname);
4918
4919 /*
4920 * Unknown or private ioctl
4921 */
4922 default:
4923 if ((cmd >= SIOCDEVPRIVATE &&
4924 cmd <= SIOCDEVPRIVATE + 15) ||
4925 cmd == SIOCBONDENSLAVE ||
4926 cmd == SIOCBONDRELEASE ||
4927 cmd == SIOCBONDSETHWADDR ||
4928 cmd == SIOCBONDSLAVEINFOQUERY ||
4929 cmd == SIOCBONDINFOQUERY ||
4930 cmd == SIOCBONDCHANGEACTIVE ||
4931 cmd == SIOCGMIIPHY ||
4932 cmd == SIOCGMIIREG ||
4933 cmd == SIOCSMIIREG ||
4934 cmd == SIOCBRADDIF ||
4935 cmd == SIOCBRDELIF ||
4936 cmd == SIOCSHWTSTAMP ||
4937 cmd == SIOCWANDEV) {
4938 err = -EOPNOTSUPP;
4939 if (ops->ndo_do_ioctl) {
4940 if (netif_device_present(dev))
4941 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4942 else
4943 err = -ENODEV;
4944 }
4945 } else
4946 err = -EINVAL;
4947
4948 }
4949 return err;
4950 }
4951
4952 /*
4953 * This function handles all "interface"-type I/O control requests. The actual
4954 * 'doing' part of this is dev_ifsioc above.
4955 */
4956
4957 /**
4958 * dev_ioctl - network device ioctl
4959 * @net: the applicable net namespace
4960 * @cmd: command to issue
4961 * @arg: pointer to a struct ifreq in user space
4962 *
4963 * Issue ioctl functions to devices. This is normally called by the
4964 * user space syscall interfaces but can sometimes be useful for
4965 * other purposes. The return value is the return from the syscall if
4966 * positive or a negative errno code on error.
4967 */
4968
4969 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4970 {
4971 struct ifreq ifr;
4972 int ret;
4973 char *colon;
4974
4975 /* One special case: SIOCGIFCONF takes ifconf argument
4976 and requires shared lock, because it sleeps writing
4977 to user space.
4978 */
4979
4980 if (cmd == SIOCGIFCONF) {
4981 rtnl_lock();
4982 ret = dev_ifconf(net, (char __user *) arg);
4983 rtnl_unlock();
4984 return ret;
4985 }
4986 if (cmd == SIOCGIFNAME)
4987 return dev_ifname(net, (struct ifreq __user *)arg);
4988
4989 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4990 return -EFAULT;
4991
4992 ifr.ifr_name[IFNAMSIZ-1] = 0;
4993
4994 colon = strchr(ifr.ifr_name, ':');
4995 if (colon)
4996 *colon = 0;
4997
4998 /*
4999 * See which interface the caller is talking about.
5000 */
5001
5002 switch (cmd) {
5003 /*
5004 * These ioctl calls:
5005 * - can be done by all.
5006 * - atomic and do not require locking.
5007 * - return a value
5008 */
5009 case SIOCGIFFLAGS:
5010 case SIOCGIFMETRIC:
5011 case SIOCGIFMTU:
5012 case SIOCGIFHWADDR:
5013 case SIOCGIFSLAVE:
5014 case SIOCGIFMAP:
5015 case SIOCGIFINDEX:
5016 case SIOCGIFTXQLEN:
5017 dev_load(net, ifr.ifr_name);
5018 rcu_read_lock();
5019 ret = dev_ifsioc_locked(net, &ifr, cmd);
5020 rcu_read_unlock();
5021 if (!ret) {
5022 if (colon)
5023 *colon = ':';
5024 if (copy_to_user(arg, &ifr,
5025 sizeof(struct ifreq)))
5026 ret = -EFAULT;
5027 }
5028 return ret;
5029
5030 case SIOCETHTOOL:
5031 dev_load(net, ifr.ifr_name);
5032 rtnl_lock();
5033 ret = dev_ethtool(net, &ifr);
5034 rtnl_unlock();
5035 if (!ret) {
5036 if (colon)
5037 *colon = ':';
5038 if (copy_to_user(arg, &ifr,
5039 sizeof(struct ifreq)))
5040 ret = -EFAULT;
5041 }
5042 return ret;
5043
5044 /*
5045 * These ioctl calls:
5046 * - require superuser power.
5047 * - require strict serialization.
5048 * - return a value
5049 */
5050 case SIOCGMIIPHY:
5051 case SIOCGMIIREG:
5052 case SIOCSIFNAME:
5053 if (!capable(CAP_NET_ADMIN))
5054 return -EPERM;
5055 dev_load(net, ifr.ifr_name);
5056 rtnl_lock();
5057 ret = dev_ifsioc(net, &ifr, cmd);
5058 rtnl_unlock();
5059 if (!ret) {
5060 if (colon)
5061 *colon = ':';
5062 if (copy_to_user(arg, &ifr,
5063 sizeof(struct ifreq)))
5064 ret = -EFAULT;
5065 }
5066 return ret;
5067
5068 /*
5069 * These ioctl calls:
5070 * - require superuser power.
5071 * - require strict serialization.
5072 * - do not return a value
5073 */
5074 case SIOCSIFFLAGS:
5075 case SIOCSIFMETRIC:
5076 case SIOCSIFMTU:
5077 case SIOCSIFMAP:
5078 case SIOCSIFHWADDR:
5079 case SIOCSIFSLAVE:
5080 case SIOCADDMULTI:
5081 case SIOCDELMULTI:
5082 case SIOCSIFHWBROADCAST:
5083 case SIOCSIFTXQLEN:
5084 case SIOCSMIIREG:
5085 case SIOCBONDENSLAVE:
5086 case SIOCBONDRELEASE:
5087 case SIOCBONDSETHWADDR:
5088 case SIOCBONDCHANGEACTIVE:
5089 case SIOCBRADDIF:
5090 case SIOCBRDELIF:
5091 case SIOCSHWTSTAMP:
5092 if (!capable(CAP_NET_ADMIN))
5093 return -EPERM;
5094 /* fall through */
5095 case SIOCBONDSLAVEINFOQUERY:
5096 case SIOCBONDINFOQUERY:
5097 dev_load(net, ifr.ifr_name);
5098 rtnl_lock();
5099 ret = dev_ifsioc(net, &ifr, cmd);
5100 rtnl_unlock();
5101 return ret;
5102
5103 case SIOCGIFMEM:
5104 /* Get the per device memory space. We can add this but
5105 * currently do not support it */
5106 case SIOCSIFMEM:
5107 /* Set the per device memory buffer space.
5108 * Not applicable in our case */
5109 case SIOCSIFLINK:
5110 return -EINVAL;
5111
5112 /*
5113 * Unknown or private ioctl.
5114 */
5115 default:
5116 if (cmd == SIOCWANDEV ||
5117 (cmd >= SIOCDEVPRIVATE &&
5118 cmd <= SIOCDEVPRIVATE + 15)) {
5119 dev_load(net, ifr.ifr_name);
5120 rtnl_lock();
5121 ret = dev_ifsioc(net, &ifr, cmd);
5122 rtnl_unlock();
5123 if (!ret && copy_to_user(arg, &ifr,
5124 sizeof(struct ifreq)))
5125 ret = -EFAULT;
5126 return ret;
5127 }
5128 /* Take care of Wireless Extensions */
5129 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5130 return wext_handle_ioctl(net, &ifr, cmd, arg);
5131 return -EINVAL;
5132 }
5133 }
5134
5135
5136 /**
5137 * dev_new_index - allocate an ifindex
5138 * @net: the applicable net namespace
5139 *
5140 * Returns a suitable unique value for a new device interface
5141 * number. The caller must hold the rtnl semaphore or the
5142 * dev_base_lock to be sure it remains unique.
5143 */
5144 static int dev_new_index(struct net *net)
5145 {
5146 static int ifindex;
5147 for (;;) {
5148 if (++ifindex <= 0)
5149 ifindex = 1;
5150 if (!__dev_get_by_index(net, ifindex))
5151 return ifindex;
5152 }
5153 }
5154
5155 /* Delayed registration/unregisteration */
5156 static LIST_HEAD(net_todo_list);
5157
5158 static void net_set_todo(struct net_device *dev)
5159 {
5160 list_add_tail(&dev->todo_list, &net_todo_list);
5161 }
5162
5163 static void rollback_registered_many(struct list_head *head)
5164 {
5165 struct net_device *dev, *tmp;
5166
5167 BUG_ON(dev_boot_phase);
5168 ASSERT_RTNL();
5169
5170 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5171 /* Some devices call without registering
5172 * for initialization unwind. Remove those
5173 * devices and proceed with the remaining.
5174 */
5175 if (dev->reg_state == NETREG_UNINITIALIZED) {
5176 pr_debug("unregister_netdevice: device %s/%p never "
5177 "was registered\n", dev->name, dev);
5178
5179 WARN_ON(1);
5180 list_del(&dev->unreg_list);
5181 continue;
5182 }
5183
5184 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5185 }
5186
5187 /* If device is running, close it first. */
5188 dev_close_many(head);
5189
5190 list_for_each_entry(dev, head, unreg_list) {
5191 /* And unlink it from device chain. */
5192 unlist_netdevice(dev);
5193
5194 dev->reg_state = NETREG_UNREGISTERING;
5195 }
5196
5197 synchronize_net();
5198
5199 list_for_each_entry(dev, head, unreg_list) {
5200 /* Shutdown queueing discipline. */
5201 dev_shutdown(dev);
5202
5203
5204 /* Notify protocols, that we are about to destroy
5205 this device. They should clean all the things.
5206 */
5207 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5208
5209 if (!dev->rtnl_link_ops ||
5210 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5211 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5212
5213 /*
5214 * Flush the unicast and multicast chains
5215 */
5216 dev_uc_flush(dev);
5217 dev_mc_flush(dev);
5218
5219 if (dev->netdev_ops->ndo_uninit)
5220 dev->netdev_ops->ndo_uninit(dev);
5221
5222 /* Notifier chain MUST detach us from master device. */
5223 WARN_ON(dev->master);
5224
5225 /* Remove entries from kobject tree */
5226 netdev_unregister_kobject(dev);
5227 }
5228
5229 /* Process any work delayed until the end of the batch */
5230 dev = list_first_entry(head, struct net_device, unreg_list);
5231 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5232
5233 rcu_barrier();
5234
5235 list_for_each_entry(dev, head, unreg_list)
5236 dev_put(dev);
5237 }
5238
5239 static void rollback_registered(struct net_device *dev)
5240 {
5241 LIST_HEAD(single);
5242
5243 list_add(&dev->unreg_list, &single);
5244 rollback_registered_many(&single);
5245 }
5246
5247 u32 netdev_fix_features(struct net_device *dev, u32 features)
5248 {
5249 /* Fix illegal checksum combinations */
5250 if ((features & NETIF_F_HW_CSUM) &&
5251 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5252 netdev_info(dev, "mixed HW and IP checksum settings.\n");
5253 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5254 }
5255
5256 if ((features & NETIF_F_NO_CSUM) &&
5257 (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5258 netdev_info(dev, "mixed no checksumming and other settings.\n");
5259 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5260 }
5261
5262 /* Fix illegal SG+CSUM combinations. */
5263 if ((features & NETIF_F_SG) &&
5264 !(features & NETIF_F_ALL_CSUM)) {
5265 netdev_info(dev,
5266 "Dropping NETIF_F_SG since no checksum feature.\n");
5267 features &= ~NETIF_F_SG;
5268 }
5269
5270 /* TSO requires that SG is present as well. */
5271 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5272 netdev_info(dev, "Dropping NETIF_F_TSO since no SG feature.\n");
5273 features &= ~NETIF_F_TSO;
5274 }
5275
5276 /* UFO needs SG and checksumming */
5277 if (features & NETIF_F_UFO) {
5278 /* maybe split UFO into V4 and V6? */
5279 if (!((features & NETIF_F_GEN_CSUM) ||
5280 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5281 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5282 netdev_info(dev,
5283 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5284 features &= ~NETIF_F_UFO;
5285 }
5286
5287 if (!(features & NETIF_F_SG)) {
5288 netdev_info(dev,
5289 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5290 features &= ~NETIF_F_UFO;
5291 }
5292 }
5293
5294 return features;
5295 }
5296 EXPORT_SYMBOL(netdev_fix_features);
5297
5298 /**
5299 * netif_stacked_transfer_operstate - transfer operstate
5300 * @rootdev: the root or lower level device to transfer state from
5301 * @dev: the device to transfer operstate to
5302 *
5303 * Transfer operational state from root to device. This is normally
5304 * called when a stacking relationship exists between the root
5305 * device and the device(a leaf device).
5306 */
5307 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5308 struct net_device *dev)
5309 {
5310 if (rootdev->operstate == IF_OPER_DORMANT)
5311 netif_dormant_on(dev);
5312 else
5313 netif_dormant_off(dev);
5314
5315 if (netif_carrier_ok(rootdev)) {
5316 if (!netif_carrier_ok(dev))
5317 netif_carrier_on(dev);
5318 } else {
5319 if (netif_carrier_ok(dev))
5320 netif_carrier_off(dev);
5321 }
5322 }
5323 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5324
5325 #ifdef CONFIG_RPS
5326 static int netif_alloc_rx_queues(struct net_device *dev)
5327 {
5328 unsigned int i, count = dev->num_rx_queues;
5329 struct netdev_rx_queue *rx;
5330
5331 BUG_ON(count < 1);
5332
5333 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5334 if (!rx) {
5335 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5336 return -ENOMEM;
5337 }
5338 dev->_rx = rx;
5339
5340 for (i = 0; i < count; i++)
5341 rx[i].dev = dev;
5342 return 0;
5343 }
5344 #endif
5345
5346 static void netdev_init_one_queue(struct net_device *dev,
5347 struct netdev_queue *queue, void *_unused)
5348 {
5349 /* Initialize queue lock */
5350 spin_lock_init(&queue->_xmit_lock);
5351 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5352 queue->xmit_lock_owner = -1;
5353 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5354 queue->dev = dev;
5355 }
5356
5357 static int netif_alloc_netdev_queues(struct net_device *dev)
5358 {
5359 unsigned int count = dev->num_tx_queues;
5360 struct netdev_queue *tx;
5361
5362 BUG_ON(count < 1);
5363
5364 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5365 if (!tx) {
5366 pr_err("netdev: Unable to allocate %u tx queues.\n",
5367 count);
5368 return -ENOMEM;
5369 }
5370 dev->_tx = tx;
5371
5372 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5373 spin_lock_init(&dev->tx_global_lock);
5374
5375 return 0;
5376 }
5377
5378 /**
5379 * register_netdevice - register a network device
5380 * @dev: device to register
5381 *
5382 * Take a completed network device structure and add it to the kernel
5383 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5384 * chain. 0 is returned on success. A negative errno code is returned
5385 * on a failure to set up the device, or if the name is a duplicate.
5386 *
5387 * Callers must hold the rtnl semaphore. You may want
5388 * register_netdev() instead of this.
5389 *
5390 * BUGS:
5391 * The locking appears insufficient to guarantee two parallel registers
5392 * will not get the same name.
5393 */
5394
5395 int register_netdevice(struct net_device *dev)
5396 {
5397 int ret;
5398 struct net *net = dev_net(dev);
5399
5400 BUG_ON(dev_boot_phase);
5401 ASSERT_RTNL();
5402
5403 might_sleep();
5404
5405 /* When net_device's are persistent, this will be fatal. */
5406 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5407 BUG_ON(!net);
5408
5409 spin_lock_init(&dev->addr_list_lock);
5410 netdev_set_addr_lockdep_class(dev);
5411
5412 dev->iflink = -1;
5413
5414 /* Init, if this function is available */
5415 if (dev->netdev_ops->ndo_init) {
5416 ret = dev->netdev_ops->ndo_init(dev);
5417 if (ret) {
5418 if (ret > 0)
5419 ret = -EIO;
5420 goto out;
5421 }
5422 }
5423
5424 ret = dev_get_valid_name(dev, dev->name, 0);
5425 if (ret)
5426 goto err_uninit;
5427
5428 dev->ifindex = dev_new_index(net);
5429 if (dev->iflink == -1)
5430 dev->iflink = dev->ifindex;
5431
5432 dev->features = netdev_fix_features(dev, dev->features);
5433
5434 /* Enable software GSO if SG is supported. */
5435 if (dev->features & NETIF_F_SG)
5436 dev->features |= NETIF_F_GSO;
5437
5438 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5439 * vlan_dev_init() will do the dev->features check, so these features
5440 * are enabled only if supported by underlying device.
5441 */
5442 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5443
5444 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5445 ret = notifier_to_errno(ret);
5446 if (ret)
5447 goto err_uninit;
5448
5449 ret = netdev_register_kobject(dev);
5450 if (ret)
5451 goto err_uninit;
5452 dev->reg_state = NETREG_REGISTERED;
5453
5454 /*
5455 * Default initial state at registry is that the
5456 * device is present.
5457 */
5458
5459 set_bit(__LINK_STATE_PRESENT, &dev->state);
5460
5461 dev_init_scheduler(dev);
5462 dev_hold(dev);
5463 list_netdevice(dev);
5464
5465 /* Notify protocols, that a new device appeared. */
5466 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5467 ret = notifier_to_errno(ret);
5468 if (ret) {
5469 rollback_registered(dev);
5470 dev->reg_state = NETREG_UNREGISTERED;
5471 }
5472 /*
5473 * Prevent userspace races by waiting until the network
5474 * device is fully setup before sending notifications.
5475 */
5476 if (!dev->rtnl_link_ops ||
5477 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5478 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5479
5480 out:
5481 return ret;
5482
5483 err_uninit:
5484 if (dev->netdev_ops->ndo_uninit)
5485 dev->netdev_ops->ndo_uninit(dev);
5486 goto out;
5487 }
5488 EXPORT_SYMBOL(register_netdevice);
5489
5490 /**
5491 * init_dummy_netdev - init a dummy network device for NAPI
5492 * @dev: device to init
5493 *
5494 * This takes a network device structure and initialize the minimum
5495 * amount of fields so it can be used to schedule NAPI polls without
5496 * registering a full blown interface. This is to be used by drivers
5497 * that need to tie several hardware interfaces to a single NAPI
5498 * poll scheduler due to HW limitations.
5499 */
5500 int init_dummy_netdev(struct net_device *dev)
5501 {
5502 /* Clear everything. Note we don't initialize spinlocks
5503 * are they aren't supposed to be taken by any of the
5504 * NAPI code and this dummy netdev is supposed to be
5505 * only ever used for NAPI polls
5506 */
5507 memset(dev, 0, sizeof(struct net_device));
5508
5509 /* make sure we BUG if trying to hit standard
5510 * register/unregister code path
5511 */
5512 dev->reg_state = NETREG_DUMMY;
5513
5514 /* NAPI wants this */
5515 INIT_LIST_HEAD(&dev->napi_list);
5516
5517 /* a dummy interface is started by default */
5518 set_bit(__LINK_STATE_PRESENT, &dev->state);
5519 set_bit(__LINK_STATE_START, &dev->state);
5520
5521 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5522 * because users of this 'device' dont need to change
5523 * its refcount.
5524 */
5525
5526 return 0;
5527 }
5528 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5529
5530
5531 /**
5532 * register_netdev - register a network device
5533 * @dev: device to register
5534 *
5535 * Take a completed network device structure and add it to the kernel
5536 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5537 * chain. 0 is returned on success. A negative errno code is returned
5538 * on a failure to set up the device, or if the name is a duplicate.
5539 *
5540 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5541 * and expands the device name if you passed a format string to
5542 * alloc_netdev.
5543 */
5544 int register_netdev(struct net_device *dev)
5545 {
5546 int err;
5547
5548 rtnl_lock();
5549
5550 /*
5551 * If the name is a format string the caller wants us to do a
5552 * name allocation.
5553 */
5554 if (strchr(dev->name, '%')) {
5555 err = dev_alloc_name(dev, dev->name);
5556 if (err < 0)
5557 goto out;
5558 }
5559
5560 err = register_netdevice(dev);
5561 out:
5562 rtnl_unlock();
5563 return err;
5564 }
5565 EXPORT_SYMBOL(register_netdev);
5566
5567 int netdev_refcnt_read(const struct net_device *dev)
5568 {
5569 int i, refcnt = 0;
5570
5571 for_each_possible_cpu(i)
5572 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5573 return refcnt;
5574 }
5575 EXPORT_SYMBOL(netdev_refcnt_read);
5576
5577 /*
5578 * netdev_wait_allrefs - wait until all references are gone.
5579 *
5580 * This is called when unregistering network devices.
5581 *
5582 * Any protocol or device that holds a reference should register
5583 * for netdevice notification, and cleanup and put back the
5584 * reference if they receive an UNREGISTER event.
5585 * We can get stuck here if buggy protocols don't correctly
5586 * call dev_put.
5587 */
5588 static void netdev_wait_allrefs(struct net_device *dev)
5589 {
5590 unsigned long rebroadcast_time, warning_time;
5591 int refcnt;
5592
5593 linkwatch_forget_dev(dev);
5594
5595 rebroadcast_time = warning_time = jiffies;
5596 refcnt = netdev_refcnt_read(dev);
5597
5598 while (refcnt != 0) {
5599 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5600 rtnl_lock();
5601
5602 /* Rebroadcast unregister notification */
5603 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5604 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5605 * should have already handle it the first time */
5606
5607 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5608 &dev->state)) {
5609 /* We must not have linkwatch events
5610 * pending on unregister. If this
5611 * happens, we simply run the queue
5612 * unscheduled, resulting in a noop
5613 * for this device.
5614 */
5615 linkwatch_run_queue();
5616 }
5617
5618 __rtnl_unlock();
5619
5620 rebroadcast_time = jiffies;
5621 }
5622
5623 msleep(250);
5624
5625 refcnt = netdev_refcnt_read(dev);
5626
5627 if (time_after(jiffies, warning_time + 10 * HZ)) {
5628 printk(KERN_EMERG "unregister_netdevice: "
5629 "waiting for %s to become free. Usage "
5630 "count = %d\n",
5631 dev->name, refcnt);
5632 warning_time = jiffies;
5633 }
5634 }
5635 }
5636
5637 /* The sequence is:
5638 *
5639 * rtnl_lock();
5640 * ...
5641 * register_netdevice(x1);
5642 * register_netdevice(x2);
5643 * ...
5644 * unregister_netdevice(y1);
5645 * unregister_netdevice(y2);
5646 * ...
5647 * rtnl_unlock();
5648 * free_netdev(y1);
5649 * free_netdev(y2);
5650 *
5651 * We are invoked by rtnl_unlock().
5652 * This allows us to deal with problems:
5653 * 1) We can delete sysfs objects which invoke hotplug
5654 * without deadlocking with linkwatch via keventd.
5655 * 2) Since we run with the RTNL semaphore not held, we can sleep
5656 * safely in order to wait for the netdev refcnt to drop to zero.
5657 *
5658 * We must not return until all unregister events added during
5659 * the interval the lock was held have been completed.
5660 */
5661 void netdev_run_todo(void)
5662 {
5663 struct list_head list;
5664
5665 /* Snapshot list, allow later requests */
5666 list_replace_init(&net_todo_list, &list);
5667
5668 __rtnl_unlock();
5669
5670 while (!list_empty(&list)) {
5671 struct net_device *dev
5672 = list_first_entry(&list, struct net_device, todo_list);
5673 list_del(&dev->todo_list);
5674
5675 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5676 printk(KERN_ERR "network todo '%s' but state %d\n",
5677 dev->name, dev->reg_state);
5678 dump_stack();
5679 continue;
5680 }
5681
5682 dev->reg_state = NETREG_UNREGISTERED;
5683
5684 on_each_cpu(flush_backlog, dev, 1);
5685
5686 netdev_wait_allrefs(dev);
5687
5688 /* paranoia */
5689 BUG_ON(netdev_refcnt_read(dev));
5690 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5691 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5692 WARN_ON(dev->dn_ptr);
5693
5694 if (dev->destructor)
5695 dev->destructor(dev);
5696
5697 /* Free network device */
5698 kobject_put(&dev->dev.kobj);
5699 }
5700 }
5701
5702 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5703 * fields in the same order, with only the type differing.
5704 */
5705 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5706 const struct net_device_stats *netdev_stats)
5707 {
5708 #if BITS_PER_LONG == 64
5709 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5710 memcpy(stats64, netdev_stats, sizeof(*stats64));
5711 #else
5712 size_t i, n = sizeof(*stats64) / sizeof(u64);
5713 const unsigned long *src = (const unsigned long *)netdev_stats;
5714 u64 *dst = (u64 *)stats64;
5715
5716 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5717 sizeof(*stats64) / sizeof(u64));
5718 for (i = 0; i < n; i++)
5719 dst[i] = src[i];
5720 #endif
5721 }
5722
5723 /**
5724 * dev_get_stats - get network device statistics
5725 * @dev: device to get statistics from
5726 * @storage: place to store stats
5727 *
5728 * Get network statistics from device. Return @storage.
5729 * The device driver may provide its own method by setting
5730 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5731 * otherwise the internal statistics structure is used.
5732 */
5733 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5734 struct rtnl_link_stats64 *storage)
5735 {
5736 const struct net_device_ops *ops = dev->netdev_ops;
5737
5738 if (ops->ndo_get_stats64) {
5739 memset(storage, 0, sizeof(*storage));
5740 ops->ndo_get_stats64(dev, storage);
5741 } else if (ops->ndo_get_stats) {
5742 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5743 } else {
5744 netdev_stats_to_stats64(storage, &dev->stats);
5745 }
5746 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5747 return storage;
5748 }
5749 EXPORT_SYMBOL(dev_get_stats);
5750
5751 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5752 {
5753 struct netdev_queue *queue = dev_ingress_queue(dev);
5754
5755 #ifdef CONFIG_NET_CLS_ACT
5756 if (queue)
5757 return queue;
5758 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5759 if (!queue)
5760 return NULL;
5761 netdev_init_one_queue(dev, queue, NULL);
5762 queue->qdisc = &noop_qdisc;
5763 queue->qdisc_sleeping = &noop_qdisc;
5764 rcu_assign_pointer(dev->ingress_queue, queue);
5765 #endif
5766 return queue;
5767 }
5768
5769 /**
5770 * alloc_netdev_mqs - allocate network device
5771 * @sizeof_priv: size of private data to allocate space for
5772 * @name: device name format string
5773 * @setup: callback to initialize device
5774 * @txqs: the number of TX subqueues to allocate
5775 * @rxqs: the number of RX subqueues to allocate
5776 *
5777 * Allocates a struct net_device with private data area for driver use
5778 * and performs basic initialization. Also allocates subquue structs
5779 * for each queue on the device.
5780 */
5781 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5782 void (*setup)(struct net_device *),
5783 unsigned int txqs, unsigned int rxqs)
5784 {
5785 struct net_device *dev;
5786 size_t alloc_size;
5787 struct net_device *p;
5788
5789 BUG_ON(strlen(name) >= sizeof(dev->name));
5790
5791 if (txqs < 1) {
5792 pr_err("alloc_netdev: Unable to allocate device "
5793 "with zero queues.\n");
5794 return NULL;
5795 }
5796
5797 #ifdef CONFIG_RPS
5798 if (rxqs < 1) {
5799 pr_err("alloc_netdev: Unable to allocate device "
5800 "with zero RX queues.\n");
5801 return NULL;
5802 }
5803 #endif
5804
5805 alloc_size = sizeof(struct net_device);
5806 if (sizeof_priv) {
5807 /* ensure 32-byte alignment of private area */
5808 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5809 alloc_size += sizeof_priv;
5810 }
5811 /* ensure 32-byte alignment of whole construct */
5812 alloc_size += NETDEV_ALIGN - 1;
5813
5814 p = kzalloc(alloc_size, GFP_KERNEL);
5815 if (!p) {
5816 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5817 return NULL;
5818 }
5819
5820 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5821 dev->padded = (char *)dev - (char *)p;
5822
5823 dev->pcpu_refcnt = alloc_percpu(int);
5824 if (!dev->pcpu_refcnt)
5825 goto free_p;
5826
5827 if (dev_addr_init(dev))
5828 goto free_pcpu;
5829
5830 dev_mc_init(dev);
5831 dev_uc_init(dev);
5832
5833 dev_net_set(dev, &init_net);
5834
5835 dev->gso_max_size = GSO_MAX_SIZE;
5836
5837 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5838 dev->ethtool_ntuple_list.count = 0;
5839 INIT_LIST_HEAD(&dev->napi_list);
5840 INIT_LIST_HEAD(&dev->unreg_list);
5841 INIT_LIST_HEAD(&dev->link_watch_list);
5842 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5843 setup(dev);
5844
5845 dev->num_tx_queues = txqs;
5846 dev->real_num_tx_queues = txqs;
5847 if (netif_alloc_netdev_queues(dev))
5848 goto free_all;
5849
5850 #ifdef CONFIG_RPS
5851 dev->num_rx_queues = rxqs;
5852 dev->real_num_rx_queues = rxqs;
5853 if (netif_alloc_rx_queues(dev))
5854 goto free_all;
5855 #endif
5856
5857 strcpy(dev->name, name);
5858 dev->group = INIT_NETDEV_GROUP;
5859 return dev;
5860
5861 free_all:
5862 free_netdev(dev);
5863 return NULL;
5864
5865 free_pcpu:
5866 free_percpu(dev->pcpu_refcnt);
5867 kfree(dev->_tx);
5868 #ifdef CONFIG_RPS
5869 kfree(dev->_rx);
5870 #endif
5871
5872 free_p:
5873 kfree(p);
5874 return NULL;
5875 }
5876 EXPORT_SYMBOL(alloc_netdev_mqs);
5877
5878 /**
5879 * free_netdev - free network device
5880 * @dev: device
5881 *
5882 * This function does the last stage of destroying an allocated device
5883 * interface. The reference to the device object is released.
5884 * If this is the last reference then it will be freed.
5885 */
5886 void free_netdev(struct net_device *dev)
5887 {
5888 struct napi_struct *p, *n;
5889
5890 release_net(dev_net(dev));
5891
5892 kfree(dev->_tx);
5893 #ifdef CONFIG_RPS
5894 kfree(dev->_rx);
5895 #endif
5896
5897 kfree(rcu_dereference_raw(dev->ingress_queue));
5898
5899 /* Flush device addresses */
5900 dev_addr_flush(dev);
5901
5902 /* Clear ethtool n-tuple list */
5903 ethtool_ntuple_flush(dev);
5904
5905 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5906 netif_napi_del(p);
5907
5908 free_percpu(dev->pcpu_refcnt);
5909 dev->pcpu_refcnt = NULL;
5910
5911 /* Compatibility with error handling in drivers */
5912 if (dev->reg_state == NETREG_UNINITIALIZED) {
5913 kfree((char *)dev - dev->padded);
5914 return;
5915 }
5916
5917 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5918 dev->reg_state = NETREG_RELEASED;
5919
5920 /* will free via device release */
5921 put_device(&dev->dev);
5922 }
5923 EXPORT_SYMBOL(free_netdev);
5924
5925 /**
5926 * synchronize_net - Synchronize with packet receive processing
5927 *
5928 * Wait for packets currently being received to be done.
5929 * Does not block later packets from starting.
5930 */
5931 void synchronize_net(void)
5932 {
5933 might_sleep();
5934 synchronize_rcu();
5935 }
5936 EXPORT_SYMBOL(synchronize_net);
5937
5938 /**
5939 * unregister_netdevice_queue - remove device from the kernel
5940 * @dev: device
5941 * @head: list
5942 *
5943 * This function shuts down a device interface and removes it
5944 * from the kernel tables.
5945 * If head not NULL, device is queued to be unregistered later.
5946 *
5947 * Callers must hold the rtnl semaphore. You may want
5948 * unregister_netdev() instead of this.
5949 */
5950
5951 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5952 {
5953 ASSERT_RTNL();
5954
5955 if (head) {
5956 list_move_tail(&dev->unreg_list, head);
5957 } else {
5958 rollback_registered(dev);
5959 /* Finish processing unregister after unlock */
5960 net_set_todo(dev);
5961 }
5962 }
5963 EXPORT_SYMBOL(unregister_netdevice_queue);
5964
5965 /**
5966 * unregister_netdevice_many - unregister many devices
5967 * @head: list of devices
5968 */
5969 void unregister_netdevice_many(struct list_head *head)
5970 {
5971 struct net_device *dev;
5972
5973 if (!list_empty(head)) {
5974 rollback_registered_many(head);
5975 list_for_each_entry(dev, head, unreg_list)
5976 net_set_todo(dev);
5977 }
5978 }
5979 EXPORT_SYMBOL(unregister_netdevice_many);
5980
5981 /**
5982 * unregister_netdev - remove device from the kernel
5983 * @dev: device
5984 *
5985 * This function shuts down a device interface and removes it
5986 * from the kernel tables.
5987 *
5988 * This is just a wrapper for unregister_netdevice that takes
5989 * the rtnl semaphore. In general you want to use this and not
5990 * unregister_netdevice.
5991 */
5992 void unregister_netdev(struct net_device *dev)
5993 {
5994 rtnl_lock();
5995 unregister_netdevice(dev);
5996 rtnl_unlock();
5997 }
5998 EXPORT_SYMBOL(unregister_netdev);
5999
6000 /**
6001 * dev_change_net_namespace - move device to different nethost namespace
6002 * @dev: device
6003 * @net: network namespace
6004 * @pat: If not NULL name pattern to try if the current device name
6005 * is already taken in the destination network namespace.
6006 *
6007 * This function shuts down a device interface and moves it
6008 * to a new network namespace. On success 0 is returned, on
6009 * a failure a netagive errno code is returned.
6010 *
6011 * Callers must hold the rtnl semaphore.
6012 */
6013
6014 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6015 {
6016 int err;
6017
6018 ASSERT_RTNL();
6019
6020 /* Don't allow namespace local devices to be moved. */
6021 err = -EINVAL;
6022 if (dev->features & NETIF_F_NETNS_LOCAL)
6023 goto out;
6024
6025 /* Ensure the device has been registrered */
6026 err = -EINVAL;
6027 if (dev->reg_state != NETREG_REGISTERED)
6028 goto out;
6029
6030 /* Get out if there is nothing todo */
6031 err = 0;
6032 if (net_eq(dev_net(dev), net))
6033 goto out;
6034
6035 /* Pick the destination device name, and ensure
6036 * we can use it in the destination network namespace.
6037 */
6038 err = -EEXIST;
6039 if (__dev_get_by_name(net, dev->name)) {
6040 /* We get here if we can't use the current device name */
6041 if (!pat)
6042 goto out;
6043 if (dev_get_valid_name(dev, pat, 1))
6044 goto out;
6045 }
6046
6047 /*
6048 * And now a mini version of register_netdevice unregister_netdevice.
6049 */
6050
6051 /* If device is running close it first. */
6052 dev_close(dev);
6053
6054 /* And unlink it from device chain */
6055 err = -ENODEV;
6056 unlist_netdevice(dev);
6057
6058 synchronize_net();
6059
6060 /* Shutdown queueing discipline. */
6061 dev_shutdown(dev);
6062
6063 /* Notify protocols, that we are about to destroy
6064 this device. They should clean all the things.
6065
6066 Note that dev->reg_state stays at NETREG_REGISTERED.
6067 This is wanted because this way 8021q and macvlan know
6068 the device is just moving and can keep their slaves up.
6069 */
6070 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6071 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6072
6073 /*
6074 * Flush the unicast and multicast chains
6075 */
6076 dev_uc_flush(dev);
6077 dev_mc_flush(dev);
6078
6079 /* Actually switch the network namespace */
6080 dev_net_set(dev, net);
6081
6082 /* If there is an ifindex conflict assign a new one */
6083 if (__dev_get_by_index(net, dev->ifindex)) {
6084 int iflink = (dev->iflink == dev->ifindex);
6085 dev->ifindex = dev_new_index(net);
6086 if (iflink)
6087 dev->iflink = dev->ifindex;
6088 }
6089
6090 /* Fixup kobjects */
6091 err = device_rename(&dev->dev, dev->name);
6092 WARN_ON(err);
6093
6094 /* Add the device back in the hashes */
6095 list_netdevice(dev);
6096
6097 /* Notify protocols, that a new device appeared. */
6098 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6099
6100 /*
6101 * Prevent userspace races by waiting until the network
6102 * device is fully setup before sending notifications.
6103 */
6104 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6105
6106 synchronize_net();
6107 err = 0;
6108 out:
6109 return err;
6110 }
6111 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6112
6113 static int dev_cpu_callback(struct notifier_block *nfb,
6114 unsigned long action,
6115 void *ocpu)
6116 {
6117 struct sk_buff **list_skb;
6118 struct sk_buff *skb;
6119 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6120 struct softnet_data *sd, *oldsd;
6121
6122 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6123 return NOTIFY_OK;
6124
6125 local_irq_disable();
6126 cpu = smp_processor_id();
6127 sd = &per_cpu(softnet_data, cpu);
6128 oldsd = &per_cpu(softnet_data, oldcpu);
6129
6130 /* Find end of our completion_queue. */
6131 list_skb = &sd->completion_queue;
6132 while (*list_skb)
6133 list_skb = &(*list_skb)->next;
6134 /* Append completion queue from offline CPU. */
6135 *list_skb = oldsd->completion_queue;
6136 oldsd->completion_queue = NULL;
6137
6138 /* Append output queue from offline CPU. */
6139 if (oldsd->output_queue) {
6140 *sd->output_queue_tailp = oldsd->output_queue;
6141 sd->output_queue_tailp = oldsd->output_queue_tailp;
6142 oldsd->output_queue = NULL;
6143 oldsd->output_queue_tailp = &oldsd->output_queue;
6144 }
6145
6146 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6147 local_irq_enable();
6148
6149 /* Process offline CPU's input_pkt_queue */
6150 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6151 netif_rx(skb);
6152 input_queue_head_incr(oldsd);
6153 }
6154 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6155 netif_rx(skb);
6156 input_queue_head_incr(oldsd);
6157 }
6158
6159 return NOTIFY_OK;
6160 }
6161
6162
6163 /**
6164 * netdev_increment_features - increment feature set by one
6165 * @all: current feature set
6166 * @one: new feature set
6167 * @mask: mask feature set
6168 *
6169 * Computes a new feature set after adding a device with feature set
6170 * @one to the master device with current feature set @all. Will not
6171 * enable anything that is off in @mask. Returns the new feature set.
6172 */
6173 u32 netdev_increment_features(u32 all, u32 one, u32 mask)
6174 {
6175 /* If device needs checksumming, downgrade to it. */
6176 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
6177 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6178 else if (mask & NETIF_F_ALL_CSUM) {
6179 /* If one device supports v4/v6 checksumming, set for all. */
6180 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6181 !(all & NETIF_F_GEN_CSUM)) {
6182 all &= ~NETIF_F_ALL_CSUM;
6183 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6184 }
6185
6186 /* If one device supports hw checksumming, set for all. */
6187 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6188 all &= ~NETIF_F_ALL_CSUM;
6189 all |= NETIF_F_HW_CSUM;
6190 }
6191 }
6192
6193 one |= NETIF_F_ALL_CSUM;
6194
6195 one |= all & NETIF_F_ONE_FOR_ALL;
6196 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6197 all |= one & mask & NETIF_F_ONE_FOR_ALL;
6198
6199 return all;
6200 }
6201 EXPORT_SYMBOL(netdev_increment_features);
6202
6203 static struct hlist_head *netdev_create_hash(void)
6204 {
6205 int i;
6206 struct hlist_head *hash;
6207
6208 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6209 if (hash != NULL)
6210 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6211 INIT_HLIST_HEAD(&hash[i]);
6212
6213 return hash;
6214 }
6215
6216 /* Initialize per network namespace state */
6217 static int __net_init netdev_init(struct net *net)
6218 {
6219 INIT_LIST_HEAD(&net->dev_base_head);
6220
6221 net->dev_name_head = netdev_create_hash();
6222 if (net->dev_name_head == NULL)
6223 goto err_name;
6224
6225 net->dev_index_head = netdev_create_hash();
6226 if (net->dev_index_head == NULL)
6227 goto err_idx;
6228
6229 return 0;
6230
6231 err_idx:
6232 kfree(net->dev_name_head);
6233 err_name:
6234 return -ENOMEM;
6235 }
6236
6237 /**
6238 * netdev_drivername - network driver for the device
6239 * @dev: network device
6240 * @buffer: buffer for resulting name
6241 * @len: size of buffer
6242 *
6243 * Determine network driver for device.
6244 */
6245 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6246 {
6247 const struct device_driver *driver;
6248 const struct device *parent;
6249
6250 if (len <= 0 || !buffer)
6251 return buffer;
6252 buffer[0] = 0;
6253
6254 parent = dev->dev.parent;
6255
6256 if (!parent)
6257 return buffer;
6258
6259 driver = parent->driver;
6260 if (driver && driver->name)
6261 strlcpy(buffer, driver->name, len);
6262 return buffer;
6263 }
6264
6265 static int __netdev_printk(const char *level, const struct net_device *dev,
6266 struct va_format *vaf)
6267 {
6268 int r;
6269
6270 if (dev && dev->dev.parent)
6271 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6272 netdev_name(dev), vaf);
6273 else if (dev)
6274 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6275 else
6276 r = printk("%s(NULL net_device): %pV", level, vaf);
6277
6278 return r;
6279 }
6280
6281 int netdev_printk(const char *level, const struct net_device *dev,
6282 const char *format, ...)
6283 {
6284 struct va_format vaf;
6285 va_list args;
6286 int r;
6287
6288 va_start(args, format);
6289
6290 vaf.fmt = format;
6291 vaf.va = &args;
6292
6293 r = __netdev_printk(level, dev, &vaf);
6294 va_end(args);
6295
6296 return r;
6297 }
6298 EXPORT_SYMBOL(netdev_printk);
6299
6300 #define define_netdev_printk_level(func, level) \
6301 int func(const struct net_device *dev, const char *fmt, ...) \
6302 { \
6303 int r; \
6304 struct va_format vaf; \
6305 va_list args; \
6306 \
6307 va_start(args, fmt); \
6308 \
6309 vaf.fmt = fmt; \
6310 vaf.va = &args; \
6311 \
6312 r = __netdev_printk(level, dev, &vaf); \
6313 va_end(args); \
6314 \
6315 return r; \
6316 } \
6317 EXPORT_SYMBOL(func);
6318
6319 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6320 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6321 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6322 define_netdev_printk_level(netdev_err, KERN_ERR);
6323 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6324 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6325 define_netdev_printk_level(netdev_info, KERN_INFO);
6326
6327 static void __net_exit netdev_exit(struct net *net)
6328 {
6329 kfree(net->dev_name_head);
6330 kfree(net->dev_index_head);
6331 }
6332
6333 static struct pernet_operations __net_initdata netdev_net_ops = {
6334 .init = netdev_init,
6335 .exit = netdev_exit,
6336 };
6337
6338 static void __net_exit default_device_exit(struct net *net)
6339 {
6340 struct net_device *dev, *aux;
6341 /*
6342 * Push all migratable network devices back to the
6343 * initial network namespace
6344 */
6345 rtnl_lock();
6346 for_each_netdev_safe(net, dev, aux) {
6347 int err;
6348 char fb_name[IFNAMSIZ];
6349
6350 /* Ignore unmoveable devices (i.e. loopback) */
6351 if (dev->features & NETIF_F_NETNS_LOCAL)
6352 continue;
6353
6354 /* Leave virtual devices for the generic cleanup */
6355 if (dev->rtnl_link_ops)
6356 continue;
6357
6358 /* Push remaing network devices to init_net */
6359 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6360 err = dev_change_net_namespace(dev, &init_net, fb_name);
6361 if (err) {
6362 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6363 __func__, dev->name, err);
6364 BUG();
6365 }
6366 }
6367 rtnl_unlock();
6368 }
6369
6370 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6371 {
6372 /* At exit all network devices most be removed from a network
6373 * namespace. Do this in the reverse order of registration.
6374 * Do this across as many network namespaces as possible to
6375 * improve batching efficiency.
6376 */
6377 struct net_device *dev;
6378 struct net *net;
6379 LIST_HEAD(dev_kill_list);
6380
6381 rtnl_lock();
6382 list_for_each_entry(net, net_list, exit_list) {
6383 for_each_netdev_reverse(net, dev) {
6384 if (dev->rtnl_link_ops)
6385 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6386 else
6387 unregister_netdevice_queue(dev, &dev_kill_list);
6388 }
6389 }
6390 unregister_netdevice_many(&dev_kill_list);
6391 rtnl_unlock();
6392 }
6393
6394 static struct pernet_operations __net_initdata default_device_ops = {
6395 .exit = default_device_exit,
6396 .exit_batch = default_device_exit_batch,
6397 };
6398
6399 /*
6400 * Initialize the DEV module. At boot time this walks the device list and
6401 * unhooks any devices that fail to initialise (normally hardware not
6402 * present) and leaves us with a valid list of present and active devices.
6403 *
6404 */
6405
6406 /*
6407 * This is called single threaded during boot, so no need
6408 * to take the rtnl semaphore.
6409 */
6410 static int __init net_dev_init(void)
6411 {
6412 int i, rc = -ENOMEM;
6413
6414 BUG_ON(!dev_boot_phase);
6415
6416 if (dev_proc_init())
6417 goto out;
6418
6419 if (netdev_kobject_init())
6420 goto out;
6421
6422 INIT_LIST_HEAD(&ptype_all);
6423 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6424 INIT_LIST_HEAD(&ptype_base[i]);
6425
6426 if (register_pernet_subsys(&netdev_net_ops))
6427 goto out;
6428
6429 /*
6430 * Initialise the packet receive queues.
6431 */
6432
6433 for_each_possible_cpu(i) {
6434 struct softnet_data *sd = &per_cpu(softnet_data, i);
6435
6436 memset(sd, 0, sizeof(*sd));
6437 skb_queue_head_init(&sd->input_pkt_queue);
6438 skb_queue_head_init(&sd->process_queue);
6439 sd->completion_queue = NULL;
6440 INIT_LIST_HEAD(&sd->poll_list);
6441 sd->output_queue = NULL;
6442 sd->output_queue_tailp = &sd->output_queue;
6443 #ifdef CONFIG_RPS
6444 sd->csd.func = rps_trigger_softirq;
6445 sd->csd.info = sd;
6446 sd->csd.flags = 0;
6447 sd->cpu = i;
6448 #endif
6449
6450 sd->backlog.poll = process_backlog;
6451 sd->backlog.weight = weight_p;
6452 sd->backlog.gro_list = NULL;
6453 sd->backlog.gro_count = 0;
6454 }
6455
6456 dev_boot_phase = 0;
6457
6458 /* The loopback device is special if any other network devices
6459 * is present in a network namespace the loopback device must
6460 * be present. Since we now dynamically allocate and free the
6461 * loopback device ensure this invariant is maintained by
6462 * keeping the loopback device as the first device on the
6463 * list of network devices. Ensuring the loopback devices
6464 * is the first device that appears and the last network device
6465 * that disappears.
6466 */
6467 if (register_pernet_device(&loopback_net_ops))
6468 goto out;
6469
6470 if (register_pernet_device(&default_device_ops))
6471 goto out;
6472
6473 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6474 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6475
6476 hotcpu_notifier(dev_cpu_callback, 0);
6477 dst_init();
6478 dev_mcast_init();
6479 rc = 0;
6480 out:
6481 return rc;
6482 }
6483
6484 subsys_initcall(net_dev_init);
6485
6486 static int __init initialize_hashrnd(void)
6487 {
6488 get_random_bytes(&hashrnd, sizeof(hashrnd));
6489 return 0;
6490 }
6491
6492 late_initcall_sync(initialize_hashrnd);
6493