]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/core/dev.c
vlan: introduce *vlan_hwaccel_push_inside helpers
[mirror_ubuntu-zesty-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 static DEFINE_SPINLOCK(ptype_lock);
148 static DEFINE_SPINLOCK(offload_lock);
149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150 struct list_head ptype_all __read_mostly; /* Taps */
151 static struct list_head offload_base __read_mostly;
152
153 static int netif_rx_internal(struct sk_buff *skb);
154 static int call_netdevice_notifiers_info(unsigned long val,
155 struct net_device *dev,
156 struct netdev_notifier_info *info);
157
158 /*
159 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
160 * semaphore.
161 *
162 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
163 *
164 * Writers must hold the rtnl semaphore while they loop through the
165 * dev_base_head list, and hold dev_base_lock for writing when they do the
166 * actual updates. This allows pure readers to access the list even
167 * while a writer is preparing to update it.
168 *
169 * To put it another way, dev_base_lock is held for writing only to
170 * protect against pure readers; the rtnl semaphore provides the
171 * protection against other writers.
172 *
173 * See, for example usages, register_netdevice() and
174 * unregister_netdevice(), which must be called with the rtnl
175 * semaphore held.
176 */
177 DEFINE_RWLOCK(dev_base_lock);
178 EXPORT_SYMBOL(dev_base_lock);
179
180 /* protects napi_hash addition/deletion and napi_gen_id */
181 static DEFINE_SPINLOCK(napi_hash_lock);
182
183 static unsigned int napi_gen_id;
184 static DEFINE_HASHTABLE(napi_hash, 8);
185
186 static seqcount_t devnet_rename_seq;
187
188 static inline void dev_base_seq_inc(struct net *net)
189 {
190 while (++net->dev_base_seq == 0);
191 }
192
193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
194 {
195 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
196
197 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
198 }
199
200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
201 {
202 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
203 }
204
205 static inline void rps_lock(struct softnet_data *sd)
206 {
207 #ifdef CONFIG_RPS
208 spin_lock(&sd->input_pkt_queue.lock);
209 #endif
210 }
211
212 static inline void rps_unlock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 spin_unlock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218
219 /* Device list insertion */
220 static void list_netdevice(struct net_device *dev)
221 {
222 struct net *net = dev_net(dev);
223
224 ASSERT_RTNL();
225
226 write_lock_bh(&dev_base_lock);
227 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
229 hlist_add_head_rcu(&dev->index_hlist,
230 dev_index_hash(net, dev->ifindex));
231 write_unlock_bh(&dev_base_lock);
232
233 dev_base_seq_inc(net);
234 }
235
236 /* Device list removal
237 * caller must respect a RCU grace period before freeing/reusing dev
238 */
239 static void unlist_netdevice(struct net_device *dev)
240 {
241 ASSERT_RTNL();
242
243 /* Unlink dev from the device chain */
244 write_lock_bh(&dev_base_lock);
245 list_del_rcu(&dev->dev_list);
246 hlist_del_rcu(&dev->name_hlist);
247 hlist_del_rcu(&dev->index_hlist);
248 write_unlock_bh(&dev_base_lock);
249
250 dev_base_seq_inc(dev_net(dev));
251 }
252
253 /*
254 * Our notifier list
255 */
256
257 static RAW_NOTIFIER_HEAD(netdev_chain);
258
259 /*
260 * Device drivers call our routines to queue packets here. We empty the
261 * queue in the local softnet handler.
262 */
263
264 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
265 EXPORT_PER_CPU_SYMBOL(softnet_data);
266
267 #ifdef CONFIG_LOCKDEP
268 /*
269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270 * according to dev->type
271 */
272 static const unsigned short netdev_lock_type[] =
273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
288
289 static const char *const netdev_lock_name[] =
290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
305
306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
308
309 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310 {
311 int i;
312
313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 if (netdev_lock_type[i] == dev_type)
315 return i;
316 /* the last key is used by default */
317 return ARRAY_SIZE(netdev_lock_type) - 1;
318 }
319
320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 unsigned short dev_type)
322 {
323 int i;
324
325 i = netdev_lock_pos(dev_type);
326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 netdev_lock_name[i]);
328 }
329
330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331 {
332 int i;
333
334 i = netdev_lock_pos(dev->type);
335 lockdep_set_class_and_name(&dev->addr_list_lock,
336 &netdev_addr_lock_key[i],
337 netdev_lock_name[i]);
338 }
339 #else
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 unsigned short dev_type)
342 {
343 }
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 }
347 #endif
348
349 /*******************************************************************************
350
351 Protocol management and registration routines
352
353 *******************************************************************************/
354
355 /*
356 * Add a protocol ID to the list. Now that the input handler is
357 * smarter we can dispense with all the messy stuff that used to be
358 * here.
359 *
360 * BEWARE!!! Protocol handlers, mangling input packets,
361 * MUST BE last in hash buckets and checking protocol handlers
362 * MUST start from promiscuous ptype_all chain in net_bh.
363 * It is true now, do not change it.
364 * Explanation follows: if protocol handler, mangling packet, will
365 * be the first on list, it is not able to sense, that packet
366 * is cloned and should be copied-on-write, so that it will
367 * change it and subsequent readers will get broken packet.
368 * --ANK (980803)
369 */
370
371 static inline struct list_head *ptype_head(const struct packet_type *pt)
372 {
373 if (pt->type == htons(ETH_P_ALL))
374 return &ptype_all;
375 else
376 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
377 }
378
379 /**
380 * dev_add_pack - add packet handler
381 * @pt: packet type declaration
382 *
383 * Add a protocol handler to the networking stack. The passed &packet_type
384 * is linked into kernel lists and may not be freed until it has been
385 * removed from the kernel lists.
386 *
387 * This call does not sleep therefore it can not
388 * guarantee all CPU's that are in middle of receiving packets
389 * will see the new packet type (until the next received packet).
390 */
391
392 void dev_add_pack(struct packet_type *pt)
393 {
394 struct list_head *head = ptype_head(pt);
395
396 spin_lock(&ptype_lock);
397 list_add_rcu(&pt->list, head);
398 spin_unlock(&ptype_lock);
399 }
400 EXPORT_SYMBOL(dev_add_pack);
401
402 /**
403 * __dev_remove_pack - remove packet handler
404 * @pt: packet type declaration
405 *
406 * Remove a protocol handler that was previously added to the kernel
407 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
408 * from the kernel lists and can be freed or reused once this function
409 * returns.
410 *
411 * The packet type might still be in use by receivers
412 * and must not be freed until after all the CPU's have gone
413 * through a quiescent state.
414 */
415 void __dev_remove_pack(struct packet_type *pt)
416 {
417 struct list_head *head = ptype_head(pt);
418 struct packet_type *pt1;
419
420 spin_lock(&ptype_lock);
421
422 list_for_each_entry(pt1, head, list) {
423 if (pt == pt1) {
424 list_del_rcu(&pt->list);
425 goto out;
426 }
427 }
428
429 pr_warn("dev_remove_pack: %p not found\n", pt);
430 out:
431 spin_unlock(&ptype_lock);
432 }
433 EXPORT_SYMBOL(__dev_remove_pack);
434
435 /**
436 * dev_remove_pack - remove packet handler
437 * @pt: packet type declaration
438 *
439 * Remove a protocol handler that was previously added to the kernel
440 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
441 * from the kernel lists and can be freed or reused once this function
442 * returns.
443 *
444 * This call sleeps to guarantee that no CPU is looking at the packet
445 * type after return.
446 */
447 void dev_remove_pack(struct packet_type *pt)
448 {
449 __dev_remove_pack(pt);
450
451 synchronize_net();
452 }
453 EXPORT_SYMBOL(dev_remove_pack);
454
455
456 /**
457 * dev_add_offload - register offload handlers
458 * @po: protocol offload declaration
459 *
460 * Add protocol offload handlers to the networking stack. The passed
461 * &proto_offload is linked into kernel lists and may not be freed until
462 * it has been removed from the kernel lists.
463 *
464 * This call does not sleep therefore it can not
465 * guarantee all CPU's that are in middle of receiving packets
466 * will see the new offload handlers (until the next received packet).
467 */
468 void dev_add_offload(struct packet_offload *po)
469 {
470 struct list_head *head = &offload_base;
471
472 spin_lock(&offload_lock);
473 list_add_rcu(&po->list, head);
474 spin_unlock(&offload_lock);
475 }
476 EXPORT_SYMBOL(dev_add_offload);
477
478 /**
479 * __dev_remove_offload - remove offload handler
480 * @po: packet offload declaration
481 *
482 * Remove a protocol offload handler that was previously added to the
483 * kernel offload handlers by dev_add_offload(). The passed &offload_type
484 * is removed from the kernel lists and can be freed or reused once this
485 * function returns.
486 *
487 * The packet type might still be in use by receivers
488 * and must not be freed until after all the CPU's have gone
489 * through a quiescent state.
490 */
491 static void __dev_remove_offload(struct packet_offload *po)
492 {
493 struct list_head *head = &offload_base;
494 struct packet_offload *po1;
495
496 spin_lock(&offload_lock);
497
498 list_for_each_entry(po1, head, list) {
499 if (po == po1) {
500 list_del_rcu(&po->list);
501 goto out;
502 }
503 }
504
505 pr_warn("dev_remove_offload: %p not found\n", po);
506 out:
507 spin_unlock(&offload_lock);
508 }
509
510 /**
511 * dev_remove_offload - remove packet offload handler
512 * @po: packet offload declaration
513 *
514 * Remove a packet offload handler that was previously added to the kernel
515 * offload handlers by dev_add_offload(). The passed &offload_type is
516 * removed from the kernel lists and can be freed or reused once this
517 * function returns.
518 *
519 * This call sleeps to guarantee that no CPU is looking at the packet
520 * type after return.
521 */
522 void dev_remove_offload(struct packet_offload *po)
523 {
524 __dev_remove_offload(po);
525
526 synchronize_net();
527 }
528 EXPORT_SYMBOL(dev_remove_offload);
529
530 /******************************************************************************
531
532 Device Boot-time Settings Routines
533
534 *******************************************************************************/
535
536 /* Boot time configuration table */
537 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
538
539 /**
540 * netdev_boot_setup_add - add new setup entry
541 * @name: name of the device
542 * @map: configured settings for the device
543 *
544 * Adds new setup entry to the dev_boot_setup list. The function
545 * returns 0 on error and 1 on success. This is a generic routine to
546 * all netdevices.
547 */
548 static int netdev_boot_setup_add(char *name, struct ifmap *map)
549 {
550 struct netdev_boot_setup *s;
551 int i;
552
553 s = dev_boot_setup;
554 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
555 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
556 memset(s[i].name, 0, sizeof(s[i].name));
557 strlcpy(s[i].name, name, IFNAMSIZ);
558 memcpy(&s[i].map, map, sizeof(s[i].map));
559 break;
560 }
561 }
562
563 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
564 }
565
566 /**
567 * netdev_boot_setup_check - check boot time settings
568 * @dev: the netdevice
569 *
570 * Check boot time settings for the device.
571 * The found settings are set for the device to be used
572 * later in the device probing.
573 * Returns 0 if no settings found, 1 if they are.
574 */
575 int netdev_boot_setup_check(struct net_device *dev)
576 {
577 struct netdev_boot_setup *s = dev_boot_setup;
578 int i;
579
580 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
581 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
582 !strcmp(dev->name, s[i].name)) {
583 dev->irq = s[i].map.irq;
584 dev->base_addr = s[i].map.base_addr;
585 dev->mem_start = s[i].map.mem_start;
586 dev->mem_end = s[i].map.mem_end;
587 return 1;
588 }
589 }
590 return 0;
591 }
592 EXPORT_SYMBOL(netdev_boot_setup_check);
593
594
595 /**
596 * netdev_boot_base - get address from boot time settings
597 * @prefix: prefix for network device
598 * @unit: id for network device
599 *
600 * Check boot time settings for the base address of device.
601 * The found settings are set for the device to be used
602 * later in the device probing.
603 * Returns 0 if no settings found.
604 */
605 unsigned long netdev_boot_base(const char *prefix, int unit)
606 {
607 const struct netdev_boot_setup *s = dev_boot_setup;
608 char name[IFNAMSIZ];
609 int i;
610
611 sprintf(name, "%s%d", prefix, unit);
612
613 /*
614 * If device already registered then return base of 1
615 * to indicate not to probe for this interface
616 */
617 if (__dev_get_by_name(&init_net, name))
618 return 1;
619
620 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
621 if (!strcmp(name, s[i].name))
622 return s[i].map.base_addr;
623 return 0;
624 }
625
626 /*
627 * Saves at boot time configured settings for any netdevice.
628 */
629 int __init netdev_boot_setup(char *str)
630 {
631 int ints[5];
632 struct ifmap map;
633
634 str = get_options(str, ARRAY_SIZE(ints), ints);
635 if (!str || !*str)
636 return 0;
637
638 /* Save settings */
639 memset(&map, 0, sizeof(map));
640 if (ints[0] > 0)
641 map.irq = ints[1];
642 if (ints[0] > 1)
643 map.base_addr = ints[2];
644 if (ints[0] > 2)
645 map.mem_start = ints[3];
646 if (ints[0] > 3)
647 map.mem_end = ints[4];
648
649 /* Add new entry to the list */
650 return netdev_boot_setup_add(str, &map);
651 }
652
653 __setup("netdev=", netdev_boot_setup);
654
655 /*******************************************************************************
656
657 Device Interface Subroutines
658
659 *******************************************************************************/
660
661 /**
662 * __dev_get_by_name - find a device by its name
663 * @net: the applicable net namespace
664 * @name: name to find
665 *
666 * Find an interface by name. Must be called under RTNL semaphore
667 * or @dev_base_lock. If the name is found a pointer to the device
668 * is returned. If the name is not found then %NULL is returned. The
669 * reference counters are not incremented so the caller must be
670 * careful with locks.
671 */
672
673 struct net_device *__dev_get_by_name(struct net *net, const char *name)
674 {
675 struct net_device *dev;
676 struct hlist_head *head = dev_name_hash(net, name);
677
678 hlist_for_each_entry(dev, head, name_hlist)
679 if (!strncmp(dev->name, name, IFNAMSIZ))
680 return dev;
681
682 return NULL;
683 }
684 EXPORT_SYMBOL(__dev_get_by_name);
685
686 /**
687 * dev_get_by_name_rcu - find a device by its name
688 * @net: the applicable net namespace
689 * @name: name to find
690 *
691 * Find an interface by name.
692 * If the name is found a pointer to the device is returned.
693 * If the name is not found then %NULL is returned.
694 * The reference counters are not incremented so the caller must be
695 * careful with locks. The caller must hold RCU lock.
696 */
697
698 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
699 {
700 struct net_device *dev;
701 struct hlist_head *head = dev_name_hash(net, name);
702
703 hlist_for_each_entry_rcu(dev, head, name_hlist)
704 if (!strncmp(dev->name, name, IFNAMSIZ))
705 return dev;
706
707 return NULL;
708 }
709 EXPORT_SYMBOL(dev_get_by_name_rcu);
710
711 /**
712 * dev_get_by_name - find a device by its name
713 * @net: the applicable net namespace
714 * @name: name to find
715 *
716 * Find an interface by name. This can be called from any
717 * context and does its own locking. The returned handle has
718 * the usage count incremented and the caller must use dev_put() to
719 * release it when it is no longer needed. %NULL is returned if no
720 * matching device is found.
721 */
722
723 struct net_device *dev_get_by_name(struct net *net, const char *name)
724 {
725 struct net_device *dev;
726
727 rcu_read_lock();
728 dev = dev_get_by_name_rcu(net, name);
729 if (dev)
730 dev_hold(dev);
731 rcu_read_unlock();
732 return dev;
733 }
734 EXPORT_SYMBOL(dev_get_by_name);
735
736 /**
737 * __dev_get_by_index - find a device by its ifindex
738 * @net: the applicable net namespace
739 * @ifindex: index of device
740 *
741 * Search for an interface by index. Returns %NULL if the device
742 * is not found or a pointer to the device. The device has not
743 * had its reference counter increased so the caller must be careful
744 * about locking. The caller must hold either the RTNL semaphore
745 * or @dev_base_lock.
746 */
747
748 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
749 {
750 struct net_device *dev;
751 struct hlist_head *head = dev_index_hash(net, ifindex);
752
753 hlist_for_each_entry(dev, head, index_hlist)
754 if (dev->ifindex == ifindex)
755 return dev;
756
757 return NULL;
758 }
759 EXPORT_SYMBOL(__dev_get_by_index);
760
761 /**
762 * dev_get_by_index_rcu - find a device by its ifindex
763 * @net: the applicable net namespace
764 * @ifindex: index of device
765 *
766 * Search for an interface by index. Returns %NULL if the device
767 * is not found or a pointer to the device. The device has not
768 * had its reference counter increased so the caller must be careful
769 * about locking. The caller must hold RCU lock.
770 */
771
772 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
773 {
774 struct net_device *dev;
775 struct hlist_head *head = dev_index_hash(net, ifindex);
776
777 hlist_for_each_entry_rcu(dev, head, index_hlist)
778 if (dev->ifindex == ifindex)
779 return dev;
780
781 return NULL;
782 }
783 EXPORT_SYMBOL(dev_get_by_index_rcu);
784
785
786 /**
787 * dev_get_by_index - find a device by its ifindex
788 * @net: the applicable net namespace
789 * @ifindex: index of device
790 *
791 * Search for an interface by index. Returns NULL if the device
792 * is not found or a pointer to the device. The device returned has
793 * had a reference added and the pointer is safe until the user calls
794 * dev_put to indicate they have finished with it.
795 */
796
797 struct net_device *dev_get_by_index(struct net *net, int ifindex)
798 {
799 struct net_device *dev;
800
801 rcu_read_lock();
802 dev = dev_get_by_index_rcu(net, ifindex);
803 if (dev)
804 dev_hold(dev);
805 rcu_read_unlock();
806 return dev;
807 }
808 EXPORT_SYMBOL(dev_get_by_index);
809
810 /**
811 * netdev_get_name - get a netdevice name, knowing its ifindex.
812 * @net: network namespace
813 * @name: a pointer to the buffer where the name will be stored.
814 * @ifindex: the ifindex of the interface to get the name from.
815 *
816 * The use of raw_seqcount_begin() and cond_resched() before
817 * retrying is required as we want to give the writers a chance
818 * to complete when CONFIG_PREEMPT is not set.
819 */
820 int netdev_get_name(struct net *net, char *name, int ifindex)
821 {
822 struct net_device *dev;
823 unsigned int seq;
824
825 retry:
826 seq = raw_seqcount_begin(&devnet_rename_seq);
827 rcu_read_lock();
828 dev = dev_get_by_index_rcu(net, ifindex);
829 if (!dev) {
830 rcu_read_unlock();
831 return -ENODEV;
832 }
833
834 strcpy(name, dev->name);
835 rcu_read_unlock();
836 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
837 cond_resched();
838 goto retry;
839 }
840
841 return 0;
842 }
843
844 /**
845 * dev_getbyhwaddr_rcu - find a device by its hardware address
846 * @net: the applicable net namespace
847 * @type: media type of device
848 * @ha: hardware address
849 *
850 * Search for an interface by MAC address. Returns NULL if the device
851 * is not found or a pointer to the device.
852 * The caller must hold RCU or RTNL.
853 * The returned device has not had its ref count increased
854 * and the caller must therefore be careful about locking
855 *
856 */
857
858 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
859 const char *ha)
860 {
861 struct net_device *dev;
862
863 for_each_netdev_rcu(net, dev)
864 if (dev->type == type &&
865 !memcmp(dev->dev_addr, ha, dev->addr_len))
866 return dev;
867
868 return NULL;
869 }
870 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
871
872 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
873 {
874 struct net_device *dev;
875
876 ASSERT_RTNL();
877 for_each_netdev(net, dev)
878 if (dev->type == type)
879 return dev;
880
881 return NULL;
882 }
883 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
884
885 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
886 {
887 struct net_device *dev, *ret = NULL;
888
889 rcu_read_lock();
890 for_each_netdev_rcu(net, dev)
891 if (dev->type == type) {
892 dev_hold(dev);
893 ret = dev;
894 break;
895 }
896 rcu_read_unlock();
897 return ret;
898 }
899 EXPORT_SYMBOL(dev_getfirstbyhwtype);
900
901 /**
902 * __dev_get_by_flags - find any device with given flags
903 * @net: the applicable net namespace
904 * @if_flags: IFF_* values
905 * @mask: bitmask of bits in if_flags to check
906 *
907 * Search for any interface with the given flags. Returns NULL if a device
908 * is not found or a pointer to the device. Must be called inside
909 * rtnl_lock(), and result refcount is unchanged.
910 */
911
912 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
913 unsigned short mask)
914 {
915 struct net_device *dev, *ret;
916
917 ASSERT_RTNL();
918
919 ret = NULL;
920 for_each_netdev(net, dev) {
921 if (((dev->flags ^ if_flags) & mask) == 0) {
922 ret = dev;
923 break;
924 }
925 }
926 return ret;
927 }
928 EXPORT_SYMBOL(__dev_get_by_flags);
929
930 /**
931 * dev_valid_name - check if name is okay for network device
932 * @name: name string
933 *
934 * Network device names need to be valid file names to
935 * to allow sysfs to work. We also disallow any kind of
936 * whitespace.
937 */
938 bool dev_valid_name(const char *name)
939 {
940 if (*name == '\0')
941 return false;
942 if (strlen(name) >= IFNAMSIZ)
943 return false;
944 if (!strcmp(name, ".") || !strcmp(name, ".."))
945 return false;
946
947 while (*name) {
948 if (*name == '/' || isspace(*name))
949 return false;
950 name++;
951 }
952 return true;
953 }
954 EXPORT_SYMBOL(dev_valid_name);
955
956 /**
957 * __dev_alloc_name - allocate a name for a device
958 * @net: network namespace to allocate the device name in
959 * @name: name format string
960 * @buf: scratch buffer and result name string
961 *
962 * Passed a format string - eg "lt%d" it will try and find a suitable
963 * id. It scans list of devices to build up a free map, then chooses
964 * the first empty slot. The caller must hold the dev_base or rtnl lock
965 * while allocating the name and adding the device in order to avoid
966 * duplicates.
967 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
968 * Returns the number of the unit assigned or a negative errno code.
969 */
970
971 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
972 {
973 int i = 0;
974 const char *p;
975 const int max_netdevices = 8*PAGE_SIZE;
976 unsigned long *inuse;
977 struct net_device *d;
978
979 p = strnchr(name, IFNAMSIZ-1, '%');
980 if (p) {
981 /*
982 * Verify the string as this thing may have come from
983 * the user. There must be either one "%d" and no other "%"
984 * characters.
985 */
986 if (p[1] != 'd' || strchr(p + 2, '%'))
987 return -EINVAL;
988
989 /* Use one page as a bit array of possible slots */
990 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
991 if (!inuse)
992 return -ENOMEM;
993
994 for_each_netdev(net, d) {
995 if (!sscanf(d->name, name, &i))
996 continue;
997 if (i < 0 || i >= max_netdevices)
998 continue;
999
1000 /* avoid cases where sscanf is not exact inverse of printf */
1001 snprintf(buf, IFNAMSIZ, name, i);
1002 if (!strncmp(buf, d->name, IFNAMSIZ))
1003 set_bit(i, inuse);
1004 }
1005
1006 i = find_first_zero_bit(inuse, max_netdevices);
1007 free_page((unsigned long) inuse);
1008 }
1009
1010 if (buf != name)
1011 snprintf(buf, IFNAMSIZ, name, i);
1012 if (!__dev_get_by_name(net, buf))
1013 return i;
1014
1015 /* It is possible to run out of possible slots
1016 * when the name is long and there isn't enough space left
1017 * for the digits, or if all bits are used.
1018 */
1019 return -ENFILE;
1020 }
1021
1022 /**
1023 * dev_alloc_name - allocate a name for a device
1024 * @dev: device
1025 * @name: name format string
1026 *
1027 * Passed a format string - eg "lt%d" it will try and find a suitable
1028 * id. It scans list of devices to build up a free map, then chooses
1029 * the first empty slot. The caller must hold the dev_base or rtnl lock
1030 * while allocating the name and adding the device in order to avoid
1031 * duplicates.
1032 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1033 * Returns the number of the unit assigned or a negative errno code.
1034 */
1035
1036 int dev_alloc_name(struct net_device *dev, const char *name)
1037 {
1038 char buf[IFNAMSIZ];
1039 struct net *net;
1040 int ret;
1041
1042 BUG_ON(!dev_net(dev));
1043 net = dev_net(dev);
1044 ret = __dev_alloc_name(net, name, buf);
1045 if (ret >= 0)
1046 strlcpy(dev->name, buf, IFNAMSIZ);
1047 return ret;
1048 }
1049 EXPORT_SYMBOL(dev_alloc_name);
1050
1051 static int dev_alloc_name_ns(struct net *net,
1052 struct net_device *dev,
1053 const char *name)
1054 {
1055 char buf[IFNAMSIZ];
1056 int ret;
1057
1058 ret = __dev_alloc_name(net, name, buf);
1059 if (ret >= 0)
1060 strlcpy(dev->name, buf, IFNAMSIZ);
1061 return ret;
1062 }
1063
1064 static int dev_get_valid_name(struct net *net,
1065 struct net_device *dev,
1066 const char *name)
1067 {
1068 BUG_ON(!net);
1069
1070 if (!dev_valid_name(name))
1071 return -EINVAL;
1072
1073 if (strchr(name, '%'))
1074 return dev_alloc_name_ns(net, dev, name);
1075 else if (__dev_get_by_name(net, name))
1076 return -EEXIST;
1077 else if (dev->name != name)
1078 strlcpy(dev->name, name, IFNAMSIZ);
1079
1080 return 0;
1081 }
1082
1083 /**
1084 * dev_change_name - change name of a device
1085 * @dev: device
1086 * @newname: name (or format string) must be at least IFNAMSIZ
1087 *
1088 * Change name of a device, can pass format strings "eth%d".
1089 * for wildcarding.
1090 */
1091 int dev_change_name(struct net_device *dev, const char *newname)
1092 {
1093 unsigned char old_assign_type;
1094 char oldname[IFNAMSIZ];
1095 int err = 0;
1096 int ret;
1097 struct net *net;
1098
1099 ASSERT_RTNL();
1100 BUG_ON(!dev_net(dev));
1101
1102 net = dev_net(dev);
1103 if (dev->flags & IFF_UP)
1104 return -EBUSY;
1105
1106 write_seqcount_begin(&devnet_rename_seq);
1107
1108 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1109 write_seqcount_end(&devnet_rename_seq);
1110 return 0;
1111 }
1112
1113 memcpy(oldname, dev->name, IFNAMSIZ);
1114
1115 err = dev_get_valid_name(net, dev, newname);
1116 if (err < 0) {
1117 write_seqcount_end(&devnet_rename_seq);
1118 return err;
1119 }
1120
1121 if (oldname[0] && !strchr(oldname, '%'))
1122 netdev_info(dev, "renamed from %s\n", oldname);
1123
1124 old_assign_type = dev->name_assign_type;
1125 dev->name_assign_type = NET_NAME_RENAMED;
1126
1127 rollback:
1128 ret = device_rename(&dev->dev, dev->name);
1129 if (ret) {
1130 memcpy(dev->name, oldname, IFNAMSIZ);
1131 dev->name_assign_type = old_assign_type;
1132 write_seqcount_end(&devnet_rename_seq);
1133 return ret;
1134 }
1135
1136 write_seqcount_end(&devnet_rename_seq);
1137
1138 netdev_adjacent_rename_links(dev, oldname);
1139
1140 write_lock_bh(&dev_base_lock);
1141 hlist_del_rcu(&dev->name_hlist);
1142 write_unlock_bh(&dev_base_lock);
1143
1144 synchronize_rcu();
1145
1146 write_lock_bh(&dev_base_lock);
1147 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1148 write_unlock_bh(&dev_base_lock);
1149
1150 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1151 ret = notifier_to_errno(ret);
1152
1153 if (ret) {
1154 /* err >= 0 after dev_alloc_name() or stores the first errno */
1155 if (err >= 0) {
1156 err = ret;
1157 write_seqcount_begin(&devnet_rename_seq);
1158 memcpy(dev->name, oldname, IFNAMSIZ);
1159 memcpy(oldname, newname, IFNAMSIZ);
1160 dev->name_assign_type = old_assign_type;
1161 old_assign_type = NET_NAME_RENAMED;
1162 goto rollback;
1163 } else {
1164 pr_err("%s: name change rollback failed: %d\n",
1165 dev->name, ret);
1166 }
1167 }
1168
1169 return err;
1170 }
1171
1172 /**
1173 * dev_set_alias - change ifalias of a device
1174 * @dev: device
1175 * @alias: name up to IFALIASZ
1176 * @len: limit of bytes to copy from info
1177 *
1178 * Set ifalias for a device,
1179 */
1180 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1181 {
1182 char *new_ifalias;
1183
1184 ASSERT_RTNL();
1185
1186 if (len >= IFALIASZ)
1187 return -EINVAL;
1188
1189 if (!len) {
1190 kfree(dev->ifalias);
1191 dev->ifalias = NULL;
1192 return 0;
1193 }
1194
1195 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1196 if (!new_ifalias)
1197 return -ENOMEM;
1198 dev->ifalias = new_ifalias;
1199
1200 strlcpy(dev->ifalias, alias, len+1);
1201 return len;
1202 }
1203
1204
1205 /**
1206 * netdev_features_change - device changes features
1207 * @dev: device to cause notification
1208 *
1209 * Called to indicate a device has changed features.
1210 */
1211 void netdev_features_change(struct net_device *dev)
1212 {
1213 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1214 }
1215 EXPORT_SYMBOL(netdev_features_change);
1216
1217 /**
1218 * netdev_state_change - device changes state
1219 * @dev: device to cause notification
1220 *
1221 * Called to indicate a device has changed state. This function calls
1222 * the notifier chains for netdev_chain and sends a NEWLINK message
1223 * to the routing socket.
1224 */
1225 void netdev_state_change(struct net_device *dev)
1226 {
1227 if (dev->flags & IFF_UP) {
1228 struct netdev_notifier_change_info change_info;
1229
1230 change_info.flags_changed = 0;
1231 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1232 &change_info.info);
1233 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1234 }
1235 }
1236 EXPORT_SYMBOL(netdev_state_change);
1237
1238 /**
1239 * netdev_notify_peers - notify network peers about existence of @dev
1240 * @dev: network device
1241 *
1242 * Generate traffic such that interested network peers are aware of
1243 * @dev, such as by generating a gratuitous ARP. This may be used when
1244 * a device wants to inform the rest of the network about some sort of
1245 * reconfiguration such as a failover event or virtual machine
1246 * migration.
1247 */
1248 void netdev_notify_peers(struct net_device *dev)
1249 {
1250 rtnl_lock();
1251 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1252 rtnl_unlock();
1253 }
1254 EXPORT_SYMBOL(netdev_notify_peers);
1255
1256 static int __dev_open(struct net_device *dev)
1257 {
1258 const struct net_device_ops *ops = dev->netdev_ops;
1259 int ret;
1260
1261 ASSERT_RTNL();
1262
1263 if (!netif_device_present(dev))
1264 return -ENODEV;
1265
1266 /* Block netpoll from trying to do any rx path servicing.
1267 * If we don't do this there is a chance ndo_poll_controller
1268 * or ndo_poll may be running while we open the device
1269 */
1270 netpoll_poll_disable(dev);
1271
1272 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1273 ret = notifier_to_errno(ret);
1274 if (ret)
1275 return ret;
1276
1277 set_bit(__LINK_STATE_START, &dev->state);
1278
1279 if (ops->ndo_validate_addr)
1280 ret = ops->ndo_validate_addr(dev);
1281
1282 if (!ret && ops->ndo_open)
1283 ret = ops->ndo_open(dev);
1284
1285 netpoll_poll_enable(dev);
1286
1287 if (ret)
1288 clear_bit(__LINK_STATE_START, &dev->state);
1289 else {
1290 dev->flags |= IFF_UP;
1291 dev_set_rx_mode(dev);
1292 dev_activate(dev);
1293 add_device_randomness(dev->dev_addr, dev->addr_len);
1294 }
1295
1296 return ret;
1297 }
1298
1299 /**
1300 * dev_open - prepare an interface for use.
1301 * @dev: device to open
1302 *
1303 * Takes a device from down to up state. The device's private open
1304 * function is invoked and then the multicast lists are loaded. Finally
1305 * the device is moved into the up state and a %NETDEV_UP message is
1306 * sent to the netdev notifier chain.
1307 *
1308 * Calling this function on an active interface is a nop. On a failure
1309 * a negative errno code is returned.
1310 */
1311 int dev_open(struct net_device *dev)
1312 {
1313 int ret;
1314
1315 if (dev->flags & IFF_UP)
1316 return 0;
1317
1318 ret = __dev_open(dev);
1319 if (ret < 0)
1320 return ret;
1321
1322 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1323 call_netdevice_notifiers(NETDEV_UP, dev);
1324
1325 return ret;
1326 }
1327 EXPORT_SYMBOL(dev_open);
1328
1329 static int __dev_close_many(struct list_head *head)
1330 {
1331 struct net_device *dev;
1332
1333 ASSERT_RTNL();
1334 might_sleep();
1335
1336 list_for_each_entry(dev, head, close_list) {
1337 /* Temporarily disable netpoll until the interface is down */
1338 netpoll_poll_disable(dev);
1339
1340 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1341
1342 clear_bit(__LINK_STATE_START, &dev->state);
1343
1344 /* Synchronize to scheduled poll. We cannot touch poll list, it
1345 * can be even on different cpu. So just clear netif_running().
1346 *
1347 * dev->stop() will invoke napi_disable() on all of it's
1348 * napi_struct instances on this device.
1349 */
1350 smp_mb__after_atomic(); /* Commit netif_running(). */
1351 }
1352
1353 dev_deactivate_many(head);
1354
1355 list_for_each_entry(dev, head, close_list) {
1356 const struct net_device_ops *ops = dev->netdev_ops;
1357
1358 /*
1359 * Call the device specific close. This cannot fail.
1360 * Only if device is UP
1361 *
1362 * We allow it to be called even after a DETACH hot-plug
1363 * event.
1364 */
1365 if (ops->ndo_stop)
1366 ops->ndo_stop(dev);
1367
1368 dev->flags &= ~IFF_UP;
1369 netpoll_poll_enable(dev);
1370 }
1371
1372 return 0;
1373 }
1374
1375 static int __dev_close(struct net_device *dev)
1376 {
1377 int retval;
1378 LIST_HEAD(single);
1379
1380 list_add(&dev->close_list, &single);
1381 retval = __dev_close_many(&single);
1382 list_del(&single);
1383
1384 return retval;
1385 }
1386
1387 static int dev_close_many(struct list_head *head)
1388 {
1389 struct net_device *dev, *tmp;
1390
1391 /* Remove the devices that don't need to be closed */
1392 list_for_each_entry_safe(dev, tmp, head, close_list)
1393 if (!(dev->flags & IFF_UP))
1394 list_del_init(&dev->close_list);
1395
1396 __dev_close_many(head);
1397
1398 list_for_each_entry_safe(dev, tmp, head, close_list) {
1399 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1400 call_netdevice_notifiers(NETDEV_DOWN, dev);
1401 list_del_init(&dev->close_list);
1402 }
1403
1404 return 0;
1405 }
1406
1407 /**
1408 * dev_close - shutdown an interface.
1409 * @dev: device to shutdown
1410 *
1411 * This function moves an active device into down state. A
1412 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1413 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1414 * chain.
1415 */
1416 int dev_close(struct net_device *dev)
1417 {
1418 if (dev->flags & IFF_UP) {
1419 LIST_HEAD(single);
1420
1421 list_add(&dev->close_list, &single);
1422 dev_close_many(&single);
1423 list_del(&single);
1424 }
1425 return 0;
1426 }
1427 EXPORT_SYMBOL(dev_close);
1428
1429
1430 /**
1431 * dev_disable_lro - disable Large Receive Offload on a device
1432 * @dev: device
1433 *
1434 * Disable Large Receive Offload (LRO) on a net device. Must be
1435 * called under RTNL. This is needed if received packets may be
1436 * forwarded to another interface.
1437 */
1438 void dev_disable_lro(struct net_device *dev)
1439 {
1440 struct net_device *lower_dev;
1441 struct list_head *iter;
1442
1443 dev->wanted_features &= ~NETIF_F_LRO;
1444 netdev_update_features(dev);
1445
1446 if (unlikely(dev->features & NETIF_F_LRO))
1447 netdev_WARN(dev, "failed to disable LRO!\n");
1448
1449 netdev_for_each_lower_dev(dev, lower_dev, iter)
1450 dev_disable_lro(lower_dev);
1451 }
1452 EXPORT_SYMBOL(dev_disable_lro);
1453
1454 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1455 struct net_device *dev)
1456 {
1457 struct netdev_notifier_info info;
1458
1459 netdev_notifier_info_init(&info, dev);
1460 return nb->notifier_call(nb, val, &info);
1461 }
1462
1463 static int dev_boot_phase = 1;
1464
1465 /**
1466 * register_netdevice_notifier - register a network notifier block
1467 * @nb: notifier
1468 *
1469 * Register a notifier to be called when network device events occur.
1470 * The notifier passed is linked into the kernel structures and must
1471 * not be reused until it has been unregistered. A negative errno code
1472 * is returned on a failure.
1473 *
1474 * When registered all registration and up events are replayed
1475 * to the new notifier to allow device to have a race free
1476 * view of the network device list.
1477 */
1478
1479 int register_netdevice_notifier(struct notifier_block *nb)
1480 {
1481 struct net_device *dev;
1482 struct net_device *last;
1483 struct net *net;
1484 int err;
1485
1486 rtnl_lock();
1487 err = raw_notifier_chain_register(&netdev_chain, nb);
1488 if (err)
1489 goto unlock;
1490 if (dev_boot_phase)
1491 goto unlock;
1492 for_each_net(net) {
1493 for_each_netdev(net, dev) {
1494 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1495 err = notifier_to_errno(err);
1496 if (err)
1497 goto rollback;
1498
1499 if (!(dev->flags & IFF_UP))
1500 continue;
1501
1502 call_netdevice_notifier(nb, NETDEV_UP, dev);
1503 }
1504 }
1505
1506 unlock:
1507 rtnl_unlock();
1508 return err;
1509
1510 rollback:
1511 last = dev;
1512 for_each_net(net) {
1513 for_each_netdev(net, dev) {
1514 if (dev == last)
1515 goto outroll;
1516
1517 if (dev->flags & IFF_UP) {
1518 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1519 dev);
1520 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1521 }
1522 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1523 }
1524 }
1525
1526 outroll:
1527 raw_notifier_chain_unregister(&netdev_chain, nb);
1528 goto unlock;
1529 }
1530 EXPORT_SYMBOL(register_netdevice_notifier);
1531
1532 /**
1533 * unregister_netdevice_notifier - unregister a network notifier block
1534 * @nb: notifier
1535 *
1536 * Unregister a notifier previously registered by
1537 * register_netdevice_notifier(). The notifier is unlinked into the
1538 * kernel structures and may then be reused. A negative errno code
1539 * is returned on a failure.
1540 *
1541 * After unregistering unregister and down device events are synthesized
1542 * for all devices on the device list to the removed notifier to remove
1543 * the need for special case cleanup code.
1544 */
1545
1546 int unregister_netdevice_notifier(struct notifier_block *nb)
1547 {
1548 struct net_device *dev;
1549 struct net *net;
1550 int err;
1551
1552 rtnl_lock();
1553 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1554 if (err)
1555 goto unlock;
1556
1557 for_each_net(net) {
1558 for_each_netdev(net, dev) {
1559 if (dev->flags & IFF_UP) {
1560 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1561 dev);
1562 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1563 }
1564 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1565 }
1566 }
1567 unlock:
1568 rtnl_unlock();
1569 return err;
1570 }
1571 EXPORT_SYMBOL(unregister_netdevice_notifier);
1572
1573 /**
1574 * call_netdevice_notifiers_info - call all network notifier blocks
1575 * @val: value passed unmodified to notifier function
1576 * @dev: net_device pointer passed unmodified to notifier function
1577 * @info: notifier information data
1578 *
1579 * Call all network notifier blocks. Parameters and return value
1580 * are as for raw_notifier_call_chain().
1581 */
1582
1583 static int call_netdevice_notifiers_info(unsigned long val,
1584 struct net_device *dev,
1585 struct netdev_notifier_info *info)
1586 {
1587 ASSERT_RTNL();
1588 netdev_notifier_info_init(info, dev);
1589 return raw_notifier_call_chain(&netdev_chain, val, info);
1590 }
1591
1592 /**
1593 * call_netdevice_notifiers - call all network notifier blocks
1594 * @val: value passed unmodified to notifier function
1595 * @dev: net_device pointer passed unmodified to notifier function
1596 *
1597 * Call all network notifier blocks. Parameters and return value
1598 * are as for raw_notifier_call_chain().
1599 */
1600
1601 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1602 {
1603 struct netdev_notifier_info info;
1604
1605 return call_netdevice_notifiers_info(val, dev, &info);
1606 }
1607 EXPORT_SYMBOL(call_netdevice_notifiers);
1608
1609 static struct static_key netstamp_needed __read_mostly;
1610 #ifdef HAVE_JUMP_LABEL
1611 /* We are not allowed to call static_key_slow_dec() from irq context
1612 * If net_disable_timestamp() is called from irq context, defer the
1613 * static_key_slow_dec() calls.
1614 */
1615 static atomic_t netstamp_needed_deferred;
1616 #endif
1617
1618 void net_enable_timestamp(void)
1619 {
1620 #ifdef HAVE_JUMP_LABEL
1621 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1622
1623 if (deferred) {
1624 while (--deferred)
1625 static_key_slow_dec(&netstamp_needed);
1626 return;
1627 }
1628 #endif
1629 static_key_slow_inc(&netstamp_needed);
1630 }
1631 EXPORT_SYMBOL(net_enable_timestamp);
1632
1633 void net_disable_timestamp(void)
1634 {
1635 #ifdef HAVE_JUMP_LABEL
1636 if (in_interrupt()) {
1637 atomic_inc(&netstamp_needed_deferred);
1638 return;
1639 }
1640 #endif
1641 static_key_slow_dec(&netstamp_needed);
1642 }
1643 EXPORT_SYMBOL(net_disable_timestamp);
1644
1645 static inline void net_timestamp_set(struct sk_buff *skb)
1646 {
1647 skb->tstamp.tv64 = 0;
1648 if (static_key_false(&netstamp_needed))
1649 __net_timestamp(skb);
1650 }
1651
1652 #define net_timestamp_check(COND, SKB) \
1653 if (static_key_false(&netstamp_needed)) { \
1654 if ((COND) && !(SKB)->tstamp.tv64) \
1655 __net_timestamp(SKB); \
1656 } \
1657
1658 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1659 {
1660 unsigned int len;
1661
1662 if (!(dev->flags & IFF_UP))
1663 return false;
1664
1665 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1666 if (skb->len <= len)
1667 return true;
1668
1669 /* if TSO is enabled, we don't care about the length as the packet
1670 * could be forwarded without being segmented before
1671 */
1672 if (skb_is_gso(skb))
1673 return true;
1674
1675 return false;
1676 }
1677 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1678
1679 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1680 {
1681 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1682 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1683 atomic_long_inc(&dev->rx_dropped);
1684 kfree_skb(skb);
1685 return NET_RX_DROP;
1686 }
1687 }
1688
1689 if (unlikely(!is_skb_forwardable(dev, skb))) {
1690 atomic_long_inc(&dev->rx_dropped);
1691 kfree_skb(skb);
1692 return NET_RX_DROP;
1693 }
1694
1695 skb_scrub_packet(skb, true);
1696 skb->protocol = eth_type_trans(skb, dev);
1697
1698 return 0;
1699 }
1700 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1701
1702 /**
1703 * dev_forward_skb - loopback an skb to another netif
1704 *
1705 * @dev: destination network device
1706 * @skb: buffer to forward
1707 *
1708 * return values:
1709 * NET_RX_SUCCESS (no congestion)
1710 * NET_RX_DROP (packet was dropped, but freed)
1711 *
1712 * dev_forward_skb can be used for injecting an skb from the
1713 * start_xmit function of one device into the receive queue
1714 * of another device.
1715 *
1716 * The receiving device may be in another namespace, so
1717 * we have to clear all information in the skb that could
1718 * impact namespace isolation.
1719 */
1720 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1721 {
1722 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1723 }
1724 EXPORT_SYMBOL_GPL(dev_forward_skb);
1725
1726 static inline int deliver_skb(struct sk_buff *skb,
1727 struct packet_type *pt_prev,
1728 struct net_device *orig_dev)
1729 {
1730 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1731 return -ENOMEM;
1732 atomic_inc(&skb->users);
1733 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1734 }
1735
1736 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1737 {
1738 if (!ptype->af_packet_priv || !skb->sk)
1739 return false;
1740
1741 if (ptype->id_match)
1742 return ptype->id_match(ptype, skb->sk);
1743 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1744 return true;
1745
1746 return false;
1747 }
1748
1749 /*
1750 * Support routine. Sends outgoing frames to any network
1751 * taps currently in use.
1752 */
1753
1754 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1755 {
1756 struct packet_type *ptype;
1757 struct sk_buff *skb2 = NULL;
1758 struct packet_type *pt_prev = NULL;
1759
1760 rcu_read_lock();
1761 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1762 /* Never send packets back to the socket
1763 * they originated from - MvS (miquels@drinkel.ow.org)
1764 */
1765 if ((ptype->dev == dev || !ptype->dev) &&
1766 (!skb_loop_sk(ptype, skb))) {
1767 if (pt_prev) {
1768 deliver_skb(skb2, pt_prev, skb->dev);
1769 pt_prev = ptype;
1770 continue;
1771 }
1772
1773 skb2 = skb_clone(skb, GFP_ATOMIC);
1774 if (!skb2)
1775 break;
1776
1777 net_timestamp_set(skb2);
1778
1779 /* skb->nh should be correctly
1780 set by sender, so that the second statement is
1781 just protection against buggy protocols.
1782 */
1783 skb_reset_mac_header(skb2);
1784
1785 if (skb_network_header(skb2) < skb2->data ||
1786 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1787 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1788 ntohs(skb2->protocol),
1789 dev->name);
1790 skb_reset_network_header(skb2);
1791 }
1792
1793 skb2->transport_header = skb2->network_header;
1794 skb2->pkt_type = PACKET_OUTGOING;
1795 pt_prev = ptype;
1796 }
1797 }
1798 if (pt_prev)
1799 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1800 rcu_read_unlock();
1801 }
1802
1803 /**
1804 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1805 * @dev: Network device
1806 * @txq: number of queues available
1807 *
1808 * If real_num_tx_queues is changed the tc mappings may no longer be
1809 * valid. To resolve this verify the tc mapping remains valid and if
1810 * not NULL the mapping. With no priorities mapping to this
1811 * offset/count pair it will no longer be used. In the worst case TC0
1812 * is invalid nothing can be done so disable priority mappings. If is
1813 * expected that drivers will fix this mapping if they can before
1814 * calling netif_set_real_num_tx_queues.
1815 */
1816 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1817 {
1818 int i;
1819 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1820
1821 /* If TC0 is invalidated disable TC mapping */
1822 if (tc->offset + tc->count > txq) {
1823 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1824 dev->num_tc = 0;
1825 return;
1826 }
1827
1828 /* Invalidated prio to tc mappings set to TC0 */
1829 for (i = 1; i < TC_BITMASK + 1; i++) {
1830 int q = netdev_get_prio_tc_map(dev, i);
1831
1832 tc = &dev->tc_to_txq[q];
1833 if (tc->offset + tc->count > txq) {
1834 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1835 i, q);
1836 netdev_set_prio_tc_map(dev, i, 0);
1837 }
1838 }
1839 }
1840
1841 #ifdef CONFIG_XPS
1842 static DEFINE_MUTEX(xps_map_mutex);
1843 #define xmap_dereference(P) \
1844 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1845
1846 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1847 int cpu, u16 index)
1848 {
1849 struct xps_map *map = NULL;
1850 int pos;
1851
1852 if (dev_maps)
1853 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1854
1855 for (pos = 0; map && pos < map->len; pos++) {
1856 if (map->queues[pos] == index) {
1857 if (map->len > 1) {
1858 map->queues[pos] = map->queues[--map->len];
1859 } else {
1860 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1861 kfree_rcu(map, rcu);
1862 map = NULL;
1863 }
1864 break;
1865 }
1866 }
1867
1868 return map;
1869 }
1870
1871 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1872 {
1873 struct xps_dev_maps *dev_maps;
1874 int cpu, i;
1875 bool active = false;
1876
1877 mutex_lock(&xps_map_mutex);
1878 dev_maps = xmap_dereference(dev->xps_maps);
1879
1880 if (!dev_maps)
1881 goto out_no_maps;
1882
1883 for_each_possible_cpu(cpu) {
1884 for (i = index; i < dev->num_tx_queues; i++) {
1885 if (!remove_xps_queue(dev_maps, cpu, i))
1886 break;
1887 }
1888 if (i == dev->num_tx_queues)
1889 active = true;
1890 }
1891
1892 if (!active) {
1893 RCU_INIT_POINTER(dev->xps_maps, NULL);
1894 kfree_rcu(dev_maps, rcu);
1895 }
1896
1897 for (i = index; i < dev->num_tx_queues; i++)
1898 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1899 NUMA_NO_NODE);
1900
1901 out_no_maps:
1902 mutex_unlock(&xps_map_mutex);
1903 }
1904
1905 static struct xps_map *expand_xps_map(struct xps_map *map,
1906 int cpu, u16 index)
1907 {
1908 struct xps_map *new_map;
1909 int alloc_len = XPS_MIN_MAP_ALLOC;
1910 int i, pos;
1911
1912 for (pos = 0; map && pos < map->len; pos++) {
1913 if (map->queues[pos] != index)
1914 continue;
1915 return map;
1916 }
1917
1918 /* Need to add queue to this CPU's existing map */
1919 if (map) {
1920 if (pos < map->alloc_len)
1921 return map;
1922
1923 alloc_len = map->alloc_len * 2;
1924 }
1925
1926 /* Need to allocate new map to store queue on this CPU's map */
1927 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1928 cpu_to_node(cpu));
1929 if (!new_map)
1930 return NULL;
1931
1932 for (i = 0; i < pos; i++)
1933 new_map->queues[i] = map->queues[i];
1934 new_map->alloc_len = alloc_len;
1935 new_map->len = pos;
1936
1937 return new_map;
1938 }
1939
1940 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1941 u16 index)
1942 {
1943 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1944 struct xps_map *map, *new_map;
1945 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1946 int cpu, numa_node_id = -2;
1947 bool active = false;
1948
1949 mutex_lock(&xps_map_mutex);
1950
1951 dev_maps = xmap_dereference(dev->xps_maps);
1952
1953 /* allocate memory for queue storage */
1954 for_each_online_cpu(cpu) {
1955 if (!cpumask_test_cpu(cpu, mask))
1956 continue;
1957
1958 if (!new_dev_maps)
1959 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1960 if (!new_dev_maps) {
1961 mutex_unlock(&xps_map_mutex);
1962 return -ENOMEM;
1963 }
1964
1965 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1966 NULL;
1967
1968 map = expand_xps_map(map, cpu, index);
1969 if (!map)
1970 goto error;
1971
1972 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1973 }
1974
1975 if (!new_dev_maps)
1976 goto out_no_new_maps;
1977
1978 for_each_possible_cpu(cpu) {
1979 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1980 /* add queue to CPU maps */
1981 int pos = 0;
1982
1983 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1984 while ((pos < map->len) && (map->queues[pos] != index))
1985 pos++;
1986
1987 if (pos == map->len)
1988 map->queues[map->len++] = index;
1989 #ifdef CONFIG_NUMA
1990 if (numa_node_id == -2)
1991 numa_node_id = cpu_to_node(cpu);
1992 else if (numa_node_id != cpu_to_node(cpu))
1993 numa_node_id = -1;
1994 #endif
1995 } else if (dev_maps) {
1996 /* fill in the new device map from the old device map */
1997 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1998 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1999 }
2000
2001 }
2002
2003 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2004
2005 /* Cleanup old maps */
2006 if (dev_maps) {
2007 for_each_possible_cpu(cpu) {
2008 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2009 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2010 if (map && map != new_map)
2011 kfree_rcu(map, rcu);
2012 }
2013
2014 kfree_rcu(dev_maps, rcu);
2015 }
2016
2017 dev_maps = new_dev_maps;
2018 active = true;
2019
2020 out_no_new_maps:
2021 /* update Tx queue numa node */
2022 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2023 (numa_node_id >= 0) ? numa_node_id :
2024 NUMA_NO_NODE);
2025
2026 if (!dev_maps)
2027 goto out_no_maps;
2028
2029 /* removes queue from unused CPUs */
2030 for_each_possible_cpu(cpu) {
2031 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2032 continue;
2033
2034 if (remove_xps_queue(dev_maps, cpu, index))
2035 active = true;
2036 }
2037
2038 /* free map if not active */
2039 if (!active) {
2040 RCU_INIT_POINTER(dev->xps_maps, NULL);
2041 kfree_rcu(dev_maps, rcu);
2042 }
2043
2044 out_no_maps:
2045 mutex_unlock(&xps_map_mutex);
2046
2047 return 0;
2048 error:
2049 /* remove any maps that we added */
2050 for_each_possible_cpu(cpu) {
2051 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2052 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2053 NULL;
2054 if (new_map && new_map != map)
2055 kfree(new_map);
2056 }
2057
2058 mutex_unlock(&xps_map_mutex);
2059
2060 kfree(new_dev_maps);
2061 return -ENOMEM;
2062 }
2063 EXPORT_SYMBOL(netif_set_xps_queue);
2064
2065 #endif
2066 /*
2067 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2068 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2069 */
2070 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2071 {
2072 int rc;
2073
2074 if (txq < 1 || txq > dev->num_tx_queues)
2075 return -EINVAL;
2076
2077 if (dev->reg_state == NETREG_REGISTERED ||
2078 dev->reg_state == NETREG_UNREGISTERING) {
2079 ASSERT_RTNL();
2080
2081 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2082 txq);
2083 if (rc)
2084 return rc;
2085
2086 if (dev->num_tc)
2087 netif_setup_tc(dev, txq);
2088
2089 if (txq < dev->real_num_tx_queues) {
2090 qdisc_reset_all_tx_gt(dev, txq);
2091 #ifdef CONFIG_XPS
2092 netif_reset_xps_queues_gt(dev, txq);
2093 #endif
2094 }
2095 }
2096
2097 dev->real_num_tx_queues = txq;
2098 return 0;
2099 }
2100 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2101
2102 #ifdef CONFIG_SYSFS
2103 /**
2104 * netif_set_real_num_rx_queues - set actual number of RX queues used
2105 * @dev: Network device
2106 * @rxq: Actual number of RX queues
2107 *
2108 * This must be called either with the rtnl_lock held or before
2109 * registration of the net device. Returns 0 on success, or a
2110 * negative error code. If called before registration, it always
2111 * succeeds.
2112 */
2113 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2114 {
2115 int rc;
2116
2117 if (rxq < 1 || rxq > dev->num_rx_queues)
2118 return -EINVAL;
2119
2120 if (dev->reg_state == NETREG_REGISTERED) {
2121 ASSERT_RTNL();
2122
2123 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2124 rxq);
2125 if (rc)
2126 return rc;
2127 }
2128
2129 dev->real_num_rx_queues = rxq;
2130 return 0;
2131 }
2132 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2133 #endif
2134
2135 /**
2136 * netif_get_num_default_rss_queues - default number of RSS queues
2137 *
2138 * This routine should set an upper limit on the number of RSS queues
2139 * used by default by multiqueue devices.
2140 */
2141 int netif_get_num_default_rss_queues(void)
2142 {
2143 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2144 }
2145 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2146
2147 static inline void __netif_reschedule(struct Qdisc *q)
2148 {
2149 struct softnet_data *sd;
2150 unsigned long flags;
2151
2152 local_irq_save(flags);
2153 sd = this_cpu_ptr(&softnet_data);
2154 q->next_sched = NULL;
2155 *sd->output_queue_tailp = q;
2156 sd->output_queue_tailp = &q->next_sched;
2157 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2158 local_irq_restore(flags);
2159 }
2160
2161 void __netif_schedule(struct Qdisc *q)
2162 {
2163 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2164 __netif_reschedule(q);
2165 }
2166 EXPORT_SYMBOL(__netif_schedule);
2167
2168 struct dev_kfree_skb_cb {
2169 enum skb_free_reason reason;
2170 };
2171
2172 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2173 {
2174 return (struct dev_kfree_skb_cb *)skb->cb;
2175 }
2176
2177 void netif_schedule_queue(struct netdev_queue *txq)
2178 {
2179 rcu_read_lock();
2180 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2181 struct Qdisc *q = rcu_dereference(txq->qdisc);
2182
2183 __netif_schedule(q);
2184 }
2185 rcu_read_unlock();
2186 }
2187 EXPORT_SYMBOL(netif_schedule_queue);
2188
2189 /**
2190 * netif_wake_subqueue - allow sending packets on subqueue
2191 * @dev: network device
2192 * @queue_index: sub queue index
2193 *
2194 * Resume individual transmit queue of a device with multiple transmit queues.
2195 */
2196 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2197 {
2198 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2199
2200 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2201 struct Qdisc *q;
2202
2203 rcu_read_lock();
2204 q = rcu_dereference(txq->qdisc);
2205 __netif_schedule(q);
2206 rcu_read_unlock();
2207 }
2208 }
2209 EXPORT_SYMBOL(netif_wake_subqueue);
2210
2211 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2212 {
2213 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2214 struct Qdisc *q;
2215
2216 rcu_read_lock();
2217 q = rcu_dereference(dev_queue->qdisc);
2218 __netif_schedule(q);
2219 rcu_read_unlock();
2220 }
2221 }
2222 EXPORT_SYMBOL(netif_tx_wake_queue);
2223
2224 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2225 {
2226 unsigned long flags;
2227
2228 if (likely(atomic_read(&skb->users) == 1)) {
2229 smp_rmb();
2230 atomic_set(&skb->users, 0);
2231 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2232 return;
2233 }
2234 get_kfree_skb_cb(skb)->reason = reason;
2235 local_irq_save(flags);
2236 skb->next = __this_cpu_read(softnet_data.completion_queue);
2237 __this_cpu_write(softnet_data.completion_queue, skb);
2238 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2239 local_irq_restore(flags);
2240 }
2241 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2242
2243 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2244 {
2245 if (in_irq() || irqs_disabled())
2246 __dev_kfree_skb_irq(skb, reason);
2247 else
2248 dev_kfree_skb(skb);
2249 }
2250 EXPORT_SYMBOL(__dev_kfree_skb_any);
2251
2252
2253 /**
2254 * netif_device_detach - mark device as removed
2255 * @dev: network device
2256 *
2257 * Mark device as removed from system and therefore no longer available.
2258 */
2259 void netif_device_detach(struct net_device *dev)
2260 {
2261 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2262 netif_running(dev)) {
2263 netif_tx_stop_all_queues(dev);
2264 }
2265 }
2266 EXPORT_SYMBOL(netif_device_detach);
2267
2268 /**
2269 * netif_device_attach - mark device as attached
2270 * @dev: network device
2271 *
2272 * Mark device as attached from system and restart if needed.
2273 */
2274 void netif_device_attach(struct net_device *dev)
2275 {
2276 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2277 netif_running(dev)) {
2278 netif_tx_wake_all_queues(dev);
2279 __netdev_watchdog_up(dev);
2280 }
2281 }
2282 EXPORT_SYMBOL(netif_device_attach);
2283
2284 static void skb_warn_bad_offload(const struct sk_buff *skb)
2285 {
2286 static const netdev_features_t null_features = 0;
2287 struct net_device *dev = skb->dev;
2288 const char *driver = "";
2289
2290 if (!net_ratelimit())
2291 return;
2292
2293 if (dev && dev->dev.parent)
2294 driver = dev_driver_string(dev->dev.parent);
2295
2296 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2297 "gso_type=%d ip_summed=%d\n",
2298 driver, dev ? &dev->features : &null_features,
2299 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2300 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2301 skb_shinfo(skb)->gso_type, skb->ip_summed);
2302 }
2303
2304 /*
2305 * Invalidate hardware checksum when packet is to be mangled, and
2306 * complete checksum manually on outgoing path.
2307 */
2308 int skb_checksum_help(struct sk_buff *skb)
2309 {
2310 __wsum csum;
2311 int ret = 0, offset;
2312
2313 if (skb->ip_summed == CHECKSUM_COMPLETE)
2314 goto out_set_summed;
2315
2316 if (unlikely(skb_shinfo(skb)->gso_size)) {
2317 skb_warn_bad_offload(skb);
2318 return -EINVAL;
2319 }
2320
2321 /* Before computing a checksum, we should make sure no frag could
2322 * be modified by an external entity : checksum could be wrong.
2323 */
2324 if (skb_has_shared_frag(skb)) {
2325 ret = __skb_linearize(skb);
2326 if (ret)
2327 goto out;
2328 }
2329
2330 offset = skb_checksum_start_offset(skb);
2331 BUG_ON(offset >= skb_headlen(skb));
2332 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2333
2334 offset += skb->csum_offset;
2335 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2336
2337 if (skb_cloned(skb) &&
2338 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2339 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2340 if (ret)
2341 goto out;
2342 }
2343
2344 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2345 out_set_summed:
2346 skb->ip_summed = CHECKSUM_NONE;
2347 out:
2348 return ret;
2349 }
2350 EXPORT_SYMBOL(skb_checksum_help);
2351
2352 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2353 {
2354 unsigned int vlan_depth = skb->mac_len;
2355 __be16 type = skb->protocol;
2356
2357 /* Tunnel gso handlers can set protocol to ethernet. */
2358 if (type == htons(ETH_P_TEB)) {
2359 struct ethhdr *eth;
2360
2361 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2362 return 0;
2363
2364 eth = (struct ethhdr *)skb_mac_header(skb);
2365 type = eth->h_proto;
2366 }
2367
2368 /* if skb->protocol is 802.1Q/AD then the header should already be
2369 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2370 * ETH_HLEN otherwise
2371 */
2372 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2373 if (vlan_depth) {
2374 if (WARN_ON(vlan_depth < VLAN_HLEN))
2375 return 0;
2376 vlan_depth -= VLAN_HLEN;
2377 } else {
2378 vlan_depth = ETH_HLEN;
2379 }
2380 do {
2381 struct vlan_hdr *vh;
2382
2383 if (unlikely(!pskb_may_pull(skb,
2384 vlan_depth + VLAN_HLEN)))
2385 return 0;
2386
2387 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2388 type = vh->h_vlan_encapsulated_proto;
2389 vlan_depth += VLAN_HLEN;
2390 } while (type == htons(ETH_P_8021Q) ||
2391 type == htons(ETH_P_8021AD));
2392 }
2393
2394 *depth = vlan_depth;
2395
2396 return type;
2397 }
2398
2399 /**
2400 * skb_mac_gso_segment - mac layer segmentation handler.
2401 * @skb: buffer to segment
2402 * @features: features for the output path (see dev->features)
2403 */
2404 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2405 netdev_features_t features)
2406 {
2407 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2408 struct packet_offload *ptype;
2409 int vlan_depth = skb->mac_len;
2410 __be16 type = skb_network_protocol(skb, &vlan_depth);
2411
2412 if (unlikely(!type))
2413 return ERR_PTR(-EINVAL);
2414
2415 __skb_pull(skb, vlan_depth);
2416
2417 rcu_read_lock();
2418 list_for_each_entry_rcu(ptype, &offload_base, list) {
2419 if (ptype->type == type && ptype->callbacks.gso_segment) {
2420 segs = ptype->callbacks.gso_segment(skb, features);
2421 break;
2422 }
2423 }
2424 rcu_read_unlock();
2425
2426 __skb_push(skb, skb->data - skb_mac_header(skb));
2427
2428 return segs;
2429 }
2430 EXPORT_SYMBOL(skb_mac_gso_segment);
2431
2432
2433 /* openvswitch calls this on rx path, so we need a different check.
2434 */
2435 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2436 {
2437 if (tx_path)
2438 return skb->ip_summed != CHECKSUM_PARTIAL;
2439 else
2440 return skb->ip_summed == CHECKSUM_NONE;
2441 }
2442
2443 /**
2444 * __skb_gso_segment - Perform segmentation on skb.
2445 * @skb: buffer to segment
2446 * @features: features for the output path (see dev->features)
2447 * @tx_path: whether it is called in TX path
2448 *
2449 * This function segments the given skb and returns a list of segments.
2450 *
2451 * It may return NULL if the skb requires no segmentation. This is
2452 * only possible when GSO is used for verifying header integrity.
2453 */
2454 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2455 netdev_features_t features, bool tx_path)
2456 {
2457 if (unlikely(skb_needs_check(skb, tx_path))) {
2458 int err;
2459
2460 skb_warn_bad_offload(skb);
2461
2462 err = skb_cow_head(skb, 0);
2463 if (err < 0)
2464 return ERR_PTR(err);
2465 }
2466
2467 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2468 SKB_GSO_CB(skb)->encap_level = 0;
2469
2470 skb_reset_mac_header(skb);
2471 skb_reset_mac_len(skb);
2472
2473 return skb_mac_gso_segment(skb, features);
2474 }
2475 EXPORT_SYMBOL(__skb_gso_segment);
2476
2477 /* Take action when hardware reception checksum errors are detected. */
2478 #ifdef CONFIG_BUG
2479 void netdev_rx_csum_fault(struct net_device *dev)
2480 {
2481 if (net_ratelimit()) {
2482 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2483 dump_stack();
2484 }
2485 }
2486 EXPORT_SYMBOL(netdev_rx_csum_fault);
2487 #endif
2488
2489 /* Actually, we should eliminate this check as soon as we know, that:
2490 * 1. IOMMU is present and allows to map all the memory.
2491 * 2. No high memory really exists on this machine.
2492 */
2493
2494 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2495 {
2496 #ifdef CONFIG_HIGHMEM
2497 int i;
2498 if (!(dev->features & NETIF_F_HIGHDMA)) {
2499 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2500 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2501 if (PageHighMem(skb_frag_page(frag)))
2502 return 1;
2503 }
2504 }
2505
2506 if (PCI_DMA_BUS_IS_PHYS) {
2507 struct device *pdev = dev->dev.parent;
2508
2509 if (!pdev)
2510 return 0;
2511 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2512 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2513 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2514 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2515 return 1;
2516 }
2517 }
2518 #endif
2519 return 0;
2520 }
2521
2522 /* If MPLS offload request, verify we are testing hardware MPLS features
2523 * instead of standard features for the netdev.
2524 */
2525 #ifdef CONFIG_NET_MPLS_GSO
2526 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2527 netdev_features_t features,
2528 __be16 type)
2529 {
2530 if (eth_p_mpls(type))
2531 features &= skb->dev->mpls_features;
2532
2533 return features;
2534 }
2535 #else
2536 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2537 netdev_features_t features,
2538 __be16 type)
2539 {
2540 return features;
2541 }
2542 #endif
2543
2544 static netdev_features_t harmonize_features(struct sk_buff *skb,
2545 netdev_features_t features)
2546 {
2547 int tmp;
2548 __be16 type;
2549
2550 type = skb_network_protocol(skb, &tmp);
2551 features = net_mpls_features(skb, features, type);
2552
2553 if (skb->ip_summed != CHECKSUM_NONE &&
2554 !can_checksum_protocol(features, type)) {
2555 features &= ~NETIF_F_ALL_CSUM;
2556 } else if (illegal_highdma(skb->dev, skb)) {
2557 features &= ~NETIF_F_SG;
2558 }
2559
2560 return features;
2561 }
2562
2563 netdev_features_t netif_skb_features(struct sk_buff *skb)
2564 {
2565 const struct net_device *dev = skb->dev;
2566 netdev_features_t features = dev->features;
2567 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2568 __be16 protocol = skb->protocol;
2569
2570 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2571 features &= ~NETIF_F_GSO_MASK;
2572
2573 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2574 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2575 protocol = veh->h_vlan_encapsulated_proto;
2576 } else if (!vlan_tx_tag_present(skb)) {
2577 return harmonize_features(skb, features);
2578 }
2579
2580 features = netdev_intersect_features(features,
2581 dev->vlan_features |
2582 NETIF_F_HW_VLAN_CTAG_TX |
2583 NETIF_F_HW_VLAN_STAG_TX);
2584
2585 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2586 features = netdev_intersect_features(features,
2587 NETIF_F_SG |
2588 NETIF_F_HIGHDMA |
2589 NETIF_F_FRAGLIST |
2590 NETIF_F_GEN_CSUM |
2591 NETIF_F_HW_VLAN_CTAG_TX |
2592 NETIF_F_HW_VLAN_STAG_TX);
2593
2594 return harmonize_features(skb, features);
2595 }
2596 EXPORT_SYMBOL(netif_skb_features);
2597
2598 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2599 struct netdev_queue *txq, bool more)
2600 {
2601 unsigned int len;
2602 int rc;
2603
2604 if (!list_empty(&ptype_all))
2605 dev_queue_xmit_nit(skb, dev);
2606
2607 len = skb->len;
2608 trace_net_dev_start_xmit(skb, dev);
2609 rc = netdev_start_xmit(skb, dev, txq, more);
2610 trace_net_dev_xmit(skb, rc, dev, len);
2611
2612 return rc;
2613 }
2614
2615 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2616 struct netdev_queue *txq, int *ret)
2617 {
2618 struct sk_buff *skb = first;
2619 int rc = NETDEV_TX_OK;
2620
2621 while (skb) {
2622 struct sk_buff *next = skb->next;
2623
2624 skb->next = NULL;
2625 rc = xmit_one(skb, dev, txq, next != NULL);
2626 if (unlikely(!dev_xmit_complete(rc))) {
2627 skb->next = next;
2628 goto out;
2629 }
2630
2631 skb = next;
2632 if (netif_xmit_stopped(txq) && skb) {
2633 rc = NETDEV_TX_BUSY;
2634 break;
2635 }
2636 }
2637
2638 out:
2639 *ret = rc;
2640 return skb;
2641 }
2642
2643 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2644 netdev_features_t features)
2645 {
2646 if (vlan_tx_tag_present(skb) &&
2647 !vlan_hw_offload_capable(features, skb->vlan_proto))
2648 skb = __vlan_hwaccel_push_inside(skb);
2649 return skb;
2650 }
2651
2652 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2653 {
2654 netdev_features_t features;
2655
2656 if (skb->next)
2657 return skb;
2658
2659 features = netif_skb_features(skb);
2660 skb = validate_xmit_vlan(skb, features);
2661 if (unlikely(!skb))
2662 goto out_null;
2663
2664 /* If encapsulation offload request, verify we are testing
2665 * hardware encapsulation features instead of standard
2666 * features for the netdev
2667 */
2668 if (skb->encapsulation)
2669 features &= dev->hw_enc_features;
2670
2671 if (netif_needs_gso(dev, skb, features)) {
2672 struct sk_buff *segs;
2673
2674 segs = skb_gso_segment(skb, features);
2675 if (IS_ERR(segs)) {
2676 segs = NULL;
2677 } else if (segs) {
2678 consume_skb(skb);
2679 skb = segs;
2680 }
2681 } else {
2682 if (skb_needs_linearize(skb, features) &&
2683 __skb_linearize(skb))
2684 goto out_kfree_skb;
2685
2686 /* If packet is not checksummed and device does not
2687 * support checksumming for this protocol, complete
2688 * checksumming here.
2689 */
2690 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2691 if (skb->encapsulation)
2692 skb_set_inner_transport_header(skb,
2693 skb_checksum_start_offset(skb));
2694 else
2695 skb_set_transport_header(skb,
2696 skb_checksum_start_offset(skb));
2697 if (!(features & NETIF_F_ALL_CSUM) &&
2698 skb_checksum_help(skb))
2699 goto out_kfree_skb;
2700 }
2701 }
2702
2703 return skb;
2704
2705 out_kfree_skb:
2706 kfree_skb(skb);
2707 out_null:
2708 return NULL;
2709 }
2710
2711 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2712 {
2713 struct sk_buff *next, *head = NULL, *tail;
2714
2715 for (; skb != NULL; skb = next) {
2716 next = skb->next;
2717 skb->next = NULL;
2718
2719 /* in case skb wont be segmented, point to itself */
2720 skb->prev = skb;
2721
2722 skb = validate_xmit_skb(skb, dev);
2723 if (!skb)
2724 continue;
2725
2726 if (!head)
2727 head = skb;
2728 else
2729 tail->next = skb;
2730 /* If skb was segmented, skb->prev points to
2731 * the last segment. If not, it still contains skb.
2732 */
2733 tail = skb->prev;
2734 }
2735 return head;
2736 }
2737
2738 static void qdisc_pkt_len_init(struct sk_buff *skb)
2739 {
2740 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2741
2742 qdisc_skb_cb(skb)->pkt_len = skb->len;
2743
2744 /* To get more precise estimation of bytes sent on wire,
2745 * we add to pkt_len the headers size of all segments
2746 */
2747 if (shinfo->gso_size) {
2748 unsigned int hdr_len;
2749 u16 gso_segs = shinfo->gso_segs;
2750
2751 /* mac layer + network layer */
2752 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2753
2754 /* + transport layer */
2755 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2756 hdr_len += tcp_hdrlen(skb);
2757 else
2758 hdr_len += sizeof(struct udphdr);
2759
2760 if (shinfo->gso_type & SKB_GSO_DODGY)
2761 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2762 shinfo->gso_size);
2763
2764 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2765 }
2766 }
2767
2768 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2769 struct net_device *dev,
2770 struct netdev_queue *txq)
2771 {
2772 spinlock_t *root_lock = qdisc_lock(q);
2773 bool contended;
2774 int rc;
2775
2776 qdisc_pkt_len_init(skb);
2777 qdisc_calculate_pkt_len(skb, q);
2778 /*
2779 * Heuristic to force contended enqueues to serialize on a
2780 * separate lock before trying to get qdisc main lock.
2781 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2782 * often and dequeue packets faster.
2783 */
2784 contended = qdisc_is_running(q);
2785 if (unlikely(contended))
2786 spin_lock(&q->busylock);
2787
2788 spin_lock(root_lock);
2789 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2790 kfree_skb(skb);
2791 rc = NET_XMIT_DROP;
2792 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2793 qdisc_run_begin(q)) {
2794 /*
2795 * This is a work-conserving queue; there are no old skbs
2796 * waiting to be sent out; and the qdisc is not running -
2797 * xmit the skb directly.
2798 */
2799
2800 qdisc_bstats_update(q, skb);
2801
2802 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2803 if (unlikely(contended)) {
2804 spin_unlock(&q->busylock);
2805 contended = false;
2806 }
2807 __qdisc_run(q);
2808 } else
2809 qdisc_run_end(q);
2810
2811 rc = NET_XMIT_SUCCESS;
2812 } else {
2813 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2814 if (qdisc_run_begin(q)) {
2815 if (unlikely(contended)) {
2816 spin_unlock(&q->busylock);
2817 contended = false;
2818 }
2819 __qdisc_run(q);
2820 }
2821 }
2822 spin_unlock(root_lock);
2823 if (unlikely(contended))
2824 spin_unlock(&q->busylock);
2825 return rc;
2826 }
2827
2828 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2829 static void skb_update_prio(struct sk_buff *skb)
2830 {
2831 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2832
2833 if (!skb->priority && skb->sk && map) {
2834 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2835
2836 if (prioidx < map->priomap_len)
2837 skb->priority = map->priomap[prioidx];
2838 }
2839 }
2840 #else
2841 #define skb_update_prio(skb)
2842 #endif
2843
2844 static DEFINE_PER_CPU(int, xmit_recursion);
2845 #define RECURSION_LIMIT 10
2846
2847 /**
2848 * dev_loopback_xmit - loop back @skb
2849 * @skb: buffer to transmit
2850 */
2851 int dev_loopback_xmit(struct sk_buff *skb)
2852 {
2853 skb_reset_mac_header(skb);
2854 __skb_pull(skb, skb_network_offset(skb));
2855 skb->pkt_type = PACKET_LOOPBACK;
2856 skb->ip_summed = CHECKSUM_UNNECESSARY;
2857 WARN_ON(!skb_dst(skb));
2858 skb_dst_force(skb);
2859 netif_rx_ni(skb);
2860 return 0;
2861 }
2862 EXPORT_SYMBOL(dev_loopback_xmit);
2863
2864 /**
2865 * __dev_queue_xmit - transmit a buffer
2866 * @skb: buffer to transmit
2867 * @accel_priv: private data used for L2 forwarding offload
2868 *
2869 * Queue a buffer for transmission to a network device. The caller must
2870 * have set the device and priority and built the buffer before calling
2871 * this function. The function can be called from an interrupt.
2872 *
2873 * A negative errno code is returned on a failure. A success does not
2874 * guarantee the frame will be transmitted as it may be dropped due
2875 * to congestion or traffic shaping.
2876 *
2877 * -----------------------------------------------------------------------------------
2878 * I notice this method can also return errors from the queue disciplines,
2879 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2880 * be positive.
2881 *
2882 * Regardless of the return value, the skb is consumed, so it is currently
2883 * difficult to retry a send to this method. (You can bump the ref count
2884 * before sending to hold a reference for retry if you are careful.)
2885 *
2886 * When calling this method, interrupts MUST be enabled. This is because
2887 * the BH enable code must have IRQs enabled so that it will not deadlock.
2888 * --BLG
2889 */
2890 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2891 {
2892 struct net_device *dev = skb->dev;
2893 struct netdev_queue *txq;
2894 struct Qdisc *q;
2895 int rc = -ENOMEM;
2896
2897 skb_reset_mac_header(skb);
2898
2899 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2900 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2901
2902 /* Disable soft irqs for various locks below. Also
2903 * stops preemption for RCU.
2904 */
2905 rcu_read_lock_bh();
2906
2907 skb_update_prio(skb);
2908
2909 /* If device/qdisc don't need skb->dst, release it right now while
2910 * its hot in this cpu cache.
2911 */
2912 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2913 skb_dst_drop(skb);
2914 else
2915 skb_dst_force(skb);
2916
2917 txq = netdev_pick_tx(dev, skb, accel_priv);
2918 q = rcu_dereference_bh(txq->qdisc);
2919
2920 #ifdef CONFIG_NET_CLS_ACT
2921 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2922 #endif
2923 trace_net_dev_queue(skb);
2924 if (q->enqueue) {
2925 rc = __dev_xmit_skb(skb, q, dev, txq);
2926 goto out;
2927 }
2928
2929 /* The device has no queue. Common case for software devices:
2930 loopback, all the sorts of tunnels...
2931
2932 Really, it is unlikely that netif_tx_lock protection is necessary
2933 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2934 counters.)
2935 However, it is possible, that they rely on protection
2936 made by us here.
2937
2938 Check this and shot the lock. It is not prone from deadlocks.
2939 Either shot noqueue qdisc, it is even simpler 8)
2940 */
2941 if (dev->flags & IFF_UP) {
2942 int cpu = smp_processor_id(); /* ok because BHs are off */
2943
2944 if (txq->xmit_lock_owner != cpu) {
2945
2946 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2947 goto recursion_alert;
2948
2949 skb = validate_xmit_skb(skb, dev);
2950 if (!skb)
2951 goto drop;
2952
2953 HARD_TX_LOCK(dev, txq, cpu);
2954
2955 if (!netif_xmit_stopped(txq)) {
2956 __this_cpu_inc(xmit_recursion);
2957 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2958 __this_cpu_dec(xmit_recursion);
2959 if (dev_xmit_complete(rc)) {
2960 HARD_TX_UNLOCK(dev, txq);
2961 goto out;
2962 }
2963 }
2964 HARD_TX_UNLOCK(dev, txq);
2965 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2966 dev->name);
2967 } else {
2968 /* Recursion is detected! It is possible,
2969 * unfortunately
2970 */
2971 recursion_alert:
2972 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2973 dev->name);
2974 }
2975 }
2976
2977 rc = -ENETDOWN;
2978 drop:
2979 rcu_read_unlock_bh();
2980
2981 atomic_long_inc(&dev->tx_dropped);
2982 kfree_skb_list(skb);
2983 return rc;
2984 out:
2985 rcu_read_unlock_bh();
2986 return rc;
2987 }
2988
2989 int dev_queue_xmit(struct sk_buff *skb)
2990 {
2991 return __dev_queue_xmit(skb, NULL);
2992 }
2993 EXPORT_SYMBOL(dev_queue_xmit);
2994
2995 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2996 {
2997 return __dev_queue_xmit(skb, accel_priv);
2998 }
2999 EXPORT_SYMBOL(dev_queue_xmit_accel);
3000
3001
3002 /*=======================================================================
3003 Receiver routines
3004 =======================================================================*/
3005
3006 int netdev_max_backlog __read_mostly = 1000;
3007 EXPORT_SYMBOL(netdev_max_backlog);
3008
3009 int netdev_tstamp_prequeue __read_mostly = 1;
3010 int netdev_budget __read_mostly = 300;
3011 int weight_p __read_mostly = 64; /* old backlog weight */
3012
3013 /* Called with irq disabled */
3014 static inline void ____napi_schedule(struct softnet_data *sd,
3015 struct napi_struct *napi)
3016 {
3017 list_add_tail(&napi->poll_list, &sd->poll_list);
3018 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3019 }
3020
3021 #ifdef CONFIG_RPS
3022
3023 /* One global table that all flow-based protocols share. */
3024 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3025 EXPORT_SYMBOL(rps_sock_flow_table);
3026
3027 struct static_key rps_needed __read_mostly;
3028
3029 static struct rps_dev_flow *
3030 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3031 struct rps_dev_flow *rflow, u16 next_cpu)
3032 {
3033 if (next_cpu != RPS_NO_CPU) {
3034 #ifdef CONFIG_RFS_ACCEL
3035 struct netdev_rx_queue *rxqueue;
3036 struct rps_dev_flow_table *flow_table;
3037 struct rps_dev_flow *old_rflow;
3038 u32 flow_id;
3039 u16 rxq_index;
3040 int rc;
3041
3042 /* Should we steer this flow to a different hardware queue? */
3043 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3044 !(dev->features & NETIF_F_NTUPLE))
3045 goto out;
3046 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3047 if (rxq_index == skb_get_rx_queue(skb))
3048 goto out;
3049
3050 rxqueue = dev->_rx + rxq_index;
3051 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3052 if (!flow_table)
3053 goto out;
3054 flow_id = skb_get_hash(skb) & flow_table->mask;
3055 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3056 rxq_index, flow_id);
3057 if (rc < 0)
3058 goto out;
3059 old_rflow = rflow;
3060 rflow = &flow_table->flows[flow_id];
3061 rflow->filter = rc;
3062 if (old_rflow->filter == rflow->filter)
3063 old_rflow->filter = RPS_NO_FILTER;
3064 out:
3065 #endif
3066 rflow->last_qtail =
3067 per_cpu(softnet_data, next_cpu).input_queue_head;
3068 }
3069
3070 rflow->cpu = next_cpu;
3071 return rflow;
3072 }
3073
3074 /*
3075 * get_rps_cpu is called from netif_receive_skb and returns the target
3076 * CPU from the RPS map of the receiving queue for a given skb.
3077 * rcu_read_lock must be held on entry.
3078 */
3079 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3080 struct rps_dev_flow **rflowp)
3081 {
3082 struct netdev_rx_queue *rxqueue;
3083 struct rps_map *map;
3084 struct rps_dev_flow_table *flow_table;
3085 struct rps_sock_flow_table *sock_flow_table;
3086 int cpu = -1;
3087 u16 tcpu;
3088 u32 hash;
3089
3090 if (skb_rx_queue_recorded(skb)) {
3091 u16 index = skb_get_rx_queue(skb);
3092 if (unlikely(index >= dev->real_num_rx_queues)) {
3093 WARN_ONCE(dev->real_num_rx_queues > 1,
3094 "%s received packet on queue %u, but number "
3095 "of RX queues is %u\n",
3096 dev->name, index, dev->real_num_rx_queues);
3097 goto done;
3098 }
3099 rxqueue = dev->_rx + index;
3100 } else
3101 rxqueue = dev->_rx;
3102
3103 map = rcu_dereference(rxqueue->rps_map);
3104 if (map) {
3105 if (map->len == 1 &&
3106 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3107 tcpu = map->cpus[0];
3108 if (cpu_online(tcpu))
3109 cpu = tcpu;
3110 goto done;
3111 }
3112 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3113 goto done;
3114 }
3115
3116 skb_reset_network_header(skb);
3117 hash = skb_get_hash(skb);
3118 if (!hash)
3119 goto done;
3120
3121 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3122 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3123 if (flow_table && sock_flow_table) {
3124 u16 next_cpu;
3125 struct rps_dev_flow *rflow;
3126
3127 rflow = &flow_table->flows[hash & flow_table->mask];
3128 tcpu = rflow->cpu;
3129
3130 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3131
3132 /*
3133 * If the desired CPU (where last recvmsg was done) is
3134 * different from current CPU (one in the rx-queue flow
3135 * table entry), switch if one of the following holds:
3136 * - Current CPU is unset (equal to RPS_NO_CPU).
3137 * - Current CPU is offline.
3138 * - The current CPU's queue tail has advanced beyond the
3139 * last packet that was enqueued using this table entry.
3140 * This guarantees that all previous packets for the flow
3141 * have been dequeued, thus preserving in order delivery.
3142 */
3143 if (unlikely(tcpu != next_cpu) &&
3144 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3145 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3146 rflow->last_qtail)) >= 0)) {
3147 tcpu = next_cpu;
3148 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3149 }
3150
3151 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3152 *rflowp = rflow;
3153 cpu = tcpu;
3154 goto done;
3155 }
3156 }
3157
3158 if (map) {
3159 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3160 if (cpu_online(tcpu)) {
3161 cpu = tcpu;
3162 goto done;
3163 }
3164 }
3165
3166 done:
3167 return cpu;
3168 }
3169
3170 #ifdef CONFIG_RFS_ACCEL
3171
3172 /**
3173 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3174 * @dev: Device on which the filter was set
3175 * @rxq_index: RX queue index
3176 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3177 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3178 *
3179 * Drivers that implement ndo_rx_flow_steer() should periodically call
3180 * this function for each installed filter and remove the filters for
3181 * which it returns %true.
3182 */
3183 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3184 u32 flow_id, u16 filter_id)
3185 {
3186 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3187 struct rps_dev_flow_table *flow_table;
3188 struct rps_dev_flow *rflow;
3189 bool expire = true;
3190 int cpu;
3191
3192 rcu_read_lock();
3193 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3194 if (flow_table && flow_id <= flow_table->mask) {
3195 rflow = &flow_table->flows[flow_id];
3196 cpu = ACCESS_ONCE(rflow->cpu);
3197 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3198 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3199 rflow->last_qtail) <
3200 (int)(10 * flow_table->mask)))
3201 expire = false;
3202 }
3203 rcu_read_unlock();
3204 return expire;
3205 }
3206 EXPORT_SYMBOL(rps_may_expire_flow);
3207
3208 #endif /* CONFIG_RFS_ACCEL */
3209
3210 /* Called from hardirq (IPI) context */
3211 static void rps_trigger_softirq(void *data)
3212 {
3213 struct softnet_data *sd = data;
3214
3215 ____napi_schedule(sd, &sd->backlog);
3216 sd->received_rps++;
3217 }
3218
3219 #endif /* CONFIG_RPS */
3220
3221 /*
3222 * Check if this softnet_data structure is another cpu one
3223 * If yes, queue it to our IPI list and return 1
3224 * If no, return 0
3225 */
3226 static int rps_ipi_queued(struct softnet_data *sd)
3227 {
3228 #ifdef CONFIG_RPS
3229 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3230
3231 if (sd != mysd) {
3232 sd->rps_ipi_next = mysd->rps_ipi_list;
3233 mysd->rps_ipi_list = sd;
3234
3235 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3236 return 1;
3237 }
3238 #endif /* CONFIG_RPS */
3239 return 0;
3240 }
3241
3242 #ifdef CONFIG_NET_FLOW_LIMIT
3243 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3244 #endif
3245
3246 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3247 {
3248 #ifdef CONFIG_NET_FLOW_LIMIT
3249 struct sd_flow_limit *fl;
3250 struct softnet_data *sd;
3251 unsigned int old_flow, new_flow;
3252
3253 if (qlen < (netdev_max_backlog >> 1))
3254 return false;
3255
3256 sd = this_cpu_ptr(&softnet_data);
3257
3258 rcu_read_lock();
3259 fl = rcu_dereference(sd->flow_limit);
3260 if (fl) {
3261 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3262 old_flow = fl->history[fl->history_head];
3263 fl->history[fl->history_head] = new_flow;
3264
3265 fl->history_head++;
3266 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3267
3268 if (likely(fl->buckets[old_flow]))
3269 fl->buckets[old_flow]--;
3270
3271 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3272 fl->count++;
3273 rcu_read_unlock();
3274 return true;
3275 }
3276 }
3277 rcu_read_unlock();
3278 #endif
3279 return false;
3280 }
3281
3282 /*
3283 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3284 * queue (may be a remote CPU queue).
3285 */
3286 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3287 unsigned int *qtail)
3288 {
3289 struct softnet_data *sd;
3290 unsigned long flags;
3291 unsigned int qlen;
3292
3293 sd = &per_cpu(softnet_data, cpu);
3294
3295 local_irq_save(flags);
3296
3297 rps_lock(sd);
3298 qlen = skb_queue_len(&sd->input_pkt_queue);
3299 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3300 if (skb_queue_len(&sd->input_pkt_queue)) {
3301 enqueue:
3302 __skb_queue_tail(&sd->input_pkt_queue, skb);
3303 input_queue_tail_incr_save(sd, qtail);
3304 rps_unlock(sd);
3305 local_irq_restore(flags);
3306 return NET_RX_SUCCESS;
3307 }
3308
3309 /* Schedule NAPI for backlog device
3310 * We can use non atomic operation since we own the queue lock
3311 */
3312 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3313 if (!rps_ipi_queued(sd))
3314 ____napi_schedule(sd, &sd->backlog);
3315 }
3316 goto enqueue;
3317 }
3318
3319 sd->dropped++;
3320 rps_unlock(sd);
3321
3322 local_irq_restore(flags);
3323
3324 atomic_long_inc(&skb->dev->rx_dropped);
3325 kfree_skb(skb);
3326 return NET_RX_DROP;
3327 }
3328
3329 static int netif_rx_internal(struct sk_buff *skb)
3330 {
3331 int ret;
3332
3333 net_timestamp_check(netdev_tstamp_prequeue, skb);
3334
3335 trace_netif_rx(skb);
3336 #ifdef CONFIG_RPS
3337 if (static_key_false(&rps_needed)) {
3338 struct rps_dev_flow voidflow, *rflow = &voidflow;
3339 int cpu;
3340
3341 preempt_disable();
3342 rcu_read_lock();
3343
3344 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3345 if (cpu < 0)
3346 cpu = smp_processor_id();
3347
3348 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3349
3350 rcu_read_unlock();
3351 preempt_enable();
3352 } else
3353 #endif
3354 {
3355 unsigned int qtail;
3356 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3357 put_cpu();
3358 }
3359 return ret;
3360 }
3361
3362 /**
3363 * netif_rx - post buffer to the network code
3364 * @skb: buffer to post
3365 *
3366 * This function receives a packet from a device driver and queues it for
3367 * the upper (protocol) levels to process. It always succeeds. The buffer
3368 * may be dropped during processing for congestion control or by the
3369 * protocol layers.
3370 *
3371 * return values:
3372 * NET_RX_SUCCESS (no congestion)
3373 * NET_RX_DROP (packet was dropped)
3374 *
3375 */
3376
3377 int netif_rx(struct sk_buff *skb)
3378 {
3379 trace_netif_rx_entry(skb);
3380
3381 return netif_rx_internal(skb);
3382 }
3383 EXPORT_SYMBOL(netif_rx);
3384
3385 int netif_rx_ni(struct sk_buff *skb)
3386 {
3387 int err;
3388
3389 trace_netif_rx_ni_entry(skb);
3390
3391 preempt_disable();
3392 err = netif_rx_internal(skb);
3393 if (local_softirq_pending())
3394 do_softirq();
3395 preempt_enable();
3396
3397 return err;
3398 }
3399 EXPORT_SYMBOL(netif_rx_ni);
3400
3401 static void net_tx_action(struct softirq_action *h)
3402 {
3403 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3404
3405 if (sd->completion_queue) {
3406 struct sk_buff *clist;
3407
3408 local_irq_disable();
3409 clist = sd->completion_queue;
3410 sd->completion_queue = NULL;
3411 local_irq_enable();
3412
3413 while (clist) {
3414 struct sk_buff *skb = clist;
3415 clist = clist->next;
3416
3417 WARN_ON(atomic_read(&skb->users));
3418 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3419 trace_consume_skb(skb);
3420 else
3421 trace_kfree_skb(skb, net_tx_action);
3422 __kfree_skb(skb);
3423 }
3424 }
3425
3426 if (sd->output_queue) {
3427 struct Qdisc *head;
3428
3429 local_irq_disable();
3430 head = sd->output_queue;
3431 sd->output_queue = NULL;
3432 sd->output_queue_tailp = &sd->output_queue;
3433 local_irq_enable();
3434
3435 while (head) {
3436 struct Qdisc *q = head;
3437 spinlock_t *root_lock;
3438
3439 head = head->next_sched;
3440
3441 root_lock = qdisc_lock(q);
3442 if (spin_trylock(root_lock)) {
3443 smp_mb__before_atomic();
3444 clear_bit(__QDISC_STATE_SCHED,
3445 &q->state);
3446 qdisc_run(q);
3447 spin_unlock(root_lock);
3448 } else {
3449 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3450 &q->state)) {
3451 __netif_reschedule(q);
3452 } else {
3453 smp_mb__before_atomic();
3454 clear_bit(__QDISC_STATE_SCHED,
3455 &q->state);
3456 }
3457 }
3458 }
3459 }
3460 }
3461
3462 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3463 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3464 /* This hook is defined here for ATM LANE */
3465 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3466 unsigned char *addr) __read_mostly;
3467 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3468 #endif
3469
3470 #ifdef CONFIG_NET_CLS_ACT
3471 /* TODO: Maybe we should just force sch_ingress to be compiled in
3472 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3473 * a compare and 2 stores extra right now if we dont have it on
3474 * but have CONFIG_NET_CLS_ACT
3475 * NOTE: This doesn't stop any functionality; if you dont have
3476 * the ingress scheduler, you just can't add policies on ingress.
3477 *
3478 */
3479 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3480 {
3481 struct net_device *dev = skb->dev;
3482 u32 ttl = G_TC_RTTL(skb->tc_verd);
3483 int result = TC_ACT_OK;
3484 struct Qdisc *q;
3485
3486 if (unlikely(MAX_RED_LOOP < ttl++)) {
3487 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3488 skb->skb_iif, dev->ifindex);
3489 return TC_ACT_SHOT;
3490 }
3491
3492 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3493 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3494
3495 q = rcu_dereference(rxq->qdisc);
3496 if (q != &noop_qdisc) {
3497 spin_lock(qdisc_lock(q));
3498 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3499 result = qdisc_enqueue_root(skb, q);
3500 spin_unlock(qdisc_lock(q));
3501 }
3502
3503 return result;
3504 }
3505
3506 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3507 struct packet_type **pt_prev,
3508 int *ret, struct net_device *orig_dev)
3509 {
3510 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3511
3512 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3513 goto out;
3514
3515 if (*pt_prev) {
3516 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3517 *pt_prev = NULL;
3518 }
3519
3520 switch (ing_filter(skb, rxq)) {
3521 case TC_ACT_SHOT:
3522 case TC_ACT_STOLEN:
3523 kfree_skb(skb);
3524 return NULL;
3525 }
3526
3527 out:
3528 skb->tc_verd = 0;
3529 return skb;
3530 }
3531 #endif
3532
3533 /**
3534 * netdev_rx_handler_register - register receive handler
3535 * @dev: device to register a handler for
3536 * @rx_handler: receive handler to register
3537 * @rx_handler_data: data pointer that is used by rx handler
3538 *
3539 * Register a receive handler for a device. This handler will then be
3540 * called from __netif_receive_skb. A negative errno code is returned
3541 * on a failure.
3542 *
3543 * The caller must hold the rtnl_mutex.
3544 *
3545 * For a general description of rx_handler, see enum rx_handler_result.
3546 */
3547 int netdev_rx_handler_register(struct net_device *dev,
3548 rx_handler_func_t *rx_handler,
3549 void *rx_handler_data)
3550 {
3551 ASSERT_RTNL();
3552
3553 if (dev->rx_handler)
3554 return -EBUSY;
3555
3556 /* Note: rx_handler_data must be set before rx_handler */
3557 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3558 rcu_assign_pointer(dev->rx_handler, rx_handler);
3559
3560 return 0;
3561 }
3562 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3563
3564 /**
3565 * netdev_rx_handler_unregister - unregister receive handler
3566 * @dev: device to unregister a handler from
3567 *
3568 * Unregister a receive handler from a device.
3569 *
3570 * The caller must hold the rtnl_mutex.
3571 */
3572 void netdev_rx_handler_unregister(struct net_device *dev)
3573 {
3574
3575 ASSERT_RTNL();
3576 RCU_INIT_POINTER(dev->rx_handler, NULL);
3577 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3578 * section has a guarantee to see a non NULL rx_handler_data
3579 * as well.
3580 */
3581 synchronize_net();
3582 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3583 }
3584 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3585
3586 /*
3587 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3588 * the special handling of PFMEMALLOC skbs.
3589 */
3590 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3591 {
3592 switch (skb->protocol) {
3593 case htons(ETH_P_ARP):
3594 case htons(ETH_P_IP):
3595 case htons(ETH_P_IPV6):
3596 case htons(ETH_P_8021Q):
3597 case htons(ETH_P_8021AD):
3598 return true;
3599 default:
3600 return false;
3601 }
3602 }
3603
3604 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3605 {
3606 struct packet_type *ptype, *pt_prev;
3607 rx_handler_func_t *rx_handler;
3608 struct net_device *orig_dev;
3609 struct net_device *null_or_dev;
3610 bool deliver_exact = false;
3611 int ret = NET_RX_DROP;
3612 __be16 type;
3613
3614 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3615
3616 trace_netif_receive_skb(skb);
3617
3618 orig_dev = skb->dev;
3619
3620 skb_reset_network_header(skb);
3621 if (!skb_transport_header_was_set(skb))
3622 skb_reset_transport_header(skb);
3623 skb_reset_mac_len(skb);
3624
3625 pt_prev = NULL;
3626
3627 rcu_read_lock();
3628
3629 another_round:
3630 skb->skb_iif = skb->dev->ifindex;
3631
3632 __this_cpu_inc(softnet_data.processed);
3633
3634 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3635 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3636 skb = skb_vlan_untag(skb);
3637 if (unlikely(!skb))
3638 goto unlock;
3639 }
3640
3641 #ifdef CONFIG_NET_CLS_ACT
3642 if (skb->tc_verd & TC_NCLS) {
3643 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3644 goto ncls;
3645 }
3646 #endif
3647
3648 if (pfmemalloc)
3649 goto skip_taps;
3650
3651 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3652 if (!ptype->dev || ptype->dev == skb->dev) {
3653 if (pt_prev)
3654 ret = deliver_skb(skb, pt_prev, orig_dev);
3655 pt_prev = ptype;
3656 }
3657 }
3658
3659 skip_taps:
3660 #ifdef CONFIG_NET_CLS_ACT
3661 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3662 if (!skb)
3663 goto unlock;
3664 ncls:
3665 #endif
3666
3667 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3668 goto drop;
3669
3670 if (vlan_tx_tag_present(skb)) {
3671 if (pt_prev) {
3672 ret = deliver_skb(skb, pt_prev, orig_dev);
3673 pt_prev = NULL;
3674 }
3675 if (vlan_do_receive(&skb))
3676 goto another_round;
3677 else if (unlikely(!skb))
3678 goto unlock;
3679 }
3680
3681 rx_handler = rcu_dereference(skb->dev->rx_handler);
3682 if (rx_handler) {
3683 if (pt_prev) {
3684 ret = deliver_skb(skb, pt_prev, orig_dev);
3685 pt_prev = NULL;
3686 }
3687 switch (rx_handler(&skb)) {
3688 case RX_HANDLER_CONSUMED:
3689 ret = NET_RX_SUCCESS;
3690 goto unlock;
3691 case RX_HANDLER_ANOTHER:
3692 goto another_round;
3693 case RX_HANDLER_EXACT:
3694 deliver_exact = true;
3695 case RX_HANDLER_PASS:
3696 break;
3697 default:
3698 BUG();
3699 }
3700 }
3701
3702 if (unlikely(vlan_tx_tag_present(skb))) {
3703 if (vlan_tx_tag_get_id(skb))
3704 skb->pkt_type = PACKET_OTHERHOST;
3705 /* Note: we might in the future use prio bits
3706 * and set skb->priority like in vlan_do_receive()
3707 * For the time being, just ignore Priority Code Point
3708 */
3709 skb->vlan_tci = 0;
3710 }
3711
3712 /* deliver only exact match when indicated */
3713 null_or_dev = deliver_exact ? skb->dev : NULL;
3714
3715 type = skb->protocol;
3716 list_for_each_entry_rcu(ptype,
3717 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3718 if (ptype->type == type &&
3719 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3720 ptype->dev == orig_dev)) {
3721 if (pt_prev)
3722 ret = deliver_skb(skb, pt_prev, orig_dev);
3723 pt_prev = ptype;
3724 }
3725 }
3726
3727 if (pt_prev) {
3728 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3729 goto drop;
3730 else
3731 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3732 } else {
3733 drop:
3734 atomic_long_inc(&skb->dev->rx_dropped);
3735 kfree_skb(skb);
3736 /* Jamal, now you will not able to escape explaining
3737 * me how you were going to use this. :-)
3738 */
3739 ret = NET_RX_DROP;
3740 }
3741
3742 unlock:
3743 rcu_read_unlock();
3744 return ret;
3745 }
3746
3747 static int __netif_receive_skb(struct sk_buff *skb)
3748 {
3749 int ret;
3750
3751 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3752 unsigned long pflags = current->flags;
3753
3754 /*
3755 * PFMEMALLOC skbs are special, they should
3756 * - be delivered to SOCK_MEMALLOC sockets only
3757 * - stay away from userspace
3758 * - have bounded memory usage
3759 *
3760 * Use PF_MEMALLOC as this saves us from propagating the allocation
3761 * context down to all allocation sites.
3762 */
3763 current->flags |= PF_MEMALLOC;
3764 ret = __netif_receive_skb_core(skb, true);
3765 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3766 } else
3767 ret = __netif_receive_skb_core(skb, false);
3768
3769 return ret;
3770 }
3771
3772 static int netif_receive_skb_internal(struct sk_buff *skb)
3773 {
3774 net_timestamp_check(netdev_tstamp_prequeue, skb);
3775
3776 if (skb_defer_rx_timestamp(skb))
3777 return NET_RX_SUCCESS;
3778
3779 #ifdef CONFIG_RPS
3780 if (static_key_false(&rps_needed)) {
3781 struct rps_dev_flow voidflow, *rflow = &voidflow;
3782 int cpu, ret;
3783
3784 rcu_read_lock();
3785
3786 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3787
3788 if (cpu >= 0) {
3789 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3790 rcu_read_unlock();
3791 return ret;
3792 }
3793 rcu_read_unlock();
3794 }
3795 #endif
3796 return __netif_receive_skb(skb);
3797 }
3798
3799 /**
3800 * netif_receive_skb - process receive buffer from network
3801 * @skb: buffer to process
3802 *
3803 * netif_receive_skb() is the main receive data processing function.
3804 * It always succeeds. The buffer may be dropped during processing
3805 * for congestion control or by the protocol layers.
3806 *
3807 * This function may only be called from softirq context and interrupts
3808 * should be enabled.
3809 *
3810 * Return values (usually ignored):
3811 * NET_RX_SUCCESS: no congestion
3812 * NET_RX_DROP: packet was dropped
3813 */
3814 int netif_receive_skb(struct sk_buff *skb)
3815 {
3816 trace_netif_receive_skb_entry(skb);
3817
3818 return netif_receive_skb_internal(skb);
3819 }
3820 EXPORT_SYMBOL(netif_receive_skb);
3821
3822 /* Network device is going away, flush any packets still pending
3823 * Called with irqs disabled.
3824 */
3825 static void flush_backlog(void *arg)
3826 {
3827 struct net_device *dev = arg;
3828 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3829 struct sk_buff *skb, *tmp;
3830
3831 rps_lock(sd);
3832 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3833 if (skb->dev == dev) {
3834 __skb_unlink(skb, &sd->input_pkt_queue);
3835 kfree_skb(skb);
3836 input_queue_head_incr(sd);
3837 }
3838 }
3839 rps_unlock(sd);
3840
3841 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3842 if (skb->dev == dev) {
3843 __skb_unlink(skb, &sd->process_queue);
3844 kfree_skb(skb);
3845 input_queue_head_incr(sd);
3846 }
3847 }
3848 }
3849
3850 static int napi_gro_complete(struct sk_buff *skb)
3851 {
3852 struct packet_offload *ptype;
3853 __be16 type = skb->protocol;
3854 struct list_head *head = &offload_base;
3855 int err = -ENOENT;
3856
3857 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3858
3859 if (NAPI_GRO_CB(skb)->count == 1) {
3860 skb_shinfo(skb)->gso_size = 0;
3861 goto out;
3862 }
3863
3864 rcu_read_lock();
3865 list_for_each_entry_rcu(ptype, head, list) {
3866 if (ptype->type != type || !ptype->callbacks.gro_complete)
3867 continue;
3868
3869 err = ptype->callbacks.gro_complete(skb, 0);
3870 break;
3871 }
3872 rcu_read_unlock();
3873
3874 if (err) {
3875 WARN_ON(&ptype->list == head);
3876 kfree_skb(skb);
3877 return NET_RX_SUCCESS;
3878 }
3879
3880 out:
3881 return netif_receive_skb_internal(skb);
3882 }
3883
3884 /* napi->gro_list contains packets ordered by age.
3885 * youngest packets at the head of it.
3886 * Complete skbs in reverse order to reduce latencies.
3887 */
3888 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3889 {
3890 struct sk_buff *skb, *prev = NULL;
3891
3892 /* scan list and build reverse chain */
3893 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3894 skb->prev = prev;
3895 prev = skb;
3896 }
3897
3898 for (skb = prev; skb; skb = prev) {
3899 skb->next = NULL;
3900
3901 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3902 return;
3903
3904 prev = skb->prev;
3905 napi_gro_complete(skb);
3906 napi->gro_count--;
3907 }
3908
3909 napi->gro_list = NULL;
3910 }
3911 EXPORT_SYMBOL(napi_gro_flush);
3912
3913 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3914 {
3915 struct sk_buff *p;
3916 unsigned int maclen = skb->dev->hard_header_len;
3917 u32 hash = skb_get_hash_raw(skb);
3918
3919 for (p = napi->gro_list; p; p = p->next) {
3920 unsigned long diffs;
3921
3922 NAPI_GRO_CB(p)->flush = 0;
3923
3924 if (hash != skb_get_hash_raw(p)) {
3925 NAPI_GRO_CB(p)->same_flow = 0;
3926 continue;
3927 }
3928
3929 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3930 diffs |= p->vlan_tci ^ skb->vlan_tci;
3931 if (maclen == ETH_HLEN)
3932 diffs |= compare_ether_header(skb_mac_header(p),
3933 skb_mac_header(skb));
3934 else if (!diffs)
3935 diffs = memcmp(skb_mac_header(p),
3936 skb_mac_header(skb),
3937 maclen);
3938 NAPI_GRO_CB(p)->same_flow = !diffs;
3939 }
3940 }
3941
3942 static void skb_gro_reset_offset(struct sk_buff *skb)
3943 {
3944 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3945 const skb_frag_t *frag0 = &pinfo->frags[0];
3946
3947 NAPI_GRO_CB(skb)->data_offset = 0;
3948 NAPI_GRO_CB(skb)->frag0 = NULL;
3949 NAPI_GRO_CB(skb)->frag0_len = 0;
3950
3951 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3952 pinfo->nr_frags &&
3953 !PageHighMem(skb_frag_page(frag0))) {
3954 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3955 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3956 }
3957 }
3958
3959 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3960 {
3961 struct skb_shared_info *pinfo = skb_shinfo(skb);
3962
3963 BUG_ON(skb->end - skb->tail < grow);
3964
3965 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3966
3967 skb->data_len -= grow;
3968 skb->tail += grow;
3969
3970 pinfo->frags[0].page_offset += grow;
3971 skb_frag_size_sub(&pinfo->frags[0], grow);
3972
3973 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3974 skb_frag_unref(skb, 0);
3975 memmove(pinfo->frags, pinfo->frags + 1,
3976 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3977 }
3978 }
3979
3980 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3981 {
3982 struct sk_buff **pp = NULL;
3983 struct packet_offload *ptype;
3984 __be16 type = skb->protocol;
3985 struct list_head *head = &offload_base;
3986 int same_flow;
3987 enum gro_result ret;
3988 int grow;
3989
3990 if (!(skb->dev->features & NETIF_F_GRO))
3991 goto normal;
3992
3993 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
3994 goto normal;
3995
3996 gro_list_prepare(napi, skb);
3997
3998 rcu_read_lock();
3999 list_for_each_entry_rcu(ptype, head, list) {
4000 if (ptype->type != type || !ptype->callbacks.gro_receive)
4001 continue;
4002
4003 skb_set_network_header(skb, skb_gro_offset(skb));
4004 skb_reset_mac_len(skb);
4005 NAPI_GRO_CB(skb)->same_flow = 0;
4006 NAPI_GRO_CB(skb)->flush = 0;
4007 NAPI_GRO_CB(skb)->free = 0;
4008 NAPI_GRO_CB(skb)->udp_mark = 0;
4009
4010 /* Setup for GRO checksum validation */
4011 switch (skb->ip_summed) {
4012 case CHECKSUM_COMPLETE:
4013 NAPI_GRO_CB(skb)->csum = skb->csum;
4014 NAPI_GRO_CB(skb)->csum_valid = 1;
4015 NAPI_GRO_CB(skb)->csum_cnt = 0;
4016 break;
4017 case CHECKSUM_UNNECESSARY:
4018 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4019 NAPI_GRO_CB(skb)->csum_valid = 0;
4020 break;
4021 default:
4022 NAPI_GRO_CB(skb)->csum_cnt = 0;
4023 NAPI_GRO_CB(skb)->csum_valid = 0;
4024 }
4025
4026 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4027 break;
4028 }
4029 rcu_read_unlock();
4030
4031 if (&ptype->list == head)
4032 goto normal;
4033
4034 same_flow = NAPI_GRO_CB(skb)->same_flow;
4035 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4036
4037 if (pp) {
4038 struct sk_buff *nskb = *pp;
4039
4040 *pp = nskb->next;
4041 nskb->next = NULL;
4042 napi_gro_complete(nskb);
4043 napi->gro_count--;
4044 }
4045
4046 if (same_flow)
4047 goto ok;
4048
4049 if (NAPI_GRO_CB(skb)->flush)
4050 goto normal;
4051
4052 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4053 struct sk_buff *nskb = napi->gro_list;
4054
4055 /* locate the end of the list to select the 'oldest' flow */
4056 while (nskb->next) {
4057 pp = &nskb->next;
4058 nskb = *pp;
4059 }
4060 *pp = NULL;
4061 nskb->next = NULL;
4062 napi_gro_complete(nskb);
4063 } else {
4064 napi->gro_count++;
4065 }
4066 NAPI_GRO_CB(skb)->count = 1;
4067 NAPI_GRO_CB(skb)->age = jiffies;
4068 NAPI_GRO_CB(skb)->last = skb;
4069 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4070 skb->next = napi->gro_list;
4071 napi->gro_list = skb;
4072 ret = GRO_HELD;
4073
4074 pull:
4075 grow = skb_gro_offset(skb) - skb_headlen(skb);
4076 if (grow > 0)
4077 gro_pull_from_frag0(skb, grow);
4078 ok:
4079 return ret;
4080
4081 normal:
4082 ret = GRO_NORMAL;
4083 goto pull;
4084 }
4085
4086 struct packet_offload *gro_find_receive_by_type(__be16 type)
4087 {
4088 struct list_head *offload_head = &offload_base;
4089 struct packet_offload *ptype;
4090
4091 list_for_each_entry_rcu(ptype, offload_head, list) {
4092 if (ptype->type != type || !ptype->callbacks.gro_receive)
4093 continue;
4094 return ptype;
4095 }
4096 return NULL;
4097 }
4098 EXPORT_SYMBOL(gro_find_receive_by_type);
4099
4100 struct packet_offload *gro_find_complete_by_type(__be16 type)
4101 {
4102 struct list_head *offload_head = &offload_base;
4103 struct packet_offload *ptype;
4104
4105 list_for_each_entry_rcu(ptype, offload_head, list) {
4106 if (ptype->type != type || !ptype->callbacks.gro_complete)
4107 continue;
4108 return ptype;
4109 }
4110 return NULL;
4111 }
4112 EXPORT_SYMBOL(gro_find_complete_by_type);
4113
4114 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4115 {
4116 switch (ret) {
4117 case GRO_NORMAL:
4118 if (netif_receive_skb_internal(skb))
4119 ret = GRO_DROP;
4120 break;
4121
4122 case GRO_DROP:
4123 kfree_skb(skb);
4124 break;
4125
4126 case GRO_MERGED_FREE:
4127 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4128 kmem_cache_free(skbuff_head_cache, skb);
4129 else
4130 __kfree_skb(skb);
4131 break;
4132
4133 case GRO_HELD:
4134 case GRO_MERGED:
4135 break;
4136 }
4137
4138 return ret;
4139 }
4140
4141 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4142 {
4143 trace_napi_gro_receive_entry(skb);
4144
4145 skb_gro_reset_offset(skb);
4146
4147 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4148 }
4149 EXPORT_SYMBOL(napi_gro_receive);
4150
4151 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4152 {
4153 if (unlikely(skb->pfmemalloc)) {
4154 consume_skb(skb);
4155 return;
4156 }
4157 __skb_pull(skb, skb_headlen(skb));
4158 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4159 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4160 skb->vlan_tci = 0;
4161 skb->dev = napi->dev;
4162 skb->skb_iif = 0;
4163 skb->encapsulation = 0;
4164 skb_shinfo(skb)->gso_type = 0;
4165 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4166
4167 napi->skb = skb;
4168 }
4169
4170 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4171 {
4172 struct sk_buff *skb = napi->skb;
4173
4174 if (!skb) {
4175 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4176 napi->skb = skb;
4177 }
4178 return skb;
4179 }
4180 EXPORT_SYMBOL(napi_get_frags);
4181
4182 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4183 struct sk_buff *skb,
4184 gro_result_t ret)
4185 {
4186 switch (ret) {
4187 case GRO_NORMAL:
4188 case GRO_HELD:
4189 __skb_push(skb, ETH_HLEN);
4190 skb->protocol = eth_type_trans(skb, skb->dev);
4191 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4192 ret = GRO_DROP;
4193 break;
4194
4195 case GRO_DROP:
4196 case GRO_MERGED_FREE:
4197 napi_reuse_skb(napi, skb);
4198 break;
4199
4200 case GRO_MERGED:
4201 break;
4202 }
4203
4204 return ret;
4205 }
4206
4207 /* Upper GRO stack assumes network header starts at gro_offset=0
4208 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4209 * We copy ethernet header into skb->data to have a common layout.
4210 */
4211 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4212 {
4213 struct sk_buff *skb = napi->skb;
4214 const struct ethhdr *eth;
4215 unsigned int hlen = sizeof(*eth);
4216
4217 napi->skb = NULL;
4218
4219 skb_reset_mac_header(skb);
4220 skb_gro_reset_offset(skb);
4221
4222 eth = skb_gro_header_fast(skb, 0);
4223 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4224 eth = skb_gro_header_slow(skb, hlen, 0);
4225 if (unlikely(!eth)) {
4226 napi_reuse_skb(napi, skb);
4227 return NULL;
4228 }
4229 } else {
4230 gro_pull_from_frag0(skb, hlen);
4231 NAPI_GRO_CB(skb)->frag0 += hlen;
4232 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4233 }
4234 __skb_pull(skb, hlen);
4235
4236 /*
4237 * This works because the only protocols we care about don't require
4238 * special handling.
4239 * We'll fix it up properly in napi_frags_finish()
4240 */
4241 skb->protocol = eth->h_proto;
4242
4243 return skb;
4244 }
4245
4246 gro_result_t napi_gro_frags(struct napi_struct *napi)
4247 {
4248 struct sk_buff *skb = napi_frags_skb(napi);
4249
4250 if (!skb)
4251 return GRO_DROP;
4252
4253 trace_napi_gro_frags_entry(skb);
4254
4255 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4256 }
4257 EXPORT_SYMBOL(napi_gro_frags);
4258
4259 /* Compute the checksum from gro_offset and return the folded value
4260 * after adding in any pseudo checksum.
4261 */
4262 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4263 {
4264 __wsum wsum;
4265 __sum16 sum;
4266
4267 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4268
4269 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4270 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4271 if (likely(!sum)) {
4272 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4273 !skb->csum_complete_sw)
4274 netdev_rx_csum_fault(skb->dev);
4275 }
4276
4277 NAPI_GRO_CB(skb)->csum = wsum;
4278 NAPI_GRO_CB(skb)->csum_valid = 1;
4279
4280 return sum;
4281 }
4282 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4283
4284 /*
4285 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4286 * Note: called with local irq disabled, but exits with local irq enabled.
4287 */
4288 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4289 {
4290 #ifdef CONFIG_RPS
4291 struct softnet_data *remsd = sd->rps_ipi_list;
4292
4293 if (remsd) {
4294 sd->rps_ipi_list = NULL;
4295
4296 local_irq_enable();
4297
4298 /* Send pending IPI's to kick RPS processing on remote cpus. */
4299 while (remsd) {
4300 struct softnet_data *next = remsd->rps_ipi_next;
4301
4302 if (cpu_online(remsd->cpu))
4303 smp_call_function_single_async(remsd->cpu,
4304 &remsd->csd);
4305 remsd = next;
4306 }
4307 } else
4308 #endif
4309 local_irq_enable();
4310 }
4311
4312 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4313 {
4314 #ifdef CONFIG_RPS
4315 return sd->rps_ipi_list != NULL;
4316 #else
4317 return false;
4318 #endif
4319 }
4320
4321 static int process_backlog(struct napi_struct *napi, int quota)
4322 {
4323 int work = 0;
4324 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4325
4326 /* Check if we have pending ipi, its better to send them now,
4327 * not waiting net_rx_action() end.
4328 */
4329 if (sd_has_rps_ipi_waiting(sd)) {
4330 local_irq_disable();
4331 net_rps_action_and_irq_enable(sd);
4332 }
4333
4334 napi->weight = weight_p;
4335 local_irq_disable();
4336 while (1) {
4337 struct sk_buff *skb;
4338
4339 while ((skb = __skb_dequeue(&sd->process_queue))) {
4340 local_irq_enable();
4341 __netif_receive_skb(skb);
4342 local_irq_disable();
4343 input_queue_head_incr(sd);
4344 if (++work >= quota) {
4345 local_irq_enable();
4346 return work;
4347 }
4348 }
4349
4350 rps_lock(sd);
4351 if (skb_queue_empty(&sd->input_pkt_queue)) {
4352 /*
4353 * Inline a custom version of __napi_complete().
4354 * only current cpu owns and manipulates this napi,
4355 * and NAPI_STATE_SCHED is the only possible flag set
4356 * on backlog.
4357 * We can use a plain write instead of clear_bit(),
4358 * and we dont need an smp_mb() memory barrier.
4359 */
4360 napi->state = 0;
4361 rps_unlock(sd);
4362
4363 break;
4364 }
4365
4366 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4367 &sd->process_queue);
4368 rps_unlock(sd);
4369 }
4370 local_irq_enable();
4371
4372 return work;
4373 }
4374
4375 /**
4376 * __napi_schedule - schedule for receive
4377 * @n: entry to schedule
4378 *
4379 * The entry's receive function will be scheduled to run.
4380 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4381 */
4382 void __napi_schedule(struct napi_struct *n)
4383 {
4384 unsigned long flags;
4385
4386 local_irq_save(flags);
4387 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4388 local_irq_restore(flags);
4389 }
4390 EXPORT_SYMBOL(__napi_schedule);
4391
4392 /**
4393 * __napi_schedule_irqoff - schedule for receive
4394 * @n: entry to schedule
4395 *
4396 * Variant of __napi_schedule() assuming hard irqs are masked
4397 */
4398 void __napi_schedule_irqoff(struct napi_struct *n)
4399 {
4400 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4401 }
4402 EXPORT_SYMBOL(__napi_schedule_irqoff);
4403
4404 void __napi_complete(struct napi_struct *n)
4405 {
4406 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4407
4408 list_del_init(&n->poll_list);
4409 smp_mb__before_atomic();
4410 clear_bit(NAPI_STATE_SCHED, &n->state);
4411 }
4412 EXPORT_SYMBOL(__napi_complete);
4413
4414 void napi_complete_done(struct napi_struct *n, int work_done)
4415 {
4416 unsigned long flags;
4417
4418 /*
4419 * don't let napi dequeue from the cpu poll list
4420 * just in case its running on a different cpu
4421 */
4422 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4423 return;
4424
4425 if (n->gro_list) {
4426 unsigned long timeout = 0;
4427
4428 if (work_done)
4429 timeout = n->dev->gro_flush_timeout;
4430
4431 if (timeout)
4432 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4433 HRTIMER_MODE_REL_PINNED);
4434 else
4435 napi_gro_flush(n, false);
4436 }
4437 if (likely(list_empty(&n->poll_list))) {
4438 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4439 } else {
4440 /* If n->poll_list is not empty, we need to mask irqs */
4441 local_irq_save(flags);
4442 __napi_complete(n);
4443 local_irq_restore(flags);
4444 }
4445 }
4446 EXPORT_SYMBOL(napi_complete_done);
4447
4448 /* must be called under rcu_read_lock(), as we dont take a reference */
4449 struct napi_struct *napi_by_id(unsigned int napi_id)
4450 {
4451 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4452 struct napi_struct *napi;
4453
4454 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4455 if (napi->napi_id == napi_id)
4456 return napi;
4457
4458 return NULL;
4459 }
4460 EXPORT_SYMBOL_GPL(napi_by_id);
4461
4462 void napi_hash_add(struct napi_struct *napi)
4463 {
4464 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4465
4466 spin_lock(&napi_hash_lock);
4467
4468 /* 0 is not a valid id, we also skip an id that is taken
4469 * we expect both events to be extremely rare
4470 */
4471 napi->napi_id = 0;
4472 while (!napi->napi_id) {
4473 napi->napi_id = ++napi_gen_id;
4474 if (napi_by_id(napi->napi_id))
4475 napi->napi_id = 0;
4476 }
4477
4478 hlist_add_head_rcu(&napi->napi_hash_node,
4479 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4480
4481 spin_unlock(&napi_hash_lock);
4482 }
4483 }
4484 EXPORT_SYMBOL_GPL(napi_hash_add);
4485
4486 /* Warning : caller is responsible to make sure rcu grace period
4487 * is respected before freeing memory containing @napi
4488 */
4489 void napi_hash_del(struct napi_struct *napi)
4490 {
4491 spin_lock(&napi_hash_lock);
4492
4493 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4494 hlist_del_rcu(&napi->napi_hash_node);
4495
4496 spin_unlock(&napi_hash_lock);
4497 }
4498 EXPORT_SYMBOL_GPL(napi_hash_del);
4499
4500 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4501 {
4502 struct napi_struct *napi;
4503
4504 napi = container_of(timer, struct napi_struct, timer);
4505 if (napi->gro_list)
4506 napi_schedule(napi);
4507
4508 return HRTIMER_NORESTART;
4509 }
4510
4511 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4512 int (*poll)(struct napi_struct *, int), int weight)
4513 {
4514 INIT_LIST_HEAD(&napi->poll_list);
4515 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4516 napi->timer.function = napi_watchdog;
4517 napi->gro_count = 0;
4518 napi->gro_list = NULL;
4519 napi->skb = NULL;
4520 napi->poll = poll;
4521 if (weight > NAPI_POLL_WEIGHT)
4522 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4523 weight, dev->name);
4524 napi->weight = weight;
4525 list_add(&napi->dev_list, &dev->napi_list);
4526 napi->dev = dev;
4527 #ifdef CONFIG_NETPOLL
4528 spin_lock_init(&napi->poll_lock);
4529 napi->poll_owner = -1;
4530 #endif
4531 set_bit(NAPI_STATE_SCHED, &napi->state);
4532 }
4533 EXPORT_SYMBOL(netif_napi_add);
4534
4535 void napi_disable(struct napi_struct *n)
4536 {
4537 might_sleep();
4538 set_bit(NAPI_STATE_DISABLE, &n->state);
4539
4540 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4541 msleep(1);
4542
4543 hrtimer_cancel(&n->timer);
4544
4545 clear_bit(NAPI_STATE_DISABLE, &n->state);
4546 }
4547 EXPORT_SYMBOL(napi_disable);
4548
4549 void netif_napi_del(struct napi_struct *napi)
4550 {
4551 list_del_init(&napi->dev_list);
4552 napi_free_frags(napi);
4553
4554 kfree_skb_list(napi->gro_list);
4555 napi->gro_list = NULL;
4556 napi->gro_count = 0;
4557 }
4558 EXPORT_SYMBOL(netif_napi_del);
4559
4560 static void net_rx_action(struct softirq_action *h)
4561 {
4562 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4563 unsigned long time_limit = jiffies + 2;
4564 int budget = netdev_budget;
4565 LIST_HEAD(list);
4566 LIST_HEAD(repoll);
4567 void *have;
4568
4569 local_irq_disable();
4570 list_splice_init(&sd->poll_list, &list);
4571 local_irq_enable();
4572
4573 while (!list_empty(&list)) {
4574 struct napi_struct *n;
4575 int work, weight;
4576
4577 /* If softirq window is exhausted then punt.
4578 * Allow this to run for 2 jiffies since which will allow
4579 * an average latency of 1.5/HZ.
4580 */
4581 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4582 goto softnet_break;
4583
4584
4585 n = list_first_entry(&list, struct napi_struct, poll_list);
4586 list_del_init(&n->poll_list);
4587
4588 have = netpoll_poll_lock(n);
4589
4590 weight = n->weight;
4591
4592 /* This NAPI_STATE_SCHED test is for avoiding a race
4593 * with netpoll's poll_napi(). Only the entity which
4594 * obtains the lock and sees NAPI_STATE_SCHED set will
4595 * actually make the ->poll() call. Therefore we avoid
4596 * accidentally calling ->poll() when NAPI is not scheduled.
4597 */
4598 work = 0;
4599 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4600 work = n->poll(n, weight);
4601 trace_napi_poll(n);
4602 }
4603
4604 WARN_ON_ONCE(work > weight);
4605
4606 budget -= work;
4607
4608 /* Drivers must not modify the NAPI state if they
4609 * consume the entire weight. In such cases this code
4610 * still "owns" the NAPI instance and therefore can
4611 * move the instance around on the list at-will.
4612 */
4613 if (unlikely(work == weight)) {
4614 if (unlikely(napi_disable_pending(n))) {
4615 napi_complete(n);
4616 } else {
4617 if (n->gro_list) {
4618 /* flush too old packets
4619 * If HZ < 1000, flush all packets.
4620 */
4621 napi_gro_flush(n, HZ >= 1000);
4622 }
4623 list_add_tail(&n->poll_list, &repoll);
4624 }
4625 }
4626
4627 netpoll_poll_unlock(have);
4628 }
4629
4630 if (!sd_has_rps_ipi_waiting(sd) &&
4631 list_empty(&list) &&
4632 list_empty(&repoll))
4633 return;
4634 out:
4635 local_irq_disable();
4636
4637 list_splice_tail_init(&sd->poll_list, &list);
4638 list_splice_tail(&repoll, &list);
4639 list_splice(&list, &sd->poll_list);
4640 if (!list_empty(&sd->poll_list))
4641 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4642
4643 net_rps_action_and_irq_enable(sd);
4644
4645 return;
4646
4647 softnet_break:
4648 sd->time_squeeze++;
4649 goto out;
4650 }
4651
4652 struct netdev_adjacent {
4653 struct net_device *dev;
4654
4655 /* upper master flag, there can only be one master device per list */
4656 bool master;
4657
4658 /* counter for the number of times this device was added to us */
4659 u16 ref_nr;
4660
4661 /* private field for the users */
4662 void *private;
4663
4664 struct list_head list;
4665 struct rcu_head rcu;
4666 };
4667
4668 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4669 struct net_device *adj_dev,
4670 struct list_head *adj_list)
4671 {
4672 struct netdev_adjacent *adj;
4673
4674 list_for_each_entry(adj, adj_list, list) {
4675 if (adj->dev == adj_dev)
4676 return adj;
4677 }
4678 return NULL;
4679 }
4680
4681 /**
4682 * netdev_has_upper_dev - Check if device is linked to an upper device
4683 * @dev: device
4684 * @upper_dev: upper device to check
4685 *
4686 * Find out if a device is linked to specified upper device and return true
4687 * in case it is. Note that this checks only immediate upper device,
4688 * not through a complete stack of devices. The caller must hold the RTNL lock.
4689 */
4690 bool netdev_has_upper_dev(struct net_device *dev,
4691 struct net_device *upper_dev)
4692 {
4693 ASSERT_RTNL();
4694
4695 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4696 }
4697 EXPORT_SYMBOL(netdev_has_upper_dev);
4698
4699 /**
4700 * netdev_has_any_upper_dev - Check if device is linked to some device
4701 * @dev: device
4702 *
4703 * Find out if a device is linked to an upper device and return true in case
4704 * it is. The caller must hold the RTNL lock.
4705 */
4706 static bool netdev_has_any_upper_dev(struct net_device *dev)
4707 {
4708 ASSERT_RTNL();
4709
4710 return !list_empty(&dev->all_adj_list.upper);
4711 }
4712
4713 /**
4714 * netdev_master_upper_dev_get - Get master upper device
4715 * @dev: device
4716 *
4717 * Find a master upper device and return pointer to it or NULL in case
4718 * it's not there. The caller must hold the RTNL lock.
4719 */
4720 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4721 {
4722 struct netdev_adjacent *upper;
4723
4724 ASSERT_RTNL();
4725
4726 if (list_empty(&dev->adj_list.upper))
4727 return NULL;
4728
4729 upper = list_first_entry(&dev->adj_list.upper,
4730 struct netdev_adjacent, list);
4731 if (likely(upper->master))
4732 return upper->dev;
4733 return NULL;
4734 }
4735 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4736
4737 void *netdev_adjacent_get_private(struct list_head *adj_list)
4738 {
4739 struct netdev_adjacent *adj;
4740
4741 adj = list_entry(adj_list, struct netdev_adjacent, list);
4742
4743 return adj->private;
4744 }
4745 EXPORT_SYMBOL(netdev_adjacent_get_private);
4746
4747 /**
4748 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4749 * @dev: device
4750 * @iter: list_head ** of the current position
4751 *
4752 * Gets the next device from the dev's upper list, starting from iter
4753 * position. The caller must hold RCU read lock.
4754 */
4755 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4756 struct list_head **iter)
4757 {
4758 struct netdev_adjacent *upper;
4759
4760 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4761
4762 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4763
4764 if (&upper->list == &dev->adj_list.upper)
4765 return NULL;
4766
4767 *iter = &upper->list;
4768
4769 return upper->dev;
4770 }
4771 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4772
4773 /**
4774 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4775 * @dev: device
4776 * @iter: list_head ** of the current position
4777 *
4778 * Gets the next device from the dev's upper list, starting from iter
4779 * position. The caller must hold RCU read lock.
4780 */
4781 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4782 struct list_head **iter)
4783 {
4784 struct netdev_adjacent *upper;
4785
4786 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4787
4788 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4789
4790 if (&upper->list == &dev->all_adj_list.upper)
4791 return NULL;
4792
4793 *iter = &upper->list;
4794
4795 return upper->dev;
4796 }
4797 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4798
4799 /**
4800 * netdev_lower_get_next_private - Get the next ->private from the
4801 * lower neighbour list
4802 * @dev: device
4803 * @iter: list_head ** of the current position
4804 *
4805 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4806 * list, starting from iter position. The caller must hold either hold the
4807 * RTNL lock or its own locking that guarantees that the neighbour lower
4808 * list will remain unchainged.
4809 */
4810 void *netdev_lower_get_next_private(struct net_device *dev,
4811 struct list_head **iter)
4812 {
4813 struct netdev_adjacent *lower;
4814
4815 lower = list_entry(*iter, struct netdev_adjacent, list);
4816
4817 if (&lower->list == &dev->adj_list.lower)
4818 return NULL;
4819
4820 *iter = lower->list.next;
4821
4822 return lower->private;
4823 }
4824 EXPORT_SYMBOL(netdev_lower_get_next_private);
4825
4826 /**
4827 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4828 * lower neighbour list, RCU
4829 * variant
4830 * @dev: device
4831 * @iter: list_head ** of the current position
4832 *
4833 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4834 * list, starting from iter position. The caller must hold RCU read lock.
4835 */
4836 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4837 struct list_head **iter)
4838 {
4839 struct netdev_adjacent *lower;
4840
4841 WARN_ON_ONCE(!rcu_read_lock_held());
4842
4843 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4844
4845 if (&lower->list == &dev->adj_list.lower)
4846 return NULL;
4847
4848 *iter = &lower->list;
4849
4850 return lower->private;
4851 }
4852 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4853
4854 /**
4855 * netdev_lower_get_next - Get the next device from the lower neighbour
4856 * list
4857 * @dev: device
4858 * @iter: list_head ** of the current position
4859 *
4860 * Gets the next netdev_adjacent from the dev's lower neighbour
4861 * list, starting from iter position. The caller must hold RTNL lock or
4862 * its own locking that guarantees that the neighbour lower
4863 * list will remain unchainged.
4864 */
4865 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4866 {
4867 struct netdev_adjacent *lower;
4868
4869 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4870
4871 if (&lower->list == &dev->adj_list.lower)
4872 return NULL;
4873
4874 *iter = &lower->list;
4875
4876 return lower->dev;
4877 }
4878 EXPORT_SYMBOL(netdev_lower_get_next);
4879
4880 /**
4881 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4882 * lower neighbour list, RCU
4883 * variant
4884 * @dev: device
4885 *
4886 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4887 * list. The caller must hold RCU read lock.
4888 */
4889 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4890 {
4891 struct netdev_adjacent *lower;
4892
4893 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4894 struct netdev_adjacent, list);
4895 if (lower)
4896 return lower->private;
4897 return NULL;
4898 }
4899 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4900
4901 /**
4902 * netdev_master_upper_dev_get_rcu - Get master upper device
4903 * @dev: device
4904 *
4905 * Find a master upper device and return pointer to it or NULL in case
4906 * it's not there. The caller must hold the RCU read lock.
4907 */
4908 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4909 {
4910 struct netdev_adjacent *upper;
4911
4912 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4913 struct netdev_adjacent, list);
4914 if (upper && likely(upper->master))
4915 return upper->dev;
4916 return NULL;
4917 }
4918 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4919
4920 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4921 struct net_device *adj_dev,
4922 struct list_head *dev_list)
4923 {
4924 char linkname[IFNAMSIZ+7];
4925 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4926 "upper_%s" : "lower_%s", adj_dev->name);
4927 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4928 linkname);
4929 }
4930 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4931 char *name,
4932 struct list_head *dev_list)
4933 {
4934 char linkname[IFNAMSIZ+7];
4935 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4936 "upper_%s" : "lower_%s", name);
4937 sysfs_remove_link(&(dev->dev.kobj), linkname);
4938 }
4939
4940 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4941 struct net_device *adj_dev,
4942 struct list_head *dev_list)
4943 {
4944 return (dev_list == &dev->adj_list.upper ||
4945 dev_list == &dev->adj_list.lower) &&
4946 net_eq(dev_net(dev), dev_net(adj_dev));
4947 }
4948
4949 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4950 struct net_device *adj_dev,
4951 struct list_head *dev_list,
4952 void *private, bool master)
4953 {
4954 struct netdev_adjacent *adj;
4955 int ret;
4956
4957 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4958
4959 if (adj) {
4960 adj->ref_nr++;
4961 return 0;
4962 }
4963
4964 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4965 if (!adj)
4966 return -ENOMEM;
4967
4968 adj->dev = adj_dev;
4969 adj->master = master;
4970 adj->ref_nr = 1;
4971 adj->private = private;
4972 dev_hold(adj_dev);
4973
4974 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4975 adj_dev->name, dev->name, adj_dev->name);
4976
4977 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
4978 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4979 if (ret)
4980 goto free_adj;
4981 }
4982
4983 /* Ensure that master link is always the first item in list. */
4984 if (master) {
4985 ret = sysfs_create_link(&(dev->dev.kobj),
4986 &(adj_dev->dev.kobj), "master");
4987 if (ret)
4988 goto remove_symlinks;
4989
4990 list_add_rcu(&adj->list, dev_list);
4991 } else {
4992 list_add_tail_rcu(&adj->list, dev_list);
4993 }
4994
4995 return 0;
4996
4997 remove_symlinks:
4998 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
4999 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5000 free_adj:
5001 kfree(adj);
5002 dev_put(adj_dev);
5003
5004 return ret;
5005 }
5006
5007 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5008 struct net_device *adj_dev,
5009 struct list_head *dev_list)
5010 {
5011 struct netdev_adjacent *adj;
5012
5013 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5014
5015 if (!adj) {
5016 pr_err("tried to remove device %s from %s\n",
5017 dev->name, adj_dev->name);
5018 BUG();
5019 }
5020
5021 if (adj->ref_nr > 1) {
5022 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5023 adj->ref_nr-1);
5024 adj->ref_nr--;
5025 return;
5026 }
5027
5028 if (adj->master)
5029 sysfs_remove_link(&(dev->dev.kobj), "master");
5030
5031 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5032 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5033
5034 list_del_rcu(&adj->list);
5035 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5036 adj_dev->name, dev->name, adj_dev->name);
5037 dev_put(adj_dev);
5038 kfree_rcu(adj, rcu);
5039 }
5040
5041 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5042 struct net_device *upper_dev,
5043 struct list_head *up_list,
5044 struct list_head *down_list,
5045 void *private, bool master)
5046 {
5047 int ret;
5048
5049 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5050 master);
5051 if (ret)
5052 return ret;
5053
5054 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5055 false);
5056 if (ret) {
5057 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5058 return ret;
5059 }
5060
5061 return 0;
5062 }
5063
5064 static int __netdev_adjacent_dev_link(struct net_device *dev,
5065 struct net_device *upper_dev)
5066 {
5067 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5068 &dev->all_adj_list.upper,
5069 &upper_dev->all_adj_list.lower,
5070 NULL, false);
5071 }
5072
5073 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5074 struct net_device *upper_dev,
5075 struct list_head *up_list,
5076 struct list_head *down_list)
5077 {
5078 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5079 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5080 }
5081
5082 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5083 struct net_device *upper_dev)
5084 {
5085 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5086 &dev->all_adj_list.upper,
5087 &upper_dev->all_adj_list.lower);
5088 }
5089
5090 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5091 struct net_device *upper_dev,
5092 void *private, bool master)
5093 {
5094 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5095
5096 if (ret)
5097 return ret;
5098
5099 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5100 &dev->adj_list.upper,
5101 &upper_dev->adj_list.lower,
5102 private, master);
5103 if (ret) {
5104 __netdev_adjacent_dev_unlink(dev, upper_dev);
5105 return ret;
5106 }
5107
5108 return 0;
5109 }
5110
5111 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5112 struct net_device *upper_dev)
5113 {
5114 __netdev_adjacent_dev_unlink(dev, upper_dev);
5115 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5116 &dev->adj_list.upper,
5117 &upper_dev->adj_list.lower);
5118 }
5119
5120 static int __netdev_upper_dev_link(struct net_device *dev,
5121 struct net_device *upper_dev, bool master,
5122 void *private)
5123 {
5124 struct netdev_adjacent *i, *j, *to_i, *to_j;
5125 int ret = 0;
5126
5127 ASSERT_RTNL();
5128
5129 if (dev == upper_dev)
5130 return -EBUSY;
5131
5132 /* To prevent loops, check if dev is not upper device to upper_dev. */
5133 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5134 return -EBUSY;
5135
5136 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5137 return -EEXIST;
5138
5139 if (master && netdev_master_upper_dev_get(dev))
5140 return -EBUSY;
5141
5142 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5143 master);
5144 if (ret)
5145 return ret;
5146
5147 /* Now that we linked these devs, make all the upper_dev's
5148 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5149 * versa, and don't forget the devices itself. All of these
5150 * links are non-neighbours.
5151 */
5152 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5153 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5154 pr_debug("Interlinking %s with %s, non-neighbour\n",
5155 i->dev->name, j->dev->name);
5156 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5157 if (ret)
5158 goto rollback_mesh;
5159 }
5160 }
5161
5162 /* add dev to every upper_dev's upper device */
5163 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5164 pr_debug("linking %s's upper device %s with %s\n",
5165 upper_dev->name, i->dev->name, dev->name);
5166 ret = __netdev_adjacent_dev_link(dev, i->dev);
5167 if (ret)
5168 goto rollback_upper_mesh;
5169 }
5170
5171 /* add upper_dev to every dev's lower device */
5172 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5173 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5174 i->dev->name, upper_dev->name);
5175 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5176 if (ret)
5177 goto rollback_lower_mesh;
5178 }
5179
5180 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5181 return 0;
5182
5183 rollback_lower_mesh:
5184 to_i = i;
5185 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5186 if (i == to_i)
5187 break;
5188 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5189 }
5190
5191 i = NULL;
5192
5193 rollback_upper_mesh:
5194 to_i = i;
5195 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5196 if (i == to_i)
5197 break;
5198 __netdev_adjacent_dev_unlink(dev, i->dev);
5199 }
5200
5201 i = j = NULL;
5202
5203 rollback_mesh:
5204 to_i = i;
5205 to_j = j;
5206 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5207 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5208 if (i == to_i && j == to_j)
5209 break;
5210 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5211 }
5212 if (i == to_i)
5213 break;
5214 }
5215
5216 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5217
5218 return ret;
5219 }
5220
5221 /**
5222 * netdev_upper_dev_link - Add a link to the upper device
5223 * @dev: device
5224 * @upper_dev: new upper device
5225 *
5226 * Adds a link to device which is upper to this one. The caller must hold
5227 * the RTNL lock. On a failure a negative errno code is returned.
5228 * On success the reference counts are adjusted and the function
5229 * returns zero.
5230 */
5231 int netdev_upper_dev_link(struct net_device *dev,
5232 struct net_device *upper_dev)
5233 {
5234 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5235 }
5236 EXPORT_SYMBOL(netdev_upper_dev_link);
5237
5238 /**
5239 * netdev_master_upper_dev_link - Add a master link to the upper device
5240 * @dev: device
5241 * @upper_dev: new upper device
5242 *
5243 * Adds a link to device which is upper to this one. In this case, only
5244 * one master upper device can be linked, although other non-master devices
5245 * might be linked as well. The caller must hold the RTNL lock.
5246 * On a failure a negative errno code is returned. On success the reference
5247 * counts are adjusted and the function returns zero.
5248 */
5249 int netdev_master_upper_dev_link(struct net_device *dev,
5250 struct net_device *upper_dev)
5251 {
5252 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5253 }
5254 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5255
5256 int netdev_master_upper_dev_link_private(struct net_device *dev,
5257 struct net_device *upper_dev,
5258 void *private)
5259 {
5260 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5261 }
5262 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5263
5264 /**
5265 * netdev_upper_dev_unlink - Removes a link to upper device
5266 * @dev: device
5267 * @upper_dev: new upper device
5268 *
5269 * Removes a link to device which is upper to this one. The caller must hold
5270 * the RTNL lock.
5271 */
5272 void netdev_upper_dev_unlink(struct net_device *dev,
5273 struct net_device *upper_dev)
5274 {
5275 struct netdev_adjacent *i, *j;
5276 ASSERT_RTNL();
5277
5278 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5279
5280 /* Here is the tricky part. We must remove all dev's lower
5281 * devices from all upper_dev's upper devices and vice
5282 * versa, to maintain the graph relationship.
5283 */
5284 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5285 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5286 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5287
5288 /* remove also the devices itself from lower/upper device
5289 * list
5290 */
5291 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5292 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5293
5294 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5295 __netdev_adjacent_dev_unlink(dev, i->dev);
5296
5297 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5298 }
5299 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5300
5301 void netdev_adjacent_add_links(struct net_device *dev)
5302 {
5303 struct netdev_adjacent *iter;
5304
5305 struct net *net = dev_net(dev);
5306
5307 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5308 if (!net_eq(net,dev_net(iter->dev)))
5309 continue;
5310 netdev_adjacent_sysfs_add(iter->dev, dev,
5311 &iter->dev->adj_list.lower);
5312 netdev_adjacent_sysfs_add(dev, iter->dev,
5313 &dev->adj_list.upper);
5314 }
5315
5316 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5317 if (!net_eq(net,dev_net(iter->dev)))
5318 continue;
5319 netdev_adjacent_sysfs_add(iter->dev, dev,
5320 &iter->dev->adj_list.upper);
5321 netdev_adjacent_sysfs_add(dev, iter->dev,
5322 &dev->adj_list.lower);
5323 }
5324 }
5325
5326 void netdev_adjacent_del_links(struct net_device *dev)
5327 {
5328 struct netdev_adjacent *iter;
5329
5330 struct net *net = dev_net(dev);
5331
5332 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5333 if (!net_eq(net,dev_net(iter->dev)))
5334 continue;
5335 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5336 &iter->dev->adj_list.lower);
5337 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5338 &dev->adj_list.upper);
5339 }
5340
5341 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5342 if (!net_eq(net,dev_net(iter->dev)))
5343 continue;
5344 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5345 &iter->dev->adj_list.upper);
5346 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5347 &dev->adj_list.lower);
5348 }
5349 }
5350
5351 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5352 {
5353 struct netdev_adjacent *iter;
5354
5355 struct net *net = dev_net(dev);
5356
5357 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5358 if (!net_eq(net,dev_net(iter->dev)))
5359 continue;
5360 netdev_adjacent_sysfs_del(iter->dev, oldname,
5361 &iter->dev->adj_list.lower);
5362 netdev_adjacent_sysfs_add(iter->dev, dev,
5363 &iter->dev->adj_list.lower);
5364 }
5365
5366 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5367 if (!net_eq(net,dev_net(iter->dev)))
5368 continue;
5369 netdev_adjacent_sysfs_del(iter->dev, oldname,
5370 &iter->dev->adj_list.upper);
5371 netdev_adjacent_sysfs_add(iter->dev, dev,
5372 &iter->dev->adj_list.upper);
5373 }
5374 }
5375
5376 void *netdev_lower_dev_get_private(struct net_device *dev,
5377 struct net_device *lower_dev)
5378 {
5379 struct netdev_adjacent *lower;
5380
5381 if (!lower_dev)
5382 return NULL;
5383 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5384 if (!lower)
5385 return NULL;
5386
5387 return lower->private;
5388 }
5389 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5390
5391
5392 int dev_get_nest_level(struct net_device *dev,
5393 bool (*type_check)(struct net_device *dev))
5394 {
5395 struct net_device *lower = NULL;
5396 struct list_head *iter;
5397 int max_nest = -1;
5398 int nest;
5399
5400 ASSERT_RTNL();
5401
5402 netdev_for_each_lower_dev(dev, lower, iter) {
5403 nest = dev_get_nest_level(lower, type_check);
5404 if (max_nest < nest)
5405 max_nest = nest;
5406 }
5407
5408 if (type_check(dev))
5409 max_nest++;
5410
5411 return max_nest;
5412 }
5413 EXPORT_SYMBOL(dev_get_nest_level);
5414
5415 static void dev_change_rx_flags(struct net_device *dev, int flags)
5416 {
5417 const struct net_device_ops *ops = dev->netdev_ops;
5418
5419 if (ops->ndo_change_rx_flags)
5420 ops->ndo_change_rx_flags(dev, flags);
5421 }
5422
5423 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5424 {
5425 unsigned int old_flags = dev->flags;
5426 kuid_t uid;
5427 kgid_t gid;
5428
5429 ASSERT_RTNL();
5430
5431 dev->flags |= IFF_PROMISC;
5432 dev->promiscuity += inc;
5433 if (dev->promiscuity == 0) {
5434 /*
5435 * Avoid overflow.
5436 * If inc causes overflow, untouch promisc and return error.
5437 */
5438 if (inc < 0)
5439 dev->flags &= ~IFF_PROMISC;
5440 else {
5441 dev->promiscuity -= inc;
5442 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5443 dev->name);
5444 return -EOVERFLOW;
5445 }
5446 }
5447 if (dev->flags != old_flags) {
5448 pr_info("device %s %s promiscuous mode\n",
5449 dev->name,
5450 dev->flags & IFF_PROMISC ? "entered" : "left");
5451 if (audit_enabled) {
5452 current_uid_gid(&uid, &gid);
5453 audit_log(current->audit_context, GFP_ATOMIC,
5454 AUDIT_ANOM_PROMISCUOUS,
5455 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5456 dev->name, (dev->flags & IFF_PROMISC),
5457 (old_flags & IFF_PROMISC),
5458 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5459 from_kuid(&init_user_ns, uid),
5460 from_kgid(&init_user_ns, gid),
5461 audit_get_sessionid(current));
5462 }
5463
5464 dev_change_rx_flags(dev, IFF_PROMISC);
5465 }
5466 if (notify)
5467 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5468 return 0;
5469 }
5470
5471 /**
5472 * dev_set_promiscuity - update promiscuity count on a device
5473 * @dev: device
5474 * @inc: modifier
5475 *
5476 * Add or remove promiscuity from a device. While the count in the device
5477 * remains above zero the interface remains promiscuous. Once it hits zero
5478 * the device reverts back to normal filtering operation. A negative inc
5479 * value is used to drop promiscuity on the device.
5480 * Return 0 if successful or a negative errno code on error.
5481 */
5482 int dev_set_promiscuity(struct net_device *dev, int inc)
5483 {
5484 unsigned int old_flags = dev->flags;
5485 int err;
5486
5487 err = __dev_set_promiscuity(dev, inc, true);
5488 if (err < 0)
5489 return err;
5490 if (dev->flags != old_flags)
5491 dev_set_rx_mode(dev);
5492 return err;
5493 }
5494 EXPORT_SYMBOL(dev_set_promiscuity);
5495
5496 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5497 {
5498 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5499
5500 ASSERT_RTNL();
5501
5502 dev->flags |= IFF_ALLMULTI;
5503 dev->allmulti += inc;
5504 if (dev->allmulti == 0) {
5505 /*
5506 * Avoid overflow.
5507 * If inc causes overflow, untouch allmulti and return error.
5508 */
5509 if (inc < 0)
5510 dev->flags &= ~IFF_ALLMULTI;
5511 else {
5512 dev->allmulti -= inc;
5513 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5514 dev->name);
5515 return -EOVERFLOW;
5516 }
5517 }
5518 if (dev->flags ^ old_flags) {
5519 dev_change_rx_flags(dev, IFF_ALLMULTI);
5520 dev_set_rx_mode(dev);
5521 if (notify)
5522 __dev_notify_flags(dev, old_flags,
5523 dev->gflags ^ old_gflags);
5524 }
5525 return 0;
5526 }
5527
5528 /**
5529 * dev_set_allmulti - update allmulti count on a device
5530 * @dev: device
5531 * @inc: modifier
5532 *
5533 * Add or remove reception of all multicast frames to a device. While the
5534 * count in the device remains above zero the interface remains listening
5535 * to all interfaces. Once it hits zero the device reverts back to normal
5536 * filtering operation. A negative @inc value is used to drop the counter
5537 * when releasing a resource needing all multicasts.
5538 * Return 0 if successful or a negative errno code on error.
5539 */
5540
5541 int dev_set_allmulti(struct net_device *dev, int inc)
5542 {
5543 return __dev_set_allmulti(dev, inc, true);
5544 }
5545 EXPORT_SYMBOL(dev_set_allmulti);
5546
5547 /*
5548 * Upload unicast and multicast address lists to device and
5549 * configure RX filtering. When the device doesn't support unicast
5550 * filtering it is put in promiscuous mode while unicast addresses
5551 * are present.
5552 */
5553 void __dev_set_rx_mode(struct net_device *dev)
5554 {
5555 const struct net_device_ops *ops = dev->netdev_ops;
5556
5557 /* dev_open will call this function so the list will stay sane. */
5558 if (!(dev->flags&IFF_UP))
5559 return;
5560
5561 if (!netif_device_present(dev))
5562 return;
5563
5564 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5565 /* Unicast addresses changes may only happen under the rtnl,
5566 * therefore calling __dev_set_promiscuity here is safe.
5567 */
5568 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5569 __dev_set_promiscuity(dev, 1, false);
5570 dev->uc_promisc = true;
5571 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5572 __dev_set_promiscuity(dev, -1, false);
5573 dev->uc_promisc = false;
5574 }
5575 }
5576
5577 if (ops->ndo_set_rx_mode)
5578 ops->ndo_set_rx_mode(dev);
5579 }
5580
5581 void dev_set_rx_mode(struct net_device *dev)
5582 {
5583 netif_addr_lock_bh(dev);
5584 __dev_set_rx_mode(dev);
5585 netif_addr_unlock_bh(dev);
5586 }
5587
5588 /**
5589 * dev_get_flags - get flags reported to userspace
5590 * @dev: device
5591 *
5592 * Get the combination of flag bits exported through APIs to userspace.
5593 */
5594 unsigned int dev_get_flags(const struct net_device *dev)
5595 {
5596 unsigned int flags;
5597
5598 flags = (dev->flags & ~(IFF_PROMISC |
5599 IFF_ALLMULTI |
5600 IFF_RUNNING |
5601 IFF_LOWER_UP |
5602 IFF_DORMANT)) |
5603 (dev->gflags & (IFF_PROMISC |
5604 IFF_ALLMULTI));
5605
5606 if (netif_running(dev)) {
5607 if (netif_oper_up(dev))
5608 flags |= IFF_RUNNING;
5609 if (netif_carrier_ok(dev))
5610 flags |= IFF_LOWER_UP;
5611 if (netif_dormant(dev))
5612 flags |= IFF_DORMANT;
5613 }
5614
5615 return flags;
5616 }
5617 EXPORT_SYMBOL(dev_get_flags);
5618
5619 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5620 {
5621 unsigned int old_flags = dev->flags;
5622 int ret;
5623
5624 ASSERT_RTNL();
5625
5626 /*
5627 * Set the flags on our device.
5628 */
5629
5630 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5631 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5632 IFF_AUTOMEDIA)) |
5633 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5634 IFF_ALLMULTI));
5635
5636 /*
5637 * Load in the correct multicast list now the flags have changed.
5638 */
5639
5640 if ((old_flags ^ flags) & IFF_MULTICAST)
5641 dev_change_rx_flags(dev, IFF_MULTICAST);
5642
5643 dev_set_rx_mode(dev);
5644
5645 /*
5646 * Have we downed the interface. We handle IFF_UP ourselves
5647 * according to user attempts to set it, rather than blindly
5648 * setting it.
5649 */
5650
5651 ret = 0;
5652 if ((old_flags ^ flags) & IFF_UP)
5653 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5654
5655 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5656 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5657 unsigned int old_flags = dev->flags;
5658
5659 dev->gflags ^= IFF_PROMISC;
5660
5661 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5662 if (dev->flags != old_flags)
5663 dev_set_rx_mode(dev);
5664 }
5665
5666 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5667 is important. Some (broken) drivers set IFF_PROMISC, when
5668 IFF_ALLMULTI is requested not asking us and not reporting.
5669 */
5670 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5671 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5672
5673 dev->gflags ^= IFF_ALLMULTI;
5674 __dev_set_allmulti(dev, inc, false);
5675 }
5676
5677 return ret;
5678 }
5679
5680 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5681 unsigned int gchanges)
5682 {
5683 unsigned int changes = dev->flags ^ old_flags;
5684
5685 if (gchanges)
5686 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5687
5688 if (changes & IFF_UP) {
5689 if (dev->flags & IFF_UP)
5690 call_netdevice_notifiers(NETDEV_UP, dev);
5691 else
5692 call_netdevice_notifiers(NETDEV_DOWN, dev);
5693 }
5694
5695 if (dev->flags & IFF_UP &&
5696 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5697 struct netdev_notifier_change_info change_info;
5698
5699 change_info.flags_changed = changes;
5700 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5701 &change_info.info);
5702 }
5703 }
5704
5705 /**
5706 * dev_change_flags - change device settings
5707 * @dev: device
5708 * @flags: device state flags
5709 *
5710 * Change settings on device based state flags. The flags are
5711 * in the userspace exported format.
5712 */
5713 int dev_change_flags(struct net_device *dev, unsigned int flags)
5714 {
5715 int ret;
5716 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5717
5718 ret = __dev_change_flags(dev, flags);
5719 if (ret < 0)
5720 return ret;
5721
5722 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5723 __dev_notify_flags(dev, old_flags, changes);
5724 return ret;
5725 }
5726 EXPORT_SYMBOL(dev_change_flags);
5727
5728 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5729 {
5730 const struct net_device_ops *ops = dev->netdev_ops;
5731
5732 if (ops->ndo_change_mtu)
5733 return ops->ndo_change_mtu(dev, new_mtu);
5734
5735 dev->mtu = new_mtu;
5736 return 0;
5737 }
5738
5739 /**
5740 * dev_set_mtu - Change maximum transfer unit
5741 * @dev: device
5742 * @new_mtu: new transfer unit
5743 *
5744 * Change the maximum transfer size of the network device.
5745 */
5746 int dev_set_mtu(struct net_device *dev, int new_mtu)
5747 {
5748 int err, orig_mtu;
5749
5750 if (new_mtu == dev->mtu)
5751 return 0;
5752
5753 /* MTU must be positive. */
5754 if (new_mtu < 0)
5755 return -EINVAL;
5756
5757 if (!netif_device_present(dev))
5758 return -ENODEV;
5759
5760 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5761 err = notifier_to_errno(err);
5762 if (err)
5763 return err;
5764
5765 orig_mtu = dev->mtu;
5766 err = __dev_set_mtu(dev, new_mtu);
5767
5768 if (!err) {
5769 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5770 err = notifier_to_errno(err);
5771 if (err) {
5772 /* setting mtu back and notifying everyone again,
5773 * so that they have a chance to revert changes.
5774 */
5775 __dev_set_mtu(dev, orig_mtu);
5776 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5777 }
5778 }
5779 return err;
5780 }
5781 EXPORT_SYMBOL(dev_set_mtu);
5782
5783 /**
5784 * dev_set_group - Change group this device belongs to
5785 * @dev: device
5786 * @new_group: group this device should belong to
5787 */
5788 void dev_set_group(struct net_device *dev, int new_group)
5789 {
5790 dev->group = new_group;
5791 }
5792 EXPORT_SYMBOL(dev_set_group);
5793
5794 /**
5795 * dev_set_mac_address - Change Media Access Control Address
5796 * @dev: device
5797 * @sa: new address
5798 *
5799 * Change the hardware (MAC) address of the device
5800 */
5801 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5802 {
5803 const struct net_device_ops *ops = dev->netdev_ops;
5804 int err;
5805
5806 if (!ops->ndo_set_mac_address)
5807 return -EOPNOTSUPP;
5808 if (sa->sa_family != dev->type)
5809 return -EINVAL;
5810 if (!netif_device_present(dev))
5811 return -ENODEV;
5812 err = ops->ndo_set_mac_address(dev, sa);
5813 if (err)
5814 return err;
5815 dev->addr_assign_type = NET_ADDR_SET;
5816 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5817 add_device_randomness(dev->dev_addr, dev->addr_len);
5818 return 0;
5819 }
5820 EXPORT_SYMBOL(dev_set_mac_address);
5821
5822 /**
5823 * dev_change_carrier - Change device carrier
5824 * @dev: device
5825 * @new_carrier: new value
5826 *
5827 * Change device carrier
5828 */
5829 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5830 {
5831 const struct net_device_ops *ops = dev->netdev_ops;
5832
5833 if (!ops->ndo_change_carrier)
5834 return -EOPNOTSUPP;
5835 if (!netif_device_present(dev))
5836 return -ENODEV;
5837 return ops->ndo_change_carrier(dev, new_carrier);
5838 }
5839 EXPORT_SYMBOL(dev_change_carrier);
5840
5841 /**
5842 * dev_get_phys_port_id - Get device physical port ID
5843 * @dev: device
5844 * @ppid: port ID
5845 *
5846 * Get device physical port ID
5847 */
5848 int dev_get_phys_port_id(struct net_device *dev,
5849 struct netdev_phys_port_id *ppid)
5850 {
5851 const struct net_device_ops *ops = dev->netdev_ops;
5852
5853 if (!ops->ndo_get_phys_port_id)
5854 return -EOPNOTSUPP;
5855 return ops->ndo_get_phys_port_id(dev, ppid);
5856 }
5857 EXPORT_SYMBOL(dev_get_phys_port_id);
5858
5859 /**
5860 * dev_new_index - allocate an ifindex
5861 * @net: the applicable net namespace
5862 *
5863 * Returns a suitable unique value for a new device interface
5864 * number. The caller must hold the rtnl semaphore or the
5865 * dev_base_lock to be sure it remains unique.
5866 */
5867 static int dev_new_index(struct net *net)
5868 {
5869 int ifindex = net->ifindex;
5870 for (;;) {
5871 if (++ifindex <= 0)
5872 ifindex = 1;
5873 if (!__dev_get_by_index(net, ifindex))
5874 return net->ifindex = ifindex;
5875 }
5876 }
5877
5878 /* Delayed registration/unregisteration */
5879 static LIST_HEAD(net_todo_list);
5880 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5881
5882 static void net_set_todo(struct net_device *dev)
5883 {
5884 list_add_tail(&dev->todo_list, &net_todo_list);
5885 dev_net(dev)->dev_unreg_count++;
5886 }
5887
5888 static void rollback_registered_many(struct list_head *head)
5889 {
5890 struct net_device *dev, *tmp;
5891 LIST_HEAD(close_head);
5892
5893 BUG_ON(dev_boot_phase);
5894 ASSERT_RTNL();
5895
5896 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5897 /* Some devices call without registering
5898 * for initialization unwind. Remove those
5899 * devices and proceed with the remaining.
5900 */
5901 if (dev->reg_state == NETREG_UNINITIALIZED) {
5902 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5903 dev->name, dev);
5904
5905 WARN_ON(1);
5906 list_del(&dev->unreg_list);
5907 continue;
5908 }
5909 dev->dismantle = true;
5910 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5911 }
5912
5913 /* If device is running, close it first. */
5914 list_for_each_entry(dev, head, unreg_list)
5915 list_add_tail(&dev->close_list, &close_head);
5916 dev_close_many(&close_head);
5917
5918 list_for_each_entry(dev, head, unreg_list) {
5919 /* And unlink it from device chain. */
5920 unlist_netdevice(dev);
5921
5922 dev->reg_state = NETREG_UNREGISTERING;
5923 }
5924
5925 synchronize_net();
5926
5927 list_for_each_entry(dev, head, unreg_list) {
5928 /* Shutdown queueing discipline. */
5929 dev_shutdown(dev);
5930
5931
5932 /* Notify protocols, that we are about to destroy
5933 this device. They should clean all the things.
5934 */
5935 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5936
5937 /*
5938 * Flush the unicast and multicast chains
5939 */
5940 dev_uc_flush(dev);
5941 dev_mc_flush(dev);
5942
5943 if (dev->netdev_ops->ndo_uninit)
5944 dev->netdev_ops->ndo_uninit(dev);
5945
5946 if (!dev->rtnl_link_ops ||
5947 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5948 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5949
5950 /* Notifier chain MUST detach us all upper devices. */
5951 WARN_ON(netdev_has_any_upper_dev(dev));
5952
5953 /* Remove entries from kobject tree */
5954 netdev_unregister_kobject(dev);
5955 #ifdef CONFIG_XPS
5956 /* Remove XPS queueing entries */
5957 netif_reset_xps_queues_gt(dev, 0);
5958 #endif
5959 }
5960
5961 synchronize_net();
5962
5963 list_for_each_entry(dev, head, unreg_list)
5964 dev_put(dev);
5965 }
5966
5967 static void rollback_registered(struct net_device *dev)
5968 {
5969 LIST_HEAD(single);
5970
5971 list_add(&dev->unreg_list, &single);
5972 rollback_registered_many(&single);
5973 list_del(&single);
5974 }
5975
5976 static netdev_features_t netdev_fix_features(struct net_device *dev,
5977 netdev_features_t features)
5978 {
5979 /* Fix illegal checksum combinations */
5980 if ((features & NETIF_F_HW_CSUM) &&
5981 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5982 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5983 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5984 }
5985
5986 /* TSO requires that SG is present as well. */
5987 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5988 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5989 features &= ~NETIF_F_ALL_TSO;
5990 }
5991
5992 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5993 !(features & NETIF_F_IP_CSUM)) {
5994 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5995 features &= ~NETIF_F_TSO;
5996 features &= ~NETIF_F_TSO_ECN;
5997 }
5998
5999 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6000 !(features & NETIF_F_IPV6_CSUM)) {
6001 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6002 features &= ~NETIF_F_TSO6;
6003 }
6004
6005 /* TSO ECN requires that TSO is present as well. */
6006 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6007 features &= ~NETIF_F_TSO_ECN;
6008
6009 /* Software GSO depends on SG. */
6010 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6011 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6012 features &= ~NETIF_F_GSO;
6013 }
6014
6015 /* UFO needs SG and checksumming */
6016 if (features & NETIF_F_UFO) {
6017 /* maybe split UFO into V4 and V6? */
6018 if (!((features & NETIF_F_GEN_CSUM) ||
6019 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6020 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6021 netdev_dbg(dev,
6022 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6023 features &= ~NETIF_F_UFO;
6024 }
6025
6026 if (!(features & NETIF_F_SG)) {
6027 netdev_dbg(dev,
6028 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6029 features &= ~NETIF_F_UFO;
6030 }
6031 }
6032
6033 #ifdef CONFIG_NET_RX_BUSY_POLL
6034 if (dev->netdev_ops->ndo_busy_poll)
6035 features |= NETIF_F_BUSY_POLL;
6036 else
6037 #endif
6038 features &= ~NETIF_F_BUSY_POLL;
6039
6040 return features;
6041 }
6042
6043 int __netdev_update_features(struct net_device *dev)
6044 {
6045 netdev_features_t features;
6046 int err = 0;
6047
6048 ASSERT_RTNL();
6049
6050 features = netdev_get_wanted_features(dev);
6051
6052 if (dev->netdev_ops->ndo_fix_features)
6053 features = dev->netdev_ops->ndo_fix_features(dev, features);
6054
6055 /* driver might be less strict about feature dependencies */
6056 features = netdev_fix_features(dev, features);
6057
6058 if (dev->features == features)
6059 return 0;
6060
6061 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6062 &dev->features, &features);
6063
6064 if (dev->netdev_ops->ndo_set_features)
6065 err = dev->netdev_ops->ndo_set_features(dev, features);
6066
6067 if (unlikely(err < 0)) {
6068 netdev_err(dev,
6069 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6070 err, &features, &dev->features);
6071 return -1;
6072 }
6073
6074 if (!err)
6075 dev->features = features;
6076
6077 return 1;
6078 }
6079
6080 /**
6081 * netdev_update_features - recalculate device features
6082 * @dev: the device to check
6083 *
6084 * Recalculate dev->features set and send notifications if it
6085 * has changed. Should be called after driver or hardware dependent
6086 * conditions might have changed that influence the features.
6087 */
6088 void netdev_update_features(struct net_device *dev)
6089 {
6090 if (__netdev_update_features(dev))
6091 netdev_features_change(dev);
6092 }
6093 EXPORT_SYMBOL(netdev_update_features);
6094
6095 /**
6096 * netdev_change_features - recalculate device features
6097 * @dev: the device to check
6098 *
6099 * Recalculate dev->features set and send notifications even
6100 * if they have not changed. Should be called instead of
6101 * netdev_update_features() if also dev->vlan_features might
6102 * have changed to allow the changes to be propagated to stacked
6103 * VLAN devices.
6104 */
6105 void netdev_change_features(struct net_device *dev)
6106 {
6107 __netdev_update_features(dev);
6108 netdev_features_change(dev);
6109 }
6110 EXPORT_SYMBOL(netdev_change_features);
6111
6112 /**
6113 * netif_stacked_transfer_operstate - transfer operstate
6114 * @rootdev: the root or lower level device to transfer state from
6115 * @dev: the device to transfer operstate to
6116 *
6117 * Transfer operational state from root to device. This is normally
6118 * called when a stacking relationship exists between the root
6119 * device and the device(a leaf device).
6120 */
6121 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6122 struct net_device *dev)
6123 {
6124 if (rootdev->operstate == IF_OPER_DORMANT)
6125 netif_dormant_on(dev);
6126 else
6127 netif_dormant_off(dev);
6128
6129 if (netif_carrier_ok(rootdev)) {
6130 if (!netif_carrier_ok(dev))
6131 netif_carrier_on(dev);
6132 } else {
6133 if (netif_carrier_ok(dev))
6134 netif_carrier_off(dev);
6135 }
6136 }
6137 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6138
6139 #ifdef CONFIG_SYSFS
6140 static int netif_alloc_rx_queues(struct net_device *dev)
6141 {
6142 unsigned int i, count = dev->num_rx_queues;
6143 struct netdev_rx_queue *rx;
6144
6145 BUG_ON(count < 1);
6146
6147 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
6148 if (!rx)
6149 return -ENOMEM;
6150
6151 dev->_rx = rx;
6152
6153 for (i = 0; i < count; i++)
6154 rx[i].dev = dev;
6155 return 0;
6156 }
6157 #endif
6158
6159 static void netdev_init_one_queue(struct net_device *dev,
6160 struct netdev_queue *queue, void *_unused)
6161 {
6162 /* Initialize queue lock */
6163 spin_lock_init(&queue->_xmit_lock);
6164 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6165 queue->xmit_lock_owner = -1;
6166 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6167 queue->dev = dev;
6168 #ifdef CONFIG_BQL
6169 dql_init(&queue->dql, HZ);
6170 #endif
6171 }
6172
6173 static void netif_free_tx_queues(struct net_device *dev)
6174 {
6175 kvfree(dev->_tx);
6176 }
6177
6178 static int netif_alloc_netdev_queues(struct net_device *dev)
6179 {
6180 unsigned int count = dev->num_tx_queues;
6181 struct netdev_queue *tx;
6182 size_t sz = count * sizeof(*tx);
6183
6184 BUG_ON(count < 1 || count > 0xffff);
6185
6186 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6187 if (!tx) {
6188 tx = vzalloc(sz);
6189 if (!tx)
6190 return -ENOMEM;
6191 }
6192 dev->_tx = tx;
6193
6194 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6195 spin_lock_init(&dev->tx_global_lock);
6196
6197 return 0;
6198 }
6199
6200 /**
6201 * register_netdevice - register a network device
6202 * @dev: device to register
6203 *
6204 * Take a completed network device structure and add it to the kernel
6205 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6206 * chain. 0 is returned on success. A negative errno code is returned
6207 * on a failure to set up the device, or if the name is a duplicate.
6208 *
6209 * Callers must hold the rtnl semaphore. You may want
6210 * register_netdev() instead of this.
6211 *
6212 * BUGS:
6213 * The locking appears insufficient to guarantee two parallel registers
6214 * will not get the same name.
6215 */
6216
6217 int register_netdevice(struct net_device *dev)
6218 {
6219 int ret;
6220 struct net *net = dev_net(dev);
6221
6222 BUG_ON(dev_boot_phase);
6223 ASSERT_RTNL();
6224
6225 might_sleep();
6226
6227 /* When net_device's are persistent, this will be fatal. */
6228 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6229 BUG_ON(!net);
6230
6231 spin_lock_init(&dev->addr_list_lock);
6232 netdev_set_addr_lockdep_class(dev);
6233
6234 dev->iflink = -1;
6235
6236 ret = dev_get_valid_name(net, dev, dev->name);
6237 if (ret < 0)
6238 goto out;
6239
6240 /* Init, if this function is available */
6241 if (dev->netdev_ops->ndo_init) {
6242 ret = dev->netdev_ops->ndo_init(dev);
6243 if (ret) {
6244 if (ret > 0)
6245 ret = -EIO;
6246 goto out;
6247 }
6248 }
6249
6250 if (((dev->hw_features | dev->features) &
6251 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6252 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6253 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6254 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6255 ret = -EINVAL;
6256 goto err_uninit;
6257 }
6258
6259 ret = -EBUSY;
6260 if (!dev->ifindex)
6261 dev->ifindex = dev_new_index(net);
6262 else if (__dev_get_by_index(net, dev->ifindex))
6263 goto err_uninit;
6264
6265 if (dev->iflink == -1)
6266 dev->iflink = dev->ifindex;
6267
6268 /* Transfer changeable features to wanted_features and enable
6269 * software offloads (GSO and GRO).
6270 */
6271 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6272 dev->features |= NETIF_F_SOFT_FEATURES;
6273 dev->wanted_features = dev->features & dev->hw_features;
6274
6275 if (!(dev->flags & IFF_LOOPBACK)) {
6276 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6277 }
6278
6279 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6280 */
6281 dev->vlan_features |= NETIF_F_HIGHDMA;
6282
6283 /* Make NETIF_F_SG inheritable to tunnel devices.
6284 */
6285 dev->hw_enc_features |= NETIF_F_SG;
6286
6287 /* Make NETIF_F_SG inheritable to MPLS.
6288 */
6289 dev->mpls_features |= NETIF_F_SG;
6290
6291 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6292 ret = notifier_to_errno(ret);
6293 if (ret)
6294 goto err_uninit;
6295
6296 ret = netdev_register_kobject(dev);
6297 if (ret)
6298 goto err_uninit;
6299 dev->reg_state = NETREG_REGISTERED;
6300
6301 __netdev_update_features(dev);
6302
6303 /*
6304 * Default initial state at registry is that the
6305 * device is present.
6306 */
6307
6308 set_bit(__LINK_STATE_PRESENT, &dev->state);
6309
6310 linkwatch_init_dev(dev);
6311
6312 dev_init_scheduler(dev);
6313 dev_hold(dev);
6314 list_netdevice(dev);
6315 add_device_randomness(dev->dev_addr, dev->addr_len);
6316
6317 /* If the device has permanent device address, driver should
6318 * set dev_addr and also addr_assign_type should be set to
6319 * NET_ADDR_PERM (default value).
6320 */
6321 if (dev->addr_assign_type == NET_ADDR_PERM)
6322 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6323
6324 /* Notify protocols, that a new device appeared. */
6325 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6326 ret = notifier_to_errno(ret);
6327 if (ret) {
6328 rollback_registered(dev);
6329 dev->reg_state = NETREG_UNREGISTERED;
6330 }
6331 /*
6332 * Prevent userspace races by waiting until the network
6333 * device is fully setup before sending notifications.
6334 */
6335 if (!dev->rtnl_link_ops ||
6336 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6337 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6338
6339 out:
6340 return ret;
6341
6342 err_uninit:
6343 if (dev->netdev_ops->ndo_uninit)
6344 dev->netdev_ops->ndo_uninit(dev);
6345 goto out;
6346 }
6347 EXPORT_SYMBOL(register_netdevice);
6348
6349 /**
6350 * init_dummy_netdev - init a dummy network device for NAPI
6351 * @dev: device to init
6352 *
6353 * This takes a network device structure and initialize the minimum
6354 * amount of fields so it can be used to schedule NAPI polls without
6355 * registering a full blown interface. This is to be used by drivers
6356 * that need to tie several hardware interfaces to a single NAPI
6357 * poll scheduler due to HW limitations.
6358 */
6359 int init_dummy_netdev(struct net_device *dev)
6360 {
6361 /* Clear everything. Note we don't initialize spinlocks
6362 * are they aren't supposed to be taken by any of the
6363 * NAPI code and this dummy netdev is supposed to be
6364 * only ever used for NAPI polls
6365 */
6366 memset(dev, 0, sizeof(struct net_device));
6367
6368 /* make sure we BUG if trying to hit standard
6369 * register/unregister code path
6370 */
6371 dev->reg_state = NETREG_DUMMY;
6372
6373 /* NAPI wants this */
6374 INIT_LIST_HEAD(&dev->napi_list);
6375
6376 /* a dummy interface is started by default */
6377 set_bit(__LINK_STATE_PRESENT, &dev->state);
6378 set_bit(__LINK_STATE_START, &dev->state);
6379
6380 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6381 * because users of this 'device' dont need to change
6382 * its refcount.
6383 */
6384
6385 return 0;
6386 }
6387 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6388
6389
6390 /**
6391 * register_netdev - register a network device
6392 * @dev: device to register
6393 *
6394 * Take a completed network device structure and add it to the kernel
6395 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6396 * chain. 0 is returned on success. A negative errno code is returned
6397 * on a failure to set up the device, or if the name is a duplicate.
6398 *
6399 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6400 * and expands the device name if you passed a format string to
6401 * alloc_netdev.
6402 */
6403 int register_netdev(struct net_device *dev)
6404 {
6405 int err;
6406
6407 rtnl_lock();
6408 err = register_netdevice(dev);
6409 rtnl_unlock();
6410 return err;
6411 }
6412 EXPORT_SYMBOL(register_netdev);
6413
6414 int netdev_refcnt_read(const struct net_device *dev)
6415 {
6416 int i, refcnt = 0;
6417
6418 for_each_possible_cpu(i)
6419 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6420 return refcnt;
6421 }
6422 EXPORT_SYMBOL(netdev_refcnt_read);
6423
6424 /**
6425 * netdev_wait_allrefs - wait until all references are gone.
6426 * @dev: target net_device
6427 *
6428 * This is called when unregistering network devices.
6429 *
6430 * Any protocol or device that holds a reference should register
6431 * for netdevice notification, and cleanup and put back the
6432 * reference if they receive an UNREGISTER event.
6433 * We can get stuck here if buggy protocols don't correctly
6434 * call dev_put.
6435 */
6436 static void netdev_wait_allrefs(struct net_device *dev)
6437 {
6438 unsigned long rebroadcast_time, warning_time;
6439 int refcnt;
6440
6441 linkwatch_forget_dev(dev);
6442
6443 rebroadcast_time = warning_time = jiffies;
6444 refcnt = netdev_refcnt_read(dev);
6445
6446 while (refcnt != 0) {
6447 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6448 rtnl_lock();
6449
6450 /* Rebroadcast unregister notification */
6451 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6452
6453 __rtnl_unlock();
6454 rcu_barrier();
6455 rtnl_lock();
6456
6457 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6458 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6459 &dev->state)) {
6460 /* We must not have linkwatch events
6461 * pending on unregister. If this
6462 * happens, we simply run the queue
6463 * unscheduled, resulting in a noop
6464 * for this device.
6465 */
6466 linkwatch_run_queue();
6467 }
6468
6469 __rtnl_unlock();
6470
6471 rebroadcast_time = jiffies;
6472 }
6473
6474 msleep(250);
6475
6476 refcnt = netdev_refcnt_read(dev);
6477
6478 if (time_after(jiffies, warning_time + 10 * HZ)) {
6479 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6480 dev->name, refcnt);
6481 warning_time = jiffies;
6482 }
6483 }
6484 }
6485
6486 /* The sequence is:
6487 *
6488 * rtnl_lock();
6489 * ...
6490 * register_netdevice(x1);
6491 * register_netdevice(x2);
6492 * ...
6493 * unregister_netdevice(y1);
6494 * unregister_netdevice(y2);
6495 * ...
6496 * rtnl_unlock();
6497 * free_netdev(y1);
6498 * free_netdev(y2);
6499 *
6500 * We are invoked by rtnl_unlock().
6501 * This allows us to deal with problems:
6502 * 1) We can delete sysfs objects which invoke hotplug
6503 * without deadlocking with linkwatch via keventd.
6504 * 2) Since we run with the RTNL semaphore not held, we can sleep
6505 * safely in order to wait for the netdev refcnt to drop to zero.
6506 *
6507 * We must not return until all unregister events added during
6508 * the interval the lock was held have been completed.
6509 */
6510 void netdev_run_todo(void)
6511 {
6512 struct list_head list;
6513
6514 /* Snapshot list, allow later requests */
6515 list_replace_init(&net_todo_list, &list);
6516
6517 __rtnl_unlock();
6518
6519
6520 /* Wait for rcu callbacks to finish before next phase */
6521 if (!list_empty(&list))
6522 rcu_barrier();
6523
6524 while (!list_empty(&list)) {
6525 struct net_device *dev
6526 = list_first_entry(&list, struct net_device, todo_list);
6527 list_del(&dev->todo_list);
6528
6529 rtnl_lock();
6530 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6531 __rtnl_unlock();
6532
6533 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6534 pr_err("network todo '%s' but state %d\n",
6535 dev->name, dev->reg_state);
6536 dump_stack();
6537 continue;
6538 }
6539
6540 dev->reg_state = NETREG_UNREGISTERED;
6541
6542 on_each_cpu(flush_backlog, dev, 1);
6543
6544 netdev_wait_allrefs(dev);
6545
6546 /* paranoia */
6547 BUG_ON(netdev_refcnt_read(dev));
6548 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6549 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6550 WARN_ON(dev->dn_ptr);
6551
6552 if (dev->destructor)
6553 dev->destructor(dev);
6554
6555 /* Report a network device has been unregistered */
6556 rtnl_lock();
6557 dev_net(dev)->dev_unreg_count--;
6558 __rtnl_unlock();
6559 wake_up(&netdev_unregistering_wq);
6560
6561 /* Free network device */
6562 kobject_put(&dev->dev.kobj);
6563 }
6564 }
6565
6566 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6567 * fields in the same order, with only the type differing.
6568 */
6569 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6570 const struct net_device_stats *netdev_stats)
6571 {
6572 #if BITS_PER_LONG == 64
6573 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6574 memcpy(stats64, netdev_stats, sizeof(*stats64));
6575 #else
6576 size_t i, n = sizeof(*stats64) / sizeof(u64);
6577 const unsigned long *src = (const unsigned long *)netdev_stats;
6578 u64 *dst = (u64 *)stats64;
6579
6580 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6581 sizeof(*stats64) / sizeof(u64));
6582 for (i = 0; i < n; i++)
6583 dst[i] = src[i];
6584 #endif
6585 }
6586 EXPORT_SYMBOL(netdev_stats_to_stats64);
6587
6588 /**
6589 * dev_get_stats - get network device statistics
6590 * @dev: device to get statistics from
6591 * @storage: place to store stats
6592 *
6593 * Get network statistics from device. Return @storage.
6594 * The device driver may provide its own method by setting
6595 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6596 * otherwise the internal statistics structure is used.
6597 */
6598 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6599 struct rtnl_link_stats64 *storage)
6600 {
6601 const struct net_device_ops *ops = dev->netdev_ops;
6602
6603 if (ops->ndo_get_stats64) {
6604 memset(storage, 0, sizeof(*storage));
6605 ops->ndo_get_stats64(dev, storage);
6606 } else if (ops->ndo_get_stats) {
6607 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6608 } else {
6609 netdev_stats_to_stats64(storage, &dev->stats);
6610 }
6611 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6612 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6613 return storage;
6614 }
6615 EXPORT_SYMBOL(dev_get_stats);
6616
6617 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6618 {
6619 struct netdev_queue *queue = dev_ingress_queue(dev);
6620
6621 #ifdef CONFIG_NET_CLS_ACT
6622 if (queue)
6623 return queue;
6624 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6625 if (!queue)
6626 return NULL;
6627 netdev_init_one_queue(dev, queue, NULL);
6628 queue->qdisc = &noop_qdisc;
6629 queue->qdisc_sleeping = &noop_qdisc;
6630 rcu_assign_pointer(dev->ingress_queue, queue);
6631 #endif
6632 return queue;
6633 }
6634
6635 static const struct ethtool_ops default_ethtool_ops;
6636
6637 void netdev_set_default_ethtool_ops(struct net_device *dev,
6638 const struct ethtool_ops *ops)
6639 {
6640 if (dev->ethtool_ops == &default_ethtool_ops)
6641 dev->ethtool_ops = ops;
6642 }
6643 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6644
6645 void netdev_freemem(struct net_device *dev)
6646 {
6647 char *addr = (char *)dev - dev->padded;
6648
6649 kvfree(addr);
6650 }
6651
6652 /**
6653 * alloc_netdev_mqs - allocate network device
6654 * @sizeof_priv: size of private data to allocate space for
6655 * @name: device name format string
6656 * @name_assign_type: origin of device name
6657 * @setup: callback to initialize device
6658 * @txqs: the number of TX subqueues to allocate
6659 * @rxqs: the number of RX subqueues to allocate
6660 *
6661 * Allocates a struct net_device with private data area for driver use
6662 * and performs basic initialization. Also allocates subqueue structs
6663 * for each queue on the device.
6664 */
6665 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6666 unsigned char name_assign_type,
6667 void (*setup)(struct net_device *),
6668 unsigned int txqs, unsigned int rxqs)
6669 {
6670 struct net_device *dev;
6671 size_t alloc_size;
6672 struct net_device *p;
6673
6674 BUG_ON(strlen(name) >= sizeof(dev->name));
6675
6676 if (txqs < 1) {
6677 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6678 return NULL;
6679 }
6680
6681 #ifdef CONFIG_SYSFS
6682 if (rxqs < 1) {
6683 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6684 return NULL;
6685 }
6686 #endif
6687
6688 alloc_size = sizeof(struct net_device);
6689 if (sizeof_priv) {
6690 /* ensure 32-byte alignment of private area */
6691 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6692 alloc_size += sizeof_priv;
6693 }
6694 /* ensure 32-byte alignment of whole construct */
6695 alloc_size += NETDEV_ALIGN - 1;
6696
6697 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6698 if (!p)
6699 p = vzalloc(alloc_size);
6700 if (!p)
6701 return NULL;
6702
6703 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6704 dev->padded = (char *)dev - (char *)p;
6705
6706 dev->pcpu_refcnt = alloc_percpu(int);
6707 if (!dev->pcpu_refcnt)
6708 goto free_dev;
6709
6710 if (dev_addr_init(dev))
6711 goto free_pcpu;
6712
6713 dev_mc_init(dev);
6714 dev_uc_init(dev);
6715
6716 dev_net_set(dev, &init_net);
6717
6718 dev->gso_max_size = GSO_MAX_SIZE;
6719 dev->gso_max_segs = GSO_MAX_SEGS;
6720 dev->gso_min_segs = 0;
6721
6722 INIT_LIST_HEAD(&dev->napi_list);
6723 INIT_LIST_HEAD(&dev->unreg_list);
6724 INIT_LIST_HEAD(&dev->close_list);
6725 INIT_LIST_HEAD(&dev->link_watch_list);
6726 INIT_LIST_HEAD(&dev->adj_list.upper);
6727 INIT_LIST_HEAD(&dev->adj_list.lower);
6728 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6729 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6730 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6731 setup(dev);
6732
6733 dev->num_tx_queues = txqs;
6734 dev->real_num_tx_queues = txqs;
6735 if (netif_alloc_netdev_queues(dev))
6736 goto free_all;
6737
6738 #ifdef CONFIG_SYSFS
6739 dev->num_rx_queues = rxqs;
6740 dev->real_num_rx_queues = rxqs;
6741 if (netif_alloc_rx_queues(dev))
6742 goto free_all;
6743 #endif
6744
6745 strcpy(dev->name, name);
6746 dev->name_assign_type = name_assign_type;
6747 dev->group = INIT_NETDEV_GROUP;
6748 if (!dev->ethtool_ops)
6749 dev->ethtool_ops = &default_ethtool_ops;
6750 return dev;
6751
6752 free_all:
6753 free_netdev(dev);
6754 return NULL;
6755
6756 free_pcpu:
6757 free_percpu(dev->pcpu_refcnt);
6758 free_dev:
6759 netdev_freemem(dev);
6760 return NULL;
6761 }
6762 EXPORT_SYMBOL(alloc_netdev_mqs);
6763
6764 /**
6765 * free_netdev - free network device
6766 * @dev: device
6767 *
6768 * This function does the last stage of destroying an allocated device
6769 * interface. The reference to the device object is released.
6770 * If this is the last reference then it will be freed.
6771 */
6772 void free_netdev(struct net_device *dev)
6773 {
6774 struct napi_struct *p, *n;
6775
6776 release_net(dev_net(dev));
6777
6778 netif_free_tx_queues(dev);
6779 #ifdef CONFIG_SYSFS
6780 kfree(dev->_rx);
6781 #endif
6782
6783 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6784
6785 /* Flush device addresses */
6786 dev_addr_flush(dev);
6787
6788 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6789 netif_napi_del(p);
6790
6791 free_percpu(dev->pcpu_refcnt);
6792 dev->pcpu_refcnt = NULL;
6793
6794 /* Compatibility with error handling in drivers */
6795 if (dev->reg_state == NETREG_UNINITIALIZED) {
6796 netdev_freemem(dev);
6797 return;
6798 }
6799
6800 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6801 dev->reg_state = NETREG_RELEASED;
6802
6803 /* will free via device release */
6804 put_device(&dev->dev);
6805 }
6806 EXPORT_SYMBOL(free_netdev);
6807
6808 /**
6809 * synchronize_net - Synchronize with packet receive processing
6810 *
6811 * Wait for packets currently being received to be done.
6812 * Does not block later packets from starting.
6813 */
6814 void synchronize_net(void)
6815 {
6816 might_sleep();
6817 if (rtnl_is_locked())
6818 synchronize_rcu_expedited();
6819 else
6820 synchronize_rcu();
6821 }
6822 EXPORT_SYMBOL(synchronize_net);
6823
6824 /**
6825 * unregister_netdevice_queue - remove device from the kernel
6826 * @dev: device
6827 * @head: list
6828 *
6829 * This function shuts down a device interface and removes it
6830 * from the kernel tables.
6831 * If head not NULL, device is queued to be unregistered later.
6832 *
6833 * Callers must hold the rtnl semaphore. You may want
6834 * unregister_netdev() instead of this.
6835 */
6836
6837 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6838 {
6839 ASSERT_RTNL();
6840
6841 if (head) {
6842 list_move_tail(&dev->unreg_list, head);
6843 } else {
6844 rollback_registered(dev);
6845 /* Finish processing unregister after unlock */
6846 net_set_todo(dev);
6847 }
6848 }
6849 EXPORT_SYMBOL(unregister_netdevice_queue);
6850
6851 /**
6852 * unregister_netdevice_many - unregister many devices
6853 * @head: list of devices
6854 *
6855 * Note: As most callers use a stack allocated list_head,
6856 * we force a list_del() to make sure stack wont be corrupted later.
6857 */
6858 void unregister_netdevice_many(struct list_head *head)
6859 {
6860 struct net_device *dev;
6861
6862 if (!list_empty(head)) {
6863 rollback_registered_many(head);
6864 list_for_each_entry(dev, head, unreg_list)
6865 net_set_todo(dev);
6866 list_del(head);
6867 }
6868 }
6869 EXPORT_SYMBOL(unregister_netdevice_many);
6870
6871 /**
6872 * unregister_netdev - remove device from the kernel
6873 * @dev: device
6874 *
6875 * This function shuts down a device interface and removes it
6876 * from the kernel tables.
6877 *
6878 * This is just a wrapper for unregister_netdevice that takes
6879 * the rtnl semaphore. In general you want to use this and not
6880 * unregister_netdevice.
6881 */
6882 void unregister_netdev(struct net_device *dev)
6883 {
6884 rtnl_lock();
6885 unregister_netdevice(dev);
6886 rtnl_unlock();
6887 }
6888 EXPORT_SYMBOL(unregister_netdev);
6889
6890 /**
6891 * dev_change_net_namespace - move device to different nethost namespace
6892 * @dev: device
6893 * @net: network namespace
6894 * @pat: If not NULL name pattern to try if the current device name
6895 * is already taken in the destination network namespace.
6896 *
6897 * This function shuts down a device interface and moves it
6898 * to a new network namespace. On success 0 is returned, on
6899 * a failure a netagive errno code is returned.
6900 *
6901 * Callers must hold the rtnl semaphore.
6902 */
6903
6904 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6905 {
6906 int err;
6907
6908 ASSERT_RTNL();
6909
6910 /* Don't allow namespace local devices to be moved. */
6911 err = -EINVAL;
6912 if (dev->features & NETIF_F_NETNS_LOCAL)
6913 goto out;
6914
6915 /* Ensure the device has been registrered */
6916 if (dev->reg_state != NETREG_REGISTERED)
6917 goto out;
6918
6919 /* Get out if there is nothing todo */
6920 err = 0;
6921 if (net_eq(dev_net(dev), net))
6922 goto out;
6923
6924 /* Pick the destination device name, and ensure
6925 * we can use it in the destination network namespace.
6926 */
6927 err = -EEXIST;
6928 if (__dev_get_by_name(net, dev->name)) {
6929 /* We get here if we can't use the current device name */
6930 if (!pat)
6931 goto out;
6932 if (dev_get_valid_name(net, dev, pat) < 0)
6933 goto out;
6934 }
6935
6936 /*
6937 * And now a mini version of register_netdevice unregister_netdevice.
6938 */
6939
6940 /* If device is running close it first. */
6941 dev_close(dev);
6942
6943 /* And unlink it from device chain */
6944 err = -ENODEV;
6945 unlist_netdevice(dev);
6946
6947 synchronize_net();
6948
6949 /* Shutdown queueing discipline. */
6950 dev_shutdown(dev);
6951
6952 /* Notify protocols, that we are about to destroy
6953 this device. They should clean all the things.
6954
6955 Note that dev->reg_state stays at NETREG_REGISTERED.
6956 This is wanted because this way 8021q and macvlan know
6957 the device is just moving and can keep their slaves up.
6958 */
6959 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6960 rcu_barrier();
6961 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6962 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6963
6964 /*
6965 * Flush the unicast and multicast chains
6966 */
6967 dev_uc_flush(dev);
6968 dev_mc_flush(dev);
6969
6970 /* Send a netdev-removed uevent to the old namespace */
6971 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6972 netdev_adjacent_del_links(dev);
6973
6974 /* Actually switch the network namespace */
6975 dev_net_set(dev, net);
6976
6977 /* If there is an ifindex conflict assign a new one */
6978 if (__dev_get_by_index(net, dev->ifindex)) {
6979 int iflink = (dev->iflink == dev->ifindex);
6980 dev->ifindex = dev_new_index(net);
6981 if (iflink)
6982 dev->iflink = dev->ifindex;
6983 }
6984
6985 /* Send a netdev-add uevent to the new namespace */
6986 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6987 netdev_adjacent_add_links(dev);
6988
6989 /* Fixup kobjects */
6990 err = device_rename(&dev->dev, dev->name);
6991 WARN_ON(err);
6992
6993 /* Add the device back in the hashes */
6994 list_netdevice(dev);
6995
6996 /* Notify protocols, that a new device appeared. */
6997 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6998
6999 /*
7000 * Prevent userspace races by waiting until the network
7001 * device is fully setup before sending notifications.
7002 */
7003 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7004
7005 synchronize_net();
7006 err = 0;
7007 out:
7008 return err;
7009 }
7010 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7011
7012 static int dev_cpu_callback(struct notifier_block *nfb,
7013 unsigned long action,
7014 void *ocpu)
7015 {
7016 struct sk_buff **list_skb;
7017 struct sk_buff *skb;
7018 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7019 struct softnet_data *sd, *oldsd;
7020
7021 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7022 return NOTIFY_OK;
7023
7024 local_irq_disable();
7025 cpu = smp_processor_id();
7026 sd = &per_cpu(softnet_data, cpu);
7027 oldsd = &per_cpu(softnet_data, oldcpu);
7028
7029 /* Find end of our completion_queue. */
7030 list_skb = &sd->completion_queue;
7031 while (*list_skb)
7032 list_skb = &(*list_skb)->next;
7033 /* Append completion queue from offline CPU. */
7034 *list_skb = oldsd->completion_queue;
7035 oldsd->completion_queue = NULL;
7036
7037 /* Append output queue from offline CPU. */
7038 if (oldsd->output_queue) {
7039 *sd->output_queue_tailp = oldsd->output_queue;
7040 sd->output_queue_tailp = oldsd->output_queue_tailp;
7041 oldsd->output_queue = NULL;
7042 oldsd->output_queue_tailp = &oldsd->output_queue;
7043 }
7044 /* Append NAPI poll list from offline CPU. */
7045 if (!list_empty(&oldsd->poll_list)) {
7046 list_splice_init(&oldsd->poll_list, &sd->poll_list);
7047 raise_softirq_irqoff(NET_RX_SOFTIRQ);
7048 }
7049
7050 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7051 local_irq_enable();
7052
7053 /* Process offline CPU's input_pkt_queue */
7054 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7055 netif_rx_internal(skb);
7056 input_queue_head_incr(oldsd);
7057 }
7058 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
7059 netif_rx_internal(skb);
7060 input_queue_head_incr(oldsd);
7061 }
7062
7063 return NOTIFY_OK;
7064 }
7065
7066
7067 /**
7068 * netdev_increment_features - increment feature set by one
7069 * @all: current feature set
7070 * @one: new feature set
7071 * @mask: mask feature set
7072 *
7073 * Computes a new feature set after adding a device with feature set
7074 * @one to the master device with current feature set @all. Will not
7075 * enable anything that is off in @mask. Returns the new feature set.
7076 */
7077 netdev_features_t netdev_increment_features(netdev_features_t all,
7078 netdev_features_t one, netdev_features_t mask)
7079 {
7080 if (mask & NETIF_F_GEN_CSUM)
7081 mask |= NETIF_F_ALL_CSUM;
7082 mask |= NETIF_F_VLAN_CHALLENGED;
7083
7084 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7085 all &= one | ~NETIF_F_ALL_FOR_ALL;
7086
7087 /* If one device supports hw checksumming, set for all. */
7088 if (all & NETIF_F_GEN_CSUM)
7089 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7090
7091 return all;
7092 }
7093 EXPORT_SYMBOL(netdev_increment_features);
7094
7095 static struct hlist_head * __net_init netdev_create_hash(void)
7096 {
7097 int i;
7098 struct hlist_head *hash;
7099
7100 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7101 if (hash != NULL)
7102 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7103 INIT_HLIST_HEAD(&hash[i]);
7104
7105 return hash;
7106 }
7107
7108 /* Initialize per network namespace state */
7109 static int __net_init netdev_init(struct net *net)
7110 {
7111 if (net != &init_net)
7112 INIT_LIST_HEAD(&net->dev_base_head);
7113
7114 net->dev_name_head = netdev_create_hash();
7115 if (net->dev_name_head == NULL)
7116 goto err_name;
7117
7118 net->dev_index_head = netdev_create_hash();
7119 if (net->dev_index_head == NULL)
7120 goto err_idx;
7121
7122 return 0;
7123
7124 err_idx:
7125 kfree(net->dev_name_head);
7126 err_name:
7127 return -ENOMEM;
7128 }
7129
7130 /**
7131 * netdev_drivername - network driver for the device
7132 * @dev: network device
7133 *
7134 * Determine network driver for device.
7135 */
7136 const char *netdev_drivername(const struct net_device *dev)
7137 {
7138 const struct device_driver *driver;
7139 const struct device *parent;
7140 const char *empty = "";
7141
7142 parent = dev->dev.parent;
7143 if (!parent)
7144 return empty;
7145
7146 driver = parent->driver;
7147 if (driver && driver->name)
7148 return driver->name;
7149 return empty;
7150 }
7151
7152 static void __netdev_printk(const char *level, const struct net_device *dev,
7153 struct va_format *vaf)
7154 {
7155 if (dev && dev->dev.parent) {
7156 dev_printk_emit(level[1] - '0',
7157 dev->dev.parent,
7158 "%s %s %s%s: %pV",
7159 dev_driver_string(dev->dev.parent),
7160 dev_name(dev->dev.parent),
7161 netdev_name(dev), netdev_reg_state(dev),
7162 vaf);
7163 } else if (dev) {
7164 printk("%s%s%s: %pV",
7165 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7166 } else {
7167 printk("%s(NULL net_device): %pV", level, vaf);
7168 }
7169 }
7170
7171 void netdev_printk(const char *level, const struct net_device *dev,
7172 const char *format, ...)
7173 {
7174 struct va_format vaf;
7175 va_list args;
7176
7177 va_start(args, format);
7178
7179 vaf.fmt = format;
7180 vaf.va = &args;
7181
7182 __netdev_printk(level, dev, &vaf);
7183
7184 va_end(args);
7185 }
7186 EXPORT_SYMBOL(netdev_printk);
7187
7188 #define define_netdev_printk_level(func, level) \
7189 void func(const struct net_device *dev, const char *fmt, ...) \
7190 { \
7191 struct va_format vaf; \
7192 va_list args; \
7193 \
7194 va_start(args, fmt); \
7195 \
7196 vaf.fmt = fmt; \
7197 vaf.va = &args; \
7198 \
7199 __netdev_printk(level, dev, &vaf); \
7200 \
7201 va_end(args); \
7202 } \
7203 EXPORT_SYMBOL(func);
7204
7205 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7206 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7207 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7208 define_netdev_printk_level(netdev_err, KERN_ERR);
7209 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7210 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7211 define_netdev_printk_level(netdev_info, KERN_INFO);
7212
7213 static void __net_exit netdev_exit(struct net *net)
7214 {
7215 kfree(net->dev_name_head);
7216 kfree(net->dev_index_head);
7217 }
7218
7219 static struct pernet_operations __net_initdata netdev_net_ops = {
7220 .init = netdev_init,
7221 .exit = netdev_exit,
7222 };
7223
7224 static void __net_exit default_device_exit(struct net *net)
7225 {
7226 struct net_device *dev, *aux;
7227 /*
7228 * Push all migratable network devices back to the
7229 * initial network namespace
7230 */
7231 rtnl_lock();
7232 for_each_netdev_safe(net, dev, aux) {
7233 int err;
7234 char fb_name[IFNAMSIZ];
7235
7236 /* Ignore unmoveable devices (i.e. loopback) */
7237 if (dev->features & NETIF_F_NETNS_LOCAL)
7238 continue;
7239
7240 /* Leave virtual devices for the generic cleanup */
7241 if (dev->rtnl_link_ops)
7242 continue;
7243
7244 /* Push remaining network devices to init_net */
7245 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7246 err = dev_change_net_namespace(dev, &init_net, fb_name);
7247 if (err) {
7248 pr_emerg("%s: failed to move %s to init_net: %d\n",
7249 __func__, dev->name, err);
7250 BUG();
7251 }
7252 }
7253 rtnl_unlock();
7254 }
7255
7256 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7257 {
7258 /* Return with the rtnl_lock held when there are no network
7259 * devices unregistering in any network namespace in net_list.
7260 */
7261 struct net *net;
7262 bool unregistering;
7263 DEFINE_WAIT(wait);
7264
7265 for (;;) {
7266 prepare_to_wait(&netdev_unregistering_wq, &wait,
7267 TASK_UNINTERRUPTIBLE);
7268 unregistering = false;
7269 rtnl_lock();
7270 list_for_each_entry(net, net_list, exit_list) {
7271 if (net->dev_unreg_count > 0) {
7272 unregistering = true;
7273 break;
7274 }
7275 }
7276 if (!unregistering)
7277 break;
7278 __rtnl_unlock();
7279 schedule();
7280 }
7281 finish_wait(&netdev_unregistering_wq, &wait);
7282 }
7283
7284 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7285 {
7286 /* At exit all network devices most be removed from a network
7287 * namespace. Do this in the reverse order of registration.
7288 * Do this across as many network namespaces as possible to
7289 * improve batching efficiency.
7290 */
7291 struct net_device *dev;
7292 struct net *net;
7293 LIST_HEAD(dev_kill_list);
7294
7295 /* To prevent network device cleanup code from dereferencing
7296 * loopback devices or network devices that have been freed
7297 * wait here for all pending unregistrations to complete,
7298 * before unregistring the loopback device and allowing the
7299 * network namespace be freed.
7300 *
7301 * The netdev todo list containing all network devices
7302 * unregistrations that happen in default_device_exit_batch
7303 * will run in the rtnl_unlock() at the end of
7304 * default_device_exit_batch.
7305 */
7306 rtnl_lock_unregistering(net_list);
7307 list_for_each_entry(net, net_list, exit_list) {
7308 for_each_netdev_reverse(net, dev) {
7309 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7310 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7311 else
7312 unregister_netdevice_queue(dev, &dev_kill_list);
7313 }
7314 }
7315 unregister_netdevice_many(&dev_kill_list);
7316 rtnl_unlock();
7317 }
7318
7319 static struct pernet_operations __net_initdata default_device_ops = {
7320 .exit = default_device_exit,
7321 .exit_batch = default_device_exit_batch,
7322 };
7323
7324 /*
7325 * Initialize the DEV module. At boot time this walks the device list and
7326 * unhooks any devices that fail to initialise (normally hardware not
7327 * present) and leaves us with a valid list of present and active devices.
7328 *
7329 */
7330
7331 /*
7332 * This is called single threaded during boot, so no need
7333 * to take the rtnl semaphore.
7334 */
7335 static int __init net_dev_init(void)
7336 {
7337 int i, rc = -ENOMEM;
7338
7339 BUG_ON(!dev_boot_phase);
7340
7341 if (dev_proc_init())
7342 goto out;
7343
7344 if (netdev_kobject_init())
7345 goto out;
7346
7347 INIT_LIST_HEAD(&ptype_all);
7348 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7349 INIT_LIST_HEAD(&ptype_base[i]);
7350
7351 INIT_LIST_HEAD(&offload_base);
7352
7353 if (register_pernet_subsys(&netdev_net_ops))
7354 goto out;
7355
7356 /*
7357 * Initialise the packet receive queues.
7358 */
7359
7360 for_each_possible_cpu(i) {
7361 struct softnet_data *sd = &per_cpu(softnet_data, i);
7362
7363 skb_queue_head_init(&sd->input_pkt_queue);
7364 skb_queue_head_init(&sd->process_queue);
7365 INIT_LIST_HEAD(&sd->poll_list);
7366 sd->output_queue_tailp = &sd->output_queue;
7367 #ifdef CONFIG_RPS
7368 sd->csd.func = rps_trigger_softirq;
7369 sd->csd.info = sd;
7370 sd->cpu = i;
7371 #endif
7372
7373 sd->backlog.poll = process_backlog;
7374 sd->backlog.weight = weight_p;
7375 }
7376
7377 dev_boot_phase = 0;
7378
7379 /* The loopback device is special if any other network devices
7380 * is present in a network namespace the loopback device must
7381 * be present. Since we now dynamically allocate and free the
7382 * loopback device ensure this invariant is maintained by
7383 * keeping the loopback device as the first device on the
7384 * list of network devices. Ensuring the loopback devices
7385 * is the first device that appears and the last network device
7386 * that disappears.
7387 */
7388 if (register_pernet_device(&loopback_net_ops))
7389 goto out;
7390
7391 if (register_pernet_device(&default_device_ops))
7392 goto out;
7393
7394 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7395 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7396
7397 hotcpu_notifier(dev_cpu_callback, 0);
7398 dst_init();
7399 rc = 0;
7400 out:
7401 return rc;
7402 }
7403
7404 subsys_initcall(net_dev_init);