]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/dev.c
net: skb_gro_checksum_* functions
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135 #include <linux/errqueue.h>
136
137 #include "net-sysfs.h"
138
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144
145 static DEFINE_SPINLOCK(ptype_lock);
146 static DEFINE_SPINLOCK(offload_lock);
147 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
148 struct list_head ptype_all __read_mostly; /* Taps */
149 static struct list_head offload_base __read_mostly;
150
151 static int netif_rx_internal(struct sk_buff *skb);
152 static int call_netdevice_notifiers_info(unsigned long val,
153 struct net_device *dev,
154 struct netdev_notifier_info *info);
155
156 /*
157 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
158 * semaphore.
159 *
160 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
161 *
162 * Writers must hold the rtnl semaphore while they loop through the
163 * dev_base_head list, and hold dev_base_lock for writing when they do the
164 * actual updates. This allows pure readers to access the list even
165 * while a writer is preparing to update it.
166 *
167 * To put it another way, dev_base_lock is held for writing only to
168 * protect against pure readers; the rtnl semaphore provides the
169 * protection against other writers.
170 *
171 * See, for example usages, register_netdevice() and
172 * unregister_netdevice(), which must be called with the rtnl
173 * semaphore held.
174 */
175 DEFINE_RWLOCK(dev_base_lock);
176 EXPORT_SYMBOL(dev_base_lock);
177
178 /* protects napi_hash addition/deletion and napi_gen_id */
179 static DEFINE_SPINLOCK(napi_hash_lock);
180
181 static unsigned int napi_gen_id;
182 static DEFINE_HASHTABLE(napi_hash, 8);
183
184 static seqcount_t devnet_rename_seq;
185
186 static inline void dev_base_seq_inc(struct net *net)
187 {
188 while (++net->dev_base_seq == 0);
189 }
190
191 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
192 {
193 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
194
195 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
196 }
197
198 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
199 {
200 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
201 }
202
203 static inline void rps_lock(struct softnet_data *sd)
204 {
205 #ifdef CONFIG_RPS
206 spin_lock(&sd->input_pkt_queue.lock);
207 #endif
208 }
209
210 static inline void rps_unlock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213 spin_unlock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 /* Device list insertion */
218 static void list_netdevice(struct net_device *dev)
219 {
220 struct net *net = dev_net(dev);
221
222 ASSERT_RTNL();
223
224 write_lock_bh(&dev_base_lock);
225 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
226 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
227 hlist_add_head_rcu(&dev->index_hlist,
228 dev_index_hash(net, dev->ifindex));
229 write_unlock_bh(&dev_base_lock);
230
231 dev_base_seq_inc(net);
232 }
233
234 /* Device list removal
235 * caller must respect a RCU grace period before freeing/reusing dev
236 */
237 static void unlist_netdevice(struct net_device *dev)
238 {
239 ASSERT_RTNL();
240
241 /* Unlink dev from the device chain */
242 write_lock_bh(&dev_base_lock);
243 list_del_rcu(&dev->dev_list);
244 hlist_del_rcu(&dev->name_hlist);
245 hlist_del_rcu(&dev->index_hlist);
246 write_unlock_bh(&dev_base_lock);
247
248 dev_base_seq_inc(dev_net(dev));
249 }
250
251 /*
252 * Our notifier list
253 */
254
255 static RAW_NOTIFIER_HEAD(netdev_chain);
256
257 /*
258 * Device drivers call our routines to queue packets here. We empty the
259 * queue in the local softnet handler.
260 */
261
262 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
263 EXPORT_PER_CPU_SYMBOL(softnet_data);
264
265 #ifdef CONFIG_LOCKDEP
266 /*
267 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
268 * according to dev->type
269 */
270 static const unsigned short netdev_lock_type[] =
271 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
283 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
284 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
285 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
286
287 static const char *const netdev_lock_name[] =
288 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
300 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
301 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
302 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
303
304 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
305 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
306
307 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
308 {
309 int i;
310
311 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312 if (netdev_lock_type[i] == dev_type)
313 return i;
314 /* the last key is used by default */
315 return ARRAY_SIZE(netdev_lock_type) - 1;
316 }
317
318 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319 unsigned short dev_type)
320 {
321 int i;
322
323 i = netdev_lock_pos(dev_type);
324 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325 netdev_lock_name[i]);
326 }
327
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 int i;
331
332 i = netdev_lock_pos(dev->type);
333 lockdep_set_class_and_name(&dev->addr_list_lock,
334 &netdev_addr_lock_key[i],
335 netdev_lock_name[i]);
336 }
337 #else
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340 {
341 }
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 }
345 #endif
346
347 /*******************************************************************************
348
349 Protocol management and registration routines
350
351 *******************************************************************************/
352
353 /*
354 * Add a protocol ID to the list. Now that the input handler is
355 * smarter we can dispense with all the messy stuff that used to be
356 * here.
357 *
358 * BEWARE!!! Protocol handlers, mangling input packets,
359 * MUST BE last in hash buckets and checking protocol handlers
360 * MUST start from promiscuous ptype_all chain in net_bh.
361 * It is true now, do not change it.
362 * Explanation follows: if protocol handler, mangling packet, will
363 * be the first on list, it is not able to sense, that packet
364 * is cloned and should be copied-on-write, so that it will
365 * change it and subsequent readers will get broken packet.
366 * --ANK (980803)
367 */
368
369 static inline struct list_head *ptype_head(const struct packet_type *pt)
370 {
371 if (pt->type == htons(ETH_P_ALL))
372 return &ptype_all;
373 else
374 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
375 }
376
377 /**
378 * dev_add_pack - add packet handler
379 * @pt: packet type declaration
380 *
381 * Add a protocol handler to the networking stack. The passed &packet_type
382 * is linked into kernel lists and may not be freed until it has been
383 * removed from the kernel lists.
384 *
385 * This call does not sleep therefore it can not
386 * guarantee all CPU's that are in middle of receiving packets
387 * will see the new packet type (until the next received packet).
388 */
389
390 void dev_add_pack(struct packet_type *pt)
391 {
392 struct list_head *head = ptype_head(pt);
393
394 spin_lock(&ptype_lock);
395 list_add_rcu(&pt->list, head);
396 spin_unlock(&ptype_lock);
397 }
398 EXPORT_SYMBOL(dev_add_pack);
399
400 /**
401 * __dev_remove_pack - remove packet handler
402 * @pt: packet type declaration
403 *
404 * Remove a protocol handler that was previously added to the kernel
405 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
406 * from the kernel lists and can be freed or reused once this function
407 * returns.
408 *
409 * The packet type might still be in use by receivers
410 * and must not be freed until after all the CPU's have gone
411 * through a quiescent state.
412 */
413 void __dev_remove_pack(struct packet_type *pt)
414 {
415 struct list_head *head = ptype_head(pt);
416 struct packet_type *pt1;
417
418 spin_lock(&ptype_lock);
419
420 list_for_each_entry(pt1, head, list) {
421 if (pt == pt1) {
422 list_del_rcu(&pt->list);
423 goto out;
424 }
425 }
426
427 pr_warn("dev_remove_pack: %p not found\n", pt);
428 out:
429 spin_unlock(&ptype_lock);
430 }
431 EXPORT_SYMBOL(__dev_remove_pack);
432
433 /**
434 * dev_remove_pack - remove packet handler
435 * @pt: packet type declaration
436 *
437 * Remove a protocol handler that was previously added to the kernel
438 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
439 * from the kernel lists and can be freed or reused once this function
440 * returns.
441 *
442 * This call sleeps to guarantee that no CPU is looking at the packet
443 * type after return.
444 */
445 void dev_remove_pack(struct packet_type *pt)
446 {
447 __dev_remove_pack(pt);
448
449 synchronize_net();
450 }
451 EXPORT_SYMBOL(dev_remove_pack);
452
453
454 /**
455 * dev_add_offload - register offload handlers
456 * @po: protocol offload declaration
457 *
458 * Add protocol offload handlers to the networking stack. The passed
459 * &proto_offload is linked into kernel lists and may not be freed until
460 * it has been removed from the kernel lists.
461 *
462 * This call does not sleep therefore it can not
463 * guarantee all CPU's that are in middle of receiving packets
464 * will see the new offload handlers (until the next received packet).
465 */
466 void dev_add_offload(struct packet_offload *po)
467 {
468 struct list_head *head = &offload_base;
469
470 spin_lock(&offload_lock);
471 list_add_rcu(&po->list, head);
472 spin_unlock(&offload_lock);
473 }
474 EXPORT_SYMBOL(dev_add_offload);
475
476 /**
477 * __dev_remove_offload - remove offload handler
478 * @po: packet offload declaration
479 *
480 * Remove a protocol offload handler that was previously added to the
481 * kernel offload handlers by dev_add_offload(). The passed &offload_type
482 * is removed from the kernel lists and can be freed or reused once this
483 * function returns.
484 *
485 * The packet type might still be in use by receivers
486 * and must not be freed until after all the CPU's have gone
487 * through a quiescent state.
488 */
489 static void __dev_remove_offload(struct packet_offload *po)
490 {
491 struct list_head *head = &offload_base;
492 struct packet_offload *po1;
493
494 spin_lock(&offload_lock);
495
496 list_for_each_entry(po1, head, list) {
497 if (po == po1) {
498 list_del_rcu(&po->list);
499 goto out;
500 }
501 }
502
503 pr_warn("dev_remove_offload: %p not found\n", po);
504 out:
505 spin_unlock(&offload_lock);
506 }
507
508 /**
509 * dev_remove_offload - remove packet offload handler
510 * @po: packet offload declaration
511 *
512 * Remove a packet offload handler that was previously added to the kernel
513 * offload handlers by dev_add_offload(). The passed &offload_type is
514 * removed from the kernel lists and can be freed or reused once this
515 * function returns.
516 *
517 * This call sleeps to guarantee that no CPU is looking at the packet
518 * type after return.
519 */
520 void dev_remove_offload(struct packet_offload *po)
521 {
522 __dev_remove_offload(po);
523
524 synchronize_net();
525 }
526 EXPORT_SYMBOL(dev_remove_offload);
527
528 /******************************************************************************
529
530 Device Boot-time Settings Routines
531
532 *******************************************************************************/
533
534 /* Boot time configuration table */
535 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
536
537 /**
538 * netdev_boot_setup_add - add new setup entry
539 * @name: name of the device
540 * @map: configured settings for the device
541 *
542 * Adds new setup entry to the dev_boot_setup list. The function
543 * returns 0 on error and 1 on success. This is a generic routine to
544 * all netdevices.
545 */
546 static int netdev_boot_setup_add(char *name, struct ifmap *map)
547 {
548 struct netdev_boot_setup *s;
549 int i;
550
551 s = dev_boot_setup;
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
553 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
554 memset(s[i].name, 0, sizeof(s[i].name));
555 strlcpy(s[i].name, name, IFNAMSIZ);
556 memcpy(&s[i].map, map, sizeof(s[i].map));
557 break;
558 }
559 }
560
561 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
562 }
563
564 /**
565 * netdev_boot_setup_check - check boot time settings
566 * @dev: the netdevice
567 *
568 * Check boot time settings for the device.
569 * The found settings are set for the device to be used
570 * later in the device probing.
571 * Returns 0 if no settings found, 1 if they are.
572 */
573 int netdev_boot_setup_check(struct net_device *dev)
574 {
575 struct netdev_boot_setup *s = dev_boot_setup;
576 int i;
577
578 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
579 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
580 !strcmp(dev->name, s[i].name)) {
581 dev->irq = s[i].map.irq;
582 dev->base_addr = s[i].map.base_addr;
583 dev->mem_start = s[i].map.mem_start;
584 dev->mem_end = s[i].map.mem_end;
585 return 1;
586 }
587 }
588 return 0;
589 }
590 EXPORT_SYMBOL(netdev_boot_setup_check);
591
592
593 /**
594 * netdev_boot_base - get address from boot time settings
595 * @prefix: prefix for network device
596 * @unit: id for network device
597 *
598 * Check boot time settings for the base address of device.
599 * The found settings are set for the device to be used
600 * later in the device probing.
601 * Returns 0 if no settings found.
602 */
603 unsigned long netdev_boot_base(const char *prefix, int unit)
604 {
605 const struct netdev_boot_setup *s = dev_boot_setup;
606 char name[IFNAMSIZ];
607 int i;
608
609 sprintf(name, "%s%d", prefix, unit);
610
611 /*
612 * If device already registered then return base of 1
613 * to indicate not to probe for this interface
614 */
615 if (__dev_get_by_name(&init_net, name))
616 return 1;
617
618 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
619 if (!strcmp(name, s[i].name))
620 return s[i].map.base_addr;
621 return 0;
622 }
623
624 /*
625 * Saves at boot time configured settings for any netdevice.
626 */
627 int __init netdev_boot_setup(char *str)
628 {
629 int ints[5];
630 struct ifmap map;
631
632 str = get_options(str, ARRAY_SIZE(ints), ints);
633 if (!str || !*str)
634 return 0;
635
636 /* Save settings */
637 memset(&map, 0, sizeof(map));
638 if (ints[0] > 0)
639 map.irq = ints[1];
640 if (ints[0] > 1)
641 map.base_addr = ints[2];
642 if (ints[0] > 2)
643 map.mem_start = ints[3];
644 if (ints[0] > 3)
645 map.mem_end = ints[4];
646
647 /* Add new entry to the list */
648 return netdev_boot_setup_add(str, &map);
649 }
650
651 __setup("netdev=", netdev_boot_setup);
652
653 /*******************************************************************************
654
655 Device Interface Subroutines
656
657 *******************************************************************************/
658
659 /**
660 * __dev_get_by_name - find a device by its name
661 * @net: the applicable net namespace
662 * @name: name to find
663 *
664 * Find an interface by name. Must be called under RTNL semaphore
665 * or @dev_base_lock. If the name is found a pointer to the device
666 * is returned. If the name is not found then %NULL is returned. The
667 * reference counters are not incremented so the caller must be
668 * careful with locks.
669 */
670
671 struct net_device *__dev_get_by_name(struct net *net, const char *name)
672 {
673 struct net_device *dev;
674 struct hlist_head *head = dev_name_hash(net, name);
675
676 hlist_for_each_entry(dev, head, name_hlist)
677 if (!strncmp(dev->name, name, IFNAMSIZ))
678 return dev;
679
680 return NULL;
681 }
682 EXPORT_SYMBOL(__dev_get_by_name);
683
684 /**
685 * dev_get_by_name_rcu - find a device by its name
686 * @net: the applicable net namespace
687 * @name: name to find
688 *
689 * Find an interface by name.
690 * If the name is found a pointer to the device is returned.
691 * If the name is not found then %NULL is returned.
692 * The reference counters are not incremented so the caller must be
693 * careful with locks. The caller must hold RCU lock.
694 */
695
696 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
697 {
698 struct net_device *dev;
699 struct hlist_head *head = dev_name_hash(net, name);
700
701 hlist_for_each_entry_rcu(dev, head, name_hlist)
702 if (!strncmp(dev->name, name, IFNAMSIZ))
703 return dev;
704
705 return NULL;
706 }
707 EXPORT_SYMBOL(dev_get_by_name_rcu);
708
709 /**
710 * dev_get_by_name - find a device by its name
711 * @net: the applicable net namespace
712 * @name: name to find
713 *
714 * Find an interface by name. This can be called from any
715 * context and does its own locking. The returned handle has
716 * the usage count incremented and the caller must use dev_put() to
717 * release it when it is no longer needed. %NULL is returned if no
718 * matching device is found.
719 */
720
721 struct net_device *dev_get_by_name(struct net *net, const char *name)
722 {
723 struct net_device *dev;
724
725 rcu_read_lock();
726 dev = dev_get_by_name_rcu(net, name);
727 if (dev)
728 dev_hold(dev);
729 rcu_read_unlock();
730 return dev;
731 }
732 EXPORT_SYMBOL(dev_get_by_name);
733
734 /**
735 * __dev_get_by_index - find a device by its ifindex
736 * @net: the applicable net namespace
737 * @ifindex: index of device
738 *
739 * Search for an interface by index. Returns %NULL if the device
740 * is not found or a pointer to the device. The device has not
741 * had its reference counter increased so the caller must be careful
742 * about locking. The caller must hold either the RTNL semaphore
743 * or @dev_base_lock.
744 */
745
746 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
747 {
748 struct net_device *dev;
749 struct hlist_head *head = dev_index_hash(net, ifindex);
750
751 hlist_for_each_entry(dev, head, index_hlist)
752 if (dev->ifindex == ifindex)
753 return dev;
754
755 return NULL;
756 }
757 EXPORT_SYMBOL(__dev_get_by_index);
758
759 /**
760 * dev_get_by_index_rcu - find a device by its ifindex
761 * @net: the applicable net namespace
762 * @ifindex: index of device
763 *
764 * Search for an interface by index. Returns %NULL if the device
765 * is not found or a pointer to the device. The device has not
766 * had its reference counter increased so the caller must be careful
767 * about locking. The caller must hold RCU lock.
768 */
769
770 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
771 {
772 struct net_device *dev;
773 struct hlist_head *head = dev_index_hash(net, ifindex);
774
775 hlist_for_each_entry_rcu(dev, head, index_hlist)
776 if (dev->ifindex == ifindex)
777 return dev;
778
779 return NULL;
780 }
781 EXPORT_SYMBOL(dev_get_by_index_rcu);
782
783
784 /**
785 * dev_get_by_index - find a device by its ifindex
786 * @net: the applicable net namespace
787 * @ifindex: index of device
788 *
789 * Search for an interface by index. Returns NULL if the device
790 * is not found or a pointer to the device. The device returned has
791 * had a reference added and the pointer is safe until the user calls
792 * dev_put to indicate they have finished with it.
793 */
794
795 struct net_device *dev_get_by_index(struct net *net, int ifindex)
796 {
797 struct net_device *dev;
798
799 rcu_read_lock();
800 dev = dev_get_by_index_rcu(net, ifindex);
801 if (dev)
802 dev_hold(dev);
803 rcu_read_unlock();
804 return dev;
805 }
806 EXPORT_SYMBOL(dev_get_by_index);
807
808 /**
809 * netdev_get_name - get a netdevice name, knowing its ifindex.
810 * @net: network namespace
811 * @name: a pointer to the buffer where the name will be stored.
812 * @ifindex: the ifindex of the interface to get the name from.
813 *
814 * The use of raw_seqcount_begin() and cond_resched() before
815 * retrying is required as we want to give the writers a chance
816 * to complete when CONFIG_PREEMPT is not set.
817 */
818 int netdev_get_name(struct net *net, char *name, int ifindex)
819 {
820 struct net_device *dev;
821 unsigned int seq;
822
823 retry:
824 seq = raw_seqcount_begin(&devnet_rename_seq);
825 rcu_read_lock();
826 dev = dev_get_by_index_rcu(net, ifindex);
827 if (!dev) {
828 rcu_read_unlock();
829 return -ENODEV;
830 }
831
832 strcpy(name, dev->name);
833 rcu_read_unlock();
834 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
835 cond_resched();
836 goto retry;
837 }
838
839 return 0;
840 }
841
842 /**
843 * dev_getbyhwaddr_rcu - find a device by its hardware address
844 * @net: the applicable net namespace
845 * @type: media type of device
846 * @ha: hardware address
847 *
848 * Search for an interface by MAC address. Returns NULL if the device
849 * is not found or a pointer to the device.
850 * The caller must hold RCU or RTNL.
851 * The returned device has not had its ref count increased
852 * and the caller must therefore be careful about locking
853 *
854 */
855
856 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
857 const char *ha)
858 {
859 struct net_device *dev;
860
861 for_each_netdev_rcu(net, dev)
862 if (dev->type == type &&
863 !memcmp(dev->dev_addr, ha, dev->addr_len))
864 return dev;
865
866 return NULL;
867 }
868 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
869
870 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
871 {
872 struct net_device *dev;
873
874 ASSERT_RTNL();
875 for_each_netdev(net, dev)
876 if (dev->type == type)
877 return dev;
878
879 return NULL;
880 }
881 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
882
883 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
884 {
885 struct net_device *dev, *ret = NULL;
886
887 rcu_read_lock();
888 for_each_netdev_rcu(net, dev)
889 if (dev->type == type) {
890 dev_hold(dev);
891 ret = dev;
892 break;
893 }
894 rcu_read_unlock();
895 return ret;
896 }
897 EXPORT_SYMBOL(dev_getfirstbyhwtype);
898
899 /**
900 * dev_get_by_flags_rcu - find any device with given flags
901 * @net: the applicable net namespace
902 * @if_flags: IFF_* values
903 * @mask: bitmask of bits in if_flags to check
904 *
905 * Search for any interface with the given flags. Returns NULL if a device
906 * is not found or a pointer to the device. Must be called inside
907 * rcu_read_lock(), and result refcount is unchanged.
908 */
909
910 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
911 unsigned short mask)
912 {
913 struct net_device *dev, *ret;
914
915 ret = NULL;
916 for_each_netdev_rcu(net, dev) {
917 if (((dev->flags ^ if_flags) & mask) == 0) {
918 ret = dev;
919 break;
920 }
921 }
922 return ret;
923 }
924 EXPORT_SYMBOL(dev_get_by_flags_rcu);
925
926 /**
927 * dev_valid_name - check if name is okay for network device
928 * @name: name string
929 *
930 * Network device names need to be valid file names to
931 * to allow sysfs to work. We also disallow any kind of
932 * whitespace.
933 */
934 bool dev_valid_name(const char *name)
935 {
936 if (*name == '\0')
937 return false;
938 if (strlen(name) >= IFNAMSIZ)
939 return false;
940 if (!strcmp(name, ".") || !strcmp(name, ".."))
941 return false;
942
943 while (*name) {
944 if (*name == '/' || isspace(*name))
945 return false;
946 name++;
947 }
948 return true;
949 }
950 EXPORT_SYMBOL(dev_valid_name);
951
952 /**
953 * __dev_alloc_name - allocate a name for a device
954 * @net: network namespace to allocate the device name in
955 * @name: name format string
956 * @buf: scratch buffer and result name string
957 *
958 * Passed a format string - eg "lt%d" it will try and find a suitable
959 * id. It scans list of devices to build up a free map, then chooses
960 * the first empty slot. The caller must hold the dev_base or rtnl lock
961 * while allocating the name and adding the device in order to avoid
962 * duplicates.
963 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
964 * Returns the number of the unit assigned or a negative errno code.
965 */
966
967 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
968 {
969 int i = 0;
970 const char *p;
971 const int max_netdevices = 8*PAGE_SIZE;
972 unsigned long *inuse;
973 struct net_device *d;
974
975 p = strnchr(name, IFNAMSIZ-1, '%');
976 if (p) {
977 /*
978 * Verify the string as this thing may have come from
979 * the user. There must be either one "%d" and no other "%"
980 * characters.
981 */
982 if (p[1] != 'd' || strchr(p + 2, '%'))
983 return -EINVAL;
984
985 /* Use one page as a bit array of possible slots */
986 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
987 if (!inuse)
988 return -ENOMEM;
989
990 for_each_netdev(net, d) {
991 if (!sscanf(d->name, name, &i))
992 continue;
993 if (i < 0 || i >= max_netdevices)
994 continue;
995
996 /* avoid cases where sscanf is not exact inverse of printf */
997 snprintf(buf, IFNAMSIZ, name, i);
998 if (!strncmp(buf, d->name, IFNAMSIZ))
999 set_bit(i, inuse);
1000 }
1001
1002 i = find_first_zero_bit(inuse, max_netdevices);
1003 free_page((unsigned long) inuse);
1004 }
1005
1006 if (buf != name)
1007 snprintf(buf, IFNAMSIZ, name, i);
1008 if (!__dev_get_by_name(net, buf))
1009 return i;
1010
1011 /* It is possible to run out of possible slots
1012 * when the name is long and there isn't enough space left
1013 * for the digits, or if all bits are used.
1014 */
1015 return -ENFILE;
1016 }
1017
1018 /**
1019 * dev_alloc_name - allocate a name for a device
1020 * @dev: device
1021 * @name: name format string
1022 *
1023 * Passed a format string - eg "lt%d" it will try and find a suitable
1024 * id. It scans list of devices to build up a free map, then chooses
1025 * the first empty slot. The caller must hold the dev_base or rtnl lock
1026 * while allocating the name and adding the device in order to avoid
1027 * duplicates.
1028 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1029 * Returns the number of the unit assigned or a negative errno code.
1030 */
1031
1032 int dev_alloc_name(struct net_device *dev, const char *name)
1033 {
1034 char buf[IFNAMSIZ];
1035 struct net *net;
1036 int ret;
1037
1038 BUG_ON(!dev_net(dev));
1039 net = dev_net(dev);
1040 ret = __dev_alloc_name(net, name, buf);
1041 if (ret >= 0)
1042 strlcpy(dev->name, buf, IFNAMSIZ);
1043 return ret;
1044 }
1045 EXPORT_SYMBOL(dev_alloc_name);
1046
1047 static int dev_alloc_name_ns(struct net *net,
1048 struct net_device *dev,
1049 const char *name)
1050 {
1051 char buf[IFNAMSIZ];
1052 int ret;
1053
1054 ret = __dev_alloc_name(net, name, buf);
1055 if (ret >= 0)
1056 strlcpy(dev->name, buf, IFNAMSIZ);
1057 return ret;
1058 }
1059
1060 static int dev_get_valid_name(struct net *net,
1061 struct net_device *dev,
1062 const char *name)
1063 {
1064 BUG_ON(!net);
1065
1066 if (!dev_valid_name(name))
1067 return -EINVAL;
1068
1069 if (strchr(name, '%'))
1070 return dev_alloc_name_ns(net, dev, name);
1071 else if (__dev_get_by_name(net, name))
1072 return -EEXIST;
1073 else if (dev->name != name)
1074 strlcpy(dev->name, name, IFNAMSIZ);
1075
1076 return 0;
1077 }
1078
1079 /**
1080 * dev_change_name - change name of a device
1081 * @dev: device
1082 * @newname: name (or format string) must be at least IFNAMSIZ
1083 *
1084 * Change name of a device, can pass format strings "eth%d".
1085 * for wildcarding.
1086 */
1087 int dev_change_name(struct net_device *dev, const char *newname)
1088 {
1089 unsigned char old_assign_type;
1090 char oldname[IFNAMSIZ];
1091 int err = 0;
1092 int ret;
1093 struct net *net;
1094
1095 ASSERT_RTNL();
1096 BUG_ON(!dev_net(dev));
1097
1098 net = dev_net(dev);
1099 if (dev->flags & IFF_UP)
1100 return -EBUSY;
1101
1102 write_seqcount_begin(&devnet_rename_seq);
1103
1104 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1105 write_seqcount_end(&devnet_rename_seq);
1106 return 0;
1107 }
1108
1109 memcpy(oldname, dev->name, IFNAMSIZ);
1110
1111 err = dev_get_valid_name(net, dev, newname);
1112 if (err < 0) {
1113 write_seqcount_end(&devnet_rename_seq);
1114 return err;
1115 }
1116
1117 if (oldname[0] && !strchr(oldname, '%'))
1118 netdev_info(dev, "renamed from %s\n", oldname);
1119
1120 old_assign_type = dev->name_assign_type;
1121 dev->name_assign_type = NET_NAME_RENAMED;
1122
1123 rollback:
1124 ret = device_rename(&dev->dev, dev->name);
1125 if (ret) {
1126 memcpy(dev->name, oldname, IFNAMSIZ);
1127 dev->name_assign_type = old_assign_type;
1128 write_seqcount_end(&devnet_rename_seq);
1129 return ret;
1130 }
1131
1132 write_seqcount_end(&devnet_rename_seq);
1133
1134 netdev_adjacent_rename_links(dev, oldname);
1135
1136 write_lock_bh(&dev_base_lock);
1137 hlist_del_rcu(&dev->name_hlist);
1138 write_unlock_bh(&dev_base_lock);
1139
1140 synchronize_rcu();
1141
1142 write_lock_bh(&dev_base_lock);
1143 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1144 write_unlock_bh(&dev_base_lock);
1145
1146 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1147 ret = notifier_to_errno(ret);
1148
1149 if (ret) {
1150 /* err >= 0 after dev_alloc_name() or stores the first errno */
1151 if (err >= 0) {
1152 err = ret;
1153 write_seqcount_begin(&devnet_rename_seq);
1154 memcpy(dev->name, oldname, IFNAMSIZ);
1155 memcpy(oldname, newname, IFNAMSIZ);
1156 dev->name_assign_type = old_assign_type;
1157 old_assign_type = NET_NAME_RENAMED;
1158 goto rollback;
1159 } else {
1160 pr_err("%s: name change rollback failed: %d\n",
1161 dev->name, ret);
1162 }
1163 }
1164
1165 return err;
1166 }
1167
1168 /**
1169 * dev_set_alias - change ifalias of a device
1170 * @dev: device
1171 * @alias: name up to IFALIASZ
1172 * @len: limit of bytes to copy from info
1173 *
1174 * Set ifalias for a device,
1175 */
1176 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1177 {
1178 char *new_ifalias;
1179
1180 ASSERT_RTNL();
1181
1182 if (len >= IFALIASZ)
1183 return -EINVAL;
1184
1185 if (!len) {
1186 kfree(dev->ifalias);
1187 dev->ifalias = NULL;
1188 return 0;
1189 }
1190
1191 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1192 if (!new_ifalias)
1193 return -ENOMEM;
1194 dev->ifalias = new_ifalias;
1195
1196 strlcpy(dev->ifalias, alias, len+1);
1197 return len;
1198 }
1199
1200
1201 /**
1202 * netdev_features_change - device changes features
1203 * @dev: device to cause notification
1204 *
1205 * Called to indicate a device has changed features.
1206 */
1207 void netdev_features_change(struct net_device *dev)
1208 {
1209 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1210 }
1211 EXPORT_SYMBOL(netdev_features_change);
1212
1213 /**
1214 * netdev_state_change - device changes state
1215 * @dev: device to cause notification
1216 *
1217 * Called to indicate a device has changed state. This function calls
1218 * the notifier chains for netdev_chain and sends a NEWLINK message
1219 * to the routing socket.
1220 */
1221 void netdev_state_change(struct net_device *dev)
1222 {
1223 if (dev->flags & IFF_UP) {
1224 struct netdev_notifier_change_info change_info;
1225
1226 change_info.flags_changed = 0;
1227 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1228 &change_info.info);
1229 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1230 }
1231 }
1232 EXPORT_SYMBOL(netdev_state_change);
1233
1234 /**
1235 * netdev_notify_peers - notify network peers about existence of @dev
1236 * @dev: network device
1237 *
1238 * Generate traffic such that interested network peers are aware of
1239 * @dev, such as by generating a gratuitous ARP. This may be used when
1240 * a device wants to inform the rest of the network about some sort of
1241 * reconfiguration such as a failover event or virtual machine
1242 * migration.
1243 */
1244 void netdev_notify_peers(struct net_device *dev)
1245 {
1246 rtnl_lock();
1247 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1248 rtnl_unlock();
1249 }
1250 EXPORT_SYMBOL(netdev_notify_peers);
1251
1252 static int __dev_open(struct net_device *dev)
1253 {
1254 const struct net_device_ops *ops = dev->netdev_ops;
1255 int ret;
1256
1257 ASSERT_RTNL();
1258
1259 if (!netif_device_present(dev))
1260 return -ENODEV;
1261
1262 /* Block netpoll from trying to do any rx path servicing.
1263 * If we don't do this there is a chance ndo_poll_controller
1264 * or ndo_poll may be running while we open the device
1265 */
1266 netpoll_poll_disable(dev);
1267
1268 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1269 ret = notifier_to_errno(ret);
1270 if (ret)
1271 return ret;
1272
1273 set_bit(__LINK_STATE_START, &dev->state);
1274
1275 if (ops->ndo_validate_addr)
1276 ret = ops->ndo_validate_addr(dev);
1277
1278 if (!ret && ops->ndo_open)
1279 ret = ops->ndo_open(dev);
1280
1281 netpoll_poll_enable(dev);
1282
1283 if (ret)
1284 clear_bit(__LINK_STATE_START, &dev->state);
1285 else {
1286 dev->flags |= IFF_UP;
1287 net_dmaengine_get();
1288 dev_set_rx_mode(dev);
1289 dev_activate(dev);
1290 add_device_randomness(dev->dev_addr, dev->addr_len);
1291 }
1292
1293 return ret;
1294 }
1295
1296 /**
1297 * dev_open - prepare an interface for use.
1298 * @dev: device to open
1299 *
1300 * Takes a device from down to up state. The device's private open
1301 * function is invoked and then the multicast lists are loaded. Finally
1302 * the device is moved into the up state and a %NETDEV_UP message is
1303 * sent to the netdev notifier chain.
1304 *
1305 * Calling this function on an active interface is a nop. On a failure
1306 * a negative errno code is returned.
1307 */
1308 int dev_open(struct net_device *dev)
1309 {
1310 int ret;
1311
1312 if (dev->flags & IFF_UP)
1313 return 0;
1314
1315 ret = __dev_open(dev);
1316 if (ret < 0)
1317 return ret;
1318
1319 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1320 call_netdevice_notifiers(NETDEV_UP, dev);
1321
1322 return ret;
1323 }
1324 EXPORT_SYMBOL(dev_open);
1325
1326 static int __dev_close_many(struct list_head *head)
1327 {
1328 struct net_device *dev;
1329
1330 ASSERT_RTNL();
1331 might_sleep();
1332
1333 list_for_each_entry(dev, head, close_list) {
1334 /* Temporarily disable netpoll until the interface is down */
1335 netpoll_poll_disable(dev);
1336
1337 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1338
1339 clear_bit(__LINK_STATE_START, &dev->state);
1340
1341 /* Synchronize to scheduled poll. We cannot touch poll list, it
1342 * can be even on different cpu. So just clear netif_running().
1343 *
1344 * dev->stop() will invoke napi_disable() on all of it's
1345 * napi_struct instances on this device.
1346 */
1347 smp_mb__after_atomic(); /* Commit netif_running(). */
1348 }
1349
1350 dev_deactivate_many(head);
1351
1352 list_for_each_entry(dev, head, close_list) {
1353 const struct net_device_ops *ops = dev->netdev_ops;
1354
1355 /*
1356 * Call the device specific close. This cannot fail.
1357 * Only if device is UP
1358 *
1359 * We allow it to be called even after a DETACH hot-plug
1360 * event.
1361 */
1362 if (ops->ndo_stop)
1363 ops->ndo_stop(dev);
1364
1365 dev->flags &= ~IFF_UP;
1366 net_dmaengine_put();
1367 netpoll_poll_enable(dev);
1368 }
1369
1370 return 0;
1371 }
1372
1373 static int __dev_close(struct net_device *dev)
1374 {
1375 int retval;
1376 LIST_HEAD(single);
1377
1378 list_add(&dev->close_list, &single);
1379 retval = __dev_close_many(&single);
1380 list_del(&single);
1381
1382 return retval;
1383 }
1384
1385 static int dev_close_many(struct list_head *head)
1386 {
1387 struct net_device *dev, *tmp;
1388
1389 /* Remove the devices that don't need to be closed */
1390 list_for_each_entry_safe(dev, tmp, head, close_list)
1391 if (!(dev->flags & IFF_UP))
1392 list_del_init(&dev->close_list);
1393
1394 __dev_close_many(head);
1395
1396 list_for_each_entry_safe(dev, tmp, head, close_list) {
1397 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1398 call_netdevice_notifiers(NETDEV_DOWN, dev);
1399 list_del_init(&dev->close_list);
1400 }
1401
1402 return 0;
1403 }
1404
1405 /**
1406 * dev_close - shutdown an interface.
1407 * @dev: device to shutdown
1408 *
1409 * This function moves an active device into down state. A
1410 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1411 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1412 * chain.
1413 */
1414 int dev_close(struct net_device *dev)
1415 {
1416 if (dev->flags & IFF_UP) {
1417 LIST_HEAD(single);
1418
1419 list_add(&dev->close_list, &single);
1420 dev_close_many(&single);
1421 list_del(&single);
1422 }
1423 return 0;
1424 }
1425 EXPORT_SYMBOL(dev_close);
1426
1427
1428 /**
1429 * dev_disable_lro - disable Large Receive Offload on a device
1430 * @dev: device
1431 *
1432 * Disable Large Receive Offload (LRO) on a net device. Must be
1433 * called under RTNL. This is needed if received packets may be
1434 * forwarded to another interface.
1435 */
1436 void dev_disable_lro(struct net_device *dev)
1437 {
1438 /*
1439 * If we're trying to disable lro on a vlan device
1440 * use the underlying physical device instead
1441 */
1442 if (is_vlan_dev(dev))
1443 dev = vlan_dev_real_dev(dev);
1444
1445 /* the same for macvlan devices */
1446 if (netif_is_macvlan(dev))
1447 dev = macvlan_dev_real_dev(dev);
1448
1449 dev->wanted_features &= ~NETIF_F_LRO;
1450 netdev_update_features(dev);
1451
1452 if (unlikely(dev->features & NETIF_F_LRO))
1453 netdev_WARN(dev, "failed to disable LRO!\n");
1454 }
1455 EXPORT_SYMBOL(dev_disable_lro);
1456
1457 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1458 struct net_device *dev)
1459 {
1460 struct netdev_notifier_info info;
1461
1462 netdev_notifier_info_init(&info, dev);
1463 return nb->notifier_call(nb, val, &info);
1464 }
1465
1466 static int dev_boot_phase = 1;
1467
1468 /**
1469 * register_netdevice_notifier - register a network notifier block
1470 * @nb: notifier
1471 *
1472 * Register a notifier to be called when network device events occur.
1473 * The notifier passed is linked into the kernel structures and must
1474 * not be reused until it has been unregistered. A negative errno code
1475 * is returned on a failure.
1476 *
1477 * When registered all registration and up events are replayed
1478 * to the new notifier to allow device to have a race free
1479 * view of the network device list.
1480 */
1481
1482 int register_netdevice_notifier(struct notifier_block *nb)
1483 {
1484 struct net_device *dev;
1485 struct net_device *last;
1486 struct net *net;
1487 int err;
1488
1489 rtnl_lock();
1490 err = raw_notifier_chain_register(&netdev_chain, nb);
1491 if (err)
1492 goto unlock;
1493 if (dev_boot_phase)
1494 goto unlock;
1495 for_each_net(net) {
1496 for_each_netdev(net, dev) {
1497 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1498 err = notifier_to_errno(err);
1499 if (err)
1500 goto rollback;
1501
1502 if (!(dev->flags & IFF_UP))
1503 continue;
1504
1505 call_netdevice_notifier(nb, NETDEV_UP, dev);
1506 }
1507 }
1508
1509 unlock:
1510 rtnl_unlock();
1511 return err;
1512
1513 rollback:
1514 last = dev;
1515 for_each_net(net) {
1516 for_each_netdev(net, dev) {
1517 if (dev == last)
1518 goto outroll;
1519
1520 if (dev->flags & IFF_UP) {
1521 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1522 dev);
1523 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1524 }
1525 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1526 }
1527 }
1528
1529 outroll:
1530 raw_notifier_chain_unregister(&netdev_chain, nb);
1531 goto unlock;
1532 }
1533 EXPORT_SYMBOL(register_netdevice_notifier);
1534
1535 /**
1536 * unregister_netdevice_notifier - unregister a network notifier block
1537 * @nb: notifier
1538 *
1539 * Unregister a notifier previously registered by
1540 * register_netdevice_notifier(). The notifier is unlinked into the
1541 * kernel structures and may then be reused. A negative errno code
1542 * is returned on a failure.
1543 *
1544 * After unregistering unregister and down device events are synthesized
1545 * for all devices on the device list to the removed notifier to remove
1546 * the need for special case cleanup code.
1547 */
1548
1549 int unregister_netdevice_notifier(struct notifier_block *nb)
1550 {
1551 struct net_device *dev;
1552 struct net *net;
1553 int err;
1554
1555 rtnl_lock();
1556 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1557 if (err)
1558 goto unlock;
1559
1560 for_each_net(net) {
1561 for_each_netdev(net, dev) {
1562 if (dev->flags & IFF_UP) {
1563 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1564 dev);
1565 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1566 }
1567 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1568 }
1569 }
1570 unlock:
1571 rtnl_unlock();
1572 return err;
1573 }
1574 EXPORT_SYMBOL(unregister_netdevice_notifier);
1575
1576 /**
1577 * call_netdevice_notifiers_info - call all network notifier blocks
1578 * @val: value passed unmodified to notifier function
1579 * @dev: net_device pointer passed unmodified to notifier function
1580 * @info: notifier information data
1581 *
1582 * Call all network notifier blocks. Parameters and return value
1583 * are as for raw_notifier_call_chain().
1584 */
1585
1586 static int call_netdevice_notifiers_info(unsigned long val,
1587 struct net_device *dev,
1588 struct netdev_notifier_info *info)
1589 {
1590 ASSERT_RTNL();
1591 netdev_notifier_info_init(info, dev);
1592 return raw_notifier_call_chain(&netdev_chain, val, info);
1593 }
1594
1595 /**
1596 * call_netdevice_notifiers - call all network notifier blocks
1597 * @val: value passed unmodified to notifier function
1598 * @dev: net_device pointer passed unmodified to notifier function
1599 *
1600 * Call all network notifier blocks. Parameters and return value
1601 * are as for raw_notifier_call_chain().
1602 */
1603
1604 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1605 {
1606 struct netdev_notifier_info info;
1607
1608 return call_netdevice_notifiers_info(val, dev, &info);
1609 }
1610 EXPORT_SYMBOL(call_netdevice_notifiers);
1611
1612 static struct static_key netstamp_needed __read_mostly;
1613 #ifdef HAVE_JUMP_LABEL
1614 /* We are not allowed to call static_key_slow_dec() from irq context
1615 * If net_disable_timestamp() is called from irq context, defer the
1616 * static_key_slow_dec() calls.
1617 */
1618 static atomic_t netstamp_needed_deferred;
1619 #endif
1620
1621 void net_enable_timestamp(void)
1622 {
1623 #ifdef HAVE_JUMP_LABEL
1624 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1625
1626 if (deferred) {
1627 while (--deferred)
1628 static_key_slow_dec(&netstamp_needed);
1629 return;
1630 }
1631 #endif
1632 static_key_slow_inc(&netstamp_needed);
1633 }
1634 EXPORT_SYMBOL(net_enable_timestamp);
1635
1636 void net_disable_timestamp(void)
1637 {
1638 #ifdef HAVE_JUMP_LABEL
1639 if (in_interrupt()) {
1640 atomic_inc(&netstamp_needed_deferred);
1641 return;
1642 }
1643 #endif
1644 static_key_slow_dec(&netstamp_needed);
1645 }
1646 EXPORT_SYMBOL(net_disable_timestamp);
1647
1648 static inline void net_timestamp_set(struct sk_buff *skb)
1649 {
1650 skb->tstamp.tv64 = 0;
1651 if (static_key_false(&netstamp_needed))
1652 __net_timestamp(skb);
1653 }
1654
1655 #define net_timestamp_check(COND, SKB) \
1656 if (static_key_false(&netstamp_needed)) { \
1657 if ((COND) && !(SKB)->tstamp.tv64) \
1658 __net_timestamp(SKB); \
1659 } \
1660
1661 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1662 {
1663 unsigned int len;
1664
1665 if (!(dev->flags & IFF_UP))
1666 return false;
1667
1668 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1669 if (skb->len <= len)
1670 return true;
1671
1672 /* if TSO is enabled, we don't care about the length as the packet
1673 * could be forwarded without being segmented before
1674 */
1675 if (skb_is_gso(skb))
1676 return true;
1677
1678 return false;
1679 }
1680 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1681
1682 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1683 {
1684 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1685 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1686 atomic_long_inc(&dev->rx_dropped);
1687 kfree_skb(skb);
1688 return NET_RX_DROP;
1689 }
1690 }
1691
1692 if (unlikely(!is_skb_forwardable(dev, skb))) {
1693 atomic_long_inc(&dev->rx_dropped);
1694 kfree_skb(skb);
1695 return NET_RX_DROP;
1696 }
1697
1698 skb_scrub_packet(skb, true);
1699 skb->protocol = eth_type_trans(skb, dev);
1700
1701 return 0;
1702 }
1703 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1704
1705 /**
1706 * dev_forward_skb - loopback an skb to another netif
1707 *
1708 * @dev: destination network device
1709 * @skb: buffer to forward
1710 *
1711 * return values:
1712 * NET_RX_SUCCESS (no congestion)
1713 * NET_RX_DROP (packet was dropped, but freed)
1714 *
1715 * dev_forward_skb can be used for injecting an skb from the
1716 * start_xmit function of one device into the receive queue
1717 * of another device.
1718 *
1719 * The receiving device may be in another namespace, so
1720 * we have to clear all information in the skb that could
1721 * impact namespace isolation.
1722 */
1723 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1724 {
1725 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1726 }
1727 EXPORT_SYMBOL_GPL(dev_forward_skb);
1728
1729 static inline int deliver_skb(struct sk_buff *skb,
1730 struct packet_type *pt_prev,
1731 struct net_device *orig_dev)
1732 {
1733 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1734 return -ENOMEM;
1735 atomic_inc(&skb->users);
1736 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1737 }
1738
1739 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1740 {
1741 if (!ptype->af_packet_priv || !skb->sk)
1742 return false;
1743
1744 if (ptype->id_match)
1745 return ptype->id_match(ptype, skb->sk);
1746 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1747 return true;
1748
1749 return false;
1750 }
1751
1752 /*
1753 * Support routine. Sends outgoing frames to any network
1754 * taps currently in use.
1755 */
1756
1757 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1758 {
1759 struct packet_type *ptype;
1760 struct sk_buff *skb2 = NULL;
1761 struct packet_type *pt_prev = NULL;
1762
1763 rcu_read_lock();
1764 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1765 /* Never send packets back to the socket
1766 * they originated from - MvS (miquels@drinkel.ow.org)
1767 */
1768 if ((ptype->dev == dev || !ptype->dev) &&
1769 (!skb_loop_sk(ptype, skb))) {
1770 if (pt_prev) {
1771 deliver_skb(skb2, pt_prev, skb->dev);
1772 pt_prev = ptype;
1773 continue;
1774 }
1775
1776 skb2 = skb_clone(skb, GFP_ATOMIC);
1777 if (!skb2)
1778 break;
1779
1780 net_timestamp_set(skb2);
1781
1782 /* skb->nh should be correctly
1783 set by sender, so that the second statement is
1784 just protection against buggy protocols.
1785 */
1786 skb_reset_mac_header(skb2);
1787
1788 if (skb_network_header(skb2) < skb2->data ||
1789 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1790 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1791 ntohs(skb2->protocol),
1792 dev->name);
1793 skb_reset_network_header(skb2);
1794 }
1795
1796 skb2->transport_header = skb2->network_header;
1797 skb2->pkt_type = PACKET_OUTGOING;
1798 pt_prev = ptype;
1799 }
1800 }
1801 if (pt_prev)
1802 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1803 rcu_read_unlock();
1804 }
1805
1806 /**
1807 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1808 * @dev: Network device
1809 * @txq: number of queues available
1810 *
1811 * If real_num_tx_queues is changed the tc mappings may no longer be
1812 * valid. To resolve this verify the tc mapping remains valid and if
1813 * not NULL the mapping. With no priorities mapping to this
1814 * offset/count pair it will no longer be used. In the worst case TC0
1815 * is invalid nothing can be done so disable priority mappings. If is
1816 * expected that drivers will fix this mapping if they can before
1817 * calling netif_set_real_num_tx_queues.
1818 */
1819 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1820 {
1821 int i;
1822 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1823
1824 /* If TC0 is invalidated disable TC mapping */
1825 if (tc->offset + tc->count > txq) {
1826 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1827 dev->num_tc = 0;
1828 return;
1829 }
1830
1831 /* Invalidated prio to tc mappings set to TC0 */
1832 for (i = 1; i < TC_BITMASK + 1; i++) {
1833 int q = netdev_get_prio_tc_map(dev, i);
1834
1835 tc = &dev->tc_to_txq[q];
1836 if (tc->offset + tc->count > txq) {
1837 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1838 i, q);
1839 netdev_set_prio_tc_map(dev, i, 0);
1840 }
1841 }
1842 }
1843
1844 #ifdef CONFIG_XPS
1845 static DEFINE_MUTEX(xps_map_mutex);
1846 #define xmap_dereference(P) \
1847 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1848
1849 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1850 int cpu, u16 index)
1851 {
1852 struct xps_map *map = NULL;
1853 int pos;
1854
1855 if (dev_maps)
1856 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1857
1858 for (pos = 0; map && pos < map->len; pos++) {
1859 if (map->queues[pos] == index) {
1860 if (map->len > 1) {
1861 map->queues[pos] = map->queues[--map->len];
1862 } else {
1863 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1864 kfree_rcu(map, rcu);
1865 map = NULL;
1866 }
1867 break;
1868 }
1869 }
1870
1871 return map;
1872 }
1873
1874 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1875 {
1876 struct xps_dev_maps *dev_maps;
1877 int cpu, i;
1878 bool active = false;
1879
1880 mutex_lock(&xps_map_mutex);
1881 dev_maps = xmap_dereference(dev->xps_maps);
1882
1883 if (!dev_maps)
1884 goto out_no_maps;
1885
1886 for_each_possible_cpu(cpu) {
1887 for (i = index; i < dev->num_tx_queues; i++) {
1888 if (!remove_xps_queue(dev_maps, cpu, i))
1889 break;
1890 }
1891 if (i == dev->num_tx_queues)
1892 active = true;
1893 }
1894
1895 if (!active) {
1896 RCU_INIT_POINTER(dev->xps_maps, NULL);
1897 kfree_rcu(dev_maps, rcu);
1898 }
1899
1900 for (i = index; i < dev->num_tx_queues; i++)
1901 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1902 NUMA_NO_NODE);
1903
1904 out_no_maps:
1905 mutex_unlock(&xps_map_mutex);
1906 }
1907
1908 static struct xps_map *expand_xps_map(struct xps_map *map,
1909 int cpu, u16 index)
1910 {
1911 struct xps_map *new_map;
1912 int alloc_len = XPS_MIN_MAP_ALLOC;
1913 int i, pos;
1914
1915 for (pos = 0; map && pos < map->len; pos++) {
1916 if (map->queues[pos] != index)
1917 continue;
1918 return map;
1919 }
1920
1921 /* Need to add queue to this CPU's existing map */
1922 if (map) {
1923 if (pos < map->alloc_len)
1924 return map;
1925
1926 alloc_len = map->alloc_len * 2;
1927 }
1928
1929 /* Need to allocate new map to store queue on this CPU's map */
1930 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1931 cpu_to_node(cpu));
1932 if (!new_map)
1933 return NULL;
1934
1935 for (i = 0; i < pos; i++)
1936 new_map->queues[i] = map->queues[i];
1937 new_map->alloc_len = alloc_len;
1938 new_map->len = pos;
1939
1940 return new_map;
1941 }
1942
1943 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1944 u16 index)
1945 {
1946 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1947 struct xps_map *map, *new_map;
1948 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1949 int cpu, numa_node_id = -2;
1950 bool active = false;
1951
1952 mutex_lock(&xps_map_mutex);
1953
1954 dev_maps = xmap_dereference(dev->xps_maps);
1955
1956 /* allocate memory for queue storage */
1957 for_each_online_cpu(cpu) {
1958 if (!cpumask_test_cpu(cpu, mask))
1959 continue;
1960
1961 if (!new_dev_maps)
1962 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1963 if (!new_dev_maps) {
1964 mutex_unlock(&xps_map_mutex);
1965 return -ENOMEM;
1966 }
1967
1968 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1969 NULL;
1970
1971 map = expand_xps_map(map, cpu, index);
1972 if (!map)
1973 goto error;
1974
1975 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1976 }
1977
1978 if (!new_dev_maps)
1979 goto out_no_new_maps;
1980
1981 for_each_possible_cpu(cpu) {
1982 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1983 /* add queue to CPU maps */
1984 int pos = 0;
1985
1986 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1987 while ((pos < map->len) && (map->queues[pos] != index))
1988 pos++;
1989
1990 if (pos == map->len)
1991 map->queues[map->len++] = index;
1992 #ifdef CONFIG_NUMA
1993 if (numa_node_id == -2)
1994 numa_node_id = cpu_to_node(cpu);
1995 else if (numa_node_id != cpu_to_node(cpu))
1996 numa_node_id = -1;
1997 #endif
1998 } else if (dev_maps) {
1999 /* fill in the new device map from the old device map */
2000 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2001 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2002 }
2003
2004 }
2005
2006 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2007
2008 /* Cleanup old maps */
2009 if (dev_maps) {
2010 for_each_possible_cpu(cpu) {
2011 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2012 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2013 if (map && map != new_map)
2014 kfree_rcu(map, rcu);
2015 }
2016
2017 kfree_rcu(dev_maps, rcu);
2018 }
2019
2020 dev_maps = new_dev_maps;
2021 active = true;
2022
2023 out_no_new_maps:
2024 /* update Tx queue numa node */
2025 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2026 (numa_node_id >= 0) ? numa_node_id :
2027 NUMA_NO_NODE);
2028
2029 if (!dev_maps)
2030 goto out_no_maps;
2031
2032 /* removes queue from unused CPUs */
2033 for_each_possible_cpu(cpu) {
2034 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2035 continue;
2036
2037 if (remove_xps_queue(dev_maps, cpu, index))
2038 active = true;
2039 }
2040
2041 /* free map if not active */
2042 if (!active) {
2043 RCU_INIT_POINTER(dev->xps_maps, NULL);
2044 kfree_rcu(dev_maps, rcu);
2045 }
2046
2047 out_no_maps:
2048 mutex_unlock(&xps_map_mutex);
2049
2050 return 0;
2051 error:
2052 /* remove any maps that we added */
2053 for_each_possible_cpu(cpu) {
2054 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2055 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056 NULL;
2057 if (new_map && new_map != map)
2058 kfree(new_map);
2059 }
2060
2061 mutex_unlock(&xps_map_mutex);
2062
2063 kfree(new_dev_maps);
2064 return -ENOMEM;
2065 }
2066 EXPORT_SYMBOL(netif_set_xps_queue);
2067
2068 #endif
2069 /*
2070 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2071 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2072 */
2073 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2074 {
2075 int rc;
2076
2077 if (txq < 1 || txq > dev->num_tx_queues)
2078 return -EINVAL;
2079
2080 if (dev->reg_state == NETREG_REGISTERED ||
2081 dev->reg_state == NETREG_UNREGISTERING) {
2082 ASSERT_RTNL();
2083
2084 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2085 txq);
2086 if (rc)
2087 return rc;
2088
2089 if (dev->num_tc)
2090 netif_setup_tc(dev, txq);
2091
2092 if (txq < dev->real_num_tx_queues) {
2093 qdisc_reset_all_tx_gt(dev, txq);
2094 #ifdef CONFIG_XPS
2095 netif_reset_xps_queues_gt(dev, txq);
2096 #endif
2097 }
2098 }
2099
2100 dev->real_num_tx_queues = txq;
2101 return 0;
2102 }
2103 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2104
2105 #ifdef CONFIG_SYSFS
2106 /**
2107 * netif_set_real_num_rx_queues - set actual number of RX queues used
2108 * @dev: Network device
2109 * @rxq: Actual number of RX queues
2110 *
2111 * This must be called either with the rtnl_lock held or before
2112 * registration of the net device. Returns 0 on success, or a
2113 * negative error code. If called before registration, it always
2114 * succeeds.
2115 */
2116 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2117 {
2118 int rc;
2119
2120 if (rxq < 1 || rxq > dev->num_rx_queues)
2121 return -EINVAL;
2122
2123 if (dev->reg_state == NETREG_REGISTERED) {
2124 ASSERT_RTNL();
2125
2126 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2127 rxq);
2128 if (rc)
2129 return rc;
2130 }
2131
2132 dev->real_num_rx_queues = rxq;
2133 return 0;
2134 }
2135 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2136 #endif
2137
2138 /**
2139 * netif_get_num_default_rss_queues - default number of RSS queues
2140 *
2141 * This routine should set an upper limit on the number of RSS queues
2142 * used by default by multiqueue devices.
2143 */
2144 int netif_get_num_default_rss_queues(void)
2145 {
2146 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2147 }
2148 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2149
2150 static inline void __netif_reschedule(struct Qdisc *q)
2151 {
2152 struct softnet_data *sd;
2153 unsigned long flags;
2154
2155 local_irq_save(flags);
2156 sd = &__get_cpu_var(softnet_data);
2157 q->next_sched = NULL;
2158 *sd->output_queue_tailp = q;
2159 sd->output_queue_tailp = &q->next_sched;
2160 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2161 local_irq_restore(flags);
2162 }
2163
2164 void __netif_schedule(struct Qdisc *q)
2165 {
2166 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2167 __netif_reschedule(q);
2168 }
2169 EXPORT_SYMBOL(__netif_schedule);
2170
2171 struct dev_kfree_skb_cb {
2172 enum skb_free_reason reason;
2173 };
2174
2175 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2176 {
2177 return (struct dev_kfree_skb_cb *)skb->cb;
2178 }
2179
2180 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2181 {
2182 unsigned long flags;
2183
2184 if (likely(atomic_read(&skb->users) == 1)) {
2185 smp_rmb();
2186 atomic_set(&skb->users, 0);
2187 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2188 return;
2189 }
2190 get_kfree_skb_cb(skb)->reason = reason;
2191 local_irq_save(flags);
2192 skb->next = __this_cpu_read(softnet_data.completion_queue);
2193 __this_cpu_write(softnet_data.completion_queue, skb);
2194 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2195 local_irq_restore(flags);
2196 }
2197 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2198
2199 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2200 {
2201 if (in_irq() || irqs_disabled())
2202 __dev_kfree_skb_irq(skb, reason);
2203 else
2204 dev_kfree_skb(skb);
2205 }
2206 EXPORT_SYMBOL(__dev_kfree_skb_any);
2207
2208
2209 /**
2210 * netif_device_detach - mark device as removed
2211 * @dev: network device
2212 *
2213 * Mark device as removed from system and therefore no longer available.
2214 */
2215 void netif_device_detach(struct net_device *dev)
2216 {
2217 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2218 netif_running(dev)) {
2219 netif_tx_stop_all_queues(dev);
2220 }
2221 }
2222 EXPORT_SYMBOL(netif_device_detach);
2223
2224 /**
2225 * netif_device_attach - mark device as attached
2226 * @dev: network device
2227 *
2228 * Mark device as attached from system and restart if needed.
2229 */
2230 void netif_device_attach(struct net_device *dev)
2231 {
2232 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2233 netif_running(dev)) {
2234 netif_tx_wake_all_queues(dev);
2235 __netdev_watchdog_up(dev);
2236 }
2237 }
2238 EXPORT_SYMBOL(netif_device_attach);
2239
2240 static void skb_warn_bad_offload(const struct sk_buff *skb)
2241 {
2242 static const netdev_features_t null_features = 0;
2243 struct net_device *dev = skb->dev;
2244 const char *driver = "";
2245
2246 if (!net_ratelimit())
2247 return;
2248
2249 if (dev && dev->dev.parent)
2250 driver = dev_driver_string(dev->dev.parent);
2251
2252 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2253 "gso_type=%d ip_summed=%d\n",
2254 driver, dev ? &dev->features : &null_features,
2255 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2256 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2257 skb_shinfo(skb)->gso_type, skb->ip_summed);
2258 }
2259
2260 /*
2261 * Invalidate hardware checksum when packet is to be mangled, and
2262 * complete checksum manually on outgoing path.
2263 */
2264 int skb_checksum_help(struct sk_buff *skb)
2265 {
2266 __wsum csum;
2267 int ret = 0, offset;
2268
2269 if (skb->ip_summed == CHECKSUM_COMPLETE)
2270 goto out_set_summed;
2271
2272 if (unlikely(skb_shinfo(skb)->gso_size)) {
2273 skb_warn_bad_offload(skb);
2274 return -EINVAL;
2275 }
2276
2277 /* Before computing a checksum, we should make sure no frag could
2278 * be modified by an external entity : checksum could be wrong.
2279 */
2280 if (skb_has_shared_frag(skb)) {
2281 ret = __skb_linearize(skb);
2282 if (ret)
2283 goto out;
2284 }
2285
2286 offset = skb_checksum_start_offset(skb);
2287 BUG_ON(offset >= skb_headlen(skb));
2288 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2289
2290 offset += skb->csum_offset;
2291 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2292
2293 if (skb_cloned(skb) &&
2294 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2295 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2296 if (ret)
2297 goto out;
2298 }
2299
2300 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2301 out_set_summed:
2302 skb->ip_summed = CHECKSUM_NONE;
2303 out:
2304 return ret;
2305 }
2306 EXPORT_SYMBOL(skb_checksum_help);
2307
2308 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2309 {
2310 unsigned int vlan_depth = skb->mac_len;
2311 __be16 type = skb->protocol;
2312
2313 /* Tunnel gso handlers can set protocol to ethernet. */
2314 if (type == htons(ETH_P_TEB)) {
2315 struct ethhdr *eth;
2316
2317 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2318 return 0;
2319
2320 eth = (struct ethhdr *)skb_mac_header(skb);
2321 type = eth->h_proto;
2322 }
2323
2324 /* if skb->protocol is 802.1Q/AD then the header should already be
2325 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2326 * ETH_HLEN otherwise
2327 */
2328 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2329 if (vlan_depth) {
2330 if (WARN_ON(vlan_depth < VLAN_HLEN))
2331 return 0;
2332 vlan_depth -= VLAN_HLEN;
2333 } else {
2334 vlan_depth = ETH_HLEN;
2335 }
2336 do {
2337 struct vlan_hdr *vh;
2338
2339 if (unlikely(!pskb_may_pull(skb,
2340 vlan_depth + VLAN_HLEN)))
2341 return 0;
2342
2343 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2344 type = vh->h_vlan_encapsulated_proto;
2345 vlan_depth += VLAN_HLEN;
2346 } while (type == htons(ETH_P_8021Q) ||
2347 type == htons(ETH_P_8021AD));
2348 }
2349
2350 *depth = vlan_depth;
2351
2352 return type;
2353 }
2354
2355 /**
2356 * skb_mac_gso_segment - mac layer segmentation handler.
2357 * @skb: buffer to segment
2358 * @features: features for the output path (see dev->features)
2359 */
2360 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2361 netdev_features_t features)
2362 {
2363 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2364 struct packet_offload *ptype;
2365 int vlan_depth = skb->mac_len;
2366 __be16 type = skb_network_protocol(skb, &vlan_depth);
2367
2368 if (unlikely(!type))
2369 return ERR_PTR(-EINVAL);
2370
2371 __skb_pull(skb, vlan_depth);
2372
2373 rcu_read_lock();
2374 list_for_each_entry_rcu(ptype, &offload_base, list) {
2375 if (ptype->type == type && ptype->callbacks.gso_segment) {
2376 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2377 int err;
2378
2379 err = ptype->callbacks.gso_send_check(skb);
2380 segs = ERR_PTR(err);
2381 if (err || skb_gso_ok(skb, features))
2382 break;
2383 __skb_push(skb, (skb->data -
2384 skb_network_header(skb)));
2385 }
2386 segs = ptype->callbacks.gso_segment(skb, features);
2387 break;
2388 }
2389 }
2390 rcu_read_unlock();
2391
2392 __skb_push(skb, skb->data - skb_mac_header(skb));
2393
2394 return segs;
2395 }
2396 EXPORT_SYMBOL(skb_mac_gso_segment);
2397
2398
2399 /* openvswitch calls this on rx path, so we need a different check.
2400 */
2401 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2402 {
2403 if (tx_path)
2404 return skb->ip_summed != CHECKSUM_PARTIAL;
2405 else
2406 return skb->ip_summed == CHECKSUM_NONE;
2407 }
2408
2409 /**
2410 * __skb_gso_segment - Perform segmentation on skb.
2411 * @skb: buffer to segment
2412 * @features: features for the output path (see dev->features)
2413 * @tx_path: whether it is called in TX path
2414 *
2415 * This function segments the given skb and returns a list of segments.
2416 *
2417 * It may return NULL if the skb requires no segmentation. This is
2418 * only possible when GSO is used for verifying header integrity.
2419 */
2420 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2421 netdev_features_t features, bool tx_path)
2422 {
2423 if (unlikely(skb_needs_check(skb, tx_path))) {
2424 int err;
2425
2426 skb_warn_bad_offload(skb);
2427
2428 err = skb_cow_head(skb, 0);
2429 if (err < 0)
2430 return ERR_PTR(err);
2431 }
2432
2433 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2434 SKB_GSO_CB(skb)->encap_level = 0;
2435
2436 skb_reset_mac_header(skb);
2437 skb_reset_mac_len(skb);
2438
2439 return skb_mac_gso_segment(skb, features);
2440 }
2441 EXPORT_SYMBOL(__skb_gso_segment);
2442
2443 /* Take action when hardware reception checksum errors are detected. */
2444 #ifdef CONFIG_BUG
2445 void netdev_rx_csum_fault(struct net_device *dev)
2446 {
2447 if (net_ratelimit()) {
2448 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2449 dump_stack();
2450 }
2451 }
2452 EXPORT_SYMBOL(netdev_rx_csum_fault);
2453 #endif
2454
2455 /* Actually, we should eliminate this check as soon as we know, that:
2456 * 1. IOMMU is present and allows to map all the memory.
2457 * 2. No high memory really exists on this machine.
2458 */
2459
2460 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2461 {
2462 #ifdef CONFIG_HIGHMEM
2463 int i;
2464 if (!(dev->features & NETIF_F_HIGHDMA)) {
2465 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2466 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2467 if (PageHighMem(skb_frag_page(frag)))
2468 return 1;
2469 }
2470 }
2471
2472 if (PCI_DMA_BUS_IS_PHYS) {
2473 struct device *pdev = dev->dev.parent;
2474
2475 if (!pdev)
2476 return 0;
2477 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2478 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2479 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2480 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2481 return 1;
2482 }
2483 }
2484 #endif
2485 return 0;
2486 }
2487
2488 struct dev_gso_cb {
2489 void (*destructor)(struct sk_buff *skb);
2490 };
2491
2492 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2493
2494 static void dev_gso_skb_destructor(struct sk_buff *skb)
2495 {
2496 struct dev_gso_cb *cb;
2497
2498 kfree_skb_list(skb->next);
2499 skb->next = NULL;
2500
2501 cb = DEV_GSO_CB(skb);
2502 if (cb->destructor)
2503 cb->destructor(skb);
2504 }
2505
2506 /**
2507 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2508 * @skb: buffer to segment
2509 * @features: device features as applicable to this skb
2510 *
2511 * This function segments the given skb and stores the list of segments
2512 * in skb->next.
2513 */
2514 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2515 {
2516 struct sk_buff *segs;
2517
2518 segs = skb_gso_segment(skb, features);
2519
2520 /* Verifying header integrity only. */
2521 if (!segs)
2522 return 0;
2523
2524 if (IS_ERR(segs))
2525 return PTR_ERR(segs);
2526
2527 skb->next = segs;
2528 DEV_GSO_CB(skb)->destructor = skb->destructor;
2529 skb->destructor = dev_gso_skb_destructor;
2530
2531 return 0;
2532 }
2533
2534 /* If MPLS offload request, verify we are testing hardware MPLS features
2535 * instead of standard features for the netdev.
2536 */
2537 #ifdef CONFIG_NET_MPLS_GSO
2538 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2539 netdev_features_t features,
2540 __be16 type)
2541 {
2542 if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC))
2543 features &= skb->dev->mpls_features;
2544
2545 return features;
2546 }
2547 #else
2548 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2549 netdev_features_t features,
2550 __be16 type)
2551 {
2552 return features;
2553 }
2554 #endif
2555
2556 static netdev_features_t harmonize_features(struct sk_buff *skb,
2557 netdev_features_t features)
2558 {
2559 int tmp;
2560 __be16 type;
2561
2562 type = skb_network_protocol(skb, &tmp);
2563 features = net_mpls_features(skb, features, type);
2564
2565 if (skb->ip_summed != CHECKSUM_NONE &&
2566 !can_checksum_protocol(features, type)) {
2567 features &= ~NETIF_F_ALL_CSUM;
2568 } else if (illegal_highdma(skb->dev, skb)) {
2569 features &= ~NETIF_F_SG;
2570 }
2571
2572 return features;
2573 }
2574
2575 netdev_features_t netif_skb_features(struct sk_buff *skb)
2576 {
2577 __be16 protocol = skb->protocol;
2578 netdev_features_t features = skb->dev->features;
2579
2580 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2581 features &= ~NETIF_F_GSO_MASK;
2582
2583 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2584 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2585 protocol = veh->h_vlan_encapsulated_proto;
2586 } else if (!vlan_tx_tag_present(skb)) {
2587 return harmonize_features(skb, features);
2588 }
2589
2590 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2591 NETIF_F_HW_VLAN_STAG_TX);
2592
2593 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2594 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2595 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2596 NETIF_F_HW_VLAN_STAG_TX;
2597
2598 return harmonize_features(skb, features);
2599 }
2600 EXPORT_SYMBOL(netif_skb_features);
2601
2602 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2603 struct netdev_queue *txq)
2604 {
2605 const struct net_device_ops *ops = dev->netdev_ops;
2606 int rc = NETDEV_TX_OK;
2607 unsigned int skb_len;
2608
2609 if (likely(!skb->next)) {
2610 netdev_features_t features;
2611
2612 /*
2613 * If device doesn't need skb->dst, release it right now while
2614 * its hot in this cpu cache
2615 */
2616 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2617 skb_dst_drop(skb);
2618
2619 features = netif_skb_features(skb);
2620
2621 if (vlan_tx_tag_present(skb) &&
2622 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2623 skb = __vlan_put_tag(skb, skb->vlan_proto,
2624 vlan_tx_tag_get(skb));
2625 if (unlikely(!skb))
2626 goto out;
2627
2628 skb->vlan_tci = 0;
2629 }
2630
2631 /* If encapsulation offload request, verify we are testing
2632 * hardware encapsulation features instead of standard
2633 * features for the netdev
2634 */
2635 if (skb->encapsulation)
2636 features &= dev->hw_enc_features;
2637
2638 if (netif_needs_gso(skb, features)) {
2639 if (unlikely(dev_gso_segment(skb, features)))
2640 goto out_kfree_skb;
2641 if (skb->next)
2642 goto gso;
2643 } else {
2644 if (skb_needs_linearize(skb, features) &&
2645 __skb_linearize(skb))
2646 goto out_kfree_skb;
2647
2648 /* If packet is not checksummed and device does not
2649 * support checksumming for this protocol, complete
2650 * checksumming here.
2651 */
2652 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2653 if (skb->encapsulation)
2654 skb_set_inner_transport_header(skb,
2655 skb_checksum_start_offset(skb));
2656 else
2657 skb_set_transport_header(skb,
2658 skb_checksum_start_offset(skb));
2659 if (!(features & NETIF_F_ALL_CSUM) &&
2660 skb_checksum_help(skb))
2661 goto out_kfree_skb;
2662 }
2663 }
2664
2665 if (!list_empty(&ptype_all))
2666 dev_queue_xmit_nit(skb, dev);
2667
2668 skb_len = skb->len;
2669 trace_net_dev_start_xmit(skb, dev);
2670 rc = ops->ndo_start_xmit(skb, dev);
2671 trace_net_dev_xmit(skb, rc, dev, skb_len);
2672 if (rc == NETDEV_TX_OK)
2673 txq_trans_update(txq);
2674 return rc;
2675 }
2676
2677 gso:
2678 do {
2679 struct sk_buff *nskb = skb->next;
2680
2681 skb->next = nskb->next;
2682 nskb->next = NULL;
2683
2684 if (!list_empty(&ptype_all))
2685 dev_queue_xmit_nit(nskb, dev);
2686
2687 skb_len = nskb->len;
2688 trace_net_dev_start_xmit(nskb, dev);
2689 rc = ops->ndo_start_xmit(nskb, dev);
2690 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2691 if (unlikely(rc != NETDEV_TX_OK)) {
2692 if (rc & ~NETDEV_TX_MASK)
2693 goto out_kfree_gso_skb;
2694 nskb->next = skb->next;
2695 skb->next = nskb;
2696 return rc;
2697 }
2698 txq_trans_update(txq);
2699 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2700 return NETDEV_TX_BUSY;
2701 } while (skb->next);
2702
2703 out_kfree_gso_skb:
2704 if (likely(skb->next == NULL)) {
2705 skb->destructor = DEV_GSO_CB(skb)->destructor;
2706 consume_skb(skb);
2707 return rc;
2708 }
2709 out_kfree_skb:
2710 kfree_skb(skb);
2711 out:
2712 return rc;
2713 }
2714 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2715
2716 static void qdisc_pkt_len_init(struct sk_buff *skb)
2717 {
2718 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2719
2720 qdisc_skb_cb(skb)->pkt_len = skb->len;
2721
2722 /* To get more precise estimation of bytes sent on wire,
2723 * we add to pkt_len the headers size of all segments
2724 */
2725 if (shinfo->gso_size) {
2726 unsigned int hdr_len;
2727 u16 gso_segs = shinfo->gso_segs;
2728
2729 /* mac layer + network layer */
2730 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2731
2732 /* + transport layer */
2733 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2734 hdr_len += tcp_hdrlen(skb);
2735 else
2736 hdr_len += sizeof(struct udphdr);
2737
2738 if (shinfo->gso_type & SKB_GSO_DODGY)
2739 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2740 shinfo->gso_size);
2741
2742 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2743 }
2744 }
2745
2746 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2747 struct net_device *dev,
2748 struct netdev_queue *txq)
2749 {
2750 spinlock_t *root_lock = qdisc_lock(q);
2751 bool contended;
2752 int rc;
2753
2754 qdisc_pkt_len_init(skb);
2755 qdisc_calculate_pkt_len(skb, q);
2756 /*
2757 * Heuristic to force contended enqueues to serialize on a
2758 * separate lock before trying to get qdisc main lock.
2759 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2760 * often and dequeue packets faster.
2761 */
2762 contended = qdisc_is_running(q);
2763 if (unlikely(contended))
2764 spin_lock(&q->busylock);
2765
2766 spin_lock(root_lock);
2767 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2768 kfree_skb(skb);
2769 rc = NET_XMIT_DROP;
2770 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2771 qdisc_run_begin(q)) {
2772 /*
2773 * This is a work-conserving queue; there are no old skbs
2774 * waiting to be sent out; and the qdisc is not running -
2775 * xmit the skb directly.
2776 */
2777 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2778 skb_dst_force(skb);
2779
2780 qdisc_bstats_update(q, skb);
2781
2782 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2783 if (unlikely(contended)) {
2784 spin_unlock(&q->busylock);
2785 contended = false;
2786 }
2787 __qdisc_run(q);
2788 } else
2789 qdisc_run_end(q);
2790
2791 rc = NET_XMIT_SUCCESS;
2792 } else {
2793 skb_dst_force(skb);
2794 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2795 if (qdisc_run_begin(q)) {
2796 if (unlikely(contended)) {
2797 spin_unlock(&q->busylock);
2798 contended = false;
2799 }
2800 __qdisc_run(q);
2801 }
2802 }
2803 spin_unlock(root_lock);
2804 if (unlikely(contended))
2805 spin_unlock(&q->busylock);
2806 return rc;
2807 }
2808
2809 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2810 static void skb_update_prio(struct sk_buff *skb)
2811 {
2812 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2813
2814 if (!skb->priority && skb->sk && map) {
2815 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2816
2817 if (prioidx < map->priomap_len)
2818 skb->priority = map->priomap[prioidx];
2819 }
2820 }
2821 #else
2822 #define skb_update_prio(skb)
2823 #endif
2824
2825 static DEFINE_PER_CPU(int, xmit_recursion);
2826 #define RECURSION_LIMIT 10
2827
2828 /**
2829 * dev_loopback_xmit - loop back @skb
2830 * @skb: buffer to transmit
2831 */
2832 int dev_loopback_xmit(struct sk_buff *skb)
2833 {
2834 skb_reset_mac_header(skb);
2835 __skb_pull(skb, skb_network_offset(skb));
2836 skb->pkt_type = PACKET_LOOPBACK;
2837 skb->ip_summed = CHECKSUM_UNNECESSARY;
2838 WARN_ON(!skb_dst(skb));
2839 skb_dst_force(skb);
2840 netif_rx_ni(skb);
2841 return 0;
2842 }
2843 EXPORT_SYMBOL(dev_loopback_xmit);
2844
2845 /**
2846 * __dev_queue_xmit - transmit a buffer
2847 * @skb: buffer to transmit
2848 * @accel_priv: private data used for L2 forwarding offload
2849 *
2850 * Queue a buffer for transmission to a network device. The caller must
2851 * have set the device and priority and built the buffer before calling
2852 * this function. The function can be called from an interrupt.
2853 *
2854 * A negative errno code is returned on a failure. A success does not
2855 * guarantee the frame will be transmitted as it may be dropped due
2856 * to congestion or traffic shaping.
2857 *
2858 * -----------------------------------------------------------------------------------
2859 * I notice this method can also return errors from the queue disciplines,
2860 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2861 * be positive.
2862 *
2863 * Regardless of the return value, the skb is consumed, so it is currently
2864 * difficult to retry a send to this method. (You can bump the ref count
2865 * before sending to hold a reference for retry if you are careful.)
2866 *
2867 * When calling this method, interrupts MUST be enabled. This is because
2868 * the BH enable code must have IRQs enabled so that it will not deadlock.
2869 * --BLG
2870 */
2871 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2872 {
2873 struct net_device *dev = skb->dev;
2874 struct netdev_queue *txq;
2875 struct Qdisc *q;
2876 int rc = -ENOMEM;
2877
2878 skb_reset_mac_header(skb);
2879
2880 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2881 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2882
2883 /* Disable soft irqs for various locks below. Also
2884 * stops preemption for RCU.
2885 */
2886 rcu_read_lock_bh();
2887
2888 skb_update_prio(skb);
2889
2890 txq = netdev_pick_tx(dev, skb, accel_priv);
2891 q = rcu_dereference_bh(txq->qdisc);
2892
2893 #ifdef CONFIG_NET_CLS_ACT
2894 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2895 #endif
2896 trace_net_dev_queue(skb);
2897 if (q->enqueue) {
2898 rc = __dev_xmit_skb(skb, q, dev, txq);
2899 goto out;
2900 }
2901
2902 /* The device has no queue. Common case for software devices:
2903 loopback, all the sorts of tunnels...
2904
2905 Really, it is unlikely that netif_tx_lock protection is necessary
2906 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2907 counters.)
2908 However, it is possible, that they rely on protection
2909 made by us here.
2910
2911 Check this and shot the lock. It is not prone from deadlocks.
2912 Either shot noqueue qdisc, it is even simpler 8)
2913 */
2914 if (dev->flags & IFF_UP) {
2915 int cpu = smp_processor_id(); /* ok because BHs are off */
2916
2917 if (txq->xmit_lock_owner != cpu) {
2918
2919 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2920 goto recursion_alert;
2921
2922 HARD_TX_LOCK(dev, txq, cpu);
2923
2924 if (!netif_xmit_stopped(txq)) {
2925 __this_cpu_inc(xmit_recursion);
2926 rc = dev_hard_start_xmit(skb, dev, txq);
2927 __this_cpu_dec(xmit_recursion);
2928 if (dev_xmit_complete(rc)) {
2929 HARD_TX_UNLOCK(dev, txq);
2930 goto out;
2931 }
2932 }
2933 HARD_TX_UNLOCK(dev, txq);
2934 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2935 dev->name);
2936 } else {
2937 /* Recursion is detected! It is possible,
2938 * unfortunately
2939 */
2940 recursion_alert:
2941 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2942 dev->name);
2943 }
2944 }
2945
2946 rc = -ENETDOWN;
2947 rcu_read_unlock_bh();
2948
2949 atomic_long_inc(&dev->tx_dropped);
2950 kfree_skb(skb);
2951 return rc;
2952 out:
2953 rcu_read_unlock_bh();
2954 return rc;
2955 }
2956
2957 int dev_queue_xmit(struct sk_buff *skb)
2958 {
2959 return __dev_queue_xmit(skb, NULL);
2960 }
2961 EXPORT_SYMBOL(dev_queue_xmit);
2962
2963 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2964 {
2965 return __dev_queue_xmit(skb, accel_priv);
2966 }
2967 EXPORT_SYMBOL(dev_queue_xmit_accel);
2968
2969
2970 /*=======================================================================
2971 Receiver routines
2972 =======================================================================*/
2973
2974 int netdev_max_backlog __read_mostly = 1000;
2975 EXPORT_SYMBOL(netdev_max_backlog);
2976
2977 int netdev_tstamp_prequeue __read_mostly = 1;
2978 int netdev_budget __read_mostly = 300;
2979 int weight_p __read_mostly = 64; /* old backlog weight */
2980
2981 /* Called with irq disabled */
2982 static inline void ____napi_schedule(struct softnet_data *sd,
2983 struct napi_struct *napi)
2984 {
2985 list_add_tail(&napi->poll_list, &sd->poll_list);
2986 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2987 }
2988
2989 #ifdef CONFIG_RPS
2990
2991 /* One global table that all flow-based protocols share. */
2992 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2993 EXPORT_SYMBOL(rps_sock_flow_table);
2994
2995 struct static_key rps_needed __read_mostly;
2996
2997 static struct rps_dev_flow *
2998 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2999 struct rps_dev_flow *rflow, u16 next_cpu)
3000 {
3001 if (next_cpu != RPS_NO_CPU) {
3002 #ifdef CONFIG_RFS_ACCEL
3003 struct netdev_rx_queue *rxqueue;
3004 struct rps_dev_flow_table *flow_table;
3005 struct rps_dev_flow *old_rflow;
3006 u32 flow_id;
3007 u16 rxq_index;
3008 int rc;
3009
3010 /* Should we steer this flow to a different hardware queue? */
3011 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3012 !(dev->features & NETIF_F_NTUPLE))
3013 goto out;
3014 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3015 if (rxq_index == skb_get_rx_queue(skb))
3016 goto out;
3017
3018 rxqueue = dev->_rx + rxq_index;
3019 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3020 if (!flow_table)
3021 goto out;
3022 flow_id = skb_get_hash(skb) & flow_table->mask;
3023 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3024 rxq_index, flow_id);
3025 if (rc < 0)
3026 goto out;
3027 old_rflow = rflow;
3028 rflow = &flow_table->flows[flow_id];
3029 rflow->filter = rc;
3030 if (old_rflow->filter == rflow->filter)
3031 old_rflow->filter = RPS_NO_FILTER;
3032 out:
3033 #endif
3034 rflow->last_qtail =
3035 per_cpu(softnet_data, next_cpu).input_queue_head;
3036 }
3037
3038 rflow->cpu = next_cpu;
3039 return rflow;
3040 }
3041
3042 /*
3043 * get_rps_cpu is called from netif_receive_skb and returns the target
3044 * CPU from the RPS map of the receiving queue for a given skb.
3045 * rcu_read_lock must be held on entry.
3046 */
3047 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3048 struct rps_dev_flow **rflowp)
3049 {
3050 struct netdev_rx_queue *rxqueue;
3051 struct rps_map *map;
3052 struct rps_dev_flow_table *flow_table;
3053 struct rps_sock_flow_table *sock_flow_table;
3054 int cpu = -1;
3055 u16 tcpu;
3056 u32 hash;
3057
3058 if (skb_rx_queue_recorded(skb)) {
3059 u16 index = skb_get_rx_queue(skb);
3060 if (unlikely(index >= dev->real_num_rx_queues)) {
3061 WARN_ONCE(dev->real_num_rx_queues > 1,
3062 "%s received packet on queue %u, but number "
3063 "of RX queues is %u\n",
3064 dev->name, index, dev->real_num_rx_queues);
3065 goto done;
3066 }
3067 rxqueue = dev->_rx + index;
3068 } else
3069 rxqueue = dev->_rx;
3070
3071 map = rcu_dereference(rxqueue->rps_map);
3072 if (map) {
3073 if (map->len == 1 &&
3074 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3075 tcpu = map->cpus[0];
3076 if (cpu_online(tcpu))
3077 cpu = tcpu;
3078 goto done;
3079 }
3080 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3081 goto done;
3082 }
3083
3084 skb_reset_network_header(skb);
3085 hash = skb_get_hash(skb);
3086 if (!hash)
3087 goto done;
3088
3089 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3090 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3091 if (flow_table && sock_flow_table) {
3092 u16 next_cpu;
3093 struct rps_dev_flow *rflow;
3094
3095 rflow = &flow_table->flows[hash & flow_table->mask];
3096 tcpu = rflow->cpu;
3097
3098 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3099
3100 /*
3101 * If the desired CPU (where last recvmsg was done) is
3102 * different from current CPU (one in the rx-queue flow
3103 * table entry), switch if one of the following holds:
3104 * - Current CPU is unset (equal to RPS_NO_CPU).
3105 * - Current CPU is offline.
3106 * - The current CPU's queue tail has advanced beyond the
3107 * last packet that was enqueued using this table entry.
3108 * This guarantees that all previous packets for the flow
3109 * have been dequeued, thus preserving in order delivery.
3110 */
3111 if (unlikely(tcpu != next_cpu) &&
3112 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3113 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3114 rflow->last_qtail)) >= 0)) {
3115 tcpu = next_cpu;
3116 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3117 }
3118
3119 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3120 *rflowp = rflow;
3121 cpu = tcpu;
3122 goto done;
3123 }
3124 }
3125
3126 if (map) {
3127 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3128 if (cpu_online(tcpu)) {
3129 cpu = tcpu;
3130 goto done;
3131 }
3132 }
3133
3134 done:
3135 return cpu;
3136 }
3137
3138 #ifdef CONFIG_RFS_ACCEL
3139
3140 /**
3141 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3142 * @dev: Device on which the filter was set
3143 * @rxq_index: RX queue index
3144 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3145 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3146 *
3147 * Drivers that implement ndo_rx_flow_steer() should periodically call
3148 * this function for each installed filter and remove the filters for
3149 * which it returns %true.
3150 */
3151 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3152 u32 flow_id, u16 filter_id)
3153 {
3154 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3155 struct rps_dev_flow_table *flow_table;
3156 struct rps_dev_flow *rflow;
3157 bool expire = true;
3158 int cpu;
3159
3160 rcu_read_lock();
3161 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3162 if (flow_table && flow_id <= flow_table->mask) {
3163 rflow = &flow_table->flows[flow_id];
3164 cpu = ACCESS_ONCE(rflow->cpu);
3165 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3166 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3167 rflow->last_qtail) <
3168 (int)(10 * flow_table->mask)))
3169 expire = false;
3170 }
3171 rcu_read_unlock();
3172 return expire;
3173 }
3174 EXPORT_SYMBOL(rps_may_expire_flow);
3175
3176 #endif /* CONFIG_RFS_ACCEL */
3177
3178 /* Called from hardirq (IPI) context */
3179 static void rps_trigger_softirq(void *data)
3180 {
3181 struct softnet_data *sd = data;
3182
3183 ____napi_schedule(sd, &sd->backlog);
3184 sd->received_rps++;
3185 }
3186
3187 #endif /* CONFIG_RPS */
3188
3189 /*
3190 * Check if this softnet_data structure is another cpu one
3191 * If yes, queue it to our IPI list and return 1
3192 * If no, return 0
3193 */
3194 static int rps_ipi_queued(struct softnet_data *sd)
3195 {
3196 #ifdef CONFIG_RPS
3197 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3198
3199 if (sd != mysd) {
3200 sd->rps_ipi_next = mysd->rps_ipi_list;
3201 mysd->rps_ipi_list = sd;
3202
3203 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3204 return 1;
3205 }
3206 #endif /* CONFIG_RPS */
3207 return 0;
3208 }
3209
3210 #ifdef CONFIG_NET_FLOW_LIMIT
3211 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3212 #endif
3213
3214 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3215 {
3216 #ifdef CONFIG_NET_FLOW_LIMIT
3217 struct sd_flow_limit *fl;
3218 struct softnet_data *sd;
3219 unsigned int old_flow, new_flow;
3220
3221 if (qlen < (netdev_max_backlog >> 1))
3222 return false;
3223
3224 sd = &__get_cpu_var(softnet_data);
3225
3226 rcu_read_lock();
3227 fl = rcu_dereference(sd->flow_limit);
3228 if (fl) {
3229 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3230 old_flow = fl->history[fl->history_head];
3231 fl->history[fl->history_head] = new_flow;
3232
3233 fl->history_head++;
3234 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3235
3236 if (likely(fl->buckets[old_flow]))
3237 fl->buckets[old_flow]--;
3238
3239 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3240 fl->count++;
3241 rcu_read_unlock();
3242 return true;
3243 }
3244 }
3245 rcu_read_unlock();
3246 #endif
3247 return false;
3248 }
3249
3250 /*
3251 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3252 * queue (may be a remote CPU queue).
3253 */
3254 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3255 unsigned int *qtail)
3256 {
3257 struct softnet_data *sd;
3258 unsigned long flags;
3259 unsigned int qlen;
3260
3261 sd = &per_cpu(softnet_data, cpu);
3262
3263 local_irq_save(flags);
3264
3265 rps_lock(sd);
3266 qlen = skb_queue_len(&sd->input_pkt_queue);
3267 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3268 if (skb_queue_len(&sd->input_pkt_queue)) {
3269 enqueue:
3270 __skb_queue_tail(&sd->input_pkt_queue, skb);
3271 input_queue_tail_incr_save(sd, qtail);
3272 rps_unlock(sd);
3273 local_irq_restore(flags);
3274 return NET_RX_SUCCESS;
3275 }
3276
3277 /* Schedule NAPI for backlog device
3278 * We can use non atomic operation since we own the queue lock
3279 */
3280 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3281 if (!rps_ipi_queued(sd))
3282 ____napi_schedule(sd, &sd->backlog);
3283 }
3284 goto enqueue;
3285 }
3286
3287 sd->dropped++;
3288 rps_unlock(sd);
3289
3290 local_irq_restore(flags);
3291
3292 atomic_long_inc(&skb->dev->rx_dropped);
3293 kfree_skb(skb);
3294 return NET_RX_DROP;
3295 }
3296
3297 static int netif_rx_internal(struct sk_buff *skb)
3298 {
3299 int ret;
3300
3301 net_timestamp_check(netdev_tstamp_prequeue, skb);
3302
3303 trace_netif_rx(skb);
3304 #ifdef CONFIG_RPS
3305 if (static_key_false(&rps_needed)) {
3306 struct rps_dev_flow voidflow, *rflow = &voidflow;
3307 int cpu;
3308
3309 preempt_disable();
3310 rcu_read_lock();
3311
3312 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3313 if (cpu < 0)
3314 cpu = smp_processor_id();
3315
3316 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3317
3318 rcu_read_unlock();
3319 preempt_enable();
3320 } else
3321 #endif
3322 {
3323 unsigned int qtail;
3324 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3325 put_cpu();
3326 }
3327 return ret;
3328 }
3329
3330 /**
3331 * netif_rx - post buffer to the network code
3332 * @skb: buffer to post
3333 *
3334 * This function receives a packet from a device driver and queues it for
3335 * the upper (protocol) levels to process. It always succeeds. The buffer
3336 * may be dropped during processing for congestion control or by the
3337 * protocol layers.
3338 *
3339 * return values:
3340 * NET_RX_SUCCESS (no congestion)
3341 * NET_RX_DROP (packet was dropped)
3342 *
3343 */
3344
3345 int netif_rx(struct sk_buff *skb)
3346 {
3347 trace_netif_rx_entry(skb);
3348
3349 return netif_rx_internal(skb);
3350 }
3351 EXPORT_SYMBOL(netif_rx);
3352
3353 int netif_rx_ni(struct sk_buff *skb)
3354 {
3355 int err;
3356
3357 trace_netif_rx_ni_entry(skb);
3358
3359 preempt_disable();
3360 err = netif_rx_internal(skb);
3361 if (local_softirq_pending())
3362 do_softirq();
3363 preempt_enable();
3364
3365 return err;
3366 }
3367 EXPORT_SYMBOL(netif_rx_ni);
3368
3369 static void net_tx_action(struct softirq_action *h)
3370 {
3371 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3372
3373 if (sd->completion_queue) {
3374 struct sk_buff *clist;
3375
3376 local_irq_disable();
3377 clist = sd->completion_queue;
3378 sd->completion_queue = NULL;
3379 local_irq_enable();
3380
3381 while (clist) {
3382 struct sk_buff *skb = clist;
3383 clist = clist->next;
3384
3385 WARN_ON(atomic_read(&skb->users));
3386 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3387 trace_consume_skb(skb);
3388 else
3389 trace_kfree_skb(skb, net_tx_action);
3390 __kfree_skb(skb);
3391 }
3392 }
3393
3394 if (sd->output_queue) {
3395 struct Qdisc *head;
3396
3397 local_irq_disable();
3398 head = sd->output_queue;
3399 sd->output_queue = NULL;
3400 sd->output_queue_tailp = &sd->output_queue;
3401 local_irq_enable();
3402
3403 while (head) {
3404 struct Qdisc *q = head;
3405 spinlock_t *root_lock;
3406
3407 head = head->next_sched;
3408
3409 root_lock = qdisc_lock(q);
3410 if (spin_trylock(root_lock)) {
3411 smp_mb__before_atomic();
3412 clear_bit(__QDISC_STATE_SCHED,
3413 &q->state);
3414 qdisc_run(q);
3415 spin_unlock(root_lock);
3416 } else {
3417 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3418 &q->state)) {
3419 __netif_reschedule(q);
3420 } else {
3421 smp_mb__before_atomic();
3422 clear_bit(__QDISC_STATE_SCHED,
3423 &q->state);
3424 }
3425 }
3426 }
3427 }
3428 }
3429
3430 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3431 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3432 /* This hook is defined here for ATM LANE */
3433 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3434 unsigned char *addr) __read_mostly;
3435 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3436 #endif
3437
3438 #ifdef CONFIG_NET_CLS_ACT
3439 /* TODO: Maybe we should just force sch_ingress to be compiled in
3440 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3441 * a compare and 2 stores extra right now if we dont have it on
3442 * but have CONFIG_NET_CLS_ACT
3443 * NOTE: This doesn't stop any functionality; if you dont have
3444 * the ingress scheduler, you just can't add policies on ingress.
3445 *
3446 */
3447 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3448 {
3449 struct net_device *dev = skb->dev;
3450 u32 ttl = G_TC_RTTL(skb->tc_verd);
3451 int result = TC_ACT_OK;
3452 struct Qdisc *q;
3453
3454 if (unlikely(MAX_RED_LOOP < ttl++)) {
3455 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3456 skb->skb_iif, dev->ifindex);
3457 return TC_ACT_SHOT;
3458 }
3459
3460 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3461 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3462
3463 q = rxq->qdisc;
3464 if (q != &noop_qdisc) {
3465 spin_lock(qdisc_lock(q));
3466 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3467 result = qdisc_enqueue_root(skb, q);
3468 spin_unlock(qdisc_lock(q));
3469 }
3470
3471 return result;
3472 }
3473
3474 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3475 struct packet_type **pt_prev,
3476 int *ret, struct net_device *orig_dev)
3477 {
3478 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3479
3480 if (!rxq || rxq->qdisc == &noop_qdisc)
3481 goto out;
3482
3483 if (*pt_prev) {
3484 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3485 *pt_prev = NULL;
3486 }
3487
3488 switch (ing_filter(skb, rxq)) {
3489 case TC_ACT_SHOT:
3490 case TC_ACT_STOLEN:
3491 kfree_skb(skb);
3492 return NULL;
3493 }
3494
3495 out:
3496 skb->tc_verd = 0;
3497 return skb;
3498 }
3499 #endif
3500
3501 /**
3502 * netdev_rx_handler_register - register receive handler
3503 * @dev: device to register a handler for
3504 * @rx_handler: receive handler to register
3505 * @rx_handler_data: data pointer that is used by rx handler
3506 *
3507 * Register a receive handler for a device. This handler will then be
3508 * called from __netif_receive_skb. A negative errno code is returned
3509 * on a failure.
3510 *
3511 * The caller must hold the rtnl_mutex.
3512 *
3513 * For a general description of rx_handler, see enum rx_handler_result.
3514 */
3515 int netdev_rx_handler_register(struct net_device *dev,
3516 rx_handler_func_t *rx_handler,
3517 void *rx_handler_data)
3518 {
3519 ASSERT_RTNL();
3520
3521 if (dev->rx_handler)
3522 return -EBUSY;
3523
3524 /* Note: rx_handler_data must be set before rx_handler */
3525 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3526 rcu_assign_pointer(dev->rx_handler, rx_handler);
3527
3528 return 0;
3529 }
3530 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3531
3532 /**
3533 * netdev_rx_handler_unregister - unregister receive handler
3534 * @dev: device to unregister a handler from
3535 *
3536 * Unregister a receive handler from a device.
3537 *
3538 * The caller must hold the rtnl_mutex.
3539 */
3540 void netdev_rx_handler_unregister(struct net_device *dev)
3541 {
3542
3543 ASSERT_RTNL();
3544 RCU_INIT_POINTER(dev->rx_handler, NULL);
3545 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3546 * section has a guarantee to see a non NULL rx_handler_data
3547 * as well.
3548 */
3549 synchronize_net();
3550 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3551 }
3552 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3553
3554 /*
3555 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3556 * the special handling of PFMEMALLOC skbs.
3557 */
3558 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3559 {
3560 switch (skb->protocol) {
3561 case htons(ETH_P_ARP):
3562 case htons(ETH_P_IP):
3563 case htons(ETH_P_IPV6):
3564 case htons(ETH_P_8021Q):
3565 case htons(ETH_P_8021AD):
3566 return true;
3567 default:
3568 return false;
3569 }
3570 }
3571
3572 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3573 {
3574 struct packet_type *ptype, *pt_prev;
3575 rx_handler_func_t *rx_handler;
3576 struct net_device *orig_dev;
3577 struct net_device *null_or_dev;
3578 bool deliver_exact = false;
3579 int ret = NET_RX_DROP;
3580 __be16 type;
3581
3582 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3583
3584 trace_netif_receive_skb(skb);
3585
3586 orig_dev = skb->dev;
3587
3588 skb_reset_network_header(skb);
3589 if (!skb_transport_header_was_set(skb))
3590 skb_reset_transport_header(skb);
3591 skb_reset_mac_len(skb);
3592
3593 pt_prev = NULL;
3594
3595 rcu_read_lock();
3596
3597 another_round:
3598 skb->skb_iif = skb->dev->ifindex;
3599
3600 __this_cpu_inc(softnet_data.processed);
3601
3602 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3603 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3604 skb = skb_vlan_untag(skb);
3605 if (unlikely(!skb))
3606 goto unlock;
3607 }
3608
3609 #ifdef CONFIG_NET_CLS_ACT
3610 if (skb->tc_verd & TC_NCLS) {
3611 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3612 goto ncls;
3613 }
3614 #endif
3615
3616 if (pfmemalloc)
3617 goto skip_taps;
3618
3619 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3620 if (!ptype->dev || ptype->dev == skb->dev) {
3621 if (pt_prev)
3622 ret = deliver_skb(skb, pt_prev, orig_dev);
3623 pt_prev = ptype;
3624 }
3625 }
3626
3627 skip_taps:
3628 #ifdef CONFIG_NET_CLS_ACT
3629 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3630 if (!skb)
3631 goto unlock;
3632 ncls:
3633 #endif
3634
3635 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3636 goto drop;
3637
3638 if (vlan_tx_tag_present(skb)) {
3639 if (pt_prev) {
3640 ret = deliver_skb(skb, pt_prev, orig_dev);
3641 pt_prev = NULL;
3642 }
3643 if (vlan_do_receive(&skb))
3644 goto another_round;
3645 else if (unlikely(!skb))
3646 goto unlock;
3647 }
3648
3649 rx_handler = rcu_dereference(skb->dev->rx_handler);
3650 if (rx_handler) {
3651 if (pt_prev) {
3652 ret = deliver_skb(skb, pt_prev, orig_dev);
3653 pt_prev = NULL;
3654 }
3655 switch (rx_handler(&skb)) {
3656 case RX_HANDLER_CONSUMED:
3657 ret = NET_RX_SUCCESS;
3658 goto unlock;
3659 case RX_HANDLER_ANOTHER:
3660 goto another_round;
3661 case RX_HANDLER_EXACT:
3662 deliver_exact = true;
3663 case RX_HANDLER_PASS:
3664 break;
3665 default:
3666 BUG();
3667 }
3668 }
3669
3670 if (unlikely(vlan_tx_tag_present(skb))) {
3671 if (vlan_tx_tag_get_id(skb))
3672 skb->pkt_type = PACKET_OTHERHOST;
3673 /* Note: we might in the future use prio bits
3674 * and set skb->priority like in vlan_do_receive()
3675 * For the time being, just ignore Priority Code Point
3676 */
3677 skb->vlan_tci = 0;
3678 }
3679
3680 /* deliver only exact match when indicated */
3681 null_or_dev = deliver_exact ? skb->dev : NULL;
3682
3683 type = skb->protocol;
3684 list_for_each_entry_rcu(ptype,
3685 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3686 if (ptype->type == type &&
3687 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3688 ptype->dev == orig_dev)) {
3689 if (pt_prev)
3690 ret = deliver_skb(skb, pt_prev, orig_dev);
3691 pt_prev = ptype;
3692 }
3693 }
3694
3695 if (pt_prev) {
3696 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3697 goto drop;
3698 else
3699 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3700 } else {
3701 drop:
3702 atomic_long_inc(&skb->dev->rx_dropped);
3703 kfree_skb(skb);
3704 /* Jamal, now you will not able to escape explaining
3705 * me how you were going to use this. :-)
3706 */
3707 ret = NET_RX_DROP;
3708 }
3709
3710 unlock:
3711 rcu_read_unlock();
3712 return ret;
3713 }
3714
3715 static int __netif_receive_skb(struct sk_buff *skb)
3716 {
3717 int ret;
3718
3719 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3720 unsigned long pflags = current->flags;
3721
3722 /*
3723 * PFMEMALLOC skbs are special, they should
3724 * - be delivered to SOCK_MEMALLOC sockets only
3725 * - stay away from userspace
3726 * - have bounded memory usage
3727 *
3728 * Use PF_MEMALLOC as this saves us from propagating the allocation
3729 * context down to all allocation sites.
3730 */
3731 current->flags |= PF_MEMALLOC;
3732 ret = __netif_receive_skb_core(skb, true);
3733 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3734 } else
3735 ret = __netif_receive_skb_core(skb, false);
3736
3737 return ret;
3738 }
3739
3740 static int netif_receive_skb_internal(struct sk_buff *skb)
3741 {
3742 net_timestamp_check(netdev_tstamp_prequeue, skb);
3743
3744 if (skb_defer_rx_timestamp(skb))
3745 return NET_RX_SUCCESS;
3746
3747 #ifdef CONFIG_RPS
3748 if (static_key_false(&rps_needed)) {
3749 struct rps_dev_flow voidflow, *rflow = &voidflow;
3750 int cpu, ret;
3751
3752 rcu_read_lock();
3753
3754 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3755
3756 if (cpu >= 0) {
3757 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3758 rcu_read_unlock();
3759 return ret;
3760 }
3761 rcu_read_unlock();
3762 }
3763 #endif
3764 return __netif_receive_skb(skb);
3765 }
3766
3767 /**
3768 * netif_receive_skb - process receive buffer from network
3769 * @skb: buffer to process
3770 *
3771 * netif_receive_skb() is the main receive data processing function.
3772 * It always succeeds. The buffer may be dropped during processing
3773 * for congestion control or by the protocol layers.
3774 *
3775 * This function may only be called from softirq context and interrupts
3776 * should be enabled.
3777 *
3778 * Return values (usually ignored):
3779 * NET_RX_SUCCESS: no congestion
3780 * NET_RX_DROP: packet was dropped
3781 */
3782 int netif_receive_skb(struct sk_buff *skb)
3783 {
3784 trace_netif_receive_skb_entry(skb);
3785
3786 return netif_receive_skb_internal(skb);
3787 }
3788 EXPORT_SYMBOL(netif_receive_skb);
3789
3790 /* Network device is going away, flush any packets still pending
3791 * Called with irqs disabled.
3792 */
3793 static void flush_backlog(void *arg)
3794 {
3795 struct net_device *dev = arg;
3796 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3797 struct sk_buff *skb, *tmp;
3798
3799 rps_lock(sd);
3800 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3801 if (skb->dev == dev) {
3802 __skb_unlink(skb, &sd->input_pkt_queue);
3803 kfree_skb(skb);
3804 input_queue_head_incr(sd);
3805 }
3806 }
3807 rps_unlock(sd);
3808
3809 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3810 if (skb->dev == dev) {
3811 __skb_unlink(skb, &sd->process_queue);
3812 kfree_skb(skb);
3813 input_queue_head_incr(sd);
3814 }
3815 }
3816 }
3817
3818 static int napi_gro_complete(struct sk_buff *skb)
3819 {
3820 struct packet_offload *ptype;
3821 __be16 type = skb->protocol;
3822 struct list_head *head = &offload_base;
3823 int err = -ENOENT;
3824
3825 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3826
3827 if (NAPI_GRO_CB(skb)->count == 1) {
3828 skb_shinfo(skb)->gso_size = 0;
3829 goto out;
3830 }
3831
3832 rcu_read_lock();
3833 list_for_each_entry_rcu(ptype, head, list) {
3834 if (ptype->type != type || !ptype->callbacks.gro_complete)
3835 continue;
3836
3837 err = ptype->callbacks.gro_complete(skb, 0);
3838 break;
3839 }
3840 rcu_read_unlock();
3841
3842 if (err) {
3843 WARN_ON(&ptype->list == head);
3844 kfree_skb(skb);
3845 return NET_RX_SUCCESS;
3846 }
3847
3848 out:
3849 return netif_receive_skb_internal(skb);
3850 }
3851
3852 /* napi->gro_list contains packets ordered by age.
3853 * youngest packets at the head of it.
3854 * Complete skbs in reverse order to reduce latencies.
3855 */
3856 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3857 {
3858 struct sk_buff *skb, *prev = NULL;
3859
3860 /* scan list and build reverse chain */
3861 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3862 skb->prev = prev;
3863 prev = skb;
3864 }
3865
3866 for (skb = prev; skb; skb = prev) {
3867 skb->next = NULL;
3868
3869 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3870 return;
3871
3872 prev = skb->prev;
3873 napi_gro_complete(skb);
3874 napi->gro_count--;
3875 }
3876
3877 napi->gro_list = NULL;
3878 }
3879 EXPORT_SYMBOL(napi_gro_flush);
3880
3881 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3882 {
3883 struct sk_buff *p;
3884 unsigned int maclen = skb->dev->hard_header_len;
3885 u32 hash = skb_get_hash_raw(skb);
3886
3887 for (p = napi->gro_list; p; p = p->next) {
3888 unsigned long diffs;
3889
3890 NAPI_GRO_CB(p)->flush = 0;
3891
3892 if (hash != skb_get_hash_raw(p)) {
3893 NAPI_GRO_CB(p)->same_flow = 0;
3894 continue;
3895 }
3896
3897 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3898 diffs |= p->vlan_tci ^ skb->vlan_tci;
3899 if (maclen == ETH_HLEN)
3900 diffs |= compare_ether_header(skb_mac_header(p),
3901 skb_mac_header(skb));
3902 else if (!diffs)
3903 diffs = memcmp(skb_mac_header(p),
3904 skb_mac_header(skb),
3905 maclen);
3906 NAPI_GRO_CB(p)->same_flow = !diffs;
3907 }
3908 }
3909
3910 static void skb_gro_reset_offset(struct sk_buff *skb)
3911 {
3912 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3913 const skb_frag_t *frag0 = &pinfo->frags[0];
3914
3915 NAPI_GRO_CB(skb)->data_offset = 0;
3916 NAPI_GRO_CB(skb)->frag0 = NULL;
3917 NAPI_GRO_CB(skb)->frag0_len = 0;
3918
3919 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3920 pinfo->nr_frags &&
3921 !PageHighMem(skb_frag_page(frag0))) {
3922 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3923 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3924 }
3925 }
3926
3927 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3928 {
3929 struct skb_shared_info *pinfo = skb_shinfo(skb);
3930
3931 BUG_ON(skb->end - skb->tail < grow);
3932
3933 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3934
3935 skb->data_len -= grow;
3936 skb->tail += grow;
3937
3938 pinfo->frags[0].page_offset += grow;
3939 skb_frag_size_sub(&pinfo->frags[0], grow);
3940
3941 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3942 skb_frag_unref(skb, 0);
3943 memmove(pinfo->frags, pinfo->frags + 1,
3944 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3945 }
3946 }
3947
3948 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3949 {
3950 struct sk_buff **pp = NULL;
3951 struct packet_offload *ptype;
3952 __be16 type = skb->protocol;
3953 struct list_head *head = &offload_base;
3954 int same_flow;
3955 enum gro_result ret;
3956 int grow;
3957
3958 if (!(skb->dev->features & NETIF_F_GRO))
3959 goto normal;
3960
3961 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3962 goto normal;
3963
3964 gro_list_prepare(napi, skb);
3965
3966 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3967 NAPI_GRO_CB(skb)->csum = skb->csum;
3968 NAPI_GRO_CB(skb)->csum_valid = 1;
3969 } else {
3970 NAPI_GRO_CB(skb)->csum_valid = 0;
3971 }
3972
3973 rcu_read_lock();
3974 list_for_each_entry_rcu(ptype, head, list) {
3975 if (ptype->type != type || !ptype->callbacks.gro_receive)
3976 continue;
3977
3978 skb_set_network_header(skb, skb_gro_offset(skb));
3979 skb_reset_mac_len(skb);
3980 NAPI_GRO_CB(skb)->same_flow = 0;
3981 NAPI_GRO_CB(skb)->flush = 0;
3982 NAPI_GRO_CB(skb)->free = 0;
3983 NAPI_GRO_CB(skb)->udp_mark = 0;
3984 NAPI_GRO_CB(skb)->encapsulation = 0;
3985
3986 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3987 break;
3988 }
3989 rcu_read_unlock();
3990
3991 if (&ptype->list == head)
3992 goto normal;
3993
3994 same_flow = NAPI_GRO_CB(skb)->same_flow;
3995 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3996
3997 if (pp) {
3998 struct sk_buff *nskb = *pp;
3999
4000 *pp = nskb->next;
4001 nskb->next = NULL;
4002 napi_gro_complete(nskb);
4003 napi->gro_count--;
4004 }
4005
4006 if (same_flow)
4007 goto ok;
4008
4009 if (NAPI_GRO_CB(skb)->flush)
4010 goto normal;
4011
4012 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4013 struct sk_buff *nskb = napi->gro_list;
4014
4015 /* locate the end of the list to select the 'oldest' flow */
4016 while (nskb->next) {
4017 pp = &nskb->next;
4018 nskb = *pp;
4019 }
4020 *pp = NULL;
4021 nskb->next = NULL;
4022 napi_gro_complete(nskb);
4023 } else {
4024 napi->gro_count++;
4025 }
4026 NAPI_GRO_CB(skb)->count = 1;
4027 NAPI_GRO_CB(skb)->age = jiffies;
4028 NAPI_GRO_CB(skb)->last = skb;
4029 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4030 skb->next = napi->gro_list;
4031 napi->gro_list = skb;
4032 ret = GRO_HELD;
4033
4034 pull:
4035 grow = skb_gro_offset(skb) - skb_headlen(skb);
4036 if (grow > 0)
4037 gro_pull_from_frag0(skb, grow);
4038 ok:
4039 return ret;
4040
4041 normal:
4042 ret = GRO_NORMAL;
4043 goto pull;
4044 }
4045
4046 struct packet_offload *gro_find_receive_by_type(__be16 type)
4047 {
4048 struct list_head *offload_head = &offload_base;
4049 struct packet_offload *ptype;
4050
4051 list_for_each_entry_rcu(ptype, offload_head, list) {
4052 if (ptype->type != type || !ptype->callbacks.gro_receive)
4053 continue;
4054 return ptype;
4055 }
4056 return NULL;
4057 }
4058 EXPORT_SYMBOL(gro_find_receive_by_type);
4059
4060 struct packet_offload *gro_find_complete_by_type(__be16 type)
4061 {
4062 struct list_head *offload_head = &offload_base;
4063 struct packet_offload *ptype;
4064
4065 list_for_each_entry_rcu(ptype, offload_head, list) {
4066 if (ptype->type != type || !ptype->callbacks.gro_complete)
4067 continue;
4068 return ptype;
4069 }
4070 return NULL;
4071 }
4072 EXPORT_SYMBOL(gro_find_complete_by_type);
4073
4074 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4075 {
4076 switch (ret) {
4077 case GRO_NORMAL:
4078 if (netif_receive_skb_internal(skb))
4079 ret = GRO_DROP;
4080 break;
4081
4082 case GRO_DROP:
4083 kfree_skb(skb);
4084 break;
4085
4086 case GRO_MERGED_FREE:
4087 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4088 kmem_cache_free(skbuff_head_cache, skb);
4089 else
4090 __kfree_skb(skb);
4091 break;
4092
4093 case GRO_HELD:
4094 case GRO_MERGED:
4095 break;
4096 }
4097
4098 return ret;
4099 }
4100
4101 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4102 {
4103 trace_napi_gro_receive_entry(skb);
4104
4105 skb_gro_reset_offset(skb);
4106
4107 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4108 }
4109 EXPORT_SYMBOL(napi_gro_receive);
4110
4111 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4112 {
4113 __skb_pull(skb, skb_headlen(skb));
4114 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4115 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4116 skb->vlan_tci = 0;
4117 skb->dev = napi->dev;
4118 skb->skb_iif = 0;
4119 skb->encapsulation = 0;
4120 skb_shinfo(skb)->gso_type = 0;
4121 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4122
4123 napi->skb = skb;
4124 }
4125
4126 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4127 {
4128 struct sk_buff *skb = napi->skb;
4129
4130 if (!skb) {
4131 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4132 napi->skb = skb;
4133 }
4134 return skb;
4135 }
4136 EXPORT_SYMBOL(napi_get_frags);
4137
4138 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4139 struct sk_buff *skb,
4140 gro_result_t ret)
4141 {
4142 switch (ret) {
4143 case GRO_NORMAL:
4144 case GRO_HELD:
4145 __skb_push(skb, ETH_HLEN);
4146 skb->protocol = eth_type_trans(skb, skb->dev);
4147 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4148 ret = GRO_DROP;
4149 break;
4150
4151 case GRO_DROP:
4152 case GRO_MERGED_FREE:
4153 napi_reuse_skb(napi, skb);
4154 break;
4155
4156 case GRO_MERGED:
4157 break;
4158 }
4159
4160 return ret;
4161 }
4162
4163 /* Upper GRO stack assumes network header starts at gro_offset=0
4164 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4165 * We copy ethernet header into skb->data to have a common layout.
4166 */
4167 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4168 {
4169 struct sk_buff *skb = napi->skb;
4170 const struct ethhdr *eth;
4171 unsigned int hlen = sizeof(*eth);
4172
4173 napi->skb = NULL;
4174
4175 skb_reset_mac_header(skb);
4176 skb_gro_reset_offset(skb);
4177
4178 eth = skb_gro_header_fast(skb, 0);
4179 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4180 eth = skb_gro_header_slow(skb, hlen, 0);
4181 if (unlikely(!eth)) {
4182 napi_reuse_skb(napi, skb);
4183 return NULL;
4184 }
4185 } else {
4186 gro_pull_from_frag0(skb, hlen);
4187 NAPI_GRO_CB(skb)->frag0 += hlen;
4188 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4189 }
4190 __skb_pull(skb, hlen);
4191
4192 /*
4193 * This works because the only protocols we care about don't require
4194 * special handling.
4195 * We'll fix it up properly in napi_frags_finish()
4196 */
4197 skb->protocol = eth->h_proto;
4198
4199 return skb;
4200 }
4201
4202 gro_result_t napi_gro_frags(struct napi_struct *napi)
4203 {
4204 struct sk_buff *skb = napi_frags_skb(napi);
4205
4206 if (!skb)
4207 return GRO_DROP;
4208
4209 trace_napi_gro_frags_entry(skb);
4210
4211 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4212 }
4213 EXPORT_SYMBOL(napi_gro_frags);
4214
4215 /* Compute the checksum from gro_offset and return the folded value
4216 * after adding in any pseudo checksum.
4217 */
4218 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4219 {
4220 __wsum wsum;
4221 __sum16 sum;
4222
4223 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4224
4225 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4226 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4227 if (likely(!sum)) {
4228 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4229 !skb->csum_complete_sw)
4230 netdev_rx_csum_fault(skb->dev);
4231 }
4232
4233 NAPI_GRO_CB(skb)->csum = wsum;
4234 NAPI_GRO_CB(skb)->csum_valid = 1;
4235
4236 return sum;
4237 }
4238 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4239
4240 /*
4241 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4242 * Note: called with local irq disabled, but exits with local irq enabled.
4243 */
4244 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4245 {
4246 #ifdef CONFIG_RPS
4247 struct softnet_data *remsd = sd->rps_ipi_list;
4248
4249 if (remsd) {
4250 sd->rps_ipi_list = NULL;
4251
4252 local_irq_enable();
4253
4254 /* Send pending IPI's to kick RPS processing on remote cpus. */
4255 while (remsd) {
4256 struct softnet_data *next = remsd->rps_ipi_next;
4257
4258 if (cpu_online(remsd->cpu))
4259 smp_call_function_single_async(remsd->cpu,
4260 &remsd->csd);
4261 remsd = next;
4262 }
4263 } else
4264 #endif
4265 local_irq_enable();
4266 }
4267
4268 static int process_backlog(struct napi_struct *napi, int quota)
4269 {
4270 int work = 0;
4271 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4272
4273 #ifdef CONFIG_RPS
4274 /* Check if we have pending ipi, its better to send them now,
4275 * not waiting net_rx_action() end.
4276 */
4277 if (sd->rps_ipi_list) {
4278 local_irq_disable();
4279 net_rps_action_and_irq_enable(sd);
4280 }
4281 #endif
4282 napi->weight = weight_p;
4283 local_irq_disable();
4284 while (1) {
4285 struct sk_buff *skb;
4286
4287 while ((skb = __skb_dequeue(&sd->process_queue))) {
4288 local_irq_enable();
4289 __netif_receive_skb(skb);
4290 local_irq_disable();
4291 input_queue_head_incr(sd);
4292 if (++work >= quota) {
4293 local_irq_enable();
4294 return work;
4295 }
4296 }
4297
4298 rps_lock(sd);
4299 if (skb_queue_empty(&sd->input_pkt_queue)) {
4300 /*
4301 * Inline a custom version of __napi_complete().
4302 * only current cpu owns and manipulates this napi,
4303 * and NAPI_STATE_SCHED is the only possible flag set
4304 * on backlog.
4305 * We can use a plain write instead of clear_bit(),
4306 * and we dont need an smp_mb() memory barrier.
4307 */
4308 list_del(&napi->poll_list);
4309 napi->state = 0;
4310 rps_unlock(sd);
4311
4312 break;
4313 }
4314
4315 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4316 &sd->process_queue);
4317 rps_unlock(sd);
4318 }
4319 local_irq_enable();
4320
4321 return work;
4322 }
4323
4324 /**
4325 * __napi_schedule - schedule for receive
4326 * @n: entry to schedule
4327 *
4328 * The entry's receive function will be scheduled to run
4329 */
4330 void __napi_schedule(struct napi_struct *n)
4331 {
4332 unsigned long flags;
4333
4334 local_irq_save(flags);
4335 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4336 local_irq_restore(flags);
4337 }
4338 EXPORT_SYMBOL(__napi_schedule);
4339
4340 void __napi_complete(struct napi_struct *n)
4341 {
4342 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4343 BUG_ON(n->gro_list);
4344
4345 list_del(&n->poll_list);
4346 smp_mb__before_atomic();
4347 clear_bit(NAPI_STATE_SCHED, &n->state);
4348 }
4349 EXPORT_SYMBOL(__napi_complete);
4350
4351 void napi_complete(struct napi_struct *n)
4352 {
4353 unsigned long flags;
4354
4355 /*
4356 * don't let napi dequeue from the cpu poll list
4357 * just in case its running on a different cpu
4358 */
4359 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4360 return;
4361
4362 napi_gro_flush(n, false);
4363 local_irq_save(flags);
4364 __napi_complete(n);
4365 local_irq_restore(flags);
4366 }
4367 EXPORT_SYMBOL(napi_complete);
4368
4369 /* must be called under rcu_read_lock(), as we dont take a reference */
4370 struct napi_struct *napi_by_id(unsigned int napi_id)
4371 {
4372 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4373 struct napi_struct *napi;
4374
4375 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4376 if (napi->napi_id == napi_id)
4377 return napi;
4378
4379 return NULL;
4380 }
4381 EXPORT_SYMBOL_GPL(napi_by_id);
4382
4383 void napi_hash_add(struct napi_struct *napi)
4384 {
4385 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4386
4387 spin_lock(&napi_hash_lock);
4388
4389 /* 0 is not a valid id, we also skip an id that is taken
4390 * we expect both events to be extremely rare
4391 */
4392 napi->napi_id = 0;
4393 while (!napi->napi_id) {
4394 napi->napi_id = ++napi_gen_id;
4395 if (napi_by_id(napi->napi_id))
4396 napi->napi_id = 0;
4397 }
4398
4399 hlist_add_head_rcu(&napi->napi_hash_node,
4400 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4401
4402 spin_unlock(&napi_hash_lock);
4403 }
4404 }
4405 EXPORT_SYMBOL_GPL(napi_hash_add);
4406
4407 /* Warning : caller is responsible to make sure rcu grace period
4408 * is respected before freeing memory containing @napi
4409 */
4410 void napi_hash_del(struct napi_struct *napi)
4411 {
4412 spin_lock(&napi_hash_lock);
4413
4414 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4415 hlist_del_rcu(&napi->napi_hash_node);
4416
4417 spin_unlock(&napi_hash_lock);
4418 }
4419 EXPORT_SYMBOL_GPL(napi_hash_del);
4420
4421 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4422 int (*poll)(struct napi_struct *, int), int weight)
4423 {
4424 INIT_LIST_HEAD(&napi->poll_list);
4425 napi->gro_count = 0;
4426 napi->gro_list = NULL;
4427 napi->skb = NULL;
4428 napi->poll = poll;
4429 if (weight > NAPI_POLL_WEIGHT)
4430 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4431 weight, dev->name);
4432 napi->weight = weight;
4433 list_add(&napi->dev_list, &dev->napi_list);
4434 napi->dev = dev;
4435 #ifdef CONFIG_NETPOLL
4436 spin_lock_init(&napi->poll_lock);
4437 napi->poll_owner = -1;
4438 #endif
4439 set_bit(NAPI_STATE_SCHED, &napi->state);
4440 }
4441 EXPORT_SYMBOL(netif_napi_add);
4442
4443 void netif_napi_del(struct napi_struct *napi)
4444 {
4445 list_del_init(&napi->dev_list);
4446 napi_free_frags(napi);
4447
4448 kfree_skb_list(napi->gro_list);
4449 napi->gro_list = NULL;
4450 napi->gro_count = 0;
4451 }
4452 EXPORT_SYMBOL(netif_napi_del);
4453
4454 static void net_rx_action(struct softirq_action *h)
4455 {
4456 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4457 unsigned long time_limit = jiffies + 2;
4458 int budget = netdev_budget;
4459 void *have;
4460
4461 local_irq_disable();
4462
4463 while (!list_empty(&sd->poll_list)) {
4464 struct napi_struct *n;
4465 int work, weight;
4466
4467 /* If softirq window is exhuasted then punt.
4468 * Allow this to run for 2 jiffies since which will allow
4469 * an average latency of 1.5/HZ.
4470 */
4471 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4472 goto softnet_break;
4473
4474 local_irq_enable();
4475
4476 /* Even though interrupts have been re-enabled, this
4477 * access is safe because interrupts can only add new
4478 * entries to the tail of this list, and only ->poll()
4479 * calls can remove this head entry from the list.
4480 */
4481 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4482
4483 have = netpoll_poll_lock(n);
4484
4485 weight = n->weight;
4486
4487 /* This NAPI_STATE_SCHED test is for avoiding a race
4488 * with netpoll's poll_napi(). Only the entity which
4489 * obtains the lock and sees NAPI_STATE_SCHED set will
4490 * actually make the ->poll() call. Therefore we avoid
4491 * accidentally calling ->poll() when NAPI is not scheduled.
4492 */
4493 work = 0;
4494 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4495 work = n->poll(n, weight);
4496 trace_napi_poll(n);
4497 }
4498
4499 WARN_ON_ONCE(work > weight);
4500
4501 budget -= work;
4502
4503 local_irq_disable();
4504
4505 /* Drivers must not modify the NAPI state if they
4506 * consume the entire weight. In such cases this code
4507 * still "owns" the NAPI instance and therefore can
4508 * move the instance around on the list at-will.
4509 */
4510 if (unlikely(work == weight)) {
4511 if (unlikely(napi_disable_pending(n))) {
4512 local_irq_enable();
4513 napi_complete(n);
4514 local_irq_disable();
4515 } else {
4516 if (n->gro_list) {
4517 /* flush too old packets
4518 * If HZ < 1000, flush all packets.
4519 */
4520 local_irq_enable();
4521 napi_gro_flush(n, HZ >= 1000);
4522 local_irq_disable();
4523 }
4524 list_move_tail(&n->poll_list, &sd->poll_list);
4525 }
4526 }
4527
4528 netpoll_poll_unlock(have);
4529 }
4530 out:
4531 net_rps_action_and_irq_enable(sd);
4532
4533 #ifdef CONFIG_NET_DMA
4534 /*
4535 * There may not be any more sk_buffs coming right now, so push
4536 * any pending DMA copies to hardware
4537 */
4538 dma_issue_pending_all();
4539 #endif
4540
4541 return;
4542
4543 softnet_break:
4544 sd->time_squeeze++;
4545 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4546 goto out;
4547 }
4548
4549 struct netdev_adjacent {
4550 struct net_device *dev;
4551
4552 /* upper master flag, there can only be one master device per list */
4553 bool master;
4554
4555 /* counter for the number of times this device was added to us */
4556 u16 ref_nr;
4557
4558 /* private field for the users */
4559 void *private;
4560
4561 struct list_head list;
4562 struct rcu_head rcu;
4563 };
4564
4565 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4566 struct net_device *adj_dev,
4567 struct list_head *adj_list)
4568 {
4569 struct netdev_adjacent *adj;
4570
4571 list_for_each_entry(adj, adj_list, list) {
4572 if (adj->dev == adj_dev)
4573 return adj;
4574 }
4575 return NULL;
4576 }
4577
4578 /**
4579 * netdev_has_upper_dev - Check if device is linked to an upper device
4580 * @dev: device
4581 * @upper_dev: upper device to check
4582 *
4583 * Find out if a device is linked to specified upper device and return true
4584 * in case it is. Note that this checks only immediate upper device,
4585 * not through a complete stack of devices. The caller must hold the RTNL lock.
4586 */
4587 bool netdev_has_upper_dev(struct net_device *dev,
4588 struct net_device *upper_dev)
4589 {
4590 ASSERT_RTNL();
4591
4592 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4593 }
4594 EXPORT_SYMBOL(netdev_has_upper_dev);
4595
4596 /**
4597 * netdev_has_any_upper_dev - Check if device is linked to some device
4598 * @dev: device
4599 *
4600 * Find out if a device is linked to an upper device and return true in case
4601 * it is. The caller must hold the RTNL lock.
4602 */
4603 static bool netdev_has_any_upper_dev(struct net_device *dev)
4604 {
4605 ASSERT_RTNL();
4606
4607 return !list_empty(&dev->all_adj_list.upper);
4608 }
4609
4610 /**
4611 * netdev_master_upper_dev_get - Get master upper device
4612 * @dev: device
4613 *
4614 * Find a master upper device and return pointer to it or NULL in case
4615 * it's not there. The caller must hold the RTNL lock.
4616 */
4617 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4618 {
4619 struct netdev_adjacent *upper;
4620
4621 ASSERT_RTNL();
4622
4623 if (list_empty(&dev->adj_list.upper))
4624 return NULL;
4625
4626 upper = list_first_entry(&dev->adj_list.upper,
4627 struct netdev_adjacent, list);
4628 if (likely(upper->master))
4629 return upper->dev;
4630 return NULL;
4631 }
4632 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4633
4634 void *netdev_adjacent_get_private(struct list_head *adj_list)
4635 {
4636 struct netdev_adjacent *adj;
4637
4638 adj = list_entry(adj_list, struct netdev_adjacent, list);
4639
4640 return adj->private;
4641 }
4642 EXPORT_SYMBOL(netdev_adjacent_get_private);
4643
4644 /**
4645 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4646 * @dev: device
4647 * @iter: list_head ** of the current position
4648 *
4649 * Gets the next device from the dev's upper list, starting from iter
4650 * position. The caller must hold RCU read lock.
4651 */
4652 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4653 struct list_head **iter)
4654 {
4655 struct netdev_adjacent *upper;
4656
4657 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4658
4659 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4660
4661 if (&upper->list == &dev->adj_list.upper)
4662 return NULL;
4663
4664 *iter = &upper->list;
4665
4666 return upper->dev;
4667 }
4668 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4669
4670 /**
4671 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4672 * @dev: device
4673 * @iter: list_head ** of the current position
4674 *
4675 * Gets the next device from the dev's upper list, starting from iter
4676 * position. The caller must hold RCU read lock.
4677 */
4678 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4679 struct list_head **iter)
4680 {
4681 struct netdev_adjacent *upper;
4682
4683 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4684
4685 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4686
4687 if (&upper->list == &dev->all_adj_list.upper)
4688 return NULL;
4689
4690 *iter = &upper->list;
4691
4692 return upper->dev;
4693 }
4694 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4695
4696 /**
4697 * netdev_lower_get_next_private - Get the next ->private from the
4698 * lower neighbour list
4699 * @dev: device
4700 * @iter: list_head ** of the current position
4701 *
4702 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4703 * list, starting from iter position. The caller must hold either hold the
4704 * RTNL lock or its own locking that guarantees that the neighbour lower
4705 * list will remain unchainged.
4706 */
4707 void *netdev_lower_get_next_private(struct net_device *dev,
4708 struct list_head **iter)
4709 {
4710 struct netdev_adjacent *lower;
4711
4712 lower = list_entry(*iter, struct netdev_adjacent, list);
4713
4714 if (&lower->list == &dev->adj_list.lower)
4715 return NULL;
4716
4717 *iter = lower->list.next;
4718
4719 return lower->private;
4720 }
4721 EXPORT_SYMBOL(netdev_lower_get_next_private);
4722
4723 /**
4724 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4725 * lower neighbour list, RCU
4726 * variant
4727 * @dev: device
4728 * @iter: list_head ** of the current position
4729 *
4730 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4731 * list, starting from iter position. The caller must hold RCU read lock.
4732 */
4733 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4734 struct list_head **iter)
4735 {
4736 struct netdev_adjacent *lower;
4737
4738 WARN_ON_ONCE(!rcu_read_lock_held());
4739
4740 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4741
4742 if (&lower->list == &dev->adj_list.lower)
4743 return NULL;
4744
4745 *iter = &lower->list;
4746
4747 return lower->private;
4748 }
4749 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4750
4751 /**
4752 * netdev_lower_get_next - Get the next device from the lower neighbour
4753 * list
4754 * @dev: device
4755 * @iter: list_head ** of the current position
4756 *
4757 * Gets the next netdev_adjacent from the dev's lower neighbour
4758 * list, starting from iter position. The caller must hold RTNL lock or
4759 * its own locking that guarantees that the neighbour lower
4760 * list will remain unchainged.
4761 */
4762 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4763 {
4764 struct netdev_adjacent *lower;
4765
4766 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4767
4768 if (&lower->list == &dev->adj_list.lower)
4769 return NULL;
4770
4771 *iter = &lower->list;
4772
4773 return lower->dev;
4774 }
4775 EXPORT_SYMBOL(netdev_lower_get_next);
4776
4777 /**
4778 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4779 * lower neighbour list, RCU
4780 * variant
4781 * @dev: device
4782 *
4783 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4784 * list. The caller must hold RCU read lock.
4785 */
4786 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4787 {
4788 struct netdev_adjacent *lower;
4789
4790 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4791 struct netdev_adjacent, list);
4792 if (lower)
4793 return lower->private;
4794 return NULL;
4795 }
4796 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4797
4798 /**
4799 * netdev_master_upper_dev_get_rcu - Get master upper device
4800 * @dev: device
4801 *
4802 * Find a master upper device and return pointer to it or NULL in case
4803 * it's not there. The caller must hold the RCU read lock.
4804 */
4805 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4806 {
4807 struct netdev_adjacent *upper;
4808
4809 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4810 struct netdev_adjacent, list);
4811 if (upper && likely(upper->master))
4812 return upper->dev;
4813 return NULL;
4814 }
4815 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4816
4817 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4818 struct net_device *adj_dev,
4819 struct list_head *dev_list)
4820 {
4821 char linkname[IFNAMSIZ+7];
4822 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4823 "upper_%s" : "lower_%s", adj_dev->name);
4824 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4825 linkname);
4826 }
4827 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4828 char *name,
4829 struct list_head *dev_list)
4830 {
4831 char linkname[IFNAMSIZ+7];
4832 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4833 "upper_%s" : "lower_%s", name);
4834 sysfs_remove_link(&(dev->dev.kobj), linkname);
4835 }
4836
4837 #define netdev_adjacent_is_neigh_list(dev, dev_list) \
4838 (dev_list == &dev->adj_list.upper || \
4839 dev_list == &dev->adj_list.lower)
4840
4841 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4842 struct net_device *adj_dev,
4843 struct list_head *dev_list,
4844 void *private, bool master)
4845 {
4846 struct netdev_adjacent *adj;
4847 int ret;
4848
4849 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4850
4851 if (adj) {
4852 adj->ref_nr++;
4853 return 0;
4854 }
4855
4856 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4857 if (!adj)
4858 return -ENOMEM;
4859
4860 adj->dev = adj_dev;
4861 adj->master = master;
4862 adj->ref_nr = 1;
4863 adj->private = private;
4864 dev_hold(adj_dev);
4865
4866 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4867 adj_dev->name, dev->name, adj_dev->name);
4868
4869 if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4870 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4871 if (ret)
4872 goto free_adj;
4873 }
4874
4875 /* Ensure that master link is always the first item in list. */
4876 if (master) {
4877 ret = sysfs_create_link(&(dev->dev.kobj),
4878 &(adj_dev->dev.kobj), "master");
4879 if (ret)
4880 goto remove_symlinks;
4881
4882 list_add_rcu(&adj->list, dev_list);
4883 } else {
4884 list_add_tail_rcu(&adj->list, dev_list);
4885 }
4886
4887 return 0;
4888
4889 remove_symlinks:
4890 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4891 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4892 free_adj:
4893 kfree(adj);
4894 dev_put(adj_dev);
4895
4896 return ret;
4897 }
4898
4899 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4900 struct net_device *adj_dev,
4901 struct list_head *dev_list)
4902 {
4903 struct netdev_adjacent *adj;
4904
4905 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4906
4907 if (!adj) {
4908 pr_err("tried to remove device %s from %s\n",
4909 dev->name, adj_dev->name);
4910 BUG();
4911 }
4912
4913 if (adj->ref_nr > 1) {
4914 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4915 adj->ref_nr-1);
4916 adj->ref_nr--;
4917 return;
4918 }
4919
4920 if (adj->master)
4921 sysfs_remove_link(&(dev->dev.kobj), "master");
4922
4923 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4924 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4925
4926 list_del_rcu(&adj->list);
4927 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4928 adj_dev->name, dev->name, adj_dev->name);
4929 dev_put(adj_dev);
4930 kfree_rcu(adj, rcu);
4931 }
4932
4933 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4934 struct net_device *upper_dev,
4935 struct list_head *up_list,
4936 struct list_head *down_list,
4937 void *private, bool master)
4938 {
4939 int ret;
4940
4941 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4942 master);
4943 if (ret)
4944 return ret;
4945
4946 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4947 false);
4948 if (ret) {
4949 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4950 return ret;
4951 }
4952
4953 return 0;
4954 }
4955
4956 static int __netdev_adjacent_dev_link(struct net_device *dev,
4957 struct net_device *upper_dev)
4958 {
4959 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4960 &dev->all_adj_list.upper,
4961 &upper_dev->all_adj_list.lower,
4962 NULL, false);
4963 }
4964
4965 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4966 struct net_device *upper_dev,
4967 struct list_head *up_list,
4968 struct list_head *down_list)
4969 {
4970 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4971 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4972 }
4973
4974 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4975 struct net_device *upper_dev)
4976 {
4977 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4978 &dev->all_adj_list.upper,
4979 &upper_dev->all_adj_list.lower);
4980 }
4981
4982 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4983 struct net_device *upper_dev,
4984 void *private, bool master)
4985 {
4986 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4987
4988 if (ret)
4989 return ret;
4990
4991 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4992 &dev->adj_list.upper,
4993 &upper_dev->adj_list.lower,
4994 private, master);
4995 if (ret) {
4996 __netdev_adjacent_dev_unlink(dev, upper_dev);
4997 return ret;
4998 }
4999
5000 return 0;
5001 }
5002
5003 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5004 struct net_device *upper_dev)
5005 {
5006 __netdev_adjacent_dev_unlink(dev, upper_dev);
5007 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5008 &dev->adj_list.upper,
5009 &upper_dev->adj_list.lower);
5010 }
5011
5012 static int __netdev_upper_dev_link(struct net_device *dev,
5013 struct net_device *upper_dev, bool master,
5014 void *private)
5015 {
5016 struct netdev_adjacent *i, *j, *to_i, *to_j;
5017 int ret = 0;
5018
5019 ASSERT_RTNL();
5020
5021 if (dev == upper_dev)
5022 return -EBUSY;
5023
5024 /* To prevent loops, check if dev is not upper device to upper_dev. */
5025 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5026 return -EBUSY;
5027
5028 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5029 return -EEXIST;
5030
5031 if (master && netdev_master_upper_dev_get(dev))
5032 return -EBUSY;
5033
5034 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5035 master);
5036 if (ret)
5037 return ret;
5038
5039 /* Now that we linked these devs, make all the upper_dev's
5040 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5041 * versa, and don't forget the devices itself. All of these
5042 * links are non-neighbours.
5043 */
5044 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5045 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5046 pr_debug("Interlinking %s with %s, non-neighbour\n",
5047 i->dev->name, j->dev->name);
5048 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5049 if (ret)
5050 goto rollback_mesh;
5051 }
5052 }
5053
5054 /* add dev to every upper_dev's upper device */
5055 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5056 pr_debug("linking %s's upper device %s with %s\n",
5057 upper_dev->name, i->dev->name, dev->name);
5058 ret = __netdev_adjacent_dev_link(dev, i->dev);
5059 if (ret)
5060 goto rollback_upper_mesh;
5061 }
5062
5063 /* add upper_dev to every dev's lower device */
5064 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5065 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5066 i->dev->name, upper_dev->name);
5067 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5068 if (ret)
5069 goto rollback_lower_mesh;
5070 }
5071
5072 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5073 return 0;
5074
5075 rollback_lower_mesh:
5076 to_i = i;
5077 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5078 if (i == to_i)
5079 break;
5080 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5081 }
5082
5083 i = NULL;
5084
5085 rollback_upper_mesh:
5086 to_i = i;
5087 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5088 if (i == to_i)
5089 break;
5090 __netdev_adjacent_dev_unlink(dev, i->dev);
5091 }
5092
5093 i = j = NULL;
5094
5095 rollback_mesh:
5096 to_i = i;
5097 to_j = j;
5098 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5099 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5100 if (i == to_i && j == to_j)
5101 break;
5102 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5103 }
5104 if (i == to_i)
5105 break;
5106 }
5107
5108 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5109
5110 return ret;
5111 }
5112
5113 /**
5114 * netdev_upper_dev_link - Add a link to the upper device
5115 * @dev: device
5116 * @upper_dev: new upper device
5117 *
5118 * Adds a link to device which is upper to this one. The caller must hold
5119 * the RTNL lock. On a failure a negative errno code is returned.
5120 * On success the reference counts are adjusted and the function
5121 * returns zero.
5122 */
5123 int netdev_upper_dev_link(struct net_device *dev,
5124 struct net_device *upper_dev)
5125 {
5126 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5127 }
5128 EXPORT_SYMBOL(netdev_upper_dev_link);
5129
5130 /**
5131 * netdev_master_upper_dev_link - Add a master link to the upper device
5132 * @dev: device
5133 * @upper_dev: new upper device
5134 *
5135 * Adds a link to device which is upper to this one. In this case, only
5136 * one master upper device can be linked, although other non-master devices
5137 * might be linked as well. The caller must hold the RTNL lock.
5138 * On a failure a negative errno code is returned. On success the reference
5139 * counts are adjusted and the function returns zero.
5140 */
5141 int netdev_master_upper_dev_link(struct net_device *dev,
5142 struct net_device *upper_dev)
5143 {
5144 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5145 }
5146 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5147
5148 int netdev_master_upper_dev_link_private(struct net_device *dev,
5149 struct net_device *upper_dev,
5150 void *private)
5151 {
5152 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5153 }
5154 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5155
5156 /**
5157 * netdev_upper_dev_unlink - Removes a link to upper device
5158 * @dev: device
5159 * @upper_dev: new upper device
5160 *
5161 * Removes a link to device which is upper to this one. The caller must hold
5162 * the RTNL lock.
5163 */
5164 void netdev_upper_dev_unlink(struct net_device *dev,
5165 struct net_device *upper_dev)
5166 {
5167 struct netdev_adjacent *i, *j;
5168 ASSERT_RTNL();
5169
5170 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5171
5172 /* Here is the tricky part. We must remove all dev's lower
5173 * devices from all upper_dev's upper devices and vice
5174 * versa, to maintain the graph relationship.
5175 */
5176 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5177 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5178 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5179
5180 /* remove also the devices itself from lower/upper device
5181 * list
5182 */
5183 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5184 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5185
5186 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5187 __netdev_adjacent_dev_unlink(dev, i->dev);
5188
5189 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5190 }
5191 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5192
5193 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5194 {
5195 struct netdev_adjacent *iter;
5196
5197 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5198 netdev_adjacent_sysfs_del(iter->dev, oldname,
5199 &iter->dev->adj_list.lower);
5200 netdev_adjacent_sysfs_add(iter->dev, dev,
5201 &iter->dev->adj_list.lower);
5202 }
5203
5204 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5205 netdev_adjacent_sysfs_del(iter->dev, oldname,
5206 &iter->dev->adj_list.upper);
5207 netdev_adjacent_sysfs_add(iter->dev, dev,
5208 &iter->dev->adj_list.upper);
5209 }
5210 }
5211
5212 void *netdev_lower_dev_get_private(struct net_device *dev,
5213 struct net_device *lower_dev)
5214 {
5215 struct netdev_adjacent *lower;
5216
5217 if (!lower_dev)
5218 return NULL;
5219 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5220 if (!lower)
5221 return NULL;
5222
5223 return lower->private;
5224 }
5225 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5226
5227
5228 int dev_get_nest_level(struct net_device *dev,
5229 bool (*type_check)(struct net_device *dev))
5230 {
5231 struct net_device *lower = NULL;
5232 struct list_head *iter;
5233 int max_nest = -1;
5234 int nest;
5235
5236 ASSERT_RTNL();
5237
5238 netdev_for_each_lower_dev(dev, lower, iter) {
5239 nest = dev_get_nest_level(lower, type_check);
5240 if (max_nest < nest)
5241 max_nest = nest;
5242 }
5243
5244 if (type_check(dev))
5245 max_nest++;
5246
5247 return max_nest;
5248 }
5249 EXPORT_SYMBOL(dev_get_nest_level);
5250
5251 static void dev_change_rx_flags(struct net_device *dev, int flags)
5252 {
5253 const struct net_device_ops *ops = dev->netdev_ops;
5254
5255 if (ops->ndo_change_rx_flags)
5256 ops->ndo_change_rx_flags(dev, flags);
5257 }
5258
5259 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5260 {
5261 unsigned int old_flags = dev->flags;
5262 kuid_t uid;
5263 kgid_t gid;
5264
5265 ASSERT_RTNL();
5266
5267 dev->flags |= IFF_PROMISC;
5268 dev->promiscuity += inc;
5269 if (dev->promiscuity == 0) {
5270 /*
5271 * Avoid overflow.
5272 * If inc causes overflow, untouch promisc and return error.
5273 */
5274 if (inc < 0)
5275 dev->flags &= ~IFF_PROMISC;
5276 else {
5277 dev->promiscuity -= inc;
5278 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5279 dev->name);
5280 return -EOVERFLOW;
5281 }
5282 }
5283 if (dev->flags != old_flags) {
5284 pr_info("device %s %s promiscuous mode\n",
5285 dev->name,
5286 dev->flags & IFF_PROMISC ? "entered" : "left");
5287 if (audit_enabled) {
5288 current_uid_gid(&uid, &gid);
5289 audit_log(current->audit_context, GFP_ATOMIC,
5290 AUDIT_ANOM_PROMISCUOUS,
5291 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5292 dev->name, (dev->flags & IFF_PROMISC),
5293 (old_flags & IFF_PROMISC),
5294 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5295 from_kuid(&init_user_ns, uid),
5296 from_kgid(&init_user_ns, gid),
5297 audit_get_sessionid(current));
5298 }
5299
5300 dev_change_rx_flags(dev, IFF_PROMISC);
5301 }
5302 if (notify)
5303 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5304 return 0;
5305 }
5306
5307 /**
5308 * dev_set_promiscuity - update promiscuity count on a device
5309 * @dev: device
5310 * @inc: modifier
5311 *
5312 * Add or remove promiscuity from a device. While the count in the device
5313 * remains above zero the interface remains promiscuous. Once it hits zero
5314 * the device reverts back to normal filtering operation. A negative inc
5315 * value is used to drop promiscuity on the device.
5316 * Return 0 if successful or a negative errno code on error.
5317 */
5318 int dev_set_promiscuity(struct net_device *dev, int inc)
5319 {
5320 unsigned int old_flags = dev->flags;
5321 int err;
5322
5323 err = __dev_set_promiscuity(dev, inc, true);
5324 if (err < 0)
5325 return err;
5326 if (dev->flags != old_flags)
5327 dev_set_rx_mode(dev);
5328 return err;
5329 }
5330 EXPORT_SYMBOL(dev_set_promiscuity);
5331
5332 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5333 {
5334 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5335
5336 ASSERT_RTNL();
5337
5338 dev->flags |= IFF_ALLMULTI;
5339 dev->allmulti += inc;
5340 if (dev->allmulti == 0) {
5341 /*
5342 * Avoid overflow.
5343 * If inc causes overflow, untouch allmulti and return error.
5344 */
5345 if (inc < 0)
5346 dev->flags &= ~IFF_ALLMULTI;
5347 else {
5348 dev->allmulti -= inc;
5349 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5350 dev->name);
5351 return -EOVERFLOW;
5352 }
5353 }
5354 if (dev->flags ^ old_flags) {
5355 dev_change_rx_flags(dev, IFF_ALLMULTI);
5356 dev_set_rx_mode(dev);
5357 if (notify)
5358 __dev_notify_flags(dev, old_flags,
5359 dev->gflags ^ old_gflags);
5360 }
5361 return 0;
5362 }
5363
5364 /**
5365 * dev_set_allmulti - update allmulti count on a device
5366 * @dev: device
5367 * @inc: modifier
5368 *
5369 * Add or remove reception of all multicast frames to a device. While the
5370 * count in the device remains above zero the interface remains listening
5371 * to all interfaces. Once it hits zero the device reverts back to normal
5372 * filtering operation. A negative @inc value is used to drop the counter
5373 * when releasing a resource needing all multicasts.
5374 * Return 0 if successful or a negative errno code on error.
5375 */
5376
5377 int dev_set_allmulti(struct net_device *dev, int inc)
5378 {
5379 return __dev_set_allmulti(dev, inc, true);
5380 }
5381 EXPORT_SYMBOL(dev_set_allmulti);
5382
5383 /*
5384 * Upload unicast and multicast address lists to device and
5385 * configure RX filtering. When the device doesn't support unicast
5386 * filtering it is put in promiscuous mode while unicast addresses
5387 * are present.
5388 */
5389 void __dev_set_rx_mode(struct net_device *dev)
5390 {
5391 const struct net_device_ops *ops = dev->netdev_ops;
5392
5393 /* dev_open will call this function so the list will stay sane. */
5394 if (!(dev->flags&IFF_UP))
5395 return;
5396
5397 if (!netif_device_present(dev))
5398 return;
5399
5400 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5401 /* Unicast addresses changes may only happen under the rtnl,
5402 * therefore calling __dev_set_promiscuity here is safe.
5403 */
5404 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5405 __dev_set_promiscuity(dev, 1, false);
5406 dev->uc_promisc = true;
5407 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5408 __dev_set_promiscuity(dev, -1, false);
5409 dev->uc_promisc = false;
5410 }
5411 }
5412
5413 if (ops->ndo_set_rx_mode)
5414 ops->ndo_set_rx_mode(dev);
5415 }
5416
5417 void dev_set_rx_mode(struct net_device *dev)
5418 {
5419 netif_addr_lock_bh(dev);
5420 __dev_set_rx_mode(dev);
5421 netif_addr_unlock_bh(dev);
5422 }
5423
5424 /**
5425 * dev_get_flags - get flags reported to userspace
5426 * @dev: device
5427 *
5428 * Get the combination of flag bits exported through APIs to userspace.
5429 */
5430 unsigned int dev_get_flags(const struct net_device *dev)
5431 {
5432 unsigned int flags;
5433
5434 flags = (dev->flags & ~(IFF_PROMISC |
5435 IFF_ALLMULTI |
5436 IFF_RUNNING |
5437 IFF_LOWER_UP |
5438 IFF_DORMANT)) |
5439 (dev->gflags & (IFF_PROMISC |
5440 IFF_ALLMULTI));
5441
5442 if (netif_running(dev)) {
5443 if (netif_oper_up(dev))
5444 flags |= IFF_RUNNING;
5445 if (netif_carrier_ok(dev))
5446 flags |= IFF_LOWER_UP;
5447 if (netif_dormant(dev))
5448 flags |= IFF_DORMANT;
5449 }
5450
5451 return flags;
5452 }
5453 EXPORT_SYMBOL(dev_get_flags);
5454
5455 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5456 {
5457 unsigned int old_flags = dev->flags;
5458 int ret;
5459
5460 ASSERT_RTNL();
5461
5462 /*
5463 * Set the flags on our device.
5464 */
5465
5466 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5467 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5468 IFF_AUTOMEDIA)) |
5469 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5470 IFF_ALLMULTI));
5471
5472 /*
5473 * Load in the correct multicast list now the flags have changed.
5474 */
5475
5476 if ((old_flags ^ flags) & IFF_MULTICAST)
5477 dev_change_rx_flags(dev, IFF_MULTICAST);
5478
5479 dev_set_rx_mode(dev);
5480
5481 /*
5482 * Have we downed the interface. We handle IFF_UP ourselves
5483 * according to user attempts to set it, rather than blindly
5484 * setting it.
5485 */
5486
5487 ret = 0;
5488 if ((old_flags ^ flags) & IFF_UP)
5489 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5490
5491 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5492 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5493 unsigned int old_flags = dev->flags;
5494
5495 dev->gflags ^= IFF_PROMISC;
5496
5497 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5498 if (dev->flags != old_flags)
5499 dev_set_rx_mode(dev);
5500 }
5501
5502 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5503 is important. Some (broken) drivers set IFF_PROMISC, when
5504 IFF_ALLMULTI is requested not asking us and not reporting.
5505 */
5506 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5507 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5508
5509 dev->gflags ^= IFF_ALLMULTI;
5510 __dev_set_allmulti(dev, inc, false);
5511 }
5512
5513 return ret;
5514 }
5515
5516 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5517 unsigned int gchanges)
5518 {
5519 unsigned int changes = dev->flags ^ old_flags;
5520
5521 if (gchanges)
5522 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5523
5524 if (changes & IFF_UP) {
5525 if (dev->flags & IFF_UP)
5526 call_netdevice_notifiers(NETDEV_UP, dev);
5527 else
5528 call_netdevice_notifiers(NETDEV_DOWN, dev);
5529 }
5530
5531 if (dev->flags & IFF_UP &&
5532 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5533 struct netdev_notifier_change_info change_info;
5534
5535 change_info.flags_changed = changes;
5536 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5537 &change_info.info);
5538 }
5539 }
5540
5541 /**
5542 * dev_change_flags - change device settings
5543 * @dev: device
5544 * @flags: device state flags
5545 *
5546 * Change settings on device based state flags. The flags are
5547 * in the userspace exported format.
5548 */
5549 int dev_change_flags(struct net_device *dev, unsigned int flags)
5550 {
5551 int ret;
5552 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5553
5554 ret = __dev_change_flags(dev, flags);
5555 if (ret < 0)
5556 return ret;
5557
5558 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5559 __dev_notify_flags(dev, old_flags, changes);
5560 return ret;
5561 }
5562 EXPORT_SYMBOL(dev_change_flags);
5563
5564 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5565 {
5566 const struct net_device_ops *ops = dev->netdev_ops;
5567
5568 if (ops->ndo_change_mtu)
5569 return ops->ndo_change_mtu(dev, new_mtu);
5570
5571 dev->mtu = new_mtu;
5572 return 0;
5573 }
5574
5575 /**
5576 * dev_set_mtu - Change maximum transfer unit
5577 * @dev: device
5578 * @new_mtu: new transfer unit
5579 *
5580 * Change the maximum transfer size of the network device.
5581 */
5582 int dev_set_mtu(struct net_device *dev, int new_mtu)
5583 {
5584 int err, orig_mtu;
5585
5586 if (new_mtu == dev->mtu)
5587 return 0;
5588
5589 /* MTU must be positive. */
5590 if (new_mtu < 0)
5591 return -EINVAL;
5592
5593 if (!netif_device_present(dev))
5594 return -ENODEV;
5595
5596 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5597 err = notifier_to_errno(err);
5598 if (err)
5599 return err;
5600
5601 orig_mtu = dev->mtu;
5602 err = __dev_set_mtu(dev, new_mtu);
5603
5604 if (!err) {
5605 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5606 err = notifier_to_errno(err);
5607 if (err) {
5608 /* setting mtu back and notifying everyone again,
5609 * so that they have a chance to revert changes.
5610 */
5611 __dev_set_mtu(dev, orig_mtu);
5612 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5613 }
5614 }
5615 return err;
5616 }
5617 EXPORT_SYMBOL(dev_set_mtu);
5618
5619 /**
5620 * dev_set_group - Change group this device belongs to
5621 * @dev: device
5622 * @new_group: group this device should belong to
5623 */
5624 void dev_set_group(struct net_device *dev, int new_group)
5625 {
5626 dev->group = new_group;
5627 }
5628 EXPORT_SYMBOL(dev_set_group);
5629
5630 /**
5631 * dev_set_mac_address - Change Media Access Control Address
5632 * @dev: device
5633 * @sa: new address
5634 *
5635 * Change the hardware (MAC) address of the device
5636 */
5637 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5638 {
5639 const struct net_device_ops *ops = dev->netdev_ops;
5640 int err;
5641
5642 if (!ops->ndo_set_mac_address)
5643 return -EOPNOTSUPP;
5644 if (sa->sa_family != dev->type)
5645 return -EINVAL;
5646 if (!netif_device_present(dev))
5647 return -ENODEV;
5648 err = ops->ndo_set_mac_address(dev, sa);
5649 if (err)
5650 return err;
5651 dev->addr_assign_type = NET_ADDR_SET;
5652 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5653 add_device_randomness(dev->dev_addr, dev->addr_len);
5654 return 0;
5655 }
5656 EXPORT_SYMBOL(dev_set_mac_address);
5657
5658 /**
5659 * dev_change_carrier - Change device carrier
5660 * @dev: device
5661 * @new_carrier: new value
5662 *
5663 * Change device carrier
5664 */
5665 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5666 {
5667 const struct net_device_ops *ops = dev->netdev_ops;
5668
5669 if (!ops->ndo_change_carrier)
5670 return -EOPNOTSUPP;
5671 if (!netif_device_present(dev))
5672 return -ENODEV;
5673 return ops->ndo_change_carrier(dev, new_carrier);
5674 }
5675 EXPORT_SYMBOL(dev_change_carrier);
5676
5677 /**
5678 * dev_get_phys_port_id - Get device physical port ID
5679 * @dev: device
5680 * @ppid: port ID
5681 *
5682 * Get device physical port ID
5683 */
5684 int dev_get_phys_port_id(struct net_device *dev,
5685 struct netdev_phys_port_id *ppid)
5686 {
5687 const struct net_device_ops *ops = dev->netdev_ops;
5688
5689 if (!ops->ndo_get_phys_port_id)
5690 return -EOPNOTSUPP;
5691 return ops->ndo_get_phys_port_id(dev, ppid);
5692 }
5693 EXPORT_SYMBOL(dev_get_phys_port_id);
5694
5695 /**
5696 * dev_new_index - allocate an ifindex
5697 * @net: the applicable net namespace
5698 *
5699 * Returns a suitable unique value for a new device interface
5700 * number. The caller must hold the rtnl semaphore or the
5701 * dev_base_lock to be sure it remains unique.
5702 */
5703 static int dev_new_index(struct net *net)
5704 {
5705 int ifindex = net->ifindex;
5706 for (;;) {
5707 if (++ifindex <= 0)
5708 ifindex = 1;
5709 if (!__dev_get_by_index(net, ifindex))
5710 return net->ifindex = ifindex;
5711 }
5712 }
5713
5714 /* Delayed registration/unregisteration */
5715 static LIST_HEAD(net_todo_list);
5716 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5717
5718 static void net_set_todo(struct net_device *dev)
5719 {
5720 list_add_tail(&dev->todo_list, &net_todo_list);
5721 dev_net(dev)->dev_unreg_count++;
5722 }
5723
5724 static void rollback_registered_many(struct list_head *head)
5725 {
5726 struct net_device *dev, *tmp;
5727 LIST_HEAD(close_head);
5728
5729 BUG_ON(dev_boot_phase);
5730 ASSERT_RTNL();
5731
5732 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5733 /* Some devices call without registering
5734 * for initialization unwind. Remove those
5735 * devices and proceed with the remaining.
5736 */
5737 if (dev->reg_state == NETREG_UNINITIALIZED) {
5738 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5739 dev->name, dev);
5740
5741 WARN_ON(1);
5742 list_del(&dev->unreg_list);
5743 continue;
5744 }
5745 dev->dismantle = true;
5746 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5747 }
5748
5749 /* If device is running, close it first. */
5750 list_for_each_entry(dev, head, unreg_list)
5751 list_add_tail(&dev->close_list, &close_head);
5752 dev_close_many(&close_head);
5753
5754 list_for_each_entry(dev, head, unreg_list) {
5755 /* And unlink it from device chain. */
5756 unlist_netdevice(dev);
5757
5758 dev->reg_state = NETREG_UNREGISTERING;
5759 }
5760
5761 synchronize_net();
5762
5763 list_for_each_entry(dev, head, unreg_list) {
5764 /* Shutdown queueing discipline. */
5765 dev_shutdown(dev);
5766
5767
5768 /* Notify protocols, that we are about to destroy
5769 this device. They should clean all the things.
5770 */
5771 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5772
5773 /*
5774 * Flush the unicast and multicast chains
5775 */
5776 dev_uc_flush(dev);
5777 dev_mc_flush(dev);
5778
5779 if (dev->netdev_ops->ndo_uninit)
5780 dev->netdev_ops->ndo_uninit(dev);
5781
5782 if (!dev->rtnl_link_ops ||
5783 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5784 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5785
5786 /* Notifier chain MUST detach us all upper devices. */
5787 WARN_ON(netdev_has_any_upper_dev(dev));
5788
5789 /* Remove entries from kobject tree */
5790 netdev_unregister_kobject(dev);
5791 #ifdef CONFIG_XPS
5792 /* Remove XPS queueing entries */
5793 netif_reset_xps_queues_gt(dev, 0);
5794 #endif
5795 }
5796
5797 synchronize_net();
5798
5799 list_for_each_entry(dev, head, unreg_list)
5800 dev_put(dev);
5801 }
5802
5803 static void rollback_registered(struct net_device *dev)
5804 {
5805 LIST_HEAD(single);
5806
5807 list_add(&dev->unreg_list, &single);
5808 rollback_registered_many(&single);
5809 list_del(&single);
5810 }
5811
5812 static netdev_features_t netdev_fix_features(struct net_device *dev,
5813 netdev_features_t features)
5814 {
5815 /* Fix illegal checksum combinations */
5816 if ((features & NETIF_F_HW_CSUM) &&
5817 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5818 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5819 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5820 }
5821
5822 /* TSO requires that SG is present as well. */
5823 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5824 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5825 features &= ~NETIF_F_ALL_TSO;
5826 }
5827
5828 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5829 !(features & NETIF_F_IP_CSUM)) {
5830 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5831 features &= ~NETIF_F_TSO;
5832 features &= ~NETIF_F_TSO_ECN;
5833 }
5834
5835 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5836 !(features & NETIF_F_IPV6_CSUM)) {
5837 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5838 features &= ~NETIF_F_TSO6;
5839 }
5840
5841 /* TSO ECN requires that TSO is present as well. */
5842 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5843 features &= ~NETIF_F_TSO_ECN;
5844
5845 /* Software GSO depends on SG. */
5846 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5847 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5848 features &= ~NETIF_F_GSO;
5849 }
5850
5851 /* UFO needs SG and checksumming */
5852 if (features & NETIF_F_UFO) {
5853 /* maybe split UFO into V4 and V6? */
5854 if (!((features & NETIF_F_GEN_CSUM) ||
5855 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5856 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5857 netdev_dbg(dev,
5858 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5859 features &= ~NETIF_F_UFO;
5860 }
5861
5862 if (!(features & NETIF_F_SG)) {
5863 netdev_dbg(dev,
5864 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5865 features &= ~NETIF_F_UFO;
5866 }
5867 }
5868
5869 #ifdef CONFIG_NET_RX_BUSY_POLL
5870 if (dev->netdev_ops->ndo_busy_poll)
5871 features |= NETIF_F_BUSY_POLL;
5872 else
5873 #endif
5874 features &= ~NETIF_F_BUSY_POLL;
5875
5876 return features;
5877 }
5878
5879 int __netdev_update_features(struct net_device *dev)
5880 {
5881 netdev_features_t features;
5882 int err = 0;
5883
5884 ASSERT_RTNL();
5885
5886 features = netdev_get_wanted_features(dev);
5887
5888 if (dev->netdev_ops->ndo_fix_features)
5889 features = dev->netdev_ops->ndo_fix_features(dev, features);
5890
5891 /* driver might be less strict about feature dependencies */
5892 features = netdev_fix_features(dev, features);
5893
5894 if (dev->features == features)
5895 return 0;
5896
5897 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5898 &dev->features, &features);
5899
5900 if (dev->netdev_ops->ndo_set_features)
5901 err = dev->netdev_ops->ndo_set_features(dev, features);
5902
5903 if (unlikely(err < 0)) {
5904 netdev_err(dev,
5905 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5906 err, &features, &dev->features);
5907 return -1;
5908 }
5909
5910 if (!err)
5911 dev->features = features;
5912
5913 return 1;
5914 }
5915
5916 /**
5917 * netdev_update_features - recalculate device features
5918 * @dev: the device to check
5919 *
5920 * Recalculate dev->features set and send notifications if it
5921 * has changed. Should be called after driver or hardware dependent
5922 * conditions might have changed that influence the features.
5923 */
5924 void netdev_update_features(struct net_device *dev)
5925 {
5926 if (__netdev_update_features(dev))
5927 netdev_features_change(dev);
5928 }
5929 EXPORT_SYMBOL(netdev_update_features);
5930
5931 /**
5932 * netdev_change_features - recalculate device features
5933 * @dev: the device to check
5934 *
5935 * Recalculate dev->features set and send notifications even
5936 * if they have not changed. Should be called instead of
5937 * netdev_update_features() if also dev->vlan_features might
5938 * have changed to allow the changes to be propagated to stacked
5939 * VLAN devices.
5940 */
5941 void netdev_change_features(struct net_device *dev)
5942 {
5943 __netdev_update_features(dev);
5944 netdev_features_change(dev);
5945 }
5946 EXPORT_SYMBOL(netdev_change_features);
5947
5948 /**
5949 * netif_stacked_transfer_operstate - transfer operstate
5950 * @rootdev: the root or lower level device to transfer state from
5951 * @dev: the device to transfer operstate to
5952 *
5953 * Transfer operational state from root to device. This is normally
5954 * called when a stacking relationship exists between the root
5955 * device and the device(a leaf device).
5956 */
5957 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5958 struct net_device *dev)
5959 {
5960 if (rootdev->operstate == IF_OPER_DORMANT)
5961 netif_dormant_on(dev);
5962 else
5963 netif_dormant_off(dev);
5964
5965 if (netif_carrier_ok(rootdev)) {
5966 if (!netif_carrier_ok(dev))
5967 netif_carrier_on(dev);
5968 } else {
5969 if (netif_carrier_ok(dev))
5970 netif_carrier_off(dev);
5971 }
5972 }
5973 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5974
5975 #ifdef CONFIG_SYSFS
5976 static int netif_alloc_rx_queues(struct net_device *dev)
5977 {
5978 unsigned int i, count = dev->num_rx_queues;
5979 struct netdev_rx_queue *rx;
5980
5981 BUG_ON(count < 1);
5982
5983 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5984 if (!rx)
5985 return -ENOMEM;
5986
5987 dev->_rx = rx;
5988
5989 for (i = 0; i < count; i++)
5990 rx[i].dev = dev;
5991 return 0;
5992 }
5993 #endif
5994
5995 static void netdev_init_one_queue(struct net_device *dev,
5996 struct netdev_queue *queue, void *_unused)
5997 {
5998 /* Initialize queue lock */
5999 spin_lock_init(&queue->_xmit_lock);
6000 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6001 queue->xmit_lock_owner = -1;
6002 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6003 queue->dev = dev;
6004 #ifdef CONFIG_BQL
6005 dql_init(&queue->dql, HZ);
6006 #endif
6007 }
6008
6009 static void netif_free_tx_queues(struct net_device *dev)
6010 {
6011 kvfree(dev->_tx);
6012 }
6013
6014 static int netif_alloc_netdev_queues(struct net_device *dev)
6015 {
6016 unsigned int count = dev->num_tx_queues;
6017 struct netdev_queue *tx;
6018 size_t sz = count * sizeof(*tx);
6019
6020 BUG_ON(count < 1 || count > 0xffff);
6021
6022 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6023 if (!tx) {
6024 tx = vzalloc(sz);
6025 if (!tx)
6026 return -ENOMEM;
6027 }
6028 dev->_tx = tx;
6029
6030 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6031 spin_lock_init(&dev->tx_global_lock);
6032
6033 return 0;
6034 }
6035
6036 /**
6037 * register_netdevice - register a network device
6038 * @dev: device to register
6039 *
6040 * Take a completed network device structure and add it to the kernel
6041 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6042 * chain. 0 is returned on success. A negative errno code is returned
6043 * on a failure to set up the device, or if the name is a duplicate.
6044 *
6045 * Callers must hold the rtnl semaphore. You may want
6046 * register_netdev() instead of this.
6047 *
6048 * BUGS:
6049 * The locking appears insufficient to guarantee two parallel registers
6050 * will not get the same name.
6051 */
6052
6053 int register_netdevice(struct net_device *dev)
6054 {
6055 int ret;
6056 struct net *net = dev_net(dev);
6057
6058 BUG_ON(dev_boot_phase);
6059 ASSERT_RTNL();
6060
6061 might_sleep();
6062
6063 /* When net_device's are persistent, this will be fatal. */
6064 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6065 BUG_ON(!net);
6066
6067 spin_lock_init(&dev->addr_list_lock);
6068 netdev_set_addr_lockdep_class(dev);
6069
6070 dev->iflink = -1;
6071
6072 ret = dev_get_valid_name(net, dev, dev->name);
6073 if (ret < 0)
6074 goto out;
6075
6076 /* Init, if this function is available */
6077 if (dev->netdev_ops->ndo_init) {
6078 ret = dev->netdev_ops->ndo_init(dev);
6079 if (ret) {
6080 if (ret > 0)
6081 ret = -EIO;
6082 goto out;
6083 }
6084 }
6085
6086 if (((dev->hw_features | dev->features) &
6087 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6088 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6089 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6090 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6091 ret = -EINVAL;
6092 goto err_uninit;
6093 }
6094
6095 ret = -EBUSY;
6096 if (!dev->ifindex)
6097 dev->ifindex = dev_new_index(net);
6098 else if (__dev_get_by_index(net, dev->ifindex))
6099 goto err_uninit;
6100
6101 if (dev->iflink == -1)
6102 dev->iflink = dev->ifindex;
6103
6104 /* Transfer changeable features to wanted_features and enable
6105 * software offloads (GSO and GRO).
6106 */
6107 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6108 dev->features |= NETIF_F_SOFT_FEATURES;
6109 dev->wanted_features = dev->features & dev->hw_features;
6110
6111 if (!(dev->flags & IFF_LOOPBACK)) {
6112 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6113 }
6114
6115 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6116 */
6117 dev->vlan_features |= NETIF_F_HIGHDMA;
6118
6119 /* Make NETIF_F_SG inheritable to tunnel devices.
6120 */
6121 dev->hw_enc_features |= NETIF_F_SG;
6122
6123 /* Make NETIF_F_SG inheritable to MPLS.
6124 */
6125 dev->mpls_features |= NETIF_F_SG;
6126
6127 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6128 ret = notifier_to_errno(ret);
6129 if (ret)
6130 goto err_uninit;
6131
6132 ret = netdev_register_kobject(dev);
6133 if (ret)
6134 goto err_uninit;
6135 dev->reg_state = NETREG_REGISTERED;
6136
6137 __netdev_update_features(dev);
6138
6139 /*
6140 * Default initial state at registry is that the
6141 * device is present.
6142 */
6143
6144 set_bit(__LINK_STATE_PRESENT, &dev->state);
6145
6146 linkwatch_init_dev(dev);
6147
6148 dev_init_scheduler(dev);
6149 dev_hold(dev);
6150 list_netdevice(dev);
6151 add_device_randomness(dev->dev_addr, dev->addr_len);
6152
6153 /* If the device has permanent device address, driver should
6154 * set dev_addr and also addr_assign_type should be set to
6155 * NET_ADDR_PERM (default value).
6156 */
6157 if (dev->addr_assign_type == NET_ADDR_PERM)
6158 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6159
6160 /* Notify protocols, that a new device appeared. */
6161 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6162 ret = notifier_to_errno(ret);
6163 if (ret) {
6164 rollback_registered(dev);
6165 dev->reg_state = NETREG_UNREGISTERED;
6166 }
6167 /*
6168 * Prevent userspace races by waiting until the network
6169 * device is fully setup before sending notifications.
6170 */
6171 if (!dev->rtnl_link_ops ||
6172 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6173 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6174
6175 out:
6176 return ret;
6177
6178 err_uninit:
6179 if (dev->netdev_ops->ndo_uninit)
6180 dev->netdev_ops->ndo_uninit(dev);
6181 goto out;
6182 }
6183 EXPORT_SYMBOL(register_netdevice);
6184
6185 /**
6186 * init_dummy_netdev - init a dummy network device for NAPI
6187 * @dev: device to init
6188 *
6189 * This takes a network device structure and initialize the minimum
6190 * amount of fields so it can be used to schedule NAPI polls without
6191 * registering a full blown interface. This is to be used by drivers
6192 * that need to tie several hardware interfaces to a single NAPI
6193 * poll scheduler due to HW limitations.
6194 */
6195 int init_dummy_netdev(struct net_device *dev)
6196 {
6197 /* Clear everything. Note we don't initialize spinlocks
6198 * are they aren't supposed to be taken by any of the
6199 * NAPI code and this dummy netdev is supposed to be
6200 * only ever used for NAPI polls
6201 */
6202 memset(dev, 0, sizeof(struct net_device));
6203
6204 /* make sure we BUG if trying to hit standard
6205 * register/unregister code path
6206 */
6207 dev->reg_state = NETREG_DUMMY;
6208
6209 /* NAPI wants this */
6210 INIT_LIST_HEAD(&dev->napi_list);
6211
6212 /* a dummy interface is started by default */
6213 set_bit(__LINK_STATE_PRESENT, &dev->state);
6214 set_bit(__LINK_STATE_START, &dev->state);
6215
6216 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6217 * because users of this 'device' dont need to change
6218 * its refcount.
6219 */
6220
6221 return 0;
6222 }
6223 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6224
6225
6226 /**
6227 * register_netdev - register a network device
6228 * @dev: device to register
6229 *
6230 * Take a completed network device structure and add it to the kernel
6231 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6232 * chain. 0 is returned on success. A negative errno code is returned
6233 * on a failure to set up the device, or if the name is a duplicate.
6234 *
6235 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6236 * and expands the device name if you passed a format string to
6237 * alloc_netdev.
6238 */
6239 int register_netdev(struct net_device *dev)
6240 {
6241 int err;
6242
6243 rtnl_lock();
6244 err = register_netdevice(dev);
6245 rtnl_unlock();
6246 return err;
6247 }
6248 EXPORT_SYMBOL(register_netdev);
6249
6250 int netdev_refcnt_read(const struct net_device *dev)
6251 {
6252 int i, refcnt = 0;
6253
6254 for_each_possible_cpu(i)
6255 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6256 return refcnt;
6257 }
6258 EXPORT_SYMBOL(netdev_refcnt_read);
6259
6260 /**
6261 * netdev_wait_allrefs - wait until all references are gone.
6262 * @dev: target net_device
6263 *
6264 * This is called when unregistering network devices.
6265 *
6266 * Any protocol or device that holds a reference should register
6267 * for netdevice notification, and cleanup and put back the
6268 * reference if they receive an UNREGISTER event.
6269 * We can get stuck here if buggy protocols don't correctly
6270 * call dev_put.
6271 */
6272 static void netdev_wait_allrefs(struct net_device *dev)
6273 {
6274 unsigned long rebroadcast_time, warning_time;
6275 int refcnt;
6276
6277 linkwatch_forget_dev(dev);
6278
6279 rebroadcast_time = warning_time = jiffies;
6280 refcnt = netdev_refcnt_read(dev);
6281
6282 while (refcnt != 0) {
6283 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6284 rtnl_lock();
6285
6286 /* Rebroadcast unregister notification */
6287 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6288
6289 __rtnl_unlock();
6290 rcu_barrier();
6291 rtnl_lock();
6292
6293 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6294 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6295 &dev->state)) {
6296 /* We must not have linkwatch events
6297 * pending on unregister. If this
6298 * happens, we simply run the queue
6299 * unscheduled, resulting in a noop
6300 * for this device.
6301 */
6302 linkwatch_run_queue();
6303 }
6304
6305 __rtnl_unlock();
6306
6307 rebroadcast_time = jiffies;
6308 }
6309
6310 msleep(250);
6311
6312 refcnt = netdev_refcnt_read(dev);
6313
6314 if (time_after(jiffies, warning_time + 10 * HZ)) {
6315 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6316 dev->name, refcnt);
6317 warning_time = jiffies;
6318 }
6319 }
6320 }
6321
6322 /* The sequence is:
6323 *
6324 * rtnl_lock();
6325 * ...
6326 * register_netdevice(x1);
6327 * register_netdevice(x2);
6328 * ...
6329 * unregister_netdevice(y1);
6330 * unregister_netdevice(y2);
6331 * ...
6332 * rtnl_unlock();
6333 * free_netdev(y1);
6334 * free_netdev(y2);
6335 *
6336 * We are invoked by rtnl_unlock().
6337 * This allows us to deal with problems:
6338 * 1) We can delete sysfs objects which invoke hotplug
6339 * without deadlocking with linkwatch via keventd.
6340 * 2) Since we run with the RTNL semaphore not held, we can sleep
6341 * safely in order to wait for the netdev refcnt to drop to zero.
6342 *
6343 * We must not return until all unregister events added during
6344 * the interval the lock was held have been completed.
6345 */
6346 void netdev_run_todo(void)
6347 {
6348 struct list_head list;
6349
6350 /* Snapshot list, allow later requests */
6351 list_replace_init(&net_todo_list, &list);
6352
6353 __rtnl_unlock();
6354
6355
6356 /* Wait for rcu callbacks to finish before next phase */
6357 if (!list_empty(&list))
6358 rcu_barrier();
6359
6360 while (!list_empty(&list)) {
6361 struct net_device *dev
6362 = list_first_entry(&list, struct net_device, todo_list);
6363 list_del(&dev->todo_list);
6364
6365 rtnl_lock();
6366 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6367 __rtnl_unlock();
6368
6369 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6370 pr_err("network todo '%s' but state %d\n",
6371 dev->name, dev->reg_state);
6372 dump_stack();
6373 continue;
6374 }
6375
6376 dev->reg_state = NETREG_UNREGISTERED;
6377
6378 on_each_cpu(flush_backlog, dev, 1);
6379
6380 netdev_wait_allrefs(dev);
6381
6382 /* paranoia */
6383 BUG_ON(netdev_refcnt_read(dev));
6384 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6385 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6386 WARN_ON(dev->dn_ptr);
6387
6388 if (dev->destructor)
6389 dev->destructor(dev);
6390
6391 /* Report a network device has been unregistered */
6392 rtnl_lock();
6393 dev_net(dev)->dev_unreg_count--;
6394 __rtnl_unlock();
6395 wake_up(&netdev_unregistering_wq);
6396
6397 /* Free network device */
6398 kobject_put(&dev->dev.kobj);
6399 }
6400 }
6401
6402 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6403 * fields in the same order, with only the type differing.
6404 */
6405 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6406 const struct net_device_stats *netdev_stats)
6407 {
6408 #if BITS_PER_LONG == 64
6409 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6410 memcpy(stats64, netdev_stats, sizeof(*stats64));
6411 #else
6412 size_t i, n = sizeof(*stats64) / sizeof(u64);
6413 const unsigned long *src = (const unsigned long *)netdev_stats;
6414 u64 *dst = (u64 *)stats64;
6415
6416 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6417 sizeof(*stats64) / sizeof(u64));
6418 for (i = 0; i < n; i++)
6419 dst[i] = src[i];
6420 #endif
6421 }
6422 EXPORT_SYMBOL(netdev_stats_to_stats64);
6423
6424 /**
6425 * dev_get_stats - get network device statistics
6426 * @dev: device to get statistics from
6427 * @storage: place to store stats
6428 *
6429 * Get network statistics from device. Return @storage.
6430 * The device driver may provide its own method by setting
6431 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6432 * otherwise the internal statistics structure is used.
6433 */
6434 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6435 struct rtnl_link_stats64 *storage)
6436 {
6437 const struct net_device_ops *ops = dev->netdev_ops;
6438
6439 if (ops->ndo_get_stats64) {
6440 memset(storage, 0, sizeof(*storage));
6441 ops->ndo_get_stats64(dev, storage);
6442 } else if (ops->ndo_get_stats) {
6443 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6444 } else {
6445 netdev_stats_to_stats64(storage, &dev->stats);
6446 }
6447 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6448 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6449 return storage;
6450 }
6451 EXPORT_SYMBOL(dev_get_stats);
6452
6453 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6454 {
6455 struct netdev_queue *queue = dev_ingress_queue(dev);
6456
6457 #ifdef CONFIG_NET_CLS_ACT
6458 if (queue)
6459 return queue;
6460 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6461 if (!queue)
6462 return NULL;
6463 netdev_init_one_queue(dev, queue, NULL);
6464 queue->qdisc = &noop_qdisc;
6465 queue->qdisc_sleeping = &noop_qdisc;
6466 rcu_assign_pointer(dev->ingress_queue, queue);
6467 #endif
6468 return queue;
6469 }
6470
6471 static const struct ethtool_ops default_ethtool_ops;
6472
6473 void netdev_set_default_ethtool_ops(struct net_device *dev,
6474 const struct ethtool_ops *ops)
6475 {
6476 if (dev->ethtool_ops == &default_ethtool_ops)
6477 dev->ethtool_ops = ops;
6478 }
6479 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6480
6481 void netdev_freemem(struct net_device *dev)
6482 {
6483 char *addr = (char *)dev - dev->padded;
6484
6485 kvfree(addr);
6486 }
6487
6488 /**
6489 * alloc_netdev_mqs - allocate network device
6490 * @sizeof_priv: size of private data to allocate space for
6491 * @name: device name format string
6492 * @name_assign_type: origin of device name
6493 * @setup: callback to initialize device
6494 * @txqs: the number of TX subqueues to allocate
6495 * @rxqs: the number of RX subqueues to allocate
6496 *
6497 * Allocates a struct net_device with private data area for driver use
6498 * and performs basic initialization. Also allocates subqueue structs
6499 * for each queue on the device.
6500 */
6501 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6502 unsigned char name_assign_type,
6503 void (*setup)(struct net_device *),
6504 unsigned int txqs, unsigned int rxqs)
6505 {
6506 struct net_device *dev;
6507 size_t alloc_size;
6508 struct net_device *p;
6509
6510 BUG_ON(strlen(name) >= sizeof(dev->name));
6511
6512 if (txqs < 1) {
6513 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6514 return NULL;
6515 }
6516
6517 #ifdef CONFIG_SYSFS
6518 if (rxqs < 1) {
6519 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6520 return NULL;
6521 }
6522 #endif
6523
6524 alloc_size = sizeof(struct net_device);
6525 if (sizeof_priv) {
6526 /* ensure 32-byte alignment of private area */
6527 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6528 alloc_size += sizeof_priv;
6529 }
6530 /* ensure 32-byte alignment of whole construct */
6531 alloc_size += NETDEV_ALIGN - 1;
6532
6533 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6534 if (!p)
6535 p = vzalloc(alloc_size);
6536 if (!p)
6537 return NULL;
6538
6539 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6540 dev->padded = (char *)dev - (char *)p;
6541
6542 dev->pcpu_refcnt = alloc_percpu(int);
6543 if (!dev->pcpu_refcnt)
6544 goto free_dev;
6545
6546 if (dev_addr_init(dev))
6547 goto free_pcpu;
6548
6549 dev_mc_init(dev);
6550 dev_uc_init(dev);
6551
6552 dev_net_set(dev, &init_net);
6553
6554 dev->gso_max_size = GSO_MAX_SIZE;
6555 dev->gso_max_segs = GSO_MAX_SEGS;
6556
6557 INIT_LIST_HEAD(&dev->napi_list);
6558 INIT_LIST_HEAD(&dev->unreg_list);
6559 INIT_LIST_HEAD(&dev->close_list);
6560 INIT_LIST_HEAD(&dev->link_watch_list);
6561 INIT_LIST_HEAD(&dev->adj_list.upper);
6562 INIT_LIST_HEAD(&dev->adj_list.lower);
6563 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6564 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6565 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6566 setup(dev);
6567
6568 dev->num_tx_queues = txqs;
6569 dev->real_num_tx_queues = txqs;
6570 if (netif_alloc_netdev_queues(dev))
6571 goto free_all;
6572
6573 #ifdef CONFIG_SYSFS
6574 dev->num_rx_queues = rxqs;
6575 dev->real_num_rx_queues = rxqs;
6576 if (netif_alloc_rx_queues(dev))
6577 goto free_all;
6578 #endif
6579
6580 strcpy(dev->name, name);
6581 dev->name_assign_type = name_assign_type;
6582 dev->group = INIT_NETDEV_GROUP;
6583 if (!dev->ethtool_ops)
6584 dev->ethtool_ops = &default_ethtool_ops;
6585 return dev;
6586
6587 free_all:
6588 free_netdev(dev);
6589 return NULL;
6590
6591 free_pcpu:
6592 free_percpu(dev->pcpu_refcnt);
6593 free_dev:
6594 netdev_freemem(dev);
6595 return NULL;
6596 }
6597 EXPORT_SYMBOL(alloc_netdev_mqs);
6598
6599 /**
6600 * free_netdev - free network device
6601 * @dev: device
6602 *
6603 * This function does the last stage of destroying an allocated device
6604 * interface. The reference to the device object is released.
6605 * If this is the last reference then it will be freed.
6606 */
6607 void free_netdev(struct net_device *dev)
6608 {
6609 struct napi_struct *p, *n;
6610
6611 release_net(dev_net(dev));
6612
6613 netif_free_tx_queues(dev);
6614 #ifdef CONFIG_SYSFS
6615 kfree(dev->_rx);
6616 #endif
6617
6618 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6619
6620 /* Flush device addresses */
6621 dev_addr_flush(dev);
6622
6623 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6624 netif_napi_del(p);
6625
6626 free_percpu(dev->pcpu_refcnt);
6627 dev->pcpu_refcnt = NULL;
6628
6629 /* Compatibility with error handling in drivers */
6630 if (dev->reg_state == NETREG_UNINITIALIZED) {
6631 netdev_freemem(dev);
6632 return;
6633 }
6634
6635 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6636 dev->reg_state = NETREG_RELEASED;
6637
6638 /* will free via device release */
6639 put_device(&dev->dev);
6640 }
6641 EXPORT_SYMBOL(free_netdev);
6642
6643 /**
6644 * synchronize_net - Synchronize with packet receive processing
6645 *
6646 * Wait for packets currently being received to be done.
6647 * Does not block later packets from starting.
6648 */
6649 void synchronize_net(void)
6650 {
6651 might_sleep();
6652 if (rtnl_is_locked())
6653 synchronize_rcu_expedited();
6654 else
6655 synchronize_rcu();
6656 }
6657 EXPORT_SYMBOL(synchronize_net);
6658
6659 /**
6660 * unregister_netdevice_queue - remove device from the kernel
6661 * @dev: device
6662 * @head: list
6663 *
6664 * This function shuts down a device interface and removes it
6665 * from the kernel tables.
6666 * If head not NULL, device is queued to be unregistered later.
6667 *
6668 * Callers must hold the rtnl semaphore. You may want
6669 * unregister_netdev() instead of this.
6670 */
6671
6672 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6673 {
6674 ASSERT_RTNL();
6675
6676 if (head) {
6677 list_move_tail(&dev->unreg_list, head);
6678 } else {
6679 rollback_registered(dev);
6680 /* Finish processing unregister after unlock */
6681 net_set_todo(dev);
6682 }
6683 }
6684 EXPORT_SYMBOL(unregister_netdevice_queue);
6685
6686 /**
6687 * unregister_netdevice_many - unregister many devices
6688 * @head: list of devices
6689 *
6690 * Note: As most callers use a stack allocated list_head,
6691 * we force a list_del() to make sure stack wont be corrupted later.
6692 */
6693 void unregister_netdevice_many(struct list_head *head)
6694 {
6695 struct net_device *dev;
6696
6697 if (!list_empty(head)) {
6698 rollback_registered_many(head);
6699 list_for_each_entry(dev, head, unreg_list)
6700 net_set_todo(dev);
6701 list_del(head);
6702 }
6703 }
6704 EXPORT_SYMBOL(unregister_netdevice_many);
6705
6706 /**
6707 * unregister_netdev - remove device from the kernel
6708 * @dev: device
6709 *
6710 * This function shuts down a device interface and removes it
6711 * from the kernel tables.
6712 *
6713 * This is just a wrapper for unregister_netdevice that takes
6714 * the rtnl semaphore. In general you want to use this and not
6715 * unregister_netdevice.
6716 */
6717 void unregister_netdev(struct net_device *dev)
6718 {
6719 rtnl_lock();
6720 unregister_netdevice(dev);
6721 rtnl_unlock();
6722 }
6723 EXPORT_SYMBOL(unregister_netdev);
6724
6725 /**
6726 * dev_change_net_namespace - move device to different nethost namespace
6727 * @dev: device
6728 * @net: network namespace
6729 * @pat: If not NULL name pattern to try if the current device name
6730 * is already taken in the destination network namespace.
6731 *
6732 * This function shuts down a device interface and moves it
6733 * to a new network namespace. On success 0 is returned, on
6734 * a failure a netagive errno code is returned.
6735 *
6736 * Callers must hold the rtnl semaphore.
6737 */
6738
6739 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6740 {
6741 int err;
6742
6743 ASSERT_RTNL();
6744
6745 /* Don't allow namespace local devices to be moved. */
6746 err = -EINVAL;
6747 if (dev->features & NETIF_F_NETNS_LOCAL)
6748 goto out;
6749
6750 /* Ensure the device has been registrered */
6751 if (dev->reg_state != NETREG_REGISTERED)
6752 goto out;
6753
6754 /* Get out if there is nothing todo */
6755 err = 0;
6756 if (net_eq(dev_net(dev), net))
6757 goto out;
6758
6759 /* Pick the destination device name, and ensure
6760 * we can use it in the destination network namespace.
6761 */
6762 err = -EEXIST;
6763 if (__dev_get_by_name(net, dev->name)) {
6764 /* We get here if we can't use the current device name */
6765 if (!pat)
6766 goto out;
6767 if (dev_get_valid_name(net, dev, pat) < 0)
6768 goto out;
6769 }
6770
6771 /*
6772 * And now a mini version of register_netdevice unregister_netdevice.
6773 */
6774
6775 /* If device is running close it first. */
6776 dev_close(dev);
6777
6778 /* And unlink it from device chain */
6779 err = -ENODEV;
6780 unlist_netdevice(dev);
6781
6782 synchronize_net();
6783
6784 /* Shutdown queueing discipline. */
6785 dev_shutdown(dev);
6786
6787 /* Notify protocols, that we are about to destroy
6788 this device. They should clean all the things.
6789
6790 Note that dev->reg_state stays at NETREG_REGISTERED.
6791 This is wanted because this way 8021q and macvlan know
6792 the device is just moving and can keep their slaves up.
6793 */
6794 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6795 rcu_barrier();
6796 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6797 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6798
6799 /*
6800 * Flush the unicast and multicast chains
6801 */
6802 dev_uc_flush(dev);
6803 dev_mc_flush(dev);
6804
6805 /* Send a netdev-removed uevent to the old namespace */
6806 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6807
6808 /* Actually switch the network namespace */
6809 dev_net_set(dev, net);
6810
6811 /* If there is an ifindex conflict assign a new one */
6812 if (__dev_get_by_index(net, dev->ifindex)) {
6813 int iflink = (dev->iflink == dev->ifindex);
6814 dev->ifindex = dev_new_index(net);
6815 if (iflink)
6816 dev->iflink = dev->ifindex;
6817 }
6818
6819 /* Send a netdev-add uevent to the new namespace */
6820 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6821
6822 /* Fixup kobjects */
6823 err = device_rename(&dev->dev, dev->name);
6824 WARN_ON(err);
6825
6826 /* Add the device back in the hashes */
6827 list_netdevice(dev);
6828
6829 /* Notify protocols, that a new device appeared. */
6830 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6831
6832 /*
6833 * Prevent userspace races by waiting until the network
6834 * device is fully setup before sending notifications.
6835 */
6836 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6837
6838 synchronize_net();
6839 err = 0;
6840 out:
6841 return err;
6842 }
6843 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6844
6845 static int dev_cpu_callback(struct notifier_block *nfb,
6846 unsigned long action,
6847 void *ocpu)
6848 {
6849 struct sk_buff **list_skb;
6850 struct sk_buff *skb;
6851 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6852 struct softnet_data *sd, *oldsd;
6853
6854 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6855 return NOTIFY_OK;
6856
6857 local_irq_disable();
6858 cpu = smp_processor_id();
6859 sd = &per_cpu(softnet_data, cpu);
6860 oldsd = &per_cpu(softnet_data, oldcpu);
6861
6862 /* Find end of our completion_queue. */
6863 list_skb = &sd->completion_queue;
6864 while (*list_skb)
6865 list_skb = &(*list_skb)->next;
6866 /* Append completion queue from offline CPU. */
6867 *list_skb = oldsd->completion_queue;
6868 oldsd->completion_queue = NULL;
6869
6870 /* Append output queue from offline CPU. */
6871 if (oldsd->output_queue) {
6872 *sd->output_queue_tailp = oldsd->output_queue;
6873 sd->output_queue_tailp = oldsd->output_queue_tailp;
6874 oldsd->output_queue = NULL;
6875 oldsd->output_queue_tailp = &oldsd->output_queue;
6876 }
6877 /* Append NAPI poll list from offline CPU. */
6878 if (!list_empty(&oldsd->poll_list)) {
6879 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6880 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6881 }
6882
6883 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6884 local_irq_enable();
6885
6886 /* Process offline CPU's input_pkt_queue */
6887 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6888 netif_rx_internal(skb);
6889 input_queue_head_incr(oldsd);
6890 }
6891 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6892 netif_rx_internal(skb);
6893 input_queue_head_incr(oldsd);
6894 }
6895
6896 return NOTIFY_OK;
6897 }
6898
6899
6900 /**
6901 * netdev_increment_features - increment feature set by one
6902 * @all: current feature set
6903 * @one: new feature set
6904 * @mask: mask feature set
6905 *
6906 * Computes a new feature set after adding a device with feature set
6907 * @one to the master device with current feature set @all. Will not
6908 * enable anything that is off in @mask. Returns the new feature set.
6909 */
6910 netdev_features_t netdev_increment_features(netdev_features_t all,
6911 netdev_features_t one, netdev_features_t mask)
6912 {
6913 if (mask & NETIF_F_GEN_CSUM)
6914 mask |= NETIF_F_ALL_CSUM;
6915 mask |= NETIF_F_VLAN_CHALLENGED;
6916
6917 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6918 all &= one | ~NETIF_F_ALL_FOR_ALL;
6919
6920 /* If one device supports hw checksumming, set for all. */
6921 if (all & NETIF_F_GEN_CSUM)
6922 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6923
6924 return all;
6925 }
6926 EXPORT_SYMBOL(netdev_increment_features);
6927
6928 static struct hlist_head * __net_init netdev_create_hash(void)
6929 {
6930 int i;
6931 struct hlist_head *hash;
6932
6933 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6934 if (hash != NULL)
6935 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6936 INIT_HLIST_HEAD(&hash[i]);
6937
6938 return hash;
6939 }
6940
6941 /* Initialize per network namespace state */
6942 static int __net_init netdev_init(struct net *net)
6943 {
6944 if (net != &init_net)
6945 INIT_LIST_HEAD(&net->dev_base_head);
6946
6947 net->dev_name_head = netdev_create_hash();
6948 if (net->dev_name_head == NULL)
6949 goto err_name;
6950
6951 net->dev_index_head = netdev_create_hash();
6952 if (net->dev_index_head == NULL)
6953 goto err_idx;
6954
6955 return 0;
6956
6957 err_idx:
6958 kfree(net->dev_name_head);
6959 err_name:
6960 return -ENOMEM;
6961 }
6962
6963 /**
6964 * netdev_drivername - network driver for the device
6965 * @dev: network device
6966 *
6967 * Determine network driver for device.
6968 */
6969 const char *netdev_drivername(const struct net_device *dev)
6970 {
6971 const struct device_driver *driver;
6972 const struct device *parent;
6973 const char *empty = "";
6974
6975 parent = dev->dev.parent;
6976 if (!parent)
6977 return empty;
6978
6979 driver = parent->driver;
6980 if (driver && driver->name)
6981 return driver->name;
6982 return empty;
6983 }
6984
6985 static int __netdev_printk(const char *level, const struct net_device *dev,
6986 struct va_format *vaf)
6987 {
6988 int r;
6989
6990 if (dev && dev->dev.parent) {
6991 r = dev_printk_emit(level[1] - '0',
6992 dev->dev.parent,
6993 "%s %s %s%s: %pV",
6994 dev_driver_string(dev->dev.parent),
6995 dev_name(dev->dev.parent),
6996 netdev_name(dev), netdev_reg_state(dev),
6997 vaf);
6998 } else if (dev) {
6999 r = printk("%s%s%s: %pV", level, netdev_name(dev),
7000 netdev_reg_state(dev), vaf);
7001 } else {
7002 r = printk("%s(NULL net_device): %pV", level, vaf);
7003 }
7004
7005 return r;
7006 }
7007
7008 int netdev_printk(const char *level, const struct net_device *dev,
7009 const char *format, ...)
7010 {
7011 struct va_format vaf;
7012 va_list args;
7013 int r;
7014
7015 va_start(args, format);
7016
7017 vaf.fmt = format;
7018 vaf.va = &args;
7019
7020 r = __netdev_printk(level, dev, &vaf);
7021
7022 va_end(args);
7023
7024 return r;
7025 }
7026 EXPORT_SYMBOL(netdev_printk);
7027
7028 #define define_netdev_printk_level(func, level) \
7029 int func(const struct net_device *dev, const char *fmt, ...) \
7030 { \
7031 int r; \
7032 struct va_format vaf; \
7033 va_list args; \
7034 \
7035 va_start(args, fmt); \
7036 \
7037 vaf.fmt = fmt; \
7038 vaf.va = &args; \
7039 \
7040 r = __netdev_printk(level, dev, &vaf); \
7041 \
7042 va_end(args); \
7043 \
7044 return r; \
7045 } \
7046 EXPORT_SYMBOL(func);
7047
7048 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7049 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7050 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7051 define_netdev_printk_level(netdev_err, KERN_ERR);
7052 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7053 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7054 define_netdev_printk_level(netdev_info, KERN_INFO);
7055
7056 static void __net_exit netdev_exit(struct net *net)
7057 {
7058 kfree(net->dev_name_head);
7059 kfree(net->dev_index_head);
7060 }
7061
7062 static struct pernet_operations __net_initdata netdev_net_ops = {
7063 .init = netdev_init,
7064 .exit = netdev_exit,
7065 };
7066
7067 static void __net_exit default_device_exit(struct net *net)
7068 {
7069 struct net_device *dev, *aux;
7070 /*
7071 * Push all migratable network devices back to the
7072 * initial network namespace
7073 */
7074 rtnl_lock();
7075 for_each_netdev_safe(net, dev, aux) {
7076 int err;
7077 char fb_name[IFNAMSIZ];
7078
7079 /* Ignore unmoveable devices (i.e. loopback) */
7080 if (dev->features & NETIF_F_NETNS_LOCAL)
7081 continue;
7082
7083 /* Leave virtual devices for the generic cleanup */
7084 if (dev->rtnl_link_ops)
7085 continue;
7086
7087 /* Push remaining network devices to init_net */
7088 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7089 err = dev_change_net_namespace(dev, &init_net, fb_name);
7090 if (err) {
7091 pr_emerg("%s: failed to move %s to init_net: %d\n",
7092 __func__, dev->name, err);
7093 BUG();
7094 }
7095 }
7096 rtnl_unlock();
7097 }
7098
7099 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7100 {
7101 /* Return with the rtnl_lock held when there are no network
7102 * devices unregistering in any network namespace in net_list.
7103 */
7104 struct net *net;
7105 bool unregistering;
7106 DEFINE_WAIT(wait);
7107
7108 for (;;) {
7109 prepare_to_wait(&netdev_unregistering_wq, &wait,
7110 TASK_UNINTERRUPTIBLE);
7111 unregistering = false;
7112 rtnl_lock();
7113 list_for_each_entry(net, net_list, exit_list) {
7114 if (net->dev_unreg_count > 0) {
7115 unregistering = true;
7116 break;
7117 }
7118 }
7119 if (!unregistering)
7120 break;
7121 __rtnl_unlock();
7122 schedule();
7123 }
7124 finish_wait(&netdev_unregistering_wq, &wait);
7125 }
7126
7127 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7128 {
7129 /* At exit all network devices most be removed from a network
7130 * namespace. Do this in the reverse order of registration.
7131 * Do this across as many network namespaces as possible to
7132 * improve batching efficiency.
7133 */
7134 struct net_device *dev;
7135 struct net *net;
7136 LIST_HEAD(dev_kill_list);
7137
7138 /* To prevent network device cleanup code from dereferencing
7139 * loopback devices or network devices that have been freed
7140 * wait here for all pending unregistrations to complete,
7141 * before unregistring the loopback device and allowing the
7142 * network namespace be freed.
7143 *
7144 * The netdev todo list containing all network devices
7145 * unregistrations that happen in default_device_exit_batch
7146 * will run in the rtnl_unlock() at the end of
7147 * default_device_exit_batch.
7148 */
7149 rtnl_lock_unregistering(net_list);
7150 list_for_each_entry(net, net_list, exit_list) {
7151 for_each_netdev_reverse(net, dev) {
7152 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7153 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7154 else
7155 unregister_netdevice_queue(dev, &dev_kill_list);
7156 }
7157 }
7158 unregister_netdevice_many(&dev_kill_list);
7159 rtnl_unlock();
7160 }
7161
7162 static struct pernet_operations __net_initdata default_device_ops = {
7163 .exit = default_device_exit,
7164 .exit_batch = default_device_exit_batch,
7165 };
7166
7167 /*
7168 * Initialize the DEV module. At boot time this walks the device list and
7169 * unhooks any devices that fail to initialise (normally hardware not
7170 * present) and leaves us with a valid list of present and active devices.
7171 *
7172 */
7173
7174 /*
7175 * This is called single threaded during boot, so no need
7176 * to take the rtnl semaphore.
7177 */
7178 static int __init net_dev_init(void)
7179 {
7180 int i, rc = -ENOMEM;
7181
7182 BUG_ON(!dev_boot_phase);
7183
7184 if (dev_proc_init())
7185 goto out;
7186
7187 if (netdev_kobject_init())
7188 goto out;
7189
7190 INIT_LIST_HEAD(&ptype_all);
7191 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7192 INIT_LIST_HEAD(&ptype_base[i]);
7193
7194 INIT_LIST_HEAD(&offload_base);
7195
7196 if (register_pernet_subsys(&netdev_net_ops))
7197 goto out;
7198
7199 /*
7200 * Initialise the packet receive queues.
7201 */
7202
7203 for_each_possible_cpu(i) {
7204 struct softnet_data *sd = &per_cpu(softnet_data, i);
7205
7206 skb_queue_head_init(&sd->input_pkt_queue);
7207 skb_queue_head_init(&sd->process_queue);
7208 INIT_LIST_HEAD(&sd->poll_list);
7209 sd->output_queue_tailp = &sd->output_queue;
7210 #ifdef CONFIG_RPS
7211 sd->csd.func = rps_trigger_softirq;
7212 sd->csd.info = sd;
7213 sd->cpu = i;
7214 #endif
7215
7216 sd->backlog.poll = process_backlog;
7217 sd->backlog.weight = weight_p;
7218 }
7219
7220 dev_boot_phase = 0;
7221
7222 /* The loopback device is special if any other network devices
7223 * is present in a network namespace the loopback device must
7224 * be present. Since we now dynamically allocate and free the
7225 * loopback device ensure this invariant is maintained by
7226 * keeping the loopback device as the first device on the
7227 * list of network devices. Ensuring the loopback devices
7228 * is the first device that appears and the last network device
7229 * that disappears.
7230 */
7231 if (register_pernet_device(&loopback_net_ops))
7232 goto out;
7233
7234 if (register_pernet_device(&default_device_ops))
7235 goto out;
7236
7237 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7238 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7239
7240 hotcpu_notifier(dev_cpu_callback, 0);
7241 dst_init();
7242 rc = 0;
7243 out:
7244 return rc;
7245 }
7246
7247 subsys_initcall(net_dev_init);