]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/core/dev.c
net: gro: add a per device gro flush timer
[mirror_ubuntu-bionic-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 static DEFINE_SPINLOCK(ptype_lock);
148 static DEFINE_SPINLOCK(offload_lock);
149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150 struct list_head ptype_all __read_mostly; /* Taps */
151 static struct list_head offload_base __read_mostly;
152
153 static int netif_rx_internal(struct sk_buff *skb);
154 static int call_netdevice_notifiers_info(unsigned long val,
155 struct net_device *dev,
156 struct netdev_notifier_info *info);
157
158 /*
159 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
160 * semaphore.
161 *
162 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
163 *
164 * Writers must hold the rtnl semaphore while they loop through the
165 * dev_base_head list, and hold dev_base_lock for writing when they do the
166 * actual updates. This allows pure readers to access the list even
167 * while a writer is preparing to update it.
168 *
169 * To put it another way, dev_base_lock is held for writing only to
170 * protect against pure readers; the rtnl semaphore provides the
171 * protection against other writers.
172 *
173 * See, for example usages, register_netdevice() and
174 * unregister_netdevice(), which must be called with the rtnl
175 * semaphore held.
176 */
177 DEFINE_RWLOCK(dev_base_lock);
178 EXPORT_SYMBOL(dev_base_lock);
179
180 /* protects napi_hash addition/deletion and napi_gen_id */
181 static DEFINE_SPINLOCK(napi_hash_lock);
182
183 static unsigned int napi_gen_id;
184 static DEFINE_HASHTABLE(napi_hash, 8);
185
186 static seqcount_t devnet_rename_seq;
187
188 static inline void dev_base_seq_inc(struct net *net)
189 {
190 while (++net->dev_base_seq == 0);
191 }
192
193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
194 {
195 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
196
197 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
198 }
199
200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
201 {
202 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
203 }
204
205 static inline void rps_lock(struct softnet_data *sd)
206 {
207 #ifdef CONFIG_RPS
208 spin_lock(&sd->input_pkt_queue.lock);
209 #endif
210 }
211
212 static inline void rps_unlock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 spin_unlock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218
219 /* Device list insertion */
220 static void list_netdevice(struct net_device *dev)
221 {
222 struct net *net = dev_net(dev);
223
224 ASSERT_RTNL();
225
226 write_lock_bh(&dev_base_lock);
227 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
229 hlist_add_head_rcu(&dev->index_hlist,
230 dev_index_hash(net, dev->ifindex));
231 write_unlock_bh(&dev_base_lock);
232
233 dev_base_seq_inc(net);
234 }
235
236 /* Device list removal
237 * caller must respect a RCU grace period before freeing/reusing dev
238 */
239 static void unlist_netdevice(struct net_device *dev)
240 {
241 ASSERT_RTNL();
242
243 /* Unlink dev from the device chain */
244 write_lock_bh(&dev_base_lock);
245 list_del_rcu(&dev->dev_list);
246 hlist_del_rcu(&dev->name_hlist);
247 hlist_del_rcu(&dev->index_hlist);
248 write_unlock_bh(&dev_base_lock);
249
250 dev_base_seq_inc(dev_net(dev));
251 }
252
253 /*
254 * Our notifier list
255 */
256
257 static RAW_NOTIFIER_HEAD(netdev_chain);
258
259 /*
260 * Device drivers call our routines to queue packets here. We empty the
261 * queue in the local softnet handler.
262 */
263
264 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
265 EXPORT_PER_CPU_SYMBOL(softnet_data);
266
267 #ifdef CONFIG_LOCKDEP
268 /*
269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270 * according to dev->type
271 */
272 static const unsigned short netdev_lock_type[] =
273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
288
289 static const char *const netdev_lock_name[] =
290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
305
306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
308
309 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310 {
311 int i;
312
313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 if (netdev_lock_type[i] == dev_type)
315 return i;
316 /* the last key is used by default */
317 return ARRAY_SIZE(netdev_lock_type) - 1;
318 }
319
320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 unsigned short dev_type)
322 {
323 int i;
324
325 i = netdev_lock_pos(dev_type);
326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 netdev_lock_name[i]);
328 }
329
330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331 {
332 int i;
333
334 i = netdev_lock_pos(dev->type);
335 lockdep_set_class_and_name(&dev->addr_list_lock,
336 &netdev_addr_lock_key[i],
337 netdev_lock_name[i]);
338 }
339 #else
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 unsigned short dev_type)
342 {
343 }
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 }
347 #endif
348
349 /*******************************************************************************
350
351 Protocol management and registration routines
352
353 *******************************************************************************/
354
355 /*
356 * Add a protocol ID to the list. Now that the input handler is
357 * smarter we can dispense with all the messy stuff that used to be
358 * here.
359 *
360 * BEWARE!!! Protocol handlers, mangling input packets,
361 * MUST BE last in hash buckets and checking protocol handlers
362 * MUST start from promiscuous ptype_all chain in net_bh.
363 * It is true now, do not change it.
364 * Explanation follows: if protocol handler, mangling packet, will
365 * be the first on list, it is not able to sense, that packet
366 * is cloned and should be copied-on-write, so that it will
367 * change it and subsequent readers will get broken packet.
368 * --ANK (980803)
369 */
370
371 static inline struct list_head *ptype_head(const struct packet_type *pt)
372 {
373 if (pt->type == htons(ETH_P_ALL))
374 return &ptype_all;
375 else
376 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
377 }
378
379 /**
380 * dev_add_pack - add packet handler
381 * @pt: packet type declaration
382 *
383 * Add a protocol handler to the networking stack. The passed &packet_type
384 * is linked into kernel lists and may not be freed until it has been
385 * removed from the kernel lists.
386 *
387 * This call does not sleep therefore it can not
388 * guarantee all CPU's that are in middle of receiving packets
389 * will see the new packet type (until the next received packet).
390 */
391
392 void dev_add_pack(struct packet_type *pt)
393 {
394 struct list_head *head = ptype_head(pt);
395
396 spin_lock(&ptype_lock);
397 list_add_rcu(&pt->list, head);
398 spin_unlock(&ptype_lock);
399 }
400 EXPORT_SYMBOL(dev_add_pack);
401
402 /**
403 * __dev_remove_pack - remove packet handler
404 * @pt: packet type declaration
405 *
406 * Remove a protocol handler that was previously added to the kernel
407 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
408 * from the kernel lists and can be freed or reused once this function
409 * returns.
410 *
411 * The packet type might still be in use by receivers
412 * and must not be freed until after all the CPU's have gone
413 * through a quiescent state.
414 */
415 void __dev_remove_pack(struct packet_type *pt)
416 {
417 struct list_head *head = ptype_head(pt);
418 struct packet_type *pt1;
419
420 spin_lock(&ptype_lock);
421
422 list_for_each_entry(pt1, head, list) {
423 if (pt == pt1) {
424 list_del_rcu(&pt->list);
425 goto out;
426 }
427 }
428
429 pr_warn("dev_remove_pack: %p not found\n", pt);
430 out:
431 spin_unlock(&ptype_lock);
432 }
433 EXPORT_SYMBOL(__dev_remove_pack);
434
435 /**
436 * dev_remove_pack - remove packet handler
437 * @pt: packet type declaration
438 *
439 * Remove a protocol handler that was previously added to the kernel
440 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
441 * from the kernel lists and can be freed or reused once this function
442 * returns.
443 *
444 * This call sleeps to guarantee that no CPU is looking at the packet
445 * type after return.
446 */
447 void dev_remove_pack(struct packet_type *pt)
448 {
449 __dev_remove_pack(pt);
450
451 synchronize_net();
452 }
453 EXPORT_SYMBOL(dev_remove_pack);
454
455
456 /**
457 * dev_add_offload - register offload handlers
458 * @po: protocol offload declaration
459 *
460 * Add protocol offload handlers to the networking stack. The passed
461 * &proto_offload is linked into kernel lists and may not be freed until
462 * it has been removed from the kernel lists.
463 *
464 * This call does not sleep therefore it can not
465 * guarantee all CPU's that are in middle of receiving packets
466 * will see the new offload handlers (until the next received packet).
467 */
468 void dev_add_offload(struct packet_offload *po)
469 {
470 struct list_head *head = &offload_base;
471
472 spin_lock(&offload_lock);
473 list_add_rcu(&po->list, head);
474 spin_unlock(&offload_lock);
475 }
476 EXPORT_SYMBOL(dev_add_offload);
477
478 /**
479 * __dev_remove_offload - remove offload handler
480 * @po: packet offload declaration
481 *
482 * Remove a protocol offload handler that was previously added to the
483 * kernel offload handlers by dev_add_offload(). The passed &offload_type
484 * is removed from the kernel lists and can be freed or reused once this
485 * function returns.
486 *
487 * The packet type might still be in use by receivers
488 * and must not be freed until after all the CPU's have gone
489 * through a quiescent state.
490 */
491 static void __dev_remove_offload(struct packet_offload *po)
492 {
493 struct list_head *head = &offload_base;
494 struct packet_offload *po1;
495
496 spin_lock(&offload_lock);
497
498 list_for_each_entry(po1, head, list) {
499 if (po == po1) {
500 list_del_rcu(&po->list);
501 goto out;
502 }
503 }
504
505 pr_warn("dev_remove_offload: %p not found\n", po);
506 out:
507 spin_unlock(&offload_lock);
508 }
509
510 /**
511 * dev_remove_offload - remove packet offload handler
512 * @po: packet offload declaration
513 *
514 * Remove a packet offload handler that was previously added to the kernel
515 * offload handlers by dev_add_offload(). The passed &offload_type is
516 * removed from the kernel lists and can be freed or reused once this
517 * function returns.
518 *
519 * This call sleeps to guarantee that no CPU is looking at the packet
520 * type after return.
521 */
522 void dev_remove_offload(struct packet_offload *po)
523 {
524 __dev_remove_offload(po);
525
526 synchronize_net();
527 }
528 EXPORT_SYMBOL(dev_remove_offload);
529
530 /******************************************************************************
531
532 Device Boot-time Settings Routines
533
534 *******************************************************************************/
535
536 /* Boot time configuration table */
537 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
538
539 /**
540 * netdev_boot_setup_add - add new setup entry
541 * @name: name of the device
542 * @map: configured settings for the device
543 *
544 * Adds new setup entry to the dev_boot_setup list. The function
545 * returns 0 on error and 1 on success. This is a generic routine to
546 * all netdevices.
547 */
548 static int netdev_boot_setup_add(char *name, struct ifmap *map)
549 {
550 struct netdev_boot_setup *s;
551 int i;
552
553 s = dev_boot_setup;
554 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
555 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
556 memset(s[i].name, 0, sizeof(s[i].name));
557 strlcpy(s[i].name, name, IFNAMSIZ);
558 memcpy(&s[i].map, map, sizeof(s[i].map));
559 break;
560 }
561 }
562
563 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
564 }
565
566 /**
567 * netdev_boot_setup_check - check boot time settings
568 * @dev: the netdevice
569 *
570 * Check boot time settings for the device.
571 * The found settings are set for the device to be used
572 * later in the device probing.
573 * Returns 0 if no settings found, 1 if they are.
574 */
575 int netdev_boot_setup_check(struct net_device *dev)
576 {
577 struct netdev_boot_setup *s = dev_boot_setup;
578 int i;
579
580 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
581 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
582 !strcmp(dev->name, s[i].name)) {
583 dev->irq = s[i].map.irq;
584 dev->base_addr = s[i].map.base_addr;
585 dev->mem_start = s[i].map.mem_start;
586 dev->mem_end = s[i].map.mem_end;
587 return 1;
588 }
589 }
590 return 0;
591 }
592 EXPORT_SYMBOL(netdev_boot_setup_check);
593
594
595 /**
596 * netdev_boot_base - get address from boot time settings
597 * @prefix: prefix for network device
598 * @unit: id for network device
599 *
600 * Check boot time settings for the base address of device.
601 * The found settings are set for the device to be used
602 * later in the device probing.
603 * Returns 0 if no settings found.
604 */
605 unsigned long netdev_boot_base(const char *prefix, int unit)
606 {
607 const struct netdev_boot_setup *s = dev_boot_setup;
608 char name[IFNAMSIZ];
609 int i;
610
611 sprintf(name, "%s%d", prefix, unit);
612
613 /*
614 * If device already registered then return base of 1
615 * to indicate not to probe for this interface
616 */
617 if (__dev_get_by_name(&init_net, name))
618 return 1;
619
620 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
621 if (!strcmp(name, s[i].name))
622 return s[i].map.base_addr;
623 return 0;
624 }
625
626 /*
627 * Saves at boot time configured settings for any netdevice.
628 */
629 int __init netdev_boot_setup(char *str)
630 {
631 int ints[5];
632 struct ifmap map;
633
634 str = get_options(str, ARRAY_SIZE(ints), ints);
635 if (!str || !*str)
636 return 0;
637
638 /* Save settings */
639 memset(&map, 0, sizeof(map));
640 if (ints[0] > 0)
641 map.irq = ints[1];
642 if (ints[0] > 1)
643 map.base_addr = ints[2];
644 if (ints[0] > 2)
645 map.mem_start = ints[3];
646 if (ints[0] > 3)
647 map.mem_end = ints[4];
648
649 /* Add new entry to the list */
650 return netdev_boot_setup_add(str, &map);
651 }
652
653 __setup("netdev=", netdev_boot_setup);
654
655 /*******************************************************************************
656
657 Device Interface Subroutines
658
659 *******************************************************************************/
660
661 /**
662 * __dev_get_by_name - find a device by its name
663 * @net: the applicable net namespace
664 * @name: name to find
665 *
666 * Find an interface by name. Must be called under RTNL semaphore
667 * or @dev_base_lock. If the name is found a pointer to the device
668 * is returned. If the name is not found then %NULL is returned. The
669 * reference counters are not incremented so the caller must be
670 * careful with locks.
671 */
672
673 struct net_device *__dev_get_by_name(struct net *net, const char *name)
674 {
675 struct net_device *dev;
676 struct hlist_head *head = dev_name_hash(net, name);
677
678 hlist_for_each_entry(dev, head, name_hlist)
679 if (!strncmp(dev->name, name, IFNAMSIZ))
680 return dev;
681
682 return NULL;
683 }
684 EXPORT_SYMBOL(__dev_get_by_name);
685
686 /**
687 * dev_get_by_name_rcu - find a device by its name
688 * @net: the applicable net namespace
689 * @name: name to find
690 *
691 * Find an interface by name.
692 * If the name is found a pointer to the device is returned.
693 * If the name is not found then %NULL is returned.
694 * The reference counters are not incremented so the caller must be
695 * careful with locks. The caller must hold RCU lock.
696 */
697
698 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
699 {
700 struct net_device *dev;
701 struct hlist_head *head = dev_name_hash(net, name);
702
703 hlist_for_each_entry_rcu(dev, head, name_hlist)
704 if (!strncmp(dev->name, name, IFNAMSIZ))
705 return dev;
706
707 return NULL;
708 }
709 EXPORT_SYMBOL(dev_get_by_name_rcu);
710
711 /**
712 * dev_get_by_name - find a device by its name
713 * @net: the applicable net namespace
714 * @name: name to find
715 *
716 * Find an interface by name. This can be called from any
717 * context and does its own locking. The returned handle has
718 * the usage count incremented and the caller must use dev_put() to
719 * release it when it is no longer needed. %NULL is returned if no
720 * matching device is found.
721 */
722
723 struct net_device *dev_get_by_name(struct net *net, const char *name)
724 {
725 struct net_device *dev;
726
727 rcu_read_lock();
728 dev = dev_get_by_name_rcu(net, name);
729 if (dev)
730 dev_hold(dev);
731 rcu_read_unlock();
732 return dev;
733 }
734 EXPORT_SYMBOL(dev_get_by_name);
735
736 /**
737 * __dev_get_by_index - find a device by its ifindex
738 * @net: the applicable net namespace
739 * @ifindex: index of device
740 *
741 * Search for an interface by index. Returns %NULL if the device
742 * is not found or a pointer to the device. The device has not
743 * had its reference counter increased so the caller must be careful
744 * about locking. The caller must hold either the RTNL semaphore
745 * or @dev_base_lock.
746 */
747
748 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
749 {
750 struct net_device *dev;
751 struct hlist_head *head = dev_index_hash(net, ifindex);
752
753 hlist_for_each_entry(dev, head, index_hlist)
754 if (dev->ifindex == ifindex)
755 return dev;
756
757 return NULL;
758 }
759 EXPORT_SYMBOL(__dev_get_by_index);
760
761 /**
762 * dev_get_by_index_rcu - find a device by its ifindex
763 * @net: the applicable net namespace
764 * @ifindex: index of device
765 *
766 * Search for an interface by index. Returns %NULL if the device
767 * is not found or a pointer to the device. The device has not
768 * had its reference counter increased so the caller must be careful
769 * about locking. The caller must hold RCU lock.
770 */
771
772 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
773 {
774 struct net_device *dev;
775 struct hlist_head *head = dev_index_hash(net, ifindex);
776
777 hlist_for_each_entry_rcu(dev, head, index_hlist)
778 if (dev->ifindex == ifindex)
779 return dev;
780
781 return NULL;
782 }
783 EXPORT_SYMBOL(dev_get_by_index_rcu);
784
785
786 /**
787 * dev_get_by_index - find a device by its ifindex
788 * @net: the applicable net namespace
789 * @ifindex: index of device
790 *
791 * Search for an interface by index. Returns NULL if the device
792 * is not found or a pointer to the device. The device returned has
793 * had a reference added and the pointer is safe until the user calls
794 * dev_put to indicate they have finished with it.
795 */
796
797 struct net_device *dev_get_by_index(struct net *net, int ifindex)
798 {
799 struct net_device *dev;
800
801 rcu_read_lock();
802 dev = dev_get_by_index_rcu(net, ifindex);
803 if (dev)
804 dev_hold(dev);
805 rcu_read_unlock();
806 return dev;
807 }
808 EXPORT_SYMBOL(dev_get_by_index);
809
810 /**
811 * netdev_get_name - get a netdevice name, knowing its ifindex.
812 * @net: network namespace
813 * @name: a pointer to the buffer where the name will be stored.
814 * @ifindex: the ifindex of the interface to get the name from.
815 *
816 * The use of raw_seqcount_begin() and cond_resched() before
817 * retrying is required as we want to give the writers a chance
818 * to complete when CONFIG_PREEMPT is not set.
819 */
820 int netdev_get_name(struct net *net, char *name, int ifindex)
821 {
822 struct net_device *dev;
823 unsigned int seq;
824
825 retry:
826 seq = raw_seqcount_begin(&devnet_rename_seq);
827 rcu_read_lock();
828 dev = dev_get_by_index_rcu(net, ifindex);
829 if (!dev) {
830 rcu_read_unlock();
831 return -ENODEV;
832 }
833
834 strcpy(name, dev->name);
835 rcu_read_unlock();
836 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
837 cond_resched();
838 goto retry;
839 }
840
841 return 0;
842 }
843
844 /**
845 * dev_getbyhwaddr_rcu - find a device by its hardware address
846 * @net: the applicable net namespace
847 * @type: media type of device
848 * @ha: hardware address
849 *
850 * Search for an interface by MAC address. Returns NULL if the device
851 * is not found or a pointer to the device.
852 * The caller must hold RCU or RTNL.
853 * The returned device has not had its ref count increased
854 * and the caller must therefore be careful about locking
855 *
856 */
857
858 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
859 const char *ha)
860 {
861 struct net_device *dev;
862
863 for_each_netdev_rcu(net, dev)
864 if (dev->type == type &&
865 !memcmp(dev->dev_addr, ha, dev->addr_len))
866 return dev;
867
868 return NULL;
869 }
870 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
871
872 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
873 {
874 struct net_device *dev;
875
876 ASSERT_RTNL();
877 for_each_netdev(net, dev)
878 if (dev->type == type)
879 return dev;
880
881 return NULL;
882 }
883 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
884
885 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
886 {
887 struct net_device *dev, *ret = NULL;
888
889 rcu_read_lock();
890 for_each_netdev_rcu(net, dev)
891 if (dev->type == type) {
892 dev_hold(dev);
893 ret = dev;
894 break;
895 }
896 rcu_read_unlock();
897 return ret;
898 }
899 EXPORT_SYMBOL(dev_getfirstbyhwtype);
900
901 /**
902 * __dev_get_by_flags - find any device with given flags
903 * @net: the applicable net namespace
904 * @if_flags: IFF_* values
905 * @mask: bitmask of bits in if_flags to check
906 *
907 * Search for any interface with the given flags. Returns NULL if a device
908 * is not found or a pointer to the device. Must be called inside
909 * rtnl_lock(), and result refcount is unchanged.
910 */
911
912 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
913 unsigned short mask)
914 {
915 struct net_device *dev, *ret;
916
917 ASSERT_RTNL();
918
919 ret = NULL;
920 for_each_netdev(net, dev) {
921 if (((dev->flags ^ if_flags) & mask) == 0) {
922 ret = dev;
923 break;
924 }
925 }
926 return ret;
927 }
928 EXPORT_SYMBOL(__dev_get_by_flags);
929
930 /**
931 * dev_valid_name - check if name is okay for network device
932 * @name: name string
933 *
934 * Network device names need to be valid file names to
935 * to allow sysfs to work. We also disallow any kind of
936 * whitespace.
937 */
938 bool dev_valid_name(const char *name)
939 {
940 if (*name == '\0')
941 return false;
942 if (strlen(name) >= IFNAMSIZ)
943 return false;
944 if (!strcmp(name, ".") || !strcmp(name, ".."))
945 return false;
946
947 while (*name) {
948 if (*name == '/' || isspace(*name))
949 return false;
950 name++;
951 }
952 return true;
953 }
954 EXPORT_SYMBOL(dev_valid_name);
955
956 /**
957 * __dev_alloc_name - allocate a name for a device
958 * @net: network namespace to allocate the device name in
959 * @name: name format string
960 * @buf: scratch buffer and result name string
961 *
962 * Passed a format string - eg "lt%d" it will try and find a suitable
963 * id. It scans list of devices to build up a free map, then chooses
964 * the first empty slot. The caller must hold the dev_base or rtnl lock
965 * while allocating the name and adding the device in order to avoid
966 * duplicates.
967 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
968 * Returns the number of the unit assigned or a negative errno code.
969 */
970
971 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
972 {
973 int i = 0;
974 const char *p;
975 const int max_netdevices = 8*PAGE_SIZE;
976 unsigned long *inuse;
977 struct net_device *d;
978
979 p = strnchr(name, IFNAMSIZ-1, '%');
980 if (p) {
981 /*
982 * Verify the string as this thing may have come from
983 * the user. There must be either one "%d" and no other "%"
984 * characters.
985 */
986 if (p[1] != 'd' || strchr(p + 2, '%'))
987 return -EINVAL;
988
989 /* Use one page as a bit array of possible slots */
990 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
991 if (!inuse)
992 return -ENOMEM;
993
994 for_each_netdev(net, d) {
995 if (!sscanf(d->name, name, &i))
996 continue;
997 if (i < 0 || i >= max_netdevices)
998 continue;
999
1000 /* avoid cases where sscanf is not exact inverse of printf */
1001 snprintf(buf, IFNAMSIZ, name, i);
1002 if (!strncmp(buf, d->name, IFNAMSIZ))
1003 set_bit(i, inuse);
1004 }
1005
1006 i = find_first_zero_bit(inuse, max_netdevices);
1007 free_page((unsigned long) inuse);
1008 }
1009
1010 if (buf != name)
1011 snprintf(buf, IFNAMSIZ, name, i);
1012 if (!__dev_get_by_name(net, buf))
1013 return i;
1014
1015 /* It is possible to run out of possible slots
1016 * when the name is long and there isn't enough space left
1017 * for the digits, or if all bits are used.
1018 */
1019 return -ENFILE;
1020 }
1021
1022 /**
1023 * dev_alloc_name - allocate a name for a device
1024 * @dev: device
1025 * @name: name format string
1026 *
1027 * Passed a format string - eg "lt%d" it will try and find a suitable
1028 * id. It scans list of devices to build up a free map, then chooses
1029 * the first empty slot. The caller must hold the dev_base or rtnl lock
1030 * while allocating the name and adding the device in order to avoid
1031 * duplicates.
1032 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1033 * Returns the number of the unit assigned or a negative errno code.
1034 */
1035
1036 int dev_alloc_name(struct net_device *dev, const char *name)
1037 {
1038 char buf[IFNAMSIZ];
1039 struct net *net;
1040 int ret;
1041
1042 BUG_ON(!dev_net(dev));
1043 net = dev_net(dev);
1044 ret = __dev_alloc_name(net, name, buf);
1045 if (ret >= 0)
1046 strlcpy(dev->name, buf, IFNAMSIZ);
1047 return ret;
1048 }
1049 EXPORT_SYMBOL(dev_alloc_name);
1050
1051 static int dev_alloc_name_ns(struct net *net,
1052 struct net_device *dev,
1053 const char *name)
1054 {
1055 char buf[IFNAMSIZ];
1056 int ret;
1057
1058 ret = __dev_alloc_name(net, name, buf);
1059 if (ret >= 0)
1060 strlcpy(dev->name, buf, IFNAMSIZ);
1061 return ret;
1062 }
1063
1064 static int dev_get_valid_name(struct net *net,
1065 struct net_device *dev,
1066 const char *name)
1067 {
1068 BUG_ON(!net);
1069
1070 if (!dev_valid_name(name))
1071 return -EINVAL;
1072
1073 if (strchr(name, '%'))
1074 return dev_alloc_name_ns(net, dev, name);
1075 else if (__dev_get_by_name(net, name))
1076 return -EEXIST;
1077 else if (dev->name != name)
1078 strlcpy(dev->name, name, IFNAMSIZ);
1079
1080 return 0;
1081 }
1082
1083 /**
1084 * dev_change_name - change name of a device
1085 * @dev: device
1086 * @newname: name (or format string) must be at least IFNAMSIZ
1087 *
1088 * Change name of a device, can pass format strings "eth%d".
1089 * for wildcarding.
1090 */
1091 int dev_change_name(struct net_device *dev, const char *newname)
1092 {
1093 unsigned char old_assign_type;
1094 char oldname[IFNAMSIZ];
1095 int err = 0;
1096 int ret;
1097 struct net *net;
1098
1099 ASSERT_RTNL();
1100 BUG_ON(!dev_net(dev));
1101
1102 net = dev_net(dev);
1103 if (dev->flags & IFF_UP)
1104 return -EBUSY;
1105
1106 write_seqcount_begin(&devnet_rename_seq);
1107
1108 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1109 write_seqcount_end(&devnet_rename_seq);
1110 return 0;
1111 }
1112
1113 memcpy(oldname, dev->name, IFNAMSIZ);
1114
1115 err = dev_get_valid_name(net, dev, newname);
1116 if (err < 0) {
1117 write_seqcount_end(&devnet_rename_seq);
1118 return err;
1119 }
1120
1121 if (oldname[0] && !strchr(oldname, '%'))
1122 netdev_info(dev, "renamed from %s\n", oldname);
1123
1124 old_assign_type = dev->name_assign_type;
1125 dev->name_assign_type = NET_NAME_RENAMED;
1126
1127 rollback:
1128 ret = device_rename(&dev->dev, dev->name);
1129 if (ret) {
1130 memcpy(dev->name, oldname, IFNAMSIZ);
1131 dev->name_assign_type = old_assign_type;
1132 write_seqcount_end(&devnet_rename_seq);
1133 return ret;
1134 }
1135
1136 write_seqcount_end(&devnet_rename_seq);
1137
1138 netdev_adjacent_rename_links(dev, oldname);
1139
1140 write_lock_bh(&dev_base_lock);
1141 hlist_del_rcu(&dev->name_hlist);
1142 write_unlock_bh(&dev_base_lock);
1143
1144 synchronize_rcu();
1145
1146 write_lock_bh(&dev_base_lock);
1147 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1148 write_unlock_bh(&dev_base_lock);
1149
1150 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1151 ret = notifier_to_errno(ret);
1152
1153 if (ret) {
1154 /* err >= 0 after dev_alloc_name() or stores the first errno */
1155 if (err >= 0) {
1156 err = ret;
1157 write_seqcount_begin(&devnet_rename_seq);
1158 memcpy(dev->name, oldname, IFNAMSIZ);
1159 memcpy(oldname, newname, IFNAMSIZ);
1160 dev->name_assign_type = old_assign_type;
1161 old_assign_type = NET_NAME_RENAMED;
1162 goto rollback;
1163 } else {
1164 pr_err("%s: name change rollback failed: %d\n",
1165 dev->name, ret);
1166 }
1167 }
1168
1169 return err;
1170 }
1171
1172 /**
1173 * dev_set_alias - change ifalias of a device
1174 * @dev: device
1175 * @alias: name up to IFALIASZ
1176 * @len: limit of bytes to copy from info
1177 *
1178 * Set ifalias for a device,
1179 */
1180 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1181 {
1182 char *new_ifalias;
1183
1184 ASSERT_RTNL();
1185
1186 if (len >= IFALIASZ)
1187 return -EINVAL;
1188
1189 if (!len) {
1190 kfree(dev->ifalias);
1191 dev->ifalias = NULL;
1192 return 0;
1193 }
1194
1195 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1196 if (!new_ifalias)
1197 return -ENOMEM;
1198 dev->ifalias = new_ifalias;
1199
1200 strlcpy(dev->ifalias, alias, len+1);
1201 return len;
1202 }
1203
1204
1205 /**
1206 * netdev_features_change - device changes features
1207 * @dev: device to cause notification
1208 *
1209 * Called to indicate a device has changed features.
1210 */
1211 void netdev_features_change(struct net_device *dev)
1212 {
1213 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1214 }
1215 EXPORT_SYMBOL(netdev_features_change);
1216
1217 /**
1218 * netdev_state_change - device changes state
1219 * @dev: device to cause notification
1220 *
1221 * Called to indicate a device has changed state. This function calls
1222 * the notifier chains for netdev_chain and sends a NEWLINK message
1223 * to the routing socket.
1224 */
1225 void netdev_state_change(struct net_device *dev)
1226 {
1227 if (dev->flags & IFF_UP) {
1228 struct netdev_notifier_change_info change_info;
1229
1230 change_info.flags_changed = 0;
1231 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1232 &change_info.info);
1233 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1234 }
1235 }
1236 EXPORT_SYMBOL(netdev_state_change);
1237
1238 /**
1239 * netdev_notify_peers - notify network peers about existence of @dev
1240 * @dev: network device
1241 *
1242 * Generate traffic such that interested network peers are aware of
1243 * @dev, such as by generating a gratuitous ARP. This may be used when
1244 * a device wants to inform the rest of the network about some sort of
1245 * reconfiguration such as a failover event or virtual machine
1246 * migration.
1247 */
1248 void netdev_notify_peers(struct net_device *dev)
1249 {
1250 rtnl_lock();
1251 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1252 rtnl_unlock();
1253 }
1254 EXPORT_SYMBOL(netdev_notify_peers);
1255
1256 static int __dev_open(struct net_device *dev)
1257 {
1258 const struct net_device_ops *ops = dev->netdev_ops;
1259 int ret;
1260
1261 ASSERT_RTNL();
1262
1263 if (!netif_device_present(dev))
1264 return -ENODEV;
1265
1266 /* Block netpoll from trying to do any rx path servicing.
1267 * If we don't do this there is a chance ndo_poll_controller
1268 * or ndo_poll may be running while we open the device
1269 */
1270 netpoll_poll_disable(dev);
1271
1272 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1273 ret = notifier_to_errno(ret);
1274 if (ret)
1275 return ret;
1276
1277 set_bit(__LINK_STATE_START, &dev->state);
1278
1279 if (ops->ndo_validate_addr)
1280 ret = ops->ndo_validate_addr(dev);
1281
1282 if (!ret && ops->ndo_open)
1283 ret = ops->ndo_open(dev);
1284
1285 netpoll_poll_enable(dev);
1286
1287 if (ret)
1288 clear_bit(__LINK_STATE_START, &dev->state);
1289 else {
1290 dev->flags |= IFF_UP;
1291 dev_set_rx_mode(dev);
1292 dev_activate(dev);
1293 add_device_randomness(dev->dev_addr, dev->addr_len);
1294 }
1295
1296 return ret;
1297 }
1298
1299 /**
1300 * dev_open - prepare an interface for use.
1301 * @dev: device to open
1302 *
1303 * Takes a device from down to up state. The device's private open
1304 * function is invoked and then the multicast lists are loaded. Finally
1305 * the device is moved into the up state and a %NETDEV_UP message is
1306 * sent to the netdev notifier chain.
1307 *
1308 * Calling this function on an active interface is a nop. On a failure
1309 * a negative errno code is returned.
1310 */
1311 int dev_open(struct net_device *dev)
1312 {
1313 int ret;
1314
1315 if (dev->flags & IFF_UP)
1316 return 0;
1317
1318 ret = __dev_open(dev);
1319 if (ret < 0)
1320 return ret;
1321
1322 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1323 call_netdevice_notifiers(NETDEV_UP, dev);
1324
1325 return ret;
1326 }
1327 EXPORT_SYMBOL(dev_open);
1328
1329 static int __dev_close_many(struct list_head *head)
1330 {
1331 struct net_device *dev;
1332
1333 ASSERT_RTNL();
1334 might_sleep();
1335
1336 list_for_each_entry(dev, head, close_list) {
1337 /* Temporarily disable netpoll until the interface is down */
1338 netpoll_poll_disable(dev);
1339
1340 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1341
1342 clear_bit(__LINK_STATE_START, &dev->state);
1343
1344 /* Synchronize to scheduled poll. We cannot touch poll list, it
1345 * can be even on different cpu. So just clear netif_running().
1346 *
1347 * dev->stop() will invoke napi_disable() on all of it's
1348 * napi_struct instances on this device.
1349 */
1350 smp_mb__after_atomic(); /* Commit netif_running(). */
1351 }
1352
1353 dev_deactivate_many(head);
1354
1355 list_for_each_entry(dev, head, close_list) {
1356 const struct net_device_ops *ops = dev->netdev_ops;
1357
1358 /*
1359 * Call the device specific close. This cannot fail.
1360 * Only if device is UP
1361 *
1362 * We allow it to be called even after a DETACH hot-plug
1363 * event.
1364 */
1365 if (ops->ndo_stop)
1366 ops->ndo_stop(dev);
1367
1368 dev->flags &= ~IFF_UP;
1369 netpoll_poll_enable(dev);
1370 }
1371
1372 return 0;
1373 }
1374
1375 static int __dev_close(struct net_device *dev)
1376 {
1377 int retval;
1378 LIST_HEAD(single);
1379
1380 list_add(&dev->close_list, &single);
1381 retval = __dev_close_many(&single);
1382 list_del(&single);
1383
1384 return retval;
1385 }
1386
1387 static int dev_close_many(struct list_head *head)
1388 {
1389 struct net_device *dev, *tmp;
1390
1391 /* Remove the devices that don't need to be closed */
1392 list_for_each_entry_safe(dev, tmp, head, close_list)
1393 if (!(dev->flags & IFF_UP))
1394 list_del_init(&dev->close_list);
1395
1396 __dev_close_many(head);
1397
1398 list_for_each_entry_safe(dev, tmp, head, close_list) {
1399 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1400 call_netdevice_notifiers(NETDEV_DOWN, dev);
1401 list_del_init(&dev->close_list);
1402 }
1403
1404 return 0;
1405 }
1406
1407 /**
1408 * dev_close - shutdown an interface.
1409 * @dev: device to shutdown
1410 *
1411 * This function moves an active device into down state. A
1412 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1413 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1414 * chain.
1415 */
1416 int dev_close(struct net_device *dev)
1417 {
1418 if (dev->flags & IFF_UP) {
1419 LIST_HEAD(single);
1420
1421 list_add(&dev->close_list, &single);
1422 dev_close_many(&single);
1423 list_del(&single);
1424 }
1425 return 0;
1426 }
1427 EXPORT_SYMBOL(dev_close);
1428
1429
1430 /**
1431 * dev_disable_lro - disable Large Receive Offload on a device
1432 * @dev: device
1433 *
1434 * Disable Large Receive Offload (LRO) on a net device. Must be
1435 * called under RTNL. This is needed if received packets may be
1436 * forwarded to another interface.
1437 */
1438 void dev_disable_lro(struct net_device *dev)
1439 {
1440 /*
1441 * If we're trying to disable lro on a vlan device
1442 * use the underlying physical device instead
1443 */
1444 if (is_vlan_dev(dev))
1445 dev = vlan_dev_real_dev(dev);
1446
1447 /* the same for macvlan devices */
1448 if (netif_is_macvlan(dev))
1449 dev = macvlan_dev_real_dev(dev);
1450
1451 dev->wanted_features &= ~NETIF_F_LRO;
1452 netdev_update_features(dev);
1453
1454 if (unlikely(dev->features & NETIF_F_LRO))
1455 netdev_WARN(dev, "failed to disable LRO!\n");
1456 }
1457 EXPORT_SYMBOL(dev_disable_lro);
1458
1459 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1460 struct net_device *dev)
1461 {
1462 struct netdev_notifier_info info;
1463
1464 netdev_notifier_info_init(&info, dev);
1465 return nb->notifier_call(nb, val, &info);
1466 }
1467
1468 static int dev_boot_phase = 1;
1469
1470 /**
1471 * register_netdevice_notifier - register a network notifier block
1472 * @nb: notifier
1473 *
1474 * Register a notifier to be called when network device events occur.
1475 * The notifier passed is linked into the kernel structures and must
1476 * not be reused until it has been unregistered. A negative errno code
1477 * is returned on a failure.
1478 *
1479 * When registered all registration and up events are replayed
1480 * to the new notifier to allow device to have a race free
1481 * view of the network device list.
1482 */
1483
1484 int register_netdevice_notifier(struct notifier_block *nb)
1485 {
1486 struct net_device *dev;
1487 struct net_device *last;
1488 struct net *net;
1489 int err;
1490
1491 rtnl_lock();
1492 err = raw_notifier_chain_register(&netdev_chain, nb);
1493 if (err)
1494 goto unlock;
1495 if (dev_boot_phase)
1496 goto unlock;
1497 for_each_net(net) {
1498 for_each_netdev(net, dev) {
1499 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1500 err = notifier_to_errno(err);
1501 if (err)
1502 goto rollback;
1503
1504 if (!(dev->flags & IFF_UP))
1505 continue;
1506
1507 call_netdevice_notifier(nb, NETDEV_UP, dev);
1508 }
1509 }
1510
1511 unlock:
1512 rtnl_unlock();
1513 return err;
1514
1515 rollback:
1516 last = dev;
1517 for_each_net(net) {
1518 for_each_netdev(net, dev) {
1519 if (dev == last)
1520 goto outroll;
1521
1522 if (dev->flags & IFF_UP) {
1523 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1524 dev);
1525 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1526 }
1527 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1528 }
1529 }
1530
1531 outroll:
1532 raw_notifier_chain_unregister(&netdev_chain, nb);
1533 goto unlock;
1534 }
1535 EXPORT_SYMBOL(register_netdevice_notifier);
1536
1537 /**
1538 * unregister_netdevice_notifier - unregister a network notifier block
1539 * @nb: notifier
1540 *
1541 * Unregister a notifier previously registered by
1542 * register_netdevice_notifier(). The notifier is unlinked into the
1543 * kernel structures and may then be reused. A negative errno code
1544 * is returned on a failure.
1545 *
1546 * After unregistering unregister and down device events are synthesized
1547 * for all devices on the device list to the removed notifier to remove
1548 * the need for special case cleanup code.
1549 */
1550
1551 int unregister_netdevice_notifier(struct notifier_block *nb)
1552 {
1553 struct net_device *dev;
1554 struct net *net;
1555 int err;
1556
1557 rtnl_lock();
1558 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1559 if (err)
1560 goto unlock;
1561
1562 for_each_net(net) {
1563 for_each_netdev(net, dev) {
1564 if (dev->flags & IFF_UP) {
1565 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1566 dev);
1567 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1568 }
1569 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1570 }
1571 }
1572 unlock:
1573 rtnl_unlock();
1574 return err;
1575 }
1576 EXPORT_SYMBOL(unregister_netdevice_notifier);
1577
1578 /**
1579 * call_netdevice_notifiers_info - call all network notifier blocks
1580 * @val: value passed unmodified to notifier function
1581 * @dev: net_device pointer passed unmodified to notifier function
1582 * @info: notifier information data
1583 *
1584 * Call all network notifier blocks. Parameters and return value
1585 * are as for raw_notifier_call_chain().
1586 */
1587
1588 static int call_netdevice_notifiers_info(unsigned long val,
1589 struct net_device *dev,
1590 struct netdev_notifier_info *info)
1591 {
1592 ASSERT_RTNL();
1593 netdev_notifier_info_init(info, dev);
1594 return raw_notifier_call_chain(&netdev_chain, val, info);
1595 }
1596
1597 /**
1598 * call_netdevice_notifiers - call all network notifier blocks
1599 * @val: value passed unmodified to notifier function
1600 * @dev: net_device pointer passed unmodified to notifier function
1601 *
1602 * Call all network notifier blocks. Parameters and return value
1603 * are as for raw_notifier_call_chain().
1604 */
1605
1606 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1607 {
1608 struct netdev_notifier_info info;
1609
1610 return call_netdevice_notifiers_info(val, dev, &info);
1611 }
1612 EXPORT_SYMBOL(call_netdevice_notifiers);
1613
1614 static struct static_key netstamp_needed __read_mostly;
1615 #ifdef HAVE_JUMP_LABEL
1616 /* We are not allowed to call static_key_slow_dec() from irq context
1617 * If net_disable_timestamp() is called from irq context, defer the
1618 * static_key_slow_dec() calls.
1619 */
1620 static atomic_t netstamp_needed_deferred;
1621 #endif
1622
1623 void net_enable_timestamp(void)
1624 {
1625 #ifdef HAVE_JUMP_LABEL
1626 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1627
1628 if (deferred) {
1629 while (--deferred)
1630 static_key_slow_dec(&netstamp_needed);
1631 return;
1632 }
1633 #endif
1634 static_key_slow_inc(&netstamp_needed);
1635 }
1636 EXPORT_SYMBOL(net_enable_timestamp);
1637
1638 void net_disable_timestamp(void)
1639 {
1640 #ifdef HAVE_JUMP_LABEL
1641 if (in_interrupt()) {
1642 atomic_inc(&netstamp_needed_deferred);
1643 return;
1644 }
1645 #endif
1646 static_key_slow_dec(&netstamp_needed);
1647 }
1648 EXPORT_SYMBOL(net_disable_timestamp);
1649
1650 static inline void net_timestamp_set(struct sk_buff *skb)
1651 {
1652 skb->tstamp.tv64 = 0;
1653 if (static_key_false(&netstamp_needed))
1654 __net_timestamp(skb);
1655 }
1656
1657 #define net_timestamp_check(COND, SKB) \
1658 if (static_key_false(&netstamp_needed)) { \
1659 if ((COND) && !(SKB)->tstamp.tv64) \
1660 __net_timestamp(SKB); \
1661 } \
1662
1663 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1664 {
1665 unsigned int len;
1666
1667 if (!(dev->flags & IFF_UP))
1668 return false;
1669
1670 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1671 if (skb->len <= len)
1672 return true;
1673
1674 /* if TSO is enabled, we don't care about the length as the packet
1675 * could be forwarded without being segmented before
1676 */
1677 if (skb_is_gso(skb))
1678 return true;
1679
1680 return false;
1681 }
1682 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1683
1684 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1685 {
1686 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1687 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1688 atomic_long_inc(&dev->rx_dropped);
1689 kfree_skb(skb);
1690 return NET_RX_DROP;
1691 }
1692 }
1693
1694 if (unlikely(!is_skb_forwardable(dev, skb))) {
1695 atomic_long_inc(&dev->rx_dropped);
1696 kfree_skb(skb);
1697 return NET_RX_DROP;
1698 }
1699
1700 skb_scrub_packet(skb, true);
1701 skb->protocol = eth_type_trans(skb, dev);
1702
1703 return 0;
1704 }
1705 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1706
1707 /**
1708 * dev_forward_skb - loopback an skb to another netif
1709 *
1710 * @dev: destination network device
1711 * @skb: buffer to forward
1712 *
1713 * return values:
1714 * NET_RX_SUCCESS (no congestion)
1715 * NET_RX_DROP (packet was dropped, but freed)
1716 *
1717 * dev_forward_skb can be used for injecting an skb from the
1718 * start_xmit function of one device into the receive queue
1719 * of another device.
1720 *
1721 * The receiving device may be in another namespace, so
1722 * we have to clear all information in the skb that could
1723 * impact namespace isolation.
1724 */
1725 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1726 {
1727 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1728 }
1729 EXPORT_SYMBOL_GPL(dev_forward_skb);
1730
1731 static inline int deliver_skb(struct sk_buff *skb,
1732 struct packet_type *pt_prev,
1733 struct net_device *orig_dev)
1734 {
1735 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1736 return -ENOMEM;
1737 atomic_inc(&skb->users);
1738 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1739 }
1740
1741 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1742 {
1743 if (!ptype->af_packet_priv || !skb->sk)
1744 return false;
1745
1746 if (ptype->id_match)
1747 return ptype->id_match(ptype, skb->sk);
1748 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1749 return true;
1750
1751 return false;
1752 }
1753
1754 /*
1755 * Support routine. Sends outgoing frames to any network
1756 * taps currently in use.
1757 */
1758
1759 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1760 {
1761 struct packet_type *ptype;
1762 struct sk_buff *skb2 = NULL;
1763 struct packet_type *pt_prev = NULL;
1764
1765 rcu_read_lock();
1766 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1767 /* Never send packets back to the socket
1768 * they originated from - MvS (miquels@drinkel.ow.org)
1769 */
1770 if ((ptype->dev == dev || !ptype->dev) &&
1771 (!skb_loop_sk(ptype, skb))) {
1772 if (pt_prev) {
1773 deliver_skb(skb2, pt_prev, skb->dev);
1774 pt_prev = ptype;
1775 continue;
1776 }
1777
1778 skb2 = skb_clone(skb, GFP_ATOMIC);
1779 if (!skb2)
1780 break;
1781
1782 net_timestamp_set(skb2);
1783
1784 /* skb->nh should be correctly
1785 set by sender, so that the second statement is
1786 just protection against buggy protocols.
1787 */
1788 skb_reset_mac_header(skb2);
1789
1790 if (skb_network_header(skb2) < skb2->data ||
1791 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1792 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1793 ntohs(skb2->protocol),
1794 dev->name);
1795 skb_reset_network_header(skb2);
1796 }
1797
1798 skb2->transport_header = skb2->network_header;
1799 skb2->pkt_type = PACKET_OUTGOING;
1800 pt_prev = ptype;
1801 }
1802 }
1803 if (pt_prev)
1804 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1805 rcu_read_unlock();
1806 }
1807
1808 /**
1809 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1810 * @dev: Network device
1811 * @txq: number of queues available
1812 *
1813 * If real_num_tx_queues is changed the tc mappings may no longer be
1814 * valid. To resolve this verify the tc mapping remains valid and if
1815 * not NULL the mapping. With no priorities mapping to this
1816 * offset/count pair it will no longer be used. In the worst case TC0
1817 * is invalid nothing can be done so disable priority mappings. If is
1818 * expected that drivers will fix this mapping if they can before
1819 * calling netif_set_real_num_tx_queues.
1820 */
1821 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1822 {
1823 int i;
1824 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1825
1826 /* If TC0 is invalidated disable TC mapping */
1827 if (tc->offset + tc->count > txq) {
1828 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1829 dev->num_tc = 0;
1830 return;
1831 }
1832
1833 /* Invalidated prio to tc mappings set to TC0 */
1834 for (i = 1; i < TC_BITMASK + 1; i++) {
1835 int q = netdev_get_prio_tc_map(dev, i);
1836
1837 tc = &dev->tc_to_txq[q];
1838 if (tc->offset + tc->count > txq) {
1839 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1840 i, q);
1841 netdev_set_prio_tc_map(dev, i, 0);
1842 }
1843 }
1844 }
1845
1846 #ifdef CONFIG_XPS
1847 static DEFINE_MUTEX(xps_map_mutex);
1848 #define xmap_dereference(P) \
1849 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1850
1851 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1852 int cpu, u16 index)
1853 {
1854 struct xps_map *map = NULL;
1855 int pos;
1856
1857 if (dev_maps)
1858 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1859
1860 for (pos = 0; map && pos < map->len; pos++) {
1861 if (map->queues[pos] == index) {
1862 if (map->len > 1) {
1863 map->queues[pos] = map->queues[--map->len];
1864 } else {
1865 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1866 kfree_rcu(map, rcu);
1867 map = NULL;
1868 }
1869 break;
1870 }
1871 }
1872
1873 return map;
1874 }
1875
1876 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1877 {
1878 struct xps_dev_maps *dev_maps;
1879 int cpu, i;
1880 bool active = false;
1881
1882 mutex_lock(&xps_map_mutex);
1883 dev_maps = xmap_dereference(dev->xps_maps);
1884
1885 if (!dev_maps)
1886 goto out_no_maps;
1887
1888 for_each_possible_cpu(cpu) {
1889 for (i = index; i < dev->num_tx_queues; i++) {
1890 if (!remove_xps_queue(dev_maps, cpu, i))
1891 break;
1892 }
1893 if (i == dev->num_tx_queues)
1894 active = true;
1895 }
1896
1897 if (!active) {
1898 RCU_INIT_POINTER(dev->xps_maps, NULL);
1899 kfree_rcu(dev_maps, rcu);
1900 }
1901
1902 for (i = index; i < dev->num_tx_queues; i++)
1903 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1904 NUMA_NO_NODE);
1905
1906 out_no_maps:
1907 mutex_unlock(&xps_map_mutex);
1908 }
1909
1910 static struct xps_map *expand_xps_map(struct xps_map *map,
1911 int cpu, u16 index)
1912 {
1913 struct xps_map *new_map;
1914 int alloc_len = XPS_MIN_MAP_ALLOC;
1915 int i, pos;
1916
1917 for (pos = 0; map && pos < map->len; pos++) {
1918 if (map->queues[pos] != index)
1919 continue;
1920 return map;
1921 }
1922
1923 /* Need to add queue to this CPU's existing map */
1924 if (map) {
1925 if (pos < map->alloc_len)
1926 return map;
1927
1928 alloc_len = map->alloc_len * 2;
1929 }
1930
1931 /* Need to allocate new map to store queue on this CPU's map */
1932 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1933 cpu_to_node(cpu));
1934 if (!new_map)
1935 return NULL;
1936
1937 for (i = 0; i < pos; i++)
1938 new_map->queues[i] = map->queues[i];
1939 new_map->alloc_len = alloc_len;
1940 new_map->len = pos;
1941
1942 return new_map;
1943 }
1944
1945 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1946 u16 index)
1947 {
1948 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1949 struct xps_map *map, *new_map;
1950 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1951 int cpu, numa_node_id = -2;
1952 bool active = false;
1953
1954 mutex_lock(&xps_map_mutex);
1955
1956 dev_maps = xmap_dereference(dev->xps_maps);
1957
1958 /* allocate memory for queue storage */
1959 for_each_online_cpu(cpu) {
1960 if (!cpumask_test_cpu(cpu, mask))
1961 continue;
1962
1963 if (!new_dev_maps)
1964 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1965 if (!new_dev_maps) {
1966 mutex_unlock(&xps_map_mutex);
1967 return -ENOMEM;
1968 }
1969
1970 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1971 NULL;
1972
1973 map = expand_xps_map(map, cpu, index);
1974 if (!map)
1975 goto error;
1976
1977 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1978 }
1979
1980 if (!new_dev_maps)
1981 goto out_no_new_maps;
1982
1983 for_each_possible_cpu(cpu) {
1984 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1985 /* add queue to CPU maps */
1986 int pos = 0;
1987
1988 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1989 while ((pos < map->len) && (map->queues[pos] != index))
1990 pos++;
1991
1992 if (pos == map->len)
1993 map->queues[map->len++] = index;
1994 #ifdef CONFIG_NUMA
1995 if (numa_node_id == -2)
1996 numa_node_id = cpu_to_node(cpu);
1997 else if (numa_node_id != cpu_to_node(cpu))
1998 numa_node_id = -1;
1999 #endif
2000 } else if (dev_maps) {
2001 /* fill in the new device map from the old device map */
2002 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2003 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2004 }
2005
2006 }
2007
2008 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2009
2010 /* Cleanup old maps */
2011 if (dev_maps) {
2012 for_each_possible_cpu(cpu) {
2013 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2014 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2015 if (map && map != new_map)
2016 kfree_rcu(map, rcu);
2017 }
2018
2019 kfree_rcu(dev_maps, rcu);
2020 }
2021
2022 dev_maps = new_dev_maps;
2023 active = true;
2024
2025 out_no_new_maps:
2026 /* update Tx queue numa node */
2027 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2028 (numa_node_id >= 0) ? numa_node_id :
2029 NUMA_NO_NODE);
2030
2031 if (!dev_maps)
2032 goto out_no_maps;
2033
2034 /* removes queue from unused CPUs */
2035 for_each_possible_cpu(cpu) {
2036 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2037 continue;
2038
2039 if (remove_xps_queue(dev_maps, cpu, index))
2040 active = true;
2041 }
2042
2043 /* free map if not active */
2044 if (!active) {
2045 RCU_INIT_POINTER(dev->xps_maps, NULL);
2046 kfree_rcu(dev_maps, rcu);
2047 }
2048
2049 out_no_maps:
2050 mutex_unlock(&xps_map_mutex);
2051
2052 return 0;
2053 error:
2054 /* remove any maps that we added */
2055 for_each_possible_cpu(cpu) {
2056 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2057 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2058 NULL;
2059 if (new_map && new_map != map)
2060 kfree(new_map);
2061 }
2062
2063 mutex_unlock(&xps_map_mutex);
2064
2065 kfree(new_dev_maps);
2066 return -ENOMEM;
2067 }
2068 EXPORT_SYMBOL(netif_set_xps_queue);
2069
2070 #endif
2071 /*
2072 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2073 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2074 */
2075 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2076 {
2077 int rc;
2078
2079 if (txq < 1 || txq > dev->num_tx_queues)
2080 return -EINVAL;
2081
2082 if (dev->reg_state == NETREG_REGISTERED ||
2083 dev->reg_state == NETREG_UNREGISTERING) {
2084 ASSERT_RTNL();
2085
2086 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2087 txq);
2088 if (rc)
2089 return rc;
2090
2091 if (dev->num_tc)
2092 netif_setup_tc(dev, txq);
2093
2094 if (txq < dev->real_num_tx_queues) {
2095 qdisc_reset_all_tx_gt(dev, txq);
2096 #ifdef CONFIG_XPS
2097 netif_reset_xps_queues_gt(dev, txq);
2098 #endif
2099 }
2100 }
2101
2102 dev->real_num_tx_queues = txq;
2103 return 0;
2104 }
2105 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2106
2107 #ifdef CONFIG_SYSFS
2108 /**
2109 * netif_set_real_num_rx_queues - set actual number of RX queues used
2110 * @dev: Network device
2111 * @rxq: Actual number of RX queues
2112 *
2113 * This must be called either with the rtnl_lock held or before
2114 * registration of the net device. Returns 0 on success, or a
2115 * negative error code. If called before registration, it always
2116 * succeeds.
2117 */
2118 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2119 {
2120 int rc;
2121
2122 if (rxq < 1 || rxq > dev->num_rx_queues)
2123 return -EINVAL;
2124
2125 if (dev->reg_state == NETREG_REGISTERED) {
2126 ASSERT_RTNL();
2127
2128 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2129 rxq);
2130 if (rc)
2131 return rc;
2132 }
2133
2134 dev->real_num_rx_queues = rxq;
2135 return 0;
2136 }
2137 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2138 #endif
2139
2140 /**
2141 * netif_get_num_default_rss_queues - default number of RSS queues
2142 *
2143 * This routine should set an upper limit on the number of RSS queues
2144 * used by default by multiqueue devices.
2145 */
2146 int netif_get_num_default_rss_queues(void)
2147 {
2148 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2149 }
2150 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2151
2152 static inline void __netif_reschedule(struct Qdisc *q)
2153 {
2154 struct softnet_data *sd;
2155 unsigned long flags;
2156
2157 local_irq_save(flags);
2158 sd = this_cpu_ptr(&softnet_data);
2159 q->next_sched = NULL;
2160 *sd->output_queue_tailp = q;
2161 sd->output_queue_tailp = &q->next_sched;
2162 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2163 local_irq_restore(flags);
2164 }
2165
2166 void __netif_schedule(struct Qdisc *q)
2167 {
2168 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2169 __netif_reschedule(q);
2170 }
2171 EXPORT_SYMBOL(__netif_schedule);
2172
2173 struct dev_kfree_skb_cb {
2174 enum skb_free_reason reason;
2175 };
2176
2177 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2178 {
2179 return (struct dev_kfree_skb_cb *)skb->cb;
2180 }
2181
2182 void netif_schedule_queue(struct netdev_queue *txq)
2183 {
2184 rcu_read_lock();
2185 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2186 struct Qdisc *q = rcu_dereference(txq->qdisc);
2187
2188 __netif_schedule(q);
2189 }
2190 rcu_read_unlock();
2191 }
2192 EXPORT_SYMBOL(netif_schedule_queue);
2193
2194 /**
2195 * netif_wake_subqueue - allow sending packets on subqueue
2196 * @dev: network device
2197 * @queue_index: sub queue index
2198 *
2199 * Resume individual transmit queue of a device with multiple transmit queues.
2200 */
2201 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2202 {
2203 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2204
2205 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2206 struct Qdisc *q;
2207
2208 rcu_read_lock();
2209 q = rcu_dereference(txq->qdisc);
2210 __netif_schedule(q);
2211 rcu_read_unlock();
2212 }
2213 }
2214 EXPORT_SYMBOL(netif_wake_subqueue);
2215
2216 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2217 {
2218 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2219 struct Qdisc *q;
2220
2221 rcu_read_lock();
2222 q = rcu_dereference(dev_queue->qdisc);
2223 __netif_schedule(q);
2224 rcu_read_unlock();
2225 }
2226 }
2227 EXPORT_SYMBOL(netif_tx_wake_queue);
2228
2229 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2230 {
2231 unsigned long flags;
2232
2233 if (likely(atomic_read(&skb->users) == 1)) {
2234 smp_rmb();
2235 atomic_set(&skb->users, 0);
2236 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2237 return;
2238 }
2239 get_kfree_skb_cb(skb)->reason = reason;
2240 local_irq_save(flags);
2241 skb->next = __this_cpu_read(softnet_data.completion_queue);
2242 __this_cpu_write(softnet_data.completion_queue, skb);
2243 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2244 local_irq_restore(flags);
2245 }
2246 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2247
2248 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2249 {
2250 if (in_irq() || irqs_disabled())
2251 __dev_kfree_skb_irq(skb, reason);
2252 else
2253 dev_kfree_skb(skb);
2254 }
2255 EXPORT_SYMBOL(__dev_kfree_skb_any);
2256
2257
2258 /**
2259 * netif_device_detach - mark device as removed
2260 * @dev: network device
2261 *
2262 * Mark device as removed from system and therefore no longer available.
2263 */
2264 void netif_device_detach(struct net_device *dev)
2265 {
2266 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2267 netif_running(dev)) {
2268 netif_tx_stop_all_queues(dev);
2269 }
2270 }
2271 EXPORT_SYMBOL(netif_device_detach);
2272
2273 /**
2274 * netif_device_attach - mark device as attached
2275 * @dev: network device
2276 *
2277 * Mark device as attached from system and restart if needed.
2278 */
2279 void netif_device_attach(struct net_device *dev)
2280 {
2281 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2282 netif_running(dev)) {
2283 netif_tx_wake_all_queues(dev);
2284 __netdev_watchdog_up(dev);
2285 }
2286 }
2287 EXPORT_SYMBOL(netif_device_attach);
2288
2289 static void skb_warn_bad_offload(const struct sk_buff *skb)
2290 {
2291 static const netdev_features_t null_features = 0;
2292 struct net_device *dev = skb->dev;
2293 const char *driver = "";
2294
2295 if (!net_ratelimit())
2296 return;
2297
2298 if (dev && dev->dev.parent)
2299 driver = dev_driver_string(dev->dev.parent);
2300
2301 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2302 "gso_type=%d ip_summed=%d\n",
2303 driver, dev ? &dev->features : &null_features,
2304 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2305 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2306 skb_shinfo(skb)->gso_type, skb->ip_summed);
2307 }
2308
2309 /*
2310 * Invalidate hardware checksum when packet is to be mangled, and
2311 * complete checksum manually on outgoing path.
2312 */
2313 int skb_checksum_help(struct sk_buff *skb)
2314 {
2315 __wsum csum;
2316 int ret = 0, offset;
2317
2318 if (skb->ip_summed == CHECKSUM_COMPLETE)
2319 goto out_set_summed;
2320
2321 if (unlikely(skb_shinfo(skb)->gso_size)) {
2322 skb_warn_bad_offload(skb);
2323 return -EINVAL;
2324 }
2325
2326 /* Before computing a checksum, we should make sure no frag could
2327 * be modified by an external entity : checksum could be wrong.
2328 */
2329 if (skb_has_shared_frag(skb)) {
2330 ret = __skb_linearize(skb);
2331 if (ret)
2332 goto out;
2333 }
2334
2335 offset = skb_checksum_start_offset(skb);
2336 BUG_ON(offset >= skb_headlen(skb));
2337 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2338
2339 offset += skb->csum_offset;
2340 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2341
2342 if (skb_cloned(skb) &&
2343 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2344 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2345 if (ret)
2346 goto out;
2347 }
2348
2349 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2350 out_set_summed:
2351 skb->ip_summed = CHECKSUM_NONE;
2352 out:
2353 return ret;
2354 }
2355 EXPORT_SYMBOL(skb_checksum_help);
2356
2357 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2358 {
2359 unsigned int vlan_depth = skb->mac_len;
2360 __be16 type = skb->protocol;
2361
2362 /* Tunnel gso handlers can set protocol to ethernet. */
2363 if (type == htons(ETH_P_TEB)) {
2364 struct ethhdr *eth;
2365
2366 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2367 return 0;
2368
2369 eth = (struct ethhdr *)skb_mac_header(skb);
2370 type = eth->h_proto;
2371 }
2372
2373 /* if skb->protocol is 802.1Q/AD then the header should already be
2374 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2375 * ETH_HLEN otherwise
2376 */
2377 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2378 if (vlan_depth) {
2379 if (WARN_ON(vlan_depth < VLAN_HLEN))
2380 return 0;
2381 vlan_depth -= VLAN_HLEN;
2382 } else {
2383 vlan_depth = ETH_HLEN;
2384 }
2385 do {
2386 struct vlan_hdr *vh;
2387
2388 if (unlikely(!pskb_may_pull(skb,
2389 vlan_depth + VLAN_HLEN)))
2390 return 0;
2391
2392 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2393 type = vh->h_vlan_encapsulated_proto;
2394 vlan_depth += VLAN_HLEN;
2395 } while (type == htons(ETH_P_8021Q) ||
2396 type == htons(ETH_P_8021AD));
2397 }
2398
2399 *depth = vlan_depth;
2400
2401 return type;
2402 }
2403
2404 /**
2405 * skb_mac_gso_segment - mac layer segmentation handler.
2406 * @skb: buffer to segment
2407 * @features: features for the output path (see dev->features)
2408 */
2409 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2410 netdev_features_t features)
2411 {
2412 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2413 struct packet_offload *ptype;
2414 int vlan_depth = skb->mac_len;
2415 __be16 type = skb_network_protocol(skb, &vlan_depth);
2416
2417 if (unlikely(!type))
2418 return ERR_PTR(-EINVAL);
2419
2420 __skb_pull(skb, vlan_depth);
2421
2422 rcu_read_lock();
2423 list_for_each_entry_rcu(ptype, &offload_base, list) {
2424 if (ptype->type == type && ptype->callbacks.gso_segment) {
2425 segs = ptype->callbacks.gso_segment(skb, features);
2426 break;
2427 }
2428 }
2429 rcu_read_unlock();
2430
2431 __skb_push(skb, skb->data - skb_mac_header(skb));
2432
2433 return segs;
2434 }
2435 EXPORT_SYMBOL(skb_mac_gso_segment);
2436
2437
2438 /* openvswitch calls this on rx path, so we need a different check.
2439 */
2440 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2441 {
2442 if (tx_path)
2443 return skb->ip_summed != CHECKSUM_PARTIAL;
2444 else
2445 return skb->ip_summed == CHECKSUM_NONE;
2446 }
2447
2448 /**
2449 * __skb_gso_segment - Perform segmentation on skb.
2450 * @skb: buffer to segment
2451 * @features: features for the output path (see dev->features)
2452 * @tx_path: whether it is called in TX path
2453 *
2454 * This function segments the given skb and returns a list of segments.
2455 *
2456 * It may return NULL if the skb requires no segmentation. This is
2457 * only possible when GSO is used for verifying header integrity.
2458 */
2459 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2460 netdev_features_t features, bool tx_path)
2461 {
2462 if (unlikely(skb_needs_check(skb, tx_path))) {
2463 int err;
2464
2465 skb_warn_bad_offload(skb);
2466
2467 err = skb_cow_head(skb, 0);
2468 if (err < 0)
2469 return ERR_PTR(err);
2470 }
2471
2472 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2473 SKB_GSO_CB(skb)->encap_level = 0;
2474
2475 skb_reset_mac_header(skb);
2476 skb_reset_mac_len(skb);
2477
2478 return skb_mac_gso_segment(skb, features);
2479 }
2480 EXPORT_SYMBOL(__skb_gso_segment);
2481
2482 /* Take action when hardware reception checksum errors are detected. */
2483 #ifdef CONFIG_BUG
2484 void netdev_rx_csum_fault(struct net_device *dev)
2485 {
2486 if (net_ratelimit()) {
2487 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2488 dump_stack();
2489 }
2490 }
2491 EXPORT_SYMBOL(netdev_rx_csum_fault);
2492 #endif
2493
2494 /* Actually, we should eliminate this check as soon as we know, that:
2495 * 1. IOMMU is present and allows to map all the memory.
2496 * 2. No high memory really exists on this machine.
2497 */
2498
2499 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2500 {
2501 #ifdef CONFIG_HIGHMEM
2502 int i;
2503 if (!(dev->features & NETIF_F_HIGHDMA)) {
2504 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2505 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2506 if (PageHighMem(skb_frag_page(frag)))
2507 return 1;
2508 }
2509 }
2510
2511 if (PCI_DMA_BUS_IS_PHYS) {
2512 struct device *pdev = dev->dev.parent;
2513
2514 if (!pdev)
2515 return 0;
2516 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2517 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2518 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2519 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2520 return 1;
2521 }
2522 }
2523 #endif
2524 return 0;
2525 }
2526
2527 /* If MPLS offload request, verify we are testing hardware MPLS features
2528 * instead of standard features for the netdev.
2529 */
2530 #ifdef CONFIG_NET_MPLS_GSO
2531 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2532 netdev_features_t features,
2533 __be16 type)
2534 {
2535 if (eth_p_mpls(type))
2536 features &= skb->dev->mpls_features;
2537
2538 return features;
2539 }
2540 #else
2541 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2542 netdev_features_t features,
2543 __be16 type)
2544 {
2545 return features;
2546 }
2547 #endif
2548
2549 static netdev_features_t harmonize_features(struct sk_buff *skb,
2550 netdev_features_t features)
2551 {
2552 int tmp;
2553 __be16 type;
2554
2555 type = skb_network_protocol(skb, &tmp);
2556 features = net_mpls_features(skb, features, type);
2557
2558 if (skb->ip_summed != CHECKSUM_NONE &&
2559 !can_checksum_protocol(features, type)) {
2560 features &= ~NETIF_F_ALL_CSUM;
2561 } else if (illegal_highdma(skb->dev, skb)) {
2562 features &= ~NETIF_F_SG;
2563 }
2564
2565 return features;
2566 }
2567
2568 netdev_features_t netif_skb_features(struct sk_buff *skb)
2569 {
2570 const struct net_device *dev = skb->dev;
2571 netdev_features_t features = dev->features;
2572 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2573 __be16 protocol = skb->protocol;
2574
2575 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2576 features &= ~NETIF_F_GSO_MASK;
2577
2578 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2579 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2580 protocol = veh->h_vlan_encapsulated_proto;
2581 } else if (!vlan_tx_tag_present(skb)) {
2582 return harmonize_features(skb, features);
2583 }
2584
2585 features = netdev_intersect_features(features,
2586 dev->vlan_features |
2587 NETIF_F_HW_VLAN_CTAG_TX |
2588 NETIF_F_HW_VLAN_STAG_TX);
2589
2590 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2591 features = netdev_intersect_features(features,
2592 NETIF_F_SG |
2593 NETIF_F_HIGHDMA |
2594 NETIF_F_FRAGLIST |
2595 NETIF_F_GEN_CSUM |
2596 NETIF_F_HW_VLAN_CTAG_TX |
2597 NETIF_F_HW_VLAN_STAG_TX);
2598
2599 return harmonize_features(skb, features);
2600 }
2601 EXPORT_SYMBOL(netif_skb_features);
2602
2603 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2604 struct netdev_queue *txq, bool more)
2605 {
2606 unsigned int len;
2607 int rc;
2608
2609 if (!list_empty(&ptype_all))
2610 dev_queue_xmit_nit(skb, dev);
2611
2612 len = skb->len;
2613 trace_net_dev_start_xmit(skb, dev);
2614 rc = netdev_start_xmit(skb, dev, txq, more);
2615 trace_net_dev_xmit(skb, rc, dev, len);
2616
2617 return rc;
2618 }
2619
2620 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2621 struct netdev_queue *txq, int *ret)
2622 {
2623 struct sk_buff *skb = first;
2624 int rc = NETDEV_TX_OK;
2625
2626 while (skb) {
2627 struct sk_buff *next = skb->next;
2628
2629 skb->next = NULL;
2630 rc = xmit_one(skb, dev, txq, next != NULL);
2631 if (unlikely(!dev_xmit_complete(rc))) {
2632 skb->next = next;
2633 goto out;
2634 }
2635
2636 skb = next;
2637 if (netif_xmit_stopped(txq) && skb) {
2638 rc = NETDEV_TX_BUSY;
2639 break;
2640 }
2641 }
2642
2643 out:
2644 *ret = rc;
2645 return skb;
2646 }
2647
2648 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2649 netdev_features_t features)
2650 {
2651 if (vlan_tx_tag_present(skb) &&
2652 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2653 skb = __vlan_put_tag(skb, skb->vlan_proto,
2654 vlan_tx_tag_get(skb));
2655 if (skb)
2656 skb->vlan_tci = 0;
2657 }
2658 return skb;
2659 }
2660
2661 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2662 {
2663 netdev_features_t features;
2664
2665 if (skb->next)
2666 return skb;
2667
2668 features = netif_skb_features(skb);
2669 skb = validate_xmit_vlan(skb, features);
2670 if (unlikely(!skb))
2671 goto out_null;
2672
2673 /* If encapsulation offload request, verify we are testing
2674 * hardware encapsulation features instead of standard
2675 * features for the netdev
2676 */
2677 if (skb->encapsulation)
2678 features &= dev->hw_enc_features;
2679
2680 if (netif_needs_gso(dev, skb, features)) {
2681 struct sk_buff *segs;
2682
2683 segs = skb_gso_segment(skb, features);
2684 if (IS_ERR(segs)) {
2685 segs = NULL;
2686 } else if (segs) {
2687 consume_skb(skb);
2688 skb = segs;
2689 }
2690 } else {
2691 if (skb_needs_linearize(skb, features) &&
2692 __skb_linearize(skb))
2693 goto out_kfree_skb;
2694
2695 /* If packet is not checksummed and device does not
2696 * support checksumming for this protocol, complete
2697 * checksumming here.
2698 */
2699 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2700 if (skb->encapsulation)
2701 skb_set_inner_transport_header(skb,
2702 skb_checksum_start_offset(skb));
2703 else
2704 skb_set_transport_header(skb,
2705 skb_checksum_start_offset(skb));
2706 if (!(features & NETIF_F_ALL_CSUM) &&
2707 skb_checksum_help(skb))
2708 goto out_kfree_skb;
2709 }
2710 }
2711
2712 return skb;
2713
2714 out_kfree_skb:
2715 kfree_skb(skb);
2716 out_null:
2717 return NULL;
2718 }
2719
2720 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2721 {
2722 struct sk_buff *next, *head = NULL, *tail;
2723
2724 for (; skb != NULL; skb = next) {
2725 next = skb->next;
2726 skb->next = NULL;
2727
2728 /* in case skb wont be segmented, point to itself */
2729 skb->prev = skb;
2730
2731 skb = validate_xmit_skb(skb, dev);
2732 if (!skb)
2733 continue;
2734
2735 if (!head)
2736 head = skb;
2737 else
2738 tail->next = skb;
2739 /* If skb was segmented, skb->prev points to
2740 * the last segment. If not, it still contains skb.
2741 */
2742 tail = skb->prev;
2743 }
2744 return head;
2745 }
2746
2747 static void qdisc_pkt_len_init(struct sk_buff *skb)
2748 {
2749 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2750
2751 qdisc_skb_cb(skb)->pkt_len = skb->len;
2752
2753 /* To get more precise estimation of bytes sent on wire,
2754 * we add to pkt_len the headers size of all segments
2755 */
2756 if (shinfo->gso_size) {
2757 unsigned int hdr_len;
2758 u16 gso_segs = shinfo->gso_segs;
2759
2760 /* mac layer + network layer */
2761 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2762
2763 /* + transport layer */
2764 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2765 hdr_len += tcp_hdrlen(skb);
2766 else
2767 hdr_len += sizeof(struct udphdr);
2768
2769 if (shinfo->gso_type & SKB_GSO_DODGY)
2770 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2771 shinfo->gso_size);
2772
2773 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2774 }
2775 }
2776
2777 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2778 struct net_device *dev,
2779 struct netdev_queue *txq)
2780 {
2781 spinlock_t *root_lock = qdisc_lock(q);
2782 bool contended;
2783 int rc;
2784
2785 qdisc_pkt_len_init(skb);
2786 qdisc_calculate_pkt_len(skb, q);
2787 /*
2788 * Heuristic to force contended enqueues to serialize on a
2789 * separate lock before trying to get qdisc main lock.
2790 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2791 * often and dequeue packets faster.
2792 */
2793 contended = qdisc_is_running(q);
2794 if (unlikely(contended))
2795 spin_lock(&q->busylock);
2796
2797 spin_lock(root_lock);
2798 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2799 kfree_skb(skb);
2800 rc = NET_XMIT_DROP;
2801 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2802 qdisc_run_begin(q)) {
2803 /*
2804 * This is a work-conserving queue; there are no old skbs
2805 * waiting to be sent out; and the qdisc is not running -
2806 * xmit the skb directly.
2807 */
2808
2809 qdisc_bstats_update(q, skb);
2810
2811 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2812 if (unlikely(contended)) {
2813 spin_unlock(&q->busylock);
2814 contended = false;
2815 }
2816 __qdisc_run(q);
2817 } else
2818 qdisc_run_end(q);
2819
2820 rc = NET_XMIT_SUCCESS;
2821 } else {
2822 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2823 if (qdisc_run_begin(q)) {
2824 if (unlikely(contended)) {
2825 spin_unlock(&q->busylock);
2826 contended = false;
2827 }
2828 __qdisc_run(q);
2829 }
2830 }
2831 spin_unlock(root_lock);
2832 if (unlikely(contended))
2833 spin_unlock(&q->busylock);
2834 return rc;
2835 }
2836
2837 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2838 static void skb_update_prio(struct sk_buff *skb)
2839 {
2840 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2841
2842 if (!skb->priority && skb->sk && map) {
2843 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2844
2845 if (prioidx < map->priomap_len)
2846 skb->priority = map->priomap[prioidx];
2847 }
2848 }
2849 #else
2850 #define skb_update_prio(skb)
2851 #endif
2852
2853 static DEFINE_PER_CPU(int, xmit_recursion);
2854 #define RECURSION_LIMIT 10
2855
2856 /**
2857 * dev_loopback_xmit - loop back @skb
2858 * @skb: buffer to transmit
2859 */
2860 int dev_loopback_xmit(struct sk_buff *skb)
2861 {
2862 skb_reset_mac_header(skb);
2863 __skb_pull(skb, skb_network_offset(skb));
2864 skb->pkt_type = PACKET_LOOPBACK;
2865 skb->ip_summed = CHECKSUM_UNNECESSARY;
2866 WARN_ON(!skb_dst(skb));
2867 skb_dst_force(skb);
2868 netif_rx_ni(skb);
2869 return 0;
2870 }
2871 EXPORT_SYMBOL(dev_loopback_xmit);
2872
2873 /**
2874 * __dev_queue_xmit - transmit a buffer
2875 * @skb: buffer to transmit
2876 * @accel_priv: private data used for L2 forwarding offload
2877 *
2878 * Queue a buffer for transmission to a network device. The caller must
2879 * have set the device and priority and built the buffer before calling
2880 * this function. The function can be called from an interrupt.
2881 *
2882 * A negative errno code is returned on a failure. A success does not
2883 * guarantee the frame will be transmitted as it may be dropped due
2884 * to congestion or traffic shaping.
2885 *
2886 * -----------------------------------------------------------------------------------
2887 * I notice this method can also return errors from the queue disciplines,
2888 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2889 * be positive.
2890 *
2891 * Regardless of the return value, the skb is consumed, so it is currently
2892 * difficult to retry a send to this method. (You can bump the ref count
2893 * before sending to hold a reference for retry if you are careful.)
2894 *
2895 * When calling this method, interrupts MUST be enabled. This is because
2896 * the BH enable code must have IRQs enabled so that it will not deadlock.
2897 * --BLG
2898 */
2899 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2900 {
2901 struct net_device *dev = skb->dev;
2902 struct netdev_queue *txq;
2903 struct Qdisc *q;
2904 int rc = -ENOMEM;
2905
2906 skb_reset_mac_header(skb);
2907
2908 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2909 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2910
2911 /* Disable soft irqs for various locks below. Also
2912 * stops preemption for RCU.
2913 */
2914 rcu_read_lock_bh();
2915
2916 skb_update_prio(skb);
2917
2918 /* If device/qdisc don't need skb->dst, release it right now while
2919 * its hot in this cpu cache.
2920 */
2921 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2922 skb_dst_drop(skb);
2923 else
2924 skb_dst_force(skb);
2925
2926 txq = netdev_pick_tx(dev, skb, accel_priv);
2927 q = rcu_dereference_bh(txq->qdisc);
2928
2929 #ifdef CONFIG_NET_CLS_ACT
2930 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2931 #endif
2932 trace_net_dev_queue(skb);
2933 if (q->enqueue) {
2934 rc = __dev_xmit_skb(skb, q, dev, txq);
2935 goto out;
2936 }
2937
2938 /* The device has no queue. Common case for software devices:
2939 loopback, all the sorts of tunnels...
2940
2941 Really, it is unlikely that netif_tx_lock protection is necessary
2942 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2943 counters.)
2944 However, it is possible, that they rely on protection
2945 made by us here.
2946
2947 Check this and shot the lock. It is not prone from deadlocks.
2948 Either shot noqueue qdisc, it is even simpler 8)
2949 */
2950 if (dev->flags & IFF_UP) {
2951 int cpu = smp_processor_id(); /* ok because BHs are off */
2952
2953 if (txq->xmit_lock_owner != cpu) {
2954
2955 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2956 goto recursion_alert;
2957
2958 skb = validate_xmit_skb(skb, dev);
2959 if (!skb)
2960 goto drop;
2961
2962 HARD_TX_LOCK(dev, txq, cpu);
2963
2964 if (!netif_xmit_stopped(txq)) {
2965 __this_cpu_inc(xmit_recursion);
2966 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2967 __this_cpu_dec(xmit_recursion);
2968 if (dev_xmit_complete(rc)) {
2969 HARD_TX_UNLOCK(dev, txq);
2970 goto out;
2971 }
2972 }
2973 HARD_TX_UNLOCK(dev, txq);
2974 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2975 dev->name);
2976 } else {
2977 /* Recursion is detected! It is possible,
2978 * unfortunately
2979 */
2980 recursion_alert:
2981 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2982 dev->name);
2983 }
2984 }
2985
2986 rc = -ENETDOWN;
2987 drop:
2988 rcu_read_unlock_bh();
2989
2990 atomic_long_inc(&dev->tx_dropped);
2991 kfree_skb_list(skb);
2992 return rc;
2993 out:
2994 rcu_read_unlock_bh();
2995 return rc;
2996 }
2997
2998 int dev_queue_xmit(struct sk_buff *skb)
2999 {
3000 return __dev_queue_xmit(skb, NULL);
3001 }
3002 EXPORT_SYMBOL(dev_queue_xmit);
3003
3004 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3005 {
3006 return __dev_queue_xmit(skb, accel_priv);
3007 }
3008 EXPORT_SYMBOL(dev_queue_xmit_accel);
3009
3010
3011 /*=======================================================================
3012 Receiver routines
3013 =======================================================================*/
3014
3015 int netdev_max_backlog __read_mostly = 1000;
3016 EXPORT_SYMBOL(netdev_max_backlog);
3017
3018 int netdev_tstamp_prequeue __read_mostly = 1;
3019 int netdev_budget __read_mostly = 300;
3020 int weight_p __read_mostly = 64; /* old backlog weight */
3021
3022 /* Called with irq disabled */
3023 static inline void ____napi_schedule(struct softnet_data *sd,
3024 struct napi_struct *napi)
3025 {
3026 list_add_tail(&napi->poll_list, &sd->poll_list);
3027 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3028 }
3029
3030 #ifdef CONFIG_RPS
3031
3032 /* One global table that all flow-based protocols share. */
3033 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3034 EXPORT_SYMBOL(rps_sock_flow_table);
3035
3036 struct static_key rps_needed __read_mostly;
3037
3038 static struct rps_dev_flow *
3039 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3040 struct rps_dev_flow *rflow, u16 next_cpu)
3041 {
3042 if (next_cpu != RPS_NO_CPU) {
3043 #ifdef CONFIG_RFS_ACCEL
3044 struct netdev_rx_queue *rxqueue;
3045 struct rps_dev_flow_table *flow_table;
3046 struct rps_dev_flow *old_rflow;
3047 u32 flow_id;
3048 u16 rxq_index;
3049 int rc;
3050
3051 /* Should we steer this flow to a different hardware queue? */
3052 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3053 !(dev->features & NETIF_F_NTUPLE))
3054 goto out;
3055 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3056 if (rxq_index == skb_get_rx_queue(skb))
3057 goto out;
3058
3059 rxqueue = dev->_rx + rxq_index;
3060 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3061 if (!flow_table)
3062 goto out;
3063 flow_id = skb_get_hash(skb) & flow_table->mask;
3064 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3065 rxq_index, flow_id);
3066 if (rc < 0)
3067 goto out;
3068 old_rflow = rflow;
3069 rflow = &flow_table->flows[flow_id];
3070 rflow->filter = rc;
3071 if (old_rflow->filter == rflow->filter)
3072 old_rflow->filter = RPS_NO_FILTER;
3073 out:
3074 #endif
3075 rflow->last_qtail =
3076 per_cpu(softnet_data, next_cpu).input_queue_head;
3077 }
3078
3079 rflow->cpu = next_cpu;
3080 return rflow;
3081 }
3082
3083 /*
3084 * get_rps_cpu is called from netif_receive_skb and returns the target
3085 * CPU from the RPS map of the receiving queue for a given skb.
3086 * rcu_read_lock must be held on entry.
3087 */
3088 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3089 struct rps_dev_flow **rflowp)
3090 {
3091 struct netdev_rx_queue *rxqueue;
3092 struct rps_map *map;
3093 struct rps_dev_flow_table *flow_table;
3094 struct rps_sock_flow_table *sock_flow_table;
3095 int cpu = -1;
3096 u16 tcpu;
3097 u32 hash;
3098
3099 if (skb_rx_queue_recorded(skb)) {
3100 u16 index = skb_get_rx_queue(skb);
3101 if (unlikely(index >= dev->real_num_rx_queues)) {
3102 WARN_ONCE(dev->real_num_rx_queues > 1,
3103 "%s received packet on queue %u, but number "
3104 "of RX queues is %u\n",
3105 dev->name, index, dev->real_num_rx_queues);
3106 goto done;
3107 }
3108 rxqueue = dev->_rx + index;
3109 } else
3110 rxqueue = dev->_rx;
3111
3112 map = rcu_dereference(rxqueue->rps_map);
3113 if (map) {
3114 if (map->len == 1 &&
3115 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3116 tcpu = map->cpus[0];
3117 if (cpu_online(tcpu))
3118 cpu = tcpu;
3119 goto done;
3120 }
3121 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3122 goto done;
3123 }
3124
3125 skb_reset_network_header(skb);
3126 hash = skb_get_hash(skb);
3127 if (!hash)
3128 goto done;
3129
3130 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3131 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3132 if (flow_table && sock_flow_table) {
3133 u16 next_cpu;
3134 struct rps_dev_flow *rflow;
3135
3136 rflow = &flow_table->flows[hash & flow_table->mask];
3137 tcpu = rflow->cpu;
3138
3139 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3140
3141 /*
3142 * If the desired CPU (where last recvmsg was done) is
3143 * different from current CPU (one in the rx-queue flow
3144 * table entry), switch if one of the following holds:
3145 * - Current CPU is unset (equal to RPS_NO_CPU).
3146 * - Current CPU is offline.
3147 * - The current CPU's queue tail has advanced beyond the
3148 * last packet that was enqueued using this table entry.
3149 * This guarantees that all previous packets for the flow
3150 * have been dequeued, thus preserving in order delivery.
3151 */
3152 if (unlikely(tcpu != next_cpu) &&
3153 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3154 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3155 rflow->last_qtail)) >= 0)) {
3156 tcpu = next_cpu;
3157 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3158 }
3159
3160 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3161 *rflowp = rflow;
3162 cpu = tcpu;
3163 goto done;
3164 }
3165 }
3166
3167 if (map) {
3168 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3169 if (cpu_online(tcpu)) {
3170 cpu = tcpu;
3171 goto done;
3172 }
3173 }
3174
3175 done:
3176 return cpu;
3177 }
3178
3179 #ifdef CONFIG_RFS_ACCEL
3180
3181 /**
3182 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3183 * @dev: Device on which the filter was set
3184 * @rxq_index: RX queue index
3185 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3186 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3187 *
3188 * Drivers that implement ndo_rx_flow_steer() should periodically call
3189 * this function for each installed filter and remove the filters for
3190 * which it returns %true.
3191 */
3192 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3193 u32 flow_id, u16 filter_id)
3194 {
3195 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3196 struct rps_dev_flow_table *flow_table;
3197 struct rps_dev_flow *rflow;
3198 bool expire = true;
3199 int cpu;
3200
3201 rcu_read_lock();
3202 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3203 if (flow_table && flow_id <= flow_table->mask) {
3204 rflow = &flow_table->flows[flow_id];
3205 cpu = ACCESS_ONCE(rflow->cpu);
3206 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3207 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3208 rflow->last_qtail) <
3209 (int)(10 * flow_table->mask)))
3210 expire = false;
3211 }
3212 rcu_read_unlock();
3213 return expire;
3214 }
3215 EXPORT_SYMBOL(rps_may_expire_flow);
3216
3217 #endif /* CONFIG_RFS_ACCEL */
3218
3219 /* Called from hardirq (IPI) context */
3220 static void rps_trigger_softirq(void *data)
3221 {
3222 struct softnet_data *sd = data;
3223
3224 ____napi_schedule(sd, &sd->backlog);
3225 sd->received_rps++;
3226 }
3227
3228 #endif /* CONFIG_RPS */
3229
3230 /*
3231 * Check if this softnet_data structure is another cpu one
3232 * If yes, queue it to our IPI list and return 1
3233 * If no, return 0
3234 */
3235 static int rps_ipi_queued(struct softnet_data *sd)
3236 {
3237 #ifdef CONFIG_RPS
3238 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3239
3240 if (sd != mysd) {
3241 sd->rps_ipi_next = mysd->rps_ipi_list;
3242 mysd->rps_ipi_list = sd;
3243
3244 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3245 return 1;
3246 }
3247 #endif /* CONFIG_RPS */
3248 return 0;
3249 }
3250
3251 #ifdef CONFIG_NET_FLOW_LIMIT
3252 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3253 #endif
3254
3255 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3256 {
3257 #ifdef CONFIG_NET_FLOW_LIMIT
3258 struct sd_flow_limit *fl;
3259 struct softnet_data *sd;
3260 unsigned int old_flow, new_flow;
3261
3262 if (qlen < (netdev_max_backlog >> 1))
3263 return false;
3264
3265 sd = this_cpu_ptr(&softnet_data);
3266
3267 rcu_read_lock();
3268 fl = rcu_dereference(sd->flow_limit);
3269 if (fl) {
3270 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3271 old_flow = fl->history[fl->history_head];
3272 fl->history[fl->history_head] = new_flow;
3273
3274 fl->history_head++;
3275 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3276
3277 if (likely(fl->buckets[old_flow]))
3278 fl->buckets[old_flow]--;
3279
3280 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3281 fl->count++;
3282 rcu_read_unlock();
3283 return true;
3284 }
3285 }
3286 rcu_read_unlock();
3287 #endif
3288 return false;
3289 }
3290
3291 /*
3292 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3293 * queue (may be a remote CPU queue).
3294 */
3295 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3296 unsigned int *qtail)
3297 {
3298 struct softnet_data *sd;
3299 unsigned long flags;
3300 unsigned int qlen;
3301
3302 sd = &per_cpu(softnet_data, cpu);
3303
3304 local_irq_save(flags);
3305
3306 rps_lock(sd);
3307 qlen = skb_queue_len(&sd->input_pkt_queue);
3308 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3309 if (skb_queue_len(&sd->input_pkt_queue)) {
3310 enqueue:
3311 __skb_queue_tail(&sd->input_pkt_queue, skb);
3312 input_queue_tail_incr_save(sd, qtail);
3313 rps_unlock(sd);
3314 local_irq_restore(flags);
3315 return NET_RX_SUCCESS;
3316 }
3317
3318 /* Schedule NAPI for backlog device
3319 * We can use non atomic operation since we own the queue lock
3320 */
3321 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3322 if (!rps_ipi_queued(sd))
3323 ____napi_schedule(sd, &sd->backlog);
3324 }
3325 goto enqueue;
3326 }
3327
3328 sd->dropped++;
3329 rps_unlock(sd);
3330
3331 local_irq_restore(flags);
3332
3333 atomic_long_inc(&skb->dev->rx_dropped);
3334 kfree_skb(skb);
3335 return NET_RX_DROP;
3336 }
3337
3338 static int netif_rx_internal(struct sk_buff *skb)
3339 {
3340 int ret;
3341
3342 net_timestamp_check(netdev_tstamp_prequeue, skb);
3343
3344 trace_netif_rx(skb);
3345 #ifdef CONFIG_RPS
3346 if (static_key_false(&rps_needed)) {
3347 struct rps_dev_flow voidflow, *rflow = &voidflow;
3348 int cpu;
3349
3350 preempt_disable();
3351 rcu_read_lock();
3352
3353 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3354 if (cpu < 0)
3355 cpu = smp_processor_id();
3356
3357 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3358
3359 rcu_read_unlock();
3360 preempt_enable();
3361 } else
3362 #endif
3363 {
3364 unsigned int qtail;
3365 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3366 put_cpu();
3367 }
3368 return ret;
3369 }
3370
3371 /**
3372 * netif_rx - post buffer to the network code
3373 * @skb: buffer to post
3374 *
3375 * This function receives a packet from a device driver and queues it for
3376 * the upper (protocol) levels to process. It always succeeds. The buffer
3377 * may be dropped during processing for congestion control or by the
3378 * protocol layers.
3379 *
3380 * return values:
3381 * NET_RX_SUCCESS (no congestion)
3382 * NET_RX_DROP (packet was dropped)
3383 *
3384 */
3385
3386 int netif_rx(struct sk_buff *skb)
3387 {
3388 trace_netif_rx_entry(skb);
3389
3390 return netif_rx_internal(skb);
3391 }
3392 EXPORT_SYMBOL(netif_rx);
3393
3394 int netif_rx_ni(struct sk_buff *skb)
3395 {
3396 int err;
3397
3398 trace_netif_rx_ni_entry(skb);
3399
3400 preempt_disable();
3401 err = netif_rx_internal(skb);
3402 if (local_softirq_pending())
3403 do_softirq();
3404 preempt_enable();
3405
3406 return err;
3407 }
3408 EXPORT_SYMBOL(netif_rx_ni);
3409
3410 static void net_tx_action(struct softirq_action *h)
3411 {
3412 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3413
3414 if (sd->completion_queue) {
3415 struct sk_buff *clist;
3416
3417 local_irq_disable();
3418 clist = sd->completion_queue;
3419 sd->completion_queue = NULL;
3420 local_irq_enable();
3421
3422 while (clist) {
3423 struct sk_buff *skb = clist;
3424 clist = clist->next;
3425
3426 WARN_ON(atomic_read(&skb->users));
3427 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3428 trace_consume_skb(skb);
3429 else
3430 trace_kfree_skb(skb, net_tx_action);
3431 __kfree_skb(skb);
3432 }
3433 }
3434
3435 if (sd->output_queue) {
3436 struct Qdisc *head;
3437
3438 local_irq_disable();
3439 head = sd->output_queue;
3440 sd->output_queue = NULL;
3441 sd->output_queue_tailp = &sd->output_queue;
3442 local_irq_enable();
3443
3444 while (head) {
3445 struct Qdisc *q = head;
3446 spinlock_t *root_lock;
3447
3448 head = head->next_sched;
3449
3450 root_lock = qdisc_lock(q);
3451 if (spin_trylock(root_lock)) {
3452 smp_mb__before_atomic();
3453 clear_bit(__QDISC_STATE_SCHED,
3454 &q->state);
3455 qdisc_run(q);
3456 spin_unlock(root_lock);
3457 } else {
3458 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3459 &q->state)) {
3460 __netif_reschedule(q);
3461 } else {
3462 smp_mb__before_atomic();
3463 clear_bit(__QDISC_STATE_SCHED,
3464 &q->state);
3465 }
3466 }
3467 }
3468 }
3469 }
3470
3471 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3472 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3473 /* This hook is defined here for ATM LANE */
3474 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3475 unsigned char *addr) __read_mostly;
3476 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3477 #endif
3478
3479 #ifdef CONFIG_NET_CLS_ACT
3480 /* TODO: Maybe we should just force sch_ingress to be compiled in
3481 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3482 * a compare and 2 stores extra right now if we dont have it on
3483 * but have CONFIG_NET_CLS_ACT
3484 * NOTE: This doesn't stop any functionality; if you dont have
3485 * the ingress scheduler, you just can't add policies on ingress.
3486 *
3487 */
3488 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3489 {
3490 struct net_device *dev = skb->dev;
3491 u32 ttl = G_TC_RTTL(skb->tc_verd);
3492 int result = TC_ACT_OK;
3493 struct Qdisc *q;
3494
3495 if (unlikely(MAX_RED_LOOP < ttl++)) {
3496 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3497 skb->skb_iif, dev->ifindex);
3498 return TC_ACT_SHOT;
3499 }
3500
3501 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3502 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3503
3504 q = rcu_dereference(rxq->qdisc);
3505 if (q != &noop_qdisc) {
3506 spin_lock(qdisc_lock(q));
3507 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3508 result = qdisc_enqueue_root(skb, q);
3509 spin_unlock(qdisc_lock(q));
3510 }
3511
3512 return result;
3513 }
3514
3515 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3516 struct packet_type **pt_prev,
3517 int *ret, struct net_device *orig_dev)
3518 {
3519 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3520
3521 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3522 goto out;
3523
3524 if (*pt_prev) {
3525 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3526 *pt_prev = NULL;
3527 }
3528
3529 switch (ing_filter(skb, rxq)) {
3530 case TC_ACT_SHOT:
3531 case TC_ACT_STOLEN:
3532 kfree_skb(skb);
3533 return NULL;
3534 }
3535
3536 out:
3537 skb->tc_verd = 0;
3538 return skb;
3539 }
3540 #endif
3541
3542 /**
3543 * netdev_rx_handler_register - register receive handler
3544 * @dev: device to register a handler for
3545 * @rx_handler: receive handler to register
3546 * @rx_handler_data: data pointer that is used by rx handler
3547 *
3548 * Register a receive handler for a device. This handler will then be
3549 * called from __netif_receive_skb. A negative errno code is returned
3550 * on a failure.
3551 *
3552 * The caller must hold the rtnl_mutex.
3553 *
3554 * For a general description of rx_handler, see enum rx_handler_result.
3555 */
3556 int netdev_rx_handler_register(struct net_device *dev,
3557 rx_handler_func_t *rx_handler,
3558 void *rx_handler_data)
3559 {
3560 ASSERT_RTNL();
3561
3562 if (dev->rx_handler)
3563 return -EBUSY;
3564
3565 /* Note: rx_handler_data must be set before rx_handler */
3566 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3567 rcu_assign_pointer(dev->rx_handler, rx_handler);
3568
3569 return 0;
3570 }
3571 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3572
3573 /**
3574 * netdev_rx_handler_unregister - unregister receive handler
3575 * @dev: device to unregister a handler from
3576 *
3577 * Unregister a receive handler from a device.
3578 *
3579 * The caller must hold the rtnl_mutex.
3580 */
3581 void netdev_rx_handler_unregister(struct net_device *dev)
3582 {
3583
3584 ASSERT_RTNL();
3585 RCU_INIT_POINTER(dev->rx_handler, NULL);
3586 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3587 * section has a guarantee to see a non NULL rx_handler_data
3588 * as well.
3589 */
3590 synchronize_net();
3591 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3592 }
3593 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3594
3595 /*
3596 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3597 * the special handling of PFMEMALLOC skbs.
3598 */
3599 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3600 {
3601 switch (skb->protocol) {
3602 case htons(ETH_P_ARP):
3603 case htons(ETH_P_IP):
3604 case htons(ETH_P_IPV6):
3605 case htons(ETH_P_8021Q):
3606 case htons(ETH_P_8021AD):
3607 return true;
3608 default:
3609 return false;
3610 }
3611 }
3612
3613 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3614 {
3615 struct packet_type *ptype, *pt_prev;
3616 rx_handler_func_t *rx_handler;
3617 struct net_device *orig_dev;
3618 struct net_device *null_or_dev;
3619 bool deliver_exact = false;
3620 int ret = NET_RX_DROP;
3621 __be16 type;
3622
3623 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3624
3625 trace_netif_receive_skb(skb);
3626
3627 orig_dev = skb->dev;
3628
3629 skb_reset_network_header(skb);
3630 if (!skb_transport_header_was_set(skb))
3631 skb_reset_transport_header(skb);
3632 skb_reset_mac_len(skb);
3633
3634 pt_prev = NULL;
3635
3636 rcu_read_lock();
3637
3638 another_round:
3639 skb->skb_iif = skb->dev->ifindex;
3640
3641 __this_cpu_inc(softnet_data.processed);
3642
3643 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3644 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3645 skb = skb_vlan_untag(skb);
3646 if (unlikely(!skb))
3647 goto unlock;
3648 }
3649
3650 #ifdef CONFIG_NET_CLS_ACT
3651 if (skb->tc_verd & TC_NCLS) {
3652 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3653 goto ncls;
3654 }
3655 #endif
3656
3657 if (pfmemalloc)
3658 goto skip_taps;
3659
3660 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3661 if (!ptype->dev || ptype->dev == skb->dev) {
3662 if (pt_prev)
3663 ret = deliver_skb(skb, pt_prev, orig_dev);
3664 pt_prev = ptype;
3665 }
3666 }
3667
3668 skip_taps:
3669 #ifdef CONFIG_NET_CLS_ACT
3670 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3671 if (!skb)
3672 goto unlock;
3673 ncls:
3674 #endif
3675
3676 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3677 goto drop;
3678
3679 if (vlan_tx_tag_present(skb)) {
3680 if (pt_prev) {
3681 ret = deliver_skb(skb, pt_prev, orig_dev);
3682 pt_prev = NULL;
3683 }
3684 if (vlan_do_receive(&skb))
3685 goto another_round;
3686 else if (unlikely(!skb))
3687 goto unlock;
3688 }
3689
3690 rx_handler = rcu_dereference(skb->dev->rx_handler);
3691 if (rx_handler) {
3692 if (pt_prev) {
3693 ret = deliver_skb(skb, pt_prev, orig_dev);
3694 pt_prev = NULL;
3695 }
3696 switch (rx_handler(&skb)) {
3697 case RX_HANDLER_CONSUMED:
3698 ret = NET_RX_SUCCESS;
3699 goto unlock;
3700 case RX_HANDLER_ANOTHER:
3701 goto another_round;
3702 case RX_HANDLER_EXACT:
3703 deliver_exact = true;
3704 case RX_HANDLER_PASS:
3705 break;
3706 default:
3707 BUG();
3708 }
3709 }
3710
3711 if (unlikely(vlan_tx_tag_present(skb))) {
3712 if (vlan_tx_tag_get_id(skb))
3713 skb->pkt_type = PACKET_OTHERHOST;
3714 /* Note: we might in the future use prio bits
3715 * and set skb->priority like in vlan_do_receive()
3716 * For the time being, just ignore Priority Code Point
3717 */
3718 skb->vlan_tci = 0;
3719 }
3720
3721 /* deliver only exact match when indicated */
3722 null_or_dev = deliver_exact ? skb->dev : NULL;
3723
3724 type = skb->protocol;
3725 list_for_each_entry_rcu(ptype,
3726 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3727 if (ptype->type == type &&
3728 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3729 ptype->dev == orig_dev)) {
3730 if (pt_prev)
3731 ret = deliver_skb(skb, pt_prev, orig_dev);
3732 pt_prev = ptype;
3733 }
3734 }
3735
3736 if (pt_prev) {
3737 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3738 goto drop;
3739 else
3740 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3741 } else {
3742 drop:
3743 atomic_long_inc(&skb->dev->rx_dropped);
3744 kfree_skb(skb);
3745 /* Jamal, now you will not able to escape explaining
3746 * me how you were going to use this. :-)
3747 */
3748 ret = NET_RX_DROP;
3749 }
3750
3751 unlock:
3752 rcu_read_unlock();
3753 return ret;
3754 }
3755
3756 static int __netif_receive_skb(struct sk_buff *skb)
3757 {
3758 int ret;
3759
3760 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3761 unsigned long pflags = current->flags;
3762
3763 /*
3764 * PFMEMALLOC skbs are special, they should
3765 * - be delivered to SOCK_MEMALLOC sockets only
3766 * - stay away from userspace
3767 * - have bounded memory usage
3768 *
3769 * Use PF_MEMALLOC as this saves us from propagating the allocation
3770 * context down to all allocation sites.
3771 */
3772 current->flags |= PF_MEMALLOC;
3773 ret = __netif_receive_skb_core(skb, true);
3774 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3775 } else
3776 ret = __netif_receive_skb_core(skb, false);
3777
3778 return ret;
3779 }
3780
3781 static int netif_receive_skb_internal(struct sk_buff *skb)
3782 {
3783 net_timestamp_check(netdev_tstamp_prequeue, skb);
3784
3785 if (skb_defer_rx_timestamp(skb))
3786 return NET_RX_SUCCESS;
3787
3788 #ifdef CONFIG_RPS
3789 if (static_key_false(&rps_needed)) {
3790 struct rps_dev_flow voidflow, *rflow = &voidflow;
3791 int cpu, ret;
3792
3793 rcu_read_lock();
3794
3795 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3796
3797 if (cpu >= 0) {
3798 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3799 rcu_read_unlock();
3800 return ret;
3801 }
3802 rcu_read_unlock();
3803 }
3804 #endif
3805 return __netif_receive_skb(skb);
3806 }
3807
3808 /**
3809 * netif_receive_skb - process receive buffer from network
3810 * @skb: buffer to process
3811 *
3812 * netif_receive_skb() is the main receive data processing function.
3813 * It always succeeds. The buffer may be dropped during processing
3814 * for congestion control or by the protocol layers.
3815 *
3816 * This function may only be called from softirq context and interrupts
3817 * should be enabled.
3818 *
3819 * Return values (usually ignored):
3820 * NET_RX_SUCCESS: no congestion
3821 * NET_RX_DROP: packet was dropped
3822 */
3823 int netif_receive_skb(struct sk_buff *skb)
3824 {
3825 trace_netif_receive_skb_entry(skb);
3826
3827 return netif_receive_skb_internal(skb);
3828 }
3829 EXPORT_SYMBOL(netif_receive_skb);
3830
3831 /* Network device is going away, flush any packets still pending
3832 * Called with irqs disabled.
3833 */
3834 static void flush_backlog(void *arg)
3835 {
3836 struct net_device *dev = arg;
3837 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3838 struct sk_buff *skb, *tmp;
3839
3840 rps_lock(sd);
3841 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3842 if (skb->dev == dev) {
3843 __skb_unlink(skb, &sd->input_pkt_queue);
3844 kfree_skb(skb);
3845 input_queue_head_incr(sd);
3846 }
3847 }
3848 rps_unlock(sd);
3849
3850 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3851 if (skb->dev == dev) {
3852 __skb_unlink(skb, &sd->process_queue);
3853 kfree_skb(skb);
3854 input_queue_head_incr(sd);
3855 }
3856 }
3857 }
3858
3859 static int napi_gro_complete(struct sk_buff *skb)
3860 {
3861 struct packet_offload *ptype;
3862 __be16 type = skb->protocol;
3863 struct list_head *head = &offload_base;
3864 int err = -ENOENT;
3865
3866 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3867
3868 if (NAPI_GRO_CB(skb)->count == 1) {
3869 skb_shinfo(skb)->gso_size = 0;
3870 goto out;
3871 }
3872
3873 rcu_read_lock();
3874 list_for_each_entry_rcu(ptype, head, list) {
3875 if (ptype->type != type || !ptype->callbacks.gro_complete)
3876 continue;
3877
3878 err = ptype->callbacks.gro_complete(skb, 0);
3879 break;
3880 }
3881 rcu_read_unlock();
3882
3883 if (err) {
3884 WARN_ON(&ptype->list == head);
3885 kfree_skb(skb);
3886 return NET_RX_SUCCESS;
3887 }
3888
3889 out:
3890 return netif_receive_skb_internal(skb);
3891 }
3892
3893 /* napi->gro_list contains packets ordered by age.
3894 * youngest packets at the head of it.
3895 * Complete skbs in reverse order to reduce latencies.
3896 */
3897 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3898 {
3899 struct sk_buff *skb, *prev = NULL;
3900
3901 /* scan list and build reverse chain */
3902 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3903 skb->prev = prev;
3904 prev = skb;
3905 }
3906
3907 for (skb = prev; skb; skb = prev) {
3908 skb->next = NULL;
3909
3910 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3911 return;
3912
3913 prev = skb->prev;
3914 napi_gro_complete(skb);
3915 napi->gro_count--;
3916 }
3917
3918 napi->gro_list = NULL;
3919 }
3920 EXPORT_SYMBOL(napi_gro_flush);
3921
3922 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3923 {
3924 struct sk_buff *p;
3925 unsigned int maclen = skb->dev->hard_header_len;
3926 u32 hash = skb_get_hash_raw(skb);
3927
3928 for (p = napi->gro_list; p; p = p->next) {
3929 unsigned long diffs;
3930
3931 NAPI_GRO_CB(p)->flush = 0;
3932
3933 if (hash != skb_get_hash_raw(p)) {
3934 NAPI_GRO_CB(p)->same_flow = 0;
3935 continue;
3936 }
3937
3938 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3939 diffs |= p->vlan_tci ^ skb->vlan_tci;
3940 if (maclen == ETH_HLEN)
3941 diffs |= compare_ether_header(skb_mac_header(p),
3942 skb_mac_header(skb));
3943 else if (!diffs)
3944 diffs = memcmp(skb_mac_header(p),
3945 skb_mac_header(skb),
3946 maclen);
3947 NAPI_GRO_CB(p)->same_flow = !diffs;
3948 }
3949 }
3950
3951 static void skb_gro_reset_offset(struct sk_buff *skb)
3952 {
3953 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3954 const skb_frag_t *frag0 = &pinfo->frags[0];
3955
3956 NAPI_GRO_CB(skb)->data_offset = 0;
3957 NAPI_GRO_CB(skb)->frag0 = NULL;
3958 NAPI_GRO_CB(skb)->frag0_len = 0;
3959
3960 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3961 pinfo->nr_frags &&
3962 !PageHighMem(skb_frag_page(frag0))) {
3963 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3964 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3965 }
3966 }
3967
3968 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3969 {
3970 struct skb_shared_info *pinfo = skb_shinfo(skb);
3971
3972 BUG_ON(skb->end - skb->tail < grow);
3973
3974 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3975
3976 skb->data_len -= grow;
3977 skb->tail += grow;
3978
3979 pinfo->frags[0].page_offset += grow;
3980 skb_frag_size_sub(&pinfo->frags[0], grow);
3981
3982 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3983 skb_frag_unref(skb, 0);
3984 memmove(pinfo->frags, pinfo->frags + 1,
3985 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3986 }
3987 }
3988
3989 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3990 {
3991 struct sk_buff **pp = NULL;
3992 struct packet_offload *ptype;
3993 __be16 type = skb->protocol;
3994 struct list_head *head = &offload_base;
3995 int same_flow;
3996 enum gro_result ret;
3997 int grow;
3998
3999 if (!(skb->dev->features & NETIF_F_GRO))
4000 goto normal;
4001
4002 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4003 goto normal;
4004
4005 gro_list_prepare(napi, skb);
4006
4007 rcu_read_lock();
4008 list_for_each_entry_rcu(ptype, head, list) {
4009 if (ptype->type != type || !ptype->callbacks.gro_receive)
4010 continue;
4011
4012 skb_set_network_header(skb, skb_gro_offset(skb));
4013 skb_reset_mac_len(skb);
4014 NAPI_GRO_CB(skb)->same_flow = 0;
4015 NAPI_GRO_CB(skb)->flush = 0;
4016 NAPI_GRO_CB(skb)->free = 0;
4017 NAPI_GRO_CB(skb)->udp_mark = 0;
4018
4019 /* Setup for GRO checksum validation */
4020 switch (skb->ip_summed) {
4021 case CHECKSUM_COMPLETE:
4022 NAPI_GRO_CB(skb)->csum = skb->csum;
4023 NAPI_GRO_CB(skb)->csum_valid = 1;
4024 NAPI_GRO_CB(skb)->csum_cnt = 0;
4025 break;
4026 case CHECKSUM_UNNECESSARY:
4027 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4028 NAPI_GRO_CB(skb)->csum_valid = 0;
4029 break;
4030 default:
4031 NAPI_GRO_CB(skb)->csum_cnt = 0;
4032 NAPI_GRO_CB(skb)->csum_valid = 0;
4033 }
4034
4035 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4036 break;
4037 }
4038 rcu_read_unlock();
4039
4040 if (&ptype->list == head)
4041 goto normal;
4042
4043 same_flow = NAPI_GRO_CB(skb)->same_flow;
4044 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4045
4046 if (pp) {
4047 struct sk_buff *nskb = *pp;
4048
4049 *pp = nskb->next;
4050 nskb->next = NULL;
4051 napi_gro_complete(nskb);
4052 napi->gro_count--;
4053 }
4054
4055 if (same_flow)
4056 goto ok;
4057
4058 if (NAPI_GRO_CB(skb)->flush)
4059 goto normal;
4060
4061 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4062 struct sk_buff *nskb = napi->gro_list;
4063
4064 /* locate the end of the list to select the 'oldest' flow */
4065 while (nskb->next) {
4066 pp = &nskb->next;
4067 nskb = *pp;
4068 }
4069 *pp = NULL;
4070 nskb->next = NULL;
4071 napi_gro_complete(nskb);
4072 } else {
4073 napi->gro_count++;
4074 }
4075 NAPI_GRO_CB(skb)->count = 1;
4076 NAPI_GRO_CB(skb)->age = jiffies;
4077 NAPI_GRO_CB(skb)->last = skb;
4078 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4079 skb->next = napi->gro_list;
4080 napi->gro_list = skb;
4081 ret = GRO_HELD;
4082
4083 pull:
4084 grow = skb_gro_offset(skb) - skb_headlen(skb);
4085 if (grow > 0)
4086 gro_pull_from_frag0(skb, grow);
4087 ok:
4088 return ret;
4089
4090 normal:
4091 ret = GRO_NORMAL;
4092 goto pull;
4093 }
4094
4095 struct packet_offload *gro_find_receive_by_type(__be16 type)
4096 {
4097 struct list_head *offload_head = &offload_base;
4098 struct packet_offload *ptype;
4099
4100 list_for_each_entry_rcu(ptype, offload_head, list) {
4101 if (ptype->type != type || !ptype->callbacks.gro_receive)
4102 continue;
4103 return ptype;
4104 }
4105 return NULL;
4106 }
4107 EXPORT_SYMBOL(gro_find_receive_by_type);
4108
4109 struct packet_offload *gro_find_complete_by_type(__be16 type)
4110 {
4111 struct list_head *offload_head = &offload_base;
4112 struct packet_offload *ptype;
4113
4114 list_for_each_entry_rcu(ptype, offload_head, list) {
4115 if (ptype->type != type || !ptype->callbacks.gro_complete)
4116 continue;
4117 return ptype;
4118 }
4119 return NULL;
4120 }
4121 EXPORT_SYMBOL(gro_find_complete_by_type);
4122
4123 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4124 {
4125 switch (ret) {
4126 case GRO_NORMAL:
4127 if (netif_receive_skb_internal(skb))
4128 ret = GRO_DROP;
4129 break;
4130
4131 case GRO_DROP:
4132 kfree_skb(skb);
4133 break;
4134
4135 case GRO_MERGED_FREE:
4136 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4137 kmem_cache_free(skbuff_head_cache, skb);
4138 else
4139 __kfree_skb(skb);
4140 break;
4141
4142 case GRO_HELD:
4143 case GRO_MERGED:
4144 break;
4145 }
4146
4147 return ret;
4148 }
4149
4150 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4151 {
4152 trace_napi_gro_receive_entry(skb);
4153
4154 skb_gro_reset_offset(skb);
4155
4156 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4157 }
4158 EXPORT_SYMBOL(napi_gro_receive);
4159
4160 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4161 {
4162 if (unlikely(skb->pfmemalloc)) {
4163 consume_skb(skb);
4164 return;
4165 }
4166 __skb_pull(skb, skb_headlen(skb));
4167 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4168 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4169 skb->vlan_tci = 0;
4170 skb->dev = napi->dev;
4171 skb->skb_iif = 0;
4172 skb->encapsulation = 0;
4173 skb_shinfo(skb)->gso_type = 0;
4174 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4175
4176 napi->skb = skb;
4177 }
4178
4179 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4180 {
4181 struct sk_buff *skb = napi->skb;
4182
4183 if (!skb) {
4184 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4185 napi->skb = skb;
4186 }
4187 return skb;
4188 }
4189 EXPORT_SYMBOL(napi_get_frags);
4190
4191 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4192 struct sk_buff *skb,
4193 gro_result_t ret)
4194 {
4195 switch (ret) {
4196 case GRO_NORMAL:
4197 case GRO_HELD:
4198 __skb_push(skb, ETH_HLEN);
4199 skb->protocol = eth_type_trans(skb, skb->dev);
4200 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4201 ret = GRO_DROP;
4202 break;
4203
4204 case GRO_DROP:
4205 case GRO_MERGED_FREE:
4206 napi_reuse_skb(napi, skb);
4207 break;
4208
4209 case GRO_MERGED:
4210 break;
4211 }
4212
4213 return ret;
4214 }
4215
4216 /* Upper GRO stack assumes network header starts at gro_offset=0
4217 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4218 * We copy ethernet header into skb->data to have a common layout.
4219 */
4220 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4221 {
4222 struct sk_buff *skb = napi->skb;
4223 const struct ethhdr *eth;
4224 unsigned int hlen = sizeof(*eth);
4225
4226 napi->skb = NULL;
4227
4228 skb_reset_mac_header(skb);
4229 skb_gro_reset_offset(skb);
4230
4231 eth = skb_gro_header_fast(skb, 0);
4232 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4233 eth = skb_gro_header_slow(skb, hlen, 0);
4234 if (unlikely(!eth)) {
4235 napi_reuse_skb(napi, skb);
4236 return NULL;
4237 }
4238 } else {
4239 gro_pull_from_frag0(skb, hlen);
4240 NAPI_GRO_CB(skb)->frag0 += hlen;
4241 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4242 }
4243 __skb_pull(skb, hlen);
4244
4245 /*
4246 * This works because the only protocols we care about don't require
4247 * special handling.
4248 * We'll fix it up properly in napi_frags_finish()
4249 */
4250 skb->protocol = eth->h_proto;
4251
4252 return skb;
4253 }
4254
4255 gro_result_t napi_gro_frags(struct napi_struct *napi)
4256 {
4257 struct sk_buff *skb = napi_frags_skb(napi);
4258
4259 if (!skb)
4260 return GRO_DROP;
4261
4262 trace_napi_gro_frags_entry(skb);
4263
4264 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4265 }
4266 EXPORT_SYMBOL(napi_gro_frags);
4267
4268 /* Compute the checksum from gro_offset and return the folded value
4269 * after adding in any pseudo checksum.
4270 */
4271 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4272 {
4273 __wsum wsum;
4274 __sum16 sum;
4275
4276 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4277
4278 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4279 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4280 if (likely(!sum)) {
4281 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4282 !skb->csum_complete_sw)
4283 netdev_rx_csum_fault(skb->dev);
4284 }
4285
4286 NAPI_GRO_CB(skb)->csum = wsum;
4287 NAPI_GRO_CB(skb)->csum_valid = 1;
4288
4289 return sum;
4290 }
4291 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4292
4293 /*
4294 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4295 * Note: called with local irq disabled, but exits with local irq enabled.
4296 */
4297 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4298 {
4299 #ifdef CONFIG_RPS
4300 struct softnet_data *remsd = sd->rps_ipi_list;
4301
4302 if (remsd) {
4303 sd->rps_ipi_list = NULL;
4304
4305 local_irq_enable();
4306
4307 /* Send pending IPI's to kick RPS processing on remote cpus. */
4308 while (remsd) {
4309 struct softnet_data *next = remsd->rps_ipi_next;
4310
4311 if (cpu_online(remsd->cpu))
4312 smp_call_function_single_async(remsd->cpu,
4313 &remsd->csd);
4314 remsd = next;
4315 }
4316 } else
4317 #endif
4318 local_irq_enable();
4319 }
4320
4321 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4322 {
4323 #ifdef CONFIG_RPS
4324 return sd->rps_ipi_list != NULL;
4325 #else
4326 return false;
4327 #endif
4328 }
4329
4330 static int process_backlog(struct napi_struct *napi, int quota)
4331 {
4332 int work = 0;
4333 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4334
4335 /* Check if we have pending ipi, its better to send them now,
4336 * not waiting net_rx_action() end.
4337 */
4338 if (sd_has_rps_ipi_waiting(sd)) {
4339 local_irq_disable();
4340 net_rps_action_and_irq_enable(sd);
4341 }
4342
4343 napi->weight = weight_p;
4344 local_irq_disable();
4345 while (1) {
4346 struct sk_buff *skb;
4347
4348 while ((skb = __skb_dequeue(&sd->process_queue))) {
4349 local_irq_enable();
4350 __netif_receive_skb(skb);
4351 local_irq_disable();
4352 input_queue_head_incr(sd);
4353 if (++work >= quota) {
4354 local_irq_enable();
4355 return work;
4356 }
4357 }
4358
4359 rps_lock(sd);
4360 if (skb_queue_empty(&sd->input_pkt_queue)) {
4361 /*
4362 * Inline a custom version of __napi_complete().
4363 * only current cpu owns and manipulates this napi,
4364 * and NAPI_STATE_SCHED is the only possible flag set
4365 * on backlog.
4366 * We can use a plain write instead of clear_bit(),
4367 * and we dont need an smp_mb() memory barrier.
4368 */
4369 napi->state = 0;
4370 rps_unlock(sd);
4371
4372 break;
4373 }
4374
4375 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4376 &sd->process_queue);
4377 rps_unlock(sd);
4378 }
4379 local_irq_enable();
4380
4381 return work;
4382 }
4383
4384 /**
4385 * __napi_schedule - schedule for receive
4386 * @n: entry to schedule
4387 *
4388 * The entry's receive function will be scheduled to run.
4389 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4390 */
4391 void __napi_schedule(struct napi_struct *n)
4392 {
4393 unsigned long flags;
4394
4395 local_irq_save(flags);
4396 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4397 local_irq_restore(flags);
4398 }
4399 EXPORT_SYMBOL(__napi_schedule);
4400
4401 /**
4402 * __napi_schedule_irqoff - schedule for receive
4403 * @n: entry to schedule
4404 *
4405 * Variant of __napi_schedule() assuming hard irqs are masked
4406 */
4407 void __napi_schedule_irqoff(struct napi_struct *n)
4408 {
4409 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4410 }
4411 EXPORT_SYMBOL(__napi_schedule_irqoff);
4412
4413 void __napi_complete(struct napi_struct *n)
4414 {
4415 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4416
4417 list_del_init(&n->poll_list);
4418 smp_mb__before_atomic();
4419 clear_bit(NAPI_STATE_SCHED, &n->state);
4420 }
4421 EXPORT_SYMBOL(__napi_complete);
4422
4423 void napi_complete_done(struct napi_struct *n, int work_done)
4424 {
4425 unsigned long flags;
4426
4427 /*
4428 * don't let napi dequeue from the cpu poll list
4429 * just in case its running on a different cpu
4430 */
4431 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4432 return;
4433
4434 if (n->gro_list) {
4435 unsigned long timeout = 0;
4436
4437 if (work_done)
4438 timeout = n->dev->gro_flush_timeout;
4439
4440 if (timeout)
4441 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4442 HRTIMER_MODE_REL_PINNED);
4443 else
4444 napi_gro_flush(n, false);
4445 }
4446 if (likely(list_empty(&n->poll_list))) {
4447 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4448 } else {
4449 /* If n->poll_list is not empty, we need to mask irqs */
4450 local_irq_save(flags);
4451 __napi_complete(n);
4452 local_irq_restore(flags);
4453 }
4454 }
4455 EXPORT_SYMBOL(napi_complete_done);
4456
4457 /* must be called under rcu_read_lock(), as we dont take a reference */
4458 struct napi_struct *napi_by_id(unsigned int napi_id)
4459 {
4460 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4461 struct napi_struct *napi;
4462
4463 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4464 if (napi->napi_id == napi_id)
4465 return napi;
4466
4467 return NULL;
4468 }
4469 EXPORT_SYMBOL_GPL(napi_by_id);
4470
4471 void napi_hash_add(struct napi_struct *napi)
4472 {
4473 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4474
4475 spin_lock(&napi_hash_lock);
4476
4477 /* 0 is not a valid id, we also skip an id that is taken
4478 * we expect both events to be extremely rare
4479 */
4480 napi->napi_id = 0;
4481 while (!napi->napi_id) {
4482 napi->napi_id = ++napi_gen_id;
4483 if (napi_by_id(napi->napi_id))
4484 napi->napi_id = 0;
4485 }
4486
4487 hlist_add_head_rcu(&napi->napi_hash_node,
4488 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4489
4490 spin_unlock(&napi_hash_lock);
4491 }
4492 }
4493 EXPORT_SYMBOL_GPL(napi_hash_add);
4494
4495 /* Warning : caller is responsible to make sure rcu grace period
4496 * is respected before freeing memory containing @napi
4497 */
4498 void napi_hash_del(struct napi_struct *napi)
4499 {
4500 spin_lock(&napi_hash_lock);
4501
4502 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4503 hlist_del_rcu(&napi->napi_hash_node);
4504
4505 spin_unlock(&napi_hash_lock);
4506 }
4507 EXPORT_SYMBOL_GPL(napi_hash_del);
4508
4509 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4510 {
4511 struct napi_struct *napi;
4512
4513 napi = container_of(timer, struct napi_struct, timer);
4514 if (napi->gro_list)
4515 napi_schedule(napi);
4516
4517 return HRTIMER_NORESTART;
4518 }
4519
4520 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4521 int (*poll)(struct napi_struct *, int), int weight)
4522 {
4523 INIT_LIST_HEAD(&napi->poll_list);
4524 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4525 napi->timer.function = napi_watchdog;
4526 napi->gro_count = 0;
4527 napi->gro_list = NULL;
4528 napi->skb = NULL;
4529 napi->poll = poll;
4530 if (weight > NAPI_POLL_WEIGHT)
4531 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4532 weight, dev->name);
4533 napi->weight = weight;
4534 list_add(&napi->dev_list, &dev->napi_list);
4535 napi->dev = dev;
4536 #ifdef CONFIG_NETPOLL
4537 spin_lock_init(&napi->poll_lock);
4538 napi->poll_owner = -1;
4539 #endif
4540 set_bit(NAPI_STATE_SCHED, &napi->state);
4541 }
4542 EXPORT_SYMBOL(netif_napi_add);
4543
4544 void napi_disable(struct napi_struct *n)
4545 {
4546 might_sleep();
4547 set_bit(NAPI_STATE_DISABLE, &n->state);
4548
4549 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4550 msleep(1);
4551
4552 hrtimer_cancel(&n->timer);
4553
4554 clear_bit(NAPI_STATE_DISABLE, &n->state);
4555 }
4556 EXPORT_SYMBOL(napi_disable);
4557
4558 void netif_napi_del(struct napi_struct *napi)
4559 {
4560 list_del_init(&napi->dev_list);
4561 napi_free_frags(napi);
4562
4563 kfree_skb_list(napi->gro_list);
4564 napi->gro_list = NULL;
4565 napi->gro_count = 0;
4566 }
4567 EXPORT_SYMBOL(netif_napi_del);
4568
4569 static void net_rx_action(struct softirq_action *h)
4570 {
4571 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4572 unsigned long time_limit = jiffies + 2;
4573 int budget = netdev_budget;
4574 LIST_HEAD(list);
4575 LIST_HEAD(repoll);
4576 void *have;
4577
4578 local_irq_disable();
4579 list_splice_init(&sd->poll_list, &list);
4580 local_irq_enable();
4581
4582 while (!list_empty(&list)) {
4583 struct napi_struct *n;
4584 int work, weight;
4585
4586 /* If softirq window is exhausted then punt.
4587 * Allow this to run for 2 jiffies since which will allow
4588 * an average latency of 1.5/HZ.
4589 */
4590 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4591 goto softnet_break;
4592
4593
4594 n = list_first_entry(&list, struct napi_struct, poll_list);
4595 list_del_init(&n->poll_list);
4596
4597 have = netpoll_poll_lock(n);
4598
4599 weight = n->weight;
4600
4601 /* This NAPI_STATE_SCHED test is for avoiding a race
4602 * with netpoll's poll_napi(). Only the entity which
4603 * obtains the lock and sees NAPI_STATE_SCHED set will
4604 * actually make the ->poll() call. Therefore we avoid
4605 * accidentally calling ->poll() when NAPI is not scheduled.
4606 */
4607 work = 0;
4608 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4609 work = n->poll(n, weight);
4610 trace_napi_poll(n);
4611 }
4612
4613 WARN_ON_ONCE(work > weight);
4614
4615 budget -= work;
4616
4617 /* Drivers must not modify the NAPI state if they
4618 * consume the entire weight. In such cases this code
4619 * still "owns" the NAPI instance and therefore can
4620 * move the instance around on the list at-will.
4621 */
4622 if (unlikely(work == weight)) {
4623 if (unlikely(napi_disable_pending(n))) {
4624 napi_complete(n);
4625 } else {
4626 if (n->gro_list) {
4627 /* flush too old packets
4628 * If HZ < 1000, flush all packets.
4629 */
4630 napi_gro_flush(n, HZ >= 1000);
4631 }
4632 list_add_tail(&n->poll_list, &repoll);
4633 }
4634 }
4635
4636 netpoll_poll_unlock(have);
4637 }
4638
4639 if (!sd_has_rps_ipi_waiting(sd) &&
4640 list_empty(&list) &&
4641 list_empty(&repoll))
4642 return;
4643 out:
4644 local_irq_disable();
4645
4646 list_splice_tail_init(&sd->poll_list, &list);
4647 list_splice_tail(&repoll, &list);
4648 list_splice(&list, &sd->poll_list);
4649 if (!list_empty(&sd->poll_list))
4650 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4651
4652 net_rps_action_and_irq_enable(sd);
4653
4654 return;
4655
4656 softnet_break:
4657 sd->time_squeeze++;
4658 goto out;
4659 }
4660
4661 struct netdev_adjacent {
4662 struct net_device *dev;
4663
4664 /* upper master flag, there can only be one master device per list */
4665 bool master;
4666
4667 /* counter for the number of times this device was added to us */
4668 u16 ref_nr;
4669
4670 /* private field for the users */
4671 void *private;
4672
4673 struct list_head list;
4674 struct rcu_head rcu;
4675 };
4676
4677 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4678 struct net_device *adj_dev,
4679 struct list_head *adj_list)
4680 {
4681 struct netdev_adjacent *adj;
4682
4683 list_for_each_entry(adj, adj_list, list) {
4684 if (adj->dev == adj_dev)
4685 return adj;
4686 }
4687 return NULL;
4688 }
4689
4690 /**
4691 * netdev_has_upper_dev - Check if device is linked to an upper device
4692 * @dev: device
4693 * @upper_dev: upper device to check
4694 *
4695 * Find out if a device is linked to specified upper device and return true
4696 * in case it is. Note that this checks only immediate upper device,
4697 * not through a complete stack of devices. The caller must hold the RTNL lock.
4698 */
4699 bool netdev_has_upper_dev(struct net_device *dev,
4700 struct net_device *upper_dev)
4701 {
4702 ASSERT_RTNL();
4703
4704 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4705 }
4706 EXPORT_SYMBOL(netdev_has_upper_dev);
4707
4708 /**
4709 * netdev_has_any_upper_dev - Check if device is linked to some device
4710 * @dev: device
4711 *
4712 * Find out if a device is linked to an upper device and return true in case
4713 * it is. The caller must hold the RTNL lock.
4714 */
4715 static bool netdev_has_any_upper_dev(struct net_device *dev)
4716 {
4717 ASSERT_RTNL();
4718
4719 return !list_empty(&dev->all_adj_list.upper);
4720 }
4721
4722 /**
4723 * netdev_master_upper_dev_get - Get master upper device
4724 * @dev: device
4725 *
4726 * Find a master upper device and return pointer to it or NULL in case
4727 * it's not there. The caller must hold the RTNL lock.
4728 */
4729 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4730 {
4731 struct netdev_adjacent *upper;
4732
4733 ASSERT_RTNL();
4734
4735 if (list_empty(&dev->adj_list.upper))
4736 return NULL;
4737
4738 upper = list_first_entry(&dev->adj_list.upper,
4739 struct netdev_adjacent, list);
4740 if (likely(upper->master))
4741 return upper->dev;
4742 return NULL;
4743 }
4744 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4745
4746 void *netdev_adjacent_get_private(struct list_head *adj_list)
4747 {
4748 struct netdev_adjacent *adj;
4749
4750 adj = list_entry(adj_list, struct netdev_adjacent, list);
4751
4752 return adj->private;
4753 }
4754 EXPORT_SYMBOL(netdev_adjacent_get_private);
4755
4756 /**
4757 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4758 * @dev: device
4759 * @iter: list_head ** of the current position
4760 *
4761 * Gets the next device from the dev's upper list, starting from iter
4762 * position. The caller must hold RCU read lock.
4763 */
4764 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4765 struct list_head **iter)
4766 {
4767 struct netdev_adjacent *upper;
4768
4769 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4770
4771 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4772
4773 if (&upper->list == &dev->adj_list.upper)
4774 return NULL;
4775
4776 *iter = &upper->list;
4777
4778 return upper->dev;
4779 }
4780 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4781
4782 /**
4783 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4784 * @dev: device
4785 * @iter: list_head ** of the current position
4786 *
4787 * Gets the next device from the dev's upper list, starting from iter
4788 * position. The caller must hold RCU read lock.
4789 */
4790 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4791 struct list_head **iter)
4792 {
4793 struct netdev_adjacent *upper;
4794
4795 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4796
4797 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4798
4799 if (&upper->list == &dev->all_adj_list.upper)
4800 return NULL;
4801
4802 *iter = &upper->list;
4803
4804 return upper->dev;
4805 }
4806 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4807
4808 /**
4809 * netdev_lower_get_next_private - Get the next ->private from the
4810 * lower neighbour list
4811 * @dev: device
4812 * @iter: list_head ** of the current position
4813 *
4814 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4815 * list, starting from iter position. The caller must hold either hold the
4816 * RTNL lock or its own locking that guarantees that the neighbour lower
4817 * list will remain unchainged.
4818 */
4819 void *netdev_lower_get_next_private(struct net_device *dev,
4820 struct list_head **iter)
4821 {
4822 struct netdev_adjacent *lower;
4823
4824 lower = list_entry(*iter, struct netdev_adjacent, list);
4825
4826 if (&lower->list == &dev->adj_list.lower)
4827 return NULL;
4828
4829 *iter = lower->list.next;
4830
4831 return lower->private;
4832 }
4833 EXPORT_SYMBOL(netdev_lower_get_next_private);
4834
4835 /**
4836 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4837 * lower neighbour list, RCU
4838 * variant
4839 * @dev: device
4840 * @iter: list_head ** of the current position
4841 *
4842 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4843 * list, starting from iter position. The caller must hold RCU read lock.
4844 */
4845 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4846 struct list_head **iter)
4847 {
4848 struct netdev_adjacent *lower;
4849
4850 WARN_ON_ONCE(!rcu_read_lock_held());
4851
4852 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4853
4854 if (&lower->list == &dev->adj_list.lower)
4855 return NULL;
4856
4857 *iter = &lower->list;
4858
4859 return lower->private;
4860 }
4861 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4862
4863 /**
4864 * netdev_lower_get_next - Get the next device from the lower neighbour
4865 * list
4866 * @dev: device
4867 * @iter: list_head ** of the current position
4868 *
4869 * Gets the next netdev_adjacent from the dev's lower neighbour
4870 * list, starting from iter position. The caller must hold RTNL lock or
4871 * its own locking that guarantees that the neighbour lower
4872 * list will remain unchainged.
4873 */
4874 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4875 {
4876 struct netdev_adjacent *lower;
4877
4878 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4879
4880 if (&lower->list == &dev->adj_list.lower)
4881 return NULL;
4882
4883 *iter = &lower->list;
4884
4885 return lower->dev;
4886 }
4887 EXPORT_SYMBOL(netdev_lower_get_next);
4888
4889 /**
4890 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4891 * lower neighbour list, RCU
4892 * variant
4893 * @dev: device
4894 *
4895 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4896 * list. The caller must hold RCU read lock.
4897 */
4898 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4899 {
4900 struct netdev_adjacent *lower;
4901
4902 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4903 struct netdev_adjacent, list);
4904 if (lower)
4905 return lower->private;
4906 return NULL;
4907 }
4908 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4909
4910 /**
4911 * netdev_master_upper_dev_get_rcu - Get master upper device
4912 * @dev: device
4913 *
4914 * Find a master upper device and return pointer to it or NULL in case
4915 * it's not there. The caller must hold the RCU read lock.
4916 */
4917 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4918 {
4919 struct netdev_adjacent *upper;
4920
4921 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4922 struct netdev_adjacent, list);
4923 if (upper && likely(upper->master))
4924 return upper->dev;
4925 return NULL;
4926 }
4927 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4928
4929 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4930 struct net_device *adj_dev,
4931 struct list_head *dev_list)
4932 {
4933 char linkname[IFNAMSIZ+7];
4934 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4935 "upper_%s" : "lower_%s", adj_dev->name);
4936 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4937 linkname);
4938 }
4939 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4940 char *name,
4941 struct list_head *dev_list)
4942 {
4943 char linkname[IFNAMSIZ+7];
4944 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4945 "upper_%s" : "lower_%s", name);
4946 sysfs_remove_link(&(dev->dev.kobj), linkname);
4947 }
4948
4949 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4950 struct net_device *adj_dev,
4951 struct list_head *dev_list)
4952 {
4953 return (dev_list == &dev->adj_list.upper ||
4954 dev_list == &dev->adj_list.lower) &&
4955 net_eq(dev_net(dev), dev_net(adj_dev));
4956 }
4957
4958 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4959 struct net_device *adj_dev,
4960 struct list_head *dev_list,
4961 void *private, bool master)
4962 {
4963 struct netdev_adjacent *adj;
4964 int ret;
4965
4966 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4967
4968 if (adj) {
4969 adj->ref_nr++;
4970 return 0;
4971 }
4972
4973 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4974 if (!adj)
4975 return -ENOMEM;
4976
4977 adj->dev = adj_dev;
4978 adj->master = master;
4979 adj->ref_nr = 1;
4980 adj->private = private;
4981 dev_hold(adj_dev);
4982
4983 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4984 adj_dev->name, dev->name, adj_dev->name);
4985
4986 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
4987 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4988 if (ret)
4989 goto free_adj;
4990 }
4991
4992 /* Ensure that master link is always the first item in list. */
4993 if (master) {
4994 ret = sysfs_create_link(&(dev->dev.kobj),
4995 &(adj_dev->dev.kobj), "master");
4996 if (ret)
4997 goto remove_symlinks;
4998
4999 list_add_rcu(&adj->list, dev_list);
5000 } else {
5001 list_add_tail_rcu(&adj->list, dev_list);
5002 }
5003
5004 return 0;
5005
5006 remove_symlinks:
5007 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5008 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5009 free_adj:
5010 kfree(adj);
5011 dev_put(adj_dev);
5012
5013 return ret;
5014 }
5015
5016 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5017 struct net_device *adj_dev,
5018 struct list_head *dev_list)
5019 {
5020 struct netdev_adjacent *adj;
5021
5022 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5023
5024 if (!adj) {
5025 pr_err("tried to remove device %s from %s\n",
5026 dev->name, adj_dev->name);
5027 BUG();
5028 }
5029
5030 if (adj->ref_nr > 1) {
5031 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5032 adj->ref_nr-1);
5033 adj->ref_nr--;
5034 return;
5035 }
5036
5037 if (adj->master)
5038 sysfs_remove_link(&(dev->dev.kobj), "master");
5039
5040 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5041 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5042
5043 list_del_rcu(&adj->list);
5044 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5045 adj_dev->name, dev->name, adj_dev->name);
5046 dev_put(adj_dev);
5047 kfree_rcu(adj, rcu);
5048 }
5049
5050 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5051 struct net_device *upper_dev,
5052 struct list_head *up_list,
5053 struct list_head *down_list,
5054 void *private, bool master)
5055 {
5056 int ret;
5057
5058 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5059 master);
5060 if (ret)
5061 return ret;
5062
5063 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5064 false);
5065 if (ret) {
5066 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5067 return ret;
5068 }
5069
5070 return 0;
5071 }
5072
5073 static int __netdev_adjacent_dev_link(struct net_device *dev,
5074 struct net_device *upper_dev)
5075 {
5076 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5077 &dev->all_adj_list.upper,
5078 &upper_dev->all_adj_list.lower,
5079 NULL, false);
5080 }
5081
5082 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5083 struct net_device *upper_dev,
5084 struct list_head *up_list,
5085 struct list_head *down_list)
5086 {
5087 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5088 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5089 }
5090
5091 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5092 struct net_device *upper_dev)
5093 {
5094 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5095 &dev->all_adj_list.upper,
5096 &upper_dev->all_adj_list.lower);
5097 }
5098
5099 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5100 struct net_device *upper_dev,
5101 void *private, bool master)
5102 {
5103 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5104
5105 if (ret)
5106 return ret;
5107
5108 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5109 &dev->adj_list.upper,
5110 &upper_dev->adj_list.lower,
5111 private, master);
5112 if (ret) {
5113 __netdev_adjacent_dev_unlink(dev, upper_dev);
5114 return ret;
5115 }
5116
5117 return 0;
5118 }
5119
5120 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5121 struct net_device *upper_dev)
5122 {
5123 __netdev_adjacent_dev_unlink(dev, upper_dev);
5124 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5125 &dev->adj_list.upper,
5126 &upper_dev->adj_list.lower);
5127 }
5128
5129 static int __netdev_upper_dev_link(struct net_device *dev,
5130 struct net_device *upper_dev, bool master,
5131 void *private)
5132 {
5133 struct netdev_adjacent *i, *j, *to_i, *to_j;
5134 int ret = 0;
5135
5136 ASSERT_RTNL();
5137
5138 if (dev == upper_dev)
5139 return -EBUSY;
5140
5141 /* To prevent loops, check if dev is not upper device to upper_dev. */
5142 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5143 return -EBUSY;
5144
5145 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5146 return -EEXIST;
5147
5148 if (master && netdev_master_upper_dev_get(dev))
5149 return -EBUSY;
5150
5151 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5152 master);
5153 if (ret)
5154 return ret;
5155
5156 /* Now that we linked these devs, make all the upper_dev's
5157 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5158 * versa, and don't forget the devices itself. All of these
5159 * links are non-neighbours.
5160 */
5161 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5162 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5163 pr_debug("Interlinking %s with %s, non-neighbour\n",
5164 i->dev->name, j->dev->name);
5165 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5166 if (ret)
5167 goto rollback_mesh;
5168 }
5169 }
5170
5171 /* add dev to every upper_dev's upper device */
5172 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5173 pr_debug("linking %s's upper device %s with %s\n",
5174 upper_dev->name, i->dev->name, dev->name);
5175 ret = __netdev_adjacent_dev_link(dev, i->dev);
5176 if (ret)
5177 goto rollback_upper_mesh;
5178 }
5179
5180 /* add upper_dev to every dev's lower device */
5181 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5182 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5183 i->dev->name, upper_dev->name);
5184 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5185 if (ret)
5186 goto rollback_lower_mesh;
5187 }
5188
5189 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5190 return 0;
5191
5192 rollback_lower_mesh:
5193 to_i = i;
5194 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5195 if (i == to_i)
5196 break;
5197 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5198 }
5199
5200 i = NULL;
5201
5202 rollback_upper_mesh:
5203 to_i = i;
5204 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5205 if (i == to_i)
5206 break;
5207 __netdev_adjacent_dev_unlink(dev, i->dev);
5208 }
5209
5210 i = j = NULL;
5211
5212 rollback_mesh:
5213 to_i = i;
5214 to_j = j;
5215 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5216 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5217 if (i == to_i && j == to_j)
5218 break;
5219 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5220 }
5221 if (i == to_i)
5222 break;
5223 }
5224
5225 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5226
5227 return ret;
5228 }
5229
5230 /**
5231 * netdev_upper_dev_link - Add a link to the upper device
5232 * @dev: device
5233 * @upper_dev: new upper device
5234 *
5235 * Adds a link to device which is upper to this one. The caller must hold
5236 * the RTNL lock. On a failure a negative errno code is returned.
5237 * On success the reference counts are adjusted and the function
5238 * returns zero.
5239 */
5240 int netdev_upper_dev_link(struct net_device *dev,
5241 struct net_device *upper_dev)
5242 {
5243 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5244 }
5245 EXPORT_SYMBOL(netdev_upper_dev_link);
5246
5247 /**
5248 * netdev_master_upper_dev_link - Add a master link to the upper device
5249 * @dev: device
5250 * @upper_dev: new upper device
5251 *
5252 * Adds a link to device which is upper to this one. In this case, only
5253 * one master upper device can be linked, although other non-master devices
5254 * might be linked as well. The caller must hold the RTNL lock.
5255 * On a failure a negative errno code is returned. On success the reference
5256 * counts are adjusted and the function returns zero.
5257 */
5258 int netdev_master_upper_dev_link(struct net_device *dev,
5259 struct net_device *upper_dev)
5260 {
5261 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5262 }
5263 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5264
5265 int netdev_master_upper_dev_link_private(struct net_device *dev,
5266 struct net_device *upper_dev,
5267 void *private)
5268 {
5269 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5270 }
5271 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5272
5273 /**
5274 * netdev_upper_dev_unlink - Removes a link to upper device
5275 * @dev: device
5276 * @upper_dev: new upper device
5277 *
5278 * Removes a link to device which is upper to this one. The caller must hold
5279 * the RTNL lock.
5280 */
5281 void netdev_upper_dev_unlink(struct net_device *dev,
5282 struct net_device *upper_dev)
5283 {
5284 struct netdev_adjacent *i, *j;
5285 ASSERT_RTNL();
5286
5287 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5288
5289 /* Here is the tricky part. We must remove all dev's lower
5290 * devices from all upper_dev's upper devices and vice
5291 * versa, to maintain the graph relationship.
5292 */
5293 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5294 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5295 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5296
5297 /* remove also the devices itself from lower/upper device
5298 * list
5299 */
5300 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5301 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5302
5303 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5304 __netdev_adjacent_dev_unlink(dev, i->dev);
5305
5306 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5307 }
5308 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5309
5310 void netdev_adjacent_add_links(struct net_device *dev)
5311 {
5312 struct netdev_adjacent *iter;
5313
5314 struct net *net = dev_net(dev);
5315
5316 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5317 if (!net_eq(net,dev_net(iter->dev)))
5318 continue;
5319 netdev_adjacent_sysfs_add(iter->dev, dev,
5320 &iter->dev->adj_list.lower);
5321 netdev_adjacent_sysfs_add(dev, iter->dev,
5322 &dev->adj_list.upper);
5323 }
5324
5325 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5326 if (!net_eq(net,dev_net(iter->dev)))
5327 continue;
5328 netdev_adjacent_sysfs_add(iter->dev, dev,
5329 &iter->dev->adj_list.upper);
5330 netdev_adjacent_sysfs_add(dev, iter->dev,
5331 &dev->adj_list.lower);
5332 }
5333 }
5334
5335 void netdev_adjacent_del_links(struct net_device *dev)
5336 {
5337 struct netdev_adjacent *iter;
5338
5339 struct net *net = dev_net(dev);
5340
5341 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5342 if (!net_eq(net,dev_net(iter->dev)))
5343 continue;
5344 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5345 &iter->dev->adj_list.lower);
5346 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5347 &dev->adj_list.upper);
5348 }
5349
5350 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5351 if (!net_eq(net,dev_net(iter->dev)))
5352 continue;
5353 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5354 &iter->dev->adj_list.upper);
5355 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5356 &dev->adj_list.lower);
5357 }
5358 }
5359
5360 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5361 {
5362 struct netdev_adjacent *iter;
5363
5364 struct net *net = dev_net(dev);
5365
5366 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5367 if (!net_eq(net,dev_net(iter->dev)))
5368 continue;
5369 netdev_adjacent_sysfs_del(iter->dev, oldname,
5370 &iter->dev->adj_list.lower);
5371 netdev_adjacent_sysfs_add(iter->dev, dev,
5372 &iter->dev->adj_list.lower);
5373 }
5374
5375 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5376 if (!net_eq(net,dev_net(iter->dev)))
5377 continue;
5378 netdev_adjacent_sysfs_del(iter->dev, oldname,
5379 &iter->dev->adj_list.upper);
5380 netdev_adjacent_sysfs_add(iter->dev, dev,
5381 &iter->dev->adj_list.upper);
5382 }
5383 }
5384
5385 void *netdev_lower_dev_get_private(struct net_device *dev,
5386 struct net_device *lower_dev)
5387 {
5388 struct netdev_adjacent *lower;
5389
5390 if (!lower_dev)
5391 return NULL;
5392 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5393 if (!lower)
5394 return NULL;
5395
5396 return lower->private;
5397 }
5398 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5399
5400
5401 int dev_get_nest_level(struct net_device *dev,
5402 bool (*type_check)(struct net_device *dev))
5403 {
5404 struct net_device *lower = NULL;
5405 struct list_head *iter;
5406 int max_nest = -1;
5407 int nest;
5408
5409 ASSERT_RTNL();
5410
5411 netdev_for_each_lower_dev(dev, lower, iter) {
5412 nest = dev_get_nest_level(lower, type_check);
5413 if (max_nest < nest)
5414 max_nest = nest;
5415 }
5416
5417 if (type_check(dev))
5418 max_nest++;
5419
5420 return max_nest;
5421 }
5422 EXPORT_SYMBOL(dev_get_nest_level);
5423
5424 static void dev_change_rx_flags(struct net_device *dev, int flags)
5425 {
5426 const struct net_device_ops *ops = dev->netdev_ops;
5427
5428 if (ops->ndo_change_rx_flags)
5429 ops->ndo_change_rx_flags(dev, flags);
5430 }
5431
5432 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5433 {
5434 unsigned int old_flags = dev->flags;
5435 kuid_t uid;
5436 kgid_t gid;
5437
5438 ASSERT_RTNL();
5439
5440 dev->flags |= IFF_PROMISC;
5441 dev->promiscuity += inc;
5442 if (dev->promiscuity == 0) {
5443 /*
5444 * Avoid overflow.
5445 * If inc causes overflow, untouch promisc and return error.
5446 */
5447 if (inc < 0)
5448 dev->flags &= ~IFF_PROMISC;
5449 else {
5450 dev->promiscuity -= inc;
5451 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5452 dev->name);
5453 return -EOVERFLOW;
5454 }
5455 }
5456 if (dev->flags != old_flags) {
5457 pr_info("device %s %s promiscuous mode\n",
5458 dev->name,
5459 dev->flags & IFF_PROMISC ? "entered" : "left");
5460 if (audit_enabled) {
5461 current_uid_gid(&uid, &gid);
5462 audit_log(current->audit_context, GFP_ATOMIC,
5463 AUDIT_ANOM_PROMISCUOUS,
5464 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5465 dev->name, (dev->flags & IFF_PROMISC),
5466 (old_flags & IFF_PROMISC),
5467 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5468 from_kuid(&init_user_ns, uid),
5469 from_kgid(&init_user_ns, gid),
5470 audit_get_sessionid(current));
5471 }
5472
5473 dev_change_rx_flags(dev, IFF_PROMISC);
5474 }
5475 if (notify)
5476 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5477 return 0;
5478 }
5479
5480 /**
5481 * dev_set_promiscuity - update promiscuity count on a device
5482 * @dev: device
5483 * @inc: modifier
5484 *
5485 * Add or remove promiscuity from a device. While the count in the device
5486 * remains above zero the interface remains promiscuous. Once it hits zero
5487 * the device reverts back to normal filtering operation. A negative inc
5488 * value is used to drop promiscuity on the device.
5489 * Return 0 if successful or a negative errno code on error.
5490 */
5491 int dev_set_promiscuity(struct net_device *dev, int inc)
5492 {
5493 unsigned int old_flags = dev->flags;
5494 int err;
5495
5496 err = __dev_set_promiscuity(dev, inc, true);
5497 if (err < 0)
5498 return err;
5499 if (dev->flags != old_flags)
5500 dev_set_rx_mode(dev);
5501 return err;
5502 }
5503 EXPORT_SYMBOL(dev_set_promiscuity);
5504
5505 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5506 {
5507 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5508
5509 ASSERT_RTNL();
5510
5511 dev->flags |= IFF_ALLMULTI;
5512 dev->allmulti += inc;
5513 if (dev->allmulti == 0) {
5514 /*
5515 * Avoid overflow.
5516 * If inc causes overflow, untouch allmulti and return error.
5517 */
5518 if (inc < 0)
5519 dev->flags &= ~IFF_ALLMULTI;
5520 else {
5521 dev->allmulti -= inc;
5522 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5523 dev->name);
5524 return -EOVERFLOW;
5525 }
5526 }
5527 if (dev->flags ^ old_flags) {
5528 dev_change_rx_flags(dev, IFF_ALLMULTI);
5529 dev_set_rx_mode(dev);
5530 if (notify)
5531 __dev_notify_flags(dev, old_flags,
5532 dev->gflags ^ old_gflags);
5533 }
5534 return 0;
5535 }
5536
5537 /**
5538 * dev_set_allmulti - update allmulti count on a device
5539 * @dev: device
5540 * @inc: modifier
5541 *
5542 * Add or remove reception of all multicast frames to a device. While the
5543 * count in the device remains above zero the interface remains listening
5544 * to all interfaces. Once it hits zero the device reverts back to normal
5545 * filtering operation. A negative @inc value is used to drop the counter
5546 * when releasing a resource needing all multicasts.
5547 * Return 0 if successful or a negative errno code on error.
5548 */
5549
5550 int dev_set_allmulti(struct net_device *dev, int inc)
5551 {
5552 return __dev_set_allmulti(dev, inc, true);
5553 }
5554 EXPORT_SYMBOL(dev_set_allmulti);
5555
5556 /*
5557 * Upload unicast and multicast address lists to device and
5558 * configure RX filtering. When the device doesn't support unicast
5559 * filtering it is put in promiscuous mode while unicast addresses
5560 * are present.
5561 */
5562 void __dev_set_rx_mode(struct net_device *dev)
5563 {
5564 const struct net_device_ops *ops = dev->netdev_ops;
5565
5566 /* dev_open will call this function so the list will stay sane. */
5567 if (!(dev->flags&IFF_UP))
5568 return;
5569
5570 if (!netif_device_present(dev))
5571 return;
5572
5573 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5574 /* Unicast addresses changes may only happen under the rtnl,
5575 * therefore calling __dev_set_promiscuity here is safe.
5576 */
5577 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5578 __dev_set_promiscuity(dev, 1, false);
5579 dev->uc_promisc = true;
5580 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5581 __dev_set_promiscuity(dev, -1, false);
5582 dev->uc_promisc = false;
5583 }
5584 }
5585
5586 if (ops->ndo_set_rx_mode)
5587 ops->ndo_set_rx_mode(dev);
5588 }
5589
5590 void dev_set_rx_mode(struct net_device *dev)
5591 {
5592 netif_addr_lock_bh(dev);
5593 __dev_set_rx_mode(dev);
5594 netif_addr_unlock_bh(dev);
5595 }
5596
5597 /**
5598 * dev_get_flags - get flags reported to userspace
5599 * @dev: device
5600 *
5601 * Get the combination of flag bits exported through APIs to userspace.
5602 */
5603 unsigned int dev_get_flags(const struct net_device *dev)
5604 {
5605 unsigned int flags;
5606
5607 flags = (dev->flags & ~(IFF_PROMISC |
5608 IFF_ALLMULTI |
5609 IFF_RUNNING |
5610 IFF_LOWER_UP |
5611 IFF_DORMANT)) |
5612 (dev->gflags & (IFF_PROMISC |
5613 IFF_ALLMULTI));
5614
5615 if (netif_running(dev)) {
5616 if (netif_oper_up(dev))
5617 flags |= IFF_RUNNING;
5618 if (netif_carrier_ok(dev))
5619 flags |= IFF_LOWER_UP;
5620 if (netif_dormant(dev))
5621 flags |= IFF_DORMANT;
5622 }
5623
5624 return flags;
5625 }
5626 EXPORT_SYMBOL(dev_get_flags);
5627
5628 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5629 {
5630 unsigned int old_flags = dev->flags;
5631 int ret;
5632
5633 ASSERT_RTNL();
5634
5635 /*
5636 * Set the flags on our device.
5637 */
5638
5639 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5640 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5641 IFF_AUTOMEDIA)) |
5642 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5643 IFF_ALLMULTI));
5644
5645 /*
5646 * Load in the correct multicast list now the flags have changed.
5647 */
5648
5649 if ((old_flags ^ flags) & IFF_MULTICAST)
5650 dev_change_rx_flags(dev, IFF_MULTICAST);
5651
5652 dev_set_rx_mode(dev);
5653
5654 /*
5655 * Have we downed the interface. We handle IFF_UP ourselves
5656 * according to user attempts to set it, rather than blindly
5657 * setting it.
5658 */
5659
5660 ret = 0;
5661 if ((old_flags ^ flags) & IFF_UP)
5662 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5663
5664 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5665 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5666 unsigned int old_flags = dev->flags;
5667
5668 dev->gflags ^= IFF_PROMISC;
5669
5670 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5671 if (dev->flags != old_flags)
5672 dev_set_rx_mode(dev);
5673 }
5674
5675 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5676 is important. Some (broken) drivers set IFF_PROMISC, when
5677 IFF_ALLMULTI is requested not asking us and not reporting.
5678 */
5679 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5680 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5681
5682 dev->gflags ^= IFF_ALLMULTI;
5683 __dev_set_allmulti(dev, inc, false);
5684 }
5685
5686 return ret;
5687 }
5688
5689 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5690 unsigned int gchanges)
5691 {
5692 unsigned int changes = dev->flags ^ old_flags;
5693
5694 if (gchanges)
5695 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5696
5697 if (changes & IFF_UP) {
5698 if (dev->flags & IFF_UP)
5699 call_netdevice_notifiers(NETDEV_UP, dev);
5700 else
5701 call_netdevice_notifiers(NETDEV_DOWN, dev);
5702 }
5703
5704 if (dev->flags & IFF_UP &&
5705 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5706 struct netdev_notifier_change_info change_info;
5707
5708 change_info.flags_changed = changes;
5709 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5710 &change_info.info);
5711 }
5712 }
5713
5714 /**
5715 * dev_change_flags - change device settings
5716 * @dev: device
5717 * @flags: device state flags
5718 *
5719 * Change settings on device based state flags. The flags are
5720 * in the userspace exported format.
5721 */
5722 int dev_change_flags(struct net_device *dev, unsigned int flags)
5723 {
5724 int ret;
5725 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5726
5727 ret = __dev_change_flags(dev, flags);
5728 if (ret < 0)
5729 return ret;
5730
5731 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5732 __dev_notify_flags(dev, old_flags, changes);
5733 return ret;
5734 }
5735 EXPORT_SYMBOL(dev_change_flags);
5736
5737 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5738 {
5739 const struct net_device_ops *ops = dev->netdev_ops;
5740
5741 if (ops->ndo_change_mtu)
5742 return ops->ndo_change_mtu(dev, new_mtu);
5743
5744 dev->mtu = new_mtu;
5745 return 0;
5746 }
5747
5748 /**
5749 * dev_set_mtu - Change maximum transfer unit
5750 * @dev: device
5751 * @new_mtu: new transfer unit
5752 *
5753 * Change the maximum transfer size of the network device.
5754 */
5755 int dev_set_mtu(struct net_device *dev, int new_mtu)
5756 {
5757 int err, orig_mtu;
5758
5759 if (new_mtu == dev->mtu)
5760 return 0;
5761
5762 /* MTU must be positive. */
5763 if (new_mtu < 0)
5764 return -EINVAL;
5765
5766 if (!netif_device_present(dev))
5767 return -ENODEV;
5768
5769 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5770 err = notifier_to_errno(err);
5771 if (err)
5772 return err;
5773
5774 orig_mtu = dev->mtu;
5775 err = __dev_set_mtu(dev, new_mtu);
5776
5777 if (!err) {
5778 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5779 err = notifier_to_errno(err);
5780 if (err) {
5781 /* setting mtu back and notifying everyone again,
5782 * so that they have a chance to revert changes.
5783 */
5784 __dev_set_mtu(dev, orig_mtu);
5785 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5786 }
5787 }
5788 return err;
5789 }
5790 EXPORT_SYMBOL(dev_set_mtu);
5791
5792 /**
5793 * dev_set_group - Change group this device belongs to
5794 * @dev: device
5795 * @new_group: group this device should belong to
5796 */
5797 void dev_set_group(struct net_device *dev, int new_group)
5798 {
5799 dev->group = new_group;
5800 }
5801 EXPORT_SYMBOL(dev_set_group);
5802
5803 /**
5804 * dev_set_mac_address - Change Media Access Control Address
5805 * @dev: device
5806 * @sa: new address
5807 *
5808 * Change the hardware (MAC) address of the device
5809 */
5810 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5811 {
5812 const struct net_device_ops *ops = dev->netdev_ops;
5813 int err;
5814
5815 if (!ops->ndo_set_mac_address)
5816 return -EOPNOTSUPP;
5817 if (sa->sa_family != dev->type)
5818 return -EINVAL;
5819 if (!netif_device_present(dev))
5820 return -ENODEV;
5821 err = ops->ndo_set_mac_address(dev, sa);
5822 if (err)
5823 return err;
5824 dev->addr_assign_type = NET_ADDR_SET;
5825 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5826 add_device_randomness(dev->dev_addr, dev->addr_len);
5827 return 0;
5828 }
5829 EXPORT_SYMBOL(dev_set_mac_address);
5830
5831 /**
5832 * dev_change_carrier - Change device carrier
5833 * @dev: device
5834 * @new_carrier: new value
5835 *
5836 * Change device carrier
5837 */
5838 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5839 {
5840 const struct net_device_ops *ops = dev->netdev_ops;
5841
5842 if (!ops->ndo_change_carrier)
5843 return -EOPNOTSUPP;
5844 if (!netif_device_present(dev))
5845 return -ENODEV;
5846 return ops->ndo_change_carrier(dev, new_carrier);
5847 }
5848 EXPORT_SYMBOL(dev_change_carrier);
5849
5850 /**
5851 * dev_get_phys_port_id - Get device physical port ID
5852 * @dev: device
5853 * @ppid: port ID
5854 *
5855 * Get device physical port ID
5856 */
5857 int dev_get_phys_port_id(struct net_device *dev,
5858 struct netdev_phys_port_id *ppid)
5859 {
5860 const struct net_device_ops *ops = dev->netdev_ops;
5861
5862 if (!ops->ndo_get_phys_port_id)
5863 return -EOPNOTSUPP;
5864 return ops->ndo_get_phys_port_id(dev, ppid);
5865 }
5866 EXPORT_SYMBOL(dev_get_phys_port_id);
5867
5868 /**
5869 * dev_new_index - allocate an ifindex
5870 * @net: the applicable net namespace
5871 *
5872 * Returns a suitable unique value for a new device interface
5873 * number. The caller must hold the rtnl semaphore or the
5874 * dev_base_lock to be sure it remains unique.
5875 */
5876 static int dev_new_index(struct net *net)
5877 {
5878 int ifindex = net->ifindex;
5879 for (;;) {
5880 if (++ifindex <= 0)
5881 ifindex = 1;
5882 if (!__dev_get_by_index(net, ifindex))
5883 return net->ifindex = ifindex;
5884 }
5885 }
5886
5887 /* Delayed registration/unregisteration */
5888 static LIST_HEAD(net_todo_list);
5889 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5890
5891 static void net_set_todo(struct net_device *dev)
5892 {
5893 list_add_tail(&dev->todo_list, &net_todo_list);
5894 dev_net(dev)->dev_unreg_count++;
5895 }
5896
5897 static void rollback_registered_many(struct list_head *head)
5898 {
5899 struct net_device *dev, *tmp;
5900 LIST_HEAD(close_head);
5901
5902 BUG_ON(dev_boot_phase);
5903 ASSERT_RTNL();
5904
5905 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5906 /* Some devices call without registering
5907 * for initialization unwind. Remove those
5908 * devices and proceed with the remaining.
5909 */
5910 if (dev->reg_state == NETREG_UNINITIALIZED) {
5911 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5912 dev->name, dev);
5913
5914 WARN_ON(1);
5915 list_del(&dev->unreg_list);
5916 continue;
5917 }
5918 dev->dismantle = true;
5919 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5920 }
5921
5922 /* If device is running, close it first. */
5923 list_for_each_entry(dev, head, unreg_list)
5924 list_add_tail(&dev->close_list, &close_head);
5925 dev_close_many(&close_head);
5926
5927 list_for_each_entry(dev, head, unreg_list) {
5928 /* And unlink it from device chain. */
5929 unlist_netdevice(dev);
5930
5931 dev->reg_state = NETREG_UNREGISTERING;
5932 }
5933
5934 synchronize_net();
5935
5936 list_for_each_entry(dev, head, unreg_list) {
5937 /* Shutdown queueing discipline. */
5938 dev_shutdown(dev);
5939
5940
5941 /* Notify protocols, that we are about to destroy
5942 this device. They should clean all the things.
5943 */
5944 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5945
5946 /*
5947 * Flush the unicast and multicast chains
5948 */
5949 dev_uc_flush(dev);
5950 dev_mc_flush(dev);
5951
5952 if (dev->netdev_ops->ndo_uninit)
5953 dev->netdev_ops->ndo_uninit(dev);
5954
5955 if (!dev->rtnl_link_ops ||
5956 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5957 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5958
5959 /* Notifier chain MUST detach us all upper devices. */
5960 WARN_ON(netdev_has_any_upper_dev(dev));
5961
5962 /* Remove entries from kobject tree */
5963 netdev_unregister_kobject(dev);
5964 #ifdef CONFIG_XPS
5965 /* Remove XPS queueing entries */
5966 netif_reset_xps_queues_gt(dev, 0);
5967 #endif
5968 }
5969
5970 synchronize_net();
5971
5972 list_for_each_entry(dev, head, unreg_list)
5973 dev_put(dev);
5974 }
5975
5976 static void rollback_registered(struct net_device *dev)
5977 {
5978 LIST_HEAD(single);
5979
5980 list_add(&dev->unreg_list, &single);
5981 rollback_registered_many(&single);
5982 list_del(&single);
5983 }
5984
5985 static netdev_features_t netdev_fix_features(struct net_device *dev,
5986 netdev_features_t features)
5987 {
5988 /* Fix illegal checksum combinations */
5989 if ((features & NETIF_F_HW_CSUM) &&
5990 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5991 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5992 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5993 }
5994
5995 /* TSO requires that SG is present as well. */
5996 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5997 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5998 features &= ~NETIF_F_ALL_TSO;
5999 }
6000
6001 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6002 !(features & NETIF_F_IP_CSUM)) {
6003 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6004 features &= ~NETIF_F_TSO;
6005 features &= ~NETIF_F_TSO_ECN;
6006 }
6007
6008 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6009 !(features & NETIF_F_IPV6_CSUM)) {
6010 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6011 features &= ~NETIF_F_TSO6;
6012 }
6013
6014 /* TSO ECN requires that TSO is present as well. */
6015 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6016 features &= ~NETIF_F_TSO_ECN;
6017
6018 /* Software GSO depends on SG. */
6019 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6020 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6021 features &= ~NETIF_F_GSO;
6022 }
6023
6024 /* UFO needs SG and checksumming */
6025 if (features & NETIF_F_UFO) {
6026 /* maybe split UFO into V4 and V6? */
6027 if (!((features & NETIF_F_GEN_CSUM) ||
6028 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6029 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6030 netdev_dbg(dev,
6031 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6032 features &= ~NETIF_F_UFO;
6033 }
6034
6035 if (!(features & NETIF_F_SG)) {
6036 netdev_dbg(dev,
6037 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6038 features &= ~NETIF_F_UFO;
6039 }
6040 }
6041
6042 #ifdef CONFIG_NET_RX_BUSY_POLL
6043 if (dev->netdev_ops->ndo_busy_poll)
6044 features |= NETIF_F_BUSY_POLL;
6045 else
6046 #endif
6047 features &= ~NETIF_F_BUSY_POLL;
6048
6049 return features;
6050 }
6051
6052 int __netdev_update_features(struct net_device *dev)
6053 {
6054 netdev_features_t features;
6055 int err = 0;
6056
6057 ASSERT_RTNL();
6058
6059 features = netdev_get_wanted_features(dev);
6060
6061 if (dev->netdev_ops->ndo_fix_features)
6062 features = dev->netdev_ops->ndo_fix_features(dev, features);
6063
6064 /* driver might be less strict about feature dependencies */
6065 features = netdev_fix_features(dev, features);
6066
6067 if (dev->features == features)
6068 return 0;
6069
6070 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6071 &dev->features, &features);
6072
6073 if (dev->netdev_ops->ndo_set_features)
6074 err = dev->netdev_ops->ndo_set_features(dev, features);
6075
6076 if (unlikely(err < 0)) {
6077 netdev_err(dev,
6078 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6079 err, &features, &dev->features);
6080 return -1;
6081 }
6082
6083 if (!err)
6084 dev->features = features;
6085
6086 return 1;
6087 }
6088
6089 /**
6090 * netdev_update_features - recalculate device features
6091 * @dev: the device to check
6092 *
6093 * Recalculate dev->features set and send notifications if it
6094 * has changed. Should be called after driver or hardware dependent
6095 * conditions might have changed that influence the features.
6096 */
6097 void netdev_update_features(struct net_device *dev)
6098 {
6099 if (__netdev_update_features(dev))
6100 netdev_features_change(dev);
6101 }
6102 EXPORT_SYMBOL(netdev_update_features);
6103
6104 /**
6105 * netdev_change_features - recalculate device features
6106 * @dev: the device to check
6107 *
6108 * Recalculate dev->features set and send notifications even
6109 * if they have not changed. Should be called instead of
6110 * netdev_update_features() if also dev->vlan_features might
6111 * have changed to allow the changes to be propagated to stacked
6112 * VLAN devices.
6113 */
6114 void netdev_change_features(struct net_device *dev)
6115 {
6116 __netdev_update_features(dev);
6117 netdev_features_change(dev);
6118 }
6119 EXPORT_SYMBOL(netdev_change_features);
6120
6121 /**
6122 * netif_stacked_transfer_operstate - transfer operstate
6123 * @rootdev: the root or lower level device to transfer state from
6124 * @dev: the device to transfer operstate to
6125 *
6126 * Transfer operational state from root to device. This is normally
6127 * called when a stacking relationship exists between the root
6128 * device and the device(a leaf device).
6129 */
6130 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6131 struct net_device *dev)
6132 {
6133 if (rootdev->operstate == IF_OPER_DORMANT)
6134 netif_dormant_on(dev);
6135 else
6136 netif_dormant_off(dev);
6137
6138 if (netif_carrier_ok(rootdev)) {
6139 if (!netif_carrier_ok(dev))
6140 netif_carrier_on(dev);
6141 } else {
6142 if (netif_carrier_ok(dev))
6143 netif_carrier_off(dev);
6144 }
6145 }
6146 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6147
6148 #ifdef CONFIG_SYSFS
6149 static int netif_alloc_rx_queues(struct net_device *dev)
6150 {
6151 unsigned int i, count = dev->num_rx_queues;
6152 struct netdev_rx_queue *rx;
6153
6154 BUG_ON(count < 1);
6155
6156 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
6157 if (!rx)
6158 return -ENOMEM;
6159
6160 dev->_rx = rx;
6161
6162 for (i = 0; i < count; i++)
6163 rx[i].dev = dev;
6164 return 0;
6165 }
6166 #endif
6167
6168 static void netdev_init_one_queue(struct net_device *dev,
6169 struct netdev_queue *queue, void *_unused)
6170 {
6171 /* Initialize queue lock */
6172 spin_lock_init(&queue->_xmit_lock);
6173 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6174 queue->xmit_lock_owner = -1;
6175 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6176 queue->dev = dev;
6177 #ifdef CONFIG_BQL
6178 dql_init(&queue->dql, HZ);
6179 #endif
6180 }
6181
6182 static void netif_free_tx_queues(struct net_device *dev)
6183 {
6184 kvfree(dev->_tx);
6185 }
6186
6187 static int netif_alloc_netdev_queues(struct net_device *dev)
6188 {
6189 unsigned int count = dev->num_tx_queues;
6190 struct netdev_queue *tx;
6191 size_t sz = count * sizeof(*tx);
6192
6193 BUG_ON(count < 1 || count > 0xffff);
6194
6195 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6196 if (!tx) {
6197 tx = vzalloc(sz);
6198 if (!tx)
6199 return -ENOMEM;
6200 }
6201 dev->_tx = tx;
6202
6203 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6204 spin_lock_init(&dev->tx_global_lock);
6205
6206 return 0;
6207 }
6208
6209 /**
6210 * register_netdevice - register a network device
6211 * @dev: device to register
6212 *
6213 * Take a completed network device structure and add it to the kernel
6214 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6215 * chain. 0 is returned on success. A negative errno code is returned
6216 * on a failure to set up the device, or if the name is a duplicate.
6217 *
6218 * Callers must hold the rtnl semaphore. You may want
6219 * register_netdev() instead of this.
6220 *
6221 * BUGS:
6222 * The locking appears insufficient to guarantee two parallel registers
6223 * will not get the same name.
6224 */
6225
6226 int register_netdevice(struct net_device *dev)
6227 {
6228 int ret;
6229 struct net *net = dev_net(dev);
6230
6231 BUG_ON(dev_boot_phase);
6232 ASSERT_RTNL();
6233
6234 might_sleep();
6235
6236 /* When net_device's are persistent, this will be fatal. */
6237 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6238 BUG_ON(!net);
6239
6240 spin_lock_init(&dev->addr_list_lock);
6241 netdev_set_addr_lockdep_class(dev);
6242
6243 dev->iflink = -1;
6244
6245 ret = dev_get_valid_name(net, dev, dev->name);
6246 if (ret < 0)
6247 goto out;
6248
6249 /* Init, if this function is available */
6250 if (dev->netdev_ops->ndo_init) {
6251 ret = dev->netdev_ops->ndo_init(dev);
6252 if (ret) {
6253 if (ret > 0)
6254 ret = -EIO;
6255 goto out;
6256 }
6257 }
6258
6259 if (((dev->hw_features | dev->features) &
6260 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6261 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6262 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6263 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6264 ret = -EINVAL;
6265 goto err_uninit;
6266 }
6267
6268 ret = -EBUSY;
6269 if (!dev->ifindex)
6270 dev->ifindex = dev_new_index(net);
6271 else if (__dev_get_by_index(net, dev->ifindex))
6272 goto err_uninit;
6273
6274 if (dev->iflink == -1)
6275 dev->iflink = dev->ifindex;
6276
6277 /* Transfer changeable features to wanted_features and enable
6278 * software offloads (GSO and GRO).
6279 */
6280 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6281 dev->features |= NETIF_F_SOFT_FEATURES;
6282 dev->wanted_features = dev->features & dev->hw_features;
6283
6284 if (!(dev->flags & IFF_LOOPBACK)) {
6285 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6286 }
6287
6288 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6289 */
6290 dev->vlan_features |= NETIF_F_HIGHDMA;
6291
6292 /* Make NETIF_F_SG inheritable to tunnel devices.
6293 */
6294 dev->hw_enc_features |= NETIF_F_SG;
6295
6296 /* Make NETIF_F_SG inheritable to MPLS.
6297 */
6298 dev->mpls_features |= NETIF_F_SG;
6299
6300 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6301 ret = notifier_to_errno(ret);
6302 if (ret)
6303 goto err_uninit;
6304
6305 ret = netdev_register_kobject(dev);
6306 if (ret)
6307 goto err_uninit;
6308 dev->reg_state = NETREG_REGISTERED;
6309
6310 __netdev_update_features(dev);
6311
6312 /*
6313 * Default initial state at registry is that the
6314 * device is present.
6315 */
6316
6317 set_bit(__LINK_STATE_PRESENT, &dev->state);
6318
6319 linkwatch_init_dev(dev);
6320
6321 dev_init_scheduler(dev);
6322 dev_hold(dev);
6323 list_netdevice(dev);
6324 add_device_randomness(dev->dev_addr, dev->addr_len);
6325
6326 /* If the device has permanent device address, driver should
6327 * set dev_addr and also addr_assign_type should be set to
6328 * NET_ADDR_PERM (default value).
6329 */
6330 if (dev->addr_assign_type == NET_ADDR_PERM)
6331 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6332
6333 /* Notify protocols, that a new device appeared. */
6334 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6335 ret = notifier_to_errno(ret);
6336 if (ret) {
6337 rollback_registered(dev);
6338 dev->reg_state = NETREG_UNREGISTERED;
6339 }
6340 /*
6341 * Prevent userspace races by waiting until the network
6342 * device is fully setup before sending notifications.
6343 */
6344 if (!dev->rtnl_link_ops ||
6345 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6346 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6347
6348 out:
6349 return ret;
6350
6351 err_uninit:
6352 if (dev->netdev_ops->ndo_uninit)
6353 dev->netdev_ops->ndo_uninit(dev);
6354 goto out;
6355 }
6356 EXPORT_SYMBOL(register_netdevice);
6357
6358 /**
6359 * init_dummy_netdev - init a dummy network device for NAPI
6360 * @dev: device to init
6361 *
6362 * This takes a network device structure and initialize the minimum
6363 * amount of fields so it can be used to schedule NAPI polls without
6364 * registering a full blown interface. This is to be used by drivers
6365 * that need to tie several hardware interfaces to a single NAPI
6366 * poll scheduler due to HW limitations.
6367 */
6368 int init_dummy_netdev(struct net_device *dev)
6369 {
6370 /* Clear everything. Note we don't initialize spinlocks
6371 * are they aren't supposed to be taken by any of the
6372 * NAPI code and this dummy netdev is supposed to be
6373 * only ever used for NAPI polls
6374 */
6375 memset(dev, 0, sizeof(struct net_device));
6376
6377 /* make sure we BUG if trying to hit standard
6378 * register/unregister code path
6379 */
6380 dev->reg_state = NETREG_DUMMY;
6381
6382 /* NAPI wants this */
6383 INIT_LIST_HEAD(&dev->napi_list);
6384
6385 /* a dummy interface is started by default */
6386 set_bit(__LINK_STATE_PRESENT, &dev->state);
6387 set_bit(__LINK_STATE_START, &dev->state);
6388
6389 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6390 * because users of this 'device' dont need to change
6391 * its refcount.
6392 */
6393
6394 return 0;
6395 }
6396 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6397
6398
6399 /**
6400 * register_netdev - register a network device
6401 * @dev: device to register
6402 *
6403 * Take a completed network device structure and add it to the kernel
6404 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6405 * chain. 0 is returned on success. A negative errno code is returned
6406 * on a failure to set up the device, or if the name is a duplicate.
6407 *
6408 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6409 * and expands the device name if you passed a format string to
6410 * alloc_netdev.
6411 */
6412 int register_netdev(struct net_device *dev)
6413 {
6414 int err;
6415
6416 rtnl_lock();
6417 err = register_netdevice(dev);
6418 rtnl_unlock();
6419 return err;
6420 }
6421 EXPORT_SYMBOL(register_netdev);
6422
6423 int netdev_refcnt_read(const struct net_device *dev)
6424 {
6425 int i, refcnt = 0;
6426
6427 for_each_possible_cpu(i)
6428 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6429 return refcnt;
6430 }
6431 EXPORT_SYMBOL(netdev_refcnt_read);
6432
6433 /**
6434 * netdev_wait_allrefs - wait until all references are gone.
6435 * @dev: target net_device
6436 *
6437 * This is called when unregistering network devices.
6438 *
6439 * Any protocol or device that holds a reference should register
6440 * for netdevice notification, and cleanup and put back the
6441 * reference if they receive an UNREGISTER event.
6442 * We can get stuck here if buggy protocols don't correctly
6443 * call dev_put.
6444 */
6445 static void netdev_wait_allrefs(struct net_device *dev)
6446 {
6447 unsigned long rebroadcast_time, warning_time;
6448 int refcnt;
6449
6450 linkwatch_forget_dev(dev);
6451
6452 rebroadcast_time = warning_time = jiffies;
6453 refcnt = netdev_refcnt_read(dev);
6454
6455 while (refcnt != 0) {
6456 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6457 rtnl_lock();
6458
6459 /* Rebroadcast unregister notification */
6460 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6461
6462 __rtnl_unlock();
6463 rcu_barrier();
6464 rtnl_lock();
6465
6466 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6467 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6468 &dev->state)) {
6469 /* We must not have linkwatch events
6470 * pending on unregister. If this
6471 * happens, we simply run the queue
6472 * unscheduled, resulting in a noop
6473 * for this device.
6474 */
6475 linkwatch_run_queue();
6476 }
6477
6478 __rtnl_unlock();
6479
6480 rebroadcast_time = jiffies;
6481 }
6482
6483 msleep(250);
6484
6485 refcnt = netdev_refcnt_read(dev);
6486
6487 if (time_after(jiffies, warning_time + 10 * HZ)) {
6488 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6489 dev->name, refcnt);
6490 warning_time = jiffies;
6491 }
6492 }
6493 }
6494
6495 /* The sequence is:
6496 *
6497 * rtnl_lock();
6498 * ...
6499 * register_netdevice(x1);
6500 * register_netdevice(x2);
6501 * ...
6502 * unregister_netdevice(y1);
6503 * unregister_netdevice(y2);
6504 * ...
6505 * rtnl_unlock();
6506 * free_netdev(y1);
6507 * free_netdev(y2);
6508 *
6509 * We are invoked by rtnl_unlock().
6510 * This allows us to deal with problems:
6511 * 1) We can delete sysfs objects which invoke hotplug
6512 * without deadlocking with linkwatch via keventd.
6513 * 2) Since we run with the RTNL semaphore not held, we can sleep
6514 * safely in order to wait for the netdev refcnt to drop to zero.
6515 *
6516 * We must not return until all unregister events added during
6517 * the interval the lock was held have been completed.
6518 */
6519 void netdev_run_todo(void)
6520 {
6521 struct list_head list;
6522
6523 /* Snapshot list, allow later requests */
6524 list_replace_init(&net_todo_list, &list);
6525
6526 __rtnl_unlock();
6527
6528
6529 /* Wait for rcu callbacks to finish before next phase */
6530 if (!list_empty(&list))
6531 rcu_barrier();
6532
6533 while (!list_empty(&list)) {
6534 struct net_device *dev
6535 = list_first_entry(&list, struct net_device, todo_list);
6536 list_del(&dev->todo_list);
6537
6538 rtnl_lock();
6539 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6540 __rtnl_unlock();
6541
6542 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6543 pr_err("network todo '%s' but state %d\n",
6544 dev->name, dev->reg_state);
6545 dump_stack();
6546 continue;
6547 }
6548
6549 dev->reg_state = NETREG_UNREGISTERED;
6550
6551 on_each_cpu(flush_backlog, dev, 1);
6552
6553 netdev_wait_allrefs(dev);
6554
6555 /* paranoia */
6556 BUG_ON(netdev_refcnt_read(dev));
6557 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6558 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6559 WARN_ON(dev->dn_ptr);
6560
6561 if (dev->destructor)
6562 dev->destructor(dev);
6563
6564 /* Report a network device has been unregistered */
6565 rtnl_lock();
6566 dev_net(dev)->dev_unreg_count--;
6567 __rtnl_unlock();
6568 wake_up(&netdev_unregistering_wq);
6569
6570 /* Free network device */
6571 kobject_put(&dev->dev.kobj);
6572 }
6573 }
6574
6575 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6576 * fields in the same order, with only the type differing.
6577 */
6578 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6579 const struct net_device_stats *netdev_stats)
6580 {
6581 #if BITS_PER_LONG == 64
6582 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6583 memcpy(stats64, netdev_stats, sizeof(*stats64));
6584 #else
6585 size_t i, n = sizeof(*stats64) / sizeof(u64);
6586 const unsigned long *src = (const unsigned long *)netdev_stats;
6587 u64 *dst = (u64 *)stats64;
6588
6589 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6590 sizeof(*stats64) / sizeof(u64));
6591 for (i = 0; i < n; i++)
6592 dst[i] = src[i];
6593 #endif
6594 }
6595 EXPORT_SYMBOL(netdev_stats_to_stats64);
6596
6597 /**
6598 * dev_get_stats - get network device statistics
6599 * @dev: device to get statistics from
6600 * @storage: place to store stats
6601 *
6602 * Get network statistics from device. Return @storage.
6603 * The device driver may provide its own method by setting
6604 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6605 * otherwise the internal statistics structure is used.
6606 */
6607 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6608 struct rtnl_link_stats64 *storage)
6609 {
6610 const struct net_device_ops *ops = dev->netdev_ops;
6611
6612 if (ops->ndo_get_stats64) {
6613 memset(storage, 0, sizeof(*storage));
6614 ops->ndo_get_stats64(dev, storage);
6615 } else if (ops->ndo_get_stats) {
6616 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6617 } else {
6618 netdev_stats_to_stats64(storage, &dev->stats);
6619 }
6620 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6621 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6622 return storage;
6623 }
6624 EXPORT_SYMBOL(dev_get_stats);
6625
6626 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6627 {
6628 struct netdev_queue *queue = dev_ingress_queue(dev);
6629
6630 #ifdef CONFIG_NET_CLS_ACT
6631 if (queue)
6632 return queue;
6633 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6634 if (!queue)
6635 return NULL;
6636 netdev_init_one_queue(dev, queue, NULL);
6637 queue->qdisc = &noop_qdisc;
6638 queue->qdisc_sleeping = &noop_qdisc;
6639 rcu_assign_pointer(dev->ingress_queue, queue);
6640 #endif
6641 return queue;
6642 }
6643
6644 static const struct ethtool_ops default_ethtool_ops;
6645
6646 void netdev_set_default_ethtool_ops(struct net_device *dev,
6647 const struct ethtool_ops *ops)
6648 {
6649 if (dev->ethtool_ops == &default_ethtool_ops)
6650 dev->ethtool_ops = ops;
6651 }
6652 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6653
6654 void netdev_freemem(struct net_device *dev)
6655 {
6656 char *addr = (char *)dev - dev->padded;
6657
6658 kvfree(addr);
6659 }
6660
6661 /**
6662 * alloc_netdev_mqs - allocate network device
6663 * @sizeof_priv: size of private data to allocate space for
6664 * @name: device name format string
6665 * @name_assign_type: origin of device name
6666 * @setup: callback to initialize device
6667 * @txqs: the number of TX subqueues to allocate
6668 * @rxqs: the number of RX subqueues to allocate
6669 *
6670 * Allocates a struct net_device with private data area for driver use
6671 * and performs basic initialization. Also allocates subqueue structs
6672 * for each queue on the device.
6673 */
6674 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6675 unsigned char name_assign_type,
6676 void (*setup)(struct net_device *),
6677 unsigned int txqs, unsigned int rxqs)
6678 {
6679 struct net_device *dev;
6680 size_t alloc_size;
6681 struct net_device *p;
6682
6683 BUG_ON(strlen(name) >= sizeof(dev->name));
6684
6685 if (txqs < 1) {
6686 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6687 return NULL;
6688 }
6689
6690 #ifdef CONFIG_SYSFS
6691 if (rxqs < 1) {
6692 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6693 return NULL;
6694 }
6695 #endif
6696
6697 alloc_size = sizeof(struct net_device);
6698 if (sizeof_priv) {
6699 /* ensure 32-byte alignment of private area */
6700 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6701 alloc_size += sizeof_priv;
6702 }
6703 /* ensure 32-byte alignment of whole construct */
6704 alloc_size += NETDEV_ALIGN - 1;
6705
6706 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6707 if (!p)
6708 p = vzalloc(alloc_size);
6709 if (!p)
6710 return NULL;
6711
6712 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6713 dev->padded = (char *)dev - (char *)p;
6714
6715 dev->pcpu_refcnt = alloc_percpu(int);
6716 if (!dev->pcpu_refcnt)
6717 goto free_dev;
6718
6719 if (dev_addr_init(dev))
6720 goto free_pcpu;
6721
6722 dev_mc_init(dev);
6723 dev_uc_init(dev);
6724
6725 dev_net_set(dev, &init_net);
6726
6727 dev->gso_max_size = GSO_MAX_SIZE;
6728 dev->gso_max_segs = GSO_MAX_SEGS;
6729 dev->gso_min_segs = 0;
6730
6731 INIT_LIST_HEAD(&dev->napi_list);
6732 INIT_LIST_HEAD(&dev->unreg_list);
6733 INIT_LIST_HEAD(&dev->close_list);
6734 INIT_LIST_HEAD(&dev->link_watch_list);
6735 INIT_LIST_HEAD(&dev->adj_list.upper);
6736 INIT_LIST_HEAD(&dev->adj_list.lower);
6737 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6738 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6739 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6740 setup(dev);
6741
6742 dev->num_tx_queues = txqs;
6743 dev->real_num_tx_queues = txqs;
6744 if (netif_alloc_netdev_queues(dev))
6745 goto free_all;
6746
6747 #ifdef CONFIG_SYSFS
6748 dev->num_rx_queues = rxqs;
6749 dev->real_num_rx_queues = rxqs;
6750 if (netif_alloc_rx_queues(dev))
6751 goto free_all;
6752 #endif
6753
6754 strcpy(dev->name, name);
6755 dev->name_assign_type = name_assign_type;
6756 dev->group = INIT_NETDEV_GROUP;
6757 if (!dev->ethtool_ops)
6758 dev->ethtool_ops = &default_ethtool_ops;
6759 return dev;
6760
6761 free_all:
6762 free_netdev(dev);
6763 return NULL;
6764
6765 free_pcpu:
6766 free_percpu(dev->pcpu_refcnt);
6767 free_dev:
6768 netdev_freemem(dev);
6769 return NULL;
6770 }
6771 EXPORT_SYMBOL(alloc_netdev_mqs);
6772
6773 /**
6774 * free_netdev - free network device
6775 * @dev: device
6776 *
6777 * This function does the last stage of destroying an allocated device
6778 * interface. The reference to the device object is released.
6779 * If this is the last reference then it will be freed.
6780 */
6781 void free_netdev(struct net_device *dev)
6782 {
6783 struct napi_struct *p, *n;
6784
6785 release_net(dev_net(dev));
6786
6787 netif_free_tx_queues(dev);
6788 #ifdef CONFIG_SYSFS
6789 kfree(dev->_rx);
6790 #endif
6791
6792 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6793
6794 /* Flush device addresses */
6795 dev_addr_flush(dev);
6796
6797 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6798 netif_napi_del(p);
6799
6800 free_percpu(dev->pcpu_refcnt);
6801 dev->pcpu_refcnt = NULL;
6802
6803 /* Compatibility with error handling in drivers */
6804 if (dev->reg_state == NETREG_UNINITIALIZED) {
6805 netdev_freemem(dev);
6806 return;
6807 }
6808
6809 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6810 dev->reg_state = NETREG_RELEASED;
6811
6812 /* will free via device release */
6813 put_device(&dev->dev);
6814 }
6815 EXPORT_SYMBOL(free_netdev);
6816
6817 /**
6818 * synchronize_net - Synchronize with packet receive processing
6819 *
6820 * Wait for packets currently being received to be done.
6821 * Does not block later packets from starting.
6822 */
6823 void synchronize_net(void)
6824 {
6825 might_sleep();
6826 if (rtnl_is_locked())
6827 synchronize_rcu_expedited();
6828 else
6829 synchronize_rcu();
6830 }
6831 EXPORT_SYMBOL(synchronize_net);
6832
6833 /**
6834 * unregister_netdevice_queue - remove device from the kernel
6835 * @dev: device
6836 * @head: list
6837 *
6838 * This function shuts down a device interface and removes it
6839 * from the kernel tables.
6840 * If head not NULL, device is queued to be unregistered later.
6841 *
6842 * Callers must hold the rtnl semaphore. You may want
6843 * unregister_netdev() instead of this.
6844 */
6845
6846 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6847 {
6848 ASSERT_RTNL();
6849
6850 if (head) {
6851 list_move_tail(&dev->unreg_list, head);
6852 } else {
6853 rollback_registered(dev);
6854 /* Finish processing unregister after unlock */
6855 net_set_todo(dev);
6856 }
6857 }
6858 EXPORT_SYMBOL(unregister_netdevice_queue);
6859
6860 /**
6861 * unregister_netdevice_many - unregister many devices
6862 * @head: list of devices
6863 *
6864 * Note: As most callers use a stack allocated list_head,
6865 * we force a list_del() to make sure stack wont be corrupted later.
6866 */
6867 void unregister_netdevice_many(struct list_head *head)
6868 {
6869 struct net_device *dev;
6870
6871 if (!list_empty(head)) {
6872 rollback_registered_many(head);
6873 list_for_each_entry(dev, head, unreg_list)
6874 net_set_todo(dev);
6875 list_del(head);
6876 }
6877 }
6878 EXPORT_SYMBOL(unregister_netdevice_many);
6879
6880 /**
6881 * unregister_netdev - remove device from the kernel
6882 * @dev: device
6883 *
6884 * This function shuts down a device interface and removes it
6885 * from the kernel tables.
6886 *
6887 * This is just a wrapper for unregister_netdevice that takes
6888 * the rtnl semaphore. In general you want to use this and not
6889 * unregister_netdevice.
6890 */
6891 void unregister_netdev(struct net_device *dev)
6892 {
6893 rtnl_lock();
6894 unregister_netdevice(dev);
6895 rtnl_unlock();
6896 }
6897 EXPORT_SYMBOL(unregister_netdev);
6898
6899 /**
6900 * dev_change_net_namespace - move device to different nethost namespace
6901 * @dev: device
6902 * @net: network namespace
6903 * @pat: If not NULL name pattern to try if the current device name
6904 * is already taken in the destination network namespace.
6905 *
6906 * This function shuts down a device interface and moves it
6907 * to a new network namespace. On success 0 is returned, on
6908 * a failure a netagive errno code is returned.
6909 *
6910 * Callers must hold the rtnl semaphore.
6911 */
6912
6913 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6914 {
6915 int err;
6916
6917 ASSERT_RTNL();
6918
6919 /* Don't allow namespace local devices to be moved. */
6920 err = -EINVAL;
6921 if (dev->features & NETIF_F_NETNS_LOCAL)
6922 goto out;
6923
6924 /* Ensure the device has been registrered */
6925 if (dev->reg_state != NETREG_REGISTERED)
6926 goto out;
6927
6928 /* Get out if there is nothing todo */
6929 err = 0;
6930 if (net_eq(dev_net(dev), net))
6931 goto out;
6932
6933 /* Pick the destination device name, and ensure
6934 * we can use it in the destination network namespace.
6935 */
6936 err = -EEXIST;
6937 if (__dev_get_by_name(net, dev->name)) {
6938 /* We get here if we can't use the current device name */
6939 if (!pat)
6940 goto out;
6941 if (dev_get_valid_name(net, dev, pat) < 0)
6942 goto out;
6943 }
6944
6945 /*
6946 * And now a mini version of register_netdevice unregister_netdevice.
6947 */
6948
6949 /* If device is running close it first. */
6950 dev_close(dev);
6951
6952 /* And unlink it from device chain */
6953 err = -ENODEV;
6954 unlist_netdevice(dev);
6955
6956 synchronize_net();
6957
6958 /* Shutdown queueing discipline. */
6959 dev_shutdown(dev);
6960
6961 /* Notify protocols, that we are about to destroy
6962 this device. They should clean all the things.
6963
6964 Note that dev->reg_state stays at NETREG_REGISTERED.
6965 This is wanted because this way 8021q and macvlan know
6966 the device is just moving and can keep their slaves up.
6967 */
6968 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6969 rcu_barrier();
6970 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6971 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6972
6973 /*
6974 * Flush the unicast and multicast chains
6975 */
6976 dev_uc_flush(dev);
6977 dev_mc_flush(dev);
6978
6979 /* Send a netdev-removed uevent to the old namespace */
6980 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6981 netdev_adjacent_del_links(dev);
6982
6983 /* Actually switch the network namespace */
6984 dev_net_set(dev, net);
6985
6986 /* If there is an ifindex conflict assign a new one */
6987 if (__dev_get_by_index(net, dev->ifindex)) {
6988 int iflink = (dev->iflink == dev->ifindex);
6989 dev->ifindex = dev_new_index(net);
6990 if (iflink)
6991 dev->iflink = dev->ifindex;
6992 }
6993
6994 /* Send a netdev-add uevent to the new namespace */
6995 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6996 netdev_adjacent_add_links(dev);
6997
6998 /* Fixup kobjects */
6999 err = device_rename(&dev->dev, dev->name);
7000 WARN_ON(err);
7001
7002 /* Add the device back in the hashes */
7003 list_netdevice(dev);
7004
7005 /* Notify protocols, that a new device appeared. */
7006 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7007
7008 /*
7009 * Prevent userspace races by waiting until the network
7010 * device is fully setup before sending notifications.
7011 */
7012 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7013
7014 synchronize_net();
7015 err = 0;
7016 out:
7017 return err;
7018 }
7019 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7020
7021 static int dev_cpu_callback(struct notifier_block *nfb,
7022 unsigned long action,
7023 void *ocpu)
7024 {
7025 struct sk_buff **list_skb;
7026 struct sk_buff *skb;
7027 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7028 struct softnet_data *sd, *oldsd;
7029
7030 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7031 return NOTIFY_OK;
7032
7033 local_irq_disable();
7034 cpu = smp_processor_id();
7035 sd = &per_cpu(softnet_data, cpu);
7036 oldsd = &per_cpu(softnet_data, oldcpu);
7037
7038 /* Find end of our completion_queue. */
7039 list_skb = &sd->completion_queue;
7040 while (*list_skb)
7041 list_skb = &(*list_skb)->next;
7042 /* Append completion queue from offline CPU. */
7043 *list_skb = oldsd->completion_queue;
7044 oldsd->completion_queue = NULL;
7045
7046 /* Append output queue from offline CPU. */
7047 if (oldsd->output_queue) {
7048 *sd->output_queue_tailp = oldsd->output_queue;
7049 sd->output_queue_tailp = oldsd->output_queue_tailp;
7050 oldsd->output_queue = NULL;
7051 oldsd->output_queue_tailp = &oldsd->output_queue;
7052 }
7053 /* Append NAPI poll list from offline CPU. */
7054 if (!list_empty(&oldsd->poll_list)) {
7055 list_splice_init(&oldsd->poll_list, &sd->poll_list);
7056 raise_softirq_irqoff(NET_RX_SOFTIRQ);
7057 }
7058
7059 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7060 local_irq_enable();
7061
7062 /* Process offline CPU's input_pkt_queue */
7063 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7064 netif_rx_internal(skb);
7065 input_queue_head_incr(oldsd);
7066 }
7067 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
7068 netif_rx_internal(skb);
7069 input_queue_head_incr(oldsd);
7070 }
7071
7072 return NOTIFY_OK;
7073 }
7074
7075
7076 /**
7077 * netdev_increment_features - increment feature set by one
7078 * @all: current feature set
7079 * @one: new feature set
7080 * @mask: mask feature set
7081 *
7082 * Computes a new feature set after adding a device with feature set
7083 * @one to the master device with current feature set @all. Will not
7084 * enable anything that is off in @mask. Returns the new feature set.
7085 */
7086 netdev_features_t netdev_increment_features(netdev_features_t all,
7087 netdev_features_t one, netdev_features_t mask)
7088 {
7089 if (mask & NETIF_F_GEN_CSUM)
7090 mask |= NETIF_F_ALL_CSUM;
7091 mask |= NETIF_F_VLAN_CHALLENGED;
7092
7093 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7094 all &= one | ~NETIF_F_ALL_FOR_ALL;
7095
7096 /* If one device supports hw checksumming, set for all. */
7097 if (all & NETIF_F_GEN_CSUM)
7098 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7099
7100 return all;
7101 }
7102 EXPORT_SYMBOL(netdev_increment_features);
7103
7104 static struct hlist_head * __net_init netdev_create_hash(void)
7105 {
7106 int i;
7107 struct hlist_head *hash;
7108
7109 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7110 if (hash != NULL)
7111 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7112 INIT_HLIST_HEAD(&hash[i]);
7113
7114 return hash;
7115 }
7116
7117 /* Initialize per network namespace state */
7118 static int __net_init netdev_init(struct net *net)
7119 {
7120 if (net != &init_net)
7121 INIT_LIST_HEAD(&net->dev_base_head);
7122
7123 net->dev_name_head = netdev_create_hash();
7124 if (net->dev_name_head == NULL)
7125 goto err_name;
7126
7127 net->dev_index_head = netdev_create_hash();
7128 if (net->dev_index_head == NULL)
7129 goto err_idx;
7130
7131 return 0;
7132
7133 err_idx:
7134 kfree(net->dev_name_head);
7135 err_name:
7136 return -ENOMEM;
7137 }
7138
7139 /**
7140 * netdev_drivername - network driver for the device
7141 * @dev: network device
7142 *
7143 * Determine network driver for device.
7144 */
7145 const char *netdev_drivername(const struct net_device *dev)
7146 {
7147 const struct device_driver *driver;
7148 const struct device *parent;
7149 const char *empty = "";
7150
7151 parent = dev->dev.parent;
7152 if (!parent)
7153 return empty;
7154
7155 driver = parent->driver;
7156 if (driver && driver->name)
7157 return driver->name;
7158 return empty;
7159 }
7160
7161 static void __netdev_printk(const char *level, const struct net_device *dev,
7162 struct va_format *vaf)
7163 {
7164 if (dev && dev->dev.parent) {
7165 dev_printk_emit(level[1] - '0',
7166 dev->dev.parent,
7167 "%s %s %s%s: %pV",
7168 dev_driver_string(dev->dev.parent),
7169 dev_name(dev->dev.parent),
7170 netdev_name(dev), netdev_reg_state(dev),
7171 vaf);
7172 } else if (dev) {
7173 printk("%s%s%s: %pV",
7174 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7175 } else {
7176 printk("%s(NULL net_device): %pV", level, vaf);
7177 }
7178 }
7179
7180 void netdev_printk(const char *level, const struct net_device *dev,
7181 const char *format, ...)
7182 {
7183 struct va_format vaf;
7184 va_list args;
7185
7186 va_start(args, format);
7187
7188 vaf.fmt = format;
7189 vaf.va = &args;
7190
7191 __netdev_printk(level, dev, &vaf);
7192
7193 va_end(args);
7194 }
7195 EXPORT_SYMBOL(netdev_printk);
7196
7197 #define define_netdev_printk_level(func, level) \
7198 void func(const struct net_device *dev, const char *fmt, ...) \
7199 { \
7200 struct va_format vaf; \
7201 va_list args; \
7202 \
7203 va_start(args, fmt); \
7204 \
7205 vaf.fmt = fmt; \
7206 vaf.va = &args; \
7207 \
7208 __netdev_printk(level, dev, &vaf); \
7209 \
7210 va_end(args); \
7211 } \
7212 EXPORT_SYMBOL(func);
7213
7214 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7215 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7216 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7217 define_netdev_printk_level(netdev_err, KERN_ERR);
7218 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7219 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7220 define_netdev_printk_level(netdev_info, KERN_INFO);
7221
7222 static void __net_exit netdev_exit(struct net *net)
7223 {
7224 kfree(net->dev_name_head);
7225 kfree(net->dev_index_head);
7226 }
7227
7228 static struct pernet_operations __net_initdata netdev_net_ops = {
7229 .init = netdev_init,
7230 .exit = netdev_exit,
7231 };
7232
7233 static void __net_exit default_device_exit(struct net *net)
7234 {
7235 struct net_device *dev, *aux;
7236 /*
7237 * Push all migratable network devices back to the
7238 * initial network namespace
7239 */
7240 rtnl_lock();
7241 for_each_netdev_safe(net, dev, aux) {
7242 int err;
7243 char fb_name[IFNAMSIZ];
7244
7245 /* Ignore unmoveable devices (i.e. loopback) */
7246 if (dev->features & NETIF_F_NETNS_LOCAL)
7247 continue;
7248
7249 /* Leave virtual devices for the generic cleanup */
7250 if (dev->rtnl_link_ops)
7251 continue;
7252
7253 /* Push remaining network devices to init_net */
7254 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7255 err = dev_change_net_namespace(dev, &init_net, fb_name);
7256 if (err) {
7257 pr_emerg("%s: failed to move %s to init_net: %d\n",
7258 __func__, dev->name, err);
7259 BUG();
7260 }
7261 }
7262 rtnl_unlock();
7263 }
7264
7265 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7266 {
7267 /* Return with the rtnl_lock held when there are no network
7268 * devices unregistering in any network namespace in net_list.
7269 */
7270 struct net *net;
7271 bool unregistering;
7272 DEFINE_WAIT(wait);
7273
7274 for (;;) {
7275 prepare_to_wait(&netdev_unregistering_wq, &wait,
7276 TASK_UNINTERRUPTIBLE);
7277 unregistering = false;
7278 rtnl_lock();
7279 list_for_each_entry(net, net_list, exit_list) {
7280 if (net->dev_unreg_count > 0) {
7281 unregistering = true;
7282 break;
7283 }
7284 }
7285 if (!unregistering)
7286 break;
7287 __rtnl_unlock();
7288 schedule();
7289 }
7290 finish_wait(&netdev_unregistering_wq, &wait);
7291 }
7292
7293 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7294 {
7295 /* At exit all network devices most be removed from a network
7296 * namespace. Do this in the reverse order of registration.
7297 * Do this across as many network namespaces as possible to
7298 * improve batching efficiency.
7299 */
7300 struct net_device *dev;
7301 struct net *net;
7302 LIST_HEAD(dev_kill_list);
7303
7304 /* To prevent network device cleanup code from dereferencing
7305 * loopback devices or network devices that have been freed
7306 * wait here for all pending unregistrations to complete,
7307 * before unregistring the loopback device and allowing the
7308 * network namespace be freed.
7309 *
7310 * The netdev todo list containing all network devices
7311 * unregistrations that happen in default_device_exit_batch
7312 * will run in the rtnl_unlock() at the end of
7313 * default_device_exit_batch.
7314 */
7315 rtnl_lock_unregistering(net_list);
7316 list_for_each_entry(net, net_list, exit_list) {
7317 for_each_netdev_reverse(net, dev) {
7318 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7319 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7320 else
7321 unregister_netdevice_queue(dev, &dev_kill_list);
7322 }
7323 }
7324 unregister_netdevice_many(&dev_kill_list);
7325 rtnl_unlock();
7326 }
7327
7328 static struct pernet_operations __net_initdata default_device_ops = {
7329 .exit = default_device_exit,
7330 .exit_batch = default_device_exit_batch,
7331 };
7332
7333 /*
7334 * Initialize the DEV module. At boot time this walks the device list and
7335 * unhooks any devices that fail to initialise (normally hardware not
7336 * present) and leaves us with a valid list of present and active devices.
7337 *
7338 */
7339
7340 /*
7341 * This is called single threaded during boot, so no need
7342 * to take the rtnl semaphore.
7343 */
7344 static int __init net_dev_init(void)
7345 {
7346 int i, rc = -ENOMEM;
7347
7348 BUG_ON(!dev_boot_phase);
7349
7350 if (dev_proc_init())
7351 goto out;
7352
7353 if (netdev_kobject_init())
7354 goto out;
7355
7356 INIT_LIST_HEAD(&ptype_all);
7357 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7358 INIT_LIST_HEAD(&ptype_base[i]);
7359
7360 INIT_LIST_HEAD(&offload_base);
7361
7362 if (register_pernet_subsys(&netdev_net_ops))
7363 goto out;
7364
7365 /*
7366 * Initialise the packet receive queues.
7367 */
7368
7369 for_each_possible_cpu(i) {
7370 struct softnet_data *sd = &per_cpu(softnet_data, i);
7371
7372 skb_queue_head_init(&sd->input_pkt_queue);
7373 skb_queue_head_init(&sd->process_queue);
7374 INIT_LIST_HEAD(&sd->poll_list);
7375 sd->output_queue_tailp = &sd->output_queue;
7376 #ifdef CONFIG_RPS
7377 sd->csd.func = rps_trigger_softirq;
7378 sd->csd.info = sd;
7379 sd->cpu = i;
7380 #endif
7381
7382 sd->backlog.poll = process_backlog;
7383 sd->backlog.weight = weight_p;
7384 }
7385
7386 dev_boot_phase = 0;
7387
7388 /* The loopback device is special if any other network devices
7389 * is present in a network namespace the loopback device must
7390 * be present. Since we now dynamically allocate and free the
7391 * loopback device ensure this invariant is maintained by
7392 * keeping the loopback device as the first device on the
7393 * list of network devices. Ensuring the loopback devices
7394 * is the first device that appears and the last network device
7395 * that disappears.
7396 */
7397 if (register_pernet_device(&loopback_net_ops))
7398 goto out;
7399
7400 if (register_pernet_device(&default_device_ops))
7401 goto out;
7402
7403 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7404 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7405
7406 hotcpu_notifier(dev_cpu_callback, 0);
7407 dst_init();
7408 rc = 0;
7409 out:
7410 return rc;
7411 }
7412
7413 subsys_initcall(net_dev_init);