]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/dev.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/crash_dump.h>
143
144 #include "net-sysfs.h"
145
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
148
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
151
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly; /* Taps */
156 static struct list_head offload_base __read_mostly;
157
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160 struct net_device *dev,
161 struct netdev_notifier_info *info);
162
163 /*
164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
165 * semaphore.
166 *
167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
168 *
169 * Writers must hold the rtnl semaphore while they loop through the
170 * dev_base_head list, and hold dev_base_lock for writing when they do the
171 * actual updates. This allows pure readers to access the list even
172 * while a writer is preparing to update it.
173 *
174 * To put it another way, dev_base_lock is held for writing only to
175 * protect against pure readers; the rtnl semaphore provides the
176 * protection against other writers.
177 *
178 * See, for example usages, register_netdevice() and
179 * unregister_netdevice(), which must be called with the rtnl
180 * semaphore held.
181 */
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
184
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
187
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
190
191 static seqcount_t devnet_rename_seq;
192
193 static inline void dev_base_seq_inc(struct net *net)
194 {
195 while (++net->dev_base_seq == 0);
196 }
197
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 {
200 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
201
202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
208 }
209
210 static inline void rps_lock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213 spin_lock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 static inline void rps_unlock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 spin_unlock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 /* Device list insertion */
225 static void list_netdevice(struct net_device *dev)
226 {
227 struct net *net = dev_net(dev);
228
229 ASSERT_RTNL();
230
231 write_lock_bh(&dev_base_lock);
232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
234 hlist_add_head_rcu(&dev->index_hlist,
235 dev_index_hash(net, dev->ifindex));
236 write_unlock_bh(&dev_base_lock);
237
238 dev_base_seq_inc(net);
239 }
240
241 /* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
250 list_del_rcu(&dev->dev_list);
251 hlist_del_rcu(&dev->name_hlist);
252 hlist_del_rcu(&dev->index_hlist);
253 write_unlock_bh(&dev_base_lock);
254
255 dev_base_seq_inc(dev_net(dev));
256 }
257
258 /*
259 * Our notifier list
260 */
261
262 static RAW_NOTIFIER_HEAD(netdev_chain);
263
264 /*
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
267 */
268
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
271
272 #ifdef CONFIG_LOCKDEP
273 /*
274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275 * according to dev->type
276 */
277 static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
293
294 static const char *const netdev_lock_name[] =
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
310
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327 {
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333 }
334
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353
354 /*******************************************************************************
355
356 Protocol management and registration routines
357
358 *******************************************************************************/
359
360 /*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
376 static inline struct list_head *ptype_head(const struct packet_type *pt)
377 {
378 if (pt->type == htons(ETH_P_ALL))
379 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
380 else
381 return pt->dev ? &pt->dev->ptype_specific :
382 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384
385 /**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
393 * This call does not sleep therefore it can not
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398 void dev_add_pack(struct packet_type *pt)
399 {
400 struct list_head *head = ptype_head(pt);
401
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407
408 /**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
415 * returns.
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423 struct list_head *head = ptype_head(pt);
424 struct packet_type *pt1;
425
426 spin_lock(&ptype_lock);
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
435 pr_warn("dev_remove_pack: %p not found\n", pt);
436 out:
437 spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440
441 /**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455 __dev_remove_pack(pt);
456
457 synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460
461
462 /**
463 * dev_add_offload - register offload handlers
464 * @po: protocol offload declaration
465 *
466 * Add protocol offload handlers to the networking stack. The passed
467 * &proto_offload is linked into kernel lists and may not be freed until
468 * it has been removed from the kernel lists.
469 *
470 * This call does not sleep therefore it can not
471 * guarantee all CPU's that are in middle of receiving packets
472 * will see the new offload handlers (until the next received packet).
473 */
474 void dev_add_offload(struct packet_offload *po)
475 {
476 struct packet_offload *elem;
477
478 spin_lock(&offload_lock);
479 list_for_each_entry(elem, &offload_base, list) {
480 if (po->priority < elem->priority)
481 break;
482 }
483 list_add_rcu(&po->list, elem->list.prev);
484 spin_unlock(&offload_lock);
485 }
486 EXPORT_SYMBOL(dev_add_offload);
487
488 /**
489 * __dev_remove_offload - remove offload handler
490 * @po: packet offload declaration
491 *
492 * Remove a protocol offload handler that was previously added to the
493 * kernel offload handlers by dev_add_offload(). The passed &offload_type
494 * is removed from the kernel lists and can be freed or reused once this
495 * function returns.
496 *
497 * The packet type might still be in use by receivers
498 * and must not be freed until after all the CPU's have gone
499 * through a quiescent state.
500 */
501 static void __dev_remove_offload(struct packet_offload *po)
502 {
503 struct list_head *head = &offload_base;
504 struct packet_offload *po1;
505
506 spin_lock(&offload_lock);
507
508 list_for_each_entry(po1, head, list) {
509 if (po == po1) {
510 list_del_rcu(&po->list);
511 goto out;
512 }
513 }
514
515 pr_warn("dev_remove_offload: %p not found\n", po);
516 out:
517 spin_unlock(&offload_lock);
518 }
519
520 /**
521 * dev_remove_offload - remove packet offload handler
522 * @po: packet offload declaration
523 *
524 * Remove a packet offload handler that was previously added to the kernel
525 * offload handlers by dev_add_offload(). The passed &offload_type is
526 * removed from the kernel lists and can be freed or reused once this
527 * function returns.
528 *
529 * This call sleeps to guarantee that no CPU is looking at the packet
530 * type after return.
531 */
532 void dev_remove_offload(struct packet_offload *po)
533 {
534 __dev_remove_offload(po);
535
536 synchronize_net();
537 }
538 EXPORT_SYMBOL(dev_remove_offload);
539
540 /******************************************************************************
541
542 Device Boot-time Settings Routines
543
544 *******************************************************************************/
545
546 /* Boot time configuration table */
547 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
548
549 /**
550 * netdev_boot_setup_add - add new setup entry
551 * @name: name of the device
552 * @map: configured settings for the device
553 *
554 * Adds new setup entry to the dev_boot_setup list. The function
555 * returns 0 on error and 1 on success. This is a generic routine to
556 * all netdevices.
557 */
558 static int netdev_boot_setup_add(char *name, struct ifmap *map)
559 {
560 struct netdev_boot_setup *s;
561 int i;
562
563 s = dev_boot_setup;
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566 memset(s[i].name, 0, sizeof(s[i].name));
567 strlcpy(s[i].name, name, IFNAMSIZ);
568 memcpy(&s[i].map, map, sizeof(s[i].map));
569 break;
570 }
571 }
572
573 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
574 }
575
576 /**
577 * netdev_boot_setup_check - check boot time settings
578 * @dev: the netdevice
579 *
580 * Check boot time settings for the device.
581 * The found settings are set for the device to be used
582 * later in the device probing.
583 * Returns 0 if no settings found, 1 if they are.
584 */
585 int netdev_boot_setup_check(struct net_device *dev)
586 {
587 struct netdev_boot_setup *s = dev_boot_setup;
588 int i;
589
590 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
592 !strcmp(dev->name, s[i].name)) {
593 dev->irq = s[i].map.irq;
594 dev->base_addr = s[i].map.base_addr;
595 dev->mem_start = s[i].map.mem_start;
596 dev->mem_end = s[i].map.mem_end;
597 return 1;
598 }
599 }
600 return 0;
601 }
602 EXPORT_SYMBOL(netdev_boot_setup_check);
603
604
605 /**
606 * netdev_boot_base - get address from boot time settings
607 * @prefix: prefix for network device
608 * @unit: id for network device
609 *
610 * Check boot time settings for the base address of device.
611 * The found settings are set for the device to be used
612 * later in the device probing.
613 * Returns 0 if no settings found.
614 */
615 unsigned long netdev_boot_base(const char *prefix, int unit)
616 {
617 const struct netdev_boot_setup *s = dev_boot_setup;
618 char name[IFNAMSIZ];
619 int i;
620
621 sprintf(name, "%s%d", prefix, unit);
622
623 /*
624 * If device already registered then return base of 1
625 * to indicate not to probe for this interface
626 */
627 if (__dev_get_by_name(&init_net, name))
628 return 1;
629
630 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631 if (!strcmp(name, s[i].name))
632 return s[i].map.base_addr;
633 return 0;
634 }
635
636 /*
637 * Saves at boot time configured settings for any netdevice.
638 */
639 int __init netdev_boot_setup(char *str)
640 {
641 int ints[5];
642 struct ifmap map;
643
644 str = get_options(str, ARRAY_SIZE(ints), ints);
645 if (!str || !*str)
646 return 0;
647
648 /* Save settings */
649 memset(&map, 0, sizeof(map));
650 if (ints[0] > 0)
651 map.irq = ints[1];
652 if (ints[0] > 1)
653 map.base_addr = ints[2];
654 if (ints[0] > 2)
655 map.mem_start = ints[3];
656 if (ints[0] > 3)
657 map.mem_end = ints[4];
658
659 /* Add new entry to the list */
660 return netdev_boot_setup_add(str, &map);
661 }
662
663 __setup("netdev=", netdev_boot_setup);
664
665 /*******************************************************************************
666
667 Device Interface Subroutines
668
669 *******************************************************************************/
670
671 /**
672 * dev_get_iflink - get 'iflink' value of a interface
673 * @dev: targeted interface
674 *
675 * Indicates the ifindex the interface is linked to.
676 * Physical interfaces have the same 'ifindex' and 'iflink' values.
677 */
678
679 int dev_get_iflink(const struct net_device *dev)
680 {
681 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682 return dev->netdev_ops->ndo_get_iflink(dev);
683
684 return dev->ifindex;
685 }
686 EXPORT_SYMBOL(dev_get_iflink);
687
688 /**
689 * dev_fill_metadata_dst - Retrieve tunnel egress information.
690 * @dev: targeted interface
691 * @skb: The packet.
692 *
693 * For better visibility of tunnel traffic OVS needs to retrieve
694 * egress tunnel information for a packet. Following API allows
695 * user to get this info.
696 */
697 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698 {
699 struct ip_tunnel_info *info;
700
701 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
702 return -EINVAL;
703
704 info = skb_tunnel_info_unclone(skb);
705 if (!info)
706 return -ENOMEM;
707 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708 return -EINVAL;
709
710 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711 }
712 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
713
714 /**
715 * __dev_get_by_name - find a device by its name
716 * @net: the applicable net namespace
717 * @name: name to find
718 *
719 * Find an interface by name. Must be called under RTNL semaphore
720 * or @dev_base_lock. If the name is found a pointer to the device
721 * is returned. If the name is not found then %NULL is returned. The
722 * reference counters are not incremented so the caller must be
723 * careful with locks.
724 */
725
726 struct net_device *__dev_get_by_name(struct net *net, const char *name)
727 {
728 struct net_device *dev;
729 struct hlist_head *head = dev_name_hash(net, name);
730
731 hlist_for_each_entry(dev, head, name_hlist)
732 if (!strncmp(dev->name, name, IFNAMSIZ))
733 return dev;
734
735 return NULL;
736 }
737 EXPORT_SYMBOL(__dev_get_by_name);
738
739 /**
740 * dev_get_by_name_rcu - find a device by its name
741 * @net: the applicable net namespace
742 * @name: name to find
743 *
744 * Find an interface by name.
745 * If the name is found a pointer to the device is returned.
746 * If the name is not found then %NULL is returned.
747 * The reference counters are not incremented so the caller must be
748 * careful with locks. The caller must hold RCU lock.
749 */
750
751 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752 {
753 struct net_device *dev;
754 struct hlist_head *head = dev_name_hash(net, name);
755
756 hlist_for_each_entry_rcu(dev, head, name_hlist)
757 if (!strncmp(dev->name, name, IFNAMSIZ))
758 return dev;
759
760 return NULL;
761 }
762 EXPORT_SYMBOL(dev_get_by_name_rcu);
763
764 /**
765 * dev_get_by_name - find a device by its name
766 * @net: the applicable net namespace
767 * @name: name to find
768 *
769 * Find an interface by name. This can be called from any
770 * context and does its own locking. The returned handle has
771 * the usage count incremented and the caller must use dev_put() to
772 * release it when it is no longer needed. %NULL is returned if no
773 * matching device is found.
774 */
775
776 struct net_device *dev_get_by_name(struct net *net, const char *name)
777 {
778 struct net_device *dev;
779
780 rcu_read_lock();
781 dev = dev_get_by_name_rcu(net, name);
782 if (dev)
783 dev_hold(dev);
784 rcu_read_unlock();
785 return dev;
786 }
787 EXPORT_SYMBOL(dev_get_by_name);
788
789 /**
790 * __dev_get_by_index - find a device by its ifindex
791 * @net: the applicable net namespace
792 * @ifindex: index of device
793 *
794 * Search for an interface by index. Returns %NULL if the device
795 * is not found or a pointer to the device. The device has not
796 * had its reference counter increased so the caller must be careful
797 * about locking. The caller must hold either the RTNL semaphore
798 * or @dev_base_lock.
799 */
800
801 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
802 {
803 struct net_device *dev;
804 struct hlist_head *head = dev_index_hash(net, ifindex);
805
806 hlist_for_each_entry(dev, head, index_hlist)
807 if (dev->ifindex == ifindex)
808 return dev;
809
810 return NULL;
811 }
812 EXPORT_SYMBOL(__dev_get_by_index);
813
814 /**
815 * dev_get_by_index_rcu - find a device by its ifindex
816 * @net: the applicable net namespace
817 * @ifindex: index of device
818 *
819 * Search for an interface by index. Returns %NULL if the device
820 * is not found or a pointer to the device. The device has not
821 * had its reference counter increased so the caller must be careful
822 * about locking. The caller must hold RCU lock.
823 */
824
825 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826 {
827 struct net_device *dev;
828 struct hlist_head *head = dev_index_hash(net, ifindex);
829
830 hlist_for_each_entry_rcu(dev, head, index_hlist)
831 if (dev->ifindex == ifindex)
832 return dev;
833
834 return NULL;
835 }
836 EXPORT_SYMBOL(dev_get_by_index_rcu);
837
838
839 /**
840 * dev_get_by_index - find a device by its ifindex
841 * @net: the applicable net namespace
842 * @ifindex: index of device
843 *
844 * Search for an interface by index. Returns NULL if the device
845 * is not found or a pointer to the device. The device returned has
846 * had a reference added and the pointer is safe until the user calls
847 * dev_put to indicate they have finished with it.
848 */
849
850 struct net_device *dev_get_by_index(struct net *net, int ifindex)
851 {
852 struct net_device *dev;
853
854 rcu_read_lock();
855 dev = dev_get_by_index_rcu(net, ifindex);
856 if (dev)
857 dev_hold(dev);
858 rcu_read_unlock();
859 return dev;
860 }
861 EXPORT_SYMBOL(dev_get_by_index);
862
863 /**
864 * netdev_get_name - get a netdevice name, knowing its ifindex.
865 * @net: network namespace
866 * @name: a pointer to the buffer where the name will be stored.
867 * @ifindex: the ifindex of the interface to get the name from.
868 *
869 * The use of raw_seqcount_begin() and cond_resched() before
870 * retrying is required as we want to give the writers a chance
871 * to complete when CONFIG_PREEMPT is not set.
872 */
873 int netdev_get_name(struct net *net, char *name, int ifindex)
874 {
875 struct net_device *dev;
876 unsigned int seq;
877
878 retry:
879 seq = raw_seqcount_begin(&devnet_rename_seq);
880 rcu_read_lock();
881 dev = dev_get_by_index_rcu(net, ifindex);
882 if (!dev) {
883 rcu_read_unlock();
884 return -ENODEV;
885 }
886
887 strcpy(name, dev->name);
888 rcu_read_unlock();
889 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890 cond_resched();
891 goto retry;
892 }
893
894 return 0;
895 }
896
897 /**
898 * dev_getbyhwaddr_rcu - find a device by its hardware address
899 * @net: the applicable net namespace
900 * @type: media type of device
901 * @ha: hardware address
902 *
903 * Search for an interface by MAC address. Returns NULL if the device
904 * is not found or a pointer to the device.
905 * The caller must hold RCU or RTNL.
906 * The returned device has not had its ref count increased
907 * and the caller must therefore be careful about locking
908 *
909 */
910
911 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912 const char *ha)
913 {
914 struct net_device *dev;
915
916 for_each_netdev_rcu(net, dev)
917 if (dev->type == type &&
918 !memcmp(dev->dev_addr, ha, dev->addr_len))
919 return dev;
920
921 return NULL;
922 }
923 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
924
925 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
926 {
927 struct net_device *dev;
928
929 ASSERT_RTNL();
930 for_each_netdev(net, dev)
931 if (dev->type == type)
932 return dev;
933
934 return NULL;
935 }
936 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937
938 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
939 {
940 struct net_device *dev, *ret = NULL;
941
942 rcu_read_lock();
943 for_each_netdev_rcu(net, dev)
944 if (dev->type == type) {
945 dev_hold(dev);
946 ret = dev;
947 break;
948 }
949 rcu_read_unlock();
950 return ret;
951 }
952 EXPORT_SYMBOL(dev_getfirstbyhwtype);
953
954 /**
955 * __dev_get_by_flags - find any device with given flags
956 * @net: the applicable net namespace
957 * @if_flags: IFF_* values
958 * @mask: bitmask of bits in if_flags to check
959 *
960 * Search for any interface with the given flags. Returns NULL if a device
961 * is not found or a pointer to the device. Must be called inside
962 * rtnl_lock(), and result refcount is unchanged.
963 */
964
965 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966 unsigned short mask)
967 {
968 struct net_device *dev, *ret;
969
970 ASSERT_RTNL();
971
972 ret = NULL;
973 for_each_netdev(net, dev) {
974 if (((dev->flags ^ if_flags) & mask) == 0) {
975 ret = dev;
976 break;
977 }
978 }
979 return ret;
980 }
981 EXPORT_SYMBOL(__dev_get_by_flags);
982
983 /**
984 * dev_valid_name - check if name is okay for network device
985 * @name: name string
986 *
987 * Network device names need to be valid file names to
988 * to allow sysfs to work. We also disallow any kind of
989 * whitespace.
990 */
991 bool dev_valid_name(const char *name)
992 {
993 if (*name == '\0')
994 return false;
995 if (strlen(name) >= IFNAMSIZ)
996 return false;
997 if (!strcmp(name, ".") || !strcmp(name, ".."))
998 return false;
999
1000 while (*name) {
1001 if (*name == '/' || *name == ':' || isspace(*name))
1002 return false;
1003 name++;
1004 }
1005 return true;
1006 }
1007 EXPORT_SYMBOL(dev_valid_name);
1008
1009 /**
1010 * __dev_alloc_name - allocate a name for a device
1011 * @net: network namespace to allocate the device name in
1012 * @name: name format string
1013 * @buf: scratch buffer and result name string
1014 *
1015 * Passed a format string - eg "lt%d" it will try and find a suitable
1016 * id. It scans list of devices to build up a free map, then chooses
1017 * the first empty slot. The caller must hold the dev_base or rtnl lock
1018 * while allocating the name and adding the device in order to avoid
1019 * duplicates.
1020 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021 * Returns the number of the unit assigned or a negative errno code.
1022 */
1023
1024 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1025 {
1026 int i = 0;
1027 const char *p;
1028 const int max_netdevices = 8*PAGE_SIZE;
1029 unsigned long *inuse;
1030 struct net_device *d;
1031
1032 p = strnchr(name, IFNAMSIZ-1, '%');
1033 if (p) {
1034 /*
1035 * Verify the string as this thing may have come from
1036 * the user. There must be either one "%d" and no other "%"
1037 * characters.
1038 */
1039 if (p[1] != 'd' || strchr(p + 2, '%'))
1040 return -EINVAL;
1041
1042 /* Use one page as a bit array of possible slots */
1043 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1044 if (!inuse)
1045 return -ENOMEM;
1046
1047 for_each_netdev(net, d) {
1048 if (!sscanf(d->name, name, &i))
1049 continue;
1050 if (i < 0 || i >= max_netdevices)
1051 continue;
1052
1053 /* avoid cases where sscanf is not exact inverse of printf */
1054 snprintf(buf, IFNAMSIZ, name, i);
1055 if (!strncmp(buf, d->name, IFNAMSIZ))
1056 set_bit(i, inuse);
1057 }
1058
1059 i = find_first_zero_bit(inuse, max_netdevices);
1060 free_page((unsigned long) inuse);
1061 }
1062
1063 if (buf != name)
1064 snprintf(buf, IFNAMSIZ, name, i);
1065 if (!__dev_get_by_name(net, buf))
1066 return i;
1067
1068 /* It is possible to run out of possible slots
1069 * when the name is long and there isn't enough space left
1070 * for the digits, or if all bits are used.
1071 */
1072 return -ENFILE;
1073 }
1074
1075 /**
1076 * dev_alloc_name - allocate a name for a device
1077 * @dev: device
1078 * @name: name format string
1079 *
1080 * Passed a format string - eg "lt%d" it will try and find a suitable
1081 * id. It scans list of devices to build up a free map, then chooses
1082 * the first empty slot. The caller must hold the dev_base or rtnl lock
1083 * while allocating the name and adding the device in order to avoid
1084 * duplicates.
1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086 * Returns the number of the unit assigned or a negative errno code.
1087 */
1088
1089 int dev_alloc_name(struct net_device *dev, const char *name)
1090 {
1091 char buf[IFNAMSIZ];
1092 struct net *net;
1093 int ret;
1094
1095 BUG_ON(!dev_net(dev));
1096 net = dev_net(dev);
1097 ret = __dev_alloc_name(net, name, buf);
1098 if (ret >= 0)
1099 strlcpy(dev->name, buf, IFNAMSIZ);
1100 return ret;
1101 }
1102 EXPORT_SYMBOL(dev_alloc_name);
1103
1104 static int dev_alloc_name_ns(struct net *net,
1105 struct net_device *dev,
1106 const char *name)
1107 {
1108 char buf[IFNAMSIZ];
1109 int ret;
1110
1111 ret = __dev_alloc_name(net, name, buf);
1112 if (ret >= 0)
1113 strlcpy(dev->name, buf, IFNAMSIZ);
1114 return ret;
1115 }
1116
1117 static int dev_get_valid_name(struct net *net,
1118 struct net_device *dev,
1119 const char *name)
1120 {
1121 BUG_ON(!net);
1122
1123 if (!dev_valid_name(name))
1124 return -EINVAL;
1125
1126 if (strchr(name, '%'))
1127 return dev_alloc_name_ns(net, dev, name);
1128 else if (__dev_get_by_name(net, name))
1129 return -EEXIST;
1130 else if (dev->name != name)
1131 strlcpy(dev->name, name, IFNAMSIZ);
1132
1133 return 0;
1134 }
1135
1136 /**
1137 * dev_change_name - change name of a device
1138 * @dev: device
1139 * @newname: name (or format string) must be at least IFNAMSIZ
1140 *
1141 * Change name of a device, can pass format strings "eth%d".
1142 * for wildcarding.
1143 */
1144 int dev_change_name(struct net_device *dev, const char *newname)
1145 {
1146 unsigned char old_assign_type;
1147 char oldname[IFNAMSIZ];
1148 int err = 0;
1149 int ret;
1150 struct net *net;
1151
1152 ASSERT_RTNL();
1153 BUG_ON(!dev_net(dev));
1154
1155 net = dev_net(dev);
1156 if (dev->flags & IFF_UP)
1157 return -EBUSY;
1158
1159 write_seqcount_begin(&devnet_rename_seq);
1160
1161 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1162 write_seqcount_end(&devnet_rename_seq);
1163 return 0;
1164 }
1165
1166 memcpy(oldname, dev->name, IFNAMSIZ);
1167
1168 err = dev_get_valid_name(net, dev, newname);
1169 if (err < 0) {
1170 write_seqcount_end(&devnet_rename_seq);
1171 return err;
1172 }
1173
1174 if (oldname[0] && !strchr(oldname, '%'))
1175 netdev_info(dev, "renamed from %s\n", oldname);
1176
1177 old_assign_type = dev->name_assign_type;
1178 dev->name_assign_type = NET_NAME_RENAMED;
1179
1180 rollback:
1181 ret = device_rename(&dev->dev, dev->name);
1182 if (ret) {
1183 memcpy(dev->name, oldname, IFNAMSIZ);
1184 dev->name_assign_type = old_assign_type;
1185 write_seqcount_end(&devnet_rename_seq);
1186 return ret;
1187 }
1188
1189 write_seqcount_end(&devnet_rename_seq);
1190
1191 netdev_adjacent_rename_links(dev, oldname);
1192
1193 write_lock_bh(&dev_base_lock);
1194 hlist_del_rcu(&dev->name_hlist);
1195 write_unlock_bh(&dev_base_lock);
1196
1197 synchronize_rcu();
1198
1199 write_lock_bh(&dev_base_lock);
1200 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1201 write_unlock_bh(&dev_base_lock);
1202
1203 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1204 ret = notifier_to_errno(ret);
1205
1206 if (ret) {
1207 /* err >= 0 after dev_alloc_name() or stores the first errno */
1208 if (err >= 0) {
1209 err = ret;
1210 write_seqcount_begin(&devnet_rename_seq);
1211 memcpy(dev->name, oldname, IFNAMSIZ);
1212 memcpy(oldname, newname, IFNAMSIZ);
1213 dev->name_assign_type = old_assign_type;
1214 old_assign_type = NET_NAME_RENAMED;
1215 goto rollback;
1216 } else {
1217 pr_err("%s: name change rollback failed: %d\n",
1218 dev->name, ret);
1219 }
1220 }
1221
1222 return err;
1223 }
1224
1225 /**
1226 * dev_set_alias - change ifalias of a device
1227 * @dev: device
1228 * @alias: name up to IFALIASZ
1229 * @len: limit of bytes to copy from info
1230 *
1231 * Set ifalias for a device,
1232 */
1233 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234 {
1235 char *new_ifalias;
1236
1237 ASSERT_RTNL();
1238
1239 if (len >= IFALIASZ)
1240 return -EINVAL;
1241
1242 if (!len) {
1243 kfree(dev->ifalias);
1244 dev->ifalias = NULL;
1245 return 0;
1246 }
1247
1248 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249 if (!new_ifalias)
1250 return -ENOMEM;
1251 dev->ifalias = new_ifalias;
1252
1253 strlcpy(dev->ifalias, alias, len+1);
1254 return len;
1255 }
1256
1257
1258 /**
1259 * netdev_features_change - device changes features
1260 * @dev: device to cause notification
1261 *
1262 * Called to indicate a device has changed features.
1263 */
1264 void netdev_features_change(struct net_device *dev)
1265 {
1266 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1267 }
1268 EXPORT_SYMBOL(netdev_features_change);
1269
1270 /**
1271 * netdev_state_change - device changes state
1272 * @dev: device to cause notification
1273 *
1274 * Called to indicate a device has changed state. This function calls
1275 * the notifier chains for netdev_chain and sends a NEWLINK message
1276 * to the routing socket.
1277 */
1278 void netdev_state_change(struct net_device *dev)
1279 {
1280 if (dev->flags & IFF_UP) {
1281 struct netdev_notifier_change_info change_info;
1282
1283 change_info.flags_changed = 0;
1284 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285 &change_info.info);
1286 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1287 }
1288 }
1289 EXPORT_SYMBOL(netdev_state_change);
1290
1291 /**
1292 * netdev_notify_peers - notify network peers about existence of @dev
1293 * @dev: network device
1294 *
1295 * Generate traffic such that interested network peers are aware of
1296 * @dev, such as by generating a gratuitous ARP. This may be used when
1297 * a device wants to inform the rest of the network about some sort of
1298 * reconfiguration such as a failover event or virtual machine
1299 * migration.
1300 */
1301 void netdev_notify_peers(struct net_device *dev)
1302 {
1303 rtnl_lock();
1304 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305 rtnl_unlock();
1306 }
1307 EXPORT_SYMBOL(netdev_notify_peers);
1308
1309 static int __dev_open(struct net_device *dev)
1310 {
1311 const struct net_device_ops *ops = dev->netdev_ops;
1312 int ret;
1313
1314 ASSERT_RTNL();
1315
1316 if (!netif_device_present(dev))
1317 return -ENODEV;
1318
1319 /* Block netpoll from trying to do any rx path servicing.
1320 * If we don't do this there is a chance ndo_poll_controller
1321 * or ndo_poll may be running while we open the device
1322 */
1323 netpoll_poll_disable(dev);
1324
1325 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326 ret = notifier_to_errno(ret);
1327 if (ret)
1328 return ret;
1329
1330 set_bit(__LINK_STATE_START, &dev->state);
1331
1332 if (ops->ndo_validate_addr)
1333 ret = ops->ndo_validate_addr(dev);
1334
1335 if (!ret && ops->ndo_open)
1336 ret = ops->ndo_open(dev);
1337
1338 netpoll_poll_enable(dev);
1339
1340 if (ret)
1341 clear_bit(__LINK_STATE_START, &dev->state);
1342 else {
1343 dev->flags |= IFF_UP;
1344 dev_set_rx_mode(dev);
1345 dev_activate(dev);
1346 add_device_randomness(dev->dev_addr, dev->addr_len);
1347 }
1348
1349 return ret;
1350 }
1351
1352 /**
1353 * dev_open - prepare an interface for use.
1354 * @dev: device to open
1355 *
1356 * Takes a device from down to up state. The device's private open
1357 * function is invoked and then the multicast lists are loaded. Finally
1358 * the device is moved into the up state and a %NETDEV_UP message is
1359 * sent to the netdev notifier chain.
1360 *
1361 * Calling this function on an active interface is a nop. On a failure
1362 * a negative errno code is returned.
1363 */
1364 int dev_open(struct net_device *dev)
1365 {
1366 int ret;
1367
1368 if (dev->flags & IFF_UP)
1369 return 0;
1370
1371 ret = __dev_open(dev);
1372 if (ret < 0)
1373 return ret;
1374
1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1376 call_netdevice_notifiers(NETDEV_UP, dev);
1377
1378 return ret;
1379 }
1380 EXPORT_SYMBOL(dev_open);
1381
1382 static int __dev_close_many(struct list_head *head)
1383 {
1384 struct net_device *dev;
1385
1386 ASSERT_RTNL();
1387 might_sleep();
1388
1389 list_for_each_entry(dev, head, close_list) {
1390 /* Temporarily disable netpoll until the interface is down */
1391 netpoll_poll_disable(dev);
1392
1393 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1394
1395 clear_bit(__LINK_STATE_START, &dev->state);
1396
1397 /* Synchronize to scheduled poll. We cannot touch poll list, it
1398 * can be even on different cpu. So just clear netif_running().
1399 *
1400 * dev->stop() will invoke napi_disable() on all of it's
1401 * napi_struct instances on this device.
1402 */
1403 smp_mb__after_atomic(); /* Commit netif_running(). */
1404 }
1405
1406 dev_deactivate_many(head);
1407
1408 list_for_each_entry(dev, head, close_list) {
1409 const struct net_device_ops *ops = dev->netdev_ops;
1410
1411 /*
1412 * Call the device specific close. This cannot fail.
1413 * Only if device is UP
1414 *
1415 * We allow it to be called even after a DETACH hot-plug
1416 * event.
1417 */
1418 if (ops->ndo_stop)
1419 ops->ndo_stop(dev);
1420
1421 dev->flags &= ~IFF_UP;
1422 netpoll_poll_enable(dev);
1423 }
1424
1425 return 0;
1426 }
1427
1428 static int __dev_close(struct net_device *dev)
1429 {
1430 int retval;
1431 LIST_HEAD(single);
1432
1433 list_add(&dev->close_list, &single);
1434 retval = __dev_close_many(&single);
1435 list_del(&single);
1436
1437 return retval;
1438 }
1439
1440 int dev_close_many(struct list_head *head, bool unlink)
1441 {
1442 struct net_device *dev, *tmp;
1443
1444 /* Remove the devices that don't need to be closed */
1445 list_for_each_entry_safe(dev, tmp, head, close_list)
1446 if (!(dev->flags & IFF_UP))
1447 list_del_init(&dev->close_list);
1448
1449 __dev_close_many(head);
1450
1451 list_for_each_entry_safe(dev, tmp, head, close_list) {
1452 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1453 call_netdevice_notifiers(NETDEV_DOWN, dev);
1454 if (unlink)
1455 list_del_init(&dev->close_list);
1456 }
1457
1458 return 0;
1459 }
1460 EXPORT_SYMBOL(dev_close_many);
1461
1462 /**
1463 * dev_close - shutdown an interface.
1464 * @dev: device to shutdown
1465 *
1466 * This function moves an active device into down state. A
1467 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469 * chain.
1470 */
1471 int dev_close(struct net_device *dev)
1472 {
1473 if (dev->flags & IFF_UP) {
1474 LIST_HEAD(single);
1475
1476 list_add(&dev->close_list, &single);
1477 dev_close_many(&single, true);
1478 list_del(&single);
1479 }
1480 return 0;
1481 }
1482 EXPORT_SYMBOL(dev_close);
1483
1484
1485 /**
1486 * dev_disable_lro - disable Large Receive Offload on a device
1487 * @dev: device
1488 *
1489 * Disable Large Receive Offload (LRO) on a net device. Must be
1490 * called under RTNL. This is needed if received packets may be
1491 * forwarded to another interface.
1492 */
1493 void dev_disable_lro(struct net_device *dev)
1494 {
1495 struct net_device *lower_dev;
1496 struct list_head *iter;
1497
1498 dev->wanted_features &= ~NETIF_F_LRO;
1499 netdev_update_features(dev);
1500
1501 if (unlikely(dev->features & NETIF_F_LRO))
1502 netdev_WARN(dev, "failed to disable LRO!\n");
1503
1504 netdev_for_each_lower_dev(dev, lower_dev, iter)
1505 dev_disable_lro(lower_dev);
1506 }
1507 EXPORT_SYMBOL(dev_disable_lro);
1508
1509 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510 struct net_device *dev)
1511 {
1512 struct netdev_notifier_info info;
1513
1514 netdev_notifier_info_init(&info, dev);
1515 return nb->notifier_call(nb, val, &info);
1516 }
1517
1518 static int dev_boot_phase = 1;
1519
1520 /**
1521 * register_netdevice_notifier - register a network notifier block
1522 * @nb: notifier
1523 *
1524 * Register a notifier to be called when network device events occur.
1525 * The notifier passed is linked into the kernel structures and must
1526 * not be reused until it has been unregistered. A negative errno code
1527 * is returned on a failure.
1528 *
1529 * When registered all registration and up events are replayed
1530 * to the new notifier to allow device to have a race free
1531 * view of the network device list.
1532 */
1533
1534 int register_netdevice_notifier(struct notifier_block *nb)
1535 {
1536 struct net_device *dev;
1537 struct net_device *last;
1538 struct net *net;
1539 int err;
1540
1541 rtnl_lock();
1542 err = raw_notifier_chain_register(&netdev_chain, nb);
1543 if (err)
1544 goto unlock;
1545 if (dev_boot_phase)
1546 goto unlock;
1547 for_each_net(net) {
1548 for_each_netdev(net, dev) {
1549 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1550 err = notifier_to_errno(err);
1551 if (err)
1552 goto rollback;
1553
1554 if (!(dev->flags & IFF_UP))
1555 continue;
1556
1557 call_netdevice_notifier(nb, NETDEV_UP, dev);
1558 }
1559 }
1560
1561 unlock:
1562 rtnl_unlock();
1563 return err;
1564
1565 rollback:
1566 last = dev;
1567 for_each_net(net) {
1568 for_each_netdev(net, dev) {
1569 if (dev == last)
1570 goto outroll;
1571
1572 if (dev->flags & IFF_UP) {
1573 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574 dev);
1575 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1576 }
1577 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1578 }
1579 }
1580
1581 outroll:
1582 raw_notifier_chain_unregister(&netdev_chain, nb);
1583 goto unlock;
1584 }
1585 EXPORT_SYMBOL(register_netdevice_notifier);
1586
1587 /**
1588 * unregister_netdevice_notifier - unregister a network notifier block
1589 * @nb: notifier
1590 *
1591 * Unregister a notifier previously registered by
1592 * register_netdevice_notifier(). The notifier is unlinked into the
1593 * kernel structures and may then be reused. A negative errno code
1594 * is returned on a failure.
1595 *
1596 * After unregistering unregister and down device events are synthesized
1597 * for all devices on the device list to the removed notifier to remove
1598 * the need for special case cleanup code.
1599 */
1600
1601 int unregister_netdevice_notifier(struct notifier_block *nb)
1602 {
1603 struct net_device *dev;
1604 struct net *net;
1605 int err;
1606
1607 rtnl_lock();
1608 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1609 if (err)
1610 goto unlock;
1611
1612 for_each_net(net) {
1613 for_each_netdev(net, dev) {
1614 if (dev->flags & IFF_UP) {
1615 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616 dev);
1617 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1618 }
1619 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1620 }
1621 }
1622 unlock:
1623 rtnl_unlock();
1624 return err;
1625 }
1626 EXPORT_SYMBOL(unregister_netdevice_notifier);
1627
1628 /**
1629 * call_netdevice_notifiers_info - call all network notifier blocks
1630 * @val: value passed unmodified to notifier function
1631 * @dev: net_device pointer passed unmodified to notifier function
1632 * @info: notifier information data
1633 *
1634 * Call all network notifier blocks. Parameters and return value
1635 * are as for raw_notifier_call_chain().
1636 */
1637
1638 static int call_netdevice_notifiers_info(unsigned long val,
1639 struct net_device *dev,
1640 struct netdev_notifier_info *info)
1641 {
1642 ASSERT_RTNL();
1643 netdev_notifier_info_init(info, dev);
1644 return raw_notifier_call_chain(&netdev_chain, val, info);
1645 }
1646
1647 /**
1648 * call_netdevice_notifiers - call all network notifier blocks
1649 * @val: value passed unmodified to notifier function
1650 * @dev: net_device pointer passed unmodified to notifier function
1651 *
1652 * Call all network notifier blocks. Parameters and return value
1653 * are as for raw_notifier_call_chain().
1654 */
1655
1656 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1657 {
1658 struct netdev_notifier_info info;
1659
1660 return call_netdevice_notifiers_info(val, dev, &info);
1661 }
1662 EXPORT_SYMBOL(call_netdevice_notifiers);
1663
1664 #ifdef CONFIG_NET_INGRESS
1665 static struct static_key ingress_needed __read_mostly;
1666
1667 void net_inc_ingress_queue(void)
1668 {
1669 static_key_slow_inc(&ingress_needed);
1670 }
1671 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672
1673 void net_dec_ingress_queue(void)
1674 {
1675 static_key_slow_dec(&ingress_needed);
1676 }
1677 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678 #endif
1679
1680 #ifdef CONFIG_NET_EGRESS
1681 static struct static_key egress_needed __read_mostly;
1682
1683 void net_inc_egress_queue(void)
1684 {
1685 static_key_slow_inc(&egress_needed);
1686 }
1687 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688
1689 void net_dec_egress_queue(void)
1690 {
1691 static_key_slow_dec(&egress_needed);
1692 }
1693 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694 #endif
1695
1696 static struct static_key netstamp_needed __read_mostly;
1697 #ifdef HAVE_JUMP_LABEL
1698 /* We are not allowed to call static_key_slow_dec() from irq context
1699 * If net_disable_timestamp() is called from irq context, defer the
1700 * static_key_slow_dec() calls.
1701 */
1702 static atomic_t netstamp_needed_deferred;
1703 #endif
1704
1705 void net_enable_timestamp(void)
1706 {
1707 #ifdef HAVE_JUMP_LABEL
1708 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709
1710 if (deferred) {
1711 while (--deferred)
1712 static_key_slow_dec(&netstamp_needed);
1713 return;
1714 }
1715 #endif
1716 static_key_slow_inc(&netstamp_needed);
1717 }
1718 EXPORT_SYMBOL(net_enable_timestamp);
1719
1720 void net_disable_timestamp(void)
1721 {
1722 #ifdef HAVE_JUMP_LABEL
1723 if (in_interrupt()) {
1724 atomic_inc(&netstamp_needed_deferred);
1725 return;
1726 }
1727 #endif
1728 static_key_slow_dec(&netstamp_needed);
1729 }
1730 EXPORT_SYMBOL(net_disable_timestamp);
1731
1732 static inline void net_timestamp_set(struct sk_buff *skb)
1733 {
1734 skb->tstamp = 0;
1735 if (static_key_false(&netstamp_needed))
1736 __net_timestamp(skb);
1737 }
1738
1739 #define net_timestamp_check(COND, SKB) \
1740 if (static_key_false(&netstamp_needed)) { \
1741 if ((COND) && !(SKB)->tstamp) \
1742 __net_timestamp(SKB); \
1743 } \
1744
1745 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1746 {
1747 unsigned int len;
1748
1749 if (!(dev->flags & IFF_UP))
1750 return false;
1751
1752 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1753 if (skb->len <= len)
1754 return true;
1755
1756 /* if TSO is enabled, we don't care about the length as the packet
1757 * could be forwarded without being segmented before
1758 */
1759 if (skb_is_gso(skb))
1760 return true;
1761
1762 return false;
1763 }
1764 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1765
1766 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1767 {
1768 int ret = ____dev_forward_skb(dev, skb);
1769
1770 if (likely(!ret)) {
1771 skb->protocol = eth_type_trans(skb, dev);
1772 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1773 }
1774
1775 return ret;
1776 }
1777 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1778
1779 /**
1780 * dev_forward_skb - loopback an skb to another netif
1781 *
1782 * @dev: destination network device
1783 * @skb: buffer to forward
1784 *
1785 * return values:
1786 * NET_RX_SUCCESS (no congestion)
1787 * NET_RX_DROP (packet was dropped, but freed)
1788 *
1789 * dev_forward_skb can be used for injecting an skb from the
1790 * start_xmit function of one device into the receive queue
1791 * of another device.
1792 *
1793 * The receiving device may be in another namespace, so
1794 * we have to clear all information in the skb that could
1795 * impact namespace isolation.
1796 */
1797 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1798 {
1799 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1800 }
1801 EXPORT_SYMBOL_GPL(dev_forward_skb);
1802
1803 static inline int deliver_skb(struct sk_buff *skb,
1804 struct packet_type *pt_prev,
1805 struct net_device *orig_dev)
1806 {
1807 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1808 return -ENOMEM;
1809 atomic_inc(&skb->users);
1810 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1811 }
1812
1813 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1814 struct packet_type **pt,
1815 struct net_device *orig_dev,
1816 __be16 type,
1817 struct list_head *ptype_list)
1818 {
1819 struct packet_type *ptype, *pt_prev = *pt;
1820
1821 list_for_each_entry_rcu(ptype, ptype_list, list) {
1822 if (ptype->type != type)
1823 continue;
1824 if (pt_prev)
1825 deliver_skb(skb, pt_prev, orig_dev);
1826 pt_prev = ptype;
1827 }
1828 *pt = pt_prev;
1829 }
1830
1831 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1832 {
1833 if (!ptype->af_packet_priv || !skb->sk)
1834 return false;
1835
1836 if (ptype->id_match)
1837 return ptype->id_match(ptype, skb->sk);
1838 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1839 return true;
1840
1841 return false;
1842 }
1843
1844 /*
1845 * Support routine. Sends outgoing frames to any network
1846 * taps currently in use.
1847 */
1848
1849 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1850 {
1851 struct packet_type *ptype;
1852 struct sk_buff *skb2 = NULL;
1853 struct packet_type *pt_prev = NULL;
1854 struct list_head *ptype_list = &ptype_all;
1855
1856 rcu_read_lock();
1857 again:
1858 list_for_each_entry_rcu(ptype, ptype_list, list) {
1859 /* Never send packets back to the socket
1860 * they originated from - MvS (miquels@drinkel.ow.org)
1861 */
1862 if (skb_loop_sk(ptype, skb))
1863 continue;
1864
1865 if (pt_prev) {
1866 deliver_skb(skb2, pt_prev, skb->dev);
1867 pt_prev = ptype;
1868 continue;
1869 }
1870
1871 /* need to clone skb, done only once */
1872 skb2 = skb_clone(skb, GFP_ATOMIC);
1873 if (!skb2)
1874 goto out_unlock;
1875
1876 net_timestamp_set(skb2);
1877
1878 /* skb->nh should be correctly
1879 * set by sender, so that the second statement is
1880 * just protection against buggy protocols.
1881 */
1882 skb_reset_mac_header(skb2);
1883
1884 if (skb_network_header(skb2) < skb2->data ||
1885 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1886 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1887 ntohs(skb2->protocol),
1888 dev->name);
1889 skb_reset_network_header(skb2);
1890 }
1891
1892 skb2->transport_header = skb2->network_header;
1893 skb2->pkt_type = PACKET_OUTGOING;
1894 pt_prev = ptype;
1895 }
1896
1897 if (ptype_list == &ptype_all) {
1898 ptype_list = &dev->ptype_all;
1899 goto again;
1900 }
1901 out_unlock:
1902 if (pt_prev)
1903 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1904 rcu_read_unlock();
1905 }
1906 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1907
1908 /**
1909 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1910 * @dev: Network device
1911 * @txq: number of queues available
1912 *
1913 * If real_num_tx_queues is changed the tc mappings may no longer be
1914 * valid. To resolve this verify the tc mapping remains valid and if
1915 * not NULL the mapping. With no priorities mapping to this
1916 * offset/count pair it will no longer be used. In the worst case TC0
1917 * is invalid nothing can be done so disable priority mappings. If is
1918 * expected that drivers will fix this mapping if they can before
1919 * calling netif_set_real_num_tx_queues.
1920 */
1921 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1922 {
1923 int i;
1924 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1925
1926 /* If TC0 is invalidated disable TC mapping */
1927 if (tc->offset + tc->count > txq) {
1928 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1929 dev->num_tc = 0;
1930 return;
1931 }
1932
1933 /* Invalidated prio to tc mappings set to TC0 */
1934 for (i = 1; i < TC_BITMASK + 1; i++) {
1935 int q = netdev_get_prio_tc_map(dev, i);
1936
1937 tc = &dev->tc_to_txq[q];
1938 if (tc->offset + tc->count > txq) {
1939 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1940 i, q);
1941 netdev_set_prio_tc_map(dev, i, 0);
1942 }
1943 }
1944 }
1945
1946 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1947 {
1948 if (dev->num_tc) {
1949 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1950 int i;
1951
1952 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1953 if ((txq - tc->offset) < tc->count)
1954 return i;
1955 }
1956
1957 return -1;
1958 }
1959
1960 return 0;
1961 }
1962
1963 #ifdef CONFIG_XPS
1964 static DEFINE_MUTEX(xps_map_mutex);
1965 #define xmap_dereference(P) \
1966 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1967
1968 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1969 int tci, u16 index)
1970 {
1971 struct xps_map *map = NULL;
1972 int pos;
1973
1974 if (dev_maps)
1975 map = xmap_dereference(dev_maps->cpu_map[tci]);
1976 if (!map)
1977 return false;
1978
1979 for (pos = map->len; pos--;) {
1980 if (map->queues[pos] != index)
1981 continue;
1982
1983 if (map->len > 1) {
1984 map->queues[pos] = map->queues[--map->len];
1985 break;
1986 }
1987
1988 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
1989 kfree_rcu(map, rcu);
1990 return false;
1991 }
1992
1993 return true;
1994 }
1995
1996 static bool remove_xps_queue_cpu(struct net_device *dev,
1997 struct xps_dev_maps *dev_maps,
1998 int cpu, u16 offset, u16 count)
1999 {
2000 int num_tc = dev->num_tc ? : 1;
2001 bool active = false;
2002 int tci;
2003
2004 for (tci = cpu * num_tc; num_tc--; tci++) {
2005 int i, j;
2006
2007 for (i = count, j = offset; i--; j++) {
2008 if (!remove_xps_queue(dev_maps, cpu, j))
2009 break;
2010 }
2011
2012 active |= i < 0;
2013 }
2014
2015 return active;
2016 }
2017
2018 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2019 u16 count)
2020 {
2021 struct xps_dev_maps *dev_maps;
2022 int cpu, i;
2023 bool active = false;
2024
2025 mutex_lock(&xps_map_mutex);
2026 dev_maps = xmap_dereference(dev->xps_maps);
2027
2028 if (!dev_maps)
2029 goto out_no_maps;
2030
2031 for_each_possible_cpu(cpu)
2032 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2033 offset, count);
2034
2035 if (!active) {
2036 RCU_INIT_POINTER(dev->xps_maps, NULL);
2037 kfree_rcu(dev_maps, rcu);
2038 }
2039
2040 for (i = offset + (count - 1); count--; i--)
2041 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2042 NUMA_NO_NODE);
2043
2044 out_no_maps:
2045 mutex_unlock(&xps_map_mutex);
2046 }
2047
2048 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2049 {
2050 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2051 }
2052
2053 static struct xps_map *expand_xps_map(struct xps_map *map,
2054 int cpu, u16 index)
2055 {
2056 struct xps_map *new_map;
2057 int alloc_len = XPS_MIN_MAP_ALLOC;
2058 int i, pos;
2059
2060 for (pos = 0; map && pos < map->len; pos++) {
2061 if (map->queues[pos] != index)
2062 continue;
2063 return map;
2064 }
2065
2066 /* Need to add queue to this CPU's existing map */
2067 if (map) {
2068 if (pos < map->alloc_len)
2069 return map;
2070
2071 alloc_len = map->alloc_len * 2;
2072 }
2073
2074 /* Need to allocate new map to store queue on this CPU's map */
2075 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2076 cpu_to_node(cpu));
2077 if (!new_map)
2078 return NULL;
2079
2080 for (i = 0; i < pos; i++)
2081 new_map->queues[i] = map->queues[i];
2082 new_map->alloc_len = alloc_len;
2083 new_map->len = pos;
2084
2085 return new_map;
2086 }
2087
2088 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2089 u16 index)
2090 {
2091 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2092 int i, cpu, tci, numa_node_id = -2;
2093 int maps_sz, num_tc = 1, tc = 0;
2094 struct xps_map *map, *new_map;
2095 bool active = false;
2096
2097 if (dev->num_tc) {
2098 num_tc = dev->num_tc;
2099 tc = netdev_txq_to_tc(dev, index);
2100 if (tc < 0)
2101 return -EINVAL;
2102 }
2103
2104 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2105 if (maps_sz < L1_CACHE_BYTES)
2106 maps_sz = L1_CACHE_BYTES;
2107
2108 mutex_lock(&xps_map_mutex);
2109
2110 dev_maps = xmap_dereference(dev->xps_maps);
2111
2112 /* allocate memory for queue storage */
2113 for_each_cpu_and(cpu, cpu_online_mask, mask) {
2114 if (!new_dev_maps)
2115 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2116 if (!new_dev_maps) {
2117 mutex_unlock(&xps_map_mutex);
2118 return -ENOMEM;
2119 }
2120
2121 tci = cpu * num_tc + tc;
2122 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2123 NULL;
2124
2125 map = expand_xps_map(map, cpu, index);
2126 if (!map)
2127 goto error;
2128
2129 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2130 }
2131
2132 if (!new_dev_maps)
2133 goto out_no_new_maps;
2134
2135 for_each_possible_cpu(cpu) {
2136 /* copy maps belonging to foreign traffic classes */
2137 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2138 /* fill in the new device map from the old device map */
2139 map = xmap_dereference(dev_maps->cpu_map[tci]);
2140 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2141 }
2142
2143 /* We need to explicitly update tci as prevous loop
2144 * could break out early if dev_maps is NULL.
2145 */
2146 tci = cpu * num_tc + tc;
2147
2148 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2149 /* add queue to CPU maps */
2150 int pos = 0;
2151
2152 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2153 while ((pos < map->len) && (map->queues[pos] != index))
2154 pos++;
2155
2156 if (pos == map->len)
2157 map->queues[map->len++] = index;
2158 #ifdef CONFIG_NUMA
2159 if (numa_node_id == -2)
2160 numa_node_id = cpu_to_node(cpu);
2161 else if (numa_node_id != cpu_to_node(cpu))
2162 numa_node_id = -1;
2163 #endif
2164 } else if (dev_maps) {
2165 /* fill in the new device map from the old device map */
2166 map = xmap_dereference(dev_maps->cpu_map[tci]);
2167 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2168 }
2169
2170 /* copy maps belonging to foreign traffic classes */
2171 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2172 /* fill in the new device map from the old device map */
2173 map = xmap_dereference(dev_maps->cpu_map[tci]);
2174 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2175 }
2176 }
2177
2178 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2179
2180 /* Cleanup old maps */
2181 if (!dev_maps)
2182 goto out_no_old_maps;
2183
2184 for_each_possible_cpu(cpu) {
2185 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2186 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2187 map = xmap_dereference(dev_maps->cpu_map[tci]);
2188 if (map && map != new_map)
2189 kfree_rcu(map, rcu);
2190 }
2191 }
2192
2193 kfree_rcu(dev_maps, rcu);
2194
2195 out_no_old_maps:
2196 dev_maps = new_dev_maps;
2197 active = true;
2198
2199 out_no_new_maps:
2200 /* update Tx queue numa node */
2201 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2202 (numa_node_id >= 0) ? numa_node_id :
2203 NUMA_NO_NODE);
2204
2205 if (!dev_maps)
2206 goto out_no_maps;
2207
2208 /* removes queue from unused CPUs */
2209 for_each_possible_cpu(cpu) {
2210 for (i = tc, tci = cpu * num_tc; i--; tci++)
2211 active |= remove_xps_queue(dev_maps, tci, index);
2212 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2213 active |= remove_xps_queue(dev_maps, tci, index);
2214 for (i = num_tc - tc, tci++; --i; tci++)
2215 active |= remove_xps_queue(dev_maps, tci, index);
2216 }
2217
2218 /* free map if not active */
2219 if (!active) {
2220 RCU_INIT_POINTER(dev->xps_maps, NULL);
2221 kfree_rcu(dev_maps, rcu);
2222 }
2223
2224 out_no_maps:
2225 mutex_unlock(&xps_map_mutex);
2226
2227 return 0;
2228 error:
2229 /* remove any maps that we added */
2230 for_each_possible_cpu(cpu) {
2231 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2232 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2233 map = dev_maps ?
2234 xmap_dereference(dev_maps->cpu_map[tci]) :
2235 NULL;
2236 if (new_map && new_map != map)
2237 kfree(new_map);
2238 }
2239 }
2240
2241 mutex_unlock(&xps_map_mutex);
2242
2243 kfree(new_dev_maps);
2244 return -ENOMEM;
2245 }
2246 EXPORT_SYMBOL(netif_set_xps_queue);
2247
2248 #endif
2249 void netdev_reset_tc(struct net_device *dev)
2250 {
2251 #ifdef CONFIG_XPS
2252 netif_reset_xps_queues_gt(dev, 0);
2253 #endif
2254 dev->num_tc = 0;
2255 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2256 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2257 }
2258 EXPORT_SYMBOL(netdev_reset_tc);
2259
2260 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2261 {
2262 if (tc >= dev->num_tc)
2263 return -EINVAL;
2264
2265 #ifdef CONFIG_XPS
2266 netif_reset_xps_queues(dev, offset, count);
2267 #endif
2268 dev->tc_to_txq[tc].count = count;
2269 dev->tc_to_txq[tc].offset = offset;
2270 return 0;
2271 }
2272 EXPORT_SYMBOL(netdev_set_tc_queue);
2273
2274 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2275 {
2276 if (num_tc > TC_MAX_QUEUE)
2277 return -EINVAL;
2278
2279 #ifdef CONFIG_XPS
2280 netif_reset_xps_queues_gt(dev, 0);
2281 #endif
2282 dev->num_tc = num_tc;
2283 return 0;
2284 }
2285 EXPORT_SYMBOL(netdev_set_num_tc);
2286
2287 /*
2288 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2289 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2290 */
2291 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2292 {
2293 int rc;
2294
2295 if (txq < 1 || txq > dev->num_tx_queues)
2296 return -EINVAL;
2297
2298 if (dev->reg_state == NETREG_REGISTERED ||
2299 dev->reg_state == NETREG_UNREGISTERING) {
2300 ASSERT_RTNL();
2301
2302 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2303 txq);
2304 if (rc)
2305 return rc;
2306
2307 if (dev->num_tc)
2308 netif_setup_tc(dev, txq);
2309
2310 if (txq < dev->real_num_tx_queues) {
2311 qdisc_reset_all_tx_gt(dev, txq);
2312 #ifdef CONFIG_XPS
2313 netif_reset_xps_queues_gt(dev, txq);
2314 #endif
2315 }
2316 }
2317
2318 dev->real_num_tx_queues = txq;
2319 return 0;
2320 }
2321 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2322
2323 #ifdef CONFIG_SYSFS
2324 /**
2325 * netif_set_real_num_rx_queues - set actual number of RX queues used
2326 * @dev: Network device
2327 * @rxq: Actual number of RX queues
2328 *
2329 * This must be called either with the rtnl_lock held or before
2330 * registration of the net device. Returns 0 on success, or a
2331 * negative error code. If called before registration, it always
2332 * succeeds.
2333 */
2334 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2335 {
2336 int rc;
2337
2338 if (rxq < 1 || rxq > dev->num_rx_queues)
2339 return -EINVAL;
2340
2341 if (dev->reg_state == NETREG_REGISTERED) {
2342 ASSERT_RTNL();
2343
2344 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2345 rxq);
2346 if (rc)
2347 return rc;
2348 }
2349
2350 dev->real_num_rx_queues = rxq;
2351 return 0;
2352 }
2353 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2354 #endif
2355
2356 /**
2357 * netif_get_num_default_rss_queues - default number of RSS queues
2358 *
2359 * This routine should set an upper limit on the number of RSS queues
2360 * used by default by multiqueue devices.
2361 */
2362 int netif_get_num_default_rss_queues(void)
2363 {
2364 return is_kdump_kernel() ?
2365 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2366 }
2367 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2368
2369 static void __netif_reschedule(struct Qdisc *q)
2370 {
2371 struct softnet_data *sd;
2372 unsigned long flags;
2373
2374 local_irq_save(flags);
2375 sd = this_cpu_ptr(&softnet_data);
2376 q->next_sched = NULL;
2377 *sd->output_queue_tailp = q;
2378 sd->output_queue_tailp = &q->next_sched;
2379 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2380 local_irq_restore(flags);
2381 }
2382
2383 void __netif_schedule(struct Qdisc *q)
2384 {
2385 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2386 __netif_reschedule(q);
2387 }
2388 EXPORT_SYMBOL(__netif_schedule);
2389
2390 struct dev_kfree_skb_cb {
2391 enum skb_free_reason reason;
2392 };
2393
2394 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2395 {
2396 return (struct dev_kfree_skb_cb *)skb->cb;
2397 }
2398
2399 void netif_schedule_queue(struct netdev_queue *txq)
2400 {
2401 rcu_read_lock();
2402 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2403 struct Qdisc *q = rcu_dereference(txq->qdisc);
2404
2405 __netif_schedule(q);
2406 }
2407 rcu_read_unlock();
2408 }
2409 EXPORT_SYMBOL(netif_schedule_queue);
2410
2411 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2412 {
2413 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2414 struct Qdisc *q;
2415
2416 rcu_read_lock();
2417 q = rcu_dereference(dev_queue->qdisc);
2418 __netif_schedule(q);
2419 rcu_read_unlock();
2420 }
2421 }
2422 EXPORT_SYMBOL(netif_tx_wake_queue);
2423
2424 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2425 {
2426 unsigned long flags;
2427
2428 if (likely(atomic_read(&skb->users) == 1)) {
2429 smp_rmb();
2430 atomic_set(&skb->users, 0);
2431 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2432 return;
2433 }
2434 get_kfree_skb_cb(skb)->reason = reason;
2435 local_irq_save(flags);
2436 skb->next = __this_cpu_read(softnet_data.completion_queue);
2437 __this_cpu_write(softnet_data.completion_queue, skb);
2438 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2439 local_irq_restore(flags);
2440 }
2441 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2442
2443 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2444 {
2445 if (in_irq() || irqs_disabled())
2446 __dev_kfree_skb_irq(skb, reason);
2447 else
2448 dev_kfree_skb(skb);
2449 }
2450 EXPORT_SYMBOL(__dev_kfree_skb_any);
2451
2452
2453 /**
2454 * netif_device_detach - mark device as removed
2455 * @dev: network device
2456 *
2457 * Mark device as removed from system and therefore no longer available.
2458 */
2459 void netif_device_detach(struct net_device *dev)
2460 {
2461 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2462 netif_running(dev)) {
2463 netif_tx_stop_all_queues(dev);
2464 }
2465 }
2466 EXPORT_SYMBOL(netif_device_detach);
2467
2468 /**
2469 * netif_device_attach - mark device as attached
2470 * @dev: network device
2471 *
2472 * Mark device as attached from system and restart if needed.
2473 */
2474 void netif_device_attach(struct net_device *dev)
2475 {
2476 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2477 netif_running(dev)) {
2478 netif_tx_wake_all_queues(dev);
2479 __netdev_watchdog_up(dev);
2480 }
2481 }
2482 EXPORT_SYMBOL(netif_device_attach);
2483
2484 /*
2485 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2486 * to be used as a distribution range.
2487 */
2488 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2489 unsigned int num_tx_queues)
2490 {
2491 u32 hash;
2492 u16 qoffset = 0;
2493 u16 qcount = num_tx_queues;
2494
2495 if (skb_rx_queue_recorded(skb)) {
2496 hash = skb_get_rx_queue(skb);
2497 while (unlikely(hash >= num_tx_queues))
2498 hash -= num_tx_queues;
2499 return hash;
2500 }
2501
2502 if (dev->num_tc) {
2503 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2504 qoffset = dev->tc_to_txq[tc].offset;
2505 qcount = dev->tc_to_txq[tc].count;
2506 }
2507
2508 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2509 }
2510 EXPORT_SYMBOL(__skb_tx_hash);
2511
2512 static void skb_warn_bad_offload(const struct sk_buff *skb)
2513 {
2514 static const netdev_features_t null_features;
2515 struct net_device *dev = skb->dev;
2516 const char *name = "";
2517
2518 if (!net_ratelimit())
2519 return;
2520
2521 if (dev) {
2522 if (dev->dev.parent)
2523 name = dev_driver_string(dev->dev.parent);
2524 else
2525 name = netdev_name(dev);
2526 }
2527 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2528 "gso_type=%d ip_summed=%d\n",
2529 name, dev ? &dev->features : &null_features,
2530 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2531 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2532 skb_shinfo(skb)->gso_type, skb->ip_summed);
2533 }
2534
2535 /*
2536 * Invalidate hardware checksum when packet is to be mangled, and
2537 * complete checksum manually on outgoing path.
2538 */
2539 int skb_checksum_help(struct sk_buff *skb)
2540 {
2541 __wsum csum;
2542 int ret = 0, offset;
2543
2544 if (skb->ip_summed == CHECKSUM_COMPLETE)
2545 goto out_set_summed;
2546
2547 if (unlikely(skb_shinfo(skb)->gso_size)) {
2548 skb_warn_bad_offload(skb);
2549 return -EINVAL;
2550 }
2551
2552 /* Before computing a checksum, we should make sure no frag could
2553 * be modified by an external entity : checksum could be wrong.
2554 */
2555 if (skb_has_shared_frag(skb)) {
2556 ret = __skb_linearize(skb);
2557 if (ret)
2558 goto out;
2559 }
2560
2561 offset = skb_checksum_start_offset(skb);
2562 BUG_ON(offset >= skb_headlen(skb));
2563 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2564
2565 offset += skb->csum_offset;
2566 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2567
2568 if (skb_cloned(skb) &&
2569 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2570 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2571 if (ret)
2572 goto out;
2573 }
2574
2575 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2576 out_set_summed:
2577 skb->ip_summed = CHECKSUM_NONE;
2578 out:
2579 return ret;
2580 }
2581 EXPORT_SYMBOL(skb_checksum_help);
2582
2583 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2584 {
2585 __be16 type = skb->protocol;
2586
2587 /* Tunnel gso handlers can set protocol to ethernet. */
2588 if (type == htons(ETH_P_TEB)) {
2589 struct ethhdr *eth;
2590
2591 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2592 return 0;
2593
2594 eth = (struct ethhdr *)skb_mac_header(skb);
2595 type = eth->h_proto;
2596 }
2597
2598 return __vlan_get_protocol(skb, type, depth);
2599 }
2600
2601 /**
2602 * skb_mac_gso_segment - mac layer segmentation handler.
2603 * @skb: buffer to segment
2604 * @features: features for the output path (see dev->features)
2605 */
2606 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2607 netdev_features_t features)
2608 {
2609 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2610 struct packet_offload *ptype;
2611 int vlan_depth = skb->mac_len;
2612 __be16 type = skb_network_protocol(skb, &vlan_depth);
2613
2614 if (unlikely(!type))
2615 return ERR_PTR(-EINVAL);
2616
2617 __skb_pull(skb, vlan_depth);
2618
2619 rcu_read_lock();
2620 list_for_each_entry_rcu(ptype, &offload_base, list) {
2621 if (ptype->type == type && ptype->callbacks.gso_segment) {
2622 segs = ptype->callbacks.gso_segment(skb, features);
2623 break;
2624 }
2625 }
2626 rcu_read_unlock();
2627
2628 __skb_push(skb, skb->data - skb_mac_header(skb));
2629
2630 return segs;
2631 }
2632 EXPORT_SYMBOL(skb_mac_gso_segment);
2633
2634
2635 /* openvswitch calls this on rx path, so we need a different check.
2636 */
2637 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2638 {
2639 if (tx_path)
2640 return skb->ip_summed != CHECKSUM_PARTIAL;
2641 else
2642 return skb->ip_summed == CHECKSUM_NONE;
2643 }
2644
2645 /**
2646 * __skb_gso_segment - Perform segmentation on skb.
2647 * @skb: buffer to segment
2648 * @features: features for the output path (see dev->features)
2649 * @tx_path: whether it is called in TX path
2650 *
2651 * This function segments the given skb and returns a list of segments.
2652 *
2653 * It may return NULL if the skb requires no segmentation. This is
2654 * only possible when GSO is used for verifying header integrity.
2655 *
2656 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2657 */
2658 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2659 netdev_features_t features, bool tx_path)
2660 {
2661 if (unlikely(skb_needs_check(skb, tx_path))) {
2662 int err;
2663
2664 skb_warn_bad_offload(skb);
2665
2666 err = skb_cow_head(skb, 0);
2667 if (err < 0)
2668 return ERR_PTR(err);
2669 }
2670
2671 /* Only report GSO partial support if it will enable us to
2672 * support segmentation on this frame without needing additional
2673 * work.
2674 */
2675 if (features & NETIF_F_GSO_PARTIAL) {
2676 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2677 struct net_device *dev = skb->dev;
2678
2679 partial_features |= dev->features & dev->gso_partial_features;
2680 if (!skb_gso_ok(skb, features | partial_features))
2681 features &= ~NETIF_F_GSO_PARTIAL;
2682 }
2683
2684 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2685 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2686
2687 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2688 SKB_GSO_CB(skb)->encap_level = 0;
2689
2690 skb_reset_mac_header(skb);
2691 skb_reset_mac_len(skb);
2692
2693 return skb_mac_gso_segment(skb, features);
2694 }
2695 EXPORT_SYMBOL(__skb_gso_segment);
2696
2697 /* Take action when hardware reception checksum errors are detected. */
2698 #ifdef CONFIG_BUG
2699 void netdev_rx_csum_fault(struct net_device *dev)
2700 {
2701 if (net_ratelimit()) {
2702 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2703 dump_stack();
2704 }
2705 }
2706 EXPORT_SYMBOL(netdev_rx_csum_fault);
2707 #endif
2708
2709 /* Actually, we should eliminate this check as soon as we know, that:
2710 * 1. IOMMU is present and allows to map all the memory.
2711 * 2. No high memory really exists on this machine.
2712 */
2713
2714 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2715 {
2716 #ifdef CONFIG_HIGHMEM
2717 int i;
2718 if (!(dev->features & NETIF_F_HIGHDMA)) {
2719 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2720 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2721 if (PageHighMem(skb_frag_page(frag)))
2722 return 1;
2723 }
2724 }
2725
2726 if (PCI_DMA_BUS_IS_PHYS) {
2727 struct device *pdev = dev->dev.parent;
2728
2729 if (!pdev)
2730 return 0;
2731 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2732 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2733 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2734 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2735 return 1;
2736 }
2737 }
2738 #endif
2739 return 0;
2740 }
2741
2742 /* If MPLS offload request, verify we are testing hardware MPLS features
2743 * instead of standard features for the netdev.
2744 */
2745 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2746 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2747 netdev_features_t features,
2748 __be16 type)
2749 {
2750 if (eth_p_mpls(type))
2751 features &= skb->dev->mpls_features;
2752
2753 return features;
2754 }
2755 #else
2756 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2757 netdev_features_t features,
2758 __be16 type)
2759 {
2760 return features;
2761 }
2762 #endif
2763
2764 static netdev_features_t harmonize_features(struct sk_buff *skb,
2765 netdev_features_t features)
2766 {
2767 int tmp;
2768 __be16 type;
2769
2770 type = skb_network_protocol(skb, &tmp);
2771 features = net_mpls_features(skb, features, type);
2772
2773 if (skb->ip_summed != CHECKSUM_NONE &&
2774 !can_checksum_protocol(features, type)) {
2775 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2776 }
2777 if (illegal_highdma(skb->dev, skb))
2778 features &= ~NETIF_F_SG;
2779
2780 return features;
2781 }
2782
2783 netdev_features_t passthru_features_check(struct sk_buff *skb,
2784 struct net_device *dev,
2785 netdev_features_t features)
2786 {
2787 return features;
2788 }
2789 EXPORT_SYMBOL(passthru_features_check);
2790
2791 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2792 struct net_device *dev,
2793 netdev_features_t features)
2794 {
2795 return vlan_features_check(skb, features);
2796 }
2797
2798 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2799 struct net_device *dev,
2800 netdev_features_t features)
2801 {
2802 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2803
2804 if (gso_segs > dev->gso_max_segs)
2805 return features & ~NETIF_F_GSO_MASK;
2806
2807 /* Support for GSO partial features requires software
2808 * intervention before we can actually process the packets
2809 * so we need to strip support for any partial features now
2810 * and we can pull them back in after we have partially
2811 * segmented the frame.
2812 */
2813 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2814 features &= ~dev->gso_partial_features;
2815
2816 /* Make sure to clear the IPv4 ID mangling feature if the
2817 * IPv4 header has the potential to be fragmented.
2818 */
2819 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2820 struct iphdr *iph = skb->encapsulation ?
2821 inner_ip_hdr(skb) : ip_hdr(skb);
2822
2823 if (!(iph->frag_off & htons(IP_DF)))
2824 features &= ~NETIF_F_TSO_MANGLEID;
2825 }
2826
2827 return features;
2828 }
2829
2830 netdev_features_t netif_skb_features(struct sk_buff *skb)
2831 {
2832 struct net_device *dev = skb->dev;
2833 netdev_features_t features = dev->features;
2834
2835 if (skb_is_gso(skb))
2836 features = gso_features_check(skb, dev, features);
2837
2838 /* If encapsulation offload request, verify we are testing
2839 * hardware encapsulation features instead of standard
2840 * features for the netdev
2841 */
2842 if (skb->encapsulation)
2843 features &= dev->hw_enc_features;
2844
2845 if (skb_vlan_tagged(skb))
2846 features = netdev_intersect_features(features,
2847 dev->vlan_features |
2848 NETIF_F_HW_VLAN_CTAG_TX |
2849 NETIF_F_HW_VLAN_STAG_TX);
2850
2851 if (dev->netdev_ops->ndo_features_check)
2852 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2853 features);
2854 else
2855 features &= dflt_features_check(skb, dev, features);
2856
2857 return harmonize_features(skb, features);
2858 }
2859 EXPORT_SYMBOL(netif_skb_features);
2860
2861 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2862 struct netdev_queue *txq, bool more)
2863 {
2864 unsigned int len;
2865 int rc;
2866
2867 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2868 dev_queue_xmit_nit(skb, dev);
2869
2870 len = skb->len;
2871 trace_net_dev_start_xmit(skb, dev);
2872 rc = netdev_start_xmit(skb, dev, txq, more);
2873 trace_net_dev_xmit(skb, rc, dev, len);
2874
2875 return rc;
2876 }
2877
2878 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2879 struct netdev_queue *txq, int *ret)
2880 {
2881 struct sk_buff *skb = first;
2882 int rc = NETDEV_TX_OK;
2883
2884 while (skb) {
2885 struct sk_buff *next = skb->next;
2886
2887 skb->next = NULL;
2888 rc = xmit_one(skb, dev, txq, next != NULL);
2889 if (unlikely(!dev_xmit_complete(rc))) {
2890 skb->next = next;
2891 goto out;
2892 }
2893
2894 skb = next;
2895 if (netif_xmit_stopped(txq) && skb) {
2896 rc = NETDEV_TX_BUSY;
2897 break;
2898 }
2899 }
2900
2901 out:
2902 *ret = rc;
2903 return skb;
2904 }
2905
2906 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2907 netdev_features_t features)
2908 {
2909 if (skb_vlan_tag_present(skb) &&
2910 !vlan_hw_offload_capable(features, skb->vlan_proto))
2911 skb = __vlan_hwaccel_push_inside(skb);
2912 return skb;
2913 }
2914
2915 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2916 {
2917 netdev_features_t features;
2918
2919 features = netif_skb_features(skb);
2920 skb = validate_xmit_vlan(skb, features);
2921 if (unlikely(!skb))
2922 goto out_null;
2923
2924 if (netif_needs_gso(skb, features)) {
2925 struct sk_buff *segs;
2926
2927 segs = skb_gso_segment(skb, features);
2928 if (IS_ERR(segs)) {
2929 goto out_kfree_skb;
2930 } else if (segs) {
2931 consume_skb(skb);
2932 skb = segs;
2933 }
2934 } else {
2935 if (skb_needs_linearize(skb, features) &&
2936 __skb_linearize(skb))
2937 goto out_kfree_skb;
2938
2939 /* If packet is not checksummed and device does not
2940 * support checksumming for this protocol, complete
2941 * checksumming here.
2942 */
2943 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2944 if (skb->encapsulation)
2945 skb_set_inner_transport_header(skb,
2946 skb_checksum_start_offset(skb));
2947 else
2948 skb_set_transport_header(skb,
2949 skb_checksum_start_offset(skb));
2950 if (!(features & NETIF_F_CSUM_MASK) &&
2951 skb_checksum_help(skb))
2952 goto out_kfree_skb;
2953 }
2954 }
2955
2956 return skb;
2957
2958 out_kfree_skb:
2959 kfree_skb(skb);
2960 out_null:
2961 atomic_long_inc(&dev->tx_dropped);
2962 return NULL;
2963 }
2964
2965 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2966 {
2967 struct sk_buff *next, *head = NULL, *tail;
2968
2969 for (; skb != NULL; skb = next) {
2970 next = skb->next;
2971 skb->next = NULL;
2972
2973 /* in case skb wont be segmented, point to itself */
2974 skb->prev = skb;
2975
2976 skb = validate_xmit_skb(skb, dev);
2977 if (!skb)
2978 continue;
2979
2980 if (!head)
2981 head = skb;
2982 else
2983 tail->next = skb;
2984 /* If skb was segmented, skb->prev points to
2985 * the last segment. If not, it still contains skb.
2986 */
2987 tail = skb->prev;
2988 }
2989 return head;
2990 }
2991 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
2992
2993 static void qdisc_pkt_len_init(struct sk_buff *skb)
2994 {
2995 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2996
2997 qdisc_skb_cb(skb)->pkt_len = skb->len;
2998
2999 /* To get more precise estimation of bytes sent on wire,
3000 * we add to pkt_len the headers size of all segments
3001 */
3002 if (shinfo->gso_size) {
3003 unsigned int hdr_len;
3004 u16 gso_segs = shinfo->gso_segs;
3005
3006 /* mac layer + network layer */
3007 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3008
3009 /* + transport layer */
3010 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3011 hdr_len += tcp_hdrlen(skb);
3012 else
3013 hdr_len += sizeof(struct udphdr);
3014
3015 if (shinfo->gso_type & SKB_GSO_DODGY)
3016 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3017 shinfo->gso_size);
3018
3019 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3020 }
3021 }
3022
3023 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3024 struct net_device *dev,
3025 struct netdev_queue *txq)
3026 {
3027 spinlock_t *root_lock = qdisc_lock(q);
3028 struct sk_buff *to_free = NULL;
3029 bool contended;
3030 int rc;
3031
3032 qdisc_calculate_pkt_len(skb, q);
3033 /*
3034 * Heuristic to force contended enqueues to serialize on a
3035 * separate lock before trying to get qdisc main lock.
3036 * This permits qdisc->running owner to get the lock more
3037 * often and dequeue packets faster.
3038 */
3039 contended = qdisc_is_running(q);
3040 if (unlikely(contended))
3041 spin_lock(&q->busylock);
3042
3043 spin_lock(root_lock);
3044 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3045 __qdisc_drop(skb, &to_free);
3046 rc = NET_XMIT_DROP;
3047 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3048 qdisc_run_begin(q)) {
3049 /*
3050 * This is a work-conserving queue; there are no old skbs
3051 * waiting to be sent out; and the qdisc is not running -
3052 * xmit the skb directly.
3053 */
3054
3055 qdisc_bstats_update(q, skb);
3056
3057 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3058 if (unlikely(contended)) {
3059 spin_unlock(&q->busylock);
3060 contended = false;
3061 }
3062 __qdisc_run(q);
3063 } else
3064 qdisc_run_end(q);
3065
3066 rc = NET_XMIT_SUCCESS;
3067 } else {
3068 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3069 if (qdisc_run_begin(q)) {
3070 if (unlikely(contended)) {
3071 spin_unlock(&q->busylock);
3072 contended = false;
3073 }
3074 __qdisc_run(q);
3075 }
3076 }
3077 spin_unlock(root_lock);
3078 if (unlikely(to_free))
3079 kfree_skb_list(to_free);
3080 if (unlikely(contended))
3081 spin_unlock(&q->busylock);
3082 return rc;
3083 }
3084
3085 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3086 static void skb_update_prio(struct sk_buff *skb)
3087 {
3088 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3089
3090 if (!skb->priority && skb->sk && map) {
3091 unsigned int prioidx =
3092 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3093
3094 if (prioidx < map->priomap_len)
3095 skb->priority = map->priomap[prioidx];
3096 }
3097 }
3098 #else
3099 #define skb_update_prio(skb)
3100 #endif
3101
3102 DEFINE_PER_CPU(int, xmit_recursion);
3103 EXPORT_SYMBOL(xmit_recursion);
3104
3105 /**
3106 * dev_loopback_xmit - loop back @skb
3107 * @net: network namespace this loopback is happening in
3108 * @sk: sk needed to be a netfilter okfn
3109 * @skb: buffer to transmit
3110 */
3111 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3112 {
3113 skb_reset_mac_header(skb);
3114 __skb_pull(skb, skb_network_offset(skb));
3115 skb->pkt_type = PACKET_LOOPBACK;
3116 skb->ip_summed = CHECKSUM_UNNECESSARY;
3117 WARN_ON(!skb_dst(skb));
3118 skb_dst_force(skb);
3119 netif_rx_ni(skb);
3120 return 0;
3121 }
3122 EXPORT_SYMBOL(dev_loopback_xmit);
3123
3124 #ifdef CONFIG_NET_EGRESS
3125 static struct sk_buff *
3126 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3127 {
3128 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3129 struct tcf_result cl_res;
3130
3131 if (!cl)
3132 return skb;
3133
3134 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3135 qdisc_bstats_cpu_update(cl->q, skb);
3136
3137 switch (tc_classify(skb, cl, &cl_res, false)) {
3138 case TC_ACT_OK:
3139 case TC_ACT_RECLASSIFY:
3140 skb->tc_index = TC_H_MIN(cl_res.classid);
3141 break;
3142 case TC_ACT_SHOT:
3143 qdisc_qstats_cpu_drop(cl->q);
3144 *ret = NET_XMIT_DROP;
3145 kfree_skb(skb);
3146 return NULL;
3147 case TC_ACT_STOLEN:
3148 case TC_ACT_QUEUED:
3149 *ret = NET_XMIT_SUCCESS;
3150 consume_skb(skb);
3151 return NULL;
3152 case TC_ACT_REDIRECT:
3153 /* No need to push/pop skb's mac_header here on egress! */
3154 skb_do_redirect(skb);
3155 *ret = NET_XMIT_SUCCESS;
3156 return NULL;
3157 default:
3158 break;
3159 }
3160
3161 return skb;
3162 }
3163 #endif /* CONFIG_NET_EGRESS */
3164
3165 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3166 {
3167 #ifdef CONFIG_XPS
3168 struct xps_dev_maps *dev_maps;
3169 struct xps_map *map;
3170 int queue_index = -1;
3171
3172 rcu_read_lock();
3173 dev_maps = rcu_dereference(dev->xps_maps);
3174 if (dev_maps) {
3175 unsigned int tci = skb->sender_cpu - 1;
3176
3177 if (dev->num_tc) {
3178 tci *= dev->num_tc;
3179 tci += netdev_get_prio_tc_map(dev, skb->priority);
3180 }
3181
3182 map = rcu_dereference(dev_maps->cpu_map[tci]);
3183 if (map) {
3184 if (map->len == 1)
3185 queue_index = map->queues[0];
3186 else
3187 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3188 map->len)];
3189 if (unlikely(queue_index >= dev->real_num_tx_queues))
3190 queue_index = -1;
3191 }
3192 }
3193 rcu_read_unlock();
3194
3195 return queue_index;
3196 #else
3197 return -1;
3198 #endif
3199 }
3200
3201 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3202 {
3203 struct sock *sk = skb->sk;
3204 int queue_index = sk_tx_queue_get(sk);
3205
3206 if (queue_index < 0 || skb->ooo_okay ||
3207 queue_index >= dev->real_num_tx_queues) {
3208 int new_index = get_xps_queue(dev, skb);
3209 if (new_index < 0)
3210 new_index = skb_tx_hash(dev, skb);
3211
3212 if (queue_index != new_index && sk &&
3213 sk_fullsock(sk) &&
3214 rcu_access_pointer(sk->sk_dst_cache))
3215 sk_tx_queue_set(sk, new_index);
3216
3217 queue_index = new_index;
3218 }
3219
3220 return queue_index;
3221 }
3222
3223 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3224 struct sk_buff *skb,
3225 void *accel_priv)
3226 {
3227 int queue_index = 0;
3228
3229 #ifdef CONFIG_XPS
3230 u32 sender_cpu = skb->sender_cpu - 1;
3231
3232 if (sender_cpu >= (u32)NR_CPUS)
3233 skb->sender_cpu = raw_smp_processor_id() + 1;
3234 #endif
3235
3236 if (dev->real_num_tx_queues != 1) {
3237 const struct net_device_ops *ops = dev->netdev_ops;
3238 if (ops->ndo_select_queue)
3239 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3240 __netdev_pick_tx);
3241 else
3242 queue_index = __netdev_pick_tx(dev, skb);
3243
3244 if (!accel_priv)
3245 queue_index = netdev_cap_txqueue(dev, queue_index);
3246 }
3247
3248 skb_set_queue_mapping(skb, queue_index);
3249 return netdev_get_tx_queue(dev, queue_index);
3250 }
3251
3252 /**
3253 * __dev_queue_xmit - transmit a buffer
3254 * @skb: buffer to transmit
3255 * @accel_priv: private data used for L2 forwarding offload
3256 *
3257 * Queue a buffer for transmission to a network device. The caller must
3258 * have set the device and priority and built the buffer before calling
3259 * this function. The function can be called from an interrupt.
3260 *
3261 * A negative errno code is returned on a failure. A success does not
3262 * guarantee the frame will be transmitted as it may be dropped due
3263 * to congestion or traffic shaping.
3264 *
3265 * -----------------------------------------------------------------------------------
3266 * I notice this method can also return errors from the queue disciplines,
3267 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3268 * be positive.
3269 *
3270 * Regardless of the return value, the skb is consumed, so it is currently
3271 * difficult to retry a send to this method. (You can bump the ref count
3272 * before sending to hold a reference for retry if you are careful.)
3273 *
3274 * When calling this method, interrupts MUST be enabled. This is because
3275 * the BH enable code must have IRQs enabled so that it will not deadlock.
3276 * --BLG
3277 */
3278 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3279 {
3280 struct net_device *dev = skb->dev;
3281 struct netdev_queue *txq;
3282 struct Qdisc *q;
3283 int rc = -ENOMEM;
3284
3285 skb_reset_mac_header(skb);
3286
3287 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3288 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3289
3290 /* Disable soft irqs for various locks below. Also
3291 * stops preemption for RCU.
3292 */
3293 rcu_read_lock_bh();
3294
3295 skb_update_prio(skb);
3296
3297 qdisc_pkt_len_init(skb);
3298 #ifdef CONFIG_NET_CLS_ACT
3299 skb->tc_at_ingress = 0;
3300 # ifdef CONFIG_NET_EGRESS
3301 if (static_key_false(&egress_needed)) {
3302 skb = sch_handle_egress(skb, &rc, dev);
3303 if (!skb)
3304 goto out;
3305 }
3306 # endif
3307 #endif
3308 /* If device/qdisc don't need skb->dst, release it right now while
3309 * its hot in this cpu cache.
3310 */
3311 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3312 skb_dst_drop(skb);
3313 else
3314 skb_dst_force(skb);
3315
3316 txq = netdev_pick_tx(dev, skb, accel_priv);
3317 q = rcu_dereference_bh(txq->qdisc);
3318
3319 trace_net_dev_queue(skb);
3320 if (q->enqueue) {
3321 rc = __dev_xmit_skb(skb, q, dev, txq);
3322 goto out;
3323 }
3324
3325 /* The device has no queue. Common case for software devices:
3326 loopback, all the sorts of tunnels...
3327
3328 Really, it is unlikely that netif_tx_lock protection is necessary
3329 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3330 counters.)
3331 However, it is possible, that they rely on protection
3332 made by us here.
3333
3334 Check this and shot the lock. It is not prone from deadlocks.
3335 Either shot noqueue qdisc, it is even simpler 8)
3336 */
3337 if (dev->flags & IFF_UP) {
3338 int cpu = smp_processor_id(); /* ok because BHs are off */
3339
3340 if (txq->xmit_lock_owner != cpu) {
3341 if (unlikely(__this_cpu_read(xmit_recursion) >
3342 XMIT_RECURSION_LIMIT))
3343 goto recursion_alert;
3344
3345 skb = validate_xmit_skb(skb, dev);
3346 if (!skb)
3347 goto out;
3348
3349 HARD_TX_LOCK(dev, txq, cpu);
3350
3351 if (!netif_xmit_stopped(txq)) {
3352 __this_cpu_inc(xmit_recursion);
3353 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3354 __this_cpu_dec(xmit_recursion);
3355 if (dev_xmit_complete(rc)) {
3356 HARD_TX_UNLOCK(dev, txq);
3357 goto out;
3358 }
3359 }
3360 HARD_TX_UNLOCK(dev, txq);
3361 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3362 dev->name);
3363 } else {
3364 /* Recursion is detected! It is possible,
3365 * unfortunately
3366 */
3367 recursion_alert:
3368 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3369 dev->name);
3370 }
3371 }
3372
3373 rc = -ENETDOWN;
3374 rcu_read_unlock_bh();
3375
3376 atomic_long_inc(&dev->tx_dropped);
3377 kfree_skb_list(skb);
3378 return rc;
3379 out:
3380 rcu_read_unlock_bh();
3381 return rc;
3382 }
3383
3384 int dev_queue_xmit(struct sk_buff *skb)
3385 {
3386 return __dev_queue_xmit(skb, NULL);
3387 }
3388 EXPORT_SYMBOL(dev_queue_xmit);
3389
3390 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3391 {
3392 return __dev_queue_xmit(skb, accel_priv);
3393 }
3394 EXPORT_SYMBOL(dev_queue_xmit_accel);
3395
3396
3397 /*=======================================================================
3398 Receiver routines
3399 =======================================================================*/
3400
3401 int netdev_max_backlog __read_mostly = 1000;
3402 EXPORT_SYMBOL(netdev_max_backlog);
3403
3404 int netdev_tstamp_prequeue __read_mostly = 1;
3405 int netdev_budget __read_mostly = 300;
3406 int weight_p __read_mostly = 64; /* old backlog weight */
3407 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3408 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3409 int dev_rx_weight __read_mostly = 64;
3410 int dev_tx_weight __read_mostly = 64;
3411
3412 /* Called with irq disabled */
3413 static inline void ____napi_schedule(struct softnet_data *sd,
3414 struct napi_struct *napi)
3415 {
3416 list_add_tail(&napi->poll_list, &sd->poll_list);
3417 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3418 }
3419
3420 #ifdef CONFIG_RPS
3421
3422 /* One global table that all flow-based protocols share. */
3423 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3424 EXPORT_SYMBOL(rps_sock_flow_table);
3425 u32 rps_cpu_mask __read_mostly;
3426 EXPORT_SYMBOL(rps_cpu_mask);
3427
3428 struct static_key rps_needed __read_mostly;
3429 EXPORT_SYMBOL(rps_needed);
3430 struct static_key rfs_needed __read_mostly;
3431 EXPORT_SYMBOL(rfs_needed);
3432
3433 static struct rps_dev_flow *
3434 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3435 struct rps_dev_flow *rflow, u16 next_cpu)
3436 {
3437 if (next_cpu < nr_cpu_ids) {
3438 #ifdef CONFIG_RFS_ACCEL
3439 struct netdev_rx_queue *rxqueue;
3440 struct rps_dev_flow_table *flow_table;
3441 struct rps_dev_flow *old_rflow;
3442 u32 flow_id;
3443 u16 rxq_index;
3444 int rc;
3445
3446 /* Should we steer this flow to a different hardware queue? */
3447 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3448 !(dev->features & NETIF_F_NTUPLE))
3449 goto out;
3450 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3451 if (rxq_index == skb_get_rx_queue(skb))
3452 goto out;
3453
3454 rxqueue = dev->_rx + rxq_index;
3455 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3456 if (!flow_table)
3457 goto out;
3458 flow_id = skb_get_hash(skb) & flow_table->mask;
3459 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3460 rxq_index, flow_id);
3461 if (rc < 0)
3462 goto out;
3463 old_rflow = rflow;
3464 rflow = &flow_table->flows[flow_id];
3465 rflow->filter = rc;
3466 if (old_rflow->filter == rflow->filter)
3467 old_rflow->filter = RPS_NO_FILTER;
3468 out:
3469 #endif
3470 rflow->last_qtail =
3471 per_cpu(softnet_data, next_cpu).input_queue_head;
3472 }
3473
3474 rflow->cpu = next_cpu;
3475 return rflow;
3476 }
3477
3478 /*
3479 * get_rps_cpu is called from netif_receive_skb and returns the target
3480 * CPU from the RPS map of the receiving queue for a given skb.
3481 * rcu_read_lock must be held on entry.
3482 */
3483 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3484 struct rps_dev_flow **rflowp)
3485 {
3486 const struct rps_sock_flow_table *sock_flow_table;
3487 struct netdev_rx_queue *rxqueue = dev->_rx;
3488 struct rps_dev_flow_table *flow_table;
3489 struct rps_map *map;
3490 int cpu = -1;
3491 u32 tcpu;
3492 u32 hash;
3493
3494 if (skb_rx_queue_recorded(skb)) {
3495 u16 index = skb_get_rx_queue(skb);
3496
3497 if (unlikely(index >= dev->real_num_rx_queues)) {
3498 WARN_ONCE(dev->real_num_rx_queues > 1,
3499 "%s received packet on queue %u, but number "
3500 "of RX queues is %u\n",
3501 dev->name, index, dev->real_num_rx_queues);
3502 goto done;
3503 }
3504 rxqueue += index;
3505 }
3506
3507 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3508
3509 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3510 map = rcu_dereference(rxqueue->rps_map);
3511 if (!flow_table && !map)
3512 goto done;
3513
3514 skb_reset_network_header(skb);
3515 hash = skb_get_hash(skb);
3516 if (!hash)
3517 goto done;
3518
3519 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3520 if (flow_table && sock_flow_table) {
3521 struct rps_dev_flow *rflow;
3522 u32 next_cpu;
3523 u32 ident;
3524
3525 /* First check into global flow table if there is a match */
3526 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3527 if ((ident ^ hash) & ~rps_cpu_mask)
3528 goto try_rps;
3529
3530 next_cpu = ident & rps_cpu_mask;
3531
3532 /* OK, now we know there is a match,
3533 * we can look at the local (per receive queue) flow table
3534 */
3535 rflow = &flow_table->flows[hash & flow_table->mask];
3536 tcpu = rflow->cpu;
3537
3538 /*
3539 * If the desired CPU (where last recvmsg was done) is
3540 * different from current CPU (one in the rx-queue flow
3541 * table entry), switch if one of the following holds:
3542 * - Current CPU is unset (>= nr_cpu_ids).
3543 * - Current CPU is offline.
3544 * - The current CPU's queue tail has advanced beyond the
3545 * last packet that was enqueued using this table entry.
3546 * This guarantees that all previous packets for the flow
3547 * have been dequeued, thus preserving in order delivery.
3548 */
3549 if (unlikely(tcpu != next_cpu) &&
3550 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3551 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3552 rflow->last_qtail)) >= 0)) {
3553 tcpu = next_cpu;
3554 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3555 }
3556
3557 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3558 *rflowp = rflow;
3559 cpu = tcpu;
3560 goto done;
3561 }
3562 }
3563
3564 try_rps:
3565
3566 if (map) {
3567 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3568 if (cpu_online(tcpu)) {
3569 cpu = tcpu;
3570 goto done;
3571 }
3572 }
3573
3574 done:
3575 return cpu;
3576 }
3577
3578 #ifdef CONFIG_RFS_ACCEL
3579
3580 /**
3581 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3582 * @dev: Device on which the filter was set
3583 * @rxq_index: RX queue index
3584 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3585 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3586 *
3587 * Drivers that implement ndo_rx_flow_steer() should periodically call
3588 * this function for each installed filter and remove the filters for
3589 * which it returns %true.
3590 */
3591 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3592 u32 flow_id, u16 filter_id)
3593 {
3594 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3595 struct rps_dev_flow_table *flow_table;
3596 struct rps_dev_flow *rflow;
3597 bool expire = true;
3598 unsigned int cpu;
3599
3600 rcu_read_lock();
3601 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3602 if (flow_table && flow_id <= flow_table->mask) {
3603 rflow = &flow_table->flows[flow_id];
3604 cpu = ACCESS_ONCE(rflow->cpu);
3605 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3606 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3607 rflow->last_qtail) <
3608 (int)(10 * flow_table->mask)))
3609 expire = false;
3610 }
3611 rcu_read_unlock();
3612 return expire;
3613 }
3614 EXPORT_SYMBOL(rps_may_expire_flow);
3615
3616 #endif /* CONFIG_RFS_ACCEL */
3617
3618 /* Called from hardirq (IPI) context */
3619 static void rps_trigger_softirq(void *data)
3620 {
3621 struct softnet_data *sd = data;
3622
3623 ____napi_schedule(sd, &sd->backlog);
3624 sd->received_rps++;
3625 }
3626
3627 #endif /* CONFIG_RPS */
3628
3629 /*
3630 * Check if this softnet_data structure is another cpu one
3631 * If yes, queue it to our IPI list and return 1
3632 * If no, return 0
3633 */
3634 static int rps_ipi_queued(struct softnet_data *sd)
3635 {
3636 #ifdef CONFIG_RPS
3637 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3638
3639 if (sd != mysd) {
3640 sd->rps_ipi_next = mysd->rps_ipi_list;
3641 mysd->rps_ipi_list = sd;
3642
3643 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3644 return 1;
3645 }
3646 #endif /* CONFIG_RPS */
3647 return 0;
3648 }
3649
3650 #ifdef CONFIG_NET_FLOW_LIMIT
3651 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3652 #endif
3653
3654 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3655 {
3656 #ifdef CONFIG_NET_FLOW_LIMIT
3657 struct sd_flow_limit *fl;
3658 struct softnet_data *sd;
3659 unsigned int old_flow, new_flow;
3660
3661 if (qlen < (netdev_max_backlog >> 1))
3662 return false;
3663
3664 sd = this_cpu_ptr(&softnet_data);
3665
3666 rcu_read_lock();
3667 fl = rcu_dereference(sd->flow_limit);
3668 if (fl) {
3669 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3670 old_flow = fl->history[fl->history_head];
3671 fl->history[fl->history_head] = new_flow;
3672
3673 fl->history_head++;
3674 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3675
3676 if (likely(fl->buckets[old_flow]))
3677 fl->buckets[old_flow]--;
3678
3679 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3680 fl->count++;
3681 rcu_read_unlock();
3682 return true;
3683 }
3684 }
3685 rcu_read_unlock();
3686 #endif
3687 return false;
3688 }
3689
3690 /*
3691 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3692 * queue (may be a remote CPU queue).
3693 */
3694 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3695 unsigned int *qtail)
3696 {
3697 struct softnet_data *sd;
3698 unsigned long flags;
3699 unsigned int qlen;
3700
3701 sd = &per_cpu(softnet_data, cpu);
3702
3703 local_irq_save(flags);
3704
3705 rps_lock(sd);
3706 if (!netif_running(skb->dev))
3707 goto drop;
3708 qlen = skb_queue_len(&sd->input_pkt_queue);
3709 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3710 if (qlen) {
3711 enqueue:
3712 __skb_queue_tail(&sd->input_pkt_queue, skb);
3713 input_queue_tail_incr_save(sd, qtail);
3714 rps_unlock(sd);
3715 local_irq_restore(flags);
3716 return NET_RX_SUCCESS;
3717 }
3718
3719 /* Schedule NAPI for backlog device
3720 * We can use non atomic operation since we own the queue lock
3721 */
3722 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3723 if (!rps_ipi_queued(sd))
3724 ____napi_schedule(sd, &sd->backlog);
3725 }
3726 goto enqueue;
3727 }
3728
3729 drop:
3730 sd->dropped++;
3731 rps_unlock(sd);
3732
3733 local_irq_restore(flags);
3734
3735 atomic_long_inc(&skb->dev->rx_dropped);
3736 kfree_skb(skb);
3737 return NET_RX_DROP;
3738 }
3739
3740 static int netif_rx_internal(struct sk_buff *skb)
3741 {
3742 int ret;
3743
3744 net_timestamp_check(netdev_tstamp_prequeue, skb);
3745
3746 trace_netif_rx(skb);
3747 #ifdef CONFIG_RPS
3748 if (static_key_false(&rps_needed)) {
3749 struct rps_dev_flow voidflow, *rflow = &voidflow;
3750 int cpu;
3751
3752 preempt_disable();
3753 rcu_read_lock();
3754
3755 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3756 if (cpu < 0)
3757 cpu = smp_processor_id();
3758
3759 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3760
3761 rcu_read_unlock();
3762 preempt_enable();
3763 } else
3764 #endif
3765 {
3766 unsigned int qtail;
3767 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3768 put_cpu();
3769 }
3770 return ret;
3771 }
3772
3773 /**
3774 * netif_rx - post buffer to the network code
3775 * @skb: buffer to post
3776 *
3777 * This function receives a packet from a device driver and queues it for
3778 * the upper (protocol) levels to process. It always succeeds. The buffer
3779 * may be dropped during processing for congestion control or by the
3780 * protocol layers.
3781 *
3782 * return values:
3783 * NET_RX_SUCCESS (no congestion)
3784 * NET_RX_DROP (packet was dropped)
3785 *
3786 */
3787
3788 int netif_rx(struct sk_buff *skb)
3789 {
3790 trace_netif_rx_entry(skb);
3791
3792 return netif_rx_internal(skb);
3793 }
3794 EXPORT_SYMBOL(netif_rx);
3795
3796 int netif_rx_ni(struct sk_buff *skb)
3797 {
3798 int err;
3799
3800 trace_netif_rx_ni_entry(skb);
3801
3802 preempt_disable();
3803 err = netif_rx_internal(skb);
3804 if (local_softirq_pending())
3805 do_softirq();
3806 preempt_enable();
3807
3808 return err;
3809 }
3810 EXPORT_SYMBOL(netif_rx_ni);
3811
3812 static __latent_entropy void net_tx_action(struct softirq_action *h)
3813 {
3814 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3815
3816 if (sd->completion_queue) {
3817 struct sk_buff *clist;
3818
3819 local_irq_disable();
3820 clist = sd->completion_queue;
3821 sd->completion_queue = NULL;
3822 local_irq_enable();
3823
3824 while (clist) {
3825 struct sk_buff *skb = clist;
3826 clist = clist->next;
3827
3828 WARN_ON(atomic_read(&skb->users));
3829 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3830 trace_consume_skb(skb);
3831 else
3832 trace_kfree_skb(skb, net_tx_action);
3833
3834 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3835 __kfree_skb(skb);
3836 else
3837 __kfree_skb_defer(skb);
3838 }
3839
3840 __kfree_skb_flush();
3841 }
3842
3843 if (sd->output_queue) {
3844 struct Qdisc *head;
3845
3846 local_irq_disable();
3847 head = sd->output_queue;
3848 sd->output_queue = NULL;
3849 sd->output_queue_tailp = &sd->output_queue;
3850 local_irq_enable();
3851
3852 while (head) {
3853 struct Qdisc *q = head;
3854 spinlock_t *root_lock;
3855
3856 head = head->next_sched;
3857
3858 root_lock = qdisc_lock(q);
3859 spin_lock(root_lock);
3860 /* We need to make sure head->next_sched is read
3861 * before clearing __QDISC_STATE_SCHED
3862 */
3863 smp_mb__before_atomic();
3864 clear_bit(__QDISC_STATE_SCHED, &q->state);
3865 qdisc_run(q);
3866 spin_unlock(root_lock);
3867 }
3868 }
3869 }
3870
3871 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3872 /* This hook is defined here for ATM LANE */
3873 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3874 unsigned char *addr) __read_mostly;
3875 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3876 #endif
3877
3878 static inline struct sk_buff *
3879 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3880 struct net_device *orig_dev)
3881 {
3882 #ifdef CONFIG_NET_CLS_ACT
3883 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3884 struct tcf_result cl_res;
3885
3886 /* If there's at least one ingress present somewhere (so
3887 * we get here via enabled static key), remaining devices
3888 * that are not configured with an ingress qdisc will bail
3889 * out here.
3890 */
3891 if (!cl)
3892 return skb;
3893 if (*pt_prev) {
3894 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3895 *pt_prev = NULL;
3896 }
3897
3898 qdisc_skb_cb(skb)->pkt_len = skb->len;
3899 skb->tc_at_ingress = 1;
3900 qdisc_bstats_cpu_update(cl->q, skb);
3901
3902 switch (tc_classify(skb, cl, &cl_res, false)) {
3903 case TC_ACT_OK:
3904 case TC_ACT_RECLASSIFY:
3905 skb->tc_index = TC_H_MIN(cl_res.classid);
3906 break;
3907 case TC_ACT_SHOT:
3908 qdisc_qstats_cpu_drop(cl->q);
3909 kfree_skb(skb);
3910 return NULL;
3911 case TC_ACT_STOLEN:
3912 case TC_ACT_QUEUED:
3913 consume_skb(skb);
3914 return NULL;
3915 case TC_ACT_REDIRECT:
3916 /* skb_mac_header check was done by cls/act_bpf, so
3917 * we can safely push the L2 header back before
3918 * redirecting to another netdev
3919 */
3920 __skb_push(skb, skb->mac_len);
3921 skb_do_redirect(skb);
3922 return NULL;
3923 default:
3924 break;
3925 }
3926 #endif /* CONFIG_NET_CLS_ACT */
3927 return skb;
3928 }
3929
3930 /**
3931 * netdev_is_rx_handler_busy - check if receive handler is registered
3932 * @dev: device to check
3933 *
3934 * Check if a receive handler is already registered for a given device.
3935 * Return true if there one.
3936 *
3937 * The caller must hold the rtnl_mutex.
3938 */
3939 bool netdev_is_rx_handler_busy(struct net_device *dev)
3940 {
3941 ASSERT_RTNL();
3942 return dev && rtnl_dereference(dev->rx_handler);
3943 }
3944 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3945
3946 /**
3947 * netdev_rx_handler_register - register receive handler
3948 * @dev: device to register a handler for
3949 * @rx_handler: receive handler to register
3950 * @rx_handler_data: data pointer that is used by rx handler
3951 *
3952 * Register a receive handler for a device. This handler will then be
3953 * called from __netif_receive_skb. A negative errno code is returned
3954 * on a failure.
3955 *
3956 * The caller must hold the rtnl_mutex.
3957 *
3958 * For a general description of rx_handler, see enum rx_handler_result.
3959 */
3960 int netdev_rx_handler_register(struct net_device *dev,
3961 rx_handler_func_t *rx_handler,
3962 void *rx_handler_data)
3963 {
3964 if (netdev_is_rx_handler_busy(dev))
3965 return -EBUSY;
3966
3967 /* Note: rx_handler_data must be set before rx_handler */
3968 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3969 rcu_assign_pointer(dev->rx_handler, rx_handler);
3970
3971 return 0;
3972 }
3973 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3974
3975 /**
3976 * netdev_rx_handler_unregister - unregister receive handler
3977 * @dev: device to unregister a handler from
3978 *
3979 * Unregister a receive handler from a device.
3980 *
3981 * The caller must hold the rtnl_mutex.
3982 */
3983 void netdev_rx_handler_unregister(struct net_device *dev)
3984 {
3985
3986 ASSERT_RTNL();
3987 RCU_INIT_POINTER(dev->rx_handler, NULL);
3988 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3989 * section has a guarantee to see a non NULL rx_handler_data
3990 * as well.
3991 */
3992 synchronize_net();
3993 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3994 }
3995 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3996
3997 /*
3998 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3999 * the special handling of PFMEMALLOC skbs.
4000 */
4001 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4002 {
4003 switch (skb->protocol) {
4004 case htons(ETH_P_ARP):
4005 case htons(ETH_P_IP):
4006 case htons(ETH_P_IPV6):
4007 case htons(ETH_P_8021Q):
4008 case htons(ETH_P_8021AD):
4009 return true;
4010 default:
4011 return false;
4012 }
4013 }
4014
4015 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4016 int *ret, struct net_device *orig_dev)
4017 {
4018 #ifdef CONFIG_NETFILTER_INGRESS
4019 if (nf_hook_ingress_active(skb)) {
4020 int ingress_retval;
4021
4022 if (*pt_prev) {
4023 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4024 *pt_prev = NULL;
4025 }
4026
4027 rcu_read_lock();
4028 ingress_retval = nf_hook_ingress(skb);
4029 rcu_read_unlock();
4030 return ingress_retval;
4031 }
4032 #endif /* CONFIG_NETFILTER_INGRESS */
4033 return 0;
4034 }
4035
4036 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4037 {
4038 struct packet_type *ptype, *pt_prev;
4039 rx_handler_func_t *rx_handler;
4040 struct net_device *orig_dev;
4041 bool deliver_exact = false;
4042 int ret = NET_RX_DROP;
4043 __be16 type;
4044
4045 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4046
4047 trace_netif_receive_skb(skb);
4048
4049 orig_dev = skb->dev;
4050
4051 skb_reset_network_header(skb);
4052 if (!skb_transport_header_was_set(skb))
4053 skb_reset_transport_header(skb);
4054 skb_reset_mac_len(skb);
4055
4056 pt_prev = NULL;
4057
4058 another_round:
4059 skb->skb_iif = skb->dev->ifindex;
4060
4061 __this_cpu_inc(softnet_data.processed);
4062
4063 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4064 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4065 skb = skb_vlan_untag(skb);
4066 if (unlikely(!skb))
4067 goto out;
4068 }
4069
4070 if (skb_skip_tc_classify(skb))
4071 goto skip_classify;
4072
4073 if (pfmemalloc)
4074 goto skip_taps;
4075
4076 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4077 if (pt_prev)
4078 ret = deliver_skb(skb, pt_prev, orig_dev);
4079 pt_prev = ptype;
4080 }
4081
4082 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4083 if (pt_prev)
4084 ret = deliver_skb(skb, pt_prev, orig_dev);
4085 pt_prev = ptype;
4086 }
4087
4088 skip_taps:
4089 #ifdef CONFIG_NET_INGRESS
4090 if (static_key_false(&ingress_needed)) {
4091 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4092 if (!skb)
4093 goto out;
4094
4095 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4096 goto out;
4097 }
4098 #endif
4099 skb_reset_tc(skb);
4100 skip_classify:
4101 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4102 goto drop;
4103
4104 if (skb_vlan_tag_present(skb)) {
4105 if (pt_prev) {
4106 ret = deliver_skb(skb, pt_prev, orig_dev);
4107 pt_prev = NULL;
4108 }
4109 if (vlan_do_receive(&skb))
4110 goto another_round;
4111 else if (unlikely(!skb))
4112 goto out;
4113 }
4114
4115 rx_handler = rcu_dereference(skb->dev->rx_handler);
4116 if (rx_handler) {
4117 if (pt_prev) {
4118 ret = deliver_skb(skb, pt_prev, orig_dev);
4119 pt_prev = NULL;
4120 }
4121 switch (rx_handler(&skb)) {
4122 case RX_HANDLER_CONSUMED:
4123 ret = NET_RX_SUCCESS;
4124 goto out;
4125 case RX_HANDLER_ANOTHER:
4126 goto another_round;
4127 case RX_HANDLER_EXACT:
4128 deliver_exact = true;
4129 case RX_HANDLER_PASS:
4130 break;
4131 default:
4132 BUG();
4133 }
4134 }
4135
4136 if (unlikely(skb_vlan_tag_present(skb))) {
4137 if (skb_vlan_tag_get_id(skb))
4138 skb->pkt_type = PACKET_OTHERHOST;
4139 /* Note: we might in the future use prio bits
4140 * and set skb->priority like in vlan_do_receive()
4141 * For the time being, just ignore Priority Code Point
4142 */
4143 skb->vlan_tci = 0;
4144 }
4145
4146 type = skb->protocol;
4147
4148 /* deliver only exact match when indicated */
4149 if (likely(!deliver_exact)) {
4150 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4151 &ptype_base[ntohs(type) &
4152 PTYPE_HASH_MASK]);
4153 }
4154
4155 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4156 &orig_dev->ptype_specific);
4157
4158 if (unlikely(skb->dev != orig_dev)) {
4159 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4160 &skb->dev->ptype_specific);
4161 }
4162
4163 if (pt_prev) {
4164 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4165 goto drop;
4166 else
4167 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4168 } else {
4169 drop:
4170 if (!deliver_exact)
4171 atomic_long_inc(&skb->dev->rx_dropped);
4172 else
4173 atomic_long_inc(&skb->dev->rx_nohandler);
4174 kfree_skb(skb);
4175 /* Jamal, now you will not able to escape explaining
4176 * me how you were going to use this. :-)
4177 */
4178 ret = NET_RX_DROP;
4179 }
4180
4181 out:
4182 return ret;
4183 }
4184
4185 static int __netif_receive_skb(struct sk_buff *skb)
4186 {
4187 int ret;
4188
4189 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4190 unsigned long pflags = current->flags;
4191
4192 /*
4193 * PFMEMALLOC skbs are special, they should
4194 * - be delivered to SOCK_MEMALLOC sockets only
4195 * - stay away from userspace
4196 * - have bounded memory usage
4197 *
4198 * Use PF_MEMALLOC as this saves us from propagating the allocation
4199 * context down to all allocation sites.
4200 */
4201 current->flags |= PF_MEMALLOC;
4202 ret = __netif_receive_skb_core(skb, true);
4203 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4204 } else
4205 ret = __netif_receive_skb_core(skb, false);
4206
4207 return ret;
4208 }
4209
4210 static int netif_receive_skb_internal(struct sk_buff *skb)
4211 {
4212 int ret;
4213
4214 net_timestamp_check(netdev_tstamp_prequeue, skb);
4215
4216 if (skb_defer_rx_timestamp(skb))
4217 return NET_RX_SUCCESS;
4218
4219 rcu_read_lock();
4220
4221 #ifdef CONFIG_RPS
4222 if (static_key_false(&rps_needed)) {
4223 struct rps_dev_flow voidflow, *rflow = &voidflow;
4224 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4225
4226 if (cpu >= 0) {
4227 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4228 rcu_read_unlock();
4229 return ret;
4230 }
4231 }
4232 #endif
4233 ret = __netif_receive_skb(skb);
4234 rcu_read_unlock();
4235 return ret;
4236 }
4237
4238 /**
4239 * netif_receive_skb - process receive buffer from network
4240 * @skb: buffer to process
4241 *
4242 * netif_receive_skb() is the main receive data processing function.
4243 * It always succeeds. The buffer may be dropped during processing
4244 * for congestion control or by the protocol layers.
4245 *
4246 * This function may only be called from softirq context and interrupts
4247 * should be enabled.
4248 *
4249 * Return values (usually ignored):
4250 * NET_RX_SUCCESS: no congestion
4251 * NET_RX_DROP: packet was dropped
4252 */
4253 int netif_receive_skb(struct sk_buff *skb)
4254 {
4255 trace_netif_receive_skb_entry(skb);
4256
4257 return netif_receive_skb_internal(skb);
4258 }
4259 EXPORT_SYMBOL(netif_receive_skb);
4260
4261 DEFINE_PER_CPU(struct work_struct, flush_works);
4262
4263 /* Network device is going away, flush any packets still pending */
4264 static void flush_backlog(struct work_struct *work)
4265 {
4266 struct sk_buff *skb, *tmp;
4267 struct softnet_data *sd;
4268
4269 local_bh_disable();
4270 sd = this_cpu_ptr(&softnet_data);
4271
4272 local_irq_disable();
4273 rps_lock(sd);
4274 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4275 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4276 __skb_unlink(skb, &sd->input_pkt_queue);
4277 kfree_skb(skb);
4278 input_queue_head_incr(sd);
4279 }
4280 }
4281 rps_unlock(sd);
4282 local_irq_enable();
4283
4284 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4285 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4286 __skb_unlink(skb, &sd->process_queue);
4287 kfree_skb(skb);
4288 input_queue_head_incr(sd);
4289 }
4290 }
4291 local_bh_enable();
4292 }
4293
4294 static void flush_all_backlogs(void)
4295 {
4296 unsigned int cpu;
4297
4298 get_online_cpus();
4299
4300 for_each_online_cpu(cpu)
4301 queue_work_on(cpu, system_highpri_wq,
4302 per_cpu_ptr(&flush_works, cpu));
4303
4304 for_each_online_cpu(cpu)
4305 flush_work(per_cpu_ptr(&flush_works, cpu));
4306
4307 put_online_cpus();
4308 }
4309
4310 static int napi_gro_complete(struct sk_buff *skb)
4311 {
4312 struct packet_offload *ptype;
4313 __be16 type = skb->protocol;
4314 struct list_head *head = &offload_base;
4315 int err = -ENOENT;
4316
4317 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4318
4319 if (NAPI_GRO_CB(skb)->count == 1) {
4320 skb_shinfo(skb)->gso_size = 0;
4321 goto out;
4322 }
4323
4324 rcu_read_lock();
4325 list_for_each_entry_rcu(ptype, head, list) {
4326 if (ptype->type != type || !ptype->callbacks.gro_complete)
4327 continue;
4328
4329 err = ptype->callbacks.gro_complete(skb, 0);
4330 break;
4331 }
4332 rcu_read_unlock();
4333
4334 if (err) {
4335 WARN_ON(&ptype->list == head);
4336 kfree_skb(skb);
4337 return NET_RX_SUCCESS;
4338 }
4339
4340 out:
4341 return netif_receive_skb_internal(skb);
4342 }
4343
4344 /* napi->gro_list contains packets ordered by age.
4345 * youngest packets at the head of it.
4346 * Complete skbs in reverse order to reduce latencies.
4347 */
4348 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4349 {
4350 struct sk_buff *skb, *prev = NULL;
4351
4352 /* scan list and build reverse chain */
4353 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4354 skb->prev = prev;
4355 prev = skb;
4356 }
4357
4358 for (skb = prev; skb; skb = prev) {
4359 skb->next = NULL;
4360
4361 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4362 return;
4363
4364 prev = skb->prev;
4365 napi_gro_complete(skb);
4366 napi->gro_count--;
4367 }
4368
4369 napi->gro_list = NULL;
4370 }
4371 EXPORT_SYMBOL(napi_gro_flush);
4372
4373 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4374 {
4375 struct sk_buff *p;
4376 unsigned int maclen = skb->dev->hard_header_len;
4377 u32 hash = skb_get_hash_raw(skb);
4378
4379 for (p = napi->gro_list; p; p = p->next) {
4380 unsigned long diffs;
4381
4382 NAPI_GRO_CB(p)->flush = 0;
4383
4384 if (hash != skb_get_hash_raw(p)) {
4385 NAPI_GRO_CB(p)->same_flow = 0;
4386 continue;
4387 }
4388
4389 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4390 diffs |= p->vlan_tci ^ skb->vlan_tci;
4391 diffs |= skb_metadata_dst_cmp(p, skb);
4392 if (maclen == ETH_HLEN)
4393 diffs |= compare_ether_header(skb_mac_header(p),
4394 skb_mac_header(skb));
4395 else if (!diffs)
4396 diffs = memcmp(skb_mac_header(p),
4397 skb_mac_header(skb),
4398 maclen);
4399 NAPI_GRO_CB(p)->same_flow = !diffs;
4400 }
4401 }
4402
4403 static void skb_gro_reset_offset(struct sk_buff *skb)
4404 {
4405 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4406 const skb_frag_t *frag0 = &pinfo->frags[0];
4407
4408 NAPI_GRO_CB(skb)->data_offset = 0;
4409 NAPI_GRO_CB(skb)->frag0 = NULL;
4410 NAPI_GRO_CB(skb)->frag0_len = 0;
4411
4412 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4413 pinfo->nr_frags &&
4414 !PageHighMem(skb_frag_page(frag0))) {
4415 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4416 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4417 skb_frag_size(frag0),
4418 skb->end - skb->tail);
4419 }
4420 }
4421
4422 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4423 {
4424 struct skb_shared_info *pinfo = skb_shinfo(skb);
4425
4426 BUG_ON(skb->end - skb->tail < grow);
4427
4428 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4429
4430 skb->data_len -= grow;
4431 skb->tail += grow;
4432
4433 pinfo->frags[0].page_offset += grow;
4434 skb_frag_size_sub(&pinfo->frags[0], grow);
4435
4436 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4437 skb_frag_unref(skb, 0);
4438 memmove(pinfo->frags, pinfo->frags + 1,
4439 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4440 }
4441 }
4442
4443 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4444 {
4445 struct sk_buff **pp = NULL;
4446 struct packet_offload *ptype;
4447 __be16 type = skb->protocol;
4448 struct list_head *head = &offload_base;
4449 int same_flow;
4450 enum gro_result ret;
4451 int grow;
4452
4453 if (!(skb->dev->features & NETIF_F_GRO))
4454 goto normal;
4455
4456 if (skb->csum_bad)
4457 goto normal;
4458
4459 gro_list_prepare(napi, skb);
4460
4461 rcu_read_lock();
4462 list_for_each_entry_rcu(ptype, head, list) {
4463 if (ptype->type != type || !ptype->callbacks.gro_receive)
4464 continue;
4465
4466 skb_set_network_header(skb, skb_gro_offset(skb));
4467 skb_reset_mac_len(skb);
4468 NAPI_GRO_CB(skb)->same_flow = 0;
4469 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4470 NAPI_GRO_CB(skb)->free = 0;
4471 NAPI_GRO_CB(skb)->encap_mark = 0;
4472 NAPI_GRO_CB(skb)->recursion_counter = 0;
4473 NAPI_GRO_CB(skb)->is_fou = 0;
4474 NAPI_GRO_CB(skb)->is_atomic = 1;
4475 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4476
4477 /* Setup for GRO checksum validation */
4478 switch (skb->ip_summed) {
4479 case CHECKSUM_COMPLETE:
4480 NAPI_GRO_CB(skb)->csum = skb->csum;
4481 NAPI_GRO_CB(skb)->csum_valid = 1;
4482 NAPI_GRO_CB(skb)->csum_cnt = 0;
4483 break;
4484 case CHECKSUM_UNNECESSARY:
4485 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4486 NAPI_GRO_CB(skb)->csum_valid = 0;
4487 break;
4488 default:
4489 NAPI_GRO_CB(skb)->csum_cnt = 0;
4490 NAPI_GRO_CB(skb)->csum_valid = 0;
4491 }
4492
4493 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4494 break;
4495 }
4496 rcu_read_unlock();
4497
4498 if (&ptype->list == head)
4499 goto normal;
4500
4501 same_flow = NAPI_GRO_CB(skb)->same_flow;
4502 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4503
4504 if (pp) {
4505 struct sk_buff *nskb = *pp;
4506
4507 *pp = nskb->next;
4508 nskb->next = NULL;
4509 napi_gro_complete(nskb);
4510 napi->gro_count--;
4511 }
4512
4513 if (same_flow)
4514 goto ok;
4515
4516 if (NAPI_GRO_CB(skb)->flush)
4517 goto normal;
4518
4519 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4520 struct sk_buff *nskb = napi->gro_list;
4521
4522 /* locate the end of the list to select the 'oldest' flow */
4523 while (nskb->next) {
4524 pp = &nskb->next;
4525 nskb = *pp;
4526 }
4527 *pp = NULL;
4528 nskb->next = NULL;
4529 napi_gro_complete(nskb);
4530 } else {
4531 napi->gro_count++;
4532 }
4533 NAPI_GRO_CB(skb)->count = 1;
4534 NAPI_GRO_CB(skb)->age = jiffies;
4535 NAPI_GRO_CB(skb)->last = skb;
4536 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4537 skb->next = napi->gro_list;
4538 napi->gro_list = skb;
4539 ret = GRO_HELD;
4540
4541 pull:
4542 grow = skb_gro_offset(skb) - skb_headlen(skb);
4543 if (grow > 0)
4544 gro_pull_from_frag0(skb, grow);
4545 ok:
4546 return ret;
4547
4548 normal:
4549 ret = GRO_NORMAL;
4550 goto pull;
4551 }
4552
4553 struct packet_offload *gro_find_receive_by_type(__be16 type)
4554 {
4555 struct list_head *offload_head = &offload_base;
4556 struct packet_offload *ptype;
4557
4558 list_for_each_entry_rcu(ptype, offload_head, list) {
4559 if (ptype->type != type || !ptype->callbacks.gro_receive)
4560 continue;
4561 return ptype;
4562 }
4563 return NULL;
4564 }
4565 EXPORT_SYMBOL(gro_find_receive_by_type);
4566
4567 struct packet_offload *gro_find_complete_by_type(__be16 type)
4568 {
4569 struct list_head *offload_head = &offload_base;
4570 struct packet_offload *ptype;
4571
4572 list_for_each_entry_rcu(ptype, offload_head, list) {
4573 if (ptype->type != type || !ptype->callbacks.gro_complete)
4574 continue;
4575 return ptype;
4576 }
4577 return NULL;
4578 }
4579 EXPORT_SYMBOL(gro_find_complete_by_type);
4580
4581 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4582 {
4583 switch (ret) {
4584 case GRO_NORMAL:
4585 if (netif_receive_skb_internal(skb))
4586 ret = GRO_DROP;
4587 break;
4588
4589 case GRO_DROP:
4590 kfree_skb(skb);
4591 break;
4592
4593 case GRO_MERGED_FREE:
4594 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4595 skb_dst_drop(skb);
4596 kmem_cache_free(skbuff_head_cache, skb);
4597 } else {
4598 __kfree_skb(skb);
4599 }
4600 break;
4601
4602 case GRO_HELD:
4603 case GRO_MERGED:
4604 break;
4605 }
4606
4607 return ret;
4608 }
4609
4610 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4611 {
4612 skb_mark_napi_id(skb, napi);
4613 trace_napi_gro_receive_entry(skb);
4614
4615 skb_gro_reset_offset(skb);
4616
4617 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4618 }
4619 EXPORT_SYMBOL(napi_gro_receive);
4620
4621 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4622 {
4623 if (unlikely(skb->pfmemalloc)) {
4624 consume_skb(skb);
4625 return;
4626 }
4627 __skb_pull(skb, skb_headlen(skb));
4628 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4629 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4630 skb->vlan_tci = 0;
4631 skb->dev = napi->dev;
4632 skb->skb_iif = 0;
4633 skb->encapsulation = 0;
4634 skb_shinfo(skb)->gso_type = 0;
4635 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4636
4637 napi->skb = skb;
4638 }
4639
4640 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4641 {
4642 struct sk_buff *skb = napi->skb;
4643
4644 if (!skb) {
4645 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4646 if (skb) {
4647 napi->skb = skb;
4648 skb_mark_napi_id(skb, napi);
4649 }
4650 }
4651 return skb;
4652 }
4653 EXPORT_SYMBOL(napi_get_frags);
4654
4655 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4656 struct sk_buff *skb,
4657 gro_result_t ret)
4658 {
4659 switch (ret) {
4660 case GRO_NORMAL:
4661 case GRO_HELD:
4662 __skb_push(skb, ETH_HLEN);
4663 skb->protocol = eth_type_trans(skb, skb->dev);
4664 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4665 ret = GRO_DROP;
4666 break;
4667
4668 case GRO_DROP:
4669 case GRO_MERGED_FREE:
4670 napi_reuse_skb(napi, skb);
4671 break;
4672
4673 case GRO_MERGED:
4674 break;
4675 }
4676
4677 return ret;
4678 }
4679
4680 /* Upper GRO stack assumes network header starts at gro_offset=0
4681 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4682 * We copy ethernet header into skb->data to have a common layout.
4683 */
4684 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4685 {
4686 struct sk_buff *skb = napi->skb;
4687 const struct ethhdr *eth;
4688 unsigned int hlen = sizeof(*eth);
4689
4690 napi->skb = NULL;
4691
4692 skb_reset_mac_header(skb);
4693 skb_gro_reset_offset(skb);
4694
4695 eth = skb_gro_header_fast(skb, 0);
4696 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4697 eth = skb_gro_header_slow(skb, hlen, 0);
4698 if (unlikely(!eth)) {
4699 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4700 __func__, napi->dev->name);
4701 napi_reuse_skb(napi, skb);
4702 return NULL;
4703 }
4704 } else {
4705 gro_pull_from_frag0(skb, hlen);
4706 NAPI_GRO_CB(skb)->frag0 += hlen;
4707 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4708 }
4709 __skb_pull(skb, hlen);
4710
4711 /*
4712 * This works because the only protocols we care about don't require
4713 * special handling.
4714 * We'll fix it up properly in napi_frags_finish()
4715 */
4716 skb->protocol = eth->h_proto;
4717
4718 return skb;
4719 }
4720
4721 gro_result_t napi_gro_frags(struct napi_struct *napi)
4722 {
4723 struct sk_buff *skb = napi_frags_skb(napi);
4724
4725 if (!skb)
4726 return GRO_DROP;
4727
4728 trace_napi_gro_frags_entry(skb);
4729
4730 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4731 }
4732 EXPORT_SYMBOL(napi_gro_frags);
4733
4734 /* Compute the checksum from gro_offset and return the folded value
4735 * after adding in any pseudo checksum.
4736 */
4737 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4738 {
4739 __wsum wsum;
4740 __sum16 sum;
4741
4742 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4743
4744 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4745 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4746 if (likely(!sum)) {
4747 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4748 !skb->csum_complete_sw)
4749 netdev_rx_csum_fault(skb->dev);
4750 }
4751
4752 NAPI_GRO_CB(skb)->csum = wsum;
4753 NAPI_GRO_CB(skb)->csum_valid = 1;
4754
4755 return sum;
4756 }
4757 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4758
4759 /*
4760 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4761 * Note: called with local irq disabled, but exits with local irq enabled.
4762 */
4763 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4764 {
4765 #ifdef CONFIG_RPS
4766 struct softnet_data *remsd = sd->rps_ipi_list;
4767
4768 if (remsd) {
4769 sd->rps_ipi_list = NULL;
4770
4771 local_irq_enable();
4772
4773 /* Send pending IPI's to kick RPS processing on remote cpus. */
4774 while (remsd) {
4775 struct softnet_data *next = remsd->rps_ipi_next;
4776
4777 if (cpu_online(remsd->cpu))
4778 smp_call_function_single_async(remsd->cpu,
4779 &remsd->csd);
4780 remsd = next;
4781 }
4782 } else
4783 #endif
4784 local_irq_enable();
4785 }
4786
4787 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4788 {
4789 #ifdef CONFIG_RPS
4790 return sd->rps_ipi_list != NULL;
4791 #else
4792 return false;
4793 #endif
4794 }
4795
4796 static int process_backlog(struct napi_struct *napi, int quota)
4797 {
4798 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4799 bool again = true;
4800 int work = 0;
4801
4802 /* Check if we have pending ipi, its better to send them now,
4803 * not waiting net_rx_action() end.
4804 */
4805 if (sd_has_rps_ipi_waiting(sd)) {
4806 local_irq_disable();
4807 net_rps_action_and_irq_enable(sd);
4808 }
4809
4810 napi->weight = dev_rx_weight;
4811 while (again) {
4812 struct sk_buff *skb;
4813
4814 while ((skb = __skb_dequeue(&sd->process_queue))) {
4815 rcu_read_lock();
4816 __netif_receive_skb(skb);
4817 rcu_read_unlock();
4818 input_queue_head_incr(sd);
4819 if (++work >= quota)
4820 return work;
4821
4822 }
4823
4824 local_irq_disable();
4825 rps_lock(sd);
4826 if (skb_queue_empty(&sd->input_pkt_queue)) {
4827 /*
4828 * Inline a custom version of __napi_complete().
4829 * only current cpu owns and manipulates this napi,
4830 * and NAPI_STATE_SCHED is the only possible flag set
4831 * on backlog.
4832 * We can use a plain write instead of clear_bit(),
4833 * and we dont need an smp_mb() memory barrier.
4834 */
4835 napi->state = 0;
4836 again = false;
4837 } else {
4838 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4839 &sd->process_queue);
4840 }
4841 rps_unlock(sd);
4842 local_irq_enable();
4843 }
4844
4845 return work;
4846 }
4847
4848 /**
4849 * __napi_schedule - schedule for receive
4850 * @n: entry to schedule
4851 *
4852 * The entry's receive function will be scheduled to run.
4853 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4854 */
4855 void __napi_schedule(struct napi_struct *n)
4856 {
4857 unsigned long flags;
4858
4859 local_irq_save(flags);
4860 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4861 local_irq_restore(flags);
4862 }
4863 EXPORT_SYMBOL(__napi_schedule);
4864
4865 /**
4866 * __napi_schedule_irqoff - schedule for receive
4867 * @n: entry to schedule
4868 *
4869 * Variant of __napi_schedule() assuming hard irqs are masked
4870 */
4871 void __napi_schedule_irqoff(struct napi_struct *n)
4872 {
4873 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4874 }
4875 EXPORT_SYMBOL(__napi_schedule_irqoff);
4876
4877 bool __napi_complete(struct napi_struct *n)
4878 {
4879 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4880
4881 /* Some drivers call us directly, instead of calling
4882 * napi_complete_done().
4883 */
4884 if (unlikely(test_bit(NAPI_STATE_IN_BUSY_POLL, &n->state)))
4885 return false;
4886
4887 list_del_init(&n->poll_list);
4888 smp_mb__before_atomic();
4889 clear_bit(NAPI_STATE_SCHED, &n->state);
4890 return true;
4891 }
4892 EXPORT_SYMBOL(__napi_complete);
4893
4894 bool napi_complete_done(struct napi_struct *n, int work_done)
4895 {
4896 unsigned long flags;
4897
4898 /*
4899 * 1) Don't let napi dequeue from the cpu poll list
4900 * just in case its running on a different cpu.
4901 * 2) If we are busy polling, do nothing here, we have
4902 * the guarantee we will be called later.
4903 */
4904 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4905 NAPIF_STATE_IN_BUSY_POLL)))
4906 return false;
4907
4908 if (n->gro_list) {
4909 unsigned long timeout = 0;
4910
4911 if (work_done)
4912 timeout = n->dev->gro_flush_timeout;
4913
4914 if (timeout)
4915 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4916 HRTIMER_MODE_REL_PINNED);
4917 else
4918 napi_gro_flush(n, false);
4919 }
4920 if (likely(list_empty(&n->poll_list))) {
4921 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4922 } else {
4923 /* If n->poll_list is not empty, we need to mask irqs */
4924 local_irq_save(flags);
4925 __napi_complete(n);
4926 local_irq_restore(flags);
4927 }
4928 return true;
4929 }
4930 EXPORT_SYMBOL(napi_complete_done);
4931
4932 /* must be called under rcu_read_lock(), as we dont take a reference */
4933 static struct napi_struct *napi_by_id(unsigned int napi_id)
4934 {
4935 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4936 struct napi_struct *napi;
4937
4938 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4939 if (napi->napi_id == napi_id)
4940 return napi;
4941
4942 return NULL;
4943 }
4944
4945 #if defined(CONFIG_NET_RX_BUSY_POLL)
4946
4947 #define BUSY_POLL_BUDGET 8
4948
4949 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
4950 {
4951 int rc;
4952
4953 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
4954
4955 local_bh_disable();
4956
4957 /* All we really want here is to re-enable device interrupts.
4958 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
4959 */
4960 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4961 netpoll_poll_unlock(have_poll_lock);
4962 if (rc == BUSY_POLL_BUDGET)
4963 __napi_schedule(napi);
4964 local_bh_enable();
4965 if (local_softirq_pending())
4966 do_softirq();
4967 }
4968
4969 bool sk_busy_loop(struct sock *sk, int nonblock)
4970 {
4971 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4972 int (*napi_poll)(struct napi_struct *napi, int budget);
4973 int (*busy_poll)(struct napi_struct *dev);
4974 void *have_poll_lock = NULL;
4975 struct napi_struct *napi;
4976 int rc;
4977
4978 restart:
4979 rc = false;
4980 napi_poll = NULL;
4981
4982 rcu_read_lock();
4983
4984 napi = napi_by_id(sk->sk_napi_id);
4985 if (!napi)
4986 goto out;
4987
4988 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4989 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4990
4991 preempt_disable();
4992 for (;;) {
4993 rc = 0;
4994 local_bh_disable();
4995 if (busy_poll) {
4996 rc = busy_poll(napi);
4997 goto count;
4998 }
4999 if (!napi_poll) {
5000 unsigned long val = READ_ONCE(napi->state);
5001
5002 /* If multiple threads are competing for this napi,
5003 * we avoid dirtying napi->state as much as we can.
5004 */
5005 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5006 NAPIF_STATE_IN_BUSY_POLL))
5007 goto count;
5008 if (cmpxchg(&napi->state, val,
5009 val | NAPIF_STATE_IN_BUSY_POLL |
5010 NAPIF_STATE_SCHED) != val)
5011 goto count;
5012 have_poll_lock = netpoll_poll_lock(napi);
5013 napi_poll = napi->poll;
5014 }
5015 rc = napi_poll(napi, BUSY_POLL_BUDGET);
5016 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5017 count:
5018 if (rc > 0)
5019 __NET_ADD_STATS(sock_net(sk),
5020 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5021 local_bh_enable();
5022
5023 if (rc == LL_FLUSH_FAILED)
5024 break; /* permanent failure */
5025
5026 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5027 busy_loop_timeout(end_time))
5028 break;
5029
5030 if (unlikely(need_resched())) {
5031 if (napi_poll)
5032 busy_poll_stop(napi, have_poll_lock);
5033 preempt_enable();
5034 rcu_read_unlock();
5035 cond_resched();
5036 rc = !skb_queue_empty(&sk->sk_receive_queue);
5037 if (rc || busy_loop_timeout(end_time))
5038 return rc;
5039 goto restart;
5040 }
5041 cpu_relax();
5042 }
5043 if (napi_poll)
5044 busy_poll_stop(napi, have_poll_lock);
5045 preempt_enable();
5046 rc = !skb_queue_empty(&sk->sk_receive_queue);
5047 out:
5048 rcu_read_unlock();
5049 return rc;
5050 }
5051 EXPORT_SYMBOL(sk_busy_loop);
5052
5053 #endif /* CONFIG_NET_RX_BUSY_POLL */
5054
5055 static void napi_hash_add(struct napi_struct *napi)
5056 {
5057 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5058 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5059 return;
5060
5061 spin_lock(&napi_hash_lock);
5062
5063 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5064 do {
5065 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5066 napi_gen_id = NR_CPUS + 1;
5067 } while (napi_by_id(napi_gen_id));
5068 napi->napi_id = napi_gen_id;
5069
5070 hlist_add_head_rcu(&napi->napi_hash_node,
5071 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5072
5073 spin_unlock(&napi_hash_lock);
5074 }
5075
5076 /* Warning : caller is responsible to make sure rcu grace period
5077 * is respected before freeing memory containing @napi
5078 */
5079 bool napi_hash_del(struct napi_struct *napi)
5080 {
5081 bool rcu_sync_needed = false;
5082
5083 spin_lock(&napi_hash_lock);
5084
5085 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5086 rcu_sync_needed = true;
5087 hlist_del_rcu(&napi->napi_hash_node);
5088 }
5089 spin_unlock(&napi_hash_lock);
5090 return rcu_sync_needed;
5091 }
5092 EXPORT_SYMBOL_GPL(napi_hash_del);
5093
5094 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5095 {
5096 struct napi_struct *napi;
5097
5098 napi = container_of(timer, struct napi_struct, timer);
5099 if (napi->gro_list)
5100 napi_schedule(napi);
5101
5102 return HRTIMER_NORESTART;
5103 }
5104
5105 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5106 int (*poll)(struct napi_struct *, int), int weight)
5107 {
5108 INIT_LIST_HEAD(&napi->poll_list);
5109 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5110 napi->timer.function = napi_watchdog;
5111 napi->gro_count = 0;
5112 napi->gro_list = NULL;
5113 napi->skb = NULL;
5114 napi->poll = poll;
5115 if (weight > NAPI_POLL_WEIGHT)
5116 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5117 weight, dev->name);
5118 napi->weight = weight;
5119 list_add(&napi->dev_list, &dev->napi_list);
5120 napi->dev = dev;
5121 #ifdef CONFIG_NETPOLL
5122 napi->poll_owner = -1;
5123 #endif
5124 set_bit(NAPI_STATE_SCHED, &napi->state);
5125 napi_hash_add(napi);
5126 }
5127 EXPORT_SYMBOL(netif_napi_add);
5128
5129 void napi_disable(struct napi_struct *n)
5130 {
5131 might_sleep();
5132 set_bit(NAPI_STATE_DISABLE, &n->state);
5133
5134 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5135 msleep(1);
5136 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5137 msleep(1);
5138
5139 hrtimer_cancel(&n->timer);
5140
5141 clear_bit(NAPI_STATE_DISABLE, &n->state);
5142 }
5143 EXPORT_SYMBOL(napi_disable);
5144
5145 /* Must be called in process context */
5146 void netif_napi_del(struct napi_struct *napi)
5147 {
5148 might_sleep();
5149 if (napi_hash_del(napi))
5150 synchronize_net();
5151 list_del_init(&napi->dev_list);
5152 napi_free_frags(napi);
5153
5154 kfree_skb_list(napi->gro_list);
5155 napi->gro_list = NULL;
5156 napi->gro_count = 0;
5157 }
5158 EXPORT_SYMBOL(netif_napi_del);
5159
5160 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5161 {
5162 void *have;
5163 int work, weight;
5164
5165 list_del_init(&n->poll_list);
5166
5167 have = netpoll_poll_lock(n);
5168
5169 weight = n->weight;
5170
5171 /* This NAPI_STATE_SCHED test is for avoiding a race
5172 * with netpoll's poll_napi(). Only the entity which
5173 * obtains the lock and sees NAPI_STATE_SCHED set will
5174 * actually make the ->poll() call. Therefore we avoid
5175 * accidentally calling ->poll() when NAPI is not scheduled.
5176 */
5177 work = 0;
5178 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5179 work = n->poll(n, weight);
5180 trace_napi_poll(n, work, weight);
5181 }
5182
5183 WARN_ON_ONCE(work > weight);
5184
5185 if (likely(work < weight))
5186 goto out_unlock;
5187
5188 /* Drivers must not modify the NAPI state if they
5189 * consume the entire weight. In such cases this code
5190 * still "owns" the NAPI instance and therefore can
5191 * move the instance around on the list at-will.
5192 */
5193 if (unlikely(napi_disable_pending(n))) {
5194 napi_complete(n);
5195 goto out_unlock;
5196 }
5197
5198 if (n->gro_list) {
5199 /* flush too old packets
5200 * If HZ < 1000, flush all packets.
5201 */
5202 napi_gro_flush(n, HZ >= 1000);
5203 }
5204
5205 /* Some drivers may have called napi_schedule
5206 * prior to exhausting their budget.
5207 */
5208 if (unlikely(!list_empty(&n->poll_list))) {
5209 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5210 n->dev ? n->dev->name : "backlog");
5211 goto out_unlock;
5212 }
5213
5214 list_add_tail(&n->poll_list, repoll);
5215
5216 out_unlock:
5217 netpoll_poll_unlock(have);
5218
5219 return work;
5220 }
5221
5222 static __latent_entropy void net_rx_action(struct softirq_action *h)
5223 {
5224 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5225 unsigned long time_limit = jiffies + 2;
5226 int budget = netdev_budget;
5227 LIST_HEAD(list);
5228 LIST_HEAD(repoll);
5229
5230 local_irq_disable();
5231 list_splice_init(&sd->poll_list, &list);
5232 local_irq_enable();
5233
5234 for (;;) {
5235 struct napi_struct *n;
5236
5237 if (list_empty(&list)) {
5238 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5239 goto out;
5240 break;
5241 }
5242
5243 n = list_first_entry(&list, struct napi_struct, poll_list);
5244 budget -= napi_poll(n, &repoll);
5245
5246 /* If softirq window is exhausted then punt.
5247 * Allow this to run for 2 jiffies since which will allow
5248 * an average latency of 1.5/HZ.
5249 */
5250 if (unlikely(budget <= 0 ||
5251 time_after_eq(jiffies, time_limit))) {
5252 sd->time_squeeze++;
5253 break;
5254 }
5255 }
5256
5257 local_irq_disable();
5258
5259 list_splice_tail_init(&sd->poll_list, &list);
5260 list_splice_tail(&repoll, &list);
5261 list_splice(&list, &sd->poll_list);
5262 if (!list_empty(&sd->poll_list))
5263 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5264
5265 net_rps_action_and_irq_enable(sd);
5266 out:
5267 __kfree_skb_flush();
5268 }
5269
5270 struct netdev_adjacent {
5271 struct net_device *dev;
5272
5273 /* upper master flag, there can only be one master device per list */
5274 bool master;
5275
5276 /* counter for the number of times this device was added to us */
5277 u16 ref_nr;
5278
5279 /* private field for the users */
5280 void *private;
5281
5282 struct list_head list;
5283 struct rcu_head rcu;
5284 };
5285
5286 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5287 struct list_head *adj_list)
5288 {
5289 struct netdev_adjacent *adj;
5290
5291 list_for_each_entry(adj, adj_list, list) {
5292 if (adj->dev == adj_dev)
5293 return adj;
5294 }
5295 return NULL;
5296 }
5297
5298 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5299 {
5300 struct net_device *dev = data;
5301
5302 return upper_dev == dev;
5303 }
5304
5305 /**
5306 * netdev_has_upper_dev - Check if device is linked to an upper device
5307 * @dev: device
5308 * @upper_dev: upper device to check
5309 *
5310 * Find out if a device is linked to specified upper device and return true
5311 * in case it is. Note that this checks only immediate upper device,
5312 * not through a complete stack of devices. The caller must hold the RTNL lock.
5313 */
5314 bool netdev_has_upper_dev(struct net_device *dev,
5315 struct net_device *upper_dev)
5316 {
5317 ASSERT_RTNL();
5318
5319 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5320 upper_dev);
5321 }
5322 EXPORT_SYMBOL(netdev_has_upper_dev);
5323
5324 /**
5325 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5326 * @dev: device
5327 * @upper_dev: upper device to check
5328 *
5329 * Find out if a device is linked to specified upper device and return true
5330 * in case it is. Note that this checks the entire upper device chain.
5331 * The caller must hold rcu lock.
5332 */
5333
5334 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5335 struct net_device *upper_dev)
5336 {
5337 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5338 upper_dev);
5339 }
5340 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5341
5342 /**
5343 * netdev_has_any_upper_dev - Check if device is linked to some device
5344 * @dev: device
5345 *
5346 * Find out if a device is linked to an upper device and return true in case
5347 * it is. The caller must hold the RTNL lock.
5348 */
5349 static bool netdev_has_any_upper_dev(struct net_device *dev)
5350 {
5351 ASSERT_RTNL();
5352
5353 return !list_empty(&dev->adj_list.upper);
5354 }
5355
5356 /**
5357 * netdev_master_upper_dev_get - Get master upper device
5358 * @dev: device
5359 *
5360 * Find a master upper device and return pointer to it or NULL in case
5361 * it's not there. The caller must hold the RTNL lock.
5362 */
5363 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5364 {
5365 struct netdev_adjacent *upper;
5366
5367 ASSERT_RTNL();
5368
5369 if (list_empty(&dev->adj_list.upper))
5370 return NULL;
5371
5372 upper = list_first_entry(&dev->adj_list.upper,
5373 struct netdev_adjacent, list);
5374 if (likely(upper->master))
5375 return upper->dev;
5376 return NULL;
5377 }
5378 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5379
5380 /**
5381 * netdev_has_any_lower_dev - Check if device is linked to some device
5382 * @dev: device
5383 *
5384 * Find out if a device is linked to a lower device and return true in case
5385 * it is. The caller must hold the RTNL lock.
5386 */
5387 static bool netdev_has_any_lower_dev(struct net_device *dev)
5388 {
5389 ASSERT_RTNL();
5390
5391 return !list_empty(&dev->adj_list.lower);
5392 }
5393
5394 void *netdev_adjacent_get_private(struct list_head *adj_list)
5395 {
5396 struct netdev_adjacent *adj;
5397
5398 adj = list_entry(adj_list, struct netdev_adjacent, list);
5399
5400 return adj->private;
5401 }
5402 EXPORT_SYMBOL(netdev_adjacent_get_private);
5403
5404 /**
5405 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5406 * @dev: device
5407 * @iter: list_head ** of the current position
5408 *
5409 * Gets the next device from the dev's upper list, starting from iter
5410 * position. The caller must hold RCU read lock.
5411 */
5412 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5413 struct list_head **iter)
5414 {
5415 struct netdev_adjacent *upper;
5416
5417 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5418
5419 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5420
5421 if (&upper->list == &dev->adj_list.upper)
5422 return NULL;
5423
5424 *iter = &upper->list;
5425
5426 return upper->dev;
5427 }
5428 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5429
5430 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5431 struct list_head **iter)
5432 {
5433 struct netdev_adjacent *upper;
5434
5435 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5436
5437 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5438
5439 if (&upper->list == &dev->adj_list.upper)
5440 return NULL;
5441
5442 *iter = &upper->list;
5443
5444 return upper->dev;
5445 }
5446
5447 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5448 int (*fn)(struct net_device *dev,
5449 void *data),
5450 void *data)
5451 {
5452 struct net_device *udev;
5453 struct list_head *iter;
5454 int ret;
5455
5456 for (iter = &dev->adj_list.upper,
5457 udev = netdev_next_upper_dev_rcu(dev, &iter);
5458 udev;
5459 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5460 /* first is the upper device itself */
5461 ret = fn(udev, data);
5462 if (ret)
5463 return ret;
5464
5465 /* then look at all of its upper devices */
5466 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5467 if (ret)
5468 return ret;
5469 }
5470
5471 return 0;
5472 }
5473 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5474
5475 /**
5476 * netdev_lower_get_next_private - Get the next ->private from the
5477 * lower neighbour list
5478 * @dev: device
5479 * @iter: list_head ** of the current position
5480 *
5481 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5482 * list, starting from iter position. The caller must hold either hold the
5483 * RTNL lock or its own locking that guarantees that the neighbour lower
5484 * list will remain unchanged.
5485 */
5486 void *netdev_lower_get_next_private(struct net_device *dev,
5487 struct list_head **iter)
5488 {
5489 struct netdev_adjacent *lower;
5490
5491 lower = list_entry(*iter, struct netdev_adjacent, list);
5492
5493 if (&lower->list == &dev->adj_list.lower)
5494 return NULL;
5495
5496 *iter = lower->list.next;
5497
5498 return lower->private;
5499 }
5500 EXPORT_SYMBOL(netdev_lower_get_next_private);
5501
5502 /**
5503 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5504 * lower neighbour list, RCU
5505 * variant
5506 * @dev: device
5507 * @iter: list_head ** of the current position
5508 *
5509 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5510 * list, starting from iter position. The caller must hold RCU read lock.
5511 */
5512 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5513 struct list_head **iter)
5514 {
5515 struct netdev_adjacent *lower;
5516
5517 WARN_ON_ONCE(!rcu_read_lock_held());
5518
5519 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5520
5521 if (&lower->list == &dev->adj_list.lower)
5522 return NULL;
5523
5524 *iter = &lower->list;
5525
5526 return lower->private;
5527 }
5528 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5529
5530 /**
5531 * netdev_lower_get_next - Get the next device from the lower neighbour
5532 * list
5533 * @dev: device
5534 * @iter: list_head ** of the current position
5535 *
5536 * Gets the next netdev_adjacent from the dev's lower neighbour
5537 * list, starting from iter position. The caller must hold RTNL lock or
5538 * its own locking that guarantees that the neighbour lower
5539 * list will remain unchanged.
5540 */
5541 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5542 {
5543 struct netdev_adjacent *lower;
5544
5545 lower = list_entry(*iter, struct netdev_adjacent, list);
5546
5547 if (&lower->list == &dev->adj_list.lower)
5548 return NULL;
5549
5550 *iter = lower->list.next;
5551
5552 return lower->dev;
5553 }
5554 EXPORT_SYMBOL(netdev_lower_get_next);
5555
5556 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5557 struct list_head **iter)
5558 {
5559 struct netdev_adjacent *lower;
5560
5561 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5562
5563 if (&lower->list == &dev->adj_list.lower)
5564 return NULL;
5565
5566 *iter = &lower->list;
5567
5568 return lower->dev;
5569 }
5570
5571 int netdev_walk_all_lower_dev(struct net_device *dev,
5572 int (*fn)(struct net_device *dev,
5573 void *data),
5574 void *data)
5575 {
5576 struct net_device *ldev;
5577 struct list_head *iter;
5578 int ret;
5579
5580 for (iter = &dev->adj_list.lower,
5581 ldev = netdev_next_lower_dev(dev, &iter);
5582 ldev;
5583 ldev = netdev_next_lower_dev(dev, &iter)) {
5584 /* first is the lower device itself */
5585 ret = fn(ldev, data);
5586 if (ret)
5587 return ret;
5588
5589 /* then look at all of its lower devices */
5590 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5591 if (ret)
5592 return ret;
5593 }
5594
5595 return 0;
5596 }
5597 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5598
5599 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5600 struct list_head **iter)
5601 {
5602 struct netdev_adjacent *lower;
5603
5604 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5605 if (&lower->list == &dev->adj_list.lower)
5606 return NULL;
5607
5608 *iter = &lower->list;
5609
5610 return lower->dev;
5611 }
5612
5613 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5614 int (*fn)(struct net_device *dev,
5615 void *data),
5616 void *data)
5617 {
5618 struct net_device *ldev;
5619 struct list_head *iter;
5620 int ret;
5621
5622 for (iter = &dev->adj_list.lower,
5623 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5624 ldev;
5625 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5626 /* first is the lower device itself */
5627 ret = fn(ldev, data);
5628 if (ret)
5629 return ret;
5630
5631 /* then look at all of its lower devices */
5632 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5633 if (ret)
5634 return ret;
5635 }
5636
5637 return 0;
5638 }
5639 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5640
5641 /**
5642 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5643 * lower neighbour list, RCU
5644 * variant
5645 * @dev: device
5646 *
5647 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5648 * list. The caller must hold RCU read lock.
5649 */
5650 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5651 {
5652 struct netdev_adjacent *lower;
5653
5654 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5655 struct netdev_adjacent, list);
5656 if (lower)
5657 return lower->private;
5658 return NULL;
5659 }
5660 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5661
5662 /**
5663 * netdev_master_upper_dev_get_rcu - Get master upper device
5664 * @dev: device
5665 *
5666 * Find a master upper device and return pointer to it or NULL in case
5667 * it's not there. The caller must hold the RCU read lock.
5668 */
5669 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5670 {
5671 struct netdev_adjacent *upper;
5672
5673 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5674 struct netdev_adjacent, list);
5675 if (upper && likely(upper->master))
5676 return upper->dev;
5677 return NULL;
5678 }
5679 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5680
5681 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5682 struct net_device *adj_dev,
5683 struct list_head *dev_list)
5684 {
5685 char linkname[IFNAMSIZ+7];
5686 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5687 "upper_%s" : "lower_%s", adj_dev->name);
5688 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5689 linkname);
5690 }
5691 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5692 char *name,
5693 struct list_head *dev_list)
5694 {
5695 char linkname[IFNAMSIZ+7];
5696 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5697 "upper_%s" : "lower_%s", name);
5698 sysfs_remove_link(&(dev->dev.kobj), linkname);
5699 }
5700
5701 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5702 struct net_device *adj_dev,
5703 struct list_head *dev_list)
5704 {
5705 return (dev_list == &dev->adj_list.upper ||
5706 dev_list == &dev->adj_list.lower) &&
5707 net_eq(dev_net(dev), dev_net(adj_dev));
5708 }
5709
5710 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5711 struct net_device *adj_dev,
5712 struct list_head *dev_list,
5713 void *private, bool master)
5714 {
5715 struct netdev_adjacent *adj;
5716 int ret;
5717
5718 adj = __netdev_find_adj(adj_dev, dev_list);
5719
5720 if (adj) {
5721 adj->ref_nr += 1;
5722 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5723 dev->name, adj_dev->name, adj->ref_nr);
5724
5725 return 0;
5726 }
5727
5728 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5729 if (!adj)
5730 return -ENOMEM;
5731
5732 adj->dev = adj_dev;
5733 adj->master = master;
5734 adj->ref_nr = 1;
5735 adj->private = private;
5736 dev_hold(adj_dev);
5737
5738 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5739 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5740
5741 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5742 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5743 if (ret)
5744 goto free_adj;
5745 }
5746
5747 /* Ensure that master link is always the first item in list. */
5748 if (master) {
5749 ret = sysfs_create_link(&(dev->dev.kobj),
5750 &(adj_dev->dev.kobj), "master");
5751 if (ret)
5752 goto remove_symlinks;
5753
5754 list_add_rcu(&adj->list, dev_list);
5755 } else {
5756 list_add_tail_rcu(&adj->list, dev_list);
5757 }
5758
5759 return 0;
5760
5761 remove_symlinks:
5762 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5763 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5764 free_adj:
5765 kfree(adj);
5766 dev_put(adj_dev);
5767
5768 return ret;
5769 }
5770
5771 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5772 struct net_device *adj_dev,
5773 u16 ref_nr,
5774 struct list_head *dev_list)
5775 {
5776 struct netdev_adjacent *adj;
5777
5778 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5779 dev->name, adj_dev->name, ref_nr);
5780
5781 adj = __netdev_find_adj(adj_dev, dev_list);
5782
5783 if (!adj) {
5784 pr_err("Adjacency does not exist for device %s from %s\n",
5785 dev->name, adj_dev->name);
5786 WARN_ON(1);
5787 return;
5788 }
5789
5790 if (adj->ref_nr > ref_nr) {
5791 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5792 dev->name, adj_dev->name, ref_nr,
5793 adj->ref_nr - ref_nr);
5794 adj->ref_nr -= ref_nr;
5795 return;
5796 }
5797
5798 if (adj->master)
5799 sysfs_remove_link(&(dev->dev.kobj), "master");
5800
5801 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5802 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5803
5804 list_del_rcu(&adj->list);
5805 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
5806 adj_dev->name, dev->name, adj_dev->name);
5807 dev_put(adj_dev);
5808 kfree_rcu(adj, rcu);
5809 }
5810
5811 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5812 struct net_device *upper_dev,
5813 struct list_head *up_list,
5814 struct list_head *down_list,
5815 void *private, bool master)
5816 {
5817 int ret;
5818
5819 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
5820 private, master);
5821 if (ret)
5822 return ret;
5823
5824 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
5825 private, false);
5826 if (ret) {
5827 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5828 return ret;
5829 }
5830
5831 return 0;
5832 }
5833
5834 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5835 struct net_device *upper_dev,
5836 u16 ref_nr,
5837 struct list_head *up_list,
5838 struct list_head *down_list)
5839 {
5840 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5841 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5842 }
5843
5844 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5845 struct net_device *upper_dev,
5846 void *private, bool master)
5847 {
5848 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5849 &dev->adj_list.upper,
5850 &upper_dev->adj_list.lower,
5851 private, master);
5852 }
5853
5854 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5855 struct net_device *upper_dev)
5856 {
5857 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5858 &dev->adj_list.upper,
5859 &upper_dev->adj_list.lower);
5860 }
5861
5862 static int __netdev_upper_dev_link(struct net_device *dev,
5863 struct net_device *upper_dev, bool master,
5864 void *upper_priv, void *upper_info)
5865 {
5866 struct netdev_notifier_changeupper_info changeupper_info;
5867 int ret = 0;
5868
5869 ASSERT_RTNL();
5870
5871 if (dev == upper_dev)
5872 return -EBUSY;
5873
5874 /* To prevent loops, check if dev is not upper device to upper_dev. */
5875 if (netdev_has_upper_dev(upper_dev, dev))
5876 return -EBUSY;
5877
5878 if (netdev_has_upper_dev(dev, upper_dev))
5879 return -EEXIST;
5880
5881 if (master && netdev_master_upper_dev_get(dev))
5882 return -EBUSY;
5883
5884 changeupper_info.upper_dev = upper_dev;
5885 changeupper_info.master = master;
5886 changeupper_info.linking = true;
5887 changeupper_info.upper_info = upper_info;
5888
5889 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5890 &changeupper_info.info);
5891 ret = notifier_to_errno(ret);
5892 if (ret)
5893 return ret;
5894
5895 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5896 master);
5897 if (ret)
5898 return ret;
5899
5900 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5901 &changeupper_info.info);
5902 ret = notifier_to_errno(ret);
5903 if (ret)
5904 goto rollback;
5905
5906 return 0;
5907
5908 rollback:
5909 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5910
5911 return ret;
5912 }
5913
5914 /**
5915 * netdev_upper_dev_link - Add a link to the upper device
5916 * @dev: device
5917 * @upper_dev: new upper device
5918 *
5919 * Adds a link to device which is upper to this one. The caller must hold
5920 * the RTNL lock. On a failure a negative errno code is returned.
5921 * On success the reference counts are adjusted and the function
5922 * returns zero.
5923 */
5924 int netdev_upper_dev_link(struct net_device *dev,
5925 struct net_device *upper_dev)
5926 {
5927 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5928 }
5929 EXPORT_SYMBOL(netdev_upper_dev_link);
5930
5931 /**
5932 * netdev_master_upper_dev_link - Add a master link to the upper device
5933 * @dev: device
5934 * @upper_dev: new upper device
5935 * @upper_priv: upper device private
5936 * @upper_info: upper info to be passed down via notifier
5937 *
5938 * Adds a link to device which is upper to this one. In this case, only
5939 * one master upper device can be linked, although other non-master devices
5940 * might be linked as well. The caller must hold the RTNL lock.
5941 * On a failure a negative errno code is returned. On success the reference
5942 * counts are adjusted and the function returns zero.
5943 */
5944 int netdev_master_upper_dev_link(struct net_device *dev,
5945 struct net_device *upper_dev,
5946 void *upper_priv, void *upper_info)
5947 {
5948 return __netdev_upper_dev_link(dev, upper_dev, true,
5949 upper_priv, upper_info);
5950 }
5951 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5952
5953 /**
5954 * netdev_upper_dev_unlink - Removes a link to upper device
5955 * @dev: device
5956 * @upper_dev: new upper device
5957 *
5958 * Removes a link to device which is upper to this one. The caller must hold
5959 * the RTNL lock.
5960 */
5961 void netdev_upper_dev_unlink(struct net_device *dev,
5962 struct net_device *upper_dev)
5963 {
5964 struct netdev_notifier_changeupper_info changeupper_info;
5965 ASSERT_RTNL();
5966
5967 changeupper_info.upper_dev = upper_dev;
5968 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5969 changeupper_info.linking = false;
5970
5971 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5972 &changeupper_info.info);
5973
5974 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5975
5976 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5977 &changeupper_info.info);
5978 }
5979 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5980
5981 /**
5982 * netdev_bonding_info_change - Dispatch event about slave change
5983 * @dev: device
5984 * @bonding_info: info to dispatch
5985 *
5986 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5987 * The caller must hold the RTNL lock.
5988 */
5989 void netdev_bonding_info_change(struct net_device *dev,
5990 struct netdev_bonding_info *bonding_info)
5991 {
5992 struct netdev_notifier_bonding_info info;
5993
5994 memcpy(&info.bonding_info, bonding_info,
5995 sizeof(struct netdev_bonding_info));
5996 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5997 &info.info);
5998 }
5999 EXPORT_SYMBOL(netdev_bonding_info_change);
6000
6001 static void netdev_adjacent_add_links(struct net_device *dev)
6002 {
6003 struct netdev_adjacent *iter;
6004
6005 struct net *net = dev_net(dev);
6006
6007 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6008 if (!net_eq(net, dev_net(iter->dev)))
6009 continue;
6010 netdev_adjacent_sysfs_add(iter->dev, dev,
6011 &iter->dev->adj_list.lower);
6012 netdev_adjacent_sysfs_add(dev, iter->dev,
6013 &dev->adj_list.upper);
6014 }
6015
6016 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6017 if (!net_eq(net, dev_net(iter->dev)))
6018 continue;
6019 netdev_adjacent_sysfs_add(iter->dev, dev,
6020 &iter->dev->adj_list.upper);
6021 netdev_adjacent_sysfs_add(dev, iter->dev,
6022 &dev->adj_list.lower);
6023 }
6024 }
6025
6026 static void netdev_adjacent_del_links(struct net_device *dev)
6027 {
6028 struct netdev_adjacent *iter;
6029
6030 struct net *net = dev_net(dev);
6031
6032 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6033 if (!net_eq(net, dev_net(iter->dev)))
6034 continue;
6035 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6036 &iter->dev->adj_list.lower);
6037 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6038 &dev->adj_list.upper);
6039 }
6040
6041 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6042 if (!net_eq(net, dev_net(iter->dev)))
6043 continue;
6044 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6045 &iter->dev->adj_list.upper);
6046 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6047 &dev->adj_list.lower);
6048 }
6049 }
6050
6051 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6052 {
6053 struct netdev_adjacent *iter;
6054
6055 struct net *net = dev_net(dev);
6056
6057 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6058 if (!net_eq(net, dev_net(iter->dev)))
6059 continue;
6060 netdev_adjacent_sysfs_del(iter->dev, oldname,
6061 &iter->dev->adj_list.lower);
6062 netdev_adjacent_sysfs_add(iter->dev, dev,
6063 &iter->dev->adj_list.lower);
6064 }
6065
6066 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6067 if (!net_eq(net, dev_net(iter->dev)))
6068 continue;
6069 netdev_adjacent_sysfs_del(iter->dev, oldname,
6070 &iter->dev->adj_list.upper);
6071 netdev_adjacent_sysfs_add(iter->dev, dev,
6072 &iter->dev->adj_list.upper);
6073 }
6074 }
6075
6076 void *netdev_lower_dev_get_private(struct net_device *dev,
6077 struct net_device *lower_dev)
6078 {
6079 struct netdev_adjacent *lower;
6080
6081 if (!lower_dev)
6082 return NULL;
6083 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6084 if (!lower)
6085 return NULL;
6086
6087 return lower->private;
6088 }
6089 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6090
6091
6092 int dev_get_nest_level(struct net_device *dev)
6093 {
6094 struct net_device *lower = NULL;
6095 struct list_head *iter;
6096 int max_nest = -1;
6097 int nest;
6098
6099 ASSERT_RTNL();
6100
6101 netdev_for_each_lower_dev(dev, lower, iter) {
6102 nest = dev_get_nest_level(lower);
6103 if (max_nest < nest)
6104 max_nest = nest;
6105 }
6106
6107 return max_nest + 1;
6108 }
6109 EXPORT_SYMBOL(dev_get_nest_level);
6110
6111 /**
6112 * netdev_lower_change - Dispatch event about lower device state change
6113 * @lower_dev: device
6114 * @lower_state_info: state to dispatch
6115 *
6116 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6117 * The caller must hold the RTNL lock.
6118 */
6119 void netdev_lower_state_changed(struct net_device *lower_dev,
6120 void *lower_state_info)
6121 {
6122 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6123
6124 ASSERT_RTNL();
6125 changelowerstate_info.lower_state_info = lower_state_info;
6126 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6127 &changelowerstate_info.info);
6128 }
6129 EXPORT_SYMBOL(netdev_lower_state_changed);
6130
6131 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6132 struct neighbour *n)
6133 {
6134 struct net_device *lower_dev, *stop_dev;
6135 struct list_head *iter;
6136 int err;
6137
6138 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6139 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6140 continue;
6141 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6142 if (err) {
6143 stop_dev = lower_dev;
6144 goto rollback;
6145 }
6146 }
6147 return 0;
6148
6149 rollback:
6150 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6151 if (lower_dev == stop_dev)
6152 break;
6153 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6154 continue;
6155 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6156 }
6157 return err;
6158 }
6159 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6160
6161 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6162 struct neighbour *n)
6163 {
6164 struct net_device *lower_dev;
6165 struct list_head *iter;
6166
6167 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6168 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6169 continue;
6170 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6171 }
6172 }
6173 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6174
6175 static void dev_change_rx_flags(struct net_device *dev, int flags)
6176 {
6177 const struct net_device_ops *ops = dev->netdev_ops;
6178
6179 if (ops->ndo_change_rx_flags)
6180 ops->ndo_change_rx_flags(dev, flags);
6181 }
6182
6183 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6184 {
6185 unsigned int old_flags = dev->flags;
6186 kuid_t uid;
6187 kgid_t gid;
6188
6189 ASSERT_RTNL();
6190
6191 dev->flags |= IFF_PROMISC;
6192 dev->promiscuity += inc;
6193 if (dev->promiscuity == 0) {
6194 /*
6195 * Avoid overflow.
6196 * If inc causes overflow, untouch promisc and return error.
6197 */
6198 if (inc < 0)
6199 dev->flags &= ~IFF_PROMISC;
6200 else {
6201 dev->promiscuity -= inc;
6202 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6203 dev->name);
6204 return -EOVERFLOW;
6205 }
6206 }
6207 if (dev->flags != old_flags) {
6208 pr_info("device %s %s promiscuous mode\n",
6209 dev->name,
6210 dev->flags & IFF_PROMISC ? "entered" : "left");
6211 if (audit_enabled) {
6212 current_uid_gid(&uid, &gid);
6213 audit_log(current->audit_context, GFP_ATOMIC,
6214 AUDIT_ANOM_PROMISCUOUS,
6215 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6216 dev->name, (dev->flags & IFF_PROMISC),
6217 (old_flags & IFF_PROMISC),
6218 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6219 from_kuid(&init_user_ns, uid),
6220 from_kgid(&init_user_ns, gid),
6221 audit_get_sessionid(current));
6222 }
6223
6224 dev_change_rx_flags(dev, IFF_PROMISC);
6225 }
6226 if (notify)
6227 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6228 return 0;
6229 }
6230
6231 /**
6232 * dev_set_promiscuity - update promiscuity count on a device
6233 * @dev: device
6234 * @inc: modifier
6235 *
6236 * Add or remove promiscuity from a device. While the count in the device
6237 * remains above zero the interface remains promiscuous. Once it hits zero
6238 * the device reverts back to normal filtering operation. A negative inc
6239 * value is used to drop promiscuity on the device.
6240 * Return 0 if successful or a negative errno code on error.
6241 */
6242 int dev_set_promiscuity(struct net_device *dev, int inc)
6243 {
6244 unsigned int old_flags = dev->flags;
6245 int err;
6246
6247 err = __dev_set_promiscuity(dev, inc, true);
6248 if (err < 0)
6249 return err;
6250 if (dev->flags != old_flags)
6251 dev_set_rx_mode(dev);
6252 return err;
6253 }
6254 EXPORT_SYMBOL(dev_set_promiscuity);
6255
6256 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6257 {
6258 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6259
6260 ASSERT_RTNL();
6261
6262 dev->flags |= IFF_ALLMULTI;
6263 dev->allmulti += inc;
6264 if (dev->allmulti == 0) {
6265 /*
6266 * Avoid overflow.
6267 * If inc causes overflow, untouch allmulti and return error.
6268 */
6269 if (inc < 0)
6270 dev->flags &= ~IFF_ALLMULTI;
6271 else {
6272 dev->allmulti -= inc;
6273 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6274 dev->name);
6275 return -EOVERFLOW;
6276 }
6277 }
6278 if (dev->flags ^ old_flags) {
6279 dev_change_rx_flags(dev, IFF_ALLMULTI);
6280 dev_set_rx_mode(dev);
6281 if (notify)
6282 __dev_notify_flags(dev, old_flags,
6283 dev->gflags ^ old_gflags);
6284 }
6285 return 0;
6286 }
6287
6288 /**
6289 * dev_set_allmulti - update allmulti count on a device
6290 * @dev: device
6291 * @inc: modifier
6292 *
6293 * Add or remove reception of all multicast frames to a device. While the
6294 * count in the device remains above zero the interface remains listening
6295 * to all interfaces. Once it hits zero the device reverts back to normal
6296 * filtering operation. A negative @inc value is used to drop the counter
6297 * when releasing a resource needing all multicasts.
6298 * Return 0 if successful or a negative errno code on error.
6299 */
6300
6301 int dev_set_allmulti(struct net_device *dev, int inc)
6302 {
6303 return __dev_set_allmulti(dev, inc, true);
6304 }
6305 EXPORT_SYMBOL(dev_set_allmulti);
6306
6307 /*
6308 * Upload unicast and multicast address lists to device and
6309 * configure RX filtering. When the device doesn't support unicast
6310 * filtering it is put in promiscuous mode while unicast addresses
6311 * are present.
6312 */
6313 void __dev_set_rx_mode(struct net_device *dev)
6314 {
6315 const struct net_device_ops *ops = dev->netdev_ops;
6316
6317 /* dev_open will call this function so the list will stay sane. */
6318 if (!(dev->flags&IFF_UP))
6319 return;
6320
6321 if (!netif_device_present(dev))
6322 return;
6323
6324 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6325 /* Unicast addresses changes may only happen under the rtnl,
6326 * therefore calling __dev_set_promiscuity here is safe.
6327 */
6328 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6329 __dev_set_promiscuity(dev, 1, false);
6330 dev->uc_promisc = true;
6331 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6332 __dev_set_promiscuity(dev, -1, false);
6333 dev->uc_promisc = false;
6334 }
6335 }
6336
6337 if (ops->ndo_set_rx_mode)
6338 ops->ndo_set_rx_mode(dev);
6339 }
6340
6341 void dev_set_rx_mode(struct net_device *dev)
6342 {
6343 netif_addr_lock_bh(dev);
6344 __dev_set_rx_mode(dev);
6345 netif_addr_unlock_bh(dev);
6346 }
6347
6348 /**
6349 * dev_get_flags - get flags reported to userspace
6350 * @dev: device
6351 *
6352 * Get the combination of flag bits exported through APIs to userspace.
6353 */
6354 unsigned int dev_get_flags(const struct net_device *dev)
6355 {
6356 unsigned int flags;
6357
6358 flags = (dev->flags & ~(IFF_PROMISC |
6359 IFF_ALLMULTI |
6360 IFF_RUNNING |
6361 IFF_LOWER_UP |
6362 IFF_DORMANT)) |
6363 (dev->gflags & (IFF_PROMISC |
6364 IFF_ALLMULTI));
6365
6366 if (netif_running(dev)) {
6367 if (netif_oper_up(dev))
6368 flags |= IFF_RUNNING;
6369 if (netif_carrier_ok(dev))
6370 flags |= IFF_LOWER_UP;
6371 if (netif_dormant(dev))
6372 flags |= IFF_DORMANT;
6373 }
6374
6375 return flags;
6376 }
6377 EXPORT_SYMBOL(dev_get_flags);
6378
6379 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6380 {
6381 unsigned int old_flags = dev->flags;
6382 int ret;
6383
6384 ASSERT_RTNL();
6385
6386 /*
6387 * Set the flags on our device.
6388 */
6389
6390 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6391 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6392 IFF_AUTOMEDIA)) |
6393 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6394 IFF_ALLMULTI));
6395
6396 /*
6397 * Load in the correct multicast list now the flags have changed.
6398 */
6399
6400 if ((old_flags ^ flags) & IFF_MULTICAST)
6401 dev_change_rx_flags(dev, IFF_MULTICAST);
6402
6403 dev_set_rx_mode(dev);
6404
6405 /*
6406 * Have we downed the interface. We handle IFF_UP ourselves
6407 * according to user attempts to set it, rather than blindly
6408 * setting it.
6409 */
6410
6411 ret = 0;
6412 if ((old_flags ^ flags) & IFF_UP)
6413 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6414
6415 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6416 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6417 unsigned int old_flags = dev->flags;
6418
6419 dev->gflags ^= IFF_PROMISC;
6420
6421 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6422 if (dev->flags != old_flags)
6423 dev_set_rx_mode(dev);
6424 }
6425
6426 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6427 is important. Some (broken) drivers set IFF_PROMISC, when
6428 IFF_ALLMULTI is requested not asking us and not reporting.
6429 */
6430 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6431 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6432
6433 dev->gflags ^= IFF_ALLMULTI;
6434 __dev_set_allmulti(dev, inc, false);
6435 }
6436
6437 return ret;
6438 }
6439
6440 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6441 unsigned int gchanges)
6442 {
6443 unsigned int changes = dev->flags ^ old_flags;
6444
6445 if (gchanges)
6446 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6447
6448 if (changes & IFF_UP) {
6449 if (dev->flags & IFF_UP)
6450 call_netdevice_notifiers(NETDEV_UP, dev);
6451 else
6452 call_netdevice_notifiers(NETDEV_DOWN, dev);
6453 }
6454
6455 if (dev->flags & IFF_UP &&
6456 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6457 struct netdev_notifier_change_info change_info;
6458
6459 change_info.flags_changed = changes;
6460 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6461 &change_info.info);
6462 }
6463 }
6464
6465 /**
6466 * dev_change_flags - change device settings
6467 * @dev: device
6468 * @flags: device state flags
6469 *
6470 * Change settings on device based state flags. The flags are
6471 * in the userspace exported format.
6472 */
6473 int dev_change_flags(struct net_device *dev, unsigned int flags)
6474 {
6475 int ret;
6476 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6477
6478 ret = __dev_change_flags(dev, flags);
6479 if (ret < 0)
6480 return ret;
6481
6482 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6483 __dev_notify_flags(dev, old_flags, changes);
6484 return ret;
6485 }
6486 EXPORT_SYMBOL(dev_change_flags);
6487
6488 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6489 {
6490 const struct net_device_ops *ops = dev->netdev_ops;
6491
6492 if (ops->ndo_change_mtu)
6493 return ops->ndo_change_mtu(dev, new_mtu);
6494
6495 dev->mtu = new_mtu;
6496 return 0;
6497 }
6498
6499 /**
6500 * dev_set_mtu - Change maximum transfer unit
6501 * @dev: device
6502 * @new_mtu: new transfer unit
6503 *
6504 * Change the maximum transfer size of the network device.
6505 */
6506 int dev_set_mtu(struct net_device *dev, int new_mtu)
6507 {
6508 int err, orig_mtu;
6509
6510 if (new_mtu == dev->mtu)
6511 return 0;
6512
6513 /* MTU must be positive, and in range */
6514 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6515 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6516 dev->name, new_mtu, dev->min_mtu);
6517 return -EINVAL;
6518 }
6519
6520 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6521 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6522 dev->name, new_mtu, dev->max_mtu);
6523 return -EINVAL;
6524 }
6525
6526 if (!netif_device_present(dev))
6527 return -ENODEV;
6528
6529 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6530 err = notifier_to_errno(err);
6531 if (err)
6532 return err;
6533
6534 orig_mtu = dev->mtu;
6535 err = __dev_set_mtu(dev, new_mtu);
6536
6537 if (!err) {
6538 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6539 err = notifier_to_errno(err);
6540 if (err) {
6541 /* setting mtu back and notifying everyone again,
6542 * so that they have a chance to revert changes.
6543 */
6544 __dev_set_mtu(dev, orig_mtu);
6545 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6546 }
6547 }
6548 return err;
6549 }
6550 EXPORT_SYMBOL(dev_set_mtu);
6551
6552 /**
6553 * dev_set_group - Change group this device belongs to
6554 * @dev: device
6555 * @new_group: group this device should belong to
6556 */
6557 void dev_set_group(struct net_device *dev, int new_group)
6558 {
6559 dev->group = new_group;
6560 }
6561 EXPORT_SYMBOL(dev_set_group);
6562
6563 /**
6564 * dev_set_mac_address - Change Media Access Control Address
6565 * @dev: device
6566 * @sa: new address
6567 *
6568 * Change the hardware (MAC) address of the device
6569 */
6570 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6571 {
6572 const struct net_device_ops *ops = dev->netdev_ops;
6573 int err;
6574
6575 if (!ops->ndo_set_mac_address)
6576 return -EOPNOTSUPP;
6577 if (sa->sa_family != dev->type)
6578 return -EINVAL;
6579 if (!netif_device_present(dev))
6580 return -ENODEV;
6581 err = ops->ndo_set_mac_address(dev, sa);
6582 if (err)
6583 return err;
6584 dev->addr_assign_type = NET_ADDR_SET;
6585 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6586 add_device_randomness(dev->dev_addr, dev->addr_len);
6587 return 0;
6588 }
6589 EXPORT_SYMBOL(dev_set_mac_address);
6590
6591 /**
6592 * dev_change_carrier - Change device carrier
6593 * @dev: device
6594 * @new_carrier: new value
6595 *
6596 * Change device carrier
6597 */
6598 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6599 {
6600 const struct net_device_ops *ops = dev->netdev_ops;
6601
6602 if (!ops->ndo_change_carrier)
6603 return -EOPNOTSUPP;
6604 if (!netif_device_present(dev))
6605 return -ENODEV;
6606 return ops->ndo_change_carrier(dev, new_carrier);
6607 }
6608 EXPORT_SYMBOL(dev_change_carrier);
6609
6610 /**
6611 * dev_get_phys_port_id - Get device physical port ID
6612 * @dev: device
6613 * @ppid: port ID
6614 *
6615 * Get device physical port ID
6616 */
6617 int dev_get_phys_port_id(struct net_device *dev,
6618 struct netdev_phys_item_id *ppid)
6619 {
6620 const struct net_device_ops *ops = dev->netdev_ops;
6621
6622 if (!ops->ndo_get_phys_port_id)
6623 return -EOPNOTSUPP;
6624 return ops->ndo_get_phys_port_id(dev, ppid);
6625 }
6626 EXPORT_SYMBOL(dev_get_phys_port_id);
6627
6628 /**
6629 * dev_get_phys_port_name - Get device physical port name
6630 * @dev: device
6631 * @name: port name
6632 * @len: limit of bytes to copy to name
6633 *
6634 * Get device physical port name
6635 */
6636 int dev_get_phys_port_name(struct net_device *dev,
6637 char *name, size_t len)
6638 {
6639 const struct net_device_ops *ops = dev->netdev_ops;
6640
6641 if (!ops->ndo_get_phys_port_name)
6642 return -EOPNOTSUPP;
6643 return ops->ndo_get_phys_port_name(dev, name, len);
6644 }
6645 EXPORT_SYMBOL(dev_get_phys_port_name);
6646
6647 /**
6648 * dev_change_proto_down - update protocol port state information
6649 * @dev: device
6650 * @proto_down: new value
6651 *
6652 * This info can be used by switch drivers to set the phys state of the
6653 * port.
6654 */
6655 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6656 {
6657 const struct net_device_ops *ops = dev->netdev_ops;
6658
6659 if (!ops->ndo_change_proto_down)
6660 return -EOPNOTSUPP;
6661 if (!netif_device_present(dev))
6662 return -ENODEV;
6663 return ops->ndo_change_proto_down(dev, proto_down);
6664 }
6665 EXPORT_SYMBOL(dev_change_proto_down);
6666
6667 /**
6668 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6669 * @dev: device
6670 * @fd: new program fd or negative value to clear
6671 * @flags: xdp-related flags
6672 *
6673 * Set or clear a bpf program for a device
6674 */
6675 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
6676 {
6677 const struct net_device_ops *ops = dev->netdev_ops;
6678 struct bpf_prog *prog = NULL;
6679 struct netdev_xdp xdp;
6680 int err;
6681
6682 ASSERT_RTNL();
6683
6684 if (!ops->ndo_xdp)
6685 return -EOPNOTSUPP;
6686 if (fd >= 0) {
6687 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6688 memset(&xdp, 0, sizeof(xdp));
6689 xdp.command = XDP_QUERY_PROG;
6690
6691 err = ops->ndo_xdp(dev, &xdp);
6692 if (err < 0)
6693 return err;
6694 if (xdp.prog_attached)
6695 return -EBUSY;
6696 }
6697
6698 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6699 if (IS_ERR(prog))
6700 return PTR_ERR(prog);
6701 }
6702
6703 memset(&xdp, 0, sizeof(xdp));
6704 xdp.command = XDP_SETUP_PROG;
6705 xdp.prog = prog;
6706
6707 err = ops->ndo_xdp(dev, &xdp);
6708 if (err < 0 && prog)
6709 bpf_prog_put(prog);
6710
6711 return err;
6712 }
6713 EXPORT_SYMBOL(dev_change_xdp_fd);
6714
6715 /**
6716 * dev_new_index - allocate an ifindex
6717 * @net: the applicable net namespace
6718 *
6719 * Returns a suitable unique value for a new device interface
6720 * number. The caller must hold the rtnl semaphore or the
6721 * dev_base_lock to be sure it remains unique.
6722 */
6723 static int dev_new_index(struct net *net)
6724 {
6725 int ifindex = net->ifindex;
6726 for (;;) {
6727 if (++ifindex <= 0)
6728 ifindex = 1;
6729 if (!__dev_get_by_index(net, ifindex))
6730 return net->ifindex = ifindex;
6731 }
6732 }
6733
6734 /* Delayed registration/unregisteration */
6735 static LIST_HEAD(net_todo_list);
6736 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6737
6738 static void net_set_todo(struct net_device *dev)
6739 {
6740 list_add_tail(&dev->todo_list, &net_todo_list);
6741 dev_net(dev)->dev_unreg_count++;
6742 }
6743
6744 static void rollback_registered_many(struct list_head *head)
6745 {
6746 struct net_device *dev, *tmp;
6747 LIST_HEAD(close_head);
6748
6749 BUG_ON(dev_boot_phase);
6750 ASSERT_RTNL();
6751
6752 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6753 /* Some devices call without registering
6754 * for initialization unwind. Remove those
6755 * devices and proceed with the remaining.
6756 */
6757 if (dev->reg_state == NETREG_UNINITIALIZED) {
6758 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6759 dev->name, dev);
6760
6761 WARN_ON(1);
6762 list_del(&dev->unreg_list);
6763 continue;
6764 }
6765 dev->dismantle = true;
6766 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6767 }
6768
6769 /* If device is running, close it first. */
6770 list_for_each_entry(dev, head, unreg_list)
6771 list_add_tail(&dev->close_list, &close_head);
6772 dev_close_many(&close_head, true);
6773
6774 list_for_each_entry(dev, head, unreg_list) {
6775 /* And unlink it from device chain. */
6776 unlist_netdevice(dev);
6777
6778 dev->reg_state = NETREG_UNREGISTERING;
6779 }
6780 flush_all_backlogs();
6781
6782 synchronize_net();
6783
6784 list_for_each_entry(dev, head, unreg_list) {
6785 struct sk_buff *skb = NULL;
6786
6787 /* Shutdown queueing discipline. */
6788 dev_shutdown(dev);
6789
6790
6791 /* Notify protocols, that we are about to destroy
6792 this device. They should clean all the things.
6793 */
6794 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6795
6796 if (!dev->rtnl_link_ops ||
6797 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6798 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6799 GFP_KERNEL);
6800
6801 /*
6802 * Flush the unicast and multicast chains
6803 */
6804 dev_uc_flush(dev);
6805 dev_mc_flush(dev);
6806
6807 if (dev->netdev_ops->ndo_uninit)
6808 dev->netdev_ops->ndo_uninit(dev);
6809
6810 if (skb)
6811 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6812
6813 /* Notifier chain MUST detach us all upper devices. */
6814 WARN_ON(netdev_has_any_upper_dev(dev));
6815 WARN_ON(netdev_has_any_lower_dev(dev));
6816
6817 /* Remove entries from kobject tree */
6818 netdev_unregister_kobject(dev);
6819 #ifdef CONFIG_XPS
6820 /* Remove XPS queueing entries */
6821 netif_reset_xps_queues_gt(dev, 0);
6822 #endif
6823 }
6824
6825 synchronize_net();
6826
6827 list_for_each_entry(dev, head, unreg_list)
6828 dev_put(dev);
6829 }
6830
6831 static void rollback_registered(struct net_device *dev)
6832 {
6833 LIST_HEAD(single);
6834
6835 list_add(&dev->unreg_list, &single);
6836 rollback_registered_many(&single);
6837 list_del(&single);
6838 }
6839
6840 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6841 struct net_device *upper, netdev_features_t features)
6842 {
6843 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6844 netdev_features_t feature;
6845 int feature_bit;
6846
6847 for_each_netdev_feature(&upper_disables, feature_bit) {
6848 feature = __NETIF_F_BIT(feature_bit);
6849 if (!(upper->wanted_features & feature)
6850 && (features & feature)) {
6851 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6852 &feature, upper->name);
6853 features &= ~feature;
6854 }
6855 }
6856
6857 return features;
6858 }
6859
6860 static void netdev_sync_lower_features(struct net_device *upper,
6861 struct net_device *lower, netdev_features_t features)
6862 {
6863 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6864 netdev_features_t feature;
6865 int feature_bit;
6866
6867 for_each_netdev_feature(&upper_disables, feature_bit) {
6868 feature = __NETIF_F_BIT(feature_bit);
6869 if (!(features & feature) && (lower->features & feature)) {
6870 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6871 &feature, lower->name);
6872 lower->wanted_features &= ~feature;
6873 netdev_update_features(lower);
6874
6875 if (unlikely(lower->features & feature))
6876 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6877 &feature, lower->name);
6878 }
6879 }
6880 }
6881
6882 static netdev_features_t netdev_fix_features(struct net_device *dev,
6883 netdev_features_t features)
6884 {
6885 /* Fix illegal checksum combinations */
6886 if ((features & NETIF_F_HW_CSUM) &&
6887 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6888 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6889 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6890 }
6891
6892 /* TSO requires that SG is present as well. */
6893 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6894 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6895 features &= ~NETIF_F_ALL_TSO;
6896 }
6897
6898 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6899 !(features & NETIF_F_IP_CSUM)) {
6900 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6901 features &= ~NETIF_F_TSO;
6902 features &= ~NETIF_F_TSO_ECN;
6903 }
6904
6905 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6906 !(features & NETIF_F_IPV6_CSUM)) {
6907 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6908 features &= ~NETIF_F_TSO6;
6909 }
6910
6911 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6912 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6913 features &= ~NETIF_F_TSO_MANGLEID;
6914
6915 /* TSO ECN requires that TSO is present as well. */
6916 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6917 features &= ~NETIF_F_TSO_ECN;
6918
6919 /* Software GSO depends on SG. */
6920 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6921 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6922 features &= ~NETIF_F_GSO;
6923 }
6924
6925 /* UFO needs SG and checksumming */
6926 if (features & NETIF_F_UFO) {
6927 /* maybe split UFO into V4 and V6? */
6928 if (!(features & NETIF_F_HW_CSUM) &&
6929 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6930 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6931 netdev_dbg(dev,
6932 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6933 features &= ~NETIF_F_UFO;
6934 }
6935
6936 if (!(features & NETIF_F_SG)) {
6937 netdev_dbg(dev,
6938 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6939 features &= ~NETIF_F_UFO;
6940 }
6941 }
6942
6943 /* GSO partial features require GSO partial be set */
6944 if ((features & dev->gso_partial_features) &&
6945 !(features & NETIF_F_GSO_PARTIAL)) {
6946 netdev_dbg(dev,
6947 "Dropping partially supported GSO features since no GSO partial.\n");
6948 features &= ~dev->gso_partial_features;
6949 }
6950
6951 #ifdef CONFIG_NET_RX_BUSY_POLL
6952 if (dev->netdev_ops->ndo_busy_poll)
6953 features |= NETIF_F_BUSY_POLL;
6954 else
6955 #endif
6956 features &= ~NETIF_F_BUSY_POLL;
6957
6958 return features;
6959 }
6960
6961 int __netdev_update_features(struct net_device *dev)
6962 {
6963 struct net_device *upper, *lower;
6964 netdev_features_t features;
6965 struct list_head *iter;
6966 int err = -1;
6967
6968 ASSERT_RTNL();
6969
6970 features = netdev_get_wanted_features(dev);
6971
6972 if (dev->netdev_ops->ndo_fix_features)
6973 features = dev->netdev_ops->ndo_fix_features(dev, features);
6974
6975 /* driver might be less strict about feature dependencies */
6976 features = netdev_fix_features(dev, features);
6977
6978 /* some features can't be enabled if they're off an an upper device */
6979 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6980 features = netdev_sync_upper_features(dev, upper, features);
6981
6982 if (dev->features == features)
6983 goto sync_lower;
6984
6985 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6986 &dev->features, &features);
6987
6988 if (dev->netdev_ops->ndo_set_features)
6989 err = dev->netdev_ops->ndo_set_features(dev, features);
6990 else
6991 err = 0;
6992
6993 if (unlikely(err < 0)) {
6994 netdev_err(dev,
6995 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6996 err, &features, &dev->features);
6997 /* return non-0 since some features might have changed and
6998 * it's better to fire a spurious notification than miss it
6999 */
7000 return -1;
7001 }
7002
7003 sync_lower:
7004 /* some features must be disabled on lower devices when disabled
7005 * on an upper device (think: bonding master or bridge)
7006 */
7007 netdev_for_each_lower_dev(dev, lower, iter)
7008 netdev_sync_lower_features(dev, lower, features);
7009
7010 if (!err)
7011 dev->features = features;
7012
7013 return err < 0 ? 0 : 1;
7014 }
7015
7016 /**
7017 * netdev_update_features - recalculate device features
7018 * @dev: the device to check
7019 *
7020 * Recalculate dev->features set and send notifications if it
7021 * has changed. Should be called after driver or hardware dependent
7022 * conditions might have changed that influence the features.
7023 */
7024 void netdev_update_features(struct net_device *dev)
7025 {
7026 if (__netdev_update_features(dev))
7027 netdev_features_change(dev);
7028 }
7029 EXPORT_SYMBOL(netdev_update_features);
7030
7031 /**
7032 * netdev_change_features - recalculate device features
7033 * @dev: the device to check
7034 *
7035 * Recalculate dev->features set and send notifications even
7036 * if they have not changed. Should be called instead of
7037 * netdev_update_features() if also dev->vlan_features might
7038 * have changed to allow the changes to be propagated to stacked
7039 * VLAN devices.
7040 */
7041 void netdev_change_features(struct net_device *dev)
7042 {
7043 __netdev_update_features(dev);
7044 netdev_features_change(dev);
7045 }
7046 EXPORT_SYMBOL(netdev_change_features);
7047
7048 /**
7049 * netif_stacked_transfer_operstate - transfer operstate
7050 * @rootdev: the root or lower level device to transfer state from
7051 * @dev: the device to transfer operstate to
7052 *
7053 * Transfer operational state from root to device. This is normally
7054 * called when a stacking relationship exists between the root
7055 * device and the device(a leaf device).
7056 */
7057 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7058 struct net_device *dev)
7059 {
7060 if (rootdev->operstate == IF_OPER_DORMANT)
7061 netif_dormant_on(dev);
7062 else
7063 netif_dormant_off(dev);
7064
7065 if (netif_carrier_ok(rootdev)) {
7066 if (!netif_carrier_ok(dev))
7067 netif_carrier_on(dev);
7068 } else {
7069 if (netif_carrier_ok(dev))
7070 netif_carrier_off(dev);
7071 }
7072 }
7073 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7074
7075 #ifdef CONFIG_SYSFS
7076 static int netif_alloc_rx_queues(struct net_device *dev)
7077 {
7078 unsigned int i, count = dev->num_rx_queues;
7079 struct netdev_rx_queue *rx;
7080 size_t sz = count * sizeof(*rx);
7081
7082 BUG_ON(count < 1);
7083
7084 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7085 if (!rx) {
7086 rx = vzalloc(sz);
7087 if (!rx)
7088 return -ENOMEM;
7089 }
7090 dev->_rx = rx;
7091
7092 for (i = 0; i < count; i++)
7093 rx[i].dev = dev;
7094 return 0;
7095 }
7096 #endif
7097
7098 static void netdev_init_one_queue(struct net_device *dev,
7099 struct netdev_queue *queue, void *_unused)
7100 {
7101 /* Initialize queue lock */
7102 spin_lock_init(&queue->_xmit_lock);
7103 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7104 queue->xmit_lock_owner = -1;
7105 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7106 queue->dev = dev;
7107 #ifdef CONFIG_BQL
7108 dql_init(&queue->dql, HZ);
7109 #endif
7110 }
7111
7112 static void netif_free_tx_queues(struct net_device *dev)
7113 {
7114 kvfree(dev->_tx);
7115 }
7116
7117 static int netif_alloc_netdev_queues(struct net_device *dev)
7118 {
7119 unsigned int count = dev->num_tx_queues;
7120 struct netdev_queue *tx;
7121 size_t sz = count * sizeof(*tx);
7122
7123 if (count < 1 || count > 0xffff)
7124 return -EINVAL;
7125
7126 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7127 if (!tx) {
7128 tx = vzalloc(sz);
7129 if (!tx)
7130 return -ENOMEM;
7131 }
7132 dev->_tx = tx;
7133
7134 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7135 spin_lock_init(&dev->tx_global_lock);
7136
7137 return 0;
7138 }
7139
7140 void netif_tx_stop_all_queues(struct net_device *dev)
7141 {
7142 unsigned int i;
7143
7144 for (i = 0; i < dev->num_tx_queues; i++) {
7145 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7146 netif_tx_stop_queue(txq);
7147 }
7148 }
7149 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7150
7151 /**
7152 * register_netdevice - register a network device
7153 * @dev: device to register
7154 *
7155 * Take a completed network device structure and add it to the kernel
7156 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7157 * chain. 0 is returned on success. A negative errno code is returned
7158 * on a failure to set up the device, or if the name is a duplicate.
7159 *
7160 * Callers must hold the rtnl semaphore. You may want
7161 * register_netdev() instead of this.
7162 *
7163 * BUGS:
7164 * The locking appears insufficient to guarantee two parallel registers
7165 * will not get the same name.
7166 */
7167
7168 int register_netdevice(struct net_device *dev)
7169 {
7170 int ret;
7171 struct net *net = dev_net(dev);
7172
7173 BUG_ON(dev_boot_phase);
7174 ASSERT_RTNL();
7175
7176 might_sleep();
7177
7178 /* When net_device's are persistent, this will be fatal. */
7179 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7180 BUG_ON(!net);
7181
7182 spin_lock_init(&dev->addr_list_lock);
7183 netdev_set_addr_lockdep_class(dev);
7184
7185 ret = dev_get_valid_name(net, dev, dev->name);
7186 if (ret < 0)
7187 goto out;
7188
7189 /* Init, if this function is available */
7190 if (dev->netdev_ops->ndo_init) {
7191 ret = dev->netdev_ops->ndo_init(dev);
7192 if (ret) {
7193 if (ret > 0)
7194 ret = -EIO;
7195 goto out;
7196 }
7197 }
7198
7199 if (((dev->hw_features | dev->features) &
7200 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7201 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7202 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7203 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7204 ret = -EINVAL;
7205 goto err_uninit;
7206 }
7207
7208 ret = -EBUSY;
7209 if (!dev->ifindex)
7210 dev->ifindex = dev_new_index(net);
7211 else if (__dev_get_by_index(net, dev->ifindex))
7212 goto err_uninit;
7213
7214 /* Transfer changeable features to wanted_features and enable
7215 * software offloads (GSO and GRO).
7216 */
7217 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7218 dev->features |= NETIF_F_SOFT_FEATURES;
7219 dev->wanted_features = dev->features & dev->hw_features;
7220
7221 if (!(dev->flags & IFF_LOOPBACK))
7222 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7223
7224 /* If IPv4 TCP segmentation offload is supported we should also
7225 * allow the device to enable segmenting the frame with the option
7226 * of ignoring a static IP ID value. This doesn't enable the
7227 * feature itself but allows the user to enable it later.
7228 */
7229 if (dev->hw_features & NETIF_F_TSO)
7230 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7231 if (dev->vlan_features & NETIF_F_TSO)
7232 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7233 if (dev->mpls_features & NETIF_F_TSO)
7234 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7235 if (dev->hw_enc_features & NETIF_F_TSO)
7236 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7237
7238 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7239 */
7240 dev->vlan_features |= NETIF_F_HIGHDMA;
7241
7242 /* Make NETIF_F_SG inheritable to tunnel devices.
7243 */
7244 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7245
7246 /* Make NETIF_F_SG inheritable to MPLS.
7247 */
7248 dev->mpls_features |= NETIF_F_SG;
7249
7250 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7251 ret = notifier_to_errno(ret);
7252 if (ret)
7253 goto err_uninit;
7254
7255 ret = netdev_register_kobject(dev);
7256 if (ret)
7257 goto err_uninit;
7258 dev->reg_state = NETREG_REGISTERED;
7259
7260 __netdev_update_features(dev);
7261
7262 /*
7263 * Default initial state at registry is that the
7264 * device is present.
7265 */
7266
7267 set_bit(__LINK_STATE_PRESENT, &dev->state);
7268
7269 linkwatch_init_dev(dev);
7270
7271 dev_init_scheduler(dev);
7272 dev_hold(dev);
7273 list_netdevice(dev);
7274 add_device_randomness(dev->dev_addr, dev->addr_len);
7275
7276 /* If the device has permanent device address, driver should
7277 * set dev_addr and also addr_assign_type should be set to
7278 * NET_ADDR_PERM (default value).
7279 */
7280 if (dev->addr_assign_type == NET_ADDR_PERM)
7281 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7282
7283 /* Notify protocols, that a new device appeared. */
7284 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7285 ret = notifier_to_errno(ret);
7286 if (ret) {
7287 rollback_registered(dev);
7288 dev->reg_state = NETREG_UNREGISTERED;
7289 }
7290 /*
7291 * Prevent userspace races by waiting until the network
7292 * device is fully setup before sending notifications.
7293 */
7294 if (!dev->rtnl_link_ops ||
7295 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7296 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7297
7298 out:
7299 return ret;
7300
7301 err_uninit:
7302 if (dev->netdev_ops->ndo_uninit)
7303 dev->netdev_ops->ndo_uninit(dev);
7304 goto out;
7305 }
7306 EXPORT_SYMBOL(register_netdevice);
7307
7308 /**
7309 * init_dummy_netdev - init a dummy network device for NAPI
7310 * @dev: device to init
7311 *
7312 * This takes a network device structure and initialize the minimum
7313 * amount of fields so it can be used to schedule NAPI polls without
7314 * registering a full blown interface. This is to be used by drivers
7315 * that need to tie several hardware interfaces to a single NAPI
7316 * poll scheduler due to HW limitations.
7317 */
7318 int init_dummy_netdev(struct net_device *dev)
7319 {
7320 /* Clear everything. Note we don't initialize spinlocks
7321 * are they aren't supposed to be taken by any of the
7322 * NAPI code and this dummy netdev is supposed to be
7323 * only ever used for NAPI polls
7324 */
7325 memset(dev, 0, sizeof(struct net_device));
7326
7327 /* make sure we BUG if trying to hit standard
7328 * register/unregister code path
7329 */
7330 dev->reg_state = NETREG_DUMMY;
7331
7332 /* NAPI wants this */
7333 INIT_LIST_HEAD(&dev->napi_list);
7334
7335 /* a dummy interface is started by default */
7336 set_bit(__LINK_STATE_PRESENT, &dev->state);
7337 set_bit(__LINK_STATE_START, &dev->state);
7338
7339 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7340 * because users of this 'device' dont need to change
7341 * its refcount.
7342 */
7343
7344 return 0;
7345 }
7346 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7347
7348
7349 /**
7350 * register_netdev - register a network device
7351 * @dev: device to register
7352 *
7353 * Take a completed network device structure and add it to the kernel
7354 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7355 * chain. 0 is returned on success. A negative errno code is returned
7356 * on a failure to set up the device, or if the name is a duplicate.
7357 *
7358 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7359 * and expands the device name if you passed a format string to
7360 * alloc_netdev.
7361 */
7362 int register_netdev(struct net_device *dev)
7363 {
7364 int err;
7365
7366 rtnl_lock();
7367 err = register_netdevice(dev);
7368 rtnl_unlock();
7369 return err;
7370 }
7371 EXPORT_SYMBOL(register_netdev);
7372
7373 int netdev_refcnt_read(const struct net_device *dev)
7374 {
7375 int i, refcnt = 0;
7376
7377 for_each_possible_cpu(i)
7378 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7379 return refcnt;
7380 }
7381 EXPORT_SYMBOL(netdev_refcnt_read);
7382
7383 /**
7384 * netdev_wait_allrefs - wait until all references are gone.
7385 * @dev: target net_device
7386 *
7387 * This is called when unregistering network devices.
7388 *
7389 * Any protocol or device that holds a reference should register
7390 * for netdevice notification, and cleanup and put back the
7391 * reference if they receive an UNREGISTER event.
7392 * We can get stuck here if buggy protocols don't correctly
7393 * call dev_put.
7394 */
7395 static void netdev_wait_allrefs(struct net_device *dev)
7396 {
7397 unsigned long rebroadcast_time, warning_time;
7398 int refcnt;
7399
7400 linkwatch_forget_dev(dev);
7401
7402 rebroadcast_time = warning_time = jiffies;
7403 refcnt = netdev_refcnt_read(dev);
7404
7405 while (refcnt != 0) {
7406 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7407 rtnl_lock();
7408
7409 /* Rebroadcast unregister notification */
7410 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7411
7412 __rtnl_unlock();
7413 rcu_barrier();
7414 rtnl_lock();
7415
7416 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7417 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7418 &dev->state)) {
7419 /* We must not have linkwatch events
7420 * pending on unregister. If this
7421 * happens, we simply run the queue
7422 * unscheduled, resulting in a noop
7423 * for this device.
7424 */
7425 linkwatch_run_queue();
7426 }
7427
7428 __rtnl_unlock();
7429
7430 rebroadcast_time = jiffies;
7431 }
7432
7433 msleep(250);
7434
7435 refcnt = netdev_refcnt_read(dev);
7436
7437 if (time_after(jiffies, warning_time + 10 * HZ)) {
7438 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7439 dev->name, refcnt);
7440 warning_time = jiffies;
7441 }
7442 }
7443 }
7444
7445 /* The sequence is:
7446 *
7447 * rtnl_lock();
7448 * ...
7449 * register_netdevice(x1);
7450 * register_netdevice(x2);
7451 * ...
7452 * unregister_netdevice(y1);
7453 * unregister_netdevice(y2);
7454 * ...
7455 * rtnl_unlock();
7456 * free_netdev(y1);
7457 * free_netdev(y2);
7458 *
7459 * We are invoked by rtnl_unlock().
7460 * This allows us to deal with problems:
7461 * 1) We can delete sysfs objects which invoke hotplug
7462 * without deadlocking with linkwatch via keventd.
7463 * 2) Since we run with the RTNL semaphore not held, we can sleep
7464 * safely in order to wait for the netdev refcnt to drop to zero.
7465 *
7466 * We must not return until all unregister events added during
7467 * the interval the lock was held have been completed.
7468 */
7469 void netdev_run_todo(void)
7470 {
7471 struct list_head list;
7472
7473 /* Snapshot list, allow later requests */
7474 list_replace_init(&net_todo_list, &list);
7475
7476 __rtnl_unlock();
7477
7478
7479 /* Wait for rcu callbacks to finish before next phase */
7480 if (!list_empty(&list))
7481 rcu_barrier();
7482
7483 while (!list_empty(&list)) {
7484 struct net_device *dev
7485 = list_first_entry(&list, struct net_device, todo_list);
7486 list_del(&dev->todo_list);
7487
7488 rtnl_lock();
7489 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7490 __rtnl_unlock();
7491
7492 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7493 pr_err("network todo '%s' but state %d\n",
7494 dev->name, dev->reg_state);
7495 dump_stack();
7496 continue;
7497 }
7498
7499 dev->reg_state = NETREG_UNREGISTERED;
7500
7501 netdev_wait_allrefs(dev);
7502
7503 /* paranoia */
7504 BUG_ON(netdev_refcnt_read(dev));
7505 BUG_ON(!list_empty(&dev->ptype_all));
7506 BUG_ON(!list_empty(&dev->ptype_specific));
7507 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7508 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7509 WARN_ON(dev->dn_ptr);
7510
7511 if (dev->destructor)
7512 dev->destructor(dev);
7513
7514 /* Report a network device has been unregistered */
7515 rtnl_lock();
7516 dev_net(dev)->dev_unreg_count--;
7517 __rtnl_unlock();
7518 wake_up(&netdev_unregistering_wq);
7519
7520 /* Free network device */
7521 kobject_put(&dev->dev.kobj);
7522 }
7523 }
7524
7525 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7526 * all the same fields in the same order as net_device_stats, with only
7527 * the type differing, but rtnl_link_stats64 may have additional fields
7528 * at the end for newer counters.
7529 */
7530 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7531 const struct net_device_stats *netdev_stats)
7532 {
7533 #if BITS_PER_LONG == 64
7534 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7535 memcpy(stats64, netdev_stats, sizeof(*stats64));
7536 /* zero out counters that only exist in rtnl_link_stats64 */
7537 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7538 sizeof(*stats64) - sizeof(*netdev_stats));
7539 #else
7540 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7541 const unsigned long *src = (const unsigned long *)netdev_stats;
7542 u64 *dst = (u64 *)stats64;
7543
7544 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7545 for (i = 0; i < n; i++)
7546 dst[i] = src[i];
7547 /* zero out counters that only exist in rtnl_link_stats64 */
7548 memset((char *)stats64 + n * sizeof(u64), 0,
7549 sizeof(*stats64) - n * sizeof(u64));
7550 #endif
7551 }
7552 EXPORT_SYMBOL(netdev_stats_to_stats64);
7553
7554 /**
7555 * dev_get_stats - get network device statistics
7556 * @dev: device to get statistics from
7557 * @storage: place to store stats
7558 *
7559 * Get network statistics from device. Return @storage.
7560 * The device driver may provide its own method by setting
7561 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7562 * otherwise the internal statistics structure is used.
7563 */
7564 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7565 struct rtnl_link_stats64 *storage)
7566 {
7567 const struct net_device_ops *ops = dev->netdev_ops;
7568
7569 if (ops->ndo_get_stats64) {
7570 memset(storage, 0, sizeof(*storage));
7571 ops->ndo_get_stats64(dev, storage);
7572 } else if (ops->ndo_get_stats) {
7573 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7574 } else {
7575 netdev_stats_to_stats64(storage, &dev->stats);
7576 }
7577 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7578 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7579 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7580 return storage;
7581 }
7582 EXPORT_SYMBOL(dev_get_stats);
7583
7584 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7585 {
7586 struct netdev_queue *queue = dev_ingress_queue(dev);
7587
7588 #ifdef CONFIG_NET_CLS_ACT
7589 if (queue)
7590 return queue;
7591 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7592 if (!queue)
7593 return NULL;
7594 netdev_init_one_queue(dev, queue, NULL);
7595 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7596 queue->qdisc_sleeping = &noop_qdisc;
7597 rcu_assign_pointer(dev->ingress_queue, queue);
7598 #endif
7599 return queue;
7600 }
7601
7602 static const struct ethtool_ops default_ethtool_ops;
7603
7604 void netdev_set_default_ethtool_ops(struct net_device *dev,
7605 const struct ethtool_ops *ops)
7606 {
7607 if (dev->ethtool_ops == &default_ethtool_ops)
7608 dev->ethtool_ops = ops;
7609 }
7610 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7611
7612 void netdev_freemem(struct net_device *dev)
7613 {
7614 char *addr = (char *)dev - dev->padded;
7615
7616 kvfree(addr);
7617 }
7618
7619 /**
7620 * alloc_netdev_mqs - allocate network device
7621 * @sizeof_priv: size of private data to allocate space for
7622 * @name: device name format string
7623 * @name_assign_type: origin of device name
7624 * @setup: callback to initialize device
7625 * @txqs: the number of TX subqueues to allocate
7626 * @rxqs: the number of RX subqueues to allocate
7627 *
7628 * Allocates a struct net_device with private data area for driver use
7629 * and performs basic initialization. Also allocates subqueue structs
7630 * for each queue on the device.
7631 */
7632 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7633 unsigned char name_assign_type,
7634 void (*setup)(struct net_device *),
7635 unsigned int txqs, unsigned int rxqs)
7636 {
7637 struct net_device *dev;
7638 size_t alloc_size;
7639 struct net_device *p;
7640
7641 BUG_ON(strlen(name) >= sizeof(dev->name));
7642
7643 if (txqs < 1) {
7644 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7645 return NULL;
7646 }
7647
7648 #ifdef CONFIG_SYSFS
7649 if (rxqs < 1) {
7650 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7651 return NULL;
7652 }
7653 #endif
7654
7655 alloc_size = sizeof(struct net_device);
7656 if (sizeof_priv) {
7657 /* ensure 32-byte alignment of private area */
7658 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7659 alloc_size += sizeof_priv;
7660 }
7661 /* ensure 32-byte alignment of whole construct */
7662 alloc_size += NETDEV_ALIGN - 1;
7663
7664 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7665 if (!p)
7666 p = vzalloc(alloc_size);
7667 if (!p)
7668 return NULL;
7669
7670 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7671 dev->padded = (char *)dev - (char *)p;
7672
7673 dev->pcpu_refcnt = alloc_percpu(int);
7674 if (!dev->pcpu_refcnt)
7675 goto free_dev;
7676
7677 if (dev_addr_init(dev))
7678 goto free_pcpu;
7679
7680 dev_mc_init(dev);
7681 dev_uc_init(dev);
7682
7683 dev_net_set(dev, &init_net);
7684
7685 dev->gso_max_size = GSO_MAX_SIZE;
7686 dev->gso_max_segs = GSO_MAX_SEGS;
7687
7688 INIT_LIST_HEAD(&dev->napi_list);
7689 INIT_LIST_HEAD(&dev->unreg_list);
7690 INIT_LIST_HEAD(&dev->close_list);
7691 INIT_LIST_HEAD(&dev->link_watch_list);
7692 INIT_LIST_HEAD(&dev->adj_list.upper);
7693 INIT_LIST_HEAD(&dev->adj_list.lower);
7694 INIT_LIST_HEAD(&dev->ptype_all);
7695 INIT_LIST_HEAD(&dev->ptype_specific);
7696 #ifdef CONFIG_NET_SCHED
7697 hash_init(dev->qdisc_hash);
7698 #endif
7699 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7700 setup(dev);
7701
7702 if (!dev->tx_queue_len) {
7703 dev->priv_flags |= IFF_NO_QUEUE;
7704 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7705 }
7706
7707 dev->num_tx_queues = txqs;
7708 dev->real_num_tx_queues = txqs;
7709 if (netif_alloc_netdev_queues(dev))
7710 goto free_all;
7711
7712 #ifdef CONFIG_SYSFS
7713 dev->num_rx_queues = rxqs;
7714 dev->real_num_rx_queues = rxqs;
7715 if (netif_alloc_rx_queues(dev))
7716 goto free_all;
7717 #endif
7718
7719 strcpy(dev->name, name);
7720 dev->name_assign_type = name_assign_type;
7721 dev->group = INIT_NETDEV_GROUP;
7722 if (!dev->ethtool_ops)
7723 dev->ethtool_ops = &default_ethtool_ops;
7724
7725 nf_hook_ingress_init(dev);
7726
7727 return dev;
7728
7729 free_all:
7730 free_netdev(dev);
7731 return NULL;
7732
7733 free_pcpu:
7734 free_percpu(dev->pcpu_refcnt);
7735 free_dev:
7736 netdev_freemem(dev);
7737 return NULL;
7738 }
7739 EXPORT_SYMBOL(alloc_netdev_mqs);
7740
7741 /**
7742 * free_netdev - free network device
7743 * @dev: device
7744 *
7745 * This function does the last stage of destroying an allocated device
7746 * interface. The reference to the device object is released.
7747 * If this is the last reference then it will be freed.
7748 * Must be called in process context.
7749 */
7750 void free_netdev(struct net_device *dev)
7751 {
7752 struct napi_struct *p, *n;
7753
7754 might_sleep();
7755 netif_free_tx_queues(dev);
7756 #ifdef CONFIG_SYSFS
7757 kvfree(dev->_rx);
7758 #endif
7759
7760 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7761
7762 /* Flush device addresses */
7763 dev_addr_flush(dev);
7764
7765 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7766 netif_napi_del(p);
7767
7768 free_percpu(dev->pcpu_refcnt);
7769 dev->pcpu_refcnt = NULL;
7770
7771 /* Compatibility with error handling in drivers */
7772 if (dev->reg_state == NETREG_UNINITIALIZED) {
7773 netdev_freemem(dev);
7774 return;
7775 }
7776
7777 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7778 dev->reg_state = NETREG_RELEASED;
7779
7780 /* will free via device release */
7781 put_device(&dev->dev);
7782 }
7783 EXPORT_SYMBOL(free_netdev);
7784
7785 /**
7786 * synchronize_net - Synchronize with packet receive processing
7787 *
7788 * Wait for packets currently being received to be done.
7789 * Does not block later packets from starting.
7790 */
7791 void synchronize_net(void)
7792 {
7793 might_sleep();
7794 if (rtnl_is_locked())
7795 synchronize_rcu_expedited();
7796 else
7797 synchronize_rcu();
7798 }
7799 EXPORT_SYMBOL(synchronize_net);
7800
7801 /**
7802 * unregister_netdevice_queue - remove device from the kernel
7803 * @dev: device
7804 * @head: list
7805 *
7806 * This function shuts down a device interface and removes it
7807 * from the kernel tables.
7808 * If head not NULL, device is queued to be unregistered later.
7809 *
7810 * Callers must hold the rtnl semaphore. You may want
7811 * unregister_netdev() instead of this.
7812 */
7813
7814 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7815 {
7816 ASSERT_RTNL();
7817
7818 if (head) {
7819 list_move_tail(&dev->unreg_list, head);
7820 } else {
7821 rollback_registered(dev);
7822 /* Finish processing unregister after unlock */
7823 net_set_todo(dev);
7824 }
7825 }
7826 EXPORT_SYMBOL(unregister_netdevice_queue);
7827
7828 /**
7829 * unregister_netdevice_many - unregister many devices
7830 * @head: list of devices
7831 *
7832 * Note: As most callers use a stack allocated list_head,
7833 * we force a list_del() to make sure stack wont be corrupted later.
7834 */
7835 void unregister_netdevice_many(struct list_head *head)
7836 {
7837 struct net_device *dev;
7838
7839 if (!list_empty(head)) {
7840 rollback_registered_many(head);
7841 list_for_each_entry(dev, head, unreg_list)
7842 net_set_todo(dev);
7843 list_del(head);
7844 }
7845 }
7846 EXPORT_SYMBOL(unregister_netdevice_many);
7847
7848 /**
7849 * unregister_netdev - remove device from the kernel
7850 * @dev: device
7851 *
7852 * This function shuts down a device interface and removes it
7853 * from the kernel tables.
7854 *
7855 * This is just a wrapper for unregister_netdevice that takes
7856 * the rtnl semaphore. In general you want to use this and not
7857 * unregister_netdevice.
7858 */
7859 void unregister_netdev(struct net_device *dev)
7860 {
7861 rtnl_lock();
7862 unregister_netdevice(dev);
7863 rtnl_unlock();
7864 }
7865 EXPORT_SYMBOL(unregister_netdev);
7866
7867 /**
7868 * dev_change_net_namespace - move device to different nethost namespace
7869 * @dev: device
7870 * @net: network namespace
7871 * @pat: If not NULL name pattern to try if the current device name
7872 * is already taken in the destination network namespace.
7873 *
7874 * This function shuts down a device interface and moves it
7875 * to a new network namespace. On success 0 is returned, on
7876 * a failure a netagive errno code is returned.
7877 *
7878 * Callers must hold the rtnl semaphore.
7879 */
7880
7881 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7882 {
7883 int err;
7884
7885 ASSERT_RTNL();
7886
7887 /* Don't allow namespace local devices to be moved. */
7888 err = -EINVAL;
7889 if (dev->features & NETIF_F_NETNS_LOCAL)
7890 goto out;
7891
7892 /* Ensure the device has been registrered */
7893 if (dev->reg_state != NETREG_REGISTERED)
7894 goto out;
7895
7896 /* Get out if there is nothing todo */
7897 err = 0;
7898 if (net_eq(dev_net(dev), net))
7899 goto out;
7900
7901 /* Pick the destination device name, and ensure
7902 * we can use it in the destination network namespace.
7903 */
7904 err = -EEXIST;
7905 if (__dev_get_by_name(net, dev->name)) {
7906 /* We get here if we can't use the current device name */
7907 if (!pat)
7908 goto out;
7909 if (dev_get_valid_name(net, dev, pat) < 0)
7910 goto out;
7911 }
7912
7913 /*
7914 * And now a mini version of register_netdevice unregister_netdevice.
7915 */
7916
7917 /* If device is running close it first. */
7918 dev_close(dev);
7919
7920 /* And unlink it from device chain */
7921 err = -ENODEV;
7922 unlist_netdevice(dev);
7923
7924 synchronize_net();
7925
7926 /* Shutdown queueing discipline. */
7927 dev_shutdown(dev);
7928
7929 /* Notify protocols, that we are about to destroy
7930 this device. They should clean all the things.
7931
7932 Note that dev->reg_state stays at NETREG_REGISTERED.
7933 This is wanted because this way 8021q and macvlan know
7934 the device is just moving and can keep their slaves up.
7935 */
7936 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7937 rcu_barrier();
7938 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7939 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7940
7941 /*
7942 * Flush the unicast and multicast chains
7943 */
7944 dev_uc_flush(dev);
7945 dev_mc_flush(dev);
7946
7947 /* Send a netdev-removed uevent to the old namespace */
7948 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7949 netdev_adjacent_del_links(dev);
7950
7951 /* Actually switch the network namespace */
7952 dev_net_set(dev, net);
7953
7954 /* If there is an ifindex conflict assign a new one */
7955 if (__dev_get_by_index(net, dev->ifindex))
7956 dev->ifindex = dev_new_index(net);
7957
7958 /* Send a netdev-add uevent to the new namespace */
7959 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7960 netdev_adjacent_add_links(dev);
7961
7962 /* Fixup kobjects */
7963 err = device_rename(&dev->dev, dev->name);
7964 WARN_ON(err);
7965
7966 /* Add the device back in the hashes */
7967 list_netdevice(dev);
7968
7969 /* Notify protocols, that a new device appeared. */
7970 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7971
7972 /*
7973 * Prevent userspace races by waiting until the network
7974 * device is fully setup before sending notifications.
7975 */
7976 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7977
7978 synchronize_net();
7979 err = 0;
7980 out:
7981 return err;
7982 }
7983 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7984
7985 static int dev_cpu_dead(unsigned int oldcpu)
7986 {
7987 struct sk_buff **list_skb;
7988 struct sk_buff *skb;
7989 unsigned int cpu;
7990 struct softnet_data *sd, *oldsd;
7991
7992 local_irq_disable();
7993 cpu = smp_processor_id();
7994 sd = &per_cpu(softnet_data, cpu);
7995 oldsd = &per_cpu(softnet_data, oldcpu);
7996
7997 /* Find end of our completion_queue. */
7998 list_skb = &sd->completion_queue;
7999 while (*list_skb)
8000 list_skb = &(*list_skb)->next;
8001 /* Append completion queue from offline CPU. */
8002 *list_skb = oldsd->completion_queue;
8003 oldsd->completion_queue = NULL;
8004
8005 /* Append output queue from offline CPU. */
8006 if (oldsd->output_queue) {
8007 *sd->output_queue_tailp = oldsd->output_queue;
8008 sd->output_queue_tailp = oldsd->output_queue_tailp;
8009 oldsd->output_queue = NULL;
8010 oldsd->output_queue_tailp = &oldsd->output_queue;
8011 }
8012 /* Append NAPI poll list from offline CPU, with one exception :
8013 * process_backlog() must be called by cpu owning percpu backlog.
8014 * We properly handle process_queue & input_pkt_queue later.
8015 */
8016 while (!list_empty(&oldsd->poll_list)) {
8017 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8018 struct napi_struct,
8019 poll_list);
8020
8021 list_del_init(&napi->poll_list);
8022 if (napi->poll == process_backlog)
8023 napi->state = 0;
8024 else
8025 ____napi_schedule(sd, napi);
8026 }
8027
8028 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8029 local_irq_enable();
8030
8031 /* Process offline CPU's input_pkt_queue */
8032 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8033 netif_rx_ni(skb);
8034 input_queue_head_incr(oldsd);
8035 }
8036 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8037 netif_rx_ni(skb);
8038 input_queue_head_incr(oldsd);
8039 }
8040
8041 return 0;
8042 }
8043
8044 /**
8045 * netdev_increment_features - increment feature set by one
8046 * @all: current feature set
8047 * @one: new feature set
8048 * @mask: mask feature set
8049 *
8050 * Computes a new feature set after adding a device with feature set
8051 * @one to the master device with current feature set @all. Will not
8052 * enable anything that is off in @mask. Returns the new feature set.
8053 */
8054 netdev_features_t netdev_increment_features(netdev_features_t all,
8055 netdev_features_t one, netdev_features_t mask)
8056 {
8057 if (mask & NETIF_F_HW_CSUM)
8058 mask |= NETIF_F_CSUM_MASK;
8059 mask |= NETIF_F_VLAN_CHALLENGED;
8060
8061 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8062 all &= one | ~NETIF_F_ALL_FOR_ALL;
8063
8064 /* If one device supports hw checksumming, set for all. */
8065 if (all & NETIF_F_HW_CSUM)
8066 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8067
8068 return all;
8069 }
8070 EXPORT_SYMBOL(netdev_increment_features);
8071
8072 static struct hlist_head * __net_init netdev_create_hash(void)
8073 {
8074 int i;
8075 struct hlist_head *hash;
8076
8077 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8078 if (hash != NULL)
8079 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8080 INIT_HLIST_HEAD(&hash[i]);
8081
8082 return hash;
8083 }
8084
8085 /* Initialize per network namespace state */
8086 static int __net_init netdev_init(struct net *net)
8087 {
8088 if (net != &init_net)
8089 INIT_LIST_HEAD(&net->dev_base_head);
8090
8091 net->dev_name_head = netdev_create_hash();
8092 if (net->dev_name_head == NULL)
8093 goto err_name;
8094
8095 net->dev_index_head = netdev_create_hash();
8096 if (net->dev_index_head == NULL)
8097 goto err_idx;
8098
8099 return 0;
8100
8101 err_idx:
8102 kfree(net->dev_name_head);
8103 err_name:
8104 return -ENOMEM;
8105 }
8106
8107 /**
8108 * netdev_drivername - network driver for the device
8109 * @dev: network device
8110 *
8111 * Determine network driver for device.
8112 */
8113 const char *netdev_drivername(const struct net_device *dev)
8114 {
8115 const struct device_driver *driver;
8116 const struct device *parent;
8117 const char *empty = "";
8118
8119 parent = dev->dev.parent;
8120 if (!parent)
8121 return empty;
8122
8123 driver = parent->driver;
8124 if (driver && driver->name)
8125 return driver->name;
8126 return empty;
8127 }
8128
8129 static void __netdev_printk(const char *level, const struct net_device *dev,
8130 struct va_format *vaf)
8131 {
8132 if (dev && dev->dev.parent) {
8133 dev_printk_emit(level[1] - '0',
8134 dev->dev.parent,
8135 "%s %s %s%s: %pV",
8136 dev_driver_string(dev->dev.parent),
8137 dev_name(dev->dev.parent),
8138 netdev_name(dev), netdev_reg_state(dev),
8139 vaf);
8140 } else if (dev) {
8141 printk("%s%s%s: %pV",
8142 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8143 } else {
8144 printk("%s(NULL net_device): %pV", level, vaf);
8145 }
8146 }
8147
8148 void netdev_printk(const char *level, const struct net_device *dev,
8149 const char *format, ...)
8150 {
8151 struct va_format vaf;
8152 va_list args;
8153
8154 va_start(args, format);
8155
8156 vaf.fmt = format;
8157 vaf.va = &args;
8158
8159 __netdev_printk(level, dev, &vaf);
8160
8161 va_end(args);
8162 }
8163 EXPORT_SYMBOL(netdev_printk);
8164
8165 #define define_netdev_printk_level(func, level) \
8166 void func(const struct net_device *dev, const char *fmt, ...) \
8167 { \
8168 struct va_format vaf; \
8169 va_list args; \
8170 \
8171 va_start(args, fmt); \
8172 \
8173 vaf.fmt = fmt; \
8174 vaf.va = &args; \
8175 \
8176 __netdev_printk(level, dev, &vaf); \
8177 \
8178 va_end(args); \
8179 } \
8180 EXPORT_SYMBOL(func);
8181
8182 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8183 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8184 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8185 define_netdev_printk_level(netdev_err, KERN_ERR);
8186 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8187 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8188 define_netdev_printk_level(netdev_info, KERN_INFO);
8189
8190 static void __net_exit netdev_exit(struct net *net)
8191 {
8192 kfree(net->dev_name_head);
8193 kfree(net->dev_index_head);
8194 }
8195
8196 static struct pernet_operations __net_initdata netdev_net_ops = {
8197 .init = netdev_init,
8198 .exit = netdev_exit,
8199 };
8200
8201 static void __net_exit default_device_exit(struct net *net)
8202 {
8203 struct net_device *dev, *aux;
8204 /*
8205 * Push all migratable network devices back to the
8206 * initial network namespace
8207 */
8208 rtnl_lock();
8209 for_each_netdev_safe(net, dev, aux) {
8210 int err;
8211 char fb_name[IFNAMSIZ];
8212
8213 /* Ignore unmoveable devices (i.e. loopback) */
8214 if (dev->features & NETIF_F_NETNS_LOCAL)
8215 continue;
8216
8217 /* Leave virtual devices for the generic cleanup */
8218 if (dev->rtnl_link_ops)
8219 continue;
8220
8221 /* Push remaining network devices to init_net */
8222 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8223 err = dev_change_net_namespace(dev, &init_net, fb_name);
8224 if (err) {
8225 pr_emerg("%s: failed to move %s to init_net: %d\n",
8226 __func__, dev->name, err);
8227 BUG();
8228 }
8229 }
8230 rtnl_unlock();
8231 }
8232
8233 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8234 {
8235 /* Return with the rtnl_lock held when there are no network
8236 * devices unregistering in any network namespace in net_list.
8237 */
8238 struct net *net;
8239 bool unregistering;
8240 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8241
8242 add_wait_queue(&netdev_unregistering_wq, &wait);
8243 for (;;) {
8244 unregistering = false;
8245 rtnl_lock();
8246 list_for_each_entry(net, net_list, exit_list) {
8247 if (net->dev_unreg_count > 0) {
8248 unregistering = true;
8249 break;
8250 }
8251 }
8252 if (!unregistering)
8253 break;
8254 __rtnl_unlock();
8255
8256 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8257 }
8258 remove_wait_queue(&netdev_unregistering_wq, &wait);
8259 }
8260
8261 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8262 {
8263 /* At exit all network devices most be removed from a network
8264 * namespace. Do this in the reverse order of registration.
8265 * Do this across as many network namespaces as possible to
8266 * improve batching efficiency.
8267 */
8268 struct net_device *dev;
8269 struct net *net;
8270 LIST_HEAD(dev_kill_list);
8271
8272 /* To prevent network device cleanup code from dereferencing
8273 * loopback devices or network devices that have been freed
8274 * wait here for all pending unregistrations to complete,
8275 * before unregistring the loopback device and allowing the
8276 * network namespace be freed.
8277 *
8278 * The netdev todo list containing all network devices
8279 * unregistrations that happen in default_device_exit_batch
8280 * will run in the rtnl_unlock() at the end of
8281 * default_device_exit_batch.
8282 */
8283 rtnl_lock_unregistering(net_list);
8284 list_for_each_entry(net, net_list, exit_list) {
8285 for_each_netdev_reverse(net, dev) {
8286 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8287 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8288 else
8289 unregister_netdevice_queue(dev, &dev_kill_list);
8290 }
8291 }
8292 unregister_netdevice_many(&dev_kill_list);
8293 rtnl_unlock();
8294 }
8295
8296 static struct pernet_operations __net_initdata default_device_ops = {
8297 .exit = default_device_exit,
8298 .exit_batch = default_device_exit_batch,
8299 };
8300
8301 /*
8302 * Initialize the DEV module. At boot time this walks the device list and
8303 * unhooks any devices that fail to initialise (normally hardware not
8304 * present) and leaves us with a valid list of present and active devices.
8305 *
8306 */
8307
8308 /*
8309 * This is called single threaded during boot, so no need
8310 * to take the rtnl semaphore.
8311 */
8312 static int __init net_dev_init(void)
8313 {
8314 int i, rc = -ENOMEM;
8315
8316 BUG_ON(!dev_boot_phase);
8317
8318 if (dev_proc_init())
8319 goto out;
8320
8321 if (netdev_kobject_init())
8322 goto out;
8323
8324 INIT_LIST_HEAD(&ptype_all);
8325 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8326 INIT_LIST_HEAD(&ptype_base[i]);
8327
8328 INIT_LIST_HEAD(&offload_base);
8329
8330 if (register_pernet_subsys(&netdev_net_ops))
8331 goto out;
8332
8333 /*
8334 * Initialise the packet receive queues.
8335 */
8336
8337 for_each_possible_cpu(i) {
8338 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8339 struct softnet_data *sd = &per_cpu(softnet_data, i);
8340
8341 INIT_WORK(flush, flush_backlog);
8342
8343 skb_queue_head_init(&sd->input_pkt_queue);
8344 skb_queue_head_init(&sd->process_queue);
8345 INIT_LIST_HEAD(&sd->poll_list);
8346 sd->output_queue_tailp = &sd->output_queue;
8347 #ifdef CONFIG_RPS
8348 sd->csd.func = rps_trigger_softirq;
8349 sd->csd.info = sd;
8350 sd->cpu = i;
8351 #endif
8352
8353 sd->backlog.poll = process_backlog;
8354 sd->backlog.weight = weight_p;
8355 }
8356
8357 dev_boot_phase = 0;
8358
8359 /* The loopback device is special if any other network devices
8360 * is present in a network namespace the loopback device must
8361 * be present. Since we now dynamically allocate and free the
8362 * loopback device ensure this invariant is maintained by
8363 * keeping the loopback device as the first device on the
8364 * list of network devices. Ensuring the loopback devices
8365 * is the first device that appears and the last network device
8366 * that disappears.
8367 */
8368 if (register_pernet_device(&loopback_net_ops))
8369 goto out;
8370
8371 if (register_pernet_device(&default_device_ops))
8372 goto out;
8373
8374 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8375 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8376
8377 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8378 NULL, dev_cpu_dead);
8379 WARN_ON(rc < 0);
8380 dst_subsys_init();
8381 rc = 0;
8382 out:
8383 return rc;
8384 }
8385
8386 subsys_initcall(net_dev_init);