]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/dev.c
net: gro: selective flush of packets
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 /*
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
150 *
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
153 *
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
159 * --BLG
160 *
161 * 0800 IP
162 * 8100 802.1Q VLAN
163 * 0001 802.3
164 * 0002 AX.25
165 * 0004 802.2
166 * 8035 RARP
167 * 0005 SNAP
168 * 0805 X.25
169 * 0806 ARP
170 * 8137 IPX
171 * 0009 Localtalk
172 * 86DD IPv6
173 */
174
175 #define PTYPE_HASH_SIZE (16)
176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
177
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly; /* Taps */
181
182 /*
183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184 * semaphore.
185 *
186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187 *
188 * Writers must hold the rtnl semaphore while they loop through the
189 * dev_base_head list, and hold dev_base_lock for writing when they do the
190 * actual updates. This allows pure readers to access the list even
191 * while a writer is preparing to update it.
192 *
193 * To put it another way, dev_base_lock is held for writing only to
194 * protect against pure readers; the rtnl semaphore provides the
195 * protection against other writers.
196 *
197 * See, for example usages, register_netdevice() and
198 * unregister_netdevice(), which must be called with the rtnl
199 * semaphore held.
200 */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 while (++net->dev_base_seq == 0);
207 }
208
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
237 {
238 struct net *net = dev_net(dev);
239
240 ASSERT_RTNL();
241
242 write_lock_bh(&dev_base_lock);
243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 hlist_add_head_rcu(&dev->index_hlist,
246 dev_index_hash(net, dev->ifindex));
247 write_unlock_bh(&dev_base_lock);
248
249 dev_base_seq_inc(net);
250
251 return 0;
252 }
253
254 /* Device list removal
255 * caller must respect a RCU grace period before freeing/reusing dev
256 */
257 static void unlist_netdevice(struct net_device *dev)
258 {
259 ASSERT_RTNL();
260
261 /* Unlink dev from the device chain */
262 write_lock_bh(&dev_base_lock);
263 list_del_rcu(&dev->dev_list);
264 hlist_del_rcu(&dev->name_hlist);
265 hlist_del_rcu(&dev->index_hlist);
266 write_unlock_bh(&dev_base_lock);
267
268 dev_base_seq_inc(dev_net(dev));
269 }
270
271 /*
272 * Our notifier list
273 */
274
275 static RAW_NOTIFIER_HEAD(netdev_chain);
276
277 /*
278 * Device drivers call our routines to queue packets here. We empty the
279 * queue in the local softnet handler.
280 */
281
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
284
285 #ifdef CONFIG_LOCKDEP
286 /*
287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288 * according to dev->type
289 */
290 static const unsigned short netdev_lock_type[] =
291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
304 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
305 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
306
307 static const char *const netdev_lock_name[] =
308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
321 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
322 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
323
324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
326
327 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
328 {
329 int i;
330
331 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
332 if (netdev_lock_type[i] == dev_type)
333 return i;
334 /* the last key is used by default */
335 return ARRAY_SIZE(netdev_lock_type) - 1;
336 }
337
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340 {
341 int i;
342
343 i = netdev_lock_pos(dev_type);
344 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
345 netdev_lock_name[i]);
346 }
347
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 int i;
351
352 i = netdev_lock_pos(dev->type);
353 lockdep_set_class_and_name(&dev->addr_list_lock,
354 &netdev_addr_lock_key[i],
355 netdev_lock_name[i]);
356 }
357 #else
358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
359 unsigned short dev_type)
360 {
361 }
362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
363 {
364 }
365 #endif
366
367 /*******************************************************************************
368
369 Protocol management and registration routines
370
371 *******************************************************************************/
372
373 /*
374 * Add a protocol ID to the list. Now that the input handler is
375 * smarter we can dispense with all the messy stuff that used to be
376 * here.
377 *
378 * BEWARE!!! Protocol handlers, mangling input packets,
379 * MUST BE last in hash buckets and checking protocol handlers
380 * MUST start from promiscuous ptype_all chain in net_bh.
381 * It is true now, do not change it.
382 * Explanation follows: if protocol handler, mangling packet, will
383 * be the first on list, it is not able to sense, that packet
384 * is cloned and should be copied-on-write, so that it will
385 * change it and subsequent readers will get broken packet.
386 * --ANK (980803)
387 */
388
389 static inline struct list_head *ptype_head(const struct packet_type *pt)
390 {
391 if (pt->type == htons(ETH_P_ALL))
392 return &ptype_all;
393 else
394 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396
397 /**
398 * dev_add_pack - add packet handler
399 * @pt: packet type declaration
400 *
401 * Add a protocol handler to the networking stack. The passed &packet_type
402 * is linked into kernel lists and may not be freed until it has been
403 * removed from the kernel lists.
404 *
405 * This call does not sleep therefore it can not
406 * guarantee all CPU's that are in middle of receiving packets
407 * will see the new packet type (until the next received packet).
408 */
409
410 void dev_add_pack(struct packet_type *pt)
411 {
412 struct list_head *head = ptype_head(pt);
413
414 spin_lock(&ptype_lock);
415 list_add_rcu(&pt->list, head);
416 spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419
420 /**
421 * __dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * The packet type might still be in use by receivers
430 * and must not be freed until after all the CPU's have gone
431 * through a quiescent state.
432 */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 struct list_head *head = ptype_head(pt);
436 struct packet_type *pt1;
437
438 spin_lock(&ptype_lock);
439
440 list_for_each_entry(pt1, head, list) {
441 if (pt == pt1) {
442 list_del_rcu(&pt->list);
443 goto out;
444 }
445 }
446
447 pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452
453 /**
454 * dev_remove_pack - remove packet handler
455 * @pt: packet type declaration
456 *
457 * Remove a protocol handler that was previously added to the kernel
458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
459 * from the kernel lists and can be freed or reused once this function
460 * returns.
461 *
462 * This call sleeps to guarantee that no CPU is looking at the packet
463 * type after return.
464 */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 __dev_remove_pack(pt);
468
469 synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472
473 /******************************************************************************
474
475 Device Boot-time Settings Routines
476
477 *******************************************************************************/
478
479 /* Boot time configuration table */
480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
481
482 /**
483 * netdev_boot_setup_add - add new setup entry
484 * @name: name of the device
485 * @map: configured settings for the device
486 *
487 * Adds new setup entry to the dev_boot_setup list. The function
488 * returns 0 on error and 1 on success. This is a generic routine to
489 * all netdevices.
490 */
491 static int netdev_boot_setup_add(char *name, struct ifmap *map)
492 {
493 struct netdev_boot_setup *s;
494 int i;
495
496 s = dev_boot_setup;
497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
499 memset(s[i].name, 0, sizeof(s[i].name));
500 strlcpy(s[i].name, name, IFNAMSIZ);
501 memcpy(&s[i].map, map, sizeof(s[i].map));
502 break;
503 }
504 }
505
506 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
507 }
508
509 /**
510 * netdev_boot_setup_check - check boot time settings
511 * @dev: the netdevice
512 *
513 * Check boot time settings for the device.
514 * The found settings are set for the device to be used
515 * later in the device probing.
516 * Returns 0 if no settings found, 1 if they are.
517 */
518 int netdev_boot_setup_check(struct net_device *dev)
519 {
520 struct netdev_boot_setup *s = dev_boot_setup;
521 int i;
522
523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
524 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
525 !strcmp(dev->name, s[i].name)) {
526 dev->irq = s[i].map.irq;
527 dev->base_addr = s[i].map.base_addr;
528 dev->mem_start = s[i].map.mem_start;
529 dev->mem_end = s[i].map.mem_end;
530 return 1;
531 }
532 }
533 return 0;
534 }
535 EXPORT_SYMBOL(netdev_boot_setup_check);
536
537
538 /**
539 * netdev_boot_base - get address from boot time settings
540 * @prefix: prefix for network device
541 * @unit: id for network device
542 *
543 * Check boot time settings for the base address of device.
544 * The found settings are set for the device to be used
545 * later in the device probing.
546 * Returns 0 if no settings found.
547 */
548 unsigned long netdev_boot_base(const char *prefix, int unit)
549 {
550 const struct netdev_boot_setup *s = dev_boot_setup;
551 char name[IFNAMSIZ];
552 int i;
553
554 sprintf(name, "%s%d", prefix, unit);
555
556 /*
557 * If device already registered then return base of 1
558 * to indicate not to probe for this interface
559 */
560 if (__dev_get_by_name(&init_net, name))
561 return 1;
562
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
564 if (!strcmp(name, s[i].name))
565 return s[i].map.base_addr;
566 return 0;
567 }
568
569 /*
570 * Saves at boot time configured settings for any netdevice.
571 */
572 int __init netdev_boot_setup(char *str)
573 {
574 int ints[5];
575 struct ifmap map;
576
577 str = get_options(str, ARRAY_SIZE(ints), ints);
578 if (!str || !*str)
579 return 0;
580
581 /* Save settings */
582 memset(&map, 0, sizeof(map));
583 if (ints[0] > 0)
584 map.irq = ints[1];
585 if (ints[0] > 1)
586 map.base_addr = ints[2];
587 if (ints[0] > 2)
588 map.mem_start = ints[3];
589 if (ints[0] > 3)
590 map.mem_end = ints[4];
591
592 /* Add new entry to the list */
593 return netdev_boot_setup_add(str, &map);
594 }
595
596 __setup("netdev=", netdev_boot_setup);
597
598 /*******************************************************************************
599
600 Device Interface Subroutines
601
602 *******************************************************************************/
603
604 /**
605 * __dev_get_by_name - find a device by its name
606 * @net: the applicable net namespace
607 * @name: name to find
608 *
609 * Find an interface by name. Must be called under RTNL semaphore
610 * or @dev_base_lock. If the name is found a pointer to the device
611 * is returned. If the name is not found then %NULL is returned. The
612 * reference counters are not incremented so the caller must be
613 * careful with locks.
614 */
615
616 struct net_device *__dev_get_by_name(struct net *net, const char *name)
617 {
618 struct hlist_node *p;
619 struct net_device *dev;
620 struct hlist_head *head = dev_name_hash(net, name);
621
622 hlist_for_each_entry(dev, p, head, name_hlist)
623 if (!strncmp(dev->name, name, IFNAMSIZ))
624 return dev;
625
626 return NULL;
627 }
628 EXPORT_SYMBOL(__dev_get_by_name);
629
630 /**
631 * dev_get_by_name_rcu - find a device by its name
632 * @net: the applicable net namespace
633 * @name: name to find
634 *
635 * Find an interface by name.
636 * If the name is found a pointer to the device is returned.
637 * If the name is not found then %NULL is returned.
638 * The reference counters are not incremented so the caller must be
639 * careful with locks. The caller must hold RCU lock.
640 */
641
642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
643 {
644 struct hlist_node *p;
645 struct net_device *dev;
646 struct hlist_head *head = dev_name_hash(net, name);
647
648 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
649 if (!strncmp(dev->name, name, IFNAMSIZ))
650 return dev;
651
652 return NULL;
653 }
654 EXPORT_SYMBOL(dev_get_by_name_rcu);
655
656 /**
657 * dev_get_by_name - find a device by its name
658 * @net: the applicable net namespace
659 * @name: name to find
660 *
661 * Find an interface by name. This can be called from any
662 * context and does its own locking. The returned handle has
663 * the usage count incremented and the caller must use dev_put() to
664 * release it when it is no longer needed. %NULL is returned if no
665 * matching device is found.
666 */
667
668 struct net_device *dev_get_by_name(struct net *net, const char *name)
669 {
670 struct net_device *dev;
671
672 rcu_read_lock();
673 dev = dev_get_by_name_rcu(net, name);
674 if (dev)
675 dev_hold(dev);
676 rcu_read_unlock();
677 return dev;
678 }
679 EXPORT_SYMBOL(dev_get_by_name);
680
681 /**
682 * __dev_get_by_index - find a device by its ifindex
683 * @net: the applicable net namespace
684 * @ifindex: index of device
685 *
686 * Search for an interface by index. Returns %NULL if the device
687 * is not found or a pointer to the device. The device has not
688 * had its reference counter increased so the caller must be careful
689 * about locking. The caller must hold either the RTNL semaphore
690 * or @dev_base_lock.
691 */
692
693 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
694 {
695 struct hlist_node *p;
696 struct net_device *dev;
697 struct hlist_head *head = dev_index_hash(net, ifindex);
698
699 hlist_for_each_entry(dev, p, head, index_hlist)
700 if (dev->ifindex == ifindex)
701 return dev;
702
703 return NULL;
704 }
705 EXPORT_SYMBOL(__dev_get_by_index);
706
707 /**
708 * dev_get_by_index_rcu - find a device by its ifindex
709 * @net: the applicable net namespace
710 * @ifindex: index of device
711 *
712 * Search for an interface by index. Returns %NULL if the device
713 * is not found or a pointer to the device. The device has not
714 * had its reference counter increased so the caller must be careful
715 * about locking. The caller must hold RCU lock.
716 */
717
718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
719 {
720 struct hlist_node *p;
721 struct net_device *dev;
722 struct hlist_head *head = dev_index_hash(net, ifindex);
723
724 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
725 if (dev->ifindex == ifindex)
726 return dev;
727
728 return NULL;
729 }
730 EXPORT_SYMBOL(dev_get_by_index_rcu);
731
732
733 /**
734 * dev_get_by_index - find a device by its ifindex
735 * @net: the applicable net namespace
736 * @ifindex: index of device
737 *
738 * Search for an interface by index. Returns NULL if the device
739 * is not found or a pointer to the device. The device returned has
740 * had a reference added and the pointer is safe until the user calls
741 * dev_put to indicate they have finished with it.
742 */
743
744 struct net_device *dev_get_by_index(struct net *net, int ifindex)
745 {
746 struct net_device *dev;
747
748 rcu_read_lock();
749 dev = dev_get_by_index_rcu(net, ifindex);
750 if (dev)
751 dev_hold(dev);
752 rcu_read_unlock();
753 return dev;
754 }
755 EXPORT_SYMBOL(dev_get_by_index);
756
757 /**
758 * dev_getbyhwaddr_rcu - find a device by its hardware address
759 * @net: the applicable net namespace
760 * @type: media type of device
761 * @ha: hardware address
762 *
763 * Search for an interface by MAC address. Returns NULL if the device
764 * is not found or a pointer to the device.
765 * The caller must hold RCU or RTNL.
766 * The returned device has not had its ref count increased
767 * and the caller must therefore be careful about locking
768 *
769 */
770
771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
772 const char *ha)
773 {
774 struct net_device *dev;
775
776 for_each_netdev_rcu(net, dev)
777 if (dev->type == type &&
778 !memcmp(dev->dev_addr, ha, dev->addr_len))
779 return dev;
780
781 return NULL;
782 }
783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
784
785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 struct net_device *dev;
788
789 ASSERT_RTNL();
790 for_each_netdev(net, dev)
791 if (dev->type == type)
792 return dev;
793
794 return NULL;
795 }
796 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
797
798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
799 {
800 struct net_device *dev, *ret = NULL;
801
802 rcu_read_lock();
803 for_each_netdev_rcu(net, dev)
804 if (dev->type == type) {
805 dev_hold(dev);
806 ret = dev;
807 break;
808 }
809 rcu_read_unlock();
810 return ret;
811 }
812 EXPORT_SYMBOL(dev_getfirstbyhwtype);
813
814 /**
815 * dev_get_by_flags_rcu - find any device with given flags
816 * @net: the applicable net namespace
817 * @if_flags: IFF_* values
818 * @mask: bitmask of bits in if_flags to check
819 *
820 * Search for any interface with the given flags. Returns NULL if a device
821 * is not found or a pointer to the device. Must be called inside
822 * rcu_read_lock(), and result refcount is unchanged.
823 */
824
825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
826 unsigned short mask)
827 {
828 struct net_device *dev, *ret;
829
830 ret = NULL;
831 for_each_netdev_rcu(net, dev) {
832 if (((dev->flags ^ if_flags) & mask) == 0) {
833 ret = dev;
834 break;
835 }
836 }
837 return ret;
838 }
839 EXPORT_SYMBOL(dev_get_by_flags_rcu);
840
841 /**
842 * dev_valid_name - check if name is okay for network device
843 * @name: name string
844 *
845 * Network device names need to be valid file names to
846 * to allow sysfs to work. We also disallow any kind of
847 * whitespace.
848 */
849 bool dev_valid_name(const char *name)
850 {
851 if (*name == '\0')
852 return false;
853 if (strlen(name) >= IFNAMSIZ)
854 return false;
855 if (!strcmp(name, ".") || !strcmp(name, ".."))
856 return false;
857
858 while (*name) {
859 if (*name == '/' || isspace(*name))
860 return false;
861 name++;
862 }
863 return true;
864 }
865 EXPORT_SYMBOL(dev_valid_name);
866
867 /**
868 * __dev_alloc_name - allocate a name for a device
869 * @net: network namespace to allocate the device name in
870 * @name: name format string
871 * @buf: scratch buffer and result name string
872 *
873 * Passed a format string - eg "lt%d" it will try and find a suitable
874 * id. It scans list of devices to build up a free map, then chooses
875 * the first empty slot. The caller must hold the dev_base or rtnl lock
876 * while allocating the name and adding the device in order to avoid
877 * duplicates.
878 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
879 * Returns the number of the unit assigned or a negative errno code.
880 */
881
882 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
883 {
884 int i = 0;
885 const char *p;
886 const int max_netdevices = 8*PAGE_SIZE;
887 unsigned long *inuse;
888 struct net_device *d;
889
890 p = strnchr(name, IFNAMSIZ-1, '%');
891 if (p) {
892 /*
893 * Verify the string as this thing may have come from
894 * the user. There must be either one "%d" and no other "%"
895 * characters.
896 */
897 if (p[1] != 'd' || strchr(p + 2, '%'))
898 return -EINVAL;
899
900 /* Use one page as a bit array of possible slots */
901 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
902 if (!inuse)
903 return -ENOMEM;
904
905 for_each_netdev(net, d) {
906 if (!sscanf(d->name, name, &i))
907 continue;
908 if (i < 0 || i >= max_netdevices)
909 continue;
910
911 /* avoid cases where sscanf is not exact inverse of printf */
912 snprintf(buf, IFNAMSIZ, name, i);
913 if (!strncmp(buf, d->name, IFNAMSIZ))
914 set_bit(i, inuse);
915 }
916
917 i = find_first_zero_bit(inuse, max_netdevices);
918 free_page((unsigned long) inuse);
919 }
920
921 if (buf != name)
922 snprintf(buf, IFNAMSIZ, name, i);
923 if (!__dev_get_by_name(net, buf))
924 return i;
925
926 /* It is possible to run out of possible slots
927 * when the name is long and there isn't enough space left
928 * for the digits, or if all bits are used.
929 */
930 return -ENFILE;
931 }
932
933 /**
934 * dev_alloc_name - allocate a name for a device
935 * @dev: device
936 * @name: name format string
937 *
938 * Passed a format string - eg "lt%d" it will try and find a suitable
939 * id. It scans list of devices to build up a free map, then chooses
940 * the first empty slot. The caller must hold the dev_base or rtnl lock
941 * while allocating the name and adding the device in order to avoid
942 * duplicates.
943 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
944 * Returns the number of the unit assigned or a negative errno code.
945 */
946
947 int dev_alloc_name(struct net_device *dev, const char *name)
948 {
949 char buf[IFNAMSIZ];
950 struct net *net;
951 int ret;
952
953 BUG_ON(!dev_net(dev));
954 net = dev_net(dev);
955 ret = __dev_alloc_name(net, name, buf);
956 if (ret >= 0)
957 strlcpy(dev->name, buf, IFNAMSIZ);
958 return ret;
959 }
960 EXPORT_SYMBOL(dev_alloc_name);
961
962 static int dev_alloc_name_ns(struct net *net,
963 struct net_device *dev,
964 const char *name)
965 {
966 char buf[IFNAMSIZ];
967 int ret;
968
969 ret = __dev_alloc_name(net, name, buf);
970 if (ret >= 0)
971 strlcpy(dev->name, buf, IFNAMSIZ);
972 return ret;
973 }
974
975 static int dev_get_valid_name(struct net *net,
976 struct net_device *dev,
977 const char *name)
978 {
979 BUG_ON(!net);
980
981 if (!dev_valid_name(name))
982 return -EINVAL;
983
984 if (strchr(name, '%'))
985 return dev_alloc_name_ns(net, dev, name);
986 else if (__dev_get_by_name(net, name))
987 return -EEXIST;
988 else if (dev->name != name)
989 strlcpy(dev->name, name, IFNAMSIZ);
990
991 return 0;
992 }
993
994 /**
995 * dev_change_name - change name of a device
996 * @dev: device
997 * @newname: name (or format string) must be at least IFNAMSIZ
998 *
999 * Change name of a device, can pass format strings "eth%d".
1000 * for wildcarding.
1001 */
1002 int dev_change_name(struct net_device *dev, const char *newname)
1003 {
1004 char oldname[IFNAMSIZ];
1005 int err = 0;
1006 int ret;
1007 struct net *net;
1008
1009 ASSERT_RTNL();
1010 BUG_ON(!dev_net(dev));
1011
1012 net = dev_net(dev);
1013 if (dev->flags & IFF_UP)
1014 return -EBUSY;
1015
1016 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1017 return 0;
1018
1019 memcpy(oldname, dev->name, IFNAMSIZ);
1020
1021 err = dev_get_valid_name(net, dev, newname);
1022 if (err < 0)
1023 return err;
1024
1025 rollback:
1026 ret = device_rename(&dev->dev, dev->name);
1027 if (ret) {
1028 memcpy(dev->name, oldname, IFNAMSIZ);
1029 return ret;
1030 }
1031
1032 write_lock_bh(&dev_base_lock);
1033 hlist_del_rcu(&dev->name_hlist);
1034 write_unlock_bh(&dev_base_lock);
1035
1036 synchronize_rcu();
1037
1038 write_lock_bh(&dev_base_lock);
1039 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1040 write_unlock_bh(&dev_base_lock);
1041
1042 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1043 ret = notifier_to_errno(ret);
1044
1045 if (ret) {
1046 /* err >= 0 after dev_alloc_name() or stores the first errno */
1047 if (err >= 0) {
1048 err = ret;
1049 memcpy(dev->name, oldname, IFNAMSIZ);
1050 goto rollback;
1051 } else {
1052 pr_err("%s: name change rollback failed: %d\n",
1053 dev->name, ret);
1054 }
1055 }
1056
1057 return err;
1058 }
1059
1060 /**
1061 * dev_set_alias - change ifalias of a device
1062 * @dev: device
1063 * @alias: name up to IFALIASZ
1064 * @len: limit of bytes to copy from info
1065 *
1066 * Set ifalias for a device,
1067 */
1068 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1069 {
1070 char *new_ifalias;
1071
1072 ASSERT_RTNL();
1073
1074 if (len >= IFALIASZ)
1075 return -EINVAL;
1076
1077 if (!len) {
1078 if (dev->ifalias) {
1079 kfree(dev->ifalias);
1080 dev->ifalias = NULL;
1081 }
1082 return 0;
1083 }
1084
1085 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1086 if (!new_ifalias)
1087 return -ENOMEM;
1088 dev->ifalias = new_ifalias;
1089
1090 strlcpy(dev->ifalias, alias, len+1);
1091 return len;
1092 }
1093
1094
1095 /**
1096 * netdev_features_change - device changes features
1097 * @dev: device to cause notification
1098 *
1099 * Called to indicate a device has changed features.
1100 */
1101 void netdev_features_change(struct net_device *dev)
1102 {
1103 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1104 }
1105 EXPORT_SYMBOL(netdev_features_change);
1106
1107 /**
1108 * netdev_state_change - device changes state
1109 * @dev: device to cause notification
1110 *
1111 * Called to indicate a device has changed state. This function calls
1112 * the notifier chains for netdev_chain and sends a NEWLINK message
1113 * to the routing socket.
1114 */
1115 void netdev_state_change(struct net_device *dev)
1116 {
1117 if (dev->flags & IFF_UP) {
1118 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1119 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1120 }
1121 }
1122 EXPORT_SYMBOL(netdev_state_change);
1123
1124 /**
1125 * netdev_notify_peers - notify network peers about existence of @dev
1126 * @dev: network device
1127 *
1128 * Generate traffic such that interested network peers are aware of
1129 * @dev, such as by generating a gratuitous ARP. This may be used when
1130 * a device wants to inform the rest of the network about some sort of
1131 * reconfiguration such as a failover event or virtual machine
1132 * migration.
1133 */
1134 void netdev_notify_peers(struct net_device *dev)
1135 {
1136 rtnl_lock();
1137 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1138 rtnl_unlock();
1139 }
1140 EXPORT_SYMBOL(netdev_notify_peers);
1141
1142 /**
1143 * dev_load - load a network module
1144 * @net: the applicable net namespace
1145 * @name: name of interface
1146 *
1147 * If a network interface is not present and the process has suitable
1148 * privileges this function loads the module. If module loading is not
1149 * available in this kernel then it becomes a nop.
1150 */
1151
1152 void dev_load(struct net *net, const char *name)
1153 {
1154 struct net_device *dev;
1155 int no_module;
1156
1157 rcu_read_lock();
1158 dev = dev_get_by_name_rcu(net, name);
1159 rcu_read_unlock();
1160
1161 no_module = !dev;
1162 if (no_module && capable(CAP_NET_ADMIN))
1163 no_module = request_module("netdev-%s", name);
1164 if (no_module && capable(CAP_SYS_MODULE)) {
1165 if (!request_module("%s", name))
1166 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1167 name);
1168 }
1169 }
1170 EXPORT_SYMBOL(dev_load);
1171
1172 static int __dev_open(struct net_device *dev)
1173 {
1174 const struct net_device_ops *ops = dev->netdev_ops;
1175 int ret;
1176
1177 ASSERT_RTNL();
1178
1179 if (!netif_device_present(dev))
1180 return -ENODEV;
1181
1182 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1183 ret = notifier_to_errno(ret);
1184 if (ret)
1185 return ret;
1186
1187 set_bit(__LINK_STATE_START, &dev->state);
1188
1189 if (ops->ndo_validate_addr)
1190 ret = ops->ndo_validate_addr(dev);
1191
1192 if (!ret && ops->ndo_open)
1193 ret = ops->ndo_open(dev);
1194
1195 if (ret)
1196 clear_bit(__LINK_STATE_START, &dev->state);
1197 else {
1198 dev->flags |= IFF_UP;
1199 net_dmaengine_get();
1200 dev_set_rx_mode(dev);
1201 dev_activate(dev);
1202 add_device_randomness(dev->dev_addr, dev->addr_len);
1203 }
1204
1205 return ret;
1206 }
1207
1208 /**
1209 * dev_open - prepare an interface for use.
1210 * @dev: device to open
1211 *
1212 * Takes a device from down to up state. The device's private open
1213 * function is invoked and then the multicast lists are loaded. Finally
1214 * the device is moved into the up state and a %NETDEV_UP message is
1215 * sent to the netdev notifier chain.
1216 *
1217 * Calling this function on an active interface is a nop. On a failure
1218 * a negative errno code is returned.
1219 */
1220 int dev_open(struct net_device *dev)
1221 {
1222 int ret;
1223
1224 if (dev->flags & IFF_UP)
1225 return 0;
1226
1227 ret = __dev_open(dev);
1228 if (ret < 0)
1229 return ret;
1230
1231 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1232 call_netdevice_notifiers(NETDEV_UP, dev);
1233
1234 return ret;
1235 }
1236 EXPORT_SYMBOL(dev_open);
1237
1238 static int __dev_close_many(struct list_head *head)
1239 {
1240 struct net_device *dev;
1241
1242 ASSERT_RTNL();
1243 might_sleep();
1244
1245 list_for_each_entry(dev, head, unreg_list) {
1246 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1247
1248 clear_bit(__LINK_STATE_START, &dev->state);
1249
1250 /* Synchronize to scheduled poll. We cannot touch poll list, it
1251 * can be even on different cpu. So just clear netif_running().
1252 *
1253 * dev->stop() will invoke napi_disable() on all of it's
1254 * napi_struct instances on this device.
1255 */
1256 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1257 }
1258
1259 dev_deactivate_many(head);
1260
1261 list_for_each_entry(dev, head, unreg_list) {
1262 const struct net_device_ops *ops = dev->netdev_ops;
1263
1264 /*
1265 * Call the device specific close. This cannot fail.
1266 * Only if device is UP
1267 *
1268 * We allow it to be called even after a DETACH hot-plug
1269 * event.
1270 */
1271 if (ops->ndo_stop)
1272 ops->ndo_stop(dev);
1273
1274 dev->flags &= ~IFF_UP;
1275 net_dmaengine_put();
1276 }
1277
1278 return 0;
1279 }
1280
1281 static int __dev_close(struct net_device *dev)
1282 {
1283 int retval;
1284 LIST_HEAD(single);
1285
1286 list_add(&dev->unreg_list, &single);
1287 retval = __dev_close_many(&single);
1288 list_del(&single);
1289 return retval;
1290 }
1291
1292 static int dev_close_many(struct list_head *head)
1293 {
1294 struct net_device *dev, *tmp;
1295 LIST_HEAD(tmp_list);
1296
1297 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1298 if (!(dev->flags & IFF_UP))
1299 list_move(&dev->unreg_list, &tmp_list);
1300
1301 __dev_close_many(head);
1302
1303 list_for_each_entry(dev, head, unreg_list) {
1304 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1305 call_netdevice_notifiers(NETDEV_DOWN, dev);
1306 }
1307
1308 /* rollback_registered_many needs the complete original list */
1309 list_splice(&tmp_list, head);
1310 return 0;
1311 }
1312
1313 /**
1314 * dev_close - shutdown an interface.
1315 * @dev: device to shutdown
1316 *
1317 * This function moves an active device into down state. A
1318 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1319 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1320 * chain.
1321 */
1322 int dev_close(struct net_device *dev)
1323 {
1324 if (dev->flags & IFF_UP) {
1325 LIST_HEAD(single);
1326
1327 list_add(&dev->unreg_list, &single);
1328 dev_close_many(&single);
1329 list_del(&single);
1330 }
1331 return 0;
1332 }
1333 EXPORT_SYMBOL(dev_close);
1334
1335
1336 /**
1337 * dev_disable_lro - disable Large Receive Offload on a device
1338 * @dev: device
1339 *
1340 * Disable Large Receive Offload (LRO) on a net device. Must be
1341 * called under RTNL. This is needed if received packets may be
1342 * forwarded to another interface.
1343 */
1344 void dev_disable_lro(struct net_device *dev)
1345 {
1346 /*
1347 * If we're trying to disable lro on a vlan device
1348 * use the underlying physical device instead
1349 */
1350 if (is_vlan_dev(dev))
1351 dev = vlan_dev_real_dev(dev);
1352
1353 dev->wanted_features &= ~NETIF_F_LRO;
1354 netdev_update_features(dev);
1355
1356 if (unlikely(dev->features & NETIF_F_LRO))
1357 netdev_WARN(dev, "failed to disable LRO!\n");
1358 }
1359 EXPORT_SYMBOL(dev_disable_lro);
1360
1361
1362 static int dev_boot_phase = 1;
1363
1364 /**
1365 * register_netdevice_notifier - register a network notifier block
1366 * @nb: notifier
1367 *
1368 * Register a notifier to be called when network device events occur.
1369 * The notifier passed is linked into the kernel structures and must
1370 * not be reused until it has been unregistered. A negative errno code
1371 * is returned on a failure.
1372 *
1373 * When registered all registration and up events are replayed
1374 * to the new notifier to allow device to have a race free
1375 * view of the network device list.
1376 */
1377
1378 int register_netdevice_notifier(struct notifier_block *nb)
1379 {
1380 struct net_device *dev;
1381 struct net_device *last;
1382 struct net *net;
1383 int err;
1384
1385 rtnl_lock();
1386 err = raw_notifier_chain_register(&netdev_chain, nb);
1387 if (err)
1388 goto unlock;
1389 if (dev_boot_phase)
1390 goto unlock;
1391 for_each_net(net) {
1392 for_each_netdev(net, dev) {
1393 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1394 err = notifier_to_errno(err);
1395 if (err)
1396 goto rollback;
1397
1398 if (!(dev->flags & IFF_UP))
1399 continue;
1400
1401 nb->notifier_call(nb, NETDEV_UP, dev);
1402 }
1403 }
1404
1405 unlock:
1406 rtnl_unlock();
1407 return err;
1408
1409 rollback:
1410 last = dev;
1411 for_each_net(net) {
1412 for_each_netdev(net, dev) {
1413 if (dev == last)
1414 goto outroll;
1415
1416 if (dev->flags & IFF_UP) {
1417 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1418 nb->notifier_call(nb, NETDEV_DOWN, dev);
1419 }
1420 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1421 }
1422 }
1423
1424 outroll:
1425 raw_notifier_chain_unregister(&netdev_chain, nb);
1426 goto unlock;
1427 }
1428 EXPORT_SYMBOL(register_netdevice_notifier);
1429
1430 /**
1431 * unregister_netdevice_notifier - unregister a network notifier block
1432 * @nb: notifier
1433 *
1434 * Unregister a notifier previously registered by
1435 * register_netdevice_notifier(). The notifier is unlinked into the
1436 * kernel structures and may then be reused. A negative errno code
1437 * is returned on a failure.
1438 *
1439 * After unregistering unregister and down device events are synthesized
1440 * for all devices on the device list to the removed notifier to remove
1441 * the need for special case cleanup code.
1442 */
1443
1444 int unregister_netdevice_notifier(struct notifier_block *nb)
1445 {
1446 struct net_device *dev;
1447 struct net *net;
1448 int err;
1449
1450 rtnl_lock();
1451 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1452 if (err)
1453 goto unlock;
1454
1455 for_each_net(net) {
1456 for_each_netdev(net, dev) {
1457 if (dev->flags & IFF_UP) {
1458 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1459 nb->notifier_call(nb, NETDEV_DOWN, dev);
1460 }
1461 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1462 }
1463 }
1464 unlock:
1465 rtnl_unlock();
1466 return err;
1467 }
1468 EXPORT_SYMBOL(unregister_netdevice_notifier);
1469
1470 /**
1471 * call_netdevice_notifiers - call all network notifier blocks
1472 * @val: value passed unmodified to notifier function
1473 * @dev: net_device pointer passed unmodified to notifier function
1474 *
1475 * Call all network notifier blocks. Parameters and return value
1476 * are as for raw_notifier_call_chain().
1477 */
1478
1479 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1480 {
1481 ASSERT_RTNL();
1482 return raw_notifier_call_chain(&netdev_chain, val, dev);
1483 }
1484 EXPORT_SYMBOL(call_netdevice_notifiers);
1485
1486 static struct static_key netstamp_needed __read_mostly;
1487 #ifdef HAVE_JUMP_LABEL
1488 /* We are not allowed to call static_key_slow_dec() from irq context
1489 * If net_disable_timestamp() is called from irq context, defer the
1490 * static_key_slow_dec() calls.
1491 */
1492 static atomic_t netstamp_needed_deferred;
1493 #endif
1494
1495 void net_enable_timestamp(void)
1496 {
1497 #ifdef HAVE_JUMP_LABEL
1498 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1499
1500 if (deferred) {
1501 while (--deferred)
1502 static_key_slow_dec(&netstamp_needed);
1503 return;
1504 }
1505 #endif
1506 WARN_ON(in_interrupt());
1507 static_key_slow_inc(&netstamp_needed);
1508 }
1509 EXPORT_SYMBOL(net_enable_timestamp);
1510
1511 void net_disable_timestamp(void)
1512 {
1513 #ifdef HAVE_JUMP_LABEL
1514 if (in_interrupt()) {
1515 atomic_inc(&netstamp_needed_deferred);
1516 return;
1517 }
1518 #endif
1519 static_key_slow_dec(&netstamp_needed);
1520 }
1521 EXPORT_SYMBOL(net_disable_timestamp);
1522
1523 static inline void net_timestamp_set(struct sk_buff *skb)
1524 {
1525 skb->tstamp.tv64 = 0;
1526 if (static_key_false(&netstamp_needed))
1527 __net_timestamp(skb);
1528 }
1529
1530 #define net_timestamp_check(COND, SKB) \
1531 if (static_key_false(&netstamp_needed)) { \
1532 if ((COND) && !(SKB)->tstamp.tv64) \
1533 __net_timestamp(SKB); \
1534 } \
1535
1536 static int net_hwtstamp_validate(struct ifreq *ifr)
1537 {
1538 struct hwtstamp_config cfg;
1539 enum hwtstamp_tx_types tx_type;
1540 enum hwtstamp_rx_filters rx_filter;
1541 int tx_type_valid = 0;
1542 int rx_filter_valid = 0;
1543
1544 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1545 return -EFAULT;
1546
1547 if (cfg.flags) /* reserved for future extensions */
1548 return -EINVAL;
1549
1550 tx_type = cfg.tx_type;
1551 rx_filter = cfg.rx_filter;
1552
1553 switch (tx_type) {
1554 case HWTSTAMP_TX_OFF:
1555 case HWTSTAMP_TX_ON:
1556 case HWTSTAMP_TX_ONESTEP_SYNC:
1557 tx_type_valid = 1;
1558 break;
1559 }
1560
1561 switch (rx_filter) {
1562 case HWTSTAMP_FILTER_NONE:
1563 case HWTSTAMP_FILTER_ALL:
1564 case HWTSTAMP_FILTER_SOME:
1565 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1566 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1567 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1568 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1569 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1570 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1571 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1572 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1573 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1574 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1575 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1576 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1577 rx_filter_valid = 1;
1578 break;
1579 }
1580
1581 if (!tx_type_valid || !rx_filter_valid)
1582 return -ERANGE;
1583
1584 return 0;
1585 }
1586
1587 static inline bool is_skb_forwardable(struct net_device *dev,
1588 struct sk_buff *skb)
1589 {
1590 unsigned int len;
1591
1592 if (!(dev->flags & IFF_UP))
1593 return false;
1594
1595 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1596 if (skb->len <= len)
1597 return true;
1598
1599 /* if TSO is enabled, we don't care about the length as the packet
1600 * could be forwarded without being segmented before
1601 */
1602 if (skb_is_gso(skb))
1603 return true;
1604
1605 return false;
1606 }
1607
1608 /**
1609 * dev_forward_skb - loopback an skb to another netif
1610 *
1611 * @dev: destination network device
1612 * @skb: buffer to forward
1613 *
1614 * return values:
1615 * NET_RX_SUCCESS (no congestion)
1616 * NET_RX_DROP (packet was dropped, but freed)
1617 *
1618 * dev_forward_skb can be used for injecting an skb from the
1619 * start_xmit function of one device into the receive queue
1620 * of another device.
1621 *
1622 * The receiving device may be in another namespace, so
1623 * we have to clear all information in the skb that could
1624 * impact namespace isolation.
1625 */
1626 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1627 {
1628 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1629 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1630 atomic_long_inc(&dev->rx_dropped);
1631 kfree_skb(skb);
1632 return NET_RX_DROP;
1633 }
1634 }
1635
1636 skb_orphan(skb);
1637 nf_reset(skb);
1638
1639 if (unlikely(!is_skb_forwardable(dev, skb))) {
1640 atomic_long_inc(&dev->rx_dropped);
1641 kfree_skb(skb);
1642 return NET_RX_DROP;
1643 }
1644 skb->skb_iif = 0;
1645 skb->dev = dev;
1646 skb_dst_drop(skb);
1647 skb->tstamp.tv64 = 0;
1648 skb->pkt_type = PACKET_HOST;
1649 skb->protocol = eth_type_trans(skb, dev);
1650 skb->mark = 0;
1651 secpath_reset(skb);
1652 nf_reset(skb);
1653 return netif_rx(skb);
1654 }
1655 EXPORT_SYMBOL_GPL(dev_forward_skb);
1656
1657 static inline int deliver_skb(struct sk_buff *skb,
1658 struct packet_type *pt_prev,
1659 struct net_device *orig_dev)
1660 {
1661 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1662 return -ENOMEM;
1663 atomic_inc(&skb->users);
1664 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1665 }
1666
1667 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1668 {
1669 if (ptype->af_packet_priv == NULL)
1670 return false;
1671
1672 if (ptype->id_match)
1673 return ptype->id_match(ptype, skb->sk);
1674 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1675 return true;
1676
1677 return false;
1678 }
1679
1680 /*
1681 * Support routine. Sends outgoing frames to any network
1682 * taps currently in use.
1683 */
1684
1685 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1686 {
1687 struct packet_type *ptype;
1688 struct sk_buff *skb2 = NULL;
1689 struct packet_type *pt_prev = NULL;
1690
1691 rcu_read_lock();
1692 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1693 /* Never send packets back to the socket
1694 * they originated from - MvS (miquels@drinkel.ow.org)
1695 */
1696 if ((ptype->dev == dev || !ptype->dev) &&
1697 (!skb_loop_sk(ptype, skb))) {
1698 if (pt_prev) {
1699 deliver_skb(skb2, pt_prev, skb->dev);
1700 pt_prev = ptype;
1701 continue;
1702 }
1703
1704 skb2 = skb_clone(skb, GFP_ATOMIC);
1705 if (!skb2)
1706 break;
1707
1708 net_timestamp_set(skb2);
1709
1710 /* skb->nh should be correctly
1711 set by sender, so that the second statement is
1712 just protection against buggy protocols.
1713 */
1714 skb_reset_mac_header(skb2);
1715
1716 if (skb_network_header(skb2) < skb2->data ||
1717 skb2->network_header > skb2->tail) {
1718 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1719 ntohs(skb2->protocol),
1720 dev->name);
1721 skb_reset_network_header(skb2);
1722 }
1723
1724 skb2->transport_header = skb2->network_header;
1725 skb2->pkt_type = PACKET_OUTGOING;
1726 pt_prev = ptype;
1727 }
1728 }
1729 if (pt_prev)
1730 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1731 rcu_read_unlock();
1732 }
1733
1734 /**
1735 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1736 * @dev: Network device
1737 * @txq: number of queues available
1738 *
1739 * If real_num_tx_queues is changed the tc mappings may no longer be
1740 * valid. To resolve this verify the tc mapping remains valid and if
1741 * not NULL the mapping. With no priorities mapping to this
1742 * offset/count pair it will no longer be used. In the worst case TC0
1743 * is invalid nothing can be done so disable priority mappings. If is
1744 * expected that drivers will fix this mapping if they can before
1745 * calling netif_set_real_num_tx_queues.
1746 */
1747 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1748 {
1749 int i;
1750 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1751
1752 /* If TC0 is invalidated disable TC mapping */
1753 if (tc->offset + tc->count > txq) {
1754 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1755 dev->num_tc = 0;
1756 return;
1757 }
1758
1759 /* Invalidated prio to tc mappings set to TC0 */
1760 for (i = 1; i < TC_BITMASK + 1; i++) {
1761 int q = netdev_get_prio_tc_map(dev, i);
1762
1763 tc = &dev->tc_to_txq[q];
1764 if (tc->offset + tc->count > txq) {
1765 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1766 i, q);
1767 netdev_set_prio_tc_map(dev, i, 0);
1768 }
1769 }
1770 }
1771
1772 /*
1773 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1774 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1775 */
1776 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1777 {
1778 int rc;
1779
1780 if (txq < 1 || txq > dev->num_tx_queues)
1781 return -EINVAL;
1782
1783 if (dev->reg_state == NETREG_REGISTERED ||
1784 dev->reg_state == NETREG_UNREGISTERING) {
1785 ASSERT_RTNL();
1786
1787 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1788 txq);
1789 if (rc)
1790 return rc;
1791
1792 if (dev->num_tc)
1793 netif_setup_tc(dev, txq);
1794
1795 if (txq < dev->real_num_tx_queues)
1796 qdisc_reset_all_tx_gt(dev, txq);
1797 }
1798
1799 dev->real_num_tx_queues = txq;
1800 return 0;
1801 }
1802 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1803
1804 #ifdef CONFIG_RPS
1805 /**
1806 * netif_set_real_num_rx_queues - set actual number of RX queues used
1807 * @dev: Network device
1808 * @rxq: Actual number of RX queues
1809 *
1810 * This must be called either with the rtnl_lock held or before
1811 * registration of the net device. Returns 0 on success, or a
1812 * negative error code. If called before registration, it always
1813 * succeeds.
1814 */
1815 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1816 {
1817 int rc;
1818
1819 if (rxq < 1 || rxq > dev->num_rx_queues)
1820 return -EINVAL;
1821
1822 if (dev->reg_state == NETREG_REGISTERED) {
1823 ASSERT_RTNL();
1824
1825 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1826 rxq);
1827 if (rc)
1828 return rc;
1829 }
1830
1831 dev->real_num_rx_queues = rxq;
1832 return 0;
1833 }
1834 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1835 #endif
1836
1837 /**
1838 * netif_get_num_default_rss_queues - default number of RSS queues
1839 *
1840 * This routine should set an upper limit on the number of RSS queues
1841 * used by default by multiqueue devices.
1842 */
1843 int netif_get_num_default_rss_queues(void)
1844 {
1845 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
1846 }
1847 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
1848
1849 static inline void __netif_reschedule(struct Qdisc *q)
1850 {
1851 struct softnet_data *sd;
1852 unsigned long flags;
1853
1854 local_irq_save(flags);
1855 sd = &__get_cpu_var(softnet_data);
1856 q->next_sched = NULL;
1857 *sd->output_queue_tailp = q;
1858 sd->output_queue_tailp = &q->next_sched;
1859 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1860 local_irq_restore(flags);
1861 }
1862
1863 void __netif_schedule(struct Qdisc *q)
1864 {
1865 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1866 __netif_reschedule(q);
1867 }
1868 EXPORT_SYMBOL(__netif_schedule);
1869
1870 void dev_kfree_skb_irq(struct sk_buff *skb)
1871 {
1872 if (atomic_dec_and_test(&skb->users)) {
1873 struct softnet_data *sd;
1874 unsigned long flags;
1875
1876 local_irq_save(flags);
1877 sd = &__get_cpu_var(softnet_data);
1878 skb->next = sd->completion_queue;
1879 sd->completion_queue = skb;
1880 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1881 local_irq_restore(flags);
1882 }
1883 }
1884 EXPORT_SYMBOL(dev_kfree_skb_irq);
1885
1886 void dev_kfree_skb_any(struct sk_buff *skb)
1887 {
1888 if (in_irq() || irqs_disabled())
1889 dev_kfree_skb_irq(skb);
1890 else
1891 dev_kfree_skb(skb);
1892 }
1893 EXPORT_SYMBOL(dev_kfree_skb_any);
1894
1895
1896 /**
1897 * netif_device_detach - mark device as removed
1898 * @dev: network device
1899 *
1900 * Mark device as removed from system and therefore no longer available.
1901 */
1902 void netif_device_detach(struct net_device *dev)
1903 {
1904 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1905 netif_running(dev)) {
1906 netif_tx_stop_all_queues(dev);
1907 }
1908 }
1909 EXPORT_SYMBOL(netif_device_detach);
1910
1911 /**
1912 * netif_device_attach - mark device as attached
1913 * @dev: network device
1914 *
1915 * Mark device as attached from system and restart if needed.
1916 */
1917 void netif_device_attach(struct net_device *dev)
1918 {
1919 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1920 netif_running(dev)) {
1921 netif_tx_wake_all_queues(dev);
1922 __netdev_watchdog_up(dev);
1923 }
1924 }
1925 EXPORT_SYMBOL(netif_device_attach);
1926
1927 static void skb_warn_bad_offload(const struct sk_buff *skb)
1928 {
1929 static const netdev_features_t null_features = 0;
1930 struct net_device *dev = skb->dev;
1931 const char *driver = "";
1932
1933 if (dev && dev->dev.parent)
1934 driver = dev_driver_string(dev->dev.parent);
1935
1936 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1937 "gso_type=%d ip_summed=%d\n",
1938 driver, dev ? &dev->features : &null_features,
1939 skb->sk ? &skb->sk->sk_route_caps : &null_features,
1940 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1941 skb_shinfo(skb)->gso_type, skb->ip_summed);
1942 }
1943
1944 /*
1945 * Invalidate hardware checksum when packet is to be mangled, and
1946 * complete checksum manually on outgoing path.
1947 */
1948 int skb_checksum_help(struct sk_buff *skb)
1949 {
1950 __wsum csum;
1951 int ret = 0, offset;
1952
1953 if (skb->ip_summed == CHECKSUM_COMPLETE)
1954 goto out_set_summed;
1955
1956 if (unlikely(skb_shinfo(skb)->gso_size)) {
1957 skb_warn_bad_offload(skb);
1958 return -EINVAL;
1959 }
1960
1961 offset = skb_checksum_start_offset(skb);
1962 BUG_ON(offset >= skb_headlen(skb));
1963 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1964
1965 offset += skb->csum_offset;
1966 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1967
1968 if (skb_cloned(skb) &&
1969 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1970 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1971 if (ret)
1972 goto out;
1973 }
1974
1975 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1976 out_set_summed:
1977 skb->ip_summed = CHECKSUM_NONE;
1978 out:
1979 return ret;
1980 }
1981 EXPORT_SYMBOL(skb_checksum_help);
1982
1983 /**
1984 * skb_gso_segment - Perform segmentation on skb.
1985 * @skb: buffer to segment
1986 * @features: features for the output path (see dev->features)
1987 *
1988 * This function segments the given skb and returns a list of segments.
1989 *
1990 * It may return NULL if the skb requires no segmentation. This is
1991 * only possible when GSO is used for verifying header integrity.
1992 */
1993 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1994 netdev_features_t features)
1995 {
1996 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1997 struct packet_type *ptype;
1998 __be16 type = skb->protocol;
1999 int vlan_depth = ETH_HLEN;
2000 int err;
2001
2002 while (type == htons(ETH_P_8021Q)) {
2003 struct vlan_hdr *vh;
2004
2005 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2006 return ERR_PTR(-EINVAL);
2007
2008 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2009 type = vh->h_vlan_encapsulated_proto;
2010 vlan_depth += VLAN_HLEN;
2011 }
2012
2013 skb_reset_mac_header(skb);
2014 skb->mac_len = skb->network_header - skb->mac_header;
2015 __skb_pull(skb, skb->mac_len);
2016
2017 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2018 skb_warn_bad_offload(skb);
2019
2020 if (skb_header_cloned(skb) &&
2021 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2022 return ERR_PTR(err);
2023 }
2024
2025 rcu_read_lock();
2026 list_for_each_entry_rcu(ptype,
2027 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2028 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
2029 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2030 err = ptype->gso_send_check(skb);
2031 segs = ERR_PTR(err);
2032 if (err || skb_gso_ok(skb, features))
2033 break;
2034 __skb_push(skb, (skb->data -
2035 skb_network_header(skb)));
2036 }
2037 segs = ptype->gso_segment(skb, features);
2038 break;
2039 }
2040 }
2041 rcu_read_unlock();
2042
2043 __skb_push(skb, skb->data - skb_mac_header(skb));
2044
2045 return segs;
2046 }
2047 EXPORT_SYMBOL(skb_gso_segment);
2048
2049 /* Take action when hardware reception checksum errors are detected. */
2050 #ifdef CONFIG_BUG
2051 void netdev_rx_csum_fault(struct net_device *dev)
2052 {
2053 if (net_ratelimit()) {
2054 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2055 dump_stack();
2056 }
2057 }
2058 EXPORT_SYMBOL(netdev_rx_csum_fault);
2059 #endif
2060
2061 /* Actually, we should eliminate this check as soon as we know, that:
2062 * 1. IOMMU is present and allows to map all the memory.
2063 * 2. No high memory really exists on this machine.
2064 */
2065
2066 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2067 {
2068 #ifdef CONFIG_HIGHMEM
2069 int i;
2070 if (!(dev->features & NETIF_F_HIGHDMA)) {
2071 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2072 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2073 if (PageHighMem(skb_frag_page(frag)))
2074 return 1;
2075 }
2076 }
2077
2078 if (PCI_DMA_BUS_IS_PHYS) {
2079 struct device *pdev = dev->dev.parent;
2080
2081 if (!pdev)
2082 return 0;
2083 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2084 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2085 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2086 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2087 return 1;
2088 }
2089 }
2090 #endif
2091 return 0;
2092 }
2093
2094 struct dev_gso_cb {
2095 void (*destructor)(struct sk_buff *skb);
2096 };
2097
2098 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2099
2100 static void dev_gso_skb_destructor(struct sk_buff *skb)
2101 {
2102 struct dev_gso_cb *cb;
2103
2104 do {
2105 struct sk_buff *nskb = skb->next;
2106
2107 skb->next = nskb->next;
2108 nskb->next = NULL;
2109 kfree_skb(nskb);
2110 } while (skb->next);
2111
2112 cb = DEV_GSO_CB(skb);
2113 if (cb->destructor)
2114 cb->destructor(skb);
2115 }
2116
2117 /**
2118 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2119 * @skb: buffer to segment
2120 * @features: device features as applicable to this skb
2121 *
2122 * This function segments the given skb and stores the list of segments
2123 * in skb->next.
2124 */
2125 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2126 {
2127 struct sk_buff *segs;
2128
2129 segs = skb_gso_segment(skb, features);
2130
2131 /* Verifying header integrity only. */
2132 if (!segs)
2133 return 0;
2134
2135 if (IS_ERR(segs))
2136 return PTR_ERR(segs);
2137
2138 skb->next = segs;
2139 DEV_GSO_CB(skb)->destructor = skb->destructor;
2140 skb->destructor = dev_gso_skb_destructor;
2141
2142 return 0;
2143 }
2144
2145 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2146 {
2147 return ((features & NETIF_F_GEN_CSUM) ||
2148 ((features & NETIF_F_V4_CSUM) &&
2149 protocol == htons(ETH_P_IP)) ||
2150 ((features & NETIF_F_V6_CSUM) &&
2151 protocol == htons(ETH_P_IPV6)) ||
2152 ((features & NETIF_F_FCOE_CRC) &&
2153 protocol == htons(ETH_P_FCOE)));
2154 }
2155
2156 static netdev_features_t harmonize_features(struct sk_buff *skb,
2157 __be16 protocol, netdev_features_t features)
2158 {
2159 if (skb->ip_summed != CHECKSUM_NONE &&
2160 !can_checksum_protocol(features, protocol)) {
2161 features &= ~NETIF_F_ALL_CSUM;
2162 features &= ~NETIF_F_SG;
2163 } else if (illegal_highdma(skb->dev, skb)) {
2164 features &= ~NETIF_F_SG;
2165 }
2166
2167 return features;
2168 }
2169
2170 netdev_features_t netif_skb_features(struct sk_buff *skb)
2171 {
2172 __be16 protocol = skb->protocol;
2173 netdev_features_t features = skb->dev->features;
2174
2175 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2176 features &= ~NETIF_F_GSO_MASK;
2177
2178 if (protocol == htons(ETH_P_8021Q)) {
2179 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2180 protocol = veh->h_vlan_encapsulated_proto;
2181 } else if (!vlan_tx_tag_present(skb)) {
2182 return harmonize_features(skb, protocol, features);
2183 }
2184
2185 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2186
2187 if (protocol != htons(ETH_P_8021Q)) {
2188 return harmonize_features(skb, protocol, features);
2189 } else {
2190 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2191 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2192 return harmonize_features(skb, protocol, features);
2193 }
2194 }
2195 EXPORT_SYMBOL(netif_skb_features);
2196
2197 /*
2198 * Returns true if either:
2199 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2200 * 2. skb is fragmented and the device does not support SG.
2201 */
2202 static inline int skb_needs_linearize(struct sk_buff *skb,
2203 int features)
2204 {
2205 return skb_is_nonlinear(skb) &&
2206 ((skb_has_frag_list(skb) &&
2207 !(features & NETIF_F_FRAGLIST)) ||
2208 (skb_shinfo(skb)->nr_frags &&
2209 !(features & NETIF_F_SG)));
2210 }
2211
2212 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2213 struct netdev_queue *txq)
2214 {
2215 const struct net_device_ops *ops = dev->netdev_ops;
2216 int rc = NETDEV_TX_OK;
2217 unsigned int skb_len;
2218
2219 if (likely(!skb->next)) {
2220 netdev_features_t features;
2221
2222 /*
2223 * If device doesn't need skb->dst, release it right now while
2224 * its hot in this cpu cache
2225 */
2226 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2227 skb_dst_drop(skb);
2228
2229 features = netif_skb_features(skb);
2230
2231 if (vlan_tx_tag_present(skb) &&
2232 !(features & NETIF_F_HW_VLAN_TX)) {
2233 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2234 if (unlikely(!skb))
2235 goto out;
2236
2237 skb->vlan_tci = 0;
2238 }
2239
2240 if (netif_needs_gso(skb, features)) {
2241 if (unlikely(dev_gso_segment(skb, features)))
2242 goto out_kfree_skb;
2243 if (skb->next)
2244 goto gso;
2245 } else {
2246 if (skb_needs_linearize(skb, features) &&
2247 __skb_linearize(skb))
2248 goto out_kfree_skb;
2249
2250 /* If packet is not checksummed and device does not
2251 * support checksumming for this protocol, complete
2252 * checksumming here.
2253 */
2254 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2255 skb_set_transport_header(skb,
2256 skb_checksum_start_offset(skb));
2257 if (!(features & NETIF_F_ALL_CSUM) &&
2258 skb_checksum_help(skb))
2259 goto out_kfree_skb;
2260 }
2261 }
2262
2263 if (!list_empty(&ptype_all))
2264 dev_queue_xmit_nit(skb, dev);
2265
2266 skb_len = skb->len;
2267 rc = ops->ndo_start_xmit(skb, dev);
2268 trace_net_dev_xmit(skb, rc, dev, skb_len);
2269 if (rc == NETDEV_TX_OK)
2270 txq_trans_update(txq);
2271 return rc;
2272 }
2273
2274 gso:
2275 do {
2276 struct sk_buff *nskb = skb->next;
2277
2278 skb->next = nskb->next;
2279 nskb->next = NULL;
2280
2281 /*
2282 * If device doesn't need nskb->dst, release it right now while
2283 * its hot in this cpu cache
2284 */
2285 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2286 skb_dst_drop(nskb);
2287
2288 if (!list_empty(&ptype_all))
2289 dev_queue_xmit_nit(nskb, dev);
2290
2291 skb_len = nskb->len;
2292 rc = ops->ndo_start_xmit(nskb, dev);
2293 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2294 if (unlikely(rc != NETDEV_TX_OK)) {
2295 if (rc & ~NETDEV_TX_MASK)
2296 goto out_kfree_gso_skb;
2297 nskb->next = skb->next;
2298 skb->next = nskb;
2299 return rc;
2300 }
2301 txq_trans_update(txq);
2302 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2303 return NETDEV_TX_BUSY;
2304 } while (skb->next);
2305
2306 out_kfree_gso_skb:
2307 if (likely(skb->next == NULL))
2308 skb->destructor = DEV_GSO_CB(skb)->destructor;
2309 out_kfree_skb:
2310 kfree_skb(skb);
2311 out:
2312 return rc;
2313 }
2314
2315 static u32 hashrnd __read_mostly;
2316
2317 /*
2318 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2319 * to be used as a distribution range.
2320 */
2321 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2322 unsigned int num_tx_queues)
2323 {
2324 u32 hash;
2325 u16 qoffset = 0;
2326 u16 qcount = num_tx_queues;
2327
2328 if (skb_rx_queue_recorded(skb)) {
2329 hash = skb_get_rx_queue(skb);
2330 while (unlikely(hash >= num_tx_queues))
2331 hash -= num_tx_queues;
2332 return hash;
2333 }
2334
2335 if (dev->num_tc) {
2336 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2337 qoffset = dev->tc_to_txq[tc].offset;
2338 qcount = dev->tc_to_txq[tc].count;
2339 }
2340
2341 if (skb->sk && skb->sk->sk_hash)
2342 hash = skb->sk->sk_hash;
2343 else
2344 hash = (__force u16) skb->protocol;
2345 hash = jhash_1word(hash, hashrnd);
2346
2347 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2348 }
2349 EXPORT_SYMBOL(__skb_tx_hash);
2350
2351 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2352 {
2353 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2354 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2355 dev->name, queue_index,
2356 dev->real_num_tx_queues);
2357 return 0;
2358 }
2359 return queue_index;
2360 }
2361
2362 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2363 {
2364 #ifdef CONFIG_XPS
2365 struct xps_dev_maps *dev_maps;
2366 struct xps_map *map;
2367 int queue_index = -1;
2368
2369 rcu_read_lock();
2370 dev_maps = rcu_dereference(dev->xps_maps);
2371 if (dev_maps) {
2372 map = rcu_dereference(
2373 dev_maps->cpu_map[raw_smp_processor_id()]);
2374 if (map) {
2375 if (map->len == 1)
2376 queue_index = map->queues[0];
2377 else {
2378 u32 hash;
2379 if (skb->sk && skb->sk->sk_hash)
2380 hash = skb->sk->sk_hash;
2381 else
2382 hash = (__force u16) skb->protocol ^
2383 skb->rxhash;
2384 hash = jhash_1word(hash, hashrnd);
2385 queue_index = map->queues[
2386 ((u64)hash * map->len) >> 32];
2387 }
2388 if (unlikely(queue_index >= dev->real_num_tx_queues))
2389 queue_index = -1;
2390 }
2391 }
2392 rcu_read_unlock();
2393
2394 return queue_index;
2395 #else
2396 return -1;
2397 #endif
2398 }
2399
2400 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2401 struct sk_buff *skb)
2402 {
2403 int queue_index;
2404 const struct net_device_ops *ops = dev->netdev_ops;
2405
2406 if (dev->real_num_tx_queues == 1)
2407 queue_index = 0;
2408 else if (ops->ndo_select_queue) {
2409 queue_index = ops->ndo_select_queue(dev, skb);
2410 queue_index = dev_cap_txqueue(dev, queue_index);
2411 } else {
2412 struct sock *sk = skb->sk;
2413 queue_index = sk_tx_queue_get(sk);
2414
2415 if (queue_index < 0 || skb->ooo_okay ||
2416 queue_index >= dev->real_num_tx_queues) {
2417 int old_index = queue_index;
2418
2419 queue_index = get_xps_queue(dev, skb);
2420 if (queue_index < 0)
2421 queue_index = skb_tx_hash(dev, skb);
2422
2423 if (queue_index != old_index && sk) {
2424 struct dst_entry *dst =
2425 rcu_dereference_check(sk->sk_dst_cache, 1);
2426
2427 if (dst && skb_dst(skb) == dst)
2428 sk_tx_queue_set(sk, queue_index);
2429 }
2430 }
2431 }
2432
2433 skb_set_queue_mapping(skb, queue_index);
2434 return netdev_get_tx_queue(dev, queue_index);
2435 }
2436
2437 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2438 struct net_device *dev,
2439 struct netdev_queue *txq)
2440 {
2441 spinlock_t *root_lock = qdisc_lock(q);
2442 bool contended;
2443 int rc;
2444
2445 qdisc_skb_cb(skb)->pkt_len = skb->len;
2446 qdisc_calculate_pkt_len(skb, q);
2447 /*
2448 * Heuristic to force contended enqueues to serialize on a
2449 * separate lock before trying to get qdisc main lock.
2450 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2451 * and dequeue packets faster.
2452 */
2453 contended = qdisc_is_running(q);
2454 if (unlikely(contended))
2455 spin_lock(&q->busylock);
2456
2457 spin_lock(root_lock);
2458 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2459 kfree_skb(skb);
2460 rc = NET_XMIT_DROP;
2461 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2462 qdisc_run_begin(q)) {
2463 /*
2464 * This is a work-conserving queue; there are no old skbs
2465 * waiting to be sent out; and the qdisc is not running -
2466 * xmit the skb directly.
2467 */
2468 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2469 skb_dst_force(skb);
2470
2471 qdisc_bstats_update(q, skb);
2472
2473 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2474 if (unlikely(contended)) {
2475 spin_unlock(&q->busylock);
2476 contended = false;
2477 }
2478 __qdisc_run(q);
2479 } else
2480 qdisc_run_end(q);
2481
2482 rc = NET_XMIT_SUCCESS;
2483 } else {
2484 skb_dst_force(skb);
2485 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2486 if (qdisc_run_begin(q)) {
2487 if (unlikely(contended)) {
2488 spin_unlock(&q->busylock);
2489 contended = false;
2490 }
2491 __qdisc_run(q);
2492 }
2493 }
2494 spin_unlock(root_lock);
2495 if (unlikely(contended))
2496 spin_unlock(&q->busylock);
2497 return rc;
2498 }
2499
2500 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2501 static void skb_update_prio(struct sk_buff *skb)
2502 {
2503 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2504
2505 if (!skb->priority && skb->sk && map) {
2506 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2507
2508 if (prioidx < map->priomap_len)
2509 skb->priority = map->priomap[prioidx];
2510 }
2511 }
2512 #else
2513 #define skb_update_prio(skb)
2514 #endif
2515
2516 static DEFINE_PER_CPU(int, xmit_recursion);
2517 #define RECURSION_LIMIT 10
2518
2519 /**
2520 * dev_loopback_xmit - loop back @skb
2521 * @skb: buffer to transmit
2522 */
2523 int dev_loopback_xmit(struct sk_buff *skb)
2524 {
2525 skb_reset_mac_header(skb);
2526 __skb_pull(skb, skb_network_offset(skb));
2527 skb->pkt_type = PACKET_LOOPBACK;
2528 skb->ip_summed = CHECKSUM_UNNECESSARY;
2529 WARN_ON(!skb_dst(skb));
2530 skb_dst_force(skb);
2531 netif_rx_ni(skb);
2532 return 0;
2533 }
2534 EXPORT_SYMBOL(dev_loopback_xmit);
2535
2536 /**
2537 * dev_queue_xmit - transmit a buffer
2538 * @skb: buffer to transmit
2539 *
2540 * Queue a buffer for transmission to a network device. The caller must
2541 * have set the device and priority and built the buffer before calling
2542 * this function. The function can be called from an interrupt.
2543 *
2544 * A negative errno code is returned on a failure. A success does not
2545 * guarantee the frame will be transmitted as it may be dropped due
2546 * to congestion or traffic shaping.
2547 *
2548 * -----------------------------------------------------------------------------------
2549 * I notice this method can also return errors from the queue disciplines,
2550 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2551 * be positive.
2552 *
2553 * Regardless of the return value, the skb is consumed, so it is currently
2554 * difficult to retry a send to this method. (You can bump the ref count
2555 * before sending to hold a reference for retry if you are careful.)
2556 *
2557 * When calling this method, interrupts MUST be enabled. This is because
2558 * the BH enable code must have IRQs enabled so that it will not deadlock.
2559 * --BLG
2560 */
2561 int dev_queue_xmit(struct sk_buff *skb)
2562 {
2563 struct net_device *dev = skb->dev;
2564 struct netdev_queue *txq;
2565 struct Qdisc *q;
2566 int rc = -ENOMEM;
2567
2568 /* Disable soft irqs for various locks below. Also
2569 * stops preemption for RCU.
2570 */
2571 rcu_read_lock_bh();
2572
2573 skb_update_prio(skb);
2574
2575 txq = netdev_pick_tx(dev, skb);
2576 q = rcu_dereference_bh(txq->qdisc);
2577
2578 #ifdef CONFIG_NET_CLS_ACT
2579 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2580 #endif
2581 trace_net_dev_queue(skb);
2582 if (q->enqueue) {
2583 rc = __dev_xmit_skb(skb, q, dev, txq);
2584 goto out;
2585 }
2586
2587 /* The device has no queue. Common case for software devices:
2588 loopback, all the sorts of tunnels...
2589
2590 Really, it is unlikely that netif_tx_lock protection is necessary
2591 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2592 counters.)
2593 However, it is possible, that they rely on protection
2594 made by us here.
2595
2596 Check this and shot the lock. It is not prone from deadlocks.
2597 Either shot noqueue qdisc, it is even simpler 8)
2598 */
2599 if (dev->flags & IFF_UP) {
2600 int cpu = smp_processor_id(); /* ok because BHs are off */
2601
2602 if (txq->xmit_lock_owner != cpu) {
2603
2604 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2605 goto recursion_alert;
2606
2607 HARD_TX_LOCK(dev, txq, cpu);
2608
2609 if (!netif_xmit_stopped(txq)) {
2610 __this_cpu_inc(xmit_recursion);
2611 rc = dev_hard_start_xmit(skb, dev, txq);
2612 __this_cpu_dec(xmit_recursion);
2613 if (dev_xmit_complete(rc)) {
2614 HARD_TX_UNLOCK(dev, txq);
2615 goto out;
2616 }
2617 }
2618 HARD_TX_UNLOCK(dev, txq);
2619 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2620 dev->name);
2621 } else {
2622 /* Recursion is detected! It is possible,
2623 * unfortunately
2624 */
2625 recursion_alert:
2626 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2627 dev->name);
2628 }
2629 }
2630
2631 rc = -ENETDOWN;
2632 rcu_read_unlock_bh();
2633
2634 kfree_skb(skb);
2635 return rc;
2636 out:
2637 rcu_read_unlock_bh();
2638 return rc;
2639 }
2640 EXPORT_SYMBOL(dev_queue_xmit);
2641
2642
2643 /*=======================================================================
2644 Receiver routines
2645 =======================================================================*/
2646
2647 int netdev_max_backlog __read_mostly = 1000;
2648 EXPORT_SYMBOL(netdev_max_backlog);
2649
2650 int netdev_tstamp_prequeue __read_mostly = 1;
2651 int netdev_budget __read_mostly = 300;
2652 int weight_p __read_mostly = 64; /* old backlog weight */
2653
2654 /* Called with irq disabled */
2655 static inline void ____napi_schedule(struct softnet_data *sd,
2656 struct napi_struct *napi)
2657 {
2658 list_add_tail(&napi->poll_list, &sd->poll_list);
2659 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2660 }
2661
2662 /*
2663 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2664 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2665 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2666 * if hash is a canonical 4-tuple hash over transport ports.
2667 */
2668 void __skb_get_rxhash(struct sk_buff *skb)
2669 {
2670 struct flow_keys keys;
2671 u32 hash;
2672
2673 if (!skb_flow_dissect(skb, &keys))
2674 return;
2675
2676 if (keys.ports)
2677 skb->l4_rxhash = 1;
2678
2679 /* get a consistent hash (same value on both flow directions) */
2680 if (((__force u32)keys.dst < (__force u32)keys.src) ||
2681 (((__force u32)keys.dst == (__force u32)keys.src) &&
2682 ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]))) {
2683 swap(keys.dst, keys.src);
2684 swap(keys.port16[0], keys.port16[1]);
2685 }
2686
2687 hash = jhash_3words((__force u32)keys.dst,
2688 (__force u32)keys.src,
2689 (__force u32)keys.ports, hashrnd);
2690 if (!hash)
2691 hash = 1;
2692
2693 skb->rxhash = hash;
2694 }
2695 EXPORT_SYMBOL(__skb_get_rxhash);
2696
2697 #ifdef CONFIG_RPS
2698
2699 /* One global table that all flow-based protocols share. */
2700 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2701 EXPORT_SYMBOL(rps_sock_flow_table);
2702
2703 struct static_key rps_needed __read_mostly;
2704
2705 static struct rps_dev_flow *
2706 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2707 struct rps_dev_flow *rflow, u16 next_cpu)
2708 {
2709 if (next_cpu != RPS_NO_CPU) {
2710 #ifdef CONFIG_RFS_ACCEL
2711 struct netdev_rx_queue *rxqueue;
2712 struct rps_dev_flow_table *flow_table;
2713 struct rps_dev_flow *old_rflow;
2714 u32 flow_id;
2715 u16 rxq_index;
2716 int rc;
2717
2718 /* Should we steer this flow to a different hardware queue? */
2719 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2720 !(dev->features & NETIF_F_NTUPLE))
2721 goto out;
2722 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2723 if (rxq_index == skb_get_rx_queue(skb))
2724 goto out;
2725
2726 rxqueue = dev->_rx + rxq_index;
2727 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2728 if (!flow_table)
2729 goto out;
2730 flow_id = skb->rxhash & flow_table->mask;
2731 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2732 rxq_index, flow_id);
2733 if (rc < 0)
2734 goto out;
2735 old_rflow = rflow;
2736 rflow = &flow_table->flows[flow_id];
2737 rflow->filter = rc;
2738 if (old_rflow->filter == rflow->filter)
2739 old_rflow->filter = RPS_NO_FILTER;
2740 out:
2741 #endif
2742 rflow->last_qtail =
2743 per_cpu(softnet_data, next_cpu).input_queue_head;
2744 }
2745
2746 rflow->cpu = next_cpu;
2747 return rflow;
2748 }
2749
2750 /*
2751 * get_rps_cpu is called from netif_receive_skb and returns the target
2752 * CPU from the RPS map of the receiving queue for a given skb.
2753 * rcu_read_lock must be held on entry.
2754 */
2755 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2756 struct rps_dev_flow **rflowp)
2757 {
2758 struct netdev_rx_queue *rxqueue;
2759 struct rps_map *map;
2760 struct rps_dev_flow_table *flow_table;
2761 struct rps_sock_flow_table *sock_flow_table;
2762 int cpu = -1;
2763 u16 tcpu;
2764
2765 if (skb_rx_queue_recorded(skb)) {
2766 u16 index = skb_get_rx_queue(skb);
2767 if (unlikely(index >= dev->real_num_rx_queues)) {
2768 WARN_ONCE(dev->real_num_rx_queues > 1,
2769 "%s received packet on queue %u, but number "
2770 "of RX queues is %u\n",
2771 dev->name, index, dev->real_num_rx_queues);
2772 goto done;
2773 }
2774 rxqueue = dev->_rx + index;
2775 } else
2776 rxqueue = dev->_rx;
2777
2778 map = rcu_dereference(rxqueue->rps_map);
2779 if (map) {
2780 if (map->len == 1 &&
2781 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2782 tcpu = map->cpus[0];
2783 if (cpu_online(tcpu))
2784 cpu = tcpu;
2785 goto done;
2786 }
2787 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2788 goto done;
2789 }
2790
2791 skb_reset_network_header(skb);
2792 if (!skb_get_rxhash(skb))
2793 goto done;
2794
2795 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2796 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2797 if (flow_table && sock_flow_table) {
2798 u16 next_cpu;
2799 struct rps_dev_flow *rflow;
2800
2801 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2802 tcpu = rflow->cpu;
2803
2804 next_cpu = sock_flow_table->ents[skb->rxhash &
2805 sock_flow_table->mask];
2806
2807 /*
2808 * If the desired CPU (where last recvmsg was done) is
2809 * different from current CPU (one in the rx-queue flow
2810 * table entry), switch if one of the following holds:
2811 * - Current CPU is unset (equal to RPS_NO_CPU).
2812 * - Current CPU is offline.
2813 * - The current CPU's queue tail has advanced beyond the
2814 * last packet that was enqueued using this table entry.
2815 * This guarantees that all previous packets for the flow
2816 * have been dequeued, thus preserving in order delivery.
2817 */
2818 if (unlikely(tcpu != next_cpu) &&
2819 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2820 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2821 rflow->last_qtail)) >= 0))
2822 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2823
2824 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2825 *rflowp = rflow;
2826 cpu = tcpu;
2827 goto done;
2828 }
2829 }
2830
2831 if (map) {
2832 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2833
2834 if (cpu_online(tcpu)) {
2835 cpu = tcpu;
2836 goto done;
2837 }
2838 }
2839
2840 done:
2841 return cpu;
2842 }
2843
2844 #ifdef CONFIG_RFS_ACCEL
2845
2846 /**
2847 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2848 * @dev: Device on which the filter was set
2849 * @rxq_index: RX queue index
2850 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2851 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2852 *
2853 * Drivers that implement ndo_rx_flow_steer() should periodically call
2854 * this function for each installed filter and remove the filters for
2855 * which it returns %true.
2856 */
2857 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2858 u32 flow_id, u16 filter_id)
2859 {
2860 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2861 struct rps_dev_flow_table *flow_table;
2862 struct rps_dev_flow *rflow;
2863 bool expire = true;
2864 int cpu;
2865
2866 rcu_read_lock();
2867 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2868 if (flow_table && flow_id <= flow_table->mask) {
2869 rflow = &flow_table->flows[flow_id];
2870 cpu = ACCESS_ONCE(rflow->cpu);
2871 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2872 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2873 rflow->last_qtail) <
2874 (int)(10 * flow_table->mask)))
2875 expire = false;
2876 }
2877 rcu_read_unlock();
2878 return expire;
2879 }
2880 EXPORT_SYMBOL(rps_may_expire_flow);
2881
2882 #endif /* CONFIG_RFS_ACCEL */
2883
2884 /* Called from hardirq (IPI) context */
2885 static void rps_trigger_softirq(void *data)
2886 {
2887 struct softnet_data *sd = data;
2888
2889 ____napi_schedule(sd, &sd->backlog);
2890 sd->received_rps++;
2891 }
2892
2893 #endif /* CONFIG_RPS */
2894
2895 /*
2896 * Check if this softnet_data structure is another cpu one
2897 * If yes, queue it to our IPI list and return 1
2898 * If no, return 0
2899 */
2900 static int rps_ipi_queued(struct softnet_data *sd)
2901 {
2902 #ifdef CONFIG_RPS
2903 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2904
2905 if (sd != mysd) {
2906 sd->rps_ipi_next = mysd->rps_ipi_list;
2907 mysd->rps_ipi_list = sd;
2908
2909 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2910 return 1;
2911 }
2912 #endif /* CONFIG_RPS */
2913 return 0;
2914 }
2915
2916 /*
2917 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2918 * queue (may be a remote CPU queue).
2919 */
2920 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2921 unsigned int *qtail)
2922 {
2923 struct softnet_data *sd;
2924 unsigned long flags;
2925
2926 sd = &per_cpu(softnet_data, cpu);
2927
2928 local_irq_save(flags);
2929
2930 rps_lock(sd);
2931 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2932 if (skb_queue_len(&sd->input_pkt_queue)) {
2933 enqueue:
2934 __skb_queue_tail(&sd->input_pkt_queue, skb);
2935 input_queue_tail_incr_save(sd, qtail);
2936 rps_unlock(sd);
2937 local_irq_restore(flags);
2938 return NET_RX_SUCCESS;
2939 }
2940
2941 /* Schedule NAPI for backlog device
2942 * We can use non atomic operation since we own the queue lock
2943 */
2944 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2945 if (!rps_ipi_queued(sd))
2946 ____napi_schedule(sd, &sd->backlog);
2947 }
2948 goto enqueue;
2949 }
2950
2951 sd->dropped++;
2952 rps_unlock(sd);
2953
2954 local_irq_restore(flags);
2955
2956 atomic_long_inc(&skb->dev->rx_dropped);
2957 kfree_skb(skb);
2958 return NET_RX_DROP;
2959 }
2960
2961 /**
2962 * netif_rx - post buffer to the network code
2963 * @skb: buffer to post
2964 *
2965 * This function receives a packet from a device driver and queues it for
2966 * the upper (protocol) levels to process. It always succeeds. The buffer
2967 * may be dropped during processing for congestion control or by the
2968 * protocol layers.
2969 *
2970 * return values:
2971 * NET_RX_SUCCESS (no congestion)
2972 * NET_RX_DROP (packet was dropped)
2973 *
2974 */
2975
2976 int netif_rx(struct sk_buff *skb)
2977 {
2978 int ret;
2979
2980 /* if netpoll wants it, pretend we never saw it */
2981 if (netpoll_rx(skb))
2982 return NET_RX_DROP;
2983
2984 net_timestamp_check(netdev_tstamp_prequeue, skb);
2985
2986 trace_netif_rx(skb);
2987 #ifdef CONFIG_RPS
2988 if (static_key_false(&rps_needed)) {
2989 struct rps_dev_flow voidflow, *rflow = &voidflow;
2990 int cpu;
2991
2992 preempt_disable();
2993 rcu_read_lock();
2994
2995 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2996 if (cpu < 0)
2997 cpu = smp_processor_id();
2998
2999 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3000
3001 rcu_read_unlock();
3002 preempt_enable();
3003 } else
3004 #endif
3005 {
3006 unsigned int qtail;
3007 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3008 put_cpu();
3009 }
3010 return ret;
3011 }
3012 EXPORT_SYMBOL(netif_rx);
3013
3014 int netif_rx_ni(struct sk_buff *skb)
3015 {
3016 int err;
3017
3018 preempt_disable();
3019 err = netif_rx(skb);
3020 if (local_softirq_pending())
3021 do_softirq();
3022 preempt_enable();
3023
3024 return err;
3025 }
3026 EXPORT_SYMBOL(netif_rx_ni);
3027
3028 static void net_tx_action(struct softirq_action *h)
3029 {
3030 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3031
3032 if (sd->completion_queue) {
3033 struct sk_buff *clist;
3034
3035 local_irq_disable();
3036 clist = sd->completion_queue;
3037 sd->completion_queue = NULL;
3038 local_irq_enable();
3039
3040 while (clist) {
3041 struct sk_buff *skb = clist;
3042 clist = clist->next;
3043
3044 WARN_ON(atomic_read(&skb->users));
3045 trace_kfree_skb(skb, net_tx_action);
3046 __kfree_skb(skb);
3047 }
3048 }
3049
3050 if (sd->output_queue) {
3051 struct Qdisc *head;
3052
3053 local_irq_disable();
3054 head = sd->output_queue;
3055 sd->output_queue = NULL;
3056 sd->output_queue_tailp = &sd->output_queue;
3057 local_irq_enable();
3058
3059 while (head) {
3060 struct Qdisc *q = head;
3061 spinlock_t *root_lock;
3062
3063 head = head->next_sched;
3064
3065 root_lock = qdisc_lock(q);
3066 if (spin_trylock(root_lock)) {
3067 smp_mb__before_clear_bit();
3068 clear_bit(__QDISC_STATE_SCHED,
3069 &q->state);
3070 qdisc_run(q);
3071 spin_unlock(root_lock);
3072 } else {
3073 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3074 &q->state)) {
3075 __netif_reschedule(q);
3076 } else {
3077 smp_mb__before_clear_bit();
3078 clear_bit(__QDISC_STATE_SCHED,
3079 &q->state);
3080 }
3081 }
3082 }
3083 }
3084 }
3085
3086 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3087 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3088 /* This hook is defined here for ATM LANE */
3089 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3090 unsigned char *addr) __read_mostly;
3091 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3092 #endif
3093
3094 #ifdef CONFIG_NET_CLS_ACT
3095 /* TODO: Maybe we should just force sch_ingress to be compiled in
3096 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3097 * a compare and 2 stores extra right now if we dont have it on
3098 * but have CONFIG_NET_CLS_ACT
3099 * NOTE: This doesn't stop any functionality; if you dont have
3100 * the ingress scheduler, you just can't add policies on ingress.
3101 *
3102 */
3103 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3104 {
3105 struct net_device *dev = skb->dev;
3106 u32 ttl = G_TC_RTTL(skb->tc_verd);
3107 int result = TC_ACT_OK;
3108 struct Qdisc *q;
3109
3110 if (unlikely(MAX_RED_LOOP < ttl++)) {
3111 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3112 skb->skb_iif, dev->ifindex);
3113 return TC_ACT_SHOT;
3114 }
3115
3116 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3117 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3118
3119 q = rxq->qdisc;
3120 if (q != &noop_qdisc) {
3121 spin_lock(qdisc_lock(q));
3122 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3123 result = qdisc_enqueue_root(skb, q);
3124 spin_unlock(qdisc_lock(q));
3125 }
3126
3127 return result;
3128 }
3129
3130 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3131 struct packet_type **pt_prev,
3132 int *ret, struct net_device *orig_dev)
3133 {
3134 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3135
3136 if (!rxq || rxq->qdisc == &noop_qdisc)
3137 goto out;
3138
3139 if (*pt_prev) {
3140 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3141 *pt_prev = NULL;
3142 }
3143
3144 switch (ing_filter(skb, rxq)) {
3145 case TC_ACT_SHOT:
3146 case TC_ACT_STOLEN:
3147 kfree_skb(skb);
3148 return NULL;
3149 }
3150
3151 out:
3152 skb->tc_verd = 0;
3153 return skb;
3154 }
3155 #endif
3156
3157 /**
3158 * netdev_rx_handler_register - register receive handler
3159 * @dev: device to register a handler for
3160 * @rx_handler: receive handler to register
3161 * @rx_handler_data: data pointer that is used by rx handler
3162 *
3163 * Register a receive hander for a device. This handler will then be
3164 * called from __netif_receive_skb. A negative errno code is returned
3165 * on a failure.
3166 *
3167 * The caller must hold the rtnl_mutex.
3168 *
3169 * For a general description of rx_handler, see enum rx_handler_result.
3170 */
3171 int netdev_rx_handler_register(struct net_device *dev,
3172 rx_handler_func_t *rx_handler,
3173 void *rx_handler_data)
3174 {
3175 ASSERT_RTNL();
3176
3177 if (dev->rx_handler)
3178 return -EBUSY;
3179
3180 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3181 rcu_assign_pointer(dev->rx_handler, rx_handler);
3182
3183 return 0;
3184 }
3185 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3186
3187 /**
3188 * netdev_rx_handler_unregister - unregister receive handler
3189 * @dev: device to unregister a handler from
3190 *
3191 * Unregister a receive hander from a device.
3192 *
3193 * The caller must hold the rtnl_mutex.
3194 */
3195 void netdev_rx_handler_unregister(struct net_device *dev)
3196 {
3197
3198 ASSERT_RTNL();
3199 RCU_INIT_POINTER(dev->rx_handler, NULL);
3200 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3201 }
3202 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3203
3204 /*
3205 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3206 * the special handling of PFMEMALLOC skbs.
3207 */
3208 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3209 {
3210 switch (skb->protocol) {
3211 case __constant_htons(ETH_P_ARP):
3212 case __constant_htons(ETH_P_IP):
3213 case __constant_htons(ETH_P_IPV6):
3214 case __constant_htons(ETH_P_8021Q):
3215 return true;
3216 default:
3217 return false;
3218 }
3219 }
3220
3221 static int __netif_receive_skb(struct sk_buff *skb)
3222 {
3223 struct packet_type *ptype, *pt_prev;
3224 rx_handler_func_t *rx_handler;
3225 struct net_device *orig_dev;
3226 struct net_device *null_or_dev;
3227 bool deliver_exact = false;
3228 int ret = NET_RX_DROP;
3229 __be16 type;
3230 unsigned long pflags = current->flags;
3231
3232 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3233
3234 trace_netif_receive_skb(skb);
3235
3236 /*
3237 * PFMEMALLOC skbs are special, they should
3238 * - be delivered to SOCK_MEMALLOC sockets only
3239 * - stay away from userspace
3240 * - have bounded memory usage
3241 *
3242 * Use PF_MEMALLOC as this saves us from propagating the allocation
3243 * context down to all allocation sites.
3244 */
3245 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3246 current->flags |= PF_MEMALLOC;
3247
3248 /* if we've gotten here through NAPI, check netpoll */
3249 if (netpoll_receive_skb(skb))
3250 goto out;
3251
3252 orig_dev = skb->dev;
3253
3254 skb_reset_network_header(skb);
3255 skb_reset_transport_header(skb);
3256 skb_reset_mac_len(skb);
3257
3258 pt_prev = NULL;
3259
3260 rcu_read_lock();
3261
3262 another_round:
3263 skb->skb_iif = skb->dev->ifindex;
3264
3265 __this_cpu_inc(softnet_data.processed);
3266
3267 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3268 skb = vlan_untag(skb);
3269 if (unlikely(!skb))
3270 goto unlock;
3271 }
3272
3273 #ifdef CONFIG_NET_CLS_ACT
3274 if (skb->tc_verd & TC_NCLS) {
3275 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3276 goto ncls;
3277 }
3278 #endif
3279
3280 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3281 goto skip_taps;
3282
3283 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3284 if (!ptype->dev || ptype->dev == skb->dev) {
3285 if (pt_prev)
3286 ret = deliver_skb(skb, pt_prev, orig_dev);
3287 pt_prev = ptype;
3288 }
3289 }
3290
3291 skip_taps:
3292 #ifdef CONFIG_NET_CLS_ACT
3293 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3294 if (!skb)
3295 goto unlock;
3296 ncls:
3297 #endif
3298
3299 if (sk_memalloc_socks() && skb_pfmemalloc(skb)
3300 && !skb_pfmemalloc_protocol(skb))
3301 goto drop;
3302
3303 rx_handler = rcu_dereference(skb->dev->rx_handler);
3304 if (vlan_tx_tag_present(skb)) {
3305 if (pt_prev) {
3306 ret = deliver_skb(skb, pt_prev, orig_dev);
3307 pt_prev = NULL;
3308 }
3309 if (vlan_do_receive(&skb, !rx_handler))
3310 goto another_round;
3311 else if (unlikely(!skb))
3312 goto unlock;
3313 }
3314
3315 if (rx_handler) {
3316 if (pt_prev) {
3317 ret = deliver_skb(skb, pt_prev, orig_dev);
3318 pt_prev = NULL;
3319 }
3320 switch (rx_handler(&skb)) {
3321 case RX_HANDLER_CONSUMED:
3322 goto unlock;
3323 case RX_HANDLER_ANOTHER:
3324 goto another_round;
3325 case RX_HANDLER_EXACT:
3326 deliver_exact = true;
3327 case RX_HANDLER_PASS:
3328 break;
3329 default:
3330 BUG();
3331 }
3332 }
3333
3334 /* deliver only exact match when indicated */
3335 null_or_dev = deliver_exact ? skb->dev : NULL;
3336
3337 type = skb->protocol;
3338 list_for_each_entry_rcu(ptype,
3339 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3340 if (ptype->type == type &&
3341 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3342 ptype->dev == orig_dev)) {
3343 if (pt_prev)
3344 ret = deliver_skb(skb, pt_prev, orig_dev);
3345 pt_prev = ptype;
3346 }
3347 }
3348
3349 if (pt_prev) {
3350 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3351 goto drop;
3352 else
3353 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3354 } else {
3355 drop:
3356 atomic_long_inc(&skb->dev->rx_dropped);
3357 kfree_skb(skb);
3358 /* Jamal, now you will not able to escape explaining
3359 * me how you were going to use this. :-)
3360 */
3361 ret = NET_RX_DROP;
3362 }
3363
3364 unlock:
3365 rcu_read_unlock();
3366 out:
3367 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3368 return ret;
3369 }
3370
3371 /**
3372 * netif_receive_skb - process receive buffer from network
3373 * @skb: buffer to process
3374 *
3375 * netif_receive_skb() is the main receive data processing function.
3376 * It always succeeds. The buffer may be dropped during processing
3377 * for congestion control or by the protocol layers.
3378 *
3379 * This function may only be called from softirq context and interrupts
3380 * should be enabled.
3381 *
3382 * Return values (usually ignored):
3383 * NET_RX_SUCCESS: no congestion
3384 * NET_RX_DROP: packet was dropped
3385 */
3386 int netif_receive_skb(struct sk_buff *skb)
3387 {
3388 net_timestamp_check(netdev_tstamp_prequeue, skb);
3389
3390 if (skb_defer_rx_timestamp(skb))
3391 return NET_RX_SUCCESS;
3392
3393 #ifdef CONFIG_RPS
3394 if (static_key_false(&rps_needed)) {
3395 struct rps_dev_flow voidflow, *rflow = &voidflow;
3396 int cpu, ret;
3397
3398 rcu_read_lock();
3399
3400 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3401
3402 if (cpu >= 0) {
3403 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3404 rcu_read_unlock();
3405 return ret;
3406 }
3407 rcu_read_unlock();
3408 }
3409 #endif
3410 return __netif_receive_skb(skb);
3411 }
3412 EXPORT_SYMBOL(netif_receive_skb);
3413
3414 /* Network device is going away, flush any packets still pending
3415 * Called with irqs disabled.
3416 */
3417 static void flush_backlog(void *arg)
3418 {
3419 struct net_device *dev = arg;
3420 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3421 struct sk_buff *skb, *tmp;
3422
3423 rps_lock(sd);
3424 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3425 if (skb->dev == dev) {
3426 __skb_unlink(skb, &sd->input_pkt_queue);
3427 kfree_skb(skb);
3428 input_queue_head_incr(sd);
3429 }
3430 }
3431 rps_unlock(sd);
3432
3433 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3434 if (skb->dev == dev) {
3435 __skb_unlink(skb, &sd->process_queue);
3436 kfree_skb(skb);
3437 input_queue_head_incr(sd);
3438 }
3439 }
3440 }
3441
3442 static int napi_gro_complete(struct sk_buff *skb)
3443 {
3444 struct packet_type *ptype;
3445 __be16 type = skb->protocol;
3446 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3447 int err = -ENOENT;
3448
3449 if (NAPI_GRO_CB(skb)->count == 1) {
3450 skb_shinfo(skb)->gso_size = 0;
3451 goto out;
3452 }
3453
3454 rcu_read_lock();
3455 list_for_each_entry_rcu(ptype, head, list) {
3456 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3457 continue;
3458
3459 err = ptype->gro_complete(skb);
3460 break;
3461 }
3462 rcu_read_unlock();
3463
3464 if (err) {
3465 WARN_ON(&ptype->list == head);
3466 kfree_skb(skb);
3467 return NET_RX_SUCCESS;
3468 }
3469
3470 out:
3471 return netif_receive_skb(skb);
3472 }
3473
3474 /* napi->gro_list contains packets ordered by age.
3475 * youngest packets at the head of it.
3476 * Complete skbs in reverse order to reduce latencies.
3477 */
3478 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3479 {
3480 struct sk_buff *skb, *prev = NULL;
3481
3482 /* scan list and build reverse chain */
3483 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3484 skb->prev = prev;
3485 prev = skb;
3486 }
3487
3488 for (skb = prev; skb; skb = prev) {
3489 skb->next = NULL;
3490
3491 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3492 return;
3493
3494 prev = skb->prev;
3495 napi_gro_complete(skb);
3496 napi->gro_count--;
3497 }
3498
3499 napi->gro_list = NULL;
3500 }
3501 EXPORT_SYMBOL(napi_gro_flush);
3502
3503 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3504 {
3505 struct sk_buff **pp = NULL;
3506 struct packet_type *ptype;
3507 __be16 type = skb->protocol;
3508 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3509 int same_flow;
3510 int mac_len;
3511 enum gro_result ret;
3512
3513 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3514 goto normal;
3515
3516 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3517 goto normal;
3518
3519 rcu_read_lock();
3520 list_for_each_entry_rcu(ptype, head, list) {
3521 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3522 continue;
3523
3524 skb_set_network_header(skb, skb_gro_offset(skb));
3525 mac_len = skb->network_header - skb->mac_header;
3526 skb->mac_len = mac_len;
3527 NAPI_GRO_CB(skb)->same_flow = 0;
3528 NAPI_GRO_CB(skb)->flush = 0;
3529 NAPI_GRO_CB(skb)->free = 0;
3530
3531 pp = ptype->gro_receive(&napi->gro_list, skb);
3532 break;
3533 }
3534 rcu_read_unlock();
3535
3536 if (&ptype->list == head)
3537 goto normal;
3538
3539 same_flow = NAPI_GRO_CB(skb)->same_flow;
3540 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3541
3542 if (pp) {
3543 struct sk_buff *nskb = *pp;
3544
3545 *pp = nskb->next;
3546 nskb->next = NULL;
3547 napi_gro_complete(nskb);
3548 napi->gro_count--;
3549 }
3550
3551 if (same_flow)
3552 goto ok;
3553
3554 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3555 goto normal;
3556
3557 napi->gro_count++;
3558 NAPI_GRO_CB(skb)->count = 1;
3559 NAPI_GRO_CB(skb)->age = jiffies;
3560 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3561 skb->next = napi->gro_list;
3562 napi->gro_list = skb;
3563 ret = GRO_HELD;
3564
3565 pull:
3566 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3567 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3568
3569 BUG_ON(skb->end - skb->tail < grow);
3570
3571 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3572
3573 skb->tail += grow;
3574 skb->data_len -= grow;
3575
3576 skb_shinfo(skb)->frags[0].page_offset += grow;
3577 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3578
3579 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3580 skb_frag_unref(skb, 0);
3581 memmove(skb_shinfo(skb)->frags,
3582 skb_shinfo(skb)->frags + 1,
3583 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3584 }
3585 }
3586
3587 ok:
3588 return ret;
3589
3590 normal:
3591 ret = GRO_NORMAL;
3592 goto pull;
3593 }
3594 EXPORT_SYMBOL(dev_gro_receive);
3595
3596 static inline gro_result_t
3597 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3598 {
3599 struct sk_buff *p;
3600 unsigned int maclen = skb->dev->hard_header_len;
3601
3602 for (p = napi->gro_list; p; p = p->next) {
3603 unsigned long diffs;
3604
3605 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3606 diffs |= p->vlan_tci ^ skb->vlan_tci;
3607 if (maclen == ETH_HLEN)
3608 diffs |= compare_ether_header(skb_mac_header(p),
3609 skb_gro_mac_header(skb));
3610 else if (!diffs)
3611 diffs = memcmp(skb_mac_header(p),
3612 skb_gro_mac_header(skb),
3613 maclen);
3614 NAPI_GRO_CB(p)->same_flow = !diffs;
3615 NAPI_GRO_CB(p)->flush = 0;
3616 }
3617
3618 return dev_gro_receive(napi, skb);
3619 }
3620
3621 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3622 {
3623 switch (ret) {
3624 case GRO_NORMAL:
3625 if (netif_receive_skb(skb))
3626 ret = GRO_DROP;
3627 break;
3628
3629 case GRO_DROP:
3630 kfree_skb(skb);
3631 break;
3632
3633 case GRO_MERGED_FREE:
3634 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3635 kmem_cache_free(skbuff_head_cache, skb);
3636 else
3637 __kfree_skb(skb);
3638 break;
3639
3640 case GRO_HELD:
3641 case GRO_MERGED:
3642 break;
3643 }
3644
3645 return ret;
3646 }
3647 EXPORT_SYMBOL(napi_skb_finish);
3648
3649 static void skb_gro_reset_offset(struct sk_buff *skb)
3650 {
3651 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3652 const skb_frag_t *frag0 = &pinfo->frags[0];
3653
3654 NAPI_GRO_CB(skb)->data_offset = 0;
3655 NAPI_GRO_CB(skb)->frag0 = NULL;
3656 NAPI_GRO_CB(skb)->frag0_len = 0;
3657
3658 if (skb->mac_header == skb->tail &&
3659 pinfo->nr_frags &&
3660 !PageHighMem(skb_frag_page(frag0))) {
3661 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3662 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3663 }
3664 }
3665
3666 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3667 {
3668 skb_gro_reset_offset(skb);
3669
3670 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3671 }
3672 EXPORT_SYMBOL(napi_gro_receive);
3673
3674 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3675 {
3676 __skb_pull(skb, skb_headlen(skb));
3677 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3678 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3679 skb->vlan_tci = 0;
3680 skb->dev = napi->dev;
3681 skb->skb_iif = 0;
3682
3683 napi->skb = skb;
3684 }
3685
3686 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3687 {
3688 struct sk_buff *skb = napi->skb;
3689
3690 if (!skb) {
3691 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3692 if (skb)
3693 napi->skb = skb;
3694 }
3695 return skb;
3696 }
3697 EXPORT_SYMBOL(napi_get_frags);
3698
3699 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3700 gro_result_t ret)
3701 {
3702 switch (ret) {
3703 case GRO_NORMAL:
3704 case GRO_HELD:
3705 skb->protocol = eth_type_trans(skb, skb->dev);
3706
3707 if (ret == GRO_HELD)
3708 skb_gro_pull(skb, -ETH_HLEN);
3709 else if (netif_receive_skb(skb))
3710 ret = GRO_DROP;
3711 break;
3712
3713 case GRO_DROP:
3714 case GRO_MERGED_FREE:
3715 napi_reuse_skb(napi, skb);
3716 break;
3717
3718 case GRO_MERGED:
3719 break;
3720 }
3721
3722 return ret;
3723 }
3724 EXPORT_SYMBOL(napi_frags_finish);
3725
3726 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3727 {
3728 struct sk_buff *skb = napi->skb;
3729 struct ethhdr *eth;
3730 unsigned int hlen;
3731 unsigned int off;
3732
3733 napi->skb = NULL;
3734
3735 skb_reset_mac_header(skb);
3736 skb_gro_reset_offset(skb);
3737
3738 off = skb_gro_offset(skb);
3739 hlen = off + sizeof(*eth);
3740 eth = skb_gro_header_fast(skb, off);
3741 if (skb_gro_header_hard(skb, hlen)) {
3742 eth = skb_gro_header_slow(skb, hlen, off);
3743 if (unlikely(!eth)) {
3744 napi_reuse_skb(napi, skb);
3745 skb = NULL;
3746 goto out;
3747 }
3748 }
3749
3750 skb_gro_pull(skb, sizeof(*eth));
3751
3752 /*
3753 * This works because the only protocols we care about don't require
3754 * special handling. We'll fix it up properly at the end.
3755 */
3756 skb->protocol = eth->h_proto;
3757
3758 out:
3759 return skb;
3760 }
3761
3762 gro_result_t napi_gro_frags(struct napi_struct *napi)
3763 {
3764 struct sk_buff *skb = napi_frags_skb(napi);
3765
3766 if (!skb)
3767 return GRO_DROP;
3768
3769 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3770 }
3771 EXPORT_SYMBOL(napi_gro_frags);
3772
3773 /*
3774 * net_rps_action sends any pending IPI's for rps.
3775 * Note: called with local irq disabled, but exits with local irq enabled.
3776 */
3777 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3778 {
3779 #ifdef CONFIG_RPS
3780 struct softnet_data *remsd = sd->rps_ipi_list;
3781
3782 if (remsd) {
3783 sd->rps_ipi_list = NULL;
3784
3785 local_irq_enable();
3786
3787 /* Send pending IPI's to kick RPS processing on remote cpus. */
3788 while (remsd) {
3789 struct softnet_data *next = remsd->rps_ipi_next;
3790
3791 if (cpu_online(remsd->cpu))
3792 __smp_call_function_single(remsd->cpu,
3793 &remsd->csd, 0);
3794 remsd = next;
3795 }
3796 } else
3797 #endif
3798 local_irq_enable();
3799 }
3800
3801 static int process_backlog(struct napi_struct *napi, int quota)
3802 {
3803 int work = 0;
3804 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3805
3806 #ifdef CONFIG_RPS
3807 /* Check if we have pending ipi, its better to send them now,
3808 * not waiting net_rx_action() end.
3809 */
3810 if (sd->rps_ipi_list) {
3811 local_irq_disable();
3812 net_rps_action_and_irq_enable(sd);
3813 }
3814 #endif
3815 napi->weight = weight_p;
3816 local_irq_disable();
3817 while (work < quota) {
3818 struct sk_buff *skb;
3819 unsigned int qlen;
3820
3821 while ((skb = __skb_dequeue(&sd->process_queue))) {
3822 local_irq_enable();
3823 __netif_receive_skb(skb);
3824 local_irq_disable();
3825 input_queue_head_incr(sd);
3826 if (++work >= quota) {
3827 local_irq_enable();
3828 return work;
3829 }
3830 }
3831
3832 rps_lock(sd);
3833 qlen = skb_queue_len(&sd->input_pkt_queue);
3834 if (qlen)
3835 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3836 &sd->process_queue);
3837
3838 if (qlen < quota - work) {
3839 /*
3840 * Inline a custom version of __napi_complete().
3841 * only current cpu owns and manipulates this napi,
3842 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3843 * we can use a plain write instead of clear_bit(),
3844 * and we dont need an smp_mb() memory barrier.
3845 */
3846 list_del(&napi->poll_list);
3847 napi->state = 0;
3848
3849 quota = work + qlen;
3850 }
3851 rps_unlock(sd);
3852 }
3853 local_irq_enable();
3854
3855 return work;
3856 }
3857
3858 /**
3859 * __napi_schedule - schedule for receive
3860 * @n: entry to schedule
3861 *
3862 * The entry's receive function will be scheduled to run
3863 */
3864 void __napi_schedule(struct napi_struct *n)
3865 {
3866 unsigned long flags;
3867
3868 local_irq_save(flags);
3869 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3870 local_irq_restore(flags);
3871 }
3872 EXPORT_SYMBOL(__napi_schedule);
3873
3874 void __napi_complete(struct napi_struct *n)
3875 {
3876 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3877 BUG_ON(n->gro_list);
3878
3879 list_del(&n->poll_list);
3880 smp_mb__before_clear_bit();
3881 clear_bit(NAPI_STATE_SCHED, &n->state);
3882 }
3883 EXPORT_SYMBOL(__napi_complete);
3884
3885 void napi_complete(struct napi_struct *n)
3886 {
3887 unsigned long flags;
3888
3889 /*
3890 * don't let napi dequeue from the cpu poll list
3891 * just in case its running on a different cpu
3892 */
3893 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3894 return;
3895
3896 napi_gro_flush(n, false);
3897 local_irq_save(flags);
3898 __napi_complete(n);
3899 local_irq_restore(flags);
3900 }
3901 EXPORT_SYMBOL(napi_complete);
3902
3903 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3904 int (*poll)(struct napi_struct *, int), int weight)
3905 {
3906 INIT_LIST_HEAD(&napi->poll_list);
3907 napi->gro_count = 0;
3908 napi->gro_list = NULL;
3909 napi->skb = NULL;
3910 napi->poll = poll;
3911 napi->weight = weight;
3912 list_add(&napi->dev_list, &dev->napi_list);
3913 napi->dev = dev;
3914 #ifdef CONFIG_NETPOLL
3915 spin_lock_init(&napi->poll_lock);
3916 napi->poll_owner = -1;
3917 #endif
3918 set_bit(NAPI_STATE_SCHED, &napi->state);
3919 }
3920 EXPORT_SYMBOL(netif_napi_add);
3921
3922 void netif_napi_del(struct napi_struct *napi)
3923 {
3924 struct sk_buff *skb, *next;
3925
3926 list_del_init(&napi->dev_list);
3927 napi_free_frags(napi);
3928
3929 for (skb = napi->gro_list; skb; skb = next) {
3930 next = skb->next;
3931 skb->next = NULL;
3932 kfree_skb(skb);
3933 }
3934
3935 napi->gro_list = NULL;
3936 napi->gro_count = 0;
3937 }
3938 EXPORT_SYMBOL(netif_napi_del);
3939
3940 static void net_rx_action(struct softirq_action *h)
3941 {
3942 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3943 unsigned long time_limit = jiffies + 2;
3944 int budget = netdev_budget;
3945 void *have;
3946
3947 local_irq_disable();
3948
3949 while (!list_empty(&sd->poll_list)) {
3950 struct napi_struct *n;
3951 int work, weight;
3952
3953 /* If softirq window is exhuasted then punt.
3954 * Allow this to run for 2 jiffies since which will allow
3955 * an average latency of 1.5/HZ.
3956 */
3957 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3958 goto softnet_break;
3959
3960 local_irq_enable();
3961
3962 /* Even though interrupts have been re-enabled, this
3963 * access is safe because interrupts can only add new
3964 * entries to the tail of this list, and only ->poll()
3965 * calls can remove this head entry from the list.
3966 */
3967 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3968
3969 have = netpoll_poll_lock(n);
3970
3971 weight = n->weight;
3972
3973 /* This NAPI_STATE_SCHED test is for avoiding a race
3974 * with netpoll's poll_napi(). Only the entity which
3975 * obtains the lock and sees NAPI_STATE_SCHED set will
3976 * actually make the ->poll() call. Therefore we avoid
3977 * accidentally calling ->poll() when NAPI is not scheduled.
3978 */
3979 work = 0;
3980 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3981 work = n->poll(n, weight);
3982 trace_napi_poll(n);
3983 }
3984
3985 WARN_ON_ONCE(work > weight);
3986
3987 budget -= work;
3988
3989 local_irq_disable();
3990
3991 /* Drivers must not modify the NAPI state if they
3992 * consume the entire weight. In such cases this code
3993 * still "owns" the NAPI instance and therefore can
3994 * move the instance around on the list at-will.
3995 */
3996 if (unlikely(work == weight)) {
3997 if (unlikely(napi_disable_pending(n))) {
3998 local_irq_enable();
3999 napi_complete(n);
4000 local_irq_disable();
4001 } else {
4002 if (n->gro_list) {
4003 /* flush too old packets
4004 * If HZ < 1000, flush all packets.
4005 */
4006 local_irq_enable();
4007 napi_gro_flush(n, HZ >= 1000);
4008 local_irq_disable();
4009 }
4010 list_move_tail(&n->poll_list, &sd->poll_list);
4011 }
4012 }
4013
4014 netpoll_poll_unlock(have);
4015 }
4016 out:
4017 net_rps_action_and_irq_enable(sd);
4018
4019 #ifdef CONFIG_NET_DMA
4020 /*
4021 * There may not be any more sk_buffs coming right now, so push
4022 * any pending DMA copies to hardware
4023 */
4024 dma_issue_pending_all();
4025 #endif
4026
4027 return;
4028
4029 softnet_break:
4030 sd->time_squeeze++;
4031 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4032 goto out;
4033 }
4034
4035 static gifconf_func_t *gifconf_list[NPROTO];
4036
4037 /**
4038 * register_gifconf - register a SIOCGIF handler
4039 * @family: Address family
4040 * @gifconf: Function handler
4041 *
4042 * Register protocol dependent address dumping routines. The handler
4043 * that is passed must not be freed or reused until it has been replaced
4044 * by another handler.
4045 */
4046 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
4047 {
4048 if (family >= NPROTO)
4049 return -EINVAL;
4050 gifconf_list[family] = gifconf;
4051 return 0;
4052 }
4053 EXPORT_SYMBOL(register_gifconf);
4054
4055
4056 /*
4057 * Map an interface index to its name (SIOCGIFNAME)
4058 */
4059
4060 /*
4061 * We need this ioctl for efficient implementation of the
4062 * if_indextoname() function required by the IPv6 API. Without
4063 * it, we would have to search all the interfaces to find a
4064 * match. --pb
4065 */
4066
4067 static int dev_ifname(struct net *net, struct ifreq __user *arg)
4068 {
4069 struct net_device *dev;
4070 struct ifreq ifr;
4071
4072 /*
4073 * Fetch the caller's info block.
4074 */
4075
4076 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4077 return -EFAULT;
4078
4079 rcu_read_lock();
4080 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4081 if (!dev) {
4082 rcu_read_unlock();
4083 return -ENODEV;
4084 }
4085
4086 strcpy(ifr.ifr_name, dev->name);
4087 rcu_read_unlock();
4088
4089 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4090 return -EFAULT;
4091 return 0;
4092 }
4093
4094 /*
4095 * Perform a SIOCGIFCONF call. This structure will change
4096 * size eventually, and there is nothing I can do about it.
4097 * Thus we will need a 'compatibility mode'.
4098 */
4099
4100 static int dev_ifconf(struct net *net, char __user *arg)
4101 {
4102 struct ifconf ifc;
4103 struct net_device *dev;
4104 char __user *pos;
4105 int len;
4106 int total;
4107 int i;
4108
4109 /*
4110 * Fetch the caller's info block.
4111 */
4112
4113 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4114 return -EFAULT;
4115
4116 pos = ifc.ifc_buf;
4117 len = ifc.ifc_len;
4118
4119 /*
4120 * Loop over the interfaces, and write an info block for each.
4121 */
4122
4123 total = 0;
4124 for_each_netdev(net, dev) {
4125 for (i = 0; i < NPROTO; i++) {
4126 if (gifconf_list[i]) {
4127 int done;
4128 if (!pos)
4129 done = gifconf_list[i](dev, NULL, 0);
4130 else
4131 done = gifconf_list[i](dev, pos + total,
4132 len - total);
4133 if (done < 0)
4134 return -EFAULT;
4135 total += done;
4136 }
4137 }
4138 }
4139
4140 /*
4141 * All done. Write the updated control block back to the caller.
4142 */
4143 ifc.ifc_len = total;
4144
4145 /*
4146 * Both BSD and Solaris return 0 here, so we do too.
4147 */
4148 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4149 }
4150
4151 #ifdef CONFIG_PROC_FS
4152
4153 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4154
4155 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4156 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4157 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4158
4159 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4160 {
4161 struct net *net = seq_file_net(seq);
4162 struct net_device *dev;
4163 struct hlist_node *p;
4164 struct hlist_head *h;
4165 unsigned int count = 0, offset = get_offset(*pos);
4166
4167 h = &net->dev_name_head[get_bucket(*pos)];
4168 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4169 if (++count == offset)
4170 return dev;
4171 }
4172
4173 return NULL;
4174 }
4175
4176 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4177 {
4178 struct net_device *dev;
4179 unsigned int bucket;
4180
4181 do {
4182 dev = dev_from_same_bucket(seq, pos);
4183 if (dev)
4184 return dev;
4185
4186 bucket = get_bucket(*pos) + 1;
4187 *pos = set_bucket_offset(bucket, 1);
4188 } while (bucket < NETDEV_HASHENTRIES);
4189
4190 return NULL;
4191 }
4192
4193 /*
4194 * This is invoked by the /proc filesystem handler to display a device
4195 * in detail.
4196 */
4197 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4198 __acquires(RCU)
4199 {
4200 rcu_read_lock();
4201 if (!*pos)
4202 return SEQ_START_TOKEN;
4203
4204 if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4205 return NULL;
4206
4207 return dev_from_bucket(seq, pos);
4208 }
4209
4210 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4211 {
4212 ++*pos;
4213 return dev_from_bucket(seq, pos);
4214 }
4215
4216 void dev_seq_stop(struct seq_file *seq, void *v)
4217 __releases(RCU)
4218 {
4219 rcu_read_unlock();
4220 }
4221
4222 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4223 {
4224 struct rtnl_link_stats64 temp;
4225 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4226
4227 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4228 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4229 dev->name, stats->rx_bytes, stats->rx_packets,
4230 stats->rx_errors,
4231 stats->rx_dropped + stats->rx_missed_errors,
4232 stats->rx_fifo_errors,
4233 stats->rx_length_errors + stats->rx_over_errors +
4234 stats->rx_crc_errors + stats->rx_frame_errors,
4235 stats->rx_compressed, stats->multicast,
4236 stats->tx_bytes, stats->tx_packets,
4237 stats->tx_errors, stats->tx_dropped,
4238 stats->tx_fifo_errors, stats->collisions,
4239 stats->tx_carrier_errors +
4240 stats->tx_aborted_errors +
4241 stats->tx_window_errors +
4242 stats->tx_heartbeat_errors,
4243 stats->tx_compressed);
4244 }
4245
4246 /*
4247 * Called from the PROCfs module. This now uses the new arbitrary sized
4248 * /proc/net interface to create /proc/net/dev
4249 */
4250 static int dev_seq_show(struct seq_file *seq, void *v)
4251 {
4252 if (v == SEQ_START_TOKEN)
4253 seq_puts(seq, "Inter-| Receive "
4254 " | Transmit\n"
4255 " face |bytes packets errs drop fifo frame "
4256 "compressed multicast|bytes packets errs "
4257 "drop fifo colls carrier compressed\n");
4258 else
4259 dev_seq_printf_stats(seq, v);
4260 return 0;
4261 }
4262
4263 static struct softnet_data *softnet_get_online(loff_t *pos)
4264 {
4265 struct softnet_data *sd = NULL;
4266
4267 while (*pos < nr_cpu_ids)
4268 if (cpu_online(*pos)) {
4269 sd = &per_cpu(softnet_data, *pos);
4270 break;
4271 } else
4272 ++*pos;
4273 return sd;
4274 }
4275
4276 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4277 {
4278 return softnet_get_online(pos);
4279 }
4280
4281 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4282 {
4283 ++*pos;
4284 return softnet_get_online(pos);
4285 }
4286
4287 static void softnet_seq_stop(struct seq_file *seq, void *v)
4288 {
4289 }
4290
4291 static int softnet_seq_show(struct seq_file *seq, void *v)
4292 {
4293 struct softnet_data *sd = v;
4294
4295 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4296 sd->processed, sd->dropped, sd->time_squeeze, 0,
4297 0, 0, 0, 0, /* was fastroute */
4298 sd->cpu_collision, sd->received_rps);
4299 return 0;
4300 }
4301
4302 static const struct seq_operations dev_seq_ops = {
4303 .start = dev_seq_start,
4304 .next = dev_seq_next,
4305 .stop = dev_seq_stop,
4306 .show = dev_seq_show,
4307 };
4308
4309 static int dev_seq_open(struct inode *inode, struct file *file)
4310 {
4311 return seq_open_net(inode, file, &dev_seq_ops,
4312 sizeof(struct seq_net_private));
4313 }
4314
4315 static const struct file_operations dev_seq_fops = {
4316 .owner = THIS_MODULE,
4317 .open = dev_seq_open,
4318 .read = seq_read,
4319 .llseek = seq_lseek,
4320 .release = seq_release_net,
4321 };
4322
4323 static const struct seq_operations softnet_seq_ops = {
4324 .start = softnet_seq_start,
4325 .next = softnet_seq_next,
4326 .stop = softnet_seq_stop,
4327 .show = softnet_seq_show,
4328 };
4329
4330 static int softnet_seq_open(struct inode *inode, struct file *file)
4331 {
4332 return seq_open(file, &softnet_seq_ops);
4333 }
4334
4335 static const struct file_operations softnet_seq_fops = {
4336 .owner = THIS_MODULE,
4337 .open = softnet_seq_open,
4338 .read = seq_read,
4339 .llseek = seq_lseek,
4340 .release = seq_release,
4341 };
4342
4343 static void *ptype_get_idx(loff_t pos)
4344 {
4345 struct packet_type *pt = NULL;
4346 loff_t i = 0;
4347 int t;
4348
4349 list_for_each_entry_rcu(pt, &ptype_all, list) {
4350 if (i == pos)
4351 return pt;
4352 ++i;
4353 }
4354
4355 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4356 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4357 if (i == pos)
4358 return pt;
4359 ++i;
4360 }
4361 }
4362 return NULL;
4363 }
4364
4365 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4366 __acquires(RCU)
4367 {
4368 rcu_read_lock();
4369 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4370 }
4371
4372 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4373 {
4374 struct packet_type *pt;
4375 struct list_head *nxt;
4376 int hash;
4377
4378 ++*pos;
4379 if (v == SEQ_START_TOKEN)
4380 return ptype_get_idx(0);
4381
4382 pt = v;
4383 nxt = pt->list.next;
4384 if (pt->type == htons(ETH_P_ALL)) {
4385 if (nxt != &ptype_all)
4386 goto found;
4387 hash = 0;
4388 nxt = ptype_base[0].next;
4389 } else
4390 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4391
4392 while (nxt == &ptype_base[hash]) {
4393 if (++hash >= PTYPE_HASH_SIZE)
4394 return NULL;
4395 nxt = ptype_base[hash].next;
4396 }
4397 found:
4398 return list_entry(nxt, struct packet_type, list);
4399 }
4400
4401 static void ptype_seq_stop(struct seq_file *seq, void *v)
4402 __releases(RCU)
4403 {
4404 rcu_read_unlock();
4405 }
4406
4407 static int ptype_seq_show(struct seq_file *seq, void *v)
4408 {
4409 struct packet_type *pt = v;
4410
4411 if (v == SEQ_START_TOKEN)
4412 seq_puts(seq, "Type Device Function\n");
4413 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4414 if (pt->type == htons(ETH_P_ALL))
4415 seq_puts(seq, "ALL ");
4416 else
4417 seq_printf(seq, "%04x", ntohs(pt->type));
4418
4419 seq_printf(seq, " %-8s %pF\n",
4420 pt->dev ? pt->dev->name : "", pt->func);
4421 }
4422
4423 return 0;
4424 }
4425
4426 static const struct seq_operations ptype_seq_ops = {
4427 .start = ptype_seq_start,
4428 .next = ptype_seq_next,
4429 .stop = ptype_seq_stop,
4430 .show = ptype_seq_show,
4431 };
4432
4433 static int ptype_seq_open(struct inode *inode, struct file *file)
4434 {
4435 return seq_open_net(inode, file, &ptype_seq_ops,
4436 sizeof(struct seq_net_private));
4437 }
4438
4439 static const struct file_operations ptype_seq_fops = {
4440 .owner = THIS_MODULE,
4441 .open = ptype_seq_open,
4442 .read = seq_read,
4443 .llseek = seq_lseek,
4444 .release = seq_release_net,
4445 };
4446
4447
4448 static int __net_init dev_proc_net_init(struct net *net)
4449 {
4450 int rc = -ENOMEM;
4451
4452 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4453 goto out;
4454 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4455 goto out_dev;
4456 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4457 goto out_softnet;
4458
4459 if (wext_proc_init(net))
4460 goto out_ptype;
4461 rc = 0;
4462 out:
4463 return rc;
4464 out_ptype:
4465 proc_net_remove(net, "ptype");
4466 out_softnet:
4467 proc_net_remove(net, "softnet_stat");
4468 out_dev:
4469 proc_net_remove(net, "dev");
4470 goto out;
4471 }
4472
4473 static void __net_exit dev_proc_net_exit(struct net *net)
4474 {
4475 wext_proc_exit(net);
4476
4477 proc_net_remove(net, "ptype");
4478 proc_net_remove(net, "softnet_stat");
4479 proc_net_remove(net, "dev");
4480 }
4481
4482 static struct pernet_operations __net_initdata dev_proc_ops = {
4483 .init = dev_proc_net_init,
4484 .exit = dev_proc_net_exit,
4485 };
4486
4487 static int __init dev_proc_init(void)
4488 {
4489 return register_pernet_subsys(&dev_proc_ops);
4490 }
4491 #else
4492 #define dev_proc_init() 0
4493 #endif /* CONFIG_PROC_FS */
4494
4495
4496 /**
4497 * netdev_set_master - set up master pointer
4498 * @slave: slave device
4499 * @master: new master device
4500 *
4501 * Changes the master device of the slave. Pass %NULL to break the
4502 * bonding. The caller must hold the RTNL semaphore. On a failure
4503 * a negative errno code is returned. On success the reference counts
4504 * are adjusted and the function returns zero.
4505 */
4506 int netdev_set_master(struct net_device *slave, struct net_device *master)
4507 {
4508 struct net_device *old = slave->master;
4509
4510 ASSERT_RTNL();
4511
4512 if (master) {
4513 if (old)
4514 return -EBUSY;
4515 dev_hold(master);
4516 }
4517
4518 slave->master = master;
4519
4520 if (old)
4521 dev_put(old);
4522 return 0;
4523 }
4524 EXPORT_SYMBOL(netdev_set_master);
4525
4526 /**
4527 * netdev_set_bond_master - set up bonding master/slave pair
4528 * @slave: slave device
4529 * @master: new master device
4530 *
4531 * Changes the master device of the slave. Pass %NULL to break the
4532 * bonding. The caller must hold the RTNL semaphore. On a failure
4533 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4534 * to the routing socket and the function returns zero.
4535 */
4536 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4537 {
4538 int err;
4539
4540 ASSERT_RTNL();
4541
4542 err = netdev_set_master(slave, master);
4543 if (err)
4544 return err;
4545 if (master)
4546 slave->flags |= IFF_SLAVE;
4547 else
4548 slave->flags &= ~IFF_SLAVE;
4549
4550 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4551 return 0;
4552 }
4553 EXPORT_SYMBOL(netdev_set_bond_master);
4554
4555 static void dev_change_rx_flags(struct net_device *dev, int flags)
4556 {
4557 const struct net_device_ops *ops = dev->netdev_ops;
4558
4559 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4560 ops->ndo_change_rx_flags(dev, flags);
4561 }
4562
4563 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4564 {
4565 unsigned int old_flags = dev->flags;
4566 kuid_t uid;
4567 kgid_t gid;
4568
4569 ASSERT_RTNL();
4570
4571 dev->flags |= IFF_PROMISC;
4572 dev->promiscuity += inc;
4573 if (dev->promiscuity == 0) {
4574 /*
4575 * Avoid overflow.
4576 * If inc causes overflow, untouch promisc and return error.
4577 */
4578 if (inc < 0)
4579 dev->flags &= ~IFF_PROMISC;
4580 else {
4581 dev->promiscuity -= inc;
4582 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4583 dev->name);
4584 return -EOVERFLOW;
4585 }
4586 }
4587 if (dev->flags != old_flags) {
4588 pr_info("device %s %s promiscuous mode\n",
4589 dev->name,
4590 dev->flags & IFF_PROMISC ? "entered" : "left");
4591 if (audit_enabled) {
4592 current_uid_gid(&uid, &gid);
4593 audit_log(current->audit_context, GFP_ATOMIC,
4594 AUDIT_ANOM_PROMISCUOUS,
4595 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4596 dev->name, (dev->flags & IFF_PROMISC),
4597 (old_flags & IFF_PROMISC),
4598 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4599 from_kuid(&init_user_ns, uid),
4600 from_kgid(&init_user_ns, gid),
4601 audit_get_sessionid(current));
4602 }
4603
4604 dev_change_rx_flags(dev, IFF_PROMISC);
4605 }
4606 return 0;
4607 }
4608
4609 /**
4610 * dev_set_promiscuity - update promiscuity count on a device
4611 * @dev: device
4612 * @inc: modifier
4613 *
4614 * Add or remove promiscuity from a device. While the count in the device
4615 * remains above zero the interface remains promiscuous. Once it hits zero
4616 * the device reverts back to normal filtering operation. A negative inc
4617 * value is used to drop promiscuity on the device.
4618 * Return 0 if successful or a negative errno code on error.
4619 */
4620 int dev_set_promiscuity(struct net_device *dev, int inc)
4621 {
4622 unsigned int old_flags = dev->flags;
4623 int err;
4624
4625 err = __dev_set_promiscuity(dev, inc);
4626 if (err < 0)
4627 return err;
4628 if (dev->flags != old_flags)
4629 dev_set_rx_mode(dev);
4630 return err;
4631 }
4632 EXPORT_SYMBOL(dev_set_promiscuity);
4633
4634 /**
4635 * dev_set_allmulti - update allmulti count on a device
4636 * @dev: device
4637 * @inc: modifier
4638 *
4639 * Add or remove reception of all multicast frames to a device. While the
4640 * count in the device remains above zero the interface remains listening
4641 * to all interfaces. Once it hits zero the device reverts back to normal
4642 * filtering operation. A negative @inc value is used to drop the counter
4643 * when releasing a resource needing all multicasts.
4644 * Return 0 if successful or a negative errno code on error.
4645 */
4646
4647 int dev_set_allmulti(struct net_device *dev, int inc)
4648 {
4649 unsigned int old_flags = dev->flags;
4650
4651 ASSERT_RTNL();
4652
4653 dev->flags |= IFF_ALLMULTI;
4654 dev->allmulti += inc;
4655 if (dev->allmulti == 0) {
4656 /*
4657 * Avoid overflow.
4658 * If inc causes overflow, untouch allmulti and return error.
4659 */
4660 if (inc < 0)
4661 dev->flags &= ~IFF_ALLMULTI;
4662 else {
4663 dev->allmulti -= inc;
4664 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4665 dev->name);
4666 return -EOVERFLOW;
4667 }
4668 }
4669 if (dev->flags ^ old_flags) {
4670 dev_change_rx_flags(dev, IFF_ALLMULTI);
4671 dev_set_rx_mode(dev);
4672 }
4673 return 0;
4674 }
4675 EXPORT_SYMBOL(dev_set_allmulti);
4676
4677 /*
4678 * Upload unicast and multicast address lists to device and
4679 * configure RX filtering. When the device doesn't support unicast
4680 * filtering it is put in promiscuous mode while unicast addresses
4681 * are present.
4682 */
4683 void __dev_set_rx_mode(struct net_device *dev)
4684 {
4685 const struct net_device_ops *ops = dev->netdev_ops;
4686
4687 /* dev_open will call this function so the list will stay sane. */
4688 if (!(dev->flags&IFF_UP))
4689 return;
4690
4691 if (!netif_device_present(dev))
4692 return;
4693
4694 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4695 /* Unicast addresses changes may only happen under the rtnl,
4696 * therefore calling __dev_set_promiscuity here is safe.
4697 */
4698 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4699 __dev_set_promiscuity(dev, 1);
4700 dev->uc_promisc = true;
4701 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4702 __dev_set_promiscuity(dev, -1);
4703 dev->uc_promisc = false;
4704 }
4705 }
4706
4707 if (ops->ndo_set_rx_mode)
4708 ops->ndo_set_rx_mode(dev);
4709 }
4710
4711 void dev_set_rx_mode(struct net_device *dev)
4712 {
4713 netif_addr_lock_bh(dev);
4714 __dev_set_rx_mode(dev);
4715 netif_addr_unlock_bh(dev);
4716 }
4717
4718 /**
4719 * dev_get_flags - get flags reported to userspace
4720 * @dev: device
4721 *
4722 * Get the combination of flag bits exported through APIs to userspace.
4723 */
4724 unsigned int dev_get_flags(const struct net_device *dev)
4725 {
4726 unsigned int flags;
4727
4728 flags = (dev->flags & ~(IFF_PROMISC |
4729 IFF_ALLMULTI |
4730 IFF_RUNNING |
4731 IFF_LOWER_UP |
4732 IFF_DORMANT)) |
4733 (dev->gflags & (IFF_PROMISC |
4734 IFF_ALLMULTI));
4735
4736 if (netif_running(dev)) {
4737 if (netif_oper_up(dev))
4738 flags |= IFF_RUNNING;
4739 if (netif_carrier_ok(dev))
4740 flags |= IFF_LOWER_UP;
4741 if (netif_dormant(dev))
4742 flags |= IFF_DORMANT;
4743 }
4744
4745 return flags;
4746 }
4747 EXPORT_SYMBOL(dev_get_flags);
4748
4749 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4750 {
4751 unsigned int old_flags = dev->flags;
4752 int ret;
4753
4754 ASSERT_RTNL();
4755
4756 /*
4757 * Set the flags on our device.
4758 */
4759
4760 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4761 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4762 IFF_AUTOMEDIA)) |
4763 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4764 IFF_ALLMULTI));
4765
4766 /*
4767 * Load in the correct multicast list now the flags have changed.
4768 */
4769
4770 if ((old_flags ^ flags) & IFF_MULTICAST)
4771 dev_change_rx_flags(dev, IFF_MULTICAST);
4772
4773 dev_set_rx_mode(dev);
4774
4775 /*
4776 * Have we downed the interface. We handle IFF_UP ourselves
4777 * according to user attempts to set it, rather than blindly
4778 * setting it.
4779 */
4780
4781 ret = 0;
4782 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4783 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4784
4785 if (!ret)
4786 dev_set_rx_mode(dev);
4787 }
4788
4789 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4790 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4791
4792 dev->gflags ^= IFF_PROMISC;
4793 dev_set_promiscuity(dev, inc);
4794 }
4795
4796 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4797 is important. Some (broken) drivers set IFF_PROMISC, when
4798 IFF_ALLMULTI is requested not asking us and not reporting.
4799 */
4800 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4801 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4802
4803 dev->gflags ^= IFF_ALLMULTI;
4804 dev_set_allmulti(dev, inc);
4805 }
4806
4807 return ret;
4808 }
4809
4810 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4811 {
4812 unsigned int changes = dev->flags ^ old_flags;
4813
4814 if (changes & IFF_UP) {
4815 if (dev->flags & IFF_UP)
4816 call_netdevice_notifiers(NETDEV_UP, dev);
4817 else
4818 call_netdevice_notifiers(NETDEV_DOWN, dev);
4819 }
4820
4821 if (dev->flags & IFF_UP &&
4822 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4823 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4824 }
4825
4826 /**
4827 * dev_change_flags - change device settings
4828 * @dev: device
4829 * @flags: device state flags
4830 *
4831 * Change settings on device based state flags. The flags are
4832 * in the userspace exported format.
4833 */
4834 int dev_change_flags(struct net_device *dev, unsigned int flags)
4835 {
4836 int ret;
4837 unsigned int changes, old_flags = dev->flags;
4838
4839 ret = __dev_change_flags(dev, flags);
4840 if (ret < 0)
4841 return ret;
4842
4843 changes = old_flags ^ dev->flags;
4844 if (changes)
4845 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4846
4847 __dev_notify_flags(dev, old_flags);
4848 return ret;
4849 }
4850 EXPORT_SYMBOL(dev_change_flags);
4851
4852 /**
4853 * dev_set_mtu - Change maximum transfer unit
4854 * @dev: device
4855 * @new_mtu: new transfer unit
4856 *
4857 * Change the maximum transfer size of the network device.
4858 */
4859 int dev_set_mtu(struct net_device *dev, int new_mtu)
4860 {
4861 const struct net_device_ops *ops = dev->netdev_ops;
4862 int err;
4863
4864 if (new_mtu == dev->mtu)
4865 return 0;
4866
4867 /* MTU must be positive. */
4868 if (new_mtu < 0)
4869 return -EINVAL;
4870
4871 if (!netif_device_present(dev))
4872 return -ENODEV;
4873
4874 err = 0;
4875 if (ops->ndo_change_mtu)
4876 err = ops->ndo_change_mtu(dev, new_mtu);
4877 else
4878 dev->mtu = new_mtu;
4879
4880 if (!err && dev->flags & IFF_UP)
4881 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4882 return err;
4883 }
4884 EXPORT_SYMBOL(dev_set_mtu);
4885
4886 /**
4887 * dev_set_group - Change group this device belongs to
4888 * @dev: device
4889 * @new_group: group this device should belong to
4890 */
4891 void dev_set_group(struct net_device *dev, int new_group)
4892 {
4893 dev->group = new_group;
4894 }
4895 EXPORT_SYMBOL(dev_set_group);
4896
4897 /**
4898 * dev_set_mac_address - Change Media Access Control Address
4899 * @dev: device
4900 * @sa: new address
4901 *
4902 * Change the hardware (MAC) address of the device
4903 */
4904 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4905 {
4906 const struct net_device_ops *ops = dev->netdev_ops;
4907 int err;
4908
4909 if (!ops->ndo_set_mac_address)
4910 return -EOPNOTSUPP;
4911 if (sa->sa_family != dev->type)
4912 return -EINVAL;
4913 if (!netif_device_present(dev))
4914 return -ENODEV;
4915 err = ops->ndo_set_mac_address(dev, sa);
4916 if (!err)
4917 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4918 add_device_randomness(dev->dev_addr, dev->addr_len);
4919 return err;
4920 }
4921 EXPORT_SYMBOL(dev_set_mac_address);
4922
4923 /*
4924 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4925 */
4926 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4927 {
4928 int err;
4929 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4930
4931 if (!dev)
4932 return -ENODEV;
4933
4934 switch (cmd) {
4935 case SIOCGIFFLAGS: /* Get interface flags */
4936 ifr->ifr_flags = (short) dev_get_flags(dev);
4937 return 0;
4938
4939 case SIOCGIFMETRIC: /* Get the metric on the interface
4940 (currently unused) */
4941 ifr->ifr_metric = 0;
4942 return 0;
4943
4944 case SIOCGIFMTU: /* Get the MTU of a device */
4945 ifr->ifr_mtu = dev->mtu;
4946 return 0;
4947
4948 case SIOCGIFHWADDR:
4949 if (!dev->addr_len)
4950 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4951 else
4952 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4953 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4954 ifr->ifr_hwaddr.sa_family = dev->type;
4955 return 0;
4956
4957 case SIOCGIFSLAVE:
4958 err = -EINVAL;
4959 break;
4960
4961 case SIOCGIFMAP:
4962 ifr->ifr_map.mem_start = dev->mem_start;
4963 ifr->ifr_map.mem_end = dev->mem_end;
4964 ifr->ifr_map.base_addr = dev->base_addr;
4965 ifr->ifr_map.irq = dev->irq;
4966 ifr->ifr_map.dma = dev->dma;
4967 ifr->ifr_map.port = dev->if_port;
4968 return 0;
4969
4970 case SIOCGIFINDEX:
4971 ifr->ifr_ifindex = dev->ifindex;
4972 return 0;
4973
4974 case SIOCGIFTXQLEN:
4975 ifr->ifr_qlen = dev->tx_queue_len;
4976 return 0;
4977
4978 default:
4979 /* dev_ioctl() should ensure this case
4980 * is never reached
4981 */
4982 WARN_ON(1);
4983 err = -ENOTTY;
4984 break;
4985
4986 }
4987 return err;
4988 }
4989
4990 /*
4991 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4992 */
4993 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4994 {
4995 int err;
4996 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4997 const struct net_device_ops *ops;
4998
4999 if (!dev)
5000 return -ENODEV;
5001
5002 ops = dev->netdev_ops;
5003
5004 switch (cmd) {
5005 case SIOCSIFFLAGS: /* Set interface flags */
5006 return dev_change_flags(dev, ifr->ifr_flags);
5007
5008 case SIOCSIFMETRIC: /* Set the metric on the interface
5009 (currently unused) */
5010 return -EOPNOTSUPP;
5011
5012 case SIOCSIFMTU: /* Set the MTU of a device */
5013 return dev_set_mtu(dev, ifr->ifr_mtu);
5014
5015 case SIOCSIFHWADDR:
5016 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
5017
5018 case SIOCSIFHWBROADCAST:
5019 if (ifr->ifr_hwaddr.sa_family != dev->type)
5020 return -EINVAL;
5021 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
5022 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
5023 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5024 return 0;
5025
5026 case SIOCSIFMAP:
5027 if (ops->ndo_set_config) {
5028 if (!netif_device_present(dev))
5029 return -ENODEV;
5030 return ops->ndo_set_config(dev, &ifr->ifr_map);
5031 }
5032 return -EOPNOTSUPP;
5033
5034 case SIOCADDMULTI:
5035 if (!ops->ndo_set_rx_mode ||
5036 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5037 return -EINVAL;
5038 if (!netif_device_present(dev))
5039 return -ENODEV;
5040 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
5041
5042 case SIOCDELMULTI:
5043 if (!ops->ndo_set_rx_mode ||
5044 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5045 return -EINVAL;
5046 if (!netif_device_present(dev))
5047 return -ENODEV;
5048 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
5049
5050 case SIOCSIFTXQLEN:
5051 if (ifr->ifr_qlen < 0)
5052 return -EINVAL;
5053 dev->tx_queue_len = ifr->ifr_qlen;
5054 return 0;
5055
5056 case SIOCSIFNAME:
5057 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
5058 return dev_change_name(dev, ifr->ifr_newname);
5059
5060 case SIOCSHWTSTAMP:
5061 err = net_hwtstamp_validate(ifr);
5062 if (err)
5063 return err;
5064 /* fall through */
5065
5066 /*
5067 * Unknown or private ioctl
5068 */
5069 default:
5070 if ((cmd >= SIOCDEVPRIVATE &&
5071 cmd <= SIOCDEVPRIVATE + 15) ||
5072 cmd == SIOCBONDENSLAVE ||
5073 cmd == SIOCBONDRELEASE ||
5074 cmd == SIOCBONDSETHWADDR ||
5075 cmd == SIOCBONDSLAVEINFOQUERY ||
5076 cmd == SIOCBONDINFOQUERY ||
5077 cmd == SIOCBONDCHANGEACTIVE ||
5078 cmd == SIOCGMIIPHY ||
5079 cmd == SIOCGMIIREG ||
5080 cmd == SIOCSMIIREG ||
5081 cmd == SIOCBRADDIF ||
5082 cmd == SIOCBRDELIF ||
5083 cmd == SIOCSHWTSTAMP ||
5084 cmd == SIOCWANDEV) {
5085 err = -EOPNOTSUPP;
5086 if (ops->ndo_do_ioctl) {
5087 if (netif_device_present(dev))
5088 err = ops->ndo_do_ioctl(dev, ifr, cmd);
5089 else
5090 err = -ENODEV;
5091 }
5092 } else
5093 err = -EINVAL;
5094
5095 }
5096 return err;
5097 }
5098
5099 /*
5100 * This function handles all "interface"-type I/O control requests. The actual
5101 * 'doing' part of this is dev_ifsioc above.
5102 */
5103
5104 /**
5105 * dev_ioctl - network device ioctl
5106 * @net: the applicable net namespace
5107 * @cmd: command to issue
5108 * @arg: pointer to a struct ifreq in user space
5109 *
5110 * Issue ioctl functions to devices. This is normally called by the
5111 * user space syscall interfaces but can sometimes be useful for
5112 * other purposes. The return value is the return from the syscall if
5113 * positive or a negative errno code on error.
5114 */
5115
5116 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5117 {
5118 struct ifreq ifr;
5119 int ret;
5120 char *colon;
5121
5122 /* One special case: SIOCGIFCONF takes ifconf argument
5123 and requires shared lock, because it sleeps writing
5124 to user space.
5125 */
5126
5127 if (cmd == SIOCGIFCONF) {
5128 rtnl_lock();
5129 ret = dev_ifconf(net, (char __user *) arg);
5130 rtnl_unlock();
5131 return ret;
5132 }
5133 if (cmd == SIOCGIFNAME)
5134 return dev_ifname(net, (struct ifreq __user *)arg);
5135
5136 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5137 return -EFAULT;
5138
5139 ifr.ifr_name[IFNAMSIZ-1] = 0;
5140
5141 colon = strchr(ifr.ifr_name, ':');
5142 if (colon)
5143 *colon = 0;
5144
5145 /*
5146 * See which interface the caller is talking about.
5147 */
5148
5149 switch (cmd) {
5150 /*
5151 * These ioctl calls:
5152 * - can be done by all.
5153 * - atomic and do not require locking.
5154 * - return a value
5155 */
5156 case SIOCGIFFLAGS:
5157 case SIOCGIFMETRIC:
5158 case SIOCGIFMTU:
5159 case SIOCGIFHWADDR:
5160 case SIOCGIFSLAVE:
5161 case SIOCGIFMAP:
5162 case SIOCGIFINDEX:
5163 case SIOCGIFTXQLEN:
5164 dev_load(net, ifr.ifr_name);
5165 rcu_read_lock();
5166 ret = dev_ifsioc_locked(net, &ifr, cmd);
5167 rcu_read_unlock();
5168 if (!ret) {
5169 if (colon)
5170 *colon = ':';
5171 if (copy_to_user(arg, &ifr,
5172 sizeof(struct ifreq)))
5173 ret = -EFAULT;
5174 }
5175 return ret;
5176
5177 case SIOCETHTOOL:
5178 dev_load(net, ifr.ifr_name);
5179 rtnl_lock();
5180 ret = dev_ethtool(net, &ifr);
5181 rtnl_unlock();
5182 if (!ret) {
5183 if (colon)
5184 *colon = ':';
5185 if (copy_to_user(arg, &ifr,
5186 sizeof(struct ifreq)))
5187 ret = -EFAULT;
5188 }
5189 return ret;
5190
5191 /*
5192 * These ioctl calls:
5193 * - require superuser power.
5194 * - require strict serialization.
5195 * - return a value
5196 */
5197 case SIOCGMIIPHY:
5198 case SIOCGMIIREG:
5199 case SIOCSIFNAME:
5200 if (!capable(CAP_NET_ADMIN))
5201 return -EPERM;
5202 dev_load(net, ifr.ifr_name);
5203 rtnl_lock();
5204 ret = dev_ifsioc(net, &ifr, cmd);
5205 rtnl_unlock();
5206 if (!ret) {
5207 if (colon)
5208 *colon = ':';
5209 if (copy_to_user(arg, &ifr,
5210 sizeof(struct ifreq)))
5211 ret = -EFAULT;
5212 }
5213 return ret;
5214
5215 /*
5216 * These ioctl calls:
5217 * - require superuser power.
5218 * - require strict serialization.
5219 * - do not return a value
5220 */
5221 case SIOCSIFFLAGS:
5222 case SIOCSIFMETRIC:
5223 case SIOCSIFMTU:
5224 case SIOCSIFMAP:
5225 case SIOCSIFHWADDR:
5226 case SIOCSIFSLAVE:
5227 case SIOCADDMULTI:
5228 case SIOCDELMULTI:
5229 case SIOCSIFHWBROADCAST:
5230 case SIOCSIFTXQLEN:
5231 case SIOCSMIIREG:
5232 case SIOCBONDENSLAVE:
5233 case SIOCBONDRELEASE:
5234 case SIOCBONDSETHWADDR:
5235 case SIOCBONDCHANGEACTIVE:
5236 case SIOCBRADDIF:
5237 case SIOCBRDELIF:
5238 case SIOCSHWTSTAMP:
5239 if (!capable(CAP_NET_ADMIN))
5240 return -EPERM;
5241 /* fall through */
5242 case SIOCBONDSLAVEINFOQUERY:
5243 case SIOCBONDINFOQUERY:
5244 dev_load(net, ifr.ifr_name);
5245 rtnl_lock();
5246 ret = dev_ifsioc(net, &ifr, cmd);
5247 rtnl_unlock();
5248 return ret;
5249
5250 case SIOCGIFMEM:
5251 /* Get the per device memory space. We can add this but
5252 * currently do not support it */
5253 case SIOCSIFMEM:
5254 /* Set the per device memory buffer space.
5255 * Not applicable in our case */
5256 case SIOCSIFLINK:
5257 return -ENOTTY;
5258
5259 /*
5260 * Unknown or private ioctl.
5261 */
5262 default:
5263 if (cmd == SIOCWANDEV ||
5264 (cmd >= SIOCDEVPRIVATE &&
5265 cmd <= SIOCDEVPRIVATE + 15)) {
5266 dev_load(net, ifr.ifr_name);
5267 rtnl_lock();
5268 ret = dev_ifsioc(net, &ifr, cmd);
5269 rtnl_unlock();
5270 if (!ret && copy_to_user(arg, &ifr,
5271 sizeof(struct ifreq)))
5272 ret = -EFAULT;
5273 return ret;
5274 }
5275 /* Take care of Wireless Extensions */
5276 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5277 return wext_handle_ioctl(net, &ifr, cmd, arg);
5278 return -ENOTTY;
5279 }
5280 }
5281
5282
5283 /**
5284 * dev_new_index - allocate an ifindex
5285 * @net: the applicable net namespace
5286 *
5287 * Returns a suitable unique value for a new device interface
5288 * number. The caller must hold the rtnl semaphore or the
5289 * dev_base_lock to be sure it remains unique.
5290 */
5291 static int dev_new_index(struct net *net)
5292 {
5293 int ifindex = net->ifindex;
5294 for (;;) {
5295 if (++ifindex <= 0)
5296 ifindex = 1;
5297 if (!__dev_get_by_index(net, ifindex))
5298 return net->ifindex = ifindex;
5299 }
5300 }
5301
5302 /* Delayed registration/unregisteration */
5303 static LIST_HEAD(net_todo_list);
5304
5305 static void net_set_todo(struct net_device *dev)
5306 {
5307 list_add_tail(&dev->todo_list, &net_todo_list);
5308 }
5309
5310 static void rollback_registered_many(struct list_head *head)
5311 {
5312 struct net_device *dev, *tmp;
5313
5314 BUG_ON(dev_boot_phase);
5315 ASSERT_RTNL();
5316
5317 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5318 /* Some devices call without registering
5319 * for initialization unwind. Remove those
5320 * devices and proceed with the remaining.
5321 */
5322 if (dev->reg_state == NETREG_UNINITIALIZED) {
5323 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5324 dev->name, dev);
5325
5326 WARN_ON(1);
5327 list_del(&dev->unreg_list);
5328 continue;
5329 }
5330 dev->dismantle = true;
5331 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5332 }
5333
5334 /* If device is running, close it first. */
5335 dev_close_many(head);
5336
5337 list_for_each_entry(dev, head, unreg_list) {
5338 /* And unlink it from device chain. */
5339 unlist_netdevice(dev);
5340
5341 dev->reg_state = NETREG_UNREGISTERING;
5342 }
5343
5344 synchronize_net();
5345
5346 list_for_each_entry(dev, head, unreg_list) {
5347 /* Shutdown queueing discipline. */
5348 dev_shutdown(dev);
5349
5350
5351 /* Notify protocols, that we are about to destroy
5352 this device. They should clean all the things.
5353 */
5354 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5355
5356 if (!dev->rtnl_link_ops ||
5357 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5358 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5359
5360 /*
5361 * Flush the unicast and multicast chains
5362 */
5363 dev_uc_flush(dev);
5364 dev_mc_flush(dev);
5365
5366 if (dev->netdev_ops->ndo_uninit)
5367 dev->netdev_ops->ndo_uninit(dev);
5368
5369 /* Notifier chain MUST detach us from master device. */
5370 WARN_ON(dev->master);
5371
5372 /* Remove entries from kobject tree */
5373 netdev_unregister_kobject(dev);
5374 }
5375
5376 synchronize_net();
5377
5378 list_for_each_entry(dev, head, unreg_list)
5379 dev_put(dev);
5380 }
5381
5382 static void rollback_registered(struct net_device *dev)
5383 {
5384 LIST_HEAD(single);
5385
5386 list_add(&dev->unreg_list, &single);
5387 rollback_registered_many(&single);
5388 list_del(&single);
5389 }
5390
5391 static netdev_features_t netdev_fix_features(struct net_device *dev,
5392 netdev_features_t features)
5393 {
5394 /* Fix illegal checksum combinations */
5395 if ((features & NETIF_F_HW_CSUM) &&
5396 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5397 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5398 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5399 }
5400
5401 /* Fix illegal SG+CSUM combinations. */
5402 if ((features & NETIF_F_SG) &&
5403 !(features & NETIF_F_ALL_CSUM)) {
5404 netdev_dbg(dev,
5405 "Dropping NETIF_F_SG since no checksum feature.\n");
5406 features &= ~NETIF_F_SG;
5407 }
5408
5409 /* TSO requires that SG is present as well. */
5410 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5411 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5412 features &= ~NETIF_F_ALL_TSO;
5413 }
5414
5415 /* TSO ECN requires that TSO is present as well. */
5416 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5417 features &= ~NETIF_F_TSO_ECN;
5418
5419 /* Software GSO depends on SG. */
5420 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5421 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5422 features &= ~NETIF_F_GSO;
5423 }
5424
5425 /* UFO needs SG and checksumming */
5426 if (features & NETIF_F_UFO) {
5427 /* maybe split UFO into V4 and V6? */
5428 if (!((features & NETIF_F_GEN_CSUM) ||
5429 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5430 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5431 netdev_dbg(dev,
5432 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5433 features &= ~NETIF_F_UFO;
5434 }
5435
5436 if (!(features & NETIF_F_SG)) {
5437 netdev_dbg(dev,
5438 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5439 features &= ~NETIF_F_UFO;
5440 }
5441 }
5442
5443 return features;
5444 }
5445
5446 int __netdev_update_features(struct net_device *dev)
5447 {
5448 netdev_features_t features;
5449 int err = 0;
5450
5451 ASSERT_RTNL();
5452
5453 features = netdev_get_wanted_features(dev);
5454
5455 if (dev->netdev_ops->ndo_fix_features)
5456 features = dev->netdev_ops->ndo_fix_features(dev, features);
5457
5458 /* driver might be less strict about feature dependencies */
5459 features = netdev_fix_features(dev, features);
5460
5461 if (dev->features == features)
5462 return 0;
5463
5464 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5465 &dev->features, &features);
5466
5467 if (dev->netdev_ops->ndo_set_features)
5468 err = dev->netdev_ops->ndo_set_features(dev, features);
5469
5470 if (unlikely(err < 0)) {
5471 netdev_err(dev,
5472 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5473 err, &features, &dev->features);
5474 return -1;
5475 }
5476
5477 if (!err)
5478 dev->features = features;
5479
5480 return 1;
5481 }
5482
5483 /**
5484 * netdev_update_features - recalculate device features
5485 * @dev: the device to check
5486 *
5487 * Recalculate dev->features set and send notifications if it
5488 * has changed. Should be called after driver or hardware dependent
5489 * conditions might have changed that influence the features.
5490 */
5491 void netdev_update_features(struct net_device *dev)
5492 {
5493 if (__netdev_update_features(dev))
5494 netdev_features_change(dev);
5495 }
5496 EXPORT_SYMBOL(netdev_update_features);
5497
5498 /**
5499 * netdev_change_features - recalculate device features
5500 * @dev: the device to check
5501 *
5502 * Recalculate dev->features set and send notifications even
5503 * if they have not changed. Should be called instead of
5504 * netdev_update_features() if also dev->vlan_features might
5505 * have changed to allow the changes to be propagated to stacked
5506 * VLAN devices.
5507 */
5508 void netdev_change_features(struct net_device *dev)
5509 {
5510 __netdev_update_features(dev);
5511 netdev_features_change(dev);
5512 }
5513 EXPORT_SYMBOL(netdev_change_features);
5514
5515 /**
5516 * netif_stacked_transfer_operstate - transfer operstate
5517 * @rootdev: the root or lower level device to transfer state from
5518 * @dev: the device to transfer operstate to
5519 *
5520 * Transfer operational state from root to device. This is normally
5521 * called when a stacking relationship exists between the root
5522 * device and the device(a leaf device).
5523 */
5524 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5525 struct net_device *dev)
5526 {
5527 if (rootdev->operstate == IF_OPER_DORMANT)
5528 netif_dormant_on(dev);
5529 else
5530 netif_dormant_off(dev);
5531
5532 if (netif_carrier_ok(rootdev)) {
5533 if (!netif_carrier_ok(dev))
5534 netif_carrier_on(dev);
5535 } else {
5536 if (netif_carrier_ok(dev))
5537 netif_carrier_off(dev);
5538 }
5539 }
5540 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5541
5542 #ifdef CONFIG_RPS
5543 static int netif_alloc_rx_queues(struct net_device *dev)
5544 {
5545 unsigned int i, count = dev->num_rx_queues;
5546 struct netdev_rx_queue *rx;
5547
5548 BUG_ON(count < 1);
5549
5550 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5551 if (!rx) {
5552 pr_err("netdev: Unable to allocate %u rx queues\n", count);
5553 return -ENOMEM;
5554 }
5555 dev->_rx = rx;
5556
5557 for (i = 0; i < count; i++)
5558 rx[i].dev = dev;
5559 return 0;
5560 }
5561 #endif
5562
5563 static void netdev_init_one_queue(struct net_device *dev,
5564 struct netdev_queue *queue, void *_unused)
5565 {
5566 /* Initialize queue lock */
5567 spin_lock_init(&queue->_xmit_lock);
5568 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5569 queue->xmit_lock_owner = -1;
5570 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5571 queue->dev = dev;
5572 #ifdef CONFIG_BQL
5573 dql_init(&queue->dql, HZ);
5574 #endif
5575 }
5576
5577 static int netif_alloc_netdev_queues(struct net_device *dev)
5578 {
5579 unsigned int count = dev->num_tx_queues;
5580 struct netdev_queue *tx;
5581
5582 BUG_ON(count < 1);
5583
5584 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5585 if (!tx) {
5586 pr_err("netdev: Unable to allocate %u tx queues\n", count);
5587 return -ENOMEM;
5588 }
5589 dev->_tx = tx;
5590
5591 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5592 spin_lock_init(&dev->tx_global_lock);
5593
5594 return 0;
5595 }
5596
5597 /**
5598 * register_netdevice - register a network device
5599 * @dev: device to register
5600 *
5601 * Take a completed network device structure and add it to the kernel
5602 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5603 * chain. 0 is returned on success. A negative errno code is returned
5604 * on a failure to set up the device, or if the name is a duplicate.
5605 *
5606 * Callers must hold the rtnl semaphore. You may want
5607 * register_netdev() instead of this.
5608 *
5609 * BUGS:
5610 * The locking appears insufficient to guarantee two parallel registers
5611 * will not get the same name.
5612 */
5613
5614 int register_netdevice(struct net_device *dev)
5615 {
5616 int ret;
5617 struct net *net = dev_net(dev);
5618
5619 BUG_ON(dev_boot_phase);
5620 ASSERT_RTNL();
5621
5622 might_sleep();
5623
5624 /* When net_device's are persistent, this will be fatal. */
5625 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5626 BUG_ON(!net);
5627
5628 spin_lock_init(&dev->addr_list_lock);
5629 netdev_set_addr_lockdep_class(dev);
5630
5631 dev->iflink = -1;
5632
5633 ret = dev_get_valid_name(net, dev, dev->name);
5634 if (ret < 0)
5635 goto out;
5636
5637 /* Init, if this function is available */
5638 if (dev->netdev_ops->ndo_init) {
5639 ret = dev->netdev_ops->ndo_init(dev);
5640 if (ret) {
5641 if (ret > 0)
5642 ret = -EIO;
5643 goto out;
5644 }
5645 }
5646
5647 ret = -EBUSY;
5648 if (!dev->ifindex)
5649 dev->ifindex = dev_new_index(net);
5650 else if (__dev_get_by_index(net, dev->ifindex))
5651 goto err_uninit;
5652
5653 if (dev->iflink == -1)
5654 dev->iflink = dev->ifindex;
5655
5656 /* Transfer changeable features to wanted_features and enable
5657 * software offloads (GSO and GRO).
5658 */
5659 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5660 dev->features |= NETIF_F_SOFT_FEATURES;
5661 dev->wanted_features = dev->features & dev->hw_features;
5662
5663 /* Turn on no cache copy if HW is doing checksum */
5664 if (!(dev->flags & IFF_LOOPBACK)) {
5665 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5666 if (dev->features & NETIF_F_ALL_CSUM) {
5667 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5668 dev->features |= NETIF_F_NOCACHE_COPY;
5669 }
5670 }
5671
5672 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5673 */
5674 dev->vlan_features |= NETIF_F_HIGHDMA;
5675
5676 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5677 ret = notifier_to_errno(ret);
5678 if (ret)
5679 goto err_uninit;
5680
5681 ret = netdev_register_kobject(dev);
5682 if (ret)
5683 goto err_uninit;
5684 dev->reg_state = NETREG_REGISTERED;
5685
5686 __netdev_update_features(dev);
5687
5688 /*
5689 * Default initial state at registry is that the
5690 * device is present.
5691 */
5692
5693 set_bit(__LINK_STATE_PRESENT, &dev->state);
5694
5695 linkwatch_init_dev(dev);
5696
5697 dev_init_scheduler(dev);
5698 dev_hold(dev);
5699 list_netdevice(dev);
5700 add_device_randomness(dev->dev_addr, dev->addr_len);
5701
5702 /* Notify protocols, that a new device appeared. */
5703 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5704 ret = notifier_to_errno(ret);
5705 if (ret) {
5706 rollback_registered(dev);
5707 dev->reg_state = NETREG_UNREGISTERED;
5708 }
5709 /*
5710 * Prevent userspace races by waiting until the network
5711 * device is fully setup before sending notifications.
5712 */
5713 if (!dev->rtnl_link_ops ||
5714 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5715 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5716
5717 out:
5718 return ret;
5719
5720 err_uninit:
5721 if (dev->netdev_ops->ndo_uninit)
5722 dev->netdev_ops->ndo_uninit(dev);
5723 goto out;
5724 }
5725 EXPORT_SYMBOL(register_netdevice);
5726
5727 /**
5728 * init_dummy_netdev - init a dummy network device for NAPI
5729 * @dev: device to init
5730 *
5731 * This takes a network device structure and initialize the minimum
5732 * amount of fields so it can be used to schedule NAPI polls without
5733 * registering a full blown interface. This is to be used by drivers
5734 * that need to tie several hardware interfaces to a single NAPI
5735 * poll scheduler due to HW limitations.
5736 */
5737 int init_dummy_netdev(struct net_device *dev)
5738 {
5739 /* Clear everything. Note we don't initialize spinlocks
5740 * are they aren't supposed to be taken by any of the
5741 * NAPI code and this dummy netdev is supposed to be
5742 * only ever used for NAPI polls
5743 */
5744 memset(dev, 0, sizeof(struct net_device));
5745
5746 /* make sure we BUG if trying to hit standard
5747 * register/unregister code path
5748 */
5749 dev->reg_state = NETREG_DUMMY;
5750
5751 /* NAPI wants this */
5752 INIT_LIST_HEAD(&dev->napi_list);
5753
5754 /* a dummy interface is started by default */
5755 set_bit(__LINK_STATE_PRESENT, &dev->state);
5756 set_bit(__LINK_STATE_START, &dev->state);
5757
5758 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5759 * because users of this 'device' dont need to change
5760 * its refcount.
5761 */
5762
5763 return 0;
5764 }
5765 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5766
5767
5768 /**
5769 * register_netdev - register a network device
5770 * @dev: device to register
5771 *
5772 * Take a completed network device structure and add it to the kernel
5773 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5774 * chain. 0 is returned on success. A negative errno code is returned
5775 * on a failure to set up the device, or if the name is a duplicate.
5776 *
5777 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5778 * and expands the device name if you passed a format string to
5779 * alloc_netdev.
5780 */
5781 int register_netdev(struct net_device *dev)
5782 {
5783 int err;
5784
5785 rtnl_lock();
5786 err = register_netdevice(dev);
5787 rtnl_unlock();
5788 return err;
5789 }
5790 EXPORT_SYMBOL(register_netdev);
5791
5792 int netdev_refcnt_read(const struct net_device *dev)
5793 {
5794 int i, refcnt = 0;
5795
5796 for_each_possible_cpu(i)
5797 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5798 return refcnt;
5799 }
5800 EXPORT_SYMBOL(netdev_refcnt_read);
5801
5802 /**
5803 * netdev_wait_allrefs - wait until all references are gone.
5804 * @dev: target net_device
5805 *
5806 * This is called when unregistering network devices.
5807 *
5808 * Any protocol or device that holds a reference should register
5809 * for netdevice notification, and cleanup and put back the
5810 * reference if they receive an UNREGISTER event.
5811 * We can get stuck here if buggy protocols don't correctly
5812 * call dev_put.
5813 */
5814 static void netdev_wait_allrefs(struct net_device *dev)
5815 {
5816 unsigned long rebroadcast_time, warning_time;
5817 int refcnt;
5818
5819 linkwatch_forget_dev(dev);
5820
5821 rebroadcast_time = warning_time = jiffies;
5822 refcnt = netdev_refcnt_read(dev);
5823
5824 while (refcnt != 0) {
5825 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5826 rtnl_lock();
5827
5828 /* Rebroadcast unregister notification */
5829 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5830
5831 __rtnl_unlock();
5832 rcu_barrier();
5833 rtnl_lock();
5834
5835 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5836 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5837 &dev->state)) {
5838 /* We must not have linkwatch events
5839 * pending on unregister. If this
5840 * happens, we simply run the queue
5841 * unscheduled, resulting in a noop
5842 * for this device.
5843 */
5844 linkwatch_run_queue();
5845 }
5846
5847 __rtnl_unlock();
5848
5849 rebroadcast_time = jiffies;
5850 }
5851
5852 msleep(250);
5853
5854 refcnt = netdev_refcnt_read(dev);
5855
5856 if (time_after(jiffies, warning_time + 10 * HZ)) {
5857 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5858 dev->name, refcnt);
5859 warning_time = jiffies;
5860 }
5861 }
5862 }
5863
5864 /* The sequence is:
5865 *
5866 * rtnl_lock();
5867 * ...
5868 * register_netdevice(x1);
5869 * register_netdevice(x2);
5870 * ...
5871 * unregister_netdevice(y1);
5872 * unregister_netdevice(y2);
5873 * ...
5874 * rtnl_unlock();
5875 * free_netdev(y1);
5876 * free_netdev(y2);
5877 *
5878 * We are invoked by rtnl_unlock().
5879 * This allows us to deal with problems:
5880 * 1) We can delete sysfs objects which invoke hotplug
5881 * without deadlocking with linkwatch via keventd.
5882 * 2) Since we run with the RTNL semaphore not held, we can sleep
5883 * safely in order to wait for the netdev refcnt to drop to zero.
5884 *
5885 * We must not return until all unregister events added during
5886 * the interval the lock was held have been completed.
5887 */
5888 void netdev_run_todo(void)
5889 {
5890 struct list_head list;
5891
5892 /* Snapshot list, allow later requests */
5893 list_replace_init(&net_todo_list, &list);
5894
5895 __rtnl_unlock();
5896
5897
5898 /* Wait for rcu callbacks to finish before next phase */
5899 if (!list_empty(&list))
5900 rcu_barrier();
5901
5902 while (!list_empty(&list)) {
5903 struct net_device *dev
5904 = list_first_entry(&list, struct net_device, todo_list);
5905 list_del(&dev->todo_list);
5906
5907 rtnl_lock();
5908 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5909 __rtnl_unlock();
5910
5911 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5912 pr_err("network todo '%s' but state %d\n",
5913 dev->name, dev->reg_state);
5914 dump_stack();
5915 continue;
5916 }
5917
5918 dev->reg_state = NETREG_UNREGISTERED;
5919
5920 on_each_cpu(flush_backlog, dev, 1);
5921
5922 netdev_wait_allrefs(dev);
5923
5924 /* paranoia */
5925 BUG_ON(netdev_refcnt_read(dev));
5926 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5927 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5928 WARN_ON(dev->dn_ptr);
5929
5930 if (dev->destructor)
5931 dev->destructor(dev);
5932
5933 /* Free network device */
5934 kobject_put(&dev->dev.kobj);
5935 }
5936 }
5937
5938 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5939 * fields in the same order, with only the type differing.
5940 */
5941 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5942 const struct net_device_stats *netdev_stats)
5943 {
5944 #if BITS_PER_LONG == 64
5945 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5946 memcpy(stats64, netdev_stats, sizeof(*stats64));
5947 #else
5948 size_t i, n = sizeof(*stats64) / sizeof(u64);
5949 const unsigned long *src = (const unsigned long *)netdev_stats;
5950 u64 *dst = (u64 *)stats64;
5951
5952 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5953 sizeof(*stats64) / sizeof(u64));
5954 for (i = 0; i < n; i++)
5955 dst[i] = src[i];
5956 #endif
5957 }
5958 EXPORT_SYMBOL(netdev_stats_to_stats64);
5959
5960 /**
5961 * dev_get_stats - get network device statistics
5962 * @dev: device to get statistics from
5963 * @storage: place to store stats
5964 *
5965 * Get network statistics from device. Return @storage.
5966 * The device driver may provide its own method by setting
5967 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5968 * otherwise the internal statistics structure is used.
5969 */
5970 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5971 struct rtnl_link_stats64 *storage)
5972 {
5973 const struct net_device_ops *ops = dev->netdev_ops;
5974
5975 if (ops->ndo_get_stats64) {
5976 memset(storage, 0, sizeof(*storage));
5977 ops->ndo_get_stats64(dev, storage);
5978 } else if (ops->ndo_get_stats) {
5979 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5980 } else {
5981 netdev_stats_to_stats64(storage, &dev->stats);
5982 }
5983 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5984 return storage;
5985 }
5986 EXPORT_SYMBOL(dev_get_stats);
5987
5988 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5989 {
5990 struct netdev_queue *queue = dev_ingress_queue(dev);
5991
5992 #ifdef CONFIG_NET_CLS_ACT
5993 if (queue)
5994 return queue;
5995 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5996 if (!queue)
5997 return NULL;
5998 netdev_init_one_queue(dev, queue, NULL);
5999 queue->qdisc = &noop_qdisc;
6000 queue->qdisc_sleeping = &noop_qdisc;
6001 rcu_assign_pointer(dev->ingress_queue, queue);
6002 #endif
6003 return queue;
6004 }
6005
6006 static const struct ethtool_ops default_ethtool_ops;
6007
6008 /**
6009 * alloc_netdev_mqs - allocate network device
6010 * @sizeof_priv: size of private data to allocate space for
6011 * @name: device name format string
6012 * @setup: callback to initialize device
6013 * @txqs: the number of TX subqueues to allocate
6014 * @rxqs: the number of RX subqueues to allocate
6015 *
6016 * Allocates a struct net_device with private data area for driver use
6017 * and performs basic initialization. Also allocates subquue structs
6018 * for each queue on the device.
6019 */
6020 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6021 void (*setup)(struct net_device *),
6022 unsigned int txqs, unsigned int rxqs)
6023 {
6024 struct net_device *dev;
6025 size_t alloc_size;
6026 struct net_device *p;
6027
6028 BUG_ON(strlen(name) >= sizeof(dev->name));
6029
6030 if (txqs < 1) {
6031 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6032 return NULL;
6033 }
6034
6035 #ifdef CONFIG_RPS
6036 if (rxqs < 1) {
6037 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6038 return NULL;
6039 }
6040 #endif
6041
6042 alloc_size = sizeof(struct net_device);
6043 if (sizeof_priv) {
6044 /* ensure 32-byte alignment of private area */
6045 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6046 alloc_size += sizeof_priv;
6047 }
6048 /* ensure 32-byte alignment of whole construct */
6049 alloc_size += NETDEV_ALIGN - 1;
6050
6051 p = kzalloc(alloc_size, GFP_KERNEL);
6052 if (!p) {
6053 pr_err("alloc_netdev: Unable to allocate device\n");
6054 return NULL;
6055 }
6056
6057 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6058 dev->padded = (char *)dev - (char *)p;
6059
6060 dev->pcpu_refcnt = alloc_percpu(int);
6061 if (!dev->pcpu_refcnt)
6062 goto free_p;
6063
6064 if (dev_addr_init(dev))
6065 goto free_pcpu;
6066
6067 dev_mc_init(dev);
6068 dev_uc_init(dev);
6069
6070 dev_net_set(dev, &init_net);
6071
6072 dev->gso_max_size = GSO_MAX_SIZE;
6073 dev->gso_max_segs = GSO_MAX_SEGS;
6074
6075 INIT_LIST_HEAD(&dev->napi_list);
6076 INIT_LIST_HEAD(&dev->unreg_list);
6077 INIT_LIST_HEAD(&dev->link_watch_list);
6078 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6079 setup(dev);
6080
6081 dev->num_tx_queues = txqs;
6082 dev->real_num_tx_queues = txqs;
6083 if (netif_alloc_netdev_queues(dev))
6084 goto free_all;
6085
6086 #ifdef CONFIG_RPS
6087 dev->num_rx_queues = rxqs;
6088 dev->real_num_rx_queues = rxqs;
6089 if (netif_alloc_rx_queues(dev))
6090 goto free_all;
6091 #endif
6092
6093 strcpy(dev->name, name);
6094 dev->group = INIT_NETDEV_GROUP;
6095 if (!dev->ethtool_ops)
6096 dev->ethtool_ops = &default_ethtool_ops;
6097 return dev;
6098
6099 free_all:
6100 free_netdev(dev);
6101 return NULL;
6102
6103 free_pcpu:
6104 free_percpu(dev->pcpu_refcnt);
6105 kfree(dev->_tx);
6106 #ifdef CONFIG_RPS
6107 kfree(dev->_rx);
6108 #endif
6109
6110 free_p:
6111 kfree(p);
6112 return NULL;
6113 }
6114 EXPORT_SYMBOL(alloc_netdev_mqs);
6115
6116 /**
6117 * free_netdev - free network device
6118 * @dev: device
6119 *
6120 * This function does the last stage of destroying an allocated device
6121 * interface. The reference to the device object is released.
6122 * If this is the last reference then it will be freed.
6123 */
6124 void free_netdev(struct net_device *dev)
6125 {
6126 struct napi_struct *p, *n;
6127
6128 release_net(dev_net(dev));
6129
6130 kfree(dev->_tx);
6131 #ifdef CONFIG_RPS
6132 kfree(dev->_rx);
6133 #endif
6134
6135 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6136
6137 /* Flush device addresses */
6138 dev_addr_flush(dev);
6139
6140 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6141 netif_napi_del(p);
6142
6143 free_percpu(dev->pcpu_refcnt);
6144 dev->pcpu_refcnt = NULL;
6145
6146 /* Compatibility with error handling in drivers */
6147 if (dev->reg_state == NETREG_UNINITIALIZED) {
6148 kfree((char *)dev - dev->padded);
6149 return;
6150 }
6151
6152 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6153 dev->reg_state = NETREG_RELEASED;
6154
6155 /* will free via device release */
6156 put_device(&dev->dev);
6157 }
6158 EXPORT_SYMBOL(free_netdev);
6159
6160 /**
6161 * synchronize_net - Synchronize with packet receive processing
6162 *
6163 * Wait for packets currently being received to be done.
6164 * Does not block later packets from starting.
6165 */
6166 void synchronize_net(void)
6167 {
6168 might_sleep();
6169 if (rtnl_is_locked())
6170 synchronize_rcu_expedited();
6171 else
6172 synchronize_rcu();
6173 }
6174 EXPORT_SYMBOL(synchronize_net);
6175
6176 /**
6177 * unregister_netdevice_queue - remove device from the kernel
6178 * @dev: device
6179 * @head: list
6180 *
6181 * This function shuts down a device interface and removes it
6182 * from the kernel tables.
6183 * If head not NULL, device is queued to be unregistered later.
6184 *
6185 * Callers must hold the rtnl semaphore. You may want
6186 * unregister_netdev() instead of this.
6187 */
6188
6189 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6190 {
6191 ASSERT_RTNL();
6192
6193 if (head) {
6194 list_move_tail(&dev->unreg_list, head);
6195 } else {
6196 rollback_registered(dev);
6197 /* Finish processing unregister after unlock */
6198 net_set_todo(dev);
6199 }
6200 }
6201 EXPORT_SYMBOL(unregister_netdevice_queue);
6202
6203 /**
6204 * unregister_netdevice_many - unregister many devices
6205 * @head: list of devices
6206 */
6207 void unregister_netdevice_many(struct list_head *head)
6208 {
6209 struct net_device *dev;
6210
6211 if (!list_empty(head)) {
6212 rollback_registered_many(head);
6213 list_for_each_entry(dev, head, unreg_list)
6214 net_set_todo(dev);
6215 }
6216 }
6217 EXPORT_SYMBOL(unregister_netdevice_many);
6218
6219 /**
6220 * unregister_netdev - remove device from the kernel
6221 * @dev: device
6222 *
6223 * This function shuts down a device interface and removes it
6224 * from the kernel tables.
6225 *
6226 * This is just a wrapper for unregister_netdevice that takes
6227 * the rtnl semaphore. In general you want to use this and not
6228 * unregister_netdevice.
6229 */
6230 void unregister_netdev(struct net_device *dev)
6231 {
6232 rtnl_lock();
6233 unregister_netdevice(dev);
6234 rtnl_unlock();
6235 }
6236 EXPORT_SYMBOL(unregister_netdev);
6237
6238 /**
6239 * dev_change_net_namespace - move device to different nethost namespace
6240 * @dev: device
6241 * @net: network namespace
6242 * @pat: If not NULL name pattern to try if the current device name
6243 * is already taken in the destination network namespace.
6244 *
6245 * This function shuts down a device interface and moves it
6246 * to a new network namespace. On success 0 is returned, on
6247 * a failure a netagive errno code is returned.
6248 *
6249 * Callers must hold the rtnl semaphore.
6250 */
6251
6252 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6253 {
6254 int err;
6255
6256 ASSERT_RTNL();
6257
6258 /* Don't allow namespace local devices to be moved. */
6259 err = -EINVAL;
6260 if (dev->features & NETIF_F_NETNS_LOCAL)
6261 goto out;
6262
6263 /* Ensure the device has been registrered */
6264 err = -EINVAL;
6265 if (dev->reg_state != NETREG_REGISTERED)
6266 goto out;
6267
6268 /* Get out if there is nothing todo */
6269 err = 0;
6270 if (net_eq(dev_net(dev), net))
6271 goto out;
6272
6273 /* Pick the destination device name, and ensure
6274 * we can use it in the destination network namespace.
6275 */
6276 err = -EEXIST;
6277 if (__dev_get_by_name(net, dev->name)) {
6278 /* We get here if we can't use the current device name */
6279 if (!pat)
6280 goto out;
6281 if (dev_get_valid_name(net, dev, pat) < 0)
6282 goto out;
6283 }
6284
6285 /*
6286 * And now a mini version of register_netdevice unregister_netdevice.
6287 */
6288
6289 /* If device is running close it first. */
6290 dev_close(dev);
6291
6292 /* And unlink it from device chain */
6293 err = -ENODEV;
6294 unlist_netdevice(dev);
6295
6296 synchronize_net();
6297
6298 /* Shutdown queueing discipline. */
6299 dev_shutdown(dev);
6300
6301 /* Notify protocols, that we are about to destroy
6302 this device. They should clean all the things.
6303
6304 Note that dev->reg_state stays at NETREG_REGISTERED.
6305 This is wanted because this way 8021q and macvlan know
6306 the device is just moving and can keep their slaves up.
6307 */
6308 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6309 rcu_barrier();
6310 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6311 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6312
6313 /*
6314 * Flush the unicast and multicast chains
6315 */
6316 dev_uc_flush(dev);
6317 dev_mc_flush(dev);
6318
6319 /* Actually switch the network namespace */
6320 dev_net_set(dev, net);
6321
6322 /* If there is an ifindex conflict assign a new one */
6323 if (__dev_get_by_index(net, dev->ifindex)) {
6324 int iflink = (dev->iflink == dev->ifindex);
6325 dev->ifindex = dev_new_index(net);
6326 if (iflink)
6327 dev->iflink = dev->ifindex;
6328 }
6329
6330 /* Fixup kobjects */
6331 err = device_rename(&dev->dev, dev->name);
6332 WARN_ON(err);
6333
6334 /* Add the device back in the hashes */
6335 list_netdevice(dev);
6336
6337 /* Notify protocols, that a new device appeared. */
6338 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6339
6340 /*
6341 * Prevent userspace races by waiting until the network
6342 * device is fully setup before sending notifications.
6343 */
6344 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6345
6346 synchronize_net();
6347 err = 0;
6348 out:
6349 return err;
6350 }
6351 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6352
6353 static int dev_cpu_callback(struct notifier_block *nfb,
6354 unsigned long action,
6355 void *ocpu)
6356 {
6357 struct sk_buff **list_skb;
6358 struct sk_buff *skb;
6359 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6360 struct softnet_data *sd, *oldsd;
6361
6362 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6363 return NOTIFY_OK;
6364
6365 local_irq_disable();
6366 cpu = smp_processor_id();
6367 sd = &per_cpu(softnet_data, cpu);
6368 oldsd = &per_cpu(softnet_data, oldcpu);
6369
6370 /* Find end of our completion_queue. */
6371 list_skb = &sd->completion_queue;
6372 while (*list_skb)
6373 list_skb = &(*list_skb)->next;
6374 /* Append completion queue from offline CPU. */
6375 *list_skb = oldsd->completion_queue;
6376 oldsd->completion_queue = NULL;
6377
6378 /* Append output queue from offline CPU. */
6379 if (oldsd->output_queue) {
6380 *sd->output_queue_tailp = oldsd->output_queue;
6381 sd->output_queue_tailp = oldsd->output_queue_tailp;
6382 oldsd->output_queue = NULL;
6383 oldsd->output_queue_tailp = &oldsd->output_queue;
6384 }
6385 /* Append NAPI poll list from offline CPU. */
6386 if (!list_empty(&oldsd->poll_list)) {
6387 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6388 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6389 }
6390
6391 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6392 local_irq_enable();
6393
6394 /* Process offline CPU's input_pkt_queue */
6395 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6396 netif_rx(skb);
6397 input_queue_head_incr(oldsd);
6398 }
6399 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6400 netif_rx(skb);
6401 input_queue_head_incr(oldsd);
6402 }
6403
6404 return NOTIFY_OK;
6405 }
6406
6407
6408 /**
6409 * netdev_increment_features - increment feature set by one
6410 * @all: current feature set
6411 * @one: new feature set
6412 * @mask: mask feature set
6413 *
6414 * Computes a new feature set after adding a device with feature set
6415 * @one to the master device with current feature set @all. Will not
6416 * enable anything that is off in @mask. Returns the new feature set.
6417 */
6418 netdev_features_t netdev_increment_features(netdev_features_t all,
6419 netdev_features_t one, netdev_features_t mask)
6420 {
6421 if (mask & NETIF_F_GEN_CSUM)
6422 mask |= NETIF_F_ALL_CSUM;
6423 mask |= NETIF_F_VLAN_CHALLENGED;
6424
6425 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6426 all &= one | ~NETIF_F_ALL_FOR_ALL;
6427
6428 /* If one device supports hw checksumming, set for all. */
6429 if (all & NETIF_F_GEN_CSUM)
6430 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6431
6432 return all;
6433 }
6434 EXPORT_SYMBOL(netdev_increment_features);
6435
6436 static struct hlist_head *netdev_create_hash(void)
6437 {
6438 int i;
6439 struct hlist_head *hash;
6440
6441 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6442 if (hash != NULL)
6443 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6444 INIT_HLIST_HEAD(&hash[i]);
6445
6446 return hash;
6447 }
6448
6449 /* Initialize per network namespace state */
6450 static int __net_init netdev_init(struct net *net)
6451 {
6452 if (net != &init_net)
6453 INIT_LIST_HEAD(&net->dev_base_head);
6454
6455 net->dev_name_head = netdev_create_hash();
6456 if (net->dev_name_head == NULL)
6457 goto err_name;
6458
6459 net->dev_index_head = netdev_create_hash();
6460 if (net->dev_index_head == NULL)
6461 goto err_idx;
6462
6463 return 0;
6464
6465 err_idx:
6466 kfree(net->dev_name_head);
6467 err_name:
6468 return -ENOMEM;
6469 }
6470
6471 /**
6472 * netdev_drivername - network driver for the device
6473 * @dev: network device
6474 *
6475 * Determine network driver for device.
6476 */
6477 const char *netdev_drivername(const struct net_device *dev)
6478 {
6479 const struct device_driver *driver;
6480 const struct device *parent;
6481 const char *empty = "";
6482
6483 parent = dev->dev.parent;
6484 if (!parent)
6485 return empty;
6486
6487 driver = parent->driver;
6488 if (driver && driver->name)
6489 return driver->name;
6490 return empty;
6491 }
6492
6493 static int __netdev_printk(const char *level, const struct net_device *dev,
6494 struct va_format *vaf)
6495 {
6496 int r;
6497
6498 if (dev && dev->dev.parent) {
6499 r = dev_printk_emit(level[1] - '0',
6500 dev->dev.parent,
6501 "%s %s %s: %pV",
6502 dev_driver_string(dev->dev.parent),
6503 dev_name(dev->dev.parent),
6504 netdev_name(dev), vaf);
6505 } else if (dev) {
6506 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6507 } else {
6508 r = printk("%s(NULL net_device): %pV", level, vaf);
6509 }
6510
6511 return r;
6512 }
6513
6514 int netdev_printk(const char *level, const struct net_device *dev,
6515 const char *format, ...)
6516 {
6517 struct va_format vaf;
6518 va_list args;
6519 int r;
6520
6521 va_start(args, format);
6522
6523 vaf.fmt = format;
6524 vaf.va = &args;
6525
6526 r = __netdev_printk(level, dev, &vaf);
6527
6528 va_end(args);
6529
6530 return r;
6531 }
6532 EXPORT_SYMBOL(netdev_printk);
6533
6534 #define define_netdev_printk_level(func, level) \
6535 int func(const struct net_device *dev, const char *fmt, ...) \
6536 { \
6537 int r; \
6538 struct va_format vaf; \
6539 va_list args; \
6540 \
6541 va_start(args, fmt); \
6542 \
6543 vaf.fmt = fmt; \
6544 vaf.va = &args; \
6545 \
6546 r = __netdev_printk(level, dev, &vaf); \
6547 \
6548 va_end(args); \
6549 \
6550 return r; \
6551 } \
6552 EXPORT_SYMBOL(func);
6553
6554 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6555 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6556 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6557 define_netdev_printk_level(netdev_err, KERN_ERR);
6558 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6559 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6560 define_netdev_printk_level(netdev_info, KERN_INFO);
6561
6562 static void __net_exit netdev_exit(struct net *net)
6563 {
6564 kfree(net->dev_name_head);
6565 kfree(net->dev_index_head);
6566 }
6567
6568 static struct pernet_operations __net_initdata netdev_net_ops = {
6569 .init = netdev_init,
6570 .exit = netdev_exit,
6571 };
6572
6573 static void __net_exit default_device_exit(struct net *net)
6574 {
6575 struct net_device *dev, *aux;
6576 /*
6577 * Push all migratable network devices back to the
6578 * initial network namespace
6579 */
6580 rtnl_lock();
6581 for_each_netdev_safe(net, dev, aux) {
6582 int err;
6583 char fb_name[IFNAMSIZ];
6584
6585 /* Ignore unmoveable devices (i.e. loopback) */
6586 if (dev->features & NETIF_F_NETNS_LOCAL)
6587 continue;
6588
6589 /* Leave virtual devices for the generic cleanup */
6590 if (dev->rtnl_link_ops)
6591 continue;
6592
6593 /* Push remaining network devices to init_net */
6594 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6595 err = dev_change_net_namespace(dev, &init_net, fb_name);
6596 if (err) {
6597 pr_emerg("%s: failed to move %s to init_net: %d\n",
6598 __func__, dev->name, err);
6599 BUG();
6600 }
6601 }
6602 rtnl_unlock();
6603 }
6604
6605 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6606 {
6607 /* At exit all network devices most be removed from a network
6608 * namespace. Do this in the reverse order of registration.
6609 * Do this across as many network namespaces as possible to
6610 * improve batching efficiency.
6611 */
6612 struct net_device *dev;
6613 struct net *net;
6614 LIST_HEAD(dev_kill_list);
6615
6616 rtnl_lock();
6617 list_for_each_entry(net, net_list, exit_list) {
6618 for_each_netdev_reverse(net, dev) {
6619 if (dev->rtnl_link_ops)
6620 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6621 else
6622 unregister_netdevice_queue(dev, &dev_kill_list);
6623 }
6624 }
6625 unregister_netdevice_many(&dev_kill_list);
6626 list_del(&dev_kill_list);
6627 rtnl_unlock();
6628 }
6629
6630 static struct pernet_operations __net_initdata default_device_ops = {
6631 .exit = default_device_exit,
6632 .exit_batch = default_device_exit_batch,
6633 };
6634
6635 /*
6636 * Initialize the DEV module. At boot time this walks the device list and
6637 * unhooks any devices that fail to initialise (normally hardware not
6638 * present) and leaves us with a valid list of present and active devices.
6639 *
6640 */
6641
6642 /*
6643 * This is called single threaded during boot, so no need
6644 * to take the rtnl semaphore.
6645 */
6646 static int __init net_dev_init(void)
6647 {
6648 int i, rc = -ENOMEM;
6649
6650 BUG_ON(!dev_boot_phase);
6651
6652 if (dev_proc_init())
6653 goto out;
6654
6655 if (netdev_kobject_init())
6656 goto out;
6657
6658 INIT_LIST_HEAD(&ptype_all);
6659 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6660 INIT_LIST_HEAD(&ptype_base[i]);
6661
6662 if (register_pernet_subsys(&netdev_net_ops))
6663 goto out;
6664
6665 /*
6666 * Initialise the packet receive queues.
6667 */
6668
6669 for_each_possible_cpu(i) {
6670 struct softnet_data *sd = &per_cpu(softnet_data, i);
6671
6672 memset(sd, 0, sizeof(*sd));
6673 skb_queue_head_init(&sd->input_pkt_queue);
6674 skb_queue_head_init(&sd->process_queue);
6675 sd->completion_queue = NULL;
6676 INIT_LIST_HEAD(&sd->poll_list);
6677 sd->output_queue = NULL;
6678 sd->output_queue_tailp = &sd->output_queue;
6679 #ifdef CONFIG_RPS
6680 sd->csd.func = rps_trigger_softirq;
6681 sd->csd.info = sd;
6682 sd->csd.flags = 0;
6683 sd->cpu = i;
6684 #endif
6685
6686 sd->backlog.poll = process_backlog;
6687 sd->backlog.weight = weight_p;
6688 sd->backlog.gro_list = NULL;
6689 sd->backlog.gro_count = 0;
6690 }
6691
6692 dev_boot_phase = 0;
6693
6694 /* The loopback device is special if any other network devices
6695 * is present in a network namespace the loopback device must
6696 * be present. Since we now dynamically allocate and free the
6697 * loopback device ensure this invariant is maintained by
6698 * keeping the loopback device as the first device on the
6699 * list of network devices. Ensuring the loopback devices
6700 * is the first device that appears and the last network device
6701 * that disappears.
6702 */
6703 if (register_pernet_device(&loopback_net_ops))
6704 goto out;
6705
6706 if (register_pernet_device(&default_device_ops))
6707 goto out;
6708
6709 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6710 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6711
6712 hotcpu_notifier(dev_cpu_callback, 0);
6713 dst_init();
6714 dev_mcast_init();
6715 rc = 0;
6716 out:
6717 return rc;
6718 }
6719
6720 subsys_initcall(net_dev_init);
6721
6722 static int __init initialize_hashrnd(void)
6723 {
6724 get_random_bytes(&hashrnd, sizeof(hashrnd));
6725 return 0;
6726 }
6727
6728 late_initcall_sync(initialize_hashrnd);
6729