]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/core/dev.c
net: solve a NAPI race
[mirror_ubuntu-bionic-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/crash_dump.h>
143
144 #include "net-sysfs.h"
145
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
148
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
151
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly; /* Taps */
156 static struct list_head offload_base __read_mostly;
157
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160 struct net_device *dev,
161 struct netdev_notifier_info *info);
162
163 /*
164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
165 * semaphore.
166 *
167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
168 *
169 * Writers must hold the rtnl semaphore while they loop through the
170 * dev_base_head list, and hold dev_base_lock for writing when they do the
171 * actual updates. This allows pure readers to access the list even
172 * while a writer is preparing to update it.
173 *
174 * To put it another way, dev_base_lock is held for writing only to
175 * protect against pure readers; the rtnl semaphore provides the
176 * protection against other writers.
177 *
178 * See, for example usages, register_netdevice() and
179 * unregister_netdevice(), which must be called with the rtnl
180 * semaphore held.
181 */
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
184
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
187
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
190
191 static seqcount_t devnet_rename_seq;
192
193 static inline void dev_base_seq_inc(struct net *net)
194 {
195 while (++net->dev_base_seq == 0)
196 ;
197 }
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214 spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static void list_netdevice(struct net_device *dev)
227 {
228 struct net *net = dev_net(dev);
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238
239 dev_base_seq_inc(net);
240 }
241
242 /* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
251 list_del_rcu(&dev->dev_list);
252 hlist_del_rcu(&dev->name_hlist);
253 hlist_del_rcu(&dev->index_hlist);
254 write_unlock_bh(&dev_base_lock);
255
256 dev_base_seq_inc(dev_net(dev));
257 }
258
259 /*
260 * Our notifier list
261 */
262
263 static RAW_NOTIFIER_HEAD(netdev_chain);
264
265 /*
266 * Device drivers call our routines to queue packets here. We empty the
267 * queue in the local softnet handler.
268 */
269
270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
271 EXPORT_PER_CPU_SYMBOL(softnet_data);
272
273 #ifdef CONFIG_LOCKDEP
274 /*
275 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276 * according to dev->type
277 */
278 static const unsigned short netdev_lock_type[] = {
279 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
291 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294
295 static const char *const netdev_lock_name[] = {
296 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
328 {
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356 *
357 * Protocol management and registration routines
358 *
359 *******************************************************************************/
360
361
362 /*
363 * Add a protocol ID to the list. Now that the input handler is
364 * smarter we can dispense with all the messy stuff that used to be
365 * here.
366 *
367 * BEWARE!!! Protocol handlers, mangling input packets,
368 * MUST BE last in hash buckets and checking protocol handlers
369 * MUST start from promiscuous ptype_all chain in net_bh.
370 * It is true now, do not change it.
371 * Explanation follows: if protocol handler, mangling packet, will
372 * be the first on list, it is not able to sense, that packet
373 * is cloned and should be copied-on-write, so that it will
374 * change it and subsequent readers will get broken packet.
375 * --ANK (980803)
376 */
377
378 static inline struct list_head *ptype_head(const struct packet_type *pt)
379 {
380 if (pt->type == htons(ETH_P_ALL))
381 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
382 else
383 return pt->dev ? &pt->dev->ptype_specific :
384 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
385 }
386
387 /**
388 * dev_add_pack - add packet handler
389 * @pt: packet type declaration
390 *
391 * Add a protocol handler to the networking stack. The passed &packet_type
392 * is linked into kernel lists and may not be freed until it has been
393 * removed from the kernel lists.
394 *
395 * This call does not sleep therefore it can not
396 * guarantee all CPU's that are in middle of receiving packets
397 * will see the new packet type (until the next received packet).
398 */
399
400 void dev_add_pack(struct packet_type *pt)
401 {
402 struct list_head *head = ptype_head(pt);
403
404 spin_lock(&ptype_lock);
405 list_add_rcu(&pt->list, head);
406 spin_unlock(&ptype_lock);
407 }
408 EXPORT_SYMBOL(dev_add_pack);
409
410 /**
411 * __dev_remove_pack - remove packet handler
412 * @pt: packet type declaration
413 *
414 * Remove a protocol handler that was previously added to the kernel
415 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
416 * from the kernel lists and can be freed or reused once this function
417 * returns.
418 *
419 * The packet type might still be in use by receivers
420 * and must not be freed until after all the CPU's have gone
421 * through a quiescent state.
422 */
423 void __dev_remove_pack(struct packet_type *pt)
424 {
425 struct list_head *head = ptype_head(pt);
426 struct packet_type *pt1;
427
428 spin_lock(&ptype_lock);
429
430 list_for_each_entry(pt1, head, list) {
431 if (pt == pt1) {
432 list_del_rcu(&pt->list);
433 goto out;
434 }
435 }
436
437 pr_warn("dev_remove_pack: %p not found\n", pt);
438 out:
439 spin_unlock(&ptype_lock);
440 }
441 EXPORT_SYMBOL(__dev_remove_pack);
442
443 /**
444 * dev_remove_pack - remove packet handler
445 * @pt: packet type declaration
446 *
447 * Remove a protocol handler that was previously added to the kernel
448 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
449 * from the kernel lists and can be freed or reused once this function
450 * returns.
451 *
452 * This call sleeps to guarantee that no CPU is looking at the packet
453 * type after return.
454 */
455 void dev_remove_pack(struct packet_type *pt)
456 {
457 __dev_remove_pack(pt);
458
459 synchronize_net();
460 }
461 EXPORT_SYMBOL(dev_remove_pack);
462
463
464 /**
465 * dev_add_offload - register offload handlers
466 * @po: protocol offload declaration
467 *
468 * Add protocol offload handlers to the networking stack. The passed
469 * &proto_offload is linked into kernel lists and may not be freed until
470 * it has been removed from the kernel lists.
471 *
472 * This call does not sleep therefore it can not
473 * guarantee all CPU's that are in middle of receiving packets
474 * will see the new offload handlers (until the next received packet).
475 */
476 void dev_add_offload(struct packet_offload *po)
477 {
478 struct packet_offload *elem;
479
480 spin_lock(&offload_lock);
481 list_for_each_entry(elem, &offload_base, list) {
482 if (po->priority < elem->priority)
483 break;
484 }
485 list_add_rcu(&po->list, elem->list.prev);
486 spin_unlock(&offload_lock);
487 }
488 EXPORT_SYMBOL(dev_add_offload);
489
490 /**
491 * __dev_remove_offload - remove offload handler
492 * @po: packet offload declaration
493 *
494 * Remove a protocol offload handler that was previously added to the
495 * kernel offload handlers by dev_add_offload(). The passed &offload_type
496 * is removed from the kernel lists and can be freed or reused once this
497 * function returns.
498 *
499 * The packet type might still be in use by receivers
500 * and must not be freed until after all the CPU's have gone
501 * through a quiescent state.
502 */
503 static void __dev_remove_offload(struct packet_offload *po)
504 {
505 struct list_head *head = &offload_base;
506 struct packet_offload *po1;
507
508 spin_lock(&offload_lock);
509
510 list_for_each_entry(po1, head, list) {
511 if (po == po1) {
512 list_del_rcu(&po->list);
513 goto out;
514 }
515 }
516
517 pr_warn("dev_remove_offload: %p not found\n", po);
518 out:
519 spin_unlock(&offload_lock);
520 }
521
522 /**
523 * dev_remove_offload - remove packet offload handler
524 * @po: packet offload declaration
525 *
526 * Remove a packet offload handler that was previously added to the kernel
527 * offload handlers by dev_add_offload(). The passed &offload_type is
528 * removed from the kernel lists and can be freed or reused once this
529 * function returns.
530 *
531 * This call sleeps to guarantee that no CPU is looking at the packet
532 * type after return.
533 */
534 void dev_remove_offload(struct packet_offload *po)
535 {
536 __dev_remove_offload(po);
537
538 synchronize_net();
539 }
540 EXPORT_SYMBOL(dev_remove_offload);
541
542 /******************************************************************************
543 *
544 * Device Boot-time Settings Routines
545 *
546 ******************************************************************************/
547
548 /* Boot time configuration table */
549 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
550
551 /**
552 * netdev_boot_setup_add - add new setup entry
553 * @name: name of the device
554 * @map: configured settings for the device
555 *
556 * Adds new setup entry to the dev_boot_setup list. The function
557 * returns 0 on error and 1 on success. This is a generic routine to
558 * all netdevices.
559 */
560 static int netdev_boot_setup_add(char *name, struct ifmap *map)
561 {
562 struct netdev_boot_setup *s;
563 int i;
564
565 s = dev_boot_setup;
566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
567 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
568 memset(s[i].name, 0, sizeof(s[i].name));
569 strlcpy(s[i].name, name, IFNAMSIZ);
570 memcpy(&s[i].map, map, sizeof(s[i].map));
571 break;
572 }
573 }
574
575 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
576 }
577
578 /**
579 * netdev_boot_setup_check - check boot time settings
580 * @dev: the netdevice
581 *
582 * Check boot time settings for the device.
583 * The found settings are set for the device to be used
584 * later in the device probing.
585 * Returns 0 if no settings found, 1 if they are.
586 */
587 int netdev_boot_setup_check(struct net_device *dev)
588 {
589 struct netdev_boot_setup *s = dev_boot_setup;
590 int i;
591
592 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
593 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
594 !strcmp(dev->name, s[i].name)) {
595 dev->irq = s[i].map.irq;
596 dev->base_addr = s[i].map.base_addr;
597 dev->mem_start = s[i].map.mem_start;
598 dev->mem_end = s[i].map.mem_end;
599 return 1;
600 }
601 }
602 return 0;
603 }
604 EXPORT_SYMBOL(netdev_boot_setup_check);
605
606
607 /**
608 * netdev_boot_base - get address from boot time settings
609 * @prefix: prefix for network device
610 * @unit: id for network device
611 *
612 * Check boot time settings for the base address of device.
613 * The found settings are set for the device to be used
614 * later in the device probing.
615 * Returns 0 if no settings found.
616 */
617 unsigned long netdev_boot_base(const char *prefix, int unit)
618 {
619 const struct netdev_boot_setup *s = dev_boot_setup;
620 char name[IFNAMSIZ];
621 int i;
622
623 sprintf(name, "%s%d", prefix, unit);
624
625 /*
626 * If device already registered then return base of 1
627 * to indicate not to probe for this interface
628 */
629 if (__dev_get_by_name(&init_net, name))
630 return 1;
631
632 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
633 if (!strcmp(name, s[i].name))
634 return s[i].map.base_addr;
635 return 0;
636 }
637
638 /*
639 * Saves at boot time configured settings for any netdevice.
640 */
641 int __init netdev_boot_setup(char *str)
642 {
643 int ints[5];
644 struct ifmap map;
645
646 str = get_options(str, ARRAY_SIZE(ints), ints);
647 if (!str || !*str)
648 return 0;
649
650 /* Save settings */
651 memset(&map, 0, sizeof(map));
652 if (ints[0] > 0)
653 map.irq = ints[1];
654 if (ints[0] > 1)
655 map.base_addr = ints[2];
656 if (ints[0] > 2)
657 map.mem_start = ints[3];
658 if (ints[0] > 3)
659 map.mem_end = ints[4];
660
661 /* Add new entry to the list */
662 return netdev_boot_setup_add(str, &map);
663 }
664
665 __setup("netdev=", netdev_boot_setup);
666
667 /*******************************************************************************
668 *
669 * Device Interface Subroutines
670 *
671 *******************************************************************************/
672
673 /**
674 * dev_get_iflink - get 'iflink' value of a interface
675 * @dev: targeted interface
676 *
677 * Indicates the ifindex the interface is linked to.
678 * Physical interfaces have the same 'ifindex' and 'iflink' values.
679 */
680
681 int dev_get_iflink(const struct net_device *dev)
682 {
683 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
684 return dev->netdev_ops->ndo_get_iflink(dev);
685
686 return dev->ifindex;
687 }
688 EXPORT_SYMBOL(dev_get_iflink);
689
690 /**
691 * dev_fill_metadata_dst - Retrieve tunnel egress information.
692 * @dev: targeted interface
693 * @skb: The packet.
694 *
695 * For better visibility of tunnel traffic OVS needs to retrieve
696 * egress tunnel information for a packet. Following API allows
697 * user to get this info.
698 */
699 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
700 {
701 struct ip_tunnel_info *info;
702
703 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
704 return -EINVAL;
705
706 info = skb_tunnel_info_unclone(skb);
707 if (!info)
708 return -ENOMEM;
709 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
710 return -EINVAL;
711
712 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
713 }
714 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
715
716 /**
717 * __dev_get_by_name - find a device by its name
718 * @net: the applicable net namespace
719 * @name: name to find
720 *
721 * Find an interface by name. Must be called under RTNL semaphore
722 * or @dev_base_lock. If the name is found a pointer to the device
723 * is returned. If the name is not found then %NULL is returned. The
724 * reference counters are not incremented so the caller must be
725 * careful with locks.
726 */
727
728 struct net_device *__dev_get_by_name(struct net *net, const char *name)
729 {
730 struct net_device *dev;
731 struct hlist_head *head = dev_name_hash(net, name);
732
733 hlist_for_each_entry(dev, head, name_hlist)
734 if (!strncmp(dev->name, name, IFNAMSIZ))
735 return dev;
736
737 return NULL;
738 }
739 EXPORT_SYMBOL(__dev_get_by_name);
740
741 /**
742 * dev_get_by_name_rcu - find a device by its name
743 * @net: the applicable net namespace
744 * @name: name to find
745 *
746 * Find an interface by name.
747 * If the name is found a pointer to the device is returned.
748 * If the name is not found then %NULL is returned.
749 * The reference counters are not incremented so the caller must be
750 * careful with locks. The caller must hold RCU lock.
751 */
752
753 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
754 {
755 struct net_device *dev;
756 struct hlist_head *head = dev_name_hash(net, name);
757
758 hlist_for_each_entry_rcu(dev, head, name_hlist)
759 if (!strncmp(dev->name, name, IFNAMSIZ))
760 return dev;
761
762 return NULL;
763 }
764 EXPORT_SYMBOL(dev_get_by_name_rcu);
765
766 /**
767 * dev_get_by_name - find a device by its name
768 * @net: the applicable net namespace
769 * @name: name to find
770 *
771 * Find an interface by name. This can be called from any
772 * context and does its own locking. The returned handle has
773 * the usage count incremented and the caller must use dev_put() to
774 * release it when it is no longer needed. %NULL is returned if no
775 * matching device is found.
776 */
777
778 struct net_device *dev_get_by_name(struct net *net, const char *name)
779 {
780 struct net_device *dev;
781
782 rcu_read_lock();
783 dev = dev_get_by_name_rcu(net, name);
784 if (dev)
785 dev_hold(dev);
786 rcu_read_unlock();
787 return dev;
788 }
789 EXPORT_SYMBOL(dev_get_by_name);
790
791 /**
792 * __dev_get_by_index - find a device by its ifindex
793 * @net: the applicable net namespace
794 * @ifindex: index of device
795 *
796 * Search for an interface by index. Returns %NULL if the device
797 * is not found or a pointer to the device. The device has not
798 * had its reference counter increased so the caller must be careful
799 * about locking. The caller must hold either the RTNL semaphore
800 * or @dev_base_lock.
801 */
802
803 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
804 {
805 struct net_device *dev;
806 struct hlist_head *head = dev_index_hash(net, ifindex);
807
808 hlist_for_each_entry(dev, head, index_hlist)
809 if (dev->ifindex == ifindex)
810 return dev;
811
812 return NULL;
813 }
814 EXPORT_SYMBOL(__dev_get_by_index);
815
816 /**
817 * dev_get_by_index_rcu - find a device by its ifindex
818 * @net: the applicable net namespace
819 * @ifindex: index of device
820 *
821 * Search for an interface by index. Returns %NULL if the device
822 * is not found or a pointer to the device. The device has not
823 * had its reference counter increased so the caller must be careful
824 * about locking. The caller must hold RCU lock.
825 */
826
827 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
828 {
829 struct net_device *dev;
830 struct hlist_head *head = dev_index_hash(net, ifindex);
831
832 hlist_for_each_entry_rcu(dev, head, index_hlist)
833 if (dev->ifindex == ifindex)
834 return dev;
835
836 return NULL;
837 }
838 EXPORT_SYMBOL(dev_get_by_index_rcu);
839
840
841 /**
842 * dev_get_by_index - find a device by its ifindex
843 * @net: the applicable net namespace
844 * @ifindex: index of device
845 *
846 * Search for an interface by index. Returns NULL if the device
847 * is not found or a pointer to the device. The device returned has
848 * had a reference added and the pointer is safe until the user calls
849 * dev_put to indicate they have finished with it.
850 */
851
852 struct net_device *dev_get_by_index(struct net *net, int ifindex)
853 {
854 struct net_device *dev;
855
856 rcu_read_lock();
857 dev = dev_get_by_index_rcu(net, ifindex);
858 if (dev)
859 dev_hold(dev);
860 rcu_read_unlock();
861 return dev;
862 }
863 EXPORT_SYMBOL(dev_get_by_index);
864
865 /**
866 * netdev_get_name - get a netdevice name, knowing its ifindex.
867 * @net: network namespace
868 * @name: a pointer to the buffer where the name will be stored.
869 * @ifindex: the ifindex of the interface to get the name from.
870 *
871 * The use of raw_seqcount_begin() and cond_resched() before
872 * retrying is required as we want to give the writers a chance
873 * to complete when CONFIG_PREEMPT is not set.
874 */
875 int netdev_get_name(struct net *net, char *name, int ifindex)
876 {
877 struct net_device *dev;
878 unsigned int seq;
879
880 retry:
881 seq = raw_seqcount_begin(&devnet_rename_seq);
882 rcu_read_lock();
883 dev = dev_get_by_index_rcu(net, ifindex);
884 if (!dev) {
885 rcu_read_unlock();
886 return -ENODEV;
887 }
888
889 strcpy(name, dev->name);
890 rcu_read_unlock();
891 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
892 cond_resched();
893 goto retry;
894 }
895
896 return 0;
897 }
898
899 /**
900 * dev_getbyhwaddr_rcu - find a device by its hardware address
901 * @net: the applicable net namespace
902 * @type: media type of device
903 * @ha: hardware address
904 *
905 * Search for an interface by MAC address. Returns NULL if the device
906 * is not found or a pointer to the device.
907 * The caller must hold RCU or RTNL.
908 * The returned device has not had its ref count increased
909 * and the caller must therefore be careful about locking
910 *
911 */
912
913 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
914 const char *ha)
915 {
916 struct net_device *dev;
917
918 for_each_netdev_rcu(net, dev)
919 if (dev->type == type &&
920 !memcmp(dev->dev_addr, ha, dev->addr_len))
921 return dev;
922
923 return NULL;
924 }
925 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
926
927 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
928 {
929 struct net_device *dev;
930
931 ASSERT_RTNL();
932 for_each_netdev(net, dev)
933 if (dev->type == type)
934 return dev;
935
936 return NULL;
937 }
938 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
939
940 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
941 {
942 struct net_device *dev, *ret = NULL;
943
944 rcu_read_lock();
945 for_each_netdev_rcu(net, dev)
946 if (dev->type == type) {
947 dev_hold(dev);
948 ret = dev;
949 break;
950 }
951 rcu_read_unlock();
952 return ret;
953 }
954 EXPORT_SYMBOL(dev_getfirstbyhwtype);
955
956 /**
957 * __dev_get_by_flags - find any device with given flags
958 * @net: the applicable net namespace
959 * @if_flags: IFF_* values
960 * @mask: bitmask of bits in if_flags to check
961 *
962 * Search for any interface with the given flags. Returns NULL if a device
963 * is not found or a pointer to the device. Must be called inside
964 * rtnl_lock(), and result refcount is unchanged.
965 */
966
967 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
968 unsigned short mask)
969 {
970 struct net_device *dev, *ret;
971
972 ASSERT_RTNL();
973
974 ret = NULL;
975 for_each_netdev(net, dev) {
976 if (((dev->flags ^ if_flags) & mask) == 0) {
977 ret = dev;
978 break;
979 }
980 }
981 return ret;
982 }
983 EXPORT_SYMBOL(__dev_get_by_flags);
984
985 /**
986 * dev_valid_name - check if name is okay for network device
987 * @name: name string
988 *
989 * Network device names need to be valid file names to
990 * to allow sysfs to work. We also disallow any kind of
991 * whitespace.
992 */
993 bool dev_valid_name(const char *name)
994 {
995 if (*name == '\0')
996 return false;
997 if (strlen(name) >= IFNAMSIZ)
998 return false;
999 if (!strcmp(name, ".") || !strcmp(name, ".."))
1000 return false;
1001
1002 while (*name) {
1003 if (*name == '/' || *name == ':' || isspace(*name))
1004 return false;
1005 name++;
1006 }
1007 return true;
1008 }
1009 EXPORT_SYMBOL(dev_valid_name);
1010
1011 /**
1012 * __dev_alloc_name - allocate a name for a device
1013 * @net: network namespace to allocate the device name in
1014 * @name: name format string
1015 * @buf: scratch buffer and result name string
1016 *
1017 * Passed a format string - eg "lt%d" it will try and find a suitable
1018 * id. It scans list of devices to build up a free map, then chooses
1019 * the first empty slot. The caller must hold the dev_base or rtnl lock
1020 * while allocating the name and adding the device in order to avoid
1021 * duplicates.
1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023 * Returns the number of the unit assigned or a negative errno code.
1024 */
1025
1026 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1027 {
1028 int i = 0;
1029 const char *p;
1030 const int max_netdevices = 8*PAGE_SIZE;
1031 unsigned long *inuse;
1032 struct net_device *d;
1033
1034 p = strnchr(name, IFNAMSIZ-1, '%');
1035 if (p) {
1036 /*
1037 * Verify the string as this thing may have come from
1038 * the user. There must be either one "%d" and no other "%"
1039 * characters.
1040 */
1041 if (p[1] != 'd' || strchr(p + 2, '%'))
1042 return -EINVAL;
1043
1044 /* Use one page as a bit array of possible slots */
1045 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1046 if (!inuse)
1047 return -ENOMEM;
1048
1049 for_each_netdev(net, d) {
1050 if (!sscanf(d->name, name, &i))
1051 continue;
1052 if (i < 0 || i >= max_netdevices)
1053 continue;
1054
1055 /* avoid cases where sscanf is not exact inverse of printf */
1056 snprintf(buf, IFNAMSIZ, name, i);
1057 if (!strncmp(buf, d->name, IFNAMSIZ))
1058 set_bit(i, inuse);
1059 }
1060
1061 i = find_first_zero_bit(inuse, max_netdevices);
1062 free_page((unsigned long) inuse);
1063 }
1064
1065 if (buf != name)
1066 snprintf(buf, IFNAMSIZ, name, i);
1067 if (!__dev_get_by_name(net, buf))
1068 return i;
1069
1070 /* It is possible to run out of possible slots
1071 * when the name is long and there isn't enough space left
1072 * for the digits, or if all bits are used.
1073 */
1074 return -ENFILE;
1075 }
1076
1077 /**
1078 * dev_alloc_name - allocate a name for a device
1079 * @dev: device
1080 * @name: name format string
1081 *
1082 * Passed a format string - eg "lt%d" it will try and find a suitable
1083 * id. It scans list of devices to build up a free map, then chooses
1084 * the first empty slot. The caller must hold the dev_base or rtnl lock
1085 * while allocating the name and adding the device in order to avoid
1086 * duplicates.
1087 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1088 * Returns the number of the unit assigned or a negative errno code.
1089 */
1090
1091 int dev_alloc_name(struct net_device *dev, const char *name)
1092 {
1093 char buf[IFNAMSIZ];
1094 struct net *net;
1095 int ret;
1096
1097 BUG_ON(!dev_net(dev));
1098 net = dev_net(dev);
1099 ret = __dev_alloc_name(net, name, buf);
1100 if (ret >= 0)
1101 strlcpy(dev->name, buf, IFNAMSIZ);
1102 return ret;
1103 }
1104 EXPORT_SYMBOL(dev_alloc_name);
1105
1106 static int dev_alloc_name_ns(struct net *net,
1107 struct net_device *dev,
1108 const char *name)
1109 {
1110 char buf[IFNAMSIZ];
1111 int ret;
1112
1113 ret = __dev_alloc_name(net, name, buf);
1114 if (ret >= 0)
1115 strlcpy(dev->name, buf, IFNAMSIZ);
1116 return ret;
1117 }
1118
1119 static int dev_get_valid_name(struct net *net,
1120 struct net_device *dev,
1121 const char *name)
1122 {
1123 BUG_ON(!net);
1124
1125 if (!dev_valid_name(name))
1126 return -EINVAL;
1127
1128 if (strchr(name, '%'))
1129 return dev_alloc_name_ns(net, dev, name);
1130 else if (__dev_get_by_name(net, name))
1131 return -EEXIST;
1132 else if (dev->name != name)
1133 strlcpy(dev->name, name, IFNAMSIZ);
1134
1135 return 0;
1136 }
1137
1138 /**
1139 * dev_change_name - change name of a device
1140 * @dev: device
1141 * @newname: name (or format string) must be at least IFNAMSIZ
1142 *
1143 * Change name of a device, can pass format strings "eth%d".
1144 * for wildcarding.
1145 */
1146 int dev_change_name(struct net_device *dev, const char *newname)
1147 {
1148 unsigned char old_assign_type;
1149 char oldname[IFNAMSIZ];
1150 int err = 0;
1151 int ret;
1152 struct net *net;
1153
1154 ASSERT_RTNL();
1155 BUG_ON(!dev_net(dev));
1156
1157 net = dev_net(dev);
1158 if (dev->flags & IFF_UP)
1159 return -EBUSY;
1160
1161 write_seqcount_begin(&devnet_rename_seq);
1162
1163 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1164 write_seqcount_end(&devnet_rename_seq);
1165 return 0;
1166 }
1167
1168 memcpy(oldname, dev->name, IFNAMSIZ);
1169
1170 err = dev_get_valid_name(net, dev, newname);
1171 if (err < 0) {
1172 write_seqcount_end(&devnet_rename_seq);
1173 return err;
1174 }
1175
1176 if (oldname[0] && !strchr(oldname, '%'))
1177 netdev_info(dev, "renamed from %s\n", oldname);
1178
1179 old_assign_type = dev->name_assign_type;
1180 dev->name_assign_type = NET_NAME_RENAMED;
1181
1182 rollback:
1183 ret = device_rename(&dev->dev, dev->name);
1184 if (ret) {
1185 memcpy(dev->name, oldname, IFNAMSIZ);
1186 dev->name_assign_type = old_assign_type;
1187 write_seqcount_end(&devnet_rename_seq);
1188 return ret;
1189 }
1190
1191 write_seqcount_end(&devnet_rename_seq);
1192
1193 netdev_adjacent_rename_links(dev, oldname);
1194
1195 write_lock_bh(&dev_base_lock);
1196 hlist_del_rcu(&dev->name_hlist);
1197 write_unlock_bh(&dev_base_lock);
1198
1199 synchronize_rcu();
1200
1201 write_lock_bh(&dev_base_lock);
1202 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1203 write_unlock_bh(&dev_base_lock);
1204
1205 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1206 ret = notifier_to_errno(ret);
1207
1208 if (ret) {
1209 /* err >= 0 after dev_alloc_name() or stores the first errno */
1210 if (err >= 0) {
1211 err = ret;
1212 write_seqcount_begin(&devnet_rename_seq);
1213 memcpy(dev->name, oldname, IFNAMSIZ);
1214 memcpy(oldname, newname, IFNAMSIZ);
1215 dev->name_assign_type = old_assign_type;
1216 old_assign_type = NET_NAME_RENAMED;
1217 goto rollback;
1218 } else {
1219 pr_err("%s: name change rollback failed: %d\n",
1220 dev->name, ret);
1221 }
1222 }
1223
1224 return err;
1225 }
1226
1227 /**
1228 * dev_set_alias - change ifalias of a device
1229 * @dev: device
1230 * @alias: name up to IFALIASZ
1231 * @len: limit of bytes to copy from info
1232 *
1233 * Set ifalias for a device,
1234 */
1235 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1236 {
1237 char *new_ifalias;
1238
1239 ASSERT_RTNL();
1240
1241 if (len >= IFALIASZ)
1242 return -EINVAL;
1243
1244 if (!len) {
1245 kfree(dev->ifalias);
1246 dev->ifalias = NULL;
1247 return 0;
1248 }
1249
1250 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1251 if (!new_ifalias)
1252 return -ENOMEM;
1253 dev->ifalias = new_ifalias;
1254
1255 strlcpy(dev->ifalias, alias, len+1);
1256 return len;
1257 }
1258
1259
1260 /**
1261 * netdev_features_change - device changes features
1262 * @dev: device to cause notification
1263 *
1264 * Called to indicate a device has changed features.
1265 */
1266 void netdev_features_change(struct net_device *dev)
1267 {
1268 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1269 }
1270 EXPORT_SYMBOL(netdev_features_change);
1271
1272 /**
1273 * netdev_state_change - device changes state
1274 * @dev: device to cause notification
1275 *
1276 * Called to indicate a device has changed state. This function calls
1277 * the notifier chains for netdev_chain and sends a NEWLINK message
1278 * to the routing socket.
1279 */
1280 void netdev_state_change(struct net_device *dev)
1281 {
1282 if (dev->flags & IFF_UP) {
1283 struct netdev_notifier_change_info change_info;
1284
1285 change_info.flags_changed = 0;
1286 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1287 &change_info.info);
1288 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1289 }
1290 }
1291 EXPORT_SYMBOL(netdev_state_change);
1292
1293 /**
1294 * netdev_notify_peers - notify network peers about existence of @dev
1295 * @dev: network device
1296 *
1297 * Generate traffic such that interested network peers are aware of
1298 * @dev, such as by generating a gratuitous ARP. This may be used when
1299 * a device wants to inform the rest of the network about some sort of
1300 * reconfiguration such as a failover event or virtual machine
1301 * migration.
1302 */
1303 void netdev_notify_peers(struct net_device *dev)
1304 {
1305 rtnl_lock();
1306 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1307 rtnl_unlock();
1308 }
1309 EXPORT_SYMBOL(netdev_notify_peers);
1310
1311 static int __dev_open(struct net_device *dev)
1312 {
1313 const struct net_device_ops *ops = dev->netdev_ops;
1314 int ret;
1315
1316 ASSERT_RTNL();
1317
1318 if (!netif_device_present(dev))
1319 return -ENODEV;
1320
1321 /* Block netpoll from trying to do any rx path servicing.
1322 * If we don't do this there is a chance ndo_poll_controller
1323 * or ndo_poll may be running while we open the device
1324 */
1325 netpoll_poll_disable(dev);
1326
1327 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1328 ret = notifier_to_errno(ret);
1329 if (ret)
1330 return ret;
1331
1332 set_bit(__LINK_STATE_START, &dev->state);
1333
1334 if (ops->ndo_validate_addr)
1335 ret = ops->ndo_validate_addr(dev);
1336
1337 if (!ret && ops->ndo_open)
1338 ret = ops->ndo_open(dev);
1339
1340 netpoll_poll_enable(dev);
1341
1342 if (ret)
1343 clear_bit(__LINK_STATE_START, &dev->state);
1344 else {
1345 dev->flags |= IFF_UP;
1346 dev_set_rx_mode(dev);
1347 dev_activate(dev);
1348 add_device_randomness(dev->dev_addr, dev->addr_len);
1349 }
1350
1351 return ret;
1352 }
1353
1354 /**
1355 * dev_open - prepare an interface for use.
1356 * @dev: device to open
1357 *
1358 * Takes a device from down to up state. The device's private open
1359 * function is invoked and then the multicast lists are loaded. Finally
1360 * the device is moved into the up state and a %NETDEV_UP message is
1361 * sent to the netdev notifier chain.
1362 *
1363 * Calling this function on an active interface is a nop. On a failure
1364 * a negative errno code is returned.
1365 */
1366 int dev_open(struct net_device *dev)
1367 {
1368 int ret;
1369
1370 if (dev->flags & IFF_UP)
1371 return 0;
1372
1373 ret = __dev_open(dev);
1374 if (ret < 0)
1375 return ret;
1376
1377 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1378 call_netdevice_notifiers(NETDEV_UP, dev);
1379
1380 return ret;
1381 }
1382 EXPORT_SYMBOL(dev_open);
1383
1384 static int __dev_close_many(struct list_head *head)
1385 {
1386 struct net_device *dev;
1387
1388 ASSERT_RTNL();
1389 might_sleep();
1390
1391 list_for_each_entry(dev, head, close_list) {
1392 /* Temporarily disable netpoll until the interface is down */
1393 netpoll_poll_disable(dev);
1394
1395 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1396
1397 clear_bit(__LINK_STATE_START, &dev->state);
1398
1399 /* Synchronize to scheduled poll. We cannot touch poll list, it
1400 * can be even on different cpu. So just clear netif_running().
1401 *
1402 * dev->stop() will invoke napi_disable() on all of it's
1403 * napi_struct instances on this device.
1404 */
1405 smp_mb__after_atomic(); /* Commit netif_running(). */
1406 }
1407
1408 dev_deactivate_many(head);
1409
1410 list_for_each_entry(dev, head, close_list) {
1411 const struct net_device_ops *ops = dev->netdev_ops;
1412
1413 /*
1414 * Call the device specific close. This cannot fail.
1415 * Only if device is UP
1416 *
1417 * We allow it to be called even after a DETACH hot-plug
1418 * event.
1419 */
1420 if (ops->ndo_stop)
1421 ops->ndo_stop(dev);
1422
1423 dev->flags &= ~IFF_UP;
1424 netpoll_poll_enable(dev);
1425 }
1426
1427 return 0;
1428 }
1429
1430 static int __dev_close(struct net_device *dev)
1431 {
1432 int retval;
1433 LIST_HEAD(single);
1434
1435 list_add(&dev->close_list, &single);
1436 retval = __dev_close_many(&single);
1437 list_del(&single);
1438
1439 return retval;
1440 }
1441
1442 int dev_close_many(struct list_head *head, bool unlink)
1443 {
1444 struct net_device *dev, *tmp;
1445
1446 /* Remove the devices that don't need to be closed */
1447 list_for_each_entry_safe(dev, tmp, head, close_list)
1448 if (!(dev->flags & IFF_UP))
1449 list_del_init(&dev->close_list);
1450
1451 __dev_close_many(head);
1452
1453 list_for_each_entry_safe(dev, tmp, head, close_list) {
1454 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1455 call_netdevice_notifiers(NETDEV_DOWN, dev);
1456 if (unlink)
1457 list_del_init(&dev->close_list);
1458 }
1459
1460 return 0;
1461 }
1462 EXPORT_SYMBOL(dev_close_many);
1463
1464 /**
1465 * dev_close - shutdown an interface.
1466 * @dev: device to shutdown
1467 *
1468 * This function moves an active device into down state. A
1469 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1470 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1471 * chain.
1472 */
1473 int dev_close(struct net_device *dev)
1474 {
1475 if (dev->flags & IFF_UP) {
1476 LIST_HEAD(single);
1477
1478 list_add(&dev->close_list, &single);
1479 dev_close_many(&single, true);
1480 list_del(&single);
1481 }
1482 return 0;
1483 }
1484 EXPORT_SYMBOL(dev_close);
1485
1486
1487 /**
1488 * dev_disable_lro - disable Large Receive Offload on a device
1489 * @dev: device
1490 *
1491 * Disable Large Receive Offload (LRO) on a net device. Must be
1492 * called under RTNL. This is needed if received packets may be
1493 * forwarded to another interface.
1494 */
1495 void dev_disable_lro(struct net_device *dev)
1496 {
1497 struct net_device *lower_dev;
1498 struct list_head *iter;
1499
1500 dev->wanted_features &= ~NETIF_F_LRO;
1501 netdev_update_features(dev);
1502
1503 if (unlikely(dev->features & NETIF_F_LRO))
1504 netdev_WARN(dev, "failed to disable LRO!\n");
1505
1506 netdev_for_each_lower_dev(dev, lower_dev, iter)
1507 dev_disable_lro(lower_dev);
1508 }
1509 EXPORT_SYMBOL(dev_disable_lro);
1510
1511 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1512 struct net_device *dev)
1513 {
1514 struct netdev_notifier_info info;
1515
1516 netdev_notifier_info_init(&info, dev);
1517 return nb->notifier_call(nb, val, &info);
1518 }
1519
1520 static int dev_boot_phase = 1;
1521
1522 /**
1523 * register_netdevice_notifier - register a network notifier block
1524 * @nb: notifier
1525 *
1526 * Register a notifier to be called when network device events occur.
1527 * The notifier passed is linked into the kernel structures and must
1528 * not be reused until it has been unregistered. A negative errno code
1529 * is returned on a failure.
1530 *
1531 * When registered all registration and up events are replayed
1532 * to the new notifier to allow device to have a race free
1533 * view of the network device list.
1534 */
1535
1536 int register_netdevice_notifier(struct notifier_block *nb)
1537 {
1538 struct net_device *dev;
1539 struct net_device *last;
1540 struct net *net;
1541 int err;
1542
1543 rtnl_lock();
1544 err = raw_notifier_chain_register(&netdev_chain, nb);
1545 if (err)
1546 goto unlock;
1547 if (dev_boot_phase)
1548 goto unlock;
1549 for_each_net(net) {
1550 for_each_netdev(net, dev) {
1551 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1552 err = notifier_to_errno(err);
1553 if (err)
1554 goto rollback;
1555
1556 if (!(dev->flags & IFF_UP))
1557 continue;
1558
1559 call_netdevice_notifier(nb, NETDEV_UP, dev);
1560 }
1561 }
1562
1563 unlock:
1564 rtnl_unlock();
1565 return err;
1566
1567 rollback:
1568 last = dev;
1569 for_each_net(net) {
1570 for_each_netdev(net, dev) {
1571 if (dev == last)
1572 goto outroll;
1573
1574 if (dev->flags & IFF_UP) {
1575 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1576 dev);
1577 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1578 }
1579 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1580 }
1581 }
1582
1583 outroll:
1584 raw_notifier_chain_unregister(&netdev_chain, nb);
1585 goto unlock;
1586 }
1587 EXPORT_SYMBOL(register_netdevice_notifier);
1588
1589 /**
1590 * unregister_netdevice_notifier - unregister a network notifier block
1591 * @nb: notifier
1592 *
1593 * Unregister a notifier previously registered by
1594 * register_netdevice_notifier(). The notifier is unlinked into the
1595 * kernel structures and may then be reused. A negative errno code
1596 * is returned on a failure.
1597 *
1598 * After unregistering unregister and down device events are synthesized
1599 * for all devices on the device list to the removed notifier to remove
1600 * the need for special case cleanup code.
1601 */
1602
1603 int unregister_netdevice_notifier(struct notifier_block *nb)
1604 {
1605 struct net_device *dev;
1606 struct net *net;
1607 int err;
1608
1609 rtnl_lock();
1610 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1611 if (err)
1612 goto unlock;
1613
1614 for_each_net(net) {
1615 for_each_netdev(net, dev) {
1616 if (dev->flags & IFF_UP) {
1617 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1618 dev);
1619 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1620 }
1621 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1622 }
1623 }
1624 unlock:
1625 rtnl_unlock();
1626 return err;
1627 }
1628 EXPORT_SYMBOL(unregister_netdevice_notifier);
1629
1630 /**
1631 * call_netdevice_notifiers_info - call all network notifier blocks
1632 * @val: value passed unmodified to notifier function
1633 * @dev: net_device pointer passed unmodified to notifier function
1634 * @info: notifier information data
1635 *
1636 * Call all network notifier blocks. Parameters and return value
1637 * are as for raw_notifier_call_chain().
1638 */
1639
1640 static int call_netdevice_notifiers_info(unsigned long val,
1641 struct net_device *dev,
1642 struct netdev_notifier_info *info)
1643 {
1644 ASSERT_RTNL();
1645 netdev_notifier_info_init(info, dev);
1646 return raw_notifier_call_chain(&netdev_chain, val, info);
1647 }
1648
1649 /**
1650 * call_netdevice_notifiers - call all network notifier blocks
1651 * @val: value passed unmodified to notifier function
1652 * @dev: net_device pointer passed unmodified to notifier function
1653 *
1654 * Call all network notifier blocks. Parameters and return value
1655 * are as for raw_notifier_call_chain().
1656 */
1657
1658 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1659 {
1660 struct netdev_notifier_info info;
1661
1662 return call_netdevice_notifiers_info(val, dev, &info);
1663 }
1664 EXPORT_SYMBOL(call_netdevice_notifiers);
1665
1666 #ifdef CONFIG_NET_INGRESS
1667 static struct static_key ingress_needed __read_mostly;
1668
1669 void net_inc_ingress_queue(void)
1670 {
1671 static_key_slow_inc(&ingress_needed);
1672 }
1673 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1674
1675 void net_dec_ingress_queue(void)
1676 {
1677 static_key_slow_dec(&ingress_needed);
1678 }
1679 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1680 #endif
1681
1682 #ifdef CONFIG_NET_EGRESS
1683 static struct static_key egress_needed __read_mostly;
1684
1685 void net_inc_egress_queue(void)
1686 {
1687 static_key_slow_inc(&egress_needed);
1688 }
1689 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1690
1691 void net_dec_egress_queue(void)
1692 {
1693 static_key_slow_dec(&egress_needed);
1694 }
1695 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1696 #endif
1697
1698 static struct static_key netstamp_needed __read_mostly;
1699 #ifdef HAVE_JUMP_LABEL
1700 static atomic_t netstamp_needed_deferred;
1701 static void netstamp_clear(struct work_struct *work)
1702 {
1703 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1704
1705 while (deferred--)
1706 static_key_slow_dec(&netstamp_needed);
1707 }
1708 static DECLARE_WORK(netstamp_work, netstamp_clear);
1709 #endif
1710
1711 void net_enable_timestamp(void)
1712 {
1713 static_key_slow_inc(&netstamp_needed);
1714 }
1715 EXPORT_SYMBOL(net_enable_timestamp);
1716
1717 void net_disable_timestamp(void)
1718 {
1719 #ifdef HAVE_JUMP_LABEL
1720 /* net_disable_timestamp() can be called from non process context */
1721 atomic_inc(&netstamp_needed_deferred);
1722 schedule_work(&netstamp_work);
1723 #else
1724 static_key_slow_dec(&netstamp_needed);
1725 #endif
1726 }
1727 EXPORT_SYMBOL(net_disable_timestamp);
1728
1729 static inline void net_timestamp_set(struct sk_buff *skb)
1730 {
1731 skb->tstamp = 0;
1732 if (static_key_false(&netstamp_needed))
1733 __net_timestamp(skb);
1734 }
1735
1736 #define net_timestamp_check(COND, SKB) \
1737 if (static_key_false(&netstamp_needed)) { \
1738 if ((COND) && !(SKB)->tstamp) \
1739 __net_timestamp(SKB); \
1740 } \
1741
1742 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1743 {
1744 unsigned int len;
1745
1746 if (!(dev->flags & IFF_UP))
1747 return false;
1748
1749 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1750 if (skb->len <= len)
1751 return true;
1752
1753 /* if TSO is enabled, we don't care about the length as the packet
1754 * could be forwarded without being segmented before
1755 */
1756 if (skb_is_gso(skb))
1757 return true;
1758
1759 return false;
1760 }
1761 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1762
1763 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1764 {
1765 int ret = ____dev_forward_skb(dev, skb);
1766
1767 if (likely(!ret)) {
1768 skb->protocol = eth_type_trans(skb, dev);
1769 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1770 }
1771
1772 return ret;
1773 }
1774 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1775
1776 /**
1777 * dev_forward_skb - loopback an skb to another netif
1778 *
1779 * @dev: destination network device
1780 * @skb: buffer to forward
1781 *
1782 * return values:
1783 * NET_RX_SUCCESS (no congestion)
1784 * NET_RX_DROP (packet was dropped, but freed)
1785 *
1786 * dev_forward_skb can be used for injecting an skb from the
1787 * start_xmit function of one device into the receive queue
1788 * of another device.
1789 *
1790 * The receiving device may be in another namespace, so
1791 * we have to clear all information in the skb that could
1792 * impact namespace isolation.
1793 */
1794 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1795 {
1796 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1797 }
1798 EXPORT_SYMBOL_GPL(dev_forward_skb);
1799
1800 static inline int deliver_skb(struct sk_buff *skb,
1801 struct packet_type *pt_prev,
1802 struct net_device *orig_dev)
1803 {
1804 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1805 return -ENOMEM;
1806 atomic_inc(&skb->users);
1807 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1808 }
1809
1810 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1811 struct packet_type **pt,
1812 struct net_device *orig_dev,
1813 __be16 type,
1814 struct list_head *ptype_list)
1815 {
1816 struct packet_type *ptype, *pt_prev = *pt;
1817
1818 list_for_each_entry_rcu(ptype, ptype_list, list) {
1819 if (ptype->type != type)
1820 continue;
1821 if (pt_prev)
1822 deliver_skb(skb, pt_prev, orig_dev);
1823 pt_prev = ptype;
1824 }
1825 *pt = pt_prev;
1826 }
1827
1828 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1829 {
1830 if (!ptype->af_packet_priv || !skb->sk)
1831 return false;
1832
1833 if (ptype->id_match)
1834 return ptype->id_match(ptype, skb->sk);
1835 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1836 return true;
1837
1838 return false;
1839 }
1840
1841 /*
1842 * Support routine. Sends outgoing frames to any network
1843 * taps currently in use.
1844 */
1845
1846 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1847 {
1848 struct packet_type *ptype;
1849 struct sk_buff *skb2 = NULL;
1850 struct packet_type *pt_prev = NULL;
1851 struct list_head *ptype_list = &ptype_all;
1852
1853 rcu_read_lock();
1854 again:
1855 list_for_each_entry_rcu(ptype, ptype_list, list) {
1856 /* Never send packets back to the socket
1857 * they originated from - MvS (miquels@drinkel.ow.org)
1858 */
1859 if (skb_loop_sk(ptype, skb))
1860 continue;
1861
1862 if (pt_prev) {
1863 deliver_skb(skb2, pt_prev, skb->dev);
1864 pt_prev = ptype;
1865 continue;
1866 }
1867
1868 /* need to clone skb, done only once */
1869 skb2 = skb_clone(skb, GFP_ATOMIC);
1870 if (!skb2)
1871 goto out_unlock;
1872
1873 net_timestamp_set(skb2);
1874
1875 /* skb->nh should be correctly
1876 * set by sender, so that the second statement is
1877 * just protection against buggy protocols.
1878 */
1879 skb_reset_mac_header(skb2);
1880
1881 if (skb_network_header(skb2) < skb2->data ||
1882 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1883 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1884 ntohs(skb2->protocol),
1885 dev->name);
1886 skb_reset_network_header(skb2);
1887 }
1888
1889 skb2->transport_header = skb2->network_header;
1890 skb2->pkt_type = PACKET_OUTGOING;
1891 pt_prev = ptype;
1892 }
1893
1894 if (ptype_list == &ptype_all) {
1895 ptype_list = &dev->ptype_all;
1896 goto again;
1897 }
1898 out_unlock:
1899 if (pt_prev)
1900 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1901 rcu_read_unlock();
1902 }
1903 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1904
1905 /**
1906 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1907 * @dev: Network device
1908 * @txq: number of queues available
1909 *
1910 * If real_num_tx_queues is changed the tc mappings may no longer be
1911 * valid. To resolve this verify the tc mapping remains valid and if
1912 * not NULL the mapping. With no priorities mapping to this
1913 * offset/count pair it will no longer be used. In the worst case TC0
1914 * is invalid nothing can be done so disable priority mappings. If is
1915 * expected that drivers will fix this mapping if they can before
1916 * calling netif_set_real_num_tx_queues.
1917 */
1918 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1919 {
1920 int i;
1921 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1922
1923 /* If TC0 is invalidated disable TC mapping */
1924 if (tc->offset + tc->count > txq) {
1925 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1926 dev->num_tc = 0;
1927 return;
1928 }
1929
1930 /* Invalidated prio to tc mappings set to TC0 */
1931 for (i = 1; i < TC_BITMASK + 1; i++) {
1932 int q = netdev_get_prio_tc_map(dev, i);
1933
1934 tc = &dev->tc_to_txq[q];
1935 if (tc->offset + tc->count > txq) {
1936 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1937 i, q);
1938 netdev_set_prio_tc_map(dev, i, 0);
1939 }
1940 }
1941 }
1942
1943 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1944 {
1945 if (dev->num_tc) {
1946 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1947 int i;
1948
1949 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1950 if ((txq - tc->offset) < tc->count)
1951 return i;
1952 }
1953
1954 return -1;
1955 }
1956
1957 return 0;
1958 }
1959
1960 #ifdef CONFIG_XPS
1961 static DEFINE_MUTEX(xps_map_mutex);
1962 #define xmap_dereference(P) \
1963 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1964
1965 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1966 int tci, u16 index)
1967 {
1968 struct xps_map *map = NULL;
1969 int pos;
1970
1971 if (dev_maps)
1972 map = xmap_dereference(dev_maps->cpu_map[tci]);
1973 if (!map)
1974 return false;
1975
1976 for (pos = map->len; pos--;) {
1977 if (map->queues[pos] != index)
1978 continue;
1979
1980 if (map->len > 1) {
1981 map->queues[pos] = map->queues[--map->len];
1982 break;
1983 }
1984
1985 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
1986 kfree_rcu(map, rcu);
1987 return false;
1988 }
1989
1990 return true;
1991 }
1992
1993 static bool remove_xps_queue_cpu(struct net_device *dev,
1994 struct xps_dev_maps *dev_maps,
1995 int cpu, u16 offset, u16 count)
1996 {
1997 int num_tc = dev->num_tc ? : 1;
1998 bool active = false;
1999 int tci;
2000
2001 for (tci = cpu * num_tc; num_tc--; tci++) {
2002 int i, j;
2003
2004 for (i = count, j = offset; i--; j++) {
2005 if (!remove_xps_queue(dev_maps, cpu, j))
2006 break;
2007 }
2008
2009 active |= i < 0;
2010 }
2011
2012 return active;
2013 }
2014
2015 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2016 u16 count)
2017 {
2018 struct xps_dev_maps *dev_maps;
2019 int cpu, i;
2020 bool active = false;
2021
2022 mutex_lock(&xps_map_mutex);
2023 dev_maps = xmap_dereference(dev->xps_maps);
2024
2025 if (!dev_maps)
2026 goto out_no_maps;
2027
2028 for_each_possible_cpu(cpu)
2029 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2030 offset, count);
2031
2032 if (!active) {
2033 RCU_INIT_POINTER(dev->xps_maps, NULL);
2034 kfree_rcu(dev_maps, rcu);
2035 }
2036
2037 for (i = offset + (count - 1); count--; i--)
2038 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2039 NUMA_NO_NODE);
2040
2041 out_no_maps:
2042 mutex_unlock(&xps_map_mutex);
2043 }
2044
2045 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2046 {
2047 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2048 }
2049
2050 static struct xps_map *expand_xps_map(struct xps_map *map,
2051 int cpu, u16 index)
2052 {
2053 struct xps_map *new_map;
2054 int alloc_len = XPS_MIN_MAP_ALLOC;
2055 int i, pos;
2056
2057 for (pos = 0; map && pos < map->len; pos++) {
2058 if (map->queues[pos] != index)
2059 continue;
2060 return map;
2061 }
2062
2063 /* Need to add queue to this CPU's existing map */
2064 if (map) {
2065 if (pos < map->alloc_len)
2066 return map;
2067
2068 alloc_len = map->alloc_len * 2;
2069 }
2070
2071 /* Need to allocate new map to store queue on this CPU's map */
2072 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2073 cpu_to_node(cpu));
2074 if (!new_map)
2075 return NULL;
2076
2077 for (i = 0; i < pos; i++)
2078 new_map->queues[i] = map->queues[i];
2079 new_map->alloc_len = alloc_len;
2080 new_map->len = pos;
2081
2082 return new_map;
2083 }
2084
2085 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2086 u16 index)
2087 {
2088 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2089 int i, cpu, tci, numa_node_id = -2;
2090 int maps_sz, num_tc = 1, tc = 0;
2091 struct xps_map *map, *new_map;
2092 bool active = false;
2093
2094 if (dev->num_tc) {
2095 num_tc = dev->num_tc;
2096 tc = netdev_txq_to_tc(dev, index);
2097 if (tc < 0)
2098 return -EINVAL;
2099 }
2100
2101 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2102 if (maps_sz < L1_CACHE_BYTES)
2103 maps_sz = L1_CACHE_BYTES;
2104
2105 mutex_lock(&xps_map_mutex);
2106
2107 dev_maps = xmap_dereference(dev->xps_maps);
2108
2109 /* allocate memory for queue storage */
2110 for_each_cpu_and(cpu, cpu_online_mask, mask) {
2111 if (!new_dev_maps)
2112 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2113 if (!new_dev_maps) {
2114 mutex_unlock(&xps_map_mutex);
2115 return -ENOMEM;
2116 }
2117
2118 tci = cpu * num_tc + tc;
2119 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2120 NULL;
2121
2122 map = expand_xps_map(map, cpu, index);
2123 if (!map)
2124 goto error;
2125
2126 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2127 }
2128
2129 if (!new_dev_maps)
2130 goto out_no_new_maps;
2131
2132 for_each_possible_cpu(cpu) {
2133 /* copy maps belonging to foreign traffic classes */
2134 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2135 /* fill in the new device map from the old device map */
2136 map = xmap_dereference(dev_maps->cpu_map[tci]);
2137 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2138 }
2139
2140 /* We need to explicitly update tci as prevous loop
2141 * could break out early if dev_maps is NULL.
2142 */
2143 tci = cpu * num_tc + tc;
2144
2145 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2146 /* add queue to CPU maps */
2147 int pos = 0;
2148
2149 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2150 while ((pos < map->len) && (map->queues[pos] != index))
2151 pos++;
2152
2153 if (pos == map->len)
2154 map->queues[map->len++] = index;
2155 #ifdef CONFIG_NUMA
2156 if (numa_node_id == -2)
2157 numa_node_id = cpu_to_node(cpu);
2158 else if (numa_node_id != cpu_to_node(cpu))
2159 numa_node_id = -1;
2160 #endif
2161 } else if (dev_maps) {
2162 /* fill in the new device map from the old device map */
2163 map = xmap_dereference(dev_maps->cpu_map[tci]);
2164 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2165 }
2166
2167 /* copy maps belonging to foreign traffic classes */
2168 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2169 /* fill in the new device map from the old device map */
2170 map = xmap_dereference(dev_maps->cpu_map[tci]);
2171 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2172 }
2173 }
2174
2175 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2176
2177 /* Cleanup old maps */
2178 if (!dev_maps)
2179 goto out_no_old_maps;
2180
2181 for_each_possible_cpu(cpu) {
2182 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2183 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2184 map = xmap_dereference(dev_maps->cpu_map[tci]);
2185 if (map && map != new_map)
2186 kfree_rcu(map, rcu);
2187 }
2188 }
2189
2190 kfree_rcu(dev_maps, rcu);
2191
2192 out_no_old_maps:
2193 dev_maps = new_dev_maps;
2194 active = true;
2195
2196 out_no_new_maps:
2197 /* update Tx queue numa node */
2198 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2199 (numa_node_id >= 0) ? numa_node_id :
2200 NUMA_NO_NODE);
2201
2202 if (!dev_maps)
2203 goto out_no_maps;
2204
2205 /* removes queue from unused CPUs */
2206 for_each_possible_cpu(cpu) {
2207 for (i = tc, tci = cpu * num_tc; i--; tci++)
2208 active |= remove_xps_queue(dev_maps, tci, index);
2209 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2210 active |= remove_xps_queue(dev_maps, tci, index);
2211 for (i = num_tc - tc, tci++; --i; tci++)
2212 active |= remove_xps_queue(dev_maps, tci, index);
2213 }
2214
2215 /* free map if not active */
2216 if (!active) {
2217 RCU_INIT_POINTER(dev->xps_maps, NULL);
2218 kfree_rcu(dev_maps, rcu);
2219 }
2220
2221 out_no_maps:
2222 mutex_unlock(&xps_map_mutex);
2223
2224 return 0;
2225 error:
2226 /* remove any maps that we added */
2227 for_each_possible_cpu(cpu) {
2228 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2229 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2230 map = dev_maps ?
2231 xmap_dereference(dev_maps->cpu_map[tci]) :
2232 NULL;
2233 if (new_map && new_map != map)
2234 kfree(new_map);
2235 }
2236 }
2237
2238 mutex_unlock(&xps_map_mutex);
2239
2240 kfree(new_dev_maps);
2241 return -ENOMEM;
2242 }
2243 EXPORT_SYMBOL(netif_set_xps_queue);
2244
2245 #endif
2246 void netdev_reset_tc(struct net_device *dev)
2247 {
2248 #ifdef CONFIG_XPS
2249 netif_reset_xps_queues_gt(dev, 0);
2250 #endif
2251 dev->num_tc = 0;
2252 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2253 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2254 }
2255 EXPORT_SYMBOL(netdev_reset_tc);
2256
2257 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2258 {
2259 if (tc >= dev->num_tc)
2260 return -EINVAL;
2261
2262 #ifdef CONFIG_XPS
2263 netif_reset_xps_queues(dev, offset, count);
2264 #endif
2265 dev->tc_to_txq[tc].count = count;
2266 dev->tc_to_txq[tc].offset = offset;
2267 return 0;
2268 }
2269 EXPORT_SYMBOL(netdev_set_tc_queue);
2270
2271 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2272 {
2273 if (num_tc > TC_MAX_QUEUE)
2274 return -EINVAL;
2275
2276 #ifdef CONFIG_XPS
2277 netif_reset_xps_queues_gt(dev, 0);
2278 #endif
2279 dev->num_tc = num_tc;
2280 return 0;
2281 }
2282 EXPORT_SYMBOL(netdev_set_num_tc);
2283
2284 /*
2285 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2286 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2287 */
2288 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2289 {
2290 int rc;
2291
2292 if (txq < 1 || txq > dev->num_tx_queues)
2293 return -EINVAL;
2294
2295 if (dev->reg_state == NETREG_REGISTERED ||
2296 dev->reg_state == NETREG_UNREGISTERING) {
2297 ASSERT_RTNL();
2298
2299 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2300 txq);
2301 if (rc)
2302 return rc;
2303
2304 if (dev->num_tc)
2305 netif_setup_tc(dev, txq);
2306
2307 if (txq < dev->real_num_tx_queues) {
2308 qdisc_reset_all_tx_gt(dev, txq);
2309 #ifdef CONFIG_XPS
2310 netif_reset_xps_queues_gt(dev, txq);
2311 #endif
2312 }
2313 }
2314
2315 dev->real_num_tx_queues = txq;
2316 return 0;
2317 }
2318 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2319
2320 #ifdef CONFIG_SYSFS
2321 /**
2322 * netif_set_real_num_rx_queues - set actual number of RX queues used
2323 * @dev: Network device
2324 * @rxq: Actual number of RX queues
2325 *
2326 * This must be called either with the rtnl_lock held or before
2327 * registration of the net device. Returns 0 on success, or a
2328 * negative error code. If called before registration, it always
2329 * succeeds.
2330 */
2331 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2332 {
2333 int rc;
2334
2335 if (rxq < 1 || rxq > dev->num_rx_queues)
2336 return -EINVAL;
2337
2338 if (dev->reg_state == NETREG_REGISTERED) {
2339 ASSERT_RTNL();
2340
2341 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2342 rxq);
2343 if (rc)
2344 return rc;
2345 }
2346
2347 dev->real_num_rx_queues = rxq;
2348 return 0;
2349 }
2350 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2351 #endif
2352
2353 /**
2354 * netif_get_num_default_rss_queues - default number of RSS queues
2355 *
2356 * This routine should set an upper limit on the number of RSS queues
2357 * used by default by multiqueue devices.
2358 */
2359 int netif_get_num_default_rss_queues(void)
2360 {
2361 return is_kdump_kernel() ?
2362 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2363 }
2364 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2365
2366 static void __netif_reschedule(struct Qdisc *q)
2367 {
2368 struct softnet_data *sd;
2369 unsigned long flags;
2370
2371 local_irq_save(flags);
2372 sd = this_cpu_ptr(&softnet_data);
2373 q->next_sched = NULL;
2374 *sd->output_queue_tailp = q;
2375 sd->output_queue_tailp = &q->next_sched;
2376 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2377 local_irq_restore(flags);
2378 }
2379
2380 void __netif_schedule(struct Qdisc *q)
2381 {
2382 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2383 __netif_reschedule(q);
2384 }
2385 EXPORT_SYMBOL(__netif_schedule);
2386
2387 struct dev_kfree_skb_cb {
2388 enum skb_free_reason reason;
2389 };
2390
2391 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2392 {
2393 return (struct dev_kfree_skb_cb *)skb->cb;
2394 }
2395
2396 void netif_schedule_queue(struct netdev_queue *txq)
2397 {
2398 rcu_read_lock();
2399 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2400 struct Qdisc *q = rcu_dereference(txq->qdisc);
2401
2402 __netif_schedule(q);
2403 }
2404 rcu_read_unlock();
2405 }
2406 EXPORT_SYMBOL(netif_schedule_queue);
2407
2408 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2409 {
2410 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2411 struct Qdisc *q;
2412
2413 rcu_read_lock();
2414 q = rcu_dereference(dev_queue->qdisc);
2415 __netif_schedule(q);
2416 rcu_read_unlock();
2417 }
2418 }
2419 EXPORT_SYMBOL(netif_tx_wake_queue);
2420
2421 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2422 {
2423 unsigned long flags;
2424
2425 if (likely(atomic_read(&skb->users) == 1)) {
2426 smp_rmb();
2427 atomic_set(&skb->users, 0);
2428 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2429 return;
2430 }
2431 get_kfree_skb_cb(skb)->reason = reason;
2432 local_irq_save(flags);
2433 skb->next = __this_cpu_read(softnet_data.completion_queue);
2434 __this_cpu_write(softnet_data.completion_queue, skb);
2435 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2436 local_irq_restore(flags);
2437 }
2438 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2439
2440 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2441 {
2442 if (in_irq() || irqs_disabled())
2443 __dev_kfree_skb_irq(skb, reason);
2444 else
2445 dev_kfree_skb(skb);
2446 }
2447 EXPORT_SYMBOL(__dev_kfree_skb_any);
2448
2449
2450 /**
2451 * netif_device_detach - mark device as removed
2452 * @dev: network device
2453 *
2454 * Mark device as removed from system and therefore no longer available.
2455 */
2456 void netif_device_detach(struct net_device *dev)
2457 {
2458 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2459 netif_running(dev)) {
2460 netif_tx_stop_all_queues(dev);
2461 }
2462 }
2463 EXPORT_SYMBOL(netif_device_detach);
2464
2465 /**
2466 * netif_device_attach - mark device as attached
2467 * @dev: network device
2468 *
2469 * Mark device as attached from system and restart if needed.
2470 */
2471 void netif_device_attach(struct net_device *dev)
2472 {
2473 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2474 netif_running(dev)) {
2475 netif_tx_wake_all_queues(dev);
2476 __netdev_watchdog_up(dev);
2477 }
2478 }
2479 EXPORT_SYMBOL(netif_device_attach);
2480
2481 /*
2482 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2483 * to be used as a distribution range.
2484 */
2485 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2486 unsigned int num_tx_queues)
2487 {
2488 u32 hash;
2489 u16 qoffset = 0;
2490 u16 qcount = num_tx_queues;
2491
2492 if (skb_rx_queue_recorded(skb)) {
2493 hash = skb_get_rx_queue(skb);
2494 while (unlikely(hash >= num_tx_queues))
2495 hash -= num_tx_queues;
2496 return hash;
2497 }
2498
2499 if (dev->num_tc) {
2500 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2501
2502 qoffset = dev->tc_to_txq[tc].offset;
2503 qcount = dev->tc_to_txq[tc].count;
2504 }
2505
2506 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2507 }
2508 EXPORT_SYMBOL(__skb_tx_hash);
2509
2510 static void skb_warn_bad_offload(const struct sk_buff *skb)
2511 {
2512 static const netdev_features_t null_features;
2513 struct net_device *dev = skb->dev;
2514 const char *name = "";
2515
2516 if (!net_ratelimit())
2517 return;
2518
2519 if (dev) {
2520 if (dev->dev.parent)
2521 name = dev_driver_string(dev->dev.parent);
2522 else
2523 name = netdev_name(dev);
2524 }
2525 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2526 "gso_type=%d ip_summed=%d\n",
2527 name, dev ? &dev->features : &null_features,
2528 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2529 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2530 skb_shinfo(skb)->gso_type, skb->ip_summed);
2531 }
2532
2533 /*
2534 * Invalidate hardware checksum when packet is to be mangled, and
2535 * complete checksum manually on outgoing path.
2536 */
2537 int skb_checksum_help(struct sk_buff *skb)
2538 {
2539 __wsum csum;
2540 int ret = 0, offset;
2541
2542 if (skb->ip_summed == CHECKSUM_COMPLETE)
2543 goto out_set_summed;
2544
2545 if (unlikely(skb_shinfo(skb)->gso_size)) {
2546 skb_warn_bad_offload(skb);
2547 return -EINVAL;
2548 }
2549
2550 /* Before computing a checksum, we should make sure no frag could
2551 * be modified by an external entity : checksum could be wrong.
2552 */
2553 if (skb_has_shared_frag(skb)) {
2554 ret = __skb_linearize(skb);
2555 if (ret)
2556 goto out;
2557 }
2558
2559 offset = skb_checksum_start_offset(skb);
2560 BUG_ON(offset >= skb_headlen(skb));
2561 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2562
2563 offset += skb->csum_offset;
2564 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2565
2566 if (skb_cloned(skb) &&
2567 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2568 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2569 if (ret)
2570 goto out;
2571 }
2572
2573 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2574 out_set_summed:
2575 skb->ip_summed = CHECKSUM_NONE;
2576 out:
2577 return ret;
2578 }
2579 EXPORT_SYMBOL(skb_checksum_help);
2580
2581 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2582 {
2583 __be16 type = skb->protocol;
2584
2585 /* Tunnel gso handlers can set protocol to ethernet. */
2586 if (type == htons(ETH_P_TEB)) {
2587 struct ethhdr *eth;
2588
2589 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2590 return 0;
2591
2592 eth = (struct ethhdr *)skb_mac_header(skb);
2593 type = eth->h_proto;
2594 }
2595
2596 return __vlan_get_protocol(skb, type, depth);
2597 }
2598
2599 /**
2600 * skb_mac_gso_segment - mac layer segmentation handler.
2601 * @skb: buffer to segment
2602 * @features: features for the output path (see dev->features)
2603 */
2604 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2605 netdev_features_t features)
2606 {
2607 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2608 struct packet_offload *ptype;
2609 int vlan_depth = skb->mac_len;
2610 __be16 type = skb_network_protocol(skb, &vlan_depth);
2611
2612 if (unlikely(!type))
2613 return ERR_PTR(-EINVAL);
2614
2615 __skb_pull(skb, vlan_depth);
2616
2617 rcu_read_lock();
2618 list_for_each_entry_rcu(ptype, &offload_base, list) {
2619 if (ptype->type == type && ptype->callbacks.gso_segment) {
2620 segs = ptype->callbacks.gso_segment(skb, features);
2621 break;
2622 }
2623 }
2624 rcu_read_unlock();
2625
2626 __skb_push(skb, skb->data - skb_mac_header(skb));
2627
2628 return segs;
2629 }
2630 EXPORT_SYMBOL(skb_mac_gso_segment);
2631
2632
2633 /* openvswitch calls this on rx path, so we need a different check.
2634 */
2635 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2636 {
2637 if (tx_path)
2638 return skb->ip_summed != CHECKSUM_PARTIAL &&
2639 skb->ip_summed != CHECKSUM_NONE;
2640
2641 return skb->ip_summed == CHECKSUM_NONE;
2642 }
2643
2644 /**
2645 * __skb_gso_segment - Perform segmentation on skb.
2646 * @skb: buffer to segment
2647 * @features: features for the output path (see dev->features)
2648 * @tx_path: whether it is called in TX path
2649 *
2650 * This function segments the given skb and returns a list of segments.
2651 *
2652 * It may return NULL if the skb requires no segmentation. This is
2653 * only possible when GSO is used for verifying header integrity.
2654 *
2655 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2656 */
2657 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2658 netdev_features_t features, bool tx_path)
2659 {
2660 struct sk_buff *segs;
2661
2662 if (unlikely(skb_needs_check(skb, tx_path))) {
2663 int err;
2664
2665 /* We're going to init ->check field in TCP or UDP header */
2666 err = skb_cow_head(skb, 0);
2667 if (err < 0)
2668 return ERR_PTR(err);
2669 }
2670
2671 /* Only report GSO partial support if it will enable us to
2672 * support segmentation on this frame without needing additional
2673 * work.
2674 */
2675 if (features & NETIF_F_GSO_PARTIAL) {
2676 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2677 struct net_device *dev = skb->dev;
2678
2679 partial_features |= dev->features & dev->gso_partial_features;
2680 if (!skb_gso_ok(skb, features | partial_features))
2681 features &= ~NETIF_F_GSO_PARTIAL;
2682 }
2683
2684 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2685 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2686
2687 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2688 SKB_GSO_CB(skb)->encap_level = 0;
2689
2690 skb_reset_mac_header(skb);
2691 skb_reset_mac_len(skb);
2692
2693 segs = skb_mac_gso_segment(skb, features);
2694
2695 if (unlikely(skb_needs_check(skb, tx_path)))
2696 skb_warn_bad_offload(skb);
2697
2698 return segs;
2699 }
2700 EXPORT_SYMBOL(__skb_gso_segment);
2701
2702 /* Take action when hardware reception checksum errors are detected. */
2703 #ifdef CONFIG_BUG
2704 void netdev_rx_csum_fault(struct net_device *dev)
2705 {
2706 if (net_ratelimit()) {
2707 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2708 dump_stack();
2709 }
2710 }
2711 EXPORT_SYMBOL(netdev_rx_csum_fault);
2712 #endif
2713
2714 /* Actually, we should eliminate this check as soon as we know, that:
2715 * 1. IOMMU is present and allows to map all the memory.
2716 * 2. No high memory really exists on this machine.
2717 */
2718
2719 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2720 {
2721 #ifdef CONFIG_HIGHMEM
2722 int i;
2723
2724 if (!(dev->features & NETIF_F_HIGHDMA)) {
2725 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2726 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2727
2728 if (PageHighMem(skb_frag_page(frag)))
2729 return 1;
2730 }
2731 }
2732
2733 if (PCI_DMA_BUS_IS_PHYS) {
2734 struct device *pdev = dev->dev.parent;
2735
2736 if (!pdev)
2737 return 0;
2738 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2739 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2740 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2741
2742 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2743 return 1;
2744 }
2745 }
2746 #endif
2747 return 0;
2748 }
2749
2750 /* If MPLS offload request, verify we are testing hardware MPLS features
2751 * instead of standard features for the netdev.
2752 */
2753 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2754 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2755 netdev_features_t features,
2756 __be16 type)
2757 {
2758 if (eth_p_mpls(type))
2759 features &= skb->dev->mpls_features;
2760
2761 return features;
2762 }
2763 #else
2764 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2765 netdev_features_t features,
2766 __be16 type)
2767 {
2768 return features;
2769 }
2770 #endif
2771
2772 static netdev_features_t harmonize_features(struct sk_buff *skb,
2773 netdev_features_t features)
2774 {
2775 int tmp;
2776 __be16 type;
2777
2778 type = skb_network_protocol(skb, &tmp);
2779 features = net_mpls_features(skb, features, type);
2780
2781 if (skb->ip_summed != CHECKSUM_NONE &&
2782 !can_checksum_protocol(features, type)) {
2783 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2784 }
2785 if (illegal_highdma(skb->dev, skb))
2786 features &= ~NETIF_F_SG;
2787
2788 return features;
2789 }
2790
2791 netdev_features_t passthru_features_check(struct sk_buff *skb,
2792 struct net_device *dev,
2793 netdev_features_t features)
2794 {
2795 return features;
2796 }
2797 EXPORT_SYMBOL(passthru_features_check);
2798
2799 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2800 struct net_device *dev,
2801 netdev_features_t features)
2802 {
2803 return vlan_features_check(skb, features);
2804 }
2805
2806 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2807 struct net_device *dev,
2808 netdev_features_t features)
2809 {
2810 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2811
2812 if (gso_segs > dev->gso_max_segs)
2813 return features & ~NETIF_F_GSO_MASK;
2814
2815 /* Support for GSO partial features requires software
2816 * intervention before we can actually process the packets
2817 * so we need to strip support for any partial features now
2818 * and we can pull them back in after we have partially
2819 * segmented the frame.
2820 */
2821 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2822 features &= ~dev->gso_partial_features;
2823
2824 /* Make sure to clear the IPv4 ID mangling feature if the
2825 * IPv4 header has the potential to be fragmented.
2826 */
2827 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2828 struct iphdr *iph = skb->encapsulation ?
2829 inner_ip_hdr(skb) : ip_hdr(skb);
2830
2831 if (!(iph->frag_off & htons(IP_DF)))
2832 features &= ~NETIF_F_TSO_MANGLEID;
2833 }
2834
2835 return features;
2836 }
2837
2838 netdev_features_t netif_skb_features(struct sk_buff *skb)
2839 {
2840 struct net_device *dev = skb->dev;
2841 netdev_features_t features = dev->features;
2842
2843 if (skb_is_gso(skb))
2844 features = gso_features_check(skb, dev, features);
2845
2846 /* If encapsulation offload request, verify we are testing
2847 * hardware encapsulation features instead of standard
2848 * features for the netdev
2849 */
2850 if (skb->encapsulation)
2851 features &= dev->hw_enc_features;
2852
2853 if (skb_vlan_tagged(skb))
2854 features = netdev_intersect_features(features,
2855 dev->vlan_features |
2856 NETIF_F_HW_VLAN_CTAG_TX |
2857 NETIF_F_HW_VLAN_STAG_TX);
2858
2859 if (dev->netdev_ops->ndo_features_check)
2860 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2861 features);
2862 else
2863 features &= dflt_features_check(skb, dev, features);
2864
2865 return harmonize_features(skb, features);
2866 }
2867 EXPORT_SYMBOL(netif_skb_features);
2868
2869 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2870 struct netdev_queue *txq, bool more)
2871 {
2872 unsigned int len;
2873 int rc;
2874
2875 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2876 dev_queue_xmit_nit(skb, dev);
2877
2878 len = skb->len;
2879 trace_net_dev_start_xmit(skb, dev);
2880 rc = netdev_start_xmit(skb, dev, txq, more);
2881 trace_net_dev_xmit(skb, rc, dev, len);
2882
2883 return rc;
2884 }
2885
2886 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2887 struct netdev_queue *txq, int *ret)
2888 {
2889 struct sk_buff *skb = first;
2890 int rc = NETDEV_TX_OK;
2891
2892 while (skb) {
2893 struct sk_buff *next = skb->next;
2894
2895 skb->next = NULL;
2896 rc = xmit_one(skb, dev, txq, next != NULL);
2897 if (unlikely(!dev_xmit_complete(rc))) {
2898 skb->next = next;
2899 goto out;
2900 }
2901
2902 skb = next;
2903 if (netif_xmit_stopped(txq) && skb) {
2904 rc = NETDEV_TX_BUSY;
2905 break;
2906 }
2907 }
2908
2909 out:
2910 *ret = rc;
2911 return skb;
2912 }
2913
2914 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2915 netdev_features_t features)
2916 {
2917 if (skb_vlan_tag_present(skb) &&
2918 !vlan_hw_offload_capable(features, skb->vlan_proto))
2919 skb = __vlan_hwaccel_push_inside(skb);
2920 return skb;
2921 }
2922
2923 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2924 {
2925 netdev_features_t features;
2926
2927 features = netif_skb_features(skb);
2928 skb = validate_xmit_vlan(skb, features);
2929 if (unlikely(!skb))
2930 goto out_null;
2931
2932 if (netif_needs_gso(skb, features)) {
2933 struct sk_buff *segs;
2934
2935 segs = skb_gso_segment(skb, features);
2936 if (IS_ERR(segs)) {
2937 goto out_kfree_skb;
2938 } else if (segs) {
2939 consume_skb(skb);
2940 skb = segs;
2941 }
2942 } else {
2943 if (skb_needs_linearize(skb, features) &&
2944 __skb_linearize(skb))
2945 goto out_kfree_skb;
2946
2947 /* If packet is not checksummed and device does not
2948 * support checksumming for this protocol, complete
2949 * checksumming here.
2950 */
2951 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2952 if (skb->encapsulation)
2953 skb_set_inner_transport_header(skb,
2954 skb_checksum_start_offset(skb));
2955 else
2956 skb_set_transport_header(skb,
2957 skb_checksum_start_offset(skb));
2958 if (!(features & NETIF_F_CSUM_MASK) &&
2959 skb_checksum_help(skb))
2960 goto out_kfree_skb;
2961 }
2962 }
2963
2964 return skb;
2965
2966 out_kfree_skb:
2967 kfree_skb(skb);
2968 out_null:
2969 atomic_long_inc(&dev->tx_dropped);
2970 return NULL;
2971 }
2972
2973 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2974 {
2975 struct sk_buff *next, *head = NULL, *tail;
2976
2977 for (; skb != NULL; skb = next) {
2978 next = skb->next;
2979 skb->next = NULL;
2980
2981 /* in case skb wont be segmented, point to itself */
2982 skb->prev = skb;
2983
2984 skb = validate_xmit_skb(skb, dev);
2985 if (!skb)
2986 continue;
2987
2988 if (!head)
2989 head = skb;
2990 else
2991 tail->next = skb;
2992 /* If skb was segmented, skb->prev points to
2993 * the last segment. If not, it still contains skb.
2994 */
2995 tail = skb->prev;
2996 }
2997 return head;
2998 }
2999 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3000
3001 static void qdisc_pkt_len_init(struct sk_buff *skb)
3002 {
3003 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3004
3005 qdisc_skb_cb(skb)->pkt_len = skb->len;
3006
3007 /* To get more precise estimation of bytes sent on wire,
3008 * we add to pkt_len the headers size of all segments
3009 */
3010 if (shinfo->gso_size) {
3011 unsigned int hdr_len;
3012 u16 gso_segs = shinfo->gso_segs;
3013
3014 /* mac layer + network layer */
3015 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3016
3017 /* + transport layer */
3018 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3019 hdr_len += tcp_hdrlen(skb);
3020 else
3021 hdr_len += sizeof(struct udphdr);
3022
3023 if (shinfo->gso_type & SKB_GSO_DODGY)
3024 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3025 shinfo->gso_size);
3026
3027 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3028 }
3029 }
3030
3031 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3032 struct net_device *dev,
3033 struct netdev_queue *txq)
3034 {
3035 spinlock_t *root_lock = qdisc_lock(q);
3036 struct sk_buff *to_free = NULL;
3037 bool contended;
3038 int rc;
3039
3040 qdisc_calculate_pkt_len(skb, q);
3041 /*
3042 * Heuristic to force contended enqueues to serialize on a
3043 * separate lock before trying to get qdisc main lock.
3044 * This permits qdisc->running owner to get the lock more
3045 * often and dequeue packets faster.
3046 */
3047 contended = qdisc_is_running(q);
3048 if (unlikely(contended))
3049 spin_lock(&q->busylock);
3050
3051 spin_lock(root_lock);
3052 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3053 __qdisc_drop(skb, &to_free);
3054 rc = NET_XMIT_DROP;
3055 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3056 qdisc_run_begin(q)) {
3057 /*
3058 * This is a work-conserving queue; there are no old skbs
3059 * waiting to be sent out; and the qdisc is not running -
3060 * xmit the skb directly.
3061 */
3062
3063 qdisc_bstats_update(q, skb);
3064
3065 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3066 if (unlikely(contended)) {
3067 spin_unlock(&q->busylock);
3068 contended = false;
3069 }
3070 __qdisc_run(q);
3071 } else
3072 qdisc_run_end(q);
3073
3074 rc = NET_XMIT_SUCCESS;
3075 } else {
3076 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3077 if (qdisc_run_begin(q)) {
3078 if (unlikely(contended)) {
3079 spin_unlock(&q->busylock);
3080 contended = false;
3081 }
3082 __qdisc_run(q);
3083 }
3084 }
3085 spin_unlock(root_lock);
3086 if (unlikely(to_free))
3087 kfree_skb_list(to_free);
3088 if (unlikely(contended))
3089 spin_unlock(&q->busylock);
3090 return rc;
3091 }
3092
3093 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3094 static void skb_update_prio(struct sk_buff *skb)
3095 {
3096 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3097
3098 if (!skb->priority && skb->sk && map) {
3099 unsigned int prioidx =
3100 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3101
3102 if (prioidx < map->priomap_len)
3103 skb->priority = map->priomap[prioidx];
3104 }
3105 }
3106 #else
3107 #define skb_update_prio(skb)
3108 #endif
3109
3110 DEFINE_PER_CPU(int, xmit_recursion);
3111 EXPORT_SYMBOL(xmit_recursion);
3112
3113 /**
3114 * dev_loopback_xmit - loop back @skb
3115 * @net: network namespace this loopback is happening in
3116 * @sk: sk needed to be a netfilter okfn
3117 * @skb: buffer to transmit
3118 */
3119 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3120 {
3121 skb_reset_mac_header(skb);
3122 __skb_pull(skb, skb_network_offset(skb));
3123 skb->pkt_type = PACKET_LOOPBACK;
3124 skb->ip_summed = CHECKSUM_UNNECESSARY;
3125 WARN_ON(!skb_dst(skb));
3126 skb_dst_force(skb);
3127 netif_rx_ni(skb);
3128 return 0;
3129 }
3130 EXPORT_SYMBOL(dev_loopback_xmit);
3131
3132 #ifdef CONFIG_NET_EGRESS
3133 static struct sk_buff *
3134 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3135 {
3136 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3137 struct tcf_result cl_res;
3138
3139 if (!cl)
3140 return skb;
3141
3142 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3143 qdisc_bstats_cpu_update(cl->q, skb);
3144
3145 switch (tc_classify(skb, cl, &cl_res, false)) {
3146 case TC_ACT_OK:
3147 case TC_ACT_RECLASSIFY:
3148 skb->tc_index = TC_H_MIN(cl_res.classid);
3149 break;
3150 case TC_ACT_SHOT:
3151 qdisc_qstats_cpu_drop(cl->q);
3152 *ret = NET_XMIT_DROP;
3153 kfree_skb(skb);
3154 return NULL;
3155 case TC_ACT_STOLEN:
3156 case TC_ACT_QUEUED:
3157 *ret = NET_XMIT_SUCCESS;
3158 consume_skb(skb);
3159 return NULL;
3160 case TC_ACT_REDIRECT:
3161 /* No need to push/pop skb's mac_header here on egress! */
3162 skb_do_redirect(skb);
3163 *ret = NET_XMIT_SUCCESS;
3164 return NULL;
3165 default:
3166 break;
3167 }
3168
3169 return skb;
3170 }
3171 #endif /* CONFIG_NET_EGRESS */
3172
3173 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3174 {
3175 #ifdef CONFIG_XPS
3176 struct xps_dev_maps *dev_maps;
3177 struct xps_map *map;
3178 int queue_index = -1;
3179
3180 rcu_read_lock();
3181 dev_maps = rcu_dereference(dev->xps_maps);
3182 if (dev_maps) {
3183 unsigned int tci = skb->sender_cpu - 1;
3184
3185 if (dev->num_tc) {
3186 tci *= dev->num_tc;
3187 tci += netdev_get_prio_tc_map(dev, skb->priority);
3188 }
3189
3190 map = rcu_dereference(dev_maps->cpu_map[tci]);
3191 if (map) {
3192 if (map->len == 1)
3193 queue_index = map->queues[0];
3194 else
3195 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3196 map->len)];
3197 if (unlikely(queue_index >= dev->real_num_tx_queues))
3198 queue_index = -1;
3199 }
3200 }
3201 rcu_read_unlock();
3202
3203 return queue_index;
3204 #else
3205 return -1;
3206 #endif
3207 }
3208
3209 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3210 {
3211 struct sock *sk = skb->sk;
3212 int queue_index = sk_tx_queue_get(sk);
3213
3214 if (queue_index < 0 || skb->ooo_okay ||
3215 queue_index >= dev->real_num_tx_queues) {
3216 int new_index = get_xps_queue(dev, skb);
3217
3218 if (new_index < 0)
3219 new_index = skb_tx_hash(dev, skb);
3220
3221 if (queue_index != new_index && sk &&
3222 sk_fullsock(sk) &&
3223 rcu_access_pointer(sk->sk_dst_cache))
3224 sk_tx_queue_set(sk, new_index);
3225
3226 queue_index = new_index;
3227 }
3228
3229 return queue_index;
3230 }
3231
3232 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3233 struct sk_buff *skb,
3234 void *accel_priv)
3235 {
3236 int queue_index = 0;
3237
3238 #ifdef CONFIG_XPS
3239 u32 sender_cpu = skb->sender_cpu - 1;
3240
3241 if (sender_cpu >= (u32)NR_CPUS)
3242 skb->sender_cpu = raw_smp_processor_id() + 1;
3243 #endif
3244
3245 if (dev->real_num_tx_queues != 1) {
3246 const struct net_device_ops *ops = dev->netdev_ops;
3247
3248 if (ops->ndo_select_queue)
3249 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3250 __netdev_pick_tx);
3251 else
3252 queue_index = __netdev_pick_tx(dev, skb);
3253
3254 if (!accel_priv)
3255 queue_index = netdev_cap_txqueue(dev, queue_index);
3256 }
3257
3258 skb_set_queue_mapping(skb, queue_index);
3259 return netdev_get_tx_queue(dev, queue_index);
3260 }
3261
3262 /**
3263 * __dev_queue_xmit - transmit a buffer
3264 * @skb: buffer to transmit
3265 * @accel_priv: private data used for L2 forwarding offload
3266 *
3267 * Queue a buffer for transmission to a network device. The caller must
3268 * have set the device and priority and built the buffer before calling
3269 * this function. The function can be called from an interrupt.
3270 *
3271 * A negative errno code is returned on a failure. A success does not
3272 * guarantee the frame will be transmitted as it may be dropped due
3273 * to congestion or traffic shaping.
3274 *
3275 * -----------------------------------------------------------------------------------
3276 * I notice this method can also return errors from the queue disciplines,
3277 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3278 * be positive.
3279 *
3280 * Regardless of the return value, the skb is consumed, so it is currently
3281 * difficult to retry a send to this method. (You can bump the ref count
3282 * before sending to hold a reference for retry if you are careful.)
3283 *
3284 * When calling this method, interrupts MUST be enabled. This is because
3285 * the BH enable code must have IRQs enabled so that it will not deadlock.
3286 * --BLG
3287 */
3288 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3289 {
3290 struct net_device *dev = skb->dev;
3291 struct netdev_queue *txq;
3292 struct Qdisc *q;
3293 int rc = -ENOMEM;
3294
3295 skb_reset_mac_header(skb);
3296
3297 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3298 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3299
3300 /* Disable soft irqs for various locks below. Also
3301 * stops preemption for RCU.
3302 */
3303 rcu_read_lock_bh();
3304
3305 skb_update_prio(skb);
3306
3307 qdisc_pkt_len_init(skb);
3308 #ifdef CONFIG_NET_CLS_ACT
3309 skb->tc_at_ingress = 0;
3310 # ifdef CONFIG_NET_EGRESS
3311 if (static_key_false(&egress_needed)) {
3312 skb = sch_handle_egress(skb, &rc, dev);
3313 if (!skb)
3314 goto out;
3315 }
3316 # endif
3317 #endif
3318 /* If device/qdisc don't need skb->dst, release it right now while
3319 * its hot in this cpu cache.
3320 */
3321 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3322 skb_dst_drop(skb);
3323 else
3324 skb_dst_force(skb);
3325
3326 txq = netdev_pick_tx(dev, skb, accel_priv);
3327 q = rcu_dereference_bh(txq->qdisc);
3328
3329 trace_net_dev_queue(skb);
3330 if (q->enqueue) {
3331 rc = __dev_xmit_skb(skb, q, dev, txq);
3332 goto out;
3333 }
3334
3335 /* The device has no queue. Common case for software devices:
3336 * loopback, all the sorts of tunnels...
3337
3338 * Really, it is unlikely that netif_tx_lock protection is necessary
3339 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3340 * counters.)
3341 * However, it is possible, that they rely on protection
3342 * made by us here.
3343
3344 * Check this and shot the lock. It is not prone from deadlocks.
3345 *Either shot noqueue qdisc, it is even simpler 8)
3346 */
3347 if (dev->flags & IFF_UP) {
3348 int cpu = smp_processor_id(); /* ok because BHs are off */
3349
3350 if (txq->xmit_lock_owner != cpu) {
3351 if (unlikely(__this_cpu_read(xmit_recursion) >
3352 XMIT_RECURSION_LIMIT))
3353 goto recursion_alert;
3354
3355 skb = validate_xmit_skb(skb, dev);
3356 if (!skb)
3357 goto out;
3358
3359 HARD_TX_LOCK(dev, txq, cpu);
3360
3361 if (!netif_xmit_stopped(txq)) {
3362 __this_cpu_inc(xmit_recursion);
3363 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3364 __this_cpu_dec(xmit_recursion);
3365 if (dev_xmit_complete(rc)) {
3366 HARD_TX_UNLOCK(dev, txq);
3367 goto out;
3368 }
3369 }
3370 HARD_TX_UNLOCK(dev, txq);
3371 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3372 dev->name);
3373 } else {
3374 /* Recursion is detected! It is possible,
3375 * unfortunately
3376 */
3377 recursion_alert:
3378 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3379 dev->name);
3380 }
3381 }
3382
3383 rc = -ENETDOWN;
3384 rcu_read_unlock_bh();
3385
3386 atomic_long_inc(&dev->tx_dropped);
3387 kfree_skb_list(skb);
3388 return rc;
3389 out:
3390 rcu_read_unlock_bh();
3391 return rc;
3392 }
3393
3394 int dev_queue_xmit(struct sk_buff *skb)
3395 {
3396 return __dev_queue_xmit(skb, NULL);
3397 }
3398 EXPORT_SYMBOL(dev_queue_xmit);
3399
3400 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3401 {
3402 return __dev_queue_xmit(skb, accel_priv);
3403 }
3404 EXPORT_SYMBOL(dev_queue_xmit_accel);
3405
3406
3407 /*************************************************************************
3408 * Receiver routines
3409 *************************************************************************/
3410
3411 int netdev_max_backlog __read_mostly = 1000;
3412 EXPORT_SYMBOL(netdev_max_backlog);
3413
3414 int netdev_tstamp_prequeue __read_mostly = 1;
3415 int netdev_budget __read_mostly = 300;
3416 int weight_p __read_mostly = 64; /* old backlog weight */
3417 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3418 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3419 int dev_rx_weight __read_mostly = 64;
3420 int dev_tx_weight __read_mostly = 64;
3421
3422 /* Called with irq disabled */
3423 static inline void ____napi_schedule(struct softnet_data *sd,
3424 struct napi_struct *napi)
3425 {
3426 list_add_tail(&napi->poll_list, &sd->poll_list);
3427 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3428 }
3429
3430 #ifdef CONFIG_RPS
3431
3432 /* One global table that all flow-based protocols share. */
3433 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3434 EXPORT_SYMBOL(rps_sock_flow_table);
3435 u32 rps_cpu_mask __read_mostly;
3436 EXPORT_SYMBOL(rps_cpu_mask);
3437
3438 struct static_key rps_needed __read_mostly;
3439 EXPORT_SYMBOL(rps_needed);
3440 struct static_key rfs_needed __read_mostly;
3441 EXPORT_SYMBOL(rfs_needed);
3442
3443 static struct rps_dev_flow *
3444 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3445 struct rps_dev_flow *rflow, u16 next_cpu)
3446 {
3447 if (next_cpu < nr_cpu_ids) {
3448 #ifdef CONFIG_RFS_ACCEL
3449 struct netdev_rx_queue *rxqueue;
3450 struct rps_dev_flow_table *flow_table;
3451 struct rps_dev_flow *old_rflow;
3452 u32 flow_id;
3453 u16 rxq_index;
3454 int rc;
3455
3456 /* Should we steer this flow to a different hardware queue? */
3457 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3458 !(dev->features & NETIF_F_NTUPLE))
3459 goto out;
3460 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3461 if (rxq_index == skb_get_rx_queue(skb))
3462 goto out;
3463
3464 rxqueue = dev->_rx + rxq_index;
3465 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3466 if (!flow_table)
3467 goto out;
3468 flow_id = skb_get_hash(skb) & flow_table->mask;
3469 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3470 rxq_index, flow_id);
3471 if (rc < 0)
3472 goto out;
3473 old_rflow = rflow;
3474 rflow = &flow_table->flows[flow_id];
3475 rflow->filter = rc;
3476 if (old_rflow->filter == rflow->filter)
3477 old_rflow->filter = RPS_NO_FILTER;
3478 out:
3479 #endif
3480 rflow->last_qtail =
3481 per_cpu(softnet_data, next_cpu).input_queue_head;
3482 }
3483
3484 rflow->cpu = next_cpu;
3485 return rflow;
3486 }
3487
3488 /*
3489 * get_rps_cpu is called from netif_receive_skb and returns the target
3490 * CPU from the RPS map of the receiving queue for a given skb.
3491 * rcu_read_lock must be held on entry.
3492 */
3493 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3494 struct rps_dev_flow **rflowp)
3495 {
3496 const struct rps_sock_flow_table *sock_flow_table;
3497 struct netdev_rx_queue *rxqueue = dev->_rx;
3498 struct rps_dev_flow_table *flow_table;
3499 struct rps_map *map;
3500 int cpu = -1;
3501 u32 tcpu;
3502 u32 hash;
3503
3504 if (skb_rx_queue_recorded(skb)) {
3505 u16 index = skb_get_rx_queue(skb);
3506
3507 if (unlikely(index >= dev->real_num_rx_queues)) {
3508 WARN_ONCE(dev->real_num_rx_queues > 1,
3509 "%s received packet on queue %u, but number "
3510 "of RX queues is %u\n",
3511 dev->name, index, dev->real_num_rx_queues);
3512 goto done;
3513 }
3514 rxqueue += index;
3515 }
3516
3517 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3518
3519 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3520 map = rcu_dereference(rxqueue->rps_map);
3521 if (!flow_table && !map)
3522 goto done;
3523
3524 skb_reset_network_header(skb);
3525 hash = skb_get_hash(skb);
3526 if (!hash)
3527 goto done;
3528
3529 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3530 if (flow_table && sock_flow_table) {
3531 struct rps_dev_flow *rflow;
3532 u32 next_cpu;
3533 u32 ident;
3534
3535 /* First check into global flow table if there is a match */
3536 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3537 if ((ident ^ hash) & ~rps_cpu_mask)
3538 goto try_rps;
3539
3540 next_cpu = ident & rps_cpu_mask;
3541
3542 /* OK, now we know there is a match,
3543 * we can look at the local (per receive queue) flow table
3544 */
3545 rflow = &flow_table->flows[hash & flow_table->mask];
3546 tcpu = rflow->cpu;
3547
3548 /*
3549 * If the desired CPU (where last recvmsg was done) is
3550 * different from current CPU (one in the rx-queue flow
3551 * table entry), switch if one of the following holds:
3552 * - Current CPU is unset (>= nr_cpu_ids).
3553 * - Current CPU is offline.
3554 * - The current CPU's queue tail has advanced beyond the
3555 * last packet that was enqueued using this table entry.
3556 * This guarantees that all previous packets for the flow
3557 * have been dequeued, thus preserving in order delivery.
3558 */
3559 if (unlikely(tcpu != next_cpu) &&
3560 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3561 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3562 rflow->last_qtail)) >= 0)) {
3563 tcpu = next_cpu;
3564 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3565 }
3566
3567 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3568 *rflowp = rflow;
3569 cpu = tcpu;
3570 goto done;
3571 }
3572 }
3573
3574 try_rps:
3575
3576 if (map) {
3577 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3578 if (cpu_online(tcpu)) {
3579 cpu = tcpu;
3580 goto done;
3581 }
3582 }
3583
3584 done:
3585 return cpu;
3586 }
3587
3588 #ifdef CONFIG_RFS_ACCEL
3589
3590 /**
3591 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3592 * @dev: Device on which the filter was set
3593 * @rxq_index: RX queue index
3594 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3595 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3596 *
3597 * Drivers that implement ndo_rx_flow_steer() should periodically call
3598 * this function for each installed filter and remove the filters for
3599 * which it returns %true.
3600 */
3601 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3602 u32 flow_id, u16 filter_id)
3603 {
3604 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3605 struct rps_dev_flow_table *flow_table;
3606 struct rps_dev_flow *rflow;
3607 bool expire = true;
3608 unsigned int cpu;
3609
3610 rcu_read_lock();
3611 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3612 if (flow_table && flow_id <= flow_table->mask) {
3613 rflow = &flow_table->flows[flow_id];
3614 cpu = ACCESS_ONCE(rflow->cpu);
3615 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3616 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3617 rflow->last_qtail) <
3618 (int)(10 * flow_table->mask)))
3619 expire = false;
3620 }
3621 rcu_read_unlock();
3622 return expire;
3623 }
3624 EXPORT_SYMBOL(rps_may_expire_flow);
3625
3626 #endif /* CONFIG_RFS_ACCEL */
3627
3628 /* Called from hardirq (IPI) context */
3629 static void rps_trigger_softirq(void *data)
3630 {
3631 struct softnet_data *sd = data;
3632
3633 ____napi_schedule(sd, &sd->backlog);
3634 sd->received_rps++;
3635 }
3636
3637 #endif /* CONFIG_RPS */
3638
3639 /*
3640 * Check if this softnet_data structure is another cpu one
3641 * If yes, queue it to our IPI list and return 1
3642 * If no, return 0
3643 */
3644 static int rps_ipi_queued(struct softnet_data *sd)
3645 {
3646 #ifdef CONFIG_RPS
3647 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3648
3649 if (sd != mysd) {
3650 sd->rps_ipi_next = mysd->rps_ipi_list;
3651 mysd->rps_ipi_list = sd;
3652
3653 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3654 return 1;
3655 }
3656 #endif /* CONFIG_RPS */
3657 return 0;
3658 }
3659
3660 #ifdef CONFIG_NET_FLOW_LIMIT
3661 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3662 #endif
3663
3664 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3665 {
3666 #ifdef CONFIG_NET_FLOW_LIMIT
3667 struct sd_flow_limit *fl;
3668 struct softnet_data *sd;
3669 unsigned int old_flow, new_flow;
3670
3671 if (qlen < (netdev_max_backlog >> 1))
3672 return false;
3673
3674 sd = this_cpu_ptr(&softnet_data);
3675
3676 rcu_read_lock();
3677 fl = rcu_dereference(sd->flow_limit);
3678 if (fl) {
3679 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3680 old_flow = fl->history[fl->history_head];
3681 fl->history[fl->history_head] = new_flow;
3682
3683 fl->history_head++;
3684 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3685
3686 if (likely(fl->buckets[old_flow]))
3687 fl->buckets[old_flow]--;
3688
3689 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3690 fl->count++;
3691 rcu_read_unlock();
3692 return true;
3693 }
3694 }
3695 rcu_read_unlock();
3696 #endif
3697 return false;
3698 }
3699
3700 /*
3701 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3702 * queue (may be a remote CPU queue).
3703 */
3704 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3705 unsigned int *qtail)
3706 {
3707 struct softnet_data *sd;
3708 unsigned long flags;
3709 unsigned int qlen;
3710
3711 sd = &per_cpu(softnet_data, cpu);
3712
3713 local_irq_save(flags);
3714
3715 rps_lock(sd);
3716 if (!netif_running(skb->dev))
3717 goto drop;
3718 qlen = skb_queue_len(&sd->input_pkt_queue);
3719 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3720 if (qlen) {
3721 enqueue:
3722 __skb_queue_tail(&sd->input_pkt_queue, skb);
3723 input_queue_tail_incr_save(sd, qtail);
3724 rps_unlock(sd);
3725 local_irq_restore(flags);
3726 return NET_RX_SUCCESS;
3727 }
3728
3729 /* Schedule NAPI for backlog device
3730 * We can use non atomic operation since we own the queue lock
3731 */
3732 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3733 if (!rps_ipi_queued(sd))
3734 ____napi_schedule(sd, &sd->backlog);
3735 }
3736 goto enqueue;
3737 }
3738
3739 drop:
3740 sd->dropped++;
3741 rps_unlock(sd);
3742
3743 local_irq_restore(flags);
3744
3745 atomic_long_inc(&skb->dev->rx_dropped);
3746 kfree_skb(skb);
3747 return NET_RX_DROP;
3748 }
3749
3750 static int netif_rx_internal(struct sk_buff *skb)
3751 {
3752 int ret;
3753
3754 net_timestamp_check(netdev_tstamp_prequeue, skb);
3755
3756 trace_netif_rx(skb);
3757 #ifdef CONFIG_RPS
3758 if (static_key_false(&rps_needed)) {
3759 struct rps_dev_flow voidflow, *rflow = &voidflow;
3760 int cpu;
3761
3762 preempt_disable();
3763 rcu_read_lock();
3764
3765 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3766 if (cpu < 0)
3767 cpu = smp_processor_id();
3768
3769 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3770
3771 rcu_read_unlock();
3772 preempt_enable();
3773 } else
3774 #endif
3775 {
3776 unsigned int qtail;
3777
3778 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3779 put_cpu();
3780 }
3781 return ret;
3782 }
3783
3784 /**
3785 * netif_rx - post buffer to the network code
3786 * @skb: buffer to post
3787 *
3788 * This function receives a packet from a device driver and queues it for
3789 * the upper (protocol) levels to process. It always succeeds. The buffer
3790 * may be dropped during processing for congestion control or by the
3791 * protocol layers.
3792 *
3793 * return values:
3794 * NET_RX_SUCCESS (no congestion)
3795 * NET_RX_DROP (packet was dropped)
3796 *
3797 */
3798
3799 int netif_rx(struct sk_buff *skb)
3800 {
3801 trace_netif_rx_entry(skb);
3802
3803 return netif_rx_internal(skb);
3804 }
3805 EXPORT_SYMBOL(netif_rx);
3806
3807 int netif_rx_ni(struct sk_buff *skb)
3808 {
3809 int err;
3810
3811 trace_netif_rx_ni_entry(skb);
3812
3813 preempt_disable();
3814 err = netif_rx_internal(skb);
3815 if (local_softirq_pending())
3816 do_softirq();
3817 preempt_enable();
3818
3819 return err;
3820 }
3821 EXPORT_SYMBOL(netif_rx_ni);
3822
3823 static __latent_entropy void net_tx_action(struct softirq_action *h)
3824 {
3825 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3826
3827 if (sd->completion_queue) {
3828 struct sk_buff *clist;
3829
3830 local_irq_disable();
3831 clist = sd->completion_queue;
3832 sd->completion_queue = NULL;
3833 local_irq_enable();
3834
3835 while (clist) {
3836 struct sk_buff *skb = clist;
3837
3838 clist = clist->next;
3839
3840 WARN_ON(atomic_read(&skb->users));
3841 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3842 trace_consume_skb(skb);
3843 else
3844 trace_kfree_skb(skb, net_tx_action);
3845
3846 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3847 __kfree_skb(skb);
3848 else
3849 __kfree_skb_defer(skb);
3850 }
3851
3852 __kfree_skb_flush();
3853 }
3854
3855 if (sd->output_queue) {
3856 struct Qdisc *head;
3857
3858 local_irq_disable();
3859 head = sd->output_queue;
3860 sd->output_queue = NULL;
3861 sd->output_queue_tailp = &sd->output_queue;
3862 local_irq_enable();
3863
3864 while (head) {
3865 struct Qdisc *q = head;
3866 spinlock_t *root_lock;
3867
3868 head = head->next_sched;
3869
3870 root_lock = qdisc_lock(q);
3871 spin_lock(root_lock);
3872 /* We need to make sure head->next_sched is read
3873 * before clearing __QDISC_STATE_SCHED
3874 */
3875 smp_mb__before_atomic();
3876 clear_bit(__QDISC_STATE_SCHED, &q->state);
3877 qdisc_run(q);
3878 spin_unlock(root_lock);
3879 }
3880 }
3881 }
3882
3883 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3884 /* This hook is defined here for ATM LANE */
3885 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3886 unsigned char *addr) __read_mostly;
3887 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3888 #endif
3889
3890 static inline struct sk_buff *
3891 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3892 struct net_device *orig_dev)
3893 {
3894 #ifdef CONFIG_NET_CLS_ACT
3895 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3896 struct tcf_result cl_res;
3897
3898 /* If there's at least one ingress present somewhere (so
3899 * we get here via enabled static key), remaining devices
3900 * that are not configured with an ingress qdisc will bail
3901 * out here.
3902 */
3903 if (!cl)
3904 return skb;
3905 if (*pt_prev) {
3906 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3907 *pt_prev = NULL;
3908 }
3909
3910 qdisc_skb_cb(skb)->pkt_len = skb->len;
3911 skb->tc_at_ingress = 1;
3912 qdisc_bstats_cpu_update(cl->q, skb);
3913
3914 switch (tc_classify(skb, cl, &cl_res, false)) {
3915 case TC_ACT_OK:
3916 case TC_ACT_RECLASSIFY:
3917 skb->tc_index = TC_H_MIN(cl_res.classid);
3918 break;
3919 case TC_ACT_SHOT:
3920 qdisc_qstats_cpu_drop(cl->q);
3921 kfree_skb(skb);
3922 return NULL;
3923 case TC_ACT_STOLEN:
3924 case TC_ACT_QUEUED:
3925 consume_skb(skb);
3926 return NULL;
3927 case TC_ACT_REDIRECT:
3928 /* skb_mac_header check was done by cls/act_bpf, so
3929 * we can safely push the L2 header back before
3930 * redirecting to another netdev
3931 */
3932 __skb_push(skb, skb->mac_len);
3933 skb_do_redirect(skb);
3934 return NULL;
3935 default:
3936 break;
3937 }
3938 #endif /* CONFIG_NET_CLS_ACT */
3939 return skb;
3940 }
3941
3942 /**
3943 * netdev_is_rx_handler_busy - check if receive handler is registered
3944 * @dev: device to check
3945 *
3946 * Check if a receive handler is already registered for a given device.
3947 * Return true if there one.
3948 *
3949 * The caller must hold the rtnl_mutex.
3950 */
3951 bool netdev_is_rx_handler_busy(struct net_device *dev)
3952 {
3953 ASSERT_RTNL();
3954 return dev && rtnl_dereference(dev->rx_handler);
3955 }
3956 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3957
3958 /**
3959 * netdev_rx_handler_register - register receive handler
3960 * @dev: device to register a handler for
3961 * @rx_handler: receive handler to register
3962 * @rx_handler_data: data pointer that is used by rx handler
3963 *
3964 * Register a receive handler for a device. This handler will then be
3965 * called from __netif_receive_skb. A negative errno code is returned
3966 * on a failure.
3967 *
3968 * The caller must hold the rtnl_mutex.
3969 *
3970 * For a general description of rx_handler, see enum rx_handler_result.
3971 */
3972 int netdev_rx_handler_register(struct net_device *dev,
3973 rx_handler_func_t *rx_handler,
3974 void *rx_handler_data)
3975 {
3976 if (netdev_is_rx_handler_busy(dev))
3977 return -EBUSY;
3978
3979 /* Note: rx_handler_data must be set before rx_handler */
3980 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3981 rcu_assign_pointer(dev->rx_handler, rx_handler);
3982
3983 return 0;
3984 }
3985 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3986
3987 /**
3988 * netdev_rx_handler_unregister - unregister receive handler
3989 * @dev: device to unregister a handler from
3990 *
3991 * Unregister a receive handler from a device.
3992 *
3993 * The caller must hold the rtnl_mutex.
3994 */
3995 void netdev_rx_handler_unregister(struct net_device *dev)
3996 {
3997
3998 ASSERT_RTNL();
3999 RCU_INIT_POINTER(dev->rx_handler, NULL);
4000 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4001 * section has a guarantee to see a non NULL rx_handler_data
4002 * as well.
4003 */
4004 synchronize_net();
4005 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4006 }
4007 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4008
4009 /*
4010 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4011 * the special handling of PFMEMALLOC skbs.
4012 */
4013 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4014 {
4015 switch (skb->protocol) {
4016 case htons(ETH_P_ARP):
4017 case htons(ETH_P_IP):
4018 case htons(ETH_P_IPV6):
4019 case htons(ETH_P_8021Q):
4020 case htons(ETH_P_8021AD):
4021 return true;
4022 default:
4023 return false;
4024 }
4025 }
4026
4027 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4028 int *ret, struct net_device *orig_dev)
4029 {
4030 #ifdef CONFIG_NETFILTER_INGRESS
4031 if (nf_hook_ingress_active(skb)) {
4032 int ingress_retval;
4033
4034 if (*pt_prev) {
4035 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4036 *pt_prev = NULL;
4037 }
4038
4039 rcu_read_lock();
4040 ingress_retval = nf_hook_ingress(skb);
4041 rcu_read_unlock();
4042 return ingress_retval;
4043 }
4044 #endif /* CONFIG_NETFILTER_INGRESS */
4045 return 0;
4046 }
4047
4048 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4049 {
4050 struct packet_type *ptype, *pt_prev;
4051 rx_handler_func_t *rx_handler;
4052 struct net_device *orig_dev;
4053 bool deliver_exact = false;
4054 int ret = NET_RX_DROP;
4055 __be16 type;
4056
4057 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4058
4059 trace_netif_receive_skb(skb);
4060
4061 orig_dev = skb->dev;
4062
4063 skb_reset_network_header(skb);
4064 if (!skb_transport_header_was_set(skb))
4065 skb_reset_transport_header(skb);
4066 skb_reset_mac_len(skb);
4067
4068 pt_prev = NULL;
4069
4070 another_round:
4071 skb->skb_iif = skb->dev->ifindex;
4072
4073 __this_cpu_inc(softnet_data.processed);
4074
4075 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4076 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4077 skb = skb_vlan_untag(skb);
4078 if (unlikely(!skb))
4079 goto out;
4080 }
4081
4082 if (skb_skip_tc_classify(skb))
4083 goto skip_classify;
4084
4085 if (pfmemalloc)
4086 goto skip_taps;
4087
4088 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4089 if (pt_prev)
4090 ret = deliver_skb(skb, pt_prev, orig_dev);
4091 pt_prev = ptype;
4092 }
4093
4094 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4095 if (pt_prev)
4096 ret = deliver_skb(skb, pt_prev, orig_dev);
4097 pt_prev = ptype;
4098 }
4099
4100 skip_taps:
4101 #ifdef CONFIG_NET_INGRESS
4102 if (static_key_false(&ingress_needed)) {
4103 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4104 if (!skb)
4105 goto out;
4106
4107 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4108 goto out;
4109 }
4110 #endif
4111 skb_reset_tc(skb);
4112 skip_classify:
4113 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4114 goto drop;
4115
4116 if (skb_vlan_tag_present(skb)) {
4117 if (pt_prev) {
4118 ret = deliver_skb(skb, pt_prev, orig_dev);
4119 pt_prev = NULL;
4120 }
4121 if (vlan_do_receive(&skb))
4122 goto another_round;
4123 else if (unlikely(!skb))
4124 goto out;
4125 }
4126
4127 rx_handler = rcu_dereference(skb->dev->rx_handler);
4128 if (rx_handler) {
4129 if (pt_prev) {
4130 ret = deliver_skb(skb, pt_prev, orig_dev);
4131 pt_prev = NULL;
4132 }
4133 switch (rx_handler(&skb)) {
4134 case RX_HANDLER_CONSUMED:
4135 ret = NET_RX_SUCCESS;
4136 goto out;
4137 case RX_HANDLER_ANOTHER:
4138 goto another_round;
4139 case RX_HANDLER_EXACT:
4140 deliver_exact = true;
4141 case RX_HANDLER_PASS:
4142 break;
4143 default:
4144 BUG();
4145 }
4146 }
4147
4148 if (unlikely(skb_vlan_tag_present(skb))) {
4149 if (skb_vlan_tag_get_id(skb))
4150 skb->pkt_type = PACKET_OTHERHOST;
4151 /* Note: we might in the future use prio bits
4152 * and set skb->priority like in vlan_do_receive()
4153 * For the time being, just ignore Priority Code Point
4154 */
4155 skb->vlan_tci = 0;
4156 }
4157
4158 type = skb->protocol;
4159
4160 /* deliver only exact match when indicated */
4161 if (likely(!deliver_exact)) {
4162 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4163 &ptype_base[ntohs(type) &
4164 PTYPE_HASH_MASK]);
4165 }
4166
4167 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4168 &orig_dev->ptype_specific);
4169
4170 if (unlikely(skb->dev != orig_dev)) {
4171 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4172 &skb->dev->ptype_specific);
4173 }
4174
4175 if (pt_prev) {
4176 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4177 goto drop;
4178 else
4179 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4180 } else {
4181 drop:
4182 if (!deliver_exact)
4183 atomic_long_inc(&skb->dev->rx_dropped);
4184 else
4185 atomic_long_inc(&skb->dev->rx_nohandler);
4186 kfree_skb(skb);
4187 /* Jamal, now you will not able to escape explaining
4188 * me how you were going to use this. :-)
4189 */
4190 ret = NET_RX_DROP;
4191 }
4192
4193 out:
4194 return ret;
4195 }
4196
4197 static int __netif_receive_skb(struct sk_buff *skb)
4198 {
4199 int ret;
4200
4201 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4202 unsigned long pflags = current->flags;
4203
4204 /*
4205 * PFMEMALLOC skbs are special, they should
4206 * - be delivered to SOCK_MEMALLOC sockets only
4207 * - stay away from userspace
4208 * - have bounded memory usage
4209 *
4210 * Use PF_MEMALLOC as this saves us from propagating the allocation
4211 * context down to all allocation sites.
4212 */
4213 current->flags |= PF_MEMALLOC;
4214 ret = __netif_receive_skb_core(skb, true);
4215 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4216 } else
4217 ret = __netif_receive_skb_core(skb, false);
4218
4219 return ret;
4220 }
4221
4222 static int netif_receive_skb_internal(struct sk_buff *skb)
4223 {
4224 int ret;
4225
4226 net_timestamp_check(netdev_tstamp_prequeue, skb);
4227
4228 if (skb_defer_rx_timestamp(skb))
4229 return NET_RX_SUCCESS;
4230
4231 rcu_read_lock();
4232
4233 #ifdef CONFIG_RPS
4234 if (static_key_false(&rps_needed)) {
4235 struct rps_dev_flow voidflow, *rflow = &voidflow;
4236 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4237
4238 if (cpu >= 0) {
4239 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4240 rcu_read_unlock();
4241 return ret;
4242 }
4243 }
4244 #endif
4245 ret = __netif_receive_skb(skb);
4246 rcu_read_unlock();
4247 return ret;
4248 }
4249
4250 /**
4251 * netif_receive_skb - process receive buffer from network
4252 * @skb: buffer to process
4253 *
4254 * netif_receive_skb() is the main receive data processing function.
4255 * It always succeeds. The buffer may be dropped during processing
4256 * for congestion control or by the protocol layers.
4257 *
4258 * This function may only be called from softirq context and interrupts
4259 * should be enabled.
4260 *
4261 * Return values (usually ignored):
4262 * NET_RX_SUCCESS: no congestion
4263 * NET_RX_DROP: packet was dropped
4264 */
4265 int netif_receive_skb(struct sk_buff *skb)
4266 {
4267 trace_netif_receive_skb_entry(skb);
4268
4269 return netif_receive_skb_internal(skb);
4270 }
4271 EXPORT_SYMBOL(netif_receive_skb);
4272
4273 DEFINE_PER_CPU(struct work_struct, flush_works);
4274
4275 /* Network device is going away, flush any packets still pending */
4276 static void flush_backlog(struct work_struct *work)
4277 {
4278 struct sk_buff *skb, *tmp;
4279 struct softnet_data *sd;
4280
4281 local_bh_disable();
4282 sd = this_cpu_ptr(&softnet_data);
4283
4284 local_irq_disable();
4285 rps_lock(sd);
4286 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4287 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4288 __skb_unlink(skb, &sd->input_pkt_queue);
4289 kfree_skb(skb);
4290 input_queue_head_incr(sd);
4291 }
4292 }
4293 rps_unlock(sd);
4294 local_irq_enable();
4295
4296 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4297 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4298 __skb_unlink(skb, &sd->process_queue);
4299 kfree_skb(skb);
4300 input_queue_head_incr(sd);
4301 }
4302 }
4303 local_bh_enable();
4304 }
4305
4306 static void flush_all_backlogs(void)
4307 {
4308 unsigned int cpu;
4309
4310 get_online_cpus();
4311
4312 for_each_online_cpu(cpu)
4313 queue_work_on(cpu, system_highpri_wq,
4314 per_cpu_ptr(&flush_works, cpu));
4315
4316 for_each_online_cpu(cpu)
4317 flush_work(per_cpu_ptr(&flush_works, cpu));
4318
4319 put_online_cpus();
4320 }
4321
4322 static int napi_gro_complete(struct sk_buff *skb)
4323 {
4324 struct packet_offload *ptype;
4325 __be16 type = skb->protocol;
4326 struct list_head *head = &offload_base;
4327 int err = -ENOENT;
4328
4329 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4330
4331 if (NAPI_GRO_CB(skb)->count == 1) {
4332 skb_shinfo(skb)->gso_size = 0;
4333 goto out;
4334 }
4335
4336 rcu_read_lock();
4337 list_for_each_entry_rcu(ptype, head, list) {
4338 if (ptype->type != type || !ptype->callbacks.gro_complete)
4339 continue;
4340
4341 err = ptype->callbacks.gro_complete(skb, 0);
4342 break;
4343 }
4344 rcu_read_unlock();
4345
4346 if (err) {
4347 WARN_ON(&ptype->list == head);
4348 kfree_skb(skb);
4349 return NET_RX_SUCCESS;
4350 }
4351
4352 out:
4353 return netif_receive_skb_internal(skb);
4354 }
4355
4356 /* napi->gro_list contains packets ordered by age.
4357 * youngest packets at the head of it.
4358 * Complete skbs in reverse order to reduce latencies.
4359 */
4360 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4361 {
4362 struct sk_buff *skb, *prev = NULL;
4363
4364 /* scan list and build reverse chain */
4365 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4366 skb->prev = prev;
4367 prev = skb;
4368 }
4369
4370 for (skb = prev; skb; skb = prev) {
4371 skb->next = NULL;
4372
4373 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4374 return;
4375
4376 prev = skb->prev;
4377 napi_gro_complete(skb);
4378 napi->gro_count--;
4379 }
4380
4381 napi->gro_list = NULL;
4382 }
4383 EXPORT_SYMBOL(napi_gro_flush);
4384
4385 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4386 {
4387 struct sk_buff *p;
4388 unsigned int maclen = skb->dev->hard_header_len;
4389 u32 hash = skb_get_hash_raw(skb);
4390
4391 for (p = napi->gro_list; p; p = p->next) {
4392 unsigned long diffs;
4393
4394 NAPI_GRO_CB(p)->flush = 0;
4395
4396 if (hash != skb_get_hash_raw(p)) {
4397 NAPI_GRO_CB(p)->same_flow = 0;
4398 continue;
4399 }
4400
4401 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4402 diffs |= p->vlan_tci ^ skb->vlan_tci;
4403 diffs |= skb_metadata_dst_cmp(p, skb);
4404 if (maclen == ETH_HLEN)
4405 diffs |= compare_ether_header(skb_mac_header(p),
4406 skb_mac_header(skb));
4407 else if (!diffs)
4408 diffs = memcmp(skb_mac_header(p),
4409 skb_mac_header(skb),
4410 maclen);
4411 NAPI_GRO_CB(p)->same_flow = !diffs;
4412 }
4413 }
4414
4415 static void skb_gro_reset_offset(struct sk_buff *skb)
4416 {
4417 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4418 const skb_frag_t *frag0 = &pinfo->frags[0];
4419
4420 NAPI_GRO_CB(skb)->data_offset = 0;
4421 NAPI_GRO_CB(skb)->frag0 = NULL;
4422 NAPI_GRO_CB(skb)->frag0_len = 0;
4423
4424 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4425 pinfo->nr_frags &&
4426 !PageHighMem(skb_frag_page(frag0))) {
4427 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4428 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4429 skb_frag_size(frag0),
4430 skb->end - skb->tail);
4431 }
4432 }
4433
4434 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4435 {
4436 struct skb_shared_info *pinfo = skb_shinfo(skb);
4437
4438 BUG_ON(skb->end - skb->tail < grow);
4439
4440 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4441
4442 skb->data_len -= grow;
4443 skb->tail += grow;
4444
4445 pinfo->frags[0].page_offset += grow;
4446 skb_frag_size_sub(&pinfo->frags[0], grow);
4447
4448 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4449 skb_frag_unref(skb, 0);
4450 memmove(pinfo->frags, pinfo->frags + 1,
4451 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4452 }
4453 }
4454
4455 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4456 {
4457 struct sk_buff **pp = NULL;
4458 struct packet_offload *ptype;
4459 __be16 type = skb->protocol;
4460 struct list_head *head = &offload_base;
4461 int same_flow;
4462 enum gro_result ret;
4463 int grow;
4464
4465 if (!(skb->dev->features & NETIF_F_GRO))
4466 goto normal;
4467
4468 if (skb->csum_bad)
4469 goto normal;
4470
4471 gro_list_prepare(napi, skb);
4472
4473 rcu_read_lock();
4474 list_for_each_entry_rcu(ptype, head, list) {
4475 if (ptype->type != type || !ptype->callbacks.gro_receive)
4476 continue;
4477
4478 skb_set_network_header(skb, skb_gro_offset(skb));
4479 skb_reset_mac_len(skb);
4480 NAPI_GRO_CB(skb)->same_flow = 0;
4481 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4482 NAPI_GRO_CB(skb)->free = 0;
4483 NAPI_GRO_CB(skb)->encap_mark = 0;
4484 NAPI_GRO_CB(skb)->recursion_counter = 0;
4485 NAPI_GRO_CB(skb)->is_fou = 0;
4486 NAPI_GRO_CB(skb)->is_atomic = 1;
4487 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4488
4489 /* Setup for GRO checksum validation */
4490 switch (skb->ip_summed) {
4491 case CHECKSUM_COMPLETE:
4492 NAPI_GRO_CB(skb)->csum = skb->csum;
4493 NAPI_GRO_CB(skb)->csum_valid = 1;
4494 NAPI_GRO_CB(skb)->csum_cnt = 0;
4495 break;
4496 case CHECKSUM_UNNECESSARY:
4497 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4498 NAPI_GRO_CB(skb)->csum_valid = 0;
4499 break;
4500 default:
4501 NAPI_GRO_CB(skb)->csum_cnt = 0;
4502 NAPI_GRO_CB(skb)->csum_valid = 0;
4503 }
4504
4505 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4506 break;
4507 }
4508 rcu_read_unlock();
4509
4510 if (&ptype->list == head)
4511 goto normal;
4512
4513 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4514 ret = GRO_CONSUMED;
4515 goto ok;
4516 }
4517
4518 same_flow = NAPI_GRO_CB(skb)->same_flow;
4519 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4520
4521 if (pp) {
4522 struct sk_buff *nskb = *pp;
4523
4524 *pp = nskb->next;
4525 nskb->next = NULL;
4526 napi_gro_complete(nskb);
4527 napi->gro_count--;
4528 }
4529
4530 if (same_flow)
4531 goto ok;
4532
4533 if (NAPI_GRO_CB(skb)->flush)
4534 goto normal;
4535
4536 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4537 struct sk_buff *nskb = napi->gro_list;
4538
4539 /* locate the end of the list to select the 'oldest' flow */
4540 while (nskb->next) {
4541 pp = &nskb->next;
4542 nskb = *pp;
4543 }
4544 *pp = NULL;
4545 nskb->next = NULL;
4546 napi_gro_complete(nskb);
4547 } else {
4548 napi->gro_count++;
4549 }
4550 NAPI_GRO_CB(skb)->count = 1;
4551 NAPI_GRO_CB(skb)->age = jiffies;
4552 NAPI_GRO_CB(skb)->last = skb;
4553 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4554 skb->next = napi->gro_list;
4555 napi->gro_list = skb;
4556 ret = GRO_HELD;
4557
4558 pull:
4559 grow = skb_gro_offset(skb) - skb_headlen(skb);
4560 if (grow > 0)
4561 gro_pull_from_frag0(skb, grow);
4562 ok:
4563 return ret;
4564
4565 normal:
4566 ret = GRO_NORMAL;
4567 goto pull;
4568 }
4569
4570 struct packet_offload *gro_find_receive_by_type(__be16 type)
4571 {
4572 struct list_head *offload_head = &offload_base;
4573 struct packet_offload *ptype;
4574
4575 list_for_each_entry_rcu(ptype, offload_head, list) {
4576 if (ptype->type != type || !ptype->callbacks.gro_receive)
4577 continue;
4578 return ptype;
4579 }
4580 return NULL;
4581 }
4582 EXPORT_SYMBOL(gro_find_receive_by_type);
4583
4584 struct packet_offload *gro_find_complete_by_type(__be16 type)
4585 {
4586 struct list_head *offload_head = &offload_base;
4587 struct packet_offload *ptype;
4588
4589 list_for_each_entry_rcu(ptype, offload_head, list) {
4590 if (ptype->type != type || !ptype->callbacks.gro_complete)
4591 continue;
4592 return ptype;
4593 }
4594 return NULL;
4595 }
4596 EXPORT_SYMBOL(gro_find_complete_by_type);
4597
4598 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4599 {
4600 switch (ret) {
4601 case GRO_NORMAL:
4602 if (netif_receive_skb_internal(skb))
4603 ret = GRO_DROP;
4604 break;
4605
4606 case GRO_DROP:
4607 kfree_skb(skb);
4608 break;
4609
4610 case GRO_MERGED_FREE:
4611 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4612 skb_dst_drop(skb);
4613 secpath_reset(skb);
4614 kmem_cache_free(skbuff_head_cache, skb);
4615 } else {
4616 __kfree_skb(skb);
4617 }
4618 break;
4619
4620 case GRO_HELD:
4621 case GRO_MERGED:
4622 case GRO_CONSUMED:
4623 break;
4624 }
4625
4626 return ret;
4627 }
4628
4629 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4630 {
4631 skb_mark_napi_id(skb, napi);
4632 trace_napi_gro_receive_entry(skb);
4633
4634 skb_gro_reset_offset(skb);
4635
4636 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4637 }
4638 EXPORT_SYMBOL(napi_gro_receive);
4639
4640 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4641 {
4642 if (unlikely(skb->pfmemalloc)) {
4643 consume_skb(skb);
4644 return;
4645 }
4646 __skb_pull(skb, skb_headlen(skb));
4647 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4648 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4649 skb->vlan_tci = 0;
4650 skb->dev = napi->dev;
4651 skb->skb_iif = 0;
4652 skb->encapsulation = 0;
4653 skb_shinfo(skb)->gso_type = 0;
4654 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4655 secpath_reset(skb);
4656
4657 napi->skb = skb;
4658 }
4659
4660 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4661 {
4662 struct sk_buff *skb = napi->skb;
4663
4664 if (!skb) {
4665 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4666 if (skb) {
4667 napi->skb = skb;
4668 skb_mark_napi_id(skb, napi);
4669 }
4670 }
4671 return skb;
4672 }
4673 EXPORT_SYMBOL(napi_get_frags);
4674
4675 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4676 struct sk_buff *skb,
4677 gro_result_t ret)
4678 {
4679 switch (ret) {
4680 case GRO_NORMAL:
4681 case GRO_HELD:
4682 __skb_push(skb, ETH_HLEN);
4683 skb->protocol = eth_type_trans(skb, skb->dev);
4684 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4685 ret = GRO_DROP;
4686 break;
4687
4688 case GRO_DROP:
4689 case GRO_MERGED_FREE:
4690 napi_reuse_skb(napi, skb);
4691 break;
4692
4693 case GRO_MERGED:
4694 case GRO_CONSUMED:
4695 break;
4696 }
4697
4698 return ret;
4699 }
4700
4701 /* Upper GRO stack assumes network header starts at gro_offset=0
4702 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4703 * We copy ethernet header into skb->data to have a common layout.
4704 */
4705 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4706 {
4707 struct sk_buff *skb = napi->skb;
4708 const struct ethhdr *eth;
4709 unsigned int hlen = sizeof(*eth);
4710
4711 napi->skb = NULL;
4712
4713 skb_reset_mac_header(skb);
4714 skb_gro_reset_offset(skb);
4715
4716 eth = skb_gro_header_fast(skb, 0);
4717 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4718 eth = skb_gro_header_slow(skb, hlen, 0);
4719 if (unlikely(!eth)) {
4720 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4721 __func__, napi->dev->name);
4722 napi_reuse_skb(napi, skb);
4723 return NULL;
4724 }
4725 } else {
4726 gro_pull_from_frag0(skb, hlen);
4727 NAPI_GRO_CB(skb)->frag0 += hlen;
4728 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4729 }
4730 __skb_pull(skb, hlen);
4731
4732 /*
4733 * This works because the only protocols we care about don't require
4734 * special handling.
4735 * We'll fix it up properly in napi_frags_finish()
4736 */
4737 skb->protocol = eth->h_proto;
4738
4739 return skb;
4740 }
4741
4742 gro_result_t napi_gro_frags(struct napi_struct *napi)
4743 {
4744 struct sk_buff *skb = napi_frags_skb(napi);
4745
4746 if (!skb)
4747 return GRO_DROP;
4748
4749 trace_napi_gro_frags_entry(skb);
4750
4751 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4752 }
4753 EXPORT_SYMBOL(napi_gro_frags);
4754
4755 /* Compute the checksum from gro_offset and return the folded value
4756 * after adding in any pseudo checksum.
4757 */
4758 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4759 {
4760 __wsum wsum;
4761 __sum16 sum;
4762
4763 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4764
4765 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4766 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4767 if (likely(!sum)) {
4768 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4769 !skb->csum_complete_sw)
4770 netdev_rx_csum_fault(skb->dev);
4771 }
4772
4773 NAPI_GRO_CB(skb)->csum = wsum;
4774 NAPI_GRO_CB(skb)->csum_valid = 1;
4775
4776 return sum;
4777 }
4778 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4779
4780 /*
4781 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4782 * Note: called with local irq disabled, but exits with local irq enabled.
4783 */
4784 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4785 {
4786 #ifdef CONFIG_RPS
4787 struct softnet_data *remsd = sd->rps_ipi_list;
4788
4789 if (remsd) {
4790 sd->rps_ipi_list = NULL;
4791
4792 local_irq_enable();
4793
4794 /* Send pending IPI's to kick RPS processing on remote cpus. */
4795 while (remsd) {
4796 struct softnet_data *next = remsd->rps_ipi_next;
4797
4798 if (cpu_online(remsd->cpu))
4799 smp_call_function_single_async(remsd->cpu,
4800 &remsd->csd);
4801 remsd = next;
4802 }
4803 } else
4804 #endif
4805 local_irq_enable();
4806 }
4807
4808 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4809 {
4810 #ifdef CONFIG_RPS
4811 return sd->rps_ipi_list != NULL;
4812 #else
4813 return false;
4814 #endif
4815 }
4816
4817 static int process_backlog(struct napi_struct *napi, int quota)
4818 {
4819 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4820 bool again = true;
4821 int work = 0;
4822
4823 /* Check if we have pending ipi, its better to send them now,
4824 * not waiting net_rx_action() end.
4825 */
4826 if (sd_has_rps_ipi_waiting(sd)) {
4827 local_irq_disable();
4828 net_rps_action_and_irq_enable(sd);
4829 }
4830
4831 napi->weight = dev_rx_weight;
4832 while (again) {
4833 struct sk_buff *skb;
4834
4835 while ((skb = __skb_dequeue(&sd->process_queue))) {
4836 rcu_read_lock();
4837 __netif_receive_skb(skb);
4838 rcu_read_unlock();
4839 input_queue_head_incr(sd);
4840 if (++work >= quota)
4841 return work;
4842
4843 }
4844
4845 local_irq_disable();
4846 rps_lock(sd);
4847 if (skb_queue_empty(&sd->input_pkt_queue)) {
4848 /*
4849 * Inline a custom version of __napi_complete().
4850 * only current cpu owns and manipulates this napi,
4851 * and NAPI_STATE_SCHED is the only possible flag set
4852 * on backlog.
4853 * We can use a plain write instead of clear_bit(),
4854 * and we dont need an smp_mb() memory barrier.
4855 */
4856 napi->state = 0;
4857 again = false;
4858 } else {
4859 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4860 &sd->process_queue);
4861 }
4862 rps_unlock(sd);
4863 local_irq_enable();
4864 }
4865
4866 return work;
4867 }
4868
4869 /**
4870 * __napi_schedule - schedule for receive
4871 * @n: entry to schedule
4872 *
4873 * The entry's receive function will be scheduled to run.
4874 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4875 */
4876 void __napi_schedule(struct napi_struct *n)
4877 {
4878 unsigned long flags;
4879
4880 local_irq_save(flags);
4881 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4882 local_irq_restore(flags);
4883 }
4884 EXPORT_SYMBOL(__napi_schedule);
4885
4886 /**
4887 * napi_schedule_prep - check if napi can be scheduled
4888 * @n: napi context
4889 *
4890 * Test if NAPI routine is already running, and if not mark
4891 * it as running. This is used as a condition variable
4892 * insure only one NAPI poll instance runs. We also make
4893 * sure there is no pending NAPI disable.
4894 */
4895 bool napi_schedule_prep(struct napi_struct *n)
4896 {
4897 unsigned long val, new;
4898
4899 do {
4900 val = READ_ONCE(n->state);
4901 if (unlikely(val & NAPIF_STATE_DISABLE))
4902 return false;
4903 new = val | NAPIF_STATE_SCHED;
4904
4905 /* Sets STATE_MISSED bit if STATE_SCHED was already set
4906 * This was suggested by Alexander Duyck, as compiler
4907 * emits better code than :
4908 * if (val & NAPIF_STATE_SCHED)
4909 * new |= NAPIF_STATE_MISSED;
4910 */
4911 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
4912 NAPIF_STATE_MISSED;
4913 } while (cmpxchg(&n->state, val, new) != val);
4914
4915 return !(val & NAPIF_STATE_SCHED);
4916 }
4917 EXPORT_SYMBOL(napi_schedule_prep);
4918
4919 /**
4920 * __napi_schedule_irqoff - schedule for receive
4921 * @n: entry to schedule
4922 *
4923 * Variant of __napi_schedule() assuming hard irqs are masked
4924 */
4925 void __napi_schedule_irqoff(struct napi_struct *n)
4926 {
4927 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4928 }
4929 EXPORT_SYMBOL(__napi_schedule_irqoff);
4930
4931 bool napi_complete_done(struct napi_struct *n, int work_done)
4932 {
4933 unsigned long flags, val, new;
4934
4935 /*
4936 * 1) Don't let napi dequeue from the cpu poll list
4937 * just in case its running on a different cpu.
4938 * 2) If we are busy polling, do nothing here, we have
4939 * the guarantee we will be called later.
4940 */
4941 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4942 NAPIF_STATE_IN_BUSY_POLL)))
4943 return false;
4944
4945 if (n->gro_list) {
4946 unsigned long timeout = 0;
4947
4948 if (work_done)
4949 timeout = n->dev->gro_flush_timeout;
4950
4951 if (timeout)
4952 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4953 HRTIMER_MODE_REL_PINNED);
4954 else
4955 napi_gro_flush(n, false);
4956 }
4957 if (unlikely(!list_empty(&n->poll_list))) {
4958 /* If n->poll_list is not empty, we need to mask irqs */
4959 local_irq_save(flags);
4960 list_del_init(&n->poll_list);
4961 local_irq_restore(flags);
4962 }
4963
4964 do {
4965 val = READ_ONCE(n->state);
4966
4967 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
4968
4969 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
4970
4971 /* If STATE_MISSED was set, leave STATE_SCHED set,
4972 * because we will call napi->poll() one more time.
4973 * This C code was suggested by Alexander Duyck to help gcc.
4974 */
4975 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
4976 NAPIF_STATE_SCHED;
4977 } while (cmpxchg(&n->state, val, new) != val);
4978
4979 if (unlikely(val & NAPIF_STATE_MISSED)) {
4980 __napi_schedule(n);
4981 return false;
4982 }
4983
4984 return true;
4985 }
4986 EXPORT_SYMBOL(napi_complete_done);
4987
4988 /* must be called under rcu_read_lock(), as we dont take a reference */
4989 static struct napi_struct *napi_by_id(unsigned int napi_id)
4990 {
4991 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4992 struct napi_struct *napi;
4993
4994 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4995 if (napi->napi_id == napi_id)
4996 return napi;
4997
4998 return NULL;
4999 }
5000
5001 #if defined(CONFIG_NET_RX_BUSY_POLL)
5002
5003 #define BUSY_POLL_BUDGET 8
5004
5005 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5006 {
5007 int rc;
5008
5009 /* Busy polling means there is a high chance device driver hard irq
5010 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5011 * set in napi_schedule_prep().
5012 * Since we are about to call napi->poll() once more, we can safely
5013 * clear NAPI_STATE_MISSED.
5014 *
5015 * Note: x86 could use a single "lock and ..." instruction
5016 * to perform these two clear_bit()
5017 */
5018 clear_bit(NAPI_STATE_MISSED, &napi->state);
5019 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5020
5021 local_bh_disable();
5022
5023 /* All we really want here is to re-enable device interrupts.
5024 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5025 */
5026 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5027 netpoll_poll_unlock(have_poll_lock);
5028 if (rc == BUSY_POLL_BUDGET)
5029 __napi_schedule(napi);
5030 local_bh_enable();
5031 if (local_softirq_pending())
5032 do_softirq();
5033 }
5034
5035 bool sk_busy_loop(struct sock *sk, int nonblock)
5036 {
5037 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
5038 int (*napi_poll)(struct napi_struct *napi, int budget);
5039 void *have_poll_lock = NULL;
5040 struct napi_struct *napi;
5041 int rc;
5042
5043 restart:
5044 rc = false;
5045 napi_poll = NULL;
5046
5047 rcu_read_lock();
5048
5049 napi = napi_by_id(sk->sk_napi_id);
5050 if (!napi)
5051 goto out;
5052
5053 preempt_disable();
5054 for (;;) {
5055 rc = 0;
5056 local_bh_disable();
5057 if (!napi_poll) {
5058 unsigned long val = READ_ONCE(napi->state);
5059
5060 /* If multiple threads are competing for this napi,
5061 * we avoid dirtying napi->state as much as we can.
5062 */
5063 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5064 NAPIF_STATE_IN_BUSY_POLL))
5065 goto count;
5066 if (cmpxchg(&napi->state, val,
5067 val | NAPIF_STATE_IN_BUSY_POLL |
5068 NAPIF_STATE_SCHED) != val)
5069 goto count;
5070 have_poll_lock = netpoll_poll_lock(napi);
5071 napi_poll = napi->poll;
5072 }
5073 rc = napi_poll(napi, BUSY_POLL_BUDGET);
5074 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5075 count:
5076 if (rc > 0)
5077 __NET_ADD_STATS(sock_net(sk),
5078 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5079 local_bh_enable();
5080
5081 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5082 busy_loop_timeout(end_time))
5083 break;
5084
5085 if (unlikely(need_resched())) {
5086 if (napi_poll)
5087 busy_poll_stop(napi, have_poll_lock);
5088 preempt_enable();
5089 rcu_read_unlock();
5090 cond_resched();
5091 rc = !skb_queue_empty(&sk->sk_receive_queue);
5092 if (rc || busy_loop_timeout(end_time))
5093 return rc;
5094 goto restart;
5095 }
5096 cpu_relax();
5097 }
5098 if (napi_poll)
5099 busy_poll_stop(napi, have_poll_lock);
5100 preempt_enable();
5101 rc = !skb_queue_empty(&sk->sk_receive_queue);
5102 out:
5103 rcu_read_unlock();
5104 return rc;
5105 }
5106 EXPORT_SYMBOL(sk_busy_loop);
5107
5108 #endif /* CONFIG_NET_RX_BUSY_POLL */
5109
5110 static void napi_hash_add(struct napi_struct *napi)
5111 {
5112 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5113 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5114 return;
5115
5116 spin_lock(&napi_hash_lock);
5117
5118 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5119 do {
5120 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5121 napi_gen_id = NR_CPUS + 1;
5122 } while (napi_by_id(napi_gen_id));
5123 napi->napi_id = napi_gen_id;
5124
5125 hlist_add_head_rcu(&napi->napi_hash_node,
5126 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5127
5128 spin_unlock(&napi_hash_lock);
5129 }
5130
5131 /* Warning : caller is responsible to make sure rcu grace period
5132 * is respected before freeing memory containing @napi
5133 */
5134 bool napi_hash_del(struct napi_struct *napi)
5135 {
5136 bool rcu_sync_needed = false;
5137
5138 spin_lock(&napi_hash_lock);
5139
5140 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5141 rcu_sync_needed = true;
5142 hlist_del_rcu(&napi->napi_hash_node);
5143 }
5144 spin_unlock(&napi_hash_lock);
5145 return rcu_sync_needed;
5146 }
5147 EXPORT_SYMBOL_GPL(napi_hash_del);
5148
5149 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5150 {
5151 struct napi_struct *napi;
5152
5153 napi = container_of(timer, struct napi_struct, timer);
5154
5155 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5156 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5157 */
5158 if (napi->gro_list && !napi_disable_pending(napi) &&
5159 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5160 __napi_schedule_irqoff(napi);
5161
5162 return HRTIMER_NORESTART;
5163 }
5164
5165 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5166 int (*poll)(struct napi_struct *, int), int weight)
5167 {
5168 INIT_LIST_HEAD(&napi->poll_list);
5169 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5170 napi->timer.function = napi_watchdog;
5171 napi->gro_count = 0;
5172 napi->gro_list = NULL;
5173 napi->skb = NULL;
5174 napi->poll = poll;
5175 if (weight > NAPI_POLL_WEIGHT)
5176 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5177 weight, dev->name);
5178 napi->weight = weight;
5179 list_add(&napi->dev_list, &dev->napi_list);
5180 napi->dev = dev;
5181 #ifdef CONFIG_NETPOLL
5182 napi->poll_owner = -1;
5183 #endif
5184 set_bit(NAPI_STATE_SCHED, &napi->state);
5185 napi_hash_add(napi);
5186 }
5187 EXPORT_SYMBOL(netif_napi_add);
5188
5189 void napi_disable(struct napi_struct *n)
5190 {
5191 might_sleep();
5192 set_bit(NAPI_STATE_DISABLE, &n->state);
5193
5194 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5195 msleep(1);
5196 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5197 msleep(1);
5198
5199 hrtimer_cancel(&n->timer);
5200
5201 clear_bit(NAPI_STATE_DISABLE, &n->state);
5202 }
5203 EXPORT_SYMBOL(napi_disable);
5204
5205 /* Must be called in process context */
5206 void netif_napi_del(struct napi_struct *napi)
5207 {
5208 might_sleep();
5209 if (napi_hash_del(napi))
5210 synchronize_net();
5211 list_del_init(&napi->dev_list);
5212 napi_free_frags(napi);
5213
5214 kfree_skb_list(napi->gro_list);
5215 napi->gro_list = NULL;
5216 napi->gro_count = 0;
5217 }
5218 EXPORT_SYMBOL(netif_napi_del);
5219
5220 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5221 {
5222 void *have;
5223 int work, weight;
5224
5225 list_del_init(&n->poll_list);
5226
5227 have = netpoll_poll_lock(n);
5228
5229 weight = n->weight;
5230
5231 /* This NAPI_STATE_SCHED test is for avoiding a race
5232 * with netpoll's poll_napi(). Only the entity which
5233 * obtains the lock and sees NAPI_STATE_SCHED set will
5234 * actually make the ->poll() call. Therefore we avoid
5235 * accidentally calling ->poll() when NAPI is not scheduled.
5236 */
5237 work = 0;
5238 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5239 work = n->poll(n, weight);
5240 trace_napi_poll(n, work, weight);
5241 }
5242
5243 WARN_ON_ONCE(work > weight);
5244
5245 if (likely(work < weight))
5246 goto out_unlock;
5247
5248 /* Drivers must not modify the NAPI state if they
5249 * consume the entire weight. In such cases this code
5250 * still "owns" the NAPI instance and therefore can
5251 * move the instance around on the list at-will.
5252 */
5253 if (unlikely(napi_disable_pending(n))) {
5254 napi_complete(n);
5255 goto out_unlock;
5256 }
5257
5258 if (n->gro_list) {
5259 /* flush too old packets
5260 * If HZ < 1000, flush all packets.
5261 */
5262 napi_gro_flush(n, HZ >= 1000);
5263 }
5264
5265 /* Some drivers may have called napi_schedule
5266 * prior to exhausting their budget.
5267 */
5268 if (unlikely(!list_empty(&n->poll_list))) {
5269 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5270 n->dev ? n->dev->name : "backlog");
5271 goto out_unlock;
5272 }
5273
5274 list_add_tail(&n->poll_list, repoll);
5275
5276 out_unlock:
5277 netpoll_poll_unlock(have);
5278
5279 return work;
5280 }
5281
5282 static __latent_entropy void net_rx_action(struct softirq_action *h)
5283 {
5284 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5285 unsigned long time_limit = jiffies + 2;
5286 int budget = netdev_budget;
5287 LIST_HEAD(list);
5288 LIST_HEAD(repoll);
5289
5290 local_irq_disable();
5291 list_splice_init(&sd->poll_list, &list);
5292 local_irq_enable();
5293
5294 for (;;) {
5295 struct napi_struct *n;
5296
5297 if (list_empty(&list)) {
5298 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5299 goto out;
5300 break;
5301 }
5302
5303 n = list_first_entry(&list, struct napi_struct, poll_list);
5304 budget -= napi_poll(n, &repoll);
5305
5306 /* If softirq window is exhausted then punt.
5307 * Allow this to run for 2 jiffies since which will allow
5308 * an average latency of 1.5/HZ.
5309 */
5310 if (unlikely(budget <= 0 ||
5311 time_after_eq(jiffies, time_limit))) {
5312 sd->time_squeeze++;
5313 break;
5314 }
5315 }
5316
5317 local_irq_disable();
5318
5319 list_splice_tail_init(&sd->poll_list, &list);
5320 list_splice_tail(&repoll, &list);
5321 list_splice(&list, &sd->poll_list);
5322 if (!list_empty(&sd->poll_list))
5323 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5324
5325 net_rps_action_and_irq_enable(sd);
5326 out:
5327 __kfree_skb_flush();
5328 }
5329
5330 struct netdev_adjacent {
5331 struct net_device *dev;
5332
5333 /* upper master flag, there can only be one master device per list */
5334 bool master;
5335
5336 /* counter for the number of times this device was added to us */
5337 u16 ref_nr;
5338
5339 /* private field for the users */
5340 void *private;
5341
5342 struct list_head list;
5343 struct rcu_head rcu;
5344 };
5345
5346 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5347 struct list_head *adj_list)
5348 {
5349 struct netdev_adjacent *adj;
5350
5351 list_for_each_entry(adj, adj_list, list) {
5352 if (adj->dev == adj_dev)
5353 return adj;
5354 }
5355 return NULL;
5356 }
5357
5358 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5359 {
5360 struct net_device *dev = data;
5361
5362 return upper_dev == dev;
5363 }
5364
5365 /**
5366 * netdev_has_upper_dev - Check if device is linked to an upper device
5367 * @dev: device
5368 * @upper_dev: upper device to check
5369 *
5370 * Find out if a device is linked to specified upper device and return true
5371 * in case it is. Note that this checks only immediate upper device,
5372 * not through a complete stack of devices. The caller must hold the RTNL lock.
5373 */
5374 bool netdev_has_upper_dev(struct net_device *dev,
5375 struct net_device *upper_dev)
5376 {
5377 ASSERT_RTNL();
5378
5379 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5380 upper_dev);
5381 }
5382 EXPORT_SYMBOL(netdev_has_upper_dev);
5383
5384 /**
5385 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5386 * @dev: device
5387 * @upper_dev: upper device to check
5388 *
5389 * Find out if a device is linked to specified upper device and return true
5390 * in case it is. Note that this checks the entire upper device chain.
5391 * The caller must hold rcu lock.
5392 */
5393
5394 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5395 struct net_device *upper_dev)
5396 {
5397 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5398 upper_dev);
5399 }
5400 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5401
5402 /**
5403 * netdev_has_any_upper_dev - Check if device is linked to some device
5404 * @dev: device
5405 *
5406 * Find out if a device is linked to an upper device and return true in case
5407 * it is. The caller must hold the RTNL lock.
5408 */
5409 static bool netdev_has_any_upper_dev(struct net_device *dev)
5410 {
5411 ASSERT_RTNL();
5412
5413 return !list_empty(&dev->adj_list.upper);
5414 }
5415
5416 /**
5417 * netdev_master_upper_dev_get - Get master upper device
5418 * @dev: device
5419 *
5420 * Find a master upper device and return pointer to it or NULL in case
5421 * it's not there. The caller must hold the RTNL lock.
5422 */
5423 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5424 {
5425 struct netdev_adjacent *upper;
5426
5427 ASSERT_RTNL();
5428
5429 if (list_empty(&dev->adj_list.upper))
5430 return NULL;
5431
5432 upper = list_first_entry(&dev->adj_list.upper,
5433 struct netdev_adjacent, list);
5434 if (likely(upper->master))
5435 return upper->dev;
5436 return NULL;
5437 }
5438 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5439
5440 /**
5441 * netdev_has_any_lower_dev - Check if device is linked to some device
5442 * @dev: device
5443 *
5444 * Find out if a device is linked to a lower device and return true in case
5445 * it is. The caller must hold the RTNL lock.
5446 */
5447 static bool netdev_has_any_lower_dev(struct net_device *dev)
5448 {
5449 ASSERT_RTNL();
5450
5451 return !list_empty(&dev->adj_list.lower);
5452 }
5453
5454 void *netdev_adjacent_get_private(struct list_head *adj_list)
5455 {
5456 struct netdev_adjacent *adj;
5457
5458 adj = list_entry(adj_list, struct netdev_adjacent, list);
5459
5460 return adj->private;
5461 }
5462 EXPORT_SYMBOL(netdev_adjacent_get_private);
5463
5464 /**
5465 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5466 * @dev: device
5467 * @iter: list_head ** of the current position
5468 *
5469 * Gets the next device from the dev's upper list, starting from iter
5470 * position. The caller must hold RCU read lock.
5471 */
5472 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5473 struct list_head **iter)
5474 {
5475 struct netdev_adjacent *upper;
5476
5477 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5478
5479 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5480
5481 if (&upper->list == &dev->adj_list.upper)
5482 return NULL;
5483
5484 *iter = &upper->list;
5485
5486 return upper->dev;
5487 }
5488 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5489
5490 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5491 struct list_head **iter)
5492 {
5493 struct netdev_adjacent *upper;
5494
5495 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5496
5497 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5498
5499 if (&upper->list == &dev->adj_list.upper)
5500 return NULL;
5501
5502 *iter = &upper->list;
5503
5504 return upper->dev;
5505 }
5506
5507 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5508 int (*fn)(struct net_device *dev,
5509 void *data),
5510 void *data)
5511 {
5512 struct net_device *udev;
5513 struct list_head *iter;
5514 int ret;
5515
5516 for (iter = &dev->adj_list.upper,
5517 udev = netdev_next_upper_dev_rcu(dev, &iter);
5518 udev;
5519 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5520 /* first is the upper device itself */
5521 ret = fn(udev, data);
5522 if (ret)
5523 return ret;
5524
5525 /* then look at all of its upper devices */
5526 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5527 if (ret)
5528 return ret;
5529 }
5530
5531 return 0;
5532 }
5533 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5534
5535 /**
5536 * netdev_lower_get_next_private - Get the next ->private from the
5537 * lower neighbour list
5538 * @dev: device
5539 * @iter: list_head ** of the current position
5540 *
5541 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5542 * list, starting from iter position. The caller must hold either hold the
5543 * RTNL lock or its own locking that guarantees that the neighbour lower
5544 * list will remain unchanged.
5545 */
5546 void *netdev_lower_get_next_private(struct net_device *dev,
5547 struct list_head **iter)
5548 {
5549 struct netdev_adjacent *lower;
5550
5551 lower = list_entry(*iter, struct netdev_adjacent, list);
5552
5553 if (&lower->list == &dev->adj_list.lower)
5554 return NULL;
5555
5556 *iter = lower->list.next;
5557
5558 return lower->private;
5559 }
5560 EXPORT_SYMBOL(netdev_lower_get_next_private);
5561
5562 /**
5563 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5564 * lower neighbour list, RCU
5565 * variant
5566 * @dev: device
5567 * @iter: list_head ** of the current position
5568 *
5569 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5570 * list, starting from iter position. The caller must hold RCU read lock.
5571 */
5572 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5573 struct list_head **iter)
5574 {
5575 struct netdev_adjacent *lower;
5576
5577 WARN_ON_ONCE(!rcu_read_lock_held());
5578
5579 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5580
5581 if (&lower->list == &dev->adj_list.lower)
5582 return NULL;
5583
5584 *iter = &lower->list;
5585
5586 return lower->private;
5587 }
5588 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5589
5590 /**
5591 * netdev_lower_get_next - Get the next device from the lower neighbour
5592 * list
5593 * @dev: device
5594 * @iter: list_head ** of the current position
5595 *
5596 * Gets the next netdev_adjacent from the dev's lower neighbour
5597 * list, starting from iter position. The caller must hold RTNL lock or
5598 * its own locking that guarantees that the neighbour lower
5599 * list will remain unchanged.
5600 */
5601 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5602 {
5603 struct netdev_adjacent *lower;
5604
5605 lower = list_entry(*iter, struct netdev_adjacent, list);
5606
5607 if (&lower->list == &dev->adj_list.lower)
5608 return NULL;
5609
5610 *iter = lower->list.next;
5611
5612 return lower->dev;
5613 }
5614 EXPORT_SYMBOL(netdev_lower_get_next);
5615
5616 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5617 struct list_head **iter)
5618 {
5619 struct netdev_adjacent *lower;
5620
5621 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5622
5623 if (&lower->list == &dev->adj_list.lower)
5624 return NULL;
5625
5626 *iter = &lower->list;
5627
5628 return lower->dev;
5629 }
5630
5631 int netdev_walk_all_lower_dev(struct net_device *dev,
5632 int (*fn)(struct net_device *dev,
5633 void *data),
5634 void *data)
5635 {
5636 struct net_device *ldev;
5637 struct list_head *iter;
5638 int ret;
5639
5640 for (iter = &dev->adj_list.lower,
5641 ldev = netdev_next_lower_dev(dev, &iter);
5642 ldev;
5643 ldev = netdev_next_lower_dev(dev, &iter)) {
5644 /* first is the lower device itself */
5645 ret = fn(ldev, data);
5646 if (ret)
5647 return ret;
5648
5649 /* then look at all of its lower devices */
5650 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5651 if (ret)
5652 return ret;
5653 }
5654
5655 return 0;
5656 }
5657 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5658
5659 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5660 struct list_head **iter)
5661 {
5662 struct netdev_adjacent *lower;
5663
5664 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5665 if (&lower->list == &dev->adj_list.lower)
5666 return NULL;
5667
5668 *iter = &lower->list;
5669
5670 return lower->dev;
5671 }
5672
5673 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5674 int (*fn)(struct net_device *dev,
5675 void *data),
5676 void *data)
5677 {
5678 struct net_device *ldev;
5679 struct list_head *iter;
5680 int ret;
5681
5682 for (iter = &dev->adj_list.lower,
5683 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5684 ldev;
5685 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5686 /* first is the lower device itself */
5687 ret = fn(ldev, data);
5688 if (ret)
5689 return ret;
5690
5691 /* then look at all of its lower devices */
5692 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5693 if (ret)
5694 return ret;
5695 }
5696
5697 return 0;
5698 }
5699 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5700
5701 /**
5702 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5703 * lower neighbour list, RCU
5704 * variant
5705 * @dev: device
5706 *
5707 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5708 * list. The caller must hold RCU read lock.
5709 */
5710 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5711 {
5712 struct netdev_adjacent *lower;
5713
5714 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5715 struct netdev_adjacent, list);
5716 if (lower)
5717 return lower->private;
5718 return NULL;
5719 }
5720 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5721
5722 /**
5723 * netdev_master_upper_dev_get_rcu - Get master upper device
5724 * @dev: device
5725 *
5726 * Find a master upper device and return pointer to it or NULL in case
5727 * it's not there. The caller must hold the RCU read lock.
5728 */
5729 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5730 {
5731 struct netdev_adjacent *upper;
5732
5733 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5734 struct netdev_adjacent, list);
5735 if (upper && likely(upper->master))
5736 return upper->dev;
5737 return NULL;
5738 }
5739 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5740
5741 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5742 struct net_device *adj_dev,
5743 struct list_head *dev_list)
5744 {
5745 char linkname[IFNAMSIZ+7];
5746
5747 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5748 "upper_%s" : "lower_%s", adj_dev->name);
5749 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5750 linkname);
5751 }
5752 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5753 char *name,
5754 struct list_head *dev_list)
5755 {
5756 char linkname[IFNAMSIZ+7];
5757
5758 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5759 "upper_%s" : "lower_%s", name);
5760 sysfs_remove_link(&(dev->dev.kobj), linkname);
5761 }
5762
5763 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5764 struct net_device *adj_dev,
5765 struct list_head *dev_list)
5766 {
5767 return (dev_list == &dev->adj_list.upper ||
5768 dev_list == &dev->adj_list.lower) &&
5769 net_eq(dev_net(dev), dev_net(adj_dev));
5770 }
5771
5772 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5773 struct net_device *adj_dev,
5774 struct list_head *dev_list,
5775 void *private, bool master)
5776 {
5777 struct netdev_adjacent *adj;
5778 int ret;
5779
5780 adj = __netdev_find_adj(adj_dev, dev_list);
5781
5782 if (adj) {
5783 adj->ref_nr += 1;
5784 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5785 dev->name, adj_dev->name, adj->ref_nr);
5786
5787 return 0;
5788 }
5789
5790 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5791 if (!adj)
5792 return -ENOMEM;
5793
5794 adj->dev = adj_dev;
5795 adj->master = master;
5796 adj->ref_nr = 1;
5797 adj->private = private;
5798 dev_hold(adj_dev);
5799
5800 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5801 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5802
5803 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5804 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5805 if (ret)
5806 goto free_adj;
5807 }
5808
5809 /* Ensure that master link is always the first item in list. */
5810 if (master) {
5811 ret = sysfs_create_link(&(dev->dev.kobj),
5812 &(adj_dev->dev.kobj), "master");
5813 if (ret)
5814 goto remove_symlinks;
5815
5816 list_add_rcu(&adj->list, dev_list);
5817 } else {
5818 list_add_tail_rcu(&adj->list, dev_list);
5819 }
5820
5821 return 0;
5822
5823 remove_symlinks:
5824 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5825 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5826 free_adj:
5827 kfree(adj);
5828 dev_put(adj_dev);
5829
5830 return ret;
5831 }
5832
5833 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5834 struct net_device *adj_dev,
5835 u16 ref_nr,
5836 struct list_head *dev_list)
5837 {
5838 struct netdev_adjacent *adj;
5839
5840 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5841 dev->name, adj_dev->name, ref_nr);
5842
5843 adj = __netdev_find_adj(adj_dev, dev_list);
5844
5845 if (!adj) {
5846 pr_err("Adjacency does not exist for device %s from %s\n",
5847 dev->name, adj_dev->name);
5848 WARN_ON(1);
5849 return;
5850 }
5851
5852 if (adj->ref_nr > ref_nr) {
5853 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5854 dev->name, adj_dev->name, ref_nr,
5855 adj->ref_nr - ref_nr);
5856 adj->ref_nr -= ref_nr;
5857 return;
5858 }
5859
5860 if (adj->master)
5861 sysfs_remove_link(&(dev->dev.kobj), "master");
5862
5863 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5864 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5865
5866 list_del_rcu(&adj->list);
5867 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
5868 adj_dev->name, dev->name, adj_dev->name);
5869 dev_put(adj_dev);
5870 kfree_rcu(adj, rcu);
5871 }
5872
5873 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5874 struct net_device *upper_dev,
5875 struct list_head *up_list,
5876 struct list_head *down_list,
5877 void *private, bool master)
5878 {
5879 int ret;
5880
5881 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
5882 private, master);
5883 if (ret)
5884 return ret;
5885
5886 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
5887 private, false);
5888 if (ret) {
5889 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5890 return ret;
5891 }
5892
5893 return 0;
5894 }
5895
5896 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5897 struct net_device *upper_dev,
5898 u16 ref_nr,
5899 struct list_head *up_list,
5900 struct list_head *down_list)
5901 {
5902 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5903 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5904 }
5905
5906 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5907 struct net_device *upper_dev,
5908 void *private, bool master)
5909 {
5910 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5911 &dev->adj_list.upper,
5912 &upper_dev->adj_list.lower,
5913 private, master);
5914 }
5915
5916 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5917 struct net_device *upper_dev)
5918 {
5919 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5920 &dev->adj_list.upper,
5921 &upper_dev->adj_list.lower);
5922 }
5923
5924 static int __netdev_upper_dev_link(struct net_device *dev,
5925 struct net_device *upper_dev, bool master,
5926 void *upper_priv, void *upper_info)
5927 {
5928 struct netdev_notifier_changeupper_info changeupper_info;
5929 int ret = 0;
5930
5931 ASSERT_RTNL();
5932
5933 if (dev == upper_dev)
5934 return -EBUSY;
5935
5936 /* To prevent loops, check if dev is not upper device to upper_dev. */
5937 if (netdev_has_upper_dev(upper_dev, dev))
5938 return -EBUSY;
5939
5940 if (netdev_has_upper_dev(dev, upper_dev))
5941 return -EEXIST;
5942
5943 if (master && netdev_master_upper_dev_get(dev))
5944 return -EBUSY;
5945
5946 changeupper_info.upper_dev = upper_dev;
5947 changeupper_info.master = master;
5948 changeupper_info.linking = true;
5949 changeupper_info.upper_info = upper_info;
5950
5951 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5952 &changeupper_info.info);
5953 ret = notifier_to_errno(ret);
5954 if (ret)
5955 return ret;
5956
5957 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5958 master);
5959 if (ret)
5960 return ret;
5961
5962 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5963 &changeupper_info.info);
5964 ret = notifier_to_errno(ret);
5965 if (ret)
5966 goto rollback;
5967
5968 return 0;
5969
5970 rollback:
5971 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5972
5973 return ret;
5974 }
5975
5976 /**
5977 * netdev_upper_dev_link - Add a link to the upper device
5978 * @dev: device
5979 * @upper_dev: new upper device
5980 *
5981 * Adds a link to device which is upper to this one. The caller must hold
5982 * the RTNL lock. On a failure a negative errno code is returned.
5983 * On success the reference counts are adjusted and the function
5984 * returns zero.
5985 */
5986 int netdev_upper_dev_link(struct net_device *dev,
5987 struct net_device *upper_dev)
5988 {
5989 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5990 }
5991 EXPORT_SYMBOL(netdev_upper_dev_link);
5992
5993 /**
5994 * netdev_master_upper_dev_link - Add a master link to the upper device
5995 * @dev: device
5996 * @upper_dev: new upper device
5997 * @upper_priv: upper device private
5998 * @upper_info: upper info to be passed down via notifier
5999 *
6000 * Adds a link to device which is upper to this one. In this case, only
6001 * one master upper device can be linked, although other non-master devices
6002 * might be linked as well. The caller must hold the RTNL lock.
6003 * On a failure a negative errno code is returned. On success the reference
6004 * counts are adjusted and the function returns zero.
6005 */
6006 int netdev_master_upper_dev_link(struct net_device *dev,
6007 struct net_device *upper_dev,
6008 void *upper_priv, void *upper_info)
6009 {
6010 return __netdev_upper_dev_link(dev, upper_dev, true,
6011 upper_priv, upper_info);
6012 }
6013 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6014
6015 /**
6016 * netdev_upper_dev_unlink - Removes a link to upper device
6017 * @dev: device
6018 * @upper_dev: new upper device
6019 *
6020 * Removes a link to device which is upper to this one. The caller must hold
6021 * the RTNL lock.
6022 */
6023 void netdev_upper_dev_unlink(struct net_device *dev,
6024 struct net_device *upper_dev)
6025 {
6026 struct netdev_notifier_changeupper_info changeupper_info;
6027
6028 ASSERT_RTNL();
6029
6030 changeupper_info.upper_dev = upper_dev;
6031 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6032 changeupper_info.linking = false;
6033
6034 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6035 &changeupper_info.info);
6036
6037 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6038
6039 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6040 &changeupper_info.info);
6041 }
6042 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6043
6044 /**
6045 * netdev_bonding_info_change - Dispatch event about slave change
6046 * @dev: device
6047 * @bonding_info: info to dispatch
6048 *
6049 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6050 * The caller must hold the RTNL lock.
6051 */
6052 void netdev_bonding_info_change(struct net_device *dev,
6053 struct netdev_bonding_info *bonding_info)
6054 {
6055 struct netdev_notifier_bonding_info info;
6056
6057 memcpy(&info.bonding_info, bonding_info,
6058 sizeof(struct netdev_bonding_info));
6059 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6060 &info.info);
6061 }
6062 EXPORT_SYMBOL(netdev_bonding_info_change);
6063
6064 static void netdev_adjacent_add_links(struct net_device *dev)
6065 {
6066 struct netdev_adjacent *iter;
6067
6068 struct net *net = dev_net(dev);
6069
6070 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6071 if (!net_eq(net, dev_net(iter->dev)))
6072 continue;
6073 netdev_adjacent_sysfs_add(iter->dev, dev,
6074 &iter->dev->adj_list.lower);
6075 netdev_adjacent_sysfs_add(dev, iter->dev,
6076 &dev->adj_list.upper);
6077 }
6078
6079 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6080 if (!net_eq(net, dev_net(iter->dev)))
6081 continue;
6082 netdev_adjacent_sysfs_add(iter->dev, dev,
6083 &iter->dev->adj_list.upper);
6084 netdev_adjacent_sysfs_add(dev, iter->dev,
6085 &dev->adj_list.lower);
6086 }
6087 }
6088
6089 static void netdev_adjacent_del_links(struct net_device *dev)
6090 {
6091 struct netdev_adjacent *iter;
6092
6093 struct net *net = dev_net(dev);
6094
6095 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6096 if (!net_eq(net, dev_net(iter->dev)))
6097 continue;
6098 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6099 &iter->dev->adj_list.lower);
6100 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6101 &dev->adj_list.upper);
6102 }
6103
6104 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6105 if (!net_eq(net, dev_net(iter->dev)))
6106 continue;
6107 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6108 &iter->dev->adj_list.upper);
6109 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6110 &dev->adj_list.lower);
6111 }
6112 }
6113
6114 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6115 {
6116 struct netdev_adjacent *iter;
6117
6118 struct net *net = dev_net(dev);
6119
6120 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6121 if (!net_eq(net, dev_net(iter->dev)))
6122 continue;
6123 netdev_adjacent_sysfs_del(iter->dev, oldname,
6124 &iter->dev->adj_list.lower);
6125 netdev_adjacent_sysfs_add(iter->dev, dev,
6126 &iter->dev->adj_list.lower);
6127 }
6128
6129 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6130 if (!net_eq(net, dev_net(iter->dev)))
6131 continue;
6132 netdev_adjacent_sysfs_del(iter->dev, oldname,
6133 &iter->dev->adj_list.upper);
6134 netdev_adjacent_sysfs_add(iter->dev, dev,
6135 &iter->dev->adj_list.upper);
6136 }
6137 }
6138
6139 void *netdev_lower_dev_get_private(struct net_device *dev,
6140 struct net_device *lower_dev)
6141 {
6142 struct netdev_adjacent *lower;
6143
6144 if (!lower_dev)
6145 return NULL;
6146 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6147 if (!lower)
6148 return NULL;
6149
6150 return lower->private;
6151 }
6152 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6153
6154
6155 int dev_get_nest_level(struct net_device *dev)
6156 {
6157 struct net_device *lower = NULL;
6158 struct list_head *iter;
6159 int max_nest = -1;
6160 int nest;
6161
6162 ASSERT_RTNL();
6163
6164 netdev_for_each_lower_dev(dev, lower, iter) {
6165 nest = dev_get_nest_level(lower);
6166 if (max_nest < nest)
6167 max_nest = nest;
6168 }
6169
6170 return max_nest + 1;
6171 }
6172 EXPORT_SYMBOL(dev_get_nest_level);
6173
6174 /**
6175 * netdev_lower_change - Dispatch event about lower device state change
6176 * @lower_dev: device
6177 * @lower_state_info: state to dispatch
6178 *
6179 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6180 * The caller must hold the RTNL lock.
6181 */
6182 void netdev_lower_state_changed(struct net_device *lower_dev,
6183 void *lower_state_info)
6184 {
6185 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6186
6187 ASSERT_RTNL();
6188 changelowerstate_info.lower_state_info = lower_state_info;
6189 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6190 &changelowerstate_info.info);
6191 }
6192 EXPORT_SYMBOL(netdev_lower_state_changed);
6193
6194 static void dev_change_rx_flags(struct net_device *dev, int flags)
6195 {
6196 const struct net_device_ops *ops = dev->netdev_ops;
6197
6198 if (ops->ndo_change_rx_flags)
6199 ops->ndo_change_rx_flags(dev, flags);
6200 }
6201
6202 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6203 {
6204 unsigned int old_flags = dev->flags;
6205 kuid_t uid;
6206 kgid_t gid;
6207
6208 ASSERT_RTNL();
6209
6210 dev->flags |= IFF_PROMISC;
6211 dev->promiscuity += inc;
6212 if (dev->promiscuity == 0) {
6213 /*
6214 * Avoid overflow.
6215 * If inc causes overflow, untouch promisc and return error.
6216 */
6217 if (inc < 0)
6218 dev->flags &= ~IFF_PROMISC;
6219 else {
6220 dev->promiscuity -= inc;
6221 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6222 dev->name);
6223 return -EOVERFLOW;
6224 }
6225 }
6226 if (dev->flags != old_flags) {
6227 pr_info("device %s %s promiscuous mode\n",
6228 dev->name,
6229 dev->flags & IFF_PROMISC ? "entered" : "left");
6230 if (audit_enabled) {
6231 current_uid_gid(&uid, &gid);
6232 audit_log(current->audit_context, GFP_ATOMIC,
6233 AUDIT_ANOM_PROMISCUOUS,
6234 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6235 dev->name, (dev->flags & IFF_PROMISC),
6236 (old_flags & IFF_PROMISC),
6237 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6238 from_kuid(&init_user_ns, uid),
6239 from_kgid(&init_user_ns, gid),
6240 audit_get_sessionid(current));
6241 }
6242
6243 dev_change_rx_flags(dev, IFF_PROMISC);
6244 }
6245 if (notify)
6246 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6247 return 0;
6248 }
6249
6250 /**
6251 * dev_set_promiscuity - update promiscuity count on a device
6252 * @dev: device
6253 * @inc: modifier
6254 *
6255 * Add or remove promiscuity from a device. While the count in the device
6256 * remains above zero the interface remains promiscuous. Once it hits zero
6257 * the device reverts back to normal filtering operation. A negative inc
6258 * value is used to drop promiscuity on the device.
6259 * Return 0 if successful or a negative errno code on error.
6260 */
6261 int dev_set_promiscuity(struct net_device *dev, int inc)
6262 {
6263 unsigned int old_flags = dev->flags;
6264 int err;
6265
6266 err = __dev_set_promiscuity(dev, inc, true);
6267 if (err < 0)
6268 return err;
6269 if (dev->flags != old_flags)
6270 dev_set_rx_mode(dev);
6271 return err;
6272 }
6273 EXPORT_SYMBOL(dev_set_promiscuity);
6274
6275 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6276 {
6277 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6278
6279 ASSERT_RTNL();
6280
6281 dev->flags |= IFF_ALLMULTI;
6282 dev->allmulti += inc;
6283 if (dev->allmulti == 0) {
6284 /*
6285 * Avoid overflow.
6286 * If inc causes overflow, untouch allmulti and return error.
6287 */
6288 if (inc < 0)
6289 dev->flags &= ~IFF_ALLMULTI;
6290 else {
6291 dev->allmulti -= inc;
6292 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6293 dev->name);
6294 return -EOVERFLOW;
6295 }
6296 }
6297 if (dev->flags ^ old_flags) {
6298 dev_change_rx_flags(dev, IFF_ALLMULTI);
6299 dev_set_rx_mode(dev);
6300 if (notify)
6301 __dev_notify_flags(dev, old_flags,
6302 dev->gflags ^ old_gflags);
6303 }
6304 return 0;
6305 }
6306
6307 /**
6308 * dev_set_allmulti - update allmulti count on a device
6309 * @dev: device
6310 * @inc: modifier
6311 *
6312 * Add or remove reception of all multicast frames to a device. While the
6313 * count in the device remains above zero the interface remains listening
6314 * to all interfaces. Once it hits zero the device reverts back to normal
6315 * filtering operation. A negative @inc value is used to drop the counter
6316 * when releasing a resource needing all multicasts.
6317 * Return 0 if successful or a negative errno code on error.
6318 */
6319
6320 int dev_set_allmulti(struct net_device *dev, int inc)
6321 {
6322 return __dev_set_allmulti(dev, inc, true);
6323 }
6324 EXPORT_SYMBOL(dev_set_allmulti);
6325
6326 /*
6327 * Upload unicast and multicast address lists to device and
6328 * configure RX filtering. When the device doesn't support unicast
6329 * filtering it is put in promiscuous mode while unicast addresses
6330 * are present.
6331 */
6332 void __dev_set_rx_mode(struct net_device *dev)
6333 {
6334 const struct net_device_ops *ops = dev->netdev_ops;
6335
6336 /* dev_open will call this function so the list will stay sane. */
6337 if (!(dev->flags&IFF_UP))
6338 return;
6339
6340 if (!netif_device_present(dev))
6341 return;
6342
6343 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6344 /* Unicast addresses changes may only happen under the rtnl,
6345 * therefore calling __dev_set_promiscuity here is safe.
6346 */
6347 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6348 __dev_set_promiscuity(dev, 1, false);
6349 dev->uc_promisc = true;
6350 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6351 __dev_set_promiscuity(dev, -1, false);
6352 dev->uc_promisc = false;
6353 }
6354 }
6355
6356 if (ops->ndo_set_rx_mode)
6357 ops->ndo_set_rx_mode(dev);
6358 }
6359
6360 void dev_set_rx_mode(struct net_device *dev)
6361 {
6362 netif_addr_lock_bh(dev);
6363 __dev_set_rx_mode(dev);
6364 netif_addr_unlock_bh(dev);
6365 }
6366
6367 /**
6368 * dev_get_flags - get flags reported to userspace
6369 * @dev: device
6370 *
6371 * Get the combination of flag bits exported through APIs to userspace.
6372 */
6373 unsigned int dev_get_flags(const struct net_device *dev)
6374 {
6375 unsigned int flags;
6376
6377 flags = (dev->flags & ~(IFF_PROMISC |
6378 IFF_ALLMULTI |
6379 IFF_RUNNING |
6380 IFF_LOWER_UP |
6381 IFF_DORMANT)) |
6382 (dev->gflags & (IFF_PROMISC |
6383 IFF_ALLMULTI));
6384
6385 if (netif_running(dev)) {
6386 if (netif_oper_up(dev))
6387 flags |= IFF_RUNNING;
6388 if (netif_carrier_ok(dev))
6389 flags |= IFF_LOWER_UP;
6390 if (netif_dormant(dev))
6391 flags |= IFF_DORMANT;
6392 }
6393
6394 return flags;
6395 }
6396 EXPORT_SYMBOL(dev_get_flags);
6397
6398 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6399 {
6400 unsigned int old_flags = dev->flags;
6401 int ret;
6402
6403 ASSERT_RTNL();
6404
6405 /*
6406 * Set the flags on our device.
6407 */
6408
6409 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6410 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6411 IFF_AUTOMEDIA)) |
6412 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6413 IFF_ALLMULTI));
6414
6415 /*
6416 * Load in the correct multicast list now the flags have changed.
6417 */
6418
6419 if ((old_flags ^ flags) & IFF_MULTICAST)
6420 dev_change_rx_flags(dev, IFF_MULTICAST);
6421
6422 dev_set_rx_mode(dev);
6423
6424 /*
6425 * Have we downed the interface. We handle IFF_UP ourselves
6426 * according to user attempts to set it, rather than blindly
6427 * setting it.
6428 */
6429
6430 ret = 0;
6431 if ((old_flags ^ flags) & IFF_UP)
6432 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6433
6434 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6435 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6436 unsigned int old_flags = dev->flags;
6437
6438 dev->gflags ^= IFF_PROMISC;
6439
6440 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6441 if (dev->flags != old_flags)
6442 dev_set_rx_mode(dev);
6443 }
6444
6445 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6446 * is important. Some (broken) drivers set IFF_PROMISC, when
6447 * IFF_ALLMULTI is requested not asking us and not reporting.
6448 */
6449 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6450 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6451
6452 dev->gflags ^= IFF_ALLMULTI;
6453 __dev_set_allmulti(dev, inc, false);
6454 }
6455
6456 return ret;
6457 }
6458
6459 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6460 unsigned int gchanges)
6461 {
6462 unsigned int changes = dev->flags ^ old_flags;
6463
6464 if (gchanges)
6465 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6466
6467 if (changes & IFF_UP) {
6468 if (dev->flags & IFF_UP)
6469 call_netdevice_notifiers(NETDEV_UP, dev);
6470 else
6471 call_netdevice_notifiers(NETDEV_DOWN, dev);
6472 }
6473
6474 if (dev->flags & IFF_UP &&
6475 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6476 struct netdev_notifier_change_info change_info;
6477
6478 change_info.flags_changed = changes;
6479 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6480 &change_info.info);
6481 }
6482 }
6483
6484 /**
6485 * dev_change_flags - change device settings
6486 * @dev: device
6487 * @flags: device state flags
6488 *
6489 * Change settings on device based state flags. The flags are
6490 * in the userspace exported format.
6491 */
6492 int dev_change_flags(struct net_device *dev, unsigned int flags)
6493 {
6494 int ret;
6495 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6496
6497 ret = __dev_change_flags(dev, flags);
6498 if (ret < 0)
6499 return ret;
6500
6501 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6502 __dev_notify_flags(dev, old_flags, changes);
6503 return ret;
6504 }
6505 EXPORT_SYMBOL(dev_change_flags);
6506
6507 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6508 {
6509 const struct net_device_ops *ops = dev->netdev_ops;
6510
6511 if (ops->ndo_change_mtu)
6512 return ops->ndo_change_mtu(dev, new_mtu);
6513
6514 dev->mtu = new_mtu;
6515 return 0;
6516 }
6517
6518 /**
6519 * dev_set_mtu - Change maximum transfer unit
6520 * @dev: device
6521 * @new_mtu: new transfer unit
6522 *
6523 * Change the maximum transfer size of the network device.
6524 */
6525 int dev_set_mtu(struct net_device *dev, int new_mtu)
6526 {
6527 int err, orig_mtu;
6528
6529 if (new_mtu == dev->mtu)
6530 return 0;
6531
6532 /* MTU must be positive, and in range */
6533 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6534 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6535 dev->name, new_mtu, dev->min_mtu);
6536 return -EINVAL;
6537 }
6538
6539 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6540 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6541 dev->name, new_mtu, dev->max_mtu);
6542 return -EINVAL;
6543 }
6544
6545 if (!netif_device_present(dev))
6546 return -ENODEV;
6547
6548 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6549 err = notifier_to_errno(err);
6550 if (err)
6551 return err;
6552
6553 orig_mtu = dev->mtu;
6554 err = __dev_set_mtu(dev, new_mtu);
6555
6556 if (!err) {
6557 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6558 err = notifier_to_errno(err);
6559 if (err) {
6560 /* setting mtu back and notifying everyone again,
6561 * so that they have a chance to revert changes.
6562 */
6563 __dev_set_mtu(dev, orig_mtu);
6564 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6565 }
6566 }
6567 return err;
6568 }
6569 EXPORT_SYMBOL(dev_set_mtu);
6570
6571 /**
6572 * dev_set_group - Change group this device belongs to
6573 * @dev: device
6574 * @new_group: group this device should belong to
6575 */
6576 void dev_set_group(struct net_device *dev, int new_group)
6577 {
6578 dev->group = new_group;
6579 }
6580 EXPORT_SYMBOL(dev_set_group);
6581
6582 /**
6583 * dev_set_mac_address - Change Media Access Control Address
6584 * @dev: device
6585 * @sa: new address
6586 *
6587 * Change the hardware (MAC) address of the device
6588 */
6589 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6590 {
6591 const struct net_device_ops *ops = dev->netdev_ops;
6592 int err;
6593
6594 if (!ops->ndo_set_mac_address)
6595 return -EOPNOTSUPP;
6596 if (sa->sa_family != dev->type)
6597 return -EINVAL;
6598 if (!netif_device_present(dev))
6599 return -ENODEV;
6600 err = ops->ndo_set_mac_address(dev, sa);
6601 if (err)
6602 return err;
6603 dev->addr_assign_type = NET_ADDR_SET;
6604 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6605 add_device_randomness(dev->dev_addr, dev->addr_len);
6606 return 0;
6607 }
6608 EXPORT_SYMBOL(dev_set_mac_address);
6609
6610 /**
6611 * dev_change_carrier - Change device carrier
6612 * @dev: device
6613 * @new_carrier: new value
6614 *
6615 * Change device carrier
6616 */
6617 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6618 {
6619 const struct net_device_ops *ops = dev->netdev_ops;
6620
6621 if (!ops->ndo_change_carrier)
6622 return -EOPNOTSUPP;
6623 if (!netif_device_present(dev))
6624 return -ENODEV;
6625 return ops->ndo_change_carrier(dev, new_carrier);
6626 }
6627 EXPORT_SYMBOL(dev_change_carrier);
6628
6629 /**
6630 * dev_get_phys_port_id - Get device physical port ID
6631 * @dev: device
6632 * @ppid: port ID
6633 *
6634 * Get device physical port ID
6635 */
6636 int dev_get_phys_port_id(struct net_device *dev,
6637 struct netdev_phys_item_id *ppid)
6638 {
6639 const struct net_device_ops *ops = dev->netdev_ops;
6640
6641 if (!ops->ndo_get_phys_port_id)
6642 return -EOPNOTSUPP;
6643 return ops->ndo_get_phys_port_id(dev, ppid);
6644 }
6645 EXPORT_SYMBOL(dev_get_phys_port_id);
6646
6647 /**
6648 * dev_get_phys_port_name - Get device physical port name
6649 * @dev: device
6650 * @name: port name
6651 * @len: limit of bytes to copy to name
6652 *
6653 * Get device physical port name
6654 */
6655 int dev_get_phys_port_name(struct net_device *dev,
6656 char *name, size_t len)
6657 {
6658 const struct net_device_ops *ops = dev->netdev_ops;
6659
6660 if (!ops->ndo_get_phys_port_name)
6661 return -EOPNOTSUPP;
6662 return ops->ndo_get_phys_port_name(dev, name, len);
6663 }
6664 EXPORT_SYMBOL(dev_get_phys_port_name);
6665
6666 /**
6667 * dev_change_proto_down - update protocol port state information
6668 * @dev: device
6669 * @proto_down: new value
6670 *
6671 * This info can be used by switch drivers to set the phys state of the
6672 * port.
6673 */
6674 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6675 {
6676 const struct net_device_ops *ops = dev->netdev_ops;
6677
6678 if (!ops->ndo_change_proto_down)
6679 return -EOPNOTSUPP;
6680 if (!netif_device_present(dev))
6681 return -ENODEV;
6682 return ops->ndo_change_proto_down(dev, proto_down);
6683 }
6684 EXPORT_SYMBOL(dev_change_proto_down);
6685
6686 /**
6687 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6688 * @dev: device
6689 * @fd: new program fd or negative value to clear
6690 * @flags: xdp-related flags
6691 *
6692 * Set or clear a bpf program for a device
6693 */
6694 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
6695 {
6696 const struct net_device_ops *ops = dev->netdev_ops;
6697 struct bpf_prog *prog = NULL;
6698 struct netdev_xdp xdp;
6699 int err;
6700
6701 ASSERT_RTNL();
6702
6703 if (!ops->ndo_xdp)
6704 return -EOPNOTSUPP;
6705 if (fd >= 0) {
6706 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6707 memset(&xdp, 0, sizeof(xdp));
6708 xdp.command = XDP_QUERY_PROG;
6709
6710 err = ops->ndo_xdp(dev, &xdp);
6711 if (err < 0)
6712 return err;
6713 if (xdp.prog_attached)
6714 return -EBUSY;
6715 }
6716
6717 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6718 if (IS_ERR(prog))
6719 return PTR_ERR(prog);
6720 }
6721
6722 memset(&xdp, 0, sizeof(xdp));
6723 xdp.command = XDP_SETUP_PROG;
6724 xdp.prog = prog;
6725
6726 err = ops->ndo_xdp(dev, &xdp);
6727 if (err < 0 && prog)
6728 bpf_prog_put(prog);
6729
6730 return err;
6731 }
6732 EXPORT_SYMBOL(dev_change_xdp_fd);
6733
6734 /**
6735 * dev_new_index - allocate an ifindex
6736 * @net: the applicable net namespace
6737 *
6738 * Returns a suitable unique value for a new device interface
6739 * number. The caller must hold the rtnl semaphore or the
6740 * dev_base_lock to be sure it remains unique.
6741 */
6742 static int dev_new_index(struct net *net)
6743 {
6744 int ifindex = net->ifindex;
6745
6746 for (;;) {
6747 if (++ifindex <= 0)
6748 ifindex = 1;
6749 if (!__dev_get_by_index(net, ifindex))
6750 return net->ifindex = ifindex;
6751 }
6752 }
6753
6754 /* Delayed registration/unregisteration */
6755 static LIST_HEAD(net_todo_list);
6756 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6757
6758 static void net_set_todo(struct net_device *dev)
6759 {
6760 list_add_tail(&dev->todo_list, &net_todo_list);
6761 dev_net(dev)->dev_unreg_count++;
6762 }
6763
6764 static void rollback_registered_many(struct list_head *head)
6765 {
6766 struct net_device *dev, *tmp;
6767 LIST_HEAD(close_head);
6768
6769 BUG_ON(dev_boot_phase);
6770 ASSERT_RTNL();
6771
6772 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6773 /* Some devices call without registering
6774 * for initialization unwind. Remove those
6775 * devices and proceed with the remaining.
6776 */
6777 if (dev->reg_state == NETREG_UNINITIALIZED) {
6778 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6779 dev->name, dev);
6780
6781 WARN_ON(1);
6782 list_del(&dev->unreg_list);
6783 continue;
6784 }
6785 dev->dismantle = true;
6786 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6787 }
6788
6789 /* If device is running, close it first. */
6790 list_for_each_entry(dev, head, unreg_list)
6791 list_add_tail(&dev->close_list, &close_head);
6792 dev_close_many(&close_head, true);
6793
6794 list_for_each_entry(dev, head, unreg_list) {
6795 /* And unlink it from device chain. */
6796 unlist_netdevice(dev);
6797
6798 dev->reg_state = NETREG_UNREGISTERING;
6799 }
6800 flush_all_backlogs();
6801
6802 synchronize_net();
6803
6804 list_for_each_entry(dev, head, unreg_list) {
6805 struct sk_buff *skb = NULL;
6806
6807 /* Shutdown queueing discipline. */
6808 dev_shutdown(dev);
6809
6810
6811 /* Notify protocols, that we are about to destroy
6812 * this device. They should clean all the things.
6813 */
6814 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6815
6816 if (!dev->rtnl_link_ops ||
6817 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6818 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6819 GFP_KERNEL);
6820
6821 /*
6822 * Flush the unicast and multicast chains
6823 */
6824 dev_uc_flush(dev);
6825 dev_mc_flush(dev);
6826
6827 if (dev->netdev_ops->ndo_uninit)
6828 dev->netdev_ops->ndo_uninit(dev);
6829
6830 if (skb)
6831 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6832
6833 /* Notifier chain MUST detach us all upper devices. */
6834 WARN_ON(netdev_has_any_upper_dev(dev));
6835 WARN_ON(netdev_has_any_lower_dev(dev));
6836
6837 /* Remove entries from kobject tree */
6838 netdev_unregister_kobject(dev);
6839 #ifdef CONFIG_XPS
6840 /* Remove XPS queueing entries */
6841 netif_reset_xps_queues_gt(dev, 0);
6842 #endif
6843 }
6844
6845 synchronize_net();
6846
6847 list_for_each_entry(dev, head, unreg_list)
6848 dev_put(dev);
6849 }
6850
6851 static void rollback_registered(struct net_device *dev)
6852 {
6853 LIST_HEAD(single);
6854
6855 list_add(&dev->unreg_list, &single);
6856 rollback_registered_many(&single);
6857 list_del(&single);
6858 }
6859
6860 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6861 struct net_device *upper, netdev_features_t features)
6862 {
6863 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6864 netdev_features_t feature;
6865 int feature_bit;
6866
6867 for_each_netdev_feature(&upper_disables, feature_bit) {
6868 feature = __NETIF_F_BIT(feature_bit);
6869 if (!(upper->wanted_features & feature)
6870 && (features & feature)) {
6871 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6872 &feature, upper->name);
6873 features &= ~feature;
6874 }
6875 }
6876
6877 return features;
6878 }
6879
6880 static void netdev_sync_lower_features(struct net_device *upper,
6881 struct net_device *lower, netdev_features_t features)
6882 {
6883 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6884 netdev_features_t feature;
6885 int feature_bit;
6886
6887 for_each_netdev_feature(&upper_disables, feature_bit) {
6888 feature = __NETIF_F_BIT(feature_bit);
6889 if (!(features & feature) && (lower->features & feature)) {
6890 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6891 &feature, lower->name);
6892 lower->wanted_features &= ~feature;
6893 netdev_update_features(lower);
6894
6895 if (unlikely(lower->features & feature))
6896 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6897 &feature, lower->name);
6898 }
6899 }
6900 }
6901
6902 static netdev_features_t netdev_fix_features(struct net_device *dev,
6903 netdev_features_t features)
6904 {
6905 /* Fix illegal checksum combinations */
6906 if ((features & NETIF_F_HW_CSUM) &&
6907 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6908 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6909 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6910 }
6911
6912 /* TSO requires that SG is present as well. */
6913 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6914 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6915 features &= ~NETIF_F_ALL_TSO;
6916 }
6917
6918 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6919 !(features & NETIF_F_IP_CSUM)) {
6920 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6921 features &= ~NETIF_F_TSO;
6922 features &= ~NETIF_F_TSO_ECN;
6923 }
6924
6925 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6926 !(features & NETIF_F_IPV6_CSUM)) {
6927 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6928 features &= ~NETIF_F_TSO6;
6929 }
6930
6931 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6932 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6933 features &= ~NETIF_F_TSO_MANGLEID;
6934
6935 /* TSO ECN requires that TSO is present as well. */
6936 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6937 features &= ~NETIF_F_TSO_ECN;
6938
6939 /* Software GSO depends on SG. */
6940 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6941 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6942 features &= ~NETIF_F_GSO;
6943 }
6944
6945 /* UFO needs SG and checksumming */
6946 if (features & NETIF_F_UFO) {
6947 /* maybe split UFO into V4 and V6? */
6948 if (!(features & NETIF_F_HW_CSUM) &&
6949 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6950 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6951 netdev_dbg(dev,
6952 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6953 features &= ~NETIF_F_UFO;
6954 }
6955
6956 if (!(features & NETIF_F_SG)) {
6957 netdev_dbg(dev,
6958 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6959 features &= ~NETIF_F_UFO;
6960 }
6961 }
6962
6963 /* GSO partial features require GSO partial be set */
6964 if ((features & dev->gso_partial_features) &&
6965 !(features & NETIF_F_GSO_PARTIAL)) {
6966 netdev_dbg(dev,
6967 "Dropping partially supported GSO features since no GSO partial.\n");
6968 features &= ~dev->gso_partial_features;
6969 }
6970
6971 return features;
6972 }
6973
6974 int __netdev_update_features(struct net_device *dev)
6975 {
6976 struct net_device *upper, *lower;
6977 netdev_features_t features;
6978 struct list_head *iter;
6979 int err = -1;
6980
6981 ASSERT_RTNL();
6982
6983 features = netdev_get_wanted_features(dev);
6984
6985 if (dev->netdev_ops->ndo_fix_features)
6986 features = dev->netdev_ops->ndo_fix_features(dev, features);
6987
6988 /* driver might be less strict about feature dependencies */
6989 features = netdev_fix_features(dev, features);
6990
6991 /* some features can't be enabled if they're off an an upper device */
6992 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6993 features = netdev_sync_upper_features(dev, upper, features);
6994
6995 if (dev->features == features)
6996 goto sync_lower;
6997
6998 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6999 &dev->features, &features);
7000
7001 if (dev->netdev_ops->ndo_set_features)
7002 err = dev->netdev_ops->ndo_set_features(dev, features);
7003 else
7004 err = 0;
7005
7006 if (unlikely(err < 0)) {
7007 netdev_err(dev,
7008 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7009 err, &features, &dev->features);
7010 /* return non-0 since some features might have changed and
7011 * it's better to fire a spurious notification than miss it
7012 */
7013 return -1;
7014 }
7015
7016 sync_lower:
7017 /* some features must be disabled on lower devices when disabled
7018 * on an upper device (think: bonding master or bridge)
7019 */
7020 netdev_for_each_lower_dev(dev, lower, iter)
7021 netdev_sync_lower_features(dev, lower, features);
7022
7023 if (!err)
7024 dev->features = features;
7025
7026 return err < 0 ? 0 : 1;
7027 }
7028
7029 /**
7030 * netdev_update_features - recalculate device features
7031 * @dev: the device to check
7032 *
7033 * Recalculate dev->features set and send notifications if it
7034 * has changed. Should be called after driver or hardware dependent
7035 * conditions might have changed that influence the features.
7036 */
7037 void netdev_update_features(struct net_device *dev)
7038 {
7039 if (__netdev_update_features(dev))
7040 netdev_features_change(dev);
7041 }
7042 EXPORT_SYMBOL(netdev_update_features);
7043
7044 /**
7045 * netdev_change_features - recalculate device features
7046 * @dev: the device to check
7047 *
7048 * Recalculate dev->features set and send notifications even
7049 * if they have not changed. Should be called instead of
7050 * netdev_update_features() if also dev->vlan_features might
7051 * have changed to allow the changes to be propagated to stacked
7052 * VLAN devices.
7053 */
7054 void netdev_change_features(struct net_device *dev)
7055 {
7056 __netdev_update_features(dev);
7057 netdev_features_change(dev);
7058 }
7059 EXPORT_SYMBOL(netdev_change_features);
7060
7061 /**
7062 * netif_stacked_transfer_operstate - transfer operstate
7063 * @rootdev: the root or lower level device to transfer state from
7064 * @dev: the device to transfer operstate to
7065 *
7066 * Transfer operational state from root to device. This is normally
7067 * called when a stacking relationship exists between the root
7068 * device and the device(a leaf device).
7069 */
7070 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7071 struct net_device *dev)
7072 {
7073 if (rootdev->operstate == IF_OPER_DORMANT)
7074 netif_dormant_on(dev);
7075 else
7076 netif_dormant_off(dev);
7077
7078 if (netif_carrier_ok(rootdev)) {
7079 if (!netif_carrier_ok(dev))
7080 netif_carrier_on(dev);
7081 } else {
7082 if (netif_carrier_ok(dev))
7083 netif_carrier_off(dev);
7084 }
7085 }
7086 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7087
7088 #ifdef CONFIG_SYSFS
7089 static int netif_alloc_rx_queues(struct net_device *dev)
7090 {
7091 unsigned int i, count = dev->num_rx_queues;
7092 struct netdev_rx_queue *rx;
7093 size_t sz = count * sizeof(*rx);
7094
7095 BUG_ON(count < 1);
7096
7097 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7098 if (!rx) {
7099 rx = vzalloc(sz);
7100 if (!rx)
7101 return -ENOMEM;
7102 }
7103 dev->_rx = rx;
7104
7105 for (i = 0; i < count; i++)
7106 rx[i].dev = dev;
7107 return 0;
7108 }
7109 #endif
7110
7111 static void netdev_init_one_queue(struct net_device *dev,
7112 struct netdev_queue *queue, void *_unused)
7113 {
7114 /* Initialize queue lock */
7115 spin_lock_init(&queue->_xmit_lock);
7116 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7117 queue->xmit_lock_owner = -1;
7118 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7119 queue->dev = dev;
7120 #ifdef CONFIG_BQL
7121 dql_init(&queue->dql, HZ);
7122 #endif
7123 }
7124
7125 static void netif_free_tx_queues(struct net_device *dev)
7126 {
7127 kvfree(dev->_tx);
7128 }
7129
7130 static int netif_alloc_netdev_queues(struct net_device *dev)
7131 {
7132 unsigned int count = dev->num_tx_queues;
7133 struct netdev_queue *tx;
7134 size_t sz = count * sizeof(*tx);
7135
7136 if (count < 1 || count > 0xffff)
7137 return -EINVAL;
7138
7139 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7140 if (!tx) {
7141 tx = vzalloc(sz);
7142 if (!tx)
7143 return -ENOMEM;
7144 }
7145 dev->_tx = tx;
7146
7147 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7148 spin_lock_init(&dev->tx_global_lock);
7149
7150 return 0;
7151 }
7152
7153 void netif_tx_stop_all_queues(struct net_device *dev)
7154 {
7155 unsigned int i;
7156
7157 for (i = 0; i < dev->num_tx_queues; i++) {
7158 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7159
7160 netif_tx_stop_queue(txq);
7161 }
7162 }
7163 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7164
7165 /**
7166 * register_netdevice - register a network device
7167 * @dev: device to register
7168 *
7169 * Take a completed network device structure and add it to the kernel
7170 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7171 * chain. 0 is returned on success. A negative errno code is returned
7172 * on a failure to set up the device, or if the name is a duplicate.
7173 *
7174 * Callers must hold the rtnl semaphore. You may want
7175 * register_netdev() instead of this.
7176 *
7177 * BUGS:
7178 * The locking appears insufficient to guarantee two parallel registers
7179 * will not get the same name.
7180 */
7181
7182 int register_netdevice(struct net_device *dev)
7183 {
7184 int ret;
7185 struct net *net = dev_net(dev);
7186
7187 BUG_ON(dev_boot_phase);
7188 ASSERT_RTNL();
7189
7190 might_sleep();
7191
7192 /* When net_device's are persistent, this will be fatal. */
7193 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7194 BUG_ON(!net);
7195
7196 spin_lock_init(&dev->addr_list_lock);
7197 netdev_set_addr_lockdep_class(dev);
7198
7199 ret = dev_get_valid_name(net, dev, dev->name);
7200 if (ret < 0)
7201 goto out;
7202
7203 /* Init, if this function is available */
7204 if (dev->netdev_ops->ndo_init) {
7205 ret = dev->netdev_ops->ndo_init(dev);
7206 if (ret) {
7207 if (ret > 0)
7208 ret = -EIO;
7209 goto out;
7210 }
7211 }
7212
7213 if (((dev->hw_features | dev->features) &
7214 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7215 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7216 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7217 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7218 ret = -EINVAL;
7219 goto err_uninit;
7220 }
7221
7222 ret = -EBUSY;
7223 if (!dev->ifindex)
7224 dev->ifindex = dev_new_index(net);
7225 else if (__dev_get_by_index(net, dev->ifindex))
7226 goto err_uninit;
7227
7228 /* Transfer changeable features to wanted_features and enable
7229 * software offloads (GSO and GRO).
7230 */
7231 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7232 dev->features |= NETIF_F_SOFT_FEATURES;
7233 dev->wanted_features = dev->features & dev->hw_features;
7234
7235 if (!(dev->flags & IFF_LOOPBACK))
7236 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7237
7238 /* If IPv4 TCP segmentation offload is supported we should also
7239 * allow the device to enable segmenting the frame with the option
7240 * of ignoring a static IP ID value. This doesn't enable the
7241 * feature itself but allows the user to enable it later.
7242 */
7243 if (dev->hw_features & NETIF_F_TSO)
7244 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7245 if (dev->vlan_features & NETIF_F_TSO)
7246 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7247 if (dev->mpls_features & NETIF_F_TSO)
7248 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7249 if (dev->hw_enc_features & NETIF_F_TSO)
7250 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7251
7252 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7253 */
7254 dev->vlan_features |= NETIF_F_HIGHDMA;
7255
7256 /* Make NETIF_F_SG inheritable to tunnel devices.
7257 */
7258 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7259
7260 /* Make NETIF_F_SG inheritable to MPLS.
7261 */
7262 dev->mpls_features |= NETIF_F_SG;
7263
7264 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7265 ret = notifier_to_errno(ret);
7266 if (ret)
7267 goto err_uninit;
7268
7269 ret = netdev_register_kobject(dev);
7270 if (ret)
7271 goto err_uninit;
7272 dev->reg_state = NETREG_REGISTERED;
7273
7274 __netdev_update_features(dev);
7275
7276 /*
7277 * Default initial state at registry is that the
7278 * device is present.
7279 */
7280
7281 set_bit(__LINK_STATE_PRESENT, &dev->state);
7282
7283 linkwatch_init_dev(dev);
7284
7285 dev_init_scheduler(dev);
7286 dev_hold(dev);
7287 list_netdevice(dev);
7288 add_device_randomness(dev->dev_addr, dev->addr_len);
7289
7290 /* If the device has permanent device address, driver should
7291 * set dev_addr and also addr_assign_type should be set to
7292 * NET_ADDR_PERM (default value).
7293 */
7294 if (dev->addr_assign_type == NET_ADDR_PERM)
7295 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7296
7297 /* Notify protocols, that a new device appeared. */
7298 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7299 ret = notifier_to_errno(ret);
7300 if (ret) {
7301 rollback_registered(dev);
7302 dev->reg_state = NETREG_UNREGISTERED;
7303 }
7304 /*
7305 * Prevent userspace races by waiting until the network
7306 * device is fully setup before sending notifications.
7307 */
7308 if (!dev->rtnl_link_ops ||
7309 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7310 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7311
7312 out:
7313 return ret;
7314
7315 err_uninit:
7316 if (dev->netdev_ops->ndo_uninit)
7317 dev->netdev_ops->ndo_uninit(dev);
7318 goto out;
7319 }
7320 EXPORT_SYMBOL(register_netdevice);
7321
7322 /**
7323 * init_dummy_netdev - init a dummy network device for NAPI
7324 * @dev: device to init
7325 *
7326 * This takes a network device structure and initialize the minimum
7327 * amount of fields so it can be used to schedule NAPI polls without
7328 * registering a full blown interface. This is to be used by drivers
7329 * that need to tie several hardware interfaces to a single NAPI
7330 * poll scheduler due to HW limitations.
7331 */
7332 int init_dummy_netdev(struct net_device *dev)
7333 {
7334 /* Clear everything. Note we don't initialize spinlocks
7335 * are they aren't supposed to be taken by any of the
7336 * NAPI code and this dummy netdev is supposed to be
7337 * only ever used for NAPI polls
7338 */
7339 memset(dev, 0, sizeof(struct net_device));
7340
7341 /* make sure we BUG if trying to hit standard
7342 * register/unregister code path
7343 */
7344 dev->reg_state = NETREG_DUMMY;
7345
7346 /* NAPI wants this */
7347 INIT_LIST_HEAD(&dev->napi_list);
7348
7349 /* a dummy interface is started by default */
7350 set_bit(__LINK_STATE_PRESENT, &dev->state);
7351 set_bit(__LINK_STATE_START, &dev->state);
7352
7353 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7354 * because users of this 'device' dont need to change
7355 * its refcount.
7356 */
7357
7358 return 0;
7359 }
7360 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7361
7362
7363 /**
7364 * register_netdev - register a network device
7365 * @dev: device to register
7366 *
7367 * Take a completed network device structure and add it to the kernel
7368 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7369 * chain. 0 is returned on success. A negative errno code is returned
7370 * on a failure to set up the device, or if the name is a duplicate.
7371 *
7372 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7373 * and expands the device name if you passed a format string to
7374 * alloc_netdev.
7375 */
7376 int register_netdev(struct net_device *dev)
7377 {
7378 int err;
7379
7380 rtnl_lock();
7381 err = register_netdevice(dev);
7382 rtnl_unlock();
7383 return err;
7384 }
7385 EXPORT_SYMBOL(register_netdev);
7386
7387 int netdev_refcnt_read(const struct net_device *dev)
7388 {
7389 int i, refcnt = 0;
7390
7391 for_each_possible_cpu(i)
7392 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7393 return refcnt;
7394 }
7395 EXPORT_SYMBOL(netdev_refcnt_read);
7396
7397 /**
7398 * netdev_wait_allrefs - wait until all references are gone.
7399 * @dev: target net_device
7400 *
7401 * This is called when unregistering network devices.
7402 *
7403 * Any protocol or device that holds a reference should register
7404 * for netdevice notification, and cleanup and put back the
7405 * reference if they receive an UNREGISTER event.
7406 * We can get stuck here if buggy protocols don't correctly
7407 * call dev_put.
7408 */
7409 static void netdev_wait_allrefs(struct net_device *dev)
7410 {
7411 unsigned long rebroadcast_time, warning_time;
7412 int refcnt;
7413
7414 linkwatch_forget_dev(dev);
7415
7416 rebroadcast_time = warning_time = jiffies;
7417 refcnt = netdev_refcnt_read(dev);
7418
7419 while (refcnt != 0) {
7420 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7421 rtnl_lock();
7422
7423 /* Rebroadcast unregister notification */
7424 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7425
7426 __rtnl_unlock();
7427 rcu_barrier();
7428 rtnl_lock();
7429
7430 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7431 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7432 &dev->state)) {
7433 /* We must not have linkwatch events
7434 * pending on unregister. If this
7435 * happens, we simply run the queue
7436 * unscheduled, resulting in a noop
7437 * for this device.
7438 */
7439 linkwatch_run_queue();
7440 }
7441
7442 __rtnl_unlock();
7443
7444 rebroadcast_time = jiffies;
7445 }
7446
7447 msleep(250);
7448
7449 refcnt = netdev_refcnt_read(dev);
7450
7451 if (time_after(jiffies, warning_time + 10 * HZ)) {
7452 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7453 dev->name, refcnt);
7454 warning_time = jiffies;
7455 }
7456 }
7457 }
7458
7459 /* The sequence is:
7460 *
7461 * rtnl_lock();
7462 * ...
7463 * register_netdevice(x1);
7464 * register_netdevice(x2);
7465 * ...
7466 * unregister_netdevice(y1);
7467 * unregister_netdevice(y2);
7468 * ...
7469 * rtnl_unlock();
7470 * free_netdev(y1);
7471 * free_netdev(y2);
7472 *
7473 * We are invoked by rtnl_unlock().
7474 * This allows us to deal with problems:
7475 * 1) We can delete sysfs objects which invoke hotplug
7476 * without deadlocking with linkwatch via keventd.
7477 * 2) Since we run with the RTNL semaphore not held, we can sleep
7478 * safely in order to wait for the netdev refcnt to drop to zero.
7479 *
7480 * We must not return until all unregister events added during
7481 * the interval the lock was held have been completed.
7482 */
7483 void netdev_run_todo(void)
7484 {
7485 struct list_head list;
7486
7487 /* Snapshot list, allow later requests */
7488 list_replace_init(&net_todo_list, &list);
7489
7490 __rtnl_unlock();
7491
7492
7493 /* Wait for rcu callbacks to finish before next phase */
7494 if (!list_empty(&list))
7495 rcu_barrier();
7496
7497 while (!list_empty(&list)) {
7498 struct net_device *dev
7499 = list_first_entry(&list, struct net_device, todo_list);
7500 list_del(&dev->todo_list);
7501
7502 rtnl_lock();
7503 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7504 __rtnl_unlock();
7505
7506 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7507 pr_err("network todo '%s' but state %d\n",
7508 dev->name, dev->reg_state);
7509 dump_stack();
7510 continue;
7511 }
7512
7513 dev->reg_state = NETREG_UNREGISTERED;
7514
7515 netdev_wait_allrefs(dev);
7516
7517 /* paranoia */
7518 BUG_ON(netdev_refcnt_read(dev));
7519 BUG_ON(!list_empty(&dev->ptype_all));
7520 BUG_ON(!list_empty(&dev->ptype_specific));
7521 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7522 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7523 WARN_ON(dev->dn_ptr);
7524
7525 if (dev->destructor)
7526 dev->destructor(dev);
7527
7528 /* Report a network device has been unregistered */
7529 rtnl_lock();
7530 dev_net(dev)->dev_unreg_count--;
7531 __rtnl_unlock();
7532 wake_up(&netdev_unregistering_wq);
7533
7534 /* Free network device */
7535 kobject_put(&dev->dev.kobj);
7536 }
7537 }
7538
7539 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7540 * all the same fields in the same order as net_device_stats, with only
7541 * the type differing, but rtnl_link_stats64 may have additional fields
7542 * at the end for newer counters.
7543 */
7544 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7545 const struct net_device_stats *netdev_stats)
7546 {
7547 #if BITS_PER_LONG == 64
7548 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7549 memcpy(stats64, netdev_stats, sizeof(*stats64));
7550 /* zero out counters that only exist in rtnl_link_stats64 */
7551 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7552 sizeof(*stats64) - sizeof(*netdev_stats));
7553 #else
7554 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7555 const unsigned long *src = (const unsigned long *)netdev_stats;
7556 u64 *dst = (u64 *)stats64;
7557
7558 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7559 for (i = 0; i < n; i++)
7560 dst[i] = src[i];
7561 /* zero out counters that only exist in rtnl_link_stats64 */
7562 memset((char *)stats64 + n * sizeof(u64), 0,
7563 sizeof(*stats64) - n * sizeof(u64));
7564 #endif
7565 }
7566 EXPORT_SYMBOL(netdev_stats_to_stats64);
7567
7568 /**
7569 * dev_get_stats - get network device statistics
7570 * @dev: device to get statistics from
7571 * @storage: place to store stats
7572 *
7573 * Get network statistics from device. Return @storage.
7574 * The device driver may provide its own method by setting
7575 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7576 * otherwise the internal statistics structure is used.
7577 */
7578 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7579 struct rtnl_link_stats64 *storage)
7580 {
7581 const struct net_device_ops *ops = dev->netdev_ops;
7582
7583 if (ops->ndo_get_stats64) {
7584 memset(storage, 0, sizeof(*storage));
7585 ops->ndo_get_stats64(dev, storage);
7586 } else if (ops->ndo_get_stats) {
7587 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7588 } else {
7589 netdev_stats_to_stats64(storage, &dev->stats);
7590 }
7591 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7592 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7593 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7594 return storage;
7595 }
7596 EXPORT_SYMBOL(dev_get_stats);
7597
7598 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7599 {
7600 struct netdev_queue *queue = dev_ingress_queue(dev);
7601
7602 #ifdef CONFIG_NET_CLS_ACT
7603 if (queue)
7604 return queue;
7605 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7606 if (!queue)
7607 return NULL;
7608 netdev_init_one_queue(dev, queue, NULL);
7609 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7610 queue->qdisc_sleeping = &noop_qdisc;
7611 rcu_assign_pointer(dev->ingress_queue, queue);
7612 #endif
7613 return queue;
7614 }
7615
7616 static const struct ethtool_ops default_ethtool_ops;
7617
7618 void netdev_set_default_ethtool_ops(struct net_device *dev,
7619 const struct ethtool_ops *ops)
7620 {
7621 if (dev->ethtool_ops == &default_ethtool_ops)
7622 dev->ethtool_ops = ops;
7623 }
7624 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7625
7626 void netdev_freemem(struct net_device *dev)
7627 {
7628 char *addr = (char *)dev - dev->padded;
7629
7630 kvfree(addr);
7631 }
7632
7633 /**
7634 * alloc_netdev_mqs - allocate network device
7635 * @sizeof_priv: size of private data to allocate space for
7636 * @name: device name format string
7637 * @name_assign_type: origin of device name
7638 * @setup: callback to initialize device
7639 * @txqs: the number of TX subqueues to allocate
7640 * @rxqs: the number of RX subqueues to allocate
7641 *
7642 * Allocates a struct net_device with private data area for driver use
7643 * and performs basic initialization. Also allocates subqueue structs
7644 * for each queue on the device.
7645 */
7646 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7647 unsigned char name_assign_type,
7648 void (*setup)(struct net_device *),
7649 unsigned int txqs, unsigned int rxqs)
7650 {
7651 struct net_device *dev;
7652 size_t alloc_size;
7653 struct net_device *p;
7654
7655 BUG_ON(strlen(name) >= sizeof(dev->name));
7656
7657 if (txqs < 1) {
7658 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7659 return NULL;
7660 }
7661
7662 #ifdef CONFIG_SYSFS
7663 if (rxqs < 1) {
7664 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7665 return NULL;
7666 }
7667 #endif
7668
7669 alloc_size = sizeof(struct net_device);
7670 if (sizeof_priv) {
7671 /* ensure 32-byte alignment of private area */
7672 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7673 alloc_size += sizeof_priv;
7674 }
7675 /* ensure 32-byte alignment of whole construct */
7676 alloc_size += NETDEV_ALIGN - 1;
7677
7678 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7679 if (!p)
7680 p = vzalloc(alloc_size);
7681 if (!p)
7682 return NULL;
7683
7684 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7685 dev->padded = (char *)dev - (char *)p;
7686
7687 dev->pcpu_refcnt = alloc_percpu(int);
7688 if (!dev->pcpu_refcnt)
7689 goto free_dev;
7690
7691 if (dev_addr_init(dev))
7692 goto free_pcpu;
7693
7694 dev_mc_init(dev);
7695 dev_uc_init(dev);
7696
7697 dev_net_set(dev, &init_net);
7698
7699 dev->gso_max_size = GSO_MAX_SIZE;
7700 dev->gso_max_segs = GSO_MAX_SEGS;
7701
7702 INIT_LIST_HEAD(&dev->napi_list);
7703 INIT_LIST_HEAD(&dev->unreg_list);
7704 INIT_LIST_HEAD(&dev->close_list);
7705 INIT_LIST_HEAD(&dev->link_watch_list);
7706 INIT_LIST_HEAD(&dev->adj_list.upper);
7707 INIT_LIST_HEAD(&dev->adj_list.lower);
7708 INIT_LIST_HEAD(&dev->ptype_all);
7709 INIT_LIST_HEAD(&dev->ptype_specific);
7710 #ifdef CONFIG_NET_SCHED
7711 hash_init(dev->qdisc_hash);
7712 #endif
7713 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7714 setup(dev);
7715
7716 if (!dev->tx_queue_len) {
7717 dev->priv_flags |= IFF_NO_QUEUE;
7718 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7719 }
7720
7721 dev->num_tx_queues = txqs;
7722 dev->real_num_tx_queues = txqs;
7723 if (netif_alloc_netdev_queues(dev))
7724 goto free_all;
7725
7726 #ifdef CONFIG_SYSFS
7727 dev->num_rx_queues = rxqs;
7728 dev->real_num_rx_queues = rxqs;
7729 if (netif_alloc_rx_queues(dev))
7730 goto free_all;
7731 #endif
7732
7733 strcpy(dev->name, name);
7734 dev->name_assign_type = name_assign_type;
7735 dev->group = INIT_NETDEV_GROUP;
7736 if (!dev->ethtool_ops)
7737 dev->ethtool_ops = &default_ethtool_ops;
7738
7739 nf_hook_ingress_init(dev);
7740
7741 return dev;
7742
7743 free_all:
7744 free_netdev(dev);
7745 return NULL;
7746
7747 free_pcpu:
7748 free_percpu(dev->pcpu_refcnt);
7749 free_dev:
7750 netdev_freemem(dev);
7751 return NULL;
7752 }
7753 EXPORT_SYMBOL(alloc_netdev_mqs);
7754
7755 /**
7756 * free_netdev - free network device
7757 * @dev: device
7758 *
7759 * This function does the last stage of destroying an allocated device
7760 * interface. The reference to the device object is released. If this
7761 * is the last reference then it will be freed.Must be called in process
7762 * context.
7763 */
7764 void free_netdev(struct net_device *dev)
7765 {
7766 struct napi_struct *p, *n;
7767
7768 might_sleep();
7769 netif_free_tx_queues(dev);
7770 #ifdef CONFIG_SYSFS
7771 kvfree(dev->_rx);
7772 #endif
7773
7774 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7775
7776 /* Flush device addresses */
7777 dev_addr_flush(dev);
7778
7779 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7780 netif_napi_del(p);
7781
7782 free_percpu(dev->pcpu_refcnt);
7783 dev->pcpu_refcnt = NULL;
7784
7785 /* Compatibility with error handling in drivers */
7786 if (dev->reg_state == NETREG_UNINITIALIZED) {
7787 netdev_freemem(dev);
7788 return;
7789 }
7790
7791 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7792 dev->reg_state = NETREG_RELEASED;
7793
7794 /* will free via device release */
7795 put_device(&dev->dev);
7796 }
7797 EXPORT_SYMBOL(free_netdev);
7798
7799 /**
7800 * synchronize_net - Synchronize with packet receive processing
7801 *
7802 * Wait for packets currently being received to be done.
7803 * Does not block later packets from starting.
7804 */
7805 void synchronize_net(void)
7806 {
7807 might_sleep();
7808 if (rtnl_is_locked())
7809 synchronize_rcu_expedited();
7810 else
7811 synchronize_rcu();
7812 }
7813 EXPORT_SYMBOL(synchronize_net);
7814
7815 /**
7816 * unregister_netdevice_queue - remove device from the kernel
7817 * @dev: device
7818 * @head: list
7819 *
7820 * This function shuts down a device interface and removes it
7821 * from the kernel tables.
7822 * If head not NULL, device is queued to be unregistered later.
7823 *
7824 * Callers must hold the rtnl semaphore. You may want
7825 * unregister_netdev() instead of this.
7826 */
7827
7828 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7829 {
7830 ASSERT_RTNL();
7831
7832 if (head) {
7833 list_move_tail(&dev->unreg_list, head);
7834 } else {
7835 rollback_registered(dev);
7836 /* Finish processing unregister after unlock */
7837 net_set_todo(dev);
7838 }
7839 }
7840 EXPORT_SYMBOL(unregister_netdevice_queue);
7841
7842 /**
7843 * unregister_netdevice_many - unregister many devices
7844 * @head: list of devices
7845 *
7846 * Note: As most callers use a stack allocated list_head,
7847 * we force a list_del() to make sure stack wont be corrupted later.
7848 */
7849 void unregister_netdevice_many(struct list_head *head)
7850 {
7851 struct net_device *dev;
7852
7853 if (!list_empty(head)) {
7854 rollback_registered_many(head);
7855 list_for_each_entry(dev, head, unreg_list)
7856 net_set_todo(dev);
7857 list_del(head);
7858 }
7859 }
7860 EXPORT_SYMBOL(unregister_netdevice_many);
7861
7862 /**
7863 * unregister_netdev - remove device from the kernel
7864 * @dev: device
7865 *
7866 * This function shuts down a device interface and removes it
7867 * from the kernel tables.
7868 *
7869 * This is just a wrapper for unregister_netdevice that takes
7870 * the rtnl semaphore. In general you want to use this and not
7871 * unregister_netdevice.
7872 */
7873 void unregister_netdev(struct net_device *dev)
7874 {
7875 rtnl_lock();
7876 unregister_netdevice(dev);
7877 rtnl_unlock();
7878 }
7879 EXPORT_SYMBOL(unregister_netdev);
7880
7881 /**
7882 * dev_change_net_namespace - move device to different nethost namespace
7883 * @dev: device
7884 * @net: network namespace
7885 * @pat: If not NULL name pattern to try if the current device name
7886 * is already taken in the destination network namespace.
7887 *
7888 * This function shuts down a device interface and moves it
7889 * to a new network namespace. On success 0 is returned, on
7890 * a failure a netagive errno code is returned.
7891 *
7892 * Callers must hold the rtnl semaphore.
7893 */
7894
7895 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7896 {
7897 int err;
7898
7899 ASSERT_RTNL();
7900
7901 /* Don't allow namespace local devices to be moved. */
7902 err = -EINVAL;
7903 if (dev->features & NETIF_F_NETNS_LOCAL)
7904 goto out;
7905
7906 /* Ensure the device has been registrered */
7907 if (dev->reg_state != NETREG_REGISTERED)
7908 goto out;
7909
7910 /* Get out if there is nothing todo */
7911 err = 0;
7912 if (net_eq(dev_net(dev), net))
7913 goto out;
7914
7915 /* Pick the destination device name, and ensure
7916 * we can use it in the destination network namespace.
7917 */
7918 err = -EEXIST;
7919 if (__dev_get_by_name(net, dev->name)) {
7920 /* We get here if we can't use the current device name */
7921 if (!pat)
7922 goto out;
7923 if (dev_get_valid_name(net, dev, pat) < 0)
7924 goto out;
7925 }
7926
7927 /*
7928 * And now a mini version of register_netdevice unregister_netdevice.
7929 */
7930
7931 /* If device is running close it first. */
7932 dev_close(dev);
7933
7934 /* And unlink it from device chain */
7935 err = -ENODEV;
7936 unlist_netdevice(dev);
7937
7938 synchronize_net();
7939
7940 /* Shutdown queueing discipline. */
7941 dev_shutdown(dev);
7942
7943 /* Notify protocols, that we are about to destroy
7944 * this device. They should clean all the things.
7945 *
7946 * Note that dev->reg_state stays at NETREG_REGISTERED.
7947 * This is wanted because this way 8021q and macvlan know
7948 * the device is just moving and can keep their slaves up.
7949 */
7950 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7951 rcu_barrier();
7952 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7953 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7954
7955 /*
7956 * Flush the unicast and multicast chains
7957 */
7958 dev_uc_flush(dev);
7959 dev_mc_flush(dev);
7960
7961 /* Send a netdev-removed uevent to the old namespace */
7962 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7963 netdev_adjacent_del_links(dev);
7964
7965 /* Actually switch the network namespace */
7966 dev_net_set(dev, net);
7967
7968 /* If there is an ifindex conflict assign a new one */
7969 if (__dev_get_by_index(net, dev->ifindex))
7970 dev->ifindex = dev_new_index(net);
7971
7972 /* Send a netdev-add uevent to the new namespace */
7973 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7974 netdev_adjacent_add_links(dev);
7975
7976 /* Fixup kobjects */
7977 err = device_rename(&dev->dev, dev->name);
7978 WARN_ON(err);
7979
7980 /* Add the device back in the hashes */
7981 list_netdevice(dev);
7982
7983 /* Notify protocols, that a new device appeared. */
7984 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7985
7986 /*
7987 * Prevent userspace races by waiting until the network
7988 * device is fully setup before sending notifications.
7989 */
7990 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7991
7992 synchronize_net();
7993 err = 0;
7994 out:
7995 return err;
7996 }
7997 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7998
7999 static int dev_cpu_dead(unsigned int oldcpu)
8000 {
8001 struct sk_buff **list_skb;
8002 struct sk_buff *skb;
8003 unsigned int cpu;
8004 struct softnet_data *sd, *oldsd;
8005
8006 local_irq_disable();
8007 cpu = smp_processor_id();
8008 sd = &per_cpu(softnet_data, cpu);
8009 oldsd = &per_cpu(softnet_data, oldcpu);
8010
8011 /* Find end of our completion_queue. */
8012 list_skb = &sd->completion_queue;
8013 while (*list_skb)
8014 list_skb = &(*list_skb)->next;
8015 /* Append completion queue from offline CPU. */
8016 *list_skb = oldsd->completion_queue;
8017 oldsd->completion_queue = NULL;
8018
8019 /* Append output queue from offline CPU. */
8020 if (oldsd->output_queue) {
8021 *sd->output_queue_tailp = oldsd->output_queue;
8022 sd->output_queue_tailp = oldsd->output_queue_tailp;
8023 oldsd->output_queue = NULL;
8024 oldsd->output_queue_tailp = &oldsd->output_queue;
8025 }
8026 /* Append NAPI poll list from offline CPU, with one exception :
8027 * process_backlog() must be called by cpu owning percpu backlog.
8028 * We properly handle process_queue & input_pkt_queue later.
8029 */
8030 while (!list_empty(&oldsd->poll_list)) {
8031 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8032 struct napi_struct,
8033 poll_list);
8034
8035 list_del_init(&napi->poll_list);
8036 if (napi->poll == process_backlog)
8037 napi->state = 0;
8038 else
8039 ____napi_schedule(sd, napi);
8040 }
8041
8042 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8043 local_irq_enable();
8044
8045 /* Process offline CPU's input_pkt_queue */
8046 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8047 netif_rx_ni(skb);
8048 input_queue_head_incr(oldsd);
8049 }
8050 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8051 netif_rx_ni(skb);
8052 input_queue_head_incr(oldsd);
8053 }
8054
8055 return 0;
8056 }
8057
8058 /**
8059 * netdev_increment_features - increment feature set by one
8060 * @all: current feature set
8061 * @one: new feature set
8062 * @mask: mask feature set
8063 *
8064 * Computes a new feature set after adding a device with feature set
8065 * @one to the master device with current feature set @all. Will not
8066 * enable anything that is off in @mask. Returns the new feature set.
8067 */
8068 netdev_features_t netdev_increment_features(netdev_features_t all,
8069 netdev_features_t one, netdev_features_t mask)
8070 {
8071 if (mask & NETIF_F_HW_CSUM)
8072 mask |= NETIF_F_CSUM_MASK;
8073 mask |= NETIF_F_VLAN_CHALLENGED;
8074
8075 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8076 all &= one | ~NETIF_F_ALL_FOR_ALL;
8077
8078 /* If one device supports hw checksumming, set for all. */
8079 if (all & NETIF_F_HW_CSUM)
8080 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8081
8082 return all;
8083 }
8084 EXPORT_SYMBOL(netdev_increment_features);
8085
8086 static struct hlist_head * __net_init netdev_create_hash(void)
8087 {
8088 int i;
8089 struct hlist_head *hash;
8090
8091 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8092 if (hash != NULL)
8093 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8094 INIT_HLIST_HEAD(&hash[i]);
8095
8096 return hash;
8097 }
8098
8099 /* Initialize per network namespace state */
8100 static int __net_init netdev_init(struct net *net)
8101 {
8102 if (net != &init_net)
8103 INIT_LIST_HEAD(&net->dev_base_head);
8104
8105 net->dev_name_head = netdev_create_hash();
8106 if (net->dev_name_head == NULL)
8107 goto err_name;
8108
8109 net->dev_index_head = netdev_create_hash();
8110 if (net->dev_index_head == NULL)
8111 goto err_idx;
8112
8113 return 0;
8114
8115 err_idx:
8116 kfree(net->dev_name_head);
8117 err_name:
8118 return -ENOMEM;
8119 }
8120
8121 /**
8122 * netdev_drivername - network driver for the device
8123 * @dev: network device
8124 *
8125 * Determine network driver for device.
8126 */
8127 const char *netdev_drivername(const struct net_device *dev)
8128 {
8129 const struct device_driver *driver;
8130 const struct device *parent;
8131 const char *empty = "";
8132
8133 parent = dev->dev.parent;
8134 if (!parent)
8135 return empty;
8136
8137 driver = parent->driver;
8138 if (driver && driver->name)
8139 return driver->name;
8140 return empty;
8141 }
8142
8143 static void __netdev_printk(const char *level, const struct net_device *dev,
8144 struct va_format *vaf)
8145 {
8146 if (dev && dev->dev.parent) {
8147 dev_printk_emit(level[1] - '0',
8148 dev->dev.parent,
8149 "%s %s %s%s: %pV",
8150 dev_driver_string(dev->dev.parent),
8151 dev_name(dev->dev.parent),
8152 netdev_name(dev), netdev_reg_state(dev),
8153 vaf);
8154 } else if (dev) {
8155 printk("%s%s%s: %pV",
8156 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8157 } else {
8158 printk("%s(NULL net_device): %pV", level, vaf);
8159 }
8160 }
8161
8162 void netdev_printk(const char *level, const struct net_device *dev,
8163 const char *format, ...)
8164 {
8165 struct va_format vaf;
8166 va_list args;
8167
8168 va_start(args, format);
8169
8170 vaf.fmt = format;
8171 vaf.va = &args;
8172
8173 __netdev_printk(level, dev, &vaf);
8174
8175 va_end(args);
8176 }
8177 EXPORT_SYMBOL(netdev_printk);
8178
8179 #define define_netdev_printk_level(func, level) \
8180 void func(const struct net_device *dev, const char *fmt, ...) \
8181 { \
8182 struct va_format vaf; \
8183 va_list args; \
8184 \
8185 va_start(args, fmt); \
8186 \
8187 vaf.fmt = fmt; \
8188 vaf.va = &args; \
8189 \
8190 __netdev_printk(level, dev, &vaf); \
8191 \
8192 va_end(args); \
8193 } \
8194 EXPORT_SYMBOL(func);
8195
8196 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8197 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8198 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8199 define_netdev_printk_level(netdev_err, KERN_ERR);
8200 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8201 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8202 define_netdev_printk_level(netdev_info, KERN_INFO);
8203
8204 static void __net_exit netdev_exit(struct net *net)
8205 {
8206 kfree(net->dev_name_head);
8207 kfree(net->dev_index_head);
8208 }
8209
8210 static struct pernet_operations __net_initdata netdev_net_ops = {
8211 .init = netdev_init,
8212 .exit = netdev_exit,
8213 };
8214
8215 static void __net_exit default_device_exit(struct net *net)
8216 {
8217 struct net_device *dev, *aux;
8218 /*
8219 * Push all migratable network devices back to the
8220 * initial network namespace
8221 */
8222 rtnl_lock();
8223 for_each_netdev_safe(net, dev, aux) {
8224 int err;
8225 char fb_name[IFNAMSIZ];
8226
8227 /* Ignore unmoveable devices (i.e. loopback) */
8228 if (dev->features & NETIF_F_NETNS_LOCAL)
8229 continue;
8230
8231 /* Leave virtual devices for the generic cleanup */
8232 if (dev->rtnl_link_ops)
8233 continue;
8234
8235 /* Push remaining network devices to init_net */
8236 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8237 err = dev_change_net_namespace(dev, &init_net, fb_name);
8238 if (err) {
8239 pr_emerg("%s: failed to move %s to init_net: %d\n",
8240 __func__, dev->name, err);
8241 BUG();
8242 }
8243 }
8244 rtnl_unlock();
8245 }
8246
8247 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8248 {
8249 /* Return with the rtnl_lock held when there are no network
8250 * devices unregistering in any network namespace in net_list.
8251 */
8252 struct net *net;
8253 bool unregistering;
8254 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8255
8256 add_wait_queue(&netdev_unregistering_wq, &wait);
8257 for (;;) {
8258 unregistering = false;
8259 rtnl_lock();
8260 list_for_each_entry(net, net_list, exit_list) {
8261 if (net->dev_unreg_count > 0) {
8262 unregistering = true;
8263 break;
8264 }
8265 }
8266 if (!unregistering)
8267 break;
8268 __rtnl_unlock();
8269
8270 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8271 }
8272 remove_wait_queue(&netdev_unregistering_wq, &wait);
8273 }
8274
8275 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8276 {
8277 /* At exit all network devices most be removed from a network
8278 * namespace. Do this in the reverse order of registration.
8279 * Do this across as many network namespaces as possible to
8280 * improve batching efficiency.
8281 */
8282 struct net_device *dev;
8283 struct net *net;
8284 LIST_HEAD(dev_kill_list);
8285
8286 /* To prevent network device cleanup code from dereferencing
8287 * loopback devices or network devices that have been freed
8288 * wait here for all pending unregistrations to complete,
8289 * before unregistring the loopback device and allowing the
8290 * network namespace be freed.
8291 *
8292 * The netdev todo list containing all network devices
8293 * unregistrations that happen in default_device_exit_batch
8294 * will run in the rtnl_unlock() at the end of
8295 * default_device_exit_batch.
8296 */
8297 rtnl_lock_unregistering(net_list);
8298 list_for_each_entry(net, net_list, exit_list) {
8299 for_each_netdev_reverse(net, dev) {
8300 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8301 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8302 else
8303 unregister_netdevice_queue(dev, &dev_kill_list);
8304 }
8305 }
8306 unregister_netdevice_many(&dev_kill_list);
8307 rtnl_unlock();
8308 }
8309
8310 static struct pernet_operations __net_initdata default_device_ops = {
8311 .exit = default_device_exit,
8312 .exit_batch = default_device_exit_batch,
8313 };
8314
8315 /*
8316 * Initialize the DEV module. At boot time this walks the device list and
8317 * unhooks any devices that fail to initialise (normally hardware not
8318 * present) and leaves us with a valid list of present and active devices.
8319 *
8320 */
8321
8322 /*
8323 * This is called single threaded during boot, so no need
8324 * to take the rtnl semaphore.
8325 */
8326 static int __init net_dev_init(void)
8327 {
8328 int i, rc = -ENOMEM;
8329
8330 BUG_ON(!dev_boot_phase);
8331
8332 if (dev_proc_init())
8333 goto out;
8334
8335 if (netdev_kobject_init())
8336 goto out;
8337
8338 INIT_LIST_HEAD(&ptype_all);
8339 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8340 INIT_LIST_HEAD(&ptype_base[i]);
8341
8342 INIT_LIST_HEAD(&offload_base);
8343
8344 if (register_pernet_subsys(&netdev_net_ops))
8345 goto out;
8346
8347 /*
8348 * Initialise the packet receive queues.
8349 */
8350
8351 for_each_possible_cpu(i) {
8352 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8353 struct softnet_data *sd = &per_cpu(softnet_data, i);
8354
8355 INIT_WORK(flush, flush_backlog);
8356
8357 skb_queue_head_init(&sd->input_pkt_queue);
8358 skb_queue_head_init(&sd->process_queue);
8359 INIT_LIST_HEAD(&sd->poll_list);
8360 sd->output_queue_tailp = &sd->output_queue;
8361 #ifdef CONFIG_RPS
8362 sd->csd.func = rps_trigger_softirq;
8363 sd->csd.info = sd;
8364 sd->cpu = i;
8365 #endif
8366
8367 sd->backlog.poll = process_backlog;
8368 sd->backlog.weight = weight_p;
8369 }
8370
8371 dev_boot_phase = 0;
8372
8373 /* The loopback device is special if any other network devices
8374 * is present in a network namespace the loopback device must
8375 * be present. Since we now dynamically allocate and free the
8376 * loopback device ensure this invariant is maintained by
8377 * keeping the loopback device as the first device on the
8378 * list of network devices. Ensuring the loopback devices
8379 * is the first device that appears and the last network device
8380 * that disappears.
8381 */
8382 if (register_pernet_device(&loopback_net_ops))
8383 goto out;
8384
8385 if (register_pernet_device(&default_device_ops))
8386 goto out;
8387
8388 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8389 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8390
8391 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8392 NULL, dev_cpu_dead);
8393 WARN_ON(rc < 0);
8394 dst_subsys_init();
8395 rc = 0;
8396 out:
8397 return rc;
8398 }
8399
8400 subsys_initcall(net_dev_init);