]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/dev.c
ipv6: drop useless rcu_read_lock() in anycast
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135 #include <linux/errqueue.h>
136
137 #include "net-sysfs.h"
138
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144
145 static DEFINE_SPINLOCK(ptype_lock);
146 static DEFINE_SPINLOCK(offload_lock);
147 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
148 struct list_head ptype_all __read_mostly; /* Taps */
149 static struct list_head offload_base __read_mostly;
150
151 static int netif_rx_internal(struct sk_buff *skb);
152 static int call_netdevice_notifiers_info(unsigned long val,
153 struct net_device *dev,
154 struct netdev_notifier_info *info);
155
156 /*
157 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
158 * semaphore.
159 *
160 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
161 *
162 * Writers must hold the rtnl semaphore while they loop through the
163 * dev_base_head list, and hold dev_base_lock for writing when they do the
164 * actual updates. This allows pure readers to access the list even
165 * while a writer is preparing to update it.
166 *
167 * To put it another way, dev_base_lock is held for writing only to
168 * protect against pure readers; the rtnl semaphore provides the
169 * protection against other writers.
170 *
171 * See, for example usages, register_netdevice() and
172 * unregister_netdevice(), which must be called with the rtnl
173 * semaphore held.
174 */
175 DEFINE_RWLOCK(dev_base_lock);
176 EXPORT_SYMBOL(dev_base_lock);
177
178 /* protects napi_hash addition/deletion and napi_gen_id */
179 static DEFINE_SPINLOCK(napi_hash_lock);
180
181 static unsigned int napi_gen_id;
182 static DEFINE_HASHTABLE(napi_hash, 8);
183
184 static seqcount_t devnet_rename_seq;
185
186 static inline void dev_base_seq_inc(struct net *net)
187 {
188 while (++net->dev_base_seq == 0);
189 }
190
191 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
192 {
193 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
194
195 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
196 }
197
198 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
199 {
200 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
201 }
202
203 static inline void rps_lock(struct softnet_data *sd)
204 {
205 #ifdef CONFIG_RPS
206 spin_lock(&sd->input_pkt_queue.lock);
207 #endif
208 }
209
210 static inline void rps_unlock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213 spin_unlock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 /* Device list insertion */
218 static void list_netdevice(struct net_device *dev)
219 {
220 struct net *net = dev_net(dev);
221
222 ASSERT_RTNL();
223
224 write_lock_bh(&dev_base_lock);
225 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
226 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
227 hlist_add_head_rcu(&dev->index_hlist,
228 dev_index_hash(net, dev->ifindex));
229 write_unlock_bh(&dev_base_lock);
230
231 dev_base_seq_inc(net);
232 }
233
234 /* Device list removal
235 * caller must respect a RCU grace period before freeing/reusing dev
236 */
237 static void unlist_netdevice(struct net_device *dev)
238 {
239 ASSERT_RTNL();
240
241 /* Unlink dev from the device chain */
242 write_lock_bh(&dev_base_lock);
243 list_del_rcu(&dev->dev_list);
244 hlist_del_rcu(&dev->name_hlist);
245 hlist_del_rcu(&dev->index_hlist);
246 write_unlock_bh(&dev_base_lock);
247
248 dev_base_seq_inc(dev_net(dev));
249 }
250
251 /*
252 * Our notifier list
253 */
254
255 static RAW_NOTIFIER_HEAD(netdev_chain);
256
257 /*
258 * Device drivers call our routines to queue packets here. We empty the
259 * queue in the local softnet handler.
260 */
261
262 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
263 EXPORT_PER_CPU_SYMBOL(softnet_data);
264
265 #ifdef CONFIG_LOCKDEP
266 /*
267 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
268 * according to dev->type
269 */
270 static const unsigned short netdev_lock_type[] =
271 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
283 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
284 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
285 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
286
287 static const char *const netdev_lock_name[] =
288 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
300 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
301 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
302 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
303
304 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
305 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
306
307 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
308 {
309 int i;
310
311 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312 if (netdev_lock_type[i] == dev_type)
313 return i;
314 /* the last key is used by default */
315 return ARRAY_SIZE(netdev_lock_type) - 1;
316 }
317
318 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319 unsigned short dev_type)
320 {
321 int i;
322
323 i = netdev_lock_pos(dev_type);
324 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325 netdev_lock_name[i]);
326 }
327
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 int i;
331
332 i = netdev_lock_pos(dev->type);
333 lockdep_set_class_and_name(&dev->addr_list_lock,
334 &netdev_addr_lock_key[i],
335 netdev_lock_name[i]);
336 }
337 #else
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340 {
341 }
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 }
345 #endif
346
347 /*******************************************************************************
348
349 Protocol management and registration routines
350
351 *******************************************************************************/
352
353 /*
354 * Add a protocol ID to the list. Now that the input handler is
355 * smarter we can dispense with all the messy stuff that used to be
356 * here.
357 *
358 * BEWARE!!! Protocol handlers, mangling input packets,
359 * MUST BE last in hash buckets and checking protocol handlers
360 * MUST start from promiscuous ptype_all chain in net_bh.
361 * It is true now, do not change it.
362 * Explanation follows: if protocol handler, mangling packet, will
363 * be the first on list, it is not able to sense, that packet
364 * is cloned and should be copied-on-write, so that it will
365 * change it and subsequent readers will get broken packet.
366 * --ANK (980803)
367 */
368
369 static inline struct list_head *ptype_head(const struct packet_type *pt)
370 {
371 if (pt->type == htons(ETH_P_ALL))
372 return &ptype_all;
373 else
374 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
375 }
376
377 /**
378 * dev_add_pack - add packet handler
379 * @pt: packet type declaration
380 *
381 * Add a protocol handler to the networking stack. The passed &packet_type
382 * is linked into kernel lists and may not be freed until it has been
383 * removed from the kernel lists.
384 *
385 * This call does not sleep therefore it can not
386 * guarantee all CPU's that are in middle of receiving packets
387 * will see the new packet type (until the next received packet).
388 */
389
390 void dev_add_pack(struct packet_type *pt)
391 {
392 struct list_head *head = ptype_head(pt);
393
394 spin_lock(&ptype_lock);
395 list_add_rcu(&pt->list, head);
396 spin_unlock(&ptype_lock);
397 }
398 EXPORT_SYMBOL(dev_add_pack);
399
400 /**
401 * __dev_remove_pack - remove packet handler
402 * @pt: packet type declaration
403 *
404 * Remove a protocol handler that was previously added to the kernel
405 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
406 * from the kernel lists and can be freed or reused once this function
407 * returns.
408 *
409 * The packet type might still be in use by receivers
410 * and must not be freed until after all the CPU's have gone
411 * through a quiescent state.
412 */
413 void __dev_remove_pack(struct packet_type *pt)
414 {
415 struct list_head *head = ptype_head(pt);
416 struct packet_type *pt1;
417
418 spin_lock(&ptype_lock);
419
420 list_for_each_entry(pt1, head, list) {
421 if (pt == pt1) {
422 list_del_rcu(&pt->list);
423 goto out;
424 }
425 }
426
427 pr_warn("dev_remove_pack: %p not found\n", pt);
428 out:
429 spin_unlock(&ptype_lock);
430 }
431 EXPORT_SYMBOL(__dev_remove_pack);
432
433 /**
434 * dev_remove_pack - remove packet handler
435 * @pt: packet type declaration
436 *
437 * Remove a protocol handler that was previously added to the kernel
438 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
439 * from the kernel lists and can be freed or reused once this function
440 * returns.
441 *
442 * This call sleeps to guarantee that no CPU is looking at the packet
443 * type after return.
444 */
445 void dev_remove_pack(struct packet_type *pt)
446 {
447 __dev_remove_pack(pt);
448
449 synchronize_net();
450 }
451 EXPORT_SYMBOL(dev_remove_pack);
452
453
454 /**
455 * dev_add_offload - register offload handlers
456 * @po: protocol offload declaration
457 *
458 * Add protocol offload handlers to the networking stack. The passed
459 * &proto_offload is linked into kernel lists and may not be freed until
460 * it has been removed from the kernel lists.
461 *
462 * This call does not sleep therefore it can not
463 * guarantee all CPU's that are in middle of receiving packets
464 * will see the new offload handlers (until the next received packet).
465 */
466 void dev_add_offload(struct packet_offload *po)
467 {
468 struct list_head *head = &offload_base;
469
470 spin_lock(&offload_lock);
471 list_add_rcu(&po->list, head);
472 spin_unlock(&offload_lock);
473 }
474 EXPORT_SYMBOL(dev_add_offload);
475
476 /**
477 * __dev_remove_offload - remove offload handler
478 * @po: packet offload declaration
479 *
480 * Remove a protocol offload handler that was previously added to the
481 * kernel offload handlers by dev_add_offload(). The passed &offload_type
482 * is removed from the kernel lists and can be freed or reused once this
483 * function returns.
484 *
485 * The packet type might still be in use by receivers
486 * and must not be freed until after all the CPU's have gone
487 * through a quiescent state.
488 */
489 static void __dev_remove_offload(struct packet_offload *po)
490 {
491 struct list_head *head = &offload_base;
492 struct packet_offload *po1;
493
494 spin_lock(&offload_lock);
495
496 list_for_each_entry(po1, head, list) {
497 if (po == po1) {
498 list_del_rcu(&po->list);
499 goto out;
500 }
501 }
502
503 pr_warn("dev_remove_offload: %p not found\n", po);
504 out:
505 spin_unlock(&offload_lock);
506 }
507
508 /**
509 * dev_remove_offload - remove packet offload handler
510 * @po: packet offload declaration
511 *
512 * Remove a packet offload handler that was previously added to the kernel
513 * offload handlers by dev_add_offload(). The passed &offload_type is
514 * removed from the kernel lists and can be freed or reused once this
515 * function returns.
516 *
517 * This call sleeps to guarantee that no CPU is looking at the packet
518 * type after return.
519 */
520 void dev_remove_offload(struct packet_offload *po)
521 {
522 __dev_remove_offload(po);
523
524 synchronize_net();
525 }
526 EXPORT_SYMBOL(dev_remove_offload);
527
528 /******************************************************************************
529
530 Device Boot-time Settings Routines
531
532 *******************************************************************************/
533
534 /* Boot time configuration table */
535 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
536
537 /**
538 * netdev_boot_setup_add - add new setup entry
539 * @name: name of the device
540 * @map: configured settings for the device
541 *
542 * Adds new setup entry to the dev_boot_setup list. The function
543 * returns 0 on error and 1 on success. This is a generic routine to
544 * all netdevices.
545 */
546 static int netdev_boot_setup_add(char *name, struct ifmap *map)
547 {
548 struct netdev_boot_setup *s;
549 int i;
550
551 s = dev_boot_setup;
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
553 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
554 memset(s[i].name, 0, sizeof(s[i].name));
555 strlcpy(s[i].name, name, IFNAMSIZ);
556 memcpy(&s[i].map, map, sizeof(s[i].map));
557 break;
558 }
559 }
560
561 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
562 }
563
564 /**
565 * netdev_boot_setup_check - check boot time settings
566 * @dev: the netdevice
567 *
568 * Check boot time settings for the device.
569 * The found settings are set for the device to be used
570 * later in the device probing.
571 * Returns 0 if no settings found, 1 if they are.
572 */
573 int netdev_boot_setup_check(struct net_device *dev)
574 {
575 struct netdev_boot_setup *s = dev_boot_setup;
576 int i;
577
578 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
579 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
580 !strcmp(dev->name, s[i].name)) {
581 dev->irq = s[i].map.irq;
582 dev->base_addr = s[i].map.base_addr;
583 dev->mem_start = s[i].map.mem_start;
584 dev->mem_end = s[i].map.mem_end;
585 return 1;
586 }
587 }
588 return 0;
589 }
590 EXPORT_SYMBOL(netdev_boot_setup_check);
591
592
593 /**
594 * netdev_boot_base - get address from boot time settings
595 * @prefix: prefix for network device
596 * @unit: id for network device
597 *
598 * Check boot time settings for the base address of device.
599 * The found settings are set for the device to be used
600 * later in the device probing.
601 * Returns 0 if no settings found.
602 */
603 unsigned long netdev_boot_base(const char *prefix, int unit)
604 {
605 const struct netdev_boot_setup *s = dev_boot_setup;
606 char name[IFNAMSIZ];
607 int i;
608
609 sprintf(name, "%s%d", prefix, unit);
610
611 /*
612 * If device already registered then return base of 1
613 * to indicate not to probe for this interface
614 */
615 if (__dev_get_by_name(&init_net, name))
616 return 1;
617
618 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
619 if (!strcmp(name, s[i].name))
620 return s[i].map.base_addr;
621 return 0;
622 }
623
624 /*
625 * Saves at boot time configured settings for any netdevice.
626 */
627 int __init netdev_boot_setup(char *str)
628 {
629 int ints[5];
630 struct ifmap map;
631
632 str = get_options(str, ARRAY_SIZE(ints), ints);
633 if (!str || !*str)
634 return 0;
635
636 /* Save settings */
637 memset(&map, 0, sizeof(map));
638 if (ints[0] > 0)
639 map.irq = ints[1];
640 if (ints[0] > 1)
641 map.base_addr = ints[2];
642 if (ints[0] > 2)
643 map.mem_start = ints[3];
644 if (ints[0] > 3)
645 map.mem_end = ints[4];
646
647 /* Add new entry to the list */
648 return netdev_boot_setup_add(str, &map);
649 }
650
651 __setup("netdev=", netdev_boot_setup);
652
653 /*******************************************************************************
654
655 Device Interface Subroutines
656
657 *******************************************************************************/
658
659 /**
660 * __dev_get_by_name - find a device by its name
661 * @net: the applicable net namespace
662 * @name: name to find
663 *
664 * Find an interface by name. Must be called under RTNL semaphore
665 * or @dev_base_lock. If the name is found a pointer to the device
666 * is returned. If the name is not found then %NULL is returned. The
667 * reference counters are not incremented so the caller must be
668 * careful with locks.
669 */
670
671 struct net_device *__dev_get_by_name(struct net *net, const char *name)
672 {
673 struct net_device *dev;
674 struct hlist_head *head = dev_name_hash(net, name);
675
676 hlist_for_each_entry(dev, head, name_hlist)
677 if (!strncmp(dev->name, name, IFNAMSIZ))
678 return dev;
679
680 return NULL;
681 }
682 EXPORT_SYMBOL(__dev_get_by_name);
683
684 /**
685 * dev_get_by_name_rcu - find a device by its name
686 * @net: the applicable net namespace
687 * @name: name to find
688 *
689 * Find an interface by name.
690 * If the name is found a pointer to the device is returned.
691 * If the name is not found then %NULL is returned.
692 * The reference counters are not incremented so the caller must be
693 * careful with locks. The caller must hold RCU lock.
694 */
695
696 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
697 {
698 struct net_device *dev;
699 struct hlist_head *head = dev_name_hash(net, name);
700
701 hlist_for_each_entry_rcu(dev, head, name_hlist)
702 if (!strncmp(dev->name, name, IFNAMSIZ))
703 return dev;
704
705 return NULL;
706 }
707 EXPORT_SYMBOL(dev_get_by_name_rcu);
708
709 /**
710 * dev_get_by_name - find a device by its name
711 * @net: the applicable net namespace
712 * @name: name to find
713 *
714 * Find an interface by name. This can be called from any
715 * context and does its own locking. The returned handle has
716 * the usage count incremented and the caller must use dev_put() to
717 * release it when it is no longer needed. %NULL is returned if no
718 * matching device is found.
719 */
720
721 struct net_device *dev_get_by_name(struct net *net, const char *name)
722 {
723 struct net_device *dev;
724
725 rcu_read_lock();
726 dev = dev_get_by_name_rcu(net, name);
727 if (dev)
728 dev_hold(dev);
729 rcu_read_unlock();
730 return dev;
731 }
732 EXPORT_SYMBOL(dev_get_by_name);
733
734 /**
735 * __dev_get_by_index - find a device by its ifindex
736 * @net: the applicable net namespace
737 * @ifindex: index of device
738 *
739 * Search for an interface by index. Returns %NULL if the device
740 * is not found or a pointer to the device. The device has not
741 * had its reference counter increased so the caller must be careful
742 * about locking. The caller must hold either the RTNL semaphore
743 * or @dev_base_lock.
744 */
745
746 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
747 {
748 struct net_device *dev;
749 struct hlist_head *head = dev_index_hash(net, ifindex);
750
751 hlist_for_each_entry(dev, head, index_hlist)
752 if (dev->ifindex == ifindex)
753 return dev;
754
755 return NULL;
756 }
757 EXPORT_SYMBOL(__dev_get_by_index);
758
759 /**
760 * dev_get_by_index_rcu - find a device by its ifindex
761 * @net: the applicable net namespace
762 * @ifindex: index of device
763 *
764 * Search for an interface by index. Returns %NULL if the device
765 * is not found or a pointer to the device. The device has not
766 * had its reference counter increased so the caller must be careful
767 * about locking. The caller must hold RCU lock.
768 */
769
770 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
771 {
772 struct net_device *dev;
773 struct hlist_head *head = dev_index_hash(net, ifindex);
774
775 hlist_for_each_entry_rcu(dev, head, index_hlist)
776 if (dev->ifindex == ifindex)
777 return dev;
778
779 return NULL;
780 }
781 EXPORT_SYMBOL(dev_get_by_index_rcu);
782
783
784 /**
785 * dev_get_by_index - find a device by its ifindex
786 * @net: the applicable net namespace
787 * @ifindex: index of device
788 *
789 * Search for an interface by index. Returns NULL if the device
790 * is not found or a pointer to the device. The device returned has
791 * had a reference added and the pointer is safe until the user calls
792 * dev_put to indicate they have finished with it.
793 */
794
795 struct net_device *dev_get_by_index(struct net *net, int ifindex)
796 {
797 struct net_device *dev;
798
799 rcu_read_lock();
800 dev = dev_get_by_index_rcu(net, ifindex);
801 if (dev)
802 dev_hold(dev);
803 rcu_read_unlock();
804 return dev;
805 }
806 EXPORT_SYMBOL(dev_get_by_index);
807
808 /**
809 * netdev_get_name - get a netdevice name, knowing its ifindex.
810 * @net: network namespace
811 * @name: a pointer to the buffer where the name will be stored.
812 * @ifindex: the ifindex of the interface to get the name from.
813 *
814 * The use of raw_seqcount_begin() and cond_resched() before
815 * retrying is required as we want to give the writers a chance
816 * to complete when CONFIG_PREEMPT is not set.
817 */
818 int netdev_get_name(struct net *net, char *name, int ifindex)
819 {
820 struct net_device *dev;
821 unsigned int seq;
822
823 retry:
824 seq = raw_seqcount_begin(&devnet_rename_seq);
825 rcu_read_lock();
826 dev = dev_get_by_index_rcu(net, ifindex);
827 if (!dev) {
828 rcu_read_unlock();
829 return -ENODEV;
830 }
831
832 strcpy(name, dev->name);
833 rcu_read_unlock();
834 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
835 cond_resched();
836 goto retry;
837 }
838
839 return 0;
840 }
841
842 /**
843 * dev_getbyhwaddr_rcu - find a device by its hardware address
844 * @net: the applicable net namespace
845 * @type: media type of device
846 * @ha: hardware address
847 *
848 * Search for an interface by MAC address. Returns NULL if the device
849 * is not found or a pointer to the device.
850 * The caller must hold RCU or RTNL.
851 * The returned device has not had its ref count increased
852 * and the caller must therefore be careful about locking
853 *
854 */
855
856 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
857 const char *ha)
858 {
859 struct net_device *dev;
860
861 for_each_netdev_rcu(net, dev)
862 if (dev->type == type &&
863 !memcmp(dev->dev_addr, ha, dev->addr_len))
864 return dev;
865
866 return NULL;
867 }
868 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
869
870 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
871 {
872 struct net_device *dev;
873
874 ASSERT_RTNL();
875 for_each_netdev(net, dev)
876 if (dev->type == type)
877 return dev;
878
879 return NULL;
880 }
881 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
882
883 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
884 {
885 struct net_device *dev, *ret = NULL;
886
887 rcu_read_lock();
888 for_each_netdev_rcu(net, dev)
889 if (dev->type == type) {
890 dev_hold(dev);
891 ret = dev;
892 break;
893 }
894 rcu_read_unlock();
895 return ret;
896 }
897 EXPORT_SYMBOL(dev_getfirstbyhwtype);
898
899 /**
900 * __dev_get_by_flags - find any device with given flags
901 * @net: the applicable net namespace
902 * @if_flags: IFF_* values
903 * @mask: bitmask of bits in if_flags to check
904 *
905 * Search for any interface with the given flags. Returns NULL if a device
906 * is not found or a pointer to the device. Must be called inside
907 * rtnl_lock(), and result refcount is unchanged.
908 */
909
910 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
911 unsigned short mask)
912 {
913 struct net_device *dev, *ret;
914
915 ASSERT_RTNL();
916
917 ret = NULL;
918 for_each_netdev(net, dev) {
919 if (((dev->flags ^ if_flags) & mask) == 0) {
920 ret = dev;
921 break;
922 }
923 }
924 return ret;
925 }
926 EXPORT_SYMBOL(__dev_get_by_flags);
927
928 /**
929 * dev_valid_name - check if name is okay for network device
930 * @name: name string
931 *
932 * Network device names need to be valid file names to
933 * to allow sysfs to work. We also disallow any kind of
934 * whitespace.
935 */
936 bool dev_valid_name(const char *name)
937 {
938 if (*name == '\0')
939 return false;
940 if (strlen(name) >= IFNAMSIZ)
941 return false;
942 if (!strcmp(name, ".") || !strcmp(name, ".."))
943 return false;
944
945 while (*name) {
946 if (*name == '/' || isspace(*name))
947 return false;
948 name++;
949 }
950 return true;
951 }
952 EXPORT_SYMBOL(dev_valid_name);
953
954 /**
955 * __dev_alloc_name - allocate a name for a device
956 * @net: network namespace to allocate the device name in
957 * @name: name format string
958 * @buf: scratch buffer and result name string
959 *
960 * Passed a format string - eg "lt%d" it will try and find a suitable
961 * id. It scans list of devices to build up a free map, then chooses
962 * the first empty slot. The caller must hold the dev_base or rtnl lock
963 * while allocating the name and adding the device in order to avoid
964 * duplicates.
965 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
966 * Returns the number of the unit assigned or a negative errno code.
967 */
968
969 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
970 {
971 int i = 0;
972 const char *p;
973 const int max_netdevices = 8*PAGE_SIZE;
974 unsigned long *inuse;
975 struct net_device *d;
976
977 p = strnchr(name, IFNAMSIZ-1, '%');
978 if (p) {
979 /*
980 * Verify the string as this thing may have come from
981 * the user. There must be either one "%d" and no other "%"
982 * characters.
983 */
984 if (p[1] != 'd' || strchr(p + 2, '%'))
985 return -EINVAL;
986
987 /* Use one page as a bit array of possible slots */
988 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
989 if (!inuse)
990 return -ENOMEM;
991
992 for_each_netdev(net, d) {
993 if (!sscanf(d->name, name, &i))
994 continue;
995 if (i < 0 || i >= max_netdevices)
996 continue;
997
998 /* avoid cases where sscanf is not exact inverse of printf */
999 snprintf(buf, IFNAMSIZ, name, i);
1000 if (!strncmp(buf, d->name, IFNAMSIZ))
1001 set_bit(i, inuse);
1002 }
1003
1004 i = find_first_zero_bit(inuse, max_netdevices);
1005 free_page((unsigned long) inuse);
1006 }
1007
1008 if (buf != name)
1009 snprintf(buf, IFNAMSIZ, name, i);
1010 if (!__dev_get_by_name(net, buf))
1011 return i;
1012
1013 /* It is possible to run out of possible slots
1014 * when the name is long and there isn't enough space left
1015 * for the digits, or if all bits are used.
1016 */
1017 return -ENFILE;
1018 }
1019
1020 /**
1021 * dev_alloc_name - allocate a name for a device
1022 * @dev: device
1023 * @name: name format string
1024 *
1025 * Passed a format string - eg "lt%d" it will try and find a suitable
1026 * id. It scans list of devices to build up a free map, then chooses
1027 * the first empty slot. The caller must hold the dev_base or rtnl lock
1028 * while allocating the name and adding the device in order to avoid
1029 * duplicates.
1030 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1031 * Returns the number of the unit assigned or a negative errno code.
1032 */
1033
1034 int dev_alloc_name(struct net_device *dev, const char *name)
1035 {
1036 char buf[IFNAMSIZ];
1037 struct net *net;
1038 int ret;
1039
1040 BUG_ON(!dev_net(dev));
1041 net = dev_net(dev);
1042 ret = __dev_alloc_name(net, name, buf);
1043 if (ret >= 0)
1044 strlcpy(dev->name, buf, IFNAMSIZ);
1045 return ret;
1046 }
1047 EXPORT_SYMBOL(dev_alloc_name);
1048
1049 static int dev_alloc_name_ns(struct net *net,
1050 struct net_device *dev,
1051 const char *name)
1052 {
1053 char buf[IFNAMSIZ];
1054 int ret;
1055
1056 ret = __dev_alloc_name(net, name, buf);
1057 if (ret >= 0)
1058 strlcpy(dev->name, buf, IFNAMSIZ);
1059 return ret;
1060 }
1061
1062 static int dev_get_valid_name(struct net *net,
1063 struct net_device *dev,
1064 const char *name)
1065 {
1066 BUG_ON(!net);
1067
1068 if (!dev_valid_name(name))
1069 return -EINVAL;
1070
1071 if (strchr(name, '%'))
1072 return dev_alloc_name_ns(net, dev, name);
1073 else if (__dev_get_by_name(net, name))
1074 return -EEXIST;
1075 else if (dev->name != name)
1076 strlcpy(dev->name, name, IFNAMSIZ);
1077
1078 return 0;
1079 }
1080
1081 /**
1082 * dev_change_name - change name of a device
1083 * @dev: device
1084 * @newname: name (or format string) must be at least IFNAMSIZ
1085 *
1086 * Change name of a device, can pass format strings "eth%d".
1087 * for wildcarding.
1088 */
1089 int dev_change_name(struct net_device *dev, const char *newname)
1090 {
1091 unsigned char old_assign_type;
1092 char oldname[IFNAMSIZ];
1093 int err = 0;
1094 int ret;
1095 struct net *net;
1096
1097 ASSERT_RTNL();
1098 BUG_ON(!dev_net(dev));
1099
1100 net = dev_net(dev);
1101 if (dev->flags & IFF_UP)
1102 return -EBUSY;
1103
1104 write_seqcount_begin(&devnet_rename_seq);
1105
1106 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1107 write_seqcount_end(&devnet_rename_seq);
1108 return 0;
1109 }
1110
1111 memcpy(oldname, dev->name, IFNAMSIZ);
1112
1113 err = dev_get_valid_name(net, dev, newname);
1114 if (err < 0) {
1115 write_seqcount_end(&devnet_rename_seq);
1116 return err;
1117 }
1118
1119 if (oldname[0] && !strchr(oldname, '%'))
1120 netdev_info(dev, "renamed from %s\n", oldname);
1121
1122 old_assign_type = dev->name_assign_type;
1123 dev->name_assign_type = NET_NAME_RENAMED;
1124
1125 rollback:
1126 ret = device_rename(&dev->dev, dev->name);
1127 if (ret) {
1128 memcpy(dev->name, oldname, IFNAMSIZ);
1129 dev->name_assign_type = old_assign_type;
1130 write_seqcount_end(&devnet_rename_seq);
1131 return ret;
1132 }
1133
1134 write_seqcount_end(&devnet_rename_seq);
1135
1136 netdev_adjacent_rename_links(dev, oldname);
1137
1138 write_lock_bh(&dev_base_lock);
1139 hlist_del_rcu(&dev->name_hlist);
1140 write_unlock_bh(&dev_base_lock);
1141
1142 synchronize_rcu();
1143
1144 write_lock_bh(&dev_base_lock);
1145 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1146 write_unlock_bh(&dev_base_lock);
1147
1148 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1149 ret = notifier_to_errno(ret);
1150
1151 if (ret) {
1152 /* err >= 0 after dev_alloc_name() or stores the first errno */
1153 if (err >= 0) {
1154 err = ret;
1155 write_seqcount_begin(&devnet_rename_seq);
1156 memcpy(dev->name, oldname, IFNAMSIZ);
1157 memcpy(oldname, newname, IFNAMSIZ);
1158 dev->name_assign_type = old_assign_type;
1159 old_assign_type = NET_NAME_RENAMED;
1160 goto rollback;
1161 } else {
1162 pr_err("%s: name change rollback failed: %d\n",
1163 dev->name, ret);
1164 }
1165 }
1166
1167 return err;
1168 }
1169
1170 /**
1171 * dev_set_alias - change ifalias of a device
1172 * @dev: device
1173 * @alias: name up to IFALIASZ
1174 * @len: limit of bytes to copy from info
1175 *
1176 * Set ifalias for a device,
1177 */
1178 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1179 {
1180 char *new_ifalias;
1181
1182 ASSERT_RTNL();
1183
1184 if (len >= IFALIASZ)
1185 return -EINVAL;
1186
1187 if (!len) {
1188 kfree(dev->ifalias);
1189 dev->ifalias = NULL;
1190 return 0;
1191 }
1192
1193 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1194 if (!new_ifalias)
1195 return -ENOMEM;
1196 dev->ifalias = new_ifalias;
1197
1198 strlcpy(dev->ifalias, alias, len+1);
1199 return len;
1200 }
1201
1202
1203 /**
1204 * netdev_features_change - device changes features
1205 * @dev: device to cause notification
1206 *
1207 * Called to indicate a device has changed features.
1208 */
1209 void netdev_features_change(struct net_device *dev)
1210 {
1211 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1212 }
1213 EXPORT_SYMBOL(netdev_features_change);
1214
1215 /**
1216 * netdev_state_change - device changes state
1217 * @dev: device to cause notification
1218 *
1219 * Called to indicate a device has changed state. This function calls
1220 * the notifier chains for netdev_chain and sends a NEWLINK message
1221 * to the routing socket.
1222 */
1223 void netdev_state_change(struct net_device *dev)
1224 {
1225 if (dev->flags & IFF_UP) {
1226 struct netdev_notifier_change_info change_info;
1227
1228 change_info.flags_changed = 0;
1229 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1230 &change_info.info);
1231 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1232 }
1233 }
1234 EXPORT_SYMBOL(netdev_state_change);
1235
1236 /**
1237 * netdev_notify_peers - notify network peers about existence of @dev
1238 * @dev: network device
1239 *
1240 * Generate traffic such that interested network peers are aware of
1241 * @dev, such as by generating a gratuitous ARP. This may be used when
1242 * a device wants to inform the rest of the network about some sort of
1243 * reconfiguration such as a failover event or virtual machine
1244 * migration.
1245 */
1246 void netdev_notify_peers(struct net_device *dev)
1247 {
1248 rtnl_lock();
1249 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1250 rtnl_unlock();
1251 }
1252 EXPORT_SYMBOL(netdev_notify_peers);
1253
1254 static int __dev_open(struct net_device *dev)
1255 {
1256 const struct net_device_ops *ops = dev->netdev_ops;
1257 int ret;
1258
1259 ASSERT_RTNL();
1260
1261 if (!netif_device_present(dev))
1262 return -ENODEV;
1263
1264 /* Block netpoll from trying to do any rx path servicing.
1265 * If we don't do this there is a chance ndo_poll_controller
1266 * or ndo_poll may be running while we open the device
1267 */
1268 netpoll_poll_disable(dev);
1269
1270 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1271 ret = notifier_to_errno(ret);
1272 if (ret)
1273 return ret;
1274
1275 set_bit(__LINK_STATE_START, &dev->state);
1276
1277 if (ops->ndo_validate_addr)
1278 ret = ops->ndo_validate_addr(dev);
1279
1280 if (!ret && ops->ndo_open)
1281 ret = ops->ndo_open(dev);
1282
1283 netpoll_poll_enable(dev);
1284
1285 if (ret)
1286 clear_bit(__LINK_STATE_START, &dev->state);
1287 else {
1288 dev->flags |= IFF_UP;
1289 net_dmaengine_get();
1290 dev_set_rx_mode(dev);
1291 dev_activate(dev);
1292 add_device_randomness(dev->dev_addr, dev->addr_len);
1293 }
1294
1295 return ret;
1296 }
1297
1298 /**
1299 * dev_open - prepare an interface for use.
1300 * @dev: device to open
1301 *
1302 * Takes a device from down to up state. The device's private open
1303 * function is invoked and then the multicast lists are loaded. Finally
1304 * the device is moved into the up state and a %NETDEV_UP message is
1305 * sent to the netdev notifier chain.
1306 *
1307 * Calling this function on an active interface is a nop. On a failure
1308 * a negative errno code is returned.
1309 */
1310 int dev_open(struct net_device *dev)
1311 {
1312 int ret;
1313
1314 if (dev->flags & IFF_UP)
1315 return 0;
1316
1317 ret = __dev_open(dev);
1318 if (ret < 0)
1319 return ret;
1320
1321 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1322 call_netdevice_notifiers(NETDEV_UP, dev);
1323
1324 return ret;
1325 }
1326 EXPORT_SYMBOL(dev_open);
1327
1328 static int __dev_close_many(struct list_head *head)
1329 {
1330 struct net_device *dev;
1331
1332 ASSERT_RTNL();
1333 might_sleep();
1334
1335 list_for_each_entry(dev, head, close_list) {
1336 /* Temporarily disable netpoll until the interface is down */
1337 netpoll_poll_disable(dev);
1338
1339 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1340
1341 clear_bit(__LINK_STATE_START, &dev->state);
1342
1343 /* Synchronize to scheduled poll. We cannot touch poll list, it
1344 * can be even on different cpu. So just clear netif_running().
1345 *
1346 * dev->stop() will invoke napi_disable() on all of it's
1347 * napi_struct instances on this device.
1348 */
1349 smp_mb__after_atomic(); /* Commit netif_running(). */
1350 }
1351
1352 dev_deactivate_many(head);
1353
1354 list_for_each_entry(dev, head, close_list) {
1355 const struct net_device_ops *ops = dev->netdev_ops;
1356
1357 /*
1358 * Call the device specific close. This cannot fail.
1359 * Only if device is UP
1360 *
1361 * We allow it to be called even after a DETACH hot-plug
1362 * event.
1363 */
1364 if (ops->ndo_stop)
1365 ops->ndo_stop(dev);
1366
1367 dev->flags &= ~IFF_UP;
1368 net_dmaengine_put();
1369 netpoll_poll_enable(dev);
1370 }
1371
1372 return 0;
1373 }
1374
1375 static int __dev_close(struct net_device *dev)
1376 {
1377 int retval;
1378 LIST_HEAD(single);
1379
1380 list_add(&dev->close_list, &single);
1381 retval = __dev_close_many(&single);
1382 list_del(&single);
1383
1384 return retval;
1385 }
1386
1387 static int dev_close_many(struct list_head *head)
1388 {
1389 struct net_device *dev, *tmp;
1390
1391 /* Remove the devices that don't need to be closed */
1392 list_for_each_entry_safe(dev, tmp, head, close_list)
1393 if (!(dev->flags & IFF_UP))
1394 list_del_init(&dev->close_list);
1395
1396 __dev_close_many(head);
1397
1398 list_for_each_entry_safe(dev, tmp, head, close_list) {
1399 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1400 call_netdevice_notifiers(NETDEV_DOWN, dev);
1401 list_del_init(&dev->close_list);
1402 }
1403
1404 return 0;
1405 }
1406
1407 /**
1408 * dev_close - shutdown an interface.
1409 * @dev: device to shutdown
1410 *
1411 * This function moves an active device into down state. A
1412 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1413 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1414 * chain.
1415 */
1416 int dev_close(struct net_device *dev)
1417 {
1418 if (dev->flags & IFF_UP) {
1419 LIST_HEAD(single);
1420
1421 list_add(&dev->close_list, &single);
1422 dev_close_many(&single);
1423 list_del(&single);
1424 }
1425 return 0;
1426 }
1427 EXPORT_SYMBOL(dev_close);
1428
1429
1430 /**
1431 * dev_disable_lro - disable Large Receive Offload on a device
1432 * @dev: device
1433 *
1434 * Disable Large Receive Offload (LRO) on a net device. Must be
1435 * called under RTNL. This is needed if received packets may be
1436 * forwarded to another interface.
1437 */
1438 void dev_disable_lro(struct net_device *dev)
1439 {
1440 /*
1441 * If we're trying to disable lro on a vlan device
1442 * use the underlying physical device instead
1443 */
1444 if (is_vlan_dev(dev))
1445 dev = vlan_dev_real_dev(dev);
1446
1447 /* the same for macvlan devices */
1448 if (netif_is_macvlan(dev))
1449 dev = macvlan_dev_real_dev(dev);
1450
1451 dev->wanted_features &= ~NETIF_F_LRO;
1452 netdev_update_features(dev);
1453
1454 if (unlikely(dev->features & NETIF_F_LRO))
1455 netdev_WARN(dev, "failed to disable LRO!\n");
1456 }
1457 EXPORT_SYMBOL(dev_disable_lro);
1458
1459 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1460 struct net_device *dev)
1461 {
1462 struct netdev_notifier_info info;
1463
1464 netdev_notifier_info_init(&info, dev);
1465 return nb->notifier_call(nb, val, &info);
1466 }
1467
1468 static int dev_boot_phase = 1;
1469
1470 /**
1471 * register_netdevice_notifier - register a network notifier block
1472 * @nb: notifier
1473 *
1474 * Register a notifier to be called when network device events occur.
1475 * The notifier passed is linked into the kernel structures and must
1476 * not be reused until it has been unregistered. A negative errno code
1477 * is returned on a failure.
1478 *
1479 * When registered all registration and up events are replayed
1480 * to the new notifier to allow device to have a race free
1481 * view of the network device list.
1482 */
1483
1484 int register_netdevice_notifier(struct notifier_block *nb)
1485 {
1486 struct net_device *dev;
1487 struct net_device *last;
1488 struct net *net;
1489 int err;
1490
1491 rtnl_lock();
1492 err = raw_notifier_chain_register(&netdev_chain, nb);
1493 if (err)
1494 goto unlock;
1495 if (dev_boot_phase)
1496 goto unlock;
1497 for_each_net(net) {
1498 for_each_netdev(net, dev) {
1499 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1500 err = notifier_to_errno(err);
1501 if (err)
1502 goto rollback;
1503
1504 if (!(dev->flags & IFF_UP))
1505 continue;
1506
1507 call_netdevice_notifier(nb, NETDEV_UP, dev);
1508 }
1509 }
1510
1511 unlock:
1512 rtnl_unlock();
1513 return err;
1514
1515 rollback:
1516 last = dev;
1517 for_each_net(net) {
1518 for_each_netdev(net, dev) {
1519 if (dev == last)
1520 goto outroll;
1521
1522 if (dev->flags & IFF_UP) {
1523 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1524 dev);
1525 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1526 }
1527 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1528 }
1529 }
1530
1531 outroll:
1532 raw_notifier_chain_unregister(&netdev_chain, nb);
1533 goto unlock;
1534 }
1535 EXPORT_SYMBOL(register_netdevice_notifier);
1536
1537 /**
1538 * unregister_netdevice_notifier - unregister a network notifier block
1539 * @nb: notifier
1540 *
1541 * Unregister a notifier previously registered by
1542 * register_netdevice_notifier(). The notifier is unlinked into the
1543 * kernel structures and may then be reused. A negative errno code
1544 * is returned on a failure.
1545 *
1546 * After unregistering unregister and down device events are synthesized
1547 * for all devices on the device list to the removed notifier to remove
1548 * the need for special case cleanup code.
1549 */
1550
1551 int unregister_netdevice_notifier(struct notifier_block *nb)
1552 {
1553 struct net_device *dev;
1554 struct net *net;
1555 int err;
1556
1557 rtnl_lock();
1558 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1559 if (err)
1560 goto unlock;
1561
1562 for_each_net(net) {
1563 for_each_netdev(net, dev) {
1564 if (dev->flags & IFF_UP) {
1565 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1566 dev);
1567 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1568 }
1569 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1570 }
1571 }
1572 unlock:
1573 rtnl_unlock();
1574 return err;
1575 }
1576 EXPORT_SYMBOL(unregister_netdevice_notifier);
1577
1578 /**
1579 * call_netdevice_notifiers_info - call all network notifier blocks
1580 * @val: value passed unmodified to notifier function
1581 * @dev: net_device pointer passed unmodified to notifier function
1582 * @info: notifier information data
1583 *
1584 * Call all network notifier blocks. Parameters and return value
1585 * are as for raw_notifier_call_chain().
1586 */
1587
1588 static int call_netdevice_notifiers_info(unsigned long val,
1589 struct net_device *dev,
1590 struct netdev_notifier_info *info)
1591 {
1592 ASSERT_RTNL();
1593 netdev_notifier_info_init(info, dev);
1594 return raw_notifier_call_chain(&netdev_chain, val, info);
1595 }
1596
1597 /**
1598 * call_netdevice_notifiers - call all network notifier blocks
1599 * @val: value passed unmodified to notifier function
1600 * @dev: net_device pointer passed unmodified to notifier function
1601 *
1602 * Call all network notifier blocks. Parameters and return value
1603 * are as for raw_notifier_call_chain().
1604 */
1605
1606 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1607 {
1608 struct netdev_notifier_info info;
1609
1610 return call_netdevice_notifiers_info(val, dev, &info);
1611 }
1612 EXPORT_SYMBOL(call_netdevice_notifiers);
1613
1614 static struct static_key netstamp_needed __read_mostly;
1615 #ifdef HAVE_JUMP_LABEL
1616 /* We are not allowed to call static_key_slow_dec() from irq context
1617 * If net_disable_timestamp() is called from irq context, defer the
1618 * static_key_slow_dec() calls.
1619 */
1620 static atomic_t netstamp_needed_deferred;
1621 #endif
1622
1623 void net_enable_timestamp(void)
1624 {
1625 #ifdef HAVE_JUMP_LABEL
1626 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1627
1628 if (deferred) {
1629 while (--deferred)
1630 static_key_slow_dec(&netstamp_needed);
1631 return;
1632 }
1633 #endif
1634 static_key_slow_inc(&netstamp_needed);
1635 }
1636 EXPORT_SYMBOL(net_enable_timestamp);
1637
1638 void net_disable_timestamp(void)
1639 {
1640 #ifdef HAVE_JUMP_LABEL
1641 if (in_interrupt()) {
1642 atomic_inc(&netstamp_needed_deferred);
1643 return;
1644 }
1645 #endif
1646 static_key_slow_dec(&netstamp_needed);
1647 }
1648 EXPORT_SYMBOL(net_disable_timestamp);
1649
1650 static inline void net_timestamp_set(struct sk_buff *skb)
1651 {
1652 skb->tstamp.tv64 = 0;
1653 if (static_key_false(&netstamp_needed))
1654 __net_timestamp(skb);
1655 }
1656
1657 #define net_timestamp_check(COND, SKB) \
1658 if (static_key_false(&netstamp_needed)) { \
1659 if ((COND) && !(SKB)->tstamp.tv64) \
1660 __net_timestamp(SKB); \
1661 } \
1662
1663 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1664 {
1665 unsigned int len;
1666
1667 if (!(dev->flags & IFF_UP))
1668 return false;
1669
1670 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1671 if (skb->len <= len)
1672 return true;
1673
1674 /* if TSO is enabled, we don't care about the length as the packet
1675 * could be forwarded without being segmented before
1676 */
1677 if (skb_is_gso(skb))
1678 return true;
1679
1680 return false;
1681 }
1682 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1683
1684 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1685 {
1686 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1687 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1688 atomic_long_inc(&dev->rx_dropped);
1689 kfree_skb(skb);
1690 return NET_RX_DROP;
1691 }
1692 }
1693
1694 if (unlikely(!is_skb_forwardable(dev, skb))) {
1695 atomic_long_inc(&dev->rx_dropped);
1696 kfree_skb(skb);
1697 return NET_RX_DROP;
1698 }
1699
1700 skb_scrub_packet(skb, true);
1701 skb->protocol = eth_type_trans(skb, dev);
1702
1703 return 0;
1704 }
1705 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1706
1707 /**
1708 * dev_forward_skb - loopback an skb to another netif
1709 *
1710 * @dev: destination network device
1711 * @skb: buffer to forward
1712 *
1713 * return values:
1714 * NET_RX_SUCCESS (no congestion)
1715 * NET_RX_DROP (packet was dropped, but freed)
1716 *
1717 * dev_forward_skb can be used for injecting an skb from the
1718 * start_xmit function of one device into the receive queue
1719 * of another device.
1720 *
1721 * The receiving device may be in another namespace, so
1722 * we have to clear all information in the skb that could
1723 * impact namespace isolation.
1724 */
1725 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1726 {
1727 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1728 }
1729 EXPORT_SYMBOL_GPL(dev_forward_skb);
1730
1731 static inline int deliver_skb(struct sk_buff *skb,
1732 struct packet_type *pt_prev,
1733 struct net_device *orig_dev)
1734 {
1735 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1736 return -ENOMEM;
1737 atomic_inc(&skb->users);
1738 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1739 }
1740
1741 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1742 {
1743 if (!ptype->af_packet_priv || !skb->sk)
1744 return false;
1745
1746 if (ptype->id_match)
1747 return ptype->id_match(ptype, skb->sk);
1748 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1749 return true;
1750
1751 return false;
1752 }
1753
1754 /*
1755 * Support routine. Sends outgoing frames to any network
1756 * taps currently in use.
1757 */
1758
1759 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1760 {
1761 struct packet_type *ptype;
1762 struct sk_buff *skb2 = NULL;
1763 struct packet_type *pt_prev = NULL;
1764
1765 rcu_read_lock();
1766 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1767 /* Never send packets back to the socket
1768 * they originated from - MvS (miquels@drinkel.ow.org)
1769 */
1770 if ((ptype->dev == dev || !ptype->dev) &&
1771 (!skb_loop_sk(ptype, skb))) {
1772 if (pt_prev) {
1773 deliver_skb(skb2, pt_prev, skb->dev);
1774 pt_prev = ptype;
1775 continue;
1776 }
1777
1778 skb2 = skb_clone(skb, GFP_ATOMIC);
1779 if (!skb2)
1780 break;
1781
1782 net_timestamp_set(skb2);
1783
1784 /* skb->nh should be correctly
1785 set by sender, so that the second statement is
1786 just protection against buggy protocols.
1787 */
1788 skb_reset_mac_header(skb2);
1789
1790 if (skb_network_header(skb2) < skb2->data ||
1791 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1792 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1793 ntohs(skb2->protocol),
1794 dev->name);
1795 skb_reset_network_header(skb2);
1796 }
1797
1798 skb2->transport_header = skb2->network_header;
1799 skb2->pkt_type = PACKET_OUTGOING;
1800 pt_prev = ptype;
1801 }
1802 }
1803 if (pt_prev)
1804 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1805 rcu_read_unlock();
1806 }
1807
1808 /**
1809 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1810 * @dev: Network device
1811 * @txq: number of queues available
1812 *
1813 * If real_num_tx_queues is changed the tc mappings may no longer be
1814 * valid. To resolve this verify the tc mapping remains valid and if
1815 * not NULL the mapping. With no priorities mapping to this
1816 * offset/count pair it will no longer be used. In the worst case TC0
1817 * is invalid nothing can be done so disable priority mappings. If is
1818 * expected that drivers will fix this mapping if they can before
1819 * calling netif_set_real_num_tx_queues.
1820 */
1821 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1822 {
1823 int i;
1824 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1825
1826 /* If TC0 is invalidated disable TC mapping */
1827 if (tc->offset + tc->count > txq) {
1828 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1829 dev->num_tc = 0;
1830 return;
1831 }
1832
1833 /* Invalidated prio to tc mappings set to TC0 */
1834 for (i = 1; i < TC_BITMASK + 1; i++) {
1835 int q = netdev_get_prio_tc_map(dev, i);
1836
1837 tc = &dev->tc_to_txq[q];
1838 if (tc->offset + tc->count > txq) {
1839 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1840 i, q);
1841 netdev_set_prio_tc_map(dev, i, 0);
1842 }
1843 }
1844 }
1845
1846 #ifdef CONFIG_XPS
1847 static DEFINE_MUTEX(xps_map_mutex);
1848 #define xmap_dereference(P) \
1849 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1850
1851 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1852 int cpu, u16 index)
1853 {
1854 struct xps_map *map = NULL;
1855 int pos;
1856
1857 if (dev_maps)
1858 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1859
1860 for (pos = 0; map && pos < map->len; pos++) {
1861 if (map->queues[pos] == index) {
1862 if (map->len > 1) {
1863 map->queues[pos] = map->queues[--map->len];
1864 } else {
1865 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1866 kfree_rcu(map, rcu);
1867 map = NULL;
1868 }
1869 break;
1870 }
1871 }
1872
1873 return map;
1874 }
1875
1876 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1877 {
1878 struct xps_dev_maps *dev_maps;
1879 int cpu, i;
1880 bool active = false;
1881
1882 mutex_lock(&xps_map_mutex);
1883 dev_maps = xmap_dereference(dev->xps_maps);
1884
1885 if (!dev_maps)
1886 goto out_no_maps;
1887
1888 for_each_possible_cpu(cpu) {
1889 for (i = index; i < dev->num_tx_queues; i++) {
1890 if (!remove_xps_queue(dev_maps, cpu, i))
1891 break;
1892 }
1893 if (i == dev->num_tx_queues)
1894 active = true;
1895 }
1896
1897 if (!active) {
1898 RCU_INIT_POINTER(dev->xps_maps, NULL);
1899 kfree_rcu(dev_maps, rcu);
1900 }
1901
1902 for (i = index; i < dev->num_tx_queues; i++)
1903 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1904 NUMA_NO_NODE);
1905
1906 out_no_maps:
1907 mutex_unlock(&xps_map_mutex);
1908 }
1909
1910 static struct xps_map *expand_xps_map(struct xps_map *map,
1911 int cpu, u16 index)
1912 {
1913 struct xps_map *new_map;
1914 int alloc_len = XPS_MIN_MAP_ALLOC;
1915 int i, pos;
1916
1917 for (pos = 0; map && pos < map->len; pos++) {
1918 if (map->queues[pos] != index)
1919 continue;
1920 return map;
1921 }
1922
1923 /* Need to add queue to this CPU's existing map */
1924 if (map) {
1925 if (pos < map->alloc_len)
1926 return map;
1927
1928 alloc_len = map->alloc_len * 2;
1929 }
1930
1931 /* Need to allocate new map to store queue on this CPU's map */
1932 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1933 cpu_to_node(cpu));
1934 if (!new_map)
1935 return NULL;
1936
1937 for (i = 0; i < pos; i++)
1938 new_map->queues[i] = map->queues[i];
1939 new_map->alloc_len = alloc_len;
1940 new_map->len = pos;
1941
1942 return new_map;
1943 }
1944
1945 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1946 u16 index)
1947 {
1948 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1949 struct xps_map *map, *new_map;
1950 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1951 int cpu, numa_node_id = -2;
1952 bool active = false;
1953
1954 mutex_lock(&xps_map_mutex);
1955
1956 dev_maps = xmap_dereference(dev->xps_maps);
1957
1958 /* allocate memory for queue storage */
1959 for_each_online_cpu(cpu) {
1960 if (!cpumask_test_cpu(cpu, mask))
1961 continue;
1962
1963 if (!new_dev_maps)
1964 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1965 if (!new_dev_maps) {
1966 mutex_unlock(&xps_map_mutex);
1967 return -ENOMEM;
1968 }
1969
1970 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1971 NULL;
1972
1973 map = expand_xps_map(map, cpu, index);
1974 if (!map)
1975 goto error;
1976
1977 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1978 }
1979
1980 if (!new_dev_maps)
1981 goto out_no_new_maps;
1982
1983 for_each_possible_cpu(cpu) {
1984 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1985 /* add queue to CPU maps */
1986 int pos = 0;
1987
1988 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1989 while ((pos < map->len) && (map->queues[pos] != index))
1990 pos++;
1991
1992 if (pos == map->len)
1993 map->queues[map->len++] = index;
1994 #ifdef CONFIG_NUMA
1995 if (numa_node_id == -2)
1996 numa_node_id = cpu_to_node(cpu);
1997 else if (numa_node_id != cpu_to_node(cpu))
1998 numa_node_id = -1;
1999 #endif
2000 } else if (dev_maps) {
2001 /* fill in the new device map from the old device map */
2002 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2003 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2004 }
2005
2006 }
2007
2008 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2009
2010 /* Cleanup old maps */
2011 if (dev_maps) {
2012 for_each_possible_cpu(cpu) {
2013 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2014 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2015 if (map && map != new_map)
2016 kfree_rcu(map, rcu);
2017 }
2018
2019 kfree_rcu(dev_maps, rcu);
2020 }
2021
2022 dev_maps = new_dev_maps;
2023 active = true;
2024
2025 out_no_new_maps:
2026 /* update Tx queue numa node */
2027 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2028 (numa_node_id >= 0) ? numa_node_id :
2029 NUMA_NO_NODE);
2030
2031 if (!dev_maps)
2032 goto out_no_maps;
2033
2034 /* removes queue from unused CPUs */
2035 for_each_possible_cpu(cpu) {
2036 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2037 continue;
2038
2039 if (remove_xps_queue(dev_maps, cpu, index))
2040 active = true;
2041 }
2042
2043 /* free map if not active */
2044 if (!active) {
2045 RCU_INIT_POINTER(dev->xps_maps, NULL);
2046 kfree_rcu(dev_maps, rcu);
2047 }
2048
2049 out_no_maps:
2050 mutex_unlock(&xps_map_mutex);
2051
2052 return 0;
2053 error:
2054 /* remove any maps that we added */
2055 for_each_possible_cpu(cpu) {
2056 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2057 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2058 NULL;
2059 if (new_map && new_map != map)
2060 kfree(new_map);
2061 }
2062
2063 mutex_unlock(&xps_map_mutex);
2064
2065 kfree(new_dev_maps);
2066 return -ENOMEM;
2067 }
2068 EXPORT_SYMBOL(netif_set_xps_queue);
2069
2070 #endif
2071 /*
2072 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2073 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2074 */
2075 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2076 {
2077 int rc;
2078
2079 if (txq < 1 || txq > dev->num_tx_queues)
2080 return -EINVAL;
2081
2082 if (dev->reg_state == NETREG_REGISTERED ||
2083 dev->reg_state == NETREG_UNREGISTERING) {
2084 ASSERT_RTNL();
2085
2086 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2087 txq);
2088 if (rc)
2089 return rc;
2090
2091 if (dev->num_tc)
2092 netif_setup_tc(dev, txq);
2093
2094 if (txq < dev->real_num_tx_queues) {
2095 qdisc_reset_all_tx_gt(dev, txq);
2096 #ifdef CONFIG_XPS
2097 netif_reset_xps_queues_gt(dev, txq);
2098 #endif
2099 }
2100 }
2101
2102 dev->real_num_tx_queues = txq;
2103 return 0;
2104 }
2105 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2106
2107 #ifdef CONFIG_SYSFS
2108 /**
2109 * netif_set_real_num_rx_queues - set actual number of RX queues used
2110 * @dev: Network device
2111 * @rxq: Actual number of RX queues
2112 *
2113 * This must be called either with the rtnl_lock held or before
2114 * registration of the net device. Returns 0 on success, or a
2115 * negative error code. If called before registration, it always
2116 * succeeds.
2117 */
2118 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2119 {
2120 int rc;
2121
2122 if (rxq < 1 || rxq > dev->num_rx_queues)
2123 return -EINVAL;
2124
2125 if (dev->reg_state == NETREG_REGISTERED) {
2126 ASSERT_RTNL();
2127
2128 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2129 rxq);
2130 if (rc)
2131 return rc;
2132 }
2133
2134 dev->real_num_rx_queues = rxq;
2135 return 0;
2136 }
2137 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2138 #endif
2139
2140 /**
2141 * netif_get_num_default_rss_queues - default number of RSS queues
2142 *
2143 * This routine should set an upper limit on the number of RSS queues
2144 * used by default by multiqueue devices.
2145 */
2146 int netif_get_num_default_rss_queues(void)
2147 {
2148 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2149 }
2150 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2151
2152 static inline void __netif_reschedule(struct Qdisc *q)
2153 {
2154 struct softnet_data *sd;
2155 unsigned long flags;
2156
2157 local_irq_save(flags);
2158 sd = &__get_cpu_var(softnet_data);
2159 q->next_sched = NULL;
2160 *sd->output_queue_tailp = q;
2161 sd->output_queue_tailp = &q->next_sched;
2162 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2163 local_irq_restore(flags);
2164 }
2165
2166 void __netif_schedule(struct Qdisc *q)
2167 {
2168 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2169 __netif_reschedule(q);
2170 }
2171 EXPORT_SYMBOL(__netif_schedule);
2172
2173 struct dev_kfree_skb_cb {
2174 enum skb_free_reason reason;
2175 };
2176
2177 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2178 {
2179 return (struct dev_kfree_skb_cb *)skb->cb;
2180 }
2181
2182 void netif_schedule_queue(struct netdev_queue *txq)
2183 {
2184 rcu_read_lock();
2185 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2186 struct Qdisc *q = rcu_dereference(txq->qdisc);
2187
2188 __netif_schedule(q);
2189 }
2190 rcu_read_unlock();
2191 }
2192 EXPORT_SYMBOL(netif_schedule_queue);
2193
2194 /**
2195 * netif_wake_subqueue - allow sending packets on subqueue
2196 * @dev: network device
2197 * @queue_index: sub queue index
2198 *
2199 * Resume individual transmit queue of a device with multiple transmit queues.
2200 */
2201 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2202 {
2203 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2204
2205 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2206 struct Qdisc *q;
2207
2208 rcu_read_lock();
2209 q = rcu_dereference(txq->qdisc);
2210 __netif_schedule(q);
2211 rcu_read_unlock();
2212 }
2213 }
2214 EXPORT_SYMBOL(netif_wake_subqueue);
2215
2216 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2217 {
2218 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2219 struct Qdisc *q;
2220
2221 rcu_read_lock();
2222 q = rcu_dereference(dev_queue->qdisc);
2223 __netif_schedule(q);
2224 rcu_read_unlock();
2225 }
2226 }
2227 EXPORT_SYMBOL(netif_tx_wake_queue);
2228
2229 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2230 {
2231 unsigned long flags;
2232
2233 if (likely(atomic_read(&skb->users) == 1)) {
2234 smp_rmb();
2235 atomic_set(&skb->users, 0);
2236 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2237 return;
2238 }
2239 get_kfree_skb_cb(skb)->reason = reason;
2240 local_irq_save(flags);
2241 skb->next = __this_cpu_read(softnet_data.completion_queue);
2242 __this_cpu_write(softnet_data.completion_queue, skb);
2243 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2244 local_irq_restore(flags);
2245 }
2246 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2247
2248 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2249 {
2250 if (in_irq() || irqs_disabled())
2251 __dev_kfree_skb_irq(skb, reason);
2252 else
2253 dev_kfree_skb(skb);
2254 }
2255 EXPORT_SYMBOL(__dev_kfree_skb_any);
2256
2257
2258 /**
2259 * netif_device_detach - mark device as removed
2260 * @dev: network device
2261 *
2262 * Mark device as removed from system and therefore no longer available.
2263 */
2264 void netif_device_detach(struct net_device *dev)
2265 {
2266 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2267 netif_running(dev)) {
2268 netif_tx_stop_all_queues(dev);
2269 }
2270 }
2271 EXPORT_SYMBOL(netif_device_detach);
2272
2273 /**
2274 * netif_device_attach - mark device as attached
2275 * @dev: network device
2276 *
2277 * Mark device as attached from system and restart if needed.
2278 */
2279 void netif_device_attach(struct net_device *dev)
2280 {
2281 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2282 netif_running(dev)) {
2283 netif_tx_wake_all_queues(dev);
2284 __netdev_watchdog_up(dev);
2285 }
2286 }
2287 EXPORT_SYMBOL(netif_device_attach);
2288
2289 static void skb_warn_bad_offload(const struct sk_buff *skb)
2290 {
2291 static const netdev_features_t null_features = 0;
2292 struct net_device *dev = skb->dev;
2293 const char *driver = "";
2294
2295 if (!net_ratelimit())
2296 return;
2297
2298 if (dev && dev->dev.parent)
2299 driver = dev_driver_string(dev->dev.parent);
2300
2301 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2302 "gso_type=%d ip_summed=%d\n",
2303 driver, dev ? &dev->features : &null_features,
2304 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2305 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2306 skb_shinfo(skb)->gso_type, skb->ip_summed);
2307 }
2308
2309 /*
2310 * Invalidate hardware checksum when packet is to be mangled, and
2311 * complete checksum manually on outgoing path.
2312 */
2313 int skb_checksum_help(struct sk_buff *skb)
2314 {
2315 __wsum csum;
2316 int ret = 0, offset;
2317
2318 if (skb->ip_summed == CHECKSUM_COMPLETE)
2319 goto out_set_summed;
2320
2321 if (unlikely(skb_shinfo(skb)->gso_size)) {
2322 skb_warn_bad_offload(skb);
2323 return -EINVAL;
2324 }
2325
2326 /* Before computing a checksum, we should make sure no frag could
2327 * be modified by an external entity : checksum could be wrong.
2328 */
2329 if (skb_has_shared_frag(skb)) {
2330 ret = __skb_linearize(skb);
2331 if (ret)
2332 goto out;
2333 }
2334
2335 offset = skb_checksum_start_offset(skb);
2336 BUG_ON(offset >= skb_headlen(skb));
2337 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2338
2339 offset += skb->csum_offset;
2340 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2341
2342 if (skb_cloned(skb) &&
2343 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2344 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2345 if (ret)
2346 goto out;
2347 }
2348
2349 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2350 out_set_summed:
2351 skb->ip_summed = CHECKSUM_NONE;
2352 out:
2353 return ret;
2354 }
2355 EXPORT_SYMBOL(skb_checksum_help);
2356
2357 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2358 {
2359 unsigned int vlan_depth = skb->mac_len;
2360 __be16 type = skb->protocol;
2361
2362 /* Tunnel gso handlers can set protocol to ethernet. */
2363 if (type == htons(ETH_P_TEB)) {
2364 struct ethhdr *eth;
2365
2366 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2367 return 0;
2368
2369 eth = (struct ethhdr *)skb_mac_header(skb);
2370 type = eth->h_proto;
2371 }
2372
2373 /* if skb->protocol is 802.1Q/AD then the header should already be
2374 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2375 * ETH_HLEN otherwise
2376 */
2377 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2378 if (vlan_depth) {
2379 if (WARN_ON(vlan_depth < VLAN_HLEN))
2380 return 0;
2381 vlan_depth -= VLAN_HLEN;
2382 } else {
2383 vlan_depth = ETH_HLEN;
2384 }
2385 do {
2386 struct vlan_hdr *vh;
2387
2388 if (unlikely(!pskb_may_pull(skb,
2389 vlan_depth + VLAN_HLEN)))
2390 return 0;
2391
2392 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2393 type = vh->h_vlan_encapsulated_proto;
2394 vlan_depth += VLAN_HLEN;
2395 } while (type == htons(ETH_P_8021Q) ||
2396 type == htons(ETH_P_8021AD));
2397 }
2398
2399 *depth = vlan_depth;
2400
2401 return type;
2402 }
2403
2404 /**
2405 * skb_mac_gso_segment - mac layer segmentation handler.
2406 * @skb: buffer to segment
2407 * @features: features for the output path (see dev->features)
2408 */
2409 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2410 netdev_features_t features)
2411 {
2412 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2413 struct packet_offload *ptype;
2414 int vlan_depth = skb->mac_len;
2415 __be16 type = skb_network_protocol(skb, &vlan_depth);
2416
2417 if (unlikely(!type))
2418 return ERR_PTR(-EINVAL);
2419
2420 __skb_pull(skb, vlan_depth);
2421
2422 rcu_read_lock();
2423 list_for_each_entry_rcu(ptype, &offload_base, list) {
2424 if (ptype->type == type && ptype->callbacks.gso_segment) {
2425 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2426 int err;
2427
2428 err = ptype->callbacks.gso_send_check(skb);
2429 segs = ERR_PTR(err);
2430 if (err || skb_gso_ok(skb, features))
2431 break;
2432 __skb_push(skb, (skb->data -
2433 skb_network_header(skb)));
2434 }
2435 segs = ptype->callbacks.gso_segment(skb, features);
2436 break;
2437 }
2438 }
2439 rcu_read_unlock();
2440
2441 __skb_push(skb, skb->data - skb_mac_header(skb));
2442
2443 return segs;
2444 }
2445 EXPORT_SYMBOL(skb_mac_gso_segment);
2446
2447
2448 /* openvswitch calls this on rx path, so we need a different check.
2449 */
2450 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2451 {
2452 if (tx_path)
2453 return skb->ip_summed != CHECKSUM_PARTIAL;
2454 else
2455 return skb->ip_summed == CHECKSUM_NONE;
2456 }
2457
2458 /**
2459 * __skb_gso_segment - Perform segmentation on skb.
2460 * @skb: buffer to segment
2461 * @features: features for the output path (see dev->features)
2462 * @tx_path: whether it is called in TX path
2463 *
2464 * This function segments the given skb and returns a list of segments.
2465 *
2466 * It may return NULL if the skb requires no segmentation. This is
2467 * only possible when GSO is used for verifying header integrity.
2468 */
2469 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2470 netdev_features_t features, bool tx_path)
2471 {
2472 if (unlikely(skb_needs_check(skb, tx_path))) {
2473 int err;
2474
2475 skb_warn_bad_offload(skb);
2476
2477 err = skb_cow_head(skb, 0);
2478 if (err < 0)
2479 return ERR_PTR(err);
2480 }
2481
2482 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2483 SKB_GSO_CB(skb)->encap_level = 0;
2484
2485 skb_reset_mac_header(skb);
2486 skb_reset_mac_len(skb);
2487
2488 return skb_mac_gso_segment(skb, features);
2489 }
2490 EXPORT_SYMBOL(__skb_gso_segment);
2491
2492 /* Take action when hardware reception checksum errors are detected. */
2493 #ifdef CONFIG_BUG
2494 void netdev_rx_csum_fault(struct net_device *dev)
2495 {
2496 if (net_ratelimit()) {
2497 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2498 dump_stack();
2499 }
2500 }
2501 EXPORT_SYMBOL(netdev_rx_csum_fault);
2502 #endif
2503
2504 /* Actually, we should eliminate this check as soon as we know, that:
2505 * 1. IOMMU is present and allows to map all the memory.
2506 * 2. No high memory really exists on this machine.
2507 */
2508
2509 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2510 {
2511 #ifdef CONFIG_HIGHMEM
2512 int i;
2513 if (!(dev->features & NETIF_F_HIGHDMA)) {
2514 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2515 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2516 if (PageHighMem(skb_frag_page(frag)))
2517 return 1;
2518 }
2519 }
2520
2521 if (PCI_DMA_BUS_IS_PHYS) {
2522 struct device *pdev = dev->dev.parent;
2523
2524 if (!pdev)
2525 return 0;
2526 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2527 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2528 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2529 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2530 return 1;
2531 }
2532 }
2533 #endif
2534 return 0;
2535 }
2536
2537 /* If MPLS offload request, verify we are testing hardware MPLS features
2538 * instead of standard features for the netdev.
2539 */
2540 #ifdef CONFIG_NET_MPLS_GSO
2541 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2542 netdev_features_t features,
2543 __be16 type)
2544 {
2545 if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC))
2546 features &= skb->dev->mpls_features;
2547
2548 return features;
2549 }
2550 #else
2551 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2552 netdev_features_t features,
2553 __be16 type)
2554 {
2555 return features;
2556 }
2557 #endif
2558
2559 static netdev_features_t harmonize_features(struct sk_buff *skb,
2560 netdev_features_t features)
2561 {
2562 int tmp;
2563 __be16 type;
2564
2565 type = skb_network_protocol(skb, &tmp);
2566 features = net_mpls_features(skb, features, type);
2567
2568 if (skb->ip_summed != CHECKSUM_NONE &&
2569 !can_checksum_protocol(features, type)) {
2570 features &= ~NETIF_F_ALL_CSUM;
2571 } else if (illegal_highdma(skb->dev, skb)) {
2572 features &= ~NETIF_F_SG;
2573 }
2574
2575 return features;
2576 }
2577
2578 netdev_features_t netif_skb_features(struct sk_buff *skb)
2579 {
2580 __be16 protocol = skb->protocol;
2581 netdev_features_t features = skb->dev->features;
2582
2583 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2584 features &= ~NETIF_F_GSO_MASK;
2585
2586 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2587 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2588 protocol = veh->h_vlan_encapsulated_proto;
2589 } else if (!vlan_tx_tag_present(skb)) {
2590 return harmonize_features(skb, features);
2591 }
2592
2593 features = netdev_intersect_features(features,
2594 skb->dev->vlan_features |
2595 NETIF_F_HW_VLAN_CTAG_TX |
2596 NETIF_F_HW_VLAN_STAG_TX);
2597
2598 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2599 features = netdev_intersect_features(features,
2600 NETIF_F_SG |
2601 NETIF_F_HIGHDMA |
2602 NETIF_F_FRAGLIST |
2603 NETIF_F_GEN_CSUM |
2604 NETIF_F_HW_VLAN_CTAG_TX |
2605 NETIF_F_HW_VLAN_STAG_TX);
2606
2607 return harmonize_features(skb, features);
2608 }
2609 EXPORT_SYMBOL(netif_skb_features);
2610
2611 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2612 struct netdev_queue *txq, bool more)
2613 {
2614 unsigned int len;
2615 int rc;
2616
2617 if (!list_empty(&ptype_all))
2618 dev_queue_xmit_nit(skb, dev);
2619
2620 len = skb->len;
2621 trace_net_dev_start_xmit(skb, dev);
2622 rc = netdev_start_xmit(skb, dev, txq, more);
2623 trace_net_dev_xmit(skb, rc, dev, len);
2624
2625 return rc;
2626 }
2627
2628 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2629 struct netdev_queue *txq, int *ret)
2630 {
2631 struct sk_buff *skb = first;
2632 int rc = NETDEV_TX_OK;
2633
2634 while (skb) {
2635 struct sk_buff *next = skb->next;
2636
2637 skb->next = NULL;
2638 rc = xmit_one(skb, dev, txq, next != NULL);
2639 if (unlikely(!dev_xmit_complete(rc))) {
2640 skb->next = next;
2641 goto out;
2642 }
2643
2644 skb = next;
2645 if (netif_xmit_stopped(txq) && skb) {
2646 rc = NETDEV_TX_BUSY;
2647 break;
2648 }
2649 }
2650
2651 out:
2652 *ret = rc;
2653 return skb;
2654 }
2655
2656 struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, netdev_features_t features)
2657 {
2658 if (vlan_tx_tag_present(skb) &&
2659 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2660 skb = __vlan_put_tag(skb, skb->vlan_proto,
2661 vlan_tx_tag_get(skb));
2662 if (skb)
2663 skb->vlan_tci = 0;
2664 }
2665 return skb;
2666 }
2667
2668 struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2669 {
2670 netdev_features_t features;
2671
2672 if (skb->next)
2673 return skb;
2674
2675 /* If device doesn't need skb->dst, release it right now while
2676 * its hot in this cpu cache
2677 */
2678 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2679 skb_dst_drop(skb);
2680
2681 features = netif_skb_features(skb);
2682 skb = validate_xmit_vlan(skb, features);
2683 if (unlikely(!skb))
2684 goto out_null;
2685
2686 /* If encapsulation offload request, verify we are testing
2687 * hardware encapsulation features instead of standard
2688 * features for the netdev
2689 */
2690 if (skb->encapsulation)
2691 features &= dev->hw_enc_features;
2692
2693 if (netif_needs_gso(skb, features)) {
2694 struct sk_buff *segs;
2695
2696 segs = skb_gso_segment(skb, features);
2697 kfree_skb(skb);
2698 if (IS_ERR(segs))
2699 segs = NULL;
2700 skb = segs;
2701 } else {
2702 if (skb_needs_linearize(skb, features) &&
2703 __skb_linearize(skb))
2704 goto out_kfree_skb;
2705
2706 /* If packet is not checksummed and device does not
2707 * support checksumming for this protocol, complete
2708 * checksumming here.
2709 */
2710 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2711 if (skb->encapsulation)
2712 skb_set_inner_transport_header(skb,
2713 skb_checksum_start_offset(skb));
2714 else
2715 skb_set_transport_header(skb,
2716 skb_checksum_start_offset(skb));
2717 if (!(features & NETIF_F_ALL_CSUM) &&
2718 skb_checksum_help(skb))
2719 goto out_kfree_skb;
2720 }
2721 }
2722
2723 return skb;
2724
2725 out_kfree_skb:
2726 kfree_skb(skb);
2727 out_null:
2728 return NULL;
2729 }
2730
2731 static void qdisc_pkt_len_init(struct sk_buff *skb)
2732 {
2733 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2734
2735 qdisc_skb_cb(skb)->pkt_len = skb->len;
2736
2737 /* To get more precise estimation of bytes sent on wire,
2738 * we add to pkt_len the headers size of all segments
2739 */
2740 if (shinfo->gso_size) {
2741 unsigned int hdr_len;
2742 u16 gso_segs = shinfo->gso_segs;
2743
2744 /* mac layer + network layer */
2745 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2746
2747 /* + transport layer */
2748 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2749 hdr_len += tcp_hdrlen(skb);
2750 else
2751 hdr_len += sizeof(struct udphdr);
2752
2753 if (shinfo->gso_type & SKB_GSO_DODGY)
2754 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2755 shinfo->gso_size);
2756
2757 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2758 }
2759 }
2760
2761 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2762 struct net_device *dev,
2763 struct netdev_queue *txq)
2764 {
2765 spinlock_t *root_lock = qdisc_lock(q);
2766 bool contended;
2767 int rc;
2768
2769 qdisc_pkt_len_init(skb);
2770 qdisc_calculate_pkt_len(skb, q);
2771 /*
2772 * Heuristic to force contended enqueues to serialize on a
2773 * separate lock before trying to get qdisc main lock.
2774 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2775 * often and dequeue packets faster.
2776 */
2777 contended = qdisc_is_running(q);
2778 if (unlikely(contended))
2779 spin_lock(&q->busylock);
2780
2781 spin_lock(root_lock);
2782 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2783 kfree_skb(skb);
2784 rc = NET_XMIT_DROP;
2785 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2786 qdisc_run_begin(q)) {
2787 /*
2788 * This is a work-conserving queue; there are no old skbs
2789 * waiting to be sent out; and the qdisc is not running -
2790 * xmit the skb directly.
2791 */
2792 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2793 skb_dst_force(skb);
2794
2795 qdisc_bstats_update(q, skb);
2796
2797 skb = validate_xmit_skb(skb, dev);
2798 if (skb && sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2799 if (unlikely(contended)) {
2800 spin_unlock(&q->busylock);
2801 contended = false;
2802 }
2803 __qdisc_run(q);
2804 } else
2805 qdisc_run_end(q);
2806
2807 rc = NET_XMIT_SUCCESS;
2808 } else {
2809 skb_dst_force(skb);
2810 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2811 if (qdisc_run_begin(q)) {
2812 if (unlikely(contended)) {
2813 spin_unlock(&q->busylock);
2814 contended = false;
2815 }
2816 __qdisc_run(q);
2817 }
2818 }
2819 spin_unlock(root_lock);
2820 if (unlikely(contended))
2821 spin_unlock(&q->busylock);
2822 return rc;
2823 }
2824
2825 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2826 static void skb_update_prio(struct sk_buff *skb)
2827 {
2828 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2829
2830 if (!skb->priority && skb->sk && map) {
2831 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2832
2833 if (prioidx < map->priomap_len)
2834 skb->priority = map->priomap[prioidx];
2835 }
2836 }
2837 #else
2838 #define skb_update_prio(skb)
2839 #endif
2840
2841 static DEFINE_PER_CPU(int, xmit_recursion);
2842 #define RECURSION_LIMIT 10
2843
2844 /**
2845 * dev_loopback_xmit - loop back @skb
2846 * @skb: buffer to transmit
2847 */
2848 int dev_loopback_xmit(struct sk_buff *skb)
2849 {
2850 skb_reset_mac_header(skb);
2851 __skb_pull(skb, skb_network_offset(skb));
2852 skb->pkt_type = PACKET_LOOPBACK;
2853 skb->ip_summed = CHECKSUM_UNNECESSARY;
2854 WARN_ON(!skb_dst(skb));
2855 skb_dst_force(skb);
2856 netif_rx_ni(skb);
2857 return 0;
2858 }
2859 EXPORT_SYMBOL(dev_loopback_xmit);
2860
2861 /**
2862 * __dev_queue_xmit - transmit a buffer
2863 * @skb: buffer to transmit
2864 * @accel_priv: private data used for L2 forwarding offload
2865 *
2866 * Queue a buffer for transmission to a network device. The caller must
2867 * have set the device and priority and built the buffer before calling
2868 * this function. The function can be called from an interrupt.
2869 *
2870 * A negative errno code is returned on a failure. A success does not
2871 * guarantee the frame will be transmitted as it may be dropped due
2872 * to congestion or traffic shaping.
2873 *
2874 * -----------------------------------------------------------------------------------
2875 * I notice this method can also return errors from the queue disciplines,
2876 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2877 * be positive.
2878 *
2879 * Regardless of the return value, the skb is consumed, so it is currently
2880 * difficult to retry a send to this method. (You can bump the ref count
2881 * before sending to hold a reference for retry if you are careful.)
2882 *
2883 * When calling this method, interrupts MUST be enabled. This is because
2884 * the BH enable code must have IRQs enabled so that it will not deadlock.
2885 * --BLG
2886 */
2887 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2888 {
2889 struct net_device *dev = skb->dev;
2890 struct netdev_queue *txq;
2891 struct Qdisc *q;
2892 int rc = -ENOMEM;
2893
2894 skb_reset_mac_header(skb);
2895
2896 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2897 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2898
2899 /* Disable soft irqs for various locks below. Also
2900 * stops preemption for RCU.
2901 */
2902 rcu_read_lock_bh();
2903
2904 skb_update_prio(skb);
2905
2906 txq = netdev_pick_tx(dev, skb, accel_priv);
2907 q = rcu_dereference_bh(txq->qdisc);
2908
2909 #ifdef CONFIG_NET_CLS_ACT
2910 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2911 #endif
2912 trace_net_dev_queue(skb);
2913 if (q->enqueue) {
2914 rc = __dev_xmit_skb(skb, q, dev, txq);
2915 goto out;
2916 }
2917
2918 /* The device has no queue. Common case for software devices:
2919 loopback, all the sorts of tunnels...
2920
2921 Really, it is unlikely that netif_tx_lock protection is necessary
2922 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2923 counters.)
2924 However, it is possible, that they rely on protection
2925 made by us here.
2926
2927 Check this and shot the lock. It is not prone from deadlocks.
2928 Either shot noqueue qdisc, it is even simpler 8)
2929 */
2930 if (dev->flags & IFF_UP) {
2931 int cpu = smp_processor_id(); /* ok because BHs are off */
2932
2933 if (txq->xmit_lock_owner != cpu) {
2934
2935 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2936 goto recursion_alert;
2937
2938 skb = validate_xmit_skb(skb, dev);
2939 if (!skb)
2940 goto drop;
2941
2942 HARD_TX_LOCK(dev, txq, cpu);
2943
2944 if (!netif_xmit_stopped(txq)) {
2945 __this_cpu_inc(xmit_recursion);
2946 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2947 __this_cpu_dec(xmit_recursion);
2948 if (dev_xmit_complete(rc)) {
2949 HARD_TX_UNLOCK(dev, txq);
2950 goto out;
2951 }
2952 }
2953 HARD_TX_UNLOCK(dev, txq);
2954 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2955 dev->name);
2956 } else {
2957 /* Recursion is detected! It is possible,
2958 * unfortunately
2959 */
2960 recursion_alert:
2961 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2962 dev->name);
2963 }
2964 }
2965
2966 rc = -ENETDOWN;
2967 drop:
2968 rcu_read_unlock_bh();
2969
2970 atomic_long_inc(&dev->tx_dropped);
2971 kfree_skb_list(skb);
2972 return rc;
2973 out:
2974 rcu_read_unlock_bh();
2975 return rc;
2976 }
2977
2978 int dev_queue_xmit(struct sk_buff *skb)
2979 {
2980 return __dev_queue_xmit(skb, NULL);
2981 }
2982 EXPORT_SYMBOL(dev_queue_xmit);
2983
2984 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2985 {
2986 return __dev_queue_xmit(skb, accel_priv);
2987 }
2988 EXPORT_SYMBOL(dev_queue_xmit_accel);
2989
2990
2991 /*=======================================================================
2992 Receiver routines
2993 =======================================================================*/
2994
2995 int netdev_max_backlog __read_mostly = 1000;
2996 EXPORT_SYMBOL(netdev_max_backlog);
2997
2998 int netdev_tstamp_prequeue __read_mostly = 1;
2999 int netdev_budget __read_mostly = 300;
3000 int weight_p __read_mostly = 64; /* old backlog weight */
3001
3002 /* Called with irq disabled */
3003 static inline void ____napi_schedule(struct softnet_data *sd,
3004 struct napi_struct *napi)
3005 {
3006 list_add_tail(&napi->poll_list, &sd->poll_list);
3007 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3008 }
3009
3010 #ifdef CONFIG_RPS
3011
3012 /* One global table that all flow-based protocols share. */
3013 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3014 EXPORT_SYMBOL(rps_sock_flow_table);
3015
3016 struct static_key rps_needed __read_mostly;
3017
3018 static struct rps_dev_flow *
3019 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3020 struct rps_dev_flow *rflow, u16 next_cpu)
3021 {
3022 if (next_cpu != RPS_NO_CPU) {
3023 #ifdef CONFIG_RFS_ACCEL
3024 struct netdev_rx_queue *rxqueue;
3025 struct rps_dev_flow_table *flow_table;
3026 struct rps_dev_flow *old_rflow;
3027 u32 flow_id;
3028 u16 rxq_index;
3029 int rc;
3030
3031 /* Should we steer this flow to a different hardware queue? */
3032 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3033 !(dev->features & NETIF_F_NTUPLE))
3034 goto out;
3035 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3036 if (rxq_index == skb_get_rx_queue(skb))
3037 goto out;
3038
3039 rxqueue = dev->_rx + rxq_index;
3040 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3041 if (!flow_table)
3042 goto out;
3043 flow_id = skb_get_hash(skb) & flow_table->mask;
3044 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3045 rxq_index, flow_id);
3046 if (rc < 0)
3047 goto out;
3048 old_rflow = rflow;
3049 rflow = &flow_table->flows[flow_id];
3050 rflow->filter = rc;
3051 if (old_rflow->filter == rflow->filter)
3052 old_rflow->filter = RPS_NO_FILTER;
3053 out:
3054 #endif
3055 rflow->last_qtail =
3056 per_cpu(softnet_data, next_cpu).input_queue_head;
3057 }
3058
3059 rflow->cpu = next_cpu;
3060 return rflow;
3061 }
3062
3063 /*
3064 * get_rps_cpu is called from netif_receive_skb and returns the target
3065 * CPU from the RPS map of the receiving queue for a given skb.
3066 * rcu_read_lock must be held on entry.
3067 */
3068 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3069 struct rps_dev_flow **rflowp)
3070 {
3071 struct netdev_rx_queue *rxqueue;
3072 struct rps_map *map;
3073 struct rps_dev_flow_table *flow_table;
3074 struct rps_sock_flow_table *sock_flow_table;
3075 int cpu = -1;
3076 u16 tcpu;
3077 u32 hash;
3078
3079 if (skb_rx_queue_recorded(skb)) {
3080 u16 index = skb_get_rx_queue(skb);
3081 if (unlikely(index >= dev->real_num_rx_queues)) {
3082 WARN_ONCE(dev->real_num_rx_queues > 1,
3083 "%s received packet on queue %u, but number "
3084 "of RX queues is %u\n",
3085 dev->name, index, dev->real_num_rx_queues);
3086 goto done;
3087 }
3088 rxqueue = dev->_rx + index;
3089 } else
3090 rxqueue = dev->_rx;
3091
3092 map = rcu_dereference(rxqueue->rps_map);
3093 if (map) {
3094 if (map->len == 1 &&
3095 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3096 tcpu = map->cpus[0];
3097 if (cpu_online(tcpu))
3098 cpu = tcpu;
3099 goto done;
3100 }
3101 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3102 goto done;
3103 }
3104
3105 skb_reset_network_header(skb);
3106 hash = skb_get_hash(skb);
3107 if (!hash)
3108 goto done;
3109
3110 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3111 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3112 if (flow_table && sock_flow_table) {
3113 u16 next_cpu;
3114 struct rps_dev_flow *rflow;
3115
3116 rflow = &flow_table->flows[hash & flow_table->mask];
3117 tcpu = rflow->cpu;
3118
3119 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3120
3121 /*
3122 * If the desired CPU (where last recvmsg was done) is
3123 * different from current CPU (one in the rx-queue flow
3124 * table entry), switch if one of the following holds:
3125 * - Current CPU is unset (equal to RPS_NO_CPU).
3126 * - Current CPU is offline.
3127 * - The current CPU's queue tail has advanced beyond the
3128 * last packet that was enqueued using this table entry.
3129 * This guarantees that all previous packets for the flow
3130 * have been dequeued, thus preserving in order delivery.
3131 */
3132 if (unlikely(tcpu != next_cpu) &&
3133 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3134 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3135 rflow->last_qtail)) >= 0)) {
3136 tcpu = next_cpu;
3137 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3138 }
3139
3140 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3141 *rflowp = rflow;
3142 cpu = tcpu;
3143 goto done;
3144 }
3145 }
3146
3147 if (map) {
3148 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3149 if (cpu_online(tcpu)) {
3150 cpu = tcpu;
3151 goto done;
3152 }
3153 }
3154
3155 done:
3156 return cpu;
3157 }
3158
3159 #ifdef CONFIG_RFS_ACCEL
3160
3161 /**
3162 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3163 * @dev: Device on which the filter was set
3164 * @rxq_index: RX queue index
3165 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3166 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3167 *
3168 * Drivers that implement ndo_rx_flow_steer() should periodically call
3169 * this function for each installed filter and remove the filters for
3170 * which it returns %true.
3171 */
3172 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3173 u32 flow_id, u16 filter_id)
3174 {
3175 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3176 struct rps_dev_flow_table *flow_table;
3177 struct rps_dev_flow *rflow;
3178 bool expire = true;
3179 int cpu;
3180
3181 rcu_read_lock();
3182 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3183 if (flow_table && flow_id <= flow_table->mask) {
3184 rflow = &flow_table->flows[flow_id];
3185 cpu = ACCESS_ONCE(rflow->cpu);
3186 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3187 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3188 rflow->last_qtail) <
3189 (int)(10 * flow_table->mask)))
3190 expire = false;
3191 }
3192 rcu_read_unlock();
3193 return expire;
3194 }
3195 EXPORT_SYMBOL(rps_may_expire_flow);
3196
3197 #endif /* CONFIG_RFS_ACCEL */
3198
3199 /* Called from hardirq (IPI) context */
3200 static void rps_trigger_softirq(void *data)
3201 {
3202 struct softnet_data *sd = data;
3203
3204 ____napi_schedule(sd, &sd->backlog);
3205 sd->received_rps++;
3206 }
3207
3208 #endif /* CONFIG_RPS */
3209
3210 /*
3211 * Check if this softnet_data structure is another cpu one
3212 * If yes, queue it to our IPI list and return 1
3213 * If no, return 0
3214 */
3215 static int rps_ipi_queued(struct softnet_data *sd)
3216 {
3217 #ifdef CONFIG_RPS
3218 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3219
3220 if (sd != mysd) {
3221 sd->rps_ipi_next = mysd->rps_ipi_list;
3222 mysd->rps_ipi_list = sd;
3223
3224 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3225 return 1;
3226 }
3227 #endif /* CONFIG_RPS */
3228 return 0;
3229 }
3230
3231 #ifdef CONFIG_NET_FLOW_LIMIT
3232 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3233 #endif
3234
3235 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3236 {
3237 #ifdef CONFIG_NET_FLOW_LIMIT
3238 struct sd_flow_limit *fl;
3239 struct softnet_data *sd;
3240 unsigned int old_flow, new_flow;
3241
3242 if (qlen < (netdev_max_backlog >> 1))
3243 return false;
3244
3245 sd = &__get_cpu_var(softnet_data);
3246
3247 rcu_read_lock();
3248 fl = rcu_dereference(sd->flow_limit);
3249 if (fl) {
3250 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3251 old_flow = fl->history[fl->history_head];
3252 fl->history[fl->history_head] = new_flow;
3253
3254 fl->history_head++;
3255 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3256
3257 if (likely(fl->buckets[old_flow]))
3258 fl->buckets[old_flow]--;
3259
3260 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3261 fl->count++;
3262 rcu_read_unlock();
3263 return true;
3264 }
3265 }
3266 rcu_read_unlock();
3267 #endif
3268 return false;
3269 }
3270
3271 /*
3272 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3273 * queue (may be a remote CPU queue).
3274 */
3275 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3276 unsigned int *qtail)
3277 {
3278 struct softnet_data *sd;
3279 unsigned long flags;
3280 unsigned int qlen;
3281
3282 sd = &per_cpu(softnet_data, cpu);
3283
3284 local_irq_save(flags);
3285
3286 rps_lock(sd);
3287 qlen = skb_queue_len(&sd->input_pkt_queue);
3288 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3289 if (skb_queue_len(&sd->input_pkt_queue)) {
3290 enqueue:
3291 __skb_queue_tail(&sd->input_pkt_queue, skb);
3292 input_queue_tail_incr_save(sd, qtail);
3293 rps_unlock(sd);
3294 local_irq_restore(flags);
3295 return NET_RX_SUCCESS;
3296 }
3297
3298 /* Schedule NAPI for backlog device
3299 * We can use non atomic operation since we own the queue lock
3300 */
3301 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3302 if (!rps_ipi_queued(sd))
3303 ____napi_schedule(sd, &sd->backlog);
3304 }
3305 goto enqueue;
3306 }
3307
3308 sd->dropped++;
3309 rps_unlock(sd);
3310
3311 local_irq_restore(flags);
3312
3313 atomic_long_inc(&skb->dev->rx_dropped);
3314 kfree_skb(skb);
3315 return NET_RX_DROP;
3316 }
3317
3318 static int netif_rx_internal(struct sk_buff *skb)
3319 {
3320 int ret;
3321
3322 net_timestamp_check(netdev_tstamp_prequeue, skb);
3323
3324 trace_netif_rx(skb);
3325 #ifdef CONFIG_RPS
3326 if (static_key_false(&rps_needed)) {
3327 struct rps_dev_flow voidflow, *rflow = &voidflow;
3328 int cpu;
3329
3330 preempt_disable();
3331 rcu_read_lock();
3332
3333 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3334 if (cpu < 0)
3335 cpu = smp_processor_id();
3336
3337 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3338
3339 rcu_read_unlock();
3340 preempt_enable();
3341 } else
3342 #endif
3343 {
3344 unsigned int qtail;
3345 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3346 put_cpu();
3347 }
3348 return ret;
3349 }
3350
3351 /**
3352 * netif_rx - post buffer to the network code
3353 * @skb: buffer to post
3354 *
3355 * This function receives a packet from a device driver and queues it for
3356 * the upper (protocol) levels to process. It always succeeds. The buffer
3357 * may be dropped during processing for congestion control or by the
3358 * protocol layers.
3359 *
3360 * return values:
3361 * NET_RX_SUCCESS (no congestion)
3362 * NET_RX_DROP (packet was dropped)
3363 *
3364 */
3365
3366 int netif_rx(struct sk_buff *skb)
3367 {
3368 trace_netif_rx_entry(skb);
3369
3370 return netif_rx_internal(skb);
3371 }
3372 EXPORT_SYMBOL(netif_rx);
3373
3374 int netif_rx_ni(struct sk_buff *skb)
3375 {
3376 int err;
3377
3378 trace_netif_rx_ni_entry(skb);
3379
3380 preempt_disable();
3381 err = netif_rx_internal(skb);
3382 if (local_softirq_pending())
3383 do_softirq();
3384 preempt_enable();
3385
3386 return err;
3387 }
3388 EXPORT_SYMBOL(netif_rx_ni);
3389
3390 static void net_tx_action(struct softirq_action *h)
3391 {
3392 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3393
3394 if (sd->completion_queue) {
3395 struct sk_buff *clist;
3396
3397 local_irq_disable();
3398 clist = sd->completion_queue;
3399 sd->completion_queue = NULL;
3400 local_irq_enable();
3401
3402 while (clist) {
3403 struct sk_buff *skb = clist;
3404 clist = clist->next;
3405
3406 WARN_ON(atomic_read(&skb->users));
3407 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3408 trace_consume_skb(skb);
3409 else
3410 trace_kfree_skb(skb, net_tx_action);
3411 __kfree_skb(skb);
3412 }
3413 }
3414
3415 if (sd->output_queue) {
3416 struct Qdisc *head;
3417
3418 local_irq_disable();
3419 head = sd->output_queue;
3420 sd->output_queue = NULL;
3421 sd->output_queue_tailp = &sd->output_queue;
3422 local_irq_enable();
3423
3424 while (head) {
3425 struct Qdisc *q = head;
3426 spinlock_t *root_lock;
3427
3428 head = head->next_sched;
3429
3430 root_lock = qdisc_lock(q);
3431 if (spin_trylock(root_lock)) {
3432 smp_mb__before_atomic();
3433 clear_bit(__QDISC_STATE_SCHED,
3434 &q->state);
3435 qdisc_run(q);
3436 spin_unlock(root_lock);
3437 } else {
3438 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3439 &q->state)) {
3440 __netif_reschedule(q);
3441 } else {
3442 smp_mb__before_atomic();
3443 clear_bit(__QDISC_STATE_SCHED,
3444 &q->state);
3445 }
3446 }
3447 }
3448 }
3449 }
3450
3451 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3452 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3453 /* This hook is defined here for ATM LANE */
3454 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3455 unsigned char *addr) __read_mostly;
3456 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3457 #endif
3458
3459 #ifdef CONFIG_NET_CLS_ACT
3460 /* TODO: Maybe we should just force sch_ingress to be compiled in
3461 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3462 * a compare and 2 stores extra right now if we dont have it on
3463 * but have CONFIG_NET_CLS_ACT
3464 * NOTE: This doesn't stop any functionality; if you dont have
3465 * the ingress scheduler, you just can't add policies on ingress.
3466 *
3467 */
3468 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3469 {
3470 struct net_device *dev = skb->dev;
3471 u32 ttl = G_TC_RTTL(skb->tc_verd);
3472 int result = TC_ACT_OK;
3473 struct Qdisc *q;
3474
3475 if (unlikely(MAX_RED_LOOP < ttl++)) {
3476 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3477 skb->skb_iif, dev->ifindex);
3478 return TC_ACT_SHOT;
3479 }
3480
3481 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3482 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3483
3484 q = rcu_dereference(rxq->qdisc);
3485 if (q != &noop_qdisc) {
3486 spin_lock(qdisc_lock(q));
3487 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3488 result = qdisc_enqueue_root(skb, q);
3489 spin_unlock(qdisc_lock(q));
3490 }
3491
3492 return result;
3493 }
3494
3495 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3496 struct packet_type **pt_prev,
3497 int *ret, struct net_device *orig_dev)
3498 {
3499 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3500
3501 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3502 goto out;
3503
3504 if (*pt_prev) {
3505 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3506 *pt_prev = NULL;
3507 }
3508
3509 switch (ing_filter(skb, rxq)) {
3510 case TC_ACT_SHOT:
3511 case TC_ACT_STOLEN:
3512 kfree_skb(skb);
3513 return NULL;
3514 }
3515
3516 out:
3517 skb->tc_verd = 0;
3518 return skb;
3519 }
3520 #endif
3521
3522 /**
3523 * netdev_rx_handler_register - register receive handler
3524 * @dev: device to register a handler for
3525 * @rx_handler: receive handler to register
3526 * @rx_handler_data: data pointer that is used by rx handler
3527 *
3528 * Register a receive handler for a device. This handler will then be
3529 * called from __netif_receive_skb. A negative errno code is returned
3530 * on a failure.
3531 *
3532 * The caller must hold the rtnl_mutex.
3533 *
3534 * For a general description of rx_handler, see enum rx_handler_result.
3535 */
3536 int netdev_rx_handler_register(struct net_device *dev,
3537 rx_handler_func_t *rx_handler,
3538 void *rx_handler_data)
3539 {
3540 ASSERT_RTNL();
3541
3542 if (dev->rx_handler)
3543 return -EBUSY;
3544
3545 /* Note: rx_handler_data must be set before rx_handler */
3546 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3547 rcu_assign_pointer(dev->rx_handler, rx_handler);
3548
3549 return 0;
3550 }
3551 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3552
3553 /**
3554 * netdev_rx_handler_unregister - unregister receive handler
3555 * @dev: device to unregister a handler from
3556 *
3557 * Unregister a receive handler from a device.
3558 *
3559 * The caller must hold the rtnl_mutex.
3560 */
3561 void netdev_rx_handler_unregister(struct net_device *dev)
3562 {
3563
3564 ASSERT_RTNL();
3565 RCU_INIT_POINTER(dev->rx_handler, NULL);
3566 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3567 * section has a guarantee to see a non NULL rx_handler_data
3568 * as well.
3569 */
3570 synchronize_net();
3571 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3572 }
3573 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3574
3575 /*
3576 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3577 * the special handling of PFMEMALLOC skbs.
3578 */
3579 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3580 {
3581 switch (skb->protocol) {
3582 case htons(ETH_P_ARP):
3583 case htons(ETH_P_IP):
3584 case htons(ETH_P_IPV6):
3585 case htons(ETH_P_8021Q):
3586 case htons(ETH_P_8021AD):
3587 return true;
3588 default:
3589 return false;
3590 }
3591 }
3592
3593 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3594 {
3595 struct packet_type *ptype, *pt_prev;
3596 rx_handler_func_t *rx_handler;
3597 struct net_device *orig_dev;
3598 struct net_device *null_or_dev;
3599 bool deliver_exact = false;
3600 int ret = NET_RX_DROP;
3601 __be16 type;
3602
3603 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3604
3605 trace_netif_receive_skb(skb);
3606
3607 orig_dev = skb->dev;
3608
3609 skb_reset_network_header(skb);
3610 if (!skb_transport_header_was_set(skb))
3611 skb_reset_transport_header(skb);
3612 skb_reset_mac_len(skb);
3613
3614 pt_prev = NULL;
3615
3616 rcu_read_lock();
3617
3618 another_round:
3619 skb->skb_iif = skb->dev->ifindex;
3620
3621 __this_cpu_inc(softnet_data.processed);
3622
3623 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3624 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3625 skb = skb_vlan_untag(skb);
3626 if (unlikely(!skb))
3627 goto unlock;
3628 }
3629
3630 #ifdef CONFIG_NET_CLS_ACT
3631 if (skb->tc_verd & TC_NCLS) {
3632 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3633 goto ncls;
3634 }
3635 #endif
3636
3637 if (pfmemalloc)
3638 goto skip_taps;
3639
3640 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3641 if (!ptype->dev || ptype->dev == skb->dev) {
3642 if (pt_prev)
3643 ret = deliver_skb(skb, pt_prev, orig_dev);
3644 pt_prev = ptype;
3645 }
3646 }
3647
3648 skip_taps:
3649 #ifdef CONFIG_NET_CLS_ACT
3650 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3651 if (!skb)
3652 goto unlock;
3653 ncls:
3654 #endif
3655
3656 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3657 goto drop;
3658
3659 if (vlan_tx_tag_present(skb)) {
3660 if (pt_prev) {
3661 ret = deliver_skb(skb, pt_prev, orig_dev);
3662 pt_prev = NULL;
3663 }
3664 if (vlan_do_receive(&skb))
3665 goto another_round;
3666 else if (unlikely(!skb))
3667 goto unlock;
3668 }
3669
3670 rx_handler = rcu_dereference(skb->dev->rx_handler);
3671 if (rx_handler) {
3672 if (pt_prev) {
3673 ret = deliver_skb(skb, pt_prev, orig_dev);
3674 pt_prev = NULL;
3675 }
3676 switch (rx_handler(&skb)) {
3677 case RX_HANDLER_CONSUMED:
3678 ret = NET_RX_SUCCESS;
3679 goto unlock;
3680 case RX_HANDLER_ANOTHER:
3681 goto another_round;
3682 case RX_HANDLER_EXACT:
3683 deliver_exact = true;
3684 case RX_HANDLER_PASS:
3685 break;
3686 default:
3687 BUG();
3688 }
3689 }
3690
3691 if (unlikely(vlan_tx_tag_present(skb))) {
3692 if (vlan_tx_tag_get_id(skb))
3693 skb->pkt_type = PACKET_OTHERHOST;
3694 /* Note: we might in the future use prio bits
3695 * and set skb->priority like in vlan_do_receive()
3696 * For the time being, just ignore Priority Code Point
3697 */
3698 skb->vlan_tci = 0;
3699 }
3700
3701 /* deliver only exact match when indicated */
3702 null_or_dev = deliver_exact ? skb->dev : NULL;
3703
3704 type = skb->protocol;
3705 list_for_each_entry_rcu(ptype,
3706 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3707 if (ptype->type == type &&
3708 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3709 ptype->dev == orig_dev)) {
3710 if (pt_prev)
3711 ret = deliver_skb(skb, pt_prev, orig_dev);
3712 pt_prev = ptype;
3713 }
3714 }
3715
3716 if (pt_prev) {
3717 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3718 goto drop;
3719 else
3720 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3721 } else {
3722 drop:
3723 atomic_long_inc(&skb->dev->rx_dropped);
3724 kfree_skb(skb);
3725 /* Jamal, now you will not able to escape explaining
3726 * me how you were going to use this. :-)
3727 */
3728 ret = NET_RX_DROP;
3729 }
3730
3731 unlock:
3732 rcu_read_unlock();
3733 return ret;
3734 }
3735
3736 static int __netif_receive_skb(struct sk_buff *skb)
3737 {
3738 int ret;
3739
3740 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3741 unsigned long pflags = current->flags;
3742
3743 /*
3744 * PFMEMALLOC skbs are special, they should
3745 * - be delivered to SOCK_MEMALLOC sockets only
3746 * - stay away from userspace
3747 * - have bounded memory usage
3748 *
3749 * Use PF_MEMALLOC as this saves us from propagating the allocation
3750 * context down to all allocation sites.
3751 */
3752 current->flags |= PF_MEMALLOC;
3753 ret = __netif_receive_skb_core(skb, true);
3754 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3755 } else
3756 ret = __netif_receive_skb_core(skb, false);
3757
3758 return ret;
3759 }
3760
3761 static int netif_receive_skb_internal(struct sk_buff *skb)
3762 {
3763 net_timestamp_check(netdev_tstamp_prequeue, skb);
3764
3765 if (skb_defer_rx_timestamp(skb))
3766 return NET_RX_SUCCESS;
3767
3768 #ifdef CONFIG_RPS
3769 if (static_key_false(&rps_needed)) {
3770 struct rps_dev_flow voidflow, *rflow = &voidflow;
3771 int cpu, ret;
3772
3773 rcu_read_lock();
3774
3775 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3776
3777 if (cpu >= 0) {
3778 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3779 rcu_read_unlock();
3780 return ret;
3781 }
3782 rcu_read_unlock();
3783 }
3784 #endif
3785 return __netif_receive_skb(skb);
3786 }
3787
3788 /**
3789 * netif_receive_skb - process receive buffer from network
3790 * @skb: buffer to process
3791 *
3792 * netif_receive_skb() is the main receive data processing function.
3793 * It always succeeds. The buffer may be dropped during processing
3794 * for congestion control or by the protocol layers.
3795 *
3796 * This function may only be called from softirq context and interrupts
3797 * should be enabled.
3798 *
3799 * Return values (usually ignored):
3800 * NET_RX_SUCCESS: no congestion
3801 * NET_RX_DROP: packet was dropped
3802 */
3803 int netif_receive_skb(struct sk_buff *skb)
3804 {
3805 trace_netif_receive_skb_entry(skb);
3806
3807 return netif_receive_skb_internal(skb);
3808 }
3809 EXPORT_SYMBOL(netif_receive_skb);
3810
3811 /* Network device is going away, flush any packets still pending
3812 * Called with irqs disabled.
3813 */
3814 static void flush_backlog(void *arg)
3815 {
3816 struct net_device *dev = arg;
3817 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3818 struct sk_buff *skb, *tmp;
3819
3820 rps_lock(sd);
3821 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3822 if (skb->dev == dev) {
3823 __skb_unlink(skb, &sd->input_pkt_queue);
3824 kfree_skb(skb);
3825 input_queue_head_incr(sd);
3826 }
3827 }
3828 rps_unlock(sd);
3829
3830 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3831 if (skb->dev == dev) {
3832 __skb_unlink(skb, &sd->process_queue);
3833 kfree_skb(skb);
3834 input_queue_head_incr(sd);
3835 }
3836 }
3837 }
3838
3839 static int napi_gro_complete(struct sk_buff *skb)
3840 {
3841 struct packet_offload *ptype;
3842 __be16 type = skb->protocol;
3843 struct list_head *head = &offload_base;
3844 int err = -ENOENT;
3845
3846 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3847
3848 if (NAPI_GRO_CB(skb)->count == 1) {
3849 skb_shinfo(skb)->gso_size = 0;
3850 goto out;
3851 }
3852
3853 rcu_read_lock();
3854 list_for_each_entry_rcu(ptype, head, list) {
3855 if (ptype->type != type || !ptype->callbacks.gro_complete)
3856 continue;
3857
3858 err = ptype->callbacks.gro_complete(skb, 0);
3859 break;
3860 }
3861 rcu_read_unlock();
3862
3863 if (err) {
3864 WARN_ON(&ptype->list == head);
3865 kfree_skb(skb);
3866 return NET_RX_SUCCESS;
3867 }
3868
3869 out:
3870 return netif_receive_skb_internal(skb);
3871 }
3872
3873 /* napi->gro_list contains packets ordered by age.
3874 * youngest packets at the head of it.
3875 * Complete skbs in reverse order to reduce latencies.
3876 */
3877 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3878 {
3879 struct sk_buff *skb, *prev = NULL;
3880
3881 /* scan list and build reverse chain */
3882 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3883 skb->prev = prev;
3884 prev = skb;
3885 }
3886
3887 for (skb = prev; skb; skb = prev) {
3888 skb->next = NULL;
3889
3890 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3891 return;
3892
3893 prev = skb->prev;
3894 napi_gro_complete(skb);
3895 napi->gro_count--;
3896 }
3897
3898 napi->gro_list = NULL;
3899 }
3900 EXPORT_SYMBOL(napi_gro_flush);
3901
3902 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3903 {
3904 struct sk_buff *p;
3905 unsigned int maclen = skb->dev->hard_header_len;
3906 u32 hash = skb_get_hash_raw(skb);
3907
3908 for (p = napi->gro_list; p; p = p->next) {
3909 unsigned long diffs;
3910
3911 NAPI_GRO_CB(p)->flush = 0;
3912
3913 if (hash != skb_get_hash_raw(p)) {
3914 NAPI_GRO_CB(p)->same_flow = 0;
3915 continue;
3916 }
3917
3918 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3919 diffs |= p->vlan_tci ^ skb->vlan_tci;
3920 if (maclen == ETH_HLEN)
3921 diffs |= compare_ether_header(skb_mac_header(p),
3922 skb_mac_header(skb));
3923 else if (!diffs)
3924 diffs = memcmp(skb_mac_header(p),
3925 skb_mac_header(skb),
3926 maclen);
3927 NAPI_GRO_CB(p)->same_flow = !diffs;
3928 }
3929 }
3930
3931 static void skb_gro_reset_offset(struct sk_buff *skb)
3932 {
3933 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3934 const skb_frag_t *frag0 = &pinfo->frags[0];
3935
3936 NAPI_GRO_CB(skb)->data_offset = 0;
3937 NAPI_GRO_CB(skb)->frag0 = NULL;
3938 NAPI_GRO_CB(skb)->frag0_len = 0;
3939
3940 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3941 pinfo->nr_frags &&
3942 !PageHighMem(skb_frag_page(frag0))) {
3943 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3944 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3945 }
3946 }
3947
3948 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3949 {
3950 struct skb_shared_info *pinfo = skb_shinfo(skb);
3951
3952 BUG_ON(skb->end - skb->tail < grow);
3953
3954 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3955
3956 skb->data_len -= grow;
3957 skb->tail += grow;
3958
3959 pinfo->frags[0].page_offset += grow;
3960 skb_frag_size_sub(&pinfo->frags[0], grow);
3961
3962 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3963 skb_frag_unref(skb, 0);
3964 memmove(pinfo->frags, pinfo->frags + 1,
3965 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3966 }
3967 }
3968
3969 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3970 {
3971 struct sk_buff **pp = NULL;
3972 struct packet_offload *ptype;
3973 __be16 type = skb->protocol;
3974 struct list_head *head = &offload_base;
3975 int same_flow;
3976 enum gro_result ret;
3977 int grow;
3978
3979 if (!(skb->dev->features & NETIF_F_GRO))
3980 goto normal;
3981
3982 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
3983 goto normal;
3984
3985 gro_list_prepare(napi, skb);
3986
3987 rcu_read_lock();
3988 list_for_each_entry_rcu(ptype, head, list) {
3989 if (ptype->type != type || !ptype->callbacks.gro_receive)
3990 continue;
3991
3992 skb_set_network_header(skb, skb_gro_offset(skb));
3993 skb_reset_mac_len(skb);
3994 NAPI_GRO_CB(skb)->same_flow = 0;
3995 NAPI_GRO_CB(skb)->flush = 0;
3996 NAPI_GRO_CB(skb)->free = 0;
3997 NAPI_GRO_CB(skb)->udp_mark = 0;
3998
3999 /* Setup for GRO checksum validation */
4000 switch (skb->ip_summed) {
4001 case CHECKSUM_COMPLETE:
4002 NAPI_GRO_CB(skb)->csum = skb->csum;
4003 NAPI_GRO_CB(skb)->csum_valid = 1;
4004 NAPI_GRO_CB(skb)->csum_cnt = 0;
4005 break;
4006 case CHECKSUM_UNNECESSARY:
4007 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4008 NAPI_GRO_CB(skb)->csum_valid = 0;
4009 break;
4010 default:
4011 NAPI_GRO_CB(skb)->csum_cnt = 0;
4012 NAPI_GRO_CB(skb)->csum_valid = 0;
4013 }
4014
4015 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4016 break;
4017 }
4018 rcu_read_unlock();
4019
4020 if (&ptype->list == head)
4021 goto normal;
4022
4023 same_flow = NAPI_GRO_CB(skb)->same_flow;
4024 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4025
4026 if (pp) {
4027 struct sk_buff *nskb = *pp;
4028
4029 *pp = nskb->next;
4030 nskb->next = NULL;
4031 napi_gro_complete(nskb);
4032 napi->gro_count--;
4033 }
4034
4035 if (same_flow)
4036 goto ok;
4037
4038 if (NAPI_GRO_CB(skb)->flush)
4039 goto normal;
4040
4041 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4042 struct sk_buff *nskb = napi->gro_list;
4043
4044 /* locate the end of the list to select the 'oldest' flow */
4045 while (nskb->next) {
4046 pp = &nskb->next;
4047 nskb = *pp;
4048 }
4049 *pp = NULL;
4050 nskb->next = NULL;
4051 napi_gro_complete(nskb);
4052 } else {
4053 napi->gro_count++;
4054 }
4055 NAPI_GRO_CB(skb)->count = 1;
4056 NAPI_GRO_CB(skb)->age = jiffies;
4057 NAPI_GRO_CB(skb)->last = skb;
4058 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4059 skb->next = napi->gro_list;
4060 napi->gro_list = skb;
4061 ret = GRO_HELD;
4062
4063 pull:
4064 grow = skb_gro_offset(skb) - skb_headlen(skb);
4065 if (grow > 0)
4066 gro_pull_from_frag0(skb, grow);
4067 ok:
4068 return ret;
4069
4070 normal:
4071 ret = GRO_NORMAL;
4072 goto pull;
4073 }
4074
4075 struct packet_offload *gro_find_receive_by_type(__be16 type)
4076 {
4077 struct list_head *offload_head = &offload_base;
4078 struct packet_offload *ptype;
4079
4080 list_for_each_entry_rcu(ptype, offload_head, list) {
4081 if (ptype->type != type || !ptype->callbacks.gro_receive)
4082 continue;
4083 return ptype;
4084 }
4085 return NULL;
4086 }
4087 EXPORT_SYMBOL(gro_find_receive_by_type);
4088
4089 struct packet_offload *gro_find_complete_by_type(__be16 type)
4090 {
4091 struct list_head *offload_head = &offload_base;
4092 struct packet_offload *ptype;
4093
4094 list_for_each_entry_rcu(ptype, offload_head, list) {
4095 if (ptype->type != type || !ptype->callbacks.gro_complete)
4096 continue;
4097 return ptype;
4098 }
4099 return NULL;
4100 }
4101 EXPORT_SYMBOL(gro_find_complete_by_type);
4102
4103 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4104 {
4105 switch (ret) {
4106 case GRO_NORMAL:
4107 if (netif_receive_skb_internal(skb))
4108 ret = GRO_DROP;
4109 break;
4110
4111 case GRO_DROP:
4112 kfree_skb(skb);
4113 break;
4114
4115 case GRO_MERGED_FREE:
4116 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4117 kmem_cache_free(skbuff_head_cache, skb);
4118 else
4119 __kfree_skb(skb);
4120 break;
4121
4122 case GRO_HELD:
4123 case GRO_MERGED:
4124 break;
4125 }
4126
4127 return ret;
4128 }
4129
4130 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4131 {
4132 trace_napi_gro_receive_entry(skb);
4133
4134 skb_gro_reset_offset(skb);
4135
4136 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4137 }
4138 EXPORT_SYMBOL(napi_gro_receive);
4139
4140 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4141 {
4142 __skb_pull(skb, skb_headlen(skb));
4143 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4144 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4145 skb->vlan_tci = 0;
4146 skb->dev = napi->dev;
4147 skb->skb_iif = 0;
4148 skb->encapsulation = 0;
4149 skb_shinfo(skb)->gso_type = 0;
4150 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4151
4152 napi->skb = skb;
4153 }
4154
4155 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4156 {
4157 struct sk_buff *skb = napi->skb;
4158
4159 if (!skb) {
4160 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4161 napi->skb = skb;
4162 }
4163 return skb;
4164 }
4165 EXPORT_SYMBOL(napi_get_frags);
4166
4167 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4168 struct sk_buff *skb,
4169 gro_result_t ret)
4170 {
4171 switch (ret) {
4172 case GRO_NORMAL:
4173 case GRO_HELD:
4174 __skb_push(skb, ETH_HLEN);
4175 skb->protocol = eth_type_trans(skb, skb->dev);
4176 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4177 ret = GRO_DROP;
4178 break;
4179
4180 case GRO_DROP:
4181 case GRO_MERGED_FREE:
4182 napi_reuse_skb(napi, skb);
4183 break;
4184
4185 case GRO_MERGED:
4186 break;
4187 }
4188
4189 return ret;
4190 }
4191
4192 /* Upper GRO stack assumes network header starts at gro_offset=0
4193 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4194 * We copy ethernet header into skb->data to have a common layout.
4195 */
4196 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4197 {
4198 struct sk_buff *skb = napi->skb;
4199 const struct ethhdr *eth;
4200 unsigned int hlen = sizeof(*eth);
4201
4202 napi->skb = NULL;
4203
4204 skb_reset_mac_header(skb);
4205 skb_gro_reset_offset(skb);
4206
4207 eth = skb_gro_header_fast(skb, 0);
4208 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4209 eth = skb_gro_header_slow(skb, hlen, 0);
4210 if (unlikely(!eth)) {
4211 napi_reuse_skb(napi, skb);
4212 return NULL;
4213 }
4214 } else {
4215 gro_pull_from_frag0(skb, hlen);
4216 NAPI_GRO_CB(skb)->frag0 += hlen;
4217 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4218 }
4219 __skb_pull(skb, hlen);
4220
4221 /*
4222 * This works because the only protocols we care about don't require
4223 * special handling.
4224 * We'll fix it up properly in napi_frags_finish()
4225 */
4226 skb->protocol = eth->h_proto;
4227
4228 return skb;
4229 }
4230
4231 gro_result_t napi_gro_frags(struct napi_struct *napi)
4232 {
4233 struct sk_buff *skb = napi_frags_skb(napi);
4234
4235 if (!skb)
4236 return GRO_DROP;
4237
4238 trace_napi_gro_frags_entry(skb);
4239
4240 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4241 }
4242 EXPORT_SYMBOL(napi_gro_frags);
4243
4244 /* Compute the checksum from gro_offset and return the folded value
4245 * after adding in any pseudo checksum.
4246 */
4247 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4248 {
4249 __wsum wsum;
4250 __sum16 sum;
4251
4252 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4253
4254 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4255 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4256 if (likely(!sum)) {
4257 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4258 !skb->csum_complete_sw)
4259 netdev_rx_csum_fault(skb->dev);
4260 }
4261
4262 NAPI_GRO_CB(skb)->csum = wsum;
4263 NAPI_GRO_CB(skb)->csum_valid = 1;
4264
4265 return sum;
4266 }
4267 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4268
4269 /*
4270 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4271 * Note: called with local irq disabled, but exits with local irq enabled.
4272 */
4273 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4274 {
4275 #ifdef CONFIG_RPS
4276 struct softnet_data *remsd = sd->rps_ipi_list;
4277
4278 if (remsd) {
4279 sd->rps_ipi_list = NULL;
4280
4281 local_irq_enable();
4282
4283 /* Send pending IPI's to kick RPS processing on remote cpus. */
4284 while (remsd) {
4285 struct softnet_data *next = remsd->rps_ipi_next;
4286
4287 if (cpu_online(remsd->cpu))
4288 smp_call_function_single_async(remsd->cpu,
4289 &remsd->csd);
4290 remsd = next;
4291 }
4292 } else
4293 #endif
4294 local_irq_enable();
4295 }
4296
4297 static int process_backlog(struct napi_struct *napi, int quota)
4298 {
4299 int work = 0;
4300 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4301
4302 #ifdef CONFIG_RPS
4303 /* Check if we have pending ipi, its better to send them now,
4304 * not waiting net_rx_action() end.
4305 */
4306 if (sd->rps_ipi_list) {
4307 local_irq_disable();
4308 net_rps_action_and_irq_enable(sd);
4309 }
4310 #endif
4311 napi->weight = weight_p;
4312 local_irq_disable();
4313 while (1) {
4314 struct sk_buff *skb;
4315
4316 while ((skb = __skb_dequeue(&sd->process_queue))) {
4317 local_irq_enable();
4318 __netif_receive_skb(skb);
4319 local_irq_disable();
4320 input_queue_head_incr(sd);
4321 if (++work >= quota) {
4322 local_irq_enable();
4323 return work;
4324 }
4325 }
4326
4327 rps_lock(sd);
4328 if (skb_queue_empty(&sd->input_pkt_queue)) {
4329 /*
4330 * Inline a custom version of __napi_complete().
4331 * only current cpu owns and manipulates this napi,
4332 * and NAPI_STATE_SCHED is the only possible flag set
4333 * on backlog.
4334 * We can use a plain write instead of clear_bit(),
4335 * and we dont need an smp_mb() memory barrier.
4336 */
4337 list_del(&napi->poll_list);
4338 napi->state = 0;
4339 rps_unlock(sd);
4340
4341 break;
4342 }
4343
4344 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4345 &sd->process_queue);
4346 rps_unlock(sd);
4347 }
4348 local_irq_enable();
4349
4350 return work;
4351 }
4352
4353 /**
4354 * __napi_schedule - schedule for receive
4355 * @n: entry to schedule
4356 *
4357 * The entry's receive function will be scheduled to run
4358 */
4359 void __napi_schedule(struct napi_struct *n)
4360 {
4361 unsigned long flags;
4362
4363 local_irq_save(flags);
4364 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4365 local_irq_restore(flags);
4366 }
4367 EXPORT_SYMBOL(__napi_schedule);
4368
4369 void __napi_complete(struct napi_struct *n)
4370 {
4371 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4372 BUG_ON(n->gro_list);
4373
4374 list_del(&n->poll_list);
4375 smp_mb__before_atomic();
4376 clear_bit(NAPI_STATE_SCHED, &n->state);
4377 }
4378 EXPORT_SYMBOL(__napi_complete);
4379
4380 void napi_complete(struct napi_struct *n)
4381 {
4382 unsigned long flags;
4383
4384 /*
4385 * don't let napi dequeue from the cpu poll list
4386 * just in case its running on a different cpu
4387 */
4388 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4389 return;
4390
4391 napi_gro_flush(n, false);
4392 local_irq_save(flags);
4393 __napi_complete(n);
4394 local_irq_restore(flags);
4395 }
4396 EXPORT_SYMBOL(napi_complete);
4397
4398 /* must be called under rcu_read_lock(), as we dont take a reference */
4399 struct napi_struct *napi_by_id(unsigned int napi_id)
4400 {
4401 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4402 struct napi_struct *napi;
4403
4404 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4405 if (napi->napi_id == napi_id)
4406 return napi;
4407
4408 return NULL;
4409 }
4410 EXPORT_SYMBOL_GPL(napi_by_id);
4411
4412 void napi_hash_add(struct napi_struct *napi)
4413 {
4414 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4415
4416 spin_lock(&napi_hash_lock);
4417
4418 /* 0 is not a valid id, we also skip an id that is taken
4419 * we expect both events to be extremely rare
4420 */
4421 napi->napi_id = 0;
4422 while (!napi->napi_id) {
4423 napi->napi_id = ++napi_gen_id;
4424 if (napi_by_id(napi->napi_id))
4425 napi->napi_id = 0;
4426 }
4427
4428 hlist_add_head_rcu(&napi->napi_hash_node,
4429 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4430
4431 spin_unlock(&napi_hash_lock);
4432 }
4433 }
4434 EXPORT_SYMBOL_GPL(napi_hash_add);
4435
4436 /* Warning : caller is responsible to make sure rcu grace period
4437 * is respected before freeing memory containing @napi
4438 */
4439 void napi_hash_del(struct napi_struct *napi)
4440 {
4441 spin_lock(&napi_hash_lock);
4442
4443 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4444 hlist_del_rcu(&napi->napi_hash_node);
4445
4446 spin_unlock(&napi_hash_lock);
4447 }
4448 EXPORT_SYMBOL_GPL(napi_hash_del);
4449
4450 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4451 int (*poll)(struct napi_struct *, int), int weight)
4452 {
4453 INIT_LIST_HEAD(&napi->poll_list);
4454 napi->gro_count = 0;
4455 napi->gro_list = NULL;
4456 napi->skb = NULL;
4457 napi->poll = poll;
4458 if (weight > NAPI_POLL_WEIGHT)
4459 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4460 weight, dev->name);
4461 napi->weight = weight;
4462 list_add(&napi->dev_list, &dev->napi_list);
4463 napi->dev = dev;
4464 #ifdef CONFIG_NETPOLL
4465 spin_lock_init(&napi->poll_lock);
4466 napi->poll_owner = -1;
4467 #endif
4468 set_bit(NAPI_STATE_SCHED, &napi->state);
4469 }
4470 EXPORT_SYMBOL(netif_napi_add);
4471
4472 void netif_napi_del(struct napi_struct *napi)
4473 {
4474 list_del_init(&napi->dev_list);
4475 napi_free_frags(napi);
4476
4477 kfree_skb_list(napi->gro_list);
4478 napi->gro_list = NULL;
4479 napi->gro_count = 0;
4480 }
4481 EXPORT_SYMBOL(netif_napi_del);
4482
4483 static void net_rx_action(struct softirq_action *h)
4484 {
4485 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4486 unsigned long time_limit = jiffies + 2;
4487 int budget = netdev_budget;
4488 void *have;
4489
4490 local_irq_disable();
4491
4492 while (!list_empty(&sd->poll_list)) {
4493 struct napi_struct *n;
4494 int work, weight;
4495
4496 /* If softirq window is exhuasted then punt.
4497 * Allow this to run for 2 jiffies since which will allow
4498 * an average latency of 1.5/HZ.
4499 */
4500 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4501 goto softnet_break;
4502
4503 local_irq_enable();
4504
4505 /* Even though interrupts have been re-enabled, this
4506 * access is safe because interrupts can only add new
4507 * entries to the tail of this list, and only ->poll()
4508 * calls can remove this head entry from the list.
4509 */
4510 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4511
4512 have = netpoll_poll_lock(n);
4513
4514 weight = n->weight;
4515
4516 /* This NAPI_STATE_SCHED test is for avoiding a race
4517 * with netpoll's poll_napi(). Only the entity which
4518 * obtains the lock and sees NAPI_STATE_SCHED set will
4519 * actually make the ->poll() call. Therefore we avoid
4520 * accidentally calling ->poll() when NAPI is not scheduled.
4521 */
4522 work = 0;
4523 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4524 work = n->poll(n, weight);
4525 trace_napi_poll(n);
4526 }
4527
4528 WARN_ON_ONCE(work > weight);
4529
4530 budget -= work;
4531
4532 local_irq_disable();
4533
4534 /* Drivers must not modify the NAPI state if they
4535 * consume the entire weight. In such cases this code
4536 * still "owns" the NAPI instance and therefore can
4537 * move the instance around on the list at-will.
4538 */
4539 if (unlikely(work == weight)) {
4540 if (unlikely(napi_disable_pending(n))) {
4541 local_irq_enable();
4542 napi_complete(n);
4543 local_irq_disable();
4544 } else {
4545 if (n->gro_list) {
4546 /* flush too old packets
4547 * If HZ < 1000, flush all packets.
4548 */
4549 local_irq_enable();
4550 napi_gro_flush(n, HZ >= 1000);
4551 local_irq_disable();
4552 }
4553 list_move_tail(&n->poll_list, &sd->poll_list);
4554 }
4555 }
4556
4557 netpoll_poll_unlock(have);
4558 }
4559 out:
4560 net_rps_action_and_irq_enable(sd);
4561
4562 #ifdef CONFIG_NET_DMA
4563 /*
4564 * There may not be any more sk_buffs coming right now, so push
4565 * any pending DMA copies to hardware
4566 */
4567 dma_issue_pending_all();
4568 #endif
4569
4570 return;
4571
4572 softnet_break:
4573 sd->time_squeeze++;
4574 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4575 goto out;
4576 }
4577
4578 struct netdev_adjacent {
4579 struct net_device *dev;
4580
4581 /* upper master flag, there can only be one master device per list */
4582 bool master;
4583
4584 /* counter for the number of times this device was added to us */
4585 u16 ref_nr;
4586
4587 /* private field for the users */
4588 void *private;
4589
4590 struct list_head list;
4591 struct rcu_head rcu;
4592 };
4593
4594 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4595 struct net_device *adj_dev,
4596 struct list_head *adj_list)
4597 {
4598 struct netdev_adjacent *adj;
4599
4600 list_for_each_entry(adj, adj_list, list) {
4601 if (adj->dev == adj_dev)
4602 return adj;
4603 }
4604 return NULL;
4605 }
4606
4607 /**
4608 * netdev_has_upper_dev - Check if device is linked to an upper device
4609 * @dev: device
4610 * @upper_dev: upper device to check
4611 *
4612 * Find out if a device is linked to specified upper device and return true
4613 * in case it is. Note that this checks only immediate upper device,
4614 * not through a complete stack of devices. The caller must hold the RTNL lock.
4615 */
4616 bool netdev_has_upper_dev(struct net_device *dev,
4617 struct net_device *upper_dev)
4618 {
4619 ASSERT_RTNL();
4620
4621 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4622 }
4623 EXPORT_SYMBOL(netdev_has_upper_dev);
4624
4625 /**
4626 * netdev_has_any_upper_dev - Check if device is linked to some device
4627 * @dev: device
4628 *
4629 * Find out if a device is linked to an upper device and return true in case
4630 * it is. The caller must hold the RTNL lock.
4631 */
4632 static bool netdev_has_any_upper_dev(struct net_device *dev)
4633 {
4634 ASSERT_RTNL();
4635
4636 return !list_empty(&dev->all_adj_list.upper);
4637 }
4638
4639 /**
4640 * netdev_master_upper_dev_get - Get master upper device
4641 * @dev: device
4642 *
4643 * Find a master upper device and return pointer to it or NULL in case
4644 * it's not there. The caller must hold the RTNL lock.
4645 */
4646 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4647 {
4648 struct netdev_adjacent *upper;
4649
4650 ASSERT_RTNL();
4651
4652 if (list_empty(&dev->adj_list.upper))
4653 return NULL;
4654
4655 upper = list_first_entry(&dev->adj_list.upper,
4656 struct netdev_adjacent, list);
4657 if (likely(upper->master))
4658 return upper->dev;
4659 return NULL;
4660 }
4661 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4662
4663 void *netdev_adjacent_get_private(struct list_head *adj_list)
4664 {
4665 struct netdev_adjacent *adj;
4666
4667 adj = list_entry(adj_list, struct netdev_adjacent, list);
4668
4669 return adj->private;
4670 }
4671 EXPORT_SYMBOL(netdev_adjacent_get_private);
4672
4673 /**
4674 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4675 * @dev: device
4676 * @iter: list_head ** of the current position
4677 *
4678 * Gets the next device from the dev's upper list, starting from iter
4679 * position. The caller must hold RCU read lock.
4680 */
4681 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4682 struct list_head **iter)
4683 {
4684 struct netdev_adjacent *upper;
4685
4686 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4687
4688 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4689
4690 if (&upper->list == &dev->adj_list.upper)
4691 return NULL;
4692
4693 *iter = &upper->list;
4694
4695 return upper->dev;
4696 }
4697 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4698
4699 /**
4700 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4701 * @dev: device
4702 * @iter: list_head ** of the current position
4703 *
4704 * Gets the next device from the dev's upper list, starting from iter
4705 * position. The caller must hold RCU read lock.
4706 */
4707 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4708 struct list_head **iter)
4709 {
4710 struct netdev_adjacent *upper;
4711
4712 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4713
4714 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4715
4716 if (&upper->list == &dev->all_adj_list.upper)
4717 return NULL;
4718
4719 *iter = &upper->list;
4720
4721 return upper->dev;
4722 }
4723 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4724
4725 /**
4726 * netdev_lower_get_next_private - Get the next ->private from the
4727 * lower neighbour list
4728 * @dev: device
4729 * @iter: list_head ** of the current position
4730 *
4731 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4732 * list, starting from iter position. The caller must hold either hold the
4733 * RTNL lock or its own locking that guarantees that the neighbour lower
4734 * list will remain unchainged.
4735 */
4736 void *netdev_lower_get_next_private(struct net_device *dev,
4737 struct list_head **iter)
4738 {
4739 struct netdev_adjacent *lower;
4740
4741 lower = list_entry(*iter, struct netdev_adjacent, list);
4742
4743 if (&lower->list == &dev->adj_list.lower)
4744 return NULL;
4745
4746 *iter = lower->list.next;
4747
4748 return lower->private;
4749 }
4750 EXPORT_SYMBOL(netdev_lower_get_next_private);
4751
4752 /**
4753 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4754 * lower neighbour list, RCU
4755 * variant
4756 * @dev: device
4757 * @iter: list_head ** of the current position
4758 *
4759 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4760 * list, starting from iter position. The caller must hold RCU read lock.
4761 */
4762 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4763 struct list_head **iter)
4764 {
4765 struct netdev_adjacent *lower;
4766
4767 WARN_ON_ONCE(!rcu_read_lock_held());
4768
4769 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4770
4771 if (&lower->list == &dev->adj_list.lower)
4772 return NULL;
4773
4774 *iter = &lower->list;
4775
4776 return lower->private;
4777 }
4778 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4779
4780 /**
4781 * netdev_lower_get_next - Get the next device from the lower neighbour
4782 * list
4783 * @dev: device
4784 * @iter: list_head ** of the current position
4785 *
4786 * Gets the next netdev_adjacent from the dev's lower neighbour
4787 * list, starting from iter position. The caller must hold RTNL lock or
4788 * its own locking that guarantees that the neighbour lower
4789 * list will remain unchainged.
4790 */
4791 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4792 {
4793 struct netdev_adjacent *lower;
4794
4795 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4796
4797 if (&lower->list == &dev->adj_list.lower)
4798 return NULL;
4799
4800 *iter = &lower->list;
4801
4802 return lower->dev;
4803 }
4804 EXPORT_SYMBOL(netdev_lower_get_next);
4805
4806 /**
4807 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4808 * lower neighbour list, RCU
4809 * variant
4810 * @dev: device
4811 *
4812 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4813 * list. The caller must hold RCU read lock.
4814 */
4815 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4816 {
4817 struct netdev_adjacent *lower;
4818
4819 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4820 struct netdev_adjacent, list);
4821 if (lower)
4822 return lower->private;
4823 return NULL;
4824 }
4825 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4826
4827 /**
4828 * netdev_master_upper_dev_get_rcu - Get master upper device
4829 * @dev: device
4830 *
4831 * Find a master upper device and return pointer to it or NULL in case
4832 * it's not there. The caller must hold the RCU read lock.
4833 */
4834 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4835 {
4836 struct netdev_adjacent *upper;
4837
4838 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4839 struct netdev_adjacent, list);
4840 if (upper && likely(upper->master))
4841 return upper->dev;
4842 return NULL;
4843 }
4844 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4845
4846 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4847 struct net_device *adj_dev,
4848 struct list_head *dev_list)
4849 {
4850 char linkname[IFNAMSIZ+7];
4851 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4852 "upper_%s" : "lower_%s", adj_dev->name);
4853 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4854 linkname);
4855 }
4856 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4857 char *name,
4858 struct list_head *dev_list)
4859 {
4860 char linkname[IFNAMSIZ+7];
4861 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4862 "upper_%s" : "lower_%s", name);
4863 sysfs_remove_link(&(dev->dev.kobj), linkname);
4864 }
4865
4866 #define netdev_adjacent_is_neigh_list(dev, dev_list) \
4867 (dev_list == &dev->adj_list.upper || \
4868 dev_list == &dev->adj_list.lower)
4869
4870 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4871 struct net_device *adj_dev,
4872 struct list_head *dev_list,
4873 void *private, bool master)
4874 {
4875 struct netdev_adjacent *adj;
4876 int ret;
4877
4878 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4879
4880 if (adj) {
4881 adj->ref_nr++;
4882 return 0;
4883 }
4884
4885 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4886 if (!adj)
4887 return -ENOMEM;
4888
4889 adj->dev = adj_dev;
4890 adj->master = master;
4891 adj->ref_nr = 1;
4892 adj->private = private;
4893 dev_hold(adj_dev);
4894
4895 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4896 adj_dev->name, dev->name, adj_dev->name);
4897
4898 if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4899 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4900 if (ret)
4901 goto free_adj;
4902 }
4903
4904 /* Ensure that master link is always the first item in list. */
4905 if (master) {
4906 ret = sysfs_create_link(&(dev->dev.kobj),
4907 &(adj_dev->dev.kobj), "master");
4908 if (ret)
4909 goto remove_symlinks;
4910
4911 list_add_rcu(&adj->list, dev_list);
4912 } else {
4913 list_add_tail_rcu(&adj->list, dev_list);
4914 }
4915
4916 return 0;
4917
4918 remove_symlinks:
4919 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4920 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4921 free_adj:
4922 kfree(adj);
4923 dev_put(adj_dev);
4924
4925 return ret;
4926 }
4927
4928 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4929 struct net_device *adj_dev,
4930 struct list_head *dev_list)
4931 {
4932 struct netdev_adjacent *adj;
4933
4934 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4935
4936 if (!adj) {
4937 pr_err("tried to remove device %s from %s\n",
4938 dev->name, adj_dev->name);
4939 BUG();
4940 }
4941
4942 if (adj->ref_nr > 1) {
4943 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4944 adj->ref_nr-1);
4945 adj->ref_nr--;
4946 return;
4947 }
4948
4949 if (adj->master)
4950 sysfs_remove_link(&(dev->dev.kobj), "master");
4951
4952 if (netdev_adjacent_is_neigh_list(dev, dev_list) &&
4953 net_eq(dev_net(dev),dev_net(adj_dev)))
4954 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4955
4956 list_del_rcu(&adj->list);
4957 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4958 adj_dev->name, dev->name, adj_dev->name);
4959 dev_put(adj_dev);
4960 kfree_rcu(adj, rcu);
4961 }
4962
4963 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4964 struct net_device *upper_dev,
4965 struct list_head *up_list,
4966 struct list_head *down_list,
4967 void *private, bool master)
4968 {
4969 int ret;
4970
4971 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4972 master);
4973 if (ret)
4974 return ret;
4975
4976 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4977 false);
4978 if (ret) {
4979 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4980 return ret;
4981 }
4982
4983 return 0;
4984 }
4985
4986 static int __netdev_adjacent_dev_link(struct net_device *dev,
4987 struct net_device *upper_dev)
4988 {
4989 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4990 &dev->all_adj_list.upper,
4991 &upper_dev->all_adj_list.lower,
4992 NULL, false);
4993 }
4994
4995 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4996 struct net_device *upper_dev,
4997 struct list_head *up_list,
4998 struct list_head *down_list)
4999 {
5000 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5001 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5002 }
5003
5004 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5005 struct net_device *upper_dev)
5006 {
5007 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5008 &dev->all_adj_list.upper,
5009 &upper_dev->all_adj_list.lower);
5010 }
5011
5012 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5013 struct net_device *upper_dev,
5014 void *private, bool master)
5015 {
5016 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5017
5018 if (ret)
5019 return ret;
5020
5021 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5022 &dev->adj_list.upper,
5023 &upper_dev->adj_list.lower,
5024 private, master);
5025 if (ret) {
5026 __netdev_adjacent_dev_unlink(dev, upper_dev);
5027 return ret;
5028 }
5029
5030 return 0;
5031 }
5032
5033 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5034 struct net_device *upper_dev)
5035 {
5036 __netdev_adjacent_dev_unlink(dev, upper_dev);
5037 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5038 &dev->adj_list.upper,
5039 &upper_dev->adj_list.lower);
5040 }
5041
5042 static int __netdev_upper_dev_link(struct net_device *dev,
5043 struct net_device *upper_dev, bool master,
5044 void *private)
5045 {
5046 struct netdev_adjacent *i, *j, *to_i, *to_j;
5047 int ret = 0;
5048
5049 ASSERT_RTNL();
5050
5051 if (dev == upper_dev)
5052 return -EBUSY;
5053
5054 /* To prevent loops, check if dev is not upper device to upper_dev. */
5055 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5056 return -EBUSY;
5057
5058 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5059 return -EEXIST;
5060
5061 if (master && netdev_master_upper_dev_get(dev))
5062 return -EBUSY;
5063
5064 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5065 master);
5066 if (ret)
5067 return ret;
5068
5069 /* Now that we linked these devs, make all the upper_dev's
5070 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5071 * versa, and don't forget the devices itself. All of these
5072 * links are non-neighbours.
5073 */
5074 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5075 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5076 pr_debug("Interlinking %s with %s, non-neighbour\n",
5077 i->dev->name, j->dev->name);
5078 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5079 if (ret)
5080 goto rollback_mesh;
5081 }
5082 }
5083
5084 /* add dev to every upper_dev's upper device */
5085 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5086 pr_debug("linking %s's upper device %s with %s\n",
5087 upper_dev->name, i->dev->name, dev->name);
5088 ret = __netdev_adjacent_dev_link(dev, i->dev);
5089 if (ret)
5090 goto rollback_upper_mesh;
5091 }
5092
5093 /* add upper_dev to every dev's lower device */
5094 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5095 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5096 i->dev->name, upper_dev->name);
5097 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5098 if (ret)
5099 goto rollback_lower_mesh;
5100 }
5101
5102 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5103 return 0;
5104
5105 rollback_lower_mesh:
5106 to_i = i;
5107 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5108 if (i == to_i)
5109 break;
5110 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5111 }
5112
5113 i = NULL;
5114
5115 rollback_upper_mesh:
5116 to_i = i;
5117 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5118 if (i == to_i)
5119 break;
5120 __netdev_adjacent_dev_unlink(dev, i->dev);
5121 }
5122
5123 i = j = NULL;
5124
5125 rollback_mesh:
5126 to_i = i;
5127 to_j = j;
5128 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5129 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5130 if (i == to_i && j == to_j)
5131 break;
5132 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5133 }
5134 if (i == to_i)
5135 break;
5136 }
5137
5138 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5139
5140 return ret;
5141 }
5142
5143 /**
5144 * netdev_upper_dev_link - Add a link to the upper device
5145 * @dev: device
5146 * @upper_dev: new upper device
5147 *
5148 * Adds a link to device which is upper to this one. The caller must hold
5149 * the RTNL lock. On a failure a negative errno code is returned.
5150 * On success the reference counts are adjusted and the function
5151 * returns zero.
5152 */
5153 int netdev_upper_dev_link(struct net_device *dev,
5154 struct net_device *upper_dev)
5155 {
5156 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5157 }
5158 EXPORT_SYMBOL(netdev_upper_dev_link);
5159
5160 /**
5161 * netdev_master_upper_dev_link - Add a master link to the upper device
5162 * @dev: device
5163 * @upper_dev: new upper device
5164 *
5165 * Adds a link to device which is upper to this one. In this case, only
5166 * one master upper device can be linked, although other non-master devices
5167 * might be linked as well. The caller must hold the RTNL lock.
5168 * On a failure a negative errno code is returned. On success the reference
5169 * counts are adjusted and the function returns zero.
5170 */
5171 int netdev_master_upper_dev_link(struct net_device *dev,
5172 struct net_device *upper_dev)
5173 {
5174 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5175 }
5176 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5177
5178 int netdev_master_upper_dev_link_private(struct net_device *dev,
5179 struct net_device *upper_dev,
5180 void *private)
5181 {
5182 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5183 }
5184 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5185
5186 /**
5187 * netdev_upper_dev_unlink - Removes a link to upper device
5188 * @dev: device
5189 * @upper_dev: new upper device
5190 *
5191 * Removes a link to device which is upper to this one. The caller must hold
5192 * the RTNL lock.
5193 */
5194 void netdev_upper_dev_unlink(struct net_device *dev,
5195 struct net_device *upper_dev)
5196 {
5197 struct netdev_adjacent *i, *j;
5198 ASSERT_RTNL();
5199
5200 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5201
5202 /* Here is the tricky part. We must remove all dev's lower
5203 * devices from all upper_dev's upper devices and vice
5204 * versa, to maintain the graph relationship.
5205 */
5206 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5207 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5208 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5209
5210 /* remove also the devices itself from lower/upper device
5211 * list
5212 */
5213 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5214 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5215
5216 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5217 __netdev_adjacent_dev_unlink(dev, i->dev);
5218
5219 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5220 }
5221 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5222
5223 void netdev_adjacent_add_links(struct net_device *dev)
5224 {
5225 struct netdev_adjacent *iter;
5226
5227 struct net *net = dev_net(dev);
5228
5229 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5230 if (!net_eq(net,dev_net(iter->dev)))
5231 continue;
5232 netdev_adjacent_sysfs_add(iter->dev, dev,
5233 &iter->dev->adj_list.lower);
5234 netdev_adjacent_sysfs_add(dev, iter->dev,
5235 &dev->adj_list.upper);
5236 }
5237
5238 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5239 if (!net_eq(net,dev_net(iter->dev)))
5240 continue;
5241 netdev_adjacent_sysfs_add(iter->dev, dev,
5242 &iter->dev->adj_list.upper);
5243 netdev_adjacent_sysfs_add(dev, iter->dev,
5244 &dev->adj_list.lower);
5245 }
5246 }
5247
5248 void netdev_adjacent_del_links(struct net_device *dev)
5249 {
5250 struct netdev_adjacent *iter;
5251
5252 struct net *net = dev_net(dev);
5253
5254 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5255 if (!net_eq(net,dev_net(iter->dev)))
5256 continue;
5257 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5258 &iter->dev->adj_list.lower);
5259 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5260 &dev->adj_list.upper);
5261 }
5262
5263 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5264 if (!net_eq(net,dev_net(iter->dev)))
5265 continue;
5266 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5267 &iter->dev->adj_list.upper);
5268 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5269 &dev->adj_list.lower);
5270 }
5271 }
5272
5273 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5274 {
5275 struct netdev_adjacent *iter;
5276
5277 struct net *net = dev_net(dev);
5278
5279 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5280 if (!net_eq(net,dev_net(iter->dev)))
5281 continue;
5282 netdev_adjacent_sysfs_del(iter->dev, oldname,
5283 &iter->dev->adj_list.lower);
5284 netdev_adjacent_sysfs_add(iter->dev, dev,
5285 &iter->dev->adj_list.lower);
5286 }
5287
5288 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5289 if (!net_eq(net,dev_net(iter->dev)))
5290 continue;
5291 netdev_adjacent_sysfs_del(iter->dev, oldname,
5292 &iter->dev->adj_list.upper);
5293 netdev_adjacent_sysfs_add(iter->dev, dev,
5294 &iter->dev->adj_list.upper);
5295 }
5296 }
5297
5298 void *netdev_lower_dev_get_private(struct net_device *dev,
5299 struct net_device *lower_dev)
5300 {
5301 struct netdev_adjacent *lower;
5302
5303 if (!lower_dev)
5304 return NULL;
5305 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5306 if (!lower)
5307 return NULL;
5308
5309 return lower->private;
5310 }
5311 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5312
5313
5314 int dev_get_nest_level(struct net_device *dev,
5315 bool (*type_check)(struct net_device *dev))
5316 {
5317 struct net_device *lower = NULL;
5318 struct list_head *iter;
5319 int max_nest = -1;
5320 int nest;
5321
5322 ASSERT_RTNL();
5323
5324 netdev_for_each_lower_dev(dev, lower, iter) {
5325 nest = dev_get_nest_level(lower, type_check);
5326 if (max_nest < nest)
5327 max_nest = nest;
5328 }
5329
5330 if (type_check(dev))
5331 max_nest++;
5332
5333 return max_nest;
5334 }
5335 EXPORT_SYMBOL(dev_get_nest_level);
5336
5337 static void dev_change_rx_flags(struct net_device *dev, int flags)
5338 {
5339 const struct net_device_ops *ops = dev->netdev_ops;
5340
5341 if (ops->ndo_change_rx_flags)
5342 ops->ndo_change_rx_flags(dev, flags);
5343 }
5344
5345 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5346 {
5347 unsigned int old_flags = dev->flags;
5348 kuid_t uid;
5349 kgid_t gid;
5350
5351 ASSERT_RTNL();
5352
5353 dev->flags |= IFF_PROMISC;
5354 dev->promiscuity += inc;
5355 if (dev->promiscuity == 0) {
5356 /*
5357 * Avoid overflow.
5358 * If inc causes overflow, untouch promisc and return error.
5359 */
5360 if (inc < 0)
5361 dev->flags &= ~IFF_PROMISC;
5362 else {
5363 dev->promiscuity -= inc;
5364 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5365 dev->name);
5366 return -EOVERFLOW;
5367 }
5368 }
5369 if (dev->flags != old_flags) {
5370 pr_info("device %s %s promiscuous mode\n",
5371 dev->name,
5372 dev->flags & IFF_PROMISC ? "entered" : "left");
5373 if (audit_enabled) {
5374 current_uid_gid(&uid, &gid);
5375 audit_log(current->audit_context, GFP_ATOMIC,
5376 AUDIT_ANOM_PROMISCUOUS,
5377 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5378 dev->name, (dev->flags & IFF_PROMISC),
5379 (old_flags & IFF_PROMISC),
5380 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5381 from_kuid(&init_user_ns, uid),
5382 from_kgid(&init_user_ns, gid),
5383 audit_get_sessionid(current));
5384 }
5385
5386 dev_change_rx_flags(dev, IFF_PROMISC);
5387 }
5388 if (notify)
5389 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5390 return 0;
5391 }
5392
5393 /**
5394 * dev_set_promiscuity - update promiscuity count on a device
5395 * @dev: device
5396 * @inc: modifier
5397 *
5398 * Add or remove promiscuity from a device. While the count in the device
5399 * remains above zero the interface remains promiscuous. Once it hits zero
5400 * the device reverts back to normal filtering operation. A negative inc
5401 * value is used to drop promiscuity on the device.
5402 * Return 0 if successful or a negative errno code on error.
5403 */
5404 int dev_set_promiscuity(struct net_device *dev, int inc)
5405 {
5406 unsigned int old_flags = dev->flags;
5407 int err;
5408
5409 err = __dev_set_promiscuity(dev, inc, true);
5410 if (err < 0)
5411 return err;
5412 if (dev->flags != old_flags)
5413 dev_set_rx_mode(dev);
5414 return err;
5415 }
5416 EXPORT_SYMBOL(dev_set_promiscuity);
5417
5418 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5419 {
5420 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5421
5422 ASSERT_RTNL();
5423
5424 dev->flags |= IFF_ALLMULTI;
5425 dev->allmulti += inc;
5426 if (dev->allmulti == 0) {
5427 /*
5428 * Avoid overflow.
5429 * If inc causes overflow, untouch allmulti and return error.
5430 */
5431 if (inc < 0)
5432 dev->flags &= ~IFF_ALLMULTI;
5433 else {
5434 dev->allmulti -= inc;
5435 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5436 dev->name);
5437 return -EOVERFLOW;
5438 }
5439 }
5440 if (dev->flags ^ old_flags) {
5441 dev_change_rx_flags(dev, IFF_ALLMULTI);
5442 dev_set_rx_mode(dev);
5443 if (notify)
5444 __dev_notify_flags(dev, old_flags,
5445 dev->gflags ^ old_gflags);
5446 }
5447 return 0;
5448 }
5449
5450 /**
5451 * dev_set_allmulti - update allmulti count on a device
5452 * @dev: device
5453 * @inc: modifier
5454 *
5455 * Add or remove reception of all multicast frames to a device. While the
5456 * count in the device remains above zero the interface remains listening
5457 * to all interfaces. Once it hits zero the device reverts back to normal
5458 * filtering operation. A negative @inc value is used to drop the counter
5459 * when releasing a resource needing all multicasts.
5460 * Return 0 if successful or a negative errno code on error.
5461 */
5462
5463 int dev_set_allmulti(struct net_device *dev, int inc)
5464 {
5465 return __dev_set_allmulti(dev, inc, true);
5466 }
5467 EXPORT_SYMBOL(dev_set_allmulti);
5468
5469 /*
5470 * Upload unicast and multicast address lists to device and
5471 * configure RX filtering. When the device doesn't support unicast
5472 * filtering it is put in promiscuous mode while unicast addresses
5473 * are present.
5474 */
5475 void __dev_set_rx_mode(struct net_device *dev)
5476 {
5477 const struct net_device_ops *ops = dev->netdev_ops;
5478
5479 /* dev_open will call this function so the list will stay sane. */
5480 if (!(dev->flags&IFF_UP))
5481 return;
5482
5483 if (!netif_device_present(dev))
5484 return;
5485
5486 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5487 /* Unicast addresses changes may only happen under the rtnl,
5488 * therefore calling __dev_set_promiscuity here is safe.
5489 */
5490 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5491 __dev_set_promiscuity(dev, 1, false);
5492 dev->uc_promisc = true;
5493 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5494 __dev_set_promiscuity(dev, -1, false);
5495 dev->uc_promisc = false;
5496 }
5497 }
5498
5499 if (ops->ndo_set_rx_mode)
5500 ops->ndo_set_rx_mode(dev);
5501 }
5502
5503 void dev_set_rx_mode(struct net_device *dev)
5504 {
5505 netif_addr_lock_bh(dev);
5506 __dev_set_rx_mode(dev);
5507 netif_addr_unlock_bh(dev);
5508 }
5509
5510 /**
5511 * dev_get_flags - get flags reported to userspace
5512 * @dev: device
5513 *
5514 * Get the combination of flag bits exported through APIs to userspace.
5515 */
5516 unsigned int dev_get_flags(const struct net_device *dev)
5517 {
5518 unsigned int flags;
5519
5520 flags = (dev->flags & ~(IFF_PROMISC |
5521 IFF_ALLMULTI |
5522 IFF_RUNNING |
5523 IFF_LOWER_UP |
5524 IFF_DORMANT)) |
5525 (dev->gflags & (IFF_PROMISC |
5526 IFF_ALLMULTI));
5527
5528 if (netif_running(dev)) {
5529 if (netif_oper_up(dev))
5530 flags |= IFF_RUNNING;
5531 if (netif_carrier_ok(dev))
5532 flags |= IFF_LOWER_UP;
5533 if (netif_dormant(dev))
5534 flags |= IFF_DORMANT;
5535 }
5536
5537 return flags;
5538 }
5539 EXPORT_SYMBOL(dev_get_flags);
5540
5541 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5542 {
5543 unsigned int old_flags = dev->flags;
5544 int ret;
5545
5546 ASSERT_RTNL();
5547
5548 /*
5549 * Set the flags on our device.
5550 */
5551
5552 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5553 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5554 IFF_AUTOMEDIA)) |
5555 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5556 IFF_ALLMULTI));
5557
5558 /*
5559 * Load in the correct multicast list now the flags have changed.
5560 */
5561
5562 if ((old_flags ^ flags) & IFF_MULTICAST)
5563 dev_change_rx_flags(dev, IFF_MULTICAST);
5564
5565 dev_set_rx_mode(dev);
5566
5567 /*
5568 * Have we downed the interface. We handle IFF_UP ourselves
5569 * according to user attempts to set it, rather than blindly
5570 * setting it.
5571 */
5572
5573 ret = 0;
5574 if ((old_flags ^ flags) & IFF_UP)
5575 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5576
5577 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5578 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5579 unsigned int old_flags = dev->flags;
5580
5581 dev->gflags ^= IFF_PROMISC;
5582
5583 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5584 if (dev->flags != old_flags)
5585 dev_set_rx_mode(dev);
5586 }
5587
5588 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5589 is important. Some (broken) drivers set IFF_PROMISC, when
5590 IFF_ALLMULTI is requested not asking us and not reporting.
5591 */
5592 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5593 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5594
5595 dev->gflags ^= IFF_ALLMULTI;
5596 __dev_set_allmulti(dev, inc, false);
5597 }
5598
5599 return ret;
5600 }
5601
5602 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5603 unsigned int gchanges)
5604 {
5605 unsigned int changes = dev->flags ^ old_flags;
5606
5607 if (gchanges)
5608 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5609
5610 if (changes & IFF_UP) {
5611 if (dev->flags & IFF_UP)
5612 call_netdevice_notifiers(NETDEV_UP, dev);
5613 else
5614 call_netdevice_notifiers(NETDEV_DOWN, dev);
5615 }
5616
5617 if (dev->flags & IFF_UP &&
5618 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5619 struct netdev_notifier_change_info change_info;
5620
5621 change_info.flags_changed = changes;
5622 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5623 &change_info.info);
5624 }
5625 }
5626
5627 /**
5628 * dev_change_flags - change device settings
5629 * @dev: device
5630 * @flags: device state flags
5631 *
5632 * Change settings on device based state flags. The flags are
5633 * in the userspace exported format.
5634 */
5635 int dev_change_flags(struct net_device *dev, unsigned int flags)
5636 {
5637 int ret;
5638 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5639
5640 ret = __dev_change_flags(dev, flags);
5641 if (ret < 0)
5642 return ret;
5643
5644 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5645 __dev_notify_flags(dev, old_flags, changes);
5646 return ret;
5647 }
5648 EXPORT_SYMBOL(dev_change_flags);
5649
5650 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5651 {
5652 const struct net_device_ops *ops = dev->netdev_ops;
5653
5654 if (ops->ndo_change_mtu)
5655 return ops->ndo_change_mtu(dev, new_mtu);
5656
5657 dev->mtu = new_mtu;
5658 return 0;
5659 }
5660
5661 /**
5662 * dev_set_mtu - Change maximum transfer unit
5663 * @dev: device
5664 * @new_mtu: new transfer unit
5665 *
5666 * Change the maximum transfer size of the network device.
5667 */
5668 int dev_set_mtu(struct net_device *dev, int new_mtu)
5669 {
5670 int err, orig_mtu;
5671
5672 if (new_mtu == dev->mtu)
5673 return 0;
5674
5675 /* MTU must be positive. */
5676 if (new_mtu < 0)
5677 return -EINVAL;
5678
5679 if (!netif_device_present(dev))
5680 return -ENODEV;
5681
5682 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5683 err = notifier_to_errno(err);
5684 if (err)
5685 return err;
5686
5687 orig_mtu = dev->mtu;
5688 err = __dev_set_mtu(dev, new_mtu);
5689
5690 if (!err) {
5691 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5692 err = notifier_to_errno(err);
5693 if (err) {
5694 /* setting mtu back and notifying everyone again,
5695 * so that they have a chance to revert changes.
5696 */
5697 __dev_set_mtu(dev, orig_mtu);
5698 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5699 }
5700 }
5701 return err;
5702 }
5703 EXPORT_SYMBOL(dev_set_mtu);
5704
5705 /**
5706 * dev_set_group - Change group this device belongs to
5707 * @dev: device
5708 * @new_group: group this device should belong to
5709 */
5710 void dev_set_group(struct net_device *dev, int new_group)
5711 {
5712 dev->group = new_group;
5713 }
5714 EXPORT_SYMBOL(dev_set_group);
5715
5716 /**
5717 * dev_set_mac_address - Change Media Access Control Address
5718 * @dev: device
5719 * @sa: new address
5720 *
5721 * Change the hardware (MAC) address of the device
5722 */
5723 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5724 {
5725 const struct net_device_ops *ops = dev->netdev_ops;
5726 int err;
5727
5728 if (!ops->ndo_set_mac_address)
5729 return -EOPNOTSUPP;
5730 if (sa->sa_family != dev->type)
5731 return -EINVAL;
5732 if (!netif_device_present(dev))
5733 return -ENODEV;
5734 err = ops->ndo_set_mac_address(dev, sa);
5735 if (err)
5736 return err;
5737 dev->addr_assign_type = NET_ADDR_SET;
5738 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5739 add_device_randomness(dev->dev_addr, dev->addr_len);
5740 return 0;
5741 }
5742 EXPORT_SYMBOL(dev_set_mac_address);
5743
5744 /**
5745 * dev_change_carrier - Change device carrier
5746 * @dev: device
5747 * @new_carrier: new value
5748 *
5749 * Change device carrier
5750 */
5751 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5752 {
5753 const struct net_device_ops *ops = dev->netdev_ops;
5754
5755 if (!ops->ndo_change_carrier)
5756 return -EOPNOTSUPP;
5757 if (!netif_device_present(dev))
5758 return -ENODEV;
5759 return ops->ndo_change_carrier(dev, new_carrier);
5760 }
5761 EXPORT_SYMBOL(dev_change_carrier);
5762
5763 /**
5764 * dev_get_phys_port_id - Get device physical port ID
5765 * @dev: device
5766 * @ppid: port ID
5767 *
5768 * Get device physical port ID
5769 */
5770 int dev_get_phys_port_id(struct net_device *dev,
5771 struct netdev_phys_port_id *ppid)
5772 {
5773 const struct net_device_ops *ops = dev->netdev_ops;
5774
5775 if (!ops->ndo_get_phys_port_id)
5776 return -EOPNOTSUPP;
5777 return ops->ndo_get_phys_port_id(dev, ppid);
5778 }
5779 EXPORT_SYMBOL(dev_get_phys_port_id);
5780
5781 /**
5782 * dev_new_index - allocate an ifindex
5783 * @net: the applicable net namespace
5784 *
5785 * Returns a suitable unique value for a new device interface
5786 * number. The caller must hold the rtnl semaphore or the
5787 * dev_base_lock to be sure it remains unique.
5788 */
5789 static int dev_new_index(struct net *net)
5790 {
5791 int ifindex = net->ifindex;
5792 for (;;) {
5793 if (++ifindex <= 0)
5794 ifindex = 1;
5795 if (!__dev_get_by_index(net, ifindex))
5796 return net->ifindex = ifindex;
5797 }
5798 }
5799
5800 /* Delayed registration/unregisteration */
5801 static LIST_HEAD(net_todo_list);
5802 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5803
5804 static void net_set_todo(struct net_device *dev)
5805 {
5806 list_add_tail(&dev->todo_list, &net_todo_list);
5807 dev_net(dev)->dev_unreg_count++;
5808 }
5809
5810 static void rollback_registered_many(struct list_head *head)
5811 {
5812 struct net_device *dev, *tmp;
5813 LIST_HEAD(close_head);
5814
5815 BUG_ON(dev_boot_phase);
5816 ASSERT_RTNL();
5817
5818 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5819 /* Some devices call without registering
5820 * for initialization unwind. Remove those
5821 * devices and proceed with the remaining.
5822 */
5823 if (dev->reg_state == NETREG_UNINITIALIZED) {
5824 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5825 dev->name, dev);
5826
5827 WARN_ON(1);
5828 list_del(&dev->unreg_list);
5829 continue;
5830 }
5831 dev->dismantle = true;
5832 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5833 }
5834
5835 /* If device is running, close it first. */
5836 list_for_each_entry(dev, head, unreg_list)
5837 list_add_tail(&dev->close_list, &close_head);
5838 dev_close_many(&close_head);
5839
5840 list_for_each_entry(dev, head, unreg_list) {
5841 /* And unlink it from device chain. */
5842 unlist_netdevice(dev);
5843
5844 dev->reg_state = NETREG_UNREGISTERING;
5845 }
5846
5847 synchronize_net();
5848
5849 list_for_each_entry(dev, head, unreg_list) {
5850 /* Shutdown queueing discipline. */
5851 dev_shutdown(dev);
5852
5853
5854 /* Notify protocols, that we are about to destroy
5855 this device. They should clean all the things.
5856 */
5857 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5858
5859 /*
5860 * Flush the unicast and multicast chains
5861 */
5862 dev_uc_flush(dev);
5863 dev_mc_flush(dev);
5864
5865 if (dev->netdev_ops->ndo_uninit)
5866 dev->netdev_ops->ndo_uninit(dev);
5867
5868 if (!dev->rtnl_link_ops ||
5869 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5870 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5871
5872 /* Notifier chain MUST detach us all upper devices. */
5873 WARN_ON(netdev_has_any_upper_dev(dev));
5874
5875 /* Remove entries from kobject tree */
5876 netdev_unregister_kobject(dev);
5877 #ifdef CONFIG_XPS
5878 /* Remove XPS queueing entries */
5879 netif_reset_xps_queues_gt(dev, 0);
5880 #endif
5881 }
5882
5883 synchronize_net();
5884
5885 list_for_each_entry(dev, head, unreg_list)
5886 dev_put(dev);
5887 }
5888
5889 static void rollback_registered(struct net_device *dev)
5890 {
5891 LIST_HEAD(single);
5892
5893 list_add(&dev->unreg_list, &single);
5894 rollback_registered_many(&single);
5895 list_del(&single);
5896 }
5897
5898 static netdev_features_t netdev_fix_features(struct net_device *dev,
5899 netdev_features_t features)
5900 {
5901 /* Fix illegal checksum combinations */
5902 if ((features & NETIF_F_HW_CSUM) &&
5903 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5904 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5905 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5906 }
5907
5908 /* TSO requires that SG is present as well. */
5909 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5910 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5911 features &= ~NETIF_F_ALL_TSO;
5912 }
5913
5914 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5915 !(features & NETIF_F_IP_CSUM)) {
5916 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5917 features &= ~NETIF_F_TSO;
5918 features &= ~NETIF_F_TSO_ECN;
5919 }
5920
5921 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5922 !(features & NETIF_F_IPV6_CSUM)) {
5923 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5924 features &= ~NETIF_F_TSO6;
5925 }
5926
5927 /* TSO ECN requires that TSO is present as well. */
5928 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5929 features &= ~NETIF_F_TSO_ECN;
5930
5931 /* Software GSO depends on SG. */
5932 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5933 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5934 features &= ~NETIF_F_GSO;
5935 }
5936
5937 /* UFO needs SG and checksumming */
5938 if (features & NETIF_F_UFO) {
5939 /* maybe split UFO into V4 and V6? */
5940 if (!((features & NETIF_F_GEN_CSUM) ||
5941 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5942 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5943 netdev_dbg(dev,
5944 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5945 features &= ~NETIF_F_UFO;
5946 }
5947
5948 if (!(features & NETIF_F_SG)) {
5949 netdev_dbg(dev,
5950 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5951 features &= ~NETIF_F_UFO;
5952 }
5953 }
5954
5955 #ifdef CONFIG_NET_RX_BUSY_POLL
5956 if (dev->netdev_ops->ndo_busy_poll)
5957 features |= NETIF_F_BUSY_POLL;
5958 else
5959 #endif
5960 features &= ~NETIF_F_BUSY_POLL;
5961
5962 return features;
5963 }
5964
5965 int __netdev_update_features(struct net_device *dev)
5966 {
5967 netdev_features_t features;
5968 int err = 0;
5969
5970 ASSERT_RTNL();
5971
5972 features = netdev_get_wanted_features(dev);
5973
5974 if (dev->netdev_ops->ndo_fix_features)
5975 features = dev->netdev_ops->ndo_fix_features(dev, features);
5976
5977 /* driver might be less strict about feature dependencies */
5978 features = netdev_fix_features(dev, features);
5979
5980 if (dev->features == features)
5981 return 0;
5982
5983 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5984 &dev->features, &features);
5985
5986 if (dev->netdev_ops->ndo_set_features)
5987 err = dev->netdev_ops->ndo_set_features(dev, features);
5988
5989 if (unlikely(err < 0)) {
5990 netdev_err(dev,
5991 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5992 err, &features, &dev->features);
5993 return -1;
5994 }
5995
5996 if (!err)
5997 dev->features = features;
5998
5999 return 1;
6000 }
6001
6002 /**
6003 * netdev_update_features - recalculate device features
6004 * @dev: the device to check
6005 *
6006 * Recalculate dev->features set and send notifications if it
6007 * has changed. Should be called after driver or hardware dependent
6008 * conditions might have changed that influence the features.
6009 */
6010 void netdev_update_features(struct net_device *dev)
6011 {
6012 if (__netdev_update_features(dev))
6013 netdev_features_change(dev);
6014 }
6015 EXPORT_SYMBOL(netdev_update_features);
6016
6017 /**
6018 * netdev_change_features - recalculate device features
6019 * @dev: the device to check
6020 *
6021 * Recalculate dev->features set and send notifications even
6022 * if they have not changed. Should be called instead of
6023 * netdev_update_features() if also dev->vlan_features might
6024 * have changed to allow the changes to be propagated to stacked
6025 * VLAN devices.
6026 */
6027 void netdev_change_features(struct net_device *dev)
6028 {
6029 __netdev_update_features(dev);
6030 netdev_features_change(dev);
6031 }
6032 EXPORT_SYMBOL(netdev_change_features);
6033
6034 /**
6035 * netif_stacked_transfer_operstate - transfer operstate
6036 * @rootdev: the root or lower level device to transfer state from
6037 * @dev: the device to transfer operstate to
6038 *
6039 * Transfer operational state from root to device. This is normally
6040 * called when a stacking relationship exists between the root
6041 * device and the device(a leaf device).
6042 */
6043 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6044 struct net_device *dev)
6045 {
6046 if (rootdev->operstate == IF_OPER_DORMANT)
6047 netif_dormant_on(dev);
6048 else
6049 netif_dormant_off(dev);
6050
6051 if (netif_carrier_ok(rootdev)) {
6052 if (!netif_carrier_ok(dev))
6053 netif_carrier_on(dev);
6054 } else {
6055 if (netif_carrier_ok(dev))
6056 netif_carrier_off(dev);
6057 }
6058 }
6059 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6060
6061 #ifdef CONFIG_SYSFS
6062 static int netif_alloc_rx_queues(struct net_device *dev)
6063 {
6064 unsigned int i, count = dev->num_rx_queues;
6065 struct netdev_rx_queue *rx;
6066
6067 BUG_ON(count < 1);
6068
6069 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
6070 if (!rx)
6071 return -ENOMEM;
6072
6073 dev->_rx = rx;
6074
6075 for (i = 0; i < count; i++)
6076 rx[i].dev = dev;
6077 return 0;
6078 }
6079 #endif
6080
6081 static void netdev_init_one_queue(struct net_device *dev,
6082 struct netdev_queue *queue, void *_unused)
6083 {
6084 /* Initialize queue lock */
6085 spin_lock_init(&queue->_xmit_lock);
6086 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6087 queue->xmit_lock_owner = -1;
6088 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6089 queue->dev = dev;
6090 #ifdef CONFIG_BQL
6091 dql_init(&queue->dql, HZ);
6092 #endif
6093 }
6094
6095 static void netif_free_tx_queues(struct net_device *dev)
6096 {
6097 kvfree(dev->_tx);
6098 }
6099
6100 static int netif_alloc_netdev_queues(struct net_device *dev)
6101 {
6102 unsigned int count = dev->num_tx_queues;
6103 struct netdev_queue *tx;
6104 size_t sz = count * sizeof(*tx);
6105
6106 BUG_ON(count < 1 || count > 0xffff);
6107
6108 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6109 if (!tx) {
6110 tx = vzalloc(sz);
6111 if (!tx)
6112 return -ENOMEM;
6113 }
6114 dev->_tx = tx;
6115
6116 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6117 spin_lock_init(&dev->tx_global_lock);
6118
6119 return 0;
6120 }
6121
6122 /**
6123 * register_netdevice - register a network device
6124 * @dev: device to register
6125 *
6126 * Take a completed network device structure and add it to the kernel
6127 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6128 * chain. 0 is returned on success. A negative errno code is returned
6129 * on a failure to set up the device, or if the name is a duplicate.
6130 *
6131 * Callers must hold the rtnl semaphore. You may want
6132 * register_netdev() instead of this.
6133 *
6134 * BUGS:
6135 * The locking appears insufficient to guarantee two parallel registers
6136 * will not get the same name.
6137 */
6138
6139 int register_netdevice(struct net_device *dev)
6140 {
6141 int ret;
6142 struct net *net = dev_net(dev);
6143
6144 BUG_ON(dev_boot_phase);
6145 ASSERT_RTNL();
6146
6147 might_sleep();
6148
6149 /* When net_device's are persistent, this will be fatal. */
6150 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6151 BUG_ON(!net);
6152
6153 spin_lock_init(&dev->addr_list_lock);
6154 netdev_set_addr_lockdep_class(dev);
6155
6156 dev->iflink = -1;
6157
6158 ret = dev_get_valid_name(net, dev, dev->name);
6159 if (ret < 0)
6160 goto out;
6161
6162 /* Init, if this function is available */
6163 if (dev->netdev_ops->ndo_init) {
6164 ret = dev->netdev_ops->ndo_init(dev);
6165 if (ret) {
6166 if (ret > 0)
6167 ret = -EIO;
6168 goto out;
6169 }
6170 }
6171
6172 if (((dev->hw_features | dev->features) &
6173 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6174 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6175 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6176 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6177 ret = -EINVAL;
6178 goto err_uninit;
6179 }
6180
6181 ret = -EBUSY;
6182 if (!dev->ifindex)
6183 dev->ifindex = dev_new_index(net);
6184 else if (__dev_get_by_index(net, dev->ifindex))
6185 goto err_uninit;
6186
6187 if (dev->iflink == -1)
6188 dev->iflink = dev->ifindex;
6189
6190 /* Transfer changeable features to wanted_features and enable
6191 * software offloads (GSO and GRO).
6192 */
6193 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6194 dev->features |= NETIF_F_SOFT_FEATURES;
6195 dev->wanted_features = dev->features & dev->hw_features;
6196
6197 if (!(dev->flags & IFF_LOOPBACK)) {
6198 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6199 }
6200
6201 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6202 */
6203 dev->vlan_features |= NETIF_F_HIGHDMA;
6204
6205 /* Make NETIF_F_SG inheritable to tunnel devices.
6206 */
6207 dev->hw_enc_features |= NETIF_F_SG;
6208
6209 /* Make NETIF_F_SG inheritable to MPLS.
6210 */
6211 dev->mpls_features |= NETIF_F_SG;
6212
6213 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6214 ret = notifier_to_errno(ret);
6215 if (ret)
6216 goto err_uninit;
6217
6218 ret = netdev_register_kobject(dev);
6219 if (ret)
6220 goto err_uninit;
6221 dev->reg_state = NETREG_REGISTERED;
6222
6223 __netdev_update_features(dev);
6224
6225 /*
6226 * Default initial state at registry is that the
6227 * device is present.
6228 */
6229
6230 set_bit(__LINK_STATE_PRESENT, &dev->state);
6231
6232 linkwatch_init_dev(dev);
6233
6234 dev_init_scheduler(dev);
6235 dev_hold(dev);
6236 list_netdevice(dev);
6237 add_device_randomness(dev->dev_addr, dev->addr_len);
6238
6239 /* If the device has permanent device address, driver should
6240 * set dev_addr and also addr_assign_type should be set to
6241 * NET_ADDR_PERM (default value).
6242 */
6243 if (dev->addr_assign_type == NET_ADDR_PERM)
6244 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6245
6246 /* Notify protocols, that a new device appeared. */
6247 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6248 ret = notifier_to_errno(ret);
6249 if (ret) {
6250 rollback_registered(dev);
6251 dev->reg_state = NETREG_UNREGISTERED;
6252 }
6253 /*
6254 * Prevent userspace races by waiting until the network
6255 * device is fully setup before sending notifications.
6256 */
6257 if (!dev->rtnl_link_ops ||
6258 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6259 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6260
6261 out:
6262 return ret;
6263
6264 err_uninit:
6265 if (dev->netdev_ops->ndo_uninit)
6266 dev->netdev_ops->ndo_uninit(dev);
6267 goto out;
6268 }
6269 EXPORT_SYMBOL(register_netdevice);
6270
6271 /**
6272 * init_dummy_netdev - init a dummy network device for NAPI
6273 * @dev: device to init
6274 *
6275 * This takes a network device structure and initialize the minimum
6276 * amount of fields so it can be used to schedule NAPI polls without
6277 * registering a full blown interface. This is to be used by drivers
6278 * that need to tie several hardware interfaces to a single NAPI
6279 * poll scheduler due to HW limitations.
6280 */
6281 int init_dummy_netdev(struct net_device *dev)
6282 {
6283 /* Clear everything. Note we don't initialize spinlocks
6284 * are they aren't supposed to be taken by any of the
6285 * NAPI code and this dummy netdev is supposed to be
6286 * only ever used for NAPI polls
6287 */
6288 memset(dev, 0, sizeof(struct net_device));
6289
6290 /* make sure we BUG if trying to hit standard
6291 * register/unregister code path
6292 */
6293 dev->reg_state = NETREG_DUMMY;
6294
6295 /* NAPI wants this */
6296 INIT_LIST_HEAD(&dev->napi_list);
6297
6298 /* a dummy interface is started by default */
6299 set_bit(__LINK_STATE_PRESENT, &dev->state);
6300 set_bit(__LINK_STATE_START, &dev->state);
6301
6302 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6303 * because users of this 'device' dont need to change
6304 * its refcount.
6305 */
6306
6307 return 0;
6308 }
6309 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6310
6311
6312 /**
6313 * register_netdev - register a network device
6314 * @dev: device to register
6315 *
6316 * Take a completed network device structure and add it to the kernel
6317 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6318 * chain. 0 is returned on success. A negative errno code is returned
6319 * on a failure to set up the device, or if the name is a duplicate.
6320 *
6321 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6322 * and expands the device name if you passed a format string to
6323 * alloc_netdev.
6324 */
6325 int register_netdev(struct net_device *dev)
6326 {
6327 int err;
6328
6329 rtnl_lock();
6330 err = register_netdevice(dev);
6331 rtnl_unlock();
6332 return err;
6333 }
6334 EXPORT_SYMBOL(register_netdev);
6335
6336 int netdev_refcnt_read(const struct net_device *dev)
6337 {
6338 int i, refcnt = 0;
6339
6340 for_each_possible_cpu(i)
6341 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6342 return refcnt;
6343 }
6344 EXPORT_SYMBOL(netdev_refcnt_read);
6345
6346 /**
6347 * netdev_wait_allrefs - wait until all references are gone.
6348 * @dev: target net_device
6349 *
6350 * This is called when unregistering network devices.
6351 *
6352 * Any protocol or device that holds a reference should register
6353 * for netdevice notification, and cleanup and put back the
6354 * reference if they receive an UNREGISTER event.
6355 * We can get stuck here if buggy protocols don't correctly
6356 * call dev_put.
6357 */
6358 static void netdev_wait_allrefs(struct net_device *dev)
6359 {
6360 unsigned long rebroadcast_time, warning_time;
6361 int refcnt;
6362
6363 linkwatch_forget_dev(dev);
6364
6365 rebroadcast_time = warning_time = jiffies;
6366 refcnt = netdev_refcnt_read(dev);
6367
6368 while (refcnt != 0) {
6369 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6370 rtnl_lock();
6371
6372 /* Rebroadcast unregister notification */
6373 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6374
6375 __rtnl_unlock();
6376 rcu_barrier();
6377 rtnl_lock();
6378
6379 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6380 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6381 &dev->state)) {
6382 /* We must not have linkwatch events
6383 * pending on unregister. If this
6384 * happens, we simply run the queue
6385 * unscheduled, resulting in a noop
6386 * for this device.
6387 */
6388 linkwatch_run_queue();
6389 }
6390
6391 __rtnl_unlock();
6392
6393 rebroadcast_time = jiffies;
6394 }
6395
6396 msleep(250);
6397
6398 refcnt = netdev_refcnt_read(dev);
6399
6400 if (time_after(jiffies, warning_time + 10 * HZ)) {
6401 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6402 dev->name, refcnt);
6403 warning_time = jiffies;
6404 }
6405 }
6406 }
6407
6408 /* The sequence is:
6409 *
6410 * rtnl_lock();
6411 * ...
6412 * register_netdevice(x1);
6413 * register_netdevice(x2);
6414 * ...
6415 * unregister_netdevice(y1);
6416 * unregister_netdevice(y2);
6417 * ...
6418 * rtnl_unlock();
6419 * free_netdev(y1);
6420 * free_netdev(y2);
6421 *
6422 * We are invoked by rtnl_unlock().
6423 * This allows us to deal with problems:
6424 * 1) We can delete sysfs objects which invoke hotplug
6425 * without deadlocking with linkwatch via keventd.
6426 * 2) Since we run with the RTNL semaphore not held, we can sleep
6427 * safely in order to wait for the netdev refcnt to drop to zero.
6428 *
6429 * We must not return until all unregister events added during
6430 * the interval the lock was held have been completed.
6431 */
6432 void netdev_run_todo(void)
6433 {
6434 struct list_head list;
6435
6436 /* Snapshot list, allow later requests */
6437 list_replace_init(&net_todo_list, &list);
6438
6439 __rtnl_unlock();
6440
6441
6442 /* Wait for rcu callbacks to finish before next phase */
6443 if (!list_empty(&list))
6444 rcu_barrier();
6445
6446 while (!list_empty(&list)) {
6447 struct net_device *dev
6448 = list_first_entry(&list, struct net_device, todo_list);
6449 list_del(&dev->todo_list);
6450
6451 rtnl_lock();
6452 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6453 __rtnl_unlock();
6454
6455 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6456 pr_err("network todo '%s' but state %d\n",
6457 dev->name, dev->reg_state);
6458 dump_stack();
6459 continue;
6460 }
6461
6462 dev->reg_state = NETREG_UNREGISTERED;
6463
6464 on_each_cpu(flush_backlog, dev, 1);
6465
6466 netdev_wait_allrefs(dev);
6467
6468 /* paranoia */
6469 BUG_ON(netdev_refcnt_read(dev));
6470 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6471 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6472 WARN_ON(dev->dn_ptr);
6473
6474 if (dev->destructor)
6475 dev->destructor(dev);
6476
6477 /* Report a network device has been unregistered */
6478 rtnl_lock();
6479 dev_net(dev)->dev_unreg_count--;
6480 __rtnl_unlock();
6481 wake_up(&netdev_unregistering_wq);
6482
6483 /* Free network device */
6484 kobject_put(&dev->dev.kobj);
6485 }
6486 }
6487
6488 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6489 * fields in the same order, with only the type differing.
6490 */
6491 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6492 const struct net_device_stats *netdev_stats)
6493 {
6494 #if BITS_PER_LONG == 64
6495 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6496 memcpy(stats64, netdev_stats, sizeof(*stats64));
6497 #else
6498 size_t i, n = sizeof(*stats64) / sizeof(u64);
6499 const unsigned long *src = (const unsigned long *)netdev_stats;
6500 u64 *dst = (u64 *)stats64;
6501
6502 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6503 sizeof(*stats64) / sizeof(u64));
6504 for (i = 0; i < n; i++)
6505 dst[i] = src[i];
6506 #endif
6507 }
6508 EXPORT_SYMBOL(netdev_stats_to_stats64);
6509
6510 /**
6511 * dev_get_stats - get network device statistics
6512 * @dev: device to get statistics from
6513 * @storage: place to store stats
6514 *
6515 * Get network statistics from device. Return @storage.
6516 * The device driver may provide its own method by setting
6517 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6518 * otherwise the internal statistics structure is used.
6519 */
6520 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6521 struct rtnl_link_stats64 *storage)
6522 {
6523 const struct net_device_ops *ops = dev->netdev_ops;
6524
6525 if (ops->ndo_get_stats64) {
6526 memset(storage, 0, sizeof(*storage));
6527 ops->ndo_get_stats64(dev, storage);
6528 } else if (ops->ndo_get_stats) {
6529 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6530 } else {
6531 netdev_stats_to_stats64(storage, &dev->stats);
6532 }
6533 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6534 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6535 return storage;
6536 }
6537 EXPORT_SYMBOL(dev_get_stats);
6538
6539 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6540 {
6541 struct netdev_queue *queue = dev_ingress_queue(dev);
6542
6543 #ifdef CONFIG_NET_CLS_ACT
6544 if (queue)
6545 return queue;
6546 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6547 if (!queue)
6548 return NULL;
6549 netdev_init_one_queue(dev, queue, NULL);
6550 queue->qdisc = &noop_qdisc;
6551 queue->qdisc_sleeping = &noop_qdisc;
6552 rcu_assign_pointer(dev->ingress_queue, queue);
6553 #endif
6554 return queue;
6555 }
6556
6557 static const struct ethtool_ops default_ethtool_ops;
6558
6559 void netdev_set_default_ethtool_ops(struct net_device *dev,
6560 const struct ethtool_ops *ops)
6561 {
6562 if (dev->ethtool_ops == &default_ethtool_ops)
6563 dev->ethtool_ops = ops;
6564 }
6565 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6566
6567 void netdev_freemem(struct net_device *dev)
6568 {
6569 char *addr = (char *)dev - dev->padded;
6570
6571 kvfree(addr);
6572 }
6573
6574 /**
6575 * alloc_netdev_mqs - allocate network device
6576 * @sizeof_priv: size of private data to allocate space for
6577 * @name: device name format string
6578 * @name_assign_type: origin of device name
6579 * @setup: callback to initialize device
6580 * @txqs: the number of TX subqueues to allocate
6581 * @rxqs: the number of RX subqueues to allocate
6582 *
6583 * Allocates a struct net_device with private data area for driver use
6584 * and performs basic initialization. Also allocates subqueue structs
6585 * for each queue on the device.
6586 */
6587 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6588 unsigned char name_assign_type,
6589 void (*setup)(struct net_device *),
6590 unsigned int txqs, unsigned int rxqs)
6591 {
6592 struct net_device *dev;
6593 size_t alloc_size;
6594 struct net_device *p;
6595
6596 BUG_ON(strlen(name) >= sizeof(dev->name));
6597
6598 if (txqs < 1) {
6599 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6600 return NULL;
6601 }
6602
6603 #ifdef CONFIG_SYSFS
6604 if (rxqs < 1) {
6605 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6606 return NULL;
6607 }
6608 #endif
6609
6610 alloc_size = sizeof(struct net_device);
6611 if (sizeof_priv) {
6612 /* ensure 32-byte alignment of private area */
6613 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6614 alloc_size += sizeof_priv;
6615 }
6616 /* ensure 32-byte alignment of whole construct */
6617 alloc_size += NETDEV_ALIGN - 1;
6618
6619 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6620 if (!p)
6621 p = vzalloc(alloc_size);
6622 if (!p)
6623 return NULL;
6624
6625 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6626 dev->padded = (char *)dev - (char *)p;
6627
6628 dev->pcpu_refcnt = alloc_percpu(int);
6629 if (!dev->pcpu_refcnt)
6630 goto free_dev;
6631
6632 if (dev_addr_init(dev))
6633 goto free_pcpu;
6634
6635 dev_mc_init(dev);
6636 dev_uc_init(dev);
6637
6638 dev_net_set(dev, &init_net);
6639
6640 dev->gso_max_size = GSO_MAX_SIZE;
6641 dev->gso_max_segs = GSO_MAX_SEGS;
6642
6643 INIT_LIST_HEAD(&dev->napi_list);
6644 INIT_LIST_HEAD(&dev->unreg_list);
6645 INIT_LIST_HEAD(&dev->close_list);
6646 INIT_LIST_HEAD(&dev->link_watch_list);
6647 INIT_LIST_HEAD(&dev->adj_list.upper);
6648 INIT_LIST_HEAD(&dev->adj_list.lower);
6649 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6650 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6651 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6652 setup(dev);
6653
6654 dev->num_tx_queues = txqs;
6655 dev->real_num_tx_queues = txqs;
6656 if (netif_alloc_netdev_queues(dev))
6657 goto free_all;
6658
6659 #ifdef CONFIG_SYSFS
6660 dev->num_rx_queues = rxqs;
6661 dev->real_num_rx_queues = rxqs;
6662 if (netif_alloc_rx_queues(dev))
6663 goto free_all;
6664 #endif
6665
6666 strcpy(dev->name, name);
6667 dev->name_assign_type = name_assign_type;
6668 dev->group = INIT_NETDEV_GROUP;
6669 if (!dev->ethtool_ops)
6670 dev->ethtool_ops = &default_ethtool_ops;
6671 return dev;
6672
6673 free_all:
6674 free_netdev(dev);
6675 return NULL;
6676
6677 free_pcpu:
6678 free_percpu(dev->pcpu_refcnt);
6679 free_dev:
6680 netdev_freemem(dev);
6681 return NULL;
6682 }
6683 EXPORT_SYMBOL(alloc_netdev_mqs);
6684
6685 /**
6686 * free_netdev - free network device
6687 * @dev: device
6688 *
6689 * This function does the last stage of destroying an allocated device
6690 * interface. The reference to the device object is released.
6691 * If this is the last reference then it will be freed.
6692 */
6693 void free_netdev(struct net_device *dev)
6694 {
6695 struct napi_struct *p, *n;
6696
6697 release_net(dev_net(dev));
6698
6699 netif_free_tx_queues(dev);
6700 #ifdef CONFIG_SYSFS
6701 kfree(dev->_rx);
6702 #endif
6703
6704 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6705
6706 /* Flush device addresses */
6707 dev_addr_flush(dev);
6708
6709 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6710 netif_napi_del(p);
6711
6712 free_percpu(dev->pcpu_refcnt);
6713 dev->pcpu_refcnt = NULL;
6714
6715 /* Compatibility with error handling in drivers */
6716 if (dev->reg_state == NETREG_UNINITIALIZED) {
6717 netdev_freemem(dev);
6718 return;
6719 }
6720
6721 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6722 dev->reg_state = NETREG_RELEASED;
6723
6724 /* will free via device release */
6725 put_device(&dev->dev);
6726 }
6727 EXPORT_SYMBOL(free_netdev);
6728
6729 /**
6730 * synchronize_net - Synchronize with packet receive processing
6731 *
6732 * Wait for packets currently being received to be done.
6733 * Does not block later packets from starting.
6734 */
6735 void synchronize_net(void)
6736 {
6737 might_sleep();
6738 if (rtnl_is_locked())
6739 synchronize_rcu_expedited();
6740 else
6741 synchronize_rcu();
6742 }
6743 EXPORT_SYMBOL(synchronize_net);
6744
6745 /**
6746 * unregister_netdevice_queue - remove device from the kernel
6747 * @dev: device
6748 * @head: list
6749 *
6750 * This function shuts down a device interface and removes it
6751 * from the kernel tables.
6752 * If head not NULL, device is queued to be unregistered later.
6753 *
6754 * Callers must hold the rtnl semaphore. You may want
6755 * unregister_netdev() instead of this.
6756 */
6757
6758 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6759 {
6760 ASSERT_RTNL();
6761
6762 if (head) {
6763 list_move_tail(&dev->unreg_list, head);
6764 } else {
6765 rollback_registered(dev);
6766 /* Finish processing unregister after unlock */
6767 net_set_todo(dev);
6768 }
6769 }
6770 EXPORT_SYMBOL(unregister_netdevice_queue);
6771
6772 /**
6773 * unregister_netdevice_many - unregister many devices
6774 * @head: list of devices
6775 *
6776 * Note: As most callers use a stack allocated list_head,
6777 * we force a list_del() to make sure stack wont be corrupted later.
6778 */
6779 void unregister_netdevice_many(struct list_head *head)
6780 {
6781 struct net_device *dev;
6782
6783 if (!list_empty(head)) {
6784 rollback_registered_many(head);
6785 list_for_each_entry(dev, head, unreg_list)
6786 net_set_todo(dev);
6787 list_del(head);
6788 }
6789 }
6790 EXPORT_SYMBOL(unregister_netdevice_many);
6791
6792 /**
6793 * unregister_netdev - remove device from the kernel
6794 * @dev: device
6795 *
6796 * This function shuts down a device interface and removes it
6797 * from the kernel tables.
6798 *
6799 * This is just a wrapper for unregister_netdevice that takes
6800 * the rtnl semaphore. In general you want to use this and not
6801 * unregister_netdevice.
6802 */
6803 void unregister_netdev(struct net_device *dev)
6804 {
6805 rtnl_lock();
6806 unregister_netdevice(dev);
6807 rtnl_unlock();
6808 }
6809 EXPORT_SYMBOL(unregister_netdev);
6810
6811 /**
6812 * dev_change_net_namespace - move device to different nethost namespace
6813 * @dev: device
6814 * @net: network namespace
6815 * @pat: If not NULL name pattern to try if the current device name
6816 * is already taken in the destination network namespace.
6817 *
6818 * This function shuts down a device interface and moves it
6819 * to a new network namespace. On success 0 is returned, on
6820 * a failure a netagive errno code is returned.
6821 *
6822 * Callers must hold the rtnl semaphore.
6823 */
6824
6825 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6826 {
6827 int err;
6828
6829 ASSERT_RTNL();
6830
6831 /* Don't allow namespace local devices to be moved. */
6832 err = -EINVAL;
6833 if (dev->features & NETIF_F_NETNS_LOCAL)
6834 goto out;
6835
6836 /* Ensure the device has been registrered */
6837 if (dev->reg_state != NETREG_REGISTERED)
6838 goto out;
6839
6840 /* Get out if there is nothing todo */
6841 err = 0;
6842 if (net_eq(dev_net(dev), net))
6843 goto out;
6844
6845 /* Pick the destination device name, and ensure
6846 * we can use it in the destination network namespace.
6847 */
6848 err = -EEXIST;
6849 if (__dev_get_by_name(net, dev->name)) {
6850 /* We get here if we can't use the current device name */
6851 if (!pat)
6852 goto out;
6853 if (dev_get_valid_name(net, dev, pat) < 0)
6854 goto out;
6855 }
6856
6857 /*
6858 * And now a mini version of register_netdevice unregister_netdevice.
6859 */
6860
6861 /* If device is running close it first. */
6862 dev_close(dev);
6863
6864 /* And unlink it from device chain */
6865 err = -ENODEV;
6866 unlist_netdevice(dev);
6867
6868 synchronize_net();
6869
6870 /* Shutdown queueing discipline. */
6871 dev_shutdown(dev);
6872
6873 /* Notify protocols, that we are about to destroy
6874 this device. They should clean all the things.
6875
6876 Note that dev->reg_state stays at NETREG_REGISTERED.
6877 This is wanted because this way 8021q and macvlan know
6878 the device is just moving and can keep their slaves up.
6879 */
6880 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6881 rcu_barrier();
6882 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6883 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6884
6885 /*
6886 * Flush the unicast and multicast chains
6887 */
6888 dev_uc_flush(dev);
6889 dev_mc_flush(dev);
6890
6891 /* Send a netdev-removed uevent to the old namespace */
6892 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6893 netdev_adjacent_del_links(dev);
6894
6895 /* Actually switch the network namespace */
6896 dev_net_set(dev, net);
6897
6898 /* If there is an ifindex conflict assign a new one */
6899 if (__dev_get_by_index(net, dev->ifindex)) {
6900 int iflink = (dev->iflink == dev->ifindex);
6901 dev->ifindex = dev_new_index(net);
6902 if (iflink)
6903 dev->iflink = dev->ifindex;
6904 }
6905
6906 /* Send a netdev-add uevent to the new namespace */
6907 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6908 netdev_adjacent_add_links(dev);
6909
6910 /* Fixup kobjects */
6911 err = device_rename(&dev->dev, dev->name);
6912 WARN_ON(err);
6913
6914 /* Add the device back in the hashes */
6915 list_netdevice(dev);
6916
6917 /* Notify protocols, that a new device appeared. */
6918 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6919
6920 /*
6921 * Prevent userspace races by waiting until the network
6922 * device is fully setup before sending notifications.
6923 */
6924 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6925
6926 synchronize_net();
6927 err = 0;
6928 out:
6929 return err;
6930 }
6931 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6932
6933 static int dev_cpu_callback(struct notifier_block *nfb,
6934 unsigned long action,
6935 void *ocpu)
6936 {
6937 struct sk_buff **list_skb;
6938 struct sk_buff *skb;
6939 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6940 struct softnet_data *sd, *oldsd;
6941
6942 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6943 return NOTIFY_OK;
6944
6945 local_irq_disable();
6946 cpu = smp_processor_id();
6947 sd = &per_cpu(softnet_data, cpu);
6948 oldsd = &per_cpu(softnet_data, oldcpu);
6949
6950 /* Find end of our completion_queue. */
6951 list_skb = &sd->completion_queue;
6952 while (*list_skb)
6953 list_skb = &(*list_skb)->next;
6954 /* Append completion queue from offline CPU. */
6955 *list_skb = oldsd->completion_queue;
6956 oldsd->completion_queue = NULL;
6957
6958 /* Append output queue from offline CPU. */
6959 if (oldsd->output_queue) {
6960 *sd->output_queue_tailp = oldsd->output_queue;
6961 sd->output_queue_tailp = oldsd->output_queue_tailp;
6962 oldsd->output_queue = NULL;
6963 oldsd->output_queue_tailp = &oldsd->output_queue;
6964 }
6965 /* Append NAPI poll list from offline CPU. */
6966 if (!list_empty(&oldsd->poll_list)) {
6967 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6968 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6969 }
6970
6971 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6972 local_irq_enable();
6973
6974 /* Process offline CPU's input_pkt_queue */
6975 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6976 netif_rx_internal(skb);
6977 input_queue_head_incr(oldsd);
6978 }
6979 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6980 netif_rx_internal(skb);
6981 input_queue_head_incr(oldsd);
6982 }
6983
6984 return NOTIFY_OK;
6985 }
6986
6987
6988 /**
6989 * netdev_increment_features - increment feature set by one
6990 * @all: current feature set
6991 * @one: new feature set
6992 * @mask: mask feature set
6993 *
6994 * Computes a new feature set after adding a device with feature set
6995 * @one to the master device with current feature set @all. Will not
6996 * enable anything that is off in @mask. Returns the new feature set.
6997 */
6998 netdev_features_t netdev_increment_features(netdev_features_t all,
6999 netdev_features_t one, netdev_features_t mask)
7000 {
7001 if (mask & NETIF_F_GEN_CSUM)
7002 mask |= NETIF_F_ALL_CSUM;
7003 mask |= NETIF_F_VLAN_CHALLENGED;
7004
7005 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7006 all &= one | ~NETIF_F_ALL_FOR_ALL;
7007
7008 /* If one device supports hw checksumming, set for all. */
7009 if (all & NETIF_F_GEN_CSUM)
7010 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7011
7012 return all;
7013 }
7014 EXPORT_SYMBOL(netdev_increment_features);
7015
7016 static struct hlist_head * __net_init netdev_create_hash(void)
7017 {
7018 int i;
7019 struct hlist_head *hash;
7020
7021 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7022 if (hash != NULL)
7023 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7024 INIT_HLIST_HEAD(&hash[i]);
7025
7026 return hash;
7027 }
7028
7029 /* Initialize per network namespace state */
7030 static int __net_init netdev_init(struct net *net)
7031 {
7032 if (net != &init_net)
7033 INIT_LIST_HEAD(&net->dev_base_head);
7034
7035 net->dev_name_head = netdev_create_hash();
7036 if (net->dev_name_head == NULL)
7037 goto err_name;
7038
7039 net->dev_index_head = netdev_create_hash();
7040 if (net->dev_index_head == NULL)
7041 goto err_idx;
7042
7043 return 0;
7044
7045 err_idx:
7046 kfree(net->dev_name_head);
7047 err_name:
7048 return -ENOMEM;
7049 }
7050
7051 /**
7052 * netdev_drivername - network driver for the device
7053 * @dev: network device
7054 *
7055 * Determine network driver for device.
7056 */
7057 const char *netdev_drivername(const struct net_device *dev)
7058 {
7059 const struct device_driver *driver;
7060 const struct device *parent;
7061 const char *empty = "";
7062
7063 parent = dev->dev.parent;
7064 if (!parent)
7065 return empty;
7066
7067 driver = parent->driver;
7068 if (driver && driver->name)
7069 return driver->name;
7070 return empty;
7071 }
7072
7073 static int __netdev_printk(const char *level, const struct net_device *dev,
7074 struct va_format *vaf)
7075 {
7076 int r;
7077
7078 if (dev && dev->dev.parent) {
7079 r = dev_printk_emit(level[1] - '0',
7080 dev->dev.parent,
7081 "%s %s %s%s: %pV",
7082 dev_driver_string(dev->dev.parent),
7083 dev_name(dev->dev.parent),
7084 netdev_name(dev), netdev_reg_state(dev),
7085 vaf);
7086 } else if (dev) {
7087 r = printk("%s%s%s: %pV", level, netdev_name(dev),
7088 netdev_reg_state(dev), vaf);
7089 } else {
7090 r = printk("%s(NULL net_device): %pV", level, vaf);
7091 }
7092
7093 return r;
7094 }
7095
7096 int netdev_printk(const char *level, const struct net_device *dev,
7097 const char *format, ...)
7098 {
7099 struct va_format vaf;
7100 va_list args;
7101 int r;
7102
7103 va_start(args, format);
7104
7105 vaf.fmt = format;
7106 vaf.va = &args;
7107
7108 r = __netdev_printk(level, dev, &vaf);
7109
7110 va_end(args);
7111
7112 return r;
7113 }
7114 EXPORT_SYMBOL(netdev_printk);
7115
7116 #define define_netdev_printk_level(func, level) \
7117 int func(const struct net_device *dev, const char *fmt, ...) \
7118 { \
7119 int r; \
7120 struct va_format vaf; \
7121 va_list args; \
7122 \
7123 va_start(args, fmt); \
7124 \
7125 vaf.fmt = fmt; \
7126 vaf.va = &args; \
7127 \
7128 r = __netdev_printk(level, dev, &vaf); \
7129 \
7130 va_end(args); \
7131 \
7132 return r; \
7133 } \
7134 EXPORT_SYMBOL(func);
7135
7136 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7137 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7138 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7139 define_netdev_printk_level(netdev_err, KERN_ERR);
7140 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7141 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7142 define_netdev_printk_level(netdev_info, KERN_INFO);
7143
7144 static void __net_exit netdev_exit(struct net *net)
7145 {
7146 kfree(net->dev_name_head);
7147 kfree(net->dev_index_head);
7148 }
7149
7150 static struct pernet_operations __net_initdata netdev_net_ops = {
7151 .init = netdev_init,
7152 .exit = netdev_exit,
7153 };
7154
7155 static void __net_exit default_device_exit(struct net *net)
7156 {
7157 struct net_device *dev, *aux;
7158 /*
7159 * Push all migratable network devices back to the
7160 * initial network namespace
7161 */
7162 rtnl_lock();
7163 for_each_netdev_safe(net, dev, aux) {
7164 int err;
7165 char fb_name[IFNAMSIZ];
7166
7167 /* Ignore unmoveable devices (i.e. loopback) */
7168 if (dev->features & NETIF_F_NETNS_LOCAL)
7169 continue;
7170
7171 /* Leave virtual devices for the generic cleanup */
7172 if (dev->rtnl_link_ops)
7173 continue;
7174
7175 /* Push remaining network devices to init_net */
7176 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7177 err = dev_change_net_namespace(dev, &init_net, fb_name);
7178 if (err) {
7179 pr_emerg("%s: failed to move %s to init_net: %d\n",
7180 __func__, dev->name, err);
7181 BUG();
7182 }
7183 }
7184 rtnl_unlock();
7185 }
7186
7187 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7188 {
7189 /* Return with the rtnl_lock held when there are no network
7190 * devices unregistering in any network namespace in net_list.
7191 */
7192 struct net *net;
7193 bool unregistering;
7194 DEFINE_WAIT(wait);
7195
7196 for (;;) {
7197 prepare_to_wait(&netdev_unregistering_wq, &wait,
7198 TASK_UNINTERRUPTIBLE);
7199 unregistering = false;
7200 rtnl_lock();
7201 list_for_each_entry(net, net_list, exit_list) {
7202 if (net->dev_unreg_count > 0) {
7203 unregistering = true;
7204 break;
7205 }
7206 }
7207 if (!unregistering)
7208 break;
7209 __rtnl_unlock();
7210 schedule();
7211 }
7212 finish_wait(&netdev_unregistering_wq, &wait);
7213 }
7214
7215 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7216 {
7217 /* At exit all network devices most be removed from a network
7218 * namespace. Do this in the reverse order of registration.
7219 * Do this across as many network namespaces as possible to
7220 * improve batching efficiency.
7221 */
7222 struct net_device *dev;
7223 struct net *net;
7224 LIST_HEAD(dev_kill_list);
7225
7226 /* To prevent network device cleanup code from dereferencing
7227 * loopback devices or network devices that have been freed
7228 * wait here for all pending unregistrations to complete,
7229 * before unregistring the loopback device and allowing the
7230 * network namespace be freed.
7231 *
7232 * The netdev todo list containing all network devices
7233 * unregistrations that happen in default_device_exit_batch
7234 * will run in the rtnl_unlock() at the end of
7235 * default_device_exit_batch.
7236 */
7237 rtnl_lock_unregistering(net_list);
7238 list_for_each_entry(net, net_list, exit_list) {
7239 for_each_netdev_reverse(net, dev) {
7240 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7241 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7242 else
7243 unregister_netdevice_queue(dev, &dev_kill_list);
7244 }
7245 }
7246 unregister_netdevice_many(&dev_kill_list);
7247 rtnl_unlock();
7248 }
7249
7250 static struct pernet_operations __net_initdata default_device_ops = {
7251 .exit = default_device_exit,
7252 .exit_batch = default_device_exit_batch,
7253 };
7254
7255 /*
7256 * Initialize the DEV module. At boot time this walks the device list and
7257 * unhooks any devices that fail to initialise (normally hardware not
7258 * present) and leaves us with a valid list of present and active devices.
7259 *
7260 */
7261
7262 /*
7263 * This is called single threaded during boot, so no need
7264 * to take the rtnl semaphore.
7265 */
7266 static int __init net_dev_init(void)
7267 {
7268 int i, rc = -ENOMEM;
7269
7270 BUG_ON(!dev_boot_phase);
7271
7272 if (dev_proc_init())
7273 goto out;
7274
7275 if (netdev_kobject_init())
7276 goto out;
7277
7278 INIT_LIST_HEAD(&ptype_all);
7279 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7280 INIT_LIST_HEAD(&ptype_base[i]);
7281
7282 INIT_LIST_HEAD(&offload_base);
7283
7284 if (register_pernet_subsys(&netdev_net_ops))
7285 goto out;
7286
7287 /*
7288 * Initialise the packet receive queues.
7289 */
7290
7291 for_each_possible_cpu(i) {
7292 struct softnet_data *sd = &per_cpu(softnet_data, i);
7293
7294 skb_queue_head_init(&sd->input_pkt_queue);
7295 skb_queue_head_init(&sd->process_queue);
7296 INIT_LIST_HEAD(&sd->poll_list);
7297 sd->output_queue_tailp = &sd->output_queue;
7298 #ifdef CONFIG_RPS
7299 sd->csd.func = rps_trigger_softirq;
7300 sd->csd.info = sd;
7301 sd->cpu = i;
7302 #endif
7303
7304 sd->backlog.poll = process_backlog;
7305 sd->backlog.weight = weight_p;
7306 }
7307
7308 dev_boot_phase = 0;
7309
7310 /* The loopback device is special if any other network devices
7311 * is present in a network namespace the loopback device must
7312 * be present. Since we now dynamically allocate and free the
7313 * loopback device ensure this invariant is maintained by
7314 * keeping the loopback device as the first device on the
7315 * list of network devices. Ensuring the loopback devices
7316 * is the first device that appears and the last network device
7317 * that disappears.
7318 */
7319 if (register_pernet_device(&loopback_net_ops))
7320 goto out;
7321
7322 if (register_pernet_device(&default_device_ops))
7323 goto out;
7324
7325 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7326 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7327
7328 hotcpu_notifier(dev_cpu_callback, 0);
7329 dst_init();
7330 rc = 0;
7331 out:
7332 return rc;
7333 }
7334
7335 subsys_initcall(net_dev_init);