]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/core/dev.c
net: add rx_nohandler stat counter
[mirror_ubuntu-zesty-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/sctp.h>
142
143 #include "net-sysfs.h"
144
145 /* Instead of increasing this, you should create a hash table. */
146 #define MAX_GRO_SKBS 8
147
148 /* This should be increased if a protocol with a bigger head is added. */
149 #define GRO_MAX_HEAD (MAX_HEADER + 128)
150
151 static DEFINE_SPINLOCK(ptype_lock);
152 static DEFINE_SPINLOCK(offload_lock);
153 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
154 struct list_head ptype_all __read_mostly; /* Taps */
155 static struct list_head offload_base __read_mostly;
156
157 static int netif_rx_internal(struct sk_buff *skb);
158 static int call_netdevice_notifiers_info(unsigned long val,
159 struct net_device *dev,
160 struct netdev_notifier_info *info);
161
162 /*
163 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
164 * semaphore.
165 *
166 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
167 *
168 * Writers must hold the rtnl semaphore while they loop through the
169 * dev_base_head list, and hold dev_base_lock for writing when they do the
170 * actual updates. This allows pure readers to access the list even
171 * while a writer is preparing to update it.
172 *
173 * To put it another way, dev_base_lock is held for writing only to
174 * protect against pure readers; the rtnl semaphore provides the
175 * protection against other writers.
176 *
177 * See, for example usages, register_netdevice() and
178 * unregister_netdevice(), which must be called with the rtnl
179 * semaphore held.
180 */
181 DEFINE_RWLOCK(dev_base_lock);
182 EXPORT_SYMBOL(dev_base_lock);
183
184 /* protects napi_hash addition/deletion and napi_gen_id */
185 static DEFINE_SPINLOCK(napi_hash_lock);
186
187 static unsigned int napi_gen_id = NR_CPUS;
188 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
189
190 static seqcount_t devnet_rename_seq;
191
192 static inline void dev_base_seq_inc(struct net *net)
193 {
194 while (++net->dev_base_seq == 0);
195 }
196
197 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
198 {
199 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
200
201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
202 }
203
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205 {
206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
207 }
208
209 static inline void rps_lock(struct softnet_data *sd)
210 {
211 #ifdef CONFIG_RPS
212 spin_lock(&sd->input_pkt_queue.lock);
213 #endif
214 }
215
216 static inline void rps_unlock(struct softnet_data *sd)
217 {
218 #ifdef CONFIG_RPS
219 spin_unlock(&sd->input_pkt_queue.lock);
220 #endif
221 }
222
223 /* Device list insertion */
224 static void list_netdevice(struct net_device *dev)
225 {
226 struct net *net = dev_net(dev);
227
228 ASSERT_RTNL();
229
230 write_lock_bh(&dev_base_lock);
231 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
232 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
233 hlist_add_head_rcu(&dev->index_hlist,
234 dev_index_hash(net, dev->ifindex));
235 write_unlock_bh(&dev_base_lock);
236
237 dev_base_seq_inc(net);
238 }
239
240 /* Device list removal
241 * caller must respect a RCU grace period before freeing/reusing dev
242 */
243 static void unlist_netdevice(struct net_device *dev)
244 {
245 ASSERT_RTNL();
246
247 /* Unlink dev from the device chain */
248 write_lock_bh(&dev_base_lock);
249 list_del_rcu(&dev->dev_list);
250 hlist_del_rcu(&dev->name_hlist);
251 hlist_del_rcu(&dev->index_hlist);
252 write_unlock_bh(&dev_base_lock);
253
254 dev_base_seq_inc(dev_net(dev));
255 }
256
257 /*
258 * Our notifier list
259 */
260
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262
263 /*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
267
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270
271 #ifdef CONFIG_LOCKDEP
272 /*
273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274 * according to dev->type
275 */
276 static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
290 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
291 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
292
293 static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
307 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
308 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
309
310 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
311 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
312
313 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
314 {
315 int i;
316
317 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
318 if (netdev_lock_type[i] == dev_type)
319 return i;
320 /* the last key is used by default */
321 return ARRAY_SIZE(netdev_lock_type) - 1;
322 }
323
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326 {
327 int i;
328
329 i = netdev_lock_pos(dev_type);
330 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
331 netdev_lock_name[i]);
332 }
333
334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335 {
336 int i;
337
338 i = netdev_lock_pos(dev->type);
339 lockdep_set_class_and_name(&dev->addr_list_lock,
340 &netdev_addr_lock_key[i],
341 netdev_lock_name[i]);
342 }
343 #else
344 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
345 unsigned short dev_type)
346 {
347 }
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 }
351 #endif
352
353 /*******************************************************************************
354
355 Protocol management and registration routines
356
357 *******************************************************************************/
358
359 /*
360 * Add a protocol ID to the list. Now that the input handler is
361 * smarter we can dispense with all the messy stuff that used to be
362 * here.
363 *
364 * BEWARE!!! Protocol handlers, mangling input packets,
365 * MUST BE last in hash buckets and checking protocol handlers
366 * MUST start from promiscuous ptype_all chain in net_bh.
367 * It is true now, do not change it.
368 * Explanation follows: if protocol handler, mangling packet, will
369 * be the first on list, it is not able to sense, that packet
370 * is cloned and should be copied-on-write, so that it will
371 * change it and subsequent readers will get broken packet.
372 * --ANK (980803)
373 */
374
375 static inline struct list_head *ptype_head(const struct packet_type *pt)
376 {
377 if (pt->type == htons(ETH_P_ALL))
378 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
379 else
380 return pt->dev ? &pt->dev->ptype_specific :
381 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
382 }
383
384 /**
385 * dev_add_pack - add packet handler
386 * @pt: packet type declaration
387 *
388 * Add a protocol handler to the networking stack. The passed &packet_type
389 * is linked into kernel lists and may not be freed until it has been
390 * removed from the kernel lists.
391 *
392 * This call does not sleep therefore it can not
393 * guarantee all CPU's that are in middle of receiving packets
394 * will see the new packet type (until the next received packet).
395 */
396
397 void dev_add_pack(struct packet_type *pt)
398 {
399 struct list_head *head = ptype_head(pt);
400
401 spin_lock(&ptype_lock);
402 list_add_rcu(&pt->list, head);
403 spin_unlock(&ptype_lock);
404 }
405 EXPORT_SYMBOL(dev_add_pack);
406
407 /**
408 * __dev_remove_pack - remove packet handler
409 * @pt: packet type declaration
410 *
411 * Remove a protocol handler that was previously added to the kernel
412 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
413 * from the kernel lists and can be freed or reused once this function
414 * returns.
415 *
416 * The packet type might still be in use by receivers
417 * and must not be freed until after all the CPU's have gone
418 * through a quiescent state.
419 */
420 void __dev_remove_pack(struct packet_type *pt)
421 {
422 struct list_head *head = ptype_head(pt);
423 struct packet_type *pt1;
424
425 spin_lock(&ptype_lock);
426
427 list_for_each_entry(pt1, head, list) {
428 if (pt == pt1) {
429 list_del_rcu(&pt->list);
430 goto out;
431 }
432 }
433
434 pr_warn("dev_remove_pack: %p not found\n", pt);
435 out:
436 spin_unlock(&ptype_lock);
437 }
438 EXPORT_SYMBOL(__dev_remove_pack);
439
440 /**
441 * dev_remove_pack - remove packet handler
442 * @pt: packet type declaration
443 *
444 * Remove a protocol handler that was previously added to the kernel
445 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
446 * from the kernel lists and can be freed or reused once this function
447 * returns.
448 *
449 * This call sleeps to guarantee that no CPU is looking at the packet
450 * type after return.
451 */
452 void dev_remove_pack(struct packet_type *pt)
453 {
454 __dev_remove_pack(pt);
455
456 synchronize_net();
457 }
458 EXPORT_SYMBOL(dev_remove_pack);
459
460
461 /**
462 * dev_add_offload - register offload handlers
463 * @po: protocol offload declaration
464 *
465 * Add protocol offload handlers to the networking stack. The passed
466 * &proto_offload is linked into kernel lists and may not be freed until
467 * it has been removed from the kernel lists.
468 *
469 * This call does not sleep therefore it can not
470 * guarantee all CPU's that are in middle of receiving packets
471 * will see the new offload handlers (until the next received packet).
472 */
473 void dev_add_offload(struct packet_offload *po)
474 {
475 struct packet_offload *elem;
476
477 spin_lock(&offload_lock);
478 list_for_each_entry(elem, &offload_base, list) {
479 if (po->priority < elem->priority)
480 break;
481 }
482 list_add_rcu(&po->list, elem->list.prev);
483 spin_unlock(&offload_lock);
484 }
485 EXPORT_SYMBOL(dev_add_offload);
486
487 /**
488 * __dev_remove_offload - remove offload handler
489 * @po: packet offload declaration
490 *
491 * Remove a protocol offload handler that was previously added to the
492 * kernel offload handlers by dev_add_offload(). The passed &offload_type
493 * is removed from the kernel lists and can be freed or reused once this
494 * function returns.
495 *
496 * The packet type might still be in use by receivers
497 * and must not be freed until after all the CPU's have gone
498 * through a quiescent state.
499 */
500 static void __dev_remove_offload(struct packet_offload *po)
501 {
502 struct list_head *head = &offload_base;
503 struct packet_offload *po1;
504
505 spin_lock(&offload_lock);
506
507 list_for_each_entry(po1, head, list) {
508 if (po == po1) {
509 list_del_rcu(&po->list);
510 goto out;
511 }
512 }
513
514 pr_warn("dev_remove_offload: %p not found\n", po);
515 out:
516 spin_unlock(&offload_lock);
517 }
518
519 /**
520 * dev_remove_offload - remove packet offload handler
521 * @po: packet offload declaration
522 *
523 * Remove a packet offload handler that was previously added to the kernel
524 * offload handlers by dev_add_offload(). The passed &offload_type is
525 * removed from the kernel lists and can be freed or reused once this
526 * function returns.
527 *
528 * This call sleeps to guarantee that no CPU is looking at the packet
529 * type after return.
530 */
531 void dev_remove_offload(struct packet_offload *po)
532 {
533 __dev_remove_offload(po);
534
535 synchronize_net();
536 }
537 EXPORT_SYMBOL(dev_remove_offload);
538
539 /******************************************************************************
540
541 Device Boot-time Settings Routines
542
543 *******************************************************************************/
544
545 /* Boot time configuration table */
546 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
547
548 /**
549 * netdev_boot_setup_add - add new setup entry
550 * @name: name of the device
551 * @map: configured settings for the device
552 *
553 * Adds new setup entry to the dev_boot_setup list. The function
554 * returns 0 on error and 1 on success. This is a generic routine to
555 * all netdevices.
556 */
557 static int netdev_boot_setup_add(char *name, struct ifmap *map)
558 {
559 struct netdev_boot_setup *s;
560 int i;
561
562 s = dev_boot_setup;
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
564 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
565 memset(s[i].name, 0, sizeof(s[i].name));
566 strlcpy(s[i].name, name, IFNAMSIZ);
567 memcpy(&s[i].map, map, sizeof(s[i].map));
568 break;
569 }
570 }
571
572 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
573 }
574
575 /**
576 * netdev_boot_setup_check - check boot time settings
577 * @dev: the netdevice
578 *
579 * Check boot time settings for the device.
580 * The found settings are set for the device to be used
581 * later in the device probing.
582 * Returns 0 if no settings found, 1 if they are.
583 */
584 int netdev_boot_setup_check(struct net_device *dev)
585 {
586 struct netdev_boot_setup *s = dev_boot_setup;
587 int i;
588
589 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
590 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
591 !strcmp(dev->name, s[i].name)) {
592 dev->irq = s[i].map.irq;
593 dev->base_addr = s[i].map.base_addr;
594 dev->mem_start = s[i].map.mem_start;
595 dev->mem_end = s[i].map.mem_end;
596 return 1;
597 }
598 }
599 return 0;
600 }
601 EXPORT_SYMBOL(netdev_boot_setup_check);
602
603
604 /**
605 * netdev_boot_base - get address from boot time settings
606 * @prefix: prefix for network device
607 * @unit: id for network device
608 *
609 * Check boot time settings for the base address of device.
610 * The found settings are set for the device to be used
611 * later in the device probing.
612 * Returns 0 if no settings found.
613 */
614 unsigned long netdev_boot_base(const char *prefix, int unit)
615 {
616 const struct netdev_boot_setup *s = dev_boot_setup;
617 char name[IFNAMSIZ];
618 int i;
619
620 sprintf(name, "%s%d", prefix, unit);
621
622 /*
623 * If device already registered then return base of 1
624 * to indicate not to probe for this interface
625 */
626 if (__dev_get_by_name(&init_net, name))
627 return 1;
628
629 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
630 if (!strcmp(name, s[i].name))
631 return s[i].map.base_addr;
632 return 0;
633 }
634
635 /*
636 * Saves at boot time configured settings for any netdevice.
637 */
638 int __init netdev_boot_setup(char *str)
639 {
640 int ints[5];
641 struct ifmap map;
642
643 str = get_options(str, ARRAY_SIZE(ints), ints);
644 if (!str || !*str)
645 return 0;
646
647 /* Save settings */
648 memset(&map, 0, sizeof(map));
649 if (ints[0] > 0)
650 map.irq = ints[1];
651 if (ints[0] > 1)
652 map.base_addr = ints[2];
653 if (ints[0] > 2)
654 map.mem_start = ints[3];
655 if (ints[0] > 3)
656 map.mem_end = ints[4];
657
658 /* Add new entry to the list */
659 return netdev_boot_setup_add(str, &map);
660 }
661
662 __setup("netdev=", netdev_boot_setup);
663
664 /*******************************************************************************
665
666 Device Interface Subroutines
667
668 *******************************************************************************/
669
670 /**
671 * dev_get_iflink - get 'iflink' value of a interface
672 * @dev: targeted interface
673 *
674 * Indicates the ifindex the interface is linked to.
675 * Physical interfaces have the same 'ifindex' and 'iflink' values.
676 */
677
678 int dev_get_iflink(const struct net_device *dev)
679 {
680 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
681 return dev->netdev_ops->ndo_get_iflink(dev);
682
683 return dev->ifindex;
684 }
685 EXPORT_SYMBOL(dev_get_iflink);
686
687 /**
688 * dev_fill_metadata_dst - Retrieve tunnel egress information.
689 * @dev: targeted interface
690 * @skb: The packet.
691 *
692 * For better visibility of tunnel traffic OVS needs to retrieve
693 * egress tunnel information for a packet. Following API allows
694 * user to get this info.
695 */
696 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
697 {
698 struct ip_tunnel_info *info;
699
700 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
701 return -EINVAL;
702
703 info = skb_tunnel_info_unclone(skb);
704 if (!info)
705 return -ENOMEM;
706 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
707 return -EINVAL;
708
709 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
710 }
711 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
712
713 /**
714 * __dev_get_by_name - find a device by its name
715 * @net: the applicable net namespace
716 * @name: name to find
717 *
718 * Find an interface by name. Must be called under RTNL semaphore
719 * or @dev_base_lock. If the name is found a pointer to the device
720 * is returned. If the name is not found then %NULL is returned. The
721 * reference counters are not incremented so the caller must be
722 * careful with locks.
723 */
724
725 struct net_device *__dev_get_by_name(struct net *net, const char *name)
726 {
727 struct net_device *dev;
728 struct hlist_head *head = dev_name_hash(net, name);
729
730 hlist_for_each_entry(dev, head, name_hlist)
731 if (!strncmp(dev->name, name, IFNAMSIZ))
732 return dev;
733
734 return NULL;
735 }
736 EXPORT_SYMBOL(__dev_get_by_name);
737
738 /**
739 * dev_get_by_name_rcu - find a device by its name
740 * @net: the applicable net namespace
741 * @name: name to find
742 *
743 * Find an interface by name.
744 * If the name is found a pointer to the device is returned.
745 * If the name is not found then %NULL is returned.
746 * The reference counters are not incremented so the caller must be
747 * careful with locks. The caller must hold RCU lock.
748 */
749
750 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
751 {
752 struct net_device *dev;
753 struct hlist_head *head = dev_name_hash(net, name);
754
755 hlist_for_each_entry_rcu(dev, head, name_hlist)
756 if (!strncmp(dev->name, name, IFNAMSIZ))
757 return dev;
758
759 return NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762
763 /**
764 * dev_get_by_name - find a device by its name
765 * @net: the applicable net namespace
766 * @name: name to find
767 *
768 * Find an interface by name. This can be called from any
769 * context and does its own locking. The returned handle has
770 * the usage count incremented and the caller must use dev_put() to
771 * release it when it is no longer needed. %NULL is returned if no
772 * matching device is found.
773 */
774
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777 struct net_device *dev;
778
779 rcu_read_lock();
780 dev = dev_get_by_name_rcu(net, name);
781 if (dev)
782 dev_hold(dev);
783 rcu_read_unlock();
784 return dev;
785 }
786 EXPORT_SYMBOL(dev_get_by_name);
787
788 /**
789 * __dev_get_by_index - find a device by its ifindex
790 * @net: the applicable net namespace
791 * @ifindex: index of device
792 *
793 * Search for an interface by index. Returns %NULL if the device
794 * is not found or a pointer to the device. The device has not
795 * had its reference counter increased so the caller must be careful
796 * about locking. The caller must hold either the RTNL semaphore
797 * or @dev_base_lock.
798 */
799
800 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
801 {
802 struct net_device *dev;
803 struct hlist_head *head = dev_index_hash(net, ifindex);
804
805 hlist_for_each_entry(dev, head, index_hlist)
806 if (dev->ifindex == ifindex)
807 return dev;
808
809 return NULL;
810 }
811 EXPORT_SYMBOL(__dev_get_by_index);
812
813 /**
814 * dev_get_by_index_rcu - find a device by its ifindex
815 * @net: the applicable net namespace
816 * @ifindex: index of device
817 *
818 * Search for an interface by index. Returns %NULL if the device
819 * is not found or a pointer to the device. The device has not
820 * had its reference counter increased so the caller must be careful
821 * about locking. The caller must hold RCU lock.
822 */
823
824 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
825 {
826 struct net_device *dev;
827 struct hlist_head *head = dev_index_hash(net, ifindex);
828
829 hlist_for_each_entry_rcu(dev, head, index_hlist)
830 if (dev->ifindex == ifindex)
831 return dev;
832
833 return NULL;
834 }
835 EXPORT_SYMBOL(dev_get_by_index_rcu);
836
837
838 /**
839 * dev_get_by_index - find a device by its ifindex
840 * @net: the applicable net namespace
841 * @ifindex: index of device
842 *
843 * Search for an interface by index. Returns NULL if the device
844 * is not found or a pointer to the device. The device returned has
845 * had a reference added and the pointer is safe until the user calls
846 * dev_put to indicate they have finished with it.
847 */
848
849 struct net_device *dev_get_by_index(struct net *net, int ifindex)
850 {
851 struct net_device *dev;
852
853 rcu_read_lock();
854 dev = dev_get_by_index_rcu(net, ifindex);
855 if (dev)
856 dev_hold(dev);
857 rcu_read_unlock();
858 return dev;
859 }
860 EXPORT_SYMBOL(dev_get_by_index);
861
862 /**
863 * netdev_get_name - get a netdevice name, knowing its ifindex.
864 * @net: network namespace
865 * @name: a pointer to the buffer where the name will be stored.
866 * @ifindex: the ifindex of the interface to get the name from.
867 *
868 * The use of raw_seqcount_begin() and cond_resched() before
869 * retrying is required as we want to give the writers a chance
870 * to complete when CONFIG_PREEMPT is not set.
871 */
872 int netdev_get_name(struct net *net, char *name, int ifindex)
873 {
874 struct net_device *dev;
875 unsigned int seq;
876
877 retry:
878 seq = raw_seqcount_begin(&devnet_rename_seq);
879 rcu_read_lock();
880 dev = dev_get_by_index_rcu(net, ifindex);
881 if (!dev) {
882 rcu_read_unlock();
883 return -ENODEV;
884 }
885
886 strcpy(name, dev->name);
887 rcu_read_unlock();
888 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
889 cond_resched();
890 goto retry;
891 }
892
893 return 0;
894 }
895
896 /**
897 * dev_getbyhwaddr_rcu - find a device by its hardware address
898 * @net: the applicable net namespace
899 * @type: media type of device
900 * @ha: hardware address
901 *
902 * Search for an interface by MAC address. Returns NULL if the device
903 * is not found or a pointer to the device.
904 * The caller must hold RCU or RTNL.
905 * The returned device has not had its ref count increased
906 * and the caller must therefore be careful about locking
907 *
908 */
909
910 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
911 const char *ha)
912 {
913 struct net_device *dev;
914
915 for_each_netdev_rcu(net, dev)
916 if (dev->type == type &&
917 !memcmp(dev->dev_addr, ha, dev->addr_len))
918 return dev;
919
920 return NULL;
921 }
922 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
923
924 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
925 {
926 struct net_device *dev;
927
928 ASSERT_RTNL();
929 for_each_netdev(net, dev)
930 if (dev->type == type)
931 return dev;
932
933 return NULL;
934 }
935 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
936
937 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
938 {
939 struct net_device *dev, *ret = NULL;
940
941 rcu_read_lock();
942 for_each_netdev_rcu(net, dev)
943 if (dev->type == type) {
944 dev_hold(dev);
945 ret = dev;
946 break;
947 }
948 rcu_read_unlock();
949 return ret;
950 }
951 EXPORT_SYMBOL(dev_getfirstbyhwtype);
952
953 /**
954 * __dev_get_by_flags - find any device with given flags
955 * @net: the applicable net namespace
956 * @if_flags: IFF_* values
957 * @mask: bitmask of bits in if_flags to check
958 *
959 * Search for any interface with the given flags. Returns NULL if a device
960 * is not found or a pointer to the device. Must be called inside
961 * rtnl_lock(), and result refcount is unchanged.
962 */
963
964 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
965 unsigned short mask)
966 {
967 struct net_device *dev, *ret;
968
969 ASSERT_RTNL();
970
971 ret = NULL;
972 for_each_netdev(net, dev) {
973 if (((dev->flags ^ if_flags) & mask) == 0) {
974 ret = dev;
975 break;
976 }
977 }
978 return ret;
979 }
980 EXPORT_SYMBOL(__dev_get_by_flags);
981
982 /**
983 * dev_valid_name - check if name is okay for network device
984 * @name: name string
985 *
986 * Network device names need to be valid file names to
987 * to allow sysfs to work. We also disallow any kind of
988 * whitespace.
989 */
990 bool dev_valid_name(const char *name)
991 {
992 if (*name == '\0')
993 return false;
994 if (strlen(name) >= IFNAMSIZ)
995 return false;
996 if (!strcmp(name, ".") || !strcmp(name, ".."))
997 return false;
998
999 while (*name) {
1000 if (*name == '/' || *name == ':' || isspace(*name))
1001 return false;
1002 name++;
1003 }
1004 return true;
1005 }
1006 EXPORT_SYMBOL(dev_valid_name);
1007
1008 /**
1009 * __dev_alloc_name - allocate a name for a device
1010 * @net: network namespace to allocate the device name in
1011 * @name: name format string
1012 * @buf: scratch buffer and result name string
1013 *
1014 * Passed a format string - eg "lt%d" it will try and find a suitable
1015 * id. It scans list of devices to build up a free map, then chooses
1016 * the first empty slot. The caller must hold the dev_base or rtnl lock
1017 * while allocating the name and adding the device in order to avoid
1018 * duplicates.
1019 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1020 * Returns the number of the unit assigned or a negative errno code.
1021 */
1022
1023 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1024 {
1025 int i = 0;
1026 const char *p;
1027 const int max_netdevices = 8*PAGE_SIZE;
1028 unsigned long *inuse;
1029 struct net_device *d;
1030
1031 p = strnchr(name, IFNAMSIZ-1, '%');
1032 if (p) {
1033 /*
1034 * Verify the string as this thing may have come from
1035 * the user. There must be either one "%d" and no other "%"
1036 * characters.
1037 */
1038 if (p[1] != 'd' || strchr(p + 2, '%'))
1039 return -EINVAL;
1040
1041 /* Use one page as a bit array of possible slots */
1042 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1043 if (!inuse)
1044 return -ENOMEM;
1045
1046 for_each_netdev(net, d) {
1047 if (!sscanf(d->name, name, &i))
1048 continue;
1049 if (i < 0 || i >= max_netdevices)
1050 continue;
1051
1052 /* avoid cases where sscanf is not exact inverse of printf */
1053 snprintf(buf, IFNAMSIZ, name, i);
1054 if (!strncmp(buf, d->name, IFNAMSIZ))
1055 set_bit(i, inuse);
1056 }
1057
1058 i = find_first_zero_bit(inuse, max_netdevices);
1059 free_page((unsigned long) inuse);
1060 }
1061
1062 if (buf != name)
1063 snprintf(buf, IFNAMSIZ, name, i);
1064 if (!__dev_get_by_name(net, buf))
1065 return i;
1066
1067 /* It is possible to run out of possible slots
1068 * when the name is long and there isn't enough space left
1069 * for the digits, or if all bits are used.
1070 */
1071 return -ENFILE;
1072 }
1073
1074 /**
1075 * dev_alloc_name - allocate a name for a device
1076 * @dev: device
1077 * @name: name format string
1078 *
1079 * Passed a format string - eg "lt%d" it will try and find a suitable
1080 * id. It scans list of devices to build up a free map, then chooses
1081 * the first empty slot. The caller must hold the dev_base or rtnl lock
1082 * while allocating the name and adding the device in order to avoid
1083 * duplicates.
1084 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1085 * Returns the number of the unit assigned or a negative errno code.
1086 */
1087
1088 int dev_alloc_name(struct net_device *dev, const char *name)
1089 {
1090 char buf[IFNAMSIZ];
1091 struct net *net;
1092 int ret;
1093
1094 BUG_ON(!dev_net(dev));
1095 net = dev_net(dev);
1096 ret = __dev_alloc_name(net, name, buf);
1097 if (ret >= 0)
1098 strlcpy(dev->name, buf, IFNAMSIZ);
1099 return ret;
1100 }
1101 EXPORT_SYMBOL(dev_alloc_name);
1102
1103 static int dev_alloc_name_ns(struct net *net,
1104 struct net_device *dev,
1105 const char *name)
1106 {
1107 char buf[IFNAMSIZ];
1108 int ret;
1109
1110 ret = __dev_alloc_name(net, name, buf);
1111 if (ret >= 0)
1112 strlcpy(dev->name, buf, IFNAMSIZ);
1113 return ret;
1114 }
1115
1116 static int dev_get_valid_name(struct net *net,
1117 struct net_device *dev,
1118 const char *name)
1119 {
1120 BUG_ON(!net);
1121
1122 if (!dev_valid_name(name))
1123 return -EINVAL;
1124
1125 if (strchr(name, '%'))
1126 return dev_alloc_name_ns(net, dev, name);
1127 else if (__dev_get_by_name(net, name))
1128 return -EEXIST;
1129 else if (dev->name != name)
1130 strlcpy(dev->name, name, IFNAMSIZ);
1131
1132 return 0;
1133 }
1134
1135 /**
1136 * dev_change_name - change name of a device
1137 * @dev: device
1138 * @newname: name (or format string) must be at least IFNAMSIZ
1139 *
1140 * Change name of a device, can pass format strings "eth%d".
1141 * for wildcarding.
1142 */
1143 int dev_change_name(struct net_device *dev, const char *newname)
1144 {
1145 unsigned char old_assign_type;
1146 char oldname[IFNAMSIZ];
1147 int err = 0;
1148 int ret;
1149 struct net *net;
1150
1151 ASSERT_RTNL();
1152 BUG_ON(!dev_net(dev));
1153
1154 net = dev_net(dev);
1155 if (dev->flags & IFF_UP)
1156 return -EBUSY;
1157
1158 write_seqcount_begin(&devnet_rename_seq);
1159
1160 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1161 write_seqcount_end(&devnet_rename_seq);
1162 return 0;
1163 }
1164
1165 memcpy(oldname, dev->name, IFNAMSIZ);
1166
1167 err = dev_get_valid_name(net, dev, newname);
1168 if (err < 0) {
1169 write_seqcount_end(&devnet_rename_seq);
1170 return err;
1171 }
1172
1173 if (oldname[0] && !strchr(oldname, '%'))
1174 netdev_info(dev, "renamed from %s\n", oldname);
1175
1176 old_assign_type = dev->name_assign_type;
1177 dev->name_assign_type = NET_NAME_RENAMED;
1178
1179 rollback:
1180 ret = device_rename(&dev->dev, dev->name);
1181 if (ret) {
1182 memcpy(dev->name, oldname, IFNAMSIZ);
1183 dev->name_assign_type = old_assign_type;
1184 write_seqcount_end(&devnet_rename_seq);
1185 return ret;
1186 }
1187
1188 write_seqcount_end(&devnet_rename_seq);
1189
1190 netdev_adjacent_rename_links(dev, oldname);
1191
1192 write_lock_bh(&dev_base_lock);
1193 hlist_del_rcu(&dev->name_hlist);
1194 write_unlock_bh(&dev_base_lock);
1195
1196 synchronize_rcu();
1197
1198 write_lock_bh(&dev_base_lock);
1199 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1200 write_unlock_bh(&dev_base_lock);
1201
1202 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1203 ret = notifier_to_errno(ret);
1204
1205 if (ret) {
1206 /* err >= 0 after dev_alloc_name() or stores the first errno */
1207 if (err >= 0) {
1208 err = ret;
1209 write_seqcount_begin(&devnet_rename_seq);
1210 memcpy(dev->name, oldname, IFNAMSIZ);
1211 memcpy(oldname, newname, IFNAMSIZ);
1212 dev->name_assign_type = old_assign_type;
1213 old_assign_type = NET_NAME_RENAMED;
1214 goto rollback;
1215 } else {
1216 pr_err("%s: name change rollback failed: %d\n",
1217 dev->name, ret);
1218 }
1219 }
1220
1221 return err;
1222 }
1223
1224 /**
1225 * dev_set_alias - change ifalias of a device
1226 * @dev: device
1227 * @alias: name up to IFALIASZ
1228 * @len: limit of bytes to copy from info
1229 *
1230 * Set ifalias for a device,
1231 */
1232 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1233 {
1234 char *new_ifalias;
1235
1236 ASSERT_RTNL();
1237
1238 if (len >= IFALIASZ)
1239 return -EINVAL;
1240
1241 if (!len) {
1242 kfree(dev->ifalias);
1243 dev->ifalias = NULL;
1244 return 0;
1245 }
1246
1247 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1248 if (!new_ifalias)
1249 return -ENOMEM;
1250 dev->ifalias = new_ifalias;
1251
1252 strlcpy(dev->ifalias, alias, len+1);
1253 return len;
1254 }
1255
1256
1257 /**
1258 * netdev_features_change - device changes features
1259 * @dev: device to cause notification
1260 *
1261 * Called to indicate a device has changed features.
1262 */
1263 void netdev_features_change(struct net_device *dev)
1264 {
1265 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1266 }
1267 EXPORT_SYMBOL(netdev_features_change);
1268
1269 /**
1270 * netdev_state_change - device changes state
1271 * @dev: device to cause notification
1272 *
1273 * Called to indicate a device has changed state. This function calls
1274 * the notifier chains for netdev_chain and sends a NEWLINK message
1275 * to the routing socket.
1276 */
1277 void netdev_state_change(struct net_device *dev)
1278 {
1279 if (dev->flags & IFF_UP) {
1280 struct netdev_notifier_change_info change_info;
1281
1282 change_info.flags_changed = 0;
1283 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1284 &change_info.info);
1285 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1286 }
1287 }
1288 EXPORT_SYMBOL(netdev_state_change);
1289
1290 /**
1291 * netdev_notify_peers - notify network peers about existence of @dev
1292 * @dev: network device
1293 *
1294 * Generate traffic such that interested network peers are aware of
1295 * @dev, such as by generating a gratuitous ARP. This may be used when
1296 * a device wants to inform the rest of the network about some sort of
1297 * reconfiguration such as a failover event or virtual machine
1298 * migration.
1299 */
1300 void netdev_notify_peers(struct net_device *dev)
1301 {
1302 rtnl_lock();
1303 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1304 rtnl_unlock();
1305 }
1306 EXPORT_SYMBOL(netdev_notify_peers);
1307
1308 static int __dev_open(struct net_device *dev)
1309 {
1310 const struct net_device_ops *ops = dev->netdev_ops;
1311 int ret;
1312
1313 ASSERT_RTNL();
1314
1315 if (!netif_device_present(dev))
1316 return -ENODEV;
1317
1318 /* Block netpoll from trying to do any rx path servicing.
1319 * If we don't do this there is a chance ndo_poll_controller
1320 * or ndo_poll may be running while we open the device
1321 */
1322 netpoll_poll_disable(dev);
1323
1324 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1325 ret = notifier_to_errno(ret);
1326 if (ret)
1327 return ret;
1328
1329 set_bit(__LINK_STATE_START, &dev->state);
1330
1331 if (ops->ndo_validate_addr)
1332 ret = ops->ndo_validate_addr(dev);
1333
1334 if (!ret && ops->ndo_open)
1335 ret = ops->ndo_open(dev);
1336
1337 netpoll_poll_enable(dev);
1338
1339 if (ret)
1340 clear_bit(__LINK_STATE_START, &dev->state);
1341 else {
1342 dev->flags |= IFF_UP;
1343 dev_set_rx_mode(dev);
1344 dev_activate(dev);
1345 add_device_randomness(dev->dev_addr, dev->addr_len);
1346 }
1347
1348 return ret;
1349 }
1350
1351 /**
1352 * dev_open - prepare an interface for use.
1353 * @dev: device to open
1354 *
1355 * Takes a device from down to up state. The device's private open
1356 * function is invoked and then the multicast lists are loaded. Finally
1357 * the device is moved into the up state and a %NETDEV_UP message is
1358 * sent to the netdev notifier chain.
1359 *
1360 * Calling this function on an active interface is a nop. On a failure
1361 * a negative errno code is returned.
1362 */
1363 int dev_open(struct net_device *dev)
1364 {
1365 int ret;
1366
1367 if (dev->flags & IFF_UP)
1368 return 0;
1369
1370 ret = __dev_open(dev);
1371 if (ret < 0)
1372 return ret;
1373
1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1375 call_netdevice_notifiers(NETDEV_UP, dev);
1376
1377 return ret;
1378 }
1379 EXPORT_SYMBOL(dev_open);
1380
1381 static int __dev_close_many(struct list_head *head)
1382 {
1383 struct net_device *dev;
1384
1385 ASSERT_RTNL();
1386 might_sleep();
1387
1388 list_for_each_entry(dev, head, close_list) {
1389 /* Temporarily disable netpoll until the interface is down */
1390 netpoll_poll_disable(dev);
1391
1392 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1393
1394 clear_bit(__LINK_STATE_START, &dev->state);
1395
1396 /* Synchronize to scheduled poll. We cannot touch poll list, it
1397 * can be even on different cpu. So just clear netif_running().
1398 *
1399 * dev->stop() will invoke napi_disable() on all of it's
1400 * napi_struct instances on this device.
1401 */
1402 smp_mb__after_atomic(); /* Commit netif_running(). */
1403 }
1404
1405 dev_deactivate_many(head);
1406
1407 list_for_each_entry(dev, head, close_list) {
1408 const struct net_device_ops *ops = dev->netdev_ops;
1409
1410 /*
1411 * Call the device specific close. This cannot fail.
1412 * Only if device is UP
1413 *
1414 * We allow it to be called even after a DETACH hot-plug
1415 * event.
1416 */
1417 if (ops->ndo_stop)
1418 ops->ndo_stop(dev);
1419
1420 dev->flags &= ~IFF_UP;
1421 netpoll_poll_enable(dev);
1422 }
1423
1424 return 0;
1425 }
1426
1427 static int __dev_close(struct net_device *dev)
1428 {
1429 int retval;
1430 LIST_HEAD(single);
1431
1432 list_add(&dev->close_list, &single);
1433 retval = __dev_close_many(&single);
1434 list_del(&single);
1435
1436 return retval;
1437 }
1438
1439 int dev_close_many(struct list_head *head, bool unlink)
1440 {
1441 struct net_device *dev, *tmp;
1442
1443 /* Remove the devices that don't need to be closed */
1444 list_for_each_entry_safe(dev, tmp, head, close_list)
1445 if (!(dev->flags & IFF_UP))
1446 list_del_init(&dev->close_list);
1447
1448 __dev_close_many(head);
1449
1450 list_for_each_entry_safe(dev, tmp, head, close_list) {
1451 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1452 call_netdevice_notifiers(NETDEV_DOWN, dev);
1453 if (unlink)
1454 list_del_init(&dev->close_list);
1455 }
1456
1457 return 0;
1458 }
1459 EXPORT_SYMBOL(dev_close_many);
1460
1461 /**
1462 * dev_close - shutdown an interface.
1463 * @dev: device to shutdown
1464 *
1465 * This function moves an active device into down state. A
1466 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1467 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1468 * chain.
1469 */
1470 int dev_close(struct net_device *dev)
1471 {
1472 if (dev->flags & IFF_UP) {
1473 LIST_HEAD(single);
1474
1475 list_add(&dev->close_list, &single);
1476 dev_close_many(&single, true);
1477 list_del(&single);
1478 }
1479 return 0;
1480 }
1481 EXPORT_SYMBOL(dev_close);
1482
1483
1484 /**
1485 * dev_disable_lro - disable Large Receive Offload on a device
1486 * @dev: device
1487 *
1488 * Disable Large Receive Offload (LRO) on a net device. Must be
1489 * called under RTNL. This is needed if received packets may be
1490 * forwarded to another interface.
1491 */
1492 void dev_disable_lro(struct net_device *dev)
1493 {
1494 struct net_device *lower_dev;
1495 struct list_head *iter;
1496
1497 dev->wanted_features &= ~NETIF_F_LRO;
1498 netdev_update_features(dev);
1499
1500 if (unlikely(dev->features & NETIF_F_LRO))
1501 netdev_WARN(dev, "failed to disable LRO!\n");
1502
1503 netdev_for_each_lower_dev(dev, lower_dev, iter)
1504 dev_disable_lro(lower_dev);
1505 }
1506 EXPORT_SYMBOL(dev_disable_lro);
1507
1508 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1509 struct net_device *dev)
1510 {
1511 struct netdev_notifier_info info;
1512
1513 netdev_notifier_info_init(&info, dev);
1514 return nb->notifier_call(nb, val, &info);
1515 }
1516
1517 static int dev_boot_phase = 1;
1518
1519 /**
1520 * register_netdevice_notifier - register a network notifier block
1521 * @nb: notifier
1522 *
1523 * Register a notifier to be called when network device events occur.
1524 * The notifier passed is linked into the kernel structures and must
1525 * not be reused until it has been unregistered. A negative errno code
1526 * is returned on a failure.
1527 *
1528 * When registered all registration and up events are replayed
1529 * to the new notifier to allow device to have a race free
1530 * view of the network device list.
1531 */
1532
1533 int register_netdevice_notifier(struct notifier_block *nb)
1534 {
1535 struct net_device *dev;
1536 struct net_device *last;
1537 struct net *net;
1538 int err;
1539
1540 rtnl_lock();
1541 err = raw_notifier_chain_register(&netdev_chain, nb);
1542 if (err)
1543 goto unlock;
1544 if (dev_boot_phase)
1545 goto unlock;
1546 for_each_net(net) {
1547 for_each_netdev(net, dev) {
1548 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1549 err = notifier_to_errno(err);
1550 if (err)
1551 goto rollback;
1552
1553 if (!(dev->flags & IFF_UP))
1554 continue;
1555
1556 call_netdevice_notifier(nb, NETDEV_UP, dev);
1557 }
1558 }
1559
1560 unlock:
1561 rtnl_unlock();
1562 return err;
1563
1564 rollback:
1565 last = dev;
1566 for_each_net(net) {
1567 for_each_netdev(net, dev) {
1568 if (dev == last)
1569 goto outroll;
1570
1571 if (dev->flags & IFF_UP) {
1572 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1573 dev);
1574 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1575 }
1576 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1577 }
1578 }
1579
1580 outroll:
1581 raw_notifier_chain_unregister(&netdev_chain, nb);
1582 goto unlock;
1583 }
1584 EXPORT_SYMBOL(register_netdevice_notifier);
1585
1586 /**
1587 * unregister_netdevice_notifier - unregister a network notifier block
1588 * @nb: notifier
1589 *
1590 * Unregister a notifier previously registered by
1591 * register_netdevice_notifier(). The notifier is unlinked into the
1592 * kernel structures and may then be reused. A negative errno code
1593 * is returned on a failure.
1594 *
1595 * After unregistering unregister and down device events are synthesized
1596 * for all devices on the device list to the removed notifier to remove
1597 * the need for special case cleanup code.
1598 */
1599
1600 int unregister_netdevice_notifier(struct notifier_block *nb)
1601 {
1602 struct net_device *dev;
1603 struct net *net;
1604 int err;
1605
1606 rtnl_lock();
1607 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1608 if (err)
1609 goto unlock;
1610
1611 for_each_net(net) {
1612 for_each_netdev(net, dev) {
1613 if (dev->flags & IFF_UP) {
1614 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1615 dev);
1616 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1617 }
1618 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1619 }
1620 }
1621 unlock:
1622 rtnl_unlock();
1623 return err;
1624 }
1625 EXPORT_SYMBOL(unregister_netdevice_notifier);
1626
1627 /**
1628 * call_netdevice_notifiers_info - call all network notifier blocks
1629 * @val: value passed unmodified to notifier function
1630 * @dev: net_device pointer passed unmodified to notifier function
1631 * @info: notifier information data
1632 *
1633 * Call all network notifier blocks. Parameters and return value
1634 * are as for raw_notifier_call_chain().
1635 */
1636
1637 static int call_netdevice_notifiers_info(unsigned long val,
1638 struct net_device *dev,
1639 struct netdev_notifier_info *info)
1640 {
1641 ASSERT_RTNL();
1642 netdev_notifier_info_init(info, dev);
1643 return raw_notifier_call_chain(&netdev_chain, val, info);
1644 }
1645
1646 /**
1647 * call_netdevice_notifiers - call all network notifier blocks
1648 * @val: value passed unmodified to notifier function
1649 * @dev: net_device pointer passed unmodified to notifier function
1650 *
1651 * Call all network notifier blocks. Parameters and return value
1652 * are as for raw_notifier_call_chain().
1653 */
1654
1655 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1656 {
1657 struct netdev_notifier_info info;
1658
1659 return call_netdevice_notifiers_info(val, dev, &info);
1660 }
1661 EXPORT_SYMBOL(call_netdevice_notifiers);
1662
1663 #ifdef CONFIG_NET_INGRESS
1664 static struct static_key ingress_needed __read_mostly;
1665
1666 void net_inc_ingress_queue(void)
1667 {
1668 static_key_slow_inc(&ingress_needed);
1669 }
1670 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1671
1672 void net_dec_ingress_queue(void)
1673 {
1674 static_key_slow_dec(&ingress_needed);
1675 }
1676 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1677 #endif
1678
1679 #ifdef CONFIG_NET_EGRESS
1680 static struct static_key egress_needed __read_mostly;
1681
1682 void net_inc_egress_queue(void)
1683 {
1684 static_key_slow_inc(&egress_needed);
1685 }
1686 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1687
1688 void net_dec_egress_queue(void)
1689 {
1690 static_key_slow_dec(&egress_needed);
1691 }
1692 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1693 #endif
1694
1695 static struct static_key netstamp_needed __read_mostly;
1696 #ifdef HAVE_JUMP_LABEL
1697 /* We are not allowed to call static_key_slow_dec() from irq context
1698 * If net_disable_timestamp() is called from irq context, defer the
1699 * static_key_slow_dec() calls.
1700 */
1701 static atomic_t netstamp_needed_deferred;
1702 #endif
1703
1704 void net_enable_timestamp(void)
1705 {
1706 #ifdef HAVE_JUMP_LABEL
1707 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1708
1709 if (deferred) {
1710 while (--deferred)
1711 static_key_slow_dec(&netstamp_needed);
1712 return;
1713 }
1714 #endif
1715 static_key_slow_inc(&netstamp_needed);
1716 }
1717 EXPORT_SYMBOL(net_enable_timestamp);
1718
1719 void net_disable_timestamp(void)
1720 {
1721 #ifdef HAVE_JUMP_LABEL
1722 if (in_interrupt()) {
1723 atomic_inc(&netstamp_needed_deferred);
1724 return;
1725 }
1726 #endif
1727 static_key_slow_dec(&netstamp_needed);
1728 }
1729 EXPORT_SYMBOL(net_disable_timestamp);
1730
1731 static inline void net_timestamp_set(struct sk_buff *skb)
1732 {
1733 skb->tstamp.tv64 = 0;
1734 if (static_key_false(&netstamp_needed))
1735 __net_timestamp(skb);
1736 }
1737
1738 #define net_timestamp_check(COND, SKB) \
1739 if (static_key_false(&netstamp_needed)) { \
1740 if ((COND) && !(SKB)->tstamp.tv64) \
1741 __net_timestamp(SKB); \
1742 } \
1743
1744 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1745 {
1746 unsigned int len;
1747
1748 if (!(dev->flags & IFF_UP))
1749 return false;
1750
1751 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1752 if (skb->len <= len)
1753 return true;
1754
1755 /* if TSO is enabled, we don't care about the length as the packet
1756 * could be forwarded without being segmented before
1757 */
1758 if (skb_is_gso(skb))
1759 return true;
1760
1761 return false;
1762 }
1763 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1764
1765 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1766 {
1767 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1768 unlikely(!is_skb_forwardable(dev, skb))) {
1769 atomic_long_inc(&dev->rx_dropped);
1770 kfree_skb(skb);
1771 return NET_RX_DROP;
1772 }
1773
1774 skb_scrub_packet(skb, true);
1775 skb->priority = 0;
1776 skb->protocol = eth_type_trans(skb, dev);
1777 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1778
1779 return 0;
1780 }
1781 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1782
1783 /**
1784 * dev_forward_skb - loopback an skb to another netif
1785 *
1786 * @dev: destination network device
1787 * @skb: buffer to forward
1788 *
1789 * return values:
1790 * NET_RX_SUCCESS (no congestion)
1791 * NET_RX_DROP (packet was dropped, but freed)
1792 *
1793 * dev_forward_skb can be used for injecting an skb from the
1794 * start_xmit function of one device into the receive queue
1795 * of another device.
1796 *
1797 * The receiving device may be in another namespace, so
1798 * we have to clear all information in the skb that could
1799 * impact namespace isolation.
1800 */
1801 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1802 {
1803 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1804 }
1805 EXPORT_SYMBOL_GPL(dev_forward_skb);
1806
1807 static inline int deliver_skb(struct sk_buff *skb,
1808 struct packet_type *pt_prev,
1809 struct net_device *orig_dev)
1810 {
1811 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1812 return -ENOMEM;
1813 atomic_inc(&skb->users);
1814 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1815 }
1816
1817 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1818 struct packet_type **pt,
1819 struct net_device *orig_dev,
1820 __be16 type,
1821 struct list_head *ptype_list)
1822 {
1823 struct packet_type *ptype, *pt_prev = *pt;
1824
1825 list_for_each_entry_rcu(ptype, ptype_list, list) {
1826 if (ptype->type != type)
1827 continue;
1828 if (pt_prev)
1829 deliver_skb(skb, pt_prev, orig_dev);
1830 pt_prev = ptype;
1831 }
1832 *pt = pt_prev;
1833 }
1834
1835 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1836 {
1837 if (!ptype->af_packet_priv || !skb->sk)
1838 return false;
1839
1840 if (ptype->id_match)
1841 return ptype->id_match(ptype, skb->sk);
1842 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1843 return true;
1844
1845 return false;
1846 }
1847
1848 /*
1849 * Support routine. Sends outgoing frames to any network
1850 * taps currently in use.
1851 */
1852
1853 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1854 {
1855 struct packet_type *ptype;
1856 struct sk_buff *skb2 = NULL;
1857 struct packet_type *pt_prev = NULL;
1858 struct list_head *ptype_list = &ptype_all;
1859
1860 rcu_read_lock();
1861 again:
1862 list_for_each_entry_rcu(ptype, ptype_list, list) {
1863 /* Never send packets back to the socket
1864 * they originated from - MvS (miquels@drinkel.ow.org)
1865 */
1866 if (skb_loop_sk(ptype, skb))
1867 continue;
1868
1869 if (pt_prev) {
1870 deliver_skb(skb2, pt_prev, skb->dev);
1871 pt_prev = ptype;
1872 continue;
1873 }
1874
1875 /* need to clone skb, done only once */
1876 skb2 = skb_clone(skb, GFP_ATOMIC);
1877 if (!skb2)
1878 goto out_unlock;
1879
1880 net_timestamp_set(skb2);
1881
1882 /* skb->nh should be correctly
1883 * set by sender, so that the second statement is
1884 * just protection against buggy protocols.
1885 */
1886 skb_reset_mac_header(skb2);
1887
1888 if (skb_network_header(skb2) < skb2->data ||
1889 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1890 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1891 ntohs(skb2->protocol),
1892 dev->name);
1893 skb_reset_network_header(skb2);
1894 }
1895
1896 skb2->transport_header = skb2->network_header;
1897 skb2->pkt_type = PACKET_OUTGOING;
1898 pt_prev = ptype;
1899 }
1900
1901 if (ptype_list == &ptype_all) {
1902 ptype_list = &dev->ptype_all;
1903 goto again;
1904 }
1905 out_unlock:
1906 if (pt_prev)
1907 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1908 rcu_read_unlock();
1909 }
1910
1911 /**
1912 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1913 * @dev: Network device
1914 * @txq: number of queues available
1915 *
1916 * If real_num_tx_queues is changed the tc mappings may no longer be
1917 * valid. To resolve this verify the tc mapping remains valid and if
1918 * not NULL the mapping. With no priorities mapping to this
1919 * offset/count pair it will no longer be used. In the worst case TC0
1920 * is invalid nothing can be done so disable priority mappings. If is
1921 * expected that drivers will fix this mapping if they can before
1922 * calling netif_set_real_num_tx_queues.
1923 */
1924 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1925 {
1926 int i;
1927 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1928
1929 /* If TC0 is invalidated disable TC mapping */
1930 if (tc->offset + tc->count > txq) {
1931 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1932 dev->num_tc = 0;
1933 return;
1934 }
1935
1936 /* Invalidated prio to tc mappings set to TC0 */
1937 for (i = 1; i < TC_BITMASK + 1; i++) {
1938 int q = netdev_get_prio_tc_map(dev, i);
1939
1940 tc = &dev->tc_to_txq[q];
1941 if (tc->offset + tc->count > txq) {
1942 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1943 i, q);
1944 netdev_set_prio_tc_map(dev, i, 0);
1945 }
1946 }
1947 }
1948
1949 #ifdef CONFIG_XPS
1950 static DEFINE_MUTEX(xps_map_mutex);
1951 #define xmap_dereference(P) \
1952 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1953
1954 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1955 int cpu, u16 index)
1956 {
1957 struct xps_map *map = NULL;
1958 int pos;
1959
1960 if (dev_maps)
1961 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1962
1963 for (pos = 0; map && pos < map->len; pos++) {
1964 if (map->queues[pos] == index) {
1965 if (map->len > 1) {
1966 map->queues[pos] = map->queues[--map->len];
1967 } else {
1968 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1969 kfree_rcu(map, rcu);
1970 map = NULL;
1971 }
1972 break;
1973 }
1974 }
1975
1976 return map;
1977 }
1978
1979 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1980 {
1981 struct xps_dev_maps *dev_maps;
1982 int cpu, i;
1983 bool active = false;
1984
1985 mutex_lock(&xps_map_mutex);
1986 dev_maps = xmap_dereference(dev->xps_maps);
1987
1988 if (!dev_maps)
1989 goto out_no_maps;
1990
1991 for_each_possible_cpu(cpu) {
1992 for (i = index; i < dev->num_tx_queues; i++) {
1993 if (!remove_xps_queue(dev_maps, cpu, i))
1994 break;
1995 }
1996 if (i == dev->num_tx_queues)
1997 active = true;
1998 }
1999
2000 if (!active) {
2001 RCU_INIT_POINTER(dev->xps_maps, NULL);
2002 kfree_rcu(dev_maps, rcu);
2003 }
2004
2005 for (i = index; i < dev->num_tx_queues; i++)
2006 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2007 NUMA_NO_NODE);
2008
2009 out_no_maps:
2010 mutex_unlock(&xps_map_mutex);
2011 }
2012
2013 static struct xps_map *expand_xps_map(struct xps_map *map,
2014 int cpu, u16 index)
2015 {
2016 struct xps_map *new_map;
2017 int alloc_len = XPS_MIN_MAP_ALLOC;
2018 int i, pos;
2019
2020 for (pos = 0; map && pos < map->len; pos++) {
2021 if (map->queues[pos] != index)
2022 continue;
2023 return map;
2024 }
2025
2026 /* Need to add queue to this CPU's existing map */
2027 if (map) {
2028 if (pos < map->alloc_len)
2029 return map;
2030
2031 alloc_len = map->alloc_len * 2;
2032 }
2033
2034 /* Need to allocate new map to store queue on this CPU's map */
2035 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2036 cpu_to_node(cpu));
2037 if (!new_map)
2038 return NULL;
2039
2040 for (i = 0; i < pos; i++)
2041 new_map->queues[i] = map->queues[i];
2042 new_map->alloc_len = alloc_len;
2043 new_map->len = pos;
2044
2045 return new_map;
2046 }
2047
2048 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2049 u16 index)
2050 {
2051 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2052 struct xps_map *map, *new_map;
2053 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2054 int cpu, numa_node_id = -2;
2055 bool active = false;
2056
2057 mutex_lock(&xps_map_mutex);
2058
2059 dev_maps = xmap_dereference(dev->xps_maps);
2060
2061 /* allocate memory for queue storage */
2062 for_each_online_cpu(cpu) {
2063 if (!cpumask_test_cpu(cpu, mask))
2064 continue;
2065
2066 if (!new_dev_maps)
2067 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2068 if (!new_dev_maps) {
2069 mutex_unlock(&xps_map_mutex);
2070 return -ENOMEM;
2071 }
2072
2073 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2074 NULL;
2075
2076 map = expand_xps_map(map, cpu, index);
2077 if (!map)
2078 goto error;
2079
2080 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2081 }
2082
2083 if (!new_dev_maps)
2084 goto out_no_new_maps;
2085
2086 for_each_possible_cpu(cpu) {
2087 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2088 /* add queue to CPU maps */
2089 int pos = 0;
2090
2091 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2092 while ((pos < map->len) && (map->queues[pos] != index))
2093 pos++;
2094
2095 if (pos == map->len)
2096 map->queues[map->len++] = index;
2097 #ifdef CONFIG_NUMA
2098 if (numa_node_id == -2)
2099 numa_node_id = cpu_to_node(cpu);
2100 else if (numa_node_id != cpu_to_node(cpu))
2101 numa_node_id = -1;
2102 #endif
2103 } else if (dev_maps) {
2104 /* fill in the new device map from the old device map */
2105 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2106 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2107 }
2108
2109 }
2110
2111 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2112
2113 /* Cleanup old maps */
2114 if (dev_maps) {
2115 for_each_possible_cpu(cpu) {
2116 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2117 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2118 if (map && map != new_map)
2119 kfree_rcu(map, rcu);
2120 }
2121
2122 kfree_rcu(dev_maps, rcu);
2123 }
2124
2125 dev_maps = new_dev_maps;
2126 active = true;
2127
2128 out_no_new_maps:
2129 /* update Tx queue numa node */
2130 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2131 (numa_node_id >= 0) ? numa_node_id :
2132 NUMA_NO_NODE);
2133
2134 if (!dev_maps)
2135 goto out_no_maps;
2136
2137 /* removes queue from unused CPUs */
2138 for_each_possible_cpu(cpu) {
2139 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2140 continue;
2141
2142 if (remove_xps_queue(dev_maps, cpu, index))
2143 active = true;
2144 }
2145
2146 /* free map if not active */
2147 if (!active) {
2148 RCU_INIT_POINTER(dev->xps_maps, NULL);
2149 kfree_rcu(dev_maps, rcu);
2150 }
2151
2152 out_no_maps:
2153 mutex_unlock(&xps_map_mutex);
2154
2155 return 0;
2156 error:
2157 /* remove any maps that we added */
2158 for_each_possible_cpu(cpu) {
2159 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2160 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2161 NULL;
2162 if (new_map && new_map != map)
2163 kfree(new_map);
2164 }
2165
2166 mutex_unlock(&xps_map_mutex);
2167
2168 kfree(new_dev_maps);
2169 return -ENOMEM;
2170 }
2171 EXPORT_SYMBOL(netif_set_xps_queue);
2172
2173 #endif
2174 /*
2175 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2176 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2177 */
2178 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2179 {
2180 int rc;
2181
2182 if (txq < 1 || txq > dev->num_tx_queues)
2183 return -EINVAL;
2184
2185 if (dev->reg_state == NETREG_REGISTERED ||
2186 dev->reg_state == NETREG_UNREGISTERING) {
2187 ASSERT_RTNL();
2188
2189 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2190 txq);
2191 if (rc)
2192 return rc;
2193
2194 if (dev->num_tc)
2195 netif_setup_tc(dev, txq);
2196
2197 if (txq < dev->real_num_tx_queues) {
2198 qdisc_reset_all_tx_gt(dev, txq);
2199 #ifdef CONFIG_XPS
2200 netif_reset_xps_queues_gt(dev, txq);
2201 #endif
2202 }
2203 }
2204
2205 dev->real_num_tx_queues = txq;
2206 return 0;
2207 }
2208 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2209
2210 #ifdef CONFIG_SYSFS
2211 /**
2212 * netif_set_real_num_rx_queues - set actual number of RX queues used
2213 * @dev: Network device
2214 * @rxq: Actual number of RX queues
2215 *
2216 * This must be called either with the rtnl_lock held or before
2217 * registration of the net device. Returns 0 on success, or a
2218 * negative error code. If called before registration, it always
2219 * succeeds.
2220 */
2221 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2222 {
2223 int rc;
2224
2225 if (rxq < 1 || rxq > dev->num_rx_queues)
2226 return -EINVAL;
2227
2228 if (dev->reg_state == NETREG_REGISTERED) {
2229 ASSERT_RTNL();
2230
2231 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2232 rxq);
2233 if (rc)
2234 return rc;
2235 }
2236
2237 dev->real_num_rx_queues = rxq;
2238 return 0;
2239 }
2240 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2241 #endif
2242
2243 /**
2244 * netif_get_num_default_rss_queues - default number of RSS queues
2245 *
2246 * This routine should set an upper limit on the number of RSS queues
2247 * used by default by multiqueue devices.
2248 */
2249 int netif_get_num_default_rss_queues(void)
2250 {
2251 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2252 }
2253 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2254
2255 static inline void __netif_reschedule(struct Qdisc *q)
2256 {
2257 struct softnet_data *sd;
2258 unsigned long flags;
2259
2260 local_irq_save(flags);
2261 sd = this_cpu_ptr(&softnet_data);
2262 q->next_sched = NULL;
2263 *sd->output_queue_tailp = q;
2264 sd->output_queue_tailp = &q->next_sched;
2265 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2266 local_irq_restore(flags);
2267 }
2268
2269 void __netif_schedule(struct Qdisc *q)
2270 {
2271 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2272 __netif_reschedule(q);
2273 }
2274 EXPORT_SYMBOL(__netif_schedule);
2275
2276 struct dev_kfree_skb_cb {
2277 enum skb_free_reason reason;
2278 };
2279
2280 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2281 {
2282 return (struct dev_kfree_skb_cb *)skb->cb;
2283 }
2284
2285 void netif_schedule_queue(struct netdev_queue *txq)
2286 {
2287 rcu_read_lock();
2288 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2289 struct Qdisc *q = rcu_dereference(txq->qdisc);
2290
2291 __netif_schedule(q);
2292 }
2293 rcu_read_unlock();
2294 }
2295 EXPORT_SYMBOL(netif_schedule_queue);
2296
2297 /**
2298 * netif_wake_subqueue - allow sending packets on subqueue
2299 * @dev: network device
2300 * @queue_index: sub queue index
2301 *
2302 * Resume individual transmit queue of a device with multiple transmit queues.
2303 */
2304 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2305 {
2306 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2307
2308 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2309 struct Qdisc *q;
2310
2311 rcu_read_lock();
2312 q = rcu_dereference(txq->qdisc);
2313 __netif_schedule(q);
2314 rcu_read_unlock();
2315 }
2316 }
2317 EXPORT_SYMBOL(netif_wake_subqueue);
2318
2319 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2320 {
2321 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2322 struct Qdisc *q;
2323
2324 rcu_read_lock();
2325 q = rcu_dereference(dev_queue->qdisc);
2326 __netif_schedule(q);
2327 rcu_read_unlock();
2328 }
2329 }
2330 EXPORT_SYMBOL(netif_tx_wake_queue);
2331
2332 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2333 {
2334 unsigned long flags;
2335
2336 if (likely(atomic_read(&skb->users) == 1)) {
2337 smp_rmb();
2338 atomic_set(&skb->users, 0);
2339 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2340 return;
2341 }
2342 get_kfree_skb_cb(skb)->reason = reason;
2343 local_irq_save(flags);
2344 skb->next = __this_cpu_read(softnet_data.completion_queue);
2345 __this_cpu_write(softnet_data.completion_queue, skb);
2346 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2347 local_irq_restore(flags);
2348 }
2349 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2350
2351 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2352 {
2353 if (in_irq() || irqs_disabled())
2354 __dev_kfree_skb_irq(skb, reason);
2355 else
2356 dev_kfree_skb(skb);
2357 }
2358 EXPORT_SYMBOL(__dev_kfree_skb_any);
2359
2360
2361 /**
2362 * netif_device_detach - mark device as removed
2363 * @dev: network device
2364 *
2365 * Mark device as removed from system and therefore no longer available.
2366 */
2367 void netif_device_detach(struct net_device *dev)
2368 {
2369 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2370 netif_running(dev)) {
2371 netif_tx_stop_all_queues(dev);
2372 }
2373 }
2374 EXPORT_SYMBOL(netif_device_detach);
2375
2376 /**
2377 * netif_device_attach - mark device as attached
2378 * @dev: network device
2379 *
2380 * Mark device as attached from system and restart if needed.
2381 */
2382 void netif_device_attach(struct net_device *dev)
2383 {
2384 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2385 netif_running(dev)) {
2386 netif_tx_wake_all_queues(dev);
2387 __netdev_watchdog_up(dev);
2388 }
2389 }
2390 EXPORT_SYMBOL(netif_device_attach);
2391
2392 /*
2393 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2394 * to be used as a distribution range.
2395 */
2396 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2397 unsigned int num_tx_queues)
2398 {
2399 u32 hash;
2400 u16 qoffset = 0;
2401 u16 qcount = num_tx_queues;
2402
2403 if (skb_rx_queue_recorded(skb)) {
2404 hash = skb_get_rx_queue(skb);
2405 while (unlikely(hash >= num_tx_queues))
2406 hash -= num_tx_queues;
2407 return hash;
2408 }
2409
2410 if (dev->num_tc) {
2411 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2412 qoffset = dev->tc_to_txq[tc].offset;
2413 qcount = dev->tc_to_txq[tc].count;
2414 }
2415
2416 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2417 }
2418 EXPORT_SYMBOL(__skb_tx_hash);
2419
2420 static void skb_warn_bad_offload(const struct sk_buff *skb)
2421 {
2422 static const netdev_features_t null_features = 0;
2423 struct net_device *dev = skb->dev;
2424 const char *name = "";
2425
2426 if (!net_ratelimit())
2427 return;
2428
2429 if (dev) {
2430 if (dev->dev.parent)
2431 name = dev_driver_string(dev->dev.parent);
2432 else
2433 name = netdev_name(dev);
2434 }
2435 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2436 "gso_type=%d ip_summed=%d\n",
2437 name, dev ? &dev->features : &null_features,
2438 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2439 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2440 skb_shinfo(skb)->gso_type, skb->ip_summed);
2441 }
2442
2443 /*
2444 * Invalidate hardware checksum when packet is to be mangled, and
2445 * complete checksum manually on outgoing path.
2446 */
2447 int skb_checksum_help(struct sk_buff *skb)
2448 {
2449 __wsum csum;
2450 int ret = 0, offset;
2451
2452 if (skb->ip_summed == CHECKSUM_COMPLETE)
2453 goto out_set_summed;
2454
2455 if (unlikely(skb_shinfo(skb)->gso_size)) {
2456 skb_warn_bad_offload(skb);
2457 return -EINVAL;
2458 }
2459
2460 /* Before computing a checksum, we should make sure no frag could
2461 * be modified by an external entity : checksum could be wrong.
2462 */
2463 if (skb_has_shared_frag(skb)) {
2464 ret = __skb_linearize(skb);
2465 if (ret)
2466 goto out;
2467 }
2468
2469 offset = skb_checksum_start_offset(skb);
2470 BUG_ON(offset >= skb_headlen(skb));
2471 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2472
2473 offset += skb->csum_offset;
2474 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2475
2476 if (skb_cloned(skb) &&
2477 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2478 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2479 if (ret)
2480 goto out;
2481 }
2482
2483 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2484 out_set_summed:
2485 skb->ip_summed = CHECKSUM_NONE;
2486 out:
2487 return ret;
2488 }
2489 EXPORT_SYMBOL(skb_checksum_help);
2490
2491 /* skb_csum_offload_check - Driver helper function to determine if a device
2492 * with limited checksum offload capabilities is able to offload the checksum
2493 * for a given packet.
2494 *
2495 * Arguments:
2496 * skb - sk_buff for the packet in question
2497 * spec - contains the description of what device can offload
2498 * csum_encapped - returns true if the checksum being offloaded is
2499 * encpasulated. That is it is checksum for the transport header
2500 * in the inner headers.
2501 * checksum_help - when set indicates that helper function should
2502 * call skb_checksum_help if offload checks fail
2503 *
2504 * Returns:
2505 * true: Packet has passed the checksum checks and should be offloadable to
2506 * the device (a driver may still need to check for additional
2507 * restrictions of its device)
2508 * false: Checksum is not offloadable. If checksum_help was set then
2509 * skb_checksum_help was called to resolve checksum for non-GSO
2510 * packets and when IP protocol is not SCTP
2511 */
2512 bool __skb_csum_offload_chk(struct sk_buff *skb,
2513 const struct skb_csum_offl_spec *spec,
2514 bool *csum_encapped,
2515 bool csum_help)
2516 {
2517 struct iphdr *iph;
2518 struct ipv6hdr *ipv6;
2519 void *nhdr;
2520 int protocol;
2521 u8 ip_proto;
2522
2523 if (skb->protocol == htons(ETH_P_8021Q) ||
2524 skb->protocol == htons(ETH_P_8021AD)) {
2525 if (!spec->vlan_okay)
2526 goto need_help;
2527 }
2528
2529 /* We check whether the checksum refers to a transport layer checksum in
2530 * the outermost header or an encapsulated transport layer checksum that
2531 * corresponds to the inner headers of the skb. If the checksum is for
2532 * something else in the packet we need help.
2533 */
2534 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2535 /* Non-encapsulated checksum */
2536 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2537 nhdr = skb_network_header(skb);
2538 *csum_encapped = false;
2539 if (spec->no_not_encapped)
2540 goto need_help;
2541 } else if (skb->encapsulation && spec->encap_okay &&
2542 skb_checksum_start_offset(skb) ==
2543 skb_inner_transport_offset(skb)) {
2544 /* Encapsulated checksum */
2545 *csum_encapped = true;
2546 switch (skb->inner_protocol_type) {
2547 case ENCAP_TYPE_ETHER:
2548 protocol = eproto_to_ipproto(skb->inner_protocol);
2549 break;
2550 case ENCAP_TYPE_IPPROTO:
2551 protocol = skb->inner_protocol;
2552 break;
2553 }
2554 nhdr = skb_inner_network_header(skb);
2555 } else {
2556 goto need_help;
2557 }
2558
2559 switch (protocol) {
2560 case IPPROTO_IP:
2561 if (!spec->ipv4_okay)
2562 goto need_help;
2563 iph = nhdr;
2564 ip_proto = iph->protocol;
2565 if (iph->ihl != 5 && !spec->ip_options_okay)
2566 goto need_help;
2567 break;
2568 case IPPROTO_IPV6:
2569 if (!spec->ipv6_okay)
2570 goto need_help;
2571 if (spec->no_encapped_ipv6 && *csum_encapped)
2572 goto need_help;
2573 ipv6 = nhdr;
2574 nhdr += sizeof(*ipv6);
2575 ip_proto = ipv6->nexthdr;
2576 break;
2577 default:
2578 goto need_help;
2579 }
2580
2581 ip_proto_again:
2582 switch (ip_proto) {
2583 case IPPROTO_TCP:
2584 if (!spec->tcp_okay ||
2585 skb->csum_offset != offsetof(struct tcphdr, check))
2586 goto need_help;
2587 break;
2588 case IPPROTO_UDP:
2589 if (!spec->udp_okay ||
2590 skb->csum_offset != offsetof(struct udphdr, check))
2591 goto need_help;
2592 break;
2593 case IPPROTO_SCTP:
2594 if (!spec->sctp_okay ||
2595 skb->csum_offset != offsetof(struct sctphdr, checksum))
2596 goto cant_help;
2597 break;
2598 case NEXTHDR_HOP:
2599 case NEXTHDR_ROUTING:
2600 case NEXTHDR_DEST: {
2601 u8 *opthdr = nhdr;
2602
2603 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2604 goto need_help;
2605
2606 ip_proto = opthdr[0];
2607 nhdr += (opthdr[1] + 1) << 3;
2608
2609 goto ip_proto_again;
2610 }
2611 default:
2612 goto need_help;
2613 }
2614
2615 /* Passed the tests for offloading checksum */
2616 return true;
2617
2618 need_help:
2619 if (csum_help && !skb_shinfo(skb)->gso_size)
2620 skb_checksum_help(skb);
2621 cant_help:
2622 return false;
2623 }
2624 EXPORT_SYMBOL(__skb_csum_offload_chk);
2625
2626 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2627 {
2628 __be16 type = skb->protocol;
2629
2630 /* Tunnel gso handlers can set protocol to ethernet. */
2631 if (type == htons(ETH_P_TEB)) {
2632 struct ethhdr *eth;
2633
2634 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2635 return 0;
2636
2637 eth = (struct ethhdr *)skb_mac_header(skb);
2638 type = eth->h_proto;
2639 }
2640
2641 return __vlan_get_protocol(skb, type, depth);
2642 }
2643
2644 /**
2645 * skb_mac_gso_segment - mac layer segmentation handler.
2646 * @skb: buffer to segment
2647 * @features: features for the output path (see dev->features)
2648 */
2649 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2650 netdev_features_t features)
2651 {
2652 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2653 struct packet_offload *ptype;
2654 int vlan_depth = skb->mac_len;
2655 __be16 type = skb_network_protocol(skb, &vlan_depth);
2656
2657 if (unlikely(!type))
2658 return ERR_PTR(-EINVAL);
2659
2660 __skb_pull(skb, vlan_depth);
2661
2662 rcu_read_lock();
2663 list_for_each_entry_rcu(ptype, &offload_base, list) {
2664 if (ptype->type == type && ptype->callbacks.gso_segment) {
2665 segs = ptype->callbacks.gso_segment(skb, features);
2666 break;
2667 }
2668 }
2669 rcu_read_unlock();
2670
2671 __skb_push(skb, skb->data - skb_mac_header(skb));
2672
2673 return segs;
2674 }
2675 EXPORT_SYMBOL(skb_mac_gso_segment);
2676
2677
2678 /* openvswitch calls this on rx path, so we need a different check.
2679 */
2680 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2681 {
2682 if (tx_path)
2683 return skb->ip_summed != CHECKSUM_PARTIAL;
2684 else
2685 return skb->ip_summed == CHECKSUM_NONE;
2686 }
2687
2688 /**
2689 * __skb_gso_segment - Perform segmentation on skb.
2690 * @skb: buffer to segment
2691 * @features: features for the output path (see dev->features)
2692 * @tx_path: whether it is called in TX path
2693 *
2694 * This function segments the given skb and returns a list of segments.
2695 *
2696 * It may return NULL if the skb requires no segmentation. This is
2697 * only possible when GSO is used for verifying header integrity.
2698 *
2699 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2700 */
2701 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2702 netdev_features_t features, bool tx_path)
2703 {
2704 if (unlikely(skb_needs_check(skb, tx_path))) {
2705 int err;
2706
2707 skb_warn_bad_offload(skb);
2708
2709 err = skb_cow_head(skb, 0);
2710 if (err < 0)
2711 return ERR_PTR(err);
2712 }
2713
2714 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2715 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2716
2717 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2718 SKB_GSO_CB(skb)->encap_level = 0;
2719
2720 skb_reset_mac_header(skb);
2721 skb_reset_mac_len(skb);
2722
2723 return skb_mac_gso_segment(skb, features);
2724 }
2725 EXPORT_SYMBOL(__skb_gso_segment);
2726
2727 /* Take action when hardware reception checksum errors are detected. */
2728 #ifdef CONFIG_BUG
2729 void netdev_rx_csum_fault(struct net_device *dev)
2730 {
2731 if (net_ratelimit()) {
2732 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2733 dump_stack();
2734 }
2735 }
2736 EXPORT_SYMBOL(netdev_rx_csum_fault);
2737 #endif
2738
2739 /* Actually, we should eliminate this check as soon as we know, that:
2740 * 1. IOMMU is present and allows to map all the memory.
2741 * 2. No high memory really exists on this machine.
2742 */
2743
2744 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2745 {
2746 #ifdef CONFIG_HIGHMEM
2747 int i;
2748 if (!(dev->features & NETIF_F_HIGHDMA)) {
2749 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2750 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2751 if (PageHighMem(skb_frag_page(frag)))
2752 return 1;
2753 }
2754 }
2755
2756 if (PCI_DMA_BUS_IS_PHYS) {
2757 struct device *pdev = dev->dev.parent;
2758
2759 if (!pdev)
2760 return 0;
2761 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2762 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2763 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2764 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2765 return 1;
2766 }
2767 }
2768 #endif
2769 return 0;
2770 }
2771
2772 /* If MPLS offload request, verify we are testing hardware MPLS features
2773 * instead of standard features for the netdev.
2774 */
2775 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2776 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2777 netdev_features_t features,
2778 __be16 type)
2779 {
2780 if (eth_p_mpls(type))
2781 features &= skb->dev->mpls_features;
2782
2783 return features;
2784 }
2785 #else
2786 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2787 netdev_features_t features,
2788 __be16 type)
2789 {
2790 return features;
2791 }
2792 #endif
2793
2794 static netdev_features_t harmonize_features(struct sk_buff *skb,
2795 netdev_features_t features)
2796 {
2797 int tmp;
2798 __be16 type;
2799
2800 type = skb_network_protocol(skb, &tmp);
2801 features = net_mpls_features(skb, features, type);
2802
2803 if (skb->ip_summed != CHECKSUM_NONE &&
2804 !can_checksum_protocol(features, type)) {
2805 features &= ~NETIF_F_CSUM_MASK;
2806 } else if (illegal_highdma(skb->dev, skb)) {
2807 features &= ~NETIF_F_SG;
2808 }
2809
2810 return features;
2811 }
2812
2813 netdev_features_t passthru_features_check(struct sk_buff *skb,
2814 struct net_device *dev,
2815 netdev_features_t features)
2816 {
2817 return features;
2818 }
2819 EXPORT_SYMBOL(passthru_features_check);
2820
2821 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2822 struct net_device *dev,
2823 netdev_features_t features)
2824 {
2825 return vlan_features_check(skb, features);
2826 }
2827
2828 netdev_features_t netif_skb_features(struct sk_buff *skb)
2829 {
2830 struct net_device *dev = skb->dev;
2831 netdev_features_t features = dev->features;
2832 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2833
2834 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2835 features &= ~NETIF_F_GSO_MASK;
2836
2837 /* If encapsulation offload request, verify we are testing
2838 * hardware encapsulation features instead of standard
2839 * features for the netdev
2840 */
2841 if (skb->encapsulation)
2842 features &= dev->hw_enc_features;
2843
2844 if (skb_vlan_tagged(skb))
2845 features = netdev_intersect_features(features,
2846 dev->vlan_features |
2847 NETIF_F_HW_VLAN_CTAG_TX |
2848 NETIF_F_HW_VLAN_STAG_TX);
2849
2850 if (dev->netdev_ops->ndo_features_check)
2851 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2852 features);
2853 else
2854 features &= dflt_features_check(skb, dev, features);
2855
2856 return harmonize_features(skb, features);
2857 }
2858 EXPORT_SYMBOL(netif_skb_features);
2859
2860 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2861 struct netdev_queue *txq, bool more)
2862 {
2863 unsigned int len;
2864 int rc;
2865
2866 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2867 dev_queue_xmit_nit(skb, dev);
2868
2869 len = skb->len;
2870 trace_net_dev_start_xmit(skb, dev);
2871 rc = netdev_start_xmit(skb, dev, txq, more);
2872 trace_net_dev_xmit(skb, rc, dev, len);
2873
2874 return rc;
2875 }
2876
2877 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2878 struct netdev_queue *txq, int *ret)
2879 {
2880 struct sk_buff *skb = first;
2881 int rc = NETDEV_TX_OK;
2882
2883 while (skb) {
2884 struct sk_buff *next = skb->next;
2885
2886 skb->next = NULL;
2887 rc = xmit_one(skb, dev, txq, next != NULL);
2888 if (unlikely(!dev_xmit_complete(rc))) {
2889 skb->next = next;
2890 goto out;
2891 }
2892
2893 skb = next;
2894 if (netif_xmit_stopped(txq) && skb) {
2895 rc = NETDEV_TX_BUSY;
2896 break;
2897 }
2898 }
2899
2900 out:
2901 *ret = rc;
2902 return skb;
2903 }
2904
2905 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2906 netdev_features_t features)
2907 {
2908 if (skb_vlan_tag_present(skb) &&
2909 !vlan_hw_offload_capable(features, skb->vlan_proto))
2910 skb = __vlan_hwaccel_push_inside(skb);
2911 return skb;
2912 }
2913
2914 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2915 {
2916 netdev_features_t features;
2917
2918 if (skb->next)
2919 return skb;
2920
2921 features = netif_skb_features(skb);
2922 skb = validate_xmit_vlan(skb, features);
2923 if (unlikely(!skb))
2924 goto out_null;
2925
2926 if (netif_needs_gso(skb, features)) {
2927 struct sk_buff *segs;
2928
2929 segs = skb_gso_segment(skb, features);
2930 if (IS_ERR(segs)) {
2931 goto out_kfree_skb;
2932 } else if (segs) {
2933 consume_skb(skb);
2934 skb = segs;
2935 }
2936 } else {
2937 if (skb_needs_linearize(skb, features) &&
2938 __skb_linearize(skb))
2939 goto out_kfree_skb;
2940
2941 /* If packet is not checksummed and device does not
2942 * support checksumming for this protocol, complete
2943 * checksumming here.
2944 */
2945 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2946 if (skb->encapsulation)
2947 skb_set_inner_transport_header(skb,
2948 skb_checksum_start_offset(skb));
2949 else
2950 skb_set_transport_header(skb,
2951 skb_checksum_start_offset(skb));
2952 if (!(features & NETIF_F_CSUM_MASK) &&
2953 skb_checksum_help(skb))
2954 goto out_kfree_skb;
2955 }
2956 }
2957
2958 return skb;
2959
2960 out_kfree_skb:
2961 kfree_skb(skb);
2962 out_null:
2963 return NULL;
2964 }
2965
2966 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2967 {
2968 struct sk_buff *next, *head = NULL, *tail;
2969
2970 for (; skb != NULL; skb = next) {
2971 next = skb->next;
2972 skb->next = NULL;
2973
2974 /* in case skb wont be segmented, point to itself */
2975 skb->prev = skb;
2976
2977 skb = validate_xmit_skb(skb, dev);
2978 if (!skb)
2979 continue;
2980
2981 if (!head)
2982 head = skb;
2983 else
2984 tail->next = skb;
2985 /* If skb was segmented, skb->prev points to
2986 * the last segment. If not, it still contains skb.
2987 */
2988 tail = skb->prev;
2989 }
2990 return head;
2991 }
2992
2993 static void qdisc_pkt_len_init(struct sk_buff *skb)
2994 {
2995 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2996
2997 qdisc_skb_cb(skb)->pkt_len = skb->len;
2998
2999 /* To get more precise estimation of bytes sent on wire,
3000 * we add to pkt_len the headers size of all segments
3001 */
3002 if (shinfo->gso_size) {
3003 unsigned int hdr_len;
3004 u16 gso_segs = shinfo->gso_segs;
3005
3006 /* mac layer + network layer */
3007 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3008
3009 /* + transport layer */
3010 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3011 hdr_len += tcp_hdrlen(skb);
3012 else
3013 hdr_len += sizeof(struct udphdr);
3014
3015 if (shinfo->gso_type & SKB_GSO_DODGY)
3016 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3017 shinfo->gso_size);
3018
3019 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3020 }
3021 }
3022
3023 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3024 struct net_device *dev,
3025 struct netdev_queue *txq)
3026 {
3027 spinlock_t *root_lock = qdisc_lock(q);
3028 bool contended;
3029 int rc;
3030
3031 qdisc_calculate_pkt_len(skb, q);
3032 /*
3033 * Heuristic to force contended enqueues to serialize on a
3034 * separate lock before trying to get qdisc main lock.
3035 * This permits __QDISC___STATE_RUNNING owner to get the lock more
3036 * often and dequeue packets faster.
3037 */
3038 contended = qdisc_is_running(q);
3039 if (unlikely(contended))
3040 spin_lock(&q->busylock);
3041
3042 spin_lock(root_lock);
3043 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3044 kfree_skb(skb);
3045 rc = NET_XMIT_DROP;
3046 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3047 qdisc_run_begin(q)) {
3048 /*
3049 * This is a work-conserving queue; there are no old skbs
3050 * waiting to be sent out; and the qdisc is not running -
3051 * xmit the skb directly.
3052 */
3053
3054 qdisc_bstats_update(q, skb);
3055
3056 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3057 if (unlikely(contended)) {
3058 spin_unlock(&q->busylock);
3059 contended = false;
3060 }
3061 __qdisc_run(q);
3062 } else
3063 qdisc_run_end(q);
3064
3065 rc = NET_XMIT_SUCCESS;
3066 } else {
3067 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
3068 if (qdisc_run_begin(q)) {
3069 if (unlikely(contended)) {
3070 spin_unlock(&q->busylock);
3071 contended = false;
3072 }
3073 __qdisc_run(q);
3074 }
3075 }
3076 spin_unlock(root_lock);
3077 if (unlikely(contended))
3078 spin_unlock(&q->busylock);
3079 return rc;
3080 }
3081
3082 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3083 static void skb_update_prio(struct sk_buff *skb)
3084 {
3085 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3086
3087 if (!skb->priority && skb->sk && map) {
3088 unsigned int prioidx =
3089 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3090
3091 if (prioidx < map->priomap_len)
3092 skb->priority = map->priomap[prioidx];
3093 }
3094 }
3095 #else
3096 #define skb_update_prio(skb)
3097 #endif
3098
3099 DEFINE_PER_CPU(int, xmit_recursion);
3100 EXPORT_SYMBOL(xmit_recursion);
3101
3102 #define RECURSION_LIMIT 10
3103
3104 /**
3105 * dev_loopback_xmit - loop back @skb
3106 * @net: network namespace this loopback is happening in
3107 * @sk: sk needed to be a netfilter okfn
3108 * @skb: buffer to transmit
3109 */
3110 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3111 {
3112 skb_reset_mac_header(skb);
3113 __skb_pull(skb, skb_network_offset(skb));
3114 skb->pkt_type = PACKET_LOOPBACK;
3115 skb->ip_summed = CHECKSUM_UNNECESSARY;
3116 WARN_ON(!skb_dst(skb));
3117 skb_dst_force(skb);
3118 netif_rx_ni(skb);
3119 return 0;
3120 }
3121 EXPORT_SYMBOL(dev_loopback_xmit);
3122
3123 #ifdef CONFIG_NET_EGRESS
3124 static struct sk_buff *
3125 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3126 {
3127 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3128 struct tcf_result cl_res;
3129
3130 if (!cl)
3131 return skb;
3132
3133 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3134 * earlier by the caller.
3135 */
3136 qdisc_bstats_cpu_update(cl->q, skb);
3137
3138 switch (tc_classify(skb, cl, &cl_res, false)) {
3139 case TC_ACT_OK:
3140 case TC_ACT_RECLASSIFY:
3141 skb->tc_index = TC_H_MIN(cl_res.classid);
3142 break;
3143 case TC_ACT_SHOT:
3144 qdisc_qstats_cpu_drop(cl->q);
3145 *ret = NET_XMIT_DROP;
3146 goto drop;
3147 case TC_ACT_STOLEN:
3148 case TC_ACT_QUEUED:
3149 *ret = NET_XMIT_SUCCESS;
3150 drop:
3151 kfree_skb(skb);
3152 return NULL;
3153 case TC_ACT_REDIRECT:
3154 /* No need to push/pop skb's mac_header here on egress! */
3155 skb_do_redirect(skb);
3156 *ret = NET_XMIT_SUCCESS;
3157 return NULL;
3158 default:
3159 break;
3160 }
3161
3162 return skb;
3163 }
3164 #endif /* CONFIG_NET_EGRESS */
3165
3166 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3167 {
3168 #ifdef CONFIG_XPS
3169 struct xps_dev_maps *dev_maps;
3170 struct xps_map *map;
3171 int queue_index = -1;
3172
3173 rcu_read_lock();
3174 dev_maps = rcu_dereference(dev->xps_maps);
3175 if (dev_maps) {
3176 map = rcu_dereference(
3177 dev_maps->cpu_map[skb->sender_cpu - 1]);
3178 if (map) {
3179 if (map->len == 1)
3180 queue_index = map->queues[0];
3181 else
3182 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3183 map->len)];
3184 if (unlikely(queue_index >= dev->real_num_tx_queues))
3185 queue_index = -1;
3186 }
3187 }
3188 rcu_read_unlock();
3189
3190 return queue_index;
3191 #else
3192 return -1;
3193 #endif
3194 }
3195
3196 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3197 {
3198 struct sock *sk = skb->sk;
3199 int queue_index = sk_tx_queue_get(sk);
3200
3201 if (queue_index < 0 || skb->ooo_okay ||
3202 queue_index >= dev->real_num_tx_queues) {
3203 int new_index = get_xps_queue(dev, skb);
3204 if (new_index < 0)
3205 new_index = skb_tx_hash(dev, skb);
3206
3207 if (queue_index != new_index && sk &&
3208 sk_fullsock(sk) &&
3209 rcu_access_pointer(sk->sk_dst_cache))
3210 sk_tx_queue_set(sk, new_index);
3211
3212 queue_index = new_index;
3213 }
3214
3215 return queue_index;
3216 }
3217
3218 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3219 struct sk_buff *skb,
3220 void *accel_priv)
3221 {
3222 int queue_index = 0;
3223
3224 #ifdef CONFIG_XPS
3225 u32 sender_cpu = skb->sender_cpu - 1;
3226
3227 if (sender_cpu >= (u32)NR_CPUS)
3228 skb->sender_cpu = raw_smp_processor_id() + 1;
3229 #endif
3230
3231 if (dev->real_num_tx_queues != 1) {
3232 const struct net_device_ops *ops = dev->netdev_ops;
3233 if (ops->ndo_select_queue)
3234 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3235 __netdev_pick_tx);
3236 else
3237 queue_index = __netdev_pick_tx(dev, skb);
3238
3239 if (!accel_priv)
3240 queue_index = netdev_cap_txqueue(dev, queue_index);
3241 }
3242
3243 skb_set_queue_mapping(skb, queue_index);
3244 return netdev_get_tx_queue(dev, queue_index);
3245 }
3246
3247 /**
3248 * __dev_queue_xmit - transmit a buffer
3249 * @skb: buffer to transmit
3250 * @accel_priv: private data used for L2 forwarding offload
3251 *
3252 * Queue a buffer for transmission to a network device. The caller must
3253 * have set the device and priority and built the buffer before calling
3254 * this function. The function can be called from an interrupt.
3255 *
3256 * A negative errno code is returned on a failure. A success does not
3257 * guarantee the frame will be transmitted as it may be dropped due
3258 * to congestion or traffic shaping.
3259 *
3260 * -----------------------------------------------------------------------------------
3261 * I notice this method can also return errors from the queue disciplines,
3262 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3263 * be positive.
3264 *
3265 * Regardless of the return value, the skb is consumed, so it is currently
3266 * difficult to retry a send to this method. (You can bump the ref count
3267 * before sending to hold a reference for retry if you are careful.)
3268 *
3269 * When calling this method, interrupts MUST be enabled. This is because
3270 * the BH enable code must have IRQs enabled so that it will not deadlock.
3271 * --BLG
3272 */
3273 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3274 {
3275 struct net_device *dev = skb->dev;
3276 struct netdev_queue *txq;
3277 struct Qdisc *q;
3278 int rc = -ENOMEM;
3279
3280 skb_reset_mac_header(skb);
3281
3282 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3283 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3284
3285 /* Disable soft irqs for various locks below. Also
3286 * stops preemption for RCU.
3287 */
3288 rcu_read_lock_bh();
3289
3290 skb_update_prio(skb);
3291
3292 qdisc_pkt_len_init(skb);
3293 #ifdef CONFIG_NET_CLS_ACT
3294 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3295 # ifdef CONFIG_NET_EGRESS
3296 if (static_key_false(&egress_needed)) {
3297 skb = sch_handle_egress(skb, &rc, dev);
3298 if (!skb)
3299 goto out;
3300 }
3301 # endif
3302 #endif
3303 /* If device/qdisc don't need skb->dst, release it right now while
3304 * its hot in this cpu cache.
3305 */
3306 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3307 skb_dst_drop(skb);
3308 else
3309 skb_dst_force(skb);
3310
3311 #ifdef CONFIG_NET_SWITCHDEV
3312 /* Don't forward if offload device already forwarded */
3313 if (skb->offload_fwd_mark &&
3314 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3315 consume_skb(skb);
3316 rc = NET_XMIT_SUCCESS;
3317 goto out;
3318 }
3319 #endif
3320
3321 txq = netdev_pick_tx(dev, skb, accel_priv);
3322 q = rcu_dereference_bh(txq->qdisc);
3323
3324 trace_net_dev_queue(skb);
3325 if (q->enqueue) {
3326 rc = __dev_xmit_skb(skb, q, dev, txq);
3327 goto out;
3328 }
3329
3330 /* The device has no queue. Common case for software devices:
3331 loopback, all the sorts of tunnels...
3332
3333 Really, it is unlikely that netif_tx_lock protection is necessary
3334 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3335 counters.)
3336 However, it is possible, that they rely on protection
3337 made by us here.
3338
3339 Check this and shot the lock. It is not prone from deadlocks.
3340 Either shot noqueue qdisc, it is even simpler 8)
3341 */
3342 if (dev->flags & IFF_UP) {
3343 int cpu = smp_processor_id(); /* ok because BHs are off */
3344
3345 if (txq->xmit_lock_owner != cpu) {
3346
3347 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3348 goto recursion_alert;
3349
3350 skb = validate_xmit_skb(skb, dev);
3351 if (!skb)
3352 goto drop;
3353
3354 HARD_TX_LOCK(dev, txq, cpu);
3355
3356 if (!netif_xmit_stopped(txq)) {
3357 __this_cpu_inc(xmit_recursion);
3358 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3359 __this_cpu_dec(xmit_recursion);
3360 if (dev_xmit_complete(rc)) {
3361 HARD_TX_UNLOCK(dev, txq);
3362 goto out;
3363 }
3364 }
3365 HARD_TX_UNLOCK(dev, txq);
3366 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3367 dev->name);
3368 } else {
3369 /* Recursion is detected! It is possible,
3370 * unfortunately
3371 */
3372 recursion_alert:
3373 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3374 dev->name);
3375 }
3376 }
3377
3378 rc = -ENETDOWN;
3379 drop:
3380 rcu_read_unlock_bh();
3381
3382 atomic_long_inc(&dev->tx_dropped);
3383 kfree_skb_list(skb);
3384 return rc;
3385 out:
3386 rcu_read_unlock_bh();
3387 return rc;
3388 }
3389
3390 int dev_queue_xmit(struct sk_buff *skb)
3391 {
3392 return __dev_queue_xmit(skb, NULL);
3393 }
3394 EXPORT_SYMBOL(dev_queue_xmit);
3395
3396 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3397 {
3398 return __dev_queue_xmit(skb, accel_priv);
3399 }
3400 EXPORT_SYMBOL(dev_queue_xmit_accel);
3401
3402
3403 /*=======================================================================
3404 Receiver routines
3405 =======================================================================*/
3406
3407 int netdev_max_backlog __read_mostly = 1000;
3408 EXPORT_SYMBOL(netdev_max_backlog);
3409
3410 int netdev_tstamp_prequeue __read_mostly = 1;
3411 int netdev_budget __read_mostly = 300;
3412 int weight_p __read_mostly = 64; /* old backlog weight */
3413
3414 /* Called with irq disabled */
3415 static inline void ____napi_schedule(struct softnet_data *sd,
3416 struct napi_struct *napi)
3417 {
3418 list_add_tail(&napi->poll_list, &sd->poll_list);
3419 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3420 }
3421
3422 #ifdef CONFIG_RPS
3423
3424 /* One global table that all flow-based protocols share. */
3425 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3426 EXPORT_SYMBOL(rps_sock_flow_table);
3427 u32 rps_cpu_mask __read_mostly;
3428 EXPORT_SYMBOL(rps_cpu_mask);
3429
3430 struct static_key rps_needed __read_mostly;
3431
3432 static struct rps_dev_flow *
3433 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3434 struct rps_dev_flow *rflow, u16 next_cpu)
3435 {
3436 if (next_cpu < nr_cpu_ids) {
3437 #ifdef CONFIG_RFS_ACCEL
3438 struct netdev_rx_queue *rxqueue;
3439 struct rps_dev_flow_table *flow_table;
3440 struct rps_dev_flow *old_rflow;
3441 u32 flow_id;
3442 u16 rxq_index;
3443 int rc;
3444
3445 /* Should we steer this flow to a different hardware queue? */
3446 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3447 !(dev->features & NETIF_F_NTUPLE))
3448 goto out;
3449 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3450 if (rxq_index == skb_get_rx_queue(skb))
3451 goto out;
3452
3453 rxqueue = dev->_rx + rxq_index;
3454 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3455 if (!flow_table)
3456 goto out;
3457 flow_id = skb_get_hash(skb) & flow_table->mask;
3458 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3459 rxq_index, flow_id);
3460 if (rc < 0)
3461 goto out;
3462 old_rflow = rflow;
3463 rflow = &flow_table->flows[flow_id];
3464 rflow->filter = rc;
3465 if (old_rflow->filter == rflow->filter)
3466 old_rflow->filter = RPS_NO_FILTER;
3467 out:
3468 #endif
3469 rflow->last_qtail =
3470 per_cpu(softnet_data, next_cpu).input_queue_head;
3471 }
3472
3473 rflow->cpu = next_cpu;
3474 return rflow;
3475 }
3476
3477 /*
3478 * get_rps_cpu is called from netif_receive_skb and returns the target
3479 * CPU from the RPS map of the receiving queue for a given skb.
3480 * rcu_read_lock must be held on entry.
3481 */
3482 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3483 struct rps_dev_flow **rflowp)
3484 {
3485 const struct rps_sock_flow_table *sock_flow_table;
3486 struct netdev_rx_queue *rxqueue = dev->_rx;
3487 struct rps_dev_flow_table *flow_table;
3488 struct rps_map *map;
3489 int cpu = -1;
3490 u32 tcpu;
3491 u32 hash;
3492
3493 if (skb_rx_queue_recorded(skb)) {
3494 u16 index = skb_get_rx_queue(skb);
3495
3496 if (unlikely(index >= dev->real_num_rx_queues)) {
3497 WARN_ONCE(dev->real_num_rx_queues > 1,
3498 "%s received packet on queue %u, but number "
3499 "of RX queues is %u\n",
3500 dev->name, index, dev->real_num_rx_queues);
3501 goto done;
3502 }
3503 rxqueue += index;
3504 }
3505
3506 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3507
3508 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3509 map = rcu_dereference(rxqueue->rps_map);
3510 if (!flow_table && !map)
3511 goto done;
3512
3513 skb_reset_network_header(skb);
3514 hash = skb_get_hash(skb);
3515 if (!hash)
3516 goto done;
3517
3518 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3519 if (flow_table && sock_flow_table) {
3520 struct rps_dev_flow *rflow;
3521 u32 next_cpu;
3522 u32 ident;
3523
3524 /* First check into global flow table if there is a match */
3525 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3526 if ((ident ^ hash) & ~rps_cpu_mask)
3527 goto try_rps;
3528
3529 next_cpu = ident & rps_cpu_mask;
3530
3531 /* OK, now we know there is a match,
3532 * we can look at the local (per receive queue) flow table
3533 */
3534 rflow = &flow_table->flows[hash & flow_table->mask];
3535 tcpu = rflow->cpu;
3536
3537 /*
3538 * If the desired CPU (where last recvmsg was done) is
3539 * different from current CPU (one in the rx-queue flow
3540 * table entry), switch if one of the following holds:
3541 * - Current CPU is unset (>= nr_cpu_ids).
3542 * - Current CPU is offline.
3543 * - The current CPU's queue tail has advanced beyond the
3544 * last packet that was enqueued using this table entry.
3545 * This guarantees that all previous packets for the flow
3546 * have been dequeued, thus preserving in order delivery.
3547 */
3548 if (unlikely(tcpu != next_cpu) &&
3549 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3550 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3551 rflow->last_qtail)) >= 0)) {
3552 tcpu = next_cpu;
3553 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3554 }
3555
3556 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3557 *rflowp = rflow;
3558 cpu = tcpu;
3559 goto done;
3560 }
3561 }
3562
3563 try_rps:
3564
3565 if (map) {
3566 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3567 if (cpu_online(tcpu)) {
3568 cpu = tcpu;
3569 goto done;
3570 }
3571 }
3572
3573 done:
3574 return cpu;
3575 }
3576
3577 #ifdef CONFIG_RFS_ACCEL
3578
3579 /**
3580 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3581 * @dev: Device on which the filter was set
3582 * @rxq_index: RX queue index
3583 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3584 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3585 *
3586 * Drivers that implement ndo_rx_flow_steer() should periodically call
3587 * this function for each installed filter and remove the filters for
3588 * which it returns %true.
3589 */
3590 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3591 u32 flow_id, u16 filter_id)
3592 {
3593 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3594 struct rps_dev_flow_table *flow_table;
3595 struct rps_dev_flow *rflow;
3596 bool expire = true;
3597 unsigned int cpu;
3598
3599 rcu_read_lock();
3600 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3601 if (flow_table && flow_id <= flow_table->mask) {
3602 rflow = &flow_table->flows[flow_id];
3603 cpu = ACCESS_ONCE(rflow->cpu);
3604 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3605 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3606 rflow->last_qtail) <
3607 (int)(10 * flow_table->mask)))
3608 expire = false;
3609 }
3610 rcu_read_unlock();
3611 return expire;
3612 }
3613 EXPORT_SYMBOL(rps_may_expire_flow);
3614
3615 #endif /* CONFIG_RFS_ACCEL */
3616
3617 /* Called from hardirq (IPI) context */
3618 static void rps_trigger_softirq(void *data)
3619 {
3620 struct softnet_data *sd = data;
3621
3622 ____napi_schedule(sd, &sd->backlog);
3623 sd->received_rps++;
3624 }
3625
3626 #endif /* CONFIG_RPS */
3627
3628 /*
3629 * Check if this softnet_data structure is another cpu one
3630 * If yes, queue it to our IPI list and return 1
3631 * If no, return 0
3632 */
3633 static int rps_ipi_queued(struct softnet_data *sd)
3634 {
3635 #ifdef CONFIG_RPS
3636 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3637
3638 if (sd != mysd) {
3639 sd->rps_ipi_next = mysd->rps_ipi_list;
3640 mysd->rps_ipi_list = sd;
3641
3642 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3643 return 1;
3644 }
3645 #endif /* CONFIG_RPS */
3646 return 0;
3647 }
3648
3649 #ifdef CONFIG_NET_FLOW_LIMIT
3650 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3651 #endif
3652
3653 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3654 {
3655 #ifdef CONFIG_NET_FLOW_LIMIT
3656 struct sd_flow_limit *fl;
3657 struct softnet_data *sd;
3658 unsigned int old_flow, new_flow;
3659
3660 if (qlen < (netdev_max_backlog >> 1))
3661 return false;
3662
3663 sd = this_cpu_ptr(&softnet_data);
3664
3665 rcu_read_lock();
3666 fl = rcu_dereference(sd->flow_limit);
3667 if (fl) {
3668 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3669 old_flow = fl->history[fl->history_head];
3670 fl->history[fl->history_head] = new_flow;
3671
3672 fl->history_head++;
3673 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3674
3675 if (likely(fl->buckets[old_flow]))
3676 fl->buckets[old_flow]--;
3677
3678 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3679 fl->count++;
3680 rcu_read_unlock();
3681 return true;
3682 }
3683 }
3684 rcu_read_unlock();
3685 #endif
3686 return false;
3687 }
3688
3689 /*
3690 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3691 * queue (may be a remote CPU queue).
3692 */
3693 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3694 unsigned int *qtail)
3695 {
3696 struct softnet_data *sd;
3697 unsigned long flags;
3698 unsigned int qlen;
3699
3700 sd = &per_cpu(softnet_data, cpu);
3701
3702 local_irq_save(flags);
3703
3704 rps_lock(sd);
3705 if (!netif_running(skb->dev))
3706 goto drop;
3707 qlen = skb_queue_len(&sd->input_pkt_queue);
3708 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3709 if (qlen) {
3710 enqueue:
3711 __skb_queue_tail(&sd->input_pkt_queue, skb);
3712 input_queue_tail_incr_save(sd, qtail);
3713 rps_unlock(sd);
3714 local_irq_restore(flags);
3715 return NET_RX_SUCCESS;
3716 }
3717
3718 /* Schedule NAPI for backlog device
3719 * We can use non atomic operation since we own the queue lock
3720 */
3721 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3722 if (!rps_ipi_queued(sd))
3723 ____napi_schedule(sd, &sd->backlog);
3724 }
3725 goto enqueue;
3726 }
3727
3728 drop:
3729 sd->dropped++;
3730 rps_unlock(sd);
3731
3732 local_irq_restore(flags);
3733
3734 atomic_long_inc(&skb->dev->rx_dropped);
3735 kfree_skb(skb);
3736 return NET_RX_DROP;
3737 }
3738
3739 static int netif_rx_internal(struct sk_buff *skb)
3740 {
3741 int ret;
3742
3743 net_timestamp_check(netdev_tstamp_prequeue, skb);
3744
3745 trace_netif_rx(skb);
3746 #ifdef CONFIG_RPS
3747 if (static_key_false(&rps_needed)) {
3748 struct rps_dev_flow voidflow, *rflow = &voidflow;
3749 int cpu;
3750
3751 preempt_disable();
3752 rcu_read_lock();
3753
3754 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3755 if (cpu < 0)
3756 cpu = smp_processor_id();
3757
3758 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3759
3760 rcu_read_unlock();
3761 preempt_enable();
3762 } else
3763 #endif
3764 {
3765 unsigned int qtail;
3766 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3767 put_cpu();
3768 }
3769 return ret;
3770 }
3771
3772 /**
3773 * netif_rx - post buffer to the network code
3774 * @skb: buffer to post
3775 *
3776 * This function receives a packet from a device driver and queues it for
3777 * the upper (protocol) levels to process. It always succeeds. The buffer
3778 * may be dropped during processing for congestion control or by the
3779 * protocol layers.
3780 *
3781 * return values:
3782 * NET_RX_SUCCESS (no congestion)
3783 * NET_RX_DROP (packet was dropped)
3784 *
3785 */
3786
3787 int netif_rx(struct sk_buff *skb)
3788 {
3789 trace_netif_rx_entry(skb);
3790
3791 return netif_rx_internal(skb);
3792 }
3793 EXPORT_SYMBOL(netif_rx);
3794
3795 int netif_rx_ni(struct sk_buff *skb)
3796 {
3797 int err;
3798
3799 trace_netif_rx_ni_entry(skb);
3800
3801 preempt_disable();
3802 err = netif_rx_internal(skb);
3803 if (local_softirq_pending())
3804 do_softirq();
3805 preempt_enable();
3806
3807 return err;
3808 }
3809 EXPORT_SYMBOL(netif_rx_ni);
3810
3811 static void net_tx_action(struct softirq_action *h)
3812 {
3813 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3814
3815 if (sd->completion_queue) {
3816 struct sk_buff *clist;
3817
3818 local_irq_disable();
3819 clist = sd->completion_queue;
3820 sd->completion_queue = NULL;
3821 local_irq_enable();
3822
3823 while (clist) {
3824 struct sk_buff *skb = clist;
3825 clist = clist->next;
3826
3827 WARN_ON(atomic_read(&skb->users));
3828 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3829 trace_consume_skb(skb);
3830 else
3831 trace_kfree_skb(skb, net_tx_action);
3832 __kfree_skb(skb);
3833 }
3834 }
3835
3836 if (sd->output_queue) {
3837 struct Qdisc *head;
3838
3839 local_irq_disable();
3840 head = sd->output_queue;
3841 sd->output_queue = NULL;
3842 sd->output_queue_tailp = &sd->output_queue;
3843 local_irq_enable();
3844
3845 while (head) {
3846 struct Qdisc *q = head;
3847 spinlock_t *root_lock;
3848
3849 head = head->next_sched;
3850
3851 root_lock = qdisc_lock(q);
3852 if (spin_trylock(root_lock)) {
3853 smp_mb__before_atomic();
3854 clear_bit(__QDISC_STATE_SCHED,
3855 &q->state);
3856 qdisc_run(q);
3857 spin_unlock(root_lock);
3858 } else {
3859 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3860 &q->state)) {
3861 __netif_reschedule(q);
3862 } else {
3863 smp_mb__before_atomic();
3864 clear_bit(__QDISC_STATE_SCHED,
3865 &q->state);
3866 }
3867 }
3868 }
3869 }
3870 }
3871
3872 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3873 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3874 /* This hook is defined here for ATM LANE */
3875 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3876 unsigned char *addr) __read_mostly;
3877 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3878 #endif
3879
3880 static inline struct sk_buff *
3881 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3882 struct net_device *orig_dev)
3883 {
3884 #ifdef CONFIG_NET_CLS_ACT
3885 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3886 struct tcf_result cl_res;
3887
3888 /* If there's at least one ingress present somewhere (so
3889 * we get here via enabled static key), remaining devices
3890 * that are not configured with an ingress qdisc will bail
3891 * out here.
3892 */
3893 if (!cl)
3894 return skb;
3895 if (*pt_prev) {
3896 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3897 *pt_prev = NULL;
3898 }
3899
3900 qdisc_skb_cb(skb)->pkt_len = skb->len;
3901 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3902 qdisc_bstats_cpu_update(cl->q, skb);
3903
3904 switch (tc_classify(skb, cl, &cl_res, false)) {
3905 case TC_ACT_OK:
3906 case TC_ACT_RECLASSIFY:
3907 skb->tc_index = TC_H_MIN(cl_res.classid);
3908 break;
3909 case TC_ACT_SHOT:
3910 qdisc_qstats_cpu_drop(cl->q);
3911 case TC_ACT_STOLEN:
3912 case TC_ACT_QUEUED:
3913 kfree_skb(skb);
3914 return NULL;
3915 case TC_ACT_REDIRECT:
3916 /* skb_mac_header check was done by cls/act_bpf, so
3917 * we can safely push the L2 header back before
3918 * redirecting to another netdev
3919 */
3920 __skb_push(skb, skb->mac_len);
3921 skb_do_redirect(skb);
3922 return NULL;
3923 default:
3924 break;
3925 }
3926 #endif /* CONFIG_NET_CLS_ACT */
3927 return skb;
3928 }
3929
3930 /**
3931 * netdev_rx_handler_register - register receive handler
3932 * @dev: device to register a handler for
3933 * @rx_handler: receive handler to register
3934 * @rx_handler_data: data pointer that is used by rx handler
3935 *
3936 * Register a receive handler for a device. This handler will then be
3937 * called from __netif_receive_skb. A negative errno code is returned
3938 * on a failure.
3939 *
3940 * The caller must hold the rtnl_mutex.
3941 *
3942 * For a general description of rx_handler, see enum rx_handler_result.
3943 */
3944 int netdev_rx_handler_register(struct net_device *dev,
3945 rx_handler_func_t *rx_handler,
3946 void *rx_handler_data)
3947 {
3948 ASSERT_RTNL();
3949
3950 if (dev->rx_handler)
3951 return -EBUSY;
3952
3953 /* Note: rx_handler_data must be set before rx_handler */
3954 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3955 rcu_assign_pointer(dev->rx_handler, rx_handler);
3956
3957 return 0;
3958 }
3959 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3960
3961 /**
3962 * netdev_rx_handler_unregister - unregister receive handler
3963 * @dev: device to unregister a handler from
3964 *
3965 * Unregister a receive handler from a device.
3966 *
3967 * The caller must hold the rtnl_mutex.
3968 */
3969 void netdev_rx_handler_unregister(struct net_device *dev)
3970 {
3971
3972 ASSERT_RTNL();
3973 RCU_INIT_POINTER(dev->rx_handler, NULL);
3974 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3975 * section has a guarantee to see a non NULL rx_handler_data
3976 * as well.
3977 */
3978 synchronize_net();
3979 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3980 }
3981 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3982
3983 /*
3984 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3985 * the special handling of PFMEMALLOC skbs.
3986 */
3987 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3988 {
3989 switch (skb->protocol) {
3990 case htons(ETH_P_ARP):
3991 case htons(ETH_P_IP):
3992 case htons(ETH_P_IPV6):
3993 case htons(ETH_P_8021Q):
3994 case htons(ETH_P_8021AD):
3995 return true;
3996 default:
3997 return false;
3998 }
3999 }
4000
4001 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4002 int *ret, struct net_device *orig_dev)
4003 {
4004 #ifdef CONFIG_NETFILTER_INGRESS
4005 if (nf_hook_ingress_active(skb)) {
4006 if (*pt_prev) {
4007 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4008 *pt_prev = NULL;
4009 }
4010
4011 return nf_hook_ingress(skb);
4012 }
4013 #endif /* CONFIG_NETFILTER_INGRESS */
4014 return 0;
4015 }
4016
4017 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4018 {
4019 struct packet_type *ptype, *pt_prev;
4020 rx_handler_func_t *rx_handler;
4021 struct net_device *orig_dev;
4022 bool deliver_exact = false;
4023 int ret = NET_RX_DROP;
4024 __be16 type;
4025
4026 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4027
4028 trace_netif_receive_skb(skb);
4029
4030 orig_dev = skb->dev;
4031
4032 skb_reset_network_header(skb);
4033 if (!skb_transport_header_was_set(skb))
4034 skb_reset_transport_header(skb);
4035 skb_reset_mac_len(skb);
4036
4037 pt_prev = NULL;
4038
4039 another_round:
4040 skb->skb_iif = skb->dev->ifindex;
4041
4042 __this_cpu_inc(softnet_data.processed);
4043
4044 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4045 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4046 skb = skb_vlan_untag(skb);
4047 if (unlikely(!skb))
4048 goto out;
4049 }
4050
4051 #ifdef CONFIG_NET_CLS_ACT
4052 if (skb->tc_verd & TC_NCLS) {
4053 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4054 goto ncls;
4055 }
4056 #endif
4057
4058 if (pfmemalloc)
4059 goto skip_taps;
4060
4061 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4062 if (pt_prev)
4063 ret = deliver_skb(skb, pt_prev, orig_dev);
4064 pt_prev = ptype;
4065 }
4066
4067 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4068 if (pt_prev)
4069 ret = deliver_skb(skb, pt_prev, orig_dev);
4070 pt_prev = ptype;
4071 }
4072
4073 skip_taps:
4074 #ifdef CONFIG_NET_INGRESS
4075 if (static_key_false(&ingress_needed)) {
4076 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4077 if (!skb)
4078 goto out;
4079
4080 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4081 goto out;
4082 }
4083 #endif
4084 #ifdef CONFIG_NET_CLS_ACT
4085 skb->tc_verd = 0;
4086 ncls:
4087 #endif
4088 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4089 goto drop;
4090
4091 if (skb_vlan_tag_present(skb)) {
4092 if (pt_prev) {
4093 ret = deliver_skb(skb, pt_prev, orig_dev);
4094 pt_prev = NULL;
4095 }
4096 if (vlan_do_receive(&skb))
4097 goto another_round;
4098 else if (unlikely(!skb))
4099 goto out;
4100 }
4101
4102 rx_handler = rcu_dereference(skb->dev->rx_handler);
4103 if (rx_handler) {
4104 if (pt_prev) {
4105 ret = deliver_skb(skb, pt_prev, orig_dev);
4106 pt_prev = NULL;
4107 }
4108 switch (rx_handler(&skb)) {
4109 case RX_HANDLER_CONSUMED:
4110 ret = NET_RX_SUCCESS;
4111 goto out;
4112 case RX_HANDLER_ANOTHER:
4113 goto another_round;
4114 case RX_HANDLER_EXACT:
4115 deliver_exact = true;
4116 case RX_HANDLER_PASS:
4117 break;
4118 default:
4119 BUG();
4120 }
4121 }
4122
4123 if (unlikely(skb_vlan_tag_present(skb))) {
4124 if (skb_vlan_tag_get_id(skb))
4125 skb->pkt_type = PACKET_OTHERHOST;
4126 /* Note: we might in the future use prio bits
4127 * and set skb->priority like in vlan_do_receive()
4128 * For the time being, just ignore Priority Code Point
4129 */
4130 skb->vlan_tci = 0;
4131 }
4132
4133 type = skb->protocol;
4134
4135 /* deliver only exact match when indicated */
4136 if (likely(!deliver_exact)) {
4137 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4138 &ptype_base[ntohs(type) &
4139 PTYPE_HASH_MASK]);
4140 }
4141
4142 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4143 &orig_dev->ptype_specific);
4144
4145 if (unlikely(skb->dev != orig_dev)) {
4146 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4147 &skb->dev->ptype_specific);
4148 }
4149
4150 if (pt_prev) {
4151 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4152 goto drop;
4153 else
4154 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4155 } else {
4156 drop:
4157 if (!deliver_exact)
4158 atomic_long_inc(&skb->dev->rx_dropped);
4159 else
4160 atomic_long_inc(&skb->dev->rx_nohandler);
4161 kfree_skb(skb);
4162 /* Jamal, now you will not able to escape explaining
4163 * me how you were going to use this. :-)
4164 */
4165 ret = NET_RX_DROP;
4166 }
4167
4168 out:
4169 return ret;
4170 }
4171
4172 static int __netif_receive_skb(struct sk_buff *skb)
4173 {
4174 int ret;
4175
4176 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4177 unsigned long pflags = current->flags;
4178
4179 /*
4180 * PFMEMALLOC skbs are special, they should
4181 * - be delivered to SOCK_MEMALLOC sockets only
4182 * - stay away from userspace
4183 * - have bounded memory usage
4184 *
4185 * Use PF_MEMALLOC as this saves us from propagating the allocation
4186 * context down to all allocation sites.
4187 */
4188 current->flags |= PF_MEMALLOC;
4189 ret = __netif_receive_skb_core(skb, true);
4190 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4191 } else
4192 ret = __netif_receive_skb_core(skb, false);
4193
4194 return ret;
4195 }
4196
4197 static int netif_receive_skb_internal(struct sk_buff *skb)
4198 {
4199 int ret;
4200
4201 net_timestamp_check(netdev_tstamp_prequeue, skb);
4202
4203 if (skb_defer_rx_timestamp(skb))
4204 return NET_RX_SUCCESS;
4205
4206 rcu_read_lock();
4207
4208 #ifdef CONFIG_RPS
4209 if (static_key_false(&rps_needed)) {
4210 struct rps_dev_flow voidflow, *rflow = &voidflow;
4211 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4212
4213 if (cpu >= 0) {
4214 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4215 rcu_read_unlock();
4216 return ret;
4217 }
4218 }
4219 #endif
4220 ret = __netif_receive_skb(skb);
4221 rcu_read_unlock();
4222 return ret;
4223 }
4224
4225 /**
4226 * netif_receive_skb - process receive buffer from network
4227 * @skb: buffer to process
4228 *
4229 * netif_receive_skb() is the main receive data processing function.
4230 * It always succeeds. The buffer may be dropped during processing
4231 * for congestion control or by the protocol layers.
4232 *
4233 * This function may only be called from softirq context and interrupts
4234 * should be enabled.
4235 *
4236 * Return values (usually ignored):
4237 * NET_RX_SUCCESS: no congestion
4238 * NET_RX_DROP: packet was dropped
4239 */
4240 int netif_receive_skb(struct sk_buff *skb)
4241 {
4242 trace_netif_receive_skb_entry(skb);
4243
4244 return netif_receive_skb_internal(skb);
4245 }
4246 EXPORT_SYMBOL(netif_receive_skb);
4247
4248 /* Network device is going away, flush any packets still pending
4249 * Called with irqs disabled.
4250 */
4251 static void flush_backlog(void *arg)
4252 {
4253 struct net_device *dev = arg;
4254 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4255 struct sk_buff *skb, *tmp;
4256
4257 rps_lock(sd);
4258 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4259 if (skb->dev == dev) {
4260 __skb_unlink(skb, &sd->input_pkt_queue);
4261 kfree_skb(skb);
4262 input_queue_head_incr(sd);
4263 }
4264 }
4265 rps_unlock(sd);
4266
4267 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4268 if (skb->dev == dev) {
4269 __skb_unlink(skb, &sd->process_queue);
4270 kfree_skb(skb);
4271 input_queue_head_incr(sd);
4272 }
4273 }
4274 }
4275
4276 static int napi_gro_complete(struct sk_buff *skb)
4277 {
4278 struct packet_offload *ptype;
4279 __be16 type = skb->protocol;
4280 struct list_head *head = &offload_base;
4281 int err = -ENOENT;
4282
4283 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4284
4285 if (NAPI_GRO_CB(skb)->count == 1) {
4286 skb_shinfo(skb)->gso_size = 0;
4287 goto out;
4288 }
4289
4290 rcu_read_lock();
4291 list_for_each_entry_rcu(ptype, head, list) {
4292 if (ptype->type != type || !ptype->callbacks.gro_complete)
4293 continue;
4294
4295 err = ptype->callbacks.gro_complete(skb, 0);
4296 break;
4297 }
4298 rcu_read_unlock();
4299
4300 if (err) {
4301 WARN_ON(&ptype->list == head);
4302 kfree_skb(skb);
4303 return NET_RX_SUCCESS;
4304 }
4305
4306 out:
4307 return netif_receive_skb_internal(skb);
4308 }
4309
4310 /* napi->gro_list contains packets ordered by age.
4311 * youngest packets at the head of it.
4312 * Complete skbs in reverse order to reduce latencies.
4313 */
4314 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4315 {
4316 struct sk_buff *skb, *prev = NULL;
4317
4318 /* scan list and build reverse chain */
4319 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4320 skb->prev = prev;
4321 prev = skb;
4322 }
4323
4324 for (skb = prev; skb; skb = prev) {
4325 skb->next = NULL;
4326
4327 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4328 return;
4329
4330 prev = skb->prev;
4331 napi_gro_complete(skb);
4332 napi->gro_count--;
4333 }
4334
4335 napi->gro_list = NULL;
4336 }
4337 EXPORT_SYMBOL(napi_gro_flush);
4338
4339 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4340 {
4341 struct sk_buff *p;
4342 unsigned int maclen = skb->dev->hard_header_len;
4343 u32 hash = skb_get_hash_raw(skb);
4344
4345 for (p = napi->gro_list; p; p = p->next) {
4346 unsigned long diffs;
4347
4348 NAPI_GRO_CB(p)->flush = 0;
4349
4350 if (hash != skb_get_hash_raw(p)) {
4351 NAPI_GRO_CB(p)->same_flow = 0;
4352 continue;
4353 }
4354
4355 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4356 diffs |= p->vlan_tci ^ skb->vlan_tci;
4357 diffs |= skb_metadata_dst_cmp(p, skb);
4358 if (maclen == ETH_HLEN)
4359 diffs |= compare_ether_header(skb_mac_header(p),
4360 skb_mac_header(skb));
4361 else if (!diffs)
4362 diffs = memcmp(skb_mac_header(p),
4363 skb_mac_header(skb),
4364 maclen);
4365 NAPI_GRO_CB(p)->same_flow = !diffs;
4366 }
4367 }
4368
4369 static void skb_gro_reset_offset(struct sk_buff *skb)
4370 {
4371 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4372 const skb_frag_t *frag0 = &pinfo->frags[0];
4373
4374 NAPI_GRO_CB(skb)->data_offset = 0;
4375 NAPI_GRO_CB(skb)->frag0 = NULL;
4376 NAPI_GRO_CB(skb)->frag0_len = 0;
4377
4378 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4379 pinfo->nr_frags &&
4380 !PageHighMem(skb_frag_page(frag0))) {
4381 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4382 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4383 }
4384 }
4385
4386 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4387 {
4388 struct skb_shared_info *pinfo = skb_shinfo(skb);
4389
4390 BUG_ON(skb->end - skb->tail < grow);
4391
4392 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4393
4394 skb->data_len -= grow;
4395 skb->tail += grow;
4396
4397 pinfo->frags[0].page_offset += grow;
4398 skb_frag_size_sub(&pinfo->frags[0], grow);
4399
4400 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4401 skb_frag_unref(skb, 0);
4402 memmove(pinfo->frags, pinfo->frags + 1,
4403 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4404 }
4405 }
4406
4407 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4408 {
4409 struct sk_buff **pp = NULL;
4410 struct packet_offload *ptype;
4411 __be16 type = skb->protocol;
4412 struct list_head *head = &offload_base;
4413 int same_flow;
4414 enum gro_result ret;
4415 int grow;
4416
4417 if (!(skb->dev->features & NETIF_F_GRO))
4418 goto normal;
4419
4420 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4421 goto normal;
4422
4423 gro_list_prepare(napi, skb);
4424
4425 rcu_read_lock();
4426 list_for_each_entry_rcu(ptype, head, list) {
4427 if (ptype->type != type || !ptype->callbacks.gro_receive)
4428 continue;
4429
4430 skb_set_network_header(skb, skb_gro_offset(skb));
4431 skb_reset_mac_len(skb);
4432 NAPI_GRO_CB(skb)->same_flow = 0;
4433 NAPI_GRO_CB(skb)->flush = 0;
4434 NAPI_GRO_CB(skb)->free = 0;
4435 NAPI_GRO_CB(skb)->udp_mark = 0;
4436 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4437
4438 /* Setup for GRO checksum validation */
4439 switch (skb->ip_summed) {
4440 case CHECKSUM_COMPLETE:
4441 NAPI_GRO_CB(skb)->csum = skb->csum;
4442 NAPI_GRO_CB(skb)->csum_valid = 1;
4443 NAPI_GRO_CB(skb)->csum_cnt = 0;
4444 break;
4445 case CHECKSUM_UNNECESSARY:
4446 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4447 NAPI_GRO_CB(skb)->csum_valid = 0;
4448 break;
4449 default:
4450 NAPI_GRO_CB(skb)->csum_cnt = 0;
4451 NAPI_GRO_CB(skb)->csum_valid = 0;
4452 }
4453
4454 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4455 break;
4456 }
4457 rcu_read_unlock();
4458
4459 if (&ptype->list == head)
4460 goto normal;
4461
4462 same_flow = NAPI_GRO_CB(skb)->same_flow;
4463 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4464
4465 if (pp) {
4466 struct sk_buff *nskb = *pp;
4467
4468 *pp = nskb->next;
4469 nskb->next = NULL;
4470 napi_gro_complete(nskb);
4471 napi->gro_count--;
4472 }
4473
4474 if (same_flow)
4475 goto ok;
4476
4477 if (NAPI_GRO_CB(skb)->flush)
4478 goto normal;
4479
4480 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4481 struct sk_buff *nskb = napi->gro_list;
4482
4483 /* locate the end of the list to select the 'oldest' flow */
4484 while (nskb->next) {
4485 pp = &nskb->next;
4486 nskb = *pp;
4487 }
4488 *pp = NULL;
4489 nskb->next = NULL;
4490 napi_gro_complete(nskb);
4491 } else {
4492 napi->gro_count++;
4493 }
4494 NAPI_GRO_CB(skb)->count = 1;
4495 NAPI_GRO_CB(skb)->age = jiffies;
4496 NAPI_GRO_CB(skb)->last = skb;
4497 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4498 skb->next = napi->gro_list;
4499 napi->gro_list = skb;
4500 ret = GRO_HELD;
4501
4502 pull:
4503 grow = skb_gro_offset(skb) - skb_headlen(skb);
4504 if (grow > 0)
4505 gro_pull_from_frag0(skb, grow);
4506 ok:
4507 return ret;
4508
4509 normal:
4510 ret = GRO_NORMAL;
4511 goto pull;
4512 }
4513
4514 struct packet_offload *gro_find_receive_by_type(__be16 type)
4515 {
4516 struct list_head *offload_head = &offload_base;
4517 struct packet_offload *ptype;
4518
4519 list_for_each_entry_rcu(ptype, offload_head, list) {
4520 if (ptype->type != type || !ptype->callbacks.gro_receive)
4521 continue;
4522 return ptype;
4523 }
4524 return NULL;
4525 }
4526 EXPORT_SYMBOL(gro_find_receive_by_type);
4527
4528 struct packet_offload *gro_find_complete_by_type(__be16 type)
4529 {
4530 struct list_head *offload_head = &offload_base;
4531 struct packet_offload *ptype;
4532
4533 list_for_each_entry_rcu(ptype, offload_head, list) {
4534 if (ptype->type != type || !ptype->callbacks.gro_complete)
4535 continue;
4536 return ptype;
4537 }
4538 return NULL;
4539 }
4540 EXPORT_SYMBOL(gro_find_complete_by_type);
4541
4542 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4543 {
4544 switch (ret) {
4545 case GRO_NORMAL:
4546 if (netif_receive_skb_internal(skb))
4547 ret = GRO_DROP;
4548 break;
4549
4550 case GRO_DROP:
4551 kfree_skb(skb);
4552 break;
4553
4554 case GRO_MERGED_FREE:
4555 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4556 skb_dst_drop(skb);
4557 kmem_cache_free(skbuff_head_cache, skb);
4558 } else {
4559 __kfree_skb(skb);
4560 }
4561 break;
4562
4563 case GRO_HELD:
4564 case GRO_MERGED:
4565 break;
4566 }
4567
4568 return ret;
4569 }
4570
4571 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4572 {
4573 skb_mark_napi_id(skb, napi);
4574 trace_napi_gro_receive_entry(skb);
4575
4576 skb_gro_reset_offset(skb);
4577
4578 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4579 }
4580 EXPORT_SYMBOL(napi_gro_receive);
4581
4582 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4583 {
4584 if (unlikely(skb->pfmemalloc)) {
4585 consume_skb(skb);
4586 return;
4587 }
4588 __skb_pull(skb, skb_headlen(skb));
4589 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4590 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4591 skb->vlan_tci = 0;
4592 skb->dev = napi->dev;
4593 skb->skb_iif = 0;
4594 skb->encapsulation = 0;
4595 skb_shinfo(skb)->gso_type = 0;
4596 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4597
4598 napi->skb = skb;
4599 }
4600
4601 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4602 {
4603 struct sk_buff *skb = napi->skb;
4604
4605 if (!skb) {
4606 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4607 if (skb) {
4608 napi->skb = skb;
4609 skb_mark_napi_id(skb, napi);
4610 }
4611 }
4612 return skb;
4613 }
4614 EXPORT_SYMBOL(napi_get_frags);
4615
4616 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4617 struct sk_buff *skb,
4618 gro_result_t ret)
4619 {
4620 switch (ret) {
4621 case GRO_NORMAL:
4622 case GRO_HELD:
4623 __skb_push(skb, ETH_HLEN);
4624 skb->protocol = eth_type_trans(skb, skb->dev);
4625 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4626 ret = GRO_DROP;
4627 break;
4628
4629 case GRO_DROP:
4630 case GRO_MERGED_FREE:
4631 napi_reuse_skb(napi, skb);
4632 break;
4633
4634 case GRO_MERGED:
4635 break;
4636 }
4637
4638 return ret;
4639 }
4640
4641 /* Upper GRO stack assumes network header starts at gro_offset=0
4642 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4643 * We copy ethernet header into skb->data to have a common layout.
4644 */
4645 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4646 {
4647 struct sk_buff *skb = napi->skb;
4648 const struct ethhdr *eth;
4649 unsigned int hlen = sizeof(*eth);
4650
4651 napi->skb = NULL;
4652
4653 skb_reset_mac_header(skb);
4654 skb_gro_reset_offset(skb);
4655
4656 eth = skb_gro_header_fast(skb, 0);
4657 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4658 eth = skb_gro_header_slow(skb, hlen, 0);
4659 if (unlikely(!eth)) {
4660 napi_reuse_skb(napi, skb);
4661 return NULL;
4662 }
4663 } else {
4664 gro_pull_from_frag0(skb, hlen);
4665 NAPI_GRO_CB(skb)->frag0 += hlen;
4666 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4667 }
4668 __skb_pull(skb, hlen);
4669
4670 /*
4671 * This works because the only protocols we care about don't require
4672 * special handling.
4673 * We'll fix it up properly in napi_frags_finish()
4674 */
4675 skb->protocol = eth->h_proto;
4676
4677 return skb;
4678 }
4679
4680 gro_result_t napi_gro_frags(struct napi_struct *napi)
4681 {
4682 struct sk_buff *skb = napi_frags_skb(napi);
4683
4684 if (!skb)
4685 return GRO_DROP;
4686
4687 trace_napi_gro_frags_entry(skb);
4688
4689 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4690 }
4691 EXPORT_SYMBOL(napi_gro_frags);
4692
4693 /* Compute the checksum from gro_offset and return the folded value
4694 * after adding in any pseudo checksum.
4695 */
4696 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4697 {
4698 __wsum wsum;
4699 __sum16 sum;
4700
4701 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4702
4703 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4704 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4705 if (likely(!sum)) {
4706 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4707 !skb->csum_complete_sw)
4708 netdev_rx_csum_fault(skb->dev);
4709 }
4710
4711 NAPI_GRO_CB(skb)->csum = wsum;
4712 NAPI_GRO_CB(skb)->csum_valid = 1;
4713
4714 return sum;
4715 }
4716 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4717
4718 /*
4719 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4720 * Note: called with local irq disabled, but exits with local irq enabled.
4721 */
4722 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4723 {
4724 #ifdef CONFIG_RPS
4725 struct softnet_data *remsd = sd->rps_ipi_list;
4726
4727 if (remsd) {
4728 sd->rps_ipi_list = NULL;
4729
4730 local_irq_enable();
4731
4732 /* Send pending IPI's to kick RPS processing on remote cpus. */
4733 while (remsd) {
4734 struct softnet_data *next = remsd->rps_ipi_next;
4735
4736 if (cpu_online(remsd->cpu))
4737 smp_call_function_single_async(remsd->cpu,
4738 &remsd->csd);
4739 remsd = next;
4740 }
4741 } else
4742 #endif
4743 local_irq_enable();
4744 }
4745
4746 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4747 {
4748 #ifdef CONFIG_RPS
4749 return sd->rps_ipi_list != NULL;
4750 #else
4751 return false;
4752 #endif
4753 }
4754
4755 static int process_backlog(struct napi_struct *napi, int quota)
4756 {
4757 int work = 0;
4758 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4759
4760 /* Check if we have pending ipi, its better to send them now,
4761 * not waiting net_rx_action() end.
4762 */
4763 if (sd_has_rps_ipi_waiting(sd)) {
4764 local_irq_disable();
4765 net_rps_action_and_irq_enable(sd);
4766 }
4767
4768 napi->weight = weight_p;
4769 local_irq_disable();
4770 while (1) {
4771 struct sk_buff *skb;
4772
4773 while ((skb = __skb_dequeue(&sd->process_queue))) {
4774 rcu_read_lock();
4775 local_irq_enable();
4776 __netif_receive_skb(skb);
4777 rcu_read_unlock();
4778 local_irq_disable();
4779 input_queue_head_incr(sd);
4780 if (++work >= quota) {
4781 local_irq_enable();
4782 return work;
4783 }
4784 }
4785
4786 rps_lock(sd);
4787 if (skb_queue_empty(&sd->input_pkt_queue)) {
4788 /*
4789 * Inline a custom version of __napi_complete().
4790 * only current cpu owns and manipulates this napi,
4791 * and NAPI_STATE_SCHED is the only possible flag set
4792 * on backlog.
4793 * We can use a plain write instead of clear_bit(),
4794 * and we dont need an smp_mb() memory barrier.
4795 */
4796 napi->state = 0;
4797 rps_unlock(sd);
4798
4799 break;
4800 }
4801
4802 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4803 &sd->process_queue);
4804 rps_unlock(sd);
4805 }
4806 local_irq_enable();
4807
4808 return work;
4809 }
4810
4811 /**
4812 * __napi_schedule - schedule for receive
4813 * @n: entry to schedule
4814 *
4815 * The entry's receive function will be scheduled to run.
4816 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4817 */
4818 void __napi_schedule(struct napi_struct *n)
4819 {
4820 unsigned long flags;
4821
4822 local_irq_save(flags);
4823 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4824 local_irq_restore(flags);
4825 }
4826 EXPORT_SYMBOL(__napi_schedule);
4827
4828 /**
4829 * __napi_schedule_irqoff - schedule for receive
4830 * @n: entry to schedule
4831 *
4832 * Variant of __napi_schedule() assuming hard irqs are masked
4833 */
4834 void __napi_schedule_irqoff(struct napi_struct *n)
4835 {
4836 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4837 }
4838 EXPORT_SYMBOL(__napi_schedule_irqoff);
4839
4840 void __napi_complete(struct napi_struct *n)
4841 {
4842 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4843
4844 list_del_init(&n->poll_list);
4845 smp_mb__before_atomic();
4846 clear_bit(NAPI_STATE_SCHED, &n->state);
4847 }
4848 EXPORT_SYMBOL(__napi_complete);
4849
4850 void napi_complete_done(struct napi_struct *n, int work_done)
4851 {
4852 unsigned long flags;
4853
4854 /*
4855 * don't let napi dequeue from the cpu poll list
4856 * just in case its running on a different cpu
4857 */
4858 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4859 return;
4860
4861 if (n->gro_list) {
4862 unsigned long timeout = 0;
4863
4864 if (work_done)
4865 timeout = n->dev->gro_flush_timeout;
4866
4867 if (timeout)
4868 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4869 HRTIMER_MODE_REL_PINNED);
4870 else
4871 napi_gro_flush(n, false);
4872 }
4873 if (likely(list_empty(&n->poll_list))) {
4874 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4875 } else {
4876 /* If n->poll_list is not empty, we need to mask irqs */
4877 local_irq_save(flags);
4878 __napi_complete(n);
4879 local_irq_restore(flags);
4880 }
4881 }
4882 EXPORT_SYMBOL(napi_complete_done);
4883
4884 /* must be called under rcu_read_lock(), as we dont take a reference */
4885 static struct napi_struct *napi_by_id(unsigned int napi_id)
4886 {
4887 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4888 struct napi_struct *napi;
4889
4890 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4891 if (napi->napi_id == napi_id)
4892 return napi;
4893
4894 return NULL;
4895 }
4896
4897 #if defined(CONFIG_NET_RX_BUSY_POLL)
4898 #define BUSY_POLL_BUDGET 8
4899 bool sk_busy_loop(struct sock *sk, int nonblock)
4900 {
4901 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4902 int (*busy_poll)(struct napi_struct *dev);
4903 struct napi_struct *napi;
4904 int rc = false;
4905
4906 rcu_read_lock();
4907
4908 napi = napi_by_id(sk->sk_napi_id);
4909 if (!napi)
4910 goto out;
4911
4912 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4913 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4914
4915 do {
4916 rc = 0;
4917 local_bh_disable();
4918 if (busy_poll) {
4919 rc = busy_poll(napi);
4920 } else if (napi_schedule_prep(napi)) {
4921 void *have = netpoll_poll_lock(napi);
4922
4923 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4924 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4925 trace_napi_poll(napi);
4926 if (rc == BUSY_POLL_BUDGET) {
4927 napi_complete_done(napi, rc);
4928 napi_schedule(napi);
4929 }
4930 }
4931 netpoll_poll_unlock(have);
4932 }
4933 if (rc > 0)
4934 NET_ADD_STATS_BH(sock_net(sk),
4935 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4936 local_bh_enable();
4937
4938 if (rc == LL_FLUSH_FAILED)
4939 break; /* permanent failure */
4940
4941 cpu_relax();
4942 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4943 !need_resched() && !busy_loop_timeout(end_time));
4944
4945 rc = !skb_queue_empty(&sk->sk_receive_queue);
4946 out:
4947 rcu_read_unlock();
4948 return rc;
4949 }
4950 EXPORT_SYMBOL(sk_busy_loop);
4951
4952 #endif /* CONFIG_NET_RX_BUSY_POLL */
4953
4954 void napi_hash_add(struct napi_struct *napi)
4955 {
4956 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
4957 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
4958 return;
4959
4960 spin_lock(&napi_hash_lock);
4961
4962 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
4963 do {
4964 if (unlikely(++napi_gen_id < NR_CPUS + 1))
4965 napi_gen_id = NR_CPUS + 1;
4966 } while (napi_by_id(napi_gen_id));
4967 napi->napi_id = napi_gen_id;
4968
4969 hlist_add_head_rcu(&napi->napi_hash_node,
4970 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4971
4972 spin_unlock(&napi_hash_lock);
4973 }
4974 EXPORT_SYMBOL_GPL(napi_hash_add);
4975
4976 /* Warning : caller is responsible to make sure rcu grace period
4977 * is respected before freeing memory containing @napi
4978 */
4979 bool napi_hash_del(struct napi_struct *napi)
4980 {
4981 bool rcu_sync_needed = false;
4982
4983 spin_lock(&napi_hash_lock);
4984
4985 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
4986 rcu_sync_needed = true;
4987 hlist_del_rcu(&napi->napi_hash_node);
4988 }
4989 spin_unlock(&napi_hash_lock);
4990 return rcu_sync_needed;
4991 }
4992 EXPORT_SYMBOL_GPL(napi_hash_del);
4993
4994 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4995 {
4996 struct napi_struct *napi;
4997
4998 napi = container_of(timer, struct napi_struct, timer);
4999 if (napi->gro_list)
5000 napi_schedule(napi);
5001
5002 return HRTIMER_NORESTART;
5003 }
5004
5005 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5006 int (*poll)(struct napi_struct *, int), int weight)
5007 {
5008 INIT_LIST_HEAD(&napi->poll_list);
5009 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5010 napi->timer.function = napi_watchdog;
5011 napi->gro_count = 0;
5012 napi->gro_list = NULL;
5013 napi->skb = NULL;
5014 napi->poll = poll;
5015 if (weight > NAPI_POLL_WEIGHT)
5016 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5017 weight, dev->name);
5018 napi->weight = weight;
5019 list_add(&napi->dev_list, &dev->napi_list);
5020 napi->dev = dev;
5021 #ifdef CONFIG_NETPOLL
5022 spin_lock_init(&napi->poll_lock);
5023 napi->poll_owner = -1;
5024 #endif
5025 set_bit(NAPI_STATE_SCHED, &napi->state);
5026 napi_hash_add(napi);
5027 }
5028 EXPORT_SYMBOL(netif_napi_add);
5029
5030 void napi_disable(struct napi_struct *n)
5031 {
5032 might_sleep();
5033 set_bit(NAPI_STATE_DISABLE, &n->state);
5034
5035 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5036 msleep(1);
5037 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5038 msleep(1);
5039
5040 hrtimer_cancel(&n->timer);
5041
5042 clear_bit(NAPI_STATE_DISABLE, &n->state);
5043 }
5044 EXPORT_SYMBOL(napi_disable);
5045
5046 /* Must be called in process context */
5047 void netif_napi_del(struct napi_struct *napi)
5048 {
5049 might_sleep();
5050 if (napi_hash_del(napi))
5051 synchronize_net();
5052 list_del_init(&napi->dev_list);
5053 napi_free_frags(napi);
5054
5055 kfree_skb_list(napi->gro_list);
5056 napi->gro_list = NULL;
5057 napi->gro_count = 0;
5058 }
5059 EXPORT_SYMBOL(netif_napi_del);
5060
5061 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5062 {
5063 void *have;
5064 int work, weight;
5065
5066 list_del_init(&n->poll_list);
5067
5068 have = netpoll_poll_lock(n);
5069
5070 weight = n->weight;
5071
5072 /* This NAPI_STATE_SCHED test is for avoiding a race
5073 * with netpoll's poll_napi(). Only the entity which
5074 * obtains the lock and sees NAPI_STATE_SCHED set will
5075 * actually make the ->poll() call. Therefore we avoid
5076 * accidentally calling ->poll() when NAPI is not scheduled.
5077 */
5078 work = 0;
5079 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5080 work = n->poll(n, weight);
5081 trace_napi_poll(n);
5082 }
5083
5084 WARN_ON_ONCE(work > weight);
5085
5086 if (likely(work < weight))
5087 goto out_unlock;
5088
5089 /* Drivers must not modify the NAPI state if they
5090 * consume the entire weight. In such cases this code
5091 * still "owns" the NAPI instance and therefore can
5092 * move the instance around on the list at-will.
5093 */
5094 if (unlikely(napi_disable_pending(n))) {
5095 napi_complete(n);
5096 goto out_unlock;
5097 }
5098
5099 if (n->gro_list) {
5100 /* flush too old packets
5101 * If HZ < 1000, flush all packets.
5102 */
5103 napi_gro_flush(n, HZ >= 1000);
5104 }
5105
5106 /* Some drivers may have called napi_schedule
5107 * prior to exhausting their budget.
5108 */
5109 if (unlikely(!list_empty(&n->poll_list))) {
5110 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5111 n->dev ? n->dev->name : "backlog");
5112 goto out_unlock;
5113 }
5114
5115 list_add_tail(&n->poll_list, repoll);
5116
5117 out_unlock:
5118 netpoll_poll_unlock(have);
5119
5120 return work;
5121 }
5122
5123 static void net_rx_action(struct softirq_action *h)
5124 {
5125 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5126 unsigned long time_limit = jiffies + 2;
5127 int budget = netdev_budget;
5128 LIST_HEAD(list);
5129 LIST_HEAD(repoll);
5130
5131 local_irq_disable();
5132 list_splice_init(&sd->poll_list, &list);
5133 local_irq_enable();
5134
5135 for (;;) {
5136 struct napi_struct *n;
5137
5138 if (list_empty(&list)) {
5139 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5140 return;
5141 break;
5142 }
5143
5144 n = list_first_entry(&list, struct napi_struct, poll_list);
5145 budget -= napi_poll(n, &repoll);
5146
5147 /* If softirq window is exhausted then punt.
5148 * Allow this to run for 2 jiffies since which will allow
5149 * an average latency of 1.5/HZ.
5150 */
5151 if (unlikely(budget <= 0 ||
5152 time_after_eq(jiffies, time_limit))) {
5153 sd->time_squeeze++;
5154 break;
5155 }
5156 }
5157
5158 local_irq_disable();
5159
5160 list_splice_tail_init(&sd->poll_list, &list);
5161 list_splice_tail(&repoll, &list);
5162 list_splice(&list, &sd->poll_list);
5163 if (!list_empty(&sd->poll_list))
5164 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5165
5166 net_rps_action_and_irq_enable(sd);
5167 }
5168
5169 struct netdev_adjacent {
5170 struct net_device *dev;
5171
5172 /* upper master flag, there can only be one master device per list */
5173 bool master;
5174
5175 /* counter for the number of times this device was added to us */
5176 u16 ref_nr;
5177
5178 /* private field for the users */
5179 void *private;
5180
5181 struct list_head list;
5182 struct rcu_head rcu;
5183 };
5184
5185 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5186 struct list_head *adj_list)
5187 {
5188 struct netdev_adjacent *adj;
5189
5190 list_for_each_entry(adj, adj_list, list) {
5191 if (adj->dev == adj_dev)
5192 return adj;
5193 }
5194 return NULL;
5195 }
5196
5197 /**
5198 * netdev_has_upper_dev - Check if device is linked to an upper device
5199 * @dev: device
5200 * @upper_dev: upper device to check
5201 *
5202 * Find out if a device is linked to specified upper device and return true
5203 * in case it is. Note that this checks only immediate upper device,
5204 * not through a complete stack of devices. The caller must hold the RTNL lock.
5205 */
5206 bool netdev_has_upper_dev(struct net_device *dev,
5207 struct net_device *upper_dev)
5208 {
5209 ASSERT_RTNL();
5210
5211 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5212 }
5213 EXPORT_SYMBOL(netdev_has_upper_dev);
5214
5215 /**
5216 * netdev_has_any_upper_dev - Check if device is linked to some device
5217 * @dev: device
5218 *
5219 * Find out if a device is linked to an upper device and return true in case
5220 * it is. The caller must hold the RTNL lock.
5221 */
5222 static bool netdev_has_any_upper_dev(struct net_device *dev)
5223 {
5224 ASSERT_RTNL();
5225
5226 return !list_empty(&dev->all_adj_list.upper);
5227 }
5228
5229 /**
5230 * netdev_master_upper_dev_get - Get master upper device
5231 * @dev: device
5232 *
5233 * Find a master upper device and return pointer to it or NULL in case
5234 * it's not there. The caller must hold the RTNL lock.
5235 */
5236 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5237 {
5238 struct netdev_adjacent *upper;
5239
5240 ASSERT_RTNL();
5241
5242 if (list_empty(&dev->adj_list.upper))
5243 return NULL;
5244
5245 upper = list_first_entry(&dev->adj_list.upper,
5246 struct netdev_adjacent, list);
5247 if (likely(upper->master))
5248 return upper->dev;
5249 return NULL;
5250 }
5251 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5252
5253 void *netdev_adjacent_get_private(struct list_head *adj_list)
5254 {
5255 struct netdev_adjacent *adj;
5256
5257 adj = list_entry(adj_list, struct netdev_adjacent, list);
5258
5259 return adj->private;
5260 }
5261 EXPORT_SYMBOL(netdev_adjacent_get_private);
5262
5263 /**
5264 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5265 * @dev: device
5266 * @iter: list_head ** of the current position
5267 *
5268 * Gets the next device from the dev's upper list, starting from iter
5269 * position. The caller must hold RCU read lock.
5270 */
5271 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5272 struct list_head **iter)
5273 {
5274 struct netdev_adjacent *upper;
5275
5276 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5277
5278 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5279
5280 if (&upper->list == &dev->adj_list.upper)
5281 return NULL;
5282
5283 *iter = &upper->list;
5284
5285 return upper->dev;
5286 }
5287 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5288
5289 /**
5290 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5291 * @dev: device
5292 * @iter: list_head ** of the current position
5293 *
5294 * Gets the next device from the dev's upper list, starting from iter
5295 * position. The caller must hold RCU read lock.
5296 */
5297 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5298 struct list_head **iter)
5299 {
5300 struct netdev_adjacent *upper;
5301
5302 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5303
5304 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5305
5306 if (&upper->list == &dev->all_adj_list.upper)
5307 return NULL;
5308
5309 *iter = &upper->list;
5310
5311 return upper->dev;
5312 }
5313 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5314
5315 /**
5316 * netdev_lower_get_next_private - Get the next ->private from the
5317 * lower neighbour list
5318 * @dev: device
5319 * @iter: list_head ** of the current position
5320 *
5321 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5322 * list, starting from iter position. The caller must hold either hold the
5323 * RTNL lock or its own locking that guarantees that the neighbour lower
5324 * list will remain unchanged.
5325 */
5326 void *netdev_lower_get_next_private(struct net_device *dev,
5327 struct list_head **iter)
5328 {
5329 struct netdev_adjacent *lower;
5330
5331 lower = list_entry(*iter, struct netdev_adjacent, list);
5332
5333 if (&lower->list == &dev->adj_list.lower)
5334 return NULL;
5335
5336 *iter = lower->list.next;
5337
5338 return lower->private;
5339 }
5340 EXPORT_SYMBOL(netdev_lower_get_next_private);
5341
5342 /**
5343 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5344 * lower neighbour list, RCU
5345 * variant
5346 * @dev: device
5347 * @iter: list_head ** of the current position
5348 *
5349 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5350 * list, starting from iter position. The caller must hold RCU read lock.
5351 */
5352 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5353 struct list_head **iter)
5354 {
5355 struct netdev_adjacent *lower;
5356
5357 WARN_ON_ONCE(!rcu_read_lock_held());
5358
5359 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5360
5361 if (&lower->list == &dev->adj_list.lower)
5362 return NULL;
5363
5364 *iter = &lower->list;
5365
5366 return lower->private;
5367 }
5368 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5369
5370 /**
5371 * netdev_lower_get_next - Get the next device from the lower neighbour
5372 * list
5373 * @dev: device
5374 * @iter: list_head ** of the current position
5375 *
5376 * Gets the next netdev_adjacent from the dev's lower neighbour
5377 * list, starting from iter position. The caller must hold RTNL lock or
5378 * its own locking that guarantees that the neighbour lower
5379 * list will remain unchanged.
5380 */
5381 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5382 {
5383 struct netdev_adjacent *lower;
5384
5385 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5386
5387 if (&lower->list == &dev->adj_list.lower)
5388 return NULL;
5389
5390 *iter = &lower->list;
5391
5392 return lower->dev;
5393 }
5394 EXPORT_SYMBOL(netdev_lower_get_next);
5395
5396 /**
5397 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5398 * lower neighbour list, RCU
5399 * variant
5400 * @dev: device
5401 *
5402 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5403 * list. The caller must hold RCU read lock.
5404 */
5405 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5406 {
5407 struct netdev_adjacent *lower;
5408
5409 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5410 struct netdev_adjacent, list);
5411 if (lower)
5412 return lower->private;
5413 return NULL;
5414 }
5415 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5416
5417 /**
5418 * netdev_master_upper_dev_get_rcu - Get master upper device
5419 * @dev: device
5420 *
5421 * Find a master upper device and return pointer to it or NULL in case
5422 * it's not there. The caller must hold the RCU read lock.
5423 */
5424 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5425 {
5426 struct netdev_adjacent *upper;
5427
5428 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5429 struct netdev_adjacent, list);
5430 if (upper && likely(upper->master))
5431 return upper->dev;
5432 return NULL;
5433 }
5434 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5435
5436 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5437 struct net_device *adj_dev,
5438 struct list_head *dev_list)
5439 {
5440 char linkname[IFNAMSIZ+7];
5441 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5442 "upper_%s" : "lower_%s", adj_dev->name);
5443 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5444 linkname);
5445 }
5446 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5447 char *name,
5448 struct list_head *dev_list)
5449 {
5450 char linkname[IFNAMSIZ+7];
5451 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5452 "upper_%s" : "lower_%s", name);
5453 sysfs_remove_link(&(dev->dev.kobj), linkname);
5454 }
5455
5456 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5457 struct net_device *adj_dev,
5458 struct list_head *dev_list)
5459 {
5460 return (dev_list == &dev->adj_list.upper ||
5461 dev_list == &dev->adj_list.lower) &&
5462 net_eq(dev_net(dev), dev_net(adj_dev));
5463 }
5464
5465 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5466 struct net_device *adj_dev,
5467 struct list_head *dev_list,
5468 void *private, bool master)
5469 {
5470 struct netdev_adjacent *adj;
5471 int ret;
5472
5473 adj = __netdev_find_adj(adj_dev, dev_list);
5474
5475 if (adj) {
5476 adj->ref_nr++;
5477 return 0;
5478 }
5479
5480 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5481 if (!adj)
5482 return -ENOMEM;
5483
5484 adj->dev = adj_dev;
5485 adj->master = master;
5486 adj->ref_nr = 1;
5487 adj->private = private;
5488 dev_hold(adj_dev);
5489
5490 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5491 adj_dev->name, dev->name, adj_dev->name);
5492
5493 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5494 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5495 if (ret)
5496 goto free_adj;
5497 }
5498
5499 /* Ensure that master link is always the first item in list. */
5500 if (master) {
5501 ret = sysfs_create_link(&(dev->dev.kobj),
5502 &(adj_dev->dev.kobj), "master");
5503 if (ret)
5504 goto remove_symlinks;
5505
5506 list_add_rcu(&adj->list, dev_list);
5507 } else {
5508 list_add_tail_rcu(&adj->list, dev_list);
5509 }
5510
5511 return 0;
5512
5513 remove_symlinks:
5514 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5515 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5516 free_adj:
5517 kfree(adj);
5518 dev_put(adj_dev);
5519
5520 return ret;
5521 }
5522
5523 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5524 struct net_device *adj_dev,
5525 struct list_head *dev_list)
5526 {
5527 struct netdev_adjacent *adj;
5528
5529 adj = __netdev_find_adj(adj_dev, dev_list);
5530
5531 if (!adj) {
5532 pr_err("tried to remove device %s from %s\n",
5533 dev->name, adj_dev->name);
5534 BUG();
5535 }
5536
5537 if (adj->ref_nr > 1) {
5538 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5539 adj->ref_nr-1);
5540 adj->ref_nr--;
5541 return;
5542 }
5543
5544 if (adj->master)
5545 sysfs_remove_link(&(dev->dev.kobj), "master");
5546
5547 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5548 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5549
5550 list_del_rcu(&adj->list);
5551 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5552 adj_dev->name, dev->name, adj_dev->name);
5553 dev_put(adj_dev);
5554 kfree_rcu(adj, rcu);
5555 }
5556
5557 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5558 struct net_device *upper_dev,
5559 struct list_head *up_list,
5560 struct list_head *down_list,
5561 void *private, bool master)
5562 {
5563 int ret;
5564
5565 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5566 master);
5567 if (ret)
5568 return ret;
5569
5570 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5571 false);
5572 if (ret) {
5573 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5574 return ret;
5575 }
5576
5577 return 0;
5578 }
5579
5580 static int __netdev_adjacent_dev_link(struct net_device *dev,
5581 struct net_device *upper_dev)
5582 {
5583 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5584 &dev->all_adj_list.upper,
5585 &upper_dev->all_adj_list.lower,
5586 NULL, false);
5587 }
5588
5589 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5590 struct net_device *upper_dev,
5591 struct list_head *up_list,
5592 struct list_head *down_list)
5593 {
5594 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5595 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5596 }
5597
5598 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5599 struct net_device *upper_dev)
5600 {
5601 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5602 &dev->all_adj_list.upper,
5603 &upper_dev->all_adj_list.lower);
5604 }
5605
5606 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5607 struct net_device *upper_dev,
5608 void *private, bool master)
5609 {
5610 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5611
5612 if (ret)
5613 return ret;
5614
5615 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5616 &dev->adj_list.upper,
5617 &upper_dev->adj_list.lower,
5618 private, master);
5619 if (ret) {
5620 __netdev_adjacent_dev_unlink(dev, upper_dev);
5621 return ret;
5622 }
5623
5624 return 0;
5625 }
5626
5627 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5628 struct net_device *upper_dev)
5629 {
5630 __netdev_adjacent_dev_unlink(dev, upper_dev);
5631 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5632 &dev->adj_list.upper,
5633 &upper_dev->adj_list.lower);
5634 }
5635
5636 static int __netdev_upper_dev_link(struct net_device *dev,
5637 struct net_device *upper_dev, bool master,
5638 void *upper_priv, void *upper_info)
5639 {
5640 struct netdev_notifier_changeupper_info changeupper_info;
5641 struct netdev_adjacent *i, *j, *to_i, *to_j;
5642 int ret = 0;
5643
5644 ASSERT_RTNL();
5645
5646 if (dev == upper_dev)
5647 return -EBUSY;
5648
5649 /* To prevent loops, check if dev is not upper device to upper_dev. */
5650 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5651 return -EBUSY;
5652
5653 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5654 return -EEXIST;
5655
5656 if (master && netdev_master_upper_dev_get(dev))
5657 return -EBUSY;
5658
5659 changeupper_info.upper_dev = upper_dev;
5660 changeupper_info.master = master;
5661 changeupper_info.linking = true;
5662 changeupper_info.upper_info = upper_info;
5663
5664 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5665 &changeupper_info.info);
5666 ret = notifier_to_errno(ret);
5667 if (ret)
5668 return ret;
5669
5670 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5671 master);
5672 if (ret)
5673 return ret;
5674
5675 /* Now that we linked these devs, make all the upper_dev's
5676 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5677 * versa, and don't forget the devices itself. All of these
5678 * links are non-neighbours.
5679 */
5680 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5681 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5682 pr_debug("Interlinking %s with %s, non-neighbour\n",
5683 i->dev->name, j->dev->name);
5684 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5685 if (ret)
5686 goto rollback_mesh;
5687 }
5688 }
5689
5690 /* add dev to every upper_dev's upper device */
5691 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5692 pr_debug("linking %s's upper device %s with %s\n",
5693 upper_dev->name, i->dev->name, dev->name);
5694 ret = __netdev_adjacent_dev_link(dev, i->dev);
5695 if (ret)
5696 goto rollback_upper_mesh;
5697 }
5698
5699 /* add upper_dev to every dev's lower device */
5700 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5701 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5702 i->dev->name, upper_dev->name);
5703 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5704 if (ret)
5705 goto rollback_lower_mesh;
5706 }
5707
5708 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5709 &changeupper_info.info);
5710 ret = notifier_to_errno(ret);
5711 if (ret)
5712 goto rollback_lower_mesh;
5713
5714 return 0;
5715
5716 rollback_lower_mesh:
5717 to_i = i;
5718 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5719 if (i == to_i)
5720 break;
5721 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5722 }
5723
5724 i = NULL;
5725
5726 rollback_upper_mesh:
5727 to_i = i;
5728 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5729 if (i == to_i)
5730 break;
5731 __netdev_adjacent_dev_unlink(dev, i->dev);
5732 }
5733
5734 i = j = NULL;
5735
5736 rollback_mesh:
5737 to_i = i;
5738 to_j = j;
5739 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5740 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5741 if (i == to_i && j == to_j)
5742 break;
5743 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5744 }
5745 if (i == to_i)
5746 break;
5747 }
5748
5749 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5750
5751 return ret;
5752 }
5753
5754 /**
5755 * netdev_upper_dev_link - Add a link to the upper device
5756 * @dev: device
5757 * @upper_dev: new upper device
5758 *
5759 * Adds a link to device which is upper to this one. The caller must hold
5760 * the RTNL lock. On a failure a negative errno code is returned.
5761 * On success the reference counts are adjusted and the function
5762 * returns zero.
5763 */
5764 int netdev_upper_dev_link(struct net_device *dev,
5765 struct net_device *upper_dev)
5766 {
5767 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5768 }
5769 EXPORT_SYMBOL(netdev_upper_dev_link);
5770
5771 /**
5772 * netdev_master_upper_dev_link - Add a master link to the upper device
5773 * @dev: device
5774 * @upper_dev: new upper device
5775 * @upper_priv: upper device private
5776 * @upper_info: upper info to be passed down via notifier
5777 *
5778 * Adds a link to device which is upper to this one. In this case, only
5779 * one master upper device can be linked, although other non-master devices
5780 * might be linked as well. The caller must hold the RTNL lock.
5781 * On a failure a negative errno code is returned. On success the reference
5782 * counts are adjusted and the function returns zero.
5783 */
5784 int netdev_master_upper_dev_link(struct net_device *dev,
5785 struct net_device *upper_dev,
5786 void *upper_priv, void *upper_info)
5787 {
5788 return __netdev_upper_dev_link(dev, upper_dev, true,
5789 upper_priv, upper_info);
5790 }
5791 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5792
5793 /**
5794 * netdev_upper_dev_unlink - Removes a link to upper device
5795 * @dev: device
5796 * @upper_dev: new upper device
5797 *
5798 * Removes a link to device which is upper to this one. The caller must hold
5799 * the RTNL lock.
5800 */
5801 void netdev_upper_dev_unlink(struct net_device *dev,
5802 struct net_device *upper_dev)
5803 {
5804 struct netdev_notifier_changeupper_info changeupper_info;
5805 struct netdev_adjacent *i, *j;
5806 ASSERT_RTNL();
5807
5808 changeupper_info.upper_dev = upper_dev;
5809 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5810 changeupper_info.linking = false;
5811
5812 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5813 &changeupper_info.info);
5814
5815 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5816
5817 /* Here is the tricky part. We must remove all dev's lower
5818 * devices from all upper_dev's upper devices and vice
5819 * versa, to maintain the graph relationship.
5820 */
5821 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5822 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5823 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5824
5825 /* remove also the devices itself from lower/upper device
5826 * list
5827 */
5828 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5829 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5830
5831 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5832 __netdev_adjacent_dev_unlink(dev, i->dev);
5833
5834 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5835 &changeupper_info.info);
5836 }
5837 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5838
5839 /**
5840 * netdev_bonding_info_change - Dispatch event about slave change
5841 * @dev: device
5842 * @bonding_info: info to dispatch
5843 *
5844 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5845 * The caller must hold the RTNL lock.
5846 */
5847 void netdev_bonding_info_change(struct net_device *dev,
5848 struct netdev_bonding_info *bonding_info)
5849 {
5850 struct netdev_notifier_bonding_info info;
5851
5852 memcpy(&info.bonding_info, bonding_info,
5853 sizeof(struct netdev_bonding_info));
5854 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5855 &info.info);
5856 }
5857 EXPORT_SYMBOL(netdev_bonding_info_change);
5858
5859 static void netdev_adjacent_add_links(struct net_device *dev)
5860 {
5861 struct netdev_adjacent *iter;
5862
5863 struct net *net = dev_net(dev);
5864
5865 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5866 if (!net_eq(net,dev_net(iter->dev)))
5867 continue;
5868 netdev_adjacent_sysfs_add(iter->dev, dev,
5869 &iter->dev->adj_list.lower);
5870 netdev_adjacent_sysfs_add(dev, iter->dev,
5871 &dev->adj_list.upper);
5872 }
5873
5874 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5875 if (!net_eq(net,dev_net(iter->dev)))
5876 continue;
5877 netdev_adjacent_sysfs_add(iter->dev, dev,
5878 &iter->dev->adj_list.upper);
5879 netdev_adjacent_sysfs_add(dev, iter->dev,
5880 &dev->adj_list.lower);
5881 }
5882 }
5883
5884 static void netdev_adjacent_del_links(struct net_device *dev)
5885 {
5886 struct netdev_adjacent *iter;
5887
5888 struct net *net = dev_net(dev);
5889
5890 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5891 if (!net_eq(net,dev_net(iter->dev)))
5892 continue;
5893 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5894 &iter->dev->adj_list.lower);
5895 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5896 &dev->adj_list.upper);
5897 }
5898
5899 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5900 if (!net_eq(net,dev_net(iter->dev)))
5901 continue;
5902 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5903 &iter->dev->adj_list.upper);
5904 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5905 &dev->adj_list.lower);
5906 }
5907 }
5908
5909 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5910 {
5911 struct netdev_adjacent *iter;
5912
5913 struct net *net = dev_net(dev);
5914
5915 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5916 if (!net_eq(net,dev_net(iter->dev)))
5917 continue;
5918 netdev_adjacent_sysfs_del(iter->dev, oldname,
5919 &iter->dev->adj_list.lower);
5920 netdev_adjacent_sysfs_add(iter->dev, dev,
5921 &iter->dev->adj_list.lower);
5922 }
5923
5924 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5925 if (!net_eq(net,dev_net(iter->dev)))
5926 continue;
5927 netdev_adjacent_sysfs_del(iter->dev, oldname,
5928 &iter->dev->adj_list.upper);
5929 netdev_adjacent_sysfs_add(iter->dev, dev,
5930 &iter->dev->adj_list.upper);
5931 }
5932 }
5933
5934 void *netdev_lower_dev_get_private(struct net_device *dev,
5935 struct net_device *lower_dev)
5936 {
5937 struct netdev_adjacent *lower;
5938
5939 if (!lower_dev)
5940 return NULL;
5941 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5942 if (!lower)
5943 return NULL;
5944
5945 return lower->private;
5946 }
5947 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5948
5949
5950 int dev_get_nest_level(struct net_device *dev,
5951 bool (*type_check)(const struct net_device *dev))
5952 {
5953 struct net_device *lower = NULL;
5954 struct list_head *iter;
5955 int max_nest = -1;
5956 int nest;
5957
5958 ASSERT_RTNL();
5959
5960 netdev_for_each_lower_dev(dev, lower, iter) {
5961 nest = dev_get_nest_level(lower, type_check);
5962 if (max_nest < nest)
5963 max_nest = nest;
5964 }
5965
5966 if (type_check(dev))
5967 max_nest++;
5968
5969 return max_nest;
5970 }
5971 EXPORT_SYMBOL(dev_get_nest_level);
5972
5973 /**
5974 * netdev_lower_change - Dispatch event about lower device state change
5975 * @lower_dev: device
5976 * @lower_state_info: state to dispatch
5977 *
5978 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
5979 * The caller must hold the RTNL lock.
5980 */
5981 void netdev_lower_state_changed(struct net_device *lower_dev,
5982 void *lower_state_info)
5983 {
5984 struct netdev_notifier_changelowerstate_info changelowerstate_info;
5985
5986 ASSERT_RTNL();
5987 changelowerstate_info.lower_state_info = lower_state_info;
5988 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
5989 &changelowerstate_info.info);
5990 }
5991 EXPORT_SYMBOL(netdev_lower_state_changed);
5992
5993 static void dev_change_rx_flags(struct net_device *dev, int flags)
5994 {
5995 const struct net_device_ops *ops = dev->netdev_ops;
5996
5997 if (ops->ndo_change_rx_flags)
5998 ops->ndo_change_rx_flags(dev, flags);
5999 }
6000
6001 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6002 {
6003 unsigned int old_flags = dev->flags;
6004 kuid_t uid;
6005 kgid_t gid;
6006
6007 ASSERT_RTNL();
6008
6009 dev->flags |= IFF_PROMISC;
6010 dev->promiscuity += inc;
6011 if (dev->promiscuity == 0) {
6012 /*
6013 * Avoid overflow.
6014 * If inc causes overflow, untouch promisc and return error.
6015 */
6016 if (inc < 0)
6017 dev->flags &= ~IFF_PROMISC;
6018 else {
6019 dev->promiscuity -= inc;
6020 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6021 dev->name);
6022 return -EOVERFLOW;
6023 }
6024 }
6025 if (dev->flags != old_flags) {
6026 pr_info("device %s %s promiscuous mode\n",
6027 dev->name,
6028 dev->flags & IFF_PROMISC ? "entered" : "left");
6029 if (audit_enabled) {
6030 current_uid_gid(&uid, &gid);
6031 audit_log(current->audit_context, GFP_ATOMIC,
6032 AUDIT_ANOM_PROMISCUOUS,
6033 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6034 dev->name, (dev->flags & IFF_PROMISC),
6035 (old_flags & IFF_PROMISC),
6036 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6037 from_kuid(&init_user_ns, uid),
6038 from_kgid(&init_user_ns, gid),
6039 audit_get_sessionid(current));
6040 }
6041
6042 dev_change_rx_flags(dev, IFF_PROMISC);
6043 }
6044 if (notify)
6045 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6046 return 0;
6047 }
6048
6049 /**
6050 * dev_set_promiscuity - update promiscuity count on a device
6051 * @dev: device
6052 * @inc: modifier
6053 *
6054 * Add or remove promiscuity from a device. While the count in the device
6055 * remains above zero the interface remains promiscuous. Once it hits zero
6056 * the device reverts back to normal filtering operation. A negative inc
6057 * value is used to drop promiscuity on the device.
6058 * Return 0 if successful or a negative errno code on error.
6059 */
6060 int dev_set_promiscuity(struct net_device *dev, int inc)
6061 {
6062 unsigned int old_flags = dev->flags;
6063 int err;
6064
6065 err = __dev_set_promiscuity(dev, inc, true);
6066 if (err < 0)
6067 return err;
6068 if (dev->flags != old_flags)
6069 dev_set_rx_mode(dev);
6070 return err;
6071 }
6072 EXPORT_SYMBOL(dev_set_promiscuity);
6073
6074 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6075 {
6076 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6077
6078 ASSERT_RTNL();
6079
6080 dev->flags |= IFF_ALLMULTI;
6081 dev->allmulti += inc;
6082 if (dev->allmulti == 0) {
6083 /*
6084 * Avoid overflow.
6085 * If inc causes overflow, untouch allmulti and return error.
6086 */
6087 if (inc < 0)
6088 dev->flags &= ~IFF_ALLMULTI;
6089 else {
6090 dev->allmulti -= inc;
6091 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6092 dev->name);
6093 return -EOVERFLOW;
6094 }
6095 }
6096 if (dev->flags ^ old_flags) {
6097 dev_change_rx_flags(dev, IFF_ALLMULTI);
6098 dev_set_rx_mode(dev);
6099 if (notify)
6100 __dev_notify_flags(dev, old_flags,
6101 dev->gflags ^ old_gflags);
6102 }
6103 return 0;
6104 }
6105
6106 /**
6107 * dev_set_allmulti - update allmulti count on a device
6108 * @dev: device
6109 * @inc: modifier
6110 *
6111 * Add or remove reception of all multicast frames to a device. While the
6112 * count in the device remains above zero the interface remains listening
6113 * to all interfaces. Once it hits zero the device reverts back to normal
6114 * filtering operation. A negative @inc value is used to drop the counter
6115 * when releasing a resource needing all multicasts.
6116 * Return 0 if successful or a negative errno code on error.
6117 */
6118
6119 int dev_set_allmulti(struct net_device *dev, int inc)
6120 {
6121 return __dev_set_allmulti(dev, inc, true);
6122 }
6123 EXPORT_SYMBOL(dev_set_allmulti);
6124
6125 /*
6126 * Upload unicast and multicast address lists to device and
6127 * configure RX filtering. When the device doesn't support unicast
6128 * filtering it is put in promiscuous mode while unicast addresses
6129 * are present.
6130 */
6131 void __dev_set_rx_mode(struct net_device *dev)
6132 {
6133 const struct net_device_ops *ops = dev->netdev_ops;
6134
6135 /* dev_open will call this function so the list will stay sane. */
6136 if (!(dev->flags&IFF_UP))
6137 return;
6138
6139 if (!netif_device_present(dev))
6140 return;
6141
6142 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6143 /* Unicast addresses changes may only happen under the rtnl,
6144 * therefore calling __dev_set_promiscuity here is safe.
6145 */
6146 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6147 __dev_set_promiscuity(dev, 1, false);
6148 dev->uc_promisc = true;
6149 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6150 __dev_set_promiscuity(dev, -1, false);
6151 dev->uc_promisc = false;
6152 }
6153 }
6154
6155 if (ops->ndo_set_rx_mode)
6156 ops->ndo_set_rx_mode(dev);
6157 }
6158
6159 void dev_set_rx_mode(struct net_device *dev)
6160 {
6161 netif_addr_lock_bh(dev);
6162 __dev_set_rx_mode(dev);
6163 netif_addr_unlock_bh(dev);
6164 }
6165
6166 /**
6167 * dev_get_flags - get flags reported to userspace
6168 * @dev: device
6169 *
6170 * Get the combination of flag bits exported through APIs to userspace.
6171 */
6172 unsigned int dev_get_flags(const struct net_device *dev)
6173 {
6174 unsigned int flags;
6175
6176 flags = (dev->flags & ~(IFF_PROMISC |
6177 IFF_ALLMULTI |
6178 IFF_RUNNING |
6179 IFF_LOWER_UP |
6180 IFF_DORMANT)) |
6181 (dev->gflags & (IFF_PROMISC |
6182 IFF_ALLMULTI));
6183
6184 if (netif_running(dev)) {
6185 if (netif_oper_up(dev))
6186 flags |= IFF_RUNNING;
6187 if (netif_carrier_ok(dev))
6188 flags |= IFF_LOWER_UP;
6189 if (netif_dormant(dev))
6190 flags |= IFF_DORMANT;
6191 }
6192
6193 return flags;
6194 }
6195 EXPORT_SYMBOL(dev_get_flags);
6196
6197 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6198 {
6199 unsigned int old_flags = dev->flags;
6200 int ret;
6201
6202 ASSERT_RTNL();
6203
6204 /*
6205 * Set the flags on our device.
6206 */
6207
6208 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6209 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6210 IFF_AUTOMEDIA)) |
6211 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6212 IFF_ALLMULTI));
6213
6214 /*
6215 * Load in the correct multicast list now the flags have changed.
6216 */
6217
6218 if ((old_flags ^ flags) & IFF_MULTICAST)
6219 dev_change_rx_flags(dev, IFF_MULTICAST);
6220
6221 dev_set_rx_mode(dev);
6222
6223 /*
6224 * Have we downed the interface. We handle IFF_UP ourselves
6225 * according to user attempts to set it, rather than blindly
6226 * setting it.
6227 */
6228
6229 ret = 0;
6230 if ((old_flags ^ flags) & IFF_UP)
6231 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6232
6233 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6234 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6235 unsigned int old_flags = dev->flags;
6236
6237 dev->gflags ^= IFF_PROMISC;
6238
6239 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6240 if (dev->flags != old_flags)
6241 dev_set_rx_mode(dev);
6242 }
6243
6244 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6245 is important. Some (broken) drivers set IFF_PROMISC, when
6246 IFF_ALLMULTI is requested not asking us and not reporting.
6247 */
6248 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6249 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6250
6251 dev->gflags ^= IFF_ALLMULTI;
6252 __dev_set_allmulti(dev, inc, false);
6253 }
6254
6255 return ret;
6256 }
6257
6258 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6259 unsigned int gchanges)
6260 {
6261 unsigned int changes = dev->flags ^ old_flags;
6262
6263 if (gchanges)
6264 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6265
6266 if (changes & IFF_UP) {
6267 if (dev->flags & IFF_UP)
6268 call_netdevice_notifiers(NETDEV_UP, dev);
6269 else
6270 call_netdevice_notifiers(NETDEV_DOWN, dev);
6271 }
6272
6273 if (dev->flags & IFF_UP &&
6274 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6275 struct netdev_notifier_change_info change_info;
6276
6277 change_info.flags_changed = changes;
6278 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6279 &change_info.info);
6280 }
6281 }
6282
6283 /**
6284 * dev_change_flags - change device settings
6285 * @dev: device
6286 * @flags: device state flags
6287 *
6288 * Change settings on device based state flags. The flags are
6289 * in the userspace exported format.
6290 */
6291 int dev_change_flags(struct net_device *dev, unsigned int flags)
6292 {
6293 int ret;
6294 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6295
6296 ret = __dev_change_flags(dev, flags);
6297 if (ret < 0)
6298 return ret;
6299
6300 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6301 __dev_notify_flags(dev, old_flags, changes);
6302 return ret;
6303 }
6304 EXPORT_SYMBOL(dev_change_flags);
6305
6306 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6307 {
6308 const struct net_device_ops *ops = dev->netdev_ops;
6309
6310 if (ops->ndo_change_mtu)
6311 return ops->ndo_change_mtu(dev, new_mtu);
6312
6313 dev->mtu = new_mtu;
6314 return 0;
6315 }
6316
6317 /**
6318 * dev_set_mtu - Change maximum transfer unit
6319 * @dev: device
6320 * @new_mtu: new transfer unit
6321 *
6322 * Change the maximum transfer size of the network device.
6323 */
6324 int dev_set_mtu(struct net_device *dev, int new_mtu)
6325 {
6326 int err, orig_mtu;
6327
6328 if (new_mtu == dev->mtu)
6329 return 0;
6330
6331 /* MTU must be positive. */
6332 if (new_mtu < 0)
6333 return -EINVAL;
6334
6335 if (!netif_device_present(dev))
6336 return -ENODEV;
6337
6338 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6339 err = notifier_to_errno(err);
6340 if (err)
6341 return err;
6342
6343 orig_mtu = dev->mtu;
6344 err = __dev_set_mtu(dev, new_mtu);
6345
6346 if (!err) {
6347 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6348 err = notifier_to_errno(err);
6349 if (err) {
6350 /* setting mtu back and notifying everyone again,
6351 * so that they have a chance to revert changes.
6352 */
6353 __dev_set_mtu(dev, orig_mtu);
6354 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6355 }
6356 }
6357 return err;
6358 }
6359 EXPORT_SYMBOL(dev_set_mtu);
6360
6361 /**
6362 * dev_set_group - Change group this device belongs to
6363 * @dev: device
6364 * @new_group: group this device should belong to
6365 */
6366 void dev_set_group(struct net_device *dev, int new_group)
6367 {
6368 dev->group = new_group;
6369 }
6370 EXPORT_SYMBOL(dev_set_group);
6371
6372 /**
6373 * dev_set_mac_address - Change Media Access Control Address
6374 * @dev: device
6375 * @sa: new address
6376 *
6377 * Change the hardware (MAC) address of the device
6378 */
6379 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6380 {
6381 const struct net_device_ops *ops = dev->netdev_ops;
6382 int err;
6383
6384 if (!ops->ndo_set_mac_address)
6385 return -EOPNOTSUPP;
6386 if (sa->sa_family != dev->type)
6387 return -EINVAL;
6388 if (!netif_device_present(dev))
6389 return -ENODEV;
6390 err = ops->ndo_set_mac_address(dev, sa);
6391 if (err)
6392 return err;
6393 dev->addr_assign_type = NET_ADDR_SET;
6394 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6395 add_device_randomness(dev->dev_addr, dev->addr_len);
6396 return 0;
6397 }
6398 EXPORT_SYMBOL(dev_set_mac_address);
6399
6400 /**
6401 * dev_change_carrier - Change device carrier
6402 * @dev: device
6403 * @new_carrier: new value
6404 *
6405 * Change device carrier
6406 */
6407 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6408 {
6409 const struct net_device_ops *ops = dev->netdev_ops;
6410
6411 if (!ops->ndo_change_carrier)
6412 return -EOPNOTSUPP;
6413 if (!netif_device_present(dev))
6414 return -ENODEV;
6415 return ops->ndo_change_carrier(dev, new_carrier);
6416 }
6417 EXPORT_SYMBOL(dev_change_carrier);
6418
6419 /**
6420 * dev_get_phys_port_id - Get device physical port ID
6421 * @dev: device
6422 * @ppid: port ID
6423 *
6424 * Get device physical port ID
6425 */
6426 int dev_get_phys_port_id(struct net_device *dev,
6427 struct netdev_phys_item_id *ppid)
6428 {
6429 const struct net_device_ops *ops = dev->netdev_ops;
6430
6431 if (!ops->ndo_get_phys_port_id)
6432 return -EOPNOTSUPP;
6433 return ops->ndo_get_phys_port_id(dev, ppid);
6434 }
6435 EXPORT_SYMBOL(dev_get_phys_port_id);
6436
6437 /**
6438 * dev_get_phys_port_name - Get device physical port name
6439 * @dev: device
6440 * @name: port name
6441 *
6442 * Get device physical port name
6443 */
6444 int dev_get_phys_port_name(struct net_device *dev,
6445 char *name, size_t len)
6446 {
6447 const struct net_device_ops *ops = dev->netdev_ops;
6448
6449 if (!ops->ndo_get_phys_port_name)
6450 return -EOPNOTSUPP;
6451 return ops->ndo_get_phys_port_name(dev, name, len);
6452 }
6453 EXPORT_SYMBOL(dev_get_phys_port_name);
6454
6455 /**
6456 * dev_change_proto_down - update protocol port state information
6457 * @dev: device
6458 * @proto_down: new value
6459 *
6460 * This info can be used by switch drivers to set the phys state of the
6461 * port.
6462 */
6463 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6464 {
6465 const struct net_device_ops *ops = dev->netdev_ops;
6466
6467 if (!ops->ndo_change_proto_down)
6468 return -EOPNOTSUPP;
6469 if (!netif_device_present(dev))
6470 return -ENODEV;
6471 return ops->ndo_change_proto_down(dev, proto_down);
6472 }
6473 EXPORT_SYMBOL(dev_change_proto_down);
6474
6475 /**
6476 * dev_new_index - allocate an ifindex
6477 * @net: the applicable net namespace
6478 *
6479 * Returns a suitable unique value for a new device interface
6480 * number. The caller must hold the rtnl semaphore or the
6481 * dev_base_lock to be sure it remains unique.
6482 */
6483 static int dev_new_index(struct net *net)
6484 {
6485 int ifindex = net->ifindex;
6486 for (;;) {
6487 if (++ifindex <= 0)
6488 ifindex = 1;
6489 if (!__dev_get_by_index(net, ifindex))
6490 return net->ifindex = ifindex;
6491 }
6492 }
6493
6494 /* Delayed registration/unregisteration */
6495 static LIST_HEAD(net_todo_list);
6496 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6497
6498 static void net_set_todo(struct net_device *dev)
6499 {
6500 list_add_tail(&dev->todo_list, &net_todo_list);
6501 dev_net(dev)->dev_unreg_count++;
6502 }
6503
6504 static void rollback_registered_many(struct list_head *head)
6505 {
6506 struct net_device *dev, *tmp;
6507 LIST_HEAD(close_head);
6508
6509 BUG_ON(dev_boot_phase);
6510 ASSERT_RTNL();
6511
6512 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6513 /* Some devices call without registering
6514 * for initialization unwind. Remove those
6515 * devices and proceed with the remaining.
6516 */
6517 if (dev->reg_state == NETREG_UNINITIALIZED) {
6518 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6519 dev->name, dev);
6520
6521 WARN_ON(1);
6522 list_del(&dev->unreg_list);
6523 continue;
6524 }
6525 dev->dismantle = true;
6526 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6527 }
6528
6529 /* If device is running, close it first. */
6530 list_for_each_entry(dev, head, unreg_list)
6531 list_add_tail(&dev->close_list, &close_head);
6532 dev_close_many(&close_head, true);
6533
6534 list_for_each_entry(dev, head, unreg_list) {
6535 /* And unlink it from device chain. */
6536 unlist_netdevice(dev);
6537
6538 dev->reg_state = NETREG_UNREGISTERING;
6539 on_each_cpu(flush_backlog, dev, 1);
6540 }
6541
6542 synchronize_net();
6543
6544 list_for_each_entry(dev, head, unreg_list) {
6545 struct sk_buff *skb = NULL;
6546
6547 /* Shutdown queueing discipline. */
6548 dev_shutdown(dev);
6549
6550
6551 /* Notify protocols, that we are about to destroy
6552 this device. They should clean all the things.
6553 */
6554 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6555
6556 if (!dev->rtnl_link_ops ||
6557 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6558 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6559 GFP_KERNEL);
6560
6561 /*
6562 * Flush the unicast and multicast chains
6563 */
6564 dev_uc_flush(dev);
6565 dev_mc_flush(dev);
6566
6567 if (dev->netdev_ops->ndo_uninit)
6568 dev->netdev_ops->ndo_uninit(dev);
6569
6570 if (skb)
6571 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6572
6573 /* Notifier chain MUST detach us all upper devices. */
6574 WARN_ON(netdev_has_any_upper_dev(dev));
6575
6576 /* Remove entries from kobject tree */
6577 netdev_unregister_kobject(dev);
6578 #ifdef CONFIG_XPS
6579 /* Remove XPS queueing entries */
6580 netif_reset_xps_queues_gt(dev, 0);
6581 #endif
6582 }
6583
6584 synchronize_net();
6585
6586 list_for_each_entry(dev, head, unreg_list)
6587 dev_put(dev);
6588 }
6589
6590 static void rollback_registered(struct net_device *dev)
6591 {
6592 LIST_HEAD(single);
6593
6594 list_add(&dev->unreg_list, &single);
6595 rollback_registered_many(&single);
6596 list_del(&single);
6597 }
6598
6599 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6600 struct net_device *upper, netdev_features_t features)
6601 {
6602 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6603 netdev_features_t feature;
6604 int feature_bit;
6605
6606 for_each_netdev_feature(&upper_disables, feature_bit) {
6607 feature = __NETIF_F_BIT(feature_bit);
6608 if (!(upper->wanted_features & feature)
6609 && (features & feature)) {
6610 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6611 &feature, upper->name);
6612 features &= ~feature;
6613 }
6614 }
6615
6616 return features;
6617 }
6618
6619 static void netdev_sync_lower_features(struct net_device *upper,
6620 struct net_device *lower, netdev_features_t features)
6621 {
6622 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6623 netdev_features_t feature;
6624 int feature_bit;
6625
6626 for_each_netdev_feature(&upper_disables, feature_bit) {
6627 feature = __NETIF_F_BIT(feature_bit);
6628 if (!(features & feature) && (lower->features & feature)) {
6629 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6630 &feature, lower->name);
6631 lower->wanted_features &= ~feature;
6632 netdev_update_features(lower);
6633
6634 if (unlikely(lower->features & feature))
6635 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6636 &feature, lower->name);
6637 }
6638 }
6639 }
6640
6641 static netdev_features_t netdev_fix_features(struct net_device *dev,
6642 netdev_features_t features)
6643 {
6644 /* Fix illegal checksum combinations */
6645 if ((features & NETIF_F_HW_CSUM) &&
6646 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6647 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6648 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6649 }
6650
6651 /* TSO requires that SG is present as well. */
6652 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6653 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6654 features &= ~NETIF_F_ALL_TSO;
6655 }
6656
6657 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6658 !(features & NETIF_F_IP_CSUM)) {
6659 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6660 features &= ~NETIF_F_TSO;
6661 features &= ~NETIF_F_TSO_ECN;
6662 }
6663
6664 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6665 !(features & NETIF_F_IPV6_CSUM)) {
6666 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6667 features &= ~NETIF_F_TSO6;
6668 }
6669
6670 /* TSO ECN requires that TSO is present as well. */
6671 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6672 features &= ~NETIF_F_TSO_ECN;
6673
6674 /* Software GSO depends on SG. */
6675 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6676 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6677 features &= ~NETIF_F_GSO;
6678 }
6679
6680 /* UFO needs SG and checksumming */
6681 if (features & NETIF_F_UFO) {
6682 /* maybe split UFO into V4 and V6? */
6683 if (!(features & NETIF_F_HW_CSUM) &&
6684 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6685 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6686 netdev_dbg(dev,
6687 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6688 features &= ~NETIF_F_UFO;
6689 }
6690
6691 if (!(features & NETIF_F_SG)) {
6692 netdev_dbg(dev,
6693 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6694 features &= ~NETIF_F_UFO;
6695 }
6696 }
6697
6698 #ifdef CONFIG_NET_RX_BUSY_POLL
6699 if (dev->netdev_ops->ndo_busy_poll)
6700 features |= NETIF_F_BUSY_POLL;
6701 else
6702 #endif
6703 features &= ~NETIF_F_BUSY_POLL;
6704
6705 return features;
6706 }
6707
6708 int __netdev_update_features(struct net_device *dev)
6709 {
6710 struct net_device *upper, *lower;
6711 netdev_features_t features;
6712 struct list_head *iter;
6713 int err = -1;
6714
6715 ASSERT_RTNL();
6716
6717 features = netdev_get_wanted_features(dev);
6718
6719 if (dev->netdev_ops->ndo_fix_features)
6720 features = dev->netdev_ops->ndo_fix_features(dev, features);
6721
6722 /* driver might be less strict about feature dependencies */
6723 features = netdev_fix_features(dev, features);
6724
6725 /* some features can't be enabled if they're off an an upper device */
6726 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6727 features = netdev_sync_upper_features(dev, upper, features);
6728
6729 if (dev->features == features)
6730 goto sync_lower;
6731
6732 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6733 &dev->features, &features);
6734
6735 if (dev->netdev_ops->ndo_set_features)
6736 err = dev->netdev_ops->ndo_set_features(dev, features);
6737 else
6738 err = 0;
6739
6740 if (unlikely(err < 0)) {
6741 netdev_err(dev,
6742 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6743 err, &features, &dev->features);
6744 /* return non-0 since some features might have changed and
6745 * it's better to fire a spurious notification than miss it
6746 */
6747 return -1;
6748 }
6749
6750 sync_lower:
6751 /* some features must be disabled on lower devices when disabled
6752 * on an upper device (think: bonding master or bridge)
6753 */
6754 netdev_for_each_lower_dev(dev, lower, iter)
6755 netdev_sync_lower_features(dev, lower, features);
6756
6757 if (!err)
6758 dev->features = features;
6759
6760 return err < 0 ? 0 : 1;
6761 }
6762
6763 /**
6764 * netdev_update_features - recalculate device features
6765 * @dev: the device to check
6766 *
6767 * Recalculate dev->features set and send notifications if it
6768 * has changed. Should be called after driver or hardware dependent
6769 * conditions might have changed that influence the features.
6770 */
6771 void netdev_update_features(struct net_device *dev)
6772 {
6773 if (__netdev_update_features(dev))
6774 netdev_features_change(dev);
6775 }
6776 EXPORT_SYMBOL(netdev_update_features);
6777
6778 /**
6779 * netdev_change_features - recalculate device features
6780 * @dev: the device to check
6781 *
6782 * Recalculate dev->features set and send notifications even
6783 * if they have not changed. Should be called instead of
6784 * netdev_update_features() if also dev->vlan_features might
6785 * have changed to allow the changes to be propagated to stacked
6786 * VLAN devices.
6787 */
6788 void netdev_change_features(struct net_device *dev)
6789 {
6790 __netdev_update_features(dev);
6791 netdev_features_change(dev);
6792 }
6793 EXPORT_SYMBOL(netdev_change_features);
6794
6795 /**
6796 * netif_stacked_transfer_operstate - transfer operstate
6797 * @rootdev: the root or lower level device to transfer state from
6798 * @dev: the device to transfer operstate to
6799 *
6800 * Transfer operational state from root to device. This is normally
6801 * called when a stacking relationship exists between the root
6802 * device and the device(a leaf device).
6803 */
6804 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6805 struct net_device *dev)
6806 {
6807 if (rootdev->operstate == IF_OPER_DORMANT)
6808 netif_dormant_on(dev);
6809 else
6810 netif_dormant_off(dev);
6811
6812 if (netif_carrier_ok(rootdev)) {
6813 if (!netif_carrier_ok(dev))
6814 netif_carrier_on(dev);
6815 } else {
6816 if (netif_carrier_ok(dev))
6817 netif_carrier_off(dev);
6818 }
6819 }
6820 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6821
6822 #ifdef CONFIG_SYSFS
6823 static int netif_alloc_rx_queues(struct net_device *dev)
6824 {
6825 unsigned int i, count = dev->num_rx_queues;
6826 struct netdev_rx_queue *rx;
6827 size_t sz = count * sizeof(*rx);
6828
6829 BUG_ON(count < 1);
6830
6831 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6832 if (!rx) {
6833 rx = vzalloc(sz);
6834 if (!rx)
6835 return -ENOMEM;
6836 }
6837 dev->_rx = rx;
6838
6839 for (i = 0; i < count; i++)
6840 rx[i].dev = dev;
6841 return 0;
6842 }
6843 #endif
6844
6845 static void netdev_init_one_queue(struct net_device *dev,
6846 struct netdev_queue *queue, void *_unused)
6847 {
6848 /* Initialize queue lock */
6849 spin_lock_init(&queue->_xmit_lock);
6850 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6851 queue->xmit_lock_owner = -1;
6852 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6853 queue->dev = dev;
6854 #ifdef CONFIG_BQL
6855 dql_init(&queue->dql, HZ);
6856 #endif
6857 }
6858
6859 static void netif_free_tx_queues(struct net_device *dev)
6860 {
6861 kvfree(dev->_tx);
6862 }
6863
6864 static int netif_alloc_netdev_queues(struct net_device *dev)
6865 {
6866 unsigned int count = dev->num_tx_queues;
6867 struct netdev_queue *tx;
6868 size_t sz = count * sizeof(*tx);
6869
6870 if (count < 1 || count > 0xffff)
6871 return -EINVAL;
6872
6873 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6874 if (!tx) {
6875 tx = vzalloc(sz);
6876 if (!tx)
6877 return -ENOMEM;
6878 }
6879 dev->_tx = tx;
6880
6881 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6882 spin_lock_init(&dev->tx_global_lock);
6883
6884 return 0;
6885 }
6886
6887 void netif_tx_stop_all_queues(struct net_device *dev)
6888 {
6889 unsigned int i;
6890
6891 for (i = 0; i < dev->num_tx_queues; i++) {
6892 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6893 netif_tx_stop_queue(txq);
6894 }
6895 }
6896 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6897
6898 /**
6899 * register_netdevice - register a network device
6900 * @dev: device to register
6901 *
6902 * Take a completed network device structure and add it to the kernel
6903 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6904 * chain. 0 is returned on success. A negative errno code is returned
6905 * on a failure to set up the device, or if the name is a duplicate.
6906 *
6907 * Callers must hold the rtnl semaphore. You may want
6908 * register_netdev() instead of this.
6909 *
6910 * BUGS:
6911 * The locking appears insufficient to guarantee two parallel registers
6912 * will not get the same name.
6913 */
6914
6915 int register_netdevice(struct net_device *dev)
6916 {
6917 int ret;
6918 struct net *net = dev_net(dev);
6919
6920 BUG_ON(dev_boot_phase);
6921 ASSERT_RTNL();
6922
6923 might_sleep();
6924
6925 /* When net_device's are persistent, this will be fatal. */
6926 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6927 BUG_ON(!net);
6928
6929 spin_lock_init(&dev->addr_list_lock);
6930 netdev_set_addr_lockdep_class(dev);
6931
6932 ret = dev_get_valid_name(net, dev, dev->name);
6933 if (ret < 0)
6934 goto out;
6935
6936 /* Init, if this function is available */
6937 if (dev->netdev_ops->ndo_init) {
6938 ret = dev->netdev_ops->ndo_init(dev);
6939 if (ret) {
6940 if (ret > 0)
6941 ret = -EIO;
6942 goto out;
6943 }
6944 }
6945
6946 if (((dev->hw_features | dev->features) &
6947 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6948 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6949 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6950 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6951 ret = -EINVAL;
6952 goto err_uninit;
6953 }
6954
6955 ret = -EBUSY;
6956 if (!dev->ifindex)
6957 dev->ifindex = dev_new_index(net);
6958 else if (__dev_get_by_index(net, dev->ifindex))
6959 goto err_uninit;
6960
6961 /* Transfer changeable features to wanted_features and enable
6962 * software offloads (GSO and GRO).
6963 */
6964 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6965 dev->features |= NETIF_F_SOFT_FEATURES;
6966 dev->wanted_features = dev->features & dev->hw_features;
6967
6968 if (!(dev->flags & IFF_LOOPBACK)) {
6969 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6970 }
6971
6972 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6973 */
6974 dev->vlan_features |= NETIF_F_HIGHDMA;
6975
6976 /* Make NETIF_F_SG inheritable to tunnel devices.
6977 */
6978 dev->hw_enc_features |= NETIF_F_SG;
6979
6980 /* Make NETIF_F_SG inheritable to MPLS.
6981 */
6982 dev->mpls_features |= NETIF_F_SG;
6983
6984 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6985 ret = notifier_to_errno(ret);
6986 if (ret)
6987 goto err_uninit;
6988
6989 ret = netdev_register_kobject(dev);
6990 if (ret)
6991 goto err_uninit;
6992 dev->reg_state = NETREG_REGISTERED;
6993
6994 __netdev_update_features(dev);
6995
6996 /*
6997 * Default initial state at registry is that the
6998 * device is present.
6999 */
7000
7001 set_bit(__LINK_STATE_PRESENT, &dev->state);
7002
7003 linkwatch_init_dev(dev);
7004
7005 dev_init_scheduler(dev);
7006 dev_hold(dev);
7007 list_netdevice(dev);
7008 add_device_randomness(dev->dev_addr, dev->addr_len);
7009
7010 /* If the device has permanent device address, driver should
7011 * set dev_addr and also addr_assign_type should be set to
7012 * NET_ADDR_PERM (default value).
7013 */
7014 if (dev->addr_assign_type == NET_ADDR_PERM)
7015 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7016
7017 /* Notify protocols, that a new device appeared. */
7018 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7019 ret = notifier_to_errno(ret);
7020 if (ret) {
7021 rollback_registered(dev);
7022 dev->reg_state = NETREG_UNREGISTERED;
7023 }
7024 /*
7025 * Prevent userspace races by waiting until the network
7026 * device is fully setup before sending notifications.
7027 */
7028 if (!dev->rtnl_link_ops ||
7029 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7030 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7031
7032 out:
7033 return ret;
7034
7035 err_uninit:
7036 if (dev->netdev_ops->ndo_uninit)
7037 dev->netdev_ops->ndo_uninit(dev);
7038 goto out;
7039 }
7040 EXPORT_SYMBOL(register_netdevice);
7041
7042 /**
7043 * init_dummy_netdev - init a dummy network device for NAPI
7044 * @dev: device to init
7045 *
7046 * This takes a network device structure and initialize the minimum
7047 * amount of fields so it can be used to schedule NAPI polls without
7048 * registering a full blown interface. This is to be used by drivers
7049 * that need to tie several hardware interfaces to a single NAPI
7050 * poll scheduler due to HW limitations.
7051 */
7052 int init_dummy_netdev(struct net_device *dev)
7053 {
7054 /* Clear everything. Note we don't initialize spinlocks
7055 * are they aren't supposed to be taken by any of the
7056 * NAPI code and this dummy netdev is supposed to be
7057 * only ever used for NAPI polls
7058 */
7059 memset(dev, 0, sizeof(struct net_device));
7060
7061 /* make sure we BUG if trying to hit standard
7062 * register/unregister code path
7063 */
7064 dev->reg_state = NETREG_DUMMY;
7065
7066 /* NAPI wants this */
7067 INIT_LIST_HEAD(&dev->napi_list);
7068
7069 /* a dummy interface is started by default */
7070 set_bit(__LINK_STATE_PRESENT, &dev->state);
7071 set_bit(__LINK_STATE_START, &dev->state);
7072
7073 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7074 * because users of this 'device' dont need to change
7075 * its refcount.
7076 */
7077
7078 return 0;
7079 }
7080 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7081
7082
7083 /**
7084 * register_netdev - register a network device
7085 * @dev: device to register
7086 *
7087 * Take a completed network device structure and add it to the kernel
7088 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7089 * chain. 0 is returned on success. A negative errno code is returned
7090 * on a failure to set up the device, or if the name is a duplicate.
7091 *
7092 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7093 * and expands the device name if you passed a format string to
7094 * alloc_netdev.
7095 */
7096 int register_netdev(struct net_device *dev)
7097 {
7098 int err;
7099
7100 rtnl_lock();
7101 err = register_netdevice(dev);
7102 rtnl_unlock();
7103 return err;
7104 }
7105 EXPORT_SYMBOL(register_netdev);
7106
7107 int netdev_refcnt_read(const struct net_device *dev)
7108 {
7109 int i, refcnt = 0;
7110
7111 for_each_possible_cpu(i)
7112 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7113 return refcnt;
7114 }
7115 EXPORT_SYMBOL(netdev_refcnt_read);
7116
7117 /**
7118 * netdev_wait_allrefs - wait until all references are gone.
7119 * @dev: target net_device
7120 *
7121 * This is called when unregistering network devices.
7122 *
7123 * Any protocol or device that holds a reference should register
7124 * for netdevice notification, and cleanup and put back the
7125 * reference if they receive an UNREGISTER event.
7126 * We can get stuck here if buggy protocols don't correctly
7127 * call dev_put.
7128 */
7129 static void netdev_wait_allrefs(struct net_device *dev)
7130 {
7131 unsigned long rebroadcast_time, warning_time;
7132 int refcnt;
7133
7134 linkwatch_forget_dev(dev);
7135
7136 rebroadcast_time = warning_time = jiffies;
7137 refcnt = netdev_refcnt_read(dev);
7138
7139 while (refcnt != 0) {
7140 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7141 rtnl_lock();
7142
7143 /* Rebroadcast unregister notification */
7144 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7145
7146 __rtnl_unlock();
7147 rcu_barrier();
7148 rtnl_lock();
7149
7150 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7151 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7152 &dev->state)) {
7153 /* We must not have linkwatch events
7154 * pending on unregister. If this
7155 * happens, we simply run the queue
7156 * unscheduled, resulting in a noop
7157 * for this device.
7158 */
7159 linkwatch_run_queue();
7160 }
7161
7162 __rtnl_unlock();
7163
7164 rebroadcast_time = jiffies;
7165 }
7166
7167 msleep(250);
7168
7169 refcnt = netdev_refcnt_read(dev);
7170
7171 if (time_after(jiffies, warning_time + 10 * HZ)) {
7172 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7173 dev->name, refcnt);
7174 warning_time = jiffies;
7175 }
7176 }
7177 }
7178
7179 /* The sequence is:
7180 *
7181 * rtnl_lock();
7182 * ...
7183 * register_netdevice(x1);
7184 * register_netdevice(x2);
7185 * ...
7186 * unregister_netdevice(y1);
7187 * unregister_netdevice(y2);
7188 * ...
7189 * rtnl_unlock();
7190 * free_netdev(y1);
7191 * free_netdev(y2);
7192 *
7193 * We are invoked by rtnl_unlock().
7194 * This allows us to deal with problems:
7195 * 1) We can delete sysfs objects which invoke hotplug
7196 * without deadlocking with linkwatch via keventd.
7197 * 2) Since we run with the RTNL semaphore not held, we can sleep
7198 * safely in order to wait for the netdev refcnt to drop to zero.
7199 *
7200 * We must not return until all unregister events added during
7201 * the interval the lock was held have been completed.
7202 */
7203 void netdev_run_todo(void)
7204 {
7205 struct list_head list;
7206
7207 /* Snapshot list, allow later requests */
7208 list_replace_init(&net_todo_list, &list);
7209
7210 __rtnl_unlock();
7211
7212
7213 /* Wait for rcu callbacks to finish before next phase */
7214 if (!list_empty(&list))
7215 rcu_barrier();
7216
7217 while (!list_empty(&list)) {
7218 struct net_device *dev
7219 = list_first_entry(&list, struct net_device, todo_list);
7220 list_del(&dev->todo_list);
7221
7222 rtnl_lock();
7223 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7224 __rtnl_unlock();
7225
7226 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7227 pr_err("network todo '%s' but state %d\n",
7228 dev->name, dev->reg_state);
7229 dump_stack();
7230 continue;
7231 }
7232
7233 dev->reg_state = NETREG_UNREGISTERED;
7234
7235 netdev_wait_allrefs(dev);
7236
7237 /* paranoia */
7238 BUG_ON(netdev_refcnt_read(dev));
7239 BUG_ON(!list_empty(&dev->ptype_all));
7240 BUG_ON(!list_empty(&dev->ptype_specific));
7241 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7242 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7243 WARN_ON(dev->dn_ptr);
7244
7245 if (dev->destructor)
7246 dev->destructor(dev);
7247
7248 /* Report a network device has been unregistered */
7249 rtnl_lock();
7250 dev_net(dev)->dev_unreg_count--;
7251 __rtnl_unlock();
7252 wake_up(&netdev_unregistering_wq);
7253
7254 /* Free network device */
7255 kobject_put(&dev->dev.kobj);
7256 }
7257 }
7258
7259 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7260 * all the same fields in the same order as net_device_stats, with only
7261 * the type differing, but rtnl_link_stats64 may have additional fields
7262 * at the end for newer counters.
7263 */
7264 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7265 const struct net_device_stats *netdev_stats)
7266 {
7267 #if BITS_PER_LONG == 64
7268 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7269 memcpy(stats64, netdev_stats, sizeof(*stats64));
7270 /* zero out counters that only exist in rtnl_link_stats64 */
7271 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7272 sizeof(*stats64) - sizeof(*netdev_stats));
7273 #else
7274 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7275 const unsigned long *src = (const unsigned long *)netdev_stats;
7276 u64 *dst = (u64 *)stats64;
7277
7278 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7279 for (i = 0; i < n; i++)
7280 dst[i] = src[i];
7281 /* zero out counters that only exist in rtnl_link_stats64 */
7282 memset((char *)stats64 + n * sizeof(u64), 0,
7283 sizeof(*stats64) - n * sizeof(u64));
7284 #endif
7285 }
7286 EXPORT_SYMBOL(netdev_stats_to_stats64);
7287
7288 /**
7289 * dev_get_stats - get network device statistics
7290 * @dev: device to get statistics from
7291 * @storage: place to store stats
7292 *
7293 * Get network statistics from device. Return @storage.
7294 * The device driver may provide its own method by setting
7295 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7296 * otherwise the internal statistics structure is used.
7297 */
7298 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7299 struct rtnl_link_stats64 *storage)
7300 {
7301 const struct net_device_ops *ops = dev->netdev_ops;
7302
7303 if (ops->ndo_get_stats64) {
7304 memset(storage, 0, sizeof(*storage));
7305 ops->ndo_get_stats64(dev, storage);
7306 } else if (ops->ndo_get_stats) {
7307 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7308 } else {
7309 netdev_stats_to_stats64(storage, &dev->stats);
7310 }
7311 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7312 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7313 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7314 return storage;
7315 }
7316 EXPORT_SYMBOL(dev_get_stats);
7317
7318 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7319 {
7320 struct netdev_queue *queue = dev_ingress_queue(dev);
7321
7322 #ifdef CONFIG_NET_CLS_ACT
7323 if (queue)
7324 return queue;
7325 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7326 if (!queue)
7327 return NULL;
7328 netdev_init_one_queue(dev, queue, NULL);
7329 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7330 queue->qdisc_sleeping = &noop_qdisc;
7331 rcu_assign_pointer(dev->ingress_queue, queue);
7332 #endif
7333 return queue;
7334 }
7335
7336 static const struct ethtool_ops default_ethtool_ops;
7337
7338 void netdev_set_default_ethtool_ops(struct net_device *dev,
7339 const struct ethtool_ops *ops)
7340 {
7341 if (dev->ethtool_ops == &default_ethtool_ops)
7342 dev->ethtool_ops = ops;
7343 }
7344 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7345
7346 void netdev_freemem(struct net_device *dev)
7347 {
7348 char *addr = (char *)dev - dev->padded;
7349
7350 kvfree(addr);
7351 }
7352
7353 /**
7354 * alloc_netdev_mqs - allocate network device
7355 * @sizeof_priv: size of private data to allocate space for
7356 * @name: device name format string
7357 * @name_assign_type: origin of device name
7358 * @setup: callback to initialize device
7359 * @txqs: the number of TX subqueues to allocate
7360 * @rxqs: the number of RX subqueues to allocate
7361 *
7362 * Allocates a struct net_device with private data area for driver use
7363 * and performs basic initialization. Also allocates subqueue structs
7364 * for each queue on the device.
7365 */
7366 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7367 unsigned char name_assign_type,
7368 void (*setup)(struct net_device *),
7369 unsigned int txqs, unsigned int rxqs)
7370 {
7371 struct net_device *dev;
7372 size_t alloc_size;
7373 struct net_device *p;
7374
7375 BUG_ON(strlen(name) >= sizeof(dev->name));
7376
7377 if (txqs < 1) {
7378 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7379 return NULL;
7380 }
7381
7382 #ifdef CONFIG_SYSFS
7383 if (rxqs < 1) {
7384 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7385 return NULL;
7386 }
7387 #endif
7388
7389 alloc_size = sizeof(struct net_device);
7390 if (sizeof_priv) {
7391 /* ensure 32-byte alignment of private area */
7392 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7393 alloc_size += sizeof_priv;
7394 }
7395 /* ensure 32-byte alignment of whole construct */
7396 alloc_size += NETDEV_ALIGN - 1;
7397
7398 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7399 if (!p)
7400 p = vzalloc(alloc_size);
7401 if (!p)
7402 return NULL;
7403
7404 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7405 dev->padded = (char *)dev - (char *)p;
7406
7407 dev->pcpu_refcnt = alloc_percpu(int);
7408 if (!dev->pcpu_refcnt)
7409 goto free_dev;
7410
7411 if (dev_addr_init(dev))
7412 goto free_pcpu;
7413
7414 dev_mc_init(dev);
7415 dev_uc_init(dev);
7416
7417 dev_net_set(dev, &init_net);
7418
7419 dev->gso_max_size = GSO_MAX_SIZE;
7420 dev->gso_max_segs = GSO_MAX_SEGS;
7421 dev->gso_min_segs = 0;
7422
7423 INIT_LIST_HEAD(&dev->napi_list);
7424 INIT_LIST_HEAD(&dev->unreg_list);
7425 INIT_LIST_HEAD(&dev->close_list);
7426 INIT_LIST_HEAD(&dev->link_watch_list);
7427 INIT_LIST_HEAD(&dev->adj_list.upper);
7428 INIT_LIST_HEAD(&dev->adj_list.lower);
7429 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7430 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7431 INIT_LIST_HEAD(&dev->ptype_all);
7432 INIT_LIST_HEAD(&dev->ptype_specific);
7433 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7434 setup(dev);
7435
7436 if (!dev->tx_queue_len)
7437 dev->priv_flags |= IFF_NO_QUEUE;
7438
7439 dev->num_tx_queues = txqs;
7440 dev->real_num_tx_queues = txqs;
7441 if (netif_alloc_netdev_queues(dev))
7442 goto free_all;
7443
7444 #ifdef CONFIG_SYSFS
7445 dev->num_rx_queues = rxqs;
7446 dev->real_num_rx_queues = rxqs;
7447 if (netif_alloc_rx_queues(dev))
7448 goto free_all;
7449 #endif
7450
7451 strcpy(dev->name, name);
7452 dev->name_assign_type = name_assign_type;
7453 dev->group = INIT_NETDEV_GROUP;
7454 if (!dev->ethtool_ops)
7455 dev->ethtool_ops = &default_ethtool_ops;
7456
7457 nf_hook_ingress_init(dev);
7458
7459 return dev;
7460
7461 free_all:
7462 free_netdev(dev);
7463 return NULL;
7464
7465 free_pcpu:
7466 free_percpu(dev->pcpu_refcnt);
7467 free_dev:
7468 netdev_freemem(dev);
7469 return NULL;
7470 }
7471 EXPORT_SYMBOL(alloc_netdev_mqs);
7472
7473 /**
7474 * free_netdev - free network device
7475 * @dev: device
7476 *
7477 * This function does the last stage of destroying an allocated device
7478 * interface. The reference to the device object is released.
7479 * If this is the last reference then it will be freed.
7480 * Must be called in process context.
7481 */
7482 void free_netdev(struct net_device *dev)
7483 {
7484 struct napi_struct *p, *n;
7485
7486 might_sleep();
7487 netif_free_tx_queues(dev);
7488 #ifdef CONFIG_SYSFS
7489 kvfree(dev->_rx);
7490 #endif
7491
7492 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7493
7494 /* Flush device addresses */
7495 dev_addr_flush(dev);
7496
7497 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7498 netif_napi_del(p);
7499
7500 free_percpu(dev->pcpu_refcnt);
7501 dev->pcpu_refcnt = NULL;
7502
7503 /* Compatibility with error handling in drivers */
7504 if (dev->reg_state == NETREG_UNINITIALIZED) {
7505 netdev_freemem(dev);
7506 return;
7507 }
7508
7509 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7510 dev->reg_state = NETREG_RELEASED;
7511
7512 /* will free via device release */
7513 put_device(&dev->dev);
7514 }
7515 EXPORT_SYMBOL(free_netdev);
7516
7517 /**
7518 * synchronize_net - Synchronize with packet receive processing
7519 *
7520 * Wait for packets currently being received to be done.
7521 * Does not block later packets from starting.
7522 */
7523 void synchronize_net(void)
7524 {
7525 might_sleep();
7526 if (rtnl_is_locked())
7527 synchronize_rcu_expedited();
7528 else
7529 synchronize_rcu();
7530 }
7531 EXPORT_SYMBOL(synchronize_net);
7532
7533 /**
7534 * unregister_netdevice_queue - remove device from the kernel
7535 * @dev: device
7536 * @head: list
7537 *
7538 * This function shuts down a device interface and removes it
7539 * from the kernel tables.
7540 * If head not NULL, device is queued to be unregistered later.
7541 *
7542 * Callers must hold the rtnl semaphore. You may want
7543 * unregister_netdev() instead of this.
7544 */
7545
7546 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7547 {
7548 ASSERT_RTNL();
7549
7550 if (head) {
7551 list_move_tail(&dev->unreg_list, head);
7552 } else {
7553 rollback_registered(dev);
7554 /* Finish processing unregister after unlock */
7555 net_set_todo(dev);
7556 }
7557 }
7558 EXPORT_SYMBOL(unregister_netdevice_queue);
7559
7560 /**
7561 * unregister_netdevice_many - unregister many devices
7562 * @head: list of devices
7563 *
7564 * Note: As most callers use a stack allocated list_head,
7565 * we force a list_del() to make sure stack wont be corrupted later.
7566 */
7567 void unregister_netdevice_many(struct list_head *head)
7568 {
7569 struct net_device *dev;
7570
7571 if (!list_empty(head)) {
7572 rollback_registered_many(head);
7573 list_for_each_entry(dev, head, unreg_list)
7574 net_set_todo(dev);
7575 list_del(head);
7576 }
7577 }
7578 EXPORT_SYMBOL(unregister_netdevice_many);
7579
7580 /**
7581 * unregister_netdev - remove device from the kernel
7582 * @dev: device
7583 *
7584 * This function shuts down a device interface and removes it
7585 * from the kernel tables.
7586 *
7587 * This is just a wrapper for unregister_netdevice that takes
7588 * the rtnl semaphore. In general you want to use this and not
7589 * unregister_netdevice.
7590 */
7591 void unregister_netdev(struct net_device *dev)
7592 {
7593 rtnl_lock();
7594 unregister_netdevice(dev);
7595 rtnl_unlock();
7596 }
7597 EXPORT_SYMBOL(unregister_netdev);
7598
7599 /**
7600 * dev_change_net_namespace - move device to different nethost namespace
7601 * @dev: device
7602 * @net: network namespace
7603 * @pat: If not NULL name pattern to try if the current device name
7604 * is already taken in the destination network namespace.
7605 *
7606 * This function shuts down a device interface and moves it
7607 * to a new network namespace. On success 0 is returned, on
7608 * a failure a netagive errno code is returned.
7609 *
7610 * Callers must hold the rtnl semaphore.
7611 */
7612
7613 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7614 {
7615 int err;
7616
7617 ASSERT_RTNL();
7618
7619 /* Don't allow namespace local devices to be moved. */
7620 err = -EINVAL;
7621 if (dev->features & NETIF_F_NETNS_LOCAL)
7622 goto out;
7623
7624 /* Ensure the device has been registrered */
7625 if (dev->reg_state != NETREG_REGISTERED)
7626 goto out;
7627
7628 /* Get out if there is nothing todo */
7629 err = 0;
7630 if (net_eq(dev_net(dev), net))
7631 goto out;
7632
7633 /* Pick the destination device name, and ensure
7634 * we can use it in the destination network namespace.
7635 */
7636 err = -EEXIST;
7637 if (__dev_get_by_name(net, dev->name)) {
7638 /* We get here if we can't use the current device name */
7639 if (!pat)
7640 goto out;
7641 if (dev_get_valid_name(net, dev, pat) < 0)
7642 goto out;
7643 }
7644
7645 /*
7646 * And now a mini version of register_netdevice unregister_netdevice.
7647 */
7648
7649 /* If device is running close it first. */
7650 dev_close(dev);
7651
7652 /* And unlink it from device chain */
7653 err = -ENODEV;
7654 unlist_netdevice(dev);
7655
7656 synchronize_net();
7657
7658 /* Shutdown queueing discipline. */
7659 dev_shutdown(dev);
7660
7661 /* Notify protocols, that we are about to destroy
7662 this device. They should clean all the things.
7663
7664 Note that dev->reg_state stays at NETREG_REGISTERED.
7665 This is wanted because this way 8021q and macvlan know
7666 the device is just moving and can keep their slaves up.
7667 */
7668 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7669 rcu_barrier();
7670 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7671 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7672
7673 /*
7674 * Flush the unicast and multicast chains
7675 */
7676 dev_uc_flush(dev);
7677 dev_mc_flush(dev);
7678
7679 /* Send a netdev-removed uevent to the old namespace */
7680 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7681 netdev_adjacent_del_links(dev);
7682
7683 /* Actually switch the network namespace */
7684 dev_net_set(dev, net);
7685
7686 /* If there is an ifindex conflict assign a new one */
7687 if (__dev_get_by_index(net, dev->ifindex))
7688 dev->ifindex = dev_new_index(net);
7689
7690 /* Send a netdev-add uevent to the new namespace */
7691 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7692 netdev_adjacent_add_links(dev);
7693
7694 /* Fixup kobjects */
7695 err = device_rename(&dev->dev, dev->name);
7696 WARN_ON(err);
7697
7698 /* Add the device back in the hashes */
7699 list_netdevice(dev);
7700
7701 /* Notify protocols, that a new device appeared. */
7702 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7703
7704 /*
7705 * Prevent userspace races by waiting until the network
7706 * device is fully setup before sending notifications.
7707 */
7708 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7709
7710 synchronize_net();
7711 err = 0;
7712 out:
7713 return err;
7714 }
7715 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7716
7717 static int dev_cpu_callback(struct notifier_block *nfb,
7718 unsigned long action,
7719 void *ocpu)
7720 {
7721 struct sk_buff **list_skb;
7722 struct sk_buff *skb;
7723 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7724 struct softnet_data *sd, *oldsd;
7725
7726 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7727 return NOTIFY_OK;
7728
7729 local_irq_disable();
7730 cpu = smp_processor_id();
7731 sd = &per_cpu(softnet_data, cpu);
7732 oldsd = &per_cpu(softnet_data, oldcpu);
7733
7734 /* Find end of our completion_queue. */
7735 list_skb = &sd->completion_queue;
7736 while (*list_skb)
7737 list_skb = &(*list_skb)->next;
7738 /* Append completion queue from offline CPU. */
7739 *list_skb = oldsd->completion_queue;
7740 oldsd->completion_queue = NULL;
7741
7742 /* Append output queue from offline CPU. */
7743 if (oldsd->output_queue) {
7744 *sd->output_queue_tailp = oldsd->output_queue;
7745 sd->output_queue_tailp = oldsd->output_queue_tailp;
7746 oldsd->output_queue = NULL;
7747 oldsd->output_queue_tailp = &oldsd->output_queue;
7748 }
7749 /* Append NAPI poll list from offline CPU, with one exception :
7750 * process_backlog() must be called by cpu owning percpu backlog.
7751 * We properly handle process_queue & input_pkt_queue later.
7752 */
7753 while (!list_empty(&oldsd->poll_list)) {
7754 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7755 struct napi_struct,
7756 poll_list);
7757
7758 list_del_init(&napi->poll_list);
7759 if (napi->poll == process_backlog)
7760 napi->state = 0;
7761 else
7762 ____napi_schedule(sd, napi);
7763 }
7764
7765 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7766 local_irq_enable();
7767
7768 /* Process offline CPU's input_pkt_queue */
7769 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7770 netif_rx_ni(skb);
7771 input_queue_head_incr(oldsd);
7772 }
7773 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7774 netif_rx_ni(skb);
7775 input_queue_head_incr(oldsd);
7776 }
7777
7778 return NOTIFY_OK;
7779 }
7780
7781
7782 /**
7783 * netdev_increment_features - increment feature set by one
7784 * @all: current feature set
7785 * @one: new feature set
7786 * @mask: mask feature set
7787 *
7788 * Computes a new feature set after adding a device with feature set
7789 * @one to the master device with current feature set @all. Will not
7790 * enable anything that is off in @mask. Returns the new feature set.
7791 */
7792 netdev_features_t netdev_increment_features(netdev_features_t all,
7793 netdev_features_t one, netdev_features_t mask)
7794 {
7795 if (mask & NETIF_F_HW_CSUM)
7796 mask |= NETIF_F_CSUM_MASK;
7797 mask |= NETIF_F_VLAN_CHALLENGED;
7798
7799 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
7800 all &= one | ~NETIF_F_ALL_FOR_ALL;
7801
7802 /* If one device supports hw checksumming, set for all. */
7803 if (all & NETIF_F_HW_CSUM)
7804 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7805
7806 return all;
7807 }
7808 EXPORT_SYMBOL(netdev_increment_features);
7809
7810 static struct hlist_head * __net_init netdev_create_hash(void)
7811 {
7812 int i;
7813 struct hlist_head *hash;
7814
7815 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7816 if (hash != NULL)
7817 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7818 INIT_HLIST_HEAD(&hash[i]);
7819
7820 return hash;
7821 }
7822
7823 /* Initialize per network namespace state */
7824 static int __net_init netdev_init(struct net *net)
7825 {
7826 if (net != &init_net)
7827 INIT_LIST_HEAD(&net->dev_base_head);
7828
7829 net->dev_name_head = netdev_create_hash();
7830 if (net->dev_name_head == NULL)
7831 goto err_name;
7832
7833 net->dev_index_head = netdev_create_hash();
7834 if (net->dev_index_head == NULL)
7835 goto err_idx;
7836
7837 return 0;
7838
7839 err_idx:
7840 kfree(net->dev_name_head);
7841 err_name:
7842 return -ENOMEM;
7843 }
7844
7845 /**
7846 * netdev_drivername - network driver for the device
7847 * @dev: network device
7848 *
7849 * Determine network driver for device.
7850 */
7851 const char *netdev_drivername(const struct net_device *dev)
7852 {
7853 const struct device_driver *driver;
7854 const struct device *parent;
7855 const char *empty = "";
7856
7857 parent = dev->dev.parent;
7858 if (!parent)
7859 return empty;
7860
7861 driver = parent->driver;
7862 if (driver && driver->name)
7863 return driver->name;
7864 return empty;
7865 }
7866
7867 static void __netdev_printk(const char *level, const struct net_device *dev,
7868 struct va_format *vaf)
7869 {
7870 if (dev && dev->dev.parent) {
7871 dev_printk_emit(level[1] - '0',
7872 dev->dev.parent,
7873 "%s %s %s%s: %pV",
7874 dev_driver_string(dev->dev.parent),
7875 dev_name(dev->dev.parent),
7876 netdev_name(dev), netdev_reg_state(dev),
7877 vaf);
7878 } else if (dev) {
7879 printk("%s%s%s: %pV",
7880 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7881 } else {
7882 printk("%s(NULL net_device): %pV", level, vaf);
7883 }
7884 }
7885
7886 void netdev_printk(const char *level, const struct net_device *dev,
7887 const char *format, ...)
7888 {
7889 struct va_format vaf;
7890 va_list args;
7891
7892 va_start(args, format);
7893
7894 vaf.fmt = format;
7895 vaf.va = &args;
7896
7897 __netdev_printk(level, dev, &vaf);
7898
7899 va_end(args);
7900 }
7901 EXPORT_SYMBOL(netdev_printk);
7902
7903 #define define_netdev_printk_level(func, level) \
7904 void func(const struct net_device *dev, const char *fmt, ...) \
7905 { \
7906 struct va_format vaf; \
7907 va_list args; \
7908 \
7909 va_start(args, fmt); \
7910 \
7911 vaf.fmt = fmt; \
7912 vaf.va = &args; \
7913 \
7914 __netdev_printk(level, dev, &vaf); \
7915 \
7916 va_end(args); \
7917 } \
7918 EXPORT_SYMBOL(func);
7919
7920 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7921 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7922 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7923 define_netdev_printk_level(netdev_err, KERN_ERR);
7924 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7925 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7926 define_netdev_printk_level(netdev_info, KERN_INFO);
7927
7928 static void __net_exit netdev_exit(struct net *net)
7929 {
7930 kfree(net->dev_name_head);
7931 kfree(net->dev_index_head);
7932 }
7933
7934 static struct pernet_operations __net_initdata netdev_net_ops = {
7935 .init = netdev_init,
7936 .exit = netdev_exit,
7937 };
7938
7939 static void __net_exit default_device_exit(struct net *net)
7940 {
7941 struct net_device *dev, *aux;
7942 /*
7943 * Push all migratable network devices back to the
7944 * initial network namespace
7945 */
7946 rtnl_lock();
7947 for_each_netdev_safe(net, dev, aux) {
7948 int err;
7949 char fb_name[IFNAMSIZ];
7950
7951 /* Ignore unmoveable devices (i.e. loopback) */
7952 if (dev->features & NETIF_F_NETNS_LOCAL)
7953 continue;
7954
7955 /* Leave virtual devices for the generic cleanup */
7956 if (dev->rtnl_link_ops)
7957 continue;
7958
7959 /* Push remaining network devices to init_net */
7960 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7961 err = dev_change_net_namespace(dev, &init_net, fb_name);
7962 if (err) {
7963 pr_emerg("%s: failed to move %s to init_net: %d\n",
7964 __func__, dev->name, err);
7965 BUG();
7966 }
7967 }
7968 rtnl_unlock();
7969 }
7970
7971 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7972 {
7973 /* Return with the rtnl_lock held when there are no network
7974 * devices unregistering in any network namespace in net_list.
7975 */
7976 struct net *net;
7977 bool unregistering;
7978 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7979
7980 add_wait_queue(&netdev_unregistering_wq, &wait);
7981 for (;;) {
7982 unregistering = false;
7983 rtnl_lock();
7984 list_for_each_entry(net, net_list, exit_list) {
7985 if (net->dev_unreg_count > 0) {
7986 unregistering = true;
7987 break;
7988 }
7989 }
7990 if (!unregistering)
7991 break;
7992 __rtnl_unlock();
7993
7994 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7995 }
7996 remove_wait_queue(&netdev_unregistering_wq, &wait);
7997 }
7998
7999 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8000 {
8001 /* At exit all network devices most be removed from a network
8002 * namespace. Do this in the reverse order of registration.
8003 * Do this across as many network namespaces as possible to
8004 * improve batching efficiency.
8005 */
8006 struct net_device *dev;
8007 struct net *net;
8008 LIST_HEAD(dev_kill_list);
8009
8010 /* To prevent network device cleanup code from dereferencing
8011 * loopback devices or network devices that have been freed
8012 * wait here for all pending unregistrations to complete,
8013 * before unregistring the loopback device and allowing the
8014 * network namespace be freed.
8015 *
8016 * The netdev todo list containing all network devices
8017 * unregistrations that happen in default_device_exit_batch
8018 * will run in the rtnl_unlock() at the end of
8019 * default_device_exit_batch.
8020 */
8021 rtnl_lock_unregistering(net_list);
8022 list_for_each_entry(net, net_list, exit_list) {
8023 for_each_netdev_reverse(net, dev) {
8024 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8025 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8026 else
8027 unregister_netdevice_queue(dev, &dev_kill_list);
8028 }
8029 }
8030 unregister_netdevice_many(&dev_kill_list);
8031 rtnl_unlock();
8032 }
8033
8034 static struct pernet_operations __net_initdata default_device_ops = {
8035 .exit = default_device_exit,
8036 .exit_batch = default_device_exit_batch,
8037 };
8038
8039 /*
8040 * Initialize the DEV module. At boot time this walks the device list and
8041 * unhooks any devices that fail to initialise (normally hardware not
8042 * present) and leaves us with a valid list of present and active devices.
8043 *
8044 */
8045
8046 /*
8047 * This is called single threaded during boot, so no need
8048 * to take the rtnl semaphore.
8049 */
8050 static int __init net_dev_init(void)
8051 {
8052 int i, rc = -ENOMEM;
8053
8054 BUG_ON(!dev_boot_phase);
8055
8056 if (dev_proc_init())
8057 goto out;
8058
8059 if (netdev_kobject_init())
8060 goto out;
8061
8062 INIT_LIST_HEAD(&ptype_all);
8063 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8064 INIT_LIST_HEAD(&ptype_base[i]);
8065
8066 INIT_LIST_HEAD(&offload_base);
8067
8068 if (register_pernet_subsys(&netdev_net_ops))
8069 goto out;
8070
8071 /*
8072 * Initialise the packet receive queues.
8073 */
8074
8075 for_each_possible_cpu(i) {
8076 struct softnet_data *sd = &per_cpu(softnet_data, i);
8077
8078 skb_queue_head_init(&sd->input_pkt_queue);
8079 skb_queue_head_init(&sd->process_queue);
8080 INIT_LIST_HEAD(&sd->poll_list);
8081 sd->output_queue_tailp = &sd->output_queue;
8082 #ifdef CONFIG_RPS
8083 sd->csd.func = rps_trigger_softirq;
8084 sd->csd.info = sd;
8085 sd->cpu = i;
8086 #endif
8087
8088 sd->backlog.poll = process_backlog;
8089 sd->backlog.weight = weight_p;
8090 }
8091
8092 dev_boot_phase = 0;
8093
8094 /* The loopback device is special if any other network devices
8095 * is present in a network namespace the loopback device must
8096 * be present. Since we now dynamically allocate and free the
8097 * loopback device ensure this invariant is maintained by
8098 * keeping the loopback device as the first device on the
8099 * list of network devices. Ensuring the loopback devices
8100 * is the first device that appears and the last network device
8101 * that disappears.
8102 */
8103 if (register_pernet_device(&loopback_net_ops))
8104 goto out;
8105
8106 if (register_pernet_device(&default_device_ops))
8107 goto out;
8108
8109 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8110 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8111
8112 hotcpu_notifier(dev_cpu_callback, 0);
8113 dst_subsys_init();
8114 rc = 0;
8115 out:
8116 return rc;
8117 }
8118
8119 subsys_initcall(net_dev_init);