]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/core/dev.c
[BRIDGE]: features change notification
[mirror_ubuntu-zesty-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/config.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/notifier.h>
93 #include <linux/skbuff.h>
94 #include <net/sock.h>
95 #include <linux/rtnetlink.h>
96 #include <linux/proc_fs.h>
97 #include <linux/seq_file.h>
98 #include <linux/stat.h>
99 #include <linux/if_bridge.h>
100 #include <linux/divert.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <linux/highmem.h>
105 #include <linux/init.h>
106 #include <linux/kmod.h>
107 #include <linux/module.h>
108 #include <linux/kallsyms.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #ifdef CONFIG_NET_RADIO
113 #include <linux/wireless.h> /* Note : will define WIRELESS_EXT */
114 #include <net/iw_handler.h>
115 #endif /* CONFIG_NET_RADIO */
116 #include <asm/current.h>
117
118 /* This define, if set, will randomly drop a packet when congestion
119 * is more than moderate. It helps fairness in the multi-interface
120 * case when one of them is a hog, but it kills performance for the
121 * single interface case so it is off now by default.
122 */
123 #undef RAND_LIE
124
125 /* Setting this will sample the queue lengths and thus congestion
126 * via a timer instead of as each packet is received.
127 */
128 #undef OFFLINE_SAMPLE
129
130 /*
131 * The list of packet types we will receive (as opposed to discard)
132 * and the routines to invoke.
133 *
134 * Why 16. Because with 16 the only overlap we get on a hash of the
135 * low nibble of the protocol value is RARP/SNAP/X.25.
136 *
137 * NOTE: That is no longer true with the addition of VLAN tags. Not
138 * sure which should go first, but I bet it won't make much
139 * difference if we are running VLANs. The good news is that
140 * this protocol won't be in the list unless compiled in, so
141 * the average user (w/out VLANs) will not be adversly affected.
142 * --BLG
143 *
144 * 0800 IP
145 * 8100 802.1Q VLAN
146 * 0001 802.3
147 * 0002 AX.25
148 * 0004 802.2
149 * 8035 RARP
150 * 0005 SNAP
151 * 0805 X.25
152 * 0806 ARP
153 * 8137 IPX
154 * 0009 Localtalk
155 * 86DD IPv6
156 */
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 static struct list_head ptype_base[16]; /* 16 way hashed list */
160 static struct list_head ptype_all; /* Taps */
161
162 #ifdef OFFLINE_SAMPLE
163 static void sample_queue(unsigned long dummy);
164 static struct timer_list samp_timer = TIMER_INITIALIZER(sample_queue, 0, 0);
165 #endif
166
167 /*
168 * The @dev_base list is protected by @dev_base_lock and the rtln
169 * semaphore.
170 *
171 * Pure readers hold dev_base_lock for reading.
172 *
173 * Writers must hold the rtnl semaphore while they loop through the
174 * dev_base list, and hold dev_base_lock for writing when they do the
175 * actual updates. This allows pure readers to access the list even
176 * while a writer is preparing to update it.
177 *
178 * To put it another way, dev_base_lock is held for writing only to
179 * protect against pure readers; the rtnl semaphore provides the
180 * protection against other writers.
181 *
182 * See, for example usages, register_netdevice() and
183 * unregister_netdevice(), which must be called with the rtnl
184 * semaphore held.
185 */
186 struct net_device *dev_base;
187 static struct net_device **dev_tail = &dev_base;
188 DEFINE_RWLOCK(dev_base_lock);
189
190 EXPORT_SYMBOL(dev_base);
191 EXPORT_SYMBOL(dev_base_lock);
192
193 #define NETDEV_HASHBITS 8
194 static struct hlist_head dev_name_head[1<<NETDEV_HASHBITS];
195 static struct hlist_head dev_index_head[1<<NETDEV_HASHBITS];
196
197 static inline struct hlist_head *dev_name_hash(const char *name)
198 {
199 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
200 return &dev_name_head[hash & ((1<<NETDEV_HASHBITS)-1)];
201 }
202
203 static inline struct hlist_head *dev_index_hash(int ifindex)
204 {
205 return &dev_index_head[ifindex & ((1<<NETDEV_HASHBITS)-1)];
206 }
207
208 /*
209 * Our notifier list
210 */
211
212 static struct notifier_block *netdev_chain;
213
214 /*
215 * Device drivers call our routines to queue packets here. We empty the
216 * queue in the local softnet handler.
217 */
218 DEFINE_PER_CPU(struct softnet_data, softnet_data) = { 0, };
219
220 #ifdef CONFIG_SYSFS
221 extern int netdev_sysfs_init(void);
222 extern int netdev_register_sysfs(struct net_device *);
223 extern void netdev_unregister_sysfs(struct net_device *);
224 #else
225 #define netdev_sysfs_init() (0)
226 #define netdev_register_sysfs(dev) (0)
227 #define netdev_unregister_sysfs(dev) do { } while(0)
228 #endif
229
230
231 /*******************************************************************************
232
233 Protocol management and registration routines
234
235 *******************************************************************************/
236
237 /*
238 * For efficiency
239 */
240
241 int netdev_nit;
242
243 /*
244 * Add a protocol ID to the list. Now that the input handler is
245 * smarter we can dispense with all the messy stuff that used to be
246 * here.
247 *
248 * BEWARE!!! Protocol handlers, mangling input packets,
249 * MUST BE last in hash buckets and checking protocol handlers
250 * MUST start from promiscuous ptype_all chain in net_bh.
251 * It is true now, do not change it.
252 * Explanation follows: if protocol handler, mangling packet, will
253 * be the first on list, it is not able to sense, that packet
254 * is cloned and should be copied-on-write, so that it will
255 * change it and subsequent readers will get broken packet.
256 * --ANK (980803)
257 */
258
259 /**
260 * dev_add_pack - add packet handler
261 * @pt: packet type declaration
262 *
263 * Add a protocol handler to the networking stack. The passed &packet_type
264 * is linked into kernel lists and may not be freed until it has been
265 * removed from the kernel lists.
266 *
267 * This call does not sleep therefore it can not
268 * guarantee all CPU's that are in middle of receiving packets
269 * will see the new packet type (until the next received packet).
270 */
271
272 void dev_add_pack(struct packet_type *pt)
273 {
274 int hash;
275
276 spin_lock_bh(&ptype_lock);
277 if (pt->type == htons(ETH_P_ALL)) {
278 netdev_nit++;
279 list_add_rcu(&pt->list, &ptype_all);
280 } else {
281 hash = ntohs(pt->type) & 15;
282 list_add_rcu(&pt->list, &ptype_base[hash]);
283 }
284 spin_unlock_bh(&ptype_lock);
285 }
286
287 extern void linkwatch_run_queue(void);
288
289
290
291 /**
292 * __dev_remove_pack - remove packet handler
293 * @pt: packet type declaration
294 *
295 * Remove a protocol handler that was previously added to the kernel
296 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
297 * from the kernel lists and can be freed or reused once this function
298 * returns.
299 *
300 * The packet type might still be in use by receivers
301 * and must not be freed until after all the CPU's have gone
302 * through a quiescent state.
303 */
304 void __dev_remove_pack(struct packet_type *pt)
305 {
306 struct list_head *head;
307 struct packet_type *pt1;
308
309 spin_lock_bh(&ptype_lock);
310
311 if (pt->type == htons(ETH_P_ALL)) {
312 netdev_nit--;
313 head = &ptype_all;
314 } else
315 head = &ptype_base[ntohs(pt->type) & 15];
316
317 list_for_each_entry(pt1, head, list) {
318 if (pt == pt1) {
319 list_del_rcu(&pt->list);
320 goto out;
321 }
322 }
323
324 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
325 out:
326 spin_unlock_bh(&ptype_lock);
327 }
328 /**
329 * dev_remove_pack - remove packet handler
330 * @pt: packet type declaration
331 *
332 * Remove a protocol handler that was previously added to the kernel
333 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
334 * from the kernel lists and can be freed or reused once this function
335 * returns.
336 *
337 * This call sleeps to guarantee that no CPU is looking at the packet
338 * type after return.
339 */
340 void dev_remove_pack(struct packet_type *pt)
341 {
342 __dev_remove_pack(pt);
343
344 synchronize_net();
345 }
346
347 /******************************************************************************
348
349 Device Boot-time Settings Routines
350
351 *******************************************************************************/
352
353 /* Boot time configuration table */
354 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
355
356 /**
357 * netdev_boot_setup_add - add new setup entry
358 * @name: name of the device
359 * @map: configured settings for the device
360 *
361 * Adds new setup entry to the dev_boot_setup list. The function
362 * returns 0 on error and 1 on success. This is a generic routine to
363 * all netdevices.
364 */
365 static int netdev_boot_setup_add(char *name, struct ifmap *map)
366 {
367 struct netdev_boot_setup *s;
368 int i;
369
370 s = dev_boot_setup;
371 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
372 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
373 memset(s[i].name, 0, sizeof(s[i].name));
374 strcpy(s[i].name, name);
375 memcpy(&s[i].map, map, sizeof(s[i].map));
376 break;
377 }
378 }
379
380 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
381 }
382
383 /**
384 * netdev_boot_setup_check - check boot time settings
385 * @dev: the netdevice
386 *
387 * Check boot time settings for the device.
388 * The found settings are set for the device to be used
389 * later in the device probing.
390 * Returns 0 if no settings found, 1 if they are.
391 */
392 int netdev_boot_setup_check(struct net_device *dev)
393 {
394 struct netdev_boot_setup *s = dev_boot_setup;
395 int i;
396
397 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
398 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
399 !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
400 dev->irq = s[i].map.irq;
401 dev->base_addr = s[i].map.base_addr;
402 dev->mem_start = s[i].map.mem_start;
403 dev->mem_end = s[i].map.mem_end;
404 return 1;
405 }
406 }
407 return 0;
408 }
409
410
411 /**
412 * netdev_boot_base - get address from boot time settings
413 * @prefix: prefix for network device
414 * @unit: id for network device
415 *
416 * Check boot time settings for the base address of device.
417 * The found settings are set for the device to be used
418 * later in the device probing.
419 * Returns 0 if no settings found.
420 */
421 unsigned long netdev_boot_base(const char *prefix, int unit)
422 {
423 const struct netdev_boot_setup *s = dev_boot_setup;
424 char name[IFNAMSIZ];
425 int i;
426
427 sprintf(name, "%s%d", prefix, unit);
428
429 /*
430 * If device already registered then return base of 1
431 * to indicate not to probe for this interface
432 */
433 if (__dev_get_by_name(name))
434 return 1;
435
436 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
437 if (!strcmp(name, s[i].name))
438 return s[i].map.base_addr;
439 return 0;
440 }
441
442 /*
443 * Saves at boot time configured settings for any netdevice.
444 */
445 int __init netdev_boot_setup(char *str)
446 {
447 int ints[5];
448 struct ifmap map;
449
450 str = get_options(str, ARRAY_SIZE(ints), ints);
451 if (!str || !*str)
452 return 0;
453
454 /* Save settings */
455 memset(&map, 0, sizeof(map));
456 if (ints[0] > 0)
457 map.irq = ints[1];
458 if (ints[0] > 1)
459 map.base_addr = ints[2];
460 if (ints[0] > 2)
461 map.mem_start = ints[3];
462 if (ints[0] > 3)
463 map.mem_end = ints[4];
464
465 /* Add new entry to the list */
466 return netdev_boot_setup_add(str, &map);
467 }
468
469 __setup("netdev=", netdev_boot_setup);
470
471 /*******************************************************************************
472
473 Device Interface Subroutines
474
475 *******************************************************************************/
476
477 /**
478 * __dev_get_by_name - find a device by its name
479 * @name: name to find
480 *
481 * Find an interface by name. Must be called under RTNL semaphore
482 * or @dev_base_lock. If the name is found a pointer to the device
483 * is returned. If the name is not found then %NULL is returned. The
484 * reference counters are not incremented so the caller must be
485 * careful with locks.
486 */
487
488 struct net_device *__dev_get_by_name(const char *name)
489 {
490 struct hlist_node *p;
491
492 hlist_for_each(p, dev_name_hash(name)) {
493 struct net_device *dev
494 = hlist_entry(p, struct net_device, name_hlist);
495 if (!strncmp(dev->name, name, IFNAMSIZ))
496 return dev;
497 }
498 return NULL;
499 }
500
501 /**
502 * dev_get_by_name - find a device by its name
503 * @name: name to find
504 *
505 * Find an interface by name. This can be called from any
506 * context and does its own locking. The returned handle has
507 * the usage count incremented and the caller must use dev_put() to
508 * release it when it is no longer needed. %NULL is returned if no
509 * matching device is found.
510 */
511
512 struct net_device *dev_get_by_name(const char *name)
513 {
514 struct net_device *dev;
515
516 read_lock(&dev_base_lock);
517 dev = __dev_get_by_name(name);
518 if (dev)
519 dev_hold(dev);
520 read_unlock(&dev_base_lock);
521 return dev;
522 }
523
524 /**
525 * __dev_get_by_index - find a device by its ifindex
526 * @ifindex: index of device
527 *
528 * Search for an interface by index. Returns %NULL if the device
529 * is not found or a pointer to the device. The device has not
530 * had its reference counter increased so the caller must be careful
531 * about locking. The caller must hold either the RTNL semaphore
532 * or @dev_base_lock.
533 */
534
535 struct net_device *__dev_get_by_index(int ifindex)
536 {
537 struct hlist_node *p;
538
539 hlist_for_each(p, dev_index_hash(ifindex)) {
540 struct net_device *dev
541 = hlist_entry(p, struct net_device, index_hlist);
542 if (dev->ifindex == ifindex)
543 return dev;
544 }
545 return NULL;
546 }
547
548
549 /**
550 * dev_get_by_index - find a device by its ifindex
551 * @ifindex: index of device
552 *
553 * Search for an interface by index. Returns NULL if the device
554 * is not found or a pointer to the device. The device returned has
555 * had a reference added and the pointer is safe until the user calls
556 * dev_put to indicate they have finished with it.
557 */
558
559 struct net_device *dev_get_by_index(int ifindex)
560 {
561 struct net_device *dev;
562
563 read_lock(&dev_base_lock);
564 dev = __dev_get_by_index(ifindex);
565 if (dev)
566 dev_hold(dev);
567 read_unlock(&dev_base_lock);
568 return dev;
569 }
570
571 /**
572 * dev_getbyhwaddr - find a device by its hardware address
573 * @type: media type of device
574 * @ha: hardware address
575 *
576 * Search for an interface by MAC address. Returns NULL if the device
577 * is not found or a pointer to the device. The caller must hold the
578 * rtnl semaphore. The returned device has not had its ref count increased
579 * and the caller must therefore be careful about locking
580 *
581 * BUGS:
582 * If the API was consistent this would be __dev_get_by_hwaddr
583 */
584
585 struct net_device *dev_getbyhwaddr(unsigned short type, char *ha)
586 {
587 struct net_device *dev;
588
589 ASSERT_RTNL();
590
591 for (dev = dev_base; dev; dev = dev->next)
592 if (dev->type == type &&
593 !memcmp(dev->dev_addr, ha, dev->addr_len))
594 break;
595 return dev;
596 }
597
598 struct net_device *dev_getfirstbyhwtype(unsigned short type)
599 {
600 struct net_device *dev;
601
602 rtnl_lock();
603 for (dev = dev_base; dev; dev = dev->next) {
604 if (dev->type == type) {
605 dev_hold(dev);
606 break;
607 }
608 }
609 rtnl_unlock();
610 return dev;
611 }
612
613 EXPORT_SYMBOL(dev_getfirstbyhwtype);
614
615 /**
616 * dev_get_by_flags - find any device with given flags
617 * @if_flags: IFF_* values
618 * @mask: bitmask of bits in if_flags to check
619 *
620 * Search for any interface with the given flags. Returns NULL if a device
621 * is not found or a pointer to the device. The device returned has
622 * had a reference added and the pointer is safe until the user calls
623 * dev_put to indicate they have finished with it.
624 */
625
626 struct net_device * dev_get_by_flags(unsigned short if_flags, unsigned short mask)
627 {
628 struct net_device *dev;
629
630 read_lock(&dev_base_lock);
631 for (dev = dev_base; dev != NULL; dev = dev->next) {
632 if (((dev->flags ^ if_flags) & mask) == 0) {
633 dev_hold(dev);
634 break;
635 }
636 }
637 read_unlock(&dev_base_lock);
638 return dev;
639 }
640
641 /**
642 * dev_valid_name - check if name is okay for network device
643 * @name: name string
644 *
645 * Network device names need to be valid file names to
646 * to allow sysfs to work
647 */
648 static int dev_valid_name(const char *name)
649 {
650 return !(*name == '\0'
651 || !strcmp(name, ".")
652 || !strcmp(name, "..")
653 || strchr(name, '/'));
654 }
655
656 /**
657 * dev_alloc_name - allocate a name for a device
658 * @dev: device
659 * @name: name format string
660 *
661 * Passed a format string - eg "lt%d" it will try and find a suitable
662 * id. Not efficient for many devices, not called a lot. The caller
663 * must hold the dev_base or rtnl lock while allocating the name and
664 * adding the device in order to avoid duplicates. Returns the number
665 * of the unit assigned or a negative errno code.
666 */
667
668 int dev_alloc_name(struct net_device *dev, const char *name)
669 {
670 int i = 0;
671 char buf[IFNAMSIZ];
672 const char *p;
673 const int max_netdevices = 8*PAGE_SIZE;
674 long *inuse;
675 struct net_device *d;
676
677 p = strnchr(name, IFNAMSIZ-1, '%');
678 if (p) {
679 /*
680 * Verify the string as this thing may have come from
681 * the user. There must be either one "%d" and no other "%"
682 * characters.
683 */
684 if (p[1] != 'd' || strchr(p + 2, '%'))
685 return -EINVAL;
686
687 /* Use one page as a bit array of possible slots */
688 inuse = (long *) get_zeroed_page(GFP_ATOMIC);
689 if (!inuse)
690 return -ENOMEM;
691
692 for (d = dev_base; d; d = d->next) {
693 if (!sscanf(d->name, name, &i))
694 continue;
695 if (i < 0 || i >= max_netdevices)
696 continue;
697
698 /* avoid cases where sscanf is not exact inverse of printf */
699 snprintf(buf, sizeof(buf), name, i);
700 if (!strncmp(buf, d->name, IFNAMSIZ))
701 set_bit(i, inuse);
702 }
703
704 i = find_first_zero_bit(inuse, max_netdevices);
705 free_page((unsigned long) inuse);
706 }
707
708 snprintf(buf, sizeof(buf), name, i);
709 if (!__dev_get_by_name(buf)) {
710 strlcpy(dev->name, buf, IFNAMSIZ);
711 return i;
712 }
713
714 /* It is possible to run out of possible slots
715 * when the name is long and there isn't enough space left
716 * for the digits, or if all bits are used.
717 */
718 return -ENFILE;
719 }
720
721
722 /**
723 * dev_change_name - change name of a device
724 * @dev: device
725 * @newname: name (or format string) must be at least IFNAMSIZ
726 *
727 * Change name of a device, can pass format strings "eth%d".
728 * for wildcarding.
729 */
730 int dev_change_name(struct net_device *dev, char *newname)
731 {
732 int err = 0;
733
734 ASSERT_RTNL();
735
736 if (dev->flags & IFF_UP)
737 return -EBUSY;
738
739 if (!dev_valid_name(newname))
740 return -EINVAL;
741
742 if (strchr(newname, '%')) {
743 err = dev_alloc_name(dev, newname);
744 if (err < 0)
745 return err;
746 strcpy(newname, dev->name);
747 }
748 else if (__dev_get_by_name(newname))
749 return -EEXIST;
750 else
751 strlcpy(dev->name, newname, IFNAMSIZ);
752
753 err = class_device_rename(&dev->class_dev, dev->name);
754 if (!err) {
755 hlist_del(&dev->name_hlist);
756 hlist_add_head(&dev->name_hlist, dev_name_hash(dev->name));
757 notifier_call_chain(&netdev_chain, NETDEV_CHANGENAME, dev);
758 }
759
760 return err;
761 }
762
763 /**
764 * netdev_features_change - device changes fatures
765 * @dev: device to cause notification
766 *
767 * Called to indicate a device has changed features.
768 */
769 void netdev_features_change(struct net_device *dev)
770 {
771 notifier_call_chain(&netdev_chain, NETDEV_FEAT_CHANGE, dev);
772 }
773 EXPORT_SYMBOL(netdev_features_change);
774
775 /**
776 * netdev_state_change - device changes state
777 * @dev: device to cause notification
778 *
779 * Called to indicate a device has changed state. This function calls
780 * the notifier chains for netdev_chain and sends a NEWLINK message
781 * to the routing socket.
782 */
783 void netdev_state_change(struct net_device *dev)
784 {
785 if (dev->flags & IFF_UP) {
786 notifier_call_chain(&netdev_chain, NETDEV_CHANGE, dev);
787 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
788 }
789 }
790
791 /**
792 * dev_load - load a network module
793 * @name: name of interface
794 *
795 * If a network interface is not present and the process has suitable
796 * privileges this function loads the module. If module loading is not
797 * available in this kernel then it becomes a nop.
798 */
799
800 void dev_load(const char *name)
801 {
802 struct net_device *dev;
803
804 read_lock(&dev_base_lock);
805 dev = __dev_get_by_name(name);
806 read_unlock(&dev_base_lock);
807
808 if (!dev && capable(CAP_SYS_MODULE))
809 request_module("%s", name);
810 }
811
812 static int default_rebuild_header(struct sk_buff *skb)
813 {
814 printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n",
815 skb->dev ? skb->dev->name : "NULL!!!");
816 kfree_skb(skb);
817 return 1;
818 }
819
820
821 /**
822 * dev_open - prepare an interface for use.
823 * @dev: device to open
824 *
825 * Takes a device from down to up state. The device's private open
826 * function is invoked and then the multicast lists are loaded. Finally
827 * the device is moved into the up state and a %NETDEV_UP message is
828 * sent to the netdev notifier chain.
829 *
830 * Calling this function on an active interface is a nop. On a failure
831 * a negative errno code is returned.
832 */
833 int dev_open(struct net_device *dev)
834 {
835 int ret = 0;
836
837 /*
838 * Is it already up?
839 */
840
841 if (dev->flags & IFF_UP)
842 return 0;
843
844 /*
845 * Is it even present?
846 */
847 if (!netif_device_present(dev))
848 return -ENODEV;
849
850 /*
851 * Call device private open method
852 */
853 set_bit(__LINK_STATE_START, &dev->state);
854 if (dev->open) {
855 ret = dev->open(dev);
856 if (ret)
857 clear_bit(__LINK_STATE_START, &dev->state);
858 }
859
860 /*
861 * If it went open OK then:
862 */
863
864 if (!ret) {
865 /*
866 * Set the flags.
867 */
868 dev->flags |= IFF_UP;
869
870 /*
871 * Initialize multicasting status
872 */
873 dev_mc_upload(dev);
874
875 /*
876 * Wakeup transmit queue engine
877 */
878 dev_activate(dev);
879
880 /*
881 * ... and announce new interface.
882 */
883 notifier_call_chain(&netdev_chain, NETDEV_UP, dev);
884 }
885 return ret;
886 }
887
888 /**
889 * dev_close - shutdown an interface.
890 * @dev: device to shutdown
891 *
892 * This function moves an active device into down state. A
893 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
894 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
895 * chain.
896 */
897 int dev_close(struct net_device *dev)
898 {
899 if (!(dev->flags & IFF_UP))
900 return 0;
901
902 /*
903 * Tell people we are going down, so that they can
904 * prepare to death, when device is still operating.
905 */
906 notifier_call_chain(&netdev_chain, NETDEV_GOING_DOWN, dev);
907
908 dev_deactivate(dev);
909
910 clear_bit(__LINK_STATE_START, &dev->state);
911
912 /* Synchronize to scheduled poll. We cannot touch poll list,
913 * it can be even on different cpu. So just clear netif_running(),
914 * and wait when poll really will happen. Actually, the best place
915 * for this is inside dev->stop() after device stopped its irq
916 * engine, but this requires more changes in devices. */
917
918 smp_mb__after_clear_bit(); /* Commit netif_running(). */
919 while (test_bit(__LINK_STATE_RX_SCHED, &dev->state)) {
920 /* No hurry. */
921 current->state = TASK_INTERRUPTIBLE;
922 schedule_timeout(1);
923 }
924
925 /*
926 * Call the device specific close. This cannot fail.
927 * Only if device is UP
928 *
929 * We allow it to be called even after a DETACH hot-plug
930 * event.
931 */
932 if (dev->stop)
933 dev->stop(dev);
934
935 /*
936 * Device is now down.
937 */
938
939 dev->flags &= ~IFF_UP;
940
941 /*
942 * Tell people we are down
943 */
944 notifier_call_chain(&netdev_chain, NETDEV_DOWN, dev);
945
946 return 0;
947 }
948
949
950 /*
951 * Device change register/unregister. These are not inline or static
952 * as we export them to the world.
953 */
954
955 /**
956 * register_netdevice_notifier - register a network notifier block
957 * @nb: notifier
958 *
959 * Register a notifier to be called when network device events occur.
960 * The notifier passed is linked into the kernel structures and must
961 * not be reused until it has been unregistered. A negative errno code
962 * is returned on a failure.
963 *
964 * When registered all registration and up events are replayed
965 * to the new notifier to allow device to have a race free
966 * view of the network device list.
967 */
968
969 int register_netdevice_notifier(struct notifier_block *nb)
970 {
971 struct net_device *dev;
972 int err;
973
974 rtnl_lock();
975 err = notifier_chain_register(&netdev_chain, nb);
976 if (!err) {
977 for (dev = dev_base; dev; dev = dev->next) {
978 nb->notifier_call(nb, NETDEV_REGISTER, dev);
979
980 if (dev->flags & IFF_UP)
981 nb->notifier_call(nb, NETDEV_UP, dev);
982 }
983 }
984 rtnl_unlock();
985 return err;
986 }
987
988 /**
989 * unregister_netdevice_notifier - unregister a network notifier block
990 * @nb: notifier
991 *
992 * Unregister a notifier previously registered by
993 * register_netdevice_notifier(). The notifier is unlinked into the
994 * kernel structures and may then be reused. A negative errno code
995 * is returned on a failure.
996 */
997
998 int unregister_netdevice_notifier(struct notifier_block *nb)
999 {
1000 return notifier_chain_unregister(&netdev_chain, nb);
1001 }
1002
1003 /**
1004 * call_netdevice_notifiers - call all network notifier blocks
1005 * @val: value passed unmodified to notifier function
1006 * @v: pointer passed unmodified to notifier function
1007 *
1008 * Call all network notifier blocks. Parameters and return value
1009 * are as for notifier_call_chain().
1010 */
1011
1012 int call_netdevice_notifiers(unsigned long val, void *v)
1013 {
1014 return notifier_call_chain(&netdev_chain, val, v);
1015 }
1016
1017 /* When > 0 there are consumers of rx skb time stamps */
1018 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1019
1020 void net_enable_timestamp(void)
1021 {
1022 atomic_inc(&netstamp_needed);
1023 }
1024
1025 void net_disable_timestamp(void)
1026 {
1027 atomic_dec(&netstamp_needed);
1028 }
1029
1030 static inline void net_timestamp(struct timeval *stamp)
1031 {
1032 if (atomic_read(&netstamp_needed))
1033 do_gettimeofday(stamp);
1034 else {
1035 stamp->tv_sec = 0;
1036 stamp->tv_usec = 0;
1037 }
1038 }
1039
1040 /*
1041 * Support routine. Sends outgoing frames to any network
1042 * taps currently in use.
1043 */
1044
1045 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1046 {
1047 struct packet_type *ptype;
1048 net_timestamp(&skb->stamp);
1049
1050 rcu_read_lock();
1051 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1052 /* Never send packets back to the socket
1053 * they originated from - MvS (miquels@drinkel.ow.org)
1054 */
1055 if ((ptype->dev == dev || !ptype->dev) &&
1056 (ptype->af_packet_priv == NULL ||
1057 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1058 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1059 if (!skb2)
1060 break;
1061
1062 /* skb->nh should be correctly
1063 set by sender, so that the second statement is
1064 just protection against buggy protocols.
1065 */
1066 skb2->mac.raw = skb2->data;
1067
1068 if (skb2->nh.raw < skb2->data ||
1069 skb2->nh.raw > skb2->tail) {
1070 if (net_ratelimit())
1071 printk(KERN_CRIT "protocol %04x is "
1072 "buggy, dev %s\n",
1073 skb2->protocol, dev->name);
1074 skb2->nh.raw = skb2->data;
1075 }
1076
1077 skb2->h.raw = skb2->nh.raw;
1078 skb2->pkt_type = PACKET_OUTGOING;
1079 ptype->func(skb2, skb->dev, ptype);
1080 }
1081 }
1082 rcu_read_unlock();
1083 }
1084
1085 /*
1086 * Invalidate hardware checksum when packet is to be mangled, and
1087 * complete checksum manually on outgoing path.
1088 */
1089 int skb_checksum_help(struct sk_buff *skb, int inward)
1090 {
1091 unsigned int csum;
1092 int ret = 0, offset = skb->h.raw - skb->data;
1093
1094 if (inward) {
1095 skb->ip_summed = CHECKSUM_NONE;
1096 goto out;
1097 }
1098
1099 if (skb_cloned(skb)) {
1100 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1101 if (ret)
1102 goto out;
1103 }
1104
1105 if (offset > (int)skb->len)
1106 BUG();
1107 csum = skb_checksum(skb, offset, skb->len-offset, 0);
1108
1109 offset = skb->tail - skb->h.raw;
1110 if (offset <= 0)
1111 BUG();
1112 if (skb->csum + 2 > offset)
1113 BUG();
1114
1115 *(u16*)(skb->h.raw + skb->csum) = csum_fold(csum);
1116 skb->ip_summed = CHECKSUM_NONE;
1117 out:
1118 return ret;
1119 }
1120
1121 #ifdef CONFIG_HIGHMEM
1122 /* Actually, we should eliminate this check as soon as we know, that:
1123 * 1. IOMMU is present and allows to map all the memory.
1124 * 2. No high memory really exists on this machine.
1125 */
1126
1127 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1128 {
1129 int i;
1130
1131 if (dev->features & NETIF_F_HIGHDMA)
1132 return 0;
1133
1134 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1135 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1136 return 1;
1137
1138 return 0;
1139 }
1140 #else
1141 #define illegal_highdma(dev, skb) (0)
1142 #endif
1143
1144 extern void skb_release_data(struct sk_buff *);
1145
1146 /* Keep head the same: replace data */
1147 int __skb_linearize(struct sk_buff *skb, int gfp_mask)
1148 {
1149 unsigned int size;
1150 u8 *data;
1151 long offset;
1152 struct skb_shared_info *ninfo;
1153 int headerlen = skb->data - skb->head;
1154 int expand = (skb->tail + skb->data_len) - skb->end;
1155
1156 if (skb_shared(skb))
1157 BUG();
1158
1159 if (expand <= 0)
1160 expand = 0;
1161
1162 size = skb->end - skb->head + expand;
1163 size = SKB_DATA_ALIGN(size);
1164 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
1165 if (!data)
1166 return -ENOMEM;
1167
1168 /* Copy entire thing */
1169 if (skb_copy_bits(skb, -headerlen, data, headerlen + skb->len))
1170 BUG();
1171
1172 /* Set up shinfo */
1173 ninfo = (struct skb_shared_info*)(data + size);
1174 atomic_set(&ninfo->dataref, 1);
1175 ninfo->tso_size = skb_shinfo(skb)->tso_size;
1176 ninfo->tso_segs = skb_shinfo(skb)->tso_segs;
1177 ninfo->nr_frags = 0;
1178 ninfo->frag_list = NULL;
1179
1180 /* Offset between the two in bytes */
1181 offset = data - skb->head;
1182
1183 /* Free old data. */
1184 skb_release_data(skb);
1185
1186 skb->head = data;
1187 skb->end = data + size;
1188
1189 /* Set up new pointers */
1190 skb->h.raw += offset;
1191 skb->nh.raw += offset;
1192 skb->mac.raw += offset;
1193 skb->tail += offset;
1194 skb->data += offset;
1195
1196 /* We are no longer a clone, even if we were. */
1197 skb->cloned = 0;
1198
1199 skb->tail += skb->data_len;
1200 skb->data_len = 0;
1201 return 0;
1202 }
1203
1204 #define HARD_TX_LOCK(dev, cpu) { \
1205 if ((dev->features & NETIF_F_LLTX) == 0) { \
1206 spin_lock(&dev->xmit_lock); \
1207 dev->xmit_lock_owner = cpu; \
1208 } \
1209 }
1210
1211 #define HARD_TX_UNLOCK(dev) { \
1212 if ((dev->features & NETIF_F_LLTX) == 0) { \
1213 dev->xmit_lock_owner = -1; \
1214 spin_unlock(&dev->xmit_lock); \
1215 } \
1216 }
1217
1218 /**
1219 * dev_queue_xmit - transmit a buffer
1220 * @skb: buffer to transmit
1221 *
1222 * Queue a buffer for transmission to a network device. The caller must
1223 * have set the device and priority and built the buffer before calling
1224 * this function. The function can be called from an interrupt.
1225 *
1226 * A negative errno code is returned on a failure. A success does not
1227 * guarantee the frame will be transmitted as it may be dropped due
1228 * to congestion or traffic shaping.
1229 *
1230 * -----------------------------------------------------------------------------------
1231 * I notice this method can also return errors from the queue disciplines,
1232 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1233 * be positive.
1234 *
1235 * Regardless of the return value, the skb is consumed, so it is currently
1236 * difficult to retry a send to this method. (You can bump the ref count
1237 * before sending to hold a reference for retry if you are careful.)
1238 *
1239 * When calling this method, interrupts MUST be enabled. This is because
1240 * the BH enable code must have IRQs enabled so that it will not deadlock.
1241 * --BLG
1242 */
1243
1244 int dev_queue_xmit(struct sk_buff *skb)
1245 {
1246 struct net_device *dev = skb->dev;
1247 struct Qdisc *q;
1248 int rc = -ENOMEM;
1249
1250 if (skb_shinfo(skb)->frag_list &&
1251 !(dev->features & NETIF_F_FRAGLIST) &&
1252 __skb_linearize(skb, GFP_ATOMIC))
1253 goto out_kfree_skb;
1254
1255 /* Fragmented skb is linearized if device does not support SG,
1256 * or if at least one of fragments is in highmem and device
1257 * does not support DMA from it.
1258 */
1259 if (skb_shinfo(skb)->nr_frags &&
1260 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1261 __skb_linearize(skb, GFP_ATOMIC))
1262 goto out_kfree_skb;
1263
1264 /* If packet is not checksummed and device does not support
1265 * checksumming for this protocol, complete checksumming here.
1266 */
1267 if (skb->ip_summed == CHECKSUM_HW &&
1268 (!(dev->features & (NETIF_F_HW_CSUM | NETIF_F_NO_CSUM)) &&
1269 (!(dev->features & NETIF_F_IP_CSUM) ||
1270 skb->protocol != htons(ETH_P_IP))))
1271 if (skb_checksum_help(skb, 0))
1272 goto out_kfree_skb;
1273
1274 /* Disable soft irqs for various locks below. Also
1275 * stops preemption for RCU.
1276 */
1277 local_bh_disable();
1278
1279 /* Updates of qdisc are serialized by queue_lock.
1280 * The struct Qdisc which is pointed to by qdisc is now a
1281 * rcu structure - it may be accessed without acquiring
1282 * a lock (but the structure may be stale.) The freeing of the
1283 * qdisc will be deferred until it's known that there are no
1284 * more references to it.
1285 *
1286 * If the qdisc has an enqueue function, we still need to
1287 * hold the queue_lock before calling it, since queue_lock
1288 * also serializes access to the device queue.
1289 */
1290
1291 q = rcu_dereference(dev->qdisc);
1292 #ifdef CONFIG_NET_CLS_ACT
1293 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1294 #endif
1295 if (q->enqueue) {
1296 /* Grab device queue */
1297 spin_lock(&dev->queue_lock);
1298
1299 rc = q->enqueue(skb, q);
1300
1301 qdisc_run(dev);
1302
1303 spin_unlock(&dev->queue_lock);
1304 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1305 goto out;
1306 }
1307
1308 /* The device has no queue. Common case for software devices:
1309 loopback, all the sorts of tunnels...
1310
1311 Really, it is unlikely that xmit_lock protection is necessary here.
1312 (f.e. loopback and IP tunnels are clean ignoring statistics
1313 counters.)
1314 However, it is possible, that they rely on protection
1315 made by us here.
1316
1317 Check this and shot the lock. It is not prone from deadlocks.
1318 Either shot noqueue qdisc, it is even simpler 8)
1319 */
1320 if (dev->flags & IFF_UP) {
1321 int cpu = smp_processor_id(); /* ok because BHs are off */
1322
1323 if (dev->xmit_lock_owner != cpu) {
1324
1325 HARD_TX_LOCK(dev, cpu);
1326
1327 if (!netif_queue_stopped(dev)) {
1328 if (netdev_nit)
1329 dev_queue_xmit_nit(skb, dev);
1330
1331 rc = 0;
1332 if (!dev->hard_start_xmit(skb, dev)) {
1333 HARD_TX_UNLOCK(dev);
1334 goto out;
1335 }
1336 }
1337 HARD_TX_UNLOCK(dev);
1338 if (net_ratelimit())
1339 printk(KERN_CRIT "Virtual device %s asks to "
1340 "queue packet!\n", dev->name);
1341 } else {
1342 /* Recursion is detected! It is possible,
1343 * unfortunately */
1344 if (net_ratelimit())
1345 printk(KERN_CRIT "Dead loop on virtual device "
1346 "%s, fix it urgently!\n", dev->name);
1347 }
1348 }
1349
1350 rc = -ENETDOWN;
1351 local_bh_enable();
1352
1353 out_kfree_skb:
1354 kfree_skb(skb);
1355 return rc;
1356 out:
1357 local_bh_enable();
1358 return rc;
1359 }
1360
1361
1362 /*=======================================================================
1363 Receiver routines
1364 =======================================================================*/
1365
1366 int netdev_max_backlog = 300;
1367 int weight_p = 64; /* old backlog weight */
1368 /* These numbers are selected based on intuition and some
1369 * experimentatiom, if you have more scientific way of doing this
1370 * please go ahead and fix things.
1371 */
1372 int no_cong_thresh = 10;
1373 int no_cong = 20;
1374 int lo_cong = 100;
1375 int mod_cong = 290;
1376
1377 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1378
1379
1380 static void get_sample_stats(int cpu)
1381 {
1382 #ifdef RAND_LIE
1383 unsigned long rd;
1384 int rq;
1385 #endif
1386 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
1387 int blog = sd->input_pkt_queue.qlen;
1388 int avg_blog = sd->avg_blog;
1389
1390 avg_blog = (avg_blog >> 1) + (blog >> 1);
1391
1392 if (avg_blog > mod_cong) {
1393 /* Above moderate congestion levels. */
1394 sd->cng_level = NET_RX_CN_HIGH;
1395 #ifdef RAND_LIE
1396 rd = net_random();
1397 rq = rd % netdev_max_backlog;
1398 if (rq < avg_blog) /* unlucky bastard */
1399 sd->cng_level = NET_RX_DROP;
1400 #endif
1401 } else if (avg_blog > lo_cong) {
1402 sd->cng_level = NET_RX_CN_MOD;
1403 #ifdef RAND_LIE
1404 rd = net_random();
1405 rq = rd % netdev_max_backlog;
1406 if (rq < avg_blog) /* unlucky bastard */
1407 sd->cng_level = NET_RX_CN_HIGH;
1408 #endif
1409 } else if (avg_blog > no_cong)
1410 sd->cng_level = NET_RX_CN_LOW;
1411 else /* no congestion */
1412 sd->cng_level = NET_RX_SUCCESS;
1413
1414 sd->avg_blog = avg_blog;
1415 }
1416
1417 #ifdef OFFLINE_SAMPLE
1418 static void sample_queue(unsigned long dummy)
1419 {
1420 /* 10 ms 0r 1ms -- i don't care -- JHS */
1421 int next_tick = 1;
1422 int cpu = smp_processor_id();
1423
1424 get_sample_stats(cpu);
1425 next_tick += jiffies;
1426 mod_timer(&samp_timer, next_tick);
1427 }
1428 #endif
1429
1430
1431 /**
1432 * netif_rx - post buffer to the network code
1433 * @skb: buffer to post
1434 *
1435 * This function receives a packet from a device driver and queues it for
1436 * the upper (protocol) levels to process. It always succeeds. The buffer
1437 * may be dropped during processing for congestion control or by the
1438 * protocol layers.
1439 *
1440 * return values:
1441 * NET_RX_SUCCESS (no congestion)
1442 * NET_RX_CN_LOW (low congestion)
1443 * NET_RX_CN_MOD (moderate congestion)
1444 * NET_RX_CN_HIGH (high congestion)
1445 * NET_RX_DROP (packet was dropped)
1446 *
1447 */
1448
1449 int netif_rx(struct sk_buff *skb)
1450 {
1451 int this_cpu;
1452 struct softnet_data *queue;
1453 unsigned long flags;
1454
1455 /* if netpoll wants it, pretend we never saw it */
1456 if (netpoll_rx(skb))
1457 return NET_RX_DROP;
1458
1459 if (!skb->stamp.tv_sec)
1460 net_timestamp(&skb->stamp);
1461
1462 /*
1463 * The code is rearranged so that the path is the most
1464 * short when CPU is congested, but is still operating.
1465 */
1466 local_irq_save(flags);
1467 this_cpu = smp_processor_id();
1468 queue = &__get_cpu_var(softnet_data);
1469
1470 __get_cpu_var(netdev_rx_stat).total++;
1471 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1472 if (queue->input_pkt_queue.qlen) {
1473 if (queue->throttle)
1474 goto drop;
1475
1476 enqueue:
1477 dev_hold(skb->dev);
1478 __skb_queue_tail(&queue->input_pkt_queue, skb);
1479 #ifndef OFFLINE_SAMPLE
1480 get_sample_stats(this_cpu);
1481 #endif
1482 local_irq_restore(flags);
1483 return queue->cng_level;
1484 }
1485
1486 if (queue->throttle)
1487 queue->throttle = 0;
1488
1489 netif_rx_schedule(&queue->backlog_dev);
1490 goto enqueue;
1491 }
1492
1493 if (!queue->throttle) {
1494 queue->throttle = 1;
1495 __get_cpu_var(netdev_rx_stat).throttled++;
1496 }
1497
1498 drop:
1499 __get_cpu_var(netdev_rx_stat).dropped++;
1500 local_irq_restore(flags);
1501
1502 kfree_skb(skb);
1503 return NET_RX_DROP;
1504 }
1505
1506 int netif_rx_ni(struct sk_buff *skb)
1507 {
1508 int err;
1509
1510 preempt_disable();
1511 err = netif_rx(skb);
1512 if (local_softirq_pending())
1513 do_softirq();
1514 preempt_enable();
1515
1516 return err;
1517 }
1518
1519 EXPORT_SYMBOL(netif_rx_ni);
1520
1521 static __inline__ void skb_bond(struct sk_buff *skb)
1522 {
1523 struct net_device *dev = skb->dev;
1524
1525 if (dev->master) {
1526 skb->real_dev = skb->dev;
1527 skb->dev = dev->master;
1528 }
1529 }
1530
1531 static void net_tx_action(struct softirq_action *h)
1532 {
1533 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1534
1535 if (sd->completion_queue) {
1536 struct sk_buff *clist;
1537
1538 local_irq_disable();
1539 clist = sd->completion_queue;
1540 sd->completion_queue = NULL;
1541 local_irq_enable();
1542
1543 while (clist) {
1544 struct sk_buff *skb = clist;
1545 clist = clist->next;
1546
1547 BUG_TRAP(!atomic_read(&skb->users));
1548 __kfree_skb(skb);
1549 }
1550 }
1551
1552 if (sd->output_queue) {
1553 struct net_device *head;
1554
1555 local_irq_disable();
1556 head = sd->output_queue;
1557 sd->output_queue = NULL;
1558 local_irq_enable();
1559
1560 while (head) {
1561 struct net_device *dev = head;
1562 head = head->next_sched;
1563
1564 smp_mb__before_clear_bit();
1565 clear_bit(__LINK_STATE_SCHED, &dev->state);
1566
1567 if (spin_trylock(&dev->queue_lock)) {
1568 qdisc_run(dev);
1569 spin_unlock(&dev->queue_lock);
1570 } else {
1571 netif_schedule(dev);
1572 }
1573 }
1574 }
1575 }
1576
1577 static __inline__ int deliver_skb(struct sk_buff *skb,
1578 struct packet_type *pt_prev)
1579 {
1580 atomic_inc(&skb->users);
1581 return pt_prev->func(skb, skb->dev, pt_prev);
1582 }
1583
1584 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1585 int (*br_handle_frame_hook)(struct net_bridge_port *p, struct sk_buff **pskb);
1586 struct net_bridge;
1587 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1588 unsigned char *addr);
1589 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent);
1590
1591 static __inline__ int handle_bridge(struct sk_buff **pskb,
1592 struct packet_type **pt_prev, int *ret)
1593 {
1594 struct net_bridge_port *port;
1595
1596 if ((*pskb)->pkt_type == PACKET_LOOPBACK ||
1597 (port = rcu_dereference((*pskb)->dev->br_port)) == NULL)
1598 return 0;
1599
1600 if (*pt_prev) {
1601 *ret = deliver_skb(*pskb, *pt_prev);
1602 *pt_prev = NULL;
1603 }
1604
1605 return br_handle_frame_hook(port, pskb);
1606 }
1607 #else
1608 #define handle_bridge(skb, pt_prev, ret) (0)
1609 #endif
1610
1611 #ifdef CONFIG_NET_CLS_ACT
1612 /* TODO: Maybe we should just force sch_ingress to be compiled in
1613 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1614 * a compare and 2 stores extra right now if we dont have it on
1615 * but have CONFIG_NET_CLS_ACT
1616 * NOTE: This doesnt stop any functionality; if you dont have
1617 * the ingress scheduler, you just cant add policies on ingress.
1618 *
1619 */
1620 static int ing_filter(struct sk_buff *skb)
1621 {
1622 struct Qdisc *q;
1623 struct net_device *dev = skb->dev;
1624 int result = TC_ACT_OK;
1625
1626 if (dev->qdisc_ingress) {
1627 __u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd);
1628 if (MAX_RED_LOOP < ttl++) {
1629 printk("Redir loop detected Dropping packet (%s->%s)\n",
1630 skb->input_dev?skb->input_dev->name:"??",skb->dev->name);
1631 return TC_ACT_SHOT;
1632 }
1633
1634 skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl);
1635
1636 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS);
1637 if (NULL == skb->input_dev) {
1638 skb->input_dev = skb->dev;
1639 printk("ing_filter: fixed %s out %s\n",skb->input_dev->name,skb->dev->name);
1640 }
1641 spin_lock(&dev->ingress_lock);
1642 if ((q = dev->qdisc_ingress) != NULL)
1643 result = q->enqueue(skb, q);
1644 spin_unlock(&dev->ingress_lock);
1645
1646 }
1647
1648 return result;
1649 }
1650 #endif
1651
1652 int netif_receive_skb(struct sk_buff *skb)
1653 {
1654 struct packet_type *ptype, *pt_prev;
1655 int ret = NET_RX_DROP;
1656 unsigned short type;
1657
1658 /* if we've gotten here through NAPI, check netpoll */
1659 if (skb->dev->poll && netpoll_rx(skb))
1660 return NET_RX_DROP;
1661
1662 if (!skb->stamp.tv_sec)
1663 net_timestamp(&skb->stamp);
1664
1665 skb_bond(skb);
1666
1667 __get_cpu_var(netdev_rx_stat).total++;
1668
1669 skb->h.raw = skb->nh.raw = skb->data;
1670 skb->mac_len = skb->nh.raw - skb->mac.raw;
1671
1672 pt_prev = NULL;
1673
1674 rcu_read_lock();
1675
1676 #ifdef CONFIG_NET_CLS_ACT
1677 if (skb->tc_verd & TC_NCLS) {
1678 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
1679 goto ncls;
1680 }
1681 #endif
1682
1683 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1684 if (!ptype->dev || ptype->dev == skb->dev) {
1685 if (pt_prev)
1686 ret = deliver_skb(skb, pt_prev);
1687 pt_prev = ptype;
1688 }
1689 }
1690
1691 #ifdef CONFIG_NET_CLS_ACT
1692 if (pt_prev) {
1693 ret = deliver_skb(skb, pt_prev);
1694 pt_prev = NULL; /* noone else should process this after*/
1695 } else {
1696 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1697 }
1698
1699 ret = ing_filter(skb);
1700
1701 if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) {
1702 kfree_skb(skb);
1703 goto out;
1704 }
1705
1706 skb->tc_verd = 0;
1707 ncls:
1708 #endif
1709
1710 handle_diverter(skb);
1711
1712 if (handle_bridge(&skb, &pt_prev, &ret))
1713 goto out;
1714
1715 type = skb->protocol;
1716 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) {
1717 if (ptype->type == type &&
1718 (!ptype->dev || ptype->dev == skb->dev)) {
1719 if (pt_prev)
1720 ret = deliver_skb(skb, pt_prev);
1721 pt_prev = ptype;
1722 }
1723 }
1724
1725 if (pt_prev) {
1726 ret = pt_prev->func(skb, skb->dev, pt_prev);
1727 } else {
1728 kfree_skb(skb);
1729 /* Jamal, now you will not able to escape explaining
1730 * me how you were going to use this. :-)
1731 */
1732 ret = NET_RX_DROP;
1733 }
1734
1735 out:
1736 rcu_read_unlock();
1737 return ret;
1738 }
1739
1740 static int process_backlog(struct net_device *backlog_dev, int *budget)
1741 {
1742 int work = 0;
1743 int quota = min(backlog_dev->quota, *budget);
1744 struct softnet_data *queue = &__get_cpu_var(softnet_data);
1745 unsigned long start_time = jiffies;
1746
1747 for (;;) {
1748 struct sk_buff *skb;
1749 struct net_device *dev;
1750
1751 local_irq_disable();
1752 skb = __skb_dequeue(&queue->input_pkt_queue);
1753 if (!skb)
1754 goto job_done;
1755 local_irq_enable();
1756
1757 dev = skb->dev;
1758
1759 netif_receive_skb(skb);
1760
1761 dev_put(dev);
1762
1763 work++;
1764
1765 if (work >= quota || jiffies - start_time > 1)
1766 break;
1767
1768 }
1769
1770 backlog_dev->quota -= work;
1771 *budget -= work;
1772 return -1;
1773
1774 job_done:
1775 backlog_dev->quota -= work;
1776 *budget -= work;
1777
1778 list_del(&backlog_dev->poll_list);
1779 smp_mb__before_clear_bit();
1780 netif_poll_enable(backlog_dev);
1781
1782 if (queue->throttle)
1783 queue->throttle = 0;
1784 local_irq_enable();
1785 return 0;
1786 }
1787
1788 static void net_rx_action(struct softirq_action *h)
1789 {
1790 struct softnet_data *queue = &__get_cpu_var(softnet_data);
1791 unsigned long start_time = jiffies;
1792 int budget = netdev_max_backlog;
1793
1794
1795 local_irq_disable();
1796
1797 while (!list_empty(&queue->poll_list)) {
1798 struct net_device *dev;
1799
1800 if (budget <= 0 || jiffies - start_time > 1)
1801 goto softnet_break;
1802
1803 local_irq_enable();
1804
1805 dev = list_entry(queue->poll_list.next,
1806 struct net_device, poll_list);
1807 netpoll_poll_lock(dev);
1808
1809 if (dev->quota <= 0 || dev->poll(dev, &budget)) {
1810 netpoll_poll_unlock(dev);
1811 local_irq_disable();
1812 list_del(&dev->poll_list);
1813 list_add_tail(&dev->poll_list, &queue->poll_list);
1814 if (dev->quota < 0)
1815 dev->quota += dev->weight;
1816 else
1817 dev->quota = dev->weight;
1818 } else {
1819 netpoll_poll_unlock(dev);
1820 dev_put(dev);
1821 local_irq_disable();
1822 }
1823 }
1824 out:
1825 local_irq_enable();
1826 return;
1827
1828 softnet_break:
1829 __get_cpu_var(netdev_rx_stat).time_squeeze++;
1830 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
1831 goto out;
1832 }
1833
1834 static gifconf_func_t * gifconf_list [NPROTO];
1835
1836 /**
1837 * register_gifconf - register a SIOCGIF handler
1838 * @family: Address family
1839 * @gifconf: Function handler
1840 *
1841 * Register protocol dependent address dumping routines. The handler
1842 * that is passed must not be freed or reused until it has been replaced
1843 * by another handler.
1844 */
1845 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
1846 {
1847 if (family >= NPROTO)
1848 return -EINVAL;
1849 gifconf_list[family] = gifconf;
1850 return 0;
1851 }
1852
1853
1854 /*
1855 * Map an interface index to its name (SIOCGIFNAME)
1856 */
1857
1858 /*
1859 * We need this ioctl for efficient implementation of the
1860 * if_indextoname() function required by the IPv6 API. Without
1861 * it, we would have to search all the interfaces to find a
1862 * match. --pb
1863 */
1864
1865 static int dev_ifname(struct ifreq __user *arg)
1866 {
1867 struct net_device *dev;
1868 struct ifreq ifr;
1869
1870 /*
1871 * Fetch the caller's info block.
1872 */
1873
1874 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
1875 return -EFAULT;
1876
1877 read_lock(&dev_base_lock);
1878 dev = __dev_get_by_index(ifr.ifr_ifindex);
1879 if (!dev) {
1880 read_unlock(&dev_base_lock);
1881 return -ENODEV;
1882 }
1883
1884 strcpy(ifr.ifr_name, dev->name);
1885 read_unlock(&dev_base_lock);
1886
1887 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
1888 return -EFAULT;
1889 return 0;
1890 }
1891
1892 /*
1893 * Perform a SIOCGIFCONF call. This structure will change
1894 * size eventually, and there is nothing I can do about it.
1895 * Thus we will need a 'compatibility mode'.
1896 */
1897
1898 static int dev_ifconf(char __user *arg)
1899 {
1900 struct ifconf ifc;
1901 struct net_device *dev;
1902 char __user *pos;
1903 int len;
1904 int total;
1905 int i;
1906
1907 /*
1908 * Fetch the caller's info block.
1909 */
1910
1911 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
1912 return -EFAULT;
1913
1914 pos = ifc.ifc_buf;
1915 len = ifc.ifc_len;
1916
1917 /*
1918 * Loop over the interfaces, and write an info block for each.
1919 */
1920
1921 total = 0;
1922 for (dev = dev_base; dev; dev = dev->next) {
1923 for (i = 0; i < NPROTO; i++) {
1924 if (gifconf_list[i]) {
1925 int done;
1926 if (!pos)
1927 done = gifconf_list[i](dev, NULL, 0);
1928 else
1929 done = gifconf_list[i](dev, pos + total,
1930 len - total);
1931 if (done < 0)
1932 return -EFAULT;
1933 total += done;
1934 }
1935 }
1936 }
1937
1938 /*
1939 * All done. Write the updated control block back to the caller.
1940 */
1941 ifc.ifc_len = total;
1942
1943 /*
1944 * Both BSD and Solaris return 0 here, so we do too.
1945 */
1946 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
1947 }
1948
1949 #ifdef CONFIG_PROC_FS
1950 /*
1951 * This is invoked by the /proc filesystem handler to display a device
1952 * in detail.
1953 */
1954 static __inline__ struct net_device *dev_get_idx(loff_t pos)
1955 {
1956 struct net_device *dev;
1957 loff_t i;
1958
1959 for (i = 0, dev = dev_base; dev && i < pos; ++i, dev = dev->next);
1960
1961 return i == pos ? dev : NULL;
1962 }
1963
1964 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
1965 {
1966 read_lock(&dev_base_lock);
1967 return *pos ? dev_get_idx(*pos - 1) : SEQ_START_TOKEN;
1968 }
1969
1970 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1971 {
1972 ++*pos;
1973 return v == SEQ_START_TOKEN ? dev_base : ((struct net_device *)v)->next;
1974 }
1975
1976 void dev_seq_stop(struct seq_file *seq, void *v)
1977 {
1978 read_unlock(&dev_base_lock);
1979 }
1980
1981 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
1982 {
1983 if (dev->get_stats) {
1984 struct net_device_stats *stats = dev->get_stats(dev);
1985
1986 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
1987 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
1988 dev->name, stats->rx_bytes, stats->rx_packets,
1989 stats->rx_errors,
1990 stats->rx_dropped + stats->rx_missed_errors,
1991 stats->rx_fifo_errors,
1992 stats->rx_length_errors + stats->rx_over_errors +
1993 stats->rx_crc_errors + stats->rx_frame_errors,
1994 stats->rx_compressed, stats->multicast,
1995 stats->tx_bytes, stats->tx_packets,
1996 stats->tx_errors, stats->tx_dropped,
1997 stats->tx_fifo_errors, stats->collisions,
1998 stats->tx_carrier_errors +
1999 stats->tx_aborted_errors +
2000 stats->tx_window_errors +
2001 stats->tx_heartbeat_errors,
2002 stats->tx_compressed);
2003 } else
2004 seq_printf(seq, "%6s: No statistics available.\n", dev->name);
2005 }
2006
2007 /*
2008 * Called from the PROCfs module. This now uses the new arbitrary sized
2009 * /proc/net interface to create /proc/net/dev
2010 */
2011 static int dev_seq_show(struct seq_file *seq, void *v)
2012 {
2013 if (v == SEQ_START_TOKEN)
2014 seq_puts(seq, "Inter-| Receive "
2015 " | Transmit\n"
2016 " face |bytes packets errs drop fifo frame "
2017 "compressed multicast|bytes packets errs "
2018 "drop fifo colls carrier compressed\n");
2019 else
2020 dev_seq_printf_stats(seq, v);
2021 return 0;
2022 }
2023
2024 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2025 {
2026 struct netif_rx_stats *rc = NULL;
2027
2028 while (*pos < NR_CPUS)
2029 if (cpu_online(*pos)) {
2030 rc = &per_cpu(netdev_rx_stat, *pos);
2031 break;
2032 } else
2033 ++*pos;
2034 return rc;
2035 }
2036
2037 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2038 {
2039 return softnet_get_online(pos);
2040 }
2041
2042 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2043 {
2044 ++*pos;
2045 return softnet_get_online(pos);
2046 }
2047
2048 static void softnet_seq_stop(struct seq_file *seq, void *v)
2049 {
2050 }
2051
2052 static int softnet_seq_show(struct seq_file *seq, void *v)
2053 {
2054 struct netif_rx_stats *s = v;
2055
2056 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2057 s->total, s->dropped, s->time_squeeze, s->throttled,
2058 s->fastroute_hit, s->fastroute_success, s->fastroute_defer,
2059 s->fastroute_deferred_out,
2060 #if 0
2061 s->fastroute_latency_reduction
2062 #else
2063 s->cpu_collision
2064 #endif
2065 );
2066 return 0;
2067 }
2068
2069 static struct seq_operations dev_seq_ops = {
2070 .start = dev_seq_start,
2071 .next = dev_seq_next,
2072 .stop = dev_seq_stop,
2073 .show = dev_seq_show,
2074 };
2075
2076 static int dev_seq_open(struct inode *inode, struct file *file)
2077 {
2078 return seq_open(file, &dev_seq_ops);
2079 }
2080
2081 static struct file_operations dev_seq_fops = {
2082 .owner = THIS_MODULE,
2083 .open = dev_seq_open,
2084 .read = seq_read,
2085 .llseek = seq_lseek,
2086 .release = seq_release,
2087 };
2088
2089 static struct seq_operations softnet_seq_ops = {
2090 .start = softnet_seq_start,
2091 .next = softnet_seq_next,
2092 .stop = softnet_seq_stop,
2093 .show = softnet_seq_show,
2094 };
2095
2096 static int softnet_seq_open(struct inode *inode, struct file *file)
2097 {
2098 return seq_open(file, &softnet_seq_ops);
2099 }
2100
2101 static struct file_operations softnet_seq_fops = {
2102 .owner = THIS_MODULE,
2103 .open = softnet_seq_open,
2104 .read = seq_read,
2105 .llseek = seq_lseek,
2106 .release = seq_release,
2107 };
2108
2109 #ifdef WIRELESS_EXT
2110 extern int wireless_proc_init(void);
2111 #else
2112 #define wireless_proc_init() 0
2113 #endif
2114
2115 static int __init dev_proc_init(void)
2116 {
2117 int rc = -ENOMEM;
2118
2119 if (!proc_net_fops_create("dev", S_IRUGO, &dev_seq_fops))
2120 goto out;
2121 if (!proc_net_fops_create("softnet_stat", S_IRUGO, &softnet_seq_fops))
2122 goto out_dev;
2123 if (wireless_proc_init())
2124 goto out_softnet;
2125 rc = 0;
2126 out:
2127 return rc;
2128 out_softnet:
2129 proc_net_remove("softnet_stat");
2130 out_dev:
2131 proc_net_remove("dev");
2132 goto out;
2133 }
2134 #else
2135 #define dev_proc_init() 0
2136 #endif /* CONFIG_PROC_FS */
2137
2138
2139 /**
2140 * netdev_set_master - set up master/slave pair
2141 * @slave: slave device
2142 * @master: new master device
2143 *
2144 * Changes the master device of the slave. Pass %NULL to break the
2145 * bonding. The caller must hold the RTNL semaphore. On a failure
2146 * a negative errno code is returned. On success the reference counts
2147 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2148 * function returns zero.
2149 */
2150 int netdev_set_master(struct net_device *slave, struct net_device *master)
2151 {
2152 struct net_device *old = slave->master;
2153
2154 ASSERT_RTNL();
2155
2156 if (master) {
2157 if (old)
2158 return -EBUSY;
2159 dev_hold(master);
2160 }
2161
2162 slave->master = master;
2163
2164 synchronize_net();
2165
2166 if (old)
2167 dev_put(old);
2168
2169 if (master)
2170 slave->flags |= IFF_SLAVE;
2171 else
2172 slave->flags &= ~IFF_SLAVE;
2173
2174 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2175 return 0;
2176 }
2177
2178 /**
2179 * dev_set_promiscuity - update promiscuity count on a device
2180 * @dev: device
2181 * @inc: modifier
2182 *
2183 * Add or remove promsicuity from a device. While the count in the device
2184 * remains above zero the interface remains promiscuous. Once it hits zero
2185 * the device reverts back to normal filtering operation. A negative inc
2186 * value is used to drop promiscuity on the device.
2187 */
2188 void dev_set_promiscuity(struct net_device *dev, int inc)
2189 {
2190 unsigned short old_flags = dev->flags;
2191
2192 dev->flags |= IFF_PROMISC;
2193 if ((dev->promiscuity += inc) == 0)
2194 dev->flags &= ~IFF_PROMISC;
2195 if (dev->flags ^ old_flags) {
2196 dev_mc_upload(dev);
2197 printk(KERN_INFO "device %s %s promiscuous mode\n",
2198 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2199 "left");
2200 }
2201 }
2202
2203 /**
2204 * dev_set_allmulti - update allmulti count on a device
2205 * @dev: device
2206 * @inc: modifier
2207 *
2208 * Add or remove reception of all multicast frames to a device. While the
2209 * count in the device remains above zero the interface remains listening
2210 * to all interfaces. Once it hits zero the device reverts back to normal
2211 * filtering operation. A negative @inc value is used to drop the counter
2212 * when releasing a resource needing all multicasts.
2213 */
2214
2215 void dev_set_allmulti(struct net_device *dev, int inc)
2216 {
2217 unsigned short old_flags = dev->flags;
2218
2219 dev->flags |= IFF_ALLMULTI;
2220 if ((dev->allmulti += inc) == 0)
2221 dev->flags &= ~IFF_ALLMULTI;
2222 if (dev->flags ^ old_flags)
2223 dev_mc_upload(dev);
2224 }
2225
2226 unsigned dev_get_flags(const struct net_device *dev)
2227 {
2228 unsigned flags;
2229
2230 flags = (dev->flags & ~(IFF_PROMISC |
2231 IFF_ALLMULTI |
2232 IFF_RUNNING)) |
2233 (dev->gflags & (IFF_PROMISC |
2234 IFF_ALLMULTI));
2235
2236 if (netif_running(dev) && netif_carrier_ok(dev))
2237 flags |= IFF_RUNNING;
2238
2239 return flags;
2240 }
2241
2242 int dev_change_flags(struct net_device *dev, unsigned flags)
2243 {
2244 int ret;
2245 int old_flags = dev->flags;
2246
2247 /*
2248 * Set the flags on our device.
2249 */
2250
2251 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
2252 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
2253 IFF_AUTOMEDIA)) |
2254 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
2255 IFF_ALLMULTI));
2256
2257 /*
2258 * Load in the correct multicast list now the flags have changed.
2259 */
2260
2261 dev_mc_upload(dev);
2262
2263 /*
2264 * Have we downed the interface. We handle IFF_UP ourselves
2265 * according to user attempts to set it, rather than blindly
2266 * setting it.
2267 */
2268
2269 ret = 0;
2270 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
2271 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
2272
2273 if (!ret)
2274 dev_mc_upload(dev);
2275 }
2276
2277 if (dev->flags & IFF_UP &&
2278 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
2279 IFF_VOLATILE)))
2280 notifier_call_chain(&netdev_chain, NETDEV_CHANGE, dev);
2281
2282 if ((flags ^ dev->gflags) & IFF_PROMISC) {
2283 int inc = (flags & IFF_PROMISC) ? +1 : -1;
2284 dev->gflags ^= IFF_PROMISC;
2285 dev_set_promiscuity(dev, inc);
2286 }
2287
2288 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
2289 is important. Some (broken) drivers set IFF_PROMISC, when
2290 IFF_ALLMULTI is requested not asking us and not reporting.
2291 */
2292 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
2293 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
2294 dev->gflags ^= IFF_ALLMULTI;
2295 dev_set_allmulti(dev, inc);
2296 }
2297
2298 if (old_flags ^ dev->flags)
2299 rtmsg_ifinfo(RTM_NEWLINK, dev, old_flags ^ dev->flags);
2300
2301 return ret;
2302 }
2303
2304 int dev_set_mtu(struct net_device *dev, int new_mtu)
2305 {
2306 int err;
2307
2308 if (new_mtu == dev->mtu)
2309 return 0;
2310
2311 /* MTU must be positive. */
2312 if (new_mtu < 0)
2313 return -EINVAL;
2314
2315 if (!netif_device_present(dev))
2316 return -ENODEV;
2317
2318 err = 0;
2319 if (dev->change_mtu)
2320 err = dev->change_mtu(dev, new_mtu);
2321 else
2322 dev->mtu = new_mtu;
2323 if (!err && dev->flags & IFF_UP)
2324 notifier_call_chain(&netdev_chain,
2325 NETDEV_CHANGEMTU, dev);
2326 return err;
2327 }
2328
2329 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
2330 {
2331 int err;
2332
2333 if (!dev->set_mac_address)
2334 return -EOPNOTSUPP;
2335 if (sa->sa_family != dev->type)
2336 return -EINVAL;
2337 if (!netif_device_present(dev))
2338 return -ENODEV;
2339 err = dev->set_mac_address(dev, sa);
2340 if (!err)
2341 notifier_call_chain(&netdev_chain, NETDEV_CHANGEADDR, dev);
2342 return err;
2343 }
2344
2345 /*
2346 * Perform the SIOCxIFxxx calls.
2347 */
2348 static int dev_ifsioc(struct ifreq *ifr, unsigned int cmd)
2349 {
2350 int err;
2351 struct net_device *dev = __dev_get_by_name(ifr->ifr_name);
2352
2353 if (!dev)
2354 return -ENODEV;
2355
2356 switch (cmd) {
2357 case SIOCGIFFLAGS: /* Get interface flags */
2358 ifr->ifr_flags = dev_get_flags(dev);
2359 return 0;
2360
2361 case SIOCSIFFLAGS: /* Set interface flags */
2362 return dev_change_flags(dev, ifr->ifr_flags);
2363
2364 case SIOCGIFMETRIC: /* Get the metric on the interface
2365 (currently unused) */
2366 ifr->ifr_metric = 0;
2367 return 0;
2368
2369 case SIOCSIFMETRIC: /* Set the metric on the interface
2370 (currently unused) */
2371 return -EOPNOTSUPP;
2372
2373 case SIOCGIFMTU: /* Get the MTU of a device */
2374 ifr->ifr_mtu = dev->mtu;
2375 return 0;
2376
2377 case SIOCSIFMTU: /* Set the MTU of a device */
2378 return dev_set_mtu(dev, ifr->ifr_mtu);
2379
2380 case SIOCGIFHWADDR:
2381 if (!dev->addr_len)
2382 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
2383 else
2384 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
2385 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
2386 ifr->ifr_hwaddr.sa_family = dev->type;
2387 return 0;
2388
2389 case SIOCSIFHWADDR:
2390 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
2391
2392 case SIOCSIFHWBROADCAST:
2393 if (ifr->ifr_hwaddr.sa_family != dev->type)
2394 return -EINVAL;
2395 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
2396 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
2397 notifier_call_chain(&netdev_chain,
2398 NETDEV_CHANGEADDR, dev);
2399 return 0;
2400
2401 case SIOCGIFMAP:
2402 ifr->ifr_map.mem_start = dev->mem_start;
2403 ifr->ifr_map.mem_end = dev->mem_end;
2404 ifr->ifr_map.base_addr = dev->base_addr;
2405 ifr->ifr_map.irq = dev->irq;
2406 ifr->ifr_map.dma = dev->dma;
2407 ifr->ifr_map.port = dev->if_port;
2408 return 0;
2409
2410 case SIOCSIFMAP:
2411 if (dev->set_config) {
2412 if (!netif_device_present(dev))
2413 return -ENODEV;
2414 return dev->set_config(dev, &ifr->ifr_map);
2415 }
2416 return -EOPNOTSUPP;
2417
2418 case SIOCADDMULTI:
2419 if (!dev->set_multicast_list ||
2420 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
2421 return -EINVAL;
2422 if (!netif_device_present(dev))
2423 return -ENODEV;
2424 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
2425 dev->addr_len, 1);
2426
2427 case SIOCDELMULTI:
2428 if (!dev->set_multicast_list ||
2429 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
2430 return -EINVAL;
2431 if (!netif_device_present(dev))
2432 return -ENODEV;
2433 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
2434 dev->addr_len, 1);
2435
2436 case SIOCGIFINDEX:
2437 ifr->ifr_ifindex = dev->ifindex;
2438 return 0;
2439
2440 case SIOCGIFTXQLEN:
2441 ifr->ifr_qlen = dev->tx_queue_len;
2442 return 0;
2443
2444 case SIOCSIFTXQLEN:
2445 if (ifr->ifr_qlen < 0)
2446 return -EINVAL;
2447 dev->tx_queue_len = ifr->ifr_qlen;
2448 return 0;
2449
2450 case SIOCSIFNAME:
2451 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
2452 return dev_change_name(dev, ifr->ifr_newname);
2453
2454 /*
2455 * Unknown or private ioctl
2456 */
2457
2458 default:
2459 if ((cmd >= SIOCDEVPRIVATE &&
2460 cmd <= SIOCDEVPRIVATE + 15) ||
2461 cmd == SIOCBONDENSLAVE ||
2462 cmd == SIOCBONDRELEASE ||
2463 cmd == SIOCBONDSETHWADDR ||
2464 cmd == SIOCBONDSLAVEINFOQUERY ||
2465 cmd == SIOCBONDINFOQUERY ||
2466 cmd == SIOCBONDCHANGEACTIVE ||
2467 cmd == SIOCGMIIPHY ||
2468 cmd == SIOCGMIIREG ||
2469 cmd == SIOCSMIIREG ||
2470 cmd == SIOCBRADDIF ||
2471 cmd == SIOCBRDELIF ||
2472 cmd == SIOCWANDEV) {
2473 err = -EOPNOTSUPP;
2474 if (dev->do_ioctl) {
2475 if (netif_device_present(dev))
2476 err = dev->do_ioctl(dev, ifr,
2477 cmd);
2478 else
2479 err = -ENODEV;
2480 }
2481 } else
2482 err = -EINVAL;
2483
2484 }
2485 return err;
2486 }
2487
2488 /*
2489 * This function handles all "interface"-type I/O control requests. The actual
2490 * 'doing' part of this is dev_ifsioc above.
2491 */
2492
2493 /**
2494 * dev_ioctl - network device ioctl
2495 * @cmd: command to issue
2496 * @arg: pointer to a struct ifreq in user space
2497 *
2498 * Issue ioctl functions to devices. This is normally called by the
2499 * user space syscall interfaces but can sometimes be useful for
2500 * other purposes. The return value is the return from the syscall if
2501 * positive or a negative errno code on error.
2502 */
2503
2504 int dev_ioctl(unsigned int cmd, void __user *arg)
2505 {
2506 struct ifreq ifr;
2507 int ret;
2508 char *colon;
2509
2510 /* One special case: SIOCGIFCONF takes ifconf argument
2511 and requires shared lock, because it sleeps writing
2512 to user space.
2513 */
2514
2515 if (cmd == SIOCGIFCONF) {
2516 rtnl_shlock();
2517 ret = dev_ifconf((char __user *) arg);
2518 rtnl_shunlock();
2519 return ret;
2520 }
2521 if (cmd == SIOCGIFNAME)
2522 return dev_ifname((struct ifreq __user *)arg);
2523
2524 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2525 return -EFAULT;
2526
2527 ifr.ifr_name[IFNAMSIZ-1] = 0;
2528
2529 colon = strchr(ifr.ifr_name, ':');
2530 if (colon)
2531 *colon = 0;
2532
2533 /*
2534 * See which interface the caller is talking about.
2535 */
2536
2537 switch (cmd) {
2538 /*
2539 * These ioctl calls:
2540 * - can be done by all.
2541 * - atomic and do not require locking.
2542 * - return a value
2543 */
2544 case SIOCGIFFLAGS:
2545 case SIOCGIFMETRIC:
2546 case SIOCGIFMTU:
2547 case SIOCGIFHWADDR:
2548 case SIOCGIFSLAVE:
2549 case SIOCGIFMAP:
2550 case SIOCGIFINDEX:
2551 case SIOCGIFTXQLEN:
2552 dev_load(ifr.ifr_name);
2553 read_lock(&dev_base_lock);
2554 ret = dev_ifsioc(&ifr, cmd);
2555 read_unlock(&dev_base_lock);
2556 if (!ret) {
2557 if (colon)
2558 *colon = ':';
2559 if (copy_to_user(arg, &ifr,
2560 sizeof(struct ifreq)))
2561 ret = -EFAULT;
2562 }
2563 return ret;
2564
2565 case SIOCETHTOOL:
2566 dev_load(ifr.ifr_name);
2567 rtnl_lock();
2568 ret = dev_ethtool(&ifr);
2569 rtnl_unlock();
2570 if (!ret) {
2571 if (colon)
2572 *colon = ':';
2573 if (copy_to_user(arg, &ifr,
2574 sizeof(struct ifreq)))
2575 ret = -EFAULT;
2576 }
2577 return ret;
2578
2579 /*
2580 * These ioctl calls:
2581 * - require superuser power.
2582 * - require strict serialization.
2583 * - return a value
2584 */
2585 case SIOCGMIIPHY:
2586 case SIOCGMIIREG:
2587 case SIOCSIFNAME:
2588 if (!capable(CAP_NET_ADMIN))
2589 return -EPERM;
2590 dev_load(ifr.ifr_name);
2591 rtnl_lock();
2592 ret = dev_ifsioc(&ifr, cmd);
2593 rtnl_unlock();
2594 if (!ret) {
2595 if (colon)
2596 *colon = ':';
2597 if (copy_to_user(arg, &ifr,
2598 sizeof(struct ifreq)))
2599 ret = -EFAULT;
2600 }
2601 return ret;
2602
2603 /*
2604 * These ioctl calls:
2605 * - require superuser power.
2606 * - require strict serialization.
2607 * - do not return a value
2608 */
2609 case SIOCSIFFLAGS:
2610 case SIOCSIFMETRIC:
2611 case SIOCSIFMTU:
2612 case SIOCSIFMAP:
2613 case SIOCSIFHWADDR:
2614 case SIOCSIFSLAVE:
2615 case SIOCADDMULTI:
2616 case SIOCDELMULTI:
2617 case SIOCSIFHWBROADCAST:
2618 case SIOCSIFTXQLEN:
2619 case SIOCSMIIREG:
2620 case SIOCBONDENSLAVE:
2621 case SIOCBONDRELEASE:
2622 case SIOCBONDSETHWADDR:
2623 case SIOCBONDSLAVEINFOQUERY:
2624 case SIOCBONDINFOQUERY:
2625 case SIOCBONDCHANGEACTIVE:
2626 case SIOCBRADDIF:
2627 case SIOCBRDELIF:
2628 if (!capable(CAP_NET_ADMIN))
2629 return -EPERM;
2630 dev_load(ifr.ifr_name);
2631 rtnl_lock();
2632 ret = dev_ifsioc(&ifr, cmd);
2633 rtnl_unlock();
2634 return ret;
2635
2636 case SIOCGIFMEM:
2637 /* Get the per device memory space. We can add this but
2638 * currently do not support it */
2639 case SIOCSIFMEM:
2640 /* Set the per device memory buffer space.
2641 * Not applicable in our case */
2642 case SIOCSIFLINK:
2643 return -EINVAL;
2644
2645 /*
2646 * Unknown or private ioctl.
2647 */
2648 default:
2649 if (cmd == SIOCWANDEV ||
2650 (cmd >= SIOCDEVPRIVATE &&
2651 cmd <= SIOCDEVPRIVATE + 15)) {
2652 dev_load(ifr.ifr_name);
2653 rtnl_lock();
2654 ret = dev_ifsioc(&ifr, cmd);
2655 rtnl_unlock();
2656 if (!ret && copy_to_user(arg, &ifr,
2657 sizeof(struct ifreq)))
2658 ret = -EFAULT;
2659 return ret;
2660 }
2661 #ifdef WIRELESS_EXT
2662 /* Take care of Wireless Extensions */
2663 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
2664 /* If command is `set a parameter', or
2665 * `get the encoding parameters', check if
2666 * the user has the right to do it */
2667 if (IW_IS_SET(cmd) || cmd == SIOCGIWENCODE) {
2668 if (!capable(CAP_NET_ADMIN))
2669 return -EPERM;
2670 }
2671 dev_load(ifr.ifr_name);
2672 rtnl_lock();
2673 /* Follow me in net/core/wireless.c */
2674 ret = wireless_process_ioctl(&ifr, cmd);
2675 rtnl_unlock();
2676 if (IW_IS_GET(cmd) &&
2677 copy_to_user(arg, &ifr,
2678 sizeof(struct ifreq)))
2679 ret = -EFAULT;
2680 return ret;
2681 }
2682 #endif /* WIRELESS_EXT */
2683 return -EINVAL;
2684 }
2685 }
2686
2687
2688 /**
2689 * dev_new_index - allocate an ifindex
2690 *
2691 * Returns a suitable unique value for a new device interface
2692 * number. The caller must hold the rtnl semaphore or the
2693 * dev_base_lock to be sure it remains unique.
2694 */
2695 static int dev_new_index(void)
2696 {
2697 static int ifindex;
2698 for (;;) {
2699 if (++ifindex <= 0)
2700 ifindex = 1;
2701 if (!__dev_get_by_index(ifindex))
2702 return ifindex;
2703 }
2704 }
2705
2706 static int dev_boot_phase = 1;
2707
2708 /* Delayed registration/unregisteration */
2709 static DEFINE_SPINLOCK(net_todo_list_lock);
2710 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list);
2711
2712 static inline void net_set_todo(struct net_device *dev)
2713 {
2714 spin_lock(&net_todo_list_lock);
2715 list_add_tail(&dev->todo_list, &net_todo_list);
2716 spin_unlock(&net_todo_list_lock);
2717 }
2718
2719 /**
2720 * register_netdevice - register a network device
2721 * @dev: device to register
2722 *
2723 * Take a completed network device structure and add it to the kernel
2724 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
2725 * chain. 0 is returned on success. A negative errno code is returned
2726 * on a failure to set up the device, or if the name is a duplicate.
2727 *
2728 * Callers must hold the rtnl semaphore. You may want
2729 * register_netdev() instead of this.
2730 *
2731 * BUGS:
2732 * The locking appears insufficient to guarantee two parallel registers
2733 * will not get the same name.
2734 */
2735
2736 int register_netdevice(struct net_device *dev)
2737 {
2738 struct hlist_head *head;
2739 struct hlist_node *p;
2740 int ret;
2741
2742 BUG_ON(dev_boot_phase);
2743 ASSERT_RTNL();
2744
2745 /* When net_device's are persistent, this will be fatal. */
2746 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
2747
2748 spin_lock_init(&dev->queue_lock);
2749 spin_lock_init(&dev->xmit_lock);
2750 dev->xmit_lock_owner = -1;
2751 #ifdef CONFIG_NET_CLS_ACT
2752 spin_lock_init(&dev->ingress_lock);
2753 #endif
2754
2755 ret = alloc_divert_blk(dev);
2756 if (ret)
2757 goto out;
2758
2759 dev->iflink = -1;
2760
2761 /* Init, if this function is available */
2762 if (dev->init) {
2763 ret = dev->init(dev);
2764 if (ret) {
2765 if (ret > 0)
2766 ret = -EIO;
2767 goto out_err;
2768 }
2769 }
2770
2771 if (!dev_valid_name(dev->name)) {
2772 ret = -EINVAL;
2773 goto out_err;
2774 }
2775
2776 dev->ifindex = dev_new_index();
2777 if (dev->iflink == -1)
2778 dev->iflink = dev->ifindex;
2779
2780 /* Check for existence of name */
2781 head = dev_name_hash(dev->name);
2782 hlist_for_each(p, head) {
2783 struct net_device *d
2784 = hlist_entry(p, struct net_device, name_hlist);
2785 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
2786 ret = -EEXIST;
2787 goto out_err;
2788 }
2789 }
2790
2791 /* Fix illegal SG+CSUM combinations. */
2792 if ((dev->features & NETIF_F_SG) &&
2793 !(dev->features & (NETIF_F_IP_CSUM |
2794 NETIF_F_NO_CSUM |
2795 NETIF_F_HW_CSUM))) {
2796 printk("%s: Dropping NETIF_F_SG since no checksum feature.\n",
2797 dev->name);
2798 dev->features &= ~NETIF_F_SG;
2799 }
2800
2801 /* TSO requires that SG is present as well. */
2802 if ((dev->features & NETIF_F_TSO) &&
2803 !(dev->features & NETIF_F_SG)) {
2804 printk("%s: Dropping NETIF_F_TSO since no SG feature.\n",
2805 dev->name);
2806 dev->features &= ~NETIF_F_TSO;
2807 }
2808
2809 /*
2810 * nil rebuild_header routine,
2811 * that should be never called and used as just bug trap.
2812 */
2813
2814 if (!dev->rebuild_header)
2815 dev->rebuild_header = default_rebuild_header;
2816
2817 /*
2818 * Default initial state at registry is that the
2819 * device is present.
2820 */
2821
2822 set_bit(__LINK_STATE_PRESENT, &dev->state);
2823
2824 dev->next = NULL;
2825 dev_init_scheduler(dev);
2826 write_lock_bh(&dev_base_lock);
2827 *dev_tail = dev;
2828 dev_tail = &dev->next;
2829 hlist_add_head(&dev->name_hlist, head);
2830 hlist_add_head(&dev->index_hlist, dev_index_hash(dev->ifindex));
2831 dev_hold(dev);
2832 dev->reg_state = NETREG_REGISTERING;
2833 write_unlock_bh(&dev_base_lock);
2834
2835 /* Notify protocols, that a new device appeared. */
2836 notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev);
2837
2838 /* Finish registration after unlock */
2839 net_set_todo(dev);
2840 ret = 0;
2841
2842 out:
2843 return ret;
2844 out_err:
2845 free_divert_blk(dev);
2846 goto out;
2847 }
2848
2849 /**
2850 * register_netdev - register a network device
2851 * @dev: device to register
2852 *
2853 * Take a completed network device structure and add it to the kernel
2854 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
2855 * chain. 0 is returned on success. A negative errno code is returned
2856 * on a failure to set up the device, or if the name is a duplicate.
2857 *
2858 * This is a wrapper around register_netdev that takes the rtnl semaphore
2859 * and expands the device name if you passed a format string to
2860 * alloc_netdev.
2861 */
2862 int register_netdev(struct net_device *dev)
2863 {
2864 int err;
2865
2866 rtnl_lock();
2867
2868 /*
2869 * If the name is a format string the caller wants us to do a
2870 * name allocation.
2871 */
2872 if (strchr(dev->name, '%')) {
2873 err = dev_alloc_name(dev, dev->name);
2874 if (err < 0)
2875 goto out;
2876 }
2877
2878 /*
2879 * Back compatibility hook. Kill this one in 2.5
2880 */
2881 if (dev->name[0] == 0 || dev->name[0] == ' ') {
2882 err = dev_alloc_name(dev, "eth%d");
2883 if (err < 0)
2884 goto out;
2885 }
2886
2887 err = register_netdevice(dev);
2888 out:
2889 rtnl_unlock();
2890 return err;
2891 }
2892 EXPORT_SYMBOL(register_netdev);
2893
2894 /*
2895 * netdev_wait_allrefs - wait until all references are gone.
2896 *
2897 * This is called when unregistering network devices.
2898 *
2899 * Any protocol or device that holds a reference should register
2900 * for netdevice notification, and cleanup and put back the
2901 * reference if they receive an UNREGISTER event.
2902 * We can get stuck here if buggy protocols don't correctly
2903 * call dev_put.
2904 */
2905 static void netdev_wait_allrefs(struct net_device *dev)
2906 {
2907 unsigned long rebroadcast_time, warning_time;
2908
2909 rebroadcast_time = warning_time = jiffies;
2910 while (atomic_read(&dev->refcnt) != 0) {
2911 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
2912 rtnl_shlock();
2913
2914 /* Rebroadcast unregister notification */
2915 notifier_call_chain(&netdev_chain,
2916 NETDEV_UNREGISTER, dev);
2917
2918 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
2919 &dev->state)) {
2920 /* We must not have linkwatch events
2921 * pending on unregister. If this
2922 * happens, we simply run the queue
2923 * unscheduled, resulting in a noop
2924 * for this device.
2925 */
2926 linkwatch_run_queue();
2927 }
2928
2929 rtnl_shunlock();
2930
2931 rebroadcast_time = jiffies;
2932 }
2933
2934 msleep(250);
2935
2936 if (time_after(jiffies, warning_time + 10 * HZ)) {
2937 printk(KERN_EMERG "unregister_netdevice: "
2938 "waiting for %s to become free. Usage "
2939 "count = %d\n",
2940 dev->name, atomic_read(&dev->refcnt));
2941 warning_time = jiffies;
2942 }
2943 }
2944 }
2945
2946 /* The sequence is:
2947 *
2948 * rtnl_lock();
2949 * ...
2950 * register_netdevice(x1);
2951 * register_netdevice(x2);
2952 * ...
2953 * unregister_netdevice(y1);
2954 * unregister_netdevice(y2);
2955 * ...
2956 * rtnl_unlock();
2957 * free_netdev(y1);
2958 * free_netdev(y2);
2959 *
2960 * We are invoked by rtnl_unlock() after it drops the semaphore.
2961 * This allows us to deal with problems:
2962 * 1) We can create/delete sysfs objects which invoke hotplug
2963 * without deadlocking with linkwatch via keventd.
2964 * 2) Since we run with the RTNL semaphore not held, we can sleep
2965 * safely in order to wait for the netdev refcnt to drop to zero.
2966 */
2967 static DECLARE_MUTEX(net_todo_run_mutex);
2968 void netdev_run_todo(void)
2969 {
2970 struct list_head list = LIST_HEAD_INIT(list);
2971 int err;
2972
2973
2974 /* Need to guard against multiple cpu's getting out of order. */
2975 down(&net_todo_run_mutex);
2976
2977 /* Not safe to do outside the semaphore. We must not return
2978 * until all unregister events invoked by the local processor
2979 * have been completed (either by this todo run, or one on
2980 * another cpu).
2981 */
2982 if (list_empty(&net_todo_list))
2983 goto out;
2984
2985 /* Snapshot list, allow later requests */
2986 spin_lock(&net_todo_list_lock);
2987 list_splice_init(&net_todo_list, &list);
2988 spin_unlock(&net_todo_list_lock);
2989
2990 while (!list_empty(&list)) {
2991 struct net_device *dev
2992 = list_entry(list.next, struct net_device, todo_list);
2993 list_del(&dev->todo_list);
2994
2995 switch(dev->reg_state) {
2996 case NETREG_REGISTERING:
2997 err = netdev_register_sysfs(dev);
2998 if (err)
2999 printk(KERN_ERR "%s: failed sysfs registration (%d)\n",
3000 dev->name, err);
3001 dev->reg_state = NETREG_REGISTERED;
3002 break;
3003
3004 case NETREG_UNREGISTERING:
3005 netdev_unregister_sysfs(dev);
3006 dev->reg_state = NETREG_UNREGISTERED;
3007
3008 netdev_wait_allrefs(dev);
3009
3010 /* paranoia */
3011 BUG_ON(atomic_read(&dev->refcnt));
3012 BUG_TRAP(!dev->ip_ptr);
3013 BUG_TRAP(!dev->ip6_ptr);
3014 BUG_TRAP(!dev->dn_ptr);
3015
3016
3017 /* It must be the very last action,
3018 * after this 'dev' may point to freed up memory.
3019 */
3020 if (dev->destructor)
3021 dev->destructor(dev);
3022 break;
3023
3024 default:
3025 printk(KERN_ERR "network todo '%s' but state %d\n",
3026 dev->name, dev->reg_state);
3027 break;
3028 }
3029 }
3030
3031 out:
3032 up(&net_todo_run_mutex);
3033 }
3034
3035 /**
3036 * alloc_netdev - allocate network device
3037 * @sizeof_priv: size of private data to allocate space for
3038 * @name: device name format string
3039 * @setup: callback to initialize device
3040 *
3041 * Allocates a struct net_device with private data area for driver use
3042 * and performs basic initialization.
3043 */
3044 struct net_device *alloc_netdev(int sizeof_priv, const char *name,
3045 void (*setup)(struct net_device *))
3046 {
3047 void *p;
3048 struct net_device *dev;
3049 int alloc_size;
3050
3051 /* ensure 32-byte alignment of both the device and private area */
3052 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
3053 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST;
3054
3055 p = kmalloc(alloc_size, GFP_KERNEL);
3056 if (!p) {
3057 printk(KERN_ERR "alloc_dev: Unable to allocate device.\n");
3058 return NULL;
3059 }
3060 memset(p, 0, alloc_size);
3061
3062 dev = (struct net_device *)
3063 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
3064 dev->padded = (char *)dev - (char *)p;
3065
3066 if (sizeof_priv)
3067 dev->priv = netdev_priv(dev);
3068
3069 setup(dev);
3070 strcpy(dev->name, name);
3071 return dev;
3072 }
3073 EXPORT_SYMBOL(alloc_netdev);
3074
3075 /**
3076 * free_netdev - free network device
3077 * @dev: device
3078 *
3079 * This function does the last stage of destroying an allocated device
3080 * interface. The reference to the device object is released.
3081 * If this is the last reference then it will be freed.
3082 */
3083 void free_netdev(struct net_device *dev)
3084 {
3085 #ifdef CONFIG_SYSFS
3086 /* Compatiablity with error handling in drivers */
3087 if (dev->reg_state == NETREG_UNINITIALIZED) {
3088 kfree((char *)dev - dev->padded);
3089 return;
3090 }
3091
3092 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
3093 dev->reg_state = NETREG_RELEASED;
3094
3095 /* will free via class release */
3096 class_device_put(&dev->class_dev);
3097 #else
3098 kfree((char *)dev - dev->padded);
3099 #endif
3100 }
3101
3102 /* Synchronize with packet receive processing. */
3103 void synchronize_net(void)
3104 {
3105 might_sleep();
3106 synchronize_rcu();
3107 }
3108
3109 /**
3110 * unregister_netdevice - remove device from the kernel
3111 * @dev: device
3112 *
3113 * This function shuts down a device interface and removes it
3114 * from the kernel tables. On success 0 is returned, on a failure
3115 * a negative errno code is returned.
3116 *
3117 * Callers must hold the rtnl semaphore. You may want
3118 * unregister_netdev() instead of this.
3119 */
3120
3121 int unregister_netdevice(struct net_device *dev)
3122 {
3123 struct net_device *d, **dp;
3124
3125 BUG_ON(dev_boot_phase);
3126 ASSERT_RTNL();
3127
3128 /* Some devices call without registering for initialization unwind. */
3129 if (dev->reg_state == NETREG_UNINITIALIZED) {
3130 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3131 "was registered\n", dev->name, dev);
3132 return -ENODEV;
3133 }
3134
3135 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3136
3137 /* If device is running, close it first. */
3138 if (dev->flags & IFF_UP)
3139 dev_close(dev);
3140
3141 /* And unlink it from device chain. */
3142 for (dp = &dev_base; (d = *dp) != NULL; dp = &d->next) {
3143 if (d == dev) {
3144 write_lock_bh(&dev_base_lock);
3145 hlist_del(&dev->name_hlist);
3146 hlist_del(&dev->index_hlist);
3147 if (dev_tail == &dev->next)
3148 dev_tail = dp;
3149 *dp = d->next;
3150 write_unlock_bh(&dev_base_lock);
3151 break;
3152 }
3153 }
3154 if (!d) {
3155 printk(KERN_ERR "unregister net_device: '%s' not found\n",
3156 dev->name);
3157 return -ENODEV;
3158 }
3159
3160 dev->reg_state = NETREG_UNREGISTERING;
3161
3162 synchronize_net();
3163
3164 /* Shutdown queueing discipline. */
3165 dev_shutdown(dev);
3166
3167
3168 /* Notify protocols, that we are about to destroy
3169 this device. They should clean all the things.
3170 */
3171 notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev);
3172
3173 /*
3174 * Flush the multicast chain
3175 */
3176 dev_mc_discard(dev);
3177
3178 if (dev->uninit)
3179 dev->uninit(dev);
3180
3181 /* Notifier chain MUST detach us from master device. */
3182 BUG_TRAP(!dev->master);
3183
3184 free_divert_blk(dev);
3185
3186 /* Finish processing unregister after unlock */
3187 net_set_todo(dev);
3188
3189 synchronize_net();
3190
3191 dev_put(dev);
3192 return 0;
3193 }
3194
3195 /**
3196 * unregister_netdev - remove device from the kernel
3197 * @dev: device
3198 *
3199 * This function shuts down a device interface and removes it
3200 * from the kernel tables. On success 0 is returned, on a failure
3201 * a negative errno code is returned.
3202 *
3203 * This is just a wrapper for unregister_netdevice that takes
3204 * the rtnl semaphore. In general you want to use this and not
3205 * unregister_netdevice.
3206 */
3207 void unregister_netdev(struct net_device *dev)
3208 {
3209 rtnl_lock();
3210 unregister_netdevice(dev);
3211 rtnl_unlock();
3212 }
3213
3214 EXPORT_SYMBOL(unregister_netdev);
3215
3216 #ifdef CONFIG_HOTPLUG_CPU
3217 static int dev_cpu_callback(struct notifier_block *nfb,
3218 unsigned long action,
3219 void *ocpu)
3220 {
3221 struct sk_buff **list_skb;
3222 struct net_device **list_net;
3223 struct sk_buff *skb;
3224 unsigned int cpu, oldcpu = (unsigned long)ocpu;
3225 struct softnet_data *sd, *oldsd;
3226
3227 if (action != CPU_DEAD)
3228 return NOTIFY_OK;
3229
3230 local_irq_disable();
3231 cpu = smp_processor_id();
3232 sd = &per_cpu(softnet_data, cpu);
3233 oldsd = &per_cpu(softnet_data, oldcpu);
3234
3235 /* Find end of our completion_queue. */
3236 list_skb = &sd->completion_queue;
3237 while (*list_skb)
3238 list_skb = &(*list_skb)->next;
3239 /* Append completion queue from offline CPU. */
3240 *list_skb = oldsd->completion_queue;
3241 oldsd->completion_queue = NULL;
3242
3243 /* Find end of our output_queue. */
3244 list_net = &sd->output_queue;
3245 while (*list_net)
3246 list_net = &(*list_net)->next_sched;
3247 /* Append output queue from offline CPU. */
3248 *list_net = oldsd->output_queue;
3249 oldsd->output_queue = NULL;
3250
3251 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3252 local_irq_enable();
3253
3254 /* Process offline CPU's input_pkt_queue */
3255 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
3256 netif_rx(skb);
3257
3258 return NOTIFY_OK;
3259 }
3260 #endif /* CONFIG_HOTPLUG_CPU */
3261
3262
3263 /*
3264 * Initialize the DEV module. At boot time this walks the device list and
3265 * unhooks any devices that fail to initialise (normally hardware not
3266 * present) and leaves us with a valid list of present and active devices.
3267 *
3268 */
3269
3270 /*
3271 * This is called single threaded during boot, so no need
3272 * to take the rtnl semaphore.
3273 */
3274 static int __init net_dev_init(void)
3275 {
3276 int i, rc = -ENOMEM;
3277
3278 BUG_ON(!dev_boot_phase);
3279
3280 net_random_init();
3281
3282 if (dev_proc_init())
3283 goto out;
3284
3285 if (netdev_sysfs_init())
3286 goto out;
3287
3288 INIT_LIST_HEAD(&ptype_all);
3289 for (i = 0; i < 16; i++)
3290 INIT_LIST_HEAD(&ptype_base[i]);
3291
3292 for (i = 0; i < ARRAY_SIZE(dev_name_head); i++)
3293 INIT_HLIST_HEAD(&dev_name_head[i]);
3294
3295 for (i = 0; i < ARRAY_SIZE(dev_index_head); i++)
3296 INIT_HLIST_HEAD(&dev_index_head[i]);
3297
3298 /*
3299 * Initialise the packet receive queues.
3300 */
3301
3302 for (i = 0; i < NR_CPUS; i++) {
3303 struct softnet_data *queue;
3304
3305 queue = &per_cpu(softnet_data, i);
3306 skb_queue_head_init(&queue->input_pkt_queue);
3307 queue->throttle = 0;
3308 queue->cng_level = 0;
3309 queue->avg_blog = 10; /* arbitrary non-zero */
3310 queue->completion_queue = NULL;
3311 INIT_LIST_HEAD(&queue->poll_list);
3312 set_bit(__LINK_STATE_START, &queue->backlog_dev.state);
3313 queue->backlog_dev.weight = weight_p;
3314 queue->backlog_dev.poll = process_backlog;
3315 atomic_set(&queue->backlog_dev.refcnt, 1);
3316 }
3317
3318 #ifdef OFFLINE_SAMPLE
3319 samp_timer.expires = jiffies + (10 * HZ);
3320 add_timer(&samp_timer);
3321 #endif
3322
3323 dev_boot_phase = 0;
3324
3325 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
3326 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
3327
3328 hotcpu_notifier(dev_cpu_callback, 0);
3329 dst_init();
3330 dev_mcast_init();
3331 rc = 0;
3332 out:
3333 return rc;
3334 }
3335
3336 subsys_initcall(net_dev_init);
3337
3338 EXPORT_SYMBOL(__dev_get_by_index);
3339 EXPORT_SYMBOL(__dev_get_by_name);
3340 EXPORT_SYMBOL(__dev_remove_pack);
3341 EXPORT_SYMBOL(__skb_linearize);
3342 EXPORT_SYMBOL(dev_add_pack);
3343 EXPORT_SYMBOL(dev_alloc_name);
3344 EXPORT_SYMBOL(dev_close);
3345 EXPORT_SYMBOL(dev_get_by_flags);
3346 EXPORT_SYMBOL(dev_get_by_index);
3347 EXPORT_SYMBOL(dev_get_by_name);
3348 EXPORT_SYMBOL(dev_ioctl);
3349 EXPORT_SYMBOL(dev_open);
3350 EXPORT_SYMBOL(dev_queue_xmit);
3351 EXPORT_SYMBOL(dev_remove_pack);
3352 EXPORT_SYMBOL(dev_set_allmulti);
3353 EXPORT_SYMBOL(dev_set_promiscuity);
3354 EXPORT_SYMBOL(dev_change_flags);
3355 EXPORT_SYMBOL(dev_set_mtu);
3356 EXPORT_SYMBOL(dev_set_mac_address);
3357 EXPORT_SYMBOL(free_netdev);
3358 EXPORT_SYMBOL(netdev_boot_setup_check);
3359 EXPORT_SYMBOL(netdev_set_master);
3360 EXPORT_SYMBOL(netdev_state_change);
3361 EXPORT_SYMBOL(netif_receive_skb);
3362 EXPORT_SYMBOL(netif_rx);
3363 EXPORT_SYMBOL(register_gifconf);
3364 EXPORT_SYMBOL(register_netdevice);
3365 EXPORT_SYMBOL(register_netdevice_notifier);
3366 EXPORT_SYMBOL(skb_checksum_help);
3367 EXPORT_SYMBOL(synchronize_net);
3368 EXPORT_SYMBOL(unregister_netdevice);
3369 EXPORT_SYMBOL(unregister_netdevice_notifier);
3370 EXPORT_SYMBOL(net_enable_timestamp);
3371 EXPORT_SYMBOL(net_disable_timestamp);
3372 EXPORT_SYMBOL(dev_get_flags);
3373
3374 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
3375 EXPORT_SYMBOL(br_handle_frame_hook);
3376 EXPORT_SYMBOL(br_fdb_get_hook);
3377 EXPORT_SYMBOL(br_fdb_put_hook);
3378 #endif
3379
3380 #ifdef CONFIG_KMOD
3381 EXPORT_SYMBOL(dev_load);
3382 #endif
3383
3384 EXPORT_PER_CPU_SYMBOL(softnet_data);