]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/core/dev.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
[mirror_ubuntu-jammy-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149
150 #include "net-sysfs.h"
151
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly; /* Taps */
162 static struct list_head offload_base __read_mostly;
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166 struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169 /*
170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171 * semaphore.
172 *
173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174 *
175 * Writers must hold the rtnl semaphore while they loop through the
176 * dev_base_head list, and hold dev_base_lock for writing when they do the
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
179 *
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
183 *
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
187 */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190
191 static DEFINE_MUTEX(ifalias_mutex);
192
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199 static seqcount_t devnet_rename_seq;
200
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 while (++net->dev_base_seq == 0)
204 ;
205 }
206
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236 struct net *net = dev_net(dev);
237
238 ASSERT_RTNL();
239
240 write_lock_bh(&dev_base_lock);
241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 hlist_add_head_rcu(&dev->index_hlist,
244 dev_index_hash(net, dev->ifindex));
245 write_unlock_bh(&dev_base_lock);
246
247 dev_base_seq_inc(net);
248 }
249
250 /* Device list removal
251 * caller must respect a RCU grace period before freeing/reusing dev
252 */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255 ASSERT_RTNL();
256
257 /* Unlink dev from the device chain */
258 write_lock_bh(&dev_base_lock);
259 list_del_rcu(&dev->dev_list);
260 hlist_del_rcu(&dev->name_hlist);
261 hlist_del_rcu(&dev->index_hlist);
262 write_unlock_bh(&dev_base_lock);
263
264 dev_base_seq_inc(dev_net(dev));
265 }
266
267 /*
268 * Our notifier list
269 */
270
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272
273 /*
274 * Device drivers call our routines to queue packets here. We empty the
275 * queue in the local softnet handler.
276 */
277
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280
281 #ifdef CONFIG_LOCKDEP
282 /*
283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284 * according to dev->type
285 */
286 static const unsigned short netdev_lock_type[] = {
287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302
303 static const char *const netdev_lock_name[] = {
304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325 int i;
326
327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 if (netdev_lock_type[i] == dev_type)
329 return i;
330 /* the last key is used by default */
331 return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 unsigned short dev_type)
336 {
337 int i;
338
339 i = netdev_lock_pos(dev_type);
340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 netdev_lock_name[i]);
342 }
343
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 int i;
347
348 i = netdev_lock_pos(dev->type);
349 lockdep_set_class_and_name(&dev->addr_list_lock,
350 &netdev_addr_lock_key[i],
351 netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362
363 /*******************************************************************************
364 *
365 * Protocol management and registration routines
366 *
367 *******************************************************************************/
368
369
370 /*
371 * Add a protocol ID to the list. Now that the input handler is
372 * smarter we can dispense with all the messy stuff that used to be
373 * here.
374 *
375 * BEWARE!!! Protocol handlers, mangling input packets,
376 * MUST BE last in hash buckets and checking protocol handlers
377 * MUST start from promiscuous ptype_all chain in net_bh.
378 * It is true now, do not change it.
379 * Explanation follows: if protocol handler, mangling packet, will
380 * be the first on list, it is not able to sense, that packet
381 * is cloned and should be copied-on-write, so that it will
382 * change it and subsequent readers will get broken packet.
383 * --ANK (980803)
384 */
385
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388 if (pt->type == htons(ETH_P_ALL))
389 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 else
391 return pt->dev ? &pt->dev->ptype_specific :
392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394
395 /**
396 * dev_add_pack - add packet handler
397 * @pt: packet type declaration
398 *
399 * Add a protocol handler to the networking stack. The passed &packet_type
400 * is linked into kernel lists and may not be freed until it has been
401 * removed from the kernel lists.
402 *
403 * This call does not sleep therefore it can not
404 * guarantee all CPU's that are in middle of receiving packets
405 * will see the new packet type (until the next received packet).
406 */
407
408 void dev_add_pack(struct packet_type *pt)
409 {
410 struct list_head *head = ptype_head(pt);
411
412 spin_lock(&ptype_lock);
413 list_add_rcu(&pt->list, head);
414 spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417
418 /**
419 * __dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
425 * returns.
426 *
427 * The packet type might still be in use by receivers
428 * and must not be freed until after all the CPU's have gone
429 * through a quiescent state.
430 */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433 struct list_head *head = ptype_head(pt);
434 struct packet_type *pt1;
435
436 spin_lock(&ptype_lock);
437
438 list_for_each_entry(pt1, head, list) {
439 if (pt == pt1) {
440 list_del_rcu(&pt->list);
441 goto out;
442 }
443 }
444
445 pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447 spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450
451 /**
452 * dev_remove_pack - remove packet handler
453 * @pt: packet type declaration
454 *
455 * Remove a protocol handler that was previously added to the kernel
456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
457 * from the kernel lists and can be freed or reused once this function
458 * returns.
459 *
460 * This call sleeps to guarantee that no CPU is looking at the packet
461 * type after return.
462 */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465 __dev_remove_pack(pt);
466
467 synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470
471
472 /**
473 * dev_add_offload - register offload handlers
474 * @po: protocol offload declaration
475 *
476 * Add protocol offload handlers to the networking stack. The passed
477 * &proto_offload is linked into kernel lists and may not be freed until
478 * it has been removed from the kernel lists.
479 *
480 * This call does not sleep therefore it can not
481 * guarantee all CPU's that are in middle of receiving packets
482 * will see the new offload handlers (until the next received packet).
483 */
484 void dev_add_offload(struct packet_offload *po)
485 {
486 struct packet_offload *elem;
487
488 spin_lock(&offload_lock);
489 list_for_each_entry(elem, &offload_base, list) {
490 if (po->priority < elem->priority)
491 break;
492 }
493 list_add_rcu(&po->list, elem->list.prev);
494 spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497
498 /**
499 * __dev_remove_offload - remove offload handler
500 * @po: packet offload declaration
501 *
502 * Remove a protocol offload handler that was previously added to the
503 * kernel offload handlers by dev_add_offload(). The passed &offload_type
504 * is removed from the kernel lists and can be freed or reused once this
505 * function returns.
506 *
507 * The packet type might still be in use by receivers
508 * and must not be freed until after all the CPU's have gone
509 * through a quiescent state.
510 */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513 struct list_head *head = &offload_base;
514 struct packet_offload *po1;
515
516 spin_lock(&offload_lock);
517
518 list_for_each_entry(po1, head, list) {
519 if (po == po1) {
520 list_del_rcu(&po->list);
521 goto out;
522 }
523 }
524
525 pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527 spin_unlock(&offload_lock);
528 }
529
530 /**
531 * dev_remove_offload - remove packet offload handler
532 * @po: packet offload declaration
533 *
534 * Remove a packet offload handler that was previously added to the kernel
535 * offload handlers by dev_add_offload(). The passed &offload_type is
536 * removed from the kernel lists and can be freed or reused once this
537 * function returns.
538 *
539 * This call sleeps to guarantee that no CPU is looking at the packet
540 * type after return.
541 */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544 __dev_remove_offload(po);
545
546 synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549
550 /******************************************************************************
551 *
552 * Device Boot-time Settings Routines
553 *
554 ******************************************************************************/
555
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558
559 /**
560 * netdev_boot_setup_add - add new setup entry
561 * @name: name of the device
562 * @map: configured settings for the device
563 *
564 * Adds new setup entry to the dev_boot_setup list. The function
565 * returns 0 on error and 1 on success. This is a generic routine to
566 * all netdevices.
567 */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570 struct netdev_boot_setup *s;
571 int i;
572
573 s = dev_boot_setup;
574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 memset(s[i].name, 0, sizeof(s[i].name));
577 strlcpy(s[i].name, name, IFNAMSIZ);
578 memcpy(&s[i].map, map, sizeof(s[i].map));
579 break;
580 }
581 }
582
583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585
586 /**
587 * netdev_boot_setup_check - check boot time settings
588 * @dev: the netdevice
589 *
590 * Check boot time settings for the device.
591 * The found settings are set for the device to be used
592 * later in the device probing.
593 * Returns 0 if no settings found, 1 if they are.
594 */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597 struct netdev_boot_setup *s = dev_boot_setup;
598 int i;
599
600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 !strcmp(dev->name, s[i].name)) {
603 dev->irq = s[i].map.irq;
604 dev->base_addr = s[i].map.base_addr;
605 dev->mem_start = s[i].map.mem_start;
606 dev->mem_end = s[i].map.mem_end;
607 return 1;
608 }
609 }
610 return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613
614
615 /**
616 * netdev_boot_base - get address from boot time settings
617 * @prefix: prefix for network device
618 * @unit: id for network device
619 *
620 * Check boot time settings for the base address of device.
621 * The found settings are set for the device to be used
622 * later in the device probing.
623 * Returns 0 if no settings found.
624 */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627 const struct netdev_boot_setup *s = dev_boot_setup;
628 char name[IFNAMSIZ];
629 int i;
630
631 sprintf(name, "%s%d", prefix, unit);
632
633 /*
634 * If device already registered then return base of 1
635 * to indicate not to probe for this interface
636 */
637 if (__dev_get_by_name(&init_net, name))
638 return 1;
639
640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 if (!strcmp(name, s[i].name))
642 return s[i].map.base_addr;
643 return 0;
644 }
645
646 /*
647 * Saves at boot time configured settings for any netdevice.
648 */
649 int __init netdev_boot_setup(char *str)
650 {
651 int ints[5];
652 struct ifmap map;
653
654 str = get_options(str, ARRAY_SIZE(ints), ints);
655 if (!str || !*str)
656 return 0;
657
658 /* Save settings */
659 memset(&map, 0, sizeof(map));
660 if (ints[0] > 0)
661 map.irq = ints[1];
662 if (ints[0] > 1)
663 map.base_addr = ints[2];
664 if (ints[0] > 2)
665 map.mem_start = ints[3];
666 if (ints[0] > 3)
667 map.mem_end = ints[4];
668
669 /* Add new entry to the list */
670 return netdev_boot_setup_add(str, &map);
671 }
672
673 __setup("netdev=", netdev_boot_setup);
674
675 /*******************************************************************************
676 *
677 * Device Interface Subroutines
678 *
679 *******************************************************************************/
680
681 /**
682 * dev_get_iflink - get 'iflink' value of a interface
683 * @dev: targeted interface
684 *
685 * Indicates the ifindex the interface is linked to.
686 * Physical interfaces have the same 'ifindex' and 'iflink' values.
687 */
688
689 int dev_get_iflink(const struct net_device *dev)
690 {
691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 return dev->netdev_ops->ndo_get_iflink(dev);
693
694 return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697
698 /**
699 * dev_fill_metadata_dst - Retrieve tunnel egress information.
700 * @dev: targeted interface
701 * @skb: The packet.
702 *
703 * For better visibility of tunnel traffic OVS needs to retrieve
704 * egress tunnel information for a packet. Following API allows
705 * user to get this info.
706 */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 struct ip_tunnel_info *info;
710
711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
712 return -EINVAL;
713
714 info = skb_tunnel_info_unclone(skb);
715 if (!info)
716 return -ENOMEM;
717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 return -EINVAL;
719
720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
724 /**
725 * __dev_get_by_name - find a device by its name
726 * @net: the applicable net namespace
727 * @name: name to find
728 *
729 * Find an interface by name. Must be called under RTNL semaphore
730 * or @dev_base_lock. If the name is found a pointer to the device
731 * is returned. If the name is not found then %NULL is returned. The
732 * reference counters are not incremented so the caller must be
733 * careful with locks.
734 */
735
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738 struct net_device *dev;
739 struct hlist_head *head = dev_name_hash(net, name);
740
741 hlist_for_each_entry(dev, head, name_hlist)
742 if (!strncmp(dev->name, name, IFNAMSIZ))
743 return dev;
744
745 return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748
749 /**
750 * dev_get_by_name_rcu - find a device by its name
751 * @net: the applicable net namespace
752 * @name: name to find
753 *
754 * Find an interface by name.
755 * If the name is found a pointer to the device is returned.
756 * If the name is not found then %NULL is returned.
757 * The reference counters are not incremented so the caller must be
758 * careful with locks. The caller must hold RCU lock.
759 */
760
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763 struct net_device *dev;
764 struct hlist_head *head = dev_name_hash(net, name);
765
766 hlist_for_each_entry_rcu(dev, head, name_hlist)
767 if (!strncmp(dev->name, name, IFNAMSIZ))
768 return dev;
769
770 return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773
774 /**
775 * dev_get_by_name - find a device by its name
776 * @net: the applicable net namespace
777 * @name: name to find
778 *
779 * Find an interface by name. This can be called from any
780 * context and does its own locking. The returned handle has
781 * the usage count incremented and the caller must use dev_put() to
782 * release it when it is no longer needed. %NULL is returned if no
783 * matching device is found.
784 */
785
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788 struct net_device *dev;
789
790 rcu_read_lock();
791 dev = dev_get_by_name_rcu(net, name);
792 if (dev)
793 dev_hold(dev);
794 rcu_read_unlock();
795 return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798
799 /**
800 * __dev_get_by_index - find a device by its ifindex
801 * @net: the applicable net namespace
802 * @ifindex: index of device
803 *
804 * Search for an interface by index. Returns %NULL if the device
805 * is not found or a pointer to the device. The device has not
806 * had its reference counter increased so the caller must be careful
807 * about locking. The caller must hold either the RTNL semaphore
808 * or @dev_base_lock.
809 */
810
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813 struct net_device *dev;
814 struct hlist_head *head = dev_index_hash(net, ifindex);
815
816 hlist_for_each_entry(dev, head, index_hlist)
817 if (dev->ifindex == ifindex)
818 return dev;
819
820 return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823
824 /**
825 * dev_get_by_index_rcu - find a device by its ifindex
826 * @net: the applicable net namespace
827 * @ifindex: index of device
828 *
829 * Search for an interface by index. Returns %NULL if the device
830 * is not found or a pointer to the device. The device has not
831 * had its reference counter increased so the caller must be careful
832 * about locking. The caller must hold RCU lock.
833 */
834
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837 struct net_device *dev;
838 struct hlist_head *head = dev_index_hash(net, ifindex);
839
840 hlist_for_each_entry_rcu(dev, head, index_hlist)
841 if (dev->ifindex == ifindex)
842 return dev;
843
844 return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847
848
849 /**
850 * dev_get_by_index - find a device by its ifindex
851 * @net: the applicable net namespace
852 * @ifindex: index of device
853 *
854 * Search for an interface by index. Returns NULL if the device
855 * is not found or a pointer to the device. The device returned has
856 * had a reference added and the pointer is safe until the user calls
857 * dev_put to indicate they have finished with it.
858 */
859
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862 struct net_device *dev;
863
864 rcu_read_lock();
865 dev = dev_get_by_index_rcu(net, ifindex);
866 if (dev)
867 dev_hold(dev);
868 rcu_read_unlock();
869 return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872
873 /**
874 * dev_get_by_napi_id - find a device by napi_id
875 * @napi_id: ID of the NAPI struct
876 *
877 * Search for an interface by NAPI ID. Returns %NULL if the device
878 * is not found or a pointer to the device. The device has not had
879 * its reference counter increased so the caller must be careful
880 * about locking. The caller must hold RCU lock.
881 */
882
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885 struct napi_struct *napi;
886
887 WARN_ON_ONCE(!rcu_read_lock_held());
888
889 if (napi_id < MIN_NAPI_ID)
890 return NULL;
891
892 napi = napi_by_id(napi_id);
893
894 return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897
898 /**
899 * netdev_get_name - get a netdevice name, knowing its ifindex.
900 * @net: network namespace
901 * @name: a pointer to the buffer where the name will be stored.
902 * @ifindex: the ifindex of the interface to get the name from.
903 *
904 * The use of raw_seqcount_begin() and cond_resched() before
905 * retrying is required as we want to give the writers a chance
906 * to complete when CONFIG_PREEMPT is not set.
907 */
908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910 struct net_device *dev;
911 unsigned int seq;
912
913 retry:
914 seq = raw_seqcount_begin(&devnet_rename_seq);
915 rcu_read_lock();
916 dev = dev_get_by_index_rcu(net, ifindex);
917 if (!dev) {
918 rcu_read_unlock();
919 return -ENODEV;
920 }
921
922 strcpy(name, dev->name);
923 rcu_read_unlock();
924 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 cond_resched();
926 goto retry;
927 }
928
929 return 0;
930 }
931
932 /**
933 * dev_getbyhwaddr_rcu - find a device by its hardware address
934 * @net: the applicable net namespace
935 * @type: media type of device
936 * @ha: hardware address
937 *
938 * Search for an interface by MAC address. Returns NULL if the device
939 * is not found or a pointer to the device.
940 * The caller must hold RCU or RTNL.
941 * The returned device has not had its ref count increased
942 * and the caller must therefore be careful about locking
943 *
944 */
945
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 const char *ha)
948 {
949 struct net_device *dev;
950
951 for_each_netdev_rcu(net, dev)
952 if (dev->type == type &&
953 !memcmp(dev->dev_addr, ha, dev->addr_len))
954 return dev;
955
956 return NULL;
957 }
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 {
962 struct net_device *dev;
963
964 ASSERT_RTNL();
965 for_each_netdev(net, dev)
966 if (dev->type == type)
967 return dev;
968
969 return NULL;
970 }
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975 struct net_device *dev, *ret = NULL;
976
977 rcu_read_lock();
978 for_each_netdev_rcu(net, dev)
979 if (dev->type == type) {
980 dev_hold(dev);
981 ret = dev;
982 break;
983 }
984 rcu_read_unlock();
985 return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988
989 /**
990 * __dev_get_by_flags - find any device with given flags
991 * @net: the applicable net namespace
992 * @if_flags: IFF_* values
993 * @mask: bitmask of bits in if_flags to check
994 *
995 * Search for any interface with the given flags. Returns NULL if a device
996 * is not found or a pointer to the device. Must be called inside
997 * rtnl_lock(), and result refcount is unchanged.
998 */
999
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 unsigned short mask)
1002 {
1003 struct net_device *dev, *ret;
1004
1005 ASSERT_RTNL();
1006
1007 ret = NULL;
1008 for_each_netdev(net, dev) {
1009 if (((dev->flags ^ if_flags) & mask) == 0) {
1010 ret = dev;
1011 break;
1012 }
1013 }
1014 return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017
1018 /**
1019 * dev_valid_name - check if name is okay for network device
1020 * @name: name string
1021 *
1022 * Network device names need to be valid file names to
1023 * to allow sysfs to work. We also disallow any kind of
1024 * whitespace.
1025 */
1026 bool dev_valid_name(const char *name)
1027 {
1028 if (*name == '\0')
1029 return false;
1030 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1031 return false;
1032 if (!strcmp(name, ".") || !strcmp(name, ".."))
1033 return false;
1034
1035 while (*name) {
1036 if (*name == '/' || *name == ':' || isspace(*name))
1037 return false;
1038 name++;
1039 }
1040 return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043
1044 /**
1045 * __dev_alloc_name - allocate a name for a device
1046 * @net: network namespace to allocate the device name in
1047 * @name: name format string
1048 * @buf: scratch buffer and result name string
1049 *
1050 * Passed a format string - eg "lt%d" it will try and find a suitable
1051 * id. It scans list of devices to build up a free map, then chooses
1052 * the first empty slot. The caller must hold the dev_base or rtnl lock
1053 * while allocating the name and adding the device in order to avoid
1054 * duplicates.
1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 * Returns the number of the unit assigned or a negative errno code.
1057 */
1058
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061 int i = 0;
1062 const char *p;
1063 const int max_netdevices = 8*PAGE_SIZE;
1064 unsigned long *inuse;
1065 struct net_device *d;
1066
1067 if (!dev_valid_name(name))
1068 return -EINVAL;
1069
1070 p = strchr(name, '%');
1071 if (p) {
1072 /*
1073 * Verify the string as this thing may have come from
1074 * the user. There must be either one "%d" and no other "%"
1075 * characters.
1076 */
1077 if (p[1] != 'd' || strchr(p + 2, '%'))
1078 return -EINVAL;
1079
1080 /* Use one page as a bit array of possible slots */
1081 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082 if (!inuse)
1083 return -ENOMEM;
1084
1085 for_each_netdev(net, d) {
1086 if (!sscanf(d->name, name, &i))
1087 continue;
1088 if (i < 0 || i >= max_netdevices)
1089 continue;
1090
1091 /* avoid cases where sscanf is not exact inverse of printf */
1092 snprintf(buf, IFNAMSIZ, name, i);
1093 if (!strncmp(buf, d->name, IFNAMSIZ))
1094 set_bit(i, inuse);
1095 }
1096
1097 i = find_first_zero_bit(inuse, max_netdevices);
1098 free_page((unsigned long) inuse);
1099 }
1100
1101 snprintf(buf, IFNAMSIZ, name, i);
1102 if (!__dev_get_by_name(net, buf))
1103 return i;
1104
1105 /* It is possible to run out of possible slots
1106 * when the name is long and there isn't enough space left
1107 * for the digits, or if all bits are used.
1108 */
1109 return -ENFILE;
1110 }
1111
1112 static int dev_alloc_name_ns(struct net *net,
1113 struct net_device *dev,
1114 const char *name)
1115 {
1116 char buf[IFNAMSIZ];
1117 int ret;
1118
1119 BUG_ON(!net);
1120 ret = __dev_alloc_name(net, name, buf);
1121 if (ret >= 0)
1122 strlcpy(dev->name, buf, IFNAMSIZ);
1123 return ret;
1124 }
1125
1126 /**
1127 * dev_alloc_name - allocate a name for a device
1128 * @dev: device
1129 * @name: name format string
1130 *
1131 * Passed a format string - eg "lt%d" it will try and find a suitable
1132 * id. It scans list of devices to build up a free map, then chooses
1133 * the first empty slot. The caller must hold the dev_base or rtnl lock
1134 * while allocating the name and adding the device in order to avoid
1135 * duplicates.
1136 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137 * Returns the number of the unit assigned or a negative errno code.
1138 */
1139
1140 int dev_alloc_name(struct net_device *dev, const char *name)
1141 {
1142 return dev_alloc_name_ns(dev_net(dev), dev, name);
1143 }
1144 EXPORT_SYMBOL(dev_alloc_name);
1145
1146 int dev_get_valid_name(struct net *net, struct net_device *dev,
1147 const char *name)
1148 {
1149 BUG_ON(!net);
1150
1151 if (!dev_valid_name(name))
1152 return -EINVAL;
1153
1154 if (strchr(name, '%'))
1155 return dev_alloc_name_ns(net, dev, name);
1156 else if (__dev_get_by_name(net, name))
1157 return -EEXIST;
1158 else if (dev->name != name)
1159 strlcpy(dev->name, name, IFNAMSIZ);
1160
1161 return 0;
1162 }
1163 EXPORT_SYMBOL(dev_get_valid_name);
1164
1165 /**
1166 * dev_change_name - change name of a device
1167 * @dev: device
1168 * @newname: name (or format string) must be at least IFNAMSIZ
1169 *
1170 * Change name of a device, can pass format strings "eth%d".
1171 * for wildcarding.
1172 */
1173 int dev_change_name(struct net_device *dev, const char *newname)
1174 {
1175 unsigned char old_assign_type;
1176 char oldname[IFNAMSIZ];
1177 int err = 0;
1178 int ret;
1179 struct net *net;
1180
1181 ASSERT_RTNL();
1182 BUG_ON(!dev_net(dev));
1183
1184 net = dev_net(dev);
1185 if (dev->flags & IFF_UP)
1186 return -EBUSY;
1187
1188 write_seqcount_begin(&devnet_rename_seq);
1189
1190 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191 write_seqcount_end(&devnet_rename_seq);
1192 return 0;
1193 }
1194
1195 memcpy(oldname, dev->name, IFNAMSIZ);
1196
1197 err = dev_get_valid_name(net, dev, newname);
1198 if (err < 0) {
1199 write_seqcount_end(&devnet_rename_seq);
1200 return err;
1201 }
1202
1203 if (oldname[0] && !strchr(oldname, '%'))
1204 netdev_info(dev, "renamed from %s\n", oldname);
1205
1206 old_assign_type = dev->name_assign_type;
1207 dev->name_assign_type = NET_NAME_RENAMED;
1208
1209 rollback:
1210 ret = device_rename(&dev->dev, dev->name);
1211 if (ret) {
1212 memcpy(dev->name, oldname, IFNAMSIZ);
1213 dev->name_assign_type = old_assign_type;
1214 write_seqcount_end(&devnet_rename_seq);
1215 return ret;
1216 }
1217
1218 write_seqcount_end(&devnet_rename_seq);
1219
1220 netdev_adjacent_rename_links(dev, oldname);
1221
1222 write_lock_bh(&dev_base_lock);
1223 hlist_del_rcu(&dev->name_hlist);
1224 write_unlock_bh(&dev_base_lock);
1225
1226 synchronize_rcu();
1227
1228 write_lock_bh(&dev_base_lock);
1229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230 write_unlock_bh(&dev_base_lock);
1231
1232 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233 ret = notifier_to_errno(ret);
1234
1235 if (ret) {
1236 /* err >= 0 after dev_alloc_name() or stores the first errno */
1237 if (err >= 0) {
1238 err = ret;
1239 write_seqcount_begin(&devnet_rename_seq);
1240 memcpy(dev->name, oldname, IFNAMSIZ);
1241 memcpy(oldname, newname, IFNAMSIZ);
1242 dev->name_assign_type = old_assign_type;
1243 old_assign_type = NET_NAME_RENAMED;
1244 goto rollback;
1245 } else {
1246 pr_err("%s: name change rollback failed: %d\n",
1247 dev->name, ret);
1248 }
1249 }
1250
1251 return err;
1252 }
1253
1254 /**
1255 * dev_set_alias - change ifalias of a device
1256 * @dev: device
1257 * @alias: name up to IFALIASZ
1258 * @len: limit of bytes to copy from info
1259 *
1260 * Set ifalias for a device,
1261 */
1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263 {
1264 struct dev_ifalias *new_alias = NULL;
1265
1266 if (len >= IFALIASZ)
1267 return -EINVAL;
1268
1269 if (len) {
1270 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271 if (!new_alias)
1272 return -ENOMEM;
1273
1274 memcpy(new_alias->ifalias, alias, len);
1275 new_alias->ifalias[len] = 0;
1276 }
1277
1278 mutex_lock(&ifalias_mutex);
1279 rcu_swap_protected(dev->ifalias, new_alias,
1280 mutex_is_locked(&ifalias_mutex));
1281 mutex_unlock(&ifalias_mutex);
1282
1283 if (new_alias)
1284 kfree_rcu(new_alias, rcuhead);
1285
1286 return len;
1287 }
1288 EXPORT_SYMBOL(dev_set_alias);
1289
1290 /**
1291 * dev_get_alias - get ifalias of a device
1292 * @dev: device
1293 * @name: buffer to store name of ifalias
1294 * @len: size of buffer
1295 *
1296 * get ifalias for a device. Caller must make sure dev cannot go
1297 * away, e.g. rcu read lock or own a reference count to device.
1298 */
1299 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1300 {
1301 const struct dev_ifalias *alias;
1302 int ret = 0;
1303
1304 rcu_read_lock();
1305 alias = rcu_dereference(dev->ifalias);
1306 if (alias)
1307 ret = snprintf(name, len, "%s", alias->ifalias);
1308 rcu_read_unlock();
1309
1310 return ret;
1311 }
1312
1313 /**
1314 * netdev_features_change - device changes features
1315 * @dev: device to cause notification
1316 *
1317 * Called to indicate a device has changed features.
1318 */
1319 void netdev_features_change(struct net_device *dev)
1320 {
1321 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1322 }
1323 EXPORT_SYMBOL(netdev_features_change);
1324
1325 /**
1326 * netdev_state_change - device changes state
1327 * @dev: device to cause notification
1328 *
1329 * Called to indicate a device has changed state. This function calls
1330 * the notifier chains for netdev_chain and sends a NEWLINK message
1331 * to the routing socket.
1332 */
1333 void netdev_state_change(struct net_device *dev)
1334 {
1335 if (dev->flags & IFF_UP) {
1336 struct netdev_notifier_change_info change_info = {
1337 .info.dev = dev,
1338 };
1339
1340 call_netdevice_notifiers_info(NETDEV_CHANGE,
1341 &change_info.info);
1342 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1343 }
1344 }
1345 EXPORT_SYMBOL(netdev_state_change);
1346
1347 /**
1348 * netdev_notify_peers - notify network peers about existence of @dev
1349 * @dev: network device
1350 *
1351 * Generate traffic such that interested network peers are aware of
1352 * @dev, such as by generating a gratuitous ARP. This may be used when
1353 * a device wants to inform the rest of the network about some sort of
1354 * reconfiguration such as a failover event or virtual machine
1355 * migration.
1356 */
1357 void netdev_notify_peers(struct net_device *dev)
1358 {
1359 rtnl_lock();
1360 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1361 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1362 rtnl_unlock();
1363 }
1364 EXPORT_SYMBOL(netdev_notify_peers);
1365
1366 static int __dev_open(struct net_device *dev)
1367 {
1368 const struct net_device_ops *ops = dev->netdev_ops;
1369 int ret;
1370
1371 ASSERT_RTNL();
1372
1373 if (!netif_device_present(dev))
1374 return -ENODEV;
1375
1376 /* Block netpoll from trying to do any rx path servicing.
1377 * If we don't do this there is a chance ndo_poll_controller
1378 * or ndo_poll may be running while we open the device
1379 */
1380 netpoll_poll_disable(dev);
1381
1382 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1383 ret = notifier_to_errno(ret);
1384 if (ret)
1385 return ret;
1386
1387 set_bit(__LINK_STATE_START, &dev->state);
1388
1389 if (ops->ndo_validate_addr)
1390 ret = ops->ndo_validate_addr(dev);
1391
1392 if (!ret && ops->ndo_open)
1393 ret = ops->ndo_open(dev);
1394
1395 netpoll_poll_enable(dev);
1396
1397 if (ret)
1398 clear_bit(__LINK_STATE_START, &dev->state);
1399 else {
1400 dev->flags |= IFF_UP;
1401 dev_set_rx_mode(dev);
1402 dev_activate(dev);
1403 add_device_randomness(dev->dev_addr, dev->addr_len);
1404 }
1405
1406 return ret;
1407 }
1408
1409 /**
1410 * dev_open - prepare an interface for use.
1411 * @dev: device to open
1412 *
1413 * Takes a device from down to up state. The device's private open
1414 * function is invoked and then the multicast lists are loaded. Finally
1415 * the device is moved into the up state and a %NETDEV_UP message is
1416 * sent to the netdev notifier chain.
1417 *
1418 * Calling this function on an active interface is a nop. On a failure
1419 * a negative errno code is returned.
1420 */
1421 int dev_open(struct net_device *dev)
1422 {
1423 int ret;
1424
1425 if (dev->flags & IFF_UP)
1426 return 0;
1427
1428 ret = __dev_open(dev);
1429 if (ret < 0)
1430 return ret;
1431
1432 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1433 call_netdevice_notifiers(NETDEV_UP, dev);
1434
1435 return ret;
1436 }
1437 EXPORT_SYMBOL(dev_open);
1438
1439 static void __dev_close_many(struct list_head *head)
1440 {
1441 struct net_device *dev;
1442
1443 ASSERT_RTNL();
1444 might_sleep();
1445
1446 list_for_each_entry(dev, head, close_list) {
1447 /* Temporarily disable netpoll until the interface is down */
1448 netpoll_poll_disable(dev);
1449
1450 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1451
1452 clear_bit(__LINK_STATE_START, &dev->state);
1453
1454 /* Synchronize to scheduled poll. We cannot touch poll list, it
1455 * can be even on different cpu. So just clear netif_running().
1456 *
1457 * dev->stop() will invoke napi_disable() on all of it's
1458 * napi_struct instances on this device.
1459 */
1460 smp_mb__after_atomic(); /* Commit netif_running(). */
1461 }
1462
1463 dev_deactivate_many(head);
1464
1465 list_for_each_entry(dev, head, close_list) {
1466 const struct net_device_ops *ops = dev->netdev_ops;
1467
1468 /*
1469 * Call the device specific close. This cannot fail.
1470 * Only if device is UP
1471 *
1472 * We allow it to be called even after a DETACH hot-plug
1473 * event.
1474 */
1475 if (ops->ndo_stop)
1476 ops->ndo_stop(dev);
1477
1478 dev->flags &= ~IFF_UP;
1479 netpoll_poll_enable(dev);
1480 }
1481 }
1482
1483 static void __dev_close(struct net_device *dev)
1484 {
1485 LIST_HEAD(single);
1486
1487 list_add(&dev->close_list, &single);
1488 __dev_close_many(&single);
1489 list_del(&single);
1490 }
1491
1492 void dev_close_many(struct list_head *head, bool unlink)
1493 {
1494 struct net_device *dev, *tmp;
1495
1496 /* Remove the devices that don't need to be closed */
1497 list_for_each_entry_safe(dev, tmp, head, close_list)
1498 if (!(dev->flags & IFF_UP))
1499 list_del_init(&dev->close_list);
1500
1501 __dev_close_many(head);
1502
1503 list_for_each_entry_safe(dev, tmp, head, close_list) {
1504 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1505 call_netdevice_notifiers(NETDEV_DOWN, dev);
1506 if (unlink)
1507 list_del_init(&dev->close_list);
1508 }
1509 }
1510 EXPORT_SYMBOL(dev_close_many);
1511
1512 /**
1513 * dev_close - shutdown an interface.
1514 * @dev: device to shutdown
1515 *
1516 * This function moves an active device into down state. A
1517 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1518 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1519 * chain.
1520 */
1521 void dev_close(struct net_device *dev)
1522 {
1523 if (dev->flags & IFF_UP) {
1524 LIST_HEAD(single);
1525
1526 list_add(&dev->close_list, &single);
1527 dev_close_many(&single, true);
1528 list_del(&single);
1529 }
1530 }
1531 EXPORT_SYMBOL(dev_close);
1532
1533
1534 /**
1535 * dev_disable_lro - disable Large Receive Offload on a device
1536 * @dev: device
1537 *
1538 * Disable Large Receive Offload (LRO) on a net device. Must be
1539 * called under RTNL. This is needed if received packets may be
1540 * forwarded to another interface.
1541 */
1542 void dev_disable_lro(struct net_device *dev)
1543 {
1544 struct net_device *lower_dev;
1545 struct list_head *iter;
1546
1547 dev->wanted_features &= ~NETIF_F_LRO;
1548 netdev_update_features(dev);
1549
1550 if (unlikely(dev->features & NETIF_F_LRO))
1551 netdev_WARN(dev, "failed to disable LRO!\n");
1552
1553 netdev_for_each_lower_dev(dev, lower_dev, iter)
1554 dev_disable_lro(lower_dev);
1555 }
1556 EXPORT_SYMBOL(dev_disable_lro);
1557
1558 /**
1559 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1560 * @dev: device
1561 *
1562 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1563 * called under RTNL. This is needed if Generic XDP is installed on
1564 * the device.
1565 */
1566 static void dev_disable_gro_hw(struct net_device *dev)
1567 {
1568 dev->wanted_features &= ~NETIF_F_GRO_HW;
1569 netdev_update_features(dev);
1570
1571 if (unlikely(dev->features & NETIF_F_GRO_HW))
1572 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1573 }
1574
1575 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1576 {
1577 #define N(val) \
1578 case NETDEV_##val: \
1579 return "NETDEV_" __stringify(val);
1580 switch (cmd) {
1581 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1582 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1583 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1584 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1585 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1586 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1587 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1588 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1589 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1590 }
1591 #undef N
1592 return "UNKNOWN_NETDEV_EVENT";
1593 }
1594 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1595
1596 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1597 struct net_device *dev)
1598 {
1599 struct netdev_notifier_info info = {
1600 .dev = dev,
1601 };
1602
1603 return nb->notifier_call(nb, val, &info);
1604 }
1605
1606 static int dev_boot_phase = 1;
1607
1608 /**
1609 * register_netdevice_notifier - register a network notifier block
1610 * @nb: notifier
1611 *
1612 * Register a notifier to be called when network device events occur.
1613 * The notifier passed is linked into the kernel structures and must
1614 * not be reused until it has been unregistered. A negative errno code
1615 * is returned on a failure.
1616 *
1617 * When registered all registration and up events are replayed
1618 * to the new notifier to allow device to have a race free
1619 * view of the network device list.
1620 */
1621
1622 int register_netdevice_notifier(struct notifier_block *nb)
1623 {
1624 struct net_device *dev;
1625 struct net_device *last;
1626 struct net *net;
1627 int err;
1628
1629 /* Close race with setup_net() and cleanup_net() */
1630 down_write(&pernet_ops_rwsem);
1631 rtnl_lock();
1632 err = raw_notifier_chain_register(&netdev_chain, nb);
1633 if (err)
1634 goto unlock;
1635 if (dev_boot_phase)
1636 goto unlock;
1637 for_each_net(net) {
1638 for_each_netdev(net, dev) {
1639 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1640 err = notifier_to_errno(err);
1641 if (err)
1642 goto rollback;
1643
1644 if (!(dev->flags & IFF_UP))
1645 continue;
1646
1647 call_netdevice_notifier(nb, NETDEV_UP, dev);
1648 }
1649 }
1650
1651 unlock:
1652 rtnl_unlock();
1653 up_write(&pernet_ops_rwsem);
1654 return err;
1655
1656 rollback:
1657 last = dev;
1658 for_each_net(net) {
1659 for_each_netdev(net, dev) {
1660 if (dev == last)
1661 goto outroll;
1662
1663 if (dev->flags & IFF_UP) {
1664 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1665 dev);
1666 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1667 }
1668 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1669 }
1670 }
1671
1672 outroll:
1673 raw_notifier_chain_unregister(&netdev_chain, nb);
1674 goto unlock;
1675 }
1676 EXPORT_SYMBOL(register_netdevice_notifier);
1677
1678 /**
1679 * unregister_netdevice_notifier - unregister a network notifier block
1680 * @nb: notifier
1681 *
1682 * Unregister a notifier previously registered by
1683 * register_netdevice_notifier(). The notifier is unlinked into the
1684 * kernel structures and may then be reused. A negative errno code
1685 * is returned on a failure.
1686 *
1687 * After unregistering unregister and down device events are synthesized
1688 * for all devices on the device list to the removed notifier to remove
1689 * the need for special case cleanup code.
1690 */
1691
1692 int unregister_netdevice_notifier(struct notifier_block *nb)
1693 {
1694 struct net_device *dev;
1695 struct net *net;
1696 int err;
1697
1698 /* Close race with setup_net() and cleanup_net() */
1699 down_write(&pernet_ops_rwsem);
1700 rtnl_lock();
1701 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1702 if (err)
1703 goto unlock;
1704
1705 for_each_net(net) {
1706 for_each_netdev(net, dev) {
1707 if (dev->flags & IFF_UP) {
1708 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1709 dev);
1710 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1711 }
1712 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1713 }
1714 }
1715 unlock:
1716 rtnl_unlock();
1717 up_write(&pernet_ops_rwsem);
1718 return err;
1719 }
1720 EXPORT_SYMBOL(unregister_netdevice_notifier);
1721
1722 /**
1723 * call_netdevice_notifiers_info - call all network notifier blocks
1724 * @val: value passed unmodified to notifier function
1725 * @info: notifier information data
1726 *
1727 * Call all network notifier blocks. Parameters and return value
1728 * are as for raw_notifier_call_chain().
1729 */
1730
1731 static int call_netdevice_notifiers_info(unsigned long val,
1732 struct netdev_notifier_info *info)
1733 {
1734 ASSERT_RTNL();
1735 return raw_notifier_call_chain(&netdev_chain, val, info);
1736 }
1737
1738 /**
1739 * call_netdevice_notifiers - call all network notifier blocks
1740 * @val: value passed unmodified to notifier function
1741 * @dev: net_device pointer passed unmodified to notifier function
1742 *
1743 * Call all network notifier blocks. Parameters and return value
1744 * are as for raw_notifier_call_chain().
1745 */
1746
1747 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1748 {
1749 struct netdev_notifier_info info = {
1750 .dev = dev,
1751 };
1752
1753 return call_netdevice_notifiers_info(val, &info);
1754 }
1755 EXPORT_SYMBOL(call_netdevice_notifiers);
1756
1757 #ifdef CONFIG_NET_INGRESS
1758 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1759
1760 void net_inc_ingress_queue(void)
1761 {
1762 static_branch_inc(&ingress_needed_key);
1763 }
1764 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1765
1766 void net_dec_ingress_queue(void)
1767 {
1768 static_branch_dec(&ingress_needed_key);
1769 }
1770 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1771 #endif
1772
1773 #ifdef CONFIG_NET_EGRESS
1774 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1775
1776 void net_inc_egress_queue(void)
1777 {
1778 static_branch_inc(&egress_needed_key);
1779 }
1780 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1781
1782 void net_dec_egress_queue(void)
1783 {
1784 static_branch_dec(&egress_needed_key);
1785 }
1786 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1787 #endif
1788
1789 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1790 #ifdef HAVE_JUMP_LABEL
1791 static atomic_t netstamp_needed_deferred;
1792 static atomic_t netstamp_wanted;
1793 static void netstamp_clear(struct work_struct *work)
1794 {
1795 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1796 int wanted;
1797
1798 wanted = atomic_add_return(deferred, &netstamp_wanted);
1799 if (wanted > 0)
1800 static_branch_enable(&netstamp_needed_key);
1801 else
1802 static_branch_disable(&netstamp_needed_key);
1803 }
1804 static DECLARE_WORK(netstamp_work, netstamp_clear);
1805 #endif
1806
1807 void net_enable_timestamp(void)
1808 {
1809 #ifdef HAVE_JUMP_LABEL
1810 int wanted;
1811
1812 while (1) {
1813 wanted = atomic_read(&netstamp_wanted);
1814 if (wanted <= 0)
1815 break;
1816 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1817 return;
1818 }
1819 atomic_inc(&netstamp_needed_deferred);
1820 schedule_work(&netstamp_work);
1821 #else
1822 static_branch_inc(&netstamp_needed_key);
1823 #endif
1824 }
1825 EXPORT_SYMBOL(net_enable_timestamp);
1826
1827 void net_disable_timestamp(void)
1828 {
1829 #ifdef HAVE_JUMP_LABEL
1830 int wanted;
1831
1832 while (1) {
1833 wanted = atomic_read(&netstamp_wanted);
1834 if (wanted <= 1)
1835 break;
1836 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1837 return;
1838 }
1839 atomic_dec(&netstamp_needed_deferred);
1840 schedule_work(&netstamp_work);
1841 #else
1842 static_branch_dec(&netstamp_needed_key);
1843 #endif
1844 }
1845 EXPORT_SYMBOL(net_disable_timestamp);
1846
1847 static inline void net_timestamp_set(struct sk_buff *skb)
1848 {
1849 skb->tstamp = 0;
1850 if (static_branch_unlikely(&netstamp_needed_key))
1851 __net_timestamp(skb);
1852 }
1853
1854 #define net_timestamp_check(COND, SKB) \
1855 if (static_branch_unlikely(&netstamp_needed_key)) { \
1856 if ((COND) && !(SKB)->tstamp) \
1857 __net_timestamp(SKB); \
1858 } \
1859
1860 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1861 {
1862 unsigned int len;
1863
1864 if (!(dev->flags & IFF_UP))
1865 return false;
1866
1867 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1868 if (skb->len <= len)
1869 return true;
1870
1871 /* if TSO is enabled, we don't care about the length as the packet
1872 * could be forwarded without being segmented before
1873 */
1874 if (skb_is_gso(skb))
1875 return true;
1876
1877 return false;
1878 }
1879 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1880
1881 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1882 {
1883 int ret = ____dev_forward_skb(dev, skb);
1884
1885 if (likely(!ret)) {
1886 skb->protocol = eth_type_trans(skb, dev);
1887 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1888 }
1889
1890 return ret;
1891 }
1892 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1893
1894 /**
1895 * dev_forward_skb - loopback an skb to another netif
1896 *
1897 * @dev: destination network device
1898 * @skb: buffer to forward
1899 *
1900 * return values:
1901 * NET_RX_SUCCESS (no congestion)
1902 * NET_RX_DROP (packet was dropped, but freed)
1903 *
1904 * dev_forward_skb can be used for injecting an skb from the
1905 * start_xmit function of one device into the receive queue
1906 * of another device.
1907 *
1908 * The receiving device may be in another namespace, so
1909 * we have to clear all information in the skb that could
1910 * impact namespace isolation.
1911 */
1912 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1913 {
1914 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1915 }
1916 EXPORT_SYMBOL_GPL(dev_forward_skb);
1917
1918 static inline int deliver_skb(struct sk_buff *skb,
1919 struct packet_type *pt_prev,
1920 struct net_device *orig_dev)
1921 {
1922 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1923 return -ENOMEM;
1924 refcount_inc(&skb->users);
1925 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1926 }
1927
1928 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1929 struct packet_type **pt,
1930 struct net_device *orig_dev,
1931 __be16 type,
1932 struct list_head *ptype_list)
1933 {
1934 struct packet_type *ptype, *pt_prev = *pt;
1935
1936 list_for_each_entry_rcu(ptype, ptype_list, list) {
1937 if (ptype->type != type)
1938 continue;
1939 if (pt_prev)
1940 deliver_skb(skb, pt_prev, orig_dev);
1941 pt_prev = ptype;
1942 }
1943 *pt = pt_prev;
1944 }
1945
1946 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1947 {
1948 if (!ptype->af_packet_priv || !skb->sk)
1949 return false;
1950
1951 if (ptype->id_match)
1952 return ptype->id_match(ptype, skb->sk);
1953 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1954 return true;
1955
1956 return false;
1957 }
1958
1959 /*
1960 * Support routine. Sends outgoing frames to any network
1961 * taps currently in use.
1962 */
1963
1964 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1965 {
1966 struct packet_type *ptype;
1967 struct sk_buff *skb2 = NULL;
1968 struct packet_type *pt_prev = NULL;
1969 struct list_head *ptype_list = &ptype_all;
1970
1971 rcu_read_lock();
1972 again:
1973 list_for_each_entry_rcu(ptype, ptype_list, list) {
1974 /* Never send packets back to the socket
1975 * they originated from - MvS (miquels@drinkel.ow.org)
1976 */
1977 if (skb_loop_sk(ptype, skb))
1978 continue;
1979
1980 if (pt_prev) {
1981 deliver_skb(skb2, pt_prev, skb->dev);
1982 pt_prev = ptype;
1983 continue;
1984 }
1985
1986 /* need to clone skb, done only once */
1987 skb2 = skb_clone(skb, GFP_ATOMIC);
1988 if (!skb2)
1989 goto out_unlock;
1990
1991 net_timestamp_set(skb2);
1992
1993 /* skb->nh should be correctly
1994 * set by sender, so that the second statement is
1995 * just protection against buggy protocols.
1996 */
1997 skb_reset_mac_header(skb2);
1998
1999 if (skb_network_header(skb2) < skb2->data ||
2000 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2001 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2002 ntohs(skb2->protocol),
2003 dev->name);
2004 skb_reset_network_header(skb2);
2005 }
2006
2007 skb2->transport_header = skb2->network_header;
2008 skb2->pkt_type = PACKET_OUTGOING;
2009 pt_prev = ptype;
2010 }
2011
2012 if (ptype_list == &ptype_all) {
2013 ptype_list = &dev->ptype_all;
2014 goto again;
2015 }
2016 out_unlock:
2017 if (pt_prev) {
2018 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2019 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2020 else
2021 kfree_skb(skb2);
2022 }
2023 rcu_read_unlock();
2024 }
2025 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2026
2027 /**
2028 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2029 * @dev: Network device
2030 * @txq: number of queues available
2031 *
2032 * If real_num_tx_queues is changed the tc mappings may no longer be
2033 * valid. To resolve this verify the tc mapping remains valid and if
2034 * not NULL the mapping. With no priorities mapping to this
2035 * offset/count pair it will no longer be used. In the worst case TC0
2036 * is invalid nothing can be done so disable priority mappings. If is
2037 * expected that drivers will fix this mapping if they can before
2038 * calling netif_set_real_num_tx_queues.
2039 */
2040 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2041 {
2042 int i;
2043 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2044
2045 /* If TC0 is invalidated disable TC mapping */
2046 if (tc->offset + tc->count > txq) {
2047 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2048 dev->num_tc = 0;
2049 return;
2050 }
2051
2052 /* Invalidated prio to tc mappings set to TC0 */
2053 for (i = 1; i < TC_BITMASK + 1; i++) {
2054 int q = netdev_get_prio_tc_map(dev, i);
2055
2056 tc = &dev->tc_to_txq[q];
2057 if (tc->offset + tc->count > txq) {
2058 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2059 i, q);
2060 netdev_set_prio_tc_map(dev, i, 0);
2061 }
2062 }
2063 }
2064
2065 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2066 {
2067 if (dev->num_tc) {
2068 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2069 int i;
2070
2071 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2072 if ((txq - tc->offset) < tc->count)
2073 return i;
2074 }
2075
2076 return -1;
2077 }
2078
2079 return 0;
2080 }
2081 EXPORT_SYMBOL(netdev_txq_to_tc);
2082
2083 #ifdef CONFIG_XPS
2084 static DEFINE_MUTEX(xps_map_mutex);
2085 #define xmap_dereference(P) \
2086 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2087
2088 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2089 int tci, u16 index)
2090 {
2091 struct xps_map *map = NULL;
2092 int pos;
2093
2094 if (dev_maps)
2095 map = xmap_dereference(dev_maps->cpu_map[tci]);
2096 if (!map)
2097 return false;
2098
2099 for (pos = map->len; pos--;) {
2100 if (map->queues[pos] != index)
2101 continue;
2102
2103 if (map->len > 1) {
2104 map->queues[pos] = map->queues[--map->len];
2105 break;
2106 }
2107
2108 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2109 kfree_rcu(map, rcu);
2110 return false;
2111 }
2112
2113 return true;
2114 }
2115
2116 static bool remove_xps_queue_cpu(struct net_device *dev,
2117 struct xps_dev_maps *dev_maps,
2118 int cpu, u16 offset, u16 count)
2119 {
2120 int num_tc = dev->num_tc ? : 1;
2121 bool active = false;
2122 int tci;
2123
2124 for (tci = cpu * num_tc; num_tc--; tci++) {
2125 int i, j;
2126
2127 for (i = count, j = offset; i--; j++) {
2128 if (!remove_xps_queue(dev_maps, tci, j))
2129 break;
2130 }
2131
2132 active |= i < 0;
2133 }
2134
2135 return active;
2136 }
2137
2138 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2139 u16 count)
2140 {
2141 struct xps_dev_maps *dev_maps;
2142 int cpu, i;
2143 bool active = false;
2144
2145 mutex_lock(&xps_map_mutex);
2146 dev_maps = xmap_dereference(dev->xps_maps);
2147
2148 if (!dev_maps)
2149 goto out_no_maps;
2150
2151 for_each_possible_cpu(cpu)
2152 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2153 offset, count);
2154
2155 if (!active) {
2156 RCU_INIT_POINTER(dev->xps_maps, NULL);
2157 kfree_rcu(dev_maps, rcu);
2158 }
2159
2160 for (i = offset + (count - 1); count--; i--)
2161 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2162 NUMA_NO_NODE);
2163
2164 out_no_maps:
2165 mutex_unlock(&xps_map_mutex);
2166 }
2167
2168 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2169 {
2170 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2171 }
2172
2173 static struct xps_map *expand_xps_map(struct xps_map *map,
2174 int cpu, u16 index)
2175 {
2176 struct xps_map *new_map;
2177 int alloc_len = XPS_MIN_MAP_ALLOC;
2178 int i, pos;
2179
2180 for (pos = 0; map && pos < map->len; pos++) {
2181 if (map->queues[pos] != index)
2182 continue;
2183 return map;
2184 }
2185
2186 /* Need to add queue to this CPU's existing map */
2187 if (map) {
2188 if (pos < map->alloc_len)
2189 return map;
2190
2191 alloc_len = map->alloc_len * 2;
2192 }
2193
2194 /* Need to allocate new map to store queue on this CPU's map */
2195 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2196 cpu_to_node(cpu));
2197 if (!new_map)
2198 return NULL;
2199
2200 for (i = 0; i < pos; i++)
2201 new_map->queues[i] = map->queues[i];
2202 new_map->alloc_len = alloc_len;
2203 new_map->len = pos;
2204
2205 return new_map;
2206 }
2207
2208 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2209 u16 index)
2210 {
2211 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2212 int i, cpu, tci, numa_node_id = -2;
2213 int maps_sz, num_tc = 1, tc = 0;
2214 struct xps_map *map, *new_map;
2215 bool active = false;
2216
2217 if (dev->num_tc) {
2218 num_tc = dev->num_tc;
2219 tc = netdev_txq_to_tc(dev, index);
2220 if (tc < 0)
2221 return -EINVAL;
2222 }
2223
2224 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2225 if (maps_sz < L1_CACHE_BYTES)
2226 maps_sz = L1_CACHE_BYTES;
2227
2228 mutex_lock(&xps_map_mutex);
2229
2230 dev_maps = xmap_dereference(dev->xps_maps);
2231
2232 /* allocate memory for queue storage */
2233 for_each_cpu_and(cpu, cpu_online_mask, mask) {
2234 if (!new_dev_maps)
2235 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2236 if (!new_dev_maps) {
2237 mutex_unlock(&xps_map_mutex);
2238 return -ENOMEM;
2239 }
2240
2241 tci = cpu * num_tc + tc;
2242 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2243 NULL;
2244
2245 map = expand_xps_map(map, cpu, index);
2246 if (!map)
2247 goto error;
2248
2249 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2250 }
2251
2252 if (!new_dev_maps)
2253 goto out_no_new_maps;
2254
2255 for_each_possible_cpu(cpu) {
2256 /* copy maps belonging to foreign traffic classes */
2257 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2258 /* fill in the new device map from the old device map */
2259 map = xmap_dereference(dev_maps->cpu_map[tci]);
2260 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2261 }
2262
2263 /* We need to explicitly update tci as prevous loop
2264 * could break out early if dev_maps is NULL.
2265 */
2266 tci = cpu * num_tc + tc;
2267
2268 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2269 /* add queue to CPU maps */
2270 int pos = 0;
2271
2272 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2273 while ((pos < map->len) && (map->queues[pos] != index))
2274 pos++;
2275
2276 if (pos == map->len)
2277 map->queues[map->len++] = index;
2278 #ifdef CONFIG_NUMA
2279 if (numa_node_id == -2)
2280 numa_node_id = cpu_to_node(cpu);
2281 else if (numa_node_id != cpu_to_node(cpu))
2282 numa_node_id = -1;
2283 #endif
2284 } else if (dev_maps) {
2285 /* fill in the new device map from the old device map */
2286 map = xmap_dereference(dev_maps->cpu_map[tci]);
2287 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2288 }
2289
2290 /* copy maps belonging to foreign traffic classes */
2291 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2292 /* fill in the new device map from the old device map */
2293 map = xmap_dereference(dev_maps->cpu_map[tci]);
2294 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2295 }
2296 }
2297
2298 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2299
2300 /* Cleanup old maps */
2301 if (!dev_maps)
2302 goto out_no_old_maps;
2303
2304 for_each_possible_cpu(cpu) {
2305 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2306 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2307 map = xmap_dereference(dev_maps->cpu_map[tci]);
2308 if (map && map != new_map)
2309 kfree_rcu(map, rcu);
2310 }
2311 }
2312
2313 kfree_rcu(dev_maps, rcu);
2314
2315 out_no_old_maps:
2316 dev_maps = new_dev_maps;
2317 active = true;
2318
2319 out_no_new_maps:
2320 /* update Tx queue numa node */
2321 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2322 (numa_node_id >= 0) ? numa_node_id :
2323 NUMA_NO_NODE);
2324
2325 if (!dev_maps)
2326 goto out_no_maps;
2327
2328 /* removes queue from unused CPUs */
2329 for_each_possible_cpu(cpu) {
2330 for (i = tc, tci = cpu * num_tc; i--; tci++)
2331 active |= remove_xps_queue(dev_maps, tci, index);
2332 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2333 active |= remove_xps_queue(dev_maps, tci, index);
2334 for (i = num_tc - tc, tci++; --i; tci++)
2335 active |= remove_xps_queue(dev_maps, tci, index);
2336 }
2337
2338 /* free map if not active */
2339 if (!active) {
2340 RCU_INIT_POINTER(dev->xps_maps, NULL);
2341 kfree_rcu(dev_maps, rcu);
2342 }
2343
2344 out_no_maps:
2345 mutex_unlock(&xps_map_mutex);
2346
2347 return 0;
2348 error:
2349 /* remove any maps that we added */
2350 for_each_possible_cpu(cpu) {
2351 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2352 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2353 map = dev_maps ?
2354 xmap_dereference(dev_maps->cpu_map[tci]) :
2355 NULL;
2356 if (new_map && new_map != map)
2357 kfree(new_map);
2358 }
2359 }
2360
2361 mutex_unlock(&xps_map_mutex);
2362
2363 kfree(new_dev_maps);
2364 return -ENOMEM;
2365 }
2366 EXPORT_SYMBOL(netif_set_xps_queue);
2367
2368 #endif
2369 void netdev_reset_tc(struct net_device *dev)
2370 {
2371 #ifdef CONFIG_XPS
2372 netif_reset_xps_queues_gt(dev, 0);
2373 #endif
2374 dev->num_tc = 0;
2375 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2376 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2377 }
2378 EXPORT_SYMBOL(netdev_reset_tc);
2379
2380 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2381 {
2382 if (tc >= dev->num_tc)
2383 return -EINVAL;
2384
2385 #ifdef CONFIG_XPS
2386 netif_reset_xps_queues(dev, offset, count);
2387 #endif
2388 dev->tc_to_txq[tc].count = count;
2389 dev->tc_to_txq[tc].offset = offset;
2390 return 0;
2391 }
2392 EXPORT_SYMBOL(netdev_set_tc_queue);
2393
2394 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2395 {
2396 if (num_tc > TC_MAX_QUEUE)
2397 return -EINVAL;
2398
2399 #ifdef CONFIG_XPS
2400 netif_reset_xps_queues_gt(dev, 0);
2401 #endif
2402 dev->num_tc = num_tc;
2403 return 0;
2404 }
2405 EXPORT_SYMBOL(netdev_set_num_tc);
2406
2407 /*
2408 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2409 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2410 */
2411 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2412 {
2413 bool disabling;
2414 int rc;
2415
2416 disabling = txq < dev->real_num_tx_queues;
2417
2418 if (txq < 1 || txq > dev->num_tx_queues)
2419 return -EINVAL;
2420
2421 if (dev->reg_state == NETREG_REGISTERED ||
2422 dev->reg_state == NETREG_UNREGISTERING) {
2423 ASSERT_RTNL();
2424
2425 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2426 txq);
2427 if (rc)
2428 return rc;
2429
2430 if (dev->num_tc)
2431 netif_setup_tc(dev, txq);
2432
2433 dev->real_num_tx_queues = txq;
2434
2435 if (disabling) {
2436 synchronize_net();
2437 qdisc_reset_all_tx_gt(dev, txq);
2438 #ifdef CONFIG_XPS
2439 netif_reset_xps_queues_gt(dev, txq);
2440 #endif
2441 }
2442 } else {
2443 dev->real_num_tx_queues = txq;
2444 }
2445
2446 return 0;
2447 }
2448 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2449
2450 #ifdef CONFIG_SYSFS
2451 /**
2452 * netif_set_real_num_rx_queues - set actual number of RX queues used
2453 * @dev: Network device
2454 * @rxq: Actual number of RX queues
2455 *
2456 * This must be called either with the rtnl_lock held or before
2457 * registration of the net device. Returns 0 on success, or a
2458 * negative error code. If called before registration, it always
2459 * succeeds.
2460 */
2461 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2462 {
2463 int rc;
2464
2465 if (rxq < 1 || rxq > dev->num_rx_queues)
2466 return -EINVAL;
2467
2468 if (dev->reg_state == NETREG_REGISTERED) {
2469 ASSERT_RTNL();
2470
2471 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2472 rxq);
2473 if (rc)
2474 return rc;
2475 }
2476
2477 dev->real_num_rx_queues = rxq;
2478 return 0;
2479 }
2480 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2481 #endif
2482
2483 /**
2484 * netif_get_num_default_rss_queues - default number of RSS queues
2485 *
2486 * This routine should set an upper limit on the number of RSS queues
2487 * used by default by multiqueue devices.
2488 */
2489 int netif_get_num_default_rss_queues(void)
2490 {
2491 return is_kdump_kernel() ?
2492 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2493 }
2494 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2495
2496 static void __netif_reschedule(struct Qdisc *q)
2497 {
2498 struct softnet_data *sd;
2499 unsigned long flags;
2500
2501 local_irq_save(flags);
2502 sd = this_cpu_ptr(&softnet_data);
2503 q->next_sched = NULL;
2504 *sd->output_queue_tailp = q;
2505 sd->output_queue_tailp = &q->next_sched;
2506 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2507 local_irq_restore(flags);
2508 }
2509
2510 void __netif_schedule(struct Qdisc *q)
2511 {
2512 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2513 __netif_reschedule(q);
2514 }
2515 EXPORT_SYMBOL(__netif_schedule);
2516
2517 struct dev_kfree_skb_cb {
2518 enum skb_free_reason reason;
2519 };
2520
2521 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2522 {
2523 return (struct dev_kfree_skb_cb *)skb->cb;
2524 }
2525
2526 void netif_schedule_queue(struct netdev_queue *txq)
2527 {
2528 rcu_read_lock();
2529 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2530 struct Qdisc *q = rcu_dereference(txq->qdisc);
2531
2532 __netif_schedule(q);
2533 }
2534 rcu_read_unlock();
2535 }
2536 EXPORT_SYMBOL(netif_schedule_queue);
2537
2538 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2539 {
2540 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2541 struct Qdisc *q;
2542
2543 rcu_read_lock();
2544 q = rcu_dereference(dev_queue->qdisc);
2545 __netif_schedule(q);
2546 rcu_read_unlock();
2547 }
2548 }
2549 EXPORT_SYMBOL(netif_tx_wake_queue);
2550
2551 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2552 {
2553 unsigned long flags;
2554
2555 if (unlikely(!skb))
2556 return;
2557
2558 if (likely(refcount_read(&skb->users) == 1)) {
2559 smp_rmb();
2560 refcount_set(&skb->users, 0);
2561 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2562 return;
2563 }
2564 get_kfree_skb_cb(skb)->reason = reason;
2565 local_irq_save(flags);
2566 skb->next = __this_cpu_read(softnet_data.completion_queue);
2567 __this_cpu_write(softnet_data.completion_queue, skb);
2568 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2569 local_irq_restore(flags);
2570 }
2571 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2572
2573 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2574 {
2575 if (in_irq() || irqs_disabled())
2576 __dev_kfree_skb_irq(skb, reason);
2577 else
2578 dev_kfree_skb(skb);
2579 }
2580 EXPORT_SYMBOL(__dev_kfree_skb_any);
2581
2582
2583 /**
2584 * netif_device_detach - mark device as removed
2585 * @dev: network device
2586 *
2587 * Mark device as removed from system and therefore no longer available.
2588 */
2589 void netif_device_detach(struct net_device *dev)
2590 {
2591 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2592 netif_running(dev)) {
2593 netif_tx_stop_all_queues(dev);
2594 }
2595 }
2596 EXPORT_SYMBOL(netif_device_detach);
2597
2598 /**
2599 * netif_device_attach - mark device as attached
2600 * @dev: network device
2601 *
2602 * Mark device as attached from system and restart if needed.
2603 */
2604 void netif_device_attach(struct net_device *dev)
2605 {
2606 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2607 netif_running(dev)) {
2608 netif_tx_wake_all_queues(dev);
2609 __netdev_watchdog_up(dev);
2610 }
2611 }
2612 EXPORT_SYMBOL(netif_device_attach);
2613
2614 /*
2615 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2616 * to be used as a distribution range.
2617 */
2618 static u16 skb_tx_hash(const struct net_device *dev, struct sk_buff *skb)
2619 {
2620 u32 hash;
2621 u16 qoffset = 0;
2622 u16 qcount = dev->real_num_tx_queues;
2623
2624 if (skb_rx_queue_recorded(skb)) {
2625 hash = skb_get_rx_queue(skb);
2626 while (unlikely(hash >= qcount))
2627 hash -= qcount;
2628 return hash;
2629 }
2630
2631 if (dev->num_tc) {
2632 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2633
2634 qoffset = dev->tc_to_txq[tc].offset;
2635 qcount = dev->tc_to_txq[tc].count;
2636 }
2637
2638 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2639 }
2640
2641 static void skb_warn_bad_offload(const struct sk_buff *skb)
2642 {
2643 static const netdev_features_t null_features;
2644 struct net_device *dev = skb->dev;
2645 const char *name = "";
2646
2647 if (!net_ratelimit())
2648 return;
2649
2650 if (dev) {
2651 if (dev->dev.parent)
2652 name = dev_driver_string(dev->dev.parent);
2653 else
2654 name = netdev_name(dev);
2655 }
2656 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2657 "gso_type=%d ip_summed=%d\n",
2658 name, dev ? &dev->features : &null_features,
2659 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2660 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2661 skb_shinfo(skb)->gso_type, skb->ip_summed);
2662 }
2663
2664 /*
2665 * Invalidate hardware checksum when packet is to be mangled, and
2666 * complete checksum manually on outgoing path.
2667 */
2668 int skb_checksum_help(struct sk_buff *skb)
2669 {
2670 __wsum csum;
2671 int ret = 0, offset;
2672
2673 if (skb->ip_summed == CHECKSUM_COMPLETE)
2674 goto out_set_summed;
2675
2676 if (unlikely(skb_shinfo(skb)->gso_size)) {
2677 skb_warn_bad_offload(skb);
2678 return -EINVAL;
2679 }
2680
2681 /* Before computing a checksum, we should make sure no frag could
2682 * be modified by an external entity : checksum could be wrong.
2683 */
2684 if (skb_has_shared_frag(skb)) {
2685 ret = __skb_linearize(skb);
2686 if (ret)
2687 goto out;
2688 }
2689
2690 offset = skb_checksum_start_offset(skb);
2691 BUG_ON(offset >= skb_headlen(skb));
2692 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2693
2694 offset += skb->csum_offset;
2695 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2696
2697 if (skb_cloned(skb) &&
2698 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2699 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2700 if (ret)
2701 goto out;
2702 }
2703
2704 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2705 out_set_summed:
2706 skb->ip_summed = CHECKSUM_NONE;
2707 out:
2708 return ret;
2709 }
2710 EXPORT_SYMBOL(skb_checksum_help);
2711
2712 int skb_crc32c_csum_help(struct sk_buff *skb)
2713 {
2714 __le32 crc32c_csum;
2715 int ret = 0, offset, start;
2716
2717 if (skb->ip_summed != CHECKSUM_PARTIAL)
2718 goto out;
2719
2720 if (unlikely(skb_is_gso(skb)))
2721 goto out;
2722
2723 /* Before computing a checksum, we should make sure no frag could
2724 * be modified by an external entity : checksum could be wrong.
2725 */
2726 if (unlikely(skb_has_shared_frag(skb))) {
2727 ret = __skb_linearize(skb);
2728 if (ret)
2729 goto out;
2730 }
2731 start = skb_checksum_start_offset(skb);
2732 offset = start + offsetof(struct sctphdr, checksum);
2733 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2734 ret = -EINVAL;
2735 goto out;
2736 }
2737 if (skb_cloned(skb) &&
2738 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2739 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2740 if (ret)
2741 goto out;
2742 }
2743 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2744 skb->len - start, ~(__u32)0,
2745 crc32c_csum_stub));
2746 *(__le32 *)(skb->data + offset) = crc32c_csum;
2747 skb->ip_summed = CHECKSUM_NONE;
2748 skb->csum_not_inet = 0;
2749 out:
2750 return ret;
2751 }
2752
2753 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2754 {
2755 __be16 type = skb->protocol;
2756
2757 /* Tunnel gso handlers can set protocol to ethernet. */
2758 if (type == htons(ETH_P_TEB)) {
2759 struct ethhdr *eth;
2760
2761 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2762 return 0;
2763
2764 eth = (struct ethhdr *)skb->data;
2765 type = eth->h_proto;
2766 }
2767
2768 return __vlan_get_protocol(skb, type, depth);
2769 }
2770
2771 /**
2772 * skb_mac_gso_segment - mac layer segmentation handler.
2773 * @skb: buffer to segment
2774 * @features: features for the output path (see dev->features)
2775 */
2776 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2777 netdev_features_t features)
2778 {
2779 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2780 struct packet_offload *ptype;
2781 int vlan_depth = skb->mac_len;
2782 __be16 type = skb_network_protocol(skb, &vlan_depth);
2783
2784 if (unlikely(!type))
2785 return ERR_PTR(-EINVAL);
2786
2787 __skb_pull(skb, vlan_depth);
2788
2789 rcu_read_lock();
2790 list_for_each_entry_rcu(ptype, &offload_base, list) {
2791 if (ptype->type == type && ptype->callbacks.gso_segment) {
2792 segs = ptype->callbacks.gso_segment(skb, features);
2793 break;
2794 }
2795 }
2796 rcu_read_unlock();
2797
2798 __skb_push(skb, skb->data - skb_mac_header(skb));
2799
2800 return segs;
2801 }
2802 EXPORT_SYMBOL(skb_mac_gso_segment);
2803
2804
2805 /* openvswitch calls this on rx path, so we need a different check.
2806 */
2807 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2808 {
2809 if (tx_path)
2810 return skb->ip_summed != CHECKSUM_PARTIAL &&
2811 skb->ip_summed != CHECKSUM_UNNECESSARY;
2812
2813 return skb->ip_summed == CHECKSUM_NONE;
2814 }
2815
2816 /**
2817 * __skb_gso_segment - Perform segmentation on skb.
2818 * @skb: buffer to segment
2819 * @features: features for the output path (see dev->features)
2820 * @tx_path: whether it is called in TX path
2821 *
2822 * This function segments the given skb and returns a list of segments.
2823 *
2824 * It may return NULL if the skb requires no segmentation. This is
2825 * only possible when GSO is used for verifying header integrity.
2826 *
2827 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2828 */
2829 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2830 netdev_features_t features, bool tx_path)
2831 {
2832 struct sk_buff *segs;
2833
2834 if (unlikely(skb_needs_check(skb, tx_path))) {
2835 int err;
2836
2837 /* We're going to init ->check field in TCP or UDP header */
2838 err = skb_cow_head(skb, 0);
2839 if (err < 0)
2840 return ERR_PTR(err);
2841 }
2842
2843 /* Only report GSO partial support if it will enable us to
2844 * support segmentation on this frame without needing additional
2845 * work.
2846 */
2847 if (features & NETIF_F_GSO_PARTIAL) {
2848 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2849 struct net_device *dev = skb->dev;
2850
2851 partial_features |= dev->features & dev->gso_partial_features;
2852 if (!skb_gso_ok(skb, features | partial_features))
2853 features &= ~NETIF_F_GSO_PARTIAL;
2854 }
2855
2856 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2857 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2858
2859 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2860 SKB_GSO_CB(skb)->encap_level = 0;
2861
2862 skb_reset_mac_header(skb);
2863 skb_reset_mac_len(skb);
2864
2865 segs = skb_mac_gso_segment(skb, features);
2866
2867 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2868 skb_warn_bad_offload(skb);
2869
2870 return segs;
2871 }
2872 EXPORT_SYMBOL(__skb_gso_segment);
2873
2874 /* Take action when hardware reception checksum errors are detected. */
2875 #ifdef CONFIG_BUG
2876 void netdev_rx_csum_fault(struct net_device *dev)
2877 {
2878 if (net_ratelimit()) {
2879 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2880 dump_stack();
2881 }
2882 }
2883 EXPORT_SYMBOL(netdev_rx_csum_fault);
2884 #endif
2885
2886 /* XXX: check that highmem exists at all on the given machine. */
2887 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2888 {
2889 #ifdef CONFIG_HIGHMEM
2890 int i;
2891
2892 if (!(dev->features & NETIF_F_HIGHDMA)) {
2893 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2894 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2895
2896 if (PageHighMem(skb_frag_page(frag)))
2897 return 1;
2898 }
2899 }
2900 #endif
2901 return 0;
2902 }
2903
2904 /* If MPLS offload request, verify we are testing hardware MPLS features
2905 * instead of standard features for the netdev.
2906 */
2907 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2908 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2909 netdev_features_t features,
2910 __be16 type)
2911 {
2912 if (eth_p_mpls(type))
2913 features &= skb->dev->mpls_features;
2914
2915 return features;
2916 }
2917 #else
2918 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2919 netdev_features_t features,
2920 __be16 type)
2921 {
2922 return features;
2923 }
2924 #endif
2925
2926 static netdev_features_t harmonize_features(struct sk_buff *skb,
2927 netdev_features_t features)
2928 {
2929 int tmp;
2930 __be16 type;
2931
2932 type = skb_network_protocol(skb, &tmp);
2933 features = net_mpls_features(skb, features, type);
2934
2935 if (skb->ip_summed != CHECKSUM_NONE &&
2936 !can_checksum_protocol(features, type)) {
2937 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2938 }
2939 if (illegal_highdma(skb->dev, skb))
2940 features &= ~NETIF_F_SG;
2941
2942 return features;
2943 }
2944
2945 netdev_features_t passthru_features_check(struct sk_buff *skb,
2946 struct net_device *dev,
2947 netdev_features_t features)
2948 {
2949 return features;
2950 }
2951 EXPORT_SYMBOL(passthru_features_check);
2952
2953 static netdev_features_t dflt_features_check(struct sk_buff *skb,
2954 struct net_device *dev,
2955 netdev_features_t features)
2956 {
2957 return vlan_features_check(skb, features);
2958 }
2959
2960 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2961 struct net_device *dev,
2962 netdev_features_t features)
2963 {
2964 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2965
2966 if (gso_segs > dev->gso_max_segs)
2967 return features & ~NETIF_F_GSO_MASK;
2968
2969 /* Support for GSO partial features requires software
2970 * intervention before we can actually process the packets
2971 * so we need to strip support for any partial features now
2972 * and we can pull them back in after we have partially
2973 * segmented the frame.
2974 */
2975 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2976 features &= ~dev->gso_partial_features;
2977
2978 /* Make sure to clear the IPv4 ID mangling feature if the
2979 * IPv4 header has the potential to be fragmented.
2980 */
2981 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2982 struct iphdr *iph = skb->encapsulation ?
2983 inner_ip_hdr(skb) : ip_hdr(skb);
2984
2985 if (!(iph->frag_off & htons(IP_DF)))
2986 features &= ~NETIF_F_TSO_MANGLEID;
2987 }
2988
2989 return features;
2990 }
2991
2992 netdev_features_t netif_skb_features(struct sk_buff *skb)
2993 {
2994 struct net_device *dev = skb->dev;
2995 netdev_features_t features = dev->features;
2996
2997 if (skb_is_gso(skb))
2998 features = gso_features_check(skb, dev, features);
2999
3000 /* If encapsulation offload request, verify we are testing
3001 * hardware encapsulation features instead of standard
3002 * features for the netdev
3003 */
3004 if (skb->encapsulation)
3005 features &= dev->hw_enc_features;
3006
3007 if (skb_vlan_tagged(skb))
3008 features = netdev_intersect_features(features,
3009 dev->vlan_features |
3010 NETIF_F_HW_VLAN_CTAG_TX |
3011 NETIF_F_HW_VLAN_STAG_TX);
3012
3013 if (dev->netdev_ops->ndo_features_check)
3014 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3015 features);
3016 else
3017 features &= dflt_features_check(skb, dev, features);
3018
3019 return harmonize_features(skb, features);
3020 }
3021 EXPORT_SYMBOL(netif_skb_features);
3022
3023 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3024 struct netdev_queue *txq, bool more)
3025 {
3026 unsigned int len;
3027 int rc;
3028
3029 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3030 dev_queue_xmit_nit(skb, dev);
3031
3032 len = skb->len;
3033 trace_net_dev_start_xmit(skb, dev);
3034 rc = netdev_start_xmit(skb, dev, txq, more);
3035 trace_net_dev_xmit(skb, rc, dev, len);
3036
3037 return rc;
3038 }
3039
3040 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3041 struct netdev_queue *txq, int *ret)
3042 {
3043 struct sk_buff *skb = first;
3044 int rc = NETDEV_TX_OK;
3045
3046 while (skb) {
3047 struct sk_buff *next = skb->next;
3048
3049 skb->next = NULL;
3050 rc = xmit_one(skb, dev, txq, next != NULL);
3051 if (unlikely(!dev_xmit_complete(rc))) {
3052 skb->next = next;
3053 goto out;
3054 }
3055
3056 skb = next;
3057 if (netif_xmit_stopped(txq) && skb) {
3058 rc = NETDEV_TX_BUSY;
3059 break;
3060 }
3061 }
3062
3063 out:
3064 *ret = rc;
3065 return skb;
3066 }
3067
3068 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3069 netdev_features_t features)
3070 {
3071 if (skb_vlan_tag_present(skb) &&
3072 !vlan_hw_offload_capable(features, skb->vlan_proto))
3073 skb = __vlan_hwaccel_push_inside(skb);
3074 return skb;
3075 }
3076
3077 int skb_csum_hwoffload_help(struct sk_buff *skb,
3078 const netdev_features_t features)
3079 {
3080 if (unlikely(skb->csum_not_inet))
3081 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3082 skb_crc32c_csum_help(skb);
3083
3084 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3085 }
3086 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3087
3088 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3089 {
3090 netdev_features_t features;
3091
3092 features = netif_skb_features(skb);
3093 skb = validate_xmit_vlan(skb, features);
3094 if (unlikely(!skb))
3095 goto out_null;
3096
3097 skb = sk_validate_xmit_skb(skb, dev);
3098 if (unlikely(!skb))
3099 goto out_null;
3100
3101 if (netif_needs_gso(skb, features)) {
3102 struct sk_buff *segs;
3103
3104 segs = skb_gso_segment(skb, features);
3105 if (IS_ERR(segs)) {
3106 goto out_kfree_skb;
3107 } else if (segs) {
3108 consume_skb(skb);
3109 skb = segs;
3110 }
3111 } else {
3112 if (skb_needs_linearize(skb, features) &&
3113 __skb_linearize(skb))
3114 goto out_kfree_skb;
3115
3116 /* If packet is not checksummed and device does not
3117 * support checksumming for this protocol, complete
3118 * checksumming here.
3119 */
3120 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3121 if (skb->encapsulation)
3122 skb_set_inner_transport_header(skb,
3123 skb_checksum_start_offset(skb));
3124 else
3125 skb_set_transport_header(skb,
3126 skb_checksum_start_offset(skb));
3127 if (skb_csum_hwoffload_help(skb, features))
3128 goto out_kfree_skb;
3129 }
3130 }
3131
3132 skb = validate_xmit_xfrm(skb, features, again);
3133
3134 return skb;
3135
3136 out_kfree_skb:
3137 kfree_skb(skb);
3138 out_null:
3139 atomic_long_inc(&dev->tx_dropped);
3140 return NULL;
3141 }
3142
3143 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3144 {
3145 struct sk_buff *next, *head = NULL, *tail;
3146
3147 for (; skb != NULL; skb = next) {
3148 next = skb->next;
3149 skb->next = NULL;
3150
3151 /* in case skb wont be segmented, point to itself */
3152 skb->prev = skb;
3153
3154 skb = validate_xmit_skb(skb, dev, again);
3155 if (!skb)
3156 continue;
3157
3158 if (!head)
3159 head = skb;
3160 else
3161 tail->next = skb;
3162 /* If skb was segmented, skb->prev points to
3163 * the last segment. If not, it still contains skb.
3164 */
3165 tail = skb->prev;
3166 }
3167 return head;
3168 }
3169 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3170
3171 static void qdisc_pkt_len_init(struct sk_buff *skb)
3172 {
3173 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3174
3175 qdisc_skb_cb(skb)->pkt_len = skb->len;
3176
3177 /* To get more precise estimation of bytes sent on wire,
3178 * we add to pkt_len the headers size of all segments
3179 */
3180 if (shinfo->gso_size) {
3181 unsigned int hdr_len;
3182 u16 gso_segs = shinfo->gso_segs;
3183
3184 /* mac layer + network layer */
3185 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3186
3187 /* + transport layer */
3188 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3189 const struct tcphdr *th;
3190 struct tcphdr _tcphdr;
3191
3192 th = skb_header_pointer(skb, skb_transport_offset(skb),
3193 sizeof(_tcphdr), &_tcphdr);
3194 if (likely(th))
3195 hdr_len += __tcp_hdrlen(th);
3196 } else {
3197 struct udphdr _udphdr;
3198
3199 if (skb_header_pointer(skb, skb_transport_offset(skb),
3200 sizeof(_udphdr), &_udphdr))
3201 hdr_len += sizeof(struct udphdr);
3202 }
3203
3204 if (shinfo->gso_type & SKB_GSO_DODGY)
3205 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3206 shinfo->gso_size);
3207
3208 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3209 }
3210 }
3211
3212 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3213 struct net_device *dev,
3214 struct netdev_queue *txq)
3215 {
3216 spinlock_t *root_lock = qdisc_lock(q);
3217 struct sk_buff *to_free = NULL;
3218 bool contended;
3219 int rc;
3220
3221 qdisc_calculate_pkt_len(skb, q);
3222
3223 if (q->flags & TCQ_F_NOLOCK) {
3224 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3225 __qdisc_drop(skb, &to_free);
3226 rc = NET_XMIT_DROP;
3227 } else {
3228 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3229 qdisc_run(q);
3230 }
3231
3232 if (unlikely(to_free))
3233 kfree_skb_list(to_free);
3234 return rc;
3235 }
3236
3237 /*
3238 * Heuristic to force contended enqueues to serialize on a
3239 * separate lock before trying to get qdisc main lock.
3240 * This permits qdisc->running owner to get the lock more
3241 * often and dequeue packets faster.
3242 */
3243 contended = qdisc_is_running(q);
3244 if (unlikely(contended))
3245 spin_lock(&q->busylock);
3246
3247 spin_lock(root_lock);
3248 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3249 __qdisc_drop(skb, &to_free);
3250 rc = NET_XMIT_DROP;
3251 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3252 qdisc_run_begin(q)) {
3253 /*
3254 * This is a work-conserving queue; there are no old skbs
3255 * waiting to be sent out; and the qdisc is not running -
3256 * xmit the skb directly.
3257 */
3258
3259 qdisc_bstats_update(q, skb);
3260
3261 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3262 if (unlikely(contended)) {
3263 spin_unlock(&q->busylock);
3264 contended = false;
3265 }
3266 __qdisc_run(q);
3267 }
3268
3269 qdisc_run_end(q);
3270 rc = NET_XMIT_SUCCESS;
3271 } else {
3272 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3273 if (qdisc_run_begin(q)) {
3274 if (unlikely(contended)) {
3275 spin_unlock(&q->busylock);
3276 contended = false;
3277 }
3278 __qdisc_run(q);
3279 qdisc_run_end(q);
3280 }
3281 }
3282 spin_unlock(root_lock);
3283 if (unlikely(to_free))
3284 kfree_skb_list(to_free);
3285 if (unlikely(contended))
3286 spin_unlock(&q->busylock);
3287 return rc;
3288 }
3289
3290 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3291 static void skb_update_prio(struct sk_buff *skb)
3292 {
3293 const struct netprio_map *map;
3294 const struct sock *sk;
3295 unsigned int prioidx;
3296
3297 if (skb->priority)
3298 return;
3299 map = rcu_dereference_bh(skb->dev->priomap);
3300 if (!map)
3301 return;
3302 sk = skb_to_full_sk(skb);
3303 if (!sk)
3304 return;
3305
3306 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3307
3308 if (prioidx < map->priomap_len)
3309 skb->priority = map->priomap[prioidx];
3310 }
3311 #else
3312 #define skb_update_prio(skb)
3313 #endif
3314
3315 DEFINE_PER_CPU(int, xmit_recursion);
3316 EXPORT_SYMBOL(xmit_recursion);
3317
3318 /**
3319 * dev_loopback_xmit - loop back @skb
3320 * @net: network namespace this loopback is happening in
3321 * @sk: sk needed to be a netfilter okfn
3322 * @skb: buffer to transmit
3323 */
3324 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3325 {
3326 skb_reset_mac_header(skb);
3327 __skb_pull(skb, skb_network_offset(skb));
3328 skb->pkt_type = PACKET_LOOPBACK;
3329 skb->ip_summed = CHECKSUM_UNNECESSARY;
3330 WARN_ON(!skb_dst(skb));
3331 skb_dst_force(skb);
3332 netif_rx_ni(skb);
3333 return 0;
3334 }
3335 EXPORT_SYMBOL(dev_loopback_xmit);
3336
3337 #ifdef CONFIG_NET_EGRESS
3338 static struct sk_buff *
3339 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3340 {
3341 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3342 struct tcf_result cl_res;
3343
3344 if (!miniq)
3345 return skb;
3346
3347 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3348 mini_qdisc_bstats_cpu_update(miniq, skb);
3349
3350 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3351 case TC_ACT_OK:
3352 case TC_ACT_RECLASSIFY:
3353 skb->tc_index = TC_H_MIN(cl_res.classid);
3354 break;
3355 case TC_ACT_SHOT:
3356 mini_qdisc_qstats_cpu_drop(miniq);
3357 *ret = NET_XMIT_DROP;
3358 kfree_skb(skb);
3359 return NULL;
3360 case TC_ACT_STOLEN:
3361 case TC_ACT_QUEUED:
3362 case TC_ACT_TRAP:
3363 *ret = NET_XMIT_SUCCESS;
3364 consume_skb(skb);
3365 return NULL;
3366 case TC_ACT_REDIRECT:
3367 /* No need to push/pop skb's mac_header here on egress! */
3368 skb_do_redirect(skb);
3369 *ret = NET_XMIT_SUCCESS;
3370 return NULL;
3371 default:
3372 break;
3373 }
3374
3375 return skb;
3376 }
3377 #endif /* CONFIG_NET_EGRESS */
3378
3379 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3380 {
3381 #ifdef CONFIG_XPS
3382 struct xps_dev_maps *dev_maps;
3383 struct xps_map *map;
3384 int queue_index = -1;
3385
3386 rcu_read_lock();
3387 dev_maps = rcu_dereference(dev->xps_maps);
3388 if (dev_maps) {
3389 unsigned int tci = skb->sender_cpu - 1;
3390
3391 if (dev->num_tc) {
3392 tci *= dev->num_tc;
3393 tci += netdev_get_prio_tc_map(dev, skb->priority);
3394 }
3395
3396 map = rcu_dereference(dev_maps->cpu_map[tci]);
3397 if (map) {
3398 if (map->len == 1)
3399 queue_index = map->queues[0];
3400 else
3401 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3402 map->len)];
3403 if (unlikely(queue_index >= dev->real_num_tx_queues))
3404 queue_index = -1;
3405 }
3406 }
3407 rcu_read_unlock();
3408
3409 return queue_index;
3410 #else
3411 return -1;
3412 #endif
3413 }
3414
3415 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3416 {
3417 struct sock *sk = skb->sk;
3418 int queue_index = sk_tx_queue_get(sk);
3419
3420 if (queue_index < 0 || skb->ooo_okay ||
3421 queue_index >= dev->real_num_tx_queues) {
3422 int new_index = get_xps_queue(dev, skb);
3423
3424 if (new_index < 0)
3425 new_index = skb_tx_hash(dev, skb);
3426
3427 if (queue_index != new_index && sk &&
3428 sk_fullsock(sk) &&
3429 rcu_access_pointer(sk->sk_dst_cache))
3430 sk_tx_queue_set(sk, new_index);
3431
3432 queue_index = new_index;
3433 }
3434
3435 return queue_index;
3436 }
3437
3438 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3439 struct sk_buff *skb,
3440 void *accel_priv)
3441 {
3442 int queue_index = 0;
3443
3444 #ifdef CONFIG_XPS
3445 u32 sender_cpu = skb->sender_cpu - 1;
3446
3447 if (sender_cpu >= (u32)NR_CPUS)
3448 skb->sender_cpu = raw_smp_processor_id() + 1;
3449 #endif
3450
3451 if (dev->real_num_tx_queues != 1) {
3452 const struct net_device_ops *ops = dev->netdev_ops;
3453
3454 if (ops->ndo_select_queue)
3455 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3456 __netdev_pick_tx);
3457 else
3458 queue_index = __netdev_pick_tx(dev, skb);
3459
3460 queue_index = netdev_cap_txqueue(dev, queue_index);
3461 }
3462
3463 skb_set_queue_mapping(skb, queue_index);
3464 return netdev_get_tx_queue(dev, queue_index);
3465 }
3466
3467 /**
3468 * __dev_queue_xmit - transmit a buffer
3469 * @skb: buffer to transmit
3470 * @accel_priv: private data used for L2 forwarding offload
3471 *
3472 * Queue a buffer for transmission to a network device. The caller must
3473 * have set the device and priority and built the buffer before calling
3474 * this function. The function can be called from an interrupt.
3475 *
3476 * A negative errno code is returned on a failure. A success does not
3477 * guarantee the frame will be transmitted as it may be dropped due
3478 * to congestion or traffic shaping.
3479 *
3480 * -----------------------------------------------------------------------------------
3481 * I notice this method can also return errors from the queue disciplines,
3482 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3483 * be positive.
3484 *
3485 * Regardless of the return value, the skb is consumed, so it is currently
3486 * difficult to retry a send to this method. (You can bump the ref count
3487 * before sending to hold a reference for retry if you are careful.)
3488 *
3489 * When calling this method, interrupts MUST be enabled. This is because
3490 * the BH enable code must have IRQs enabled so that it will not deadlock.
3491 * --BLG
3492 */
3493 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3494 {
3495 struct net_device *dev = skb->dev;
3496 struct netdev_queue *txq;
3497 struct Qdisc *q;
3498 int rc = -ENOMEM;
3499 bool again = false;
3500
3501 skb_reset_mac_header(skb);
3502
3503 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3504 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3505
3506 /* Disable soft irqs for various locks below. Also
3507 * stops preemption for RCU.
3508 */
3509 rcu_read_lock_bh();
3510
3511 skb_update_prio(skb);
3512
3513 qdisc_pkt_len_init(skb);
3514 #ifdef CONFIG_NET_CLS_ACT
3515 skb->tc_at_ingress = 0;
3516 # ifdef CONFIG_NET_EGRESS
3517 if (static_branch_unlikely(&egress_needed_key)) {
3518 skb = sch_handle_egress(skb, &rc, dev);
3519 if (!skb)
3520 goto out;
3521 }
3522 # endif
3523 #endif
3524 /* If device/qdisc don't need skb->dst, release it right now while
3525 * its hot in this cpu cache.
3526 */
3527 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3528 skb_dst_drop(skb);
3529 else
3530 skb_dst_force(skb);
3531
3532 txq = netdev_pick_tx(dev, skb, accel_priv);
3533 q = rcu_dereference_bh(txq->qdisc);
3534
3535 trace_net_dev_queue(skb);
3536 if (q->enqueue) {
3537 rc = __dev_xmit_skb(skb, q, dev, txq);
3538 goto out;
3539 }
3540
3541 /* The device has no queue. Common case for software devices:
3542 * loopback, all the sorts of tunnels...
3543
3544 * Really, it is unlikely that netif_tx_lock protection is necessary
3545 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3546 * counters.)
3547 * However, it is possible, that they rely on protection
3548 * made by us here.
3549
3550 * Check this and shot the lock. It is not prone from deadlocks.
3551 *Either shot noqueue qdisc, it is even simpler 8)
3552 */
3553 if (dev->flags & IFF_UP) {
3554 int cpu = smp_processor_id(); /* ok because BHs are off */
3555
3556 if (txq->xmit_lock_owner != cpu) {
3557 if (unlikely(__this_cpu_read(xmit_recursion) >
3558 XMIT_RECURSION_LIMIT))
3559 goto recursion_alert;
3560
3561 skb = validate_xmit_skb(skb, dev, &again);
3562 if (!skb)
3563 goto out;
3564
3565 HARD_TX_LOCK(dev, txq, cpu);
3566
3567 if (!netif_xmit_stopped(txq)) {
3568 __this_cpu_inc(xmit_recursion);
3569 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3570 __this_cpu_dec(xmit_recursion);
3571 if (dev_xmit_complete(rc)) {
3572 HARD_TX_UNLOCK(dev, txq);
3573 goto out;
3574 }
3575 }
3576 HARD_TX_UNLOCK(dev, txq);
3577 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3578 dev->name);
3579 } else {
3580 /* Recursion is detected! It is possible,
3581 * unfortunately
3582 */
3583 recursion_alert:
3584 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3585 dev->name);
3586 }
3587 }
3588
3589 rc = -ENETDOWN;
3590 rcu_read_unlock_bh();
3591
3592 atomic_long_inc(&dev->tx_dropped);
3593 kfree_skb_list(skb);
3594 return rc;
3595 out:
3596 rcu_read_unlock_bh();
3597 return rc;
3598 }
3599
3600 int dev_queue_xmit(struct sk_buff *skb)
3601 {
3602 return __dev_queue_xmit(skb, NULL);
3603 }
3604 EXPORT_SYMBOL(dev_queue_xmit);
3605
3606 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3607 {
3608 return __dev_queue_xmit(skb, accel_priv);
3609 }
3610 EXPORT_SYMBOL(dev_queue_xmit_accel);
3611
3612 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3613 {
3614 struct net_device *dev = skb->dev;
3615 struct sk_buff *orig_skb = skb;
3616 struct netdev_queue *txq;
3617 int ret = NETDEV_TX_BUSY;
3618 bool again = false;
3619
3620 if (unlikely(!netif_running(dev) ||
3621 !netif_carrier_ok(dev)))
3622 goto drop;
3623
3624 skb = validate_xmit_skb_list(skb, dev, &again);
3625 if (skb != orig_skb)
3626 goto drop;
3627
3628 skb_set_queue_mapping(skb, queue_id);
3629 txq = skb_get_tx_queue(dev, skb);
3630
3631 local_bh_disable();
3632
3633 HARD_TX_LOCK(dev, txq, smp_processor_id());
3634 if (!netif_xmit_frozen_or_drv_stopped(txq))
3635 ret = netdev_start_xmit(skb, dev, txq, false);
3636 HARD_TX_UNLOCK(dev, txq);
3637
3638 local_bh_enable();
3639
3640 if (!dev_xmit_complete(ret))
3641 kfree_skb(skb);
3642
3643 return ret;
3644 drop:
3645 atomic_long_inc(&dev->tx_dropped);
3646 kfree_skb_list(skb);
3647 return NET_XMIT_DROP;
3648 }
3649 EXPORT_SYMBOL(dev_direct_xmit);
3650
3651 /*************************************************************************
3652 * Receiver routines
3653 *************************************************************************/
3654
3655 int netdev_max_backlog __read_mostly = 1000;
3656 EXPORT_SYMBOL(netdev_max_backlog);
3657
3658 int netdev_tstamp_prequeue __read_mostly = 1;
3659 int netdev_budget __read_mostly = 300;
3660 unsigned int __read_mostly netdev_budget_usecs = 2000;
3661 int weight_p __read_mostly = 64; /* old backlog weight */
3662 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3663 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3664 int dev_rx_weight __read_mostly = 64;
3665 int dev_tx_weight __read_mostly = 64;
3666
3667 /* Called with irq disabled */
3668 static inline void ____napi_schedule(struct softnet_data *sd,
3669 struct napi_struct *napi)
3670 {
3671 list_add_tail(&napi->poll_list, &sd->poll_list);
3672 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3673 }
3674
3675 #ifdef CONFIG_RPS
3676
3677 /* One global table that all flow-based protocols share. */
3678 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3679 EXPORT_SYMBOL(rps_sock_flow_table);
3680 u32 rps_cpu_mask __read_mostly;
3681 EXPORT_SYMBOL(rps_cpu_mask);
3682
3683 struct static_key rps_needed __read_mostly;
3684 EXPORT_SYMBOL(rps_needed);
3685 struct static_key rfs_needed __read_mostly;
3686 EXPORT_SYMBOL(rfs_needed);
3687
3688 static struct rps_dev_flow *
3689 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3690 struct rps_dev_flow *rflow, u16 next_cpu)
3691 {
3692 if (next_cpu < nr_cpu_ids) {
3693 #ifdef CONFIG_RFS_ACCEL
3694 struct netdev_rx_queue *rxqueue;
3695 struct rps_dev_flow_table *flow_table;
3696 struct rps_dev_flow *old_rflow;
3697 u32 flow_id;
3698 u16 rxq_index;
3699 int rc;
3700
3701 /* Should we steer this flow to a different hardware queue? */
3702 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3703 !(dev->features & NETIF_F_NTUPLE))
3704 goto out;
3705 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3706 if (rxq_index == skb_get_rx_queue(skb))
3707 goto out;
3708
3709 rxqueue = dev->_rx + rxq_index;
3710 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3711 if (!flow_table)
3712 goto out;
3713 flow_id = skb_get_hash(skb) & flow_table->mask;
3714 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3715 rxq_index, flow_id);
3716 if (rc < 0)
3717 goto out;
3718 old_rflow = rflow;
3719 rflow = &flow_table->flows[flow_id];
3720 rflow->filter = rc;
3721 if (old_rflow->filter == rflow->filter)
3722 old_rflow->filter = RPS_NO_FILTER;
3723 out:
3724 #endif
3725 rflow->last_qtail =
3726 per_cpu(softnet_data, next_cpu).input_queue_head;
3727 }
3728
3729 rflow->cpu = next_cpu;
3730 return rflow;
3731 }
3732
3733 /*
3734 * get_rps_cpu is called from netif_receive_skb and returns the target
3735 * CPU from the RPS map of the receiving queue for a given skb.
3736 * rcu_read_lock must be held on entry.
3737 */
3738 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3739 struct rps_dev_flow **rflowp)
3740 {
3741 const struct rps_sock_flow_table *sock_flow_table;
3742 struct netdev_rx_queue *rxqueue = dev->_rx;
3743 struct rps_dev_flow_table *flow_table;
3744 struct rps_map *map;
3745 int cpu = -1;
3746 u32 tcpu;
3747 u32 hash;
3748
3749 if (skb_rx_queue_recorded(skb)) {
3750 u16 index = skb_get_rx_queue(skb);
3751
3752 if (unlikely(index >= dev->real_num_rx_queues)) {
3753 WARN_ONCE(dev->real_num_rx_queues > 1,
3754 "%s received packet on queue %u, but number "
3755 "of RX queues is %u\n",
3756 dev->name, index, dev->real_num_rx_queues);
3757 goto done;
3758 }
3759 rxqueue += index;
3760 }
3761
3762 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3763
3764 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3765 map = rcu_dereference(rxqueue->rps_map);
3766 if (!flow_table && !map)
3767 goto done;
3768
3769 skb_reset_network_header(skb);
3770 hash = skb_get_hash(skb);
3771 if (!hash)
3772 goto done;
3773
3774 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3775 if (flow_table && sock_flow_table) {
3776 struct rps_dev_flow *rflow;
3777 u32 next_cpu;
3778 u32 ident;
3779
3780 /* First check into global flow table if there is a match */
3781 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3782 if ((ident ^ hash) & ~rps_cpu_mask)
3783 goto try_rps;
3784
3785 next_cpu = ident & rps_cpu_mask;
3786
3787 /* OK, now we know there is a match,
3788 * we can look at the local (per receive queue) flow table
3789 */
3790 rflow = &flow_table->flows[hash & flow_table->mask];
3791 tcpu = rflow->cpu;
3792
3793 /*
3794 * If the desired CPU (where last recvmsg was done) is
3795 * different from current CPU (one in the rx-queue flow
3796 * table entry), switch if one of the following holds:
3797 * - Current CPU is unset (>= nr_cpu_ids).
3798 * - Current CPU is offline.
3799 * - The current CPU's queue tail has advanced beyond the
3800 * last packet that was enqueued using this table entry.
3801 * This guarantees that all previous packets for the flow
3802 * have been dequeued, thus preserving in order delivery.
3803 */
3804 if (unlikely(tcpu != next_cpu) &&
3805 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3806 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3807 rflow->last_qtail)) >= 0)) {
3808 tcpu = next_cpu;
3809 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3810 }
3811
3812 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3813 *rflowp = rflow;
3814 cpu = tcpu;
3815 goto done;
3816 }
3817 }
3818
3819 try_rps:
3820
3821 if (map) {
3822 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3823 if (cpu_online(tcpu)) {
3824 cpu = tcpu;
3825 goto done;
3826 }
3827 }
3828
3829 done:
3830 return cpu;
3831 }
3832
3833 #ifdef CONFIG_RFS_ACCEL
3834
3835 /**
3836 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3837 * @dev: Device on which the filter was set
3838 * @rxq_index: RX queue index
3839 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3840 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3841 *
3842 * Drivers that implement ndo_rx_flow_steer() should periodically call
3843 * this function for each installed filter and remove the filters for
3844 * which it returns %true.
3845 */
3846 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3847 u32 flow_id, u16 filter_id)
3848 {
3849 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3850 struct rps_dev_flow_table *flow_table;
3851 struct rps_dev_flow *rflow;
3852 bool expire = true;
3853 unsigned int cpu;
3854
3855 rcu_read_lock();
3856 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3857 if (flow_table && flow_id <= flow_table->mask) {
3858 rflow = &flow_table->flows[flow_id];
3859 cpu = READ_ONCE(rflow->cpu);
3860 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3861 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3862 rflow->last_qtail) <
3863 (int)(10 * flow_table->mask)))
3864 expire = false;
3865 }
3866 rcu_read_unlock();
3867 return expire;
3868 }
3869 EXPORT_SYMBOL(rps_may_expire_flow);
3870
3871 #endif /* CONFIG_RFS_ACCEL */
3872
3873 /* Called from hardirq (IPI) context */
3874 static void rps_trigger_softirq(void *data)
3875 {
3876 struct softnet_data *sd = data;
3877
3878 ____napi_schedule(sd, &sd->backlog);
3879 sd->received_rps++;
3880 }
3881
3882 #endif /* CONFIG_RPS */
3883
3884 /*
3885 * Check if this softnet_data structure is another cpu one
3886 * If yes, queue it to our IPI list and return 1
3887 * If no, return 0
3888 */
3889 static int rps_ipi_queued(struct softnet_data *sd)
3890 {
3891 #ifdef CONFIG_RPS
3892 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3893
3894 if (sd != mysd) {
3895 sd->rps_ipi_next = mysd->rps_ipi_list;
3896 mysd->rps_ipi_list = sd;
3897
3898 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3899 return 1;
3900 }
3901 #endif /* CONFIG_RPS */
3902 return 0;
3903 }
3904
3905 #ifdef CONFIG_NET_FLOW_LIMIT
3906 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3907 #endif
3908
3909 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3910 {
3911 #ifdef CONFIG_NET_FLOW_LIMIT
3912 struct sd_flow_limit *fl;
3913 struct softnet_data *sd;
3914 unsigned int old_flow, new_flow;
3915
3916 if (qlen < (netdev_max_backlog >> 1))
3917 return false;
3918
3919 sd = this_cpu_ptr(&softnet_data);
3920
3921 rcu_read_lock();
3922 fl = rcu_dereference(sd->flow_limit);
3923 if (fl) {
3924 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3925 old_flow = fl->history[fl->history_head];
3926 fl->history[fl->history_head] = new_flow;
3927
3928 fl->history_head++;
3929 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3930
3931 if (likely(fl->buckets[old_flow]))
3932 fl->buckets[old_flow]--;
3933
3934 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3935 fl->count++;
3936 rcu_read_unlock();
3937 return true;
3938 }
3939 }
3940 rcu_read_unlock();
3941 #endif
3942 return false;
3943 }
3944
3945 /*
3946 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3947 * queue (may be a remote CPU queue).
3948 */
3949 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3950 unsigned int *qtail)
3951 {
3952 struct softnet_data *sd;
3953 unsigned long flags;
3954 unsigned int qlen;
3955
3956 sd = &per_cpu(softnet_data, cpu);
3957
3958 local_irq_save(flags);
3959
3960 rps_lock(sd);
3961 if (!netif_running(skb->dev))
3962 goto drop;
3963 qlen = skb_queue_len(&sd->input_pkt_queue);
3964 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3965 if (qlen) {
3966 enqueue:
3967 __skb_queue_tail(&sd->input_pkt_queue, skb);
3968 input_queue_tail_incr_save(sd, qtail);
3969 rps_unlock(sd);
3970 local_irq_restore(flags);
3971 return NET_RX_SUCCESS;
3972 }
3973
3974 /* Schedule NAPI for backlog device
3975 * We can use non atomic operation since we own the queue lock
3976 */
3977 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3978 if (!rps_ipi_queued(sd))
3979 ____napi_schedule(sd, &sd->backlog);
3980 }
3981 goto enqueue;
3982 }
3983
3984 drop:
3985 sd->dropped++;
3986 rps_unlock(sd);
3987
3988 local_irq_restore(flags);
3989
3990 atomic_long_inc(&skb->dev->rx_dropped);
3991 kfree_skb(skb);
3992 return NET_RX_DROP;
3993 }
3994
3995 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
3996 {
3997 struct net_device *dev = skb->dev;
3998 struct netdev_rx_queue *rxqueue;
3999
4000 rxqueue = dev->_rx;
4001
4002 if (skb_rx_queue_recorded(skb)) {
4003 u16 index = skb_get_rx_queue(skb);
4004
4005 if (unlikely(index >= dev->real_num_rx_queues)) {
4006 WARN_ONCE(dev->real_num_rx_queues > 1,
4007 "%s received packet on queue %u, but number "
4008 "of RX queues is %u\n",
4009 dev->name, index, dev->real_num_rx_queues);
4010
4011 return rxqueue; /* Return first rxqueue */
4012 }
4013 rxqueue += index;
4014 }
4015 return rxqueue;
4016 }
4017
4018 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4019 struct xdp_buff *xdp,
4020 struct bpf_prog *xdp_prog)
4021 {
4022 struct netdev_rx_queue *rxqueue;
4023 void *orig_data, *orig_data_end;
4024 u32 metalen, act = XDP_DROP;
4025 int hlen, off;
4026 u32 mac_len;
4027
4028 /* Reinjected packets coming from act_mirred or similar should
4029 * not get XDP generic processing.
4030 */
4031 if (skb_cloned(skb))
4032 return XDP_PASS;
4033
4034 /* XDP packets must be linear and must have sufficient headroom
4035 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4036 * native XDP provides, thus we need to do it here as well.
4037 */
4038 if (skb_is_nonlinear(skb) ||
4039 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4040 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4041 int troom = skb->tail + skb->data_len - skb->end;
4042
4043 /* In case we have to go down the path and also linearize,
4044 * then lets do the pskb_expand_head() work just once here.
4045 */
4046 if (pskb_expand_head(skb,
4047 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4048 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4049 goto do_drop;
4050 if (skb_linearize(skb))
4051 goto do_drop;
4052 }
4053
4054 /* The XDP program wants to see the packet starting at the MAC
4055 * header.
4056 */
4057 mac_len = skb->data - skb_mac_header(skb);
4058 hlen = skb_headlen(skb) + mac_len;
4059 xdp->data = skb->data - mac_len;
4060 xdp->data_meta = xdp->data;
4061 xdp->data_end = xdp->data + hlen;
4062 xdp->data_hard_start = skb->data - skb_headroom(skb);
4063 orig_data_end = xdp->data_end;
4064 orig_data = xdp->data;
4065
4066 rxqueue = netif_get_rxqueue(skb);
4067 xdp->rxq = &rxqueue->xdp_rxq;
4068
4069 act = bpf_prog_run_xdp(xdp_prog, xdp);
4070
4071 off = xdp->data - orig_data;
4072 if (off > 0)
4073 __skb_pull(skb, off);
4074 else if (off < 0)
4075 __skb_push(skb, -off);
4076 skb->mac_header += off;
4077
4078 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4079 * pckt.
4080 */
4081 off = orig_data_end - xdp->data_end;
4082 if (off != 0) {
4083 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4084 skb->len -= off;
4085
4086 }
4087
4088 switch (act) {
4089 case XDP_REDIRECT:
4090 case XDP_TX:
4091 __skb_push(skb, mac_len);
4092 break;
4093 case XDP_PASS:
4094 metalen = xdp->data - xdp->data_meta;
4095 if (metalen)
4096 skb_metadata_set(skb, metalen);
4097 break;
4098 default:
4099 bpf_warn_invalid_xdp_action(act);
4100 /* fall through */
4101 case XDP_ABORTED:
4102 trace_xdp_exception(skb->dev, xdp_prog, act);
4103 /* fall through */
4104 case XDP_DROP:
4105 do_drop:
4106 kfree_skb(skb);
4107 break;
4108 }
4109
4110 return act;
4111 }
4112
4113 /* When doing generic XDP we have to bypass the qdisc layer and the
4114 * network taps in order to match in-driver-XDP behavior.
4115 */
4116 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4117 {
4118 struct net_device *dev = skb->dev;
4119 struct netdev_queue *txq;
4120 bool free_skb = true;
4121 int cpu, rc;
4122
4123 txq = netdev_pick_tx(dev, skb, NULL);
4124 cpu = smp_processor_id();
4125 HARD_TX_LOCK(dev, txq, cpu);
4126 if (!netif_xmit_stopped(txq)) {
4127 rc = netdev_start_xmit(skb, dev, txq, 0);
4128 if (dev_xmit_complete(rc))
4129 free_skb = false;
4130 }
4131 HARD_TX_UNLOCK(dev, txq);
4132 if (free_skb) {
4133 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4134 kfree_skb(skb);
4135 }
4136 }
4137 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4138
4139 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4140
4141 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4142 {
4143 if (xdp_prog) {
4144 struct xdp_buff xdp;
4145 u32 act;
4146 int err;
4147
4148 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4149 if (act != XDP_PASS) {
4150 switch (act) {
4151 case XDP_REDIRECT:
4152 err = xdp_do_generic_redirect(skb->dev, skb,
4153 &xdp, xdp_prog);
4154 if (err)
4155 goto out_redir;
4156 break;
4157 case XDP_TX:
4158 generic_xdp_tx(skb, xdp_prog);
4159 break;
4160 }
4161 return XDP_DROP;
4162 }
4163 }
4164 return XDP_PASS;
4165 out_redir:
4166 kfree_skb(skb);
4167 return XDP_DROP;
4168 }
4169 EXPORT_SYMBOL_GPL(do_xdp_generic);
4170
4171 static int netif_rx_internal(struct sk_buff *skb)
4172 {
4173 int ret;
4174
4175 net_timestamp_check(netdev_tstamp_prequeue, skb);
4176
4177 trace_netif_rx(skb);
4178
4179 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4180 int ret;
4181
4182 preempt_disable();
4183 rcu_read_lock();
4184 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4185 rcu_read_unlock();
4186 preempt_enable();
4187
4188 /* Consider XDP consuming the packet a success from
4189 * the netdev point of view we do not want to count
4190 * this as an error.
4191 */
4192 if (ret != XDP_PASS)
4193 return NET_RX_SUCCESS;
4194 }
4195
4196 #ifdef CONFIG_RPS
4197 if (static_key_false(&rps_needed)) {
4198 struct rps_dev_flow voidflow, *rflow = &voidflow;
4199 int cpu;
4200
4201 preempt_disable();
4202 rcu_read_lock();
4203
4204 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4205 if (cpu < 0)
4206 cpu = smp_processor_id();
4207
4208 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4209
4210 rcu_read_unlock();
4211 preempt_enable();
4212 } else
4213 #endif
4214 {
4215 unsigned int qtail;
4216
4217 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4218 put_cpu();
4219 }
4220 return ret;
4221 }
4222
4223 /**
4224 * netif_rx - post buffer to the network code
4225 * @skb: buffer to post
4226 *
4227 * This function receives a packet from a device driver and queues it for
4228 * the upper (protocol) levels to process. It always succeeds. The buffer
4229 * may be dropped during processing for congestion control or by the
4230 * protocol layers.
4231 *
4232 * return values:
4233 * NET_RX_SUCCESS (no congestion)
4234 * NET_RX_DROP (packet was dropped)
4235 *
4236 */
4237
4238 int netif_rx(struct sk_buff *skb)
4239 {
4240 trace_netif_rx_entry(skb);
4241
4242 return netif_rx_internal(skb);
4243 }
4244 EXPORT_SYMBOL(netif_rx);
4245
4246 int netif_rx_ni(struct sk_buff *skb)
4247 {
4248 int err;
4249
4250 trace_netif_rx_ni_entry(skb);
4251
4252 preempt_disable();
4253 err = netif_rx_internal(skb);
4254 if (local_softirq_pending())
4255 do_softirq();
4256 preempt_enable();
4257
4258 return err;
4259 }
4260 EXPORT_SYMBOL(netif_rx_ni);
4261
4262 static __latent_entropy void net_tx_action(struct softirq_action *h)
4263 {
4264 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4265
4266 if (sd->completion_queue) {
4267 struct sk_buff *clist;
4268
4269 local_irq_disable();
4270 clist = sd->completion_queue;
4271 sd->completion_queue = NULL;
4272 local_irq_enable();
4273
4274 while (clist) {
4275 struct sk_buff *skb = clist;
4276
4277 clist = clist->next;
4278
4279 WARN_ON(refcount_read(&skb->users));
4280 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4281 trace_consume_skb(skb);
4282 else
4283 trace_kfree_skb(skb, net_tx_action);
4284
4285 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4286 __kfree_skb(skb);
4287 else
4288 __kfree_skb_defer(skb);
4289 }
4290
4291 __kfree_skb_flush();
4292 }
4293
4294 if (sd->output_queue) {
4295 struct Qdisc *head;
4296
4297 local_irq_disable();
4298 head = sd->output_queue;
4299 sd->output_queue = NULL;
4300 sd->output_queue_tailp = &sd->output_queue;
4301 local_irq_enable();
4302
4303 while (head) {
4304 struct Qdisc *q = head;
4305 spinlock_t *root_lock = NULL;
4306
4307 head = head->next_sched;
4308
4309 if (!(q->flags & TCQ_F_NOLOCK)) {
4310 root_lock = qdisc_lock(q);
4311 spin_lock(root_lock);
4312 }
4313 /* We need to make sure head->next_sched is read
4314 * before clearing __QDISC_STATE_SCHED
4315 */
4316 smp_mb__before_atomic();
4317 clear_bit(__QDISC_STATE_SCHED, &q->state);
4318 qdisc_run(q);
4319 if (root_lock)
4320 spin_unlock(root_lock);
4321 }
4322 }
4323
4324 xfrm_dev_backlog(sd);
4325 }
4326
4327 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4328 /* This hook is defined here for ATM LANE */
4329 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4330 unsigned char *addr) __read_mostly;
4331 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4332 #endif
4333
4334 static inline struct sk_buff *
4335 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4336 struct net_device *orig_dev)
4337 {
4338 #ifdef CONFIG_NET_CLS_ACT
4339 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4340 struct tcf_result cl_res;
4341
4342 /* If there's at least one ingress present somewhere (so
4343 * we get here via enabled static key), remaining devices
4344 * that are not configured with an ingress qdisc will bail
4345 * out here.
4346 */
4347 if (!miniq)
4348 return skb;
4349
4350 if (*pt_prev) {
4351 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4352 *pt_prev = NULL;
4353 }
4354
4355 qdisc_skb_cb(skb)->pkt_len = skb->len;
4356 skb->tc_at_ingress = 1;
4357 mini_qdisc_bstats_cpu_update(miniq, skb);
4358
4359 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4360 case TC_ACT_OK:
4361 case TC_ACT_RECLASSIFY:
4362 skb->tc_index = TC_H_MIN(cl_res.classid);
4363 break;
4364 case TC_ACT_SHOT:
4365 mini_qdisc_qstats_cpu_drop(miniq);
4366 kfree_skb(skb);
4367 return NULL;
4368 case TC_ACT_STOLEN:
4369 case TC_ACT_QUEUED:
4370 case TC_ACT_TRAP:
4371 consume_skb(skb);
4372 return NULL;
4373 case TC_ACT_REDIRECT:
4374 /* skb_mac_header check was done by cls/act_bpf, so
4375 * we can safely push the L2 header back before
4376 * redirecting to another netdev
4377 */
4378 __skb_push(skb, skb->mac_len);
4379 skb_do_redirect(skb);
4380 return NULL;
4381 default:
4382 break;
4383 }
4384 #endif /* CONFIG_NET_CLS_ACT */
4385 return skb;
4386 }
4387
4388 /**
4389 * netdev_is_rx_handler_busy - check if receive handler is registered
4390 * @dev: device to check
4391 *
4392 * Check if a receive handler is already registered for a given device.
4393 * Return true if there one.
4394 *
4395 * The caller must hold the rtnl_mutex.
4396 */
4397 bool netdev_is_rx_handler_busy(struct net_device *dev)
4398 {
4399 ASSERT_RTNL();
4400 return dev && rtnl_dereference(dev->rx_handler);
4401 }
4402 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4403
4404 /**
4405 * netdev_rx_handler_register - register receive handler
4406 * @dev: device to register a handler for
4407 * @rx_handler: receive handler to register
4408 * @rx_handler_data: data pointer that is used by rx handler
4409 *
4410 * Register a receive handler for a device. This handler will then be
4411 * called from __netif_receive_skb. A negative errno code is returned
4412 * on a failure.
4413 *
4414 * The caller must hold the rtnl_mutex.
4415 *
4416 * For a general description of rx_handler, see enum rx_handler_result.
4417 */
4418 int netdev_rx_handler_register(struct net_device *dev,
4419 rx_handler_func_t *rx_handler,
4420 void *rx_handler_data)
4421 {
4422 if (netdev_is_rx_handler_busy(dev))
4423 return -EBUSY;
4424
4425 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4426 return -EINVAL;
4427
4428 /* Note: rx_handler_data must be set before rx_handler */
4429 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4430 rcu_assign_pointer(dev->rx_handler, rx_handler);
4431
4432 return 0;
4433 }
4434 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4435
4436 /**
4437 * netdev_rx_handler_unregister - unregister receive handler
4438 * @dev: device to unregister a handler from
4439 *
4440 * Unregister a receive handler from a device.
4441 *
4442 * The caller must hold the rtnl_mutex.
4443 */
4444 void netdev_rx_handler_unregister(struct net_device *dev)
4445 {
4446
4447 ASSERT_RTNL();
4448 RCU_INIT_POINTER(dev->rx_handler, NULL);
4449 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4450 * section has a guarantee to see a non NULL rx_handler_data
4451 * as well.
4452 */
4453 synchronize_net();
4454 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4455 }
4456 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4457
4458 /*
4459 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4460 * the special handling of PFMEMALLOC skbs.
4461 */
4462 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4463 {
4464 switch (skb->protocol) {
4465 case htons(ETH_P_ARP):
4466 case htons(ETH_P_IP):
4467 case htons(ETH_P_IPV6):
4468 case htons(ETH_P_8021Q):
4469 case htons(ETH_P_8021AD):
4470 return true;
4471 default:
4472 return false;
4473 }
4474 }
4475
4476 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4477 int *ret, struct net_device *orig_dev)
4478 {
4479 #ifdef CONFIG_NETFILTER_INGRESS
4480 if (nf_hook_ingress_active(skb)) {
4481 int ingress_retval;
4482
4483 if (*pt_prev) {
4484 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4485 *pt_prev = NULL;
4486 }
4487
4488 rcu_read_lock();
4489 ingress_retval = nf_hook_ingress(skb);
4490 rcu_read_unlock();
4491 return ingress_retval;
4492 }
4493 #endif /* CONFIG_NETFILTER_INGRESS */
4494 return 0;
4495 }
4496
4497 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4498 {
4499 struct packet_type *ptype, *pt_prev;
4500 rx_handler_func_t *rx_handler;
4501 struct net_device *orig_dev;
4502 bool deliver_exact = false;
4503 int ret = NET_RX_DROP;
4504 __be16 type;
4505
4506 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4507
4508 trace_netif_receive_skb(skb);
4509
4510 orig_dev = skb->dev;
4511
4512 skb_reset_network_header(skb);
4513 if (!skb_transport_header_was_set(skb))
4514 skb_reset_transport_header(skb);
4515 skb_reset_mac_len(skb);
4516
4517 pt_prev = NULL;
4518
4519 another_round:
4520 skb->skb_iif = skb->dev->ifindex;
4521
4522 __this_cpu_inc(softnet_data.processed);
4523
4524 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4525 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4526 skb = skb_vlan_untag(skb);
4527 if (unlikely(!skb))
4528 goto out;
4529 }
4530
4531 if (skb_skip_tc_classify(skb))
4532 goto skip_classify;
4533
4534 if (pfmemalloc)
4535 goto skip_taps;
4536
4537 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4538 if (pt_prev)
4539 ret = deliver_skb(skb, pt_prev, orig_dev);
4540 pt_prev = ptype;
4541 }
4542
4543 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4544 if (pt_prev)
4545 ret = deliver_skb(skb, pt_prev, orig_dev);
4546 pt_prev = ptype;
4547 }
4548
4549 skip_taps:
4550 #ifdef CONFIG_NET_INGRESS
4551 if (static_branch_unlikely(&ingress_needed_key)) {
4552 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4553 if (!skb)
4554 goto out;
4555
4556 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4557 goto out;
4558 }
4559 #endif
4560 skb_reset_tc(skb);
4561 skip_classify:
4562 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4563 goto drop;
4564
4565 if (skb_vlan_tag_present(skb)) {
4566 if (pt_prev) {
4567 ret = deliver_skb(skb, pt_prev, orig_dev);
4568 pt_prev = NULL;
4569 }
4570 if (vlan_do_receive(&skb))
4571 goto another_round;
4572 else if (unlikely(!skb))
4573 goto out;
4574 }
4575
4576 rx_handler = rcu_dereference(skb->dev->rx_handler);
4577 if (rx_handler) {
4578 if (pt_prev) {
4579 ret = deliver_skb(skb, pt_prev, orig_dev);
4580 pt_prev = NULL;
4581 }
4582 switch (rx_handler(&skb)) {
4583 case RX_HANDLER_CONSUMED:
4584 ret = NET_RX_SUCCESS;
4585 goto out;
4586 case RX_HANDLER_ANOTHER:
4587 goto another_round;
4588 case RX_HANDLER_EXACT:
4589 deliver_exact = true;
4590 case RX_HANDLER_PASS:
4591 break;
4592 default:
4593 BUG();
4594 }
4595 }
4596
4597 if (unlikely(skb_vlan_tag_present(skb))) {
4598 if (skb_vlan_tag_get_id(skb))
4599 skb->pkt_type = PACKET_OTHERHOST;
4600 /* Note: we might in the future use prio bits
4601 * and set skb->priority like in vlan_do_receive()
4602 * For the time being, just ignore Priority Code Point
4603 */
4604 skb->vlan_tci = 0;
4605 }
4606
4607 type = skb->protocol;
4608
4609 /* deliver only exact match when indicated */
4610 if (likely(!deliver_exact)) {
4611 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4612 &ptype_base[ntohs(type) &
4613 PTYPE_HASH_MASK]);
4614 }
4615
4616 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4617 &orig_dev->ptype_specific);
4618
4619 if (unlikely(skb->dev != orig_dev)) {
4620 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4621 &skb->dev->ptype_specific);
4622 }
4623
4624 if (pt_prev) {
4625 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4626 goto drop;
4627 else
4628 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4629 } else {
4630 drop:
4631 if (!deliver_exact)
4632 atomic_long_inc(&skb->dev->rx_dropped);
4633 else
4634 atomic_long_inc(&skb->dev->rx_nohandler);
4635 kfree_skb(skb);
4636 /* Jamal, now you will not able to escape explaining
4637 * me how you were going to use this. :-)
4638 */
4639 ret = NET_RX_DROP;
4640 }
4641
4642 out:
4643 return ret;
4644 }
4645
4646 /**
4647 * netif_receive_skb_core - special purpose version of netif_receive_skb
4648 * @skb: buffer to process
4649 *
4650 * More direct receive version of netif_receive_skb(). It should
4651 * only be used by callers that have a need to skip RPS and Generic XDP.
4652 * Caller must also take care of handling if (page_is_)pfmemalloc.
4653 *
4654 * This function may only be called from softirq context and interrupts
4655 * should be enabled.
4656 *
4657 * Return values (usually ignored):
4658 * NET_RX_SUCCESS: no congestion
4659 * NET_RX_DROP: packet was dropped
4660 */
4661 int netif_receive_skb_core(struct sk_buff *skb)
4662 {
4663 int ret;
4664
4665 rcu_read_lock();
4666 ret = __netif_receive_skb_core(skb, false);
4667 rcu_read_unlock();
4668
4669 return ret;
4670 }
4671 EXPORT_SYMBOL(netif_receive_skb_core);
4672
4673 static int __netif_receive_skb(struct sk_buff *skb)
4674 {
4675 int ret;
4676
4677 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4678 unsigned int noreclaim_flag;
4679
4680 /*
4681 * PFMEMALLOC skbs are special, they should
4682 * - be delivered to SOCK_MEMALLOC sockets only
4683 * - stay away from userspace
4684 * - have bounded memory usage
4685 *
4686 * Use PF_MEMALLOC as this saves us from propagating the allocation
4687 * context down to all allocation sites.
4688 */
4689 noreclaim_flag = memalloc_noreclaim_save();
4690 ret = __netif_receive_skb_core(skb, true);
4691 memalloc_noreclaim_restore(noreclaim_flag);
4692 } else
4693 ret = __netif_receive_skb_core(skb, false);
4694
4695 return ret;
4696 }
4697
4698 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4699 {
4700 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4701 struct bpf_prog *new = xdp->prog;
4702 int ret = 0;
4703
4704 switch (xdp->command) {
4705 case XDP_SETUP_PROG:
4706 rcu_assign_pointer(dev->xdp_prog, new);
4707 if (old)
4708 bpf_prog_put(old);
4709
4710 if (old && !new) {
4711 static_branch_dec(&generic_xdp_needed_key);
4712 } else if (new && !old) {
4713 static_branch_inc(&generic_xdp_needed_key);
4714 dev_disable_lro(dev);
4715 dev_disable_gro_hw(dev);
4716 }
4717 break;
4718
4719 case XDP_QUERY_PROG:
4720 xdp->prog_attached = !!old;
4721 xdp->prog_id = old ? old->aux->id : 0;
4722 break;
4723
4724 default:
4725 ret = -EINVAL;
4726 break;
4727 }
4728
4729 return ret;
4730 }
4731
4732 static int netif_receive_skb_internal(struct sk_buff *skb)
4733 {
4734 int ret;
4735
4736 net_timestamp_check(netdev_tstamp_prequeue, skb);
4737
4738 if (skb_defer_rx_timestamp(skb))
4739 return NET_RX_SUCCESS;
4740
4741 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4742 int ret;
4743
4744 preempt_disable();
4745 rcu_read_lock();
4746 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4747 rcu_read_unlock();
4748 preempt_enable();
4749
4750 if (ret != XDP_PASS)
4751 return NET_RX_DROP;
4752 }
4753
4754 rcu_read_lock();
4755 #ifdef CONFIG_RPS
4756 if (static_key_false(&rps_needed)) {
4757 struct rps_dev_flow voidflow, *rflow = &voidflow;
4758 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4759
4760 if (cpu >= 0) {
4761 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4762 rcu_read_unlock();
4763 return ret;
4764 }
4765 }
4766 #endif
4767 ret = __netif_receive_skb(skb);
4768 rcu_read_unlock();
4769 return ret;
4770 }
4771
4772 /**
4773 * netif_receive_skb - process receive buffer from network
4774 * @skb: buffer to process
4775 *
4776 * netif_receive_skb() is the main receive data processing function.
4777 * It always succeeds. The buffer may be dropped during processing
4778 * for congestion control or by the protocol layers.
4779 *
4780 * This function may only be called from softirq context and interrupts
4781 * should be enabled.
4782 *
4783 * Return values (usually ignored):
4784 * NET_RX_SUCCESS: no congestion
4785 * NET_RX_DROP: packet was dropped
4786 */
4787 int netif_receive_skb(struct sk_buff *skb)
4788 {
4789 trace_netif_receive_skb_entry(skb);
4790
4791 return netif_receive_skb_internal(skb);
4792 }
4793 EXPORT_SYMBOL(netif_receive_skb);
4794
4795 DEFINE_PER_CPU(struct work_struct, flush_works);
4796
4797 /* Network device is going away, flush any packets still pending */
4798 static void flush_backlog(struct work_struct *work)
4799 {
4800 struct sk_buff *skb, *tmp;
4801 struct softnet_data *sd;
4802
4803 local_bh_disable();
4804 sd = this_cpu_ptr(&softnet_data);
4805
4806 local_irq_disable();
4807 rps_lock(sd);
4808 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4809 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4810 __skb_unlink(skb, &sd->input_pkt_queue);
4811 kfree_skb(skb);
4812 input_queue_head_incr(sd);
4813 }
4814 }
4815 rps_unlock(sd);
4816 local_irq_enable();
4817
4818 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4819 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4820 __skb_unlink(skb, &sd->process_queue);
4821 kfree_skb(skb);
4822 input_queue_head_incr(sd);
4823 }
4824 }
4825 local_bh_enable();
4826 }
4827
4828 static void flush_all_backlogs(void)
4829 {
4830 unsigned int cpu;
4831
4832 get_online_cpus();
4833
4834 for_each_online_cpu(cpu)
4835 queue_work_on(cpu, system_highpri_wq,
4836 per_cpu_ptr(&flush_works, cpu));
4837
4838 for_each_online_cpu(cpu)
4839 flush_work(per_cpu_ptr(&flush_works, cpu));
4840
4841 put_online_cpus();
4842 }
4843
4844 static int napi_gro_complete(struct sk_buff *skb)
4845 {
4846 struct packet_offload *ptype;
4847 __be16 type = skb->protocol;
4848 struct list_head *head = &offload_base;
4849 int err = -ENOENT;
4850
4851 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4852
4853 if (NAPI_GRO_CB(skb)->count == 1) {
4854 skb_shinfo(skb)->gso_size = 0;
4855 goto out;
4856 }
4857
4858 rcu_read_lock();
4859 list_for_each_entry_rcu(ptype, head, list) {
4860 if (ptype->type != type || !ptype->callbacks.gro_complete)
4861 continue;
4862
4863 err = ptype->callbacks.gro_complete(skb, 0);
4864 break;
4865 }
4866 rcu_read_unlock();
4867
4868 if (err) {
4869 WARN_ON(&ptype->list == head);
4870 kfree_skb(skb);
4871 return NET_RX_SUCCESS;
4872 }
4873
4874 out:
4875 return netif_receive_skb_internal(skb);
4876 }
4877
4878 /* napi->gro_list contains packets ordered by age.
4879 * youngest packets at the head of it.
4880 * Complete skbs in reverse order to reduce latencies.
4881 */
4882 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4883 {
4884 struct sk_buff *skb, *prev = NULL;
4885
4886 /* scan list and build reverse chain */
4887 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4888 skb->prev = prev;
4889 prev = skb;
4890 }
4891
4892 for (skb = prev; skb; skb = prev) {
4893 skb->next = NULL;
4894
4895 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4896 return;
4897
4898 prev = skb->prev;
4899 napi_gro_complete(skb);
4900 napi->gro_count--;
4901 }
4902
4903 napi->gro_list = NULL;
4904 }
4905 EXPORT_SYMBOL(napi_gro_flush);
4906
4907 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4908 {
4909 struct sk_buff *p;
4910 unsigned int maclen = skb->dev->hard_header_len;
4911 u32 hash = skb_get_hash_raw(skb);
4912
4913 for (p = napi->gro_list; p; p = p->next) {
4914 unsigned long diffs;
4915
4916 NAPI_GRO_CB(p)->flush = 0;
4917
4918 if (hash != skb_get_hash_raw(p)) {
4919 NAPI_GRO_CB(p)->same_flow = 0;
4920 continue;
4921 }
4922
4923 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4924 diffs |= p->vlan_tci ^ skb->vlan_tci;
4925 diffs |= skb_metadata_dst_cmp(p, skb);
4926 diffs |= skb_metadata_differs(p, skb);
4927 if (maclen == ETH_HLEN)
4928 diffs |= compare_ether_header(skb_mac_header(p),
4929 skb_mac_header(skb));
4930 else if (!diffs)
4931 diffs = memcmp(skb_mac_header(p),
4932 skb_mac_header(skb),
4933 maclen);
4934 NAPI_GRO_CB(p)->same_flow = !diffs;
4935 }
4936 }
4937
4938 static void skb_gro_reset_offset(struct sk_buff *skb)
4939 {
4940 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4941 const skb_frag_t *frag0 = &pinfo->frags[0];
4942
4943 NAPI_GRO_CB(skb)->data_offset = 0;
4944 NAPI_GRO_CB(skb)->frag0 = NULL;
4945 NAPI_GRO_CB(skb)->frag0_len = 0;
4946
4947 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4948 pinfo->nr_frags &&
4949 !PageHighMem(skb_frag_page(frag0))) {
4950 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4951 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4952 skb_frag_size(frag0),
4953 skb->end - skb->tail);
4954 }
4955 }
4956
4957 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4958 {
4959 struct skb_shared_info *pinfo = skb_shinfo(skb);
4960
4961 BUG_ON(skb->end - skb->tail < grow);
4962
4963 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4964
4965 skb->data_len -= grow;
4966 skb->tail += grow;
4967
4968 pinfo->frags[0].page_offset += grow;
4969 skb_frag_size_sub(&pinfo->frags[0], grow);
4970
4971 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4972 skb_frag_unref(skb, 0);
4973 memmove(pinfo->frags, pinfo->frags + 1,
4974 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4975 }
4976 }
4977
4978 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4979 {
4980 struct sk_buff **pp = NULL;
4981 struct packet_offload *ptype;
4982 __be16 type = skb->protocol;
4983 struct list_head *head = &offload_base;
4984 int same_flow;
4985 enum gro_result ret;
4986 int grow;
4987
4988 if (netif_elide_gro(skb->dev))
4989 goto normal;
4990
4991 gro_list_prepare(napi, skb);
4992
4993 rcu_read_lock();
4994 list_for_each_entry_rcu(ptype, head, list) {
4995 if (ptype->type != type || !ptype->callbacks.gro_receive)
4996 continue;
4997
4998 skb_set_network_header(skb, skb_gro_offset(skb));
4999 skb_reset_mac_len(skb);
5000 NAPI_GRO_CB(skb)->same_flow = 0;
5001 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5002 NAPI_GRO_CB(skb)->free = 0;
5003 NAPI_GRO_CB(skb)->encap_mark = 0;
5004 NAPI_GRO_CB(skb)->recursion_counter = 0;
5005 NAPI_GRO_CB(skb)->is_fou = 0;
5006 NAPI_GRO_CB(skb)->is_atomic = 1;
5007 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5008
5009 /* Setup for GRO checksum validation */
5010 switch (skb->ip_summed) {
5011 case CHECKSUM_COMPLETE:
5012 NAPI_GRO_CB(skb)->csum = skb->csum;
5013 NAPI_GRO_CB(skb)->csum_valid = 1;
5014 NAPI_GRO_CB(skb)->csum_cnt = 0;
5015 break;
5016 case CHECKSUM_UNNECESSARY:
5017 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5018 NAPI_GRO_CB(skb)->csum_valid = 0;
5019 break;
5020 default:
5021 NAPI_GRO_CB(skb)->csum_cnt = 0;
5022 NAPI_GRO_CB(skb)->csum_valid = 0;
5023 }
5024
5025 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
5026 break;
5027 }
5028 rcu_read_unlock();
5029
5030 if (&ptype->list == head)
5031 goto normal;
5032
5033 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5034 ret = GRO_CONSUMED;
5035 goto ok;
5036 }
5037
5038 same_flow = NAPI_GRO_CB(skb)->same_flow;
5039 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5040
5041 if (pp) {
5042 struct sk_buff *nskb = *pp;
5043
5044 *pp = nskb->next;
5045 nskb->next = NULL;
5046 napi_gro_complete(nskb);
5047 napi->gro_count--;
5048 }
5049
5050 if (same_flow)
5051 goto ok;
5052
5053 if (NAPI_GRO_CB(skb)->flush)
5054 goto normal;
5055
5056 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
5057 struct sk_buff *nskb = napi->gro_list;
5058
5059 /* locate the end of the list to select the 'oldest' flow */
5060 while (nskb->next) {
5061 pp = &nskb->next;
5062 nskb = *pp;
5063 }
5064 *pp = NULL;
5065 nskb->next = NULL;
5066 napi_gro_complete(nskb);
5067 } else {
5068 napi->gro_count++;
5069 }
5070 NAPI_GRO_CB(skb)->count = 1;
5071 NAPI_GRO_CB(skb)->age = jiffies;
5072 NAPI_GRO_CB(skb)->last = skb;
5073 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5074 skb->next = napi->gro_list;
5075 napi->gro_list = skb;
5076 ret = GRO_HELD;
5077
5078 pull:
5079 grow = skb_gro_offset(skb) - skb_headlen(skb);
5080 if (grow > 0)
5081 gro_pull_from_frag0(skb, grow);
5082 ok:
5083 return ret;
5084
5085 normal:
5086 ret = GRO_NORMAL;
5087 goto pull;
5088 }
5089
5090 struct packet_offload *gro_find_receive_by_type(__be16 type)
5091 {
5092 struct list_head *offload_head = &offload_base;
5093 struct packet_offload *ptype;
5094
5095 list_for_each_entry_rcu(ptype, offload_head, list) {
5096 if (ptype->type != type || !ptype->callbacks.gro_receive)
5097 continue;
5098 return ptype;
5099 }
5100 return NULL;
5101 }
5102 EXPORT_SYMBOL(gro_find_receive_by_type);
5103
5104 struct packet_offload *gro_find_complete_by_type(__be16 type)
5105 {
5106 struct list_head *offload_head = &offload_base;
5107 struct packet_offload *ptype;
5108
5109 list_for_each_entry_rcu(ptype, offload_head, list) {
5110 if (ptype->type != type || !ptype->callbacks.gro_complete)
5111 continue;
5112 return ptype;
5113 }
5114 return NULL;
5115 }
5116 EXPORT_SYMBOL(gro_find_complete_by_type);
5117
5118 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5119 {
5120 skb_dst_drop(skb);
5121 secpath_reset(skb);
5122 kmem_cache_free(skbuff_head_cache, skb);
5123 }
5124
5125 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5126 {
5127 switch (ret) {
5128 case GRO_NORMAL:
5129 if (netif_receive_skb_internal(skb))
5130 ret = GRO_DROP;
5131 break;
5132
5133 case GRO_DROP:
5134 kfree_skb(skb);
5135 break;
5136
5137 case GRO_MERGED_FREE:
5138 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5139 napi_skb_free_stolen_head(skb);
5140 else
5141 __kfree_skb(skb);
5142 break;
5143
5144 case GRO_HELD:
5145 case GRO_MERGED:
5146 case GRO_CONSUMED:
5147 break;
5148 }
5149
5150 return ret;
5151 }
5152
5153 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5154 {
5155 skb_mark_napi_id(skb, napi);
5156 trace_napi_gro_receive_entry(skb);
5157
5158 skb_gro_reset_offset(skb);
5159
5160 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5161 }
5162 EXPORT_SYMBOL(napi_gro_receive);
5163
5164 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5165 {
5166 if (unlikely(skb->pfmemalloc)) {
5167 consume_skb(skb);
5168 return;
5169 }
5170 __skb_pull(skb, skb_headlen(skb));
5171 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5172 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5173 skb->vlan_tci = 0;
5174 skb->dev = napi->dev;
5175 skb->skb_iif = 0;
5176 skb->encapsulation = 0;
5177 skb_shinfo(skb)->gso_type = 0;
5178 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5179 secpath_reset(skb);
5180
5181 napi->skb = skb;
5182 }
5183
5184 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5185 {
5186 struct sk_buff *skb = napi->skb;
5187
5188 if (!skb) {
5189 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5190 if (skb) {
5191 napi->skb = skb;
5192 skb_mark_napi_id(skb, napi);
5193 }
5194 }
5195 return skb;
5196 }
5197 EXPORT_SYMBOL(napi_get_frags);
5198
5199 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5200 struct sk_buff *skb,
5201 gro_result_t ret)
5202 {
5203 switch (ret) {
5204 case GRO_NORMAL:
5205 case GRO_HELD:
5206 __skb_push(skb, ETH_HLEN);
5207 skb->protocol = eth_type_trans(skb, skb->dev);
5208 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5209 ret = GRO_DROP;
5210 break;
5211
5212 case GRO_DROP:
5213 napi_reuse_skb(napi, skb);
5214 break;
5215
5216 case GRO_MERGED_FREE:
5217 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5218 napi_skb_free_stolen_head(skb);
5219 else
5220 napi_reuse_skb(napi, skb);
5221 break;
5222
5223 case GRO_MERGED:
5224 case GRO_CONSUMED:
5225 break;
5226 }
5227
5228 return ret;
5229 }
5230
5231 /* Upper GRO stack assumes network header starts at gro_offset=0
5232 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5233 * We copy ethernet header into skb->data to have a common layout.
5234 */
5235 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5236 {
5237 struct sk_buff *skb = napi->skb;
5238 const struct ethhdr *eth;
5239 unsigned int hlen = sizeof(*eth);
5240
5241 napi->skb = NULL;
5242
5243 skb_reset_mac_header(skb);
5244 skb_gro_reset_offset(skb);
5245
5246 eth = skb_gro_header_fast(skb, 0);
5247 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5248 eth = skb_gro_header_slow(skb, hlen, 0);
5249 if (unlikely(!eth)) {
5250 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5251 __func__, napi->dev->name);
5252 napi_reuse_skb(napi, skb);
5253 return NULL;
5254 }
5255 } else {
5256 gro_pull_from_frag0(skb, hlen);
5257 NAPI_GRO_CB(skb)->frag0 += hlen;
5258 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5259 }
5260 __skb_pull(skb, hlen);
5261
5262 /*
5263 * This works because the only protocols we care about don't require
5264 * special handling.
5265 * We'll fix it up properly in napi_frags_finish()
5266 */
5267 skb->protocol = eth->h_proto;
5268
5269 return skb;
5270 }
5271
5272 gro_result_t napi_gro_frags(struct napi_struct *napi)
5273 {
5274 struct sk_buff *skb = napi_frags_skb(napi);
5275
5276 if (!skb)
5277 return GRO_DROP;
5278
5279 trace_napi_gro_frags_entry(skb);
5280
5281 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5282 }
5283 EXPORT_SYMBOL(napi_gro_frags);
5284
5285 /* Compute the checksum from gro_offset and return the folded value
5286 * after adding in any pseudo checksum.
5287 */
5288 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5289 {
5290 __wsum wsum;
5291 __sum16 sum;
5292
5293 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5294
5295 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5296 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5297 if (likely(!sum)) {
5298 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5299 !skb->csum_complete_sw)
5300 netdev_rx_csum_fault(skb->dev);
5301 }
5302
5303 NAPI_GRO_CB(skb)->csum = wsum;
5304 NAPI_GRO_CB(skb)->csum_valid = 1;
5305
5306 return sum;
5307 }
5308 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5309
5310 static void net_rps_send_ipi(struct softnet_data *remsd)
5311 {
5312 #ifdef CONFIG_RPS
5313 while (remsd) {
5314 struct softnet_data *next = remsd->rps_ipi_next;
5315
5316 if (cpu_online(remsd->cpu))
5317 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5318 remsd = next;
5319 }
5320 #endif
5321 }
5322
5323 /*
5324 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5325 * Note: called with local irq disabled, but exits with local irq enabled.
5326 */
5327 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5328 {
5329 #ifdef CONFIG_RPS
5330 struct softnet_data *remsd = sd->rps_ipi_list;
5331
5332 if (remsd) {
5333 sd->rps_ipi_list = NULL;
5334
5335 local_irq_enable();
5336
5337 /* Send pending IPI's to kick RPS processing on remote cpus. */
5338 net_rps_send_ipi(remsd);
5339 } else
5340 #endif
5341 local_irq_enable();
5342 }
5343
5344 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5345 {
5346 #ifdef CONFIG_RPS
5347 return sd->rps_ipi_list != NULL;
5348 #else
5349 return false;
5350 #endif
5351 }
5352
5353 static int process_backlog(struct napi_struct *napi, int quota)
5354 {
5355 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5356 bool again = true;
5357 int work = 0;
5358
5359 /* Check if we have pending ipi, its better to send them now,
5360 * not waiting net_rx_action() end.
5361 */
5362 if (sd_has_rps_ipi_waiting(sd)) {
5363 local_irq_disable();
5364 net_rps_action_and_irq_enable(sd);
5365 }
5366
5367 napi->weight = dev_rx_weight;
5368 while (again) {
5369 struct sk_buff *skb;
5370
5371 while ((skb = __skb_dequeue(&sd->process_queue))) {
5372 rcu_read_lock();
5373 __netif_receive_skb(skb);
5374 rcu_read_unlock();
5375 input_queue_head_incr(sd);
5376 if (++work >= quota)
5377 return work;
5378
5379 }
5380
5381 local_irq_disable();
5382 rps_lock(sd);
5383 if (skb_queue_empty(&sd->input_pkt_queue)) {
5384 /*
5385 * Inline a custom version of __napi_complete().
5386 * only current cpu owns and manipulates this napi,
5387 * and NAPI_STATE_SCHED is the only possible flag set
5388 * on backlog.
5389 * We can use a plain write instead of clear_bit(),
5390 * and we dont need an smp_mb() memory barrier.
5391 */
5392 napi->state = 0;
5393 again = false;
5394 } else {
5395 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5396 &sd->process_queue);
5397 }
5398 rps_unlock(sd);
5399 local_irq_enable();
5400 }
5401
5402 return work;
5403 }
5404
5405 /**
5406 * __napi_schedule - schedule for receive
5407 * @n: entry to schedule
5408 *
5409 * The entry's receive function will be scheduled to run.
5410 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5411 */
5412 void __napi_schedule(struct napi_struct *n)
5413 {
5414 unsigned long flags;
5415
5416 local_irq_save(flags);
5417 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5418 local_irq_restore(flags);
5419 }
5420 EXPORT_SYMBOL(__napi_schedule);
5421
5422 /**
5423 * napi_schedule_prep - check if napi can be scheduled
5424 * @n: napi context
5425 *
5426 * Test if NAPI routine is already running, and if not mark
5427 * it as running. This is used as a condition variable
5428 * insure only one NAPI poll instance runs. We also make
5429 * sure there is no pending NAPI disable.
5430 */
5431 bool napi_schedule_prep(struct napi_struct *n)
5432 {
5433 unsigned long val, new;
5434
5435 do {
5436 val = READ_ONCE(n->state);
5437 if (unlikely(val & NAPIF_STATE_DISABLE))
5438 return false;
5439 new = val | NAPIF_STATE_SCHED;
5440
5441 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5442 * This was suggested by Alexander Duyck, as compiler
5443 * emits better code than :
5444 * if (val & NAPIF_STATE_SCHED)
5445 * new |= NAPIF_STATE_MISSED;
5446 */
5447 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5448 NAPIF_STATE_MISSED;
5449 } while (cmpxchg(&n->state, val, new) != val);
5450
5451 return !(val & NAPIF_STATE_SCHED);
5452 }
5453 EXPORT_SYMBOL(napi_schedule_prep);
5454
5455 /**
5456 * __napi_schedule_irqoff - schedule for receive
5457 * @n: entry to schedule
5458 *
5459 * Variant of __napi_schedule() assuming hard irqs are masked
5460 */
5461 void __napi_schedule_irqoff(struct napi_struct *n)
5462 {
5463 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5464 }
5465 EXPORT_SYMBOL(__napi_schedule_irqoff);
5466
5467 bool napi_complete_done(struct napi_struct *n, int work_done)
5468 {
5469 unsigned long flags, val, new;
5470
5471 /*
5472 * 1) Don't let napi dequeue from the cpu poll list
5473 * just in case its running on a different cpu.
5474 * 2) If we are busy polling, do nothing here, we have
5475 * the guarantee we will be called later.
5476 */
5477 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5478 NAPIF_STATE_IN_BUSY_POLL)))
5479 return false;
5480
5481 if (n->gro_list) {
5482 unsigned long timeout = 0;
5483
5484 if (work_done)
5485 timeout = n->dev->gro_flush_timeout;
5486
5487 if (timeout)
5488 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5489 HRTIMER_MODE_REL_PINNED);
5490 else
5491 napi_gro_flush(n, false);
5492 }
5493 if (unlikely(!list_empty(&n->poll_list))) {
5494 /* If n->poll_list is not empty, we need to mask irqs */
5495 local_irq_save(flags);
5496 list_del_init(&n->poll_list);
5497 local_irq_restore(flags);
5498 }
5499
5500 do {
5501 val = READ_ONCE(n->state);
5502
5503 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5504
5505 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5506
5507 /* If STATE_MISSED was set, leave STATE_SCHED set,
5508 * because we will call napi->poll() one more time.
5509 * This C code was suggested by Alexander Duyck to help gcc.
5510 */
5511 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5512 NAPIF_STATE_SCHED;
5513 } while (cmpxchg(&n->state, val, new) != val);
5514
5515 if (unlikely(val & NAPIF_STATE_MISSED)) {
5516 __napi_schedule(n);
5517 return false;
5518 }
5519
5520 return true;
5521 }
5522 EXPORT_SYMBOL(napi_complete_done);
5523
5524 /* must be called under rcu_read_lock(), as we dont take a reference */
5525 static struct napi_struct *napi_by_id(unsigned int napi_id)
5526 {
5527 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5528 struct napi_struct *napi;
5529
5530 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5531 if (napi->napi_id == napi_id)
5532 return napi;
5533
5534 return NULL;
5535 }
5536
5537 #if defined(CONFIG_NET_RX_BUSY_POLL)
5538
5539 #define BUSY_POLL_BUDGET 8
5540
5541 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5542 {
5543 int rc;
5544
5545 /* Busy polling means there is a high chance device driver hard irq
5546 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5547 * set in napi_schedule_prep().
5548 * Since we are about to call napi->poll() once more, we can safely
5549 * clear NAPI_STATE_MISSED.
5550 *
5551 * Note: x86 could use a single "lock and ..." instruction
5552 * to perform these two clear_bit()
5553 */
5554 clear_bit(NAPI_STATE_MISSED, &napi->state);
5555 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5556
5557 local_bh_disable();
5558
5559 /* All we really want here is to re-enable device interrupts.
5560 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5561 */
5562 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5563 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5564 netpoll_poll_unlock(have_poll_lock);
5565 if (rc == BUSY_POLL_BUDGET)
5566 __napi_schedule(napi);
5567 local_bh_enable();
5568 }
5569
5570 void napi_busy_loop(unsigned int napi_id,
5571 bool (*loop_end)(void *, unsigned long),
5572 void *loop_end_arg)
5573 {
5574 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5575 int (*napi_poll)(struct napi_struct *napi, int budget);
5576 void *have_poll_lock = NULL;
5577 struct napi_struct *napi;
5578
5579 restart:
5580 napi_poll = NULL;
5581
5582 rcu_read_lock();
5583
5584 napi = napi_by_id(napi_id);
5585 if (!napi)
5586 goto out;
5587
5588 preempt_disable();
5589 for (;;) {
5590 int work = 0;
5591
5592 local_bh_disable();
5593 if (!napi_poll) {
5594 unsigned long val = READ_ONCE(napi->state);
5595
5596 /* If multiple threads are competing for this napi,
5597 * we avoid dirtying napi->state as much as we can.
5598 */
5599 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5600 NAPIF_STATE_IN_BUSY_POLL))
5601 goto count;
5602 if (cmpxchg(&napi->state, val,
5603 val | NAPIF_STATE_IN_BUSY_POLL |
5604 NAPIF_STATE_SCHED) != val)
5605 goto count;
5606 have_poll_lock = netpoll_poll_lock(napi);
5607 napi_poll = napi->poll;
5608 }
5609 work = napi_poll(napi, BUSY_POLL_BUDGET);
5610 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5611 count:
5612 if (work > 0)
5613 __NET_ADD_STATS(dev_net(napi->dev),
5614 LINUX_MIB_BUSYPOLLRXPACKETS, work);
5615 local_bh_enable();
5616
5617 if (!loop_end || loop_end(loop_end_arg, start_time))
5618 break;
5619
5620 if (unlikely(need_resched())) {
5621 if (napi_poll)
5622 busy_poll_stop(napi, have_poll_lock);
5623 preempt_enable();
5624 rcu_read_unlock();
5625 cond_resched();
5626 if (loop_end(loop_end_arg, start_time))
5627 return;
5628 goto restart;
5629 }
5630 cpu_relax();
5631 }
5632 if (napi_poll)
5633 busy_poll_stop(napi, have_poll_lock);
5634 preempt_enable();
5635 out:
5636 rcu_read_unlock();
5637 }
5638 EXPORT_SYMBOL(napi_busy_loop);
5639
5640 #endif /* CONFIG_NET_RX_BUSY_POLL */
5641
5642 static void napi_hash_add(struct napi_struct *napi)
5643 {
5644 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5645 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5646 return;
5647
5648 spin_lock(&napi_hash_lock);
5649
5650 /* 0..NR_CPUS range is reserved for sender_cpu use */
5651 do {
5652 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5653 napi_gen_id = MIN_NAPI_ID;
5654 } while (napi_by_id(napi_gen_id));
5655 napi->napi_id = napi_gen_id;
5656
5657 hlist_add_head_rcu(&napi->napi_hash_node,
5658 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5659
5660 spin_unlock(&napi_hash_lock);
5661 }
5662
5663 /* Warning : caller is responsible to make sure rcu grace period
5664 * is respected before freeing memory containing @napi
5665 */
5666 bool napi_hash_del(struct napi_struct *napi)
5667 {
5668 bool rcu_sync_needed = false;
5669
5670 spin_lock(&napi_hash_lock);
5671
5672 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5673 rcu_sync_needed = true;
5674 hlist_del_rcu(&napi->napi_hash_node);
5675 }
5676 spin_unlock(&napi_hash_lock);
5677 return rcu_sync_needed;
5678 }
5679 EXPORT_SYMBOL_GPL(napi_hash_del);
5680
5681 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5682 {
5683 struct napi_struct *napi;
5684
5685 napi = container_of(timer, struct napi_struct, timer);
5686
5687 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5688 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5689 */
5690 if (napi->gro_list && !napi_disable_pending(napi) &&
5691 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5692 __napi_schedule_irqoff(napi);
5693
5694 return HRTIMER_NORESTART;
5695 }
5696
5697 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5698 int (*poll)(struct napi_struct *, int), int weight)
5699 {
5700 INIT_LIST_HEAD(&napi->poll_list);
5701 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5702 napi->timer.function = napi_watchdog;
5703 napi->gro_count = 0;
5704 napi->gro_list = NULL;
5705 napi->skb = NULL;
5706 napi->poll = poll;
5707 if (weight > NAPI_POLL_WEIGHT)
5708 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5709 weight, dev->name);
5710 napi->weight = weight;
5711 list_add(&napi->dev_list, &dev->napi_list);
5712 napi->dev = dev;
5713 #ifdef CONFIG_NETPOLL
5714 napi->poll_owner = -1;
5715 #endif
5716 set_bit(NAPI_STATE_SCHED, &napi->state);
5717 napi_hash_add(napi);
5718 }
5719 EXPORT_SYMBOL(netif_napi_add);
5720
5721 void napi_disable(struct napi_struct *n)
5722 {
5723 might_sleep();
5724 set_bit(NAPI_STATE_DISABLE, &n->state);
5725
5726 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5727 msleep(1);
5728 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5729 msleep(1);
5730
5731 hrtimer_cancel(&n->timer);
5732
5733 clear_bit(NAPI_STATE_DISABLE, &n->state);
5734 }
5735 EXPORT_SYMBOL(napi_disable);
5736
5737 /* Must be called in process context */
5738 void netif_napi_del(struct napi_struct *napi)
5739 {
5740 might_sleep();
5741 if (napi_hash_del(napi))
5742 synchronize_net();
5743 list_del_init(&napi->dev_list);
5744 napi_free_frags(napi);
5745
5746 kfree_skb_list(napi->gro_list);
5747 napi->gro_list = NULL;
5748 napi->gro_count = 0;
5749 }
5750 EXPORT_SYMBOL(netif_napi_del);
5751
5752 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5753 {
5754 void *have;
5755 int work, weight;
5756
5757 list_del_init(&n->poll_list);
5758
5759 have = netpoll_poll_lock(n);
5760
5761 weight = n->weight;
5762
5763 /* This NAPI_STATE_SCHED test is for avoiding a race
5764 * with netpoll's poll_napi(). Only the entity which
5765 * obtains the lock and sees NAPI_STATE_SCHED set will
5766 * actually make the ->poll() call. Therefore we avoid
5767 * accidentally calling ->poll() when NAPI is not scheduled.
5768 */
5769 work = 0;
5770 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5771 work = n->poll(n, weight);
5772 trace_napi_poll(n, work, weight);
5773 }
5774
5775 WARN_ON_ONCE(work > weight);
5776
5777 if (likely(work < weight))
5778 goto out_unlock;
5779
5780 /* Drivers must not modify the NAPI state if they
5781 * consume the entire weight. In such cases this code
5782 * still "owns" the NAPI instance and therefore can
5783 * move the instance around on the list at-will.
5784 */
5785 if (unlikely(napi_disable_pending(n))) {
5786 napi_complete(n);
5787 goto out_unlock;
5788 }
5789
5790 if (n->gro_list) {
5791 /* flush too old packets
5792 * If HZ < 1000, flush all packets.
5793 */
5794 napi_gro_flush(n, HZ >= 1000);
5795 }
5796
5797 /* Some drivers may have called napi_schedule
5798 * prior to exhausting their budget.
5799 */
5800 if (unlikely(!list_empty(&n->poll_list))) {
5801 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5802 n->dev ? n->dev->name : "backlog");
5803 goto out_unlock;
5804 }
5805
5806 list_add_tail(&n->poll_list, repoll);
5807
5808 out_unlock:
5809 netpoll_poll_unlock(have);
5810
5811 return work;
5812 }
5813
5814 static __latent_entropy void net_rx_action(struct softirq_action *h)
5815 {
5816 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5817 unsigned long time_limit = jiffies +
5818 usecs_to_jiffies(netdev_budget_usecs);
5819 int budget = netdev_budget;
5820 LIST_HEAD(list);
5821 LIST_HEAD(repoll);
5822
5823 local_irq_disable();
5824 list_splice_init(&sd->poll_list, &list);
5825 local_irq_enable();
5826
5827 for (;;) {
5828 struct napi_struct *n;
5829
5830 if (list_empty(&list)) {
5831 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5832 goto out;
5833 break;
5834 }
5835
5836 n = list_first_entry(&list, struct napi_struct, poll_list);
5837 budget -= napi_poll(n, &repoll);
5838
5839 /* If softirq window is exhausted then punt.
5840 * Allow this to run for 2 jiffies since which will allow
5841 * an average latency of 1.5/HZ.
5842 */
5843 if (unlikely(budget <= 0 ||
5844 time_after_eq(jiffies, time_limit))) {
5845 sd->time_squeeze++;
5846 break;
5847 }
5848 }
5849
5850 local_irq_disable();
5851
5852 list_splice_tail_init(&sd->poll_list, &list);
5853 list_splice_tail(&repoll, &list);
5854 list_splice(&list, &sd->poll_list);
5855 if (!list_empty(&sd->poll_list))
5856 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5857
5858 net_rps_action_and_irq_enable(sd);
5859 out:
5860 __kfree_skb_flush();
5861 }
5862
5863 struct netdev_adjacent {
5864 struct net_device *dev;
5865
5866 /* upper master flag, there can only be one master device per list */
5867 bool master;
5868
5869 /* counter for the number of times this device was added to us */
5870 u16 ref_nr;
5871
5872 /* private field for the users */
5873 void *private;
5874
5875 struct list_head list;
5876 struct rcu_head rcu;
5877 };
5878
5879 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5880 struct list_head *adj_list)
5881 {
5882 struct netdev_adjacent *adj;
5883
5884 list_for_each_entry(adj, adj_list, list) {
5885 if (adj->dev == adj_dev)
5886 return adj;
5887 }
5888 return NULL;
5889 }
5890
5891 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5892 {
5893 struct net_device *dev = data;
5894
5895 return upper_dev == dev;
5896 }
5897
5898 /**
5899 * netdev_has_upper_dev - Check if device is linked to an upper device
5900 * @dev: device
5901 * @upper_dev: upper device to check
5902 *
5903 * Find out if a device is linked to specified upper device and return true
5904 * in case it is. Note that this checks only immediate upper device,
5905 * not through a complete stack of devices. The caller must hold the RTNL lock.
5906 */
5907 bool netdev_has_upper_dev(struct net_device *dev,
5908 struct net_device *upper_dev)
5909 {
5910 ASSERT_RTNL();
5911
5912 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5913 upper_dev);
5914 }
5915 EXPORT_SYMBOL(netdev_has_upper_dev);
5916
5917 /**
5918 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5919 * @dev: device
5920 * @upper_dev: upper device to check
5921 *
5922 * Find out if a device is linked to specified upper device and return true
5923 * in case it is. Note that this checks the entire upper device chain.
5924 * The caller must hold rcu lock.
5925 */
5926
5927 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5928 struct net_device *upper_dev)
5929 {
5930 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5931 upper_dev);
5932 }
5933 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5934
5935 /**
5936 * netdev_has_any_upper_dev - Check if device is linked to some device
5937 * @dev: device
5938 *
5939 * Find out if a device is linked to an upper device and return true in case
5940 * it is. The caller must hold the RTNL lock.
5941 */
5942 bool netdev_has_any_upper_dev(struct net_device *dev)
5943 {
5944 ASSERT_RTNL();
5945
5946 return !list_empty(&dev->adj_list.upper);
5947 }
5948 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5949
5950 /**
5951 * netdev_master_upper_dev_get - Get master upper device
5952 * @dev: device
5953 *
5954 * Find a master upper device and return pointer to it or NULL in case
5955 * it's not there. The caller must hold the RTNL lock.
5956 */
5957 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5958 {
5959 struct netdev_adjacent *upper;
5960
5961 ASSERT_RTNL();
5962
5963 if (list_empty(&dev->adj_list.upper))
5964 return NULL;
5965
5966 upper = list_first_entry(&dev->adj_list.upper,
5967 struct netdev_adjacent, list);
5968 if (likely(upper->master))
5969 return upper->dev;
5970 return NULL;
5971 }
5972 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5973
5974 /**
5975 * netdev_has_any_lower_dev - Check if device is linked to some device
5976 * @dev: device
5977 *
5978 * Find out if a device is linked to a lower device and return true in case
5979 * it is. The caller must hold the RTNL lock.
5980 */
5981 static bool netdev_has_any_lower_dev(struct net_device *dev)
5982 {
5983 ASSERT_RTNL();
5984
5985 return !list_empty(&dev->adj_list.lower);
5986 }
5987
5988 void *netdev_adjacent_get_private(struct list_head *adj_list)
5989 {
5990 struct netdev_adjacent *adj;
5991
5992 adj = list_entry(adj_list, struct netdev_adjacent, list);
5993
5994 return adj->private;
5995 }
5996 EXPORT_SYMBOL(netdev_adjacent_get_private);
5997
5998 /**
5999 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6000 * @dev: device
6001 * @iter: list_head ** of the current position
6002 *
6003 * Gets the next device from the dev's upper list, starting from iter
6004 * position. The caller must hold RCU read lock.
6005 */
6006 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6007 struct list_head **iter)
6008 {
6009 struct netdev_adjacent *upper;
6010
6011 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6012
6013 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6014
6015 if (&upper->list == &dev->adj_list.upper)
6016 return NULL;
6017
6018 *iter = &upper->list;
6019
6020 return upper->dev;
6021 }
6022 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6023
6024 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6025 struct list_head **iter)
6026 {
6027 struct netdev_adjacent *upper;
6028
6029 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6030
6031 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6032
6033 if (&upper->list == &dev->adj_list.upper)
6034 return NULL;
6035
6036 *iter = &upper->list;
6037
6038 return upper->dev;
6039 }
6040
6041 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6042 int (*fn)(struct net_device *dev,
6043 void *data),
6044 void *data)
6045 {
6046 struct net_device *udev;
6047 struct list_head *iter;
6048 int ret;
6049
6050 for (iter = &dev->adj_list.upper,
6051 udev = netdev_next_upper_dev_rcu(dev, &iter);
6052 udev;
6053 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6054 /* first is the upper device itself */
6055 ret = fn(udev, data);
6056 if (ret)
6057 return ret;
6058
6059 /* then look at all of its upper devices */
6060 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6061 if (ret)
6062 return ret;
6063 }
6064
6065 return 0;
6066 }
6067 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6068
6069 /**
6070 * netdev_lower_get_next_private - Get the next ->private from the
6071 * lower neighbour list
6072 * @dev: device
6073 * @iter: list_head ** of the current position
6074 *
6075 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6076 * list, starting from iter position. The caller must hold either hold the
6077 * RTNL lock or its own locking that guarantees that the neighbour lower
6078 * list will remain unchanged.
6079 */
6080 void *netdev_lower_get_next_private(struct net_device *dev,
6081 struct list_head **iter)
6082 {
6083 struct netdev_adjacent *lower;
6084
6085 lower = list_entry(*iter, struct netdev_adjacent, list);
6086
6087 if (&lower->list == &dev->adj_list.lower)
6088 return NULL;
6089
6090 *iter = lower->list.next;
6091
6092 return lower->private;
6093 }
6094 EXPORT_SYMBOL(netdev_lower_get_next_private);
6095
6096 /**
6097 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6098 * lower neighbour list, RCU
6099 * variant
6100 * @dev: device
6101 * @iter: list_head ** of the current position
6102 *
6103 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6104 * list, starting from iter position. The caller must hold RCU read lock.
6105 */
6106 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6107 struct list_head **iter)
6108 {
6109 struct netdev_adjacent *lower;
6110
6111 WARN_ON_ONCE(!rcu_read_lock_held());
6112
6113 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6114
6115 if (&lower->list == &dev->adj_list.lower)
6116 return NULL;
6117
6118 *iter = &lower->list;
6119
6120 return lower->private;
6121 }
6122 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6123
6124 /**
6125 * netdev_lower_get_next - Get the next device from the lower neighbour
6126 * list
6127 * @dev: device
6128 * @iter: list_head ** of the current position
6129 *
6130 * Gets the next netdev_adjacent from the dev's lower neighbour
6131 * list, starting from iter position. The caller must hold RTNL lock or
6132 * its own locking that guarantees that the neighbour lower
6133 * list will remain unchanged.
6134 */
6135 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6136 {
6137 struct netdev_adjacent *lower;
6138
6139 lower = list_entry(*iter, struct netdev_adjacent, list);
6140
6141 if (&lower->list == &dev->adj_list.lower)
6142 return NULL;
6143
6144 *iter = lower->list.next;
6145
6146 return lower->dev;
6147 }
6148 EXPORT_SYMBOL(netdev_lower_get_next);
6149
6150 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6151 struct list_head **iter)
6152 {
6153 struct netdev_adjacent *lower;
6154
6155 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6156
6157 if (&lower->list == &dev->adj_list.lower)
6158 return NULL;
6159
6160 *iter = &lower->list;
6161
6162 return lower->dev;
6163 }
6164
6165 int netdev_walk_all_lower_dev(struct net_device *dev,
6166 int (*fn)(struct net_device *dev,
6167 void *data),
6168 void *data)
6169 {
6170 struct net_device *ldev;
6171 struct list_head *iter;
6172 int ret;
6173
6174 for (iter = &dev->adj_list.lower,
6175 ldev = netdev_next_lower_dev(dev, &iter);
6176 ldev;
6177 ldev = netdev_next_lower_dev(dev, &iter)) {
6178 /* first is the lower device itself */
6179 ret = fn(ldev, data);
6180 if (ret)
6181 return ret;
6182
6183 /* then look at all of its lower devices */
6184 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6185 if (ret)
6186 return ret;
6187 }
6188
6189 return 0;
6190 }
6191 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6192
6193 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6194 struct list_head **iter)
6195 {
6196 struct netdev_adjacent *lower;
6197
6198 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6199 if (&lower->list == &dev->adj_list.lower)
6200 return NULL;
6201
6202 *iter = &lower->list;
6203
6204 return lower->dev;
6205 }
6206
6207 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6208 int (*fn)(struct net_device *dev,
6209 void *data),
6210 void *data)
6211 {
6212 struct net_device *ldev;
6213 struct list_head *iter;
6214 int ret;
6215
6216 for (iter = &dev->adj_list.lower,
6217 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6218 ldev;
6219 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6220 /* first is the lower device itself */
6221 ret = fn(ldev, data);
6222 if (ret)
6223 return ret;
6224
6225 /* then look at all of its lower devices */
6226 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6227 if (ret)
6228 return ret;
6229 }
6230
6231 return 0;
6232 }
6233 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6234
6235 /**
6236 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6237 * lower neighbour list, RCU
6238 * variant
6239 * @dev: device
6240 *
6241 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6242 * list. The caller must hold RCU read lock.
6243 */
6244 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6245 {
6246 struct netdev_adjacent *lower;
6247
6248 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6249 struct netdev_adjacent, list);
6250 if (lower)
6251 return lower->private;
6252 return NULL;
6253 }
6254 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6255
6256 /**
6257 * netdev_master_upper_dev_get_rcu - Get master upper device
6258 * @dev: device
6259 *
6260 * Find a master upper device and return pointer to it or NULL in case
6261 * it's not there. The caller must hold the RCU read lock.
6262 */
6263 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6264 {
6265 struct netdev_adjacent *upper;
6266
6267 upper = list_first_or_null_rcu(&dev->adj_list.upper,
6268 struct netdev_adjacent, list);
6269 if (upper && likely(upper->master))
6270 return upper->dev;
6271 return NULL;
6272 }
6273 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6274
6275 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6276 struct net_device *adj_dev,
6277 struct list_head *dev_list)
6278 {
6279 char linkname[IFNAMSIZ+7];
6280
6281 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6282 "upper_%s" : "lower_%s", adj_dev->name);
6283 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6284 linkname);
6285 }
6286 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6287 char *name,
6288 struct list_head *dev_list)
6289 {
6290 char linkname[IFNAMSIZ+7];
6291
6292 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6293 "upper_%s" : "lower_%s", name);
6294 sysfs_remove_link(&(dev->dev.kobj), linkname);
6295 }
6296
6297 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6298 struct net_device *adj_dev,
6299 struct list_head *dev_list)
6300 {
6301 return (dev_list == &dev->adj_list.upper ||
6302 dev_list == &dev->adj_list.lower) &&
6303 net_eq(dev_net(dev), dev_net(adj_dev));
6304 }
6305
6306 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6307 struct net_device *adj_dev,
6308 struct list_head *dev_list,
6309 void *private, bool master)
6310 {
6311 struct netdev_adjacent *adj;
6312 int ret;
6313
6314 adj = __netdev_find_adj(adj_dev, dev_list);
6315
6316 if (adj) {
6317 adj->ref_nr += 1;
6318 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6319 dev->name, adj_dev->name, adj->ref_nr);
6320
6321 return 0;
6322 }
6323
6324 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6325 if (!adj)
6326 return -ENOMEM;
6327
6328 adj->dev = adj_dev;
6329 adj->master = master;
6330 adj->ref_nr = 1;
6331 adj->private = private;
6332 dev_hold(adj_dev);
6333
6334 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6335 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6336
6337 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6338 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6339 if (ret)
6340 goto free_adj;
6341 }
6342
6343 /* Ensure that master link is always the first item in list. */
6344 if (master) {
6345 ret = sysfs_create_link(&(dev->dev.kobj),
6346 &(adj_dev->dev.kobj), "master");
6347 if (ret)
6348 goto remove_symlinks;
6349
6350 list_add_rcu(&adj->list, dev_list);
6351 } else {
6352 list_add_tail_rcu(&adj->list, dev_list);
6353 }
6354
6355 return 0;
6356
6357 remove_symlinks:
6358 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6359 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6360 free_adj:
6361 kfree(adj);
6362 dev_put(adj_dev);
6363
6364 return ret;
6365 }
6366
6367 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6368 struct net_device *adj_dev,
6369 u16 ref_nr,
6370 struct list_head *dev_list)
6371 {
6372 struct netdev_adjacent *adj;
6373
6374 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6375 dev->name, adj_dev->name, ref_nr);
6376
6377 adj = __netdev_find_adj(adj_dev, dev_list);
6378
6379 if (!adj) {
6380 pr_err("Adjacency does not exist for device %s from %s\n",
6381 dev->name, adj_dev->name);
6382 WARN_ON(1);
6383 return;
6384 }
6385
6386 if (adj->ref_nr > ref_nr) {
6387 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6388 dev->name, adj_dev->name, ref_nr,
6389 adj->ref_nr - ref_nr);
6390 adj->ref_nr -= ref_nr;
6391 return;
6392 }
6393
6394 if (adj->master)
6395 sysfs_remove_link(&(dev->dev.kobj), "master");
6396
6397 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6398 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6399
6400 list_del_rcu(&adj->list);
6401 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6402 adj_dev->name, dev->name, adj_dev->name);
6403 dev_put(adj_dev);
6404 kfree_rcu(adj, rcu);
6405 }
6406
6407 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6408 struct net_device *upper_dev,
6409 struct list_head *up_list,
6410 struct list_head *down_list,
6411 void *private, bool master)
6412 {
6413 int ret;
6414
6415 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6416 private, master);
6417 if (ret)
6418 return ret;
6419
6420 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6421 private, false);
6422 if (ret) {
6423 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6424 return ret;
6425 }
6426
6427 return 0;
6428 }
6429
6430 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6431 struct net_device *upper_dev,
6432 u16 ref_nr,
6433 struct list_head *up_list,
6434 struct list_head *down_list)
6435 {
6436 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6437 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6438 }
6439
6440 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6441 struct net_device *upper_dev,
6442 void *private, bool master)
6443 {
6444 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6445 &dev->adj_list.upper,
6446 &upper_dev->adj_list.lower,
6447 private, master);
6448 }
6449
6450 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6451 struct net_device *upper_dev)
6452 {
6453 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6454 &dev->adj_list.upper,
6455 &upper_dev->adj_list.lower);
6456 }
6457
6458 static int __netdev_upper_dev_link(struct net_device *dev,
6459 struct net_device *upper_dev, bool master,
6460 void *upper_priv, void *upper_info,
6461 struct netlink_ext_ack *extack)
6462 {
6463 struct netdev_notifier_changeupper_info changeupper_info = {
6464 .info = {
6465 .dev = dev,
6466 .extack = extack,
6467 },
6468 .upper_dev = upper_dev,
6469 .master = master,
6470 .linking = true,
6471 .upper_info = upper_info,
6472 };
6473 struct net_device *master_dev;
6474 int ret = 0;
6475
6476 ASSERT_RTNL();
6477
6478 if (dev == upper_dev)
6479 return -EBUSY;
6480
6481 /* To prevent loops, check if dev is not upper device to upper_dev. */
6482 if (netdev_has_upper_dev(upper_dev, dev))
6483 return -EBUSY;
6484
6485 if (!master) {
6486 if (netdev_has_upper_dev(dev, upper_dev))
6487 return -EEXIST;
6488 } else {
6489 master_dev = netdev_master_upper_dev_get(dev);
6490 if (master_dev)
6491 return master_dev == upper_dev ? -EEXIST : -EBUSY;
6492 }
6493
6494 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6495 &changeupper_info.info);
6496 ret = notifier_to_errno(ret);
6497 if (ret)
6498 return ret;
6499
6500 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6501 master);
6502 if (ret)
6503 return ret;
6504
6505 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6506 &changeupper_info.info);
6507 ret = notifier_to_errno(ret);
6508 if (ret)
6509 goto rollback;
6510
6511 return 0;
6512
6513 rollback:
6514 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6515
6516 return ret;
6517 }
6518
6519 /**
6520 * netdev_upper_dev_link - Add a link to the upper device
6521 * @dev: device
6522 * @upper_dev: new upper device
6523 * @extack: netlink extended ack
6524 *
6525 * Adds a link to device which is upper to this one. The caller must hold
6526 * the RTNL lock. On a failure a negative errno code is returned.
6527 * On success the reference counts are adjusted and the function
6528 * returns zero.
6529 */
6530 int netdev_upper_dev_link(struct net_device *dev,
6531 struct net_device *upper_dev,
6532 struct netlink_ext_ack *extack)
6533 {
6534 return __netdev_upper_dev_link(dev, upper_dev, false,
6535 NULL, NULL, extack);
6536 }
6537 EXPORT_SYMBOL(netdev_upper_dev_link);
6538
6539 /**
6540 * netdev_master_upper_dev_link - Add a master link to the upper device
6541 * @dev: device
6542 * @upper_dev: new upper device
6543 * @upper_priv: upper device private
6544 * @upper_info: upper info to be passed down via notifier
6545 * @extack: netlink extended ack
6546 *
6547 * Adds a link to device which is upper to this one. In this case, only
6548 * one master upper device can be linked, although other non-master devices
6549 * might be linked as well. The caller must hold the RTNL lock.
6550 * On a failure a negative errno code is returned. On success the reference
6551 * counts are adjusted and the function returns zero.
6552 */
6553 int netdev_master_upper_dev_link(struct net_device *dev,
6554 struct net_device *upper_dev,
6555 void *upper_priv, void *upper_info,
6556 struct netlink_ext_ack *extack)
6557 {
6558 return __netdev_upper_dev_link(dev, upper_dev, true,
6559 upper_priv, upper_info, extack);
6560 }
6561 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6562
6563 /**
6564 * netdev_upper_dev_unlink - Removes a link to upper device
6565 * @dev: device
6566 * @upper_dev: new upper device
6567 *
6568 * Removes a link to device which is upper to this one. The caller must hold
6569 * the RTNL lock.
6570 */
6571 void netdev_upper_dev_unlink(struct net_device *dev,
6572 struct net_device *upper_dev)
6573 {
6574 struct netdev_notifier_changeupper_info changeupper_info = {
6575 .info = {
6576 .dev = dev,
6577 },
6578 .upper_dev = upper_dev,
6579 .linking = false,
6580 };
6581
6582 ASSERT_RTNL();
6583
6584 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6585
6586 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6587 &changeupper_info.info);
6588
6589 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6590
6591 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6592 &changeupper_info.info);
6593 }
6594 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6595
6596 /**
6597 * netdev_bonding_info_change - Dispatch event about slave change
6598 * @dev: device
6599 * @bonding_info: info to dispatch
6600 *
6601 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6602 * The caller must hold the RTNL lock.
6603 */
6604 void netdev_bonding_info_change(struct net_device *dev,
6605 struct netdev_bonding_info *bonding_info)
6606 {
6607 struct netdev_notifier_bonding_info info = {
6608 .info.dev = dev,
6609 };
6610
6611 memcpy(&info.bonding_info, bonding_info,
6612 sizeof(struct netdev_bonding_info));
6613 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6614 &info.info);
6615 }
6616 EXPORT_SYMBOL(netdev_bonding_info_change);
6617
6618 static void netdev_adjacent_add_links(struct net_device *dev)
6619 {
6620 struct netdev_adjacent *iter;
6621
6622 struct net *net = dev_net(dev);
6623
6624 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6625 if (!net_eq(net, dev_net(iter->dev)))
6626 continue;
6627 netdev_adjacent_sysfs_add(iter->dev, dev,
6628 &iter->dev->adj_list.lower);
6629 netdev_adjacent_sysfs_add(dev, iter->dev,
6630 &dev->adj_list.upper);
6631 }
6632
6633 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6634 if (!net_eq(net, dev_net(iter->dev)))
6635 continue;
6636 netdev_adjacent_sysfs_add(iter->dev, dev,
6637 &iter->dev->adj_list.upper);
6638 netdev_adjacent_sysfs_add(dev, iter->dev,
6639 &dev->adj_list.lower);
6640 }
6641 }
6642
6643 static void netdev_adjacent_del_links(struct net_device *dev)
6644 {
6645 struct netdev_adjacent *iter;
6646
6647 struct net *net = dev_net(dev);
6648
6649 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6650 if (!net_eq(net, dev_net(iter->dev)))
6651 continue;
6652 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6653 &iter->dev->adj_list.lower);
6654 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6655 &dev->adj_list.upper);
6656 }
6657
6658 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6659 if (!net_eq(net, dev_net(iter->dev)))
6660 continue;
6661 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6662 &iter->dev->adj_list.upper);
6663 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6664 &dev->adj_list.lower);
6665 }
6666 }
6667
6668 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6669 {
6670 struct netdev_adjacent *iter;
6671
6672 struct net *net = dev_net(dev);
6673
6674 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6675 if (!net_eq(net, dev_net(iter->dev)))
6676 continue;
6677 netdev_adjacent_sysfs_del(iter->dev, oldname,
6678 &iter->dev->adj_list.lower);
6679 netdev_adjacent_sysfs_add(iter->dev, dev,
6680 &iter->dev->adj_list.lower);
6681 }
6682
6683 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6684 if (!net_eq(net, dev_net(iter->dev)))
6685 continue;
6686 netdev_adjacent_sysfs_del(iter->dev, oldname,
6687 &iter->dev->adj_list.upper);
6688 netdev_adjacent_sysfs_add(iter->dev, dev,
6689 &iter->dev->adj_list.upper);
6690 }
6691 }
6692
6693 void *netdev_lower_dev_get_private(struct net_device *dev,
6694 struct net_device *lower_dev)
6695 {
6696 struct netdev_adjacent *lower;
6697
6698 if (!lower_dev)
6699 return NULL;
6700 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6701 if (!lower)
6702 return NULL;
6703
6704 return lower->private;
6705 }
6706 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6707
6708
6709 int dev_get_nest_level(struct net_device *dev)
6710 {
6711 struct net_device *lower = NULL;
6712 struct list_head *iter;
6713 int max_nest = -1;
6714 int nest;
6715
6716 ASSERT_RTNL();
6717
6718 netdev_for_each_lower_dev(dev, lower, iter) {
6719 nest = dev_get_nest_level(lower);
6720 if (max_nest < nest)
6721 max_nest = nest;
6722 }
6723
6724 return max_nest + 1;
6725 }
6726 EXPORT_SYMBOL(dev_get_nest_level);
6727
6728 /**
6729 * netdev_lower_change - Dispatch event about lower device state change
6730 * @lower_dev: device
6731 * @lower_state_info: state to dispatch
6732 *
6733 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6734 * The caller must hold the RTNL lock.
6735 */
6736 void netdev_lower_state_changed(struct net_device *lower_dev,
6737 void *lower_state_info)
6738 {
6739 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6740 .info.dev = lower_dev,
6741 };
6742
6743 ASSERT_RTNL();
6744 changelowerstate_info.lower_state_info = lower_state_info;
6745 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6746 &changelowerstate_info.info);
6747 }
6748 EXPORT_SYMBOL(netdev_lower_state_changed);
6749
6750 static void dev_change_rx_flags(struct net_device *dev, int flags)
6751 {
6752 const struct net_device_ops *ops = dev->netdev_ops;
6753
6754 if (ops->ndo_change_rx_flags)
6755 ops->ndo_change_rx_flags(dev, flags);
6756 }
6757
6758 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6759 {
6760 unsigned int old_flags = dev->flags;
6761 kuid_t uid;
6762 kgid_t gid;
6763
6764 ASSERT_RTNL();
6765
6766 dev->flags |= IFF_PROMISC;
6767 dev->promiscuity += inc;
6768 if (dev->promiscuity == 0) {
6769 /*
6770 * Avoid overflow.
6771 * If inc causes overflow, untouch promisc and return error.
6772 */
6773 if (inc < 0)
6774 dev->flags &= ~IFF_PROMISC;
6775 else {
6776 dev->promiscuity -= inc;
6777 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6778 dev->name);
6779 return -EOVERFLOW;
6780 }
6781 }
6782 if (dev->flags != old_flags) {
6783 pr_info("device %s %s promiscuous mode\n",
6784 dev->name,
6785 dev->flags & IFF_PROMISC ? "entered" : "left");
6786 if (audit_enabled) {
6787 current_uid_gid(&uid, &gid);
6788 audit_log(audit_context(), GFP_ATOMIC,
6789 AUDIT_ANOM_PROMISCUOUS,
6790 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6791 dev->name, (dev->flags & IFF_PROMISC),
6792 (old_flags & IFF_PROMISC),
6793 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6794 from_kuid(&init_user_ns, uid),
6795 from_kgid(&init_user_ns, gid),
6796 audit_get_sessionid(current));
6797 }
6798
6799 dev_change_rx_flags(dev, IFF_PROMISC);
6800 }
6801 if (notify)
6802 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6803 return 0;
6804 }
6805
6806 /**
6807 * dev_set_promiscuity - update promiscuity count on a device
6808 * @dev: device
6809 * @inc: modifier
6810 *
6811 * Add or remove promiscuity from a device. While the count in the device
6812 * remains above zero the interface remains promiscuous. Once it hits zero
6813 * the device reverts back to normal filtering operation. A negative inc
6814 * value is used to drop promiscuity on the device.
6815 * Return 0 if successful or a negative errno code on error.
6816 */
6817 int dev_set_promiscuity(struct net_device *dev, int inc)
6818 {
6819 unsigned int old_flags = dev->flags;
6820 int err;
6821
6822 err = __dev_set_promiscuity(dev, inc, true);
6823 if (err < 0)
6824 return err;
6825 if (dev->flags != old_flags)
6826 dev_set_rx_mode(dev);
6827 return err;
6828 }
6829 EXPORT_SYMBOL(dev_set_promiscuity);
6830
6831 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6832 {
6833 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6834
6835 ASSERT_RTNL();
6836
6837 dev->flags |= IFF_ALLMULTI;
6838 dev->allmulti += inc;
6839 if (dev->allmulti == 0) {
6840 /*
6841 * Avoid overflow.
6842 * If inc causes overflow, untouch allmulti and return error.
6843 */
6844 if (inc < 0)
6845 dev->flags &= ~IFF_ALLMULTI;
6846 else {
6847 dev->allmulti -= inc;
6848 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6849 dev->name);
6850 return -EOVERFLOW;
6851 }
6852 }
6853 if (dev->flags ^ old_flags) {
6854 dev_change_rx_flags(dev, IFF_ALLMULTI);
6855 dev_set_rx_mode(dev);
6856 if (notify)
6857 __dev_notify_flags(dev, old_flags,
6858 dev->gflags ^ old_gflags);
6859 }
6860 return 0;
6861 }
6862
6863 /**
6864 * dev_set_allmulti - update allmulti count on a device
6865 * @dev: device
6866 * @inc: modifier
6867 *
6868 * Add or remove reception of all multicast frames to a device. While the
6869 * count in the device remains above zero the interface remains listening
6870 * to all interfaces. Once it hits zero the device reverts back to normal
6871 * filtering operation. A negative @inc value is used to drop the counter
6872 * when releasing a resource needing all multicasts.
6873 * Return 0 if successful or a negative errno code on error.
6874 */
6875
6876 int dev_set_allmulti(struct net_device *dev, int inc)
6877 {
6878 return __dev_set_allmulti(dev, inc, true);
6879 }
6880 EXPORT_SYMBOL(dev_set_allmulti);
6881
6882 /*
6883 * Upload unicast and multicast address lists to device and
6884 * configure RX filtering. When the device doesn't support unicast
6885 * filtering it is put in promiscuous mode while unicast addresses
6886 * are present.
6887 */
6888 void __dev_set_rx_mode(struct net_device *dev)
6889 {
6890 const struct net_device_ops *ops = dev->netdev_ops;
6891
6892 /* dev_open will call this function so the list will stay sane. */
6893 if (!(dev->flags&IFF_UP))
6894 return;
6895
6896 if (!netif_device_present(dev))
6897 return;
6898
6899 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6900 /* Unicast addresses changes may only happen under the rtnl,
6901 * therefore calling __dev_set_promiscuity here is safe.
6902 */
6903 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6904 __dev_set_promiscuity(dev, 1, false);
6905 dev->uc_promisc = true;
6906 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6907 __dev_set_promiscuity(dev, -1, false);
6908 dev->uc_promisc = false;
6909 }
6910 }
6911
6912 if (ops->ndo_set_rx_mode)
6913 ops->ndo_set_rx_mode(dev);
6914 }
6915
6916 void dev_set_rx_mode(struct net_device *dev)
6917 {
6918 netif_addr_lock_bh(dev);
6919 __dev_set_rx_mode(dev);
6920 netif_addr_unlock_bh(dev);
6921 }
6922
6923 /**
6924 * dev_get_flags - get flags reported to userspace
6925 * @dev: device
6926 *
6927 * Get the combination of flag bits exported through APIs to userspace.
6928 */
6929 unsigned int dev_get_flags(const struct net_device *dev)
6930 {
6931 unsigned int flags;
6932
6933 flags = (dev->flags & ~(IFF_PROMISC |
6934 IFF_ALLMULTI |
6935 IFF_RUNNING |
6936 IFF_LOWER_UP |
6937 IFF_DORMANT)) |
6938 (dev->gflags & (IFF_PROMISC |
6939 IFF_ALLMULTI));
6940
6941 if (netif_running(dev)) {
6942 if (netif_oper_up(dev))
6943 flags |= IFF_RUNNING;
6944 if (netif_carrier_ok(dev))
6945 flags |= IFF_LOWER_UP;
6946 if (netif_dormant(dev))
6947 flags |= IFF_DORMANT;
6948 }
6949
6950 return flags;
6951 }
6952 EXPORT_SYMBOL(dev_get_flags);
6953
6954 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6955 {
6956 unsigned int old_flags = dev->flags;
6957 int ret;
6958
6959 ASSERT_RTNL();
6960
6961 /*
6962 * Set the flags on our device.
6963 */
6964
6965 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6966 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6967 IFF_AUTOMEDIA)) |
6968 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6969 IFF_ALLMULTI));
6970
6971 /*
6972 * Load in the correct multicast list now the flags have changed.
6973 */
6974
6975 if ((old_flags ^ flags) & IFF_MULTICAST)
6976 dev_change_rx_flags(dev, IFF_MULTICAST);
6977
6978 dev_set_rx_mode(dev);
6979
6980 /*
6981 * Have we downed the interface. We handle IFF_UP ourselves
6982 * according to user attempts to set it, rather than blindly
6983 * setting it.
6984 */
6985
6986 ret = 0;
6987 if ((old_flags ^ flags) & IFF_UP) {
6988 if (old_flags & IFF_UP)
6989 __dev_close(dev);
6990 else
6991 ret = __dev_open(dev);
6992 }
6993
6994 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6995 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6996 unsigned int old_flags = dev->flags;
6997
6998 dev->gflags ^= IFF_PROMISC;
6999
7000 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7001 if (dev->flags != old_flags)
7002 dev_set_rx_mode(dev);
7003 }
7004
7005 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7006 * is important. Some (broken) drivers set IFF_PROMISC, when
7007 * IFF_ALLMULTI is requested not asking us and not reporting.
7008 */
7009 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7010 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7011
7012 dev->gflags ^= IFF_ALLMULTI;
7013 __dev_set_allmulti(dev, inc, false);
7014 }
7015
7016 return ret;
7017 }
7018
7019 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7020 unsigned int gchanges)
7021 {
7022 unsigned int changes = dev->flags ^ old_flags;
7023
7024 if (gchanges)
7025 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7026
7027 if (changes & IFF_UP) {
7028 if (dev->flags & IFF_UP)
7029 call_netdevice_notifiers(NETDEV_UP, dev);
7030 else
7031 call_netdevice_notifiers(NETDEV_DOWN, dev);
7032 }
7033
7034 if (dev->flags & IFF_UP &&
7035 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7036 struct netdev_notifier_change_info change_info = {
7037 .info = {
7038 .dev = dev,
7039 },
7040 .flags_changed = changes,
7041 };
7042
7043 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7044 }
7045 }
7046
7047 /**
7048 * dev_change_flags - change device settings
7049 * @dev: device
7050 * @flags: device state flags
7051 *
7052 * Change settings on device based state flags. The flags are
7053 * in the userspace exported format.
7054 */
7055 int dev_change_flags(struct net_device *dev, unsigned int flags)
7056 {
7057 int ret;
7058 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7059
7060 ret = __dev_change_flags(dev, flags);
7061 if (ret < 0)
7062 return ret;
7063
7064 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7065 __dev_notify_flags(dev, old_flags, changes);
7066 return ret;
7067 }
7068 EXPORT_SYMBOL(dev_change_flags);
7069
7070 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7071 {
7072 const struct net_device_ops *ops = dev->netdev_ops;
7073
7074 if (ops->ndo_change_mtu)
7075 return ops->ndo_change_mtu(dev, new_mtu);
7076
7077 dev->mtu = new_mtu;
7078 return 0;
7079 }
7080 EXPORT_SYMBOL(__dev_set_mtu);
7081
7082 /**
7083 * dev_set_mtu - Change maximum transfer unit
7084 * @dev: device
7085 * @new_mtu: new transfer unit
7086 *
7087 * Change the maximum transfer size of the network device.
7088 */
7089 int dev_set_mtu(struct net_device *dev, int new_mtu)
7090 {
7091 int err, orig_mtu;
7092
7093 if (new_mtu == dev->mtu)
7094 return 0;
7095
7096 /* MTU must be positive, and in range */
7097 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7098 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7099 dev->name, new_mtu, dev->min_mtu);
7100 return -EINVAL;
7101 }
7102
7103 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7104 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7105 dev->name, new_mtu, dev->max_mtu);
7106 return -EINVAL;
7107 }
7108
7109 if (!netif_device_present(dev))
7110 return -ENODEV;
7111
7112 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7113 err = notifier_to_errno(err);
7114 if (err)
7115 return err;
7116
7117 orig_mtu = dev->mtu;
7118 err = __dev_set_mtu(dev, new_mtu);
7119
7120 if (!err) {
7121 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7122 err = notifier_to_errno(err);
7123 if (err) {
7124 /* setting mtu back and notifying everyone again,
7125 * so that they have a chance to revert changes.
7126 */
7127 __dev_set_mtu(dev, orig_mtu);
7128 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7129 }
7130 }
7131 return err;
7132 }
7133 EXPORT_SYMBOL(dev_set_mtu);
7134
7135 /**
7136 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7137 * @dev: device
7138 * @new_len: new tx queue length
7139 */
7140 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7141 {
7142 unsigned int orig_len = dev->tx_queue_len;
7143 int res;
7144
7145 if (new_len != (unsigned int)new_len)
7146 return -ERANGE;
7147
7148 if (new_len != orig_len) {
7149 dev->tx_queue_len = new_len;
7150 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7151 res = notifier_to_errno(res);
7152 if (res) {
7153 netdev_err(dev,
7154 "refused to change device tx_queue_len\n");
7155 dev->tx_queue_len = orig_len;
7156 return res;
7157 }
7158 return dev_qdisc_change_tx_queue_len(dev);
7159 }
7160
7161 return 0;
7162 }
7163
7164 /**
7165 * dev_set_group - Change group this device belongs to
7166 * @dev: device
7167 * @new_group: group this device should belong to
7168 */
7169 void dev_set_group(struct net_device *dev, int new_group)
7170 {
7171 dev->group = new_group;
7172 }
7173 EXPORT_SYMBOL(dev_set_group);
7174
7175 /**
7176 * dev_set_mac_address - Change Media Access Control Address
7177 * @dev: device
7178 * @sa: new address
7179 *
7180 * Change the hardware (MAC) address of the device
7181 */
7182 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7183 {
7184 const struct net_device_ops *ops = dev->netdev_ops;
7185 int err;
7186
7187 if (!ops->ndo_set_mac_address)
7188 return -EOPNOTSUPP;
7189 if (sa->sa_family != dev->type)
7190 return -EINVAL;
7191 if (!netif_device_present(dev))
7192 return -ENODEV;
7193 err = ops->ndo_set_mac_address(dev, sa);
7194 if (err)
7195 return err;
7196 dev->addr_assign_type = NET_ADDR_SET;
7197 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7198 add_device_randomness(dev->dev_addr, dev->addr_len);
7199 return 0;
7200 }
7201 EXPORT_SYMBOL(dev_set_mac_address);
7202
7203 /**
7204 * dev_change_carrier - Change device carrier
7205 * @dev: device
7206 * @new_carrier: new value
7207 *
7208 * Change device carrier
7209 */
7210 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7211 {
7212 const struct net_device_ops *ops = dev->netdev_ops;
7213
7214 if (!ops->ndo_change_carrier)
7215 return -EOPNOTSUPP;
7216 if (!netif_device_present(dev))
7217 return -ENODEV;
7218 return ops->ndo_change_carrier(dev, new_carrier);
7219 }
7220 EXPORT_SYMBOL(dev_change_carrier);
7221
7222 /**
7223 * dev_get_phys_port_id - Get device physical port ID
7224 * @dev: device
7225 * @ppid: port ID
7226 *
7227 * Get device physical port ID
7228 */
7229 int dev_get_phys_port_id(struct net_device *dev,
7230 struct netdev_phys_item_id *ppid)
7231 {
7232 const struct net_device_ops *ops = dev->netdev_ops;
7233
7234 if (!ops->ndo_get_phys_port_id)
7235 return -EOPNOTSUPP;
7236 return ops->ndo_get_phys_port_id(dev, ppid);
7237 }
7238 EXPORT_SYMBOL(dev_get_phys_port_id);
7239
7240 /**
7241 * dev_get_phys_port_name - Get device physical port name
7242 * @dev: device
7243 * @name: port name
7244 * @len: limit of bytes to copy to name
7245 *
7246 * Get device physical port name
7247 */
7248 int dev_get_phys_port_name(struct net_device *dev,
7249 char *name, size_t len)
7250 {
7251 const struct net_device_ops *ops = dev->netdev_ops;
7252
7253 if (!ops->ndo_get_phys_port_name)
7254 return -EOPNOTSUPP;
7255 return ops->ndo_get_phys_port_name(dev, name, len);
7256 }
7257 EXPORT_SYMBOL(dev_get_phys_port_name);
7258
7259 /**
7260 * dev_change_proto_down - update protocol port state information
7261 * @dev: device
7262 * @proto_down: new value
7263 *
7264 * This info can be used by switch drivers to set the phys state of the
7265 * port.
7266 */
7267 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7268 {
7269 const struct net_device_ops *ops = dev->netdev_ops;
7270
7271 if (!ops->ndo_change_proto_down)
7272 return -EOPNOTSUPP;
7273 if (!netif_device_present(dev))
7274 return -ENODEV;
7275 return ops->ndo_change_proto_down(dev, proto_down);
7276 }
7277 EXPORT_SYMBOL(dev_change_proto_down);
7278
7279 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7280 struct netdev_bpf *xdp)
7281 {
7282 memset(xdp, 0, sizeof(*xdp));
7283 xdp->command = XDP_QUERY_PROG;
7284
7285 /* Query must always succeed. */
7286 WARN_ON(bpf_op(dev, xdp) < 0);
7287 }
7288
7289 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7290 {
7291 struct netdev_bpf xdp;
7292
7293 __dev_xdp_query(dev, bpf_op, &xdp);
7294
7295 return xdp.prog_attached;
7296 }
7297
7298 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7299 struct netlink_ext_ack *extack, u32 flags,
7300 struct bpf_prog *prog)
7301 {
7302 struct netdev_bpf xdp;
7303
7304 memset(&xdp, 0, sizeof(xdp));
7305 if (flags & XDP_FLAGS_HW_MODE)
7306 xdp.command = XDP_SETUP_PROG_HW;
7307 else
7308 xdp.command = XDP_SETUP_PROG;
7309 xdp.extack = extack;
7310 xdp.flags = flags;
7311 xdp.prog = prog;
7312
7313 return bpf_op(dev, &xdp);
7314 }
7315
7316 static void dev_xdp_uninstall(struct net_device *dev)
7317 {
7318 struct netdev_bpf xdp;
7319 bpf_op_t ndo_bpf;
7320
7321 /* Remove generic XDP */
7322 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7323
7324 /* Remove from the driver */
7325 ndo_bpf = dev->netdev_ops->ndo_bpf;
7326 if (!ndo_bpf)
7327 return;
7328
7329 __dev_xdp_query(dev, ndo_bpf, &xdp);
7330 if (xdp.prog_attached == XDP_ATTACHED_NONE)
7331 return;
7332
7333 /* Program removal should always succeed */
7334 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7335 }
7336
7337 /**
7338 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7339 * @dev: device
7340 * @extack: netlink extended ack
7341 * @fd: new program fd or negative value to clear
7342 * @flags: xdp-related flags
7343 *
7344 * Set or clear a bpf program for a device
7345 */
7346 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7347 int fd, u32 flags)
7348 {
7349 const struct net_device_ops *ops = dev->netdev_ops;
7350 struct bpf_prog *prog = NULL;
7351 bpf_op_t bpf_op, bpf_chk;
7352 int err;
7353
7354 ASSERT_RTNL();
7355
7356 bpf_op = bpf_chk = ops->ndo_bpf;
7357 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7358 return -EOPNOTSUPP;
7359 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7360 bpf_op = generic_xdp_install;
7361 if (bpf_op == bpf_chk)
7362 bpf_chk = generic_xdp_install;
7363
7364 if (fd >= 0) {
7365 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7366 return -EEXIST;
7367 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7368 __dev_xdp_attached(dev, bpf_op))
7369 return -EBUSY;
7370
7371 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7372 bpf_op == ops->ndo_bpf);
7373 if (IS_ERR(prog))
7374 return PTR_ERR(prog);
7375
7376 if (!(flags & XDP_FLAGS_HW_MODE) &&
7377 bpf_prog_is_dev_bound(prog->aux)) {
7378 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7379 bpf_prog_put(prog);
7380 return -EINVAL;
7381 }
7382 }
7383
7384 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7385 if (err < 0 && prog)
7386 bpf_prog_put(prog);
7387
7388 return err;
7389 }
7390
7391 /**
7392 * dev_new_index - allocate an ifindex
7393 * @net: the applicable net namespace
7394 *
7395 * Returns a suitable unique value for a new device interface
7396 * number. The caller must hold the rtnl semaphore or the
7397 * dev_base_lock to be sure it remains unique.
7398 */
7399 static int dev_new_index(struct net *net)
7400 {
7401 int ifindex = net->ifindex;
7402
7403 for (;;) {
7404 if (++ifindex <= 0)
7405 ifindex = 1;
7406 if (!__dev_get_by_index(net, ifindex))
7407 return net->ifindex = ifindex;
7408 }
7409 }
7410
7411 /* Delayed registration/unregisteration */
7412 static LIST_HEAD(net_todo_list);
7413 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7414
7415 static void net_set_todo(struct net_device *dev)
7416 {
7417 list_add_tail(&dev->todo_list, &net_todo_list);
7418 dev_net(dev)->dev_unreg_count++;
7419 }
7420
7421 static void rollback_registered_many(struct list_head *head)
7422 {
7423 struct net_device *dev, *tmp;
7424 LIST_HEAD(close_head);
7425
7426 BUG_ON(dev_boot_phase);
7427 ASSERT_RTNL();
7428
7429 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7430 /* Some devices call without registering
7431 * for initialization unwind. Remove those
7432 * devices and proceed with the remaining.
7433 */
7434 if (dev->reg_state == NETREG_UNINITIALIZED) {
7435 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7436 dev->name, dev);
7437
7438 WARN_ON(1);
7439 list_del(&dev->unreg_list);
7440 continue;
7441 }
7442 dev->dismantle = true;
7443 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7444 }
7445
7446 /* If device is running, close it first. */
7447 list_for_each_entry(dev, head, unreg_list)
7448 list_add_tail(&dev->close_list, &close_head);
7449 dev_close_many(&close_head, true);
7450
7451 list_for_each_entry(dev, head, unreg_list) {
7452 /* And unlink it from device chain. */
7453 unlist_netdevice(dev);
7454
7455 dev->reg_state = NETREG_UNREGISTERING;
7456 }
7457 flush_all_backlogs();
7458
7459 synchronize_net();
7460
7461 list_for_each_entry(dev, head, unreg_list) {
7462 struct sk_buff *skb = NULL;
7463
7464 /* Shutdown queueing discipline. */
7465 dev_shutdown(dev);
7466
7467 dev_xdp_uninstall(dev);
7468
7469 /* Notify protocols, that we are about to destroy
7470 * this device. They should clean all the things.
7471 */
7472 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7473
7474 if (!dev->rtnl_link_ops ||
7475 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7476 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7477 GFP_KERNEL, NULL, 0);
7478
7479 /*
7480 * Flush the unicast and multicast chains
7481 */
7482 dev_uc_flush(dev);
7483 dev_mc_flush(dev);
7484
7485 if (dev->netdev_ops->ndo_uninit)
7486 dev->netdev_ops->ndo_uninit(dev);
7487
7488 if (skb)
7489 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7490
7491 /* Notifier chain MUST detach us all upper devices. */
7492 WARN_ON(netdev_has_any_upper_dev(dev));
7493 WARN_ON(netdev_has_any_lower_dev(dev));
7494
7495 /* Remove entries from kobject tree */
7496 netdev_unregister_kobject(dev);
7497 #ifdef CONFIG_XPS
7498 /* Remove XPS queueing entries */
7499 netif_reset_xps_queues_gt(dev, 0);
7500 #endif
7501 }
7502
7503 synchronize_net();
7504
7505 list_for_each_entry(dev, head, unreg_list)
7506 dev_put(dev);
7507 }
7508
7509 static void rollback_registered(struct net_device *dev)
7510 {
7511 LIST_HEAD(single);
7512
7513 list_add(&dev->unreg_list, &single);
7514 rollback_registered_many(&single);
7515 list_del(&single);
7516 }
7517
7518 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7519 struct net_device *upper, netdev_features_t features)
7520 {
7521 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7522 netdev_features_t feature;
7523 int feature_bit;
7524
7525 for_each_netdev_feature(&upper_disables, feature_bit) {
7526 feature = __NETIF_F_BIT(feature_bit);
7527 if (!(upper->wanted_features & feature)
7528 && (features & feature)) {
7529 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7530 &feature, upper->name);
7531 features &= ~feature;
7532 }
7533 }
7534
7535 return features;
7536 }
7537
7538 static void netdev_sync_lower_features(struct net_device *upper,
7539 struct net_device *lower, netdev_features_t features)
7540 {
7541 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7542 netdev_features_t feature;
7543 int feature_bit;
7544
7545 for_each_netdev_feature(&upper_disables, feature_bit) {
7546 feature = __NETIF_F_BIT(feature_bit);
7547 if (!(features & feature) && (lower->features & feature)) {
7548 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7549 &feature, lower->name);
7550 lower->wanted_features &= ~feature;
7551 netdev_update_features(lower);
7552
7553 if (unlikely(lower->features & feature))
7554 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7555 &feature, lower->name);
7556 }
7557 }
7558 }
7559
7560 static netdev_features_t netdev_fix_features(struct net_device *dev,
7561 netdev_features_t features)
7562 {
7563 /* Fix illegal checksum combinations */
7564 if ((features & NETIF_F_HW_CSUM) &&
7565 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7566 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7567 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7568 }
7569
7570 /* TSO requires that SG is present as well. */
7571 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7572 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7573 features &= ~NETIF_F_ALL_TSO;
7574 }
7575
7576 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7577 !(features & NETIF_F_IP_CSUM)) {
7578 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7579 features &= ~NETIF_F_TSO;
7580 features &= ~NETIF_F_TSO_ECN;
7581 }
7582
7583 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7584 !(features & NETIF_F_IPV6_CSUM)) {
7585 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7586 features &= ~NETIF_F_TSO6;
7587 }
7588
7589 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7590 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7591 features &= ~NETIF_F_TSO_MANGLEID;
7592
7593 /* TSO ECN requires that TSO is present as well. */
7594 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7595 features &= ~NETIF_F_TSO_ECN;
7596
7597 /* Software GSO depends on SG. */
7598 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7599 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7600 features &= ~NETIF_F_GSO;
7601 }
7602
7603 /* GSO partial features require GSO partial be set */
7604 if ((features & dev->gso_partial_features) &&
7605 !(features & NETIF_F_GSO_PARTIAL)) {
7606 netdev_dbg(dev,
7607 "Dropping partially supported GSO features since no GSO partial.\n");
7608 features &= ~dev->gso_partial_features;
7609 }
7610
7611 if (!(features & NETIF_F_RXCSUM)) {
7612 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7613 * successfully merged by hardware must also have the
7614 * checksum verified by hardware. If the user does not
7615 * want to enable RXCSUM, logically, we should disable GRO_HW.
7616 */
7617 if (features & NETIF_F_GRO_HW) {
7618 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7619 features &= ~NETIF_F_GRO_HW;
7620 }
7621 }
7622
7623 /* LRO/HW-GRO features cannot be combined with RX-FCS */
7624 if (features & NETIF_F_RXFCS) {
7625 if (features & NETIF_F_LRO) {
7626 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
7627 features &= ~NETIF_F_LRO;
7628 }
7629
7630 if (features & NETIF_F_GRO_HW) {
7631 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
7632 features &= ~NETIF_F_GRO_HW;
7633 }
7634 }
7635
7636 return features;
7637 }
7638
7639 int __netdev_update_features(struct net_device *dev)
7640 {
7641 struct net_device *upper, *lower;
7642 netdev_features_t features;
7643 struct list_head *iter;
7644 int err = -1;
7645
7646 ASSERT_RTNL();
7647
7648 features = netdev_get_wanted_features(dev);
7649
7650 if (dev->netdev_ops->ndo_fix_features)
7651 features = dev->netdev_ops->ndo_fix_features(dev, features);
7652
7653 /* driver might be less strict about feature dependencies */
7654 features = netdev_fix_features(dev, features);
7655
7656 /* some features can't be enabled if they're off an an upper device */
7657 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7658 features = netdev_sync_upper_features(dev, upper, features);
7659
7660 if (dev->features == features)
7661 goto sync_lower;
7662
7663 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7664 &dev->features, &features);
7665
7666 if (dev->netdev_ops->ndo_set_features)
7667 err = dev->netdev_ops->ndo_set_features(dev, features);
7668 else
7669 err = 0;
7670
7671 if (unlikely(err < 0)) {
7672 netdev_err(dev,
7673 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7674 err, &features, &dev->features);
7675 /* return non-0 since some features might have changed and
7676 * it's better to fire a spurious notification than miss it
7677 */
7678 return -1;
7679 }
7680
7681 sync_lower:
7682 /* some features must be disabled on lower devices when disabled
7683 * on an upper device (think: bonding master or bridge)
7684 */
7685 netdev_for_each_lower_dev(dev, lower, iter)
7686 netdev_sync_lower_features(dev, lower, features);
7687
7688 if (!err) {
7689 netdev_features_t diff = features ^ dev->features;
7690
7691 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7692 /* udp_tunnel_{get,drop}_rx_info both need
7693 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7694 * device, or they won't do anything.
7695 * Thus we need to update dev->features
7696 * *before* calling udp_tunnel_get_rx_info,
7697 * but *after* calling udp_tunnel_drop_rx_info.
7698 */
7699 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7700 dev->features = features;
7701 udp_tunnel_get_rx_info(dev);
7702 } else {
7703 udp_tunnel_drop_rx_info(dev);
7704 }
7705 }
7706
7707 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
7708 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
7709 dev->features = features;
7710 err |= vlan_get_rx_ctag_filter_info(dev);
7711 } else {
7712 vlan_drop_rx_ctag_filter_info(dev);
7713 }
7714 }
7715
7716 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
7717 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
7718 dev->features = features;
7719 err |= vlan_get_rx_stag_filter_info(dev);
7720 } else {
7721 vlan_drop_rx_stag_filter_info(dev);
7722 }
7723 }
7724
7725 dev->features = features;
7726 }
7727
7728 return err < 0 ? 0 : 1;
7729 }
7730
7731 /**
7732 * netdev_update_features - recalculate device features
7733 * @dev: the device to check
7734 *
7735 * Recalculate dev->features set and send notifications if it
7736 * has changed. Should be called after driver or hardware dependent
7737 * conditions might have changed that influence the features.
7738 */
7739 void netdev_update_features(struct net_device *dev)
7740 {
7741 if (__netdev_update_features(dev))
7742 netdev_features_change(dev);
7743 }
7744 EXPORT_SYMBOL(netdev_update_features);
7745
7746 /**
7747 * netdev_change_features - recalculate device features
7748 * @dev: the device to check
7749 *
7750 * Recalculate dev->features set and send notifications even
7751 * if they have not changed. Should be called instead of
7752 * netdev_update_features() if also dev->vlan_features might
7753 * have changed to allow the changes to be propagated to stacked
7754 * VLAN devices.
7755 */
7756 void netdev_change_features(struct net_device *dev)
7757 {
7758 __netdev_update_features(dev);
7759 netdev_features_change(dev);
7760 }
7761 EXPORT_SYMBOL(netdev_change_features);
7762
7763 /**
7764 * netif_stacked_transfer_operstate - transfer operstate
7765 * @rootdev: the root or lower level device to transfer state from
7766 * @dev: the device to transfer operstate to
7767 *
7768 * Transfer operational state from root to device. This is normally
7769 * called when a stacking relationship exists between the root
7770 * device and the device(a leaf device).
7771 */
7772 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7773 struct net_device *dev)
7774 {
7775 if (rootdev->operstate == IF_OPER_DORMANT)
7776 netif_dormant_on(dev);
7777 else
7778 netif_dormant_off(dev);
7779
7780 if (netif_carrier_ok(rootdev))
7781 netif_carrier_on(dev);
7782 else
7783 netif_carrier_off(dev);
7784 }
7785 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7786
7787 static int netif_alloc_rx_queues(struct net_device *dev)
7788 {
7789 unsigned int i, count = dev->num_rx_queues;
7790 struct netdev_rx_queue *rx;
7791 size_t sz = count * sizeof(*rx);
7792 int err = 0;
7793
7794 BUG_ON(count < 1);
7795
7796 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7797 if (!rx)
7798 return -ENOMEM;
7799
7800 dev->_rx = rx;
7801
7802 for (i = 0; i < count; i++) {
7803 rx[i].dev = dev;
7804
7805 /* XDP RX-queue setup */
7806 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
7807 if (err < 0)
7808 goto err_rxq_info;
7809 }
7810 return 0;
7811
7812 err_rxq_info:
7813 /* Rollback successful reg's and free other resources */
7814 while (i--)
7815 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
7816 kvfree(dev->_rx);
7817 dev->_rx = NULL;
7818 return err;
7819 }
7820
7821 static void netif_free_rx_queues(struct net_device *dev)
7822 {
7823 unsigned int i, count = dev->num_rx_queues;
7824
7825 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
7826 if (!dev->_rx)
7827 return;
7828
7829 for (i = 0; i < count; i++)
7830 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
7831
7832 kvfree(dev->_rx);
7833 }
7834
7835 static void netdev_init_one_queue(struct net_device *dev,
7836 struct netdev_queue *queue, void *_unused)
7837 {
7838 /* Initialize queue lock */
7839 spin_lock_init(&queue->_xmit_lock);
7840 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7841 queue->xmit_lock_owner = -1;
7842 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7843 queue->dev = dev;
7844 #ifdef CONFIG_BQL
7845 dql_init(&queue->dql, HZ);
7846 #endif
7847 }
7848
7849 static void netif_free_tx_queues(struct net_device *dev)
7850 {
7851 kvfree(dev->_tx);
7852 }
7853
7854 static int netif_alloc_netdev_queues(struct net_device *dev)
7855 {
7856 unsigned int count = dev->num_tx_queues;
7857 struct netdev_queue *tx;
7858 size_t sz = count * sizeof(*tx);
7859
7860 if (count < 1 || count > 0xffff)
7861 return -EINVAL;
7862
7863 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7864 if (!tx)
7865 return -ENOMEM;
7866
7867 dev->_tx = tx;
7868
7869 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7870 spin_lock_init(&dev->tx_global_lock);
7871
7872 return 0;
7873 }
7874
7875 void netif_tx_stop_all_queues(struct net_device *dev)
7876 {
7877 unsigned int i;
7878
7879 for (i = 0; i < dev->num_tx_queues; i++) {
7880 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7881
7882 netif_tx_stop_queue(txq);
7883 }
7884 }
7885 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7886
7887 /**
7888 * register_netdevice - register a network device
7889 * @dev: device to register
7890 *
7891 * Take a completed network device structure and add it to the kernel
7892 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7893 * chain. 0 is returned on success. A negative errno code is returned
7894 * on a failure to set up the device, or if the name is a duplicate.
7895 *
7896 * Callers must hold the rtnl semaphore. You may want
7897 * register_netdev() instead of this.
7898 *
7899 * BUGS:
7900 * The locking appears insufficient to guarantee two parallel registers
7901 * will not get the same name.
7902 */
7903
7904 int register_netdevice(struct net_device *dev)
7905 {
7906 int ret;
7907 struct net *net = dev_net(dev);
7908
7909 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
7910 NETDEV_FEATURE_COUNT);
7911 BUG_ON(dev_boot_phase);
7912 ASSERT_RTNL();
7913
7914 might_sleep();
7915
7916 /* When net_device's are persistent, this will be fatal. */
7917 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7918 BUG_ON(!net);
7919
7920 spin_lock_init(&dev->addr_list_lock);
7921 netdev_set_addr_lockdep_class(dev);
7922
7923 ret = dev_get_valid_name(net, dev, dev->name);
7924 if (ret < 0)
7925 goto out;
7926
7927 /* Init, if this function is available */
7928 if (dev->netdev_ops->ndo_init) {
7929 ret = dev->netdev_ops->ndo_init(dev);
7930 if (ret) {
7931 if (ret > 0)
7932 ret = -EIO;
7933 goto out;
7934 }
7935 }
7936
7937 if (((dev->hw_features | dev->features) &
7938 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7939 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7940 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7941 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7942 ret = -EINVAL;
7943 goto err_uninit;
7944 }
7945
7946 ret = -EBUSY;
7947 if (!dev->ifindex)
7948 dev->ifindex = dev_new_index(net);
7949 else if (__dev_get_by_index(net, dev->ifindex))
7950 goto err_uninit;
7951
7952 /* Transfer changeable features to wanted_features and enable
7953 * software offloads (GSO and GRO).
7954 */
7955 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7956 dev->features |= NETIF_F_SOFT_FEATURES;
7957
7958 if (dev->netdev_ops->ndo_udp_tunnel_add) {
7959 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7960 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7961 }
7962
7963 dev->wanted_features = dev->features & dev->hw_features;
7964
7965 if (!(dev->flags & IFF_LOOPBACK))
7966 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7967
7968 /* If IPv4 TCP segmentation offload is supported we should also
7969 * allow the device to enable segmenting the frame with the option
7970 * of ignoring a static IP ID value. This doesn't enable the
7971 * feature itself but allows the user to enable it later.
7972 */
7973 if (dev->hw_features & NETIF_F_TSO)
7974 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7975 if (dev->vlan_features & NETIF_F_TSO)
7976 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7977 if (dev->mpls_features & NETIF_F_TSO)
7978 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7979 if (dev->hw_enc_features & NETIF_F_TSO)
7980 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7981
7982 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7983 */
7984 dev->vlan_features |= NETIF_F_HIGHDMA;
7985
7986 /* Make NETIF_F_SG inheritable to tunnel devices.
7987 */
7988 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7989
7990 /* Make NETIF_F_SG inheritable to MPLS.
7991 */
7992 dev->mpls_features |= NETIF_F_SG;
7993
7994 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7995 ret = notifier_to_errno(ret);
7996 if (ret)
7997 goto err_uninit;
7998
7999 ret = netdev_register_kobject(dev);
8000 if (ret)
8001 goto err_uninit;
8002 dev->reg_state = NETREG_REGISTERED;
8003
8004 __netdev_update_features(dev);
8005
8006 /*
8007 * Default initial state at registry is that the
8008 * device is present.
8009 */
8010
8011 set_bit(__LINK_STATE_PRESENT, &dev->state);
8012
8013 linkwatch_init_dev(dev);
8014
8015 dev_init_scheduler(dev);
8016 dev_hold(dev);
8017 list_netdevice(dev);
8018 add_device_randomness(dev->dev_addr, dev->addr_len);
8019
8020 /* If the device has permanent device address, driver should
8021 * set dev_addr and also addr_assign_type should be set to
8022 * NET_ADDR_PERM (default value).
8023 */
8024 if (dev->addr_assign_type == NET_ADDR_PERM)
8025 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8026
8027 /* Notify protocols, that a new device appeared. */
8028 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8029 ret = notifier_to_errno(ret);
8030 if (ret) {
8031 rollback_registered(dev);
8032 dev->reg_state = NETREG_UNREGISTERED;
8033 }
8034 /*
8035 * Prevent userspace races by waiting until the network
8036 * device is fully setup before sending notifications.
8037 */
8038 if (!dev->rtnl_link_ops ||
8039 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8040 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8041
8042 out:
8043 return ret;
8044
8045 err_uninit:
8046 if (dev->netdev_ops->ndo_uninit)
8047 dev->netdev_ops->ndo_uninit(dev);
8048 if (dev->priv_destructor)
8049 dev->priv_destructor(dev);
8050 goto out;
8051 }
8052 EXPORT_SYMBOL(register_netdevice);
8053
8054 /**
8055 * init_dummy_netdev - init a dummy network device for NAPI
8056 * @dev: device to init
8057 *
8058 * This takes a network device structure and initialize the minimum
8059 * amount of fields so it can be used to schedule NAPI polls without
8060 * registering a full blown interface. This is to be used by drivers
8061 * that need to tie several hardware interfaces to a single NAPI
8062 * poll scheduler due to HW limitations.
8063 */
8064 int init_dummy_netdev(struct net_device *dev)
8065 {
8066 /* Clear everything. Note we don't initialize spinlocks
8067 * are they aren't supposed to be taken by any of the
8068 * NAPI code and this dummy netdev is supposed to be
8069 * only ever used for NAPI polls
8070 */
8071 memset(dev, 0, sizeof(struct net_device));
8072
8073 /* make sure we BUG if trying to hit standard
8074 * register/unregister code path
8075 */
8076 dev->reg_state = NETREG_DUMMY;
8077
8078 /* NAPI wants this */
8079 INIT_LIST_HEAD(&dev->napi_list);
8080
8081 /* a dummy interface is started by default */
8082 set_bit(__LINK_STATE_PRESENT, &dev->state);
8083 set_bit(__LINK_STATE_START, &dev->state);
8084
8085 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8086 * because users of this 'device' dont need to change
8087 * its refcount.
8088 */
8089
8090 return 0;
8091 }
8092 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8093
8094
8095 /**
8096 * register_netdev - register a network device
8097 * @dev: device to register
8098 *
8099 * Take a completed network device structure and add it to the kernel
8100 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8101 * chain. 0 is returned on success. A negative errno code is returned
8102 * on a failure to set up the device, or if the name is a duplicate.
8103 *
8104 * This is a wrapper around register_netdevice that takes the rtnl semaphore
8105 * and expands the device name if you passed a format string to
8106 * alloc_netdev.
8107 */
8108 int register_netdev(struct net_device *dev)
8109 {
8110 int err;
8111
8112 if (rtnl_lock_killable())
8113 return -EINTR;
8114 err = register_netdevice(dev);
8115 rtnl_unlock();
8116 return err;
8117 }
8118 EXPORT_SYMBOL(register_netdev);
8119
8120 int netdev_refcnt_read(const struct net_device *dev)
8121 {
8122 int i, refcnt = 0;
8123
8124 for_each_possible_cpu(i)
8125 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8126 return refcnt;
8127 }
8128 EXPORT_SYMBOL(netdev_refcnt_read);
8129
8130 /**
8131 * netdev_wait_allrefs - wait until all references are gone.
8132 * @dev: target net_device
8133 *
8134 * This is called when unregistering network devices.
8135 *
8136 * Any protocol or device that holds a reference should register
8137 * for netdevice notification, and cleanup and put back the
8138 * reference if they receive an UNREGISTER event.
8139 * We can get stuck here if buggy protocols don't correctly
8140 * call dev_put.
8141 */
8142 static void netdev_wait_allrefs(struct net_device *dev)
8143 {
8144 unsigned long rebroadcast_time, warning_time;
8145 int refcnt;
8146
8147 linkwatch_forget_dev(dev);
8148
8149 rebroadcast_time = warning_time = jiffies;
8150 refcnt = netdev_refcnt_read(dev);
8151
8152 while (refcnt != 0) {
8153 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8154 rtnl_lock();
8155
8156 /* Rebroadcast unregister notification */
8157 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8158
8159 __rtnl_unlock();
8160 rcu_barrier();
8161 rtnl_lock();
8162
8163 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8164 &dev->state)) {
8165 /* We must not have linkwatch events
8166 * pending on unregister. If this
8167 * happens, we simply run the queue
8168 * unscheduled, resulting in a noop
8169 * for this device.
8170 */
8171 linkwatch_run_queue();
8172 }
8173
8174 __rtnl_unlock();
8175
8176 rebroadcast_time = jiffies;
8177 }
8178
8179 msleep(250);
8180
8181 refcnt = netdev_refcnt_read(dev);
8182
8183 if (time_after(jiffies, warning_time + 10 * HZ)) {
8184 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8185 dev->name, refcnt);
8186 warning_time = jiffies;
8187 }
8188 }
8189 }
8190
8191 /* The sequence is:
8192 *
8193 * rtnl_lock();
8194 * ...
8195 * register_netdevice(x1);
8196 * register_netdevice(x2);
8197 * ...
8198 * unregister_netdevice(y1);
8199 * unregister_netdevice(y2);
8200 * ...
8201 * rtnl_unlock();
8202 * free_netdev(y1);
8203 * free_netdev(y2);
8204 *
8205 * We are invoked by rtnl_unlock().
8206 * This allows us to deal with problems:
8207 * 1) We can delete sysfs objects which invoke hotplug
8208 * without deadlocking with linkwatch via keventd.
8209 * 2) Since we run with the RTNL semaphore not held, we can sleep
8210 * safely in order to wait for the netdev refcnt to drop to zero.
8211 *
8212 * We must not return until all unregister events added during
8213 * the interval the lock was held have been completed.
8214 */
8215 void netdev_run_todo(void)
8216 {
8217 struct list_head list;
8218
8219 /* Snapshot list, allow later requests */
8220 list_replace_init(&net_todo_list, &list);
8221
8222 __rtnl_unlock();
8223
8224
8225 /* Wait for rcu callbacks to finish before next phase */
8226 if (!list_empty(&list))
8227 rcu_barrier();
8228
8229 while (!list_empty(&list)) {
8230 struct net_device *dev
8231 = list_first_entry(&list, struct net_device, todo_list);
8232 list_del(&dev->todo_list);
8233
8234 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8235 pr_err("network todo '%s' but state %d\n",
8236 dev->name, dev->reg_state);
8237 dump_stack();
8238 continue;
8239 }
8240
8241 dev->reg_state = NETREG_UNREGISTERED;
8242
8243 netdev_wait_allrefs(dev);
8244
8245 /* paranoia */
8246 BUG_ON(netdev_refcnt_read(dev));
8247 BUG_ON(!list_empty(&dev->ptype_all));
8248 BUG_ON(!list_empty(&dev->ptype_specific));
8249 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8250 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8251 #if IS_ENABLED(CONFIG_DECNET)
8252 WARN_ON(dev->dn_ptr);
8253 #endif
8254 if (dev->priv_destructor)
8255 dev->priv_destructor(dev);
8256 if (dev->needs_free_netdev)
8257 free_netdev(dev);
8258
8259 /* Report a network device has been unregistered */
8260 rtnl_lock();
8261 dev_net(dev)->dev_unreg_count--;
8262 __rtnl_unlock();
8263 wake_up(&netdev_unregistering_wq);
8264
8265 /* Free network device */
8266 kobject_put(&dev->dev.kobj);
8267 }
8268 }
8269
8270 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8271 * all the same fields in the same order as net_device_stats, with only
8272 * the type differing, but rtnl_link_stats64 may have additional fields
8273 * at the end for newer counters.
8274 */
8275 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8276 const struct net_device_stats *netdev_stats)
8277 {
8278 #if BITS_PER_LONG == 64
8279 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8280 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8281 /* zero out counters that only exist in rtnl_link_stats64 */
8282 memset((char *)stats64 + sizeof(*netdev_stats), 0,
8283 sizeof(*stats64) - sizeof(*netdev_stats));
8284 #else
8285 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8286 const unsigned long *src = (const unsigned long *)netdev_stats;
8287 u64 *dst = (u64 *)stats64;
8288
8289 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8290 for (i = 0; i < n; i++)
8291 dst[i] = src[i];
8292 /* zero out counters that only exist in rtnl_link_stats64 */
8293 memset((char *)stats64 + n * sizeof(u64), 0,
8294 sizeof(*stats64) - n * sizeof(u64));
8295 #endif
8296 }
8297 EXPORT_SYMBOL(netdev_stats_to_stats64);
8298
8299 /**
8300 * dev_get_stats - get network device statistics
8301 * @dev: device to get statistics from
8302 * @storage: place to store stats
8303 *
8304 * Get network statistics from device. Return @storage.
8305 * The device driver may provide its own method by setting
8306 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8307 * otherwise the internal statistics structure is used.
8308 */
8309 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8310 struct rtnl_link_stats64 *storage)
8311 {
8312 const struct net_device_ops *ops = dev->netdev_ops;
8313
8314 if (ops->ndo_get_stats64) {
8315 memset(storage, 0, sizeof(*storage));
8316 ops->ndo_get_stats64(dev, storage);
8317 } else if (ops->ndo_get_stats) {
8318 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8319 } else {
8320 netdev_stats_to_stats64(storage, &dev->stats);
8321 }
8322 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8323 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8324 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8325 return storage;
8326 }
8327 EXPORT_SYMBOL(dev_get_stats);
8328
8329 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8330 {
8331 struct netdev_queue *queue = dev_ingress_queue(dev);
8332
8333 #ifdef CONFIG_NET_CLS_ACT
8334 if (queue)
8335 return queue;
8336 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8337 if (!queue)
8338 return NULL;
8339 netdev_init_one_queue(dev, queue, NULL);
8340 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8341 queue->qdisc_sleeping = &noop_qdisc;
8342 rcu_assign_pointer(dev->ingress_queue, queue);
8343 #endif
8344 return queue;
8345 }
8346
8347 static const struct ethtool_ops default_ethtool_ops;
8348
8349 void netdev_set_default_ethtool_ops(struct net_device *dev,
8350 const struct ethtool_ops *ops)
8351 {
8352 if (dev->ethtool_ops == &default_ethtool_ops)
8353 dev->ethtool_ops = ops;
8354 }
8355 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8356
8357 void netdev_freemem(struct net_device *dev)
8358 {
8359 char *addr = (char *)dev - dev->padded;
8360
8361 kvfree(addr);
8362 }
8363
8364 /**
8365 * alloc_netdev_mqs - allocate network device
8366 * @sizeof_priv: size of private data to allocate space for
8367 * @name: device name format string
8368 * @name_assign_type: origin of device name
8369 * @setup: callback to initialize device
8370 * @txqs: the number of TX subqueues to allocate
8371 * @rxqs: the number of RX subqueues to allocate
8372 *
8373 * Allocates a struct net_device with private data area for driver use
8374 * and performs basic initialization. Also allocates subqueue structs
8375 * for each queue on the device.
8376 */
8377 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8378 unsigned char name_assign_type,
8379 void (*setup)(struct net_device *),
8380 unsigned int txqs, unsigned int rxqs)
8381 {
8382 struct net_device *dev;
8383 unsigned int alloc_size;
8384 struct net_device *p;
8385
8386 BUG_ON(strlen(name) >= sizeof(dev->name));
8387
8388 if (txqs < 1) {
8389 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8390 return NULL;
8391 }
8392
8393 if (rxqs < 1) {
8394 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8395 return NULL;
8396 }
8397
8398 alloc_size = sizeof(struct net_device);
8399 if (sizeof_priv) {
8400 /* ensure 32-byte alignment of private area */
8401 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8402 alloc_size += sizeof_priv;
8403 }
8404 /* ensure 32-byte alignment of whole construct */
8405 alloc_size += NETDEV_ALIGN - 1;
8406
8407 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8408 if (!p)
8409 return NULL;
8410
8411 dev = PTR_ALIGN(p, NETDEV_ALIGN);
8412 dev->padded = (char *)dev - (char *)p;
8413
8414 dev->pcpu_refcnt = alloc_percpu(int);
8415 if (!dev->pcpu_refcnt)
8416 goto free_dev;
8417
8418 if (dev_addr_init(dev))
8419 goto free_pcpu;
8420
8421 dev_mc_init(dev);
8422 dev_uc_init(dev);
8423
8424 dev_net_set(dev, &init_net);
8425
8426 dev->gso_max_size = GSO_MAX_SIZE;
8427 dev->gso_max_segs = GSO_MAX_SEGS;
8428
8429 INIT_LIST_HEAD(&dev->napi_list);
8430 INIT_LIST_HEAD(&dev->unreg_list);
8431 INIT_LIST_HEAD(&dev->close_list);
8432 INIT_LIST_HEAD(&dev->link_watch_list);
8433 INIT_LIST_HEAD(&dev->adj_list.upper);
8434 INIT_LIST_HEAD(&dev->adj_list.lower);
8435 INIT_LIST_HEAD(&dev->ptype_all);
8436 INIT_LIST_HEAD(&dev->ptype_specific);
8437 #ifdef CONFIG_NET_SCHED
8438 hash_init(dev->qdisc_hash);
8439 #endif
8440 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8441 setup(dev);
8442
8443 if (!dev->tx_queue_len) {
8444 dev->priv_flags |= IFF_NO_QUEUE;
8445 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8446 }
8447
8448 dev->num_tx_queues = txqs;
8449 dev->real_num_tx_queues = txqs;
8450 if (netif_alloc_netdev_queues(dev))
8451 goto free_all;
8452
8453 dev->num_rx_queues = rxqs;
8454 dev->real_num_rx_queues = rxqs;
8455 if (netif_alloc_rx_queues(dev))
8456 goto free_all;
8457
8458 strcpy(dev->name, name);
8459 dev->name_assign_type = name_assign_type;
8460 dev->group = INIT_NETDEV_GROUP;
8461 if (!dev->ethtool_ops)
8462 dev->ethtool_ops = &default_ethtool_ops;
8463
8464 nf_hook_ingress_init(dev);
8465
8466 return dev;
8467
8468 free_all:
8469 free_netdev(dev);
8470 return NULL;
8471
8472 free_pcpu:
8473 free_percpu(dev->pcpu_refcnt);
8474 free_dev:
8475 netdev_freemem(dev);
8476 return NULL;
8477 }
8478 EXPORT_SYMBOL(alloc_netdev_mqs);
8479
8480 /**
8481 * free_netdev - free network device
8482 * @dev: device
8483 *
8484 * This function does the last stage of destroying an allocated device
8485 * interface. The reference to the device object is released. If this
8486 * is the last reference then it will be freed.Must be called in process
8487 * context.
8488 */
8489 void free_netdev(struct net_device *dev)
8490 {
8491 struct napi_struct *p, *n;
8492
8493 might_sleep();
8494 netif_free_tx_queues(dev);
8495 netif_free_rx_queues(dev);
8496
8497 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8498
8499 /* Flush device addresses */
8500 dev_addr_flush(dev);
8501
8502 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8503 netif_napi_del(p);
8504
8505 free_percpu(dev->pcpu_refcnt);
8506 dev->pcpu_refcnt = NULL;
8507
8508 /* Compatibility with error handling in drivers */
8509 if (dev->reg_state == NETREG_UNINITIALIZED) {
8510 netdev_freemem(dev);
8511 return;
8512 }
8513
8514 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8515 dev->reg_state = NETREG_RELEASED;
8516
8517 /* will free via device release */
8518 put_device(&dev->dev);
8519 }
8520 EXPORT_SYMBOL(free_netdev);
8521
8522 /**
8523 * synchronize_net - Synchronize with packet receive processing
8524 *
8525 * Wait for packets currently being received to be done.
8526 * Does not block later packets from starting.
8527 */
8528 void synchronize_net(void)
8529 {
8530 might_sleep();
8531 if (rtnl_is_locked())
8532 synchronize_rcu_expedited();
8533 else
8534 synchronize_rcu();
8535 }
8536 EXPORT_SYMBOL(synchronize_net);
8537
8538 /**
8539 * unregister_netdevice_queue - remove device from the kernel
8540 * @dev: device
8541 * @head: list
8542 *
8543 * This function shuts down a device interface and removes it
8544 * from the kernel tables.
8545 * If head not NULL, device is queued to be unregistered later.
8546 *
8547 * Callers must hold the rtnl semaphore. You may want
8548 * unregister_netdev() instead of this.
8549 */
8550
8551 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8552 {
8553 ASSERT_RTNL();
8554
8555 if (head) {
8556 list_move_tail(&dev->unreg_list, head);
8557 } else {
8558 rollback_registered(dev);
8559 /* Finish processing unregister after unlock */
8560 net_set_todo(dev);
8561 }
8562 }
8563 EXPORT_SYMBOL(unregister_netdevice_queue);
8564
8565 /**
8566 * unregister_netdevice_many - unregister many devices
8567 * @head: list of devices
8568 *
8569 * Note: As most callers use a stack allocated list_head,
8570 * we force a list_del() to make sure stack wont be corrupted later.
8571 */
8572 void unregister_netdevice_many(struct list_head *head)
8573 {
8574 struct net_device *dev;
8575
8576 if (!list_empty(head)) {
8577 rollback_registered_many(head);
8578 list_for_each_entry(dev, head, unreg_list)
8579 net_set_todo(dev);
8580 list_del(head);
8581 }
8582 }
8583 EXPORT_SYMBOL(unregister_netdevice_many);
8584
8585 /**
8586 * unregister_netdev - remove device from the kernel
8587 * @dev: device
8588 *
8589 * This function shuts down a device interface and removes it
8590 * from the kernel tables.
8591 *
8592 * This is just a wrapper for unregister_netdevice that takes
8593 * the rtnl semaphore. In general you want to use this and not
8594 * unregister_netdevice.
8595 */
8596 void unregister_netdev(struct net_device *dev)
8597 {
8598 rtnl_lock();
8599 unregister_netdevice(dev);
8600 rtnl_unlock();
8601 }
8602 EXPORT_SYMBOL(unregister_netdev);
8603
8604 /**
8605 * dev_change_net_namespace - move device to different nethost namespace
8606 * @dev: device
8607 * @net: network namespace
8608 * @pat: If not NULL name pattern to try if the current device name
8609 * is already taken in the destination network namespace.
8610 *
8611 * This function shuts down a device interface and moves it
8612 * to a new network namespace. On success 0 is returned, on
8613 * a failure a netagive errno code is returned.
8614 *
8615 * Callers must hold the rtnl semaphore.
8616 */
8617
8618 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8619 {
8620 int err, new_nsid, new_ifindex;
8621
8622 ASSERT_RTNL();
8623
8624 /* Don't allow namespace local devices to be moved. */
8625 err = -EINVAL;
8626 if (dev->features & NETIF_F_NETNS_LOCAL)
8627 goto out;
8628
8629 /* Ensure the device has been registrered */
8630 if (dev->reg_state != NETREG_REGISTERED)
8631 goto out;
8632
8633 /* Get out if there is nothing todo */
8634 err = 0;
8635 if (net_eq(dev_net(dev), net))
8636 goto out;
8637
8638 /* Pick the destination device name, and ensure
8639 * we can use it in the destination network namespace.
8640 */
8641 err = -EEXIST;
8642 if (__dev_get_by_name(net, dev->name)) {
8643 /* We get here if we can't use the current device name */
8644 if (!pat)
8645 goto out;
8646 if (dev_get_valid_name(net, dev, pat) < 0)
8647 goto out;
8648 }
8649
8650 /*
8651 * And now a mini version of register_netdevice unregister_netdevice.
8652 */
8653
8654 /* If device is running close it first. */
8655 dev_close(dev);
8656
8657 /* And unlink it from device chain */
8658 err = -ENODEV;
8659 unlist_netdevice(dev);
8660
8661 synchronize_net();
8662
8663 /* Shutdown queueing discipline. */
8664 dev_shutdown(dev);
8665
8666 /* Notify protocols, that we are about to destroy
8667 * this device. They should clean all the things.
8668 *
8669 * Note that dev->reg_state stays at NETREG_REGISTERED.
8670 * This is wanted because this way 8021q and macvlan know
8671 * the device is just moving and can keep their slaves up.
8672 */
8673 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8674 rcu_barrier();
8675
8676 new_nsid = peernet2id_alloc(dev_net(dev), net);
8677 /* If there is an ifindex conflict assign a new one */
8678 if (__dev_get_by_index(net, dev->ifindex))
8679 new_ifindex = dev_new_index(net);
8680 else
8681 new_ifindex = dev->ifindex;
8682
8683 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
8684 new_ifindex);
8685
8686 /*
8687 * Flush the unicast and multicast chains
8688 */
8689 dev_uc_flush(dev);
8690 dev_mc_flush(dev);
8691
8692 /* Send a netdev-removed uevent to the old namespace */
8693 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8694 netdev_adjacent_del_links(dev);
8695
8696 /* Actually switch the network namespace */
8697 dev_net_set(dev, net);
8698 dev->ifindex = new_ifindex;
8699
8700 /* Send a netdev-add uevent to the new namespace */
8701 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8702 netdev_adjacent_add_links(dev);
8703
8704 /* Fixup kobjects */
8705 err = device_rename(&dev->dev, dev->name);
8706 WARN_ON(err);
8707
8708 /* Add the device back in the hashes */
8709 list_netdevice(dev);
8710
8711 /* Notify protocols, that a new device appeared. */
8712 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8713
8714 /*
8715 * Prevent userspace races by waiting until the network
8716 * device is fully setup before sending notifications.
8717 */
8718 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8719
8720 synchronize_net();
8721 err = 0;
8722 out:
8723 return err;
8724 }
8725 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8726
8727 static int dev_cpu_dead(unsigned int oldcpu)
8728 {
8729 struct sk_buff **list_skb;
8730 struct sk_buff *skb;
8731 unsigned int cpu;
8732 struct softnet_data *sd, *oldsd, *remsd = NULL;
8733
8734 local_irq_disable();
8735 cpu = smp_processor_id();
8736 sd = &per_cpu(softnet_data, cpu);
8737 oldsd = &per_cpu(softnet_data, oldcpu);
8738
8739 /* Find end of our completion_queue. */
8740 list_skb = &sd->completion_queue;
8741 while (*list_skb)
8742 list_skb = &(*list_skb)->next;
8743 /* Append completion queue from offline CPU. */
8744 *list_skb = oldsd->completion_queue;
8745 oldsd->completion_queue = NULL;
8746
8747 /* Append output queue from offline CPU. */
8748 if (oldsd->output_queue) {
8749 *sd->output_queue_tailp = oldsd->output_queue;
8750 sd->output_queue_tailp = oldsd->output_queue_tailp;
8751 oldsd->output_queue = NULL;
8752 oldsd->output_queue_tailp = &oldsd->output_queue;
8753 }
8754 /* Append NAPI poll list from offline CPU, with one exception :
8755 * process_backlog() must be called by cpu owning percpu backlog.
8756 * We properly handle process_queue & input_pkt_queue later.
8757 */
8758 while (!list_empty(&oldsd->poll_list)) {
8759 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8760 struct napi_struct,
8761 poll_list);
8762
8763 list_del_init(&napi->poll_list);
8764 if (napi->poll == process_backlog)
8765 napi->state = 0;
8766 else
8767 ____napi_schedule(sd, napi);
8768 }
8769
8770 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8771 local_irq_enable();
8772
8773 #ifdef CONFIG_RPS
8774 remsd = oldsd->rps_ipi_list;
8775 oldsd->rps_ipi_list = NULL;
8776 #endif
8777 /* send out pending IPI's on offline CPU */
8778 net_rps_send_ipi(remsd);
8779
8780 /* Process offline CPU's input_pkt_queue */
8781 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8782 netif_rx_ni(skb);
8783 input_queue_head_incr(oldsd);
8784 }
8785 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8786 netif_rx_ni(skb);
8787 input_queue_head_incr(oldsd);
8788 }
8789
8790 return 0;
8791 }
8792
8793 /**
8794 * netdev_increment_features - increment feature set by one
8795 * @all: current feature set
8796 * @one: new feature set
8797 * @mask: mask feature set
8798 *
8799 * Computes a new feature set after adding a device with feature set
8800 * @one to the master device with current feature set @all. Will not
8801 * enable anything that is off in @mask. Returns the new feature set.
8802 */
8803 netdev_features_t netdev_increment_features(netdev_features_t all,
8804 netdev_features_t one, netdev_features_t mask)
8805 {
8806 if (mask & NETIF_F_HW_CSUM)
8807 mask |= NETIF_F_CSUM_MASK;
8808 mask |= NETIF_F_VLAN_CHALLENGED;
8809
8810 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8811 all &= one | ~NETIF_F_ALL_FOR_ALL;
8812
8813 /* If one device supports hw checksumming, set for all. */
8814 if (all & NETIF_F_HW_CSUM)
8815 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8816
8817 return all;
8818 }
8819 EXPORT_SYMBOL(netdev_increment_features);
8820
8821 static struct hlist_head * __net_init netdev_create_hash(void)
8822 {
8823 int i;
8824 struct hlist_head *hash;
8825
8826 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
8827 if (hash != NULL)
8828 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8829 INIT_HLIST_HEAD(&hash[i]);
8830
8831 return hash;
8832 }
8833
8834 /* Initialize per network namespace state */
8835 static int __net_init netdev_init(struct net *net)
8836 {
8837 if (net != &init_net)
8838 INIT_LIST_HEAD(&net->dev_base_head);
8839
8840 net->dev_name_head = netdev_create_hash();
8841 if (net->dev_name_head == NULL)
8842 goto err_name;
8843
8844 net->dev_index_head = netdev_create_hash();
8845 if (net->dev_index_head == NULL)
8846 goto err_idx;
8847
8848 return 0;
8849
8850 err_idx:
8851 kfree(net->dev_name_head);
8852 err_name:
8853 return -ENOMEM;
8854 }
8855
8856 /**
8857 * netdev_drivername - network driver for the device
8858 * @dev: network device
8859 *
8860 * Determine network driver for device.
8861 */
8862 const char *netdev_drivername(const struct net_device *dev)
8863 {
8864 const struct device_driver *driver;
8865 const struct device *parent;
8866 const char *empty = "";
8867
8868 parent = dev->dev.parent;
8869 if (!parent)
8870 return empty;
8871
8872 driver = parent->driver;
8873 if (driver && driver->name)
8874 return driver->name;
8875 return empty;
8876 }
8877
8878 static void __netdev_printk(const char *level, const struct net_device *dev,
8879 struct va_format *vaf)
8880 {
8881 if (dev && dev->dev.parent) {
8882 dev_printk_emit(level[1] - '0',
8883 dev->dev.parent,
8884 "%s %s %s%s: %pV",
8885 dev_driver_string(dev->dev.parent),
8886 dev_name(dev->dev.parent),
8887 netdev_name(dev), netdev_reg_state(dev),
8888 vaf);
8889 } else if (dev) {
8890 printk("%s%s%s: %pV",
8891 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8892 } else {
8893 printk("%s(NULL net_device): %pV", level, vaf);
8894 }
8895 }
8896
8897 void netdev_printk(const char *level, const struct net_device *dev,
8898 const char *format, ...)
8899 {
8900 struct va_format vaf;
8901 va_list args;
8902
8903 va_start(args, format);
8904
8905 vaf.fmt = format;
8906 vaf.va = &args;
8907
8908 __netdev_printk(level, dev, &vaf);
8909
8910 va_end(args);
8911 }
8912 EXPORT_SYMBOL(netdev_printk);
8913
8914 #define define_netdev_printk_level(func, level) \
8915 void func(const struct net_device *dev, const char *fmt, ...) \
8916 { \
8917 struct va_format vaf; \
8918 va_list args; \
8919 \
8920 va_start(args, fmt); \
8921 \
8922 vaf.fmt = fmt; \
8923 vaf.va = &args; \
8924 \
8925 __netdev_printk(level, dev, &vaf); \
8926 \
8927 va_end(args); \
8928 } \
8929 EXPORT_SYMBOL(func);
8930
8931 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8932 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8933 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8934 define_netdev_printk_level(netdev_err, KERN_ERR);
8935 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8936 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8937 define_netdev_printk_level(netdev_info, KERN_INFO);
8938
8939 static void __net_exit netdev_exit(struct net *net)
8940 {
8941 kfree(net->dev_name_head);
8942 kfree(net->dev_index_head);
8943 if (net != &init_net)
8944 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8945 }
8946
8947 static struct pernet_operations __net_initdata netdev_net_ops = {
8948 .init = netdev_init,
8949 .exit = netdev_exit,
8950 };
8951
8952 static void __net_exit default_device_exit(struct net *net)
8953 {
8954 struct net_device *dev, *aux;
8955 /*
8956 * Push all migratable network devices back to the
8957 * initial network namespace
8958 */
8959 rtnl_lock();
8960 for_each_netdev_safe(net, dev, aux) {
8961 int err;
8962 char fb_name[IFNAMSIZ];
8963
8964 /* Ignore unmoveable devices (i.e. loopback) */
8965 if (dev->features & NETIF_F_NETNS_LOCAL)
8966 continue;
8967
8968 /* Leave virtual devices for the generic cleanup */
8969 if (dev->rtnl_link_ops)
8970 continue;
8971
8972 /* Push remaining network devices to init_net */
8973 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8974 err = dev_change_net_namespace(dev, &init_net, fb_name);
8975 if (err) {
8976 pr_emerg("%s: failed to move %s to init_net: %d\n",
8977 __func__, dev->name, err);
8978 BUG();
8979 }
8980 }
8981 rtnl_unlock();
8982 }
8983
8984 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8985 {
8986 /* Return with the rtnl_lock held when there are no network
8987 * devices unregistering in any network namespace in net_list.
8988 */
8989 struct net *net;
8990 bool unregistering;
8991 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8992
8993 add_wait_queue(&netdev_unregistering_wq, &wait);
8994 for (;;) {
8995 unregistering = false;
8996 rtnl_lock();
8997 list_for_each_entry(net, net_list, exit_list) {
8998 if (net->dev_unreg_count > 0) {
8999 unregistering = true;
9000 break;
9001 }
9002 }
9003 if (!unregistering)
9004 break;
9005 __rtnl_unlock();
9006
9007 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9008 }
9009 remove_wait_queue(&netdev_unregistering_wq, &wait);
9010 }
9011
9012 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9013 {
9014 /* At exit all network devices most be removed from a network
9015 * namespace. Do this in the reverse order of registration.
9016 * Do this across as many network namespaces as possible to
9017 * improve batching efficiency.
9018 */
9019 struct net_device *dev;
9020 struct net *net;
9021 LIST_HEAD(dev_kill_list);
9022
9023 /* To prevent network device cleanup code from dereferencing
9024 * loopback devices or network devices that have been freed
9025 * wait here for all pending unregistrations to complete,
9026 * before unregistring the loopback device and allowing the
9027 * network namespace be freed.
9028 *
9029 * The netdev todo list containing all network devices
9030 * unregistrations that happen in default_device_exit_batch
9031 * will run in the rtnl_unlock() at the end of
9032 * default_device_exit_batch.
9033 */
9034 rtnl_lock_unregistering(net_list);
9035 list_for_each_entry(net, net_list, exit_list) {
9036 for_each_netdev_reverse(net, dev) {
9037 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9038 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9039 else
9040 unregister_netdevice_queue(dev, &dev_kill_list);
9041 }
9042 }
9043 unregister_netdevice_many(&dev_kill_list);
9044 rtnl_unlock();
9045 }
9046
9047 static struct pernet_operations __net_initdata default_device_ops = {
9048 .exit = default_device_exit,
9049 .exit_batch = default_device_exit_batch,
9050 };
9051
9052 /*
9053 * Initialize the DEV module. At boot time this walks the device list and
9054 * unhooks any devices that fail to initialise (normally hardware not
9055 * present) and leaves us with a valid list of present and active devices.
9056 *
9057 */
9058
9059 /*
9060 * This is called single threaded during boot, so no need
9061 * to take the rtnl semaphore.
9062 */
9063 static int __init net_dev_init(void)
9064 {
9065 int i, rc = -ENOMEM;
9066
9067 BUG_ON(!dev_boot_phase);
9068
9069 if (dev_proc_init())
9070 goto out;
9071
9072 if (netdev_kobject_init())
9073 goto out;
9074
9075 INIT_LIST_HEAD(&ptype_all);
9076 for (i = 0; i < PTYPE_HASH_SIZE; i++)
9077 INIT_LIST_HEAD(&ptype_base[i]);
9078
9079 INIT_LIST_HEAD(&offload_base);
9080
9081 if (register_pernet_subsys(&netdev_net_ops))
9082 goto out;
9083
9084 /*
9085 * Initialise the packet receive queues.
9086 */
9087
9088 for_each_possible_cpu(i) {
9089 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9090 struct softnet_data *sd = &per_cpu(softnet_data, i);
9091
9092 INIT_WORK(flush, flush_backlog);
9093
9094 skb_queue_head_init(&sd->input_pkt_queue);
9095 skb_queue_head_init(&sd->process_queue);
9096 #ifdef CONFIG_XFRM_OFFLOAD
9097 skb_queue_head_init(&sd->xfrm_backlog);
9098 #endif
9099 INIT_LIST_HEAD(&sd->poll_list);
9100 sd->output_queue_tailp = &sd->output_queue;
9101 #ifdef CONFIG_RPS
9102 sd->csd.func = rps_trigger_softirq;
9103 sd->csd.info = sd;
9104 sd->cpu = i;
9105 #endif
9106
9107 sd->backlog.poll = process_backlog;
9108 sd->backlog.weight = weight_p;
9109 }
9110
9111 dev_boot_phase = 0;
9112
9113 /* The loopback device is special if any other network devices
9114 * is present in a network namespace the loopback device must
9115 * be present. Since we now dynamically allocate and free the
9116 * loopback device ensure this invariant is maintained by
9117 * keeping the loopback device as the first device on the
9118 * list of network devices. Ensuring the loopback devices
9119 * is the first device that appears and the last network device
9120 * that disappears.
9121 */
9122 if (register_pernet_device(&loopback_net_ops))
9123 goto out;
9124
9125 if (register_pernet_device(&default_device_ops))
9126 goto out;
9127
9128 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9129 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9130
9131 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9132 NULL, dev_cpu_dead);
9133 WARN_ON(rc < 0);
9134 rc = 0;
9135 out:
9136 return rc;
9137 }
9138
9139 subsys_initcall(net_dev_init);