]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - net/core/dev.c
hv_netvsc: propogate Hyper-V friendly name into interface alias
[mirror_ubuntu-focal-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149
150 #include "net-sysfs.h"
151
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly; /* Taps */
162 static struct list_head offload_base __read_mostly;
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166 struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169 /*
170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171 * semaphore.
172 *
173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174 *
175 * Writers must hold the rtnl semaphore while they loop through the
176 * dev_base_head list, and hold dev_base_lock for writing when they do the
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
179 *
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
183 *
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
187 */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190
191 static DEFINE_MUTEX(ifalias_mutex);
192
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199 static seqcount_t devnet_rename_seq;
200
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 while (++net->dev_base_seq == 0)
204 ;
205 }
206
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236 struct net *net = dev_net(dev);
237
238 ASSERT_RTNL();
239
240 write_lock_bh(&dev_base_lock);
241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 hlist_add_head_rcu(&dev->index_hlist,
244 dev_index_hash(net, dev->ifindex));
245 write_unlock_bh(&dev_base_lock);
246
247 dev_base_seq_inc(net);
248 }
249
250 /* Device list removal
251 * caller must respect a RCU grace period before freeing/reusing dev
252 */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255 ASSERT_RTNL();
256
257 /* Unlink dev from the device chain */
258 write_lock_bh(&dev_base_lock);
259 list_del_rcu(&dev->dev_list);
260 hlist_del_rcu(&dev->name_hlist);
261 hlist_del_rcu(&dev->index_hlist);
262 write_unlock_bh(&dev_base_lock);
263
264 dev_base_seq_inc(dev_net(dev));
265 }
266
267 /*
268 * Our notifier list
269 */
270
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272
273 /*
274 * Device drivers call our routines to queue packets here. We empty the
275 * queue in the local softnet handler.
276 */
277
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280
281 #ifdef CONFIG_LOCKDEP
282 /*
283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284 * according to dev->type
285 */
286 static const unsigned short netdev_lock_type[] = {
287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302
303 static const char *const netdev_lock_name[] = {
304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325 int i;
326
327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 if (netdev_lock_type[i] == dev_type)
329 return i;
330 /* the last key is used by default */
331 return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 unsigned short dev_type)
336 {
337 int i;
338
339 i = netdev_lock_pos(dev_type);
340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 netdev_lock_name[i]);
342 }
343
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 int i;
347
348 i = netdev_lock_pos(dev->type);
349 lockdep_set_class_and_name(&dev->addr_list_lock,
350 &netdev_addr_lock_key[i],
351 netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362
363 /*******************************************************************************
364 *
365 * Protocol management and registration routines
366 *
367 *******************************************************************************/
368
369
370 /*
371 * Add a protocol ID to the list. Now that the input handler is
372 * smarter we can dispense with all the messy stuff that used to be
373 * here.
374 *
375 * BEWARE!!! Protocol handlers, mangling input packets,
376 * MUST BE last in hash buckets and checking protocol handlers
377 * MUST start from promiscuous ptype_all chain in net_bh.
378 * It is true now, do not change it.
379 * Explanation follows: if protocol handler, mangling packet, will
380 * be the first on list, it is not able to sense, that packet
381 * is cloned and should be copied-on-write, so that it will
382 * change it and subsequent readers will get broken packet.
383 * --ANK (980803)
384 */
385
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388 if (pt->type == htons(ETH_P_ALL))
389 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 else
391 return pt->dev ? &pt->dev->ptype_specific :
392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394
395 /**
396 * dev_add_pack - add packet handler
397 * @pt: packet type declaration
398 *
399 * Add a protocol handler to the networking stack. The passed &packet_type
400 * is linked into kernel lists and may not be freed until it has been
401 * removed from the kernel lists.
402 *
403 * This call does not sleep therefore it can not
404 * guarantee all CPU's that are in middle of receiving packets
405 * will see the new packet type (until the next received packet).
406 */
407
408 void dev_add_pack(struct packet_type *pt)
409 {
410 struct list_head *head = ptype_head(pt);
411
412 spin_lock(&ptype_lock);
413 list_add_rcu(&pt->list, head);
414 spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417
418 /**
419 * __dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
425 * returns.
426 *
427 * The packet type might still be in use by receivers
428 * and must not be freed until after all the CPU's have gone
429 * through a quiescent state.
430 */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433 struct list_head *head = ptype_head(pt);
434 struct packet_type *pt1;
435
436 spin_lock(&ptype_lock);
437
438 list_for_each_entry(pt1, head, list) {
439 if (pt == pt1) {
440 list_del_rcu(&pt->list);
441 goto out;
442 }
443 }
444
445 pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447 spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450
451 /**
452 * dev_remove_pack - remove packet handler
453 * @pt: packet type declaration
454 *
455 * Remove a protocol handler that was previously added to the kernel
456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
457 * from the kernel lists and can be freed or reused once this function
458 * returns.
459 *
460 * This call sleeps to guarantee that no CPU is looking at the packet
461 * type after return.
462 */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465 __dev_remove_pack(pt);
466
467 synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470
471
472 /**
473 * dev_add_offload - register offload handlers
474 * @po: protocol offload declaration
475 *
476 * Add protocol offload handlers to the networking stack. The passed
477 * &proto_offload is linked into kernel lists and may not be freed until
478 * it has been removed from the kernel lists.
479 *
480 * This call does not sleep therefore it can not
481 * guarantee all CPU's that are in middle of receiving packets
482 * will see the new offload handlers (until the next received packet).
483 */
484 void dev_add_offload(struct packet_offload *po)
485 {
486 struct packet_offload *elem;
487
488 spin_lock(&offload_lock);
489 list_for_each_entry(elem, &offload_base, list) {
490 if (po->priority < elem->priority)
491 break;
492 }
493 list_add_rcu(&po->list, elem->list.prev);
494 spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497
498 /**
499 * __dev_remove_offload - remove offload handler
500 * @po: packet offload declaration
501 *
502 * Remove a protocol offload handler that was previously added to the
503 * kernel offload handlers by dev_add_offload(). The passed &offload_type
504 * is removed from the kernel lists and can be freed or reused once this
505 * function returns.
506 *
507 * The packet type might still be in use by receivers
508 * and must not be freed until after all the CPU's have gone
509 * through a quiescent state.
510 */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513 struct list_head *head = &offload_base;
514 struct packet_offload *po1;
515
516 spin_lock(&offload_lock);
517
518 list_for_each_entry(po1, head, list) {
519 if (po == po1) {
520 list_del_rcu(&po->list);
521 goto out;
522 }
523 }
524
525 pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527 spin_unlock(&offload_lock);
528 }
529
530 /**
531 * dev_remove_offload - remove packet offload handler
532 * @po: packet offload declaration
533 *
534 * Remove a packet offload handler that was previously added to the kernel
535 * offload handlers by dev_add_offload(). The passed &offload_type is
536 * removed from the kernel lists and can be freed or reused once this
537 * function returns.
538 *
539 * This call sleeps to guarantee that no CPU is looking at the packet
540 * type after return.
541 */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544 __dev_remove_offload(po);
545
546 synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549
550 /******************************************************************************
551 *
552 * Device Boot-time Settings Routines
553 *
554 ******************************************************************************/
555
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558
559 /**
560 * netdev_boot_setup_add - add new setup entry
561 * @name: name of the device
562 * @map: configured settings for the device
563 *
564 * Adds new setup entry to the dev_boot_setup list. The function
565 * returns 0 on error and 1 on success. This is a generic routine to
566 * all netdevices.
567 */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570 struct netdev_boot_setup *s;
571 int i;
572
573 s = dev_boot_setup;
574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 memset(s[i].name, 0, sizeof(s[i].name));
577 strlcpy(s[i].name, name, IFNAMSIZ);
578 memcpy(&s[i].map, map, sizeof(s[i].map));
579 break;
580 }
581 }
582
583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585
586 /**
587 * netdev_boot_setup_check - check boot time settings
588 * @dev: the netdevice
589 *
590 * Check boot time settings for the device.
591 * The found settings are set for the device to be used
592 * later in the device probing.
593 * Returns 0 if no settings found, 1 if they are.
594 */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597 struct netdev_boot_setup *s = dev_boot_setup;
598 int i;
599
600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 !strcmp(dev->name, s[i].name)) {
603 dev->irq = s[i].map.irq;
604 dev->base_addr = s[i].map.base_addr;
605 dev->mem_start = s[i].map.mem_start;
606 dev->mem_end = s[i].map.mem_end;
607 return 1;
608 }
609 }
610 return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613
614
615 /**
616 * netdev_boot_base - get address from boot time settings
617 * @prefix: prefix for network device
618 * @unit: id for network device
619 *
620 * Check boot time settings for the base address of device.
621 * The found settings are set for the device to be used
622 * later in the device probing.
623 * Returns 0 if no settings found.
624 */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627 const struct netdev_boot_setup *s = dev_boot_setup;
628 char name[IFNAMSIZ];
629 int i;
630
631 sprintf(name, "%s%d", prefix, unit);
632
633 /*
634 * If device already registered then return base of 1
635 * to indicate not to probe for this interface
636 */
637 if (__dev_get_by_name(&init_net, name))
638 return 1;
639
640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 if (!strcmp(name, s[i].name))
642 return s[i].map.base_addr;
643 return 0;
644 }
645
646 /*
647 * Saves at boot time configured settings for any netdevice.
648 */
649 int __init netdev_boot_setup(char *str)
650 {
651 int ints[5];
652 struct ifmap map;
653
654 str = get_options(str, ARRAY_SIZE(ints), ints);
655 if (!str || !*str)
656 return 0;
657
658 /* Save settings */
659 memset(&map, 0, sizeof(map));
660 if (ints[0] > 0)
661 map.irq = ints[1];
662 if (ints[0] > 1)
663 map.base_addr = ints[2];
664 if (ints[0] > 2)
665 map.mem_start = ints[3];
666 if (ints[0] > 3)
667 map.mem_end = ints[4];
668
669 /* Add new entry to the list */
670 return netdev_boot_setup_add(str, &map);
671 }
672
673 __setup("netdev=", netdev_boot_setup);
674
675 /*******************************************************************************
676 *
677 * Device Interface Subroutines
678 *
679 *******************************************************************************/
680
681 /**
682 * dev_get_iflink - get 'iflink' value of a interface
683 * @dev: targeted interface
684 *
685 * Indicates the ifindex the interface is linked to.
686 * Physical interfaces have the same 'ifindex' and 'iflink' values.
687 */
688
689 int dev_get_iflink(const struct net_device *dev)
690 {
691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 return dev->netdev_ops->ndo_get_iflink(dev);
693
694 return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697
698 /**
699 * dev_fill_metadata_dst - Retrieve tunnel egress information.
700 * @dev: targeted interface
701 * @skb: The packet.
702 *
703 * For better visibility of tunnel traffic OVS needs to retrieve
704 * egress tunnel information for a packet. Following API allows
705 * user to get this info.
706 */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 struct ip_tunnel_info *info;
710
711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
712 return -EINVAL;
713
714 info = skb_tunnel_info_unclone(skb);
715 if (!info)
716 return -ENOMEM;
717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 return -EINVAL;
719
720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
724 /**
725 * __dev_get_by_name - find a device by its name
726 * @net: the applicable net namespace
727 * @name: name to find
728 *
729 * Find an interface by name. Must be called under RTNL semaphore
730 * or @dev_base_lock. If the name is found a pointer to the device
731 * is returned. If the name is not found then %NULL is returned. The
732 * reference counters are not incremented so the caller must be
733 * careful with locks.
734 */
735
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738 struct net_device *dev;
739 struct hlist_head *head = dev_name_hash(net, name);
740
741 hlist_for_each_entry(dev, head, name_hlist)
742 if (!strncmp(dev->name, name, IFNAMSIZ))
743 return dev;
744
745 return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748
749 /**
750 * dev_get_by_name_rcu - find a device by its name
751 * @net: the applicable net namespace
752 * @name: name to find
753 *
754 * Find an interface by name.
755 * If the name is found a pointer to the device is returned.
756 * If the name is not found then %NULL is returned.
757 * The reference counters are not incremented so the caller must be
758 * careful with locks. The caller must hold RCU lock.
759 */
760
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763 struct net_device *dev;
764 struct hlist_head *head = dev_name_hash(net, name);
765
766 hlist_for_each_entry_rcu(dev, head, name_hlist)
767 if (!strncmp(dev->name, name, IFNAMSIZ))
768 return dev;
769
770 return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773
774 /**
775 * dev_get_by_name - find a device by its name
776 * @net: the applicable net namespace
777 * @name: name to find
778 *
779 * Find an interface by name. This can be called from any
780 * context and does its own locking. The returned handle has
781 * the usage count incremented and the caller must use dev_put() to
782 * release it when it is no longer needed. %NULL is returned if no
783 * matching device is found.
784 */
785
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788 struct net_device *dev;
789
790 rcu_read_lock();
791 dev = dev_get_by_name_rcu(net, name);
792 if (dev)
793 dev_hold(dev);
794 rcu_read_unlock();
795 return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798
799 /**
800 * __dev_get_by_index - find a device by its ifindex
801 * @net: the applicable net namespace
802 * @ifindex: index of device
803 *
804 * Search for an interface by index. Returns %NULL if the device
805 * is not found or a pointer to the device. The device has not
806 * had its reference counter increased so the caller must be careful
807 * about locking. The caller must hold either the RTNL semaphore
808 * or @dev_base_lock.
809 */
810
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813 struct net_device *dev;
814 struct hlist_head *head = dev_index_hash(net, ifindex);
815
816 hlist_for_each_entry(dev, head, index_hlist)
817 if (dev->ifindex == ifindex)
818 return dev;
819
820 return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823
824 /**
825 * dev_get_by_index_rcu - find a device by its ifindex
826 * @net: the applicable net namespace
827 * @ifindex: index of device
828 *
829 * Search for an interface by index. Returns %NULL if the device
830 * is not found or a pointer to the device. The device has not
831 * had its reference counter increased so the caller must be careful
832 * about locking. The caller must hold RCU lock.
833 */
834
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837 struct net_device *dev;
838 struct hlist_head *head = dev_index_hash(net, ifindex);
839
840 hlist_for_each_entry_rcu(dev, head, index_hlist)
841 if (dev->ifindex == ifindex)
842 return dev;
843
844 return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847
848
849 /**
850 * dev_get_by_index - find a device by its ifindex
851 * @net: the applicable net namespace
852 * @ifindex: index of device
853 *
854 * Search for an interface by index. Returns NULL if the device
855 * is not found or a pointer to the device. The device returned has
856 * had a reference added and the pointer is safe until the user calls
857 * dev_put to indicate they have finished with it.
858 */
859
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862 struct net_device *dev;
863
864 rcu_read_lock();
865 dev = dev_get_by_index_rcu(net, ifindex);
866 if (dev)
867 dev_hold(dev);
868 rcu_read_unlock();
869 return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872
873 /**
874 * dev_get_by_napi_id - find a device by napi_id
875 * @napi_id: ID of the NAPI struct
876 *
877 * Search for an interface by NAPI ID. Returns %NULL if the device
878 * is not found or a pointer to the device. The device has not had
879 * its reference counter increased so the caller must be careful
880 * about locking. The caller must hold RCU lock.
881 */
882
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885 struct napi_struct *napi;
886
887 WARN_ON_ONCE(!rcu_read_lock_held());
888
889 if (napi_id < MIN_NAPI_ID)
890 return NULL;
891
892 napi = napi_by_id(napi_id);
893
894 return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897
898 /**
899 * netdev_get_name - get a netdevice name, knowing its ifindex.
900 * @net: network namespace
901 * @name: a pointer to the buffer where the name will be stored.
902 * @ifindex: the ifindex of the interface to get the name from.
903 *
904 * The use of raw_seqcount_begin() and cond_resched() before
905 * retrying is required as we want to give the writers a chance
906 * to complete when CONFIG_PREEMPT is not set.
907 */
908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910 struct net_device *dev;
911 unsigned int seq;
912
913 retry:
914 seq = raw_seqcount_begin(&devnet_rename_seq);
915 rcu_read_lock();
916 dev = dev_get_by_index_rcu(net, ifindex);
917 if (!dev) {
918 rcu_read_unlock();
919 return -ENODEV;
920 }
921
922 strcpy(name, dev->name);
923 rcu_read_unlock();
924 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 cond_resched();
926 goto retry;
927 }
928
929 return 0;
930 }
931
932 /**
933 * dev_getbyhwaddr_rcu - find a device by its hardware address
934 * @net: the applicable net namespace
935 * @type: media type of device
936 * @ha: hardware address
937 *
938 * Search for an interface by MAC address. Returns NULL if the device
939 * is not found or a pointer to the device.
940 * The caller must hold RCU or RTNL.
941 * The returned device has not had its ref count increased
942 * and the caller must therefore be careful about locking
943 *
944 */
945
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 const char *ha)
948 {
949 struct net_device *dev;
950
951 for_each_netdev_rcu(net, dev)
952 if (dev->type == type &&
953 !memcmp(dev->dev_addr, ha, dev->addr_len))
954 return dev;
955
956 return NULL;
957 }
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 {
962 struct net_device *dev;
963
964 ASSERT_RTNL();
965 for_each_netdev(net, dev)
966 if (dev->type == type)
967 return dev;
968
969 return NULL;
970 }
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975 struct net_device *dev, *ret = NULL;
976
977 rcu_read_lock();
978 for_each_netdev_rcu(net, dev)
979 if (dev->type == type) {
980 dev_hold(dev);
981 ret = dev;
982 break;
983 }
984 rcu_read_unlock();
985 return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988
989 /**
990 * __dev_get_by_flags - find any device with given flags
991 * @net: the applicable net namespace
992 * @if_flags: IFF_* values
993 * @mask: bitmask of bits in if_flags to check
994 *
995 * Search for any interface with the given flags. Returns NULL if a device
996 * is not found or a pointer to the device. Must be called inside
997 * rtnl_lock(), and result refcount is unchanged.
998 */
999
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 unsigned short mask)
1002 {
1003 struct net_device *dev, *ret;
1004
1005 ASSERT_RTNL();
1006
1007 ret = NULL;
1008 for_each_netdev(net, dev) {
1009 if (((dev->flags ^ if_flags) & mask) == 0) {
1010 ret = dev;
1011 break;
1012 }
1013 }
1014 return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017
1018 /**
1019 * dev_valid_name - check if name is okay for network device
1020 * @name: name string
1021 *
1022 * Network device names need to be valid file names to
1023 * to allow sysfs to work. We also disallow any kind of
1024 * whitespace.
1025 */
1026 bool dev_valid_name(const char *name)
1027 {
1028 if (*name == '\0')
1029 return false;
1030 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1031 return false;
1032 if (!strcmp(name, ".") || !strcmp(name, ".."))
1033 return false;
1034
1035 while (*name) {
1036 if (*name == '/' || *name == ':' || isspace(*name))
1037 return false;
1038 name++;
1039 }
1040 return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043
1044 /**
1045 * __dev_alloc_name - allocate a name for a device
1046 * @net: network namespace to allocate the device name in
1047 * @name: name format string
1048 * @buf: scratch buffer and result name string
1049 *
1050 * Passed a format string - eg "lt%d" it will try and find a suitable
1051 * id. It scans list of devices to build up a free map, then chooses
1052 * the first empty slot. The caller must hold the dev_base or rtnl lock
1053 * while allocating the name and adding the device in order to avoid
1054 * duplicates.
1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 * Returns the number of the unit assigned or a negative errno code.
1057 */
1058
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061 int i = 0;
1062 const char *p;
1063 const int max_netdevices = 8*PAGE_SIZE;
1064 unsigned long *inuse;
1065 struct net_device *d;
1066
1067 if (!dev_valid_name(name))
1068 return -EINVAL;
1069
1070 p = strchr(name, '%');
1071 if (p) {
1072 /*
1073 * Verify the string as this thing may have come from
1074 * the user. There must be either one "%d" and no other "%"
1075 * characters.
1076 */
1077 if (p[1] != 'd' || strchr(p + 2, '%'))
1078 return -EINVAL;
1079
1080 /* Use one page as a bit array of possible slots */
1081 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082 if (!inuse)
1083 return -ENOMEM;
1084
1085 for_each_netdev(net, d) {
1086 if (!sscanf(d->name, name, &i))
1087 continue;
1088 if (i < 0 || i >= max_netdevices)
1089 continue;
1090
1091 /* avoid cases where sscanf is not exact inverse of printf */
1092 snprintf(buf, IFNAMSIZ, name, i);
1093 if (!strncmp(buf, d->name, IFNAMSIZ))
1094 set_bit(i, inuse);
1095 }
1096
1097 i = find_first_zero_bit(inuse, max_netdevices);
1098 free_page((unsigned long) inuse);
1099 }
1100
1101 snprintf(buf, IFNAMSIZ, name, i);
1102 if (!__dev_get_by_name(net, buf))
1103 return i;
1104
1105 /* It is possible to run out of possible slots
1106 * when the name is long and there isn't enough space left
1107 * for the digits, or if all bits are used.
1108 */
1109 return -ENFILE;
1110 }
1111
1112 static int dev_alloc_name_ns(struct net *net,
1113 struct net_device *dev,
1114 const char *name)
1115 {
1116 char buf[IFNAMSIZ];
1117 int ret;
1118
1119 BUG_ON(!net);
1120 ret = __dev_alloc_name(net, name, buf);
1121 if (ret >= 0)
1122 strlcpy(dev->name, buf, IFNAMSIZ);
1123 return ret;
1124 }
1125
1126 /**
1127 * dev_alloc_name - allocate a name for a device
1128 * @dev: device
1129 * @name: name format string
1130 *
1131 * Passed a format string - eg "lt%d" it will try and find a suitable
1132 * id. It scans list of devices to build up a free map, then chooses
1133 * the first empty slot. The caller must hold the dev_base or rtnl lock
1134 * while allocating the name and adding the device in order to avoid
1135 * duplicates.
1136 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137 * Returns the number of the unit assigned or a negative errno code.
1138 */
1139
1140 int dev_alloc_name(struct net_device *dev, const char *name)
1141 {
1142 return dev_alloc_name_ns(dev_net(dev), dev, name);
1143 }
1144 EXPORT_SYMBOL(dev_alloc_name);
1145
1146 int dev_get_valid_name(struct net *net, struct net_device *dev,
1147 const char *name)
1148 {
1149 BUG_ON(!net);
1150
1151 if (!dev_valid_name(name))
1152 return -EINVAL;
1153
1154 if (strchr(name, '%'))
1155 return dev_alloc_name_ns(net, dev, name);
1156 else if (__dev_get_by_name(net, name))
1157 return -EEXIST;
1158 else if (dev->name != name)
1159 strlcpy(dev->name, name, IFNAMSIZ);
1160
1161 return 0;
1162 }
1163 EXPORT_SYMBOL(dev_get_valid_name);
1164
1165 /**
1166 * dev_change_name - change name of a device
1167 * @dev: device
1168 * @newname: name (or format string) must be at least IFNAMSIZ
1169 *
1170 * Change name of a device, can pass format strings "eth%d".
1171 * for wildcarding.
1172 */
1173 int dev_change_name(struct net_device *dev, const char *newname)
1174 {
1175 unsigned char old_assign_type;
1176 char oldname[IFNAMSIZ];
1177 int err = 0;
1178 int ret;
1179 struct net *net;
1180
1181 ASSERT_RTNL();
1182 BUG_ON(!dev_net(dev));
1183
1184 net = dev_net(dev);
1185 if (dev->flags & IFF_UP)
1186 return -EBUSY;
1187
1188 write_seqcount_begin(&devnet_rename_seq);
1189
1190 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191 write_seqcount_end(&devnet_rename_seq);
1192 return 0;
1193 }
1194
1195 memcpy(oldname, dev->name, IFNAMSIZ);
1196
1197 err = dev_get_valid_name(net, dev, newname);
1198 if (err < 0) {
1199 write_seqcount_end(&devnet_rename_seq);
1200 return err;
1201 }
1202
1203 if (oldname[0] && !strchr(oldname, '%'))
1204 netdev_info(dev, "renamed from %s\n", oldname);
1205
1206 old_assign_type = dev->name_assign_type;
1207 dev->name_assign_type = NET_NAME_RENAMED;
1208
1209 rollback:
1210 ret = device_rename(&dev->dev, dev->name);
1211 if (ret) {
1212 memcpy(dev->name, oldname, IFNAMSIZ);
1213 dev->name_assign_type = old_assign_type;
1214 write_seqcount_end(&devnet_rename_seq);
1215 return ret;
1216 }
1217
1218 write_seqcount_end(&devnet_rename_seq);
1219
1220 netdev_adjacent_rename_links(dev, oldname);
1221
1222 write_lock_bh(&dev_base_lock);
1223 hlist_del_rcu(&dev->name_hlist);
1224 write_unlock_bh(&dev_base_lock);
1225
1226 synchronize_rcu();
1227
1228 write_lock_bh(&dev_base_lock);
1229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230 write_unlock_bh(&dev_base_lock);
1231
1232 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233 ret = notifier_to_errno(ret);
1234
1235 if (ret) {
1236 /* err >= 0 after dev_alloc_name() or stores the first errno */
1237 if (err >= 0) {
1238 err = ret;
1239 write_seqcount_begin(&devnet_rename_seq);
1240 memcpy(dev->name, oldname, IFNAMSIZ);
1241 memcpy(oldname, newname, IFNAMSIZ);
1242 dev->name_assign_type = old_assign_type;
1243 old_assign_type = NET_NAME_RENAMED;
1244 goto rollback;
1245 } else {
1246 pr_err("%s: name change rollback failed: %d\n",
1247 dev->name, ret);
1248 }
1249 }
1250
1251 return err;
1252 }
1253
1254 /**
1255 * dev_set_alias - change ifalias of a device
1256 * @dev: device
1257 * @alias: name up to IFALIASZ
1258 * @len: limit of bytes to copy from info
1259 *
1260 * Set ifalias for a device,
1261 */
1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263 {
1264 struct dev_ifalias *new_alias = NULL;
1265
1266 if (len >= IFALIASZ)
1267 return -EINVAL;
1268
1269 if (len) {
1270 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271 if (!new_alias)
1272 return -ENOMEM;
1273
1274 memcpy(new_alias->ifalias, alias, len);
1275 new_alias->ifalias[len] = 0;
1276 }
1277
1278 mutex_lock(&ifalias_mutex);
1279 rcu_swap_protected(dev->ifalias, new_alias,
1280 mutex_is_locked(&ifalias_mutex));
1281 mutex_unlock(&ifalias_mutex);
1282
1283 if (new_alias)
1284 kfree_rcu(new_alias, rcuhead);
1285
1286 return len;
1287 }
1288 EXPORT_SYMBOL(dev_set_alias);
1289
1290 /**
1291 * dev_get_alias - get ifalias of a device
1292 * @dev: device
1293 * @name: buffer to store name of ifalias
1294 * @len: size of buffer
1295 *
1296 * get ifalias for a device. Caller must make sure dev cannot go
1297 * away, e.g. rcu read lock or own a reference count to device.
1298 */
1299 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1300 {
1301 const struct dev_ifalias *alias;
1302 int ret = 0;
1303
1304 rcu_read_lock();
1305 alias = rcu_dereference(dev->ifalias);
1306 if (alias)
1307 ret = snprintf(name, len, "%s", alias->ifalias);
1308 rcu_read_unlock();
1309
1310 return ret;
1311 }
1312
1313 /**
1314 * netdev_features_change - device changes features
1315 * @dev: device to cause notification
1316 *
1317 * Called to indicate a device has changed features.
1318 */
1319 void netdev_features_change(struct net_device *dev)
1320 {
1321 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1322 }
1323 EXPORT_SYMBOL(netdev_features_change);
1324
1325 /**
1326 * netdev_state_change - device changes state
1327 * @dev: device to cause notification
1328 *
1329 * Called to indicate a device has changed state. This function calls
1330 * the notifier chains for netdev_chain and sends a NEWLINK message
1331 * to the routing socket.
1332 */
1333 void netdev_state_change(struct net_device *dev)
1334 {
1335 if (dev->flags & IFF_UP) {
1336 struct netdev_notifier_change_info change_info = {
1337 .info.dev = dev,
1338 };
1339
1340 call_netdevice_notifiers_info(NETDEV_CHANGE,
1341 &change_info.info);
1342 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1343 }
1344 }
1345 EXPORT_SYMBOL(netdev_state_change);
1346
1347 /**
1348 * netdev_notify_peers - notify network peers about existence of @dev
1349 * @dev: network device
1350 *
1351 * Generate traffic such that interested network peers are aware of
1352 * @dev, such as by generating a gratuitous ARP. This may be used when
1353 * a device wants to inform the rest of the network about some sort of
1354 * reconfiguration such as a failover event or virtual machine
1355 * migration.
1356 */
1357 void netdev_notify_peers(struct net_device *dev)
1358 {
1359 rtnl_lock();
1360 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1361 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1362 rtnl_unlock();
1363 }
1364 EXPORT_SYMBOL(netdev_notify_peers);
1365
1366 static int __dev_open(struct net_device *dev)
1367 {
1368 const struct net_device_ops *ops = dev->netdev_ops;
1369 int ret;
1370
1371 ASSERT_RTNL();
1372
1373 if (!netif_device_present(dev))
1374 return -ENODEV;
1375
1376 /* Block netpoll from trying to do any rx path servicing.
1377 * If we don't do this there is a chance ndo_poll_controller
1378 * or ndo_poll may be running while we open the device
1379 */
1380 netpoll_poll_disable(dev);
1381
1382 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1383 ret = notifier_to_errno(ret);
1384 if (ret)
1385 return ret;
1386
1387 set_bit(__LINK_STATE_START, &dev->state);
1388
1389 if (ops->ndo_validate_addr)
1390 ret = ops->ndo_validate_addr(dev);
1391
1392 if (!ret && ops->ndo_open)
1393 ret = ops->ndo_open(dev);
1394
1395 netpoll_poll_enable(dev);
1396
1397 if (ret)
1398 clear_bit(__LINK_STATE_START, &dev->state);
1399 else {
1400 dev->flags |= IFF_UP;
1401 dev_set_rx_mode(dev);
1402 dev_activate(dev);
1403 add_device_randomness(dev->dev_addr, dev->addr_len);
1404 }
1405
1406 return ret;
1407 }
1408
1409 /**
1410 * dev_open - prepare an interface for use.
1411 * @dev: device to open
1412 *
1413 * Takes a device from down to up state. The device's private open
1414 * function is invoked and then the multicast lists are loaded. Finally
1415 * the device is moved into the up state and a %NETDEV_UP message is
1416 * sent to the netdev notifier chain.
1417 *
1418 * Calling this function on an active interface is a nop. On a failure
1419 * a negative errno code is returned.
1420 */
1421 int dev_open(struct net_device *dev)
1422 {
1423 int ret;
1424
1425 if (dev->flags & IFF_UP)
1426 return 0;
1427
1428 ret = __dev_open(dev);
1429 if (ret < 0)
1430 return ret;
1431
1432 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1433 call_netdevice_notifiers(NETDEV_UP, dev);
1434
1435 return ret;
1436 }
1437 EXPORT_SYMBOL(dev_open);
1438
1439 static void __dev_close_many(struct list_head *head)
1440 {
1441 struct net_device *dev;
1442
1443 ASSERT_RTNL();
1444 might_sleep();
1445
1446 list_for_each_entry(dev, head, close_list) {
1447 /* Temporarily disable netpoll until the interface is down */
1448 netpoll_poll_disable(dev);
1449
1450 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1451
1452 clear_bit(__LINK_STATE_START, &dev->state);
1453
1454 /* Synchronize to scheduled poll. We cannot touch poll list, it
1455 * can be even on different cpu. So just clear netif_running().
1456 *
1457 * dev->stop() will invoke napi_disable() on all of it's
1458 * napi_struct instances on this device.
1459 */
1460 smp_mb__after_atomic(); /* Commit netif_running(). */
1461 }
1462
1463 dev_deactivate_many(head);
1464
1465 list_for_each_entry(dev, head, close_list) {
1466 const struct net_device_ops *ops = dev->netdev_ops;
1467
1468 /*
1469 * Call the device specific close. This cannot fail.
1470 * Only if device is UP
1471 *
1472 * We allow it to be called even after a DETACH hot-plug
1473 * event.
1474 */
1475 if (ops->ndo_stop)
1476 ops->ndo_stop(dev);
1477
1478 dev->flags &= ~IFF_UP;
1479 netpoll_poll_enable(dev);
1480 }
1481 }
1482
1483 static void __dev_close(struct net_device *dev)
1484 {
1485 LIST_HEAD(single);
1486
1487 list_add(&dev->close_list, &single);
1488 __dev_close_many(&single);
1489 list_del(&single);
1490 }
1491
1492 void dev_close_many(struct list_head *head, bool unlink)
1493 {
1494 struct net_device *dev, *tmp;
1495
1496 /* Remove the devices that don't need to be closed */
1497 list_for_each_entry_safe(dev, tmp, head, close_list)
1498 if (!(dev->flags & IFF_UP))
1499 list_del_init(&dev->close_list);
1500
1501 __dev_close_many(head);
1502
1503 list_for_each_entry_safe(dev, tmp, head, close_list) {
1504 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1505 call_netdevice_notifiers(NETDEV_DOWN, dev);
1506 if (unlink)
1507 list_del_init(&dev->close_list);
1508 }
1509 }
1510 EXPORT_SYMBOL(dev_close_many);
1511
1512 /**
1513 * dev_close - shutdown an interface.
1514 * @dev: device to shutdown
1515 *
1516 * This function moves an active device into down state. A
1517 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1518 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1519 * chain.
1520 */
1521 void dev_close(struct net_device *dev)
1522 {
1523 if (dev->flags & IFF_UP) {
1524 LIST_HEAD(single);
1525
1526 list_add(&dev->close_list, &single);
1527 dev_close_many(&single, true);
1528 list_del(&single);
1529 }
1530 }
1531 EXPORT_SYMBOL(dev_close);
1532
1533
1534 /**
1535 * dev_disable_lro - disable Large Receive Offload on a device
1536 * @dev: device
1537 *
1538 * Disable Large Receive Offload (LRO) on a net device. Must be
1539 * called under RTNL. This is needed if received packets may be
1540 * forwarded to another interface.
1541 */
1542 void dev_disable_lro(struct net_device *dev)
1543 {
1544 struct net_device *lower_dev;
1545 struct list_head *iter;
1546
1547 dev->wanted_features &= ~NETIF_F_LRO;
1548 netdev_update_features(dev);
1549
1550 if (unlikely(dev->features & NETIF_F_LRO))
1551 netdev_WARN(dev, "failed to disable LRO!\n");
1552
1553 netdev_for_each_lower_dev(dev, lower_dev, iter)
1554 dev_disable_lro(lower_dev);
1555 }
1556 EXPORT_SYMBOL(dev_disable_lro);
1557
1558 /**
1559 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1560 * @dev: device
1561 *
1562 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1563 * called under RTNL. This is needed if Generic XDP is installed on
1564 * the device.
1565 */
1566 static void dev_disable_gro_hw(struct net_device *dev)
1567 {
1568 dev->wanted_features &= ~NETIF_F_GRO_HW;
1569 netdev_update_features(dev);
1570
1571 if (unlikely(dev->features & NETIF_F_GRO_HW))
1572 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1573 }
1574
1575 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1576 {
1577 #define N(val) \
1578 case NETDEV_##val: \
1579 return "NETDEV_" __stringify(val);
1580 switch (cmd) {
1581 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1582 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1583 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1584 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1585 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1586 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1587 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1588 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1589 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1590 };
1591 #undef N
1592 return "UNKNOWN_NETDEV_EVENT";
1593 }
1594 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1595
1596 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1597 struct net_device *dev)
1598 {
1599 struct netdev_notifier_info info = {
1600 .dev = dev,
1601 };
1602
1603 return nb->notifier_call(nb, val, &info);
1604 }
1605
1606 static int dev_boot_phase = 1;
1607
1608 /**
1609 * register_netdevice_notifier - register a network notifier block
1610 * @nb: notifier
1611 *
1612 * Register a notifier to be called when network device events occur.
1613 * The notifier passed is linked into the kernel structures and must
1614 * not be reused until it has been unregistered. A negative errno code
1615 * is returned on a failure.
1616 *
1617 * When registered all registration and up events are replayed
1618 * to the new notifier to allow device to have a race free
1619 * view of the network device list.
1620 */
1621
1622 int register_netdevice_notifier(struct notifier_block *nb)
1623 {
1624 struct net_device *dev;
1625 struct net_device *last;
1626 struct net *net;
1627 int err;
1628
1629 /* Close race with setup_net() and cleanup_net() */
1630 down_write(&pernet_ops_rwsem);
1631 rtnl_lock();
1632 err = raw_notifier_chain_register(&netdev_chain, nb);
1633 if (err)
1634 goto unlock;
1635 if (dev_boot_phase)
1636 goto unlock;
1637 for_each_net(net) {
1638 for_each_netdev(net, dev) {
1639 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1640 err = notifier_to_errno(err);
1641 if (err)
1642 goto rollback;
1643
1644 if (!(dev->flags & IFF_UP))
1645 continue;
1646
1647 call_netdevice_notifier(nb, NETDEV_UP, dev);
1648 }
1649 }
1650
1651 unlock:
1652 rtnl_unlock();
1653 up_write(&pernet_ops_rwsem);
1654 return err;
1655
1656 rollback:
1657 last = dev;
1658 for_each_net(net) {
1659 for_each_netdev(net, dev) {
1660 if (dev == last)
1661 goto outroll;
1662
1663 if (dev->flags & IFF_UP) {
1664 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1665 dev);
1666 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1667 }
1668 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1669 }
1670 }
1671
1672 outroll:
1673 raw_notifier_chain_unregister(&netdev_chain, nb);
1674 goto unlock;
1675 }
1676 EXPORT_SYMBOL(register_netdevice_notifier);
1677
1678 /**
1679 * unregister_netdevice_notifier - unregister a network notifier block
1680 * @nb: notifier
1681 *
1682 * Unregister a notifier previously registered by
1683 * register_netdevice_notifier(). The notifier is unlinked into the
1684 * kernel structures and may then be reused. A negative errno code
1685 * is returned on a failure.
1686 *
1687 * After unregistering unregister and down device events are synthesized
1688 * for all devices on the device list to the removed notifier to remove
1689 * the need for special case cleanup code.
1690 */
1691
1692 int unregister_netdevice_notifier(struct notifier_block *nb)
1693 {
1694 struct net_device *dev;
1695 struct net *net;
1696 int err;
1697
1698 /* Close race with setup_net() and cleanup_net() */
1699 down_write(&pernet_ops_rwsem);
1700 rtnl_lock();
1701 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1702 if (err)
1703 goto unlock;
1704
1705 for_each_net(net) {
1706 for_each_netdev(net, dev) {
1707 if (dev->flags & IFF_UP) {
1708 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1709 dev);
1710 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1711 }
1712 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1713 }
1714 }
1715 unlock:
1716 rtnl_unlock();
1717 up_write(&pernet_ops_rwsem);
1718 return err;
1719 }
1720 EXPORT_SYMBOL(unregister_netdevice_notifier);
1721
1722 /**
1723 * call_netdevice_notifiers_info - call all network notifier blocks
1724 * @val: value passed unmodified to notifier function
1725 * @info: notifier information data
1726 *
1727 * Call all network notifier blocks. Parameters and return value
1728 * are as for raw_notifier_call_chain().
1729 */
1730
1731 static int call_netdevice_notifiers_info(unsigned long val,
1732 struct netdev_notifier_info *info)
1733 {
1734 ASSERT_RTNL();
1735 return raw_notifier_call_chain(&netdev_chain, val, info);
1736 }
1737
1738 /**
1739 * call_netdevice_notifiers - call all network notifier blocks
1740 * @val: value passed unmodified to notifier function
1741 * @dev: net_device pointer passed unmodified to notifier function
1742 *
1743 * Call all network notifier blocks. Parameters and return value
1744 * are as for raw_notifier_call_chain().
1745 */
1746
1747 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1748 {
1749 struct netdev_notifier_info info = {
1750 .dev = dev,
1751 };
1752
1753 return call_netdevice_notifiers_info(val, &info);
1754 }
1755 EXPORT_SYMBOL(call_netdevice_notifiers);
1756
1757 #ifdef CONFIG_NET_INGRESS
1758 static struct static_key ingress_needed __read_mostly;
1759
1760 void net_inc_ingress_queue(void)
1761 {
1762 static_key_slow_inc(&ingress_needed);
1763 }
1764 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1765
1766 void net_dec_ingress_queue(void)
1767 {
1768 static_key_slow_dec(&ingress_needed);
1769 }
1770 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1771 #endif
1772
1773 #ifdef CONFIG_NET_EGRESS
1774 static struct static_key egress_needed __read_mostly;
1775
1776 void net_inc_egress_queue(void)
1777 {
1778 static_key_slow_inc(&egress_needed);
1779 }
1780 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1781
1782 void net_dec_egress_queue(void)
1783 {
1784 static_key_slow_dec(&egress_needed);
1785 }
1786 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1787 #endif
1788
1789 static struct static_key netstamp_needed __read_mostly;
1790 #ifdef HAVE_JUMP_LABEL
1791 static atomic_t netstamp_needed_deferred;
1792 static atomic_t netstamp_wanted;
1793 static void netstamp_clear(struct work_struct *work)
1794 {
1795 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1796 int wanted;
1797
1798 wanted = atomic_add_return(deferred, &netstamp_wanted);
1799 if (wanted > 0)
1800 static_key_enable(&netstamp_needed);
1801 else
1802 static_key_disable(&netstamp_needed);
1803 }
1804 static DECLARE_WORK(netstamp_work, netstamp_clear);
1805 #endif
1806
1807 void net_enable_timestamp(void)
1808 {
1809 #ifdef HAVE_JUMP_LABEL
1810 int wanted;
1811
1812 while (1) {
1813 wanted = atomic_read(&netstamp_wanted);
1814 if (wanted <= 0)
1815 break;
1816 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1817 return;
1818 }
1819 atomic_inc(&netstamp_needed_deferred);
1820 schedule_work(&netstamp_work);
1821 #else
1822 static_key_slow_inc(&netstamp_needed);
1823 #endif
1824 }
1825 EXPORT_SYMBOL(net_enable_timestamp);
1826
1827 void net_disable_timestamp(void)
1828 {
1829 #ifdef HAVE_JUMP_LABEL
1830 int wanted;
1831
1832 while (1) {
1833 wanted = atomic_read(&netstamp_wanted);
1834 if (wanted <= 1)
1835 break;
1836 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1837 return;
1838 }
1839 atomic_dec(&netstamp_needed_deferred);
1840 schedule_work(&netstamp_work);
1841 #else
1842 static_key_slow_dec(&netstamp_needed);
1843 #endif
1844 }
1845 EXPORT_SYMBOL(net_disable_timestamp);
1846
1847 static inline void net_timestamp_set(struct sk_buff *skb)
1848 {
1849 skb->tstamp = 0;
1850 if (static_key_false(&netstamp_needed))
1851 __net_timestamp(skb);
1852 }
1853
1854 #define net_timestamp_check(COND, SKB) \
1855 if (static_key_false(&netstamp_needed)) { \
1856 if ((COND) && !(SKB)->tstamp) \
1857 __net_timestamp(SKB); \
1858 } \
1859
1860 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1861 {
1862 unsigned int len;
1863
1864 if (!(dev->flags & IFF_UP))
1865 return false;
1866
1867 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1868 if (skb->len <= len)
1869 return true;
1870
1871 /* if TSO is enabled, we don't care about the length as the packet
1872 * could be forwarded without being segmented before
1873 */
1874 if (skb_is_gso(skb))
1875 return true;
1876
1877 return false;
1878 }
1879 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1880
1881 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1882 {
1883 int ret = ____dev_forward_skb(dev, skb);
1884
1885 if (likely(!ret)) {
1886 skb->protocol = eth_type_trans(skb, dev);
1887 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1888 }
1889
1890 return ret;
1891 }
1892 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1893
1894 /**
1895 * dev_forward_skb - loopback an skb to another netif
1896 *
1897 * @dev: destination network device
1898 * @skb: buffer to forward
1899 *
1900 * return values:
1901 * NET_RX_SUCCESS (no congestion)
1902 * NET_RX_DROP (packet was dropped, but freed)
1903 *
1904 * dev_forward_skb can be used for injecting an skb from the
1905 * start_xmit function of one device into the receive queue
1906 * of another device.
1907 *
1908 * The receiving device may be in another namespace, so
1909 * we have to clear all information in the skb that could
1910 * impact namespace isolation.
1911 */
1912 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1913 {
1914 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1915 }
1916 EXPORT_SYMBOL_GPL(dev_forward_skb);
1917
1918 static inline int deliver_skb(struct sk_buff *skb,
1919 struct packet_type *pt_prev,
1920 struct net_device *orig_dev)
1921 {
1922 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1923 return -ENOMEM;
1924 refcount_inc(&skb->users);
1925 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1926 }
1927
1928 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1929 struct packet_type **pt,
1930 struct net_device *orig_dev,
1931 __be16 type,
1932 struct list_head *ptype_list)
1933 {
1934 struct packet_type *ptype, *pt_prev = *pt;
1935
1936 list_for_each_entry_rcu(ptype, ptype_list, list) {
1937 if (ptype->type != type)
1938 continue;
1939 if (pt_prev)
1940 deliver_skb(skb, pt_prev, orig_dev);
1941 pt_prev = ptype;
1942 }
1943 *pt = pt_prev;
1944 }
1945
1946 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1947 {
1948 if (!ptype->af_packet_priv || !skb->sk)
1949 return false;
1950
1951 if (ptype->id_match)
1952 return ptype->id_match(ptype, skb->sk);
1953 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1954 return true;
1955
1956 return false;
1957 }
1958
1959 /*
1960 * Support routine. Sends outgoing frames to any network
1961 * taps currently in use.
1962 */
1963
1964 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1965 {
1966 struct packet_type *ptype;
1967 struct sk_buff *skb2 = NULL;
1968 struct packet_type *pt_prev = NULL;
1969 struct list_head *ptype_list = &ptype_all;
1970
1971 rcu_read_lock();
1972 again:
1973 list_for_each_entry_rcu(ptype, ptype_list, list) {
1974 /* Never send packets back to the socket
1975 * they originated from - MvS (miquels@drinkel.ow.org)
1976 */
1977 if (skb_loop_sk(ptype, skb))
1978 continue;
1979
1980 if (pt_prev) {
1981 deliver_skb(skb2, pt_prev, skb->dev);
1982 pt_prev = ptype;
1983 continue;
1984 }
1985
1986 /* need to clone skb, done only once */
1987 skb2 = skb_clone(skb, GFP_ATOMIC);
1988 if (!skb2)
1989 goto out_unlock;
1990
1991 net_timestamp_set(skb2);
1992
1993 /* skb->nh should be correctly
1994 * set by sender, so that the second statement is
1995 * just protection against buggy protocols.
1996 */
1997 skb_reset_mac_header(skb2);
1998
1999 if (skb_network_header(skb2) < skb2->data ||
2000 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2001 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2002 ntohs(skb2->protocol),
2003 dev->name);
2004 skb_reset_network_header(skb2);
2005 }
2006
2007 skb2->transport_header = skb2->network_header;
2008 skb2->pkt_type = PACKET_OUTGOING;
2009 pt_prev = ptype;
2010 }
2011
2012 if (ptype_list == &ptype_all) {
2013 ptype_list = &dev->ptype_all;
2014 goto again;
2015 }
2016 out_unlock:
2017 if (pt_prev) {
2018 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2019 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2020 else
2021 kfree_skb(skb2);
2022 }
2023 rcu_read_unlock();
2024 }
2025 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2026
2027 /**
2028 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2029 * @dev: Network device
2030 * @txq: number of queues available
2031 *
2032 * If real_num_tx_queues is changed the tc mappings may no longer be
2033 * valid. To resolve this verify the tc mapping remains valid and if
2034 * not NULL the mapping. With no priorities mapping to this
2035 * offset/count pair it will no longer be used. In the worst case TC0
2036 * is invalid nothing can be done so disable priority mappings. If is
2037 * expected that drivers will fix this mapping if they can before
2038 * calling netif_set_real_num_tx_queues.
2039 */
2040 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2041 {
2042 int i;
2043 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2044
2045 /* If TC0 is invalidated disable TC mapping */
2046 if (tc->offset + tc->count > txq) {
2047 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2048 dev->num_tc = 0;
2049 return;
2050 }
2051
2052 /* Invalidated prio to tc mappings set to TC0 */
2053 for (i = 1; i < TC_BITMASK + 1; i++) {
2054 int q = netdev_get_prio_tc_map(dev, i);
2055
2056 tc = &dev->tc_to_txq[q];
2057 if (tc->offset + tc->count > txq) {
2058 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2059 i, q);
2060 netdev_set_prio_tc_map(dev, i, 0);
2061 }
2062 }
2063 }
2064
2065 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2066 {
2067 if (dev->num_tc) {
2068 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2069 int i;
2070
2071 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2072 if ((txq - tc->offset) < tc->count)
2073 return i;
2074 }
2075
2076 return -1;
2077 }
2078
2079 return 0;
2080 }
2081 EXPORT_SYMBOL(netdev_txq_to_tc);
2082
2083 #ifdef CONFIG_XPS
2084 static DEFINE_MUTEX(xps_map_mutex);
2085 #define xmap_dereference(P) \
2086 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2087
2088 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2089 int tci, u16 index)
2090 {
2091 struct xps_map *map = NULL;
2092 int pos;
2093
2094 if (dev_maps)
2095 map = xmap_dereference(dev_maps->cpu_map[tci]);
2096 if (!map)
2097 return false;
2098
2099 for (pos = map->len; pos--;) {
2100 if (map->queues[pos] != index)
2101 continue;
2102
2103 if (map->len > 1) {
2104 map->queues[pos] = map->queues[--map->len];
2105 break;
2106 }
2107
2108 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2109 kfree_rcu(map, rcu);
2110 return false;
2111 }
2112
2113 return true;
2114 }
2115
2116 static bool remove_xps_queue_cpu(struct net_device *dev,
2117 struct xps_dev_maps *dev_maps,
2118 int cpu, u16 offset, u16 count)
2119 {
2120 int num_tc = dev->num_tc ? : 1;
2121 bool active = false;
2122 int tci;
2123
2124 for (tci = cpu * num_tc; num_tc--; tci++) {
2125 int i, j;
2126
2127 for (i = count, j = offset; i--; j++) {
2128 if (!remove_xps_queue(dev_maps, cpu, j))
2129 break;
2130 }
2131
2132 active |= i < 0;
2133 }
2134
2135 return active;
2136 }
2137
2138 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2139 u16 count)
2140 {
2141 struct xps_dev_maps *dev_maps;
2142 int cpu, i;
2143 bool active = false;
2144
2145 mutex_lock(&xps_map_mutex);
2146 dev_maps = xmap_dereference(dev->xps_maps);
2147
2148 if (!dev_maps)
2149 goto out_no_maps;
2150
2151 for_each_possible_cpu(cpu)
2152 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2153 offset, count);
2154
2155 if (!active) {
2156 RCU_INIT_POINTER(dev->xps_maps, NULL);
2157 kfree_rcu(dev_maps, rcu);
2158 }
2159
2160 for (i = offset + (count - 1); count--; i--)
2161 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2162 NUMA_NO_NODE);
2163
2164 out_no_maps:
2165 mutex_unlock(&xps_map_mutex);
2166 }
2167
2168 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2169 {
2170 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2171 }
2172
2173 static struct xps_map *expand_xps_map(struct xps_map *map,
2174 int cpu, u16 index)
2175 {
2176 struct xps_map *new_map;
2177 int alloc_len = XPS_MIN_MAP_ALLOC;
2178 int i, pos;
2179
2180 for (pos = 0; map && pos < map->len; pos++) {
2181 if (map->queues[pos] != index)
2182 continue;
2183 return map;
2184 }
2185
2186 /* Need to add queue to this CPU's existing map */
2187 if (map) {
2188 if (pos < map->alloc_len)
2189 return map;
2190
2191 alloc_len = map->alloc_len * 2;
2192 }
2193
2194 /* Need to allocate new map to store queue on this CPU's map */
2195 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2196 cpu_to_node(cpu));
2197 if (!new_map)
2198 return NULL;
2199
2200 for (i = 0; i < pos; i++)
2201 new_map->queues[i] = map->queues[i];
2202 new_map->alloc_len = alloc_len;
2203 new_map->len = pos;
2204
2205 return new_map;
2206 }
2207
2208 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2209 u16 index)
2210 {
2211 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2212 int i, cpu, tci, numa_node_id = -2;
2213 int maps_sz, num_tc = 1, tc = 0;
2214 struct xps_map *map, *new_map;
2215 bool active = false;
2216
2217 if (dev->num_tc) {
2218 num_tc = dev->num_tc;
2219 tc = netdev_txq_to_tc(dev, index);
2220 if (tc < 0)
2221 return -EINVAL;
2222 }
2223
2224 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2225 if (maps_sz < L1_CACHE_BYTES)
2226 maps_sz = L1_CACHE_BYTES;
2227
2228 mutex_lock(&xps_map_mutex);
2229
2230 dev_maps = xmap_dereference(dev->xps_maps);
2231
2232 /* allocate memory for queue storage */
2233 for_each_cpu_and(cpu, cpu_online_mask, mask) {
2234 if (!new_dev_maps)
2235 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2236 if (!new_dev_maps) {
2237 mutex_unlock(&xps_map_mutex);
2238 return -ENOMEM;
2239 }
2240
2241 tci = cpu * num_tc + tc;
2242 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2243 NULL;
2244
2245 map = expand_xps_map(map, cpu, index);
2246 if (!map)
2247 goto error;
2248
2249 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2250 }
2251
2252 if (!new_dev_maps)
2253 goto out_no_new_maps;
2254
2255 for_each_possible_cpu(cpu) {
2256 /* copy maps belonging to foreign traffic classes */
2257 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2258 /* fill in the new device map from the old device map */
2259 map = xmap_dereference(dev_maps->cpu_map[tci]);
2260 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2261 }
2262
2263 /* We need to explicitly update tci as prevous loop
2264 * could break out early if dev_maps is NULL.
2265 */
2266 tci = cpu * num_tc + tc;
2267
2268 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2269 /* add queue to CPU maps */
2270 int pos = 0;
2271
2272 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2273 while ((pos < map->len) && (map->queues[pos] != index))
2274 pos++;
2275
2276 if (pos == map->len)
2277 map->queues[map->len++] = index;
2278 #ifdef CONFIG_NUMA
2279 if (numa_node_id == -2)
2280 numa_node_id = cpu_to_node(cpu);
2281 else if (numa_node_id != cpu_to_node(cpu))
2282 numa_node_id = -1;
2283 #endif
2284 } else if (dev_maps) {
2285 /* fill in the new device map from the old device map */
2286 map = xmap_dereference(dev_maps->cpu_map[tci]);
2287 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2288 }
2289
2290 /* copy maps belonging to foreign traffic classes */
2291 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2292 /* fill in the new device map from the old device map */
2293 map = xmap_dereference(dev_maps->cpu_map[tci]);
2294 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2295 }
2296 }
2297
2298 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2299
2300 /* Cleanup old maps */
2301 if (!dev_maps)
2302 goto out_no_old_maps;
2303
2304 for_each_possible_cpu(cpu) {
2305 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2306 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2307 map = xmap_dereference(dev_maps->cpu_map[tci]);
2308 if (map && map != new_map)
2309 kfree_rcu(map, rcu);
2310 }
2311 }
2312
2313 kfree_rcu(dev_maps, rcu);
2314
2315 out_no_old_maps:
2316 dev_maps = new_dev_maps;
2317 active = true;
2318
2319 out_no_new_maps:
2320 /* update Tx queue numa node */
2321 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2322 (numa_node_id >= 0) ? numa_node_id :
2323 NUMA_NO_NODE);
2324
2325 if (!dev_maps)
2326 goto out_no_maps;
2327
2328 /* removes queue from unused CPUs */
2329 for_each_possible_cpu(cpu) {
2330 for (i = tc, tci = cpu * num_tc; i--; tci++)
2331 active |= remove_xps_queue(dev_maps, tci, index);
2332 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2333 active |= remove_xps_queue(dev_maps, tci, index);
2334 for (i = num_tc - tc, tci++; --i; tci++)
2335 active |= remove_xps_queue(dev_maps, tci, index);
2336 }
2337
2338 /* free map if not active */
2339 if (!active) {
2340 RCU_INIT_POINTER(dev->xps_maps, NULL);
2341 kfree_rcu(dev_maps, rcu);
2342 }
2343
2344 out_no_maps:
2345 mutex_unlock(&xps_map_mutex);
2346
2347 return 0;
2348 error:
2349 /* remove any maps that we added */
2350 for_each_possible_cpu(cpu) {
2351 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2352 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2353 map = dev_maps ?
2354 xmap_dereference(dev_maps->cpu_map[tci]) :
2355 NULL;
2356 if (new_map && new_map != map)
2357 kfree(new_map);
2358 }
2359 }
2360
2361 mutex_unlock(&xps_map_mutex);
2362
2363 kfree(new_dev_maps);
2364 return -ENOMEM;
2365 }
2366 EXPORT_SYMBOL(netif_set_xps_queue);
2367
2368 #endif
2369 void netdev_reset_tc(struct net_device *dev)
2370 {
2371 #ifdef CONFIG_XPS
2372 netif_reset_xps_queues_gt(dev, 0);
2373 #endif
2374 dev->num_tc = 0;
2375 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2376 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2377 }
2378 EXPORT_SYMBOL(netdev_reset_tc);
2379
2380 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2381 {
2382 if (tc >= dev->num_tc)
2383 return -EINVAL;
2384
2385 #ifdef CONFIG_XPS
2386 netif_reset_xps_queues(dev, offset, count);
2387 #endif
2388 dev->tc_to_txq[tc].count = count;
2389 dev->tc_to_txq[tc].offset = offset;
2390 return 0;
2391 }
2392 EXPORT_SYMBOL(netdev_set_tc_queue);
2393
2394 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2395 {
2396 if (num_tc > TC_MAX_QUEUE)
2397 return -EINVAL;
2398
2399 #ifdef CONFIG_XPS
2400 netif_reset_xps_queues_gt(dev, 0);
2401 #endif
2402 dev->num_tc = num_tc;
2403 return 0;
2404 }
2405 EXPORT_SYMBOL(netdev_set_num_tc);
2406
2407 /*
2408 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2409 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2410 */
2411 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2412 {
2413 bool disabling;
2414 int rc;
2415
2416 disabling = txq < dev->real_num_tx_queues;
2417
2418 if (txq < 1 || txq > dev->num_tx_queues)
2419 return -EINVAL;
2420
2421 if (dev->reg_state == NETREG_REGISTERED ||
2422 dev->reg_state == NETREG_UNREGISTERING) {
2423 ASSERT_RTNL();
2424
2425 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2426 txq);
2427 if (rc)
2428 return rc;
2429
2430 if (dev->num_tc)
2431 netif_setup_tc(dev, txq);
2432
2433 dev->real_num_tx_queues = txq;
2434
2435 if (disabling) {
2436 synchronize_net();
2437 qdisc_reset_all_tx_gt(dev, txq);
2438 #ifdef CONFIG_XPS
2439 netif_reset_xps_queues_gt(dev, txq);
2440 #endif
2441 }
2442 } else {
2443 dev->real_num_tx_queues = txq;
2444 }
2445
2446 return 0;
2447 }
2448 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2449
2450 #ifdef CONFIG_SYSFS
2451 /**
2452 * netif_set_real_num_rx_queues - set actual number of RX queues used
2453 * @dev: Network device
2454 * @rxq: Actual number of RX queues
2455 *
2456 * This must be called either with the rtnl_lock held or before
2457 * registration of the net device. Returns 0 on success, or a
2458 * negative error code. If called before registration, it always
2459 * succeeds.
2460 */
2461 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2462 {
2463 int rc;
2464
2465 if (rxq < 1 || rxq > dev->num_rx_queues)
2466 return -EINVAL;
2467
2468 if (dev->reg_state == NETREG_REGISTERED) {
2469 ASSERT_RTNL();
2470
2471 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2472 rxq);
2473 if (rc)
2474 return rc;
2475 }
2476
2477 dev->real_num_rx_queues = rxq;
2478 return 0;
2479 }
2480 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2481 #endif
2482
2483 /**
2484 * netif_get_num_default_rss_queues - default number of RSS queues
2485 *
2486 * This routine should set an upper limit on the number of RSS queues
2487 * used by default by multiqueue devices.
2488 */
2489 int netif_get_num_default_rss_queues(void)
2490 {
2491 return is_kdump_kernel() ?
2492 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2493 }
2494 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2495
2496 static void __netif_reschedule(struct Qdisc *q)
2497 {
2498 struct softnet_data *sd;
2499 unsigned long flags;
2500
2501 local_irq_save(flags);
2502 sd = this_cpu_ptr(&softnet_data);
2503 q->next_sched = NULL;
2504 *sd->output_queue_tailp = q;
2505 sd->output_queue_tailp = &q->next_sched;
2506 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2507 local_irq_restore(flags);
2508 }
2509
2510 void __netif_schedule(struct Qdisc *q)
2511 {
2512 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2513 __netif_reschedule(q);
2514 }
2515 EXPORT_SYMBOL(__netif_schedule);
2516
2517 struct dev_kfree_skb_cb {
2518 enum skb_free_reason reason;
2519 };
2520
2521 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2522 {
2523 return (struct dev_kfree_skb_cb *)skb->cb;
2524 }
2525
2526 void netif_schedule_queue(struct netdev_queue *txq)
2527 {
2528 rcu_read_lock();
2529 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2530 struct Qdisc *q = rcu_dereference(txq->qdisc);
2531
2532 __netif_schedule(q);
2533 }
2534 rcu_read_unlock();
2535 }
2536 EXPORT_SYMBOL(netif_schedule_queue);
2537
2538 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2539 {
2540 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2541 struct Qdisc *q;
2542
2543 rcu_read_lock();
2544 q = rcu_dereference(dev_queue->qdisc);
2545 __netif_schedule(q);
2546 rcu_read_unlock();
2547 }
2548 }
2549 EXPORT_SYMBOL(netif_tx_wake_queue);
2550
2551 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2552 {
2553 unsigned long flags;
2554
2555 if (unlikely(!skb))
2556 return;
2557
2558 if (likely(refcount_read(&skb->users) == 1)) {
2559 smp_rmb();
2560 refcount_set(&skb->users, 0);
2561 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2562 return;
2563 }
2564 get_kfree_skb_cb(skb)->reason = reason;
2565 local_irq_save(flags);
2566 skb->next = __this_cpu_read(softnet_data.completion_queue);
2567 __this_cpu_write(softnet_data.completion_queue, skb);
2568 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2569 local_irq_restore(flags);
2570 }
2571 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2572
2573 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2574 {
2575 if (in_irq() || irqs_disabled())
2576 __dev_kfree_skb_irq(skb, reason);
2577 else
2578 dev_kfree_skb(skb);
2579 }
2580 EXPORT_SYMBOL(__dev_kfree_skb_any);
2581
2582
2583 /**
2584 * netif_device_detach - mark device as removed
2585 * @dev: network device
2586 *
2587 * Mark device as removed from system and therefore no longer available.
2588 */
2589 void netif_device_detach(struct net_device *dev)
2590 {
2591 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2592 netif_running(dev)) {
2593 netif_tx_stop_all_queues(dev);
2594 }
2595 }
2596 EXPORT_SYMBOL(netif_device_detach);
2597
2598 /**
2599 * netif_device_attach - mark device as attached
2600 * @dev: network device
2601 *
2602 * Mark device as attached from system and restart if needed.
2603 */
2604 void netif_device_attach(struct net_device *dev)
2605 {
2606 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2607 netif_running(dev)) {
2608 netif_tx_wake_all_queues(dev);
2609 __netdev_watchdog_up(dev);
2610 }
2611 }
2612 EXPORT_SYMBOL(netif_device_attach);
2613
2614 /*
2615 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2616 * to be used as a distribution range.
2617 */
2618 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2619 unsigned int num_tx_queues)
2620 {
2621 u32 hash;
2622 u16 qoffset = 0;
2623 u16 qcount = num_tx_queues;
2624
2625 if (skb_rx_queue_recorded(skb)) {
2626 hash = skb_get_rx_queue(skb);
2627 while (unlikely(hash >= num_tx_queues))
2628 hash -= num_tx_queues;
2629 return hash;
2630 }
2631
2632 if (dev->num_tc) {
2633 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2634
2635 qoffset = dev->tc_to_txq[tc].offset;
2636 qcount = dev->tc_to_txq[tc].count;
2637 }
2638
2639 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2640 }
2641 EXPORT_SYMBOL(__skb_tx_hash);
2642
2643 static void skb_warn_bad_offload(const struct sk_buff *skb)
2644 {
2645 static const netdev_features_t null_features;
2646 struct net_device *dev = skb->dev;
2647 const char *name = "";
2648
2649 if (!net_ratelimit())
2650 return;
2651
2652 if (dev) {
2653 if (dev->dev.parent)
2654 name = dev_driver_string(dev->dev.parent);
2655 else
2656 name = netdev_name(dev);
2657 }
2658 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2659 "gso_type=%d ip_summed=%d\n",
2660 name, dev ? &dev->features : &null_features,
2661 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2662 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2663 skb_shinfo(skb)->gso_type, skb->ip_summed);
2664 }
2665
2666 /*
2667 * Invalidate hardware checksum when packet is to be mangled, and
2668 * complete checksum manually on outgoing path.
2669 */
2670 int skb_checksum_help(struct sk_buff *skb)
2671 {
2672 __wsum csum;
2673 int ret = 0, offset;
2674
2675 if (skb->ip_summed == CHECKSUM_COMPLETE)
2676 goto out_set_summed;
2677
2678 if (unlikely(skb_shinfo(skb)->gso_size)) {
2679 skb_warn_bad_offload(skb);
2680 return -EINVAL;
2681 }
2682
2683 /* Before computing a checksum, we should make sure no frag could
2684 * be modified by an external entity : checksum could be wrong.
2685 */
2686 if (skb_has_shared_frag(skb)) {
2687 ret = __skb_linearize(skb);
2688 if (ret)
2689 goto out;
2690 }
2691
2692 offset = skb_checksum_start_offset(skb);
2693 BUG_ON(offset >= skb_headlen(skb));
2694 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2695
2696 offset += skb->csum_offset;
2697 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2698
2699 if (skb_cloned(skb) &&
2700 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2701 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2702 if (ret)
2703 goto out;
2704 }
2705
2706 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2707 out_set_summed:
2708 skb->ip_summed = CHECKSUM_NONE;
2709 out:
2710 return ret;
2711 }
2712 EXPORT_SYMBOL(skb_checksum_help);
2713
2714 int skb_crc32c_csum_help(struct sk_buff *skb)
2715 {
2716 __le32 crc32c_csum;
2717 int ret = 0, offset, start;
2718
2719 if (skb->ip_summed != CHECKSUM_PARTIAL)
2720 goto out;
2721
2722 if (unlikely(skb_is_gso(skb)))
2723 goto out;
2724
2725 /* Before computing a checksum, we should make sure no frag could
2726 * be modified by an external entity : checksum could be wrong.
2727 */
2728 if (unlikely(skb_has_shared_frag(skb))) {
2729 ret = __skb_linearize(skb);
2730 if (ret)
2731 goto out;
2732 }
2733 start = skb_checksum_start_offset(skb);
2734 offset = start + offsetof(struct sctphdr, checksum);
2735 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2736 ret = -EINVAL;
2737 goto out;
2738 }
2739 if (skb_cloned(skb) &&
2740 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2741 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2742 if (ret)
2743 goto out;
2744 }
2745 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2746 skb->len - start, ~(__u32)0,
2747 crc32c_csum_stub));
2748 *(__le32 *)(skb->data + offset) = crc32c_csum;
2749 skb->ip_summed = CHECKSUM_NONE;
2750 skb->csum_not_inet = 0;
2751 out:
2752 return ret;
2753 }
2754
2755 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2756 {
2757 __be16 type = skb->protocol;
2758
2759 /* Tunnel gso handlers can set protocol to ethernet. */
2760 if (type == htons(ETH_P_TEB)) {
2761 struct ethhdr *eth;
2762
2763 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2764 return 0;
2765
2766 eth = (struct ethhdr *)skb->data;
2767 type = eth->h_proto;
2768 }
2769
2770 return __vlan_get_protocol(skb, type, depth);
2771 }
2772
2773 /**
2774 * skb_mac_gso_segment - mac layer segmentation handler.
2775 * @skb: buffer to segment
2776 * @features: features for the output path (see dev->features)
2777 */
2778 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2779 netdev_features_t features)
2780 {
2781 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2782 struct packet_offload *ptype;
2783 int vlan_depth = skb->mac_len;
2784 __be16 type = skb_network_protocol(skb, &vlan_depth);
2785
2786 if (unlikely(!type))
2787 return ERR_PTR(-EINVAL);
2788
2789 __skb_pull(skb, vlan_depth);
2790
2791 rcu_read_lock();
2792 list_for_each_entry_rcu(ptype, &offload_base, list) {
2793 if (ptype->type == type && ptype->callbacks.gso_segment) {
2794 segs = ptype->callbacks.gso_segment(skb, features);
2795 break;
2796 }
2797 }
2798 rcu_read_unlock();
2799
2800 __skb_push(skb, skb->data - skb_mac_header(skb));
2801
2802 return segs;
2803 }
2804 EXPORT_SYMBOL(skb_mac_gso_segment);
2805
2806
2807 /* openvswitch calls this on rx path, so we need a different check.
2808 */
2809 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2810 {
2811 if (tx_path)
2812 return skb->ip_summed != CHECKSUM_PARTIAL &&
2813 skb->ip_summed != CHECKSUM_UNNECESSARY;
2814
2815 return skb->ip_summed == CHECKSUM_NONE;
2816 }
2817
2818 /**
2819 * __skb_gso_segment - Perform segmentation on skb.
2820 * @skb: buffer to segment
2821 * @features: features for the output path (see dev->features)
2822 * @tx_path: whether it is called in TX path
2823 *
2824 * This function segments the given skb and returns a list of segments.
2825 *
2826 * It may return NULL if the skb requires no segmentation. This is
2827 * only possible when GSO is used for verifying header integrity.
2828 *
2829 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2830 */
2831 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2832 netdev_features_t features, bool tx_path)
2833 {
2834 struct sk_buff *segs;
2835
2836 if (unlikely(skb_needs_check(skb, tx_path))) {
2837 int err;
2838
2839 /* We're going to init ->check field in TCP or UDP header */
2840 err = skb_cow_head(skb, 0);
2841 if (err < 0)
2842 return ERR_PTR(err);
2843 }
2844
2845 /* Only report GSO partial support if it will enable us to
2846 * support segmentation on this frame without needing additional
2847 * work.
2848 */
2849 if (features & NETIF_F_GSO_PARTIAL) {
2850 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2851 struct net_device *dev = skb->dev;
2852
2853 partial_features |= dev->features & dev->gso_partial_features;
2854 if (!skb_gso_ok(skb, features | partial_features))
2855 features &= ~NETIF_F_GSO_PARTIAL;
2856 }
2857
2858 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2859 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2860
2861 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2862 SKB_GSO_CB(skb)->encap_level = 0;
2863
2864 skb_reset_mac_header(skb);
2865 skb_reset_mac_len(skb);
2866
2867 segs = skb_mac_gso_segment(skb, features);
2868
2869 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2870 skb_warn_bad_offload(skb);
2871
2872 return segs;
2873 }
2874 EXPORT_SYMBOL(__skb_gso_segment);
2875
2876 /* Take action when hardware reception checksum errors are detected. */
2877 #ifdef CONFIG_BUG
2878 void netdev_rx_csum_fault(struct net_device *dev)
2879 {
2880 if (net_ratelimit()) {
2881 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2882 dump_stack();
2883 }
2884 }
2885 EXPORT_SYMBOL(netdev_rx_csum_fault);
2886 #endif
2887
2888 /* Actually, we should eliminate this check as soon as we know, that:
2889 * 1. IOMMU is present and allows to map all the memory.
2890 * 2. No high memory really exists on this machine.
2891 */
2892
2893 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2894 {
2895 #ifdef CONFIG_HIGHMEM
2896 int i;
2897
2898 if (!(dev->features & NETIF_F_HIGHDMA)) {
2899 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2900 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2901
2902 if (PageHighMem(skb_frag_page(frag)))
2903 return 1;
2904 }
2905 }
2906
2907 if (PCI_DMA_BUS_IS_PHYS) {
2908 struct device *pdev = dev->dev.parent;
2909
2910 if (!pdev)
2911 return 0;
2912 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2913 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2914 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2915
2916 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2917 return 1;
2918 }
2919 }
2920 #endif
2921 return 0;
2922 }
2923
2924 /* If MPLS offload request, verify we are testing hardware MPLS features
2925 * instead of standard features for the netdev.
2926 */
2927 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2928 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2929 netdev_features_t features,
2930 __be16 type)
2931 {
2932 if (eth_p_mpls(type))
2933 features &= skb->dev->mpls_features;
2934
2935 return features;
2936 }
2937 #else
2938 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2939 netdev_features_t features,
2940 __be16 type)
2941 {
2942 return features;
2943 }
2944 #endif
2945
2946 static netdev_features_t harmonize_features(struct sk_buff *skb,
2947 netdev_features_t features)
2948 {
2949 int tmp;
2950 __be16 type;
2951
2952 type = skb_network_protocol(skb, &tmp);
2953 features = net_mpls_features(skb, features, type);
2954
2955 if (skb->ip_summed != CHECKSUM_NONE &&
2956 !can_checksum_protocol(features, type)) {
2957 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2958 }
2959 if (illegal_highdma(skb->dev, skb))
2960 features &= ~NETIF_F_SG;
2961
2962 return features;
2963 }
2964
2965 netdev_features_t passthru_features_check(struct sk_buff *skb,
2966 struct net_device *dev,
2967 netdev_features_t features)
2968 {
2969 return features;
2970 }
2971 EXPORT_SYMBOL(passthru_features_check);
2972
2973 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2974 struct net_device *dev,
2975 netdev_features_t features)
2976 {
2977 return vlan_features_check(skb, features);
2978 }
2979
2980 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2981 struct net_device *dev,
2982 netdev_features_t features)
2983 {
2984 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2985
2986 if (gso_segs > dev->gso_max_segs)
2987 return features & ~NETIF_F_GSO_MASK;
2988
2989 /* Support for GSO partial features requires software
2990 * intervention before we can actually process the packets
2991 * so we need to strip support for any partial features now
2992 * and we can pull them back in after we have partially
2993 * segmented the frame.
2994 */
2995 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2996 features &= ~dev->gso_partial_features;
2997
2998 /* Make sure to clear the IPv4 ID mangling feature if the
2999 * IPv4 header has the potential to be fragmented.
3000 */
3001 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3002 struct iphdr *iph = skb->encapsulation ?
3003 inner_ip_hdr(skb) : ip_hdr(skb);
3004
3005 if (!(iph->frag_off & htons(IP_DF)))
3006 features &= ~NETIF_F_TSO_MANGLEID;
3007 }
3008
3009 return features;
3010 }
3011
3012 netdev_features_t netif_skb_features(struct sk_buff *skb)
3013 {
3014 struct net_device *dev = skb->dev;
3015 netdev_features_t features = dev->features;
3016
3017 if (skb_is_gso(skb))
3018 features = gso_features_check(skb, dev, features);
3019
3020 /* If encapsulation offload request, verify we are testing
3021 * hardware encapsulation features instead of standard
3022 * features for the netdev
3023 */
3024 if (skb->encapsulation)
3025 features &= dev->hw_enc_features;
3026
3027 if (skb_vlan_tagged(skb))
3028 features = netdev_intersect_features(features,
3029 dev->vlan_features |
3030 NETIF_F_HW_VLAN_CTAG_TX |
3031 NETIF_F_HW_VLAN_STAG_TX);
3032
3033 if (dev->netdev_ops->ndo_features_check)
3034 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3035 features);
3036 else
3037 features &= dflt_features_check(skb, dev, features);
3038
3039 return harmonize_features(skb, features);
3040 }
3041 EXPORT_SYMBOL(netif_skb_features);
3042
3043 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3044 struct netdev_queue *txq, bool more)
3045 {
3046 unsigned int len;
3047 int rc;
3048
3049 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3050 dev_queue_xmit_nit(skb, dev);
3051
3052 len = skb->len;
3053 trace_net_dev_start_xmit(skb, dev);
3054 rc = netdev_start_xmit(skb, dev, txq, more);
3055 trace_net_dev_xmit(skb, rc, dev, len);
3056
3057 return rc;
3058 }
3059
3060 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3061 struct netdev_queue *txq, int *ret)
3062 {
3063 struct sk_buff *skb = first;
3064 int rc = NETDEV_TX_OK;
3065
3066 while (skb) {
3067 struct sk_buff *next = skb->next;
3068
3069 skb->next = NULL;
3070 rc = xmit_one(skb, dev, txq, next != NULL);
3071 if (unlikely(!dev_xmit_complete(rc))) {
3072 skb->next = next;
3073 goto out;
3074 }
3075
3076 skb = next;
3077 if (netif_xmit_stopped(txq) && skb) {
3078 rc = NETDEV_TX_BUSY;
3079 break;
3080 }
3081 }
3082
3083 out:
3084 *ret = rc;
3085 return skb;
3086 }
3087
3088 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3089 netdev_features_t features)
3090 {
3091 if (skb_vlan_tag_present(skb) &&
3092 !vlan_hw_offload_capable(features, skb->vlan_proto))
3093 skb = __vlan_hwaccel_push_inside(skb);
3094 return skb;
3095 }
3096
3097 int skb_csum_hwoffload_help(struct sk_buff *skb,
3098 const netdev_features_t features)
3099 {
3100 if (unlikely(skb->csum_not_inet))
3101 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3102 skb_crc32c_csum_help(skb);
3103
3104 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3105 }
3106 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3107
3108 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3109 {
3110 netdev_features_t features;
3111
3112 features = netif_skb_features(skb);
3113 skb = validate_xmit_vlan(skb, features);
3114 if (unlikely(!skb))
3115 goto out_null;
3116
3117 if (netif_needs_gso(skb, features)) {
3118 struct sk_buff *segs;
3119
3120 segs = skb_gso_segment(skb, features);
3121 if (IS_ERR(segs)) {
3122 goto out_kfree_skb;
3123 } else if (segs) {
3124 consume_skb(skb);
3125 skb = segs;
3126 }
3127 } else {
3128 if (skb_needs_linearize(skb, features) &&
3129 __skb_linearize(skb))
3130 goto out_kfree_skb;
3131
3132 /* If packet is not checksummed and device does not
3133 * support checksumming for this protocol, complete
3134 * checksumming here.
3135 */
3136 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3137 if (skb->encapsulation)
3138 skb_set_inner_transport_header(skb,
3139 skb_checksum_start_offset(skb));
3140 else
3141 skb_set_transport_header(skb,
3142 skb_checksum_start_offset(skb));
3143 if (skb_csum_hwoffload_help(skb, features))
3144 goto out_kfree_skb;
3145 }
3146 }
3147
3148 skb = validate_xmit_xfrm(skb, features, again);
3149
3150 return skb;
3151
3152 out_kfree_skb:
3153 kfree_skb(skb);
3154 out_null:
3155 atomic_long_inc(&dev->tx_dropped);
3156 return NULL;
3157 }
3158
3159 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3160 {
3161 struct sk_buff *next, *head = NULL, *tail;
3162
3163 for (; skb != NULL; skb = next) {
3164 next = skb->next;
3165 skb->next = NULL;
3166
3167 /* in case skb wont be segmented, point to itself */
3168 skb->prev = skb;
3169
3170 skb = validate_xmit_skb(skb, dev, again);
3171 if (!skb)
3172 continue;
3173
3174 if (!head)
3175 head = skb;
3176 else
3177 tail->next = skb;
3178 /* If skb was segmented, skb->prev points to
3179 * the last segment. If not, it still contains skb.
3180 */
3181 tail = skb->prev;
3182 }
3183 return head;
3184 }
3185 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3186
3187 static void qdisc_pkt_len_init(struct sk_buff *skb)
3188 {
3189 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3190
3191 qdisc_skb_cb(skb)->pkt_len = skb->len;
3192
3193 /* To get more precise estimation of bytes sent on wire,
3194 * we add to pkt_len the headers size of all segments
3195 */
3196 if (shinfo->gso_size) {
3197 unsigned int hdr_len;
3198 u16 gso_segs = shinfo->gso_segs;
3199
3200 /* mac layer + network layer */
3201 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3202
3203 /* + transport layer */
3204 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3205 const struct tcphdr *th;
3206 struct tcphdr _tcphdr;
3207
3208 th = skb_header_pointer(skb, skb_transport_offset(skb),
3209 sizeof(_tcphdr), &_tcphdr);
3210 if (likely(th))
3211 hdr_len += __tcp_hdrlen(th);
3212 } else {
3213 struct udphdr _udphdr;
3214
3215 if (skb_header_pointer(skb, skb_transport_offset(skb),
3216 sizeof(_udphdr), &_udphdr))
3217 hdr_len += sizeof(struct udphdr);
3218 }
3219
3220 if (shinfo->gso_type & SKB_GSO_DODGY)
3221 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3222 shinfo->gso_size);
3223
3224 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3225 }
3226 }
3227
3228 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3229 struct net_device *dev,
3230 struct netdev_queue *txq)
3231 {
3232 spinlock_t *root_lock = qdisc_lock(q);
3233 struct sk_buff *to_free = NULL;
3234 bool contended;
3235 int rc;
3236
3237 qdisc_calculate_pkt_len(skb, q);
3238
3239 if (q->flags & TCQ_F_NOLOCK) {
3240 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3241 __qdisc_drop(skb, &to_free);
3242 rc = NET_XMIT_DROP;
3243 } else {
3244 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3245 __qdisc_run(q);
3246 }
3247
3248 if (unlikely(to_free))
3249 kfree_skb_list(to_free);
3250 return rc;
3251 }
3252
3253 /*
3254 * Heuristic to force contended enqueues to serialize on a
3255 * separate lock before trying to get qdisc main lock.
3256 * This permits qdisc->running owner to get the lock more
3257 * often and dequeue packets faster.
3258 */
3259 contended = qdisc_is_running(q);
3260 if (unlikely(contended))
3261 spin_lock(&q->busylock);
3262
3263 spin_lock(root_lock);
3264 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3265 __qdisc_drop(skb, &to_free);
3266 rc = NET_XMIT_DROP;
3267 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3268 qdisc_run_begin(q)) {
3269 /*
3270 * This is a work-conserving queue; there are no old skbs
3271 * waiting to be sent out; and the qdisc is not running -
3272 * xmit the skb directly.
3273 */
3274
3275 qdisc_bstats_update(q, skb);
3276
3277 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3278 if (unlikely(contended)) {
3279 spin_unlock(&q->busylock);
3280 contended = false;
3281 }
3282 __qdisc_run(q);
3283 }
3284
3285 qdisc_run_end(q);
3286 rc = NET_XMIT_SUCCESS;
3287 } else {
3288 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3289 if (qdisc_run_begin(q)) {
3290 if (unlikely(contended)) {
3291 spin_unlock(&q->busylock);
3292 contended = false;
3293 }
3294 __qdisc_run(q);
3295 qdisc_run_end(q);
3296 }
3297 }
3298 spin_unlock(root_lock);
3299 if (unlikely(to_free))
3300 kfree_skb_list(to_free);
3301 if (unlikely(contended))
3302 spin_unlock(&q->busylock);
3303 return rc;
3304 }
3305
3306 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3307 static void skb_update_prio(struct sk_buff *skb)
3308 {
3309 const struct netprio_map *map;
3310 const struct sock *sk;
3311 unsigned int prioidx;
3312
3313 if (skb->priority)
3314 return;
3315 map = rcu_dereference_bh(skb->dev->priomap);
3316 if (!map)
3317 return;
3318 sk = skb_to_full_sk(skb);
3319 if (!sk)
3320 return;
3321
3322 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3323
3324 if (prioidx < map->priomap_len)
3325 skb->priority = map->priomap[prioidx];
3326 }
3327 #else
3328 #define skb_update_prio(skb)
3329 #endif
3330
3331 DEFINE_PER_CPU(int, xmit_recursion);
3332 EXPORT_SYMBOL(xmit_recursion);
3333
3334 /**
3335 * dev_loopback_xmit - loop back @skb
3336 * @net: network namespace this loopback is happening in
3337 * @sk: sk needed to be a netfilter okfn
3338 * @skb: buffer to transmit
3339 */
3340 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3341 {
3342 skb_reset_mac_header(skb);
3343 __skb_pull(skb, skb_network_offset(skb));
3344 skb->pkt_type = PACKET_LOOPBACK;
3345 skb->ip_summed = CHECKSUM_UNNECESSARY;
3346 WARN_ON(!skb_dst(skb));
3347 skb_dst_force(skb);
3348 netif_rx_ni(skb);
3349 return 0;
3350 }
3351 EXPORT_SYMBOL(dev_loopback_xmit);
3352
3353 #ifdef CONFIG_NET_EGRESS
3354 static struct sk_buff *
3355 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3356 {
3357 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3358 struct tcf_result cl_res;
3359
3360 if (!miniq)
3361 return skb;
3362
3363 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3364 mini_qdisc_bstats_cpu_update(miniq, skb);
3365
3366 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3367 case TC_ACT_OK:
3368 case TC_ACT_RECLASSIFY:
3369 skb->tc_index = TC_H_MIN(cl_res.classid);
3370 break;
3371 case TC_ACT_SHOT:
3372 mini_qdisc_qstats_cpu_drop(miniq);
3373 *ret = NET_XMIT_DROP;
3374 kfree_skb(skb);
3375 return NULL;
3376 case TC_ACT_STOLEN:
3377 case TC_ACT_QUEUED:
3378 case TC_ACT_TRAP:
3379 *ret = NET_XMIT_SUCCESS;
3380 consume_skb(skb);
3381 return NULL;
3382 case TC_ACT_REDIRECT:
3383 /* No need to push/pop skb's mac_header here on egress! */
3384 skb_do_redirect(skb);
3385 *ret = NET_XMIT_SUCCESS;
3386 return NULL;
3387 default:
3388 break;
3389 }
3390
3391 return skb;
3392 }
3393 #endif /* CONFIG_NET_EGRESS */
3394
3395 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3396 {
3397 #ifdef CONFIG_XPS
3398 struct xps_dev_maps *dev_maps;
3399 struct xps_map *map;
3400 int queue_index = -1;
3401
3402 rcu_read_lock();
3403 dev_maps = rcu_dereference(dev->xps_maps);
3404 if (dev_maps) {
3405 unsigned int tci = skb->sender_cpu - 1;
3406
3407 if (dev->num_tc) {
3408 tci *= dev->num_tc;
3409 tci += netdev_get_prio_tc_map(dev, skb->priority);
3410 }
3411
3412 map = rcu_dereference(dev_maps->cpu_map[tci]);
3413 if (map) {
3414 if (map->len == 1)
3415 queue_index = map->queues[0];
3416 else
3417 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3418 map->len)];
3419 if (unlikely(queue_index >= dev->real_num_tx_queues))
3420 queue_index = -1;
3421 }
3422 }
3423 rcu_read_unlock();
3424
3425 return queue_index;
3426 #else
3427 return -1;
3428 #endif
3429 }
3430
3431 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3432 {
3433 struct sock *sk = skb->sk;
3434 int queue_index = sk_tx_queue_get(sk);
3435
3436 if (queue_index < 0 || skb->ooo_okay ||
3437 queue_index >= dev->real_num_tx_queues) {
3438 int new_index = get_xps_queue(dev, skb);
3439
3440 if (new_index < 0)
3441 new_index = skb_tx_hash(dev, skb);
3442
3443 if (queue_index != new_index && sk &&
3444 sk_fullsock(sk) &&
3445 rcu_access_pointer(sk->sk_dst_cache))
3446 sk_tx_queue_set(sk, new_index);
3447
3448 queue_index = new_index;
3449 }
3450
3451 return queue_index;
3452 }
3453
3454 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3455 struct sk_buff *skb,
3456 void *accel_priv)
3457 {
3458 int queue_index = 0;
3459
3460 #ifdef CONFIG_XPS
3461 u32 sender_cpu = skb->sender_cpu - 1;
3462
3463 if (sender_cpu >= (u32)NR_CPUS)
3464 skb->sender_cpu = raw_smp_processor_id() + 1;
3465 #endif
3466
3467 if (dev->real_num_tx_queues != 1) {
3468 const struct net_device_ops *ops = dev->netdev_ops;
3469
3470 if (ops->ndo_select_queue)
3471 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3472 __netdev_pick_tx);
3473 else
3474 queue_index = __netdev_pick_tx(dev, skb);
3475
3476 queue_index = netdev_cap_txqueue(dev, queue_index);
3477 }
3478
3479 skb_set_queue_mapping(skb, queue_index);
3480 return netdev_get_tx_queue(dev, queue_index);
3481 }
3482
3483 /**
3484 * __dev_queue_xmit - transmit a buffer
3485 * @skb: buffer to transmit
3486 * @accel_priv: private data used for L2 forwarding offload
3487 *
3488 * Queue a buffer for transmission to a network device. The caller must
3489 * have set the device and priority and built the buffer before calling
3490 * this function. The function can be called from an interrupt.
3491 *
3492 * A negative errno code is returned on a failure. A success does not
3493 * guarantee the frame will be transmitted as it may be dropped due
3494 * to congestion or traffic shaping.
3495 *
3496 * -----------------------------------------------------------------------------------
3497 * I notice this method can also return errors from the queue disciplines,
3498 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3499 * be positive.
3500 *
3501 * Regardless of the return value, the skb is consumed, so it is currently
3502 * difficult to retry a send to this method. (You can bump the ref count
3503 * before sending to hold a reference for retry if you are careful.)
3504 *
3505 * When calling this method, interrupts MUST be enabled. This is because
3506 * the BH enable code must have IRQs enabled so that it will not deadlock.
3507 * --BLG
3508 */
3509 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3510 {
3511 struct net_device *dev = skb->dev;
3512 struct netdev_queue *txq;
3513 struct Qdisc *q;
3514 int rc = -ENOMEM;
3515 bool again = false;
3516
3517 skb_reset_mac_header(skb);
3518
3519 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3520 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3521
3522 /* Disable soft irqs for various locks below. Also
3523 * stops preemption for RCU.
3524 */
3525 rcu_read_lock_bh();
3526
3527 skb_update_prio(skb);
3528
3529 qdisc_pkt_len_init(skb);
3530 #ifdef CONFIG_NET_CLS_ACT
3531 skb->tc_at_ingress = 0;
3532 # ifdef CONFIG_NET_EGRESS
3533 if (static_key_false(&egress_needed)) {
3534 skb = sch_handle_egress(skb, &rc, dev);
3535 if (!skb)
3536 goto out;
3537 }
3538 # endif
3539 #endif
3540 /* If device/qdisc don't need skb->dst, release it right now while
3541 * its hot in this cpu cache.
3542 */
3543 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3544 skb_dst_drop(skb);
3545 else
3546 skb_dst_force(skb);
3547
3548 txq = netdev_pick_tx(dev, skb, accel_priv);
3549 q = rcu_dereference_bh(txq->qdisc);
3550
3551 trace_net_dev_queue(skb);
3552 if (q->enqueue) {
3553 rc = __dev_xmit_skb(skb, q, dev, txq);
3554 goto out;
3555 }
3556
3557 /* The device has no queue. Common case for software devices:
3558 * loopback, all the sorts of tunnels...
3559
3560 * Really, it is unlikely that netif_tx_lock protection is necessary
3561 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3562 * counters.)
3563 * However, it is possible, that they rely on protection
3564 * made by us here.
3565
3566 * Check this and shot the lock. It is not prone from deadlocks.
3567 *Either shot noqueue qdisc, it is even simpler 8)
3568 */
3569 if (dev->flags & IFF_UP) {
3570 int cpu = smp_processor_id(); /* ok because BHs are off */
3571
3572 if (txq->xmit_lock_owner != cpu) {
3573 if (unlikely(__this_cpu_read(xmit_recursion) >
3574 XMIT_RECURSION_LIMIT))
3575 goto recursion_alert;
3576
3577 skb = validate_xmit_skb(skb, dev, &again);
3578 if (!skb)
3579 goto out;
3580
3581 HARD_TX_LOCK(dev, txq, cpu);
3582
3583 if (!netif_xmit_stopped(txq)) {
3584 __this_cpu_inc(xmit_recursion);
3585 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3586 __this_cpu_dec(xmit_recursion);
3587 if (dev_xmit_complete(rc)) {
3588 HARD_TX_UNLOCK(dev, txq);
3589 goto out;
3590 }
3591 }
3592 HARD_TX_UNLOCK(dev, txq);
3593 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3594 dev->name);
3595 } else {
3596 /* Recursion is detected! It is possible,
3597 * unfortunately
3598 */
3599 recursion_alert:
3600 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3601 dev->name);
3602 }
3603 }
3604
3605 rc = -ENETDOWN;
3606 rcu_read_unlock_bh();
3607
3608 atomic_long_inc(&dev->tx_dropped);
3609 kfree_skb_list(skb);
3610 return rc;
3611 out:
3612 rcu_read_unlock_bh();
3613 return rc;
3614 }
3615
3616 int dev_queue_xmit(struct sk_buff *skb)
3617 {
3618 return __dev_queue_xmit(skb, NULL);
3619 }
3620 EXPORT_SYMBOL(dev_queue_xmit);
3621
3622 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3623 {
3624 return __dev_queue_xmit(skb, accel_priv);
3625 }
3626 EXPORT_SYMBOL(dev_queue_xmit_accel);
3627
3628
3629 /*************************************************************************
3630 * Receiver routines
3631 *************************************************************************/
3632
3633 int netdev_max_backlog __read_mostly = 1000;
3634 EXPORT_SYMBOL(netdev_max_backlog);
3635
3636 int netdev_tstamp_prequeue __read_mostly = 1;
3637 int netdev_budget __read_mostly = 300;
3638 unsigned int __read_mostly netdev_budget_usecs = 2000;
3639 int weight_p __read_mostly = 64; /* old backlog weight */
3640 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3641 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3642 int dev_rx_weight __read_mostly = 64;
3643 int dev_tx_weight __read_mostly = 64;
3644
3645 /* Called with irq disabled */
3646 static inline void ____napi_schedule(struct softnet_data *sd,
3647 struct napi_struct *napi)
3648 {
3649 list_add_tail(&napi->poll_list, &sd->poll_list);
3650 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3651 }
3652
3653 #ifdef CONFIG_RPS
3654
3655 /* One global table that all flow-based protocols share. */
3656 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3657 EXPORT_SYMBOL(rps_sock_flow_table);
3658 u32 rps_cpu_mask __read_mostly;
3659 EXPORT_SYMBOL(rps_cpu_mask);
3660
3661 struct static_key rps_needed __read_mostly;
3662 EXPORT_SYMBOL(rps_needed);
3663 struct static_key rfs_needed __read_mostly;
3664 EXPORT_SYMBOL(rfs_needed);
3665
3666 static struct rps_dev_flow *
3667 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3668 struct rps_dev_flow *rflow, u16 next_cpu)
3669 {
3670 if (next_cpu < nr_cpu_ids) {
3671 #ifdef CONFIG_RFS_ACCEL
3672 struct netdev_rx_queue *rxqueue;
3673 struct rps_dev_flow_table *flow_table;
3674 struct rps_dev_flow *old_rflow;
3675 u32 flow_id;
3676 u16 rxq_index;
3677 int rc;
3678
3679 /* Should we steer this flow to a different hardware queue? */
3680 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3681 !(dev->features & NETIF_F_NTUPLE))
3682 goto out;
3683 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3684 if (rxq_index == skb_get_rx_queue(skb))
3685 goto out;
3686
3687 rxqueue = dev->_rx + rxq_index;
3688 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3689 if (!flow_table)
3690 goto out;
3691 flow_id = skb_get_hash(skb) & flow_table->mask;
3692 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3693 rxq_index, flow_id);
3694 if (rc < 0)
3695 goto out;
3696 old_rflow = rflow;
3697 rflow = &flow_table->flows[flow_id];
3698 rflow->filter = rc;
3699 if (old_rflow->filter == rflow->filter)
3700 old_rflow->filter = RPS_NO_FILTER;
3701 out:
3702 #endif
3703 rflow->last_qtail =
3704 per_cpu(softnet_data, next_cpu).input_queue_head;
3705 }
3706
3707 rflow->cpu = next_cpu;
3708 return rflow;
3709 }
3710
3711 /*
3712 * get_rps_cpu is called from netif_receive_skb and returns the target
3713 * CPU from the RPS map of the receiving queue for a given skb.
3714 * rcu_read_lock must be held on entry.
3715 */
3716 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3717 struct rps_dev_flow **rflowp)
3718 {
3719 const struct rps_sock_flow_table *sock_flow_table;
3720 struct netdev_rx_queue *rxqueue = dev->_rx;
3721 struct rps_dev_flow_table *flow_table;
3722 struct rps_map *map;
3723 int cpu = -1;
3724 u32 tcpu;
3725 u32 hash;
3726
3727 if (skb_rx_queue_recorded(skb)) {
3728 u16 index = skb_get_rx_queue(skb);
3729
3730 if (unlikely(index >= dev->real_num_rx_queues)) {
3731 WARN_ONCE(dev->real_num_rx_queues > 1,
3732 "%s received packet on queue %u, but number "
3733 "of RX queues is %u\n",
3734 dev->name, index, dev->real_num_rx_queues);
3735 goto done;
3736 }
3737 rxqueue += index;
3738 }
3739
3740 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3741
3742 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3743 map = rcu_dereference(rxqueue->rps_map);
3744 if (!flow_table && !map)
3745 goto done;
3746
3747 skb_reset_network_header(skb);
3748 hash = skb_get_hash(skb);
3749 if (!hash)
3750 goto done;
3751
3752 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3753 if (flow_table && sock_flow_table) {
3754 struct rps_dev_flow *rflow;
3755 u32 next_cpu;
3756 u32 ident;
3757
3758 /* First check into global flow table if there is a match */
3759 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3760 if ((ident ^ hash) & ~rps_cpu_mask)
3761 goto try_rps;
3762
3763 next_cpu = ident & rps_cpu_mask;
3764
3765 /* OK, now we know there is a match,
3766 * we can look at the local (per receive queue) flow table
3767 */
3768 rflow = &flow_table->flows[hash & flow_table->mask];
3769 tcpu = rflow->cpu;
3770
3771 /*
3772 * If the desired CPU (where last recvmsg was done) is
3773 * different from current CPU (one in the rx-queue flow
3774 * table entry), switch if one of the following holds:
3775 * - Current CPU is unset (>= nr_cpu_ids).
3776 * - Current CPU is offline.
3777 * - The current CPU's queue tail has advanced beyond the
3778 * last packet that was enqueued using this table entry.
3779 * This guarantees that all previous packets for the flow
3780 * have been dequeued, thus preserving in order delivery.
3781 */
3782 if (unlikely(tcpu != next_cpu) &&
3783 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3784 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3785 rflow->last_qtail)) >= 0)) {
3786 tcpu = next_cpu;
3787 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3788 }
3789
3790 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3791 *rflowp = rflow;
3792 cpu = tcpu;
3793 goto done;
3794 }
3795 }
3796
3797 try_rps:
3798
3799 if (map) {
3800 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3801 if (cpu_online(tcpu)) {
3802 cpu = tcpu;
3803 goto done;
3804 }
3805 }
3806
3807 done:
3808 return cpu;
3809 }
3810
3811 #ifdef CONFIG_RFS_ACCEL
3812
3813 /**
3814 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3815 * @dev: Device on which the filter was set
3816 * @rxq_index: RX queue index
3817 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3818 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3819 *
3820 * Drivers that implement ndo_rx_flow_steer() should periodically call
3821 * this function for each installed filter and remove the filters for
3822 * which it returns %true.
3823 */
3824 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3825 u32 flow_id, u16 filter_id)
3826 {
3827 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3828 struct rps_dev_flow_table *flow_table;
3829 struct rps_dev_flow *rflow;
3830 bool expire = true;
3831 unsigned int cpu;
3832
3833 rcu_read_lock();
3834 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3835 if (flow_table && flow_id <= flow_table->mask) {
3836 rflow = &flow_table->flows[flow_id];
3837 cpu = READ_ONCE(rflow->cpu);
3838 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3839 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3840 rflow->last_qtail) <
3841 (int)(10 * flow_table->mask)))
3842 expire = false;
3843 }
3844 rcu_read_unlock();
3845 return expire;
3846 }
3847 EXPORT_SYMBOL(rps_may_expire_flow);
3848
3849 #endif /* CONFIG_RFS_ACCEL */
3850
3851 /* Called from hardirq (IPI) context */
3852 static void rps_trigger_softirq(void *data)
3853 {
3854 struct softnet_data *sd = data;
3855
3856 ____napi_schedule(sd, &sd->backlog);
3857 sd->received_rps++;
3858 }
3859
3860 #endif /* CONFIG_RPS */
3861
3862 /*
3863 * Check if this softnet_data structure is another cpu one
3864 * If yes, queue it to our IPI list and return 1
3865 * If no, return 0
3866 */
3867 static int rps_ipi_queued(struct softnet_data *sd)
3868 {
3869 #ifdef CONFIG_RPS
3870 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3871
3872 if (sd != mysd) {
3873 sd->rps_ipi_next = mysd->rps_ipi_list;
3874 mysd->rps_ipi_list = sd;
3875
3876 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3877 return 1;
3878 }
3879 #endif /* CONFIG_RPS */
3880 return 0;
3881 }
3882
3883 #ifdef CONFIG_NET_FLOW_LIMIT
3884 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3885 #endif
3886
3887 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3888 {
3889 #ifdef CONFIG_NET_FLOW_LIMIT
3890 struct sd_flow_limit *fl;
3891 struct softnet_data *sd;
3892 unsigned int old_flow, new_flow;
3893
3894 if (qlen < (netdev_max_backlog >> 1))
3895 return false;
3896
3897 sd = this_cpu_ptr(&softnet_data);
3898
3899 rcu_read_lock();
3900 fl = rcu_dereference(sd->flow_limit);
3901 if (fl) {
3902 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3903 old_flow = fl->history[fl->history_head];
3904 fl->history[fl->history_head] = new_flow;
3905
3906 fl->history_head++;
3907 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3908
3909 if (likely(fl->buckets[old_flow]))
3910 fl->buckets[old_flow]--;
3911
3912 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3913 fl->count++;
3914 rcu_read_unlock();
3915 return true;
3916 }
3917 }
3918 rcu_read_unlock();
3919 #endif
3920 return false;
3921 }
3922
3923 /*
3924 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3925 * queue (may be a remote CPU queue).
3926 */
3927 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3928 unsigned int *qtail)
3929 {
3930 struct softnet_data *sd;
3931 unsigned long flags;
3932 unsigned int qlen;
3933
3934 sd = &per_cpu(softnet_data, cpu);
3935
3936 local_irq_save(flags);
3937
3938 rps_lock(sd);
3939 if (!netif_running(skb->dev))
3940 goto drop;
3941 qlen = skb_queue_len(&sd->input_pkt_queue);
3942 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3943 if (qlen) {
3944 enqueue:
3945 __skb_queue_tail(&sd->input_pkt_queue, skb);
3946 input_queue_tail_incr_save(sd, qtail);
3947 rps_unlock(sd);
3948 local_irq_restore(flags);
3949 return NET_RX_SUCCESS;
3950 }
3951
3952 /* Schedule NAPI for backlog device
3953 * We can use non atomic operation since we own the queue lock
3954 */
3955 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3956 if (!rps_ipi_queued(sd))
3957 ____napi_schedule(sd, &sd->backlog);
3958 }
3959 goto enqueue;
3960 }
3961
3962 drop:
3963 sd->dropped++;
3964 rps_unlock(sd);
3965
3966 local_irq_restore(flags);
3967
3968 atomic_long_inc(&skb->dev->rx_dropped);
3969 kfree_skb(skb);
3970 return NET_RX_DROP;
3971 }
3972
3973 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
3974 {
3975 struct net_device *dev = skb->dev;
3976 struct netdev_rx_queue *rxqueue;
3977
3978 rxqueue = dev->_rx;
3979
3980 if (skb_rx_queue_recorded(skb)) {
3981 u16 index = skb_get_rx_queue(skb);
3982
3983 if (unlikely(index >= dev->real_num_rx_queues)) {
3984 WARN_ONCE(dev->real_num_rx_queues > 1,
3985 "%s received packet on queue %u, but number "
3986 "of RX queues is %u\n",
3987 dev->name, index, dev->real_num_rx_queues);
3988
3989 return rxqueue; /* Return first rxqueue */
3990 }
3991 rxqueue += index;
3992 }
3993 return rxqueue;
3994 }
3995
3996 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3997 struct bpf_prog *xdp_prog)
3998 {
3999 struct netdev_rx_queue *rxqueue;
4000 u32 metalen, act = XDP_DROP;
4001 struct xdp_buff xdp;
4002 void *orig_data;
4003 int hlen, off;
4004 u32 mac_len;
4005
4006 /* Reinjected packets coming from act_mirred or similar should
4007 * not get XDP generic processing.
4008 */
4009 if (skb_cloned(skb))
4010 return XDP_PASS;
4011
4012 /* XDP packets must be linear and must have sufficient headroom
4013 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4014 * native XDP provides, thus we need to do it here as well.
4015 */
4016 if (skb_is_nonlinear(skb) ||
4017 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4018 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4019 int troom = skb->tail + skb->data_len - skb->end;
4020
4021 /* In case we have to go down the path and also linearize,
4022 * then lets do the pskb_expand_head() work just once here.
4023 */
4024 if (pskb_expand_head(skb,
4025 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4026 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4027 goto do_drop;
4028 if (skb_linearize(skb))
4029 goto do_drop;
4030 }
4031
4032 /* The XDP program wants to see the packet starting at the MAC
4033 * header.
4034 */
4035 mac_len = skb->data - skb_mac_header(skb);
4036 hlen = skb_headlen(skb) + mac_len;
4037 xdp.data = skb->data - mac_len;
4038 xdp.data_meta = xdp.data;
4039 xdp.data_end = xdp.data + hlen;
4040 xdp.data_hard_start = skb->data - skb_headroom(skb);
4041 orig_data = xdp.data;
4042
4043 rxqueue = netif_get_rxqueue(skb);
4044 xdp.rxq = &rxqueue->xdp_rxq;
4045
4046 act = bpf_prog_run_xdp(xdp_prog, &xdp);
4047
4048 off = xdp.data - orig_data;
4049 if (off > 0)
4050 __skb_pull(skb, off);
4051 else if (off < 0)
4052 __skb_push(skb, -off);
4053 skb->mac_header += off;
4054
4055 switch (act) {
4056 case XDP_REDIRECT:
4057 case XDP_TX:
4058 __skb_push(skb, mac_len);
4059 break;
4060 case XDP_PASS:
4061 metalen = xdp.data - xdp.data_meta;
4062 if (metalen)
4063 skb_metadata_set(skb, metalen);
4064 break;
4065 default:
4066 bpf_warn_invalid_xdp_action(act);
4067 /* fall through */
4068 case XDP_ABORTED:
4069 trace_xdp_exception(skb->dev, xdp_prog, act);
4070 /* fall through */
4071 case XDP_DROP:
4072 do_drop:
4073 kfree_skb(skb);
4074 break;
4075 }
4076
4077 return act;
4078 }
4079
4080 /* When doing generic XDP we have to bypass the qdisc layer and the
4081 * network taps in order to match in-driver-XDP behavior.
4082 */
4083 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4084 {
4085 struct net_device *dev = skb->dev;
4086 struct netdev_queue *txq;
4087 bool free_skb = true;
4088 int cpu, rc;
4089
4090 txq = netdev_pick_tx(dev, skb, NULL);
4091 cpu = smp_processor_id();
4092 HARD_TX_LOCK(dev, txq, cpu);
4093 if (!netif_xmit_stopped(txq)) {
4094 rc = netdev_start_xmit(skb, dev, txq, 0);
4095 if (dev_xmit_complete(rc))
4096 free_skb = false;
4097 }
4098 HARD_TX_UNLOCK(dev, txq);
4099 if (free_skb) {
4100 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4101 kfree_skb(skb);
4102 }
4103 }
4104 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4105
4106 static struct static_key generic_xdp_needed __read_mostly;
4107
4108 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4109 {
4110 if (xdp_prog) {
4111 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4112 int err;
4113
4114 if (act != XDP_PASS) {
4115 switch (act) {
4116 case XDP_REDIRECT:
4117 err = xdp_do_generic_redirect(skb->dev, skb,
4118 xdp_prog);
4119 if (err)
4120 goto out_redir;
4121 /* fallthru to submit skb */
4122 case XDP_TX:
4123 generic_xdp_tx(skb, xdp_prog);
4124 break;
4125 }
4126 return XDP_DROP;
4127 }
4128 }
4129 return XDP_PASS;
4130 out_redir:
4131 kfree_skb(skb);
4132 return XDP_DROP;
4133 }
4134 EXPORT_SYMBOL_GPL(do_xdp_generic);
4135
4136 static int netif_rx_internal(struct sk_buff *skb)
4137 {
4138 int ret;
4139
4140 net_timestamp_check(netdev_tstamp_prequeue, skb);
4141
4142 trace_netif_rx(skb);
4143
4144 if (static_key_false(&generic_xdp_needed)) {
4145 int ret;
4146
4147 preempt_disable();
4148 rcu_read_lock();
4149 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4150 rcu_read_unlock();
4151 preempt_enable();
4152
4153 /* Consider XDP consuming the packet a success from
4154 * the netdev point of view we do not want to count
4155 * this as an error.
4156 */
4157 if (ret != XDP_PASS)
4158 return NET_RX_SUCCESS;
4159 }
4160
4161 #ifdef CONFIG_RPS
4162 if (static_key_false(&rps_needed)) {
4163 struct rps_dev_flow voidflow, *rflow = &voidflow;
4164 int cpu;
4165
4166 preempt_disable();
4167 rcu_read_lock();
4168
4169 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4170 if (cpu < 0)
4171 cpu = smp_processor_id();
4172
4173 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4174
4175 rcu_read_unlock();
4176 preempt_enable();
4177 } else
4178 #endif
4179 {
4180 unsigned int qtail;
4181
4182 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4183 put_cpu();
4184 }
4185 return ret;
4186 }
4187
4188 /**
4189 * netif_rx - post buffer to the network code
4190 * @skb: buffer to post
4191 *
4192 * This function receives a packet from a device driver and queues it for
4193 * the upper (protocol) levels to process. It always succeeds. The buffer
4194 * may be dropped during processing for congestion control or by the
4195 * protocol layers.
4196 *
4197 * return values:
4198 * NET_RX_SUCCESS (no congestion)
4199 * NET_RX_DROP (packet was dropped)
4200 *
4201 */
4202
4203 int netif_rx(struct sk_buff *skb)
4204 {
4205 trace_netif_rx_entry(skb);
4206
4207 return netif_rx_internal(skb);
4208 }
4209 EXPORT_SYMBOL(netif_rx);
4210
4211 int netif_rx_ni(struct sk_buff *skb)
4212 {
4213 int err;
4214
4215 trace_netif_rx_ni_entry(skb);
4216
4217 preempt_disable();
4218 err = netif_rx_internal(skb);
4219 if (local_softirq_pending())
4220 do_softirq();
4221 preempt_enable();
4222
4223 return err;
4224 }
4225 EXPORT_SYMBOL(netif_rx_ni);
4226
4227 static __latent_entropy void net_tx_action(struct softirq_action *h)
4228 {
4229 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4230
4231 if (sd->completion_queue) {
4232 struct sk_buff *clist;
4233
4234 local_irq_disable();
4235 clist = sd->completion_queue;
4236 sd->completion_queue = NULL;
4237 local_irq_enable();
4238
4239 while (clist) {
4240 struct sk_buff *skb = clist;
4241
4242 clist = clist->next;
4243
4244 WARN_ON(refcount_read(&skb->users));
4245 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4246 trace_consume_skb(skb);
4247 else
4248 trace_kfree_skb(skb, net_tx_action);
4249
4250 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4251 __kfree_skb(skb);
4252 else
4253 __kfree_skb_defer(skb);
4254 }
4255
4256 __kfree_skb_flush();
4257 }
4258
4259 if (sd->output_queue) {
4260 struct Qdisc *head;
4261
4262 local_irq_disable();
4263 head = sd->output_queue;
4264 sd->output_queue = NULL;
4265 sd->output_queue_tailp = &sd->output_queue;
4266 local_irq_enable();
4267
4268 while (head) {
4269 struct Qdisc *q = head;
4270 spinlock_t *root_lock = NULL;
4271
4272 head = head->next_sched;
4273
4274 if (!(q->flags & TCQ_F_NOLOCK)) {
4275 root_lock = qdisc_lock(q);
4276 spin_lock(root_lock);
4277 }
4278 /* We need to make sure head->next_sched is read
4279 * before clearing __QDISC_STATE_SCHED
4280 */
4281 smp_mb__before_atomic();
4282 clear_bit(__QDISC_STATE_SCHED, &q->state);
4283 qdisc_run(q);
4284 if (root_lock)
4285 spin_unlock(root_lock);
4286 }
4287 }
4288
4289 xfrm_dev_backlog(sd);
4290 }
4291
4292 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4293 /* This hook is defined here for ATM LANE */
4294 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4295 unsigned char *addr) __read_mostly;
4296 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4297 #endif
4298
4299 static inline struct sk_buff *
4300 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4301 struct net_device *orig_dev)
4302 {
4303 #ifdef CONFIG_NET_CLS_ACT
4304 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4305 struct tcf_result cl_res;
4306
4307 /* If there's at least one ingress present somewhere (so
4308 * we get here via enabled static key), remaining devices
4309 * that are not configured with an ingress qdisc will bail
4310 * out here.
4311 */
4312 if (!miniq)
4313 return skb;
4314
4315 if (*pt_prev) {
4316 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4317 *pt_prev = NULL;
4318 }
4319
4320 qdisc_skb_cb(skb)->pkt_len = skb->len;
4321 skb->tc_at_ingress = 1;
4322 mini_qdisc_bstats_cpu_update(miniq, skb);
4323
4324 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4325 case TC_ACT_OK:
4326 case TC_ACT_RECLASSIFY:
4327 skb->tc_index = TC_H_MIN(cl_res.classid);
4328 break;
4329 case TC_ACT_SHOT:
4330 mini_qdisc_qstats_cpu_drop(miniq);
4331 kfree_skb(skb);
4332 return NULL;
4333 case TC_ACT_STOLEN:
4334 case TC_ACT_QUEUED:
4335 case TC_ACT_TRAP:
4336 consume_skb(skb);
4337 return NULL;
4338 case TC_ACT_REDIRECT:
4339 /* skb_mac_header check was done by cls/act_bpf, so
4340 * we can safely push the L2 header back before
4341 * redirecting to another netdev
4342 */
4343 __skb_push(skb, skb->mac_len);
4344 skb_do_redirect(skb);
4345 return NULL;
4346 default:
4347 break;
4348 }
4349 #endif /* CONFIG_NET_CLS_ACT */
4350 return skb;
4351 }
4352
4353 /**
4354 * netdev_is_rx_handler_busy - check if receive handler is registered
4355 * @dev: device to check
4356 *
4357 * Check if a receive handler is already registered for a given device.
4358 * Return true if there one.
4359 *
4360 * The caller must hold the rtnl_mutex.
4361 */
4362 bool netdev_is_rx_handler_busy(struct net_device *dev)
4363 {
4364 ASSERT_RTNL();
4365 return dev && rtnl_dereference(dev->rx_handler);
4366 }
4367 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4368
4369 /**
4370 * netdev_rx_handler_register - register receive handler
4371 * @dev: device to register a handler for
4372 * @rx_handler: receive handler to register
4373 * @rx_handler_data: data pointer that is used by rx handler
4374 *
4375 * Register a receive handler for a device. This handler will then be
4376 * called from __netif_receive_skb. A negative errno code is returned
4377 * on a failure.
4378 *
4379 * The caller must hold the rtnl_mutex.
4380 *
4381 * For a general description of rx_handler, see enum rx_handler_result.
4382 */
4383 int netdev_rx_handler_register(struct net_device *dev,
4384 rx_handler_func_t *rx_handler,
4385 void *rx_handler_data)
4386 {
4387 if (netdev_is_rx_handler_busy(dev))
4388 return -EBUSY;
4389
4390 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4391 return -EINVAL;
4392
4393 /* Note: rx_handler_data must be set before rx_handler */
4394 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4395 rcu_assign_pointer(dev->rx_handler, rx_handler);
4396
4397 return 0;
4398 }
4399 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4400
4401 /**
4402 * netdev_rx_handler_unregister - unregister receive handler
4403 * @dev: device to unregister a handler from
4404 *
4405 * Unregister a receive handler from a device.
4406 *
4407 * The caller must hold the rtnl_mutex.
4408 */
4409 void netdev_rx_handler_unregister(struct net_device *dev)
4410 {
4411
4412 ASSERT_RTNL();
4413 RCU_INIT_POINTER(dev->rx_handler, NULL);
4414 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4415 * section has a guarantee to see a non NULL rx_handler_data
4416 * as well.
4417 */
4418 synchronize_net();
4419 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4420 }
4421 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4422
4423 /*
4424 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4425 * the special handling of PFMEMALLOC skbs.
4426 */
4427 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4428 {
4429 switch (skb->protocol) {
4430 case htons(ETH_P_ARP):
4431 case htons(ETH_P_IP):
4432 case htons(ETH_P_IPV6):
4433 case htons(ETH_P_8021Q):
4434 case htons(ETH_P_8021AD):
4435 return true;
4436 default:
4437 return false;
4438 }
4439 }
4440
4441 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4442 int *ret, struct net_device *orig_dev)
4443 {
4444 #ifdef CONFIG_NETFILTER_INGRESS
4445 if (nf_hook_ingress_active(skb)) {
4446 int ingress_retval;
4447
4448 if (*pt_prev) {
4449 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4450 *pt_prev = NULL;
4451 }
4452
4453 rcu_read_lock();
4454 ingress_retval = nf_hook_ingress(skb);
4455 rcu_read_unlock();
4456 return ingress_retval;
4457 }
4458 #endif /* CONFIG_NETFILTER_INGRESS */
4459 return 0;
4460 }
4461
4462 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4463 {
4464 struct packet_type *ptype, *pt_prev;
4465 rx_handler_func_t *rx_handler;
4466 struct net_device *orig_dev;
4467 bool deliver_exact = false;
4468 int ret = NET_RX_DROP;
4469 __be16 type;
4470
4471 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4472
4473 trace_netif_receive_skb(skb);
4474
4475 orig_dev = skb->dev;
4476
4477 skb_reset_network_header(skb);
4478 if (!skb_transport_header_was_set(skb))
4479 skb_reset_transport_header(skb);
4480 skb_reset_mac_len(skb);
4481
4482 pt_prev = NULL;
4483
4484 another_round:
4485 skb->skb_iif = skb->dev->ifindex;
4486
4487 __this_cpu_inc(softnet_data.processed);
4488
4489 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4490 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4491 skb = skb_vlan_untag(skb);
4492 if (unlikely(!skb))
4493 goto out;
4494 }
4495
4496 if (skb_skip_tc_classify(skb))
4497 goto skip_classify;
4498
4499 if (pfmemalloc)
4500 goto skip_taps;
4501
4502 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4503 if (pt_prev)
4504 ret = deliver_skb(skb, pt_prev, orig_dev);
4505 pt_prev = ptype;
4506 }
4507
4508 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4509 if (pt_prev)
4510 ret = deliver_skb(skb, pt_prev, orig_dev);
4511 pt_prev = ptype;
4512 }
4513
4514 skip_taps:
4515 #ifdef CONFIG_NET_INGRESS
4516 if (static_key_false(&ingress_needed)) {
4517 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4518 if (!skb)
4519 goto out;
4520
4521 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4522 goto out;
4523 }
4524 #endif
4525 skb_reset_tc(skb);
4526 skip_classify:
4527 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4528 goto drop;
4529
4530 if (skb_vlan_tag_present(skb)) {
4531 if (pt_prev) {
4532 ret = deliver_skb(skb, pt_prev, orig_dev);
4533 pt_prev = NULL;
4534 }
4535 if (vlan_do_receive(&skb))
4536 goto another_round;
4537 else if (unlikely(!skb))
4538 goto out;
4539 }
4540
4541 rx_handler = rcu_dereference(skb->dev->rx_handler);
4542 if (rx_handler) {
4543 if (pt_prev) {
4544 ret = deliver_skb(skb, pt_prev, orig_dev);
4545 pt_prev = NULL;
4546 }
4547 switch (rx_handler(&skb)) {
4548 case RX_HANDLER_CONSUMED:
4549 ret = NET_RX_SUCCESS;
4550 goto out;
4551 case RX_HANDLER_ANOTHER:
4552 goto another_round;
4553 case RX_HANDLER_EXACT:
4554 deliver_exact = true;
4555 case RX_HANDLER_PASS:
4556 break;
4557 default:
4558 BUG();
4559 }
4560 }
4561
4562 if (unlikely(skb_vlan_tag_present(skb))) {
4563 if (skb_vlan_tag_get_id(skb))
4564 skb->pkt_type = PACKET_OTHERHOST;
4565 /* Note: we might in the future use prio bits
4566 * and set skb->priority like in vlan_do_receive()
4567 * For the time being, just ignore Priority Code Point
4568 */
4569 skb->vlan_tci = 0;
4570 }
4571
4572 type = skb->protocol;
4573
4574 /* deliver only exact match when indicated */
4575 if (likely(!deliver_exact)) {
4576 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4577 &ptype_base[ntohs(type) &
4578 PTYPE_HASH_MASK]);
4579 }
4580
4581 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4582 &orig_dev->ptype_specific);
4583
4584 if (unlikely(skb->dev != orig_dev)) {
4585 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4586 &skb->dev->ptype_specific);
4587 }
4588
4589 if (pt_prev) {
4590 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4591 goto drop;
4592 else
4593 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4594 } else {
4595 drop:
4596 if (!deliver_exact)
4597 atomic_long_inc(&skb->dev->rx_dropped);
4598 else
4599 atomic_long_inc(&skb->dev->rx_nohandler);
4600 kfree_skb(skb);
4601 /* Jamal, now you will not able to escape explaining
4602 * me how you were going to use this. :-)
4603 */
4604 ret = NET_RX_DROP;
4605 }
4606
4607 out:
4608 return ret;
4609 }
4610
4611 /**
4612 * netif_receive_skb_core - special purpose version of netif_receive_skb
4613 * @skb: buffer to process
4614 *
4615 * More direct receive version of netif_receive_skb(). It should
4616 * only be used by callers that have a need to skip RPS and Generic XDP.
4617 * Caller must also take care of handling if (page_is_)pfmemalloc.
4618 *
4619 * This function may only be called from softirq context and interrupts
4620 * should be enabled.
4621 *
4622 * Return values (usually ignored):
4623 * NET_RX_SUCCESS: no congestion
4624 * NET_RX_DROP: packet was dropped
4625 */
4626 int netif_receive_skb_core(struct sk_buff *skb)
4627 {
4628 int ret;
4629
4630 rcu_read_lock();
4631 ret = __netif_receive_skb_core(skb, false);
4632 rcu_read_unlock();
4633
4634 return ret;
4635 }
4636 EXPORT_SYMBOL(netif_receive_skb_core);
4637
4638 static int __netif_receive_skb(struct sk_buff *skb)
4639 {
4640 int ret;
4641
4642 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4643 unsigned int noreclaim_flag;
4644
4645 /*
4646 * PFMEMALLOC skbs are special, they should
4647 * - be delivered to SOCK_MEMALLOC sockets only
4648 * - stay away from userspace
4649 * - have bounded memory usage
4650 *
4651 * Use PF_MEMALLOC as this saves us from propagating the allocation
4652 * context down to all allocation sites.
4653 */
4654 noreclaim_flag = memalloc_noreclaim_save();
4655 ret = __netif_receive_skb_core(skb, true);
4656 memalloc_noreclaim_restore(noreclaim_flag);
4657 } else
4658 ret = __netif_receive_skb_core(skb, false);
4659
4660 return ret;
4661 }
4662
4663 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4664 {
4665 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4666 struct bpf_prog *new = xdp->prog;
4667 int ret = 0;
4668
4669 switch (xdp->command) {
4670 case XDP_SETUP_PROG:
4671 rcu_assign_pointer(dev->xdp_prog, new);
4672 if (old)
4673 bpf_prog_put(old);
4674
4675 if (old && !new) {
4676 static_key_slow_dec(&generic_xdp_needed);
4677 } else if (new && !old) {
4678 static_key_slow_inc(&generic_xdp_needed);
4679 dev_disable_lro(dev);
4680 dev_disable_gro_hw(dev);
4681 }
4682 break;
4683
4684 case XDP_QUERY_PROG:
4685 xdp->prog_attached = !!old;
4686 xdp->prog_id = old ? old->aux->id : 0;
4687 break;
4688
4689 default:
4690 ret = -EINVAL;
4691 break;
4692 }
4693
4694 return ret;
4695 }
4696
4697 static int netif_receive_skb_internal(struct sk_buff *skb)
4698 {
4699 int ret;
4700
4701 net_timestamp_check(netdev_tstamp_prequeue, skb);
4702
4703 if (skb_defer_rx_timestamp(skb))
4704 return NET_RX_SUCCESS;
4705
4706 if (static_key_false(&generic_xdp_needed)) {
4707 int ret;
4708
4709 preempt_disable();
4710 rcu_read_lock();
4711 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4712 rcu_read_unlock();
4713 preempt_enable();
4714
4715 if (ret != XDP_PASS)
4716 return NET_RX_DROP;
4717 }
4718
4719 rcu_read_lock();
4720 #ifdef CONFIG_RPS
4721 if (static_key_false(&rps_needed)) {
4722 struct rps_dev_flow voidflow, *rflow = &voidflow;
4723 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4724
4725 if (cpu >= 0) {
4726 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4727 rcu_read_unlock();
4728 return ret;
4729 }
4730 }
4731 #endif
4732 ret = __netif_receive_skb(skb);
4733 rcu_read_unlock();
4734 return ret;
4735 }
4736
4737 /**
4738 * netif_receive_skb - process receive buffer from network
4739 * @skb: buffer to process
4740 *
4741 * netif_receive_skb() is the main receive data processing function.
4742 * It always succeeds. The buffer may be dropped during processing
4743 * for congestion control or by the protocol layers.
4744 *
4745 * This function may only be called from softirq context and interrupts
4746 * should be enabled.
4747 *
4748 * Return values (usually ignored):
4749 * NET_RX_SUCCESS: no congestion
4750 * NET_RX_DROP: packet was dropped
4751 */
4752 int netif_receive_skb(struct sk_buff *skb)
4753 {
4754 trace_netif_receive_skb_entry(skb);
4755
4756 return netif_receive_skb_internal(skb);
4757 }
4758 EXPORT_SYMBOL(netif_receive_skb);
4759
4760 DEFINE_PER_CPU(struct work_struct, flush_works);
4761
4762 /* Network device is going away, flush any packets still pending */
4763 static void flush_backlog(struct work_struct *work)
4764 {
4765 struct sk_buff *skb, *tmp;
4766 struct softnet_data *sd;
4767
4768 local_bh_disable();
4769 sd = this_cpu_ptr(&softnet_data);
4770
4771 local_irq_disable();
4772 rps_lock(sd);
4773 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4774 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4775 __skb_unlink(skb, &sd->input_pkt_queue);
4776 kfree_skb(skb);
4777 input_queue_head_incr(sd);
4778 }
4779 }
4780 rps_unlock(sd);
4781 local_irq_enable();
4782
4783 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4784 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4785 __skb_unlink(skb, &sd->process_queue);
4786 kfree_skb(skb);
4787 input_queue_head_incr(sd);
4788 }
4789 }
4790 local_bh_enable();
4791 }
4792
4793 static void flush_all_backlogs(void)
4794 {
4795 unsigned int cpu;
4796
4797 get_online_cpus();
4798
4799 for_each_online_cpu(cpu)
4800 queue_work_on(cpu, system_highpri_wq,
4801 per_cpu_ptr(&flush_works, cpu));
4802
4803 for_each_online_cpu(cpu)
4804 flush_work(per_cpu_ptr(&flush_works, cpu));
4805
4806 put_online_cpus();
4807 }
4808
4809 static int napi_gro_complete(struct sk_buff *skb)
4810 {
4811 struct packet_offload *ptype;
4812 __be16 type = skb->protocol;
4813 struct list_head *head = &offload_base;
4814 int err = -ENOENT;
4815
4816 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4817
4818 if (NAPI_GRO_CB(skb)->count == 1) {
4819 skb_shinfo(skb)->gso_size = 0;
4820 goto out;
4821 }
4822
4823 rcu_read_lock();
4824 list_for_each_entry_rcu(ptype, head, list) {
4825 if (ptype->type != type || !ptype->callbacks.gro_complete)
4826 continue;
4827
4828 err = ptype->callbacks.gro_complete(skb, 0);
4829 break;
4830 }
4831 rcu_read_unlock();
4832
4833 if (err) {
4834 WARN_ON(&ptype->list == head);
4835 kfree_skb(skb);
4836 return NET_RX_SUCCESS;
4837 }
4838
4839 out:
4840 return netif_receive_skb_internal(skb);
4841 }
4842
4843 /* napi->gro_list contains packets ordered by age.
4844 * youngest packets at the head of it.
4845 * Complete skbs in reverse order to reduce latencies.
4846 */
4847 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4848 {
4849 struct sk_buff *skb, *prev = NULL;
4850
4851 /* scan list and build reverse chain */
4852 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4853 skb->prev = prev;
4854 prev = skb;
4855 }
4856
4857 for (skb = prev; skb; skb = prev) {
4858 skb->next = NULL;
4859
4860 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4861 return;
4862
4863 prev = skb->prev;
4864 napi_gro_complete(skb);
4865 napi->gro_count--;
4866 }
4867
4868 napi->gro_list = NULL;
4869 }
4870 EXPORT_SYMBOL(napi_gro_flush);
4871
4872 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4873 {
4874 struct sk_buff *p;
4875 unsigned int maclen = skb->dev->hard_header_len;
4876 u32 hash = skb_get_hash_raw(skb);
4877
4878 for (p = napi->gro_list; p; p = p->next) {
4879 unsigned long diffs;
4880
4881 NAPI_GRO_CB(p)->flush = 0;
4882
4883 if (hash != skb_get_hash_raw(p)) {
4884 NAPI_GRO_CB(p)->same_flow = 0;
4885 continue;
4886 }
4887
4888 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4889 diffs |= p->vlan_tci ^ skb->vlan_tci;
4890 diffs |= skb_metadata_dst_cmp(p, skb);
4891 diffs |= skb_metadata_differs(p, skb);
4892 if (maclen == ETH_HLEN)
4893 diffs |= compare_ether_header(skb_mac_header(p),
4894 skb_mac_header(skb));
4895 else if (!diffs)
4896 diffs = memcmp(skb_mac_header(p),
4897 skb_mac_header(skb),
4898 maclen);
4899 NAPI_GRO_CB(p)->same_flow = !diffs;
4900 }
4901 }
4902
4903 static void skb_gro_reset_offset(struct sk_buff *skb)
4904 {
4905 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4906 const skb_frag_t *frag0 = &pinfo->frags[0];
4907
4908 NAPI_GRO_CB(skb)->data_offset = 0;
4909 NAPI_GRO_CB(skb)->frag0 = NULL;
4910 NAPI_GRO_CB(skb)->frag0_len = 0;
4911
4912 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4913 pinfo->nr_frags &&
4914 !PageHighMem(skb_frag_page(frag0))) {
4915 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4916 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4917 skb_frag_size(frag0),
4918 skb->end - skb->tail);
4919 }
4920 }
4921
4922 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4923 {
4924 struct skb_shared_info *pinfo = skb_shinfo(skb);
4925
4926 BUG_ON(skb->end - skb->tail < grow);
4927
4928 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4929
4930 skb->data_len -= grow;
4931 skb->tail += grow;
4932
4933 pinfo->frags[0].page_offset += grow;
4934 skb_frag_size_sub(&pinfo->frags[0], grow);
4935
4936 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4937 skb_frag_unref(skb, 0);
4938 memmove(pinfo->frags, pinfo->frags + 1,
4939 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4940 }
4941 }
4942
4943 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4944 {
4945 struct sk_buff **pp = NULL;
4946 struct packet_offload *ptype;
4947 __be16 type = skb->protocol;
4948 struct list_head *head = &offload_base;
4949 int same_flow;
4950 enum gro_result ret;
4951 int grow;
4952
4953 if (netif_elide_gro(skb->dev))
4954 goto normal;
4955
4956 gro_list_prepare(napi, skb);
4957
4958 rcu_read_lock();
4959 list_for_each_entry_rcu(ptype, head, list) {
4960 if (ptype->type != type || !ptype->callbacks.gro_receive)
4961 continue;
4962
4963 skb_set_network_header(skb, skb_gro_offset(skb));
4964 skb_reset_mac_len(skb);
4965 NAPI_GRO_CB(skb)->same_flow = 0;
4966 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4967 NAPI_GRO_CB(skb)->free = 0;
4968 NAPI_GRO_CB(skb)->encap_mark = 0;
4969 NAPI_GRO_CB(skb)->recursion_counter = 0;
4970 NAPI_GRO_CB(skb)->is_fou = 0;
4971 NAPI_GRO_CB(skb)->is_atomic = 1;
4972 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4973
4974 /* Setup for GRO checksum validation */
4975 switch (skb->ip_summed) {
4976 case CHECKSUM_COMPLETE:
4977 NAPI_GRO_CB(skb)->csum = skb->csum;
4978 NAPI_GRO_CB(skb)->csum_valid = 1;
4979 NAPI_GRO_CB(skb)->csum_cnt = 0;
4980 break;
4981 case CHECKSUM_UNNECESSARY:
4982 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4983 NAPI_GRO_CB(skb)->csum_valid = 0;
4984 break;
4985 default:
4986 NAPI_GRO_CB(skb)->csum_cnt = 0;
4987 NAPI_GRO_CB(skb)->csum_valid = 0;
4988 }
4989
4990 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4991 break;
4992 }
4993 rcu_read_unlock();
4994
4995 if (&ptype->list == head)
4996 goto normal;
4997
4998 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4999 ret = GRO_CONSUMED;
5000 goto ok;
5001 }
5002
5003 same_flow = NAPI_GRO_CB(skb)->same_flow;
5004 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5005
5006 if (pp) {
5007 struct sk_buff *nskb = *pp;
5008
5009 *pp = nskb->next;
5010 nskb->next = NULL;
5011 napi_gro_complete(nskb);
5012 napi->gro_count--;
5013 }
5014
5015 if (same_flow)
5016 goto ok;
5017
5018 if (NAPI_GRO_CB(skb)->flush)
5019 goto normal;
5020
5021 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
5022 struct sk_buff *nskb = napi->gro_list;
5023
5024 /* locate the end of the list to select the 'oldest' flow */
5025 while (nskb->next) {
5026 pp = &nskb->next;
5027 nskb = *pp;
5028 }
5029 *pp = NULL;
5030 nskb->next = NULL;
5031 napi_gro_complete(nskb);
5032 } else {
5033 napi->gro_count++;
5034 }
5035 NAPI_GRO_CB(skb)->count = 1;
5036 NAPI_GRO_CB(skb)->age = jiffies;
5037 NAPI_GRO_CB(skb)->last = skb;
5038 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5039 skb->next = napi->gro_list;
5040 napi->gro_list = skb;
5041 ret = GRO_HELD;
5042
5043 pull:
5044 grow = skb_gro_offset(skb) - skb_headlen(skb);
5045 if (grow > 0)
5046 gro_pull_from_frag0(skb, grow);
5047 ok:
5048 return ret;
5049
5050 normal:
5051 ret = GRO_NORMAL;
5052 goto pull;
5053 }
5054
5055 struct packet_offload *gro_find_receive_by_type(__be16 type)
5056 {
5057 struct list_head *offload_head = &offload_base;
5058 struct packet_offload *ptype;
5059
5060 list_for_each_entry_rcu(ptype, offload_head, list) {
5061 if (ptype->type != type || !ptype->callbacks.gro_receive)
5062 continue;
5063 return ptype;
5064 }
5065 return NULL;
5066 }
5067 EXPORT_SYMBOL(gro_find_receive_by_type);
5068
5069 struct packet_offload *gro_find_complete_by_type(__be16 type)
5070 {
5071 struct list_head *offload_head = &offload_base;
5072 struct packet_offload *ptype;
5073
5074 list_for_each_entry_rcu(ptype, offload_head, list) {
5075 if (ptype->type != type || !ptype->callbacks.gro_complete)
5076 continue;
5077 return ptype;
5078 }
5079 return NULL;
5080 }
5081 EXPORT_SYMBOL(gro_find_complete_by_type);
5082
5083 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5084 {
5085 skb_dst_drop(skb);
5086 secpath_reset(skb);
5087 kmem_cache_free(skbuff_head_cache, skb);
5088 }
5089
5090 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5091 {
5092 switch (ret) {
5093 case GRO_NORMAL:
5094 if (netif_receive_skb_internal(skb))
5095 ret = GRO_DROP;
5096 break;
5097
5098 case GRO_DROP:
5099 kfree_skb(skb);
5100 break;
5101
5102 case GRO_MERGED_FREE:
5103 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5104 napi_skb_free_stolen_head(skb);
5105 else
5106 __kfree_skb(skb);
5107 break;
5108
5109 case GRO_HELD:
5110 case GRO_MERGED:
5111 case GRO_CONSUMED:
5112 break;
5113 }
5114
5115 return ret;
5116 }
5117
5118 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5119 {
5120 skb_mark_napi_id(skb, napi);
5121 trace_napi_gro_receive_entry(skb);
5122
5123 skb_gro_reset_offset(skb);
5124
5125 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5126 }
5127 EXPORT_SYMBOL(napi_gro_receive);
5128
5129 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5130 {
5131 if (unlikely(skb->pfmemalloc)) {
5132 consume_skb(skb);
5133 return;
5134 }
5135 __skb_pull(skb, skb_headlen(skb));
5136 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5137 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5138 skb->vlan_tci = 0;
5139 skb->dev = napi->dev;
5140 skb->skb_iif = 0;
5141 skb->encapsulation = 0;
5142 skb_shinfo(skb)->gso_type = 0;
5143 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5144 secpath_reset(skb);
5145
5146 napi->skb = skb;
5147 }
5148
5149 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5150 {
5151 struct sk_buff *skb = napi->skb;
5152
5153 if (!skb) {
5154 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5155 if (skb) {
5156 napi->skb = skb;
5157 skb_mark_napi_id(skb, napi);
5158 }
5159 }
5160 return skb;
5161 }
5162 EXPORT_SYMBOL(napi_get_frags);
5163
5164 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5165 struct sk_buff *skb,
5166 gro_result_t ret)
5167 {
5168 switch (ret) {
5169 case GRO_NORMAL:
5170 case GRO_HELD:
5171 __skb_push(skb, ETH_HLEN);
5172 skb->protocol = eth_type_trans(skb, skb->dev);
5173 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5174 ret = GRO_DROP;
5175 break;
5176
5177 case GRO_DROP:
5178 napi_reuse_skb(napi, skb);
5179 break;
5180
5181 case GRO_MERGED_FREE:
5182 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5183 napi_skb_free_stolen_head(skb);
5184 else
5185 napi_reuse_skb(napi, skb);
5186 break;
5187
5188 case GRO_MERGED:
5189 case GRO_CONSUMED:
5190 break;
5191 }
5192
5193 return ret;
5194 }
5195
5196 /* Upper GRO stack assumes network header starts at gro_offset=0
5197 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5198 * We copy ethernet header into skb->data to have a common layout.
5199 */
5200 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5201 {
5202 struct sk_buff *skb = napi->skb;
5203 const struct ethhdr *eth;
5204 unsigned int hlen = sizeof(*eth);
5205
5206 napi->skb = NULL;
5207
5208 skb_reset_mac_header(skb);
5209 skb_gro_reset_offset(skb);
5210
5211 eth = skb_gro_header_fast(skb, 0);
5212 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5213 eth = skb_gro_header_slow(skb, hlen, 0);
5214 if (unlikely(!eth)) {
5215 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5216 __func__, napi->dev->name);
5217 napi_reuse_skb(napi, skb);
5218 return NULL;
5219 }
5220 } else {
5221 gro_pull_from_frag0(skb, hlen);
5222 NAPI_GRO_CB(skb)->frag0 += hlen;
5223 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5224 }
5225 __skb_pull(skb, hlen);
5226
5227 /*
5228 * This works because the only protocols we care about don't require
5229 * special handling.
5230 * We'll fix it up properly in napi_frags_finish()
5231 */
5232 skb->protocol = eth->h_proto;
5233
5234 return skb;
5235 }
5236
5237 gro_result_t napi_gro_frags(struct napi_struct *napi)
5238 {
5239 struct sk_buff *skb = napi_frags_skb(napi);
5240
5241 if (!skb)
5242 return GRO_DROP;
5243
5244 trace_napi_gro_frags_entry(skb);
5245
5246 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5247 }
5248 EXPORT_SYMBOL(napi_gro_frags);
5249
5250 /* Compute the checksum from gro_offset and return the folded value
5251 * after adding in any pseudo checksum.
5252 */
5253 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5254 {
5255 __wsum wsum;
5256 __sum16 sum;
5257
5258 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5259
5260 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5261 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5262 if (likely(!sum)) {
5263 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5264 !skb->csum_complete_sw)
5265 netdev_rx_csum_fault(skb->dev);
5266 }
5267
5268 NAPI_GRO_CB(skb)->csum = wsum;
5269 NAPI_GRO_CB(skb)->csum_valid = 1;
5270
5271 return sum;
5272 }
5273 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5274
5275 static void net_rps_send_ipi(struct softnet_data *remsd)
5276 {
5277 #ifdef CONFIG_RPS
5278 while (remsd) {
5279 struct softnet_data *next = remsd->rps_ipi_next;
5280
5281 if (cpu_online(remsd->cpu))
5282 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5283 remsd = next;
5284 }
5285 #endif
5286 }
5287
5288 /*
5289 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5290 * Note: called with local irq disabled, but exits with local irq enabled.
5291 */
5292 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5293 {
5294 #ifdef CONFIG_RPS
5295 struct softnet_data *remsd = sd->rps_ipi_list;
5296
5297 if (remsd) {
5298 sd->rps_ipi_list = NULL;
5299
5300 local_irq_enable();
5301
5302 /* Send pending IPI's to kick RPS processing on remote cpus. */
5303 net_rps_send_ipi(remsd);
5304 } else
5305 #endif
5306 local_irq_enable();
5307 }
5308
5309 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5310 {
5311 #ifdef CONFIG_RPS
5312 return sd->rps_ipi_list != NULL;
5313 #else
5314 return false;
5315 #endif
5316 }
5317
5318 static int process_backlog(struct napi_struct *napi, int quota)
5319 {
5320 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5321 bool again = true;
5322 int work = 0;
5323
5324 /* Check if we have pending ipi, its better to send them now,
5325 * not waiting net_rx_action() end.
5326 */
5327 if (sd_has_rps_ipi_waiting(sd)) {
5328 local_irq_disable();
5329 net_rps_action_and_irq_enable(sd);
5330 }
5331
5332 napi->weight = dev_rx_weight;
5333 while (again) {
5334 struct sk_buff *skb;
5335
5336 while ((skb = __skb_dequeue(&sd->process_queue))) {
5337 rcu_read_lock();
5338 __netif_receive_skb(skb);
5339 rcu_read_unlock();
5340 input_queue_head_incr(sd);
5341 if (++work >= quota)
5342 return work;
5343
5344 }
5345
5346 local_irq_disable();
5347 rps_lock(sd);
5348 if (skb_queue_empty(&sd->input_pkt_queue)) {
5349 /*
5350 * Inline a custom version of __napi_complete().
5351 * only current cpu owns and manipulates this napi,
5352 * and NAPI_STATE_SCHED is the only possible flag set
5353 * on backlog.
5354 * We can use a plain write instead of clear_bit(),
5355 * and we dont need an smp_mb() memory barrier.
5356 */
5357 napi->state = 0;
5358 again = false;
5359 } else {
5360 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5361 &sd->process_queue);
5362 }
5363 rps_unlock(sd);
5364 local_irq_enable();
5365 }
5366
5367 return work;
5368 }
5369
5370 /**
5371 * __napi_schedule - schedule for receive
5372 * @n: entry to schedule
5373 *
5374 * The entry's receive function will be scheduled to run.
5375 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5376 */
5377 void __napi_schedule(struct napi_struct *n)
5378 {
5379 unsigned long flags;
5380
5381 local_irq_save(flags);
5382 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5383 local_irq_restore(flags);
5384 }
5385 EXPORT_SYMBOL(__napi_schedule);
5386
5387 /**
5388 * napi_schedule_prep - check if napi can be scheduled
5389 * @n: napi context
5390 *
5391 * Test if NAPI routine is already running, and if not mark
5392 * it as running. This is used as a condition variable
5393 * insure only one NAPI poll instance runs. We also make
5394 * sure there is no pending NAPI disable.
5395 */
5396 bool napi_schedule_prep(struct napi_struct *n)
5397 {
5398 unsigned long val, new;
5399
5400 do {
5401 val = READ_ONCE(n->state);
5402 if (unlikely(val & NAPIF_STATE_DISABLE))
5403 return false;
5404 new = val | NAPIF_STATE_SCHED;
5405
5406 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5407 * This was suggested by Alexander Duyck, as compiler
5408 * emits better code than :
5409 * if (val & NAPIF_STATE_SCHED)
5410 * new |= NAPIF_STATE_MISSED;
5411 */
5412 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5413 NAPIF_STATE_MISSED;
5414 } while (cmpxchg(&n->state, val, new) != val);
5415
5416 return !(val & NAPIF_STATE_SCHED);
5417 }
5418 EXPORT_SYMBOL(napi_schedule_prep);
5419
5420 /**
5421 * __napi_schedule_irqoff - schedule for receive
5422 * @n: entry to schedule
5423 *
5424 * Variant of __napi_schedule() assuming hard irqs are masked
5425 */
5426 void __napi_schedule_irqoff(struct napi_struct *n)
5427 {
5428 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5429 }
5430 EXPORT_SYMBOL(__napi_schedule_irqoff);
5431
5432 bool napi_complete_done(struct napi_struct *n, int work_done)
5433 {
5434 unsigned long flags, val, new;
5435
5436 /*
5437 * 1) Don't let napi dequeue from the cpu poll list
5438 * just in case its running on a different cpu.
5439 * 2) If we are busy polling, do nothing here, we have
5440 * the guarantee we will be called later.
5441 */
5442 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5443 NAPIF_STATE_IN_BUSY_POLL)))
5444 return false;
5445
5446 if (n->gro_list) {
5447 unsigned long timeout = 0;
5448
5449 if (work_done)
5450 timeout = n->dev->gro_flush_timeout;
5451
5452 if (timeout)
5453 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5454 HRTIMER_MODE_REL_PINNED);
5455 else
5456 napi_gro_flush(n, false);
5457 }
5458 if (unlikely(!list_empty(&n->poll_list))) {
5459 /* If n->poll_list is not empty, we need to mask irqs */
5460 local_irq_save(flags);
5461 list_del_init(&n->poll_list);
5462 local_irq_restore(flags);
5463 }
5464
5465 do {
5466 val = READ_ONCE(n->state);
5467
5468 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5469
5470 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5471
5472 /* If STATE_MISSED was set, leave STATE_SCHED set,
5473 * because we will call napi->poll() one more time.
5474 * This C code was suggested by Alexander Duyck to help gcc.
5475 */
5476 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5477 NAPIF_STATE_SCHED;
5478 } while (cmpxchg(&n->state, val, new) != val);
5479
5480 if (unlikely(val & NAPIF_STATE_MISSED)) {
5481 __napi_schedule(n);
5482 return false;
5483 }
5484
5485 return true;
5486 }
5487 EXPORT_SYMBOL(napi_complete_done);
5488
5489 /* must be called under rcu_read_lock(), as we dont take a reference */
5490 static struct napi_struct *napi_by_id(unsigned int napi_id)
5491 {
5492 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5493 struct napi_struct *napi;
5494
5495 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5496 if (napi->napi_id == napi_id)
5497 return napi;
5498
5499 return NULL;
5500 }
5501
5502 #if defined(CONFIG_NET_RX_BUSY_POLL)
5503
5504 #define BUSY_POLL_BUDGET 8
5505
5506 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5507 {
5508 int rc;
5509
5510 /* Busy polling means there is a high chance device driver hard irq
5511 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5512 * set in napi_schedule_prep().
5513 * Since we are about to call napi->poll() once more, we can safely
5514 * clear NAPI_STATE_MISSED.
5515 *
5516 * Note: x86 could use a single "lock and ..." instruction
5517 * to perform these two clear_bit()
5518 */
5519 clear_bit(NAPI_STATE_MISSED, &napi->state);
5520 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5521
5522 local_bh_disable();
5523
5524 /* All we really want here is to re-enable device interrupts.
5525 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5526 */
5527 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5528 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5529 netpoll_poll_unlock(have_poll_lock);
5530 if (rc == BUSY_POLL_BUDGET)
5531 __napi_schedule(napi);
5532 local_bh_enable();
5533 }
5534
5535 void napi_busy_loop(unsigned int napi_id,
5536 bool (*loop_end)(void *, unsigned long),
5537 void *loop_end_arg)
5538 {
5539 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5540 int (*napi_poll)(struct napi_struct *napi, int budget);
5541 void *have_poll_lock = NULL;
5542 struct napi_struct *napi;
5543
5544 restart:
5545 napi_poll = NULL;
5546
5547 rcu_read_lock();
5548
5549 napi = napi_by_id(napi_id);
5550 if (!napi)
5551 goto out;
5552
5553 preempt_disable();
5554 for (;;) {
5555 int work = 0;
5556
5557 local_bh_disable();
5558 if (!napi_poll) {
5559 unsigned long val = READ_ONCE(napi->state);
5560
5561 /* If multiple threads are competing for this napi,
5562 * we avoid dirtying napi->state as much as we can.
5563 */
5564 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5565 NAPIF_STATE_IN_BUSY_POLL))
5566 goto count;
5567 if (cmpxchg(&napi->state, val,
5568 val | NAPIF_STATE_IN_BUSY_POLL |
5569 NAPIF_STATE_SCHED) != val)
5570 goto count;
5571 have_poll_lock = netpoll_poll_lock(napi);
5572 napi_poll = napi->poll;
5573 }
5574 work = napi_poll(napi, BUSY_POLL_BUDGET);
5575 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5576 count:
5577 if (work > 0)
5578 __NET_ADD_STATS(dev_net(napi->dev),
5579 LINUX_MIB_BUSYPOLLRXPACKETS, work);
5580 local_bh_enable();
5581
5582 if (!loop_end || loop_end(loop_end_arg, start_time))
5583 break;
5584
5585 if (unlikely(need_resched())) {
5586 if (napi_poll)
5587 busy_poll_stop(napi, have_poll_lock);
5588 preempt_enable();
5589 rcu_read_unlock();
5590 cond_resched();
5591 if (loop_end(loop_end_arg, start_time))
5592 return;
5593 goto restart;
5594 }
5595 cpu_relax();
5596 }
5597 if (napi_poll)
5598 busy_poll_stop(napi, have_poll_lock);
5599 preempt_enable();
5600 out:
5601 rcu_read_unlock();
5602 }
5603 EXPORT_SYMBOL(napi_busy_loop);
5604
5605 #endif /* CONFIG_NET_RX_BUSY_POLL */
5606
5607 static void napi_hash_add(struct napi_struct *napi)
5608 {
5609 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5610 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5611 return;
5612
5613 spin_lock(&napi_hash_lock);
5614
5615 /* 0..NR_CPUS range is reserved for sender_cpu use */
5616 do {
5617 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5618 napi_gen_id = MIN_NAPI_ID;
5619 } while (napi_by_id(napi_gen_id));
5620 napi->napi_id = napi_gen_id;
5621
5622 hlist_add_head_rcu(&napi->napi_hash_node,
5623 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5624
5625 spin_unlock(&napi_hash_lock);
5626 }
5627
5628 /* Warning : caller is responsible to make sure rcu grace period
5629 * is respected before freeing memory containing @napi
5630 */
5631 bool napi_hash_del(struct napi_struct *napi)
5632 {
5633 bool rcu_sync_needed = false;
5634
5635 spin_lock(&napi_hash_lock);
5636
5637 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5638 rcu_sync_needed = true;
5639 hlist_del_rcu(&napi->napi_hash_node);
5640 }
5641 spin_unlock(&napi_hash_lock);
5642 return rcu_sync_needed;
5643 }
5644 EXPORT_SYMBOL_GPL(napi_hash_del);
5645
5646 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5647 {
5648 struct napi_struct *napi;
5649
5650 napi = container_of(timer, struct napi_struct, timer);
5651
5652 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5653 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5654 */
5655 if (napi->gro_list && !napi_disable_pending(napi) &&
5656 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5657 __napi_schedule_irqoff(napi);
5658
5659 return HRTIMER_NORESTART;
5660 }
5661
5662 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5663 int (*poll)(struct napi_struct *, int), int weight)
5664 {
5665 INIT_LIST_HEAD(&napi->poll_list);
5666 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5667 napi->timer.function = napi_watchdog;
5668 napi->gro_count = 0;
5669 napi->gro_list = NULL;
5670 napi->skb = NULL;
5671 napi->poll = poll;
5672 if (weight > NAPI_POLL_WEIGHT)
5673 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5674 weight, dev->name);
5675 napi->weight = weight;
5676 list_add(&napi->dev_list, &dev->napi_list);
5677 napi->dev = dev;
5678 #ifdef CONFIG_NETPOLL
5679 napi->poll_owner = -1;
5680 #endif
5681 set_bit(NAPI_STATE_SCHED, &napi->state);
5682 napi_hash_add(napi);
5683 }
5684 EXPORT_SYMBOL(netif_napi_add);
5685
5686 void napi_disable(struct napi_struct *n)
5687 {
5688 might_sleep();
5689 set_bit(NAPI_STATE_DISABLE, &n->state);
5690
5691 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5692 msleep(1);
5693 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5694 msleep(1);
5695
5696 hrtimer_cancel(&n->timer);
5697
5698 clear_bit(NAPI_STATE_DISABLE, &n->state);
5699 }
5700 EXPORT_SYMBOL(napi_disable);
5701
5702 /* Must be called in process context */
5703 void netif_napi_del(struct napi_struct *napi)
5704 {
5705 might_sleep();
5706 if (napi_hash_del(napi))
5707 synchronize_net();
5708 list_del_init(&napi->dev_list);
5709 napi_free_frags(napi);
5710
5711 kfree_skb_list(napi->gro_list);
5712 napi->gro_list = NULL;
5713 napi->gro_count = 0;
5714 }
5715 EXPORT_SYMBOL(netif_napi_del);
5716
5717 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5718 {
5719 void *have;
5720 int work, weight;
5721
5722 list_del_init(&n->poll_list);
5723
5724 have = netpoll_poll_lock(n);
5725
5726 weight = n->weight;
5727
5728 /* This NAPI_STATE_SCHED test is for avoiding a race
5729 * with netpoll's poll_napi(). Only the entity which
5730 * obtains the lock and sees NAPI_STATE_SCHED set will
5731 * actually make the ->poll() call. Therefore we avoid
5732 * accidentally calling ->poll() when NAPI is not scheduled.
5733 */
5734 work = 0;
5735 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5736 work = n->poll(n, weight);
5737 trace_napi_poll(n, work, weight);
5738 }
5739
5740 WARN_ON_ONCE(work > weight);
5741
5742 if (likely(work < weight))
5743 goto out_unlock;
5744
5745 /* Drivers must not modify the NAPI state if they
5746 * consume the entire weight. In such cases this code
5747 * still "owns" the NAPI instance and therefore can
5748 * move the instance around on the list at-will.
5749 */
5750 if (unlikely(napi_disable_pending(n))) {
5751 napi_complete(n);
5752 goto out_unlock;
5753 }
5754
5755 if (n->gro_list) {
5756 /* flush too old packets
5757 * If HZ < 1000, flush all packets.
5758 */
5759 napi_gro_flush(n, HZ >= 1000);
5760 }
5761
5762 /* Some drivers may have called napi_schedule
5763 * prior to exhausting their budget.
5764 */
5765 if (unlikely(!list_empty(&n->poll_list))) {
5766 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5767 n->dev ? n->dev->name : "backlog");
5768 goto out_unlock;
5769 }
5770
5771 list_add_tail(&n->poll_list, repoll);
5772
5773 out_unlock:
5774 netpoll_poll_unlock(have);
5775
5776 return work;
5777 }
5778
5779 static __latent_entropy void net_rx_action(struct softirq_action *h)
5780 {
5781 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5782 unsigned long time_limit = jiffies +
5783 usecs_to_jiffies(netdev_budget_usecs);
5784 int budget = netdev_budget;
5785 LIST_HEAD(list);
5786 LIST_HEAD(repoll);
5787
5788 local_irq_disable();
5789 list_splice_init(&sd->poll_list, &list);
5790 local_irq_enable();
5791
5792 for (;;) {
5793 struct napi_struct *n;
5794
5795 if (list_empty(&list)) {
5796 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5797 goto out;
5798 break;
5799 }
5800
5801 n = list_first_entry(&list, struct napi_struct, poll_list);
5802 budget -= napi_poll(n, &repoll);
5803
5804 /* If softirq window is exhausted then punt.
5805 * Allow this to run for 2 jiffies since which will allow
5806 * an average latency of 1.5/HZ.
5807 */
5808 if (unlikely(budget <= 0 ||
5809 time_after_eq(jiffies, time_limit))) {
5810 sd->time_squeeze++;
5811 break;
5812 }
5813 }
5814
5815 local_irq_disable();
5816
5817 list_splice_tail_init(&sd->poll_list, &list);
5818 list_splice_tail(&repoll, &list);
5819 list_splice(&list, &sd->poll_list);
5820 if (!list_empty(&sd->poll_list))
5821 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5822
5823 net_rps_action_and_irq_enable(sd);
5824 out:
5825 __kfree_skb_flush();
5826 }
5827
5828 struct netdev_adjacent {
5829 struct net_device *dev;
5830
5831 /* upper master flag, there can only be one master device per list */
5832 bool master;
5833
5834 /* counter for the number of times this device was added to us */
5835 u16 ref_nr;
5836
5837 /* private field for the users */
5838 void *private;
5839
5840 struct list_head list;
5841 struct rcu_head rcu;
5842 };
5843
5844 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5845 struct list_head *adj_list)
5846 {
5847 struct netdev_adjacent *adj;
5848
5849 list_for_each_entry(adj, adj_list, list) {
5850 if (adj->dev == adj_dev)
5851 return adj;
5852 }
5853 return NULL;
5854 }
5855
5856 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5857 {
5858 struct net_device *dev = data;
5859
5860 return upper_dev == dev;
5861 }
5862
5863 /**
5864 * netdev_has_upper_dev - Check if device is linked to an upper device
5865 * @dev: device
5866 * @upper_dev: upper device to check
5867 *
5868 * Find out if a device is linked to specified upper device and return true
5869 * in case it is. Note that this checks only immediate upper device,
5870 * not through a complete stack of devices. The caller must hold the RTNL lock.
5871 */
5872 bool netdev_has_upper_dev(struct net_device *dev,
5873 struct net_device *upper_dev)
5874 {
5875 ASSERT_RTNL();
5876
5877 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5878 upper_dev);
5879 }
5880 EXPORT_SYMBOL(netdev_has_upper_dev);
5881
5882 /**
5883 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5884 * @dev: device
5885 * @upper_dev: upper device to check
5886 *
5887 * Find out if a device is linked to specified upper device and return true
5888 * in case it is. Note that this checks the entire upper device chain.
5889 * The caller must hold rcu lock.
5890 */
5891
5892 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5893 struct net_device *upper_dev)
5894 {
5895 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5896 upper_dev);
5897 }
5898 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5899
5900 /**
5901 * netdev_has_any_upper_dev - Check if device is linked to some device
5902 * @dev: device
5903 *
5904 * Find out if a device is linked to an upper device and return true in case
5905 * it is. The caller must hold the RTNL lock.
5906 */
5907 bool netdev_has_any_upper_dev(struct net_device *dev)
5908 {
5909 ASSERT_RTNL();
5910
5911 return !list_empty(&dev->adj_list.upper);
5912 }
5913 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5914
5915 /**
5916 * netdev_master_upper_dev_get - Get master upper device
5917 * @dev: device
5918 *
5919 * Find a master upper device and return pointer to it or NULL in case
5920 * it's not there. The caller must hold the RTNL lock.
5921 */
5922 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5923 {
5924 struct netdev_adjacent *upper;
5925
5926 ASSERT_RTNL();
5927
5928 if (list_empty(&dev->adj_list.upper))
5929 return NULL;
5930
5931 upper = list_first_entry(&dev->adj_list.upper,
5932 struct netdev_adjacent, list);
5933 if (likely(upper->master))
5934 return upper->dev;
5935 return NULL;
5936 }
5937 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5938
5939 /**
5940 * netdev_has_any_lower_dev - Check if device is linked to some device
5941 * @dev: device
5942 *
5943 * Find out if a device is linked to a lower device and return true in case
5944 * it is. The caller must hold the RTNL lock.
5945 */
5946 static bool netdev_has_any_lower_dev(struct net_device *dev)
5947 {
5948 ASSERT_RTNL();
5949
5950 return !list_empty(&dev->adj_list.lower);
5951 }
5952
5953 void *netdev_adjacent_get_private(struct list_head *adj_list)
5954 {
5955 struct netdev_adjacent *adj;
5956
5957 adj = list_entry(adj_list, struct netdev_adjacent, list);
5958
5959 return adj->private;
5960 }
5961 EXPORT_SYMBOL(netdev_adjacent_get_private);
5962
5963 /**
5964 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5965 * @dev: device
5966 * @iter: list_head ** of the current position
5967 *
5968 * Gets the next device from the dev's upper list, starting from iter
5969 * position. The caller must hold RCU read lock.
5970 */
5971 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5972 struct list_head **iter)
5973 {
5974 struct netdev_adjacent *upper;
5975
5976 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5977
5978 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5979
5980 if (&upper->list == &dev->adj_list.upper)
5981 return NULL;
5982
5983 *iter = &upper->list;
5984
5985 return upper->dev;
5986 }
5987 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5988
5989 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5990 struct list_head **iter)
5991 {
5992 struct netdev_adjacent *upper;
5993
5994 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5995
5996 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5997
5998 if (&upper->list == &dev->adj_list.upper)
5999 return NULL;
6000
6001 *iter = &upper->list;
6002
6003 return upper->dev;
6004 }
6005
6006 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6007 int (*fn)(struct net_device *dev,
6008 void *data),
6009 void *data)
6010 {
6011 struct net_device *udev;
6012 struct list_head *iter;
6013 int ret;
6014
6015 for (iter = &dev->adj_list.upper,
6016 udev = netdev_next_upper_dev_rcu(dev, &iter);
6017 udev;
6018 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6019 /* first is the upper device itself */
6020 ret = fn(udev, data);
6021 if (ret)
6022 return ret;
6023
6024 /* then look at all of its upper devices */
6025 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6026 if (ret)
6027 return ret;
6028 }
6029
6030 return 0;
6031 }
6032 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6033
6034 /**
6035 * netdev_lower_get_next_private - Get the next ->private from the
6036 * lower neighbour list
6037 * @dev: device
6038 * @iter: list_head ** of the current position
6039 *
6040 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6041 * list, starting from iter position. The caller must hold either hold the
6042 * RTNL lock or its own locking that guarantees that the neighbour lower
6043 * list will remain unchanged.
6044 */
6045 void *netdev_lower_get_next_private(struct net_device *dev,
6046 struct list_head **iter)
6047 {
6048 struct netdev_adjacent *lower;
6049
6050 lower = list_entry(*iter, struct netdev_adjacent, list);
6051
6052 if (&lower->list == &dev->adj_list.lower)
6053 return NULL;
6054
6055 *iter = lower->list.next;
6056
6057 return lower->private;
6058 }
6059 EXPORT_SYMBOL(netdev_lower_get_next_private);
6060
6061 /**
6062 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6063 * lower neighbour list, RCU
6064 * variant
6065 * @dev: device
6066 * @iter: list_head ** of the current position
6067 *
6068 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6069 * list, starting from iter position. The caller must hold RCU read lock.
6070 */
6071 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6072 struct list_head **iter)
6073 {
6074 struct netdev_adjacent *lower;
6075
6076 WARN_ON_ONCE(!rcu_read_lock_held());
6077
6078 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6079
6080 if (&lower->list == &dev->adj_list.lower)
6081 return NULL;
6082
6083 *iter = &lower->list;
6084
6085 return lower->private;
6086 }
6087 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6088
6089 /**
6090 * netdev_lower_get_next - Get the next device from the lower neighbour
6091 * list
6092 * @dev: device
6093 * @iter: list_head ** of the current position
6094 *
6095 * Gets the next netdev_adjacent from the dev's lower neighbour
6096 * list, starting from iter position. The caller must hold RTNL lock or
6097 * its own locking that guarantees that the neighbour lower
6098 * list will remain unchanged.
6099 */
6100 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6101 {
6102 struct netdev_adjacent *lower;
6103
6104 lower = list_entry(*iter, struct netdev_adjacent, list);
6105
6106 if (&lower->list == &dev->adj_list.lower)
6107 return NULL;
6108
6109 *iter = lower->list.next;
6110
6111 return lower->dev;
6112 }
6113 EXPORT_SYMBOL(netdev_lower_get_next);
6114
6115 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6116 struct list_head **iter)
6117 {
6118 struct netdev_adjacent *lower;
6119
6120 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6121
6122 if (&lower->list == &dev->adj_list.lower)
6123 return NULL;
6124
6125 *iter = &lower->list;
6126
6127 return lower->dev;
6128 }
6129
6130 int netdev_walk_all_lower_dev(struct net_device *dev,
6131 int (*fn)(struct net_device *dev,
6132 void *data),
6133 void *data)
6134 {
6135 struct net_device *ldev;
6136 struct list_head *iter;
6137 int ret;
6138
6139 for (iter = &dev->adj_list.lower,
6140 ldev = netdev_next_lower_dev(dev, &iter);
6141 ldev;
6142 ldev = netdev_next_lower_dev(dev, &iter)) {
6143 /* first is the lower device itself */
6144 ret = fn(ldev, data);
6145 if (ret)
6146 return ret;
6147
6148 /* then look at all of its lower devices */
6149 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6150 if (ret)
6151 return ret;
6152 }
6153
6154 return 0;
6155 }
6156 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6157
6158 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6159 struct list_head **iter)
6160 {
6161 struct netdev_adjacent *lower;
6162
6163 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6164 if (&lower->list == &dev->adj_list.lower)
6165 return NULL;
6166
6167 *iter = &lower->list;
6168
6169 return lower->dev;
6170 }
6171
6172 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6173 int (*fn)(struct net_device *dev,
6174 void *data),
6175 void *data)
6176 {
6177 struct net_device *ldev;
6178 struct list_head *iter;
6179 int ret;
6180
6181 for (iter = &dev->adj_list.lower,
6182 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6183 ldev;
6184 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6185 /* first is the lower device itself */
6186 ret = fn(ldev, data);
6187 if (ret)
6188 return ret;
6189
6190 /* then look at all of its lower devices */
6191 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6192 if (ret)
6193 return ret;
6194 }
6195
6196 return 0;
6197 }
6198 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6199
6200 /**
6201 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6202 * lower neighbour list, RCU
6203 * variant
6204 * @dev: device
6205 *
6206 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6207 * list. The caller must hold RCU read lock.
6208 */
6209 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6210 {
6211 struct netdev_adjacent *lower;
6212
6213 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6214 struct netdev_adjacent, list);
6215 if (lower)
6216 return lower->private;
6217 return NULL;
6218 }
6219 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6220
6221 /**
6222 * netdev_master_upper_dev_get_rcu - Get master upper device
6223 * @dev: device
6224 *
6225 * Find a master upper device and return pointer to it or NULL in case
6226 * it's not there. The caller must hold the RCU read lock.
6227 */
6228 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6229 {
6230 struct netdev_adjacent *upper;
6231
6232 upper = list_first_or_null_rcu(&dev->adj_list.upper,
6233 struct netdev_adjacent, list);
6234 if (upper && likely(upper->master))
6235 return upper->dev;
6236 return NULL;
6237 }
6238 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6239
6240 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6241 struct net_device *adj_dev,
6242 struct list_head *dev_list)
6243 {
6244 char linkname[IFNAMSIZ+7];
6245
6246 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6247 "upper_%s" : "lower_%s", adj_dev->name);
6248 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6249 linkname);
6250 }
6251 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6252 char *name,
6253 struct list_head *dev_list)
6254 {
6255 char linkname[IFNAMSIZ+7];
6256
6257 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6258 "upper_%s" : "lower_%s", name);
6259 sysfs_remove_link(&(dev->dev.kobj), linkname);
6260 }
6261
6262 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6263 struct net_device *adj_dev,
6264 struct list_head *dev_list)
6265 {
6266 return (dev_list == &dev->adj_list.upper ||
6267 dev_list == &dev->adj_list.lower) &&
6268 net_eq(dev_net(dev), dev_net(adj_dev));
6269 }
6270
6271 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6272 struct net_device *adj_dev,
6273 struct list_head *dev_list,
6274 void *private, bool master)
6275 {
6276 struct netdev_adjacent *adj;
6277 int ret;
6278
6279 adj = __netdev_find_adj(adj_dev, dev_list);
6280
6281 if (adj) {
6282 adj->ref_nr += 1;
6283 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6284 dev->name, adj_dev->name, adj->ref_nr);
6285
6286 return 0;
6287 }
6288
6289 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6290 if (!adj)
6291 return -ENOMEM;
6292
6293 adj->dev = adj_dev;
6294 adj->master = master;
6295 adj->ref_nr = 1;
6296 adj->private = private;
6297 dev_hold(adj_dev);
6298
6299 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6300 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6301
6302 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6303 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6304 if (ret)
6305 goto free_adj;
6306 }
6307
6308 /* Ensure that master link is always the first item in list. */
6309 if (master) {
6310 ret = sysfs_create_link(&(dev->dev.kobj),
6311 &(adj_dev->dev.kobj), "master");
6312 if (ret)
6313 goto remove_symlinks;
6314
6315 list_add_rcu(&adj->list, dev_list);
6316 } else {
6317 list_add_tail_rcu(&adj->list, dev_list);
6318 }
6319
6320 return 0;
6321
6322 remove_symlinks:
6323 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6324 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6325 free_adj:
6326 kfree(adj);
6327 dev_put(adj_dev);
6328
6329 return ret;
6330 }
6331
6332 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6333 struct net_device *adj_dev,
6334 u16 ref_nr,
6335 struct list_head *dev_list)
6336 {
6337 struct netdev_adjacent *adj;
6338
6339 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6340 dev->name, adj_dev->name, ref_nr);
6341
6342 adj = __netdev_find_adj(adj_dev, dev_list);
6343
6344 if (!adj) {
6345 pr_err("Adjacency does not exist for device %s from %s\n",
6346 dev->name, adj_dev->name);
6347 WARN_ON(1);
6348 return;
6349 }
6350
6351 if (adj->ref_nr > ref_nr) {
6352 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6353 dev->name, adj_dev->name, ref_nr,
6354 adj->ref_nr - ref_nr);
6355 adj->ref_nr -= ref_nr;
6356 return;
6357 }
6358
6359 if (adj->master)
6360 sysfs_remove_link(&(dev->dev.kobj), "master");
6361
6362 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6363 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6364
6365 list_del_rcu(&adj->list);
6366 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6367 adj_dev->name, dev->name, adj_dev->name);
6368 dev_put(adj_dev);
6369 kfree_rcu(adj, rcu);
6370 }
6371
6372 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6373 struct net_device *upper_dev,
6374 struct list_head *up_list,
6375 struct list_head *down_list,
6376 void *private, bool master)
6377 {
6378 int ret;
6379
6380 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6381 private, master);
6382 if (ret)
6383 return ret;
6384
6385 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6386 private, false);
6387 if (ret) {
6388 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6389 return ret;
6390 }
6391
6392 return 0;
6393 }
6394
6395 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6396 struct net_device *upper_dev,
6397 u16 ref_nr,
6398 struct list_head *up_list,
6399 struct list_head *down_list)
6400 {
6401 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6402 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6403 }
6404
6405 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6406 struct net_device *upper_dev,
6407 void *private, bool master)
6408 {
6409 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6410 &dev->adj_list.upper,
6411 &upper_dev->adj_list.lower,
6412 private, master);
6413 }
6414
6415 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6416 struct net_device *upper_dev)
6417 {
6418 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6419 &dev->adj_list.upper,
6420 &upper_dev->adj_list.lower);
6421 }
6422
6423 static int __netdev_upper_dev_link(struct net_device *dev,
6424 struct net_device *upper_dev, bool master,
6425 void *upper_priv, void *upper_info,
6426 struct netlink_ext_ack *extack)
6427 {
6428 struct netdev_notifier_changeupper_info changeupper_info = {
6429 .info = {
6430 .dev = dev,
6431 .extack = extack,
6432 },
6433 .upper_dev = upper_dev,
6434 .master = master,
6435 .linking = true,
6436 .upper_info = upper_info,
6437 };
6438 struct net_device *master_dev;
6439 int ret = 0;
6440
6441 ASSERT_RTNL();
6442
6443 if (dev == upper_dev)
6444 return -EBUSY;
6445
6446 /* To prevent loops, check if dev is not upper device to upper_dev. */
6447 if (netdev_has_upper_dev(upper_dev, dev))
6448 return -EBUSY;
6449
6450 if (!master) {
6451 if (netdev_has_upper_dev(dev, upper_dev))
6452 return -EEXIST;
6453 } else {
6454 master_dev = netdev_master_upper_dev_get(dev);
6455 if (master_dev)
6456 return master_dev == upper_dev ? -EEXIST : -EBUSY;
6457 }
6458
6459 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6460 &changeupper_info.info);
6461 ret = notifier_to_errno(ret);
6462 if (ret)
6463 return ret;
6464
6465 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6466 master);
6467 if (ret)
6468 return ret;
6469
6470 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6471 &changeupper_info.info);
6472 ret = notifier_to_errno(ret);
6473 if (ret)
6474 goto rollback;
6475
6476 return 0;
6477
6478 rollback:
6479 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6480
6481 return ret;
6482 }
6483
6484 /**
6485 * netdev_upper_dev_link - Add a link to the upper device
6486 * @dev: device
6487 * @upper_dev: new upper device
6488 * @extack: netlink extended ack
6489 *
6490 * Adds a link to device which is upper to this one. The caller must hold
6491 * the RTNL lock. On a failure a negative errno code is returned.
6492 * On success the reference counts are adjusted and the function
6493 * returns zero.
6494 */
6495 int netdev_upper_dev_link(struct net_device *dev,
6496 struct net_device *upper_dev,
6497 struct netlink_ext_ack *extack)
6498 {
6499 return __netdev_upper_dev_link(dev, upper_dev, false,
6500 NULL, NULL, extack);
6501 }
6502 EXPORT_SYMBOL(netdev_upper_dev_link);
6503
6504 /**
6505 * netdev_master_upper_dev_link - Add a master link to the upper device
6506 * @dev: device
6507 * @upper_dev: new upper device
6508 * @upper_priv: upper device private
6509 * @upper_info: upper info to be passed down via notifier
6510 * @extack: netlink extended ack
6511 *
6512 * Adds a link to device which is upper to this one. In this case, only
6513 * one master upper device can be linked, although other non-master devices
6514 * might be linked as well. The caller must hold the RTNL lock.
6515 * On a failure a negative errno code is returned. On success the reference
6516 * counts are adjusted and the function returns zero.
6517 */
6518 int netdev_master_upper_dev_link(struct net_device *dev,
6519 struct net_device *upper_dev,
6520 void *upper_priv, void *upper_info,
6521 struct netlink_ext_ack *extack)
6522 {
6523 return __netdev_upper_dev_link(dev, upper_dev, true,
6524 upper_priv, upper_info, extack);
6525 }
6526 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6527
6528 /**
6529 * netdev_upper_dev_unlink - Removes a link to upper device
6530 * @dev: device
6531 * @upper_dev: new upper device
6532 *
6533 * Removes a link to device which is upper to this one. The caller must hold
6534 * the RTNL lock.
6535 */
6536 void netdev_upper_dev_unlink(struct net_device *dev,
6537 struct net_device *upper_dev)
6538 {
6539 struct netdev_notifier_changeupper_info changeupper_info = {
6540 .info = {
6541 .dev = dev,
6542 },
6543 .upper_dev = upper_dev,
6544 .linking = false,
6545 };
6546
6547 ASSERT_RTNL();
6548
6549 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6550
6551 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6552 &changeupper_info.info);
6553
6554 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6555
6556 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6557 &changeupper_info.info);
6558 }
6559 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6560
6561 /**
6562 * netdev_bonding_info_change - Dispatch event about slave change
6563 * @dev: device
6564 * @bonding_info: info to dispatch
6565 *
6566 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6567 * The caller must hold the RTNL lock.
6568 */
6569 void netdev_bonding_info_change(struct net_device *dev,
6570 struct netdev_bonding_info *bonding_info)
6571 {
6572 struct netdev_notifier_bonding_info info = {
6573 .info.dev = dev,
6574 };
6575
6576 memcpy(&info.bonding_info, bonding_info,
6577 sizeof(struct netdev_bonding_info));
6578 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6579 &info.info);
6580 }
6581 EXPORT_SYMBOL(netdev_bonding_info_change);
6582
6583 static void netdev_adjacent_add_links(struct net_device *dev)
6584 {
6585 struct netdev_adjacent *iter;
6586
6587 struct net *net = dev_net(dev);
6588
6589 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6590 if (!net_eq(net, dev_net(iter->dev)))
6591 continue;
6592 netdev_adjacent_sysfs_add(iter->dev, dev,
6593 &iter->dev->adj_list.lower);
6594 netdev_adjacent_sysfs_add(dev, iter->dev,
6595 &dev->adj_list.upper);
6596 }
6597
6598 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6599 if (!net_eq(net, dev_net(iter->dev)))
6600 continue;
6601 netdev_adjacent_sysfs_add(iter->dev, dev,
6602 &iter->dev->adj_list.upper);
6603 netdev_adjacent_sysfs_add(dev, iter->dev,
6604 &dev->adj_list.lower);
6605 }
6606 }
6607
6608 static void netdev_adjacent_del_links(struct net_device *dev)
6609 {
6610 struct netdev_adjacent *iter;
6611
6612 struct net *net = dev_net(dev);
6613
6614 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6615 if (!net_eq(net, dev_net(iter->dev)))
6616 continue;
6617 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6618 &iter->dev->adj_list.lower);
6619 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6620 &dev->adj_list.upper);
6621 }
6622
6623 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6624 if (!net_eq(net, dev_net(iter->dev)))
6625 continue;
6626 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6627 &iter->dev->adj_list.upper);
6628 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6629 &dev->adj_list.lower);
6630 }
6631 }
6632
6633 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6634 {
6635 struct netdev_adjacent *iter;
6636
6637 struct net *net = dev_net(dev);
6638
6639 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6640 if (!net_eq(net, dev_net(iter->dev)))
6641 continue;
6642 netdev_adjacent_sysfs_del(iter->dev, oldname,
6643 &iter->dev->adj_list.lower);
6644 netdev_adjacent_sysfs_add(iter->dev, dev,
6645 &iter->dev->adj_list.lower);
6646 }
6647
6648 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6649 if (!net_eq(net, dev_net(iter->dev)))
6650 continue;
6651 netdev_adjacent_sysfs_del(iter->dev, oldname,
6652 &iter->dev->adj_list.upper);
6653 netdev_adjacent_sysfs_add(iter->dev, dev,
6654 &iter->dev->adj_list.upper);
6655 }
6656 }
6657
6658 void *netdev_lower_dev_get_private(struct net_device *dev,
6659 struct net_device *lower_dev)
6660 {
6661 struct netdev_adjacent *lower;
6662
6663 if (!lower_dev)
6664 return NULL;
6665 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6666 if (!lower)
6667 return NULL;
6668
6669 return lower->private;
6670 }
6671 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6672
6673
6674 int dev_get_nest_level(struct net_device *dev)
6675 {
6676 struct net_device *lower = NULL;
6677 struct list_head *iter;
6678 int max_nest = -1;
6679 int nest;
6680
6681 ASSERT_RTNL();
6682
6683 netdev_for_each_lower_dev(dev, lower, iter) {
6684 nest = dev_get_nest_level(lower);
6685 if (max_nest < nest)
6686 max_nest = nest;
6687 }
6688
6689 return max_nest + 1;
6690 }
6691 EXPORT_SYMBOL(dev_get_nest_level);
6692
6693 /**
6694 * netdev_lower_change - Dispatch event about lower device state change
6695 * @lower_dev: device
6696 * @lower_state_info: state to dispatch
6697 *
6698 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6699 * The caller must hold the RTNL lock.
6700 */
6701 void netdev_lower_state_changed(struct net_device *lower_dev,
6702 void *lower_state_info)
6703 {
6704 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6705 .info.dev = lower_dev,
6706 };
6707
6708 ASSERT_RTNL();
6709 changelowerstate_info.lower_state_info = lower_state_info;
6710 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6711 &changelowerstate_info.info);
6712 }
6713 EXPORT_SYMBOL(netdev_lower_state_changed);
6714
6715 static void dev_change_rx_flags(struct net_device *dev, int flags)
6716 {
6717 const struct net_device_ops *ops = dev->netdev_ops;
6718
6719 if (ops->ndo_change_rx_flags)
6720 ops->ndo_change_rx_flags(dev, flags);
6721 }
6722
6723 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6724 {
6725 unsigned int old_flags = dev->flags;
6726 kuid_t uid;
6727 kgid_t gid;
6728
6729 ASSERT_RTNL();
6730
6731 dev->flags |= IFF_PROMISC;
6732 dev->promiscuity += inc;
6733 if (dev->promiscuity == 0) {
6734 /*
6735 * Avoid overflow.
6736 * If inc causes overflow, untouch promisc and return error.
6737 */
6738 if (inc < 0)
6739 dev->flags &= ~IFF_PROMISC;
6740 else {
6741 dev->promiscuity -= inc;
6742 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6743 dev->name);
6744 return -EOVERFLOW;
6745 }
6746 }
6747 if (dev->flags != old_flags) {
6748 pr_info("device %s %s promiscuous mode\n",
6749 dev->name,
6750 dev->flags & IFF_PROMISC ? "entered" : "left");
6751 if (audit_enabled) {
6752 current_uid_gid(&uid, &gid);
6753 audit_log(current->audit_context, GFP_ATOMIC,
6754 AUDIT_ANOM_PROMISCUOUS,
6755 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6756 dev->name, (dev->flags & IFF_PROMISC),
6757 (old_flags & IFF_PROMISC),
6758 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6759 from_kuid(&init_user_ns, uid),
6760 from_kgid(&init_user_ns, gid),
6761 audit_get_sessionid(current));
6762 }
6763
6764 dev_change_rx_flags(dev, IFF_PROMISC);
6765 }
6766 if (notify)
6767 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6768 return 0;
6769 }
6770
6771 /**
6772 * dev_set_promiscuity - update promiscuity count on a device
6773 * @dev: device
6774 * @inc: modifier
6775 *
6776 * Add or remove promiscuity from a device. While the count in the device
6777 * remains above zero the interface remains promiscuous. Once it hits zero
6778 * the device reverts back to normal filtering operation. A negative inc
6779 * value is used to drop promiscuity on the device.
6780 * Return 0 if successful or a negative errno code on error.
6781 */
6782 int dev_set_promiscuity(struct net_device *dev, int inc)
6783 {
6784 unsigned int old_flags = dev->flags;
6785 int err;
6786
6787 err = __dev_set_promiscuity(dev, inc, true);
6788 if (err < 0)
6789 return err;
6790 if (dev->flags != old_flags)
6791 dev_set_rx_mode(dev);
6792 return err;
6793 }
6794 EXPORT_SYMBOL(dev_set_promiscuity);
6795
6796 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6797 {
6798 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6799
6800 ASSERT_RTNL();
6801
6802 dev->flags |= IFF_ALLMULTI;
6803 dev->allmulti += inc;
6804 if (dev->allmulti == 0) {
6805 /*
6806 * Avoid overflow.
6807 * If inc causes overflow, untouch allmulti and return error.
6808 */
6809 if (inc < 0)
6810 dev->flags &= ~IFF_ALLMULTI;
6811 else {
6812 dev->allmulti -= inc;
6813 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6814 dev->name);
6815 return -EOVERFLOW;
6816 }
6817 }
6818 if (dev->flags ^ old_flags) {
6819 dev_change_rx_flags(dev, IFF_ALLMULTI);
6820 dev_set_rx_mode(dev);
6821 if (notify)
6822 __dev_notify_flags(dev, old_flags,
6823 dev->gflags ^ old_gflags);
6824 }
6825 return 0;
6826 }
6827
6828 /**
6829 * dev_set_allmulti - update allmulti count on a device
6830 * @dev: device
6831 * @inc: modifier
6832 *
6833 * Add or remove reception of all multicast frames to a device. While the
6834 * count in the device remains above zero the interface remains listening
6835 * to all interfaces. Once it hits zero the device reverts back to normal
6836 * filtering operation. A negative @inc value is used to drop the counter
6837 * when releasing a resource needing all multicasts.
6838 * Return 0 if successful or a negative errno code on error.
6839 */
6840
6841 int dev_set_allmulti(struct net_device *dev, int inc)
6842 {
6843 return __dev_set_allmulti(dev, inc, true);
6844 }
6845 EXPORT_SYMBOL(dev_set_allmulti);
6846
6847 /*
6848 * Upload unicast and multicast address lists to device and
6849 * configure RX filtering. When the device doesn't support unicast
6850 * filtering it is put in promiscuous mode while unicast addresses
6851 * are present.
6852 */
6853 void __dev_set_rx_mode(struct net_device *dev)
6854 {
6855 const struct net_device_ops *ops = dev->netdev_ops;
6856
6857 /* dev_open will call this function so the list will stay sane. */
6858 if (!(dev->flags&IFF_UP))
6859 return;
6860
6861 if (!netif_device_present(dev))
6862 return;
6863
6864 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6865 /* Unicast addresses changes may only happen under the rtnl,
6866 * therefore calling __dev_set_promiscuity here is safe.
6867 */
6868 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6869 __dev_set_promiscuity(dev, 1, false);
6870 dev->uc_promisc = true;
6871 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6872 __dev_set_promiscuity(dev, -1, false);
6873 dev->uc_promisc = false;
6874 }
6875 }
6876
6877 if (ops->ndo_set_rx_mode)
6878 ops->ndo_set_rx_mode(dev);
6879 }
6880
6881 void dev_set_rx_mode(struct net_device *dev)
6882 {
6883 netif_addr_lock_bh(dev);
6884 __dev_set_rx_mode(dev);
6885 netif_addr_unlock_bh(dev);
6886 }
6887
6888 /**
6889 * dev_get_flags - get flags reported to userspace
6890 * @dev: device
6891 *
6892 * Get the combination of flag bits exported through APIs to userspace.
6893 */
6894 unsigned int dev_get_flags(const struct net_device *dev)
6895 {
6896 unsigned int flags;
6897
6898 flags = (dev->flags & ~(IFF_PROMISC |
6899 IFF_ALLMULTI |
6900 IFF_RUNNING |
6901 IFF_LOWER_UP |
6902 IFF_DORMANT)) |
6903 (dev->gflags & (IFF_PROMISC |
6904 IFF_ALLMULTI));
6905
6906 if (netif_running(dev)) {
6907 if (netif_oper_up(dev))
6908 flags |= IFF_RUNNING;
6909 if (netif_carrier_ok(dev))
6910 flags |= IFF_LOWER_UP;
6911 if (netif_dormant(dev))
6912 flags |= IFF_DORMANT;
6913 }
6914
6915 return flags;
6916 }
6917 EXPORT_SYMBOL(dev_get_flags);
6918
6919 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6920 {
6921 unsigned int old_flags = dev->flags;
6922 int ret;
6923
6924 ASSERT_RTNL();
6925
6926 /*
6927 * Set the flags on our device.
6928 */
6929
6930 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6931 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6932 IFF_AUTOMEDIA)) |
6933 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6934 IFF_ALLMULTI));
6935
6936 /*
6937 * Load in the correct multicast list now the flags have changed.
6938 */
6939
6940 if ((old_flags ^ flags) & IFF_MULTICAST)
6941 dev_change_rx_flags(dev, IFF_MULTICAST);
6942
6943 dev_set_rx_mode(dev);
6944
6945 /*
6946 * Have we downed the interface. We handle IFF_UP ourselves
6947 * according to user attempts to set it, rather than blindly
6948 * setting it.
6949 */
6950
6951 ret = 0;
6952 if ((old_flags ^ flags) & IFF_UP) {
6953 if (old_flags & IFF_UP)
6954 __dev_close(dev);
6955 else
6956 ret = __dev_open(dev);
6957 }
6958
6959 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6960 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6961 unsigned int old_flags = dev->flags;
6962
6963 dev->gflags ^= IFF_PROMISC;
6964
6965 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6966 if (dev->flags != old_flags)
6967 dev_set_rx_mode(dev);
6968 }
6969
6970 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6971 * is important. Some (broken) drivers set IFF_PROMISC, when
6972 * IFF_ALLMULTI is requested not asking us and not reporting.
6973 */
6974 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6975 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6976
6977 dev->gflags ^= IFF_ALLMULTI;
6978 __dev_set_allmulti(dev, inc, false);
6979 }
6980
6981 return ret;
6982 }
6983
6984 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6985 unsigned int gchanges)
6986 {
6987 unsigned int changes = dev->flags ^ old_flags;
6988
6989 if (gchanges)
6990 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6991
6992 if (changes & IFF_UP) {
6993 if (dev->flags & IFF_UP)
6994 call_netdevice_notifiers(NETDEV_UP, dev);
6995 else
6996 call_netdevice_notifiers(NETDEV_DOWN, dev);
6997 }
6998
6999 if (dev->flags & IFF_UP &&
7000 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7001 struct netdev_notifier_change_info change_info = {
7002 .info = {
7003 .dev = dev,
7004 },
7005 .flags_changed = changes,
7006 };
7007
7008 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7009 }
7010 }
7011
7012 /**
7013 * dev_change_flags - change device settings
7014 * @dev: device
7015 * @flags: device state flags
7016 *
7017 * Change settings on device based state flags. The flags are
7018 * in the userspace exported format.
7019 */
7020 int dev_change_flags(struct net_device *dev, unsigned int flags)
7021 {
7022 int ret;
7023 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7024
7025 ret = __dev_change_flags(dev, flags);
7026 if (ret < 0)
7027 return ret;
7028
7029 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7030 __dev_notify_flags(dev, old_flags, changes);
7031 return ret;
7032 }
7033 EXPORT_SYMBOL(dev_change_flags);
7034
7035 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7036 {
7037 const struct net_device_ops *ops = dev->netdev_ops;
7038
7039 if (ops->ndo_change_mtu)
7040 return ops->ndo_change_mtu(dev, new_mtu);
7041
7042 dev->mtu = new_mtu;
7043 return 0;
7044 }
7045 EXPORT_SYMBOL(__dev_set_mtu);
7046
7047 /**
7048 * dev_set_mtu - Change maximum transfer unit
7049 * @dev: device
7050 * @new_mtu: new transfer unit
7051 *
7052 * Change the maximum transfer size of the network device.
7053 */
7054 int dev_set_mtu(struct net_device *dev, int new_mtu)
7055 {
7056 int err, orig_mtu;
7057
7058 if (new_mtu == dev->mtu)
7059 return 0;
7060
7061 /* MTU must be positive, and in range */
7062 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7063 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7064 dev->name, new_mtu, dev->min_mtu);
7065 return -EINVAL;
7066 }
7067
7068 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7069 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7070 dev->name, new_mtu, dev->max_mtu);
7071 return -EINVAL;
7072 }
7073
7074 if (!netif_device_present(dev))
7075 return -ENODEV;
7076
7077 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7078 err = notifier_to_errno(err);
7079 if (err)
7080 return err;
7081
7082 orig_mtu = dev->mtu;
7083 err = __dev_set_mtu(dev, new_mtu);
7084
7085 if (!err) {
7086 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7087 err = notifier_to_errno(err);
7088 if (err) {
7089 /* setting mtu back and notifying everyone again,
7090 * so that they have a chance to revert changes.
7091 */
7092 __dev_set_mtu(dev, orig_mtu);
7093 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7094 }
7095 }
7096 return err;
7097 }
7098 EXPORT_SYMBOL(dev_set_mtu);
7099
7100 /**
7101 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7102 * @dev: device
7103 * @new_len: new tx queue length
7104 */
7105 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7106 {
7107 unsigned int orig_len = dev->tx_queue_len;
7108 int res;
7109
7110 if (new_len != (unsigned int)new_len)
7111 return -ERANGE;
7112
7113 if (new_len != orig_len) {
7114 dev->tx_queue_len = new_len;
7115 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7116 res = notifier_to_errno(res);
7117 if (res) {
7118 netdev_err(dev,
7119 "refused to change device tx_queue_len\n");
7120 dev->tx_queue_len = orig_len;
7121 return res;
7122 }
7123 return dev_qdisc_change_tx_queue_len(dev);
7124 }
7125
7126 return 0;
7127 }
7128
7129 /**
7130 * dev_set_group - Change group this device belongs to
7131 * @dev: device
7132 * @new_group: group this device should belong to
7133 */
7134 void dev_set_group(struct net_device *dev, int new_group)
7135 {
7136 dev->group = new_group;
7137 }
7138 EXPORT_SYMBOL(dev_set_group);
7139
7140 /**
7141 * dev_set_mac_address - Change Media Access Control Address
7142 * @dev: device
7143 * @sa: new address
7144 *
7145 * Change the hardware (MAC) address of the device
7146 */
7147 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7148 {
7149 const struct net_device_ops *ops = dev->netdev_ops;
7150 int err;
7151
7152 if (!ops->ndo_set_mac_address)
7153 return -EOPNOTSUPP;
7154 if (sa->sa_family != dev->type)
7155 return -EINVAL;
7156 if (!netif_device_present(dev))
7157 return -ENODEV;
7158 err = ops->ndo_set_mac_address(dev, sa);
7159 if (err)
7160 return err;
7161 dev->addr_assign_type = NET_ADDR_SET;
7162 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7163 add_device_randomness(dev->dev_addr, dev->addr_len);
7164 return 0;
7165 }
7166 EXPORT_SYMBOL(dev_set_mac_address);
7167
7168 /**
7169 * dev_change_carrier - Change device carrier
7170 * @dev: device
7171 * @new_carrier: new value
7172 *
7173 * Change device carrier
7174 */
7175 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7176 {
7177 const struct net_device_ops *ops = dev->netdev_ops;
7178
7179 if (!ops->ndo_change_carrier)
7180 return -EOPNOTSUPP;
7181 if (!netif_device_present(dev))
7182 return -ENODEV;
7183 return ops->ndo_change_carrier(dev, new_carrier);
7184 }
7185 EXPORT_SYMBOL(dev_change_carrier);
7186
7187 /**
7188 * dev_get_phys_port_id - Get device physical port ID
7189 * @dev: device
7190 * @ppid: port ID
7191 *
7192 * Get device physical port ID
7193 */
7194 int dev_get_phys_port_id(struct net_device *dev,
7195 struct netdev_phys_item_id *ppid)
7196 {
7197 const struct net_device_ops *ops = dev->netdev_ops;
7198
7199 if (!ops->ndo_get_phys_port_id)
7200 return -EOPNOTSUPP;
7201 return ops->ndo_get_phys_port_id(dev, ppid);
7202 }
7203 EXPORT_SYMBOL(dev_get_phys_port_id);
7204
7205 /**
7206 * dev_get_phys_port_name - Get device physical port name
7207 * @dev: device
7208 * @name: port name
7209 * @len: limit of bytes to copy to name
7210 *
7211 * Get device physical port name
7212 */
7213 int dev_get_phys_port_name(struct net_device *dev,
7214 char *name, size_t len)
7215 {
7216 const struct net_device_ops *ops = dev->netdev_ops;
7217
7218 if (!ops->ndo_get_phys_port_name)
7219 return -EOPNOTSUPP;
7220 return ops->ndo_get_phys_port_name(dev, name, len);
7221 }
7222 EXPORT_SYMBOL(dev_get_phys_port_name);
7223
7224 /**
7225 * dev_change_proto_down - update protocol port state information
7226 * @dev: device
7227 * @proto_down: new value
7228 *
7229 * This info can be used by switch drivers to set the phys state of the
7230 * port.
7231 */
7232 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7233 {
7234 const struct net_device_ops *ops = dev->netdev_ops;
7235
7236 if (!ops->ndo_change_proto_down)
7237 return -EOPNOTSUPP;
7238 if (!netif_device_present(dev))
7239 return -ENODEV;
7240 return ops->ndo_change_proto_down(dev, proto_down);
7241 }
7242 EXPORT_SYMBOL(dev_change_proto_down);
7243
7244 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7245 struct netdev_bpf *xdp)
7246 {
7247 memset(xdp, 0, sizeof(*xdp));
7248 xdp->command = XDP_QUERY_PROG;
7249
7250 /* Query must always succeed. */
7251 WARN_ON(bpf_op(dev, xdp) < 0);
7252 }
7253
7254 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7255 {
7256 struct netdev_bpf xdp;
7257
7258 __dev_xdp_query(dev, bpf_op, &xdp);
7259
7260 return xdp.prog_attached;
7261 }
7262
7263 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7264 struct netlink_ext_ack *extack, u32 flags,
7265 struct bpf_prog *prog)
7266 {
7267 struct netdev_bpf xdp;
7268
7269 memset(&xdp, 0, sizeof(xdp));
7270 if (flags & XDP_FLAGS_HW_MODE)
7271 xdp.command = XDP_SETUP_PROG_HW;
7272 else
7273 xdp.command = XDP_SETUP_PROG;
7274 xdp.extack = extack;
7275 xdp.flags = flags;
7276 xdp.prog = prog;
7277
7278 return bpf_op(dev, &xdp);
7279 }
7280
7281 static void dev_xdp_uninstall(struct net_device *dev)
7282 {
7283 struct netdev_bpf xdp;
7284 bpf_op_t ndo_bpf;
7285
7286 /* Remove generic XDP */
7287 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7288
7289 /* Remove from the driver */
7290 ndo_bpf = dev->netdev_ops->ndo_bpf;
7291 if (!ndo_bpf)
7292 return;
7293
7294 __dev_xdp_query(dev, ndo_bpf, &xdp);
7295 if (xdp.prog_attached == XDP_ATTACHED_NONE)
7296 return;
7297
7298 /* Program removal should always succeed */
7299 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7300 }
7301
7302 /**
7303 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7304 * @dev: device
7305 * @extack: netlink extended ack
7306 * @fd: new program fd or negative value to clear
7307 * @flags: xdp-related flags
7308 *
7309 * Set or clear a bpf program for a device
7310 */
7311 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7312 int fd, u32 flags)
7313 {
7314 const struct net_device_ops *ops = dev->netdev_ops;
7315 struct bpf_prog *prog = NULL;
7316 bpf_op_t bpf_op, bpf_chk;
7317 int err;
7318
7319 ASSERT_RTNL();
7320
7321 bpf_op = bpf_chk = ops->ndo_bpf;
7322 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7323 return -EOPNOTSUPP;
7324 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7325 bpf_op = generic_xdp_install;
7326 if (bpf_op == bpf_chk)
7327 bpf_chk = generic_xdp_install;
7328
7329 if (fd >= 0) {
7330 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7331 return -EEXIST;
7332 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7333 __dev_xdp_attached(dev, bpf_op))
7334 return -EBUSY;
7335
7336 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7337 bpf_op == ops->ndo_bpf);
7338 if (IS_ERR(prog))
7339 return PTR_ERR(prog);
7340
7341 if (!(flags & XDP_FLAGS_HW_MODE) &&
7342 bpf_prog_is_dev_bound(prog->aux)) {
7343 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7344 bpf_prog_put(prog);
7345 return -EINVAL;
7346 }
7347 }
7348
7349 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7350 if (err < 0 && prog)
7351 bpf_prog_put(prog);
7352
7353 return err;
7354 }
7355
7356 /**
7357 * dev_new_index - allocate an ifindex
7358 * @net: the applicable net namespace
7359 *
7360 * Returns a suitable unique value for a new device interface
7361 * number. The caller must hold the rtnl semaphore or the
7362 * dev_base_lock to be sure it remains unique.
7363 */
7364 static int dev_new_index(struct net *net)
7365 {
7366 int ifindex = net->ifindex;
7367
7368 for (;;) {
7369 if (++ifindex <= 0)
7370 ifindex = 1;
7371 if (!__dev_get_by_index(net, ifindex))
7372 return net->ifindex = ifindex;
7373 }
7374 }
7375
7376 /* Delayed registration/unregisteration */
7377 static LIST_HEAD(net_todo_list);
7378 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7379
7380 static void net_set_todo(struct net_device *dev)
7381 {
7382 list_add_tail(&dev->todo_list, &net_todo_list);
7383 dev_net(dev)->dev_unreg_count++;
7384 }
7385
7386 static void rollback_registered_many(struct list_head *head)
7387 {
7388 struct net_device *dev, *tmp;
7389 LIST_HEAD(close_head);
7390
7391 BUG_ON(dev_boot_phase);
7392 ASSERT_RTNL();
7393
7394 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7395 /* Some devices call without registering
7396 * for initialization unwind. Remove those
7397 * devices and proceed with the remaining.
7398 */
7399 if (dev->reg_state == NETREG_UNINITIALIZED) {
7400 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7401 dev->name, dev);
7402
7403 WARN_ON(1);
7404 list_del(&dev->unreg_list);
7405 continue;
7406 }
7407 dev->dismantle = true;
7408 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7409 }
7410
7411 /* If device is running, close it first. */
7412 list_for_each_entry(dev, head, unreg_list)
7413 list_add_tail(&dev->close_list, &close_head);
7414 dev_close_many(&close_head, true);
7415
7416 list_for_each_entry(dev, head, unreg_list) {
7417 /* And unlink it from device chain. */
7418 unlist_netdevice(dev);
7419
7420 dev->reg_state = NETREG_UNREGISTERING;
7421 }
7422 flush_all_backlogs();
7423
7424 synchronize_net();
7425
7426 list_for_each_entry(dev, head, unreg_list) {
7427 struct sk_buff *skb = NULL;
7428
7429 /* Shutdown queueing discipline. */
7430 dev_shutdown(dev);
7431
7432 dev_xdp_uninstall(dev);
7433
7434 /* Notify protocols, that we are about to destroy
7435 * this device. They should clean all the things.
7436 */
7437 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7438
7439 if (!dev->rtnl_link_ops ||
7440 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7441 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7442 GFP_KERNEL, NULL, 0);
7443
7444 /*
7445 * Flush the unicast and multicast chains
7446 */
7447 dev_uc_flush(dev);
7448 dev_mc_flush(dev);
7449
7450 if (dev->netdev_ops->ndo_uninit)
7451 dev->netdev_ops->ndo_uninit(dev);
7452
7453 if (skb)
7454 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7455
7456 /* Notifier chain MUST detach us all upper devices. */
7457 WARN_ON(netdev_has_any_upper_dev(dev));
7458 WARN_ON(netdev_has_any_lower_dev(dev));
7459
7460 /* Remove entries from kobject tree */
7461 netdev_unregister_kobject(dev);
7462 #ifdef CONFIG_XPS
7463 /* Remove XPS queueing entries */
7464 netif_reset_xps_queues_gt(dev, 0);
7465 #endif
7466 }
7467
7468 synchronize_net();
7469
7470 list_for_each_entry(dev, head, unreg_list)
7471 dev_put(dev);
7472 }
7473
7474 static void rollback_registered(struct net_device *dev)
7475 {
7476 LIST_HEAD(single);
7477
7478 list_add(&dev->unreg_list, &single);
7479 rollback_registered_many(&single);
7480 list_del(&single);
7481 }
7482
7483 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7484 struct net_device *upper, netdev_features_t features)
7485 {
7486 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7487 netdev_features_t feature;
7488 int feature_bit;
7489
7490 for_each_netdev_feature(&upper_disables, feature_bit) {
7491 feature = __NETIF_F_BIT(feature_bit);
7492 if (!(upper->wanted_features & feature)
7493 && (features & feature)) {
7494 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7495 &feature, upper->name);
7496 features &= ~feature;
7497 }
7498 }
7499
7500 return features;
7501 }
7502
7503 static void netdev_sync_lower_features(struct net_device *upper,
7504 struct net_device *lower, netdev_features_t features)
7505 {
7506 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7507 netdev_features_t feature;
7508 int feature_bit;
7509
7510 for_each_netdev_feature(&upper_disables, feature_bit) {
7511 feature = __NETIF_F_BIT(feature_bit);
7512 if (!(features & feature) && (lower->features & feature)) {
7513 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7514 &feature, lower->name);
7515 lower->wanted_features &= ~feature;
7516 netdev_update_features(lower);
7517
7518 if (unlikely(lower->features & feature))
7519 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7520 &feature, lower->name);
7521 }
7522 }
7523 }
7524
7525 static netdev_features_t netdev_fix_features(struct net_device *dev,
7526 netdev_features_t features)
7527 {
7528 /* Fix illegal checksum combinations */
7529 if ((features & NETIF_F_HW_CSUM) &&
7530 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7531 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7532 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7533 }
7534
7535 /* TSO requires that SG is present as well. */
7536 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7537 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7538 features &= ~NETIF_F_ALL_TSO;
7539 }
7540
7541 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7542 !(features & NETIF_F_IP_CSUM)) {
7543 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7544 features &= ~NETIF_F_TSO;
7545 features &= ~NETIF_F_TSO_ECN;
7546 }
7547
7548 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7549 !(features & NETIF_F_IPV6_CSUM)) {
7550 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7551 features &= ~NETIF_F_TSO6;
7552 }
7553
7554 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7555 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7556 features &= ~NETIF_F_TSO_MANGLEID;
7557
7558 /* TSO ECN requires that TSO is present as well. */
7559 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7560 features &= ~NETIF_F_TSO_ECN;
7561
7562 /* Software GSO depends on SG. */
7563 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7564 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7565 features &= ~NETIF_F_GSO;
7566 }
7567
7568 /* GSO partial features require GSO partial be set */
7569 if ((features & dev->gso_partial_features) &&
7570 !(features & NETIF_F_GSO_PARTIAL)) {
7571 netdev_dbg(dev,
7572 "Dropping partially supported GSO features since no GSO partial.\n");
7573 features &= ~dev->gso_partial_features;
7574 }
7575
7576 if (!(features & NETIF_F_RXCSUM)) {
7577 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7578 * successfully merged by hardware must also have the
7579 * checksum verified by hardware. If the user does not
7580 * want to enable RXCSUM, logically, we should disable GRO_HW.
7581 */
7582 if (features & NETIF_F_GRO_HW) {
7583 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7584 features &= ~NETIF_F_GRO_HW;
7585 }
7586 }
7587
7588 /* LRO/HW-GRO features cannot be combined with RX-FCS */
7589 if (features & NETIF_F_RXFCS) {
7590 if (features & NETIF_F_LRO) {
7591 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
7592 features &= ~NETIF_F_LRO;
7593 }
7594
7595 if (features & NETIF_F_GRO_HW) {
7596 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
7597 features &= ~NETIF_F_GRO_HW;
7598 }
7599 }
7600
7601 return features;
7602 }
7603
7604 int __netdev_update_features(struct net_device *dev)
7605 {
7606 struct net_device *upper, *lower;
7607 netdev_features_t features;
7608 struct list_head *iter;
7609 int err = -1;
7610
7611 ASSERT_RTNL();
7612
7613 features = netdev_get_wanted_features(dev);
7614
7615 if (dev->netdev_ops->ndo_fix_features)
7616 features = dev->netdev_ops->ndo_fix_features(dev, features);
7617
7618 /* driver might be less strict about feature dependencies */
7619 features = netdev_fix_features(dev, features);
7620
7621 /* some features can't be enabled if they're off an an upper device */
7622 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7623 features = netdev_sync_upper_features(dev, upper, features);
7624
7625 if (dev->features == features)
7626 goto sync_lower;
7627
7628 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7629 &dev->features, &features);
7630
7631 if (dev->netdev_ops->ndo_set_features)
7632 err = dev->netdev_ops->ndo_set_features(dev, features);
7633 else
7634 err = 0;
7635
7636 if (unlikely(err < 0)) {
7637 netdev_err(dev,
7638 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7639 err, &features, &dev->features);
7640 /* return non-0 since some features might have changed and
7641 * it's better to fire a spurious notification than miss it
7642 */
7643 return -1;
7644 }
7645
7646 sync_lower:
7647 /* some features must be disabled on lower devices when disabled
7648 * on an upper device (think: bonding master or bridge)
7649 */
7650 netdev_for_each_lower_dev(dev, lower, iter)
7651 netdev_sync_lower_features(dev, lower, features);
7652
7653 if (!err) {
7654 netdev_features_t diff = features ^ dev->features;
7655
7656 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7657 /* udp_tunnel_{get,drop}_rx_info both need
7658 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7659 * device, or they won't do anything.
7660 * Thus we need to update dev->features
7661 * *before* calling udp_tunnel_get_rx_info,
7662 * but *after* calling udp_tunnel_drop_rx_info.
7663 */
7664 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7665 dev->features = features;
7666 udp_tunnel_get_rx_info(dev);
7667 } else {
7668 udp_tunnel_drop_rx_info(dev);
7669 }
7670 }
7671
7672 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
7673 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
7674 dev->features = features;
7675 err |= vlan_get_rx_ctag_filter_info(dev);
7676 } else {
7677 vlan_drop_rx_ctag_filter_info(dev);
7678 }
7679 }
7680
7681 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
7682 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
7683 dev->features = features;
7684 err |= vlan_get_rx_stag_filter_info(dev);
7685 } else {
7686 vlan_drop_rx_stag_filter_info(dev);
7687 }
7688 }
7689
7690 dev->features = features;
7691 }
7692
7693 return err < 0 ? 0 : 1;
7694 }
7695
7696 /**
7697 * netdev_update_features - recalculate device features
7698 * @dev: the device to check
7699 *
7700 * Recalculate dev->features set and send notifications if it
7701 * has changed. Should be called after driver or hardware dependent
7702 * conditions might have changed that influence the features.
7703 */
7704 void netdev_update_features(struct net_device *dev)
7705 {
7706 if (__netdev_update_features(dev))
7707 netdev_features_change(dev);
7708 }
7709 EXPORT_SYMBOL(netdev_update_features);
7710
7711 /**
7712 * netdev_change_features - recalculate device features
7713 * @dev: the device to check
7714 *
7715 * Recalculate dev->features set and send notifications even
7716 * if they have not changed. Should be called instead of
7717 * netdev_update_features() if also dev->vlan_features might
7718 * have changed to allow the changes to be propagated to stacked
7719 * VLAN devices.
7720 */
7721 void netdev_change_features(struct net_device *dev)
7722 {
7723 __netdev_update_features(dev);
7724 netdev_features_change(dev);
7725 }
7726 EXPORT_SYMBOL(netdev_change_features);
7727
7728 /**
7729 * netif_stacked_transfer_operstate - transfer operstate
7730 * @rootdev: the root or lower level device to transfer state from
7731 * @dev: the device to transfer operstate to
7732 *
7733 * Transfer operational state from root to device. This is normally
7734 * called when a stacking relationship exists between the root
7735 * device and the device(a leaf device).
7736 */
7737 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7738 struct net_device *dev)
7739 {
7740 if (rootdev->operstate == IF_OPER_DORMANT)
7741 netif_dormant_on(dev);
7742 else
7743 netif_dormant_off(dev);
7744
7745 if (netif_carrier_ok(rootdev))
7746 netif_carrier_on(dev);
7747 else
7748 netif_carrier_off(dev);
7749 }
7750 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7751
7752 static int netif_alloc_rx_queues(struct net_device *dev)
7753 {
7754 unsigned int i, count = dev->num_rx_queues;
7755 struct netdev_rx_queue *rx;
7756 size_t sz = count * sizeof(*rx);
7757 int err = 0;
7758
7759 BUG_ON(count < 1);
7760
7761 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7762 if (!rx)
7763 return -ENOMEM;
7764
7765 dev->_rx = rx;
7766
7767 for (i = 0; i < count; i++) {
7768 rx[i].dev = dev;
7769
7770 /* XDP RX-queue setup */
7771 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
7772 if (err < 0)
7773 goto err_rxq_info;
7774 }
7775 return 0;
7776
7777 err_rxq_info:
7778 /* Rollback successful reg's and free other resources */
7779 while (i--)
7780 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
7781 kvfree(dev->_rx);
7782 dev->_rx = NULL;
7783 return err;
7784 }
7785
7786 static void netif_free_rx_queues(struct net_device *dev)
7787 {
7788 unsigned int i, count = dev->num_rx_queues;
7789
7790 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
7791 if (!dev->_rx)
7792 return;
7793
7794 for (i = 0; i < count; i++)
7795 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
7796
7797 kvfree(dev->_rx);
7798 }
7799
7800 static void netdev_init_one_queue(struct net_device *dev,
7801 struct netdev_queue *queue, void *_unused)
7802 {
7803 /* Initialize queue lock */
7804 spin_lock_init(&queue->_xmit_lock);
7805 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7806 queue->xmit_lock_owner = -1;
7807 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7808 queue->dev = dev;
7809 #ifdef CONFIG_BQL
7810 dql_init(&queue->dql, HZ);
7811 #endif
7812 }
7813
7814 static void netif_free_tx_queues(struct net_device *dev)
7815 {
7816 kvfree(dev->_tx);
7817 }
7818
7819 static int netif_alloc_netdev_queues(struct net_device *dev)
7820 {
7821 unsigned int count = dev->num_tx_queues;
7822 struct netdev_queue *tx;
7823 size_t sz = count * sizeof(*tx);
7824
7825 if (count < 1 || count > 0xffff)
7826 return -EINVAL;
7827
7828 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7829 if (!tx)
7830 return -ENOMEM;
7831
7832 dev->_tx = tx;
7833
7834 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7835 spin_lock_init(&dev->tx_global_lock);
7836
7837 return 0;
7838 }
7839
7840 void netif_tx_stop_all_queues(struct net_device *dev)
7841 {
7842 unsigned int i;
7843
7844 for (i = 0; i < dev->num_tx_queues; i++) {
7845 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7846
7847 netif_tx_stop_queue(txq);
7848 }
7849 }
7850 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7851
7852 /**
7853 * register_netdevice - register a network device
7854 * @dev: device to register
7855 *
7856 * Take a completed network device structure and add it to the kernel
7857 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7858 * chain. 0 is returned on success. A negative errno code is returned
7859 * on a failure to set up the device, or if the name is a duplicate.
7860 *
7861 * Callers must hold the rtnl semaphore. You may want
7862 * register_netdev() instead of this.
7863 *
7864 * BUGS:
7865 * The locking appears insufficient to guarantee two parallel registers
7866 * will not get the same name.
7867 */
7868
7869 int register_netdevice(struct net_device *dev)
7870 {
7871 int ret;
7872 struct net *net = dev_net(dev);
7873
7874 BUG_ON(dev_boot_phase);
7875 ASSERT_RTNL();
7876
7877 might_sleep();
7878
7879 /* When net_device's are persistent, this will be fatal. */
7880 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7881 BUG_ON(!net);
7882
7883 spin_lock_init(&dev->addr_list_lock);
7884 netdev_set_addr_lockdep_class(dev);
7885
7886 ret = dev_get_valid_name(net, dev, dev->name);
7887 if (ret < 0)
7888 goto out;
7889
7890 /* Init, if this function is available */
7891 if (dev->netdev_ops->ndo_init) {
7892 ret = dev->netdev_ops->ndo_init(dev);
7893 if (ret) {
7894 if (ret > 0)
7895 ret = -EIO;
7896 goto out;
7897 }
7898 }
7899
7900 if (((dev->hw_features | dev->features) &
7901 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7902 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7903 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7904 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7905 ret = -EINVAL;
7906 goto err_uninit;
7907 }
7908
7909 ret = -EBUSY;
7910 if (!dev->ifindex)
7911 dev->ifindex = dev_new_index(net);
7912 else if (__dev_get_by_index(net, dev->ifindex))
7913 goto err_uninit;
7914
7915 /* Transfer changeable features to wanted_features and enable
7916 * software offloads (GSO and GRO).
7917 */
7918 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7919 dev->features |= NETIF_F_SOFT_FEATURES;
7920
7921 if (dev->netdev_ops->ndo_udp_tunnel_add) {
7922 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7923 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7924 }
7925
7926 dev->wanted_features = dev->features & dev->hw_features;
7927
7928 if (!(dev->flags & IFF_LOOPBACK))
7929 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7930
7931 /* If IPv4 TCP segmentation offload is supported we should also
7932 * allow the device to enable segmenting the frame with the option
7933 * of ignoring a static IP ID value. This doesn't enable the
7934 * feature itself but allows the user to enable it later.
7935 */
7936 if (dev->hw_features & NETIF_F_TSO)
7937 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7938 if (dev->vlan_features & NETIF_F_TSO)
7939 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7940 if (dev->mpls_features & NETIF_F_TSO)
7941 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7942 if (dev->hw_enc_features & NETIF_F_TSO)
7943 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7944
7945 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7946 */
7947 dev->vlan_features |= NETIF_F_HIGHDMA;
7948
7949 /* Make NETIF_F_SG inheritable to tunnel devices.
7950 */
7951 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7952
7953 /* Make NETIF_F_SG inheritable to MPLS.
7954 */
7955 dev->mpls_features |= NETIF_F_SG;
7956
7957 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7958 ret = notifier_to_errno(ret);
7959 if (ret)
7960 goto err_uninit;
7961
7962 ret = netdev_register_kobject(dev);
7963 if (ret)
7964 goto err_uninit;
7965 dev->reg_state = NETREG_REGISTERED;
7966
7967 __netdev_update_features(dev);
7968
7969 /*
7970 * Default initial state at registry is that the
7971 * device is present.
7972 */
7973
7974 set_bit(__LINK_STATE_PRESENT, &dev->state);
7975
7976 linkwatch_init_dev(dev);
7977
7978 dev_init_scheduler(dev);
7979 dev_hold(dev);
7980 list_netdevice(dev);
7981 add_device_randomness(dev->dev_addr, dev->addr_len);
7982
7983 /* If the device has permanent device address, driver should
7984 * set dev_addr and also addr_assign_type should be set to
7985 * NET_ADDR_PERM (default value).
7986 */
7987 if (dev->addr_assign_type == NET_ADDR_PERM)
7988 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7989
7990 /* Notify protocols, that a new device appeared. */
7991 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7992 ret = notifier_to_errno(ret);
7993 if (ret) {
7994 rollback_registered(dev);
7995 dev->reg_state = NETREG_UNREGISTERED;
7996 }
7997 /*
7998 * Prevent userspace races by waiting until the network
7999 * device is fully setup before sending notifications.
8000 */
8001 if (!dev->rtnl_link_ops ||
8002 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8003 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8004
8005 out:
8006 return ret;
8007
8008 err_uninit:
8009 if (dev->netdev_ops->ndo_uninit)
8010 dev->netdev_ops->ndo_uninit(dev);
8011 if (dev->priv_destructor)
8012 dev->priv_destructor(dev);
8013 goto out;
8014 }
8015 EXPORT_SYMBOL(register_netdevice);
8016
8017 /**
8018 * init_dummy_netdev - init a dummy network device for NAPI
8019 * @dev: device to init
8020 *
8021 * This takes a network device structure and initialize the minimum
8022 * amount of fields so it can be used to schedule NAPI polls without
8023 * registering a full blown interface. This is to be used by drivers
8024 * that need to tie several hardware interfaces to a single NAPI
8025 * poll scheduler due to HW limitations.
8026 */
8027 int init_dummy_netdev(struct net_device *dev)
8028 {
8029 /* Clear everything. Note we don't initialize spinlocks
8030 * are they aren't supposed to be taken by any of the
8031 * NAPI code and this dummy netdev is supposed to be
8032 * only ever used for NAPI polls
8033 */
8034 memset(dev, 0, sizeof(struct net_device));
8035
8036 /* make sure we BUG if trying to hit standard
8037 * register/unregister code path
8038 */
8039 dev->reg_state = NETREG_DUMMY;
8040
8041 /* NAPI wants this */
8042 INIT_LIST_HEAD(&dev->napi_list);
8043
8044 /* a dummy interface is started by default */
8045 set_bit(__LINK_STATE_PRESENT, &dev->state);
8046 set_bit(__LINK_STATE_START, &dev->state);
8047
8048 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8049 * because users of this 'device' dont need to change
8050 * its refcount.
8051 */
8052
8053 return 0;
8054 }
8055 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8056
8057
8058 /**
8059 * register_netdev - register a network device
8060 * @dev: device to register
8061 *
8062 * Take a completed network device structure and add it to the kernel
8063 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8064 * chain. 0 is returned on success. A negative errno code is returned
8065 * on a failure to set up the device, or if the name is a duplicate.
8066 *
8067 * This is a wrapper around register_netdevice that takes the rtnl semaphore
8068 * and expands the device name if you passed a format string to
8069 * alloc_netdev.
8070 */
8071 int register_netdev(struct net_device *dev)
8072 {
8073 int err;
8074
8075 if (rtnl_lock_killable())
8076 return -EINTR;
8077 err = register_netdevice(dev);
8078 rtnl_unlock();
8079 return err;
8080 }
8081 EXPORT_SYMBOL(register_netdev);
8082
8083 int netdev_refcnt_read(const struct net_device *dev)
8084 {
8085 int i, refcnt = 0;
8086
8087 for_each_possible_cpu(i)
8088 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8089 return refcnt;
8090 }
8091 EXPORT_SYMBOL(netdev_refcnt_read);
8092
8093 /**
8094 * netdev_wait_allrefs - wait until all references are gone.
8095 * @dev: target net_device
8096 *
8097 * This is called when unregistering network devices.
8098 *
8099 * Any protocol or device that holds a reference should register
8100 * for netdevice notification, and cleanup and put back the
8101 * reference if they receive an UNREGISTER event.
8102 * We can get stuck here if buggy protocols don't correctly
8103 * call dev_put.
8104 */
8105 static void netdev_wait_allrefs(struct net_device *dev)
8106 {
8107 unsigned long rebroadcast_time, warning_time;
8108 int refcnt;
8109
8110 linkwatch_forget_dev(dev);
8111
8112 rebroadcast_time = warning_time = jiffies;
8113 refcnt = netdev_refcnt_read(dev);
8114
8115 while (refcnt != 0) {
8116 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8117 rtnl_lock();
8118
8119 /* Rebroadcast unregister notification */
8120 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8121
8122 __rtnl_unlock();
8123 rcu_barrier();
8124 rtnl_lock();
8125
8126 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8127 &dev->state)) {
8128 /* We must not have linkwatch events
8129 * pending on unregister. If this
8130 * happens, we simply run the queue
8131 * unscheduled, resulting in a noop
8132 * for this device.
8133 */
8134 linkwatch_run_queue();
8135 }
8136
8137 __rtnl_unlock();
8138
8139 rebroadcast_time = jiffies;
8140 }
8141
8142 msleep(250);
8143
8144 refcnt = netdev_refcnt_read(dev);
8145
8146 if (time_after(jiffies, warning_time + 10 * HZ)) {
8147 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8148 dev->name, refcnt);
8149 warning_time = jiffies;
8150 }
8151 }
8152 }
8153
8154 /* The sequence is:
8155 *
8156 * rtnl_lock();
8157 * ...
8158 * register_netdevice(x1);
8159 * register_netdevice(x2);
8160 * ...
8161 * unregister_netdevice(y1);
8162 * unregister_netdevice(y2);
8163 * ...
8164 * rtnl_unlock();
8165 * free_netdev(y1);
8166 * free_netdev(y2);
8167 *
8168 * We are invoked by rtnl_unlock().
8169 * This allows us to deal with problems:
8170 * 1) We can delete sysfs objects which invoke hotplug
8171 * without deadlocking with linkwatch via keventd.
8172 * 2) Since we run with the RTNL semaphore not held, we can sleep
8173 * safely in order to wait for the netdev refcnt to drop to zero.
8174 *
8175 * We must not return until all unregister events added during
8176 * the interval the lock was held have been completed.
8177 */
8178 void netdev_run_todo(void)
8179 {
8180 struct list_head list;
8181
8182 /* Snapshot list, allow later requests */
8183 list_replace_init(&net_todo_list, &list);
8184
8185 __rtnl_unlock();
8186
8187
8188 /* Wait for rcu callbacks to finish before next phase */
8189 if (!list_empty(&list))
8190 rcu_barrier();
8191
8192 while (!list_empty(&list)) {
8193 struct net_device *dev
8194 = list_first_entry(&list, struct net_device, todo_list);
8195 list_del(&dev->todo_list);
8196
8197 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8198 pr_err("network todo '%s' but state %d\n",
8199 dev->name, dev->reg_state);
8200 dump_stack();
8201 continue;
8202 }
8203
8204 dev->reg_state = NETREG_UNREGISTERED;
8205
8206 netdev_wait_allrefs(dev);
8207
8208 /* paranoia */
8209 BUG_ON(netdev_refcnt_read(dev));
8210 BUG_ON(!list_empty(&dev->ptype_all));
8211 BUG_ON(!list_empty(&dev->ptype_specific));
8212 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8213 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8214 #if IS_ENABLED(CONFIG_DECNET)
8215 WARN_ON(dev->dn_ptr);
8216 #endif
8217 if (dev->priv_destructor)
8218 dev->priv_destructor(dev);
8219 if (dev->needs_free_netdev)
8220 free_netdev(dev);
8221
8222 /* Report a network device has been unregistered */
8223 rtnl_lock();
8224 dev_net(dev)->dev_unreg_count--;
8225 __rtnl_unlock();
8226 wake_up(&netdev_unregistering_wq);
8227
8228 /* Free network device */
8229 kobject_put(&dev->dev.kobj);
8230 }
8231 }
8232
8233 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8234 * all the same fields in the same order as net_device_stats, with only
8235 * the type differing, but rtnl_link_stats64 may have additional fields
8236 * at the end for newer counters.
8237 */
8238 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8239 const struct net_device_stats *netdev_stats)
8240 {
8241 #if BITS_PER_LONG == 64
8242 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8243 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8244 /* zero out counters that only exist in rtnl_link_stats64 */
8245 memset((char *)stats64 + sizeof(*netdev_stats), 0,
8246 sizeof(*stats64) - sizeof(*netdev_stats));
8247 #else
8248 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8249 const unsigned long *src = (const unsigned long *)netdev_stats;
8250 u64 *dst = (u64 *)stats64;
8251
8252 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8253 for (i = 0; i < n; i++)
8254 dst[i] = src[i];
8255 /* zero out counters that only exist in rtnl_link_stats64 */
8256 memset((char *)stats64 + n * sizeof(u64), 0,
8257 sizeof(*stats64) - n * sizeof(u64));
8258 #endif
8259 }
8260 EXPORT_SYMBOL(netdev_stats_to_stats64);
8261
8262 /**
8263 * dev_get_stats - get network device statistics
8264 * @dev: device to get statistics from
8265 * @storage: place to store stats
8266 *
8267 * Get network statistics from device. Return @storage.
8268 * The device driver may provide its own method by setting
8269 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8270 * otherwise the internal statistics structure is used.
8271 */
8272 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8273 struct rtnl_link_stats64 *storage)
8274 {
8275 const struct net_device_ops *ops = dev->netdev_ops;
8276
8277 if (ops->ndo_get_stats64) {
8278 memset(storage, 0, sizeof(*storage));
8279 ops->ndo_get_stats64(dev, storage);
8280 } else if (ops->ndo_get_stats) {
8281 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8282 } else {
8283 netdev_stats_to_stats64(storage, &dev->stats);
8284 }
8285 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8286 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8287 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8288 return storage;
8289 }
8290 EXPORT_SYMBOL(dev_get_stats);
8291
8292 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8293 {
8294 struct netdev_queue *queue = dev_ingress_queue(dev);
8295
8296 #ifdef CONFIG_NET_CLS_ACT
8297 if (queue)
8298 return queue;
8299 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8300 if (!queue)
8301 return NULL;
8302 netdev_init_one_queue(dev, queue, NULL);
8303 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8304 queue->qdisc_sleeping = &noop_qdisc;
8305 rcu_assign_pointer(dev->ingress_queue, queue);
8306 #endif
8307 return queue;
8308 }
8309
8310 static const struct ethtool_ops default_ethtool_ops;
8311
8312 void netdev_set_default_ethtool_ops(struct net_device *dev,
8313 const struct ethtool_ops *ops)
8314 {
8315 if (dev->ethtool_ops == &default_ethtool_ops)
8316 dev->ethtool_ops = ops;
8317 }
8318 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8319
8320 void netdev_freemem(struct net_device *dev)
8321 {
8322 char *addr = (char *)dev - dev->padded;
8323
8324 kvfree(addr);
8325 }
8326
8327 /**
8328 * alloc_netdev_mqs - allocate network device
8329 * @sizeof_priv: size of private data to allocate space for
8330 * @name: device name format string
8331 * @name_assign_type: origin of device name
8332 * @setup: callback to initialize device
8333 * @txqs: the number of TX subqueues to allocate
8334 * @rxqs: the number of RX subqueues to allocate
8335 *
8336 * Allocates a struct net_device with private data area for driver use
8337 * and performs basic initialization. Also allocates subqueue structs
8338 * for each queue on the device.
8339 */
8340 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8341 unsigned char name_assign_type,
8342 void (*setup)(struct net_device *),
8343 unsigned int txqs, unsigned int rxqs)
8344 {
8345 struct net_device *dev;
8346 unsigned int alloc_size;
8347 struct net_device *p;
8348
8349 BUG_ON(strlen(name) >= sizeof(dev->name));
8350
8351 if (txqs < 1) {
8352 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8353 return NULL;
8354 }
8355
8356 if (rxqs < 1) {
8357 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8358 return NULL;
8359 }
8360
8361 alloc_size = sizeof(struct net_device);
8362 if (sizeof_priv) {
8363 /* ensure 32-byte alignment of private area */
8364 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8365 alloc_size += sizeof_priv;
8366 }
8367 /* ensure 32-byte alignment of whole construct */
8368 alloc_size += NETDEV_ALIGN - 1;
8369
8370 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8371 if (!p)
8372 return NULL;
8373
8374 dev = PTR_ALIGN(p, NETDEV_ALIGN);
8375 dev->padded = (char *)dev - (char *)p;
8376
8377 dev->pcpu_refcnt = alloc_percpu(int);
8378 if (!dev->pcpu_refcnt)
8379 goto free_dev;
8380
8381 if (dev_addr_init(dev))
8382 goto free_pcpu;
8383
8384 dev_mc_init(dev);
8385 dev_uc_init(dev);
8386
8387 dev_net_set(dev, &init_net);
8388
8389 dev->gso_max_size = GSO_MAX_SIZE;
8390 dev->gso_max_segs = GSO_MAX_SEGS;
8391
8392 INIT_LIST_HEAD(&dev->napi_list);
8393 INIT_LIST_HEAD(&dev->unreg_list);
8394 INIT_LIST_HEAD(&dev->close_list);
8395 INIT_LIST_HEAD(&dev->link_watch_list);
8396 INIT_LIST_HEAD(&dev->adj_list.upper);
8397 INIT_LIST_HEAD(&dev->adj_list.lower);
8398 INIT_LIST_HEAD(&dev->ptype_all);
8399 INIT_LIST_HEAD(&dev->ptype_specific);
8400 #ifdef CONFIG_NET_SCHED
8401 hash_init(dev->qdisc_hash);
8402 #endif
8403 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8404 setup(dev);
8405
8406 if (!dev->tx_queue_len) {
8407 dev->priv_flags |= IFF_NO_QUEUE;
8408 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8409 }
8410
8411 dev->num_tx_queues = txqs;
8412 dev->real_num_tx_queues = txqs;
8413 if (netif_alloc_netdev_queues(dev))
8414 goto free_all;
8415
8416 dev->num_rx_queues = rxqs;
8417 dev->real_num_rx_queues = rxqs;
8418 if (netif_alloc_rx_queues(dev))
8419 goto free_all;
8420
8421 strcpy(dev->name, name);
8422 dev->name_assign_type = name_assign_type;
8423 dev->group = INIT_NETDEV_GROUP;
8424 if (!dev->ethtool_ops)
8425 dev->ethtool_ops = &default_ethtool_ops;
8426
8427 nf_hook_ingress_init(dev);
8428
8429 return dev;
8430
8431 free_all:
8432 free_netdev(dev);
8433 return NULL;
8434
8435 free_pcpu:
8436 free_percpu(dev->pcpu_refcnt);
8437 free_dev:
8438 netdev_freemem(dev);
8439 return NULL;
8440 }
8441 EXPORT_SYMBOL(alloc_netdev_mqs);
8442
8443 /**
8444 * free_netdev - free network device
8445 * @dev: device
8446 *
8447 * This function does the last stage of destroying an allocated device
8448 * interface. The reference to the device object is released. If this
8449 * is the last reference then it will be freed.Must be called in process
8450 * context.
8451 */
8452 void free_netdev(struct net_device *dev)
8453 {
8454 struct napi_struct *p, *n;
8455
8456 might_sleep();
8457 netif_free_tx_queues(dev);
8458 netif_free_rx_queues(dev);
8459
8460 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8461
8462 /* Flush device addresses */
8463 dev_addr_flush(dev);
8464
8465 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8466 netif_napi_del(p);
8467
8468 free_percpu(dev->pcpu_refcnt);
8469 dev->pcpu_refcnt = NULL;
8470
8471 /* Compatibility with error handling in drivers */
8472 if (dev->reg_state == NETREG_UNINITIALIZED) {
8473 netdev_freemem(dev);
8474 return;
8475 }
8476
8477 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8478 dev->reg_state = NETREG_RELEASED;
8479
8480 /* will free via device release */
8481 put_device(&dev->dev);
8482 }
8483 EXPORT_SYMBOL(free_netdev);
8484
8485 /**
8486 * synchronize_net - Synchronize with packet receive processing
8487 *
8488 * Wait for packets currently being received to be done.
8489 * Does not block later packets from starting.
8490 */
8491 void synchronize_net(void)
8492 {
8493 might_sleep();
8494 if (rtnl_is_locked())
8495 synchronize_rcu_expedited();
8496 else
8497 synchronize_rcu();
8498 }
8499 EXPORT_SYMBOL(synchronize_net);
8500
8501 /**
8502 * unregister_netdevice_queue - remove device from the kernel
8503 * @dev: device
8504 * @head: list
8505 *
8506 * This function shuts down a device interface and removes it
8507 * from the kernel tables.
8508 * If head not NULL, device is queued to be unregistered later.
8509 *
8510 * Callers must hold the rtnl semaphore. You may want
8511 * unregister_netdev() instead of this.
8512 */
8513
8514 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8515 {
8516 ASSERT_RTNL();
8517
8518 if (head) {
8519 list_move_tail(&dev->unreg_list, head);
8520 } else {
8521 rollback_registered(dev);
8522 /* Finish processing unregister after unlock */
8523 net_set_todo(dev);
8524 }
8525 }
8526 EXPORT_SYMBOL(unregister_netdevice_queue);
8527
8528 /**
8529 * unregister_netdevice_many - unregister many devices
8530 * @head: list of devices
8531 *
8532 * Note: As most callers use a stack allocated list_head,
8533 * we force a list_del() to make sure stack wont be corrupted later.
8534 */
8535 void unregister_netdevice_many(struct list_head *head)
8536 {
8537 struct net_device *dev;
8538
8539 if (!list_empty(head)) {
8540 rollback_registered_many(head);
8541 list_for_each_entry(dev, head, unreg_list)
8542 net_set_todo(dev);
8543 list_del(head);
8544 }
8545 }
8546 EXPORT_SYMBOL(unregister_netdevice_many);
8547
8548 /**
8549 * unregister_netdev - remove device from the kernel
8550 * @dev: device
8551 *
8552 * This function shuts down a device interface and removes it
8553 * from the kernel tables.
8554 *
8555 * This is just a wrapper for unregister_netdevice that takes
8556 * the rtnl semaphore. In general you want to use this and not
8557 * unregister_netdevice.
8558 */
8559 void unregister_netdev(struct net_device *dev)
8560 {
8561 rtnl_lock();
8562 unregister_netdevice(dev);
8563 rtnl_unlock();
8564 }
8565 EXPORT_SYMBOL(unregister_netdev);
8566
8567 /**
8568 * dev_change_net_namespace - move device to different nethost namespace
8569 * @dev: device
8570 * @net: network namespace
8571 * @pat: If not NULL name pattern to try if the current device name
8572 * is already taken in the destination network namespace.
8573 *
8574 * This function shuts down a device interface and moves it
8575 * to a new network namespace. On success 0 is returned, on
8576 * a failure a netagive errno code is returned.
8577 *
8578 * Callers must hold the rtnl semaphore.
8579 */
8580
8581 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8582 {
8583 int err, new_nsid, new_ifindex;
8584
8585 ASSERT_RTNL();
8586
8587 /* Don't allow namespace local devices to be moved. */
8588 err = -EINVAL;
8589 if (dev->features & NETIF_F_NETNS_LOCAL)
8590 goto out;
8591
8592 /* Ensure the device has been registrered */
8593 if (dev->reg_state != NETREG_REGISTERED)
8594 goto out;
8595
8596 /* Get out if there is nothing todo */
8597 err = 0;
8598 if (net_eq(dev_net(dev), net))
8599 goto out;
8600
8601 /* Pick the destination device name, and ensure
8602 * we can use it in the destination network namespace.
8603 */
8604 err = -EEXIST;
8605 if (__dev_get_by_name(net, dev->name)) {
8606 /* We get here if we can't use the current device name */
8607 if (!pat)
8608 goto out;
8609 if (dev_get_valid_name(net, dev, pat) < 0)
8610 goto out;
8611 }
8612
8613 /*
8614 * And now a mini version of register_netdevice unregister_netdevice.
8615 */
8616
8617 /* If device is running close it first. */
8618 dev_close(dev);
8619
8620 /* And unlink it from device chain */
8621 err = -ENODEV;
8622 unlist_netdevice(dev);
8623
8624 synchronize_net();
8625
8626 /* Shutdown queueing discipline. */
8627 dev_shutdown(dev);
8628
8629 /* Notify protocols, that we are about to destroy
8630 * this device. They should clean all the things.
8631 *
8632 * Note that dev->reg_state stays at NETREG_REGISTERED.
8633 * This is wanted because this way 8021q and macvlan know
8634 * the device is just moving and can keep their slaves up.
8635 */
8636 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8637 rcu_barrier();
8638
8639 new_nsid = peernet2id_alloc(dev_net(dev), net);
8640 /* If there is an ifindex conflict assign a new one */
8641 if (__dev_get_by_index(net, dev->ifindex))
8642 new_ifindex = dev_new_index(net);
8643 else
8644 new_ifindex = dev->ifindex;
8645
8646 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
8647 new_ifindex);
8648
8649 /*
8650 * Flush the unicast and multicast chains
8651 */
8652 dev_uc_flush(dev);
8653 dev_mc_flush(dev);
8654
8655 /* Send a netdev-removed uevent to the old namespace */
8656 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8657 netdev_adjacent_del_links(dev);
8658
8659 /* Actually switch the network namespace */
8660 dev_net_set(dev, net);
8661 dev->ifindex = new_ifindex;
8662
8663 /* Send a netdev-add uevent to the new namespace */
8664 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8665 netdev_adjacent_add_links(dev);
8666
8667 /* Fixup kobjects */
8668 err = device_rename(&dev->dev, dev->name);
8669 WARN_ON(err);
8670
8671 /* Add the device back in the hashes */
8672 list_netdevice(dev);
8673
8674 /* Notify protocols, that a new device appeared. */
8675 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8676
8677 /*
8678 * Prevent userspace races by waiting until the network
8679 * device is fully setup before sending notifications.
8680 */
8681 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8682
8683 synchronize_net();
8684 err = 0;
8685 out:
8686 return err;
8687 }
8688 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8689
8690 static int dev_cpu_dead(unsigned int oldcpu)
8691 {
8692 struct sk_buff **list_skb;
8693 struct sk_buff *skb;
8694 unsigned int cpu;
8695 struct softnet_data *sd, *oldsd, *remsd = NULL;
8696
8697 local_irq_disable();
8698 cpu = smp_processor_id();
8699 sd = &per_cpu(softnet_data, cpu);
8700 oldsd = &per_cpu(softnet_data, oldcpu);
8701
8702 /* Find end of our completion_queue. */
8703 list_skb = &sd->completion_queue;
8704 while (*list_skb)
8705 list_skb = &(*list_skb)->next;
8706 /* Append completion queue from offline CPU. */
8707 *list_skb = oldsd->completion_queue;
8708 oldsd->completion_queue = NULL;
8709
8710 /* Append output queue from offline CPU. */
8711 if (oldsd->output_queue) {
8712 *sd->output_queue_tailp = oldsd->output_queue;
8713 sd->output_queue_tailp = oldsd->output_queue_tailp;
8714 oldsd->output_queue = NULL;
8715 oldsd->output_queue_tailp = &oldsd->output_queue;
8716 }
8717 /* Append NAPI poll list from offline CPU, with one exception :
8718 * process_backlog() must be called by cpu owning percpu backlog.
8719 * We properly handle process_queue & input_pkt_queue later.
8720 */
8721 while (!list_empty(&oldsd->poll_list)) {
8722 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8723 struct napi_struct,
8724 poll_list);
8725
8726 list_del_init(&napi->poll_list);
8727 if (napi->poll == process_backlog)
8728 napi->state = 0;
8729 else
8730 ____napi_schedule(sd, napi);
8731 }
8732
8733 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8734 local_irq_enable();
8735
8736 #ifdef CONFIG_RPS
8737 remsd = oldsd->rps_ipi_list;
8738 oldsd->rps_ipi_list = NULL;
8739 #endif
8740 /* send out pending IPI's on offline CPU */
8741 net_rps_send_ipi(remsd);
8742
8743 /* Process offline CPU's input_pkt_queue */
8744 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8745 netif_rx_ni(skb);
8746 input_queue_head_incr(oldsd);
8747 }
8748 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8749 netif_rx_ni(skb);
8750 input_queue_head_incr(oldsd);
8751 }
8752
8753 return 0;
8754 }
8755
8756 /**
8757 * netdev_increment_features - increment feature set by one
8758 * @all: current feature set
8759 * @one: new feature set
8760 * @mask: mask feature set
8761 *
8762 * Computes a new feature set after adding a device with feature set
8763 * @one to the master device with current feature set @all. Will not
8764 * enable anything that is off in @mask. Returns the new feature set.
8765 */
8766 netdev_features_t netdev_increment_features(netdev_features_t all,
8767 netdev_features_t one, netdev_features_t mask)
8768 {
8769 if (mask & NETIF_F_HW_CSUM)
8770 mask |= NETIF_F_CSUM_MASK;
8771 mask |= NETIF_F_VLAN_CHALLENGED;
8772
8773 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8774 all &= one | ~NETIF_F_ALL_FOR_ALL;
8775
8776 /* If one device supports hw checksumming, set for all. */
8777 if (all & NETIF_F_HW_CSUM)
8778 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8779
8780 return all;
8781 }
8782 EXPORT_SYMBOL(netdev_increment_features);
8783
8784 static struct hlist_head * __net_init netdev_create_hash(void)
8785 {
8786 int i;
8787 struct hlist_head *hash;
8788
8789 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8790 if (hash != NULL)
8791 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8792 INIT_HLIST_HEAD(&hash[i]);
8793
8794 return hash;
8795 }
8796
8797 /* Initialize per network namespace state */
8798 static int __net_init netdev_init(struct net *net)
8799 {
8800 if (net != &init_net)
8801 INIT_LIST_HEAD(&net->dev_base_head);
8802
8803 net->dev_name_head = netdev_create_hash();
8804 if (net->dev_name_head == NULL)
8805 goto err_name;
8806
8807 net->dev_index_head = netdev_create_hash();
8808 if (net->dev_index_head == NULL)
8809 goto err_idx;
8810
8811 return 0;
8812
8813 err_idx:
8814 kfree(net->dev_name_head);
8815 err_name:
8816 return -ENOMEM;
8817 }
8818
8819 /**
8820 * netdev_drivername - network driver for the device
8821 * @dev: network device
8822 *
8823 * Determine network driver for device.
8824 */
8825 const char *netdev_drivername(const struct net_device *dev)
8826 {
8827 const struct device_driver *driver;
8828 const struct device *parent;
8829 const char *empty = "";
8830
8831 parent = dev->dev.parent;
8832 if (!parent)
8833 return empty;
8834
8835 driver = parent->driver;
8836 if (driver && driver->name)
8837 return driver->name;
8838 return empty;
8839 }
8840
8841 static void __netdev_printk(const char *level, const struct net_device *dev,
8842 struct va_format *vaf)
8843 {
8844 if (dev && dev->dev.parent) {
8845 dev_printk_emit(level[1] - '0',
8846 dev->dev.parent,
8847 "%s %s %s%s: %pV",
8848 dev_driver_string(dev->dev.parent),
8849 dev_name(dev->dev.parent),
8850 netdev_name(dev), netdev_reg_state(dev),
8851 vaf);
8852 } else if (dev) {
8853 printk("%s%s%s: %pV",
8854 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8855 } else {
8856 printk("%s(NULL net_device): %pV", level, vaf);
8857 }
8858 }
8859
8860 void netdev_printk(const char *level, const struct net_device *dev,
8861 const char *format, ...)
8862 {
8863 struct va_format vaf;
8864 va_list args;
8865
8866 va_start(args, format);
8867
8868 vaf.fmt = format;
8869 vaf.va = &args;
8870
8871 __netdev_printk(level, dev, &vaf);
8872
8873 va_end(args);
8874 }
8875 EXPORT_SYMBOL(netdev_printk);
8876
8877 #define define_netdev_printk_level(func, level) \
8878 void func(const struct net_device *dev, const char *fmt, ...) \
8879 { \
8880 struct va_format vaf; \
8881 va_list args; \
8882 \
8883 va_start(args, fmt); \
8884 \
8885 vaf.fmt = fmt; \
8886 vaf.va = &args; \
8887 \
8888 __netdev_printk(level, dev, &vaf); \
8889 \
8890 va_end(args); \
8891 } \
8892 EXPORT_SYMBOL(func);
8893
8894 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8895 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8896 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8897 define_netdev_printk_level(netdev_err, KERN_ERR);
8898 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8899 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8900 define_netdev_printk_level(netdev_info, KERN_INFO);
8901
8902 static void __net_exit netdev_exit(struct net *net)
8903 {
8904 kfree(net->dev_name_head);
8905 kfree(net->dev_index_head);
8906 if (net != &init_net)
8907 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8908 }
8909
8910 static struct pernet_operations __net_initdata netdev_net_ops = {
8911 .init = netdev_init,
8912 .exit = netdev_exit,
8913 };
8914
8915 static void __net_exit default_device_exit(struct net *net)
8916 {
8917 struct net_device *dev, *aux;
8918 /*
8919 * Push all migratable network devices back to the
8920 * initial network namespace
8921 */
8922 rtnl_lock();
8923 for_each_netdev_safe(net, dev, aux) {
8924 int err;
8925 char fb_name[IFNAMSIZ];
8926
8927 /* Ignore unmoveable devices (i.e. loopback) */
8928 if (dev->features & NETIF_F_NETNS_LOCAL)
8929 continue;
8930
8931 /* Leave virtual devices for the generic cleanup */
8932 if (dev->rtnl_link_ops)
8933 continue;
8934
8935 /* Push remaining network devices to init_net */
8936 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8937 err = dev_change_net_namespace(dev, &init_net, fb_name);
8938 if (err) {
8939 pr_emerg("%s: failed to move %s to init_net: %d\n",
8940 __func__, dev->name, err);
8941 BUG();
8942 }
8943 }
8944 rtnl_unlock();
8945 }
8946
8947 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8948 {
8949 /* Return with the rtnl_lock held when there are no network
8950 * devices unregistering in any network namespace in net_list.
8951 */
8952 struct net *net;
8953 bool unregistering;
8954 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8955
8956 add_wait_queue(&netdev_unregistering_wq, &wait);
8957 for (;;) {
8958 unregistering = false;
8959 rtnl_lock();
8960 list_for_each_entry(net, net_list, exit_list) {
8961 if (net->dev_unreg_count > 0) {
8962 unregistering = true;
8963 break;
8964 }
8965 }
8966 if (!unregistering)
8967 break;
8968 __rtnl_unlock();
8969
8970 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8971 }
8972 remove_wait_queue(&netdev_unregistering_wq, &wait);
8973 }
8974
8975 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8976 {
8977 /* At exit all network devices most be removed from a network
8978 * namespace. Do this in the reverse order of registration.
8979 * Do this across as many network namespaces as possible to
8980 * improve batching efficiency.
8981 */
8982 struct net_device *dev;
8983 struct net *net;
8984 LIST_HEAD(dev_kill_list);
8985
8986 /* To prevent network device cleanup code from dereferencing
8987 * loopback devices or network devices that have been freed
8988 * wait here for all pending unregistrations to complete,
8989 * before unregistring the loopback device and allowing the
8990 * network namespace be freed.
8991 *
8992 * The netdev todo list containing all network devices
8993 * unregistrations that happen in default_device_exit_batch
8994 * will run in the rtnl_unlock() at the end of
8995 * default_device_exit_batch.
8996 */
8997 rtnl_lock_unregistering(net_list);
8998 list_for_each_entry(net, net_list, exit_list) {
8999 for_each_netdev_reverse(net, dev) {
9000 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9001 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9002 else
9003 unregister_netdevice_queue(dev, &dev_kill_list);
9004 }
9005 }
9006 unregister_netdevice_many(&dev_kill_list);
9007 rtnl_unlock();
9008 }
9009
9010 static struct pernet_operations __net_initdata default_device_ops = {
9011 .exit = default_device_exit,
9012 .exit_batch = default_device_exit_batch,
9013 };
9014
9015 /*
9016 * Initialize the DEV module. At boot time this walks the device list and
9017 * unhooks any devices that fail to initialise (normally hardware not
9018 * present) and leaves us with a valid list of present and active devices.
9019 *
9020 */
9021
9022 /*
9023 * This is called single threaded during boot, so no need
9024 * to take the rtnl semaphore.
9025 */
9026 static int __init net_dev_init(void)
9027 {
9028 int i, rc = -ENOMEM;
9029
9030 BUG_ON(!dev_boot_phase);
9031
9032 if (dev_proc_init())
9033 goto out;
9034
9035 if (netdev_kobject_init())
9036 goto out;
9037
9038 INIT_LIST_HEAD(&ptype_all);
9039 for (i = 0; i < PTYPE_HASH_SIZE; i++)
9040 INIT_LIST_HEAD(&ptype_base[i]);
9041
9042 INIT_LIST_HEAD(&offload_base);
9043
9044 if (register_pernet_subsys(&netdev_net_ops))
9045 goto out;
9046
9047 /*
9048 * Initialise the packet receive queues.
9049 */
9050
9051 for_each_possible_cpu(i) {
9052 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9053 struct softnet_data *sd = &per_cpu(softnet_data, i);
9054
9055 INIT_WORK(flush, flush_backlog);
9056
9057 skb_queue_head_init(&sd->input_pkt_queue);
9058 skb_queue_head_init(&sd->process_queue);
9059 #ifdef CONFIG_XFRM_OFFLOAD
9060 skb_queue_head_init(&sd->xfrm_backlog);
9061 #endif
9062 INIT_LIST_HEAD(&sd->poll_list);
9063 sd->output_queue_tailp = &sd->output_queue;
9064 #ifdef CONFIG_RPS
9065 sd->csd.func = rps_trigger_softirq;
9066 sd->csd.info = sd;
9067 sd->cpu = i;
9068 #endif
9069
9070 sd->backlog.poll = process_backlog;
9071 sd->backlog.weight = weight_p;
9072 }
9073
9074 dev_boot_phase = 0;
9075
9076 /* The loopback device is special if any other network devices
9077 * is present in a network namespace the loopback device must
9078 * be present. Since we now dynamically allocate and free the
9079 * loopback device ensure this invariant is maintained by
9080 * keeping the loopback device as the first device on the
9081 * list of network devices. Ensuring the loopback devices
9082 * is the first device that appears and the last network device
9083 * that disappears.
9084 */
9085 if (register_pernet_device(&loopback_net_ops))
9086 goto out;
9087
9088 if (register_pernet_device(&default_device_ops))
9089 goto out;
9090
9091 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9092 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9093
9094 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9095 NULL, dev_cpu_dead);
9096 WARN_ON(rc < 0);
9097 rc = 0;
9098 out:
9099 return rc;
9100 }
9101
9102 subsys_initcall(net_dev_init);