]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/dev.c
net: validate_xmit_vlan() is static
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135 #include <linux/errqueue.h>
136
137 #include "net-sysfs.h"
138
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144
145 static DEFINE_SPINLOCK(ptype_lock);
146 static DEFINE_SPINLOCK(offload_lock);
147 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
148 struct list_head ptype_all __read_mostly; /* Taps */
149 static struct list_head offload_base __read_mostly;
150
151 static int netif_rx_internal(struct sk_buff *skb);
152 static int call_netdevice_notifiers_info(unsigned long val,
153 struct net_device *dev,
154 struct netdev_notifier_info *info);
155
156 /*
157 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
158 * semaphore.
159 *
160 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
161 *
162 * Writers must hold the rtnl semaphore while they loop through the
163 * dev_base_head list, and hold dev_base_lock for writing when they do the
164 * actual updates. This allows pure readers to access the list even
165 * while a writer is preparing to update it.
166 *
167 * To put it another way, dev_base_lock is held for writing only to
168 * protect against pure readers; the rtnl semaphore provides the
169 * protection against other writers.
170 *
171 * See, for example usages, register_netdevice() and
172 * unregister_netdevice(), which must be called with the rtnl
173 * semaphore held.
174 */
175 DEFINE_RWLOCK(dev_base_lock);
176 EXPORT_SYMBOL(dev_base_lock);
177
178 /* protects napi_hash addition/deletion and napi_gen_id */
179 static DEFINE_SPINLOCK(napi_hash_lock);
180
181 static unsigned int napi_gen_id;
182 static DEFINE_HASHTABLE(napi_hash, 8);
183
184 static seqcount_t devnet_rename_seq;
185
186 static inline void dev_base_seq_inc(struct net *net)
187 {
188 while (++net->dev_base_seq == 0);
189 }
190
191 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
192 {
193 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
194
195 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
196 }
197
198 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
199 {
200 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
201 }
202
203 static inline void rps_lock(struct softnet_data *sd)
204 {
205 #ifdef CONFIG_RPS
206 spin_lock(&sd->input_pkt_queue.lock);
207 #endif
208 }
209
210 static inline void rps_unlock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213 spin_unlock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 /* Device list insertion */
218 static void list_netdevice(struct net_device *dev)
219 {
220 struct net *net = dev_net(dev);
221
222 ASSERT_RTNL();
223
224 write_lock_bh(&dev_base_lock);
225 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
226 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
227 hlist_add_head_rcu(&dev->index_hlist,
228 dev_index_hash(net, dev->ifindex));
229 write_unlock_bh(&dev_base_lock);
230
231 dev_base_seq_inc(net);
232 }
233
234 /* Device list removal
235 * caller must respect a RCU grace period before freeing/reusing dev
236 */
237 static void unlist_netdevice(struct net_device *dev)
238 {
239 ASSERT_RTNL();
240
241 /* Unlink dev from the device chain */
242 write_lock_bh(&dev_base_lock);
243 list_del_rcu(&dev->dev_list);
244 hlist_del_rcu(&dev->name_hlist);
245 hlist_del_rcu(&dev->index_hlist);
246 write_unlock_bh(&dev_base_lock);
247
248 dev_base_seq_inc(dev_net(dev));
249 }
250
251 /*
252 * Our notifier list
253 */
254
255 static RAW_NOTIFIER_HEAD(netdev_chain);
256
257 /*
258 * Device drivers call our routines to queue packets here. We empty the
259 * queue in the local softnet handler.
260 */
261
262 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
263 EXPORT_PER_CPU_SYMBOL(softnet_data);
264
265 #ifdef CONFIG_LOCKDEP
266 /*
267 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
268 * according to dev->type
269 */
270 static const unsigned short netdev_lock_type[] =
271 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
283 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
284 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
285 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
286
287 static const char *const netdev_lock_name[] =
288 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
300 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
301 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
302 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
303
304 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
305 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
306
307 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
308 {
309 int i;
310
311 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312 if (netdev_lock_type[i] == dev_type)
313 return i;
314 /* the last key is used by default */
315 return ARRAY_SIZE(netdev_lock_type) - 1;
316 }
317
318 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319 unsigned short dev_type)
320 {
321 int i;
322
323 i = netdev_lock_pos(dev_type);
324 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325 netdev_lock_name[i]);
326 }
327
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 int i;
331
332 i = netdev_lock_pos(dev->type);
333 lockdep_set_class_and_name(&dev->addr_list_lock,
334 &netdev_addr_lock_key[i],
335 netdev_lock_name[i]);
336 }
337 #else
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340 {
341 }
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 }
345 #endif
346
347 /*******************************************************************************
348
349 Protocol management and registration routines
350
351 *******************************************************************************/
352
353 /*
354 * Add a protocol ID to the list. Now that the input handler is
355 * smarter we can dispense with all the messy stuff that used to be
356 * here.
357 *
358 * BEWARE!!! Protocol handlers, mangling input packets,
359 * MUST BE last in hash buckets and checking protocol handlers
360 * MUST start from promiscuous ptype_all chain in net_bh.
361 * It is true now, do not change it.
362 * Explanation follows: if protocol handler, mangling packet, will
363 * be the first on list, it is not able to sense, that packet
364 * is cloned and should be copied-on-write, so that it will
365 * change it and subsequent readers will get broken packet.
366 * --ANK (980803)
367 */
368
369 static inline struct list_head *ptype_head(const struct packet_type *pt)
370 {
371 if (pt->type == htons(ETH_P_ALL))
372 return &ptype_all;
373 else
374 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
375 }
376
377 /**
378 * dev_add_pack - add packet handler
379 * @pt: packet type declaration
380 *
381 * Add a protocol handler to the networking stack. The passed &packet_type
382 * is linked into kernel lists and may not be freed until it has been
383 * removed from the kernel lists.
384 *
385 * This call does not sleep therefore it can not
386 * guarantee all CPU's that are in middle of receiving packets
387 * will see the new packet type (until the next received packet).
388 */
389
390 void dev_add_pack(struct packet_type *pt)
391 {
392 struct list_head *head = ptype_head(pt);
393
394 spin_lock(&ptype_lock);
395 list_add_rcu(&pt->list, head);
396 spin_unlock(&ptype_lock);
397 }
398 EXPORT_SYMBOL(dev_add_pack);
399
400 /**
401 * __dev_remove_pack - remove packet handler
402 * @pt: packet type declaration
403 *
404 * Remove a protocol handler that was previously added to the kernel
405 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
406 * from the kernel lists and can be freed or reused once this function
407 * returns.
408 *
409 * The packet type might still be in use by receivers
410 * and must not be freed until after all the CPU's have gone
411 * through a quiescent state.
412 */
413 void __dev_remove_pack(struct packet_type *pt)
414 {
415 struct list_head *head = ptype_head(pt);
416 struct packet_type *pt1;
417
418 spin_lock(&ptype_lock);
419
420 list_for_each_entry(pt1, head, list) {
421 if (pt == pt1) {
422 list_del_rcu(&pt->list);
423 goto out;
424 }
425 }
426
427 pr_warn("dev_remove_pack: %p not found\n", pt);
428 out:
429 spin_unlock(&ptype_lock);
430 }
431 EXPORT_SYMBOL(__dev_remove_pack);
432
433 /**
434 * dev_remove_pack - remove packet handler
435 * @pt: packet type declaration
436 *
437 * Remove a protocol handler that was previously added to the kernel
438 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
439 * from the kernel lists and can be freed or reused once this function
440 * returns.
441 *
442 * This call sleeps to guarantee that no CPU is looking at the packet
443 * type after return.
444 */
445 void dev_remove_pack(struct packet_type *pt)
446 {
447 __dev_remove_pack(pt);
448
449 synchronize_net();
450 }
451 EXPORT_SYMBOL(dev_remove_pack);
452
453
454 /**
455 * dev_add_offload - register offload handlers
456 * @po: protocol offload declaration
457 *
458 * Add protocol offload handlers to the networking stack. The passed
459 * &proto_offload is linked into kernel lists and may not be freed until
460 * it has been removed from the kernel lists.
461 *
462 * This call does not sleep therefore it can not
463 * guarantee all CPU's that are in middle of receiving packets
464 * will see the new offload handlers (until the next received packet).
465 */
466 void dev_add_offload(struct packet_offload *po)
467 {
468 struct list_head *head = &offload_base;
469
470 spin_lock(&offload_lock);
471 list_add_rcu(&po->list, head);
472 spin_unlock(&offload_lock);
473 }
474 EXPORT_SYMBOL(dev_add_offload);
475
476 /**
477 * __dev_remove_offload - remove offload handler
478 * @po: packet offload declaration
479 *
480 * Remove a protocol offload handler that was previously added to the
481 * kernel offload handlers by dev_add_offload(). The passed &offload_type
482 * is removed from the kernel lists and can be freed or reused once this
483 * function returns.
484 *
485 * The packet type might still be in use by receivers
486 * and must not be freed until after all the CPU's have gone
487 * through a quiescent state.
488 */
489 static void __dev_remove_offload(struct packet_offload *po)
490 {
491 struct list_head *head = &offload_base;
492 struct packet_offload *po1;
493
494 spin_lock(&offload_lock);
495
496 list_for_each_entry(po1, head, list) {
497 if (po == po1) {
498 list_del_rcu(&po->list);
499 goto out;
500 }
501 }
502
503 pr_warn("dev_remove_offload: %p not found\n", po);
504 out:
505 spin_unlock(&offload_lock);
506 }
507
508 /**
509 * dev_remove_offload - remove packet offload handler
510 * @po: packet offload declaration
511 *
512 * Remove a packet offload handler that was previously added to the kernel
513 * offload handlers by dev_add_offload(). The passed &offload_type is
514 * removed from the kernel lists and can be freed or reused once this
515 * function returns.
516 *
517 * This call sleeps to guarantee that no CPU is looking at the packet
518 * type after return.
519 */
520 void dev_remove_offload(struct packet_offload *po)
521 {
522 __dev_remove_offload(po);
523
524 synchronize_net();
525 }
526 EXPORT_SYMBOL(dev_remove_offload);
527
528 /******************************************************************************
529
530 Device Boot-time Settings Routines
531
532 *******************************************************************************/
533
534 /* Boot time configuration table */
535 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
536
537 /**
538 * netdev_boot_setup_add - add new setup entry
539 * @name: name of the device
540 * @map: configured settings for the device
541 *
542 * Adds new setup entry to the dev_boot_setup list. The function
543 * returns 0 on error and 1 on success. This is a generic routine to
544 * all netdevices.
545 */
546 static int netdev_boot_setup_add(char *name, struct ifmap *map)
547 {
548 struct netdev_boot_setup *s;
549 int i;
550
551 s = dev_boot_setup;
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
553 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
554 memset(s[i].name, 0, sizeof(s[i].name));
555 strlcpy(s[i].name, name, IFNAMSIZ);
556 memcpy(&s[i].map, map, sizeof(s[i].map));
557 break;
558 }
559 }
560
561 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
562 }
563
564 /**
565 * netdev_boot_setup_check - check boot time settings
566 * @dev: the netdevice
567 *
568 * Check boot time settings for the device.
569 * The found settings are set for the device to be used
570 * later in the device probing.
571 * Returns 0 if no settings found, 1 if they are.
572 */
573 int netdev_boot_setup_check(struct net_device *dev)
574 {
575 struct netdev_boot_setup *s = dev_boot_setup;
576 int i;
577
578 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
579 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
580 !strcmp(dev->name, s[i].name)) {
581 dev->irq = s[i].map.irq;
582 dev->base_addr = s[i].map.base_addr;
583 dev->mem_start = s[i].map.mem_start;
584 dev->mem_end = s[i].map.mem_end;
585 return 1;
586 }
587 }
588 return 0;
589 }
590 EXPORT_SYMBOL(netdev_boot_setup_check);
591
592
593 /**
594 * netdev_boot_base - get address from boot time settings
595 * @prefix: prefix for network device
596 * @unit: id for network device
597 *
598 * Check boot time settings for the base address of device.
599 * The found settings are set for the device to be used
600 * later in the device probing.
601 * Returns 0 if no settings found.
602 */
603 unsigned long netdev_boot_base(const char *prefix, int unit)
604 {
605 const struct netdev_boot_setup *s = dev_boot_setup;
606 char name[IFNAMSIZ];
607 int i;
608
609 sprintf(name, "%s%d", prefix, unit);
610
611 /*
612 * If device already registered then return base of 1
613 * to indicate not to probe for this interface
614 */
615 if (__dev_get_by_name(&init_net, name))
616 return 1;
617
618 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
619 if (!strcmp(name, s[i].name))
620 return s[i].map.base_addr;
621 return 0;
622 }
623
624 /*
625 * Saves at boot time configured settings for any netdevice.
626 */
627 int __init netdev_boot_setup(char *str)
628 {
629 int ints[5];
630 struct ifmap map;
631
632 str = get_options(str, ARRAY_SIZE(ints), ints);
633 if (!str || !*str)
634 return 0;
635
636 /* Save settings */
637 memset(&map, 0, sizeof(map));
638 if (ints[0] > 0)
639 map.irq = ints[1];
640 if (ints[0] > 1)
641 map.base_addr = ints[2];
642 if (ints[0] > 2)
643 map.mem_start = ints[3];
644 if (ints[0] > 3)
645 map.mem_end = ints[4];
646
647 /* Add new entry to the list */
648 return netdev_boot_setup_add(str, &map);
649 }
650
651 __setup("netdev=", netdev_boot_setup);
652
653 /*******************************************************************************
654
655 Device Interface Subroutines
656
657 *******************************************************************************/
658
659 /**
660 * __dev_get_by_name - find a device by its name
661 * @net: the applicable net namespace
662 * @name: name to find
663 *
664 * Find an interface by name. Must be called under RTNL semaphore
665 * or @dev_base_lock. If the name is found a pointer to the device
666 * is returned. If the name is not found then %NULL is returned. The
667 * reference counters are not incremented so the caller must be
668 * careful with locks.
669 */
670
671 struct net_device *__dev_get_by_name(struct net *net, const char *name)
672 {
673 struct net_device *dev;
674 struct hlist_head *head = dev_name_hash(net, name);
675
676 hlist_for_each_entry(dev, head, name_hlist)
677 if (!strncmp(dev->name, name, IFNAMSIZ))
678 return dev;
679
680 return NULL;
681 }
682 EXPORT_SYMBOL(__dev_get_by_name);
683
684 /**
685 * dev_get_by_name_rcu - find a device by its name
686 * @net: the applicable net namespace
687 * @name: name to find
688 *
689 * Find an interface by name.
690 * If the name is found a pointer to the device is returned.
691 * If the name is not found then %NULL is returned.
692 * The reference counters are not incremented so the caller must be
693 * careful with locks. The caller must hold RCU lock.
694 */
695
696 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
697 {
698 struct net_device *dev;
699 struct hlist_head *head = dev_name_hash(net, name);
700
701 hlist_for_each_entry_rcu(dev, head, name_hlist)
702 if (!strncmp(dev->name, name, IFNAMSIZ))
703 return dev;
704
705 return NULL;
706 }
707 EXPORT_SYMBOL(dev_get_by_name_rcu);
708
709 /**
710 * dev_get_by_name - find a device by its name
711 * @net: the applicable net namespace
712 * @name: name to find
713 *
714 * Find an interface by name. This can be called from any
715 * context and does its own locking. The returned handle has
716 * the usage count incremented and the caller must use dev_put() to
717 * release it when it is no longer needed. %NULL is returned if no
718 * matching device is found.
719 */
720
721 struct net_device *dev_get_by_name(struct net *net, const char *name)
722 {
723 struct net_device *dev;
724
725 rcu_read_lock();
726 dev = dev_get_by_name_rcu(net, name);
727 if (dev)
728 dev_hold(dev);
729 rcu_read_unlock();
730 return dev;
731 }
732 EXPORT_SYMBOL(dev_get_by_name);
733
734 /**
735 * __dev_get_by_index - find a device by its ifindex
736 * @net: the applicable net namespace
737 * @ifindex: index of device
738 *
739 * Search for an interface by index. Returns %NULL if the device
740 * is not found or a pointer to the device. The device has not
741 * had its reference counter increased so the caller must be careful
742 * about locking. The caller must hold either the RTNL semaphore
743 * or @dev_base_lock.
744 */
745
746 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
747 {
748 struct net_device *dev;
749 struct hlist_head *head = dev_index_hash(net, ifindex);
750
751 hlist_for_each_entry(dev, head, index_hlist)
752 if (dev->ifindex == ifindex)
753 return dev;
754
755 return NULL;
756 }
757 EXPORT_SYMBOL(__dev_get_by_index);
758
759 /**
760 * dev_get_by_index_rcu - find a device by its ifindex
761 * @net: the applicable net namespace
762 * @ifindex: index of device
763 *
764 * Search for an interface by index. Returns %NULL if the device
765 * is not found or a pointer to the device. The device has not
766 * had its reference counter increased so the caller must be careful
767 * about locking. The caller must hold RCU lock.
768 */
769
770 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
771 {
772 struct net_device *dev;
773 struct hlist_head *head = dev_index_hash(net, ifindex);
774
775 hlist_for_each_entry_rcu(dev, head, index_hlist)
776 if (dev->ifindex == ifindex)
777 return dev;
778
779 return NULL;
780 }
781 EXPORT_SYMBOL(dev_get_by_index_rcu);
782
783
784 /**
785 * dev_get_by_index - find a device by its ifindex
786 * @net: the applicable net namespace
787 * @ifindex: index of device
788 *
789 * Search for an interface by index. Returns NULL if the device
790 * is not found or a pointer to the device. The device returned has
791 * had a reference added and the pointer is safe until the user calls
792 * dev_put to indicate they have finished with it.
793 */
794
795 struct net_device *dev_get_by_index(struct net *net, int ifindex)
796 {
797 struct net_device *dev;
798
799 rcu_read_lock();
800 dev = dev_get_by_index_rcu(net, ifindex);
801 if (dev)
802 dev_hold(dev);
803 rcu_read_unlock();
804 return dev;
805 }
806 EXPORT_SYMBOL(dev_get_by_index);
807
808 /**
809 * netdev_get_name - get a netdevice name, knowing its ifindex.
810 * @net: network namespace
811 * @name: a pointer to the buffer where the name will be stored.
812 * @ifindex: the ifindex of the interface to get the name from.
813 *
814 * The use of raw_seqcount_begin() and cond_resched() before
815 * retrying is required as we want to give the writers a chance
816 * to complete when CONFIG_PREEMPT is not set.
817 */
818 int netdev_get_name(struct net *net, char *name, int ifindex)
819 {
820 struct net_device *dev;
821 unsigned int seq;
822
823 retry:
824 seq = raw_seqcount_begin(&devnet_rename_seq);
825 rcu_read_lock();
826 dev = dev_get_by_index_rcu(net, ifindex);
827 if (!dev) {
828 rcu_read_unlock();
829 return -ENODEV;
830 }
831
832 strcpy(name, dev->name);
833 rcu_read_unlock();
834 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
835 cond_resched();
836 goto retry;
837 }
838
839 return 0;
840 }
841
842 /**
843 * dev_getbyhwaddr_rcu - find a device by its hardware address
844 * @net: the applicable net namespace
845 * @type: media type of device
846 * @ha: hardware address
847 *
848 * Search for an interface by MAC address. Returns NULL if the device
849 * is not found or a pointer to the device.
850 * The caller must hold RCU or RTNL.
851 * The returned device has not had its ref count increased
852 * and the caller must therefore be careful about locking
853 *
854 */
855
856 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
857 const char *ha)
858 {
859 struct net_device *dev;
860
861 for_each_netdev_rcu(net, dev)
862 if (dev->type == type &&
863 !memcmp(dev->dev_addr, ha, dev->addr_len))
864 return dev;
865
866 return NULL;
867 }
868 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
869
870 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
871 {
872 struct net_device *dev;
873
874 ASSERT_RTNL();
875 for_each_netdev(net, dev)
876 if (dev->type == type)
877 return dev;
878
879 return NULL;
880 }
881 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
882
883 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
884 {
885 struct net_device *dev, *ret = NULL;
886
887 rcu_read_lock();
888 for_each_netdev_rcu(net, dev)
889 if (dev->type == type) {
890 dev_hold(dev);
891 ret = dev;
892 break;
893 }
894 rcu_read_unlock();
895 return ret;
896 }
897 EXPORT_SYMBOL(dev_getfirstbyhwtype);
898
899 /**
900 * __dev_get_by_flags - find any device with given flags
901 * @net: the applicable net namespace
902 * @if_flags: IFF_* values
903 * @mask: bitmask of bits in if_flags to check
904 *
905 * Search for any interface with the given flags. Returns NULL if a device
906 * is not found or a pointer to the device. Must be called inside
907 * rtnl_lock(), and result refcount is unchanged.
908 */
909
910 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
911 unsigned short mask)
912 {
913 struct net_device *dev, *ret;
914
915 ASSERT_RTNL();
916
917 ret = NULL;
918 for_each_netdev(net, dev) {
919 if (((dev->flags ^ if_flags) & mask) == 0) {
920 ret = dev;
921 break;
922 }
923 }
924 return ret;
925 }
926 EXPORT_SYMBOL(__dev_get_by_flags);
927
928 /**
929 * dev_valid_name - check if name is okay for network device
930 * @name: name string
931 *
932 * Network device names need to be valid file names to
933 * to allow sysfs to work. We also disallow any kind of
934 * whitespace.
935 */
936 bool dev_valid_name(const char *name)
937 {
938 if (*name == '\0')
939 return false;
940 if (strlen(name) >= IFNAMSIZ)
941 return false;
942 if (!strcmp(name, ".") || !strcmp(name, ".."))
943 return false;
944
945 while (*name) {
946 if (*name == '/' || isspace(*name))
947 return false;
948 name++;
949 }
950 return true;
951 }
952 EXPORT_SYMBOL(dev_valid_name);
953
954 /**
955 * __dev_alloc_name - allocate a name for a device
956 * @net: network namespace to allocate the device name in
957 * @name: name format string
958 * @buf: scratch buffer and result name string
959 *
960 * Passed a format string - eg "lt%d" it will try and find a suitable
961 * id. It scans list of devices to build up a free map, then chooses
962 * the first empty slot. The caller must hold the dev_base or rtnl lock
963 * while allocating the name and adding the device in order to avoid
964 * duplicates.
965 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
966 * Returns the number of the unit assigned or a negative errno code.
967 */
968
969 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
970 {
971 int i = 0;
972 const char *p;
973 const int max_netdevices = 8*PAGE_SIZE;
974 unsigned long *inuse;
975 struct net_device *d;
976
977 p = strnchr(name, IFNAMSIZ-1, '%');
978 if (p) {
979 /*
980 * Verify the string as this thing may have come from
981 * the user. There must be either one "%d" and no other "%"
982 * characters.
983 */
984 if (p[1] != 'd' || strchr(p + 2, '%'))
985 return -EINVAL;
986
987 /* Use one page as a bit array of possible slots */
988 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
989 if (!inuse)
990 return -ENOMEM;
991
992 for_each_netdev(net, d) {
993 if (!sscanf(d->name, name, &i))
994 continue;
995 if (i < 0 || i >= max_netdevices)
996 continue;
997
998 /* avoid cases where sscanf is not exact inverse of printf */
999 snprintf(buf, IFNAMSIZ, name, i);
1000 if (!strncmp(buf, d->name, IFNAMSIZ))
1001 set_bit(i, inuse);
1002 }
1003
1004 i = find_first_zero_bit(inuse, max_netdevices);
1005 free_page((unsigned long) inuse);
1006 }
1007
1008 if (buf != name)
1009 snprintf(buf, IFNAMSIZ, name, i);
1010 if (!__dev_get_by_name(net, buf))
1011 return i;
1012
1013 /* It is possible to run out of possible slots
1014 * when the name is long and there isn't enough space left
1015 * for the digits, or if all bits are used.
1016 */
1017 return -ENFILE;
1018 }
1019
1020 /**
1021 * dev_alloc_name - allocate a name for a device
1022 * @dev: device
1023 * @name: name format string
1024 *
1025 * Passed a format string - eg "lt%d" it will try and find a suitable
1026 * id. It scans list of devices to build up a free map, then chooses
1027 * the first empty slot. The caller must hold the dev_base or rtnl lock
1028 * while allocating the name and adding the device in order to avoid
1029 * duplicates.
1030 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1031 * Returns the number of the unit assigned or a negative errno code.
1032 */
1033
1034 int dev_alloc_name(struct net_device *dev, const char *name)
1035 {
1036 char buf[IFNAMSIZ];
1037 struct net *net;
1038 int ret;
1039
1040 BUG_ON(!dev_net(dev));
1041 net = dev_net(dev);
1042 ret = __dev_alloc_name(net, name, buf);
1043 if (ret >= 0)
1044 strlcpy(dev->name, buf, IFNAMSIZ);
1045 return ret;
1046 }
1047 EXPORT_SYMBOL(dev_alloc_name);
1048
1049 static int dev_alloc_name_ns(struct net *net,
1050 struct net_device *dev,
1051 const char *name)
1052 {
1053 char buf[IFNAMSIZ];
1054 int ret;
1055
1056 ret = __dev_alloc_name(net, name, buf);
1057 if (ret >= 0)
1058 strlcpy(dev->name, buf, IFNAMSIZ);
1059 return ret;
1060 }
1061
1062 static int dev_get_valid_name(struct net *net,
1063 struct net_device *dev,
1064 const char *name)
1065 {
1066 BUG_ON(!net);
1067
1068 if (!dev_valid_name(name))
1069 return -EINVAL;
1070
1071 if (strchr(name, '%'))
1072 return dev_alloc_name_ns(net, dev, name);
1073 else if (__dev_get_by_name(net, name))
1074 return -EEXIST;
1075 else if (dev->name != name)
1076 strlcpy(dev->name, name, IFNAMSIZ);
1077
1078 return 0;
1079 }
1080
1081 /**
1082 * dev_change_name - change name of a device
1083 * @dev: device
1084 * @newname: name (or format string) must be at least IFNAMSIZ
1085 *
1086 * Change name of a device, can pass format strings "eth%d".
1087 * for wildcarding.
1088 */
1089 int dev_change_name(struct net_device *dev, const char *newname)
1090 {
1091 unsigned char old_assign_type;
1092 char oldname[IFNAMSIZ];
1093 int err = 0;
1094 int ret;
1095 struct net *net;
1096
1097 ASSERT_RTNL();
1098 BUG_ON(!dev_net(dev));
1099
1100 net = dev_net(dev);
1101 if (dev->flags & IFF_UP)
1102 return -EBUSY;
1103
1104 write_seqcount_begin(&devnet_rename_seq);
1105
1106 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1107 write_seqcount_end(&devnet_rename_seq);
1108 return 0;
1109 }
1110
1111 memcpy(oldname, dev->name, IFNAMSIZ);
1112
1113 err = dev_get_valid_name(net, dev, newname);
1114 if (err < 0) {
1115 write_seqcount_end(&devnet_rename_seq);
1116 return err;
1117 }
1118
1119 if (oldname[0] && !strchr(oldname, '%'))
1120 netdev_info(dev, "renamed from %s\n", oldname);
1121
1122 old_assign_type = dev->name_assign_type;
1123 dev->name_assign_type = NET_NAME_RENAMED;
1124
1125 rollback:
1126 ret = device_rename(&dev->dev, dev->name);
1127 if (ret) {
1128 memcpy(dev->name, oldname, IFNAMSIZ);
1129 dev->name_assign_type = old_assign_type;
1130 write_seqcount_end(&devnet_rename_seq);
1131 return ret;
1132 }
1133
1134 write_seqcount_end(&devnet_rename_seq);
1135
1136 netdev_adjacent_rename_links(dev, oldname);
1137
1138 write_lock_bh(&dev_base_lock);
1139 hlist_del_rcu(&dev->name_hlist);
1140 write_unlock_bh(&dev_base_lock);
1141
1142 synchronize_rcu();
1143
1144 write_lock_bh(&dev_base_lock);
1145 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1146 write_unlock_bh(&dev_base_lock);
1147
1148 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1149 ret = notifier_to_errno(ret);
1150
1151 if (ret) {
1152 /* err >= 0 after dev_alloc_name() or stores the first errno */
1153 if (err >= 0) {
1154 err = ret;
1155 write_seqcount_begin(&devnet_rename_seq);
1156 memcpy(dev->name, oldname, IFNAMSIZ);
1157 memcpy(oldname, newname, IFNAMSIZ);
1158 dev->name_assign_type = old_assign_type;
1159 old_assign_type = NET_NAME_RENAMED;
1160 goto rollback;
1161 } else {
1162 pr_err("%s: name change rollback failed: %d\n",
1163 dev->name, ret);
1164 }
1165 }
1166
1167 return err;
1168 }
1169
1170 /**
1171 * dev_set_alias - change ifalias of a device
1172 * @dev: device
1173 * @alias: name up to IFALIASZ
1174 * @len: limit of bytes to copy from info
1175 *
1176 * Set ifalias for a device,
1177 */
1178 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1179 {
1180 char *new_ifalias;
1181
1182 ASSERT_RTNL();
1183
1184 if (len >= IFALIASZ)
1185 return -EINVAL;
1186
1187 if (!len) {
1188 kfree(dev->ifalias);
1189 dev->ifalias = NULL;
1190 return 0;
1191 }
1192
1193 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1194 if (!new_ifalias)
1195 return -ENOMEM;
1196 dev->ifalias = new_ifalias;
1197
1198 strlcpy(dev->ifalias, alias, len+1);
1199 return len;
1200 }
1201
1202
1203 /**
1204 * netdev_features_change - device changes features
1205 * @dev: device to cause notification
1206 *
1207 * Called to indicate a device has changed features.
1208 */
1209 void netdev_features_change(struct net_device *dev)
1210 {
1211 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1212 }
1213 EXPORT_SYMBOL(netdev_features_change);
1214
1215 /**
1216 * netdev_state_change - device changes state
1217 * @dev: device to cause notification
1218 *
1219 * Called to indicate a device has changed state. This function calls
1220 * the notifier chains for netdev_chain and sends a NEWLINK message
1221 * to the routing socket.
1222 */
1223 void netdev_state_change(struct net_device *dev)
1224 {
1225 if (dev->flags & IFF_UP) {
1226 struct netdev_notifier_change_info change_info;
1227
1228 change_info.flags_changed = 0;
1229 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1230 &change_info.info);
1231 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1232 }
1233 }
1234 EXPORT_SYMBOL(netdev_state_change);
1235
1236 /**
1237 * netdev_notify_peers - notify network peers about existence of @dev
1238 * @dev: network device
1239 *
1240 * Generate traffic such that interested network peers are aware of
1241 * @dev, such as by generating a gratuitous ARP. This may be used when
1242 * a device wants to inform the rest of the network about some sort of
1243 * reconfiguration such as a failover event or virtual machine
1244 * migration.
1245 */
1246 void netdev_notify_peers(struct net_device *dev)
1247 {
1248 rtnl_lock();
1249 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1250 rtnl_unlock();
1251 }
1252 EXPORT_SYMBOL(netdev_notify_peers);
1253
1254 static int __dev_open(struct net_device *dev)
1255 {
1256 const struct net_device_ops *ops = dev->netdev_ops;
1257 int ret;
1258
1259 ASSERT_RTNL();
1260
1261 if (!netif_device_present(dev))
1262 return -ENODEV;
1263
1264 /* Block netpoll from trying to do any rx path servicing.
1265 * If we don't do this there is a chance ndo_poll_controller
1266 * or ndo_poll may be running while we open the device
1267 */
1268 netpoll_poll_disable(dev);
1269
1270 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1271 ret = notifier_to_errno(ret);
1272 if (ret)
1273 return ret;
1274
1275 set_bit(__LINK_STATE_START, &dev->state);
1276
1277 if (ops->ndo_validate_addr)
1278 ret = ops->ndo_validate_addr(dev);
1279
1280 if (!ret && ops->ndo_open)
1281 ret = ops->ndo_open(dev);
1282
1283 netpoll_poll_enable(dev);
1284
1285 if (ret)
1286 clear_bit(__LINK_STATE_START, &dev->state);
1287 else {
1288 dev->flags |= IFF_UP;
1289 net_dmaengine_get();
1290 dev_set_rx_mode(dev);
1291 dev_activate(dev);
1292 add_device_randomness(dev->dev_addr, dev->addr_len);
1293 }
1294
1295 return ret;
1296 }
1297
1298 /**
1299 * dev_open - prepare an interface for use.
1300 * @dev: device to open
1301 *
1302 * Takes a device from down to up state. The device's private open
1303 * function is invoked and then the multicast lists are loaded. Finally
1304 * the device is moved into the up state and a %NETDEV_UP message is
1305 * sent to the netdev notifier chain.
1306 *
1307 * Calling this function on an active interface is a nop. On a failure
1308 * a negative errno code is returned.
1309 */
1310 int dev_open(struct net_device *dev)
1311 {
1312 int ret;
1313
1314 if (dev->flags & IFF_UP)
1315 return 0;
1316
1317 ret = __dev_open(dev);
1318 if (ret < 0)
1319 return ret;
1320
1321 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1322 call_netdevice_notifiers(NETDEV_UP, dev);
1323
1324 return ret;
1325 }
1326 EXPORT_SYMBOL(dev_open);
1327
1328 static int __dev_close_many(struct list_head *head)
1329 {
1330 struct net_device *dev;
1331
1332 ASSERT_RTNL();
1333 might_sleep();
1334
1335 list_for_each_entry(dev, head, close_list) {
1336 /* Temporarily disable netpoll until the interface is down */
1337 netpoll_poll_disable(dev);
1338
1339 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1340
1341 clear_bit(__LINK_STATE_START, &dev->state);
1342
1343 /* Synchronize to scheduled poll. We cannot touch poll list, it
1344 * can be even on different cpu. So just clear netif_running().
1345 *
1346 * dev->stop() will invoke napi_disable() on all of it's
1347 * napi_struct instances on this device.
1348 */
1349 smp_mb__after_atomic(); /* Commit netif_running(). */
1350 }
1351
1352 dev_deactivate_many(head);
1353
1354 list_for_each_entry(dev, head, close_list) {
1355 const struct net_device_ops *ops = dev->netdev_ops;
1356
1357 /*
1358 * Call the device specific close. This cannot fail.
1359 * Only if device is UP
1360 *
1361 * We allow it to be called even after a DETACH hot-plug
1362 * event.
1363 */
1364 if (ops->ndo_stop)
1365 ops->ndo_stop(dev);
1366
1367 dev->flags &= ~IFF_UP;
1368 net_dmaengine_put();
1369 netpoll_poll_enable(dev);
1370 }
1371
1372 return 0;
1373 }
1374
1375 static int __dev_close(struct net_device *dev)
1376 {
1377 int retval;
1378 LIST_HEAD(single);
1379
1380 list_add(&dev->close_list, &single);
1381 retval = __dev_close_many(&single);
1382 list_del(&single);
1383
1384 return retval;
1385 }
1386
1387 static int dev_close_many(struct list_head *head)
1388 {
1389 struct net_device *dev, *tmp;
1390
1391 /* Remove the devices that don't need to be closed */
1392 list_for_each_entry_safe(dev, tmp, head, close_list)
1393 if (!(dev->flags & IFF_UP))
1394 list_del_init(&dev->close_list);
1395
1396 __dev_close_many(head);
1397
1398 list_for_each_entry_safe(dev, tmp, head, close_list) {
1399 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1400 call_netdevice_notifiers(NETDEV_DOWN, dev);
1401 list_del_init(&dev->close_list);
1402 }
1403
1404 return 0;
1405 }
1406
1407 /**
1408 * dev_close - shutdown an interface.
1409 * @dev: device to shutdown
1410 *
1411 * This function moves an active device into down state. A
1412 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1413 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1414 * chain.
1415 */
1416 int dev_close(struct net_device *dev)
1417 {
1418 if (dev->flags & IFF_UP) {
1419 LIST_HEAD(single);
1420
1421 list_add(&dev->close_list, &single);
1422 dev_close_many(&single);
1423 list_del(&single);
1424 }
1425 return 0;
1426 }
1427 EXPORT_SYMBOL(dev_close);
1428
1429
1430 /**
1431 * dev_disable_lro - disable Large Receive Offload on a device
1432 * @dev: device
1433 *
1434 * Disable Large Receive Offload (LRO) on a net device. Must be
1435 * called under RTNL. This is needed if received packets may be
1436 * forwarded to another interface.
1437 */
1438 void dev_disable_lro(struct net_device *dev)
1439 {
1440 /*
1441 * If we're trying to disable lro on a vlan device
1442 * use the underlying physical device instead
1443 */
1444 if (is_vlan_dev(dev))
1445 dev = vlan_dev_real_dev(dev);
1446
1447 /* the same for macvlan devices */
1448 if (netif_is_macvlan(dev))
1449 dev = macvlan_dev_real_dev(dev);
1450
1451 dev->wanted_features &= ~NETIF_F_LRO;
1452 netdev_update_features(dev);
1453
1454 if (unlikely(dev->features & NETIF_F_LRO))
1455 netdev_WARN(dev, "failed to disable LRO!\n");
1456 }
1457 EXPORT_SYMBOL(dev_disable_lro);
1458
1459 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1460 struct net_device *dev)
1461 {
1462 struct netdev_notifier_info info;
1463
1464 netdev_notifier_info_init(&info, dev);
1465 return nb->notifier_call(nb, val, &info);
1466 }
1467
1468 static int dev_boot_phase = 1;
1469
1470 /**
1471 * register_netdevice_notifier - register a network notifier block
1472 * @nb: notifier
1473 *
1474 * Register a notifier to be called when network device events occur.
1475 * The notifier passed is linked into the kernel structures and must
1476 * not be reused until it has been unregistered. A negative errno code
1477 * is returned on a failure.
1478 *
1479 * When registered all registration and up events are replayed
1480 * to the new notifier to allow device to have a race free
1481 * view of the network device list.
1482 */
1483
1484 int register_netdevice_notifier(struct notifier_block *nb)
1485 {
1486 struct net_device *dev;
1487 struct net_device *last;
1488 struct net *net;
1489 int err;
1490
1491 rtnl_lock();
1492 err = raw_notifier_chain_register(&netdev_chain, nb);
1493 if (err)
1494 goto unlock;
1495 if (dev_boot_phase)
1496 goto unlock;
1497 for_each_net(net) {
1498 for_each_netdev(net, dev) {
1499 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1500 err = notifier_to_errno(err);
1501 if (err)
1502 goto rollback;
1503
1504 if (!(dev->flags & IFF_UP))
1505 continue;
1506
1507 call_netdevice_notifier(nb, NETDEV_UP, dev);
1508 }
1509 }
1510
1511 unlock:
1512 rtnl_unlock();
1513 return err;
1514
1515 rollback:
1516 last = dev;
1517 for_each_net(net) {
1518 for_each_netdev(net, dev) {
1519 if (dev == last)
1520 goto outroll;
1521
1522 if (dev->flags & IFF_UP) {
1523 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1524 dev);
1525 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1526 }
1527 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1528 }
1529 }
1530
1531 outroll:
1532 raw_notifier_chain_unregister(&netdev_chain, nb);
1533 goto unlock;
1534 }
1535 EXPORT_SYMBOL(register_netdevice_notifier);
1536
1537 /**
1538 * unregister_netdevice_notifier - unregister a network notifier block
1539 * @nb: notifier
1540 *
1541 * Unregister a notifier previously registered by
1542 * register_netdevice_notifier(). The notifier is unlinked into the
1543 * kernel structures and may then be reused. A negative errno code
1544 * is returned on a failure.
1545 *
1546 * After unregistering unregister and down device events are synthesized
1547 * for all devices on the device list to the removed notifier to remove
1548 * the need for special case cleanup code.
1549 */
1550
1551 int unregister_netdevice_notifier(struct notifier_block *nb)
1552 {
1553 struct net_device *dev;
1554 struct net *net;
1555 int err;
1556
1557 rtnl_lock();
1558 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1559 if (err)
1560 goto unlock;
1561
1562 for_each_net(net) {
1563 for_each_netdev(net, dev) {
1564 if (dev->flags & IFF_UP) {
1565 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1566 dev);
1567 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1568 }
1569 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1570 }
1571 }
1572 unlock:
1573 rtnl_unlock();
1574 return err;
1575 }
1576 EXPORT_SYMBOL(unregister_netdevice_notifier);
1577
1578 /**
1579 * call_netdevice_notifiers_info - call all network notifier blocks
1580 * @val: value passed unmodified to notifier function
1581 * @dev: net_device pointer passed unmodified to notifier function
1582 * @info: notifier information data
1583 *
1584 * Call all network notifier blocks. Parameters and return value
1585 * are as for raw_notifier_call_chain().
1586 */
1587
1588 static int call_netdevice_notifiers_info(unsigned long val,
1589 struct net_device *dev,
1590 struct netdev_notifier_info *info)
1591 {
1592 ASSERT_RTNL();
1593 netdev_notifier_info_init(info, dev);
1594 return raw_notifier_call_chain(&netdev_chain, val, info);
1595 }
1596
1597 /**
1598 * call_netdevice_notifiers - call all network notifier blocks
1599 * @val: value passed unmodified to notifier function
1600 * @dev: net_device pointer passed unmodified to notifier function
1601 *
1602 * Call all network notifier blocks. Parameters and return value
1603 * are as for raw_notifier_call_chain().
1604 */
1605
1606 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1607 {
1608 struct netdev_notifier_info info;
1609
1610 return call_netdevice_notifiers_info(val, dev, &info);
1611 }
1612 EXPORT_SYMBOL(call_netdevice_notifiers);
1613
1614 static struct static_key netstamp_needed __read_mostly;
1615 #ifdef HAVE_JUMP_LABEL
1616 /* We are not allowed to call static_key_slow_dec() from irq context
1617 * If net_disable_timestamp() is called from irq context, defer the
1618 * static_key_slow_dec() calls.
1619 */
1620 static atomic_t netstamp_needed_deferred;
1621 #endif
1622
1623 void net_enable_timestamp(void)
1624 {
1625 #ifdef HAVE_JUMP_LABEL
1626 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1627
1628 if (deferred) {
1629 while (--deferred)
1630 static_key_slow_dec(&netstamp_needed);
1631 return;
1632 }
1633 #endif
1634 static_key_slow_inc(&netstamp_needed);
1635 }
1636 EXPORT_SYMBOL(net_enable_timestamp);
1637
1638 void net_disable_timestamp(void)
1639 {
1640 #ifdef HAVE_JUMP_LABEL
1641 if (in_interrupt()) {
1642 atomic_inc(&netstamp_needed_deferred);
1643 return;
1644 }
1645 #endif
1646 static_key_slow_dec(&netstamp_needed);
1647 }
1648 EXPORT_SYMBOL(net_disable_timestamp);
1649
1650 static inline void net_timestamp_set(struct sk_buff *skb)
1651 {
1652 skb->tstamp.tv64 = 0;
1653 if (static_key_false(&netstamp_needed))
1654 __net_timestamp(skb);
1655 }
1656
1657 #define net_timestamp_check(COND, SKB) \
1658 if (static_key_false(&netstamp_needed)) { \
1659 if ((COND) && !(SKB)->tstamp.tv64) \
1660 __net_timestamp(SKB); \
1661 } \
1662
1663 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1664 {
1665 unsigned int len;
1666
1667 if (!(dev->flags & IFF_UP))
1668 return false;
1669
1670 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1671 if (skb->len <= len)
1672 return true;
1673
1674 /* if TSO is enabled, we don't care about the length as the packet
1675 * could be forwarded without being segmented before
1676 */
1677 if (skb_is_gso(skb))
1678 return true;
1679
1680 return false;
1681 }
1682 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1683
1684 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1685 {
1686 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1687 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1688 atomic_long_inc(&dev->rx_dropped);
1689 kfree_skb(skb);
1690 return NET_RX_DROP;
1691 }
1692 }
1693
1694 if (unlikely(!is_skb_forwardable(dev, skb))) {
1695 atomic_long_inc(&dev->rx_dropped);
1696 kfree_skb(skb);
1697 return NET_RX_DROP;
1698 }
1699
1700 skb_scrub_packet(skb, true);
1701 skb->protocol = eth_type_trans(skb, dev);
1702
1703 return 0;
1704 }
1705 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1706
1707 /**
1708 * dev_forward_skb - loopback an skb to another netif
1709 *
1710 * @dev: destination network device
1711 * @skb: buffer to forward
1712 *
1713 * return values:
1714 * NET_RX_SUCCESS (no congestion)
1715 * NET_RX_DROP (packet was dropped, but freed)
1716 *
1717 * dev_forward_skb can be used for injecting an skb from the
1718 * start_xmit function of one device into the receive queue
1719 * of another device.
1720 *
1721 * The receiving device may be in another namespace, so
1722 * we have to clear all information in the skb that could
1723 * impact namespace isolation.
1724 */
1725 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1726 {
1727 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1728 }
1729 EXPORT_SYMBOL_GPL(dev_forward_skb);
1730
1731 static inline int deliver_skb(struct sk_buff *skb,
1732 struct packet_type *pt_prev,
1733 struct net_device *orig_dev)
1734 {
1735 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1736 return -ENOMEM;
1737 atomic_inc(&skb->users);
1738 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1739 }
1740
1741 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1742 {
1743 if (!ptype->af_packet_priv || !skb->sk)
1744 return false;
1745
1746 if (ptype->id_match)
1747 return ptype->id_match(ptype, skb->sk);
1748 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1749 return true;
1750
1751 return false;
1752 }
1753
1754 /*
1755 * Support routine. Sends outgoing frames to any network
1756 * taps currently in use.
1757 */
1758
1759 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1760 {
1761 struct packet_type *ptype;
1762 struct sk_buff *skb2 = NULL;
1763 struct packet_type *pt_prev = NULL;
1764
1765 rcu_read_lock();
1766 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1767 /* Never send packets back to the socket
1768 * they originated from - MvS (miquels@drinkel.ow.org)
1769 */
1770 if ((ptype->dev == dev || !ptype->dev) &&
1771 (!skb_loop_sk(ptype, skb))) {
1772 if (pt_prev) {
1773 deliver_skb(skb2, pt_prev, skb->dev);
1774 pt_prev = ptype;
1775 continue;
1776 }
1777
1778 skb2 = skb_clone(skb, GFP_ATOMIC);
1779 if (!skb2)
1780 break;
1781
1782 net_timestamp_set(skb2);
1783
1784 /* skb->nh should be correctly
1785 set by sender, so that the second statement is
1786 just protection against buggy protocols.
1787 */
1788 skb_reset_mac_header(skb2);
1789
1790 if (skb_network_header(skb2) < skb2->data ||
1791 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1792 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1793 ntohs(skb2->protocol),
1794 dev->name);
1795 skb_reset_network_header(skb2);
1796 }
1797
1798 skb2->transport_header = skb2->network_header;
1799 skb2->pkt_type = PACKET_OUTGOING;
1800 pt_prev = ptype;
1801 }
1802 }
1803 if (pt_prev)
1804 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1805 rcu_read_unlock();
1806 }
1807
1808 /**
1809 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1810 * @dev: Network device
1811 * @txq: number of queues available
1812 *
1813 * If real_num_tx_queues is changed the tc mappings may no longer be
1814 * valid. To resolve this verify the tc mapping remains valid and if
1815 * not NULL the mapping. With no priorities mapping to this
1816 * offset/count pair it will no longer be used. In the worst case TC0
1817 * is invalid nothing can be done so disable priority mappings. If is
1818 * expected that drivers will fix this mapping if they can before
1819 * calling netif_set_real_num_tx_queues.
1820 */
1821 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1822 {
1823 int i;
1824 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1825
1826 /* If TC0 is invalidated disable TC mapping */
1827 if (tc->offset + tc->count > txq) {
1828 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1829 dev->num_tc = 0;
1830 return;
1831 }
1832
1833 /* Invalidated prio to tc mappings set to TC0 */
1834 for (i = 1; i < TC_BITMASK + 1; i++) {
1835 int q = netdev_get_prio_tc_map(dev, i);
1836
1837 tc = &dev->tc_to_txq[q];
1838 if (tc->offset + tc->count > txq) {
1839 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1840 i, q);
1841 netdev_set_prio_tc_map(dev, i, 0);
1842 }
1843 }
1844 }
1845
1846 #ifdef CONFIG_XPS
1847 static DEFINE_MUTEX(xps_map_mutex);
1848 #define xmap_dereference(P) \
1849 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1850
1851 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1852 int cpu, u16 index)
1853 {
1854 struct xps_map *map = NULL;
1855 int pos;
1856
1857 if (dev_maps)
1858 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1859
1860 for (pos = 0; map && pos < map->len; pos++) {
1861 if (map->queues[pos] == index) {
1862 if (map->len > 1) {
1863 map->queues[pos] = map->queues[--map->len];
1864 } else {
1865 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1866 kfree_rcu(map, rcu);
1867 map = NULL;
1868 }
1869 break;
1870 }
1871 }
1872
1873 return map;
1874 }
1875
1876 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1877 {
1878 struct xps_dev_maps *dev_maps;
1879 int cpu, i;
1880 bool active = false;
1881
1882 mutex_lock(&xps_map_mutex);
1883 dev_maps = xmap_dereference(dev->xps_maps);
1884
1885 if (!dev_maps)
1886 goto out_no_maps;
1887
1888 for_each_possible_cpu(cpu) {
1889 for (i = index; i < dev->num_tx_queues; i++) {
1890 if (!remove_xps_queue(dev_maps, cpu, i))
1891 break;
1892 }
1893 if (i == dev->num_tx_queues)
1894 active = true;
1895 }
1896
1897 if (!active) {
1898 RCU_INIT_POINTER(dev->xps_maps, NULL);
1899 kfree_rcu(dev_maps, rcu);
1900 }
1901
1902 for (i = index; i < dev->num_tx_queues; i++)
1903 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1904 NUMA_NO_NODE);
1905
1906 out_no_maps:
1907 mutex_unlock(&xps_map_mutex);
1908 }
1909
1910 static struct xps_map *expand_xps_map(struct xps_map *map,
1911 int cpu, u16 index)
1912 {
1913 struct xps_map *new_map;
1914 int alloc_len = XPS_MIN_MAP_ALLOC;
1915 int i, pos;
1916
1917 for (pos = 0; map && pos < map->len; pos++) {
1918 if (map->queues[pos] != index)
1919 continue;
1920 return map;
1921 }
1922
1923 /* Need to add queue to this CPU's existing map */
1924 if (map) {
1925 if (pos < map->alloc_len)
1926 return map;
1927
1928 alloc_len = map->alloc_len * 2;
1929 }
1930
1931 /* Need to allocate new map to store queue on this CPU's map */
1932 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1933 cpu_to_node(cpu));
1934 if (!new_map)
1935 return NULL;
1936
1937 for (i = 0; i < pos; i++)
1938 new_map->queues[i] = map->queues[i];
1939 new_map->alloc_len = alloc_len;
1940 new_map->len = pos;
1941
1942 return new_map;
1943 }
1944
1945 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1946 u16 index)
1947 {
1948 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1949 struct xps_map *map, *new_map;
1950 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1951 int cpu, numa_node_id = -2;
1952 bool active = false;
1953
1954 mutex_lock(&xps_map_mutex);
1955
1956 dev_maps = xmap_dereference(dev->xps_maps);
1957
1958 /* allocate memory for queue storage */
1959 for_each_online_cpu(cpu) {
1960 if (!cpumask_test_cpu(cpu, mask))
1961 continue;
1962
1963 if (!new_dev_maps)
1964 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1965 if (!new_dev_maps) {
1966 mutex_unlock(&xps_map_mutex);
1967 return -ENOMEM;
1968 }
1969
1970 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1971 NULL;
1972
1973 map = expand_xps_map(map, cpu, index);
1974 if (!map)
1975 goto error;
1976
1977 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1978 }
1979
1980 if (!new_dev_maps)
1981 goto out_no_new_maps;
1982
1983 for_each_possible_cpu(cpu) {
1984 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1985 /* add queue to CPU maps */
1986 int pos = 0;
1987
1988 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1989 while ((pos < map->len) && (map->queues[pos] != index))
1990 pos++;
1991
1992 if (pos == map->len)
1993 map->queues[map->len++] = index;
1994 #ifdef CONFIG_NUMA
1995 if (numa_node_id == -2)
1996 numa_node_id = cpu_to_node(cpu);
1997 else if (numa_node_id != cpu_to_node(cpu))
1998 numa_node_id = -1;
1999 #endif
2000 } else if (dev_maps) {
2001 /* fill in the new device map from the old device map */
2002 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2003 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2004 }
2005
2006 }
2007
2008 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2009
2010 /* Cleanup old maps */
2011 if (dev_maps) {
2012 for_each_possible_cpu(cpu) {
2013 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2014 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2015 if (map && map != new_map)
2016 kfree_rcu(map, rcu);
2017 }
2018
2019 kfree_rcu(dev_maps, rcu);
2020 }
2021
2022 dev_maps = new_dev_maps;
2023 active = true;
2024
2025 out_no_new_maps:
2026 /* update Tx queue numa node */
2027 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2028 (numa_node_id >= 0) ? numa_node_id :
2029 NUMA_NO_NODE);
2030
2031 if (!dev_maps)
2032 goto out_no_maps;
2033
2034 /* removes queue from unused CPUs */
2035 for_each_possible_cpu(cpu) {
2036 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2037 continue;
2038
2039 if (remove_xps_queue(dev_maps, cpu, index))
2040 active = true;
2041 }
2042
2043 /* free map if not active */
2044 if (!active) {
2045 RCU_INIT_POINTER(dev->xps_maps, NULL);
2046 kfree_rcu(dev_maps, rcu);
2047 }
2048
2049 out_no_maps:
2050 mutex_unlock(&xps_map_mutex);
2051
2052 return 0;
2053 error:
2054 /* remove any maps that we added */
2055 for_each_possible_cpu(cpu) {
2056 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2057 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2058 NULL;
2059 if (new_map && new_map != map)
2060 kfree(new_map);
2061 }
2062
2063 mutex_unlock(&xps_map_mutex);
2064
2065 kfree(new_dev_maps);
2066 return -ENOMEM;
2067 }
2068 EXPORT_SYMBOL(netif_set_xps_queue);
2069
2070 #endif
2071 /*
2072 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2073 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2074 */
2075 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2076 {
2077 int rc;
2078
2079 if (txq < 1 || txq > dev->num_tx_queues)
2080 return -EINVAL;
2081
2082 if (dev->reg_state == NETREG_REGISTERED ||
2083 dev->reg_state == NETREG_UNREGISTERING) {
2084 ASSERT_RTNL();
2085
2086 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2087 txq);
2088 if (rc)
2089 return rc;
2090
2091 if (dev->num_tc)
2092 netif_setup_tc(dev, txq);
2093
2094 if (txq < dev->real_num_tx_queues) {
2095 qdisc_reset_all_tx_gt(dev, txq);
2096 #ifdef CONFIG_XPS
2097 netif_reset_xps_queues_gt(dev, txq);
2098 #endif
2099 }
2100 }
2101
2102 dev->real_num_tx_queues = txq;
2103 return 0;
2104 }
2105 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2106
2107 #ifdef CONFIG_SYSFS
2108 /**
2109 * netif_set_real_num_rx_queues - set actual number of RX queues used
2110 * @dev: Network device
2111 * @rxq: Actual number of RX queues
2112 *
2113 * This must be called either with the rtnl_lock held or before
2114 * registration of the net device. Returns 0 on success, or a
2115 * negative error code. If called before registration, it always
2116 * succeeds.
2117 */
2118 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2119 {
2120 int rc;
2121
2122 if (rxq < 1 || rxq > dev->num_rx_queues)
2123 return -EINVAL;
2124
2125 if (dev->reg_state == NETREG_REGISTERED) {
2126 ASSERT_RTNL();
2127
2128 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2129 rxq);
2130 if (rc)
2131 return rc;
2132 }
2133
2134 dev->real_num_rx_queues = rxq;
2135 return 0;
2136 }
2137 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2138 #endif
2139
2140 /**
2141 * netif_get_num_default_rss_queues - default number of RSS queues
2142 *
2143 * This routine should set an upper limit on the number of RSS queues
2144 * used by default by multiqueue devices.
2145 */
2146 int netif_get_num_default_rss_queues(void)
2147 {
2148 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2149 }
2150 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2151
2152 static inline void __netif_reschedule(struct Qdisc *q)
2153 {
2154 struct softnet_data *sd;
2155 unsigned long flags;
2156
2157 local_irq_save(flags);
2158 sd = &__get_cpu_var(softnet_data);
2159 q->next_sched = NULL;
2160 *sd->output_queue_tailp = q;
2161 sd->output_queue_tailp = &q->next_sched;
2162 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2163 local_irq_restore(flags);
2164 }
2165
2166 void __netif_schedule(struct Qdisc *q)
2167 {
2168 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2169 __netif_reschedule(q);
2170 }
2171 EXPORT_SYMBOL(__netif_schedule);
2172
2173 struct dev_kfree_skb_cb {
2174 enum skb_free_reason reason;
2175 };
2176
2177 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2178 {
2179 return (struct dev_kfree_skb_cb *)skb->cb;
2180 }
2181
2182 void netif_schedule_queue(struct netdev_queue *txq)
2183 {
2184 rcu_read_lock();
2185 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2186 struct Qdisc *q = rcu_dereference(txq->qdisc);
2187
2188 __netif_schedule(q);
2189 }
2190 rcu_read_unlock();
2191 }
2192 EXPORT_SYMBOL(netif_schedule_queue);
2193
2194 /**
2195 * netif_wake_subqueue - allow sending packets on subqueue
2196 * @dev: network device
2197 * @queue_index: sub queue index
2198 *
2199 * Resume individual transmit queue of a device with multiple transmit queues.
2200 */
2201 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2202 {
2203 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2204
2205 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2206 struct Qdisc *q;
2207
2208 rcu_read_lock();
2209 q = rcu_dereference(txq->qdisc);
2210 __netif_schedule(q);
2211 rcu_read_unlock();
2212 }
2213 }
2214 EXPORT_SYMBOL(netif_wake_subqueue);
2215
2216 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2217 {
2218 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2219 struct Qdisc *q;
2220
2221 rcu_read_lock();
2222 q = rcu_dereference(dev_queue->qdisc);
2223 __netif_schedule(q);
2224 rcu_read_unlock();
2225 }
2226 }
2227 EXPORT_SYMBOL(netif_tx_wake_queue);
2228
2229 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2230 {
2231 unsigned long flags;
2232
2233 if (likely(atomic_read(&skb->users) == 1)) {
2234 smp_rmb();
2235 atomic_set(&skb->users, 0);
2236 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2237 return;
2238 }
2239 get_kfree_skb_cb(skb)->reason = reason;
2240 local_irq_save(flags);
2241 skb->next = __this_cpu_read(softnet_data.completion_queue);
2242 __this_cpu_write(softnet_data.completion_queue, skb);
2243 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2244 local_irq_restore(flags);
2245 }
2246 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2247
2248 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2249 {
2250 if (in_irq() || irqs_disabled())
2251 __dev_kfree_skb_irq(skb, reason);
2252 else
2253 dev_kfree_skb(skb);
2254 }
2255 EXPORT_SYMBOL(__dev_kfree_skb_any);
2256
2257
2258 /**
2259 * netif_device_detach - mark device as removed
2260 * @dev: network device
2261 *
2262 * Mark device as removed from system and therefore no longer available.
2263 */
2264 void netif_device_detach(struct net_device *dev)
2265 {
2266 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2267 netif_running(dev)) {
2268 netif_tx_stop_all_queues(dev);
2269 }
2270 }
2271 EXPORT_SYMBOL(netif_device_detach);
2272
2273 /**
2274 * netif_device_attach - mark device as attached
2275 * @dev: network device
2276 *
2277 * Mark device as attached from system and restart if needed.
2278 */
2279 void netif_device_attach(struct net_device *dev)
2280 {
2281 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2282 netif_running(dev)) {
2283 netif_tx_wake_all_queues(dev);
2284 __netdev_watchdog_up(dev);
2285 }
2286 }
2287 EXPORT_SYMBOL(netif_device_attach);
2288
2289 static void skb_warn_bad_offload(const struct sk_buff *skb)
2290 {
2291 static const netdev_features_t null_features = 0;
2292 struct net_device *dev = skb->dev;
2293 const char *driver = "";
2294
2295 if (!net_ratelimit())
2296 return;
2297
2298 if (dev && dev->dev.parent)
2299 driver = dev_driver_string(dev->dev.parent);
2300
2301 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2302 "gso_type=%d ip_summed=%d\n",
2303 driver, dev ? &dev->features : &null_features,
2304 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2305 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2306 skb_shinfo(skb)->gso_type, skb->ip_summed);
2307 }
2308
2309 /*
2310 * Invalidate hardware checksum when packet is to be mangled, and
2311 * complete checksum manually on outgoing path.
2312 */
2313 int skb_checksum_help(struct sk_buff *skb)
2314 {
2315 __wsum csum;
2316 int ret = 0, offset;
2317
2318 if (skb->ip_summed == CHECKSUM_COMPLETE)
2319 goto out_set_summed;
2320
2321 if (unlikely(skb_shinfo(skb)->gso_size)) {
2322 skb_warn_bad_offload(skb);
2323 return -EINVAL;
2324 }
2325
2326 /* Before computing a checksum, we should make sure no frag could
2327 * be modified by an external entity : checksum could be wrong.
2328 */
2329 if (skb_has_shared_frag(skb)) {
2330 ret = __skb_linearize(skb);
2331 if (ret)
2332 goto out;
2333 }
2334
2335 offset = skb_checksum_start_offset(skb);
2336 BUG_ON(offset >= skb_headlen(skb));
2337 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2338
2339 offset += skb->csum_offset;
2340 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2341
2342 if (skb_cloned(skb) &&
2343 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2344 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2345 if (ret)
2346 goto out;
2347 }
2348
2349 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2350 out_set_summed:
2351 skb->ip_summed = CHECKSUM_NONE;
2352 out:
2353 return ret;
2354 }
2355 EXPORT_SYMBOL(skb_checksum_help);
2356
2357 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2358 {
2359 unsigned int vlan_depth = skb->mac_len;
2360 __be16 type = skb->protocol;
2361
2362 /* Tunnel gso handlers can set protocol to ethernet. */
2363 if (type == htons(ETH_P_TEB)) {
2364 struct ethhdr *eth;
2365
2366 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2367 return 0;
2368
2369 eth = (struct ethhdr *)skb_mac_header(skb);
2370 type = eth->h_proto;
2371 }
2372
2373 /* if skb->protocol is 802.1Q/AD then the header should already be
2374 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2375 * ETH_HLEN otherwise
2376 */
2377 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2378 if (vlan_depth) {
2379 if (WARN_ON(vlan_depth < VLAN_HLEN))
2380 return 0;
2381 vlan_depth -= VLAN_HLEN;
2382 } else {
2383 vlan_depth = ETH_HLEN;
2384 }
2385 do {
2386 struct vlan_hdr *vh;
2387
2388 if (unlikely(!pskb_may_pull(skb,
2389 vlan_depth + VLAN_HLEN)))
2390 return 0;
2391
2392 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2393 type = vh->h_vlan_encapsulated_proto;
2394 vlan_depth += VLAN_HLEN;
2395 } while (type == htons(ETH_P_8021Q) ||
2396 type == htons(ETH_P_8021AD));
2397 }
2398
2399 *depth = vlan_depth;
2400
2401 return type;
2402 }
2403
2404 /**
2405 * skb_mac_gso_segment - mac layer segmentation handler.
2406 * @skb: buffer to segment
2407 * @features: features for the output path (see dev->features)
2408 */
2409 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2410 netdev_features_t features)
2411 {
2412 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2413 struct packet_offload *ptype;
2414 int vlan_depth = skb->mac_len;
2415 __be16 type = skb_network_protocol(skb, &vlan_depth);
2416
2417 if (unlikely(!type))
2418 return ERR_PTR(-EINVAL);
2419
2420 __skb_pull(skb, vlan_depth);
2421
2422 rcu_read_lock();
2423 list_for_each_entry_rcu(ptype, &offload_base, list) {
2424 if (ptype->type == type && ptype->callbacks.gso_segment) {
2425 segs = ptype->callbacks.gso_segment(skb, features);
2426 break;
2427 }
2428 }
2429 rcu_read_unlock();
2430
2431 __skb_push(skb, skb->data - skb_mac_header(skb));
2432
2433 return segs;
2434 }
2435 EXPORT_SYMBOL(skb_mac_gso_segment);
2436
2437
2438 /* openvswitch calls this on rx path, so we need a different check.
2439 */
2440 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2441 {
2442 if (tx_path)
2443 return skb->ip_summed != CHECKSUM_PARTIAL;
2444 else
2445 return skb->ip_summed == CHECKSUM_NONE;
2446 }
2447
2448 /**
2449 * __skb_gso_segment - Perform segmentation on skb.
2450 * @skb: buffer to segment
2451 * @features: features for the output path (see dev->features)
2452 * @tx_path: whether it is called in TX path
2453 *
2454 * This function segments the given skb and returns a list of segments.
2455 *
2456 * It may return NULL if the skb requires no segmentation. This is
2457 * only possible when GSO is used for verifying header integrity.
2458 */
2459 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2460 netdev_features_t features, bool tx_path)
2461 {
2462 if (unlikely(skb_needs_check(skb, tx_path))) {
2463 int err;
2464
2465 skb_warn_bad_offload(skb);
2466
2467 err = skb_cow_head(skb, 0);
2468 if (err < 0)
2469 return ERR_PTR(err);
2470 }
2471
2472 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2473 SKB_GSO_CB(skb)->encap_level = 0;
2474
2475 skb_reset_mac_header(skb);
2476 skb_reset_mac_len(skb);
2477
2478 return skb_mac_gso_segment(skb, features);
2479 }
2480 EXPORT_SYMBOL(__skb_gso_segment);
2481
2482 /* Take action when hardware reception checksum errors are detected. */
2483 #ifdef CONFIG_BUG
2484 void netdev_rx_csum_fault(struct net_device *dev)
2485 {
2486 if (net_ratelimit()) {
2487 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2488 dump_stack();
2489 }
2490 }
2491 EXPORT_SYMBOL(netdev_rx_csum_fault);
2492 #endif
2493
2494 /* Actually, we should eliminate this check as soon as we know, that:
2495 * 1. IOMMU is present and allows to map all the memory.
2496 * 2. No high memory really exists on this machine.
2497 */
2498
2499 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2500 {
2501 #ifdef CONFIG_HIGHMEM
2502 int i;
2503 if (!(dev->features & NETIF_F_HIGHDMA)) {
2504 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2505 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2506 if (PageHighMem(skb_frag_page(frag)))
2507 return 1;
2508 }
2509 }
2510
2511 if (PCI_DMA_BUS_IS_PHYS) {
2512 struct device *pdev = dev->dev.parent;
2513
2514 if (!pdev)
2515 return 0;
2516 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2517 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2518 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2519 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2520 return 1;
2521 }
2522 }
2523 #endif
2524 return 0;
2525 }
2526
2527 /* If MPLS offload request, verify we are testing hardware MPLS features
2528 * instead of standard features for the netdev.
2529 */
2530 #ifdef CONFIG_NET_MPLS_GSO
2531 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2532 netdev_features_t features,
2533 __be16 type)
2534 {
2535 if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC))
2536 features &= skb->dev->mpls_features;
2537
2538 return features;
2539 }
2540 #else
2541 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2542 netdev_features_t features,
2543 __be16 type)
2544 {
2545 return features;
2546 }
2547 #endif
2548
2549 static netdev_features_t harmonize_features(struct sk_buff *skb,
2550 netdev_features_t features)
2551 {
2552 int tmp;
2553 __be16 type;
2554
2555 type = skb_network_protocol(skb, &tmp);
2556 features = net_mpls_features(skb, features, type);
2557
2558 if (skb->ip_summed != CHECKSUM_NONE &&
2559 !can_checksum_protocol(features, type)) {
2560 features &= ~NETIF_F_ALL_CSUM;
2561 } else if (illegal_highdma(skb->dev, skb)) {
2562 features &= ~NETIF_F_SG;
2563 }
2564
2565 return features;
2566 }
2567
2568 netdev_features_t netif_skb_features(struct sk_buff *skb)
2569 {
2570 const struct net_device *dev = skb->dev;
2571 netdev_features_t features = dev->features;
2572 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2573 __be16 protocol = skb->protocol;
2574
2575 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2576 features &= ~NETIF_F_GSO_MASK;
2577
2578 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2579 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2580 protocol = veh->h_vlan_encapsulated_proto;
2581 } else if (!vlan_tx_tag_present(skb)) {
2582 return harmonize_features(skb, features);
2583 }
2584
2585 features = netdev_intersect_features(features,
2586 dev->vlan_features |
2587 NETIF_F_HW_VLAN_CTAG_TX |
2588 NETIF_F_HW_VLAN_STAG_TX);
2589
2590 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2591 features = netdev_intersect_features(features,
2592 NETIF_F_SG |
2593 NETIF_F_HIGHDMA |
2594 NETIF_F_FRAGLIST |
2595 NETIF_F_GEN_CSUM |
2596 NETIF_F_HW_VLAN_CTAG_TX |
2597 NETIF_F_HW_VLAN_STAG_TX);
2598
2599 return harmonize_features(skb, features);
2600 }
2601 EXPORT_SYMBOL(netif_skb_features);
2602
2603 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2604 struct netdev_queue *txq, bool more)
2605 {
2606 unsigned int len;
2607 int rc;
2608
2609 if (!list_empty(&ptype_all))
2610 dev_queue_xmit_nit(skb, dev);
2611
2612 len = skb->len;
2613 trace_net_dev_start_xmit(skb, dev);
2614 rc = netdev_start_xmit(skb, dev, txq, more);
2615 trace_net_dev_xmit(skb, rc, dev, len);
2616
2617 return rc;
2618 }
2619
2620 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2621 struct netdev_queue *txq, int *ret)
2622 {
2623 struct sk_buff *skb = first;
2624 int rc = NETDEV_TX_OK;
2625
2626 while (skb) {
2627 struct sk_buff *next = skb->next;
2628
2629 skb->next = NULL;
2630 rc = xmit_one(skb, dev, txq, next != NULL);
2631 if (unlikely(!dev_xmit_complete(rc))) {
2632 skb->next = next;
2633 goto out;
2634 }
2635
2636 skb = next;
2637 if (netif_xmit_stopped(txq) && skb) {
2638 rc = NETDEV_TX_BUSY;
2639 break;
2640 }
2641 }
2642
2643 out:
2644 *ret = rc;
2645 return skb;
2646 }
2647
2648 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2649 netdev_features_t features)
2650 {
2651 if (vlan_tx_tag_present(skb) &&
2652 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2653 skb = __vlan_put_tag(skb, skb->vlan_proto,
2654 vlan_tx_tag_get(skb));
2655 if (skb)
2656 skb->vlan_tci = 0;
2657 }
2658 return skb;
2659 }
2660
2661 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2662 {
2663 netdev_features_t features;
2664
2665 if (skb->next)
2666 return skb;
2667
2668 /* If device doesn't need skb->dst, release it right now while
2669 * its hot in this cpu cache
2670 */
2671 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2672 skb_dst_drop(skb);
2673
2674 features = netif_skb_features(skb);
2675 skb = validate_xmit_vlan(skb, features);
2676 if (unlikely(!skb))
2677 goto out_null;
2678
2679 /* If encapsulation offload request, verify we are testing
2680 * hardware encapsulation features instead of standard
2681 * features for the netdev
2682 */
2683 if (skb->encapsulation)
2684 features &= dev->hw_enc_features;
2685
2686 if (netif_needs_gso(skb, features)) {
2687 struct sk_buff *segs;
2688
2689 segs = skb_gso_segment(skb, features);
2690 if (IS_ERR(segs)) {
2691 segs = NULL;
2692 } else if (segs) {
2693 consume_skb(skb);
2694 skb = segs;
2695 }
2696 } else {
2697 if (skb_needs_linearize(skb, features) &&
2698 __skb_linearize(skb))
2699 goto out_kfree_skb;
2700
2701 /* If packet is not checksummed and device does not
2702 * support checksumming for this protocol, complete
2703 * checksumming here.
2704 */
2705 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2706 if (skb->encapsulation)
2707 skb_set_inner_transport_header(skb,
2708 skb_checksum_start_offset(skb));
2709 else
2710 skb_set_transport_header(skb,
2711 skb_checksum_start_offset(skb));
2712 if (!(features & NETIF_F_ALL_CSUM) &&
2713 skb_checksum_help(skb))
2714 goto out_kfree_skb;
2715 }
2716 }
2717
2718 return skb;
2719
2720 out_kfree_skb:
2721 kfree_skb(skb);
2722 out_null:
2723 return NULL;
2724 }
2725
2726 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2727 {
2728 struct sk_buff *next, *head = NULL, *tail;
2729
2730 for (; skb != NULL; skb = next) {
2731 next = skb->next;
2732 skb->next = NULL;
2733
2734 /* in case skb wont be segmented, point to itself */
2735 skb->prev = skb;
2736
2737 skb = validate_xmit_skb(skb, dev);
2738 if (!skb)
2739 continue;
2740
2741 if (!head)
2742 head = skb;
2743 else
2744 tail->next = skb;
2745 /* If skb was segmented, skb->prev points to
2746 * the last segment. If not, it still contains skb.
2747 */
2748 tail = skb->prev;
2749 }
2750 return head;
2751 }
2752
2753 static void qdisc_pkt_len_init(struct sk_buff *skb)
2754 {
2755 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2756
2757 qdisc_skb_cb(skb)->pkt_len = skb->len;
2758
2759 /* To get more precise estimation of bytes sent on wire,
2760 * we add to pkt_len the headers size of all segments
2761 */
2762 if (shinfo->gso_size) {
2763 unsigned int hdr_len;
2764 u16 gso_segs = shinfo->gso_segs;
2765
2766 /* mac layer + network layer */
2767 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2768
2769 /* + transport layer */
2770 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2771 hdr_len += tcp_hdrlen(skb);
2772 else
2773 hdr_len += sizeof(struct udphdr);
2774
2775 if (shinfo->gso_type & SKB_GSO_DODGY)
2776 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2777 shinfo->gso_size);
2778
2779 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2780 }
2781 }
2782
2783 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2784 struct net_device *dev,
2785 struct netdev_queue *txq)
2786 {
2787 spinlock_t *root_lock = qdisc_lock(q);
2788 bool contended;
2789 int rc;
2790
2791 qdisc_pkt_len_init(skb);
2792 qdisc_calculate_pkt_len(skb, q);
2793 /*
2794 * Heuristic to force contended enqueues to serialize on a
2795 * separate lock before trying to get qdisc main lock.
2796 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2797 * often and dequeue packets faster.
2798 */
2799 contended = qdisc_is_running(q);
2800 if (unlikely(contended))
2801 spin_lock(&q->busylock);
2802
2803 spin_lock(root_lock);
2804 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2805 kfree_skb(skb);
2806 rc = NET_XMIT_DROP;
2807 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2808 qdisc_run_begin(q)) {
2809 /*
2810 * This is a work-conserving queue; there are no old skbs
2811 * waiting to be sent out; and the qdisc is not running -
2812 * xmit the skb directly.
2813 */
2814 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2815 skb_dst_force(skb);
2816
2817 qdisc_bstats_update(q, skb);
2818
2819 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2820 if (unlikely(contended)) {
2821 spin_unlock(&q->busylock);
2822 contended = false;
2823 }
2824 __qdisc_run(q);
2825 } else
2826 qdisc_run_end(q);
2827
2828 rc = NET_XMIT_SUCCESS;
2829 } else {
2830 skb_dst_force(skb);
2831 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2832 if (qdisc_run_begin(q)) {
2833 if (unlikely(contended)) {
2834 spin_unlock(&q->busylock);
2835 contended = false;
2836 }
2837 __qdisc_run(q);
2838 }
2839 }
2840 spin_unlock(root_lock);
2841 if (unlikely(contended))
2842 spin_unlock(&q->busylock);
2843 return rc;
2844 }
2845
2846 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2847 static void skb_update_prio(struct sk_buff *skb)
2848 {
2849 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2850
2851 if (!skb->priority && skb->sk && map) {
2852 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2853
2854 if (prioidx < map->priomap_len)
2855 skb->priority = map->priomap[prioidx];
2856 }
2857 }
2858 #else
2859 #define skb_update_prio(skb)
2860 #endif
2861
2862 static DEFINE_PER_CPU(int, xmit_recursion);
2863 #define RECURSION_LIMIT 10
2864
2865 /**
2866 * dev_loopback_xmit - loop back @skb
2867 * @skb: buffer to transmit
2868 */
2869 int dev_loopback_xmit(struct sk_buff *skb)
2870 {
2871 skb_reset_mac_header(skb);
2872 __skb_pull(skb, skb_network_offset(skb));
2873 skb->pkt_type = PACKET_LOOPBACK;
2874 skb->ip_summed = CHECKSUM_UNNECESSARY;
2875 WARN_ON(!skb_dst(skb));
2876 skb_dst_force(skb);
2877 netif_rx_ni(skb);
2878 return 0;
2879 }
2880 EXPORT_SYMBOL(dev_loopback_xmit);
2881
2882 /**
2883 * __dev_queue_xmit - transmit a buffer
2884 * @skb: buffer to transmit
2885 * @accel_priv: private data used for L2 forwarding offload
2886 *
2887 * Queue a buffer for transmission to a network device. The caller must
2888 * have set the device and priority and built the buffer before calling
2889 * this function. The function can be called from an interrupt.
2890 *
2891 * A negative errno code is returned on a failure. A success does not
2892 * guarantee the frame will be transmitted as it may be dropped due
2893 * to congestion or traffic shaping.
2894 *
2895 * -----------------------------------------------------------------------------------
2896 * I notice this method can also return errors from the queue disciplines,
2897 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2898 * be positive.
2899 *
2900 * Regardless of the return value, the skb is consumed, so it is currently
2901 * difficult to retry a send to this method. (You can bump the ref count
2902 * before sending to hold a reference for retry if you are careful.)
2903 *
2904 * When calling this method, interrupts MUST be enabled. This is because
2905 * the BH enable code must have IRQs enabled so that it will not deadlock.
2906 * --BLG
2907 */
2908 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2909 {
2910 struct net_device *dev = skb->dev;
2911 struct netdev_queue *txq;
2912 struct Qdisc *q;
2913 int rc = -ENOMEM;
2914
2915 skb_reset_mac_header(skb);
2916
2917 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2918 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2919
2920 /* Disable soft irqs for various locks below. Also
2921 * stops preemption for RCU.
2922 */
2923 rcu_read_lock_bh();
2924
2925 skb_update_prio(skb);
2926
2927 txq = netdev_pick_tx(dev, skb, accel_priv);
2928 q = rcu_dereference_bh(txq->qdisc);
2929
2930 #ifdef CONFIG_NET_CLS_ACT
2931 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2932 #endif
2933 trace_net_dev_queue(skb);
2934 if (q->enqueue) {
2935 rc = __dev_xmit_skb(skb, q, dev, txq);
2936 goto out;
2937 }
2938
2939 /* The device has no queue. Common case for software devices:
2940 loopback, all the sorts of tunnels...
2941
2942 Really, it is unlikely that netif_tx_lock protection is necessary
2943 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2944 counters.)
2945 However, it is possible, that they rely on protection
2946 made by us here.
2947
2948 Check this and shot the lock. It is not prone from deadlocks.
2949 Either shot noqueue qdisc, it is even simpler 8)
2950 */
2951 if (dev->flags & IFF_UP) {
2952 int cpu = smp_processor_id(); /* ok because BHs are off */
2953
2954 if (txq->xmit_lock_owner != cpu) {
2955
2956 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2957 goto recursion_alert;
2958
2959 skb = validate_xmit_skb(skb, dev);
2960 if (!skb)
2961 goto drop;
2962
2963 HARD_TX_LOCK(dev, txq, cpu);
2964
2965 if (!netif_xmit_stopped(txq)) {
2966 __this_cpu_inc(xmit_recursion);
2967 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2968 __this_cpu_dec(xmit_recursion);
2969 if (dev_xmit_complete(rc)) {
2970 HARD_TX_UNLOCK(dev, txq);
2971 goto out;
2972 }
2973 }
2974 HARD_TX_UNLOCK(dev, txq);
2975 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2976 dev->name);
2977 } else {
2978 /* Recursion is detected! It is possible,
2979 * unfortunately
2980 */
2981 recursion_alert:
2982 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2983 dev->name);
2984 }
2985 }
2986
2987 rc = -ENETDOWN;
2988 drop:
2989 rcu_read_unlock_bh();
2990
2991 atomic_long_inc(&dev->tx_dropped);
2992 kfree_skb_list(skb);
2993 return rc;
2994 out:
2995 rcu_read_unlock_bh();
2996 return rc;
2997 }
2998
2999 int dev_queue_xmit(struct sk_buff *skb)
3000 {
3001 return __dev_queue_xmit(skb, NULL);
3002 }
3003 EXPORT_SYMBOL(dev_queue_xmit);
3004
3005 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3006 {
3007 return __dev_queue_xmit(skb, accel_priv);
3008 }
3009 EXPORT_SYMBOL(dev_queue_xmit_accel);
3010
3011
3012 /*=======================================================================
3013 Receiver routines
3014 =======================================================================*/
3015
3016 int netdev_max_backlog __read_mostly = 1000;
3017 EXPORT_SYMBOL(netdev_max_backlog);
3018
3019 int netdev_tstamp_prequeue __read_mostly = 1;
3020 int netdev_budget __read_mostly = 300;
3021 int weight_p __read_mostly = 64; /* old backlog weight */
3022
3023 /* Called with irq disabled */
3024 static inline void ____napi_schedule(struct softnet_data *sd,
3025 struct napi_struct *napi)
3026 {
3027 list_add_tail(&napi->poll_list, &sd->poll_list);
3028 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3029 }
3030
3031 #ifdef CONFIG_RPS
3032
3033 /* One global table that all flow-based protocols share. */
3034 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3035 EXPORT_SYMBOL(rps_sock_flow_table);
3036
3037 struct static_key rps_needed __read_mostly;
3038
3039 static struct rps_dev_flow *
3040 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3041 struct rps_dev_flow *rflow, u16 next_cpu)
3042 {
3043 if (next_cpu != RPS_NO_CPU) {
3044 #ifdef CONFIG_RFS_ACCEL
3045 struct netdev_rx_queue *rxqueue;
3046 struct rps_dev_flow_table *flow_table;
3047 struct rps_dev_flow *old_rflow;
3048 u32 flow_id;
3049 u16 rxq_index;
3050 int rc;
3051
3052 /* Should we steer this flow to a different hardware queue? */
3053 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3054 !(dev->features & NETIF_F_NTUPLE))
3055 goto out;
3056 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3057 if (rxq_index == skb_get_rx_queue(skb))
3058 goto out;
3059
3060 rxqueue = dev->_rx + rxq_index;
3061 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3062 if (!flow_table)
3063 goto out;
3064 flow_id = skb_get_hash(skb) & flow_table->mask;
3065 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3066 rxq_index, flow_id);
3067 if (rc < 0)
3068 goto out;
3069 old_rflow = rflow;
3070 rflow = &flow_table->flows[flow_id];
3071 rflow->filter = rc;
3072 if (old_rflow->filter == rflow->filter)
3073 old_rflow->filter = RPS_NO_FILTER;
3074 out:
3075 #endif
3076 rflow->last_qtail =
3077 per_cpu(softnet_data, next_cpu).input_queue_head;
3078 }
3079
3080 rflow->cpu = next_cpu;
3081 return rflow;
3082 }
3083
3084 /*
3085 * get_rps_cpu is called from netif_receive_skb and returns the target
3086 * CPU from the RPS map of the receiving queue for a given skb.
3087 * rcu_read_lock must be held on entry.
3088 */
3089 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3090 struct rps_dev_flow **rflowp)
3091 {
3092 struct netdev_rx_queue *rxqueue;
3093 struct rps_map *map;
3094 struct rps_dev_flow_table *flow_table;
3095 struct rps_sock_flow_table *sock_flow_table;
3096 int cpu = -1;
3097 u16 tcpu;
3098 u32 hash;
3099
3100 if (skb_rx_queue_recorded(skb)) {
3101 u16 index = skb_get_rx_queue(skb);
3102 if (unlikely(index >= dev->real_num_rx_queues)) {
3103 WARN_ONCE(dev->real_num_rx_queues > 1,
3104 "%s received packet on queue %u, but number "
3105 "of RX queues is %u\n",
3106 dev->name, index, dev->real_num_rx_queues);
3107 goto done;
3108 }
3109 rxqueue = dev->_rx + index;
3110 } else
3111 rxqueue = dev->_rx;
3112
3113 map = rcu_dereference(rxqueue->rps_map);
3114 if (map) {
3115 if (map->len == 1 &&
3116 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3117 tcpu = map->cpus[0];
3118 if (cpu_online(tcpu))
3119 cpu = tcpu;
3120 goto done;
3121 }
3122 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3123 goto done;
3124 }
3125
3126 skb_reset_network_header(skb);
3127 hash = skb_get_hash(skb);
3128 if (!hash)
3129 goto done;
3130
3131 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3132 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3133 if (flow_table && sock_flow_table) {
3134 u16 next_cpu;
3135 struct rps_dev_flow *rflow;
3136
3137 rflow = &flow_table->flows[hash & flow_table->mask];
3138 tcpu = rflow->cpu;
3139
3140 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3141
3142 /*
3143 * If the desired CPU (where last recvmsg was done) is
3144 * different from current CPU (one in the rx-queue flow
3145 * table entry), switch if one of the following holds:
3146 * - Current CPU is unset (equal to RPS_NO_CPU).
3147 * - Current CPU is offline.
3148 * - The current CPU's queue tail has advanced beyond the
3149 * last packet that was enqueued using this table entry.
3150 * This guarantees that all previous packets for the flow
3151 * have been dequeued, thus preserving in order delivery.
3152 */
3153 if (unlikely(tcpu != next_cpu) &&
3154 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3155 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3156 rflow->last_qtail)) >= 0)) {
3157 tcpu = next_cpu;
3158 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3159 }
3160
3161 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3162 *rflowp = rflow;
3163 cpu = tcpu;
3164 goto done;
3165 }
3166 }
3167
3168 if (map) {
3169 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3170 if (cpu_online(tcpu)) {
3171 cpu = tcpu;
3172 goto done;
3173 }
3174 }
3175
3176 done:
3177 return cpu;
3178 }
3179
3180 #ifdef CONFIG_RFS_ACCEL
3181
3182 /**
3183 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3184 * @dev: Device on which the filter was set
3185 * @rxq_index: RX queue index
3186 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3187 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3188 *
3189 * Drivers that implement ndo_rx_flow_steer() should periodically call
3190 * this function for each installed filter and remove the filters for
3191 * which it returns %true.
3192 */
3193 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3194 u32 flow_id, u16 filter_id)
3195 {
3196 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3197 struct rps_dev_flow_table *flow_table;
3198 struct rps_dev_flow *rflow;
3199 bool expire = true;
3200 int cpu;
3201
3202 rcu_read_lock();
3203 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3204 if (flow_table && flow_id <= flow_table->mask) {
3205 rflow = &flow_table->flows[flow_id];
3206 cpu = ACCESS_ONCE(rflow->cpu);
3207 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3208 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3209 rflow->last_qtail) <
3210 (int)(10 * flow_table->mask)))
3211 expire = false;
3212 }
3213 rcu_read_unlock();
3214 return expire;
3215 }
3216 EXPORT_SYMBOL(rps_may_expire_flow);
3217
3218 #endif /* CONFIG_RFS_ACCEL */
3219
3220 /* Called from hardirq (IPI) context */
3221 static void rps_trigger_softirq(void *data)
3222 {
3223 struct softnet_data *sd = data;
3224
3225 ____napi_schedule(sd, &sd->backlog);
3226 sd->received_rps++;
3227 }
3228
3229 #endif /* CONFIG_RPS */
3230
3231 /*
3232 * Check if this softnet_data structure is another cpu one
3233 * If yes, queue it to our IPI list and return 1
3234 * If no, return 0
3235 */
3236 static int rps_ipi_queued(struct softnet_data *sd)
3237 {
3238 #ifdef CONFIG_RPS
3239 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3240
3241 if (sd != mysd) {
3242 sd->rps_ipi_next = mysd->rps_ipi_list;
3243 mysd->rps_ipi_list = sd;
3244
3245 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3246 return 1;
3247 }
3248 #endif /* CONFIG_RPS */
3249 return 0;
3250 }
3251
3252 #ifdef CONFIG_NET_FLOW_LIMIT
3253 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3254 #endif
3255
3256 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3257 {
3258 #ifdef CONFIG_NET_FLOW_LIMIT
3259 struct sd_flow_limit *fl;
3260 struct softnet_data *sd;
3261 unsigned int old_flow, new_flow;
3262
3263 if (qlen < (netdev_max_backlog >> 1))
3264 return false;
3265
3266 sd = &__get_cpu_var(softnet_data);
3267
3268 rcu_read_lock();
3269 fl = rcu_dereference(sd->flow_limit);
3270 if (fl) {
3271 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3272 old_flow = fl->history[fl->history_head];
3273 fl->history[fl->history_head] = new_flow;
3274
3275 fl->history_head++;
3276 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3277
3278 if (likely(fl->buckets[old_flow]))
3279 fl->buckets[old_flow]--;
3280
3281 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3282 fl->count++;
3283 rcu_read_unlock();
3284 return true;
3285 }
3286 }
3287 rcu_read_unlock();
3288 #endif
3289 return false;
3290 }
3291
3292 /*
3293 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3294 * queue (may be a remote CPU queue).
3295 */
3296 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3297 unsigned int *qtail)
3298 {
3299 struct softnet_data *sd;
3300 unsigned long flags;
3301 unsigned int qlen;
3302
3303 sd = &per_cpu(softnet_data, cpu);
3304
3305 local_irq_save(flags);
3306
3307 rps_lock(sd);
3308 qlen = skb_queue_len(&sd->input_pkt_queue);
3309 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3310 if (skb_queue_len(&sd->input_pkt_queue)) {
3311 enqueue:
3312 __skb_queue_tail(&sd->input_pkt_queue, skb);
3313 input_queue_tail_incr_save(sd, qtail);
3314 rps_unlock(sd);
3315 local_irq_restore(flags);
3316 return NET_RX_SUCCESS;
3317 }
3318
3319 /* Schedule NAPI for backlog device
3320 * We can use non atomic operation since we own the queue lock
3321 */
3322 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3323 if (!rps_ipi_queued(sd))
3324 ____napi_schedule(sd, &sd->backlog);
3325 }
3326 goto enqueue;
3327 }
3328
3329 sd->dropped++;
3330 rps_unlock(sd);
3331
3332 local_irq_restore(flags);
3333
3334 atomic_long_inc(&skb->dev->rx_dropped);
3335 kfree_skb(skb);
3336 return NET_RX_DROP;
3337 }
3338
3339 static int netif_rx_internal(struct sk_buff *skb)
3340 {
3341 int ret;
3342
3343 net_timestamp_check(netdev_tstamp_prequeue, skb);
3344
3345 trace_netif_rx(skb);
3346 #ifdef CONFIG_RPS
3347 if (static_key_false(&rps_needed)) {
3348 struct rps_dev_flow voidflow, *rflow = &voidflow;
3349 int cpu;
3350
3351 preempt_disable();
3352 rcu_read_lock();
3353
3354 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3355 if (cpu < 0)
3356 cpu = smp_processor_id();
3357
3358 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3359
3360 rcu_read_unlock();
3361 preempt_enable();
3362 } else
3363 #endif
3364 {
3365 unsigned int qtail;
3366 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3367 put_cpu();
3368 }
3369 return ret;
3370 }
3371
3372 /**
3373 * netif_rx - post buffer to the network code
3374 * @skb: buffer to post
3375 *
3376 * This function receives a packet from a device driver and queues it for
3377 * the upper (protocol) levels to process. It always succeeds. The buffer
3378 * may be dropped during processing for congestion control or by the
3379 * protocol layers.
3380 *
3381 * return values:
3382 * NET_RX_SUCCESS (no congestion)
3383 * NET_RX_DROP (packet was dropped)
3384 *
3385 */
3386
3387 int netif_rx(struct sk_buff *skb)
3388 {
3389 trace_netif_rx_entry(skb);
3390
3391 return netif_rx_internal(skb);
3392 }
3393 EXPORT_SYMBOL(netif_rx);
3394
3395 int netif_rx_ni(struct sk_buff *skb)
3396 {
3397 int err;
3398
3399 trace_netif_rx_ni_entry(skb);
3400
3401 preempt_disable();
3402 err = netif_rx_internal(skb);
3403 if (local_softirq_pending())
3404 do_softirq();
3405 preempt_enable();
3406
3407 return err;
3408 }
3409 EXPORT_SYMBOL(netif_rx_ni);
3410
3411 static void net_tx_action(struct softirq_action *h)
3412 {
3413 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3414
3415 if (sd->completion_queue) {
3416 struct sk_buff *clist;
3417
3418 local_irq_disable();
3419 clist = sd->completion_queue;
3420 sd->completion_queue = NULL;
3421 local_irq_enable();
3422
3423 while (clist) {
3424 struct sk_buff *skb = clist;
3425 clist = clist->next;
3426
3427 WARN_ON(atomic_read(&skb->users));
3428 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3429 trace_consume_skb(skb);
3430 else
3431 trace_kfree_skb(skb, net_tx_action);
3432 __kfree_skb(skb);
3433 }
3434 }
3435
3436 if (sd->output_queue) {
3437 struct Qdisc *head;
3438
3439 local_irq_disable();
3440 head = sd->output_queue;
3441 sd->output_queue = NULL;
3442 sd->output_queue_tailp = &sd->output_queue;
3443 local_irq_enable();
3444
3445 while (head) {
3446 struct Qdisc *q = head;
3447 spinlock_t *root_lock;
3448
3449 head = head->next_sched;
3450
3451 root_lock = qdisc_lock(q);
3452 if (spin_trylock(root_lock)) {
3453 smp_mb__before_atomic();
3454 clear_bit(__QDISC_STATE_SCHED,
3455 &q->state);
3456 qdisc_run(q);
3457 spin_unlock(root_lock);
3458 } else {
3459 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3460 &q->state)) {
3461 __netif_reschedule(q);
3462 } else {
3463 smp_mb__before_atomic();
3464 clear_bit(__QDISC_STATE_SCHED,
3465 &q->state);
3466 }
3467 }
3468 }
3469 }
3470 }
3471
3472 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3473 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3474 /* This hook is defined here for ATM LANE */
3475 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3476 unsigned char *addr) __read_mostly;
3477 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3478 #endif
3479
3480 #ifdef CONFIG_NET_CLS_ACT
3481 /* TODO: Maybe we should just force sch_ingress to be compiled in
3482 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3483 * a compare and 2 stores extra right now if we dont have it on
3484 * but have CONFIG_NET_CLS_ACT
3485 * NOTE: This doesn't stop any functionality; if you dont have
3486 * the ingress scheduler, you just can't add policies on ingress.
3487 *
3488 */
3489 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3490 {
3491 struct net_device *dev = skb->dev;
3492 u32 ttl = G_TC_RTTL(skb->tc_verd);
3493 int result = TC_ACT_OK;
3494 struct Qdisc *q;
3495
3496 if (unlikely(MAX_RED_LOOP < ttl++)) {
3497 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3498 skb->skb_iif, dev->ifindex);
3499 return TC_ACT_SHOT;
3500 }
3501
3502 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3503 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3504
3505 q = rcu_dereference(rxq->qdisc);
3506 if (q != &noop_qdisc) {
3507 spin_lock(qdisc_lock(q));
3508 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3509 result = qdisc_enqueue_root(skb, q);
3510 spin_unlock(qdisc_lock(q));
3511 }
3512
3513 return result;
3514 }
3515
3516 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3517 struct packet_type **pt_prev,
3518 int *ret, struct net_device *orig_dev)
3519 {
3520 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3521
3522 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3523 goto out;
3524
3525 if (*pt_prev) {
3526 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3527 *pt_prev = NULL;
3528 }
3529
3530 switch (ing_filter(skb, rxq)) {
3531 case TC_ACT_SHOT:
3532 case TC_ACT_STOLEN:
3533 kfree_skb(skb);
3534 return NULL;
3535 }
3536
3537 out:
3538 skb->tc_verd = 0;
3539 return skb;
3540 }
3541 #endif
3542
3543 /**
3544 * netdev_rx_handler_register - register receive handler
3545 * @dev: device to register a handler for
3546 * @rx_handler: receive handler to register
3547 * @rx_handler_data: data pointer that is used by rx handler
3548 *
3549 * Register a receive handler for a device. This handler will then be
3550 * called from __netif_receive_skb. A negative errno code is returned
3551 * on a failure.
3552 *
3553 * The caller must hold the rtnl_mutex.
3554 *
3555 * For a general description of rx_handler, see enum rx_handler_result.
3556 */
3557 int netdev_rx_handler_register(struct net_device *dev,
3558 rx_handler_func_t *rx_handler,
3559 void *rx_handler_data)
3560 {
3561 ASSERT_RTNL();
3562
3563 if (dev->rx_handler)
3564 return -EBUSY;
3565
3566 /* Note: rx_handler_data must be set before rx_handler */
3567 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3568 rcu_assign_pointer(dev->rx_handler, rx_handler);
3569
3570 return 0;
3571 }
3572 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3573
3574 /**
3575 * netdev_rx_handler_unregister - unregister receive handler
3576 * @dev: device to unregister a handler from
3577 *
3578 * Unregister a receive handler from a device.
3579 *
3580 * The caller must hold the rtnl_mutex.
3581 */
3582 void netdev_rx_handler_unregister(struct net_device *dev)
3583 {
3584
3585 ASSERT_RTNL();
3586 RCU_INIT_POINTER(dev->rx_handler, NULL);
3587 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3588 * section has a guarantee to see a non NULL rx_handler_data
3589 * as well.
3590 */
3591 synchronize_net();
3592 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3593 }
3594 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3595
3596 /*
3597 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3598 * the special handling of PFMEMALLOC skbs.
3599 */
3600 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3601 {
3602 switch (skb->protocol) {
3603 case htons(ETH_P_ARP):
3604 case htons(ETH_P_IP):
3605 case htons(ETH_P_IPV6):
3606 case htons(ETH_P_8021Q):
3607 case htons(ETH_P_8021AD):
3608 return true;
3609 default:
3610 return false;
3611 }
3612 }
3613
3614 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3615 {
3616 struct packet_type *ptype, *pt_prev;
3617 rx_handler_func_t *rx_handler;
3618 struct net_device *orig_dev;
3619 struct net_device *null_or_dev;
3620 bool deliver_exact = false;
3621 int ret = NET_RX_DROP;
3622 __be16 type;
3623
3624 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3625
3626 trace_netif_receive_skb(skb);
3627
3628 orig_dev = skb->dev;
3629
3630 skb_reset_network_header(skb);
3631 if (!skb_transport_header_was_set(skb))
3632 skb_reset_transport_header(skb);
3633 skb_reset_mac_len(skb);
3634
3635 pt_prev = NULL;
3636
3637 rcu_read_lock();
3638
3639 another_round:
3640 skb->skb_iif = skb->dev->ifindex;
3641
3642 __this_cpu_inc(softnet_data.processed);
3643
3644 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3645 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3646 skb = skb_vlan_untag(skb);
3647 if (unlikely(!skb))
3648 goto unlock;
3649 }
3650
3651 #ifdef CONFIG_NET_CLS_ACT
3652 if (skb->tc_verd & TC_NCLS) {
3653 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3654 goto ncls;
3655 }
3656 #endif
3657
3658 if (pfmemalloc)
3659 goto skip_taps;
3660
3661 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3662 if (!ptype->dev || ptype->dev == skb->dev) {
3663 if (pt_prev)
3664 ret = deliver_skb(skb, pt_prev, orig_dev);
3665 pt_prev = ptype;
3666 }
3667 }
3668
3669 skip_taps:
3670 #ifdef CONFIG_NET_CLS_ACT
3671 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3672 if (!skb)
3673 goto unlock;
3674 ncls:
3675 #endif
3676
3677 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3678 goto drop;
3679
3680 if (vlan_tx_tag_present(skb)) {
3681 if (pt_prev) {
3682 ret = deliver_skb(skb, pt_prev, orig_dev);
3683 pt_prev = NULL;
3684 }
3685 if (vlan_do_receive(&skb))
3686 goto another_round;
3687 else if (unlikely(!skb))
3688 goto unlock;
3689 }
3690
3691 rx_handler = rcu_dereference(skb->dev->rx_handler);
3692 if (rx_handler) {
3693 if (pt_prev) {
3694 ret = deliver_skb(skb, pt_prev, orig_dev);
3695 pt_prev = NULL;
3696 }
3697 switch (rx_handler(&skb)) {
3698 case RX_HANDLER_CONSUMED:
3699 ret = NET_RX_SUCCESS;
3700 goto unlock;
3701 case RX_HANDLER_ANOTHER:
3702 goto another_round;
3703 case RX_HANDLER_EXACT:
3704 deliver_exact = true;
3705 case RX_HANDLER_PASS:
3706 break;
3707 default:
3708 BUG();
3709 }
3710 }
3711
3712 if (unlikely(vlan_tx_tag_present(skb))) {
3713 if (vlan_tx_tag_get_id(skb))
3714 skb->pkt_type = PACKET_OTHERHOST;
3715 /* Note: we might in the future use prio bits
3716 * and set skb->priority like in vlan_do_receive()
3717 * For the time being, just ignore Priority Code Point
3718 */
3719 skb->vlan_tci = 0;
3720 }
3721
3722 /* deliver only exact match when indicated */
3723 null_or_dev = deliver_exact ? skb->dev : NULL;
3724
3725 type = skb->protocol;
3726 list_for_each_entry_rcu(ptype,
3727 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3728 if (ptype->type == type &&
3729 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3730 ptype->dev == orig_dev)) {
3731 if (pt_prev)
3732 ret = deliver_skb(skb, pt_prev, orig_dev);
3733 pt_prev = ptype;
3734 }
3735 }
3736
3737 if (pt_prev) {
3738 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3739 goto drop;
3740 else
3741 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3742 } else {
3743 drop:
3744 atomic_long_inc(&skb->dev->rx_dropped);
3745 kfree_skb(skb);
3746 /* Jamal, now you will not able to escape explaining
3747 * me how you were going to use this. :-)
3748 */
3749 ret = NET_RX_DROP;
3750 }
3751
3752 unlock:
3753 rcu_read_unlock();
3754 return ret;
3755 }
3756
3757 static int __netif_receive_skb(struct sk_buff *skb)
3758 {
3759 int ret;
3760
3761 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3762 unsigned long pflags = current->flags;
3763
3764 /*
3765 * PFMEMALLOC skbs are special, they should
3766 * - be delivered to SOCK_MEMALLOC sockets only
3767 * - stay away from userspace
3768 * - have bounded memory usage
3769 *
3770 * Use PF_MEMALLOC as this saves us from propagating the allocation
3771 * context down to all allocation sites.
3772 */
3773 current->flags |= PF_MEMALLOC;
3774 ret = __netif_receive_skb_core(skb, true);
3775 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3776 } else
3777 ret = __netif_receive_skb_core(skb, false);
3778
3779 return ret;
3780 }
3781
3782 static int netif_receive_skb_internal(struct sk_buff *skb)
3783 {
3784 net_timestamp_check(netdev_tstamp_prequeue, skb);
3785
3786 if (skb_defer_rx_timestamp(skb))
3787 return NET_RX_SUCCESS;
3788
3789 #ifdef CONFIG_RPS
3790 if (static_key_false(&rps_needed)) {
3791 struct rps_dev_flow voidflow, *rflow = &voidflow;
3792 int cpu, ret;
3793
3794 rcu_read_lock();
3795
3796 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3797
3798 if (cpu >= 0) {
3799 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3800 rcu_read_unlock();
3801 return ret;
3802 }
3803 rcu_read_unlock();
3804 }
3805 #endif
3806 return __netif_receive_skb(skb);
3807 }
3808
3809 /**
3810 * netif_receive_skb - process receive buffer from network
3811 * @skb: buffer to process
3812 *
3813 * netif_receive_skb() is the main receive data processing function.
3814 * It always succeeds. The buffer may be dropped during processing
3815 * for congestion control or by the protocol layers.
3816 *
3817 * This function may only be called from softirq context and interrupts
3818 * should be enabled.
3819 *
3820 * Return values (usually ignored):
3821 * NET_RX_SUCCESS: no congestion
3822 * NET_RX_DROP: packet was dropped
3823 */
3824 int netif_receive_skb(struct sk_buff *skb)
3825 {
3826 trace_netif_receive_skb_entry(skb);
3827
3828 return netif_receive_skb_internal(skb);
3829 }
3830 EXPORT_SYMBOL(netif_receive_skb);
3831
3832 /* Network device is going away, flush any packets still pending
3833 * Called with irqs disabled.
3834 */
3835 static void flush_backlog(void *arg)
3836 {
3837 struct net_device *dev = arg;
3838 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3839 struct sk_buff *skb, *tmp;
3840
3841 rps_lock(sd);
3842 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3843 if (skb->dev == dev) {
3844 __skb_unlink(skb, &sd->input_pkt_queue);
3845 kfree_skb(skb);
3846 input_queue_head_incr(sd);
3847 }
3848 }
3849 rps_unlock(sd);
3850
3851 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3852 if (skb->dev == dev) {
3853 __skb_unlink(skb, &sd->process_queue);
3854 kfree_skb(skb);
3855 input_queue_head_incr(sd);
3856 }
3857 }
3858 }
3859
3860 static int napi_gro_complete(struct sk_buff *skb)
3861 {
3862 struct packet_offload *ptype;
3863 __be16 type = skb->protocol;
3864 struct list_head *head = &offload_base;
3865 int err = -ENOENT;
3866
3867 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3868
3869 if (NAPI_GRO_CB(skb)->count == 1) {
3870 skb_shinfo(skb)->gso_size = 0;
3871 goto out;
3872 }
3873
3874 rcu_read_lock();
3875 list_for_each_entry_rcu(ptype, head, list) {
3876 if (ptype->type != type || !ptype->callbacks.gro_complete)
3877 continue;
3878
3879 err = ptype->callbacks.gro_complete(skb, 0);
3880 break;
3881 }
3882 rcu_read_unlock();
3883
3884 if (err) {
3885 WARN_ON(&ptype->list == head);
3886 kfree_skb(skb);
3887 return NET_RX_SUCCESS;
3888 }
3889
3890 out:
3891 return netif_receive_skb_internal(skb);
3892 }
3893
3894 /* napi->gro_list contains packets ordered by age.
3895 * youngest packets at the head of it.
3896 * Complete skbs in reverse order to reduce latencies.
3897 */
3898 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3899 {
3900 struct sk_buff *skb, *prev = NULL;
3901
3902 /* scan list and build reverse chain */
3903 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3904 skb->prev = prev;
3905 prev = skb;
3906 }
3907
3908 for (skb = prev; skb; skb = prev) {
3909 skb->next = NULL;
3910
3911 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3912 return;
3913
3914 prev = skb->prev;
3915 napi_gro_complete(skb);
3916 napi->gro_count--;
3917 }
3918
3919 napi->gro_list = NULL;
3920 }
3921 EXPORT_SYMBOL(napi_gro_flush);
3922
3923 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3924 {
3925 struct sk_buff *p;
3926 unsigned int maclen = skb->dev->hard_header_len;
3927 u32 hash = skb_get_hash_raw(skb);
3928
3929 for (p = napi->gro_list; p; p = p->next) {
3930 unsigned long diffs;
3931
3932 NAPI_GRO_CB(p)->flush = 0;
3933
3934 if (hash != skb_get_hash_raw(p)) {
3935 NAPI_GRO_CB(p)->same_flow = 0;
3936 continue;
3937 }
3938
3939 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3940 diffs |= p->vlan_tci ^ skb->vlan_tci;
3941 if (maclen == ETH_HLEN)
3942 diffs |= compare_ether_header(skb_mac_header(p),
3943 skb_mac_header(skb));
3944 else if (!diffs)
3945 diffs = memcmp(skb_mac_header(p),
3946 skb_mac_header(skb),
3947 maclen);
3948 NAPI_GRO_CB(p)->same_flow = !diffs;
3949 }
3950 }
3951
3952 static void skb_gro_reset_offset(struct sk_buff *skb)
3953 {
3954 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3955 const skb_frag_t *frag0 = &pinfo->frags[0];
3956
3957 NAPI_GRO_CB(skb)->data_offset = 0;
3958 NAPI_GRO_CB(skb)->frag0 = NULL;
3959 NAPI_GRO_CB(skb)->frag0_len = 0;
3960
3961 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3962 pinfo->nr_frags &&
3963 !PageHighMem(skb_frag_page(frag0))) {
3964 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3965 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3966 }
3967 }
3968
3969 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3970 {
3971 struct skb_shared_info *pinfo = skb_shinfo(skb);
3972
3973 BUG_ON(skb->end - skb->tail < grow);
3974
3975 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3976
3977 skb->data_len -= grow;
3978 skb->tail += grow;
3979
3980 pinfo->frags[0].page_offset += grow;
3981 skb_frag_size_sub(&pinfo->frags[0], grow);
3982
3983 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3984 skb_frag_unref(skb, 0);
3985 memmove(pinfo->frags, pinfo->frags + 1,
3986 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3987 }
3988 }
3989
3990 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3991 {
3992 struct sk_buff **pp = NULL;
3993 struct packet_offload *ptype;
3994 __be16 type = skb->protocol;
3995 struct list_head *head = &offload_base;
3996 int same_flow;
3997 enum gro_result ret;
3998 int grow;
3999
4000 if (!(skb->dev->features & NETIF_F_GRO))
4001 goto normal;
4002
4003 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4004 goto normal;
4005
4006 gro_list_prepare(napi, skb);
4007
4008 rcu_read_lock();
4009 list_for_each_entry_rcu(ptype, head, list) {
4010 if (ptype->type != type || !ptype->callbacks.gro_receive)
4011 continue;
4012
4013 skb_set_network_header(skb, skb_gro_offset(skb));
4014 skb_reset_mac_len(skb);
4015 NAPI_GRO_CB(skb)->same_flow = 0;
4016 NAPI_GRO_CB(skb)->flush = 0;
4017 NAPI_GRO_CB(skb)->free = 0;
4018 NAPI_GRO_CB(skb)->udp_mark = 0;
4019
4020 /* Setup for GRO checksum validation */
4021 switch (skb->ip_summed) {
4022 case CHECKSUM_COMPLETE:
4023 NAPI_GRO_CB(skb)->csum = skb->csum;
4024 NAPI_GRO_CB(skb)->csum_valid = 1;
4025 NAPI_GRO_CB(skb)->csum_cnt = 0;
4026 break;
4027 case CHECKSUM_UNNECESSARY:
4028 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4029 NAPI_GRO_CB(skb)->csum_valid = 0;
4030 break;
4031 default:
4032 NAPI_GRO_CB(skb)->csum_cnt = 0;
4033 NAPI_GRO_CB(skb)->csum_valid = 0;
4034 }
4035
4036 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4037 break;
4038 }
4039 rcu_read_unlock();
4040
4041 if (&ptype->list == head)
4042 goto normal;
4043
4044 same_flow = NAPI_GRO_CB(skb)->same_flow;
4045 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4046
4047 if (pp) {
4048 struct sk_buff *nskb = *pp;
4049
4050 *pp = nskb->next;
4051 nskb->next = NULL;
4052 napi_gro_complete(nskb);
4053 napi->gro_count--;
4054 }
4055
4056 if (same_flow)
4057 goto ok;
4058
4059 if (NAPI_GRO_CB(skb)->flush)
4060 goto normal;
4061
4062 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4063 struct sk_buff *nskb = napi->gro_list;
4064
4065 /* locate the end of the list to select the 'oldest' flow */
4066 while (nskb->next) {
4067 pp = &nskb->next;
4068 nskb = *pp;
4069 }
4070 *pp = NULL;
4071 nskb->next = NULL;
4072 napi_gro_complete(nskb);
4073 } else {
4074 napi->gro_count++;
4075 }
4076 NAPI_GRO_CB(skb)->count = 1;
4077 NAPI_GRO_CB(skb)->age = jiffies;
4078 NAPI_GRO_CB(skb)->last = skb;
4079 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4080 skb->next = napi->gro_list;
4081 napi->gro_list = skb;
4082 ret = GRO_HELD;
4083
4084 pull:
4085 grow = skb_gro_offset(skb) - skb_headlen(skb);
4086 if (grow > 0)
4087 gro_pull_from_frag0(skb, grow);
4088 ok:
4089 return ret;
4090
4091 normal:
4092 ret = GRO_NORMAL;
4093 goto pull;
4094 }
4095
4096 struct packet_offload *gro_find_receive_by_type(__be16 type)
4097 {
4098 struct list_head *offload_head = &offload_base;
4099 struct packet_offload *ptype;
4100
4101 list_for_each_entry_rcu(ptype, offload_head, list) {
4102 if (ptype->type != type || !ptype->callbacks.gro_receive)
4103 continue;
4104 return ptype;
4105 }
4106 return NULL;
4107 }
4108 EXPORT_SYMBOL(gro_find_receive_by_type);
4109
4110 struct packet_offload *gro_find_complete_by_type(__be16 type)
4111 {
4112 struct list_head *offload_head = &offload_base;
4113 struct packet_offload *ptype;
4114
4115 list_for_each_entry_rcu(ptype, offload_head, list) {
4116 if (ptype->type != type || !ptype->callbacks.gro_complete)
4117 continue;
4118 return ptype;
4119 }
4120 return NULL;
4121 }
4122 EXPORT_SYMBOL(gro_find_complete_by_type);
4123
4124 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4125 {
4126 switch (ret) {
4127 case GRO_NORMAL:
4128 if (netif_receive_skb_internal(skb))
4129 ret = GRO_DROP;
4130 break;
4131
4132 case GRO_DROP:
4133 kfree_skb(skb);
4134 break;
4135
4136 case GRO_MERGED_FREE:
4137 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4138 kmem_cache_free(skbuff_head_cache, skb);
4139 else
4140 __kfree_skb(skb);
4141 break;
4142
4143 case GRO_HELD:
4144 case GRO_MERGED:
4145 break;
4146 }
4147
4148 return ret;
4149 }
4150
4151 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4152 {
4153 trace_napi_gro_receive_entry(skb);
4154
4155 skb_gro_reset_offset(skb);
4156
4157 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4158 }
4159 EXPORT_SYMBOL(napi_gro_receive);
4160
4161 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4162 {
4163 __skb_pull(skb, skb_headlen(skb));
4164 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4165 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4166 skb->vlan_tci = 0;
4167 skb->dev = napi->dev;
4168 skb->skb_iif = 0;
4169 skb->encapsulation = 0;
4170 skb_shinfo(skb)->gso_type = 0;
4171 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4172
4173 napi->skb = skb;
4174 }
4175
4176 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4177 {
4178 struct sk_buff *skb = napi->skb;
4179
4180 if (!skb) {
4181 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4182 napi->skb = skb;
4183 }
4184 return skb;
4185 }
4186 EXPORT_SYMBOL(napi_get_frags);
4187
4188 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4189 struct sk_buff *skb,
4190 gro_result_t ret)
4191 {
4192 switch (ret) {
4193 case GRO_NORMAL:
4194 case GRO_HELD:
4195 __skb_push(skb, ETH_HLEN);
4196 skb->protocol = eth_type_trans(skb, skb->dev);
4197 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4198 ret = GRO_DROP;
4199 break;
4200
4201 case GRO_DROP:
4202 case GRO_MERGED_FREE:
4203 napi_reuse_skb(napi, skb);
4204 break;
4205
4206 case GRO_MERGED:
4207 break;
4208 }
4209
4210 return ret;
4211 }
4212
4213 /* Upper GRO stack assumes network header starts at gro_offset=0
4214 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4215 * We copy ethernet header into skb->data to have a common layout.
4216 */
4217 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4218 {
4219 struct sk_buff *skb = napi->skb;
4220 const struct ethhdr *eth;
4221 unsigned int hlen = sizeof(*eth);
4222
4223 napi->skb = NULL;
4224
4225 skb_reset_mac_header(skb);
4226 skb_gro_reset_offset(skb);
4227
4228 eth = skb_gro_header_fast(skb, 0);
4229 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4230 eth = skb_gro_header_slow(skb, hlen, 0);
4231 if (unlikely(!eth)) {
4232 napi_reuse_skb(napi, skb);
4233 return NULL;
4234 }
4235 } else {
4236 gro_pull_from_frag0(skb, hlen);
4237 NAPI_GRO_CB(skb)->frag0 += hlen;
4238 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4239 }
4240 __skb_pull(skb, hlen);
4241
4242 /*
4243 * This works because the only protocols we care about don't require
4244 * special handling.
4245 * We'll fix it up properly in napi_frags_finish()
4246 */
4247 skb->protocol = eth->h_proto;
4248
4249 return skb;
4250 }
4251
4252 gro_result_t napi_gro_frags(struct napi_struct *napi)
4253 {
4254 struct sk_buff *skb = napi_frags_skb(napi);
4255
4256 if (!skb)
4257 return GRO_DROP;
4258
4259 trace_napi_gro_frags_entry(skb);
4260
4261 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4262 }
4263 EXPORT_SYMBOL(napi_gro_frags);
4264
4265 /* Compute the checksum from gro_offset and return the folded value
4266 * after adding in any pseudo checksum.
4267 */
4268 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4269 {
4270 __wsum wsum;
4271 __sum16 sum;
4272
4273 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4274
4275 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4276 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4277 if (likely(!sum)) {
4278 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4279 !skb->csum_complete_sw)
4280 netdev_rx_csum_fault(skb->dev);
4281 }
4282
4283 NAPI_GRO_CB(skb)->csum = wsum;
4284 NAPI_GRO_CB(skb)->csum_valid = 1;
4285
4286 return sum;
4287 }
4288 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4289
4290 /*
4291 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4292 * Note: called with local irq disabled, but exits with local irq enabled.
4293 */
4294 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4295 {
4296 #ifdef CONFIG_RPS
4297 struct softnet_data *remsd = sd->rps_ipi_list;
4298
4299 if (remsd) {
4300 sd->rps_ipi_list = NULL;
4301
4302 local_irq_enable();
4303
4304 /* Send pending IPI's to kick RPS processing on remote cpus. */
4305 while (remsd) {
4306 struct softnet_data *next = remsd->rps_ipi_next;
4307
4308 if (cpu_online(remsd->cpu))
4309 smp_call_function_single_async(remsd->cpu,
4310 &remsd->csd);
4311 remsd = next;
4312 }
4313 } else
4314 #endif
4315 local_irq_enable();
4316 }
4317
4318 static int process_backlog(struct napi_struct *napi, int quota)
4319 {
4320 int work = 0;
4321 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4322
4323 #ifdef CONFIG_RPS
4324 /* Check if we have pending ipi, its better to send them now,
4325 * not waiting net_rx_action() end.
4326 */
4327 if (sd->rps_ipi_list) {
4328 local_irq_disable();
4329 net_rps_action_and_irq_enable(sd);
4330 }
4331 #endif
4332 napi->weight = weight_p;
4333 local_irq_disable();
4334 while (1) {
4335 struct sk_buff *skb;
4336
4337 while ((skb = __skb_dequeue(&sd->process_queue))) {
4338 local_irq_enable();
4339 __netif_receive_skb(skb);
4340 local_irq_disable();
4341 input_queue_head_incr(sd);
4342 if (++work >= quota) {
4343 local_irq_enable();
4344 return work;
4345 }
4346 }
4347
4348 rps_lock(sd);
4349 if (skb_queue_empty(&sd->input_pkt_queue)) {
4350 /*
4351 * Inline a custom version of __napi_complete().
4352 * only current cpu owns and manipulates this napi,
4353 * and NAPI_STATE_SCHED is the only possible flag set
4354 * on backlog.
4355 * We can use a plain write instead of clear_bit(),
4356 * and we dont need an smp_mb() memory barrier.
4357 */
4358 list_del(&napi->poll_list);
4359 napi->state = 0;
4360 rps_unlock(sd);
4361
4362 break;
4363 }
4364
4365 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4366 &sd->process_queue);
4367 rps_unlock(sd);
4368 }
4369 local_irq_enable();
4370
4371 return work;
4372 }
4373
4374 /**
4375 * __napi_schedule - schedule for receive
4376 * @n: entry to schedule
4377 *
4378 * The entry's receive function will be scheduled to run
4379 */
4380 void __napi_schedule(struct napi_struct *n)
4381 {
4382 unsigned long flags;
4383
4384 local_irq_save(flags);
4385 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4386 local_irq_restore(flags);
4387 }
4388 EXPORT_SYMBOL(__napi_schedule);
4389
4390 void __napi_complete(struct napi_struct *n)
4391 {
4392 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4393 BUG_ON(n->gro_list);
4394
4395 list_del(&n->poll_list);
4396 smp_mb__before_atomic();
4397 clear_bit(NAPI_STATE_SCHED, &n->state);
4398 }
4399 EXPORT_SYMBOL(__napi_complete);
4400
4401 void napi_complete(struct napi_struct *n)
4402 {
4403 unsigned long flags;
4404
4405 /*
4406 * don't let napi dequeue from the cpu poll list
4407 * just in case its running on a different cpu
4408 */
4409 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4410 return;
4411
4412 napi_gro_flush(n, false);
4413 local_irq_save(flags);
4414 __napi_complete(n);
4415 local_irq_restore(flags);
4416 }
4417 EXPORT_SYMBOL(napi_complete);
4418
4419 /* must be called under rcu_read_lock(), as we dont take a reference */
4420 struct napi_struct *napi_by_id(unsigned int napi_id)
4421 {
4422 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4423 struct napi_struct *napi;
4424
4425 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4426 if (napi->napi_id == napi_id)
4427 return napi;
4428
4429 return NULL;
4430 }
4431 EXPORT_SYMBOL_GPL(napi_by_id);
4432
4433 void napi_hash_add(struct napi_struct *napi)
4434 {
4435 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4436
4437 spin_lock(&napi_hash_lock);
4438
4439 /* 0 is not a valid id, we also skip an id that is taken
4440 * we expect both events to be extremely rare
4441 */
4442 napi->napi_id = 0;
4443 while (!napi->napi_id) {
4444 napi->napi_id = ++napi_gen_id;
4445 if (napi_by_id(napi->napi_id))
4446 napi->napi_id = 0;
4447 }
4448
4449 hlist_add_head_rcu(&napi->napi_hash_node,
4450 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4451
4452 spin_unlock(&napi_hash_lock);
4453 }
4454 }
4455 EXPORT_SYMBOL_GPL(napi_hash_add);
4456
4457 /* Warning : caller is responsible to make sure rcu grace period
4458 * is respected before freeing memory containing @napi
4459 */
4460 void napi_hash_del(struct napi_struct *napi)
4461 {
4462 spin_lock(&napi_hash_lock);
4463
4464 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4465 hlist_del_rcu(&napi->napi_hash_node);
4466
4467 spin_unlock(&napi_hash_lock);
4468 }
4469 EXPORT_SYMBOL_GPL(napi_hash_del);
4470
4471 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4472 int (*poll)(struct napi_struct *, int), int weight)
4473 {
4474 INIT_LIST_HEAD(&napi->poll_list);
4475 napi->gro_count = 0;
4476 napi->gro_list = NULL;
4477 napi->skb = NULL;
4478 napi->poll = poll;
4479 if (weight > NAPI_POLL_WEIGHT)
4480 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4481 weight, dev->name);
4482 napi->weight = weight;
4483 list_add(&napi->dev_list, &dev->napi_list);
4484 napi->dev = dev;
4485 #ifdef CONFIG_NETPOLL
4486 spin_lock_init(&napi->poll_lock);
4487 napi->poll_owner = -1;
4488 #endif
4489 set_bit(NAPI_STATE_SCHED, &napi->state);
4490 }
4491 EXPORT_SYMBOL(netif_napi_add);
4492
4493 void netif_napi_del(struct napi_struct *napi)
4494 {
4495 list_del_init(&napi->dev_list);
4496 napi_free_frags(napi);
4497
4498 kfree_skb_list(napi->gro_list);
4499 napi->gro_list = NULL;
4500 napi->gro_count = 0;
4501 }
4502 EXPORT_SYMBOL(netif_napi_del);
4503
4504 static void net_rx_action(struct softirq_action *h)
4505 {
4506 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4507 unsigned long time_limit = jiffies + 2;
4508 int budget = netdev_budget;
4509 void *have;
4510
4511 local_irq_disable();
4512
4513 while (!list_empty(&sd->poll_list)) {
4514 struct napi_struct *n;
4515 int work, weight;
4516
4517 /* If softirq window is exhuasted then punt.
4518 * Allow this to run for 2 jiffies since which will allow
4519 * an average latency of 1.5/HZ.
4520 */
4521 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4522 goto softnet_break;
4523
4524 local_irq_enable();
4525
4526 /* Even though interrupts have been re-enabled, this
4527 * access is safe because interrupts can only add new
4528 * entries to the tail of this list, and only ->poll()
4529 * calls can remove this head entry from the list.
4530 */
4531 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4532
4533 have = netpoll_poll_lock(n);
4534
4535 weight = n->weight;
4536
4537 /* This NAPI_STATE_SCHED test is for avoiding a race
4538 * with netpoll's poll_napi(). Only the entity which
4539 * obtains the lock and sees NAPI_STATE_SCHED set will
4540 * actually make the ->poll() call. Therefore we avoid
4541 * accidentally calling ->poll() when NAPI is not scheduled.
4542 */
4543 work = 0;
4544 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4545 work = n->poll(n, weight);
4546 trace_napi_poll(n);
4547 }
4548
4549 WARN_ON_ONCE(work > weight);
4550
4551 budget -= work;
4552
4553 local_irq_disable();
4554
4555 /* Drivers must not modify the NAPI state if they
4556 * consume the entire weight. In such cases this code
4557 * still "owns" the NAPI instance and therefore can
4558 * move the instance around on the list at-will.
4559 */
4560 if (unlikely(work == weight)) {
4561 if (unlikely(napi_disable_pending(n))) {
4562 local_irq_enable();
4563 napi_complete(n);
4564 local_irq_disable();
4565 } else {
4566 if (n->gro_list) {
4567 /* flush too old packets
4568 * If HZ < 1000, flush all packets.
4569 */
4570 local_irq_enable();
4571 napi_gro_flush(n, HZ >= 1000);
4572 local_irq_disable();
4573 }
4574 list_move_tail(&n->poll_list, &sd->poll_list);
4575 }
4576 }
4577
4578 netpoll_poll_unlock(have);
4579 }
4580 out:
4581 net_rps_action_and_irq_enable(sd);
4582
4583 #ifdef CONFIG_NET_DMA
4584 /*
4585 * There may not be any more sk_buffs coming right now, so push
4586 * any pending DMA copies to hardware
4587 */
4588 dma_issue_pending_all();
4589 #endif
4590
4591 return;
4592
4593 softnet_break:
4594 sd->time_squeeze++;
4595 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4596 goto out;
4597 }
4598
4599 struct netdev_adjacent {
4600 struct net_device *dev;
4601
4602 /* upper master flag, there can only be one master device per list */
4603 bool master;
4604
4605 /* counter for the number of times this device was added to us */
4606 u16 ref_nr;
4607
4608 /* private field for the users */
4609 void *private;
4610
4611 struct list_head list;
4612 struct rcu_head rcu;
4613 };
4614
4615 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4616 struct net_device *adj_dev,
4617 struct list_head *adj_list)
4618 {
4619 struct netdev_adjacent *adj;
4620
4621 list_for_each_entry(adj, adj_list, list) {
4622 if (adj->dev == adj_dev)
4623 return adj;
4624 }
4625 return NULL;
4626 }
4627
4628 /**
4629 * netdev_has_upper_dev - Check if device is linked to an upper device
4630 * @dev: device
4631 * @upper_dev: upper device to check
4632 *
4633 * Find out if a device is linked to specified upper device and return true
4634 * in case it is. Note that this checks only immediate upper device,
4635 * not through a complete stack of devices. The caller must hold the RTNL lock.
4636 */
4637 bool netdev_has_upper_dev(struct net_device *dev,
4638 struct net_device *upper_dev)
4639 {
4640 ASSERT_RTNL();
4641
4642 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4643 }
4644 EXPORT_SYMBOL(netdev_has_upper_dev);
4645
4646 /**
4647 * netdev_has_any_upper_dev - Check if device is linked to some device
4648 * @dev: device
4649 *
4650 * Find out if a device is linked to an upper device and return true in case
4651 * it is. The caller must hold the RTNL lock.
4652 */
4653 static bool netdev_has_any_upper_dev(struct net_device *dev)
4654 {
4655 ASSERT_RTNL();
4656
4657 return !list_empty(&dev->all_adj_list.upper);
4658 }
4659
4660 /**
4661 * netdev_master_upper_dev_get - Get master upper device
4662 * @dev: device
4663 *
4664 * Find a master upper device and return pointer to it or NULL in case
4665 * it's not there. The caller must hold the RTNL lock.
4666 */
4667 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4668 {
4669 struct netdev_adjacent *upper;
4670
4671 ASSERT_RTNL();
4672
4673 if (list_empty(&dev->adj_list.upper))
4674 return NULL;
4675
4676 upper = list_first_entry(&dev->adj_list.upper,
4677 struct netdev_adjacent, list);
4678 if (likely(upper->master))
4679 return upper->dev;
4680 return NULL;
4681 }
4682 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4683
4684 void *netdev_adjacent_get_private(struct list_head *adj_list)
4685 {
4686 struct netdev_adjacent *adj;
4687
4688 adj = list_entry(adj_list, struct netdev_adjacent, list);
4689
4690 return adj->private;
4691 }
4692 EXPORT_SYMBOL(netdev_adjacent_get_private);
4693
4694 /**
4695 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4696 * @dev: device
4697 * @iter: list_head ** of the current position
4698 *
4699 * Gets the next device from the dev's upper list, starting from iter
4700 * position. The caller must hold RCU read lock.
4701 */
4702 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4703 struct list_head **iter)
4704 {
4705 struct netdev_adjacent *upper;
4706
4707 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4708
4709 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4710
4711 if (&upper->list == &dev->adj_list.upper)
4712 return NULL;
4713
4714 *iter = &upper->list;
4715
4716 return upper->dev;
4717 }
4718 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4719
4720 /**
4721 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4722 * @dev: device
4723 * @iter: list_head ** of the current position
4724 *
4725 * Gets the next device from the dev's upper list, starting from iter
4726 * position. The caller must hold RCU read lock.
4727 */
4728 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4729 struct list_head **iter)
4730 {
4731 struct netdev_adjacent *upper;
4732
4733 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4734
4735 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4736
4737 if (&upper->list == &dev->all_adj_list.upper)
4738 return NULL;
4739
4740 *iter = &upper->list;
4741
4742 return upper->dev;
4743 }
4744 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4745
4746 /**
4747 * netdev_lower_get_next_private - Get the next ->private from the
4748 * lower neighbour list
4749 * @dev: device
4750 * @iter: list_head ** of the current position
4751 *
4752 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4753 * list, starting from iter position. The caller must hold either hold the
4754 * RTNL lock or its own locking that guarantees that the neighbour lower
4755 * list will remain unchainged.
4756 */
4757 void *netdev_lower_get_next_private(struct net_device *dev,
4758 struct list_head **iter)
4759 {
4760 struct netdev_adjacent *lower;
4761
4762 lower = list_entry(*iter, struct netdev_adjacent, list);
4763
4764 if (&lower->list == &dev->adj_list.lower)
4765 return NULL;
4766
4767 *iter = lower->list.next;
4768
4769 return lower->private;
4770 }
4771 EXPORT_SYMBOL(netdev_lower_get_next_private);
4772
4773 /**
4774 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4775 * lower neighbour list, RCU
4776 * variant
4777 * @dev: device
4778 * @iter: list_head ** of the current position
4779 *
4780 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4781 * list, starting from iter position. The caller must hold RCU read lock.
4782 */
4783 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4784 struct list_head **iter)
4785 {
4786 struct netdev_adjacent *lower;
4787
4788 WARN_ON_ONCE(!rcu_read_lock_held());
4789
4790 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4791
4792 if (&lower->list == &dev->adj_list.lower)
4793 return NULL;
4794
4795 *iter = &lower->list;
4796
4797 return lower->private;
4798 }
4799 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4800
4801 /**
4802 * netdev_lower_get_next - Get the next device from the lower neighbour
4803 * list
4804 * @dev: device
4805 * @iter: list_head ** of the current position
4806 *
4807 * Gets the next netdev_adjacent from the dev's lower neighbour
4808 * list, starting from iter position. The caller must hold RTNL lock or
4809 * its own locking that guarantees that the neighbour lower
4810 * list will remain unchainged.
4811 */
4812 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4813 {
4814 struct netdev_adjacent *lower;
4815
4816 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4817
4818 if (&lower->list == &dev->adj_list.lower)
4819 return NULL;
4820
4821 *iter = &lower->list;
4822
4823 return lower->dev;
4824 }
4825 EXPORT_SYMBOL(netdev_lower_get_next);
4826
4827 /**
4828 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4829 * lower neighbour list, RCU
4830 * variant
4831 * @dev: device
4832 *
4833 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4834 * list. The caller must hold RCU read lock.
4835 */
4836 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4837 {
4838 struct netdev_adjacent *lower;
4839
4840 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4841 struct netdev_adjacent, list);
4842 if (lower)
4843 return lower->private;
4844 return NULL;
4845 }
4846 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4847
4848 /**
4849 * netdev_master_upper_dev_get_rcu - Get master upper device
4850 * @dev: device
4851 *
4852 * Find a master upper device and return pointer to it or NULL in case
4853 * it's not there. The caller must hold the RCU read lock.
4854 */
4855 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4856 {
4857 struct netdev_adjacent *upper;
4858
4859 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4860 struct netdev_adjacent, list);
4861 if (upper && likely(upper->master))
4862 return upper->dev;
4863 return NULL;
4864 }
4865 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4866
4867 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4868 struct net_device *adj_dev,
4869 struct list_head *dev_list)
4870 {
4871 char linkname[IFNAMSIZ+7];
4872 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4873 "upper_%s" : "lower_%s", adj_dev->name);
4874 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4875 linkname);
4876 }
4877 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4878 char *name,
4879 struct list_head *dev_list)
4880 {
4881 char linkname[IFNAMSIZ+7];
4882 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4883 "upper_%s" : "lower_%s", name);
4884 sysfs_remove_link(&(dev->dev.kobj), linkname);
4885 }
4886
4887 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4888 struct net_device *adj_dev,
4889 struct list_head *dev_list)
4890 {
4891 return (dev_list == &dev->adj_list.upper ||
4892 dev_list == &dev->adj_list.lower) &&
4893 net_eq(dev_net(dev), dev_net(adj_dev));
4894 }
4895
4896 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4897 struct net_device *adj_dev,
4898 struct list_head *dev_list,
4899 void *private, bool master)
4900 {
4901 struct netdev_adjacent *adj;
4902 int ret;
4903
4904 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4905
4906 if (adj) {
4907 adj->ref_nr++;
4908 return 0;
4909 }
4910
4911 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4912 if (!adj)
4913 return -ENOMEM;
4914
4915 adj->dev = adj_dev;
4916 adj->master = master;
4917 adj->ref_nr = 1;
4918 adj->private = private;
4919 dev_hold(adj_dev);
4920
4921 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4922 adj_dev->name, dev->name, adj_dev->name);
4923
4924 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
4925 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4926 if (ret)
4927 goto free_adj;
4928 }
4929
4930 /* Ensure that master link is always the first item in list. */
4931 if (master) {
4932 ret = sysfs_create_link(&(dev->dev.kobj),
4933 &(adj_dev->dev.kobj), "master");
4934 if (ret)
4935 goto remove_symlinks;
4936
4937 list_add_rcu(&adj->list, dev_list);
4938 } else {
4939 list_add_tail_rcu(&adj->list, dev_list);
4940 }
4941
4942 return 0;
4943
4944 remove_symlinks:
4945 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
4946 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4947 free_adj:
4948 kfree(adj);
4949 dev_put(adj_dev);
4950
4951 return ret;
4952 }
4953
4954 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4955 struct net_device *adj_dev,
4956 struct list_head *dev_list)
4957 {
4958 struct netdev_adjacent *adj;
4959
4960 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4961
4962 if (!adj) {
4963 pr_err("tried to remove device %s from %s\n",
4964 dev->name, adj_dev->name);
4965 BUG();
4966 }
4967
4968 if (adj->ref_nr > 1) {
4969 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4970 adj->ref_nr-1);
4971 adj->ref_nr--;
4972 return;
4973 }
4974
4975 if (adj->master)
4976 sysfs_remove_link(&(dev->dev.kobj), "master");
4977
4978 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
4979 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4980
4981 list_del_rcu(&adj->list);
4982 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4983 adj_dev->name, dev->name, adj_dev->name);
4984 dev_put(adj_dev);
4985 kfree_rcu(adj, rcu);
4986 }
4987
4988 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4989 struct net_device *upper_dev,
4990 struct list_head *up_list,
4991 struct list_head *down_list,
4992 void *private, bool master)
4993 {
4994 int ret;
4995
4996 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4997 master);
4998 if (ret)
4999 return ret;
5000
5001 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5002 false);
5003 if (ret) {
5004 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5005 return ret;
5006 }
5007
5008 return 0;
5009 }
5010
5011 static int __netdev_adjacent_dev_link(struct net_device *dev,
5012 struct net_device *upper_dev)
5013 {
5014 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5015 &dev->all_adj_list.upper,
5016 &upper_dev->all_adj_list.lower,
5017 NULL, false);
5018 }
5019
5020 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5021 struct net_device *upper_dev,
5022 struct list_head *up_list,
5023 struct list_head *down_list)
5024 {
5025 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5026 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5027 }
5028
5029 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5030 struct net_device *upper_dev)
5031 {
5032 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5033 &dev->all_adj_list.upper,
5034 &upper_dev->all_adj_list.lower);
5035 }
5036
5037 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5038 struct net_device *upper_dev,
5039 void *private, bool master)
5040 {
5041 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5042
5043 if (ret)
5044 return ret;
5045
5046 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5047 &dev->adj_list.upper,
5048 &upper_dev->adj_list.lower,
5049 private, master);
5050 if (ret) {
5051 __netdev_adjacent_dev_unlink(dev, upper_dev);
5052 return ret;
5053 }
5054
5055 return 0;
5056 }
5057
5058 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5059 struct net_device *upper_dev)
5060 {
5061 __netdev_adjacent_dev_unlink(dev, upper_dev);
5062 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5063 &dev->adj_list.upper,
5064 &upper_dev->adj_list.lower);
5065 }
5066
5067 static int __netdev_upper_dev_link(struct net_device *dev,
5068 struct net_device *upper_dev, bool master,
5069 void *private)
5070 {
5071 struct netdev_adjacent *i, *j, *to_i, *to_j;
5072 int ret = 0;
5073
5074 ASSERT_RTNL();
5075
5076 if (dev == upper_dev)
5077 return -EBUSY;
5078
5079 /* To prevent loops, check if dev is not upper device to upper_dev. */
5080 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5081 return -EBUSY;
5082
5083 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5084 return -EEXIST;
5085
5086 if (master && netdev_master_upper_dev_get(dev))
5087 return -EBUSY;
5088
5089 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5090 master);
5091 if (ret)
5092 return ret;
5093
5094 /* Now that we linked these devs, make all the upper_dev's
5095 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5096 * versa, and don't forget the devices itself. All of these
5097 * links are non-neighbours.
5098 */
5099 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5100 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5101 pr_debug("Interlinking %s with %s, non-neighbour\n",
5102 i->dev->name, j->dev->name);
5103 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5104 if (ret)
5105 goto rollback_mesh;
5106 }
5107 }
5108
5109 /* add dev to every upper_dev's upper device */
5110 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5111 pr_debug("linking %s's upper device %s with %s\n",
5112 upper_dev->name, i->dev->name, dev->name);
5113 ret = __netdev_adjacent_dev_link(dev, i->dev);
5114 if (ret)
5115 goto rollback_upper_mesh;
5116 }
5117
5118 /* add upper_dev to every dev's lower device */
5119 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5120 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5121 i->dev->name, upper_dev->name);
5122 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5123 if (ret)
5124 goto rollback_lower_mesh;
5125 }
5126
5127 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5128 return 0;
5129
5130 rollback_lower_mesh:
5131 to_i = i;
5132 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5133 if (i == to_i)
5134 break;
5135 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5136 }
5137
5138 i = NULL;
5139
5140 rollback_upper_mesh:
5141 to_i = i;
5142 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5143 if (i == to_i)
5144 break;
5145 __netdev_adjacent_dev_unlink(dev, i->dev);
5146 }
5147
5148 i = j = NULL;
5149
5150 rollback_mesh:
5151 to_i = i;
5152 to_j = j;
5153 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5154 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5155 if (i == to_i && j == to_j)
5156 break;
5157 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5158 }
5159 if (i == to_i)
5160 break;
5161 }
5162
5163 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5164
5165 return ret;
5166 }
5167
5168 /**
5169 * netdev_upper_dev_link - Add a link to the upper device
5170 * @dev: device
5171 * @upper_dev: new upper device
5172 *
5173 * Adds a link to device which is upper to this one. The caller must hold
5174 * the RTNL lock. On a failure a negative errno code is returned.
5175 * On success the reference counts are adjusted and the function
5176 * returns zero.
5177 */
5178 int netdev_upper_dev_link(struct net_device *dev,
5179 struct net_device *upper_dev)
5180 {
5181 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5182 }
5183 EXPORT_SYMBOL(netdev_upper_dev_link);
5184
5185 /**
5186 * netdev_master_upper_dev_link - Add a master link to the upper device
5187 * @dev: device
5188 * @upper_dev: new upper device
5189 *
5190 * Adds a link to device which is upper to this one. In this case, only
5191 * one master upper device can be linked, although other non-master devices
5192 * might be linked as well. The caller must hold the RTNL lock.
5193 * On a failure a negative errno code is returned. On success the reference
5194 * counts are adjusted and the function returns zero.
5195 */
5196 int netdev_master_upper_dev_link(struct net_device *dev,
5197 struct net_device *upper_dev)
5198 {
5199 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5200 }
5201 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5202
5203 int netdev_master_upper_dev_link_private(struct net_device *dev,
5204 struct net_device *upper_dev,
5205 void *private)
5206 {
5207 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5208 }
5209 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5210
5211 /**
5212 * netdev_upper_dev_unlink - Removes a link to upper device
5213 * @dev: device
5214 * @upper_dev: new upper device
5215 *
5216 * Removes a link to device which is upper to this one. The caller must hold
5217 * the RTNL lock.
5218 */
5219 void netdev_upper_dev_unlink(struct net_device *dev,
5220 struct net_device *upper_dev)
5221 {
5222 struct netdev_adjacent *i, *j;
5223 ASSERT_RTNL();
5224
5225 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5226
5227 /* Here is the tricky part. We must remove all dev's lower
5228 * devices from all upper_dev's upper devices and vice
5229 * versa, to maintain the graph relationship.
5230 */
5231 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5232 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5233 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5234
5235 /* remove also the devices itself from lower/upper device
5236 * list
5237 */
5238 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5239 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5240
5241 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5242 __netdev_adjacent_dev_unlink(dev, i->dev);
5243
5244 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5245 }
5246 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5247
5248 void netdev_adjacent_add_links(struct net_device *dev)
5249 {
5250 struct netdev_adjacent *iter;
5251
5252 struct net *net = dev_net(dev);
5253
5254 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5255 if (!net_eq(net,dev_net(iter->dev)))
5256 continue;
5257 netdev_adjacent_sysfs_add(iter->dev, dev,
5258 &iter->dev->adj_list.lower);
5259 netdev_adjacent_sysfs_add(dev, iter->dev,
5260 &dev->adj_list.upper);
5261 }
5262
5263 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5264 if (!net_eq(net,dev_net(iter->dev)))
5265 continue;
5266 netdev_adjacent_sysfs_add(iter->dev, dev,
5267 &iter->dev->adj_list.upper);
5268 netdev_adjacent_sysfs_add(dev, iter->dev,
5269 &dev->adj_list.lower);
5270 }
5271 }
5272
5273 void netdev_adjacent_del_links(struct net_device *dev)
5274 {
5275 struct netdev_adjacent *iter;
5276
5277 struct net *net = dev_net(dev);
5278
5279 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5280 if (!net_eq(net,dev_net(iter->dev)))
5281 continue;
5282 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5283 &iter->dev->adj_list.lower);
5284 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5285 &dev->adj_list.upper);
5286 }
5287
5288 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5289 if (!net_eq(net,dev_net(iter->dev)))
5290 continue;
5291 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5292 &iter->dev->adj_list.upper);
5293 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5294 &dev->adj_list.lower);
5295 }
5296 }
5297
5298 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5299 {
5300 struct netdev_adjacent *iter;
5301
5302 struct net *net = dev_net(dev);
5303
5304 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5305 if (!net_eq(net,dev_net(iter->dev)))
5306 continue;
5307 netdev_adjacent_sysfs_del(iter->dev, oldname,
5308 &iter->dev->adj_list.lower);
5309 netdev_adjacent_sysfs_add(iter->dev, dev,
5310 &iter->dev->adj_list.lower);
5311 }
5312
5313 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5314 if (!net_eq(net,dev_net(iter->dev)))
5315 continue;
5316 netdev_adjacent_sysfs_del(iter->dev, oldname,
5317 &iter->dev->adj_list.upper);
5318 netdev_adjacent_sysfs_add(iter->dev, dev,
5319 &iter->dev->adj_list.upper);
5320 }
5321 }
5322
5323 void *netdev_lower_dev_get_private(struct net_device *dev,
5324 struct net_device *lower_dev)
5325 {
5326 struct netdev_adjacent *lower;
5327
5328 if (!lower_dev)
5329 return NULL;
5330 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5331 if (!lower)
5332 return NULL;
5333
5334 return lower->private;
5335 }
5336 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5337
5338
5339 int dev_get_nest_level(struct net_device *dev,
5340 bool (*type_check)(struct net_device *dev))
5341 {
5342 struct net_device *lower = NULL;
5343 struct list_head *iter;
5344 int max_nest = -1;
5345 int nest;
5346
5347 ASSERT_RTNL();
5348
5349 netdev_for_each_lower_dev(dev, lower, iter) {
5350 nest = dev_get_nest_level(lower, type_check);
5351 if (max_nest < nest)
5352 max_nest = nest;
5353 }
5354
5355 if (type_check(dev))
5356 max_nest++;
5357
5358 return max_nest;
5359 }
5360 EXPORT_SYMBOL(dev_get_nest_level);
5361
5362 static void dev_change_rx_flags(struct net_device *dev, int flags)
5363 {
5364 const struct net_device_ops *ops = dev->netdev_ops;
5365
5366 if (ops->ndo_change_rx_flags)
5367 ops->ndo_change_rx_flags(dev, flags);
5368 }
5369
5370 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5371 {
5372 unsigned int old_flags = dev->flags;
5373 kuid_t uid;
5374 kgid_t gid;
5375
5376 ASSERT_RTNL();
5377
5378 dev->flags |= IFF_PROMISC;
5379 dev->promiscuity += inc;
5380 if (dev->promiscuity == 0) {
5381 /*
5382 * Avoid overflow.
5383 * If inc causes overflow, untouch promisc and return error.
5384 */
5385 if (inc < 0)
5386 dev->flags &= ~IFF_PROMISC;
5387 else {
5388 dev->promiscuity -= inc;
5389 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5390 dev->name);
5391 return -EOVERFLOW;
5392 }
5393 }
5394 if (dev->flags != old_flags) {
5395 pr_info("device %s %s promiscuous mode\n",
5396 dev->name,
5397 dev->flags & IFF_PROMISC ? "entered" : "left");
5398 if (audit_enabled) {
5399 current_uid_gid(&uid, &gid);
5400 audit_log(current->audit_context, GFP_ATOMIC,
5401 AUDIT_ANOM_PROMISCUOUS,
5402 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5403 dev->name, (dev->flags & IFF_PROMISC),
5404 (old_flags & IFF_PROMISC),
5405 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5406 from_kuid(&init_user_ns, uid),
5407 from_kgid(&init_user_ns, gid),
5408 audit_get_sessionid(current));
5409 }
5410
5411 dev_change_rx_flags(dev, IFF_PROMISC);
5412 }
5413 if (notify)
5414 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5415 return 0;
5416 }
5417
5418 /**
5419 * dev_set_promiscuity - update promiscuity count on a device
5420 * @dev: device
5421 * @inc: modifier
5422 *
5423 * Add or remove promiscuity from a device. While the count in the device
5424 * remains above zero the interface remains promiscuous. Once it hits zero
5425 * the device reverts back to normal filtering operation. A negative inc
5426 * value is used to drop promiscuity on the device.
5427 * Return 0 if successful or a negative errno code on error.
5428 */
5429 int dev_set_promiscuity(struct net_device *dev, int inc)
5430 {
5431 unsigned int old_flags = dev->flags;
5432 int err;
5433
5434 err = __dev_set_promiscuity(dev, inc, true);
5435 if (err < 0)
5436 return err;
5437 if (dev->flags != old_flags)
5438 dev_set_rx_mode(dev);
5439 return err;
5440 }
5441 EXPORT_SYMBOL(dev_set_promiscuity);
5442
5443 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5444 {
5445 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5446
5447 ASSERT_RTNL();
5448
5449 dev->flags |= IFF_ALLMULTI;
5450 dev->allmulti += inc;
5451 if (dev->allmulti == 0) {
5452 /*
5453 * Avoid overflow.
5454 * If inc causes overflow, untouch allmulti and return error.
5455 */
5456 if (inc < 0)
5457 dev->flags &= ~IFF_ALLMULTI;
5458 else {
5459 dev->allmulti -= inc;
5460 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5461 dev->name);
5462 return -EOVERFLOW;
5463 }
5464 }
5465 if (dev->flags ^ old_flags) {
5466 dev_change_rx_flags(dev, IFF_ALLMULTI);
5467 dev_set_rx_mode(dev);
5468 if (notify)
5469 __dev_notify_flags(dev, old_flags,
5470 dev->gflags ^ old_gflags);
5471 }
5472 return 0;
5473 }
5474
5475 /**
5476 * dev_set_allmulti - update allmulti count on a device
5477 * @dev: device
5478 * @inc: modifier
5479 *
5480 * Add or remove reception of all multicast frames to a device. While the
5481 * count in the device remains above zero the interface remains listening
5482 * to all interfaces. Once it hits zero the device reverts back to normal
5483 * filtering operation. A negative @inc value is used to drop the counter
5484 * when releasing a resource needing all multicasts.
5485 * Return 0 if successful or a negative errno code on error.
5486 */
5487
5488 int dev_set_allmulti(struct net_device *dev, int inc)
5489 {
5490 return __dev_set_allmulti(dev, inc, true);
5491 }
5492 EXPORT_SYMBOL(dev_set_allmulti);
5493
5494 /*
5495 * Upload unicast and multicast address lists to device and
5496 * configure RX filtering. When the device doesn't support unicast
5497 * filtering it is put in promiscuous mode while unicast addresses
5498 * are present.
5499 */
5500 void __dev_set_rx_mode(struct net_device *dev)
5501 {
5502 const struct net_device_ops *ops = dev->netdev_ops;
5503
5504 /* dev_open will call this function so the list will stay sane. */
5505 if (!(dev->flags&IFF_UP))
5506 return;
5507
5508 if (!netif_device_present(dev))
5509 return;
5510
5511 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5512 /* Unicast addresses changes may only happen under the rtnl,
5513 * therefore calling __dev_set_promiscuity here is safe.
5514 */
5515 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5516 __dev_set_promiscuity(dev, 1, false);
5517 dev->uc_promisc = true;
5518 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5519 __dev_set_promiscuity(dev, -1, false);
5520 dev->uc_promisc = false;
5521 }
5522 }
5523
5524 if (ops->ndo_set_rx_mode)
5525 ops->ndo_set_rx_mode(dev);
5526 }
5527
5528 void dev_set_rx_mode(struct net_device *dev)
5529 {
5530 netif_addr_lock_bh(dev);
5531 __dev_set_rx_mode(dev);
5532 netif_addr_unlock_bh(dev);
5533 }
5534
5535 /**
5536 * dev_get_flags - get flags reported to userspace
5537 * @dev: device
5538 *
5539 * Get the combination of flag bits exported through APIs to userspace.
5540 */
5541 unsigned int dev_get_flags(const struct net_device *dev)
5542 {
5543 unsigned int flags;
5544
5545 flags = (dev->flags & ~(IFF_PROMISC |
5546 IFF_ALLMULTI |
5547 IFF_RUNNING |
5548 IFF_LOWER_UP |
5549 IFF_DORMANT)) |
5550 (dev->gflags & (IFF_PROMISC |
5551 IFF_ALLMULTI));
5552
5553 if (netif_running(dev)) {
5554 if (netif_oper_up(dev))
5555 flags |= IFF_RUNNING;
5556 if (netif_carrier_ok(dev))
5557 flags |= IFF_LOWER_UP;
5558 if (netif_dormant(dev))
5559 flags |= IFF_DORMANT;
5560 }
5561
5562 return flags;
5563 }
5564 EXPORT_SYMBOL(dev_get_flags);
5565
5566 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5567 {
5568 unsigned int old_flags = dev->flags;
5569 int ret;
5570
5571 ASSERT_RTNL();
5572
5573 /*
5574 * Set the flags on our device.
5575 */
5576
5577 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5578 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5579 IFF_AUTOMEDIA)) |
5580 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5581 IFF_ALLMULTI));
5582
5583 /*
5584 * Load in the correct multicast list now the flags have changed.
5585 */
5586
5587 if ((old_flags ^ flags) & IFF_MULTICAST)
5588 dev_change_rx_flags(dev, IFF_MULTICAST);
5589
5590 dev_set_rx_mode(dev);
5591
5592 /*
5593 * Have we downed the interface. We handle IFF_UP ourselves
5594 * according to user attempts to set it, rather than blindly
5595 * setting it.
5596 */
5597
5598 ret = 0;
5599 if ((old_flags ^ flags) & IFF_UP)
5600 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5601
5602 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5603 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5604 unsigned int old_flags = dev->flags;
5605
5606 dev->gflags ^= IFF_PROMISC;
5607
5608 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5609 if (dev->flags != old_flags)
5610 dev_set_rx_mode(dev);
5611 }
5612
5613 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5614 is important. Some (broken) drivers set IFF_PROMISC, when
5615 IFF_ALLMULTI is requested not asking us and not reporting.
5616 */
5617 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5618 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5619
5620 dev->gflags ^= IFF_ALLMULTI;
5621 __dev_set_allmulti(dev, inc, false);
5622 }
5623
5624 return ret;
5625 }
5626
5627 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5628 unsigned int gchanges)
5629 {
5630 unsigned int changes = dev->flags ^ old_flags;
5631
5632 if (gchanges)
5633 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5634
5635 if (changes & IFF_UP) {
5636 if (dev->flags & IFF_UP)
5637 call_netdevice_notifiers(NETDEV_UP, dev);
5638 else
5639 call_netdevice_notifiers(NETDEV_DOWN, dev);
5640 }
5641
5642 if (dev->flags & IFF_UP &&
5643 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5644 struct netdev_notifier_change_info change_info;
5645
5646 change_info.flags_changed = changes;
5647 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5648 &change_info.info);
5649 }
5650 }
5651
5652 /**
5653 * dev_change_flags - change device settings
5654 * @dev: device
5655 * @flags: device state flags
5656 *
5657 * Change settings on device based state flags. The flags are
5658 * in the userspace exported format.
5659 */
5660 int dev_change_flags(struct net_device *dev, unsigned int flags)
5661 {
5662 int ret;
5663 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5664
5665 ret = __dev_change_flags(dev, flags);
5666 if (ret < 0)
5667 return ret;
5668
5669 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5670 __dev_notify_flags(dev, old_flags, changes);
5671 return ret;
5672 }
5673 EXPORT_SYMBOL(dev_change_flags);
5674
5675 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5676 {
5677 const struct net_device_ops *ops = dev->netdev_ops;
5678
5679 if (ops->ndo_change_mtu)
5680 return ops->ndo_change_mtu(dev, new_mtu);
5681
5682 dev->mtu = new_mtu;
5683 return 0;
5684 }
5685
5686 /**
5687 * dev_set_mtu - Change maximum transfer unit
5688 * @dev: device
5689 * @new_mtu: new transfer unit
5690 *
5691 * Change the maximum transfer size of the network device.
5692 */
5693 int dev_set_mtu(struct net_device *dev, int new_mtu)
5694 {
5695 int err, orig_mtu;
5696
5697 if (new_mtu == dev->mtu)
5698 return 0;
5699
5700 /* MTU must be positive. */
5701 if (new_mtu < 0)
5702 return -EINVAL;
5703
5704 if (!netif_device_present(dev))
5705 return -ENODEV;
5706
5707 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5708 err = notifier_to_errno(err);
5709 if (err)
5710 return err;
5711
5712 orig_mtu = dev->mtu;
5713 err = __dev_set_mtu(dev, new_mtu);
5714
5715 if (!err) {
5716 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5717 err = notifier_to_errno(err);
5718 if (err) {
5719 /* setting mtu back and notifying everyone again,
5720 * so that they have a chance to revert changes.
5721 */
5722 __dev_set_mtu(dev, orig_mtu);
5723 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5724 }
5725 }
5726 return err;
5727 }
5728 EXPORT_SYMBOL(dev_set_mtu);
5729
5730 /**
5731 * dev_set_group - Change group this device belongs to
5732 * @dev: device
5733 * @new_group: group this device should belong to
5734 */
5735 void dev_set_group(struct net_device *dev, int new_group)
5736 {
5737 dev->group = new_group;
5738 }
5739 EXPORT_SYMBOL(dev_set_group);
5740
5741 /**
5742 * dev_set_mac_address - Change Media Access Control Address
5743 * @dev: device
5744 * @sa: new address
5745 *
5746 * Change the hardware (MAC) address of the device
5747 */
5748 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5749 {
5750 const struct net_device_ops *ops = dev->netdev_ops;
5751 int err;
5752
5753 if (!ops->ndo_set_mac_address)
5754 return -EOPNOTSUPP;
5755 if (sa->sa_family != dev->type)
5756 return -EINVAL;
5757 if (!netif_device_present(dev))
5758 return -ENODEV;
5759 err = ops->ndo_set_mac_address(dev, sa);
5760 if (err)
5761 return err;
5762 dev->addr_assign_type = NET_ADDR_SET;
5763 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5764 add_device_randomness(dev->dev_addr, dev->addr_len);
5765 return 0;
5766 }
5767 EXPORT_SYMBOL(dev_set_mac_address);
5768
5769 /**
5770 * dev_change_carrier - Change device carrier
5771 * @dev: device
5772 * @new_carrier: new value
5773 *
5774 * Change device carrier
5775 */
5776 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5777 {
5778 const struct net_device_ops *ops = dev->netdev_ops;
5779
5780 if (!ops->ndo_change_carrier)
5781 return -EOPNOTSUPP;
5782 if (!netif_device_present(dev))
5783 return -ENODEV;
5784 return ops->ndo_change_carrier(dev, new_carrier);
5785 }
5786 EXPORT_SYMBOL(dev_change_carrier);
5787
5788 /**
5789 * dev_get_phys_port_id - Get device physical port ID
5790 * @dev: device
5791 * @ppid: port ID
5792 *
5793 * Get device physical port ID
5794 */
5795 int dev_get_phys_port_id(struct net_device *dev,
5796 struct netdev_phys_port_id *ppid)
5797 {
5798 const struct net_device_ops *ops = dev->netdev_ops;
5799
5800 if (!ops->ndo_get_phys_port_id)
5801 return -EOPNOTSUPP;
5802 return ops->ndo_get_phys_port_id(dev, ppid);
5803 }
5804 EXPORT_SYMBOL(dev_get_phys_port_id);
5805
5806 /**
5807 * dev_new_index - allocate an ifindex
5808 * @net: the applicable net namespace
5809 *
5810 * Returns a suitable unique value for a new device interface
5811 * number. The caller must hold the rtnl semaphore or the
5812 * dev_base_lock to be sure it remains unique.
5813 */
5814 static int dev_new_index(struct net *net)
5815 {
5816 int ifindex = net->ifindex;
5817 for (;;) {
5818 if (++ifindex <= 0)
5819 ifindex = 1;
5820 if (!__dev_get_by_index(net, ifindex))
5821 return net->ifindex = ifindex;
5822 }
5823 }
5824
5825 /* Delayed registration/unregisteration */
5826 static LIST_HEAD(net_todo_list);
5827 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5828
5829 static void net_set_todo(struct net_device *dev)
5830 {
5831 list_add_tail(&dev->todo_list, &net_todo_list);
5832 dev_net(dev)->dev_unreg_count++;
5833 }
5834
5835 static void rollback_registered_many(struct list_head *head)
5836 {
5837 struct net_device *dev, *tmp;
5838 LIST_HEAD(close_head);
5839
5840 BUG_ON(dev_boot_phase);
5841 ASSERT_RTNL();
5842
5843 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5844 /* Some devices call without registering
5845 * for initialization unwind. Remove those
5846 * devices and proceed with the remaining.
5847 */
5848 if (dev->reg_state == NETREG_UNINITIALIZED) {
5849 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5850 dev->name, dev);
5851
5852 WARN_ON(1);
5853 list_del(&dev->unreg_list);
5854 continue;
5855 }
5856 dev->dismantle = true;
5857 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5858 }
5859
5860 /* If device is running, close it first. */
5861 list_for_each_entry(dev, head, unreg_list)
5862 list_add_tail(&dev->close_list, &close_head);
5863 dev_close_many(&close_head);
5864
5865 list_for_each_entry(dev, head, unreg_list) {
5866 /* And unlink it from device chain. */
5867 unlist_netdevice(dev);
5868
5869 dev->reg_state = NETREG_UNREGISTERING;
5870 }
5871
5872 synchronize_net();
5873
5874 list_for_each_entry(dev, head, unreg_list) {
5875 /* Shutdown queueing discipline. */
5876 dev_shutdown(dev);
5877
5878
5879 /* Notify protocols, that we are about to destroy
5880 this device. They should clean all the things.
5881 */
5882 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5883
5884 /*
5885 * Flush the unicast and multicast chains
5886 */
5887 dev_uc_flush(dev);
5888 dev_mc_flush(dev);
5889
5890 if (dev->netdev_ops->ndo_uninit)
5891 dev->netdev_ops->ndo_uninit(dev);
5892
5893 if (!dev->rtnl_link_ops ||
5894 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5895 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5896
5897 /* Notifier chain MUST detach us all upper devices. */
5898 WARN_ON(netdev_has_any_upper_dev(dev));
5899
5900 /* Remove entries from kobject tree */
5901 netdev_unregister_kobject(dev);
5902 #ifdef CONFIG_XPS
5903 /* Remove XPS queueing entries */
5904 netif_reset_xps_queues_gt(dev, 0);
5905 #endif
5906 }
5907
5908 synchronize_net();
5909
5910 list_for_each_entry(dev, head, unreg_list)
5911 dev_put(dev);
5912 }
5913
5914 static void rollback_registered(struct net_device *dev)
5915 {
5916 LIST_HEAD(single);
5917
5918 list_add(&dev->unreg_list, &single);
5919 rollback_registered_many(&single);
5920 list_del(&single);
5921 }
5922
5923 static netdev_features_t netdev_fix_features(struct net_device *dev,
5924 netdev_features_t features)
5925 {
5926 /* Fix illegal checksum combinations */
5927 if ((features & NETIF_F_HW_CSUM) &&
5928 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5929 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5930 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5931 }
5932
5933 /* TSO requires that SG is present as well. */
5934 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5935 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5936 features &= ~NETIF_F_ALL_TSO;
5937 }
5938
5939 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5940 !(features & NETIF_F_IP_CSUM)) {
5941 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5942 features &= ~NETIF_F_TSO;
5943 features &= ~NETIF_F_TSO_ECN;
5944 }
5945
5946 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5947 !(features & NETIF_F_IPV6_CSUM)) {
5948 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5949 features &= ~NETIF_F_TSO6;
5950 }
5951
5952 /* TSO ECN requires that TSO is present as well. */
5953 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5954 features &= ~NETIF_F_TSO_ECN;
5955
5956 /* Software GSO depends on SG. */
5957 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5958 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5959 features &= ~NETIF_F_GSO;
5960 }
5961
5962 /* UFO needs SG and checksumming */
5963 if (features & NETIF_F_UFO) {
5964 /* maybe split UFO into V4 and V6? */
5965 if (!((features & NETIF_F_GEN_CSUM) ||
5966 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5967 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5968 netdev_dbg(dev,
5969 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5970 features &= ~NETIF_F_UFO;
5971 }
5972
5973 if (!(features & NETIF_F_SG)) {
5974 netdev_dbg(dev,
5975 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5976 features &= ~NETIF_F_UFO;
5977 }
5978 }
5979
5980 #ifdef CONFIG_NET_RX_BUSY_POLL
5981 if (dev->netdev_ops->ndo_busy_poll)
5982 features |= NETIF_F_BUSY_POLL;
5983 else
5984 #endif
5985 features &= ~NETIF_F_BUSY_POLL;
5986
5987 return features;
5988 }
5989
5990 int __netdev_update_features(struct net_device *dev)
5991 {
5992 netdev_features_t features;
5993 int err = 0;
5994
5995 ASSERT_RTNL();
5996
5997 features = netdev_get_wanted_features(dev);
5998
5999 if (dev->netdev_ops->ndo_fix_features)
6000 features = dev->netdev_ops->ndo_fix_features(dev, features);
6001
6002 /* driver might be less strict about feature dependencies */
6003 features = netdev_fix_features(dev, features);
6004
6005 if (dev->features == features)
6006 return 0;
6007
6008 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6009 &dev->features, &features);
6010
6011 if (dev->netdev_ops->ndo_set_features)
6012 err = dev->netdev_ops->ndo_set_features(dev, features);
6013
6014 if (unlikely(err < 0)) {
6015 netdev_err(dev,
6016 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6017 err, &features, &dev->features);
6018 return -1;
6019 }
6020
6021 if (!err)
6022 dev->features = features;
6023
6024 return 1;
6025 }
6026
6027 /**
6028 * netdev_update_features - recalculate device features
6029 * @dev: the device to check
6030 *
6031 * Recalculate dev->features set and send notifications if it
6032 * has changed. Should be called after driver or hardware dependent
6033 * conditions might have changed that influence the features.
6034 */
6035 void netdev_update_features(struct net_device *dev)
6036 {
6037 if (__netdev_update_features(dev))
6038 netdev_features_change(dev);
6039 }
6040 EXPORT_SYMBOL(netdev_update_features);
6041
6042 /**
6043 * netdev_change_features - recalculate device features
6044 * @dev: the device to check
6045 *
6046 * Recalculate dev->features set and send notifications even
6047 * if they have not changed. Should be called instead of
6048 * netdev_update_features() if also dev->vlan_features might
6049 * have changed to allow the changes to be propagated to stacked
6050 * VLAN devices.
6051 */
6052 void netdev_change_features(struct net_device *dev)
6053 {
6054 __netdev_update_features(dev);
6055 netdev_features_change(dev);
6056 }
6057 EXPORT_SYMBOL(netdev_change_features);
6058
6059 /**
6060 * netif_stacked_transfer_operstate - transfer operstate
6061 * @rootdev: the root or lower level device to transfer state from
6062 * @dev: the device to transfer operstate to
6063 *
6064 * Transfer operational state from root to device. This is normally
6065 * called when a stacking relationship exists between the root
6066 * device and the device(a leaf device).
6067 */
6068 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6069 struct net_device *dev)
6070 {
6071 if (rootdev->operstate == IF_OPER_DORMANT)
6072 netif_dormant_on(dev);
6073 else
6074 netif_dormant_off(dev);
6075
6076 if (netif_carrier_ok(rootdev)) {
6077 if (!netif_carrier_ok(dev))
6078 netif_carrier_on(dev);
6079 } else {
6080 if (netif_carrier_ok(dev))
6081 netif_carrier_off(dev);
6082 }
6083 }
6084 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6085
6086 #ifdef CONFIG_SYSFS
6087 static int netif_alloc_rx_queues(struct net_device *dev)
6088 {
6089 unsigned int i, count = dev->num_rx_queues;
6090 struct netdev_rx_queue *rx;
6091
6092 BUG_ON(count < 1);
6093
6094 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
6095 if (!rx)
6096 return -ENOMEM;
6097
6098 dev->_rx = rx;
6099
6100 for (i = 0; i < count; i++)
6101 rx[i].dev = dev;
6102 return 0;
6103 }
6104 #endif
6105
6106 static void netdev_init_one_queue(struct net_device *dev,
6107 struct netdev_queue *queue, void *_unused)
6108 {
6109 /* Initialize queue lock */
6110 spin_lock_init(&queue->_xmit_lock);
6111 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6112 queue->xmit_lock_owner = -1;
6113 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6114 queue->dev = dev;
6115 #ifdef CONFIG_BQL
6116 dql_init(&queue->dql, HZ);
6117 #endif
6118 }
6119
6120 static void netif_free_tx_queues(struct net_device *dev)
6121 {
6122 kvfree(dev->_tx);
6123 }
6124
6125 static int netif_alloc_netdev_queues(struct net_device *dev)
6126 {
6127 unsigned int count = dev->num_tx_queues;
6128 struct netdev_queue *tx;
6129 size_t sz = count * sizeof(*tx);
6130
6131 BUG_ON(count < 1 || count > 0xffff);
6132
6133 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6134 if (!tx) {
6135 tx = vzalloc(sz);
6136 if (!tx)
6137 return -ENOMEM;
6138 }
6139 dev->_tx = tx;
6140
6141 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6142 spin_lock_init(&dev->tx_global_lock);
6143
6144 return 0;
6145 }
6146
6147 /**
6148 * register_netdevice - register a network device
6149 * @dev: device to register
6150 *
6151 * Take a completed network device structure and add it to the kernel
6152 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6153 * chain. 0 is returned on success. A negative errno code is returned
6154 * on a failure to set up the device, or if the name is a duplicate.
6155 *
6156 * Callers must hold the rtnl semaphore. You may want
6157 * register_netdev() instead of this.
6158 *
6159 * BUGS:
6160 * The locking appears insufficient to guarantee two parallel registers
6161 * will not get the same name.
6162 */
6163
6164 int register_netdevice(struct net_device *dev)
6165 {
6166 int ret;
6167 struct net *net = dev_net(dev);
6168
6169 BUG_ON(dev_boot_phase);
6170 ASSERT_RTNL();
6171
6172 might_sleep();
6173
6174 /* When net_device's are persistent, this will be fatal. */
6175 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6176 BUG_ON(!net);
6177
6178 spin_lock_init(&dev->addr_list_lock);
6179 netdev_set_addr_lockdep_class(dev);
6180
6181 dev->iflink = -1;
6182
6183 ret = dev_get_valid_name(net, dev, dev->name);
6184 if (ret < 0)
6185 goto out;
6186
6187 /* Init, if this function is available */
6188 if (dev->netdev_ops->ndo_init) {
6189 ret = dev->netdev_ops->ndo_init(dev);
6190 if (ret) {
6191 if (ret > 0)
6192 ret = -EIO;
6193 goto out;
6194 }
6195 }
6196
6197 if (((dev->hw_features | dev->features) &
6198 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6199 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6200 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6201 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6202 ret = -EINVAL;
6203 goto err_uninit;
6204 }
6205
6206 ret = -EBUSY;
6207 if (!dev->ifindex)
6208 dev->ifindex = dev_new_index(net);
6209 else if (__dev_get_by_index(net, dev->ifindex))
6210 goto err_uninit;
6211
6212 if (dev->iflink == -1)
6213 dev->iflink = dev->ifindex;
6214
6215 /* Transfer changeable features to wanted_features and enable
6216 * software offloads (GSO and GRO).
6217 */
6218 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6219 dev->features |= NETIF_F_SOFT_FEATURES;
6220 dev->wanted_features = dev->features & dev->hw_features;
6221
6222 if (!(dev->flags & IFF_LOOPBACK)) {
6223 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6224 }
6225
6226 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6227 */
6228 dev->vlan_features |= NETIF_F_HIGHDMA;
6229
6230 /* Make NETIF_F_SG inheritable to tunnel devices.
6231 */
6232 dev->hw_enc_features |= NETIF_F_SG;
6233
6234 /* Make NETIF_F_SG inheritable to MPLS.
6235 */
6236 dev->mpls_features |= NETIF_F_SG;
6237
6238 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6239 ret = notifier_to_errno(ret);
6240 if (ret)
6241 goto err_uninit;
6242
6243 ret = netdev_register_kobject(dev);
6244 if (ret)
6245 goto err_uninit;
6246 dev->reg_state = NETREG_REGISTERED;
6247
6248 __netdev_update_features(dev);
6249
6250 /*
6251 * Default initial state at registry is that the
6252 * device is present.
6253 */
6254
6255 set_bit(__LINK_STATE_PRESENT, &dev->state);
6256
6257 linkwatch_init_dev(dev);
6258
6259 dev_init_scheduler(dev);
6260 dev_hold(dev);
6261 list_netdevice(dev);
6262 add_device_randomness(dev->dev_addr, dev->addr_len);
6263
6264 /* If the device has permanent device address, driver should
6265 * set dev_addr and also addr_assign_type should be set to
6266 * NET_ADDR_PERM (default value).
6267 */
6268 if (dev->addr_assign_type == NET_ADDR_PERM)
6269 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6270
6271 /* Notify protocols, that a new device appeared. */
6272 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6273 ret = notifier_to_errno(ret);
6274 if (ret) {
6275 rollback_registered(dev);
6276 dev->reg_state = NETREG_UNREGISTERED;
6277 }
6278 /*
6279 * Prevent userspace races by waiting until the network
6280 * device is fully setup before sending notifications.
6281 */
6282 if (!dev->rtnl_link_ops ||
6283 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6284 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6285
6286 out:
6287 return ret;
6288
6289 err_uninit:
6290 if (dev->netdev_ops->ndo_uninit)
6291 dev->netdev_ops->ndo_uninit(dev);
6292 goto out;
6293 }
6294 EXPORT_SYMBOL(register_netdevice);
6295
6296 /**
6297 * init_dummy_netdev - init a dummy network device for NAPI
6298 * @dev: device to init
6299 *
6300 * This takes a network device structure and initialize the minimum
6301 * amount of fields so it can be used to schedule NAPI polls without
6302 * registering a full blown interface. This is to be used by drivers
6303 * that need to tie several hardware interfaces to a single NAPI
6304 * poll scheduler due to HW limitations.
6305 */
6306 int init_dummy_netdev(struct net_device *dev)
6307 {
6308 /* Clear everything. Note we don't initialize spinlocks
6309 * are they aren't supposed to be taken by any of the
6310 * NAPI code and this dummy netdev is supposed to be
6311 * only ever used for NAPI polls
6312 */
6313 memset(dev, 0, sizeof(struct net_device));
6314
6315 /* make sure we BUG if trying to hit standard
6316 * register/unregister code path
6317 */
6318 dev->reg_state = NETREG_DUMMY;
6319
6320 /* NAPI wants this */
6321 INIT_LIST_HEAD(&dev->napi_list);
6322
6323 /* a dummy interface is started by default */
6324 set_bit(__LINK_STATE_PRESENT, &dev->state);
6325 set_bit(__LINK_STATE_START, &dev->state);
6326
6327 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6328 * because users of this 'device' dont need to change
6329 * its refcount.
6330 */
6331
6332 return 0;
6333 }
6334 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6335
6336
6337 /**
6338 * register_netdev - register a network device
6339 * @dev: device to register
6340 *
6341 * Take a completed network device structure and add it to the kernel
6342 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6343 * chain. 0 is returned on success. A negative errno code is returned
6344 * on a failure to set up the device, or if the name is a duplicate.
6345 *
6346 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6347 * and expands the device name if you passed a format string to
6348 * alloc_netdev.
6349 */
6350 int register_netdev(struct net_device *dev)
6351 {
6352 int err;
6353
6354 rtnl_lock();
6355 err = register_netdevice(dev);
6356 rtnl_unlock();
6357 return err;
6358 }
6359 EXPORT_SYMBOL(register_netdev);
6360
6361 int netdev_refcnt_read(const struct net_device *dev)
6362 {
6363 int i, refcnt = 0;
6364
6365 for_each_possible_cpu(i)
6366 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6367 return refcnt;
6368 }
6369 EXPORT_SYMBOL(netdev_refcnt_read);
6370
6371 /**
6372 * netdev_wait_allrefs - wait until all references are gone.
6373 * @dev: target net_device
6374 *
6375 * This is called when unregistering network devices.
6376 *
6377 * Any protocol or device that holds a reference should register
6378 * for netdevice notification, and cleanup and put back the
6379 * reference if they receive an UNREGISTER event.
6380 * We can get stuck here if buggy protocols don't correctly
6381 * call dev_put.
6382 */
6383 static void netdev_wait_allrefs(struct net_device *dev)
6384 {
6385 unsigned long rebroadcast_time, warning_time;
6386 int refcnt;
6387
6388 linkwatch_forget_dev(dev);
6389
6390 rebroadcast_time = warning_time = jiffies;
6391 refcnt = netdev_refcnt_read(dev);
6392
6393 while (refcnt != 0) {
6394 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6395 rtnl_lock();
6396
6397 /* Rebroadcast unregister notification */
6398 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6399
6400 __rtnl_unlock();
6401 rcu_barrier();
6402 rtnl_lock();
6403
6404 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6405 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6406 &dev->state)) {
6407 /* We must not have linkwatch events
6408 * pending on unregister. If this
6409 * happens, we simply run the queue
6410 * unscheduled, resulting in a noop
6411 * for this device.
6412 */
6413 linkwatch_run_queue();
6414 }
6415
6416 __rtnl_unlock();
6417
6418 rebroadcast_time = jiffies;
6419 }
6420
6421 msleep(250);
6422
6423 refcnt = netdev_refcnt_read(dev);
6424
6425 if (time_after(jiffies, warning_time + 10 * HZ)) {
6426 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6427 dev->name, refcnt);
6428 warning_time = jiffies;
6429 }
6430 }
6431 }
6432
6433 /* The sequence is:
6434 *
6435 * rtnl_lock();
6436 * ...
6437 * register_netdevice(x1);
6438 * register_netdevice(x2);
6439 * ...
6440 * unregister_netdevice(y1);
6441 * unregister_netdevice(y2);
6442 * ...
6443 * rtnl_unlock();
6444 * free_netdev(y1);
6445 * free_netdev(y2);
6446 *
6447 * We are invoked by rtnl_unlock().
6448 * This allows us to deal with problems:
6449 * 1) We can delete sysfs objects which invoke hotplug
6450 * without deadlocking with linkwatch via keventd.
6451 * 2) Since we run with the RTNL semaphore not held, we can sleep
6452 * safely in order to wait for the netdev refcnt to drop to zero.
6453 *
6454 * We must not return until all unregister events added during
6455 * the interval the lock was held have been completed.
6456 */
6457 void netdev_run_todo(void)
6458 {
6459 struct list_head list;
6460
6461 /* Snapshot list, allow later requests */
6462 list_replace_init(&net_todo_list, &list);
6463
6464 __rtnl_unlock();
6465
6466
6467 /* Wait for rcu callbacks to finish before next phase */
6468 if (!list_empty(&list))
6469 rcu_barrier();
6470
6471 while (!list_empty(&list)) {
6472 struct net_device *dev
6473 = list_first_entry(&list, struct net_device, todo_list);
6474 list_del(&dev->todo_list);
6475
6476 rtnl_lock();
6477 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6478 __rtnl_unlock();
6479
6480 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6481 pr_err("network todo '%s' but state %d\n",
6482 dev->name, dev->reg_state);
6483 dump_stack();
6484 continue;
6485 }
6486
6487 dev->reg_state = NETREG_UNREGISTERED;
6488
6489 on_each_cpu(flush_backlog, dev, 1);
6490
6491 netdev_wait_allrefs(dev);
6492
6493 /* paranoia */
6494 BUG_ON(netdev_refcnt_read(dev));
6495 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6496 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6497 WARN_ON(dev->dn_ptr);
6498
6499 if (dev->destructor)
6500 dev->destructor(dev);
6501
6502 /* Report a network device has been unregistered */
6503 rtnl_lock();
6504 dev_net(dev)->dev_unreg_count--;
6505 __rtnl_unlock();
6506 wake_up(&netdev_unregistering_wq);
6507
6508 /* Free network device */
6509 kobject_put(&dev->dev.kobj);
6510 }
6511 }
6512
6513 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6514 * fields in the same order, with only the type differing.
6515 */
6516 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6517 const struct net_device_stats *netdev_stats)
6518 {
6519 #if BITS_PER_LONG == 64
6520 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6521 memcpy(stats64, netdev_stats, sizeof(*stats64));
6522 #else
6523 size_t i, n = sizeof(*stats64) / sizeof(u64);
6524 const unsigned long *src = (const unsigned long *)netdev_stats;
6525 u64 *dst = (u64 *)stats64;
6526
6527 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6528 sizeof(*stats64) / sizeof(u64));
6529 for (i = 0; i < n; i++)
6530 dst[i] = src[i];
6531 #endif
6532 }
6533 EXPORT_SYMBOL(netdev_stats_to_stats64);
6534
6535 /**
6536 * dev_get_stats - get network device statistics
6537 * @dev: device to get statistics from
6538 * @storage: place to store stats
6539 *
6540 * Get network statistics from device. Return @storage.
6541 * The device driver may provide its own method by setting
6542 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6543 * otherwise the internal statistics structure is used.
6544 */
6545 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6546 struct rtnl_link_stats64 *storage)
6547 {
6548 const struct net_device_ops *ops = dev->netdev_ops;
6549
6550 if (ops->ndo_get_stats64) {
6551 memset(storage, 0, sizeof(*storage));
6552 ops->ndo_get_stats64(dev, storage);
6553 } else if (ops->ndo_get_stats) {
6554 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6555 } else {
6556 netdev_stats_to_stats64(storage, &dev->stats);
6557 }
6558 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6559 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6560 return storage;
6561 }
6562 EXPORT_SYMBOL(dev_get_stats);
6563
6564 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6565 {
6566 struct netdev_queue *queue = dev_ingress_queue(dev);
6567
6568 #ifdef CONFIG_NET_CLS_ACT
6569 if (queue)
6570 return queue;
6571 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6572 if (!queue)
6573 return NULL;
6574 netdev_init_one_queue(dev, queue, NULL);
6575 queue->qdisc = &noop_qdisc;
6576 queue->qdisc_sleeping = &noop_qdisc;
6577 rcu_assign_pointer(dev->ingress_queue, queue);
6578 #endif
6579 return queue;
6580 }
6581
6582 static const struct ethtool_ops default_ethtool_ops;
6583
6584 void netdev_set_default_ethtool_ops(struct net_device *dev,
6585 const struct ethtool_ops *ops)
6586 {
6587 if (dev->ethtool_ops == &default_ethtool_ops)
6588 dev->ethtool_ops = ops;
6589 }
6590 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6591
6592 void netdev_freemem(struct net_device *dev)
6593 {
6594 char *addr = (char *)dev - dev->padded;
6595
6596 kvfree(addr);
6597 }
6598
6599 /**
6600 * alloc_netdev_mqs - allocate network device
6601 * @sizeof_priv: size of private data to allocate space for
6602 * @name: device name format string
6603 * @name_assign_type: origin of device name
6604 * @setup: callback to initialize device
6605 * @txqs: the number of TX subqueues to allocate
6606 * @rxqs: the number of RX subqueues to allocate
6607 *
6608 * Allocates a struct net_device with private data area for driver use
6609 * and performs basic initialization. Also allocates subqueue structs
6610 * for each queue on the device.
6611 */
6612 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6613 unsigned char name_assign_type,
6614 void (*setup)(struct net_device *),
6615 unsigned int txqs, unsigned int rxqs)
6616 {
6617 struct net_device *dev;
6618 size_t alloc_size;
6619 struct net_device *p;
6620
6621 BUG_ON(strlen(name) >= sizeof(dev->name));
6622
6623 if (txqs < 1) {
6624 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6625 return NULL;
6626 }
6627
6628 #ifdef CONFIG_SYSFS
6629 if (rxqs < 1) {
6630 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6631 return NULL;
6632 }
6633 #endif
6634
6635 alloc_size = sizeof(struct net_device);
6636 if (sizeof_priv) {
6637 /* ensure 32-byte alignment of private area */
6638 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6639 alloc_size += sizeof_priv;
6640 }
6641 /* ensure 32-byte alignment of whole construct */
6642 alloc_size += NETDEV_ALIGN - 1;
6643
6644 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6645 if (!p)
6646 p = vzalloc(alloc_size);
6647 if (!p)
6648 return NULL;
6649
6650 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6651 dev->padded = (char *)dev - (char *)p;
6652
6653 dev->pcpu_refcnt = alloc_percpu(int);
6654 if (!dev->pcpu_refcnt)
6655 goto free_dev;
6656
6657 if (dev_addr_init(dev))
6658 goto free_pcpu;
6659
6660 dev_mc_init(dev);
6661 dev_uc_init(dev);
6662
6663 dev_net_set(dev, &init_net);
6664
6665 dev->gso_max_size = GSO_MAX_SIZE;
6666 dev->gso_max_segs = GSO_MAX_SEGS;
6667 dev->gso_min_segs = 0;
6668
6669 INIT_LIST_HEAD(&dev->napi_list);
6670 INIT_LIST_HEAD(&dev->unreg_list);
6671 INIT_LIST_HEAD(&dev->close_list);
6672 INIT_LIST_HEAD(&dev->link_watch_list);
6673 INIT_LIST_HEAD(&dev->adj_list.upper);
6674 INIT_LIST_HEAD(&dev->adj_list.lower);
6675 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6676 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6677 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6678 setup(dev);
6679
6680 dev->num_tx_queues = txqs;
6681 dev->real_num_tx_queues = txqs;
6682 if (netif_alloc_netdev_queues(dev))
6683 goto free_all;
6684
6685 #ifdef CONFIG_SYSFS
6686 dev->num_rx_queues = rxqs;
6687 dev->real_num_rx_queues = rxqs;
6688 if (netif_alloc_rx_queues(dev))
6689 goto free_all;
6690 #endif
6691
6692 strcpy(dev->name, name);
6693 dev->name_assign_type = name_assign_type;
6694 dev->group = INIT_NETDEV_GROUP;
6695 if (!dev->ethtool_ops)
6696 dev->ethtool_ops = &default_ethtool_ops;
6697 return dev;
6698
6699 free_all:
6700 free_netdev(dev);
6701 return NULL;
6702
6703 free_pcpu:
6704 free_percpu(dev->pcpu_refcnt);
6705 free_dev:
6706 netdev_freemem(dev);
6707 return NULL;
6708 }
6709 EXPORT_SYMBOL(alloc_netdev_mqs);
6710
6711 /**
6712 * free_netdev - free network device
6713 * @dev: device
6714 *
6715 * This function does the last stage of destroying an allocated device
6716 * interface. The reference to the device object is released.
6717 * If this is the last reference then it will be freed.
6718 */
6719 void free_netdev(struct net_device *dev)
6720 {
6721 struct napi_struct *p, *n;
6722
6723 release_net(dev_net(dev));
6724
6725 netif_free_tx_queues(dev);
6726 #ifdef CONFIG_SYSFS
6727 kfree(dev->_rx);
6728 #endif
6729
6730 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6731
6732 /* Flush device addresses */
6733 dev_addr_flush(dev);
6734
6735 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6736 netif_napi_del(p);
6737
6738 free_percpu(dev->pcpu_refcnt);
6739 dev->pcpu_refcnt = NULL;
6740
6741 /* Compatibility with error handling in drivers */
6742 if (dev->reg_state == NETREG_UNINITIALIZED) {
6743 netdev_freemem(dev);
6744 return;
6745 }
6746
6747 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6748 dev->reg_state = NETREG_RELEASED;
6749
6750 /* will free via device release */
6751 put_device(&dev->dev);
6752 }
6753 EXPORT_SYMBOL(free_netdev);
6754
6755 /**
6756 * synchronize_net - Synchronize with packet receive processing
6757 *
6758 * Wait for packets currently being received to be done.
6759 * Does not block later packets from starting.
6760 */
6761 void synchronize_net(void)
6762 {
6763 might_sleep();
6764 if (rtnl_is_locked())
6765 synchronize_rcu_expedited();
6766 else
6767 synchronize_rcu();
6768 }
6769 EXPORT_SYMBOL(synchronize_net);
6770
6771 /**
6772 * unregister_netdevice_queue - remove device from the kernel
6773 * @dev: device
6774 * @head: list
6775 *
6776 * This function shuts down a device interface and removes it
6777 * from the kernel tables.
6778 * If head not NULL, device is queued to be unregistered later.
6779 *
6780 * Callers must hold the rtnl semaphore. You may want
6781 * unregister_netdev() instead of this.
6782 */
6783
6784 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6785 {
6786 ASSERT_RTNL();
6787
6788 if (head) {
6789 list_move_tail(&dev->unreg_list, head);
6790 } else {
6791 rollback_registered(dev);
6792 /* Finish processing unregister after unlock */
6793 net_set_todo(dev);
6794 }
6795 }
6796 EXPORT_SYMBOL(unregister_netdevice_queue);
6797
6798 /**
6799 * unregister_netdevice_many - unregister many devices
6800 * @head: list of devices
6801 *
6802 * Note: As most callers use a stack allocated list_head,
6803 * we force a list_del() to make sure stack wont be corrupted later.
6804 */
6805 void unregister_netdevice_many(struct list_head *head)
6806 {
6807 struct net_device *dev;
6808
6809 if (!list_empty(head)) {
6810 rollback_registered_many(head);
6811 list_for_each_entry(dev, head, unreg_list)
6812 net_set_todo(dev);
6813 list_del(head);
6814 }
6815 }
6816 EXPORT_SYMBOL(unregister_netdevice_many);
6817
6818 /**
6819 * unregister_netdev - remove device from the kernel
6820 * @dev: device
6821 *
6822 * This function shuts down a device interface and removes it
6823 * from the kernel tables.
6824 *
6825 * This is just a wrapper for unregister_netdevice that takes
6826 * the rtnl semaphore. In general you want to use this and not
6827 * unregister_netdevice.
6828 */
6829 void unregister_netdev(struct net_device *dev)
6830 {
6831 rtnl_lock();
6832 unregister_netdevice(dev);
6833 rtnl_unlock();
6834 }
6835 EXPORT_SYMBOL(unregister_netdev);
6836
6837 /**
6838 * dev_change_net_namespace - move device to different nethost namespace
6839 * @dev: device
6840 * @net: network namespace
6841 * @pat: If not NULL name pattern to try if the current device name
6842 * is already taken in the destination network namespace.
6843 *
6844 * This function shuts down a device interface and moves it
6845 * to a new network namespace. On success 0 is returned, on
6846 * a failure a netagive errno code is returned.
6847 *
6848 * Callers must hold the rtnl semaphore.
6849 */
6850
6851 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6852 {
6853 int err;
6854
6855 ASSERT_RTNL();
6856
6857 /* Don't allow namespace local devices to be moved. */
6858 err = -EINVAL;
6859 if (dev->features & NETIF_F_NETNS_LOCAL)
6860 goto out;
6861
6862 /* Ensure the device has been registrered */
6863 if (dev->reg_state != NETREG_REGISTERED)
6864 goto out;
6865
6866 /* Get out if there is nothing todo */
6867 err = 0;
6868 if (net_eq(dev_net(dev), net))
6869 goto out;
6870
6871 /* Pick the destination device name, and ensure
6872 * we can use it in the destination network namespace.
6873 */
6874 err = -EEXIST;
6875 if (__dev_get_by_name(net, dev->name)) {
6876 /* We get here if we can't use the current device name */
6877 if (!pat)
6878 goto out;
6879 if (dev_get_valid_name(net, dev, pat) < 0)
6880 goto out;
6881 }
6882
6883 /*
6884 * And now a mini version of register_netdevice unregister_netdevice.
6885 */
6886
6887 /* If device is running close it first. */
6888 dev_close(dev);
6889
6890 /* And unlink it from device chain */
6891 err = -ENODEV;
6892 unlist_netdevice(dev);
6893
6894 synchronize_net();
6895
6896 /* Shutdown queueing discipline. */
6897 dev_shutdown(dev);
6898
6899 /* Notify protocols, that we are about to destroy
6900 this device. They should clean all the things.
6901
6902 Note that dev->reg_state stays at NETREG_REGISTERED.
6903 This is wanted because this way 8021q and macvlan know
6904 the device is just moving and can keep their slaves up.
6905 */
6906 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6907 rcu_barrier();
6908 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6909 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6910
6911 /*
6912 * Flush the unicast and multicast chains
6913 */
6914 dev_uc_flush(dev);
6915 dev_mc_flush(dev);
6916
6917 /* Send a netdev-removed uevent to the old namespace */
6918 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6919 netdev_adjacent_del_links(dev);
6920
6921 /* Actually switch the network namespace */
6922 dev_net_set(dev, net);
6923
6924 /* If there is an ifindex conflict assign a new one */
6925 if (__dev_get_by_index(net, dev->ifindex)) {
6926 int iflink = (dev->iflink == dev->ifindex);
6927 dev->ifindex = dev_new_index(net);
6928 if (iflink)
6929 dev->iflink = dev->ifindex;
6930 }
6931
6932 /* Send a netdev-add uevent to the new namespace */
6933 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6934 netdev_adjacent_add_links(dev);
6935
6936 /* Fixup kobjects */
6937 err = device_rename(&dev->dev, dev->name);
6938 WARN_ON(err);
6939
6940 /* Add the device back in the hashes */
6941 list_netdevice(dev);
6942
6943 /* Notify protocols, that a new device appeared. */
6944 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6945
6946 /*
6947 * Prevent userspace races by waiting until the network
6948 * device is fully setup before sending notifications.
6949 */
6950 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6951
6952 synchronize_net();
6953 err = 0;
6954 out:
6955 return err;
6956 }
6957 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6958
6959 static int dev_cpu_callback(struct notifier_block *nfb,
6960 unsigned long action,
6961 void *ocpu)
6962 {
6963 struct sk_buff **list_skb;
6964 struct sk_buff *skb;
6965 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6966 struct softnet_data *sd, *oldsd;
6967
6968 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6969 return NOTIFY_OK;
6970
6971 local_irq_disable();
6972 cpu = smp_processor_id();
6973 sd = &per_cpu(softnet_data, cpu);
6974 oldsd = &per_cpu(softnet_data, oldcpu);
6975
6976 /* Find end of our completion_queue. */
6977 list_skb = &sd->completion_queue;
6978 while (*list_skb)
6979 list_skb = &(*list_skb)->next;
6980 /* Append completion queue from offline CPU. */
6981 *list_skb = oldsd->completion_queue;
6982 oldsd->completion_queue = NULL;
6983
6984 /* Append output queue from offline CPU. */
6985 if (oldsd->output_queue) {
6986 *sd->output_queue_tailp = oldsd->output_queue;
6987 sd->output_queue_tailp = oldsd->output_queue_tailp;
6988 oldsd->output_queue = NULL;
6989 oldsd->output_queue_tailp = &oldsd->output_queue;
6990 }
6991 /* Append NAPI poll list from offline CPU. */
6992 if (!list_empty(&oldsd->poll_list)) {
6993 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6994 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6995 }
6996
6997 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6998 local_irq_enable();
6999
7000 /* Process offline CPU's input_pkt_queue */
7001 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7002 netif_rx_internal(skb);
7003 input_queue_head_incr(oldsd);
7004 }
7005 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
7006 netif_rx_internal(skb);
7007 input_queue_head_incr(oldsd);
7008 }
7009
7010 return NOTIFY_OK;
7011 }
7012
7013
7014 /**
7015 * netdev_increment_features - increment feature set by one
7016 * @all: current feature set
7017 * @one: new feature set
7018 * @mask: mask feature set
7019 *
7020 * Computes a new feature set after adding a device with feature set
7021 * @one to the master device with current feature set @all. Will not
7022 * enable anything that is off in @mask. Returns the new feature set.
7023 */
7024 netdev_features_t netdev_increment_features(netdev_features_t all,
7025 netdev_features_t one, netdev_features_t mask)
7026 {
7027 if (mask & NETIF_F_GEN_CSUM)
7028 mask |= NETIF_F_ALL_CSUM;
7029 mask |= NETIF_F_VLAN_CHALLENGED;
7030
7031 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7032 all &= one | ~NETIF_F_ALL_FOR_ALL;
7033
7034 /* If one device supports hw checksumming, set for all. */
7035 if (all & NETIF_F_GEN_CSUM)
7036 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7037
7038 return all;
7039 }
7040 EXPORT_SYMBOL(netdev_increment_features);
7041
7042 static struct hlist_head * __net_init netdev_create_hash(void)
7043 {
7044 int i;
7045 struct hlist_head *hash;
7046
7047 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7048 if (hash != NULL)
7049 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7050 INIT_HLIST_HEAD(&hash[i]);
7051
7052 return hash;
7053 }
7054
7055 /* Initialize per network namespace state */
7056 static int __net_init netdev_init(struct net *net)
7057 {
7058 if (net != &init_net)
7059 INIT_LIST_HEAD(&net->dev_base_head);
7060
7061 net->dev_name_head = netdev_create_hash();
7062 if (net->dev_name_head == NULL)
7063 goto err_name;
7064
7065 net->dev_index_head = netdev_create_hash();
7066 if (net->dev_index_head == NULL)
7067 goto err_idx;
7068
7069 return 0;
7070
7071 err_idx:
7072 kfree(net->dev_name_head);
7073 err_name:
7074 return -ENOMEM;
7075 }
7076
7077 /**
7078 * netdev_drivername - network driver for the device
7079 * @dev: network device
7080 *
7081 * Determine network driver for device.
7082 */
7083 const char *netdev_drivername(const struct net_device *dev)
7084 {
7085 const struct device_driver *driver;
7086 const struct device *parent;
7087 const char *empty = "";
7088
7089 parent = dev->dev.parent;
7090 if (!parent)
7091 return empty;
7092
7093 driver = parent->driver;
7094 if (driver && driver->name)
7095 return driver->name;
7096 return empty;
7097 }
7098
7099 static void __netdev_printk(const char *level, const struct net_device *dev,
7100 struct va_format *vaf)
7101 {
7102 if (dev && dev->dev.parent) {
7103 dev_printk_emit(level[1] - '0',
7104 dev->dev.parent,
7105 "%s %s %s%s: %pV",
7106 dev_driver_string(dev->dev.parent),
7107 dev_name(dev->dev.parent),
7108 netdev_name(dev), netdev_reg_state(dev),
7109 vaf);
7110 } else if (dev) {
7111 printk("%s%s%s: %pV",
7112 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7113 } else {
7114 printk("%s(NULL net_device): %pV", level, vaf);
7115 }
7116 }
7117
7118 void netdev_printk(const char *level, const struct net_device *dev,
7119 const char *format, ...)
7120 {
7121 struct va_format vaf;
7122 va_list args;
7123
7124 va_start(args, format);
7125
7126 vaf.fmt = format;
7127 vaf.va = &args;
7128
7129 __netdev_printk(level, dev, &vaf);
7130
7131 va_end(args);
7132 }
7133 EXPORT_SYMBOL(netdev_printk);
7134
7135 #define define_netdev_printk_level(func, level) \
7136 void func(const struct net_device *dev, const char *fmt, ...) \
7137 { \
7138 struct va_format vaf; \
7139 va_list args; \
7140 \
7141 va_start(args, fmt); \
7142 \
7143 vaf.fmt = fmt; \
7144 vaf.va = &args; \
7145 \
7146 __netdev_printk(level, dev, &vaf); \
7147 \
7148 va_end(args); \
7149 } \
7150 EXPORT_SYMBOL(func);
7151
7152 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7153 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7154 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7155 define_netdev_printk_level(netdev_err, KERN_ERR);
7156 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7157 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7158 define_netdev_printk_level(netdev_info, KERN_INFO);
7159
7160 static void __net_exit netdev_exit(struct net *net)
7161 {
7162 kfree(net->dev_name_head);
7163 kfree(net->dev_index_head);
7164 }
7165
7166 static struct pernet_operations __net_initdata netdev_net_ops = {
7167 .init = netdev_init,
7168 .exit = netdev_exit,
7169 };
7170
7171 static void __net_exit default_device_exit(struct net *net)
7172 {
7173 struct net_device *dev, *aux;
7174 /*
7175 * Push all migratable network devices back to the
7176 * initial network namespace
7177 */
7178 rtnl_lock();
7179 for_each_netdev_safe(net, dev, aux) {
7180 int err;
7181 char fb_name[IFNAMSIZ];
7182
7183 /* Ignore unmoveable devices (i.e. loopback) */
7184 if (dev->features & NETIF_F_NETNS_LOCAL)
7185 continue;
7186
7187 /* Leave virtual devices for the generic cleanup */
7188 if (dev->rtnl_link_ops)
7189 continue;
7190
7191 /* Push remaining network devices to init_net */
7192 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7193 err = dev_change_net_namespace(dev, &init_net, fb_name);
7194 if (err) {
7195 pr_emerg("%s: failed to move %s to init_net: %d\n",
7196 __func__, dev->name, err);
7197 BUG();
7198 }
7199 }
7200 rtnl_unlock();
7201 }
7202
7203 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7204 {
7205 /* Return with the rtnl_lock held when there are no network
7206 * devices unregistering in any network namespace in net_list.
7207 */
7208 struct net *net;
7209 bool unregistering;
7210 DEFINE_WAIT(wait);
7211
7212 for (;;) {
7213 prepare_to_wait(&netdev_unregistering_wq, &wait,
7214 TASK_UNINTERRUPTIBLE);
7215 unregistering = false;
7216 rtnl_lock();
7217 list_for_each_entry(net, net_list, exit_list) {
7218 if (net->dev_unreg_count > 0) {
7219 unregistering = true;
7220 break;
7221 }
7222 }
7223 if (!unregistering)
7224 break;
7225 __rtnl_unlock();
7226 schedule();
7227 }
7228 finish_wait(&netdev_unregistering_wq, &wait);
7229 }
7230
7231 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7232 {
7233 /* At exit all network devices most be removed from a network
7234 * namespace. Do this in the reverse order of registration.
7235 * Do this across as many network namespaces as possible to
7236 * improve batching efficiency.
7237 */
7238 struct net_device *dev;
7239 struct net *net;
7240 LIST_HEAD(dev_kill_list);
7241
7242 /* To prevent network device cleanup code from dereferencing
7243 * loopback devices or network devices that have been freed
7244 * wait here for all pending unregistrations to complete,
7245 * before unregistring the loopback device and allowing the
7246 * network namespace be freed.
7247 *
7248 * The netdev todo list containing all network devices
7249 * unregistrations that happen in default_device_exit_batch
7250 * will run in the rtnl_unlock() at the end of
7251 * default_device_exit_batch.
7252 */
7253 rtnl_lock_unregistering(net_list);
7254 list_for_each_entry(net, net_list, exit_list) {
7255 for_each_netdev_reverse(net, dev) {
7256 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7257 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7258 else
7259 unregister_netdevice_queue(dev, &dev_kill_list);
7260 }
7261 }
7262 unregister_netdevice_many(&dev_kill_list);
7263 rtnl_unlock();
7264 }
7265
7266 static struct pernet_operations __net_initdata default_device_ops = {
7267 .exit = default_device_exit,
7268 .exit_batch = default_device_exit_batch,
7269 };
7270
7271 /*
7272 * Initialize the DEV module. At boot time this walks the device list and
7273 * unhooks any devices that fail to initialise (normally hardware not
7274 * present) and leaves us with a valid list of present and active devices.
7275 *
7276 */
7277
7278 /*
7279 * This is called single threaded during boot, so no need
7280 * to take the rtnl semaphore.
7281 */
7282 static int __init net_dev_init(void)
7283 {
7284 int i, rc = -ENOMEM;
7285
7286 BUG_ON(!dev_boot_phase);
7287
7288 if (dev_proc_init())
7289 goto out;
7290
7291 if (netdev_kobject_init())
7292 goto out;
7293
7294 INIT_LIST_HEAD(&ptype_all);
7295 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7296 INIT_LIST_HEAD(&ptype_base[i]);
7297
7298 INIT_LIST_HEAD(&offload_base);
7299
7300 if (register_pernet_subsys(&netdev_net_ops))
7301 goto out;
7302
7303 /*
7304 * Initialise the packet receive queues.
7305 */
7306
7307 for_each_possible_cpu(i) {
7308 struct softnet_data *sd = &per_cpu(softnet_data, i);
7309
7310 skb_queue_head_init(&sd->input_pkt_queue);
7311 skb_queue_head_init(&sd->process_queue);
7312 INIT_LIST_HEAD(&sd->poll_list);
7313 sd->output_queue_tailp = &sd->output_queue;
7314 #ifdef CONFIG_RPS
7315 sd->csd.func = rps_trigger_softirq;
7316 sd->csd.info = sd;
7317 sd->cpu = i;
7318 #endif
7319
7320 sd->backlog.poll = process_backlog;
7321 sd->backlog.weight = weight_p;
7322 }
7323
7324 dev_boot_phase = 0;
7325
7326 /* The loopback device is special if any other network devices
7327 * is present in a network namespace the loopback device must
7328 * be present. Since we now dynamically allocate and free the
7329 * loopback device ensure this invariant is maintained by
7330 * keeping the loopback device as the first device on the
7331 * list of network devices. Ensuring the loopback devices
7332 * is the first device that appears and the last network device
7333 * that disappears.
7334 */
7335 if (register_pernet_device(&loopback_net_ops))
7336 goto out;
7337
7338 if (register_pernet_device(&default_device_ops))
7339 goto out;
7340
7341 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7342 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7343
7344 hotcpu_notifier(dev_cpu_callback, 0);
7345 dst_init();
7346 rc = 0;
7347 out:
7348 return rc;
7349 }
7350
7351 subsys_initcall(net_dev_init);