]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/dev.c
net: Disable NETIF_F_TSO_ECN when TSO is disabled
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136
137 #include "net-sysfs.h"
138
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144
145 /*
146 * The list of packet types we will receive (as opposed to discard)
147 * and the routines to invoke.
148 *
149 * Why 16. Because with 16 the only overlap we get on a hash of the
150 * low nibble of the protocol value is RARP/SNAP/X.25.
151 *
152 * NOTE: That is no longer true with the addition of VLAN tags. Not
153 * sure which should go first, but I bet it won't make much
154 * difference if we are running VLANs. The good news is that
155 * this protocol won't be in the list unless compiled in, so
156 * the average user (w/out VLANs) will not be adversely affected.
157 * --BLG
158 *
159 * 0800 IP
160 * 8100 802.1Q VLAN
161 * 0001 802.3
162 * 0002 AX.25
163 * 0004 802.2
164 * 8035 RARP
165 * 0005 SNAP
166 * 0805 X.25
167 * 0806 ARP
168 * 8137 IPX
169 * 0009 Localtalk
170 * 86DD IPv6
171 */
172
173 #define PTYPE_HASH_SIZE (16)
174 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
175
176 static DEFINE_SPINLOCK(ptype_lock);
177 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
178 static struct list_head ptype_all __read_mostly; /* Taps */
179
180 /*
181 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
182 * semaphore.
183 *
184 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
185 *
186 * Writers must hold the rtnl semaphore while they loop through the
187 * dev_base_head list, and hold dev_base_lock for writing when they do the
188 * actual updates. This allows pure readers to access the list even
189 * while a writer is preparing to update it.
190 *
191 * To put it another way, dev_base_lock is held for writing only to
192 * protect against pure readers; the rtnl semaphore provides the
193 * protection against other writers.
194 *
195 * See, for example usages, register_netdevice() and
196 * unregister_netdevice(), which must be called with the rtnl
197 * semaphore held.
198 */
199 DEFINE_RWLOCK(dev_base_lock);
200 EXPORT_SYMBOL(dev_base_lock);
201
202 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
203 {
204 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
205 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
206 }
207
208 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
209 {
210 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
211 }
212
213 static inline void rps_lock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216 spin_lock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219
220 static inline void rps_unlock(struct softnet_data *sd)
221 {
222 #ifdef CONFIG_RPS
223 spin_unlock(&sd->input_pkt_queue.lock);
224 #endif
225 }
226
227 /* Device list insertion */
228 static int list_netdevice(struct net_device *dev)
229 {
230 struct net *net = dev_net(dev);
231
232 ASSERT_RTNL();
233
234 write_lock_bh(&dev_base_lock);
235 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
236 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
237 hlist_add_head_rcu(&dev->index_hlist,
238 dev_index_hash(net, dev->ifindex));
239 write_unlock_bh(&dev_base_lock);
240 return 0;
241 }
242
243 /* Device list removal
244 * caller must respect a RCU grace period before freeing/reusing dev
245 */
246 static void unlist_netdevice(struct net_device *dev)
247 {
248 ASSERT_RTNL();
249
250 /* Unlink dev from the device chain */
251 write_lock_bh(&dev_base_lock);
252 list_del_rcu(&dev->dev_list);
253 hlist_del_rcu(&dev->name_hlist);
254 hlist_del_rcu(&dev->index_hlist);
255 write_unlock_bh(&dev_base_lock);
256 }
257
258 /*
259 * Our notifier list
260 */
261
262 static RAW_NOTIFIER_HEAD(netdev_chain);
263
264 /*
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
267 */
268
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
271
272 #ifdef CONFIG_LOCKDEP
273 /*
274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275 * according to dev->type
276 */
277 static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
291 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
292 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
293 ARPHRD_VOID, ARPHRD_NONE};
294
295 static const char *const netdev_lock_name[] =
296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
309 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
310 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
311 "_xmit_VOID", "_xmit_NONE"};
312
313 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
315
316 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
317 {
318 int i;
319
320 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
321 if (netdev_lock_type[i] == dev_type)
322 return i;
323 /* the last key is used by default */
324 return ARRAY_SIZE(netdev_lock_type) - 1;
325 }
326
327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
328 unsigned short dev_type)
329 {
330 int i;
331
332 i = netdev_lock_pos(dev_type);
333 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
334 netdev_lock_name[i]);
335 }
336
337 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
338 {
339 int i;
340
341 i = netdev_lock_pos(dev->type);
342 lockdep_set_class_and_name(&dev->addr_list_lock,
343 &netdev_addr_lock_key[i],
344 netdev_lock_name[i]);
345 }
346 #else
347 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
348 unsigned short dev_type)
349 {
350 }
351 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
352 {
353 }
354 #endif
355
356 /*******************************************************************************
357
358 Protocol management and registration routines
359
360 *******************************************************************************/
361
362 /*
363 * Add a protocol ID to the list. Now that the input handler is
364 * smarter we can dispense with all the messy stuff that used to be
365 * here.
366 *
367 * BEWARE!!! Protocol handlers, mangling input packets,
368 * MUST BE last in hash buckets and checking protocol handlers
369 * MUST start from promiscuous ptype_all chain in net_bh.
370 * It is true now, do not change it.
371 * Explanation follows: if protocol handler, mangling packet, will
372 * be the first on list, it is not able to sense, that packet
373 * is cloned and should be copied-on-write, so that it will
374 * change it and subsequent readers will get broken packet.
375 * --ANK (980803)
376 */
377
378 static inline struct list_head *ptype_head(const struct packet_type *pt)
379 {
380 if (pt->type == htons(ETH_P_ALL))
381 return &ptype_all;
382 else
383 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 }
385
386 /**
387 * dev_add_pack - add packet handler
388 * @pt: packet type declaration
389 *
390 * Add a protocol handler to the networking stack. The passed &packet_type
391 * is linked into kernel lists and may not be freed until it has been
392 * removed from the kernel lists.
393 *
394 * This call does not sleep therefore it can not
395 * guarantee all CPU's that are in middle of receiving packets
396 * will see the new packet type (until the next received packet).
397 */
398
399 void dev_add_pack(struct packet_type *pt)
400 {
401 struct list_head *head = ptype_head(pt);
402
403 spin_lock(&ptype_lock);
404 list_add_rcu(&pt->list, head);
405 spin_unlock(&ptype_lock);
406 }
407 EXPORT_SYMBOL(dev_add_pack);
408
409 /**
410 * __dev_remove_pack - remove packet handler
411 * @pt: packet type declaration
412 *
413 * Remove a protocol handler that was previously added to the kernel
414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
415 * from the kernel lists and can be freed or reused once this function
416 * returns.
417 *
418 * The packet type might still be in use by receivers
419 * and must not be freed until after all the CPU's have gone
420 * through a quiescent state.
421 */
422 void __dev_remove_pack(struct packet_type *pt)
423 {
424 struct list_head *head = ptype_head(pt);
425 struct packet_type *pt1;
426
427 spin_lock(&ptype_lock);
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437 out:
438 spin_unlock(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462 /******************************************************************************
463
464 Device Boot-time Settings Routines
465
466 *******************************************************************************/
467
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470
471 /**
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
475 *
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
479 */
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
481 {
482 struct netdev_boot_setup *s;
483 int i;
484
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
492 }
493 }
494
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496 }
497
498 /**
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
501 *
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
506 */
507 int netdev_boot_setup_check(struct net_device *dev)
508 {
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
511
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
520 }
521 }
522 return 0;
523 }
524 EXPORT_SYMBOL(netdev_boot_setup_check);
525
526
527 /**
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
531 *
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
536 */
537 unsigned long netdev_boot_base(const char *prefix, int unit)
538 {
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
542
543 sprintf(name, "%s%d", prefix, unit);
544
545 /*
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
548 */
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
551
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
556 }
557
558 /*
559 * Saves at boot time configured settings for any netdevice.
560 */
561 int __init netdev_boot_setup(char *str)
562 {
563 int ints[5];
564 struct ifmap map;
565
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
569
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
580
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
583 }
584
585 __setup("netdev=", netdev_boot_setup);
586
587 /*******************************************************************************
588
589 Device Interface Subroutines
590
591 *******************************************************************************/
592
593 /**
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
597 *
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
603 */
604
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
606 {
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
610
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
614
615 return NULL;
616 }
617 EXPORT_SYMBOL(__dev_get_by_name);
618
619 /**
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
623 *
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
629 */
630
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632 {
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
636
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
640
641 return NULL;
642 }
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
644
645 /**
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
649 *
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
655 */
656
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
658 {
659 struct net_device *dev;
660
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
667 }
668 EXPORT_SYMBOL(dev_get_by_name);
669
670 /**
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
674 *
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
680 */
681
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683 {
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
687
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
691
692 return NULL;
693 }
694 EXPORT_SYMBOL(__dev_get_by_index);
695
696 /**
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
700 *
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
705 */
706
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708 {
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
712
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
716
717 return NULL;
718 }
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
720
721
722 /**
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
731 */
732
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
734 {
735 struct net_device *dev;
736
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
743 }
744 EXPORT_SYMBOL(dev_get_by_index);
745
746 /**
747 * dev_getbyhwaddr_rcu - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
751 *
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device.
754 * The caller must hold RCU or RTNL.
755 * The returned device has not had its ref count increased
756 * and the caller must therefore be careful about locking
757 *
758 */
759
760 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
761 const char *ha)
762 {
763 struct net_device *dev;
764
765 for_each_netdev_rcu(net, dev)
766 if (dev->type == type &&
767 !memcmp(dev->dev_addr, ha, dev->addr_len))
768 return dev;
769
770 return NULL;
771 }
772 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
773
774 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
775 {
776 struct net_device *dev;
777
778 ASSERT_RTNL();
779 for_each_netdev(net, dev)
780 if (dev->type == type)
781 return dev;
782
783 return NULL;
784 }
785 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
786
787 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
788 {
789 struct net_device *dev, *ret = NULL;
790
791 rcu_read_lock();
792 for_each_netdev_rcu(net, dev)
793 if (dev->type == type) {
794 dev_hold(dev);
795 ret = dev;
796 break;
797 }
798 rcu_read_unlock();
799 return ret;
800 }
801 EXPORT_SYMBOL(dev_getfirstbyhwtype);
802
803 /**
804 * dev_get_by_flags_rcu - find any device with given flags
805 * @net: the applicable net namespace
806 * @if_flags: IFF_* values
807 * @mask: bitmask of bits in if_flags to check
808 *
809 * Search for any interface with the given flags. Returns NULL if a device
810 * is not found or a pointer to the device. Must be called inside
811 * rcu_read_lock(), and result refcount is unchanged.
812 */
813
814 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
815 unsigned short mask)
816 {
817 struct net_device *dev, *ret;
818
819 ret = NULL;
820 for_each_netdev_rcu(net, dev) {
821 if (((dev->flags ^ if_flags) & mask) == 0) {
822 ret = dev;
823 break;
824 }
825 }
826 return ret;
827 }
828 EXPORT_SYMBOL(dev_get_by_flags_rcu);
829
830 /**
831 * dev_valid_name - check if name is okay for network device
832 * @name: name string
833 *
834 * Network device names need to be valid file names to
835 * to allow sysfs to work. We also disallow any kind of
836 * whitespace.
837 */
838 int dev_valid_name(const char *name)
839 {
840 if (*name == '\0')
841 return 0;
842 if (strlen(name) >= IFNAMSIZ)
843 return 0;
844 if (!strcmp(name, ".") || !strcmp(name, ".."))
845 return 0;
846
847 while (*name) {
848 if (*name == '/' || isspace(*name))
849 return 0;
850 name++;
851 }
852 return 1;
853 }
854 EXPORT_SYMBOL(dev_valid_name);
855
856 /**
857 * __dev_alloc_name - allocate a name for a device
858 * @net: network namespace to allocate the device name in
859 * @name: name format string
860 * @buf: scratch buffer and result name string
861 *
862 * Passed a format string - eg "lt%d" it will try and find a suitable
863 * id. It scans list of devices to build up a free map, then chooses
864 * the first empty slot. The caller must hold the dev_base or rtnl lock
865 * while allocating the name and adding the device in order to avoid
866 * duplicates.
867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
868 * Returns the number of the unit assigned or a negative errno code.
869 */
870
871 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
872 {
873 int i = 0;
874 const char *p;
875 const int max_netdevices = 8*PAGE_SIZE;
876 unsigned long *inuse;
877 struct net_device *d;
878
879 p = strnchr(name, IFNAMSIZ-1, '%');
880 if (p) {
881 /*
882 * Verify the string as this thing may have come from
883 * the user. There must be either one "%d" and no other "%"
884 * characters.
885 */
886 if (p[1] != 'd' || strchr(p + 2, '%'))
887 return -EINVAL;
888
889 /* Use one page as a bit array of possible slots */
890 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
891 if (!inuse)
892 return -ENOMEM;
893
894 for_each_netdev(net, d) {
895 if (!sscanf(d->name, name, &i))
896 continue;
897 if (i < 0 || i >= max_netdevices)
898 continue;
899
900 /* avoid cases where sscanf is not exact inverse of printf */
901 snprintf(buf, IFNAMSIZ, name, i);
902 if (!strncmp(buf, d->name, IFNAMSIZ))
903 set_bit(i, inuse);
904 }
905
906 i = find_first_zero_bit(inuse, max_netdevices);
907 free_page((unsigned long) inuse);
908 }
909
910 if (buf != name)
911 snprintf(buf, IFNAMSIZ, name, i);
912 if (!__dev_get_by_name(net, buf))
913 return i;
914
915 /* It is possible to run out of possible slots
916 * when the name is long and there isn't enough space left
917 * for the digits, or if all bits are used.
918 */
919 return -ENFILE;
920 }
921
922 /**
923 * dev_alloc_name - allocate a name for a device
924 * @dev: device
925 * @name: name format string
926 *
927 * Passed a format string - eg "lt%d" it will try and find a suitable
928 * id. It scans list of devices to build up a free map, then chooses
929 * the first empty slot. The caller must hold the dev_base or rtnl lock
930 * while allocating the name and adding the device in order to avoid
931 * duplicates.
932 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
933 * Returns the number of the unit assigned or a negative errno code.
934 */
935
936 int dev_alloc_name(struct net_device *dev, const char *name)
937 {
938 char buf[IFNAMSIZ];
939 struct net *net;
940 int ret;
941
942 BUG_ON(!dev_net(dev));
943 net = dev_net(dev);
944 ret = __dev_alloc_name(net, name, buf);
945 if (ret >= 0)
946 strlcpy(dev->name, buf, IFNAMSIZ);
947 return ret;
948 }
949 EXPORT_SYMBOL(dev_alloc_name);
950
951 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
952 {
953 struct net *net;
954
955 BUG_ON(!dev_net(dev));
956 net = dev_net(dev);
957
958 if (!dev_valid_name(name))
959 return -EINVAL;
960
961 if (fmt && strchr(name, '%'))
962 return dev_alloc_name(dev, name);
963 else if (__dev_get_by_name(net, name))
964 return -EEXIST;
965 else if (dev->name != name)
966 strlcpy(dev->name, name, IFNAMSIZ);
967
968 return 0;
969 }
970
971 /**
972 * dev_change_name - change name of a device
973 * @dev: device
974 * @newname: name (or format string) must be at least IFNAMSIZ
975 *
976 * Change name of a device, can pass format strings "eth%d".
977 * for wildcarding.
978 */
979 int dev_change_name(struct net_device *dev, const char *newname)
980 {
981 char oldname[IFNAMSIZ];
982 int err = 0;
983 int ret;
984 struct net *net;
985
986 ASSERT_RTNL();
987 BUG_ON(!dev_net(dev));
988
989 net = dev_net(dev);
990 if (dev->flags & IFF_UP)
991 return -EBUSY;
992
993 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
994 return 0;
995
996 memcpy(oldname, dev->name, IFNAMSIZ);
997
998 err = dev_get_valid_name(dev, newname, 1);
999 if (err < 0)
1000 return err;
1001
1002 rollback:
1003 ret = device_rename(&dev->dev, dev->name);
1004 if (ret) {
1005 memcpy(dev->name, oldname, IFNAMSIZ);
1006 return ret;
1007 }
1008
1009 write_lock_bh(&dev_base_lock);
1010 hlist_del(&dev->name_hlist);
1011 write_unlock_bh(&dev_base_lock);
1012
1013 synchronize_rcu();
1014
1015 write_lock_bh(&dev_base_lock);
1016 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1017 write_unlock_bh(&dev_base_lock);
1018
1019 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1020 ret = notifier_to_errno(ret);
1021
1022 if (ret) {
1023 /* err >= 0 after dev_alloc_name() or stores the first errno */
1024 if (err >= 0) {
1025 err = ret;
1026 memcpy(dev->name, oldname, IFNAMSIZ);
1027 goto rollback;
1028 } else {
1029 printk(KERN_ERR
1030 "%s: name change rollback failed: %d.\n",
1031 dev->name, ret);
1032 }
1033 }
1034
1035 return err;
1036 }
1037
1038 /**
1039 * dev_set_alias - change ifalias of a device
1040 * @dev: device
1041 * @alias: name up to IFALIASZ
1042 * @len: limit of bytes to copy from info
1043 *
1044 * Set ifalias for a device,
1045 */
1046 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1047 {
1048 ASSERT_RTNL();
1049
1050 if (len >= IFALIASZ)
1051 return -EINVAL;
1052
1053 if (!len) {
1054 if (dev->ifalias) {
1055 kfree(dev->ifalias);
1056 dev->ifalias = NULL;
1057 }
1058 return 0;
1059 }
1060
1061 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1062 if (!dev->ifalias)
1063 return -ENOMEM;
1064
1065 strlcpy(dev->ifalias, alias, len+1);
1066 return len;
1067 }
1068
1069
1070 /**
1071 * netdev_features_change - device changes features
1072 * @dev: device to cause notification
1073 *
1074 * Called to indicate a device has changed features.
1075 */
1076 void netdev_features_change(struct net_device *dev)
1077 {
1078 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1079 }
1080 EXPORT_SYMBOL(netdev_features_change);
1081
1082 /**
1083 * netdev_state_change - device changes state
1084 * @dev: device to cause notification
1085 *
1086 * Called to indicate a device has changed state. This function calls
1087 * the notifier chains for netdev_chain and sends a NEWLINK message
1088 * to the routing socket.
1089 */
1090 void netdev_state_change(struct net_device *dev)
1091 {
1092 if (dev->flags & IFF_UP) {
1093 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1094 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1095 }
1096 }
1097 EXPORT_SYMBOL(netdev_state_change);
1098
1099 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1100 {
1101 return call_netdevice_notifiers(event, dev);
1102 }
1103 EXPORT_SYMBOL(netdev_bonding_change);
1104
1105 /**
1106 * dev_load - load a network module
1107 * @net: the applicable net namespace
1108 * @name: name of interface
1109 *
1110 * If a network interface is not present and the process has suitable
1111 * privileges this function loads the module. If module loading is not
1112 * available in this kernel then it becomes a nop.
1113 */
1114
1115 void dev_load(struct net *net, const char *name)
1116 {
1117 struct net_device *dev;
1118 int no_module;
1119
1120 rcu_read_lock();
1121 dev = dev_get_by_name_rcu(net, name);
1122 rcu_read_unlock();
1123
1124 no_module = !dev;
1125 if (no_module && capable(CAP_NET_ADMIN))
1126 no_module = request_module("netdev-%s", name);
1127 if (no_module && capable(CAP_SYS_MODULE)) {
1128 if (!request_module("%s", name))
1129 pr_err("Loading kernel module for a network device "
1130 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s "
1131 "instead\n", name);
1132 }
1133 }
1134 EXPORT_SYMBOL(dev_load);
1135
1136 static int __dev_open(struct net_device *dev)
1137 {
1138 const struct net_device_ops *ops = dev->netdev_ops;
1139 int ret;
1140
1141 ASSERT_RTNL();
1142
1143 if (!netif_device_present(dev))
1144 return -ENODEV;
1145
1146 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1147 ret = notifier_to_errno(ret);
1148 if (ret)
1149 return ret;
1150
1151 set_bit(__LINK_STATE_START, &dev->state);
1152
1153 if (ops->ndo_validate_addr)
1154 ret = ops->ndo_validate_addr(dev);
1155
1156 if (!ret && ops->ndo_open)
1157 ret = ops->ndo_open(dev);
1158
1159 if (ret)
1160 clear_bit(__LINK_STATE_START, &dev->state);
1161 else {
1162 dev->flags |= IFF_UP;
1163 net_dmaengine_get();
1164 dev_set_rx_mode(dev);
1165 dev_activate(dev);
1166 }
1167
1168 return ret;
1169 }
1170
1171 /**
1172 * dev_open - prepare an interface for use.
1173 * @dev: device to open
1174 *
1175 * Takes a device from down to up state. The device's private open
1176 * function is invoked and then the multicast lists are loaded. Finally
1177 * the device is moved into the up state and a %NETDEV_UP message is
1178 * sent to the netdev notifier chain.
1179 *
1180 * Calling this function on an active interface is a nop. On a failure
1181 * a negative errno code is returned.
1182 */
1183 int dev_open(struct net_device *dev)
1184 {
1185 int ret;
1186
1187 if (dev->flags & IFF_UP)
1188 return 0;
1189
1190 ret = __dev_open(dev);
1191 if (ret < 0)
1192 return ret;
1193
1194 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1195 call_netdevice_notifiers(NETDEV_UP, dev);
1196
1197 return ret;
1198 }
1199 EXPORT_SYMBOL(dev_open);
1200
1201 static int __dev_close_many(struct list_head *head)
1202 {
1203 struct net_device *dev;
1204
1205 ASSERT_RTNL();
1206 might_sleep();
1207
1208 list_for_each_entry(dev, head, unreg_list) {
1209 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1210
1211 clear_bit(__LINK_STATE_START, &dev->state);
1212
1213 /* Synchronize to scheduled poll. We cannot touch poll list, it
1214 * can be even on different cpu. So just clear netif_running().
1215 *
1216 * dev->stop() will invoke napi_disable() on all of it's
1217 * napi_struct instances on this device.
1218 */
1219 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1220 }
1221
1222 dev_deactivate_many(head);
1223
1224 list_for_each_entry(dev, head, unreg_list) {
1225 const struct net_device_ops *ops = dev->netdev_ops;
1226
1227 /*
1228 * Call the device specific close. This cannot fail.
1229 * Only if device is UP
1230 *
1231 * We allow it to be called even after a DETACH hot-plug
1232 * event.
1233 */
1234 if (ops->ndo_stop)
1235 ops->ndo_stop(dev);
1236
1237 dev->flags &= ~IFF_UP;
1238 net_dmaengine_put();
1239 }
1240
1241 return 0;
1242 }
1243
1244 static int __dev_close(struct net_device *dev)
1245 {
1246 int retval;
1247 LIST_HEAD(single);
1248
1249 list_add(&dev->unreg_list, &single);
1250 retval = __dev_close_many(&single);
1251 list_del(&single);
1252 return retval;
1253 }
1254
1255 static int dev_close_many(struct list_head *head)
1256 {
1257 struct net_device *dev, *tmp;
1258 LIST_HEAD(tmp_list);
1259
1260 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1261 if (!(dev->flags & IFF_UP))
1262 list_move(&dev->unreg_list, &tmp_list);
1263
1264 __dev_close_many(head);
1265
1266 list_for_each_entry(dev, head, unreg_list) {
1267 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1268 call_netdevice_notifiers(NETDEV_DOWN, dev);
1269 }
1270
1271 /* rollback_registered_many needs the complete original list */
1272 list_splice(&tmp_list, head);
1273 return 0;
1274 }
1275
1276 /**
1277 * dev_close - shutdown an interface.
1278 * @dev: device to shutdown
1279 *
1280 * This function moves an active device into down state. A
1281 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1282 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1283 * chain.
1284 */
1285 int dev_close(struct net_device *dev)
1286 {
1287 LIST_HEAD(single);
1288
1289 list_add(&dev->unreg_list, &single);
1290 dev_close_many(&single);
1291 list_del(&single);
1292 return 0;
1293 }
1294 EXPORT_SYMBOL(dev_close);
1295
1296
1297 /**
1298 * dev_disable_lro - disable Large Receive Offload on a device
1299 * @dev: device
1300 *
1301 * Disable Large Receive Offload (LRO) on a net device. Must be
1302 * called under RTNL. This is needed if received packets may be
1303 * forwarded to another interface.
1304 */
1305 void dev_disable_lro(struct net_device *dev)
1306 {
1307 u32 flags;
1308
1309 if (dev->ethtool_ops && dev->ethtool_ops->get_flags)
1310 flags = dev->ethtool_ops->get_flags(dev);
1311 else
1312 flags = ethtool_op_get_flags(dev);
1313
1314 if (!(flags & ETH_FLAG_LRO))
1315 return;
1316
1317 __ethtool_set_flags(dev, flags & ~ETH_FLAG_LRO);
1318 WARN_ON(dev->features & NETIF_F_LRO);
1319 }
1320 EXPORT_SYMBOL(dev_disable_lro);
1321
1322
1323 static int dev_boot_phase = 1;
1324
1325 /**
1326 * register_netdevice_notifier - register a network notifier block
1327 * @nb: notifier
1328 *
1329 * Register a notifier to be called when network device events occur.
1330 * The notifier passed is linked into the kernel structures and must
1331 * not be reused until it has been unregistered. A negative errno code
1332 * is returned on a failure.
1333 *
1334 * When registered all registration and up events are replayed
1335 * to the new notifier to allow device to have a race free
1336 * view of the network device list.
1337 */
1338
1339 int register_netdevice_notifier(struct notifier_block *nb)
1340 {
1341 struct net_device *dev;
1342 struct net_device *last;
1343 struct net *net;
1344 int err;
1345
1346 rtnl_lock();
1347 err = raw_notifier_chain_register(&netdev_chain, nb);
1348 if (err)
1349 goto unlock;
1350 if (dev_boot_phase)
1351 goto unlock;
1352 for_each_net(net) {
1353 for_each_netdev(net, dev) {
1354 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1355 err = notifier_to_errno(err);
1356 if (err)
1357 goto rollback;
1358
1359 if (!(dev->flags & IFF_UP))
1360 continue;
1361
1362 nb->notifier_call(nb, NETDEV_UP, dev);
1363 }
1364 }
1365
1366 unlock:
1367 rtnl_unlock();
1368 return err;
1369
1370 rollback:
1371 last = dev;
1372 for_each_net(net) {
1373 for_each_netdev(net, dev) {
1374 if (dev == last)
1375 break;
1376
1377 if (dev->flags & IFF_UP) {
1378 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1379 nb->notifier_call(nb, NETDEV_DOWN, dev);
1380 }
1381 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1382 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1383 }
1384 }
1385
1386 raw_notifier_chain_unregister(&netdev_chain, nb);
1387 goto unlock;
1388 }
1389 EXPORT_SYMBOL(register_netdevice_notifier);
1390
1391 /**
1392 * unregister_netdevice_notifier - unregister a network notifier block
1393 * @nb: notifier
1394 *
1395 * Unregister a notifier previously registered by
1396 * register_netdevice_notifier(). The notifier is unlinked into the
1397 * kernel structures and may then be reused. A negative errno code
1398 * is returned on a failure.
1399 */
1400
1401 int unregister_netdevice_notifier(struct notifier_block *nb)
1402 {
1403 int err;
1404
1405 rtnl_lock();
1406 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1407 rtnl_unlock();
1408 return err;
1409 }
1410 EXPORT_SYMBOL(unregister_netdevice_notifier);
1411
1412 /**
1413 * call_netdevice_notifiers - call all network notifier blocks
1414 * @val: value passed unmodified to notifier function
1415 * @dev: net_device pointer passed unmodified to notifier function
1416 *
1417 * Call all network notifier blocks. Parameters and return value
1418 * are as for raw_notifier_call_chain().
1419 */
1420
1421 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1422 {
1423 ASSERT_RTNL();
1424 return raw_notifier_call_chain(&netdev_chain, val, dev);
1425 }
1426 EXPORT_SYMBOL(call_netdevice_notifiers);
1427
1428 /* When > 0 there are consumers of rx skb time stamps */
1429 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1430
1431 void net_enable_timestamp(void)
1432 {
1433 atomic_inc(&netstamp_needed);
1434 }
1435 EXPORT_SYMBOL(net_enable_timestamp);
1436
1437 void net_disable_timestamp(void)
1438 {
1439 atomic_dec(&netstamp_needed);
1440 }
1441 EXPORT_SYMBOL(net_disable_timestamp);
1442
1443 static inline void net_timestamp_set(struct sk_buff *skb)
1444 {
1445 if (atomic_read(&netstamp_needed))
1446 __net_timestamp(skb);
1447 else
1448 skb->tstamp.tv64 = 0;
1449 }
1450
1451 static inline void net_timestamp_check(struct sk_buff *skb)
1452 {
1453 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1454 __net_timestamp(skb);
1455 }
1456
1457 static inline bool is_skb_forwardable(struct net_device *dev,
1458 struct sk_buff *skb)
1459 {
1460 unsigned int len;
1461
1462 if (!(dev->flags & IFF_UP))
1463 return false;
1464
1465 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1466 if (skb->len <= len)
1467 return true;
1468
1469 /* if TSO is enabled, we don't care about the length as the packet
1470 * could be forwarded without being segmented before
1471 */
1472 if (skb_is_gso(skb))
1473 return true;
1474
1475 return false;
1476 }
1477
1478 /**
1479 * dev_forward_skb - loopback an skb to another netif
1480 *
1481 * @dev: destination network device
1482 * @skb: buffer to forward
1483 *
1484 * return values:
1485 * NET_RX_SUCCESS (no congestion)
1486 * NET_RX_DROP (packet was dropped, but freed)
1487 *
1488 * dev_forward_skb can be used for injecting an skb from the
1489 * start_xmit function of one device into the receive queue
1490 * of another device.
1491 *
1492 * The receiving device may be in another namespace, so
1493 * we have to clear all information in the skb that could
1494 * impact namespace isolation.
1495 */
1496 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1497 {
1498 skb_orphan(skb);
1499 nf_reset(skb);
1500
1501 if (unlikely(!is_skb_forwardable(dev, skb))) {
1502 atomic_long_inc(&dev->rx_dropped);
1503 kfree_skb(skb);
1504 return NET_RX_DROP;
1505 }
1506 skb_set_dev(skb, dev);
1507 skb->tstamp.tv64 = 0;
1508 skb->pkt_type = PACKET_HOST;
1509 skb->protocol = eth_type_trans(skb, dev);
1510 return netif_rx(skb);
1511 }
1512 EXPORT_SYMBOL_GPL(dev_forward_skb);
1513
1514 static inline int deliver_skb(struct sk_buff *skb,
1515 struct packet_type *pt_prev,
1516 struct net_device *orig_dev)
1517 {
1518 atomic_inc(&skb->users);
1519 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1520 }
1521
1522 /*
1523 * Support routine. Sends outgoing frames to any network
1524 * taps currently in use.
1525 */
1526
1527 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1528 {
1529 struct packet_type *ptype;
1530 struct sk_buff *skb2 = NULL;
1531 struct packet_type *pt_prev = NULL;
1532
1533 rcu_read_lock();
1534 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1535 /* Never send packets back to the socket
1536 * they originated from - MvS (miquels@drinkel.ow.org)
1537 */
1538 if ((ptype->dev == dev || !ptype->dev) &&
1539 (ptype->af_packet_priv == NULL ||
1540 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1541 if (pt_prev) {
1542 deliver_skb(skb2, pt_prev, skb->dev);
1543 pt_prev = ptype;
1544 continue;
1545 }
1546
1547 skb2 = skb_clone(skb, GFP_ATOMIC);
1548 if (!skb2)
1549 break;
1550
1551 net_timestamp_set(skb2);
1552
1553 /* skb->nh should be correctly
1554 set by sender, so that the second statement is
1555 just protection against buggy protocols.
1556 */
1557 skb_reset_mac_header(skb2);
1558
1559 if (skb_network_header(skb2) < skb2->data ||
1560 skb2->network_header > skb2->tail) {
1561 if (net_ratelimit())
1562 printk(KERN_CRIT "protocol %04x is "
1563 "buggy, dev %s\n",
1564 ntohs(skb2->protocol),
1565 dev->name);
1566 skb_reset_network_header(skb2);
1567 }
1568
1569 skb2->transport_header = skb2->network_header;
1570 skb2->pkt_type = PACKET_OUTGOING;
1571 pt_prev = ptype;
1572 }
1573 }
1574 if (pt_prev)
1575 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1576 rcu_read_unlock();
1577 }
1578
1579 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1580 * @dev: Network device
1581 * @txq: number of queues available
1582 *
1583 * If real_num_tx_queues is changed the tc mappings may no longer be
1584 * valid. To resolve this verify the tc mapping remains valid and if
1585 * not NULL the mapping. With no priorities mapping to this
1586 * offset/count pair it will no longer be used. In the worst case TC0
1587 * is invalid nothing can be done so disable priority mappings. If is
1588 * expected that drivers will fix this mapping if they can before
1589 * calling netif_set_real_num_tx_queues.
1590 */
1591 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1592 {
1593 int i;
1594 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1595
1596 /* If TC0 is invalidated disable TC mapping */
1597 if (tc->offset + tc->count > txq) {
1598 pr_warning("Number of in use tx queues changed "
1599 "invalidating tc mappings. Priority "
1600 "traffic classification disabled!\n");
1601 dev->num_tc = 0;
1602 return;
1603 }
1604
1605 /* Invalidated prio to tc mappings set to TC0 */
1606 for (i = 1; i < TC_BITMASK + 1; i++) {
1607 int q = netdev_get_prio_tc_map(dev, i);
1608
1609 tc = &dev->tc_to_txq[q];
1610 if (tc->offset + tc->count > txq) {
1611 pr_warning("Number of in use tx queues "
1612 "changed. Priority %i to tc "
1613 "mapping %i is no longer valid "
1614 "setting map to 0\n",
1615 i, q);
1616 netdev_set_prio_tc_map(dev, i, 0);
1617 }
1618 }
1619 }
1620
1621 /*
1622 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1623 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1624 */
1625 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1626 {
1627 int rc;
1628
1629 if (txq < 1 || txq > dev->num_tx_queues)
1630 return -EINVAL;
1631
1632 if (dev->reg_state == NETREG_REGISTERED ||
1633 dev->reg_state == NETREG_UNREGISTERING) {
1634 ASSERT_RTNL();
1635
1636 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1637 txq);
1638 if (rc)
1639 return rc;
1640
1641 if (dev->num_tc)
1642 netif_setup_tc(dev, txq);
1643
1644 if (txq < dev->real_num_tx_queues)
1645 qdisc_reset_all_tx_gt(dev, txq);
1646 }
1647
1648 dev->real_num_tx_queues = txq;
1649 return 0;
1650 }
1651 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1652
1653 #ifdef CONFIG_RPS
1654 /**
1655 * netif_set_real_num_rx_queues - set actual number of RX queues used
1656 * @dev: Network device
1657 * @rxq: Actual number of RX queues
1658 *
1659 * This must be called either with the rtnl_lock held or before
1660 * registration of the net device. Returns 0 on success, or a
1661 * negative error code. If called before registration, it always
1662 * succeeds.
1663 */
1664 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1665 {
1666 int rc;
1667
1668 if (rxq < 1 || rxq > dev->num_rx_queues)
1669 return -EINVAL;
1670
1671 if (dev->reg_state == NETREG_REGISTERED) {
1672 ASSERT_RTNL();
1673
1674 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1675 rxq);
1676 if (rc)
1677 return rc;
1678 }
1679
1680 dev->real_num_rx_queues = rxq;
1681 return 0;
1682 }
1683 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1684 #endif
1685
1686 static inline void __netif_reschedule(struct Qdisc *q)
1687 {
1688 struct softnet_data *sd;
1689 unsigned long flags;
1690
1691 local_irq_save(flags);
1692 sd = &__get_cpu_var(softnet_data);
1693 q->next_sched = NULL;
1694 *sd->output_queue_tailp = q;
1695 sd->output_queue_tailp = &q->next_sched;
1696 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1697 local_irq_restore(flags);
1698 }
1699
1700 void __netif_schedule(struct Qdisc *q)
1701 {
1702 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1703 __netif_reschedule(q);
1704 }
1705 EXPORT_SYMBOL(__netif_schedule);
1706
1707 void dev_kfree_skb_irq(struct sk_buff *skb)
1708 {
1709 if (atomic_dec_and_test(&skb->users)) {
1710 struct softnet_data *sd;
1711 unsigned long flags;
1712
1713 local_irq_save(flags);
1714 sd = &__get_cpu_var(softnet_data);
1715 skb->next = sd->completion_queue;
1716 sd->completion_queue = skb;
1717 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1718 local_irq_restore(flags);
1719 }
1720 }
1721 EXPORT_SYMBOL(dev_kfree_skb_irq);
1722
1723 void dev_kfree_skb_any(struct sk_buff *skb)
1724 {
1725 if (in_irq() || irqs_disabled())
1726 dev_kfree_skb_irq(skb);
1727 else
1728 dev_kfree_skb(skb);
1729 }
1730 EXPORT_SYMBOL(dev_kfree_skb_any);
1731
1732
1733 /**
1734 * netif_device_detach - mark device as removed
1735 * @dev: network device
1736 *
1737 * Mark device as removed from system and therefore no longer available.
1738 */
1739 void netif_device_detach(struct net_device *dev)
1740 {
1741 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1742 netif_running(dev)) {
1743 netif_tx_stop_all_queues(dev);
1744 }
1745 }
1746 EXPORT_SYMBOL(netif_device_detach);
1747
1748 /**
1749 * netif_device_attach - mark device as attached
1750 * @dev: network device
1751 *
1752 * Mark device as attached from system and restart if needed.
1753 */
1754 void netif_device_attach(struct net_device *dev)
1755 {
1756 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1757 netif_running(dev)) {
1758 netif_tx_wake_all_queues(dev);
1759 __netdev_watchdog_up(dev);
1760 }
1761 }
1762 EXPORT_SYMBOL(netif_device_attach);
1763
1764 /**
1765 * skb_dev_set -- assign a new device to a buffer
1766 * @skb: buffer for the new device
1767 * @dev: network device
1768 *
1769 * If an skb is owned by a device already, we have to reset
1770 * all data private to the namespace a device belongs to
1771 * before assigning it a new device.
1772 */
1773 #ifdef CONFIG_NET_NS
1774 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1775 {
1776 skb_dst_drop(skb);
1777 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1778 secpath_reset(skb);
1779 nf_reset(skb);
1780 skb_init_secmark(skb);
1781 skb->mark = 0;
1782 skb->priority = 0;
1783 skb->nf_trace = 0;
1784 skb->ipvs_property = 0;
1785 #ifdef CONFIG_NET_SCHED
1786 skb->tc_index = 0;
1787 #endif
1788 }
1789 skb->dev = dev;
1790 }
1791 EXPORT_SYMBOL(skb_set_dev);
1792 #endif /* CONFIG_NET_NS */
1793
1794 /*
1795 * Invalidate hardware checksum when packet is to be mangled, and
1796 * complete checksum manually on outgoing path.
1797 */
1798 int skb_checksum_help(struct sk_buff *skb)
1799 {
1800 __wsum csum;
1801 int ret = 0, offset;
1802
1803 if (skb->ip_summed == CHECKSUM_COMPLETE)
1804 goto out_set_summed;
1805
1806 if (unlikely(skb_shinfo(skb)->gso_size)) {
1807 /* Let GSO fix up the checksum. */
1808 goto out_set_summed;
1809 }
1810
1811 offset = skb_checksum_start_offset(skb);
1812 BUG_ON(offset >= skb_headlen(skb));
1813 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1814
1815 offset += skb->csum_offset;
1816 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1817
1818 if (skb_cloned(skb) &&
1819 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1820 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1821 if (ret)
1822 goto out;
1823 }
1824
1825 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1826 out_set_summed:
1827 skb->ip_summed = CHECKSUM_NONE;
1828 out:
1829 return ret;
1830 }
1831 EXPORT_SYMBOL(skb_checksum_help);
1832
1833 /**
1834 * skb_gso_segment - Perform segmentation on skb.
1835 * @skb: buffer to segment
1836 * @features: features for the output path (see dev->features)
1837 *
1838 * This function segments the given skb and returns a list of segments.
1839 *
1840 * It may return NULL if the skb requires no segmentation. This is
1841 * only possible when GSO is used for verifying header integrity.
1842 */
1843 struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features)
1844 {
1845 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1846 struct packet_type *ptype;
1847 __be16 type = skb->protocol;
1848 int vlan_depth = ETH_HLEN;
1849 int err;
1850
1851 while (type == htons(ETH_P_8021Q)) {
1852 struct vlan_hdr *vh;
1853
1854 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1855 return ERR_PTR(-EINVAL);
1856
1857 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1858 type = vh->h_vlan_encapsulated_proto;
1859 vlan_depth += VLAN_HLEN;
1860 }
1861
1862 skb_reset_mac_header(skb);
1863 skb->mac_len = skb->network_header - skb->mac_header;
1864 __skb_pull(skb, skb->mac_len);
1865
1866 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1867 struct net_device *dev = skb->dev;
1868 struct ethtool_drvinfo info = {};
1869
1870 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1871 dev->ethtool_ops->get_drvinfo(dev, &info);
1872
1873 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1874 info.driver, dev ? dev->features : 0L,
1875 skb->sk ? skb->sk->sk_route_caps : 0L,
1876 skb->len, skb->data_len, skb->ip_summed);
1877
1878 if (skb_header_cloned(skb) &&
1879 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1880 return ERR_PTR(err);
1881 }
1882
1883 rcu_read_lock();
1884 list_for_each_entry_rcu(ptype,
1885 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1886 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1887 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1888 err = ptype->gso_send_check(skb);
1889 segs = ERR_PTR(err);
1890 if (err || skb_gso_ok(skb, features))
1891 break;
1892 __skb_push(skb, (skb->data -
1893 skb_network_header(skb)));
1894 }
1895 segs = ptype->gso_segment(skb, features);
1896 break;
1897 }
1898 }
1899 rcu_read_unlock();
1900
1901 __skb_push(skb, skb->data - skb_mac_header(skb));
1902
1903 return segs;
1904 }
1905 EXPORT_SYMBOL(skb_gso_segment);
1906
1907 /* Take action when hardware reception checksum errors are detected. */
1908 #ifdef CONFIG_BUG
1909 void netdev_rx_csum_fault(struct net_device *dev)
1910 {
1911 if (net_ratelimit()) {
1912 printk(KERN_ERR "%s: hw csum failure.\n",
1913 dev ? dev->name : "<unknown>");
1914 dump_stack();
1915 }
1916 }
1917 EXPORT_SYMBOL(netdev_rx_csum_fault);
1918 #endif
1919
1920 /* Actually, we should eliminate this check as soon as we know, that:
1921 * 1. IOMMU is present and allows to map all the memory.
1922 * 2. No high memory really exists on this machine.
1923 */
1924
1925 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1926 {
1927 #ifdef CONFIG_HIGHMEM
1928 int i;
1929 if (!(dev->features & NETIF_F_HIGHDMA)) {
1930 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1931 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1932 return 1;
1933 }
1934
1935 if (PCI_DMA_BUS_IS_PHYS) {
1936 struct device *pdev = dev->dev.parent;
1937
1938 if (!pdev)
1939 return 0;
1940 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1941 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1942 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1943 return 1;
1944 }
1945 }
1946 #endif
1947 return 0;
1948 }
1949
1950 struct dev_gso_cb {
1951 void (*destructor)(struct sk_buff *skb);
1952 };
1953
1954 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1955
1956 static void dev_gso_skb_destructor(struct sk_buff *skb)
1957 {
1958 struct dev_gso_cb *cb;
1959
1960 do {
1961 struct sk_buff *nskb = skb->next;
1962
1963 skb->next = nskb->next;
1964 nskb->next = NULL;
1965 kfree_skb(nskb);
1966 } while (skb->next);
1967
1968 cb = DEV_GSO_CB(skb);
1969 if (cb->destructor)
1970 cb->destructor(skb);
1971 }
1972
1973 /**
1974 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1975 * @skb: buffer to segment
1976 * @features: device features as applicable to this skb
1977 *
1978 * This function segments the given skb and stores the list of segments
1979 * in skb->next.
1980 */
1981 static int dev_gso_segment(struct sk_buff *skb, int features)
1982 {
1983 struct sk_buff *segs;
1984
1985 segs = skb_gso_segment(skb, features);
1986
1987 /* Verifying header integrity only. */
1988 if (!segs)
1989 return 0;
1990
1991 if (IS_ERR(segs))
1992 return PTR_ERR(segs);
1993
1994 skb->next = segs;
1995 DEV_GSO_CB(skb)->destructor = skb->destructor;
1996 skb->destructor = dev_gso_skb_destructor;
1997
1998 return 0;
1999 }
2000
2001 /*
2002 * Try to orphan skb early, right before transmission by the device.
2003 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2004 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2005 */
2006 static inline void skb_orphan_try(struct sk_buff *skb)
2007 {
2008 struct sock *sk = skb->sk;
2009
2010 if (sk && !skb_shinfo(skb)->tx_flags) {
2011 /* skb_tx_hash() wont be able to get sk.
2012 * We copy sk_hash into skb->rxhash
2013 */
2014 if (!skb->rxhash)
2015 skb->rxhash = sk->sk_hash;
2016 skb_orphan(skb);
2017 }
2018 }
2019
2020 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
2021 {
2022 return ((features & NETIF_F_GEN_CSUM) ||
2023 ((features & NETIF_F_V4_CSUM) &&
2024 protocol == htons(ETH_P_IP)) ||
2025 ((features & NETIF_F_V6_CSUM) &&
2026 protocol == htons(ETH_P_IPV6)) ||
2027 ((features & NETIF_F_FCOE_CRC) &&
2028 protocol == htons(ETH_P_FCOE)));
2029 }
2030
2031 static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features)
2032 {
2033 if (!can_checksum_protocol(features, protocol)) {
2034 features &= ~NETIF_F_ALL_CSUM;
2035 features &= ~NETIF_F_SG;
2036 } else if (illegal_highdma(skb->dev, skb)) {
2037 features &= ~NETIF_F_SG;
2038 }
2039
2040 return features;
2041 }
2042
2043 u32 netif_skb_features(struct sk_buff *skb)
2044 {
2045 __be16 protocol = skb->protocol;
2046 u32 features = skb->dev->features;
2047
2048 if (protocol == htons(ETH_P_8021Q)) {
2049 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2050 protocol = veh->h_vlan_encapsulated_proto;
2051 } else if (!vlan_tx_tag_present(skb)) {
2052 return harmonize_features(skb, protocol, features);
2053 }
2054
2055 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2056
2057 if (protocol != htons(ETH_P_8021Q)) {
2058 return harmonize_features(skb, protocol, features);
2059 } else {
2060 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2061 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2062 return harmonize_features(skb, protocol, features);
2063 }
2064 }
2065 EXPORT_SYMBOL(netif_skb_features);
2066
2067 /*
2068 * Returns true if either:
2069 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2070 * 2. skb is fragmented and the device does not support SG, or if
2071 * at least one of fragments is in highmem and device does not
2072 * support DMA from it.
2073 */
2074 static inline int skb_needs_linearize(struct sk_buff *skb,
2075 int features)
2076 {
2077 return skb_is_nonlinear(skb) &&
2078 ((skb_has_frag_list(skb) &&
2079 !(features & NETIF_F_FRAGLIST)) ||
2080 (skb_shinfo(skb)->nr_frags &&
2081 !(features & NETIF_F_SG)));
2082 }
2083
2084 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2085 struct netdev_queue *txq)
2086 {
2087 const struct net_device_ops *ops = dev->netdev_ops;
2088 int rc = NETDEV_TX_OK;
2089
2090 if (likely(!skb->next)) {
2091 u32 features;
2092
2093 /*
2094 * If device doesn't need skb->dst, release it right now while
2095 * its hot in this cpu cache
2096 */
2097 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2098 skb_dst_drop(skb);
2099
2100 if (!list_empty(&ptype_all))
2101 dev_queue_xmit_nit(skb, dev);
2102
2103 skb_orphan_try(skb);
2104
2105 features = netif_skb_features(skb);
2106
2107 if (vlan_tx_tag_present(skb) &&
2108 !(features & NETIF_F_HW_VLAN_TX)) {
2109 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2110 if (unlikely(!skb))
2111 goto out;
2112
2113 skb->vlan_tci = 0;
2114 }
2115
2116 if (netif_needs_gso(skb, features)) {
2117 if (unlikely(dev_gso_segment(skb, features)))
2118 goto out_kfree_skb;
2119 if (skb->next)
2120 goto gso;
2121 } else {
2122 if (skb_needs_linearize(skb, features) &&
2123 __skb_linearize(skb))
2124 goto out_kfree_skb;
2125
2126 /* If packet is not checksummed and device does not
2127 * support checksumming for this protocol, complete
2128 * checksumming here.
2129 */
2130 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2131 skb_set_transport_header(skb,
2132 skb_checksum_start_offset(skb));
2133 if (!(features & NETIF_F_ALL_CSUM) &&
2134 skb_checksum_help(skb))
2135 goto out_kfree_skb;
2136 }
2137 }
2138
2139 rc = ops->ndo_start_xmit(skb, dev);
2140 trace_net_dev_xmit(skb, rc);
2141 if (rc == NETDEV_TX_OK)
2142 txq_trans_update(txq);
2143 return rc;
2144 }
2145
2146 gso:
2147 do {
2148 struct sk_buff *nskb = skb->next;
2149
2150 skb->next = nskb->next;
2151 nskb->next = NULL;
2152
2153 /*
2154 * If device doesn't need nskb->dst, release it right now while
2155 * its hot in this cpu cache
2156 */
2157 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2158 skb_dst_drop(nskb);
2159
2160 rc = ops->ndo_start_xmit(nskb, dev);
2161 trace_net_dev_xmit(nskb, rc);
2162 if (unlikely(rc != NETDEV_TX_OK)) {
2163 if (rc & ~NETDEV_TX_MASK)
2164 goto out_kfree_gso_skb;
2165 nskb->next = skb->next;
2166 skb->next = nskb;
2167 return rc;
2168 }
2169 txq_trans_update(txq);
2170 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2171 return NETDEV_TX_BUSY;
2172 } while (skb->next);
2173
2174 out_kfree_gso_skb:
2175 if (likely(skb->next == NULL))
2176 skb->destructor = DEV_GSO_CB(skb)->destructor;
2177 out_kfree_skb:
2178 kfree_skb(skb);
2179 out:
2180 return rc;
2181 }
2182
2183 static u32 hashrnd __read_mostly;
2184
2185 /*
2186 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2187 * to be used as a distribution range.
2188 */
2189 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2190 unsigned int num_tx_queues)
2191 {
2192 u32 hash;
2193 u16 qoffset = 0;
2194 u16 qcount = num_tx_queues;
2195
2196 if (skb_rx_queue_recorded(skb)) {
2197 hash = skb_get_rx_queue(skb);
2198 while (unlikely(hash >= num_tx_queues))
2199 hash -= num_tx_queues;
2200 return hash;
2201 }
2202
2203 if (dev->num_tc) {
2204 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2205 qoffset = dev->tc_to_txq[tc].offset;
2206 qcount = dev->tc_to_txq[tc].count;
2207 }
2208
2209 if (skb->sk && skb->sk->sk_hash)
2210 hash = skb->sk->sk_hash;
2211 else
2212 hash = (__force u16) skb->protocol ^ skb->rxhash;
2213 hash = jhash_1word(hash, hashrnd);
2214
2215 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2216 }
2217 EXPORT_SYMBOL(__skb_tx_hash);
2218
2219 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2220 {
2221 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2222 if (net_ratelimit()) {
2223 pr_warning("%s selects TX queue %d, but "
2224 "real number of TX queues is %d\n",
2225 dev->name, queue_index, dev->real_num_tx_queues);
2226 }
2227 return 0;
2228 }
2229 return queue_index;
2230 }
2231
2232 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2233 {
2234 #ifdef CONFIG_XPS
2235 struct xps_dev_maps *dev_maps;
2236 struct xps_map *map;
2237 int queue_index = -1;
2238
2239 rcu_read_lock();
2240 dev_maps = rcu_dereference(dev->xps_maps);
2241 if (dev_maps) {
2242 map = rcu_dereference(
2243 dev_maps->cpu_map[raw_smp_processor_id()]);
2244 if (map) {
2245 if (map->len == 1)
2246 queue_index = map->queues[0];
2247 else {
2248 u32 hash;
2249 if (skb->sk && skb->sk->sk_hash)
2250 hash = skb->sk->sk_hash;
2251 else
2252 hash = (__force u16) skb->protocol ^
2253 skb->rxhash;
2254 hash = jhash_1word(hash, hashrnd);
2255 queue_index = map->queues[
2256 ((u64)hash * map->len) >> 32];
2257 }
2258 if (unlikely(queue_index >= dev->real_num_tx_queues))
2259 queue_index = -1;
2260 }
2261 }
2262 rcu_read_unlock();
2263
2264 return queue_index;
2265 #else
2266 return -1;
2267 #endif
2268 }
2269
2270 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2271 struct sk_buff *skb)
2272 {
2273 int queue_index;
2274 const struct net_device_ops *ops = dev->netdev_ops;
2275
2276 if (dev->real_num_tx_queues == 1)
2277 queue_index = 0;
2278 else if (ops->ndo_select_queue) {
2279 queue_index = ops->ndo_select_queue(dev, skb);
2280 queue_index = dev_cap_txqueue(dev, queue_index);
2281 } else {
2282 struct sock *sk = skb->sk;
2283 queue_index = sk_tx_queue_get(sk);
2284
2285 if (queue_index < 0 || skb->ooo_okay ||
2286 queue_index >= dev->real_num_tx_queues) {
2287 int old_index = queue_index;
2288
2289 queue_index = get_xps_queue(dev, skb);
2290 if (queue_index < 0)
2291 queue_index = skb_tx_hash(dev, skb);
2292
2293 if (queue_index != old_index && sk) {
2294 struct dst_entry *dst =
2295 rcu_dereference_check(sk->sk_dst_cache, 1);
2296
2297 if (dst && skb_dst(skb) == dst)
2298 sk_tx_queue_set(sk, queue_index);
2299 }
2300 }
2301 }
2302
2303 skb_set_queue_mapping(skb, queue_index);
2304 return netdev_get_tx_queue(dev, queue_index);
2305 }
2306
2307 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2308 struct net_device *dev,
2309 struct netdev_queue *txq)
2310 {
2311 spinlock_t *root_lock = qdisc_lock(q);
2312 bool contended;
2313 int rc;
2314
2315 qdisc_skb_cb(skb)->pkt_len = skb->len;
2316 qdisc_calculate_pkt_len(skb, q);
2317 /*
2318 * Heuristic to force contended enqueues to serialize on a
2319 * separate lock before trying to get qdisc main lock.
2320 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2321 * and dequeue packets faster.
2322 */
2323 contended = qdisc_is_running(q);
2324 if (unlikely(contended))
2325 spin_lock(&q->busylock);
2326
2327 spin_lock(root_lock);
2328 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2329 kfree_skb(skb);
2330 rc = NET_XMIT_DROP;
2331 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2332 qdisc_run_begin(q)) {
2333 /*
2334 * This is a work-conserving queue; there are no old skbs
2335 * waiting to be sent out; and the qdisc is not running -
2336 * xmit the skb directly.
2337 */
2338 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2339 skb_dst_force(skb);
2340
2341 qdisc_bstats_update(q, skb);
2342
2343 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2344 if (unlikely(contended)) {
2345 spin_unlock(&q->busylock);
2346 contended = false;
2347 }
2348 __qdisc_run(q);
2349 } else
2350 qdisc_run_end(q);
2351
2352 rc = NET_XMIT_SUCCESS;
2353 } else {
2354 skb_dst_force(skb);
2355 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2356 if (qdisc_run_begin(q)) {
2357 if (unlikely(contended)) {
2358 spin_unlock(&q->busylock);
2359 contended = false;
2360 }
2361 __qdisc_run(q);
2362 }
2363 }
2364 spin_unlock(root_lock);
2365 if (unlikely(contended))
2366 spin_unlock(&q->busylock);
2367 return rc;
2368 }
2369
2370 static DEFINE_PER_CPU(int, xmit_recursion);
2371 #define RECURSION_LIMIT 10
2372
2373 /**
2374 * dev_queue_xmit - transmit a buffer
2375 * @skb: buffer to transmit
2376 *
2377 * Queue a buffer for transmission to a network device. The caller must
2378 * have set the device and priority and built the buffer before calling
2379 * this function. The function can be called from an interrupt.
2380 *
2381 * A negative errno code is returned on a failure. A success does not
2382 * guarantee the frame will be transmitted as it may be dropped due
2383 * to congestion or traffic shaping.
2384 *
2385 * -----------------------------------------------------------------------------------
2386 * I notice this method can also return errors from the queue disciplines,
2387 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2388 * be positive.
2389 *
2390 * Regardless of the return value, the skb is consumed, so it is currently
2391 * difficult to retry a send to this method. (You can bump the ref count
2392 * before sending to hold a reference for retry if you are careful.)
2393 *
2394 * When calling this method, interrupts MUST be enabled. This is because
2395 * the BH enable code must have IRQs enabled so that it will not deadlock.
2396 * --BLG
2397 */
2398 int dev_queue_xmit(struct sk_buff *skb)
2399 {
2400 struct net_device *dev = skb->dev;
2401 struct netdev_queue *txq;
2402 struct Qdisc *q;
2403 int rc = -ENOMEM;
2404
2405 /* Disable soft irqs for various locks below. Also
2406 * stops preemption for RCU.
2407 */
2408 rcu_read_lock_bh();
2409
2410 txq = dev_pick_tx(dev, skb);
2411 q = rcu_dereference_bh(txq->qdisc);
2412
2413 #ifdef CONFIG_NET_CLS_ACT
2414 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2415 #endif
2416 trace_net_dev_queue(skb);
2417 if (q->enqueue) {
2418 rc = __dev_xmit_skb(skb, q, dev, txq);
2419 goto out;
2420 }
2421
2422 /* The device has no queue. Common case for software devices:
2423 loopback, all the sorts of tunnels...
2424
2425 Really, it is unlikely that netif_tx_lock protection is necessary
2426 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2427 counters.)
2428 However, it is possible, that they rely on protection
2429 made by us here.
2430
2431 Check this and shot the lock. It is not prone from deadlocks.
2432 Either shot noqueue qdisc, it is even simpler 8)
2433 */
2434 if (dev->flags & IFF_UP) {
2435 int cpu = smp_processor_id(); /* ok because BHs are off */
2436
2437 if (txq->xmit_lock_owner != cpu) {
2438
2439 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2440 goto recursion_alert;
2441
2442 HARD_TX_LOCK(dev, txq, cpu);
2443
2444 if (!netif_tx_queue_stopped(txq)) {
2445 __this_cpu_inc(xmit_recursion);
2446 rc = dev_hard_start_xmit(skb, dev, txq);
2447 __this_cpu_dec(xmit_recursion);
2448 if (dev_xmit_complete(rc)) {
2449 HARD_TX_UNLOCK(dev, txq);
2450 goto out;
2451 }
2452 }
2453 HARD_TX_UNLOCK(dev, txq);
2454 if (net_ratelimit())
2455 printk(KERN_CRIT "Virtual device %s asks to "
2456 "queue packet!\n", dev->name);
2457 } else {
2458 /* Recursion is detected! It is possible,
2459 * unfortunately
2460 */
2461 recursion_alert:
2462 if (net_ratelimit())
2463 printk(KERN_CRIT "Dead loop on virtual device "
2464 "%s, fix it urgently!\n", dev->name);
2465 }
2466 }
2467
2468 rc = -ENETDOWN;
2469 rcu_read_unlock_bh();
2470
2471 kfree_skb(skb);
2472 return rc;
2473 out:
2474 rcu_read_unlock_bh();
2475 return rc;
2476 }
2477 EXPORT_SYMBOL(dev_queue_xmit);
2478
2479
2480 /*=======================================================================
2481 Receiver routines
2482 =======================================================================*/
2483
2484 int netdev_max_backlog __read_mostly = 1000;
2485 int netdev_tstamp_prequeue __read_mostly = 1;
2486 int netdev_budget __read_mostly = 300;
2487 int weight_p __read_mostly = 64; /* old backlog weight */
2488
2489 /* Called with irq disabled */
2490 static inline void ____napi_schedule(struct softnet_data *sd,
2491 struct napi_struct *napi)
2492 {
2493 list_add_tail(&napi->poll_list, &sd->poll_list);
2494 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2495 }
2496
2497 /*
2498 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2499 * and src/dst port numbers. Returns a non-zero hash number on success
2500 * and 0 on failure.
2501 */
2502 __u32 __skb_get_rxhash(struct sk_buff *skb)
2503 {
2504 int nhoff, hash = 0, poff;
2505 struct ipv6hdr *ip6;
2506 struct iphdr *ip;
2507 u8 ip_proto;
2508 u32 addr1, addr2, ihl;
2509 union {
2510 u32 v32;
2511 u16 v16[2];
2512 } ports;
2513
2514 nhoff = skb_network_offset(skb);
2515
2516 switch (skb->protocol) {
2517 case __constant_htons(ETH_P_IP):
2518 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2519 goto done;
2520
2521 ip = (struct iphdr *) (skb->data + nhoff);
2522 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2523 ip_proto = 0;
2524 else
2525 ip_proto = ip->protocol;
2526 addr1 = (__force u32) ip->saddr;
2527 addr2 = (__force u32) ip->daddr;
2528 ihl = ip->ihl;
2529 break;
2530 case __constant_htons(ETH_P_IPV6):
2531 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2532 goto done;
2533
2534 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2535 ip_proto = ip6->nexthdr;
2536 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2537 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2538 ihl = (40 >> 2);
2539 break;
2540 default:
2541 goto done;
2542 }
2543
2544 ports.v32 = 0;
2545 poff = proto_ports_offset(ip_proto);
2546 if (poff >= 0) {
2547 nhoff += ihl * 4 + poff;
2548 if (pskb_may_pull(skb, nhoff + 4)) {
2549 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2550 if (ports.v16[1] < ports.v16[0])
2551 swap(ports.v16[0], ports.v16[1]);
2552 }
2553 }
2554
2555 /* get a consistent hash (same value on both flow directions) */
2556 if (addr2 < addr1)
2557 swap(addr1, addr2);
2558
2559 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2560 if (!hash)
2561 hash = 1;
2562
2563 done:
2564 return hash;
2565 }
2566 EXPORT_SYMBOL(__skb_get_rxhash);
2567
2568 #ifdef CONFIG_RPS
2569
2570 /* One global table that all flow-based protocols share. */
2571 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2572 EXPORT_SYMBOL(rps_sock_flow_table);
2573
2574 static struct rps_dev_flow *
2575 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2576 struct rps_dev_flow *rflow, u16 next_cpu)
2577 {
2578 u16 tcpu;
2579
2580 tcpu = rflow->cpu = next_cpu;
2581 if (tcpu != RPS_NO_CPU) {
2582 #ifdef CONFIG_RFS_ACCEL
2583 struct netdev_rx_queue *rxqueue;
2584 struct rps_dev_flow_table *flow_table;
2585 struct rps_dev_flow *old_rflow;
2586 u32 flow_id;
2587 u16 rxq_index;
2588 int rc;
2589
2590 /* Should we steer this flow to a different hardware queue? */
2591 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2592 !(dev->features & NETIF_F_NTUPLE))
2593 goto out;
2594 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2595 if (rxq_index == skb_get_rx_queue(skb))
2596 goto out;
2597
2598 rxqueue = dev->_rx + rxq_index;
2599 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2600 if (!flow_table)
2601 goto out;
2602 flow_id = skb->rxhash & flow_table->mask;
2603 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2604 rxq_index, flow_id);
2605 if (rc < 0)
2606 goto out;
2607 old_rflow = rflow;
2608 rflow = &flow_table->flows[flow_id];
2609 rflow->cpu = next_cpu;
2610 rflow->filter = rc;
2611 if (old_rflow->filter == rflow->filter)
2612 old_rflow->filter = RPS_NO_FILTER;
2613 out:
2614 #endif
2615 rflow->last_qtail =
2616 per_cpu(softnet_data, tcpu).input_queue_head;
2617 }
2618
2619 return rflow;
2620 }
2621
2622 /*
2623 * get_rps_cpu is called from netif_receive_skb and returns the target
2624 * CPU from the RPS map of the receiving queue for a given skb.
2625 * rcu_read_lock must be held on entry.
2626 */
2627 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2628 struct rps_dev_flow **rflowp)
2629 {
2630 struct netdev_rx_queue *rxqueue;
2631 struct rps_map *map;
2632 struct rps_dev_flow_table *flow_table;
2633 struct rps_sock_flow_table *sock_flow_table;
2634 int cpu = -1;
2635 u16 tcpu;
2636
2637 if (skb_rx_queue_recorded(skb)) {
2638 u16 index = skb_get_rx_queue(skb);
2639 if (unlikely(index >= dev->real_num_rx_queues)) {
2640 WARN_ONCE(dev->real_num_rx_queues > 1,
2641 "%s received packet on queue %u, but number "
2642 "of RX queues is %u\n",
2643 dev->name, index, dev->real_num_rx_queues);
2644 goto done;
2645 }
2646 rxqueue = dev->_rx + index;
2647 } else
2648 rxqueue = dev->_rx;
2649
2650 map = rcu_dereference(rxqueue->rps_map);
2651 if (map) {
2652 if (map->len == 1 &&
2653 !rcu_dereference_raw(rxqueue->rps_flow_table)) {
2654 tcpu = map->cpus[0];
2655 if (cpu_online(tcpu))
2656 cpu = tcpu;
2657 goto done;
2658 }
2659 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2660 goto done;
2661 }
2662
2663 skb_reset_network_header(skb);
2664 if (!skb_get_rxhash(skb))
2665 goto done;
2666
2667 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2668 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2669 if (flow_table && sock_flow_table) {
2670 u16 next_cpu;
2671 struct rps_dev_flow *rflow;
2672
2673 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2674 tcpu = rflow->cpu;
2675
2676 next_cpu = sock_flow_table->ents[skb->rxhash &
2677 sock_flow_table->mask];
2678
2679 /*
2680 * If the desired CPU (where last recvmsg was done) is
2681 * different from current CPU (one in the rx-queue flow
2682 * table entry), switch if one of the following holds:
2683 * - Current CPU is unset (equal to RPS_NO_CPU).
2684 * - Current CPU is offline.
2685 * - The current CPU's queue tail has advanced beyond the
2686 * last packet that was enqueued using this table entry.
2687 * This guarantees that all previous packets for the flow
2688 * have been dequeued, thus preserving in order delivery.
2689 */
2690 if (unlikely(tcpu != next_cpu) &&
2691 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2692 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2693 rflow->last_qtail)) >= 0))
2694 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2695
2696 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2697 *rflowp = rflow;
2698 cpu = tcpu;
2699 goto done;
2700 }
2701 }
2702
2703 if (map) {
2704 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2705
2706 if (cpu_online(tcpu)) {
2707 cpu = tcpu;
2708 goto done;
2709 }
2710 }
2711
2712 done:
2713 return cpu;
2714 }
2715
2716 #ifdef CONFIG_RFS_ACCEL
2717
2718 /**
2719 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2720 * @dev: Device on which the filter was set
2721 * @rxq_index: RX queue index
2722 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2723 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2724 *
2725 * Drivers that implement ndo_rx_flow_steer() should periodically call
2726 * this function for each installed filter and remove the filters for
2727 * which it returns %true.
2728 */
2729 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2730 u32 flow_id, u16 filter_id)
2731 {
2732 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2733 struct rps_dev_flow_table *flow_table;
2734 struct rps_dev_flow *rflow;
2735 bool expire = true;
2736 int cpu;
2737
2738 rcu_read_lock();
2739 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2740 if (flow_table && flow_id <= flow_table->mask) {
2741 rflow = &flow_table->flows[flow_id];
2742 cpu = ACCESS_ONCE(rflow->cpu);
2743 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2744 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2745 rflow->last_qtail) <
2746 (int)(10 * flow_table->mask)))
2747 expire = false;
2748 }
2749 rcu_read_unlock();
2750 return expire;
2751 }
2752 EXPORT_SYMBOL(rps_may_expire_flow);
2753
2754 #endif /* CONFIG_RFS_ACCEL */
2755
2756 /* Called from hardirq (IPI) context */
2757 static void rps_trigger_softirq(void *data)
2758 {
2759 struct softnet_data *sd = data;
2760
2761 ____napi_schedule(sd, &sd->backlog);
2762 sd->received_rps++;
2763 }
2764
2765 #endif /* CONFIG_RPS */
2766
2767 /*
2768 * Check if this softnet_data structure is another cpu one
2769 * If yes, queue it to our IPI list and return 1
2770 * If no, return 0
2771 */
2772 static int rps_ipi_queued(struct softnet_data *sd)
2773 {
2774 #ifdef CONFIG_RPS
2775 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2776
2777 if (sd != mysd) {
2778 sd->rps_ipi_next = mysd->rps_ipi_list;
2779 mysd->rps_ipi_list = sd;
2780
2781 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2782 return 1;
2783 }
2784 #endif /* CONFIG_RPS */
2785 return 0;
2786 }
2787
2788 /*
2789 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2790 * queue (may be a remote CPU queue).
2791 */
2792 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2793 unsigned int *qtail)
2794 {
2795 struct softnet_data *sd;
2796 unsigned long flags;
2797
2798 sd = &per_cpu(softnet_data, cpu);
2799
2800 local_irq_save(flags);
2801
2802 rps_lock(sd);
2803 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2804 if (skb_queue_len(&sd->input_pkt_queue)) {
2805 enqueue:
2806 __skb_queue_tail(&sd->input_pkt_queue, skb);
2807 input_queue_tail_incr_save(sd, qtail);
2808 rps_unlock(sd);
2809 local_irq_restore(flags);
2810 return NET_RX_SUCCESS;
2811 }
2812
2813 /* Schedule NAPI for backlog device
2814 * We can use non atomic operation since we own the queue lock
2815 */
2816 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2817 if (!rps_ipi_queued(sd))
2818 ____napi_schedule(sd, &sd->backlog);
2819 }
2820 goto enqueue;
2821 }
2822
2823 sd->dropped++;
2824 rps_unlock(sd);
2825
2826 local_irq_restore(flags);
2827
2828 atomic_long_inc(&skb->dev->rx_dropped);
2829 kfree_skb(skb);
2830 return NET_RX_DROP;
2831 }
2832
2833 /**
2834 * netif_rx - post buffer to the network code
2835 * @skb: buffer to post
2836 *
2837 * This function receives a packet from a device driver and queues it for
2838 * the upper (protocol) levels to process. It always succeeds. The buffer
2839 * may be dropped during processing for congestion control or by the
2840 * protocol layers.
2841 *
2842 * return values:
2843 * NET_RX_SUCCESS (no congestion)
2844 * NET_RX_DROP (packet was dropped)
2845 *
2846 */
2847
2848 int netif_rx(struct sk_buff *skb)
2849 {
2850 int ret;
2851
2852 /* if netpoll wants it, pretend we never saw it */
2853 if (netpoll_rx(skb))
2854 return NET_RX_DROP;
2855
2856 if (netdev_tstamp_prequeue)
2857 net_timestamp_check(skb);
2858
2859 trace_netif_rx(skb);
2860 #ifdef CONFIG_RPS
2861 {
2862 struct rps_dev_flow voidflow, *rflow = &voidflow;
2863 int cpu;
2864
2865 preempt_disable();
2866 rcu_read_lock();
2867
2868 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2869 if (cpu < 0)
2870 cpu = smp_processor_id();
2871
2872 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2873
2874 rcu_read_unlock();
2875 preempt_enable();
2876 }
2877 #else
2878 {
2879 unsigned int qtail;
2880 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2881 put_cpu();
2882 }
2883 #endif
2884 return ret;
2885 }
2886 EXPORT_SYMBOL(netif_rx);
2887
2888 int netif_rx_ni(struct sk_buff *skb)
2889 {
2890 int err;
2891
2892 preempt_disable();
2893 err = netif_rx(skb);
2894 if (local_softirq_pending())
2895 do_softirq();
2896 preempt_enable();
2897
2898 return err;
2899 }
2900 EXPORT_SYMBOL(netif_rx_ni);
2901
2902 static void net_tx_action(struct softirq_action *h)
2903 {
2904 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2905
2906 if (sd->completion_queue) {
2907 struct sk_buff *clist;
2908
2909 local_irq_disable();
2910 clist = sd->completion_queue;
2911 sd->completion_queue = NULL;
2912 local_irq_enable();
2913
2914 while (clist) {
2915 struct sk_buff *skb = clist;
2916 clist = clist->next;
2917
2918 WARN_ON(atomic_read(&skb->users));
2919 trace_kfree_skb(skb, net_tx_action);
2920 __kfree_skb(skb);
2921 }
2922 }
2923
2924 if (sd->output_queue) {
2925 struct Qdisc *head;
2926
2927 local_irq_disable();
2928 head = sd->output_queue;
2929 sd->output_queue = NULL;
2930 sd->output_queue_tailp = &sd->output_queue;
2931 local_irq_enable();
2932
2933 while (head) {
2934 struct Qdisc *q = head;
2935 spinlock_t *root_lock;
2936
2937 head = head->next_sched;
2938
2939 root_lock = qdisc_lock(q);
2940 if (spin_trylock(root_lock)) {
2941 smp_mb__before_clear_bit();
2942 clear_bit(__QDISC_STATE_SCHED,
2943 &q->state);
2944 qdisc_run(q);
2945 spin_unlock(root_lock);
2946 } else {
2947 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2948 &q->state)) {
2949 __netif_reschedule(q);
2950 } else {
2951 smp_mb__before_clear_bit();
2952 clear_bit(__QDISC_STATE_SCHED,
2953 &q->state);
2954 }
2955 }
2956 }
2957 }
2958 }
2959
2960 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2961 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2962 /* This hook is defined here for ATM LANE */
2963 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2964 unsigned char *addr) __read_mostly;
2965 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2966 #endif
2967
2968 #ifdef CONFIG_NET_CLS_ACT
2969 /* TODO: Maybe we should just force sch_ingress to be compiled in
2970 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2971 * a compare and 2 stores extra right now if we dont have it on
2972 * but have CONFIG_NET_CLS_ACT
2973 * NOTE: This doesn't stop any functionality; if you dont have
2974 * the ingress scheduler, you just can't add policies on ingress.
2975 *
2976 */
2977 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2978 {
2979 struct net_device *dev = skb->dev;
2980 u32 ttl = G_TC_RTTL(skb->tc_verd);
2981 int result = TC_ACT_OK;
2982 struct Qdisc *q;
2983
2984 if (unlikely(MAX_RED_LOOP < ttl++)) {
2985 if (net_ratelimit())
2986 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2987 skb->skb_iif, dev->ifindex);
2988 return TC_ACT_SHOT;
2989 }
2990
2991 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2992 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2993
2994 q = rxq->qdisc;
2995 if (q != &noop_qdisc) {
2996 spin_lock(qdisc_lock(q));
2997 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2998 result = qdisc_enqueue_root(skb, q);
2999 spin_unlock(qdisc_lock(q));
3000 }
3001
3002 return result;
3003 }
3004
3005 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3006 struct packet_type **pt_prev,
3007 int *ret, struct net_device *orig_dev)
3008 {
3009 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3010
3011 if (!rxq || rxq->qdisc == &noop_qdisc)
3012 goto out;
3013
3014 if (*pt_prev) {
3015 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3016 *pt_prev = NULL;
3017 }
3018
3019 switch (ing_filter(skb, rxq)) {
3020 case TC_ACT_SHOT:
3021 case TC_ACT_STOLEN:
3022 kfree_skb(skb);
3023 return NULL;
3024 }
3025
3026 out:
3027 skb->tc_verd = 0;
3028 return skb;
3029 }
3030 #endif
3031
3032 /**
3033 * netdev_rx_handler_register - register receive handler
3034 * @dev: device to register a handler for
3035 * @rx_handler: receive handler to register
3036 * @rx_handler_data: data pointer that is used by rx handler
3037 *
3038 * Register a receive hander for a device. This handler will then be
3039 * called from __netif_receive_skb. A negative errno code is returned
3040 * on a failure.
3041 *
3042 * The caller must hold the rtnl_mutex.
3043 *
3044 * For a general description of rx_handler, see enum rx_handler_result.
3045 */
3046 int netdev_rx_handler_register(struct net_device *dev,
3047 rx_handler_func_t *rx_handler,
3048 void *rx_handler_data)
3049 {
3050 ASSERT_RTNL();
3051
3052 if (dev->rx_handler)
3053 return -EBUSY;
3054
3055 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3056 rcu_assign_pointer(dev->rx_handler, rx_handler);
3057
3058 return 0;
3059 }
3060 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3061
3062 /**
3063 * netdev_rx_handler_unregister - unregister receive handler
3064 * @dev: device to unregister a handler from
3065 *
3066 * Unregister a receive hander from a device.
3067 *
3068 * The caller must hold the rtnl_mutex.
3069 */
3070 void netdev_rx_handler_unregister(struct net_device *dev)
3071 {
3072
3073 ASSERT_RTNL();
3074 rcu_assign_pointer(dev->rx_handler, NULL);
3075 rcu_assign_pointer(dev->rx_handler_data, NULL);
3076 }
3077 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3078
3079 static void vlan_on_bond_hook(struct sk_buff *skb)
3080 {
3081 /*
3082 * Make sure ARP frames received on VLAN interfaces stacked on
3083 * bonding interfaces still make their way to any base bonding
3084 * device that may have registered for a specific ptype.
3085 */
3086 if (skb->dev->priv_flags & IFF_802_1Q_VLAN &&
3087 vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING &&
3088 skb->protocol == htons(ETH_P_ARP)) {
3089 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
3090
3091 if (!skb2)
3092 return;
3093 skb2->dev = vlan_dev_real_dev(skb->dev);
3094 netif_rx(skb2);
3095 }
3096 }
3097
3098 static int __netif_receive_skb(struct sk_buff *skb)
3099 {
3100 struct packet_type *ptype, *pt_prev;
3101 rx_handler_func_t *rx_handler;
3102 struct net_device *orig_dev;
3103 struct net_device *null_or_dev;
3104 bool deliver_exact = false;
3105 int ret = NET_RX_DROP;
3106 __be16 type;
3107
3108 if (!netdev_tstamp_prequeue)
3109 net_timestamp_check(skb);
3110
3111 trace_netif_receive_skb(skb);
3112
3113 /* if we've gotten here through NAPI, check netpoll */
3114 if (netpoll_receive_skb(skb))
3115 return NET_RX_DROP;
3116
3117 if (!skb->skb_iif)
3118 skb->skb_iif = skb->dev->ifindex;
3119 orig_dev = skb->dev;
3120
3121 skb_reset_network_header(skb);
3122 skb_reset_transport_header(skb);
3123 skb->mac_len = skb->network_header - skb->mac_header;
3124
3125 pt_prev = NULL;
3126
3127 rcu_read_lock();
3128
3129 another_round:
3130
3131 __this_cpu_inc(softnet_data.processed);
3132
3133 #ifdef CONFIG_NET_CLS_ACT
3134 if (skb->tc_verd & TC_NCLS) {
3135 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3136 goto ncls;
3137 }
3138 #endif
3139
3140 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3141 if (!ptype->dev || ptype->dev == skb->dev) {
3142 if (pt_prev)
3143 ret = deliver_skb(skb, pt_prev, orig_dev);
3144 pt_prev = ptype;
3145 }
3146 }
3147
3148 #ifdef CONFIG_NET_CLS_ACT
3149 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3150 if (!skb)
3151 goto out;
3152 ncls:
3153 #endif
3154
3155 rx_handler = rcu_dereference(skb->dev->rx_handler);
3156 if (rx_handler) {
3157 if (pt_prev) {
3158 ret = deliver_skb(skb, pt_prev, orig_dev);
3159 pt_prev = NULL;
3160 }
3161 switch (rx_handler(&skb)) {
3162 case RX_HANDLER_CONSUMED:
3163 goto out;
3164 case RX_HANDLER_ANOTHER:
3165 goto another_round;
3166 case RX_HANDLER_EXACT:
3167 deliver_exact = true;
3168 case RX_HANDLER_PASS:
3169 break;
3170 default:
3171 BUG();
3172 }
3173 }
3174
3175 if (vlan_tx_tag_present(skb)) {
3176 if (pt_prev) {
3177 ret = deliver_skb(skb, pt_prev, orig_dev);
3178 pt_prev = NULL;
3179 }
3180 if (vlan_hwaccel_do_receive(&skb)) {
3181 ret = __netif_receive_skb(skb);
3182 goto out;
3183 } else if (unlikely(!skb))
3184 goto out;
3185 }
3186
3187 vlan_on_bond_hook(skb);
3188
3189 /* deliver only exact match when indicated */
3190 null_or_dev = deliver_exact ? skb->dev : NULL;
3191
3192 type = skb->protocol;
3193 list_for_each_entry_rcu(ptype,
3194 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3195 if (ptype->type == type &&
3196 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3197 ptype->dev == orig_dev)) {
3198 if (pt_prev)
3199 ret = deliver_skb(skb, pt_prev, orig_dev);
3200 pt_prev = ptype;
3201 }
3202 }
3203
3204 if (pt_prev) {
3205 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3206 } else {
3207 atomic_long_inc(&skb->dev->rx_dropped);
3208 kfree_skb(skb);
3209 /* Jamal, now you will not able to escape explaining
3210 * me how you were going to use this. :-)
3211 */
3212 ret = NET_RX_DROP;
3213 }
3214
3215 out:
3216 rcu_read_unlock();
3217 return ret;
3218 }
3219
3220 /**
3221 * netif_receive_skb - process receive buffer from network
3222 * @skb: buffer to process
3223 *
3224 * netif_receive_skb() is the main receive data processing function.
3225 * It always succeeds. The buffer may be dropped during processing
3226 * for congestion control or by the protocol layers.
3227 *
3228 * This function may only be called from softirq context and interrupts
3229 * should be enabled.
3230 *
3231 * Return values (usually ignored):
3232 * NET_RX_SUCCESS: no congestion
3233 * NET_RX_DROP: packet was dropped
3234 */
3235 int netif_receive_skb(struct sk_buff *skb)
3236 {
3237 if (netdev_tstamp_prequeue)
3238 net_timestamp_check(skb);
3239
3240 if (skb_defer_rx_timestamp(skb))
3241 return NET_RX_SUCCESS;
3242
3243 #ifdef CONFIG_RPS
3244 {
3245 struct rps_dev_flow voidflow, *rflow = &voidflow;
3246 int cpu, ret;
3247
3248 rcu_read_lock();
3249
3250 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3251
3252 if (cpu >= 0) {
3253 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3254 rcu_read_unlock();
3255 } else {
3256 rcu_read_unlock();
3257 ret = __netif_receive_skb(skb);
3258 }
3259
3260 return ret;
3261 }
3262 #else
3263 return __netif_receive_skb(skb);
3264 #endif
3265 }
3266 EXPORT_SYMBOL(netif_receive_skb);
3267
3268 /* Network device is going away, flush any packets still pending
3269 * Called with irqs disabled.
3270 */
3271 static void flush_backlog(void *arg)
3272 {
3273 struct net_device *dev = arg;
3274 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3275 struct sk_buff *skb, *tmp;
3276
3277 rps_lock(sd);
3278 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3279 if (skb->dev == dev) {
3280 __skb_unlink(skb, &sd->input_pkt_queue);
3281 kfree_skb(skb);
3282 input_queue_head_incr(sd);
3283 }
3284 }
3285 rps_unlock(sd);
3286
3287 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3288 if (skb->dev == dev) {
3289 __skb_unlink(skb, &sd->process_queue);
3290 kfree_skb(skb);
3291 input_queue_head_incr(sd);
3292 }
3293 }
3294 }
3295
3296 static int napi_gro_complete(struct sk_buff *skb)
3297 {
3298 struct packet_type *ptype;
3299 __be16 type = skb->protocol;
3300 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3301 int err = -ENOENT;
3302
3303 if (NAPI_GRO_CB(skb)->count == 1) {
3304 skb_shinfo(skb)->gso_size = 0;
3305 goto out;
3306 }
3307
3308 rcu_read_lock();
3309 list_for_each_entry_rcu(ptype, head, list) {
3310 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3311 continue;
3312
3313 err = ptype->gro_complete(skb);
3314 break;
3315 }
3316 rcu_read_unlock();
3317
3318 if (err) {
3319 WARN_ON(&ptype->list == head);
3320 kfree_skb(skb);
3321 return NET_RX_SUCCESS;
3322 }
3323
3324 out:
3325 return netif_receive_skb(skb);
3326 }
3327
3328 inline void napi_gro_flush(struct napi_struct *napi)
3329 {
3330 struct sk_buff *skb, *next;
3331
3332 for (skb = napi->gro_list; skb; skb = next) {
3333 next = skb->next;
3334 skb->next = NULL;
3335 napi_gro_complete(skb);
3336 }
3337
3338 napi->gro_count = 0;
3339 napi->gro_list = NULL;
3340 }
3341 EXPORT_SYMBOL(napi_gro_flush);
3342
3343 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3344 {
3345 struct sk_buff **pp = NULL;
3346 struct packet_type *ptype;
3347 __be16 type = skb->protocol;
3348 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3349 int same_flow;
3350 int mac_len;
3351 enum gro_result ret;
3352
3353 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3354 goto normal;
3355
3356 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3357 goto normal;
3358
3359 rcu_read_lock();
3360 list_for_each_entry_rcu(ptype, head, list) {
3361 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3362 continue;
3363
3364 skb_set_network_header(skb, skb_gro_offset(skb));
3365 mac_len = skb->network_header - skb->mac_header;
3366 skb->mac_len = mac_len;
3367 NAPI_GRO_CB(skb)->same_flow = 0;
3368 NAPI_GRO_CB(skb)->flush = 0;
3369 NAPI_GRO_CB(skb)->free = 0;
3370
3371 pp = ptype->gro_receive(&napi->gro_list, skb);
3372 break;
3373 }
3374 rcu_read_unlock();
3375
3376 if (&ptype->list == head)
3377 goto normal;
3378
3379 same_flow = NAPI_GRO_CB(skb)->same_flow;
3380 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3381
3382 if (pp) {
3383 struct sk_buff *nskb = *pp;
3384
3385 *pp = nskb->next;
3386 nskb->next = NULL;
3387 napi_gro_complete(nskb);
3388 napi->gro_count--;
3389 }
3390
3391 if (same_flow)
3392 goto ok;
3393
3394 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3395 goto normal;
3396
3397 napi->gro_count++;
3398 NAPI_GRO_CB(skb)->count = 1;
3399 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3400 skb->next = napi->gro_list;
3401 napi->gro_list = skb;
3402 ret = GRO_HELD;
3403
3404 pull:
3405 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3406 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3407
3408 BUG_ON(skb->end - skb->tail < grow);
3409
3410 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3411
3412 skb->tail += grow;
3413 skb->data_len -= grow;
3414
3415 skb_shinfo(skb)->frags[0].page_offset += grow;
3416 skb_shinfo(skb)->frags[0].size -= grow;
3417
3418 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3419 put_page(skb_shinfo(skb)->frags[0].page);
3420 memmove(skb_shinfo(skb)->frags,
3421 skb_shinfo(skb)->frags + 1,
3422 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3423 }
3424 }
3425
3426 ok:
3427 return ret;
3428
3429 normal:
3430 ret = GRO_NORMAL;
3431 goto pull;
3432 }
3433 EXPORT_SYMBOL(dev_gro_receive);
3434
3435 static inline gro_result_t
3436 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3437 {
3438 struct sk_buff *p;
3439
3440 for (p = napi->gro_list; p; p = p->next) {
3441 unsigned long diffs;
3442
3443 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3444 diffs |= p->vlan_tci ^ skb->vlan_tci;
3445 diffs |= compare_ether_header(skb_mac_header(p),
3446 skb_gro_mac_header(skb));
3447 NAPI_GRO_CB(p)->same_flow = !diffs;
3448 NAPI_GRO_CB(p)->flush = 0;
3449 }
3450
3451 return dev_gro_receive(napi, skb);
3452 }
3453
3454 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3455 {
3456 switch (ret) {
3457 case GRO_NORMAL:
3458 if (netif_receive_skb(skb))
3459 ret = GRO_DROP;
3460 break;
3461
3462 case GRO_DROP:
3463 case GRO_MERGED_FREE:
3464 kfree_skb(skb);
3465 break;
3466
3467 case GRO_HELD:
3468 case GRO_MERGED:
3469 break;
3470 }
3471
3472 return ret;
3473 }
3474 EXPORT_SYMBOL(napi_skb_finish);
3475
3476 void skb_gro_reset_offset(struct sk_buff *skb)
3477 {
3478 NAPI_GRO_CB(skb)->data_offset = 0;
3479 NAPI_GRO_CB(skb)->frag0 = NULL;
3480 NAPI_GRO_CB(skb)->frag0_len = 0;
3481
3482 if (skb->mac_header == skb->tail &&
3483 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3484 NAPI_GRO_CB(skb)->frag0 =
3485 page_address(skb_shinfo(skb)->frags[0].page) +
3486 skb_shinfo(skb)->frags[0].page_offset;
3487 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3488 }
3489 }
3490 EXPORT_SYMBOL(skb_gro_reset_offset);
3491
3492 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3493 {
3494 skb_gro_reset_offset(skb);
3495
3496 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3497 }
3498 EXPORT_SYMBOL(napi_gro_receive);
3499
3500 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3501 {
3502 __skb_pull(skb, skb_headlen(skb));
3503 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3504 skb->vlan_tci = 0;
3505 skb->dev = napi->dev;
3506 skb->skb_iif = 0;
3507
3508 napi->skb = skb;
3509 }
3510
3511 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3512 {
3513 struct sk_buff *skb = napi->skb;
3514
3515 if (!skb) {
3516 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3517 if (skb)
3518 napi->skb = skb;
3519 }
3520 return skb;
3521 }
3522 EXPORT_SYMBOL(napi_get_frags);
3523
3524 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3525 gro_result_t ret)
3526 {
3527 switch (ret) {
3528 case GRO_NORMAL:
3529 case GRO_HELD:
3530 skb->protocol = eth_type_trans(skb, skb->dev);
3531
3532 if (ret == GRO_HELD)
3533 skb_gro_pull(skb, -ETH_HLEN);
3534 else if (netif_receive_skb(skb))
3535 ret = GRO_DROP;
3536 break;
3537
3538 case GRO_DROP:
3539 case GRO_MERGED_FREE:
3540 napi_reuse_skb(napi, skb);
3541 break;
3542
3543 case GRO_MERGED:
3544 break;
3545 }
3546
3547 return ret;
3548 }
3549 EXPORT_SYMBOL(napi_frags_finish);
3550
3551 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3552 {
3553 struct sk_buff *skb = napi->skb;
3554 struct ethhdr *eth;
3555 unsigned int hlen;
3556 unsigned int off;
3557
3558 napi->skb = NULL;
3559
3560 skb_reset_mac_header(skb);
3561 skb_gro_reset_offset(skb);
3562
3563 off = skb_gro_offset(skb);
3564 hlen = off + sizeof(*eth);
3565 eth = skb_gro_header_fast(skb, off);
3566 if (skb_gro_header_hard(skb, hlen)) {
3567 eth = skb_gro_header_slow(skb, hlen, off);
3568 if (unlikely(!eth)) {
3569 napi_reuse_skb(napi, skb);
3570 skb = NULL;
3571 goto out;
3572 }
3573 }
3574
3575 skb_gro_pull(skb, sizeof(*eth));
3576
3577 /*
3578 * This works because the only protocols we care about don't require
3579 * special handling. We'll fix it up properly at the end.
3580 */
3581 skb->protocol = eth->h_proto;
3582
3583 out:
3584 return skb;
3585 }
3586 EXPORT_SYMBOL(napi_frags_skb);
3587
3588 gro_result_t napi_gro_frags(struct napi_struct *napi)
3589 {
3590 struct sk_buff *skb = napi_frags_skb(napi);
3591
3592 if (!skb)
3593 return GRO_DROP;
3594
3595 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3596 }
3597 EXPORT_SYMBOL(napi_gro_frags);
3598
3599 /*
3600 * net_rps_action sends any pending IPI's for rps.
3601 * Note: called with local irq disabled, but exits with local irq enabled.
3602 */
3603 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3604 {
3605 #ifdef CONFIG_RPS
3606 struct softnet_data *remsd = sd->rps_ipi_list;
3607
3608 if (remsd) {
3609 sd->rps_ipi_list = NULL;
3610
3611 local_irq_enable();
3612
3613 /* Send pending IPI's to kick RPS processing on remote cpus. */
3614 while (remsd) {
3615 struct softnet_data *next = remsd->rps_ipi_next;
3616
3617 if (cpu_online(remsd->cpu))
3618 __smp_call_function_single(remsd->cpu,
3619 &remsd->csd, 0);
3620 remsd = next;
3621 }
3622 } else
3623 #endif
3624 local_irq_enable();
3625 }
3626
3627 static int process_backlog(struct napi_struct *napi, int quota)
3628 {
3629 int work = 0;
3630 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3631
3632 #ifdef CONFIG_RPS
3633 /* Check if we have pending ipi, its better to send them now,
3634 * not waiting net_rx_action() end.
3635 */
3636 if (sd->rps_ipi_list) {
3637 local_irq_disable();
3638 net_rps_action_and_irq_enable(sd);
3639 }
3640 #endif
3641 napi->weight = weight_p;
3642 local_irq_disable();
3643 while (work < quota) {
3644 struct sk_buff *skb;
3645 unsigned int qlen;
3646
3647 while ((skb = __skb_dequeue(&sd->process_queue))) {
3648 local_irq_enable();
3649 __netif_receive_skb(skb);
3650 local_irq_disable();
3651 input_queue_head_incr(sd);
3652 if (++work >= quota) {
3653 local_irq_enable();
3654 return work;
3655 }
3656 }
3657
3658 rps_lock(sd);
3659 qlen = skb_queue_len(&sd->input_pkt_queue);
3660 if (qlen)
3661 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3662 &sd->process_queue);
3663
3664 if (qlen < quota - work) {
3665 /*
3666 * Inline a custom version of __napi_complete().
3667 * only current cpu owns and manipulates this napi,
3668 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3669 * we can use a plain write instead of clear_bit(),
3670 * and we dont need an smp_mb() memory barrier.
3671 */
3672 list_del(&napi->poll_list);
3673 napi->state = 0;
3674
3675 quota = work + qlen;
3676 }
3677 rps_unlock(sd);
3678 }
3679 local_irq_enable();
3680
3681 return work;
3682 }
3683
3684 /**
3685 * __napi_schedule - schedule for receive
3686 * @n: entry to schedule
3687 *
3688 * The entry's receive function will be scheduled to run
3689 */
3690 void __napi_schedule(struct napi_struct *n)
3691 {
3692 unsigned long flags;
3693
3694 local_irq_save(flags);
3695 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3696 local_irq_restore(flags);
3697 }
3698 EXPORT_SYMBOL(__napi_schedule);
3699
3700 void __napi_complete(struct napi_struct *n)
3701 {
3702 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3703 BUG_ON(n->gro_list);
3704
3705 list_del(&n->poll_list);
3706 smp_mb__before_clear_bit();
3707 clear_bit(NAPI_STATE_SCHED, &n->state);
3708 }
3709 EXPORT_SYMBOL(__napi_complete);
3710
3711 void napi_complete(struct napi_struct *n)
3712 {
3713 unsigned long flags;
3714
3715 /*
3716 * don't let napi dequeue from the cpu poll list
3717 * just in case its running on a different cpu
3718 */
3719 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3720 return;
3721
3722 napi_gro_flush(n);
3723 local_irq_save(flags);
3724 __napi_complete(n);
3725 local_irq_restore(flags);
3726 }
3727 EXPORT_SYMBOL(napi_complete);
3728
3729 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3730 int (*poll)(struct napi_struct *, int), int weight)
3731 {
3732 INIT_LIST_HEAD(&napi->poll_list);
3733 napi->gro_count = 0;
3734 napi->gro_list = NULL;
3735 napi->skb = NULL;
3736 napi->poll = poll;
3737 napi->weight = weight;
3738 list_add(&napi->dev_list, &dev->napi_list);
3739 napi->dev = dev;
3740 #ifdef CONFIG_NETPOLL
3741 spin_lock_init(&napi->poll_lock);
3742 napi->poll_owner = -1;
3743 #endif
3744 set_bit(NAPI_STATE_SCHED, &napi->state);
3745 }
3746 EXPORT_SYMBOL(netif_napi_add);
3747
3748 void netif_napi_del(struct napi_struct *napi)
3749 {
3750 struct sk_buff *skb, *next;
3751
3752 list_del_init(&napi->dev_list);
3753 napi_free_frags(napi);
3754
3755 for (skb = napi->gro_list; skb; skb = next) {
3756 next = skb->next;
3757 skb->next = NULL;
3758 kfree_skb(skb);
3759 }
3760
3761 napi->gro_list = NULL;
3762 napi->gro_count = 0;
3763 }
3764 EXPORT_SYMBOL(netif_napi_del);
3765
3766 static void net_rx_action(struct softirq_action *h)
3767 {
3768 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3769 unsigned long time_limit = jiffies + 2;
3770 int budget = netdev_budget;
3771 void *have;
3772
3773 local_irq_disable();
3774
3775 while (!list_empty(&sd->poll_list)) {
3776 struct napi_struct *n;
3777 int work, weight;
3778
3779 /* If softirq window is exhuasted then punt.
3780 * Allow this to run for 2 jiffies since which will allow
3781 * an average latency of 1.5/HZ.
3782 */
3783 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3784 goto softnet_break;
3785
3786 local_irq_enable();
3787
3788 /* Even though interrupts have been re-enabled, this
3789 * access is safe because interrupts can only add new
3790 * entries to the tail of this list, and only ->poll()
3791 * calls can remove this head entry from the list.
3792 */
3793 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3794
3795 have = netpoll_poll_lock(n);
3796
3797 weight = n->weight;
3798
3799 /* This NAPI_STATE_SCHED test is for avoiding a race
3800 * with netpoll's poll_napi(). Only the entity which
3801 * obtains the lock and sees NAPI_STATE_SCHED set will
3802 * actually make the ->poll() call. Therefore we avoid
3803 * accidentally calling ->poll() when NAPI is not scheduled.
3804 */
3805 work = 0;
3806 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3807 work = n->poll(n, weight);
3808 trace_napi_poll(n);
3809 }
3810
3811 WARN_ON_ONCE(work > weight);
3812
3813 budget -= work;
3814
3815 local_irq_disable();
3816
3817 /* Drivers must not modify the NAPI state if they
3818 * consume the entire weight. In such cases this code
3819 * still "owns" the NAPI instance and therefore can
3820 * move the instance around on the list at-will.
3821 */
3822 if (unlikely(work == weight)) {
3823 if (unlikely(napi_disable_pending(n))) {
3824 local_irq_enable();
3825 napi_complete(n);
3826 local_irq_disable();
3827 } else
3828 list_move_tail(&n->poll_list, &sd->poll_list);
3829 }
3830
3831 netpoll_poll_unlock(have);
3832 }
3833 out:
3834 net_rps_action_and_irq_enable(sd);
3835
3836 #ifdef CONFIG_NET_DMA
3837 /*
3838 * There may not be any more sk_buffs coming right now, so push
3839 * any pending DMA copies to hardware
3840 */
3841 dma_issue_pending_all();
3842 #endif
3843
3844 return;
3845
3846 softnet_break:
3847 sd->time_squeeze++;
3848 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3849 goto out;
3850 }
3851
3852 static gifconf_func_t *gifconf_list[NPROTO];
3853
3854 /**
3855 * register_gifconf - register a SIOCGIF handler
3856 * @family: Address family
3857 * @gifconf: Function handler
3858 *
3859 * Register protocol dependent address dumping routines. The handler
3860 * that is passed must not be freed or reused until it has been replaced
3861 * by another handler.
3862 */
3863 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3864 {
3865 if (family >= NPROTO)
3866 return -EINVAL;
3867 gifconf_list[family] = gifconf;
3868 return 0;
3869 }
3870 EXPORT_SYMBOL(register_gifconf);
3871
3872
3873 /*
3874 * Map an interface index to its name (SIOCGIFNAME)
3875 */
3876
3877 /*
3878 * We need this ioctl for efficient implementation of the
3879 * if_indextoname() function required by the IPv6 API. Without
3880 * it, we would have to search all the interfaces to find a
3881 * match. --pb
3882 */
3883
3884 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3885 {
3886 struct net_device *dev;
3887 struct ifreq ifr;
3888
3889 /*
3890 * Fetch the caller's info block.
3891 */
3892
3893 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3894 return -EFAULT;
3895
3896 rcu_read_lock();
3897 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3898 if (!dev) {
3899 rcu_read_unlock();
3900 return -ENODEV;
3901 }
3902
3903 strcpy(ifr.ifr_name, dev->name);
3904 rcu_read_unlock();
3905
3906 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3907 return -EFAULT;
3908 return 0;
3909 }
3910
3911 /*
3912 * Perform a SIOCGIFCONF call. This structure will change
3913 * size eventually, and there is nothing I can do about it.
3914 * Thus we will need a 'compatibility mode'.
3915 */
3916
3917 static int dev_ifconf(struct net *net, char __user *arg)
3918 {
3919 struct ifconf ifc;
3920 struct net_device *dev;
3921 char __user *pos;
3922 int len;
3923 int total;
3924 int i;
3925
3926 /*
3927 * Fetch the caller's info block.
3928 */
3929
3930 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3931 return -EFAULT;
3932
3933 pos = ifc.ifc_buf;
3934 len = ifc.ifc_len;
3935
3936 /*
3937 * Loop over the interfaces, and write an info block for each.
3938 */
3939
3940 total = 0;
3941 for_each_netdev(net, dev) {
3942 for (i = 0; i < NPROTO; i++) {
3943 if (gifconf_list[i]) {
3944 int done;
3945 if (!pos)
3946 done = gifconf_list[i](dev, NULL, 0);
3947 else
3948 done = gifconf_list[i](dev, pos + total,
3949 len - total);
3950 if (done < 0)
3951 return -EFAULT;
3952 total += done;
3953 }
3954 }
3955 }
3956
3957 /*
3958 * All done. Write the updated control block back to the caller.
3959 */
3960 ifc.ifc_len = total;
3961
3962 /*
3963 * Both BSD and Solaris return 0 here, so we do too.
3964 */
3965 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3966 }
3967
3968 #ifdef CONFIG_PROC_FS
3969 /*
3970 * This is invoked by the /proc filesystem handler to display a device
3971 * in detail.
3972 */
3973 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3974 __acquires(RCU)
3975 {
3976 struct net *net = seq_file_net(seq);
3977 loff_t off;
3978 struct net_device *dev;
3979
3980 rcu_read_lock();
3981 if (!*pos)
3982 return SEQ_START_TOKEN;
3983
3984 off = 1;
3985 for_each_netdev_rcu(net, dev)
3986 if (off++ == *pos)
3987 return dev;
3988
3989 return NULL;
3990 }
3991
3992 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3993 {
3994 struct net_device *dev = v;
3995
3996 if (v == SEQ_START_TOKEN)
3997 dev = first_net_device_rcu(seq_file_net(seq));
3998 else
3999 dev = next_net_device_rcu(dev);
4000
4001 ++*pos;
4002 return dev;
4003 }
4004
4005 void dev_seq_stop(struct seq_file *seq, void *v)
4006 __releases(RCU)
4007 {
4008 rcu_read_unlock();
4009 }
4010
4011 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4012 {
4013 struct rtnl_link_stats64 temp;
4014 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4015
4016 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4017 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4018 dev->name, stats->rx_bytes, stats->rx_packets,
4019 stats->rx_errors,
4020 stats->rx_dropped + stats->rx_missed_errors,
4021 stats->rx_fifo_errors,
4022 stats->rx_length_errors + stats->rx_over_errors +
4023 stats->rx_crc_errors + stats->rx_frame_errors,
4024 stats->rx_compressed, stats->multicast,
4025 stats->tx_bytes, stats->tx_packets,
4026 stats->tx_errors, stats->tx_dropped,
4027 stats->tx_fifo_errors, stats->collisions,
4028 stats->tx_carrier_errors +
4029 stats->tx_aborted_errors +
4030 stats->tx_window_errors +
4031 stats->tx_heartbeat_errors,
4032 stats->tx_compressed);
4033 }
4034
4035 /*
4036 * Called from the PROCfs module. This now uses the new arbitrary sized
4037 * /proc/net interface to create /proc/net/dev
4038 */
4039 static int dev_seq_show(struct seq_file *seq, void *v)
4040 {
4041 if (v == SEQ_START_TOKEN)
4042 seq_puts(seq, "Inter-| Receive "
4043 " | Transmit\n"
4044 " face |bytes packets errs drop fifo frame "
4045 "compressed multicast|bytes packets errs "
4046 "drop fifo colls carrier compressed\n");
4047 else
4048 dev_seq_printf_stats(seq, v);
4049 return 0;
4050 }
4051
4052 static struct softnet_data *softnet_get_online(loff_t *pos)
4053 {
4054 struct softnet_data *sd = NULL;
4055
4056 while (*pos < nr_cpu_ids)
4057 if (cpu_online(*pos)) {
4058 sd = &per_cpu(softnet_data, *pos);
4059 break;
4060 } else
4061 ++*pos;
4062 return sd;
4063 }
4064
4065 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4066 {
4067 return softnet_get_online(pos);
4068 }
4069
4070 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4071 {
4072 ++*pos;
4073 return softnet_get_online(pos);
4074 }
4075
4076 static void softnet_seq_stop(struct seq_file *seq, void *v)
4077 {
4078 }
4079
4080 static int softnet_seq_show(struct seq_file *seq, void *v)
4081 {
4082 struct softnet_data *sd = v;
4083
4084 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4085 sd->processed, sd->dropped, sd->time_squeeze, 0,
4086 0, 0, 0, 0, /* was fastroute */
4087 sd->cpu_collision, sd->received_rps);
4088 return 0;
4089 }
4090
4091 static const struct seq_operations dev_seq_ops = {
4092 .start = dev_seq_start,
4093 .next = dev_seq_next,
4094 .stop = dev_seq_stop,
4095 .show = dev_seq_show,
4096 };
4097
4098 static int dev_seq_open(struct inode *inode, struct file *file)
4099 {
4100 return seq_open_net(inode, file, &dev_seq_ops,
4101 sizeof(struct seq_net_private));
4102 }
4103
4104 static const struct file_operations dev_seq_fops = {
4105 .owner = THIS_MODULE,
4106 .open = dev_seq_open,
4107 .read = seq_read,
4108 .llseek = seq_lseek,
4109 .release = seq_release_net,
4110 };
4111
4112 static const struct seq_operations softnet_seq_ops = {
4113 .start = softnet_seq_start,
4114 .next = softnet_seq_next,
4115 .stop = softnet_seq_stop,
4116 .show = softnet_seq_show,
4117 };
4118
4119 static int softnet_seq_open(struct inode *inode, struct file *file)
4120 {
4121 return seq_open(file, &softnet_seq_ops);
4122 }
4123
4124 static const struct file_operations softnet_seq_fops = {
4125 .owner = THIS_MODULE,
4126 .open = softnet_seq_open,
4127 .read = seq_read,
4128 .llseek = seq_lseek,
4129 .release = seq_release,
4130 };
4131
4132 static void *ptype_get_idx(loff_t pos)
4133 {
4134 struct packet_type *pt = NULL;
4135 loff_t i = 0;
4136 int t;
4137
4138 list_for_each_entry_rcu(pt, &ptype_all, list) {
4139 if (i == pos)
4140 return pt;
4141 ++i;
4142 }
4143
4144 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4145 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4146 if (i == pos)
4147 return pt;
4148 ++i;
4149 }
4150 }
4151 return NULL;
4152 }
4153
4154 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4155 __acquires(RCU)
4156 {
4157 rcu_read_lock();
4158 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4159 }
4160
4161 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4162 {
4163 struct packet_type *pt;
4164 struct list_head *nxt;
4165 int hash;
4166
4167 ++*pos;
4168 if (v == SEQ_START_TOKEN)
4169 return ptype_get_idx(0);
4170
4171 pt = v;
4172 nxt = pt->list.next;
4173 if (pt->type == htons(ETH_P_ALL)) {
4174 if (nxt != &ptype_all)
4175 goto found;
4176 hash = 0;
4177 nxt = ptype_base[0].next;
4178 } else
4179 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4180
4181 while (nxt == &ptype_base[hash]) {
4182 if (++hash >= PTYPE_HASH_SIZE)
4183 return NULL;
4184 nxt = ptype_base[hash].next;
4185 }
4186 found:
4187 return list_entry(nxt, struct packet_type, list);
4188 }
4189
4190 static void ptype_seq_stop(struct seq_file *seq, void *v)
4191 __releases(RCU)
4192 {
4193 rcu_read_unlock();
4194 }
4195
4196 static int ptype_seq_show(struct seq_file *seq, void *v)
4197 {
4198 struct packet_type *pt = v;
4199
4200 if (v == SEQ_START_TOKEN)
4201 seq_puts(seq, "Type Device Function\n");
4202 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4203 if (pt->type == htons(ETH_P_ALL))
4204 seq_puts(seq, "ALL ");
4205 else
4206 seq_printf(seq, "%04x", ntohs(pt->type));
4207
4208 seq_printf(seq, " %-8s %pF\n",
4209 pt->dev ? pt->dev->name : "", pt->func);
4210 }
4211
4212 return 0;
4213 }
4214
4215 static const struct seq_operations ptype_seq_ops = {
4216 .start = ptype_seq_start,
4217 .next = ptype_seq_next,
4218 .stop = ptype_seq_stop,
4219 .show = ptype_seq_show,
4220 };
4221
4222 static int ptype_seq_open(struct inode *inode, struct file *file)
4223 {
4224 return seq_open_net(inode, file, &ptype_seq_ops,
4225 sizeof(struct seq_net_private));
4226 }
4227
4228 static const struct file_operations ptype_seq_fops = {
4229 .owner = THIS_MODULE,
4230 .open = ptype_seq_open,
4231 .read = seq_read,
4232 .llseek = seq_lseek,
4233 .release = seq_release_net,
4234 };
4235
4236
4237 static int __net_init dev_proc_net_init(struct net *net)
4238 {
4239 int rc = -ENOMEM;
4240
4241 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4242 goto out;
4243 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4244 goto out_dev;
4245 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4246 goto out_softnet;
4247
4248 if (wext_proc_init(net))
4249 goto out_ptype;
4250 rc = 0;
4251 out:
4252 return rc;
4253 out_ptype:
4254 proc_net_remove(net, "ptype");
4255 out_softnet:
4256 proc_net_remove(net, "softnet_stat");
4257 out_dev:
4258 proc_net_remove(net, "dev");
4259 goto out;
4260 }
4261
4262 static void __net_exit dev_proc_net_exit(struct net *net)
4263 {
4264 wext_proc_exit(net);
4265
4266 proc_net_remove(net, "ptype");
4267 proc_net_remove(net, "softnet_stat");
4268 proc_net_remove(net, "dev");
4269 }
4270
4271 static struct pernet_operations __net_initdata dev_proc_ops = {
4272 .init = dev_proc_net_init,
4273 .exit = dev_proc_net_exit,
4274 };
4275
4276 static int __init dev_proc_init(void)
4277 {
4278 return register_pernet_subsys(&dev_proc_ops);
4279 }
4280 #else
4281 #define dev_proc_init() 0
4282 #endif /* CONFIG_PROC_FS */
4283
4284
4285 /**
4286 * netdev_set_master - set up master pointer
4287 * @slave: slave device
4288 * @master: new master device
4289 *
4290 * Changes the master device of the slave. Pass %NULL to break the
4291 * bonding. The caller must hold the RTNL semaphore. On a failure
4292 * a negative errno code is returned. On success the reference counts
4293 * are adjusted and the function returns zero.
4294 */
4295 int netdev_set_master(struct net_device *slave, struct net_device *master)
4296 {
4297 struct net_device *old = slave->master;
4298
4299 ASSERT_RTNL();
4300
4301 if (master) {
4302 if (old)
4303 return -EBUSY;
4304 dev_hold(master);
4305 }
4306
4307 slave->master = master;
4308
4309 if (old) {
4310 synchronize_net();
4311 dev_put(old);
4312 }
4313 return 0;
4314 }
4315 EXPORT_SYMBOL(netdev_set_master);
4316
4317 /**
4318 * netdev_set_bond_master - set up bonding master/slave pair
4319 * @slave: slave device
4320 * @master: new master device
4321 *
4322 * Changes the master device of the slave. Pass %NULL to break the
4323 * bonding. The caller must hold the RTNL semaphore. On a failure
4324 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4325 * to the routing socket and the function returns zero.
4326 */
4327 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4328 {
4329 int err;
4330
4331 ASSERT_RTNL();
4332
4333 err = netdev_set_master(slave, master);
4334 if (err)
4335 return err;
4336 if (master)
4337 slave->flags |= IFF_SLAVE;
4338 else
4339 slave->flags &= ~IFF_SLAVE;
4340
4341 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4342 return 0;
4343 }
4344 EXPORT_SYMBOL(netdev_set_bond_master);
4345
4346 static void dev_change_rx_flags(struct net_device *dev, int flags)
4347 {
4348 const struct net_device_ops *ops = dev->netdev_ops;
4349
4350 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4351 ops->ndo_change_rx_flags(dev, flags);
4352 }
4353
4354 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4355 {
4356 unsigned short old_flags = dev->flags;
4357 uid_t uid;
4358 gid_t gid;
4359
4360 ASSERT_RTNL();
4361
4362 dev->flags |= IFF_PROMISC;
4363 dev->promiscuity += inc;
4364 if (dev->promiscuity == 0) {
4365 /*
4366 * Avoid overflow.
4367 * If inc causes overflow, untouch promisc and return error.
4368 */
4369 if (inc < 0)
4370 dev->flags &= ~IFF_PROMISC;
4371 else {
4372 dev->promiscuity -= inc;
4373 printk(KERN_WARNING "%s: promiscuity touches roof, "
4374 "set promiscuity failed, promiscuity feature "
4375 "of device might be broken.\n", dev->name);
4376 return -EOVERFLOW;
4377 }
4378 }
4379 if (dev->flags != old_flags) {
4380 printk(KERN_INFO "device %s %s promiscuous mode\n",
4381 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4382 "left");
4383 if (audit_enabled) {
4384 current_uid_gid(&uid, &gid);
4385 audit_log(current->audit_context, GFP_ATOMIC,
4386 AUDIT_ANOM_PROMISCUOUS,
4387 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4388 dev->name, (dev->flags & IFF_PROMISC),
4389 (old_flags & IFF_PROMISC),
4390 audit_get_loginuid(current),
4391 uid, gid,
4392 audit_get_sessionid(current));
4393 }
4394
4395 dev_change_rx_flags(dev, IFF_PROMISC);
4396 }
4397 return 0;
4398 }
4399
4400 /**
4401 * dev_set_promiscuity - update promiscuity count on a device
4402 * @dev: device
4403 * @inc: modifier
4404 *
4405 * Add or remove promiscuity from a device. While the count in the device
4406 * remains above zero the interface remains promiscuous. Once it hits zero
4407 * the device reverts back to normal filtering operation. A negative inc
4408 * value is used to drop promiscuity on the device.
4409 * Return 0 if successful or a negative errno code on error.
4410 */
4411 int dev_set_promiscuity(struct net_device *dev, int inc)
4412 {
4413 unsigned short old_flags = dev->flags;
4414 int err;
4415
4416 err = __dev_set_promiscuity(dev, inc);
4417 if (err < 0)
4418 return err;
4419 if (dev->flags != old_flags)
4420 dev_set_rx_mode(dev);
4421 return err;
4422 }
4423 EXPORT_SYMBOL(dev_set_promiscuity);
4424
4425 /**
4426 * dev_set_allmulti - update allmulti count on a device
4427 * @dev: device
4428 * @inc: modifier
4429 *
4430 * Add or remove reception of all multicast frames to a device. While the
4431 * count in the device remains above zero the interface remains listening
4432 * to all interfaces. Once it hits zero the device reverts back to normal
4433 * filtering operation. A negative @inc value is used to drop the counter
4434 * when releasing a resource needing all multicasts.
4435 * Return 0 if successful or a negative errno code on error.
4436 */
4437
4438 int dev_set_allmulti(struct net_device *dev, int inc)
4439 {
4440 unsigned short old_flags = dev->flags;
4441
4442 ASSERT_RTNL();
4443
4444 dev->flags |= IFF_ALLMULTI;
4445 dev->allmulti += inc;
4446 if (dev->allmulti == 0) {
4447 /*
4448 * Avoid overflow.
4449 * If inc causes overflow, untouch allmulti and return error.
4450 */
4451 if (inc < 0)
4452 dev->flags &= ~IFF_ALLMULTI;
4453 else {
4454 dev->allmulti -= inc;
4455 printk(KERN_WARNING "%s: allmulti touches roof, "
4456 "set allmulti failed, allmulti feature of "
4457 "device might be broken.\n", dev->name);
4458 return -EOVERFLOW;
4459 }
4460 }
4461 if (dev->flags ^ old_flags) {
4462 dev_change_rx_flags(dev, IFF_ALLMULTI);
4463 dev_set_rx_mode(dev);
4464 }
4465 return 0;
4466 }
4467 EXPORT_SYMBOL(dev_set_allmulti);
4468
4469 /*
4470 * Upload unicast and multicast address lists to device and
4471 * configure RX filtering. When the device doesn't support unicast
4472 * filtering it is put in promiscuous mode while unicast addresses
4473 * are present.
4474 */
4475 void __dev_set_rx_mode(struct net_device *dev)
4476 {
4477 const struct net_device_ops *ops = dev->netdev_ops;
4478
4479 /* dev_open will call this function so the list will stay sane. */
4480 if (!(dev->flags&IFF_UP))
4481 return;
4482
4483 if (!netif_device_present(dev))
4484 return;
4485
4486 if (ops->ndo_set_rx_mode)
4487 ops->ndo_set_rx_mode(dev);
4488 else {
4489 /* Unicast addresses changes may only happen under the rtnl,
4490 * therefore calling __dev_set_promiscuity here is safe.
4491 */
4492 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4493 __dev_set_promiscuity(dev, 1);
4494 dev->uc_promisc = 1;
4495 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4496 __dev_set_promiscuity(dev, -1);
4497 dev->uc_promisc = 0;
4498 }
4499
4500 if (ops->ndo_set_multicast_list)
4501 ops->ndo_set_multicast_list(dev);
4502 }
4503 }
4504
4505 void dev_set_rx_mode(struct net_device *dev)
4506 {
4507 netif_addr_lock_bh(dev);
4508 __dev_set_rx_mode(dev);
4509 netif_addr_unlock_bh(dev);
4510 }
4511
4512 /**
4513 * dev_get_flags - get flags reported to userspace
4514 * @dev: device
4515 *
4516 * Get the combination of flag bits exported through APIs to userspace.
4517 */
4518 unsigned dev_get_flags(const struct net_device *dev)
4519 {
4520 unsigned flags;
4521
4522 flags = (dev->flags & ~(IFF_PROMISC |
4523 IFF_ALLMULTI |
4524 IFF_RUNNING |
4525 IFF_LOWER_UP |
4526 IFF_DORMANT)) |
4527 (dev->gflags & (IFF_PROMISC |
4528 IFF_ALLMULTI));
4529
4530 if (netif_running(dev)) {
4531 if (netif_oper_up(dev))
4532 flags |= IFF_RUNNING;
4533 if (netif_carrier_ok(dev))
4534 flags |= IFF_LOWER_UP;
4535 if (netif_dormant(dev))
4536 flags |= IFF_DORMANT;
4537 }
4538
4539 return flags;
4540 }
4541 EXPORT_SYMBOL(dev_get_flags);
4542
4543 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4544 {
4545 int old_flags = dev->flags;
4546 int ret;
4547
4548 ASSERT_RTNL();
4549
4550 /*
4551 * Set the flags on our device.
4552 */
4553
4554 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4555 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4556 IFF_AUTOMEDIA)) |
4557 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4558 IFF_ALLMULTI));
4559
4560 /*
4561 * Load in the correct multicast list now the flags have changed.
4562 */
4563
4564 if ((old_flags ^ flags) & IFF_MULTICAST)
4565 dev_change_rx_flags(dev, IFF_MULTICAST);
4566
4567 dev_set_rx_mode(dev);
4568
4569 /*
4570 * Have we downed the interface. We handle IFF_UP ourselves
4571 * according to user attempts to set it, rather than blindly
4572 * setting it.
4573 */
4574
4575 ret = 0;
4576 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4577 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4578
4579 if (!ret)
4580 dev_set_rx_mode(dev);
4581 }
4582
4583 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4584 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4585
4586 dev->gflags ^= IFF_PROMISC;
4587 dev_set_promiscuity(dev, inc);
4588 }
4589
4590 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4591 is important. Some (broken) drivers set IFF_PROMISC, when
4592 IFF_ALLMULTI is requested not asking us and not reporting.
4593 */
4594 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4595 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4596
4597 dev->gflags ^= IFF_ALLMULTI;
4598 dev_set_allmulti(dev, inc);
4599 }
4600
4601 return ret;
4602 }
4603
4604 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4605 {
4606 unsigned int changes = dev->flags ^ old_flags;
4607
4608 if (changes & IFF_UP) {
4609 if (dev->flags & IFF_UP)
4610 call_netdevice_notifiers(NETDEV_UP, dev);
4611 else
4612 call_netdevice_notifiers(NETDEV_DOWN, dev);
4613 }
4614
4615 if (dev->flags & IFF_UP &&
4616 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4617 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4618 }
4619
4620 /**
4621 * dev_change_flags - change device settings
4622 * @dev: device
4623 * @flags: device state flags
4624 *
4625 * Change settings on device based state flags. The flags are
4626 * in the userspace exported format.
4627 */
4628 int dev_change_flags(struct net_device *dev, unsigned flags)
4629 {
4630 int ret, changes;
4631 int old_flags = dev->flags;
4632
4633 ret = __dev_change_flags(dev, flags);
4634 if (ret < 0)
4635 return ret;
4636
4637 changes = old_flags ^ dev->flags;
4638 if (changes)
4639 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4640
4641 __dev_notify_flags(dev, old_flags);
4642 return ret;
4643 }
4644 EXPORT_SYMBOL(dev_change_flags);
4645
4646 /**
4647 * dev_set_mtu - Change maximum transfer unit
4648 * @dev: device
4649 * @new_mtu: new transfer unit
4650 *
4651 * Change the maximum transfer size of the network device.
4652 */
4653 int dev_set_mtu(struct net_device *dev, int new_mtu)
4654 {
4655 const struct net_device_ops *ops = dev->netdev_ops;
4656 int err;
4657
4658 if (new_mtu == dev->mtu)
4659 return 0;
4660
4661 /* MTU must be positive. */
4662 if (new_mtu < 0)
4663 return -EINVAL;
4664
4665 if (!netif_device_present(dev))
4666 return -ENODEV;
4667
4668 err = 0;
4669 if (ops->ndo_change_mtu)
4670 err = ops->ndo_change_mtu(dev, new_mtu);
4671 else
4672 dev->mtu = new_mtu;
4673
4674 if (!err && dev->flags & IFF_UP)
4675 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4676 return err;
4677 }
4678 EXPORT_SYMBOL(dev_set_mtu);
4679
4680 /**
4681 * dev_set_group - Change group this device belongs to
4682 * @dev: device
4683 * @new_group: group this device should belong to
4684 */
4685 void dev_set_group(struct net_device *dev, int new_group)
4686 {
4687 dev->group = new_group;
4688 }
4689 EXPORT_SYMBOL(dev_set_group);
4690
4691 /**
4692 * dev_set_mac_address - Change Media Access Control Address
4693 * @dev: device
4694 * @sa: new address
4695 *
4696 * Change the hardware (MAC) address of the device
4697 */
4698 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4699 {
4700 const struct net_device_ops *ops = dev->netdev_ops;
4701 int err;
4702
4703 if (!ops->ndo_set_mac_address)
4704 return -EOPNOTSUPP;
4705 if (sa->sa_family != dev->type)
4706 return -EINVAL;
4707 if (!netif_device_present(dev))
4708 return -ENODEV;
4709 err = ops->ndo_set_mac_address(dev, sa);
4710 if (!err)
4711 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4712 return err;
4713 }
4714 EXPORT_SYMBOL(dev_set_mac_address);
4715
4716 /*
4717 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4718 */
4719 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4720 {
4721 int err;
4722 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4723
4724 if (!dev)
4725 return -ENODEV;
4726
4727 switch (cmd) {
4728 case SIOCGIFFLAGS: /* Get interface flags */
4729 ifr->ifr_flags = (short) dev_get_flags(dev);
4730 return 0;
4731
4732 case SIOCGIFMETRIC: /* Get the metric on the interface
4733 (currently unused) */
4734 ifr->ifr_metric = 0;
4735 return 0;
4736
4737 case SIOCGIFMTU: /* Get the MTU of a device */
4738 ifr->ifr_mtu = dev->mtu;
4739 return 0;
4740
4741 case SIOCGIFHWADDR:
4742 if (!dev->addr_len)
4743 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4744 else
4745 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4746 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4747 ifr->ifr_hwaddr.sa_family = dev->type;
4748 return 0;
4749
4750 case SIOCGIFSLAVE:
4751 err = -EINVAL;
4752 break;
4753
4754 case SIOCGIFMAP:
4755 ifr->ifr_map.mem_start = dev->mem_start;
4756 ifr->ifr_map.mem_end = dev->mem_end;
4757 ifr->ifr_map.base_addr = dev->base_addr;
4758 ifr->ifr_map.irq = dev->irq;
4759 ifr->ifr_map.dma = dev->dma;
4760 ifr->ifr_map.port = dev->if_port;
4761 return 0;
4762
4763 case SIOCGIFINDEX:
4764 ifr->ifr_ifindex = dev->ifindex;
4765 return 0;
4766
4767 case SIOCGIFTXQLEN:
4768 ifr->ifr_qlen = dev->tx_queue_len;
4769 return 0;
4770
4771 default:
4772 /* dev_ioctl() should ensure this case
4773 * is never reached
4774 */
4775 WARN_ON(1);
4776 err = -EINVAL;
4777 break;
4778
4779 }
4780 return err;
4781 }
4782
4783 /*
4784 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4785 */
4786 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4787 {
4788 int err;
4789 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4790 const struct net_device_ops *ops;
4791
4792 if (!dev)
4793 return -ENODEV;
4794
4795 ops = dev->netdev_ops;
4796
4797 switch (cmd) {
4798 case SIOCSIFFLAGS: /* Set interface flags */
4799 return dev_change_flags(dev, ifr->ifr_flags);
4800
4801 case SIOCSIFMETRIC: /* Set the metric on the interface
4802 (currently unused) */
4803 return -EOPNOTSUPP;
4804
4805 case SIOCSIFMTU: /* Set the MTU of a device */
4806 return dev_set_mtu(dev, ifr->ifr_mtu);
4807
4808 case SIOCSIFHWADDR:
4809 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4810
4811 case SIOCSIFHWBROADCAST:
4812 if (ifr->ifr_hwaddr.sa_family != dev->type)
4813 return -EINVAL;
4814 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4815 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4816 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4817 return 0;
4818
4819 case SIOCSIFMAP:
4820 if (ops->ndo_set_config) {
4821 if (!netif_device_present(dev))
4822 return -ENODEV;
4823 return ops->ndo_set_config(dev, &ifr->ifr_map);
4824 }
4825 return -EOPNOTSUPP;
4826
4827 case SIOCADDMULTI:
4828 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4829 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4830 return -EINVAL;
4831 if (!netif_device_present(dev))
4832 return -ENODEV;
4833 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4834
4835 case SIOCDELMULTI:
4836 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4837 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4838 return -EINVAL;
4839 if (!netif_device_present(dev))
4840 return -ENODEV;
4841 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4842
4843 case SIOCSIFTXQLEN:
4844 if (ifr->ifr_qlen < 0)
4845 return -EINVAL;
4846 dev->tx_queue_len = ifr->ifr_qlen;
4847 return 0;
4848
4849 case SIOCSIFNAME:
4850 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4851 return dev_change_name(dev, ifr->ifr_newname);
4852
4853 /*
4854 * Unknown or private ioctl
4855 */
4856 default:
4857 if ((cmd >= SIOCDEVPRIVATE &&
4858 cmd <= SIOCDEVPRIVATE + 15) ||
4859 cmd == SIOCBONDENSLAVE ||
4860 cmd == SIOCBONDRELEASE ||
4861 cmd == SIOCBONDSETHWADDR ||
4862 cmd == SIOCBONDSLAVEINFOQUERY ||
4863 cmd == SIOCBONDINFOQUERY ||
4864 cmd == SIOCBONDCHANGEACTIVE ||
4865 cmd == SIOCGMIIPHY ||
4866 cmd == SIOCGMIIREG ||
4867 cmd == SIOCSMIIREG ||
4868 cmd == SIOCBRADDIF ||
4869 cmd == SIOCBRDELIF ||
4870 cmd == SIOCSHWTSTAMP ||
4871 cmd == SIOCWANDEV) {
4872 err = -EOPNOTSUPP;
4873 if (ops->ndo_do_ioctl) {
4874 if (netif_device_present(dev))
4875 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4876 else
4877 err = -ENODEV;
4878 }
4879 } else
4880 err = -EINVAL;
4881
4882 }
4883 return err;
4884 }
4885
4886 /*
4887 * This function handles all "interface"-type I/O control requests. The actual
4888 * 'doing' part of this is dev_ifsioc above.
4889 */
4890
4891 /**
4892 * dev_ioctl - network device ioctl
4893 * @net: the applicable net namespace
4894 * @cmd: command to issue
4895 * @arg: pointer to a struct ifreq in user space
4896 *
4897 * Issue ioctl functions to devices. This is normally called by the
4898 * user space syscall interfaces but can sometimes be useful for
4899 * other purposes. The return value is the return from the syscall if
4900 * positive or a negative errno code on error.
4901 */
4902
4903 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4904 {
4905 struct ifreq ifr;
4906 int ret;
4907 char *colon;
4908
4909 /* One special case: SIOCGIFCONF takes ifconf argument
4910 and requires shared lock, because it sleeps writing
4911 to user space.
4912 */
4913
4914 if (cmd == SIOCGIFCONF) {
4915 rtnl_lock();
4916 ret = dev_ifconf(net, (char __user *) arg);
4917 rtnl_unlock();
4918 return ret;
4919 }
4920 if (cmd == SIOCGIFNAME)
4921 return dev_ifname(net, (struct ifreq __user *)arg);
4922
4923 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4924 return -EFAULT;
4925
4926 ifr.ifr_name[IFNAMSIZ-1] = 0;
4927
4928 colon = strchr(ifr.ifr_name, ':');
4929 if (colon)
4930 *colon = 0;
4931
4932 /*
4933 * See which interface the caller is talking about.
4934 */
4935
4936 switch (cmd) {
4937 /*
4938 * These ioctl calls:
4939 * - can be done by all.
4940 * - atomic and do not require locking.
4941 * - return a value
4942 */
4943 case SIOCGIFFLAGS:
4944 case SIOCGIFMETRIC:
4945 case SIOCGIFMTU:
4946 case SIOCGIFHWADDR:
4947 case SIOCGIFSLAVE:
4948 case SIOCGIFMAP:
4949 case SIOCGIFINDEX:
4950 case SIOCGIFTXQLEN:
4951 dev_load(net, ifr.ifr_name);
4952 rcu_read_lock();
4953 ret = dev_ifsioc_locked(net, &ifr, cmd);
4954 rcu_read_unlock();
4955 if (!ret) {
4956 if (colon)
4957 *colon = ':';
4958 if (copy_to_user(arg, &ifr,
4959 sizeof(struct ifreq)))
4960 ret = -EFAULT;
4961 }
4962 return ret;
4963
4964 case SIOCETHTOOL:
4965 dev_load(net, ifr.ifr_name);
4966 rtnl_lock();
4967 ret = dev_ethtool(net, &ifr);
4968 rtnl_unlock();
4969 if (!ret) {
4970 if (colon)
4971 *colon = ':';
4972 if (copy_to_user(arg, &ifr,
4973 sizeof(struct ifreq)))
4974 ret = -EFAULT;
4975 }
4976 return ret;
4977
4978 /*
4979 * These ioctl calls:
4980 * - require superuser power.
4981 * - require strict serialization.
4982 * - return a value
4983 */
4984 case SIOCGMIIPHY:
4985 case SIOCGMIIREG:
4986 case SIOCSIFNAME:
4987 if (!capable(CAP_NET_ADMIN))
4988 return -EPERM;
4989 dev_load(net, ifr.ifr_name);
4990 rtnl_lock();
4991 ret = dev_ifsioc(net, &ifr, cmd);
4992 rtnl_unlock();
4993 if (!ret) {
4994 if (colon)
4995 *colon = ':';
4996 if (copy_to_user(arg, &ifr,
4997 sizeof(struct ifreq)))
4998 ret = -EFAULT;
4999 }
5000 return ret;
5001
5002 /*
5003 * These ioctl calls:
5004 * - require superuser power.
5005 * - require strict serialization.
5006 * - do not return a value
5007 */
5008 case SIOCSIFFLAGS:
5009 case SIOCSIFMETRIC:
5010 case SIOCSIFMTU:
5011 case SIOCSIFMAP:
5012 case SIOCSIFHWADDR:
5013 case SIOCSIFSLAVE:
5014 case SIOCADDMULTI:
5015 case SIOCDELMULTI:
5016 case SIOCSIFHWBROADCAST:
5017 case SIOCSIFTXQLEN:
5018 case SIOCSMIIREG:
5019 case SIOCBONDENSLAVE:
5020 case SIOCBONDRELEASE:
5021 case SIOCBONDSETHWADDR:
5022 case SIOCBONDCHANGEACTIVE:
5023 case SIOCBRADDIF:
5024 case SIOCBRDELIF:
5025 case SIOCSHWTSTAMP:
5026 if (!capable(CAP_NET_ADMIN))
5027 return -EPERM;
5028 /* fall through */
5029 case SIOCBONDSLAVEINFOQUERY:
5030 case SIOCBONDINFOQUERY:
5031 dev_load(net, ifr.ifr_name);
5032 rtnl_lock();
5033 ret = dev_ifsioc(net, &ifr, cmd);
5034 rtnl_unlock();
5035 return ret;
5036
5037 case SIOCGIFMEM:
5038 /* Get the per device memory space. We can add this but
5039 * currently do not support it */
5040 case SIOCSIFMEM:
5041 /* Set the per device memory buffer space.
5042 * Not applicable in our case */
5043 case SIOCSIFLINK:
5044 return -EINVAL;
5045
5046 /*
5047 * Unknown or private ioctl.
5048 */
5049 default:
5050 if (cmd == SIOCWANDEV ||
5051 (cmd >= SIOCDEVPRIVATE &&
5052 cmd <= SIOCDEVPRIVATE + 15)) {
5053 dev_load(net, ifr.ifr_name);
5054 rtnl_lock();
5055 ret = dev_ifsioc(net, &ifr, cmd);
5056 rtnl_unlock();
5057 if (!ret && copy_to_user(arg, &ifr,
5058 sizeof(struct ifreq)))
5059 ret = -EFAULT;
5060 return ret;
5061 }
5062 /* Take care of Wireless Extensions */
5063 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5064 return wext_handle_ioctl(net, &ifr, cmd, arg);
5065 return -EINVAL;
5066 }
5067 }
5068
5069
5070 /**
5071 * dev_new_index - allocate an ifindex
5072 * @net: the applicable net namespace
5073 *
5074 * Returns a suitable unique value for a new device interface
5075 * number. The caller must hold the rtnl semaphore or the
5076 * dev_base_lock to be sure it remains unique.
5077 */
5078 static int dev_new_index(struct net *net)
5079 {
5080 static int ifindex;
5081 for (;;) {
5082 if (++ifindex <= 0)
5083 ifindex = 1;
5084 if (!__dev_get_by_index(net, ifindex))
5085 return ifindex;
5086 }
5087 }
5088
5089 /* Delayed registration/unregisteration */
5090 static LIST_HEAD(net_todo_list);
5091
5092 static void net_set_todo(struct net_device *dev)
5093 {
5094 list_add_tail(&dev->todo_list, &net_todo_list);
5095 }
5096
5097 static void rollback_registered_many(struct list_head *head)
5098 {
5099 struct net_device *dev, *tmp;
5100
5101 BUG_ON(dev_boot_phase);
5102 ASSERT_RTNL();
5103
5104 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5105 /* Some devices call without registering
5106 * for initialization unwind. Remove those
5107 * devices and proceed with the remaining.
5108 */
5109 if (dev->reg_state == NETREG_UNINITIALIZED) {
5110 pr_debug("unregister_netdevice: device %s/%p never "
5111 "was registered\n", dev->name, dev);
5112
5113 WARN_ON(1);
5114 list_del(&dev->unreg_list);
5115 continue;
5116 }
5117
5118 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5119 }
5120
5121 /* If device is running, close it first. */
5122 dev_close_many(head);
5123
5124 list_for_each_entry(dev, head, unreg_list) {
5125 /* And unlink it from device chain. */
5126 unlist_netdevice(dev);
5127
5128 dev->reg_state = NETREG_UNREGISTERING;
5129 }
5130
5131 synchronize_net();
5132
5133 list_for_each_entry(dev, head, unreg_list) {
5134 /* Shutdown queueing discipline. */
5135 dev_shutdown(dev);
5136
5137
5138 /* Notify protocols, that we are about to destroy
5139 this device. They should clean all the things.
5140 */
5141 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5142
5143 if (!dev->rtnl_link_ops ||
5144 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5145 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5146
5147 /*
5148 * Flush the unicast and multicast chains
5149 */
5150 dev_uc_flush(dev);
5151 dev_mc_flush(dev);
5152
5153 if (dev->netdev_ops->ndo_uninit)
5154 dev->netdev_ops->ndo_uninit(dev);
5155
5156 /* Notifier chain MUST detach us from master device. */
5157 WARN_ON(dev->master);
5158
5159 /* Remove entries from kobject tree */
5160 netdev_unregister_kobject(dev);
5161 }
5162
5163 /* Process any work delayed until the end of the batch */
5164 dev = list_first_entry(head, struct net_device, unreg_list);
5165 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5166
5167 rcu_barrier();
5168
5169 list_for_each_entry(dev, head, unreg_list)
5170 dev_put(dev);
5171 }
5172
5173 static void rollback_registered(struct net_device *dev)
5174 {
5175 LIST_HEAD(single);
5176
5177 list_add(&dev->unreg_list, &single);
5178 rollback_registered_many(&single);
5179 list_del(&single);
5180 }
5181
5182 u32 netdev_fix_features(struct net_device *dev, u32 features)
5183 {
5184 /* Fix illegal checksum combinations */
5185 if ((features & NETIF_F_HW_CSUM) &&
5186 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5187 netdev_info(dev, "mixed HW and IP checksum settings.\n");
5188 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5189 }
5190
5191 if ((features & NETIF_F_NO_CSUM) &&
5192 (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5193 netdev_info(dev, "mixed no checksumming and other settings.\n");
5194 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5195 }
5196
5197 /* Fix illegal SG+CSUM combinations. */
5198 if ((features & NETIF_F_SG) &&
5199 !(features & NETIF_F_ALL_CSUM)) {
5200 netdev_info(dev,
5201 "Dropping NETIF_F_SG since no checksum feature.\n");
5202 features &= ~NETIF_F_SG;
5203 }
5204
5205 /* TSO requires that SG is present as well. */
5206 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5207 netdev_info(dev, "Dropping TSO features since no SG feature.\n");
5208 features &= ~NETIF_F_ALL_TSO;
5209 }
5210
5211 /* TSO ECN requires that TSO is present as well. */
5212 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5213 features &= ~NETIF_F_TSO_ECN;
5214
5215 /* Software GSO depends on SG. */
5216 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5217 netdev_info(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5218 features &= ~NETIF_F_GSO;
5219 }
5220
5221 /* UFO needs SG and checksumming */
5222 if (features & NETIF_F_UFO) {
5223 /* maybe split UFO into V4 and V6? */
5224 if (!((features & NETIF_F_GEN_CSUM) ||
5225 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5226 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5227 netdev_info(dev,
5228 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5229 features &= ~NETIF_F_UFO;
5230 }
5231
5232 if (!(features & NETIF_F_SG)) {
5233 netdev_info(dev,
5234 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5235 features &= ~NETIF_F_UFO;
5236 }
5237 }
5238
5239 return features;
5240 }
5241 EXPORT_SYMBOL(netdev_fix_features);
5242
5243 void netdev_update_features(struct net_device *dev)
5244 {
5245 u32 features;
5246 int err = 0;
5247
5248 features = netdev_get_wanted_features(dev);
5249
5250 if (dev->netdev_ops->ndo_fix_features)
5251 features = dev->netdev_ops->ndo_fix_features(dev, features);
5252
5253 /* driver might be less strict about feature dependencies */
5254 features = netdev_fix_features(dev, features);
5255
5256 if (dev->features == features)
5257 return;
5258
5259 netdev_info(dev, "Features changed: 0x%08x -> 0x%08x\n",
5260 dev->features, features);
5261
5262 if (dev->netdev_ops->ndo_set_features)
5263 err = dev->netdev_ops->ndo_set_features(dev, features);
5264
5265 if (!err)
5266 dev->features = features;
5267 else if (err < 0)
5268 netdev_err(dev,
5269 "set_features() failed (%d); wanted 0x%08x, left 0x%08x\n",
5270 err, features, dev->features);
5271 }
5272 EXPORT_SYMBOL(netdev_update_features);
5273
5274 /**
5275 * netif_stacked_transfer_operstate - transfer operstate
5276 * @rootdev: the root or lower level device to transfer state from
5277 * @dev: the device to transfer operstate to
5278 *
5279 * Transfer operational state from root to device. This is normally
5280 * called when a stacking relationship exists between the root
5281 * device and the device(a leaf device).
5282 */
5283 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5284 struct net_device *dev)
5285 {
5286 if (rootdev->operstate == IF_OPER_DORMANT)
5287 netif_dormant_on(dev);
5288 else
5289 netif_dormant_off(dev);
5290
5291 if (netif_carrier_ok(rootdev)) {
5292 if (!netif_carrier_ok(dev))
5293 netif_carrier_on(dev);
5294 } else {
5295 if (netif_carrier_ok(dev))
5296 netif_carrier_off(dev);
5297 }
5298 }
5299 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5300
5301 #ifdef CONFIG_RPS
5302 static int netif_alloc_rx_queues(struct net_device *dev)
5303 {
5304 unsigned int i, count = dev->num_rx_queues;
5305 struct netdev_rx_queue *rx;
5306
5307 BUG_ON(count < 1);
5308
5309 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5310 if (!rx) {
5311 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5312 return -ENOMEM;
5313 }
5314 dev->_rx = rx;
5315
5316 for (i = 0; i < count; i++)
5317 rx[i].dev = dev;
5318 return 0;
5319 }
5320 #endif
5321
5322 static void netdev_init_one_queue(struct net_device *dev,
5323 struct netdev_queue *queue, void *_unused)
5324 {
5325 /* Initialize queue lock */
5326 spin_lock_init(&queue->_xmit_lock);
5327 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5328 queue->xmit_lock_owner = -1;
5329 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5330 queue->dev = dev;
5331 }
5332
5333 static int netif_alloc_netdev_queues(struct net_device *dev)
5334 {
5335 unsigned int count = dev->num_tx_queues;
5336 struct netdev_queue *tx;
5337
5338 BUG_ON(count < 1);
5339
5340 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5341 if (!tx) {
5342 pr_err("netdev: Unable to allocate %u tx queues.\n",
5343 count);
5344 return -ENOMEM;
5345 }
5346 dev->_tx = tx;
5347
5348 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5349 spin_lock_init(&dev->tx_global_lock);
5350
5351 return 0;
5352 }
5353
5354 /**
5355 * register_netdevice - register a network device
5356 * @dev: device to register
5357 *
5358 * Take a completed network device structure and add it to the kernel
5359 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5360 * chain. 0 is returned on success. A negative errno code is returned
5361 * on a failure to set up the device, or if the name is a duplicate.
5362 *
5363 * Callers must hold the rtnl semaphore. You may want
5364 * register_netdev() instead of this.
5365 *
5366 * BUGS:
5367 * The locking appears insufficient to guarantee two parallel registers
5368 * will not get the same name.
5369 */
5370
5371 int register_netdevice(struct net_device *dev)
5372 {
5373 int ret;
5374 struct net *net = dev_net(dev);
5375
5376 BUG_ON(dev_boot_phase);
5377 ASSERT_RTNL();
5378
5379 might_sleep();
5380
5381 /* When net_device's are persistent, this will be fatal. */
5382 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5383 BUG_ON(!net);
5384
5385 spin_lock_init(&dev->addr_list_lock);
5386 netdev_set_addr_lockdep_class(dev);
5387
5388 dev->iflink = -1;
5389
5390 /* Init, if this function is available */
5391 if (dev->netdev_ops->ndo_init) {
5392 ret = dev->netdev_ops->ndo_init(dev);
5393 if (ret) {
5394 if (ret > 0)
5395 ret = -EIO;
5396 goto out;
5397 }
5398 }
5399
5400 ret = dev_get_valid_name(dev, dev->name, 0);
5401 if (ret)
5402 goto err_uninit;
5403
5404 dev->ifindex = dev_new_index(net);
5405 if (dev->iflink == -1)
5406 dev->iflink = dev->ifindex;
5407
5408 /* Transfer changeable features to wanted_features and enable
5409 * software offloads (GSO and GRO).
5410 */
5411 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5412 dev->features |= NETIF_F_SOFT_FEATURES;
5413 dev->wanted_features = dev->features & dev->hw_features;
5414
5415 /* Avoid warning from netdev_fix_features() for GSO without SG */
5416 if (!(dev->wanted_features & NETIF_F_SG)) {
5417 dev->wanted_features &= ~NETIF_F_GSO;
5418 dev->features &= ~NETIF_F_GSO;
5419 }
5420
5421 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5422 * vlan_dev_init() will do the dev->features check, so these features
5423 * are enabled only if supported by underlying device.
5424 */
5425 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5426
5427 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5428 ret = notifier_to_errno(ret);
5429 if (ret)
5430 goto err_uninit;
5431
5432 ret = netdev_register_kobject(dev);
5433 if (ret)
5434 goto err_uninit;
5435 dev->reg_state = NETREG_REGISTERED;
5436
5437 netdev_update_features(dev);
5438
5439 /*
5440 * Default initial state at registry is that the
5441 * device is present.
5442 */
5443
5444 set_bit(__LINK_STATE_PRESENT, &dev->state);
5445
5446 dev_init_scheduler(dev);
5447 dev_hold(dev);
5448 list_netdevice(dev);
5449
5450 /* Notify protocols, that a new device appeared. */
5451 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5452 ret = notifier_to_errno(ret);
5453 if (ret) {
5454 rollback_registered(dev);
5455 dev->reg_state = NETREG_UNREGISTERED;
5456 }
5457 /*
5458 * Prevent userspace races by waiting until the network
5459 * device is fully setup before sending notifications.
5460 */
5461 if (!dev->rtnl_link_ops ||
5462 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5463 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5464
5465 out:
5466 return ret;
5467
5468 err_uninit:
5469 if (dev->netdev_ops->ndo_uninit)
5470 dev->netdev_ops->ndo_uninit(dev);
5471 goto out;
5472 }
5473 EXPORT_SYMBOL(register_netdevice);
5474
5475 /**
5476 * init_dummy_netdev - init a dummy network device for NAPI
5477 * @dev: device to init
5478 *
5479 * This takes a network device structure and initialize the minimum
5480 * amount of fields so it can be used to schedule NAPI polls without
5481 * registering a full blown interface. This is to be used by drivers
5482 * that need to tie several hardware interfaces to a single NAPI
5483 * poll scheduler due to HW limitations.
5484 */
5485 int init_dummy_netdev(struct net_device *dev)
5486 {
5487 /* Clear everything. Note we don't initialize spinlocks
5488 * are they aren't supposed to be taken by any of the
5489 * NAPI code and this dummy netdev is supposed to be
5490 * only ever used for NAPI polls
5491 */
5492 memset(dev, 0, sizeof(struct net_device));
5493
5494 /* make sure we BUG if trying to hit standard
5495 * register/unregister code path
5496 */
5497 dev->reg_state = NETREG_DUMMY;
5498
5499 /* NAPI wants this */
5500 INIT_LIST_HEAD(&dev->napi_list);
5501
5502 /* a dummy interface is started by default */
5503 set_bit(__LINK_STATE_PRESENT, &dev->state);
5504 set_bit(__LINK_STATE_START, &dev->state);
5505
5506 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5507 * because users of this 'device' dont need to change
5508 * its refcount.
5509 */
5510
5511 return 0;
5512 }
5513 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5514
5515
5516 /**
5517 * register_netdev - register a network device
5518 * @dev: device to register
5519 *
5520 * Take a completed network device structure and add it to the kernel
5521 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5522 * chain. 0 is returned on success. A negative errno code is returned
5523 * on a failure to set up the device, or if the name is a duplicate.
5524 *
5525 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5526 * and expands the device name if you passed a format string to
5527 * alloc_netdev.
5528 */
5529 int register_netdev(struct net_device *dev)
5530 {
5531 int err;
5532
5533 rtnl_lock();
5534
5535 /*
5536 * If the name is a format string the caller wants us to do a
5537 * name allocation.
5538 */
5539 if (strchr(dev->name, '%')) {
5540 err = dev_alloc_name(dev, dev->name);
5541 if (err < 0)
5542 goto out;
5543 }
5544
5545 err = register_netdevice(dev);
5546 out:
5547 rtnl_unlock();
5548 return err;
5549 }
5550 EXPORT_SYMBOL(register_netdev);
5551
5552 int netdev_refcnt_read(const struct net_device *dev)
5553 {
5554 int i, refcnt = 0;
5555
5556 for_each_possible_cpu(i)
5557 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5558 return refcnt;
5559 }
5560 EXPORT_SYMBOL(netdev_refcnt_read);
5561
5562 /*
5563 * netdev_wait_allrefs - wait until all references are gone.
5564 *
5565 * This is called when unregistering network devices.
5566 *
5567 * Any protocol or device that holds a reference should register
5568 * for netdevice notification, and cleanup and put back the
5569 * reference if they receive an UNREGISTER event.
5570 * We can get stuck here if buggy protocols don't correctly
5571 * call dev_put.
5572 */
5573 static void netdev_wait_allrefs(struct net_device *dev)
5574 {
5575 unsigned long rebroadcast_time, warning_time;
5576 int refcnt;
5577
5578 linkwatch_forget_dev(dev);
5579
5580 rebroadcast_time = warning_time = jiffies;
5581 refcnt = netdev_refcnt_read(dev);
5582
5583 while (refcnt != 0) {
5584 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5585 rtnl_lock();
5586
5587 /* Rebroadcast unregister notification */
5588 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5589 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5590 * should have already handle it the first time */
5591
5592 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5593 &dev->state)) {
5594 /* We must not have linkwatch events
5595 * pending on unregister. If this
5596 * happens, we simply run the queue
5597 * unscheduled, resulting in a noop
5598 * for this device.
5599 */
5600 linkwatch_run_queue();
5601 }
5602
5603 __rtnl_unlock();
5604
5605 rebroadcast_time = jiffies;
5606 }
5607
5608 msleep(250);
5609
5610 refcnt = netdev_refcnt_read(dev);
5611
5612 if (time_after(jiffies, warning_time + 10 * HZ)) {
5613 printk(KERN_EMERG "unregister_netdevice: "
5614 "waiting for %s to become free. Usage "
5615 "count = %d\n",
5616 dev->name, refcnt);
5617 warning_time = jiffies;
5618 }
5619 }
5620 }
5621
5622 /* The sequence is:
5623 *
5624 * rtnl_lock();
5625 * ...
5626 * register_netdevice(x1);
5627 * register_netdevice(x2);
5628 * ...
5629 * unregister_netdevice(y1);
5630 * unregister_netdevice(y2);
5631 * ...
5632 * rtnl_unlock();
5633 * free_netdev(y1);
5634 * free_netdev(y2);
5635 *
5636 * We are invoked by rtnl_unlock().
5637 * This allows us to deal with problems:
5638 * 1) We can delete sysfs objects which invoke hotplug
5639 * without deadlocking with linkwatch via keventd.
5640 * 2) Since we run with the RTNL semaphore not held, we can sleep
5641 * safely in order to wait for the netdev refcnt to drop to zero.
5642 *
5643 * We must not return until all unregister events added during
5644 * the interval the lock was held have been completed.
5645 */
5646 void netdev_run_todo(void)
5647 {
5648 struct list_head list;
5649
5650 /* Snapshot list, allow later requests */
5651 list_replace_init(&net_todo_list, &list);
5652
5653 __rtnl_unlock();
5654
5655 while (!list_empty(&list)) {
5656 struct net_device *dev
5657 = list_first_entry(&list, struct net_device, todo_list);
5658 list_del(&dev->todo_list);
5659
5660 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5661 printk(KERN_ERR "network todo '%s' but state %d\n",
5662 dev->name, dev->reg_state);
5663 dump_stack();
5664 continue;
5665 }
5666
5667 dev->reg_state = NETREG_UNREGISTERED;
5668
5669 on_each_cpu(flush_backlog, dev, 1);
5670
5671 netdev_wait_allrefs(dev);
5672
5673 /* paranoia */
5674 BUG_ON(netdev_refcnt_read(dev));
5675 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5676 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5677 WARN_ON(dev->dn_ptr);
5678
5679 if (dev->destructor)
5680 dev->destructor(dev);
5681
5682 /* Free network device */
5683 kobject_put(&dev->dev.kobj);
5684 }
5685 }
5686
5687 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5688 * fields in the same order, with only the type differing.
5689 */
5690 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5691 const struct net_device_stats *netdev_stats)
5692 {
5693 #if BITS_PER_LONG == 64
5694 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5695 memcpy(stats64, netdev_stats, sizeof(*stats64));
5696 #else
5697 size_t i, n = sizeof(*stats64) / sizeof(u64);
5698 const unsigned long *src = (const unsigned long *)netdev_stats;
5699 u64 *dst = (u64 *)stats64;
5700
5701 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5702 sizeof(*stats64) / sizeof(u64));
5703 for (i = 0; i < n; i++)
5704 dst[i] = src[i];
5705 #endif
5706 }
5707
5708 /**
5709 * dev_get_stats - get network device statistics
5710 * @dev: device to get statistics from
5711 * @storage: place to store stats
5712 *
5713 * Get network statistics from device. Return @storage.
5714 * The device driver may provide its own method by setting
5715 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5716 * otherwise the internal statistics structure is used.
5717 */
5718 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5719 struct rtnl_link_stats64 *storage)
5720 {
5721 const struct net_device_ops *ops = dev->netdev_ops;
5722
5723 if (ops->ndo_get_stats64) {
5724 memset(storage, 0, sizeof(*storage));
5725 ops->ndo_get_stats64(dev, storage);
5726 } else if (ops->ndo_get_stats) {
5727 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5728 } else {
5729 netdev_stats_to_stats64(storage, &dev->stats);
5730 }
5731 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5732 return storage;
5733 }
5734 EXPORT_SYMBOL(dev_get_stats);
5735
5736 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5737 {
5738 struct netdev_queue *queue = dev_ingress_queue(dev);
5739
5740 #ifdef CONFIG_NET_CLS_ACT
5741 if (queue)
5742 return queue;
5743 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5744 if (!queue)
5745 return NULL;
5746 netdev_init_one_queue(dev, queue, NULL);
5747 queue->qdisc = &noop_qdisc;
5748 queue->qdisc_sleeping = &noop_qdisc;
5749 rcu_assign_pointer(dev->ingress_queue, queue);
5750 #endif
5751 return queue;
5752 }
5753
5754 /**
5755 * alloc_netdev_mqs - allocate network device
5756 * @sizeof_priv: size of private data to allocate space for
5757 * @name: device name format string
5758 * @setup: callback to initialize device
5759 * @txqs: the number of TX subqueues to allocate
5760 * @rxqs: the number of RX subqueues to allocate
5761 *
5762 * Allocates a struct net_device with private data area for driver use
5763 * and performs basic initialization. Also allocates subquue structs
5764 * for each queue on the device.
5765 */
5766 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5767 void (*setup)(struct net_device *),
5768 unsigned int txqs, unsigned int rxqs)
5769 {
5770 struct net_device *dev;
5771 size_t alloc_size;
5772 struct net_device *p;
5773
5774 BUG_ON(strlen(name) >= sizeof(dev->name));
5775
5776 if (txqs < 1) {
5777 pr_err("alloc_netdev: Unable to allocate device "
5778 "with zero queues.\n");
5779 return NULL;
5780 }
5781
5782 #ifdef CONFIG_RPS
5783 if (rxqs < 1) {
5784 pr_err("alloc_netdev: Unable to allocate device "
5785 "with zero RX queues.\n");
5786 return NULL;
5787 }
5788 #endif
5789
5790 alloc_size = sizeof(struct net_device);
5791 if (sizeof_priv) {
5792 /* ensure 32-byte alignment of private area */
5793 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5794 alloc_size += sizeof_priv;
5795 }
5796 /* ensure 32-byte alignment of whole construct */
5797 alloc_size += NETDEV_ALIGN - 1;
5798
5799 p = kzalloc(alloc_size, GFP_KERNEL);
5800 if (!p) {
5801 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5802 return NULL;
5803 }
5804
5805 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5806 dev->padded = (char *)dev - (char *)p;
5807
5808 dev->pcpu_refcnt = alloc_percpu(int);
5809 if (!dev->pcpu_refcnt)
5810 goto free_p;
5811
5812 if (dev_addr_init(dev))
5813 goto free_pcpu;
5814
5815 dev_mc_init(dev);
5816 dev_uc_init(dev);
5817
5818 dev_net_set(dev, &init_net);
5819
5820 dev->gso_max_size = GSO_MAX_SIZE;
5821
5822 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5823 dev->ethtool_ntuple_list.count = 0;
5824 INIT_LIST_HEAD(&dev->napi_list);
5825 INIT_LIST_HEAD(&dev->unreg_list);
5826 INIT_LIST_HEAD(&dev->link_watch_list);
5827 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5828 setup(dev);
5829
5830 dev->num_tx_queues = txqs;
5831 dev->real_num_tx_queues = txqs;
5832 if (netif_alloc_netdev_queues(dev))
5833 goto free_all;
5834
5835 #ifdef CONFIG_RPS
5836 dev->num_rx_queues = rxqs;
5837 dev->real_num_rx_queues = rxqs;
5838 if (netif_alloc_rx_queues(dev))
5839 goto free_all;
5840 #endif
5841
5842 strcpy(dev->name, name);
5843 dev->group = INIT_NETDEV_GROUP;
5844 return dev;
5845
5846 free_all:
5847 free_netdev(dev);
5848 return NULL;
5849
5850 free_pcpu:
5851 free_percpu(dev->pcpu_refcnt);
5852 kfree(dev->_tx);
5853 #ifdef CONFIG_RPS
5854 kfree(dev->_rx);
5855 #endif
5856
5857 free_p:
5858 kfree(p);
5859 return NULL;
5860 }
5861 EXPORT_SYMBOL(alloc_netdev_mqs);
5862
5863 /**
5864 * free_netdev - free network device
5865 * @dev: device
5866 *
5867 * This function does the last stage of destroying an allocated device
5868 * interface. The reference to the device object is released.
5869 * If this is the last reference then it will be freed.
5870 */
5871 void free_netdev(struct net_device *dev)
5872 {
5873 struct napi_struct *p, *n;
5874
5875 release_net(dev_net(dev));
5876
5877 kfree(dev->_tx);
5878 #ifdef CONFIG_RPS
5879 kfree(dev->_rx);
5880 #endif
5881
5882 kfree(rcu_dereference_raw(dev->ingress_queue));
5883
5884 /* Flush device addresses */
5885 dev_addr_flush(dev);
5886
5887 /* Clear ethtool n-tuple list */
5888 ethtool_ntuple_flush(dev);
5889
5890 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5891 netif_napi_del(p);
5892
5893 free_percpu(dev->pcpu_refcnt);
5894 dev->pcpu_refcnt = NULL;
5895
5896 /* Compatibility with error handling in drivers */
5897 if (dev->reg_state == NETREG_UNINITIALIZED) {
5898 kfree((char *)dev - dev->padded);
5899 return;
5900 }
5901
5902 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5903 dev->reg_state = NETREG_RELEASED;
5904
5905 /* will free via device release */
5906 put_device(&dev->dev);
5907 }
5908 EXPORT_SYMBOL(free_netdev);
5909
5910 /**
5911 * synchronize_net - Synchronize with packet receive processing
5912 *
5913 * Wait for packets currently being received to be done.
5914 * Does not block later packets from starting.
5915 */
5916 void synchronize_net(void)
5917 {
5918 might_sleep();
5919 synchronize_rcu();
5920 }
5921 EXPORT_SYMBOL(synchronize_net);
5922
5923 /**
5924 * unregister_netdevice_queue - remove device from the kernel
5925 * @dev: device
5926 * @head: list
5927 *
5928 * This function shuts down a device interface and removes it
5929 * from the kernel tables.
5930 * If head not NULL, device is queued to be unregistered later.
5931 *
5932 * Callers must hold the rtnl semaphore. You may want
5933 * unregister_netdev() instead of this.
5934 */
5935
5936 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5937 {
5938 ASSERT_RTNL();
5939
5940 if (head) {
5941 list_move_tail(&dev->unreg_list, head);
5942 } else {
5943 rollback_registered(dev);
5944 /* Finish processing unregister after unlock */
5945 net_set_todo(dev);
5946 }
5947 }
5948 EXPORT_SYMBOL(unregister_netdevice_queue);
5949
5950 /**
5951 * unregister_netdevice_many - unregister many devices
5952 * @head: list of devices
5953 */
5954 void unregister_netdevice_many(struct list_head *head)
5955 {
5956 struct net_device *dev;
5957
5958 if (!list_empty(head)) {
5959 rollback_registered_many(head);
5960 list_for_each_entry(dev, head, unreg_list)
5961 net_set_todo(dev);
5962 }
5963 }
5964 EXPORT_SYMBOL(unregister_netdevice_many);
5965
5966 /**
5967 * unregister_netdev - remove device from the kernel
5968 * @dev: device
5969 *
5970 * This function shuts down a device interface and removes it
5971 * from the kernel tables.
5972 *
5973 * This is just a wrapper for unregister_netdevice that takes
5974 * the rtnl semaphore. In general you want to use this and not
5975 * unregister_netdevice.
5976 */
5977 void unregister_netdev(struct net_device *dev)
5978 {
5979 rtnl_lock();
5980 unregister_netdevice(dev);
5981 rtnl_unlock();
5982 }
5983 EXPORT_SYMBOL(unregister_netdev);
5984
5985 /**
5986 * dev_change_net_namespace - move device to different nethost namespace
5987 * @dev: device
5988 * @net: network namespace
5989 * @pat: If not NULL name pattern to try if the current device name
5990 * is already taken in the destination network namespace.
5991 *
5992 * This function shuts down a device interface and moves it
5993 * to a new network namespace. On success 0 is returned, on
5994 * a failure a netagive errno code is returned.
5995 *
5996 * Callers must hold the rtnl semaphore.
5997 */
5998
5999 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6000 {
6001 int err;
6002
6003 ASSERT_RTNL();
6004
6005 /* Don't allow namespace local devices to be moved. */
6006 err = -EINVAL;
6007 if (dev->features & NETIF_F_NETNS_LOCAL)
6008 goto out;
6009
6010 /* Ensure the device has been registrered */
6011 err = -EINVAL;
6012 if (dev->reg_state != NETREG_REGISTERED)
6013 goto out;
6014
6015 /* Get out if there is nothing todo */
6016 err = 0;
6017 if (net_eq(dev_net(dev), net))
6018 goto out;
6019
6020 /* Pick the destination device name, and ensure
6021 * we can use it in the destination network namespace.
6022 */
6023 err = -EEXIST;
6024 if (__dev_get_by_name(net, dev->name)) {
6025 /* We get here if we can't use the current device name */
6026 if (!pat)
6027 goto out;
6028 if (dev_get_valid_name(dev, pat, 1))
6029 goto out;
6030 }
6031
6032 /*
6033 * And now a mini version of register_netdevice unregister_netdevice.
6034 */
6035
6036 /* If device is running close it first. */
6037 dev_close(dev);
6038
6039 /* And unlink it from device chain */
6040 err = -ENODEV;
6041 unlist_netdevice(dev);
6042
6043 synchronize_net();
6044
6045 /* Shutdown queueing discipline. */
6046 dev_shutdown(dev);
6047
6048 /* Notify protocols, that we are about to destroy
6049 this device. They should clean all the things.
6050
6051 Note that dev->reg_state stays at NETREG_REGISTERED.
6052 This is wanted because this way 8021q and macvlan know
6053 the device is just moving and can keep their slaves up.
6054 */
6055 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6056 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6057
6058 /*
6059 * Flush the unicast and multicast chains
6060 */
6061 dev_uc_flush(dev);
6062 dev_mc_flush(dev);
6063
6064 /* Actually switch the network namespace */
6065 dev_net_set(dev, net);
6066
6067 /* If there is an ifindex conflict assign a new one */
6068 if (__dev_get_by_index(net, dev->ifindex)) {
6069 int iflink = (dev->iflink == dev->ifindex);
6070 dev->ifindex = dev_new_index(net);
6071 if (iflink)
6072 dev->iflink = dev->ifindex;
6073 }
6074
6075 /* Fixup kobjects */
6076 err = device_rename(&dev->dev, dev->name);
6077 WARN_ON(err);
6078
6079 /* Add the device back in the hashes */
6080 list_netdevice(dev);
6081
6082 /* Notify protocols, that a new device appeared. */
6083 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6084
6085 /*
6086 * Prevent userspace races by waiting until the network
6087 * device is fully setup before sending notifications.
6088 */
6089 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6090
6091 synchronize_net();
6092 err = 0;
6093 out:
6094 return err;
6095 }
6096 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6097
6098 static int dev_cpu_callback(struct notifier_block *nfb,
6099 unsigned long action,
6100 void *ocpu)
6101 {
6102 struct sk_buff **list_skb;
6103 struct sk_buff *skb;
6104 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6105 struct softnet_data *sd, *oldsd;
6106
6107 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6108 return NOTIFY_OK;
6109
6110 local_irq_disable();
6111 cpu = smp_processor_id();
6112 sd = &per_cpu(softnet_data, cpu);
6113 oldsd = &per_cpu(softnet_data, oldcpu);
6114
6115 /* Find end of our completion_queue. */
6116 list_skb = &sd->completion_queue;
6117 while (*list_skb)
6118 list_skb = &(*list_skb)->next;
6119 /* Append completion queue from offline CPU. */
6120 *list_skb = oldsd->completion_queue;
6121 oldsd->completion_queue = NULL;
6122
6123 /* Append output queue from offline CPU. */
6124 if (oldsd->output_queue) {
6125 *sd->output_queue_tailp = oldsd->output_queue;
6126 sd->output_queue_tailp = oldsd->output_queue_tailp;
6127 oldsd->output_queue = NULL;
6128 oldsd->output_queue_tailp = &oldsd->output_queue;
6129 }
6130
6131 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6132 local_irq_enable();
6133
6134 /* Process offline CPU's input_pkt_queue */
6135 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6136 netif_rx(skb);
6137 input_queue_head_incr(oldsd);
6138 }
6139 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6140 netif_rx(skb);
6141 input_queue_head_incr(oldsd);
6142 }
6143
6144 return NOTIFY_OK;
6145 }
6146
6147
6148 /**
6149 * netdev_increment_features - increment feature set by one
6150 * @all: current feature set
6151 * @one: new feature set
6152 * @mask: mask feature set
6153 *
6154 * Computes a new feature set after adding a device with feature set
6155 * @one to the master device with current feature set @all. Will not
6156 * enable anything that is off in @mask. Returns the new feature set.
6157 */
6158 u32 netdev_increment_features(u32 all, u32 one, u32 mask)
6159 {
6160 /* If device needs checksumming, downgrade to it. */
6161 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
6162 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6163 else if (mask & NETIF_F_ALL_CSUM) {
6164 /* If one device supports v4/v6 checksumming, set for all. */
6165 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6166 !(all & NETIF_F_GEN_CSUM)) {
6167 all &= ~NETIF_F_ALL_CSUM;
6168 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6169 }
6170
6171 /* If one device supports hw checksumming, set for all. */
6172 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6173 all &= ~NETIF_F_ALL_CSUM;
6174 all |= NETIF_F_HW_CSUM;
6175 }
6176 }
6177
6178 one |= NETIF_F_ALL_CSUM;
6179
6180 one |= all & NETIF_F_ONE_FOR_ALL;
6181 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6182 all |= one & mask & NETIF_F_ONE_FOR_ALL;
6183
6184 return all;
6185 }
6186 EXPORT_SYMBOL(netdev_increment_features);
6187
6188 static struct hlist_head *netdev_create_hash(void)
6189 {
6190 int i;
6191 struct hlist_head *hash;
6192
6193 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6194 if (hash != NULL)
6195 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6196 INIT_HLIST_HEAD(&hash[i]);
6197
6198 return hash;
6199 }
6200
6201 /* Initialize per network namespace state */
6202 static int __net_init netdev_init(struct net *net)
6203 {
6204 INIT_LIST_HEAD(&net->dev_base_head);
6205
6206 net->dev_name_head = netdev_create_hash();
6207 if (net->dev_name_head == NULL)
6208 goto err_name;
6209
6210 net->dev_index_head = netdev_create_hash();
6211 if (net->dev_index_head == NULL)
6212 goto err_idx;
6213
6214 return 0;
6215
6216 err_idx:
6217 kfree(net->dev_name_head);
6218 err_name:
6219 return -ENOMEM;
6220 }
6221
6222 /**
6223 * netdev_drivername - network driver for the device
6224 * @dev: network device
6225 * @buffer: buffer for resulting name
6226 * @len: size of buffer
6227 *
6228 * Determine network driver for device.
6229 */
6230 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6231 {
6232 const struct device_driver *driver;
6233 const struct device *parent;
6234
6235 if (len <= 0 || !buffer)
6236 return buffer;
6237 buffer[0] = 0;
6238
6239 parent = dev->dev.parent;
6240
6241 if (!parent)
6242 return buffer;
6243
6244 driver = parent->driver;
6245 if (driver && driver->name)
6246 strlcpy(buffer, driver->name, len);
6247 return buffer;
6248 }
6249
6250 static int __netdev_printk(const char *level, const struct net_device *dev,
6251 struct va_format *vaf)
6252 {
6253 int r;
6254
6255 if (dev && dev->dev.parent)
6256 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6257 netdev_name(dev), vaf);
6258 else if (dev)
6259 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6260 else
6261 r = printk("%s(NULL net_device): %pV", level, vaf);
6262
6263 return r;
6264 }
6265
6266 int netdev_printk(const char *level, const struct net_device *dev,
6267 const char *format, ...)
6268 {
6269 struct va_format vaf;
6270 va_list args;
6271 int r;
6272
6273 va_start(args, format);
6274
6275 vaf.fmt = format;
6276 vaf.va = &args;
6277
6278 r = __netdev_printk(level, dev, &vaf);
6279 va_end(args);
6280
6281 return r;
6282 }
6283 EXPORT_SYMBOL(netdev_printk);
6284
6285 #define define_netdev_printk_level(func, level) \
6286 int func(const struct net_device *dev, const char *fmt, ...) \
6287 { \
6288 int r; \
6289 struct va_format vaf; \
6290 va_list args; \
6291 \
6292 va_start(args, fmt); \
6293 \
6294 vaf.fmt = fmt; \
6295 vaf.va = &args; \
6296 \
6297 r = __netdev_printk(level, dev, &vaf); \
6298 va_end(args); \
6299 \
6300 return r; \
6301 } \
6302 EXPORT_SYMBOL(func);
6303
6304 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6305 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6306 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6307 define_netdev_printk_level(netdev_err, KERN_ERR);
6308 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6309 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6310 define_netdev_printk_level(netdev_info, KERN_INFO);
6311
6312 static void __net_exit netdev_exit(struct net *net)
6313 {
6314 kfree(net->dev_name_head);
6315 kfree(net->dev_index_head);
6316 }
6317
6318 static struct pernet_operations __net_initdata netdev_net_ops = {
6319 .init = netdev_init,
6320 .exit = netdev_exit,
6321 };
6322
6323 static void __net_exit default_device_exit(struct net *net)
6324 {
6325 struct net_device *dev, *aux;
6326 /*
6327 * Push all migratable network devices back to the
6328 * initial network namespace
6329 */
6330 rtnl_lock();
6331 for_each_netdev_safe(net, dev, aux) {
6332 int err;
6333 char fb_name[IFNAMSIZ];
6334
6335 /* Ignore unmoveable devices (i.e. loopback) */
6336 if (dev->features & NETIF_F_NETNS_LOCAL)
6337 continue;
6338
6339 /* Leave virtual devices for the generic cleanup */
6340 if (dev->rtnl_link_ops)
6341 continue;
6342
6343 /* Push remaining network devices to init_net */
6344 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6345 err = dev_change_net_namespace(dev, &init_net, fb_name);
6346 if (err) {
6347 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6348 __func__, dev->name, err);
6349 BUG();
6350 }
6351 }
6352 rtnl_unlock();
6353 }
6354
6355 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6356 {
6357 /* At exit all network devices most be removed from a network
6358 * namespace. Do this in the reverse order of registration.
6359 * Do this across as many network namespaces as possible to
6360 * improve batching efficiency.
6361 */
6362 struct net_device *dev;
6363 struct net *net;
6364 LIST_HEAD(dev_kill_list);
6365
6366 rtnl_lock();
6367 list_for_each_entry(net, net_list, exit_list) {
6368 for_each_netdev_reverse(net, dev) {
6369 if (dev->rtnl_link_ops)
6370 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6371 else
6372 unregister_netdevice_queue(dev, &dev_kill_list);
6373 }
6374 }
6375 unregister_netdevice_many(&dev_kill_list);
6376 list_del(&dev_kill_list);
6377 rtnl_unlock();
6378 }
6379
6380 static struct pernet_operations __net_initdata default_device_ops = {
6381 .exit = default_device_exit,
6382 .exit_batch = default_device_exit_batch,
6383 };
6384
6385 /*
6386 * Initialize the DEV module. At boot time this walks the device list and
6387 * unhooks any devices that fail to initialise (normally hardware not
6388 * present) and leaves us with a valid list of present and active devices.
6389 *
6390 */
6391
6392 /*
6393 * This is called single threaded during boot, so no need
6394 * to take the rtnl semaphore.
6395 */
6396 static int __init net_dev_init(void)
6397 {
6398 int i, rc = -ENOMEM;
6399
6400 BUG_ON(!dev_boot_phase);
6401
6402 if (dev_proc_init())
6403 goto out;
6404
6405 if (netdev_kobject_init())
6406 goto out;
6407
6408 INIT_LIST_HEAD(&ptype_all);
6409 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6410 INIT_LIST_HEAD(&ptype_base[i]);
6411
6412 if (register_pernet_subsys(&netdev_net_ops))
6413 goto out;
6414
6415 /*
6416 * Initialise the packet receive queues.
6417 */
6418
6419 for_each_possible_cpu(i) {
6420 struct softnet_data *sd = &per_cpu(softnet_data, i);
6421
6422 memset(sd, 0, sizeof(*sd));
6423 skb_queue_head_init(&sd->input_pkt_queue);
6424 skb_queue_head_init(&sd->process_queue);
6425 sd->completion_queue = NULL;
6426 INIT_LIST_HEAD(&sd->poll_list);
6427 sd->output_queue = NULL;
6428 sd->output_queue_tailp = &sd->output_queue;
6429 #ifdef CONFIG_RPS
6430 sd->csd.func = rps_trigger_softirq;
6431 sd->csd.info = sd;
6432 sd->csd.flags = 0;
6433 sd->cpu = i;
6434 #endif
6435
6436 sd->backlog.poll = process_backlog;
6437 sd->backlog.weight = weight_p;
6438 sd->backlog.gro_list = NULL;
6439 sd->backlog.gro_count = 0;
6440 }
6441
6442 dev_boot_phase = 0;
6443
6444 /* The loopback device is special if any other network devices
6445 * is present in a network namespace the loopback device must
6446 * be present. Since we now dynamically allocate and free the
6447 * loopback device ensure this invariant is maintained by
6448 * keeping the loopback device as the first device on the
6449 * list of network devices. Ensuring the loopback devices
6450 * is the first device that appears and the last network device
6451 * that disappears.
6452 */
6453 if (register_pernet_device(&loopback_net_ops))
6454 goto out;
6455
6456 if (register_pernet_device(&default_device_ops))
6457 goto out;
6458
6459 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6460 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6461
6462 hotcpu_notifier(dev_cpu_callback, 0);
6463 dst_init();
6464 dev_mcast_init();
6465 rc = 0;
6466 out:
6467 return rc;
6468 }
6469
6470 subsys_initcall(net_dev_init);
6471
6472 static int __init initialize_hashrnd(void)
6473 {
6474 get_random_bytes(&hashrnd, sizeof(hashrnd));
6475 return 0;
6476 }
6477
6478 late_initcall_sync(initialize_hashrnd);
6479