]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/core/dev.c
Merge tag 'for-linus-4.9-rc4-ofs-1' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-zesty-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/sctp.h>
143 #include <linux/crash_dump.h>
144
145 #include "net-sysfs.h"
146
147 /* Instead of increasing this, you should create a hash table. */
148 #define MAX_GRO_SKBS 8
149
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly; /* Taps */
157 static struct list_head offload_base __read_mostly;
158
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161 struct net_device *dev,
162 struct netdev_notifier_info *info);
163
164 /*
165 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
166 * semaphore.
167 *
168 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
169 *
170 * Writers must hold the rtnl semaphore while they loop through the
171 * dev_base_head list, and hold dev_base_lock for writing when they do the
172 * actual updates. This allows pure readers to access the list even
173 * while a writer is preparing to update it.
174 *
175 * To put it another way, dev_base_lock is held for writing only to
176 * protect against pure readers; the rtnl semaphore provides the
177 * protection against other writers.
178 *
179 * See, for example usages, register_netdevice() and
180 * unregister_netdevice(), which must be called with the rtnl
181 * semaphore held.
182 */
183 DEFINE_RWLOCK(dev_base_lock);
184 EXPORT_SYMBOL(dev_base_lock);
185
186 /* protects napi_hash addition/deletion and napi_gen_id */
187 static DEFINE_SPINLOCK(napi_hash_lock);
188
189 static unsigned int napi_gen_id = NR_CPUS;
190 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
191
192 static seqcount_t devnet_rename_seq;
193
194 static inline void dev_base_seq_inc(struct net *net)
195 {
196 while (++net->dev_base_seq == 0);
197 }
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214 spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static void list_netdevice(struct net_device *dev)
227 {
228 struct net *net = dev_net(dev);
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238
239 dev_base_seq_inc(net);
240 }
241
242 /* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
251 list_del_rcu(&dev->dev_list);
252 hlist_del_rcu(&dev->name_hlist);
253 hlist_del_rcu(&dev->index_hlist);
254 write_unlock_bh(&dev_base_lock);
255
256 dev_base_seq_inc(dev_net(dev));
257 }
258
259 /*
260 * Our notifier list
261 */
262
263 static RAW_NOTIFIER_HEAD(netdev_chain);
264
265 /*
266 * Device drivers call our routines to queue packets here. We empty the
267 * queue in the local softnet handler.
268 */
269
270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
271 EXPORT_PER_CPU_SYMBOL(softnet_data);
272
273 #ifdef CONFIG_LOCKDEP
274 /*
275 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276 * according to dev->type
277 */
278 static const unsigned short netdev_lock_type[] =
279 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
291 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294
295 static const char *const netdev_lock_name[] =
296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
328 {
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356
357 Protocol management and registration routines
358
359 *******************************************************************************/
360
361 /*
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
364 * here.
365 *
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
374 * --ANK (980803)
375 */
376
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379 if (pt->type == htons(ETH_P_ALL))
380 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
381 else
382 return pt->dev ? &pt->dev->ptype_specific :
383 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 }
385
386 /**
387 * dev_add_pack - add packet handler
388 * @pt: packet type declaration
389 *
390 * Add a protocol handler to the networking stack. The passed &packet_type
391 * is linked into kernel lists and may not be freed until it has been
392 * removed from the kernel lists.
393 *
394 * This call does not sleep therefore it can not
395 * guarantee all CPU's that are in middle of receiving packets
396 * will see the new packet type (until the next received packet).
397 */
398
399 void dev_add_pack(struct packet_type *pt)
400 {
401 struct list_head *head = ptype_head(pt);
402
403 spin_lock(&ptype_lock);
404 list_add_rcu(&pt->list, head);
405 spin_unlock(&ptype_lock);
406 }
407 EXPORT_SYMBOL(dev_add_pack);
408
409 /**
410 * __dev_remove_pack - remove packet handler
411 * @pt: packet type declaration
412 *
413 * Remove a protocol handler that was previously added to the kernel
414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
415 * from the kernel lists and can be freed or reused once this function
416 * returns.
417 *
418 * The packet type might still be in use by receivers
419 * and must not be freed until after all the CPU's have gone
420 * through a quiescent state.
421 */
422 void __dev_remove_pack(struct packet_type *pt)
423 {
424 struct list_head *head = ptype_head(pt);
425 struct packet_type *pt1;
426
427 spin_lock(&ptype_lock);
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 pr_warn("dev_remove_pack: %p not found\n", pt);
437 out:
438 spin_unlock(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462
463 /**
464 * dev_add_offload - register offload handlers
465 * @po: protocol offload declaration
466 *
467 * Add protocol offload handlers to the networking stack. The passed
468 * &proto_offload is linked into kernel lists and may not be freed until
469 * it has been removed from the kernel lists.
470 *
471 * This call does not sleep therefore it can not
472 * guarantee all CPU's that are in middle of receiving packets
473 * will see the new offload handlers (until the next received packet).
474 */
475 void dev_add_offload(struct packet_offload *po)
476 {
477 struct packet_offload *elem;
478
479 spin_lock(&offload_lock);
480 list_for_each_entry(elem, &offload_base, list) {
481 if (po->priority < elem->priority)
482 break;
483 }
484 list_add_rcu(&po->list, elem->list.prev);
485 spin_unlock(&offload_lock);
486 }
487 EXPORT_SYMBOL(dev_add_offload);
488
489 /**
490 * __dev_remove_offload - remove offload handler
491 * @po: packet offload declaration
492 *
493 * Remove a protocol offload handler that was previously added to the
494 * kernel offload handlers by dev_add_offload(). The passed &offload_type
495 * is removed from the kernel lists and can be freed or reused once this
496 * function returns.
497 *
498 * The packet type might still be in use by receivers
499 * and must not be freed until after all the CPU's have gone
500 * through a quiescent state.
501 */
502 static void __dev_remove_offload(struct packet_offload *po)
503 {
504 struct list_head *head = &offload_base;
505 struct packet_offload *po1;
506
507 spin_lock(&offload_lock);
508
509 list_for_each_entry(po1, head, list) {
510 if (po == po1) {
511 list_del_rcu(&po->list);
512 goto out;
513 }
514 }
515
516 pr_warn("dev_remove_offload: %p not found\n", po);
517 out:
518 spin_unlock(&offload_lock);
519 }
520
521 /**
522 * dev_remove_offload - remove packet offload handler
523 * @po: packet offload declaration
524 *
525 * Remove a packet offload handler that was previously added to the kernel
526 * offload handlers by dev_add_offload(). The passed &offload_type is
527 * removed from the kernel lists and can be freed or reused once this
528 * function returns.
529 *
530 * This call sleeps to guarantee that no CPU is looking at the packet
531 * type after return.
532 */
533 void dev_remove_offload(struct packet_offload *po)
534 {
535 __dev_remove_offload(po);
536
537 synchronize_net();
538 }
539 EXPORT_SYMBOL(dev_remove_offload);
540
541 /******************************************************************************
542
543 Device Boot-time Settings Routines
544
545 *******************************************************************************/
546
547 /* Boot time configuration table */
548 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
549
550 /**
551 * netdev_boot_setup_add - add new setup entry
552 * @name: name of the device
553 * @map: configured settings for the device
554 *
555 * Adds new setup entry to the dev_boot_setup list. The function
556 * returns 0 on error and 1 on success. This is a generic routine to
557 * all netdevices.
558 */
559 static int netdev_boot_setup_add(char *name, struct ifmap *map)
560 {
561 struct netdev_boot_setup *s;
562 int i;
563
564 s = dev_boot_setup;
565 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
566 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
567 memset(s[i].name, 0, sizeof(s[i].name));
568 strlcpy(s[i].name, name, IFNAMSIZ);
569 memcpy(&s[i].map, map, sizeof(s[i].map));
570 break;
571 }
572 }
573
574 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
575 }
576
577 /**
578 * netdev_boot_setup_check - check boot time settings
579 * @dev: the netdevice
580 *
581 * Check boot time settings for the device.
582 * The found settings are set for the device to be used
583 * later in the device probing.
584 * Returns 0 if no settings found, 1 if they are.
585 */
586 int netdev_boot_setup_check(struct net_device *dev)
587 {
588 struct netdev_boot_setup *s = dev_boot_setup;
589 int i;
590
591 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
592 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
593 !strcmp(dev->name, s[i].name)) {
594 dev->irq = s[i].map.irq;
595 dev->base_addr = s[i].map.base_addr;
596 dev->mem_start = s[i].map.mem_start;
597 dev->mem_end = s[i].map.mem_end;
598 return 1;
599 }
600 }
601 return 0;
602 }
603 EXPORT_SYMBOL(netdev_boot_setup_check);
604
605
606 /**
607 * netdev_boot_base - get address from boot time settings
608 * @prefix: prefix for network device
609 * @unit: id for network device
610 *
611 * Check boot time settings for the base address of device.
612 * The found settings are set for the device to be used
613 * later in the device probing.
614 * Returns 0 if no settings found.
615 */
616 unsigned long netdev_boot_base(const char *prefix, int unit)
617 {
618 const struct netdev_boot_setup *s = dev_boot_setup;
619 char name[IFNAMSIZ];
620 int i;
621
622 sprintf(name, "%s%d", prefix, unit);
623
624 /*
625 * If device already registered then return base of 1
626 * to indicate not to probe for this interface
627 */
628 if (__dev_get_by_name(&init_net, name))
629 return 1;
630
631 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
632 if (!strcmp(name, s[i].name))
633 return s[i].map.base_addr;
634 return 0;
635 }
636
637 /*
638 * Saves at boot time configured settings for any netdevice.
639 */
640 int __init netdev_boot_setup(char *str)
641 {
642 int ints[5];
643 struct ifmap map;
644
645 str = get_options(str, ARRAY_SIZE(ints), ints);
646 if (!str || !*str)
647 return 0;
648
649 /* Save settings */
650 memset(&map, 0, sizeof(map));
651 if (ints[0] > 0)
652 map.irq = ints[1];
653 if (ints[0] > 1)
654 map.base_addr = ints[2];
655 if (ints[0] > 2)
656 map.mem_start = ints[3];
657 if (ints[0] > 3)
658 map.mem_end = ints[4];
659
660 /* Add new entry to the list */
661 return netdev_boot_setup_add(str, &map);
662 }
663
664 __setup("netdev=", netdev_boot_setup);
665
666 /*******************************************************************************
667
668 Device Interface Subroutines
669
670 *******************************************************************************/
671
672 /**
673 * dev_get_iflink - get 'iflink' value of a interface
674 * @dev: targeted interface
675 *
676 * Indicates the ifindex the interface is linked to.
677 * Physical interfaces have the same 'ifindex' and 'iflink' values.
678 */
679
680 int dev_get_iflink(const struct net_device *dev)
681 {
682 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
683 return dev->netdev_ops->ndo_get_iflink(dev);
684
685 return dev->ifindex;
686 }
687 EXPORT_SYMBOL(dev_get_iflink);
688
689 /**
690 * dev_fill_metadata_dst - Retrieve tunnel egress information.
691 * @dev: targeted interface
692 * @skb: The packet.
693 *
694 * For better visibility of tunnel traffic OVS needs to retrieve
695 * egress tunnel information for a packet. Following API allows
696 * user to get this info.
697 */
698 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
699 {
700 struct ip_tunnel_info *info;
701
702 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
703 return -EINVAL;
704
705 info = skb_tunnel_info_unclone(skb);
706 if (!info)
707 return -ENOMEM;
708 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
709 return -EINVAL;
710
711 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
712 }
713 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
714
715 /**
716 * __dev_get_by_name - find a device by its name
717 * @net: the applicable net namespace
718 * @name: name to find
719 *
720 * Find an interface by name. Must be called under RTNL semaphore
721 * or @dev_base_lock. If the name is found a pointer to the device
722 * is returned. If the name is not found then %NULL is returned. The
723 * reference counters are not incremented so the caller must be
724 * careful with locks.
725 */
726
727 struct net_device *__dev_get_by_name(struct net *net, const char *name)
728 {
729 struct net_device *dev;
730 struct hlist_head *head = dev_name_hash(net, name);
731
732 hlist_for_each_entry(dev, head, name_hlist)
733 if (!strncmp(dev->name, name, IFNAMSIZ))
734 return dev;
735
736 return NULL;
737 }
738 EXPORT_SYMBOL(__dev_get_by_name);
739
740 /**
741 * dev_get_by_name_rcu - find a device by its name
742 * @net: the applicable net namespace
743 * @name: name to find
744 *
745 * Find an interface by name.
746 * If the name is found a pointer to the device is returned.
747 * If the name is not found then %NULL is returned.
748 * The reference counters are not incremented so the caller must be
749 * careful with locks. The caller must hold RCU lock.
750 */
751
752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753 {
754 struct net_device *dev;
755 struct hlist_head *head = dev_name_hash(net, name);
756
757 hlist_for_each_entry_rcu(dev, head, name_hlist)
758 if (!strncmp(dev->name, name, IFNAMSIZ))
759 return dev;
760
761 return NULL;
762 }
763 EXPORT_SYMBOL(dev_get_by_name_rcu);
764
765 /**
766 * dev_get_by_name - find a device by its name
767 * @net: the applicable net namespace
768 * @name: name to find
769 *
770 * Find an interface by name. This can be called from any
771 * context and does its own locking. The returned handle has
772 * the usage count incremented and the caller must use dev_put() to
773 * release it when it is no longer needed. %NULL is returned if no
774 * matching device is found.
775 */
776
777 struct net_device *dev_get_by_name(struct net *net, const char *name)
778 {
779 struct net_device *dev;
780
781 rcu_read_lock();
782 dev = dev_get_by_name_rcu(net, name);
783 if (dev)
784 dev_hold(dev);
785 rcu_read_unlock();
786 return dev;
787 }
788 EXPORT_SYMBOL(dev_get_by_name);
789
790 /**
791 * __dev_get_by_index - find a device by its ifindex
792 * @net: the applicable net namespace
793 * @ifindex: index of device
794 *
795 * Search for an interface by index. Returns %NULL if the device
796 * is not found or a pointer to the device. The device has not
797 * had its reference counter increased so the caller must be careful
798 * about locking. The caller must hold either the RTNL semaphore
799 * or @dev_base_lock.
800 */
801
802 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
803 {
804 struct net_device *dev;
805 struct hlist_head *head = dev_index_hash(net, ifindex);
806
807 hlist_for_each_entry(dev, head, index_hlist)
808 if (dev->ifindex == ifindex)
809 return dev;
810
811 return NULL;
812 }
813 EXPORT_SYMBOL(__dev_get_by_index);
814
815 /**
816 * dev_get_by_index_rcu - find a device by its ifindex
817 * @net: the applicable net namespace
818 * @ifindex: index of device
819 *
820 * Search for an interface by index. Returns %NULL if the device
821 * is not found or a pointer to the device. The device has not
822 * had its reference counter increased so the caller must be careful
823 * about locking. The caller must hold RCU lock.
824 */
825
826 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
827 {
828 struct net_device *dev;
829 struct hlist_head *head = dev_index_hash(net, ifindex);
830
831 hlist_for_each_entry_rcu(dev, head, index_hlist)
832 if (dev->ifindex == ifindex)
833 return dev;
834
835 return NULL;
836 }
837 EXPORT_SYMBOL(dev_get_by_index_rcu);
838
839
840 /**
841 * dev_get_by_index - find a device by its ifindex
842 * @net: the applicable net namespace
843 * @ifindex: index of device
844 *
845 * Search for an interface by index. Returns NULL if the device
846 * is not found or a pointer to the device. The device returned has
847 * had a reference added and the pointer is safe until the user calls
848 * dev_put to indicate they have finished with it.
849 */
850
851 struct net_device *dev_get_by_index(struct net *net, int ifindex)
852 {
853 struct net_device *dev;
854
855 rcu_read_lock();
856 dev = dev_get_by_index_rcu(net, ifindex);
857 if (dev)
858 dev_hold(dev);
859 rcu_read_unlock();
860 return dev;
861 }
862 EXPORT_SYMBOL(dev_get_by_index);
863
864 /**
865 * netdev_get_name - get a netdevice name, knowing its ifindex.
866 * @net: network namespace
867 * @name: a pointer to the buffer where the name will be stored.
868 * @ifindex: the ifindex of the interface to get the name from.
869 *
870 * The use of raw_seqcount_begin() and cond_resched() before
871 * retrying is required as we want to give the writers a chance
872 * to complete when CONFIG_PREEMPT is not set.
873 */
874 int netdev_get_name(struct net *net, char *name, int ifindex)
875 {
876 struct net_device *dev;
877 unsigned int seq;
878
879 retry:
880 seq = raw_seqcount_begin(&devnet_rename_seq);
881 rcu_read_lock();
882 dev = dev_get_by_index_rcu(net, ifindex);
883 if (!dev) {
884 rcu_read_unlock();
885 return -ENODEV;
886 }
887
888 strcpy(name, dev->name);
889 rcu_read_unlock();
890 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
891 cond_resched();
892 goto retry;
893 }
894
895 return 0;
896 }
897
898 /**
899 * dev_getbyhwaddr_rcu - find a device by its hardware address
900 * @net: the applicable net namespace
901 * @type: media type of device
902 * @ha: hardware address
903 *
904 * Search for an interface by MAC address. Returns NULL if the device
905 * is not found or a pointer to the device.
906 * The caller must hold RCU or RTNL.
907 * The returned device has not had its ref count increased
908 * and the caller must therefore be careful about locking
909 *
910 */
911
912 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
913 const char *ha)
914 {
915 struct net_device *dev;
916
917 for_each_netdev_rcu(net, dev)
918 if (dev->type == type &&
919 !memcmp(dev->dev_addr, ha, dev->addr_len))
920 return dev;
921
922 return NULL;
923 }
924 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
925
926 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
927 {
928 struct net_device *dev;
929
930 ASSERT_RTNL();
931 for_each_netdev(net, dev)
932 if (dev->type == type)
933 return dev;
934
935 return NULL;
936 }
937 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
938
939 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
940 {
941 struct net_device *dev, *ret = NULL;
942
943 rcu_read_lock();
944 for_each_netdev_rcu(net, dev)
945 if (dev->type == type) {
946 dev_hold(dev);
947 ret = dev;
948 break;
949 }
950 rcu_read_unlock();
951 return ret;
952 }
953 EXPORT_SYMBOL(dev_getfirstbyhwtype);
954
955 /**
956 * __dev_get_by_flags - find any device with given flags
957 * @net: the applicable net namespace
958 * @if_flags: IFF_* values
959 * @mask: bitmask of bits in if_flags to check
960 *
961 * Search for any interface with the given flags. Returns NULL if a device
962 * is not found or a pointer to the device. Must be called inside
963 * rtnl_lock(), and result refcount is unchanged.
964 */
965
966 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
967 unsigned short mask)
968 {
969 struct net_device *dev, *ret;
970
971 ASSERT_RTNL();
972
973 ret = NULL;
974 for_each_netdev(net, dev) {
975 if (((dev->flags ^ if_flags) & mask) == 0) {
976 ret = dev;
977 break;
978 }
979 }
980 return ret;
981 }
982 EXPORT_SYMBOL(__dev_get_by_flags);
983
984 /**
985 * dev_valid_name - check if name is okay for network device
986 * @name: name string
987 *
988 * Network device names need to be valid file names to
989 * to allow sysfs to work. We also disallow any kind of
990 * whitespace.
991 */
992 bool dev_valid_name(const char *name)
993 {
994 if (*name == '\0')
995 return false;
996 if (strlen(name) >= IFNAMSIZ)
997 return false;
998 if (!strcmp(name, ".") || !strcmp(name, ".."))
999 return false;
1000
1001 while (*name) {
1002 if (*name == '/' || *name == ':' || isspace(*name))
1003 return false;
1004 name++;
1005 }
1006 return true;
1007 }
1008 EXPORT_SYMBOL(dev_valid_name);
1009
1010 /**
1011 * __dev_alloc_name - allocate a name for a device
1012 * @net: network namespace to allocate the device name in
1013 * @name: name format string
1014 * @buf: scratch buffer and result name string
1015 *
1016 * Passed a format string - eg "lt%d" it will try and find a suitable
1017 * id. It scans list of devices to build up a free map, then chooses
1018 * the first empty slot. The caller must hold the dev_base or rtnl lock
1019 * while allocating the name and adding the device in order to avoid
1020 * duplicates.
1021 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022 * Returns the number of the unit assigned or a negative errno code.
1023 */
1024
1025 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1026 {
1027 int i = 0;
1028 const char *p;
1029 const int max_netdevices = 8*PAGE_SIZE;
1030 unsigned long *inuse;
1031 struct net_device *d;
1032
1033 p = strnchr(name, IFNAMSIZ-1, '%');
1034 if (p) {
1035 /*
1036 * Verify the string as this thing may have come from
1037 * the user. There must be either one "%d" and no other "%"
1038 * characters.
1039 */
1040 if (p[1] != 'd' || strchr(p + 2, '%'))
1041 return -EINVAL;
1042
1043 /* Use one page as a bit array of possible slots */
1044 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1045 if (!inuse)
1046 return -ENOMEM;
1047
1048 for_each_netdev(net, d) {
1049 if (!sscanf(d->name, name, &i))
1050 continue;
1051 if (i < 0 || i >= max_netdevices)
1052 continue;
1053
1054 /* avoid cases where sscanf is not exact inverse of printf */
1055 snprintf(buf, IFNAMSIZ, name, i);
1056 if (!strncmp(buf, d->name, IFNAMSIZ))
1057 set_bit(i, inuse);
1058 }
1059
1060 i = find_first_zero_bit(inuse, max_netdevices);
1061 free_page((unsigned long) inuse);
1062 }
1063
1064 if (buf != name)
1065 snprintf(buf, IFNAMSIZ, name, i);
1066 if (!__dev_get_by_name(net, buf))
1067 return i;
1068
1069 /* It is possible to run out of possible slots
1070 * when the name is long and there isn't enough space left
1071 * for the digits, or if all bits are used.
1072 */
1073 return -ENFILE;
1074 }
1075
1076 /**
1077 * dev_alloc_name - allocate a name for a device
1078 * @dev: device
1079 * @name: name format string
1080 *
1081 * Passed a format string - eg "lt%d" it will try and find a suitable
1082 * id. It scans list of devices to build up a free map, then chooses
1083 * the first empty slot. The caller must hold the dev_base or rtnl lock
1084 * while allocating the name and adding the device in order to avoid
1085 * duplicates.
1086 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1087 * Returns the number of the unit assigned or a negative errno code.
1088 */
1089
1090 int dev_alloc_name(struct net_device *dev, const char *name)
1091 {
1092 char buf[IFNAMSIZ];
1093 struct net *net;
1094 int ret;
1095
1096 BUG_ON(!dev_net(dev));
1097 net = dev_net(dev);
1098 ret = __dev_alloc_name(net, name, buf);
1099 if (ret >= 0)
1100 strlcpy(dev->name, buf, IFNAMSIZ);
1101 return ret;
1102 }
1103 EXPORT_SYMBOL(dev_alloc_name);
1104
1105 static int dev_alloc_name_ns(struct net *net,
1106 struct net_device *dev,
1107 const char *name)
1108 {
1109 char buf[IFNAMSIZ];
1110 int ret;
1111
1112 ret = __dev_alloc_name(net, name, buf);
1113 if (ret >= 0)
1114 strlcpy(dev->name, buf, IFNAMSIZ);
1115 return ret;
1116 }
1117
1118 static int dev_get_valid_name(struct net *net,
1119 struct net_device *dev,
1120 const char *name)
1121 {
1122 BUG_ON(!net);
1123
1124 if (!dev_valid_name(name))
1125 return -EINVAL;
1126
1127 if (strchr(name, '%'))
1128 return dev_alloc_name_ns(net, dev, name);
1129 else if (__dev_get_by_name(net, name))
1130 return -EEXIST;
1131 else if (dev->name != name)
1132 strlcpy(dev->name, name, IFNAMSIZ);
1133
1134 return 0;
1135 }
1136
1137 /**
1138 * dev_change_name - change name of a device
1139 * @dev: device
1140 * @newname: name (or format string) must be at least IFNAMSIZ
1141 *
1142 * Change name of a device, can pass format strings "eth%d".
1143 * for wildcarding.
1144 */
1145 int dev_change_name(struct net_device *dev, const char *newname)
1146 {
1147 unsigned char old_assign_type;
1148 char oldname[IFNAMSIZ];
1149 int err = 0;
1150 int ret;
1151 struct net *net;
1152
1153 ASSERT_RTNL();
1154 BUG_ON(!dev_net(dev));
1155
1156 net = dev_net(dev);
1157 if (dev->flags & IFF_UP)
1158 return -EBUSY;
1159
1160 write_seqcount_begin(&devnet_rename_seq);
1161
1162 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1163 write_seqcount_end(&devnet_rename_seq);
1164 return 0;
1165 }
1166
1167 memcpy(oldname, dev->name, IFNAMSIZ);
1168
1169 err = dev_get_valid_name(net, dev, newname);
1170 if (err < 0) {
1171 write_seqcount_end(&devnet_rename_seq);
1172 return err;
1173 }
1174
1175 if (oldname[0] && !strchr(oldname, '%'))
1176 netdev_info(dev, "renamed from %s\n", oldname);
1177
1178 old_assign_type = dev->name_assign_type;
1179 dev->name_assign_type = NET_NAME_RENAMED;
1180
1181 rollback:
1182 ret = device_rename(&dev->dev, dev->name);
1183 if (ret) {
1184 memcpy(dev->name, oldname, IFNAMSIZ);
1185 dev->name_assign_type = old_assign_type;
1186 write_seqcount_end(&devnet_rename_seq);
1187 return ret;
1188 }
1189
1190 write_seqcount_end(&devnet_rename_seq);
1191
1192 netdev_adjacent_rename_links(dev, oldname);
1193
1194 write_lock_bh(&dev_base_lock);
1195 hlist_del_rcu(&dev->name_hlist);
1196 write_unlock_bh(&dev_base_lock);
1197
1198 synchronize_rcu();
1199
1200 write_lock_bh(&dev_base_lock);
1201 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1202 write_unlock_bh(&dev_base_lock);
1203
1204 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1205 ret = notifier_to_errno(ret);
1206
1207 if (ret) {
1208 /* err >= 0 after dev_alloc_name() or stores the first errno */
1209 if (err >= 0) {
1210 err = ret;
1211 write_seqcount_begin(&devnet_rename_seq);
1212 memcpy(dev->name, oldname, IFNAMSIZ);
1213 memcpy(oldname, newname, IFNAMSIZ);
1214 dev->name_assign_type = old_assign_type;
1215 old_assign_type = NET_NAME_RENAMED;
1216 goto rollback;
1217 } else {
1218 pr_err("%s: name change rollback failed: %d\n",
1219 dev->name, ret);
1220 }
1221 }
1222
1223 return err;
1224 }
1225
1226 /**
1227 * dev_set_alias - change ifalias of a device
1228 * @dev: device
1229 * @alias: name up to IFALIASZ
1230 * @len: limit of bytes to copy from info
1231 *
1232 * Set ifalias for a device,
1233 */
1234 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1235 {
1236 char *new_ifalias;
1237
1238 ASSERT_RTNL();
1239
1240 if (len >= IFALIASZ)
1241 return -EINVAL;
1242
1243 if (!len) {
1244 kfree(dev->ifalias);
1245 dev->ifalias = NULL;
1246 return 0;
1247 }
1248
1249 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1250 if (!new_ifalias)
1251 return -ENOMEM;
1252 dev->ifalias = new_ifalias;
1253
1254 strlcpy(dev->ifalias, alias, len+1);
1255 return len;
1256 }
1257
1258
1259 /**
1260 * netdev_features_change - device changes features
1261 * @dev: device to cause notification
1262 *
1263 * Called to indicate a device has changed features.
1264 */
1265 void netdev_features_change(struct net_device *dev)
1266 {
1267 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1268 }
1269 EXPORT_SYMBOL(netdev_features_change);
1270
1271 /**
1272 * netdev_state_change - device changes state
1273 * @dev: device to cause notification
1274 *
1275 * Called to indicate a device has changed state. This function calls
1276 * the notifier chains for netdev_chain and sends a NEWLINK message
1277 * to the routing socket.
1278 */
1279 void netdev_state_change(struct net_device *dev)
1280 {
1281 if (dev->flags & IFF_UP) {
1282 struct netdev_notifier_change_info change_info;
1283
1284 change_info.flags_changed = 0;
1285 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1286 &change_info.info);
1287 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1288 }
1289 }
1290 EXPORT_SYMBOL(netdev_state_change);
1291
1292 /**
1293 * netdev_notify_peers - notify network peers about existence of @dev
1294 * @dev: network device
1295 *
1296 * Generate traffic such that interested network peers are aware of
1297 * @dev, such as by generating a gratuitous ARP. This may be used when
1298 * a device wants to inform the rest of the network about some sort of
1299 * reconfiguration such as a failover event or virtual machine
1300 * migration.
1301 */
1302 void netdev_notify_peers(struct net_device *dev)
1303 {
1304 rtnl_lock();
1305 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1306 rtnl_unlock();
1307 }
1308 EXPORT_SYMBOL(netdev_notify_peers);
1309
1310 static int __dev_open(struct net_device *dev)
1311 {
1312 const struct net_device_ops *ops = dev->netdev_ops;
1313 int ret;
1314
1315 ASSERT_RTNL();
1316
1317 if (!netif_device_present(dev))
1318 return -ENODEV;
1319
1320 /* Block netpoll from trying to do any rx path servicing.
1321 * If we don't do this there is a chance ndo_poll_controller
1322 * or ndo_poll may be running while we open the device
1323 */
1324 netpoll_poll_disable(dev);
1325
1326 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1327 ret = notifier_to_errno(ret);
1328 if (ret)
1329 return ret;
1330
1331 set_bit(__LINK_STATE_START, &dev->state);
1332
1333 if (ops->ndo_validate_addr)
1334 ret = ops->ndo_validate_addr(dev);
1335
1336 if (!ret && ops->ndo_open)
1337 ret = ops->ndo_open(dev);
1338
1339 netpoll_poll_enable(dev);
1340
1341 if (ret)
1342 clear_bit(__LINK_STATE_START, &dev->state);
1343 else {
1344 dev->flags |= IFF_UP;
1345 dev_set_rx_mode(dev);
1346 dev_activate(dev);
1347 add_device_randomness(dev->dev_addr, dev->addr_len);
1348 }
1349
1350 return ret;
1351 }
1352
1353 /**
1354 * dev_open - prepare an interface for use.
1355 * @dev: device to open
1356 *
1357 * Takes a device from down to up state. The device's private open
1358 * function is invoked and then the multicast lists are loaded. Finally
1359 * the device is moved into the up state and a %NETDEV_UP message is
1360 * sent to the netdev notifier chain.
1361 *
1362 * Calling this function on an active interface is a nop. On a failure
1363 * a negative errno code is returned.
1364 */
1365 int dev_open(struct net_device *dev)
1366 {
1367 int ret;
1368
1369 if (dev->flags & IFF_UP)
1370 return 0;
1371
1372 ret = __dev_open(dev);
1373 if (ret < 0)
1374 return ret;
1375
1376 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1377 call_netdevice_notifiers(NETDEV_UP, dev);
1378
1379 return ret;
1380 }
1381 EXPORT_SYMBOL(dev_open);
1382
1383 static int __dev_close_many(struct list_head *head)
1384 {
1385 struct net_device *dev;
1386
1387 ASSERT_RTNL();
1388 might_sleep();
1389
1390 list_for_each_entry(dev, head, close_list) {
1391 /* Temporarily disable netpoll until the interface is down */
1392 netpoll_poll_disable(dev);
1393
1394 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1395
1396 clear_bit(__LINK_STATE_START, &dev->state);
1397
1398 /* Synchronize to scheduled poll. We cannot touch poll list, it
1399 * can be even on different cpu. So just clear netif_running().
1400 *
1401 * dev->stop() will invoke napi_disable() on all of it's
1402 * napi_struct instances on this device.
1403 */
1404 smp_mb__after_atomic(); /* Commit netif_running(). */
1405 }
1406
1407 dev_deactivate_many(head);
1408
1409 list_for_each_entry(dev, head, close_list) {
1410 const struct net_device_ops *ops = dev->netdev_ops;
1411
1412 /*
1413 * Call the device specific close. This cannot fail.
1414 * Only if device is UP
1415 *
1416 * We allow it to be called even after a DETACH hot-plug
1417 * event.
1418 */
1419 if (ops->ndo_stop)
1420 ops->ndo_stop(dev);
1421
1422 dev->flags &= ~IFF_UP;
1423 netpoll_poll_enable(dev);
1424 }
1425
1426 return 0;
1427 }
1428
1429 static int __dev_close(struct net_device *dev)
1430 {
1431 int retval;
1432 LIST_HEAD(single);
1433
1434 list_add(&dev->close_list, &single);
1435 retval = __dev_close_many(&single);
1436 list_del(&single);
1437
1438 return retval;
1439 }
1440
1441 int dev_close_many(struct list_head *head, bool unlink)
1442 {
1443 struct net_device *dev, *tmp;
1444
1445 /* Remove the devices that don't need to be closed */
1446 list_for_each_entry_safe(dev, tmp, head, close_list)
1447 if (!(dev->flags & IFF_UP))
1448 list_del_init(&dev->close_list);
1449
1450 __dev_close_many(head);
1451
1452 list_for_each_entry_safe(dev, tmp, head, close_list) {
1453 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1454 call_netdevice_notifiers(NETDEV_DOWN, dev);
1455 if (unlink)
1456 list_del_init(&dev->close_list);
1457 }
1458
1459 return 0;
1460 }
1461 EXPORT_SYMBOL(dev_close_many);
1462
1463 /**
1464 * dev_close - shutdown an interface.
1465 * @dev: device to shutdown
1466 *
1467 * This function moves an active device into down state. A
1468 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1469 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1470 * chain.
1471 */
1472 int dev_close(struct net_device *dev)
1473 {
1474 if (dev->flags & IFF_UP) {
1475 LIST_HEAD(single);
1476
1477 list_add(&dev->close_list, &single);
1478 dev_close_many(&single, true);
1479 list_del(&single);
1480 }
1481 return 0;
1482 }
1483 EXPORT_SYMBOL(dev_close);
1484
1485
1486 /**
1487 * dev_disable_lro - disable Large Receive Offload on a device
1488 * @dev: device
1489 *
1490 * Disable Large Receive Offload (LRO) on a net device. Must be
1491 * called under RTNL. This is needed if received packets may be
1492 * forwarded to another interface.
1493 */
1494 void dev_disable_lro(struct net_device *dev)
1495 {
1496 struct net_device *lower_dev;
1497 struct list_head *iter;
1498
1499 dev->wanted_features &= ~NETIF_F_LRO;
1500 netdev_update_features(dev);
1501
1502 if (unlikely(dev->features & NETIF_F_LRO))
1503 netdev_WARN(dev, "failed to disable LRO!\n");
1504
1505 netdev_for_each_lower_dev(dev, lower_dev, iter)
1506 dev_disable_lro(lower_dev);
1507 }
1508 EXPORT_SYMBOL(dev_disable_lro);
1509
1510 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1511 struct net_device *dev)
1512 {
1513 struct netdev_notifier_info info;
1514
1515 netdev_notifier_info_init(&info, dev);
1516 return nb->notifier_call(nb, val, &info);
1517 }
1518
1519 static int dev_boot_phase = 1;
1520
1521 /**
1522 * register_netdevice_notifier - register a network notifier block
1523 * @nb: notifier
1524 *
1525 * Register a notifier to be called when network device events occur.
1526 * The notifier passed is linked into the kernel structures and must
1527 * not be reused until it has been unregistered. A negative errno code
1528 * is returned on a failure.
1529 *
1530 * When registered all registration and up events are replayed
1531 * to the new notifier to allow device to have a race free
1532 * view of the network device list.
1533 */
1534
1535 int register_netdevice_notifier(struct notifier_block *nb)
1536 {
1537 struct net_device *dev;
1538 struct net_device *last;
1539 struct net *net;
1540 int err;
1541
1542 rtnl_lock();
1543 err = raw_notifier_chain_register(&netdev_chain, nb);
1544 if (err)
1545 goto unlock;
1546 if (dev_boot_phase)
1547 goto unlock;
1548 for_each_net(net) {
1549 for_each_netdev(net, dev) {
1550 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1551 err = notifier_to_errno(err);
1552 if (err)
1553 goto rollback;
1554
1555 if (!(dev->flags & IFF_UP))
1556 continue;
1557
1558 call_netdevice_notifier(nb, NETDEV_UP, dev);
1559 }
1560 }
1561
1562 unlock:
1563 rtnl_unlock();
1564 return err;
1565
1566 rollback:
1567 last = dev;
1568 for_each_net(net) {
1569 for_each_netdev(net, dev) {
1570 if (dev == last)
1571 goto outroll;
1572
1573 if (dev->flags & IFF_UP) {
1574 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1575 dev);
1576 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1577 }
1578 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1579 }
1580 }
1581
1582 outroll:
1583 raw_notifier_chain_unregister(&netdev_chain, nb);
1584 goto unlock;
1585 }
1586 EXPORT_SYMBOL(register_netdevice_notifier);
1587
1588 /**
1589 * unregister_netdevice_notifier - unregister a network notifier block
1590 * @nb: notifier
1591 *
1592 * Unregister a notifier previously registered by
1593 * register_netdevice_notifier(). The notifier is unlinked into the
1594 * kernel structures and may then be reused. A negative errno code
1595 * is returned on a failure.
1596 *
1597 * After unregistering unregister and down device events are synthesized
1598 * for all devices on the device list to the removed notifier to remove
1599 * the need for special case cleanup code.
1600 */
1601
1602 int unregister_netdevice_notifier(struct notifier_block *nb)
1603 {
1604 struct net_device *dev;
1605 struct net *net;
1606 int err;
1607
1608 rtnl_lock();
1609 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1610 if (err)
1611 goto unlock;
1612
1613 for_each_net(net) {
1614 for_each_netdev(net, dev) {
1615 if (dev->flags & IFF_UP) {
1616 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1617 dev);
1618 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1619 }
1620 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1621 }
1622 }
1623 unlock:
1624 rtnl_unlock();
1625 return err;
1626 }
1627 EXPORT_SYMBOL(unregister_netdevice_notifier);
1628
1629 /**
1630 * call_netdevice_notifiers_info - call all network notifier blocks
1631 * @val: value passed unmodified to notifier function
1632 * @dev: net_device pointer passed unmodified to notifier function
1633 * @info: notifier information data
1634 *
1635 * Call all network notifier blocks. Parameters and return value
1636 * are as for raw_notifier_call_chain().
1637 */
1638
1639 static int call_netdevice_notifiers_info(unsigned long val,
1640 struct net_device *dev,
1641 struct netdev_notifier_info *info)
1642 {
1643 ASSERT_RTNL();
1644 netdev_notifier_info_init(info, dev);
1645 return raw_notifier_call_chain(&netdev_chain, val, info);
1646 }
1647
1648 /**
1649 * call_netdevice_notifiers - call all network notifier blocks
1650 * @val: value passed unmodified to notifier function
1651 * @dev: net_device pointer passed unmodified to notifier function
1652 *
1653 * Call all network notifier blocks. Parameters and return value
1654 * are as for raw_notifier_call_chain().
1655 */
1656
1657 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1658 {
1659 struct netdev_notifier_info info;
1660
1661 return call_netdevice_notifiers_info(val, dev, &info);
1662 }
1663 EXPORT_SYMBOL(call_netdevice_notifiers);
1664
1665 #ifdef CONFIG_NET_INGRESS
1666 static struct static_key ingress_needed __read_mostly;
1667
1668 void net_inc_ingress_queue(void)
1669 {
1670 static_key_slow_inc(&ingress_needed);
1671 }
1672 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1673
1674 void net_dec_ingress_queue(void)
1675 {
1676 static_key_slow_dec(&ingress_needed);
1677 }
1678 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1679 #endif
1680
1681 #ifdef CONFIG_NET_EGRESS
1682 static struct static_key egress_needed __read_mostly;
1683
1684 void net_inc_egress_queue(void)
1685 {
1686 static_key_slow_inc(&egress_needed);
1687 }
1688 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1689
1690 void net_dec_egress_queue(void)
1691 {
1692 static_key_slow_dec(&egress_needed);
1693 }
1694 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1695 #endif
1696
1697 static struct static_key netstamp_needed __read_mostly;
1698 #ifdef HAVE_JUMP_LABEL
1699 /* We are not allowed to call static_key_slow_dec() from irq context
1700 * If net_disable_timestamp() is called from irq context, defer the
1701 * static_key_slow_dec() calls.
1702 */
1703 static atomic_t netstamp_needed_deferred;
1704 #endif
1705
1706 void net_enable_timestamp(void)
1707 {
1708 #ifdef HAVE_JUMP_LABEL
1709 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1710
1711 if (deferred) {
1712 while (--deferred)
1713 static_key_slow_dec(&netstamp_needed);
1714 return;
1715 }
1716 #endif
1717 static_key_slow_inc(&netstamp_needed);
1718 }
1719 EXPORT_SYMBOL(net_enable_timestamp);
1720
1721 void net_disable_timestamp(void)
1722 {
1723 #ifdef HAVE_JUMP_LABEL
1724 if (in_interrupt()) {
1725 atomic_inc(&netstamp_needed_deferred);
1726 return;
1727 }
1728 #endif
1729 static_key_slow_dec(&netstamp_needed);
1730 }
1731 EXPORT_SYMBOL(net_disable_timestamp);
1732
1733 static inline void net_timestamp_set(struct sk_buff *skb)
1734 {
1735 skb->tstamp.tv64 = 0;
1736 if (static_key_false(&netstamp_needed))
1737 __net_timestamp(skb);
1738 }
1739
1740 #define net_timestamp_check(COND, SKB) \
1741 if (static_key_false(&netstamp_needed)) { \
1742 if ((COND) && !(SKB)->tstamp.tv64) \
1743 __net_timestamp(SKB); \
1744 } \
1745
1746 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1747 {
1748 unsigned int len;
1749
1750 if (!(dev->flags & IFF_UP))
1751 return false;
1752
1753 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1754 if (skb->len <= len)
1755 return true;
1756
1757 /* if TSO is enabled, we don't care about the length as the packet
1758 * could be forwarded without being segmented before
1759 */
1760 if (skb_is_gso(skb))
1761 return true;
1762
1763 return false;
1764 }
1765 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1766
1767 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1768 {
1769 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1770 unlikely(!is_skb_forwardable(dev, skb))) {
1771 atomic_long_inc(&dev->rx_dropped);
1772 kfree_skb(skb);
1773 return NET_RX_DROP;
1774 }
1775
1776 skb_scrub_packet(skb, true);
1777 skb->priority = 0;
1778 skb->protocol = eth_type_trans(skb, dev);
1779 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1780
1781 return 0;
1782 }
1783 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1784
1785 /**
1786 * dev_forward_skb - loopback an skb to another netif
1787 *
1788 * @dev: destination network device
1789 * @skb: buffer to forward
1790 *
1791 * return values:
1792 * NET_RX_SUCCESS (no congestion)
1793 * NET_RX_DROP (packet was dropped, but freed)
1794 *
1795 * dev_forward_skb can be used for injecting an skb from the
1796 * start_xmit function of one device into the receive queue
1797 * of another device.
1798 *
1799 * The receiving device may be in another namespace, so
1800 * we have to clear all information in the skb that could
1801 * impact namespace isolation.
1802 */
1803 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1804 {
1805 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1806 }
1807 EXPORT_SYMBOL_GPL(dev_forward_skb);
1808
1809 static inline int deliver_skb(struct sk_buff *skb,
1810 struct packet_type *pt_prev,
1811 struct net_device *orig_dev)
1812 {
1813 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1814 return -ENOMEM;
1815 atomic_inc(&skb->users);
1816 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1817 }
1818
1819 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1820 struct packet_type **pt,
1821 struct net_device *orig_dev,
1822 __be16 type,
1823 struct list_head *ptype_list)
1824 {
1825 struct packet_type *ptype, *pt_prev = *pt;
1826
1827 list_for_each_entry_rcu(ptype, ptype_list, list) {
1828 if (ptype->type != type)
1829 continue;
1830 if (pt_prev)
1831 deliver_skb(skb, pt_prev, orig_dev);
1832 pt_prev = ptype;
1833 }
1834 *pt = pt_prev;
1835 }
1836
1837 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1838 {
1839 if (!ptype->af_packet_priv || !skb->sk)
1840 return false;
1841
1842 if (ptype->id_match)
1843 return ptype->id_match(ptype, skb->sk);
1844 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1845 return true;
1846
1847 return false;
1848 }
1849
1850 /*
1851 * Support routine. Sends outgoing frames to any network
1852 * taps currently in use.
1853 */
1854
1855 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1856 {
1857 struct packet_type *ptype;
1858 struct sk_buff *skb2 = NULL;
1859 struct packet_type *pt_prev = NULL;
1860 struct list_head *ptype_list = &ptype_all;
1861
1862 rcu_read_lock();
1863 again:
1864 list_for_each_entry_rcu(ptype, ptype_list, list) {
1865 /* Never send packets back to the socket
1866 * they originated from - MvS (miquels@drinkel.ow.org)
1867 */
1868 if (skb_loop_sk(ptype, skb))
1869 continue;
1870
1871 if (pt_prev) {
1872 deliver_skb(skb2, pt_prev, skb->dev);
1873 pt_prev = ptype;
1874 continue;
1875 }
1876
1877 /* need to clone skb, done only once */
1878 skb2 = skb_clone(skb, GFP_ATOMIC);
1879 if (!skb2)
1880 goto out_unlock;
1881
1882 net_timestamp_set(skb2);
1883
1884 /* skb->nh should be correctly
1885 * set by sender, so that the second statement is
1886 * just protection against buggy protocols.
1887 */
1888 skb_reset_mac_header(skb2);
1889
1890 if (skb_network_header(skb2) < skb2->data ||
1891 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1892 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1893 ntohs(skb2->protocol),
1894 dev->name);
1895 skb_reset_network_header(skb2);
1896 }
1897
1898 skb2->transport_header = skb2->network_header;
1899 skb2->pkt_type = PACKET_OUTGOING;
1900 pt_prev = ptype;
1901 }
1902
1903 if (ptype_list == &ptype_all) {
1904 ptype_list = &dev->ptype_all;
1905 goto again;
1906 }
1907 out_unlock:
1908 if (pt_prev)
1909 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1910 rcu_read_unlock();
1911 }
1912 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1913
1914 /**
1915 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1916 * @dev: Network device
1917 * @txq: number of queues available
1918 *
1919 * If real_num_tx_queues is changed the tc mappings may no longer be
1920 * valid. To resolve this verify the tc mapping remains valid and if
1921 * not NULL the mapping. With no priorities mapping to this
1922 * offset/count pair it will no longer be used. In the worst case TC0
1923 * is invalid nothing can be done so disable priority mappings. If is
1924 * expected that drivers will fix this mapping if they can before
1925 * calling netif_set_real_num_tx_queues.
1926 */
1927 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1928 {
1929 int i;
1930 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1931
1932 /* If TC0 is invalidated disable TC mapping */
1933 if (tc->offset + tc->count > txq) {
1934 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1935 dev->num_tc = 0;
1936 return;
1937 }
1938
1939 /* Invalidated prio to tc mappings set to TC0 */
1940 for (i = 1; i < TC_BITMASK + 1; i++) {
1941 int q = netdev_get_prio_tc_map(dev, i);
1942
1943 tc = &dev->tc_to_txq[q];
1944 if (tc->offset + tc->count > txq) {
1945 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1946 i, q);
1947 netdev_set_prio_tc_map(dev, i, 0);
1948 }
1949 }
1950 }
1951
1952 #ifdef CONFIG_XPS
1953 static DEFINE_MUTEX(xps_map_mutex);
1954 #define xmap_dereference(P) \
1955 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1956
1957 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1958 int cpu, u16 index)
1959 {
1960 struct xps_map *map = NULL;
1961 int pos;
1962
1963 if (dev_maps)
1964 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1965
1966 for (pos = 0; map && pos < map->len; pos++) {
1967 if (map->queues[pos] == index) {
1968 if (map->len > 1) {
1969 map->queues[pos] = map->queues[--map->len];
1970 } else {
1971 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1972 kfree_rcu(map, rcu);
1973 map = NULL;
1974 }
1975 break;
1976 }
1977 }
1978
1979 return map;
1980 }
1981
1982 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1983 {
1984 struct xps_dev_maps *dev_maps;
1985 int cpu, i;
1986 bool active = false;
1987
1988 mutex_lock(&xps_map_mutex);
1989 dev_maps = xmap_dereference(dev->xps_maps);
1990
1991 if (!dev_maps)
1992 goto out_no_maps;
1993
1994 for_each_possible_cpu(cpu) {
1995 for (i = index; i < dev->num_tx_queues; i++) {
1996 if (!remove_xps_queue(dev_maps, cpu, i))
1997 break;
1998 }
1999 if (i == dev->num_tx_queues)
2000 active = true;
2001 }
2002
2003 if (!active) {
2004 RCU_INIT_POINTER(dev->xps_maps, NULL);
2005 kfree_rcu(dev_maps, rcu);
2006 }
2007
2008 for (i = index; i < dev->num_tx_queues; i++)
2009 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2010 NUMA_NO_NODE);
2011
2012 out_no_maps:
2013 mutex_unlock(&xps_map_mutex);
2014 }
2015
2016 static struct xps_map *expand_xps_map(struct xps_map *map,
2017 int cpu, u16 index)
2018 {
2019 struct xps_map *new_map;
2020 int alloc_len = XPS_MIN_MAP_ALLOC;
2021 int i, pos;
2022
2023 for (pos = 0; map && pos < map->len; pos++) {
2024 if (map->queues[pos] != index)
2025 continue;
2026 return map;
2027 }
2028
2029 /* Need to add queue to this CPU's existing map */
2030 if (map) {
2031 if (pos < map->alloc_len)
2032 return map;
2033
2034 alloc_len = map->alloc_len * 2;
2035 }
2036
2037 /* Need to allocate new map to store queue on this CPU's map */
2038 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2039 cpu_to_node(cpu));
2040 if (!new_map)
2041 return NULL;
2042
2043 for (i = 0; i < pos; i++)
2044 new_map->queues[i] = map->queues[i];
2045 new_map->alloc_len = alloc_len;
2046 new_map->len = pos;
2047
2048 return new_map;
2049 }
2050
2051 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2052 u16 index)
2053 {
2054 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2055 struct xps_map *map, *new_map;
2056 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2057 int cpu, numa_node_id = -2;
2058 bool active = false;
2059
2060 mutex_lock(&xps_map_mutex);
2061
2062 dev_maps = xmap_dereference(dev->xps_maps);
2063
2064 /* allocate memory for queue storage */
2065 for_each_online_cpu(cpu) {
2066 if (!cpumask_test_cpu(cpu, mask))
2067 continue;
2068
2069 if (!new_dev_maps)
2070 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2071 if (!new_dev_maps) {
2072 mutex_unlock(&xps_map_mutex);
2073 return -ENOMEM;
2074 }
2075
2076 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2077 NULL;
2078
2079 map = expand_xps_map(map, cpu, index);
2080 if (!map)
2081 goto error;
2082
2083 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2084 }
2085
2086 if (!new_dev_maps)
2087 goto out_no_new_maps;
2088
2089 for_each_possible_cpu(cpu) {
2090 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2091 /* add queue to CPU maps */
2092 int pos = 0;
2093
2094 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2095 while ((pos < map->len) && (map->queues[pos] != index))
2096 pos++;
2097
2098 if (pos == map->len)
2099 map->queues[map->len++] = index;
2100 #ifdef CONFIG_NUMA
2101 if (numa_node_id == -2)
2102 numa_node_id = cpu_to_node(cpu);
2103 else if (numa_node_id != cpu_to_node(cpu))
2104 numa_node_id = -1;
2105 #endif
2106 } else if (dev_maps) {
2107 /* fill in the new device map from the old device map */
2108 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2109 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2110 }
2111
2112 }
2113
2114 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2115
2116 /* Cleanup old maps */
2117 if (dev_maps) {
2118 for_each_possible_cpu(cpu) {
2119 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2120 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2121 if (map && map != new_map)
2122 kfree_rcu(map, rcu);
2123 }
2124
2125 kfree_rcu(dev_maps, rcu);
2126 }
2127
2128 dev_maps = new_dev_maps;
2129 active = true;
2130
2131 out_no_new_maps:
2132 /* update Tx queue numa node */
2133 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2134 (numa_node_id >= 0) ? numa_node_id :
2135 NUMA_NO_NODE);
2136
2137 if (!dev_maps)
2138 goto out_no_maps;
2139
2140 /* removes queue from unused CPUs */
2141 for_each_possible_cpu(cpu) {
2142 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2143 continue;
2144
2145 if (remove_xps_queue(dev_maps, cpu, index))
2146 active = true;
2147 }
2148
2149 /* free map if not active */
2150 if (!active) {
2151 RCU_INIT_POINTER(dev->xps_maps, NULL);
2152 kfree_rcu(dev_maps, rcu);
2153 }
2154
2155 out_no_maps:
2156 mutex_unlock(&xps_map_mutex);
2157
2158 return 0;
2159 error:
2160 /* remove any maps that we added */
2161 for_each_possible_cpu(cpu) {
2162 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2163 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2164 NULL;
2165 if (new_map && new_map != map)
2166 kfree(new_map);
2167 }
2168
2169 mutex_unlock(&xps_map_mutex);
2170
2171 kfree(new_dev_maps);
2172 return -ENOMEM;
2173 }
2174 EXPORT_SYMBOL(netif_set_xps_queue);
2175
2176 #endif
2177 /*
2178 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2179 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2180 */
2181 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2182 {
2183 int rc;
2184
2185 if (txq < 1 || txq > dev->num_tx_queues)
2186 return -EINVAL;
2187
2188 if (dev->reg_state == NETREG_REGISTERED ||
2189 dev->reg_state == NETREG_UNREGISTERING) {
2190 ASSERT_RTNL();
2191
2192 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2193 txq);
2194 if (rc)
2195 return rc;
2196
2197 if (dev->num_tc)
2198 netif_setup_tc(dev, txq);
2199
2200 if (txq < dev->real_num_tx_queues) {
2201 qdisc_reset_all_tx_gt(dev, txq);
2202 #ifdef CONFIG_XPS
2203 netif_reset_xps_queues_gt(dev, txq);
2204 #endif
2205 }
2206 }
2207
2208 dev->real_num_tx_queues = txq;
2209 return 0;
2210 }
2211 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2212
2213 #ifdef CONFIG_SYSFS
2214 /**
2215 * netif_set_real_num_rx_queues - set actual number of RX queues used
2216 * @dev: Network device
2217 * @rxq: Actual number of RX queues
2218 *
2219 * This must be called either with the rtnl_lock held or before
2220 * registration of the net device. Returns 0 on success, or a
2221 * negative error code. If called before registration, it always
2222 * succeeds.
2223 */
2224 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2225 {
2226 int rc;
2227
2228 if (rxq < 1 || rxq > dev->num_rx_queues)
2229 return -EINVAL;
2230
2231 if (dev->reg_state == NETREG_REGISTERED) {
2232 ASSERT_RTNL();
2233
2234 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2235 rxq);
2236 if (rc)
2237 return rc;
2238 }
2239
2240 dev->real_num_rx_queues = rxq;
2241 return 0;
2242 }
2243 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2244 #endif
2245
2246 /**
2247 * netif_get_num_default_rss_queues - default number of RSS queues
2248 *
2249 * This routine should set an upper limit on the number of RSS queues
2250 * used by default by multiqueue devices.
2251 */
2252 int netif_get_num_default_rss_queues(void)
2253 {
2254 return is_kdump_kernel() ?
2255 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2256 }
2257 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2258
2259 static void __netif_reschedule(struct Qdisc *q)
2260 {
2261 struct softnet_data *sd;
2262 unsigned long flags;
2263
2264 local_irq_save(flags);
2265 sd = this_cpu_ptr(&softnet_data);
2266 q->next_sched = NULL;
2267 *sd->output_queue_tailp = q;
2268 sd->output_queue_tailp = &q->next_sched;
2269 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2270 local_irq_restore(flags);
2271 }
2272
2273 void __netif_schedule(struct Qdisc *q)
2274 {
2275 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2276 __netif_reschedule(q);
2277 }
2278 EXPORT_SYMBOL(__netif_schedule);
2279
2280 struct dev_kfree_skb_cb {
2281 enum skb_free_reason reason;
2282 };
2283
2284 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2285 {
2286 return (struct dev_kfree_skb_cb *)skb->cb;
2287 }
2288
2289 void netif_schedule_queue(struct netdev_queue *txq)
2290 {
2291 rcu_read_lock();
2292 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2293 struct Qdisc *q = rcu_dereference(txq->qdisc);
2294
2295 __netif_schedule(q);
2296 }
2297 rcu_read_unlock();
2298 }
2299 EXPORT_SYMBOL(netif_schedule_queue);
2300
2301 /**
2302 * netif_wake_subqueue - allow sending packets on subqueue
2303 * @dev: network device
2304 * @queue_index: sub queue index
2305 *
2306 * Resume individual transmit queue of a device with multiple transmit queues.
2307 */
2308 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2309 {
2310 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2311
2312 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2313 struct Qdisc *q;
2314
2315 rcu_read_lock();
2316 q = rcu_dereference(txq->qdisc);
2317 __netif_schedule(q);
2318 rcu_read_unlock();
2319 }
2320 }
2321 EXPORT_SYMBOL(netif_wake_subqueue);
2322
2323 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2324 {
2325 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2326 struct Qdisc *q;
2327
2328 rcu_read_lock();
2329 q = rcu_dereference(dev_queue->qdisc);
2330 __netif_schedule(q);
2331 rcu_read_unlock();
2332 }
2333 }
2334 EXPORT_SYMBOL(netif_tx_wake_queue);
2335
2336 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2337 {
2338 unsigned long flags;
2339
2340 if (likely(atomic_read(&skb->users) == 1)) {
2341 smp_rmb();
2342 atomic_set(&skb->users, 0);
2343 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2344 return;
2345 }
2346 get_kfree_skb_cb(skb)->reason = reason;
2347 local_irq_save(flags);
2348 skb->next = __this_cpu_read(softnet_data.completion_queue);
2349 __this_cpu_write(softnet_data.completion_queue, skb);
2350 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2351 local_irq_restore(flags);
2352 }
2353 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2354
2355 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2356 {
2357 if (in_irq() || irqs_disabled())
2358 __dev_kfree_skb_irq(skb, reason);
2359 else
2360 dev_kfree_skb(skb);
2361 }
2362 EXPORT_SYMBOL(__dev_kfree_skb_any);
2363
2364
2365 /**
2366 * netif_device_detach - mark device as removed
2367 * @dev: network device
2368 *
2369 * Mark device as removed from system and therefore no longer available.
2370 */
2371 void netif_device_detach(struct net_device *dev)
2372 {
2373 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2374 netif_running(dev)) {
2375 netif_tx_stop_all_queues(dev);
2376 }
2377 }
2378 EXPORT_SYMBOL(netif_device_detach);
2379
2380 /**
2381 * netif_device_attach - mark device as attached
2382 * @dev: network device
2383 *
2384 * Mark device as attached from system and restart if needed.
2385 */
2386 void netif_device_attach(struct net_device *dev)
2387 {
2388 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2389 netif_running(dev)) {
2390 netif_tx_wake_all_queues(dev);
2391 __netdev_watchdog_up(dev);
2392 }
2393 }
2394 EXPORT_SYMBOL(netif_device_attach);
2395
2396 /*
2397 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2398 * to be used as a distribution range.
2399 */
2400 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2401 unsigned int num_tx_queues)
2402 {
2403 u32 hash;
2404 u16 qoffset = 0;
2405 u16 qcount = num_tx_queues;
2406
2407 if (skb_rx_queue_recorded(skb)) {
2408 hash = skb_get_rx_queue(skb);
2409 while (unlikely(hash >= num_tx_queues))
2410 hash -= num_tx_queues;
2411 return hash;
2412 }
2413
2414 if (dev->num_tc) {
2415 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2416 qoffset = dev->tc_to_txq[tc].offset;
2417 qcount = dev->tc_to_txq[tc].count;
2418 }
2419
2420 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2421 }
2422 EXPORT_SYMBOL(__skb_tx_hash);
2423
2424 static void skb_warn_bad_offload(const struct sk_buff *skb)
2425 {
2426 static const netdev_features_t null_features;
2427 struct net_device *dev = skb->dev;
2428 const char *name = "";
2429
2430 if (!net_ratelimit())
2431 return;
2432
2433 if (dev) {
2434 if (dev->dev.parent)
2435 name = dev_driver_string(dev->dev.parent);
2436 else
2437 name = netdev_name(dev);
2438 }
2439 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2440 "gso_type=%d ip_summed=%d\n",
2441 name, dev ? &dev->features : &null_features,
2442 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2443 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2444 skb_shinfo(skb)->gso_type, skb->ip_summed);
2445 }
2446
2447 /*
2448 * Invalidate hardware checksum when packet is to be mangled, and
2449 * complete checksum manually on outgoing path.
2450 */
2451 int skb_checksum_help(struct sk_buff *skb)
2452 {
2453 __wsum csum;
2454 int ret = 0, offset;
2455
2456 if (skb->ip_summed == CHECKSUM_COMPLETE)
2457 goto out_set_summed;
2458
2459 if (unlikely(skb_shinfo(skb)->gso_size)) {
2460 skb_warn_bad_offload(skb);
2461 return -EINVAL;
2462 }
2463
2464 /* Before computing a checksum, we should make sure no frag could
2465 * be modified by an external entity : checksum could be wrong.
2466 */
2467 if (skb_has_shared_frag(skb)) {
2468 ret = __skb_linearize(skb);
2469 if (ret)
2470 goto out;
2471 }
2472
2473 offset = skb_checksum_start_offset(skb);
2474 BUG_ON(offset >= skb_headlen(skb));
2475 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2476
2477 offset += skb->csum_offset;
2478 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2479
2480 if (skb_cloned(skb) &&
2481 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2482 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2483 if (ret)
2484 goto out;
2485 }
2486
2487 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2488 out_set_summed:
2489 skb->ip_summed = CHECKSUM_NONE;
2490 out:
2491 return ret;
2492 }
2493 EXPORT_SYMBOL(skb_checksum_help);
2494
2495 /* skb_csum_offload_check - Driver helper function to determine if a device
2496 * with limited checksum offload capabilities is able to offload the checksum
2497 * for a given packet.
2498 *
2499 * Arguments:
2500 * skb - sk_buff for the packet in question
2501 * spec - contains the description of what device can offload
2502 * csum_encapped - returns true if the checksum being offloaded is
2503 * encpasulated. That is it is checksum for the transport header
2504 * in the inner headers.
2505 * checksum_help - when set indicates that helper function should
2506 * call skb_checksum_help if offload checks fail
2507 *
2508 * Returns:
2509 * true: Packet has passed the checksum checks and should be offloadable to
2510 * the device (a driver may still need to check for additional
2511 * restrictions of its device)
2512 * false: Checksum is not offloadable. If checksum_help was set then
2513 * skb_checksum_help was called to resolve checksum for non-GSO
2514 * packets and when IP protocol is not SCTP
2515 */
2516 bool __skb_csum_offload_chk(struct sk_buff *skb,
2517 const struct skb_csum_offl_spec *spec,
2518 bool *csum_encapped,
2519 bool csum_help)
2520 {
2521 struct iphdr *iph;
2522 struct ipv6hdr *ipv6;
2523 void *nhdr;
2524 int protocol;
2525 u8 ip_proto;
2526
2527 if (skb->protocol == htons(ETH_P_8021Q) ||
2528 skb->protocol == htons(ETH_P_8021AD)) {
2529 if (!spec->vlan_okay)
2530 goto need_help;
2531 }
2532
2533 /* We check whether the checksum refers to a transport layer checksum in
2534 * the outermost header or an encapsulated transport layer checksum that
2535 * corresponds to the inner headers of the skb. If the checksum is for
2536 * something else in the packet we need help.
2537 */
2538 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2539 /* Non-encapsulated checksum */
2540 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2541 nhdr = skb_network_header(skb);
2542 *csum_encapped = false;
2543 if (spec->no_not_encapped)
2544 goto need_help;
2545 } else if (skb->encapsulation && spec->encap_okay &&
2546 skb_checksum_start_offset(skb) ==
2547 skb_inner_transport_offset(skb)) {
2548 /* Encapsulated checksum */
2549 *csum_encapped = true;
2550 switch (skb->inner_protocol_type) {
2551 case ENCAP_TYPE_ETHER:
2552 protocol = eproto_to_ipproto(skb->inner_protocol);
2553 break;
2554 case ENCAP_TYPE_IPPROTO:
2555 protocol = skb->inner_protocol;
2556 break;
2557 }
2558 nhdr = skb_inner_network_header(skb);
2559 } else {
2560 goto need_help;
2561 }
2562
2563 switch (protocol) {
2564 case IPPROTO_IP:
2565 if (!spec->ipv4_okay)
2566 goto need_help;
2567 iph = nhdr;
2568 ip_proto = iph->protocol;
2569 if (iph->ihl != 5 && !spec->ip_options_okay)
2570 goto need_help;
2571 break;
2572 case IPPROTO_IPV6:
2573 if (!spec->ipv6_okay)
2574 goto need_help;
2575 if (spec->no_encapped_ipv6 && *csum_encapped)
2576 goto need_help;
2577 ipv6 = nhdr;
2578 nhdr += sizeof(*ipv6);
2579 ip_proto = ipv6->nexthdr;
2580 break;
2581 default:
2582 goto need_help;
2583 }
2584
2585 ip_proto_again:
2586 switch (ip_proto) {
2587 case IPPROTO_TCP:
2588 if (!spec->tcp_okay ||
2589 skb->csum_offset != offsetof(struct tcphdr, check))
2590 goto need_help;
2591 break;
2592 case IPPROTO_UDP:
2593 if (!spec->udp_okay ||
2594 skb->csum_offset != offsetof(struct udphdr, check))
2595 goto need_help;
2596 break;
2597 case IPPROTO_SCTP:
2598 if (!spec->sctp_okay ||
2599 skb->csum_offset != offsetof(struct sctphdr, checksum))
2600 goto cant_help;
2601 break;
2602 case NEXTHDR_HOP:
2603 case NEXTHDR_ROUTING:
2604 case NEXTHDR_DEST: {
2605 u8 *opthdr = nhdr;
2606
2607 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2608 goto need_help;
2609
2610 ip_proto = opthdr[0];
2611 nhdr += (opthdr[1] + 1) << 3;
2612
2613 goto ip_proto_again;
2614 }
2615 default:
2616 goto need_help;
2617 }
2618
2619 /* Passed the tests for offloading checksum */
2620 return true;
2621
2622 need_help:
2623 if (csum_help && !skb_shinfo(skb)->gso_size)
2624 skb_checksum_help(skb);
2625 cant_help:
2626 return false;
2627 }
2628 EXPORT_SYMBOL(__skb_csum_offload_chk);
2629
2630 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2631 {
2632 __be16 type = skb->protocol;
2633
2634 /* Tunnel gso handlers can set protocol to ethernet. */
2635 if (type == htons(ETH_P_TEB)) {
2636 struct ethhdr *eth;
2637
2638 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2639 return 0;
2640
2641 eth = (struct ethhdr *)skb_mac_header(skb);
2642 type = eth->h_proto;
2643 }
2644
2645 return __vlan_get_protocol(skb, type, depth);
2646 }
2647
2648 /**
2649 * skb_mac_gso_segment - mac layer segmentation handler.
2650 * @skb: buffer to segment
2651 * @features: features for the output path (see dev->features)
2652 */
2653 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2654 netdev_features_t features)
2655 {
2656 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2657 struct packet_offload *ptype;
2658 int vlan_depth = skb->mac_len;
2659 __be16 type = skb_network_protocol(skb, &vlan_depth);
2660
2661 if (unlikely(!type))
2662 return ERR_PTR(-EINVAL);
2663
2664 __skb_pull(skb, vlan_depth);
2665
2666 rcu_read_lock();
2667 list_for_each_entry_rcu(ptype, &offload_base, list) {
2668 if (ptype->type == type && ptype->callbacks.gso_segment) {
2669 segs = ptype->callbacks.gso_segment(skb, features);
2670 break;
2671 }
2672 }
2673 rcu_read_unlock();
2674
2675 __skb_push(skb, skb->data - skb_mac_header(skb));
2676
2677 return segs;
2678 }
2679 EXPORT_SYMBOL(skb_mac_gso_segment);
2680
2681
2682 /* openvswitch calls this on rx path, so we need a different check.
2683 */
2684 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2685 {
2686 if (tx_path)
2687 return skb->ip_summed != CHECKSUM_PARTIAL;
2688 else
2689 return skb->ip_summed == CHECKSUM_NONE;
2690 }
2691
2692 /**
2693 * __skb_gso_segment - Perform segmentation on skb.
2694 * @skb: buffer to segment
2695 * @features: features for the output path (see dev->features)
2696 * @tx_path: whether it is called in TX path
2697 *
2698 * This function segments the given skb and returns a list of segments.
2699 *
2700 * It may return NULL if the skb requires no segmentation. This is
2701 * only possible when GSO is used for verifying header integrity.
2702 *
2703 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2704 */
2705 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2706 netdev_features_t features, bool tx_path)
2707 {
2708 if (unlikely(skb_needs_check(skb, tx_path))) {
2709 int err;
2710
2711 skb_warn_bad_offload(skb);
2712
2713 err = skb_cow_head(skb, 0);
2714 if (err < 0)
2715 return ERR_PTR(err);
2716 }
2717
2718 /* Only report GSO partial support if it will enable us to
2719 * support segmentation on this frame without needing additional
2720 * work.
2721 */
2722 if (features & NETIF_F_GSO_PARTIAL) {
2723 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2724 struct net_device *dev = skb->dev;
2725
2726 partial_features |= dev->features & dev->gso_partial_features;
2727 if (!skb_gso_ok(skb, features | partial_features))
2728 features &= ~NETIF_F_GSO_PARTIAL;
2729 }
2730
2731 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2732 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2733
2734 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2735 SKB_GSO_CB(skb)->encap_level = 0;
2736
2737 skb_reset_mac_header(skb);
2738 skb_reset_mac_len(skb);
2739
2740 return skb_mac_gso_segment(skb, features);
2741 }
2742 EXPORT_SYMBOL(__skb_gso_segment);
2743
2744 /* Take action when hardware reception checksum errors are detected. */
2745 #ifdef CONFIG_BUG
2746 void netdev_rx_csum_fault(struct net_device *dev)
2747 {
2748 if (net_ratelimit()) {
2749 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2750 dump_stack();
2751 }
2752 }
2753 EXPORT_SYMBOL(netdev_rx_csum_fault);
2754 #endif
2755
2756 /* Actually, we should eliminate this check as soon as we know, that:
2757 * 1. IOMMU is present and allows to map all the memory.
2758 * 2. No high memory really exists on this machine.
2759 */
2760
2761 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2762 {
2763 #ifdef CONFIG_HIGHMEM
2764 int i;
2765 if (!(dev->features & NETIF_F_HIGHDMA)) {
2766 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2767 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2768 if (PageHighMem(skb_frag_page(frag)))
2769 return 1;
2770 }
2771 }
2772
2773 if (PCI_DMA_BUS_IS_PHYS) {
2774 struct device *pdev = dev->dev.parent;
2775
2776 if (!pdev)
2777 return 0;
2778 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2779 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2780 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2781 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2782 return 1;
2783 }
2784 }
2785 #endif
2786 return 0;
2787 }
2788
2789 /* If MPLS offload request, verify we are testing hardware MPLS features
2790 * instead of standard features for the netdev.
2791 */
2792 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2793 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2794 netdev_features_t features,
2795 __be16 type)
2796 {
2797 if (eth_p_mpls(type))
2798 features &= skb->dev->mpls_features;
2799
2800 return features;
2801 }
2802 #else
2803 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2804 netdev_features_t features,
2805 __be16 type)
2806 {
2807 return features;
2808 }
2809 #endif
2810
2811 static netdev_features_t harmonize_features(struct sk_buff *skb,
2812 netdev_features_t features)
2813 {
2814 int tmp;
2815 __be16 type;
2816
2817 type = skb_network_protocol(skb, &tmp);
2818 features = net_mpls_features(skb, features, type);
2819
2820 if (skb->ip_summed != CHECKSUM_NONE &&
2821 !can_checksum_protocol(features, type)) {
2822 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2823 } else if (illegal_highdma(skb->dev, skb)) {
2824 features &= ~NETIF_F_SG;
2825 }
2826
2827 return features;
2828 }
2829
2830 netdev_features_t passthru_features_check(struct sk_buff *skb,
2831 struct net_device *dev,
2832 netdev_features_t features)
2833 {
2834 return features;
2835 }
2836 EXPORT_SYMBOL(passthru_features_check);
2837
2838 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2839 struct net_device *dev,
2840 netdev_features_t features)
2841 {
2842 return vlan_features_check(skb, features);
2843 }
2844
2845 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2846 struct net_device *dev,
2847 netdev_features_t features)
2848 {
2849 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2850
2851 if (gso_segs > dev->gso_max_segs)
2852 return features & ~NETIF_F_GSO_MASK;
2853
2854 /* Support for GSO partial features requires software
2855 * intervention before we can actually process the packets
2856 * so we need to strip support for any partial features now
2857 * and we can pull them back in after we have partially
2858 * segmented the frame.
2859 */
2860 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2861 features &= ~dev->gso_partial_features;
2862
2863 /* Make sure to clear the IPv4 ID mangling feature if the
2864 * IPv4 header has the potential to be fragmented.
2865 */
2866 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2867 struct iphdr *iph = skb->encapsulation ?
2868 inner_ip_hdr(skb) : ip_hdr(skb);
2869
2870 if (!(iph->frag_off & htons(IP_DF)))
2871 features &= ~NETIF_F_TSO_MANGLEID;
2872 }
2873
2874 return features;
2875 }
2876
2877 netdev_features_t netif_skb_features(struct sk_buff *skb)
2878 {
2879 struct net_device *dev = skb->dev;
2880 netdev_features_t features = dev->features;
2881
2882 if (skb_is_gso(skb))
2883 features = gso_features_check(skb, dev, features);
2884
2885 /* If encapsulation offload request, verify we are testing
2886 * hardware encapsulation features instead of standard
2887 * features for the netdev
2888 */
2889 if (skb->encapsulation)
2890 features &= dev->hw_enc_features;
2891
2892 if (skb_vlan_tagged(skb))
2893 features = netdev_intersect_features(features,
2894 dev->vlan_features |
2895 NETIF_F_HW_VLAN_CTAG_TX |
2896 NETIF_F_HW_VLAN_STAG_TX);
2897
2898 if (dev->netdev_ops->ndo_features_check)
2899 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2900 features);
2901 else
2902 features &= dflt_features_check(skb, dev, features);
2903
2904 return harmonize_features(skb, features);
2905 }
2906 EXPORT_SYMBOL(netif_skb_features);
2907
2908 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2909 struct netdev_queue *txq, bool more)
2910 {
2911 unsigned int len;
2912 int rc;
2913
2914 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2915 dev_queue_xmit_nit(skb, dev);
2916
2917 len = skb->len;
2918 trace_net_dev_start_xmit(skb, dev);
2919 rc = netdev_start_xmit(skb, dev, txq, more);
2920 trace_net_dev_xmit(skb, rc, dev, len);
2921
2922 return rc;
2923 }
2924
2925 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2926 struct netdev_queue *txq, int *ret)
2927 {
2928 struct sk_buff *skb = first;
2929 int rc = NETDEV_TX_OK;
2930
2931 while (skb) {
2932 struct sk_buff *next = skb->next;
2933
2934 skb->next = NULL;
2935 rc = xmit_one(skb, dev, txq, next != NULL);
2936 if (unlikely(!dev_xmit_complete(rc))) {
2937 skb->next = next;
2938 goto out;
2939 }
2940
2941 skb = next;
2942 if (netif_xmit_stopped(txq) && skb) {
2943 rc = NETDEV_TX_BUSY;
2944 break;
2945 }
2946 }
2947
2948 out:
2949 *ret = rc;
2950 return skb;
2951 }
2952
2953 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2954 netdev_features_t features)
2955 {
2956 if (skb_vlan_tag_present(skb) &&
2957 !vlan_hw_offload_capable(features, skb->vlan_proto))
2958 skb = __vlan_hwaccel_push_inside(skb);
2959 return skb;
2960 }
2961
2962 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2963 {
2964 netdev_features_t features;
2965
2966 features = netif_skb_features(skb);
2967 skb = validate_xmit_vlan(skb, features);
2968 if (unlikely(!skb))
2969 goto out_null;
2970
2971 if (netif_needs_gso(skb, features)) {
2972 struct sk_buff *segs;
2973
2974 segs = skb_gso_segment(skb, features);
2975 if (IS_ERR(segs)) {
2976 goto out_kfree_skb;
2977 } else if (segs) {
2978 consume_skb(skb);
2979 skb = segs;
2980 }
2981 } else {
2982 if (skb_needs_linearize(skb, features) &&
2983 __skb_linearize(skb))
2984 goto out_kfree_skb;
2985
2986 /* If packet is not checksummed and device does not
2987 * support checksumming for this protocol, complete
2988 * checksumming here.
2989 */
2990 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2991 if (skb->encapsulation)
2992 skb_set_inner_transport_header(skb,
2993 skb_checksum_start_offset(skb));
2994 else
2995 skb_set_transport_header(skb,
2996 skb_checksum_start_offset(skb));
2997 if (!(features & NETIF_F_CSUM_MASK) &&
2998 skb_checksum_help(skb))
2999 goto out_kfree_skb;
3000 }
3001 }
3002
3003 return skb;
3004
3005 out_kfree_skb:
3006 kfree_skb(skb);
3007 out_null:
3008 atomic_long_inc(&dev->tx_dropped);
3009 return NULL;
3010 }
3011
3012 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3013 {
3014 struct sk_buff *next, *head = NULL, *tail;
3015
3016 for (; skb != NULL; skb = next) {
3017 next = skb->next;
3018 skb->next = NULL;
3019
3020 /* in case skb wont be segmented, point to itself */
3021 skb->prev = skb;
3022
3023 skb = validate_xmit_skb(skb, dev);
3024 if (!skb)
3025 continue;
3026
3027 if (!head)
3028 head = skb;
3029 else
3030 tail->next = skb;
3031 /* If skb was segmented, skb->prev points to
3032 * the last segment. If not, it still contains skb.
3033 */
3034 tail = skb->prev;
3035 }
3036 return head;
3037 }
3038 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3039
3040 static void qdisc_pkt_len_init(struct sk_buff *skb)
3041 {
3042 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3043
3044 qdisc_skb_cb(skb)->pkt_len = skb->len;
3045
3046 /* To get more precise estimation of bytes sent on wire,
3047 * we add to pkt_len the headers size of all segments
3048 */
3049 if (shinfo->gso_size) {
3050 unsigned int hdr_len;
3051 u16 gso_segs = shinfo->gso_segs;
3052
3053 /* mac layer + network layer */
3054 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3055
3056 /* + transport layer */
3057 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3058 hdr_len += tcp_hdrlen(skb);
3059 else
3060 hdr_len += sizeof(struct udphdr);
3061
3062 if (shinfo->gso_type & SKB_GSO_DODGY)
3063 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3064 shinfo->gso_size);
3065
3066 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3067 }
3068 }
3069
3070 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3071 struct net_device *dev,
3072 struct netdev_queue *txq)
3073 {
3074 spinlock_t *root_lock = qdisc_lock(q);
3075 struct sk_buff *to_free = NULL;
3076 bool contended;
3077 int rc;
3078
3079 qdisc_calculate_pkt_len(skb, q);
3080 /*
3081 * Heuristic to force contended enqueues to serialize on a
3082 * separate lock before trying to get qdisc main lock.
3083 * This permits qdisc->running owner to get the lock more
3084 * often and dequeue packets faster.
3085 */
3086 contended = qdisc_is_running(q);
3087 if (unlikely(contended))
3088 spin_lock(&q->busylock);
3089
3090 spin_lock(root_lock);
3091 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3092 __qdisc_drop(skb, &to_free);
3093 rc = NET_XMIT_DROP;
3094 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3095 qdisc_run_begin(q)) {
3096 /*
3097 * This is a work-conserving queue; there are no old skbs
3098 * waiting to be sent out; and the qdisc is not running -
3099 * xmit the skb directly.
3100 */
3101
3102 qdisc_bstats_update(q, skb);
3103
3104 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3105 if (unlikely(contended)) {
3106 spin_unlock(&q->busylock);
3107 contended = false;
3108 }
3109 __qdisc_run(q);
3110 } else
3111 qdisc_run_end(q);
3112
3113 rc = NET_XMIT_SUCCESS;
3114 } else {
3115 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3116 if (qdisc_run_begin(q)) {
3117 if (unlikely(contended)) {
3118 spin_unlock(&q->busylock);
3119 contended = false;
3120 }
3121 __qdisc_run(q);
3122 }
3123 }
3124 spin_unlock(root_lock);
3125 if (unlikely(to_free))
3126 kfree_skb_list(to_free);
3127 if (unlikely(contended))
3128 spin_unlock(&q->busylock);
3129 return rc;
3130 }
3131
3132 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3133 static void skb_update_prio(struct sk_buff *skb)
3134 {
3135 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3136
3137 if (!skb->priority && skb->sk && map) {
3138 unsigned int prioidx =
3139 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3140
3141 if (prioidx < map->priomap_len)
3142 skb->priority = map->priomap[prioidx];
3143 }
3144 }
3145 #else
3146 #define skb_update_prio(skb)
3147 #endif
3148
3149 DEFINE_PER_CPU(int, xmit_recursion);
3150 EXPORT_SYMBOL(xmit_recursion);
3151
3152 /**
3153 * dev_loopback_xmit - loop back @skb
3154 * @net: network namespace this loopback is happening in
3155 * @sk: sk needed to be a netfilter okfn
3156 * @skb: buffer to transmit
3157 */
3158 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3159 {
3160 skb_reset_mac_header(skb);
3161 __skb_pull(skb, skb_network_offset(skb));
3162 skb->pkt_type = PACKET_LOOPBACK;
3163 skb->ip_summed = CHECKSUM_UNNECESSARY;
3164 WARN_ON(!skb_dst(skb));
3165 skb_dst_force(skb);
3166 netif_rx_ni(skb);
3167 return 0;
3168 }
3169 EXPORT_SYMBOL(dev_loopback_xmit);
3170
3171 #ifdef CONFIG_NET_EGRESS
3172 static struct sk_buff *
3173 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3174 {
3175 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3176 struct tcf_result cl_res;
3177
3178 if (!cl)
3179 return skb;
3180
3181 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3182 * earlier by the caller.
3183 */
3184 qdisc_bstats_cpu_update(cl->q, skb);
3185
3186 switch (tc_classify(skb, cl, &cl_res, false)) {
3187 case TC_ACT_OK:
3188 case TC_ACT_RECLASSIFY:
3189 skb->tc_index = TC_H_MIN(cl_res.classid);
3190 break;
3191 case TC_ACT_SHOT:
3192 qdisc_qstats_cpu_drop(cl->q);
3193 *ret = NET_XMIT_DROP;
3194 kfree_skb(skb);
3195 return NULL;
3196 case TC_ACT_STOLEN:
3197 case TC_ACT_QUEUED:
3198 *ret = NET_XMIT_SUCCESS;
3199 consume_skb(skb);
3200 return NULL;
3201 case TC_ACT_REDIRECT:
3202 /* No need to push/pop skb's mac_header here on egress! */
3203 skb_do_redirect(skb);
3204 *ret = NET_XMIT_SUCCESS;
3205 return NULL;
3206 default:
3207 break;
3208 }
3209
3210 return skb;
3211 }
3212 #endif /* CONFIG_NET_EGRESS */
3213
3214 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3215 {
3216 #ifdef CONFIG_XPS
3217 struct xps_dev_maps *dev_maps;
3218 struct xps_map *map;
3219 int queue_index = -1;
3220
3221 rcu_read_lock();
3222 dev_maps = rcu_dereference(dev->xps_maps);
3223 if (dev_maps) {
3224 map = rcu_dereference(
3225 dev_maps->cpu_map[skb->sender_cpu - 1]);
3226 if (map) {
3227 if (map->len == 1)
3228 queue_index = map->queues[0];
3229 else
3230 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3231 map->len)];
3232 if (unlikely(queue_index >= dev->real_num_tx_queues))
3233 queue_index = -1;
3234 }
3235 }
3236 rcu_read_unlock();
3237
3238 return queue_index;
3239 #else
3240 return -1;
3241 #endif
3242 }
3243
3244 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3245 {
3246 struct sock *sk = skb->sk;
3247 int queue_index = sk_tx_queue_get(sk);
3248
3249 if (queue_index < 0 || skb->ooo_okay ||
3250 queue_index >= dev->real_num_tx_queues) {
3251 int new_index = get_xps_queue(dev, skb);
3252 if (new_index < 0)
3253 new_index = skb_tx_hash(dev, skb);
3254
3255 if (queue_index != new_index && sk &&
3256 sk_fullsock(sk) &&
3257 rcu_access_pointer(sk->sk_dst_cache))
3258 sk_tx_queue_set(sk, new_index);
3259
3260 queue_index = new_index;
3261 }
3262
3263 return queue_index;
3264 }
3265
3266 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3267 struct sk_buff *skb,
3268 void *accel_priv)
3269 {
3270 int queue_index = 0;
3271
3272 #ifdef CONFIG_XPS
3273 u32 sender_cpu = skb->sender_cpu - 1;
3274
3275 if (sender_cpu >= (u32)NR_CPUS)
3276 skb->sender_cpu = raw_smp_processor_id() + 1;
3277 #endif
3278
3279 if (dev->real_num_tx_queues != 1) {
3280 const struct net_device_ops *ops = dev->netdev_ops;
3281 if (ops->ndo_select_queue)
3282 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3283 __netdev_pick_tx);
3284 else
3285 queue_index = __netdev_pick_tx(dev, skb);
3286
3287 if (!accel_priv)
3288 queue_index = netdev_cap_txqueue(dev, queue_index);
3289 }
3290
3291 skb_set_queue_mapping(skb, queue_index);
3292 return netdev_get_tx_queue(dev, queue_index);
3293 }
3294
3295 /**
3296 * __dev_queue_xmit - transmit a buffer
3297 * @skb: buffer to transmit
3298 * @accel_priv: private data used for L2 forwarding offload
3299 *
3300 * Queue a buffer for transmission to a network device. The caller must
3301 * have set the device and priority and built the buffer before calling
3302 * this function. The function can be called from an interrupt.
3303 *
3304 * A negative errno code is returned on a failure. A success does not
3305 * guarantee the frame will be transmitted as it may be dropped due
3306 * to congestion or traffic shaping.
3307 *
3308 * -----------------------------------------------------------------------------------
3309 * I notice this method can also return errors from the queue disciplines,
3310 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3311 * be positive.
3312 *
3313 * Regardless of the return value, the skb is consumed, so it is currently
3314 * difficult to retry a send to this method. (You can bump the ref count
3315 * before sending to hold a reference for retry if you are careful.)
3316 *
3317 * When calling this method, interrupts MUST be enabled. This is because
3318 * the BH enable code must have IRQs enabled so that it will not deadlock.
3319 * --BLG
3320 */
3321 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3322 {
3323 struct net_device *dev = skb->dev;
3324 struct netdev_queue *txq;
3325 struct Qdisc *q;
3326 int rc = -ENOMEM;
3327
3328 skb_reset_mac_header(skb);
3329
3330 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3331 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3332
3333 /* Disable soft irqs for various locks below. Also
3334 * stops preemption for RCU.
3335 */
3336 rcu_read_lock_bh();
3337
3338 skb_update_prio(skb);
3339
3340 qdisc_pkt_len_init(skb);
3341 #ifdef CONFIG_NET_CLS_ACT
3342 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3343 # ifdef CONFIG_NET_EGRESS
3344 if (static_key_false(&egress_needed)) {
3345 skb = sch_handle_egress(skb, &rc, dev);
3346 if (!skb)
3347 goto out;
3348 }
3349 # endif
3350 #endif
3351 /* If device/qdisc don't need skb->dst, release it right now while
3352 * its hot in this cpu cache.
3353 */
3354 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3355 skb_dst_drop(skb);
3356 else
3357 skb_dst_force(skb);
3358
3359 txq = netdev_pick_tx(dev, skb, accel_priv);
3360 q = rcu_dereference_bh(txq->qdisc);
3361
3362 trace_net_dev_queue(skb);
3363 if (q->enqueue) {
3364 rc = __dev_xmit_skb(skb, q, dev, txq);
3365 goto out;
3366 }
3367
3368 /* The device has no queue. Common case for software devices:
3369 loopback, all the sorts of tunnels...
3370
3371 Really, it is unlikely that netif_tx_lock protection is necessary
3372 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3373 counters.)
3374 However, it is possible, that they rely on protection
3375 made by us here.
3376
3377 Check this and shot the lock. It is not prone from deadlocks.
3378 Either shot noqueue qdisc, it is even simpler 8)
3379 */
3380 if (dev->flags & IFF_UP) {
3381 int cpu = smp_processor_id(); /* ok because BHs are off */
3382
3383 if (txq->xmit_lock_owner != cpu) {
3384 if (unlikely(__this_cpu_read(xmit_recursion) >
3385 XMIT_RECURSION_LIMIT))
3386 goto recursion_alert;
3387
3388 skb = validate_xmit_skb(skb, dev);
3389 if (!skb)
3390 goto out;
3391
3392 HARD_TX_LOCK(dev, txq, cpu);
3393
3394 if (!netif_xmit_stopped(txq)) {
3395 __this_cpu_inc(xmit_recursion);
3396 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3397 __this_cpu_dec(xmit_recursion);
3398 if (dev_xmit_complete(rc)) {
3399 HARD_TX_UNLOCK(dev, txq);
3400 goto out;
3401 }
3402 }
3403 HARD_TX_UNLOCK(dev, txq);
3404 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3405 dev->name);
3406 } else {
3407 /* Recursion is detected! It is possible,
3408 * unfortunately
3409 */
3410 recursion_alert:
3411 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3412 dev->name);
3413 }
3414 }
3415
3416 rc = -ENETDOWN;
3417 rcu_read_unlock_bh();
3418
3419 atomic_long_inc(&dev->tx_dropped);
3420 kfree_skb_list(skb);
3421 return rc;
3422 out:
3423 rcu_read_unlock_bh();
3424 return rc;
3425 }
3426
3427 int dev_queue_xmit(struct sk_buff *skb)
3428 {
3429 return __dev_queue_xmit(skb, NULL);
3430 }
3431 EXPORT_SYMBOL(dev_queue_xmit);
3432
3433 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3434 {
3435 return __dev_queue_xmit(skb, accel_priv);
3436 }
3437 EXPORT_SYMBOL(dev_queue_xmit_accel);
3438
3439
3440 /*=======================================================================
3441 Receiver routines
3442 =======================================================================*/
3443
3444 int netdev_max_backlog __read_mostly = 1000;
3445 EXPORT_SYMBOL(netdev_max_backlog);
3446
3447 int netdev_tstamp_prequeue __read_mostly = 1;
3448 int netdev_budget __read_mostly = 300;
3449 int weight_p __read_mostly = 64; /* old backlog weight */
3450
3451 /* Called with irq disabled */
3452 static inline void ____napi_schedule(struct softnet_data *sd,
3453 struct napi_struct *napi)
3454 {
3455 list_add_tail(&napi->poll_list, &sd->poll_list);
3456 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3457 }
3458
3459 #ifdef CONFIG_RPS
3460
3461 /* One global table that all flow-based protocols share. */
3462 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3463 EXPORT_SYMBOL(rps_sock_flow_table);
3464 u32 rps_cpu_mask __read_mostly;
3465 EXPORT_SYMBOL(rps_cpu_mask);
3466
3467 struct static_key rps_needed __read_mostly;
3468 EXPORT_SYMBOL(rps_needed);
3469
3470 static struct rps_dev_flow *
3471 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3472 struct rps_dev_flow *rflow, u16 next_cpu)
3473 {
3474 if (next_cpu < nr_cpu_ids) {
3475 #ifdef CONFIG_RFS_ACCEL
3476 struct netdev_rx_queue *rxqueue;
3477 struct rps_dev_flow_table *flow_table;
3478 struct rps_dev_flow *old_rflow;
3479 u32 flow_id;
3480 u16 rxq_index;
3481 int rc;
3482
3483 /* Should we steer this flow to a different hardware queue? */
3484 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3485 !(dev->features & NETIF_F_NTUPLE))
3486 goto out;
3487 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3488 if (rxq_index == skb_get_rx_queue(skb))
3489 goto out;
3490
3491 rxqueue = dev->_rx + rxq_index;
3492 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3493 if (!flow_table)
3494 goto out;
3495 flow_id = skb_get_hash(skb) & flow_table->mask;
3496 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3497 rxq_index, flow_id);
3498 if (rc < 0)
3499 goto out;
3500 old_rflow = rflow;
3501 rflow = &flow_table->flows[flow_id];
3502 rflow->filter = rc;
3503 if (old_rflow->filter == rflow->filter)
3504 old_rflow->filter = RPS_NO_FILTER;
3505 out:
3506 #endif
3507 rflow->last_qtail =
3508 per_cpu(softnet_data, next_cpu).input_queue_head;
3509 }
3510
3511 rflow->cpu = next_cpu;
3512 return rflow;
3513 }
3514
3515 /*
3516 * get_rps_cpu is called from netif_receive_skb and returns the target
3517 * CPU from the RPS map of the receiving queue for a given skb.
3518 * rcu_read_lock must be held on entry.
3519 */
3520 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3521 struct rps_dev_flow **rflowp)
3522 {
3523 const struct rps_sock_flow_table *sock_flow_table;
3524 struct netdev_rx_queue *rxqueue = dev->_rx;
3525 struct rps_dev_flow_table *flow_table;
3526 struct rps_map *map;
3527 int cpu = -1;
3528 u32 tcpu;
3529 u32 hash;
3530
3531 if (skb_rx_queue_recorded(skb)) {
3532 u16 index = skb_get_rx_queue(skb);
3533
3534 if (unlikely(index >= dev->real_num_rx_queues)) {
3535 WARN_ONCE(dev->real_num_rx_queues > 1,
3536 "%s received packet on queue %u, but number "
3537 "of RX queues is %u\n",
3538 dev->name, index, dev->real_num_rx_queues);
3539 goto done;
3540 }
3541 rxqueue += index;
3542 }
3543
3544 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3545
3546 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3547 map = rcu_dereference(rxqueue->rps_map);
3548 if (!flow_table && !map)
3549 goto done;
3550
3551 skb_reset_network_header(skb);
3552 hash = skb_get_hash(skb);
3553 if (!hash)
3554 goto done;
3555
3556 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3557 if (flow_table && sock_flow_table) {
3558 struct rps_dev_flow *rflow;
3559 u32 next_cpu;
3560 u32 ident;
3561
3562 /* First check into global flow table if there is a match */
3563 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3564 if ((ident ^ hash) & ~rps_cpu_mask)
3565 goto try_rps;
3566
3567 next_cpu = ident & rps_cpu_mask;
3568
3569 /* OK, now we know there is a match,
3570 * we can look at the local (per receive queue) flow table
3571 */
3572 rflow = &flow_table->flows[hash & flow_table->mask];
3573 tcpu = rflow->cpu;
3574
3575 /*
3576 * If the desired CPU (where last recvmsg was done) is
3577 * different from current CPU (one in the rx-queue flow
3578 * table entry), switch if one of the following holds:
3579 * - Current CPU is unset (>= nr_cpu_ids).
3580 * - Current CPU is offline.
3581 * - The current CPU's queue tail has advanced beyond the
3582 * last packet that was enqueued using this table entry.
3583 * This guarantees that all previous packets for the flow
3584 * have been dequeued, thus preserving in order delivery.
3585 */
3586 if (unlikely(tcpu != next_cpu) &&
3587 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3588 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3589 rflow->last_qtail)) >= 0)) {
3590 tcpu = next_cpu;
3591 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3592 }
3593
3594 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3595 *rflowp = rflow;
3596 cpu = tcpu;
3597 goto done;
3598 }
3599 }
3600
3601 try_rps:
3602
3603 if (map) {
3604 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3605 if (cpu_online(tcpu)) {
3606 cpu = tcpu;
3607 goto done;
3608 }
3609 }
3610
3611 done:
3612 return cpu;
3613 }
3614
3615 #ifdef CONFIG_RFS_ACCEL
3616
3617 /**
3618 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3619 * @dev: Device on which the filter was set
3620 * @rxq_index: RX queue index
3621 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3622 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3623 *
3624 * Drivers that implement ndo_rx_flow_steer() should periodically call
3625 * this function for each installed filter and remove the filters for
3626 * which it returns %true.
3627 */
3628 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3629 u32 flow_id, u16 filter_id)
3630 {
3631 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3632 struct rps_dev_flow_table *flow_table;
3633 struct rps_dev_flow *rflow;
3634 bool expire = true;
3635 unsigned int cpu;
3636
3637 rcu_read_lock();
3638 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3639 if (flow_table && flow_id <= flow_table->mask) {
3640 rflow = &flow_table->flows[flow_id];
3641 cpu = ACCESS_ONCE(rflow->cpu);
3642 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3643 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3644 rflow->last_qtail) <
3645 (int)(10 * flow_table->mask)))
3646 expire = false;
3647 }
3648 rcu_read_unlock();
3649 return expire;
3650 }
3651 EXPORT_SYMBOL(rps_may_expire_flow);
3652
3653 #endif /* CONFIG_RFS_ACCEL */
3654
3655 /* Called from hardirq (IPI) context */
3656 static void rps_trigger_softirq(void *data)
3657 {
3658 struct softnet_data *sd = data;
3659
3660 ____napi_schedule(sd, &sd->backlog);
3661 sd->received_rps++;
3662 }
3663
3664 #endif /* CONFIG_RPS */
3665
3666 /*
3667 * Check if this softnet_data structure is another cpu one
3668 * If yes, queue it to our IPI list and return 1
3669 * If no, return 0
3670 */
3671 static int rps_ipi_queued(struct softnet_data *sd)
3672 {
3673 #ifdef CONFIG_RPS
3674 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3675
3676 if (sd != mysd) {
3677 sd->rps_ipi_next = mysd->rps_ipi_list;
3678 mysd->rps_ipi_list = sd;
3679
3680 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3681 return 1;
3682 }
3683 #endif /* CONFIG_RPS */
3684 return 0;
3685 }
3686
3687 #ifdef CONFIG_NET_FLOW_LIMIT
3688 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3689 #endif
3690
3691 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3692 {
3693 #ifdef CONFIG_NET_FLOW_LIMIT
3694 struct sd_flow_limit *fl;
3695 struct softnet_data *sd;
3696 unsigned int old_flow, new_flow;
3697
3698 if (qlen < (netdev_max_backlog >> 1))
3699 return false;
3700
3701 sd = this_cpu_ptr(&softnet_data);
3702
3703 rcu_read_lock();
3704 fl = rcu_dereference(sd->flow_limit);
3705 if (fl) {
3706 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3707 old_flow = fl->history[fl->history_head];
3708 fl->history[fl->history_head] = new_flow;
3709
3710 fl->history_head++;
3711 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3712
3713 if (likely(fl->buckets[old_flow]))
3714 fl->buckets[old_flow]--;
3715
3716 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3717 fl->count++;
3718 rcu_read_unlock();
3719 return true;
3720 }
3721 }
3722 rcu_read_unlock();
3723 #endif
3724 return false;
3725 }
3726
3727 /*
3728 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3729 * queue (may be a remote CPU queue).
3730 */
3731 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3732 unsigned int *qtail)
3733 {
3734 struct softnet_data *sd;
3735 unsigned long flags;
3736 unsigned int qlen;
3737
3738 sd = &per_cpu(softnet_data, cpu);
3739
3740 local_irq_save(flags);
3741
3742 rps_lock(sd);
3743 if (!netif_running(skb->dev))
3744 goto drop;
3745 qlen = skb_queue_len(&sd->input_pkt_queue);
3746 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3747 if (qlen) {
3748 enqueue:
3749 __skb_queue_tail(&sd->input_pkt_queue, skb);
3750 input_queue_tail_incr_save(sd, qtail);
3751 rps_unlock(sd);
3752 local_irq_restore(flags);
3753 return NET_RX_SUCCESS;
3754 }
3755
3756 /* Schedule NAPI for backlog device
3757 * We can use non atomic operation since we own the queue lock
3758 */
3759 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3760 if (!rps_ipi_queued(sd))
3761 ____napi_schedule(sd, &sd->backlog);
3762 }
3763 goto enqueue;
3764 }
3765
3766 drop:
3767 sd->dropped++;
3768 rps_unlock(sd);
3769
3770 local_irq_restore(flags);
3771
3772 atomic_long_inc(&skb->dev->rx_dropped);
3773 kfree_skb(skb);
3774 return NET_RX_DROP;
3775 }
3776
3777 static int netif_rx_internal(struct sk_buff *skb)
3778 {
3779 int ret;
3780
3781 net_timestamp_check(netdev_tstamp_prequeue, skb);
3782
3783 trace_netif_rx(skb);
3784 #ifdef CONFIG_RPS
3785 if (static_key_false(&rps_needed)) {
3786 struct rps_dev_flow voidflow, *rflow = &voidflow;
3787 int cpu;
3788
3789 preempt_disable();
3790 rcu_read_lock();
3791
3792 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3793 if (cpu < 0)
3794 cpu = smp_processor_id();
3795
3796 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3797
3798 rcu_read_unlock();
3799 preempt_enable();
3800 } else
3801 #endif
3802 {
3803 unsigned int qtail;
3804 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3805 put_cpu();
3806 }
3807 return ret;
3808 }
3809
3810 /**
3811 * netif_rx - post buffer to the network code
3812 * @skb: buffer to post
3813 *
3814 * This function receives a packet from a device driver and queues it for
3815 * the upper (protocol) levels to process. It always succeeds. The buffer
3816 * may be dropped during processing for congestion control or by the
3817 * protocol layers.
3818 *
3819 * return values:
3820 * NET_RX_SUCCESS (no congestion)
3821 * NET_RX_DROP (packet was dropped)
3822 *
3823 */
3824
3825 int netif_rx(struct sk_buff *skb)
3826 {
3827 trace_netif_rx_entry(skb);
3828
3829 return netif_rx_internal(skb);
3830 }
3831 EXPORT_SYMBOL(netif_rx);
3832
3833 int netif_rx_ni(struct sk_buff *skb)
3834 {
3835 int err;
3836
3837 trace_netif_rx_ni_entry(skb);
3838
3839 preempt_disable();
3840 err = netif_rx_internal(skb);
3841 if (local_softirq_pending())
3842 do_softirq();
3843 preempt_enable();
3844
3845 return err;
3846 }
3847 EXPORT_SYMBOL(netif_rx_ni);
3848
3849 static __latent_entropy void net_tx_action(struct softirq_action *h)
3850 {
3851 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3852
3853 if (sd->completion_queue) {
3854 struct sk_buff *clist;
3855
3856 local_irq_disable();
3857 clist = sd->completion_queue;
3858 sd->completion_queue = NULL;
3859 local_irq_enable();
3860
3861 while (clist) {
3862 struct sk_buff *skb = clist;
3863 clist = clist->next;
3864
3865 WARN_ON(atomic_read(&skb->users));
3866 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3867 trace_consume_skb(skb);
3868 else
3869 trace_kfree_skb(skb, net_tx_action);
3870
3871 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3872 __kfree_skb(skb);
3873 else
3874 __kfree_skb_defer(skb);
3875 }
3876
3877 __kfree_skb_flush();
3878 }
3879
3880 if (sd->output_queue) {
3881 struct Qdisc *head;
3882
3883 local_irq_disable();
3884 head = sd->output_queue;
3885 sd->output_queue = NULL;
3886 sd->output_queue_tailp = &sd->output_queue;
3887 local_irq_enable();
3888
3889 while (head) {
3890 struct Qdisc *q = head;
3891 spinlock_t *root_lock;
3892
3893 head = head->next_sched;
3894
3895 root_lock = qdisc_lock(q);
3896 spin_lock(root_lock);
3897 /* We need to make sure head->next_sched is read
3898 * before clearing __QDISC_STATE_SCHED
3899 */
3900 smp_mb__before_atomic();
3901 clear_bit(__QDISC_STATE_SCHED, &q->state);
3902 qdisc_run(q);
3903 spin_unlock(root_lock);
3904 }
3905 }
3906 }
3907
3908 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3909 /* This hook is defined here for ATM LANE */
3910 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3911 unsigned char *addr) __read_mostly;
3912 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3913 #endif
3914
3915 static inline struct sk_buff *
3916 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3917 struct net_device *orig_dev)
3918 {
3919 #ifdef CONFIG_NET_CLS_ACT
3920 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3921 struct tcf_result cl_res;
3922
3923 /* If there's at least one ingress present somewhere (so
3924 * we get here via enabled static key), remaining devices
3925 * that are not configured with an ingress qdisc will bail
3926 * out here.
3927 */
3928 if (!cl)
3929 return skb;
3930 if (*pt_prev) {
3931 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3932 *pt_prev = NULL;
3933 }
3934
3935 qdisc_skb_cb(skb)->pkt_len = skb->len;
3936 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3937 qdisc_bstats_cpu_update(cl->q, skb);
3938
3939 switch (tc_classify(skb, cl, &cl_res, false)) {
3940 case TC_ACT_OK:
3941 case TC_ACT_RECLASSIFY:
3942 skb->tc_index = TC_H_MIN(cl_res.classid);
3943 break;
3944 case TC_ACT_SHOT:
3945 qdisc_qstats_cpu_drop(cl->q);
3946 kfree_skb(skb);
3947 return NULL;
3948 case TC_ACT_STOLEN:
3949 case TC_ACT_QUEUED:
3950 consume_skb(skb);
3951 return NULL;
3952 case TC_ACT_REDIRECT:
3953 /* skb_mac_header check was done by cls/act_bpf, so
3954 * we can safely push the L2 header back before
3955 * redirecting to another netdev
3956 */
3957 __skb_push(skb, skb->mac_len);
3958 skb_do_redirect(skb);
3959 return NULL;
3960 default:
3961 break;
3962 }
3963 #endif /* CONFIG_NET_CLS_ACT */
3964 return skb;
3965 }
3966
3967 /**
3968 * netdev_is_rx_handler_busy - check if receive handler is registered
3969 * @dev: device to check
3970 *
3971 * Check if a receive handler is already registered for a given device.
3972 * Return true if there one.
3973 *
3974 * The caller must hold the rtnl_mutex.
3975 */
3976 bool netdev_is_rx_handler_busy(struct net_device *dev)
3977 {
3978 ASSERT_RTNL();
3979 return dev && rtnl_dereference(dev->rx_handler);
3980 }
3981 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3982
3983 /**
3984 * netdev_rx_handler_register - register receive handler
3985 * @dev: device to register a handler for
3986 * @rx_handler: receive handler to register
3987 * @rx_handler_data: data pointer that is used by rx handler
3988 *
3989 * Register a receive handler for a device. This handler will then be
3990 * called from __netif_receive_skb. A negative errno code is returned
3991 * on a failure.
3992 *
3993 * The caller must hold the rtnl_mutex.
3994 *
3995 * For a general description of rx_handler, see enum rx_handler_result.
3996 */
3997 int netdev_rx_handler_register(struct net_device *dev,
3998 rx_handler_func_t *rx_handler,
3999 void *rx_handler_data)
4000 {
4001 ASSERT_RTNL();
4002
4003 if (dev->rx_handler)
4004 return -EBUSY;
4005
4006 /* Note: rx_handler_data must be set before rx_handler */
4007 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4008 rcu_assign_pointer(dev->rx_handler, rx_handler);
4009
4010 return 0;
4011 }
4012 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4013
4014 /**
4015 * netdev_rx_handler_unregister - unregister receive handler
4016 * @dev: device to unregister a handler from
4017 *
4018 * Unregister a receive handler from a device.
4019 *
4020 * The caller must hold the rtnl_mutex.
4021 */
4022 void netdev_rx_handler_unregister(struct net_device *dev)
4023 {
4024
4025 ASSERT_RTNL();
4026 RCU_INIT_POINTER(dev->rx_handler, NULL);
4027 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4028 * section has a guarantee to see a non NULL rx_handler_data
4029 * as well.
4030 */
4031 synchronize_net();
4032 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4033 }
4034 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4035
4036 /*
4037 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4038 * the special handling of PFMEMALLOC skbs.
4039 */
4040 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4041 {
4042 switch (skb->protocol) {
4043 case htons(ETH_P_ARP):
4044 case htons(ETH_P_IP):
4045 case htons(ETH_P_IPV6):
4046 case htons(ETH_P_8021Q):
4047 case htons(ETH_P_8021AD):
4048 return true;
4049 default:
4050 return false;
4051 }
4052 }
4053
4054 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4055 int *ret, struct net_device *orig_dev)
4056 {
4057 #ifdef CONFIG_NETFILTER_INGRESS
4058 if (nf_hook_ingress_active(skb)) {
4059 int ingress_retval;
4060
4061 if (*pt_prev) {
4062 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4063 *pt_prev = NULL;
4064 }
4065
4066 rcu_read_lock();
4067 ingress_retval = nf_hook_ingress(skb);
4068 rcu_read_unlock();
4069 return ingress_retval;
4070 }
4071 #endif /* CONFIG_NETFILTER_INGRESS */
4072 return 0;
4073 }
4074
4075 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4076 {
4077 struct packet_type *ptype, *pt_prev;
4078 rx_handler_func_t *rx_handler;
4079 struct net_device *orig_dev;
4080 bool deliver_exact = false;
4081 int ret = NET_RX_DROP;
4082 __be16 type;
4083
4084 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4085
4086 trace_netif_receive_skb(skb);
4087
4088 orig_dev = skb->dev;
4089
4090 skb_reset_network_header(skb);
4091 if (!skb_transport_header_was_set(skb))
4092 skb_reset_transport_header(skb);
4093 skb_reset_mac_len(skb);
4094
4095 pt_prev = NULL;
4096
4097 another_round:
4098 skb->skb_iif = skb->dev->ifindex;
4099
4100 __this_cpu_inc(softnet_data.processed);
4101
4102 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4103 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4104 skb = skb_vlan_untag(skb);
4105 if (unlikely(!skb))
4106 goto out;
4107 }
4108
4109 #ifdef CONFIG_NET_CLS_ACT
4110 if (skb->tc_verd & TC_NCLS) {
4111 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4112 goto ncls;
4113 }
4114 #endif
4115
4116 if (pfmemalloc)
4117 goto skip_taps;
4118
4119 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4120 if (pt_prev)
4121 ret = deliver_skb(skb, pt_prev, orig_dev);
4122 pt_prev = ptype;
4123 }
4124
4125 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4126 if (pt_prev)
4127 ret = deliver_skb(skb, pt_prev, orig_dev);
4128 pt_prev = ptype;
4129 }
4130
4131 skip_taps:
4132 #ifdef CONFIG_NET_INGRESS
4133 if (static_key_false(&ingress_needed)) {
4134 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4135 if (!skb)
4136 goto out;
4137
4138 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4139 goto out;
4140 }
4141 #endif
4142 #ifdef CONFIG_NET_CLS_ACT
4143 skb->tc_verd = 0;
4144 ncls:
4145 #endif
4146 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4147 goto drop;
4148
4149 if (skb_vlan_tag_present(skb)) {
4150 if (pt_prev) {
4151 ret = deliver_skb(skb, pt_prev, orig_dev);
4152 pt_prev = NULL;
4153 }
4154 if (vlan_do_receive(&skb))
4155 goto another_round;
4156 else if (unlikely(!skb))
4157 goto out;
4158 }
4159
4160 rx_handler = rcu_dereference(skb->dev->rx_handler);
4161 if (rx_handler) {
4162 if (pt_prev) {
4163 ret = deliver_skb(skb, pt_prev, orig_dev);
4164 pt_prev = NULL;
4165 }
4166 switch (rx_handler(&skb)) {
4167 case RX_HANDLER_CONSUMED:
4168 ret = NET_RX_SUCCESS;
4169 goto out;
4170 case RX_HANDLER_ANOTHER:
4171 goto another_round;
4172 case RX_HANDLER_EXACT:
4173 deliver_exact = true;
4174 case RX_HANDLER_PASS:
4175 break;
4176 default:
4177 BUG();
4178 }
4179 }
4180
4181 if (unlikely(skb_vlan_tag_present(skb))) {
4182 if (skb_vlan_tag_get_id(skb))
4183 skb->pkt_type = PACKET_OTHERHOST;
4184 /* Note: we might in the future use prio bits
4185 * and set skb->priority like in vlan_do_receive()
4186 * For the time being, just ignore Priority Code Point
4187 */
4188 skb->vlan_tci = 0;
4189 }
4190
4191 type = skb->protocol;
4192
4193 /* deliver only exact match when indicated */
4194 if (likely(!deliver_exact)) {
4195 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4196 &ptype_base[ntohs(type) &
4197 PTYPE_HASH_MASK]);
4198 }
4199
4200 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4201 &orig_dev->ptype_specific);
4202
4203 if (unlikely(skb->dev != orig_dev)) {
4204 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4205 &skb->dev->ptype_specific);
4206 }
4207
4208 if (pt_prev) {
4209 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4210 goto drop;
4211 else
4212 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4213 } else {
4214 drop:
4215 if (!deliver_exact)
4216 atomic_long_inc(&skb->dev->rx_dropped);
4217 else
4218 atomic_long_inc(&skb->dev->rx_nohandler);
4219 kfree_skb(skb);
4220 /* Jamal, now you will not able to escape explaining
4221 * me how you were going to use this. :-)
4222 */
4223 ret = NET_RX_DROP;
4224 }
4225
4226 out:
4227 return ret;
4228 }
4229
4230 static int __netif_receive_skb(struct sk_buff *skb)
4231 {
4232 int ret;
4233
4234 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4235 unsigned long pflags = current->flags;
4236
4237 /*
4238 * PFMEMALLOC skbs are special, they should
4239 * - be delivered to SOCK_MEMALLOC sockets only
4240 * - stay away from userspace
4241 * - have bounded memory usage
4242 *
4243 * Use PF_MEMALLOC as this saves us from propagating the allocation
4244 * context down to all allocation sites.
4245 */
4246 current->flags |= PF_MEMALLOC;
4247 ret = __netif_receive_skb_core(skb, true);
4248 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4249 } else
4250 ret = __netif_receive_skb_core(skb, false);
4251
4252 return ret;
4253 }
4254
4255 static int netif_receive_skb_internal(struct sk_buff *skb)
4256 {
4257 int ret;
4258
4259 net_timestamp_check(netdev_tstamp_prequeue, skb);
4260
4261 if (skb_defer_rx_timestamp(skb))
4262 return NET_RX_SUCCESS;
4263
4264 rcu_read_lock();
4265
4266 #ifdef CONFIG_RPS
4267 if (static_key_false(&rps_needed)) {
4268 struct rps_dev_flow voidflow, *rflow = &voidflow;
4269 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4270
4271 if (cpu >= 0) {
4272 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4273 rcu_read_unlock();
4274 return ret;
4275 }
4276 }
4277 #endif
4278 ret = __netif_receive_skb(skb);
4279 rcu_read_unlock();
4280 return ret;
4281 }
4282
4283 /**
4284 * netif_receive_skb - process receive buffer from network
4285 * @skb: buffer to process
4286 *
4287 * netif_receive_skb() is the main receive data processing function.
4288 * It always succeeds. The buffer may be dropped during processing
4289 * for congestion control or by the protocol layers.
4290 *
4291 * This function may only be called from softirq context and interrupts
4292 * should be enabled.
4293 *
4294 * Return values (usually ignored):
4295 * NET_RX_SUCCESS: no congestion
4296 * NET_RX_DROP: packet was dropped
4297 */
4298 int netif_receive_skb(struct sk_buff *skb)
4299 {
4300 trace_netif_receive_skb_entry(skb);
4301
4302 return netif_receive_skb_internal(skb);
4303 }
4304 EXPORT_SYMBOL(netif_receive_skb);
4305
4306 DEFINE_PER_CPU(struct work_struct, flush_works);
4307
4308 /* Network device is going away, flush any packets still pending */
4309 static void flush_backlog(struct work_struct *work)
4310 {
4311 struct sk_buff *skb, *tmp;
4312 struct softnet_data *sd;
4313
4314 local_bh_disable();
4315 sd = this_cpu_ptr(&softnet_data);
4316
4317 local_irq_disable();
4318 rps_lock(sd);
4319 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4320 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4321 __skb_unlink(skb, &sd->input_pkt_queue);
4322 kfree_skb(skb);
4323 input_queue_head_incr(sd);
4324 }
4325 }
4326 rps_unlock(sd);
4327 local_irq_enable();
4328
4329 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4330 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4331 __skb_unlink(skb, &sd->process_queue);
4332 kfree_skb(skb);
4333 input_queue_head_incr(sd);
4334 }
4335 }
4336 local_bh_enable();
4337 }
4338
4339 static void flush_all_backlogs(void)
4340 {
4341 unsigned int cpu;
4342
4343 get_online_cpus();
4344
4345 for_each_online_cpu(cpu)
4346 queue_work_on(cpu, system_highpri_wq,
4347 per_cpu_ptr(&flush_works, cpu));
4348
4349 for_each_online_cpu(cpu)
4350 flush_work(per_cpu_ptr(&flush_works, cpu));
4351
4352 put_online_cpus();
4353 }
4354
4355 static int napi_gro_complete(struct sk_buff *skb)
4356 {
4357 struct packet_offload *ptype;
4358 __be16 type = skb->protocol;
4359 struct list_head *head = &offload_base;
4360 int err = -ENOENT;
4361
4362 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4363
4364 if (NAPI_GRO_CB(skb)->count == 1) {
4365 skb_shinfo(skb)->gso_size = 0;
4366 goto out;
4367 }
4368
4369 rcu_read_lock();
4370 list_for_each_entry_rcu(ptype, head, list) {
4371 if (ptype->type != type || !ptype->callbacks.gro_complete)
4372 continue;
4373
4374 err = ptype->callbacks.gro_complete(skb, 0);
4375 break;
4376 }
4377 rcu_read_unlock();
4378
4379 if (err) {
4380 WARN_ON(&ptype->list == head);
4381 kfree_skb(skb);
4382 return NET_RX_SUCCESS;
4383 }
4384
4385 out:
4386 return netif_receive_skb_internal(skb);
4387 }
4388
4389 /* napi->gro_list contains packets ordered by age.
4390 * youngest packets at the head of it.
4391 * Complete skbs in reverse order to reduce latencies.
4392 */
4393 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4394 {
4395 struct sk_buff *skb, *prev = NULL;
4396
4397 /* scan list and build reverse chain */
4398 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4399 skb->prev = prev;
4400 prev = skb;
4401 }
4402
4403 for (skb = prev; skb; skb = prev) {
4404 skb->next = NULL;
4405
4406 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4407 return;
4408
4409 prev = skb->prev;
4410 napi_gro_complete(skb);
4411 napi->gro_count--;
4412 }
4413
4414 napi->gro_list = NULL;
4415 }
4416 EXPORT_SYMBOL(napi_gro_flush);
4417
4418 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4419 {
4420 struct sk_buff *p;
4421 unsigned int maclen = skb->dev->hard_header_len;
4422 u32 hash = skb_get_hash_raw(skb);
4423
4424 for (p = napi->gro_list; p; p = p->next) {
4425 unsigned long diffs;
4426
4427 NAPI_GRO_CB(p)->flush = 0;
4428
4429 if (hash != skb_get_hash_raw(p)) {
4430 NAPI_GRO_CB(p)->same_flow = 0;
4431 continue;
4432 }
4433
4434 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4435 diffs |= p->vlan_tci ^ skb->vlan_tci;
4436 diffs |= skb_metadata_dst_cmp(p, skb);
4437 if (maclen == ETH_HLEN)
4438 diffs |= compare_ether_header(skb_mac_header(p),
4439 skb_mac_header(skb));
4440 else if (!diffs)
4441 diffs = memcmp(skb_mac_header(p),
4442 skb_mac_header(skb),
4443 maclen);
4444 NAPI_GRO_CB(p)->same_flow = !diffs;
4445 }
4446 }
4447
4448 static void skb_gro_reset_offset(struct sk_buff *skb)
4449 {
4450 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4451 const skb_frag_t *frag0 = &pinfo->frags[0];
4452
4453 NAPI_GRO_CB(skb)->data_offset = 0;
4454 NAPI_GRO_CB(skb)->frag0 = NULL;
4455 NAPI_GRO_CB(skb)->frag0_len = 0;
4456
4457 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4458 pinfo->nr_frags &&
4459 !PageHighMem(skb_frag_page(frag0))) {
4460 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4461 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4462 }
4463 }
4464
4465 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4466 {
4467 struct skb_shared_info *pinfo = skb_shinfo(skb);
4468
4469 BUG_ON(skb->end - skb->tail < grow);
4470
4471 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4472
4473 skb->data_len -= grow;
4474 skb->tail += grow;
4475
4476 pinfo->frags[0].page_offset += grow;
4477 skb_frag_size_sub(&pinfo->frags[0], grow);
4478
4479 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4480 skb_frag_unref(skb, 0);
4481 memmove(pinfo->frags, pinfo->frags + 1,
4482 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4483 }
4484 }
4485
4486 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4487 {
4488 struct sk_buff **pp = NULL;
4489 struct packet_offload *ptype;
4490 __be16 type = skb->protocol;
4491 struct list_head *head = &offload_base;
4492 int same_flow;
4493 enum gro_result ret;
4494 int grow;
4495
4496 if (!(skb->dev->features & NETIF_F_GRO))
4497 goto normal;
4498
4499 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4500 goto normal;
4501
4502 gro_list_prepare(napi, skb);
4503
4504 rcu_read_lock();
4505 list_for_each_entry_rcu(ptype, head, list) {
4506 if (ptype->type != type || !ptype->callbacks.gro_receive)
4507 continue;
4508
4509 skb_set_network_header(skb, skb_gro_offset(skb));
4510 skb_reset_mac_len(skb);
4511 NAPI_GRO_CB(skb)->same_flow = 0;
4512 NAPI_GRO_CB(skb)->flush = 0;
4513 NAPI_GRO_CB(skb)->free = 0;
4514 NAPI_GRO_CB(skb)->encap_mark = 0;
4515 NAPI_GRO_CB(skb)->recursion_counter = 0;
4516 NAPI_GRO_CB(skb)->is_fou = 0;
4517 NAPI_GRO_CB(skb)->is_atomic = 1;
4518 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4519
4520 /* Setup for GRO checksum validation */
4521 switch (skb->ip_summed) {
4522 case CHECKSUM_COMPLETE:
4523 NAPI_GRO_CB(skb)->csum = skb->csum;
4524 NAPI_GRO_CB(skb)->csum_valid = 1;
4525 NAPI_GRO_CB(skb)->csum_cnt = 0;
4526 break;
4527 case CHECKSUM_UNNECESSARY:
4528 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4529 NAPI_GRO_CB(skb)->csum_valid = 0;
4530 break;
4531 default:
4532 NAPI_GRO_CB(skb)->csum_cnt = 0;
4533 NAPI_GRO_CB(skb)->csum_valid = 0;
4534 }
4535
4536 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4537 break;
4538 }
4539 rcu_read_unlock();
4540
4541 if (&ptype->list == head)
4542 goto normal;
4543
4544 same_flow = NAPI_GRO_CB(skb)->same_flow;
4545 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4546
4547 if (pp) {
4548 struct sk_buff *nskb = *pp;
4549
4550 *pp = nskb->next;
4551 nskb->next = NULL;
4552 napi_gro_complete(nskb);
4553 napi->gro_count--;
4554 }
4555
4556 if (same_flow)
4557 goto ok;
4558
4559 if (NAPI_GRO_CB(skb)->flush)
4560 goto normal;
4561
4562 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4563 struct sk_buff *nskb = napi->gro_list;
4564
4565 /* locate the end of the list to select the 'oldest' flow */
4566 while (nskb->next) {
4567 pp = &nskb->next;
4568 nskb = *pp;
4569 }
4570 *pp = NULL;
4571 nskb->next = NULL;
4572 napi_gro_complete(nskb);
4573 } else {
4574 napi->gro_count++;
4575 }
4576 NAPI_GRO_CB(skb)->count = 1;
4577 NAPI_GRO_CB(skb)->age = jiffies;
4578 NAPI_GRO_CB(skb)->last = skb;
4579 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4580 skb->next = napi->gro_list;
4581 napi->gro_list = skb;
4582 ret = GRO_HELD;
4583
4584 pull:
4585 grow = skb_gro_offset(skb) - skb_headlen(skb);
4586 if (grow > 0)
4587 gro_pull_from_frag0(skb, grow);
4588 ok:
4589 return ret;
4590
4591 normal:
4592 ret = GRO_NORMAL;
4593 goto pull;
4594 }
4595
4596 struct packet_offload *gro_find_receive_by_type(__be16 type)
4597 {
4598 struct list_head *offload_head = &offload_base;
4599 struct packet_offload *ptype;
4600
4601 list_for_each_entry_rcu(ptype, offload_head, list) {
4602 if (ptype->type != type || !ptype->callbacks.gro_receive)
4603 continue;
4604 return ptype;
4605 }
4606 return NULL;
4607 }
4608 EXPORT_SYMBOL(gro_find_receive_by_type);
4609
4610 struct packet_offload *gro_find_complete_by_type(__be16 type)
4611 {
4612 struct list_head *offload_head = &offload_base;
4613 struct packet_offload *ptype;
4614
4615 list_for_each_entry_rcu(ptype, offload_head, list) {
4616 if (ptype->type != type || !ptype->callbacks.gro_complete)
4617 continue;
4618 return ptype;
4619 }
4620 return NULL;
4621 }
4622 EXPORT_SYMBOL(gro_find_complete_by_type);
4623
4624 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4625 {
4626 switch (ret) {
4627 case GRO_NORMAL:
4628 if (netif_receive_skb_internal(skb))
4629 ret = GRO_DROP;
4630 break;
4631
4632 case GRO_DROP:
4633 kfree_skb(skb);
4634 break;
4635
4636 case GRO_MERGED_FREE:
4637 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4638 skb_dst_drop(skb);
4639 kmem_cache_free(skbuff_head_cache, skb);
4640 } else {
4641 __kfree_skb(skb);
4642 }
4643 break;
4644
4645 case GRO_HELD:
4646 case GRO_MERGED:
4647 break;
4648 }
4649
4650 return ret;
4651 }
4652
4653 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4654 {
4655 skb_mark_napi_id(skb, napi);
4656 trace_napi_gro_receive_entry(skb);
4657
4658 skb_gro_reset_offset(skb);
4659
4660 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4661 }
4662 EXPORT_SYMBOL(napi_gro_receive);
4663
4664 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4665 {
4666 if (unlikely(skb->pfmemalloc)) {
4667 consume_skb(skb);
4668 return;
4669 }
4670 __skb_pull(skb, skb_headlen(skb));
4671 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4672 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4673 skb->vlan_tci = 0;
4674 skb->dev = napi->dev;
4675 skb->skb_iif = 0;
4676 skb->encapsulation = 0;
4677 skb_shinfo(skb)->gso_type = 0;
4678 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4679
4680 napi->skb = skb;
4681 }
4682
4683 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4684 {
4685 struct sk_buff *skb = napi->skb;
4686
4687 if (!skb) {
4688 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4689 if (skb) {
4690 napi->skb = skb;
4691 skb_mark_napi_id(skb, napi);
4692 }
4693 }
4694 return skb;
4695 }
4696 EXPORT_SYMBOL(napi_get_frags);
4697
4698 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4699 struct sk_buff *skb,
4700 gro_result_t ret)
4701 {
4702 switch (ret) {
4703 case GRO_NORMAL:
4704 case GRO_HELD:
4705 __skb_push(skb, ETH_HLEN);
4706 skb->protocol = eth_type_trans(skb, skb->dev);
4707 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4708 ret = GRO_DROP;
4709 break;
4710
4711 case GRO_DROP:
4712 case GRO_MERGED_FREE:
4713 napi_reuse_skb(napi, skb);
4714 break;
4715
4716 case GRO_MERGED:
4717 break;
4718 }
4719
4720 return ret;
4721 }
4722
4723 /* Upper GRO stack assumes network header starts at gro_offset=0
4724 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4725 * We copy ethernet header into skb->data to have a common layout.
4726 */
4727 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4728 {
4729 struct sk_buff *skb = napi->skb;
4730 const struct ethhdr *eth;
4731 unsigned int hlen = sizeof(*eth);
4732
4733 napi->skb = NULL;
4734
4735 skb_reset_mac_header(skb);
4736 skb_gro_reset_offset(skb);
4737
4738 eth = skb_gro_header_fast(skb, 0);
4739 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4740 eth = skb_gro_header_slow(skb, hlen, 0);
4741 if (unlikely(!eth)) {
4742 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4743 __func__, napi->dev->name);
4744 napi_reuse_skb(napi, skb);
4745 return NULL;
4746 }
4747 } else {
4748 gro_pull_from_frag0(skb, hlen);
4749 NAPI_GRO_CB(skb)->frag0 += hlen;
4750 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4751 }
4752 __skb_pull(skb, hlen);
4753
4754 /*
4755 * This works because the only protocols we care about don't require
4756 * special handling.
4757 * We'll fix it up properly in napi_frags_finish()
4758 */
4759 skb->protocol = eth->h_proto;
4760
4761 return skb;
4762 }
4763
4764 gro_result_t napi_gro_frags(struct napi_struct *napi)
4765 {
4766 struct sk_buff *skb = napi_frags_skb(napi);
4767
4768 if (!skb)
4769 return GRO_DROP;
4770
4771 trace_napi_gro_frags_entry(skb);
4772
4773 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4774 }
4775 EXPORT_SYMBOL(napi_gro_frags);
4776
4777 /* Compute the checksum from gro_offset and return the folded value
4778 * after adding in any pseudo checksum.
4779 */
4780 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4781 {
4782 __wsum wsum;
4783 __sum16 sum;
4784
4785 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4786
4787 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4788 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4789 if (likely(!sum)) {
4790 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4791 !skb->csum_complete_sw)
4792 netdev_rx_csum_fault(skb->dev);
4793 }
4794
4795 NAPI_GRO_CB(skb)->csum = wsum;
4796 NAPI_GRO_CB(skb)->csum_valid = 1;
4797
4798 return sum;
4799 }
4800 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4801
4802 /*
4803 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4804 * Note: called with local irq disabled, but exits with local irq enabled.
4805 */
4806 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4807 {
4808 #ifdef CONFIG_RPS
4809 struct softnet_data *remsd = sd->rps_ipi_list;
4810
4811 if (remsd) {
4812 sd->rps_ipi_list = NULL;
4813
4814 local_irq_enable();
4815
4816 /* Send pending IPI's to kick RPS processing on remote cpus. */
4817 while (remsd) {
4818 struct softnet_data *next = remsd->rps_ipi_next;
4819
4820 if (cpu_online(remsd->cpu))
4821 smp_call_function_single_async(remsd->cpu,
4822 &remsd->csd);
4823 remsd = next;
4824 }
4825 } else
4826 #endif
4827 local_irq_enable();
4828 }
4829
4830 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4831 {
4832 #ifdef CONFIG_RPS
4833 return sd->rps_ipi_list != NULL;
4834 #else
4835 return false;
4836 #endif
4837 }
4838
4839 static int process_backlog(struct napi_struct *napi, int quota)
4840 {
4841 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4842 bool again = true;
4843 int work = 0;
4844
4845 /* Check if we have pending ipi, its better to send them now,
4846 * not waiting net_rx_action() end.
4847 */
4848 if (sd_has_rps_ipi_waiting(sd)) {
4849 local_irq_disable();
4850 net_rps_action_and_irq_enable(sd);
4851 }
4852
4853 napi->weight = weight_p;
4854 while (again) {
4855 struct sk_buff *skb;
4856
4857 while ((skb = __skb_dequeue(&sd->process_queue))) {
4858 rcu_read_lock();
4859 __netif_receive_skb(skb);
4860 rcu_read_unlock();
4861 input_queue_head_incr(sd);
4862 if (++work >= quota)
4863 return work;
4864
4865 }
4866
4867 local_irq_disable();
4868 rps_lock(sd);
4869 if (skb_queue_empty(&sd->input_pkt_queue)) {
4870 /*
4871 * Inline a custom version of __napi_complete().
4872 * only current cpu owns and manipulates this napi,
4873 * and NAPI_STATE_SCHED is the only possible flag set
4874 * on backlog.
4875 * We can use a plain write instead of clear_bit(),
4876 * and we dont need an smp_mb() memory barrier.
4877 */
4878 napi->state = 0;
4879 again = false;
4880 } else {
4881 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4882 &sd->process_queue);
4883 }
4884 rps_unlock(sd);
4885 local_irq_enable();
4886 }
4887
4888 return work;
4889 }
4890
4891 /**
4892 * __napi_schedule - schedule for receive
4893 * @n: entry to schedule
4894 *
4895 * The entry's receive function will be scheduled to run.
4896 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4897 */
4898 void __napi_schedule(struct napi_struct *n)
4899 {
4900 unsigned long flags;
4901
4902 local_irq_save(flags);
4903 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4904 local_irq_restore(flags);
4905 }
4906 EXPORT_SYMBOL(__napi_schedule);
4907
4908 /**
4909 * __napi_schedule_irqoff - schedule for receive
4910 * @n: entry to schedule
4911 *
4912 * Variant of __napi_schedule() assuming hard irqs are masked
4913 */
4914 void __napi_schedule_irqoff(struct napi_struct *n)
4915 {
4916 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4917 }
4918 EXPORT_SYMBOL(__napi_schedule_irqoff);
4919
4920 void __napi_complete(struct napi_struct *n)
4921 {
4922 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4923
4924 list_del_init(&n->poll_list);
4925 smp_mb__before_atomic();
4926 clear_bit(NAPI_STATE_SCHED, &n->state);
4927 }
4928 EXPORT_SYMBOL(__napi_complete);
4929
4930 void napi_complete_done(struct napi_struct *n, int work_done)
4931 {
4932 unsigned long flags;
4933
4934 /*
4935 * don't let napi dequeue from the cpu poll list
4936 * just in case its running on a different cpu
4937 */
4938 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4939 return;
4940
4941 if (n->gro_list) {
4942 unsigned long timeout = 0;
4943
4944 if (work_done)
4945 timeout = n->dev->gro_flush_timeout;
4946
4947 if (timeout)
4948 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4949 HRTIMER_MODE_REL_PINNED);
4950 else
4951 napi_gro_flush(n, false);
4952 }
4953 if (likely(list_empty(&n->poll_list))) {
4954 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4955 } else {
4956 /* If n->poll_list is not empty, we need to mask irqs */
4957 local_irq_save(flags);
4958 __napi_complete(n);
4959 local_irq_restore(flags);
4960 }
4961 }
4962 EXPORT_SYMBOL(napi_complete_done);
4963
4964 /* must be called under rcu_read_lock(), as we dont take a reference */
4965 static struct napi_struct *napi_by_id(unsigned int napi_id)
4966 {
4967 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4968 struct napi_struct *napi;
4969
4970 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4971 if (napi->napi_id == napi_id)
4972 return napi;
4973
4974 return NULL;
4975 }
4976
4977 #if defined(CONFIG_NET_RX_BUSY_POLL)
4978 #define BUSY_POLL_BUDGET 8
4979 bool sk_busy_loop(struct sock *sk, int nonblock)
4980 {
4981 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4982 int (*busy_poll)(struct napi_struct *dev);
4983 struct napi_struct *napi;
4984 int rc = false;
4985
4986 rcu_read_lock();
4987
4988 napi = napi_by_id(sk->sk_napi_id);
4989 if (!napi)
4990 goto out;
4991
4992 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4993 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4994
4995 do {
4996 rc = 0;
4997 local_bh_disable();
4998 if (busy_poll) {
4999 rc = busy_poll(napi);
5000 } else if (napi_schedule_prep(napi)) {
5001 void *have = netpoll_poll_lock(napi);
5002
5003 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
5004 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5005 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5006 if (rc == BUSY_POLL_BUDGET) {
5007 napi_complete_done(napi, rc);
5008 napi_schedule(napi);
5009 }
5010 }
5011 netpoll_poll_unlock(have);
5012 }
5013 if (rc > 0)
5014 __NET_ADD_STATS(sock_net(sk),
5015 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5016 local_bh_enable();
5017
5018 if (rc == LL_FLUSH_FAILED)
5019 break; /* permanent failure */
5020
5021 cpu_relax();
5022 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
5023 !need_resched() && !busy_loop_timeout(end_time));
5024
5025 rc = !skb_queue_empty(&sk->sk_receive_queue);
5026 out:
5027 rcu_read_unlock();
5028 return rc;
5029 }
5030 EXPORT_SYMBOL(sk_busy_loop);
5031
5032 #endif /* CONFIG_NET_RX_BUSY_POLL */
5033
5034 void napi_hash_add(struct napi_struct *napi)
5035 {
5036 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5037 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5038 return;
5039
5040 spin_lock(&napi_hash_lock);
5041
5042 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5043 do {
5044 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5045 napi_gen_id = NR_CPUS + 1;
5046 } while (napi_by_id(napi_gen_id));
5047 napi->napi_id = napi_gen_id;
5048
5049 hlist_add_head_rcu(&napi->napi_hash_node,
5050 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5051
5052 spin_unlock(&napi_hash_lock);
5053 }
5054 EXPORT_SYMBOL_GPL(napi_hash_add);
5055
5056 /* Warning : caller is responsible to make sure rcu grace period
5057 * is respected before freeing memory containing @napi
5058 */
5059 bool napi_hash_del(struct napi_struct *napi)
5060 {
5061 bool rcu_sync_needed = false;
5062
5063 spin_lock(&napi_hash_lock);
5064
5065 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5066 rcu_sync_needed = true;
5067 hlist_del_rcu(&napi->napi_hash_node);
5068 }
5069 spin_unlock(&napi_hash_lock);
5070 return rcu_sync_needed;
5071 }
5072 EXPORT_SYMBOL_GPL(napi_hash_del);
5073
5074 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5075 {
5076 struct napi_struct *napi;
5077
5078 napi = container_of(timer, struct napi_struct, timer);
5079 if (napi->gro_list)
5080 napi_schedule(napi);
5081
5082 return HRTIMER_NORESTART;
5083 }
5084
5085 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5086 int (*poll)(struct napi_struct *, int), int weight)
5087 {
5088 INIT_LIST_HEAD(&napi->poll_list);
5089 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5090 napi->timer.function = napi_watchdog;
5091 napi->gro_count = 0;
5092 napi->gro_list = NULL;
5093 napi->skb = NULL;
5094 napi->poll = poll;
5095 if (weight > NAPI_POLL_WEIGHT)
5096 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5097 weight, dev->name);
5098 napi->weight = weight;
5099 list_add(&napi->dev_list, &dev->napi_list);
5100 napi->dev = dev;
5101 #ifdef CONFIG_NETPOLL
5102 spin_lock_init(&napi->poll_lock);
5103 napi->poll_owner = -1;
5104 #endif
5105 set_bit(NAPI_STATE_SCHED, &napi->state);
5106 napi_hash_add(napi);
5107 }
5108 EXPORT_SYMBOL(netif_napi_add);
5109
5110 void napi_disable(struct napi_struct *n)
5111 {
5112 might_sleep();
5113 set_bit(NAPI_STATE_DISABLE, &n->state);
5114
5115 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5116 msleep(1);
5117 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5118 msleep(1);
5119
5120 hrtimer_cancel(&n->timer);
5121
5122 clear_bit(NAPI_STATE_DISABLE, &n->state);
5123 }
5124 EXPORT_SYMBOL(napi_disable);
5125
5126 /* Must be called in process context */
5127 void netif_napi_del(struct napi_struct *napi)
5128 {
5129 might_sleep();
5130 if (napi_hash_del(napi))
5131 synchronize_net();
5132 list_del_init(&napi->dev_list);
5133 napi_free_frags(napi);
5134
5135 kfree_skb_list(napi->gro_list);
5136 napi->gro_list = NULL;
5137 napi->gro_count = 0;
5138 }
5139 EXPORT_SYMBOL(netif_napi_del);
5140
5141 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5142 {
5143 void *have;
5144 int work, weight;
5145
5146 list_del_init(&n->poll_list);
5147
5148 have = netpoll_poll_lock(n);
5149
5150 weight = n->weight;
5151
5152 /* This NAPI_STATE_SCHED test is for avoiding a race
5153 * with netpoll's poll_napi(). Only the entity which
5154 * obtains the lock and sees NAPI_STATE_SCHED set will
5155 * actually make the ->poll() call. Therefore we avoid
5156 * accidentally calling ->poll() when NAPI is not scheduled.
5157 */
5158 work = 0;
5159 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5160 work = n->poll(n, weight);
5161 trace_napi_poll(n, work, weight);
5162 }
5163
5164 WARN_ON_ONCE(work > weight);
5165
5166 if (likely(work < weight))
5167 goto out_unlock;
5168
5169 /* Drivers must not modify the NAPI state if they
5170 * consume the entire weight. In such cases this code
5171 * still "owns" the NAPI instance and therefore can
5172 * move the instance around on the list at-will.
5173 */
5174 if (unlikely(napi_disable_pending(n))) {
5175 napi_complete(n);
5176 goto out_unlock;
5177 }
5178
5179 if (n->gro_list) {
5180 /* flush too old packets
5181 * If HZ < 1000, flush all packets.
5182 */
5183 napi_gro_flush(n, HZ >= 1000);
5184 }
5185
5186 /* Some drivers may have called napi_schedule
5187 * prior to exhausting their budget.
5188 */
5189 if (unlikely(!list_empty(&n->poll_list))) {
5190 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5191 n->dev ? n->dev->name : "backlog");
5192 goto out_unlock;
5193 }
5194
5195 list_add_tail(&n->poll_list, repoll);
5196
5197 out_unlock:
5198 netpoll_poll_unlock(have);
5199
5200 return work;
5201 }
5202
5203 static __latent_entropy void net_rx_action(struct softirq_action *h)
5204 {
5205 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5206 unsigned long time_limit = jiffies + 2;
5207 int budget = netdev_budget;
5208 LIST_HEAD(list);
5209 LIST_HEAD(repoll);
5210
5211 local_irq_disable();
5212 list_splice_init(&sd->poll_list, &list);
5213 local_irq_enable();
5214
5215 for (;;) {
5216 struct napi_struct *n;
5217
5218 if (list_empty(&list)) {
5219 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5220 return;
5221 break;
5222 }
5223
5224 n = list_first_entry(&list, struct napi_struct, poll_list);
5225 budget -= napi_poll(n, &repoll);
5226
5227 /* If softirq window is exhausted then punt.
5228 * Allow this to run for 2 jiffies since which will allow
5229 * an average latency of 1.5/HZ.
5230 */
5231 if (unlikely(budget <= 0 ||
5232 time_after_eq(jiffies, time_limit))) {
5233 sd->time_squeeze++;
5234 break;
5235 }
5236 }
5237
5238 __kfree_skb_flush();
5239 local_irq_disable();
5240
5241 list_splice_tail_init(&sd->poll_list, &list);
5242 list_splice_tail(&repoll, &list);
5243 list_splice(&list, &sd->poll_list);
5244 if (!list_empty(&sd->poll_list))
5245 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5246
5247 net_rps_action_and_irq_enable(sd);
5248 }
5249
5250 struct netdev_adjacent {
5251 struct net_device *dev;
5252
5253 /* upper master flag, there can only be one master device per list */
5254 bool master;
5255
5256 /* counter for the number of times this device was added to us */
5257 u16 ref_nr;
5258
5259 /* private field for the users */
5260 void *private;
5261
5262 struct list_head list;
5263 struct rcu_head rcu;
5264 };
5265
5266 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5267 struct list_head *adj_list)
5268 {
5269 struct netdev_adjacent *adj;
5270
5271 list_for_each_entry(adj, adj_list, list) {
5272 if (adj->dev == adj_dev)
5273 return adj;
5274 }
5275 return NULL;
5276 }
5277
5278 /**
5279 * netdev_has_upper_dev - Check if device is linked to an upper device
5280 * @dev: device
5281 * @upper_dev: upper device to check
5282 *
5283 * Find out if a device is linked to specified upper device and return true
5284 * in case it is. Note that this checks only immediate upper device,
5285 * not through a complete stack of devices. The caller must hold the RTNL lock.
5286 */
5287 bool netdev_has_upper_dev(struct net_device *dev,
5288 struct net_device *upper_dev)
5289 {
5290 ASSERT_RTNL();
5291
5292 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5293 }
5294 EXPORT_SYMBOL(netdev_has_upper_dev);
5295
5296 /**
5297 * netdev_has_any_upper_dev - Check if device is linked to some device
5298 * @dev: device
5299 *
5300 * Find out if a device is linked to an upper device and return true in case
5301 * it is. The caller must hold the RTNL lock.
5302 */
5303 static bool netdev_has_any_upper_dev(struct net_device *dev)
5304 {
5305 ASSERT_RTNL();
5306
5307 return !list_empty(&dev->all_adj_list.upper);
5308 }
5309
5310 /**
5311 * netdev_master_upper_dev_get - Get master upper device
5312 * @dev: device
5313 *
5314 * Find a master upper device and return pointer to it or NULL in case
5315 * it's not there. The caller must hold the RTNL lock.
5316 */
5317 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5318 {
5319 struct netdev_adjacent *upper;
5320
5321 ASSERT_RTNL();
5322
5323 if (list_empty(&dev->adj_list.upper))
5324 return NULL;
5325
5326 upper = list_first_entry(&dev->adj_list.upper,
5327 struct netdev_adjacent, list);
5328 if (likely(upper->master))
5329 return upper->dev;
5330 return NULL;
5331 }
5332 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5333
5334 void *netdev_adjacent_get_private(struct list_head *adj_list)
5335 {
5336 struct netdev_adjacent *adj;
5337
5338 adj = list_entry(adj_list, struct netdev_adjacent, list);
5339
5340 return adj->private;
5341 }
5342 EXPORT_SYMBOL(netdev_adjacent_get_private);
5343
5344 /**
5345 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5346 * @dev: device
5347 * @iter: list_head ** of the current position
5348 *
5349 * Gets the next device from the dev's upper list, starting from iter
5350 * position. The caller must hold RCU read lock.
5351 */
5352 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5353 struct list_head **iter)
5354 {
5355 struct netdev_adjacent *upper;
5356
5357 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5358
5359 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5360
5361 if (&upper->list == &dev->adj_list.upper)
5362 return NULL;
5363
5364 *iter = &upper->list;
5365
5366 return upper->dev;
5367 }
5368 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5369
5370 /**
5371 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5372 * @dev: device
5373 * @iter: list_head ** of the current position
5374 *
5375 * Gets the next device from the dev's upper list, starting from iter
5376 * position. The caller must hold RCU read lock.
5377 */
5378 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5379 struct list_head **iter)
5380 {
5381 struct netdev_adjacent *upper;
5382
5383 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5384
5385 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5386
5387 if (&upper->list == &dev->all_adj_list.upper)
5388 return NULL;
5389
5390 *iter = &upper->list;
5391
5392 return upper->dev;
5393 }
5394 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5395
5396 /**
5397 * netdev_lower_get_next_private - Get the next ->private from the
5398 * lower neighbour list
5399 * @dev: device
5400 * @iter: list_head ** of the current position
5401 *
5402 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5403 * list, starting from iter position. The caller must hold either hold the
5404 * RTNL lock or its own locking that guarantees that the neighbour lower
5405 * list will remain unchanged.
5406 */
5407 void *netdev_lower_get_next_private(struct net_device *dev,
5408 struct list_head **iter)
5409 {
5410 struct netdev_adjacent *lower;
5411
5412 lower = list_entry(*iter, struct netdev_adjacent, list);
5413
5414 if (&lower->list == &dev->adj_list.lower)
5415 return NULL;
5416
5417 *iter = lower->list.next;
5418
5419 return lower->private;
5420 }
5421 EXPORT_SYMBOL(netdev_lower_get_next_private);
5422
5423 /**
5424 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5425 * lower neighbour list, RCU
5426 * variant
5427 * @dev: device
5428 * @iter: list_head ** of the current position
5429 *
5430 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5431 * list, starting from iter position. The caller must hold RCU read lock.
5432 */
5433 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5434 struct list_head **iter)
5435 {
5436 struct netdev_adjacent *lower;
5437
5438 WARN_ON_ONCE(!rcu_read_lock_held());
5439
5440 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5441
5442 if (&lower->list == &dev->adj_list.lower)
5443 return NULL;
5444
5445 *iter = &lower->list;
5446
5447 return lower->private;
5448 }
5449 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5450
5451 /**
5452 * netdev_lower_get_next - Get the next device from the lower neighbour
5453 * list
5454 * @dev: device
5455 * @iter: list_head ** of the current position
5456 *
5457 * Gets the next netdev_adjacent from the dev's lower neighbour
5458 * list, starting from iter position. The caller must hold RTNL lock or
5459 * its own locking that guarantees that the neighbour lower
5460 * list will remain unchanged.
5461 */
5462 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5463 {
5464 struct netdev_adjacent *lower;
5465
5466 lower = list_entry(*iter, struct netdev_adjacent, list);
5467
5468 if (&lower->list == &dev->adj_list.lower)
5469 return NULL;
5470
5471 *iter = lower->list.next;
5472
5473 return lower->dev;
5474 }
5475 EXPORT_SYMBOL(netdev_lower_get_next);
5476
5477 /**
5478 * netdev_all_lower_get_next - Get the next device from all lower neighbour list
5479 * @dev: device
5480 * @iter: list_head ** of the current position
5481 *
5482 * Gets the next netdev_adjacent from the dev's all lower neighbour
5483 * list, starting from iter position. The caller must hold RTNL lock or
5484 * its own locking that guarantees that the neighbour all lower
5485 * list will remain unchanged.
5486 */
5487 struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter)
5488 {
5489 struct netdev_adjacent *lower;
5490
5491 lower = list_entry(*iter, struct netdev_adjacent, list);
5492
5493 if (&lower->list == &dev->all_adj_list.lower)
5494 return NULL;
5495
5496 *iter = lower->list.next;
5497
5498 return lower->dev;
5499 }
5500 EXPORT_SYMBOL(netdev_all_lower_get_next);
5501
5502 /**
5503 * netdev_all_lower_get_next_rcu - Get the next device from all
5504 * lower neighbour list, RCU variant
5505 * @dev: device
5506 * @iter: list_head ** of the current position
5507 *
5508 * Gets the next netdev_adjacent from the dev's all lower neighbour
5509 * list, starting from iter position. The caller must hold RCU read lock.
5510 */
5511 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
5512 struct list_head **iter)
5513 {
5514 struct netdev_adjacent *lower;
5515
5516 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5517
5518 if (&lower->list == &dev->all_adj_list.lower)
5519 return NULL;
5520
5521 *iter = &lower->list;
5522
5523 return lower->dev;
5524 }
5525 EXPORT_SYMBOL(netdev_all_lower_get_next_rcu);
5526
5527 /**
5528 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5529 * lower neighbour list, RCU
5530 * variant
5531 * @dev: device
5532 *
5533 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5534 * list. The caller must hold RCU read lock.
5535 */
5536 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5537 {
5538 struct netdev_adjacent *lower;
5539
5540 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5541 struct netdev_adjacent, list);
5542 if (lower)
5543 return lower->private;
5544 return NULL;
5545 }
5546 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5547
5548 /**
5549 * netdev_master_upper_dev_get_rcu - Get master upper device
5550 * @dev: device
5551 *
5552 * Find a master upper device and return pointer to it or NULL in case
5553 * it's not there. The caller must hold the RCU read lock.
5554 */
5555 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5556 {
5557 struct netdev_adjacent *upper;
5558
5559 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5560 struct netdev_adjacent, list);
5561 if (upper && likely(upper->master))
5562 return upper->dev;
5563 return NULL;
5564 }
5565 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5566
5567 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5568 struct net_device *adj_dev,
5569 struct list_head *dev_list)
5570 {
5571 char linkname[IFNAMSIZ+7];
5572 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5573 "upper_%s" : "lower_%s", adj_dev->name);
5574 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5575 linkname);
5576 }
5577 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5578 char *name,
5579 struct list_head *dev_list)
5580 {
5581 char linkname[IFNAMSIZ+7];
5582 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5583 "upper_%s" : "lower_%s", name);
5584 sysfs_remove_link(&(dev->dev.kobj), linkname);
5585 }
5586
5587 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5588 struct net_device *adj_dev,
5589 struct list_head *dev_list)
5590 {
5591 return (dev_list == &dev->adj_list.upper ||
5592 dev_list == &dev->adj_list.lower) &&
5593 net_eq(dev_net(dev), dev_net(adj_dev));
5594 }
5595
5596 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5597 struct net_device *adj_dev,
5598 u16 ref_nr,
5599 struct list_head *dev_list,
5600 void *private, bool master)
5601 {
5602 struct netdev_adjacent *adj;
5603 int ret;
5604
5605 adj = __netdev_find_adj(adj_dev, dev_list);
5606
5607 if (adj) {
5608 adj->ref_nr += ref_nr;
5609 return 0;
5610 }
5611
5612 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5613 if (!adj)
5614 return -ENOMEM;
5615
5616 adj->dev = adj_dev;
5617 adj->master = master;
5618 adj->ref_nr = ref_nr;
5619 adj->private = private;
5620 dev_hold(adj_dev);
5621
5622 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5623 adj_dev->name, dev->name, adj_dev->name);
5624
5625 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5626 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5627 if (ret)
5628 goto free_adj;
5629 }
5630
5631 /* Ensure that master link is always the first item in list. */
5632 if (master) {
5633 ret = sysfs_create_link(&(dev->dev.kobj),
5634 &(adj_dev->dev.kobj), "master");
5635 if (ret)
5636 goto remove_symlinks;
5637
5638 list_add_rcu(&adj->list, dev_list);
5639 } else {
5640 list_add_tail_rcu(&adj->list, dev_list);
5641 }
5642
5643 return 0;
5644
5645 remove_symlinks:
5646 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5647 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5648 free_adj:
5649 kfree(adj);
5650 dev_put(adj_dev);
5651
5652 return ret;
5653 }
5654
5655 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5656 struct net_device *adj_dev,
5657 u16 ref_nr,
5658 struct list_head *dev_list)
5659 {
5660 struct netdev_adjacent *adj;
5661
5662 adj = __netdev_find_adj(adj_dev, dev_list);
5663
5664 if (!adj) {
5665 pr_err("tried to remove device %s from %s\n",
5666 dev->name, adj_dev->name);
5667 BUG();
5668 }
5669
5670 if (adj->ref_nr > ref_nr) {
5671 pr_debug("%s to %s ref_nr-%d = %d\n", dev->name, adj_dev->name,
5672 ref_nr, adj->ref_nr-ref_nr);
5673 adj->ref_nr -= ref_nr;
5674 return;
5675 }
5676
5677 if (adj->master)
5678 sysfs_remove_link(&(dev->dev.kobj), "master");
5679
5680 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5681 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5682
5683 list_del_rcu(&adj->list);
5684 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5685 adj_dev->name, dev->name, adj_dev->name);
5686 dev_put(adj_dev);
5687 kfree_rcu(adj, rcu);
5688 }
5689
5690 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5691 struct net_device *upper_dev,
5692 u16 ref_nr,
5693 struct list_head *up_list,
5694 struct list_head *down_list,
5695 void *private, bool master)
5696 {
5697 int ret;
5698
5699 ret = __netdev_adjacent_dev_insert(dev, upper_dev, ref_nr, up_list,
5700 private, master);
5701 if (ret)
5702 return ret;
5703
5704 ret = __netdev_adjacent_dev_insert(upper_dev, dev, ref_nr, down_list,
5705 private, false);
5706 if (ret) {
5707 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5708 return ret;
5709 }
5710
5711 return 0;
5712 }
5713
5714 static int __netdev_adjacent_dev_link(struct net_device *dev,
5715 struct net_device *upper_dev,
5716 u16 ref_nr)
5717 {
5718 return __netdev_adjacent_dev_link_lists(dev, upper_dev, ref_nr,
5719 &dev->all_adj_list.upper,
5720 &upper_dev->all_adj_list.lower,
5721 NULL, false);
5722 }
5723
5724 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5725 struct net_device *upper_dev,
5726 u16 ref_nr,
5727 struct list_head *up_list,
5728 struct list_head *down_list)
5729 {
5730 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5731 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5732 }
5733
5734 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5735 struct net_device *upper_dev,
5736 u16 ref_nr)
5737 {
5738 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, ref_nr,
5739 &dev->all_adj_list.upper,
5740 &upper_dev->all_adj_list.lower);
5741 }
5742
5743 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5744 struct net_device *upper_dev,
5745 void *private, bool master)
5746 {
5747 int ret = __netdev_adjacent_dev_link(dev, upper_dev, 1);
5748
5749 if (ret)
5750 return ret;
5751
5752 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 1,
5753 &dev->adj_list.upper,
5754 &upper_dev->adj_list.lower,
5755 private, master);
5756 if (ret) {
5757 __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5758 return ret;
5759 }
5760
5761 return 0;
5762 }
5763
5764 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5765 struct net_device *upper_dev)
5766 {
5767 __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5768 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5769 &dev->adj_list.upper,
5770 &upper_dev->adj_list.lower);
5771 }
5772
5773 static int __netdev_upper_dev_link(struct net_device *dev,
5774 struct net_device *upper_dev, bool master,
5775 void *upper_priv, void *upper_info)
5776 {
5777 struct netdev_notifier_changeupper_info changeupper_info;
5778 struct netdev_adjacent *i, *j, *to_i, *to_j;
5779 int ret = 0;
5780
5781 ASSERT_RTNL();
5782
5783 if (dev == upper_dev)
5784 return -EBUSY;
5785
5786 /* To prevent loops, check if dev is not upper device to upper_dev. */
5787 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5788 return -EBUSY;
5789
5790 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5791 return -EEXIST;
5792
5793 if (master && netdev_master_upper_dev_get(dev))
5794 return -EBUSY;
5795
5796 changeupper_info.upper_dev = upper_dev;
5797 changeupper_info.master = master;
5798 changeupper_info.linking = true;
5799 changeupper_info.upper_info = upper_info;
5800
5801 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5802 &changeupper_info.info);
5803 ret = notifier_to_errno(ret);
5804 if (ret)
5805 return ret;
5806
5807 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5808 master);
5809 if (ret)
5810 return ret;
5811
5812 /* Now that we linked these devs, make all the upper_dev's
5813 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5814 * versa, and don't forget the devices itself. All of these
5815 * links are non-neighbours.
5816 */
5817 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5818 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5819 pr_debug("Interlinking %s with %s, non-neighbour\n",
5820 i->dev->name, j->dev->name);
5821 ret = __netdev_adjacent_dev_link(i->dev, j->dev, i->ref_nr);
5822 if (ret)
5823 goto rollback_mesh;
5824 }
5825 }
5826
5827 /* add dev to every upper_dev's upper device */
5828 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5829 pr_debug("linking %s's upper device %s with %s\n",
5830 upper_dev->name, i->dev->name, dev->name);
5831 ret = __netdev_adjacent_dev_link(dev, i->dev, i->ref_nr);
5832 if (ret)
5833 goto rollback_upper_mesh;
5834 }
5835
5836 /* add upper_dev to every dev's lower device */
5837 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5838 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5839 i->dev->name, upper_dev->name);
5840 ret = __netdev_adjacent_dev_link(i->dev, upper_dev, i->ref_nr);
5841 if (ret)
5842 goto rollback_lower_mesh;
5843 }
5844
5845 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5846 &changeupper_info.info);
5847 ret = notifier_to_errno(ret);
5848 if (ret)
5849 goto rollback_lower_mesh;
5850
5851 return 0;
5852
5853 rollback_lower_mesh:
5854 to_i = i;
5855 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5856 if (i == to_i)
5857 break;
5858 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5859 }
5860
5861 i = NULL;
5862
5863 rollback_upper_mesh:
5864 to_i = i;
5865 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5866 if (i == to_i)
5867 break;
5868 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5869 }
5870
5871 i = j = NULL;
5872
5873 rollback_mesh:
5874 to_i = i;
5875 to_j = j;
5876 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5877 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5878 if (i == to_i && j == to_j)
5879 break;
5880 __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5881 }
5882 if (i == to_i)
5883 break;
5884 }
5885
5886 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5887
5888 return ret;
5889 }
5890
5891 /**
5892 * netdev_upper_dev_link - Add a link to the upper device
5893 * @dev: device
5894 * @upper_dev: new upper device
5895 *
5896 * Adds a link to device which is upper to this one. The caller must hold
5897 * the RTNL lock. On a failure a negative errno code is returned.
5898 * On success the reference counts are adjusted and the function
5899 * returns zero.
5900 */
5901 int netdev_upper_dev_link(struct net_device *dev,
5902 struct net_device *upper_dev)
5903 {
5904 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5905 }
5906 EXPORT_SYMBOL(netdev_upper_dev_link);
5907
5908 /**
5909 * netdev_master_upper_dev_link - Add a master link to the upper device
5910 * @dev: device
5911 * @upper_dev: new upper device
5912 * @upper_priv: upper device private
5913 * @upper_info: upper info to be passed down via notifier
5914 *
5915 * Adds a link to device which is upper to this one. In this case, only
5916 * one master upper device can be linked, although other non-master devices
5917 * might be linked as well. The caller must hold the RTNL lock.
5918 * On a failure a negative errno code is returned. On success the reference
5919 * counts are adjusted and the function returns zero.
5920 */
5921 int netdev_master_upper_dev_link(struct net_device *dev,
5922 struct net_device *upper_dev,
5923 void *upper_priv, void *upper_info)
5924 {
5925 return __netdev_upper_dev_link(dev, upper_dev, true,
5926 upper_priv, upper_info);
5927 }
5928 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5929
5930 /**
5931 * netdev_upper_dev_unlink - Removes a link to upper device
5932 * @dev: device
5933 * @upper_dev: new upper device
5934 *
5935 * Removes a link to device which is upper to this one. The caller must hold
5936 * the RTNL lock.
5937 */
5938 void netdev_upper_dev_unlink(struct net_device *dev,
5939 struct net_device *upper_dev)
5940 {
5941 struct netdev_notifier_changeupper_info changeupper_info;
5942 struct netdev_adjacent *i, *j;
5943 ASSERT_RTNL();
5944
5945 changeupper_info.upper_dev = upper_dev;
5946 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5947 changeupper_info.linking = false;
5948
5949 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5950 &changeupper_info.info);
5951
5952 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5953
5954 /* Here is the tricky part. We must remove all dev's lower
5955 * devices from all upper_dev's upper devices and vice
5956 * versa, to maintain the graph relationship.
5957 */
5958 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5959 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5960 __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5961
5962 /* remove also the devices itself from lower/upper device
5963 * list
5964 */
5965 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5966 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5967
5968 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5969 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5970
5971 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5972 &changeupper_info.info);
5973 }
5974 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5975
5976 /**
5977 * netdev_bonding_info_change - Dispatch event about slave change
5978 * @dev: device
5979 * @bonding_info: info to dispatch
5980 *
5981 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5982 * The caller must hold the RTNL lock.
5983 */
5984 void netdev_bonding_info_change(struct net_device *dev,
5985 struct netdev_bonding_info *bonding_info)
5986 {
5987 struct netdev_notifier_bonding_info info;
5988
5989 memcpy(&info.bonding_info, bonding_info,
5990 sizeof(struct netdev_bonding_info));
5991 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5992 &info.info);
5993 }
5994 EXPORT_SYMBOL(netdev_bonding_info_change);
5995
5996 static void netdev_adjacent_add_links(struct net_device *dev)
5997 {
5998 struct netdev_adjacent *iter;
5999
6000 struct net *net = dev_net(dev);
6001
6002 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6003 if (!net_eq(net, dev_net(iter->dev)))
6004 continue;
6005 netdev_adjacent_sysfs_add(iter->dev, dev,
6006 &iter->dev->adj_list.lower);
6007 netdev_adjacent_sysfs_add(dev, iter->dev,
6008 &dev->adj_list.upper);
6009 }
6010
6011 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6012 if (!net_eq(net, dev_net(iter->dev)))
6013 continue;
6014 netdev_adjacent_sysfs_add(iter->dev, dev,
6015 &iter->dev->adj_list.upper);
6016 netdev_adjacent_sysfs_add(dev, iter->dev,
6017 &dev->adj_list.lower);
6018 }
6019 }
6020
6021 static void netdev_adjacent_del_links(struct net_device *dev)
6022 {
6023 struct netdev_adjacent *iter;
6024
6025 struct net *net = dev_net(dev);
6026
6027 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6028 if (!net_eq(net, dev_net(iter->dev)))
6029 continue;
6030 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6031 &iter->dev->adj_list.lower);
6032 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6033 &dev->adj_list.upper);
6034 }
6035
6036 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6037 if (!net_eq(net, dev_net(iter->dev)))
6038 continue;
6039 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6040 &iter->dev->adj_list.upper);
6041 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6042 &dev->adj_list.lower);
6043 }
6044 }
6045
6046 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6047 {
6048 struct netdev_adjacent *iter;
6049
6050 struct net *net = dev_net(dev);
6051
6052 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6053 if (!net_eq(net, dev_net(iter->dev)))
6054 continue;
6055 netdev_adjacent_sysfs_del(iter->dev, oldname,
6056 &iter->dev->adj_list.lower);
6057 netdev_adjacent_sysfs_add(iter->dev, dev,
6058 &iter->dev->adj_list.lower);
6059 }
6060
6061 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6062 if (!net_eq(net, dev_net(iter->dev)))
6063 continue;
6064 netdev_adjacent_sysfs_del(iter->dev, oldname,
6065 &iter->dev->adj_list.upper);
6066 netdev_adjacent_sysfs_add(iter->dev, dev,
6067 &iter->dev->adj_list.upper);
6068 }
6069 }
6070
6071 void *netdev_lower_dev_get_private(struct net_device *dev,
6072 struct net_device *lower_dev)
6073 {
6074 struct netdev_adjacent *lower;
6075
6076 if (!lower_dev)
6077 return NULL;
6078 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6079 if (!lower)
6080 return NULL;
6081
6082 return lower->private;
6083 }
6084 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6085
6086
6087 int dev_get_nest_level(struct net_device *dev)
6088 {
6089 struct net_device *lower = NULL;
6090 struct list_head *iter;
6091 int max_nest = -1;
6092 int nest;
6093
6094 ASSERT_RTNL();
6095
6096 netdev_for_each_lower_dev(dev, lower, iter) {
6097 nest = dev_get_nest_level(lower);
6098 if (max_nest < nest)
6099 max_nest = nest;
6100 }
6101
6102 return max_nest + 1;
6103 }
6104 EXPORT_SYMBOL(dev_get_nest_level);
6105
6106 /**
6107 * netdev_lower_change - Dispatch event about lower device state change
6108 * @lower_dev: device
6109 * @lower_state_info: state to dispatch
6110 *
6111 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6112 * The caller must hold the RTNL lock.
6113 */
6114 void netdev_lower_state_changed(struct net_device *lower_dev,
6115 void *lower_state_info)
6116 {
6117 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6118
6119 ASSERT_RTNL();
6120 changelowerstate_info.lower_state_info = lower_state_info;
6121 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6122 &changelowerstate_info.info);
6123 }
6124 EXPORT_SYMBOL(netdev_lower_state_changed);
6125
6126 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6127 struct neighbour *n)
6128 {
6129 struct net_device *lower_dev, *stop_dev;
6130 struct list_head *iter;
6131 int err;
6132
6133 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6134 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6135 continue;
6136 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6137 if (err) {
6138 stop_dev = lower_dev;
6139 goto rollback;
6140 }
6141 }
6142 return 0;
6143
6144 rollback:
6145 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6146 if (lower_dev == stop_dev)
6147 break;
6148 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6149 continue;
6150 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6151 }
6152 return err;
6153 }
6154 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6155
6156 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6157 struct neighbour *n)
6158 {
6159 struct net_device *lower_dev;
6160 struct list_head *iter;
6161
6162 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6163 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6164 continue;
6165 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6166 }
6167 }
6168 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6169
6170 static void dev_change_rx_flags(struct net_device *dev, int flags)
6171 {
6172 const struct net_device_ops *ops = dev->netdev_ops;
6173
6174 if (ops->ndo_change_rx_flags)
6175 ops->ndo_change_rx_flags(dev, flags);
6176 }
6177
6178 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6179 {
6180 unsigned int old_flags = dev->flags;
6181 kuid_t uid;
6182 kgid_t gid;
6183
6184 ASSERT_RTNL();
6185
6186 dev->flags |= IFF_PROMISC;
6187 dev->promiscuity += inc;
6188 if (dev->promiscuity == 0) {
6189 /*
6190 * Avoid overflow.
6191 * If inc causes overflow, untouch promisc and return error.
6192 */
6193 if (inc < 0)
6194 dev->flags &= ~IFF_PROMISC;
6195 else {
6196 dev->promiscuity -= inc;
6197 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6198 dev->name);
6199 return -EOVERFLOW;
6200 }
6201 }
6202 if (dev->flags != old_flags) {
6203 pr_info("device %s %s promiscuous mode\n",
6204 dev->name,
6205 dev->flags & IFF_PROMISC ? "entered" : "left");
6206 if (audit_enabled) {
6207 current_uid_gid(&uid, &gid);
6208 audit_log(current->audit_context, GFP_ATOMIC,
6209 AUDIT_ANOM_PROMISCUOUS,
6210 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6211 dev->name, (dev->flags & IFF_PROMISC),
6212 (old_flags & IFF_PROMISC),
6213 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6214 from_kuid(&init_user_ns, uid),
6215 from_kgid(&init_user_ns, gid),
6216 audit_get_sessionid(current));
6217 }
6218
6219 dev_change_rx_flags(dev, IFF_PROMISC);
6220 }
6221 if (notify)
6222 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6223 return 0;
6224 }
6225
6226 /**
6227 * dev_set_promiscuity - update promiscuity count on a device
6228 * @dev: device
6229 * @inc: modifier
6230 *
6231 * Add or remove promiscuity from a device. While the count in the device
6232 * remains above zero the interface remains promiscuous. Once it hits zero
6233 * the device reverts back to normal filtering operation. A negative inc
6234 * value is used to drop promiscuity on the device.
6235 * Return 0 if successful or a negative errno code on error.
6236 */
6237 int dev_set_promiscuity(struct net_device *dev, int inc)
6238 {
6239 unsigned int old_flags = dev->flags;
6240 int err;
6241
6242 err = __dev_set_promiscuity(dev, inc, true);
6243 if (err < 0)
6244 return err;
6245 if (dev->flags != old_flags)
6246 dev_set_rx_mode(dev);
6247 return err;
6248 }
6249 EXPORT_SYMBOL(dev_set_promiscuity);
6250
6251 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6252 {
6253 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6254
6255 ASSERT_RTNL();
6256
6257 dev->flags |= IFF_ALLMULTI;
6258 dev->allmulti += inc;
6259 if (dev->allmulti == 0) {
6260 /*
6261 * Avoid overflow.
6262 * If inc causes overflow, untouch allmulti and return error.
6263 */
6264 if (inc < 0)
6265 dev->flags &= ~IFF_ALLMULTI;
6266 else {
6267 dev->allmulti -= inc;
6268 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6269 dev->name);
6270 return -EOVERFLOW;
6271 }
6272 }
6273 if (dev->flags ^ old_flags) {
6274 dev_change_rx_flags(dev, IFF_ALLMULTI);
6275 dev_set_rx_mode(dev);
6276 if (notify)
6277 __dev_notify_flags(dev, old_flags,
6278 dev->gflags ^ old_gflags);
6279 }
6280 return 0;
6281 }
6282
6283 /**
6284 * dev_set_allmulti - update allmulti count on a device
6285 * @dev: device
6286 * @inc: modifier
6287 *
6288 * Add or remove reception of all multicast frames to a device. While the
6289 * count in the device remains above zero the interface remains listening
6290 * to all interfaces. Once it hits zero the device reverts back to normal
6291 * filtering operation. A negative @inc value is used to drop the counter
6292 * when releasing a resource needing all multicasts.
6293 * Return 0 if successful or a negative errno code on error.
6294 */
6295
6296 int dev_set_allmulti(struct net_device *dev, int inc)
6297 {
6298 return __dev_set_allmulti(dev, inc, true);
6299 }
6300 EXPORT_SYMBOL(dev_set_allmulti);
6301
6302 /*
6303 * Upload unicast and multicast address lists to device and
6304 * configure RX filtering. When the device doesn't support unicast
6305 * filtering it is put in promiscuous mode while unicast addresses
6306 * are present.
6307 */
6308 void __dev_set_rx_mode(struct net_device *dev)
6309 {
6310 const struct net_device_ops *ops = dev->netdev_ops;
6311
6312 /* dev_open will call this function so the list will stay sane. */
6313 if (!(dev->flags&IFF_UP))
6314 return;
6315
6316 if (!netif_device_present(dev))
6317 return;
6318
6319 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6320 /* Unicast addresses changes may only happen under the rtnl,
6321 * therefore calling __dev_set_promiscuity here is safe.
6322 */
6323 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6324 __dev_set_promiscuity(dev, 1, false);
6325 dev->uc_promisc = true;
6326 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6327 __dev_set_promiscuity(dev, -1, false);
6328 dev->uc_promisc = false;
6329 }
6330 }
6331
6332 if (ops->ndo_set_rx_mode)
6333 ops->ndo_set_rx_mode(dev);
6334 }
6335
6336 void dev_set_rx_mode(struct net_device *dev)
6337 {
6338 netif_addr_lock_bh(dev);
6339 __dev_set_rx_mode(dev);
6340 netif_addr_unlock_bh(dev);
6341 }
6342
6343 /**
6344 * dev_get_flags - get flags reported to userspace
6345 * @dev: device
6346 *
6347 * Get the combination of flag bits exported through APIs to userspace.
6348 */
6349 unsigned int dev_get_flags(const struct net_device *dev)
6350 {
6351 unsigned int flags;
6352
6353 flags = (dev->flags & ~(IFF_PROMISC |
6354 IFF_ALLMULTI |
6355 IFF_RUNNING |
6356 IFF_LOWER_UP |
6357 IFF_DORMANT)) |
6358 (dev->gflags & (IFF_PROMISC |
6359 IFF_ALLMULTI));
6360
6361 if (netif_running(dev)) {
6362 if (netif_oper_up(dev))
6363 flags |= IFF_RUNNING;
6364 if (netif_carrier_ok(dev))
6365 flags |= IFF_LOWER_UP;
6366 if (netif_dormant(dev))
6367 flags |= IFF_DORMANT;
6368 }
6369
6370 return flags;
6371 }
6372 EXPORT_SYMBOL(dev_get_flags);
6373
6374 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6375 {
6376 unsigned int old_flags = dev->flags;
6377 int ret;
6378
6379 ASSERT_RTNL();
6380
6381 /*
6382 * Set the flags on our device.
6383 */
6384
6385 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6386 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6387 IFF_AUTOMEDIA)) |
6388 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6389 IFF_ALLMULTI));
6390
6391 /*
6392 * Load in the correct multicast list now the flags have changed.
6393 */
6394
6395 if ((old_flags ^ flags) & IFF_MULTICAST)
6396 dev_change_rx_flags(dev, IFF_MULTICAST);
6397
6398 dev_set_rx_mode(dev);
6399
6400 /*
6401 * Have we downed the interface. We handle IFF_UP ourselves
6402 * according to user attempts to set it, rather than blindly
6403 * setting it.
6404 */
6405
6406 ret = 0;
6407 if ((old_flags ^ flags) & IFF_UP)
6408 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6409
6410 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6411 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6412 unsigned int old_flags = dev->flags;
6413
6414 dev->gflags ^= IFF_PROMISC;
6415
6416 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6417 if (dev->flags != old_flags)
6418 dev_set_rx_mode(dev);
6419 }
6420
6421 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6422 is important. Some (broken) drivers set IFF_PROMISC, when
6423 IFF_ALLMULTI is requested not asking us and not reporting.
6424 */
6425 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6426 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6427
6428 dev->gflags ^= IFF_ALLMULTI;
6429 __dev_set_allmulti(dev, inc, false);
6430 }
6431
6432 return ret;
6433 }
6434
6435 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6436 unsigned int gchanges)
6437 {
6438 unsigned int changes = dev->flags ^ old_flags;
6439
6440 if (gchanges)
6441 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6442
6443 if (changes & IFF_UP) {
6444 if (dev->flags & IFF_UP)
6445 call_netdevice_notifiers(NETDEV_UP, dev);
6446 else
6447 call_netdevice_notifiers(NETDEV_DOWN, dev);
6448 }
6449
6450 if (dev->flags & IFF_UP &&
6451 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6452 struct netdev_notifier_change_info change_info;
6453
6454 change_info.flags_changed = changes;
6455 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6456 &change_info.info);
6457 }
6458 }
6459
6460 /**
6461 * dev_change_flags - change device settings
6462 * @dev: device
6463 * @flags: device state flags
6464 *
6465 * Change settings on device based state flags. The flags are
6466 * in the userspace exported format.
6467 */
6468 int dev_change_flags(struct net_device *dev, unsigned int flags)
6469 {
6470 int ret;
6471 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6472
6473 ret = __dev_change_flags(dev, flags);
6474 if (ret < 0)
6475 return ret;
6476
6477 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6478 __dev_notify_flags(dev, old_flags, changes);
6479 return ret;
6480 }
6481 EXPORT_SYMBOL(dev_change_flags);
6482
6483 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6484 {
6485 const struct net_device_ops *ops = dev->netdev_ops;
6486
6487 if (ops->ndo_change_mtu)
6488 return ops->ndo_change_mtu(dev, new_mtu);
6489
6490 dev->mtu = new_mtu;
6491 return 0;
6492 }
6493
6494 /**
6495 * dev_set_mtu - Change maximum transfer unit
6496 * @dev: device
6497 * @new_mtu: new transfer unit
6498 *
6499 * Change the maximum transfer size of the network device.
6500 */
6501 int dev_set_mtu(struct net_device *dev, int new_mtu)
6502 {
6503 int err, orig_mtu;
6504
6505 if (new_mtu == dev->mtu)
6506 return 0;
6507
6508 /* MTU must be positive. */
6509 if (new_mtu < 0)
6510 return -EINVAL;
6511
6512 if (!netif_device_present(dev))
6513 return -ENODEV;
6514
6515 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6516 err = notifier_to_errno(err);
6517 if (err)
6518 return err;
6519
6520 orig_mtu = dev->mtu;
6521 err = __dev_set_mtu(dev, new_mtu);
6522
6523 if (!err) {
6524 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6525 err = notifier_to_errno(err);
6526 if (err) {
6527 /* setting mtu back and notifying everyone again,
6528 * so that they have a chance to revert changes.
6529 */
6530 __dev_set_mtu(dev, orig_mtu);
6531 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6532 }
6533 }
6534 return err;
6535 }
6536 EXPORT_SYMBOL(dev_set_mtu);
6537
6538 /**
6539 * dev_set_group - Change group this device belongs to
6540 * @dev: device
6541 * @new_group: group this device should belong to
6542 */
6543 void dev_set_group(struct net_device *dev, int new_group)
6544 {
6545 dev->group = new_group;
6546 }
6547 EXPORT_SYMBOL(dev_set_group);
6548
6549 /**
6550 * dev_set_mac_address - Change Media Access Control Address
6551 * @dev: device
6552 * @sa: new address
6553 *
6554 * Change the hardware (MAC) address of the device
6555 */
6556 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6557 {
6558 const struct net_device_ops *ops = dev->netdev_ops;
6559 int err;
6560
6561 if (!ops->ndo_set_mac_address)
6562 return -EOPNOTSUPP;
6563 if (sa->sa_family != dev->type)
6564 return -EINVAL;
6565 if (!netif_device_present(dev))
6566 return -ENODEV;
6567 err = ops->ndo_set_mac_address(dev, sa);
6568 if (err)
6569 return err;
6570 dev->addr_assign_type = NET_ADDR_SET;
6571 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6572 add_device_randomness(dev->dev_addr, dev->addr_len);
6573 return 0;
6574 }
6575 EXPORT_SYMBOL(dev_set_mac_address);
6576
6577 /**
6578 * dev_change_carrier - Change device carrier
6579 * @dev: device
6580 * @new_carrier: new value
6581 *
6582 * Change device carrier
6583 */
6584 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6585 {
6586 const struct net_device_ops *ops = dev->netdev_ops;
6587
6588 if (!ops->ndo_change_carrier)
6589 return -EOPNOTSUPP;
6590 if (!netif_device_present(dev))
6591 return -ENODEV;
6592 return ops->ndo_change_carrier(dev, new_carrier);
6593 }
6594 EXPORT_SYMBOL(dev_change_carrier);
6595
6596 /**
6597 * dev_get_phys_port_id - Get device physical port ID
6598 * @dev: device
6599 * @ppid: port ID
6600 *
6601 * Get device physical port ID
6602 */
6603 int dev_get_phys_port_id(struct net_device *dev,
6604 struct netdev_phys_item_id *ppid)
6605 {
6606 const struct net_device_ops *ops = dev->netdev_ops;
6607
6608 if (!ops->ndo_get_phys_port_id)
6609 return -EOPNOTSUPP;
6610 return ops->ndo_get_phys_port_id(dev, ppid);
6611 }
6612 EXPORT_SYMBOL(dev_get_phys_port_id);
6613
6614 /**
6615 * dev_get_phys_port_name - Get device physical port name
6616 * @dev: device
6617 * @name: port name
6618 * @len: limit of bytes to copy to name
6619 *
6620 * Get device physical port name
6621 */
6622 int dev_get_phys_port_name(struct net_device *dev,
6623 char *name, size_t len)
6624 {
6625 const struct net_device_ops *ops = dev->netdev_ops;
6626
6627 if (!ops->ndo_get_phys_port_name)
6628 return -EOPNOTSUPP;
6629 return ops->ndo_get_phys_port_name(dev, name, len);
6630 }
6631 EXPORT_SYMBOL(dev_get_phys_port_name);
6632
6633 /**
6634 * dev_change_proto_down - update protocol port state information
6635 * @dev: device
6636 * @proto_down: new value
6637 *
6638 * This info can be used by switch drivers to set the phys state of the
6639 * port.
6640 */
6641 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6642 {
6643 const struct net_device_ops *ops = dev->netdev_ops;
6644
6645 if (!ops->ndo_change_proto_down)
6646 return -EOPNOTSUPP;
6647 if (!netif_device_present(dev))
6648 return -ENODEV;
6649 return ops->ndo_change_proto_down(dev, proto_down);
6650 }
6651 EXPORT_SYMBOL(dev_change_proto_down);
6652
6653 /**
6654 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6655 * @dev: device
6656 * @fd: new program fd or negative value to clear
6657 *
6658 * Set or clear a bpf program for a device
6659 */
6660 int dev_change_xdp_fd(struct net_device *dev, int fd)
6661 {
6662 const struct net_device_ops *ops = dev->netdev_ops;
6663 struct bpf_prog *prog = NULL;
6664 struct netdev_xdp xdp = {};
6665 int err;
6666
6667 if (!ops->ndo_xdp)
6668 return -EOPNOTSUPP;
6669 if (fd >= 0) {
6670 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6671 if (IS_ERR(prog))
6672 return PTR_ERR(prog);
6673 }
6674
6675 xdp.command = XDP_SETUP_PROG;
6676 xdp.prog = prog;
6677 err = ops->ndo_xdp(dev, &xdp);
6678 if (err < 0 && prog)
6679 bpf_prog_put(prog);
6680
6681 return err;
6682 }
6683 EXPORT_SYMBOL(dev_change_xdp_fd);
6684
6685 /**
6686 * dev_new_index - allocate an ifindex
6687 * @net: the applicable net namespace
6688 *
6689 * Returns a suitable unique value for a new device interface
6690 * number. The caller must hold the rtnl semaphore or the
6691 * dev_base_lock to be sure it remains unique.
6692 */
6693 static int dev_new_index(struct net *net)
6694 {
6695 int ifindex = net->ifindex;
6696 for (;;) {
6697 if (++ifindex <= 0)
6698 ifindex = 1;
6699 if (!__dev_get_by_index(net, ifindex))
6700 return net->ifindex = ifindex;
6701 }
6702 }
6703
6704 /* Delayed registration/unregisteration */
6705 static LIST_HEAD(net_todo_list);
6706 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6707
6708 static void net_set_todo(struct net_device *dev)
6709 {
6710 list_add_tail(&dev->todo_list, &net_todo_list);
6711 dev_net(dev)->dev_unreg_count++;
6712 }
6713
6714 static void rollback_registered_many(struct list_head *head)
6715 {
6716 struct net_device *dev, *tmp;
6717 LIST_HEAD(close_head);
6718
6719 BUG_ON(dev_boot_phase);
6720 ASSERT_RTNL();
6721
6722 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6723 /* Some devices call without registering
6724 * for initialization unwind. Remove those
6725 * devices and proceed with the remaining.
6726 */
6727 if (dev->reg_state == NETREG_UNINITIALIZED) {
6728 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6729 dev->name, dev);
6730
6731 WARN_ON(1);
6732 list_del(&dev->unreg_list);
6733 continue;
6734 }
6735 dev->dismantle = true;
6736 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6737 }
6738
6739 /* If device is running, close it first. */
6740 list_for_each_entry(dev, head, unreg_list)
6741 list_add_tail(&dev->close_list, &close_head);
6742 dev_close_many(&close_head, true);
6743
6744 list_for_each_entry(dev, head, unreg_list) {
6745 /* And unlink it from device chain. */
6746 unlist_netdevice(dev);
6747
6748 dev->reg_state = NETREG_UNREGISTERING;
6749 }
6750 flush_all_backlogs();
6751
6752 synchronize_net();
6753
6754 list_for_each_entry(dev, head, unreg_list) {
6755 struct sk_buff *skb = NULL;
6756
6757 /* Shutdown queueing discipline. */
6758 dev_shutdown(dev);
6759
6760
6761 /* Notify protocols, that we are about to destroy
6762 this device. They should clean all the things.
6763 */
6764 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6765
6766 if (!dev->rtnl_link_ops ||
6767 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6768 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6769 GFP_KERNEL);
6770
6771 /*
6772 * Flush the unicast and multicast chains
6773 */
6774 dev_uc_flush(dev);
6775 dev_mc_flush(dev);
6776
6777 if (dev->netdev_ops->ndo_uninit)
6778 dev->netdev_ops->ndo_uninit(dev);
6779
6780 if (skb)
6781 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6782
6783 /* Notifier chain MUST detach us all upper devices. */
6784 WARN_ON(netdev_has_any_upper_dev(dev));
6785
6786 /* Remove entries from kobject tree */
6787 netdev_unregister_kobject(dev);
6788 #ifdef CONFIG_XPS
6789 /* Remove XPS queueing entries */
6790 netif_reset_xps_queues_gt(dev, 0);
6791 #endif
6792 }
6793
6794 synchronize_net();
6795
6796 list_for_each_entry(dev, head, unreg_list)
6797 dev_put(dev);
6798 }
6799
6800 static void rollback_registered(struct net_device *dev)
6801 {
6802 LIST_HEAD(single);
6803
6804 list_add(&dev->unreg_list, &single);
6805 rollback_registered_many(&single);
6806 list_del(&single);
6807 }
6808
6809 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6810 struct net_device *upper, netdev_features_t features)
6811 {
6812 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6813 netdev_features_t feature;
6814 int feature_bit;
6815
6816 for_each_netdev_feature(&upper_disables, feature_bit) {
6817 feature = __NETIF_F_BIT(feature_bit);
6818 if (!(upper->wanted_features & feature)
6819 && (features & feature)) {
6820 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6821 &feature, upper->name);
6822 features &= ~feature;
6823 }
6824 }
6825
6826 return features;
6827 }
6828
6829 static void netdev_sync_lower_features(struct net_device *upper,
6830 struct net_device *lower, netdev_features_t features)
6831 {
6832 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6833 netdev_features_t feature;
6834 int feature_bit;
6835
6836 for_each_netdev_feature(&upper_disables, feature_bit) {
6837 feature = __NETIF_F_BIT(feature_bit);
6838 if (!(features & feature) && (lower->features & feature)) {
6839 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6840 &feature, lower->name);
6841 lower->wanted_features &= ~feature;
6842 netdev_update_features(lower);
6843
6844 if (unlikely(lower->features & feature))
6845 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6846 &feature, lower->name);
6847 }
6848 }
6849 }
6850
6851 static netdev_features_t netdev_fix_features(struct net_device *dev,
6852 netdev_features_t features)
6853 {
6854 /* Fix illegal checksum combinations */
6855 if ((features & NETIF_F_HW_CSUM) &&
6856 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6857 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6858 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6859 }
6860
6861 /* TSO requires that SG is present as well. */
6862 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6863 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6864 features &= ~NETIF_F_ALL_TSO;
6865 }
6866
6867 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6868 !(features & NETIF_F_IP_CSUM)) {
6869 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6870 features &= ~NETIF_F_TSO;
6871 features &= ~NETIF_F_TSO_ECN;
6872 }
6873
6874 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6875 !(features & NETIF_F_IPV6_CSUM)) {
6876 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6877 features &= ~NETIF_F_TSO6;
6878 }
6879
6880 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6881 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6882 features &= ~NETIF_F_TSO_MANGLEID;
6883
6884 /* TSO ECN requires that TSO is present as well. */
6885 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6886 features &= ~NETIF_F_TSO_ECN;
6887
6888 /* Software GSO depends on SG. */
6889 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6890 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6891 features &= ~NETIF_F_GSO;
6892 }
6893
6894 /* UFO needs SG and checksumming */
6895 if (features & NETIF_F_UFO) {
6896 /* maybe split UFO into V4 and V6? */
6897 if (!(features & NETIF_F_HW_CSUM) &&
6898 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6899 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6900 netdev_dbg(dev,
6901 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6902 features &= ~NETIF_F_UFO;
6903 }
6904
6905 if (!(features & NETIF_F_SG)) {
6906 netdev_dbg(dev,
6907 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6908 features &= ~NETIF_F_UFO;
6909 }
6910 }
6911
6912 /* GSO partial features require GSO partial be set */
6913 if ((features & dev->gso_partial_features) &&
6914 !(features & NETIF_F_GSO_PARTIAL)) {
6915 netdev_dbg(dev,
6916 "Dropping partially supported GSO features since no GSO partial.\n");
6917 features &= ~dev->gso_partial_features;
6918 }
6919
6920 #ifdef CONFIG_NET_RX_BUSY_POLL
6921 if (dev->netdev_ops->ndo_busy_poll)
6922 features |= NETIF_F_BUSY_POLL;
6923 else
6924 #endif
6925 features &= ~NETIF_F_BUSY_POLL;
6926
6927 return features;
6928 }
6929
6930 int __netdev_update_features(struct net_device *dev)
6931 {
6932 struct net_device *upper, *lower;
6933 netdev_features_t features;
6934 struct list_head *iter;
6935 int err = -1;
6936
6937 ASSERT_RTNL();
6938
6939 features = netdev_get_wanted_features(dev);
6940
6941 if (dev->netdev_ops->ndo_fix_features)
6942 features = dev->netdev_ops->ndo_fix_features(dev, features);
6943
6944 /* driver might be less strict about feature dependencies */
6945 features = netdev_fix_features(dev, features);
6946
6947 /* some features can't be enabled if they're off an an upper device */
6948 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6949 features = netdev_sync_upper_features(dev, upper, features);
6950
6951 if (dev->features == features)
6952 goto sync_lower;
6953
6954 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6955 &dev->features, &features);
6956
6957 if (dev->netdev_ops->ndo_set_features)
6958 err = dev->netdev_ops->ndo_set_features(dev, features);
6959 else
6960 err = 0;
6961
6962 if (unlikely(err < 0)) {
6963 netdev_err(dev,
6964 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6965 err, &features, &dev->features);
6966 /* return non-0 since some features might have changed and
6967 * it's better to fire a spurious notification than miss it
6968 */
6969 return -1;
6970 }
6971
6972 sync_lower:
6973 /* some features must be disabled on lower devices when disabled
6974 * on an upper device (think: bonding master or bridge)
6975 */
6976 netdev_for_each_lower_dev(dev, lower, iter)
6977 netdev_sync_lower_features(dev, lower, features);
6978
6979 if (!err)
6980 dev->features = features;
6981
6982 return err < 0 ? 0 : 1;
6983 }
6984
6985 /**
6986 * netdev_update_features - recalculate device features
6987 * @dev: the device to check
6988 *
6989 * Recalculate dev->features set and send notifications if it
6990 * has changed. Should be called after driver or hardware dependent
6991 * conditions might have changed that influence the features.
6992 */
6993 void netdev_update_features(struct net_device *dev)
6994 {
6995 if (__netdev_update_features(dev))
6996 netdev_features_change(dev);
6997 }
6998 EXPORT_SYMBOL(netdev_update_features);
6999
7000 /**
7001 * netdev_change_features - recalculate device features
7002 * @dev: the device to check
7003 *
7004 * Recalculate dev->features set and send notifications even
7005 * if they have not changed. Should be called instead of
7006 * netdev_update_features() if also dev->vlan_features might
7007 * have changed to allow the changes to be propagated to stacked
7008 * VLAN devices.
7009 */
7010 void netdev_change_features(struct net_device *dev)
7011 {
7012 __netdev_update_features(dev);
7013 netdev_features_change(dev);
7014 }
7015 EXPORT_SYMBOL(netdev_change_features);
7016
7017 /**
7018 * netif_stacked_transfer_operstate - transfer operstate
7019 * @rootdev: the root or lower level device to transfer state from
7020 * @dev: the device to transfer operstate to
7021 *
7022 * Transfer operational state from root to device. This is normally
7023 * called when a stacking relationship exists between the root
7024 * device and the device(a leaf device).
7025 */
7026 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7027 struct net_device *dev)
7028 {
7029 if (rootdev->operstate == IF_OPER_DORMANT)
7030 netif_dormant_on(dev);
7031 else
7032 netif_dormant_off(dev);
7033
7034 if (netif_carrier_ok(rootdev)) {
7035 if (!netif_carrier_ok(dev))
7036 netif_carrier_on(dev);
7037 } else {
7038 if (netif_carrier_ok(dev))
7039 netif_carrier_off(dev);
7040 }
7041 }
7042 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7043
7044 #ifdef CONFIG_SYSFS
7045 static int netif_alloc_rx_queues(struct net_device *dev)
7046 {
7047 unsigned int i, count = dev->num_rx_queues;
7048 struct netdev_rx_queue *rx;
7049 size_t sz = count * sizeof(*rx);
7050
7051 BUG_ON(count < 1);
7052
7053 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7054 if (!rx) {
7055 rx = vzalloc(sz);
7056 if (!rx)
7057 return -ENOMEM;
7058 }
7059 dev->_rx = rx;
7060
7061 for (i = 0; i < count; i++)
7062 rx[i].dev = dev;
7063 return 0;
7064 }
7065 #endif
7066
7067 static void netdev_init_one_queue(struct net_device *dev,
7068 struct netdev_queue *queue, void *_unused)
7069 {
7070 /* Initialize queue lock */
7071 spin_lock_init(&queue->_xmit_lock);
7072 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7073 queue->xmit_lock_owner = -1;
7074 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7075 queue->dev = dev;
7076 #ifdef CONFIG_BQL
7077 dql_init(&queue->dql, HZ);
7078 #endif
7079 }
7080
7081 static void netif_free_tx_queues(struct net_device *dev)
7082 {
7083 kvfree(dev->_tx);
7084 }
7085
7086 static int netif_alloc_netdev_queues(struct net_device *dev)
7087 {
7088 unsigned int count = dev->num_tx_queues;
7089 struct netdev_queue *tx;
7090 size_t sz = count * sizeof(*tx);
7091
7092 if (count < 1 || count > 0xffff)
7093 return -EINVAL;
7094
7095 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7096 if (!tx) {
7097 tx = vzalloc(sz);
7098 if (!tx)
7099 return -ENOMEM;
7100 }
7101 dev->_tx = tx;
7102
7103 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7104 spin_lock_init(&dev->tx_global_lock);
7105
7106 return 0;
7107 }
7108
7109 void netif_tx_stop_all_queues(struct net_device *dev)
7110 {
7111 unsigned int i;
7112
7113 for (i = 0; i < dev->num_tx_queues; i++) {
7114 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7115 netif_tx_stop_queue(txq);
7116 }
7117 }
7118 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7119
7120 /**
7121 * register_netdevice - register a network device
7122 * @dev: device to register
7123 *
7124 * Take a completed network device structure and add it to the kernel
7125 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7126 * chain. 0 is returned on success. A negative errno code is returned
7127 * on a failure to set up the device, or if the name is a duplicate.
7128 *
7129 * Callers must hold the rtnl semaphore. You may want
7130 * register_netdev() instead of this.
7131 *
7132 * BUGS:
7133 * The locking appears insufficient to guarantee two parallel registers
7134 * will not get the same name.
7135 */
7136
7137 int register_netdevice(struct net_device *dev)
7138 {
7139 int ret;
7140 struct net *net = dev_net(dev);
7141
7142 BUG_ON(dev_boot_phase);
7143 ASSERT_RTNL();
7144
7145 might_sleep();
7146
7147 /* When net_device's are persistent, this will be fatal. */
7148 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7149 BUG_ON(!net);
7150
7151 spin_lock_init(&dev->addr_list_lock);
7152 netdev_set_addr_lockdep_class(dev);
7153
7154 ret = dev_get_valid_name(net, dev, dev->name);
7155 if (ret < 0)
7156 goto out;
7157
7158 /* Init, if this function is available */
7159 if (dev->netdev_ops->ndo_init) {
7160 ret = dev->netdev_ops->ndo_init(dev);
7161 if (ret) {
7162 if (ret > 0)
7163 ret = -EIO;
7164 goto out;
7165 }
7166 }
7167
7168 if (((dev->hw_features | dev->features) &
7169 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7170 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7171 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7172 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7173 ret = -EINVAL;
7174 goto err_uninit;
7175 }
7176
7177 ret = -EBUSY;
7178 if (!dev->ifindex)
7179 dev->ifindex = dev_new_index(net);
7180 else if (__dev_get_by_index(net, dev->ifindex))
7181 goto err_uninit;
7182
7183 /* Transfer changeable features to wanted_features and enable
7184 * software offloads (GSO and GRO).
7185 */
7186 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7187 dev->features |= NETIF_F_SOFT_FEATURES;
7188 dev->wanted_features = dev->features & dev->hw_features;
7189
7190 if (!(dev->flags & IFF_LOOPBACK))
7191 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7192
7193 /* If IPv4 TCP segmentation offload is supported we should also
7194 * allow the device to enable segmenting the frame with the option
7195 * of ignoring a static IP ID value. This doesn't enable the
7196 * feature itself but allows the user to enable it later.
7197 */
7198 if (dev->hw_features & NETIF_F_TSO)
7199 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7200 if (dev->vlan_features & NETIF_F_TSO)
7201 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7202 if (dev->mpls_features & NETIF_F_TSO)
7203 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7204 if (dev->hw_enc_features & NETIF_F_TSO)
7205 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7206
7207 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7208 */
7209 dev->vlan_features |= NETIF_F_HIGHDMA;
7210
7211 /* Make NETIF_F_SG inheritable to tunnel devices.
7212 */
7213 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7214
7215 /* Make NETIF_F_SG inheritable to MPLS.
7216 */
7217 dev->mpls_features |= NETIF_F_SG;
7218
7219 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7220 ret = notifier_to_errno(ret);
7221 if (ret)
7222 goto err_uninit;
7223
7224 ret = netdev_register_kobject(dev);
7225 if (ret)
7226 goto err_uninit;
7227 dev->reg_state = NETREG_REGISTERED;
7228
7229 __netdev_update_features(dev);
7230
7231 /*
7232 * Default initial state at registry is that the
7233 * device is present.
7234 */
7235
7236 set_bit(__LINK_STATE_PRESENT, &dev->state);
7237
7238 linkwatch_init_dev(dev);
7239
7240 dev_init_scheduler(dev);
7241 dev_hold(dev);
7242 list_netdevice(dev);
7243 add_device_randomness(dev->dev_addr, dev->addr_len);
7244
7245 /* If the device has permanent device address, driver should
7246 * set dev_addr and also addr_assign_type should be set to
7247 * NET_ADDR_PERM (default value).
7248 */
7249 if (dev->addr_assign_type == NET_ADDR_PERM)
7250 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7251
7252 /* Notify protocols, that a new device appeared. */
7253 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7254 ret = notifier_to_errno(ret);
7255 if (ret) {
7256 rollback_registered(dev);
7257 dev->reg_state = NETREG_UNREGISTERED;
7258 }
7259 /*
7260 * Prevent userspace races by waiting until the network
7261 * device is fully setup before sending notifications.
7262 */
7263 if (!dev->rtnl_link_ops ||
7264 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7265 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7266
7267 out:
7268 return ret;
7269
7270 err_uninit:
7271 if (dev->netdev_ops->ndo_uninit)
7272 dev->netdev_ops->ndo_uninit(dev);
7273 goto out;
7274 }
7275 EXPORT_SYMBOL(register_netdevice);
7276
7277 /**
7278 * init_dummy_netdev - init a dummy network device for NAPI
7279 * @dev: device to init
7280 *
7281 * This takes a network device structure and initialize the minimum
7282 * amount of fields so it can be used to schedule NAPI polls without
7283 * registering a full blown interface. This is to be used by drivers
7284 * that need to tie several hardware interfaces to a single NAPI
7285 * poll scheduler due to HW limitations.
7286 */
7287 int init_dummy_netdev(struct net_device *dev)
7288 {
7289 /* Clear everything. Note we don't initialize spinlocks
7290 * are they aren't supposed to be taken by any of the
7291 * NAPI code and this dummy netdev is supposed to be
7292 * only ever used for NAPI polls
7293 */
7294 memset(dev, 0, sizeof(struct net_device));
7295
7296 /* make sure we BUG if trying to hit standard
7297 * register/unregister code path
7298 */
7299 dev->reg_state = NETREG_DUMMY;
7300
7301 /* NAPI wants this */
7302 INIT_LIST_HEAD(&dev->napi_list);
7303
7304 /* a dummy interface is started by default */
7305 set_bit(__LINK_STATE_PRESENT, &dev->state);
7306 set_bit(__LINK_STATE_START, &dev->state);
7307
7308 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7309 * because users of this 'device' dont need to change
7310 * its refcount.
7311 */
7312
7313 return 0;
7314 }
7315 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7316
7317
7318 /**
7319 * register_netdev - register a network device
7320 * @dev: device to register
7321 *
7322 * Take a completed network device structure and add it to the kernel
7323 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7324 * chain. 0 is returned on success. A negative errno code is returned
7325 * on a failure to set up the device, or if the name is a duplicate.
7326 *
7327 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7328 * and expands the device name if you passed a format string to
7329 * alloc_netdev.
7330 */
7331 int register_netdev(struct net_device *dev)
7332 {
7333 int err;
7334
7335 rtnl_lock();
7336 err = register_netdevice(dev);
7337 rtnl_unlock();
7338 return err;
7339 }
7340 EXPORT_SYMBOL(register_netdev);
7341
7342 int netdev_refcnt_read(const struct net_device *dev)
7343 {
7344 int i, refcnt = 0;
7345
7346 for_each_possible_cpu(i)
7347 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7348 return refcnt;
7349 }
7350 EXPORT_SYMBOL(netdev_refcnt_read);
7351
7352 /**
7353 * netdev_wait_allrefs - wait until all references are gone.
7354 * @dev: target net_device
7355 *
7356 * This is called when unregistering network devices.
7357 *
7358 * Any protocol or device that holds a reference should register
7359 * for netdevice notification, and cleanup and put back the
7360 * reference if they receive an UNREGISTER event.
7361 * We can get stuck here if buggy protocols don't correctly
7362 * call dev_put.
7363 */
7364 static void netdev_wait_allrefs(struct net_device *dev)
7365 {
7366 unsigned long rebroadcast_time, warning_time;
7367 int refcnt;
7368
7369 linkwatch_forget_dev(dev);
7370
7371 rebroadcast_time = warning_time = jiffies;
7372 refcnt = netdev_refcnt_read(dev);
7373
7374 while (refcnt != 0) {
7375 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7376 rtnl_lock();
7377
7378 /* Rebroadcast unregister notification */
7379 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7380
7381 __rtnl_unlock();
7382 rcu_barrier();
7383 rtnl_lock();
7384
7385 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7386 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7387 &dev->state)) {
7388 /* We must not have linkwatch events
7389 * pending on unregister. If this
7390 * happens, we simply run the queue
7391 * unscheduled, resulting in a noop
7392 * for this device.
7393 */
7394 linkwatch_run_queue();
7395 }
7396
7397 __rtnl_unlock();
7398
7399 rebroadcast_time = jiffies;
7400 }
7401
7402 msleep(250);
7403
7404 refcnt = netdev_refcnt_read(dev);
7405
7406 if (time_after(jiffies, warning_time + 10 * HZ)) {
7407 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7408 dev->name, refcnt);
7409 warning_time = jiffies;
7410 }
7411 }
7412 }
7413
7414 /* The sequence is:
7415 *
7416 * rtnl_lock();
7417 * ...
7418 * register_netdevice(x1);
7419 * register_netdevice(x2);
7420 * ...
7421 * unregister_netdevice(y1);
7422 * unregister_netdevice(y2);
7423 * ...
7424 * rtnl_unlock();
7425 * free_netdev(y1);
7426 * free_netdev(y2);
7427 *
7428 * We are invoked by rtnl_unlock().
7429 * This allows us to deal with problems:
7430 * 1) We can delete sysfs objects which invoke hotplug
7431 * without deadlocking with linkwatch via keventd.
7432 * 2) Since we run with the RTNL semaphore not held, we can sleep
7433 * safely in order to wait for the netdev refcnt to drop to zero.
7434 *
7435 * We must not return until all unregister events added during
7436 * the interval the lock was held have been completed.
7437 */
7438 void netdev_run_todo(void)
7439 {
7440 struct list_head list;
7441
7442 /* Snapshot list, allow later requests */
7443 list_replace_init(&net_todo_list, &list);
7444
7445 __rtnl_unlock();
7446
7447
7448 /* Wait for rcu callbacks to finish before next phase */
7449 if (!list_empty(&list))
7450 rcu_barrier();
7451
7452 while (!list_empty(&list)) {
7453 struct net_device *dev
7454 = list_first_entry(&list, struct net_device, todo_list);
7455 list_del(&dev->todo_list);
7456
7457 rtnl_lock();
7458 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7459 __rtnl_unlock();
7460
7461 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7462 pr_err("network todo '%s' but state %d\n",
7463 dev->name, dev->reg_state);
7464 dump_stack();
7465 continue;
7466 }
7467
7468 dev->reg_state = NETREG_UNREGISTERED;
7469
7470 netdev_wait_allrefs(dev);
7471
7472 /* paranoia */
7473 BUG_ON(netdev_refcnt_read(dev));
7474 BUG_ON(!list_empty(&dev->ptype_all));
7475 BUG_ON(!list_empty(&dev->ptype_specific));
7476 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7477 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7478 WARN_ON(dev->dn_ptr);
7479
7480 if (dev->destructor)
7481 dev->destructor(dev);
7482
7483 /* Report a network device has been unregistered */
7484 rtnl_lock();
7485 dev_net(dev)->dev_unreg_count--;
7486 __rtnl_unlock();
7487 wake_up(&netdev_unregistering_wq);
7488
7489 /* Free network device */
7490 kobject_put(&dev->dev.kobj);
7491 }
7492 }
7493
7494 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7495 * all the same fields in the same order as net_device_stats, with only
7496 * the type differing, but rtnl_link_stats64 may have additional fields
7497 * at the end for newer counters.
7498 */
7499 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7500 const struct net_device_stats *netdev_stats)
7501 {
7502 #if BITS_PER_LONG == 64
7503 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7504 memcpy(stats64, netdev_stats, sizeof(*stats64));
7505 /* zero out counters that only exist in rtnl_link_stats64 */
7506 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7507 sizeof(*stats64) - sizeof(*netdev_stats));
7508 #else
7509 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7510 const unsigned long *src = (const unsigned long *)netdev_stats;
7511 u64 *dst = (u64 *)stats64;
7512
7513 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7514 for (i = 0; i < n; i++)
7515 dst[i] = src[i];
7516 /* zero out counters that only exist in rtnl_link_stats64 */
7517 memset((char *)stats64 + n * sizeof(u64), 0,
7518 sizeof(*stats64) - n * sizeof(u64));
7519 #endif
7520 }
7521 EXPORT_SYMBOL(netdev_stats_to_stats64);
7522
7523 /**
7524 * dev_get_stats - get network device statistics
7525 * @dev: device to get statistics from
7526 * @storage: place to store stats
7527 *
7528 * Get network statistics from device. Return @storage.
7529 * The device driver may provide its own method by setting
7530 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7531 * otherwise the internal statistics structure is used.
7532 */
7533 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7534 struct rtnl_link_stats64 *storage)
7535 {
7536 const struct net_device_ops *ops = dev->netdev_ops;
7537
7538 if (ops->ndo_get_stats64) {
7539 memset(storage, 0, sizeof(*storage));
7540 ops->ndo_get_stats64(dev, storage);
7541 } else if (ops->ndo_get_stats) {
7542 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7543 } else {
7544 netdev_stats_to_stats64(storage, &dev->stats);
7545 }
7546 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7547 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7548 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7549 return storage;
7550 }
7551 EXPORT_SYMBOL(dev_get_stats);
7552
7553 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7554 {
7555 struct netdev_queue *queue = dev_ingress_queue(dev);
7556
7557 #ifdef CONFIG_NET_CLS_ACT
7558 if (queue)
7559 return queue;
7560 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7561 if (!queue)
7562 return NULL;
7563 netdev_init_one_queue(dev, queue, NULL);
7564 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7565 queue->qdisc_sleeping = &noop_qdisc;
7566 rcu_assign_pointer(dev->ingress_queue, queue);
7567 #endif
7568 return queue;
7569 }
7570
7571 static const struct ethtool_ops default_ethtool_ops;
7572
7573 void netdev_set_default_ethtool_ops(struct net_device *dev,
7574 const struct ethtool_ops *ops)
7575 {
7576 if (dev->ethtool_ops == &default_ethtool_ops)
7577 dev->ethtool_ops = ops;
7578 }
7579 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7580
7581 void netdev_freemem(struct net_device *dev)
7582 {
7583 char *addr = (char *)dev - dev->padded;
7584
7585 kvfree(addr);
7586 }
7587
7588 /**
7589 * alloc_netdev_mqs - allocate network device
7590 * @sizeof_priv: size of private data to allocate space for
7591 * @name: device name format string
7592 * @name_assign_type: origin of device name
7593 * @setup: callback to initialize device
7594 * @txqs: the number of TX subqueues to allocate
7595 * @rxqs: the number of RX subqueues to allocate
7596 *
7597 * Allocates a struct net_device with private data area for driver use
7598 * and performs basic initialization. Also allocates subqueue structs
7599 * for each queue on the device.
7600 */
7601 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7602 unsigned char name_assign_type,
7603 void (*setup)(struct net_device *),
7604 unsigned int txqs, unsigned int rxqs)
7605 {
7606 struct net_device *dev;
7607 size_t alloc_size;
7608 struct net_device *p;
7609
7610 BUG_ON(strlen(name) >= sizeof(dev->name));
7611
7612 if (txqs < 1) {
7613 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7614 return NULL;
7615 }
7616
7617 #ifdef CONFIG_SYSFS
7618 if (rxqs < 1) {
7619 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7620 return NULL;
7621 }
7622 #endif
7623
7624 alloc_size = sizeof(struct net_device);
7625 if (sizeof_priv) {
7626 /* ensure 32-byte alignment of private area */
7627 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7628 alloc_size += sizeof_priv;
7629 }
7630 /* ensure 32-byte alignment of whole construct */
7631 alloc_size += NETDEV_ALIGN - 1;
7632
7633 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7634 if (!p)
7635 p = vzalloc(alloc_size);
7636 if (!p)
7637 return NULL;
7638
7639 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7640 dev->padded = (char *)dev - (char *)p;
7641
7642 dev->pcpu_refcnt = alloc_percpu(int);
7643 if (!dev->pcpu_refcnt)
7644 goto free_dev;
7645
7646 if (dev_addr_init(dev))
7647 goto free_pcpu;
7648
7649 dev_mc_init(dev);
7650 dev_uc_init(dev);
7651
7652 dev_net_set(dev, &init_net);
7653
7654 dev->gso_max_size = GSO_MAX_SIZE;
7655 dev->gso_max_segs = GSO_MAX_SEGS;
7656
7657 INIT_LIST_HEAD(&dev->napi_list);
7658 INIT_LIST_HEAD(&dev->unreg_list);
7659 INIT_LIST_HEAD(&dev->close_list);
7660 INIT_LIST_HEAD(&dev->link_watch_list);
7661 INIT_LIST_HEAD(&dev->adj_list.upper);
7662 INIT_LIST_HEAD(&dev->adj_list.lower);
7663 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7664 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7665 INIT_LIST_HEAD(&dev->ptype_all);
7666 INIT_LIST_HEAD(&dev->ptype_specific);
7667 #ifdef CONFIG_NET_SCHED
7668 hash_init(dev->qdisc_hash);
7669 #endif
7670 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7671 setup(dev);
7672
7673 if (!dev->tx_queue_len) {
7674 dev->priv_flags |= IFF_NO_QUEUE;
7675 dev->tx_queue_len = 1;
7676 }
7677
7678 dev->num_tx_queues = txqs;
7679 dev->real_num_tx_queues = txqs;
7680 if (netif_alloc_netdev_queues(dev))
7681 goto free_all;
7682
7683 #ifdef CONFIG_SYSFS
7684 dev->num_rx_queues = rxqs;
7685 dev->real_num_rx_queues = rxqs;
7686 if (netif_alloc_rx_queues(dev))
7687 goto free_all;
7688 #endif
7689
7690 strcpy(dev->name, name);
7691 dev->name_assign_type = name_assign_type;
7692 dev->group = INIT_NETDEV_GROUP;
7693 if (!dev->ethtool_ops)
7694 dev->ethtool_ops = &default_ethtool_ops;
7695
7696 nf_hook_ingress_init(dev);
7697
7698 return dev;
7699
7700 free_all:
7701 free_netdev(dev);
7702 return NULL;
7703
7704 free_pcpu:
7705 free_percpu(dev->pcpu_refcnt);
7706 free_dev:
7707 netdev_freemem(dev);
7708 return NULL;
7709 }
7710 EXPORT_SYMBOL(alloc_netdev_mqs);
7711
7712 /**
7713 * free_netdev - free network device
7714 * @dev: device
7715 *
7716 * This function does the last stage of destroying an allocated device
7717 * interface. The reference to the device object is released.
7718 * If this is the last reference then it will be freed.
7719 * Must be called in process context.
7720 */
7721 void free_netdev(struct net_device *dev)
7722 {
7723 struct napi_struct *p, *n;
7724
7725 might_sleep();
7726 netif_free_tx_queues(dev);
7727 #ifdef CONFIG_SYSFS
7728 kvfree(dev->_rx);
7729 #endif
7730
7731 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7732
7733 /* Flush device addresses */
7734 dev_addr_flush(dev);
7735
7736 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7737 netif_napi_del(p);
7738
7739 free_percpu(dev->pcpu_refcnt);
7740 dev->pcpu_refcnt = NULL;
7741
7742 /* Compatibility with error handling in drivers */
7743 if (dev->reg_state == NETREG_UNINITIALIZED) {
7744 netdev_freemem(dev);
7745 return;
7746 }
7747
7748 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7749 dev->reg_state = NETREG_RELEASED;
7750
7751 /* will free via device release */
7752 put_device(&dev->dev);
7753 }
7754 EXPORT_SYMBOL(free_netdev);
7755
7756 /**
7757 * synchronize_net - Synchronize with packet receive processing
7758 *
7759 * Wait for packets currently being received to be done.
7760 * Does not block later packets from starting.
7761 */
7762 void synchronize_net(void)
7763 {
7764 might_sleep();
7765 if (rtnl_is_locked())
7766 synchronize_rcu_expedited();
7767 else
7768 synchronize_rcu();
7769 }
7770 EXPORT_SYMBOL(synchronize_net);
7771
7772 /**
7773 * unregister_netdevice_queue - remove device from the kernel
7774 * @dev: device
7775 * @head: list
7776 *
7777 * This function shuts down a device interface and removes it
7778 * from the kernel tables.
7779 * If head not NULL, device is queued to be unregistered later.
7780 *
7781 * Callers must hold the rtnl semaphore. You may want
7782 * unregister_netdev() instead of this.
7783 */
7784
7785 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7786 {
7787 ASSERT_RTNL();
7788
7789 if (head) {
7790 list_move_tail(&dev->unreg_list, head);
7791 } else {
7792 rollback_registered(dev);
7793 /* Finish processing unregister after unlock */
7794 net_set_todo(dev);
7795 }
7796 }
7797 EXPORT_SYMBOL(unregister_netdevice_queue);
7798
7799 /**
7800 * unregister_netdevice_many - unregister many devices
7801 * @head: list of devices
7802 *
7803 * Note: As most callers use a stack allocated list_head,
7804 * we force a list_del() to make sure stack wont be corrupted later.
7805 */
7806 void unregister_netdevice_many(struct list_head *head)
7807 {
7808 struct net_device *dev;
7809
7810 if (!list_empty(head)) {
7811 rollback_registered_many(head);
7812 list_for_each_entry(dev, head, unreg_list)
7813 net_set_todo(dev);
7814 list_del(head);
7815 }
7816 }
7817 EXPORT_SYMBOL(unregister_netdevice_many);
7818
7819 /**
7820 * unregister_netdev - remove device from the kernel
7821 * @dev: device
7822 *
7823 * This function shuts down a device interface and removes it
7824 * from the kernel tables.
7825 *
7826 * This is just a wrapper for unregister_netdevice that takes
7827 * the rtnl semaphore. In general you want to use this and not
7828 * unregister_netdevice.
7829 */
7830 void unregister_netdev(struct net_device *dev)
7831 {
7832 rtnl_lock();
7833 unregister_netdevice(dev);
7834 rtnl_unlock();
7835 }
7836 EXPORT_SYMBOL(unregister_netdev);
7837
7838 /**
7839 * dev_change_net_namespace - move device to different nethost namespace
7840 * @dev: device
7841 * @net: network namespace
7842 * @pat: If not NULL name pattern to try if the current device name
7843 * is already taken in the destination network namespace.
7844 *
7845 * This function shuts down a device interface and moves it
7846 * to a new network namespace. On success 0 is returned, on
7847 * a failure a netagive errno code is returned.
7848 *
7849 * Callers must hold the rtnl semaphore.
7850 */
7851
7852 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7853 {
7854 int err;
7855
7856 ASSERT_RTNL();
7857
7858 /* Don't allow namespace local devices to be moved. */
7859 err = -EINVAL;
7860 if (dev->features & NETIF_F_NETNS_LOCAL)
7861 goto out;
7862
7863 /* Ensure the device has been registrered */
7864 if (dev->reg_state != NETREG_REGISTERED)
7865 goto out;
7866
7867 /* Get out if there is nothing todo */
7868 err = 0;
7869 if (net_eq(dev_net(dev), net))
7870 goto out;
7871
7872 /* Pick the destination device name, and ensure
7873 * we can use it in the destination network namespace.
7874 */
7875 err = -EEXIST;
7876 if (__dev_get_by_name(net, dev->name)) {
7877 /* We get here if we can't use the current device name */
7878 if (!pat)
7879 goto out;
7880 if (dev_get_valid_name(net, dev, pat) < 0)
7881 goto out;
7882 }
7883
7884 /*
7885 * And now a mini version of register_netdevice unregister_netdevice.
7886 */
7887
7888 /* If device is running close it first. */
7889 dev_close(dev);
7890
7891 /* And unlink it from device chain */
7892 err = -ENODEV;
7893 unlist_netdevice(dev);
7894
7895 synchronize_net();
7896
7897 /* Shutdown queueing discipline. */
7898 dev_shutdown(dev);
7899
7900 /* Notify protocols, that we are about to destroy
7901 this device. They should clean all the things.
7902
7903 Note that dev->reg_state stays at NETREG_REGISTERED.
7904 This is wanted because this way 8021q and macvlan know
7905 the device is just moving and can keep their slaves up.
7906 */
7907 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7908 rcu_barrier();
7909 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7910 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7911
7912 /*
7913 * Flush the unicast and multicast chains
7914 */
7915 dev_uc_flush(dev);
7916 dev_mc_flush(dev);
7917
7918 /* Send a netdev-removed uevent to the old namespace */
7919 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7920 netdev_adjacent_del_links(dev);
7921
7922 /* Actually switch the network namespace */
7923 dev_net_set(dev, net);
7924
7925 /* If there is an ifindex conflict assign a new one */
7926 if (__dev_get_by_index(net, dev->ifindex))
7927 dev->ifindex = dev_new_index(net);
7928
7929 /* Send a netdev-add uevent to the new namespace */
7930 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7931 netdev_adjacent_add_links(dev);
7932
7933 /* Fixup kobjects */
7934 err = device_rename(&dev->dev, dev->name);
7935 WARN_ON(err);
7936
7937 /* Add the device back in the hashes */
7938 list_netdevice(dev);
7939
7940 /* Notify protocols, that a new device appeared. */
7941 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7942
7943 /*
7944 * Prevent userspace races by waiting until the network
7945 * device is fully setup before sending notifications.
7946 */
7947 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7948
7949 synchronize_net();
7950 err = 0;
7951 out:
7952 return err;
7953 }
7954 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7955
7956 static int dev_cpu_callback(struct notifier_block *nfb,
7957 unsigned long action,
7958 void *ocpu)
7959 {
7960 struct sk_buff **list_skb;
7961 struct sk_buff *skb;
7962 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7963 struct softnet_data *sd, *oldsd;
7964
7965 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7966 return NOTIFY_OK;
7967
7968 local_irq_disable();
7969 cpu = smp_processor_id();
7970 sd = &per_cpu(softnet_data, cpu);
7971 oldsd = &per_cpu(softnet_data, oldcpu);
7972
7973 /* Find end of our completion_queue. */
7974 list_skb = &sd->completion_queue;
7975 while (*list_skb)
7976 list_skb = &(*list_skb)->next;
7977 /* Append completion queue from offline CPU. */
7978 *list_skb = oldsd->completion_queue;
7979 oldsd->completion_queue = NULL;
7980
7981 /* Append output queue from offline CPU. */
7982 if (oldsd->output_queue) {
7983 *sd->output_queue_tailp = oldsd->output_queue;
7984 sd->output_queue_tailp = oldsd->output_queue_tailp;
7985 oldsd->output_queue = NULL;
7986 oldsd->output_queue_tailp = &oldsd->output_queue;
7987 }
7988 /* Append NAPI poll list from offline CPU, with one exception :
7989 * process_backlog() must be called by cpu owning percpu backlog.
7990 * We properly handle process_queue & input_pkt_queue later.
7991 */
7992 while (!list_empty(&oldsd->poll_list)) {
7993 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7994 struct napi_struct,
7995 poll_list);
7996
7997 list_del_init(&napi->poll_list);
7998 if (napi->poll == process_backlog)
7999 napi->state = 0;
8000 else
8001 ____napi_schedule(sd, napi);
8002 }
8003
8004 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8005 local_irq_enable();
8006
8007 /* Process offline CPU's input_pkt_queue */
8008 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8009 netif_rx_ni(skb);
8010 input_queue_head_incr(oldsd);
8011 }
8012 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8013 netif_rx_ni(skb);
8014 input_queue_head_incr(oldsd);
8015 }
8016
8017 return NOTIFY_OK;
8018 }
8019
8020
8021 /**
8022 * netdev_increment_features - increment feature set by one
8023 * @all: current feature set
8024 * @one: new feature set
8025 * @mask: mask feature set
8026 *
8027 * Computes a new feature set after adding a device with feature set
8028 * @one to the master device with current feature set @all. Will not
8029 * enable anything that is off in @mask. Returns the new feature set.
8030 */
8031 netdev_features_t netdev_increment_features(netdev_features_t all,
8032 netdev_features_t one, netdev_features_t mask)
8033 {
8034 if (mask & NETIF_F_HW_CSUM)
8035 mask |= NETIF_F_CSUM_MASK;
8036 mask |= NETIF_F_VLAN_CHALLENGED;
8037
8038 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8039 all &= one | ~NETIF_F_ALL_FOR_ALL;
8040
8041 /* If one device supports hw checksumming, set for all. */
8042 if (all & NETIF_F_HW_CSUM)
8043 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8044
8045 return all;
8046 }
8047 EXPORT_SYMBOL(netdev_increment_features);
8048
8049 static struct hlist_head * __net_init netdev_create_hash(void)
8050 {
8051 int i;
8052 struct hlist_head *hash;
8053
8054 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8055 if (hash != NULL)
8056 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8057 INIT_HLIST_HEAD(&hash[i]);
8058
8059 return hash;
8060 }
8061
8062 /* Initialize per network namespace state */
8063 static int __net_init netdev_init(struct net *net)
8064 {
8065 if (net != &init_net)
8066 INIT_LIST_HEAD(&net->dev_base_head);
8067
8068 net->dev_name_head = netdev_create_hash();
8069 if (net->dev_name_head == NULL)
8070 goto err_name;
8071
8072 net->dev_index_head = netdev_create_hash();
8073 if (net->dev_index_head == NULL)
8074 goto err_idx;
8075
8076 return 0;
8077
8078 err_idx:
8079 kfree(net->dev_name_head);
8080 err_name:
8081 return -ENOMEM;
8082 }
8083
8084 /**
8085 * netdev_drivername - network driver for the device
8086 * @dev: network device
8087 *
8088 * Determine network driver for device.
8089 */
8090 const char *netdev_drivername(const struct net_device *dev)
8091 {
8092 const struct device_driver *driver;
8093 const struct device *parent;
8094 const char *empty = "";
8095
8096 parent = dev->dev.parent;
8097 if (!parent)
8098 return empty;
8099
8100 driver = parent->driver;
8101 if (driver && driver->name)
8102 return driver->name;
8103 return empty;
8104 }
8105
8106 static void __netdev_printk(const char *level, const struct net_device *dev,
8107 struct va_format *vaf)
8108 {
8109 if (dev && dev->dev.parent) {
8110 dev_printk_emit(level[1] - '0',
8111 dev->dev.parent,
8112 "%s %s %s%s: %pV",
8113 dev_driver_string(dev->dev.parent),
8114 dev_name(dev->dev.parent),
8115 netdev_name(dev), netdev_reg_state(dev),
8116 vaf);
8117 } else if (dev) {
8118 printk("%s%s%s: %pV",
8119 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8120 } else {
8121 printk("%s(NULL net_device): %pV", level, vaf);
8122 }
8123 }
8124
8125 void netdev_printk(const char *level, const struct net_device *dev,
8126 const char *format, ...)
8127 {
8128 struct va_format vaf;
8129 va_list args;
8130
8131 va_start(args, format);
8132
8133 vaf.fmt = format;
8134 vaf.va = &args;
8135
8136 __netdev_printk(level, dev, &vaf);
8137
8138 va_end(args);
8139 }
8140 EXPORT_SYMBOL(netdev_printk);
8141
8142 #define define_netdev_printk_level(func, level) \
8143 void func(const struct net_device *dev, const char *fmt, ...) \
8144 { \
8145 struct va_format vaf; \
8146 va_list args; \
8147 \
8148 va_start(args, fmt); \
8149 \
8150 vaf.fmt = fmt; \
8151 vaf.va = &args; \
8152 \
8153 __netdev_printk(level, dev, &vaf); \
8154 \
8155 va_end(args); \
8156 } \
8157 EXPORT_SYMBOL(func);
8158
8159 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8160 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8161 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8162 define_netdev_printk_level(netdev_err, KERN_ERR);
8163 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8164 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8165 define_netdev_printk_level(netdev_info, KERN_INFO);
8166
8167 static void __net_exit netdev_exit(struct net *net)
8168 {
8169 kfree(net->dev_name_head);
8170 kfree(net->dev_index_head);
8171 }
8172
8173 static struct pernet_operations __net_initdata netdev_net_ops = {
8174 .init = netdev_init,
8175 .exit = netdev_exit,
8176 };
8177
8178 static void __net_exit default_device_exit(struct net *net)
8179 {
8180 struct net_device *dev, *aux;
8181 /*
8182 * Push all migratable network devices back to the
8183 * initial network namespace
8184 */
8185 rtnl_lock();
8186 for_each_netdev_safe(net, dev, aux) {
8187 int err;
8188 char fb_name[IFNAMSIZ];
8189
8190 /* Ignore unmoveable devices (i.e. loopback) */
8191 if (dev->features & NETIF_F_NETNS_LOCAL)
8192 continue;
8193
8194 /* Leave virtual devices for the generic cleanup */
8195 if (dev->rtnl_link_ops)
8196 continue;
8197
8198 /* Push remaining network devices to init_net */
8199 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8200 err = dev_change_net_namespace(dev, &init_net, fb_name);
8201 if (err) {
8202 pr_emerg("%s: failed to move %s to init_net: %d\n",
8203 __func__, dev->name, err);
8204 BUG();
8205 }
8206 }
8207 rtnl_unlock();
8208 }
8209
8210 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8211 {
8212 /* Return with the rtnl_lock held when there are no network
8213 * devices unregistering in any network namespace in net_list.
8214 */
8215 struct net *net;
8216 bool unregistering;
8217 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8218
8219 add_wait_queue(&netdev_unregistering_wq, &wait);
8220 for (;;) {
8221 unregistering = false;
8222 rtnl_lock();
8223 list_for_each_entry(net, net_list, exit_list) {
8224 if (net->dev_unreg_count > 0) {
8225 unregistering = true;
8226 break;
8227 }
8228 }
8229 if (!unregistering)
8230 break;
8231 __rtnl_unlock();
8232
8233 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8234 }
8235 remove_wait_queue(&netdev_unregistering_wq, &wait);
8236 }
8237
8238 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8239 {
8240 /* At exit all network devices most be removed from a network
8241 * namespace. Do this in the reverse order of registration.
8242 * Do this across as many network namespaces as possible to
8243 * improve batching efficiency.
8244 */
8245 struct net_device *dev;
8246 struct net *net;
8247 LIST_HEAD(dev_kill_list);
8248
8249 /* To prevent network device cleanup code from dereferencing
8250 * loopback devices or network devices that have been freed
8251 * wait here for all pending unregistrations to complete,
8252 * before unregistring the loopback device and allowing the
8253 * network namespace be freed.
8254 *
8255 * The netdev todo list containing all network devices
8256 * unregistrations that happen in default_device_exit_batch
8257 * will run in the rtnl_unlock() at the end of
8258 * default_device_exit_batch.
8259 */
8260 rtnl_lock_unregistering(net_list);
8261 list_for_each_entry(net, net_list, exit_list) {
8262 for_each_netdev_reverse(net, dev) {
8263 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8264 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8265 else
8266 unregister_netdevice_queue(dev, &dev_kill_list);
8267 }
8268 }
8269 unregister_netdevice_many(&dev_kill_list);
8270 rtnl_unlock();
8271 }
8272
8273 static struct pernet_operations __net_initdata default_device_ops = {
8274 .exit = default_device_exit,
8275 .exit_batch = default_device_exit_batch,
8276 };
8277
8278 /*
8279 * Initialize the DEV module. At boot time this walks the device list and
8280 * unhooks any devices that fail to initialise (normally hardware not
8281 * present) and leaves us with a valid list of present and active devices.
8282 *
8283 */
8284
8285 /*
8286 * This is called single threaded during boot, so no need
8287 * to take the rtnl semaphore.
8288 */
8289 static int __init net_dev_init(void)
8290 {
8291 int i, rc = -ENOMEM;
8292
8293 BUG_ON(!dev_boot_phase);
8294
8295 if (dev_proc_init())
8296 goto out;
8297
8298 if (netdev_kobject_init())
8299 goto out;
8300
8301 INIT_LIST_HEAD(&ptype_all);
8302 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8303 INIT_LIST_HEAD(&ptype_base[i]);
8304
8305 INIT_LIST_HEAD(&offload_base);
8306
8307 if (register_pernet_subsys(&netdev_net_ops))
8308 goto out;
8309
8310 /*
8311 * Initialise the packet receive queues.
8312 */
8313
8314 for_each_possible_cpu(i) {
8315 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8316 struct softnet_data *sd = &per_cpu(softnet_data, i);
8317
8318 INIT_WORK(flush, flush_backlog);
8319
8320 skb_queue_head_init(&sd->input_pkt_queue);
8321 skb_queue_head_init(&sd->process_queue);
8322 INIT_LIST_HEAD(&sd->poll_list);
8323 sd->output_queue_tailp = &sd->output_queue;
8324 #ifdef CONFIG_RPS
8325 sd->csd.func = rps_trigger_softirq;
8326 sd->csd.info = sd;
8327 sd->cpu = i;
8328 #endif
8329
8330 sd->backlog.poll = process_backlog;
8331 sd->backlog.weight = weight_p;
8332 }
8333
8334 dev_boot_phase = 0;
8335
8336 /* The loopback device is special if any other network devices
8337 * is present in a network namespace the loopback device must
8338 * be present. Since we now dynamically allocate and free the
8339 * loopback device ensure this invariant is maintained by
8340 * keeping the loopback device as the first device on the
8341 * list of network devices. Ensuring the loopback devices
8342 * is the first device that appears and the last network device
8343 * that disappears.
8344 */
8345 if (register_pernet_device(&loopback_net_ops))
8346 goto out;
8347
8348 if (register_pernet_device(&default_device_ops))
8349 goto out;
8350
8351 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8352 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8353
8354 hotcpu_notifier(dev_cpu_callback, 0);
8355 dst_subsys_init();
8356 rc = 0;
8357 out:
8358 return rc;
8359 }
8360
8361 subsys_initcall(net_dev_init);