]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/core/dev.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/x86/linux...
[mirror_ubuntu-jammy-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/notifier.h>
94 #include <linux/skbuff.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <linux/rtnetlink.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/stat.h>
101 #include <linux/if_bridge.h>
102 #include <linux/if_macvlan.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/kmod.h>
109 #include <linux/module.h>
110 #include <linux/kallsyms.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122
123 #include "net-sysfs.h"
124
125 /*
126 * The list of packet types we will receive (as opposed to discard)
127 * and the routines to invoke.
128 *
129 * Why 16. Because with 16 the only overlap we get on a hash of the
130 * low nibble of the protocol value is RARP/SNAP/X.25.
131 *
132 * NOTE: That is no longer true with the addition of VLAN tags. Not
133 * sure which should go first, but I bet it won't make much
134 * difference if we are running VLANs. The good news is that
135 * this protocol won't be in the list unless compiled in, so
136 * the average user (w/out VLANs) will not be adversely affected.
137 * --BLG
138 *
139 * 0800 IP
140 * 8100 802.1Q VLAN
141 * 0001 802.3
142 * 0002 AX.25
143 * 0004 802.2
144 * 8035 RARP
145 * 0005 SNAP
146 * 0805 X.25
147 * 0806 ARP
148 * 8137 IPX
149 * 0009 Localtalk
150 * 86DD IPv6
151 */
152
153 #define PTYPE_HASH_SIZE (16)
154 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
155
156 static DEFINE_SPINLOCK(ptype_lock);
157 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
158 static struct list_head ptype_all __read_mostly; /* Taps */
159
160 #ifdef CONFIG_NET_DMA
161 struct net_dma {
162 struct dma_client client;
163 spinlock_t lock;
164 cpumask_t channel_mask;
165 struct dma_chan **channels;
166 };
167
168 static enum dma_state_client
169 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
170 enum dma_state state);
171
172 static struct net_dma net_dma = {
173 .client = {
174 .event_callback = netdev_dma_event,
175 },
176 };
177 #endif
178
179 /*
180 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
181 * semaphore.
182 *
183 * Pure readers hold dev_base_lock for reading.
184 *
185 * Writers must hold the rtnl semaphore while they loop through the
186 * dev_base_head list, and hold dev_base_lock for writing when they do the
187 * actual updates. This allows pure readers to access the list even
188 * while a writer is preparing to update it.
189 *
190 * To put it another way, dev_base_lock is held for writing only to
191 * protect against pure readers; the rtnl semaphore provides the
192 * protection against other writers.
193 *
194 * See, for example usages, register_netdevice() and
195 * unregister_netdevice(), which must be called with the rtnl
196 * semaphore held.
197 */
198 DEFINE_RWLOCK(dev_base_lock);
199
200 EXPORT_SYMBOL(dev_base_lock);
201
202 #define NETDEV_HASHBITS 8
203 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
204
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
208 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
209 }
210
211 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
212 {
213 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
214 }
215
216 /* Device list insertion */
217 static int list_netdevice(struct net_device *dev)
218 {
219 struct net *net = dev_net(dev);
220
221 ASSERT_RTNL();
222
223 write_lock_bh(&dev_base_lock);
224 list_add_tail(&dev->dev_list, &net->dev_base_head);
225 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
226 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
227 write_unlock_bh(&dev_base_lock);
228 return 0;
229 }
230
231 /* Device list removal */
232 static void unlist_netdevice(struct net_device *dev)
233 {
234 ASSERT_RTNL();
235
236 /* Unlink dev from the device chain */
237 write_lock_bh(&dev_base_lock);
238 list_del(&dev->dev_list);
239 hlist_del(&dev->name_hlist);
240 hlist_del(&dev->index_hlist);
241 write_unlock_bh(&dev_base_lock);
242 }
243
244 /*
245 * Our notifier list
246 */
247
248 static RAW_NOTIFIER_HEAD(netdev_chain);
249
250 /*
251 * Device drivers call our routines to queue packets here. We empty the
252 * queue in the local softnet handler.
253 */
254
255 DEFINE_PER_CPU(struct softnet_data, softnet_data);
256
257 #ifdef CONFIG_DEBUG_LOCK_ALLOC
258 /*
259 * register_netdevice() inits dev->_xmit_lock and sets lockdep class
260 * according to dev->type
261 */
262 static const unsigned short netdev_lock_type[] =
263 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
264 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
265 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
266 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
267 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
268 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
269 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
270 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
271 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
272 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
273 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
274 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
275 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
276 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
277 ARPHRD_NONE};
278
279 static const char *netdev_lock_name[] =
280 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
281 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
282 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
283 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
284 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
285 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
286 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
287 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
288 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
289 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
290 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
291 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
292 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
293 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
294 "_xmit_NONE"};
295
296 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
297
298 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
299 {
300 int i;
301
302 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
303 if (netdev_lock_type[i] == dev_type)
304 return i;
305 /* the last key is used by default */
306 return ARRAY_SIZE(netdev_lock_type) - 1;
307 }
308
309 static inline void netdev_set_lockdep_class(spinlock_t *lock,
310 unsigned short dev_type)
311 {
312 int i;
313
314 i = netdev_lock_pos(dev_type);
315 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
316 netdev_lock_name[i]);
317 }
318 #else
319 static inline void netdev_set_lockdep_class(spinlock_t *lock,
320 unsigned short dev_type)
321 {
322 }
323 #endif
324
325 /*******************************************************************************
326
327 Protocol management and registration routines
328
329 *******************************************************************************/
330
331 /*
332 * Add a protocol ID to the list. Now that the input handler is
333 * smarter we can dispense with all the messy stuff that used to be
334 * here.
335 *
336 * BEWARE!!! Protocol handlers, mangling input packets,
337 * MUST BE last in hash buckets and checking protocol handlers
338 * MUST start from promiscuous ptype_all chain in net_bh.
339 * It is true now, do not change it.
340 * Explanation follows: if protocol handler, mangling packet, will
341 * be the first on list, it is not able to sense, that packet
342 * is cloned and should be copied-on-write, so that it will
343 * change it and subsequent readers will get broken packet.
344 * --ANK (980803)
345 */
346
347 /**
348 * dev_add_pack - add packet handler
349 * @pt: packet type declaration
350 *
351 * Add a protocol handler to the networking stack. The passed &packet_type
352 * is linked into kernel lists and may not be freed until it has been
353 * removed from the kernel lists.
354 *
355 * This call does not sleep therefore it can not
356 * guarantee all CPU's that are in middle of receiving packets
357 * will see the new packet type (until the next received packet).
358 */
359
360 void dev_add_pack(struct packet_type *pt)
361 {
362 int hash;
363
364 spin_lock_bh(&ptype_lock);
365 if (pt->type == htons(ETH_P_ALL))
366 list_add_rcu(&pt->list, &ptype_all);
367 else {
368 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
369 list_add_rcu(&pt->list, &ptype_base[hash]);
370 }
371 spin_unlock_bh(&ptype_lock);
372 }
373
374 /**
375 * __dev_remove_pack - remove packet handler
376 * @pt: packet type declaration
377 *
378 * Remove a protocol handler that was previously added to the kernel
379 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
380 * from the kernel lists and can be freed or reused once this function
381 * returns.
382 *
383 * The packet type might still be in use by receivers
384 * and must not be freed until after all the CPU's have gone
385 * through a quiescent state.
386 */
387 void __dev_remove_pack(struct packet_type *pt)
388 {
389 struct list_head *head;
390 struct packet_type *pt1;
391
392 spin_lock_bh(&ptype_lock);
393
394 if (pt->type == htons(ETH_P_ALL))
395 head = &ptype_all;
396 else
397 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
398
399 list_for_each_entry(pt1, head, list) {
400 if (pt == pt1) {
401 list_del_rcu(&pt->list);
402 goto out;
403 }
404 }
405
406 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
407 out:
408 spin_unlock_bh(&ptype_lock);
409 }
410 /**
411 * dev_remove_pack - remove packet handler
412 * @pt: packet type declaration
413 *
414 * Remove a protocol handler that was previously added to the kernel
415 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
416 * from the kernel lists and can be freed or reused once this function
417 * returns.
418 *
419 * This call sleeps to guarantee that no CPU is looking at the packet
420 * type after return.
421 */
422 void dev_remove_pack(struct packet_type *pt)
423 {
424 __dev_remove_pack(pt);
425
426 synchronize_net();
427 }
428
429 /******************************************************************************
430
431 Device Boot-time Settings Routines
432
433 *******************************************************************************/
434
435 /* Boot time configuration table */
436 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
437
438 /**
439 * netdev_boot_setup_add - add new setup entry
440 * @name: name of the device
441 * @map: configured settings for the device
442 *
443 * Adds new setup entry to the dev_boot_setup list. The function
444 * returns 0 on error and 1 on success. This is a generic routine to
445 * all netdevices.
446 */
447 static int netdev_boot_setup_add(char *name, struct ifmap *map)
448 {
449 struct netdev_boot_setup *s;
450 int i;
451
452 s = dev_boot_setup;
453 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
454 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
455 memset(s[i].name, 0, sizeof(s[i].name));
456 strcpy(s[i].name, name);
457 memcpy(&s[i].map, map, sizeof(s[i].map));
458 break;
459 }
460 }
461
462 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
463 }
464
465 /**
466 * netdev_boot_setup_check - check boot time settings
467 * @dev: the netdevice
468 *
469 * Check boot time settings for the device.
470 * The found settings are set for the device to be used
471 * later in the device probing.
472 * Returns 0 if no settings found, 1 if they are.
473 */
474 int netdev_boot_setup_check(struct net_device *dev)
475 {
476 struct netdev_boot_setup *s = dev_boot_setup;
477 int i;
478
479 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
480 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
481 !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
482 dev->irq = s[i].map.irq;
483 dev->base_addr = s[i].map.base_addr;
484 dev->mem_start = s[i].map.mem_start;
485 dev->mem_end = s[i].map.mem_end;
486 return 1;
487 }
488 }
489 return 0;
490 }
491
492
493 /**
494 * netdev_boot_base - get address from boot time settings
495 * @prefix: prefix for network device
496 * @unit: id for network device
497 *
498 * Check boot time settings for the base address of device.
499 * The found settings are set for the device to be used
500 * later in the device probing.
501 * Returns 0 if no settings found.
502 */
503 unsigned long netdev_boot_base(const char *prefix, int unit)
504 {
505 const struct netdev_boot_setup *s = dev_boot_setup;
506 char name[IFNAMSIZ];
507 int i;
508
509 sprintf(name, "%s%d", prefix, unit);
510
511 /*
512 * If device already registered then return base of 1
513 * to indicate not to probe for this interface
514 */
515 if (__dev_get_by_name(&init_net, name))
516 return 1;
517
518 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
519 if (!strcmp(name, s[i].name))
520 return s[i].map.base_addr;
521 return 0;
522 }
523
524 /*
525 * Saves at boot time configured settings for any netdevice.
526 */
527 int __init netdev_boot_setup(char *str)
528 {
529 int ints[5];
530 struct ifmap map;
531
532 str = get_options(str, ARRAY_SIZE(ints), ints);
533 if (!str || !*str)
534 return 0;
535
536 /* Save settings */
537 memset(&map, 0, sizeof(map));
538 if (ints[0] > 0)
539 map.irq = ints[1];
540 if (ints[0] > 1)
541 map.base_addr = ints[2];
542 if (ints[0] > 2)
543 map.mem_start = ints[3];
544 if (ints[0] > 3)
545 map.mem_end = ints[4];
546
547 /* Add new entry to the list */
548 return netdev_boot_setup_add(str, &map);
549 }
550
551 __setup("netdev=", netdev_boot_setup);
552
553 /*******************************************************************************
554
555 Device Interface Subroutines
556
557 *******************************************************************************/
558
559 /**
560 * __dev_get_by_name - find a device by its name
561 * @net: the applicable net namespace
562 * @name: name to find
563 *
564 * Find an interface by name. Must be called under RTNL semaphore
565 * or @dev_base_lock. If the name is found a pointer to the device
566 * is returned. If the name is not found then %NULL is returned. The
567 * reference counters are not incremented so the caller must be
568 * careful with locks.
569 */
570
571 struct net_device *__dev_get_by_name(struct net *net, const char *name)
572 {
573 struct hlist_node *p;
574
575 hlist_for_each(p, dev_name_hash(net, name)) {
576 struct net_device *dev
577 = hlist_entry(p, struct net_device, name_hlist);
578 if (!strncmp(dev->name, name, IFNAMSIZ))
579 return dev;
580 }
581 return NULL;
582 }
583
584 /**
585 * dev_get_by_name - find a device by its name
586 * @net: the applicable net namespace
587 * @name: name to find
588 *
589 * Find an interface by name. This can be called from any
590 * context and does its own locking. The returned handle has
591 * the usage count incremented and the caller must use dev_put() to
592 * release it when it is no longer needed. %NULL is returned if no
593 * matching device is found.
594 */
595
596 struct net_device *dev_get_by_name(struct net *net, const char *name)
597 {
598 struct net_device *dev;
599
600 read_lock(&dev_base_lock);
601 dev = __dev_get_by_name(net, name);
602 if (dev)
603 dev_hold(dev);
604 read_unlock(&dev_base_lock);
605 return dev;
606 }
607
608 /**
609 * __dev_get_by_index - find a device by its ifindex
610 * @net: the applicable net namespace
611 * @ifindex: index of device
612 *
613 * Search for an interface by index. Returns %NULL if the device
614 * is not found or a pointer to the device. The device has not
615 * had its reference counter increased so the caller must be careful
616 * about locking. The caller must hold either the RTNL semaphore
617 * or @dev_base_lock.
618 */
619
620 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
621 {
622 struct hlist_node *p;
623
624 hlist_for_each(p, dev_index_hash(net, ifindex)) {
625 struct net_device *dev
626 = hlist_entry(p, struct net_device, index_hlist);
627 if (dev->ifindex == ifindex)
628 return dev;
629 }
630 return NULL;
631 }
632
633
634 /**
635 * dev_get_by_index - find a device by its ifindex
636 * @net: the applicable net namespace
637 * @ifindex: index of device
638 *
639 * Search for an interface by index. Returns NULL if the device
640 * is not found or a pointer to the device. The device returned has
641 * had a reference added and the pointer is safe until the user calls
642 * dev_put to indicate they have finished with it.
643 */
644
645 struct net_device *dev_get_by_index(struct net *net, int ifindex)
646 {
647 struct net_device *dev;
648
649 read_lock(&dev_base_lock);
650 dev = __dev_get_by_index(net, ifindex);
651 if (dev)
652 dev_hold(dev);
653 read_unlock(&dev_base_lock);
654 return dev;
655 }
656
657 /**
658 * dev_getbyhwaddr - find a device by its hardware address
659 * @net: the applicable net namespace
660 * @type: media type of device
661 * @ha: hardware address
662 *
663 * Search for an interface by MAC address. Returns NULL if the device
664 * is not found or a pointer to the device. The caller must hold the
665 * rtnl semaphore. The returned device has not had its ref count increased
666 * and the caller must therefore be careful about locking
667 *
668 * BUGS:
669 * If the API was consistent this would be __dev_get_by_hwaddr
670 */
671
672 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
673 {
674 struct net_device *dev;
675
676 ASSERT_RTNL();
677
678 for_each_netdev(net, dev)
679 if (dev->type == type &&
680 !memcmp(dev->dev_addr, ha, dev->addr_len))
681 return dev;
682
683 return NULL;
684 }
685
686 EXPORT_SYMBOL(dev_getbyhwaddr);
687
688 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
689 {
690 struct net_device *dev;
691
692 ASSERT_RTNL();
693 for_each_netdev(net, dev)
694 if (dev->type == type)
695 return dev;
696
697 return NULL;
698 }
699
700 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
701
702 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
703 {
704 struct net_device *dev;
705
706 rtnl_lock();
707 dev = __dev_getfirstbyhwtype(net, type);
708 if (dev)
709 dev_hold(dev);
710 rtnl_unlock();
711 return dev;
712 }
713
714 EXPORT_SYMBOL(dev_getfirstbyhwtype);
715
716 /**
717 * dev_get_by_flags - find any device with given flags
718 * @net: the applicable net namespace
719 * @if_flags: IFF_* values
720 * @mask: bitmask of bits in if_flags to check
721 *
722 * Search for any interface with the given flags. Returns NULL if a device
723 * is not found or a pointer to the device. The device returned has
724 * had a reference added and the pointer is safe until the user calls
725 * dev_put to indicate they have finished with it.
726 */
727
728 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
729 {
730 struct net_device *dev, *ret;
731
732 ret = NULL;
733 read_lock(&dev_base_lock);
734 for_each_netdev(net, dev) {
735 if (((dev->flags ^ if_flags) & mask) == 0) {
736 dev_hold(dev);
737 ret = dev;
738 break;
739 }
740 }
741 read_unlock(&dev_base_lock);
742 return ret;
743 }
744
745 /**
746 * dev_valid_name - check if name is okay for network device
747 * @name: name string
748 *
749 * Network device names need to be valid file names to
750 * to allow sysfs to work. We also disallow any kind of
751 * whitespace.
752 */
753 int dev_valid_name(const char *name)
754 {
755 if (*name == '\0')
756 return 0;
757 if (strlen(name) >= IFNAMSIZ)
758 return 0;
759 if (!strcmp(name, ".") || !strcmp(name, ".."))
760 return 0;
761
762 while (*name) {
763 if (*name == '/' || isspace(*name))
764 return 0;
765 name++;
766 }
767 return 1;
768 }
769
770 /**
771 * __dev_alloc_name - allocate a name for a device
772 * @net: network namespace to allocate the device name in
773 * @name: name format string
774 * @buf: scratch buffer and result name string
775 *
776 * Passed a format string - eg "lt%d" it will try and find a suitable
777 * id. It scans list of devices to build up a free map, then chooses
778 * the first empty slot. The caller must hold the dev_base or rtnl lock
779 * while allocating the name and adding the device in order to avoid
780 * duplicates.
781 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
782 * Returns the number of the unit assigned or a negative errno code.
783 */
784
785 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
786 {
787 int i = 0;
788 const char *p;
789 const int max_netdevices = 8*PAGE_SIZE;
790 unsigned long *inuse;
791 struct net_device *d;
792
793 p = strnchr(name, IFNAMSIZ-1, '%');
794 if (p) {
795 /*
796 * Verify the string as this thing may have come from
797 * the user. There must be either one "%d" and no other "%"
798 * characters.
799 */
800 if (p[1] != 'd' || strchr(p + 2, '%'))
801 return -EINVAL;
802
803 /* Use one page as a bit array of possible slots */
804 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
805 if (!inuse)
806 return -ENOMEM;
807
808 for_each_netdev(net, d) {
809 if (!sscanf(d->name, name, &i))
810 continue;
811 if (i < 0 || i >= max_netdevices)
812 continue;
813
814 /* avoid cases where sscanf is not exact inverse of printf */
815 snprintf(buf, IFNAMSIZ, name, i);
816 if (!strncmp(buf, d->name, IFNAMSIZ))
817 set_bit(i, inuse);
818 }
819
820 i = find_first_zero_bit(inuse, max_netdevices);
821 free_page((unsigned long) inuse);
822 }
823
824 snprintf(buf, IFNAMSIZ, name, i);
825 if (!__dev_get_by_name(net, buf))
826 return i;
827
828 /* It is possible to run out of possible slots
829 * when the name is long and there isn't enough space left
830 * for the digits, or if all bits are used.
831 */
832 return -ENFILE;
833 }
834
835 /**
836 * dev_alloc_name - allocate a name for a device
837 * @dev: device
838 * @name: name format string
839 *
840 * Passed a format string - eg "lt%d" it will try and find a suitable
841 * id. It scans list of devices to build up a free map, then chooses
842 * the first empty slot. The caller must hold the dev_base or rtnl lock
843 * while allocating the name and adding the device in order to avoid
844 * duplicates.
845 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
846 * Returns the number of the unit assigned or a negative errno code.
847 */
848
849 int dev_alloc_name(struct net_device *dev, const char *name)
850 {
851 char buf[IFNAMSIZ];
852 struct net *net;
853 int ret;
854
855 BUG_ON(!dev_net(dev));
856 net = dev_net(dev);
857 ret = __dev_alloc_name(net, name, buf);
858 if (ret >= 0)
859 strlcpy(dev->name, buf, IFNAMSIZ);
860 return ret;
861 }
862
863
864 /**
865 * dev_change_name - change name of a device
866 * @dev: device
867 * @newname: name (or format string) must be at least IFNAMSIZ
868 *
869 * Change name of a device, can pass format strings "eth%d".
870 * for wildcarding.
871 */
872 int dev_change_name(struct net_device *dev, char *newname)
873 {
874 char oldname[IFNAMSIZ];
875 int err = 0;
876 int ret;
877 struct net *net;
878
879 ASSERT_RTNL();
880 BUG_ON(!dev_net(dev));
881
882 net = dev_net(dev);
883 if (dev->flags & IFF_UP)
884 return -EBUSY;
885
886 if (!dev_valid_name(newname))
887 return -EINVAL;
888
889 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
890 return 0;
891
892 memcpy(oldname, dev->name, IFNAMSIZ);
893
894 if (strchr(newname, '%')) {
895 err = dev_alloc_name(dev, newname);
896 if (err < 0)
897 return err;
898 strcpy(newname, dev->name);
899 }
900 else if (__dev_get_by_name(net, newname))
901 return -EEXIST;
902 else
903 strlcpy(dev->name, newname, IFNAMSIZ);
904
905 rollback:
906 device_rename(&dev->dev, dev->name);
907
908 write_lock_bh(&dev_base_lock);
909 hlist_del(&dev->name_hlist);
910 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
911 write_unlock_bh(&dev_base_lock);
912
913 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
914 ret = notifier_to_errno(ret);
915
916 if (ret) {
917 if (err) {
918 printk(KERN_ERR
919 "%s: name change rollback failed: %d.\n",
920 dev->name, ret);
921 } else {
922 err = ret;
923 memcpy(dev->name, oldname, IFNAMSIZ);
924 goto rollback;
925 }
926 }
927
928 return err;
929 }
930
931 /**
932 * netdev_features_change - device changes features
933 * @dev: device to cause notification
934 *
935 * Called to indicate a device has changed features.
936 */
937 void netdev_features_change(struct net_device *dev)
938 {
939 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
940 }
941 EXPORT_SYMBOL(netdev_features_change);
942
943 /**
944 * netdev_state_change - device changes state
945 * @dev: device to cause notification
946 *
947 * Called to indicate a device has changed state. This function calls
948 * the notifier chains for netdev_chain and sends a NEWLINK message
949 * to the routing socket.
950 */
951 void netdev_state_change(struct net_device *dev)
952 {
953 if (dev->flags & IFF_UP) {
954 call_netdevice_notifiers(NETDEV_CHANGE, dev);
955 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
956 }
957 }
958
959 /**
960 * dev_load - load a network module
961 * @net: the applicable net namespace
962 * @name: name of interface
963 *
964 * If a network interface is not present and the process has suitable
965 * privileges this function loads the module. If module loading is not
966 * available in this kernel then it becomes a nop.
967 */
968
969 void dev_load(struct net *net, const char *name)
970 {
971 struct net_device *dev;
972
973 read_lock(&dev_base_lock);
974 dev = __dev_get_by_name(net, name);
975 read_unlock(&dev_base_lock);
976
977 if (!dev && capable(CAP_SYS_MODULE))
978 request_module("%s", name);
979 }
980
981 /**
982 * dev_open - prepare an interface for use.
983 * @dev: device to open
984 *
985 * Takes a device from down to up state. The device's private open
986 * function is invoked and then the multicast lists are loaded. Finally
987 * the device is moved into the up state and a %NETDEV_UP message is
988 * sent to the netdev notifier chain.
989 *
990 * Calling this function on an active interface is a nop. On a failure
991 * a negative errno code is returned.
992 */
993 int dev_open(struct net_device *dev)
994 {
995 int ret = 0;
996
997 ASSERT_RTNL();
998
999 /*
1000 * Is it already up?
1001 */
1002
1003 if (dev->flags & IFF_UP)
1004 return 0;
1005
1006 /*
1007 * Is it even present?
1008 */
1009 if (!netif_device_present(dev))
1010 return -ENODEV;
1011
1012 /*
1013 * Call device private open method
1014 */
1015 set_bit(__LINK_STATE_START, &dev->state);
1016
1017 if (dev->validate_addr)
1018 ret = dev->validate_addr(dev);
1019
1020 if (!ret && dev->open)
1021 ret = dev->open(dev);
1022
1023 /*
1024 * If it went open OK then:
1025 */
1026
1027 if (ret)
1028 clear_bit(__LINK_STATE_START, &dev->state);
1029 else {
1030 /*
1031 * Set the flags.
1032 */
1033 dev->flags |= IFF_UP;
1034
1035 /*
1036 * Initialize multicasting status
1037 */
1038 dev_set_rx_mode(dev);
1039
1040 /*
1041 * Wakeup transmit queue engine
1042 */
1043 dev_activate(dev);
1044
1045 /*
1046 * ... and announce new interface.
1047 */
1048 call_netdevice_notifiers(NETDEV_UP, dev);
1049 }
1050
1051 return ret;
1052 }
1053
1054 /**
1055 * dev_close - shutdown an interface.
1056 * @dev: device to shutdown
1057 *
1058 * This function moves an active device into down state. A
1059 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1060 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1061 * chain.
1062 */
1063 int dev_close(struct net_device *dev)
1064 {
1065 ASSERT_RTNL();
1066
1067 might_sleep();
1068
1069 if (!(dev->flags & IFF_UP))
1070 return 0;
1071
1072 /*
1073 * Tell people we are going down, so that they can
1074 * prepare to death, when device is still operating.
1075 */
1076 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1077
1078 clear_bit(__LINK_STATE_START, &dev->state);
1079
1080 /* Synchronize to scheduled poll. We cannot touch poll list,
1081 * it can be even on different cpu. So just clear netif_running().
1082 *
1083 * dev->stop() will invoke napi_disable() on all of it's
1084 * napi_struct instances on this device.
1085 */
1086 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1087
1088 dev_deactivate(dev);
1089
1090 /*
1091 * Call the device specific close. This cannot fail.
1092 * Only if device is UP
1093 *
1094 * We allow it to be called even after a DETACH hot-plug
1095 * event.
1096 */
1097 if (dev->stop)
1098 dev->stop(dev);
1099
1100 /*
1101 * Device is now down.
1102 */
1103
1104 dev->flags &= ~IFF_UP;
1105
1106 /*
1107 * Tell people we are down
1108 */
1109 call_netdevice_notifiers(NETDEV_DOWN, dev);
1110
1111 return 0;
1112 }
1113
1114
1115 static int dev_boot_phase = 1;
1116
1117 /*
1118 * Device change register/unregister. These are not inline or static
1119 * as we export them to the world.
1120 */
1121
1122 /**
1123 * register_netdevice_notifier - register a network notifier block
1124 * @nb: notifier
1125 *
1126 * Register a notifier to be called when network device events occur.
1127 * The notifier passed is linked into the kernel structures and must
1128 * not be reused until it has been unregistered. A negative errno code
1129 * is returned on a failure.
1130 *
1131 * When registered all registration and up events are replayed
1132 * to the new notifier to allow device to have a race free
1133 * view of the network device list.
1134 */
1135
1136 int register_netdevice_notifier(struct notifier_block *nb)
1137 {
1138 struct net_device *dev;
1139 struct net_device *last;
1140 struct net *net;
1141 int err;
1142
1143 rtnl_lock();
1144 err = raw_notifier_chain_register(&netdev_chain, nb);
1145 if (err)
1146 goto unlock;
1147 if (dev_boot_phase)
1148 goto unlock;
1149 for_each_net(net) {
1150 for_each_netdev(net, dev) {
1151 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1152 err = notifier_to_errno(err);
1153 if (err)
1154 goto rollback;
1155
1156 if (!(dev->flags & IFF_UP))
1157 continue;
1158
1159 nb->notifier_call(nb, NETDEV_UP, dev);
1160 }
1161 }
1162
1163 unlock:
1164 rtnl_unlock();
1165 return err;
1166
1167 rollback:
1168 last = dev;
1169 for_each_net(net) {
1170 for_each_netdev(net, dev) {
1171 if (dev == last)
1172 break;
1173
1174 if (dev->flags & IFF_UP) {
1175 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1176 nb->notifier_call(nb, NETDEV_DOWN, dev);
1177 }
1178 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1179 }
1180 }
1181
1182 raw_notifier_chain_unregister(&netdev_chain, nb);
1183 goto unlock;
1184 }
1185
1186 /**
1187 * unregister_netdevice_notifier - unregister a network notifier block
1188 * @nb: notifier
1189 *
1190 * Unregister a notifier previously registered by
1191 * register_netdevice_notifier(). The notifier is unlinked into the
1192 * kernel structures and may then be reused. A negative errno code
1193 * is returned on a failure.
1194 */
1195
1196 int unregister_netdevice_notifier(struct notifier_block *nb)
1197 {
1198 int err;
1199
1200 rtnl_lock();
1201 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1202 rtnl_unlock();
1203 return err;
1204 }
1205
1206 /**
1207 * call_netdevice_notifiers - call all network notifier blocks
1208 * @val: value passed unmodified to notifier function
1209 * @dev: net_device pointer passed unmodified to notifier function
1210 *
1211 * Call all network notifier blocks. Parameters and return value
1212 * are as for raw_notifier_call_chain().
1213 */
1214
1215 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1216 {
1217 return raw_notifier_call_chain(&netdev_chain, val, dev);
1218 }
1219
1220 /* When > 0 there are consumers of rx skb time stamps */
1221 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1222
1223 void net_enable_timestamp(void)
1224 {
1225 atomic_inc(&netstamp_needed);
1226 }
1227
1228 void net_disable_timestamp(void)
1229 {
1230 atomic_dec(&netstamp_needed);
1231 }
1232
1233 static inline void net_timestamp(struct sk_buff *skb)
1234 {
1235 if (atomic_read(&netstamp_needed))
1236 __net_timestamp(skb);
1237 else
1238 skb->tstamp.tv64 = 0;
1239 }
1240
1241 /*
1242 * Support routine. Sends outgoing frames to any network
1243 * taps currently in use.
1244 */
1245
1246 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1247 {
1248 struct packet_type *ptype;
1249
1250 net_timestamp(skb);
1251
1252 rcu_read_lock();
1253 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1254 /* Never send packets back to the socket
1255 * they originated from - MvS (miquels@drinkel.ow.org)
1256 */
1257 if ((ptype->dev == dev || !ptype->dev) &&
1258 (ptype->af_packet_priv == NULL ||
1259 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1260 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1261 if (!skb2)
1262 break;
1263
1264 /* skb->nh should be correctly
1265 set by sender, so that the second statement is
1266 just protection against buggy protocols.
1267 */
1268 skb_reset_mac_header(skb2);
1269
1270 if (skb_network_header(skb2) < skb2->data ||
1271 skb2->network_header > skb2->tail) {
1272 if (net_ratelimit())
1273 printk(KERN_CRIT "protocol %04x is "
1274 "buggy, dev %s\n",
1275 skb2->protocol, dev->name);
1276 skb_reset_network_header(skb2);
1277 }
1278
1279 skb2->transport_header = skb2->network_header;
1280 skb2->pkt_type = PACKET_OUTGOING;
1281 ptype->func(skb2, skb->dev, ptype, skb->dev);
1282 }
1283 }
1284 rcu_read_unlock();
1285 }
1286
1287
1288 void __netif_schedule(struct net_device *dev)
1289 {
1290 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1291 unsigned long flags;
1292 struct softnet_data *sd;
1293
1294 local_irq_save(flags);
1295 sd = &__get_cpu_var(softnet_data);
1296 dev->next_sched = sd->output_queue;
1297 sd->output_queue = dev;
1298 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1299 local_irq_restore(flags);
1300 }
1301 }
1302 EXPORT_SYMBOL(__netif_schedule);
1303
1304 void dev_kfree_skb_irq(struct sk_buff *skb)
1305 {
1306 if (atomic_dec_and_test(&skb->users)) {
1307 struct softnet_data *sd;
1308 unsigned long flags;
1309
1310 local_irq_save(flags);
1311 sd = &__get_cpu_var(softnet_data);
1312 skb->next = sd->completion_queue;
1313 sd->completion_queue = skb;
1314 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1315 local_irq_restore(flags);
1316 }
1317 }
1318 EXPORT_SYMBOL(dev_kfree_skb_irq);
1319
1320 void dev_kfree_skb_any(struct sk_buff *skb)
1321 {
1322 if (in_irq() || irqs_disabled())
1323 dev_kfree_skb_irq(skb);
1324 else
1325 dev_kfree_skb(skb);
1326 }
1327 EXPORT_SYMBOL(dev_kfree_skb_any);
1328
1329
1330 /**
1331 * netif_device_detach - mark device as removed
1332 * @dev: network device
1333 *
1334 * Mark device as removed from system and therefore no longer available.
1335 */
1336 void netif_device_detach(struct net_device *dev)
1337 {
1338 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1339 netif_running(dev)) {
1340 netif_stop_queue(dev);
1341 }
1342 }
1343 EXPORT_SYMBOL(netif_device_detach);
1344
1345 /**
1346 * netif_device_attach - mark device as attached
1347 * @dev: network device
1348 *
1349 * Mark device as attached from system and restart if needed.
1350 */
1351 void netif_device_attach(struct net_device *dev)
1352 {
1353 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1354 netif_running(dev)) {
1355 netif_wake_queue(dev);
1356 __netdev_watchdog_up(dev);
1357 }
1358 }
1359 EXPORT_SYMBOL(netif_device_attach);
1360
1361
1362 /*
1363 * Invalidate hardware checksum when packet is to be mangled, and
1364 * complete checksum manually on outgoing path.
1365 */
1366 int skb_checksum_help(struct sk_buff *skb)
1367 {
1368 __wsum csum;
1369 int ret = 0, offset;
1370
1371 if (skb->ip_summed == CHECKSUM_COMPLETE)
1372 goto out_set_summed;
1373
1374 if (unlikely(skb_shinfo(skb)->gso_size)) {
1375 /* Let GSO fix up the checksum. */
1376 goto out_set_summed;
1377 }
1378
1379 offset = skb->csum_start - skb_headroom(skb);
1380 BUG_ON(offset >= skb_headlen(skb));
1381 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1382
1383 offset += skb->csum_offset;
1384 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1385
1386 if (skb_cloned(skb) &&
1387 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1388 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1389 if (ret)
1390 goto out;
1391 }
1392
1393 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1394 out_set_summed:
1395 skb->ip_summed = CHECKSUM_NONE;
1396 out:
1397 return ret;
1398 }
1399
1400 /**
1401 * skb_gso_segment - Perform segmentation on skb.
1402 * @skb: buffer to segment
1403 * @features: features for the output path (see dev->features)
1404 *
1405 * This function segments the given skb and returns a list of segments.
1406 *
1407 * It may return NULL if the skb requires no segmentation. This is
1408 * only possible when GSO is used for verifying header integrity.
1409 */
1410 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1411 {
1412 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1413 struct packet_type *ptype;
1414 __be16 type = skb->protocol;
1415 int err;
1416
1417 BUG_ON(skb_shinfo(skb)->frag_list);
1418
1419 skb_reset_mac_header(skb);
1420 skb->mac_len = skb->network_header - skb->mac_header;
1421 __skb_pull(skb, skb->mac_len);
1422
1423 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1424 if (skb_header_cloned(skb) &&
1425 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1426 return ERR_PTR(err);
1427 }
1428
1429 rcu_read_lock();
1430 list_for_each_entry_rcu(ptype,
1431 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1432 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1433 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1434 err = ptype->gso_send_check(skb);
1435 segs = ERR_PTR(err);
1436 if (err || skb_gso_ok(skb, features))
1437 break;
1438 __skb_push(skb, (skb->data -
1439 skb_network_header(skb)));
1440 }
1441 segs = ptype->gso_segment(skb, features);
1442 break;
1443 }
1444 }
1445 rcu_read_unlock();
1446
1447 __skb_push(skb, skb->data - skb_mac_header(skb));
1448
1449 return segs;
1450 }
1451
1452 EXPORT_SYMBOL(skb_gso_segment);
1453
1454 /* Take action when hardware reception checksum errors are detected. */
1455 #ifdef CONFIG_BUG
1456 void netdev_rx_csum_fault(struct net_device *dev)
1457 {
1458 if (net_ratelimit()) {
1459 printk(KERN_ERR "%s: hw csum failure.\n",
1460 dev ? dev->name : "<unknown>");
1461 dump_stack();
1462 }
1463 }
1464 EXPORT_SYMBOL(netdev_rx_csum_fault);
1465 #endif
1466
1467 /* Actually, we should eliminate this check as soon as we know, that:
1468 * 1. IOMMU is present and allows to map all the memory.
1469 * 2. No high memory really exists on this machine.
1470 */
1471
1472 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1473 {
1474 #ifdef CONFIG_HIGHMEM
1475 int i;
1476
1477 if (dev->features & NETIF_F_HIGHDMA)
1478 return 0;
1479
1480 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1481 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1482 return 1;
1483
1484 #endif
1485 return 0;
1486 }
1487
1488 struct dev_gso_cb {
1489 void (*destructor)(struct sk_buff *skb);
1490 };
1491
1492 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1493
1494 static void dev_gso_skb_destructor(struct sk_buff *skb)
1495 {
1496 struct dev_gso_cb *cb;
1497
1498 do {
1499 struct sk_buff *nskb = skb->next;
1500
1501 skb->next = nskb->next;
1502 nskb->next = NULL;
1503 kfree_skb(nskb);
1504 } while (skb->next);
1505
1506 cb = DEV_GSO_CB(skb);
1507 if (cb->destructor)
1508 cb->destructor(skb);
1509 }
1510
1511 /**
1512 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1513 * @skb: buffer to segment
1514 *
1515 * This function segments the given skb and stores the list of segments
1516 * in skb->next.
1517 */
1518 static int dev_gso_segment(struct sk_buff *skb)
1519 {
1520 struct net_device *dev = skb->dev;
1521 struct sk_buff *segs;
1522 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1523 NETIF_F_SG : 0);
1524
1525 segs = skb_gso_segment(skb, features);
1526
1527 /* Verifying header integrity only. */
1528 if (!segs)
1529 return 0;
1530
1531 if (IS_ERR(segs))
1532 return PTR_ERR(segs);
1533
1534 skb->next = segs;
1535 DEV_GSO_CB(skb)->destructor = skb->destructor;
1536 skb->destructor = dev_gso_skb_destructor;
1537
1538 return 0;
1539 }
1540
1541 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1542 {
1543 if (likely(!skb->next)) {
1544 if (!list_empty(&ptype_all))
1545 dev_queue_xmit_nit(skb, dev);
1546
1547 if (netif_needs_gso(dev, skb)) {
1548 if (unlikely(dev_gso_segment(skb)))
1549 goto out_kfree_skb;
1550 if (skb->next)
1551 goto gso;
1552 }
1553
1554 return dev->hard_start_xmit(skb, dev);
1555 }
1556
1557 gso:
1558 do {
1559 struct sk_buff *nskb = skb->next;
1560 int rc;
1561
1562 skb->next = nskb->next;
1563 nskb->next = NULL;
1564 rc = dev->hard_start_xmit(nskb, dev);
1565 if (unlikely(rc)) {
1566 nskb->next = skb->next;
1567 skb->next = nskb;
1568 return rc;
1569 }
1570 if (unlikely((netif_queue_stopped(dev) ||
1571 netif_subqueue_stopped(dev, skb)) &&
1572 skb->next))
1573 return NETDEV_TX_BUSY;
1574 } while (skb->next);
1575
1576 skb->destructor = DEV_GSO_CB(skb)->destructor;
1577
1578 out_kfree_skb:
1579 kfree_skb(skb);
1580 return 0;
1581 }
1582
1583 /**
1584 * dev_queue_xmit - transmit a buffer
1585 * @skb: buffer to transmit
1586 *
1587 * Queue a buffer for transmission to a network device. The caller must
1588 * have set the device and priority and built the buffer before calling
1589 * this function. The function can be called from an interrupt.
1590 *
1591 * A negative errno code is returned on a failure. A success does not
1592 * guarantee the frame will be transmitted as it may be dropped due
1593 * to congestion or traffic shaping.
1594 *
1595 * -----------------------------------------------------------------------------------
1596 * I notice this method can also return errors from the queue disciplines,
1597 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1598 * be positive.
1599 *
1600 * Regardless of the return value, the skb is consumed, so it is currently
1601 * difficult to retry a send to this method. (You can bump the ref count
1602 * before sending to hold a reference for retry if you are careful.)
1603 *
1604 * When calling this method, interrupts MUST be enabled. This is because
1605 * the BH enable code must have IRQs enabled so that it will not deadlock.
1606 * --BLG
1607 */
1608
1609 int dev_queue_xmit(struct sk_buff *skb)
1610 {
1611 struct net_device *dev = skb->dev;
1612 struct Qdisc *q;
1613 int rc = -ENOMEM;
1614
1615 /* GSO will handle the following emulations directly. */
1616 if (netif_needs_gso(dev, skb))
1617 goto gso;
1618
1619 if (skb_shinfo(skb)->frag_list &&
1620 !(dev->features & NETIF_F_FRAGLIST) &&
1621 __skb_linearize(skb))
1622 goto out_kfree_skb;
1623
1624 /* Fragmented skb is linearized if device does not support SG,
1625 * or if at least one of fragments is in highmem and device
1626 * does not support DMA from it.
1627 */
1628 if (skb_shinfo(skb)->nr_frags &&
1629 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1630 __skb_linearize(skb))
1631 goto out_kfree_skb;
1632
1633 /* If packet is not checksummed and device does not support
1634 * checksumming for this protocol, complete checksumming here.
1635 */
1636 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1637 skb_set_transport_header(skb, skb->csum_start -
1638 skb_headroom(skb));
1639
1640 if (!(dev->features & NETIF_F_GEN_CSUM) &&
1641 !((dev->features & NETIF_F_IP_CSUM) &&
1642 skb->protocol == htons(ETH_P_IP)) &&
1643 !((dev->features & NETIF_F_IPV6_CSUM) &&
1644 skb->protocol == htons(ETH_P_IPV6)))
1645 if (skb_checksum_help(skb))
1646 goto out_kfree_skb;
1647 }
1648
1649 gso:
1650 spin_lock_prefetch(&dev->queue_lock);
1651
1652 /* Disable soft irqs for various locks below. Also
1653 * stops preemption for RCU.
1654 */
1655 rcu_read_lock_bh();
1656
1657 /* Updates of qdisc are serialized by queue_lock.
1658 * The struct Qdisc which is pointed to by qdisc is now a
1659 * rcu structure - it may be accessed without acquiring
1660 * a lock (but the structure may be stale.) The freeing of the
1661 * qdisc will be deferred until it's known that there are no
1662 * more references to it.
1663 *
1664 * If the qdisc has an enqueue function, we still need to
1665 * hold the queue_lock before calling it, since queue_lock
1666 * also serializes access to the device queue.
1667 */
1668
1669 q = rcu_dereference(dev->qdisc);
1670 #ifdef CONFIG_NET_CLS_ACT
1671 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1672 #endif
1673 if (q->enqueue) {
1674 /* Grab device queue */
1675 spin_lock(&dev->queue_lock);
1676 q = dev->qdisc;
1677 if (q->enqueue) {
1678 /* reset queue_mapping to zero */
1679 skb_set_queue_mapping(skb, 0);
1680 rc = q->enqueue(skb, q);
1681 qdisc_run(dev);
1682 spin_unlock(&dev->queue_lock);
1683
1684 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1685 goto out;
1686 }
1687 spin_unlock(&dev->queue_lock);
1688 }
1689
1690 /* The device has no queue. Common case for software devices:
1691 loopback, all the sorts of tunnels...
1692
1693 Really, it is unlikely that netif_tx_lock protection is necessary
1694 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1695 counters.)
1696 However, it is possible, that they rely on protection
1697 made by us here.
1698
1699 Check this and shot the lock. It is not prone from deadlocks.
1700 Either shot noqueue qdisc, it is even simpler 8)
1701 */
1702 if (dev->flags & IFF_UP) {
1703 int cpu = smp_processor_id(); /* ok because BHs are off */
1704
1705 if (dev->xmit_lock_owner != cpu) {
1706
1707 HARD_TX_LOCK(dev, cpu);
1708
1709 if (!netif_queue_stopped(dev) &&
1710 !netif_subqueue_stopped(dev, skb)) {
1711 rc = 0;
1712 if (!dev_hard_start_xmit(skb, dev)) {
1713 HARD_TX_UNLOCK(dev);
1714 goto out;
1715 }
1716 }
1717 HARD_TX_UNLOCK(dev);
1718 if (net_ratelimit())
1719 printk(KERN_CRIT "Virtual device %s asks to "
1720 "queue packet!\n", dev->name);
1721 } else {
1722 /* Recursion is detected! It is possible,
1723 * unfortunately */
1724 if (net_ratelimit())
1725 printk(KERN_CRIT "Dead loop on virtual device "
1726 "%s, fix it urgently!\n", dev->name);
1727 }
1728 }
1729
1730 rc = -ENETDOWN;
1731 rcu_read_unlock_bh();
1732
1733 out_kfree_skb:
1734 kfree_skb(skb);
1735 return rc;
1736 out:
1737 rcu_read_unlock_bh();
1738 return rc;
1739 }
1740
1741
1742 /*=======================================================================
1743 Receiver routines
1744 =======================================================================*/
1745
1746 int netdev_max_backlog __read_mostly = 1000;
1747 int netdev_budget __read_mostly = 300;
1748 int weight_p __read_mostly = 64; /* old backlog weight */
1749
1750 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1751
1752
1753 /**
1754 * netif_rx - post buffer to the network code
1755 * @skb: buffer to post
1756 *
1757 * This function receives a packet from a device driver and queues it for
1758 * the upper (protocol) levels to process. It always succeeds. The buffer
1759 * may be dropped during processing for congestion control or by the
1760 * protocol layers.
1761 *
1762 * return values:
1763 * NET_RX_SUCCESS (no congestion)
1764 * NET_RX_DROP (packet was dropped)
1765 *
1766 */
1767
1768 int netif_rx(struct sk_buff *skb)
1769 {
1770 struct softnet_data *queue;
1771 unsigned long flags;
1772
1773 /* if netpoll wants it, pretend we never saw it */
1774 if (netpoll_rx(skb))
1775 return NET_RX_DROP;
1776
1777 if (!skb->tstamp.tv64)
1778 net_timestamp(skb);
1779
1780 /*
1781 * The code is rearranged so that the path is the most
1782 * short when CPU is congested, but is still operating.
1783 */
1784 local_irq_save(flags);
1785 queue = &__get_cpu_var(softnet_data);
1786
1787 __get_cpu_var(netdev_rx_stat).total++;
1788 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1789 if (queue->input_pkt_queue.qlen) {
1790 enqueue:
1791 dev_hold(skb->dev);
1792 __skb_queue_tail(&queue->input_pkt_queue, skb);
1793 local_irq_restore(flags);
1794 return NET_RX_SUCCESS;
1795 }
1796
1797 napi_schedule(&queue->backlog);
1798 goto enqueue;
1799 }
1800
1801 __get_cpu_var(netdev_rx_stat).dropped++;
1802 local_irq_restore(flags);
1803
1804 kfree_skb(skb);
1805 return NET_RX_DROP;
1806 }
1807
1808 int netif_rx_ni(struct sk_buff *skb)
1809 {
1810 int err;
1811
1812 preempt_disable();
1813 err = netif_rx(skb);
1814 if (local_softirq_pending())
1815 do_softirq();
1816 preempt_enable();
1817
1818 return err;
1819 }
1820
1821 EXPORT_SYMBOL(netif_rx_ni);
1822
1823 static inline struct net_device *skb_bond(struct sk_buff *skb)
1824 {
1825 struct net_device *dev = skb->dev;
1826
1827 if (dev->master) {
1828 if (skb_bond_should_drop(skb)) {
1829 kfree_skb(skb);
1830 return NULL;
1831 }
1832 skb->dev = dev->master;
1833 }
1834
1835 return dev;
1836 }
1837
1838
1839 static void net_tx_action(struct softirq_action *h)
1840 {
1841 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1842
1843 if (sd->completion_queue) {
1844 struct sk_buff *clist;
1845
1846 local_irq_disable();
1847 clist = sd->completion_queue;
1848 sd->completion_queue = NULL;
1849 local_irq_enable();
1850
1851 while (clist) {
1852 struct sk_buff *skb = clist;
1853 clist = clist->next;
1854
1855 BUG_TRAP(!atomic_read(&skb->users));
1856 __kfree_skb(skb);
1857 }
1858 }
1859
1860 if (sd->output_queue) {
1861 struct net_device *head;
1862
1863 local_irq_disable();
1864 head = sd->output_queue;
1865 sd->output_queue = NULL;
1866 local_irq_enable();
1867
1868 while (head) {
1869 struct net_device *dev = head;
1870 head = head->next_sched;
1871
1872 smp_mb__before_clear_bit();
1873 clear_bit(__LINK_STATE_SCHED, &dev->state);
1874
1875 if (spin_trylock(&dev->queue_lock)) {
1876 qdisc_run(dev);
1877 spin_unlock(&dev->queue_lock);
1878 } else {
1879 netif_schedule(dev);
1880 }
1881 }
1882 }
1883 }
1884
1885 static inline int deliver_skb(struct sk_buff *skb,
1886 struct packet_type *pt_prev,
1887 struct net_device *orig_dev)
1888 {
1889 atomic_inc(&skb->users);
1890 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1891 }
1892
1893 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1894 /* These hooks defined here for ATM */
1895 struct net_bridge;
1896 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1897 unsigned char *addr);
1898 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1899
1900 /*
1901 * If bridge module is loaded call bridging hook.
1902 * returns NULL if packet was consumed.
1903 */
1904 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1905 struct sk_buff *skb) __read_mostly;
1906 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1907 struct packet_type **pt_prev, int *ret,
1908 struct net_device *orig_dev)
1909 {
1910 struct net_bridge_port *port;
1911
1912 if (skb->pkt_type == PACKET_LOOPBACK ||
1913 (port = rcu_dereference(skb->dev->br_port)) == NULL)
1914 return skb;
1915
1916 if (*pt_prev) {
1917 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1918 *pt_prev = NULL;
1919 }
1920
1921 return br_handle_frame_hook(port, skb);
1922 }
1923 #else
1924 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1925 #endif
1926
1927 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1928 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1929 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1930
1931 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1932 struct packet_type **pt_prev,
1933 int *ret,
1934 struct net_device *orig_dev)
1935 {
1936 if (skb->dev->macvlan_port == NULL)
1937 return skb;
1938
1939 if (*pt_prev) {
1940 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1941 *pt_prev = NULL;
1942 }
1943 return macvlan_handle_frame_hook(skb);
1944 }
1945 #else
1946 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
1947 #endif
1948
1949 #ifdef CONFIG_NET_CLS_ACT
1950 /* TODO: Maybe we should just force sch_ingress to be compiled in
1951 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1952 * a compare and 2 stores extra right now if we dont have it on
1953 * but have CONFIG_NET_CLS_ACT
1954 * NOTE: This doesnt stop any functionality; if you dont have
1955 * the ingress scheduler, you just cant add policies on ingress.
1956 *
1957 */
1958 static int ing_filter(struct sk_buff *skb)
1959 {
1960 struct Qdisc *q;
1961 struct net_device *dev = skb->dev;
1962 int result = TC_ACT_OK;
1963 u32 ttl = G_TC_RTTL(skb->tc_verd);
1964
1965 if (MAX_RED_LOOP < ttl++) {
1966 printk(KERN_WARNING
1967 "Redir loop detected Dropping packet (%d->%d)\n",
1968 skb->iif, dev->ifindex);
1969 return TC_ACT_SHOT;
1970 }
1971
1972 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
1973 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1974
1975 spin_lock(&dev->ingress_lock);
1976 if ((q = dev->qdisc_ingress) != NULL)
1977 result = q->enqueue(skb, q);
1978 spin_unlock(&dev->ingress_lock);
1979
1980 return result;
1981 }
1982
1983 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
1984 struct packet_type **pt_prev,
1985 int *ret, struct net_device *orig_dev)
1986 {
1987 if (!skb->dev->qdisc_ingress)
1988 goto out;
1989
1990 if (*pt_prev) {
1991 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1992 *pt_prev = NULL;
1993 } else {
1994 /* Huh? Why does turning on AF_PACKET affect this? */
1995 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1996 }
1997
1998 switch (ing_filter(skb)) {
1999 case TC_ACT_SHOT:
2000 case TC_ACT_STOLEN:
2001 kfree_skb(skb);
2002 return NULL;
2003 }
2004
2005 out:
2006 skb->tc_verd = 0;
2007 return skb;
2008 }
2009 #endif
2010
2011 /**
2012 * netif_receive_skb - process receive buffer from network
2013 * @skb: buffer to process
2014 *
2015 * netif_receive_skb() is the main receive data processing function.
2016 * It always succeeds. The buffer may be dropped during processing
2017 * for congestion control or by the protocol layers.
2018 *
2019 * This function may only be called from softirq context and interrupts
2020 * should be enabled.
2021 *
2022 * Return values (usually ignored):
2023 * NET_RX_SUCCESS: no congestion
2024 * NET_RX_DROP: packet was dropped
2025 */
2026 int netif_receive_skb(struct sk_buff *skb)
2027 {
2028 struct packet_type *ptype, *pt_prev;
2029 struct net_device *orig_dev;
2030 int ret = NET_RX_DROP;
2031 __be16 type;
2032
2033 /* if we've gotten here through NAPI, check netpoll */
2034 if (netpoll_receive_skb(skb))
2035 return NET_RX_DROP;
2036
2037 if (!skb->tstamp.tv64)
2038 net_timestamp(skb);
2039
2040 if (!skb->iif)
2041 skb->iif = skb->dev->ifindex;
2042
2043 orig_dev = skb_bond(skb);
2044
2045 if (!orig_dev)
2046 return NET_RX_DROP;
2047
2048 __get_cpu_var(netdev_rx_stat).total++;
2049
2050 skb_reset_network_header(skb);
2051 skb_reset_transport_header(skb);
2052 skb->mac_len = skb->network_header - skb->mac_header;
2053
2054 pt_prev = NULL;
2055
2056 rcu_read_lock();
2057
2058 #ifdef CONFIG_NET_CLS_ACT
2059 if (skb->tc_verd & TC_NCLS) {
2060 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2061 goto ncls;
2062 }
2063 #endif
2064
2065 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2066 if (!ptype->dev || ptype->dev == skb->dev) {
2067 if (pt_prev)
2068 ret = deliver_skb(skb, pt_prev, orig_dev);
2069 pt_prev = ptype;
2070 }
2071 }
2072
2073 #ifdef CONFIG_NET_CLS_ACT
2074 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2075 if (!skb)
2076 goto out;
2077 ncls:
2078 #endif
2079
2080 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2081 if (!skb)
2082 goto out;
2083 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2084 if (!skb)
2085 goto out;
2086
2087 type = skb->protocol;
2088 list_for_each_entry_rcu(ptype,
2089 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2090 if (ptype->type == type &&
2091 (!ptype->dev || ptype->dev == skb->dev)) {
2092 if (pt_prev)
2093 ret = deliver_skb(skb, pt_prev, orig_dev);
2094 pt_prev = ptype;
2095 }
2096 }
2097
2098 if (pt_prev) {
2099 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2100 } else {
2101 kfree_skb(skb);
2102 /* Jamal, now you will not able to escape explaining
2103 * me how you were going to use this. :-)
2104 */
2105 ret = NET_RX_DROP;
2106 }
2107
2108 out:
2109 rcu_read_unlock();
2110 return ret;
2111 }
2112
2113 static int process_backlog(struct napi_struct *napi, int quota)
2114 {
2115 int work = 0;
2116 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2117 unsigned long start_time = jiffies;
2118
2119 napi->weight = weight_p;
2120 do {
2121 struct sk_buff *skb;
2122 struct net_device *dev;
2123
2124 local_irq_disable();
2125 skb = __skb_dequeue(&queue->input_pkt_queue);
2126 if (!skb) {
2127 __napi_complete(napi);
2128 local_irq_enable();
2129 break;
2130 }
2131
2132 local_irq_enable();
2133
2134 dev = skb->dev;
2135
2136 netif_receive_skb(skb);
2137
2138 dev_put(dev);
2139 } while (++work < quota && jiffies == start_time);
2140
2141 return work;
2142 }
2143
2144 /**
2145 * __napi_schedule - schedule for receive
2146 * @n: entry to schedule
2147 *
2148 * The entry's receive function will be scheduled to run
2149 */
2150 void __napi_schedule(struct napi_struct *n)
2151 {
2152 unsigned long flags;
2153
2154 local_irq_save(flags);
2155 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2156 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2157 local_irq_restore(flags);
2158 }
2159 EXPORT_SYMBOL(__napi_schedule);
2160
2161
2162 static void net_rx_action(struct softirq_action *h)
2163 {
2164 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2165 unsigned long start_time = jiffies;
2166 int budget = netdev_budget;
2167 void *have;
2168
2169 local_irq_disable();
2170
2171 while (!list_empty(list)) {
2172 struct napi_struct *n;
2173 int work, weight;
2174
2175 /* If softirq window is exhuasted then punt.
2176 *
2177 * Note that this is a slight policy change from the
2178 * previous NAPI code, which would allow up to 2
2179 * jiffies to pass before breaking out. The test
2180 * used to be "jiffies - start_time > 1".
2181 */
2182 if (unlikely(budget <= 0 || jiffies != start_time))
2183 goto softnet_break;
2184
2185 local_irq_enable();
2186
2187 /* Even though interrupts have been re-enabled, this
2188 * access is safe because interrupts can only add new
2189 * entries to the tail of this list, and only ->poll()
2190 * calls can remove this head entry from the list.
2191 */
2192 n = list_entry(list->next, struct napi_struct, poll_list);
2193
2194 have = netpoll_poll_lock(n);
2195
2196 weight = n->weight;
2197
2198 /* This NAPI_STATE_SCHED test is for avoiding a race
2199 * with netpoll's poll_napi(). Only the entity which
2200 * obtains the lock and sees NAPI_STATE_SCHED set will
2201 * actually make the ->poll() call. Therefore we avoid
2202 * accidently calling ->poll() when NAPI is not scheduled.
2203 */
2204 work = 0;
2205 if (test_bit(NAPI_STATE_SCHED, &n->state))
2206 work = n->poll(n, weight);
2207
2208 WARN_ON_ONCE(work > weight);
2209
2210 budget -= work;
2211
2212 local_irq_disable();
2213
2214 /* Drivers must not modify the NAPI state if they
2215 * consume the entire weight. In such cases this code
2216 * still "owns" the NAPI instance and therefore can
2217 * move the instance around on the list at-will.
2218 */
2219 if (unlikely(work == weight)) {
2220 if (unlikely(napi_disable_pending(n)))
2221 __napi_complete(n);
2222 else
2223 list_move_tail(&n->poll_list, list);
2224 }
2225
2226 netpoll_poll_unlock(have);
2227 }
2228 out:
2229 local_irq_enable();
2230
2231 #ifdef CONFIG_NET_DMA
2232 /*
2233 * There may not be any more sk_buffs coming right now, so push
2234 * any pending DMA copies to hardware
2235 */
2236 if (!cpus_empty(net_dma.channel_mask)) {
2237 int chan_idx;
2238 for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2239 struct dma_chan *chan = net_dma.channels[chan_idx];
2240 if (chan)
2241 dma_async_memcpy_issue_pending(chan);
2242 }
2243 }
2244 #endif
2245
2246 return;
2247
2248 softnet_break:
2249 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2250 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2251 goto out;
2252 }
2253
2254 static gifconf_func_t * gifconf_list [NPROTO];
2255
2256 /**
2257 * register_gifconf - register a SIOCGIF handler
2258 * @family: Address family
2259 * @gifconf: Function handler
2260 *
2261 * Register protocol dependent address dumping routines. The handler
2262 * that is passed must not be freed or reused until it has been replaced
2263 * by another handler.
2264 */
2265 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2266 {
2267 if (family >= NPROTO)
2268 return -EINVAL;
2269 gifconf_list[family] = gifconf;
2270 return 0;
2271 }
2272
2273
2274 /*
2275 * Map an interface index to its name (SIOCGIFNAME)
2276 */
2277
2278 /*
2279 * We need this ioctl for efficient implementation of the
2280 * if_indextoname() function required by the IPv6 API. Without
2281 * it, we would have to search all the interfaces to find a
2282 * match. --pb
2283 */
2284
2285 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2286 {
2287 struct net_device *dev;
2288 struct ifreq ifr;
2289
2290 /*
2291 * Fetch the caller's info block.
2292 */
2293
2294 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2295 return -EFAULT;
2296
2297 read_lock(&dev_base_lock);
2298 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2299 if (!dev) {
2300 read_unlock(&dev_base_lock);
2301 return -ENODEV;
2302 }
2303
2304 strcpy(ifr.ifr_name, dev->name);
2305 read_unlock(&dev_base_lock);
2306
2307 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2308 return -EFAULT;
2309 return 0;
2310 }
2311
2312 /*
2313 * Perform a SIOCGIFCONF call. This structure will change
2314 * size eventually, and there is nothing I can do about it.
2315 * Thus we will need a 'compatibility mode'.
2316 */
2317
2318 static int dev_ifconf(struct net *net, char __user *arg)
2319 {
2320 struct ifconf ifc;
2321 struct net_device *dev;
2322 char __user *pos;
2323 int len;
2324 int total;
2325 int i;
2326
2327 /*
2328 * Fetch the caller's info block.
2329 */
2330
2331 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2332 return -EFAULT;
2333
2334 pos = ifc.ifc_buf;
2335 len = ifc.ifc_len;
2336
2337 /*
2338 * Loop over the interfaces, and write an info block for each.
2339 */
2340
2341 total = 0;
2342 for_each_netdev(net, dev) {
2343 for (i = 0; i < NPROTO; i++) {
2344 if (gifconf_list[i]) {
2345 int done;
2346 if (!pos)
2347 done = gifconf_list[i](dev, NULL, 0);
2348 else
2349 done = gifconf_list[i](dev, pos + total,
2350 len - total);
2351 if (done < 0)
2352 return -EFAULT;
2353 total += done;
2354 }
2355 }
2356 }
2357
2358 /*
2359 * All done. Write the updated control block back to the caller.
2360 */
2361 ifc.ifc_len = total;
2362
2363 /*
2364 * Both BSD and Solaris return 0 here, so we do too.
2365 */
2366 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2367 }
2368
2369 #ifdef CONFIG_PROC_FS
2370 /*
2371 * This is invoked by the /proc filesystem handler to display a device
2372 * in detail.
2373 */
2374 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2375 __acquires(dev_base_lock)
2376 {
2377 struct net *net = seq_file_net(seq);
2378 loff_t off;
2379 struct net_device *dev;
2380
2381 read_lock(&dev_base_lock);
2382 if (!*pos)
2383 return SEQ_START_TOKEN;
2384
2385 off = 1;
2386 for_each_netdev(net, dev)
2387 if (off++ == *pos)
2388 return dev;
2389
2390 return NULL;
2391 }
2392
2393 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2394 {
2395 struct net *net = seq_file_net(seq);
2396 ++*pos;
2397 return v == SEQ_START_TOKEN ?
2398 first_net_device(net) : next_net_device((struct net_device *)v);
2399 }
2400
2401 void dev_seq_stop(struct seq_file *seq, void *v)
2402 __releases(dev_base_lock)
2403 {
2404 read_unlock(&dev_base_lock);
2405 }
2406
2407 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2408 {
2409 struct net_device_stats *stats = dev->get_stats(dev);
2410
2411 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2412 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2413 dev->name, stats->rx_bytes, stats->rx_packets,
2414 stats->rx_errors,
2415 stats->rx_dropped + stats->rx_missed_errors,
2416 stats->rx_fifo_errors,
2417 stats->rx_length_errors + stats->rx_over_errors +
2418 stats->rx_crc_errors + stats->rx_frame_errors,
2419 stats->rx_compressed, stats->multicast,
2420 stats->tx_bytes, stats->tx_packets,
2421 stats->tx_errors, stats->tx_dropped,
2422 stats->tx_fifo_errors, stats->collisions,
2423 stats->tx_carrier_errors +
2424 stats->tx_aborted_errors +
2425 stats->tx_window_errors +
2426 stats->tx_heartbeat_errors,
2427 stats->tx_compressed);
2428 }
2429
2430 /*
2431 * Called from the PROCfs module. This now uses the new arbitrary sized
2432 * /proc/net interface to create /proc/net/dev
2433 */
2434 static int dev_seq_show(struct seq_file *seq, void *v)
2435 {
2436 if (v == SEQ_START_TOKEN)
2437 seq_puts(seq, "Inter-| Receive "
2438 " | Transmit\n"
2439 " face |bytes packets errs drop fifo frame "
2440 "compressed multicast|bytes packets errs "
2441 "drop fifo colls carrier compressed\n");
2442 else
2443 dev_seq_printf_stats(seq, v);
2444 return 0;
2445 }
2446
2447 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2448 {
2449 struct netif_rx_stats *rc = NULL;
2450
2451 while (*pos < nr_cpu_ids)
2452 if (cpu_online(*pos)) {
2453 rc = &per_cpu(netdev_rx_stat, *pos);
2454 break;
2455 } else
2456 ++*pos;
2457 return rc;
2458 }
2459
2460 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2461 {
2462 return softnet_get_online(pos);
2463 }
2464
2465 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2466 {
2467 ++*pos;
2468 return softnet_get_online(pos);
2469 }
2470
2471 static void softnet_seq_stop(struct seq_file *seq, void *v)
2472 {
2473 }
2474
2475 static int softnet_seq_show(struct seq_file *seq, void *v)
2476 {
2477 struct netif_rx_stats *s = v;
2478
2479 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2480 s->total, s->dropped, s->time_squeeze, 0,
2481 0, 0, 0, 0, /* was fastroute */
2482 s->cpu_collision );
2483 return 0;
2484 }
2485
2486 static const struct seq_operations dev_seq_ops = {
2487 .start = dev_seq_start,
2488 .next = dev_seq_next,
2489 .stop = dev_seq_stop,
2490 .show = dev_seq_show,
2491 };
2492
2493 static int dev_seq_open(struct inode *inode, struct file *file)
2494 {
2495 return seq_open_net(inode, file, &dev_seq_ops,
2496 sizeof(struct seq_net_private));
2497 }
2498
2499 static const struct file_operations dev_seq_fops = {
2500 .owner = THIS_MODULE,
2501 .open = dev_seq_open,
2502 .read = seq_read,
2503 .llseek = seq_lseek,
2504 .release = seq_release_net,
2505 };
2506
2507 static const struct seq_operations softnet_seq_ops = {
2508 .start = softnet_seq_start,
2509 .next = softnet_seq_next,
2510 .stop = softnet_seq_stop,
2511 .show = softnet_seq_show,
2512 };
2513
2514 static int softnet_seq_open(struct inode *inode, struct file *file)
2515 {
2516 return seq_open(file, &softnet_seq_ops);
2517 }
2518
2519 static const struct file_operations softnet_seq_fops = {
2520 .owner = THIS_MODULE,
2521 .open = softnet_seq_open,
2522 .read = seq_read,
2523 .llseek = seq_lseek,
2524 .release = seq_release,
2525 };
2526
2527 static void *ptype_get_idx(loff_t pos)
2528 {
2529 struct packet_type *pt = NULL;
2530 loff_t i = 0;
2531 int t;
2532
2533 list_for_each_entry_rcu(pt, &ptype_all, list) {
2534 if (i == pos)
2535 return pt;
2536 ++i;
2537 }
2538
2539 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2540 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2541 if (i == pos)
2542 return pt;
2543 ++i;
2544 }
2545 }
2546 return NULL;
2547 }
2548
2549 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2550 __acquires(RCU)
2551 {
2552 rcu_read_lock();
2553 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2554 }
2555
2556 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2557 {
2558 struct packet_type *pt;
2559 struct list_head *nxt;
2560 int hash;
2561
2562 ++*pos;
2563 if (v == SEQ_START_TOKEN)
2564 return ptype_get_idx(0);
2565
2566 pt = v;
2567 nxt = pt->list.next;
2568 if (pt->type == htons(ETH_P_ALL)) {
2569 if (nxt != &ptype_all)
2570 goto found;
2571 hash = 0;
2572 nxt = ptype_base[0].next;
2573 } else
2574 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2575
2576 while (nxt == &ptype_base[hash]) {
2577 if (++hash >= PTYPE_HASH_SIZE)
2578 return NULL;
2579 nxt = ptype_base[hash].next;
2580 }
2581 found:
2582 return list_entry(nxt, struct packet_type, list);
2583 }
2584
2585 static void ptype_seq_stop(struct seq_file *seq, void *v)
2586 __releases(RCU)
2587 {
2588 rcu_read_unlock();
2589 }
2590
2591 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2592 {
2593 #ifdef CONFIG_KALLSYMS
2594 unsigned long offset = 0, symsize;
2595 const char *symname;
2596 char *modname;
2597 char namebuf[128];
2598
2599 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2600 &modname, namebuf);
2601
2602 if (symname) {
2603 char *delim = ":";
2604
2605 if (!modname)
2606 modname = delim = "";
2607 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2608 symname, offset);
2609 return;
2610 }
2611 #endif
2612
2613 seq_printf(seq, "[%p]", sym);
2614 }
2615
2616 static int ptype_seq_show(struct seq_file *seq, void *v)
2617 {
2618 struct packet_type *pt = v;
2619
2620 if (v == SEQ_START_TOKEN)
2621 seq_puts(seq, "Type Device Function\n");
2622 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2623 if (pt->type == htons(ETH_P_ALL))
2624 seq_puts(seq, "ALL ");
2625 else
2626 seq_printf(seq, "%04x", ntohs(pt->type));
2627
2628 seq_printf(seq, " %-8s ",
2629 pt->dev ? pt->dev->name : "");
2630 ptype_seq_decode(seq, pt->func);
2631 seq_putc(seq, '\n');
2632 }
2633
2634 return 0;
2635 }
2636
2637 static const struct seq_operations ptype_seq_ops = {
2638 .start = ptype_seq_start,
2639 .next = ptype_seq_next,
2640 .stop = ptype_seq_stop,
2641 .show = ptype_seq_show,
2642 };
2643
2644 static int ptype_seq_open(struct inode *inode, struct file *file)
2645 {
2646 return seq_open_net(inode, file, &ptype_seq_ops,
2647 sizeof(struct seq_net_private));
2648 }
2649
2650 static const struct file_operations ptype_seq_fops = {
2651 .owner = THIS_MODULE,
2652 .open = ptype_seq_open,
2653 .read = seq_read,
2654 .llseek = seq_lseek,
2655 .release = seq_release_net,
2656 };
2657
2658
2659 static int __net_init dev_proc_net_init(struct net *net)
2660 {
2661 int rc = -ENOMEM;
2662
2663 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2664 goto out;
2665 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2666 goto out_dev;
2667 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2668 goto out_softnet;
2669
2670 if (wext_proc_init(net))
2671 goto out_ptype;
2672 rc = 0;
2673 out:
2674 return rc;
2675 out_ptype:
2676 proc_net_remove(net, "ptype");
2677 out_softnet:
2678 proc_net_remove(net, "softnet_stat");
2679 out_dev:
2680 proc_net_remove(net, "dev");
2681 goto out;
2682 }
2683
2684 static void __net_exit dev_proc_net_exit(struct net *net)
2685 {
2686 wext_proc_exit(net);
2687
2688 proc_net_remove(net, "ptype");
2689 proc_net_remove(net, "softnet_stat");
2690 proc_net_remove(net, "dev");
2691 }
2692
2693 static struct pernet_operations __net_initdata dev_proc_ops = {
2694 .init = dev_proc_net_init,
2695 .exit = dev_proc_net_exit,
2696 };
2697
2698 static int __init dev_proc_init(void)
2699 {
2700 return register_pernet_subsys(&dev_proc_ops);
2701 }
2702 #else
2703 #define dev_proc_init() 0
2704 #endif /* CONFIG_PROC_FS */
2705
2706
2707 /**
2708 * netdev_set_master - set up master/slave pair
2709 * @slave: slave device
2710 * @master: new master device
2711 *
2712 * Changes the master device of the slave. Pass %NULL to break the
2713 * bonding. The caller must hold the RTNL semaphore. On a failure
2714 * a negative errno code is returned. On success the reference counts
2715 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2716 * function returns zero.
2717 */
2718 int netdev_set_master(struct net_device *slave, struct net_device *master)
2719 {
2720 struct net_device *old = slave->master;
2721
2722 ASSERT_RTNL();
2723
2724 if (master) {
2725 if (old)
2726 return -EBUSY;
2727 dev_hold(master);
2728 }
2729
2730 slave->master = master;
2731
2732 synchronize_net();
2733
2734 if (old)
2735 dev_put(old);
2736
2737 if (master)
2738 slave->flags |= IFF_SLAVE;
2739 else
2740 slave->flags &= ~IFF_SLAVE;
2741
2742 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2743 return 0;
2744 }
2745
2746 static void __dev_set_promiscuity(struct net_device *dev, int inc)
2747 {
2748 unsigned short old_flags = dev->flags;
2749
2750 ASSERT_RTNL();
2751
2752 if ((dev->promiscuity += inc) == 0)
2753 dev->flags &= ~IFF_PROMISC;
2754 else
2755 dev->flags |= IFF_PROMISC;
2756 if (dev->flags != old_flags) {
2757 printk(KERN_INFO "device %s %s promiscuous mode\n",
2758 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2759 "left");
2760 if (audit_enabled)
2761 audit_log(current->audit_context, GFP_ATOMIC,
2762 AUDIT_ANOM_PROMISCUOUS,
2763 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2764 dev->name, (dev->flags & IFF_PROMISC),
2765 (old_flags & IFF_PROMISC),
2766 audit_get_loginuid(current),
2767 current->uid, current->gid,
2768 audit_get_sessionid(current));
2769
2770 if (dev->change_rx_flags)
2771 dev->change_rx_flags(dev, IFF_PROMISC);
2772 }
2773 }
2774
2775 /**
2776 * dev_set_promiscuity - update promiscuity count on a device
2777 * @dev: device
2778 * @inc: modifier
2779 *
2780 * Add or remove promiscuity from a device. While the count in the device
2781 * remains above zero the interface remains promiscuous. Once it hits zero
2782 * the device reverts back to normal filtering operation. A negative inc
2783 * value is used to drop promiscuity on the device.
2784 */
2785 void dev_set_promiscuity(struct net_device *dev, int inc)
2786 {
2787 unsigned short old_flags = dev->flags;
2788
2789 __dev_set_promiscuity(dev, inc);
2790 if (dev->flags != old_flags)
2791 dev_set_rx_mode(dev);
2792 }
2793
2794 /**
2795 * dev_set_allmulti - update allmulti count on a device
2796 * @dev: device
2797 * @inc: modifier
2798 *
2799 * Add or remove reception of all multicast frames to a device. While the
2800 * count in the device remains above zero the interface remains listening
2801 * to all interfaces. Once it hits zero the device reverts back to normal
2802 * filtering operation. A negative @inc value is used to drop the counter
2803 * when releasing a resource needing all multicasts.
2804 */
2805
2806 void dev_set_allmulti(struct net_device *dev, int inc)
2807 {
2808 unsigned short old_flags = dev->flags;
2809
2810 ASSERT_RTNL();
2811
2812 dev->flags |= IFF_ALLMULTI;
2813 if ((dev->allmulti += inc) == 0)
2814 dev->flags &= ~IFF_ALLMULTI;
2815 if (dev->flags ^ old_flags) {
2816 if (dev->change_rx_flags)
2817 dev->change_rx_flags(dev, IFF_ALLMULTI);
2818 dev_set_rx_mode(dev);
2819 }
2820 }
2821
2822 /*
2823 * Upload unicast and multicast address lists to device and
2824 * configure RX filtering. When the device doesn't support unicast
2825 * filtering it is put in promiscuous mode while unicast addresses
2826 * are present.
2827 */
2828 void __dev_set_rx_mode(struct net_device *dev)
2829 {
2830 /* dev_open will call this function so the list will stay sane. */
2831 if (!(dev->flags&IFF_UP))
2832 return;
2833
2834 if (!netif_device_present(dev))
2835 return;
2836
2837 if (dev->set_rx_mode)
2838 dev->set_rx_mode(dev);
2839 else {
2840 /* Unicast addresses changes may only happen under the rtnl,
2841 * therefore calling __dev_set_promiscuity here is safe.
2842 */
2843 if (dev->uc_count > 0 && !dev->uc_promisc) {
2844 __dev_set_promiscuity(dev, 1);
2845 dev->uc_promisc = 1;
2846 } else if (dev->uc_count == 0 && dev->uc_promisc) {
2847 __dev_set_promiscuity(dev, -1);
2848 dev->uc_promisc = 0;
2849 }
2850
2851 if (dev->set_multicast_list)
2852 dev->set_multicast_list(dev);
2853 }
2854 }
2855
2856 void dev_set_rx_mode(struct net_device *dev)
2857 {
2858 netif_tx_lock_bh(dev);
2859 __dev_set_rx_mode(dev);
2860 netif_tx_unlock_bh(dev);
2861 }
2862
2863 int __dev_addr_delete(struct dev_addr_list **list, int *count,
2864 void *addr, int alen, int glbl)
2865 {
2866 struct dev_addr_list *da;
2867
2868 for (; (da = *list) != NULL; list = &da->next) {
2869 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2870 alen == da->da_addrlen) {
2871 if (glbl) {
2872 int old_glbl = da->da_gusers;
2873 da->da_gusers = 0;
2874 if (old_glbl == 0)
2875 break;
2876 }
2877 if (--da->da_users)
2878 return 0;
2879
2880 *list = da->next;
2881 kfree(da);
2882 (*count)--;
2883 return 0;
2884 }
2885 }
2886 return -ENOENT;
2887 }
2888
2889 int __dev_addr_add(struct dev_addr_list **list, int *count,
2890 void *addr, int alen, int glbl)
2891 {
2892 struct dev_addr_list *da;
2893
2894 for (da = *list; da != NULL; da = da->next) {
2895 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2896 da->da_addrlen == alen) {
2897 if (glbl) {
2898 int old_glbl = da->da_gusers;
2899 da->da_gusers = 1;
2900 if (old_glbl)
2901 return 0;
2902 }
2903 da->da_users++;
2904 return 0;
2905 }
2906 }
2907
2908 da = kzalloc(sizeof(*da), GFP_ATOMIC);
2909 if (da == NULL)
2910 return -ENOMEM;
2911 memcpy(da->da_addr, addr, alen);
2912 da->da_addrlen = alen;
2913 da->da_users = 1;
2914 da->da_gusers = glbl ? 1 : 0;
2915 da->next = *list;
2916 *list = da;
2917 (*count)++;
2918 return 0;
2919 }
2920
2921 /**
2922 * dev_unicast_delete - Release secondary unicast address.
2923 * @dev: device
2924 * @addr: address to delete
2925 * @alen: length of @addr
2926 *
2927 * Release reference to a secondary unicast address and remove it
2928 * from the device if the reference count drops to zero.
2929 *
2930 * The caller must hold the rtnl_mutex.
2931 */
2932 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
2933 {
2934 int err;
2935
2936 ASSERT_RTNL();
2937
2938 netif_tx_lock_bh(dev);
2939 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2940 if (!err)
2941 __dev_set_rx_mode(dev);
2942 netif_tx_unlock_bh(dev);
2943 return err;
2944 }
2945 EXPORT_SYMBOL(dev_unicast_delete);
2946
2947 /**
2948 * dev_unicast_add - add a secondary unicast address
2949 * @dev: device
2950 * @addr: address to delete
2951 * @alen: length of @addr
2952 *
2953 * Add a secondary unicast address to the device or increase
2954 * the reference count if it already exists.
2955 *
2956 * The caller must hold the rtnl_mutex.
2957 */
2958 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
2959 {
2960 int err;
2961
2962 ASSERT_RTNL();
2963
2964 netif_tx_lock_bh(dev);
2965 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2966 if (!err)
2967 __dev_set_rx_mode(dev);
2968 netif_tx_unlock_bh(dev);
2969 return err;
2970 }
2971 EXPORT_SYMBOL(dev_unicast_add);
2972
2973 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
2974 struct dev_addr_list **from, int *from_count)
2975 {
2976 struct dev_addr_list *da, *next;
2977 int err = 0;
2978
2979 da = *from;
2980 while (da != NULL) {
2981 next = da->next;
2982 if (!da->da_synced) {
2983 err = __dev_addr_add(to, to_count,
2984 da->da_addr, da->da_addrlen, 0);
2985 if (err < 0)
2986 break;
2987 da->da_synced = 1;
2988 da->da_users++;
2989 } else if (da->da_users == 1) {
2990 __dev_addr_delete(to, to_count,
2991 da->da_addr, da->da_addrlen, 0);
2992 __dev_addr_delete(from, from_count,
2993 da->da_addr, da->da_addrlen, 0);
2994 }
2995 da = next;
2996 }
2997 return err;
2998 }
2999
3000 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3001 struct dev_addr_list **from, int *from_count)
3002 {
3003 struct dev_addr_list *da, *next;
3004
3005 da = *from;
3006 while (da != NULL) {
3007 next = da->next;
3008 if (da->da_synced) {
3009 __dev_addr_delete(to, to_count,
3010 da->da_addr, da->da_addrlen, 0);
3011 da->da_synced = 0;
3012 __dev_addr_delete(from, from_count,
3013 da->da_addr, da->da_addrlen, 0);
3014 }
3015 da = next;
3016 }
3017 }
3018
3019 /**
3020 * dev_unicast_sync - Synchronize device's unicast list to another device
3021 * @to: destination device
3022 * @from: source device
3023 *
3024 * Add newly added addresses to the destination device and release
3025 * addresses that have no users left. The source device must be
3026 * locked by netif_tx_lock_bh.
3027 *
3028 * This function is intended to be called from the dev->set_rx_mode
3029 * function of layered software devices.
3030 */
3031 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3032 {
3033 int err = 0;
3034
3035 netif_tx_lock_bh(to);
3036 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3037 &from->uc_list, &from->uc_count);
3038 if (!err)
3039 __dev_set_rx_mode(to);
3040 netif_tx_unlock_bh(to);
3041 return err;
3042 }
3043 EXPORT_SYMBOL(dev_unicast_sync);
3044
3045 /**
3046 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3047 * @to: destination device
3048 * @from: source device
3049 *
3050 * Remove all addresses that were added to the destination device by
3051 * dev_unicast_sync(). This function is intended to be called from the
3052 * dev->stop function of layered software devices.
3053 */
3054 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3055 {
3056 netif_tx_lock_bh(from);
3057 netif_tx_lock_bh(to);
3058
3059 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3060 &from->uc_list, &from->uc_count);
3061 __dev_set_rx_mode(to);
3062
3063 netif_tx_unlock_bh(to);
3064 netif_tx_unlock_bh(from);
3065 }
3066 EXPORT_SYMBOL(dev_unicast_unsync);
3067
3068 static void __dev_addr_discard(struct dev_addr_list **list)
3069 {
3070 struct dev_addr_list *tmp;
3071
3072 while (*list != NULL) {
3073 tmp = *list;
3074 *list = tmp->next;
3075 if (tmp->da_users > tmp->da_gusers)
3076 printk("__dev_addr_discard: address leakage! "
3077 "da_users=%d\n", tmp->da_users);
3078 kfree(tmp);
3079 }
3080 }
3081
3082 static void dev_addr_discard(struct net_device *dev)
3083 {
3084 netif_tx_lock_bh(dev);
3085
3086 __dev_addr_discard(&dev->uc_list);
3087 dev->uc_count = 0;
3088
3089 __dev_addr_discard(&dev->mc_list);
3090 dev->mc_count = 0;
3091
3092 netif_tx_unlock_bh(dev);
3093 }
3094
3095 unsigned dev_get_flags(const struct net_device *dev)
3096 {
3097 unsigned flags;
3098
3099 flags = (dev->flags & ~(IFF_PROMISC |
3100 IFF_ALLMULTI |
3101 IFF_RUNNING |
3102 IFF_LOWER_UP |
3103 IFF_DORMANT)) |
3104 (dev->gflags & (IFF_PROMISC |
3105 IFF_ALLMULTI));
3106
3107 if (netif_running(dev)) {
3108 if (netif_oper_up(dev))
3109 flags |= IFF_RUNNING;
3110 if (netif_carrier_ok(dev))
3111 flags |= IFF_LOWER_UP;
3112 if (netif_dormant(dev))
3113 flags |= IFF_DORMANT;
3114 }
3115
3116 return flags;
3117 }
3118
3119 int dev_change_flags(struct net_device *dev, unsigned flags)
3120 {
3121 int ret, changes;
3122 int old_flags = dev->flags;
3123
3124 ASSERT_RTNL();
3125
3126 /*
3127 * Set the flags on our device.
3128 */
3129
3130 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3131 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3132 IFF_AUTOMEDIA)) |
3133 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3134 IFF_ALLMULTI));
3135
3136 /*
3137 * Load in the correct multicast list now the flags have changed.
3138 */
3139
3140 if (dev->change_rx_flags && (dev->flags ^ flags) & IFF_MULTICAST)
3141 dev->change_rx_flags(dev, IFF_MULTICAST);
3142
3143 dev_set_rx_mode(dev);
3144
3145 /*
3146 * Have we downed the interface. We handle IFF_UP ourselves
3147 * according to user attempts to set it, rather than blindly
3148 * setting it.
3149 */
3150
3151 ret = 0;
3152 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3153 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3154
3155 if (!ret)
3156 dev_set_rx_mode(dev);
3157 }
3158
3159 if (dev->flags & IFF_UP &&
3160 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3161 IFF_VOLATILE)))
3162 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3163
3164 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3165 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3166 dev->gflags ^= IFF_PROMISC;
3167 dev_set_promiscuity(dev, inc);
3168 }
3169
3170 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3171 is important. Some (broken) drivers set IFF_PROMISC, when
3172 IFF_ALLMULTI is requested not asking us and not reporting.
3173 */
3174 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3175 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3176 dev->gflags ^= IFF_ALLMULTI;
3177 dev_set_allmulti(dev, inc);
3178 }
3179
3180 /* Exclude state transition flags, already notified */
3181 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3182 if (changes)
3183 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3184
3185 return ret;
3186 }
3187
3188 int dev_set_mtu(struct net_device *dev, int new_mtu)
3189 {
3190 int err;
3191
3192 if (new_mtu == dev->mtu)
3193 return 0;
3194
3195 /* MTU must be positive. */
3196 if (new_mtu < 0)
3197 return -EINVAL;
3198
3199 if (!netif_device_present(dev))
3200 return -ENODEV;
3201
3202 err = 0;
3203 if (dev->change_mtu)
3204 err = dev->change_mtu(dev, new_mtu);
3205 else
3206 dev->mtu = new_mtu;
3207 if (!err && dev->flags & IFF_UP)
3208 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3209 return err;
3210 }
3211
3212 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3213 {
3214 int err;
3215
3216 if (!dev->set_mac_address)
3217 return -EOPNOTSUPP;
3218 if (sa->sa_family != dev->type)
3219 return -EINVAL;
3220 if (!netif_device_present(dev))
3221 return -ENODEV;
3222 err = dev->set_mac_address(dev, sa);
3223 if (!err)
3224 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3225 return err;
3226 }
3227
3228 /*
3229 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3230 */
3231 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3232 {
3233 int err;
3234 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3235
3236 if (!dev)
3237 return -ENODEV;
3238
3239 switch (cmd) {
3240 case SIOCGIFFLAGS: /* Get interface flags */
3241 ifr->ifr_flags = dev_get_flags(dev);
3242 return 0;
3243
3244 case SIOCGIFMETRIC: /* Get the metric on the interface
3245 (currently unused) */
3246 ifr->ifr_metric = 0;
3247 return 0;
3248
3249 case SIOCGIFMTU: /* Get the MTU of a device */
3250 ifr->ifr_mtu = dev->mtu;
3251 return 0;
3252
3253 case SIOCGIFHWADDR:
3254 if (!dev->addr_len)
3255 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3256 else
3257 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3258 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3259 ifr->ifr_hwaddr.sa_family = dev->type;
3260 return 0;
3261
3262 case SIOCGIFSLAVE:
3263 err = -EINVAL;
3264 break;
3265
3266 case SIOCGIFMAP:
3267 ifr->ifr_map.mem_start = dev->mem_start;
3268 ifr->ifr_map.mem_end = dev->mem_end;
3269 ifr->ifr_map.base_addr = dev->base_addr;
3270 ifr->ifr_map.irq = dev->irq;
3271 ifr->ifr_map.dma = dev->dma;
3272 ifr->ifr_map.port = dev->if_port;
3273 return 0;
3274
3275 case SIOCGIFINDEX:
3276 ifr->ifr_ifindex = dev->ifindex;
3277 return 0;
3278
3279 case SIOCGIFTXQLEN:
3280 ifr->ifr_qlen = dev->tx_queue_len;
3281 return 0;
3282
3283 default:
3284 /* dev_ioctl() should ensure this case
3285 * is never reached
3286 */
3287 WARN_ON(1);
3288 err = -EINVAL;
3289 break;
3290
3291 }
3292 return err;
3293 }
3294
3295 /*
3296 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3297 */
3298 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3299 {
3300 int err;
3301 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3302
3303 if (!dev)
3304 return -ENODEV;
3305
3306 switch (cmd) {
3307 case SIOCSIFFLAGS: /* Set interface flags */
3308 return dev_change_flags(dev, ifr->ifr_flags);
3309
3310 case SIOCSIFMETRIC: /* Set the metric on the interface
3311 (currently unused) */
3312 return -EOPNOTSUPP;
3313
3314 case SIOCSIFMTU: /* Set the MTU of a device */
3315 return dev_set_mtu(dev, ifr->ifr_mtu);
3316
3317 case SIOCSIFHWADDR:
3318 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3319
3320 case SIOCSIFHWBROADCAST:
3321 if (ifr->ifr_hwaddr.sa_family != dev->type)
3322 return -EINVAL;
3323 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3324 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3325 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3326 return 0;
3327
3328 case SIOCSIFMAP:
3329 if (dev->set_config) {
3330 if (!netif_device_present(dev))
3331 return -ENODEV;
3332 return dev->set_config(dev, &ifr->ifr_map);
3333 }
3334 return -EOPNOTSUPP;
3335
3336 case SIOCADDMULTI:
3337 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3338 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3339 return -EINVAL;
3340 if (!netif_device_present(dev))
3341 return -ENODEV;
3342 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3343 dev->addr_len, 1);
3344
3345 case SIOCDELMULTI:
3346 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3347 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3348 return -EINVAL;
3349 if (!netif_device_present(dev))
3350 return -ENODEV;
3351 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3352 dev->addr_len, 1);
3353
3354 case SIOCSIFTXQLEN:
3355 if (ifr->ifr_qlen < 0)
3356 return -EINVAL;
3357 dev->tx_queue_len = ifr->ifr_qlen;
3358 return 0;
3359
3360 case SIOCSIFNAME:
3361 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3362 return dev_change_name(dev, ifr->ifr_newname);
3363
3364 /*
3365 * Unknown or private ioctl
3366 */
3367
3368 default:
3369 if ((cmd >= SIOCDEVPRIVATE &&
3370 cmd <= SIOCDEVPRIVATE + 15) ||
3371 cmd == SIOCBONDENSLAVE ||
3372 cmd == SIOCBONDRELEASE ||
3373 cmd == SIOCBONDSETHWADDR ||
3374 cmd == SIOCBONDSLAVEINFOQUERY ||
3375 cmd == SIOCBONDINFOQUERY ||
3376 cmd == SIOCBONDCHANGEACTIVE ||
3377 cmd == SIOCGMIIPHY ||
3378 cmd == SIOCGMIIREG ||
3379 cmd == SIOCSMIIREG ||
3380 cmd == SIOCBRADDIF ||
3381 cmd == SIOCBRDELIF ||
3382 cmd == SIOCWANDEV) {
3383 err = -EOPNOTSUPP;
3384 if (dev->do_ioctl) {
3385 if (netif_device_present(dev))
3386 err = dev->do_ioctl(dev, ifr,
3387 cmd);
3388 else
3389 err = -ENODEV;
3390 }
3391 } else
3392 err = -EINVAL;
3393
3394 }
3395 return err;
3396 }
3397
3398 /*
3399 * This function handles all "interface"-type I/O control requests. The actual
3400 * 'doing' part of this is dev_ifsioc above.
3401 */
3402
3403 /**
3404 * dev_ioctl - network device ioctl
3405 * @net: the applicable net namespace
3406 * @cmd: command to issue
3407 * @arg: pointer to a struct ifreq in user space
3408 *
3409 * Issue ioctl functions to devices. This is normally called by the
3410 * user space syscall interfaces but can sometimes be useful for
3411 * other purposes. The return value is the return from the syscall if
3412 * positive or a negative errno code on error.
3413 */
3414
3415 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3416 {
3417 struct ifreq ifr;
3418 int ret;
3419 char *colon;
3420
3421 /* One special case: SIOCGIFCONF takes ifconf argument
3422 and requires shared lock, because it sleeps writing
3423 to user space.
3424 */
3425
3426 if (cmd == SIOCGIFCONF) {
3427 rtnl_lock();
3428 ret = dev_ifconf(net, (char __user *) arg);
3429 rtnl_unlock();
3430 return ret;
3431 }
3432 if (cmd == SIOCGIFNAME)
3433 return dev_ifname(net, (struct ifreq __user *)arg);
3434
3435 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3436 return -EFAULT;
3437
3438 ifr.ifr_name[IFNAMSIZ-1] = 0;
3439
3440 colon = strchr(ifr.ifr_name, ':');
3441 if (colon)
3442 *colon = 0;
3443
3444 /*
3445 * See which interface the caller is talking about.
3446 */
3447
3448 switch (cmd) {
3449 /*
3450 * These ioctl calls:
3451 * - can be done by all.
3452 * - atomic and do not require locking.
3453 * - return a value
3454 */
3455 case SIOCGIFFLAGS:
3456 case SIOCGIFMETRIC:
3457 case SIOCGIFMTU:
3458 case SIOCGIFHWADDR:
3459 case SIOCGIFSLAVE:
3460 case SIOCGIFMAP:
3461 case SIOCGIFINDEX:
3462 case SIOCGIFTXQLEN:
3463 dev_load(net, ifr.ifr_name);
3464 read_lock(&dev_base_lock);
3465 ret = dev_ifsioc_locked(net, &ifr, cmd);
3466 read_unlock(&dev_base_lock);
3467 if (!ret) {
3468 if (colon)
3469 *colon = ':';
3470 if (copy_to_user(arg, &ifr,
3471 sizeof(struct ifreq)))
3472 ret = -EFAULT;
3473 }
3474 return ret;
3475
3476 case SIOCETHTOOL:
3477 dev_load(net, ifr.ifr_name);
3478 rtnl_lock();
3479 ret = dev_ethtool(net, &ifr);
3480 rtnl_unlock();
3481 if (!ret) {
3482 if (colon)
3483 *colon = ':';
3484 if (copy_to_user(arg, &ifr,
3485 sizeof(struct ifreq)))
3486 ret = -EFAULT;
3487 }
3488 return ret;
3489
3490 /*
3491 * These ioctl calls:
3492 * - require superuser power.
3493 * - require strict serialization.
3494 * - return a value
3495 */
3496 case SIOCGMIIPHY:
3497 case SIOCGMIIREG:
3498 case SIOCSIFNAME:
3499 if (!capable(CAP_NET_ADMIN))
3500 return -EPERM;
3501 dev_load(net, ifr.ifr_name);
3502 rtnl_lock();
3503 ret = dev_ifsioc(net, &ifr, cmd);
3504 rtnl_unlock();
3505 if (!ret) {
3506 if (colon)
3507 *colon = ':';
3508 if (copy_to_user(arg, &ifr,
3509 sizeof(struct ifreq)))
3510 ret = -EFAULT;
3511 }
3512 return ret;
3513
3514 /*
3515 * These ioctl calls:
3516 * - require superuser power.
3517 * - require strict serialization.
3518 * - do not return a value
3519 */
3520 case SIOCSIFFLAGS:
3521 case SIOCSIFMETRIC:
3522 case SIOCSIFMTU:
3523 case SIOCSIFMAP:
3524 case SIOCSIFHWADDR:
3525 case SIOCSIFSLAVE:
3526 case SIOCADDMULTI:
3527 case SIOCDELMULTI:
3528 case SIOCSIFHWBROADCAST:
3529 case SIOCSIFTXQLEN:
3530 case SIOCSMIIREG:
3531 case SIOCBONDENSLAVE:
3532 case SIOCBONDRELEASE:
3533 case SIOCBONDSETHWADDR:
3534 case SIOCBONDCHANGEACTIVE:
3535 case SIOCBRADDIF:
3536 case SIOCBRDELIF:
3537 if (!capable(CAP_NET_ADMIN))
3538 return -EPERM;
3539 /* fall through */
3540 case SIOCBONDSLAVEINFOQUERY:
3541 case SIOCBONDINFOQUERY:
3542 dev_load(net, ifr.ifr_name);
3543 rtnl_lock();
3544 ret = dev_ifsioc(net, &ifr, cmd);
3545 rtnl_unlock();
3546 return ret;
3547
3548 case SIOCGIFMEM:
3549 /* Get the per device memory space. We can add this but
3550 * currently do not support it */
3551 case SIOCSIFMEM:
3552 /* Set the per device memory buffer space.
3553 * Not applicable in our case */
3554 case SIOCSIFLINK:
3555 return -EINVAL;
3556
3557 /*
3558 * Unknown or private ioctl.
3559 */
3560 default:
3561 if (cmd == SIOCWANDEV ||
3562 (cmd >= SIOCDEVPRIVATE &&
3563 cmd <= SIOCDEVPRIVATE + 15)) {
3564 dev_load(net, ifr.ifr_name);
3565 rtnl_lock();
3566 ret = dev_ifsioc(net, &ifr, cmd);
3567 rtnl_unlock();
3568 if (!ret && copy_to_user(arg, &ifr,
3569 sizeof(struct ifreq)))
3570 ret = -EFAULT;
3571 return ret;
3572 }
3573 /* Take care of Wireless Extensions */
3574 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3575 return wext_handle_ioctl(net, &ifr, cmd, arg);
3576 return -EINVAL;
3577 }
3578 }
3579
3580
3581 /**
3582 * dev_new_index - allocate an ifindex
3583 * @net: the applicable net namespace
3584 *
3585 * Returns a suitable unique value for a new device interface
3586 * number. The caller must hold the rtnl semaphore or the
3587 * dev_base_lock to be sure it remains unique.
3588 */
3589 static int dev_new_index(struct net *net)
3590 {
3591 static int ifindex;
3592 for (;;) {
3593 if (++ifindex <= 0)
3594 ifindex = 1;
3595 if (!__dev_get_by_index(net, ifindex))
3596 return ifindex;
3597 }
3598 }
3599
3600 /* Delayed registration/unregisteration */
3601 static DEFINE_SPINLOCK(net_todo_list_lock);
3602 static LIST_HEAD(net_todo_list);
3603
3604 static void net_set_todo(struct net_device *dev)
3605 {
3606 spin_lock(&net_todo_list_lock);
3607 list_add_tail(&dev->todo_list, &net_todo_list);
3608 spin_unlock(&net_todo_list_lock);
3609 }
3610
3611 static void rollback_registered(struct net_device *dev)
3612 {
3613 BUG_ON(dev_boot_phase);
3614 ASSERT_RTNL();
3615
3616 /* Some devices call without registering for initialization unwind. */
3617 if (dev->reg_state == NETREG_UNINITIALIZED) {
3618 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3619 "was registered\n", dev->name, dev);
3620
3621 WARN_ON(1);
3622 return;
3623 }
3624
3625 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3626
3627 /* If device is running, close it first. */
3628 dev_close(dev);
3629
3630 /* And unlink it from device chain. */
3631 unlist_netdevice(dev);
3632
3633 dev->reg_state = NETREG_UNREGISTERING;
3634
3635 synchronize_net();
3636
3637 /* Shutdown queueing discipline. */
3638 dev_shutdown(dev);
3639
3640
3641 /* Notify protocols, that we are about to destroy
3642 this device. They should clean all the things.
3643 */
3644 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3645
3646 /*
3647 * Flush the unicast and multicast chains
3648 */
3649 dev_addr_discard(dev);
3650
3651 if (dev->uninit)
3652 dev->uninit(dev);
3653
3654 /* Notifier chain MUST detach us from master device. */
3655 BUG_TRAP(!dev->master);
3656
3657 /* Remove entries from kobject tree */
3658 netdev_unregister_kobject(dev);
3659
3660 synchronize_net();
3661
3662 dev_put(dev);
3663 }
3664
3665 /**
3666 * register_netdevice - register a network device
3667 * @dev: device to register
3668 *
3669 * Take a completed network device structure and add it to the kernel
3670 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3671 * chain. 0 is returned on success. A negative errno code is returned
3672 * on a failure to set up the device, or if the name is a duplicate.
3673 *
3674 * Callers must hold the rtnl semaphore. You may want
3675 * register_netdev() instead of this.
3676 *
3677 * BUGS:
3678 * The locking appears insufficient to guarantee two parallel registers
3679 * will not get the same name.
3680 */
3681
3682 int register_netdevice(struct net_device *dev)
3683 {
3684 struct hlist_head *head;
3685 struct hlist_node *p;
3686 int ret;
3687 struct net *net;
3688
3689 BUG_ON(dev_boot_phase);
3690 ASSERT_RTNL();
3691
3692 might_sleep();
3693
3694 /* When net_device's are persistent, this will be fatal. */
3695 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3696 BUG_ON(!dev_net(dev));
3697 net = dev_net(dev);
3698
3699 spin_lock_init(&dev->queue_lock);
3700 spin_lock_init(&dev->_xmit_lock);
3701 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
3702 dev->xmit_lock_owner = -1;
3703 spin_lock_init(&dev->ingress_lock);
3704
3705 dev->iflink = -1;
3706
3707 /* Init, if this function is available */
3708 if (dev->init) {
3709 ret = dev->init(dev);
3710 if (ret) {
3711 if (ret > 0)
3712 ret = -EIO;
3713 goto out;
3714 }
3715 }
3716
3717 if (!dev_valid_name(dev->name)) {
3718 ret = -EINVAL;
3719 goto err_uninit;
3720 }
3721
3722 dev->ifindex = dev_new_index(net);
3723 if (dev->iflink == -1)
3724 dev->iflink = dev->ifindex;
3725
3726 /* Check for existence of name */
3727 head = dev_name_hash(net, dev->name);
3728 hlist_for_each(p, head) {
3729 struct net_device *d
3730 = hlist_entry(p, struct net_device, name_hlist);
3731 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3732 ret = -EEXIST;
3733 goto err_uninit;
3734 }
3735 }
3736
3737 /* Fix illegal checksum combinations */
3738 if ((dev->features & NETIF_F_HW_CSUM) &&
3739 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3740 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3741 dev->name);
3742 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3743 }
3744
3745 if ((dev->features & NETIF_F_NO_CSUM) &&
3746 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3747 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3748 dev->name);
3749 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3750 }
3751
3752
3753 /* Fix illegal SG+CSUM combinations. */
3754 if ((dev->features & NETIF_F_SG) &&
3755 !(dev->features & NETIF_F_ALL_CSUM)) {
3756 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3757 dev->name);
3758 dev->features &= ~NETIF_F_SG;
3759 }
3760
3761 /* TSO requires that SG is present as well. */
3762 if ((dev->features & NETIF_F_TSO) &&
3763 !(dev->features & NETIF_F_SG)) {
3764 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3765 dev->name);
3766 dev->features &= ~NETIF_F_TSO;
3767 }
3768 if (dev->features & NETIF_F_UFO) {
3769 if (!(dev->features & NETIF_F_HW_CSUM)) {
3770 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3771 "NETIF_F_HW_CSUM feature.\n",
3772 dev->name);
3773 dev->features &= ~NETIF_F_UFO;
3774 }
3775 if (!(dev->features & NETIF_F_SG)) {
3776 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3777 "NETIF_F_SG feature.\n",
3778 dev->name);
3779 dev->features &= ~NETIF_F_UFO;
3780 }
3781 }
3782
3783 netdev_initialize_kobject(dev);
3784 ret = netdev_register_kobject(dev);
3785 if (ret)
3786 goto err_uninit;
3787 dev->reg_state = NETREG_REGISTERED;
3788
3789 /*
3790 * Default initial state at registry is that the
3791 * device is present.
3792 */
3793
3794 set_bit(__LINK_STATE_PRESENT, &dev->state);
3795
3796 dev_init_scheduler(dev);
3797 dev_hold(dev);
3798 list_netdevice(dev);
3799
3800 /* Notify protocols, that a new device appeared. */
3801 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
3802 ret = notifier_to_errno(ret);
3803 if (ret) {
3804 rollback_registered(dev);
3805 dev->reg_state = NETREG_UNREGISTERED;
3806 }
3807
3808 out:
3809 return ret;
3810
3811 err_uninit:
3812 if (dev->uninit)
3813 dev->uninit(dev);
3814 goto out;
3815 }
3816
3817 /**
3818 * register_netdev - register a network device
3819 * @dev: device to register
3820 *
3821 * Take a completed network device structure and add it to the kernel
3822 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3823 * chain. 0 is returned on success. A negative errno code is returned
3824 * on a failure to set up the device, or if the name is a duplicate.
3825 *
3826 * This is a wrapper around register_netdevice that takes the rtnl semaphore
3827 * and expands the device name if you passed a format string to
3828 * alloc_netdev.
3829 */
3830 int register_netdev(struct net_device *dev)
3831 {
3832 int err;
3833
3834 rtnl_lock();
3835
3836 /*
3837 * If the name is a format string the caller wants us to do a
3838 * name allocation.
3839 */
3840 if (strchr(dev->name, '%')) {
3841 err = dev_alloc_name(dev, dev->name);
3842 if (err < 0)
3843 goto out;
3844 }
3845
3846 err = register_netdevice(dev);
3847 out:
3848 rtnl_unlock();
3849 return err;
3850 }
3851 EXPORT_SYMBOL(register_netdev);
3852
3853 /*
3854 * netdev_wait_allrefs - wait until all references are gone.
3855 *
3856 * This is called when unregistering network devices.
3857 *
3858 * Any protocol or device that holds a reference should register
3859 * for netdevice notification, and cleanup and put back the
3860 * reference if they receive an UNREGISTER event.
3861 * We can get stuck here if buggy protocols don't correctly
3862 * call dev_put.
3863 */
3864 static void netdev_wait_allrefs(struct net_device *dev)
3865 {
3866 unsigned long rebroadcast_time, warning_time;
3867
3868 rebroadcast_time = warning_time = jiffies;
3869 while (atomic_read(&dev->refcnt) != 0) {
3870 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3871 rtnl_lock();
3872
3873 /* Rebroadcast unregister notification */
3874 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3875
3876 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3877 &dev->state)) {
3878 /* We must not have linkwatch events
3879 * pending on unregister. If this
3880 * happens, we simply run the queue
3881 * unscheduled, resulting in a noop
3882 * for this device.
3883 */
3884 linkwatch_run_queue();
3885 }
3886
3887 __rtnl_unlock();
3888
3889 rebroadcast_time = jiffies;
3890 }
3891
3892 msleep(250);
3893
3894 if (time_after(jiffies, warning_time + 10 * HZ)) {
3895 printk(KERN_EMERG "unregister_netdevice: "
3896 "waiting for %s to become free. Usage "
3897 "count = %d\n",
3898 dev->name, atomic_read(&dev->refcnt));
3899 warning_time = jiffies;
3900 }
3901 }
3902 }
3903
3904 /* The sequence is:
3905 *
3906 * rtnl_lock();
3907 * ...
3908 * register_netdevice(x1);
3909 * register_netdevice(x2);
3910 * ...
3911 * unregister_netdevice(y1);
3912 * unregister_netdevice(y2);
3913 * ...
3914 * rtnl_unlock();
3915 * free_netdev(y1);
3916 * free_netdev(y2);
3917 *
3918 * We are invoked by rtnl_unlock() after it drops the semaphore.
3919 * This allows us to deal with problems:
3920 * 1) We can delete sysfs objects which invoke hotplug
3921 * without deadlocking with linkwatch via keventd.
3922 * 2) Since we run with the RTNL semaphore not held, we can sleep
3923 * safely in order to wait for the netdev refcnt to drop to zero.
3924 */
3925 static DEFINE_MUTEX(net_todo_run_mutex);
3926 void netdev_run_todo(void)
3927 {
3928 struct list_head list;
3929
3930 /* Need to guard against multiple cpu's getting out of order. */
3931 mutex_lock(&net_todo_run_mutex);
3932
3933 /* Not safe to do outside the semaphore. We must not return
3934 * until all unregister events invoked by the local processor
3935 * have been completed (either by this todo run, or one on
3936 * another cpu).
3937 */
3938 if (list_empty(&net_todo_list))
3939 goto out;
3940
3941 /* Snapshot list, allow later requests */
3942 spin_lock(&net_todo_list_lock);
3943 list_replace_init(&net_todo_list, &list);
3944 spin_unlock(&net_todo_list_lock);
3945
3946 while (!list_empty(&list)) {
3947 struct net_device *dev
3948 = list_entry(list.next, struct net_device, todo_list);
3949 list_del(&dev->todo_list);
3950
3951 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3952 printk(KERN_ERR "network todo '%s' but state %d\n",
3953 dev->name, dev->reg_state);
3954 dump_stack();
3955 continue;
3956 }
3957
3958 dev->reg_state = NETREG_UNREGISTERED;
3959
3960 netdev_wait_allrefs(dev);
3961
3962 /* paranoia */
3963 BUG_ON(atomic_read(&dev->refcnt));
3964 BUG_TRAP(!dev->ip_ptr);
3965 BUG_TRAP(!dev->ip6_ptr);
3966 BUG_TRAP(!dev->dn_ptr);
3967
3968 if (dev->destructor)
3969 dev->destructor(dev);
3970
3971 /* Free network device */
3972 kobject_put(&dev->dev.kobj);
3973 }
3974
3975 out:
3976 mutex_unlock(&net_todo_run_mutex);
3977 }
3978
3979 static struct net_device_stats *internal_stats(struct net_device *dev)
3980 {
3981 return &dev->stats;
3982 }
3983
3984 /**
3985 * alloc_netdev_mq - allocate network device
3986 * @sizeof_priv: size of private data to allocate space for
3987 * @name: device name format string
3988 * @setup: callback to initialize device
3989 * @queue_count: the number of subqueues to allocate
3990 *
3991 * Allocates a struct net_device with private data area for driver use
3992 * and performs basic initialization. Also allocates subquue structs
3993 * for each queue on the device at the end of the netdevice.
3994 */
3995 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
3996 void (*setup)(struct net_device *), unsigned int queue_count)
3997 {
3998 void *p;
3999 struct net_device *dev;
4000 int alloc_size;
4001
4002 BUG_ON(strlen(name) >= sizeof(dev->name));
4003
4004 alloc_size = sizeof(struct net_device) +
4005 sizeof(struct net_device_subqueue) * (queue_count - 1);
4006 if (sizeof_priv) {
4007 /* ensure 32-byte alignment of private area */
4008 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4009 alloc_size += sizeof_priv;
4010 }
4011 /* ensure 32-byte alignment of whole construct */
4012 alloc_size += NETDEV_ALIGN_CONST;
4013
4014 p = kzalloc(alloc_size, GFP_KERNEL);
4015 if (!p) {
4016 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4017 return NULL;
4018 }
4019
4020 dev = (struct net_device *)
4021 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4022 dev->padded = (char *)dev - (char *)p;
4023 dev_net_set(dev, &init_net);
4024
4025 if (sizeof_priv) {
4026 dev->priv = ((char *)dev +
4027 ((sizeof(struct net_device) +
4028 (sizeof(struct net_device_subqueue) *
4029 (queue_count - 1)) + NETDEV_ALIGN_CONST)
4030 & ~NETDEV_ALIGN_CONST));
4031 }
4032
4033 dev->egress_subqueue_count = queue_count;
4034 dev->gso_max_size = GSO_MAX_SIZE;
4035
4036 dev->get_stats = internal_stats;
4037 netpoll_netdev_init(dev);
4038 setup(dev);
4039 strcpy(dev->name, name);
4040 return dev;
4041 }
4042 EXPORT_SYMBOL(alloc_netdev_mq);
4043
4044 /**
4045 * free_netdev - free network device
4046 * @dev: device
4047 *
4048 * This function does the last stage of destroying an allocated device
4049 * interface. The reference to the device object is released.
4050 * If this is the last reference then it will be freed.
4051 */
4052 void free_netdev(struct net_device *dev)
4053 {
4054 release_net(dev_net(dev));
4055
4056 /* Compatibility with error handling in drivers */
4057 if (dev->reg_state == NETREG_UNINITIALIZED) {
4058 kfree((char *)dev - dev->padded);
4059 return;
4060 }
4061
4062 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4063 dev->reg_state = NETREG_RELEASED;
4064
4065 /* will free via device release */
4066 put_device(&dev->dev);
4067 }
4068
4069 /* Synchronize with packet receive processing. */
4070 void synchronize_net(void)
4071 {
4072 might_sleep();
4073 synchronize_rcu();
4074 }
4075
4076 /**
4077 * unregister_netdevice - remove device from the kernel
4078 * @dev: device
4079 *
4080 * This function shuts down a device interface and removes it
4081 * from the kernel tables.
4082 *
4083 * Callers must hold the rtnl semaphore. You may want
4084 * unregister_netdev() instead of this.
4085 */
4086
4087 void unregister_netdevice(struct net_device *dev)
4088 {
4089 ASSERT_RTNL();
4090
4091 rollback_registered(dev);
4092 /* Finish processing unregister after unlock */
4093 net_set_todo(dev);
4094 }
4095
4096 /**
4097 * unregister_netdev - remove device from the kernel
4098 * @dev: device
4099 *
4100 * This function shuts down a device interface and removes it
4101 * from the kernel tables.
4102 *
4103 * This is just a wrapper for unregister_netdevice that takes
4104 * the rtnl semaphore. In general you want to use this and not
4105 * unregister_netdevice.
4106 */
4107 void unregister_netdev(struct net_device *dev)
4108 {
4109 rtnl_lock();
4110 unregister_netdevice(dev);
4111 rtnl_unlock();
4112 }
4113
4114 EXPORT_SYMBOL(unregister_netdev);
4115
4116 /**
4117 * dev_change_net_namespace - move device to different nethost namespace
4118 * @dev: device
4119 * @net: network namespace
4120 * @pat: If not NULL name pattern to try if the current device name
4121 * is already taken in the destination network namespace.
4122 *
4123 * This function shuts down a device interface and moves it
4124 * to a new network namespace. On success 0 is returned, on
4125 * a failure a netagive errno code is returned.
4126 *
4127 * Callers must hold the rtnl semaphore.
4128 */
4129
4130 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4131 {
4132 char buf[IFNAMSIZ];
4133 const char *destname;
4134 int err;
4135
4136 ASSERT_RTNL();
4137
4138 /* Don't allow namespace local devices to be moved. */
4139 err = -EINVAL;
4140 if (dev->features & NETIF_F_NETNS_LOCAL)
4141 goto out;
4142
4143 /* Ensure the device has been registrered */
4144 err = -EINVAL;
4145 if (dev->reg_state != NETREG_REGISTERED)
4146 goto out;
4147
4148 /* Get out if there is nothing todo */
4149 err = 0;
4150 if (net_eq(dev_net(dev), net))
4151 goto out;
4152
4153 /* Pick the destination device name, and ensure
4154 * we can use it in the destination network namespace.
4155 */
4156 err = -EEXIST;
4157 destname = dev->name;
4158 if (__dev_get_by_name(net, destname)) {
4159 /* We get here if we can't use the current device name */
4160 if (!pat)
4161 goto out;
4162 if (!dev_valid_name(pat))
4163 goto out;
4164 if (strchr(pat, '%')) {
4165 if (__dev_alloc_name(net, pat, buf) < 0)
4166 goto out;
4167 destname = buf;
4168 } else
4169 destname = pat;
4170 if (__dev_get_by_name(net, destname))
4171 goto out;
4172 }
4173
4174 /*
4175 * And now a mini version of register_netdevice unregister_netdevice.
4176 */
4177
4178 /* If device is running close it first. */
4179 dev_close(dev);
4180
4181 /* And unlink it from device chain */
4182 err = -ENODEV;
4183 unlist_netdevice(dev);
4184
4185 synchronize_net();
4186
4187 /* Shutdown queueing discipline. */
4188 dev_shutdown(dev);
4189
4190 /* Notify protocols, that we are about to destroy
4191 this device. They should clean all the things.
4192 */
4193 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4194
4195 /*
4196 * Flush the unicast and multicast chains
4197 */
4198 dev_addr_discard(dev);
4199
4200 /* Actually switch the network namespace */
4201 dev_net_set(dev, net);
4202
4203 /* Assign the new device name */
4204 if (destname != dev->name)
4205 strcpy(dev->name, destname);
4206
4207 /* If there is an ifindex conflict assign a new one */
4208 if (__dev_get_by_index(net, dev->ifindex)) {
4209 int iflink = (dev->iflink == dev->ifindex);
4210 dev->ifindex = dev_new_index(net);
4211 if (iflink)
4212 dev->iflink = dev->ifindex;
4213 }
4214
4215 /* Fixup kobjects */
4216 netdev_unregister_kobject(dev);
4217 err = netdev_register_kobject(dev);
4218 WARN_ON(err);
4219
4220 /* Add the device back in the hashes */
4221 list_netdevice(dev);
4222
4223 /* Notify protocols, that a new device appeared. */
4224 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4225
4226 synchronize_net();
4227 err = 0;
4228 out:
4229 return err;
4230 }
4231
4232 static int dev_cpu_callback(struct notifier_block *nfb,
4233 unsigned long action,
4234 void *ocpu)
4235 {
4236 struct sk_buff **list_skb;
4237 struct net_device **list_net;
4238 struct sk_buff *skb;
4239 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4240 struct softnet_data *sd, *oldsd;
4241
4242 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4243 return NOTIFY_OK;
4244
4245 local_irq_disable();
4246 cpu = smp_processor_id();
4247 sd = &per_cpu(softnet_data, cpu);
4248 oldsd = &per_cpu(softnet_data, oldcpu);
4249
4250 /* Find end of our completion_queue. */
4251 list_skb = &sd->completion_queue;
4252 while (*list_skb)
4253 list_skb = &(*list_skb)->next;
4254 /* Append completion queue from offline CPU. */
4255 *list_skb = oldsd->completion_queue;
4256 oldsd->completion_queue = NULL;
4257
4258 /* Find end of our output_queue. */
4259 list_net = &sd->output_queue;
4260 while (*list_net)
4261 list_net = &(*list_net)->next_sched;
4262 /* Append output queue from offline CPU. */
4263 *list_net = oldsd->output_queue;
4264 oldsd->output_queue = NULL;
4265
4266 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4267 local_irq_enable();
4268
4269 /* Process offline CPU's input_pkt_queue */
4270 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4271 netif_rx(skb);
4272
4273 return NOTIFY_OK;
4274 }
4275
4276 #ifdef CONFIG_NET_DMA
4277 /**
4278 * net_dma_rebalance - try to maintain one DMA channel per CPU
4279 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4280 *
4281 * This is called when the number of channels allocated to the net_dma client
4282 * changes. The net_dma client tries to have one DMA channel per CPU.
4283 */
4284
4285 static void net_dma_rebalance(struct net_dma *net_dma)
4286 {
4287 unsigned int cpu, i, n, chan_idx;
4288 struct dma_chan *chan;
4289
4290 if (cpus_empty(net_dma->channel_mask)) {
4291 for_each_online_cpu(cpu)
4292 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4293 return;
4294 }
4295
4296 i = 0;
4297 cpu = first_cpu(cpu_online_map);
4298
4299 for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4300 chan = net_dma->channels[chan_idx];
4301
4302 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4303 + (i < (num_online_cpus() %
4304 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4305
4306 while(n) {
4307 per_cpu(softnet_data, cpu).net_dma = chan;
4308 cpu = next_cpu(cpu, cpu_online_map);
4309 n--;
4310 }
4311 i++;
4312 }
4313 }
4314
4315 /**
4316 * netdev_dma_event - event callback for the net_dma_client
4317 * @client: should always be net_dma_client
4318 * @chan: DMA channel for the event
4319 * @state: DMA state to be handled
4320 */
4321 static enum dma_state_client
4322 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4323 enum dma_state state)
4324 {
4325 int i, found = 0, pos = -1;
4326 struct net_dma *net_dma =
4327 container_of(client, struct net_dma, client);
4328 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4329
4330 spin_lock(&net_dma->lock);
4331 switch (state) {
4332 case DMA_RESOURCE_AVAILABLE:
4333 for (i = 0; i < nr_cpu_ids; i++)
4334 if (net_dma->channels[i] == chan) {
4335 found = 1;
4336 break;
4337 } else if (net_dma->channels[i] == NULL && pos < 0)
4338 pos = i;
4339
4340 if (!found && pos >= 0) {
4341 ack = DMA_ACK;
4342 net_dma->channels[pos] = chan;
4343 cpu_set(pos, net_dma->channel_mask);
4344 net_dma_rebalance(net_dma);
4345 }
4346 break;
4347 case DMA_RESOURCE_REMOVED:
4348 for (i = 0; i < nr_cpu_ids; i++)
4349 if (net_dma->channels[i] == chan) {
4350 found = 1;
4351 pos = i;
4352 break;
4353 }
4354
4355 if (found) {
4356 ack = DMA_ACK;
4357 cpu_clear(pos, net_dma->channel_mask);
4358 net_dma->channels[i] = NULL;
4359 net_dma_rebalance(net_dma);
4360 }
4361 break;
4362 default:
4363 break;
4364 }
4365 spin_unlock(&net_dma->lock);
4366
4367 return ack;
4368 }
4369
4370 /**
4371 * netdev_dma_regiser - register the networking subsystem as a DMA client
4372 */
4373 static int __init netdev_dma_register(void)
4374 {
4375 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4376 GFP_KERNEL);
4377 if (unlikely(!net_dma.channels)) {
4378 printk(KERN_NOTICE
4379 "netdev_dma: no memory for net_dma.channels\n");
4380 return -ENOMEM;
4381 }
4382 spin_lock_init(&net_dma.lock);
4383 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4384 dma_async_client_register(&net_dma.client);
4385 dma_async_client_chan_request(&net_dma.client);
4386 return 0;
4387 }
4388
4389 #else
4390 static int __init netdev_dma_register(void) { return -ENODEV; }
4391 #endif /* CONFIG_NET_DMA */
4392
4393 /**
4394 * netdev_compute_feature - compute conjunction of two feature sets
4395 * @all: first feature set
4396 * @one: second feature set
4397 *
4398 * Computes a new feature set after adding a device with feature set
4399 * @one to the master device with current feature set @all. Returns
4400 * the new feature set.
4401 */
4402 int netdev_compute_features(unsigned long all, unsigned long one)
4403 {
4404 /* if device needs checksumming, downgrade to hw checksumming */
4405 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4406 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4407
4408 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4409 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4410 all ^= NETIF_F_HW_CSUM
4411 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4412
4413 if (one & NETIF_F_GSO)
4414 one |= NETIF_F_GSO_SOFTWARE;
4415 one |= NETIF_F_GSO;
4416
4417 /* If even one device supports robust GSO, enable it for all. */
4418 if (one & NETIF_F_GSO_ROBUST)
4419 all |= NETIF_F_GSO_ROBUST;
4420
4421 all &= one | NETIF_F_LLTX;
4422
4423 if (!(all & NETIF_F_ALL_CSUM))
4424 all &= ~NETIF_F_SG;
4425 if (!(all & NETIF_F_SG))
4426 all &= ~NETIF_F_GSO_MASK;
4427
4428 return all;
4429 }
4430 EXPORT_SYMBOL(netdev_compute_features);
4431
4432 static struct hlist_head *netdev_create_hash(void)
4433 {
4434 int i;
4435 struct hlist_head *hash;
4436
4437 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4438 if (hash != NULL)
4439 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4440 INIT_HLIST_HEAD(&hash[i]);
4441
4442 return hash;
4443 }
4444
4445 /* Initialize per network namespace state */
4446 static int __net_init netdev_init(struct net *net)
4447 {
4448 INIT_LIST_HEAD(&net->dev_base_head);
4449
4450 net->dev_name_head = netdev_create_hash();
4451 if (net->dev_name_head == NULL)
4452 goto err_name;
4453
4454 net->dev_index_head = netdev_create_hash();
4455 if (net->dev_index_head == NULL)
4456 goto err_idx;
4457
4458 return 0;
4459
4460 err_idx:
4461 kfree(net->dev_name_head);
4462 err_name:
4463 return -ENOMEM;
4464 }
4465
4466 static void __net_exit netdev_exit(struct net *net)
4467 {
4468 kfree(net->dev_name_head);
4469 kfree(net->dev_index_head);
4470 }
4471
4472 static struct pernet_operations __net_initdata netdev_net_ops = {
4473 .init = netdev_init,
4474 .exit = netdev_exit,
4475 };
4476
4477 static void __net_exit default_device_exit(struct net *net)
4478 {
4479 struct net_device *dev, *next;
4480 /*
4481 * Push all migratable of the network devices back to the
4482 * initial network namespace
4483 */
4484 rtnl_lock();
4485 for_each_netdev_safe(net, dev, next) {
4486 int err;
4487 char fb_name[IFNAMSIZ];
4488
4489 /* Ignore unmoveable devices (i.e. loopback) */
4490 if (dev->features & NETIF_F_NETNS_LOCAL)
4491 continue;
4492
4493 /* Push remaing network devices to init_net */
4494 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4495 err = dev_change_net_namespace(dev, &init_net, fb_name);
4496 if (err) {
4497 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
4498 __func__, dev->name, err);
4499 BUG();
4500 }
4501 }
4502 rtnl_unlock();
4503 }
4504
4505 static struct pernet_operations __net_initdata default_device_ops = {
4506 .exit = default_device_exit,
4507 };
4508
4509 /*
4510 * Initialize the DEV module. At boot time this walks the device list and
4511 * unhooks any devices that fail to initialise (normally hardware not
4512 * present) and leaves us with a valid list of present and active devices.
4513 *
4514 */
4515
4516 /*
4517 * This is called single threaded during boot, so no need
4518 * to take the rtnl semaphore.
4519 */
4520 static int __init net_dev_init(void)
4521 {
4522 int i, rc = -ENOMEM;
4523
4524 BUG_ON(!dev_boot_phase);
4525
4526 if (dev_proc_init())
4527 goto out;
4528
4529 if (netdev_kobject_init())
4530 goto out;
4531
4532 INIT_LIST_HEAD(&ptype_all);
4533 for (i = 0; i < PTYPE_HASH_SIZE; i++)
4534 INIT_LIST_HEAD(&ptype_base[i]);
4535
4536 if (register_pernet_subsys(&netdev_net_ops))
4537 goto out;
4538
4539 if (register_pernet_device(&default_device_ops))
4540 goto out;
4541
4542 /*
4543 * Initialise the packet receive queues.
4544 */
4545
4546 for_each_possible_cpu(i) {
4547 struct softnet_data *queue;
4548
4549 queue = &per_cpu(softnet_data, i);
4550 skb_queue_head_init(&queue->input_pkt_queue);
4551 queue->completion_queue = NULL;
4552 INIT_LIST_HEAD(&queue->poll_list);
4553
4554 queue->backlog.poll = process_backlog;
4555 queue->backlog.weight = weight_p;
4556 }
4557
4558 netdev_dma_register();
4559
4560 dev_boot_phase = 0;
4561
4562 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4563 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4564
4565 hotcpu_notifier(dev_cpu_callback, 0);
4566 dst_init();
4567 dev_mcast_init();
4568 rc = 0;
4569 out:
4570 return rc;
4571 }
4572
4573 subsys_initcall(net_dev_init);
4574
4575 EXPORT_SYMBOL(__dev_get_by_index);
4576 EXPORT_SYMBOL(__dev_get_by_name);
4577 EXPORT_SYMBOL(__dev_remove_pack);
4578 EXPORT_SYMBOL(dev_valid_name);
4579 EXPORT_SYMBOL(dev_add_pack);
4580 EXPORT_SYMBOL(dev_alloc_name);
4581 EXPORT_SYMBOL(dev_close);
4582 EXPORT_SYMBOL(dev_get_by_flags);
4583 EXPORT_SYMBOL(dev_get_by_index);
4584 EXPORT_SYMBOL(dev_get_by_name);
4585 EXPORT_SYMBOL(dev_open);
4586 EXPORT_SYMBOL(dev_queue_xmit);
4587 EXPORT_SYMBOL(dev_remove_pack);
4588 EXPORT_SYMBOL(dev_set_allmulti);
4589 EXPORT_SYMBOL(dev_set_promiscuity);
4590 EXPORT_SYMBOL(dev_change_flags);
4591 EXPORT_SYMBOL(dev_set_mtu);
4592 EXPORT_SYMBOL(dev_set_mac_address);
4593 EXPORT_SYMBOL(free_netdev);
4594 EXPORT_SYMBOL(netdev_boot_setup_check);
4595 EXPORT_SYMBOL(netdev_set_master);
4596 EXPORT_SYMBOL(netdev_state_change);
4597 EXPORT_SYMBOL(netif_receive_skb);
4598 EXPORT_SYMBOL(netif_rx);
4599 EXPORT_SYMBOL(register_gifconf);
4600 EXPORT_SYMBOL(register_netdevice);
4601 EXPORT_SYMBOL(register_netdevice_notifier);
4602 EXPORT_SYMBOL(skb_checksum_help);
4603 EXPORT_SYMBOL(synchronize_net);
4604 EXPORT_SYMBOL(unregister_netdevice);
4605 EXPORT_SYMBOL(unregister_netdevice_notifier);
4606 EXPORT_SYMBOL(net_enable_timestamp);
4607 EXPORT_SYMBOL(net_disable_timestamp);
4608 EXPORT_SYMBOL(dev_get_flags);
4609
4610 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4611 EXPORT_SYMBOL(br_handle_frame_hook);
4612 EXPORT_SYMBOL(br_fdb_get_hook);
4613 EXPORT_SYMBOL(br_fdb_put_hook);
4614 #endif
4615
4616 #ifdef CONFIG_KMOD
4617 EXPORT_SYMBOL(dev_load);
4618 #endif
4619
4620 EXPORT_PER_CPU_SYMBOL(softnet_data);