]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/core/dev.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-jammy-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139
140 #include "net-sysfs.h"
141
142 /* Instead of increasing this, you should create a hash table. */
143 #define MAX_GRO_SKBS 8
144
145 /* This should be increased if a protocol with a bigger head is added. */
146 #define GRO_MAX_HEAD (MAX_HEADER + 128)
147
148 static DEFINE_SPINLOCK(ptype_lock);
149 static DEFINE_SPINLOCK(offload_lock);
150 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
151 struct list_head ptype_all __read_mostly; /* Taps */
152 static struct list_head offload_base __read_mostly;
153
154 static int netif_rx_internal(struct sk_buff *skb);
155 static int call_netdevice_notifiers_info(unsigned long val,
156 struct net_device *dev,
157 struct netdev_notifier_info *info);
158
159 /*
160 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
161 * semaphore.
162 *
163 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
164 *
165 * Writers must hold the rtnl semaphore while they loop through the
166 * dev_base_head list, and hold dev_base_lock for writing when they do the
167 * actual updates. This allows pure readers to access the list even
168 * while a writer is preparing to update it.
169 *
170 * To put it another way, dev_base_lock is held for writing only to
171 * protect against pure readers; the rtnl semaphore provides the
172 * protection against other writers.
173 *
174 * See, for example usages, register_netdevice() and
175 * unregister_netdevice(), which must be called with the rtnl
176 * semaphore held.
177 */
178 DEFINE_RWLOCK(dev_base_lock);
179 EXPORT_SYMBOL(dev_base_lock);
180
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183
184 static unsigned int napi_gen_id;
185 static DEFINE_HASHTABLE(napi_hash, 8);
186
187 static seqcount_t devnet_rename_seq;
188
189 static inline void dev_base_seq_inc(struct net *net)
190 {
191 while (++net->dev_base_seq == 0);
192 }
193
194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
197
198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200
201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205
206 static inline void rps_lock(struct softnet_data *sd)
207 {
208 #ifdef CONFIG_RPS
209 spin_lock(&sd->input_pkt_queue.lock);
210 #endif
211 }
212
213 static inline void rps_unlock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216 spin_unlock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219
220 /* Device list insertion */
221 static void list_netdevice(struct net_device *dev)
222 {
223 struct net *net = dev_net(dev);
224
225 ASSERT_RTNL();
226
227 write_lock_bh(&dev_base_lock);
228 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
230 hlist_add_head_rcu(&dev->index_hlist,
231 dev_index_hash(net, dev->ifindex));
232 write_unlock_bh(&dev_base_lock);
233
234 dev_base_seq_inc(net);
235 }
236
237 /* Device list removal
238 * caller must respect a RCU grace period before freeing/reusing dev
239 */
240 static void unlist_netdevice(struct net_device *dev)
241 {
242 ASSERT_RTNL();
243
244 /* Unlink dev from the device chain */
245 write_lock_bh(&dev_base_lock);
246 list_del_rcu(&dev->dev_list);
247 hlist_del_rcu(&dev->name_hlist);
248 hlist_del_rcu(&dev->index_hlist);
249 write_unlock_bh(&dev_base_lock);
250
251 dev_base_seq_inc(dev_net(dev));
252 }
253
254 /*
255 * Our notifier list
256 */
257
258 static RAW_NOTIFIER_HEAD(netdev_chain);
259
260 /*
261 * Device drivers call our routines to queue packets here. We empty the
262 * queue in the local softnet handler.
263 */
264
265 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
266 EXPORT_PER_CPU_SYMBOL(softnet_data);
267
268 #ifdef CONFIG_LOCKDEP
269 /*
270 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
271 * according to dev->type
272 */
273 static const unsigned short netdev_lock_type[] =
274 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
275 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
276 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
277 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
278 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
279 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
280 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
281 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
282 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
283 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
284 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
285 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
286 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
287 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
288 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
289
290 static const char *const netdev_lock_name[] =
291 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
292 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
293 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
294 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
295 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
296 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
297 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
298 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
299 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
300 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
301 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
302 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
303 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
304 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
305 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
306
307 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
308 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
309
310 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
311 {
312 int i;
313
314 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
315 if (netdev_lock_type[i] == dev_type)
316 return i;
317 /* the last key is used by default */
318 return ARRAY_SIZE(netdev_lock_type) - 1;
319 }
320
321 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
322 unsigned short dev_type)
323 {
324 int i;
325
326 i = netdev_lock_pos(dev_type);
327 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
328 netdev_lock_name[i]);
329 }
330
331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
332 {
333 int i;
334
335 i = netdev_lock_pos(dev->type);
336 lockdep_set_class_and_name(&dev->addr_list_lock,
337 &netdev_addr_lock_key[i],
338 netdev_lock_name[i]);
339 }
340 #else
341 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
342 unsigned short dev_type)
343 {
344 }
345 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
346 {
347 }
348 #endif
349
350 /*******************************************************************************
351
352 Protocol management and registration routines
353
354 *******************************************************************************/
355
356 /*
357 * Add a protocol ID to the list. Now that the input handler is
358 * smarter we can dispense with all the messy stuff that used to be
359 * here.
360 *
361 * BEWARE!!! Protocol handlers, mangling input packets,
362 * MUST BE last in hash buckets and checking protocol handlers
363 * MUST start from promiscuous ptype_all chain in net_bh.
364 * It is true now, do not change it.
365 * Explanation follows: if protocol handler, mangling packet, will
366 * be the first on list, it is not able to sense, that packet
367 * is cloned and should be copied-on-write, so that it will
368 * change it and subsequent readers will get broken packet.
369 * --ANK (980803)
370 */
371
372 static inline struct list_head *ptype_head(const struct packet_type *pt)
373 {
374 if (pt->type == htons(ETH_P_ALL))
375 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
376 else
377 return pt->dev ? &pt->dev->ptype_specific :
378 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
379 }
380
381 /**
382 * dev_add_pack - add packet handler
383 * @pt: packet type declaration
384 *
385 * Add a protocol handler to the networking stack. The passed &packet_type
386 * is linked into kernel lists and may not be freed until it has been
387 * removed from the kernel lists.
388 *
389 * This call does not sleep therefore it can not
390 * guarantee all CPU's that are in middle of receiving packets
391 * will see the new packet type (until the next received packet).
392 */
393
394 void dev_add_pack(struct packet_type *pt)
395 {
396 struct list_head *head = ptype_head(pt);
397
398 spin_lock(&ptype_lock);
399 list_add_rcu(&pt->list, head);
400 spin_unlock(&ptype_lock);
401 }
402 EXPORT_SYMBOL(dev_add_pack);
403
404 /**
405 * __dev_remove_pack - remove packet handler
406 * @pt: packet type declaration
407 *
408 * Remove a protocol handler that was previously added to the kernel
409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
410 * from the kernel lists and can be freed or reused once this function
411 * returns.
412 *
413 * The packet type might still be in use by receivers
414 * and must not be freed until after all the CPU's have gone
415 * through a quiescent state.
416 */
417 void __dev_remove_pack(struct packet_type *pt)
418 {
419 struct list_head *head = ptype_head(pt);
420 struct packet_type *pt1;
421
422 spin_lock(&ptype_lock);
423
424 list_for_each_entry(pt1, head, list) {
425 if (pt == pt1) {
426 list_del_rcu(&pt->list);
427 goto out;
428 }
429 }
430
431 pr_warn("dev_remove_pack: %p not found\n", pt);
432 out:
433 spin_unlock(&ptype_lock);
434 }
435 EXPORT_SYMBOL(__dev_remove_pack);
436
437 /**
438 * dev_remove_pack - remove packet handler
439 * @pt: packet type declaration
440 *
441 * Remove a protocol handler that was previously added to the kernel
442 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
443 * from the kernel lists and can be freed or reused once this function
444 * returns.
445 *
446 * This call sleeps to guarantee that no CPU is looking at the packet
447 * type after return.
448 */
449 void dev_remove_pack(struct packet_type *pt)
450 {
451 __dev_remove_pack(pt);
452
453 synchronize_net();
454 }
455 EXPORT_SYMBOL(dev_remove_pack);
456
457
458 /**
459 * dev_add_offload - register offload handlers
460 * @po: protocol offload declaration
461 *
462 * Add protocol offload handlers to the networking stack. The passed
463 * &proto_offload is linked into kernel lists and may not be freed until
464 * it has been removed from the kernel lists.
465 *
466 * This call does not sleep therefore it can not
467 * guarantee all CPU's that are in middle of receiving packets
468 * will see the new offload handlers (until the next received packet).
469 */
470 void dev_add_offload(struct packet_offload *po)
471 {
472 struct packet_offload *elem;
473
474 spin_lock(&offload_lock);
475 list_for_each_entry(elem, &offload_base, list) {
476 if (po->priority < elem->priority)
477 break;
478 }
479 list_add_rcu(&po->list, elem->list.prev);
480 spin_unlock(&offload_lock);
481 }
482 EXPORT_SYMBOL(dev_add_offload);
483
484 /**
485 * __dev_remove_offload - remove offload handler
486 * @po: packet offload declaration
487 *
488 * Remove a protocol offload handler that was previously added to the
489 * kernel offload handlers by dev_add_offload(). The passed &offload_type
490 * is removed from the kernel lists and can be freed or reused once this
491 * function returns.
492 *
493 * The packet type might still be in use by receivers
494 * and must not be freed until after all the CPU's have gone
495 * through a quiescent state.
496 */
497 static void __dev_remove_offload(struct packet_offload *po)
498 {
499 struct list_head *head = &offload_base;
500 struct packet_offload *po1;
501
502 spin_lock(&offload_lock);
503
504 list_for_each_entry(po1, head, list) {
505 if (po == po1) {
506 list_del_rcu(&po->list);
507 goto out;
508 }
509 }
510
511 pr_warn("dev_remove_offload: %p not found\n", po);
512 out:
513 spin_unlock(&offload_lock);
514 }
515
516 /**
517 * dev_remove_offload - remove packet offload handler
518 * @po: packet offload declaration
519 *
520 * Remove a packet offload handler that was previously added to the kernel
521 * offload handlers by dev_add_offload(). The passed &offload_type is
522 * removed from the kernel lists and can be freed or reused once this
523 * function returns.
524 *
525 * This call sleeps to guarantee that no CPU is looking at the packet
526 * type after return.
527 */
528 void dev_remove_offload(struct packet_offload *po)
529 {
530 __dev_remove_offload(po);
531
532 synchronize_net();
533 }
534 EXPORT_SYMBOL(dev_remove_offload);
535
536 /******************************************************************************
537
538 Device Boot-time Settings Routines
539
540 *******************************************************************************/
541
542 /* Boot time configuration table */
543 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
544
545 /**
546 * netdev_boot_setup_add - add new setup entry
547 * @name: name of the device
548 * @map: configured settings for the device
549 *
550 * Adds new setup entry to the dev_boot_setup list. The function
551 * returns 0 on error and 1 on success. This is a generic routine to
552 * all netdevices.
553 */
554 static int netdev_boot_setup_add(char *name, struct ifmap *map)
555 {
556 struct netdev_boot_setup *s;
557 int i;
558
559 s = dev_boot_setup;
560 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
561 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
562 memset(s[i].name, 0, sizeof(s[i].name));
563 strlcpy(s[i].name, name, IFNAMSIZ);
564 memcpy(&s[i].map, map, sizeof(s[i].map));
565 break;
566 }
567 }
568
569 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
570 }
571
572 /**
573 * netdev_boot_setup_check - check boot time settings
574 * @dev: the netdevice
575 *
576 * Check boot time settings for the device.
577 * The found settings are set for the device to be used
578 * later in the device probing.
579 * Returns 0 if no settings found, 1 if they are.
580 */
581 int netdev_boot_setup_check(struct net_device *dev)
582 {
583 struct netdev_boot_setup *s = dev_boot_setup;
584 int i;
585
586 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
587 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
588 !strcmp(dev->name, s[i].name)) {
589 dev->irq = s[i].map.irq;
590 dev->base_addr = s[i].map.base_addr;
591 dev->mem_start = s[i].map.mem_start;
592 dev->mem_end = s[i].map.mem_end;
593 return 1;
594 }
595 }
596 return 0;
597 }
598 EXPORT_SYMBOL(netdev_boot_setup_check);
599
600
601 /**
602 * netdev_boot_base - get address from boot time settings
603 * @prefix: prefix for network device
604 * @unit: id for network device
605 *
606 * Check boot time settings for the base address of device.
607 * The found settings are set for the device to be used
608 * later in the device probing.
609 * Returns 0 if no settings found.
610 */
611 unsigned long netdev_boot_base(const char *prefix, int unit)
612 {
613 const struct netdev_boot_setup *s = dev_boot_setup;
614 char name[IFNAMSIZ];
615 int i;
616
617 sprintf(name, "%s%d", prefix, unit);
618
619 /*
620 * If device already registered then return base of 1
621 * to indicate not to probe for this interface
622 */
623 if (__dev_get_by_name(&init_net, name))
624 return 1;
625
626 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
627 if (!strcmp(name, s[i].name))
628 return s[i].map.base_addr;
629 return 0;
630 }
631
632 /*
633 * Saves at boot time configured settings for any netdevice.
634 */
635 int __init netdev_boot_setup(char *str)
636 {
637 int ints[5];
638 struct ifmap map;
639
640 str = get_options(str, ARRAY_SIZE(ints), ints);
641 if (!str || !*str)
642 return 0;
643
644 /* Save settings */
645 memset(&map, 0, sizeof(map));
646 if (ints[0] > 0)
647 map.irq = ints[1];
648 if (ints[0] > 1)
649 map.base_addr = ints[2];
650 if (ints[0] > 2)
651 map.mem_start = ints[3];
652 if (ints[0] > 3)
653 map.mem_end = ints[4];
654
655 /* Add new entry to the list */
656 return netdev_boot_setup_add(str, &map);
657 }
658
659 __setup("netdev=", netdev_boot_setup);
660
661 /*******************************************************************************
662
663 Device Interface Subroutines
664
665 *******************************************************************************/
666
667 /**
668 * dev_get_iflink - get 'iflink' value of a interface
669 * @dev: targeted interface
670 *
671 * Indicates the ifindex the interface is linked to.
672 * Physical interfaces have the same 'ifindex' and 'iflink' values.
673 */
674
675 int dev_get_iflink(const struct net_device *dev)
676 {
677 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
678 return dev->netdev_ops->ndo_get_iflink(dev);
679
680 return dev->ifindex;
681 }
682 EXPORT_SYMBOL(dev_get_iflink);
683
684 /**
685 * __dev_get_by_name - find a device by its name
686 * @net: the applicable net namespace
687 * @name: name to find
688 *
689 * Find an interface by name. Must be called under RTNL semaphore
690 * or @dev_base_lock. If the name is found a pointer to the device
691 * is returned. If the name is not found then %NULL is returned. The
692 * reference counters are not incremented so the caller must be
693 * careful with locks.
694 */
695
696 struct net_device *__dev_get_by_name(struct net *net, const char *name)
697 {
698 struct net_device *dev;
699 struct hlist_head *head = dev_name_hash(net, name);
700
701 hlist_for_each_entry(dev, head, name_hlist)
702 if (!strncmp(dev->name, name, IFNAMSIZ))
703 return dev;
704
705 return NULL;
706 }
707 EXPORT_SYMBOL(__dev_get_by_name);
708
709 /**
710 * dev_get_by_name_rcu - find a device by its name
711 * @net: the applicable net namespace
712 * @name: name to find
713 *
714 * Find an interface by name.
715 * If the name is found a pointer to the device is returned.
716 * If the name is not found then %NULL is returned.
717 * The reference counters are not incremented so the caller must be
718 * careful with locks. The caller must hold RCU lock.
719 */
720
721 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
722 {
723 struct net_device *dev;
724 struct hlist_head *head = dev_name_hash(net, name);
725
726 hlist_for_each_entry_rcu(dev, head, name_hlist)
727 if (!strncmp(dev->name, name, IFNAMSIZ))
728 return dev;
729
730 return NULL;
731 }
732 EXPORT_SYMBOL(dev_get_by_name_rcu);
733
734 /**
735 * dev_get_by_name - find a device by its name
736 * @net: the applicable net namespace
737 * @name: name to find
738 *
739 * Find an interface by name. This can be called from any
740 * context and does its own locking. The returned handle has
741 * the usage count incremented and the caller must use dev_put() to
742 * release it when it is no longer needed. %NULL is returned if no
743 * matching device is found.
744 */
745
746 struct net_device *dev_get_by_name(struct net *net, const char *name)
747 {
748 struct net_device *dev;
749
750 rcu_read_lock();
751 dev = dev_get_by_name_rcu(net, name);
752 if (dev)
753 dev_hold(dev);
754 rcu_read_unlock();
755 return dev;
756 }
757 EXPORT_SYMBOL(dev_get_by_name);
758
759 /**
760 * __dev_get_by_index - find a device by its ifindex
761 * @net: the applicable net namespace
762 * @ifindex: index of device
763 *
764 * Search for an interface by index. Returns %NULL if the device
765 * is not found or a pointer to the device. The device has not
766 * had its reference counter increased so the caller must be careful
767 * about locking. The caller must hold either the RTNL semaphore
768 * or @dev_base_lock.
769 */
770
771 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
772 {
773 struct net_device *dev;
774 struct hlist_head *head = dev_index_hash(net, ifindex);
775
776 hlist_for_each_entry(dev, head, index_hlist)
777 if (dev->ifindex == ifindex)
778 return dev;
779
780 return NULL;
781 }
782 EXPORT_SYMBOL(__dev_get_by_index);
783
784 /**
785 * dev_get_by_index_rcu - find a device by its ifindex
786 * @net: the applicable net namespace
787 * @ifindex: index of device
788 *
789 * Search for an interface by index. Returns %NULL if the device
790 * is not found or a pointer to the device. The device has not
791 * had its reference counter increased so the caller must be careful
792 * about locking. The caller must hold RCU lock.
793 */
794
795 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
796 {
797 struct net_device *dev;
798 struct hlist_head *head = dev_index_hash(net, ifindex);
799
800 hlist_for_each_entry_rcu(dev, head, index_hlist)
801 if (dev->ifindex == ifindex)
802 return dev;
803
804 return NULL;
805 }
806 EXPORT_SYMBOL(dev_get_by_index_rcu);
807
808
809 /**
810 * dev_get_by_index - find a device by its ifindex
811 * @net: the applicable net namespace
812 * @ifindex: index of device
813 *
814 * Search for an interface by index. Returns NULL if the device
815 * is not found or a pointer to the device. The device returned has
816 * had a reference added and the pointer is safe until the user calls
817 * dev_put to indicate they have finished with it.
818 */
819
820 struct net_device *dev_get_by_index(struct net *net, int ifindex)
821 {
822 struct net_device *dev;
823
824 rcu_read_lock();
825 dev = dev_get_by_index_rcu(net, ifindex);
826 if (dev)
827 dev_hold(dev);
828 rcu_read_unlock();
829 return dev;
830 }
831 EXPORT_SYMBOL(dev_get_by_index);
832
833 /**
834 * netdev_get_name - get a netdevice name, knowing its ifindex.
835 * @net: network namespace
836 * @name: a pointer to the buffer where the name will be stored.
837 * @ifindex: the ifindex of the interface to get the name from.
838 *
839 * The use of raw_seqcount_begin() and cond_resched() before
840 * retrying is required as we want to give the writers a chance
841 * to complete when CONFIG_PREEMPT is not set.
842 */
843 int netdev_get_name(struct net *net, char *name, int ifindex)
844 {
845 struct net_device *dev;
846 unsigned int seq;
847
848 retry:
849 seq = raw_seqcount_begin(&devnet_rename_seq);
850 rcu_read_lock();
851 dev = dev_get_by_index_rcu(net, ifindex);
852 if (!dev) {
853 rcu_read_unlock();
854 return -ENODEV;
855 }
856
857 strcpy(name, dev->name);
858 rcu_read_unlock();
859 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
860 cond_resched();
861 goto retry;
862 }
863
864 return 0;
865 }
866
867 /**
868 * dev_getbyhwaddr_rcu - find a device by its hardware address
869 * @net: the applicable net namespace
870 * @type: media type of device
871 * @ha: hardware address
872 *
873 * Search for an interface by MAC address. Returns NULL if the device
874 * is not found or a pointer to the device.
875 * The caller must hold RCU or RTNL.
876 * The returned device has not had its ref count increased
877 * and the caller must therefore be careful about locking
878 *
879 */
880
881 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
882 const char *ha)
883 {
884 struct net_device *dev;
885
886 for_each_netdev_rcu(net, dev)
887 if (dev->type == type &&
888 !memcmp(dev->dev_addr, ha, dev->addr_len))
889 return dev;
890
891 return NULL;
892 }
893 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
894
895 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
896 {
897 struct net_device *dev;
898
899 ASSERT_RTNL();
900 for_each_netdev(net, dev)
901 if (dev->type == type)
902 return dev;
903
904 return NULL;
905 }
906 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
907
908 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
909 {
910 struct net_device *dev, *ret = NULL;
911
912 rcu_read_lock();
913 for_each_netdev_rcu(net, dev)
914 if (dev->type == type) {
915 dev_hold(dev);
916 ret = dev;
917 break;
918 }
919 rcu_read_unlock();
920 return ret;
921 }
922 EXPORT_SYMBOL(dev_getfirstbyhwtype);
923
924 /**
925 * __dev_get_by_flags - find any device with given flags
926 * @net: the applicable net namespace
927 * @if_flags: IFF_* values
928 * @mask: bitmask of bits in if_flags to check
929 *
930 * Search for any interface with the given flags. Returns NULL if a device
931 * is not found or a pointer to the device. Must be called inside
932 * rtnl_lock(), and result refcount is unchanged.
933 */
934
935 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
936 unsigned short mask)
937 {
938 struct net_device *dev, *ret;
939
940 ASSERT_RTNL();
941
942 ret = NULL;
943 for_each_netdev(net, dev) {
944 if (((dev->flags ^ if_flags) & mask) == 0) {
945 ret = dev;
946 break;
947 }
948 }
949 return ret;
950 }
951 EXPORT_SYMBOL(__dev_get_by_flags);
952
953 /**
954 * dev_valid_name - check if name is okay for network device
955 * @name: name string
956 *
957 * Network device names need to be valid file names to
958 * to allow sysfs to work. We also disallow any kind of
959 * whitespace.
960 */
961 bool dev_valid_name(const char *name)
962 {
963 if (*name == '\0')
964 return false;
965 if (strlen(name) >= IFNAMSIZ)
966 return false;
967 if (!strcmp(name, ".") || !strcmp(name, ".."))
968 return false;
969
970 while (*name) {
971 if (*name == '/' || *name == ':' || isspace(*name))
972 return false;
973 name++;
974 }
975 return true;
976 }
977 EXPORT_SYMBOL(dev_valid_name);
978
979 /**
980 * __dev_alloc_name - allocate a name for a device
981 * @net: network namespace to allocate the device name in
982 * @name: name format string
983 * @buf: scratch buffer and result name string
984 *
985 * Passed a format string - eg "lt%d" it will try and find a suitable
986 * id. It scans list of devices to build up a free map, then chooses
987 * the first empty slot. The caller must hold the dev_base or rtnl lock
988 * while allocating the name and adding the device in order to avoid
989 * duplicates.
990 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
991 * Returns the number of the unit assigned or a negative errno code.
992 */
993
994 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
995 {
996 int i = 0;
997 const char *p;
998 const int max_netdevices = 8*PAGE_SIZE;
999 unsigned long *inuse;
1000 struct net_device *d;
1001
1002 p = strnchr(name, IFNAMSIZ-1, '%');
1003 if (p) {
1004 /*
1005 * Verify the string as this thing may have come from
1006 * the user. There must be either one "%d" and no other "%"
1007 * characters.
1008 */
1009 if (p[1] != 'd' || strchr(p + 2, '%'))
1010 return -EINVAL;
1011
1012 /* Use one page as a bit array of possible slots */
1013 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1014 if (!inuse)
1015 return -ENOMEM;
1016
1017 for_each_netdev(net, d) {
1018 if (!sscanf(d->name, name, &i))
1019 continue;
1020 if (i < 0 || i >= max_netdevices)
1021 continue;
1022
1023 /* avoid cases where sscanf is not exact inverse of printf */
1024 snprintf(buf, IFNAMSIZ, name, i);
1025 if (!strncmp(buf, d->name, IFNAMSIZ))
1026 set_bit(i, inuse);
1027 }
1028
1029 i = find_first_zero_bit(inuse, max_netdevices);
1030 free_page((unsigned long) inuse);
1031 }
1032
1033 if (buf != name)
1034 snprintf(buf, IFNAMSIZ, name, i);
1035 if (!__dev_get_by_name(net, buf))
1036 return i;
1037
1038 /* It is possible to run out of possible slots
1039 * when the name is long and there isn't enough space left
1040 * for the digits, or if all bits are used.
1041 */
1042 return -ENFILE;
1043 }
1044
1045 /**
1046 * dev_alloc_name - allocate a name for a device
1047 * @dev: device
1048 * @name: name format string
1049 *
1050 * Passed a format string - eg "lt%d" it will try and find a suitable
1051 * id. It scans list of devices to build up a free map, then chooses
1052 * the first empty slot. The caller must hold the dev_base or rtnl lock
1053 * while allocating the name and adding the device in order to avoid
1054 * duplicates.
1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 * Returns the number of the unit assigned or a negative errno code.
1057 */
1058
1059 int dev_alloc_name(struct net_device *dev, const char *name)
1060 {
1061 char buf[IFNAMSIZ];
1062 struct net *net;
1063 int ret;
1064
1065 BUG_ON(!dev_net(dev));
1066 net = dev_net(dev);
1067 ret = __dev_alloc_name(net, name, buf);
1068 if (ret >= 0)
1069 strlcpy(dev->name, buf, IFNAMSIZ);
1070 return ret;
1071 }
1072 EXPORT_SYMBOL(dev_alloc_name);
1073
1074 static int dev_alloc_name_ns(struct net *net,
1075 struct net_device *dev,
1076 const char *name)
1077 {
1078 char buf[IFNAMSIZ];
1079 int ret;
1080
1081 ret = __dev_alloc_name(net, name, buf);
1082 if (ret >= 0)
1083 strlcpy(dev->name, buf, IFNAMSIZ);
1084 return ret;
1085 }
1086
1087 static int dev_get_valid_name(struct net *net,
1088 struct net_device *dev,
1089 const char *name)
1090 {
1091 BUG_ON(!net);
1092
1093 if (!dev_valid_name(name))
1094 return -EINVAL;
1095
1096 if (strchr(name, '%'))
1097 return dev_alloc_name_ns(net, dev, name);
1098 else if (__dev_get_by_name(net, name))
1099 return -EEXIST;
1100 else if (dev->name != name)
1101 strlcpy(dev->name, name, IFNAMSIZ);
1102
1103 return 0;
1104 }
1105
1106 /**
1107 * dev_change_name - change name of a device
1108 * @dev: device
1109 * @newname: name (or format string) must be at least IFNAMSIZ
1110 *
1111 * Change name of a device, can pass format strings "eth%d".
1112 * for wildcarding.
1113 */
1114 int dev_change_name(struct net_device *dev, const char *newname)
1115 {
1116 unsigned char old_assign_type;
1117 char oldname[IFNAMSIZ];
1118 int err = 0;
1119 int ret;
1120 struct net *net;
1121
1122 ASSERT_RTNL();
1123 BUG_ON(!dev_net(dev));
1124
1125 net = dev_net(dev);
1126 if (dev->flags & IFF_UP)
1127 return -EBUSY;
1128
1129 write_seqcount_begin(&devnet_rename_seq);
1130
1131 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1132 write_seqcount_end(&devnet_rename_seq);
1133 return 0;
1134 }
1135
1136 memcpy(oldname, dev->name, IFNAMSIZ);
1137
1138 err = dev_get_valid_name(net, dev, newname);
1139 if (err < 0) {
1140 write_seqcount_end(&devnet_rename_seq);
1141 return err;
1142 }
1143
1144 if (oldname[0] && !strchr(oldname, '%'))
1145 netdev_info(dev, "renamed from %s\n", oldname);
1146
1147 old_assign_type = dev->name_assign_type;
1148 dev->name_assign_type = NET_NAME_RENAMED;
1149
1150 rollback:
1151 ret = device_rename(&dev->dev, dev->name);
1152 if (ret) {
1153 memcpy(dev->name, oldname, IFNAMSIZ);
1154 dev->name_assign_type = old_assign_type;
1155 write_seqcount_end(&devnet_rename_seq);
1156 return ret;
1157 }
1158
1159 write_seqcount_end(&devnet_rename_seq);
1160
1161 netdev_adjacent_rename_links(dev, oldname);
1162
1163 write_lock_bh(&dev_base_lock);
1164 hlist_del_rcu(&dev->name_hlist);
1165 write_unlock_bh(&dev_base_lock);
1166
1167 synchronize_rcu();
1168
1169 write_lock_bh(&dev_base_lock);
1170 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1171 write_unlock_bh(&dev_base_lock);
1172
1173 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1174 ret = notifier_to_errno(ret);
1175
1176 if (ret) {
1177 /* err >= 0 after dev_alloc_name() or stores the first errno */
1178 if (err >= 0) {
1179 err = ret;
1180 write_seqcount_begin(&devnet_rename_seq);
1181 memcpy(dev->name, oldname, IFNAMSIZ);
1182 memcpy(oldname, newname, IFNAMSIZ);
1183 dev->name_assign_type = old_assign_type;
1184 old_assign_type = NET_NAME_RENAMED;
1185 goto rollback;
1186 } else {
1187 pr_err("%s: name change rollback failed: %d\n",
1188 dev->name, ret);
1189 }
1190 }
1191
1192 return err;
1193 }
1194
1195 /**
1196 * dev_set_alias - change ifalias of a device
1197 * @dev: device
1198 * @alias: name up to IFALIASZ
1199 * @len: limit of bytes to copy from info
1200 *
1201 * Set ifalias for a device,
1202 */
1203 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1204 {
1205 char *new_ifalias;
1206
1207 ASSERT_RTNL();
1208
1209 if (len >= IFALIASZ)
1210 return -EINVAL;
1211
1212 if (!len) {
1213 kfree(dev->ifalias);
1214 dev->ifalias = NULL;
1215 return 0;
1216 }
1217
1218 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1219 if (!new_ifalias)
1220 return -ENOMEM;
1221 dev->ifalias = new_ifalias;
1222
1223 strlcpy(dev->ifalias, alias, len+1);
1224 return len;
1225 }
1226
1227
1228 /**
1229 * netdev_features_change - device changes features
1230 * @dev: device to cause notification
1231 *
1232 * Called to indicate a device has changed features.
1233 */
1234 void netdev_features_change(struct net_device *dev)
1235 {
1236 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1237 }
1238 EXPORT_SYMBOL(netdev_features_change);
1239
1240 /**
1241 * netdev_state_change - device changes state
1242 * @dev: device to cause notification
1243 *
1244 * Called to indicate a device has changed state. This function calls
1245 * the notifier chains for netdev_chain and sends a NEWLINK message
1246 * to the routing socket.
1247 */
1248 void netdev_state_change(struct net_device *dev)
1249 {
1250 if (dev->flags & IFF_UP) {
1251 struct netdev_notifier_change_info change_info;
1252
1253 change_info.flags_changed = 0;
1254 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1255 &change_info.info);
1256 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1257 }
1258 }
1259 EXPORT_SYMBOL(netdev_state_change);
1260
1261 /**
1262 * netdev_notify_peers - notify network peers about existence of @dev
1263 * @dev: network device
1264 *
1265 * Generate traffic such that interested network peers are aware of
1266 * @dev, such as by generating a gratuitous ARP. This may be used when
1267 * a device wants to inform the rest of the network about some sort of
1268 * reconfiguration such as a failover event or virtual machine
1269 * migration.
1270 */
1271 void netdev_notify_peers(struct net_device *dev)
1272 {
1273 rtnl_lock();
1274 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1275 rtnl_unlock();
1276 }
1277 EXPORT_SYMBOL(netdev_notify_peers);
1278
1279 static int __dev_open(struct net_device *dev)
1280 {
1281 const struct net_device_ops *ops = dev->netdev_ops;
1282 int ret;
1283
1284 ASSERT_RTNL();
1285
1286 if (!netif_device_present(dev))
1287 return -ENODEV;
1288
1289 /* Block netpoll from trying to do any rx path servicing.
1290 * If we don't do this there is a chance ndo_poll_controller
1291 * or ndo_poll may be running while we open the device
1292 */
1293 netpoll_poll_disable(dev);
1294
1295 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1296 ret = notifier_to_errno(ret);
1297 if (ret)
1298 return ret;
1299
1300 set_bit(__LINK_STATE_START, &dev->state);
1301
1302 if (ops->ndo_validate_addr)
1303 ret = ops->ndo_validate_addr(dev);
1304
1305 if (!ret && ops->ndo_open)
1306 ret = ops->ndo_open(dev);
1307
1308 netpoll_poll_enable(dev);
1309
1310 if (ret)
1311 clear_bit(__LINK_STATE_START, &dev->state);
1312 else {
1313 dev->flags |= IFF_UP;
1314 dev_set_rx_mode(dev);
1315 dev_activate(dev);
1316 add_device_randomness(dev->dev_addr, dev->addr_len);
1317 }
1318
1319 return ret;
1320 }
1321
1322 /**
1323 * dev_open - prepare an interface for use.
1324 * @dev: device to open
1325 *
1326 * Takes a device from down to up state. The device's private open
1327 * function is invoked and then the multicast lists are loaded. Finally
1328 * the device is moved into the up state and a %NETDEV_UP message is
1329 * sent to the netdev notifier chain.
1330 *
1331 * Calling this function on an active interface is a nop. On a failure
1332 * a negative errno code is returned.
1333 */
1334 int dev_open(struct net_device *dev)
1335 {
1336 int ret;
1337
1338 if (dev->flags & IFF_UP)
1339 return 0;
1340
1341 ret = __dev_open(dev);
1342 if (ret < 0)
1343 return ret;
1344
1345 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1346 call_netdevice_notifiers(NETDEV_UP, dev);
1347
1348 return ret;
1349 }
1350 EXPORT_SYMBOL(dev_open);
1351
1352 static int __dev_close_many(struct list_head *head)
1353 {
1354 struct net_device *dev;
1355
1356 ASSERT_RTNL();
1357 might_sleep();
1358
1359 list_for_each_entry(dev, head, close_list) {
1360 /* Temporarily disable netpoll until the interface is down */
1361 netpoll_poll_disable(dev);
1362
1363 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1364
1365 clear_bit(__LINK_STATE_START, &dev->state);
1366
1367 /* Synchronize to scheduled poll. We cannot touch poll list, it
1368 * can be even on different cpu. So just clear netif_running().
1369 *
1370 * dev->stop() will invoke napi_disable() on all of it's
1371 * napi_struct instances on this device.
1372 */
1373 smp_mb__after_atomic(); /* Commit netif_running(). */
1374 }
1375
1376 dev_deactivate_many(head);
1377
1378 list_for_each_entry(dev, head, close_list) {
1379 const struct net_device_ops *ops = dev->netdev_ops;
1380
1381 /*
1382 * Call the device specific close. This cannot fail.
1383 * Only if device is UP
1384 *
1385 * We allow it to be called even after a DETACH hot-plug
1386 * event.
1387 */
1388 if (ops->ndo_stop)
1389 ops->ndo_stop(dev);
1390
1391 dev->flags &= ~IFF_UP;
1392 netpoll_poll_enable(dev);
1393 }
1394
1395 return 0;
1396 }
1397
1398 static int __dev_close(struct net_device *dev)
1399 {
1400 int retval;
1401 LIST_HEAD(single);
1402
1403 list_add(&dev->close_list, &single);
1404 retval = __dev_close_many(&single);
1405 list_del(&single);
1406
1407 return retval;
1408 }
1409
1410 int dev_close_many(struct list_head *head, bool unlink)
1411 {
1412 struct net_device *dev, *tmp;
1413
1414 /* Remove the devices that don't need to be closed */
1415 list_for_each_entry_safe(dev, tmp, head, close_list)
1416 if (!(dev->flags & IFF_UP))
1417 list_del_init(&dev->close_list);
1418
1419 __dev_close_many(head);
1420
1421 list_for_each_entry_safe(dev, tmp, head, close_list) {
1422 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1423 call_netdevice_notifiers(NETDEV_DOWN, dev);
1424 if (unlink)
1425 list_del_init(&dev->close_list);
1426 }
1427
1428 return 0;
1429 }
1430 EXPORT_SYMBOL(dev_close_many);
1431
1432 /**
1433 * dev_close - shutdown an interface.
1434 * @dev: device to shutdown
1435 *
1436 * This function moves an active device into down state. A
1437 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1438 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1439 * chain.
1440 */
1441 int dev_close(struct net_device *dev)
1442 {
1443 if (dev->flags & IFF_UP) {
1444 LIST_HEAD(single);
1445
1446 list_add(&dev->close_list, &single);
1447 dev_close_many(&single, true);
1448 list_del(&single);
1449 }
1450 return 0;
1451 }
1452 EXPORT_SYMBOL(dev_close);
1453
1454
1455 /**
1456 * dev_disable_lro - disable Large Receive Offload on a device
1457 * @dev: device
1458 *
1459 * Disable Large Receive Offload (LRO) on a net device. Must be
1460 * called under RTNL. This is needed if received packets may be
1461 * forwarded to another interface.
1462 */
1463 void dev_disable_lro(struct net_device *dev)
1464 {
1465 struct net_device *lower_dev;
1466 struct list_head *iter;
1467
1468 dev->wanted_features &= ~NETIF_F_LRO;
1469 netdev_update_features(dev);
1470
1471 if (unlikely(dev->features & NETIF_F_LRO))
1472 netdev_WARN(dev, "failed to disable LRO!\n");
1473
1474 netdev_for_each_lower_dev(dev, lower_dev, iter)
1475 dev_disable_lro(lower_dev);
1476 }
1477 EXPORT_SYMBOL(dev_disable_lro);
1478
1479 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1480 struct net_device *dev)
1481 {
1482 struct netdev_notifier_info info;
1483
1484 netdev_notifier_info_init(&info, dev);
1485 return nb->notifier_call(nb, val, &info);
1486 }
1487
1488 static int dev_boot_phase = 1;
1489
1490 /**
1491 * register_netdevice_notifier - register a network notifier block
1492 * @nb: notifier
1493 *
1494 * Register a notifier to be called when network device events occur.
1495 * The notifier passed is linked into the kernel structures and must
1496 * not be reused until it has been unregistered. A negative errno code
1497 * is returned on a failure.
1498 *
1499 * When registered all registration and up events are replayed
1500 * to the new notifier to allow device to have a race free
1501 * view of the network device list.
1502 */
1503
1504 int register_netdevice_notifier(struct notifier_block *nb)
1505 {
1506 struct net_device *dev;
1507 struct net_device *last;
1508 struct net *net;
1509 int err;
1510
1511 rtnl_lock();
1512 err = raw_notifier_chain_register(&netdev_chain, nb);
1513 if (err)
1514 goto unlock;
1515 if (dev_boot_phase)
1516 goto unlock;
1517 for_each_net(net) {
1518 for_each_netdev(net, dev) {
1519 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1520 err = notifier_to_errno(err);
1521 if (err)
1522 goto rollback;
1523
1524 if (!(dev->flags & IFF_UP))
1525 continue;
1526
1527 call_netdevice_notifier(nb, NETDEV_UP, dev);
1528 }
1529 }
1530
1531 unlock:
1532 rtnl_unlock();
1533 return err;
1534
1535 rollback:
1536 last = dev;
1537 for_each_net(net) {
1538 for_each_netdev(net, dev) {
1539 if (dev == last)
1540 goto outroll;
1541
1542 if (dev->flags & IFF_UP) {
1543 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1544 dev);
1545 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1546 }
1547 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1548 }
1549 }
1550
1551 outroll:
1552 raw_notifier_chain_unregister(&netdev_chain, nb);
1553 goto unlock;
1554 }
1555 EXPORT_SYMBOL(register_netdevice_notifier);
1556
1557 /**
1558 * unregister_netdevice_notifier - unregister a network notifier block
1559 * @nb: notifier
1560 *
1561 * Unregister a notifier previously registered by
1562 * register_netdevice_notifier(). The notifier is unlinked into the
1563 * kernel structures and may then be reused. A negative errno code
1564 * is returned on a failure.
1565 *
1566 * After unregistering unregister and down device events are synthesized
1567 * for all devices on the device list to the removed notifier to remove
1568 * the need for special case cleanup code.
1569 */
1570
1571 int unregister_netdevice_notifier(struct notifier_block *nb)
1572 {
1573 struct net_device *dev;
1574 struct net *net;
1575 int err;
1576
1577 rtnl_lock();
1578 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1579 if (err)
1580 goto unlock;
1581
1582 for_each_net(net) {
1583 for_each_netdev(net, dev) {
1584 if (dev->flags & IFF_UP) {
1585 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1586 dev);
1587 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1588 }
1589 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1590 }
1591 }
1592 unlock:
1593 rtnl_unlock();
1594 return err;
1595 }
1596 EXPORT_SYMBOL(unregister_netdevice_notifier);
1597
1598 /**
1599 * call_netdevice_notifiers_info - call all network notifier blocks
1600 * @val: value passed unmodified to notifier function
1601 * @dev: net_device pointer passed unmodified to notifier function
1602 * @info: notifier information data
1603 *
1604 * Call all network notifier blocks. Parameters and return value
1605 * are as for raw_notifier_call_chain().
1606 */
1607
1608 static int call_netdevice_notifiers_info(unsigned long val,
1609 struct net_device *dev,
1610 struct netdev_notifier_info *info)
1611 {
1612 ASSERT_RTNL();
1613 netdev_notifier_info_init(info, dev);
1614 return raw_notifier_call_chain(&netdev_chain, val, info);
1615 }
1616
1617 /**
1618 * call_netdevice_notifiers - call all network notifier blocks
1619 * @val: value passed unmodified to notifier function
1620 * @dev: net_device pointer passed unmodified to notifier function
1621 *
1622 * Call all network notifier blocks. Parameters and return value
1623 * are as for raw_notifier_call_chain().
1624 */
1625
1626 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1627 {
1628 struct netdev_notifier_info info;
1629
1630 return call_netdevice_notifiers_info(val, dev, &info);
1631 }
1632 EXPORT_SYMBOL(call_netdevice_notifiers);
1633
1634 #ifdef CONFIG_NET_INGRESS
1635 static struct static_key ingress_needed __read_mostly;
1636
1637 void net_inc_ingress_queue(void)
1638 {
1639 static_key_slow_inc(&ingress_needed);
1640 }
1641 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1642
1643 void net_dec_ingress_queue(void)
1644 {
1645 static_key_slow_dec(&ingress_needed);
1646 }
1647 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1648 #endif
1649
1650 static struct static_key netstamp_needed __read_mostly;
1651 #ifdef HAVE_JUMP_LABEL
1652 /* We are not allowed to call static_key_slow_dec() from irq context
1653 * If net_disable_timestamp() is called from irq context, defer the
1654 * static_key_slow_dec() calls.
1655 */
1656 static atomic_t netstamp_needed_deferred;
1657 #endif
1658
1659 void net_enable_timestamp(void)
1660 {
1661 #ifdef HAVE_JUMP_LABEL
1662 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1663
1664 if (deferred) {
1665 while (--deferred)
1666 static_key_slow_dec(&netstamp_needed);
1667 return;
1668 }
1669 #endif
1670 static_key_slow_inc(&netstamp_needed);
1671 }
1672 EXPORT_SYMBOL(net_enable_timestamp);
1673
1674 void net_disable_timestamp(void)
1675 {
1676 #ifdef HAVE_JUMP_LABEL
1677 if (in_interrupt()) {
1678 atomic_inc(&netstamp_needed_deferred);
1679 return;
1680 }
1681 #endif
1682 static_key_slow_dec(&netstamp_needed);
1683 }
1684 EXPORT_SYMBOL(net_disable_timestamp);
1685
1686 static inline void net_timestamp_set(struct sk_buff *skb)
1687 {
1688 skb->tstamp.tv64 = 0;
1689 if (static_key_false(&netstamp_needed))
1690 __net_timestamp(skb);
1691 }
1692
1693 #define net_timestamp_check(COND, SKB) \
1694 if (static_key_false(&netstamp_needed)) { \
1695 if ((COND) && !(SKB)->tstamp.tv64) \
1696 __net_timestamp(SKB); \
1697 } \
1698
1699 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1700 {
1701 unsigned int len;
1702
1703 if (!(dev->flags & IFF_UP))
1704 return false;
1705
1706 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1707 if (skb->len <= len)
1708 return true;
1709
1710 /* if TSO is enabled, we don't care about the length as the packet
1711 * could be forwarded without being segmented before
1712 */
1713 if (skb_is_gso(skb))
1714 return true;
1715
1716 return false;
1717 }
1718 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1719
1720 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1721 {
1722 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1723 unlikely(!is_skb_forwardable(dev, skb))) {
1724 atomic_long_inc(&dev->rx_dropped);
1725 kfree_skb(skb);
1726 return NET_RX_DROP;
1727 }
1728
1729 skb_scrub_packet(skb, true);
1730 skb->priority = 0;
1731 skb->protocol = eth_type_trans(skb, dev);
1732 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1733
1734 return 0;
1735 }
1736 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1737
1738 /**
1739 * dev_forward_skb - loopback an skb to another netif
1740 *
1741 * @dev: destination network device
1742 * @skb: buffer to forward
1743 *
1744 * return values:
1745 * NET_RX_SUCCESS (no congestion)
1746 * NET_RX_DROP (packet was dropped, but freed)
1747 *
1748 * dev_forward_skb can be used for injecting an skb from the
1749 * start_xmit function of one device into the receive queue
1750 * of another device.
1751 *
1752 * The receiving device may be in another namespace, so
1753 * we have to clear all information in the skb that could
1754 * impact namespace isolation.
1755 */
1756 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1757 {
1758 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1759 }
1760 EXPORT_SYMBOL_GPL(dev_forward_skb);
1761
1762 static inline int deliver_skb(struct sk_buff *skb,
1763 struct packet_type *pt_prev,
1764 struct net_device *orig_dev)
1765 {
1766 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1767 return -ENOMEM;
1768 atomic_inc(&skb->users);
1769 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1770 }
1771
1772 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1773 struct packet_type **pt,
1774 struct net_device *orig_dev,
1775 __be16 type,
1776 struct list_head *ptype_list)
1777 {
1778 struct packet_type *ptype, *pt_prev = *pt;
1779
1780 list_for_each_entry_rcu(ptype, ptype_list, list) {
1781 if (ptype->type != type)
1782 continue;
1783 if (pt_prev)
1784 deliver_skb(skb, pt_prev, orig_dev);
1785 pt_prev = ptype;
1786 }
1787 *pt = pt_prev;
1788 }
1789
1790 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1791 {
1792 if (!ptype->af_packet_priv || !skb->sk)
1793 return false;
1794
1795 if (ptype->id_match)
1796 return ptype->id_match(ptype, skb->sk);
1797 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1798 return true;
1799
1800 return false;
1801 }
1802
1803 /*
1804 * Support routine. Sends outgoing frames to any network
1805 * taps currently in use.
1806 */
1807
1808 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1809 {
1810 struct packet_type *ptype;
1811 struct sk_buff *skb2 = NULL;
1812 struct packet_type *pt_prev = NULL;
1813 struct list_head *ptype_list = &ptype_all;
1814
1815 rcu_read_lock();
1816 again:
1817 list_for_each_entry_rcu(ptype, ptype_list, list) {
1818 /* Never send packets back to the socket
1819 * they originated from - MvS (miquels@drinkel.ow.org)
1820 */
1821 if (skb_loop_sk(ptype, skb))
1822 continue;
1823
1824 if (pt_prev) {
1825 deliver_skb(skb2, pt_prev, skb->dev);
1826 pt_prev = ptype;
1827 continue;
1828 }
1829
1830 /* need to clone skb, done only once */
1831 skb2 = skb_clone(skb, GFP_ATOMIC);
1832 if (!skb2)
1833 goto out_unlock;
1834
1835 net_timestamp_set(skb2);
1836
1837 /* skb->nh should be correctly
1838 * set by sender, so that the second statement is
1839 * just protection against buggy protocols.
1840 */
1841 skb_reset_mac_header(skb2);
1842
1843 if (skb_network_header(skb2) < skb2->data ||
1844 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1845 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1846 ntohs(skb2->protocol),
1847 dev->name);
1848 skb_reset_network_header(skb2);
1849 }
1850
1851 skb2->transport_header = skb2->network_header;
1852 skb2->pkt_type = PACKET_OUTGOING;
1853 pt_prev = ptype;
1854 }
1855
1856 if (ptype_list == &ptype_all) {
1857 ptype_list = &dev->ptype_all;
1858 goto again;
1859 }
1860 out_unlock:
1861 if (pt_prev)
1862 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1863 rcu_read_unlock();
1864 }
1865
1866 /**
1867 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1868 * @dev: Network device
1869 * @txq: number of queues available
1870 *
1871 * If real_num_tx_queues is changed the tc mappings may no longer be
1872 * valid. To resolve this verify the tc mapping remains valid and if
1873 * not NULL the mapping. With no priorities mapping to this
1874 * offset/count pair it will no longer be used. In the worst case TC0
1875 * is invalid nothing can be done so disable priority mappings. If is
1876 * expected that drivers will fix this mapping if they can before
1877 * calling netif_set_real_num_tx_queues.
1878 */
1879 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1880 {
1881 int i;
1882 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1883
1884 /* If TC0 is invalidated disable TC mapping */
1885 if (tc->offset + tc->count > txq) {
1886 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1887 dev->num_tc = 0;
1888 return;
1889 }
1890
1891 /* Invalidated prio to tc mappings set to TC0 */
1892 for (i = 1; i < TC_BITMASK + 1; i++) {
1893 int q = netdev_get_prio_tc_map(dev, i);
1894
1895 tc = &dev->tc_to_txq[q];
1896 if (tc->offset + tc->count > txq) {
1897 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1898 i, q);
1899 netdev_set_prio_tc_map(dev, i, 0);
1900 }
1901 }
1902 }
1903
1904 #ifdef CONFIG_XPS
1905 static DEFINE_MUTEX(xps_map_mutex);
1906 #define xmap_dereference(P) \
1907 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1908
1909 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1910 int cpu, u16 index)
1911 {
1912 struct xps_map *map = NULL;
1913 int pos;
1914
1915 if (dev_maps)
1916 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1917
1918 for (pos = 0; map && pos < map->len; pos++) {
1919 if (map->queues[pos] == index) {
1920 if (map->len > 1) {
1921 map->queues[pos] = map->queues[--map->len];
1922 } else {
1923 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1924 kfree_rcu(map, rcu);
1925 map = NULL;
1926 }
1927 break;
1928 }
1929 }
1930
1931 return map;
1932 }
1933
1934 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1935 {
1936 struct xps_dev_maps *dev_maps;
1937 int cpu, i;
1938 bool active = false;
1939
1940 mutex_lock(&xps_map_mutex);
1941 dev_maps = xmap_dereference(dev->xps_maps);
1942
1943 if (!dev_maps)
1944 goto out_no_maps;
1945
1946 for_each_possible_cpu(cpu) {
1947 for (i = index; i < dev->num_tx_queues; i++) {
1948 if (!remove_xps_queue(dev_maps, cpu, i))
1949 break;
1950 }
1951 if (i == dev->num_tx_queues)
1952 active = true;
1953 }
1954
1955 if (!active) {
1956 RCU_INIT_POINTER(dev->xps_maps, NULL);
1957 kfree_rcu(dev_maps, rcu);
1958 }
1959
1960 for (i = index; i < dev->num_tx_queues; i++)
1961 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1962 NUMA_NO_NODE);
1963
1964 out_no_maps:
1965 mutex_unlock(&xps_map_mutex);
1966 }
1967
1968 static struct xps_map *expand_xps_map(struct xps_map *map,
1969 int cpu, u16 index)
1970 {
1971 struct xps_map *new_map;
1972 int alloc_len = XPS_MIN_MAP_ALLOC;
1973 int i, pos;
1974
1975 for (pos = 0; map && pos < map->len; pos++) {
1976 if (map->queues[pos] != index)
1977 continue;
1978 return map;
1979 }
1980
1981 /* Need to add queue to this CPU's existing map */
1982 if (map) {
1983 if (pos < map->alloc_len)
1984 return map;
1985
1986 alloc_len = map->alloc_len * 2;
1987 }
1988
1989 /* Need to allocate new map to store queue on this CPU's map */
1990 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1991 cpu_to_node(cpu));
1992 if (!new_map)
1993 return NULL;
1994
1995 for (i = 0; i < pos; i++)
1996 new_map->queues[i] = map->queues[i];
1997 new_map->alloc_len = alloc_len;
1998 new_map->len = pos;
1999
2000 return new_map;
2001 }
2002
2003 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2004 u16 index)
2005 {
2006 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2007 struct xps_map *map, *new_map;
2008 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2009 int cpu, numa_node_id = -2;
2010 bool active = false;
2011
2012 mutex_lock(&xps_map_mutex);
2013
2014 dev_maps = xmap_dereference(dev->xps_maps);
2015
2016 /* allocate memory for queue storage */
2017 for_each_online_cpu(cpu) {
2018 if (!cpumask_test_cpu(cpu, mask))
2019 continue;
2020
2021 if (!new_dev_maps)
2022 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2023 if (!new_dev_maps) {
2024 mutex_unlock(&xps_map_mutex);
2025 return -ENOMEM;
2026 }
2027
2028 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2029 NULL;
2030
2031 map = expand_xps_map(map, cpu, index);
2032 if (!map)
2033 goto error;
2034
2035 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2036 }
2037
2038 if (!new_dev_maps)
2039 goto out_no_new_maps;
2040
2041 for_each_possible_cpu(cpu) {
2042 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2043 /* add queue to CPU maps */
2044 int pos = 0;
2045
2046 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2047 while ((pos < map->len) && (map->queues[pos] != index))
2048 pos++;
2049
2050 if (pos == map->len)
2051 map->queues[map->len++] = index;
2052 #ifdef CONFIG_NUMA
2053 if (numa_node_id == -2)
2054 numa_node_id = cpu_to_node(cpu);
2055 else if (numa_node_id != cpu_to_node(cpu))
2056 numa_node_id = -1;
2057 #endif
2058 } else if (dev_maps) {
2059 /* fill in the new device map from the old device map */
2060 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2061 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2062 }
2063
2064 }
2065
2066 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2067
2068 /* Cleanup old maps */
2069 if (dev_maps) {
2070 for_each_possible_cpu(cpu) {
2071 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2072 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2073 if (map && map != new_map)
2074 kfree_rcu(map, rcu);
2075 }
2076
2077 kfree_rcu(dev_maps, rcu);
2078 }
2079
2080 dev_maps = new_dev_maps;
2081 active = true;
2082
2083 out_no_new_maps:
2084 /* update Tx queue numa node */
2085 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2086 (numa_node_id >= 0) ? numa_node_id :
2087 NUMA_NO_NODE);
2088
2089 if (!dev_maps)
2090 goto out_no_maps;
2091
2092 /* removes queue from unused CPUs */
2093 for_each_possible_cpu(cpu) {
2094 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2095 continue;
2096
2097 if (remove_xps_queue(dev_maps, cpu, index))
2098 active = true;
2099 }
2100
2101 /* free map if not active */
2102 if (!active) {
2103 RCU_INIT_POINTER(dev->xps_maps, NULL);
2104 kfree_rcu(dev_maps, rcu);
2105 }
2106
2107 out_no_maps:
2108 mutex_unlock(&xps_map_mutex);
2109
2110 return 0;
2111 error:
2112 /* remove any maps that we added */
2113 for_each_possible_cpu(cpu) {
2114 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2115 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2116 NULL;
2117 if (new_map && new_map != map)
2118 kfree(new_map);
2119 }
2120
2121 mutex_unlock(&xps_map_mutex);
2122
2123 kfree(new_dev_maps);
2124 return -ENOMEM;
2125 }
2126 EXPORT_SYMBOL(netif_set_xps_queue);
2127
2128 #endif
2129 /*
2130 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2131 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2132 */
2133 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2134 {
2135 int rc;
2136
2137 if (txq < 1 || txq > dev->num_tx_queues)
2138 return -EINVAL;
2139
2140 if (dev->reg_state == NETREG_REGISTERED ||
2141 dev->reg_state == NETREG_UNREGISTERING) {
2142 ASSERT_RTNL();
2143
2144 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2145 txq);
2146 if (rc)
2147 return rc;
2148
2149 if (dev->num_tc)
2150 netif_setup_tc(dev, txq);
2151
2152 if (txq < dev->real_num_tx_queues) {
2153 qdisc_reset_all_tx_gt(dev, txq);
2154 #ifdef CONFIG_XPS
2155 netif_reset_xps_queues_gt(dev, txq);
2156 #endif
2157 }
2158 }
2159
2160 dev->real_num_tx_queues = txq;
2161 return 0;
2162 }
2163 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2164
2165 #ifdef CONFIG_SYSFS
2166 /**
2167 * netif_set_real_num_rx_queues - set actual number of RX queues used
2168 * @dev: Network device
2169 * @rxq: Actual number of RX queues
2170 *
2171 * This must be called either with the rtnl_lock held or before
2172 * registration of the net device. Returns 0 on success, or a
2173 * negative error code. If called before registration, it always
2174 * succeeds.
2175 */
2176 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2177 {
2178 int rc;
2179
2180 if (rxq < 1 || rxq > dev->num_rx_queues)
2181 return -EINVAL;
2182
2183 if (dev->reg_state == NETREG_REGISTERED) {
2184 ASSERT_RTNL();
2185
2186 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2187 rxq);
2188 if (rc)
2189 return rc;
2190 }
2191
2192 dev->real_num_rx_queues = rxq;
2193 return 0;
2194 }
2195 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2196 #endif
2197
2198 /**
2199 * netif_get_num_default_rss_queues - default number of RSS queues
2200 *
2201 * This routine should set an upper limit on the number of RSS queues
2202 * used by default by multiqueue devices.
2203 */
2204 int netif_get_num_default_rss_queues(void)
2205 {
2206 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2207 }
2208 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2209
2210 static inline void __netif_reschedule(struct Qdisc *q)
2211 {
2212 struct softnet_data *sd;
2213 unsigned long flags;
2214
2215 local_irq_save(flags);
2216 sd = this_cpu_ptr(&softnet_data);
2217 q->next_sched = NULL;
2218 *sd->output_queue_tailp = q;
2219 sd->output_queue_tailp = &q->next_sched;
2220 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2221 local_irq_restore(flags);
2222 }
2223
2224 void __netif_schedule(struct Qdisc *q)
2225 {
2226 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2227 __netif_reschedule(q);
2228 }
2229 EXPORT_SYMBOL(__netif_schedule);
2230
2231 struct dev_kfree_skb_cb {
2232 enum skb_free_reason reason;
2233 };
2234
2235 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2236 {
2237 return (struct dev_kfree_skb_cb *)skb->cb;
2238 }
2239
2240 void netif_schedule_queue(struct netdev_queue *txq)
2241 {
2242 rcu_read_lock();
2243 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2244 struct Qdisc *q = rcu_dereference(txq->qdisc);
2245
2246 __netif_schedule(q);
2247 }
2248 rcu_read_unlock();
2249 }
2250 EXPORT_SYMBOL(netif_schedule_queue);
2251
2252 /**
2253 * netif_wake_subqueue - allow sending packets on subqueue
2254 * @dev: network device
2255 * @queue_index: sub queue index
2256 *
2257 * Resume individual transmit queue of a device with multiple transmit queues.
2258 */
2259 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2260 {
2261 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2262
2263 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2264 struct Qdisc *q;
2265
2266 rcu_read_lock();
2267 q = rcu_dereference(txq->qdisc);
2268 __netif_schedule(q);
2269 rcu_read_unlock();
2270 }
2271 }
2272 EXPORT_SYMBOL(netif_wake_subqueue);
2273
2274 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2275 {
2276 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2277 struct Qdisc *q;
2278
2279 rcu_read_lock();
2280 q = rcu_dereference(dev_queue->qdisc);
2281 __netif_schedule(q);
2282 rcu_read_unlock();
2283 }
2284 }
2285 EXPORT_SYMBOL(netif_tx_wake_queue);
2286
2287 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2288 {
2289 unsigned long flags;
2290
2291 if (likely(atomic_read(&skb->users) == 1)) {
2292 smp_rmb();
2293 atomic_set(&skb->users, 0);
2294 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2295 return;
2296 }
2297 get_kfree_skb_cb(skb)->reason = reason;
2298 local_irq_save(flags);
2299 skb->next = __this_cpu_read(softnet_data.completion_queue);
2300 __this_cpu_write(softnet_data.completion_queue, skb);
2301 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2302 local_irq_restore(flags);
2303 }
2304 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2305
2306 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2307 {
2308 if (in_irq() || irqs_disabled())
2309 __dev_kfree_skb_irq(skb, reason);
2310 else
2311 dev_kfree_skb(skb);
2312 }
2313 EXPORT_SYMBOL(__dev_kfree_skb_any);
2314
2315
2316 /**
2317 * netif_device_detach - mark device as removed
2318 * @dev: network device
2319 *
2320 * Mark device as removed from system and therefore no longer available.
2321 */
2322 void netif_device_detach(struct net_device *dev)
2323 {
2324 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2325 netif_running(dev)) {
2326 netif_tx_stop_all_queues(dev);
2327 }
2328 }
2329 EXPORT_SYMBOL(netif_device_detach);
2330
2331 /**
2332 * netif_device_attach - mark device as attached
2333 * @dev: network device
2334 *
2335 * Mark device as attached from system and restart if needed.
2336 */
2337 void netif_device_attach(struct net_device *dev)
2338 {
2339 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2340 netif_running(dev)) {
2341 netif_tx_wake_all_queues(dev);
2342 __netdev_watchdog_up(dev);
2343 }
2344 }
2345 EXPORT_SYMBOL(netif_device_attach);
2346
2347 /*
2348 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2349 * to be used as a distribution range.
2350 */
2351 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2352 unsigned int num_tx_queues)
2353 {
2354 u32 hash;
2355 u16 qoffset = 0;
2356 u16 qcount = num_tx_queues;
2357
2358 if (skb_rx_queue_recorded(skb)) {
2359 hash = skb_get_rx_queue(skb);
2360 while (unlikely(hash >= num_tx_queues))
2361 hash -= num_tx_queues;
2362 return hash;
2363 }
2364
2365 if (dev->num_tc) {
2366 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2367 qoffset = dev->tc_to_txq[tc].offset;
2368 qcount = dev->tc_to_txq[tc].count;
2369 }
2370
2371 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2372 }
2373 EXPORT_SYMBOL(__skb_tx_hash);
2374
2375 static void skb_warn_bad_offload(const struct sk_buff *skb)
2376 {
2377 static const netdev_features_t null_features = 0;
2378 struct net_device *dev = skb->dev;
2379 const char *driver = "";
2380
2381 if (!net_ratelimit())
2382 return;
2383
2384 if (dev && dev->dev.parent)
2385 driver = dev_driver_string(dev->dev.parent);
2386
2387 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2388 "gso_type=%d ip_summed=%d\n",
2389 driver, dev ? &dev->features : &null_features,
2390 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2391 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2392 skb_shinfo(skb)->gso_type, skb->ip_summed);
2393 }
2394
2395 /*
2396 * Invalidate hardware checksum when packet is to be mangled, and
2397 * complete checksum manually on outgoing path.
2398 */
2399 int skb_checksum_help(struct sk_buff *skb)
2400 {
2401 __wsum csum;
2402 int ret = 0, offset;
2403
2404 if (skb->ip_summed == CHECKSUM_COMPLETE)
2405 goto out_set_summed;
2406
2407 if (unlikely(skb_shinfo(skb)->gso_size)) {
2408 skb_warn_bad_offload(skb);
2409 return -EINVAL;
2410 }
2411
2412 /* Before computing a checksum, we should make sure no frag could
2413 * be modified by an external entity : checksum could be wrong.
2414 */
2415 if (skb_has_shared_frag(skb)) {
2416 ret = __skb_linearize(skb);
2417 if (ret)
2418 goto out;
2419 }
2420
2421 offset = skb_checksum_start_offset(skb);
2422 BUG_ON(offset >= skb_headlen(skb));
2423 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2424
2425 offset += skb->csum_offset;
2426 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2427
2428 if (skb_cloned(skb) &&
2429 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2430 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2431 if (ret)
2432 goto out;
2433 }
2434
2435 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2436 out_set_summed:
2437 skb->ip_summed = CHECKSUM_NONE;
2438 out:
2439 return ret;
2440 }
2441 EXPORT_SYMBOL(skb_checksum_help);
2442
2443 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2444 {
2445 __be16 type = skb->protocol;
2446
2447 /* Tunnel gso handlers can set protocol to ethernet. */
2448 if (type == htons(ETH_P_TEB)) {
2449 struct ethhdr *eth;
2450
2451 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2452 return 0;
2453
2454 eth = (struct ethhdr *)skb_mac_header(skb);
2455 type = eth->h_proto;
2456 }
2457
2458 return __vlan_get_protocol(skb, type, depth);
2459 }
2460
2461 /**
2462 * skb_mac_gso_segment - mac layer segmentation handler.
2463 * @skb: buffer to segment
2464 * @features: features for the output path (see dev->features)
2465 */
2466 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2467 netdev_features_t features)
2468 {
2469 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2470 struct packet_offload *ptype;
2471 int vlan_depth = skb->mac_len;
2472 __be16 type = skb_network_protocol(skb, &vlan_depth);
2473
2474 if (unlikely(!type))
2475 return ERR_PTR(-EINVAL);
2476
2477 __skb_pull(skb, vlan_depth);
2478
2479 rcu_read_lock();
2480 list_for_each_entry_rcu(ptype, &offload_base, list) {
2481 if (ptype->type == type && ptype->callbacks.gso_segment) {
2482 segs = ptype->callbacks.gso_segment(skb, features);
2483 break;
2484 }
2485 }
2486 rcu_read_unlock();
2487
2488 __skb_push(skb, skb->data - skb_mac_header(skb));
2489
2490 return segs;
2491 }
2492 EXPORT_SYMBOL(skb_mac_gso_segment);
2493
2494
2495 /* openvswitch calls this on rx path, so we need a different check.
2496 */
2497 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2498 {
2499 if (tx_path)
2500 return skb->ip_summed != CHECKSUM_PARTIAL;
2501 else
2502 return skb->ip_summed == CHECKSUM_NONE;
2503 }
2504
2505 /**
2506 * __skb_gso_segment - Perform segmentation on skb.
2507 * @skb: buffer to segment
2508 * @features: features for the output path (see dev->features)
2509 * @tx_path: whether it is called in TX path
2510 *
2511 * This function segments the given skb and returns a list of segments.
2512 *
2513 * It may return NULL if the skb requires no segmentation. This is
2514 * only possible when GSO is used for verifying header integrity.
2515 */
2516 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2517 netdev_features_t features, bool tx_path)
2518 {
2519 if (unlikely(skb_needs_check(skb, tx_path))) {
2520 int err;
2521
2522 skb_warn_bad_offload(skb);
2523
2524 err = skb_cow_head(skb, 0);
2525 if (err < 0)
2526 return ERR_PTR(err);
2527 }
2528
2529 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2530 SKB_GSO_CB(skb)->encap_level = 0;
2531
2532 skb_reset_mac_header(skb);
2533 skb_reset_mac_len(skb);
2534
2535 return skb_mac_gso_segment(skb, features);
2536 }
2537 EXPORT_SYMBOL(__skb_gso_segment);
2538
2539 /* Take action when hardware reception checksum errors are detected. */
2540 #ifdef CONFIG_BUG
2541 void netdev_rx_csum_fault(struct net_device *dev)
2542 {
2543 if (net_ratelimit()) {
2544 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2545 dump_stack();
2546 }
2547 }
2548 EXPORT_SYMBOL(netdev_rx_csum_fault);
2549 #endif
2550
2551 /* Actually, we should eliminate this check as soon as we know, that:
2552 * 1. IOMMU is present and allows to map all the memory.
2553 * 2. No high memory really exists on this machine.
2554 */
2555
2556 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2557 {
2558 #ifdef CONFIG_HIGHMEM
2559 int i;
2560 if (!(dev->features & NETIF_F_HIGHDMA)) {
2561 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2562 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2563 if (PageHighMem(skb_frag_page(frag)))
2564 return 1;
2565 }
2566 }
2567
2568 if (PCI_DMA_BUS_IS_PHYS) {
2569 struct device *pdev = dev->dev.parent;
2570
2571 if (!pdev)
2572 return 0;
2573 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2574 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2575 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2576 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2577 return 1;
2578 }
2579 }
2580 #endif
2581 return 0;
2582 }
2583
2584 /* If MPLS offload request, verify we are testing hardware MPLS features
2585 * instead of standard features for the netdev.
2586 */
2587 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2588 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2589 netdev_features_t features,
2590 __be16 type)
2591 {
2592 if (eth_p_mpls(type))
2593 features &= skb->dev->mpls_features;
2594
2595 return features;
2596 }
2597 #else
2598 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2599 netdev_features_t features,
2600 __be16 type)
2601 {
2602 return features;
2603 }
2604 #endif
2605
2606 static netdev_features_t harmonize_features(struct sk_buff *skb,
2607 netdev_features_t features)
2608 {
2609 int tmp;
2610 __be16 type;
2611
2612 type = skb_network_protocol(skb, &tmp);
2613 features = net_mpls_features(skb, features, type);
2614
2615 if (skb->ip_summed != CHECKSUM_NONE &&
2616 !can_checksum_protocol(features, type)) {
2617 features &= ~NETIF_F_ALL_CSUM;
2618 } else if (illegal_highdma(skb->dev, skb)) {
2619 features &= ~NETIF_F_SG;
2620 }
2621
2622 return features;
2623 }
2624
2625 netdev_features_t passthru_features_check(struct sk_buff *skb,
2626 struct net_device *dev,
2627 netdev_features_t features)
2628 {
2629 return features;
2630 }
2631 EXPORT_SYMBOL(passthru_features_check);
2632
2633 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2634 struct net_device *dev,
2635 netdev_features_t features)
2636 {
2637 return vlan_features_check(skb, features);
2638 }
2639
2640 netdev_features_t netif_skb_features(struct sk_buff *skb)
2641 {
2642 struct net_device *dev = skb->dev;
2643 netdev_features_t features = dev->features;
2644 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2645
2646 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2647 features &= ~NETIF_F_GSO_MASK;
2648
2649 /* If encapsulation offload request, verify we are testing
2650 * hardware encapsulation features instead of standard
2651 * features for the netdev
2652 */
2653 if (skb->encapsulation)
2654 features &= dev->hw_enc_features;
2655
2656 if (skb_vlan_tagged(skb))
2657 features = netdev_intersect_features(features,
2658 dev->vlan_features |
2659 NETIF_F_HW_VLAN_CTAG_TX |
2660 NETIF_F_HW_VLAN_STAG_TX);
2661
2662 if (dev->netdev_ops->ndo_features_check)
2663 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2664 features);
2665 else
2666 features &= dflt_features_check(skb, dev, features);
2667
2668 return harmonize_features(skb, features);
2669 }
2670 EXPORT_SYMBOL(netif_skb_features);
2671
2672 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2673 struct netdev_queue *txq, bool more)
2674 {
2675 unsigned int len;
2676 int rc;
2677
2678 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2679 dev_queue_xmit_nit(skb, dev);
2680
2681 len = skb->len;
2682 trace_net_dev_start_xmit(skb, dev);
2683 rc = netdev_start_xmit(skb, dev, txq, more);
2684 trace_net_dev_xmit(skb, rc, dev, len);
2685
2686 return rc;
2687 }
2688
2689 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2690 struct netdev_queue *txq, int *ret)
2691 {
2692 struct sk_buff *skb = first;
2693 int rc = NETDEV_TX_OK;
2694
2695 while (skb) {
2696 struct sk_buff *next = skb->next;
2697
2698 skb->next = NULL;
2699 rc = xmit_one(skb, dev, txq, next != NULL);
2700 if (unlikely(!dev_xmit_complete(rc))) {
2701 skb->next = next;
2702 goto out;
2703 }
2704
2705 skb = next;
2706 if (netif_xmit_stopped(txq) && skb) {
2707 rc = NETDEV_TX_BUSY;
2708 break;
2709 }
2710 }
2711
2712 out:
2713 *ret = rc;
2714 return skb;
2715 }
2716
2717 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2718 netdev_features_t features)
2719 {
2720 if (skb_vlan_tag_present(skb) &&
2721 !vlan_hw_offload_capable(features, skb->vlan_proto))
2722 skb = __vlan_hwaccel_push_inside(skb);
2723 return skb;
2724 }
2725
2726 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2727 {
2728 netdev_features_t features;
2729
2730 if (skb->next)
2731 return skb;
2732
2733 features = netif_skb_features(skb);
2734 skb = validate_xmit_vlan(skb, features);
2735 if (unlikely(!skb))
2736 goto out_null;
2737
2738 if (netif_needs_gso(skb, features)) {
2739 struct sk_buff *segs;
2740
2741 segs = skb_gso_segment(skb, features);
2742 if (IS_ERR(segs)) {
2743 goto out_kfree_skb;
2744 } else if (segs) {
2745 consume_skb(skb);
2746 skb = segs;
2747 }
2748 } else {
2749 if (skb_needs_linearize(skb, features) &&
2750 __skb_linearize(skb))
2751 goto out_kfree_skb;
2752
2753 /* If packet is not checksummed and device does not
2754 * support checksumming for this protocol, complete
2755 * checksumming here.
2756 */
2757 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2758 if (skb->encapsulation)
2759 skb_set_inner_transport_header(skb,
2760 skb_checksum_start_offset(skb));
2761 else
2762 skb_set_transport_header(skb,
2763 skb_checksum_start_offset(skb));
2764 if (!(features & NETIF_F_ALL_CSUM) &&
2765 skb_checksum_help(skb))
2766 goto out_kfree_skb;
2767 }
2768 }
2769
2770 return skb;
2771
2772 out_kfree_skb:
2773 kfree_skb(skb);
2774 out_null:
2775 return NULL;
2776 }
2777
2778 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2779 {
2780 struct sk_buff *next, *head = NULL, *tail;
2781
2782 for (; skb != NULL; skb = next) {
2783 next = skb->next;
2784 skb->next = NULL;
2785
2786 /* in case skb wont be segmented, point to itself */
2787 skb->prev = skb;
2788
2789 skb = validate_xmit_skb(skb, dev);
2790 if (!skb)
2791 continue;
2792
2793 if (!head)
2794 head = skb;
2795 else
2796 tail->next = skb;
2797 /* If skb was segmented, skb->prev points to
2798 * the last segment. If not, it still contains skb.
2799 */
2800 tail = skb->prev;
2801 }
2802 return head;
2803 }
2804
2805 static void qdisc_pkt_len_init(struct sk_buff *skb)
2806 {
2807 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2808
2809 qdisc_skb_cb(skb)->pkt_len = skb->len;
2810
2811 /* To get more precise estimation of bytes sent on wire,
2812 * we add to pkt_len the headers size of all segments
2813 */
2814 if (shinfo->gso_size) {
2815 unsigned int hdr_len;
2816 u16 gso_segs = shinfo->gso_segs;
2817
2818 /* mac layer + network layer */
2819 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2820
2821 /* + transport layer */
2822 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2823 hdr_len += tcp_hdrlen(skb);
2824 else
2825 hdr_len += sizeof(struct udphdr);
2826
2827 if (shinfo->gso_type & SKB_GSO_DODGY)
2828 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2829 shinfo->gso_size);
2830
2831 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2832 }
2833 }
2834
2835 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2836 struct net_device *dev,
2837 struct netdev_queue *txq)
2838 {
2839 spinlock_t *root_lock = qdisc_lock(q);
2840 bool contended;
2841 int rc;
2842
2843 qdisc_pkt_len_init(skb);
2844 qdisc_calculate_pkt_len(skb, q);
2845 /*
2846 * Heuristic to force contended enqueues to serialize on a
2847 * separate lock before trying to get qdisc main lock.
2848 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2849 * often and dequeue packets faster.
2850 */
2851 contended = qdisc_is_running(q);
2852 if (unlikely(contended))
2853 spin_lock(&q->busylock);
2854
2855 spin_lock(root_lock);
2856 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2857 kfree_skb(skb);
2858 rc = NET_XMIT_DROP;
2859 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2860 qdisc_run_begin(q)) {
2861 /*
2862 * This is a work-conserving queue; there are no old skbs
2863 * waiting to be sent out; and the qdisc is not running -
2864 * xmit the skb directly.
2865 */
2866
2867 qdisc_bstats_update(q, skb);
2868
2869 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2870 if (unlikely(contended)) {
2871 spin_unlock(&q->busylock);
2872 contended = false;
2873 }
2874 __qdisc_run(q);
2875 } else
2876 qdisc_run_end(q);
2877
2878 rc = NET_XMIT_SUCCESS;
2879 } else {
2880 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2881 if (qdisc_run_begin(q)) {
2882 if (unlikely(contended)) {
2883 spin_unlock(&q->busylock);
2884 contended = false;
2885 }
2886 __qdisc_run(q);
2887 }
2888 }
2889 spin_unlock(root_lock);
2890 if (unlikely(contended))
2891 spin_unlock(&q->busylock);
2892 return rc;
2893 }
2894
2895 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2896 static void skb_update_prio(struct sk_buff *skb)
2897 {
2898 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2899
2900 if (!skb->priority && skb->sk && map) {
2901 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2902
2903 if (prioidx < map->priomap_len)
2904 skb->priority = map->priomap[prioidx];
2905 }
2906 }
2907 #else
2908 #define skb_update_prio(skb)
2909 #endif
2910
2911 DEFINE_PER_CPU(int, xmit_recursion);
2912 EXPORT_SYMBOL(xmit_recursion);
2913
2914 #define RECURSION_LIMIT 10
2915
2916 /**
2917 * dev_loopback_xmit - loop back @skb
2918 * @net: network namespace this loopback is happening in
2919 * @sk: sk needed to be a netfilter okfn
2920 * @skb: buffer to transmit
2921 */
2922 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
2923 {
2924 skb_reset_mac_header(skb);
2925 __skb_pull(skb, skb_network_offset(skb));
2926 skb->pkt_type = PACKET_LOOPBACK;
2927 skb->ip_summed = CHECKSUM_UNNECESSARY;
2928 WARN_ON(!skb_dst(skb));
2929 skb_dst_force(skb);
2930 netif_rx_ni(skb);
2931 return 0;
2932 }
2933 EXPORT_SYMBOL(dev_loopback_xmit);
2934
2935 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2936 {
2937 #ifdef CONFIG_XPS
2938 struct xps_dev_maps *dev_maps;
2939 struct xps_map *map;
2940 int queue_index = -1;
2941
2942 rcu_read_lock();
2943 dev_maps = rcu_dereference(dev->xps_maps);
2944 if (dev_maps) {
2945 map = rcu_dereference(
2946 dev_maps->cpu_map[skb->sender_cpu - 1]);
2947 if (map) {
2948 if (map->len == 1)
2949 queue_index = map->queues[0];
2950 else
2951 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2952 map->len)];
2953 if (unlikely(queue_index >= dev->real_num_tx_queues))
2954 queue_index = -1;
2955 }
2956 }
2957 rcu_read_unlock();
2958
2959 return queue_index;
2960 #else
2961 return -1;
2962 #endif
2963 }
2964
2965 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2966 {
2967 struct sock *sk = skb->sk;
2968 int queue_index = sk_tx_queue_get(sk);
2969
2970 if (queue_index < 0 || skb->ooo_okay ||
2971 queue_index >= dev->real_num_tx_queues) {
2972 int new_index = get_xps_queue(dev, skb);
2973 if (new_index < 0)
2974 new_index = skb_tx_hash(dev, skb);
2975
2976 if (queue_index != new_index && sk &&
2977 rcu_access_pointer(sk->sk_dst_cache))
2978 sk_tx_queue_set(sk, new_index);
2979
2980 queue_index = new_index;
2981 }
2982
2983 return queue_index;
2984 }
2985
2986 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2987 struct sk_buff *skb,
2988 void *accel_priv)
2989 {
2990 int queue_index = 0;
2991
2992 #ifdef CONFIG_XPS
2993 if (skb->sender_cpu == 0)
2994 skb->sender_cpu = raw_smp_processor_id() + 1;
2995 #endif
2996
2997 if (dev->real_num_tx_queues != 1) {
2998 const struct net_device_ops *ops = dev->netdev_ops;
2999 if (ops->ndo_select_queue)
3000 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3001 __netdev_pick_tx);
3002 else
3003 queue_index = __netdev_pick_tx(dev, skb);
3004
3005 if (!accel_priv)
3006 queue_index = netdev_cap_txqueue(dev, queue_index);
3007 }
3008
3009 skb_set_queue_mapping(skb, queue_index);
3010 return netdev_get_tx_queue(dev, queue_index);
3011 }
3012
3013 /**
3014 * __dev_queue_xmit - transmit a buffer
3015 * @skb: buffer to transmit
3016 * @accel_priv: private data used for L2 forwarding offload
3017 *
3018 * Queue a buffer for transmission to a network device. The caller must
3019 * have set the device and priority and built the buffer before calling
3020 * this function. The function can be called from an interrupt.
3021 *
3022 * A negative errno code is returned on a failure. A success does not
3023 * guarantee the frame will be transmitted as it may be dropped due
3024 * to congestion or traffic shaping.
3025 *
3026 * -----------------------------------------------------------------------------------
3027 * I notice this method can also return errors from the queue disciplines,
3028 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3029 * be positive.
3030 *
3031 * Regardless of the return value, the skb is consumed, so it is currently
3032 * difficult to retry a send to this method. (You can bump the ref count
3033 * before sending to hold a reference for retry if you are careful.)
3034 *
3035 * When calling this method, interrupts MUST be enabled. This is because
3036 * the BH enable code must have IRQs enabled so that it will not deadlock.
3037 * --BLG
3038 */
3039 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3040 {
3041 struct net_device *dev = skb->dev;
3042 struct netdev_queue *txq;
3043 struct Qdisc *q;
3044 int rc = -ENOMEM;
3045
3046 skb_reset_mac_header(skb);
3047
3048 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3049 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3050
3051 /* Disable soft irqs for various locks below. Also
3052 * stops preemption for RCU.
3053 */
3054 rcu_read_lock_bh();
3055
3056 skb_update_prio(skb);
3057
3058 /* If device/qdisc don't need skb->dst, release it right now while
3059 * its hot in this cpu cache.
3060 */
3061 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3062 skb_dst_drop(skb);
3063 else
3064 skb_dst_force(skb);
3065
3066 #ifdef CONFIG_NET_SWITCHDEV
3067 /* Don't forward if offload device already forwarded */
3068 if (skb->offload_fwd_mark &&
3069 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3070 consume_skb(skb);
3071 rc = NET_XMIT_SUCCESS;
3072 goto out;
3073 }
3074 #endif
3075
3076 txq = netdev_pick_tx(dev, skb, accel_priv);
3077 q = rcu_dereference_bh(txq->qdisc);
3078
3079 #ifdef CONFIG_NET_CLS_ACT
3080 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3081 #endif
3082 trace_net_dev_queue(skb);
3083 if (q->enqueue) {
3084 rc = __dev_xmit_skb(skb, q, dev, txq);
3085 goto out;
3086 }
3087
3088 /* The device has no queue. Common case for software devices:
3089 loopback, all the sorts of tunnels...
3090
3091 Really, it is unlikely that netif_tx_lock protection is necessary
3092 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3093 counters.)
3094 However, it is possible, that they rely on protection
3095 made by us here.
3096
3097 Check this and shot the lock. It is not prone from deadlocks.
3098 Either shot noqueue qdisc, it is even simpler 8)
3099 */
3100 if (dev->flags & IFF_UP) {
3101 int cpu = smp_processor_id(); /* ok because BHs are off */
3102
3103 if (txq->xmit_lock_owner != cpu) {
3104
3105 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3106 goto recursion_alert;
3107
3108 skb = validate_xmit_skb(skb, dev);
3109 if (!skb)
3110 goto drop;
3111
3112 HARD_TX_LOCK(dev, txq, cpu);
3113
3114 if (!netif_xmit_stopped(txq)) {
3115 __this_cpu_inc(xmit_recursion);
3116 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3117 __this_cpu_dec(xmit_recursion);
3118 if (dev_xmit_complete(rc)) {
3119 HARD_TX_UNLOCK(dev, txq);
3120 goto out;
3121 }
3122 }
3123 HARD_TX_UNLOCK(dev, txq);
3124 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3125 dev->name);
3126 } else {
3127 /* Recursion is detected! It is possible,
3128 * unfortunately
3129 */
3130 recursion_alert:
3131 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3132 dev->name);
3133 }
3134 }
3135
3136 rc = -ENETDOWN;
3137 drop:
3138 rcu_read_unlock_bh();
3139
3140 atomic_long_inc(&dev->tx_dropped);
3141 kfree_skb_list(skb);
3142 return rc;
3143 out:
3144 rcu_read_unlock_bh();
3145 return rc;
3146 }
3147
3148 int dev_queue_xmit(struct sk_buff *skb)
3149 {
3150 return __dev_queue_xmit(skb, NULL);
3151 }
3152 EXPORT_SYMBOL(dev_queue_xmit);
3153
3154 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3155 {
3156 return __dev_queue_xmit(skb, accel_priv);
3157 }
3158 EXPORT_SYMBOL(dev_queue_xmit_accel);
3159
3160
3161 /*=======================================================================
3162 Receiver routines
3163 =======================================================================*/
3164
3165 int netdev_max_backlog __read_mostly = 1000;
3166 EXPORT_SYMBOL(netdev_max_backlog);
3167
3168 int netdev_tstamp_prequeue __read_mostly = 1;
3169 int netdev_budget __read_mostly = 300;
3170 int weight_p __read_mostly = 64; /* old backlog weight */
3171
3172 /* Called with irq disabled */
3173 static inline void ____napi_schedule(struct softnet_data *sd,
3174 struct napi_struct *napi)
3175 {
3176 list_add_tail(&napi->poll_list, &sd->poll_list);
3177 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3178 }
3179
3180 #ifdef CONFIG_RPS
3181
3182 /* One global table that all flow-based protocols share. */
3183 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3184 EXPORT_SYMBOL(rps_sock_flow_table);
3185 u32 rps_cpu_mask __read_mostly;
3186 EXPORT_SYMBOL(rps_cpu_mask);
3187
3188 struct static_key rps_needed __read_mostly;
3189
3190 static struct rps_dev_flow *
3191 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3192 struct rps_dev_flow *rflow, u16 next_cpu)
3193 {
3194 if (next_cpu < nr_cpu_ids) {
3195 #ifdef CONFIG_RFS_ACCEL
3196 struct netdev_rx_queue *rxqueue;
3197 struct rps_dev_flow_table *flow_table;
3198 struct rps_dev_flow *old_rflow;
3199 u32 flow_id;
3200 u16 rxq_index;
3201 int rc;
3202
3203 /* Should we steer this flow to a different hardware queue? */
3204 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3205 !(dev->features & NETIF_F_NTUPLE))
3206 goto out;
3207 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3208 if (rxq_index == skb_get_rx_queue(skb))
3209 goto out;
3210
3211 rxqueue = dev->_rx + rxq_index;
3212 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3213 if (!flow_table)
3214 goto out;
3215 flow_id = skb_get_hash(skb) & flow_table->mask;
3216 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3217 rxq_index, flow_id);
3218 if (rc < 0)
3219 goto out;
3220 old_rflow = rflow;
3221 rflow = &flow_table->flows[flow_id];
3222 rflow->filter = rc;
3223 if (old_rflow->filter == rflow->filter)
3224 old_rflow->filter = RPS_NO_FILTER;
3225 out:
3226 #endif
3227 rflow->last_qtail =
3228 per_cpu(softnet_data, next_cpu).input_queue_head;
3229 }
3230
3231 rflow->cpu = next_cpu;
3232 return rflow;
3233 }
3234
3235 /*
3236 * get_rps_cpu is called from netif_receive_skb and returns the target
3237 * CPU from the RPS map of the receiving queue for a given skb.
3238 * rcu_read_lock must be held on entry.
3239 */
3240 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3241 struct rps_dev_flow **rflowp)
3242 {
3243 const struct rps_sock_flow_table *sock_flow_table;
3244 struct netdev_rx_queue *rxqueue = dev->_rx;
3245 struct rps_dev_flow_table *flow_table;
3246 struct rps_map *map;
3247 int cpu = -1;
3248 u32 tcpu;
3249 u32 hash;
3250
3251 if (skb_rx_queue_recorded(skb)) {
3252 u16 index = skb_get_rx_queue(skb);
3253
3254 if (unlikely(index >= dev->real_num_rx_queues)) {
3255 WARN_ONCE(dev->real_num_rx_queues > 1,
3256 "%s received packet on queue %u, but number "
3257 "of RX queues is %u\n",
3258 dev->name, index, dev->real_num_rx_queues);
3259 goto done;
3260 }
3261 rxqueue += index;
3262 }
3263
3264 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3265
3266 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3267 map = rcu_dereference(rxqueue->rps_map);
3268 if (!flow_table && !map)
3269 goto done;
3270
3271 skb_reset_network_header(skb);
3272 hash = skb_get_hash(skb);
3273 if (!hash)
3274 goto done;
3275
3276 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3277 if (flow_table && sock_flow_table) {
3278 struct rps_dev_flow *rflow;
3279 u32 next_cpu;
3280 u32 ident;
3281
3282 /* First check into global flow table if there is a match */
3283 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3284 if ((ident ^ hash) & ~rps_cpu_mask)
3285 goto try_rps;
3286
3287 next_cpu = ident & rps_cpu_mask;
3288
3289 /* OK, now we know there is a match,
3290 * we can look at the local (per receive queue) flow table
3291 */
3292 rflow = &flow_table->flows[hash & flow_table->mask];
3293 tcpu = rflow->cpu;
3294
3295 /*
3296 * If the desired CPU (where last recvmsg was done) is
3297 * different from current CPU (one in the rx-queue flow
3298 * table entry), switch if one of the following holds:
3299 * - Current CPU is unset (>= nr_cpu_ids).
3300 * - Current CPU is offline.
3301 * - The current CPU's queue tail has advanced beyond the
3302 * last packet that was enqueued using this table entry.
3303 * This guarantees that all previous packets for the flow
3304 * have been dequeued, thus preserving in order delivery.
3305 */
3306 if (unlikely(tcpu != next_cpu) &&
3307 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3308 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3309 rflow->last_qtail)) >= 0)) {
3310 tcpu = next_cpu;
3311 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3312 }
3313
3314 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3315 *rflowp = rflow;
3316 cpu = tcpu;
3317 goto done;
3318 }
3319 }
3320
3321 try_rps:
3322
3323 if (map) {
3324 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3325 if (cpu_online(tcpu)) {
3326 cpu = tcpu;
3327 goto done;
3328 }
3329 }
3330
3331 done:
3332 return cpu;
3333 }
3334
3335 #ifdef CONFIG_RFS_ACCEL
3336
3337 /**
3338 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3339 * @dev: Device on which the filter was set
3340 * @rxq_index: RX queue index
3341 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3342 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3343 *
3344 * Drivers that implement ndo_rx_flow_steer() should periodically call
3345 * this function for each installed filter and remove the filters for
3346 * which it returns %true.
3347 */
3348 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3349 u32 flow_id, u16 filter_id)
3350 {
3351 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3352 struct rps_dev_flow_table *flow_table;
3353 struct rps_dev_flow *rflow;
3354 bool expire = true;
3355 unsigned int cpu;
3356
3357 rcu_read_lock();
3358 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3359 if (flow_table && flow_id <= flow_table->mask) {
3360 rflow = &flow_table->flows[flow_id];
3361 cpu = ACCESS_ONCE(rflow->cpu);
3362 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3363 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3364 rflow->last_qtail) <
3365 (int)(10 * flow_table->mask)))
3366 expire = false;
3367 }
3368 rcu_read_unlock();
3369 return expire;
3370 }
3371 EXPORT_SYMBOL(rps_may_expire_flow);
3372
3373 #endif /* CONFIG_RFS_ACCEL */
3374
3375 /* Called from hardirq (IPI) context */
3376 static void rps_trigger_softirq(void *data)
3377 {
3378 struct softnet_data *sd = data;
3379
3380 ____napi_schedule(sd, &sd->backlog);
3381 sd->received_rps++;
3382 }
3383
3384 #endif /* CONFIG_RPS */
3385
3386 /*
3387 * Check if this softnet_data structure is another cpu one
3388 * If yes, queue it to our IPI list and return 1
3389 * If no, return 0
3390 */
3391 static int rps_ipi_queued(struct softnet_data *sd)
3392 {
3393 #ifdef CONFIG_RPS
3394 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3395
3396 if (sd != mysd) {
3397 sd->rps_ipi_next = mysd->rps_ipi_list;
3398 mysd->rps_ipi_list = sd;
3399
3400 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3401 return 1;
3402 }
3403 #endif /* CONFIG_RPS */
3404 return 0;
3405 }
3406
3407 #ifdef CONFIG_NET_FLOW_LIMIT
3408 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3409 #endif
3410
3411 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3412 {
3413 #ifdef CONFIG_NET_FLOW_LIMIT
3414 struct sd_flow_limit *fl;
3415 struct softnet_data *sd;
3416 unsigned int old_flow, new_flow;
3417
3418 if (qlen < (netdev_max_backlog >> 1))
3419 return false;
3420
3421 sd = this_cpu_ptr(&softnet_data);
3422
3423 rcu_read_lock();
3424 fl = rcu_dereference(sd->flow_limit);
3425 if (fl) {
3426 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3427 old_flow = fl->history[fl->history_head];
3428 fl->history[fl->history_head] = new_flow;
3429
3430 fl->history_head++;
3431 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3432
3433 if (likely(fl->buckets[old_flow]))
3434 fl->buckets[old_flow]--;
3435
3436 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3437 fl->count++;
3438 rcu_read_unlock();
3439 return true;
3440 }
3441 }
3442 rcu_read_unlock();
3443 #endif
3444 return false;
3445 }
3446
3447 /*
3448 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3449 * queue (may be a remote CPU queue).
3450 */
3451 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3452 unsigned int *qtail)
3453 {
3454 struct softnet_data *sd;
3455 unsigned long flags;
3456 unsigned int qlen;
3457
3458 sd = &per_cpu(softnet_data, cpu);
3459
3460 local_irq_save(flags);
3461
3462 rps_lock(sd);
3463 if (!netif_running(skb->dev))
3464 goto drop;
3465 qlen = skb_queue_len(&sd->input_pkt_queue);
3466 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3467 if (qlen) {
3468 enqueue:
3469 __skb_queue_tail(&sd->input_pkt_queue, skb);
3470 input_queue_tail_incr_save(sd, qtail);
3471 rps_unlock(sd);
3472 local_irq_restore(flags);
3473 return NET_RX_SUCCESS;
3474 }
3475
3476 /* Schedule NAPI for backlog device
3477 * We can use non atomic operation since we own the queue lock
3478 */
3479 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3480 if (!rps_ipi_queued(sd))
3481 ____napi_schedule(sd, &sd->backlog);
3482 }
3483 goto enqueue;
3484 }
3485
3486 drop:
3487 sd->dropped++;
3488 rps_unlock(sd);
3489
3490 local_irq_restore(flags);
3491
3492 atomic_long_inc(&skb->dev->rx_dropped);
3493 kfree_skb(skb);
3494 return NET_RX_DROP;
3495 }
3496
3497 static int netif_rx_internal(struct sk_buff *skb)
3498 {
3499 int ret;
3500
3501 net_timestamp_check(netdev_tstamp_prequeue, skb);
3502
3503 trace_netif_rx(skb);
3504 #ifdef CONFIG_RPS
3505 if (static_key_false(&rps_needed)) {
3506 struct rps_dev_flow voidflow, *rflow = &voidflow;
3507 int cpu;
3508
3509 preempt_disable();
3510 rcu_read_lock();
3511
3512 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3513 if (cpu < 0)
3514 cpu = smp_processor_id();
3515
3516 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3517
3518 rcu_read_unlock();
3519 preempt_enable();
3520 } else
3521 #endif
3522 {
3523 unsigned int qtail;
3524 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3525 put_cpu();
3526 }
3527 return ret;
3528 }
3529
3530 /**
3531 * netif_rx - post buffer to the network code
3532 * @skb: buffer to post
3533 *
3534 * This function receives a packet from a device driver and queues it for
3535 * the upper (protocol) levels to process. It always succeeds. The buffer
3536 * may be dropped during processing for congestion control or by the
3537 * protocol layers.
3538 *
3539 * return values:
3540 * NET_RX_SUCCESS (no congestion)
3541 * NET_RX_DROP (packet was dropped)
3542 *
3543 */
3544
3545 int netif_rx(struct sk_buff *skb)
3546 {
3547 trace_netif_rx_entry(skb);
3548
3549 return netif_rx_internal(skb);
3550 }
3551 EXPORT_SYMBOL(netif_rx);
3552
3553 int netif_rx_ni(struct sk_buff *skb)
3554 {
3555 int err;
3556
3557 trace_netif_rx_ni_entry(skb);
3558
3559 preempt_disable();
3560 err = netif_rx_internal(skb);
3561 if (local_softirq_pending())
3562 do_softirq();
3563 preempt_enable();
3564
3565 return err;
3566 }
3567 EXPORT_SYMBOL(netif_rx_ni);
3568
3569 static void net_tx_action(struct softirq_action *h)
3570 {
3571 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3572
3573 if (sd->completion_queue) {
3574 struct sk_buff *clist;
3575
3576 local_irq_disable();
3577 clist = sd->completion_queue;
3578 sd->completion_queue = NULL;
3579 local_irq_enable();
3580
3581 while (clist) {
3582 struct sk_buff *skb = clist;
3583 clist = clist->next;
3584
3585 WARN_ON(atomic_read(&skb->users));
3586 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3587 trace_consume_skb(skb);
3588 else
3589 trace_kfree_skb(skb, net_tx_action);
3590 __kfree_skb(skb);
3591 }
3592 }
3593
3594 if (sd->output_queue) {
3595 struct Qdisc *head;
3596
3597 local_irq_disable();
3598 head = sd->output_queue;
3599 sd->output_queue = NULL;
3600 sd->output_queue_tailp = &sd->output_queue;
3601 local_irq_enable();
3602
3603 while (head) {
3604 struct Qdisc *q = head;
3605 spinlock_t *root_lock;
3606
3607 head = head->next_sched;
3608
3609 root_lock = qdisc_lock(q);
3610 if (spin_trylock(root_lock)) {
3611 smp_mb__before_atomic();
3612 clear_bit(__QDISC_STATE_SCHED,
3613 &q->state);
3614 qdisc_run(q);
3615 spin_unlock(root_lock);
3616 } else {
3617 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3618 &q->state)) {
3619 __netif_reschedule(q);
3620 } else {
3621 smp_mb__before_atomic();
3622 clear_bit(__QDISC_STATE_SCHED,
3623 &q->state);
3624 }
3625 }
3626 }
3627 }
3628 }
3629
3630 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3631 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3632 /* This hook is defined here for ATM LANE */
3633 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3634 unsigned char *addr) __read_mostly;
3635 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3636 #endif
3637
3638 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3639 struct packet_type **pt_prev,
3640 int *ret, struct net_device *orig_dev)
3641 {
3642 #ifdef CONFIG_NET_CLS_ACT
3643 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3644 struct tcf_result cl_res;
3645
3646 /* If there's at least one ingress present somewhere (so
3647 * we get here via enabled static key), remaining devices
3648 * that are not configured with an ingress qdisc will bail
3649 * out here.
3650 */
3651 if (!cl)
3652 return skb;
3653 if (*pt_prev) {
3654 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3655 *pt_prev = NULL;
3656 }
3657
3658 qdisc_skb_cb(skb)->pkt_len = skb->len;
3659 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3660 qdisc_bstats_cpu_update(cl->q, skb);
3661
3662 switch (tc_classify(skb, cl, &cl_res, false)) {
3663 case TC_ACT_OK:
3664 case TC_ACT_RECLASSIFY:
3665 skb->tc_index = TC_H_MIN(cl_res.classid);
3666 break;
3667 case TC_ACT_SHOT:
3668 qdisc_qstats_cpu_drop(cl->q);
3669 case TC_ACT_STOLEN:
3670 case TC_ACT_QUEUED:
3671 kfree_skb(skb);
3672 return NULL;
3673 case TC_ACT_REDIRECT:
3674 /* skb_mac_header check was done by cls/act_bpf, so
3675 * we can safely push the L2 header back before
3676 * redirecting to another netdev
3677 */
3678 __skb_push(skb, skb->mac_len);
3679 skb_do_redirect(skb);
3680 return NULL;
3681 default:
3682 break;
3683 }
3684 #endif /* CONFIG_NET_CLS_ACT */
3685 return skb;
3686 }
3687
3688 /**
3689 * netdev_rx_handler_register - register receive handler
3690 * @dev: device to register a handler for
3691 * @rx_handler: receive handler to register
3692 * @rx_handler_data: data pointer that is used by rx handler
3693 *
3694 * Register a receive handler for a device. This handler will then be
3695 * called from __netif_receive_skb. A negative errno code is returned
3696 * on a failure.
3697 *
3698 * The caller must hold the rtnl_mutex.
3699 *
3700 * For a general description of rx_handler, see enum rx_handler_result.
3701 */
3702 int netdev_rx_handler_register(struct net_device *dev,
3703 rx_handler_func_t *rx_handler,
3704 void *rx_handler_data)
3705 {
3706 ASSERT_RTNL();
3707
3708 if (dev->rx_handler)
3709 return -EBUSY;
3710
3711 /* Note: rx_handler_data must be set before rx_handler */
3712 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3713 rcu_assign_pointer(dev->rx_handler, rx_handler);
3714
3715 return 0;
3716 }
3717 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3718
3719 /**
3720 * netdev_rx_handler_unregister - unregister receive handler
3721 * @dev: device to unregister a handler from
3722 *
3723 * Unregister a receive handler from a device.
3724 *
3725 * The caller must hold the rtnl_mutex.
3726 */
3727 void netdev_rx_handler_unregister(struct net_device *dev)
3728 {
3729
3730 ASSERT_RTNL();
3731 RCU_INIT_POINTER(dev->rx_handler, NULL);
3732 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3733 * section has a guarantee to see a non NULL rx_handler_data
3734 * as well.
3735 */
3736 synchronize_net();
3737 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3738 }
3739 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3740
3741 /*
3742 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3743 * the special handling of PFMEMALLOC skbs.
3744 */
3745 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3746 {
3747 switch (skb->protocol) {
3748 case htons(ETH_P_ARP):
3749 case htons(ETH_P_IP):
3750 case htons(ETH_P_IPV6):
3751 case htons(ETH_P_8021Q):
3752 case htons(ETH_P_8021AD):
3753 return true;
3754 default:
3755 return false;
3756 }
3757 }
3758
3759 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3760 int *ret, struct net_device *orig_dev)
3761 {
3762 #ifdef CONFIG_NETFILTER_INGRESS
3763 if (nf_hook_ingress_active(skb)) {
3764 if (*pt_prev) {
3765 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3766 *pt_prev = NULL;
3767 }
3768
3769 return nf_hook_ingress(skb);
3770 }
3771 #endif /* CONFIG_NETFILTER_INGRESS */
3772 return 0;
3773 }
3774
3775 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3776 {
3777 struct packet_type *ptype, *pt_prev;
3778 rx_handler_func_t *rx_handler;
3779 struct net_device *orig_dev;
3780 bool deliver_exact = false;
3781 int ret = NET_RX_DROP;
3782 __be16 type;
3783
3784 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3785
3786 trace_netif_receive_skb(skb);
3787
3788 orig_dev = skb->dev;
3789
3790 skb_reset_network_header(skb);
3791 if (!skb_transport_header_was_set(skb))
3792 skb_reset_transport_header(skb);
3793 skb_reset_mac_len(skb);
3794
3795 pt_prev = NULL;
3796
3797 another_round:
3798 skb->skb_iif = skb->dev->ifindex;
3799
3800 __this_cpu_inc(softnet_data.processed);
3801
3802 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3803 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3804 skb = skb_vlan_untag(skb);
3805 if (unlikely(!skb))
3806 goto out;
3807 }
3808
3809 #ifdef CONFIG_NET_CLS_ACT
3810 if (skb->tc_verd & TC_NCLS) {
3811 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3812 goto ncls;
3813 }
3814 #endif
3815
3816 if (pfmemalloc)
3817 goto skip_taps;
3818
3819 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3820 if (pt_prev)
3821 ret = deliver_skb(skb, pt_prev, orig_dev);
3822 pt_prev = ptype;
3823 }
3824
3825 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3826 if (pt_prev)
3827 ret = deliver_skb(skb, pt_prev, orig_dev);
3828 pt_prev = ptype;
3829 }
3830
3831 skip_taps:
3832 #ifdef CONFIG_NET_INGRESS
3833 if (static_key_false(&ingress_needed)) {
3834 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3835 if (!skb)
3836 goto out;
3837
3838 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3839 goto out;
3840 }
3841 #endif
3842 #ifdef CONFIG_NET_CLS_ACT
3843 skb->tc_verd = 0;
3844 ncls:
3845 #endif
3846 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3847 goto drop;
3848
3849 if (skb_vlan_tag_present(skb)) {
3850 if (pt_prev) {
3851 ret = deliver_skb(skb, pt_prev, orig_dev);
3852 pt_prev = NULL;
3853 }
3854 if (vlan_do_receive(&skb))
3855 goto another_round;
3856 else if (unlikely(!skb))
3857 goto out;
3858 }
3859
3860 rx_handler = rcu_dereference(skb->dev->rx_handler);
3861 if (rx_handler) {
3862 if (pt_prev) {
3863 ret = deliver_skb(skb, pt_prev, orig_dev);
3864 pt_prev = NULL;
3865 }
3866 switch (rx_handler(&skb)) {
3867 case RX_HANDLER_CONSUMED:
3868 ret = NET_RX_SUCCESS;
3869 goto out;
3870 case RX_HANDLER_ANOTHER:
3871 goto another_round;
3872 case RX_HANDLER_EXACT:
3873 deliver_exact = true;
3874 case RX_HANDLER_PASS:
3875 break;
3876 default:
3877 BUG();
3878 }
3879 }
3880
3881 if (unlikely(skb_vlan_tag_present(skb))) {
3882 if (skb_vlan_tag_get_id(skb))
3883 skb->pkt_type = PACKET_OTHERHOST;
3884 /* Note: we might in the future use prio bits
3885 * and set skb->priority like in vlan_do_receive()
3886 * For the time being, just ignore Priority Code Point
3887 */
3888 skb->vlan_tci = 0;
3889 }
3890
3891 type = skb->protocol;
3892
3893 /* deliver only exact match when indicated */
3894 if (likely(!deliver_exact)) {
3895 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3896 &ptype_base[ntohs(type) &
3897 PTYPE_HASH_MASK]);
3898 }
3899
3900 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3901 &orig_dev->ptype_specific);
3902
3903 if (unlikely(skb->dev != orig_dev)) {
3904 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3905 &skb->dev->ptype_specific);
3906 }
3907
3908 if (pt_prev) {
3909 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3910 goto drop;
3911 else
3912 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3913 } else {
3914 drop:
3915 atomic_long_inc(&skb->dev->rx_dropped);
3916 kfree_skb(skb);
3917 /* Jamal, now you will not able to escape explaining
3918 * me how you were going to use this. :-)
3919 */
3920 ret = NET_RX_DROP;
3921 }
3922
3923 out:
3924 return ret;
3925 }
3926
3927 static int __netif_receive_skb(struct sk_buff *skb)
3928 {
3929 int ret;
3930
3931 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3932 unsigned long pflags = current->flags;
3933
3934 /*
3935 * PFMEMALLOC skbs are special, they should
3936 * - be delivered to SOCK_MEMALLOC sockets only
3937 * - stay away from userspace
3938 * - have bounded memory usage
3939 *
3940 * Use PF_MEMALLOC as this saves us from propagating the allocation
3941 * context down to all allocation sites.
3942 */
3943 current->flags |= PF_MEMALLOC;
3944 ret = __netif_receive_skb_core(skb, true);
3945 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3946 } else
3947 ret = __netif_receive_skb_core(skb, false);
3948
3949 return ret;
3950 }
3951
3952 static int netif_receive_skb_internal(struct sk_buff *skb)
3953 {
3954 int ret;
3955
3956 net_timestamp_check(netdev_tstamp_prequeue, skb);
3957
3958 if (skb_defer_rx_timestamp(skb))
3959 return NET_RX_SUCCESS;
3960
3961 rcu_read_lock();
3962
3963 #ifdef CONFIG_RPS
3964 if (static_key_false(&rps_needed)) {
3965 struct rps_dev_flow voidflow, *rflow = &voidflow;
3966 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
3967
3968 if (cpu >= 0) {
3969 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3970 rcu_read_unlock();
3971 return ret;
3972 }
3973 }
3974 #endif
3975 ret = __netif_receive_skb(skb);
3976 rcu_read_unlock();
3977 return ret;
3978 }
3979
3980 /**
3981 * netif_receive_skb - process receive buffer from network
3982 * @skb: buffer to process
3983 *
3984 * netif_receive_skb() is the main receive data processing function.
3985 * It always succeeds. The buffer may be dropped during processing
3986 * for congestion control or by the protocol layers.
3987 *
3988 * This function may only be called from softirq context and interrupts
3989 * should be enabled.
3990 *
3991 * Return values (usually ignored):
3992 * NET_RX_SUCCESS: no congestion
3993 * NET_RX_DROP: packet was dropped
3994 */
3995 int netif_receive_skb(struct sk_buff *skb)
3996 {
3997 trace_netif_receive_skb_entry(skb);
3998
3999 return netif_receive_skb_internal(skb);
4000 }
4001 EXPORT_SYMBOL(netif_receive_skb);
4002
4003 /* Network device is going away, flush any packets still pending
4004 * Called with irqs disabled.
4005 */
4006 static void flush_backlog(void *arg)
4007 {
4008 struct net_device *dev = arg;
4009 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4010 struct sk_buff *skb, *tmp;
4011
4012 rps_lock(sd);
4013 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4014 if (skb->dev == dev) {
4015 __skb_unlink(skb, &sd->input_pkt_queue);
4016 kfree_skb(skb);
4017 input_queue_head_incr(sd);
4018 }
4019 }
4020 rps_unlock(sd);
4021
4022 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4023 if (skb->dev == dev) {
4024 __skb_unlink(skb, &sd->process_queue);
4025 kfree_skb(skb);
4026 input_queue_head_incr(sd);
4027 }
4028 }
4029 }
4030
4031 static int napi_gro_complete(struct sk_buff *skb)
4032 {
4033 struct packet_offload *ptype;
4034 __be16 type = skb->protocol;
4035 struct list_head *head = &offload_base;
4036 int err = -ENOENT;
4037
4038 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4039
4040 if (NAPI_GRO_CB(skb)->count == 1) {
4041 skb_shinfo(skb)->gso_size = 0;
4042 goto out;
4043 }
4044
4045 rcu_read_lock();
4046 list_for_each_entry_rcu(ptype, head, list) {
4047 if (ptype->type != type || !ptype->callbacks.gro_complete)
4048 continue;
4049
4050 err = ptype->callbacks.gro_complete(skb, 0);
4051 break;
4052 }
4053 rcu_read_unlock();
4054
4055 if (err) {
4056 WARN_ON(&ptype->list == head);
4057 kfree_skb(skb);
4058 return NET_RX_SUCCESS;
4059 }
4060
4061 out:
4062 return netif_receive_skb_internal(skb);
4063 }
4064
4065 /* napi->gro_list contains packets ordered by age.
4066 * youngest packets at the head of it.
4067 * Complete skbs in reverse order to reduce latencies.
4068 */
4069 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4070 {
4071 struct sk_buff *skb, *prev = NULL;
4072
4073 /* scan list and build reverse chain */
4074 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4075 skb->prev = prev;
4076 prev = skb;
4077 }
4078
4079 for (skb = prev; skb; skb = prev) {
4080 skb->next = NULL;
4081
4082 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4083 return;
4084
4085 prev = skb->prev;
4086 napi_gro_complete(skb);
4087 napi->gro_count--;
4088 }
4089
4090 napi->gro_list = NULL;
4091 }
4092 EXPORT_SYMBOL(napi_gro_flush);
4093
4094 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4095 {
4096 struct sk_buff *p;
4097 unsigned int maclen = skb->dev->hard_header_len;
4098 u32 hash = skb_get_hash_raw(skb);
4099
4100 for (p = napi->gro_list; p; p = p->next) {
4101 unsigned long diffs;
4102
4103 NAPI_GRO_CB(p)->flush = 0;
4104
4105 if (hash != skb_get_hash_raw(p)) {
4106 NAPI_GRO_CB(p)->same_flow = 0;
4107 continue;
4108 }
4109
4110 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4111 diffs |= p->vlan_tci ^ skb->vlan_tci;
4112 if (maclen == ETH_HLEN)
4113 diffs |= compare_ether_header(skb_mac_header(p),
4114 skb_mac_header(skb));
4115 else if (!diffs)
4116 diffs = memcmp(skb_mac_header(p),
4117 skb_mac_header(skb),
4118 maclen);
4119 NAPI_GRO_CB(p)->same_flow = !diffs;
4120 }
4121 }
4122
4123 static void skb_gro_reset_offset(struct sk_buff *skb)
4124 {
4125 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4126 const skb_frag_t *frag0 = &pinfo->frags[0];
4127
4128 NAPI_GRO_CB(skb)->data_offset = 0;
4129 NAPI_GRO_CB(skb)->frag0 = NULL;
4130 NAPI_GRO_CB(skb)->frag0_len = 0;
4131
4132 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4133 pinfo->nr_frags &&
4134 !PageHighMem(skb_frag_page(frag0))) {
4135 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4136 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4137 }
4138 }
4139
4140 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4141 {
4142 struct skb_shared_info *pinfo = skb_shinfo(skb);
4143
4144 BUG_ON(skb->end - skb->tail < grow);
4145
4146 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4147
4148 skb->data_len -= grow;
4149 skb->tail += grow;
4150
4151 pinfo->frags[0].page_offset += grow;
4152 skb_frag_size_sub(&pinfo->frags[0], grow);
4153
4154 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4155 skb_frag_unref(skb, 0);
4156 memmove(pinfo->frags, pinfo->frags + 1,
4157 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4158 }
4159 }
4160
4161 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4162 {
4163 struct sk_buff **pp = NULL;
4164 struct packet_offload *ptype;
4165 __be16 type = skb->protocol;
4166 struct list_head *head = &offload_base;
4167 int same_flow;
4168 enum gro_result ret;
4169 int grow;
4170
4171 if (!(skb->dev->features & NETIF_F_GRO))
4172 goto normal;
4173
4174 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4175 goto normal;
4176
4177 gro_list_prepare(napi, skb);
4178
4179 rcu_read_lock();
4180 list_for_each_entry_rcu(ptype, head, list) {
4181 if (ptype->type != type || !ptype->callbacks.gro_receive)
4182 continue;
4183
4184 skb_set_network_header(skb, skb_gro_offset(skb));
4185 skb_reset_mac_len(skb);
4186 NAPI_GRO_CB(skb)->same_flow = 0;
4187 NAPI_GRO_CB(skb)->flush = 0;
4188 NAPI_GRO_CB(skb)->free = 0;
4189 NAPI_GRO_CB(skb)->udp_mark = 0;
4190 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4191
4192 /* Setup for GRO checksum validation */
4193 switch (skb->ip_summed) {
4194 case CHECKSUM_COMPLETE:
4195 NAPI_GRO_CB(skb)->csum = skb->csum;
4196 NAPI_GRO_CB(skb)->csum_valid = 1;
4197 NAPI_GRO_CB(skb)->csum_cnt = 0;
4198 break;
4199 case CHECKSUM_UNNECESSARY:
4200 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4201 NAPI_GRO_CB(skb)->csum_valid = 0;
4202 break;
4203 default:
4204 NAPI_GRO_CB(skb)->csum_cnt = 0;
4205 NAPI_GRO_CB(skb)->csum_valid = 0;
4206 }
4207
4208 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4209 break;
4210 }
4211 rcu_read_unlock();
4212
4213 if (&ptype->list == head)
4214 goto normal;
4215
4216 same_flow = NAPI_GRO_CB(skb)->same_flow;
4217 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4218
4219 if (pp) {
4220 struct sk_buff *nskb = *pp;
4221
4222 *pp = nskb->next;
4223 nskb->next = NULL;
4224 napi_gro_complete(nskb);
4225 napi->gro_count--;
4226 }
4227
4228 if (same_flow)
4229 goto ok;
4230
4231 if (NAPI_GRO_CB(skb)->flush)
4232 goto normal;
4233
4234 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4235 struct sk_buff *nskb = napi->gro_list;
4236
4237 /* locate the end of the list to select the 'oldest' flow */
4238 while (nskb->next) {
4239 pp = &nskb->next;
4240 nskb = *pp;
4241 }
4242 *pp = NULL;
4243 nskb->next = NULL;
4244 napi_gro_complete(nskb);
4245 } else {
4246 napi->gro_count++;
4247 }
4248 NAPI_GRO_CB(skb)->count = 1;
4249 NAPI_GRO_CB(skb)->age = jiffies;
4250 NAPI_GRO_CB(skb)->last = skb;
4251 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4252 skb->next = napi->gro_list;
4253 napi->gro_list = skb;
4254 ret = GRO_HELD;
4255
4256 pull:
4257 grow = skb_gro_offset(skb) - skb_headlen(skb);
4258 if (grow > 0)
4259 gro_pull_from_frag0(skb, grow);
4260 ok:
4261 return ret;
4262
4263 normal:
4264 ret = GRO_NORMAL;
4265 goto pull;
4266 }
4267
4268 struct packet_offload *gro_find_receive_by_type(__be16 type)
4269 {
4270 struct list_head *offload_head = &offload_base;
4271 struct packet_offload *ptype;
4272
4273 list_for_each_entry_rcu(ptype, offload_head, list) {
4274 if (ptype->type != type || !ptype->callbacks.gro_receive)
4275 continue;
4276 return ptype;
4277 }
4278 return NULL;
4279 }
4280 EXPORT_SYMBOL(gro_find_receive_by_type);
4281
4282 struct packet_offload *gro_find_complete_by_type(__be16 type)
4283 {
4284 struct list_head *offload_head = &offload_base;
4285 struct packet_offload *ptype;
4286
4287 list_for_each_entry_rcu(ptype, offload_head, list) {
4288 if (ptype->type != type || !ptype->callbacks.gro_complete)
4289 continue;
4290 return ptype;
4291 }
4292 return NULL;
4293 }
4294 EXPORT_SYMBOL(gro_find_complete_by_type);
4295
4296 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4297 {
4298 switch (ret) {
4299 case GRO_NORMAL:
4300 if (netif_receive_skb_internal(skb))
4301 ret = GRO_DROP;
4302 break;
4303
4304 case GRO_DROP:
4305 kfree_skb(skb);
4306 break;
4307
4308 case GRO_MERGED_FREE:
4309 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4310 kmem_cache_free(skbuff_head_cache, skb);
4311 else
4312 __kfree_skb(skb);
4313 break;
4314
4315 case GRO_HELD:
4316 case GRO_MERGED:
4317 break;
4318 }
4319
4320 return ret;
4321 }
4322
4323 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4324 {
4325 trace_napi_gro_receive_entry(skb);
4326
4327 skb_gro_reset_offset(skb);
4328
4329 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4330 }
4331 EXPORT_SYMBOL(napi_gro_receive);
4332
4333 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4334 {
4335 if (unlikely(skb->pfmemalloc)) {
4336 consume_skb(skb);
4337 return;
4338 }
4339 __skb_pull(skb, skb_headlen(skb));
4340 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4341 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4342 skb->vlan_tci = 0;
4343 skb->dev = napi->dev;
4344 skb->skb_iif = 0;
4345 skb->encapsulation = 0;
4346 skb_shinfo(skb)->gso_type = 0;
4347 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4348
4349 napi->skb = skb;
4350 }
4351
4352 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4353 {
4354 struct sk_buff *skb = napi->skb;
4355
4356 if (!skb) {
4357 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4358 napi->skb = skb;
4359 }
4360 return skb;
4361 }
4362 EXPORT_SYMBOL(napi_get_frags);
4363
4364 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4365 struct sk_buff *skb,
4366 gro_result_t ret)
4367 {
4368 switch (ret) {
4369 case GRO_NORMAL:
4370 case GRO_HELD:
4371 __skb_push(skb, ETH_HLEN);
4372 skb->protocol = eth_type_trans(skb, skb->dev);
4373 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4374 ret = GRO_DROP;
4375 break;
4376
4377 case GRO_DROP:
4378 case GRO_MERGED_FREE:
4379 napi_reuse_skb(napi, skb);
4380 break;
4381
4382 case GRO_MERGED:
4383 break;
4384 }
4385
4386 return ret;
4387 }
4388
4389 /* Upper GRO stack assumes network header starts at gro_offset=0
4390 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4391 * We copy ethernet header into skb->data to have a common layout.
4392 */
4393 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4394 {
4395 struct sk_buff *skb = napi->skb;
4396 const struct ethhdr *eth;
4397 unsigned int hlen = sizeof(*eth);
4398
4399 napi->skb = NULL;
4400
4401 skb_reset_mac_header(skb);
4402 skb_gro_reset_offset(skb);
4403
4404 eth = skb_gro_header_fast(skb, 0);
4405 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4406 eth = skb_gro_header_slow(skb, hlen, 0);
4407 if (unlikely(!eth)) {
4408 napi_reuse_skb(napi, skb);
4409 return NULL;
4410 }
4411 } else {
4412 gro_pull_from_frag0(skb, hlen);
4413 NAPI_GRO_CB(skb)->frag0 += hlen;
4414 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4415 }
4416 __skb_pull(skb, hlen);
4417
4418 /*
4419 * This works because the only protocols we care about don't require
4420 * special handling.
4421 * We'll fix it up properly in napi_frags_finish()
4422 */
4423 skb->protocol = eth->h_proto;
4424
4425 return skb;
4426 }
4427
4428 gro_result_t napi_gro_frags(struct napi_struct *napi)
4429 {
4430 struct sk_buff *skb = napi_frags_skb(napi);
4431
4432 if (!skb)
4433 return GRO_DROP;
4434
4435 trace_napi_gro_frags_entry(skb);
4436
4437 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4438 }
4439 EXPORT_SYMBOL(napi_gro_frags);
4440
4441 /* Compute the checksum from gro_offset and return the folded value
4442 * after adding in any pseudo checksum.
4443 */
4444 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4445 {
4446 __wsum wsum;
4447 __sum16 sum;
4448
4449 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4450
4451 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4452 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4453 if (likely(!sum)) {
4454 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4455 !skb->csum_complete_sw)
4456 netdev_rx_csum_fault(skb->dev);
4457 }
4458
4459 NAPI_GRO_CB(skb)->csum = wsum;
4460 NAPI_GRO_CB(skb)->csum_valid = 1;
4461
4462 return sum;
4463 }
4464 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4465
4466 /*
4467 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4468 * Note: called with local irq disabled, but exits with local irq enabled.
4469 */
4470 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4471 {
4472 #ifdef CONFIG_RPS
4473 struct softnet_data *remsd = sd->rps_ipi_list;
4474
4475 if (remsd) {
4476 sd->rps_ipi_list = NULL;
4477
4478 local_irq_enable();
4479
4480 /* Send pending IPI's to kick RPS processing on remote cpus. */
4481 while (remsd) {
4482 struct softnet_data *next = remsd->rps_ipi_next;
4483
4484 if (cpu_online(remsd->cpu))
4485 smp_call_function_single_async(remsd->cpu,
4486 &remsd->csd);
4487 remsd = next;
4488 }
4489 } else
4490 #endif
4491 local_irq_enable();
4492 }
4493
4494 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4495 {
4496 #ifdef CONFIG_RPS
4497 return sd->rps_ipi_list != NULL;
4498 #else
4499 return false;
4500 #endif
4501 }
4502
4503 static int process_backlog(struct napi_struct *napi, int quota)
4504 {
4505 int work = 0;
4506 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4507
4508 /* Check if we have pending ipi, its better to send them now,
4509 * not waiting net_rx_action() end.
4510 */
4511 if (sd_has_rps_ipi_waiting(sd)) {
4512 local_irq_disable();
4513 net_rps_action_and_irq_enable(sd);
4514 }
4515
4516 napi->weight = weight_p;
4517 local_irq_disable();
4518 while (1) {
4519 struct sk_buff *skb;
4520
4521 while ((skb = __skb_dequeue(&sd->process_queue))) {
4522 rcu_read_lock();
4523 local_irq_enable();
4524 __netif_receive_skb(skb);
4525 rcu_read_unlock();
4526 local_irq_disable();
4527 input_queue_head_incr(sd);
4528 if (++work >= quota) {
4529 local_irq_enable();
4530 return work;
4531 }
4532 }
4533
4534 rps_lock(sd);
4535 if (skb_queue_empty(&sd->input_pkt_queue)) {
4536 /*
4537 * Inline a custom version of __napi_complete().
4538 * only current cpu owns and manipulates this napi,
4539 * and NAPI_STATE_SCHED is the only possible flag set
4540 * on backlog.
4541 * We can use a plain write instead of clear_bit(),
4542 * and we dont need an smp_mb() memory barrier.
4543 */
4544 napi->state = 0;
4545 rps_unlock(sd);
4546
4547 break;
4548 }
4549
4550 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4551 &sd->process_queue);
4552 rps_unlock(sd);
4553 }
4554 local_irq_enable();
4555
4556 return work;
4557 }
4558
4559 /**
4560 * __napi_schedule - schedule for receive
4561 * @n: entry to schedule
4562 *
4563 * The entry's receive function will be scheduled to run.
4564 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4565 */
4566 void __napi_schedule(struct napi_struct *n)
4567 {
4568 unsigned long flags;
4569
4570 local_irq_save(flags);
4571 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4572 local_irq_restore(flags);
4573 }
4574 EXPORT_SYMBOL(__napi_schedule);
4575
4576 /**
4577 * __napi_schedule_irqoff - schedule for receive
4578 * @n: entry to schedule
4579 *
4580 * Variant of __napi_schedule() assuming hard irqs are masked
4581 */
4582 void __napi_schedule_irqoff(struct napi_struct *n)
4583 {
4584 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4585 }
4586 EXPORT_SYMBOL(__napi_schedule_irqoff);
4587
4588 void __napi_complete(struct napi_struct *n)
4589 {
4590 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4591
4592 list_del_init(&n->poll_list);
4593 smp_mb__before_atomic();
4594 clear_bit(NAPI_STATE_SCHED, &n->state);
4595 }
4596 EXPORT_SYMBOL(__napi_complete);
4597
4598 void napi_complete_done(struct napi_struct *n, int work_done)
4599 {
4600 unsigned long flags;
4601
4602 /*
4603 * don't let napi dequeue from the cpu poll list
4604 * just in case its running on a different cpu
4605 */
4606 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4607 return;
4608
4609 if (n->gro_list) {
4610 unsigned long timeout = 0;
4611
4612 if (work_done)
4613 timeout = n->dev->gro_flush_timeout;
4614
4615 if (timeout)
4616 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4617 HRTIMER_MODE_REL_PINNED);
4618 else
4619 napi_gro_flush(n, false);
4620 }
4621 if (likely(list_empty(&n->poll_list))) {
4622 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4623 } else {
4624 /* If n->poll_list is not empty, we need to mask irqs */
4625 local_irq_save(flags);
4626 __napi_complete(n);
4627 local_irq_restore(flags);
4628 }
4629 }
4630 EXPORT_SYMBOL(napi_complete_done);
4631
4632 /* must be called under rcu_read_lock(), as we dont take a reference */
4633 struct napi_struct *napi_by_id(unsigned int napi_id)
4634 {
4635 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4636 struct napi_struct *napi;
4637
4638 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4639 if (napi->napi_id == napi_id)
4640 return napi;
4641
4642 return NULL;
4643 }
4644 EXPORT_SYMBOL_GPL(napi_by_id);
4645
4646 void napi_hash_add(struct napi_struct *napi)
4647 {
4648 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4649
4650 spin_lock(&napi_hash_lock);
4651
4652 /* 0 is not a valid id, we also skip an id that is taken
4653 * we expect both events to be extremely rare
4654 */
4655 napi->napi_id = 0;
4656 while (!napi->napi_id) {
4657 napi->napi_id = ++napi_gen_id;
4658 if (napi_by_id(napi->napi_id))
4659 napi->napi_id = 0;
4660 }
4661
4662 hlist_add_head_rcu(&napi->napi_hash_node,
4663 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4664
4665 spin_unlock(&napi_hash_lock);
4666 }
4667 }
4668 EXPORT_SYMBOL_GPL(napi_hash_add);
4669
4670 /* Warning : caller is responsible to make sure rcu grace period
4671 * is respected before freeing memory containing @napi
4672 */
4673 void napi_hash_del(struct napi_struct *napi)
4674 {
4675 spin_lock(&napi_hash_lock);
4676
4677 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4678 hlist_del_rcu(&napi->napi_hash_node);
4679
4680 spin_unlock(&napi_hash_lock);
4681 }
4682 EXPORT_SYMBOL_GPL(napi_hash_del);
4683
4684 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4685 {
4686 struct napi_struct *napi;
4687
4688 napi = container_of(timer, struct napi_struct, timer);
4689 if (napi->gro_list)
4690 napi_schedule(napi);
4691
4692 return HRTIMER_NORESTART;
4693 }
4694
4695 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4696 int (*poll)(struct napi_struct *, int), int weight)
4697 {
4698 INIT_LIST_HEAD(&napi->poll_list);
4699 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4700 napi->timer.function = napi_watchdog;
4701 napi->gro_count = 0;
4702 napi->gro_list = NULL;
4703 napi->skb = NULL;
4704 napi->poll = poll;
4705 if (weight > NAPI_POLL_WEIGHT)
4706 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4707 weight, dev->name);
4708 napi->weight = weight;
4709 list_add(&napi->dev_list, &dev->napi_list);
4710 napi->dev = dev;
4711 #ifdef CONFIG_NETPOLL
4712 spin_lock_init(&napi->poll_lock);
4713 napi->poll_owner = -1;
4714 #endif
4715 set_bit(NAPI_STATE_SCHED, &napi->state);
4716 }
4717 EXPORT_SYMBOL(netif_napi_add);
4718
4719 void napi_disable(struct napi_struct *n)
4720 {
4721 might_sleep();
4722 set_bit(NAPI_STATE_DISABLE, &n->state);
4723
4724 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4725 msleep(1);
4726 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4727 msleep(1);
4728
4729 hrtimer_cancel(&n->timer);
4730
4731 clear_bit(NAPI_STATE_DISABLE, &n->state);
4732 }
4733 EXPORT_SYMBOL(napi_disable);
4734
4735 void netif_napi_del(struct napi_struct *napi)
4736 {
4737 list_del_init(&napi->dev_list);
4738 napi_free_frags(napi);
4739
4740 kfree_skb_list(napi->gro_list);
4741 napi->gro_list = NULL;
4742 napi->gro_count = 0;
4743 }
4744 EXPORT_SYMBOL(netif_napi_del);
4745
4746 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4747 {
4748 void *have;
4749 int work, weight;
4750
4751 list_del_init(&n->poll_list);
4752
4753 have = netpoll_poll_lock(n);
4754
4755 weight = n->weight;
4756
4757 /* This NAPI_STATE_SCHED test is for avoiding a race
4758 * with netpoll's poll_napi(). Only the entity which
4759 * obtains the lock and sees NAPI_STATE_SCHED set will
4760 * actually make the ->poll() call. Therefore we avoid
4761 * accidentally calling ->poll() when NAPI is not scheduled.
4762 */
4763 work = 0;
4764 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4765 work = n->poll(n, weight);
4766 trace_napi_poll(n);
4767 }
4768
4769 WARN_ON_ONCE(work > weight);
4770
4771 if (likely(work < weight))
4772 goto out_unlock;
4773
4774 /* Drivers must not modify the NAPI state if they
4775 * consume the entire weight. In such cases this code
4776 * still "owns" the NAPI instance and therefore can
4777 * move the instance around on the list at-will.
4778 */
4779 if (unlikely(napi_disable_pending(n))) {
4780 napi_complete(n);
4781 goto out_unlock;
4782 }
4783
4784 if (n->gro_list) {
4785 /* flush too old packets
4786 * If HZ < 1000, flush all packets.
4787 */
4788 napi_gro_flush(n, HZ >= 1000);
4789 }
4790
4791 /* Some drivers may have called napi_schedule
4792 * prior to exhausting their budget.
4793 */
4794 if (unlikely(!list_empty(&n->poll_list))) {
4795 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4796 n->dev ? n->dev->name : "backlog");
4797 goto out_unlock;
4798 }
4799
4800 list_add_tail(&n->poll_list, repoll);
4801
4802 out_unlock:
4803 netpoll_poll_unlock(have);
4804
4805 return work;
4806 }
4807
4808 static void net_rx_action(struct softirq_action *h)
4809 {
4810 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4811 unsigned long time_limit = jiffies + 2;
4812 int budget = netdev_budget;
4813 LIST_HEAD(list);
4814 LIST_HEAD(repoll);
4815
4816 local_irq_disable();
4817 list_splice_init(&sd->poll_list, &list);
4818 local_irq_enable();
4819
4820 for (;;) {
4821 struct napi_struct *n;
4822
4823 if (list_empty(&list)) {
4824 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4825 return;
4826 break;
4827 }
4828
4829 n = list_first_entry(&list, struct napi_struct, poll_list);
4830 budget -= napi_poll(n, &repoll);
4831
4832 /* If softirq window is exhausted then punt.
4833 * Allow this to run for 2 jiffies since which will allow
4834 * an average latency of 1.5/HZ.
4835 */
4836 if (unlikely(budget <= 0 ||
4837 time_after_eq(jiffies, time_limit))) {
4838 sd->time_squeeze++;
4839 break;
4840 }
4841 }
4842
4843 local_irq_disable();
4844
4845 list_splice_tail_init(&sd->poll_list, &list);
4846 list_splice_tail(&repoll, &list);
4847 list_splice(&list, &sd->poll_list);
4848 if (!list_empty(&sd->poll_list))
4849 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4850
4851 net_rps_action_and_irq_enable(sd);
4852 }
4853
4854 struct netdev_adjacent {
4855 struct net_device *dev;
4856
4857 /* upper master flag, there can only be one master device per list */
4858 bool master;
4859
4860 /* counter for the number of times this device was added to us */
4861 u16 ref_nr;
4862
4863 /* private field for the users */
4864 void *private;
4865
4866 struct list_head list;
4867 struct rcu_head rcu;
4868 };
4869
4870 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
4871 struct list_head *adj_list)
4872 {
4873 struct netdev_adjacent *adj;
4874
4875 list_for_each_entry(adj, adj_list, list) {
4876 if (adj->dev == adj_dev)
4877 return adj;
4878 }
4879 return NULL;
4880 }
4881
4882 /**
4883 * netdev_has_upper_dev - Check if device is linked to an upper device
4884 * @dev: device
4885 * @upper_dev: upper device to check
4886 *
4887 * Find out if a device is linked to specified upper device and return true
4888 * in case it is. Note that this checks only immediate upper device,
4889 * not through a complete stack of devices. The caller must hold the RTNL lock.
4890 */
4891 bool netdev_has_upper_dev(struct net_device *dev,
4892 struct net_device *upper_dev)
4893 {
4894 ASSERT_RTNL();
4895
4896 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
4897 }
4898 EXPORT_SYMBOL(netdev_has_upper_dev);
4899
4900 /**
4901 * netdev_has_any_upper_dev - Check if device is linked to some device
4902 * @dev: device
4903 *
4904 * Find out if a device is linked to an upper device and return true in case
4905 * it is. The caller must hold the RTNL lock.
4906 */
4907 static bool netdev_has_any_upper_dev(struct net_device *dev)
4908 {
4909 ASSERT_RTNL();
4910
4911 return !list_empty(&dev->all_adj_list.upper);
4912 }
4913
4914 /**
4915 * netdev_master_upper_dev_get - Get master upper device
4916 * @dev: device
4917 *
4918 * Find a master upper device and return pointer to it or NULL in case
4919 * it's not there. The caller must hold the RTNL lock.
4920 */
4921 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4922 {
4923 struct netdev_adjacent *upper;
4924
4925 ASSERT_RTNL();
4926
4927 if (list_empty(&dev->adj_list.upper))
4928 return NULL;
4929
4930 upper = list_first_entry(&dev->adj_list.upper,
4931 struct netdev_adjacent, list);
4932 if (likely(upper->master))
4933 return upper->dev;
4934 return NULL;
4935 }
4936 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4937
4938 void *netdev_adjacent_get_private(struct list_head *adj_list)
4939 {
4940 struct netdev_adjacent *adj;
4941
4942 adj = list_entry(adj_list, struct netdev_adjacent, list);
4943
4944 return adj->private;
4945 }
4946 EXPORT_SYMBOL(netdev_adjacent_get_private);
4947
4948 /**
4949 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4950 * @dev: device
4951 * @iter: list_head ** of the current position
4952 *
4953 * Gets the next device from the dev's upper list, starting from iter
4954 * position. The caller must hold RCU read lock.
4955 */
4956 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4957 struct list_head **iter)
4958 {
4959 struct netdev_adjacent *upper;
4960
4961 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4962
4963 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4964
4965 if (&upper->list == &dev->adj_list.upper)
4966 return NULL;
4967
4968 *iter = &upper->list;
4969
4970 return upper->dev;
4971 }
4972 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4973
4974 /**
4975 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4976 * @dev: device
4977 * @iter: list_head ** of the current position
4978 *
4979 * Gets the next device from the dev's upper list, starting from iter
4980 * position. The caller must hold RCU read lock.
4981 */
4982 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4983 struct list_head **iter)
4984 {
4985 struct netdev_adjacent *upper;
4986
4987 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4988
4989 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4990
4991 if (&upper->list == &dev->all_adj_list.upper)
4992 return NULL;
4993
4994 *iter = &upper->list;
4995
4996 return upper->dev;
4997 }
4998 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4999
5000 /**
5001 * netdev_lower_get_next_private - Get the next ->private from the
5002 * lower neighbour list
5003 * @dev: device
5004 * @iter: list_head ** of the current position
5005 *
5006 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5007 * list, starting from iter position. The caller must hold either hold the
5008 * RTNL lock or its own locking that guarantees that the neighbour lower
5009 * list will remain unchanged.
5010 */
5011 void *netdev_lower_get_next_private(struct net_device *dev,
5012 struct list_head **iter)
5013 {
5014 struct netdev_adjacent *lower;
5015
5016 lower = list_entry(*iter, struct netdev_adjacent, list);
5017
5018 if (&lower->list == &dev->adj_list.lower)
5019 return NULL;
5020
5021 *iter = lower->list.next;
5022
5023 return lower->private;
5024 }
5025 EXPORT_SYMBOL(netdev_lower_get_next_private);
5026
5027 /**
5028 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5029 * lower neighbour list, RCU
5030 * variant
5031 * @dev: device
5032 * @iter: list_head ** of the current position
5033 *
5034 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5035 * list, starting from iter position. The caller must hold RCU read lock.
5036 */
5037 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5038 struct list_head **iter)
5039 {
5040 struct netdev_adjacent *lower;
5041
5042 WARN_ON_ONCE(!rcu_read_lock_held());
5043
5044 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5045
5046 if (&lower->list == &dev->adj_list.lower)
5047 return NULL;
5048
5049 *iter = &lower->list;
5050
5051 return lower->private;
5052 }
5053 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5054
5055 /**
5056 * netdev_lower_get_next - Get the next device from the lower neighbour
5057 * list
5058 * @dev: device
5059 * @iter: list_head ** of the current position
5060 *
5061 * Gets the next netdev_adjacent from the dev's lower neighbour
5062 * list, starting from iter position. The caller must hold RTNL lock or
5063 * its own locking that guarantees that the neighbour lower
5064 * list will remain unchanged.
5065 */
5066 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5067 {
5068 struct netdev_adjacent *lower;
5069
5070 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5071
5072 if (&lower->list == &dev->adj_list.lower)
5073 return NULL;
5074
5075 *iter = &lower->list;
5076
5077 return lower->dev;
5078 }
5079 EXPORT_SYMBOL(netdev_lower_get_next);
5080
5081 /**
5082 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5083 * lower neighbour list, RCU
5084 * variant
5085 * @dev: device
5086 *
5087 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5088 * list. The caller must hold RCU read lock.
5089 */
5090 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5091 {
5092 struct netdev_adjacent *lower;
5093
5094 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5095 struct netdev_adjacent, list);
5096 if (lower)
5097 return lower->private;
5098 return NULL;
5099 }
5100 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5101
5102 /**
5103 * netdev_master_upper_dev_get_rcu - Get master upper device
5104 * @dev: device
5105 *
5106 * Find a master upper device and return pointer to it or NULL in case
5107 * it's not there. The caller must hold the RCU read lock.
5108 */
5109 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5110 {
5111 struct netdev_adjacent *upper;
5112
5113 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5114 struct netdev_adjacent, list);
5115 if (upper && likely(upper->master))
5116 return upper->dev;
5117 return NULL;
5118 }
5119 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5120
5121 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5122 struct net_device *adj_dev,
5123 struct list_head *dev_list)
5124 {
5125 char linkname[IFNAMSIZ+7];
5126 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5127 "upper_%s" : "lower_%s", adj_dev->name);
5128 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5129 linkname);
5130 }
5131 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5132 char *name,
5133 struct list_head *dev_list)
5134 {
5135 char linkname[IFNAMSIZ+7];
5136 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5137 "upper_%s" : "lower_%s", name);
5138 sysfs_remove_link(&(dev->dev.kobj), linkname);
5139 }
5140
5141 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5142 struct net_device *adj_dev,
5143 struct list_head *dev_list)
5144 {
5145 return (dev_list == &dev->adj_list.upper ||
5146 dev_list == &dev->adj_list.lower) &&
5147 net_eq(dev_net(dev), dev_net(adj_dev));
5148 }
5149
5150 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5151 struct net_device *adj_dev,
5152 struct list_head *dev_list,
5153 void *private, bool master)
5154 {
5155 struct netdev_adjacent *adj;
5156 int ret;
5157
5158 adj = __netdev_find_adj(adj_dev, dev_list);
5159
5160 if (adj) {
5161 adj->ref_nr++;
5162 return 0;
5163 }
5164
5165 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5166 if (!adj)
5167 return -ENOMEM;
5168
5169 adj->dev = adj_dev;
5170 adj->master = master;
5171 adj->ref_nr = 1;
5172 adj->private = private;
5173 dev_hold(adj_dev);
5174
5175 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5176 adj_dev->name, dev->name, adj_dev->name);
5177
5178 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5179 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5180 if (ret)
5181 goto free_adj;
5182 }
5183
5184 /* Ensure that master link is always the first item in list. */
5185 if (master) {
5186 ret = sysfs_create_link(&(dev->dev.kobj),
5187 &(adj_dev->dev.kobj), "master");
5188 if (ret)
5189 goto remove_symlinks;
5190
5191 list_add_rcu(&adj->list, dev_list);
5192 } else {
5193 list_add_tail_rcu(&adj->list, dev_list);
5194 }
5195
5196 return 0;
5197
5198 remove_symlinks:
5199 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5200 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5201 free_adj:
5202 kfree(adj);
5203 dev_put(adj_dev);
5204
5205 return ret;
5206 }
5207
5208 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5209 struct net_device *adj_dev,
5210 struct list_head *dev_list)
5211 {
5212 struct netdev_adjacent *adj;
5213
5214 adj = __netdev_find_adj(adj_dev, dev_list);
5215
5216 if (!adj) {
5217 pr_err("tried to remove device %s from %s\n",
5218 dev->name, adj_dev->name);
5219 BUG();
5220 }
5221
5222 if (adj->ref_nr > 1) {
5223 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5224 adj->ref_nr-1);
5225 adj->ref_nr--;
5226 return;
5227 }
5228
5229 if (adj->master)
5230 sysfs_remove_link(&(dev->dev.kobj), "master");
5231
5232 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5233 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5234
5235 list_del_rcu(&adj->list);
5236 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5237 adj_dev->name, dev->name, adj_dev->name);
5238 dev_put(adj_dev);
5239 kfree_rcu(adj, rcu);
5240 }
5241
5242 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5243 struct net_device *upper_dev,
5244 struct list_head *up_list,
5245 struct list_head *down_list,
5246 void *private, bool master)
5247 {
5248 int ret;
5249
5250 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5251 master);
5252 if (ret)
5253 return ret;
5254
5255 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5256 false);
5257 if (ret) {
5258 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5259 return ret;
5260 }
5261
5262 return 0;
5263 }
5264
5265 static int __netdev_adjacent_dev_link(struct net_device *dev,
5266 struct net_device *upper_dev)
5267 {
5268 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5269 &dev->all_adj_list.upper,
5270 &upper_dev->all_adj_list.lower,
5271 NULL, false);
5272 }
5273
5274 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5275 struct net_device *upper_dev,
5276 struct list_head *up_list,
5277 struct list_head *down_list)
5278 {
5279 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5280 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5281 }
5282
5283 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5284 struct net_device *upper_dev)
5285 {
5286 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5287 &dev->all_adj_list.upper,
5288 &upper_dev->all_adj_list.lower);
5289 }
5290
5291 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5292 struct net_device *upper_dev,
5293 void *private, bool master)
5294 {
5295 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5296
5297 if (ret)
5298 return ret;
5299
5300 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5301 &dev->adj_list.upper,
5302 &upper_dev->adj_list.lower,
5303 private, master);
5304 if (ret) {
5305 __netdev_adjacent_dev_unlink(dev, upper_dev);
5306 return ret;
5307 }
5308
5309 return 0;
5310 }
5311
5312 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5313 struct net_device *upper_dev)
5314 {
5315 __netdev_adjacent_dev_unlink(dev, upper_dev);
5316 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5317 &dev->adj_list.upper,
5318 &upper_dev->adj_list.lower);
5319 }
5320
5321 static int __netdev_upper_dev_link(struct net_device *dev,
5322 struct net_device *upper_dev, bool master,
5323 void *private)
5324 {
5325 struct netdev_notifier_changeupper_info changeupper_info;
5326 struct netdev_adjacent *i, *j, *to_i, *to_j;
5327 int ret = 0;
5328
5329 ASSERT_RTNL();
5330
5331 if (dev == upper_dev)
5332 return -EBUSY;
5333
5334 /* To prevent loops, check if dev is not upper device to upper_dev. */
5335 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5336 return -EBUSY;
5337
5338 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5339 return -EEXIST;
5340
5341 if (master && netdev_master_upper_dev_get(dev))
5342 return -EBUSY;
5343
5344 changeupper_info.upper_dev = upper_dev;
5345 changeupper_info.master = master;
5346 changeupper_info.linking = true;
5347
5348 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5349 master);
5350 if (ret)
5351 return ret;
5352
5353 /* Now that we linked these devs, make all the upper_dev's
5354 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5355 * versa, and don't forget the devices itself. All of these
5356 * links are non-neighbours.
5357 */
5358 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5359 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5360 pr_debug("Interlinking %s with %s, non-neighbour\n",
5361 i->dev->name, j->dev->name);
5362 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5363 if (ret)
5364 goto rollback_mesh;
5365 }
5366 }
5367
5368 /* add dev to every upper_dev's upper device */
5369 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5370 pr_debug("linking %s's upper device %s with %s\n",
5371 upper_dev->name, i->dev->name, dev->name);
5372 ret = __netdev_adjacent_dev_link(dev, i->dev);
5373 if (ret)
5374 goto rollback_upper_mesh;
5375 }
5376
5377 /* add upper_dev to every dev's lower device */
5378 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5379 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5380 i->dev->name, upper_dev->name);
5381 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5382 if (ret)
5383 goto rollback_lower_mesh;
5384 }
5385
5386 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5387 &changeupper_info.info);
5388 return 0;
5389
5390 rollback_lower_mesh:
5391 to_i = i;
5392 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5393 if (i == to_i)
5394 break;
5395 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5396 }
5397
5398 i = NULL;
5399
5400 rollback_upper_mesh:
5401 to_i = i;
5402 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5403 if (i == to_i)
5404 break;
5405 __netdev_adjacent_dev_unlink(dev, i->dev);
5406 }
5407
5408 i = j = NULL;
5409
5410 rollback_mesh:
5411 to_i = i;
5412 to_j = j;
5413 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5414 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5415 if (i == to_i && j == to_j)
5416 break;
5417 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5418 }
5419 if (i == to_i)
5420 break;
5421 }
5422
5423 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5424
5425 return ret;
5426 }
5427
5428 /**
5429 * netdev_upper_dev_link - Add a link to the upper device
5430 * @dev: device
5431 * @upper_dev: new upper device
5432 *
5433 * Adds a link to device which is upper to this one. The caller must hold
5434 * the RTNL lock. On a failure a negative errno code is returned.
5435 * On success the reference counts are adjusted and the function
5436 * returns zero.
5437 */
5438 int netdev_upper_dev_link(struct net_device *dev,
5439 struct net_device *upper_dev)
5440 {
5441 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5442 }
5443 EXPORT_SYMBOL(netdev_upper_dev_link);
5444
5445 /**
5446 * netdev_master_upper_dev_link - Add a master link to the upper device
5447 * @dev: device
5448 * @upper_dev: new upper device
5449 *
5450 * Adds a link to device which is upper to this one. In this case, only
5451 * one master upper device can be linked, although other non-master devices
5452 * might be linked as well. The caller must hold the RTNL lock.
5453 * On a failure a negative errno code is returned. On success the reference
5454 * counts are adjusted and the function returns zero.
5455 */
5456 int netdev_master_upper_dev_link(struct net_device *dev,
5457 struct net_device *upper_dev)
5458 {
5459 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5460 }
5461 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5462
5463 int netdev_master_upper_dev_link_private(struct net_device *dev,
5464 struct net_device *upper_dev,
5465 void *private)
5466 {
5467 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5468 }
5469 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5470
5471 /**
5472 * netdev_upper_dev_unlink - Removes a link to upper device
5473 * @dev: device
5474 * @upper_dev: new upper device
5475 *
5476 * Removes a link to device which is upper to this one. The caller must hold
5477 * the RTNL lock.
5478 */
5479 void netdev_upper_dev_unlink(struct net_device *dev,
5480 struct net_device *upper_dev)
5481 {
5482 struct netdev_notifier_changeupper_info changeupper_info;
5483 struct netdev_adjacent *i, *j;
5484 ASSERT_RTNL();
5485
5486 changeupper_info.upper_dev = upper_dev;
5487 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5488 changeupper_info.linking = false;
5489
5490 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5491
5492 /* Here is the tricky part. We must remove all dev's lower
5493 * devices from all upper_dev's upper devices and vice
5494 * versa, to maintain the graph relationship.
5495 */
5496 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5497 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5498 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5499
5500 /* remove also the devices itself from lower/upper device
5501 * list
5502 */
5503 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5504 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5505
5506 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5507 __netdev_adjacent_dev_unlink(dev, i->dev);
5508
5509 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5510 &changeupper_info.info);
5511 }
5512 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5513
5514 /**
5515 * netdev_bonding_info_change - Dispatch event about slave change
5516 * @dev: device
5517 * @bonding_info: info to dispatch
5518 *
5519 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5520 * The caller must hold the RTNL lock.
5521 */
5522 void netdev_bonding_info_change(struct net_device *dev,
5523 struct netdev_bonding_info *bonding_info)
5524 {
5525 struct netdev_notifier_bonding_info info;
5526
5527 memcpy(&info.bonding_info, bonding_info,
5528 sizeof(struct netdev_bonding_info));
5529 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5530 &info.info);
5531 }
5532 EXPORT_SYMBOL(netdev_bonding_info_change);
5533
5534 static void netdev_adjacent_add_links(struct net_device *dev)
5535 {
5536 struct netdev_adjacent *iter;
5537
5538 struct net *net = dev_net(dev);
5539
5540 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5541 if (!net_eq(net,dev_net(iter->dev)))
5542 continue;
5543 netdev_adjacent_sysfs_add(iter->dev, dev,
5544 &iter->dev->adj_list.lower);
5545 netdev_adjacent_sysfs_add(dev, iter->dev,
5546 &dev->adj_list.upper);
5547 }
5548
5549 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5550 if (!net_eq(net,dev_net(iter->dev)))
5551 continue;
5552 netdev_adjacent_sysfs_add(iter->dev, dev,
5553 &iter->dev->adj_list.upper);
5554 netdev_adjacent_sysfs_add(dev, iter->dev,
5555 &dev->adj_list.lower);
5556 }
5557 }
5558
5559 static void netdev_adjacent_del_links(struct net_device *dev)
5560 {
5561 struct netdev_adjacent *iter;
5562
5563 struct net *net = dev_net(dev);
5564
5565 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5566 if (!net_eq(net,dev_net(iter->dev)))
5567 continue;
5568 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5569 &iter->dev->adj_list.lower);
5570 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5571 &dev->adj_list.upper);
5572 }
5573
5574 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5575 if (!net_eq(net,dev_net(iter->dev)))
5576 continue;
5577 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5578 &iter->dev->adj_list.upper);
5579 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5580 &dev->adj_list.lower);
5581 }
5582 }
5583
5584 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5585 {
5586 struct netdev_adjacent *iter;
5587
5588 struct net *net = dev_net(dev);
5589
5590 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5591 if (!net_eq(net,dev_net(iter->dev)))
5592 continue;
5593 netdev_adjacent_sysfs_del(iter->dev, oldname,
5594 &iter->dev->adj_list.lower);
5595 netdev_adjacent_sysfs_add(iter->dev, dev,
5596 &iter->dev->adj_list.lower);
5597 }
5598
5599 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5600 if (!net_eq(net,dev_net(iter->dev)))
5601 continue;
5602 netdev_adjacent_sysfs_del(iter->dev, oldname,
5603 &iter->dev->adj_list.upper);
5604 netdev_adjacent_sysfs_add(iter->dev, dev,
5605 &iter->dev->adj_list.upper);
5606 }
5607 }
5608
5609 void *netdev_lower_dev_get_private(struct net_device *dev,
5610 struct net_device *lower_dev)
5611 {
5612 struct netdev_adjacent *lower;
5613
5614 if (!lower_dev)
5615 return NULL;
5616 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5617 if (!lower)
5618 return NULL;
5619
5620 return lower->private;
5621 }
5622 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5623
5624
5625 int dev_get_nest_level(struct net_device *dev,
5626 bool (*type_check)(struct net_device *dev))
5627 {
5628 struct net_device *lower = NULL;
5629 struct list_head *iter;
5630 int max_nest = -1;
5631 int nest;
5632
5633 ASSERT_RTNL();
5634
5635 netdev_for_each_lower_dev(dev, lower, iter) {
5636 nest = dev_get_nest_level(lower, type_check);
5637 if (max_nest < nest)
5638 max_nest = nest;
5639 }
5640
5641 if (type_check(dev))
5642 max_nest++;
5643
5644 return max_nest;
5645 }
5646 EXPORT_SYMBOL(dev_get_nest_level);
5647
5648 static void dev_change_rx_flags(struct net_device *dev, int flags)
5649 {
5650 const struct net_device_ops *ops = dev->netdev_ops;
5651
5652 if (ops->ndo_change_rx_flags)
5653 ops->ndo_change_rx_flags(dev, flags);
5654 }
5655
5656 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5657 {
5658 unsigned int old_flags = dev->flags;
5659 kuid_t uid;
5660 kgid_t gid;
5661
5662 ASSERT_RTNL();
5663
5664 dev->flags |= IFF_PROMISC;
5665 dev->promiscuity += inc;
5666 if (dev->promiscuity == 0) {
5667 /*
5668 * Avoid overflow.
5669 * If inc causes overflow, untouch promisc and return error.
5670 */
5671 if (inc < 0)
5672 dev->flags &= ~IFF_PROMISC;
5673 else {
5674 dev->promiscuity -= inc;
5675 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5676 dev->name);
5677 return -EOVERFLOW;
5678 }
5679 }
5680 if (dev->flags != old_flags) {
5681 pr_info("device %s %s promiscuous mode\n",
5682 dev->name,
5683 dev->flags & IFF_PROMISC ? "entered" : "left");
5684 if (audit_enabled) {
5685 current_uid_gid(&uid, &gid);
5686 audit_log(current->audit_context, GFP_ATOMIC,
5687 AUDIT_ANOM_PROMISCUOUS,
5688 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5689 dev->name, (dev->flags & IFF_PROMISC),
5690 (old_flags & IFF_PROMISC),
5691 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5692 from_kuid(&init_user_ns, uid),
5693 from_kgid(&init_user_ns, gid),
5694 audit_get_sessionid(current));
5695 }
5696
5697 dev_change_rx_flags(dev, IFF_PROMISC);
5698 }
5699 if (notify)
5700 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5701 return 0;
5702 }
5703
5704 /**
5705 * dev_set_promiscuity - update promiscuity count on a device
5706 * @dev: device
5707 * @inc: modifier
5708 *
5709 * Add or remove promiscuity from a device. While the count in the device
5710 * remains above zero the interface remains promiscuous. Once it hits zero
5711 * the device reverts back to normal filtering operation. A negative inc
5712 * value is used to drop promiscuity on the device.
5713 * Return 0 if successful or a negative errno code on error.
5714 */
5715 int dev_set_promiscuity(struct net_device *dev, int inc)
5716 {
5717 unsigned int old_flags = dev->flags;
5718 int err;
5719
5720 err = __dev_set_promiscuity(dev, inc, true);
5721 if (err < 0)
5722 return err;
5723 if (dev->flags != old_flags)
5724 dev_set_rx_mode(dev);
5725 return err;
5726 }
5727 EXPORT_SYMBOL(dev_set_promiscuity);
5728
5729 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5730 {
5731 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5732
5733 ASSERT_RTNL();
5734
5735 dev->flags |= IFF_ALLMULTI;
5736 dev->allmulti += inc;
5737 if (dev->allmulti == 0) {
5738 /*
5739 * Avoid overflow.
5740 * If inc causes overflow, untouch allmulti and return error.
5741 */
5742 if (inc < 0)
5743 dev->flags &= ~IFF_ALLMULTI;
5744 else {
5745 dev->allmulti -= inc;
5746 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5747 dev->name);
5748 return -EOVERFLOW;
5749 }
5750 }
5751 if (dev->flags ^ old_flags) {
5752 dev_change_rx_flags(dev, IFF_ALLMULTI);
5753 dev_set_rx_mode(dev);
5754 if (notify)
5755 __dev_notify_flags(dev, old_flags,
5756 dev->gflags ^ old_gflags);
5757 }
5758 return 0;
5759 }
5760
5761 /**
5762 * dev_set_allmulti - update allmulti count on a device
5763 * @dev: device
5764 * @inc: modifier
5765 *
5766 * Add or remove reception of all multicast frames to a device. While the
5767 * count in the device remains above zero the interface remains listening
5768 * to all interfaces. Once it hits zero the device reverts back to normal
5769 * filtering operation. A negative @inc value is used to drop the counter
5770 * when releasing a resource needing all multicasts.
5771 * Return 0 if successful or a negative errno code on error.
5772 */
5773
5774 int dev_set_allmulti(struct net_device *dev, int inc)
5775 {
5776 return __dev_set_allmulti(dev, inc, true);
5777 }
5778 EXPORT_SYMBOL(dev_set_allmulti);
5779
5780 /*
5781 * Upload unicast and multicast address lists to device and
5782 * configure RX filtering. When the device doesn't support unicast
5783 * filtering it is put in promiscuous mode while unicast addresses
5784 * are present.
5785 */
5786 void __dev_set_rx_mode(struct net_device *dev)
5787 {
5788 const struct net_device_ops *ops = dev->netdev_ops;
5789
5790 /* dev_open will call this function so the list will stay sane. */
5791 if (!(dev->flags&IFF_UP))
5792 return;
5793
5794 if (!netif_device_present(dev))
5795 return;
5796
5797 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5798 /* Unicast addresses changes may only happen under the rtnl,
5799 * therefore calling __dev_set_promiscuity here is safe.
5800 */
5801 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5802 __dev_set_promiscuity(dev, 1, false);
5803 dev->uc_promisc = true;
5804 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5805 __dev_set_promiscuity(dev, -1, false);
5806 dev->uc_promisc = false;
5807 }
5808 }
5809
5810 if (ops->ndo_set_rx_mode)
5811 ops->ndo_set_rx_mode(dev);
5812 }
5813
5814 void dev_set_rx_mode(struct net_device *dev)
5815 {
5816 netif_addr_lock_bh(dev);
5817 __dev_set_rx_mode(dev);
5818 netif_addr_unlock_bh(dev);
5819 }
5820
5821 /**
5822 * dev_get_flags - get flags reported to userspace
5823 * @dev: device
5824 *
5825 * Get the combination of flag bits exported through APIs to userspace.
5826 */
5827 unsigned int dev_get_flags(const struct net_device *dev)
5828 {
5829 unsigned int flags;
5830
5831 flags = (dev->flags & ~(IFF_PROMISC |
5832 IFF_ALLMULTI |
5833 IFF_RUNNING |
5834 IFF_LOWER_UP |
5835 IFF_DORMANT)) |
5836 (dev->gflags & (IFF_PROMISC |
5837 IFF_ALLMULTI));
5838
5839 if (netif_running(dev)) {
5840 if (netif_oper_up(dev))
5841 flags |= IFF_RUNNING;
5842 if (netif_carrier_ok(dev))
5843 flags |= IFF_LOWER_UP;
5844 if (netif_dormant(dev))
5845 flags |= IFF_DORMANT;
5846 }
5847
5848 return flags;
5849 }
5850 EXPORT_SYMBOL(dev_get_flags);
5851
5852 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5853 {
5854 unsigned int old_flags = dev->flags;
5855 int ret;
5856
5857 ASSERT_RTNL();
5858
5859 /*
5860 * Set the flags on our device.
5861 */
5862
5863 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5864 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5865 IFF_AUTOMEDIA)) |
5866 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5867 IFF_ALLMULTI));
5868
5869 /*
5870 * Load in the correct multicast list now the flags have changed.
5871 */
5872
5873 if ((old_flags ^ flags) & IFF_MULTICAST)
5874 dev_change_rx_flags(dev, IFF_MULTICAST);
5875
5876 dev_set_rx_mode(dev);
5877
5878 /*
5879 * Have we downed the interface. We handle IFF_UP ourselves
5880 * according to user attempts to set it, rather than blindly
5881 * setting it.
5882 */
5883
5884 ret = 0;
5885 if ((old_flags ^ flags) & IFF_UP)
5886 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5887
5888 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5889 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5890 unsigned int old_flags = dev->flags;
5891
5892 dev->gflags ^= IFF_PROMISC;
5893
5894 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5895 if (dev->flags != old_flags)
5896 dev_set_rx_mode(dev);
5897 }
5898
5899 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5900 is important. Some (broken) drivers set IFF_PROMISC, when
5901 IFF_ALLMULTI is requested not asking us and not reporting.
5902 */
5903 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5904 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5905
5906 dev->gflags ^= IFF_ALLMULTI;
5907 __dev_set_allmulti(dev, inc, false);
5908 }
5909
5910 return ret;
5911 }
5912
5913 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5914 unsigned int gchanges)
5915 {
5916 unsigned int changes = dev->flags ^ old_flags;
5917
5918 if (gchanges)
5919 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5920
5921 if (changes & IFF_UP) {
5922 if (dev->flags & IFF_UP)
5923 call_netdevice_notifiers(NETDEV_UP, dev);
5924 else
5925 call_netdevice_notifiers(NETDEV_DOWN, dev);
5926 }
5927
5928 if (dev->flags & IFF_UP &&
5929 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5930 struct netdev_notifier_change_info change_info;
5931
5932 change_info.flags_changed = changes;
5933 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5934 &change_info.info);
5935 }
5936 }
5937
5938 /**
5939 * dev_change_flags - change device settings
5940 * @dev: device
5941 * @flags: device state flags
5942 *
5943 * Change settings on device based state flags. The flags are
5944 * in the userspace exported format.
5945 */
5946 int dev_change_flags(struct net_device *dev, unsigned int flags)
5947 {
5948 int ret;
5949 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5950
5951 ret = __dev_change_flags(dev, flags);
5952 if (ret < 0)
5953 return ret;
5954
5955 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5956 __dev_notify_flags(dev, old_flags, changes);
5957 return ret;
5958 }
5959 EXPORT_SYMBOL(dev_change_flags);
5960
5961 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5962 {
5963 const struct net_device_ops *ops = dev->netdev_ops;
5964
5965 if (ops->ndo_change_mtu)
5966 return ops->ndo_change_mtu(dev, new_mtu);
5967
5968 dev->mtu = new_mtu;
5969 return 0;
5970 }
5971
5972 /**
5973 * dev_set_mtu - Change maximum transfer unit
5974 * @dev: device
5975 * @new_mtu: new transfer unit
5976 *
5977 * Change the maximum transfer size of the network device.
5978 */
5979 int dev_set_mtu(struct net_device *dev, int new_mtu)
5980 {
5981 int err, orig_mtu;
5982
5983 if (new_mtu == dev->mtu)
5984 return 0;
5985
5986 /* MTU must be positive. */
5987 if (new_mtu < 0)
5988 return -EINVAL;
5989
5990 if (!netif_device_present(dev))
5991 return -ENODEV;
5992
5993 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5994 err = notifier_to_errno(err);
5995 if (err)
5996 return err;
5997
5998 orig_mtu = dev->mtu;
5999 err = __dev_set_mtu(dev, new_mtu);
6000
6001 if (!err) {
6002 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6003 err = notifier_to_errno(err);
6004 if (err) {
6005 /* setting mtu back and notifying everyone again,
6006 * so that they have a chance to revert changes.
6007 */
6008 __dev_set_mtu(dev, orig_mtu);
6009 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6010 }
6011 }
6012 return err;
6013 }
6014 EXPORT_SYMBOL(dev_set_mtu);
6015
6016 /**
6017 * dev_set_group - Change group this device belongs to
6018 * @dev: device
6019 * @new_group: group this device should belong to
6020 */
6021 void dev_set_group(struct net_device *dev, int new_group)
6022 {
6023 dev->group = new_group;
6024 }
6025 EXPORT_SYMBOL(dev_set_group);
6026
6027 /**
6028 * dev_set_mac_address - Change Media Access Control Address
6029 * @dev: device
6030 * @sa: new address
6031 *
6032 * Change the hardware (MAC) address of the device
6033 */
6034 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6035 {
6036 const struct net_device_ops *ops = dev->netdev_ops;
6037 int err;
6038
6039 if (!ops->ndo_set_mac_address)
6040 return -EOPNOTSUPP;
6041 if (sa->sa_family != dev->type)
6042 return -EINVAL;
6043 if (!netif_device_present(dev))
6044 return -ENODEV;
6045 err = ops->ndo_set_mac_address(dev, sa);
6046 if (err)
6047 return err;
6048 dev->addr_assign_type = NET_ADDR_SET;
6049 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6050 add_device_randomness(dev->dev_addr, dev->addr_len);
6051 return 0;
6052 }
6053 EXPORT_SYMBOL(dev_set_mac_address);
6054
6055 /**
6056 * dev_change_carrier - Change device carrier
6057 * @dev: device
6058 * @new_carrier: new value
6059 *
6060 * Change device carrier
6061 */
6062 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6063 {
6064 const struct net_device_ops *ops = dev->netdev_ops;
6065
6066 if (!ops->ndo_change_carrier)
6067 return -EOPNOTSUPP;
6068 if (!netif_device_present(dev))
6069 return -ENODEV;
6070 return ops->ndo_change_carrier(dev, new_carrier);
6071 }
6072 EXPORT_SYMBOL(dev_change_carrier);
6073
6074 /**
6075 * dev_get_phys_port_id - Get device physical port ID
6076 * @dev: device
6077 * @ppid: port ID
6078 *
6079 * Get device physical port ID
6080 */
6081 int dev_get_phys_port_id(struct net_device *dev,
6082 struct netdev_phys_item_id *ppid)
6083 {
6084 const struct net_device_ops *ops = dev->netdev_ops;
6085
6086 if (!ops->ndo_get_phys_port_id)
6087 return -EOPNOTSUPP;
6088 return ops->ndo_get_phys_port_id(dev, ppid);
6089 }
6090 EXPORT_SYMBOL(dev_get_phys_port_id);
6091
6092 /**
6093 * dev_get_phys_port_name - Get device physical port name
6094 * @dev: device
6095 * @name: port name
6096 *
6097 * Get device physical port name
6098 */
6099 int dev_get_phys_port_name(struct net_device *dev,
6100 char *name, size_t len)
6101 {
6102 const struct net_device_ops *ops = dev->netdev_ops;
6103
6104 if (!ops->ndo_get_phys_port_name)
6105 return -EOPNOTSUPP;
6106 return ops->ndo_get_phys_port_name(dev, name, len);
6107 }
6108 EXPORT_SYMBOL(dev_get_phys_port_name);
6109
6110 /**
6111 * dev_change_proto_down - update protocol port state information
6112 * @dev: device
6113 * @proto_down: new value
6114 *
6115 * This info can be used by switch drivers to set the phys state of the
6116 * port.
6117 */
6118 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6119 {
6120 const struct net_device_ops *ops = dev->netdev_ops;
6121
6122 if (!ops->ndo_change_proto_down)
6123 return -EOPNOTSUPP;
6124 if (!netif_device_present(dev))
6125 return -ENODEV;
6126 return ops->ndo_change_proto_down(dev, proto_down);
6127 }
6128 EXPORT_SYMBOL(dev_change_proto_down);
6129
6130 /**
6131 * dev_new_index - allocate an ifindex
6132 * @net: the applicable net namespace
6133 *
6134 * Returns a suitable unique value for a new device interface
6135 * number. The caller must hold the rtnl semaphore or the
6136 * dev_base_lock to be sure it remains unique.
6137 */
6138 static int dev_new_index(struct net *net)
6139 {
6140 int ifindex = net->ifindex;
6141 for (;;) {
6142 if (++ifindex <= 0)
6143 ifindex = 1;
6144 if (!__dev_get_by_index(net, ifindex))
6145 return net->ifindex = ifindex;
6146 }
6147 }
6148
6149 /* Delayed registration/unregisteration */
6150 static LIST_HEAD(net_todo_list);
6151 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6152
6153 static void net_set_todo(struct net_device *dev)
6154 {
6155 list_add_tail(&dev->todo_list, &net_todo_list);
6156 dev_net(dev)->dev_unreg_count++;
6157 }
6158
6159 static void rollback_registered_many(struct list_head *head)
6160 {
6161 struct net_device *dev, *tmp;
6162 LIST_HEAD(close_head);
6163
6164 BUG_ON(dev_boot_phase);
6165 ASSERT_RTNL();
6166
6167 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6168 /* Some devices call without registering
6169 * for initialization unwind. Remove those
6170 * devices and proceed with the remaining.
6171 */
6172 if (dev->reg_state == NETREG_UNINITIALIZED) {
6173 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6174 dev->name, dev);
6175
6176 WARN_ON(1);
6177 list_del(&dev->unreg_list);
6178 continue;
6179 }
6180 dev->dismantle = true;
6181 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6182 }
6183
6184 /* If device is running, close it first. */
6185 list_for_each_entry(dev, head, unreg_list)
6186 list_add_tail(&dev->close_list, &close_head);
6187 dev_close_many(&close_head, true);
6188
6189 list_for_each_entry(dev, head, unreg_list) {
6190 /* And unlink it from device chain. */
6191 unlist_netdevice(dev);
6192
6193 dev->reg_state = NETREG_UNREGISTERING;
6194 on_each_cpu(flush_backlog, dev, 1);
6195 }
6196
6197 synchronize_net();
6198
6199 list_for_each_entry(dev, head, unreg_list) {
6200 struct sk_buff *skb = NULL;
6201
6202 /* Shutdown queueing discipline. */
6203 dev_shutdown(dev);
6204
6205
6206 /* Notify protocols, that we are about to destroy
6207 this device. They should clean all the things.
6208 */
6209 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6210
6211 if (!dev->rtnl_link_ops ||
6212 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6213 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6214 GFP_KERNEL);
6215
6216 /*
6217 * Flush the unicast and multicast chains
6218 */
6219 dev_uc_flush(dev);
6220 dev_mc_flush(dev);
6221
6222 if (dev->netdev_ops->ndo_uninit)
6223 dev->netdev_ops->ndo_uninit(dev);
6224
6225 if (skb)
6226 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6227
6228 /* Notifier chain MUST detach us all upper devices. */
6229 WARN_ON(netdev_has_any_upper_dev(dev));
6230
6231 /* Remove entries from kobject tree */
6232 netdev_unregister_kobject(dev);
6233 #ifdef CONFIG_XPS
6234 /* Remove XPS queueing entries */
6235 netif_reset_xps_queues_gt(dev, 0);
6236 #endif
6237 }
6238
6239 synchronize_net();
6240
6241 list_for_each_entry(dev, head, unreg_list)
6242 dev_put(dev);
6243 }
6244
6245 static void rollback_registered(struct net_device *dev)
6246 {
6247 LIST_HEAD(single);
6248
6249 list_add(&dev->unreg_list, &single);
6250 rollback_registered_many(&single);
6251 list_del(&single);
6252 }
6253
6254 static netdev_features_t netdev_fix_features(struct net_device *dev,
6255 netdev_features_t features)
6256 {
6257 /* Fix illegal checksum combinations */
6258 if ((features & NETIF_F_HW_CSUM) &&
6259 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6260 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6261 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6262 }
6263
6264 /* TSO requires that SG is present as well. */
6265 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6266 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6267 features &= ~NETIF_F_ALL_TSO;
6268 }
6269
6270 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6271 !(features & NETIF_F_IP_CSUM)) {
6272 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6273 features &= ~NETIF_F_TSO;
6274 features &= ~NETIF_F_TSO_ECN;
6275 }
6276
6277 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6278 !(features & NETIF_F_IPV6_CSUM)) {
6279 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6280 features &= ~NETIF_F_TSO6;
6281 }
6282
6283 /* TSO ECN requires that TSO is present as well. */
6284 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6285 features &= ~NETIF_F_TSO_ECN;
6286
6287 /* Software GSO depends on SG. */
6288 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6289 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6290 features &= ~NETIF_F_GSO;
6291 }
6292
6293 /* UFO needs SG and checksumming */
6294 if (features & NETIF_F_UFO) {
6295 /* maybe split UFO into V4 and V6? */
6296 if (!((features & NETIF_F_GEN_CSUM) ||
6297 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6298 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6299 netdev_dbg(dev,
6300 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6301 features &= ~NETIF_F_UFO;
6302 }
6303
6304 if (!(features & NETIF_F_SG)) {
6305 netdev_dbg(dev,
6306 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6307 features &= ~NETIF_F_UFO;
6308 }
6309 }
6310
6311 #ifdef CONFIG_NET_RX_BUSY_POLL
6312 if (dev->netdev_ops->ndo_busy_poll)
6313 features |= NETIF_F_BUSY_POLL;
6314 else
6315 #endif
6316 features &= ~NETIF_F_BUSY_POLL;
6317
6318 return features;
6319 }
6320
6321 int __netdev_update_features(struct net_device *dev)
6322 {
6323 netdev_features_t features;
6324 int err = 0;
6325
6326 ASSERT_RTNL();
6327
6328 features = netdev_get_wanted_features(dev);
6329
6330 if (dev->netdev_ops->ndo_fix_features)
6331 features = dev->netdev_ops->ndo_fix_features(dev, features);
6332
6333 /* driver might be less strict about feature dependencies */
6334 features = netdev_fix_features(dev, features);
6335
6336 if (dev->features == features)
6337 return 0;
6338
6339 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6340 &dev->features, &features);
6341
6342 if (dev->netdev_ops->ndo_set_features)
6343 err = dev->netdev_ops->ndo_set_features(dev, features);
6344
6345 if (unlikely(err < 0)) {
6346 netdev_err(dev,
6347 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6348 err, &features, &dev->features);
6349 return -1;
6350 }
6351
6352 if (!err)
6353 dev->features = features;
6354
6355 return 1;
6356 }
6357
6358 /**
6359 * netdev_update_features - recalculate device features
6360 * @dev: the device to check
6361 *
6362 * Recalculate dev->features set and send notifications if it
6363 * has changed. Should be called after driver or hardware dependent
6364 * conditions might have changed that influence the features.
6365 */
6366 void netdev_update_features(struct net_device *dev)
6367 {
6368 if (__netdev_update_features(dev))
6369 netdev_features_change(dev);
6370 }
6371 EXPORT_SYMBOL(netdev_update_features);
6372
6373 /**
6374 * netdev_change_features - recalculate device features
6375 * @dev: the device to check
6376 *
6377 * Recalculate dev->features set and send notifications even
6378 * if they have not changed. Should be called instead of
6379 * netdev_update_features() if also dev->vlan_features might
6380 * have changed to allow the changes to be propagated to stacked
6381 * VLAN devices.
6382 */
6383 void netdev_change_features(struct net_device *dev)
6384 {
6385 __netdev_update_features(dev);
6386 netdev_features_change(dev);
6387 }
6388 EXPORT_SYMBOL(netdev_change_features);
6389
6390 /**
6391 * netif_stacked_transfer_operstate - transfer operstate
6392 * @rootdev: the root or lower level device to transfer state from
6393 * @dev: the device to transfer operstate to
6394 *
6395 * Transfer operational state from root to device. This is normally
6396 * called when a stacking relationship exists between the root
6397 * device and the device(a leaf device).
6398 */
6399 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6400 struct net_device *dev)
6401 {
6402 if (rootdev->operstate == IF_OPER_DORMANT)
6403 netif_dormant_on(dev);
6404 else
6405 netif_dormant_off(dev);
6406
6407 if (netif_carrier_ok(rootdev)) {
6408 if (!netif_carrier_ok(dev))
6409 netif_carrier_on(dev);
6410 } else {
6411 if (netif_carrier_ok(dev))
6412 netif_carrier_off(dev);
6413 }
6414 }
6415 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6416
6417 #ifdef CONFIG_SYSFS
6418 static int netif_alloc_rx_queues(struct net_device *dev)
6419 {
6420 unsigned int i, count = dev->num_rx_queues;
6421 struct netdev_rx_queue *rx;
6422 size_t sz = count * sizeof(*rx);
6423
6424 BUG_ON(count < 1);
6425
6426 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6427 if (!rx) {
6428 rx = vzalloc(sz);
6429 if (!rx)
6430 return -ENOMEM;
6431 }
6432 dev->_rx = rx;
6433
6434 for (i = 0; i < count; i++)
6435 rx[i].dev = dev;
6436 return 0;
6437 }
6438 #endif
6439
6440 static void netdev_init_one_queue(struct net_device *dev,
6441 struct netdev_queue *queue, void *_unused)
6442 {
6443 /* Initialize queue lock */
6444 spin_lock_init(&queue->_xmit_lock);
6445 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6446 queue->xmit_lock_owner = -1;
6447 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6448 queue->dev = dev;
6449 #ifdef CONFIG_BQL
6450 dql_init(&queue->dql, HZ);
6451 #endif
6452 }
6453
6454 static void netif_free_tx_queues(struct net_device *dev)
6455 {
6456 kvfree(dev->_tx);
6457 }
6458
6459 static int netif_alloc_netdev_queues(struct net_device *dev)
6460 {
6461 unsigned int count = dev->num_tx_queues;
6462 struct netdev_queue *tx;
6463 size_t sz = count * sizeof(*tx);
6464
6465 if (count < 1 || count > 0xffff)
6466 return -EINVAL;
6467
6468 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6469 if (!tx) {
6470 tx = vzalloc(sz);
6471 if (!tx)
6472 return -ENOMEM;
6473 }
6474 dev->_tx = tx;
6475
6476 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6477 spin_lock_init(&dev->tx_global_lock);
6478
6479 return 0;
6480 }
6481
6482 void netif_tx_stop_all_queues(struct net_device *dev)
6483 {
6484 unsigned int i;
6485
6486 for (i = 0; i < dev->num_tx_queues; i++) {
6487 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6488 netif_tx_stop_queue(txq);
6489 }
6490 }
6491 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6492
6493 /**
6494 * register_netdevice - register a network device
6495 * @dev: device to register
6496 *
6497 * Take a completed network device structure and add it to the kernel
6498 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6499 * chain. 0 is returned on success. A negative errno code is returned
6500 * on a failure to set up the device, or if the name is a duplicate.
6501 *
6502 * Callers must hold the rtnl semaphore. You may want
6503 * register_netdev() instead of this.
6504 *
6505 * BUGS:
6506 * The locking appears insufficient to guarantee two parallel registers
6507 * will not get the same name.
6508 */
6509
6510 int register_netdevice(struct net_device *dev)
6511 {
6512 int ret;
6513 struct net *net = dev_net(dev);
6514
6515 BUG_ON(dev_boot_phase);
6516 ASSERT_RTNL();
6517
6518 might_sleep();
6519
6520 /* When net_device's are persistent, this will be fatal. */
6521 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6522 BUG_ON(!net);
6523
6524 spin_lock_init(&dev->addr_list_lock);
6525 netdev_set_addr_lockdep_class(dev);
6526
6527 ret = dev_get_valid_name(net, dev, dev->name);
6528 if (ret < 0)
6529 goto out;
6530
6531 /* Init, if this function is available */
6532 if (dev->netdev_ops->ndo_init) {
6533 ret = dev->netdev_ops->ndo_init(dev);
6534 if (ret) {
6535 if (ret > 0)
6536 ret = -EIO;
6537 goto out;
6538 }
6539 }
6540
6541 if (((dev->hw_features | dev->features) &
6542 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6543 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6544 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6545 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6546 ret = -EINVAL;
6547 goto err_uninit;
6548 }
6549
6550 ret = -EBUSY;
6551 if (!dev->ifindex)
6552 dev->ifindex = dev_new_index(net);
6553 else if (__dev_get_by_index(net, dev->ifindex))
6554 goto err_uninit;
6555
6556 /* Transfer changeable features to wanted_features and enable
6557 * software offloads (GSO and GRO).
6558 */
6559 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6560 dev->features |= NETIF_F_SOFT_FEATURES;
6561 dev->wanted_features = dev->features & dev->hw_features;
6562
6563 if (!(dev->flags & IFF_LOOPBACK)) {
6564 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6565 }
6566
6567 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6568 */
6569 dev->vlan_features |= NETIF_F_HIGHDMA;
6570
6571 /* Make NETIF_F_SG inheritable to tunnel devices.
6572 */
6573 dev->hw_enc_features |= NETIF_F_SG;
6574
6575 /* Make NETIF_F_SG inheritable to MPLS.
6576 */
6577 dev->mpls_features |= NETIF_F_SG;
6578
6579 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6580 ret = notifier_to_errno(ret);
6581 if (ret)
6582 goto err_uninit;
6583
6584 ret = netdev_register_kobject(dev);
6585 if (ret)
6586 goto err_uninit;
6587 dev->reg_state = NETREG_REGISTERED;
6588
6589 __netdev_update_features(dev);
6590
6591 /*
6592 * Default initial state at registry is that the
6593 * device is present.
6594 */
6595
6596 set_bit(__LINK_STATE_PRESENT, &dev->state);
6597
6598 linkwatch_init_dev(dev);
6599
6600 dev_init_scheduler(dev);
6601 dev_hold(dev);
6602 list_netdevice(dev);
6603 add_device_randomness(dev->dev_addr, dev->addr_len);
6604
6605 /* If the device has permanent device address, driver should
6606 * set dev_addr and also addr_assign_type should be set to
6607 * NET_ADDR_PERM (default value).
6608 */
6609 if (dev->addr_assign_type == NET_ADDR_PERM)
6610 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6611
6612 /* Notify protocols, that a new device appeared. */
6613 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6614 ret = notifier_to_errno(ret);
6615 if (ret) {
6616 rollback_registered(dev);
6617 dev->reg_state = NETREG_UNREGISTERED;
6618 }
6619 /*
6620 * Prevent userspace races by waiting until the network
6621 * device is fully setup before sending notifications.
6622 */
6623 if (!dev->rtnl_link_ops ||
6624 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6625 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6626
6627 out:
6628 return ret;
6629
6630 err_uninit:
6631 if (dev->netdev_ops->ndo_uninit)
6632 dev->netdev_ops->ndo_uninit(dev);
6633 goto out;
6634 }
6635 EXPORT_SYMBOL(register_netdevice);
6636
6637 /**
6638 * init_dummy_netdev - init a dummy network device for NAPI
6639 * @dev: device to init
6640 *
6641 * This takes a network device structure and initialize the minimum
6642 * amount of fields so it can be used to schedule NAPI polls without
6643 * registering a full blown interface. This is to be used by drivers
6644 * that need to tie several hardware interfaces to a single NAPI
6645 * poll scheduler due to HW limitations.
6646 */
6647 int init_dummy_netdev(struct net_device *dev)
6648 {
6649 /* Clear everything. Note we don't initialize spinlocks
6650 * are they aren't supposed to be taken by any of the
6651 * NAPI code and this dummy netdev is supposed to be
6652 * only ever used for NAPI polls
6653 */
6654 memset(dev, 0, sizeof(struct net_device));
6655
6656 /* make sure we BUG if trying to hit standard
6657 * register/unregister code path
6658 */
6659 dev->reg_state = NETREG_DUMMY;
6660
6661 /* NAPI wants this */
6662 INIT_LIST_HEAD(&dev->napi_list);
6663
6664 /* a dummy interface is started by default */
6665 set_bit(__LINK_STATE_PRESENT, &dev->state);
6666 set_bit(__LINK_STATE_START, &dev->state);
6667
6668 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6669 * because users of this 'device' dont need to change
6670 * its refcount.
6671 */
6672
6673 return 0;
6674 }
6675 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6676
6677
6678 /**
6679 * register_netdev - register a network device
6680 * @dev: device to register
6681 *
6682 * Take a completed network device structure and add it to the kernel
6683 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6684 * chain. 0 is returned on success. A negative errno code is returned
6685 * on a failure to set up the device, or if the name is a duplicate.
6686 *
6687 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6688 * and expands the device name if you passed a format string to
6689 * alloc_netdev.
6690 */
6691 int register_netdev(struct net_device *dev)
6692 {
6693 int err;
6694
6695 rtnl_lock();
6696 err = register_netdevice(dev);
6697 rtnl_unlock();
6698 return err;
6699 }
6700 EXPORT_SYMBOL(register_netdev);
6701
6702 int netdev_refcnt_read(const struct net_device *dev)
6703 {
6704 int i, refcnt = 0;
6705
6706 for_each_possible_cpu(i)
6707 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6708 return refcnt;
6709 }
6710 EXPORT_SYMBOL(netdev_refcnt_read);
6711
6712 /**
6713 * netdev_wait_allrefs - wait until all references are gone.
6714 * @dev: target net_device
6715 *
6716 * This is called when unregistering network devices.
6717 *
6718 * Any protocol or device that holds a reference should register
6719 * for netdevice notification, and cleanup and put back the
6720 * reference if they receive an UNREGISTER event.
6721 * We can get stuck here if buggy protocols don't correctly
6722 * call dev_put.
6723 */
6724 static void netdev_wait_allrefs(struct net_device *dev)
6725 {
6726 unsigned long rebroadcast_time, warning_time;
6727 int refcnt;
6728
6729 linkwatch_forget_dev(dev);
6730
6731 rebroadcast_time = warning_time = jiffies;
6732 refcnt = netdev_refcnt_read(dev);
6733
6734 while (refcnt != 0) {
6735 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6736 rtnl_lock();
6737
6738 /* Rebroadcast unregister notification */
6739 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6740
6741 __rtnl_unlock();
6742 rcu_barrier();
6743 rtnl_lock();
6744
6745 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6746 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6747 &dev->state)) {
6748 /* We must not have linkwatch events
6749 * pending on unregister. If this
6750 * happens, we simply run the queue
6751 * unscheduled, resulting in a noop
6752 * for this device.
6753 */
6754 linkwatch_run_queue();
6755 }
6756
6757 __rtnl_unlock();
6758
6759 rebroadcast_time = jiffies;
6760 }
6761
6762 msleep(250);
6763
6764 refcnt = netdev_refcnt_read(dev);
6765
6766 if (time_after(jiffies, warning_time + 10 * HZ)) {
6767 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6768 dev->name, refcnt);
6769 warning_time = jiffies;
6770 }
6771 }
6772 }
6773
6774 /* The sequence is:
6775 *
6776 * rtnl_lock();
6777 * ...
6778 * register_netdevice(x1);
6779 * register_netdevice(x2);
6780 * ...
6781 * unregister_netdevice(y1);
6782 * unregister_netdevice(y2);
6783 * ...
6784 * rtnl_unlock();
6785 * free_netdev(y1);
6786 * free_netdev(y2);
6787 *
6788 * We are invoked by rtnl_unlock().
6789 * This allows us to deal with problems:
6790 * 1) We can delete sysfs objects which invoke hotplug
6791 * without deadlocking with linkwatch via keventd.
6792 * 2) Since we run with the RTNL semaphore not held, we can sleep
6793 * safely in order to wait for the netdev refcnt to drop to zero.
6794 *
6795 * We must not return until all unregister events added during
6796 * the interval the lock was held have been completed.
6797 */
6798 void netdev_run_todo(void)
6799 {
6800 struct list_head list;
6801
6802 /* Snapshot list, allow later requests */
6803 list_replace_init(&net_todo_list, &list);
6804
6805 __rtnl_unlock();
6806
6807
6808 /* Wait for rcu callbacks to finish before next phase */
6809 if (!list_empty(&list))
6810 rcu_barrier();
6811
6812 while (!list_empty(&list)) {
6813 struct net_device *dev
6814 = list_first_entry(&list, struct net_device, todo_list);
6815 list_del(&dev->todo_list);
6816
6817 rtnl_lock();
6818 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6819 __rtnl_unlock();
6820
6821 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6822 pr_err("network todo '%s' but state %d\n",
6823 dev->name, dev->reg_state);
6824 dump_stack();
6825 continue;
6826 }
6827
6828 dev->reg_state = NETREG_UNREGISTERED;
6829
6830 netdev_wait_allrefs(dev);
6831
6832 /* paranoia */
6833 BUG_ON(netdev_refcnt_read(dev));
6834 BUG_ON(!list_empty(&dev->ptype_all));
6835 BUG_ON(!list_empty(&dev->ptype_specific));
6836 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6837 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6838 WARN_ON(dev->dn_ptr);
6839
6840 if (dev->destructor)
6841 dev->destructor(dev);
6842
6843 /* Report a network device has been unregistered */
6844 rtnl_lock();
6845 dev_net(dev)->dev_unreg_count--;
6846 __rtnl_unlock();
6847 wake_up(&netdev_unregistering_wq);
6848
6849 /* Free network device */
6850 kobject_put(&dev->dev.kobj);
6851 }
6852 }
6853
6854 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6855 * fields in the same order, with only the type differing.
6856 */
6857 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6858 const struct net_device_stats *netdev_stats)
6859 {
6860 #if BITS_PER_LONG == 64
6861 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6862 memcpy(stats64, netdev_stats, sizeof(*stats64));
6863 #else
6864 size_t i, n = sizeof(*stats64) / sizeof(u64);
6865 const unsigned long *src = (const unsigned long *)netdev_stats;
6866 u64 *dst = (u64 *)stats64;
6867
6868 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6869 sizeof(*stats64) / sizeof(u64));
6870 for (i = 0; i < n; i++)
6871 dst[i] = src[i];
6872 #endif
6873 }
6874 EXPORT_SYMBOL(netdev_stats_to_stats64);
6875
6876 /**
6877 * dev_get_stats - get network device statistics
6878 * @dev: device to get statistics from
6879 * @storage: place to store stats
6880 *
6881 * Get network statistics from device. Return @storage.
6882 * The device driver may provide its own method by setting
6883 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6884 * otherwise the internal statistics structure is used.
6885 */
6886 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6887 struct rtnl_link_stats64 *storage)
6888 {
6889 const struct net_device_ops *ops = dev->netdev_ops;
6890
6891 if (ops->ndo_get_stats64) {
6892 memset(storage, 0, sizeof(*storage));
6893 ops->ndo_get_stats64(dev, storage);
6894 } else if (ops->ndo_get_stats) {
6895 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6896 } else {
6897 netdev_stats_to_stats64(storage, &dev->stats);
6898 }
6899 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6900 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6901 return storage;
6902 }
6903 EXPORT_SYMBOL(dev_get_stats);
6904
6905 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6906 {
6907 struct netdev_queue *queue = dev_ingress_queue(dev);
6908
6909 #ifdef CONFIG_NET_CLS_ACT
6910 if (queue)
6911 return queue;
6912 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6913 if (!queue)
6914 return NULL;
6915 netdev_init_one_queue(dev, queue, NULL);
6916 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6917 queue->qdisc_sleeping = &noop_qdisc;
6918 rcu_assign_pointer(dev->ingress_queue, queue);
6919 #endif
6920 return queue;
6921 }
6922
6923 static const struct ethtool_ops default_ethtool_ops;
6924
6925 void netdev_set_default_ethtool_ops(struct net_device *dev,
6926 const struct ethtool_ops *ops)
6927 {
6928 if (dev->ethtool_ops == &default_ethtool_ops)
6929 dev->ethtool_ops = ops;
6930 }
6931 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6932
6933 void netdev_freemem(struct net_device *dev)
6934 {
6935 char *addr = (char *)dev - dev->padded;
6936
6937 kvfree(addr);
6938 }
6939
6940 /**
6941 * alloc_netdev_mqs - allocate network device
6942 * @sizeof_priv: size of private data to allocate space for
6943 * @name: device name format string
6944 * @name_assign_type: origin of device name
6945 * @setup: callback to initialize device
6946 * @txqs: the number of TX subqueues to allocate
6947 * @rxqs: the number of RX subqueues to allocate
6948 *
6949 * Allocates a struct net_device with private data area for driver use
6950 * and performs basic initialization. Also allocates subqueue structs
6951 * for each queue on the device.
6952 */
6953 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6954 unsigned char name_assign_type,
6955 void (*setup)(struct net_device *),
6956 unsigned int txqs, unsigned int rxqs)
6957 {
6958 struct net_device *dev;
6959 size_t alloc_size;
6960 struct net_device *p;
6961
6962 BUG_ON(strlen(name) >= sizeof(dev->name));
6963
6964 if (txqs < 1) {
6965 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6966 return NULL;
6967 }
6968
6969 #ifdef CONFIG_SYSFS
6970 if (rxqs < 1) {
6971 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6972 return NULL;
6973 }
6974 #endif
6975
6976 alloc_size = sizeof(struct net_device);
6977 if (sizeof_priv) {
6978 /* ensure 32-byte alignment of private area */
6979 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6980 alloc_size += sizeof_priv;
6981 }
6982 /* ensure 32-byte alignment of whole construct */
6983 alloc_size += NETDEV_ALIGN - 1;
6984
6985 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6986 if (!p)
6987 p = vzalloc(alloc_size);
6988 if (!p)
6989 return NULL;
6990
6991 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6992 dev->padded = (char *)dev - (char *)p;
6993
6994 dev->pcpu_refcnt = alloc_percpu(int);
6995 if (!dev->pcpu_refcnt)
6996 goto free_dev;
6997
6998 if (dev_addr_init(dev))
6999 goto free_pcpu;
7000
7001 dev_mc_init(dev);
7002 dev_uc_init(dev);
7003
7004 dev_net_set(dev, &init_net);
7005
7006 dev->gso_max_size = GSO_MAX_SIZE;
7007 dev->gso_max_segs = GSO_MAX_SEGS;
7008 dev->gso_min_segs = 0;
7009
7010 INIT_LIST_HEAD(&dev->napi_list);
7011 INIT_LIST_HEAD(&dev->unreg_list);
7012 INIT_LIST_HEAD(&dev->close_list);
7013 INIT_LIST_HEAD(&dev->link_watch_list);
7014 INIT_LIST_HEAD(&dev->adj_list.upper);
7015 INIT_LIST_HEAD(&dev->adj_list.lower);
7016 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7017 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7018 INIT_LIST_HEAD(&dev->ptype_all);
7019 INIT_LIST_HEAD(&dev->ptype_specific);
7020 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7021 setup(dev);
7022
7023 if (!dev->tx_queue_len)
7024 dev->priv_flags |= IFF_NO_QUEUE;
7025
7026 dev->num_tx_queues = txqs;
7027 dev->real_num_tx_queues = txqs;
7028 if (netif_alloc_netdev_queues(dev))
7029 goto free_all;
7030
7031 #ifdef CONFIG_SYSFS
7032 dev->num_rx_queues = rxqs;
7033 dev->real_num_rx_queues = rxqs;
7034 if (netif_alloc_rx_queues(dev))
7035 goto free_all;
7036 #endif
7037
7038 strcpy(dev->name, name);
7039 dev->name_assign_type = name_assign_type;
7040 dev->group = INIT_NETDEV_GROUP;
7041 if (!dev->ethtool_ops)
7042 dev->ethtool_ops = &default_ethtool_ops;
7043
7044 nf_hook_ingress_init(dev);
7045
7046 return dev;
7047
7048 free_all:
7049 free_netdev(dev);
7050 return NULL;
7051
7052 free_pcpu:
7053 free_percpu(dev->pcpu_refcnt);
7054 free_dev:
7055 netdev_freemem(dev);
7056 return NULL;
7057 }
7058 EXPORT_SYMBOL(alloc_netdev_mqs);
7059
7060 /**
7061 * free_netdev - free network device
7062 * @dev: device
7063 *
7064 * This function does the last stage of destroying an allocated device
7065 * interface. The reference to the device object is released.
7066 * If this is the last reference then it will be freed.
7067 */
7068 void free_netdev(struct net_device *dev)
7069 {
7070 struct napi_struct *p, *n;
7071
7072 netif_free_tx_queues(dev);
7073 #ifdef CONFIG_SYSFS
7074 kvfree(dev->_rx);
7075 #endif
7076
7077 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7078
7079 /* Flush device addresses */
7080 dev_addr_flush(dev);
7081
7082 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7083 netif_napi_del(p);
7084
7085 free_percpu(dev->pcpu_refcnt);
7086 dev->pcpu_refcnt = NULL;
7087
7088 /* Compatibility with error handling in drivers */
7089 if (dev->reg_state == NETREG_UNINITIALIZED) {
7090 netdev_freemem(dev);
7091 return;
7092 }
7093
7094 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7095 dev->reg_state = NETREG_RELEASED;
7096
7097 /* will free via device release */
7098 put_device(&dev->dev);
7099 }
7100 EXPORT_SYMBOL(free_netdev);
7101
7102 /**
7103 * synchronize_net - Synchronize with packet receive processing
7104 *
7105 * Wait for packets currently being received to be done.
7106 * Does not block later packets from starting.
7107 */
7108 void synchronize_net(void)
7109 {
7110 might_sleep();
7111 if (rtnl_is_locked())
7112 synchronize_rcu_expedited();
7113 else
7114 synchronize_rcu();
7115 }
7116 EXPORT_SYMBOL(synchronize_net);
7117
7118 /**
7119 * unregister_netdevice_queue - remove device from the kernel
7120 * @dev: device
7121 * @head: list
7122 *
7123 * This function shuts down a device interface and removes it
7124 * from the kernel tables.
7125 * If head not NULL, device is queued to be unregistered later.
7126 *
7127 * Callers must hold the rtnl semaphore. You may want
7128 * unregister_netdev() instead of this.
7129 */
7130
7131 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7132 {
7133 ASSERT_RTNL();
7134
7135 if (head) {
7136 list_move_tail(&dev->unreg_list, head);
7137 } else {
7138 rollback_registered(dev);
7139 /* Finish processing unregister after unlock */
7140 net_set_todo(dev);
7141 }
7142 }
7143 EXPORT_SYMBOL(unregister_netdevice_queue);
7144
7145 /**
7146 * unregister_netdevice_many - unregister many devices
7147 * @head: list of devices
7148 *
7149 * Note: As most callers use a stack allocated list_head,
7150 * we force a list_del() to make sure stack wont be corrupted later.
7151 */
7152 void unregister_netdevice_many(struct list_head *head)
7153 {
7154 struct net_device *dev;
7155
7156 if (!list_empty(head)) {
7157 rollback_registered_many(head);
7158 list_for_each_entry(dev, head, unreg_list)
7159 net_set_todo(dev);
7160 list_del(head);
7161 }
7162 }
7163 EXPORT_SYMBOL(unregister_netdevice_many);
7164
7165 /**
7166 * unregister_netdev - remove device from the kernel
7167 * @dev: device
7168 *
7169 * This function shuts down a device interface and removes it
7170 * from the kernel tables.
7171 *
7172 * This is just a wrapper for unregister_netdevice that takes
7173 * the rtnl semaphore. In general you want to use this and not
7174 * unregister_netdevice.
7175 */
7176 void unregister_netdev(struct net_device *dev)
7177 {
7178 rtnl_lock();
7179 unregister_netdevice(dev);
7180 rtnl_unlock();
7181 }
7182 EXPORT_SYMBOL(unregister_netdev);
7183
7184 /**
7185 * dev_change_net_namespace - move device to different nethost namespace
7186 * @dev: device
7187 * @net: network namespace
7188 * @pat: If not NULL name pattern to try if the current device name
7189 * is already taken in the destination network namespace.
7190 *
7191 * This function shuts down a device interface and moves it
7192 * to a new network namespace. On success 0 is returned, on
7193 * a failure a netagive errno code is returned.
7194 *
7195 * Callers must hold the rtnl semaphore.
7196 */
7197
7198 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7199 {
7200 int err;
7201
7202 ASSERT_RTNL();
7203
7204 /* Don't allow namespace local devices to be moved. */
7205 err = -EINVAL;
7206 if (dev->features & NETIF_F_NETNS_LOCAL)
7207 goto out;
7208
7209 /* Ensure the device has been registrered */
7210 if (dev->reg_state != NETREG_REGISTERED)
7211 goto out;
7212
7213 /* Get out if there is nothing todo */
7214 err = 0;
7215 if (net_eq(dev_net(dev), net))
7216 goto out;
7217
7218 /* Pick the destination device name, and ensure
7219 * we can use it in the destination network namespace.
7220 */
7221 err = -EEXIST;
7222 if (__dev_get_by_name(net, dev->name)) {
7223 /* We get here if we can't use the current device name */
7224 if (!pat)
7225 goto out;
7226 if (dev_get_valid_name(net, dev, pat) < 0)
7227 goto out;
7228 }
7229
7230 /*
7231 * And now a mini version of register_netdevice unregister_netdevice.
7232 */
7233
7234 /* If device is running close it first. */
7235 dev_close(dev);
7236
7237 /* And unlink it from device chain */
7238 err = -ENODEV;
7239 unlist_netdevice(dev);
7240
7241 synchronize_net();
7242
7243 /* Shutdown queueing discipline. */
7244 dev_shutdown(dev);
7245
7246 /* Notify protocols, that we are about to destroy
7247 this device. They should clean all the things.
7248
7249 Note that dev->reg_state stays at NETREG_REGISTERED.
7250 This is wanted because this way 8021q and macvlan know
7251 the device is just moving and can keep their slaves up.
7252 */
7253 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7254 rcu_barrier();
7255 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7256 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7257
7258 /*
7259 * Flush the unicast and multicast chains
7260 */
7261 dev_uc_flush(dev);
7262 dev_mc_flush(dev);
7263
7264 /* Send a netdev-removed uevent to the old namespace */
7265 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7266 netdev_adjacent_del_links(dev);
7267
7268 /* Actually switch the network namespace */
7269 dev_net_set(dev, net);
7270
7271 /* If there is an ifindex conflict assign a new one */
7272 if (__dev_get_by_index(net, dev->ifindex))
7273 dev->ifindex = dev_new_index(net);
7274
7275 /* Send a netdev-add uevent to the new namespace */
7276 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7277 netdev_adjacent_add_links(dev);
7278
7279 /* Fixup kobjects */
7280 err = device_rename(&dev->dev, dev->name);
7281 WARN_ON(err);
7282
7283 /* Add the device back in the hashes */
7284 list_netdevice(dev);
7285
7286 /* Notify protocols, that a new device appeared. */
7287 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7288
7289 /*
7290 * Prevent userspace races by waiting until the network
7291 * device is fully setup before sending notifications.
7292 */
7293 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7294
7295 synchronize_net();
7296 err = 0;
7297 out:
7298 return err;
7299 }
7300 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7301
7302 static int dev_cpu_callback(struct notifier_block *nfb,
7303 unsigned long action,
7304 void *ocpu)
7305 {
7306 struct sk_buff **list_skb;
7307 struct sk_buff *skb;
7308 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7309 struct softnet_data *sd, *oldsd;
7310
7311 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7312 return NOTIFY_OK;
7313
7314 local_irq_disable();
7315 cpu = smp_processor_id();
7316 sd = &per_cpu(softnet_data, cpu);
7317 oldsd = &per_cpu(softnet_data, oldcpu);
7318
7319 /* Find end of our completion_queue. */
7320 list_skb = &sd->completion_queue;
7321 while (*list_skb)
7322 list_skb = &(*list_skb)->next;
7323 /* Append completion queue from offline CPU. */
7324 *list_skb = oldsd->completion_queue;
7325 oldsd->completion_queue = NULL;
7326
7327 /* Append output queue from offline CPU. */
7328 if (oldsd->output_queue) {
7329 *sd->output_queue_tailp = oldsd->output_queue;
7330 sd->output_queue_tailp = oldsd->output_queue_tailp;
7331 oldsd->output_queue = NULL;
7332 oldsd->output_queue_tailp = &oldsd->output_queue;
7333 }
7334 /* Append NAPI poll list from offline CPU, with one exception :
7335 * process_backlog() must be called by cpu owning percpu backlog.
7336 * We properly handle process_queue & input_pkt_queue later.
7337 */
7338 while (!list_empty(&oldsd->poll_list)) {
7339 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7340 struct napi_struct,
7341 poll_list);
7342
7343 list_del_init(&napi->poll_list);
7344 if (napi->poll == process_backlog)
7345 napi->state = 0;
7346 else
7347 ____napi_schedule(sd, napi);
7348 }
7349
7350 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7351 local_irq_enable();
7352
7353 /* Process offline CPU's input_pkt_queue */
7354 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7355 netif_rx_ni(skb);
7356 input_queue_head_incr(oldsd);
7357 }
7358 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7359 netif_rx_ni(skb);
7360 input_queue_head_incr(oldsd);
7361 }
7362
7363 return NOTIFY_OK;
7364 }
7365
7366
7367 /**
7368 * netdev_increment_features - increment feature set by one
7369 * @all: current feature set
7370 * @one: new feature set
7371 * @mask: mask feature set
7372 *
7373 * Computes a new feature set after adding a device with feature set
7374 * @one to the master device with current feature set @all. Will not
7375 * enable anything that is off in @mask. Returns the new feature set.
7376 */
7377 netdev_features_t netdev_increment_features(netdev_features_t all,
7378 netdev_features_t one, netdev_features_t mask)
7379 {
7380 if (mask & NETIF_F_GEN_CSUM)
7381 mask |= NETIF_F_ALL_CSUM;
7382 mask |= NETIF_F_VLAN_CHALLENGED;
7383
7384 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7385 all &= one | ~NETIF_F_ALL_FOR_ALL;
7386
7387 /* If one device supports hw checksumming, set for all. */
7388 if (all & NETIF_F_GEN_CSUM)
7389 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7390
7391 return all;
7392 }
7393 EXPORT_SYMBOL(netdev_increment_features);
7394
7395 static struct hlist_head * __net_init netdev_create_hash(void)
7396 {
7397 int i;
7398 struct hlist_head *hash;
7399
7400 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7401 if (hash != NULL)
7402 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7403 INIT_HLIST_HEAD(&hash[i]);
7404
7405 return hash;
7406 }
7407
7408 /* Initialize per network namespace state */
7409 static int __net_init netdev_init(struct net *net)
7410 {
7411 if (net != &init_net)
7412 INIT_LIST_HEAD(&net->dev_base_head);
7413
7414 net->dev_name_head = netdev_create_hash();
7415 if (net->dev_name_head == NULL)
7416 goto err_name;
7417
7418 net->dev_index_head = netdev_create_hash();
7419 if (net->dev_index_head == NULL)
7420 goto err_idx;
7421
7422 return 0;
7423
7424 err_idx:
7425 kfree(net->dev_name_head);
7426 err_name:
7427 return -ENOMEM;
7428 }
7429
7430 /**
7431 * netdev_drivername - network driver for the device
7432 * @dev: network device
7433 *
7434 * Determine network driver for device.
7435 */
7436 const char *netdev_drivername(const struct net_device *dev)
7437 {
7438 const struct device_driver *driver;
7439 const struct device *parent;
7440 const char *empty = "";
7441
7442 parent = dev->dev.parent;
7443 if (!parent)
7444 return empty;
7445
7446 driver = parent->driver;
7447 if (driver && driver->name)
7448 return driver->name;
7449 return empty;
7450 }
7451
7452 static void __netdev_printk(const char *level, const struct net_device *dev,
7453 struct va_format *vaf)
7454 {
7455 if (dev && dev->dev.parent) {
7456 dev_printk_emit(level[1] - '0',
7457 dev->dev.parent,
7458 "%s %s %s%s: %pV",
7459 dev_driver_string(dev->dev.parent),
7460 dev_name(dev->dev.parent),
7461 netdev_name(dev), netdev_reg_state(dev),
7462 vaf);
7463 } else if (dev) {
7464 printk("%s%s%s: %pV",
7465 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7466 } else {
7467 printk("%s(NULL net_device): %pV", level, vaf);
7468 }
7469 }
7470
7471 void netdev_printk(const char *level, const struct net_device *dev,
7472 const char *format, ...)
7473 {
7474 struct va_format vaf;
7475 va_list args;
7476
7477 va_start(args, format);
7478
7479 vaf.fmt = format;
7480 vaf.va = &args;
7481
7482 __netdev_printk(level, dev, &vaf);
7483
7484 va_end(args);
7485 }
7486 EXPORT_SYMBOL(netdev_printk);
7487
7488 #define define_netdev_printk_level(func, level) \
7489 void func(const struct net_device *dev, const char *fmt, ...) \
7490 { \
7491 struct va_format vaf; \
7492 va_list args; \
7493 \
7494 va_start(args, fmt); \
7495 \
7496 vaf.fmt = fmt; \
7497 vaf.va = &args; \
7498 \
7499 __netdev_printk(level, dev, &vaf); \
7500 \
7501 va_end(args); \
7502 } \
7503 EXPORT_SYMBOL(func);
7504
7505 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7506 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7507 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7508 define_netdev_printk_level(netdev_err, KERN_ERR);
7509 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7510 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7511 define_netdev_printk_level(netdev_info, KERN_INFO);
7512
7513 static void __net_exit netdev_exit(struct net *net)
7514 {
7515 kfree(net->dev_name_head);
7516 kfree(net->dev_index_head);
7517 }
7518
7519 static struct pernet_operations __net_initdata netdev_net_ops = {
7520 .init = netdev_init,
7521 .exit = netdev_exit,
7522 };
7523
7524 static void __net_exit default_device_exit(struct net *net)
7525 {
7526 struct net_device *dev, *aux;
7527 /*
7528 * Push all migratable network devices back to the
7529 * initial network namespace
7530 */
7531 rtnl_lock();
7532 for_each_netdev_safe(net, dev, aux) {
7533 int err;
7534 char fb_name[IFNAMSIZ];
7535
7536 /* Ignore unmoveable devices (i.e. loopback) */
7537 if (dev->features & NETIF_F_NETNS_LOCAL)
7538 continue;
7539
7540 /* Leave virtual devices for the generic cleanup */
7541 if (dev->rtnl_link_ops)
7542 continue;
7543
7544 /* Push remaining network devices to init_net */
7545 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7546 err = dev_change_net_namespace(dev, &init_net, fb_name);
7547 if (err) {
7548 pr_emerg("%s: failed to move %s to init_net: %d\n",
7549 __func__, dev->name, err);
7550 BUG();
7551 }
7552 }
7553 rtnl_unlock();
7554 }
7555
7556 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7557 {
7558 /* Return with the rtnl_lock held when there are no network
7559 * devices unregistering in any network namespace in net_list.
7560 */
7561 struct net *net;
7562 bool unregistering;
7563 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7564
7565 add_wait_queue(&netdev_unregistering_wq, &wait);
7566 for (;;) {
7567 unregistering = false;
7568 rtnl_lock();
7569 list_for_each_entry(net, net_list, exit_list) {
7570 if (net->dev_unreg_count > 0) {
7571 unregistering = true;
7572 break;
7573 }
7574 }
7575 if (!unregistering)
7576 break;
7577 __rtnl_unlock();
7578
7579 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7580 }
7581 remove_wait_queue(&netdev_unregistering_wq, &wait);
7582 }
7583
7584 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7585 {
7586 /* At exit all network devices most be removed from a network
7587 * namespace. Do this in the reverse order of registration.
7588 * Do this across as many network namespaces as possible to
7589 * improve batching efficiency.
7590 */
7591 struct net_device *dev;
7592 struct net *net;
7593 LIST_HEAD(dev_kill_list);
7594
7595 /* To prevent network device cleanup code from dereferencing
7596 * loopback devices or network devices that have been freed
7597 * wait here for all pending unregistrations to complete,
7598 * before unregistring the loopback device and allowing the
7599 * network namespace be freed.
7600 *
7601 * The netdev todo list containing all network devices
7602 * unregistrations that happen in default_device_exit_batch
7603 * will run in the rtnl_unlock() at the end of
7604 * default_device_exit_batch.
7605 */
7606 rtnl_lock_unregistering(net_list);
7607 list_for_each_entry(net, net_list, exit_list) {
7608 for_each_netdev_reverse(net, dev) {
7609 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7610 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7611 else
7612 unregister_netdevice_queue(dev, &dev_kill_list);
7613 }
7614 }
7615 unregister_netdevice_many(&dev_kill_list);
7616 rtnl_unlock();
7617 }
7618
7619 static struct pernet_operations __net_initdata default_device_ops = {
7620 .exit = default_device_exit,
7621 .exit_batch = default_device_exit_batch,
7622 };
7623
7624 /*
7625 * Initialize the DEV module. At boot time this walks the device list and
7626 * unhooks any devices that fail to initialise (normally hardware not
7627 * present) and leaves us with a valid list of present and active devices.
7628 *
7629 */
7630
7631 /*
7632 * This is called single threaded during boot, so no need
7633 * to take the rtnl semaphore.
7634 */
7635 static int __init net_dev_init(void)
7636 {
7637 int i, rc = -ENOMEM;
7638
7639 BUG_ON(!dev_boot_phase);
7640
7641 if (dev_proc_init())
7642 goto out;
7643
7644 if (netdev_kobject_init())
7645 goto out;
7646
7647 INIT_LIST_HEAD(&ptype_all);
7648 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7649 INIT_LIST_HEAD(&ptype_base[i]);
7650
7651 INIT_LIST_HEAD(&offload_base);
7652
7653 if (register_pernet_subsys(&netdev_net_ops))
7654 goto out;
7655
7656 /*
7657 * Initialise the packet receive queues.
7658 */
7659
7660 for_each_possible_cpu(i) {
7661 struct softnet_data *sd = &per_cpu(softnet_data, i);
7662
7663 skb_queue_head_init(&sd->input_pkt_queue);
7664 skb_queue_head_init(&sd->process_queue);
7665 INIT_LIST_HEAD(&sd->poll_list);
7666 sd->output_queue_tailp = &sd->output_queue;
7667 #ifdef CONFIG_RPS
7668 sd->csd.func = rps_trigger_softirq;
7669 sd->csd.info = sd;
7670 sd->cpu = i;
7671 #endif
7672
7673 sd->backlog.poll = process_backlog;
7674 sd->backlog.weight = weight_p;
7675 }
7676
7677 dev_boot_phase = 0;
7678
7679 /* The loopback device is special if any other network devices
7680 * is present in a network namespace the loopback device must
7681 * be present. Since we now dynamically allocate and free the
7682 * loopback device ensure this invariant is maintained by
7683 * keeping the loopback device as the first device on the
7684 * list of network devices. Ensuring the loopback devices
7685 * is the first device that appears and the last network device
7686 * that disappears.
7687 */
7688 if (register_pernet_device(&loopback_net_ops))
7689 goto out;
7690
7691 if (register_pernet_device(&default_device_ops))
7692 goto out;
7693
7694 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7695 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7696
7697 hotcpu_notifier(dev_cpu_callback, 0);
7698 dst_subsys_init();
7699 rc = 0;
7700 out:
7701 return rc;
7702 }
7703
7704 subsys_initcall(net_dev_init);