]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/core/dev.c
net/core/dev: Warn on a too-short GRO frame
[mirror_ubuntu-zesty-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/sctp.h>
142
143 #include "net-sysfs.h"
144
145 /* Instead of increasing this, you should create a hash table. */
146 #define MAX_GRO_SKBS 8
147
148 /* This should be increased if a protocol with a bigger head is added. */
149 #define GRO_MAX_HEAD (MAX_HEADER + 128)
150
151 static DEFINE_SPINLOCK(ptype_lock);
152 static DEFINE_SPINLOCK(offload_lock);
153 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
154 struct list_head ptype_all __read_mostly; /* Taps */
155 static struct list_head offload_base __read_mostly;
156
157 static int netif_rx_internal(struct sk_buff *skb);
158 static int call_netdevice_notifiers_info(unsigned long val,
159 struct net_device *dev,
160 struct netdev_notifier_info *info);
161
162 /*
163 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
164 * semaphore.
165 *
166 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
167 *
168 * Writers must hold the rtnl semaphore while they loop through the
169 * dev_base_head list, and hold dev_base_lock for writing when they do the
170 * actual updates. This allows pure readers to access the list even
171 * while a writer is preparing to update it.
172 *
173 * To put it another way, dev_base_lock is held for writing only to
174 * protect against pure readers; the rtnl semaphore provides the
175 * protection against other writers.
176 *
177 * See, for example usages, register_netdevice() and
178 * unregister_netdevice(), which must be called with the rtnl
179 * semaphore held.
180 */
181 DEFINE_RWLOCK(dev_base_lock);
182 EXPORT_SYMBOL(dev_base_lock);
183
184 /* protects napi_hash addition/deletion and napi_gen_id */
185 static DEFINE_SPINLOCK(napi_hash_lock);
186
187 static unsigned int napi_gen_id = NR_CPUS;
188 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
189
190 static seqcount_t devnet_rename_seq;
191
192 static inline void dev_base_seq_inc(struct net *net)
193 {
194 while (++net->dev_base_seq == 0);
195 }
196
197 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
198 {
199 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
200
201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
202 }
203
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205 {
206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
207 }
208
209 static inline void rps_lock(struct softnet_data *sd)
210 {
211 #ifdef CONFIG_RPS
212 spin_lock(&sd->input_pkt_queue.lock);
213 #endif
214 }
215
216 static inline void rps_unlock(struct softnet_data *sd)
217 {
218 #ifdef CONFIG_RPS
219 spin_unlock(&sd->input_pkt_queue.lock);
220 #endif
221 }
222
223 /* Device list insertion */
224 static void list_netdevice(struct net_device *dev)
225 {
226 struct net *net = dev_net(dev);
227
228 ASSERT_RTNL();
229
230 write_lock_bh(&dev_base_lock);
231 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
232 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
233 hlist_add_head_rcu(&dev->index_hlist,
234 dev_index_hash(net, dev->ifindex));
235 write_unlock_bh(&dev_base_lock);
236
237 dev_base_seq_inc(net);
238 }
239
240 /* Device list removal
241 * caller must respect a RCU grace period before freeing/reusing dev
242 */
243 static void unlist_netdevice(struct net_device *dev)
244 {
245 ASSERT_RTNL();
246
247 /* Unlink dev from the device chain */
248 write_lock_bh(&dev_base_lock);
249 list_del_rcu(&dev->dev_list);
250 hlist_del_rcu(&dev->name_hlist);
251 hlist_del_rcu(&dev->index_hlist);
252 write_unlock_bh(&dev_base_lock);
253
254 dev_base_seq_inc(dev_net(dev));
255 }
256
257 /*
258 * Our notifier list
259 */
260
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262
263 /*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
267
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270
271 #ifdef CONFIG_LOCKDEP
272 /*
273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274 * according to dev->type
275 */
276 static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
290 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
291 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
292
293 static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
307 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
308 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
309
310 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
311 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
312
313 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
314 {
315 int i;
316
317 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
318 if (netdev_lock_type[i] == dev_type)
319 return i;
320 /* the last key is used by default */
321 return ARRAY_SIZE(netdev_lock_type) - 1;
322 }
323
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326 {
327 int i;
328
329 i = netdev_lock_pos(dev_type);
330 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
331 netdev_lock_name[i]);
332 }
333
334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335 {
336 int i;
337
338 i = netdev_lock_pos(dev->type);
339 lockdep_set_class_and_name(&dev->addr_list_lock,
340 &netdev_addr_lock_key[i],
341 netdev_lock_name[i]);
342 }
343 #else
344 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
345 unsigned short dev_type)
346 {
347 }
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 }
351 #endif
352
353 /*******************************************************************************
354
355 Protocol management and registration routines
356
357 *******************************************************************************/
358
359 /*
360 * Add a protocol ID to the list. Now that the input handler is
361 * smarter we can dispense with all the messy stuff that used to be
362 * here.
363 *
364 * BEWARE!!! Protocol handlers, mangling input packets,
365 * MUST BE last in hash buckets and checking protocol handlers
366 * MUST start from promiscuous ptype_all chain in net_bh.
367 * It is true now, do not change it.
368 * Explanation follows: if protocol handler, mangling packet, will
369 * be the first on list, it is not able to sense, that packet
370 * is cloned and should be copied-on-write, so that it will
371 * change it and subsequent readers will get broken packet.
372 * --ANK (980803)
373 */
374
375 static inline struct list_head *ptype_head(const struct packet_type *pt)
376 {
377 if (pt->type == htons(ETH_P_ALL))
378 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
379 else
380 return pt->dev ? &pt->dev->ptype_specific :
381 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
382 }
383
384 /**
385 * dev_add_pack - add packet handler
386 * @pt: packet type declaration
387 *
388 * Add a protocol handler to the networking stack. The passed &packet_type
389 * is linked into kernel lists and may not be freed until it has been
390 * removed from the kernel lists.
391 *
392 * This call does not sleep therefore it can not
393 * guarantee all CPU's that are in middle of receiving packets
394 * will see the new packet type (until the next received packet).
395 */
396
397 void dev_add_pack(struct packet_type *pt)
398 {
399 struct list_head *head = ptype_head(pt);
400
401 spin_lock(&ptype_lock);
402 list_add_rcu(&pt->list, head);
403 spin_unlock(&ptype_lock);
404 }
405 EXPORT_SYMBOL(dev_add_pack);
406
407 /**
408 * __dev_remove_pack - remove packet handler
409 * @pt: packet type declaration
410 *
411 * Remove a protocol handler that was previously added to the kernel
412 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
413 * from the kernel lists and can be freed or reused once this function
414 * returns.
415 *
416 * The packet type might still be in use by receivers
417 * and must not be freed until after all the CPU's have gone
418 * through a quiescent state.
419 */
420 void __dev_remove_pack(struct packet_type *pt)
421 {
422 struct list_head *head = ptype_head(pt);
423 struct packet_type *pt1;
424
425 spin_lock(&ptype_lock);
426
427 list_for_each_entry(pt1, head, list) {
428 if (pt == pt1) {
429 list_del_rcu(&pt->list);
430 goto out;
431 }
432 }
433
434 pr_warn("dev_remove_pack: %p not found\n", pt);
435 out:
436 spin_unlock(&ptype_lock);
437 }
438 EXPORT_SYMBOL(__dev_remove_pack);
439
440 /**
441 * dev_remove_pack - remove packet handler
442 * @pt: packet type declaration
443 *
444 * Remove a protocol handler that was previously added to the kernel
445 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
446 * from the kernel lists and can be freed or reused once this function
447 * returns.
448 *
449 * This call sleeps to guarantee that no CPU is looking at the packet
450 * type after return.
451 */
452 void dev_remove_pack(struct packet_type *pt)
453 {
454 __dev_remove_pack(pt);
455
456 synchronize_net();
457 }
458 EXPORT_SYMBOL(dev_remove_pack);
459
460
461 /**
462 * dev_add_offload - register offload handlers
463 * @po: protocol offload declaration
464 *
465 * Add protocol offload handlers to the networking stack. The passed
466 * &proto_offload is linked into kernel lists and may not be freed until
467 * it has been removed from the kernel lists.
468 *
469 * This call does not sleep therefore it can not
470 * guarantee all CPU's that are in middle of receiving packets
471 * will see the new offload handlers (until the next received packet).
472 */
473 void dev_add_offload(struct packet_offload *po)
474 {
475 struct packet_offload *elem;
476
477 spin_lock(&offload_lock);
478 list_for_each_entry(elem, &offload_base, list) {
479 if (po->priority < elem->priority)
480 break;
481 }
482 list_add_rcu(&po->list, elem->list.prev);
483 spin_unlock(&offload_lock);
484 }
485 EXPORT_SYMBOL(dev_add_offload);
486
487 /**
488 * __dev_remove_offload - remove offload handler
489 * @po: packet offload declaration
490 *
491 * Remove a protocol offload handler that was previously added to the
492 * kernel offload handlers by dev_add_offload(). The passed &offload_type
493 * is removed from the kernel lists and can be freed or reused once this
494 * function returns.
495 *
496 * The packet type might still be in use by receivers
497 * and must not be freed until after all the CPU's have gone
498 * through a quiescent state.
499 */
500 static void __dev_remove_offload(struct packet_offload *po)
501 {
502 struct list_head *head = &offload_base;
503 struct packet_offload *po1;
504
505 spin_lock(&offload_lock);
506
507 list_for_each_entry(po1, head, list) {
508 if (po == po1) {
509 list_del_rcu(&po->list);
510 goto out;
511 }
512 }
513
514 pr_warn("dev_remove_offload: %p not found\n", po);
515 out:
516 spin_unlock(&offload_lock);
517 }
518
519 /**
520 * dev_remove_offload - remove packet offload handler
521 * @po: packet offload declaration
522 *
523 * Remove a packet offload handler that was previously added to the kernel
524 * offload handlers by dev_add_offload(). The passed &offload_type is
525 * removed from the kernel lists and can be freed or reused once this
526 * function returns.
527 *
528 * This call sleeps to guarantee that no CPU is looking at the packet
529 * type after return.
530 */
531 void dev_remove_offload(struct packet_offload *po)
532 {
533 __dev_remove_offload(po);
534
535 synchronize_net();
536 }
537 EXPORT_SYMBOL(dev_remove_offload);
538
539 /******************************************************************************
540
541 Device Boot-time Settings Routines
542
543 *******************************************************************************/
544
545 /* Boot time configuration table */
546 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
547
548 /**
549 * netdev_boot_setup_add - add new setup entry
550 * @name: name of the device
551 * @map: configured settings for the device
552 *
553 * Adds new setup entry to the dev_boot_setup list. The function
554 * returns 0 on error and 1 on success. This is a generic routine to
555 * all netdevices.
556 */
557 static int netdev_boot_setup_add(char *name, struct ifmap *map)
558 {
559 struct netdev_boot_setup *s;
560 int i;
561
562 s = dev_boot_setup;
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
564 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
565 memset(s[i].name, 0, sizeof(s[i].name));
566 strlcpy(s[i].name, name, IFNAMSIZ);
567 memcpy(&s[i].map, map, sizeof(s[i].map));
568 break;
569 }
570 }
571
572 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
573 }
574
575 /**
576 * netdev_boot_setup_check - check boot time settings
577 * @dev: the netdevice
578 *
579 * Check boot time settings for the device.
580 * The found settings are set for the device to be used
581 * later in the device probing.
582 * Returns 0 if no settings found, 1 if they are.
583 */
584 int netdev_boot_setup_check(struct net_device *dev)
585 {
586 struct netdev_boot_setup *s = dev_boot_setup;
587 int i;
588
589 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
590 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
591 !strcmp(dev->name, s[i].name)) {
592 dev->irq = s[i].map.irq;
593 dev->base_addr = s[i].map.base_addr;
594 dev->mem_start = s[i].map.mem_start;
595 dev->mem_end = s[i].map.mem_end;
596 return 1;
597 }
598 }
599 return 0;
600 }
601 EXPORT_SYMBOL(netdev_boot_setup_check);
602
603
604 /**
605 * netdev_boot_base - get address from boot time settings
606 * @prefix: prefix for network device
607 * @unit: id for network device
608 *
609 * Check boot time settings for the base address of device.
610 * The found settings are set for the device to be used
611 * later in the device probing.
612 * Returns 0 if no settings found.
613 */
614 unsigned long netdev_boot_base(const char *prefix, int unit)
615 {
616 const struct netdev_boot_setup *s = dev_boot_setup;
617 char name[IFNAMSIZ];
618 int i;
619
620 sprintf(name, "%s%d", prefix, unit);
621
622 /*
623 * If device already registered then return base of 1
624 * to indicate not to probe for this interface
625 */
626 if (__dev_get_by_name(&init_net, name))
627 return 1;
628
629 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
630 if (!strcmp(name, s[i].name))
631 return s[i].map.base_addr;
632 return 0;
633 }
634
635 /*
636 * Saves at boot time configured settings for any netdevice.
637 */
638 int __init netdev_boot_setup(char *str)
639 {
640 int ints[5];
641 struct ifmap map;
642
643 str = get_options(str, ARRAY_SIZE(ints), ints);
644 if (!str || !*str)
645 return 0;
646
647 /* Save settings */
648 memset(&map, 0, sizeof(map));
649 if (ints[0] > 0)
650 map.irq = ints[1];
651 if (ints[0] > 1)
652 map.base_addr = ints[2];
653 if (ints[0] > 2)
654 map.mem_start = ints[3];
655 if (ints[0] > 3)
656 map.mem_end = ints[4];
657
658 /* Add new entry to the list */
659 return netdev_boot_setup_add(str, &map);
660 }
661
662 __setup("netdev=", netdev_boot_setup);
663
664 /*******************************************************************************
665
666 Device Interface Subroutines
667
668 *******************************************************************************/
669
670 /**
671 * dev_get_iflink - get 'iflink' value of a interface
672 * @dev: targeted interface
673 *
674 * Indicates the ifindex the interface is linked to.
675 * Physical interfaces have the same 'ifindex' and 'iflink' values.
676 */
677
678 int dev_get_iflink(const struct net_device *dev)
679 {
680 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
681 return dev->netdev_ops->ndo_get_iflink(dev);
682
683 return dev->ifindex;
684 }
685 EXPORT_SYMBOL(dev_get_iflink);
686
687 /**
688 * dev_fill_metadata_dst - Retrieve tunnel egress information.
689 * @dev: targeted interface
690 * @skb: The packet.
691 *
692 * For better visibility of tunnel traffic OVS needs to retrieve
693 * egress tunnel information for a packet. Following API allows
694 * user to get this info.
695 */
696 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
697 {
698 struct ip_tunnel_info *info;
699
700 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
701 return -EINVAL;
702
703 info = skb_tunnel_info_unclone(skb);
704 if (!info)
705 return -ENOMEM;
706 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
707 return -EINVAL;
708
709 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
710 }
711 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
712
713 /**
714 * __dev_get_by_name - find a device by its name
715 * @net: the applicable net namespace
716 * @name: name to find
717 *
718 * Find an interface by name. Must be called under RTNL semaphore
719 * or @dev_base_lock. If the name is found a pointer to the device
720 * is returned. If the name is not found then %NULL is returned. The
721 * reference counters are not incremented so the caller must be
722 * careful with locks.
723 */
724
725 struct net_device *__dev_get_by_name(struct net *net, const char *name)
726 {
727 struct net_device *dev;
728 struct hlist_head *head = dev_name_hash(net, name);
729
730 hlist_for_each_entry(dev, head, name_hlist)
731 if (!strncmp(dev->name, name, IFNAMSIZ))
732 return dev;
733
734 return NULL;
735 }
736 EXPORT_SYMBOL(__dev_get_by_name);
737
738 /**
739 * dev_get_by_name_rcu - find a device by its name
740 * @net: the applicable net namespace
741 * @name: name to find
742 *
743 * Find an interface by name.
744 * If the name is found a pointer to the device is returned.
745 * If the name is not found then %NULL is returned.
746 * The reference counters are not incremented so the caller must be
747 * careful with locks. The caller must hold RCU lock.
748 */
749
750 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
751 {
752 struct net_device *dev;
753 struct hlist_head *head = dev_name_hash(net, name);
754
755 hlist_for_each_entry_rcu(dev, head, name_hlist)
756 if (!strncmp(dev->name, name, IFNAMSIZ))
757 return dev;
758
759 return NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762
763 /**
764 * dev_get_by_name - find a device by its name
765 * @net: the applicable net namespace
766 * @name: name to find
767 *
768 * Find an interface by name. This can be called from any
769 * context and does its own locking. The returned handle has
770 * the usage count incremented and the caller must use dev_put() to
771 * release it when it is no longer needed. %NULL is returned if no
772 * matching device is found.
773 */
774
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777 struct net_device *dev;
778
779 rcu_read_lock();
780 dev = dev_get_by_name_rcu(net, name);
781 if (dev)
782 dev_hold(dev);
783 rcu_read_unlock();
784 return dev;
785 }
786 EXPORT_SYMBOL(dev_get_by_name);
787
788 /**
789 * __dev_get_by_index - find a device by its ifindex
790 * @net: the applicable net namespace
791 * @ifindex: index of device
792 *
793 * Search for an interface by index. Returns %NULL if the device
794 * is not found or a pointer to the device. The device has not
795 * had its reference counter increased so the caller must be careful
796 * about locking. The caller must hold either the RTNL semaphore
797 * or @dev_base_lock.
798 */
799
800 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
801 {
802 struct net_device *dev;
803 struct hlist_head *head = dev_index_hash(net, ifindex);
804
805 hlist_for_each_entry(dev, head, index_hlist)
806 if (dev->ifindex == ifindex)
807 return dev;
808
809 return NULL;
810 }
811 EXPORT_SYMBOL(__dev_get_by_index);
812
813 /**
814 * dev_get_by_index_rcu - find a device by its ifindex
815 * @net: the applicable net namespace
816 * @ifindex: index of device
817 *
818 * Search for an interface by index. Returns %NULL if the device
819 * is not found or a pointer to the device. The device has not
820 * had its reference counter increased so the caller must be careful
821 * about locking. The caller must hold RCU lock.
822 */
823
824 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
825 {
826 struct net_device *dev;
827 struct hlist_head *head = dev_index_hash(net, ifindex);
828
829 hlist_for_each_entry_rcu(dev, head, index_hlist)
830 if (dev->ifindex == ifindex)
831 return dev;
832
833 return NULL;
834 }
835 EXPORT_SYMBOL(dev_get_by_index_rcu);
836
837
838 /**
839 * dev_get_by_index - find a device by its ifindex
840 * @net: the applicable net namespace
841 * @ifindex: index of device
842 *
843 * Search for an interface by index. Returns NULL if the device
844 * is not found or a pointer to the device. The device returned has
845 * had a reference added and the pointer is safe until the user calls
846 * dev_put to indicate they have finished with it.
847 */
848
849 struct net_device *dev_get_by_index(struct net *net, int ifindex)
850 {
851 struct net_device *dev;
852
853 rcu_read_lock();
854 dev = dev_get_by_index_rcu(net, ifindex);
855 if (dev)
856 dev_hold(dev);
857 rcu_read_unlock();
858 return dev;
859 }
860 EXPORT_SYMBOL(dev_get_by_index);
861
862 /**
863 * netdev_get_name - get a netdevice name, knowing its ifindex.
864 * @net: network namespace
865 * @name: a pointer to the buffer where the name will be stored.
866 * @ifindex: the ifindex of the interface to get the name from.
867 *
868 * The use of raw_seqcount_begin() and cond_resched() before
869 * retrying is required as we want to give the writers a chance
870 * to complete when CONFIG_PREEMPT is not set.
871 */
872 int netdev_get_name(struct net *net, char *name, int ifindex)
873 {
874 struct net_device *dev;
875 unsigned int seq;
876
877 retry:
878 seq = raw_seqcount_begin(&devnet_rename_seq);
879 rcu_read_lock();
880 dev = dev_get_by_index_rcu(net, ifindex);
881 if (!dev) {
882 rcu_read_unlock();
883 return -ENODEV;
884 }
885
886 strcpy(name, dev->name);
887 rcu_read_unlock();
888 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
889 cond_resched();
890 goto retry;
891 }
892
893 return 0;
894 }
895
896 /**
897 * dev_getbyhwaddr_rcu - find a device by its hardware address
898 * @net: the applicable net namespace
899 * @type: media type of device
900 * @ha: hardware address
901 *
902 * Search for an interface by MAC address. Returns NULL if the device
903 * is not found or a pointer to the device.
904 * The caller must hold RCU or RTNL.
905 * The returned device has not had its ref count increased
906 * and the caller must therefore be careful about locking
907 *
908 */
909
910 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
911 const char *ha)
912 {
913 struct net_device *dev;
914
915 for_each_netdev_rcu(net, dev)
916 if (dev->type == type &&
917 !memcmp(dev->dev_addr, ha, dev->addr_len))
918 return dev;
919
920 return NULL;
921 }
922 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
923
924 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
925 {
926 struct net_device *dev;
927
928 ASSERT_RTNL();
929 for_each_netdev(net, dev)
930 if (dev->type == type)
931 return dev;
932
933 return NULL;
934 }
935 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
936
937 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
938 {
939 struct net_device *dev, *ret = NULL;
940
941 rcu_read_lock();
942 for_each_netdev_rcu(net, dev)
943 if (dev->type == type) {
944 dev_hold(dev);
945 ret = dev;
946 break;
947 }
948 rcu_read_unlock();
949 return ret;
950 }
951 EXPORT_SYMBOL(dev_getfirstbyhwtype);
952
953 /**
954 * __dev_get_by_flags - find any device with given flags
955 * @net: the applicable net namespace
956 * @if_flags: IFF_* values
957 * @mask: bitmask of bits in if_flags to check
958 *
959 * Search for any interface with the given flags. Returns NULL if a device
960 * is not found or a pointer to the device. Must be called inside
961 * rtnl_lock(), and result refcount is unchanged.
962 */
963
964 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
965 unsigned short mask)
966 {
967 struct net_device *dev, *ret;
968
969 ASSERT_RTNL();
970
971 ret = NULL;
972 for_each_netdev(net, dev) {
973 if (((dev->flags ^ if_flags) & mask) == 0) {
974 ret = dev;
975 break;
976 }
977 }
978 return ret;
979 }
980 EXPORT_SYMBOL(__dev_get_by_flags);
981
982 /**
983 * dev_valid_name - check if name is okay for network device
984 * @name: name string
985 *
986 * Network device names need to be valid file names to
987 * to allow sysfs to work. We also disallow any kind of
988 * whitespace.
989 */
990 bool dev_valid_name(const char *name)
991 {
992 if (*name == '\0')
993 return false;
994 if (strlen(name) >= IFNAMSIZ)
995 return false;
996 if (!strcmp(name, ".") || !strcmp(name, ".."))
997 return false;
998
999 while (*name) {
1000 if (*name == '/' || *name == ':' || isspace(*name))
1001 return false;
1002 name++;
1003 }
1004 return true;
1005 }
1006 EXPORT_SYMBOL(dev_valid_name);
1007
1008 /**
1009 * __dev_alloc_name - allocate a name for a device
1010 * @net: network namespace to allocate the device name in
1011 * @name: name format string
1012 * @buf: scratch buffer and result name string
1013 *
1014 * Passed a format string - eg "lt%d" it will try and find a suitable
1015 * id. It scans list of devices to build up a free map, then chooses
1016 * the first empty slot. The caller must hold the dev_base or rtnl lock
1017 * while allocating the name and adding the device in order to avoid
1018 * duplicates.
1019 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1020 * Returns the number of the unit assigned or a negative errno code.
1021 */
1022
1023 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1024 {
1025 int i = 0;
1026 const char *p;
1027 const int max_netdevices = 8*PAGE_SIZE;
1028 unsigned long *inuse;
1029 struct net_device *d;
1030
1031 p = strnchr(name, IFNAMSIZ-1, '%');
1032 if (p) {
1033 /*
1034 * Verify the string as this thing may have come from
1035 * the user. There must be either one "%d" and no other "%"
1036 * characters.
1037 */
1038 if (p[1] != 'd' || strchr(p + 2, '%'))
1039 return -EINVAL;
1040
1041 /* Use one page as a bit array of possible slots */
1042 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1043 if (!inuse)
1044 return -ENOMEM;
1045
1046 for_each_netdev(net, d) {
1047 if (!sscanf(d->name, name, &i))
1048 continue;
1049 if (i < 0 || i >= max_netdevices)
1050 continue;
1051
1052 /* avoid cases where sscanf is not exact inverse of printf */
1053 snprintf(buf, IFNAMSIZ, name, i);
1054 if (!strncmp(buf, d->name, IFNAMSIZ))
1055 set_bit(i, inuse);
1056 }
1057
1058 i = find_first_zero_bit(inuse, max_netdevices);
1059 free_page((unsigned long) inuse);
1060 }
1061
1062 if (buf != name)
1063 snprintf(buf, IFNAMSIZ, name, i);
1064 if (!__dev_get_by_name(net, buf))
1065 return i;
1066
1067 /* It is possible to run out of possible slots
1068 * when the name is long and there isn't enough space left
1069 * for the digits, or if all bits are used.
1070 */
1071 return -ENFILE;
1072 }
1073
1074 /**
1075 * dev_alloc_name - allocate a name for a device
1076 * @dev: device
1077 * @name: name format string
1078 *
1079 * Passed a format string - eg "lt%d" it will try and find a suitable
1080 * id. It scans list of devices to build up a free map, then chooses
1081 * the first empty slot. The caller must hold the dev_base or rtnl lock
1082 * while allocating the name and adding the device in order to avoid
1083 * duplicates.
1084 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1085 * Returns the number of the unit assigned or a negative errno code.
1086 */
1087
1088 int dev_alloc_name(struct net_device *dev, const char *name)
1089 {
1090 char buf[IFNAMSIZ];
1091 struct net *net;
1092 int ret;
1093
1094 BUG_ON(!dev_net(dev));
1095 net = dev_net(dev);
1096 ret = __dev_alloc_name(net, name, buf);
1097 if (ret >= 0)
1098 strlcpy(dev->name, buf, IFNAMSIZ);
1099 return ret;
1100 }
1101 EXPORT_SYMBOL(dev_alloc_name);
1102
1103 static int dev_alloc_name_ns(struct net *net,
1104 struct net_device *dev,
1105 const char *name)
1106 {
1107 char buf[IFNAMSIZ];
1108 int ret;
1109
1110 ret = __dev_alloc_name(net, name, buf);
1111 if (ret >= 0)
1112 strlcpy(dev->name, buf, IFNAMSIZ);
1113 return ret;
1114 }
1115
1116 static int dev_get_valid_name(struct net *net,
1117 struct net_device *dev,
1118 const char *name)
1119 {
1120 BUG_ON(!net);
1121
1122 if (!dev_valid_name(name))
1123 return -EINVAL;
1124
1125 if (strchr(name, '%'))
1126 return dev_alloc_name_ns(net, dev, name);
1127 else if (__dev_get_by_name(net, name))
1128 return -EEXIST;
1129 else if (dev->name != name)
1130 strlcpy(dev->name, name, IFNAMSIZ);
1131
1132 return 0;
1133 }
1134
1135 /**
1136 * dev_change_name - change name of a device
1137 * @dev: device
1138 * @newname: name (or format string) must be at least IFNAMSIZ
1139 *
1140 * Change name of a device, can pass format strings "eth%d".
1141 * for wildcarding.
1142 */
1143 int dev_change_name(struct net_device *dev, const char *newname)
1144 {
1145 unsigned char old_assign_type;
1146 char oldname[IFNAMSIZ];
1147 int err = 0;
1148 int ret;
1149 struct net *net;
1150
1151 ASSERT_RTNL();
1152 BUG_ON(!dev_net(dev));
1153
1154 net = dev_net(dev);
1155 if (dev->flags & IFF_UP)
1156 return -EBUSY;
1157
1158 write_seqcount_begin(&devnet_rename_seq);
1159
1160 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1161 write_seqcount_end(&devnet_rename_seq);
1162 return 0;
1163 }
1164
1165 memcpy(oldname, dev->name, IFNAMSIZ);
1166
1167 err = dev_get_valid_name(net, dev, newname);
1168 if (err < 0) {
1169 write_seqcount_end(&devnet_rename_seq);
1170 return err;
1171 }
1172
1173 if (oldname[0] && !strchr(oldname, '%'))
1174 netdev_info(dev, "renamed from %s\n", oldname);
1175
1176 old_assign_type = dev->name_assign_type;
1177 dev->name_assign_type = NET_NAME_RENAMED;
1178
1179 rollback:
1180 ret = device_rename(&dev->dev, dev->name);
1181 if (ret) {
1182 memcpy(dev->name, oldname, IFNAMSIZ);
1183 dev->name_assign_type = old_assign_type;
1184 write_seqcount_end(&devnet_rename_seq);
1185 return ret;
1186 }
1187
1188 write_seqcount_end(&devnet_rename_seq);
1189
1190 netdev_adjacent_rename_links(dev, oldname);
1191
1192 write_lock_bh(&dev_base_lock);
1193 hlist_del_rcu(&dev->name_hlist);
1194 write_unlock_bh(&dev_base_lock);
1195
1196 synchronize_rcu();
1197
1198 write_lock_bh(&dev_base_lock);
1199 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1200 write_unlock_bh(&dev_base_lock);
1201
1202 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1203 ret = notifier_to_errno(ret);
1204
1205 if (ret) {
1206 /* err >= 0 after dev_alloc_name() or stores the first errno */
1207 if (err >= 0) {
1208 err = ret;
1209 write_seqcount_begin(&devnet_rename_seq);
1210 memcpy(dev->name, oldname, IFNAMSIZ);
1211 memcpy(oldname, newname, IFNAMSIZ);
1212 dev->name_assign_type = old_assign_type;
1213 old_assign_type = NET_NAME_RENAMED;
1214 goto rollback;
1215 } else {
1216 pr_err("%s: name change rollback failed: %d\n",
1217 dev->name, ret);
1218 }
1219 }
1220
1221 return err;
1222 }
1223
1224 /**
1225 * dev_set_alias - change ifalias of a device
1226 * @dev: device
1227 * @alias: name up to IFALIASZ
1228 * @len: limit of bytes to copy from info
1229 *
1230 * Set ifalias for a device,
1231 */
1232 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1233 {
1234 char *new_ifalias;
1235
1236 ASSERT_RTNL();
1237
1238 if (len >= IFALIASZ)
1239 return -EINVAL;
1240
1241 if (!len) {
1242 kfree(dev->ifalias);
1243 dev->ifalias = NULL;
1244 return 0;
1245 }
1246
1247 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1248 if (!new_ifalias)
1249 return -ENOMEM;
1250 dev->ifalias = new_ifalias;
1251
1252 strlcpy(dev->ifalias, alias, len+1);
1253 return len;
1254 }
1255
1256
1257 /**
1258 * netdev_features_change - device changes features
1259 * @dev: device to cause notification
1260 *
1261 * Called to indicate a device has changed features.
1262 */
1263 void netdev_features_change(struct net_device *dev)
1264 {
1265 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1266 }
1267 EXPORT_SYMBOL(netdev_features_change);
1268
1269 /**
1270 * netdev_state_change - device changes state
1271 * @dev: device to cause notification
1272 *
1273 * Called to indicate a device has changed state. This function calls
1274 * the notifier chains for netdev_chain and sends a NEWLINK message
1275 * to the routing socket.
1276 */
1277 void netdev_state_change(struct net_device *dev)
1278 {
1279 if (dev->flags & IFF_UP) {
1280 struct netdev_notifier_change_info change_info;
1281
1282 change_info.flags_changed = 0;
1283 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1284 &change_info.info);
1285 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1286 }
1287 }
1288 EXPORT_SYMBOL(netdev_state_change);
1289
1290 /**
1291 * netdev_notify_peers - notify network peers about existence of @dev
1292 * @dev: network device
1293 *
1294 * Generate traffic such that interested network peers are aware of
1295 * @dev, such as by generating a gratuitous ARP. This may be used when
1296 * a device wants to inform the rest of the network about some sort of
1297 * reconfiguration such as a failover event or virtual machine
1298 * migration.
1299 */
1300 void netdev_notify_peers(struct net_device *dev)
1301 {
1302 rtnl_lock();
1303 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1304 rtnl_unlock();
1305 }
1306 EXPORT_SYMBOL(netdev_notify_peers);
1307
1308 static int __dev_open(struct net_device *dev)
1309 {
1310 const struct net_device_ops *ops = dev->netdev_ops;
1311 int ret;
1312
1313 ASSERT_RTNL();
1314
1315 if (!netif_device_present(dev))
1316 return -ENODEV;
1317
1318 /* Block netpoll from trying to do any rx path servicing.
1319 * If we don't do this there is a chance ndo_poll_controller
1320 * or ndo_poll may be running while we open the device
1321 */
1322 netpoll_poll_disable(dev);
1323
1324 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1325 ret = notifier_to_errno(ret);
1326 if (ret)
1327 return ret;
1328
1329 set_bit(__LINK_STATE_START, &dev->state);
1330
1331 if (ops->ndo_validate_addr)
1332 ret = ops->ndo_validate_addr(dev);
1333
1334 if (!ret && ops->ndo_open)
1335 ret = ops->ndo_open(dev);
1336
1337 netpoll_poll_enable(dev);
1338
1339 if (ret)
1340 clear_bit(__LINK_STATE_START, &dev->state);
1341 else {
1342 dev->flags |= IFF_UP;
1343 dev_set_rx_mode(dev);
1344 dev_activate(dev);
1345 add_device_randomness(dev->dev_addr, dev->addr_len);
1346 }
1347
1348 return ret;
1349 }
1350
1351 /**
1352 * dev_open - prepare an interface for use.
1353 * @dev: device to open
1354 *
1355 * Takes a device from down to up state. The device's private open
1356 * function is invoked and then the multicast lists are loaded. Finally
1357 * the device is moved into the up state and a %NETDEV_UP message is
1358 * sent to the netdev notifier chain.
1359 *
1360 * Calling this function on an active interface is a nop. On a failure
1361 * a negative errno code is returned.
1362 */
1363 int dev_open(struct net_device *dev)
1364 {
1365 int ret;
1366
1367 if (dev->flags & IFF_UP)
1368 return 0;
1369
1370 ret = __dev_open(dev);
1371 if (ret < 0)
1372 return ret;
1373
1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1375 call_netdevice_notifiers(NETDEV_UP, dev);
1376
1377 return ret;
1378 }
1379 EXPORT_SYMBOL(dev_open);
1380
1381 static int __dev_close_many(struct list_head *head)
1382 {
1383 struct net_device *dev;
1384
1385 ASSERT_RTNL();
1386 might_sleep();
1387
1388 list_for_each_entry(dev, head, close_list) {
1389 /* Temporarily disable netpoll until the interface is down */
1390 netpoll_poll_disable(dev);
1391
1392 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1393
1394 clear_bit(__LINK_STATE_START, &dev->state);
1395
1396 /* Synchronize to scheduled poll. We cannot touch poll list, it
1397 * can be even on different cpu. So just clear netif_running().
1398 *
1399 * dev->stop() will invoke napi_disable() on all of it's
1400 * napi_struct instances on this device.
1401 */
1402 smp_mb__after_atomic(); /* Commit netif_running(). */
1403 }
1404
1405 dev_deactivate_many(head);
1406
1407 list_for_each_entry(dev, head, close_list) {
1408 const struct net_device_ops *ops = dev->netdev_ops;
1409
1410 /*
1411 * Call the device specific close. This cannot fail.
1412 * Only if device is UP
1413 *
1414 * We allow it to be called even after a DETACH hot-plug
1415 * event.
1416 */
1417 if (ops->ndo_stop)
1418 ops->ndo_stop(dev);
1419
1420 dev->flags &= ~IFF_UP;
1421 netpoll_poll_enable(dev);
1422 }
1423
1424 return 0;
1425 }
1426
1427 static int __dev_close(struct net_device *dev)
1428 {
1429 int retval;
1430 LIST_HEAD(single);
1431
1432 list_add(&dev->close_list, &single);
1433 retval = __dev_close_many(&single);
1434 list_del(&single);
1435
1436 return retval;
1437 }
1438
1439 int dev_close_many(struct list_head *head, bool unlink)
1440 {
1441 struct net_device *dev, *tmp;
1442
1443 /* Remove the devices that don't need to be closed */
1444 list_for_each_entry_safe(dev, tmp, head, close_list)
1445 if (!(dev->flags & IFF_UP))
1446 list_del_init(&dev->close_list);
1447
1448 __dev_close_many(head);
1449
1450 list_for_each_entry_safe(dev, tmp, head, close_list) {
1451 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1452 call_netdevice_notifiers(NETDEV_DOWN, dev);
1453 if (unlink)
1454 list_del_init(&dev->close_list);
1455 }
1456
1457 return 0;
1458 }
1459 EXPORT_SYMBOL(dev_close_many);
1460
1461 /**
1462 * dev_close - shutdown an interface.
1463 * @dev: device to shutdown
1464 *
1465 * This function moves an active device into down state. A
1466 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1467 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1468 * chain.
1469 */
1470 int dev_close(struct net_device *dev)
1471 {
1472 if (dev->flags & IFF_UP) {
1473 LIST_HEAD(single);
1474
1475 list_add(&dev->close_list, &single);
1476 dev_close_many(&single, true);
1477 list_del(&single);
1478 }
1479 return 0;
1480 }
1481 EXPORT_SYMBOL(dev_close);
1482
1483
1484 /**
1485 * dev_disable_lro - disable Large Receive Offload on a device
1486 * @dev: device
1487 *
1488 * Disable Large Receive Offload (LRO) on a net device. Must be
1489 * called under RTNL. This is needed if received packets may be
1490 * forwarded to another interface.
1491 */
1492 void dev_disable_lro(struct net_device *dev)
1493 {
1494 struct net_device *lower_dev;
1495 struct list_head *iter;
1496
1497 dev->wanted_features &= ~NETIF_F_LRO;
1498 netdev_update_features(dev);
1499
1500 if (unlikely(dev->features & NETIF_F_LRO))
1501 netdev_WARN(dev, "failed to disable LRO!\n");
1502
1503 netdev_for_each_lower_dev(dev, lower_dev, iter)
1504 dev_disable_lro(lower_dev);
1505 }
1506 EXPORT_SYMBOL(dev_disable_lro);
1507
1508 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1509 struct net_device *dev)
1510 {
1511 struct netdev_notifier_info info;
1512
1513 netdev_notifier_info_init(&info, dev);
1514 return nb->notifier_call(nb, val, &info);
1515 }
1516
1517 static int dev_boot_phase = 1;
1518
1519 /**
1520 * register_netdevice_notifier - register a network notifier block
1521 * @nb: notifier
1522 *
1523 * Register a notifier to be called when network device events occur.
1524 * The notifier passed is linked into the kernel structures and must
1525 * not be reused until it has been unregistered. A negative errno code
1526 * is returned on a failure.
1527 *
1528 * When registered all registration and up events are replayed
1529 * to the new notifier to allow device to have a race free
1530 * view of the network device list.
1531 */
1532
1533 int register_netdevice_notifier(struct notifier_block *nb)
1534 {
1535 struct net_device *dev;
1536 struct net_device *last;
1537 struct net *net;
1538 int err;
1539
1540 rtnl_lock();
1541 err = raw_notifier_chain_register(&netdev_chain, nb);
1542 if (err)
1543 goto unlock;
1544 if (dev_boot_phase)
1545 goto unlock;
1546 for_each_net(net) {
1547 for_each_netdev(net, dev) {
1548 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1549 err = notifier_to_errno(err);
1550 if (err)
1551 goto rollback;
1552
1553 if (!(dev->flags & IFF_UP))
1554 continue;
1555
1556 call_netdevice_notifier(nb, NETDEV_UP, dev);
1557 }
1558 }
1559
1560 unlock:
1561 rtnl_unlock();
1562 return err;
1563
1564 rollback:
1565 last = dev;
1566 for_each_net(net) {
1567 for_each_netdev(net, dev) {
1568 if (dev == last)
1569 goto outroll;
1570
1571 if (dev->flags & IFF_UP) {
1572 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1573 dev);
1574 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1575 }
1576 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1577 }
1578 }
1579
1580 outroll:
1581 raw_notifier_chain_unregister(&netdev_chain, nb);
1582 goto unlock;
1583 }
1584 EXPORT_SYMBOL(register_netdevice_notifier);
1585
1586 /**
1587 * unregister_netdevice_notifier - unregister a network notifier block
1588 * @nb: notifier
1589 *
1590 * Unregister a notifier previously registered by
1591 * register_netdevice_notifier(). The notifier is unlinked into the
1592 * kernel structures and may then be reused. A negative errno code
1593 * is returned on a failure.
1594 *
1595 * After unregistering unregister and down device events are synthesized
1596 * for all devices on the device list to the removed notifier to remove
1597 * the need for special case cleanup code.
1598 */
1599
1600 int unregister_netdevice_notifier(struct notifier_block *nb)
1601 {
1602 struct net_device *dev;
1603 struct net *net;
1604 int err;
1605
1606 rtnl_lock();
1607 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1608 if (err)
1609 goto unlock;
1610
1611 for_each_net(net) {
1612 for_each_netdev(net, dev) {
1613 if (dev->flags & IFF_UP) {
1614 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1615 dev);
1616 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1617 }
1618 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1619 }
1620 }
1621 unlock:
1622 rtnl_unlock();
1623 return err;
1624 }
1625 EXPORT_SYMBOL(unregister_netdevice_notifier);
1626
1627 /**
1628 * call_netdevice_notifiers_info - call all network notifier blocks
1629 * @val: value passed unmodified to notifier function
1630 * @dev: net_device pointer passed unmodified to notifier function
1631 * @info: notifier information data
1632 *
1633 * Call all network notifier blocks. Parameters and return value
1634 * are as for raw_notifier_call_chain().
1635 */
1636
1637 static int call_netdevice_notifiers_info(unsigned long val,
1638 struct net_device *dev,
1639 struct netdev_notifier_info *info)
1640 {
1641 ASSERT_RTNL();
1642 netdev_notifier_info_init(info, dev);
1643 return raw_notifier_call_chain(&netdev_chain, val, info);
1644 }
1645
1646 /**
1647 * call_netdevice_notifiers - call all network notifier blocks
1648 * @val: value passed unmodified to notifier function
1649 * @dev: net_device pointer passed unmodified to notifier function
1650 *
1651 * Call all network notifier blocks. Parameters and return value
1652 * are as for raw_notifier_call_chain().
1653 */
1654
1655 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1656 {
1657 struct netdev_notifier_info info;
1658
1659 return call_netdevice_notifiers_info(val, dev, &info);
1660 }
1661 EXPORT_SYMBOL(call_netdevice_notifiers);
1662
1663 #ifdef CONFIG_NET_INGRESS
1664 static struct static_key ingress_needed __read_mostly;
1665
1666 void net_inc_ingress_queue(void)
1667 {
1668 static_key_slow_inc(&ingress_needed);
1669 }
1670 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1671
1672 void net_dec_ingress_queue(void)
1673 {
1674 static_key_slow_dec(&ingress_needed);
1675 }
1676 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1677 #endif
1678
1679 #ifdef CONFIG_NET_EGRESS
1680 static struct static_key egress_needed __read_mostly;
1681
1682 void net_inc_egress_queue(void)
1683 {
1684 static_key_slow_inc(&egress_needed);
1685 }
1686 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1687
1688 void net_dec_egress_queue(void)
1689 {
1690 static_key_slow_dec(&egress_needed);
1691 }
1692 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1693 #endif
1694
1695 static struct static_key netstamp_needed __read_mostly;
1696 #ifdef HAVE_JUMP_LABEL
1697 /* We are not allowed to call static_key_slow_dec() from irq context
1698 * If net_disable_timestamp() is called from irq context, defer the
1699 * static_key_slow_dec() calls.
1700 */
1701 static atomic_t netstamp_needed_deferred;
1702 #endif
1703
1704 void net_enable_timestamp(void)
1705 {
1706 #ifdef HAVE_JUMP_LABEL
1707 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1708
1709 if (deferred) {
1710 while (--deferred)
1711 static_key_slow_dec(&netstamp_needed);
1712 return;
1713 }
1714 #endif
1715 static_key_slow_inc(&netstamp_needed);
1716 }
1717 EXPORT_SYMBOL(net_enable_timestamp);
1718
1719 void net_disable_timestamp(void)
1720 {
1721 #ifdef HAVE_JUMP_LABEL
1722 if (in_interrupt()) {
1723 atomic_inc(&netstamp_needed_deferred);
1724 return;
1725 }
1726 #endif
1727 static_key_slow_dec(&netstamp_needed);
1728 }
1729 EXPORT_SYMBOL(net_disable_timestamp);
1730
1731 static inline void net_timestamp_set(struct sk_buff *skb)
1732 {
1733 skb->tstamp.tv64 = 0;
1734 if (static_key_false(&netstamp_needed))
1735 __net_timestamp(skb);
1736 }
1737
1738 #define net_timestamp_check(COND, SKB) \
1739 if (static_key_false(&netstamp_needed)) { \
1740 if ((COND) && !(SKB)->tstamp.tv64) \
1741 __net_timestamp(SKB); \
1742 } \
1743
1744 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1745 {
1746 unsigned int len;
1747
1748 if (!(dev->flags & IFF_UP))
1749 return false;
1750
1751 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1752 if (skb->len <= len)
1753 return true;
1754
1755 /* if TSO is enabled, we don't care about the length as the packet
1756 * could be forwarded without being segmented before
1757 */
1758 if (skb_is_gso(skb))
1759 return true;
1760
1761 return false;
1762 }
1763 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1764
1765 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1766 {
1767 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1768 unlikely(!is_skb_forwardable(dev, skb))) {
1769 atomic_long_inc(&dev->rx_dropped);
1770 kfree_skb(skb);
1771 return NET_RX_DROP;
1772 }
1773
1774 skb_scrub_packet(skb, true);
1775 skb->priority = 0;
1776 skb->protocol = eth_type_trans(skb, dev);
1777 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1778
1779 return 0;
1780 }
1781 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1782
1783 /**
1784 * dev_forward_skb - loopback an skb to another netif
1785 *
1786 * @dev: destination network device
1787 * @skb: buffer to forward
1788 *
1789 * return values:
1790 * NET_RX_SUCCESS (no congestion)
1791 * NET_RX_DROP (packet was dropped, but freed)
1792 *
1793 * dev_forward_skb can be used for injecting an skb from the
1794 * start_xmit function of one device into the receive queue
1795 * of another device.
1796 *
1797 * The receiving device may be in another namespace, so
1798 * we have to clear all information in the skb that could
1799 * impact namespace isolation.
1800 */
1801 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1802 {
1803 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1804 }
1805 EXPORT_SYMBOL_GPL(dev_forward_skb);
1806
1807 static inline int deliver_skb(struct sk_buff *skb,
1808 struct packet_type *pt_prev,
1809 struct net_device *orig_dev)
1810 {
1811 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1812 return -ENOMEM;
1813 atomic_inc(&skb->users);
1814 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1815 }
1816
1817 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1818 struct packet_type **pt,
1819 struct net_device *orig_dev,
1820 __be16 type,
1821 struct list_head *ptype_list)
1822 {
1823 struct packet_type *ptype, *pt_prev = *pt;
1824
1825 list_for_each_entry_rcu(ptype, ptype_list, list) {
1826 if (ptype->type != type)
1827 continue;
1828 if (pt_prev)
1829 deliver_skb(skb, pt_prev, orig_dev);
1830 pt_prev = ptype;
1831 }
1832 *pt = pt_prev;
1833 }
1834
1835 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1836 {
1837 if (!ptype->af_packet_priv || !skb->sk)
1838 return false;
1839
1840 if (ptype->id_match)
1841 return ptype->id_match(ptype, skb->sk);
1842 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1843 return true;
1844
1845 return false;
1846 }
1847
1848 /*
1849 * Support routine. Sends outgoing frames to any network
1850 * taps currently in use.
1851 */
1852
1853 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1854 {
1855 struct packet_type *ptype;
1856 struct sk_buff *skb2 = NULL;
1857 struct packet_type *pt_prev = NULL;
1858 struct list_head *ptype_list = &ptype_all;
1859
1860 rcu_read_lock();
1861 again:
1862 list_for_each_entry_rcu(ptype, ptype_list, list) {
1863 /* Never send packets back to the socket
1864 * they originated from - MvS (miquels@drinkel.ow.org)
1865 */
1866 if (skb_loop_sk(ptype, skb))
1867 continue;
1868
1869 if (pt_prev) {
1870 deliver_skb(skb2, pt_prev, skb->dev);
1871 pt_prev = ptype;
1872 continue;
1873 }
1874
1875 /* need to clone skb, done only once */
1876 skb2 = skb_clone(skb, GFP_ATOMIC);
1877 if (!skb2)
1878 goto out_unlock;
1879
1880 net_timestamp_set(skb2);
1881
1882 /* skb->nh should be correctly
1883 * set by sender, so that the second statement is
1884 * just protection against buggy protocols.
1885 */
1886 skb_reset_mac_header(skb2);
1887
1888 if (skb_network_header(skb2) < skb2->data ||
1889 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1890 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1891 ntohs(skb2->protocol),
1892 dev->name);
1893 skb_reset_network_header(skb2);
1894 }
1895
1896 skb2->transport_header = skb2->network_header;
1897 skb2->pkt_type = PACKET_OUTGOING;
1898 pt_prev = ptype;
1899 }
1900
1901 if (ptype_list == &ptype_all) {
1902 ptype_list = &dev->ptype_all;
1903 goto again;
1904 }
1905 out_unlock:
1906 if (pt_prev)
1907 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1908 rcu_read_unlock();
1909 }
1910
1911 /**
1912 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1913 * @dev: Network device
1914 * @txq: number of queues available
1915 *
1916 * If real_num_tx_queues is changed the tc mappings may no longer be
1917 * valid. To resolve this verify the tc mapping remains valid and if
1918 * not NULL the mapping. With no priorities mapping to this
1919 * offset/count pair it will no longer be used. In the worst case TC0
1920 * is invalid nothing can be done so disable priority mappings. If is
1921 * expected that drivers will fix this mapping if they can before
1922 * calling netif_set_real_num_tx_queues.
1923 */
1924 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1925 {
1926 int i;
1927 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1928
1929 /* If TC0 is invalidated disable TC mapping */
1930 if (tc->offset + tc->count > txq) {
1931 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1932 dev->num_tc = 0;
1933 return;
1934 }
1935
1936 /* Invalidated prio to tc mappings set to TC0 */
1937 for (i = 1; i < TC_BITMASK + 1; i++) {
1938 int q = netdev_get_prio_tc_map(dev, i);
1939
1940 tc = &dev->tc_to_txq[q];
1941 if (tc->offset + tc->count > txq) {
1942 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1943 i, q);
1944 netdev_set_prio_tc_map(dev, i, 0);
1945 }
1946 }
1947 }
1948
1949 #ifdef CONFIG_XPS
1950 static DEFINE_MUTEX(xps_map_mutex);
1951 #define xmap_dereference(P) \
1952 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1953
1954 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1955 int cpu, u16 index)
1956 {
1957 struct xps_map *map = NULL;
1958 int pos;
1959
1960 if (dev_maps)
1961 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1962
1963 for (pos = 0; map && pos < map->len; pos++) {
1964 if (map->queues[pos] == index) {
1965 if (map->len > 1) {
1966 map->queues[pos] = map->queues[--map->len];
1967 } else {
1968 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1969 kfree_rcu(map, rcu);
1970 map = NULL;
1971 }
1972 break;
1973 }
1974 }
1975
1976 return map;
1977 }
1978
1979 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1980 {
1981 struct xps_dev_maps *dev_maps;
1982 int cpu, i;
1983 bool active = false;
1984
1985 mutex_lock(&xps_map_mutex);
1986 dev_maps = xmap_dereference(dev->xps_maps);
1987
1988 if (!dev_maps)
1989 goto out_no_maps;
1990
1991 for_each_possible_cpu(cpu) {
1992 for (i = index; i < dev->num_tx_queues; i++) {
1993 if (!remove_xps_queue(dev_maps, cpu, i))
1994 break;
1995 }
1996 if (i == dev->num_tx_queues)
1997 active = true;
1998 }
1999
2000 if (!active) {
2001 RCU_INIT_POINTER(dev->xps_maps, NULL);
2002 kfree_rcu(dev_maps, rcu);
2003 }
2004
2005 for (i = index; i < dev->num_tx_queues; i++)
2006 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2007 NUMA_NO_NODE);
2008
2009 out_no_maps:
2010 mutex_unlock(&xps_map_mutex);
2011 }
2012
2013 static struct xps_map *expand_xps_map(struct xps_map *map,
2014 int cpu, u16 index)
2015 {
2016 struct xps_map *new_map;
2017 int alloc_len = XPS_MIN_MAP_ALLOC;
2018 int i, pos;
2019
2020 for (pos = 0; map && pos < map->len; pos++) {
2021 if (map->queues[pos] != index)
2022 continue;
2023 return map;
2024 }
2025
2026 /* Need to add queue to this CPU's existing map */
2027 if (map) {
2028 if (pos < map->alloc_len)
2029 return map;
2030
2031 alloc_len = map->alloc_len * 2;
2032 }
2033
2034 /* Need to allocate new map to store queue on this CPU's map */
2035 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2036 cpu_to_node(cpu));
2037 if (!new_map)
2038 return NULL;
2039
2040 for (i = 0; i < pos; i++)
2041 new_map->queues[i] = map->queues[i];
2042 new_map->alloc_len = alloc_len;
2043 new_map->len = pos;
2044
2045 return new_map;
2046 }
2047
2048 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2049 u16 index)
2050 {
2051 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2052 struct xps_map *map, *new_map;
2053 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2054 int cpu, numa_node_id = -2;
2055 bool active = false;
2056
2057 mutex_lock(&xps_map_mutex);
2058
2059 dev_maps = xmap_dereference(dev->xps_maps);
2060
2061 /* allocate memory for queue storage */
2062 for_each_online_cpu(cpu) {
2063 if (!cpumask_test_cpu(cpu, mask))
2064 continue;
2065
2066 if (!new_dev_maps)
2067 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2068 if (!new_dev_maps) {
2069 mutex_unlock(&xps_map_mutex);
2070 return -ENOMEM;
2071 }
2072
2073 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2074 NULL;
2075
2076 map = expand_xps_map(map, cpu, index);
2077 if (!map)
2078 goto error;
2079
2080 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2081 }
2082
2083 if (!new_dev_maps)
2084 goto out_no_new_maps;
2085
2086 for_each_possible_cpu(cpu) {
2087 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2088 /* add queue to CPU maps */
2089 int pos = 0;
2090
2091 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2092 while ((pos < map->len) && (map->queues[pos] != index))
2093 pos++;
2094
2095 if (pos == map->len)
2096 map->queues[map->len++] = index;
2097 #ifdef CONFIG_NUMA
2098 if (numa_node_id == -2)
2099 numa_node_id = cpu_to_node(cpu);
2100 else if (numa_node_id != cpu_to_node(cpu))
2101 numa_node_id = -1;
2102 #endif
2103 } else if (dev_maps) {
2104 /* fill in the new device map from the old device map */
2105 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2106 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2107 }
2108
2109 }
2110
2111 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2112
2113 /* Cleanup old maps */
2114 if (dev_maps) {
2115 for_each_possible_cpu(cpu) {
2116 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2117 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2118 if (map && map != new_map)
2119 kfree_rcu(map, rcu);
2120 }
2121
2122 kfree_rcu(dev_maps, rcu);
2123 }
2124
2125 dev_maps = new_dev_maps;
2126 active = true;
2127
2128 out_no_new_maps:
2129 /* update Tx queue numa node */
2130 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2131 (numa_node_id >= 0) ? numa_node_id :
2132 NUMA_NO_NODE);
2133
2134 if (!dev_maps)
2135 goto out_no_maps;
2136
2137 /* removes queue from unused CPUs */
2138 for_each_possible_cpu(cpu) {
2139 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2140 continue;
2141
2142 if (remove_xps_queue(dev_maps, cpu, index))
2143 active = true;
2144 }
2145
2146 /* free map if not active */
2147 if (!active) {
2148 RCU_INIT_POINTER(dev->xps_maps, NULL);
2149 kfree_rcu(dev_maps, rcu);
2150 }
2151
2152 out_no_maps:
2153 mutex_unlock(&xps_map_mutex);
2154
2155 return 0;
2156 error:
2157 /* remove any maps that we added */
2158 for_each_possible_cpu(cpu) {
2159 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2160 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2161 NULL;
2162 if (new_map && new_map != map)
2163 kfree(new_map);
2164 }
2165
2166 mutex_unlock(&xps_map_mutex);
2167
2168 kfree(new_dev_maps);
2169 return -ENOMEM;
2170 }
2171 EXPORT_SYMBOL(netif_set_xps_queue);
2172
2173 #endif
2174 /*
2175 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2176 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2177 */
2178 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2179 {
2180 int rc;
2181
2182 if (txq < 1 || txq > dev->num_tx_queues)
2183 return -EINVAL;
2184
2185 if (dev->reg_state == NETREG_REGISTERED ||
2186 dev->reg_state == NETREG_UNREGISTERING) {
2187 ASSERT_RTNL();
2188
2189 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2190 txq);
2191 if (rc)
2192 return rc;
2193
2194 if (dev->num_tc)
2195 netif_setup_tc(dev, txq);
2196
2197 if (txq < dev->real_num_tx_queues) {
2198 qdisc_reset_all_tx_gt(dev, txq);
2199 #ifdef CONFIG_XPS
2200 netif_reset_xps_queues_gt(dev, txq);
2201 #endif
2202 }
2203 }
2204
2205 dev->real_num_tx_queues = txq;
2206 return 0;
2207 }
2208 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2209
2210 #ifdef CONFIG_SYSFS
2211 /**
2212 * netif_set_real_num_rx_queues - set actual number of RX queues used
2213 * @dev: Network device
2214 * @rxq: Actual number of RX queues
2215 *
2216 * This must be called either with the rtnl_lock held or before
2217 * registration of the net device. Returns 0 on success, or a
2218 * negative error code. If called before registration, it always
2219 * succeeds.
2220 */
2221 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2222 {
2223 int rc;
2224
2225 if (rxq < 1 || rxq > dev->num_rx_queues)
2226 return -EINVAL;
2227
2228 if (dev->reg_state == NETREG_REGISTERED) {
2229 ASSERT_RTNL();
2230
2231 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2232 rxq);
2233 if (rc)
2234 return rc;
2235 }
2236
2237 dev->real_num_rx_queues = rxq;
2238 return 0;
2239 }
2240 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2241 #endif
2242
2243 /**
2244 * netif_get_num_default_rss_queues - default number of RSS queues
2245 *
2246 * This routine should set an upper limit on the number of RSS queues
2247 * used by default by multiqueue devices.
2248 */
2249 int netif_get_num_default_rss_queues(void)
2250 {
2251 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2252 }
2253 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2254
2255 static inline void __netif_reschedule(struct Qdisc *q)
2256 {
2257 struct softnet_data *sd;
2258 unsigned long flags;
2259
2260 local_irq_save(flags);
2261 sd = this_cpu_ptr(&softnet_data);
2262 q->next_sched = NULL;
2263 *sd->output_queue_tailp = q;
2264 sd->output_queue_tailp = &q->next_sched;
2265 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2266 local_irq_restore(flags);
2267 }
2268
2269 void __netif_schedule(struct Qdisc *q)
2270 {
2271 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2272 __netif_reschedule(q);
2273 }
2274 EXPORT_SYMBOL(__netif_schedule);
2275
2276 struct dev_kfree_skb_cb {
2277 enum skb_free_reason reason;
2278 };
2279
2280 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2281 {
2282 return (struct dev_kfree_skb_cb *)skb->cb;
2283 }
2284
2285 void netif_schedule_queue(struct netdev_queue *txq)
2286 {
2287 rcu_read_lock();
2288 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2289 struct Qdisc *q = rcu_dereference(txq->qdisc);
2290
2291 __netif_schedule(q);
2292 }
2293 rcu_read_unlock();
2294 }
2295 EXPORT_SYMBOL(netif_schedule_queue);
2296
2297 /**
2298 * netif_wake_subqueue - allow sending packets on subqueue
2299 * @dev: network device
2300 * @queue_index: sub queue index
2301 *
2302 * Resume individual transmit queue of a device with multiple transmit queues.
2303 */
2304 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2305 {
2306 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2307
2308 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2309 struct Qdisc *q;
2310
2311 rcu_read_lock();
2312 q = rcu_dereference(txq->qdisc);
2313 __netif_schedule(q);
2314 rcu_read_unlock();
2315 }
2316 }
2317 EXPORT_SYMBOL(netif_wake_subqueue);
2318
2319 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2320 {
2321 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2322 struct Qdisc *q;
2323
2324 rcu_read_lock();
2325 q = rcu_dereference(dev_queue->qdisc);
2326 __netif_schedule(q);
2327 rcu_read_unlock();
2328 }
2329 }
2330 EXPORT_SYMBOL(netif_tx_wake_queue);
2331
2332 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2333 {
2334 unsigned long flags;
2335
2336 if (likely(atomic_read(&skb->users) == 1)) {
2337 smp_rmb();
2338 atomic_set(&skb->users, 0);
2339 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2340 return;
2341 }
2342 get_kfree_skb_cb(skb)->reason = reason;
2343 local_irq_save(flags);
2344 skb->next = __this_cpu_read(softnet_data.completion_queue);
2345 __this_cpu_write(softnet_data.completion_queue, skb);
2346 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2347 local_irq_restore(flags);
2348 }
2349 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2350
2351 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2352 {
2353 if (in_irq() || irqs_disabled())
2354 __dev_kfree_skb_irq(skb, reason);
2355 else
2356 dev_kfree_skb(skb);
2357 }
2358 EXPORT_SYMBOL(__dev_kfree_skb_any);
2359
2360
2361 /**
2362 * netif_device_detach - mark device as removed
2363 * @dev: network device
2364 *
2365 * Mark device as removed from system and therefore no longer available.
2366 */
2367 void netif_device_detach(struct net_device *dev)
2368 {
2369 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2370 netif_running(dev)) {
2371 netif_tx_stop_all_queues(dev);
2372 }
2373 }
2374 EXPORT_SYMBOL(netif_device_detach);
2375
2376 /**
2377 * netif_device_attach - mark device as attached
2378 * @dev: network device
2379 *
2380 * Mark device as attached from system and restart if needed.
2381 */
2382 void netif_device_attach(struct net_device *dev)
2383 {
2384 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2385 netif_running(dev)) {
2386 netif_tx_wake_all_queues(dev);
2387 __netdev_watchdog_up(dev);
2388 }
2389 }
2390 EXPORT_SYMBOL(netif_device_attach);
2391
2392 /*
2393 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2394 * to be used as a distribution range.
2395 */
2396 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2397 unsigned int num_tx_queues)
2398 {
2399 u32 hash;
2400 u16 qoffset = 0;
2401 u16 qcount = num_tx_queues;
2402
2403 if (skb_rx_queue_recorded(skb)) {
2404 hash = skb_get_rx_queue(skb);
2405 while (unlikely(hash >= num_tx_queues))
2406 hash -= num_tx_queues;
2407 return hash;
2408 }
2409
2410 if (dev->num_tc) {
2411 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2412 qoffset = dev->tc_to_txq[tc].offset;
2413 qcount = dev->tc_to_txq[tc].count;
2414 }
2415
2416 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2417 }
2418 EXPORT_SYMBOL(__skb_tx_hash);
2419
2420 static void skb_warn_bad_offload(const struct sk_buff *skb)
2421 {
2422 static const netdev_features_t null_features = 0;
2423 struct net_device *dev = skb->dev;
2424 const char *name = "";
2425
2426 if (!net_ratelimit())
2427 return;
2428
2429 if (dev) {
2430 if (dev->dev.parent)
2431 name = dev_driver_string(dev->dev.parent);
2432 else
2433 name = netdev_name(dev);
2434 }
2435 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2436 "gso_type=%d ip_summed=%d\n",
2437 name, dev ? &dev->features : &null_features,
2438 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2439 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2440 skb_shinfo(skb)->gso_type, skb->ip_summed);
2441 }
2442
2443 /*
2444 * Invalidate hardware checksum when packet is to be mangled, and
2445 * complete checksum manually on outgoing path.
2446 */
2447 int skb_checksum_help(struct sk_buff *skb)
2448 {
2449 __wsum csum;
2450 int ret = 0, offset;
2451
2452 if (skb->ip_summed == CHECKSUM_COMPLETE)
2453 goto out_set_summed;
2454
2455 if (unlikely(skb_shinfo(skb)->gso_size)) {
2456 skb_warn_bad_offload(skb);
2457 return -EINVAL;
2458 }
2459
2460 /* Before computing a checksum, we should make sure no frag could
2461 * be modified by an external entity : checksum could be wrong.
2462 */
2463 if (skb_has_shared_frag(skb)) {
2464 ret = __skb_linearize(skb);
2465 if (ret)
2466 goto out;
2467 }
2468
2469 offset = skb_checksum_start_offset(skb);
2470 BUG_ON(offset >= skb_headlen(skb));
2471 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2472
2473 offset += skb->csum_offset;
2474 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2475
2476 if (skb_cloned(skb) &&
2477 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2478 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2479 if (ret)
2480 goto out;
2481 }
2482
2483 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2484 out_set_summed:
2485 skb->ip_summed = CHECKSUM_NONE;
2486 out:
2487 return ret;
2488 }
2489 EXPORT_SYMBOL(skb_checksum_help);
2490
2491 /* skb_csum_offload_check - Driver helper function to determine if a device
2492 * with limited checksum offload capabilities is able to offload the checksum
2493 * for a given packet.
2494 *
2495 * Arguments:
2496 * skb - sk_buff for the packet in question
2497 * spec - contains the description of what device can offload
2498 * csum_encapped - returns true if the checksum being offloaded is
2499 * encpasulated. That is it is checksum for the transport header
2500 * in the inner headers.
2501 * checksum_help - when set indicates that helper function should
2502 * call skb_checksum_help if offload checks fail
2503 *
2504 * Returns:
2505 * true: Packet has passed the checksum checks and should be offloadable to
2506 * the device (a driver may still need to check for additional
2507 * restrictions of its device)
2508 * false: Checksum is not offloadable. If checksum_help was set then
2509 * skb_checksum_help was called to resolve checksum for non-GSO
2510 * packets and when IP protocol is not SCTP
2511 */
2512 bool __skb_csum_offload_chk(struct sk_buff *skb,
2513 const struct skb_csum_offl_spec *spec,
2514 bool *csum_encapped,
2515 bool csum_help)
2516 {
2517 struct iphdr *iph;
2518 struct ipv6hdr *ipv6;
2519 void *nhdr;
2520 int protocol;
2521 u8 ip_proto;
2522
2523 if (skb->protocol == htons(ETH_P_8021Q) ||
2524 skb->protocol == htons(ETH_P_8021AD)) {
2525 if (!spec->vlan_okay)
2526 goto need_help;
2527 }
2528
2529 /* We check whether the checksum refers to a transport layer checksum in
2530 * the outermost header or an encapsulated transport layer checksum that
2531 * corresponds to the inner headers of the skb. If the checksum is for
2532 * something else in the packet we need help.
2533 */
2534 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2535 /* Non-encapsulated checksum */
2536 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2537 nhdr = skb_network_header(skb);
2538 *csum_encapped = false;
2539 if (spec->no_not_encapped)
2540 goto need_help;
2541 } else if (skb->encapsulation && spec->encap_okay &&
2542 skb_checksum_start_offset(skb) ==
2543 skb_inner_transport_offset(skb)) {
2544 /* Encapsulated checksum */
2545 *csum_encapped = true;
2546 switch (skb->inner_protocol_type) {
2547 case ENCAP_TYPE_ETHER:
2548 protocol = eproto_to_ipproto(skb->inner_protocol);
2549 break;
2550 case ENCAP_TYPE_IPPROTO:
2551 protocol = skb->inner_protocol;
2552 break;
2553 }
2554 nhdr = skb_inner_network_header(skb);
2555 } else {
2556 goto need_help;
2557 }
2558
2559 switch (protocol) {
2560 case IPPROTO_IP:
2561 if (!spec->ipv4_okay)
2562 goto need_help;
2563 iph = nhdr;
2564 ip_proto = iph->protocol;
2565 if (iph->ihl != 5 && !spec->ip_options_okay)
2566 goto need_help;
2567 break;
2568 case IPPROTO_IPV6:
2569 if (!spec->ipv6_okay)
2570 goto need_help;
2571 if (spec->no_encapped_ipv6 && *csum_encapped)
2572 goto need_help;
2573 ipv6 = nhdr;
2574 nhdr += sizeof(*ipv6);
2575 ip_proto = ipv6->nexthdr;
2576 break;
2577 default:
2578 goto need_help;
2579 }
2580
2581 ip_proto_again:
2582 switch (ip_proto) {
2583 case IPPROTO_TCP:
2584 if (!spec->tcp_okay ||
2585 skb->csum_offset != offsetof(struct tcphdr, check))
2586 goto need_help;
2587 break;
2588 case IPPROTO_UDP:
2589 if (!spec->udp_okay ||
2590 skb->csum_offset != offsetof(struct udphdr, check))
2591 goto need_help;
2592 break;
2593 case IPPROTO_SCTP:
2594 if (!spec->sctp_okay ||
2595 skb->csum_offset != offsetof(struct sctphdr, checksum))
2596 goto cant_help;
2597 break;
2598 case NEXTHDR_HOP:
2599 case NEXTHDR_ROUTING:
2600 case NEXTHDR_DEST: {
2601 u8 *opthdr = nhdr;
2602
2603 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2604 goto need_help;
2605
2606 ip_proto = opthdr[0];
2607 nhdr += (opthdr[1] + 1) << 3;
2608
2609 goto ip_proto_again;
2610 }
2611 default:
2612 goto need_help;
2613 }
2614
2615 /* Passed the tests for offloading checksum */
2616 return true;
2617
2618 need_help:
2619 if (csum_help && !skb_shinfo(skb)->gso_size)
2620 skb_checksum_help(skb);
2621 cant_help:
2622 return false;
2623 }
2624 EXPORT_SYMBOL(__skb_csum_offload_chk);
2625
2626 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2627 {
2628 __be16 type = skb->protocol;
2629
2630 /* Tunnel gso handlers can set protocol to ethernet. */
2631 if (type == htons(ETH_P_TEB)) {
2632 struct ethhdr *eth;
2633
2634 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2635 return 0;
2636
2637 eth = (struct ethhdr *)skb_mac_header(skb);
2638 type = eth->h_proto;
2639 }
2640
2641 return __vlan_get_protocol(skb, type, depth);
2642 }
2643
2644 /**
2645 * skb_mac_gso_segment - mac layer segmentation handler.
2646 * @skb: buffer to segment
2647 * @features: features for the output path (see dev->features)
2648 */
2649 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2650 netdev_features_t features)
2651 {
2652 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2653 struct packet_offload *ptype;
2654 int vlan_depth = skb->mac_len;
2655 __be16 type = skb_network_protocol(skb, &vlan_depth);
2656
2657 if (unlikely(!type))
2658 return ERR_PTR(-EINVAL);
2659
2660 __skb_pull(skb, vlan_depth);
2661
2662 rcu_read_lock();
2663 list_for_each_entry_rcu(ptype, &offload_base, list) {
2664 if (ptype->type == type && ptype->callbacks.gso_segment) {
2665 segs = ptype->callbacks.gso_segment(skb, features);
2666 break;
2667 }
2668 }
2669 rcu_read_unlock();
2670
2671 __skb_push(skb, skb->data - skb_mac_header(skb));
2672
2673 return segs;
2674 }
2675 EXPORT_SYMBOL(skb_mac_gso_segment);
2676
2677
2678 /* openvswitch calls this on rx path, so we need a different check.
2679 */
2680 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2681 {
2682 if (tx_path)
2683 return skb->ip_summed != CHECKSUM_PARTIAL;
2684 else
2685 return skb->ip_summed == CHECKSUM_NONE;
2686 }
2687
2688 /**
2689 * __skb_gso_segment - Perform segmentation on skb.
2690 * @skb: buffer to segment
2691 * @features: features for the output path (see dev->features)
2692 * @tx_path: whether it is called in TX path
2693 *
2694 * This function segments the given skb and returns a list of segments.
2695 *
2696 * It may return NULL if the skb requires no segmentation. This is
2697 * only possible when GSO is used for verifying header integrity.
2698 *
2699 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2700 */
2701 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2702 netdev_features_t features, bool tx_path)
2703 {
2704 if (unlikely(skb_needs_check(skb, tx_path))) {
2705 int err;
2706
2707 skb_warn_bad_offload(skb);
2708
2709 err = skb_cow_head(skb, 0);
2710 if (err < 0)
2711 return ERR_PTR(err);
2712 }
2713
2714 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2715 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2716
2717 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2718 SKB_GSO_CB(skb)->encap_level = 0;
2719
2720 skb_reset_mac_header(skb);
2721 skb_reset_mac_len(skb);
2722
2723 return skb_mac_gso_segment(skb, features);
2724 }
2725 EXPORT_SYMBOL(__skb_gso_segment);
2726
2727 /* Take action when hardware reception checksum errors are detected. */
2728 #ifdef CONFIG_BUG
2729 void netdev_rx_csum_fault(struct net_device *dev)
2730 {
2731 if (net_ratelimit()) {
2732 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2733 dump_stack();
2734 }
2735 }
2736 EXPORT_SYMBOL(netdev_rx_csum_fault);
2737 #endif
2738
2739 /* Actually, we should eliminate this check as soon as we know, that:
2740 * 1. IOMMU is present and allows to map all the memory.
2741 * 2. No high memory really exists on this machine.
2742 */
2743
2744 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2745 {
2746 #ifdef CONFIG_HIGHMEM
2747 int i;
2748 if (!(dev->features & NETIF_F_HIGHDMA)) {
2749 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2750 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2751 if (PageHighMem(skb_frag_page(frag)))
2752 return 1;
2753 }
2754 }
2755
2756 if (PCI_DMA_BUS_IS_PHYS) {
2757 struct device *pdev = dev->dev.parent;
2758
2759 if (!pdev)
2760 return 0;
2761 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2762 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2763 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2764 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2765 return 1;
2766 }
2767 }
2768 #endif
2769 return 0;
2770 }
2771
2772 /* If MPLS offload request, verify we are testing hardware MPLS features
2773 * instead of standard features for the netdev.
2774 */
2775 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2776 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2777 netdev_features_t features,
2778 __be16 type)
2779 {
2780 if (eth_p_mpls(type))
2781 features &= skb->dev->mpls_features;
2782
2783 return features;
2784 }
2785 #else
2786 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2787 netdev_features_t features,
2788 __be16 type)
2789 {
2790 return features;
2791 }
2792 #endif
2793
2794 static netdev_features_t harmonize_features(struct sk_buff *skb,
2795 netdev_features_t features)
2796 {
2797 int tmp;
2798 __be16 type;
2799
2800 type = skb_network_protocol(skb, &tmp);
2801 features = net_mpls_features(skb, features, type);
2802
2803 if (skb->ip_summed != CHECKSUM_NONE &&
2804 !can_checksum_protocol(features, type)) {
2805 features &= ~NETIF_F_CSUM_MASK;
2806 } else if (illegal_highdma(skb->dev, skb)) {
2807 features &= ~NETIF_F_SG;
2808 }
2809
2810 return features;
2811 }
2812
2813 netdev_features_t passthru_features_check(struct sk_buff *skb,
2814 struct net_device *dev,
2815 netdev_features_t features)
2816 {
2817 return features;
2818 }
2819 EXPORT_SYMBOL(passthru_features_check);
2820
2821 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2822 struct net_device *dev,
2823 netdev_features_t features)
2824 {
2825 return vlan_features_check(skb, features);
2826 }
2827
2828 netdev_features_t netif_skb_features(struct sk_buff *skb)
2829 {
2830 struct net_device *dev = skb->dev;
2831 netdev_features_t features = dev->features;
2832 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2833
2834 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2835 features &= ~NETIF_F_GSO_MASK;
2836
2837 /* If encapsulation offload request, verify we are testing
2838 * hardware encapsulation features instead of standard
2839 * features for the netdev
2840 */
2841 if (skb->encapsulation)
2842 features &= dev->hw_enc_features;
2843
2844 if (skb_vlan_tagged(skb))
2845 features = netdev_intersect_features(features,
2846 dev->vlan_features |
2847 NETIF_F_HW_VLAN_CTAG_TX |
2848 NETIF_F_HW_VLAN_STAG_TX);
2849
2850 if (dev->netdev_ops->ndo_features_check)
2851 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2852 features);
2853 else
2854 features &= dflt_features_check(skb, dev, features);
2855
2856 return harmonize_features(skb, features);
2857 }
2858 EXPORT_SYMBOL(netif_skb_features);
2859
2860 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2861 struct netdev_queue *txq, bool more)
2862 {
2863 unsigned int len;
2864 int rc;
2865
2866 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2867 dev_queue_xmit_nit(skb, dev);
2868
2869 len = skb->len;
2870 trace_net_dev_start_xmit(skb, dev);
2871 rc = netdev_start_xmit(skb, dev, txq, more);
2872 trace_net_dev_xmit(skb, rc, dev, len);
2873
2874 return rc;
2875 }
2876
2877 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2878 struct netdev_queue *txq, int *ret)
2879 {
2880 struct sk_buff *skb = first;
2881 int rc = NETDEV_TX_OK;
2882
2883 while (skb) {
2884 struct sk_buff *next = skb->next;
2885
2886 skb->next = NULL;
2887 rc = xmit_one(skb, dev, txq, next != NULL);
2888 if (unlikely(!dev_xmit_complete(rc))) {
2889 skb->next = next;
2890 goto out;
2891 }
2892
2893 skb = next;
2894 if (netif_xmit_stopped(txq) && skb) {
2895 rc = NETDEV_TX_BUSY;
2896 break;
2897 }
2898 }
2899
2900 out:
2901 *ret = rc;
2902 return skb;
2903 }
2904
2905 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2906 netdev_features_t features)
2907 {
2908 if (skb_vlan_tag_present(skb) &&
2909 !vlan_hw_offload_capable(features, skb->vlan_proto))
2910 skb = __vlan_hwaccel_push_inside(skb);
2911 return skb;
2912 }
2913
2914 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2915 {
2916 netdev_features_t features;
2917
2918 if (skb->next)
2919 return skb;
2920
2921 features = netif_skb_features(skb);
2922 skb = validate_xmit_vlan(skb, features);
2923 if (unlikely(!skb))
2924 goto out_null;
2925
2926 if (netif_needs_gso(skb, features)) {
2927 struct sk_buff *segs;
2928
2929 segs = skb_gso_segment(skb, features);
2930 if (IS_ERR(segs)) {
2931 goto out_kfree_skb;
2932 } else if (segs) {
2933 consume_skb(skb);
2934 skb = segs;
2935 }
2936 } else {
2937 if (skb_needs_linearize(skb, features) &&
2938 __skb_linearize(skb))
2939 goto out_kfree_skb;
2940
2941 /* If packet is not checksummed and device does not
2942 * support checksumming for this protocol, complete
2943 * checksumming here.
2944 */
2945 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2946 if (skb->encapsulation)
2947 skb_set_inner_transport_header(skb,
2948 skb_checksum_start_offset(skb));
2949 else
2950 skb_set_transport_header(skb,
2951 skb_checksum_start_offset(skb));
2952 if (!(features & NETIF_F_CSUM_MASK) &&
2953 skb_checksum_help(skb))
2954 goto out_kfree_skb;
2955 }
2956 }
2957
2958 return skb;
2959
2960 out_kfree_skb:
2961 kfree_skb(skb);
2962 out_null:
2963 return NULL;
2964 }
2965
2966 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2967 {
2968 struct sk_buff *next, *head = NULL, *tail;
2969
2970 for (; skb != NULL; skb = next) {
2971 next = skb->next;
2972 skb->next = NULL;
2973
2974 /* in case skb wont be segmented, point to itself */
2975 skb->prev = skb;
2976
2977 skb = validate_xmit_skb(skb, dev);
2978 if (!skb)
2979 continue;
2980
2981 if (!head)
2982 head = skb;
2983 else
2984 tail->next = skb;
2985 /* If skb was segmented, skb->prev points to
2986 * the last segment. If not, it still contains skb.
2987 */
2988 tail = skb->prev;
2989 }
2990 return head;
2991 }
2992
2993 static void qdisc_pkt_len_init(struct sk_buff *skb)
2994 {
2995 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2996
2997 qdisc_skb_cb(skb)->pkt_len = skb->len;
2998
2999 /* To get more precise estimation of bytes sent on wire,
3000 * we add to pkt_len the headers size of all segments
3001 */
3002 if (shinfo->gso_size) {
3003 unsigned int hdr_len;
3004 u16 gso_segs = shinfo->gso_segs;
3005
3006 /* mac layer + network layer */
3007 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3008
3009 /* + transport layer */
3010 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3011 hdr_len += tcp_hdrlen(skb);
3012 else
3013 hdr_len += sizeof(struct udphdr);
3014
3015 if (shinfo->gso_type & SKB_GSO_DODGY)
3016 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3017 shinfo->gso_size);
3018
3019 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3020 }
3021 }
3022
3023 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3024 struct net_device *dev,
3025 struct netdev_queue *txq)
3026 {
3027 spinlock_t *root_lock = qdisc_lock(q);
3028 bool contended;
3029 int rc;
3030
3031 qdisc_calculate_pkt_len(skb, q);
3032 /*
3033 * Heuristic to force contended enqueues to serialize on a
3034 * separate lock before trying to get qdisc main lock.
3035 * This permits __QDISC___STATE_RUNNING owner to get the lock more
3036 * often and dequeue packets faster.
3037 */
3038 contended = qdisc_is_running(q);
3039 if (unlikely(contended))
3040 spin_lock(&q->busylock);
3041
3042 spin_lock(root_lock);
3043 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3044 kfree_skb(skb);
3045 rc = NET_XMIT_DROP;
3046 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3047 qdisc_run_begin(q)) {
3048 /*
3049 * This is a work-conserving queue; there are no old skbs
3050 * waiting to be sent out; and the qdisc is not running -
3051 * xmit the skb directly.
3052 */
3053
3054 qdisc_bstats_update(q, skb);
3055
3056 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3057 if (unlikely(contended)) {
3058 spin_unlock(&q->busylock);
3059 contended = false;
3060 }
3061 __qdisc_run(q);
3062 } else
3063 qdisc_run_end(q);
3064
3065 rc = NET_XMIT_SUCCESS;
3066 } else {
3067 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
3068 if (qdisc_run_begin(q)) {
3069 if (unlikely(contended)) {
3070 spin_unlock(&q->busylock);
3071 contended = false;
3072 }
3073 __qdisc_run(q);
3074 }
3075 }
3076 spin_unlock(root_lock);
3077 if (unlikely(contended))
3078 spin_unlock(&q->busylock);
3079 return rc;
3080 }
3081
3082 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3083 static void skb_update_prio(struct sk_buff *skb)
3084 {
3085 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3086
3087 if (!skb->priority && skb->sk && map) {
3088 unsigned int prioidx =
3089 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3090
3091 if (prioidx < map->priomap_len)
3092 skb->priority = map->priomap[prioidx];
3093 }
3094 }
3095 #else
3096 #define skb_update_prio(skb)
3097 #endif
3098
3099 DEFINE_PER_CPU(int, xmit_recursion);
3100 EXPORT_SYMBOL(xmit_recursion);
3101
3102 #define RECURSION_LIMIT 10
3103
3104 /**
3105 * dev_loopback_xmit - loop back @skb
3106 * @net: network namespace this loopback is happening in
3107 * @sk: sk needed to be a netfilter okfn
3108 * @skb: buffer to transmit
3109 */
3110 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3111 {
3112 skb_reset_mac_header(skb);
3113 __skb_pull(skb, skb_network_offset(skb));
3114 skb->pkt_type = PACKET_LOOPBACK;
3115 skb->ip_summed = CHECKSUM_UNNECESSARY;
3116 WARN_ON(!skb_dst(skb));
3117 skb_dst_force(skb);
3118 netif_rx_ni(skb);
3119 return 0;
3120 }
3121 EXPORT_SYMBOL(dev_loopback_xmit);
3122
3123 #ifdef CONFIG_NET_EGRESS
3124 static struct sk_buff *
3125 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3126 {
3127 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3128 struct tcf_result cl_res;
3129
3130 if (!cl)
3131 return skb;
3132
3133 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3134 * earlier by the caller.
3135 */
3136 qdisc_bstats_cpu_update(cl->q, skb);
3137
3138 switch (tc_classify(skb, cl, &cl_res, false)) {
3139 case TC_ACT_OK:
3140 case TC_ACT_RECLASSIFY:
3141 skb->tc_index = TC_H_MIN(cl_res.classid);
3142 break;
3143 case TC_ACT_SHOT:
3144 qdisc_qstats_cpu_drop(cl->q);
3145 *ret = NET_XMIT_DROP;
3146 goto drop;
3147 case TC_ACT_STOLEN:
3148 case TC_ACT_QUEUED:
3149 *ret = NET_XMIT_SUCCESS;
3150 drop:
3151 kfree_skb(skb);
3152 return NULL;
3153 case TC_ACT_REDIRECT:
3154 /* No need to push/pop skb's mac_header here on egress! */
3155 skb_do_redirect(skb);
3156 *ret = NET_XMIT_SUCCESS;
3157 return NULL;
3158 default:
3159 break;
3160 }
3161
3162 return skb;
3163 }
3164 #endif /* CONFIG_NET_EGRESS */
3165
3166 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3167 {
3168 #ifdef CONFIG_XPS
3169 struct xps_dev_maps *dev_maps;
3170 struct xps_map *map;
3171 int queue_index = -1;
3172
3173 rcu_read_lock();
3174 dev_maps = rcu_dereference(dev->xps_maps);
3175 if (dev_maps) {
3176 map = rcu_dereference(
3177 dev_maps->cpu_map[skb->sender_cpu - 1]);
3178 if (map) {
3179 if (map->len == 1)
3180 queue_index = map->queues[0];
3181 else
3182 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3183 map->len)];
3184 if (unlikely(queue_index >= dev->real_num_tx_queues))
3185 queue_index = -1;
3186 }
3187 }
3188 rcu_read_unlock();
3189
3190 return queue_index;
3191 #else
3192 return -1;
3193 #endif
3194 }
3195
3196 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3197 {
3198 struct sock *sk = skb->sk;
3199 int queue_index = sk_tx_queue_get(sk);
3200
3201 if (queue_index < 0 || skb->ooo_okay ||
3202 queue_index >= dev->real_num_tx_queues) {
3203 int new_index = get_xps_queue(dev, skb);
3204 if (new_index < 0)
3205 new_index = skb_tx_hash(dev, skb);
3206
3207 if (queue_index != new_index && sk &&
3208 sk_fullsock(sk) &&
3209 rcu_access_pointer(sk->sk_dst_cache))
3210 sk_tx_queue_set(sk, new_index);
3211
3212 queue_index = new_index;
3213 }
3214
3215 return queue_index;
3216 }
3217
3218 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3219 struct sk_buff *skb,
3220 void *accel_priv)
3221 {
3222 int queue_index = 0;
3223
3224 #ifdef CONFIG_XPS
3225 u32 sender_cpu = skb->sender_cpu - 1;
3226
3227 if (sender_cpu >= (u32)NR_CPUS)
3228 skb->sender_cpu = raw_smp_processor_id() + 1;
3229 #endif
3230
3231 if (dev->real_num_tx_queues != 1) {
3232 const struct net_device_ops *ops = dev->netdev_ops;
3233 if (ops->ndo_select_queue)
3234 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3235 __netdev_pick_tx);
3236 else
3237 queue_index = __netdev_pick_tx(dev, skb);
3238
3239 if (!accel_priv)
3240 queue_index = netdev_cap_txqueue(dev, queue_index);
3241 }
3242
3243 skb_set_queue_mapping(skb, queue_index);
3244 return netdev_get_tx_queue(dev, queue_index);
3245 }
3246
3247 /**
3248 * __dev_queue_xmit - transmit a buffer
3249 * @skb: buffer to transmit
3250 * @accel_priv: private data used for L2 forwarding offload
3251 *
3252 * Queue a buffer for transmission to a network device. The caller must
3253 * have set the device and priority and built the buffer before calling
3254 * this function. The function can be called from an interrupt.
3255 *
3256 * A negative errno code is returned on a failure. A success does not
3257 * guarantee the frame will be transmitted as it may be dropped due
3258 * to congestion or traffic shaping.
3259 *
3260 * -----------------------------------------------------------------------------------
3261 * I notice this method can also return errors from the queue disciplines,
3262 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3263 * be positive.
3264 *
3265 * Regardless of the return value, the skb is consumed, so it is currently
3266 * difficult to retry a send to this method. (You can bump the ref count
3267 * before sending to hold a reference for retry if you are careful.)
3268 *
3269 * When calling this method, interrupts MUST be enabled. This is because
3270 * the BH enable code must have IRQs enabled so that it will not deadlock.
3271 * --BLG
3272 */
3273 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3274 {
3275 struct net_device *dev = skb->dev;
3276 struct netdev_queue *txq;
3277 struct Qdisc *q;
3278 int rc = -ENOMEM;
3279
3280 skb_reset_mac_header(skb);
3281
3282 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3283 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3284
3285 /* Disable soft irqs for various locks below. Also
3286 * stops preemption for RCU.
3287 */
3288 rcu_read_lock_bh();
3289
3290 skb_update_prio(skb);
3291
3292 qdisc_pkt_len_init(skb);
3293 #ifdef CONFIG_NET_CLS_ACT
3294 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3295 # ifdef CONFIG_NET_EGRESS
3296 if (static_key_false(&egress_needed)) {
3297 skb = sch_handle_egress(skb, &rc, dev);
3298 if (!skb)
3299 goto out;
3300 }
3301 # endif
3302 #endif
3303 /* If device/qdisc don't need skb->dst, release it right now while
3304 * its hot in this cpu cache.
3305 */
3306 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3307 skb_dst_drop(skb);
3308 else
3309 skb_dst_force(skb);
3310
3311 #ifdef CONFIG_NET_SWITCHDEV
3312 /* Don't forward if offload device already forwarded */
3313 if (skb->offload_fwd_mark &&
3314 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3315 consume_skb(skb);
3316 rc = NET_XMIT_SUCCESS;
3317 goto out;
3318 }
3319 #endif
3320
3321 txq = netdev_pick_tx(dev, skb, accel_priv);
3322 q = rcu_dereference_bh(txq->qdisc);
3323
3324 trace_net_dev_queue(skb);
3325 if (q->enqueue) {
3326 rc = __dev_xmit_skb(skb, q, dev, txq);
3327 goto out;
3328 }
3329
3330 /* The device has no queue. Common case for software devices:
3331 loopback, all the sorts of tunnels...
3332
3333 Really, it is unlikely that netif_tx_lock protection is necessary
3334 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3335 counters.)
3336 However, it is possible, that they rely on protection
3337 made by us here.
3338
3339 Check this and shot the lock. It is not prone from deadlocks.
3340 Either shot noqueue qdisc, it is even simpler 8)
3341 */
3342 if (dev->flags & IFF_UP) {
3343 int cpu = smp_processor_id(); /* ok because BHs are off */
3344
3345 if (txq->xmit_lock_owner != cpu) {
3346
3347 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3348 goto recursion_alert;
3349
3350 skb = validate_xmit_skb(skb, dev);
3351 if (!skb)
3352 goto drop;
3353
3354 HARD_TX_LOCK(dev, txq, cpu);
3355
3356 if (!netif_xmit_stopped(txq)) {
3357 __this_cpu_inc(xmit_recursion);
3358 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3359 __this_cpu_dec(xmit_recursion);
3360 if (dev_xmit_complete(rc)) {
3361 HARD_TX_UNLOCK(dev, txq);
3362 goto out;
3363 }
3364 }
3365 HARD_TX_UNLOCK(dev, txq);
3366 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3367 dev->name);
3368 } else {
3369 /* Recursion is detected! It is possible,
3370 * unfortunately
3371 */
3372 recursion_alert:
3373 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3374 dev->name);
3375 }
3376 }
3377
3378 rc = -ENETDOWN;
3379 drop:
3380 rcu_read_unlock_bh();
3381
3382 atomic_long_inc(&dev->tx_dropped);
3383 kfree_skb_list(skb);
3384 return rc;
3385 out:
3386 rcu_read_unlock_bh();
3387 return rc;
3388 }
3389
3390 int dev_queue_xmit(struct sk_buff *skb)
3391 {
3392 return __dev_queue_xmit(skb, NULL);
3393 }
3394 EXPORT_SYMBOL(dev_queue_xmit);
3395
3396 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3397 {
3398 return __dev_queue_xmit(skb, accel_priv);
3399 }
3400 EXPORT_SYMBOL(dev_queue_xmit_accel);
3401
3402
3403 /*=======================================================================
3404 Receiver routines
3405 =======================================================================*/
3406
3407 int netdev_max_backlog __read_mostly = 1000;
3408 EXPORT_SYMBOL(netdev_max_backlog);
3409
3410 int netdev_tstamp_prequeue __read_mostly = 1;
3411 int netdev_budget __read_mostly = 300;
3412 int weight_p __read_mostly = 64; /* old backlog weight */
3413
3414 /* Called with irq disabled */
3415 static inline void ____napi_schedule(struct softnet_data *sd,
3416 struct napi_struct *napi)
3417 {
3418 list_add_tail(&napi->poll_list, &sd->poll_list);
3419 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3420 }
3421
3422 #ifdef CONFIG_RPS
3423
3424 /* One global table that all flow-based protocols share. */
3425 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3426 EXPORT_SYMBOL(rps_sock_flow_table);
3427 u32 rps_cpu_mask __read_mostly;
3428 EXPORT_SYMBOL(rps_cpu_mask);
3429
3430 struct static_key rps_needed __read_mostly;
3431
3432 static struct rps_dev_flow *
3433 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3434 struct rps_dev_flow *rflow, u16 next_cpu)
3435 {
3436 if (next_cpu < nr_cpu_ids) {
3437 #ifdef CONFIG_RFS_ACCEL
3438 struct netdev_rx_queue *rxqueue;
3439 struct rps_dev_flow_table *flow_table;
3440 struct rps_dev_flow *old_rflow;
3441 u32 flow_id;
3442 u16 rxq_index;
3443 int rc;
3444
3445 /* Should we steer this flow to a different hardware queue? */
3446 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3447 !(dev->features & NETIF_F_NTUPLE))
3448 goto out;
3449 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3450 if (rxq_index == skb_get_rx_queue(skb))
3451 goto out;
3452
3453 rxqueue = dev->_rx + rxq_index;
3454 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3455 if (!flow_table)
3456 goto out;
3457 flow_id = skb_get_hash(skb) & flow_table->mask;
3458 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3459 rxq_index, flow_id);
3460 if (rc < 0)
3461 goto out;
3462 old_rflow = rflow;
3463 rflow = &flow_table->flows[flow_id];
3464 rflow->filter = rc;
3465 if (old_rflow->filter == rflow->filter)
3466 old_rflow->filter = RPS_NO_FILTER;
3467 out:
3468 #endif
3469 rflow->last_qtail =
3470 per_cpu(softnet_data, next_cpu).input_queue_head;
3471 }
3472
3473 rflow->cpu = next_cpu;
3474 return rflow;
3475 }
3476
3477 /*
3478 * get_rps_cpu is called from netif_receive_skb and returns the target
3479 * CPU from the RPS map of the receiving queue for a given skb.
3480 * rcu_read_lock must be held on entry.
3481 */
3482 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3483 struct rps_dev_flow **rflowp)
3484 {
3485 const struct rps_sock_flow_table *sock_flow_table;
3486 struct netdev_rx_queue *rxqueue = dev->_rx;
3487 struct rps_dev_flow_table *flow_table;
3488 struct rps_map *map;
3489 int cpu = -1;
3490 u32 tcpu;
3491 u32 hash;
3492
3493 if (skb_rx_queue_recorded(skb)) {
3494 u16 index = skb_get_rx_queue(skb);
3495
3496 if (unlikely(index >= dev->real_num_rx_queues)) {
3497 WARN_ONCE(dev->real_num_rx_queues > 1,
3498 "%s received packet on queue %u, but number "
3499 "of RX queues is %u\n",
3500 dev->name, index, dev->real_num_rx_queues);
3501 goto done;
3502 }
3503 rxqueue += index;
3504 }
3505
3506 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3507
3508 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3509 map = rcu_dereference(rxqueue->rps_map);
3510 if (!flow_table && !map)
3511 goto done;
3512
3513 skb_reset_network_header(skb);
3514 hash = skb_get_hash(skb);
3515 if (!hash)
3516 goto done;
3517
3518 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3519 if (flow_table && sock_flow_table) {
3520 struct rps_dev_flow *rflow;
3521 u32 next_cpu;
3522 u32 ident;
3523
3524 /* First check into global flow table if there is a match */
3525 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3526 if ((ident ^ hash) & ~rps_cpu_mask)
3527 goto try_rps;
3528
3529 next_cpu = ident & rps_cpu_mask;
3530
3531 /* OK, now we know there is a match,
3532 * we can look at the local (per receive queue) flow table
3533 */
3534 rflow = &flow_table->flows[hash & flow_table->mask];
3535 tcpu = rflow->cpu;
3536
3537 /*
3538 * If the desired CPU (where last recvmsg was done) is
3539 * different from current CPU (one in the rx-queue flow
3540 * table entry), switch if one of the following holds:
3541 * - Current CPU is unset (>= nr_cpu_ids).
3542 * - Current CPU is offline.
3543 * - The current CPU's queue tail has advanced beyond the
3544 * last packet that was enqueued using this table entry.
3545 * This guarantees that all previous packets for the flow
3546 * have been dequeued, thus preserving in order delivery.
3547 */
3548 if (unlikely(tcpu != next_cpu) &&
3549 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3550 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3551 rflow->last_qtail)) >= 0)) {
3552 tcpu = next_cpu;
3553 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3554 }
3555
3556 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3557 *rflowp = rflow;
3558 cpu = tcpu;
3559 goto done;
3560 }
3561 }
3562
3563 try_rps:
3564
3565 if (map) {
3566 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3567 if (cpu_online(tcpu)) {
3568 cpu = tcpu;
3569 goto done;
3570 }
3571 }
3572
3573 done:
3574 return cpu;
3575 }
3576
3577 #ifdef CONFIG_RFS_ACCEL
3578
3579 /**
3580 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3581 * @dev: Device on which the filter was set
3582 * @rxq_index: RX queue index
3583 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3584 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3585 *
3586 * Drivers that implement ndo_rx_flow_steer() should periodically call
3587 * this function for each installed filter and remove the filters for
3588 * which it returns %true.
3589 */
3590 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3591 u32 flow_id, u16 filter_id)
3592 {
3593 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3594 struct rps_dev_flow_table *flow_table;
3595 struct rps_dev_flow *rflow;
3596 bool expire = true;
3597 unsigned int cpu;
3598
3599 rcu_read_lock();
3600 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3601 if (flow_table && flow_id <= flow_table->mask) {
3602 rflow = &flow_table->flows[flow_id];
3603 cpu = ACCESS_ONCE(rflow->cpu);
3604 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3605 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3606 rflow->last_qtail) <
3607 (int)(10 * flow_table->mask)))
3608 expire = false;
3609 }
3610 rcu_read_unlock();
3611 return expire;
3612 }
3613 EXPORT_SYMBOL(rps_may_expire_flow);
3614
3615 #endif /* CONFIG_RFS_ACCEL */
3616
3617 /* Called from hardirq (IPI) context */
3618 static void rps_trigger_softirq(void *data)
3619 {
3620 struct softnet_data *sd = data;
3621
3622 ____napi_schedule(sd, &sd->backlog);
3623 sd->received_rps++;
3624 }
3625
3626 #endif /* CONFIG_RPS */
3627
3628 /*
3629 * Check if this softnet_data structure is another cpu one
3630 * If yes, queue it to our IPI list and return 1
3631 * If no, return 0
3632 */
3633 static int rps_ipi_queued(struct softnet_data *sd)
3634 {
3635 #ifdef CONFIG_RPS
3636 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3637
3638 if (sd != mysd) {
3639 sd->rps_ipi_next = mysd->rps_ipi_list;
3640 mysd->rps_ipi_list = sd;
3641
3642 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3643 return 1;
3644 }
3645 #endif /* CONFIG_RPS */
3646 return 0;
3647 }
3648
3649 #ifdef CONFIG_NET_FLOW_LIMIT
3650 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3651 #endif
3652
3653 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3654 {
3655 #ifdef CONFIG_NET_FLOW_LIMIT
3656 struct sd_flow_limit *fl;
3657 struct softnet_data *sd;
3658 unsigned int old_flow, new_flow;
3659
3660 if (qlen < (netdev_max_backlog >> 1))
3661 return false;
3662
3663 sd = this_cpu_ptr(&softnet_data);
3664
3665 rcu_read_lock();
3666 fl = rcu_dereference(sd->flow_limit);
3667 if (fl) {
3668 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3669 old_flow = fl->history[fl->history_head];
3670 fl->history[fl->history_head] = new_flow;
3671
3672 fl->history_head++;
3673 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3674
3675 if (likely(fl->buckets[old_flow]))
3676 fl->buckets[old_flow]--;
3677
3678 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3679 fl->count++;
3680 rcu_read_unlock();
3681 return true;
3682 }
3683 }
3684 rcu_read_unlock();
3685 #endif
3686 return false;
3687 }
3688
3689 /*
3690 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3691 * queue (may be a remote CPU queue).
3692 */
3693 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3694 unsigned int *qtail)
3695 {
3696 struct softnet_data *sd;
3697 unsigned long flags;
3698 unsigned int qlen;
3699
3700 sd = &per_cpu(softnet_data, cpu);
3701
3702 local_irq_save(flags);
3703
3704 rps_lock(sd);
3705 if (!netif_running(skb->dev))
3706 goto drop;
3707 qlen = skb_queue_len(&sd->input_pkt_queue);
3708 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3709 if (qlen) {
3710 enqueue:
3711 __skb_queue_tail(&sd->input_pkt_queue, skb);
3712 input_queue_tail_incr_save(sd, qtail);
3713 rps_unlock(sd);
3714 local_irq_restore(flags);
3715 return NET_RX_SUCCESS;
3716 }
3717
3718 /* Schedule NAPI for backlog device
3719 * We can use non atomic operation since we own the queue lock
3720 */
3721 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3722 if (!rps_ipi_queued(sd))
3723 ____napi_schedule(sd, &sd->backlog);
3724 }
3725 goto enqueue;
3726 }
3727
3728 drop:
3729 sd->dropped++;
3730 rps_unlock(sd);
3731
3732 local_irq_restore(flags);
3733
3734 atomic_long_inc(&skb->dev->rx_dropped);
3735 kfree_skb(skb);
3736 return NET_RX_DROP;
3737 }
3738
3739 static int netif_rx_internal(struct sk_buff *skb)
3740 {
3741 int ret;
3742
3743 net_timestamp_check(netdev_tstamp_prequeue, skb);
3744
3745 trace_netif_rx(skb);
3746 #ifdef CONFIG_RPS
3747 if (static_key_false(&rps_needed)) {
3748 struct rps_dev_flow voidflow, *rflow = &voidflow;
3749 int cpu;
3750
3751 preempt_disable();
3752 rcu_read_lock();
3753
3754 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3755 if (cpu < 0)
3756 cpu = smp_processor_id();
3757
3758 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3759
3760 rcu_read_unlock();
3761 preempt_enable();
3762 } else
3763 #endif
3764 {
3765 unsigned int qtail;
3766 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3767 put_cpu();
3768 }
3769 return ret;
3770 }
3771
3772 /**
3773 * netif_rx - post buffer to the network code
3774 * @skb: buffer to post
3775 *
3776 * This function receives a packet from a device driver and queues it for
3777 * the upper (protocol) levels to process. It always succeeds. The buffer
3778 * may be dropped during processing for congestion control or by the
3779 * protocol layers.
3780 *
3781 * return values:
3782 * NET_RX_SUCCESS (no congestion)
3783 * NET_RX_DROP (packet was dropped)
3784 *
3785 */
3786
3787 int netif_rx(struct sk_buff *skb)
3788 {
3789 trace_netif_rx_entry(skb);
3790
3791 return netif_rx_internal(skb);
3792 }
3793 EXPORT_SYMBOL(netif_rx);
3794
3795 int netif_rx_ni(struct sk_buff *skb)
3796 {
3797 int err;
3798
3799 trace_netif_rx_ni_entry(skb);
3800
3801 preempt_disable();
3802 err = netif_rx_internal(skb);
3803 if (local_softirq_pending())
3804 do_softirq();
3805 preempt_enable();
3806
3807 return err;
3808 }
3809 EXPORT_SYMBOL(netif_rx_ni);
3810
3811 static void net_tx_action(struct softirq_action *h)
3812 {
3813 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3814
3815 if (sd->completion_queue) {
3816 struct sk_buff *clist;
3817
3818 local_irq_disable();
3819 clist = sd->completion_queue;
3820 sd->completion_queue = NULL;
3821 local_irq_enable();
3822
3823 while (clist) {
3824 struct sk_buff *skb = clist;
3825 clist = clist->next;
3826
3827 WARN_ON(atomic_read(&skb->users));
3828 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3829 trace_consume_skb(skb);
3830 else
3831 trace_kfree_skb(skb, net_tx_action);
3832
3833 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3834 __kfree_skb(skb);
3835 else
3836 __kfree_skb_defer(skb);
3837 }
3838
3839 __kfree_skb_flush();
3840 }
3841
3842 if (sd->output_queue) {
3843 struct Qdisc *head;
3844
3845 local_irq_disable();
3846 head = sd->output_queue;
3847 sd->output_queue = NULL;
3848 sd->output_queue_tailp = &sd->output_queue;
3849 local_irq_enable();
3850
3851 while (head) {
3852 struct Qdisc *q = head;
3853 spinlock_t *root_lock;
3854
3855 head = head->next_sched;
3856
3857 root_lock = qdisc_lock(q);
3858 if (spin_trylock(root_lock)) {
3859 smp_mb__before_atomic();
3860 clear_bit(__QDISC_STATE_SCHED,
3861 &q->state);
3862 qdisc_run(q);
3863 spin_unlock(root_lock);
3864 } else {
3865 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3866 &q->state)) {
3867 __netif_reschedule(q);
3868 } else {
3869 smp_mb__before_atomic();
3870 clear_bit(__QDISC_STATE_SCHED,
3871 &q->state);
3872 }
3873 }
3874 }
3875 }
3876 }
3877
3878 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3879 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3880 /* This hook is defined here for ATM LANE */
3881 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3882 unsigned char *addr) __read_mostly;
3883 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3884 #endif
3885
3886 static inline struct sk_buff *
3887 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3888 struct net_device *orig_dev)
3889 {
3890 #ifdef CONFIG_NET_CLS_ACT
3891 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3892 struct tcf_result cl_res;
3893
3894 /* If there's at least one ingress present somewhere (so
3895 * we get here via enabled static key), remaining devices
3896 * that are not configured with an ingress qdisc will bail
3897 * out here.
3898 */
3899 if (!cl)
3900 return skb;
3901 if (*pt_prev) {
3902 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3903 *pt_prev = NULL;
3904 }
3905
3906 qdisc_skb_cb(skb)->pkt_len = skb->len;
3907 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3908 qdisc_bstats_cpu_update(cl->q, skb);
3909
3910 switch (tc_classify(skb, cl, &cl_res, false)) {
3911 case TC_ACT_OK:
3912 case TC_ACT_RECLASSIFY:
3913 skb->tc_index = TC_H_MIN(cl_res.classid);
3914 break;
3915 case TC_ACT_SHOT:
3916 qdisc_qstats_cpu_drop(cl->q);
3917 case TC_ACT_STOLEN:
3918 case TC_ACT_QUEUED:
3919 kfree_skb(skb);
3920 return NULL;
3921 case TC_ACT_REDIRECT:
3922 /* skb_mac_header check was done by cls/act_bpf, so
3923 * we can safely push the L2 header back before
3924 * redirecting to another netdev
3925 */
3926 __skb_push(skb, skb->mac_len);
3927 skb_do_redirect(skb);
3928 return NULL;
3929 default:
3930 break;
3931 }
3932 #endif /* CONFIG_NET_CLS_ACT */
3933 return skb;
3934 }
3935
3936 /**
3937 * netdev_rx_handler_register - register receive handler
3938 * @dev: device to register a handler for
3939 * @rx_handler: receive handler to register
3940 * @rx_handler_data: data pointer that is used by rx handler
3941 *
3942 * Register a receive handler for a device. This handler will then be
3943 * called from __netif_receive_skb. A negative errno code is returned
3944 * on a failure.
3945 *
3946 * The caller must hold the rtnl_mutex.
3947 *
3948 * For a general description of rx_handler, see enum rx_handler_result.
3949 */
3950 int netdev_rx_handler_register(struct net_device *dev,
3951 rx_handler_func_t *rx_handler,
3952 void *rx_handler_data)
3953 {
3954 ASSERT_RTNL();
3955
3956 if (dev->rx_handler)
3957 return -EBUSY;
3958
3959 /* Note: rx_handler_data must be set before rx_handler */
3960 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3961 rcu_assign_pointer(dev->rx_handler, rx_handler);
3962
3963 return 0;
3964 }
3965 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3966
3967 /**
3968 * netdev_rx_handler_unregister - unregister receive handler
3969 * @dev: device to unregister a handler from
3970 *
3971 * Unregister a receive handler from a device.
3972 *
3973 * The caller must hold the rtnl_mutex.
3974 */
3975 void netdev_rx_handler_unregister(struct net_device *dev)
3976 {
3977
3978 ASSERT_RTNL();
3979 RCU_INIT_POINTER(dev->rx_handler, NULL);
3980 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3981 * section has a guarantee to see a non NULL rx_handler_data
3982 * as well.
3983 */
3984 synchronize_net();
3985 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3986 }
3987 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3988
3989 /*
3990 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3991 * the special handling of PFMEMALLOC skbs.
3992 */
3993 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3994 {
3995 switch (skb->protocol) {
3996 case htons(ETH_P_ARP):
3997 case htons(ETH_P_IP):
3998 case htons(ETH_P_IPV6):
3999 case htons(ETH_P_8021Q):
4000 case htons(ETH_P_8021AD):
4001 return true;
4002 default:
4003 return false;
4004 }
4005 }
4006
4007 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4008 int *ret, struct net_device *orig_dev)
4009 {
4010 #ifdef CONFIG_NETFILTER_INGRESS
4011 if (nf_hook_ingress_active(skb)) {
4012 if (*pt_prev) {
4013 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4014 *pt_prev = NULL;
4015 }
4016
4017 return nf_hook_ingress(skb);
4018 }
4019 #endif /* CONFIG_NETFILTER_INGRESS */
4020 return 0;
4021 }
4022
4023 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4024 {
4025 struct packet_type *ptype, *pt_prev;
4026 rx_handler_func_t *rx_handler;
4027 struct net_device *orig_dev;
4028 bool deliver_exact = false;
4029 int ret = NET_RX_DROP;
4030 __be16 type;
4031
4032 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4033
4034 trace_netif_receive_skb(skb);
4035
4036 orig_dev = skb->dev;
4037
4038 skb_reset_network_header(skb);
4039 if (!skb_transport_header_was_set(skb))
4040 skb_reset_transport_header(skb);
4041 skb_reset_mac_len(skb);
4042
4043 pt_prev = NULL;
4044
4045 another_round:
4046 skb->skb_iif = skb->dev->ifindex;
4047
4048 __this_cpu_inc(softnet_data.processed);
4049
4050 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4051 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4052 skb = skb_vlan_untag(skb);
4053 if (unlikely(!skb))
4054 goto out;
4055 }
4056
4057 #ifdef CONFIG_NET_CLS_ACT
4058 if (skb->tc_verd & TC_NCLS) {
4059 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4060 goto ncls;
4061 }
4062 #endif
4063
4064 if (pfmemalloc)
4065 goto skip_taps;
4066
4067 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4068 if (pt_prev)
4069 ret = deliver_skb(skb, pt_prev, orig_dev);
4070 pt_prev = ptype;
4071 }
4072
4073 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4074 if (pt_prev)
4075 ret = deliver_skb(skb, pt_prev, orig_dev);
4076 pt_prev = ptype;
4077 }
4078
4079 skip_taps:
4080 #ifdef CONFIG_NET_INGRESS
4081 if (static_key_false(&ingress_needed)) {
4082 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4083 if (!skb)
4084 goto out;
4085
4086 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4087 goto out;
4088 }
4089 #endif
4090 #ifdef CONFIG_NET_CLS_ACT
4091 skb->tc_verd = 0;
4092 ncls:
4093 #endif
4094 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4095 goto drop;
4096
4097 if (skb_vlan_tag_present(skb)) {
4098 if (pt_prev) {
4099 ret = deliver_skb(skb, pt_prev, orig_dev);
4100 pt_prev = NULL;
4101 }
4102 if (vlan_do_receive(&skb))
4103 goto another_round;
4104 else if (unlikely(!skb))
4105 goto out;
4106 }
4107
4108 rx_handler = rcu_dereference(skb->dev->rx_handler);
4109 if (rx_handler) {
4110 if (pt_prev) {
4111 ret = deliver_skb(skb, pt_prev, orig_dev);
4112 pt_prev = NULL;
4113 }
4114 switch (rx_handler(&skb)) {
4115 case RX_HANDLER_CONSUMED:
4116 ret = NET_RX_SUCCESS;
4117 goto out;
4118 case RX_HANDLER_ANOTHER:
4119 goto another_round;
4120 case RX_HANDLER_EXACT:
4121 deliver_exact = true;
4122 case RX_HANDLER_PASS:
4123 break;
4124 default:
4125 BUG();
4126 }
4127 }
4128
4129 if (unlikely(skb_vlan_tag_present(skb))) {
4130 if (skb_vlan_tag_get_id(skb))
4131 skb->pkt_type = PACKET_OTHERHOST;
4132 /* Note: we might in the future use prio bits
4133 * and set skb->priority like in vlan_do_receive()
4134 * For the time being, just ignore Priority Code Point
4135 */
4136 skb->vlan_tci = 0;
4137 }
4138
4139 type = skb->protocol;
4140
4141 /* deliver only exact match when indicated */
4142 if (likely(!deliver_exact)) {
4143 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4144 &ptype_base[ntohs(type) &
4145 PTYPE_HASH_MASK]);
4146 }
4147
4148 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4149 &orig_dev->ptype_specific);
4150
4151 if (unlikely(skb->dev != orig_dev)) {
4152 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4153 &skb->dev->ptype_specific);
4154 }
4155
4156 if (pt_prev) {
4157 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4158 goto drop;
4159 else
4160 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4161 } else {
4162 drop:
4163 if (!deliver_exact)
4164 atomic_long_inc(&skb->dev->rx_dropped);
4165 else
4166 atomic_long_inc(&skb->dev->rx_nohandler);
4167 kfree_skb(skb);
4168 /* Jamal, now you will not able to escape explaining
4169 * me how you were going to use this. :-)
4170 */
4171 ret = NET_RX_DROP;
4172 }
4173
4174 out:
4175 return ret;
4176 }
4177
4178 static int __netif_receive_skb(struct sk_buff *skb)
4179 {
4180 int ret;
4181
4182 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4183 unsigned long pflags = current->flags;
4184
4185 /*
4186 * PFMEMALLOC skbs are special, they should
4187 * - be delivered to SOCK_MEMALLOC sockets only
4188 * - stay away from userspace
4189 * - have bounded memory usage
4190 *
4191 * Use PF_MEMALLOC as this saves us from propagating the allocation
4192 * context down to all allocation sites.
4193 */
4194 current->flags |= PF_MEMALLOC;
4195 ret = __netif_receive_skb_core(skb, true);
4196 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4197 } else
4198 ret = __netif_receive_skb_core(skb, false);
4199
4200 return ret;
4201 }
4202
4203 static int netif_receive_skb_internal(struct sk_buff *skb)
4204 {
4205 int ret;
4206
4207 net_timestamp_check(netdev_tstamp_prequeue, skb);
4208
4209 if (skb_defer_rx_timestamp(skb))
4210 return NET_RX_SUCCESS;
4211
4212 rcu_read_lock();
4213
4214 #ifdef CONFIG_RPS
4215 if (static_key_false(&rps_needed)) {
4216 struct rps_dev_flow voidflow, *rflow = &voidflow;
4217 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4218
4219 if (cpu >= 0) {
4220 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4221 rcu_read_unlock();
4222 return ret;
4223 }
4224 }
4225 #endif
4226 ret = __netif_receive_skb(skb);
4227 rcu_read_unlock();
4228 return ret;
4229 }
4230
4231 /**
4232 * netif_receive_skb - process receive buffer from network
4233 * @skb: buffer to process
4234 *
4235 * netif_receive_skb() is the main receive data processing function.
4236 * It always succeeds. The buffer may be dropped during processing
4237 * for congestion control or by the protocol layers.
4238 *
4239 * This function may only be called from softirq context and interrupts
4240 * should be enabled.
4241 *
4242 * Return values (usually ignored):
4243 * NET_RX_SUCCESS: no congestion
4244 * NET_RX_DROP: packet was dropped
4245 */
4246 int netif_receive_skb(struct sk_buff *skb)
4247 {
4248 trace_netif_receive_skb_entry(skb);
4249
4250 return netif_receive_skb_internal(skb);
4251 }
4252 EXPORT_SYMBOL(netif_receive_skb);
4253
4254 /* Network device is going away, flush any packets still pending
4255 * Called with irqs disabled.
4256 */
4257 static void flush_backlog(void *arg)
4258 {
4259 struct net_device *dev = arg;
4260 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4261 struct sk_buff *skb, *tmp;
4262
4263 rps_lock(sd);
4264 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4265 if (skb->dev == dev) {
4266 __skb_unlink(skb, &sd->input_pkt_queue);
4267 kfree_skb(skb);
4268 input_queue_head_incr(sd);
4269 }
4270 }
4271 rps_unlock(sd);
4272
4273 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4274 if (skb->dev == dev) {
4275 __skb_unlink(skb, &sd->process_queue);
4276 kfree_skb(skb);
4277 input_queue_head_incr(sd);
4278 }
4279 }
4280 }
4281
4282 static int napi_gro_complete(struct sk_buff *skb)
4283 {
4284 struct packet_offload *ptype;
4285 __be16 type = skb->protocol;
4286 struct list_head *head = &offload_base;
4287 int err = -ENOENT;
4288
4289 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4290
4291 if (NAPI_GRO_CB(skb)->count == 1) {
4292 skb_shinfo(skb)->gso_size = 0;
4293 goto out;
4294 }
4295
4296 rcu_read_lock();
4297 list_for_each_entry_rcu(ptype, head, list) {
4298 if (ptype->type != type || !ptype->callbacks.gro_complete)
4299 continue;
4300
4301 err = ptype->callbacks.gro_complete(skb, 0);
4302 break;
4303 }
4304 rcu_read_unlock();
4305
4306 if (err) {
4307 WARN_ON(&ptype->list == head);
4308 kfree_skb(skb);
4309 return NET_RX_SUCCESS;
4310 }
4311
4312 out:
4313 return netif_receive_skb_internal(skb);
4314 }
4315
4316 /* napi->gro_list contains packets ordered by age.
4317 * youngest packets at the head of it.
4318 * Complete skbs in reverse order to reduce latencies.
4319 */
4320 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4321 {
4322 struct sk_buff *skb, *prev = NULL;
4323
4324 /* scan list and build reverse chain */
4325 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4326 skb->prev = prev;
4327 prev = skb;
4328 }
4329
4330 for (skb = prev; skb; skb = prev) {
4331 skb->next = NULL;
4332
4333 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4334 return;
4335
4336 prev = skb->prev;
4337 napi_gro_complete(skb);
4338 napi->gro_count--;
4339 }
4340
4341 napi->gro_list = NULL;
4342 }
4343 EXPORT_SYMBOL(napi_gro_flush);
4344
4345 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4346 {
4347 struct sk_buff *p;
4348 unsigned int maclen = skb->dev->hard_header_len;
4349 u32 hash = skb_get_hash_raw(skb);
4350
4351 for (p = napi->gro_list; p; p = p->next) {
4352 unsigned long diffs;
4353
4354 NAPI_GRO_CB(p)->flush = 0;
4355
4356 if (hash != skb_get_hash_raw(p)) {
4357 NAPI_GRO_CB(p)->same_flow = 0;
4358 continue;
4359 }
4360
4361 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4362 diffs |= p->vlan_tci ^ skb->vlan_tci;
4363 diffs |= skb_metadata_dst_cmp(p, skb);
4364 if (maclen == ETH_HLEN)
4365 diffs |= compare_ether_header(skb_mac_header(p),
4366 skb_mac_header(skb));
4367 else if (!diffs)
4368 diffs = memcmp(skb_mac_header(p),
4369 skb_mac_header(skb),
4370 maclen);
4371 NAPI_GRO_CB(p)->same_flow = !diffs;
4372 }
4373 }
4374
4375 static void skb_gro_reset_offset(struct sk_buff *skb)
4376 {
4377 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4378 const skb_frag_t *frag0 = &pinfo->frags[0];
4379
4380 NAPI_GRO_CB(skb)->data_offset = 0;
4381 NAPI_GRO_CB(skb)->frag0 = NULL;
4382 NAPI_GRO_CB(skb)->frag0_len = 0;
4383
4384 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4385 pinfo->nr_frags &&
4386 !PageHighMem(skb_frag_page(frag0))) {
4387 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4388 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4389 }
4390 }
4391
4392 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4393 {
4394 struct skb_shared_info *pinfo = skb_shinfo(skb);
4395
4396 BUG_ON(skb->end - skb->tail < grow);
4397
4398 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4399
4400 skb->data_len -= grow;
4401 skb->tail += grow;
4402
4403 pinfo->frags[0].page_offset += grow;
4404 skb_frag_size_sub(&pinfo->frags[0], grow);
4405
4406 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4407 skb_frag_unref(skb, 0);
4408 memmove(pinfo->frags, pinfo->frags + 1,
4409 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4410 }
4411 }
4412
4413 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4414 {
4415 struct sk_buff **pp = NULL;
4416 struct packet_offload *ptype;
4417 __be16 type = skb->protocol;
4418 struct list_head *head = &offload_base;
4419 int same_flow;
4420 enum gro_result ret;
4421 int grow;
4422
4423 if (!(skb->dev->features & NETIF_F_GRO))
4424 goto normal;
4425
4426 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4427 goto normal;
4428
4429 gro_list_prepare(napi, skb);
4430
4431 rcu_read_lock();
4432 list_for_each_entry_rcu(ptype, head, list) {
4433 if (ptype->type != type || !ptype->callbacks.gro_receive)
4434 continue;
4435
4436 skb_set_network_header(skb, skb_gro_offset(skb));
4437 skb_reset_mac_len(skb);
4438 NAPI_GRO_CB(skb)->same_flow = 0;
4439 NAPI_GRO_CB(skb)->flush = 0;
4440 NAPI_GRO_CB(skb)->free = 0;
4441 NAPI_GRO_CB(skb)->encap_mark = 0;
4442 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4443
4444 /* Setup for GRO checksum validation */
4445 switch (skb->ip_summed) {
4446 case CHECKSUM_COMPLETE:
4447 NAPI_GRO_CB(skb)->csum = skb->csum;
4448 NAPI_GRO_CB(skb)->csum_valid = 1;
4449 NAPI_GRO_CB(skb)->csum_cnt = 0;
4450 break;
4451 case CHECKSUM_UNNECESSARY:
4452 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4453 NAPI_GRO_CB(skb)->csum_valid = 0;
4454 break;
4455 default:
4456 NAPI_GRO_CB(skb)->csum_cnt = 0;
4457 NAPI_GRO_CB(skb)->csum_valid = 0;
4458 }
4459
4460 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4461 break;
4462 }
4463 rcu_read_unlock();
4464
4465 if (&ptype->list == head)
4466 goto normal;
4467
4468 same_flow = NAPI_GRO_CB(skb)->same_flow;
4469 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4470
4471 if (pp) {
4472 struct sk_buff *nskb = *pp;
4473
4474 *pp = nskb->next;
4475 nskb->next = NULL;
4476 napi_gro_complete(nskb);
4477 napi->gro_count--;
4478 }
4479
4480 if (same_flow)
4481 goto ok;
4482
4483 if (NAPI_GRO_CB(skb)->flush)
4484 goto normal;
4485
4486 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4487 struct sk_buff *nskb = napi->gro_list;
4488
4489 /* locate the end of the list to select the 'oldest' flow */
4490 while (nskb->next) {
4491 pp = &nskb->next;
4492 nskb = *pp;
4493 }
4494 *pp = NULL;
4495 nskb->next = NULL;
4496 napi_gro_complete(nskb);
4497 } else {
4498 napi->gro_count++;
4499 }
4500 NAPI_GRO_CB(skb)->count = 1;
4501 NAPI_GRO_CB(skb)->age = jiffies;
4502 NAPI_GRO_CB(skb)->last = skb;
4503 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4504 skb->next = napi->gro_list;
4505 napi->gro_list = skb;
4506 ret = GRO_HELD;
4507
4508 pull:
4509 grow = skb_gro_offset(skb) - skb_headlen(skb);
4510 if (grow > 0)
4511 gro_pull_from_frag0(skb, grow);
4512 ok:
4513 return ret;
4514
4515 normal:
4516 ret = GRO_NORMAL;
4517 goto pull;
4518 }
4519
4520 struct packet_offload *gro_find_receive_by_type(__be16 type)
4521 {
4522 struct list_head *offload_head = &offload_base;
4523 struct packet_offload *ptype;
4524
4525 list_for_each_entry_rcu(ptype, offload_head, list) {
4526 if (ptype->type != type || !ptype->callbacks.gro_receive)
4527 continue;
4528 return ptype;
4529 }
4530 return NULL;
4531 }
4532 EXPORT_SYMBOL(gro_find_receive_by_type);
4533
4534 struct packet_offload *gro_find_complete_by_type(__be16 type)
4535 {
4536 struct list_head *offload_head = &offload_base;
4537 struct packet_offload *ptype;
4538
4539 list_for_each_entry_rcu(ptype, offload_head, list) {
4540 if (ptype->type != type || !ptype->callbacks.gro_complete)
4541 continue;
4542 return ptype;
4543 }
4544 return NULL;
4545 }
4546 EXPORT_SYMBOL(gro_find_complete_by_type);
4547
4548 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4549 {
4550 switch (ret) {
4551 case GRO_NORMAL:
4552 if (netif_receive_skb_internal(skb))
4553 ret = GRO_DROP;
4554 break;
4555
4556 case GRO_DROP:
4557 kfree_skb(skb);
4558 break;
4559
4560 case GRO_MERGED_FREE:
4561 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4562 skb_dst_drop(skb);
4563 kmem_cache_free(skbuff_head_cache, skb);
4564 } else {
4565 __kfree_skb(skb);
4566 }
4567 break;
4568
4569 case GRO_HELD:
4570 case GRO_MERGED:
4571 break;
4572 }
4573
4574 return ret;
4575 }
4576
4577 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4578 {
4579 skb_mark_napi_id(skb, napi);
4580 trace_napi_gro_receive_entry(skb);
4581
4582 skb_gro_reset_offset(skb);
4583
4584 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4585 }
4586 EXPORT_SYMBOL(napi_gro_receive);
4587
4588 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4589 {
4590 if (unlikely(skb->pfmemalloc)) {
4591 consume_skb(skb);
4592 return;
4593 }
4594 __skb_pull(skb, skb_headlen(skb));
4595 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4596 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4597 skb->vlan_tci = 0;
4598 skb->dev = napi->dev;
4599 skb->skb_iif = 0;
4600 skb->encapsulation = 0;
4601 skb_shinfo(skb)->gso_type = 0;
4602 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4603
4604 napi->skb = skb;
4605 }
4606
4607 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4608 {
4609 struct sk_buff *skb = napi->skb;
4610
4611 if (!skb) {
4612 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4613 if (skb) {
4614 napi->skb = skb;
4615 skb_mark_napi_id(skb, napi);
4616 }
4617 }
4618 return skb;
4619 }
4620 EXPORT_SYMBOL(napi_get_frags);
4621
4622 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4623 struct sk_buff *skb,
4624 gro_result_t ret)
4625 {
4626 switch (ret) {
4627 case GRO_NORMAL:
4628 case GRO_HELD:
4629 __skb_push(skb, ETH_HLEN);
4630 skb->protocol = eth_type_trans(skb, skb->dev);
4631 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4632 ret = GRO_DROP;
4633 break;
4634
4635 case GRO_DROP:
4636 case GRO_MERGED_FREE:
4637 napi_reuse_skb(napi, skb);
4638 break;
4639
4640 case GRO_MERGED:
4641 break;
4642 }
4643
4644 return ret;
4645 }
4646
4647 /* Upper GRO stack assumes network header starts at gro_offset=0
4648 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4649 * We copy ethernet header into skb->data to have a common layout.
4650 */
4651 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4652 {
4653 struct sk_buff *skb = napi->skb;
4654 const struct ethhdr *eth;
4655 unsigned int hlen = sizeof(*eth);
4656
4657 napi->skb = NULL;
4658
4659 skb_reset_mac_header(skb);
4660 skb_gro_reset_offset(skb);
4661
4662 eth = skb_gro_header_fast(skb, 0);
4663 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4664 eth = skb_gro_header_slow(skb, hlen, 0);
4665 if (unlikely(!eth)) {
4666 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4667 __func__, napi->dev->name);
4668 napi_reuse_skb(napi, skb);
4669 return NULL;
4670 }
4671 } else {
4672 gro_pull_from_frag0(skb, hlen);
4673 NAPI_GRO_CB(skb)->frag0 += hlen;
4674 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4675 }
4676 __skb_pull(skb, hlen);
4677
4678 /*
4679 * This works because the only protocols we care about don't require
4680 * special handling.
4681 * We'll fix it up properly in napi_frags_finish()
4682 */
4683 skb->protocol = eth->h_proto;
4684
4685 return skb;
4686 }
4687
4688 gro_result_t napi_gro_frags(struct napi_struct *napi)
4689 {
4690 struct sk_buff *skb = napi_frags_skb(napi);
4691
4692 if (!skb)
4693 return GRO_DROP;
4694
4695 trace_napi_gro_frags_entry(skb);
4696
4697 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4698 }
4699 EXPORT_SYMBOL(napi_gro_frags);
4700
4701 /* Compute the checksum from gro_offset and return the folded value
4702 * after adding in any pseudo checksum.
4703 */
4704 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4705 {
4706 __wsum wsum;
4707 __sum16 sum;
4708
4709 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4710
4711 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4712 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4713 if (likely(!sum)) {
4714 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4715 !skb->csum_complete_sw)
4716 netdev_rx_csum_fault(skb->dev);
4717 }
4718
4719 NAPI_GRO_CB(skb)->csum = wsum;
4720 NAPI_GRO_CB(skb)->csum_valid = 1;
4721
4722 return sum;
4723 }
4724 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4725
4726 /*
4727 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4728 * Note: called with local irq disabled, but exits with local irq enabled.
4729 */
4730 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4731 {
4732 #ifdef CONFIG_RPS
4733 struct softnet_data *remsd = sd->rps_ipi_list;
4734
4735 if (remsd) {
4736 sd->rps_ipi_list = NULL;
4737
4738 local_irq_enable();
4739
4740 /* Send pending IPI's to kick RPS processing on remote cpus. */
4741 while (remsd) {
4742 struct softnet_data *next = remsd->rps_ipi_next;
4743
4744 if (cpu_online(remsd->cpu))
4745 smp_call_function_single_async(remsd->cpu,
4746 &remsd->csd);
4747 remsd = next;
4748 }
4749 } else
4750 #endif
4751 local_irq_enable();
4752 }
4753
4754 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4755 {
4756 #ifdef CONFIG_RPS
4757 return sd->rps_ipi_list != NULL;
4758 #else
4759 return false;
4760 #endif
4761 }
4762
4763 static int process_backlog(struct napi_struct *napi, int quota)
4764 {
4765 int work = 0;
4766 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4767
4768 /* Check if we have pending ipi, its better to send them now,
4769 * not waiting net_rx_action() end.
4770 */
4771 if (sd_has_rps_ipi_waiting(sd)) {
4772 local_irq_disable();
4773 net_rps_action_and_irq_enable(sd);
4774 }
4775
4776 napi->weight = weight_p;
4777 local_irq_disable();
4778 while (1) {
4779 struct sk_buff *skb;
4780
4781 while ((skb = __skb_dequeue(&sd->process_queue))) {
4782 rcu_read_lock();
4783 local_irq_enable();
4784 __netif_receive_skb(skb);
4785 rcu_read_unlock();
4786 local_irq_disable();
4787 input_queue_head_incr(sd);
4788 if (++work >= quota) {
4789 local_irq_enable();
4790 return work;
4791 }
4792 }
4793
4794 rps_lock(sd);
4795 if (skb_queue_empty(&sd->input_pkt_queue)) {
4796 /*
4797 * Inline a custom version of __napi_complete().
4798 * only current cpu owns and manipulates this napi,
4799 * and NAPI_STATE_SCHED is the only possible flag set
4800 * on backlog.
4801 * We can use a plain write instead of clear_bit(),
4802 * and we dont need an smp_mb() memory barrier.
4803 */
4804 napi->state = 0;
4805 rps_unlock(sd);
4806
4807 break;
4808 }
4809
4810 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4811 &sd->process_queue);
4812 rps_unlock(sd);
4813 }
4814 local_irq_enable();
4815
4816 return work;
4817 }
4818
4819 /**
4820 * __napi_schedule - schedule for receive
4821 * @n: entry to schedule
4822 *
4823 * The entry's receive function will be scheduled to run.
4824 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4825 */
4826 void __napi_schedule(struct napi_struct *n)
4827 {
4828 unsigned long flags;
4829
4830 local_irq_save(flags);
4831 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4832 local_irq_restore(flags);
4833 }
4834 EXPORT_SYMBOL(__napi_schedule);
4835
4836 /**
4837 * __napi_schedule_irqoff - schedule for receive
4838 * @n: entry to schedule
4839 *
4840 * Variant of __napi_schedule() assuming hard irqs are masked
4841 */
4842 void __napi_schedule_irqoff(struct napi_struct *n)
4843 {
4844 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4845 }
4846 EXPORT_SYMBOL(__napi_schedule_irqoff);
4847
4848 void __napi_complete(struct napi_struct *n)
4849 {
4850 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4851
4852 list_del_init(&n->poll_list);
4853 smp_mb__before_atomic();
4854 clear_bit(NAPI_STATE_SCHED, &n->state);
4855 }
4856 EXPORT_SYMBOL(__napi_complete);
4857
4858 void napi_complete_done(struct napi_struct *n, int work_done)
4859 {
4860 unsigned long flags;
4861
4862 /*
4863 * don't let napi dequeue from the cpu poll list
4864 * just in case its running on a different cpu
4865 */
4866 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4867 return;
4868
4869 if (n->gro_list) {
4870 unsigned long timeout = 0;
4871
4872 if (work_done)
4873 timeout = n->dev->gro_flush_timeout;
4874
4875 if (timeout)
4876 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4877 HRTIMER_MODE_REL_PINNED);
4878 else
4879 napi_gro_flush(n, false);
4880 }
4881 if (likely(list_empty(&n->poll_list))) {
4882 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4883 } else {
4884 /* If n->poll_list is not empty, we need to mask irqs */
4885 local_irq_save(flags);
4886 __napi_complete(n);
4887 local_irq_restore(flags);
4888 }
4889 }
4890 EXPORT_SYMBOL(napi_complete_done);
4891
4892 /* must be called under rcu_read_lock(), as we dont take a reference */
4893 static struct napi_struct *napi_by_id(unsigned int napi_id)
4894 {
4895 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4896 struct napi_struct *napi;
4897
4898 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4899 if (napi->napi_id == napi_id)
4900 return napi;
4901
4902 return NULL;
4903 }
4904
4905 #if defined(CONFIG_NET_RX_BUSY_POLL)
4906 #define BUSY_POLL_BUDGET 8
4907 bool sk_busy_loop(struct sock *sk, int nonblock)
4908 {
4909 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4910 int (*busy_poll)(struct napi_struct *dev);
4911 struct napi_struct *napi;
4912 int rc = false;
4913
4914 rcu_read_lock();
4915
4916 napi = napi_by_id(sk->sk_napi_id);
4917 if (!napi)
4918 goto out;
4919
4920 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4921 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4922
4923 do {
4924 rc = 0;
4925 local_bh_disable();
4926 if (busy_poll) {
4927 rc = busy_poll(napi);
4928 } else if (napi_schedule_prep(napi)) {
4929 void *have = netpoll_poll_lock(napi);
4930
4931 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4932 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4933 trace_napi_poll(napi);
4934 if (rc == BUSY_POLL_BUDGET) {
4935 napi_complete_done(napi, rc);
4936 napi_schedule(napi);
4937 }
4938 }
4939 netpoll_poll_unlock(have);
4940 }
4941 if (rc > 0)
4942 NET_ADD_STATS_BH(sock_net(sk),
4943 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4944 local_bh_enable();
4945
4946 if (rc == LL_FLUSH_FAILED)
4947 break; /* permanent failure */
4948
4949 cpu_relax();
4950 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4951 !need_resched() && !busy_loop_timeout(end_time));
4952
4953 rc = !skb_queue_empty(&sk->sk_receive_queue);
4954 out:
4955 rcu_read_unlock();
4956 return rc;
4957 }
4958 EXPORT_SYMBOL(sk_busy_loop);
4959
4960 #endif /* CONFIG_NET_RX_BUSY_POLL */
4961
4962 void napi_hash_add(struct napi_struct *napi)
4963 {
4964 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
4965 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
4966 return;
4967
4968 spin_lock(&napi_hash_lock);
4969
4970 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
4971 do {
4972 if (unlikely(++napi_gen_id < NR_CPUS + 1))
4973 napi_gen_id = NR_CPUS + 1;
4974 } while (napi_by_id(napi_gen_id));
4975 napi->napi_id = napi_gen_id;
4976
4977 hlist_add_head_rcu(&napi->napi_hash_node,
4978 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4979
4980 spin_unlock(&napi_hash_lock);
4981 }
4982 EXPORT_SYMBOL_GPL(napi_hash_add);
4983
4984 /* Warning : caller is responsible to make sure rcu grace period
4985 * is respected before freeing memory containing @napi
4986 */
4987 bool napi_hash_del(struct napi_struct *napi)
4988 {
4989 bool rcu_sync_needed = false;
4990
4991 spin_lock(&napi_hash_lock);
4992
4993 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
4994 rcu_sync_needed = true;
4995 hlist_del_rcu(&napi->napi_hash_node);
4996 }
4997 spin_unlock(&napi_hash_lock);
4998 return rcu_sync_needed;
4999 }
5000 EXPORT_SYMBOL_GPL(napi_hash_del);
5001
5002 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5003 {
5004 struct napi_struct *napi;
5005
5006 napi = container_of(timer, struct napi_struct, timer);
5007 if (napi->gro_list)
5008 napi_schedule(napi);
5009
5010 return HRTIMER_NORESTART;
5011 }
5012
5013 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5014 int (*poll)(struct napi_struct *, int), int weight)
5015 {
5016 INIT_LIST_HEAD(&napi->poll_list);
5017 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5018 napi->timer.function = napi_watchdog;
5019 napi->gro_count = 0;
5020 napi->gro_list = NULL;
5021 napi->skb = NULL;
5022 napi->poll = poll;
5023 if (weight > NAPI_POLL_WEIGHT)
5024 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5025 weight, dev->name);
5026 napi->weight = weight;
5027 list_add(&napi->dev_list, &dev->napi_list);
5028 napi->dev = dev;
5029 #ifdef CONFIG_NETPOLL
5030 spin_lock_init(&napi->poll_lock);
5031 napi->poll_owner = -1;
5032 #endif
5033 set_bit(NAPI_STATE_SCHED, &napi->state);
5034 napi_hash_add(napi);
5035 }
5036 EXPORT_SYMBOL(netif_napi_add);
5037
5038 void napi_disable(struct napi_struct *n)
5039 {
5040 might_sleep();
5041 set_bit(NAPI_STATE_DISABLE, &n->state);
5042
5043 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5044 msleep(1);
5045 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5046 msleep(1);
5047
5048 hrtimer_cancel(&n->timer);
5049
5050 clear_bit(NAPI_STATE_DISABLE, &n->state);
5051 }
5052 EXPORT_SYMBOL(napi_disable);
5053
5054 /* Must be called in process context */
5055 void netif_napi_del(struct napi_struct *napi)
5056 {
5057 might_sleep();
5058 if (napi_hash_del(napi))
5059 synchronize_net();
5060 list_del_init(&napi->dev_list);
5061 napi_free_frags(napi);
5062
5063 kfree_skb_list(napi->gro_list);
5064 napi->gro_list = NULL;
5065 napi->gro_count = 0;
5066 }
5067 EXPORT_SYMBOL(netif_napi_del);
5068
5069 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5070 {
5071 void *have;
5072 int work, weight;
5073
5074 list_del_init(&n->poll_list);
5075
5076 have = netpoll_poll_lock(n);
5077
5078 weight = n->weight;
5079
5080 /* This NAPI_STATE_SCHED test is for avoiding a race
5081 * with netpoll's poll_napi(). Only the entity which
5082 * obtains the lock and sees NAPI_STATE_SCHED set will
5083 * actually make the ->poll() call. Therefore we avoid
5084 * accidentally calling ->poll() when NAPI is not scheduled.
5085 */
5086 work = 0;
5087 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5088 work = n->poll(n, weight);
5089 trace_napi_poll(n);
5090 }
5091
5092 WARN_ON_ONCE(work > weight);
5093
5094 if (likely(work < weight))
5095 goto out_unlock;
5096
5097 /* Drivers must not modify the NAPI state if they
5098 * consume the entire weight. In such cases this code
5099 * still "owns" the NAPI instance and therefore can
5100 * move the instance around on the list at-will.
5101 */
5102 if (unlikely(napi_disable_pending(n))) {
5103 napi_complete(n);
5104 goto out_unlock;
5105 }
5106
5107 if (n->gro_list) {
5108 /* flush too old packets
5109 * If HZ < 1000, flush all packets.
5110 */
5111 napi_gro_flush(n, HZ >= 1000);
5112 }
5113
5114 /* Some drivers may have called napi_schedule
5115 * prior to exhausting their budget.
5116 */
5117 if (unlikely(!list_empty(&n->poll_list))) {
5118 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5119 n->dev ? n->dev->name : "backlog");
5120 goto out_unlock;
5121 }
5122
5123 list_add_tail(&n->poll_list, repoll);
5124
5125 out_unlock:
5126 netpoll_poll_unlock(have);
5127
5128 return work;
5129 }
5130
5131 static void net_rx_action(struct softirq_action *h)
5132 {
5133 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5134 unsigned long time_limit = jiffies + 2;
5135 int budget = netdev_budget;
5136 LIST_HEAD(list);
5137 LIST_HEAD(repoll);
5138
5139 local_irq_disable();
5140 list_splice_init(&sd->poll_list, &list);
5141 local_irq_enable();
5142
5143 for (;;) {
5144 struct napi_struct *n;
5145
5146 if (list_empty(&list)) {
5147 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5148 return;
5149 break;
5150 }
5151
5152 n = list_first_entry(&list, struct napi_struct, poll_list);
5153 budget -= napi_poll(n, &repoll);
5154
5155 /* If softirq window is exhausted then punt.
5156 * Allow this to run for 2 jiffies since which will allow
5157 * an average latency of 1.5/HZ.
5158 */
5159 if (unlikely(budget <= 0 ||
5160 time_after_eq(jiffies, time_limit))) {
5161 sd->time_squeeze++;
5162 break;
5163 }
5164 }
5165
5166 __kfree_skb_flush();
5167 local_irq_disable();
5168
5169 list_splice_tail_init(&sd->poll_list, &list);
5170 list_splice_tail(&repoll, &list);
5171 list_splice(&list, &sd->poll_list);
5172 if (!list_empty(&sd->poll_list))
5173 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5174
5175 net_rps_action_and_irq_enable(sd);
5176 }
5177
5178 struct netdev_adjacent {
5179 struct net_device *dev;
5180
5181 /* upper master flag, there can only be one master device per list */
5182 bool master;
5183
5184 /* counter for the number of times this device was added to us */
5185 u16 ref_nr;
5186
5187 /* private field for the users */
5188 void *private;
5189
5190 struct list_head list;
5191 struct rcu_head rcu;
5192 };
5193
5194 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5195 struct list_head *adj_list)
5196 {
5197 struct netdev_adjacent *adj;
5198
5199 list_for_each_entry(adj, adj_list, list) {
5200 if (adj->dev == adj_dev)
5201 return adj;
5202 }
5203 return NULL;
5204 }
5205
5206 /**
5207 * netdev_has_upper_dev - Check if device is linked to an upper device
5208 * @dev: device
5209 * @upper_dev: upper device to check
5210 *
5211 * Find out if a device is linked to specified upper device and return true
5212 * in case it is. Note that this checks only immediate upper device,
5213 * not through a complete stack of devices. The caller must hold the RTNL lock.
5214 */
5215 bool netdev_has_upper_dev(struct net_device *dev,
5216 struct net_device *upper_dev)
5217 {
5218 ASSERT_RTNL();
5219
5220 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5221 }
5222 EXPORT_SYMBOL(netdev_has_upper_dev);
5223
5224 /**
5225 * netdev_has_any_upper_dev - Check if device is linked to some device
5226 * @dev: device
5227 *
5228 * Find out if a device is linked to an upper device and return true in case
5229 * it is. The caller must hold the RTNL lock.
5230 */
5231 static bool netdev_has_any_upper_dev(struct net_device *dev)
5232 {
5233 ASSERT_RTNL();
5234
5235 return !list_empty(&dev->all_adj_list.upper);
5236 }
5237
5238 /**
5239 * netdev_master_upper_dev_get - Get master upper device
5240 * @dev: device
5241 *
5242 * Find a master upper device and return pointer to it or NULL in case
5243 * it's not there. The caller must hold the RTNL lock.
5244 */
5245 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5246 {
5247 struct netdev_adjacent *upper;
5248
5249 ASSERT_RTNL();
5250
5251 if (list_empty(&dev->adj_list.upper))
5252 return NULL;
5253
5254 upper = list_first_entry(&dev->adj_list.upper,
5255 struct netdev_adjacent, list);
5256 if (likely(upper->master))
5257 return upper->dev;
5258 return NULL;
5259 }
5260 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5261
5262 void *netdev_adjacent_get_private(struct list_head *adj_list)
5263 {
5264 struct netdev_adjacent *adj;
5265
5266 adj = list_entry(adj_list, struct netdev_adjacent, list);
5267
5268 return adj->private;
5269 }
5270 EXPORT_SYMBOL(netdev_adjacent_get_private);
5271
5272 /**
5273 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5274 * @dev: device
5275 * @iter: list_head ** of the current position
5276 *
5277 * Gets the next device from the dev's upper list, starting from iter
5278 * position. The caller must hold RCU read lock.
5279 */
5280 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5281 struct list_head **iter)
5282 {
5283 struct netdev_adjacent *upper;
5284
5285 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5286
5287 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5288
5289 if (&upper->list == &dev->adj_list.upper)
5290 return NULL;
5291
5292 *iter = &upper->list;
5293
5294 return upper->dev;
5295 }
5296 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5297
5298 /**
5299 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5300 * @dev: device
5301 * @iter: list_head ** of the current position
5302 *
5303 * Gets the next device from the dev's upper list, starting from iter
5304 * position. The caller must hold RCU read lock.
5305 */
5306 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5307 struct list_head **iter)
5308 {
5309 struct netdev_adjacent *upper;
5310
5311 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5312
5313 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5314
5315 if (&upper->list == &dev->all_adj_list.upper)
5316 return NULL;
5317
5318 *iter = &upper->list;
5319
5320 return upper->dev;
5321 }
5322 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5323
5324 /**
5325 * netdev_lower_get_next_private - Get the next ->private from the
5326 * lower neighbour list
5327 * @dev: device
5328 * @iter: list_head ** of the current position
5329 *
5330 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5331 * list, starting from iter position. The caller must hold either hold the
5332 * RTNL lock or its own locking that guarantees that the neighbour lower
5333 * list will remain unchanged.
5334 */
5335 void *netdev_lower_get_next_private(struct net_device *dev,
5336 struct list_head **iter)
5337 {
5338 struct netdev_adjacent *lower;
5339
5340 lower = list_entry(*iter, struct netdev_adjacent, list);
5341
5342 if (&lower->list == &dev->adj_list.lower)
5343 return NULL;
5344
5345 *iter = lower->list.next;
5346
5347 return lower->private;
5348 }
5349 EXPORT_SYMBOL(netdev_lower_get_next_private);
5350
5351 /**
5352 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5353 * lower neighbour list, RCU
5354 * variant
5355 * @dev: device
5356 * @iter: list_head ** of the current position
5357 *
5358 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5359 * list, starting from iter position. The caller must hold RCU read lock.
5360 */
5361 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5362 struct list_head **iter)
5363 {
5364 struct netdev_adjacent *lower;
5365
5366 WARN_ON_ONCE(!rcu_read_lock_held());
5367
5368 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5369
5370 if (&lower->list == &dev->adj_list.lower)
5371 return NULL;
5372
5373 *iter = &lower->list;
5374
5375 return lower->private;
5376 }
5377 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5378
5379 /**
5380 * netdev_lower_get_next - Get the next device from the lower neighbour
5381 * list
5382 * @dev: device
5383 * @iter: list_head ** of the current position
5384 *
5385 * Gets the next netdev_adjacent from the dev's lower neighbour
5386 * list, starting from iter position. The caller must hold RTNL lock or
5387 * its own locking that guarantees that the neighbour lower
5388 * list will remain unchanged.
5389 */
5390 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5391 {
5392 struct netdev_adjacent *lower;
5393
5394 lower = list_entry(*iter, struct netdev_adjacent, list);
5395
5396 if (&lower->list == &dev->adj_list.lower)
5397 return NULL;
5398
5399 *iter = lower->list.next;
5400
5401 return lower->dev;
5402 }
5403 EXPORT_SYMBOL(netdev_lower_get_next);
5404
5405 /**
5406 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5407 * lower neighbour list, RCU
5408 * variant
5409 * @dev: device
5410 *
5411 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5412 * list. The caller must hold RCU read lock.
5413 */
5414 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5415 {
5416 struct netdev_adjacent *lower;
5417
5418 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5419 struct netdev_adjacent, list);
5420 if (lower)
5421 return lower->private;
5422 return NULL;
5423 }
5424 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5425
5426 /**
5427 * netdev_master_upper_dev_get_rcu - Get master upper device
5428 * @dev: device
5429 *
5430 * Find a master upper device and return pointer to it or NULL in case
5431 * it's not there. The caller must hold the RCU read lock.
5432 */
5433 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5434 {
5435 struct netdev_adjacent *upper;
5436
5437 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5438 struct netdev_adjacent, list);
5439 if (upper && likely(upper->master))
5440 return upper->dev;
5441 return NULL;
5442 }
5443 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5444
5445 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5446 struct net_device *adj_dev,
5447 struct list_head *dev_list)
5448 {
5449 char linkname[IFNAMSIZ+7];
5450 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5451 "upper_%s" : "lower_%s", adj_dev->name);
5452 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5453 linkname);
5454 }
5455 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5456 char *name,
5457 struct list_head *dev_list)
5458 {
5459 char linkname[IFNAMSIZ+7];
5460 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5461 "upper_%s" : "lower_%s", name);
5462 sysfs_remove_link(&(dev->dev.kobj), linkname);
5463 }
5464
5465 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5466 struct net_device *adj_dev,
5467 struct list_head *dev_list)
5468 {
5469 return (dev_list == &dev->adj_list.upper ||
5470 dev_list == &dev->adj_list.lower) &&
5471 net_eq(dev_net(dev), dev_net(adj_dev));
5472 }
5473
5474 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5475 struct net_device *adj_dev,
5476 struct list_head *dev_list,
5477 void *private, bool master)
5478 {
5479 struct netdev_adjacent *adj;
5480 int ret;
5481
5482 adj = __netdev_find_adj(adj_dev, dev_list);
5483
5484 if (adj) {
5485 adj->ref_nr++;
5486 return 0;
5487 }
5488
5489 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5490 if (!adj)
5491 return -ENOMEM;
5492
5493 adj->dev = adj_dev;
5494 adj->master = master;
5495 adj->ref_nr = 1;
5496 adj->private = private;
5497 dev_hold(adj_dev);
5498
5499 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5500 adj_dev->name, dev->name, adj_dev->name);
5501
5502 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5503 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5504 if (ret)
5505 goto free_adj;
5506 }
5507
5508 /* Ensure that master link is always the first item in list. */
5509 if (master) {
5510 ret = sysfs_create_link(&(dev->dev.kobj),
5511 &(adj_dev->dev.kobj), "master");
5512 if (ret)
5513 goto remove_symlinks;
5514
5515 list_add_rcu(&adj->list, dev_list);
5516 } else {
5517 list_add_tail_rcu(&adj->list, dev_list);
5518 }
5519
5520 return 0;
5521
5522 remove_symlinks:
5523 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5524 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5525 free_adj:
5526 kfree(adj);
5527 dev_put(adj_dev);
5528
5529 return ret;
5530 }
5531
5532 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5533 struct net_device *adj_dev,
5534 struct list_head *dev_list)
5535 {
5536 struct netdev_adjacent *adj;
5537
5538 adj = __netdev_find_adj(adj_dev, dev_list);
5539
5540 if (!adj) {
5541 pr_err("tried to remove device %s from %s\n",
5542 dev->name, adj_dev->name);
5543 BUG();
5544 }
5545
5546 if (adj->ref_nr > 1) {
5547 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5548 adj->ref_nr-1);
5549 adj->ref_nr--;
5550 return;
5551 }
5552
5553 if (adj->master)
5554 sysfs_remove_link(&(dev->dev.kobj), "master");
5555
5556 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5557 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5558
5559 list_del_rcu(&adj->list);
5560 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5561 adj_dev->name, dev->name, adj_dev->name);
5562 dev_put(adj_dev);
5563 kfree_rcu(adj, rcu);
5564 }
5565
5566 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5567 struct net_device *upper_dev,
5568 struct list_head *up_list,
5569 struct list_head *down_list,
5570 void *private, bool master)
5571 {
5572 int ret;
5573
5574 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5575 master);
5576 if (ret)
5577 return ret;
5578
5579 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5580 false);
5581 if (ret) {
5582 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5583 return ret;
5584 }
5585
5586 return 0;
5587 }
5588
5589 static int __netdev_adjacent_dev_link(struct net_device *dev,
5590 struct net_device *upper_dev)
5591 {
5592 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5593 &dev->all_adj_list.upper,
5594 &upper_dev->all_adj_list.lower,
5595 NULL, false);
5596 }
5597
5598 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5599 struct net_device *upper_dev,
5600 struct list_head *up_list,
5601 struct list_head *down_list)
5602 {
5603 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5604 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5605 }
5606
5607 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5608 struct net_device *upper_dev)
5609 {
5610 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5611 &dev->all_adj_list.upper,
5612 &upper_dev->all_adj_list.lower);
5613 }
5614
5615 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5616 struct net_device *upper_dev,
5617 void *private, bool master)
5618 {
5619 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5620
5621 if (ret)
5622 return ret;
5623
5624 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5625 &dev->adj_list.upper,
5626 &upper_dev->adj_list.lower,
5627 private, master);
5628 if (ret) {
5629 __netdev_adjacent_dev_unlink(dev, upper_dev);
5630 return ret;
5631 }
5632
5633 return 0;
5634 }
5635
5636 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5637 struct net_device *upper_dev)
5638 {
5639 __netdev_adjacent_dev_unlink(dev, upper_dev);
5640 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5641 &dev->adj_list.upper,
5642 &upper_dev->adj_list.lower);
5643 }
5644
5645 static int __netdev_upper_dev_link(struct net_device *dev,
5646 struct net_device *upper_dev, bool master,
5647 void *upper_priv, void *upper_info)
5648 {
5649 struct netdev_notifier_changeupper_info changeupper_info;
5650 struct netdev_adjacent *i, *j, *to_i, *to_j;
5651 int ret = 0;
5652
5653 ASSERT_RTNL();
5654
5655 if (dev == upper_dev)
5656 return -EBUSY;
5657
5658 /* To prevent loops, check if dev is not upper device to upper_dev. */
5659 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5660 return -EBUSY;
5661
5662 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5663 return -EEXIST;
5664
5665 if (master && netdev_master_upper_dev_get(dev))
5666 return -EBUSY;
5667
5668 changeupper_info.upper_dev = upper_dev;
5669 changeupper_info.master = master;
5670 changeupper_info.linking = true;
5671 changeupper_info.upper_info = upper_info;
5672
5673 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5674 &changeupper_info.info);
5675 ret = notifier_to_errno(ret);
5676 if (ret)
5677 return ret;
5678
5679 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5680 master);
5681 if (ret)
5682 return ret;
5683
5684 /* Now that we linked these devs, make all the upper_dev's
5685 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5686 * versa, and don't forget the devices itself. All of these
5687 * links are non-neighbours.
5688 */
5689 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5690 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5691 pr_debug("Interlinking %s with %s, non-neighbour\n",
5692 i->dev->name, j->dev->name);
5693 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5694 if (ret)
5695 goto rollback_mesh;
5696 }
5697 }
5698
5699 /* add dev to every upper_dev's upper device */
5700 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5701 pr_debug("linking %s's upper device %s with %s\n",
5702 upper_dev->name, i->dev->name, dev->name);
5703 ret = __netdev_adjacent_dev_link(dev, i->dev);
5704 if (ret)
5705 goto rollback_upper_mesh;
5706 }
5707
5708 /* add upper_dev to every dev's lower device */
5709 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5710 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5711 i->dev->name, upper_dev->name);
5712 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5713 if (ret)
5714 goto rollback_lower_mesh;
5715 }
5716
5717 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5718 &changeupper_info.info);
5719 ret = notifier_to_errno(ret);
5720 if (ret)
5721 goto rollback_lower_mesh;
5722
5723 return 0;
5724
5725 rollback_lower_mesh:
5726 to_i = i;
5727 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5728 if (i == to_i)
5729 break;
5730 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5731 }
5732
5733 i = NULL;
5734
5735 rollback_upper_mesh:
5736 to_i = i;
5737 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5738 if (i == to_i)
5739 break;
5740 __netdev_adjacent_dev_unlink(dev, i->dev);
5741 }
5742
5743 i = j = NULL;
5744
5745 rollback_mesh:
5746 to_i = i;
5747 to_j = j;
5748 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5749 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5750 if (i == to_i && j == to_j)
5751 break;
5752 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5753 }
5754 if (i == to_i)
5755 break;
5756 }
5757
5758 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5759
5760 return ret;
5761 }
5762
5763 /**
5764 * netdev_upper_dev_link - Add a link to the upper device
5765 * @dev: device
5766 * @upper_dev: new upper device
5767 *
5768 * Adds a link to device which is upper to this one. The caller must hold
5769 * the RTNL lock. On a failure a negative errno code is returned.
5770 * On success the reference counts are adjusted and the function
5771 * returns zero.
5772 */
5773 int netdev_upper_dev_link(struct net_device *dev,
5774 struct net_device *upper_dev)
5775 {
5776 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5777 }
5778 EXPORT_SYMBOL(netdev_upper_dev_link);
5779
5780 /**
5781 * netdev_master_upper_dev_link - Add a master link to the upper device
5782 * @dev: device
5783 * @upper_dev: new upper device
5784 * @upper_priv: upper device private
5785 * @upper_info: upper info to be passed down via notifier
5786 *
5787 * Adds a link to device which is upper to this one. In this case, only
5788 * one master upper device can be linked, although other non-master devices
5789 * might be linked as well. The caller must hold the RTNL lock.
5790 * On a failure a negative errno code is returned. On success the reference
5791 * counts are adjusted and the function returns zero.
5792 */
5793 int netdev_master_upper_dev_link(struct net_device *dev,
5794 struct net_device *upper_dev,
5795 void *upper_priv, void *upper_info)
5796 {
5797 return __netdev_upper_dev_link(dev, upper_dev, true,
5798 upper_priv, upper_info);
5799 }
5800 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5801
5802 /**
5803 * netdev_upper_dev_unlink - Removes a link to upper device
5804 * @dev: device
5805 * @upper_dev: new upper device
5806 *
5807 * Removes a link to device which is upper to this one. The caller must hold
5808 * the RTNL lock.
5809 */
5810 void netdev_upper_dev_unlink(struct net_device *dev,
5811 struct net_device *upper_dev)
5812 {
5813 struct netdev_notifier_changeupper_info changeupper_info;
5814 struct netdev_adjacent *i, *j;
5815 ASSERT_RTNL();
5816
5817 changeupper_info.upper_dev = upper_dev;
5818 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5819 changeupper_info.linking = false;
5820
5821 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5822 &changeupper_info.info);
5823
5824 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5825
5826 /* Here is the tricky part. We must remove all dev's lower
5827 * devices from all upper_dev's upper devices and vice
5828 * versa, to maintain the graph relationship.
5829 */
5830 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5831 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5832 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5833
5834 /* remove also the devices itself from lower/upper device
5835 * list
5836 */
5837 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5838 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5839
5840 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5841 __netdev_adjacent_dev_unlink(dev, i->dev);
5842
5843 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5844 &changeupper_info.info);
5845 }
5846 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5847
5848 /**
5849 * netdev_bonding_info_change - Dispatch event about slave change
5850 * @dev: device
5851 * @bonding_info: info to dispatch
5852 *
5853 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5854 * The caller must hold the RTNL lock.
5855 */
5856 void netdev_bonding_info_change(struct net_device *dev,
5857 struct netdev_bonding_info *bonding_info)
5858 {
5859 struct netdev_notifier_bonding_info info;
5860
5861 memcpy(&info.bonding_info, bonding_info,
5862 sizeof(struct netdev_bonding_info));
5863 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5864 &info.info);
5865 }
5866 EXPORT_SYMBOL(netdev_bonding_info_change);
5867
5868 static void netdev_adjacent_add_links(struct net_device *dev)
5869 {
5870 struct netdev_adjacent *iter;
5871
5872 struct net *net = dev_net(dev);
5873
5874 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5875 if (!net_eq(net,dev_net(iter->dev)))
5876 continue;
5877 netdev_adjacent_sysfs_add(iter->dev, dev,
5878 &iter->dev->adj_list.lower);
5879 netdev_adjacent_sysfs_add(dev, iter->dev,
5880 &dev->adj_list.upper);
5881 }
5882
5883 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5884 if (!net_eq(net,dev_net(iter->dev)))
5885 continue;
5886 netdev_adjacent_sysfs_add(iter->dev, dev,
5887 &iter->dev->adj_list.upper);
5888 netdev_adjacent_sysfs_add(dev, iter->dev,
5889 &dev->adj_list.lower);
5890 }
5891 }
5892
5893 static void netdev_adjacent_del_links(struct net_device *dev)
5894 {
5895 struct netdev_adjacent *iter;
5896
5897 struct net *net = dev_net(dev);
5898
5899 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5900 if (!net_eq(net,dev_net(iter->dev)))
5901 continue;
5902 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5903 &iter->dev->adj_list.lower);
5904 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5905 &dev->adj_list.upper);
5906 }
5907
5908 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5909 if (!net_eq(net,dev_net(iter->dev)))
5910 continue;
5911 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5912 &iter->dev->adj_list.upper);
5913 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5914 &dev->adj_list.lower);
5915 }
5916 }
5917
5918 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5919 {
5920 struct netdev_adjacent *iter;
5921
5922 struct net *net = dev_net(dev);
5923
5924 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5925 if (!net_eq(net,dev_net(iter->dev)))
5926 continue;
5927 netdev_adjacent_sysfs_del(iter->dev, oldname,
5928 &iter->dev->adj_list.lower);
5929 netdev_adjacent_sysfs_add(iter->dev, dev,
5930 &iter->dev->adj_list.lower);
5931 }
5932
5933 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5934 if (!net_eq(net,dev_net(iter->dev)))
5935 continue;
5936 netdev_adjacent_sysfs_del(iter->dev, oldname,
5937 &iter->dev->adj_list.upper);
5938 netdev_adjacent_sysfs_add(iter->dev, dev,
5939 &iter->dev->adj_list.upper);
5940 }
5941 }
5942
5943 void *netdev_lower_dev_get_private(struct net_device *dev,
5944 struct net_device *lower_dev)
5945 {
5946 struct netdev_adjacent *lower;
5947
5948 if (!lower_dev)
5949 return NULL;
5950 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5951 if (!lower)
5952 return NULL;
5953
5954 return lower->private;
5955 }
5956 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5957
5958
5959 int dev_get_nest_level(struct net_device *dev,
5960 bool (*type_check)(const struct net_device *dev))
5961 {
5962 struct net_device *lower = NULL;
5963 struct list_head *iter;
5964 int max_nest = -1;
5965 int nest;
5966
5967 ASSERT_RTNL();
5968
5969 netdev_for_each_lower_dev(dev, lower, iter) {
5970 nest = dev_get_nest_level(lower, type_check);
5971 if (max_nest < nest)
5972 max_nest = nest;
5973 }
5974
5975 if (type_check(dev))
5976 max_nest++;
5977
5978 return max_nest;
5979 }
5980 EXPORT_SYMBOL(dev_get_nest_level);
5981
5982 /**
5983 * netdev_lower_change - Dispatch event about lower device state change
5984 * @lower_dev: device
5985 * @lower_state_info: state to dispatch
5986 *
5987 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
5988 * The caller must hold the RTNL lock.
5989 */
5990 void netdev_lower_state_changed(struct net_device *lower_dev,
5991 void *lower_state_info)
5992 {
5993 struct netdev_notifier_changelowerstate_info changelowerstate_info;
5994
5995 ASSERT_RTNL();
5996 changelowerstate_info.lower_state_info = lower_state_info;
5997 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
5998 &changelowerstate_info.info);
5999 }
6000 EXPORT_SYMBOL(netdev_lower_state_changed);
6001
6002 static void dev_change_rx_flags(struct net_device *dev, int flags)
6003 {
6004 const struct net_device_ops *ops = dev->netdev_ops;
6005
6006 if (ops->ndo_change_rx_flags)
6007 ops->ndo_change_rx_flags(dev, flags);
6008 }
6009
6010 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6011 {
6012 unsigned int old_flags = dev->flags;
6013 kuid_t uid;
6014 kgid_t gid;
6015
6016 ASSERT_RTNL();
6017
6018 dev->flags |= IFF_PROMISC;
6019 dev->promiscuity += inc;
6020 if (dev->promiscuity == 0) {
6021 /*
6022 * Avoid overflow.
6023 * If inc causes overflow, untouch promisc and return error.
6024 */
6025 if (inc < 0)
6026 dev->flags &= ~IFF_PROMISC;
6027 else {
6028 dev->promiscuity -= inc;
6029 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6030 dev->name);
6031 return -EOVERFLOW;
6032 }
6033 }
6034 if (dev->flags != old_flags) {
6035 pr_info("device %s %s promiscuous mode\n",
6036 dev->name,
6037 dev->flags & IFF_PROMISC ? "entered" : "left");
6038 if (audit_enabled) {
6039 current_uid_gid(&uid, &gid);
6040 audit_log(current->audit_context, GFP_ATOMIC,
6041 AUDIT_ANOM_PROMISCUOUS,
6042 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6043 dev->name, (dev->flags & IFF_PROMISC),
6044 (old_flags & IFF_PROMISC),
6045 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6046 from_kuid(&init_user_ns, uid),
6047 from_kgid(&init_user_ns, gid),
6048 audit_get_sessionid(current));
6049 }
6050
6051 dev_change_rx_flags(dev, IFF_PROMISC);
6052 }
6053 if (notify)
6054 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6055 return 0;
6056 }
6057
6058 /**
6059 * dev_set_promiscuity - update promiscuity count on a device
6060 * @dev: device
6061 * @inc: modifier
6062 *
6063 * Add or remove promiscuity from a device. While the count in the device
6064 * remains above zero the interface remains promiscuous. Once it hits zero
6065 * the device reverts back to normal filtering operation. A negative inc
6066 * value is used to drop promiscuity on the device.
6067 * Return 0 if successful or a negative errno code on error.
6068 */
6069 int dev_set_promiscuity(struct net_device *dev, int inc)
6070 {
6071 unsigned int old_flags = dev->flags;
6072 int err;
6073
6074 err = __dev_set_promiscuity(dev, inc, true);
6075 if (err < 0)
6076 return err;
6077 if (dev->flags != old_flags)
6078 dev_set_rx_mode(dev);
6079 return err;
6080 }
6081 EXPORT_SYMBOL(dev_set_promiscuity);
6082
6083 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6084 {
6085 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6086
6087 ASSERT_RTNL();
6088
6089 dev->flags |= IFF_ALLMULTI;
6090 dev->allmulti += inc;
6091 if (dev->allmulti == 0) {
6092 /*
6093 * Avoid overflow.
6094 * If inc causes overflow, untouch allmulti and return error.
6095 */
6096 if (inc < 0)
6097 dev->flags &= ~IFF_ALLMULTI;
6098 else {
6099 dev->allmulti -= inc;
6100 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6101 dev->name);
6102 return -EOVERFLOW;
6103 }
6104 }
6105 if (dev->flags ^ old_flags) {
6106 dev_change_rx_flags(dev, IFF_ALLMULTI);
6107 dev_set_rx_mode(dev);
6108 if (notify)
6109 __dev_notify_flags(dev, old_flags,
6110 dev->gflags ^ old_gflags);
6111 }
6112 return 0;
6113 }
6114
6115 /**
6116 * dev_set_allmulti - update allmulti count on a device
6117 * @dev: device
6118 * @inc: modifier
6119 *
6120 * Add or remove reception of all multicast frames to a device. While the
6121 * count in the device remains above zero the interface remains listening
6122 * to all interfaces. Once it hits zero the device reverts back to normal
6123 * filtering operation. A negative @inc value is used to drop the counter
6124 * when releasing a resource needing all multicasts.
6125 * Return 0 if successful or a negative errno code on error.
6126 */
6127
6128 int dev_set_allmulti(struct net_device *dev, int inc)
6129 {
6130 return __dev_set_allmulti(dev, inc, true);
6131 }
6132 EXPORT_SYMBOL(dev_set_allmulti);
6133
6134 /*
6135 * Upload unicast and multicast address lists to device and
6136 * configure RX filtering. When the device doesn't support unicast
6137 * filtering it is put in promiscuous mode while unicast addresses
6138 * are present.
6139 */
6140 void __dev_set_rx_mode(struct net_device *dev)
6141 {
6142 const struct net_device_ops *ops = dev->netdev_ops;
6143
6144 /* dev_open will call this function so the list will stay sane. */
6145 if (!(dev->flags&IFF_UP))
6146 return;
6147
6148 if (!netif_device_present(dev))
6149 return;
6150
6151 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6152 /* Unicast addresses changes may only happen under the rtnl,
6153 * therefore calling __dev_set_promiscuity here is safe.
6154 */
6155 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6156 __dev_set_promiscuity(dev, 1, false);
6157 dev->uc_promisc = true;
6158 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6159 __dev_set_promiscuity(dev, -1, false);
6160 dev->uc_promisc = false;
6161 }
6162 }
6163
6164 if (ops->ndo_set_rx_mode)
6165 ops->ndo_set_rx_mode(dev);
6166 }
6167
6168 void dev_set_rx_mode(struct net_device *dev)
6169 {
6170 netif_addr_lock_bh(dev);
6171 __dev_set_rx_mode(dev);
6172 netif_addr_unlock_bh(dev);
6173 }
6174
6175 /**
6176 * dev_get_flags - get flags reported to userspace
6177 * @dev: device
6178 *
6179 * Get the combination of flag bits exported through APIs to userspace.
6180 */
6181 unsigned int dev_get_flags(const struct net_device *dev)
6182 {
6183 unsigned int flags;
6184
6185 flags = (dev->flags & ~(IFF_PROMISC |
6186 IFF_ALLMULTI |
6187 IFF_RUNNING |
6188 IFF_LOWER_UP |
6189 IFF_DORMANT)) |
6190 (dev->gflags & (IFF_PROMISC |
6191 IFF_ALLMULTI));
6192
6193 if (netif_running(dev)) {
6194 if (netif_oper_up(dev))
6195 flags |= IFF_RUNNING;
6196 if (netif_carrier_ok(dev))
6197 flags |= IFF_LOWER_UP;
6198 if (netif_dormant(dev))
6199 flags |= IFF_DORMANT;
6200 }
6201
6202 return flags;
6203 }
6204 EXPORT_SYMBOL(dev_get_flags);
6205
6206 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6207 {
6208 unsigned int old_flags = dev->flags;
6209 int ret;
6210
6211 ASSERT_RTNL();
6212
6213 /*
6214 * Set the flags on our device.
6215 */
6216
6217 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6218 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6219 IFF_AUTOMEDIA)) |
6220 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6221 IFF_ALLMULTI));
6222
6223 /*
6224 * Load in the correct multicast list now the flags have changed.
6225 */
6226
6227 if ((old_flags ^ flags) & IFF_MULTICAST)
6228 dev_change_rx_flags(dev, IFF_MULTICAST);
6229
6230 dev_set_rx_mode(dev);
6231
6232 /*
6233 * Have we downed the interface. We handle IFF_UP ourselves
6234 * according to user attempts to set it, rather than blindly
6235 * setting it.
6236 */
6237
6238 ret = 0;
6239 if ((old_flags ^ flags) & IFF_UP)
6240 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6241
6242 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6243 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6244 unsigned int old_flags = dev->flags;
6245
6246 dev->gflags ^= IFF_PROMISC;
6247
6248 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6249 if (dev->flags != old_flags)
6250 dev_set_rx_mode(dev);
6251 }
6252
6253 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6254 is important. Some (broken) drivers set IFF_PROMISC, when
6255 IFF_ALLMULTI is requested not asking us and not reporting.
6256 */
6257 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6258 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6259
6260 dev->gflags ^= IFF_ALLMULTI;
6261 __dev_set_allmulti(dev, inc, false);
6262 }
6263
6264 return ret;
6265 }
6266
6267 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6268 unsigned int gchanges)
6269 {
6270 unsigned int changes = dev->flags ^ old_flags;
6271
6272 if (gchanges)
6273 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6274
6275 if (changes & IFF_UP) {
6276 if (dev->flags & IFF_UP)
6277 call_netdevice_notifiers(NETDEV_UP, dev);
6278 else
6279 call_netdevice_notifiers(NETDEV_DOWN, dev);
6280 }
6281
6282 if (dev->flags & IFF_UP &&
6283 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6284 struct netdev_notifier_change_info change_info;
6285
6286 change_info.flags_changed = changes;
6287 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6288 &change_info.info);
6289 }
6290 }
6291
6292 /**
6293 * dev_change_flags - change device settings
6294 * @dev: device
6295 * @flags: device state flags
6296 *
6297 * Change settings on device based state flags. The flags are
6298 * in the userspace exported format.
6299 */
6300 int dev_change_flags(struct net_device *dev, unsigned int flags)
6301 {
6302 int ret;
6303 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6304
6305 ret = __dev_change_flags(dev, flags);
6306 if (ret < 0)
6307 return ret;
6308
6309 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6310 __dev_notify_flags(dev, old_flags, changes);
6311 return ret;
6312 }
6313 EXPORT_SYMBOL(dev_change_flags);
6314
6315 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6316 {
6317 const struct net_device_ops *ops = dev->netdev_ops;
6318
6319 if (ops->ndo_change_mtu)
6320 return ops->ndo_change_mtu(dev, new_mtu);
6321
6322 dev->mtu = new_mtu;
6323 return 0;
6324 }
6325
6326 /**
6327 * dev_set_mtu - Change maximum transfer unit
6328 * @dev: device
6329 * @new_mtu: new transfer unit
6330 *
6331 * Change the maximum transfer size of the network device.
6332 */
6333 int dev_set_mtu(struct net_device *dev, int new_mtu)
6334 {
6335 int err, orig_mtu;
6336
6337 if (new_mtu == dev->mtu)
6338 return 0;
6339
6340 /* MTU must be positive. */
6341 if (new_mtu < 0)
6342 return -EINVAL;
6343
6344 if (!netif_device_present(dev))
6345 return -ENODEV;
6346
6347 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6348 err = notifier_to_errno(err);
6349 if (err)
6350 return err;
6351
6352 orig_mtu = dev->mtu;
6353 err = __dev_set_mtu(dev, new_mtu);
6354
6355 if (!err) {
6356 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6357 err = notifier_to_errno(err);
6358 if (err) {
6359 /* setting mtu back and notifying everyone again,
6360 * so that they have a chance to revert changes.
6361 */
6362 __dev_set_mtu(dev, orig_mtu);
6363 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6364 }
6365 }
6366 return err;
6367 }
6368 EXPORT_SYMBOL(dev_set_mtu);
6369
6370 /**
6371 * dev_set_group - Change group this device belongs to
6372 * @dev: device
6373 * @new_group: group this device should belong to
6374 */
6375 void dev_set_group(struct net_device *dev, int new_group)
6376 {
6377 dev->group = new_group;
6378 }
6379 EXPORT_SYMBOL(dev_set_group);
6380
6381 /**
6382 * dev_set_mac_address - Change Media Access Control Address
6383 * @dev: device
6384 * @sa: new address
6385 *
6386 * Change the hardware (MAC) address of the device
6387 */
6388 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6389 {
6390 const struct net_device_ops *ops = dev->netdev_ops;
6391 int err;
6392
6393 if (!ops->ndo_set_mac_address)
6394 return -EOPNOTSUPP;
6395 if (sa->sa_family != dev->type)
6396 return -EINVAL;
6397 if (!netif_device_present(dev))
6398 return -ENODEV;
6399 err = ops->ndo_set_mac_address(dev, sa);
6400 if (err)
6401 return err;
6402 dev->addr_assign_type = NET_ADDR_SET;
6403 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6404 add_device_randomness(dev->dev_addr, dev->addr_len);
6405 return 0;
6406 }
6407 EXPORT_SYMBOL(dev_set_mac_address);
6408
6409 /**
6410 * dev_change_carrier - Change device carrier
6411 * @dev: device
6412 * @new_carrier: new value
6413 *
6414 * Change device carrier
6415 */
6416 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6417 {
6418 const struct net_device_ops *ops = dev->netdev_ops;
6419
6420 if (!ops->ndo_change_carrier)
6421 return -EOPNOTSUPP;
6422 if (!netif_device_present(dev))
6423 return -ENODEV;
6424 return ops->ndo_change_carrier(dev, new_carrier);
6425 }
6426 EXPORT_SYMBOL(dev_change_carrier);
6427
6428 /**
6429 * dev_get_phys_port_id - Get device physical port ID
6430 * @dev: device
6431 * @ppid: port ID
6432 *
6433 * Get device physical port ID
6434 */
6435 int dev_get_phys_port_id(struct net_device *dev,
6436 struct netdev_phys_item_id *ppid)
6437 {
6438 const struct net_device_ops *ops = dev->netdev_ops;
6439
6440 if (!ops->ndo_get_phys_port_id)
6441 return -EOPNOTSUPP;
6442 return ops->ndo_get_phys_port_id(dev, ppid);
6443 }
6444 EXPORT_SYMBOL(dev_get_phys_port_id);
6445
6446 /**
6447 * dev_get_phys_port_name - Get device physical port name
6448 * @dev: device
6449 * @name: port name
6450 * @len: limit of bytes to copy to name
6451 *
6452 * Get device physical port name
6453 */
6454 int dev_get_phys_port_name(struct net_device *dev,
6455 char *name, size_t len)
6456 {
6457 const struct net_device_ops *ops = dev->netdev_ops;
6458
6459 if (!ops->ndo_get_phys_port_name)
6460 return -EOPNOTSUPP;
6461 return ops->ndo_get_phys_port_name(dev, name, len);
6462 }
6463 EXPORT_SYMBOL(dev_get_phys_port_name);
6464
6465 /**
6466 * dev_change_proto_down - update protocol port state information
6467 * @dev: device
6468 * @proto_down: new value
6469 *
6470 * This info can be used by switch drivers to set the phys state of the
6471 * port.
6472 */
6473 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6474 {
6475 const struct net_device_ops *ops = dev->netdev_ops;
6476
6477 if (!ops->ndo_change_proto_down)
6478 return -EOPNOTSUPP;
6479 if (!netif_device_present(dev))
6480 return -ENODEV;
6481 return ops->ndo_change_proto_down(dev, proto_down);
6482 }
6483 EXPORT_SYMBOL(dev_change_proto_down);
6484
6485 /**
6486 * dev_new_index - allocate an ifindex
6487 * @net: the applicable net namespace
6488 *
6489 * Returns a suitable unique value for a new device interface
6490 * number. The caller must hold the rtnl semaphore or the
6491 * dev_base_lock to be sure it remains unique.
6492 */
6493 static int dev_new_index(struct net *net)
6494 {
6495 int ifindex = net->ifindex;
6496 for (;;) {
6497 if (++ifindex <= 0)
6498 ifindex = 1;
6499 if (!__dev_get_by_index(net, ifindex))
6500 return net->ifindex = ifindex;
6501 }
6502 }
6503
6504 /* Delayed registration/unregisteration */
6505 static LIST_HEAD(net_todo_list);
6506 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6507
6508 static void net_set_todo(struct net_device *dev)
6509 {
6510 list_add_tail(&dev->todo_list, &net_todo_list);
6511 dev_net(dev)->dev_unreg_count++;
6512 }
6513
6514 static void rollback_registered_many(struct list_head *head)
6515 {
6516 struct net_device *dev, *tmp;
6517 LIST_HEAD(close_head);
6518
6519 BUG_ON(dev_boot_phase);
6520 ASSERT_RTNL();
6521
6522 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6523 /* Some devices call without registering
6524 * for initialization unwind. Remove those
6525 * devices and proceed with the remaining.
6526 */
6527 if (dev->reg_state == NETREG_UNINITIALIZED) {
6528 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6529 dev->name, dev);
6530
6531 WARN_ON(1);
6532 list_del(&dev->unreg_list);
6533 continue;
6534 }
6535 dev->dismantle = true;
6536 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6537 }
6538
6539 /* If device is running, close it first. */
6540 list_for_each_entry(dev, head, unreg_list)
6541 list_add_tail(&dev->close_list, &close_head);
6542 dev_close_many(&close_head, true);
6543
6544 list_for_each_entry(dev, head, unreg_list) {
6545 /* And unlink it from device chain. */
6546 unlist_netdevice(dev);
6547
6548 dev->reg_state = NETREG_UNREGISTERING;
6549 on_each_cpu(flush_backlog, dev, 1);
6550 }
6551
6552 synchronize_net();
6553
6554 list_for_each_entry(dev, head, unreg_list) {
6555 struct sk_buff *skb = NULL;
6556
6557 /* Shutdown queueing discipline. */
6558 dev_shutdown(dev);
6559
6560
6561 /* Notify protocols, that we are about to destroy
6562 this device. They should clean all the things.
6563 */
6564 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6565
6566 if (!dev->rtnl_link_ops ||
6567 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6568 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6569 GFP_KERNEL);
6570
6571 /*
6572 * Flush the unicast and multicast chains
6573 */
6574 dev_uc_flush(dev);
6575 dev_mc_flush(dev);
6576
6577 if (dev->netdev_ops->ndo_uninit)
6578 dev->netdev_ops->ndo_uninit(dev);
6579
6580 if (skb)
6581 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6582
6583 /* Notifier chain MUST detach us all upper devices. */
6584 WARN_ON(netdev_has_any_upper_dev(dev));
6585
6586 /* Remove entries from kobject tree */
6587 netdev_unregister_kobject(dev);
6588 #ifdef CONFIG_XPS
6589 /* Remove XPS queueing entries */
6590 netif_reset_xps_queues_gt(dev, 0);
6591 #endif
6592 }
6593
6594 synchronize_net();
6595
6596 list_for_each_entry(dev, head, unreg_list)
6597 dev_put(dev);
6598 }
6599
6600 static void rollback_registered(struct net_device *dev)
6601 {
6602 LIST_HEAD(single);
6603
6604 list_add(&dev->unreg_list, &single);
6605 rollback_registered_many(&single);
6606 list_del(&single);
6607 }
6608
6609 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6610 struct net_device *upper, netdev_features_t features)
6611 {
6612 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6613 netdev_features_t feature;
6614 int feature_bit;
6615
6616 for_each_netdev_feature(&upper_disables, feature_bit) {
6617 feature = __NETIF_F_BIT(feature_bit);
6618 if (!(upper->wanted_features & feature)
6619 && (features & feature)) {
6620 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6621 &feature, upper->name);
6622 features &= ~feature;
6623 }
6624 }
6625
6626 return features;
6627 }
6628
6629 static void netdev_sync_lower_features(struct net_device *upper,
6630 struct net_device *lower, netdev_features_t features)
6631 {
6632 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6633 netdev_features_t feature;
6634 int feature_bit;
6635
6636 for_each_netdev_feature(&upper_disables, feature_bit) {
6637 feature = __NETIF_F_BIT(feature_bit);
6638 if (!(features & feature) && (lower->features & feature)) {
6639 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6640 &feature, lower->name);
6641 lower->wanted_features &= ~feature;
6642 netdev_update_features(lower);
6643
6644 if (unlikely(lower->features & feature))
6645 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6646 &feature, lower->name);
6647 }
6648 }
6649 }
6650
6651 static netdev_features_t netdev_fix_features(struct net_device *dev,
6652 netdev_features_t features)
6653 {
6654 /* Fix illegal checksum combinations */
6655 if ((features & NETIF_F_HW_CSUM) &&
6656 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6657 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6658 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6659 }
6660
6661 /* TSO requires that SG is present as well. */
6662 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6663 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6664 features &= ~NETIF_F_ALL_TSO;
6665 }
6666
6667 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6668 !(features & NETIF_F_IP_CSUM)) {
6669 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6670 features &= ~NETIF_F_TSO;
6671 features &= ~NETIF_F_TSO_ECN;
6672 }
6673
6674 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6675 !(features & NETIF_F_IPV6_CSUM)) {
6676 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6677 features &= ~NETIF_F_TSO6;
6678 }
6679
6680 /* TSO ECN requires that TSO is present as well. */
6681 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6682 features &= ~NETIF_F_TSO_ECN;
6683
6684 /* Software GSO depends on SG. */
6685 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6686 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6687 features &= ~NETIF_F_GSO;
6688 }
6689
6690 /* UFO needs SG and checksumming */
6691 if (features & NETIF_F_UFO) {
6692 /* maybe split UFO into V4 and V6? */
6693 if (!(features & NETIF_F_HW_CSUM) &&
6694 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6695 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6696 netdev_dbg(dev,
6697 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6698 features &= ~NETIF_F_UFO;
6699 }
6700
6701 if (!(features & NETIF_F_SG)) {
6702 netdev_dbg(dev,
6703 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6704 features &= ~NETIF_F_UFO;
6705 }
6706 }
6707
6708 #ifdef CONFIG_NET_RX_BUSY_POLL
6709 if (dev->netdev_ops->ndo_busy_poll)
6710 features |= NETIF_F_BUSY_POLL;
6711 else
6712 #endif
6713 features &= ~NETIF_F_BUSY_POLL;
6714
6715 return features;
6716 }
6717
6718 int __netdev_update_features(struct net_device *dev)
6719 {
6720 struct net_device *upper, *lower;
6721 netdev_features_t features;
6722 struct list_head *iter;
6723 int err = -1;
6724
6725 ASSERT_RTNL();
6726
6727 features = netdev_get_wanted_features(dev);
6728
6729 if (dev->netdev_ops->ndo_fix_features)
6730 features = dev->netdev_ops->ndo_fix_features(dev, features);
6731
6732 /* driver might be less strict about feature dependencies */
6733 features = netdev_fix_features(dev, features);
6734
6735 /* some features can't be enabled if they're off an an upper device */
6736 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6737 features = netdev_sync_upper_features(dev, upper, features);
6738
6739 if (dev->features == features)
6740 goto sync_lower;
6741
6742 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6743 &dev->features, &features);
6744
6745 if (dev->netdev_ops->ndo_set_features)
6746 err = dev->netdev_ops->ndo_set_features(dev, features);
6747 else
6748 err = 0;
6749
6750 if (unlikely(err < 0)) {
6751 netdev_err(dev,
6752 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6753 err, &features, &dev->features);
6754 /* return non-0 since some features might have changed and
6755 * it's better to fire a spurious notification than miss it
6756 */
6757 return -1;
6758 }
6759
6760 sync_lower:
6761 /* some features must be disabled on lower devices when disabled
6762 * on an upper device (think: bonding master or bridge)
6763 */
6764 netdev_for_each_lower_dev(dev, lower, iter)
6765 netdev_sync_lower_features(dev, lower, features);
6766
6767 if (!err)
6768 dev->features = features;
6769
6770 return err < 0 ? 0 : 1;
6771 }
6772
6773 /**
6774 * netdev_update_features - recalculate device features
6775 * @dev: the device to check
6776 *
6777 * Recalculate dev->features set and send notifications if it
6778 * has changed. Should be called after driver or hardware dependent
6779 * conditions might have changed that influence the features.
6780 */
6781 void netdev_update_features(struct net_device *dev)
6782 {
6783 if (__netdev_update_features(dev))
6784 netdev_features_change(dev);
6785 }
6786 EXPORT_SYMBOL(netdev_update_features);
6787
6788 /**
6789 * netdev_change_features - recalculate device features
6790 * @dev: the device to check
6791 *
6792 * Recalculate dev->features set and send notifications even
6793 * if they have not changed. Should be called instead of
6794 * netdev_update_features() if also dev->vlan_features might
6795 * have changed to allow the changes to be propagated to stacked
6796 * VLAN devices.
6797 */
6798 void netdev_change_features(struct net_device *dev)
6799 {
6800 __netdev_update_features(dev);
6801 netdev_features_change(dev);
6802 }
6803 EXPORT_SYMBOL(netdev_change_features);
6804
6805 /**
6806 * netif_stacked_transfer_operstate - transfer operstate
6807 * @rootdev: the root or lower level device to transfer state from
6808 * @dev: the device to transfer operstate to
6809 *
6810 * Transfer operational state from root to device. This is normally
6811 * called when a stacking relationship exists between the root
6812 * device and the device(a leaf device).
6813 */
6814 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6815 struct net_device *dev)
6816 {
6817 if (rootdev->operstate == IF_OPER_DORMANT)
6818 netif_dormant_on(dev);
6819 else
6820 netif_dormant_off(dev);
6821
6822 if (netif_carrier_ok(rootdev)) {
6823 if (!netif_carrier_ok(dev))
6824 netif_carrier_on(dev);
6825 } else {
6826 if (netif_carrier_ok(dev))
6827 netif_carrier_off(dev);
6828 }
6829 }
6830 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6831
6832 #ifdef CONFIG_SYSFS
6833 static int netif_alloc_rx_queues(struct net_device *dev)
6834 {
6835 unsigned int i, count = dev->num_rx_queues;
6836 struct netdev_rx_queue *rx;
6837 size_t sz = count * sizeof(*rx);
6838
6839 BUG_ON(count < 1);
6840
6841 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6842 if (!rx) {
6843 rx = vzalloc(sz);
6844 if (!rx)
6845 return -ENOMEM;
6846 }
6847 dev->_rx = rx;
6848
6849 for (i = 0; i < count; i++)
6850 rx[i].dev = dev;
6851 return 0;
6852 }
6853 #endif
6854
6855 static void netdev_init_one_queue(struct net_device *dev,
6856 struct netdev_queue *queue, void *_unused)
6857 {
6858 /* Initialize queue lock */
6859 spin_lock_init(&queue->_xmit_lock);
6860 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6861 queue->xmit_lock_owner = -1;
6862 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6863 queue->dev = dev;
6864 #ifdef CONFIG_BQL
6865 dql_init(&queue->dql, HZ);
6866 #endif
6867 }
6868
6869 static void netif_free_tx_queues(struct net_device *dev)
6870 {
6871 kvfree(dev->_tx);
6872 }
6873
6874 static int netif_alloc_netdev_queues(struct net_device *dev)
6875 {
6876 unsigned int count = dev->num_tx_queues;
6877 struct netdev_queue *tx;
6878 size_t sz = count * sizeof(*tx);
6879
6880 if (count < 1 || count > 0xffff)
6881 return -EINVAL;
6882
6883 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6884 if (!tx) {
6885 tx = vzalloc(sz);
6886 if (!tx)
6887 return -ENOMEM;
6888 }
6889 dev->_tx = tx;
6890
6891 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6892 spin_lock_init(&dev->tx_global_lock);
6893
6894 return 0;
6895 }
6896
6897 void netif_tx_stop_all_queues(struct net_device *dev)
6898 {
6899 unsigned int i;
6900
6901 for (i = 0; i < dev->num_tx_queues; i++) {
6902 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6903 netif_tx_stop_queue(txq);
6904 }
6905 }
6906 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6907
6908 /**
6909 * register_netdevice - register a network device
6910 * @dev: device to register
6911 *
6912 * Take a completed network device structure and add it to the kernel
6913 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6914 * chain. 0 is returned on success. A negative errno code is returned
6915 * on a failure to set up the device, or if the name is a duplicate.
6916 *
6917 * Callers must hold the rtnl semaphore. You may want
6918 * register_netdev() instead of this.
6919 *
6920 * BUGS:
6921 * The locking appears insufficient to guarantee two parallel registers
6922 * will not get the same name.
6923 */
6924
6925 int register_netdevice(struct net_device *dev)
6926 {
6927 int ret;
6928 struct net *net = dev_net(dev);
6929
6930 BUG_ON(dev_boot_phase);
6931 ASSERT_RTNL();
6932
6933 might_sleep();
6934
6935 /* When net_device's are persistent, this will be fatal. */
6936 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6937 BUG_ON(!net);
6938
6939 spin_lock_init(&dev->addr_list_lock);
6940 netdev_set_addr_lockdep_class(dev);
6941
6942 ret = dev_get_valid_name(net, dev, dev->name);
6943 if (ret < 0)
6944 goto out;
6945
6946 /* Init, if this function is available */
6947 if (dev->netdev_ops->ndo_init) {
6948 ret = dev->netdev_ops->ndo_init(dev);
6949 if (ret) {
6950 if (ret > 0)
6951 ret = -EIO;
6952 goto out;
6953 }
6954 }
6955
6956 if (((dev->hw_features | dev->features) &
6957 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6958 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6959 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6960 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6961 ret = -EINVAL;
6962 goto err_uninit;
6963 }
6964
6965 ret = -EBUSY;
6966 if (!dev->ifindex)
6967 dev->ifindex = dev_new_index(net);
6968 else if (__dev_get_by_index(net, dev->ifindex))
6969 goto err_uninit;
6970
6971 /* Transfer changeable features to wanted_features and enable
6972 * software offloads (GSO and GRO).
6973 */
6974 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6975 dev->features |= NETIF_F_SOFT_FEATURES;
6976 dev->wanted_features = dev->features & dev->hw_features;
6977
6978 if (!(dev->flags & IFF_LOOPBACK)) {
6979 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6980 }
6981
6982 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6983 */
6984 dev->vlan_features |= NETIF_F_HIGHDMA;
6985
6986 /* Make NETIF_F_SG inheritable to tunnel devices.
6987 */
6988 dev->hw_enc_features |= NETIF_F_SG;
6989
6990 /* Make NETIF_F_SG inheritable to MPLS.
6991 */
6992 dev->mpls_features |= NETIF_F_SG;
6993
6994 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6995 ret = notifier_to_errno(ret);
6996 if (ret)
6997 goto err_uninit;
6998
6999 ret = netdev_register_kobject(dev);
7000 if (ret)
7001 goto err_uninit;
7002 dev->reg_state = NETREG_REGISTERED;
7003
7004 __netdev_update_features(dev);
7005
7006 /*
7007 * Default initial state at registry is that the
7008 * device is present.
7009 */
7010
7011 set_bit(__LINK_STATE_PRESENT, &dev->state);
7012
7013 linkwatch_init_dev(dev);
7014
7015 dev_init_scheduler(dev);
7016 dev_hold(dev);
7017 list_netdevice(dev);
7018 add_device_randomness(dev->dev_addr, dev->addr_len);
7019
7020 /* If the device has permanent device address, driver should
7021 * set dev_addr and also addr_assign_type should be set to
7022 * NET_ADDR_PERM (default value).
7023 */
7024 if (dev->addr_assign_type == NET_ADDR_PERM)
7025 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7026
7027 /* Notify protocols, that a new device appeared. */
7028 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7029 ret = notifier_to_errno(ret);
7030 if (ret) {
7031 rollback_registered(dev);
7032 dev->reg_state = NETREG_UNREGISTERED;
7033 }
7034 /*
7035 * Prevent userspace races by waiting until the network
7036 * device is fully setup before sending notifications.
7037 */
7038 if (!dev->rtnl_link_ops ||
7039 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7040 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7041
7042 out:
7043 return ret;
7044
7045 err_uninit:
7046 if (dev->netdev_ops->ndo_uninit)
7047 dev->netdev_ops->ndo_uninit(dev);
7048 goto out;
7049 }
7050 EXPORT_SYMBOL(register_netdevice);
7051
7052 /**
7053 * init_dummy_netdev - init a dummy network device for NAPI
7054 * @dev: device to init
7055 *
7056 * This takes a network device structure and initialize the minimum
7057 * amount of fields so it can be used to schedule NAPI polls without
7058 * registering a full blown interface. This is to be used by drivers
7059 * that need to tie several hardware interfaces to a single NAPI
7060 * poll scheduler due to HW limitations.
7061 */
7062 int init_dummy_netdev(struct net_device *dev)
7063 {
7064 /* Clear everything. Note we don't initialize spinlocks
7065 * are they aren't supposed to be taken by any of the
7066 * NAPI code and this dummy netdev is supposed to be
7067 * only ever used for NAPI polls
7068 */
7069 memset(dev, 0, sizeof(struct net_device));
7070
7071 /* make sure we BUG if trying to hit standard
7072 * register/unregister code path
7073 */
7074 dev->reg_state = NETREG_DUMMY;
7075
7076 /* NAPI wants this */
7077 INIT_LIST_HEAD(&dev->napi_list);
7078
7079 /* a dummy interface is started by default */
7080 set_bit(__LINK_STATE_PRESENT, &dev->state);
7081 set_bit(__LINK_STATE_START, &dev->state);
7082
7083 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7084 * because users of this 'device' dont need to change
7085 * its refcount.
7086 */
7087
7088 return 0;
7089 }
7090 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7091
7092
7093 /**
7094 * register_netdev - register a network device
7095 * @dev: device to register
7096 *
7097 * Take a completed network device structure and add it to the kernel
7098 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7099 * chain. 0 is returned on success. A negative errno code is returned
7100 * on a failure to set up the device, or if the name is a duplicate.
7101 *
7102 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7103 * and expands the device name if you passed a format string to
7104 * alloc_netdev.
7105 */
7106 int register_netdev(struct net_device *dev)
7107 {
7108 int err;
7109
7110 rtnl_lock();
7111 err = register_netdevice(dev);
7112 rtnl_unlock();
7113 return err;
7114 }
7115 EXPORT_SYMBOL(register_netdev);
7116
7117 int netdev_refcnt_read(const struct net_device *dev)
7118 {
7119 int i, refcnt = 0;
7120
7121 for_each_possible_cpu(i)
7122 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7123 return refcnt;
7124 }
7125 EXPORT_SYMBOL(netdev_refcnt_read);
7126
7127 /**
7128 * netdev_wait_allrefs - wait until all references are gone.
7129 * @dev: target net_device
7130 *
7131 * This is called when unregistering network devices.
7132 *
7133 * Any protocol or device that holds a reference should register
7134 * for netdevice notification, and cleanup and put back the
7135 * reference if they receive an UNREGISTER event.
7136 * We can get stuck here if buggy protocols don't correctly
7137 * call dev_put.
7138 */
7139 static void netdev_wait_allrefs(struct net_device *dev)
7140 {
7141 unsigned long rebroadcast_time, warning_time;
7142 int refcnt;
7143
7144 linkwatch_forget_dev(dev);
7145
7146 rebroadcast_time = warning_time = jiffies;
7147 refcnt = netdev_refcnt_read(dev);
7148
7149 while (refcnt != 0) {
7150 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7151 rtnl_lock();
7152
7153 /* Rebroadcast unregister notification */
7154 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7155
7156 __rtnl_unlock();
7157 rcu_barrier();
7158 rtnl_lock();
7159
7160 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7161 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7162 &dev->state)) {
7163 /* We must not have linkwatch events
7164 * pending on unregister. If this
7165 * happens, we simply run the queue
7166 * unscheduled, resulting in a noop
7167 * for this device.
7168 */
7169 linkwatch_run_queue();
7170 }
7171
7172 __rtnl_unlock();
7173
7174 rebroadcast_time = jiffies;
7175 }
7176
7177 msleep(250);
7178
7179 refcnt = netdev_refcnt_read(dev);
7180
7181 if (time_after(jiffies, warning_time + 10 * HZ)) {
7182 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7183 dev->name, refcnt);
7184 warning_time = jiffies;
7185 }
7186 }
7187 }
7188
7189 /* The sequence is:
7190 *
7191 * rtnl_lock();
7192 * ...
7193 * register_netdevice(x1);
7194 * register_netdevice(x2);
7195 * ...
7196 * unregister_netdevice(y1);
7197 * unregister_netdevice(y2);
7198 * ...
7199 * rtnl_unlock();
7200 * free_netdev(y1);
7201 * free_netdev(y2);
7202 *
7203 * We are invoked by rtnl_unlock().
7204 * This allows us to deal with problems:
7205 * 1) We can delete sysfs objects which invoke hotplug
7206 * without deadlocking with linkwatch via keventd.
7207 * 2) Since we run with the RTNL semaphore not held, we can sleep
7208 * safely in order to wait for the netdev refcnt to drop to zero.
7209 *
7210 * We must not return until all unregister events added during
7211 * the interval the lock was held have been completed.
7212 */
7213 void netdev_run_todo(void)
7214 {
7215 struct list_head list;
7216
7217 /* Snapshot list, allow later requests */
7218 list_replace_init(&net_todo_list, &list);
7219
7220 __rtnl_unlock();
7221
7222
7223 /* Wait for rcu callbacks to finish before next phase */
7224 if (!list_empty(&list))
7225 rcu_barrier();
7226
7227 while (!list_empty(&list)) {
7228 struct net_device *dev
7229 = list_first_entry(&list, struct net_device, todo_list);
7230 list_del(&dev->todo_list);
7231
7232 rtnl_lock();
7233 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7234 __rtnl_unlock();
7235
7236 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7237 pr_err("network todo '%s' but state %d\n",
7238 dev->name, dev->reg_state);
7239 dump_stack();
7240 continue;
7241 }
7242
7243 dev->reg_state = NETREG_UNREGISTERED;
7244
7245 netdev_wait_allrefs(dev);
7246
7247 /* paranoia */
7248 BUG_ON(netdev_refcnt_read(dev));
7249 BUG_ON(!list_empty(&dev->ptype_all));
7250 BUG_ON(!list_empty(&dev->ptype_specific));
7251 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7252 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7253 WARN_ON(dev->dn_ptr);
7254
7255 if (dev->destructor)
7256 dev->destructor(dev);
7257
7258 /* Report a network device has been unregistered */
7259 rtnl_lock();
7260 dev_net(dev)->dev_unreg_count--;
7261 __rtnl_unlock();
7262 wake_up(&netdev_unregistering_wq);
7263
7264 /* Free network device */
7265 kobject_put(&dev->dev.kobj);
7266 }
7267 }
7268
7269 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7270 * all the same fields in the same order as net_device_stats, with only
7271 * the type differing, but rtnl_link_stats64 may have additional fields
7272 * at the end for newer counters.
7273 */
7274 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7275 const struct net_device_stats *netdev_stats)
7276 {
7277 #if BITS_PER_LONG == 64
7278 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7279 memcpy(stats64, netdev_stats, sizeof(*stats64));
7280 /* zero out counters that only exist in rtnl_link_stats64 */
7281 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7282 sizeof(*stats64) - sizeof(*netdev_stats));
7283 #else
7284 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7285 const unsigned long *src = (const unsigned long *)netdev_stats;
7286 u64 *dst = (u64 *)stats64;
7287
7288 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7289 for (i = 0; i < n; i++)
7290 dst[i] = src[i];
7291 /* zero out counters that only exist in rtnl_link_stats64 */
7292 memset((char *)stats64 + n * sizeof(u64), 0,
7293 sizeof(*stats64) - n * sizeof(u64));
7294 #endif
7295 }
7296 EXPORT_SYMBOL(netdev_stats_to_stats64);
7297
7298 /**
7299 * dev_get_stats - get network device statistics
7300 * @dev: device to get statistics from
7301 * @storage: place to store stats
7302 *
7303 * Get network statistics from device. Return @storage.
7304 * The device driver may provide its own method by setting
7305 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7306 * otherwise the internal statistics structure is used.
7307 */
7308 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7309 struct rtnl_link_stats64 *storage)
7310 {
7311 const struct net_device_ops *ops = dev->netdev_ops;
7312
7313 if (ops->ndo_get_stats64) {
7314 memset(storage, 0, sizeof(*storage));
7315 ops->ndo_get_stats64(dev, storage);
7316 } else if (ops->ndo_get_stats) {
7317 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7318 } else {
7319 netdev_stats_to_stats64(storage, &dev->stats);
7320 }
7321 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7322 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7323 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7324 return storage;
7325 }
7326 EXPORT_SYMBOL(dev_get_stats);
7327
7328 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7329 {
7330 struct netdev_queue *queue = dev_ingress_queue(dev);
7331
7332 #ifdef CONFIG_NET_CLS_ACT
7333 if (queue)
7334 return queue;
7335 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7336 if (!queue)
7337 return NULL;
7338 netdev_init_one_queue(dev, queue, NULL);
7339 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7340 queue->qdisc_sleeping = &noop_qdisc;
7341 rcu_assign_pointer(dev->ingress_queue, queue);
7342 #endif
7343 return queue;
7344 }
7345
7346 static const struct ethtool_ops default_ethtool_ops;
7347
7348 void netdev_set_default_ethtool_ops(struct net_device *dev,
7349 const struct ethtool_ops *ops)
7350 {
7351 if (dev->ethtool_ops == &default_ethtool_ops)
7352 dev->ethtool_ops = ops;
7353 }
7354 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7355
7356 void netdev_freemem(struct net_device *dev)
7357 {
7358 char *addr = (char *)dev - dev->padded;
7359
7360 kvfree(addr);
7361 }
7362
7363 /**
7364 * alloc_netdev_mqs - allocate network device
7365 * @sizeof_priv: size of private data to allocate space for
7366 * @name: device name format string
7367 * @name_assign_type: origin of device name
7368 * @setup: callback to initialize device
7369 * @txqs: the number of TX subqueues to allocate
7370 * @rxqs: the number of RX subqueues to allocate
7371 *
7372 * Allocates a struct net_device with private data area for driver use
7373 * and performs basic initialization. Also allocates subqueue structs
7374 * for each queue on the device.
7375 */
7376 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7377 unsigned char name_assign_type,
7378 void (*setup)(struct net_device *),
7379 unsigned int txqs, unsigned int rxqs)
7380 {
7381 struct net_device *dev;
7382 size_t alloc_size;
7383 struct net_device *p;
7384
7385 BUG_ON(strlen(name) >= sizeof(dev->name));
7386
7387 if (txqs < 1) {
7388 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7389 return NULL;
7390 }
7391
7392 #ifdef CONFIG_SYSFS
7393 if (rxqs < 1) {
7394 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7395 return NULL;
7396 }
7397 #endif
7398
7399 alloc_size = sizeof(struct net_device);
7400 if (sizeof_priv) {
7401 /* ensure 32-byte alignment of private area */
7402 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7403 alloc_size += sizeof_priv;
7404 }
7405 /* ensure 32-byte alignment of whole construct */
7406 alloc_size += NETDEV_ALIGN - 1;
7407
7408 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7409 if (!p)
7410 p = vzalloc(alloc_size);
7411 if (!p)
7412 return NULL;
7413
7414 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7415 dev->padded = (char *)dev - (char *)p;
7416
7417 dev->pcpu_refcnt = alloc_percpu(int);
7418 if (!dev->pcpu_refcnt)
7419 goto free_dev;
7420
7421 if (dev_addr_init(dev))
7422 goto free_pcpu;
7423
7424 dev_mc_init(dev);
7425 dev_uc_init(dev);
7426
7427 dev_net_set(dev, &init_net);
7428
7429 dev->gso_max_size = GSO_MAX_SIZE;
7430 dev->gso_max_segs = GSO_MAX_SEGS;
7431 dev->gso_min_segs = 0;
7432
7433 INIT_LIST_HEAD(&dev->napi_list);
7434 INIT_LIST_HEAD(&dev->unreg_list);
7435 INIT_LIST_HEAD(&dev->close_list);
7436 INIT_LIST_HEAD(&dev->link_watch_list);
7437 INIT_LIST_HEAD(&dev->adj_list.upper);
7438 INIT_LIST_HEAD(&dev->adj_list.lower);
7439 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7440 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7441 INIT_LIST_HEAD(&dev->ptype_all);
7442 INIT_LIST_HEAD(&dev->ptype_specific);
7443 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7444 setup(dev);
7445
7446 if (!dev->tx_queue_len) {
7447 dev->priv_flags |= IFF_NO_QUEUE;
7448 dev->tx_queue_len = 1;
7449 }
7450
7451 dev->num_tx_queues = txqs;
7452 dev->real_num_tx_queues = txqs;
7453 if (netif_alloc_netdev_queues(dev))
7454 goto free_all;
7455
7456 #ifdef CONFIG_SYSFS
7457 dev->num_rx_queues = rxqs;
7458 dev->real_num_rx_queues = rxqs;
7459 if (netif_alloc_rx_queues(dev))
7460 goto free_all;
7461 #endif
7462
7463 strcpy(dev->name, name);
7464 dev->name_assign_type = name_assign_type;
7465 dev->group = INIT_NETDEV_GROUP;
7466 if (!dev->ethtool_ops)
7467 dev->ethtool_ops = &default_ethtool_ops;
7468
7469 nf_hook_ingress_init(dev);
7470
7471 return dev;
7472
7473 free_all:
7474 free_netdev(dev);
7475 return NULL;
7476
7477 free_pcpu:
7478 free_percpu(dev->pcpu_refcnt);
7479 free_dev:
7480 netdev_freemem(dev);
7481 return NULL;
7482 }
7483 EXPORT_SYMBOL(alloc_netdev_mqs);
7484
7485 /**
7486 * free_netdev - free network device
7487 * @dev: device
7488 *
7489 * This function does the last stage of destroying an allocated device
7490 * interface. The reference to the device object is released.
7491 * If this is the last reference then it will be freed.
7492 * Must be called in process context.
7493 */
7494 void free_netdev(struct net_device *dev)
7495 {
7496 struct napi_struct *p, *n;
7497
7498 might_sleep();
7499 netif_free_tx_queues(dev);
7500 #ifdef CONFIG_SYSFS
7501 kvfree(dev->_rx);
7502 #endif
7503
7504 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7505
7506 /* Flush device addresses */
7507 dev_addr_flush(dev);
7508
7509 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7510 netif_napi_del(p);
7511
7512 free_percpu(dev->pcpu_refcnt);
7513 dev->pcpu_refcnt = NULL;
7514
7515 /* Compatibility with error handling in drivers */
7516 if (dev->reg_state == NETREG_UNINITIALIZED) {
7517 netdev_freemem(dev);
7518 return;
7519 }
7520
7521 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7522 dev->reg_state = NETREG_RELEASED;
7523
7524 /* will free via device release */
7525 put_device(&dev->dev);
7526 }
7527 EXPORT_SYMBOL(free_netdev);
7528
7529 /**
7530 * synchronize_net - Synchronize with packet receive processing
7531 *
7532 * Wait for packets currently being received to be done.
7533 * Does not block later packets from starting.
7534 */
7535 void synchronize_net(void)
7536 {
7537 might_sleep();
7538 if (rtnl_is_locked())
7539 synchronize_rcu_expedited();
7540 else
7541 synchronize_rcu();
7542 }
7543 EXPORT_SYMBOL(synchronize_net);
7544
7545 /**
7546 * unregister_netdevice_queue - remove device from the kernel
7547 * @dev: device
7548 * @head: list
7549 *
7550 * This function shuts down a device interface and removes it
7551 * from the kernel tables.
7552 * If head not NULL, device is queued to be unregistered later.
7553 *
7554 * Callers must hold the rtnl semaphore. You may want
7555 * unregister_netdev() instead of this.
7556 */
7557
7558 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7559 {
7560 ASSERT_RTNL();
7561
7562 if (head) {
7563 list_move_tail(&dev->unreg_list, head);
7564 } else {
7565 rollback_registered(dev);
7566 /* Finish processing unregister after unlock */
7567 net_set_todo(dev);
7568 }
7569 }
7570 EXPORT_SYMBOL(unregister_netdevice_queue);
7571
7572 /**
7573 * unregister_netdevice_many - unregister many devices
7574 * @head: list of devices
7575 *
7576 * Note: As most callers use a stack allocated list_head,
7577 * we force a list_del() to make sure stack wont be corrupted later.
7578 */
7579 void unregister_netdevice_many(struct list_head *head)
7580 {
7581 struct net_device *dev;
7582
7583 if (!list_empty(head)) {
7584 rollback_registered_many(head);
7585 list_for_each_entry(dev, head, unreg_list)
7586 net_set_todo(dev);
7587 list_del(head);
7588 }
7589 }
7590 EXPORT_SYMBOL(unregister_netdevice_many);
7591
7592 /**
7593 * unregister_netdev - remove device from the kernel
7594 * @dev: device
7595 *
7596 * This function shuts down a device interface and removes it
7597 * from the kernel tables.
7598 *
7599 * This is just a wrapper for unregister_netdevice that takes
7600 * the rtnl semaphore. In general you want to use this and not
7601 * unregister_netdevice.
7602 */
7603 void unregister_netdev(struct net_device *dev)
7604 {
7605 rtnl_lock();
7606 unregister_netdevice(dev);
7607 rtnl_unlock();
7608 }
7609 EXPORT_SYMBOL(unregister_netdev);
7610
7611 /**
7612 * dev_change_net_namespace - move device to different nethost namespace
7613 * @dev: device
7614 * @net: network namespace
7615 * @pat: If not NULL name pattern to try if the current device name
7616 * is already taken in the destination network namespace.
7617 *
7618 * This function shuts down a device interface and moves it
7619 * to a new network namespace. On success 0 is returned, on
7620 * a failure a netagive errno code is returned.
7621 *
7622 * Callers must hold the rtnl semaphore.
7623 */
7624
7625 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7626 {
7627 int err;
7628
7629 ASSERT_RTNL();
7630
7631 /* Don't allow namespace local devices to be moved. */
7632 err = -EINVAL;
7633 if (dev->features & NETIF_F_NETNS_LOCAL)
7634 goto out;
7635
7636 /* Ensure the device has been registrered */
7637 if (dev->reg_state != NETREG_REGISTERED)
7638 goto out;
7639
7640 /* Get out if there is nothing todo */
7641 err = 0;
7642 if (net_eq(dev_net(dev), net))
7643 goto out;
7644
7645 /* Pick the destination device name, and ensure
7646 * we can use it in the destination network namespace.
7647 */
7648 err = -EEXIST;
7649 if (__dev_get_by_name(net, dev->name)) {
7650 /* We get here if we can't use the current device name */
7651 if (!pat)
7652 goto out;
7653 if (dev_get_valid_name(net, dev, pat) < 0)
7654 goto out;
7655 }
7656
7657 /*
7658 * And now a mini version of register_netdevice unregister_netdevice.
7659 */
7660
7661 /* If device is running close it first. */
7662 dev_close(dev);
7663
7664 /* And unlink it from device chain */
7665 err = -ENODEV;
7666 unlist_netdevice(dev);
7667
7668 synchronize_net();
7669
7670 /* Shutdown queueing discipline. */
7671 dev_shutdown(dev);
7672
7673 /* Notify protocols, that we are about to destroy
7674 this device. They should clean all the things.
7675
7676 Note that dev->reg_state stays at NETREG_REGISTERED.
7677 This is wanted because this way 8021q and macvlan know
7678 the device is just moving and can keep their slaves up.
7679 */
7680 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7681 rcu_barrier();
7682 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7683 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7684
7685 /*
7686 * Flush the unicast and multicast chains
7687 */
7688 dev_uc_flush(dev);
7689 dev_mc_flush(dev);
7690
7691 /* Send a netdev-removed uevent to the old namespace */
7692 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7693 netdev_adjacent_del_links(dev);
7694
7695 /* Actually switch the network namespace */
7696 dev_net_set(dev, net);
7697
7698 /* If there is an ifindex conflict assign a new one */
7699 if (__dev_get_by_index(net, dev->ifindex))
7700 dev->ifindex = dev_new_index(net);
7701
7702 /* Send a netdev-add uevent to the new namespace */
7703 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7704 netdev_adjacent_add_links(dev);
7705
7706 /* Fixup kobjects */
7707 err = device_rename(&dev->dev, dev->name);
7708 WARN_ON(err);
7709
7710 /* Add the device back in the hashes */
7711 list_netdevice(dev);
7712
7713 /* Notify protocols, that a new device appeared. */
7714 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7715
7716 /*
7717 * Prevent userspace races by waiting until the network
7718 * device is fully setup before sending notifications.
7719 */
7720 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7721
7722 synchronize_net();
7723 err = 0;
7724 out:
7725 return err;
7726 }
7727 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7728
7729 static int dev_cpu_callback(struct notifier_block *nfb,
7730 unsigned long action,
7731 void *ocpu)
7732 {
7733 struct sk_buff **list_skb;
7734 struct sk_buff *skb;
7735 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7736 struct softnet_data *sd, *oldsd;
7737
7738 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7739 return NOTIFY_OK;
7740
7741 local_irq_disable();
7742 cpu = smp_processor_id();
7743 sd = &per_cpu(softnet_data, cpu);
7744 oldsd = &per_cpu(softnet_data, oldcpu);
7745
7746 /* Find end of our completion_queue. */
7747 list_skb = &sd->completion_queue;
7748 while (*list_skb)
7749 list_skb = &(*list_skb)->next;
7750 /* Append completion queue from offline CPU. */
7751 *list_skb = oldsd->completion_queue;
7752 oldsd->completion_queue = NULL;
7753
7754 /* Append output queue from offline CPU. */
7755 if (oldsd->output_queue) {
7756 *sd->output_queue_tailp = oldsd->output_queue;
7757 sd->output_queue_tailp = oldsd->output_queue_tailp;
7758 oldsd->output_queue = NULL;
7759 oldsd->output_queue_tailp = &oldsd->output_queue;
7760 }
7761 /* Append NAPI poll list from offline CPU, with one exception :
7762 * process_backlog() must be called by cpu owning percpu backlog.
7763 * We properly handle process_queue & input_pkt_queue later.
7764 */
7765 while (!list_empty(&oldsd->poll_list)) {
7766 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7767 struct napi_struct,
7768 poll_list);
7769
7770 list_del_init(&napi->poll_list);
7771 if (napi->poll == process_backlog)
7772 napi->state = 0;
7773 else
7774 ____napi_schedule(sd, napi);
7775 }
7776
7777 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7778 local_irq_enable();
7779
7780 /* Process offline CPU's input_pkt_queue */
7781 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7782 netif_rx_ni(skb);
7783 input_queue_head_incr(oldsd);
7784 }
7785 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7786 netif_rx_ni(skb);
7787 input_queue_head_incr(oldsd);
7788 }
7789
7790 return NOTIFY_OK;
7791 }
7792
7793
7794 /**
7795 * netdev_increment_features - increment feature set by one
7796 * @all: current feature set
7797 * @one: new feature set
7798 * @mask: mask feature set
7799 *
7800 * Computes a new feature set after adding a device with feature set
7801 * @one to the master device with current feature set @all. Will not
7802 * enable anything that is off in @mask. Returns the new feature set.
7803 */
7804 netdev_features_t netdev_increment_features(netdev_features_t all,
7805 netdev_features_t one, netdev_features_t mask)
7806 {
7807 if (mask & NETIF_F_HW_CSUM)
7808 mask |= NETIF_F_CSUM_MASK;
7809 mask |= NETIF_F_VLAN_CHALLENGED;
7810
7811 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
7812 all &= one | ~NETIF_F_ALL_FOR_ALL;
7813
7814 /* If one device supports hw checksumming, set for all. */
7815 if (all & NETIF_F_HW_CSUM)
7816 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7817
7818 return all;
7819 }
7820 EXPORT_SYMBOL(netdev_increment_features);
7821
7822 static struct hlist_head * __net_init netdev_create_hash(void)
7823 {
7824 int i;
7825 struct hlist_head *hash;
7826
7827 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7828 if (hash != NULL)
7829 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7830 INIT_HLIST_HEAD(&hash[i]);
7831
7832 return hash;
7833 }
7834
7835 /* Initialize per network namespace state */
7836 static int __net_init netdev_init(struct net *net)
7837 {
7838 if (net != &init_net)
7839 INIT_LIST_HEAD(&net->dev_base_head);
7840
7841 net->dev_name_head = netdev_create_hash();
7842 if (net->dev_name_head == NULL)
7843 goto err_name;
7844
7845 net->dev_index_head = netdev_create_hash();
7846 if (net->dev_index_head == NULL)
7847 goto err_idx;
7848
7849 return 0;
7850
7851 err_idx:
7852 kfree(net->dev_name_head);
7853 err_name:
7854 return -ENOMEM;
7855 }
7856
7857 /**
7858 * netdev_drivername - network driver for the device
7859 * @dev: network device
7860 *
7861 * Determine network driver for device.
7862 */
7863 const char *netdev_drivername(const struct net_device *dev)
7864 {
7865 const struct device_driver *driver;
7866 const struct device *parent;
7867 const char *empty = "";
7868
7869 parent = dev->dev.parent;
7870 if (!parent)
7871 return empty;
7872
7873 driver = parent->driver;
7874 if (driver && driver->name)
7875 return driver->name;
7876 return empty;
7877 }
7878
7879 static void __netdev_printk(const char *level, const struct net_device *dev,
7880 struct va_format *vaf)
7881 {
7882 if (dev && dev->dev.parent) {
7883 dev_printk_emit(level[1] - '0',
7884 dev->dev.parent,
7885 "%s %s %s%s: %pV",
7886 dev_driver_string(dev->dev.parent),
7887 dev_name(dev->dev.parent),
7888 netdev_name(dev), netdev_reg_state(dev),
7889 vaf);
7890 } else if (dev) {
7891 printk("%s%s%s: %pV",
7892 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7893 } else {
7894 printk("%s(NULL net_device): %pV", level, vaf);
7895 }
7896 }
7897
7898 void netdev_printk(const char *level, const struct net_device *dev,
7899 const char *format, ...)
7900 {
7901 struct va_format vaf;
7902 va_list args;
7903
7904 va_start(args, format);
7905
7906 vaf.fmt = format;
7907 vaf.va = &args;
7908
7909 __netdev_printk(level, dev, &vaf);
7910
7911 va_end(args);
7912 }
7913 EXPORT_SYMBOL(netdev_printk);
7914
7915 #define define_netdev_printk_level(func, level) \
7916 void func(const struct net_device *dev, const char *fmt, ...) \
7917 { \
7918 struct va_format vaf; \
7919 va_list args; \
7920 \
7921 va_start(args, fmt); \
7922 \
7923 vaf.fmt = fmt; \
7924 vaf.va = &args; \
7925 \
7926 __netdev_printk(level, dev, &vaf); \
7927 \
7928 va_end(args); \
7929 } \
7930 EXPORT_SYMBOL(func);
7931
7932 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7933 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7934 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7935 define_netdev_printk_level(netdev_err, KERN_ERR);
7936 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7937 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7938 define_netdev_printk_level(netdev_info, KERN_INFO);
7939
7940 static void __net_exit netdev_exit(struct net *net)
7941 {
7942 kfree(net->dev_name_head);
7943 kfree(net->dev_index_head);
7944 }
7945
7946 static struct pernet_operations __net_initdata netdev_net_ops = {
7947 .init = netdev_init,
7948 .exit = netdev_exit,
7949 };
7950
7951 static void __net_exit default_device_exit(struct net *net)
7952 {
7953 struct net_device *dev, *aux;
7954 /*
7955 * Push all migratable network devices back to the
7956 * initial network namespace
7957 */
7958 rtnl_lock();
7959 for_each_netdev_safe(net, dev, aux) {
7960 int err;
7961 char fb_name[IFNAMSIZ];
7962
7963 /* Ignore unmoveable devices (i.e. loopback) */
7964 if (dev->features & NETIF_F_NETNS_LOCAL)
7965 continue;
7966
7967 /* Leave virtual devices for the generic cleanup */
7968 if (dev->rtnl_link_ops)
7969 continue;
7970
7971 /* Push remaining network devices to init_net */
7972 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7973 err = dev_change_net_namespace(dev, &init_net, fb_name);
7974 if (err) {
7975 pr_emerg("%s: failed to move %s to init_net: %d\n",
7976 __func__, dev->name, err);
7977 BUG();
7978 }
7979 }
7980 rtnl_unlock();
7981 }
7982
7983 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7984 {
7985 /* Return with the rtnl_lock held when there are no network
7986 * devices unregistering in any network namespace in net_list.
7987 */
7988 struct net *net;
7989 bool unregistering;
7990 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7991
7992 add_wait_queue(&netdev_unregistering_wq, &wait);
7993 for (;;) {
7994 unregistering = false;
7995 rtnl_lock();
7996 list_for_each_entry(net, net_list, exit_list) {
7997 if (net->dev_unreg_count > 0) {
7998 unregistering = true;
7999 break;
8000 }
8001 }
8002 if (!unregistering)
8003 break;
8004 __rtnl_unlock();
8005
8006 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8007 }
8008 remove_wait_queue(&netdev_unregistering_wq, &wait);
8009 }
8010
8011 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8012 {
8013 /* At exit all network devices most be removed from a network
8014 * namespace. Do this in the reverse order of registration.
8015 * Do this across as many network namespaces as possible to
8016 * improve batching efficiency.
8017 */
8018 struct net_device *dev;
8019 struct net *net;
8020 LIST_HEAD(dev_kill_list);
8021
8022 /* To prevent network device cleanup code from dereferencing
8023 * loopback devices or network devices that have been freed
8024 * wait here for all pending unregistrations to complete,
8025 * before unregistring the loopback device and allowing the
8026 * network namespace be freed.
8027 *
8028 * The netdev todo list containing all network devices
8029 * unregistrations that happen in default_device_exit_batch
8030 * will run in the rtnl_unlock() at the end of
8031 * default_device_exit_batch.
8032 */
8033 rtnl_lock_unregistering(net_list);
8034 list_for_each_entry(net, net_list, exit_list) {
8035 for_each_netdev_reverse(net, dev) {
8036 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8037 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8038 else
8039 unregister_netdevice_queue(dev, &dev_kill_list);
8040 }
8041 }
8042 unregister_netdevice_many(&dev_kill_list);
8043 rtnl_unlock();
8044 }
8045
8046 static struct pernet_operations __net_initdata default_device_ops = {
8047 .exit = default_device_exit,
8048 .exit_batch = default_device_exit_batch,
8049 };
8050
8051 /*
8052 * Initialize the DEV module. At boot time this walks the device list and
8053 * unhooks any devices that fail to initialise (normally hardware not
8054 * present) and leaves us with a valid list of present and active devices.
8055 *
8056 */
8057
8058 /*
8059 * This is called single threaded during boot, so no need
8060 * to take the rtnl semaphore.
8061 */
8062 static int __init net_dev_init(void)
8063 {
8064 int i, rc = -ENOMEM;
8065
8066 BUG_ON(!dev_boot_phase);
8067
8068 if (dev_proc_init())
8069 goto out;
8070
8071 if (netdev_kobject_init())
8072 goto out;
8073
8074 INIT_LIST_HEAD(&ptype_all);
8075 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8076 INIT_LIST_HEAD(&ptype_base[i]);
8077
8078 INIT_LIST_HEAD(&offload_base);
8079
8080 if (register_pernet_subsys(&netdev_net_ops))
8081 goto out;
8082
8083 /*
8084 * Initialise the packet receive queues.
8085 */
8086
8087 for_each_possible_cpu(i) {
8088 struct softnet_data *sd = &per_cpu(softnet_data, i);
8089
8090 skb_queue_head_init(&sd->input_pkt_queue);
8091 skb_queue_head_init(&sd->process_queue);
8092 INIT_LIST_HEAD(&sd->poll_list);
8093 sd->output_queue_tailp = &sd->output_queue;
8094 #ifdef CONFIG_RPS
8095 sd->csd.func = rps_trigger_softirq;
8096 sd->csd.info = sd;
8097 sd->cpu = i;
8098 #endif
8099
8100 sd->backlog.poll = process_backlog;
8101 sd->backlog.weight = weight_p;
8102 }
8103
8104 dev_boot_phase = 0;
8105
8106 /* The loopback device is special if any other network devices
8107 * is present in a network namespace the loopback device must
8108 * be present. Since we now dynamically allocate and free the
8109 * loopback device ensure this invariant is maintained by
8110 * keeping the loopback device as the first device on the
8111 * list of network devices. Ensuring the loopback devices
8112 * is the first device that appears and the last network device
8113 * that disappears.
8114 */
8115 if (register_pernet_device(&loopback_net_ops))
8116 goto out;
8117
8118 if (register_pernet_device(&default_device_ops))
8119 goto out;
8120
8121 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8122 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8123
8124 hotcpu_notifier(dev_cpu_callback, 0);
8125 dst_subsys_init();
8126 rc = 0;
8127 out:
8128 return rc;
8129 }
8130
8131 subsys_initcall(net_dev_init);