]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/core/dev.c
net: introduce pre-change upper device notifier
[mirror_ubuntu-jammy-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139
140 #include "net-sysfs.h"
141
142 /* Instead of increasing this, you should create a hash table. */
143 #define MAX_GRO_SKBS 8
144
145 /* This should be increased if a protocol with a bigger head is added. */
146 #define GRO_MAX_HEAD (MAX_HEADER + 128)
147
148 static DEFINE_SPINLOCK(ptype_lock);
149 static DEFINE_SPINLOCK(offload_lock);
150 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
151 struct list_head ptype_all __read_mostly; /* Taps */
152 static struct list_head offload_base __read_mostly;
153
154 static int netif_rx_internal(struct sk_buff *skb);
155 static int call_netdevice_notifiers_info(unsigned long val,
156 struct net_device *dev,
157 struct netdev_notifier_info *info);
158
159 /*
160 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
161 * semaphore.
162 *
163 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
164 *
165 * Writers must hold the rtnl semaphore while they loop through the
166 * dev_base_head list, and hold dev_base_lock for writing when they do the
167 * actual updates. This allows pure readers to access the list even
168 * while a writer is preparing to update it.
169 *
170 * To put it another way, dev_base_lock is held for writing only to
171 * protect against pure readers; the rtnl semaphore provides the
172 * protection against other writers.
173 *
174 * See, for example usages, register_netdevice() and
175 * unregister_netdevice(), which must be called with the rtnl
176 * semaphore held.
177 */
178 DEFINE_RWLOCK(dev_base_lock);
179 EXPORT_SYMBOL(dev_base_lock);
180
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183
184 static unsigned int napi_gen_id;
185 static DEFINE_HASHTABLE(napi_hash, 8);
186
187 static seqcount_t devnet_rename_seq;
188
189 static inline void dev_base_seq_inc(struct net *net)
190 {
191 while (++net->dev_base_seq == 0);
192 }
193
194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
197
198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200
201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205
206 static inline void rps_lock(struct softnet_data *sd)
207 {
208 #ifdef CONFIG_RPS
209 spin_lock(&sd->input_pkt_queue.lock);
210 #endif
211 }
212
213 static inline void rps_unlock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216 spin_unlock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219
220 /* Device list insertion */
221 static void list_netdevice(struct net_device *dev)
222 {
223 struct net *net = dev_net(dev);
224
225 ASSERT_RTNL();
226
227 write_lock_bh(&dev_base_lock);
228 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
230 hlist_add_head_rcu(&dev->index_hlist,
231 dev_index_hash(net, dev->ifindex));
232 write_unlock_bh(&dev_base_lock);
233
234 dev_base_seq_inc(net);
235 }
236
237 /* Device list removal
238 * caller must respect a RCU grace period before freeing/reusing dev
239 */
240 static void unlist_netdevice(struct net_device *dev)
241 {
242 ASSERT_RTNL();
243
244 /* Unlink dev from the device chain */
245 write_lock_bh(&dev_base_lock);
246 list_del_rcu(&dev->dev_list);
247 hlist_del_rcu(&dev->name_hlist);
248 hlist_del_rcu(&dev->index_hlist);
249 write_unlock_bh(&dev_base_lock);
250
251 dev_base_seq_inc(dev_net(dev));
252 }
253
254 /*
255 * Our notifier list
256 */
257
258 static RAW_NOTIFIER_HEAD(netdev_chain);
259
260 /*
261 * Device drivers call our routines to queue packets here. We empty the
262 * queue in the local softnet handler.
263 */
264
265 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
266 EXPORT_PER_CPU_SYMBOL(softnet_data);
267
268 #ifdef CONFIG_LOCKDEP
269 /*
270 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
271 * according to dev->type
272 */
273 static const unsigned short netdev_lock_type[] =
274 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
275 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
276 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
277 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
278 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
279 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
280 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
281 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
282 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
283 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
284 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
285 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
286 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
287 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
288 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
289
290 static const char *const netdev_lock_name[] =
291 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
292 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
293 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
294 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
295 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
296 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
297 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
298 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
299 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
300 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
301 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
302 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
303 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
304 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
305 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
306
307 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
308 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
309
310 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
311 {
312 int i;
313
314 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
315 if (netdev_lock_type[i] == dev_type)
316 return i;
317 /* the last key is used by default */
318 return ARRAY_SIZE(netdev_lock_type) - 1;
319 }
320
321 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
322 unsigned short dev_type)
323 {
324 int i;
325
326 i = netdev_lock_pos(dev_type);
327 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
328 netdev_lock_name[i]);
329 }
330
331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
332 {
333 int i;
334
335 i = netdev_lock_pos(dev->type);
336 lockdep_set_class_and_name(&dev->addr_list_lock,
337 &netdev_addr_lock_key[i],
338 netdev_lock_name[i]);
339 }
340 #else
341 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
342 unsigned short dev_type)
343 {
344 }
345 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
346 {
347 }
348 #endif
349
350 /*******************************************************************************
351
352 Protocol management and registration routines
353
354 *******************************************************************************/
355
356 /*
357 * Add a protocol ID to the list. Now that the input handler is
358 * smarter we can dispense with all the messy stuff that used to be
359 * here.
360 *
361 * BEWARE!!! Protocol handlers, mangling input packets,
362 * MUST BE last in hash buckets and checking protocol handlers
363 * MUST start from promiscuous ptype_all chain in net_bh.
364 * It is true now, do not change it.
365 * Explanation follows: if protocol handler, mangling packet, will
366 * be the first on list, it is not able to sense, that packet
367 * is cloned and should be copied-on-write, so that it will
368 * change it and subsequent readers will get broken packet.
369 * --ANK (980803)
370 */
371
372 static inline struct list_head *ptype_head(const struct packet_type *pt)
373 {
374 if (pt->type == htons(ETH_P_ALL))
375 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
376 else
377 return pt->dev ? &pt->dev->ptype_specific :
378 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
379 }
380
381 /**
382 * dev_add_pack - add packet handler
383 * @pt: packet type declaration
384 *
385 * Add a protocol handler to the networking stack. The passed &packet_type
386 * is linked into kernel lists and may not be freed until it has been
387 * removed from the kernel lists.
388 *
389 * This call does not sleep therefore it can not
390 * guarantee all CPU's that are in middle of receiving packets
391 * will see the new packet type (until the next received packet).
392 */
393
394 void dev_add_pack(struct packet_type *pt)
395 {
396 struct list_head *head = ptype_head(pt);
397
398 spin_lock(&ptype_lock);
399 list_add_rcu(&pt->list, head);
400 spin_unlock(&ptype_lock);
401 }
402 EXPORT_SYMBOL(dev_add_pack);
403
404 /**
405 * __dev_remove_pack - remove packet handler
406 * @pt: packet type declaration
407 *
408 * Remove a protocol handler that was previously added to the kernel
409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
410 * from the kernel lists and can be freed or reused once this function
411 * returns.
412 *
413 * The packet type might still be in use by receivers
414 * and must not be freed until after all the CPU's have gone
415 * through a quiescent state.
416 */
417 void __dev_remove_pack(struct packet_type *pt)
418 {
419 struct list_head *head = ptype_head(pt);
420 struct packet_type *pt1;
421
422 spin_lock(&ptype_lock);
423
424 list_for_each_entry(pt1, head, list) {
425 if (pt == pt1) {
426 list_del_rcu(&pt->list);
427 goto out;
428 }
429 }
430
431 pr_warn("dev_remove_pack: %p not found\n", pt);
432 out:
433 spin_unlock(&ptype_lock);
434 }
435 EXPORT_SYMBOL(__dev_remove_pack);
436
437 /**
438 * dev_remove_pack - remove packet handler
439 * @pt: packet type declaration
440 *
441 * Remove a protocol handler that was previously added to the kernel
442 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
443 * from the kernel lists and can be freed or reused once this function
444 * returns.
445 *
446 * This call sleeps to guarantee that no CPU is looking at the packet
447 * type after return.
448 */
449 void dev_remove_pack(struct packet_type *pt)
450 {
451 __dev_remove_pack(pt);
452
453 synchronize_net();
454 }
455 EXPORT_SYMBOL(dev_remove_pack);
456
457
458 /**
459 * dev_add_offload - register offload handlers
460 * @po: protocol offload declaration
461 *
462 * Add protocol offload handlers to the networking stack. The passed
463 * &proto_offload is linked into kernel lists and may not be freed until
464 * it has been removed from the kernel lists.
465 *
466 * This call does not sleep therefore it can not
467 * guarantee all CPU's that are in middle of receiving packets
468 * will see the new offload handlers (until the next received packet).
469 */
470 void dev_add_offload(struct packet_offload *po)
471 {
472 struct packet_offload *elem;
473
474 spin_lock(&offload_lock);
475 list_for_each_entry(elem, &offload_base, list) {
476 if (po->priority < elem->priority)
477 break;
478 }
479 list_add_rcu(&po->list, elem->list.prev);
480 spin_unlock(&offload_lock);
481 }
482 EXPORT_SYMBOL(dev_add_offload);
483
484 /**
485 * __dev_remove_offload - remove offload handler
486 * @po: packet offload declaration
487 *
488 * Remove a protocol offload handler that was previously added to the
489 * kernel offload handlers by dev_add_offload(). The passed &offload_type
490 * is removed from the kernel lists and can be freed or reused once this
491 * function returns.
492 *
493 * The packet type might still be in use by receivers
494 * and must not be freed until after all the CPU's have gone
495 * through a quiescent state.
496 */
497 static void __dev_remove_offload(struct packet_offload *po)
498 {
499 struct list_head *head = &offload_base;
500 struct packet_offload *po1;
501
502 spin_lock(&offload_lock);
503
504 list_for_each_entry(po1, head, list) {
505 if (po == po1) {
506 list_del_rcu(&po->list);
507 goto out;
508 }
509 }
510
511 pr_warn("dev_remove_offload: %p not found\n", po);
512 out:
513 spin_unlock(&offload_lock);
514 }
515
516 /**
517 * dev_remove_offload - remove packet offload handler
518 * @po: packet offload declaration
519 *
520 * Remove a packet offload handler that was previously added to the kernel
521 * offload handlers by dev_add_offload(). The passed &offload_type is
522 * removed from the kernel lists and can be freed or reused once this
523 * function returns.
524 *
525 * This call sleeps to guarantee that no CPU is looking at the packet
526 * type after return.
527 */
528 void dev_remove_offload(struct packet_offload *po)
529 {
530 __dev_remove_offload(po);
531
532 synchronize_net();
533 }
534 EXPORT_SYMBOL(dev_remove_offload);
535
536 /******************************************************************************
537
538 Device Boot-time Settings Routines
539
540 *******************************************************************************/
541
542 /* Boot time configuration table */
543 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
544
545 /**
546 * netdev_boot_setup_add - add new setup entry
547 * @name: name of the device
548 * @map: configured settings for the device
549 *
550 * Adds new setup entry to the dev_boot_setup list. The function
551 * returns 0 on error and 1 on success. This is a generic routine to
552 * all netdevices.
553 */
554 static int netdev_boot_setup_add(char *name, struct ifmap *map)
555 {
556 struct netdev_boot_setup *s;
557 int i;
558
559 s = dev_boot_setup;
560 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
561 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
562 memset(s[i].name, 0, sizeof(s[i].name));
563 strlcpy(s[i].name, name, IFNAMSIZ);
564 memcpy(&s[i].map, map, sizeof(s[i].map));
565 break;
566 }
567 }
568
569 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
570 }
571
572 /**
573 * netdev_boot_setup_check - check boot time settings
574 * @dev: the netdevice
575 *
576 * Check boot time settings for the device.
577 * The found settings are set for the device to be used
578 * later in the device probing.
579 * Returns 0 if no settings found, 1 if they are.
580 */
581 int netdev_boot_setup_check(struct net_device *dev)
582 {
583 struct netdev_boot_setup *s = dev_boot_setup;
584 int i;
585
586 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
587 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
588 !strcmp(dev->name, s[i].name)) {
589 dev->irq = s[i].map.irq;
590 dev->base_addr = s[i].map.base_addr;
591 dev->mem_start = s[i].map.mem_start;
592 dev->mem_end = s[i].map.mem_end;
593 return 1;
594 }
595 }
596 return 0;
597 }
598 EXPORT_SYMBOL(netdev_boot_setup_check);
599
600
601 /**
602 * netdev_boot_base - get address from boot time settings
603 * @prefix: prefix for network device
604 * @unit: id for network device
605 *
606 * Check boot time settings for the base address of device.
607 * The found settings are set for the device to be used
608 * later in the device probing.
609 * Returns 0 if no settings found.
610 */
611 unsigned long netdev_boot_base(const char *prefix, int unit)
612 {
613 const struct netdev_boot_setup *s = dev_boot_setup;
614 char name[IFNAMSIZ];
615 int i;
616
617 sprintf(name, "%s%d", prefix, unit);
618
619 /*
620 * If device already registered then return base of 1
621 * to indicate not to probe for this interface
622 */
623 if (__dev_get_by_name(&init_net, name))
624 return 1;
625
626 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
627 if (!strcmp(name, s[i].name))
628 return s[i].map.base_addr;
629 return 0;
630 }
631
632 /*
633 * Saves at boot time configured settings for any netdevice.
634 */
635 int __init netdev_boot_setup(char *str)
636 {
637 int ints[5];
638 struct ifmap map;
639
640 str = get_options(str, ARRAY_SIZE(ints), ints);
641 if (!str || !*str)
642 return 0;
643
644 /* Save settings */
645 memset(&map, 0, sizeof(map));
646 if (ints[0] > 0)
647 map.irq = ints[1];
648 if (ints[0] > 1)
649 map.base_addr = ints[2];
650 if (ints[0] > 2)
651 map.mem_start = ints[3];
652 if (ints[0] > 3)
653 map.mem_end = ints[4];
654
655 /* Add new entry to the list */
656 return netdev_boot_setup_add(str, &map);
657 }
658
659 __setup("netdev=", netdev_boot_setup);
660
661 /*******************************************************************************
662
663 Device Interface Subroutines
664
665 *******************************************************************************/
666
667 /**
668 * dev_get_iflink - get 'iflink' value of a interface
669 * @dev: targeted interface
670 *
671 * Indicates the ifindex the interface is linked to.
672 * Physical interfaces have the same 'ifindex' and 'iflink' values.
673 */
674
675 int dev_get_iflink(const struct net_device *dev)
676 {
677 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
678 return dev->netdev_ops->ndo_get_iflink(dev);
679
680 return dev->ifindex;
681 }
682 EXPORT_SYMBOL(dev_get_iflink);
683
684 /**
685 * __dev_get_by_name - find a device by its name
686 * @net: the applicable net namespace
687 * @name: name to find
688 *
689 * Find an interface by name. Must be called under RTNL semaphore
690 * or @dev_base_lock. If the name is found a pointer to the device
691 * is returned. If the name is not found then %NULL is returned. The
692 * reference counters are not incremented so the caller must be
693 * careful with locks.
694 */
695
696 struct net_device *__dev_get_by_name(struct net *net, const char *name)
697 {
698 struct net_device *dev;
699 struct hlist_head *head = dev_name_hash(net, name);
700
701 hlist_for_each_entry(dev, head, name_hlist)
702 if (!strncmp(dev->name, name, IFNAMSIZ))
703 return dev;
704
705 return NULL;
706 }
707 EXPORT_SYMBOL(__dev_get_by_name);
708
709 /**
710 * dev_get_by_name_rcu - find a device by its name
711 * @net: the applicable net namespace
712 * @name: name to find
713 *
714 * Find an interface by name.
715 * If the name is found a pointer to the device is returned.
716 * If the name is not found then %NULL is returned.
717 * The reference counters are not incremented so the caller must be
718 * careful with locks. The caller must hold RCU lock.
719 */
720
721 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
722 {
723 struct net_device *dev;
724 struct hlist_head *head = dev_name_hash(net, name);
725
726 hlist_for_each_entry_rcu(dev, head, name_hlist)
727 if (!strncmp(dev->name, name, IFNAMSIZ))
728 return dev;
729
730 return NULL;
731 }
732 EXPORT_SYMBOL(dev_get_by_name_rcu);
733
734 /**
735 * dev_get_by_name - find a device by its name
736 * @net: the applicable net namespace
737 * @name: name to find
738 *
739 * Find an interface by name. This can be called from any
740 * context and does its own locking. The returned handle has
741 * the usage count incremented and the caller must use dev_put() to
742 * release it when it is no longer needed. %NULL is returned if no
743 * matching device is found.
744 */
745
746 struct net_device *dev_get_by_name(struct net *net, const char *name)
747 {
748 struct net_device *dev;
749
750 rcu_read_lock();
751 dev = dev_get_by_name_rcu(net, name);
752 if (dev)
753 dev_hold(dev);
754 rcu_read_unlock();
755 return dev;
756 }
757 EXPORT_SYMBOL(dev_get_by_name);
758
759 /**
760 * __dev_get_by_index - find a device by its ifindex
761 * @net: the applicable net namespace
762 * @ifindex: index of device
763 *
764 * Search for an interface by index. Returns %NULL if the device
765 * is not found or a pointer to the device. The device has not
766 * had its reference counter increased so the caller must be careful
767 * about locking. The caller must hold either the RTNL semaphore
768 * or @dev_base_lock.
769 */
770
771 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
772 {
773 struct net_device *dev;
774 struct hlist_head *head = dev_index_hash(net, ifindex);
775
776 hlist_for_each_entry(dev, head, index_hlist)
777 if (dev->ifindex == ifindex)
778 return dev;
779
780 return NULL;
781 }
782 EXPORT_SYMBOL(__dev_get_by_index);
783
784 /**
785 * dev_get_by_index_rcu - find a device by its ifindex
786 * @net: the applicable net namespace
787 * @ifindex: index of device
788 *
789 * Search for an interface by index. Returns %NULL if the device
790 * is not found or a pointer to the device. The device has not
791 * had its reference counter increased so the caller must be careful
792 * about locking. The caller must hold RCU lock.
793 */
794
795 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
796 {
797 struct net_device *dev;
798 struct hlist_head *head = dev_index_hash(net, ifindex);
799
800 hlist_for_each_entry_rcu(dev, head, index_hlist)
801 if (dev->ifindex == ifindex)
802 return dev;
803
804 return NULL;
805 }
806 EXPORT_SYMBOL(dev_get_by_index_rcu);
807
808
809 /**
810 * dev_get_by_index - find a device by its ifindex
811 * @net: the applicable net namespace
812 * @ifindex: index of device
813 *
814 * Search for an interface by index. Returns NULL if the device
815 * is not found or a pointer to the device. The device returned has
816 * had a reference added and the pointer is safe until the user calls
817 * dev_put to indicate they have finished with it.
818 */
819
820 struct net_device *dev_get_by_index(struct net *net, int ifindex)
821 {
822 struct net_device *dev;
823
824 rcu_read_lock();
825 dev = dev_get_by_index_rcu(net, ifindex);
826 if (dev)
827 dev_hold(dev);
828 rcu_read_unlock();
829 return dev;
830 }
831 EXPORT_SYMBOL(dev_get_by_index);
832
833 /**
834 * netdev_get_name - get a netdevice name, knowing its ifindex.
835 * @net: network namespace
836 * @name: a pointer to the buffer where the name will be stored.
837 * @ifindex: the ifindex of the interface to get the name from.
838 *
839 * The use of raw_seqcount_begin() and cond_resched() before
840 * retrying is required as we want to give the writers a chance
841 * to complete when CONFIG_PREEMPT is not set.
842 */
843 int netdev_get_name(struct net *net, char *name, int ifindex)
844 {
845 struct net_device *dev;
846 unsigned int seq;
847
848 retry:
849 seq = raw_seqcount_begin(&devnet_rename_seq);
850 rcu_read_lock();
851 dev = dev_get_by_index_rcu(net, ifindex);
852 if (!dev) {
853 rcu_read_unlock();
854 return -ENODEV;
855 }
856
857 strcpy(name, dev->name);
858 rcu_read_unlock();
859 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
860 cond_resched();
861 goto retry;
862 }
863
864 return 0;
865 }
866
867 /**
868 * dev_getbyhwaddr_rcu - find a device by its hardware address
869 * @net: the applicable net namespace
870 * @type: media type of device
871 * @ha: hardware address
872 *
873 * Search for an interface by MAC address. Returns NULL if the device
874 * is not found or a pointer to the device.
875 * The caller must hold RCU or RTNL.
876 * The returned device has not had its ref count increased
877 * and the caller must therefore be careful about locking
878 *
879 */
880
881 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
882 const char *ha)
883 {
884 struct net_device *dev;
885
886 for_each_netdev_rcu(net, dev)
887 if (dev->type == type &&
888 !memcmp(dev->dev_addr, ha, dev->addr_len))
889 return dev;
890
891 return NULL;
892 }
893 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
894
895 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
896 {
897 struct net_device *dev;
898
899 ASSERT_RTNL();
900 for_each_netdev(net, dev)
901 if (dev->type == type)
902 return dev;
903
904 return NULL;
905 }
906 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
907
908 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
909 {
910 struct net_device *dev, *ret = NULL;
911
912 rcu_read_lock();
913 for_each_netdev_rcu(net, dev)
914 if (dev->type == type) {
915 dev_hold(dev);
916 ret = dev;
917 break;
918 }
919 rcu_read_unlock();
920 return ret;
921 }
922 EXPORT_SYMBOL(dev_getfirstbyhwtype);
923
924 /**
925 * __dev_get_by_flags - find any device with given flags
926 * @net: the applicable net namespace
927 * @if_flags: IFF_* values
928 * @mask: bitmask of bits in if_flags to check
929 *
930 * Search for any interface with the given flags. Returns NULL if a device
931 * is not found or a pointer to the device. Must be called inside
932 * rtnl_lock(), and result refcount is unchanged.
933 */
934
935 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
936 unsigned short mask)
937 {
938 struct net_device *dev, *ret;
939
940 ASSERT_RTNL();
941
942 ret = NULL;
943 for_each_netdev(net, dev) {
944 if (((dev->flags ^ if_flags) & mask) == 0) {
945 ret = dev;
946 break;
947 }
948 }
949 return ret;
950 }
951 EXPORT_SYMBOL(__dev_get_by_flags);
952
953 /**
954 * dev_valid_name - check if name is okay for network device
955 * @name: name string
956 *
957 * Network device names need to be valid file names to
958 * to allow sysfs to work. We also disallow any kind of
959 * whitespace.
960 */
961 bool dev_valid_name(const char *name)
962 {
963 if (*name == '\0')
964 return false;
965 if (strlen(name) >= IFNAMSIZ)
966 return false;
967 if (!strcmp(name, ".") || !strcmp(name, ".."))
968 return false;
969
970 while (*name) {
971 if (*name == '/' || *name == ':' || isspace(*name))
972 return false;
973 name++;
974 }
975 return true;
976 }
977 EXPORT_SYMBOL(dev_valid_name);
978
979 /**
980 * __dev_alloc_name - allocate a name for a device
981 * @net: network namespace to allocate the device name in
982 * @name: name format string
983 * @buf: scratch buffer and result name string
984 *
985 * Passed a format string - eg "lt%d" it will try and find a suitable
986 * id. It scans list of devices to build up a free map, then chooses
987 * the first empty slot. The caller must hold the dev_base or rtnl lock
988 * while allocating the name and adding the device in order to avoid
989 * duplicates.
990 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
991 * Returns the number of the unit assigned or a negative errno code.
992 */
993
994 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
995 {
996 int i = 0;
997 const char *p;
998 const int max_netdevices = 8*PAGE_SIZE;
999 unsigned long *inuse;
1000 struct net_device *d;
1001
1002 p = strnchr(name, IFNAMSIZ-1, '%');
1003 if (p) {
1004 /*
1005 * Verify the string as this thing may have come from
1006 * the user. There must be either one "%d" and no other "%"
1007 * characters.
1008 */
1009 if (p[1] != 'd' || strchr(p + 2, '%'))
1010 return -EINVAL;
1011
1012 /* Use one page as a bit array of possible slots */
1013 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1014 if (!inuse)
1015 return -ENOMEM;
1016
1017 for_each_netdev(net, d) {
1018 if (!sscanf(d->name, name, &i))
1019 continue;
1020 if (i < 0 || i >= max_netdevices)
1021 continue;
1022
1023 /* avoid cases where sscanf is not exact inverse of printf */
1024 snprintf(buf, IFNAMSIZ, name, i);
1025 if (!strncmp(buf, d->name, IFNAMSIZ))
1026 set_bit(i, inuse);
1027 }
1028
1029 i = find_first_zero_bit(inuse, max_netdevices);
1030 free_page((unsigned long) inuse);
1031 }
1032
1033 if (buf != name)
1034 snprintf(buf, IFNAMSIZ, name, i);
1035 if (!__dev_get_by_name(net, buf))
1036 return i;
1037
1038 /* It is possible to run out of possible slots
1039 * when the name is long and there isn't enough space left
1040 * for the digits, or if all bits are used.
1041 */
1042 return -ENFILE;
1043 }
1044
1045 /**
1046 * dev_alloc_name - allocate a name for a device
1047 * @dev: device
1048 * @name: name format string
1049 *
1050 * Passed a format string - eg "lt%d" it will try and find a suitable
1051 * id. It scans list of devices to build up a free map, then chooses
1052 * the first empty slot. The caller must hold the dev_base or rtnl lock
1053 * while allocating the name and adding the device in order to avoid
1054 * duplicates.
1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 * Returns the number of the unit assigned or a negative errno code.
1057 */
1058
1059 int dev_alloc_name(struct net_device *dev, const char *name)
1060 {
1061 char buf[IFNAMSIZ];
1062 struct net *net;
1063 int ret;
1064
1065 BUG_ON(!dev_net(dev));
1066 net = dev_net(dev);
1067 ret = __dev_alloc_name(net, name, buf);
1068 if (ret >= 0)
1069 strlcpy(dev->name, buf, IFNAMSIZ);
1070 return ret;
1071 }
1072 EXPORT_SYMBOL(dev_alloc_name);
1073
1074 static int dev_alloc_name_ns(struct net *net,
1075 struct net_device *dev,
1076 const char *name)
1077 {
1078 char buf[IFNAMSIZ];
1079 int ret;
1080
1081 ret = __dev_alloc_name(net, name, buf);
1082 if (ret >= 0)
1083 strlcpy(dev->name, buf, IFNAMSIZ);
1084 return ret;
1085 }
1086
1087 static int dev_get_valid_name(struct net *net,
1088 struct net_device *dev,
1089 const char *name)
1090 {
1091 BUG_ON(!net);
1092
1093 if (!dev_valid_name(name))
1094 return -EINVAL;
1095
1096 if (strchr(name, '%'))
1097 return dev_alloc_name_ns(net, dev, name);
1098 else if (__dev_get_by_name(net, name))
1099 return -EEXIST;
1100 else if (dev->name != name)
1101 strlcpy(dev->name, name, IFNAMSIZ);
1102
1103 return 0;
1104 }
1105
1106 /**
1107 * dev_change_name - change name of a device
1108 * @dev: device
1109 * @newname: name (or format string) must be at least IFNAMSIZ
1110 *
1111 * Change name of a device, can pass format strings "eth%d".
1112 * for wildcarding.
1113 */
1114 int dev_change_name(struct net_device *dev, const char *newname)
1115 {
1116 unsigned char old_assign_type;
1117 char oldname[IFNAMSIZ];
1118 int err = 0;
1119 int ret;
1120 struct net *net;
1121
1122 ASSERT_RTNL();
1123 BUG_ON(!dev_net(dev));
1124
1125 net = dev_net(dev);
1126 if (dev->flags & IFF_UP)
1127 return -EBUSY;
1128
1129 write_seqcount_begin(&devnet_rename_seq);
1130
1131 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1132 write_seqcount_end(&devnet_rename_seq);
1133 return 0;
1134 }
1135
1136 memcpy(oldname, dev->name, IFNAMSIZ);
1137
1138 err = dev_get_valid_name(net, dev, newname);
1139 if (err < 0) {
1140 write_seqcount_end(&devnet_rename_seq);
1141 return err;
1142 }
1143
1144 if (oldname[0] && !strchr(oldname, '%'))
1145 netdev_info(dev, "renamed from %s\n", oldname);
1146
1147 old_assign_type = dev->name_assign_type;
1148 dev->name_assign_type = NET_NAME_RENAMED;
1149
1150 rollback:
1151 ret = device_rename(&dev->dev, dev->name);
1152 if (ret) {
1153 memcpy(dev->name, oldname, IFNAMSIZ);
1154 dev->name_assign_type = old_assign_type;
1155 write_seqcount_end(&devnet_rename_seq);
1156 return ret;
1157 }
1158
1159 write_seqcount_end(&devnet_rename_seq);
1160
1161 netdev_adjacent_rename_links(dev, oldname);
1162
1163 write_lock_bh(&dev_base_lock);
1164 hlist_del_rcu(&dev->name_hlist);
1165 write_unlock_bh(&dev_base_lock);
1166
1167 synchronize_rcu();
1168
1169 write_lock_bh(&dev_base_lock);
1170 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1171 write_unlock_bh(&dev_base_lock);
1172
1173 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1174 ret = notifier_to_errno(ret);
1175
1176 if (ret) {
1177 /* err >= 0 after dev_alloc_name() or stores the first errno */
1178 if (err >= 0) {
1179 err = ret;
1180 write_seqcount_begin(&devnet_rename_seq);
1181 memcpy(dev->name, oldname, IFNAMSIZ);
1182 memcpy(oldname, newname, IFNAMSIZ);
1183 dev->name_assign_type = old_assign_type;
1184 old_assign_type = NET_NAME_RENAMED;
1185 goto rollback;
1186 } else {
1187 pr_err("%s: name change rollback failed: %d\n",
1188 dev->name, ret);
1189 }
1190 }
1191
1192 return err;
1193 }
1194
1195 /**
1196 * dev_set_alias - change ifalias of a device
1197 * @dev: device
1198 * @alias: name up to IFALIASZ
1199 * @len: limit of bytes to copy from info
1200 *
1201 * Set ifalias for a device,
1202 */
1203 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1204 {
1205 char *new_ifalias;
1206
1207 ASSERT_RTNL();
1208
1209 if (len >= IFALIASZ)
1210 return -EINVAL;
1211
1212 if (!len) {
1213 kfree(dev->ifalias);
1214 dev->ifalias = NULL;
1215 return 0;
1216 }
1217
1218 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1219 if (!new_ifalias)
1220 return -ENOMEM;
1221 dev->ifalias = new_ifalias;
1222
1223 strlcpy(dev->ifalias, alias, len+1);
1224 return len;
1225 }
1226
1227
1228 /**
1229 * netdev_features_change - device changes features
1230 * @dev: device to cause notification
1231 *
1232 * Called to indicate a device has changed features.
1233 */
1234 void netdev_features_change(struct net_device *dev)
1235 {
1236 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1237 }
1238 EXPORT_SYMBOL(netdev_features_change);
1239
1240 /**
1241 * netdev_state_change - device changes state
1242 * @dev: device to cause notification
1243 *
1244 * Called to indicate a device has changed state. This function calls
1245 * the notifier chains for netdev_chain and sends a NEWLINK message
1246 * to the routing socket.
1247 */
1248 void netdev_state_change(struct net_device *dev)
1249 {
1250 if (dev->flags & IFF_UP) {
1251 struct netdev_notifier_change_info change_info;
1252
1253 change_info.flags_changed = 0;
1254 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1255 &change_info.info);
1256 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1257 }
1258 }
1259 EXPORT_SYMBOL(netdev_state_change);
1260
1261 /**
1262 * netdev_notify_peers - notify network peers about existence of @dev
1263 * @dev: network device
1264 *
1265 * Generate traffic such that interested network peers are aware of
1266 * @dev, such as by generating a gratuitous ARP. This may be used when
1267 * a device wants to inform the rest of the network about some sort of
1268 * reconfiguration such as a failover event or virtual machine
1269 * migration.
1270 */
1271 void netdev_notify_peers(struct net_device *dev)
1272 {
1273 rtnl_lock();
1274 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1275 rtnl_unlock();
1276 }
1277 EXPORT_SYMBOL(netdev_notify_peers);
1278
1279 static int __dev_open(struct net_device *dev)
1280 {
1281 const struct net_device_ops *ops = dev->netdev_ops;
1282 int ret;
1283
1284 ASSERT_RTNL();
1285
1286 if (!netif_device_present(dev))
1287 return -ENODEV;
1288
1289 /* Block netpoll from trying to do any rx path servicing.
1290 * If we don't do this there is a chance ndo_poll_controller
1291 * or ndo_poll may be running while we open the device
1292 */
1293 netpoll_poll_disable(dev);
1294
1295 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1296 ret = notifier_to_errno(ret);
1297 if (ret)
1298 return ret;
1299
1300 set_bit(__LINK_STATE_START, &dev->state);
1301
1302 if (ops->ndo_validate_addr)
1303 ret = ops->ndo_validate_addr(dev);
1304
1305 if (!ret && ops->ndo_open)
1306 ret = ops->ndo_open(dev);
1307
1308 netpoll_poll_enable(dev);
1309
1310 if (ret)
1311 clear_bit(__LINK_STATE_START, &dev->state);
1312 else {
1313 dev->flags |= IFF_UP;
1314 dev_set_rx_mode(dev);
1315 dev_activate(dev);
1316 add_device_randomness(dev->dev_addr, dev->addr_len);
1317 }
1318
1319 return ret;
1320 }
1321
1322 /**
1323 * dev_open - prepare an interface for use.
1324 * @dev: device to open
1325 *
1326 * Takes a device from down to up state. The device's private open
1327 * function is invoked and then the multicast lists are loaded. Finally
1328 * the device is moved into the up state and a %NETDEV_UP message is
1329 * sent to the netdev notifier chain.
1330 *
1331 * Calling this function on an active interface is a nop. On a failure
1332 * a negative errno code is returned.
1333 */
1334 int dev_open(struct net_device *dev)
1335 {
1336 int ret;
1337
1338 if (dev->flags & IFF_UP)
1339 return 0;
1340
1341 ret = __dev_open(dev);
1342 if (ret < 0)
1343 return ret;
1344
1345 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1346 call_netdevice_notifiers(NETDEV_UP, dev);
1347
1348 return ret;
1349 }
1350 EXPORT_SYMBOL(dev_open);
1351
1352 static int __dev_close_many(struct list_head *head)
1353 {
1354 struct net_device *dev;
1355
1356 ASSERT_RTNL();
1357 might_sleep();
1358
1359 list_for_each_entry(dev, head, close_list) {
1360 /* Temporarily disable netpoll until the interface is down */
1361 netpoll_poll_disable(dev);
1362
1363 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1364
1365 clear_bit(__LINK_STATE_START, &dev->state);
1366
1367 /* Synchronize to scheduled poll. We cannot touch poll list, it
1368 * can be even on different cpu. So just clear netif_running().
1369 *
1370 * dev->stop() will invoke napi_disable() on all of it's
1371 * napi_struct instances on this device.
1372 */
1373 smp_mb__after_atomic(); /* Commit netif_running(). */
1374 }
1375
1376 dev_deactivate_many(head);
1377
1378 list_for_each_entry(dev, head, close_list) {
1379 const struct net_device_ops *ops = dev->netdev_ops;
1380
1381 /*
1382 * Call the device specific close. This cannot fail.
1383 * Only if device is UP
1384 *
1385 * We allow it to be called even after a DETACH hot-plug
1386 * event.
1387 */
1388 if (ops->ndo_stop)
1389 ops->ndo_stop(dev);
1390
1391 dev->flags &= ~IFF_UP;
1392 netpoll_poll_enable(dev);
1393 }
1394
1395 return 0;
1396 }
1397
1398 static int __dev_close(struct net_device *dev)
1399 {
1400 int retval;
1401 LIST_HEAD(single);
1402
1403 list_add(&dev->close_list, &single);
1404 retval = __dev_close_many(&single);
1405 list_del(&single);
1406
1407 return retval;
1408 }
1409
1410 int dev_close_many(struct list_head *head, bool unlink)
1411 {
1412 struct net_device *dev, *tmp;
1413
1414 /* Remove the devices that don't need to be closed */
1415 list_for_each_entry_safe(dev, tmp, head, close_list)
1416 if (!(dev->flags & IFF_UP))
1417 list_del_init(&dev->close_list);
1418
1419 __dev_close_many(head);
1420
1421 list_for_each_entry_safe(dev, tmp, head, close_list) {
1422 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1423 call_netdevice_notifiers(NETDEV_DOWN, dev);
1424 if (unlink)
1425 list_del_init(&dev->close_list);
1426 }
1427
1428 return 0;
1429 }
1430 EXPORT_SYMBOL(dev_close_many);
1431
1432 /**
1433 * dev_close - shutdown an interface.
1434 * @dev: device to shutdown
1435 *
1436 * This function moves an active device into down state. A
1437 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1438 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1439 * chain.
1440 */
1441 int dev_close(struct net_device *dev)
1442 {
1443 if (dev->flags & IFF_UP) {
1444 LIST_HEAD(single);
1445
1446 list_add(&dev->close_list, &single);
1447 dev_close_many(&single, true);
1448 list_del(&single);
1449 }
1450 return 0;
1451 }
1452 EXPORT_SYMBOL(dev_close);
1453
1454
1455 /**
1456 * dev_disable_lro - disable Large Receive Offload on a device
1457 * @dev: device
1458 *
1459 * Disable Large Receive Offload (LRO) on a net device. Must be
1460 * called under RTNL. This is needed if received packets may be
1461 * forwarded to another interface.
1462 */
1463 void dev_disable_lro(struct net_device *dev)
1464 {
1465 struct net_device *lower_dev;
1466 struct list_head *iter;
1467
1468 dev->wanted_features &= ~NETIF_F_LRO;
1469 netdev_update_features(dev);
1470
1471 if (unlikely(dev->features & NETIF_F_LRO))
1472 netdev_WARN(dev, "failed to disable LRO!\n");
1473
1474 netdev_for_each_lower_dev(dev, lower_dev, iter)
1475 dev_disable_lro(lower_dev);
1476 }
1477 EXPORT_SYMBOL(dev_disable_lro);
1478
1479 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1480 struct net_device *dev)
1481 {
1482 struct netdev_notifier_info info;
1483
1484 netdev_notifier_info_init(&info, dev);
1485 return nb->notifier_call(nb, val, &info);
1486 }
1487
1488 static int dev_boot_phase = 1;
1489
1490 /**
1491 * register_netdevice_notifier - register a network notifier block
1492 * @nb: notifier
1493 *
1494 * Register a notifier to be called when network device events occur.
1495 * The notifier passed is linked into the kernel structures and must
1496 * not be reused until it has been unregistered. A negative errno code
1497 * is returned on a failure.
1498 *
1499 * When registered all registration and up events are replayed
1500 * to the new notifier to allow device to have a race free
1501 * view of the network device list.
1502 */
1503
1504 int register_netdevice_notifier(struct notifier_block *nb)
1505 {
1506 struct net_device *dev;
1507 struct net_device *last;
1508 struct net *net;
1509 int err;
1510
1511 rtnl_lock();
1512 err = raw_notifier_chain_register(&netdev_chain, nb);
1513 if (err)
1514 goto unlock;
1515 if (dev_boot_phase)
1516 goto unlock;
1517 for_each_net(net) {
1518 for_each_netdev(net, dev) {
1519 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1520 err = notifier_to_errno(err);
1521 if (err)
1522 goto rollback;
1523
1524 if (!(dev->flags & IFF_UP))
1525 continue;
1526
1527 call_netdevice_notifier(nb, NETDEV_UP, dev);
1528 }
1529 }
1530
1531 unlock:
1532 rtnl_unlock();
1533 return err;
1534
1535 rollback:
1536 last = dev;
1537 for_each_net(net) {
1538 for_each_netdev(net, dev) {
1539 if (dev == last)
1540 goto outroll;
1541
1542 if (dev->flags & IFF_UP) {
1543 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1544 dev);
1545 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1546 }
1547 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1548 }
1549 }
1550
1551 outroll:
1552 raw_notifier_chain_unregister(&netdev_chain, nb);
1553 goto unlock;
1554 }
1555 EXPORT_SYMBOL(register_netdevice_notifier);
1556
1557 /**
1558 * unregister_netdevice_notifier - unregister a network notifier block
1559 * @nb: notifier
1560 *
1561 * Unregister a notifier previously registered by
1562 * register_netdevice_notifier(). The notifier is unlinked into the
1563 * kernel structures and may then be reused. A negative errno code
1564 * is returned on a failure.
1565 *
1566 * After unregistering unregister and down device events are synthesized
1567 * for all devices on the device list to the removed notifier to remove
1568 * the need for special case cleanup code.
1569 */
1570
1571 int unregister_netdevice_notifier(struct notifier_block *nb)
1572 {
1573 struct net_device *dev;
1574 struct net *net;
1575 int err;
1576
1577 rtnl_lock();
1578 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1579 if (err)
1580 goto unlock;
1581
1582 for_each_net(net) {
1583 for_each_netdev(net, dev) {
1584 if (dev->flags & IFF_UP) {
1585 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1586 dev);
1587 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1588 }
1589 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1590 }
1591 }
1592 unlock:
1593 rtnl_unlock();
1594 return err;
1595 }
1596 EXPORT_SYMBOL(unregister_netdevice_notifier);
1597
1598 /**
1599 * call_netdevice_notifiers_info - call all network notifier blocks
1600 * @val: value passed unmodified to notifier function
1601 * @dev: net_device pointer passed unmodified to notifier function
1602 * @info: notifier information data
1603 *
1604 * Call all network notifier blocks. Parameters and return value
1605 * are as for raw_notifier_call_chain().
1606 */
1607
1608 static int call_netdevice_notifiers_info(unsigned long val,
1609 struct net_device *dev,
1610 struct netdev_notifier_info *info)
1611 {
1612 ASSERT_RTNL();
1613 netdev_notifier_info_init(info, dev);
1614 return raw_notifier_call_chain(&netdev_chain, val, info);
1615 }
1616
1617 /**
1618 * call_netdevice_notifiers - call all network notifier blocks
1619 * @val: value passed unmodified to notifier function
1620 * @dev: net_device pointer passed unmodified to notifier function
1621 *
1622 * Call all network notifier blocks. Parameters and return value
1623 * are as for raw_notifier_call_chain().
1624 */
1625
1626 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1627 {
1628 struct netdev_notifier_info info;
1629
1630 return call_netdevice_notifiers_info(val, dev, &info);
1631 }
1632 EXPORT_SYMBOL(call_netdevice_notifiers);
1633
1634 #ifdef CONFIG_NET_INGRESS
1635 static struct static_key ingress_needed __read_mostly;
1636
1637 void net_inc_ingress_queue(void)
1638 {
1639 static_key_slow_inc(&ingress_needed);
1640 }
1641 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1642
1643 void net_dec_ingress_queue(void)
1644 {
1645 static_key_slow_dec(&ingress_needed);
1646 }
1647 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1648 #endif
1649
1650 static struct static_key netstamp_needed __read_mostly;
1651 #ifdef HAVE_JUMP_LABEL
1652 /* We are not allowed to call static_key_slow_dec() from irq context
1653 * If net_disable_timestamp() is called from irq context, defer the
1654 * static_key_slow_dec() calls.
1655 */
1656 static atomic_t netstamp_needed_deferred;
1657 #endif
1658
1659 void net_enable_timestamp(void)
1660 {
1661 #ifdef HAVE_JUMP_LABEL
1662 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1663
1664 if (deferred) {
1665 while (--deferred)
1666 static_key_slow_dec(&netstamp_needed);
1667 return;
1668 }
1669 #endif
1670 static_key_slow_inc(&netstamp_needed);
1671 }
1672 EXPORT_SYMBOL(net_enable_timestamp);
1673
1674 void net_disable_timestamp(void)
1675 {
1676 #ifdef HAVE_JUMP_LABEL
1677 if (in_interrupt()) {
1678 atomic_inc(&netstamp_needed_deferred);
1679 return;
1680 }
1681 #endif
1682 static_key_slow_dec(&netstamp_needed);
1683 }
1684 EXPORT_SYMBOL(net_disable_timestamp);
1685
1686 static inline void net_timestamp_set(struct sk_buff *skb)
1687 {
1688 skb->tstamp.tv64 = 0;
1689 if (static_key_false(&netstamp_needed))
1690 __net_timestamp(skb);
1691 }
1692
1693 #define net_timestamp_check(COND, SKB) \
1694 if (static_key_false(&netstamp_needed)) { \
1695 if ((COND) && !(SKB)->tstamp.tv64) \
1696 __net_timestamp(SKB); \
1697 } \
1698
1699 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1700 {
1701 unsigned int len;
1702
1703 if (!(dev->flags & IFF_UP))
1704 return false;
1705
1706 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1707 if (skb->len <= len)
1708 return true;
1709
1710 /* if TSO is enabled, we don't care about the length as the packet
1711 * could be forwarded without being segmented before
1712 */
1713 if (skb_is_gso(skb))
1714 return true;
1715
1716 return false;
1717 }
1718 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1719
1720 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1721 {
1722 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1723 unlikely(!is_skb_forwardable(dev, skb))) {
1724 atomic_long_inc(&dev->rx_dropped);
1725 kfree_skb(skb);
1726 return NET_RX_DROP;
1727 }
1728
1729 skb_scrub_packet(skb, true);
1730 skb->priority = 0;
1731 skb->protocol = eth_type_trans(skb, dev);
1732 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1733
1734 return 0;
1735 }
1736 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1737
1738 /**
1739 * dev_forward_skb - loopback an skb to another netif
1740 *
1741 * @dev: destination network device
1742 * @skb: buffer to forward
1743 *
1744 * return values:
1745 * NET_RX_SUCCESS (no congestion)
1746 * NET_RX_DROP (packet was dropped, but freed)
1747 *
1748 * dev_forward_skb can be used for injecting an skb from the
1749 * start_xmit function of one device into the receive queue
1750 * of another device.
1751 *
1752 * The receiving device may be in another namespace, so
1753 * we have to clear all information in the skb that could
1754 * impact namespace isolation.
1755 */
1756 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1757 {
1758 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1759 }
1760 EXPORT_SYMBOL_GPL(dev_forward_skb);
1761
1762 static inline int deliver_skb(struct sk_buff *skb,
1763 struct packet_type *pt_prev,
1764 struct net_device *orig_dev)
1765 {
1766 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1767 return -ENOMEM;
1768 atomic_inc(&skb->users);
1769 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1770 }
1771
1772 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1773 struct packet_type **pt,
1774 struct net_device *orig_dev,
1775 __be16 type,
1776 struct list_head *ptype_list)
1777 {
1778 struct packet_type *ptype, *pt_prev = *pt;
1779
1780 list_for_each_entry_rcu(ptype, ptype_list, list) {
1781 if (ptype->type != type)
1782 continue;
1783 if (pt_prev)
1784 deliver_skb(skb, pt_prev, orig_dev);
1785 pt_prev = ptype;
1786 }
1787 *pt = pt_prev;
1788 }
1789
1790 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1791 {
1792 if (!ptype->af_packet_priv || !skb->sk)
1793 return false;
1794
1795 if (ptype->id_match)
1796 return ptype->id_match(ptype, skb->sk);
1797 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1798 return true;
1799
1800 return false;
1801 }
1802
1803 /*
1804 * Support routine. Sends outgoing frames to any network
1805 * taps currently in use.
1806 */
1807
1808 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1809 {
1810 struct packet_type *ptype;
1811 struct sk_buff *skb2 = NULL;
1812 struct packet_type *pt_prev = NULL;
1813 struct list_head *ptype_list = &ptype_all;
1814
1815 rcu_read_lock();
1816 again:
1817 list_for_each_entry_rcu(ptype, ptype_list, list) {
1818 /* Never send packets back to the socket
1819 * they originated from - MvS (miquels@drinkel.ow.org)
1820 */
1821 if (skb_loop_sk(ptype, skb))
1822 continue;
1823
1824 if (pt_prev) {
1825 deliver_skb(skb2, pt_prev, skb->dev);
1826 pt_prev = ptype;
1827 continue;
1828 }
1829
1830 /* need to clone skb, done only once */
1831 skb2 = skb_clone(skb, GFP_ATOMIC);
1832 if (!skb2)
1833 goto out_unlock;
1834
1835 net_timestamp_set(skb2);
1836
1837 /* skb->nh should be correctly
1838 * set by sender, so that the second statement is
1839 * just protection against buggy protocols.
1840 */
1841 skb_reset_mac_header(skb2);
1842
1843 if (skb_network_header(skb2) < skb2->data ||
1844 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1845 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1846 ntohs(skb2->protocol),
1847 dev->name);
1848 skb_reset_network_header(skb2);
1849 }
1850
1851 skb2->transport_header = skb2->network_header;
1852 skb2->pkt_type = PACKET_OUTGOING;
1853 pt_prev = ptype;
1854 }
1855
1856 if (ptype_list == &ptype_all) {
1857 ptype_list = &dev->ptype_all;
1858 goto again;
1859 }
1860 out_unlock:
1861 if (pt_prev)
1862 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1863 rcu_read_unlock();
1864 }
1865
1866 /**
1867 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1868 * @dev: Network device
1869 * @txq: number of queues available
1870 *
1871 * If real_num_tx_queues is changed the tc mappings may no longer be
1872 * valid. To resolve this verify the tc mapping remains valid and if
1873 * not NULL the mapping. With no priorities mapping to this
1874 * offset/count pair it will no longer be used. In the worst case TC0
1875 * is invalid nothing can be done so disable priority mappings. If is
1876 * expected that drivers will fix this mapping if they can before
1877 * calling netif_set_real_num_tx_queues.
1878 */
1879 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1880 {
1881 int i;
1882 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1883
1884 /* If TC0 is invalidated disable TC mapping */
1885 if (tc->offset + tc->count > txq) {
1886 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1887 dev->num_tc = 0;
1888 return;
1889 }
1890
1891 /* Invalidated prio to tc mappings set to TC0 */
1892 for (i = 1; i < TC_BITMASK + 1; i++) {
1893 int q = netdev_get_prio_tc_map(dev, i);
1894
1895 tc = &dev->tc_to_txq[q];
1896 if (tc->offset + tc->count > txq) {
1897 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1898 i, q);
1899 netdev_set_prio_tc_map(dev, i, 0);
1900 }
1901 }
1902 }
1903
1904 #ifdef CONFIG_XPS
1905 static DEFINE_MUTEX(xps_map_mutex);
1906 #define xmap_dereference(P) \
1907 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1908
1909 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1910 int cpu, u16 index)
1911 {
1912 struct xps_map *map = NULL;
1913 int pos;
1914
1915 if (dev_maps)
1916 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1917
1918 for (pos = 0; map && pos < map->len; pos++) {
1919 if (map->queues[pos] == index) {
1920 if (map->len > 1) {
1921 map->queues[pos] = map->queues[--map->len];
1922 } else {
1923 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1924 kfree_rcu(map, rcu);
1925 map = NULL;
1926 }
1927 break;
1928 }
1929 }
1930
1931 return map;
1932 }
1933
1934 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1935 {
1936 struct xps_dev_maps *dev_maps;
1937 int cpu, i;
1938 bool active = false;
1939
1940 mutex_lock(&xps_map_mutex);
1941 dev_maps = xmap_dereference(dev->xps_maps);
1942
1943 if (!dev_maps)
1944 goto out_no_maps;
1945
1946 for_each_possible_cpu(cpu) {
1947 for (i = index; i < dev->num_tx_queues; i++) {
1948 if (!remove_xps_queue(dev_maps, cpu, i))
1949 break;
1950 }
1951 if (i == dev->num_tx_queues)
1952 active = true;
1953 }
1954
1955 if (!active) {
1956 RCU_INIT_POINTER(dev->xps_maps, NULL);
1957 kfree_rcu(dev_maps, rcu);
1958 }
1959
1960 for (i = index; i < dev->num_tx_queues; i++)
1961 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1962 NUMA_NO_NODE);
1963
1964 out_no_maps:
1965 mutex_unlock(&xps_map_mutex);
1966 }
1967
1968 static struct xps_map *expand_xps_map(struct xps_map *map,
1969 int cpu, u16 index)
1970 {
1971 struct xps_map *new_map;
1972 int alloc_len = XPS_MIN_MAP_ALLOC;
1973 int i, pos;
1974
1975 for (pos = 0; map && pos < map->len; pos++) {
1976 if (map->queues[pos] != index)
1977 continue;
1978 return map;
1979 }
1980
1981 /* Need to add queue to this CPU's existing map */
1982 if (map) {
1983 if (pos < map->alloc_len)
1984 return map;
1985
1986 alloc_len = map->alloc_len * 2;
1987 }
1988
1989 /* Need to allocate new map to store queue on this CPU's map */
1990 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1991 cpu_to_node(cpu));
1992 if (!new_map)
1993 return NULL;
1994
1995 for (i = 0; i < pos; i++)
1996 new_map->queues[i] = map->queues[i];
1997 new_map->alloc_len = alloc_len;
1998 new_map->len = pos;
1999
2000 return new_map;
2001 }
2002
2003 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2004 u16 index)
2005 {
2006 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2007 struct xps_map *map, *new_map;
2008 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2009 int cpu, numa_node_id = -2;
2010 bool active = false;
2011
2012 mutex_lock(&xps_map_mutex);
2013
2014 dev_maps = xmap_dereference(dev->xps_maps);
2015
2016 /* allocate memory for queue storage */
2017 for_each_online_cpu(cpu) {
2018 if (!cpumask_test_cpu(cpu, mask))
2019 continue;
2020
2021 if (!new_dev_maps)
2022 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2023 if (!new_dev_maps) {
2024 mutex_unlock(&xps_map_mutex);
2025 return -ENOMEM;
2026 }
2027
2028 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2029 NULL;
2030
2031 map = expand_xps_map(map, cpu, index);
2032 if (!map)
2033 goto error;
2034
2035 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2036 }
2037
2038 if (!new_dev_maps)
2039 goto out_no_new_maps;
2040
2041 for_each_possible_cpu(cpu) {
2042 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2043 /* add queue to CPU maps */
2044 int pos = 0;
2045
2046 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2047 while ((pos < map->len) && (map->queues[pos] != index))
2048 pos++;
2049
2050 if (pos == map->len)
2051 map->queues[map->len++] = index;
2052 #ifdef CONFIG_NUMA
2053 if (numa_node_id == -2)
2054 numa_node_id = cpu_to_node(cpu);
2055 else if (numa_node_id != cpu_to_node(cpu))
2056 numa_node_id = -1;
2057 #endif
2058 } else if (dev_maps) {
2059 /* fill in the new device map from the old device map */
2060 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2061 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2062 }
2063
2064 }
2065
2066 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2067
2068 /* Cleanup old maps */
2069 if (dev_maps) {
2070 for_each_possible_cpu(cpu) {
2071 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2072 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2073 if (map && map != new_map)
2074 kfree_rcu(map, rcu);
2075 }
2076
2077 kfree_rcu(dev_maps, rcu);
2078 }
2079
2080 dev_maps = new_dev_maps;
2081 active = true;
2082
2083 out_no_new_maps:
2084 /* update Tx queue numa node */
2085 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2086 (numa_node_id >= 0) ? numa_node_id :
2087 NUMA_NO_NODE);
2088
2089 if (!dev_maps)
2090 goto out_no_maps;
2091
2092 /* removes queue from unused CPUs */
2093 for_each_possible_cpu(cpu) {
2094 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2095 continue;
2096
2097 if (remove_xps_queue(dev_maps, cpu, index))
2098 active = true;
2099 }
2100
2101 /* free map if not active */
2102 if (!active) {
2103 RCU_INIT_POINTER(dev->xps_maps, NULL);
2104 kfree_rcu(dev_maps, rcu);
2105 }
2106
2107 out_no_maps:
2108 mutex_unlock(&xps_map_mutex);
2109
2110 return 0;
2111 error:
2112 /* remove any maps that we added */
2113 for_each_possible_cpu(cpu) {
2114 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2115 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2116 NULL;
2117 if (new_map && new_map != map)
2118 kfree(new_map);
2119 }
2120
2121 mutex_unlock(&xps_map_mutex);
2122
2123 kfree(new_dev_maps);
2124 return -ENOMEM;
2125 }
2126 EXPORT_SYMBOL(netif_set_xps_queue);
2127
2128 #endif
2129 /*
2130 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2131 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2132 */
2133 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2134 {
2135 int rc;
2136
2137 if (txq < 1 || txq > dev->num_tx_queues)
2138 return -EINVAL;
2139
2140 if (dev->reg_state == NETREG_REGISTERED ||
2141 dev->reg_state == NETREG_UNREGISTERING) {
2142 ASSERT_RTNL();
2143
2144 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2145 txq);
2146 if (rc)
2147 return rc;
2148
2149 if (dev->num_tc)
2150 netif_setup_tc(dev, txq);
2151
2152 if (txq < dev->real_num_tx_queues) {
2153 qdisc_reset_all_tx_gt(dev, txq);
2154 #ifdef CONFIG_XPS
2155 netif_reset_xps_queues_gt(dev, txq);
2156 #endif
2157 }
2158 }
2159
2160 dev->real_num_tx_queues = txq;
2161 return 0;
2162 }
2163 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2164
2165 #ifdef CONFIG_SYSFS
2166 /**
2167 * netif_set_real_num_rx_queues - set actual number of RX queues used
2168 * @dev: Network device
2169 * @rxq: Actual number of RX queues
2170 *
2171 * This must be called either with the rtnl_lock held or before
2172 * registration of the net device. Returns 0 on success, or a
2173 * negative error code. If called before registration, it always
2174 * succeeds.
2175 */
2176 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2177 {
2178 int rc;
2179
2180 if (rxq < 1 || rxq > dev->num_rx_queues)
2181 return -EINVAL;
2182
2183 if (dev->reg_state == NETREG_REGISTERED) {
2184 ASSERT_RTNL();
2185
2186 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2187 rxq);
2188 if (rc)
2189 return rc;
2190 }
2191
2192 dev->real_num_rx_queues = rxq;
2193 return 0;
2194 }
2195 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2196 #endif
2197
2198 /**
2199 * netif_get_num_default_rss_queues - default number of RSS queues
2200 *
2201 * This routine should set an upper limit on the number of RSS queues
2202 * used by default by multiqueue devices.
2203 */
2204 int netif_get_num_default_rss_queues(void)
2205 {
2206 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2207 }
2208 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2209
2210 static inline void __netif_reschedule(struct Qdisc *q)
2211 {
2212 struct softnet_data *sd;
2213 unsigned long flags;
2214
2215 local_irq_save(flags);
2216 sd = this_cpu_ptr(&softnet_data);
2217 q->next_sched = NULL;
2218 *sd->output_queue_tailp = q;
2219 sd->output_queue_tailp = &q->next_sched;
2220 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2221 local_irq_restore(flags);
2222 }
2223
2224 void __netif_schedule(struct Qdisc *q)
2225 {
2226 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2227 __netif_reschedule(q);
2228 }
2229 EXPORT_SYMBOL(__netif_schedule);
2230
2231 struct dev_kfree_skb_cb {
2232 enum skb_free_reason reason;
2233 };
2234
2235 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2236 {
2237 return (struct dev_kfree_skb_cb *)skb->cb;
2238 }
2239
2240 void netif_schedule_queue(struct netdev_queue *txq)
2241 {
2242 rcu_read_lock();
2243 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2244 struct Qdisc *q = rcu_dereference(txq->qdisc);
2245
2246 __netif_schedule(q);
2247 }
2248 rcu_read_unlock();
2249 }
2250 EXPORT_SYMBOL(netif_schedule_queue);
2251
2252 /**
2253 * netif_wake_subqueue - allow sending packets on subqueue
2254 * @dev: network device
2255 * @queue_index: sub queue index
2256 *
2257 * Resume individual transmit queue of a device with multiple transmit queues.
2258 */
2259 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2260 {
2261 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2262
2263 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2264 struct Qdisc *q;
2265
2266 rcu_read_lock();
2267 q = rcu_dereference(txq->qdisc);
2268 __netif_schedule(q);
2269 rcu_read_unlock();
2270 }
2271 }
2272 EXPORT_SYMBOL(netif_wake_subqueue);
2273
2274 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2275 {
2276 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2277 struct Qdisc *q;
2278
2279 rcu_read_lock();
2280 q = rcu_dereference(dev_queue->qdisc);
2281 __netif_schedule(q);
2282 rcu_read_unlock();
2283 }
2284 }
2285 EXPORT_SYMBOL(netif_tx_wake_queue);
2286
2287 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2288 {
2289 unsigned long flags;
2290
2291 if (likely(atomic_read(&skb->users) == 1)) {
2292 smp_rmb();
2293 atomic_set(&skb->users, 0);
2294 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2295 return;
2296 }
2297 get_kfree_skb_cb(skb)->reason = reason;
2298 local_irq_save(flags);
2299 skb->next = __this_cpu_read(softnet_data.completion_queue);
2300 __this_cpu_write(softnet_data.completion_queue, skb);
2301 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2302 local_irq_restore(flags);
2303 }
2304 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2305
2306 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2307 {
2308 if (in_irq() || irqs_disabled())
2309 __dev_kfree_skb_irq(skb, reason);
2310 else
2311 dev_kfree_skb(skb);
2312 }
2313 EXPORT_SYMBOL(__dev_kfree_skb_any);
2314
2315
2316 /**
2317 * netif_device_detach - mark device as removed
2318 * @dev: network device
2319 *
2320 * Mark device as removed from system and therefore no longer available.
2321 */
2322 void netif_device_detach(struct net_device *dev)
2323 {
2324 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2325 netif_running(dev)) {
2326 netif_tx_stop_all_queues(dev);
2327 }
2328 }
2329 EXPORT_SYMBOL(netif_device_detach);
2330
2331 /**
2332 * netif_device_attach - mark device as attached
2333 * @dev: network device
2334 *
2335 * Mark device as attached from system and restart if needed.
2336 */
2337 void netif_device_attach(struct net_device *dev)
2338 {
2339 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2340 netif_running(dev)) {
2341 netif_tx_wake_all_queues(dev);
2342 __netdev_watchdog_up(dev);
2343 }
2344 }
2345 EXPORT_SYMBOL(netif_device_attach);
2346
2347 /*
2348 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2349 * to be used as a distribution range.
2350 */
2351 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2352 unsigned int num_tx_queues)
2353 {
2354 u32 hash;
2355 u16 qoffset = 0;
2356 u16 qcount = num_tx_queues;
2357
2358 if (skb_rx_queue_recorded(skb)) {
2359 hash = skb_get_rx_queue(skb);
2360 while (unlikely(hash >= num_tx_queues))
2361 hash -= num_tx_queues;
2362 return hash;
2363 }
2364
2365 if (dev->num_tc) {
2366 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2367 qoffset = dev->tc_to_txq[tc].offset;
2368 qcount = dev->tc_to_txq[tc].count;
2369 }
2370
2371 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2372 }
2373 EXPORT_SYMBOL(__skb_tx_hash);
2374
2375 static void skb_warn_bad_offload(const struct sk_buff *skb)
2376 {
2377 static const netdev_features_t null_features = 0;
2378 struct net_device *dev = skb->dev;
2379 const char *driver = "";
2380
2381 if (!net_ratelimit())
2382 return;
2383
2384 if (dev && dev->dev.parent)
2385 driver = dev_driver_string(dev->dev.parent);
2386
2387 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2388 "gso_type=%d ip_summed=%d\n",
2389 driver, dev ? &dev->features : &null_features,
2390 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2391 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2392 skb_shinfo(skb)->gso_type, skb->ip_summed);
2393 }
2394
2395 /*
2396 * Invalidate hardware checksum when packet is to be mangled, and
2397 * complete checksum manually on outgoing path.
2398 */
2399 int skb_checksum_help(struct sk_buff *skb)
2400 {
2401 __wsum csum;
2402 int ret = 0, offset;
2403
2404 if (skb->ip_summed == CHECKSUM_COMPLETE)
2405 goto out_set_summed;
2406
2407 if (unlikely(skb_shinfo(skb)->gso_size)) {
2408 skb_warn_bad_offload(skb);
2409 return -EINVAL;
2410 }
2411
2412 /* Before computing a checksum, we should make sure no frag could
2413 * be modified by an external entity : checksum could be wrong.
2414 */
2415 if (skb_has_shared_frag(skb)) {
2416 ret = __skb_linearize(skb);
2417 if (ret)
2418 goto out;
2419 }
2420
2421 offset = skb_checksum_start_offset(skb);
2422 BUG_ON(offset >= skb_headlen(skb));
2423 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2424
2425 offset += skb->csum_offset;
2426 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2427
2428 if (skb_cloned(skb) &&
2429 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2430 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2431 if (ret)
2432 goto out;
2433 }
2434
2435 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2436 out_set_summed:
2437 skb->ip_summed = CHECKSUM_NONE;
2438 out:
2439 return ret;
2440 }
2441 EXPORT_SYMBOL(skb_checksum_help);
2442
2443 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2444 {
2445 __be16 type = skb->protocol;
2446
2447 /* Tunnel gso handlers can set protocol to ethernet. */
2448 if (type == htons(ETH_P_TEB)) {
2449 struct ethhdr *eth;
2450
2451 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2452 return 0;
2453
2454 eth = (struct ethhdr *)skb_mac_header(skb);
2455 type = eth->h_proto;
2456 }
2457
2458 return __vlan_get_protocol(skb, type, depth);
2459 }
2460
2461 /**
2462 * skb_mac_gso_segment - mac layer segmentation handler.
2463 * @skb: buffer to segment
2464 * @features: features for the output path (see dev->features)
2465 */
2466 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2467 netdev_features_t features)
2468 {
2469 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2470 struct packet_offload *ptype;
2471 int vlan_depth = skb->mac_len;
2472 __be16 type = skb_network_protocol(skb, &vlan_depth);
2473
2474 if (unlikely(!type))
2475 return ERR_PTR(-EINVAL);
2476
2477 __skb_pull(skb, vlan_depth);
2478
2479 rcu_read_lock();
2480 list_for_each_entry_rcu(ptype, &offload_base, list) {
2481 if (ptype->type == type && ptype->callbacks.gso_segment) {
2482 segs = ptype->callbacks.gso_segment(skb, features);
2483 break;
2484 }
2485 }
2486 rcu_read_unlock();
2487
2488 __skb_push(skb, skb->data - skb_mac_header(skb));
2489
2490 return segs;
2491 }
2492 EXPORT_SYMBOL(skb_mac_gso_segment);
2493
2494
2495 /* openvswitch calls this on rx path, so we need a different check.
2496 */
2497 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2498 {
2499 if (tx_path)
2500 return skb->ip_summed != CHECKSUM_PARTIAL;
2501 else
2502 return skb->ip_summed == CHECKSUM_NONE;
2503 }
2504
2505 /**
2506 * __skb_gso_segment - Perform segmentation on skb.
2507 * @skb: buffer to segment
2508 * @features: features for the output path (see dev->features)
2509 * @tx_path: whether it is called in TX path
2510 *
2511 * This function segments the given skb and returns a list of segments.
2512 *
2513 * It may return NULL if the skb requires no segmentation. This is
2514 * only possible when GSO is used for verifying header integrity.
2515 */
2516 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2517 netdev_features_t features, bool tx_path)
2518 {
2519 if (unlikely(skb_needs_check(skb, tx_path))) {
2520 int err;
2521
2522 skb_warn_bad_offload(skb);
2523
2524 err = skb_cow_head(skb, 0);
2525 if (err < 0)
2526 return ERR_PTR(err);
2527 }
2528
2529 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2530 SKB_GSO_CB(skb)->encap_level = 0;
2531
2532 skb_reset_mac_header(skb);
2533 skb_reset_mac_len(skb);
2534
2535 return skb_mac_gso_segment(skb, features);
2536 }
2537 EXPORT_SYMBOL(__skb_gso_segment);
2538
2539 /* Take action when hardware reception checksum errors are detected. */
2540 #ifdef CONFIG_BUG
2541 void netdev_rx_csum_fault(struct net_device *dev)
2542 {
2543 if (net_ratelimit()) {
2544 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2545 dump_stack();
2546 }
2547 }
2548 EXPORT_SYMBOL(netdev_rx_csum_fault);
2549 #endif
2550
2551 /* Actually, we should eliminate this check as soon as we know, that:
2552 * 1. IOMMU is present and allows to map all the memory.
2553 * 2. No high memory really exists on this machine.
2554 */
2555
2556 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2557 {
2558 #ifdef CONFIG_HIGHMEM
2559 int i;
2560 if (!(dev->features & NETIF_F_HIGHDMA)) {
2561 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2562 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2563 if (PageHighMem(skb_frag_page(frag)))
2564 return 1;
2565 }
2566 }
2567
2568 if (PCI_DMA_BUS_IS_PHYS) {
2569 struct device *pdev = dev->dev.parent;
2570
2571 if (!pdev)
2572 return 0;
2573 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2574 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2575 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2576 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2577 return 1;
2578 }
2579 }
2580 #endif
2581 return 0;
2582 }
2583
2584 /* If MPLS offload request, verify we are testing hardware MPLS features
2585 * instead of standard features for the netdev.
2586 */
2587 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2588 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2589 netdev_features_t features,
2590 __be16 type)
2591 {
2592 if (eth_p_mpls(type))
2593 features &= skb->dev->mpls_features;
2594
2595 return features;
2596 }
2597 #else
2598 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2599 netdev_features_t features,
2600 __be16 type)
2601 {
2602 return features;
2603 }
2604 #endif
2605
2606 static netdev_features_t harmonize_features(struct sk_buff *skb,
2607 netdev_features_t features)
2608 {
2609 int tmp;
2610 __be16 type;
2611
2612 type = skb_network_protocol(skb, &tmp);
2613 features = net_mpls_features(skb, features, type);
2614
2615 if (skb->ip_summed != CHECKSUM_NONE &&
2616 !can_checksum_protocol(features, type)) {
2617 features &= ~NETIF_F_ALL_CSUM;
2618 } else if (illegal_highdma(skb->dev, skb)) {
2619 features &= ~NETIF_F_SG;
2620 }
2621
2622 return features;
2623 }
2624
2625 netdev_features_t passthru_features_check(struct sk_buff *skb,
2626 struct net_device *dev,
2627 netdev_features_t features)
2628 {
2629 return features;
2630 }
2631 EXPORT_SYMBOL(passthru_features_check);
2632
2633 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2634 struct net_device *dev,
2635 netdev_features_t features)
2636 {
2637 return vlan_features_check(skb, features);
2638 }
2639
2640 netdev_features_t netif_skb_features(struct sk_buff *skb)
2641 {
2642 struct net_device *dev = skb->dev;
2643 netdev_features_t features = dev->features;
2644 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2645
2646 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2647 features &= ~NETIF_F_GSO_MASK;
2648
2649 /* If encapsulation offload request, verify we are testing
2650 * hardware encapsulation features instead of standard
2651 * features for the netdev
2652 */
2653 if (skb->encapsulation)
2654 features &= dev->hw_enc_features;
2655
2656 if (skb_vlan_tagged(skb))
2657 features = netdev_intersect_features(features,
2658 dev->vlan_features |
2659 NETIF_F_HW_VLAN_CTAG_TX |
2660 NETIF_F_HW_VLAN_STAG_TX);
2661
2662 if (dev->netdev_ops->ndo_features_check)
2663 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2664 features);
2665 else
2666 features &= dflt_features_check(skb, dev, features);
2667
2668 return harmonize_features(skb, features);
2669 }
2670 EXPORT_SYMBOL(netif_skb_features);
2671
2672 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2673 struct netdev_queue *txq, bool more)
2674 {
2675 unsigned int len;
2676 int rc;
2677
2678 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2679 dev_queue_xmit_nit(skb, dev);
2680
2681 len = skb->len;
2682 trace_net_dev_start_xmit(skb, dev);
2683 rc = netdev_start_xmit(skb, dev, txq, more);
2684 trace_net_dev_xmit(skb, rc, dev, len);
2685
2686 return rc;
2687 }
2688
2689 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2690 struct netdev_queue *txq, int *ret)
2691 {
2692 struct sk_buff *skb = first;
2693 int rc = NETDEV_TX_OK;
2694
2695 while (skb) {
2696 struct sk_buff *next = skb->next;
2697
2698 skb->next = NULL;
2699 rc = xmit_one(skb, dev, txq, next != NULL);
2700 if (unlikely(!dev_xmit_complete(rc))) {
2701 skb->next = next;
2702 goto out;
2703 }
2704
2705 skb = next;
2706 if (netif_xmit_stopped(txq) && skb) {
2707 rc = NETDEV_TX_BUSY;
2708 break;
2709 }
2710 }
2711
2712 out:
2713 *ret = rc;
2714 return skb;
2715 }
2716
2717 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2718 netdev_features_t features)
2719 {
2720 if (skb_vlan_tag_present(skb) &&
2721 !vlan_hw_offload_capable(features, skb->vlan_proto))
2722 skb = __vlan_hwaccel_push_inside(skb);
2723 return skb;
2724 }
2725
2726 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2727 {
2728 netdev_features_t features;
2729
2730 if (skb->next)
2731 return skb;
2732
2733 features = netif_skb_features(skb);
2734 skb = validate_xmit_vlan(skb, features);
2735 if (unlikely(!skb))
2736 goto out_null;
2737
2738 if (netif_needs_gso(skb, features)) {
2739 struct sk_buff *segs;
2740
2741 segs = skb_gso_segment(skb, features);
2742 if (IS_ERR(segs)) {
2743 goto out_kfree_skb;
2744 } else if (segs) {
2745 consume_skb(skb);
2746 skb = segs;
2747 }
2748 } else {
2749 if (skb_needs_linearize(skb, features) &&
2750 __skb_linearize(skb))
2751 goto out_kfree_skb;
2752
2753 /* If packet is not checksummed and device does not
2754 * support checksumming for this protocol, complete
2755 * checksumming here.
2756 */
2757 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2758 if (skb->encapsulation)
2759 skb_set_inner_transport_header(skb,
2760 skb_checksum_start_offset(skb));
2761 else
2762 skb_set_transport_header(skb,
2763 skb_checksum_start_offset(skb));
2764 if (!(features & NETIF_F_ALL_CSUM) &&
2765 skb_checksum_help(skb))
2766 goto out_kfree_skb;
2767 }
2768 }
2769
2770 return skb;
2771
2772 out_kfree_skb:
2773 kfree_skb(skb);
2774 out_null:
2775 return NULL;
2776 }
2777
2778 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2779 {
2780 struct sk_buff *next, *head = NULL, *tail;
2781
2782 for (; skb != NULL; skb = next) {
2783 next = skb->next;
2784 skb->next = NULL;
2785
2786 /* in case skb wont be segmented, point to itself */
2787 skb->prev = skb;
2788
2789 skb = validate_xmit_skb(skb, dev);
2790 if (!skb)
2791 continue;
2792
2793 if (!head)
2794 head = skb;
2795 else
2796 tail->next = skb;
2797 /* If skb was segmented, skb->prev points to
2798 * the last segment. If not, it still contains skb.
2799 */
2800 tail = skb->prev;
2801 }
2802 return head;
2803 }
2804
2805 static void qdisc_pkt_len_init(struct sk_buff *skb)
2806 {
2807 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2808
2809 qdisc_skb_cb(skb)->pkt_len = skb->len;
2810
2811 /* To get more precise estimation of bytes sent on wire,
2812 * we add to pkt_len the headers size of all segments
2813 */
2814 if (shinfo->gso_size) {
2815 unsigned int hdr_len;
2816 u16 gso_segs = shinfo->gso_segs;
2817
2818 /* mac layer + network layer */
2819 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2820
2821 /* + transport layer */
2822 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2823 hdr_len += tcp_hdrlen(skb);
2824 else
2825 hdr_len += sizeof(struct udphdr);
2826
2827 if (shinfo->gso_type & SKB_GSO_DODGY)
2828 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2829 shinfo->gso_size);
2830
2831 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2832 }
2833 }
2834
2835 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2836 struct net_device *dev,
2837 struct netdev_queue *txq)
2838 {
2839 spinlock_t *root_lock = qdisc_lock(q);
2840 bool contended;
2841 int rc;
2842
2843 qdisc_pkt_len_init(skb);
2844 qdisc_calculate_pkt_len(skb, q);
2845 /*
2846 * Heuristic to force contended enqueues to serialize on a
2847 * separate lock before trying to get qdisc main lock.
2848 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2849 * often and dequeue packets faster.
2850 */
2851 contended = qdisc_is_running(q);
2852 if (unlikely(contended))
2853 spin_lock(&q->busylock);
2854
2855 spin_lock(root_lock);
2856 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2857 kfree_skb(skb);
2858 rc = NET_XMIT_DROP;
2859 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2860 qdisc_run_begin(q)) {
2861 /*
2862 * This is a work-conserving queue; there are no old skbs
2863 * waiting to be sent out; and the qdisc is not running -
2864 * xmit the skb directly.
2865 */
2866
2867 qdisc_bstats_update(q, skb);
2868
2869 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2870 if (unlikely(contended)) {
2871 spin_unlock(&q->busylock);
2872 contended = false;
2873 }
2874 __qdisc_run(q);
2875 } else
2876 qdisc_run_end(q);
2877
2878 rc = NET_XMIT_SUCCESS;
2879 } else {
2880 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2881 if (qdisc_run_begin(q)) {
2882 if (unlikely(contended)) {
2883 spin_unlock(&q->busylock);
2884 contended = false;
2885 }
2886 __qdisc_run(q);
2887 }
2888 }
2889 spin_unlock(root_lock);
2890 if (unlikely(contended))
2891 spin_unlock(&q->busylock);
2892 return rc;
2893 }
2894
2895 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2896 static void skb_update_prio(struct sk_buff *skb)
2897 {
2898 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2899
2900 if (!skb->priority && skb->sk && map) {
2901 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2902
2903 if (prioidx < map->priomap_len)
2904 skb->priority = map->priomap[prioidx];
2905 }
2906 }
2907 #else
2908 #define skb_update_prio(skb)
2909 #endif
2910
2911 DEFINE_PER_CPU(int, xmit_recursion);
2912 EXPORT_SYMBOL(xmit_recursion);
2913
2914 #define RECURSION_LIMIT 10
2915
2916 /**
2917 * dev_loopback_xmit - loop back @skb
2918 * @net: network namespace this loopback is happening in
2919 * @sk: sk needed to be a netfilter okfn
2920 * @skb: buffer to transmit
2921 */
2922 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
2923 {
2924 skb_reset_mac_header(skb);
2925 __skb_pull(skb, skb_network_offset(skb));
2926 skb->pkt_type = PACKET_LOOPBACK;
2927 skb->ip_summed = CHECKSUM_UNNECESSARY;
2928 WARN_ON(!skb_dst(skb));
2929 skb_dst_force(skb);
2930 netif_rx_ni(skb);
2931 return 0;
2932 }
2933 EXPORT_SYMBOL(dev_loopback_xmit);
2934
2935 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2936 {
2937 #ifdef CONFIG_XPS
2938 struct xps_dev_maps *dev_maps;
2939 struct xps_map *map;
2940 int queue_index = -1;
2941
2942 rcu_read_lock();
2943 dev_maps = rcu_dereference(dev->xps_maps);
2944 if (dev_maps) {
2945 map = rcu_dereference(
2946 dev_maps->cpu_map[skb->sender_cpu - 1]);
2947 if (map) {
2948 if (map->len == 1)
2949 queue_index = map->queues[0];
2950 else
2951 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2952 map->len)];
2953 if (unlikely(queue_index >= dev->real_num_tx_queues))
2954 queue_index = -1;
2955 }
2956 }
2957 rcu_read_unlock();
2958
2959 return queue_index;
2960 #else
2961 return -1;
2962 #endif
2963 }
2964
2965 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2966 {
2967 struct sock *sk = skb->sk;
2968 int queue_index = sk_tx_queue_get(sk);
2969
2970 if (queue_index < 0 || skb->ooo_okay ||
2971 queue_index >= dev->real_num_tx_queues) {
2972 int new_index = get_xps_queue(dev, skb);
2973 if (new_index < 0)
2974 new_index = skb_tx_hash(dev, skb);
2975
2976 if (queue_index != new_index && sk &&
2977 sk_fullsock(sk) &&
2978 rcu_access_pointer(sk->sk_dst_cache))
2979 sk_tx_queue_set(sk, new_index);
2980
2981 queue_index = new_index;
2982 }
2983
2984 return queue_index;
2985 }
2986
2987 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2988 struct sk_buff *skb,
2989 void *accel_priv)
2990 {
2991 int queue_index = 0;
2992
2993 #ifdef CONFIG_XPS
2994 if (skb->sender_cpu == 0)
2995 skb->sender_cpu = raw_smp_processor_id() + 1;
2996 #endif
2997
2998 if (dev->real_num_tx_queues != 1) {
2999 const struct net_device_ops *ops = dev->netdev_ops;
3000 if (ops->ndo_select_queue)
3001 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3002 __netdev_pick_tx);
3003 else
3004 queue_index = __netdev_pick_tx(dev, skb);
3005
3006 if (!accel_priv)
3007 queue_index = netdev_cap_txqueue(dev, queue_index);
3008 }
3009
3010 skb_set_queue_mapping(skb, queue_index);
3011 return netdev_get_tx_queue(dev, queue_index);
3012 }
3013
3014 /**
3015 * __dev_queue_xmit - transmit a buffer
3016 * @skb: buffer to transmit
3017 * @accel_priv: private data used for L2 forwarding offload
3018 *
3019 * Queue a buffer for transmission to a network device. The caller must
3020 * have set the device and priority and built the buffer before calling
3021 * this function. The function can be called from an interrupt.
3022 *
3023 * A negative errno code is returned on a failure. A success does not
3024 * guarantee the frame will be transmitted as it may be dropped due
3025 * to congestion or traffic shaping.
3026 *
3027 * -----------------------------------------------------------------------------------
3028 * I notice this method can also return errors from the queue disciplines,
3029 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3030 * be positive.
3031 *
3032 * Regardless of the return value, the skb is consumed, so it is currently
3033 * difficult to retry a send to this method. (You can bump the ref count
3034 * before sending to hold a reference for retry if you are careful.)
3035 *
3036 * When calling this method, interrupts MUST be enabled. This is because
3037 * the BH enable code must have IRQs enabled so that it will not deadlock.
3038 * --BLG
3039 */
3040 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3041 {
3042 struct net_device *dev = skb->dev;
3043 struct netdev_queue *txq;
3044 struct Qdisc *q;
3045 int rc = -ENOMEM;
3046
3047 skb_reset_mac_header(skb);
3048
3049 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3050 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3051
3052 /* Disable soft irqs for various locks below. Also
3053 * stops preemption for RCU.
3054 */
3055 rcu_read_lock_bh();
3056
3057 skb_update_prio(skb);
3058
3059 /* If device/qdisc don't need skb->dst, release it right now while
3060 * its hot in this cpu cache.
3061 */
3062 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3063 skb_dst_drop(skb);
3064 else
3065 skb_dst_force(skb);
3066
3067 #ifdef CONFIG_NET_SWITCHDEV
3068 /* Don't forward if offload device already forwarded */
3069 if (skb->offload_fwd_mark &&
3070 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3071 consume_skb(skb);
3072 rc = NET_XMIT_SUCCESS;
3073 goto out;
3074 }
3075 #endif
3076
3077 txq = netdev_pick_tx(dev, skb, accel_priv);
3078 q = rcu_dereference_bh(txq->qdisc);
3079
3080 #ifdef CONFIG_NET_CLS_ACT
3081 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3082 #endif
3083 trace_net_dev_queue(skb);
3084 if (q->enqueue) {
3085 rc = __dev_xmit_skb(skb, q, dev, txq);
3086 goto out;
3087 }
3088
3089 /* The device has no queue. Common case for software devices:
3090 loopback, all the sorts of tunnels...
3091
3092 Really, it is unlikely that netif_tx_lock protection is necessary
3093 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3094 counters.)
3095 However, it is possible, that they rely on protection
3096 made by us here.
3097
3098 Check this and shot the lock. It is not prone from deadlocks.
3099 Either shot noqueue qdisc, it is even simpler 8)
3100 */
3101 if (dev->flags & IFF_UP) {
3102 int cpu = smp_processor_id(); /* ok because BHs are off */
3103
3104 if (txq->xmit_lock_owner != cpu) {
3105
3106 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3107 goto recursion_alert;
3108
3109 skb = validate_xmit_skb(skb, dev);
3110 if (!skb)
3111 goto drop;
3112
3113 HARD_TX_LOCK(dev, txq, cpu);
3114
3115 if (!netif_xmit_stopped(txq)) {
3116 __this_cpu_inc(xmit_recursion);
3117 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3118 __this_cpu_dec(xmit_recursion);
3119 if (dev_xmit_complete(rc)) {
3120 HARD_TX_UNLOCK(dev, txq);
3121 goto out;
3122 }
3123 }
3124 HARD_TX_UNLOCK(dev, txq);
3125 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3126 dev->name);
3127 } else {
3128 /* Recursion is detected! It is possible,
3129 * unfortunately
3130 */
3131 recursion_alert:
3132 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3133 dev->name);
3134 }
3135 }
3136
3137 rc = -ENETDOWN;
3138 drop:
3139 rcu_read_unlock_bh();
3140
3141 atomic_long_inc(&dev->tx_dropped);
3142 kfree_skb_list(skb);
3143 return rc;
3144 out:
3145 rcu_read_unlock_bh();
3146 return rc;
3147 }
3148
3149 int dev_queue_xmit(struct sk_buff *skb)
3150 {
3151 return __dev_queue_xmit(skb, NULL);
3152 }
3153 EXPORT_SYMBOL(dev_queue_xmit);
3154
3155 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3156 {
3157 return __dev_queue_xmit(skb, accel_priv);
3158 }
3159 EXPORT_SYMBOL(dev_queue_xmit_accel);
3160
3161
3162 /*=======================================================================
3163 Receiver routines
3164 =======================================================================*/
3165
3166 int netdev_max_backlog __read_mostly = 1000;
3167 EXPORT_SYMBOL(netdev_max_backlog);
3168
3169 int netdev_tstamp_prequeue __read_mostly = 1;
3170 int netdev_budget __read_mostly = 300;
3171 int weight_p __read_mostly = 64; /* old backlog weight */
3172
3173 /* Called with irq disabled */
3174 static inline void ____napi_schedule(struct softnet_data *sd,
3175 struct napi_struct *napi)
3176 {
3177 list_add_tail(&napi->poll_list, &sd->poll_list);
3178 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3179 }
3180
3181 #ifdef CONFIG_RPS
3182
3183 /* One global table that all flow-based protocols share. */
3184 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3185 EXPORT_SYMBOL(rps_sock_flow_table);
3186 u32 rps_cpu_mask __read_mostly;
3187 EXPORT_SYMBOL(rps_cpu_mask);
3188
3189 struct static_key rps_needed __read_mostly;
3190
3191 static struct rps_dev_flow *
3192 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3193 struct rps_dev_flow *rflow, u16 next_cpu)
3194 {
3195 if (next_cpu < nr_cpu_ids) {
3196 #ifdef CONFIG_RFS_ACCEL
3197 struct netdev_rx_queue *rxqueue;
3198 struct rps_dev_flow_table *flow_table;
3199 struct rps_dev_flow *old_rflow;
3200 u32 flow_id;
3201 u16 rxq_index;
3202 int rc;
3203
3204 /* Should we steer this flow to a different hardware queue? */
3205 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3206 !(dev->features & NETIF_F_NTUPLE))
3207 goto out;
3208 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3209 if (rxq_index == skb_get_rx_queue(skb))
3210 goto out;
3211
3212 rxqueue = dev->_rx + rxq_index;
3213 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3214 if (!flow_table)
3215 goto out;
3216 flow_id = skb_get_hash(skb) & flow_table->mask;
3217 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3218 rxq_index, flow_id);
3219 if (rc < 0)
3220 goto out;
3221 old_rflow = rflow;
3222 rflow = &flow_table->flows[flow_id];
3223 rflow->filter = rc;
3224 if (old_rflow->filter == rflow->filter)
3225 old_rflow->filter = RPS_NO_FILTER;
3226 out:
3227 #endif
3228 rflow->last_qtail =
3229 per_cpu(softnet_data, next_cpu).input_queue_head;
3230 }
3231
3232 rflow->cpu = next_cpu;
3233 return rflow;
3234 }
3235
3236 /*
3237 * get_rps_cpu is called from netif_receive_skb and returns the target
3238 * CPU from the RPS map of the receiving queue for a given skb.
3239 * rcu_read_lock must be held on entry.
3240 */
3241 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3242 struct rps_dev_flow **rflowp)
3243 {
3244 const struct rps_sock_flow_table *sock_flow_table;
3245 struct netdev_rx_queue *rxqueue = dev->_rx;
3246 struct rps_dev_flow_table *flow_table;
3247 struct rps_map *map;
3248 int cpu = -1;
3249 u32 tcpu;
3250 u32 hash;
3251
3252 if (skb_rx_queue_recorded(skb)) {
3253 u16 index = skb_get_rx_queue(skb);
3254
3255 if (unlikely(index >= dev->real_num_rx_queues)) {
3256 WARN_ONCE(dev->real_num_rx_queues > 1,
3257 "%s received packet on queue %u, but number "
3258 "of RX queues is %u\n",
3259 dev->name, index, dev->real_num_rx_queues);
3260 goto done;
3261 }
3262 rxqueue += index;
3263 }
3264
3265 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3266
3267 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3268 map = rcu_dereference(rxqueue->rps_map);
3269 if (!flow_table && !map)
3270 goto done;
3271
3272 skb_reset_network_header(skb);
3273 hash = skb_get_hash(skb);
3274 if (!hash)
3275 goto done;
3276
3277 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3278 if (flow_table && sock_flow_table) {
3279 struct rps_dev_flow *rflow;
3280 u32 next_cpu;
3281 u32 ident;
3282
3283 /* First check into global flow table if there is a match */
3284 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3285 if ((ident ^ hash) & ~rps_cpu_mask)
3286 goto try_rps;
3287
3288 next_cpu = ident & rps_cpu_mask;
3289
3290 /* OK, now we know there is a match,
3291 * we can look at the local (per receive queue) flow table
3292 */
3293 rflow = &flow_table->flows[hash & flow_table->mask];
3294 tcpu = rflow->cpu;
3295
3296 /*
3297 * If the desired CPU (where last recvmsg was done) is
3298 * different from current CPU (one in the rx-queue flow
3299 * table entry), switch if one of the following holds:
3300 * - Current CPU is unset (>= nr_cpu_ids).
3301 * - Current CPU is offline.
3302 * - The current CPU's queue tail has advanced beyond the
3303 * last packet that was enqueued using this table entry.
3304 * This guarantees that all previous packets for the flow
3305 * have been dequeued, thus preserving in order delivery.
3306 */
3307 if (unlikely(tcpu != next_cpu) &&
3308 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3309 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3310 rflow->last_qtail)) >= 0)) {
3311 tcpu = next_cpu;
3312 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3313 }
3314
3315 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3316 *rflowp = rflow;
3317 cpu = tcpu;
3318 goto done;
3319 }
3320 }
3321
3322 try_rps:
3323
3324 if (map) {
3325 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3326 if (cpu_online(tcpu)) {
3327 cpu = tcpu;
3328 goto done;
3329 }
3330 }
3331
3332 done:
3333 return cpu;
3334 }
3335
3336 #ifdef CONFIG_RFS_ACCEL
3337
3338 /**
3339 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3340 * @dev: Device on which the filter was set
3341 * @rxq_index: RX queue index
3342 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3343 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3344 *
3345 * Drivers that implement ndo_rx_flow_steer() should periodically call
3346 * this function for each installed filter and remove the filters for
3347 * which it returns %true.
3348 */
3349 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3350 u32 flow_id, u16 filter_id)
3351 {
3352 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3353 struct rps_dev_flow_table *flow_table;
3354 struct rps_dev_flow *rflow;
3355 bool expire = true;
3356 unsigned int cpu;
3357
3358 rcu_read_lock();
3359 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3360 if (flow_table && flow_id <= flow_table->mask) {
3361 rflow = &flow_table->flows[flow_id];
3362 cpu = ACCESS_ONCE(rflow->cpu);
3363 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3364 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3365 rflow->last_qtail) <
3366 (int)(10 * flow_table->mask)))
3367 expire = false;
3368 }
3369 rcu_read_unlock();
3370 return expire;
3371 }
3372 EXPORT_SYMBOL(rps_may_expire_flow);
3373
3374 #endif /* CONFIG_RFS_ACCEL */
3375
3376 /* Called from hardirq (IPI) context */
3377 static void rps_trigger_softirq(void *data)
3378 {
3379 struct softnet_data *sd = data;
3380
3381 ____napi_schedule(sd, &sd->backlog);
3382 sd->received_rps++;
3383 }
3384
3385 #endif /* CONFIG_RPS */
3386
3387 /*
3388 * Check if this softnet_data structure is another cpu one
3389 * If yes, queue it to our IPI list and return 1
3390 * If no, return 0
3391 */
3392 static int rps_ipi_queued(struct softnet_data *sd)
3393 {
3394 #ifdef CONFIG_RPS
3395 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3396
3397 if (sd != mysd) {
3398 sd->rps_ipi_next = mysd->rps_ipi_list;
3399 mysd->rps_ipi_list = sd;
3400
3401 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3402 return 1;
3403 }
3404 #endif /* CONFIG_RPS */
3405 return 0;
3406 }
3407
3408 #ifdef CONFIG_NET_FLOW_LIMIT
3409 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3410 #endif
3411
3412 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3413 {
3414 #ifdef CONFIG_NET_FLOW_LIMIT
3415 struct sd_flow_limit *fl;
3416 struct softnet_data *sd;
3417 unsigned int old_flow, new_flow;
3418
3419 if (qlen < (netdev_max_backlog >> 1))
3420 return false;
3421
3422 sd = this_cpu_ptr(&softnet_data);
3423
3424 rcu_read_lock();
3425 fl = rcu_dereference(sd->flow_limit);
3426 if (fl) {
3427 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3428 old_flow = fl->history[fl->history_head];
3429 fl->history[fl->history_head] = new_flow;
3430
3431 fl->history_head++;
3432 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3433
3434 if (likely(fl->buckets[old_flow]))
3435 fl->buckets[old_flow]--;
3436
3437 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3438 fl->count++;
3439 rcu_read_unlock();
3440 return true;
3441 }
3442 }
3443 rcu_read_unlock();
3444 #endif
3445 return false;
3446 }
3447
3448 /*
3449 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3450 * queue (may be a remote CPU queue).
3451 */
3452 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3453 unsigned int *qtail)
3454 {
3455 struct softnet_data *sd;
3456 unsigned long flags;
3457 unsigned int qlen;
3458
3459 sd = &per_cpu(softnet_data, cpu);
3460
3461 local_irq_save(flags);
3462
3463 rps_lock(sd);
3464 if (!netif_running(skb->dev))
3465 goto drop;
3466 qlen = skb_queue_len(&sd->input_pkt_queue);
3467 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3468 if (qlen) {
3469 enqueue:
3470 __skb_queue_tail(&sd->input_pkt_queue, skb);
3471 input_queue_tail_incr_save(sd, qtail);
3472 rps_unlock(sd);
3473 local_irq_restore(flags);
3474 return NET_RX_SUCCESS;
3475 }
3476
3477 /* Schedule NAPI for backlog device
3478 * We can use non atomic operation since we own the queue lock
3479 */
3480 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3481 if (!rps_ipi_queued(sd))
3482 ____napi_schedule(sd, &sd->backlog);
3483 }
3484 goto enqueue;
3485 }
3486
3487 drop:
3488 sd->dropped++;
3489 rps_unlock(sd);
3490
3491 local_irq_restore(flags);
3492
3493 atomic_long_inc(&skb->dev->rx_dropped);
3494 kfree_skb(skb);
3495 return NET_RX_DROP;
3496 }
3497
3498 static int netif_rx_internal(struct sk_buff *skb)
3499 {
3500 int ret;
3501
3502 net_timestamp_check(netdev_tstamp_prequeue, skb);
3503
3504 trace_netif_rx(skb);
3505 #ifdef CONFIG_RPS
3506 if (static_key_false(&rps_needed)) {
3507 struct rps_dev_flow voidflow, *rflow = &voidflow;
3508 int cpu;
3509
3510 preempt_disable();
3511 rcu_read_lock();
3512
3513 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3514 if (cpu < 0)
3515 cpu = smp_processor_id();
3516
3517 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3518
3519 rcu_read_unlock();
3520 preempt_enable();
3521 } else
3522 #endif
3523 {
3524 unsigned int qtail;
3525 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3526 put_cpu();
3527 }
3528 return ret;
3529 }
3530
3531 /**
3532 * netif_rx - post buffer to the network code
3533 * @skb: buffer to post
3534 *
3535 * This function receives a packet from a device driver and queues it for
3536 * the upper (protocol) levels to process. It always succeeds. The buffer
3537 * may be dropped during processing for congestion control or by the
3538 * protocol layers.
3539 *
3540 * return values:
3541 * NET_RX_SUCCESS (no congestion)
3542 * NET_RX_DROP (packet was dropped)
3543 *
3544 */
3545
3546 int netif_rx(struct sk_buff *skb)
3547 {
3548 trace_netif_rx_entry(skb);
3549
3550 return netif_rx_internal(skb);
3551 }
3552 EXPORT_SYMBOL(netif_rx);
3553
3554 int netif_rx_ni(struct sk_buff *skb)
3555 {
3556 int err;
3557
3558 trace_netif_rx_ni_entry(skb);
3559
3560 preempt_disable();
3561 err = netif_rx_internal(skb);
3562 if (local_softirq_pending())
3563 do_softirq();
3564 preempt_enable();
3565
3566 return err;
3567 }
3568 EXPORT_SYMBOL(netif_rx_ni);
3569
3570 static void net_tx_action(struct softirq_action *h)
3571 {
3572 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3573
3574 if (sd->completion_queue) {
3575 struct sk_buff *clist;
3576
3577 local_irq_disable();
3578 clist = sd->completion_queue;
3579 sd->completion_queue = NULL;
3580 local_irq_enable();
3581
3582 while (clist) {
3583 struct sk_buff *skb = clist;
3584 clist = clist->next;
3585
3586 WARN_ON(atomic_read(&skb->users));
3587 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3588 trace_consume_skb(skb);
3589 else
3590 trace_kfree_skb(skb, net_tx_action);
3591 __kfree_skb(skb);
3592 }
3593 }
3594
3595 if (sd->output_queue) {
3596 struct Qdisc *head;
3597
3598 local_irq_disable();
3599 head = sd->output_queue;
3600 sd->output_queue = NULL;
3601 sd->output_queue_tailp = &sd->output_queue;
3602 local_irq_enable();
3603
3604 while (head) {
3605 struct Qdisc *q = head;
3606 spinlock_t *root_lock;
3607
3608 head = head->next_sched;
3609
3610 root_lock = qdisc_lock(q);
3611 if (spin_trylock(root_lock)) {
3612 smp_mb__before_atomic();
3613 clear_bit(__QDISC_STATE_SCHED,
3614 &q->state);
3615 qdisc_run(q);
3616 spin_unlock(root_lock);
3617 } else {
3618 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3619 &q->state)) {
3620 __netif_reschedule(q);
3621 } else {
3622 smp_mb__before_atomic();
3623 clear_bit(__QDISC_STATE_SCHED,
3624 &q->state);
3625 }
3626 }
3627 }
3628 }
3629 }
3630
3631 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3632 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3633 /* This hook is defined here for ATM LANE */
3634 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3635 unsigned char *addr) __read_mostly;
3636 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3637 #endif
3638
3639 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3640 struct packet_type **pt_prev,
3641 int *ret, struct net_device *orig_dev)
3642 {
3643 #ifdef CONFIG_NET_CLS_ACT
3644 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3645 struct tcf_result cl_res;
3646
3647 /* If there's at least one ingress present somewhere (so
3648 * we get here via enabled static key), remaining devices
3649 * that are not configured with an ingress qdisc will bail
3650 * out here.
3651 */
3652 if (!cl)
3653 return skb;
3654 if (*pt_prev) {
3655 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3656 *pt_prev = NULL;
3657 }
3658
3659 qdisc_skb_cb(skb)->pkt_len = skb->len;
3660 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3661 qdisc_bstats_cpu_update(cl->q, skb);
3662
3663 switch (tc_classify(skb, cl, &cl_res, false)) {
3664 case TC_ACT_OK:
3665 case TC_ACT_RECLASSIFY:
3666 skb->tc_index = TC_H_MIN(cl_res.classid);
3667 break;
3668 case TC_ACT_SHOT:
3669 qdisc_qstats_cpu_drop(cl->q);
3670 case TC_ACT_STOLEN:
3671 case TC_ACT_QUEUED:
3672 kfree_skb(skb);
3673 return NULL;
3674 case TC_ACT_REDIRECT:
3675 /* skb_mac_header check was done by cls/act_bpf, so
3676 * we can safely push the L2 header back before
3677 * redirecting to another netdev
3678 */
3679 __skb_push(skb, skb->mac_len);
3680 skb_do_redirect(skb);
3681 return NULL;
3682 default:
3683 break;
3684 }
3685 #endif /* CONFIG_NET_CLS_ACT */
3686 return skb;
3687 }
3688
3689 /**
3690 * netdev_rx_handler_register - register receive handler
3691 * @dev: device to register a handler for
3692 * @rx_handler: receive handler to register
3693 * @rx_handler_data: data pointer that is used by rx handler
3694 *
3695 * Register a receive handler for a device. This handler will then be
3696 * called from __netif_receive_skb. A negative errno code is returned
3697 * on a failure.
3698 *
3699 * The caller must hold the rtnl_mutex.
3700 *
3701 * For a general description of rx_handler, see enum rx_handler_result.
3702 */
3703 int netdev_rx_handler_register(struct net_device *dev,
3704 rx_handler_func_t *rx_handler,
3705 void *rx_handler_data)
3706 {
3707 ASSERT_RTNL();
3708
3709 if (dev->rx_handler)
3710 return -EBUSY;
3711
3712 /* Note: rx_handler_data must be set before rx_handler */
3713 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3714 rcu_assign_pointer(dev->rx_handler, rx_handler);
3715
3716 return 0;
3717 }
3718 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3719
3720 /**
3721 * netdev_rx_handler_unregister - unregister receive handler
3722 * @dev: device to unregister a handler from
3723 *
3724 * Unregister a receive handler from a device.
3725 *
3726 * The caller must hold the rtnl_mutex.
3727 */
3728 void netdev_rx_handler_unregister(struct net_device *dev)
3729 {
3730
3731 ASSERT_RTNL();
3732 RCU_INIT_POINTER(dev->rx_handler, NULL);
3733 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3734 * section has a guarantee to see a non NULL rx_handler_data
3735 * as well.
3736 */
3737 synchronize_net();
3738 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3739 }
3740 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3741
3742 /*
3743 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3744 * the special handling of PFMEMALLOC skbs.
3745 */
3746 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3747 {
3748 switch (skb->protocol) {
3749 case htons(ETH_P_ARP):
3750 case htons(ETH_P_IP):
3751 case htons(ETH_P_IPV6):
3752 case htons(ETH_P_8021Q):
3753 case htons(ETH_P_8021AD):
3754 return true;
3755 default:
3756 return false;
3757 }
3758 }
3759
3760 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3761 int *ret, struct net_device *orig_dev)
3762 {
3763 #ifdef CONFIG_NETFILTER_INGRESS
3764 if (nf_hook_ingress_active(skb)) {
3765 if (*pt_prev) {
3766 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3767 *pt_prev = NULL;
3768 }
3769
3770 return nf_hook_ingress(skb);
3771 }
3772 #endif /* CONFIG_NETFILTER_INGRESS */
3773 return 0;
3774 }
3775
3776 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3777 {
3778 struct packet_type *ptype, *pt_prev;
3779 rx_handler_func_t *rx_handler;
3780 struct net_device *orig_dev;
3781 bool deliver_exact = false;
3782 int ret = NET_RX_DROP;
3783 __be16 type;
3784
3785 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3786
3787 trace_netif_receive_skb(skb);
3788
3789 orig_dev = skb->dev;
3790
3791 skb_reset_network_header(skb);
3792 if (!skb_transport_header_was_set(skb))
3793 skb_reset_transport_header(skb);
3794 skb_reset_mac_len(skb);
3795
3796 pt_prev = NULL;
3797
3798 another_round:
3799 skb->skb_iif = skb->dev->ifindex;
3800
3801 __this_cpu_inc(softnet_data.processed);
3802
3803 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3804 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3805 skb = skb_vlan_untag(skb);
3806 if (unlikely(!skb))
3807 goto out;
3808 }
3809
3810 #ifdef CONFIG_NET_CLS_ACT
3811 if (skb->tc_verd & TC_NCLS) {
3812 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3813 goto ncls;
3814 }
3815 #endif
3816
3817 if (pfmemalloc)
3818 goto skip_taps;
3819
3820 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3821 if (pt_prev)
3822 ret = deliver_skb(skb, pt_prev, orig_dev);
3823 pt_prev = ptype;
3824 }
3825
3826 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3827 if (pt_prev)
3828 ret = deliver_skb(skb, pt_prev, orig_dev);
3829 pt_prev = ptype;
3830 }
3831
3832 skip_taps:
3833 #ifdef CONFIG_NET_INGRESS
3834 if (static_key_false(&ingress_needed)) {
3835 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3836 if (!skb)
3837 goto out;
3838
3839 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3840 goto out;
3841 }
3842 #endif
3843 #ifdef CONFIG_NET_CLS_ACT
3844 skb->tc_verd = 0;
3845 ncls:
3846 #endif
3847 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3848 goto drop;
3849
3850 if (skb_vlan_tag_present(skb)) {
3851 if (pt_prev) {
3852 ret = deliver_skb(skb, pt_prev, orig_dev);
3853 pt_prev = NULL;
3854 }
3855 if (vlan_do_receive(&skb))
3856 goto another_round;
3857 else if (unlikely(!skb))
3858 goto out;
3859 }
3860
3861 rx_handler = rcu_dereference(skb->dev->rx_handler);
3862 if (rx_handler) {
3863 if (pt_prev) {
3864 ret = deliver_skb(skb, pt_prev, orig_dev);
3865 pt_prev = NULL;
3866 }
3867 switch (rx_handler(&skb)) {
3868 case RX_HANDLER_CONSUMED:
3869 ret = NET_RX_SUCCESS;
3870 goto out;
3871 case RX_HANDLER_ANOTHER:
3872 goto another_round;
3873 case RX_HANDLER_EXACT:
3874 deliver_exact = true;
3875 case RX_HANDLER_PASS:
3876 break;
3877 default:
3878 BUG();
3879 }
3880 }
3881
3882 if (unlikely(skb_vlan_tag_present(skb))) {
3883 if (skb_vlan_tag_get_id(skb))
3884 skb->pkt_type = PACKET_OTHERHOST;
3885 /* Note: we might in the future use prio bits
3886 * and set skb->priority like in vlan_do_receive()
3887 * For the time being, just ignore Priority Code Point
3888 */
3889 skb->vlan_tci = 0;
3890 }
3891
3892 type = skb->protocol;
3893
3894 /* deliver only exact match when indicated */
3895 if (likely(!deliver_exact)) {
3896 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3897 &ptype_base[ntohs(type) &
3898 PTYPE_HASH_MASK]);
3899 }
3900
3901 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3902 &orig_dev->ptype_specific);
3903
3904 if (unlikely(skb->dev != orig_dev)) {
3905 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3906 &skb->dev->ptype_specific);
3907 }
3908
3909 if (pt_prev) {
3910 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3911 goto drop;
3912 else
3913 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3914 } else {
3915 drop:
3916 atomic_long_inc(&skb->dev->rx_dropped);
3917 kfree_skb(skb);
3918 /* Jamal, now you will not able to escape explaining
3919 * me how you were going to use this. :-)
3920 */
3921 ret = NET_RX_DROP;
3922 }
3923
3924 out:
3925 return ret;
3926 }
3927
3928 static int __netif_receive_skb(struct sk_buff *skb)
3929 {
3930 int ret;
3931
3932 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3933 unsigned long pflags = current->flags;
3934
3935 /*
3936 * PFMEMALLOC skbs are special, they should
3937 * - be delivered to SOCK_MEMALLOC sockets only
3938 * - stay away from userspace
3939 * - have bounded memory usage
3940 *
3941 * Use PF_MEMALLOC as this saves us from propagating the allocation
3942 * context down to all allocation sites.
3943 */
3944 current->flags |= PF_MEMALLOC;
3945 ret = __netif_receive_skb_core(skb, true);
3946 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3947 } else
3948 ret = __netif_receive_skb_core(skb, false);
3949
3950 return ret;
3951 }
3952
3953 static int netif_receive_skb_internal(struct sk_buff *skb)
3954 {
3955 int ret;
3956
3957 net_timestamp_check(netdev_tstamp_prequeue, skb);
3958
3959 if (skb_defer_rx_timestamp(skb))
3960 return NET_RX_SUCCESS;
3961
3962 rcu_read_lock();
3963
3964 #ifdef CONFIG_RPS
3965 if (static_key_false(&rps_needed)) {
3966 struct rps_dev_flow voidflow, *rflow = &voidflow;
3967 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
3968
3969 if (cpu >= 0) {
3970 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3971 rcu_read_unlock();
3972 return ret;
3973 }
3974 }
3975 #endif
3976 ret = __netif_receive_skb(skb);
3977 rcu_read_unlock();
3978 return ret;
3979 }
3980
3981 /**
3982 * netif_receive_skb - process receive buffer from network
3983 * @skb: buffer to process
3984 *
3985 * netif_receive_skb() is the main receive data processing function.
3986 * It always succeeds. The buffer may be dropped during processing
3987 * for congestion control or by the protocol layers.
3988 *
3989 * This function may only be called from softirq context and interrupts
3990 * should be enabled.
3991 *
3992 * Return values (usually ignored):
3993 * NET_RX_SUCCESS: no congestion
3994 * NET_RX_DROP: packet was dropped
3995 */
3996 int netif_receive_skb(struct sk_buff *skb)
3997 {
3998 trace_netif_receive_skb_entry(skb);
3999
4000 return netif_receive_skb_internal(skb);
4001 }
4002 EXPORT_SYMBOL(netif_receive_skb);
4003
4004 /* Network device is going away, flush any packets still pending
4005 * Called with irqs disabled.
4006 */
4007 static void flush_backlog(void *arg)
4008 {
4009 struct net_device *dev = arg;
4010 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4011 struct sk_buff *skb, *tmp;
4012
4013 rps_lock(sd);
4014 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4015 if (skb->dev == dev) {
4016 __skb_unlink(skb, &sd->input_pkt_queue);
4017 kfree_skb(skb);
4018 input_queue_head_incr(sd);
4019 }
4020 }
4021 rps_unlock(sd);
4022
4023 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4024 if (skb->dev == dev) {
4025 __skb_unlink(skb, &sd->process_queue);
4026 kfree_skb(skb);
4027 input_queue_head_incr(sd);
4028 }
4029 }
4030 }
4031
4032 static int napi_gro_complete(struct sk_buff *skb)
4033 {
4034 struct packet_offload *ptype;
4035 __be16 type = skb->protocol;
4036 struct list_head *head = &offload_base;
4037 int err = -ENOENT;
4038
4039 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4040
4041 if (NAPI_GRO_CB(skb)->count == 1) {
4042 skb_shinfo(skb)->gso_size = 0;
4043 goto out;
4044 }
4045
4046 rcu_read_lock();
4047 list_for_each_entry_rcu(ptype, head, list) {
4048 if (ptype->type != type || !ptype->callbacks.gro_complete)
4049 continue;
4050
4051 err = ptype->callbacks.gro_complete(skb, 0);
4052 break;
4053 }
4054 rcu_read_unlock();
4055
4056 if (err) {
4057 WARN_ON(&ptype->list == head);
4058 kfree_skb(skb);
4059 return NET_RX_SUCCESS;
4060 }
4061
4062 out:
4063 return netif_receive_skb_internal(skb);
4064 }
4065
4066 /* napi->gro_list contains packets ordered by age.
4067 * youngest packets at the head of it.
4068 * Complete skbs in reverse order to reduce latencies.
4069 */
4070 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4071 {
4072 struct sk_buff *skb, *prev = NULL;
4073
4074 /* scan list and build reverse chain */
4075 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4076 skb->prev = prev;
4077 prev = skb;
4078 }
4079
4080 for (skb = prev; skb; skb = prev) {
4081 skb->next = NULL;
4082
4083 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4084 return;
4085
4086 prev = skb->prev;
4087 napi_gro_complete(skb);
4088 napi->gro_count--;
4089 }
4090
4091 napi->gro_list = NULL;
4092 }
4093 EXPORT_SYMBOL(napi_gro_flush);
4094
4095 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4096 {
4097 struct sk_buff *p;
4098 unsigned int maclen = skb->dev->hard_header_len;
4099 u32 hash = skb_get_hash_raw(skb);
4100
4101 for (p = napi->gro_list; p; p = p->next) {
4102 unsigned long diffs;
4103
4104 NAPI_GRO_CB(p)->flush = 0;
4105
4106 if (hash != skb_get_hash_raw(p)) {
4107 NAPI_GRO_CB(p)->same_flow = 0;
4108 continue;
4109 }
4110
4111 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4112 diffs |= p->vlan_tci ^ skb->vlan_tci;
4113 if (maclen == ETH_HLEN)
4114 diffs |= compare_ether_header(skb_mac_header(p),
4115 skb_mac_header(skb));
4116 else if (!diffs)
4117 diffs = memcmp(skb_mac_header(p),
4118 skb_mac_header(skb),
4119 maclen);
4120 NAPI_GRO_CB(p)->same_flow = !diffs;
4121 }
4122 }
4123
4124 static void skb_gro_reset_offset(struct sk_buff *skb)
4125 {
4126 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4127 const skb_frag_t *frag0 = &pinfo->frags[0];
4128
4129 NAPI_GRO_CB(skb)->data_offset = 0;
4130 NAPI_GRO_CB(skb)->frag0 = NULL;
4131 NAPI_GRO_CB(skb)->frag0_len = 0;
4132
4133 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4134 pinfo->nr_frags &&
4135 !PageHighMem(skb_frag_page(frag0))) {
4136 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4137 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4138 }
4139 }
4140
4141 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4142 {
4143 struct skb_shared_info *pinfo = skb_shinfo(skb);
4144
4145 BUG_ON(skb->end - skb->tail < grow);
4146
4147 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4148
4149 skb->data_len -= grow;
4150 skb->tail += grow;
4151
4152 pinfo->frags[0].page_offset += grow;
4153 skb_frag_size_sub(&pinfo->frags[0], grow);
4154
4155 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4156 skb_frag_unref(skb, 0);
4157 memmove(pinfo->frags, pinfo->frags + 1,
4158 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4159 }
4160 }
4161
4162 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4163 {
4164 struct sk_buff **pp = NULL;
4165 struct packet_offload *ptype;
4166 __be16 type = skb->protocol;
4167 struct list_head *head = &offload_base;
4168 int same_flow;
4169 enum gro_result ret;
4170 int grow;
4171
4172 if (!(skb->dev->features & NETIF_F_GRO))
4173 goto normal;
4174
4175 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4176 goto normal;
4177
4178 gro_list_prepare(napi, skb);
4179
4180 rcu_read_lock();
4181 list_for_each_entry_rcu(ptype, head, list) {
4182 if (ptype->type != type || !ptype->callbacks.gro_receive)
4183 continue;
4184
4185 skb_set_network_header(skb, skb_gro_offset(skb));
4186 skb_reset_mac_len(skb);
4187 NAPI_GRO_CB(skb)->same_flow = 0;
4188 NAPI_GRO_CB(skb)->flush = 0;
4189 NAPI_GRO_CB(skb)->free = 0;
4190 NAPI_GRO_CB(skb)->udp_mark = 0;
4191 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4192
4193 /* Setup for GRO checksum validation */
4194 switch (skb->ip_summed) {
4195 case CHECKSUM_COMPLETE:
4196 NAPI_GRO_CB(skb)->csum = skb->csum;
4197 NAPI_GRO_CB(skb)->csum_valid = 1;
4198 NAPI_GRO_CB(skb)->csum_cnt = 0;
4199 break;
4200 case CHECKSUM_UNNECESSARY:
4201 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4202 NAPI_GRO_CB(skb)->csum_valid = 0;
4203 break;
4204 default:
4205 NAPI_GRO_CB(skb)->csum_cnt = 0;
4206 NAPI_GRO_CB(skb)->csum_valid = 0;
4207 }
4208
4209 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4210 break;
4211 }
4212 rcu_read_unlock();
4213
4214 if (&ptype->list == head)
4215 goto normal;
4216
4217 same_flow = NAPI_GRO_CB(skb)->same_flow;
4218 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4219
4220 if (pp) {
4221 struct sk_buff *nskb = *pp;
4222
4223 *pp = nskb->next;
4224 nskb->next = NULL;
4225 napi_gro_complete(nskb);
4226 napi->gro_count--;
4227 }
4228
4229 if (same_flow)
4230 goto ok;
4231
4232 if (NAPI_GRO_CB(skb)->flush)
4233 goto normal;
4234
4235 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4236 struct sk_buff *nskb = napi->gro_list;
4237
4238 /* locate the end of the list to select the 'oldest' flow */
4239 while (nskb->next) {
4240 pp = &nskb->next;
4241 nskb = *pp;
4242 }
4243 *pp = NULL;
4244 nskb->next = NULL;
4245 napi_gro_complete(nskb);
4246 } else {
4247 napi->gro_count++;
4248 }
4249 NAPI_GRO_CB(skb)->count = 1;
4250 NAPI_GRO_CB(skb)->age = jiffies;
4251 NAPI_GRO_CB(skb)->last = skb;
4252 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4253 skb->next = napi->gro_list;
4254 napi->gro_list = skb;
4255 ret = GRO_HELD;
4256
4257 pull:
4258 grow = skb_gro_offset(skb) - skb_headlen(skb);
4259 if (grow > 0)
4260 gro_pull_from_frag0(skb, grow);
4261 ok:
4262 return ret;
4263
4264 normal:
4265 ret = GRO_NORMAL;
4266 goto pull;
4267 }
4268
4269 struct packet_offload *gro_find_receive_by_type(__be16 type)
4270 {
4271 struct list_head *offload_head = &offload_base;
4272 struct packet_offload *ptype;
4273
4274 list_for_each_entry_rcu(ptype, offload_head, list) {
4275 if (ptype->type != type || !ptype->callbacks.gro_receive)
4276 continue;
4277 return ptype;
4278 }
4279 return NULL;
4280 }
4281 EXPORT_SYMBOL(gro_find_receive_by_type);
4282
4283 struct packet_offload *gro_find_complete_by_type(__be16 type)
4284 {
4285 struct list_head *offload_head = &offload_base;
4286 struct packet_offload *ptype;
4287
4288 list_for_each_entry_rcu(ptype, offload_head, list) {
4289 if (ptype->type != type || !ptype->callbacks.gro_complete)
4290 continue;
4291 return ptype;
4292 }
4293 return NULL;
4294 }
4295 EXPORT_SYMBOL(gro_find_complete_by_type);
4296
4297 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4298 {
4299 switch (ret) {
4300 case GRO_NORMAL:
4301 if (netif_receive_skb_internal(skb))
4302 ret = GRO_DROP;
4303 break;
4304
4305 case GRO_DROP:
4306 kfree_skb(skb);
4307 break;
4308
4309 case GRO_MERGED_FREE:
4310 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4311 kmem_cache_free(skbuff_head_cache, skb);
4312 else
4313 __kfree_skb(skb);
4314 break;
4315
4316 case GRO_HELD:
4317 case GRO_MERGED:
4318 break;
4319 }
4320
4321 return ret;
4322 }
4323
4324 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4325 {
4326 trace_napi_gro_receive_entry(skb);
4327
4328 skb_gro_reset_offset(skb);
4329
4330 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4331 }
4332 EXPORT_SYMBOL(napi_gro_receive);
4333
4334 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4335 {
4336 if (unlikely(skb->pfmemalloc)) {
4337 consume_skb(skb);
4338 return;
4339 }
4340 __skb_pull(skb, skb_headlen(skb));
4341 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4342 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4343 skb->vlan_tci = 0;
4344 skb->dev = napi->dev;
4345 skb->skb_iif = 0;
4346 skb->encapsulation = 0;
4347 skb_shinfo(skb)->gso_type = 0;
4348 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4349
4350 napi->skb = skb;
4351 }
4352
4353 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4354 {
4355 struct sk_buff *skb = napi->skb;
4356
4357 if (!skb) {
4358 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4359 napi->skb = skb;
4360 }
4361 return skb;
4362 }
4363 EXPORT_SYMBOL(napi_get_frags);
4364
4365 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4366 struct sk_buff *skb,
4367 gro_result_t ret)
4368 {
4369 switch (ret) {
4370 case GRO_NORMAL:
4371 case GRO_HELD:
4372 __skb_push(skb, ETH_HLEN);
4373 skb->protocol = eth_type_trans(skb, skb->dev);
4374 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4375 ret = GRO_DROP;
4376 break;
4377
4378 case GRO_DROP:
4379 case GRO_MERGED_FREE:
4380 napi_reuse_skb(napi, skb);
4381 break;
4382
4383 case GRO_MERGED:
4384 break;
4385 }
4386
4387 return ret;
4388 }
4389
4390 /* Upper GRO stack assumes network header starts at gro_offset=0
4391 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4392 * We copy ethernet header into skb->data to have a common layout.
4393 */
4394 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4395 {
4396 struct sk_buff *skb = napi->skb;
4397 const struct ethhdr *eth;
4398 unsigned int hlen = sizeof(*eth);
4399
4400 napi->skb = NULL;
4401
4402 skb_reset_mac_header(skb);
4403 skb_gro_reset_offset(skb);
4404
4405 eth = skb_gro_header_fast(skb, 0);
4406 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4407 eth = skb_gro_header_slow(skb, hlen, 0);
4408 if (unlikely(!eth)) {
4409 napi_reuse_skb(napi, skb);
4410 return NULL;
4411 }
4412 } else {
4413 gro_pull_from_frag0(skb, hlen);
4414 NAPI_GRO_CB(skb)->frag0 += hlen;
4415 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4416 }
4417 __skb_pull(skb, hlen);
4418
4419 /*
4420 * This works because the only protocols we care about don't require
4421 * special handling.
4422 * We'll fix it up properly in napi_frags_finish()
4423 */
4424 skb->protocol = eth->h_proto;
4425
4426 return skb;
4427 }
4428
4429 gro_result_t napi_gro_frags(struct napi_struct *napi)
4430 {
4431 struct sk_buff *skb = napi_frags_skb(napi);
4432
4433 if (!skb)
4434 return GRO_DROP;
4435
4436 trace_napi_gro_frags_entry(skb);
4437
4438 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4439 }
4440 EXPORT_SYMBOL(napi_gro_frags);
4441
4442 /* Compute the checksum from gro_offset and return the folded value
4443 * after adding in any pseudo checksum.
4444 */
4445 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4446 {
4447 __wsum wsum;
4448 __sum16 sum;
4449
4450 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4451
4452 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4453 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4454 if (likely(!sum)) {
4455 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4456 !skb->csum_complete_sw)
4457 netdev_rx_csum_fault(skb->dev);
4458 }
4459
4460 NAPI_GRO_CB(skb)->csum = wsum;
4461 NAPI_GRO_CB(skb)->csum_valid = 1;
4462
4463 return sum;
4464 }
4465 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4466
4467 /*
4468 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4469 * Note: called with local irq disabled, but exits with local irq enabled.
4470 */
4471 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4472 {
4473 #ifdef CONFIG_RPS
4474 struct softnet_data *remsd = sd->rps_ipi_list;
4475
4476 if (remsd) {
4477 sd->rps_ipi_list = NULL;
4478
4479 local_irq_enable();
4480
4481 /* Send pending IPI's to kick RPS processing on remote cpus. */
4482 while (remsd) {
4483 struct softnet_data *next = remsd->rps_ipi_next;
4484
4485 if (cpu_online(remsd->cpu))
4486 smp_call_function_single_async(remsd->cpu,
4487 &remsd->csd);
4488 remsd = next;
4489 }
4490 } else
4491 #endif
4492 local_irq_enable();
4493 }
4494
4495 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4496 {
4497 #ifdef CONFIG_RPS
4498 return sd->rps_ipi_list != NULL;
4499 #else
4500 return false;
4501 #endif
4502 }
4503
4504 static int process_backlog(struct napi_struct *napi, int quota)
4505 {
4506 int work = 0;
4507 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4508
4509 /* Check if we have pending ipi, its better to send them now,
4510 * not waiting net_rx_action() end.
4511 */
4512 if (sd_has_rps_ipi_waiting(sd)) {
4513 local_irq_disable();
4514 net_rps_action_and_irq_enable(sd);
4515 }
4516
4517 napi->weight = weight_p;
4518 local_irq_disable();
4519 while (1) {
4520 struct sk_buff *skb;
4521
4522 while ((skb = __skb_dequeue(&sd->process_queue))) {
4523 rcu_read_lock();
4524 local_irq_enable();
4525 __netif_receive_skb(skb);
4526 rcu_read_unlock();
4527 local_irq_disable();
4528 input_queue_head_incr(sd);
4529 if (++work >= quota) {
4530 local_irq_enable();
4531 return work;
4532 }
4533 }
4534
4535 rps_lock(sd);
4536 if (skb_queue_empty(&sd->input_pkt_queue)) {
4537 /*
4538 * Inline a custom version of __napi_complete().
4539 * only current cpu owns and manipulates this napi,
4540 * and NAPI_STATE_SCHED is the only possible flag set
4541 * on backlog.
4542 * We can use a plain write instead of clear_bit(),
4543 * and we dont need an smp_mb() memory barrier.
4544 */
4545 napi->state = 0;
4546 rps_unlock(sd);
4547
4548 break;
4549 }
4550
4551 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4552 &sd->process_queue);
4553 rps_unlock(sd);
4554 }
4555 local_irq_enable();
4556
4557 return work;
4558 }
4559
4560 /**
4561 * __napi_schedule - schedule for receive
4562 * @n: entry to schedule
4563 *
4564 * The entry's receive function will be scheduled to run.
4565 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4566 */
4567 void __napi_schedule(struct napi_struct *n)
4568 {
4569 unsigned long flags;
4570
4571 local_irq_save(flags);
4572 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4573 local_irq_restore(flags);
4574 }
4575 EXPORT_SYMBOL(__napi_schedule);
4576
4577 /**
4578 * __napi_schedule_irqoff - schedule for receive
4579 * @n: entry to schedule
4580 *
4581 * Variant of __napi_schedule() assuming hard irqs are masked
4582 */
4583 void __napi_schedule_irqoff(struct napi_struct *n)
4584 {
4585 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4586 }
4587 EXPORT_SYMBOL(__napi_schedule_irqoff);
4588
4589 void __napi_complete(struct napi_struct *n)
4590 {
4591 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4592
4593 list_del_init(&n->poll_list);
4594 smp_mb__before_atomic();
4595 clear_bit(NAPI_STATE_SCHED, &n->state);
4596 }
4597 EXPORT_SYMBOL(__napi_complete);
4598
4599 void napi_complete_done(struct napi_struct *n, int work_done)
4600 {
4601 unsigned long flags;
4602
4603 /*
4604 * don't let napi dequeue from the cpu poll list
4605 * just in case its running on a different cpu
4606 */
4607 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4608 return;
4609
4610 if (n->gro_list) {
4611 unsigned long timeout = 0;
4612
4613 if (work_done)
4614 timeout = n->dev->gro_flush_timeout;
4615
4616 if (timeout)
4617 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4618 HRTIMER_MODE_REL_PINNED);
4619 else
4620 napi_gro_flush(n, false);
4621 }
4622 if (likely(list_empty(&n->poll_list))) {
4623 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4624 } else {
4625 /* If n->poll_list is not empty, we need to mask irqs */
4626 local_irq_save(flags);
4627 __napi_complete(n);
4628 local_irq_restore(flags);
4629 }
4630 }
4631 EXPORT_SYMBOL(napi_complete_done);
4632
4633 /* must be called under rcu_read_lock(), as we dont take a reference */
4634 struct napi_struct *napi_by_id(unsigned int napi_id)
4635 {
4636 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4637 struct napi_struct *napi;
4638
4639 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4640 if (napi->napi_id == napi_id)
4641 return napi;
4642
4643 return NULL;
4644 }
4645 EXPORT_SYMBOL_GPL(napi_by_id);
4646
4647 void napi_hash_add(struct napi_struct *napi)
4648 {
4649 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4650
4651 spin_lock(&napi_hash_lock);
4652
4653 /* 0 is not a valid id, we also skip an id that is taken
4654 * we expect both events to be extremely rare
4655 */
4656 napi->napi_id = 0;
4657 while (!napi->napi_id) {
4658 napi->napi_id = ++napi_gen_id;
4659 if (napi_by_id(napi->napi_id))
4660 napi->napi_id = 0;
4661 }
4662
4663 hlist_add_head_rcu(&napi->napi_hash_node,
4664 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4665
4666 spin_unlock(&napi_hash_lock);
4667 }
4668 }
4669 EXPORT_SYMBOL_GPL(napi_hash_add);
4670
4671 /* Warning : caller is responsible to make sure rcu grace period
4672 * is respected before freeing memory containing @napi
4673 */
4674 void napi_hash_del(struct napi_struct *napi)
4675 {
4676 spin_lock(&napi_hash_lock);
4677
4678 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4679 hlist_del_rcu(&napi->napi_hash_node);
4680
4681 spin_unlock(&napi_hash_lock);
4682 }
4683 EXPORT_SYMBOL_GPL(napi_hash_del);
4684
4685 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4686 {
4687 struct napi_struct *napi;
4688
4689 napi = container_of(timer, struct napi_struct, timer);
4690 if (napi->gro_list)
4691 napi_schedule(napi);
4692
4693 return HRTIMER_NORESTART;
4694 }
4695
4696 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4697 int (*poll)(struct napi_struct *, int), int weight)
4698 {
4699 INIT_LIST_HEAD(&napi->poll_list);
4700 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4701 napi->timer.function = napi_watchdog;
4702 napi->gro_count = 0;
4703 napi->gro_list = NULL;
4704 napi->skb = NULL;
4705 napi->poll = poll;
4706 if (weight > NAPI_POLL_WEIGHT)
4707 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4708 weight, dev->name);
4709 napi->weight = weight;
4710 list_add(&napi->dev_list, &dev->napi_list);
4711 napi->dev = dev;
4712 #ifdef CONFIG_NETPOLL
4713 spin_lock_init(&napi->poll_lock);
4714 napi->poll_owner = -1;
4715 #endif
4716 set_bit(NAPI_STATE_SCHED, &napi->state);
4717 }
4718 EXPORT_SYMBOL(netif_napi_add);
4719
4720 void napi_disable(struct napi_struct *n)
4721 {
4722 might_sleep();
4723 set_bit(NAPI_STATE_DISABLE, &n->state);
4724
4725 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4726 msleep(1);
4727 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4728 msleep(1);
4729
4730 hrtimer_cancel(&n->timer);
4731
4732 clear_bit(NAPI_STATE_DISABLE, &n->state);
4733 }
4734 EXPORT_SYMBOL(napi_disable);
4735
4736 void netif_napi_del(struct napi_struct *napi)
4737 {
4738 list_del_init(&napi->dev_list);
4739 napi_free_frags(napi);
4740
4741 kfree_skb_list(napi->gro_list);
4742 napi->gro_list = NULL;
4743 napi->gro_count = 0;
4744 }
4745 EXPORT_SYMBOL(netif_napi_del);
4746
4747 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4748 {
4749 void *have;
4750 int work, weight;
4751
4752 list_del_init(&n->poll_list);
4753
4754 have = netpoll_poll_lock(n);
4755
4756 weight = n->weight;
4757
4758 /* This NAPI_STATE_SCHED test is for avoiding a race
4759 * with netpoll's poll_napi(). Only the entity which
4760 * obtains the lock and sees NAPI_STATE_SCHED set will
4761 * actually make the ->poll() call. Therefore we avoid
4762 * accidentally calling ->poll() when NAPI is not scheduled.
4763 */
4764 work = 0;
4765 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4766 work = n->poll(n, weight);
4767 trace_napi_poll(n);
4768 }
4769
4770 WARN_ON_ONCE(work > weight);
4771
4772 if (likely(work < weight))
4773 goto out_unlock;
4774
4775 /* Drivers must not modify the NAPI state if they
4776 * consume the entire weight. In such cases this code
4777 * still "owns" the NAPI instance and therefore can
4778 * move the instance around on the list at-will.
4779 */
4780 if (unlikely(napi_disable_pending(n))) {
4781 napi_complete(n);
4782 goto out_unlock;
4783 }
4784
4785 if (n->gro_list) {
4786 /* flush too old packets
4787 * If HZ < 1000, flush all packets.
4788 */
4789 napi_gro_flush(n, HZ >= 1000);
4790 }
4791
4792 /* Some drivers may have called napi_schedule
4793 * prior to exhausting their budget.
4794 */
4795 if (unlikely(!list_empty(&n->poll_list))) {
4796 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4797 n->dev ? n->dev->name : "backlog");
4798 goto out_unlock;
4799 }
4800
4801 list_add_tail(&n->poll_list, repoll);
4802
4803 out_unlock:
4804 netpoll_poll_unlock(have);
4805
4806 return work;
4807 }
4808
4809 static void net_rx_action(struct softirq_action *h)
4810 {
4811 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4812 unsigned long time_limit = jiffies + 2;
4813 int budget = netdev_budget;
4814 LIST_HEAD(list);
4815 LIST_HEAD(repoll);
4816
4817 local_irq_disable();
4818 list_splice_init(&sd->poll_list, &list);
4819 local_irq_enable();
4820
4821 for (;;) {
4822 struct napi_struct *n;
4823
4824 if (list_empty(&list)) {
4825 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4826 return;
4827 break;
4828 }
4829
4830 n = list_first_entry(&list, struct napi_struct, poll_list);
4831 budget -= napi_poll(n, &repoll);
4832
4833 /* If softirq window is exhausted then punt.
4834 * Allow this to run for 2 jiffies since which will allow
4835 * an average latency of 1.5/HZ.
4836 */
4837 if (unlikely(budget <= 0 ||
4838 time_after_eq(jiffies, time_limit))) {
4839 sd->time_squeeze++;
4840 break;
4841 }
4842 }
4843
4844 local_irq_disable();
4845
4846 list_splice_tail_init(&sd->poll_list, &list);
4847 list_splice_tail(&repoll, &list);
4848 list_splice(&list, &sd->poll_list);
4849 if (!list_empty(&sd->poll_list))
4850 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4851
4852 net_rps_action_and_irq_enable(sd);
4853 }
4854
4855 struct netdev_adjacent {
4856 struct net_device *dev;
4857
4858 /* upper master flag, there can only be one master device per list */
4859 bool master;
4860
4861 /* counter for the number of times this device was added to us */
4862 u16 ref_nr;
4863
4864 /* private field for the users */
4865 void *private;
4866
4867 struct list_head list;
4868 struct rcu_head rcu;
4869 };
4870
4871 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
4872 struct list_head *adj_list)
4873 {
4874 struct netdev_adjacent *adj;
4875
4876 list_for_each_entry(adj, adj_list, list) {
4877 if (adj->dev == adj_dev)
4878 return adj;
4879 }
4880 return NULL;
4881 }
4882
4883 /**
4884 * netdev_has_upper_dev - Check if device is linked to an upper device
4885 * @dev: device
4886 * @upper_dev: upper device to check
4887 *
4888 * Find out if a device is linked to specified upper device and return true
4889 * in case it is. Note that this checks only immediate upper device,
4890 * not through a complete stack of devices. The caller must hold the RTNL lock.
4891 */
4892 bool netdev_has_upper_dev(struct net_device *dev,
4893 struct net_device *upper_dev)
4894 {
4895 ASSERT_RTNL();
4896
4897 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
4898 }
4899 EXPORT_SYMBOL(netdev_has_upper_dev);
4900
4901 /**
4902 * netdev_has_any_upper_dev - Check if device is linked to some device
4903 * @dev: device
4904 *
4905 * Find out if a device is linked to an upper device and return true in case
4906 * it is. The caller must hold the RTNL lock.
4907 */
4908 static bool netdev_has_any_upper_dev(struct net_device *dev)
4909 {
4910 ASSERT_RTNL();
4911
4912 return !list_empty(&dev->all_adj_list.upper);
4913 }
4914
4915 /**
4916 * netdev_master_upper_dev_get - Get master upper device
4917 * @dev: device
4918 *
4919 * Find a master upper device and return pointer to it or NULL in case
4920 * it's not there. The caller must hold the RTNL lock.
4921 */
4922 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4923 {
4924 struct netdev_adjacent *upper;
4925
4926 ASSERT_RTNL();
4927
4928 if (list_empty(&dev->adj_list.upper))
4929 return NULL;
4930
4931 upper = list_first_entry(&dev->adj_list.upper,
4932 struct netdev_adjacent, list);
4933 if (likely(upper->master))
4934 return upper->dev;
4935 return NULL;
4936 }
4937 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4938
4939 void *netdev_adjacent_get_private(struct list_head *adj_list)
4940 {
4941 struct netdev_adjacent *adj;
4942
4943 adj = list_entry(adj_list, struct netdev_adjacent, list);
4944
4945 return adj->private;
4946 }
4947 EXPORT_SYMBOL(netdev_adjacent_get_private);
4948
4949 /**
4950 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4951 * @dev: device
4952 * @iter: list_head ** of the current position
4953 *
4954 * Gets the next device from the dev's upper list, starting from iter
4955 * position. The caller must hold RCU read lock.
4956 */
4957 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4958 struct list_head **iter)
4959 {
4960 struct netdev_adjacent *upper;
4961
4962 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4963
4964 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4965
4966 if (&upper->list == &dev->adj_list.upper)
4967 return NULL;
4968
4969 *iter = &upper->list;
4970
4971 return upper->dev;
4972 }
4973 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4974
4975 /**
4976 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4977 * @dev: device
4978 * @iter: list_head ** of the current position
4979 *
4980 * Gets the next device from the dev's upper list, starting from iter
4981 * position. The caller must hold RCU read lock.
4982 */
4983 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4984 struct list_head **iter)
4985 {
4986 struct netdev_adjacent *upper;
4987
4988 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4989
4990 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4991
4992 if (&upper->list == &dev->all_adj_list.upper)
4993 return NULL;
4994
4995 *iter = &upper->list;
4996
4997 return upper->dev;
4998 }
4999 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5000
5001 /**
5002 * netdev_lower_get_next_private - Get the next ->private from the
5003 * lower neighbour list
5004 * @dev: device
5005 * @iter: list_head ** of the current position
5006 *
5007 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5008 * list, starting from iter position. The caller must hold either hold the
5009 * RTNL lock or its own locking that guarantees that the neighbour lower
5010 * list will remain unchanged.
5011 */
5012 void *netdev_lower_get_next_private(struct net_device *dev,
5013 struct list_head **iter)
5014 {
5015 struct netdev_adjacent *lower;
5016
5017 lower = list_entry(*iter, struct netdev_adjacent, list);
5018
5019 if (&lower->list == &dev->adj_list.lower)
5020 return NULL;
5021
5022 *iter = lower->list.next;
5023
5024 return lower->private;
5025 }
5026 EXPORT_SYMBOL(netdev_lower_get_next_private);
5027
5028 /**
5029 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5030 * lower neighbour list, RCU
5031 * variant
5032 * @dev: device
5033 * @iter: list_head ** of the current position
5034 *
5035 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5036 * list, starting from iter position. The caller must hold RCU read lock.
5037 */
5038 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5039 struct list_head **iter)
5040 {
5041 struct netdev_adjacent *lower;
5042
5043 WARN_ON_ONCE(!rcu_read_lock_held());
5044
5045 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5046
5047 if (&lower->list == &dev->adj_list.lower)
5048 return NULL;
5049
5050 *iter = &lower->list;
5051
5052 return lower->private;
5053 }
5054 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5055
5056 /**
5057 * netdev_lower_get_next - Get the next device from the lower neighbour
5058 * list
5059 * @dev: device
5060 * @iter: list_head ** of the current position
5061 *
5062 * Gets the next netdev_adjacent from the dev's lower neighbour
5063 * list, starting from iter position. The caller must hold RTNL lock or
5064 * its own locking that guarantees that the neighbour lower
5065 * list will remain unchanged.
5066 */
5067 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5068 {
5069 struct netdev_adjacent *lower;
5070
5071 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5072
5073 if (&lower->list == &dev->adj_list.lower)
5074 return NULL;
5075
5076 *iter = &lower->list;
5077
5078 return lower->dev;
5079 }
5080 EXPORT_SYMBOL(netdev_lower_get_next);
5081
5082 /**
5083 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5084 * lower neighbour list, RCU
5085 * variant
5086 * @dev: device
5087 *
5088 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5089 * list. The caller must hold RCU read lock.
5090 */
5091 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5092 {
5093 struct netdev_adjacent *lower;
5094
5095 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5096 struct netdev_adjacent, list);
5097 if (lower)
5098 return lower->private;
5099 return NULL;
5100 }
5101 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5102
5103 /**
5104 * netdev_master_upper_dev_get_rcu - Get master upper device
5105 * @dev: device
5106 *
5107 * Find a master upper device and return pointer to it or NULL in case
5108 * it's not there. The caller must hold the RCU read lock.
5109 */
5110 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5111 {
5112 struct netdev_adjacent *upper;
5113
5114 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5115 struct netdev_adjacent, list);
5116 if (upper && likely(upper->master))
5117 return upper->dev;
5118 return NULL;
5119 }
5120 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5121
5122 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5123 struct net_device *adj_dev,
5124 struct list_head *dev_list)
5125 {
5126 char linkname[IFNAMSIZ+7];
5127 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5128 "upper_%s" : "lower_%s", adj_dev->name);
5129 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5130 linkname);
5131 }
5132 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5133 char *name,
5134 struct list_head *dev_list)
5135 {
5136 char linkname[IFNAMSIZ+7];
5137 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5138 "upper_%s" : "lower_%s", name);
5139 sysfs_remove_link(&(dev->dev.kobj), linkname);
5140 }
5141
5142 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5143 struct net_device *adj_dev,
5144 struct list_head *dev_list)
5145 {
5146 return (dev_list == &dev->adj_list.upper ||
5147 dev_list == &dev->adj_list.lower) &&
5148 net_eq(dev_net(dev), dev_net(adj_dev));
5149 }
5150
5151 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5152 struct net_device *adj_dev,
5153 struct list_head *dev_list,
5154 void *private, bool master)
5155 {
5156 struct netdev_adjacent *adj;
5157 int ret;
5158
5159 adj = __netdev_find_adj(adj_dev, dev_list);
5160
5161 if (adj) {
5162 adj->ref_nr++;
5163 return 0;
5164 }
5165
5166 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5167 if (!adj)
5168 return -ENOMEM;
5169
5170 adj->dev = adj_dev;
5171 adj->master = master;
5172 adj->ref_nr = 1;
5173 adj->private = private;
5174 dev_hold(adj_dev);
5175
5176 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5177 adj_dev->name, dev->name, adj_dev->name);
5178
5179 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5180 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5181 if (ret)
5182 goto free_adj;
5183 }
5184
5185 /* Ensure that master link is always the first item in list. */
5186 if (master) {
5187 ret = sysfs_create_link(&(dev->dev.kobj),
5188 &(adj_dev->dev.kobj), "master");
5189 if (ret)
5190 goto remove_symlinks;
5191
5192 list_add_rcu(&adj->list, dev_list);
5193 } else {
5194 list_add_tail_rcu(&adj->list, dev_list);
5195 }
5196
5197 return 0;
5198
5199 remove_symlinks:
5200 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5201 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5202 free_adj:
5203 kfree(adj);
5204 dev_put(adj_dev);
5205
5206 return ret;
5207 }
5208
5209 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5210 struct net_device *adj_dev,
5211 struct list_head *dev_list)
5212 {
5213 struct netdev_adjacent *adj;
5214
5215 adj = __netdev_find_adj(adj_dev, dev_list);
5216
5217 if (!adj) {
5218 pr_err("tried to remove device %s from %s\n",
5219 dev->name, adj_dev->name);
5220 BUG();
5221 }
5222
5223 if (adj->ref_nr > 1) {
5224 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5225 adj->ref_nr-1);
5226 adj->ref_nr--;
5227 return;
5228 }
5229
5230 if (adj->master)
5231 sysfs_remove_link(&(dev->dev.kobj), "master");
5232
5233 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5234 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5235
5236 list_del_rcu(&adj->list);
5237 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5238 adj_dev->name, dev->name, adj_dev->name);
5239 dev_put(adj_dev);
5240 kfree_rcu(adj, rcu);
5241 }
5242
5243 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5244 struct net_device *upper_dev,
5245 struct list_head *up_list,
5246 struct list_head *down_list,
5247 void *private, bool master)
5248 {
5249 int ret;
5250
5251 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5252 master);
5253 if (ret)
5254 return ret;
5255
5256 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5257 false);
5258 if (ret) {
5259 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5260 return ret;
5261 }
5262
5263 return 0;
5264 }
5265
5266 static int __netdev_adjacent_dev_link(struct net_device *dev,
5267 struct net_device *upper_dev)
5268 {
5269 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5270 &dev->all_adj_list.upper,
5271 &upper_dev->all_adj_list.lower,
5272 NULL, false);
5273 }
5274
5275 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5276 struct net_device *upper_dev,
5277 struct list_head *up_list,
5278 struct list_head *down_list)
5279 {
5280 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5281 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5282 }
5283
5284 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5285 struct net_device *upper_dev)
5286 {
5287 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5288 &dev->all_adj_list.upper,
5289 &upper_dev->all_adj_list.lower);
5290 }
5291
5292 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5293 struct net_device *upper_dev,
5294 void *private, bool master)
5295 {
5296 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5297
5298 if (ret)
5299 return ret;
5300
5301 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5302 &dev->adj_list.upper,
5303 &upper_dev->adj_list.lower,
5304 private, master);
5305 if (ret) {
5306 __netdev_adjacent_dev_unlink(dev, upper_dev);
5307 return ret;
5308 }
5309
5310 return 0;
5311 }
5312
5313 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5314 struct net_device *upper_dev)
5315 {
5316 __netdev_adjacent_dev_unlink(dev, upper_dev);
5317 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5318 &dev->adj_list.upper,
5319 &upper_dev->adj_list.lower);
5320 }
5321
5322 static int __netdev_upper_dev_link(struct net_device *dev,
5323 struct net_device *upper_dev, bool master,
5324 void *private)
5325 {
5326 struct netdev_notifier_changeupper_info changeupper_info;
5327 struct netdev_adjacent *i, *j, *to_i, *to_j;
5328 int ret = 0;
5329
5330 ASSERT_RTNL();
5331
5332 if (dev == upper_dev)
5333 return -EBUSY;
5334
5335 /* To prevent loops, check if dev is not upper device to upper_dev. */
5336 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5337 return -EBUSY;
5338
5339 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5340 return -EEXIST;
5341
5342 if (master && netdev_master_upper_dev_get(dev))
5343 return -EBUSY;
5344
5345 changeupper_info.upper_dev = upper_dev;
5346 changeupper_info.master = master;
5347 changeupper_info.linking = true;
5348
5349 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5350 &changeupper_info.info);
5351 ret = notifier_to_errno(ret);
5352 if (ret)
5353 return ret;
5354
5355 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5356 master);
5357 if (ret)
5358 return ret;
5359
5360 /* Now that we linked these devs, make all the upper_dev's
5361 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5362 * versa, and don't forget the devices itself. All of these
5363 * links are non-neighbours.
5364 */
5365 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5366 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5367 pr_debug("Interlinking %s with %s, non-neighbour\n",
5368 i->dev->name, j->dev->name);
5369 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5370 if (ret)
5371 goto rollback_mesh;
5372 }
5373 }
5374
5375 /* add dev to every upper_dev's upper device */
5376 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5377 pr_debug("linking %s's upper device %s with %s\n",
5378 upper_dev->name, i->dev->name, dev->name);
5379 ret = __netdev_adjacent_dev_link(dev, i->dev);
5380 if (ret)
5381 goto rollback_upper_mesh;
5382 }
5383
5384 /* add upper_dev to every dev's lower device */
5385 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5386 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5387 i->dev->name, upper_dev->name);
5388 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5389 if (ret)
5390 goto rollback_lower_mesh;
5391 }
5392
5393 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5394 &changeupper_info.info);
5395 return 0;
5396
5397 rollback_lower_mesh:
5398 to_i = i;
5399 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5400 if (i == to_i)
5401 break;
5402 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5403 }
5404
5405 i = NULL;
5406
5407 rollback_upper_mesh:
5408 to_i = i;
5409 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5410 if (i == to_i)
5411 break;
5412 __netdev_adjacent_dev_unlink(dev, i->dev);
5413 }
5414
5415 i = j = NULL;
5416
5417 rollback_mesh:
5418 to_i = i;
5419 to_j = j;
5420 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5421 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5422 if (i == to_i && j == to_j)
5423 break;
5424 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5425 }
5426 if (i == to_i)
5427 break;
5428 }
5429
5430 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5431
5432 return ret;
5433 }
5434
5435 /**
5436 * netdev_upper_dev_link - Add a link to the upper device
5437 * @dev: device
5438 * @upper_dev: new upper device
5439 *
5440 * Adds a link to device which is upper to this one. The caller must hold
5441 * the RTNL lock. On a failure a negative errno code is returned.
5442 * On success the reference counts are adjusted and the function
5443 * returns zero.
5444 */
5445 int netdev_upper_dev_link(struct net_device *dev,
5446 struct net_device *upper_dev)
5447 {
5448 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5449 }
5450 EXPORT_SYMBOL(netdev_upper_dev_link);
5451
5452 /**
5453 * netdev_master_upper_dev_link - Add a master link to the upper device
5454 * @dev: device
5455 * @upper_dev: new upper device
5456 *
5457 * Adds a link to device which is upper to this one. In this case, only
5458 * one master upper device can be linked, although other non-master devices
5459 * might be linked as well. The caller must hold the RTNL lock.
5460 * On a failure a negative errno code is returned. On success the reference
5461 * counts are adjusted and the function returns zero.
5462 */
5463 int netdev_master_upper_dev_link(struct net_device *dev,
5464 struct net_device *upper_dev)
5465 {
5466 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5467 }
5468 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5469
5470 int netdev_master_upper_dev_link_private(struct net_device *dev,
5471 struct net_device *upper_dev,
5472 void *private)
5473 {
5474 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5475 }
5476 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5477
5478 /**
5479 * netdev_upper_dev_unlink - Removes a link to upper device
5480 * @dev: device
5481 * @upper_dev: new upper device
5482 *
5483 * Removes a link to device which is upper to this one. The caller must hold
5484 * the RTNL lock.
5485 */
5486 void netdev_upper_dev_unlink(struct net_device *dev,
5487 struct net_device *upper_dev)
5488 {
5489 struct netdev_notifier_changeupper_info changeupper_info;
5490 struct netdev_adjacent *i, *j;
5491 ASSERT_RTNL();
5492
5493 changeupper_info.upper_dev = upper_dev;
5494 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5495 changeupper_info.linking = false;
5496
5497 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5498 &changeupper_info.info);
5499
5500 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5501
5502 /* Here is the tricky part. We must remove all dev's lower
5503 * devices from all upper_dev's upper devices and vice
5504 * versa, to maintain the graph relationship.
5505 */
5506 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5507 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5508 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5509
5510 /* remove also the devices itself from lower/upper device
5511 * list
5512 */
5513 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5514 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5515
5516 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5517 __netdev_adjacent_dev_unlink(dev, i->dev);
5518
5519 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5520 &changeupper_info.info);
5521 }
5522 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5523
5524 /**
5525 * netdev_bonding_info_change - Dispatch event about slave change
5526 * @dev: device
5527 * @bonding_info: info to dispatch
5528 *
5529 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5530 * The caller must hold the RTNL lock.
5531 */
5532 void netdev_bonding_info_change(struct net_device *dev,
5533 struct netdev_bonding_info *bonding_info)
5534 {
5535 struct netdev_notifier_bonding_info info;
5536
5537 memcpy(&info.bonding_info, bonding_info,
5538 sizeof(struct netdev_bonding_info));
5539 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5540 &info.info);
5541 }
5542 EXPORT_SYMBOL(netdev_bonding_info_change);
5543
5544 static void netdev_adjacent_add_links(struct net_device *dev)
5545 {
5546 struct netdev_adjacent *iter;
5547
5548 struct net *net = dev_net(dev);
5549
5550 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5551 if (!net_eq(net,dev_net(iter->dev)))
5552 continue;
5553 netdev_adjacent_sysfs_add(iter->dev, dev,
5554 &iter->dev->adj_list.lower);
5555 netdev_adjacent_sysfs_add(dev, iter->dev,
5556 &dev->adj_list.upper);
5557 }
5558
5559 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5560 if (!net_eq(net,dev_net(iter->dev)))
5561 continue;
5562 netdev_adjacent_sysfs_add(iter->dev, dev,
5563 &iter->dev->adj_list.upper);
5564 netdev_adjacent_sysfs_add(dev, iter->dev,
5565 &dev->adj_list.lower);
5566 }
5567 }
5568
5569 static void netdev_adjacent_del_links(struct net_device *dev)
5570 {
5571 struct netdev_adjacent *iter;
5572
5573 struct net *net = dev_net(dev);
5574
5575 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5576 if (!net_eq(net,dev_net(iter->dev)))
5577 continue;
5578 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5579 &iter->dev->adj_list.lower);
5580 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5581 &dev->adj_list.upper);
5582 }
5583
5584 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5585 if (!net_eq(net,dev_net(iter->dev)))
5586 continue;
5587 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5588 &iter->dev->adj_list.upper);
5589 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5590 &dev->adj_list.lower);
5591 }
5592 }
5593
5594 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5595 {
5596 struct netdev_adjacent *iter;
5597
5598 struct net *net = dev_net(dev);
5599
5600 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5601 if (!net_eq(net,dev_net(iter->dev)))
5602 continue;
5603 netdev_adjacent_sysfs_del(iter->dev, oldname,
5604 &iter->dev->adj_list.lower);
5605 netdev_adjacent_sysfs_add(iter->dev, dev,
5606 &iter->dev->adj_list.lower);
5607 }
5608
5609 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5610 if (!net_eq(net,dev_net(iter->dev)))
5611 continue;
5612 netdev_adjacent_sysfs_del(iter->dev, oldname,
5613 &iter->dev->adj_list.upper);
5614 netdev_adjacent_sysfs_add(iter->dev, dev,
5615 &iter->dev->adj_list.upper);
5616 }
5617 }
5618
5619 void *netdev_lower_dev_get_private(struct net_device *dev,
5620 struct net_device *lower_dev)
5621 {
5622 struct netdev_adjacent *lower;
5623
5624 if (!lower_dev)
5625 return NULL;
5626 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5627 if (!lower)
5628 return NULL;
5629
5630 return lower->private;
5631 }
5632 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5633
5634
5635 int dev_get_nest_level(struct net_device *dev,
5636 bool (*type_check)(struct net_device *dev))
5637 {
5638 struct net_device *lower = NULL;
5639 struct list_head *iter;
5640 int max_nest = -1;
5641 int nest;
5642
5643 ASSERT_RTNL();
5644
5645 netdev_for_each_lower_dev(dev, lower, iter) {
5646 nest = dev_get_nest_level(lower, type_check);
5647 if (max_nest < nest)
5648 max_nest = nest;
5649 }
5650
5651 if (type_check(dev))
5652 max_nest++;
5653
5654 return max_nest;
5655 }
5656 EXPORT_SYMBOL(dev_get_nest_level);
5657
5658 static void dev_change_rx_flags(struct net_device *dev, int flags)
5659 {
5660 const struct net_device_ops *ops = dev->netdev_ops;
5661
5662 if (ops->ndo_change_rx_flags)
5663 ops->ndo_change_rx_flags(dev, flags);
5664 }
5665
5666 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5667 {
5668 unsigned int old_flags = dev->flags;
5669 kuid_t uid;
5670 kgid_t gid;
5671
5672 ASSERT_RTNL();
5673
5674 dev->flags |= IFF_PROMISC;
5675 dev->promiscuity += inc;
5676 if (dev->promiscuity == 0) {
5677 /*
5678 * Avoid overflow.
5679 * If inc causes overflow, untouch promisc and return error.
5680 */
5681 if (inc < 0)
5682 dev->flags &= ~IFF_PROMISC;
5683 else {
5684 dev->promiscuity -= inc;
5685 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5686 dev->name);
5687 return -EOVERFLOW;
5688 }
5689 }
5690 if (dev->flags != old_flags) {
5691 pr_info("device %s %s promiscuous mode\n",
5692 dev->name,
5693 dev->flags & IFF_PROMISC ? "entered" : "left");
5694 if (audit_enabled) {
5695 current_uid_gid(&uid, &gid);
5696 audit_log(current->audit_context, GFP_ATOMIC,
5697 AUDIT_ANOM_PROMISCUOUS,
5698 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5699 dev->name, (dev->flags & IFF_PROMISC),
5700 (old_flags & IFF_PROMISC),
5701 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5702 from_kuid(&init_user_ns, uid),
5703 from_kgid(&init_user_ns, gid),
5704 audit_get_sessionid(current));
5705 }
5706
5707 dev_change_rx_flags(dev, IFF_PROMISC);
5708 }
5709 if (notify)
5710 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5711 return 0;
5712 }
5713
5714 /**
5715 * dev_set_promiscuity - update promiscuity count on a device
5716 * @dev: device
5717 * @inc: modifier
5718 *
5719 * Add or remove promiscuity from a device. While the count in the device
5720 * remains above zero the interface remains promiscuous. Once it hits zero
5721 * the device reverts back to normal filtering operation. A negative inc
5722 * value is used to drop promiscuity on the device.
5723 * Return 0 if successful or a negative errno code on error.
5724 */
5725 int dev_set_promiscuity(struct net_device *dev, int inc)
5726 {
5727 unsigned int old_flags = dev->flags;
5728 int err;
5729
5730 err = __dev_set_promiscuity(dev, inc, true);
5731 if (err < 0)
5732 return err;
5733 if (dev->flags != old_flags)
5734 dev_set_rx_mode(dev);
5735 return err;
5736 }
5737 EXPORT_SYMBOL(dev_set_promiscuity);
5738
5739 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5740 {
5741 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5742
5743 ASSERT_RTNL();
5744
5745 dev->flags |= IFF_ALLMULTI;
5746 dev->allmulti += inc;
5747 if (dev->allmulti == 0) {
5748 /*
5749 * Avoid overflow.
5750 * If inc causes overflow, untouch allmulti and return error.
5751 */
5752 if (inc < 0)
5753 dev->flags &= ~IFF_ALLMULTI;
5754 else {
5755 dev->allmulti -= inc;
5756 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5757 dev->name);
5758 return -EOVERFLOW;
5759 }
5760 }
5761 if (dev->flags ^ old_flags) {
5762 dev_change_rx_flags(dev, IFF_ALLMULTI);
5763 dev_set_rx_mode(dev);
5764 if (notify)
5765 __dev_notify_flags(dev, old_flags,
5766 dev->gflags ^ old_gflags);
5767 }
5768 return 0;
5769 }
5770
5771 /**
5772 * dev_set_allmulti - update allmulti count on a device
5773 * @dev: device
5774 * @inc: modifier
5775 *
5776 * Add or remove reception of all multicast frames to a device. While the
5777 * count in the device remains above zero the interface remains listening
5778 * to all interfaces. Once it hits zero the device reverts back to normal
5779 * filtering operation. A negative @inc value is used to drop the counter
5780 * when releasing a resource needing all multicasts.
5781 * Return 0 if successful or a negative errno code on error.
5782 */
5783
5784 int dev_set_allmulti(struct net_device *dev, int inc)
5785 {
5786 return __dev_set_allmulti(dev, inc, true);
5787 }
5788 EXPORT_SYMBOL(dev_set_allmulti);
5789
5790 /*
5791 * Upload unicast and multicast address lists to device and
5792 * configure RX filtering. When the device doesn't support unicast
5793 * filtering it is put in promiscuous mode while unicast addresses
5794 * are present.
5795 */
5796 void __dev_set_rx_mode(struct net_device *dev)
5797 {
5798 const struct net_device_ops *ops = dev->netdev_ops;
5799
5800 /* dev_open will call this function so the list will stay sane. */
5801 if (!(dev->flags&IFF_UP))
5802 return;
5803
5804 if (!netif_device_present(dev))
5805 return;
5806
5807 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5808 /* Unicast addresses changes may only happen under the rtnl,
5809 * therefore calling __dev_set_promiscuity here is safe.
5810 */
5811 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5812 __dev_set_promiscuity(dev, 1, false);
5813 dev->uc_promisc = true;
5814 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5815 __dev_set_promiscuity(dev, -1, false);
5816 dev->uc_promisc = false;
5817 }
5818 }
5819
5820 if (ops->ndo_set_rx_mode)
5821 ops->ndo_set_rx_mode(dev);
5822 }
5823
5824 void dev_set_rx_mode(struct net_device *dev)
5825 {
5826 netif_addr_lock_bh(dev);
5827 __dev_set_rx_mode(dev);
5828 netif_addr_unlock_bh(dev);
5829 }
5830
5831 /**
5832 * dev_get_flags - get flags reported to userspace
5833 * @dev: device
5834 *
5835 * Get the combination of flag bits exported through APIs to userspace.
5836 */
5837 unsigned int dev_get_flags(const struct net_device *dev)
5838 {
5839 unsigned int flags;
5840
5841 flags = (dev->flags & ~(IFF_PROMISC |
5842 IFF_ALLMULTI |
5843 IFF_RUNNING |
5844 IFF_LOWER_UP |
5845 IFF_DORMANT)) |
5846 (dev->gflags & (IFF_PROMISC |
5847 IFF_ALLMULTI));
5848
5849 if (netif_running(dev)) {
5850 if (netif_oper_up(dev))
5851 flags |= IFF_RUNNING;
5852 if (netif_carrier_ok(dev))
5853 flags |= IFF_LOWER_UP;
5854 if (netif_dormant(dev))
5855 flags |= IFF_DORMANT;
5856 }
5857
5858 return flags;
5859 }
5860 EXPORT_SYMBOL(dev_get_flags);
5861
5862 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5863 {
5864 unsigned int old_flags = dev->flags;
5865 int ret;
5866
5867 ASSERT_RTNL();
5868
5869 /*
5870 * Set the flags on our device.
5871 */
5872
5873 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5874 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5875 IFF_AUTOMEDIA)) |
5876 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5877 IFF_ALLMULTI));
5878
5879 /*
5880 * Load in the correct multicast list now the flags have changed.
5881 */
5882
5883 if ((old_flags ^ flags) & IFF_MULTICAST)
5884 dev_change_rx_flags(dev, IFF_MULTICAST);
5885
5886 dev_set_rx_mode(dev);
5887
5888 /*
5889 * Have we downed the interface. We handle IFF_UP ourselves
5890 * according to user attempts to set it, rather than blindly
5891 * setting it.
5892 */
5893
5894 ret = 0;
5895 if ((old_flags ^ flags) & IFF_UP)
5896 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5897
5898 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5899 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5900 unsigned int old_flags = dev->flags;
5901
5902 dev->gflags ^= IFF_PROMISC;
5903
5904 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5905 if (dev->flags != old_flags)
5906 dev_set_rx_mode(dev);
5907 }
5908
5909 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5910 is important. Some (broken) drivers set IFF_PROMISC, when
5911 IFF_ALLMULTI is requested not asking us and not reporting.
5912 */
5913 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5914 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5915
5916 dev->gflags ^= IFF_ALLMULTI;
5917 __dev_set_allmulti(dev, inc, false);
5918 }
5919
5920 return ret;
5921 }
5922
5923 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5924 unsigned int gchanges)
5925 {
5926 unsigned int changes = dev->flags ^ old_flags;
5927
5928 if (gchanges)
5929 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5930
5931 if (changes & IFF_UP) {
5932 if (dev->flags & IFF_UP)
5933 call_netdevice_notifiers(NETDEV_UP, dev);
5934 else
5935 call_netdevice_notifiers(NETDEV_DOWN, dev);
5936 }
5937
5938 if (dev->flags & IFF_UP &&
5939 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5940 struct netdev_notifier_change_info change_info;
5941
5942 change_info.flags_changed = changes;
5943 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5944 &change_info.info);
5945 }
5946 }
5947
5948 /**
5949 * dev_change_flags - change device settings
5950 * @dev: device
5951 * @flags: device state flags
5952 *
5953 * Change settings on device based state flags. The flags are
5954 * in the userspace exported format.
5955 */
5956 int dev_change_flags(struct net_device *dev, unsigned int flags)
5957 {
5958 int ret;
5959 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5960
5961 ret = __dev_change_flags(dev, flags);
5962 if (ret < 0)
5963 return ret;
5964
5965 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5966 __dev_notify_flags(dev, old_flags, changes);
5967 return ret;
5968 }
5969 EXPORT_SYMBOL(dev_change_flags);
5970
5971 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5972 {
5973 const struct net_device_ops *ops = dev->netdev_ops;
5974
5975 if (ops->ndo_change_mtu)
5976 return ops->ndo_change_mtu(dev, new_mtu);
5977
5978 dev->mtu = new_mtu;
5979 return 0;
5980 }
5981
5982 /**
5983 * dev_set_mtu - Change maximum transfer unit
5984 * @dev: device
5985 * @new_mtu: new transfer unit
5986 *
5987 * Change the maximum transfer size of the network device.
5988 */
5989 int dev_set_mtu(struct net_device *dev, int new_mtu)
5990 {
5991 int err, orig_mtu;
5992
5993 if (new_mtu == dev->mtu)
5994 return 0;
5995
5996 /* MTU must be positive. */
5997 if (new_mtu < 0)
5998 return -EINVAL;
5999
6000 if (!netif_device_present(dev))
6001 return -ENODEV;
6002
6003 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6004 err = notifier_to_errno(err);
6005 if (err)
6006 return err;
6007
6008 orig_mtu = dev->mtu;
6009 err = __dev_set_mtu(dev, new_mtu);
6010
6011 if (!err) {
6012 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6013 err = notifier_to_errno(err);
6014 if (err) {
6015 /* setting mtu back and notifying everyone again,
6016 * so that they have a chance to revert changes.
6017 */
6018 __dev_set_mtu(dev, orig_mtu);
6019 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6020 }
6021 }
6022 return err;
6023 }
6024 EXPORT_SYMBOL(dev_set_mtu);
6025
6026 /**
6027 * dev_set_group - Change group this device belongs to
6028 * @dev: device
6029 * @new_group: group this device should belong to
6030 */
6031 void dev_set_group(struct net_device *dev, int new_group)
6032 {
6033 dev->group = new_group;
6034 }
6035 EXPORT_SYMBOL(dev_set_group);
6036
6037 /**
6038 * dev_set_mac_address - Change Media Access Control Address
6039 * @dev: device
6040 * @sa: new address
6041 *
6042 * Change the hardware (MAC) address of the device
6043 */
6044 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6045 {
6046 const struct net_device_ops *ops = dev->netdev_ops;
6047 int err;
6048
6049 if (!ops->ndo_set_mac_address)
6050 return -EOPNOTSUPP;
6051 if (sa->sa_family != dev->type)
6052 return -EINVAL;
6053 if (!netif_device_present(dev))
6054 return -ENODEV;
6055 err = ops->ndo_set_mac_address(dev, sa);
6056 if (err)
6057 return err;
6058 dev->addr_assign_type = NET_ADDR_SET;
6059 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6060 add_device_randomness(dev->dev_addr, dev->addr_len);
6061 return 0;
6062 }
6063 EXPORT_SYMBOL(dev_set_mac_address);
6064
6065 /**
6066 * dev_change_carrier - Change device carrier
6067 * @dev: device
6068 * @new_carrier: new value
6069 *
6070 * Change device carrier
6071 */
6072 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6073 {
6074 const struct net_device_ops *ops = dev->netdev_ops;
6075
6076 if (!ops->ndo_change_carrier)
6077 return -EOPNOTSUPP;
6078 if (!netif_device_present(dev))
6079 return -ENODEV;
6080 return ops->ndo_change_carrier(dev, new_carrier);
6081 }
6082 EXPORT_SYMBOL(dev_change_carrier);
6083
6084 /**
6085 * dev_get_phys_port_id - Get device physical port ID
6086 * @dev: device
6087 * @ppid: port ID
6088 *
6089 * Get device physical port ID
6090 */
6091 int dev_get_phys_port_id(struct net_device *dev,
6092 struct netdev_phys_item_id *ppid)
6093 {
6094 const struct net_device_ops *ops = dev->netdev_ops;
6095
6096 if (!ops->ndo_get_phys_port_id)
6097 return -EOPNOTSUPP;
6098 return ops->ndo_get_phys_port_id(dev, ppid);
6099 }
6100 EXPORT_SYMBOL(dev_get_phys_port_id);
6101
6102 /**
6103 * dev_get_phys_port_name - Get device physical port name
6104 * @dev: device
6105 * @name: port name
6106 *
6107 * Get device physical port name
6108 */
6109 int dev_get_phys_port_name(struct net_device *dev,
6110 char *name, size_t len)
6111 {
6112 const struct net_device_ops *ops = dev->netdev_ops;
6113
6114 if (!ops->ndo_get_phys_port_name)
6115 return -EOPNOTSUPP;
6116 return ops->ndo_get_phys_port_name(dev, name, len);
6117 }
6118 EXPORT_SYMBOL(dev_get_phys_port_name);
6119
6120 /**
6121 * dev_change_proto_down - update protocol port state information
6122 * @dev: device
6123 * @proto_down: new value
6124 *
6125 * This info can be used by switch drivers to set the phys state of the
6126 * port.
6127 */
6128 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6129 {
6130 const struct net_device_ops *ops = dev->netdev_ops;
6131
6132 if (!ops->ndo_change_proto_down)
6133 return -EOPNOTSUPP;
6134 if (!netif_device_present(dev))
6135 return -ENODEV;
6136 return ops->ndo_change_proto_down(dev, proto_down);
6137 }
6138 EXPORT_SYMBOL(dev_change_proto_down);
6139
6140 /**
6141 * dev_new_index - allocate an ifindex
6142 * @net: the applicable net namespace
6143 *
6144 * Returns a suitable unique value for a new device interface
6145 * number. The caller must hold the rtnl semaphore or the
6146 * dev_base_lock to be sure it remains unique.
6147 */
6148 static int dev_new_index(struct net *net)
6149 {
6150 int ifindex = net->ifindex;
6151 for (;;) {
6152 if (++ifindex <= 0)
6153 ifindex = 1;
6154 if (!__dev_get_by_index(net, ifindex))
6155 return net->ifindex = ifindex;
6156 }
6157 }
6158
6159 /* Delayed registration/unregisteration */
6160 static LIST_HEAD(net_todo_list);
6161 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6162
6163 static void net_set_todo(struct net_device *dev)
6164 {
6165 list_add_tail(&dev->todo_list, &net_todo_list);
6166 dev_net(dev)->dev_unreg_count++;
6167 }
6168
6169 static void rollback_registered_many(struct list_head *head)
6170 {
6171 struct net_device *dev, *tmp;
6172 LIST_HEAD(close_head);
6173
6174 BUG_ON(dev_boot_phase);
6175 ASSERT_RTNL();
6176
6177 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6178 /* Some devices call without registering
6179 * for initialization unwind. Remove those
6180 * devices and proceed with the remaining.
6181 */
6182 if (dev->reg_state == NETREG_UNINITIALIZED) {
6183 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6184 dev->name, dev);
6185
6186 WARN_ON(1);
6187 list_del(&dev->unreg_list);
6188 continue;
6189 }
6190 dev->dismantle = true;
6191 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6192 }
6193
6194 /* If device is running, close it first. */
6195 list_for_each_entry(dev, head, unreg_list)
6196 list_add_tail(&dev->close_list, &close_head);
6197 dev_close_many(&close_head, true);
6198
6199 list_for_each_entry(dev, head, unreg_list) {
6200 /* And unlink it from device chain. */
6201 unlist_netdevice(dev);
6202
6203 dev->reg_state = NETREG_UNREGISTERING;
6204 on_each_cpu(flush_backlog, dev, 1);
6205 }
6206
6207 synchronize_net();
6208
6209 list_for_each_entry(dev, head, unreg_list) {
6210 struct sk_buff *skb = NULL;
6211
6212 /* Shutdown queueing discipline. */
6213 dev_shutdown(dev);
6214
6215
6216 /* Notify protocols, that we are about to destroy
6217 this device. They should clean all the things.
6218 */
6219 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6220
6221 if (!dev->rtnl_link_ops ||
6222 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6223 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6224 GFP_KERNEL);
6225
6226 /*
6227 * Flush the unicast and multicast chains
6228 */
6229 dev_uc_flush(dev);
6230 dev_mc_flush(dev);
6231
6232 if (dev->netdev_ops->ndo_uninit)
6233 dev->netdev_ops->ndo_uninit(dev);
6234
6235 if (skb)
6236 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6237
6238 /* Notifier chain MUST detach us all upper devices. */
6239 WARN_ON(netdev_has_any_upper_dev(dev));
6240
6241 /* Remove entries from kobject tree */
6242 netdev_unregister_kobject(dev);
6243 #ifdef CONFIG_XPS
6244 /* Remove XPS queueing entries */
6245 netif_reset_xps_queues_gt(dev, 0);
6246 #endif
6247 }
6248
6249 synchronize_net();
6250
6251 list_for_each_entry(dev, head, unreg_list)
6252 dev_put(dev);
6253 }
6254
6255 static void rollback_registered(struct net_device *dev)
6256 {
6257 LIST_HEAD(single);
6258
6259 list_add(&dev->unreg_list, &single);
6260 rollback_registered_many(&single);
6261 list_del(&single);
6262 }
6263
6264 static netdev_features_t netdev_fix_features(struct net_device *dev,
6265 netdev_features_t features)
6266 {
6267 /* Fix illegal checksum combinations */
6268 if ((features & NETIF_F_HW_CSUM) &&
6269 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6270 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6271 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6272 }
6273
6274 /* TSO requires that SG is present as well. */
6275 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6276 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6277 features &= ~NETIF_F_ALL_TSO;
6278 }
6279
6280 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6281 !(features & NETIF_F_IP_CSUM)) {
6282 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6283 features &= ~NETIF_F_TSO;
6284 features &= ~NETIF_F_TSO_ECN;
6285 }
6286
6287 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6288 !(features & NETIF_F_IPV6_CSUM)) {
6289 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6290 features &= ~NETIF_F_TSO6;
6291 }
6292
6293 /* TSO ECN requires that TSO is present as well. */
6294 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6295 features &= ~NETIF_F_TSO_ECN;
6296
6297 /* Software GSO depends on SG. */
6298 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6299 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6300 features &= ~NETIF_F_GSO;
6301 }
6302
6303 /* UFO needs SG and checksumming */
6304 if (features & NETIF_F_UFO) {
6305 /* maybe split UFO into V4 and V6? */
6306 if (!((features & NETIF_F_GEN_CSUM) ||
6307 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6308 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6309 netdev_dbg(dev,
6310 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6311 features &= ~NETIF_F_UFO;
6312 }
6313
6314 if (!(features & NETIF_F_SG)) {
6315 netdev_dbg(dev,
6316 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6317 features &= ~NETIF_F_UFO;
6318 }
6319 }
6320
6321 #ifdef CONFIG_NET_RX_BUSY_POLL
6322 if (dev->netdev_ops->ndo_busy_poll)
6323 features |= NETIF_F_BUSY_POLL;
6324 else
6325 #endif
6326 features &= ~NETIF_F_BUSY_POLL;
6327
6328 return features;
6329 }
6330
6331 int __netdev_update_features(struct net_device *dev)
6332 {
6333 netdev_features_t features;
6334 int err = 0;
6335
6336 ASSERT_RTNL();
6337
6338 features = netdev_get_wanted_features(dev);
6339
6340 if (dev->netdev_ops->ndo_fix_features)
6341 features = dev->netdev_ops->ndo_fix_features(dev, features);
6342
6343 /* driver might be less strict about feature dependencies */
6344 features = netdev_fix_features(dev, features);
6345
6346 if (dev->features == features)
6347 return 0;
6348
6349 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6350 &dev->features, &features);
6351
6352 if (dev->netdev_ops->ndo_set_features)
6353 err = dev->netdev_ops->ndo_set_features(dev, features);
6354
6355 if (unlikely(err < 0)) {
6356 netdev_err(dev,
6357 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6358 err, &features, &dev->features);
6359 return -1;
6360 }
6361
6362 if (!err)
6363 dev->features = features;
6364
6365 return 1;
6366 }
6367
6368 /**
6369 * netdev_update_features - recalculate device features
6370 * @dev: the device to check
6371 *
6372 * Recalculate dev->features set and send notifications if it
6373 * has changed. Should be called after driver or hardware dependent
6374 * conditions might have changed that influence the features.
6375 */
6376 void netdev_update_features(struct net_device *dev)
6377 {
6378 if (__netdev_update_features(dev))
6379 netdev_features_change(dev);
6380 }
6381 EXPORT_SYMBOL(netdev_update_features);
6382
6383 /**
6384 * netdev_change_features - recalculate device features
6385 * @dev: the device to check
6386 *
6387 * Recalculate dev->features set and send notifications even
6388 * if they have not changed. Should be called instead of
6389 * netdev_update_features() if also dev->vlan_features might
6390 * have changed to allow the changes to be propagated to stacked
6391 * VLAN devices.
6392 */
6393 void netdev_change_features(struct net_device *dev)
6394 {
6395 __netdev_update_features(dev);
6396 netdev_features_change(dev);
6397 }
6398 EXPORT_SYMBOL(netdev_change_features);
6399
6400 /**
6401 * netif_stacked_transfer_operstate - transfer operstate
6402 * @rootdev: the root or lower level device to transfer state from
6403 * @dev: the device to transfer operstate to
6404 *
6405 * Transfer operational state from root to device. This is normally
6406 * called when a stacking relationship exists between the root
6407 * device and the device(a leaf device).
6408 */
6409 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6410 struct net_device *dev)
6411 {
6412 if (rootdev->operstate == IF_OPER_DORMANT)
6413 netif_dormant_on(dev);
6414 else
6415 netif_dormant_off(dev);
6416
6417 if (netif_carrier_ok(rootdev)) {
6418 if (!netif_carrier_ok(dev))
6419 netif_carrier_on(dev);
6420 } else {
6421 if (netif_carrier_ok(dev))
6422 netif_carrier_off(dev);
6423 }
6424 }
6425 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6426
6427 #ifdef CONFIG_SYSFS
6428 static int netif_alloc_rx_queues(struct net_device *dev)
6429 {
6430 unsigned int i, count = dev->num_rx_queues;
6431 struct netdev_rx_queue *rx;
6432 size_t sz = count * sizeof(*rx);
6433
6434 BUG_ON(count < 1);
6435
6436 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6437 if (!rx) {
6438 rx = vzalloc(sz);
6439 if (!rx)
6440 return -ENOMEM;
6441 }
6442 dev->_rx = rx;
6443
6444 for (i = 0; i < count; i++)
6445 rx[i].dev = dev;
6446 return 0;
6447 }
6448 #endif
6449
6450 static void netdev_init_one_queue(struct net_device *dev,
6451 struct netdev_queue *queue, void *_unused)
6452 {
6453 /* Initialize queue lock */
6454 spin_lock_init(&queue->_xmit_lock);
6455 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6456 queue->xmit_lock_owner = -1;
6457 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6458 queue->dev = dev;
6459 #ifdef CONFIG_BQL
6460 dql_init(&queue->dql, HZ);
6461 #endif
6462 }
6463
6464 static void netif_free_tx_queues(struct net_device *dev)
6465 {
6466 kvfree(dev->_tx);
6467 }
6468
6469 static int netif_alloc_netdev_queues(struct net_device *dev)
6470 {
6471 unsigned int count = dev->num_tx_queues;
6472 struct netdev_queue *tx;
6473 size_t sz = count * sizeof(*tx);
6474
6475 if (count < 1 || count > 0xffff)
6476 return -EINVAL;
6477
6478 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6479 if (!tx) {
6480 tx = vzalloc(sz);
6481 if (!tx)
6482 return -ENOMEM;
6483 }
6484 dev->_tx = tx;
6485
6486 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6487 spin_lock_init(&dev->tx_global_lock);
6488
6489 return 0;
6490 }
6491
6492 void netif_tx_stop_all_queues(struct net_device *dev)
6493 {
6494 unsigned int i;
6495
6496 for (i = 0; i < dev->num_tx_queues; i++) {
6497 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6498 netif_tx_stop_queue(txq);
6499 }
6500 }
6501 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6502
6503 /**
6504 * register_netdevice - register a network device
6505 * @dev: device to register
6506 *
6507 * Take a completed network device structure and add it to the kernel
6508 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6509 * chain. 0 is returned on success. A negative errno code is returned
6510 * on a failure to set up the device, or if the name is a duplicate.
6511 *
6512 * Callers must hold the rtnl semaphore. You may want
6513 * register_netdev() instead of this.
6514 *
6515 * BUGS:
6516 * The locking appears insufficient to guarantee two parallel registers
6517 * will not get the same name.
6518 */
6519
6520 int register_netdevice(struct net_device *dev)
6521 {
6522 int ret;
6523 struct net *net = dev_net(dev);
6524
6525 BUG_ON(dev_boot_phase);
6526 ASSERT_RTNL();
6527
6528 might_sleep();
6529
6530 /* When net_device's are persistent, this will be fatal. */
6531 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6532 BUG_ON(!net);
6533
6534 spin_lock_init(&dev->addr_list_lock);
6535 netdev_set_addr_lockdep_class(dev);
6536
6537 ret = dev_get_valid_name(net, dev, dev->name);
6538 if (ret < 0)
6539 goto out;
6540
6541 /* Init, if this function is available */
6542 if (dev->netdev_ops->ndo_init) {
6543 ret = dev->netdev_ops->ndo_init(dev);
6544 if (ret) {
6545 if (ret > 0)
6546 ret = -EIO;
6547 goto out;
6548 }
6549 }
6550
6551 if (((dev->hw_features | dev->features) &
6552 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6553 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6554 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6555 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6556 ret = -EINVAL;
6557 goto err_uninit;
6558 }
6559
6560 ret = -EBUSY;
6561 if (!dev->ifindex)
6562 dev->ifindex = dev_new_index(net);
6563 else if (__dev_get_by_index(net, dev->ifindex))
6564 goto err_uninit;
6565
6566 /* Transfer changeable features to wanted_features and enable
6567 * software offloads (GSO and GRO).
6568 */
6569 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6570 dev->features |= NETIF_F_SOFT_FEATURES;
6571 dev->wanted_features = dev->features & dev->hw_features;
6572
6573 if (!(dev->flags & IFF_LOOPBACK)) {
6574 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6575 }
6576
6577 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6578 */
6579 dev->vlan_features |= NETIF_F_HIGHDMA;
6580
6581 /* Make NETIF_F_SG inheritable to tunnel devices.
6582 */
6583 dev->hw_enc_features |= NETIF_F_SG;
6584
6585 /* Make NETIF_F_SG inheritable to MPLS.
6586 */
6587 dev->mpls_features |= NETIF_F_SG;
6588
6589 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6590 ret = notifier_to_errno(ret);
6591 if (ret)
6592 goto err_uninit;
6593
6594 ret = netdev_register_kobject(dev);
6595 if (ret)
6596 goto err_uninit;
6597 dev->reg_state = NETREG_REGISTERED;
6598
6599 __netdev_update_features(dev);
6600
6601 /*
6602 * Default initial state at registry is that the
6603 * device is present.
6604 */
6605
6606 set_bit(__LINK_STATE_PRESENT, &dev->state);
6607
6608 linkwatch_init_dev(dev);
6609
6610 dev_init_scheduler(dev);
6611 dev_hold(dev);
6612 list_netdevice(dev);
6613 add_device_randomness(dev->dev_addr, dev->addr_len);
6614
6615 /* If the device has permanent device address, driver should
6616 * set dev_addr and also addr_assign_type should be set to
6617 * NET_ADDR_PERM (default value).
6618 */
6619 if (dev->addr_assign_type == NET_ADDR_PERM)
6620 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6621
6622 /* Notify protocols, that a new device appeared. */
6623 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6624 ret = notifier_to_errno(ret);
6625 if (ret) {
6626 rollback_registered(dev);
6627 dev->reg_state = NETREG_UNREGISTERED;
6628 }
6629 /*
6630 * Prevent userspace races by waiting until the network
6631 * device is fully setup before sending notifications.
6632 */
6633 if (!dev->rtnl_link_ops ||
6634 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6635 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6636
6637 out:
6638 return ret;
6639
6640 err_uninit:
6641 if (dev->netdev_ops->ndo_uninit)
6642 dev->netdev_ops->ndo_uninit(dev);
6643 goto out;
6644 }
6645 EXPORT_SYMBOL(register_netdevice);
6646
6647 /**
6648 * init_dummy_netdev - init a dummy network device for NAPI
6649 * @dev: device to init
6650 *
6651 * This takes a network device structure and initialize the minimum
6652 * amount of fields so it can be used to schedule NAPI polls without
6653 * registering a full blown interface. This is to be used by drivers
6654 * that need to tie several hardware interfaces to a single NAPI
6655 * poll scheduler due to HW limitations.
6656 */
6657 int init_dummy_netdev(struct net_device *dev)
6658 {
6659 /* Clear everything. Note we don't initialize spinlocks
6660 * are they aren't supposed to be taken by any of the
6661 * NAPI code and this dummy netdev is supposed to be
6662 * only ever used for NAPI polls
6663 */
6664 memset(dev, 0, sizeof(struct net_device));
6665
6666 /* make sure we BUG if trying to hit standard
6667 * register/unregister code path
6668 */
6669 dev->reg_state = NETREG_DUMMY;
6670
6671 /* NAPI wants this */
6672 INIT_LIST_HEAD(&dev->napi_list);
6673
6674 /* a dummy interface is started by default */
6675 set_bit(__LINK_STATE_PRESENT, &dev->state);
6676 set_bit(__LINK_STATE_START, &dev->state);
6677
6678 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6679 * because users of this 'device' dont need to change
6680 * its refcount.
6681 */
6682
6683 return 0;
6684 }
6685 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6686
6687
6688 /**
6689 * register_netdev - register a network device
6690 * @dev: device to register
6691 *
6692 * Take a completed network device structure and add it to the kernel
6693 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6694 * chain. 0 is returned on success. A negative errno code is returned
6695 * on a failure to set up the device, or if the name is a duplicate.
6696 *
6697 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6698 * and expands the device name if you passed a format string to
6699 * alloc_netdev.
6700 */
6701 int register_netdev(struct net_device *dev)
6702 {
6703 int err;
6704
6705 rtnl_lock();
6706 err = register_netdevice(dev);
6707 rtnl_unlock();
6708 return err;
6709 }
6710 EXPORT_SYMBOL(register_netdev);
6711
6712 int netdev_refcnt_read(const struct net_device *dev)
6713 {
6714 int i, refcnt = 0;
6715
6716 for_each_possible_cpu(i)
6717 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6718 return refcnt;
6719 }
6720 EXPORT_SYMBOL(netdev_refcnt_read);
6721
6722 /**
6723 * netdev_wait_allrefs - wait until all references are gone.
6724 * @dev: target net_device
6725 *
6726 * This is called when unregistering network devices.
6727 *
6728 * Any protocol or device that holds a reference should register
6729 * for netdevice notification, and cleanup and put back the
6730 * reference if they receive an UNREGISTER event.
6731 * We can get stuck here if buggy protocols don't correctly
6732 * call dev_put.
6733 */
6734 static void netdev_wait_allrefs(struct net_device *dev)
6735 {
6736 unsigned long rebroadcast_time, warning_time;
6737 int refcnt;
6738
6739 linkwatch_forget_dev(dev);
6740
6741 rebroadcast_time = warning_time = jiffies;
6742 refcnt = netdev_refcnt_read(dev);
6743
6744 while (refcnt != 0) {
6745 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6746 rtnl_lock();
6747
6748 /* Rebroadcast unregister notification */
6749 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6750
6751 __rtnl_unlock();
6752 rcu_barrier();
6753 rtnl_lock();
6754
6755 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6756 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6757 &dev->state)) {
6758 /* We must not have linkwatch events
6759 * pending on unregister. If this
6760 * happens, we simply run the queue
6761 * unscheduled, resulting in a noop
6762 * for this device.
6763 */
6764 linkwatch_run_queue();
6765 }
6766
6767 __rtnl_unlock();
6768
6769 rebroadcast_time = jiffies;
6770 }
6771
6772 msleep(250);
6773
6774 refcnt = netdev_refcnt_read(dev);
6775
6776 if (time_after(jiffies, warning_time + 10 * HZ)) {
6777 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6778 dev->name, refcnt);
6779 warning_time = jiffies;
6780 }
6781 }
6782 }
6783
6784 /* The sequence is:
6785 *
6786 * rtnl_lock();
6787 * ...
6788 * register_netdevice(x1);
6789 * register_netdevice(x2);
6790 * ...
6791 * unregister_netdevice(y1);
6792 * unregister_netdevice(y2);
6793 * ...
6794 * rtnl_unlock();
6795 * free_netdev(y1);
6796 * free_netdev(y2);
6797 *
6798 * We are invoked by rtnl_unlock().
6799 * This allows us to deal with problems:
6800 * 1) We can delete sysfs objects which invoke hotplug
6801 * without deadlocking with linkwatch via keventd.
6802 * 2) Since we run with the RTNL semaphore not held, we can sleep
6803 * safely in order to wait for the netdev refcnt to drop to zero.
6804 *
6805 * We must not return until all unregister events added during
6806 * the interval the lock was held have been completed.
6807 */
6808 void netdev_run_todo(void)
6809 {
6810 struct list_head list;
6811
6812 /* Snapshot list, allow later requests */
6813 list_replace_init(&net_todo_list, &list);
6814
6815 __rtnl_unlock();
6816
6817
6818 /* Wait for rcu callbacks to finish before next phase */
6819 if (!list_empty(&list))
6820 rcu_barrier();
6821
6822 while (!list_empty(&list)) {
6823 struct net_device *dev
6824 = list_first_entry(&list, struct net_device, todo_list);
6825 list_del(&dev->todo_list);
6826
6827 rtnl_lock();
6828 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6829 __rtnl_unlock();
6830
6831 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6832 pr_err("network todo '%s' but state %d\n",
6833 dev->name, dev->reg_state);
6834 dump_stack();
6835 continue;
6836 }
6837
6838 dev->reg_state = NETREG_UNREGISTERED;
6839
6840 netdev_wait_allrefs(dev);
6841
6842 /* paranoia */
6843 BUG_ON(netdev_refcnt_read(dev));
6844 BUG_ON(!list_empty(&dev->ptype_all));
6845 BUG_ON(!list_empty(&dev->ptype_specific));
6846 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6847 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6848 WARN_ON(dev->dn_ptr);
6849
6850 if (dev->destructor)
6851 dev->destructor(dev);
6852
6853 /* Report a network device has been unregistered */
6854 rtnl_lock();
6855 dev_net(dev)->dev_unreg_count--;
6856 __rtnl_unlock();
6857 wake_up(&netdev_unregistering_wq);
6858
6859 /* Free network device */
6860 kobject_put(&dev->dev.kobj);
6861 }
6862 }
6863
6864 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6865 * fields in the same order, with only the type differing.
6866 */
6867 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6868 const struct net_device_stats *netdev_stats)
6869 {
6870 #if BITS_PER_LONG == 64
6871 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6872 memcpy(stats64, netdev_stats, sizeof(*stats64));
6873 #else
6874 size_t i, n = sizeof(*stats64) / sizeof(u64);
6875 const unsigned long *src = (const unsigned long *)netdev_stats;
6876 u64 *dst = (u64 *)stats64;
6877
6878 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6879 sizeof(*stats64) / sizeof(u64));
6880 for (i = 0; i < n; i++)
6881 dst[i] = src[i];
6882 #endif
6883 }
6884 EXPORT_SYMBOL(netdev_stats_to_stats64);
6885
6886 /**
6887 * dev_get_stats - get network device statistics
6888 * @dev: device to get statistics from
6889 * @storage: place to store stats
6890 *
6891 * Get network statistics from device. Return @storage.
6892 * The device driver may provide its own method by setting
6893 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6894 * otherwise the internal statistics structure is used.
6895 */
6896 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6897 struct rtnl_link_stats64 *storage)
6898 {
6899 const struct net_device_ops *ops = dev->netdev_ops;
6900
6901 if (ops->ndo_get_stats64) {
6902 memset(storage, 0, sizeof(*storage));
6903 ops->ndo_get_stats64(dev, storage);
6904 } else if (ops->ndo_get_stats) {
6905 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6906 } else {
6907 netdev_stats_to_stats64(storage, &dev->stats);
6908 }
6909 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6910 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6911 return storage;
6912 }
6913 EXPORT_SYMBOL(dev_get_stats);
6914
6915 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6916 {
6917 struct netdev_queue *queue = dev_ingress_queue(dev);
6918
6919 #ifdef CONFIG_NET_CLS_ACT
6920 if (queue)
6921 return queue;
6922 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6923 if (!queue)
6924 return NULL;
6925 netdev_init_one_queue(dev, queue, NULL);
6926 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6927 queue->qdisc_sleeping = &noop_qdisc;
6928 rcu_assign_pointer(dev->ingress_queue, queue);
6929 #endif
6930 return queue;
6931 }
6932
6933 static const struct ethtool_ops default_ethtool_ops;
6934
6935 void netdev_set_default_ethtool_ops(struct net_device *dev,
6936 const struct ethtool_ops *ops)
6937 {
6938 if (dev->ethtool_ops == &default_ethtool_ops)
6939 dev->ethtool_ops = ops;
6940 }
6941 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6942
6943 void netdev_freemem(struct net_device *dev)
6944 {
6945 char *addr = (char *)dev - dev->padded;
6946
6947 kvfree(addr);
6948 }
6949
6950 /**
6951 * alloc_netdev_mqs - allocate network device
6952 * @sizeof_priv: size of private data to allocate space for
6953 * @name: device name format string
6954 * @name_assign_type: origin of device name
6955 * @setup: callback to initialize device
6956 * @txqs: the number of TX subqueues to allocate
6957 * @rxqs: the number of RX subqueues to allocate
6958 *
6959 * Allocates a struct net_device with private data area for driver use
6960 * and performs basic initialization. Also allocates subqueue structs
6961 * for each queue on the device.
6962 */
6963 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6964 unsigned char name_assign_type,
6965 void (*setup)(struct net_device *),
6966 unsigned int txqs, unsigned int rxqs)
6967 {
6968 struct net_device *dev;
6969 size_t alloc_size;
6970 struct net_device *p;
6971
6972 BUG_ON(strlen(name) >= sizeof(dev->name));
6973
6974 if (txqs < 1) {
6975 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6976 return NULL;
6977 }
6978
6979 #ifdef CONFIG_SYSFS
6980 if (rxqs < 1) {
6981 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6982 return NULL;
6983 }
6984 #endif
6985
6986 alloc_size = sizeof(struct net_device);
6987 if (sizeof_priv) {
6988 /* ensure 32-byte alignment of private area */
6989 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6990 alloc_size += sizeof_priv;
6991 }
6992 /* ensure 32-byte alignment of whole construct */
6993 alloc_size += NETDEV_ALIGN - 1;
6994
6995 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6996 if (!p)
6997 p = vzalloc(alloc_size);
6998 if (!p)
6999 return NULL;
7000
7001 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7002 dev->padded = (char *)dev - (char *)p;
7003
7004 dev->pcpu_refcnt = alloc_percpu(int);
7005 if (!dev->pcpu_refcnt)
7006 goto free_dev;
7007
7008 if (dev_addr_init(dev))
7009 goto free_pcpu;
7010
7011 dev_mc_init(dev);
7012 dev_uc_init(dev);
7013
7014 dev_net_set(dev, &init_net);
7015
7016 dev->gso_max_size = GSO_MAX_SIZE;
7017 dev->gso_max_segs = GSO_MAX_SEGS;
7018 dev->gso_min_segs = 0;
7019
7020 INIT_LIST_HEAD(&dev->napi_list);
7021 INIT_LIST_HEAD(&dev->unreg_list);
7022 INIT_LIST_HEAD(&dev->close_list);
7023 INIT_LIST_HEAD(&dev->link_watch_list);
7024 INIT_LIST_HEAD(&dev->adj_list.upper);
7025 INIT_LIST_HEAD(&dev->adj_list.lower);
7026 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7027 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7028 INIT_LIST_HEAD(&dev->ptype_all);
7029 INIT_LIST_HEAD(&dev->ptype_specific);
7030 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7031 setup(dev);
7032
7033 if (!dev->tx_queue_len)
7034 dev->priv_flags |= IFF_NO_QUEUE;
7035
7036 dev->num_tx_queues = txqs;
7037 dev->real_num_tx_queues = txqs;
7038 if (netif_alloc_netdev_queues(dev))
7039 goto free_all;
7040
7041 #ifdef CONFIG_SYSFS
7042 dev->num_rx_queues = rxqs;
7043 dev->real_num_rx_queues = rxqs;
7044 if (netif_alloc_rx_queues(dev))
7045 goto free_all;
7046 #endif
7047
7048 strcpy(dev->name, name);
7049 dev->name_assign_type = name_assign_type;
7050 dev->group = INIT_NETDEV_GROUP;
7051 if (!dev->ethtool_ops)
7052 dev->ethtool_ops = &default_ethtool_ops;
7053
7054 nf_hook_ingress_init(dev);
7055
7056 return dev;
7057
7058 free_all:
7059 free_netdev(dev);
7060 return NULL;
7061
7062 free_pcpu:
7063 free_percpu(dev->pcpu_refcnt);
7064 free_dev:
7065 netdev_freemem(dev);
7066 return NULL;
7067 }
7068 EXPORT_SYMBOL(alloc_netdev_mqs);
7069
7070 /**
7071 * free_netdev - free network device
7072 * @dev: device
7073 *
7074 * This function does the last stage of destroying an allocated device
7075 * interface. The reference to the device object is released.
7076 * If this is the last reference then it will be freed.
7077 */
7078 void free_netdev(struct net_device *dev)
7079 {
7080 struct napi_struct *p, *n;
7081
7082 netif_free_tx_queues(dev);
7083 #ifdef CONFIG_SYSFS
7084 kvfree(dev->_rx);
7085 #endif
7086
7087 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7088
7089 /* Flush device addresses */
7090 dev_addr_flush(dev);
7091
7092 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7093 netif_napi_del(p);
7094
7095 free_percpu(dev->pcpu_refcnt);
7096 dev->pcpu_refcnt = NULL;
7097
7098 /* Compatibility with error handling in drivers */
7099 if (dev->reg_state == NETREG_UNINITIALIZED) {
7100 netdev_freemem(dev);
7101 return;
7102 }
7103
7104 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7105 dev->reg_state = NETREG_RELEASED;
7106
7107 /* will free via device release */
7108 put_device(&dev->dev);
7109 }
7110 EXPORT_SYMBOL(free_netdev);
7111
7112 /**
7113 * synchronize_net - Synchronize with packet receive processing
7114 *
7115 * Wait for packets currently being received to be done.
7116 * Does not block later packets from starting.
7117 */
7118 void synchronize_net(void)
7119 {
7120 might_sleep();
7121 if (rtnl_is_locked())
7122 synchronize_rcu_expedited();
7123 else
7124 synchronize_rcu();
7125 }
7126 EXPORT_SYMBOL(synchronize_net);
7127
7128 /**
7129 * unregister_netdevice_queue - remove device from the kernel
7130 * @dev: device
7131 * @head: list
7132 *
7133 * This function shuts down a device interface and removes it
7134 * from the kernel tables.
7135 * If head not NULL, device is queued to be unregistered later.
7136 *
7137 * Callers must hold the rtnl semaphore. You may want
7138 * unregister_netdev() instead of this.
7139 */
7140
7141 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7142 {
7143 ASSERT_RTNL();
7144
7145 if (head) {
7146 list_move_tail(&dev->unreg_list, head);
7147 } else {
7148 rollback_registered(dev);
7149 /* Finish processing unregister after unlock */
7150 net_set_todo(dev);
7151 }
7152 }
7153 EXPORT_SYMBOL(unregister_netdevice_queue);
7154
7155 /**
7156 * unregister_netdevice_many - unregister many devices
7157 * @head: list of devices
7158 *
7159 * Note: As most callers use a stack allocated list_head,
7160 * we force a list_del() to make sure stack wont be corrupted later.
7161 */
7162 void unregister_netdevice_many(struct list_head *head)
7163 {
7164 struct net_device *dev;
7165
7166 if (!list_empty(head)) {
7167 rollback_registered_many(head);
7168 list_for_each_entry(dev, head, unreg_list)
7169 net_set_todo(dev);
7170 list_del(head);
7171 }
7172 }
7173 EXPORT_SYMBOL(unregister_netdevice_many);
7174
7175 /**
7176 * unregister_netdev - remove device from the kernel
7177 * @dev: device
7178 *
7179 * This function shuts down a device interface and removes it
7180 * from the kernel tables.
7181 *
7182 * This is just a wrapper for unregister_netdevice that takes
7183 * the rtnl semaphore. In general you want to use this and not
7184 * unregister_netdevice.
7185 */
7186 void unregister_netdev(struct net_device *dev)
7187 {
7188 rtnl_lock();
7189 unregister_netdevice(dev);
7190 rtnl_unlock();
7191 }
7192 EXPORT_SYMBOL(unregister_netdev);
7193
7194 /**
7195 * dev_change_net_namespace - move device to different nethost namespace
7196 * @dev: device
7197 * @net: network namespace
7198 * @pat: If not NULL name pattern to try if the current device name
7199 * is already taken in the destination network namespace.
7200 *
7201 * This function shuts down a device interface and moves it
7202 * to a new network namespace. On success 0 is returned, on
7203 * a failure a netagive errno code is returned.
7204 *
7205 * Callers must hold the rtnl semaphore.
7206 */
7207
7208 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7209 {
7210 int err;
7211
7212 ASSERT_RTNL();
7213
7214 /* Don't allow namespace local devices to be moved. */
7215 err = -EINVAL;
7216 if (dev->features & NETIF_F_NETNS_LOCAL)
7217 goto out;
7218
7219 /* Ensure the device has been registrered */
7220 if (dev->reg_state != NETREG_REGISTERED)
7221 goto out;
7222
7223 /* Get out if there is nothing todo */
7224 err = 0;
7225 if (net_eq(dev_net(dev), net))
7226 goto out;
7227
7228 /* Pick the destination device name, and ensure
7229 * we can use it in the destination network namespace.
7230 */
7231 err = -EEXIST;
7232 if (__dev_get_by_name(net, dev->name)) {
7233 /* We get here if we can't use the current device name */
7234 if (!pat)
7235 goto out;
7236 if (dev_get_valid_name(net, dev, pat) < 0)
7237 goto out;
7238 }
7239
7240 /*
7241 * And now a mini version of register_netdevice unregister_netdevice.
7242 */
7243
7244 /* If device is running close it first. */
7245 dev_close(dev);
7246
7247 /* And unlink it from device chain */
7248 err = -ENODEV;
7249 unlist_netdevice(dev);
7250
7251 synchronize_net();
7252
7253 /* Shutdown queueing discipline. */
7254 dev_shutdown(dev);
7255
7256 /* Notify protocols, that we are about to destroy
7257 this device. They should clean all the things.
7258
7259 Note that dev->reg_state stays at NETREG_REGISTERED.
7260 This is wanted because this way 8021q and macvlan know
7261 the device is just moving and can keep their slaves up.
7262 */
7263 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7264 rcu_barrier();
7265 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7266 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7267
7268 /*
7269 * Flush the unicast and multicast chains
7270 */
7271 dev_uc_flush(dev);
7272 dev_mc_flush(dev);
7273
7274 /* Send a netdev-removed uevent to the old namespace */
7275 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7276 netdev_adjacent_del_links(dev);
7277
7278 /* Actually switch the network namespace */
7279 dev_net_set(dev, net);
7280
7281 /* If there is an ifindex conflict assign a new one */
7282 if (__dev_get_by_index(net, dev->ifindex))
7283 dev->ifindex = dev_new_index(net);
7284
7285 /* Send a netdev-add uevent to the new namespace */
7286 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7287 netdev_adjacent_add_links(dev);
7288
7289 /* Fixup kobjects */
7290 err = device_rename(&dev->dev, dev->name);
7291 WARN_ON(err);
7292
7293 /* Add the device back in the hashes */
7294 list_netdevice(dev);
7295
7296 /* Notify protocols, that a new device appeared. */
7297 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7298
7299 /*
7300 * Prevent userspace races by waiting until the network
7301 * device is fully setup before sending notifications.
7302 */
7303 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7304
7305 synchronize_net();
7306 err = 0;
7307 out:
7308 return err;
7309 }
7310 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7311
7312 static int dev_cpu_callback(struct notifier_block *nfb,
7313 unsigned long action,
7314 void *ocpu)
7315 {
7316 struct sk_buff **list_skb;
7317 struct sk_buff *skb;
7318 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7319 struct softnet_data *sd, *oldsd;
7320
7321 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7322 return NOTIFY_OK;
7323
7324 local_irq_disable();
7325 cpu = smp_processor_id();
7326 sd = &per_cpu(softnet_data, cpu);
7327 oldsd = &per_cpu(softnet_data, oldcpu);
7328
7329 /* Find end of our completion_queue. */
7330 list_skb = &sd->completion_queue;
7331 while (*list_skb)
7332 list_skb = &(*list_skb)->next;
7333 /* Append completion queue from offline CPU. */
7334 *list_skb = oldsd->completion_queue;
7335 oldsd->completion_queue = NULL;
7336
7337 /* Append output queue from offline CPU. */
7338 if (oldsd->output_queue) {
7339 *sd->output_queue_tailp = oldsd->output_queue;
7340 sd->output_queue_tailp = oldsd->output_queue_tailp;
7341 oldsd->output_queue = NULL;
7342 oldsd->output_queue_tailp = &oldsd->output_queue;
7343 }
7344 /* Append NAPI poll list from offline CPU, with one exception :
7345 * process_backlog() must be called by cpu owning percpu backlog.
7346 * We properly handle process_queue & input_pkt_queue later.
7347 */
7348 while (!list_empty(&oldsd->poll_list)) {
7349 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7350 struct napi_struct,
7351 poll_list);
7352
7353 list_del_init(&napi->poll_list);
7354 if (napi->poll == process_backlog)
7355 napi->state = 0;
7356 else
7357 ____napi_schedule(sd, napi);
7358 }
7359
7360 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7361 local_irq_enable();
7362
7363 /* Process offline CPU's input_pkt_queue */
7364 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7365 netif_rx_ni(skb);
7366 input_queue_head_incr(oldsd);
7367 }
7368 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7369 netif_rx_ni(skb);
7370 input_queue_head_incr(oldsd);
7371 }
7372
7373 return NOTIFY_OK;
7374 }
7375
7376
7377 /**
7378 * netdev_increment_features - increment feature set by one
7379 * @all: current feature set
7380 * @one: new feature set
7381 * @mask: mask feature set
7382 *
7383 * Computes a new feature set after adding a device with feature set
7384 * @one to the master device with current feature set @all. Will not
7385 * enable anything that is off in @mask. Returns the new feature set.
7386 */
7387 netdev_features_t netdev_increment_features(netdev_features_t all,
7388 netdev_features_t one, netdev_features_t mask)
7389 {
7390 if (mask & NETIF_F_GEN_CSUM)
7391 mask |= NETIF_F_ALL_CSUM;
7392 mask |= NETIF_F_VLAN_CHALLENGED;
7393
7394 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7395 all &= one | ~NETIF_F_ALL_FOR_ALL;
7396
7397 /* If one device supports hw checksumming, set for all. */
7398 if (all & NETIF_F_GEN_CSUM)
7399 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7400
7401 return all;
7402 }
7403 EXPORT_SYMBOL(netdev_increment_features);
7404
7405 static struct hlist_head * __net_init netdev_create_hash(void)
7406 {
7407 int i;
7408 struct hlist_head *hash;
7409
7410 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7411 if (hash != NULL)
7412 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7413 INIT_HLIST_HEAD(&hash[i]);
7414
7415 return hash;
7416 }
7417
7418 /* Initialize per network namespace state */
7419 static int __net_init netdev_init(struct net *net)
7420 {
7421 if (net != &init_net)
7422 INIT_LIST_HEAD(&net->dev_base_head);
7423
7424 net->dev_name_head = netdev_create_hash();
7425 if (net->dev_name_head == NULL)
7426 goto err_name;
7427
7428 net->dev_index_head = netdev_create_hash();
7429 if (net->dev_index_head == NULL)
7430 goto err_idx;
7431
7432 return 0;
7433
7434 err_idx:
7435 kfree(net->dev_name_head);
7436 err_name:
7437 return -ENOMEM;
7438 }
7439
7440 /**
7441 * netdev_drivername - network driver for the device
7442 * @dev: network device
7443 *
7444 * Determine network driver for device.
7445 */
7446 const char *netdev_drivername(const struct net_device *dev)
7447 {
7448 const struct device_driver *driver;
7449 const struct device *parent;
7450 const char *empty = "";
7451
7452 parent = dev->dev.parent;
7453 if (!parent)
7454 return empty;
7455
7456 driver = parent->driver;
7457 if (driver && driver->name)
7458 return driver->name;
7459 return empty;
7460 }
7461
7462 static void __netdev_printk(const char *level, const struct net_device *dev,
7463 struct va_format *vaf)
7464 {
7465 if (dev && dev->dev.parent) {
7466 dev_printk_emit(level[1] - '0',
7467 dev->dev.parent,
7468 "%s %s %s%s: %pV",
7469 dev_driver_string(dev->dev.parent),
7470 dev_name(dev->dev.parent),
7471 netdev_name(dev), netdev_reg_state(dev),
7472 vaf);
7473 } else if (dev) {
7474 printk("%s%s%s: %pV",
7475 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7476 } else {
7477 printk("%s(NULL net_device): %pV", level, vaf);
7478 }
7479 }
7480
7481 void netdev_printk(const char *level, const struct net_device *dev,
7482 const char *format, ...)
7483 {
7484 struct va_format vaf;
7485 va_list args;
7486
7487 va_start(args, format);
7488
7489 vaf.fmt = format;
7490 vaf.va = &args;
7491
7492 __netdev_printk(level, dev, &vaf);
7493
7494 va_end(args);
7495 }
7496 EXPORT_SYMBOL(netdev_printk);
7497
7498 #define define_netdev_printk_level(func, level) \
7499 void func(const struct net_device *dev, const char *fmt, ...) \
7500 { \
7501 struct va_format vaf; \
7502 va_list args; \
7503 \
7504 va_start(args, fmt); \
7505 \
7506 vaf.fmt = fmt; \
7507 vaf.va = &args; \
7508 \
7509 __netdev_printk(level, dev, &vaf); \
7510 \
7511 va_end(args); \
7512 } \
7513 EXPORT_SYMBOL(func);
7514
7515 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7516 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7517 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7518 define_netdev_printk_level(netdev_err, KERN_ERR);
7519 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7520 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7521 define_netdev_printk_level(netdev_info, KERN_INFO);
7522
7523 static void __net_exit netdev_exit(struct net *net)
7524 {
7525 kfree(net->dev_name_head);
7526 kfree(net->dev_index_head);
7527 }
7528
7529 static struct pernet_operations __net_initdata netdev_net_ops = {
7530 .init = netdev_init,
7531 .exit = netdev_exit,
7532 };
7533
7534 static void __net_exit default_device_exit(struct net *net)
7535 {
7536 struct net_device *dev, *aux;
7537 /*
7538 * Push all migratable network devices back to the
7539 * initial network namespace
7540 */
7541 rtnl_lock();
7542 for_each_netdev_safe(net, dev, aux) {
7543 int err;
7544 char fb_name[IFNAMSIZ];
7545
7546 /* Ignore unmoveable devices (i.e. loopback) */
7547 if (dev->features & NETIF_F_NETNS_LOCAL)
7548 continue;
7549
7550 /* Leave virtual devices for the generic cleanup */
7551 if (dev->rtnl_link_ops)
7552 continue;
7553
7554 /* Push remaining network devices to init_net */
7555 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7556 err = dev_change_net_namespace(dev, &init_net, fb_name);
7557 if (err) {
7558 pr_emerg("%s: failed to move %s to init_net: %d\n",
7559 __func__, dev->name, err);
7560 BUG();
7561 }
7562 }
7563 rtnl_unlock();
7564 }
7565
7566 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7567 {
7568 /* Return with the rtnl_lock held when there are no network
7569 * devices unregistering in any network namespace in net_list.
7570 */
7571 struct net *net;
7572 bool unregistering;
7573 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7574
7575 add_wait_queue(&netdev_unregistering_wq, &wait);
7576 for (;;) {
7577 unregistering = false;
7578 rtnl_lock();
7579 list_for_each_entry(net, net_list, exit_list) {
7580 if (net->dev_unreg_count > 0) {
7581 unregistering = true;
7582 break;
7583 }
7584 }
7585 if (!unregistering)
7586 break;
7587 __rtnl_unlock();
7588
7589 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7590 }
7591 remove_wait_queue(&netdev_unregistering_wq, &wait);
7592 }
7593
7594 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7595 {
7596 /* At exit all network devices most be removed from a network
7597 * namespace. Do this in the reverse order of registration.
7598 * Do this across as many network namespaces as possible to
7599 * improve batching efficiency.
7600 */
7601 struct net_device *dev;
7602 struct net *net;
7603 LIST_HEAD(dev_kill_list);
7604
7605 /* To prevent network device cleanup code from dereferencing
7606 * loopback devices or network devices that have been freed
7607 * wait here for all pending unregistrations to complete,
7608 * before unregistring the loopback device and allowing the
7609 * network namespace be freed.
7610 *
7611 * The netdev todo list containing all network devices
7612 * unregistrations that happen in default_device_exit_batch
7613 * will run in the rtnl_unlock() at the end of
7614 * default_device_exit_batch.
7615 */
7616 rtnl_lock_unregistering(net_list);
7617 list_for_each_entry(net, net_list, exit_list) {
7618 for_each_netdev_reverse(net, dev) {
7619 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7620 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7621 else
7622 unregister_netdevice_queue(dev, &dev_kill_list);
7623 }
7624 }
7625 unregister_netdevice_many(&dev_kill_list);
7626 rtnl_unlock();
7627 }
7628
7629 static struct pernet_operations __net_initdata default_device_ops = {
7630 .exit = default_device_exit,
7631 .exit_batch = default_device_exit_batch,
7632 };
7633
7634 /*
7635 * Initialize the DEV module. At boot time this walks the device list and
7636 * unhooks any devices that fail to initialise (normally hardware not
7637 * present) and leaves us with a valid list of present and active devices.
7638 *
7639 */
7640
7641 /*
7642 * This is called single threaded during boot, so no need
7643 * to take the rtnl semaphore.
7644 */
7645 static int __init net_dev_init(void)
7646 {
7647 int i, rc = -ENOMEM;
7648
7649 BUG_ON(!dev_boot_phase);
7650
7651 if (dev_proc_init())
7652 goto out;
7653
7654 if (netdev_kobject_init())
7655 goto out;
7656
7657 INIT_LIST_HEAD(&ptype_all);
7658 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7659 INIT_LIST_HEAD(&ptype_base[i]);
7660
7661 INIT_LIST_HEAD(&offload_base);
7662
7663 if (register_pernet_subsys(&netdev_net_ops))
7664 goto out;
7665
7666 /*
7667 * Initialise the packet receive queues.
7668 */
7669
7670 for_each_possible_cpu(i) {
7671 struct softnet_data *sd = &per_cpu(softnet_data, i);
7672
7673 skb_queue_head_init(&sd->input_pkt_queue);
7674 skb_queue_head_init(&sd->process_queue);
7675 INIT_LIST_HEAD(&sd->poll_list);
7676 sd->output_queue_tailp = &sd->output_queue;
7677 #ifdef CONFIG_RPS
7678 sd->csd.func = rps_trigger_softirq;
7679 sd->csd.info = sd;
7680 sd->cpu = i;
7681 #endif
7682
7683 sd->backlog.poll = process_backlog;
7684 sd->backlog.weight = weight_p;
7685 }
7686
7687 dev_boot_phase = 0;
7688
7689 /* The loopback device is special if any other network devices
7690 * is present in a network namespace the loopback device must
7691 * be present. Since we now dynamically allocate and free the
7692 * loopback device ensure this invariant is maintained by
7693 * keeping the loopback device as the first device on the
7694 * list of network devices. Ensuring the loopback devices
7695 * is the first device that appears and the last network device
7696 * that disappears.
7697 */
7698 if (register_pernet_device(&loopback_net_ops))
7699 goto out;
7700
7701 if (register_pernet_device(&default_device_ops))
7702 goto out;
7703
7704 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7705 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7706
7707 hotcpu_notifier(dev_cpu_callback, 0);
7708 dst_subsys_init();
7709 rc = 0;
7710 out:
7711 return rc;
7712 }
7713
7714 subsys_initcall(net_dev_init);