]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/core/dev.c
[NET]: Fix network device interface printk message priority
[mirror_ubuntu-bionic-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/notifier.h>
94 #include <linux/skbuff.h>
95 #include <net/sock.h>
96 #include <linux/rtnetlink.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/stat.h>
100 #include <linux/if_bridge.h>
101 #include <linux/divert.h>
102 #include <net/dst.h>
103 #include <net/pkt_sched.h>
104 #include <net/checksum.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/kmod.h>
108 #include <linux/module.h>
109 #include <linux/kallsyms.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <linux/wireless.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119
120 /*
121 * The list of packet types we will receive (as opposed to discard)
122 * and the routines to invoke.
123 *
124 * Why 16. Because with 16 the only overlap we get on a hash of the
125 * low nibble of the protocol value is RARP/SNAP/X.25.
126 *
127 * NOTE: That is no longer true with the addition of VLAN tags. Not
128 * sure which should go first, but I bet it won't make much
129 * difference if we are running VLANs. The good news is that
130 * this protocol won't be in the list unless compiled in, so
131 * the average user (w/out VLANs) will not be adversely affected.
132 * --BLG
133 *
134 * 0800 IP
135 * 8100 802.1Q VLAN
136 * 0001 802.3
137 * 0002 AX.25
138 * 0004 802.2
139 * 8035 RARP
140 * 0005 SNAP
141 * 0805 X.25
142 * 0806 ARP
143 * 8137 IPX
144 * 0009 Localtalk
145 * 86DD IPv6
146 */
147
148 static DEFINE_SPINLOCK(ptype_lock);
149 static struct list_head ptype_base[16]; /* 16 way hashed list */
150 static struct list_head ptype_all; /* Taps */
151
152 #ifdef CONFIG_NET_DMA
153 static struct dma_client *net_dma_client;
154 static unsigned int net_dma_count;
155 static spinlock_t net_dma_event_lock;
156 #endif
157
158 /*
159 * The @dev_base list is protected by @dev_base_lock and the rtnl
160 * semaphore.
161 *
162 * Pure readers hold dev_base_lock for reading.
163 *
164 * Writers must hold the rtnl semaphore while they loop through the
165 * dev_base list, and hold dev_base_lock for writing when they do the
166 * actual updates. This allows pure readers to access the list even
167 * while a writer is preparing to update it.
168 *
169 * To put it another way, dev_base_lock is held for writing only to
170 * protect against pure readers; the rtnl semaphore provides the
171 * protection against other writers.
172 *
173 * See, for example usages, register_netdevice() and
174 * unregister_netdevice(), which must be called with the rtnl
175 * semaphore held.
176 */
177 struct net_device *dev_base;
178 static struct net_device **dev_tail = &dev_base;
179 DEFINE_RWLOCK(dev_base_lock);
180
181 EXPORT_SYMBOL(dev_base);
182 EXPORT_SYMBOL(dev_base_lock);
183
184 #define NETDEV_HASHBITS 8
185 static struct hlist_head dev_name_head[1<<NETDEV_HASHBITS];
186 static struct hlist_head dev_index_head[1<<NETDEV_HASHBITS];
187
188 static inline struct hlist_head *dev_name_hash(const char *name)
189 {
190 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
191 return &dev_name_head[hash & ((1<<NETDEV_HASHBITS)-1)];
192 }
193
194 static inline struct hlist_head *dev_index_hash(int ifindex)
195 {
196 return &dev_index_head[ifindex & ((1<<NETDEV_HASHBITS)-1)];
197 }
198
199 /*
200 * Our notifier list
201 */
202
203 static RAW_NOTIFIER_HEAD(netdev_chain);
204
205 /*
206 * Device drivers call our routines to queue packets here. We empty the
207 * queue in the local softnet handler.
208 */
209 DEFINE_PER_CPU(struct softnet_data, softnet_data) = { NULL };
210
211 #ifdef CONFIG_SYSFS
212 extern int netdev_sysfs_init(void);
213 extern int netdev_register_sysfs(struct net_device *);
214 extern void netdev_unregister_sysfs(struct net_device *);
215 #else
216 #define netdev_sysfs_init() (0)
217 #define netdev_register_sysfs(dev) (0)
218 #define netdev_unregister_sysfs(dev) do { } while(0)
219 #endif
220
221
222 /*******************************************************************************
223
224 Protocol management and registration routines
225
226 *******************************************************************************/
227
228 /*
229 * For efficiency
230 */
231
232 static int netdev_nit;
233
234 /*
235 * Add a protocol ID to the list. Now that the input handler is
236 * smarter we can dispense with all the messy stuff that used to be
237 * here.
238 *
239 * BEWARE!!! Protocol handlers, mangling input packets,
240 * MUST BE last in hash buckets and checking protocol handlers
241 * MUST start from promiscuous ptype_all chain in net_bh.
242 * It is true now, do not change it.
243 * Explanation follows: if protocol handler, mangling packet, will
244 * be the first on list, it is not able to sense, that packet
245 * is cloned and should be copied-on-write, so that it will
246 * change it and subsequent readers will get broken packet.
247 * --ANK (980803)
248 */
249
250 /**
251 * dev_add_pack - add packet handler
252 * @pt: packet type declaration
253 *
254 * Add a protocol handler to the networking stack. The passed &packet_type
255 * is linked into kernel lists and may not be freed until it has been
256 * removed from the kernel lists.
257 *
258 * This call does not sleep therefore it can not
259 * guarantee all CPU's that are in middle of receiving packets
260 * will see the new packet type (until the next received packet).
261 */
262
263 void dev_add_pack(struct packet_type *pt)
264 {
265 int hash;
266
267 spin_lock_bh(&ptype_lock);
268 if (pt->type == htons(ETH_P_ALL)) {
269 netdev_nit++;
270 list_add_rcu(&pt->list, &ptype_all);
271 } else {
272 hash = ntohs(pt->type) & 15;
273 list_add_rcu(&pt->list, &ptype_base[hash]);
274 }
275 spin_unlock_bh(&ptype_lock);
276 }
277
278 /**
279 * __dev_remove_pack - remove packet handler
280 * @pt: packet type declaration
281 *
282 * Remove a protocol handler that was previously added to the kernel
283 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
284 * from the kernel lists and can be freed or reused once this function
285 * returns.
286 *
287 * The packet type might still be in use by receivers
288 * and must not be freed until after all the CPU's have gone
289 * through a quiescent state.
290 */
291 void __dev_remove_pack(struct packet_type *pt)
292 {
293 struct list_head *head;
294 struct packet_type *pt1;
295
296 spin_lock_bh(&ptype_lock);
297
298 if (pt->type == htons(ETH_P_ALL)) {
299 netdev_nit--;
300 head = &ptype_all;
301 } else
302 head = &ptype_base[ntohs(pt->type) & 15];
303
304 list_for_each_entry(pt1, head, list) {
305 if (pt == pt1) {
306 list_del_rcu(&pt->list);
307 goto out;
308 }
309 }
310
311 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
312 out:
313 spin_unlock_bh(&ptype_lock);
314 }
315 /**
316 * dev_remove_pack - remove packet handler
317 * @pt: packet type declaration
318 *
319 * Remove a protocol handler that was previously added to the kernel
320 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
321 * from the kernel lists and can be freed or reused once this function
322 * returns.
323 *
324 * This call sleeps to guarantee that no CPU is looking at the packet
325 * type after return.
326 */
327 void dev_remove_pack(struct packet_type *pt)
328 {
329 __dev_remove_pack(pt);
330
331 synchronize_net();
332 }
333
334 /******************************************************************************
335
336 Device Boot-time Settings Routines
337
338 *******************************************************************************/
339
340 /* Boot time configuration table */
341 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
342
343 /**
344 * netdev_boot_setup_add - add new setup entry
345 * @name: name of the device
346 * @map: configured settings for the device
347 *
348 * Adds new setup entry to the dev_boot_setup list. The function
349 * returns 0 on error and 1 on success. This is a generic routine to
350 * all netdevices.
351 */
352 static int netdev_boot_setup_add(char *name, struct ifmap *map)
353 {
354 struct netdev_boot_setup *s;
355 int i;
356
357 s = dev_boot_setup;
358 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
359 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
360 memset(s[i].name, 0, sizeof(s[i].name));
361 strcpy(s[i].name, name);
362 memcpy(&s[i].map, map, sizeof(s[i].map));
363 break;
364 }
365 }
366
367 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
368 }
369
370 /**
371 * netdev_boot_setup_check - check boot time settings
372 * @dev: the netdevice
373 *
374 * Check boot time settings for the device.
375 * The found settings are set for the device to be used
376 * later in the device probing.
377 * Returns 0 if no settings found, 1 if they are.
378 */
379 int netdev_boot_setup_check(struct net_device *dev)
380 {
381 struct netdev_boot_setup *s = dev_boot_setup;
382 int i;
383
384 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
385 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
386 !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
387 dev->irq = s[i].map.irq;
388 dev->base_addr = s[i].map.base_addr;
389 dev->mem_start = s[i].map.mem_start;
390 dev->mem_end = s[i].map.mem_end;
391 return 1;
392 }
393 }
394 return 0;
395 }
396
397
398 /**
399 * netdev_boot_base - get address from boot time settings
400 * @prefix: prefix for network device
401 * @unit: id for network device
402 *
403 * Check boot time settings for the base address of device.
404 * The found settings are set for the device to be used
405 * later in the device probing.
406 * Returns 0 if no settings found.
407 */
408 unsigned long netdev_boot_base(const char *prefix, int unit)
409 {
410 const struct netdev_boot_setup *s = dev_boot_setup;
411 char name[IFNAMSIZ];
412 int i;
413
414 sprintf(name, "%s%d", prefix, unit);
415
416 /*
417 * If device already registered then return base of 1
418 * to indicate not to probe for this interface
419 */
420 if (__dev_get_by_name(name))
421 return 1;
422
423 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
424 if (!strcmp(name, s[i].name))
425 return s[i].map.base_addr;
426 return 0;
427 }
428
429 /*
430 * Saves at boot time configured settings for any netdevice.
431 */
432 int __init netdev_boot_setup(char *str)
433 {
434 int ints[5];
435 struct ifmap map;
436
437 str = get_options(str, ARRAY_SIZE(ints), ints);
438 if (!str || !*str)
439 return 0;
440
441 /* Save settings */
442 memset(&map, 0, sizeof(map));
443 if (ints[0] > 0)
444 map.irq = ints[1];
445 if (ints[0] > 1)
446 map.base_addr = ints[2];
447 if (ints[0] > 2)
448 map.mem_start = ints[3];
449 if (ints[0] > 3)
450 map.mem_end = ints[4];
451
452 /* Add new entry to the list */
453 return netdev_boot_setup_add(str, &map);
454 }
455
456 __setup("netdev=", netdev_boot_setup);
457
458 /*******************************************************************************
459
460 Device Interface Subroutines
461
462 *******************************************************************************/
463
464 /**
465 * __dev_get_by_name - find a device by its name
466 * @name: name to find
467 *
468 * Find an interface by name. Must be called under RTNL semaphore
469 * or @dev_base_lock. If the name is found a pointer to the device
470 * is returned. If the name is not found then %NULL is returned. The
471 * reference counters are not incremented so the caller must be
472 * careful with locks.
473 */
474
475 struct net_device *__dev_get_by_name(const char *name)
476 {
477 struct hlist_node *p;
478
479 hlist_for_each(p, dev_name_hash(name)) {
480 struct net_device *dev
481 = hlist_entry(p, struct net_device, name_hlist);
482 if (!strncmp(dev->name, name, IFNAMSIZ))
483 return dev;
484 }
485 return NULL;
486 }
487
488 /**
489 * dev_get_by_name - find a device by its name
490 * @name: name to find
491 *
492 * Find an interface by name. This can be called from any
493 * context and does its own locking. The returned handle has
494 * the usage count incremented and the caller must use dev_put() to
495 * release it when it is no longer needed. %NULL is returned if no
496 * matching device is found.
497 */
498
499 struct net_device *dev_get_by_name(const char *name)
500 {
501 struct net_device *dev;
502
503 read_lock(&dev_base_lock);
504 dev = __dev_get_by_name(name);
505 if (dev)
506 dev_hold(dev);
507 read_unlock(&dev_base_lock);
508 return dev;
509 }
510
511 /**
512 * __dev_get_by_index - find a device by its ifindex
513 * @ifindex: index of device
514 *
515 * Search for an interface by index. Returns %NULL if the device
516 * is not found or a pointer to the device. The device has not
517 * had its reference counter increased so the caller must be careful
518 * about locking. The caller must hold either the RTNL semaphore
519 * or @dev_base_lock.
520 */
521
522 struct net_device *__dev_get_by_index(int ifindex)
523 {
524 struct hlist_node *p;
525
526 hlist_for_each(p, dev_index_hash(ifindex)) {
527 struct net_device *dev
528 = hlist_entry(p, struct net_device, index_hlist);
529 if (dev->ifindex == ifindex)
530 return dev;
531 }
532 return NULL;
533 }
534
535
536 /**
537 * dev_get_by_index - find a device by its ifindex
538 * @ifindex: index of device
539 *
540 * Search for an interface by index. Returns NULL if the device
541 * is not found or a pointer to the device. The device returned has
542 * had a reference added and the pointer is safe until the user calls
543 * dev_put to indicate they have finished with it.
544 */
545
546 struct net_device *dev_get_by_index(int ifindex)
547 {
548 struct net_device *dev;
549
550 read_lock(&dev_base_lock);
551 dev = __dev_get_by_index(ifindex);
552 if (dev)
553 dev_hold(dev);
554 read_unlock(&dev_base_lock);
555 return dev;
556 }
557
558 /**
559 * dev_getbyhwaddr - find a device by its hardware address
560 * @type: media type of device
561 * @ha: hardware address
562 *
563 * Search for an interface by MAC address. Returns NULL if the device
564 * is not found or a pointer to the device. The caller must hold the
565 * rtnl semaphore. The returned device has not had its ref count increased
566 * and the caller must therefore be careful about locking
567 *
568 * BUGS:
569 * If the API was consistent this would be __dev_get_by_hwaddr
570 */
571
572 struct net_device *dev_getbyhwaddr(unsigned short type, char *ha)
573 {
574 struct net_device *dev;
575
576 ASSERT_RTNL();
577
578 for (dev = dev_base; dev; dev = dev->next)
579 if (dev->type == type &&
580 !memcmp(dev->dev_addr, ha, dev->addr_len))
581 break;
582 return dev;
583 }
584
585 EXPORT_SYMBOL(dev_getbyhwaddr);
586
587 struct net_device *dev_getfirstbyhwtype(unsigned short type)
588 {
589 struct net_device *dev;
590
591 rtnl_lock();
592 for (dev = dev_base; dev; dev = dev->next) {
593 if (dev->type == type) {
594 dev_hold(dev);
595 break;
596 }
597 }
598 rtnl_unlock();
599 return dev;
600 }
601
602 EXPORT_SYMBOL(dev_getfirstbyhwtype);
603
604 /**
605 * dev_get_by_flags - find any device with given flags
606 * @if_flags: IFF_* values
607 * @mask: bitmask of bits in if_flags to check
608 *
609 * Search for any interface with the given flags. Returns NULL if a device
610 * is not found or a pointer to the device. The device returned has
611 * had a reference added and the pointer is safe until the user calls
612 * dev_put to indicate they have finished with it.
613 */
614
615 struct net_device * dev_get_by_flags(unsigned short if_flags, unsigned short mask)
616 {
617 struct net_device *dev;
618
619 read_lock(&dev_base_lock);
620 for (dev = dev_base; dev != NULL; dev = dev->next) {
621 if (((dev->flags ^ if_flags) & mask) == 0) {
622 dev_hold(dev);
623 break;
624 }
625 }
626 read_unlock(&dev_base_lock);
627 return dev;
628 }
629
630 /**
631 * dev_valid_name - check if name is okay for network device
632 * @name: name string
633 *
634 * Network device names need to be valid file names to
635 * to allow sysfs to work
636 */
637 int dev_valid_name(const char *name)
638 {
639 return !(*name == '\0'
640 || !strcmp(name, ".")
641 || !strcmp(name, "..")
642 || strchr(name, '/'));
643 }
644
645 /**
646 * dev_alloc_name - allocate a name for a device
647 * @dev: device
648 * @name: name format string
649 *
650 * Passed a format string - eg "lt%d" it will try and find a suitable
651 * id. It scans list of devices to build up a free map, then chooses
652 * the first empty slot. The caller must hold the dev_base or rtnl lock
653 * while allocating the name and adding the device in order to avoid
654 * duplicates.
655 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
656 * Returns the number of the unit assigned or a negative errno code.
657 */
658
659 int dev_alloc_name(struct net_device *dev, const char *name)
660 {
661 int i = 0;
662 char buf[IFNAMSIZ];
663 const char *p;
664 const int max_netdevices = 8*PAGE_SIZE;
665 long *inuse;
666 struct net_device *d;
667
668 p = strnchr(name, IFNAMSIZ-1, '%');
669 if (p) {
670 /*
671 * Verify the string as this thing may have come from
672 * the user. There must be either one "%d" and no other "%"
673 * characters.
674 */
675 if (p[1] != 'd' || strchr(p + 2, '%'))
676 return -EINVAL;
677
678 /* Use one page as a bit array of possible slots */
679 inuse = (long *) get_zeroed_page(GFP_ATOMIC);
680 if (!inuse)
681 return -ENOMEM;
682
683 for (d = dev_base; d; d = d->next) {
684 if (!sscanf(d->name, name, &i))
685 continue;
686 if (i < 0 || i >= max_netdevices)
687 continue;
688
689 /* avoid cases where sscanf is not exact inverse of printf */
690 snprintf(buf, sizeof(buf), name, i);
691 if (!strncmp(buf, d->name, IFNAMSIZ))
692 set_bit(i, inuse);
693 }
694
695 i = find_first_zero_bit(inuse, max_netdevices);
696 free_page((unsigned long) inuse);
697 }
698
699 snprintf(buf, sizeof(buf), name, i);
700 if (!__dev_get_by_name(buf)) {
701 strlcpy(dev->name, buf, IFNAMSIZ);
702 return i;
703 }
704
705 /* It is possible to run out of possible slots
706 * when the name is long and there isn't enough space left
707 * for the digits, or if all bits are used.
708 */
709 return -ENFILE;
710 }
711
712
713 /**
714 * dev_change_name - change name of a device
715 * @dev: device
716 * @newname: name (or format string) must be at least IFNAMSIZ
717 *
718 * Change name of a device, can pass format strings "eth%d".
719 * for wildcarding.
720 */
721 int dev_change_name(struct net_device *dev, char *newname)
722 {
723 int err = 0;
724
725 ASSERT_RTNL();
726
727 if (dev->flags & IFF_UP)
728 return -EBUSY;
729
730 if (!dev_valid_name(newname))
731 return -EINVAL;
732
733 if (strchr(newname, '%')) {
734 err = dev_alloc_name(dev, newname);
735 if (err < 0)
736 return err;
737 strcpy(newname, dev->name);
738 }
739 else if (__dev_get_by_name(newname))
740 return -EEXIST;
741 else
742 strlcpy(dev->name, newname, IFNAMSIZ);
743
744 err = class_device_rename(&dev->class_dev, dev->name);
745 if (!err) {
746 hlist_del(&dev->name_hlist);
747 hlist_add_head(&dev->name_hlist, dev_name_hash(dev->name));
748 raw_notifier_call_chain(&netdev_chain,
749 NETDEV_CHANGENAME, dev);
750 }
751
752 return err;
753 }
754
755 /**
756 * netdev_features_change - device changes features
757 * @dev: device to cause notification
758 *
759 * Called to indicate a device has changed features.
760 */
761 void netdev_features_change(struct net_device *dev)
762 {
763 raw_notifier_call_chain(&netdev_chain, NETDEV_FEAT_CHANGE, dev);
764 }
765 EXPORT_SYMBOL(netdev_features_change);
766
767 /**
768 * netdev_state_change - device changes state
769 * @dev: device to cause notification
770 *
771 * Called to indicate a device has changed state. This function calls
772 * the notifier chains for netdev_chain and sends a NEWLINK message
773 * to the routing socket.
774 */
775 void netdev_state_change(struct net_device *dev)
776 {
777 if (dev->flags & IFF_UP) {
778 raw_notifier_call_chain(&netdev_chain,
779 NETDEV_CHANGE, dev);
780 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
781 }
782 }
783
784 /**
785 * dev_load - load a network module
786 * @name: name of interface
787 *
788 * If a network interface is not present and the process has suitable
789 * privileges this function loads the module. If module loading is not
790 * available in this kernel then it becomes a nop.
791 */
792
793 void dev_load(const char *name)
794 {
795 struct net_device *dev;
796
797 read_lock(&dev_base_lock);
798 dev = __dev_get_by_name(name);
799 read_unlock(&dev_base_lock);
800
801 if (!dev && capable(CAP_SYS_MODULE))
802 request_module("%s", name);
803 }
804
805 static int default_rebuild_header(struct sk_buff *skb)
806 {
807 printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n",
808 skb->dev ? skb->dev->name : "NULL!!!");
809 kfree_skb(skb);
810 return 1;
811 }
812
813
814 /**
815 * dev_open - prepare an interface for use.
816 * @dev: device to open
817 *
818 * Takes a device from down to up state. The device's private open
819 * function is invoked and then the multicast lists are loaded. Finally
820 * the device is moved into the up state and a %NETDEV_UP message is
821 * sent to the netdev notifier chain.
822 *
823 * Calling this function on an active interface is a nop. On a failure
824 * a negative errno code is returned.
825 */
826 int dev_open(struct net_device *dev)
827 {
828 int ret = 0;
829
830 /*
831 * Is it already up?
832 */
833
834 if (dev->flags & IFF_UP)
835 return 0;
836
837 /*
838 * Is it even present?
839 */
840 if (!netif_device_present(dev))
841 return -ENODEV;
842
843 /*
844 * Call device private open method
845 */
846 set_bit(__LINK_STATE_START, &dev->state);
847 if (dev->open) {
848 ret = dev->open(dev);
849 if (ret)
850 clear_bit(__LINK_STATE_START, &dev->state);
851 }
852
853 /*
854 * If it went open OK then:
855 */
856
857 if (!ret) {
858 /*
859 * Set the flags.
860 */
861 dev->flags |= IFF_UP;
862
863 /*
864 * Initialize multicasting status
865 */
866 dev_mc_upload(dev);
867
868 /*
869 * Wakeup transmit queue engine
870 */
871 dev_activate(dev);
872
873 /*
874 * ... and announce new interface.
875 */
876 raw_notifier_call_chain(&netdev_chain, NETDEV_UP, dev);
877 }
878 return ret;
879 }
880
881 /**
882 * dev_close - shutdown an interface.
883 * @dev: device to shutdown
884 *
885 * This function moves an active device into down state. A
886 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
887 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
888 * chain.
889 */
890 int dev_close(struct net_device *dev)
891 {
892 if (!(dev->flags & IFF_UP))
893 return 0;
894
895 /*
896 * Tell people we are going down, so that they can
897 * prepare to death, when device is still operating.
898 */
899 raw_notifier_call_chain(&netdev_chain, NETDEV_GOING_DOWN, dev);
900
901 dev_deactivate(dev);
902
903 clear_bit(__LINK_STATE_START, &dev->state);
904
905 /* Synchronize to scheduled poll. We cannot touch poll list,
906 * it can be even on different cpu. So just clear netif_running(),
907 * and wait when poll really will happen. Actually, the best place
908 * for this is inside dev->stop() after device stopped its irq
909 * engine, but this requires more changes in devices. */
910
911 smp_mb__after_clear_bit(); /* Commit netif_running(). */
912 while (test_bit(__LINK_STATE_RX_SCHED, &dev->state)) {
913 /* No hurry. */
914 msleep(1);
915 }
916
917 /*
918 * Call the device specific close. This cannot fail.
919 * Only if device is UP
920 *
921 * We allow it to be called even after a DETACH hot-plug
922 * event.
923 */
924 if (dev->stop)
925 dev->stop(dev);
926
927 /*
928 * Device is now down.
929 */
930
931 dev->flags &= ~IFF_UP;
932
933 /*
934 * Tell people we are down
935 */
936 raw_notifier_call_chain(&netdev_chain, NETDEV_DOWN, dev);
937
938 return 0;
939 }
940
941
942 /*
943 * Device change register/unregister. These are not inline or static
944 * as we export them to the world.
945 */
946
947 /**
948 * register_netdevice_notifier - register a network notifier block
949 * @nb: notifier
950 *
951 * Register a notifier to be called when network device events occur.
952 * The notifier passed is linked into the kernel structures and must
953 * not be reused until it has been unregistered. A negative errno code
954 * is returned on a failure.
955 *
956 * When registered all registration and up events are replayed
957 * to the new notifier to allow device to have a race free
958 * view of the network device list.
959 */
960
961 int register_netdevice_notifier(struct notifier_block *nb)
962 {
963 struct net_device *dev;
964 int err;
965
966 rtnl_lock();
967 err = raw_notifier_chain_register(&netdev_chain, nb);
968 if (!err) {
969 for (dev = dev_base; dev; dev = dev->next) {
970 nb->notifier_call(nb, NETDEV_REGISTER, dev);
971
972 if (dev->flags & IFF_UP)
973 nb->notifier_call(nb, NETDEV_UP, dev);
974 }
975 }
976 rtnl_unlock();
977 return err;
978 }
979
980 /**
981 * unregister_netdevice_notifier - unregister a network notifier block
982 * @nb: notifier
983 *
984 * Unregister a notifier previously registered by
985 * register_netdevice_notifier(). The notifier is unlinked into the
986 * kernel structures and may then be reused. A negative errno code
987 * is returned on a failure.
988 */
989
990 int unregister_netdevice_notifier(struct notifier_block *nb)
991 {
992 int err;
993
994 rtnl_lock();
995 err = raw_notifier_chain_unregister(&netdev_chain, nb);
996 rtnl_unlock();
997 return err;
998 }
999
1000 /**
1001 * call_netdevice_notifiers - call all network notifier blocks
1002 * @val: value passed unmodified to notifier function
1003 * @v: pointer passed unmodified to notifier function
1004 *
1005 * Call all network notifier blocks. Parameters and return value
1006 * are as for raw_notifier_call_chain().
1007 */
1008
1009 int call_netdevice_notifiers(unsigned long val, void *v)
1010 {
1011 return raw_notifier_call_chain(&netdev_chain, val, v);
1012 }
1013
1014 /* When > 0 there are consumers of rx skb time stamps */
1015 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1016
1017 void net_enable_timestamp(void)
1018 {
1019 atomic_inc(&netstamp_needed);
1020 }
1021
1022 void net_disable_timestamp(void)
1023 {
1024 atomic_dec(&netstamp_needed);
1025 }
1026
1027 void __net_timestamp(struct sk_buff *skb)
1028 {
1029 struct timeval tv;
1030
1031 do_gettimeofday(&tv);
1032 skb_set_timestamp(skb, &tv);
1033 }
1034 EXPORT_SYMBOL(__net_timestamp);
1035
1036 static inline void net_timestamp(struct sk_buff *skb)
1037 {
1038 if (atomic_read(&netstamp_needed))
1039 __net_timestamp(skb);
1040 else {
1041 skb->tstamp.off_sec = 0;
1042 skb->tstamp.off_usec = 0;
1043 }
1044 }
1045
1046 /*
1047 * Support routine. Sends outgoing frames to any network
1048 * taps currently in use.
1049 */
1050
1051 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1052 {
1053 struct packet_type *ptype;
1054
1055 net_timestamp(skb);
1056
1057 rcu_read_lock();
1058 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1059 /* Never send packets back to the socket
1060 * they originated from - MvS (miquels@drinkel.ow.org)
1061 */
1062 if ((ptype->dev == dev || !ptype->dev) &&
1063 (ptype->af_packet_priv == NULL ||
1064 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1065 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1066 if (!skb2)
1067 break;
1068
1069 /* skb->nh should be correctly
1070 set by sender, so that the second statement is
1071 just protection against buggy protocols.
1072 */
1073 skb2->mac.raw = skb2->data;
1074
1075 if (skb2->nh.raw < skb2->data ||
1076 skb2->nh.raw > skb2->tail) {
1077 if (net_ratelimit())
1078 printk(KERN_CRIT "protocol %04x is "
1079 "buggy, dev %s\n",
1080 skb2->protocol, dev->name);
1081 skb2->nh.raw = skb2->data;
1082 }
1083
1084 skb2->h.raw = skb2->nh.raw;
1085 skb2->pkt_type = PACKET_OUTGOING;
1086 ptype->func(skb2, skb->dev, ptype, skb->dev);
1087 }
1088 }
1089 rcu_read_unlock();
1090 }
1091
1092
1093 void __netif_schedule(struct net_device *dev)
1094 {
1095 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1096 unsigned long flags;
1097 struct softnet_data *sd;
1098
1099 local_irq_save(flags);
1100 sd = &__get_cpu_var(softnet_data);
1101 dev->next_sched = sd->output_queue;
1102 sd->output_queue = dev;
1103 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1104 local_irq_restore(flags);
1105 }
1106 }
1107 EXPORT_SYMBOL(__netif_schedule);
1108
1109 void __netif_rx_schedule(struct net_device *dev)
1110 {
1111 unsigned long flags;
1112
1113 local_irq_save(flags);
1114 dev_hold(dev);
1115 list_add_tail(&dev->poll_list, &__get_cpu_var(softnet_data).poll_list);
1116 if (dev->quota < 0)
1117 dev->quota += dev->weight;
1118 else
1119 dev->quota = dev->weight;
1120 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
1121 local_irq_restore(flags);
1122 }
1123 EXPORT_SYMBOL(__netif_rx_schedule);
1124
1125 void dev_kfree_skb_any(struct sk_buff *skb)
1126 {
1127 if (in_irq() || irqs_disabled())
1128 dev_kfree_skb_irq(skb);
1129 else
1130 dev_kfree_skb(skb);
1131 }
1132 EXPORT_SYMBOL(dev_kfree_skb_any);
1133
1134
1135 /* Hot-plugging. */
1136 void netif_device_detach(struct net_device *dev)
1137 {
1138 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1139 netif_running(dev)) {
1140 netif_stop_queue(dev);
1141 }
1142 }
1143 EXPORT_SYMBOL(netif_device_detach);
1144
1145 void netif_device_attach(struct net_device *dev)
1146 {
1147 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1148 netif_running(dev)) {
1149 netif_wake_queue(dev);
1150 __netdev_watchdog_up(dev);
1151 }
1152 }
1153 EXPORT_SYMBOL(netif_device_attach);
1154
1155
1156 /*
1157 * Invalidate hardware checksum when packet is to be mangled, and
1158 * complete checksum manually on outgoing path.
1159 */
1160 int skb_checksum_help(struct sk_buff *skb, int inward)
1161 {
1162 unsigned int csum;
1163 int ret = 0, offset = skb->h.raw - skb->data;
1164
1165 if (inward) {
1166 skb->ip_summed = CHECKSUM_NONE;
1167 goto out;
1168 }
1169
1170 if (skb_cloned(skb)) {
1171 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1172 if (ret)
1173 goto out;
1174 }
1175
1176 BUG_ON(offset > (int)skb->len);
1177 csum = skb_checksum(skb, offset, skb->len-offset, 0);
1178
1179 offset = skb->tail - skb->h.raw;
1180 BUG_ON(offset <= 0);
1181 BUG_ON(skb->csum + 2 > offset);
1182
1183 *(u16*)(skb->h.raw + skb->csum) = csum_fold(csum);
1184 skb->ip_summed = CHECKSUM_NONE;
1185 out:
1186 return ret;
1187 }
1188
1189 /**
1190 * skb_gso_segment - Perform segmentation on skb.
1191 * @skb: buffer to segment
1192 * @features: features for the output path (see dev->features)
1193 *
1194 * This function segments the given skb and returns a list of segments.
1195 *
1196 * It may return NULL if the skb requires no segmentation. This is
1197 * only possible when GSO is used for verifying header integrity.
1198 */
1199 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1200 {
1201 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1202 struct packet_type *ptype;
1203 int type = skb->protocol;
1204
1205 BUG_ON(skb_shinfo(skb)->frag_list);
1206 BUG_ON(skb->ip_summed != CHECKSUM_HW);
1207
1208 skb->mac.raw = skb->data;
1209 skb->mac_len = skb->nh.raw - skb->data;
1210 __skb_pull(skb, skb->mac_len);
1211
1212 rcu_read_lock();
1213 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) {
1214 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1215 segs = ptype->gso_segment(skb, features);
1216 break;
1217 }
1218 }
1219 rcu_read_unlock();
1220
1221 __skb_push(skb, skb->data - skb->mac.raw);
1222
1223 return segs;
1224 }
1225
1226 EXPORT_SYMBOL(skb_gso_segment);
1227
1228 /* Take action when hardware reception checksum errors are detected. */
1229 #ifdef CONFIG_BUG
1230 void netdev_rx_csum_fault(struct net_device *dev)
1231 {
1232 if (net_ratelimit()) {
1233 printk(KERN_ERR "%s: hw csum failure.\n",
1234 dev ? dev->name : "<unknown>");
1235 dump_stack();
1236 }
1237 }
1238 EXPORT_SYMBOL(netdev_rx_csum_fault);
1239 #endif
1240
1241 /* Actually, we should eliminate this check as soon as we know, that:
1242 * 1. IOMMU is present and allows to map all the memory.
1243 * 2. No high memory really exists on this machine.
1244 */
1245
1246 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1247 {
1248 #ifdef CONFIG_HIGHMEM
1249 int i;
1250
1251 if (dev->features & NETIF_F_HIGHDMA)
1252 return 0;
1253
1254 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1255 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1256 return 1;
1257
1258 #endif
1259 return 0;
1260 }
1261
1262 struct dev_gso_cb {
1263 void (*destructor)(struct sk_buff *skb);
1264 };
1265
1266 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1267
1268 static void dev_gso_skb_destructor(struct sk_buff *skb)
1269 {
1270 struct dev_gso_cb *cb;
1271
1272 do {
1273 struct sk_buff *nskb = skb->next;
1274
1275 skb->next = nskb->next;
1276 nskb->next = NULL;
1277 kfree_skb(nskb);
1278 } while (skb->next);
1279
1280 cb = DEV_GSO_CB(skb);
1281 if (cb->destructor)
1282 cb->destructor(skb);
1283 }
1284
1285 /**
1286 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1287 * @skb: buffer to segment
1288 *
1289 * This function segments the given skb and stores the list of segments
1290 * in skb->next.
1291 */
1292 static int dev_gso_segment(struct sk_buff *skb)
1293 {
1294 struct net_device *dev = skb->dev;
1295 struct sk_buff *segs;
1296 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1297 NETIF_F_SG : 0);
1298
1299 segs = skb_gso_segment(skb, features);
1300
1301 /* Verifying header integrity only. */
1302 if (!segs)
1303 return 0;
1304
1305 if (unlikely(IS_ERR(segs)))
1306 return PTR_ERR(segs);
1307
1308 skb->next = segs;
1309 DEV_GSO_CB(skb)->destructor = skb->destructor;
1310 skb->destructor = dev_gso_skb_destructor;
1311
1312 return 0;
1313 }
1314
1315 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1316 {
1317 if (likely(!skb->next)) {
1318 if (netdev_nit)
1319 dev_queue_xmit_nit(skb, dev);
1320
1321 if (netif_needs_gso(dev, skb)) {
1322 if (unlikely(dev_gso_segment(skb)))
1323 goto out_kfree_skb;
1324 if (skb->next)
1325 goto gso;
1326 }
1327
1328 return dev->hard_start_xmit(skb, dev);
1329 }
1330
1331 gso:
1332 do {
1333 struct sk_buff *nskb = skb->next;
1334 int rc;
1335
1336 skb->next = nskb->next;
1337 nskb->next = NULL;
1338 rc = dev->hard_start_xmit(nskb, dev);
1339 if (unlikely(rc)) {
1340 nskb->next = skb->next;
1341 skb->next = nskb;
1342 return rc;
1343 }
1344 if (unlikely(netif_queue_stopped(dev) && skb->next))
1345 return NETDEV_TX_BUSY;
1346 } while (skb->next);
1347
1348 skb->destructor = DEV_GSO_CB(skb)->destructor;
1349
1350 out_kfree_skb:
1351 kfree_skb(skb);
1352 return 0;
1353 }
1354
1355 #define HARD_TX_LOCK(dev, cpu) { \
1356 if ((dev->features & NETIF_F_LLTX) == 0) { \
1357 netif_tx_lock(dev); \
1358 } \
1359 }
1360
1361 #define HARD_TX_UNLOCK(dev) { \
1362 if ((dev->features & NETIF_F_LLTX) == 0) { \
1363 netif_tx_unlock(dev); \
1364 } \
1365 }
1366
1367 /**
1368 * dev_queue_xmit - transmit a buffer
1369 * @skb: buffer to transmit
1370 *
1371 * Queue a buffer for transmission to a network device. The caller must
1372 * have set the device and priority and built the buffer before calling
1373 * this function. The function can be called from an interrupt.
1374 *
1375 * A negative errno code is returned on a failure. A success does not
1376 * guarantee the frame will be transmitted as it may be dropped due
1377 * to congestion or traffic shaping.
1378 *
1379 * -----------------------------------------------------------------------------------
1380 * I notice this method can also return errors from the queue disciplines,
1381 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1382 * be positive.
1383 *
1384 * Regardless of the return value, the skb is consumed, so it is currently
1385 * difficult to retry a send to this method. (You can bump the ref count
1386 * before sending to hold a reference for retry if you are careful.)
1387 *
1388 * When calling this method, interrupts MUST be enabled. This is because
1389 * the BH enable code must have IRQs enabled so that it will not deadlock.
1390 * --BLG
1391 */
1392
1393 int dev_queue_xmit(struct sk_buff *skb)
1394 {
1395 struct net_device *dev = skb->dev;
1396 struct Qdisc *q;
1397 int rc = -ENOMEM;
1398
1399 /* GSO will handle the following emulations directly. */
1400 if (netif_needs_gso(dev, skb))
1401 goto gso;
1402
1403 if (skb_shinfo(skb)->frag_list &&
1404 !(dev->features & NETIF_F_FRAGLIST) &&
1405 __skb_linearize(skb))
1406 goto out_kfree_skb;
1407
1408 /* Fragmented skb is linearized if device does not support SG,
1409 * or if at least one of fragments is in highmem and device
1410 * does not support DMA from it.
1411 */
1412 if (skb_shinfo(skb)->nr_frags &&
1413 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1414 __skb_linearize(skb))
1415 goto out_kfree_skb;
1416
1417 /* If packet is not checksummed and device does not support
1418 * checksumming for this protocol, complete checksumming here.
1419 */
1420 if (skb->ip_summed == CHECKSUM_HW &&
1421 (!(dev->features & NETIF_F_GEN_CSUM) &&
1422 (!(dev->features & NETIF_F_IP_CSUM) ||
1423 skb->protocol != htons(ETH_P_IP))))
1424 if (skb_checksum_help(skb, 0))
1425 goto out_kfree_skb;
1426
1427 gso:
1428 spin_lock_prefetch(&dev->queue_lock);
1429
1430 /* Disable soft irqs for various locks below. Also
1431 * stops preemption for RCU.
1432 */
1433 rcu_read_lock_bh();
1434
1435 /* Updates of qdisc are serialized by queue_lock.
1436 * The struct Qdisc which is pointed to by qdisc is now a
1437 * rcu structure - it may be accessed without acquiring
1438 * a lock (but the structure may be stale.) The freeing of the
1439 * qdisc will be deferred until it's known that there are no
1440 * more references to it.
1441 *
1442 * If the qdisc has an enqueue function, we still need to
1443 * hold the queue_lock before calling it, since queue_lock
1444 * also serializes access to the device queue.
1445 */
1446
1447 q = rcu_dereference(dev->qdisc);
1448 #ifdef CONFIG_NET_CLS_ACT
1449 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1450 #endif
1451 if (q->enqueue) {
1452 /* Grab device queue */
1453 spin_lock(&dev->queue_lock);
1454
1455 rc = q->enqueue(skb, q);
1456
1457 qdisc_run(dev);
1458
1459 spin_unlock(&dev->queue_lock);
1460 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1461 goto out;
1462 }
1463
1464 /* The device has no queue. Common case for software devices:
1465 loopback, all the sorts of tunnels...
1466
1467 Really, it is unlikely that netif_tx_lock protection is necessary
1468 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1469 counters.)
1470 However, it is possible, that they rely on protection
1471 made by us here.
1472
1473 Check this and shot the lock. It is not prone from deadlocks.
1474 Either shot noqueue qdisc, it is even simpler 8)
1475 */
1476 if (dev->flags & IFF_UP) {
1477 int cpu = smp_processor_id(); /* ok because BHs are off */
1478
1479 if (dev->xmit_lock_owner != cpu) {
1480
1481 HARD_TX_LOCK(dev, cpu);
1482
1483 if (!netif_queue_stopped(dev)) {
1484 rc = 0;
1485 if (!dev_hard_start_xmit(skb, dev)) {
1486 HARD_TX_UNLOCK(dev);
1487 goto out;
1488 }
1489 }
1490 HARD_TX_UNLOCK(dev);
1491 if (net_ratelimit())
1492 printk(KERN_CRIT "Virtual device %s asks to "
1493 "queue packet!\n", dev->name);
1494 } else {
1495 /* Recursion is detected! It is possible,
1496 * unfortunately */
1497 if (net_ratelimit())
1498 printk(KERN_CRIT "Dead loop on virtual device "
1499 "%s, fix it urgently!\n", dev->name);
1500 }
1501 }
1502
1503 rc = -ENETDOWN;
1504 rcu_read_unlock_bh();
1505
1506 out_kfree_skb:
1507 kfree_skb(skb);
1508 return rc;
1509 out:
1510 rcu_read_unlock_bh();
1511 return rc;
1512 }
1513
1514
1515 /*=======================================================================
1516 Receiver routines
1517 =======================================================================*/
1518
1519 int netdev_max_backlog = 1000;
1520 int netdev_budget = 300;
1521 int weight_p = 64; /* old backlog weight */
1522
1523 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1524
1525
1526 /**
1527 * netif_rx - post buffer to the network code
1528 * @skb: buffer to post
1529 *
1530 * This function receives a packet from a device driver and queues it for
1531 * the upper (protocol) levels to process. It always succeeds. The buffer
1532 * may be dropped during processing for congestion control or by the
1533 * protocol layers.
1534 *
1535 * return values:
1536 * NET_RX_SUCCESS (no congestion)
1537 * NET_RX_CN_LOW (low congestion)
1538 * NET_RX_CN_MOD (moderate congestion)
1539 * NET_RX_CN_HIGH (high congestion)
1540 * NET_RX_DROP (packet was dropped)
1541 *
1542 */
1543
1544 int netif_rx(struct sk_buff *skb)
1545 {
1546 struct softnet_data *queue;
1547 unsigned long flags;
1548
1549 /* if netpoll wants it, pretend we never saw it */
1550 if (netpoll_rx(skb))
1551 return NET_RX_DROP;
1552
1553 if (!skb->tstamp.off_sec)
1554 net_timestamp(skb);
1555
1556 /*
1557 * The code is rearranged so that the path is the most
1558 * short when CPU is congested, but is still operating.
1559 */
1560 local_irq_save(flags);
1561 queue = &__get_cpu_var(softnet_data);
1562
1563 __get_cpu_var(netdev_rx_stat).total++;
1564 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1565 if (queue->input_pkt_queue.qlen) {
1566 enqueue:
1567 dev_hold(skb->dev);
1568 __skb_queue_tail(&queue->input_pkt_queue, skb);
1569 local_irq_restore(flags);
1570 return NET_RX_SUCCESS;
1571 }
1572
1573 netif_rx_schedule(&queue->backlog_dev);
1574 goto enqueue;
1575 }
1576
1577 __get_cpu_var(netdev_rx_stat).dropped++;
1578 local_irq_restore(flags);
1579
1580 kfree_skb(skb);
1581 return NET_RX_DROP;
1582 }
1583
1584 int netif_rx_ni(struct sk_buff *skb)
1585 {
1586 int err;
1587
1588 preempt_disable();
1589 err = netif_rx(skb);
1590 if (local_softirq_pending())
1591 do_softirq();
1592 preempt_enable();
1593
1594 return err;
1595 }
1596
1597 EXPORT_SYMBOL(netif_rx_ni);
1598
1599 static inline struct net_device *skb_bond(struct sk_buff *skb)
1600 {
1601 struct net_device *dev = skb->dev;
1602
1603 if (dev->master) {
1604 /*
1605 * On bonding slaves other than the currently active
1606 * slave, suppress duplicates except for 802.3ad
1607 * ETH_P_SLOW and alb non-mcast/bcast.
1608 */
1609 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
1610 if (dev->master->priv_flags & IFF_MASTER_ALB) {
1611 if (skb->pkt_type != PACKET_BROADCAST &&
1612 skb->pkt_type != PACKET_MULTICAST)
1613 goto keep;
1614 }
1615
1616 if (dev->master->priv_flags & IFF_MASTER_8023AD &&
1617 skb->protocol == __constant_htons(ETH_P_SLOW))
1618 goto keep;
1619
1620 kfree_skb(skb);
1621 return NULL;
1622 }
1623 keep:
1624 skb->dev = dev->master;
1625 }
1626
1627 return dev;
1628 }
1629
1630 static void net_tx_action(struct softirq_action *h)
1631 {
1632 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1633
1634 if (sd->completion_queue) {
1635 struct sk_buff *clist;
1636
1637 local_irq_disable();
1638 clist = sd->completion_queue;
1639 sd->completion_queue = NULL;
1640 local_irq_enable();
1641
1642 while (clist) {
1643 struct sk_buff *skb = clist;
1644 clist = clist->next;
1645
1646 BUG_TRAP(!atomic_read(&skb->users));
1647 __kfree_skb(skb);
1648 }
1649 }
1650
1651 if (sd->output_queue) {
1652 struct net_device *head;
1653
1654 local_irq_disable();
1655 head = sd->output_queue;
1656 sd->output_queue = NULL;
1657 local_irq_enable();
1658
1659 while (head) {
1660 struct net_device *dev = head;
1661 head = head->next_sched;
1662
1663 smp_mb__before_clear_bit();
1664 clear_bit(__LINK_STATE_SCHED, &dev->state);
1665
1666 if (spin_trylock(&dev->queue_lock)) {
1667 qdisc_run(dev);
1668 spin_unlock(&dev->queue_lock);
1669 } else {
1670 netif_schedule(dev);
1671 }
1672 }
1673 }
1674 }
1675
1676 static __inline__ int deliver_skb(struct sk_buff *skb,
1677 struct packet_type *pt_prev,
1678 struct net_device *orig_dev)
1679 {
1680 atomic_inc(&skb->users);
1681 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1682 }
1683
1684 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1685 int (*br_handle_frame_hook)(struct net_bridge_port *p, struct sk_buff **pskb);
1686 struct net_bridge;
1687 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1688 unsigned char *addr);
1689 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent);
1690
1691 static __inline__ int handle_bridge(struct sk_buff **pskb,
1692 struct packet_type **pt_prev, int *ret,
1693 struct net_device *orig_dev)
1694 {
1695 struct net_bridge_port *port;
1696
1697 if ((*pskb)->pkt_type == PACKET_LOOPBACK ||
1698 (port = rcu_dereference((*pskb)->dev->br_port)) == NULL)
1699 return 0;
1700
1701 if (*pt_prev) {
1702 *ret = deliver_skb(*pskb, *pt_prev, orig_dev);
1703 *pt_prev = NULL;
1704 }
1705
1706 return br_handle_frame_hook(port, pskb);
1707 }
1708 #else
1709 #define handle_bridge(skb, pt_prev, ret, orig_dev) (0)
1710 #endif
1711
1712 #ifdef CONFIG_NET_CLS_ACT
1713 /* TODO: Maybe we should just force sch_ingress to be compiled in
1714 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1715 * a compare and 2 stores extra right now if we dont have it on
1716 * but have CONFIG_NET_CLS_ACT
1717 * NOTE: This doesnt stop any functionality; if you dont have
1718 * the ingress scheduler, you just cant add policies on ingress.
1719 *
1720 */
1721 static int ing_filter(struct sk_buff *skb)
1722 {
1723 struct Qdisc *q;
1724 struct net_device *dev = skb->dev;
1725 int result = TC_ACT_OK;
1726
1727 if (dev->qdisc_ingress) {
1728 __u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd);
1729 if (MAX_RED_LOOP < ttl++) {
1730 printk(KERN_WARNING "Redir loop detected Dropping packet (%s->%s)\n",
1731 skb->input_dev->name, skb->dev->name);
1732 return TC_ACT_SHOT;
1733 }
1734
1735 skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl);
1736
1737 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS);
1738
1739 spin_lock(&dev->ingress_lock);
1740 if ((q = dev->qdisc_ingress) != NULL)
1741 result = q->enqueue(skb, q);
1742 spin_unlock(&dev->ingress_lock);
1743
1744 }
1745
1746 return result;
1747 }
1748 #endif
1749
1750 int netif_receive_skb(struct sk_buff *skb)
1751 {
1752 struct packet_type *ptype, *pt_prev;
1753 struct net_device *orig_dev;
1754 int ret = NET_RX_DROP;
1755 unsigned short type;
1756
1757 /* if we've gotten here through NAPI, check netpoll */
1758 if (skb->dev->poll && netpoll_rx(skb))
1759 return NET_RX_DROP;
1760
1761 if (!skb->tstamp.off_sec)
1762 net_timestamp(skb);
1763
1764 if (!skb->input_dev)
1765 skb->input_dev = skb->dev;
1766
1767 orig_dev = skb_bond(skb);
1768
1769 if (!orig_dev)
1770 return NET_RX_DROP;
1771
1772 __get_cpu_var(netdev_rx_stat).total++;
1773
1774 skb->h.raw = skb->nh.raw = skb->data;
1775 skb->mac_len = skb->nh.raw - skb->mac.raw;
1776
1777 pt_prev = NULL;
1778
1779 rcu_read_lock();
1780
1781 #ifdef CONFIG_NET_CLS_ACT
1782 if (skb->tc_verd & TC_NCLS) {
1783 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
1784 goto ncls;
1785 }
1786 #endif
1787
1788 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1789 if (!ptype->dev || ptype->dev == skb->dev) {
1790 if (pt_prev)
1791 ret = deliver_skb(skb, pt_prev, orig_dev);
1792 pt_prev = ptype;
1793 }
1794 }
1795
1796 #ifdef CONFIG_NET_CLS_ACT
1797 if (pt_prev) {
1798 ret = deliver_skb(skb, pt_prev, orig_dev);
1799 pt_prev = NULL; /* noone else should process this after*/
1800 } else {
1801 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1802 }
1803
1804 ret = ing_filter(skb);
1805
1806 if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) {
1807 kfree_skb(skb);
1808 goto out;
1809 }
1810
1811 skb->tc_verd = 0;
1812 ncls:
1813 #endif
1814
1815 handle_diverter(skb);
1816
1817 if (handle_bridge(&skb, &pt_prev, &ret, orig_dev))
1818 goto out;
1819
1820 type = skb->protocol;
1821 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) {
1822 if (ptype->type == type &&
1823 (!ptype->dev || ptype->dev == skb->dev)) {
1824 if (pt_prev)
1825 ret = deliver_skb(skb, pt_prev, orig_dev);
1826 pt_prev = ptype;
1827 }
1828 }
1829
1830 if (pt_prev) {
1831 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1832 } else {
1833 kfree_skb(skb);
1834 /* Jamal, now you will not able to escape explaining
1835 * me how you were going to use this. :-)
1836 */
1837 ret = NET_RX_DROP;
1838 }
1839
1840 out:
1841 rcu_read_unlock();
1842 return ret;
1843 }
1844
1845 static int process_backlog(struct net_device *backlog_dev, int *budget)
1846 {
1847 int work = 0;
1848 int quota = min(backlog_dev->quota, *budget);
1849 struct softnet_data *queue = &__get_cpu_var(softnet_data);
1850 unsigned long start_time = jiffies;
1851
1852 backlog_dev->weight = weight_p;
1853 for (;;) {
1854 struct sk_buff *skb;
1855 struct net_device *dev;
1856
1857 local_irq_disable();
1858 skb = __skb_dequeue(&queue->input_pkt_queue);
1859 if (!skb)
1860 goto job_done;
1861 local_irq_enable();
1862
1863 dev = skb->dev;
1864
1865 netif_receive_skb(skb);
1866
1867 dev_put(dev);
1868
1869 work++;
1870
1871 if (work >= quota || jiffies - start_time > 1)
1872 break;
1873
1874 }
1875
1876 backlog_dev->quota -= work;
1877 *budget -= work;
1878 return -1;
1879
1880 job_done:
1881 backlog_dev->quota -= work;
1882 *budget -= work;
1883
1884 list_del(&backlog_dev->poll_list);
1885 smp_mb__before_clear_bit();
1886 netif_poll_enable(backlog_dev);
1887
1888 local_irq_enable();
1889 return 0;
1890 }
1891
1892 static void net_rx_action(struct softirq_action *h)
1893 {
1894 struct softnet_data *queue = &__get_cpu_var(softnet_data);
1895 unsigned long start_time = jiffies;
1896 int budget = netdev_budget;
1897 void *have;
1898
1899 local_irq_disable();
1900
1901 while (!list_empty(&queue->poll_list)) {
1902 struct net_device *dev;
1903
1904 if (budget <= 0 || jiffies - start_time > 1)
1905 goto softnet_break;
1906
1907 local_irq_enable();
1908
1909 dev = list_entry(queue->poll_list.next,
1910 struct net_device, poll_list);
1911 have = netpoll_poll_lock(dev);
1912
1913 if (dev->quota <= 0 || dev->poll(dev, &budget)) {
1914 netpoll_poll_unlock(have);
1915 local_irq_disable();
1916 list_move_tail(&dev->poll_list, &queue->poll_list);
1917 if (dev->quota < 0)
1918 dev->quota += dev->weight;
1919 else
1920 dev->quota = dev->weight;
1921 } else {
1922 netpoll_poll_unlock(have);
1923 dev_put(dev);
1924 local_irq_disable();
1925 }
1926 }
1927 out:
1928 #ifdef CONFIG_NET_DMA
1929 /*
1930 * There may not be any more sk_buffs coming right now, so push
1931 * any pending DMA copies to hardware
1932 */
1933 if (net_dma_client) {
1934 struct dma_chan *chan;
1935 rcu_read_lock();
1936 list_for_each_entry_rcu(chan, &net_dma_client->channels, client_node)
1937 dma_async_memcpy_issue_pending(chan);
1938 rcu_read_unlock();
1939 }
1940 #endif
1941 local_irq_enable();
1942 return;
1943
1944 softnet_break:
1945 __get_cpu_var(netdev_rx_stat).time_squeeze++;
1946 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
1947 goto out;
1948 }
1949
1950 static gifconf_func_t * gifconf_list [NPROTO];
1951
1952 /**
1953 * register_gifconf - register a SIOCGIF handler
1954 * @family: Address family
1955 * @gifconf: Function handler
1956 *
1957 * Register protocol dependent address dumping routines. The handler
1958 * that is passed must not be freed or reused until it has been replaced
1959 * by another handler.
1960 */
1961 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
1962 {
1963 if (family >= NPROTO)
1964 return -EINVAL;
1965 gifconf_list[family] = gifconf;
1966 return 0;
1967 }
1968
1969
1970 /*
1971 * Map an interface index to its name (SIOCGIFNAME)
1972 */
1973
1974 /*
1975 * We need this ioctl for efficient implementation of the
1976 * if_indextoname() function required by the IPv6 API. Without
1977 * it, we would have to search all the interfaces to find a
1978 * match. --pb
1979 */
1980
1981 static int dev_ifname(struct ifreq __user *arg)
1982 {
1983 struct net_device *dev;
1984 struct ifreq ifr;
1985
1986 /*
1987 * Fetch the caller's info block.
1988 */
1989
1990 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
1991 return -EFAULT;
1992
1993 read_lock(&dev_base_lock);
1994 dev = __dev_get_by_index(ifr.ifr_ifindex);
1995 if (!dev) {
1996 read_unlock(&dev_base_lock);
1997 return -ENODEV;
1998 }
1999
2000 strcpy(ifr.ifr_name, dev->name);
2001 read_unlock(&dev_base_lock);
2002
2003 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2004 return -EFAULT;
2005 return 0;
2006 }
2007
2008 /*
2009 * Perform a SIOCGIFCONF call. This structure will change
2010 * size eventually, and there is nothing I can do about it.
2011 * Thus we will need a 'compatibility mode'.
2012 */
2013
2014 static int dev_ifconf(char __user *arg)
2015 {
2016 struct ifconf ifc;
2017 struct net_device *dev;
2018 char __user *pos;
2019 int len;
2020 int total;
2021 int i;
2022
2023 /*
2024 * Fetch the caller's info block.
2025 */
2026
2027 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2028 return -EFAULT;
2029
2030 pos = ifc.ifc_buf;
2031 len = ifc.ifc_len;
2032
2033 /*
2034 * Loop over the interfaces, and write an info block for each.
2035 */
2036
2037 total = 0;
2038 for (dev = dev_base; dev; dev = dev->next) {
2039 for (i = 0; i < NPROTO; i++) {
2040 if (gifconf_list[i]) {
2041 int done;
2042 if (!pos)
2043 done = gifconf_list[i](dev, NULL, 0);
2044 else
2045 done = gifconf_list[i](dev, pos + total,
2046 len - total);
2047 if (done < 0)
2048 return -EFAULT;
2049 total += done;
2050 }
2051 }
2052 }
2053
2054 /*
2055 * All done. Write the updated control block back to the caller.
2056 */
2057 ifc.ifc_len = total;
2058
2059 /*
2060 * Both BSD and Solaris return 0 here, so we do too.
2061 */
2062 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2063 }
2064
2065 #ifdef CONFIG_PROC_FS
2066 /*
2067 * This is invoked by the /proc filesystem handler to display a device
2068 * in detail.
2069 */
2070 static __inline__ struct net_device *dev_get_idx(loff_t pos)
2071 {
2072 struct net_device *dev;
2073 loff_t i;
2074
2075 for (i = 0, dev = dev_base; dev && i < pos; ++i, dev = dev->next);
2076
2077 return i == pos ? dev : NULL;
2078 }
2079
2080 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2081 {
2082 read_lock(&dev_base_lock);
2083 return *pos ? dev_get_idx(*pos - 1) : SEQ_START_TOKEN;
2084 }
2085
2086 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2087 {
2088 ++*pos;
2089 return v == SEQ_START_TOKEN ? dev_base : ((struct net_device *)v)->next;
2090 }
2091
2092 void dev_seq_stop(struct seq_file *seq, void *v)
2093 {
2094 read_unlock(&dev_base_lock);
2095 }
2096
2097 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2098 {
2099 if (dev->get_stats) {
2100 struct net_device_stats *stats = dev->get_stats(dev);
2101
2102 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2103 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2104 dev->name, stats->rx_bytes, stats->rx_packets,
2105 stats->rx_errors,
2106 stats->rx_dropped + stats->rx_missed_errors,
2107 stats->rx_fifo_errors,
2108 stats->rx_length_errors + stats->rx_over_errors +
2109 stats->rx_crc_errors + stats->rx_frame_errors,
2110 stats->rx_compressed, stats->multicast,
2111 stats->tx_bytes, stats->tx_packets,
2112 stats->tx_errors, stats->tx_dropped,
2113 stats->tx_fifo_errors, stats->collisions,
2114 stats->tx_carrier_errors +
2115 stats->tx_aborted_errors +
2116 stats->tx_window_errors +
2117 stats->tx_heartbeat_errors,
2118 stats->tx_compressed);
2119 } else
2120 seq_printf(seq, "%6s: No statistics available.\n", dev->name);
2121 }
2122
2123 /*
2124 * Called from the PROCfs module. This now uses the new arbitrary sized
2125 * /proc/net interface to create /proc/net/dev
2126 */
2127 static int dev_seq_show(struct seq_file *seq, void *v)
2128 {
2129 if (v == SEQ_START_TOKEN)
2130 seq_puts(seq, "Inter-| Receive "
2131 " | Transmit\n"
2132 " face |bytes packets errs drop fifo frame "
2133 "compressed multicast|bytes packets errs "
2134 "drop fifo colls carrier compressed\n");
2135 else
2136 dev_seq_printf_stats(seq, v);
2137 return 0;
2138 }
2139
2140 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2141 {
2142 struct netif_rx_stats *rc = NULL;
2143
2144 while (*pos < NR_CPUS)
2145 if (cpu_online(*pos)) {
2146 rc = &per_cpu(netdev_rx_stat, *pos);
2147 break;
2148 } else
2149 ++*pos;
2150 return rc;
2151 }
2152
2153 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2154 {
2155 return softnet_get_online(pos);
2156 }
2157
2158 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2159 {
2160 ++*pos;
2161 return softnet_get_online(pos);
2162 }
2163
2164 static void softnet_seq_stop(struct seq_file *seq, void *v)
2165 {
2166 }
2167
2168 static int softnet_seq_show(struct seq_file *seq, void *v)
2169 {
2170 struct netif_rx_stats *s = v;
2171
2172 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2173 s->total, s->dropped, s->time_squeeze, 0,
2174 0, 0, 0, 0, /* was fastroute */
2175 s->cpu_collision );
2176 return 0;
2177 }
2178
2179 static struct seq_operations dev_seq_ops = {
2180 .start = dev_seq_start,
2181 .next = dev_seq_next,
2182 .stop = dev_seq_stop,
2183 .show = dev_seq_show,
2184 };
2185
2186 static int dev_seq_open(struct inode *inode, struct file *file)
2187 {
2188 return seq_open(file, &dev_seq_ops);
2189 }
2190
2191 static struct file_operations dev_seq_fops = {
2192 .owner = THIS_MODULE,
2193 .open = dev_seq_open,
2194 .read = seq_read,
2195 .llseek = seq_lseek,
2196 .release = seq_release,
2197 };
2198
2199 static struct seq_operations softnet_seq_ops = {
2200 .start = softnet_seq_start,
2201 .next = softnet_seq_next,
2202 .stop = softnet_seq_stop,
2203 .show = softnet_seq_show,
2204 };
2205
2206 static int softnet_seq_open(struct inode *inode, struct file *file)
2207 {
2208 return seq_open(file, &softnet_seq_ops);
2209 }
2210
2211 static struct file_operations softnet_seq_fops = {
2212 .owner = THIS_MODULE,
2213 .open = softnet_seq_open,
2214 .read = seq_read,
2215 .llseek = seq_lseek,
2216 .release = seq_release,
2217 };
2218
2219 #ifdef CONFIG_WIRELESS_EXT
2220 extern int wireless_proc_init(void);
2221 #else
2222 #define wireless_proc_init() 0
2223 #endif
2224
2225 static int __init dev_proc_init(void)
2226 {
2227 int rc = -ENOMEM;
2228
2229 if (!proc_net_fops_create("dev", S_IRUGO, &dev_seq_fops))
2230 goto out;
2231 if (!proc_net_fops_create("softnet_stat", S_IRUGO, &softnet_seq_fops))
2232 goto out_dev;
2233 if (wireless_proc_init())
2234 goto out_softnet;
2235 rc = 0;
2236 out:
2237 return rc;
2238 out_softnet:
2239 proc_net_remove("softnet_stat");
2240 out_dev:
2241 proc_net_remove("dev");
2242 goto out;
2243 }
2244 #else
2245 #define dev_proc_init() 0
2246 #endif /* CONFIG_PROC_FS */
2247
2248
2249 /**
2250 * netdev_set_master - set up master/slave pair
2251 * @slave: slave device
2252 * @master: new master device
2253 *
2254 * Changes the master device of the slave. Pass %NULL to break the
2255 * bonding. The caller must hold the RTNL semaphore. On a failure
2256 * a negative errno code is returned. On success the reference counts
2257 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2258 * function returns zero.
2259 */
2260 int netdev_set_master(struct net_device *slave, struct net_device *master)
2261 {
2262 struct net_device *old = slave->master;
2263
2264 ASSERT_RTNL();
2265
2266 if (master) {
2267 if (old)
2268 return -EBUSY;
2269 dev_hold(master);
2270 }
2271
2272 slave->master = master;
2273
2274 synchronize_net();
2275
2276 if (old)
2277 dev_put(old);
2278
2279 if (master)
2280 slave->flags |= IFF_SLAVE;
2281 else
2282 slave->flags &= ~IFF_SLAVE;
2283
2284 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2285 return 0;
2286 }
2287
2288 /**
2289 * dev_set_promiscuity - update promiscuity count on a device
2290 * @dev: device
2291 * @inc: modifier
2292 *
2293 * Add or remove promiscuity from a device. While the count in the device
2294 * remains above zero the interface remains promiscuous. Once it hits zero
2295 * the device reverts back to normal filtering operation. A negative inc
2296 * value is used to drop promiscuity on the device.
2297 */
2298 void dev_set_promiscuity(struct net_device *dev, int inc)
2299 {
2300 unsigned short old_flags = dev->flags;
2301
2302 if ((dev->promiscuity += inc) == 0)
2303 dev->flags &= ~IFF_PROMISC;
2304 else
2305 dev->flags |= IFF_PROMISC;
2306 if (dev->flags != old_flags) {
2307 dev_mc_upload(dev);
2308 printk(KERN_INFO "device %s %s promiscuous mode\n",
2309 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2310 "left");
2311 audit_log(current->audit_context, GFP_ATOMIC,
2312 AUDIT_ANOM_PROMISCUOUS,
2313 "dev=%s prom=%d old_prom=%d auid=%u",
2314 dev->name, (dev->flags & IFF_PROMISC),
2315 (old_flags & IFF_PROMISC),
2316 audit_get_loginuid(current->audit_context));
2317 }
2318 }
2319
2320 /**
2321 * dev_set_allmulti - update allmulti count on a device
2322 * @dev: device
2323 * @inc: modifier
2324 *
2325 * Add or remove reception of all multicast frames to a device. While the
2326 * count in the device remains above zero the interface remains listening
2327 * to all interfaces. Once it hits zero the device reverts back to normal
2328 * filtering operation. A negative @inc value is used to drop the counter
2329 * when releasing a resource needing all multicasts.
2330 */
2331
2332 void dev_set_allmulti(struct net_device *dev, int inc)
2333 {
2334 unsigned short old_flags = dev->flags;
2335
2336 dev->flags |= IFF_ALLMULTI;
2337 if ((dev->allmulti += inc) == 0)
2338 dev->flags &= ~IFF_ALLMULTI;
2339 if (dev->flags ^ old_flags)
2340 dev_mc_upload(dev);
2341 }
2342
2343 unsigned dev_get_flags(const struct net_device *dev)
2344 {
2345 unsigned flags;
2346
2347 flags = (dev->flags & ~(IFF_PROMISC |
2348 IFF_ALLMULTI |
2349 IFF_RUNNING |
2350 IFF_LOWER_UP |
2351 IFF_DORMANT)) |
2352 (dev->gflags & (IFF_PROMISC |
2353 IFF_ALLMULTI));
2354
2355 if (netif_running(dev)) {
2356 if (netif_oper_up(dev))
2357 flags |= IFF_RUNNING;
2358 if (netif_carrier_ok(dev))
2359 flags |= IFF_LOWER_UP;
2360 if (netif_dormant(dev))
2361 flags |= IFF_DORMANT;
2362 }
2363
2364 return flags;
2365 }
2366
2367 int dev_change_flags(struct net_device *dev, unsigned flags)
2368 {
2369 int ret;
2370 int old_flags = dev->flags;
2371
2372 /*
2373 * Set the flags on our device.
2374 */
2375
2376 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
2377 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
2378 IFF_AUTOMEDIA)) |
2379 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
2380 IFF_ALLMULTI));
2381
2382 /*
2383 * Load in the correct multicast list now the flags have changed.
2384 */
2385
2386 dev_mc_upload(dev);
2387
2388 /*
2389 * Have we downed the interface. We handle IFF_UP ourselves
2390 * according to user attempts to set it, rather than blindly
2391 * setting it.
2392 */
2393
2394 ret = 0;
2395 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
2396 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
2397
2398 if (!ret)
2399 dev_mc_upload(dev);
2400 }
2401
2402 if (dev->flags & IFF_UP &&
2403 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
2404 IFF_VOLATILE)))
2405 raw_notifier_call_chain(&netdev_chain,
2406 NETDEV_CHANGE, dev);
2407
2408 if ((flags ^ dev->gflags) & IFF_PROMISC) {
2409 int inc = (flags & IFF_PROMISC) ? +1 : -1;
2410 dev->gflags ^= IFF_PROMISC;
2411 dev_set_promiscuity(dev, inc);
2412 }
2413
2414 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
2415 is important. Some (broken) drivers set IFF_PROMISC, when
2416 IFF_ALLMULTI is requested not asking us and not reporting.
2417 */
2418 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
2419 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
2420 dev->gflags ^= IFF_ALLMULTI;
2421 dev_set_allmulti(dev, inc);
2422 }
2423
2424 if (old_flags ^ dev->flags)
2425 rtmsg_ifinfo(RTM_NEWLINK, dev, old_flags ^ dev->flags);
2426
2427 return ret;
2428 }
2429
2430 int dev_set_mtu(struct net_device *dev, int new_mtu)
2431 {
2432 int err;
2433
2434 if (new_mtu == dev->mtu)
2435 return 0;
2436
2437 /* MTU must be positive. */
2438 if (new_mtu < 0)
2439 return -EINVAL;
2440
2441 if (!netif_device_present(dev))
2442 return -ENODEV;
2443
2444 err = 0;
2445 if (dev->change_mtu)
2446 err = dev->change_mtu(dev, new_mtu);
2447 else
2448 dev->mtu = new_mtu;
2449 if (!err && dev->flags & IFF_UP)
2450 raw_notifier_call_chain(&netdev_chain,
2451 NETDEV_CHANGEMTU, dev);
2452 return err;
2453 }
2454
2455 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
2456 {
2457 int err;
2458
2459 if (!dev->set_mac_address)
2460 return -EOPNOTSUPP;
2461 if (sa->sa_family != dev->type)
2462 return -EINVAL;
2463 if (!netif_device_present(dev))
2464 return -ENODEV;
2465 err = dev->set_mac_address(dev, sa);
2466 if (!err)
2467 raw_notifier_call_chain(&netdev_chain,
2468 NETDEV_CHANGEADDR, dev);
2469 return err;
2470 }
2471
2472 /*
2473 * Perform the SIOCxIFxxx calls.
2474 */
2475 static int dev_ifsioc(struct ifreq *ifr, unsigned int cmd)
2476 {
2477 int err;
2478 struct net_device *dev = __dev_get_by_name(ifr->ifr_name);
2479
2480 if (!dev)
2481 return -ENODEV;
2482
2483 switch (cmd) {
2484 case SIOCGIFFLAGS: /* Get interface flags */
2485 ifr->ifr_flags = dev_get_flags(dev);
2486 return 0;
2487
2488 case SIOCSIFFLAGS: /* Set interface flags */
2489 return dev_change_flags(dev, ifr->ifr_flags);
2490
2491 case SIOCGIFMETRIC: /* Get the metric on the interface
2492 (currently unused) */
2493 ifr->ifr_metric = 0;
2494 return 0;
2495
2496 case SIOCSIFMETRIC: /* Set the metric on the interface
2497 (currently unused) */
2498 return -EOPNOTSUPP;
2499
2500 case SIOCGIFMTU: /* Get the MTU of a device */
2501 ifr->ifr_mtu = dev->mtu;
2502 return 0;
2503
2504 case SIOCSIFMTU: /* Set the MTU of a device */
2505 return dev_set_mtu(dev, ifr->ifr_mtu);
2506
2507 case SIOCGIFHWADDR:
2508 if (!dev->addr_len)
2509 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
2510 else
2511 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
2512 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
2513 ifr->ifr_hwaddr.sa_family = dev->type;
2514 return 0;
2515
2516 case SIOCSIFHWADDR:
2517 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
2518
2519 case SIOCSIFHWBROADCAST:
2520 if (ifr->ifr_hwaddr.sa_family != dev->type)
2521 return -EINVAL;
2522 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
2523 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
2524 raw_notifier_call_chain(&netdev_chain,
2525 NETDEV_CHANGEADDR, dev);
2526 return 0;
2527
2528 case SIOCGIFMAP:
2529 ifr->ifr_map.mem_start = dev->mem_start;
2530 ifr->ifr_map.mem_end = dev->mem_end;
2531 ifr->ifr_map.base_addr = dev->base_addr;
2532 ifr->ifr_map.irq = dev->irq;
2533 ifr->ifr_map.dma = dev->dma;
2534 ifr->ifr_map.port = dev->if_port;
2535 return 0;
2536
2537 case SIOCSIFMAP:
2538 if (dev->set_config) {
2539 if (!netif_device_present(dev))
2540 return -ENODEV;
2541 return dev->set_config(dev, &ifr->ifr_map);
2542 }
2543 return -EOPNOTSUPP;
2544
2545 case SIOCADDMULTI:
2546 if (!dev->set_multicast_list ||
2547 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
2548 return -EINVAL;
2549 if (!netif_device_present(dev))
2550 return -ENODEV;
2551 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
2552 dev->addr_len, 1);
2553
2554 case SIOCDELMULTI:
2555 if (!dev->set_multicast_list ||
2556 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
2557 return -EINVAL;
2558 if (!netif_device_present(dev))
2559 return -ENODEV;
2560 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
2561 dev->addr_len, 1);
2562
2563 case SIOCGIFINDEX:
2564 ifr->ifr_ifindex = dev->ifindex;
2565 return 0;
2566
2567 case SIOCGIFTXQLEN:
2568 ifr->ifr_qlen = dev->tx_queue_len;
2569 return 0;
2570
2571 case SIOCSIFTXQLEN:
2572 if (ifr->ifr_qlen < 0)
2573 return -EINVAL;
2574 dev->tx_queue_len = ifr->ifr_qlen;
2575 return 0;
2576
2577 case SIOCSIFNAME:
2578 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
2579 return dev_change_name(dev, ifr->ifr_newname);
2580
2581 /*
2582 * Unknown or private ioctl
2583 */
2584
2585 default:
2586 if ((cmd >= SIOCDEVPRIVATE &&
2587 cmd <= SIOCDEVPRIVATE + 15) ||
2588 cmd == SIOCBONDENSLAVE ||
2589 cmd == SIOCBONDRELEASE ||
2590 cmd == SIOCBONDSETHWADDR ||
2591 cmd == SIOCBONDSLAVEINFOQUERY ||
2592 cmd == SIOCBONDINFOQUERY ||
2593 cmd == SIOCBONDCHANGEACTIVE ||
2594 cmd == SIOCGMIIPHY ||
2595 cmd == SIOCGMIIREG ||
2596 cmd == SIOCSMIIREG ||
2597 cmd == SIOCBRADDIF ||
2598 cmd == SIOCBRDELIF ||
2599 cmd == SIOCWANDEV) {
2600 err = -EOPNOTSUPP;
2601 if (dev->do_ioctl) {
2602 if (netif_device_present(dev))
2603 err = dev->do_ioctl(dev, ifr,
2604 cmd);
2605 else
2606 err = -ENODEV;
2607 }
2608 } else
2609 err = -EINVAL;
2610
2611 }
2612 return err;
2613 }
2614
2615 /*
2616 * This function handles all "interface"-type I/O control requests. The actual
2617 * 'doing' part of this is dev_ifsioc above.
2618 */
2619
2620 /**
2621 * dev_ioctl - network device ioctl
2622 * @cmd: command to issue
2623 * @arg: pointer to a struct ifreq in user space
2624 *
2625 * Issue ioctl functions to devices. This is normally called by the
2626 * user space syscall interfaces but can sometimes be useful for
2627 * other purposes. The return value is the return from the syscall if
2628 * positive or a negative errno code on error.
2629 */
2630
2631 int dev_ioctl(unsigned int cmd, void __user *arg)
2632 {
2633 struct ifreq ifr;
2634 int ret;
2635 char *colon;
2636
2637 /* One special case: SIOCGIFCONF takes ifconf argument
2638 and requires shared lock, because it sleeps writing
2639 to user space.
2640 */
2641
2642 if (cmd == SIOCGIFCONF) {
2643 rtnl_lock();
2644 ret = dev_ifconf((char __user *) arg);
2645 rtnl_unlock();
2646 return ret;
2647 }
2648 if (cmd == SIOCGIFNAME)
2649 return dev_ifname((struct ifreq __user *)arg);
2650
2651 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2652 return -EFAULT;
2653
2654 ifr.ifr_name[IFNAMSIZ-1] = 0;
2655
2656 colon = strchr(ifr.ifr_name, ':');
2657 if (colon)
2658 *colon = 0;
2659
2660 /*
2661 * See which interface the caller is talking about.
2662 */
2663
2664 switch (cmd) {
2665 /*
2666 * These ioctl calls:
2667 * - can be done by all.
2668 * - atomic and do not require locking.
2669 * - return a value
2670 */
2671 case SIOCGIFFLAGS:
2672 case SIOCGIFMETRIC:
2673 case SIOCGIFMTU:
2674 case SIOCGIFHWADDR:
2675 case SIOCGIFSLAVE:
2676 case SIOCGIFMAP:
2677 case SIOCGIFINDEX:
2678 case SIOCGIFTXQLEN:
2679 dev_load(ifr.ifr_name);
2680 read_lock(&dev_base_lock);
2681 ret = dev_ifsioc(&ifr, cmd);
2682 read_unlock(&dev_base_lock);
2683 if (!ret) {
2684 if (colon)
2685 *colon = ':';
2686 if (copy_to_user(arg, &ifr,
2687 sizeof(struct ifreq)))
2688 ret = -EFAULT;
2689 }
2690 return ret;
2691
2692 case SIOCETHTOOL:
2693 dev_load(ifr.ifr_name);
2694 rtnl_lock();
2695 ret = dev_ethtool(&ifr);
2696 rtnl_unlock();
2697 if (!ret) {
2698 if (colon)
2699 *colon = ':';
2700 if (copy_to_user(arg, &ifr,
2701 sizeof(struct ifreq)))
2702 ret = -EFAULT;
2703 }
2704 return ret;
2705
2706 /*
2707 * These ioctl calls:
2708 * - require superuser power.
2709 * - require strict serialization.
2710 * - return a value
2711 */
2712 case SIOCGMIIPHY:
2713 case SIOCGMIIREG:
2714 case SIOCSIFNAME:
2715 if (!capable(CAP_NET_ADMIN))
2716 return -EPERM;
2717 dev_load(ifr.ifr_name);
2718 rtnl_lock();
2719 ret = dev_ifsioc(&ifr, cmd);
2720 rtnl_unlock();
2721 if (!ret) {
2722 if (colon)
2723 *colon = ':';
2724 if (copy_to_user(arg, &ifr,
2725 sizeof(struct ifreq)))
2726 ret = -EFAULT;
2727 }
2728 return ret;
2729
2730 /*
2731 * These ioctl calls:
2732 * - require superuser power.
2733 * - require strict serialization.
2734 * - do not return a value
2735 */
2736 case SIOCSIFFLAGS:
2737 case SIOCSIFMETRIC:
2738 case SIOCSIFMTU:
2739 case SIOCSIFMAP:
2740 case SIOCSIFHWADDR:
2741 case SIOCSIFSLAVE:
2742 case SIOCADDMULTI:
2743 case SIOCDELMULTI:
2744 case SIOCSIFHWBROADCAST:
2745 case SIOCSIFTXQLEN:
2746 case SIOCSMIIREG:
2747 case SIOCBONDENSLAVE:
2748 case SIOCBONDRELEASE:
2749 case SIOCBONDSETHWADDR:
2750 case SIOCBONDCHANGEACTIVE:
2751 case SIOCBRADDIF:
2752 case SIOCBRDELIF:
2753 if (!capable(CAP_NET_ADMIN))
2754 return -EPERM;
2755 /* fall through */
2756 case SIOCBONDSLAVEINFOQUERY:
2757 case SIOCBONDINFOQUERY:
2758 dev_load(ifr.ifr_name);
2759 rtnl_lock();
2760 ret = dev_ifsioc(&ifr, cmd);
2761 rtnl_unlock();
2762 return ret;
2763
2764 case SIOCGIFMEM:
2765 /* Get the per device memory space. We can add this but
2766 * currently do not support it */
2767 case SIOCSIFMEM:
2768 /* Set the per device memory buffer space.
2769 * Not applicable in our case */
2770 case SIOCSIFLINK:
2771 return -EINVAL;
2772
2773 /*
2774 * Unknown or private ioctl.
2775 */
2776 default:
2777 if (cmd == SIOCWANDEV ||
2778 (cmd >= SIOCDEVPRIVATE &&
2779 cmd <= SIOCDEVPRIVATE + 15)) {
2780 dev_load(ifr.ifr_name);
2781 rtnl_lock();
2782 ret = dev_ifsioc(&ifr, cmd);
2783 rtnl_unlock();
2784 if (!ret && copy_to_user(arg, &ifr,
2785 sizeof(struct ifreq)))
2786 ret = -EFAULT;
2787 return ret;
2788 }
2789 #ifdef CONFIG_WIRELESS_EXT
2790 /* Take care of Wireless Extensions */
2791 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
2792 /* If command is `set a parameter', or
2793 * `get the encoding parameters', check if
2794 * the user has the right to do it */
2795 if (IW_IS_SET(cmd) || cmd == SIOCGIWENCODE
2796 || cmd == SIOCGIWENCODEEXT) {
2797 if (!capable(CAP_NET_ADMIN))
2798 return -EPERM;
2799 }
2800 dev_load(ifr.ifr_name);
2801 rtnl_lock();
2802 /* Follow me in net/core/wireless.c */
2803 ret = wireless_process_ioctl(&ifr, cmd);
2804 rtnl_unlock();
2805 if (IW_IS_GET(cmd) &&
2806 copy_to_user(arg, &ifr,
2807 sizeof(struct ifreq)))
2808 ret = -EFAULT;
2809 return ret;
2810 }
2811 #endif /* CONFIG_WIRELESS_EXT */
2812 return -EINVAL;
2813 }
2814 }
2815
2816
2817 /**
2818 * dev_new_index - allocate an ifindex
2819 *
2820 * Returns a suitable unique value for a new device interface
2821 * number. The caller must hold the rtnl semaphore or the
2822 * dev_base_lock to be sure it remains unique.
2823 */
2824 static int dev_new_index(void)
2825 {
2826 static int ifindex;
2827 for (;;) {
2828 if (++ifindex <= 0)
2829 ifindex = 1;
2830 if (!__dev_get_by_index(ifindex))
2831 return ifindex;
2832 }
2833 }
2834
2835 static int dev_boot_phase = 1;
2836
2837 /* Delayed registration/unregisteration */
2838 static DEFINE_SPINLOCK(net_todo_list_lock);
2839 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list);
2840
2841 static inline void net_set_todo(struct net_device *dev)
2842 {
2843 spin_lock(&net_todo_list_lock);
2844 list_add_tail(&dev->todo_list, &net_todo_list);
2845 spin_unlock(&net_todo_list_lock);
2846 }
2847
2848 /**
2849 * register_netdevice - register a network device
2850 * @dev: device to register
2851 *
2852 * Take a completed network device structure and add it to the kernel
2853 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
2854 * chain. 0 is returned on success. A negative errno code is returned
2855 * on a failure to set up the device, or if the name is a duplicate.
2856 *
2857 * Callers must hold the rtnl semaphore. You may want
2858 * register_netdev() instead of this.
2859 *
2860 * BUGS:
2861 * The locking appears insufficient to guarantee two parallel registers
2862 * will not get the same name.
2863 */
2864
2865 int register_netdevice(struct net_device *dev)
2866 {
2867 struct hlist_head *head;
2868 struct hlist_node *p;
2869 int ret;
2870
2871 BUG_ON(dev_boot_phase);
2872 ASSERT_RTNL();
2873
2874 might_sleep();
2875
2876 /* When net_device's are persistent, this will be fatal. */
2877 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
2878
2879 spin_lock_init(&dev->queue_lock);
2880 spin_lock_init(&dev->_xmit_lock);
2881 dev->xmit_lock_owner = -1;
2882 #ifdef CONFIG_NET_CLS_ACT
2883 spin_lock_init(&dev->ingress_lock);
2884 #endif
2885
2886 ret = alloc_divert_blk(dev);
2887 if (ret)
2888 goto out;
2889
2890 dev->iflink = -1;
2891
2892 /* Init, if this function is available */
2893 if (dev->init) {
2894 ret = dev->init(dev);
2895 if (ret) {
2896 if (ret > 0)
2897 ret = -EIO;
2898 goto out_err;
2899 }
2900 }
2901
2902 if (!dev_valid_name(dev->name)) {
2903 ret = -EINVAL;
2904 goto out_err;
2905 }
2906
2907 dev->ifindex = dev_new_index();
2908 if (dev->iflink == -1)
2909 dev->iflink = dev->ifindex;
2910
2911 /* Check for existence of name */
2912 head = dev_name_hash(dev->name);
2913 hlist_for_each(p, head) {
2914 struct net_device *d
2915 = hlist_entry(p, struct net_device, name_hlist);
2916 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
2917 ret = -EEXIST;
2918 goto out_err;
2919 }
2920 }
2921
2922 /* Fix illegal SG+CSUM combinations. */
2923 if ((dev->features & NETIF_F_SG) &&
2924 !(dev->features & NETIF_F_ALL_CSUM)) {
2925 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
2926 dev->name);
2927 dev->features &= ~NETIF_F_SG;
2928 }
2929
2930 /* TSO requires that SG is present as well. */
2931 if ((dev->features & NETIF_F_TSO) &&
2932 !(dev->features & NETIF_F_SG)) {
2933 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
2934 dev->name);
2935 dev->features &= ~NETIF_F_TSO;
2936 }
2937 if (dev->features & NETIF_F_UFO) {
2938 if (!(dev->features & NETIF_F_HW_CSUM)) {
2939 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
2940 "NETIF_F_HW_CSUM feature.\n",
2941 dev->name);
2942 dev->features &= ~NETIF_F_UFO;
2943 }
2944 if (!(dev->features & NETIF_F_SG)) {
2945 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
2946 "NETIF_F_SG feature.\n",
2947 dev->name);
2948 dev->features &= ~NETIF_F_UFO;
2949 }
2950 }
2951
2952 /*
2953 * nil rebuild_header routine,
2954 * that should be never called and used as just bug trap.
2955 */
2956
2957 if (!dev->rebuild_header)
2958 dev->rebuild_header = default_rebuild_header;
2959
2960 ret = netdev_register_sysfs(dev);
2961 if (ret)
2962 goto out_err;
2963 dev->reg_state = NETREG_REGISTERED;
2964
2965 /*
2966 * Default initial state at registry is that the
2967 * device is present.
2968 */
2969
2970 set_bit(__LINK_STATE_PRESENT, &dev->state);
2971
2972 dev->next = NULL;
2973 dev_init_scheduler(dev);
2974 write_lock_bh(&dev_base_lock);
2975 *dev_tail = dev;
2976 dev_tail = &dev->next;
2977 hlist_add_head(&dev->name_hlist, head);
2978 hlist_add_head(&dev->index_hlist, dev_index_hash(dev->ifindex));
2979 dev_hold(dev);
2980 write_unlock_bh(&dev_base_lock);
2981
2982 /* Notify protocols, that a new device appeared. */
2983 raw_notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev);
2984
2985 ret = 0;
2986
2987 out:
2988 return ret;
2989 out_err:
2990 free_divert_blk(dev);
2991 goto out;
2992 }
2993
2994 /**
2995 * register_netdev - register a network device
2996 * @dev: device to register
2997 *
2998 * Take a completed network device structure and add it to the kernel
2999 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3000 * chain. 0 is returned on success. A negative errno code is returned
3001 * on a failure to set up the device, or if the name is a duplicate.
3002 *
3003 * This is a wrapper around register_netdev that takes the rtnl semaphore
3004 * and expands the device name if you passed a format string to
3005 * alloc_netdev.
3006 */
3007 int register_netdev(struct net_device *dev)
3008 {
3009 int err;
3010
3011 rtnl_lock();
3012
3013 /*
3014 * If the name is a format string the caller wants us to do a
3015 * name allocation.
3016 */
3017 if (strchr(dev->name, '%')) {
3018 err = dev_alloc_name(dev, dev->name);
3019 if (err < 0)
3020 goto out;
3021 }
3022
3023 /*
3024 * Back compatibility hook. Kill this one in 2.5
3025 */
3026 if (dev->name[0] == 0 || dev->name[0] == ' ') {
3027 err = dev_alloc_name(dev, "eth%d");
3028 if (err < 0)
3029 goto out;
3030 }
3031
3032 err = register_netdevice(dev);
3033 out:
3034 rtnl_unlock();
3035 return err;
3036 }
3037 EXPORT_SYMBOL(register_netdev);
3038
3039 /*
3040 * netdev_wait_allrefs - wait until all references are gone.
3041 *
3042 * This is called when unregistering network devices.
3043 *
3044 * Any protocol or device that holds a reference should register
3045 * for netdevice notification, and cleanup and put back the
3046 * reference if they receive an UNREGISTER event.
3047 * We can get stuck here if buggy protocols don't correctly
3048 * call dev_put.
3049 */
3050 static void netdev_wait_allrefs(struct net_device *dev)
3051 {
3052 unsigned long rebroadcast_time, warning_time;
3053
3054 rebroadcast_time = warning_time = jiffies;
3055 while (atomic_read(&dev->refcnt) != 0) {
3056 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3057 rtnl_lock();
3058
3059 /* Rebroadcast unregister notification */
3060 raw_notifier_call_chain(&netdev_chain,
3061 NETDEV_UNREGISTER, dev);
3062
3063 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3064 &dev->state)) {
3065 /* We must not have linkwatch events
3066 * pending on unregister. If this
3067 * happens, we simply run the queue
3068 * unscheduled, resulting in a noop
3069 * for this device.
3070 */
3071 linkwatch_run_queue();
3072 }
3073
3074 __rtnl_unlock();
3075
3076 rebroadcast_time = jiffies;
3077 }
3078
3079 msleep(250);
3080
3081 if (time_after(jiffies, warning_time + 10 * HZ)) {
3082 printk(KERN_EMERG "unregister_netdevice: "
3083 "waiting for %s to become free. Usage "
3084 "count = %d\n",
3085 dev->name, atomic_read(&dev->refcnt));
3086 warning_time = jiffies;
3087 }
3088 }
3089 }
3090
3091 /* The sequence is:
3092 *
3093 * rtnl_lock();
3094 * ...
3095 * register_netdevice(x1);
3096 * register_netdevice(x2);
3097 * ...
3098 * unregister_netdevice(y1);
3099 * unregister_netdevice(y2);
3100 * ...
3101 * rtnl_unlock();
3102 * free_netdev(y1);
3103 * free_netdev(y2);
3104 *
3105 * We are invoked by rtnl_unlock() after it drops the semaphore.
3106 * This allows us to deal with problems:
3107 * 1) We can delete sysfs objects which invoke hotplug
3108 * without deadlocking with linkwatch via keventd.
3109 * 2) Since we run with the RTNL semaphore not held, we can sleep
3110 * safely in order to wait for the netdev refcnt to drop to zero.
3111 */
3112 static DEFINE_MUTEX(net_todo_run_mutex);
3113 void netdev_run_todo(void)
3114 {
3115 struct list_head list;
3116
3117 /* Need to guard against multiple cpu's getting out of order. */
3118 mutex_lock(&net_todo_run_mutex);
3119
3120 /* Not safe to do outside the semaphore. We must not return
3121 * until all unregister events invoked by the local processor
3122 * have been completed (either by this todo run, or one on
3123 * another cpu).
3124 */
3125 if (list_empty(&net_todo_list))
3126 goto out;
3127
3128 /* Snapshot list, allow later requests */
3129 spin_lock(&net_todo_list_lock);
3130 list_replace_init(&net_todo_list, &list);
3131 spin_unlock(&net_todo_list_lock);
3132
3133 while (!list_empty(&list)) {
3134 struct net_device *dev
3135 = list_entry(list.next, struct net_device, todo_list);
3136 list_del(&dev->todo_list);
3137
3138 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3139 printk(KERN_ERR "network todo '%s' but state %d\n",
3140 dev->name, dev->reg_state);
3141 dump_stack();
3142 continue;
3143 }
3144
3145 netdev_unregister_sysfs(dev);
3146 dev->reg_state = NETREG_UNREGISTERED;
3147
3148 netdev_wait_allrefs(dev);
3149
3150 /* paranoia */
3151 BUG_ON(atomic_read(&dev->refcnt));
3152 BUG_TRAP(!dev->ip_ptr);
3153 BUG_TRAP(!dev->ip6_ptr);
3154 BUG_TRAP(!dev->dn_ptr);
3155
3156 /* It must be the very last action,
3157 * after this 'dev' may point to freed up memory.
3158 */
3159 if (dev->destructor)
3160 dev->destructor(dev);
3161 }
3162
3163 out:
3164 mutex_unlock(&net_todo_run_mutex);
3165 }
3166
3167 /**
3168 * alloc_netdev - allocate network device
3169 * @sizeof_priv: size of private data to allocate space for
3170 * @name: device name format string
3171 * @setup: callback to initialize device
3172 *
3173 * Allocates a struct net_device with private data area for driver use
3174 * and performs basic initialization.
3175 */
3176 struct net_device *alloc_netdev(int sizeof_priv, const char *name,
3177 void (*setup)(struct net_device *))
3178 {
3179 void *p;
3180 struct net_device *dev;
3181 int alloc_size;
3182
3183 /* ensure 32-byte alignment of both the device and private area */
3184 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
3185 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST;
3186
3187 p = kzalloc(alloc_size, GFP_KERNEL);
3188 if (!p) {
3189 printk(KERN_ERR "alloc_dev: Unable to allocate device.\n");
3190 return NULL;
3191 }
3192
3193 dev = (struct net_device *)
3194 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
3195 dev->padded = (char *)dev - (char *)p;
3196
3197 if (sizeof_priv)
3198 dev->priv = netdev_priv(dev);
3199
3200 setup(dev);
3201 strcpy(dev->name, name);
3202 return dev;
3203 }
3204 EXPORT_SYMBOL(alloc_netdev);
3205
3206 /**
3207 * free_netdev - free network device
3208 * @dev: device
3209 *
3210 * This function does the last stage of destroying an allocated device
3211 * interface. The reference to the device object is released.
3212 * If this is the last reference then it will be freed.
3213 */
3214 void free_netdev(struct net_device *dev)
3215 {
3216 #ifdef CONFIG_SYSFS
3217 /* Compatibility with error handling in drivers */
3218 if (dev->reg_state == NETREG_UNINITIALIZED) {
3219 kfree((char *)dev - dev->padded);
3220 return;
3221 }
3222
3223 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
3224 dev->reg_state = NETREG_RELEASED;
3225
3226 /* will free via class release */
3227 class_device_put(&dev->class_dev);
3228 #else
3229 kfree((char *)dev - dev->padded);
3230 #endif
3231 }
3232
3233 /* Synchronize with packet receive processing. */
3234 void synchronize_net(void)
3235 {
3236 might_sleep();
3237 synchronize_rcu();
3238 }
3239
3240 /**
3241 * unregister_netdevice - remove device from the kernel
3242 * @dev: device
3243 *
3244 * This function shuts down a device interface and removes it
3245 * from the kernel tables. On success 0 is returned, on a failure
3246 * a negative errno code is returned.
3247 *
3248 * Callers must hold the rtnl semaphore. You may want
3249 * unregister_netdev() instead of this.
3250 */
3251
3252 int unregister_netdevice(struct net_device *dev)
3253 {
3254 struct net_device *d, **dp;
3255
3256 BUG_ON(dev_boot_phase);
3257 ASSERT_RTNL();
3258
3259 /* Some devices call without registering for initialization unwind. */
3260 if (dev->reg_state == NETREG_UNINITIALIZED) {
3261 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3262 "was registered\n", dev->name, dev);
3263 return -ENODEV;
3264 }
3265
3266 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3267
3268 /* If device is running, close it first. */
3269 if (dev->flags & IFF_UP)
3270 dev_close(dev);
3271
3272 /* And unlink it from device chain. */
3273 for (dp = &dev_base; (d = *dp) != NULL; dp = &d->next) {
3274 if (d == dev) {
3275 write_lock_bh(&dev_base_lock);
3276 hlist_del(&dev->name_hlist);
3277 hlist_del(&dev->index_hlist);
3278 if (dev_tail == &dev->next)
3279 dev_tail = dp;
3280 *dp = d->next;
3281 write_unlock_bh(&dev_base_lock);
3282 break;
3283 }
3284 }
3285 if (!d) {
3286 printk(KERN_ERR "unregister net_device: '%s' not found\n",
3287 dev->name);
3288 return -ENODEV;
3289 }
3290
3291 dev->reg_state = NETREG_UNREGISTERING;
3292
3293 synchronize_net();
3294
3295 /* Shutdown queueing discipline. */
3296 dev_shutdown(dev);
3297
3298
3299 /* Notify protocols, that we are about to destroy
3300 this device. They should clean all the things.
3301 */
3302 raw_notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev);
3303
3304 /*
3305 * Flush the multicast chain
3306 */
3307 dev_mc_discard(dev);
3308
3309 if (dev->uninit)
3310 dev->uninit(dev);
3311
3312 /* Notifier chain MUST detach us from master device. */
3313 BUG_TRAP(!dev->master);
3314
3315 free_divert_blk(dev);
3316
3317 /* Finish processing unregister after unlock */
3318 net_set_todo(dev);
3319
3320 synchronize_net();
3321
3322 dev_put(dev);
3323 return 0;
3324 }
3325
3326 /**
3327 * unregister_netdev - remove device from the kernel
3328 * @dev: device
3329 *
3330 * This function shuts down a device interface and removes it
3331 * from the kernel tables. On success 0 is returned, on a failure
3332 * a negative errno code is returned.
3333 *
3334 * This is just a wrapper for unregister_netdevice that takes
3335 * the rtnl semaphore. In general you want to use this and not
3336 * unregister_netdevice.
3337 */
3338 void unregister_netdev(struct net_device *dev)
3339 {
3340 rtnl_lock();
3341 unregister_netdevice(dev);
3342 rtnl_unlock();
3343 }
3344
3345 EXPORT_SYMBOL(unregister_netdev);
3346
3347 #ifdef CONFIG_HOTPLUG_CPU
3348 static int dev_cpu_callback(struct notifier_block *nfb,
3349 unsigned long action,
3350 void *ocpu)
3351 {
3352 struct sk_buff **list_skb;
3353 struct net_device **list_net;
3354 struct sk_buff *skb;
3355 unsigned int cpu, oldcpu = (unsigned long)ocpu;
3356 struct softnet_data *sd, *oldsd;
3357
3358 if (action != CPU_DEAD)
3359 return NOTIFY_OK;
3360
3361 local_irq_disable();
3362 cpu = smp_processor_id();
3363 sd = &per_cpu(softnet_data, cpu);
3364 oldsd = &per_cpu(softnet_data, oldcpu);
3365
3366 /* Find end of our completion_queue. */
3367 list_skb = &sd->completion_queue;
3368 while (*list_skb)
3369 list_skb = &(*list_skb)->next;
3370 /* Append completion queue from offline CPU. */
3371 *list_skb = oldsd->completion_queue;
3372 oldsd->completion_queue = NULL;
3373
3374 /* Find end of our output_queue. */
3375 list_net = &sd->output_queue;
3376 while (*list_net)
3377 list_net = &(*list_net)->next_sched;
3378 /* Append output queue from offline CPU. */
3379 *list_net = oldsd->output_queue;
3380 oldsd->output_queue = NULL;
3381
3382 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3383 local_irq_enable();
3384
3385 /* Process offline CPU's input_pkt_queue */
3386 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
3387 netif_rx(skb);
3388
3389 return NOTIFY_OK;
3390 }
3391 #endif /* CONFIG_HOTPLUG_CPU */
3392
3393 #ifdef CONFIG_NET_DMA
3394 /**
3395 * net_dma_rebalance -
3396 * This is called when the number of channels allocated to the net_dma_client
3397 * changes. The net_dma_client tries to have one DMA channel per CPU.
3398 */
3399 static void net_dma_rebalance(void)
3400 {
3401 unsigned int cpu, i, n;
3402 struct dma_chan *chan;
3403
3404 lock_cpu_hotplug();
3405
3406 if (net_dma_count == 0) {
3407 for_each_online_cpu(cpu)
3408 rcu_assign_pointer(per_cpu(softnet_data.net_dma, cpu), NULL);
3409 unlock_cpu_hotplug();
3410 return;
3411 }
3412
3413 i = 0;
3414 cpu = first_cpu(cpu_online_map);
3415
3416 rcu_read_lock();
3417 list_for_each_entry(chan, &net_dma_client->channels, client_node) {
3418 n = ((num_online_cpus() / net_dma_count)
3419 + (i < (num_online_cpus() % net_dma_count) ? 1 : 0));
3420
3421 while(n) {
3422 per_cpu(softnet_data.net_dma, cpu) = chan;
3423 cpu = next_cpu(cpu, cpu_online_map);
3424 n--;
3425 }
3426 i++;
3427 }
3428 rcu_read_unlock();
3429
3430 unlock_cpu_hotplug();
3431 }
3432
3433 /**
3434 * netdev_dma_event - event callback for the net_dma_client
3435 * @client: should always be net_dma_client
3436 * @chan: DMA channel for the event
3437 * @event: event type
3438 */
3439 static void netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
3440 enum dma_event event)
3441 {
3442 spin_lock(&net_dma_event_lock);
3443 switch (event) {
3444 case DMA_RESOURCE_ADDED:
3445 net_dma_count++;
3446 net_dma_rebalance();
3447 break;
3448 case DMA_RESOURCE_REMOVED:
3449 net_dma_count--;
3450 net_dma_rebalance();
3451 break;
3452 default:
3453 break;
3454 }
3455 spin_unlock(&net_dma_event_lock);
3456 }
3457
3458 /**
3459 * netdev_dma_regiser - register the networking subsystem as a DMA client
3460 */
3461 static int __init netdev_dma_register(void)
3462 {
3463 spin_lock_init(&net_dma_event_lock);
3464 net_dma_client = dma_async_client_register(netdev_dma_event);
3465 if (net_dma_client == NULL)
3466 return -ENOMEM;
3467
3468 dma_async_client_chan_request(net_dma_client, num_online_cpus());
3469 return 0;
3470 }
3471
3472 #else
3473 static int __init netdev_dma_register(void) { return -ENODEV; }
3474 #endif /* CONFIG_NET_DMA */
3475
3476 /*
3477 * Initialize the DEV module. At boot time this walks the device list and
3478 * unhooks any devices that fail to initialise (normally hardware not
3479 * present) and leaves us with a valid list of present and active devices.
3480 *
3481 */
3482
3483 /*
3484 * This is called single threaded during boot, so no need
3485 * to take the rtnl semaphore.
3486 */
3487 static int __init net_dev_init(void)
3488 {
3489 int i, rc = -ENOMEM;
3490
3491 BUG_ON(!dev_boot_phase);
3492
3493 net_random_init();
3494
3495 if (dev_proc_init())
3496 goto out;
3497
3498 if (netdev_sysfs_init())
3499 goto out;
3500
3501 INIT_LIST_HEAD(&ptype_all);
3502 for (i = 0; i < 16; i++)
3503 INIT_LIST_HEAD(&ptype_base[i]);
3504
3505 for (i = 0; i < ARRAY_SIZE(dev_name_head); i++)
3506 INIT_HLIST_HEAD(&dev_name_head[i]);
3507
3508 for (i = 0; i < ARRAY_SIZE(dev_index_head); i++)
3509 INIT_HLIST_HEAD(&dev_index_head[i]);
3510
3511 /*
3512 * Initialise the packet receive queues.
3513 */
3514
3515 for_each_possible_cpu(i) {
3516 struct softnet_data *queue;
3517
3518 queue = &per_cpu(softnet_data, i);
3519 skb_queue_head_init(&queue->input_pkt_queue);
3520 queue->completion_queue = NULL;
3521 INIT_LIST_HEAD(&queue->poll_list);
3522 set_bit(__LINK_STATE_START, &queue->backlog_dev.state);
3523 queue->backlog_dev.weight = weight_p;
3524 queue->backlog_dev.poll = process_backlog;
3525 atomic_set(&queue->backlog_dev.refcnt, 1);
3526 }
3527
3528 netdev_dma_register();
3529
3530 dev_boot_phase = 0;
3531
3532 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
3533 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
3534
3535 hotcpu_notifier(dev_cpu_callback, 0);
3536 dst_init();
3537 dev_mcast_init();
3538 rc = 0;
3539 out:
3540 return rc;
3541 }
3542
3543 subsys_initcall(net_dev_init);
3544
3545 EXPORT_SYMBOL(__dev_get_by_index);
3546 EXPORT_SYMBOL(__dev_get_by_name);
3547 EXPORT_SYMBOL(__dev_remove_pack);
3548 EXPORT_SYMBOL(dev_valid_name);
3549 EXPORT_SYMBOL(dev_add_pack);
3550 EXPORT_SYMBOL(dev_alloc_name);
3551 EXPORT_SYMBOL(dev_close);
3552 EXPORT_SYMBOL(dev_get_by_flags);
3553 EXPORT_SYMBOL(dev_get_by_index);
3554 EXPORT_SYMBOL(dev_get_by_name);
3555 EXPORT_SYMBOL(dev_open);
3556 EXPORT_SYMBOL(dev_queue_xmit);
3557 EXPORT_SYMBOL(dev_remove_pack);
3558 EXPORT_SYMBOL(dev_set_allmulti);
3559 EXPORT_SYMBOL(dev_set_promiscuity);
3560 EXPORT_SYMBOL(dev_change_flags);
3561 EXPORT_SYMBOL(dev_set_mtu);
3562 EXPORT_SYMBOL(dev_set_mac_address);
3563 EXPORT_SYMBOL(free_netdev);
3564 EXPORT_SYMBOL(netdev_boot_setup_check);
3565 EXPORT_SYMBOL(netdev_set_master);
3566 EXPORT_SYMBOL(netdev_state_change);
3567 EXPORT_SYMBOL(netif_receive_skb);
3568 EXPORT_SYMBOL(netif_rx);
3569 EXPORT_SYMBOL(register_gifconf);
3570 EXPORT_SYMBOL(register_netdevice);
3571 EXPORT_SYMBOL(register_netdevice_notifier);
3572 EXPORT_SYMBOL(skb_checksum_help);
3573 EXPORT_SYMBOL(synchronize_net);
3574 EXPORT_SYMBOL(unregister_netdevice);
3575 EXPORT_SYMBOL(unregister_netdevice_notifier);
3576 EXPORT_SYMBOL(net_enable_timestamp);
3577 EXPORT_SYMBOL(net_disable_timestamp);
3578 EXPORT_SYMBOL(dev_get_flags);
3579
3580 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
3581 EXPORT_SYMBOL(br_handle_frame_hook);
3582 EXPORT_SYMBOL(br_fdb_get_hook);
3583 EXPORT_SYMBOL(br_fdb_put_hook);
3584 #endif
3585
3586 #ifdef CONFIG_KMOD
3587 EXPORT_SYMBOL(dev_load);
3588 #endif
3589
3590 EXPORT_PER_CPU_SYMBOL(softnet_data);