]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/dev.c
Merge tag 'tty-3.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135 #include <linux/errqueue.h>
136
137 #include "net-sysfs.h"
138
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144
145 static DEFINE_SPINLOCK(ptype_lock);
146 static DEFINE_SPINLOCK(offload_lock);
147 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
148 struct list_head ptype_all __read_mostly; /* Taps */
149 static struct list_head offload_base __read_mostly;
150
151 static int netif_rx_internal(struct sk_buff *skb);
152 static int call_netdevice_notifiers_info(unsigned long val,
153 struct net_device *dev,
154 struct netdev_notifier_info *info);
155
156 /*
157 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
158 * semaphore.
159 *
160 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
161 *
162 * Writers must hold the rtnl semaphore while they loop through the
163 * dev_base_head list, and hold dev_base_lock for writing when they do the
164 * actual updates. This allows pure readers to access the list even
165 * while a writer is preparing to update it.
166 *
167 * To put it another way, dev_base_lock is held for writing only to
168 * protect against pure readers; the rtnl semaphore provides the
169 * protection against other writers.
170 *
171 * See, for example usages, register_netdevice() and
172 * unregister_netdevice(), which must be called with the rtnl
173 * semaphore held.
174 */
175 DEFINE_RWLOCK(dev_base_lock);
176 EXPORT_SYMBOL(dev_base_lock);
177
178 /* protects napi_hash addition/deletion and napi_gen_id */
179 static DEFINE_SPINLOCK(napi_hash_lock);
180
181 static unsigned int napi_gen_id;
182 static DEFINE_HASHTABLE(napi_hash, 8);
183
184 static seqcount_t devnet_rename_seq;
185
186 static inline void dev_base_seq_inc(struct net *net)
187 {
188 while (++net->dev_base_seq == 0);
189 }
190
191 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
192 {
193 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
194
195 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
196 }
197
198 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
199 {
200 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
201 }
202
203 static inline void rps_lock(struct softnet_data *sd)
204 {
205 #ifdef CONFIG_RPS
206 spin_lock(&sd->input_pkt_queue.lock);
207 #endif
208 }
209
210 static inline void rps_unlock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213 spin_unlock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 /* Device list insertion */
218 static void list_netdevice(struct net_device *dev)
219 {
220 struct net *net = dev_net(dev);
221
222 ASSERT_RTNL();
223
224 write_lock_bh(&dev_base_lock);
225 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
226 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
227 hlist_add_head_rcu(&dev->index_hlist,
228 dev_index_hash(net, dev->ifindex));
229 write_unlock_bh(&dev_base_lock);
230
231 dev_base_seq_inc(net);
232 }
233
234 /* Device list removal
235 * caller must respect a RCU grace period before freeing/reusing dev
236 */
237 static void unlist_netdevice(struct net_device *dev)
238 {
239 ASSERT_RTNL();
240
241 /* Unlink dev from the device chain */
242 write_lock_bh(&dev_base_lock);
243 list_del_rcu(&dev->dev_list);
244 hlist_del_rcu(&dev->name_hlist);
245 hlist_del_rcu(&dev->index_hlist);
246 write_unlock_bh(&dev_base_lock);
247
248 dev_base_seq_inc(dev_net(dev));
249 }
250
251 /*
252 * Our notifier list
253 */
254
255 static RAW_NOTIFIER_HEAD(netdev_chain);
256
257 /*
258 * Device drivers call our routines to queue packets here. We empty the
259 * queue in the local softnet handler.
260 */
261
262 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
263 EXPORT_PER_CPU_SYMBOL(softnet_data);
264
265 #ifdef CONFIG_LOCKDEP
266 /*
267 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
268 * according to dev->type
269 */
270 static const unsigned short netdev_lock_type[] =
271 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
283 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
284 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
285 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
286
287 static const char *const netdev_lock_name[] =
288 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
300 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
301 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
302 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
303
304 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
305 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
306
307 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
308 {
309 int i;
310
311 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312 if (netdev_lock_type[i] == dev_type)
313 return i;
314 /* the last key is used by default */
315 return ARRAY_SIZE(netdev_lock_type) - 1;
316 }
317
318 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319 unsigned short dev_type)
320 {
321 int i;
322
323 i = netdev_lock_pos(dev_type);
324 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325 netdev_lock_name[i]);
326 }
327
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 int i;
331
332 i = netdev_lock_pos(dev->type);
333 lockdep_set_class_and_name(&dev->addr_list_lock,
334 &netdev_addr_lock_key[i],
335 netdev_lock_name[i]);
336 }
337 #else
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340 {
341 }
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 }
345 #endif
346
347 /*******************************************************************************
348
349 Protocol management and registration routines
350
351 *******************************************************************************/
352
353 /*
354 * Add a protocol ID to the list. Now that the input handler is
355 * smarter we can dispense with all the messy stuff that used to be
356 * here.
357 *
358 * BEWARE!!! Protocol handlers, mangling input packets,
359 * MUST BE last in hash buckets and checking protocol handlers
360 * MUST start from promiscuous ptype_all chain in net_bh.
361 * It is true now, do not change it.
362 * Explanation follows: if protocol handler, mangling packet, will
363 * be the first on list, it is not able to sense, that packet
364 * is cloned and should be copied-on-write, so that it will
365 * change it and subsequent readers will get broken packet.
366 * --ANK (980803)
367 */
368
369 static inline struct list_head *ptype_head(const struct packet_type *pt)
370 {
371 if (pt->type == htons(ETH_P_ALL))
372 return &ptype_all;
373 else
374 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
375 }
376
377 /**
378 * dev_add_pack - add packet handler
379 * @pt: packet type declaration
380 *
381 * Add a protocol handler to the networking stack. The passed &packet_type
382 * is linked into kernel lists and may not be freed until it has been
383 * removed from the kernel lists.
384 *
385 * This call does not sleep therefore it can not
386 * guarantee all CPU's that are in middle of receiving packets
387 * will see the new packet type (until the next received packet).
388 */
389
390 void dev_add_pack(struct packet_type *pt)
391 {
392 struct list_head *head = ptype_head(pt);
393
394 spin_lock(&ptype_lock);
395 list_add_rcu(&pt->list, head);
396 spin_unlock(&ptype_lock);
397 }
398 EXPORT_SYMBOL(dev_add_pack);
399
400 /**
401 * __dev_remove_pack - remove packet handler
402 * @pt: packet type declaration
403 *
404 * Remove a protocol handler that was previously added to the kernel
405 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
406 * from the kernel lists and can be freed or reused once this function
407 * returns.
408 *
409 * The packet type might still be in use by receivers
410 * and must not be freed until after all the CPU's have gone
411 * through a quiescent state.
412 */
413 void __dev_remove_pack(struct packet_type *pt)
414 {
415 struct list_head *head = ptype_head(pt);
416 struct packet_type *pt1;
417
418 spin_lock(&ptype_lock);
419
420 list_for_each_entry(pt1, head, list) {
421 if (pt == pt1) {
422 list_del_rcu(&pt->list);
423 goto out;
424 }
425 }
426
427 pr_warn("dev_remove_pack: %p not found\n", pt);
428 out:
429 spin_unlock(&ptype_lock);
430 }
431 EXPORT_SYMBOL(__dev_remove_pack);
432
433 /**
434 * dev_remove_pack - remove packet handler
435 * @pt: packet type declaration
436 *
437 * Remove a protocol handler that was previously added to the kernel
438 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
439 * from the kernel lists and can be freed or reused once this function
440 * returns.
441 *
442 * This call sleeps to guarantee that no CPU is looking at the packet
443 * type after return.
444 */
445 void dev_remove_pack(struct packet_type *pt)
446 {
447 __dev_remove_pack(pt);
448
449 synchronize_net();
450 }
451 EXPORT_SYMBOL(dev_remove_pack);
452
453
454 /**
455 * dev_add_offload - register offload handlers
456 * @po: protocol offload declaration
457 *
458 * Add protocol offload handlers to the networking stack. The passed
459 * &proto_offload is linked into kernel lists and may not be freed until
460 * it has been removed from the kernel lists.
461 *
462 * This call does not sleep therefore it can not
463 * guarantee all CPU's that are in middle of receiving packets
464 * will see the new offload handlers (until the next received packet).
465 */
466 void dev_add_offload(struct packet_offload *po)
467 {
468 struct list_head *head = &offload_base;
469
470 spin_lock(&offload_lock);
471 list_add_rcu(&po->list, head);
472 spin_unlock(&offload_lock);
473 }
474 EXPORT_SYMBOL(dev_add_offload);
475
476 /**
477 * __dev_remove_offload - remove offload handler
478 * @po: packet offload declaration
479 *
480 * Remove a protocol offload handler that was previously added to the
481 * kernel offload handlers by dev_add_offload(). The passed &offload_type
482 * is removed from the kernel lists and can be freed or reused once this
483 * function returns.
484 *
485 * The packet type might still be in use by receivers
486 * and must not be freed until after all the CPU's have gone
487 * through a quiescent state.
488 */
489 static void __dev_remove_offload(struct packet_offload *po)
490 {
491 struct list_head *head = &offload_base;
492 struct packet_offload *po1;
493
494 spin_lock(&offload_lock);
495
496 list_for_each_entry(po1, head, list) {
497 if (po == po1) {
498 list_del_rcu(&po->list);
499 goto out;
500 }
501 }
502
503 pr_warn("dev_remove_offload: %p not found\n", po);
504 out:
505 spin_unlock(&offload_lock);
506 }
507
508 /**
509 * dev_remove_offload - remove packet offload handler
510 * @po: packet offload declaration
511 *
512 * Remove a packet offload handler that was previously added to the kernel
513 * offload handlers by dev_add_offload(). The passed &offload_type is
514 * removed from the kernel lists and can be freed or reused once this
515 * function returns.
516 *
517 * This call sleeps to guarantee that no CPU is looking at the packet
518 * type after return.
519 */
520 void dev_remove_offload(struct packet_offload *po)
521 {
522 __dev_remove_offload(po);
523
524 synchronize_net();
525 }
526 EXPORT_SYMBOL(dev_remove_offload);
527
528 /******************************************************************************
529
530 Device Boot-time Settings Routines
531
532 *******************************************************************************/
533
534 /* Boot time configuration table */
535 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
536
537 /**
538 * netdev_boot_setup_add - add new setup entry
539 * @name: name of the device
540 * @map: configured settings for the device
541 *
542 * Adds new setup entry to the dev_boot_setup list. The function
543 * returns 0 on error and 1 on success. This is a generic routine to
544 * all netdevices.
545 */
546 static int netdev_boot_setup_add(char *name, struct ifmap *map)
547 {
548 struct netdev_boot_setup *s;
549 int i;
550
551 s = dev_boot_setup;
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
553 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
554 memset(s[i].name, 0, sizeof(s[i].name));
555 strlcpy(s[i].name, name, IFNAMSIZ);
556 memcpy(&s[i].map, map, sizeof(s[i].map));
557 break;
558 }
559 }
560
561 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
562 }
563
564 /**
565 * netdev_boot_setup_check - check boot time settings
566 * @dev: the netdevice
567 *
568 * Check boot time settings for the device.
569 * The found settings are set for the device to be used
570 * later in the device probing.
571 * Returns 0 if no settings found, 1 if they are.
572 */
573 int netdev_boot_setup_check(struct net_device *dev)
574 {
575 struct netdev_boot_setup *s = dev_boot_setup;
576 int i;
577
578 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
579 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
580 !strcmp(dev->name, s[i].name)) {
581 dev->irq = s[i].map.irq;
582 dev->base_addr = s[i].map.base_addr;
583 dev->mem_start = s[i].map.mem_start;
584 dev->mem_end = s[i].map.mem_end;
585 return 1;
586 }
587 }
588 return 0;
589 }
590 EXPORT_SYMBOL(netdev_boot_setup_check);
591
592
593 /**
594 * netdev_boot_base - get address from boot time settings
595 * @prefix: prefix for network device
596 * @unit: id for network device
597 *
598 * Check boot time settings for the base address of device.
599 * The found settings are set for the device to be used
600 * later in the device probing.
601 * Returns 0 if no settings found.
602 */
603 unsigned long netdev_boot_base(const char *prefix, int unit)
604 {
605 const struct netdev_boot_setup *s = dev_boot_setup;
606 char name[IFNAMSIZ];
607 int i;
608
609 sprintf(name, "%s%d", prefix, unit);
610
611 /*
612 * If device already registered then return base of 1
613 * to indicate not to probe for this interface
614 */
615 if (__dev_get_by_name(&init_net, name))
616 return 1;
617
618 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
619 if (!strcmp(name, s[i].name))
620 return s[i].map.base_addr;
621 return 0;
622 }
623
624 /*
625 * Saves at boot time configured settings for any netdevice.
626 */
627 int __init netdev_boot_setup(char *str)
628 {
629 int ints[5];
630 struct ifmap map;
631
632 str = get_options(str, ARRAY_SIZE(ints), ints);
633 if (!str || !*str)
634 return 0;
635
636 /* Save settings */
637 memset(&map, 0, sizeof(map));
638 if (ints[0] > 0)
639 map.irq = ints[1];
640 if (ints[0] > 1)
641 map.base_addr = ints[2];
642 if (ints[0] > 2)
643 map.mem_start = ints[3];
644 if (ints[0] > 3)
645 map.mem_end = ints[4];
646
647 /* Add new entry to the list */
648 return netdev_boot_setup_add(str, &map);
649 }
650
651 __setup("netdev=", netdev_boot_setup);
652
653 /*******************************************************************************
654
655 Device Interface Subroutines
656
657 *******************************************************************************/
658
659 /**
660 * __dev_get_by_name - find a device by its name
661 * @net: the applicable net namespace
662 * @name: name to find
663 *
664 * Find an interface by name. Must be called under RTNL semaphore
665 * or @dev_base_lock. If the name is found a pointer to the device
666 * is returned. If the name is not found then %NULL is returned. The
667 * reference counters are not incremented so the caller must be
668 * careful with locks.
669 */
670
671 struct net_device *__dev_get_by_name(struct net *net, const char *name)
672 {
673 struct net_device *dev;
674 struct hlist_head *head = dev_name_hash(net, name);
675
676 hlist_for_each_entry(dev, head, name_hlist)
677 if (!strncmp(dev->name, name, IFNAMSIZ))
678 return dev;
679
680 return NULL;
681 }
682 EXPORT_SYMBOL(__dev_get_by_name);
683
684 /**
685 * dev_get_by_name_rcu - find a device by its name
686 * @net: the applicable net namespace
687 * @name: name to find
688 *
689 * Find an interface by name.
690 * If the name is found a pointer to the device is returned.
691 * If the name is not found then %NULL is returned.
692 * The reference counters are not incremented so the caller must be
693 * careful with locks. The caller must hold RCU lock.
694 */
695
696 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
697 {
698 struct net_device *dev;
699 struct hlist_head *head = dev_name_hash(net, name);
700
701 hlist_for_each_entry_rcu(dev, head, name_hlist)
702 if (!strncmp(dev->name, name, IFNAMSIZ))
703 return dev;
704
705 return NULL;
706 }
707 EXPORT_SYMBOL(dev_get_by_name_rcu);
708
709 /**
710 * dev_get_by_name - find a device by its name
711 * @net: the applicable net namespace
712 * @name: name to find
713 *
714 * Find an interface by name. This can be called from any
715 * context and does its own locking. The returned handle has
716 * the usage count incremented and the caller must use dev_put() to
717 * release it when it is no longer needed. %NULL is returned if no
718 * matching device is found.
719 */
720
721 struct net_device *dev_get_by_name(struct net *net, const char *name)
722 {
723 struct net_device *dev;
724
725 rcu_read_lock();
726 dev = dev_get_by_name_rcu(net, name);
727 if (dev)
728 dev_hold(dev);
729 rcu_read_unlock();
730 return dev;
731 }
732 EXPORT_SYMBOL(dev_get_by_name);
733
734 /**
735 * __dev_get_by_index - find a device by its ifindex
736 * @net: the applicable net namespace
737 * @ifindex: index of device
738 *
739 * Search for an interface by index. Returns %NULL if the device
740 * is not found or a pointer to the device. The device has not
741 * had its reference counter increased so the caller must be careful
742 * about locking. The caller must hold either the RTNL semaphore
743 * or @dev_base_lock.
744 */
745
746 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
747 {
748 struct net_device *dev;
749 struct hlist_head *head = dev_index_hash(net, ifindex);
750
751 hlist_for_each_entry(dev, head, index_hlist)
752 if (dev->ifindex == ifindex)
753 return dev;
754
755 return NULL;
756 }
757 EXPORT_SYMBOL(__dev_get_by_index);
758
759 /**
760 * dev_get_by_index_rcu - find a device by its ifindex
761 * @net: the applicable net namespace
762 * @ifindex: index of device
763 *
764 * Search for an interface by index. Returns %NULL if the device
765 * is not found or a pointer to the device. The device has not
766 * had its reference counter increased so the caller must be careful
767 * about locking. The caller must hold RCU lock.
768 */
769
770 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
771 {
772 struct net_device *dev;
773 struct hlist_head *head = dev_index_hash(net, ifindex);
774
775 hlist_for_each_entry_rcu(dev, head, index_hlist)
776 if (dev->ifindex == ifindex)
777 return dev;
778
779 return NULL;
780 }
781 EXPORT_SYMBOL(dev_get_by_index_rcu);
782
783
784 /**
785 * dev_get_by_index - find a device by its ifindex
786 * @net: the applicable net namespace
787 * @ifindex: index of device
788 *
789 * Search for an interface by index. Returns NULL if the device
790 * is not found or a pointer to the device. The device returned has
791 * had a reference added and the pointer is safe until the user calls
792 * dev_put to indicate they have finished with it.
793 */
794
795 struct net_device *dev_get_by_index(struct net *net, int ifindex)
796 {
797 struct net_device *dev;
798
799 rcu_read_lock();
800 dev = dev_get_by_index_rcu(net, ifindex);
801 if (dev)
802 dev_hold(dev);
803 rcu_read_unlock();
804 return dev;
805 }
806 EXPORT_SYMBOL(dev_get_by_index);
807
808 /**
809 * netdev_get_name - get a netdevice name, knowing its ifindex.
810 * @net: network namespace
811 * @name: a pointer to the buffer where the name will be stored.
812 * @ifindex: the ifindex of the interface to get the name from.
813 *
814 * The use of raw_seqcount_begin() and cond_resched() before
815 * retrying is required as we want to give the writers a chance
816 * to complete when CONFIG_PREEMPT is not set.
817 */
818 int netdev_get_name(struct net *net, char *name, int ifindex)
819 {
820 struct net_device *dev;
821 unsigned int seq;
822
823 retry:
824 seq = raw_seqcount_begin(&devnet_rename_seq);
825 rcu_read_lock();
826 dev = dev_get_by_index_rcu(net, ifindex);
827 if (!dev) {
828 rcu_read_unlock();
829 return -ENODEV;
830 }
831
832 strcpy(name, dev->name);
833 rcu_read_unlock();
834 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
835 cond_resched();
836 goto retry;
837 }
838
839 return 0;
840 }
841
842 /**
843 * dev_getbyhwaddr_rcu - find a device by its hardware address
844 * @net: the applicable net namespace
845 * @type: media type of device
846 * @ha: hardware address
847 *
848 * Search for an interface by MAC address. Returns NULL if the device
849 * is not found or a pointer to the device.
850 * The caller must hold RCU or RTNL.
851 * The returned device has not had its ref count increased
852 * and the caller must therefore be careful about locking
853 *
854 */
855
856 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
857 const char *ha)
858 {
859 struct net_device *dev;
860
861 for_each_netdev_rcu(net, dev)
862 if (dev->type == type &&
863 !memcmp(dev->dev_addr, ha, dev->addr_len))
864 return dev;
865
866 return NULL;
867 }
868 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
869
870 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
871 {
872 struct net_device *dev;
873
874 ASSERT_RTNL();
875 for_each_netdev(net, dev)
876 if (dev->type == type)
877 return dev;
878
879 return NULL;
880 }
881 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
882
883 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
884 {
885 struct net_device *dev, *ret = NULL;
886
887 rcu_read_lock();
888 for_each_netdev_rcu(net, dev)
889 if (dev->type == type) {
890 dev_hold(dev);
891 ret = dev;
892 break;
893 }
894 rcu_read_unlock();
895 return ret;
896 }
897 EXPORT_SYMBOL(dev_getfirstbyhwtype);
898
899 /**
900 * dev_get_by_flags_rcu - find any device with given flags
901 * @net: the applicable net namespace
902 * @if_flags: IFF_* values
903 * @mask: bitmask of bits in if_flags to check
904 *
905 * Search for any interface with the given flags. Returns NULL if a device
906 * is not found or a pointer to the device. Must be called inside
907 * rcu_read_lock(), and result refcount is unchanged.
908 */
909
910 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
911 unsigned short mask)
912 {
913 struct net_device *dev, *ret;
914
915 ret = NULL;
916 for_each_netdev_rcu(net, dev) {
917 if (((dev->flags ^ if_flags) & mask) == 0) {
918 ret = dev;
919 break;
920 }
921 }
922 return ret;
923 }
924 EXPORT_SYMBOL(dev_get_by_flags_rcu);
925
926 /**
927 * dev_valid_name - check if name is okay for network device
928 * @name: name string
929 *
930 * Network device names need to be valid file names to
931 * to allow sysfs to work. We also disallow any kind of
932 * whitespace.
933 */
934 bool dev_valid_name(const char *name)
935 {
936 if (*name == '\0')
937 return false;
938 if (strlen(name) >= IFNAMSIZ)
939 return false;
940 if (!strcmp(name, ".") || !strcmp(name, ".."))
941 return false;
942
943 while (*name) {
944 if (*name == '/' || isspace(*name))
945 return false;
946 name++;
947 }
948 return true;
949 }
950 EXPORT_SYMBOL(dev_valid_name);
951
952 /**
953 * __dev_alloc_name - allocate a name for a device
954 * @net: network namespace to allocate the device name in
955 * @name: name format string
956 * @buf: scratch buffer and result name string
957 *
958 * Passed a format string - eg "lt%d" it will try and find a suitable
959 * id. It scans list of devices to build up a free map, then chooses
960 * the first empty slot. The caller must hold the dev_base or rtnl lock
961 * while allocating the name and adding the device in order to avoid
962 * duplicates.
963 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
964 * Returns the number of the unit assigned or a negative errno code.
965 */
966
967 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
968 {
969 int i = 0;
970 const char *p;
971 const int max_netdevices = 8*PAGE_SIZE;
972 unsigned long *inuse;
973 struct net_device *d;
974
975 p = strnchr(name, IFNAMSIZ-1, '%');
976 if (p) {
977 /*
978 * Verify the string as this thing may have come from
979 * the user. There must be either one "%d" and no other "%"
980 * characters.
981 */
982 if (p[1] != 'd' || strchr(p + 2, '%'))
983 return -EINVAL;
984
985 /* Use one page as a bit array of possible slots */
986 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
987 if (!inuse)
988 return -ENOMEM;
989
990 for_each_netdev(net, d) {
991 if (!sscanf(d->name, name, &i))
992 continue;
993 if (i < 0 || i >= max_netdevices)
994 continue;
995
996 /* avoid cases where sscanf is not exact inverse of printf */
997 snprintf(buf, IFNAMSIZ, name, i);
998 if (!strncmp(buf, d->name, IFNAMSIZ))
999 set_bit(i, inuse);
1000 }
1001
1002 i = find_first_zero_bit(inuse, max_netdevices);
1003 free_page((unsigned long) inuse);
1004 }
1005
1006 if (buf != name)
1007 snprintf(buf, IFNAMSIZ, name, i);
1008 if (!__dev_get_by_name(net, buf))
1009 return i;
1010
1011 /* It is possible to run out of possible slots
1012 * when the name is long and there isn't enough space left
1013 * for the digits, or if all bits are used.
1014 */
1015 return -ENFILE;
1016 }
1017
1018 /**
1019 * dev_alloc_name - allocate a name for a device
1020 * @dev: device
1021 * @name: name format string
1022 *
1023 * Passed a format string - eg "lt%d" it will try and find a suitable
1024 * id. It scans list of devices to build up a free map, then chooses
1025 * the first empty slot. The caller must hold the dev_base or rtnl lock
1026 * while allocating the name and adding the device in order to avoid
1027 * duplicates.
1028 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1029 * Returns the number of the unit assigned or a negative errno code.
1030 */
1031
1032 int dev_alloc_name(struct net_device *dev, const char *name)
1033 {
1034 char buf[IFNAMSIZ];
1035 struct net *net;
1036 int ret;
1037
1038 BUG_ON(!dev_net(dev));
1039 net = dev_net(dev);
1040 ret = __dev_alloc_name(net, name, buf);
1041 if (ret >= 0)
1042 strlcpy(dev->name, buf, IFNAMSIZ);
1043 return ret;
1044 }
1045 EXPORT_SYMBOL(dev_alloc_name);
1046
1047 static int dev_alloc_name_ns(struct net *net,
1048 struct net_device *dev,
1049 const char *name)
1050 {
1051 char buf[IFNAMSIZ];
1052 int ret;
1053
1054 ret = __dev_alloc_name(net, name, buf);
1055 if (ret >= 0)
1056 strlcpy(dev->name, buf, IFNAMSIZ);
1057 return ret;
1058 }
1059
1060 static int dev_get_valid_name(struct net *net,
1061 struct net_device *dev,
1062 const char *name)
1063 {
1064 BUG_ON(!net);
1065
1066 if (!dev_valid_name(name))
1067 return -EINVAL;
1068
1069 if (strchr(name, '%'))
1070 return dev_alloc_name_ns(net, dev, name);
1071 else if (__dev_get_by_name(net, name))
1072 return -EEXIST;
1073 else if (dev->name != name)
1074 strlcpy(dev->name, name, IFNAMSIZ);
1075
1076 return 0;
1077 }
1078
1079 /**
1080 * dev_change_name - change name of a device
1081 * @dev: device
1082 * @newname: name (or format string) must be at least IFNAMSIZ
1083 *
1084 * Change name of a device, can pass format strings "eth%d".
1085 * for wildcarding.
1086 */
1087 int dev_change_name(struct net_device *dev, const char *newname)
1088 {
1089 unsigned char old_assign_type;
1090 char oldname[IFNAMSIZ];
1091 int err = 0;
1092 int ret;
1093 struct net *net;
1094
1095 ASSERT_RTNL();
1096 BUG_ON(!dev_net(dev));
1097
1098 net = dev_net(dev);
1099 if (dev->flags & IFF_UP)
1100 return -EBUSY;
1101
1102 write_seqcount_begin(&devnet_rename_seq);
1103
1104 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1105 write_seqcount_end(&devnet_rename_seq);
1106 return 0;
1107 }
1108
1109 memcpy(oldname, dev->name, IFNAMSIZ);
1110
1111 err = dev_get_valid_name(net, dev, newname);
1112 if (err < 0) {
1113 write_seqcount_end(&devnet_rename_seq);
1114 return err;
1115 }
1116
1117 if (oldname[0] && !strchr(oldname, '%'))
1118 netdev_info(dev, "renamed from %s\n", oldname);
1119
1120 old_assign_type = dev->name_assign_type;
1121 dev->name_assign_type = NET_NAME_RENAMED;
1122
1123 rollback:
1124 ret = device_rename(&dev->dev, dev->name);
1125 if (ret) {
1126 memcpy(dev->name, oldname, IFNAMSIZ);
1127 dev->name_assign_type = old_assign_type;
1128 write_seqcount_end(&devnet_rename_seq);
1129 return ret;
1130 }
1131
1132 write_seqcount_end(&devnet_rename_seq);
1133
1134 netdev_adjacent_rename_links(dev, oldname);
1135
1136 write_lock_bh(&dev_base_lock);
1137 hlist_del_rcu(&dev->name_hlist);
1138 write_unlock_bh(&dev_base_lock);
1139
1140 synchronize_rcu();
1141
1142 write_lock_bh(&dev_base_lock);
1143 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1144 write_unlock_bh(&dev_base_lock);
1145
1146 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1147 ret = notifier_to_errno(ret);
1148
1149 if (ret) {
1150 /* err >= 0 after dev_alloc_name() or stores the first errno */
1151 if (err >= 0) {
1152 err = ret;
1153 write_seqcount_begin(&devnet_rename_seq);
1154 memcpy(dev->name, oldname, IFNAMSIZ);
1155 memcpy(oldname, newname, IFNAMSIZ);
1156 dev->name_assign_type = old_assign_type;
1157 old_assign_type = NET_NAME_RENAMED;
1158 goto rollback;
1159 } else {
1160 pr_err("%s: name change rollback failed: %d\n",
1161 dev->name, ret);
1162 }
1163 }
1164
1165 return err;
1166 }
1167
1168 /**
1169 * dev_set_alias - change ifalias of a device
1170 * @dev: device
1171 * @alias: name up to IFALIASZ
1172 * @len: limit of bytes to copy from info
1173 *
1174 * Set ifalias for a device,
1175 */
1176 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1177 {
1178 char *new_ifalias;
1179
1180 ASSERT_RTNL();
1181
1182 if (len >= IFALIASZ)
1183 return -EINVAL;
1184
1185 if (!len) {
1186 kfree(dev->ifalias);
1187 dev->ifalias = NULL;
1188 return 0;
1189 }
1190
1191 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1192 if (!new_ifalias)
1193 return -ENOMEM;
1194 dev->ifalias = new_ifalias;
1195
1196 strlcpy(dev->ifalias, alias, len+1);
1197 return len;
1198 }
1199
1200
1201 /**
1202 * netdev_features_change - device changes features
1203 * @dev: device to cause notification
1204 *
1205 * Called to indicate a device has changed features.
1206 */
1207 void netdev_features_change(struct net_device *dev)
1208 {
1209 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1210 }
1211 EXPORT_SYMBOL(netdev_features_change);
1212
1213 /**
1214 * netdev_state_change - device changes state
1215 * @dev: device to cause notification
1216 *
1217 * Called to indicate a device has changed state. This function calls
1218 * the notifier chains for netdev_chain and sends a NEWLINK message
1219 * to the routing socket.
1220 */
1221 void netdev_state_change(struct net_device *dev)
1222 {
1223 if (dev->flags & IFF_UP) {
1224 struct netdev_notifier_change_info change_info;
1225
1226 change_info.flags_changed = 0;
1227 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1228 &change_info.info);
1229 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1230 }
1231 }
1232 EXPORT_SYMBOL(netdev_state_change);
1233
1234 /**
1235 * netdev_notify_peers - notify network peers about existence of @dev
1236 * @dev: network device
1237 *
1238 * Generate traffic such that interested network peers are aware of
1239 * @dev, such as by generating a gratuitous ARP. This may be used when
1240 * a device wants to inform the rest of the network about some sort of
1241 * reconfiguration such as a failover event or virtual machine
1242 * migration.
1243 */
1244 void netdev_notify_peers(struct net_device *dev)
1245 {
1246 rtnl_lock();
1247 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1248 rtnl_unlock();
1249 }
1250 EXPORT_SYMBOL(netdev_notify_peers);
1251
1252 static int __dev_open(struct net_device *dev)
1253 {
1254 const struct net_device_ops *ops = dev->netdev_ops;
1255 int ret;
1256
1257 ASSERT_RTNL();
1258
1259 if (!netif_device_present(dev))
1260 return -ENODEV;
1261
1262 /* Block netpoll from trying to do any rx path servicing.
1263 * If we don't do this there is a chance ndo_poll_controller
1264 * or ndo_poll may be running while we open the device
1265 */
1266 netpoll_poll_disable(dev);
1267
1268 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1269 ret = notifier_to_errno(ret);
1270 if (ret)
1271 return ret;
1272
1273 set_bit(__LINK_STATE_START, &dev->state);
1274
1275 if (ops->ndo_validate_addr)
1276 ret = ops->ndo_validate_addr(dev);
1277
1278 if (!ret && ops->ndo_open)
1279 ret = ops->ndo_open(dev);
1280
1281 netpoll_poll_enable(dev);
1282
1283 if (ret)
1284 clear_bit(__LINK_STATE_START, &dev->state);
1285 else {
1286 dev->flags |= IFF_UP;
1287 dev_set_rx_mode(dev);
1288 dev_activate(dev);
1289 add_device_randomness(dev->dev_addr, dev->addr_len);
1290 }
1291
1292 return ret;
1293 }
1294
1295 /**
1296 * dev_open - prepare an interface for use.
1297 * @dev: device to open
1298 *
1299 * Takes a device from down to up state. The device's private open
1300 * function is invoked and then the multicast lists are loaded. Finally
1301 * the device is moved into the up state and a %NETDEV_UP message is
1302 * sent to the netdev notifier chain.
1303 *
1304 * Calling this function on an active interface is a nop. On a failure
1305 * a negative errno code is returned.
1306 */
1307 int dev_open(struct net_device *dev)
1308 {
1309 int ret;
1310
1311 if (dev->flags & IFF_UP)
1312 return 0;
1313
1314 ret = __dev_open(dev);
1315 if (ret < 0)
1316 return ret;
1317
1318 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1319 call_netdevice_notifiers(NETDEV_UP, dev);
1320
1321 return ret;
1322 }
1323 EXPORT_SYMBOL(dev_open);
1324
1325 static int __dev_close_many(struct list_head *head)
1326 {
1327 struct net_device *dev;
1328
1329 ASSERT_RTNL();
1330 might_sleep();
1331
1332 list_for_each_entry(dev, head, close_list) {
1333 /* Temporarily disable netpoll until the interface is down */
1334 netpoll_poll_disable(dev);
1335
1336 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1337
1338 clear_bit(__LINK_STATE_START, &dev->state);
1339
1340 /* Synchronize to scheduled poll. We cannot touch poll list, it
1341 * can be even on different cpu. So just clear netif_running().
1342 *
1343 * dev->stop() will invoke napi_disable() on all of it's
1344 * napi_struct instances on this device.
1345 */
1346 smp_mb__after_atomic(); /* Commit netif_running(). */
1347 }
1348
1349 dev_deactivate_many(head);
1350
1351 list_for_each_entry(dev, head, close_list) {
1352 const struct net_device_ops *ops = dev->netdev_ops;
1353
1354 /*
1355 * Call the device specific close. This cannot fail.
1356 * Only if device is UP
1357 *
1358 * We allow it to be called even after a DETACH hot-plug
1359 * event.
1360 */
1361 if (ops->ndo_stop)
1362 ops->ndo_stop(dev);
1363
1364 dev->flags &= ~IFF_UP;
1365 netpoll_poll_enable(dev);
1366 }
1367
1368 return 0;
1369 }
1370
1371 static int __dev_close(struct net_device *dev)
1372 {
1373 int retval;
1374 LIST_HEAD(single);
1375
1376 list_add(&dev->close_list, &single);
1377 retval = __dev_close_many(&single);
1378 list_del(&single);
1379
1380 return retval;
1381 }
1382
1383 static int dev_close_many(struct list_head *head)
1384 {
1385 struct net_device *dev, *tmp;
1386
1387 /* Remove the devices that don't need to be closed */
1388 list_for_each_entry_safe(dev, tmp, head, close_list)
1389 if (!(dev->flags & IFF_UP))
1390 list_del_init(&dev->close_list);
1391
1392 __dev_close_many(head);
1393
1394 list_for_each_entry_safe(dev, tmp, head, close_list) {
1395 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1396 call_netdevice_notifiers(NETDEV_DOWN, dev);
1397 list_del_init(&dev->close_list);
1398 }
1399
1400 return 0;
1401 }
1402
1403 /**
1404 * dev_close - shutdown an interface.
1405 * @dev: device to shutdown
1406 *
1407 * This function moves an active device into down state. A
1408 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1409 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1410 * chain.
1411 */
1412 int dev_close(struct net_device *dev)
1413 {
1414 if (dev->flags & IFF_UP) {
1415 LIST_HEAD(single);
1416
1417 list_add(&dev->close_list, &single);
1418 dev_close_many(&single);
1419 list_del(&single);
1420 }
1421 return 0;
1422 }
1423 EXPORT_SYMBOL(dev_close);
1424
1425
1426 /**
1427 * dev_disable_lro - disable Large Receive Offload on a device
1428 * @dev: device
1429 *
1430 * Disable Large Receive Offload (LRO) on a net device. Must be
1431 * called under RTNL. This is needed if received packets may be
1432 * forwarded to another interface.
1433 */
1434 void dev_disable_lro(struct net_device *dev)
1435 {
1436 /*
1437 * If we're trying to disable lro on a vlan device
1438 * use the underlying physical device instead
1439 */
1440 if (is_vlan_dev(dev))
1441 dev = vlan_dev_real_dev(dev);
1442
1443 /* the same for macvlan devices */
1444 if (netif_is_macvlan(dev))
1445 dev = macvlan_dev_real_dev(dev);
1446
1447 dev->wanted_features &= ~NETIF_F_LRO;
1448 netdev_update_features(dev);
1449
1450 if (unlikely(dev->features & NETIF_F_LRO))
1451 netdev_WARN(dev, "failed to disable LRO!\n");
1452 }
1453 EXPORT_SYMBOL(dev_disable_lro);
1454
1455 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1456 struct net_device *dev)
1457 {
1458 struct netdev_notifier_info info;
1459
1460 netdev_notifier_info_init(&info, dev);
1461 return nb->notifier_call(nb, val, &info);
1462 }
1463
1464 static int dev_boot_phase = 1;
1465
1466 /**
1467 * register_netdevice_notifier - register a network notifier block
1468 * @nb: notifier
1469 *
1470 * Register a notifier to be called when network device events occur.
1471 * The notifier passed is linked into the kernel structures and must
1472 * not be reused until it has been unregistered. A negative errno code
1473 * is returned on a failure.
1474 *
1475 * When registered all registration and up events are replayed
1476 * to the new notifier to allow device to have a race free
1477 * view of the network device list.
1478 */
1479
1480 int register_netdevice_notifier(struct notifier_block *nb)
1481 {
1482 struct net_device *dev;
1483 struct net_device *last;
1484 struct net *net;
1485 int err;
1486
1487 rtnl_lock();
1488 err = raw_notifier_chain_register(&netdev_chain, nb);
1489 if (err)
1490 goto unlock;
1491 if (dev_boot_phase)
1492 goto unlock;
1493 for_each_net(net) {
1494 for_each_netdev(net, dev) {
1495 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1496 err = notifier_to_errno(err);
1497 if (err)
1498 goto rollback;
1499
1500 if (!(dev->flags & IFF_UP))
1501 continue;
1502
1503 call_netdevice_notifier(nb, NETDEV_UP, dev);
1504 }
1505 }
1506
1507 unlock:
1508 rtnl_unlock();
1509 return err;
1510
1511 rollback:
1512 last = dev;
1513 for_each_net(net) {
1514 for_each_netdev(net, dev) {
1515 if (dev == last)
1516 goto outroll;
1517
1518 if (dev->flags & IFF_UP) {
1519 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1520 dev);
1521 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1522 }
1523 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1524 }
1525 }
1526
1527 outroll:
1528 raw_notifier_chain_unregister(&netdev_chain, nb);
1529 goto unlock;
1530 }
1531 EXPORT_SYMBOL(register_netdevice_notifier);
1532
1533 /**
1534 * unregister_netdevice_notifier - unregister a network notifier block
1535 * @nb: notifier
1536 *
1537 * Unregister a notifier previously registered by
1538 * register_netdevice_notifier(). The notifier is unlinked into the
1539 * kernel structures and may then be reused. A negative errno code
1540 * is returned on a failure.
1541 *
1542 * After unregistering unregister and down device events are synthesized
1543 * for all devices on the device list to the removed notifier to remove
1544 * the need for special case cleanup code.
1545 */
1546
1547 int unregister_netdevice_notifier(struct notifier_block *nb)
1548 {
1549 struct net_device *dev;
1550 struct net *net;
1551 int err;
1552
1553 rtnl_lock();
1554 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1555 if (err)
1556 goto unlock;
1557
1558 for_each_net(net) {
1559 for_each_netdev(net, dev) {
1560 if (dev->flags & IFF_UP) {
1561 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1562 dev);
1563 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1564 }
1565 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1566 }
1567 }
1568 unlock:
1569 rtnl_unlock();
1570 return err;
1571 }
1572 EXPORT_SYMBOL(unregister_netdevice_notifier);
1573
1574 /**
1575 * call_netdevice_notifiers_info - call all network notifier blocks
1576 * @val: value passed unmodified to notifier function
1577 * @dev: net_device pointer passed unmodified to notifier function
1578 * @info: notifier information data
1579 *
1580 * Call all network notifier blocks. Parameters and return value
1581 * are as for raw_notifier_call_chain().
1582 */
1583
1584 static int call_netdevice_notifiers_info(unsigned long val,
1585 struct net_device *dev,
1586 struct netdev_notifier_info *info)
1587 {
1588 ASSERT_RTNL();
1589 netdev_notifier_info_init(info, dev);
1590 return raw_notifier_call_chain(&netdev_chain, val, info);
1591 }
1592
1593 /**
1594 * call_netdevice_notifiers - call all network notifier blocks
1595 * @val: value passed unmodified to notifier function
1596 * @dev: net_device pointer passed unmodified to notifier function
1597 *
1598 * Call all network notifier blocks. Parameters and return value
1599 * are as for raw_notifier_call_chain().
1600 */
1601
1602 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1603 {
1604 struct netdev_notifier_info info;
1605
1606 return call_netdevice_notifiers_info(val, dev, &info);
1607 }
1608 EXPORT_SYMBOL(call_netdevice_notifiers);
1609
1610 static struct static_key netstamp_needed __read_mostly;
1611 #ifdef HAVE_JUMP_LABEL
1612 /* We are not allowed to call static_key_slow_dec() from irq context
1613 * If net_disable_timestamp() is called from irq context, defer the
1614 * static_key_slow_dec() calls.
1615 */
1616 static atomic_t netstamp_needed_deferred;
1617 #endif
1618
1619 void net_enable_timestamp(void)
1620 {
1621 #ifdef HAVE_JUMP_LABEL
1622 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1623
1624 if (deferred) {
1625 while (--deferred)
1626 static_key_slow_dec(&netstamp_needed);
1627 return;
1628 }
1629 #endif
1630 static_key_slow_inc(&netstamp_needed);
1631 }
1632 EXPORT_SYMBOL(net_enable_timestamp);
1633
1634 void net_disable_timestamp(void)
1635 {
1636 #ifdef HAVE_JUMP_LABEL
1637 if (in_interrupt()) {
1638 atomic_inc(&netstamp_needed_deferred);
1639 return;
1640 }
1641 #endif
1642 static_key_slow_dec(&netstamp_needed);
1643 }
1644 EXPORT_SYMBOL(net_disable_timestamp);
1645
1646 static inline void net_timestamp_set(struct sk_buff *skb)
1647 {
1648 skb->tstamp.tv64 = 0;
1649 if (static_key_false(&netstamp_needed))
1650 __net_timestamp(skb);
1651 }
1652
1653 #define net_timestamp_check(COND, SKB) \
1654 if (static_key_false(&netstamp_needed)) { \
1655 if ((COND) && !(SKB)->tstamp.tv64) \
1656 __net_timestamp(SKB); \
1657 } \
1658
1659 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1660 {
1661 unsigned int len;
1662
1663 if (!(dev->flags & IFF_UP))
1664 return false;
1665
1666 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1667 if (skb->len <= len)
1668 return true;
1669
1670 /* if TSO is enabled, we don't care about the length as the packet
1671 * could be forwarded without being segmented before
1672 */
1673 if (skb_is_gso(skb))
1674 return true;
1675
1676 return false;
1677 }
1678 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1679
1680 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1681 {
1682 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1683 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1684 atomic_long_inc(&dev->rx_dropped);
1685 kfree_skb(skb);
1686 return NET_RX_DROP;
1687 }
1688 }
1689
1690 if (unlikely(!is_skb_forwardable(dev, skb))) {
1691 atomic_long_inc(&dev->rx_dropped);
1692 kfree_skb(skb);
1693 return NET_RX_DROP;
1694 }
1695
1696 skb_scrub_packet(skb, true);
1697 skb->protocol = eth_type_trans(skb, dev);
1698
1699 return 0;
1700 }
1701 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1702
1703 /**
1704 * dev_forward_skb - loopback an skb to another netif
1705 *
1706 * @dev: destination network device
1707 * @skb: buffer to forward
1708 *
1709 * return values:
1710 * NET_RX_SUCCESS (no congestion)
1711 * NET_RX_DROP (packet was dropped, but freed)
1712 *
1713 * dev_forward_skb can be used for injecting an skb from the
1714 * start_xmit function of one device into the receive queue
1715 * of another device.
1716 *
1717 * The receiving device may be in another namespace, so
1718 * we have to clear all information in the skb that could
1719 * impact namespace isolation.
1720 */
1721 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1722 {
1723 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1724 }
1725 EXPORT_SYMBOL_GPL(dev_forward_skb);
1726
1727 static inline int deliver_skb(struct sk_buff *skb,
1728 struct packet_type *pt_prev,
1729 struct net_device *orig_dev)
1730 {
1731 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1732 return -ENOMEM;
1733 atomic_inc(&skb->users);
1734 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1735 }
1736
1737 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1738 {
1739 if (!ptype->af_packet_priv || !skb->sk)
1740 return false;
1741
1742 if (ptype->id_match)
1743 return ptype->id_match(ptype, skb->sk);
1744 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1745 return true;
1746
1747 return false;
1748 }
1749
1750 /*
1751 * Support routine. Sends outgoing frames to any network
1752 * taps currently in use.
1753 */
1754
1755 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1756 {
1757 struct packet_type *ptype;
1758 struct sk_buff *skb2 = NULL;
1759 struct packet_type *pt_prev = NULL;
1760
1761 rcu_read_lock();
1762 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1763 /* Never send packets back to the socket
1764 * they originated from - MvS (miquels@drinkel.ow.org)
1765 */
1766 if ((ptype->dev == dev || !ptype->dev) &&
1767 (!skb_loop_sk(ptype, skb))) {
1768 if (pt_prev) {
1769 deliver_skb(skb2, pt_prev, skb->dev);
1770 pt_prev = ptype;
1771 continue;
1772 }
1773
1774 skb2 = skb_clone(skb, GFP_ATOMIC);
1775 if (!skb2)
1776 break;
1777
1778 net_timestamp_set(skb2);
1779
1780 /* skb->nh should be correctly
1781 set by sender, so that the second statement is
1782 just protection against buggy protocols.
1783 */
1784 skb_reset_mac_header(skb2);
1785
1786 if (skb_network_header(skb2) < skb2->data ||
1787 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1788 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1789 ntohs(skb2->protocol),
1790 dev->name);
1791 skb_reset_network_header(skb2);
1792 }
1793
1794 skb2->transport_header = skb2->network_header;
1795 skb2->pkt_type = PACKET_OUTGOING;
1796 pt_prev = ptype;
1797 }
1798 }
1799 if (pt_prev)
1800 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1801 rcu_read_unlock();
1802 }
1803
1804 /**
1805 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1806 * @dev: Network device
1807 * @txq: number of queues available
1808 *
1809 * If real_num_tx_queues is changed the tc mappings may no longer be
1810 * valid. To resolve this verify the tc mapping remains valid and if
1811 * not NULL the mapping. With no priorities mapping to this
1812 * offset/count pair it will no longer be used. In the worst case TC0
1813 * is invalid nothing can be done so disable priority mappings. If is
1814 * expected that drivers will fix this mapping if they can before
1815 * calling netif_set_real_num_tx_queues.
1816 */
1817 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1818 {
1819 int i;
1820 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1821
1822 /* If TC0 is invalidated disable TC mapping */
1823 if (tc->offset + tc->count > txq) {
1824 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1825 dev->num_tc = 0;
1826 return;
1827 }
1828
1829 /* Invalidated prio to tc mappings set to TC0 */
1830 for (i = 1; i < TC_BITMASK + 1; i++) {
1831 int q = netdev_get_prio_tc_map(dev, i);
1832
1833 tc = &dev->tc_to_txq[q];
1834 if (tc->offset + tc->count > txq) {
1835 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1836 i, q);
1837 netdev_set_prio_tc_map(dev, i, 0);
1838 }
1839 }
1840 }
1841
1842 #ifdef CONFIG_XPS
1843 static DEFINE_MUTEX(xps_map_mutex);
1844 #define xmap_dereference(P) \
1845 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1846
1847 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1848 int cpu, u16 index)
1849 {
1850 struct xps_map *map = NULL;
1851 int pos;
1852
1853 if (dev_maps)
1854 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1855
1856 for (pos = 0; map && pos < map->len; pos++) {
1857 if (map->queues[pos] == index) {
1858 if (map->len > 1) {
1859 map->queues[pos] = map->queues[--map->len];
1860 } else {
1861 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1862 kfree_rcu(map, rcu);
1863 map = NULL;
1864 }
1865 break;
1866 }
1867 }
1868
1869 return map;
1870 }
1871
1872 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1873 {
1874 struct xps_dev_maps *dev_maps;
1875 int cpu, i;
1876 bool active = false;
1877
1878 mutex_lock(&xps_map_mutex);
1879 dev_maps = xmap_dereference(dev->xps_maps);
1880
1881 if (!dev_maps)
1882 goto out_no_maps;
1883
1884 for_each_possible_cpu(cpu) {
1885 for (i = index; i < dev->num_tx_queues; i++) {
1886 if (!remove_xps_queue(dev_maps, cpu, i))
1887 break;
1888 }
1889 if (i == dev->num_tx_queues)
1890 active = true;
1891 }
1892
1893 if (!active) {
1894 RCU_INIT_POINTER(dev->xps_maps, NULL);
1895 kfree_rcu(dev_maps, rcu);
1896 }
1897
1898 for (i = index; i < dev->num_tx_queues; i++)
1899 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1900 NUMA_NO_NODE);
1901
1902 out_no_maps:
1903 mutex_unlock(&xps_map_mutex);
1904 }
1905
1906 static struct xps_map *expand_xps_map(struct xps_map *map,
1907 int cpu, u16 index)
1908 {
1909 struct xps_map *new_map;
1910 int alloc_len = XPS_MIN_MAP_ALLOC;
1911 int i, pos;
1912
1913 for (pos = 0; map && pos < map->len; pos++) {
1914 if (map->queues[pos] != index)
1915 continue;
1916 return map;
1917 }
1918
1919 /* Need to add queue to this CPU's existing map */
1920 if (map) {
1921 if (pos < map->alloc_len)
1922 return map;
1923
1924 alloc_len = map->alloc_len * 2;
1925 }
1926
1927 /* Need to allocate new map to store queue on this CPU's map */
1928 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1929 cpu_to_node(cpu));
1930 if (!new_map)
1931 return NULL;
1932
1933 for (i = 0; i < pos; i++)
1934 new_map->queues[i] = map->queues[i];
1935 new_map->alloc_len = alloc_len;
1936 new_map->len = pos;
1937
1938 return new_map;
1939 }
1940
1941 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1942 u16 index)
1943 {
1944 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1945 struct xps_map *map, *new_map;
1946 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1947 int cpu, numa_node_id = -2;
1948 bool active = false;
1949
1950 mutex_lock(&xps_map_mutex);
1951
1952 dev_maps = xmap_dereference(dev->xps_maps);
1953
1954 /* allocate memory for queue storage */
1955 for_each_online_cpu(cpu) {
1956 if (!cpumask_test_cpu(cpu, mask))
1957 continue;
1958
1959 if (!new_dev_maps)
1960 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1961 if (!new_dev_maps) {
1962 mutex_unlock(&xps_map_mutex);
1963 return -ENOMEM;
1964 }
1965
1966 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1967 NULL;
1968
1969 map = expand_xps_map(map, cpu, index);
1970 if (!map)
1971 goto error;
1972
1973 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1974 }
1975
1976 if (!new_dev_maps)
1977 goto out_no_new_maps;
1978
1979 for_each_possible_cpu(cpu) {
1980 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1981 /* add queue to CPU maps */
1982 int pos = 0;
1983
1984 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1985 while ((pos < map->len) && (map->queues[pos] != index))
1986 pos++;
1987
1988 if (pos == map->len)
1989 map->queues[map->len++] = index;
1990 #ifdef CONFIG_NUMA
1991 if (numa_node_id == -2)
1992 numa_node_id = cpu_to_node(cpu);
1993 else if (numa_node_id != cpu_to_node(cpu))
1994 numa_node_id = -1;
1995 #endif
1996 } else if (dev_maps) {
1997 /* fill in the new device map from the old device map */
1998 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1999 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2000 }
2001
2002 }
2003
2004 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2005
2006 /* Cleanup old maps */
2007 if (dev_maps) {
2008 for_each_possible_cpu(cpu) {
2009 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2010 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2011 if (map && map != new_map)
2012 kfree_rcu(map, rcu);
2013 }
2014
2015 kfree_rcu(dev_maps, rcu);
2016 }
2017
2018 dev_maps = new_dev_maps;
2019 active = true;
2020
2021 out_no_new_maps:
2022 /* update Tx queue numa node */
2023 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2024 (numa_node_id >= 0) ? numa_node_id :
2025 NUMA_NO_NODE);
2026
2027 if (!dev_maps)
2028 goto out_no_maps;
2029
2030 /* removes queue from unused CPUs */
2031 for_each_possible_cpu(cpu) {
2032 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2033 continue;
2034
2035 if (remove_xps_queue(dev_maps, cpu, index))
2036 active = true;
2037 }
2038
2039 /* free map if not active */
2040 if (!active) {
2041 RCU_INIT_POINTER(dev->xps_maps, NULL);
2042 kfree_rcu(dev_maps, rcu);
2043 }
2044
2045 out_no_maps:
2046 mutex_unlock(&xps_map_mutex);
2047
2048 return 0;
2049 error:
2050 /* remove any maps that we added */
2051 for_each_possible_cpu(cpu) {
2052 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2053 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2054 NULL;
2055 if (new_map && new_map != map)
2056 kfree(new_map);
2057 }
2058
2059 mutex_unlock(&xps_map_mutex);
2060
2061 kfree(new_dev_maps);
2062 return -ENOMEM;
2063 }
2064 EXPORT_SYMBOL(netif_set_xps_queue);
2065
2066 #endif
2067 /*
2068 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2069 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2070 */
2071 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2072 {
2073 int rc;
2074
2075 if (txq < 1 || txq > dev->num_tx_queues)
2076 return -EINVAL;
2077
2078 if (dev->reg_state == NETREG_REGISTERED ||
2079 dev->reg_state == NETREG_UNREGISTERING) {
2080 ASSERT_RTNL();
2081
2082 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2083 txq);
2084 if (rc)
2085 return rc;
2086
2087 if (dev->num_tc)
2088 netif_setup_tc(dev, txq);
2089
2090 if (txq < dev->real_num_tx_queues) {
2091 qdisc_reset_all_tx_gt(dev, txq);
2092 #ifdef CONFIG_XPS
2093 netif_reset_xps_queues_gt(dev, txq);
2094 #endif
2095 }
2096 }
2097
2098 dev->real_num_tx_queues = txq;
2099 return 0;
2100 }
2101 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2102
2103 #ifdef CONFIG_SYSFS
2104 /**
2105 * netif_set_real_num_rx_queues - set actual number of RX queues used
2106 * @dev: Network device
2107 * @rxq: Actual number of RX queues
2108 *
2109 * This must be called either with the rtnl_lock held or before
2110 * registration of the net device. Returns 0 on success, or a
2111 * negative error code. If called before registration, it always
2112 * succeeds.
2113 */
2114 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2115 {
2116 int rc;
2117
2118 if (rxq < 1 || rxq > dev->num_rx_queues)
2119 return -EINVAL;
2120
2121 if (dev->reg_state == NETREG_REGISTERED) {
2122 ASSERT_RTNL();
2123
2124 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2125 rxq);
2126 if (rc)
2127 return rc;
2128 }
2129
2130 dev->real_num_rx_queues = rxq;
2131 return 0;
2132 }
2133 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2134 #endif
2135
2136 /**
2137 * netif_get_num_default_rss_queues - default number of RSS queues
2138 *
2139 * This routine should set an upper limit on the number of RSS queues
2140 * used by default by multiqueue devices.
2141 */
2142 int netif_get_num_default_rss_queues(void)
2143 {
2144 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2145 }
2146 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2147
2148 static inline void __netif_reschedule(struct Qdisc *q)
2149 {
2150 struct softnet_data *sd;
2151 unsigned long flags;
2152
2153 local_irq_save(flags);
2154 sd = &__get_cpu_var(softnet_data);
2155 q->next_sched = NULL;
2156 *sd->output_queue_tailp = q;
2157 sd->output_queue_tailp = &q->next_sched;
2158 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2159 local_irq_restore(flags);
2160 }
2161
2162 void __netif_schedule(struct Qdisc *q)
2163 {
2164 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2165 __netif_reschedule(q);
2166 }
2167 EXPORT_SYMBOL(__netif_schedule);
2168
2169 struct dev_kfree_skb_cb {
2170 enum skb_free_reason reason;
2171 };
2172
2173 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2174 {
2175 return (struct dev_kfree_skb_cb *)skb->cb;
2176 }
2177
2178 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2179 {
2180 unsigned long flags;
2181
2182 if (likely(atomic_read(&skb->users) == 1)) {
2183 smp_rmb();
2184 atomic_set(&skb->users, 0);
2185 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2186 return;
2187 }
2188 get_kfree_skb_cb(skb)->reason = reason;
2189 local_irq_save(flags);
2190 skb->next = __this_cpu_read(softnet_data.completion_queue);
2191 __this_cpu_write(softnet_data.completion_queue, skb);
2192 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2193 local_irq_restore(flags);
2194 }
2195 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2196
2197 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2198 {
2199 if (in_irq() || irqs_disabled())
2200 __dev_kfree_skb_irq(skb, reason);
2201 else
2202 dev_kfree_skb(skb);
2203 }
2204 EXPORT_SYMBOL(__dev_kfree_skb_any);
2205
2206
2207 /**
2208 * netif_device_detach - mark device as removed
2209 * @dev: network device
2210 *
2211 * Mark device as removed from system and therefore no longer available.
2212 */
2213 void netif_device_detach(struct net_device *dev)
2214 {
2215 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2216 netif_running(dev)) {
2217 netif_tx_stop_all_queues(dev);
2218 }
2219 }
2220 EXPORT_SYMBOL(netif_device_detach);
2221
2222 /**
2223 * netif_device_attach - mark device as attached
2224 * @dev: network device
2225 *
2226 * Mark device as attached from system and restart if needed.
2227 */
2228 void netif_device_attach(struct net_device *dev)
2229 {
2230 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2231 netif_running(dev)) {
2232 netif_tx_wake_all_queues(dev);
2233 __netdev_watchdog_up(dev);
2234 }
2235 }
2236 EXPORT_SYMBOL(netif_device_attach);
2237
2238 static void skb_warn_bad_offload(const struct sk_buff *skb)
2239 {
2240 static const netdev_features_t null_features = 0;
2241 struct net_device *dev = skb->dev;
2242 const char *driver = "";
2243
2244 if (!net_ratelimit())
2245 return;
2246
2247 if (dev && dev->dev.parent)
2248 driver = dev_driver_string(dev->dev.parent);
2249
2250 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2251 "gso_type=%d ip_summed=%d\n",
2252 driver, dev ? &dev->features : &null_features,
2253 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2254 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2255 skb_shinfo(skb)->gso_type, skb->ip_summed);
2256 }
2257
2258 /*
2259 * Invalidate hardware checksum when packet is to be mangled, and
2260 * complete checksum manually on outgoing path.
2261 */
2262 int skb_checksum_help(struct sk_buff *skb)
2263 {
2264 __wsum csum;
2265 int ret = 0, offset;
2266
2267 if (skb->ip_summed == CHECKSUM_COMPLETE)
2268 goto out_set_summed;
2269
2270 if (unlikely(skb_shinfo(skb)->gso_size)) {
2271 skb_warn_bad_offload(skb);
2272 return -EINVAL;
2273 }
2274
2275 /* Before computing a checksum, we should make sure no frag could
2276 * be modified by an external entity : checksum could be wrong.
2277 */
2278 if (skb_has_shared_frag(skb)) {
2279 ret = __skb_linearize(skb);
2280 if (ret)
2281 goto out;
2282 }
2283
2284 offset = skb_checksum_start_offset(skb);
2285 BUG_ON(offset >= skb_headlen(skb));
2286 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2287
2288 offset += skb->csum_offset;
2289 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2290
2291 if (skb_cloned(skb) &&
2292 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2293 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2294 if (ret)
2295 goto out;
2296 }
2297
2298 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2299 out_set_summed:
2300 skb->ip_summed = CHECKSUM_NONE;
2301 out:
2302 return ret;
2303 }
2304 EXPORT_SYMBOL(skb_checksum_help);
2305
2306 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2307 {
2308 unsigned int vlan_depth = skb->mac_len;
2309 __be16 type = skb->protocol;
2310
2311 /* Tunnel gso handlers can set protocol to ethernet. */
2312 if (type == htons(ETH_P_TEB)) {
2313 struct ethhdr *eth;
2314
2315 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2316 return 0;
2317
2318 eth = (struct ethhdr *)skb_mac_header(skb);
2319 type = eth->h_proto;
2320 }
2321
2322 /* if skb->protocol is 802.1Q/AD then the header should already be
2323 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2324 * ETH_HLEN otherwise
2325 */
2326 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2327 if (vlan_depth) {
2328 if (WARN_ON(vlan_depth < VLAN_HLEN))
2329 return 0;
2330 vlan_depth -= VLAN_HLEN;
2331 } else {
2332 vlan_depth = ETH_HLEN;
2333 }
2334 do {
2335 struct vlan_hdr *vh;
2336
2337 if (unlikely(!pskb_may_pull(skb,
2338 vlan_depth + VLAN_HLEN)))
2339 return 0;
2340
2341 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2342 type = vh->h_vlan_encapsulated_proto;
2343 vlan_depth += VLAN_HLEN;
2344 } while (type == htons(ETH_P_8021Q) ||
2345 type == htons(ETH_P_8021AD));
2346 }
2347
2348 *depth = vlan_depth;
2349
2350 return type;
2351 }
2352
2353 /**
2354 * skb_mac_gso_segment - mac layer segmentation handler.
2355 * @skb: buffer to segment
2356 * @features: features for the output path (see dev->features)
2357 */
2358 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2359 netdev_features_t features)
2360 {
2361 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2362 struct packet_offload *ptype;
2363 int vlan_depth = skb->mac_len;
2364 __be16 type = skb_network_protocol(skb, &vlan_depth);
2365
2366 if (unlikely(!type))
2367 return ERR_PTR(-EINVAL);
2368
2369 __skb_pull(skb, vlan_depth);
2370
2371 rcu_read_lock();
2372 list_for_each_entry_rcu(ptype, &offload_base, list) {
2373 if (ptype->type == type && ptype->callbacks.gso_segment) {
2374 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2375 int err;
2376
2377 err = ptype->callbacks.gso_send_check(skb);
2378 segs = ERR_PTR(err);
2379 if (err || skb_gso_ok(skb, features))
2380 break;
2381 __skb_push(skb, (skb->data -
2382 skb_network_header(skb)));
2383 }
2384 segs = ptype->callbacks.gso_segment(skb, features);
2385 break;
2386 }
2387 }
2388 rcu_read_unlock();
2389
2390 __skb_push(skb, skb->data - skb_mac_header(skb));
2391
2392 return segs;
2393 }
2394 EXPORT_SYMBOL(skb_mac_gso_segment);
2395
2396
2397 /* openvswitch calls this on rx path, so we need a different check.
2398 */
2399 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2400 {
2401 if (tx_path)
2402 return skb->ip_summed != CHECKSUM_PARTIAL;
2403 else
2404 return skb->ip_summed == CHECKSUM_NONE;
2405 }
2406
2407 /**
2408 * __skb_gso_segment - Perform segmentation on skb.
2409 * @skb: buffer to segment
2410 * @features: features for the output path (see dev->features)
2411 * @tx_path: whether it is called in TX path
2412 *
2413 * This function segments the given skb and returns a list of segments.
2414 *
2415 * It may return NULL if the skb requires no segmentation. This is
2416 * only possible when GSO is used for verifying header integrity.
2417 */
2418 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2419 netdev_features_t features, bool tx_path)
2420 {
2421 if (unlikely(skb_needs_check(skb, tx_path))) {
2422 int err;
2423
2424 skb_warn_bad_offload(skb);
2425
2426 err = skb_cow_head(skb, 0);
2427 if (err < 0)
2428 return ERR_PTR(err);
2429 }
2430
2431 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2432 SKB_GSO_CB(skb)->encap_level = 0;
2433
2434 skb_reset_mac_header(skb);
2435 skb_reset_mac_len(skb);
2436
2437 return skb_mac_gso_segment(skb, features);
2438 }
2439 EXPORT_SYMBOL(__skb_gso_segment);
2440
2441 /* Take action when hardware reception checksum errors are detected. */
2442 #ifdef CONFIG_BUG
2443 void netdev_rx_csum_fault(struct net_device *dev)
2444 {
2445 if (net_ratelimit()) {
2446 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2447 dump_stack();
2448 }
2449 }
2450 EXPORT_SYMBOL(netdev_rx_csum_fault);
2451 #endif
2452
2453 /* Actually, we should eliminate this check as soon as we know, that:
2454 * 1. IOMMU is present and allows to map all the memory.
2455 * 2. No high memory really exists on this machine.
2456 */
2457
2458 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2459 {
2460 #ifdef CONFIG_HIGHMEM
2461 int i;
2462 if (!(dev->features & NETIF_F_HIGHDMA)) {
2463 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2464 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2465 if (PageHighMem(skb_frag_page(frag)))
2466 return 1;
2467 }
2468 }
2469
2470 if (PCI_DMA_BUS_IS_PHYS) {
2471 struct device *pdev = dev->dev.parent;
2472
2473 if (!pdev)
2474 return 0;
2475 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2476 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2477 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2478 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2479 return 1;
2480 }
2481 }
2482 #endif
2483 return 0;
2484 }
2485
2486 struct dev_gso_cb {
2487 void (*destructor)(struct sk_buff *skb);
2488 };
2489
2490 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2491
2492 static void dev_gso_skb_destructor(struct sk_buff *skb)
2493 {
2494 struct dev_gso_cb *cb;
2495
2496 kfree_skb_list(skb->next);
2497 skb->next = NULL;
2498
2499 cb = DEV_GSO_CB(skb);
2500 if (cb->destructor)
2501 cb->destructor(skb);
2502 }
2503
2504 /**
2505 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2506 * @skb: buffer to segment
2507 * @features: device features as applicable to this skb
2508 *
2509 * This function segments the given skb and stores the list of segments
2510 * in skb->next.
2511 */
2512 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2513 {
2514 struct sk_buff *segs;
2515
2516 segs = skb_gso_segment(skb, features);
2517
2518 /* Verifying header integrity only. */
2519 if (!segs)
2520 return 0;
2521
2522 if (IS_ERR(segs))
2523 return PTR_ERR(segs);
2524
2525 skb->next = segs;
2526 DEV_GSO_CB(skb)->destructor = skb->destructor;
2527 skb->destructor = dev_gso_skb_destructor;
2528
2529 return 0;
2530 }
2531
2532 /* If MPLS offload request, verify we are testing hardware MPLS features
2533 * instead of standard features for the netdev.
2534 */
2535 #ifdef CONFIG_NET_MPLS_GSO
2536 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2537 netdev_features_t features,
2538 __be16 type)
2539 {
2540 if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC))
2541 features &= skb->dev->mpls_features;
2542
2543 return features;
2544 }
2545 #else
2546 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2547 netdev_features_t features,
2548 __be16 type)
2549 {
2550 return features;
2551 }
2552 #endif
2553
2554 static netdev_features_t harmonize_features(struct sk_buff *skb,
2555 netdev_features_t features)
2556 {
2557 int tmp;
2558 __be16 type;
2559
2560 type = skb_network_protocol(skb, &tmp);
2561 features = net_mpls_features(skb, features, type);
2562
2563 if (skb->ip_summed != CHECKSUM_NONE &&
2564 !can_checksum_protocol(features, type)) {
2565 features &= ~NETIF_F_ALL_CSUM;
2566 } else if (illegal_highdma(skb->dev, skb)) {
2567 features &= ~NETIF_F_SG;
2568 }
2569
2570 return features;
2571 }
2572
2573 netdev_features_t netif_skb_features(struct sk_buff *skb)
2574 {
2575 __be16 protocol = skb->protocol;
2576 netdev_features_t features = skb->dev->features;
2577
2578 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2579 features &= ~NETIF_F_GSO_MASK;
2580
2581 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2582 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2583 protocol = veh->h_vlan_encapsulated_proto;
2584 } else if (!vlan_tx_tag_present(skb)) {
2585 return harmonize_features(skb, features);
2586 }
2587
2588 features = netdev_intersect_features(features,
2589 skb->dev->vlan_features |
2590 NETIF_F_HW_VLAN_CTAG_TX |
2591 NETIF_F_HW_VLAN_STAG_TX);
2592
2593 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2594 features = netdev_intersect_features(features,
2595 NETIF_F_SG |
2596 NETIF_F_HIGHDMA |
2597 NETIF_F_FRAGLIST |
2598 NETIF_F_GEN_CSUM |
2599 NETIF_F_HW_VLAN_CTAG_TX |
2600 NETIF_F_HW_VLAN_STAG_TX);
2601
2602 return harmonize_features(skb, features);
2603 }
2604 EXPORT_SYMBOL(netif_skb_features);
2605
2606 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2607 struct netdev_queue *txq)
2608 {
2609 const struct net_device_ops *ops = dev->netdev_ops;
2610 int rc = NETDEV_TX_OK;
2611 unsigned int skb_len;
2612
2613 if (likely(!skb->next)) {
2614 netdev_features_t features;
2615
2616 /*
2617 * If device doesn't need skb->dst, release it right now while
2618 * its hot in this cpu cache
2619 */
2620 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2621 skb_dst_drop(skb);
2622
2623 features = netif_skb_features(skb);
2624
2625 if (vlan_tx_tag_present(skb) &&
2626 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2627 skb = __vlan_put_tag(skb, skb->vlan_proto,
2628 vlan_tx_tag_get(skb));
2629 if (unlikely(!skb))
2630 goto out;
2631
2632 skb->vlan_tci = 0;
2633 }
2634
2635 /* If encapsulation offload request, verify we are testing
2636 * hardware encapsulation features instead of standard
2637 * features for the netdev
2638 */
2639 if (skb->encapsulation)
2640 features &= dev->hw_enc_features;
2641
2642 if (netif_needs_gso(skb, features)) {
2643 if (unlikely(dev_gso_segment(skb, features)))
2644 goto out_kfree_skb;
2645 if (skb->next)
2646 goto gso;
2647 } else {
2648 if (skb_needs_linearize(skb, features) &&
2649 __skb_linearize(skb))
2650 goto out_kfree_skb;
2651
2652 /* If packet is not checksummed and device does not
2653 * support checksumming for this protocol, complete
2654 * checksumming here.
2655 */
2656 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2657 if (skb->encapsulation)
2658 skb_set_inner_transport_header(skb,
2659 skb_checksum_start_offset(skb));
2660 else
2661 skb_set_transport_header(skb,
2662 skb_checksum_start_offset(skb));
2663 if (!(features & NETIF_F_ALL_CSUM) &&
2664 skb_checksum_help(skb))
2665 goto out_kfree_skb;
2666 }
2667 }
2668
2669 if (!list_empty(&ptype_all))
2670 dev_queue_xmit_nit(skb, dev);
2671
2672 skb_len = skb->len;
2673 trace_net_dev_start_xmit(skb, dev);
2674 rc = ops->ndo_start_xmit(skb, dev);
2675 trace_net_dev_xmit(skb, rc, dev, skb_len);
2676 if (rc == NETDEV_TX_OK)
2677 txq_trans_update(txq);
2678 return rc;
2679 }
2680
2681 gso:
2682 do {
2683 struct sk_buff *nskb = skb->next;
2684
2685 skb->next = nskb->next;
2686 nskb->next = NULL;
2687
2688 if (!list_empty(&ptype_all))
2689 dev_queue_xmit_nit(nskb, dev);
2690
2691 skb_len = nskb->len;
2692 trace_net_dev_start_xmit(nskb, dev);
2693 rc = ops->ndo_start_xmit(nskb, dev);
2694 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2695 if (unlikely(rc != NETDEV_TX_OK)) {
2696 if (rc & ~NETDEV_TX_MASK)
2697 goto out_kfree_gso_skb;
2698 nskb->next = skb->next;
2699 skb->next = nskb;
2700 return rc;
2701 }
2702 txq_trans_update(txq);
2703 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2704 return NETDEV_TX_BUSY;
2705 } while (skb->next);
2706
2707 out_kfree_gso_skb:
2708 if (likely(skb->next == NULL)) {
2709 skb->destructor = DEV_GSO_CB(skb)->destructor;
2710 consume_skb(skb);
2711 return rc;
2712 }
2713 out_kfree_skb:
2714 kfree_skb(skb);
2715 out:
2716 return rc;
2717 }
2718 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2719
2720 static void qdisc_pkt_len_init(struct sk_buff *skb)
2721 {
2722 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2723
2724 qdisc_skb_cb(skb)->pkt_len = skb->len;
2725
2726 /* To get more precise estimation of bytes sent on wire,
2727 * we add to pkt_len the headers size of all segments
2728 */
2729 if (shinfo->gso_size) {
2730 unsigned int hdr_len;
2731 u16 gso_segs = shinfo->gso_segs;
2732
2733 /* mac layer + network layer */
2734 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2735
2736 /* + transport layer */
2737 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2738 hdr_len += tcp_hdrlen(skb);
2739 else
2740 hdr_len += sizeof(struct udphdr);
2741
2742 if (shinfo->gso_type & SKB_GSO_DODGY)
2743 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2744 shinfo->gso_size);
2745
2746 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2747 }
2748 }
2749
2750 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2751 struct net_device *dev,
2752 struct netdev_queue *txq)
2753 {
2754 spinlock_t *root_lock = qdisc_lock(q);
2755 bool contended;
2756 int rc;
2757
2758 qdisc_pkt_len_init(skb);
2759 qdisc_calculate_pkt_len(skb, q);
2760 /*
2761 * Heuristic to force contended enqueues to serialize on a
2762 * separate lock before trying to get qdisc main lock.
2763 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2764 * often and dequeue packets faster.
2765 */
2766 contended = qdisc_is_running(q);
2767 if (unlikely(contended))
2768 spin_lock(&q->busylock);
2769
2770 spin_lock(root_lock);
2771 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2772 kfree_skb(skb);
2773 rc = NET_XMIT_DROP;
2774 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2775 qdisc_run_begin(q)) {
2776 /*
2777 * This is a work-conserving queue; there are no old skbs
2778 * waiting to be sent out; and the qdisc is not running -
2779 * xmit the skb directly.
2780 */
2781 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2782 skb_dst_force(skb);
2783
2784 qdisc_bstats_update(q, skb);
2785
2786 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2787 if (unlikely(contended)) {
2788 spin_unlock(&q->busylock);
2789 contended = false;
2790 }
2791 __qdisc_run(q);
2792 } else
2793 qdisc_run_end(q);
2794
2795 rc = NET_XMIT_SUCCESS;
2796 } else {
2797 skb_dst_force(skb);
2798 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2799 if (qdisc_run_begin(q)) {
2800 if (unlikely(contended)) {
2801 spin_unlock(&q->busylock);
2802 contended = false;
2803 }
2804 __qdisc_run(q);
2805 }
2806 }
2807 spin_unlock(root_lock);
2808 if (unlikely(contended))
2809 spin_unlock(&q->busylock);
2810 return rc;
2811 }
2812
2813 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2814 static void skb_update_prio(struct sk_buff *skb)
2815 {
2816 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2817
2818 if (!skb->priority && skb->sk && map) {
2819 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2820
2821 if (prioidx < map->priomap_len)
2822 skb->priority = map->priomap[prioidx];
2823 }
2824 }
2825 #else
2826 #define skb_update_prio(skb)
2827 #endif
2828
2829 static DEFINE_PER_CPU(int, xmit_recursion);
2830 #define RECURSION_LIMIT 10
2831
2832 /**
2833 * dev_loopback_xmit - loop back @skb
2834 * @skb: buffer to transmit
2835 */
2836 int dev_loopback_xmit(struct sk_buff *skb)
2837 {
2838 skb_reset_mac_header(skb);
2839 __skb_pull(skb, skb_network_offset(skb));
2840 skb->pkt_type = PACKET_LOOPBACK;
2841 skb->ip_summed = CHECKSUM_UNNECESSARY;
2842 WARN_ON(!skb_dst(skb));
2843 skb_dst_force(skb);
2844 netif_rx_ni(skb);
2845 return 0;
2846 }
2847 EXPORT_SYMBOL(dev_loopback_xmit);
2848
2849 /**
2850 * __dev_queue_xmit - transmit a buffer
2851 * @skb: buffer to transmit
2852 * @accel_priv: private data used for L2 forwarding offload
2853 *
2854 * Queue a buffer for transmission to a network device. The caller must
2855 * have set the device and priority and built the buffer before calling
2856 * this function. The function can be called from an interrupt.
2857 *
2858 * A negative errno code is returned on a failure. A success does not
2859 * guarantee the frame will be transmitted as it may be dropped due
2860 * to congestion or traffic shaping.
2861 *
2862 * -----------------------------------------------------------------------------------
2863 * I notice this method can also return errors from the queue disciplines,
2864 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2865 * be positive.
2866 *
2867 * Regardless of the return value, the skb is consumed, so it is currently
2868 * difficult to retry a send to this method. (You can bump the ref count
2869 * before sending to hold a reference for retry if you are careful.)
2870 *
2871 * When calling this method, interrupts MUST be enabled. This is because
2872 * the BH enable code must have IRQs enabled so that it will not deadlock.
2873 * --BLG
2874 */
2875 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2876 {
2877 struct net_device *dev = skb->dev;
2878 struct netdev_queue *txq;
2879 struct Qdisc *q;
2880 int rc = -ENOMEM;
2881
2882 skb_reset_mac_header(skb);
2883
2884 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2885 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2886
2887 /* Disable soft irqs for various locks below. Also
2888 * stops preemption for RCU.
2889 */
2890 rcu_read_lock_bh();
2891
2892 skb_update_prio(skb);
2893
2894 txq = netdev_pick_tx(dev, skb, accel_priv);
2895 q = rcu_dereference_bh(txq->qdisc);
2896
2897 #ifdef CONFIG_NET_CLS_ACT
2898 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2899 #endif
2900 trace_net_dev_queue(skb);
2901 if (q->enqueue) {
2902 rc = __dev_xmit_skb(skb, q, dev, txq);
2903 goto out;
2904 }
2905
2906 /* The device has no queue. Common case for software devices:
2907 loopback, all the sorts of tunnels...
2908
2909 Really, it is unlikely that netif_tx_lock protection is necessary
2910 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2911 counters.)
2912 However, it is possible, that they rely on protection
2913 made by us here.
2914
2915 Check this and shot the lock. It is not prone from deadlocks.
2916 Either shot noqueue qdisc, it is even simpler 8)
2917 */
2918 if (dev->flags & IFF_UP) {
2919 int cpu = smp_processor_id(); /* ok because BHs are off */
2920
2921 if (txq->xmit_lock_owner != cpu) {
2922
2923 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2924 goto recursion_alert;
2925
2926 HARD_TX_LOCK(dev, txq, cpu);
2927
2928 if (!netif_xmit_stopped(txq)) {
2929 __this_cpu_inc(xmit_recursion);
2930 rc = dev_hard_start_xmit(skb, dev, txq);
2931 __this_cpu_dec(xmit_recursion);
2932 if (dev_xmit_complete(rc)) {
2933 HARD_TX_UNLOCK(dev, txq);
2934 goto out;
2935 }
2936 }
2937 HARD_TX_UNLOCK(dev, txq);
2938 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2939 dev->name);
2940 } else {
2941 /* Recursion is detected! It is possible,
2942 * unfortunately
2943 */
2944 recursion_alert:
2945 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2946 dev->name);
2947 }
2948 }
2949
2950 rc = -ENETDOWN;
2951 rcu_read_unlock_bh();
2952
2953 atomic_long_inc(&dev->tx_dropped);
2954 kfree_skb(skb);
2955 return rc;
2956 out:
2957 rcu_read_unlock_bh();
2958 return rc;
2959 }
2960
2961 int dev_queue_xmit(struct sk_buff *skb)
2962 {
2963 return __dev_queue_xmit(skb, NULL);
2964 }
2965 EXPORT_SYMBOL(dev_queue_xmit);
2966
2967 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2968 {
2969 return __dev_queue_xmit(skb, accel_priv);
2970 }
2971 EXPORT_SYMBOL(dev_queue_xmit_accel);
2972
2973
2974 /*=======================================================================
2975 Receiver routines
2976 =======================================================================*/
2977
2978 int netdev_max_backlog __read_mostly = 1000;
2979 EXPORT_SYMBOL(netdev_max_backlog);
2980
2981 int netdev_tstamp_prequeue __read_mostly = 1;
2982 int netdev_budget __read_mostly = 300;
2983 int weight_p __read_mostly = 64; /* old backlog weight */
2984
2985 /* Called with irq disabled */
2986 static inline void ____napi_schedule(struct softnet_data *sd,
2987 struct napi_struct *napi)
2988 {
2989 list_add_tail(&napi->poll_list, &sd->poll_list);
2990 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2991 }
2992
2993 #ifdef CONFIG_RPS
2994
2995 /* One global table that all flow-based protocols share. */
2996 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2997 EXPORT_SYMBOL(rps_sock_flow_table);
2998
2999 struct static_key rps_needed __read_mostly;
3000
3001 static struct rps_dev_flow *
3002 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3003 struct rps_dev_flow *rflow, u16 next_cpu)
3004 {
3005 if (next_cpu != RPS_NO_CPU) {
3006 #ifdef CONFIG_RFS_ACCEL
3007 struct netdev_rx_queue *rxqueue;
3008 struct rps_dev_flow_table *flow_table;
3009 struct rps_dev_flow *old_rflow;
3010 u32 flow_id;
3011 u16 rxq_index;
3012 int rc;
3013
3014 /* Should we steer this flow to a different hardware queue? */
3015 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3016 !(dev->features & NETIF_F_NTUPLE))
3017 goto out;
3018 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3019 if (rxq_index == skb_get_rx_queue(skb))
3020 goto out;
3021
3022 rxqueue = dev->_rx + rxq_index;
3023 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3024 if (!flow_table)
3025 goto out;
3026 flow_id = skb_get_hash(skb) & flow_table->mask;
3027 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3028 rxq_index, flow_id);
3029 if (rc < 0)
3030 goto out;
3031 old_rflow = rflow;
3032 rflow = &flow_table->flows[flow_id];
3033 rflow->filter = rc;
3034 if (old_rflow->filter == rflow->filter)
3035 old_rflow->filter = RPS_NO_FILTER;
3036 out:
3037 #endif
3038 rflow->last_qtail =
3039 per_cpu(softnet_data, next_cpu).input_queue_head;
3040 }
3041
3042 rflow->cpu = next_cpu;
3043 return rflow;
3044 }
3045
3046 /*
3047 * get_rps_cpu is called from netif_receive_skb and returns the target
3048 * CPU from the RPS map of the receiving queue for a given skb.
3049 * rcu_read_lock must be held on entry.
3050 */
3051 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3052 struct rps_dev_flow **rflowp)
3053 {
3054 struct netdev_rx_queue *rxqueue;
3055 struct rps_map *map;
3056 struct rps_dev_flow_table *flow_table;
3057 struct rps_sock_flow_table *sock_flow_table;
3058 int cpu = -1;
3059 u16 tcpu;
3060 u32 hash;
3061
3062 if (skb_rx_queue_recorded(skb)) {
3063 u16 index = skb_get_rx_queue(skb);
3064 if (unlikely(index >= dev->real_num_rx_queues)) {
3065 WARN_ONCE(dev->real_num_rx_queues > 1,
3066 "%s received packet on queue %u, but number "
3067 "of RX queues is %u\n",
3068 dev->name, index, dev->real_num_rx_queues);
3069 goto done;
3070 }
3071 rxqueue = dev->_rx + index;
3072 } else
3073 rxqueue = dev->_rx;
3074
3075 map = rcu_dereference(rxqueue->rps_map);
3076 if (map) {
3077 if (map->len == 1 &&
3078 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3079 tcpu = map->cpus[0];
3080 if (cpu_online(tcpu))
3081 cpu = tcpu;
3082 goto done;
3083 }
3084 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3085 goto done;
3086 }
3087
3088 skb_reset_network_header(skb);
3089 hash = skb_get_hash(skb);
3090 if (!hash)
3091 goto done;
3092
3093 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3094 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3095 if (flow_table && sock_flow_table) {
3096 u16 next_cpu;
3097 struct rps_dev_flow *rflow;
3098
3099 rflow = &flow_table->flows[hash & flow_table->mask];
3100 tcpu = rflow->cpu;
3101
3102 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3103
3104 /*
3105 * If the desired CPU (where last recvmsg was done) is
3106 * different from current CPU (one in the rx-queue flow
3107 * table entry), switch if one of the following holds:
3108 * - Current CPU is unset (equal to RPS_NO_CPU).
3109 * - Current CPU is offline.
3110 * - The current CPU's queue tail has advanced beyond the
3111 * last packet that was enqueued using this table entry.
3112 * This guarantees that all previous packets for the flow
3113 * have been dequeued, thus preserving in order delivery.
3114 */
3115 if (unlikely(tcpu != next_cpu) &&
3116 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3117 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3118 rflow->last_qtail)) >= 0)) {
3119 tcpu = next_cpu;
3120 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3121 }
3122
3123 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3124 *rflowp = rflow;
3125 cpu = tcpu;
3126 goto done;
3127 }
3128 }
3129
3130 if (map) {
3131 tcpu = map->cpus[((u64) hash * map->len) >> 32];
3132
3133 if (cpu_online(tcpu)) {
3134 cpu = tcpu;
3135 goto done;
3136 }
3137 }
3138
3139 done:
3140 return cpu;
3141 }
3142
3143 #ifdef CONFIG_RFS_ACCEL
3144
3145 /**
3146 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3147 * @dev: Device on which the filter was set
3148 * @rxq_index: RX queue index
3149 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3150 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3151 *
3152 * Drivers that implement ndo_rx_flow_steer() should periodically call
3153 * this function for each installed filter and remove the filters for
3154 * which it returns %true.
3155 */
3156 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3157 u32 flow_id, u16 filter_id)
3158 {
3159 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3160 struct rps_dev_flow_table *flow_table;
3161 struct rps_dev_flow *rflow;
3162 bool expire = true;
3163 int cpu;
3164
3165 rcu_read_lock();
3166 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3167 if (flow_table && flow_id <= flow_table->mask) {
3168 rflow = &flow_table->flows[flow_id];
3169 cpu = ACCESS_ONCE(rflow->cpu);
3170 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3171 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3172 rflow->last_qtail) <
3173 (int)(10 * flow_table->mask)))
3174 expire = false;
3175 }
3176 rcu_read_unlock();
3177 return expire;
3178 }
3179 EXPORT_SYMBOL(rps_may_expire_flow);
3180
3181 #endif /* CONFIG_RFS_ACCEL */
3182
3183 /* Called from hardirq (IPI) context */
3184 static void rps_trigger_softirq(void *data)
3185 {
3186 struct softnet_data *sd = data;
3187
3188 ____napi_schedule(sd, &sd->backlog);
3189 sd->received_rps++;
3190 }
3191
3192 #endif /* CONFIG_RPS */
3193
3194 /*
3195 * Check if this softnet_data structure is another cpu one
3196 * If yes, queue it to our IPI list and return 1
3197 * If no, return 0
3198 */
3199 static int rps_ipi_queued(struct softnet_data *sd)
3200 {
3201 #ifdef CONFIG_RPS
3202 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3203
3204 if (sd != mysd) {
3205 sd->rps_ipi_next = mysd->rps_ipi_list;
3206 mysd->rps_ipi_list = sd;
3207
3208 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3209 return 1;
3210 }
3211 #endif /* CONFIG_RPS */
3212 return 0;
3213 }
3214
3215 #ifdef CONFIG_NET_FLOW_LIMIT
3216 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3217 #endif
3218
3219 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3220 {
3221 #ifdef CONFIG_NET_FLOW_LIMIT
3222 struct sd_flow_limit *fl;
3223 struct softnet_data *sd;
3224 unsigned int old_flow, new_flow;
3225
3226 if (qlen < (netdev_max_backlog >> 1))
3227 return false;
3228
3229 sd = &__get_cpu_var(softnet_data);
3230
3231 rcu_read_lock();
3232 fl = rcu_dereference(sd->flow_limit);
3233 if (fl) {
3234 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3235 old_flow = fl->history[fl->history_head];
3236 fl->history[fl->history_head] = new_flow;
3237
3238 fl->history_head++;
3239 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3240
3241 if (likely(fl->buckets[old_flow]))
3242 fl->buckets[old_flow]--;
3243
3244 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3245 fl->count++;
3246 rcu_read_unlock();
3247 return true;
3248 }
3249 }
3250 rcu_read_unlock();
3251 #endif
3252 return false;
3253 }
3254
3255 /*
3256 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3257 * queue (may be a remote CPU queue).
3258 */
3259 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3260 unsigned int *qtail)
3261 {
3262 struct softnet_data *sd;
3263 unsigned long flags;
3264 unsigned int qlen;
3265
3266 sd = &per_cpu(softnet_data, cpu);
3267
3268 local_irq_save(flags);
3269
3270 rps_lock(sd);
3271 qlen = skb_queue_len(&sd->input_pkt_queue);
3272 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3273 if (skb_queue_len(&sd->input_pkt_queue)) {
3274 enqueue:
3275 __skb_queue_tail(&sd->input_pkt_queue, skb);
3276 input_queue_tail_incr_save(sd, qtail);
3277 rps_unlock(sd);
3278 local_irq_restore(flags);
3279 return NET_RX_SUCCESS;
3280 }
3281
3282 /* Schedule NAPI for backlog device
3283 * We can use non atomic operation since we own the queue lock
3284 */
3285 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3286 if (!rps_ipi_queued(sd))
3287 ____napi_schedule(sd, &sd->backlog);
3288 }
3289 goto enqueue;
3290 }
3291
3292 sd->dropped++;
3293 rps_unlock(sd);
3294
3295 local_irq_restore(flags);
3296
3297 atomic_long_inc(&skb->dev->rx_dropped);
3298 kfree_skb(skb);
3299 return NET_RX_DROP;
3300 }
3301
3302 static int netif_rx_internal(struct sk_buff *skb)
3303 {
3304 int ret;
3305
3306 net_timestamp_check(netdev_tstamp_prequeue, skb);
3307
3308 trace_netif_rx(skb);
3309 #ifdef CONFIG_RPS
3310 if (static_key_false(&rps_needed)) {
3311 struct rps_dev_flow voidflow, *rflow = &voidflow;
3312 int cpu;
3313
3314 preempt_disable();
3315 rcu_read_lock();
3316
3317 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3318 if (cpu < 0)
3319 cpu = smp_processor_id();
3320
3321 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3322
3323 rcu_read_unlock();
3324 preempt_enable();
3325 } else
3326 #endif
3327 {
3328 unsigned int qtail;
3329 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3330 put_cpu();
3331 }
3332 return ret;
3333 }
3334
3335 /**
3336 * netif_rx - post buffer to the network code
3337 * @skb: buffer to post
3338 *
3339 * This function receives a packet from a device driver and queues it for
3340 * the upper (protocol) levels to process. It always succeeds. The buffer
3341 * may be dropped during processing for congestion control or by the
3342 * protocol layers.
3343 *
3344 * return values:
3345 * NET_RX_SUCCESS (no congestion)
3346 * NET_RX_DROP (packet was dropped)
3347 *
3348 */
3349
3350 int netif_rx(struct sk_buff *skb)
3351 {
3352 trace_netif_rx_entry(skb);
3353
3354 return netif_rx_internal(skb);
3355 }
3356 EXPORT_SYMBOL(netif_rx);
3357
3358 int netif_rx_ni(struct sk_buff *skb)
3359 {
3360 int err;
3361
3362 trace_netif_rx_ni_entry(skb);
3363
3364 preempt_disable();
3365 err = netif_rx_internal(skb);
3366 if (local_softirq_pending())
3367 do_softirq();
3368 preempt_enable();
3369
3370 return err;
3371 }
3372 EXPORT_SYMBOL(netif_rx_ni);
3373
3374 static void net_tx_action(struct softirq_action *h)
3375 {
3376 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3377
3378 if (sd->completion_queue) {
3379 struct sk_buff *clist;
3380
3381 local_irq_disable();
3382 clist = sd->completion_queue;
3383 sd->completion_queue = NULL;
3384 local_irq_enable();
3385
3386 while (clist) {
3387 struct sk_buff *skb = clist;
3388 clist = clist->next;
3389
3390 WARN_ON(atomic_read(&skb->users));
3391 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3392 trace_consume_skb(skb);
3393 else
3394 trace_kfree_skb(skb, net_tx_action);
3395 __kfree_skb(skb);
3396 }
3397 }
3398
3399 if (sd->output_queue) {
3400 struct Qdisc *head;
3401
3402 local_irq_disable();
3403 head = sd->output_queue;
3404 sd->output_queue = NULL;
3405 sd->output_queue_tailp = &sd->output_queue;
3406 local_irq_enable();
3407
3408 while (head) {
3409 struct Qdisc *q = head;
3410 spinlock_t *root_lock;
3411
3412 head = head->next_sched;
3413
3414 root_lock = qdisc_lock(q);
3415 if (spin_trylock(root_lock)) {
3416 smp_mb__before_atomic();
3417 clear_bit(__QDISC_STATE_SCHED,
3418 &q->state);
3419 qdisc_run(q);
3420 spin_unlock(root_lock);
3421 } else {
3422 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3423 &q->state)) {
3424 __netif_reschedule(q);
3425 } else {
3426 smp_mb__before_atomic();
3427 clear_bit(__QDISC_STATE_SCHED,
3428 &q->state);
3429 }
3430 }
3431 }
3432 }
3433 }
3434
3435 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3436 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3437 /* This hook is defined here for ATM LANE */
3438 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3439 unsigned char *addr) __read_mostly;
3440 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3441 #endif
3442
3443 #ifdef CONFIG_NET_CLS_ACT
3444 /* TODO: Maybe we should just force sch_ingress to be compiled in
3445 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3446 * a compare and 2 stores extra right now if we dont have it on
3447 * but have CONFIG_NET_CLS_ACT
3448 * NOTE: This doesn't stop any functionality; if you dont have
3449 * the ingress scheduler, you just can't add policies on ingress.
3450 *
3451 */
3452 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3453 {
3454 struct net_device *dev = skb->dev;
3455 u32 ttl = G_TC_RTTL(skb->tc_verd);
3456 int result = TC_ACT_OK;
3457 struct Qdisc *q;
3458
3459 if (unlikely(MAX_RED_LOOP < ttl++)) {
3460 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3461 skb->skb_iif, dev->ifindex);
3462 return TC_ACT_SHOT;
3463 }
3464
3465 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3466 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3467
3468 q = rxq->qdisc;
3469 if (q != &noop_qdisc) {
3470 spin_lock(qdisc_lock(q));
3471 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3472 result = qdisc_enqueue_root(skb, q);
3473 spin_unlock(qdisc_lock(q));
3474 }
3475
3476 return result;
3477 }
3478
3479 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3480 struct packet_type **pt_prev,
3481 int *ret, struct net_device *orig_dev)
3482 {
3483 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3484
3485 if (!rxq || rxq->qdisc == &noop_qdisc)
3486 goto out;
3487
3488 if (*pt_prev) {
3489 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3490 *pt_prev = NULL;
3491 }
3492
3493 switch (ing_filter(skb, rxq)) {
3494 case TC_ACT_SHOT:
3495 case TC_ACT_STOLEN:
3496 kfree_skb(skb);
3497 return NULL;
3498 }
3499
3500 out:
3501 skb->tc_verd = 0;
3502 return skb;
3503 }
3504 #endif
3505
3506 /**
3507 * netdev_rx_handler_register - register receive handler
3508 * @dev: device to register a handler for
3509 * @rx_handler: receive handler to register
3510 * @rx_handler_data: data pointer that is used by rx handler
3511 *
3512 * Register a receive handler for a device. This handler will then be
3513 * called from __netif_receive_skb. A negative errno code is returned
3514 * on a failure.
3515 *
3516 * The caller must hold the rtnl_mutex.
3517 *
3518 * For a general description of rx_handler, see enum rx_handler_result.
3519 */
3520 int netdev_rx_handler_register(struct net_device *dev,
3521 rx_handler_func_t *rx_handler,
3522 void *rx_handler_data)
3523 {
3524 ASSERT_RTNL();
3525
3526 if (dev->rx_handler)
3527 return -EBUSY;
3528
3529 /* Note: rx_handler_data must be set before rx_handler */
3530 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3531 rcu_assign_pointer(dev->rx_handler, rx_handler);
3532
3533 return 0;
3534 }
3535 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3536
3537 /**
3538 * netdev_rx_handler_unregister - unregister receive handler
3539 * @dev: device to unregister a handler from
3540 *
3541 * Unregister a receive handler from a device.
3542 *
3543 * The caller must hold the rtnl_mutex.
3544 */
3545 void netdev_rx_handler_unregister(struct net_device *dev)
3546 {
3547
3548 ASSERT_RTNL();
3549 RCU_INIT_POINTER(dev->rx_handler, NULL);
3550 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3551 * section has a guarantee to see a non NULL rx_handler_data
3552 * as well.
3553 */
3554 synchronize_net();
3555 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3556 }
3557 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3558
3559 /*
3560 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3561 * the special handling of PFMEMALLOC skbs.
3562 */
3563 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3564 {
3565 switch (skb->protocol) {
3566 case htons(ETH_P_ARP):
3567 case htons(ETH_P_IP):
3568 case htons(ETH_P_IPV6):
3569 case htons(ETH_P_8021Q):
3570 case htons(ETH_P_8021AD):
3571 return true;
3572 default:
3573 return false;
3574 }
3575 }
3576
3577 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3578 {
3579 struct packet_type *ptype, *pt_prev;
3580 rx_handler_func_t *rx_handler;
3581 struct net_device *orig_dev;
3582 struct net_device *null_or_dev;
3583 bool deliver_exact = false;
3584 int ret = NET_RX_DROP;
3585 __be16 type;
3586
3587 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3588
3589 trace_netif_receive_skb(skb);
3590
3591 orig_dev = skb->dev;
3592
3593 skb_reset_network_header(skb);
3594 if (!skb_transport_header_was_set(skb))
3595 skb_reset_transport_header(skb);
3596 skb_reset_mac_len(skb);
3597
3598 pt_prev = NULL;
3599
3600 rcu_read_lock();
3601
3602 another_round:
3603 skb->skb_iif = skb->dev->ifindex;
3604
3605 __this_cpu_inc(softnet_data.processed);
3606
3607 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3608 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3609 skb = skb_vlan_untag(skb);
3610 if (unlikely(!skb))
3611 goto unlock;
3612 }
3613
3614 #ifdef CONFIG_NET_CLS_ACT
3615 if (skb->tc_verd & TC_NCLS) {
3616 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3617 goto ncls;
3618 }
3619 #endif
3620
3621 if (pfmemalloc)
3622 goto skip_taps;
3623
3624 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3625 if (!ptype->dev || ptype->dev == skb->dev) {
3626 if (pt_prev)
3627 ret = deliver_skb(skb, pt_prev, orig_dev);
3628 pt_prev = ptype;
3629 }
3630 }
3631
3632 skip_taps:
3633 #ifdef CONFIG_NET_CLS_ACT
3634 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3635 if (!skb)
3636 goto unlock;
3637 ncls:
3638 #endif
3639
3640 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3641 goto drop;
3642
3643 if (vlan_tx_tag_present(skb)) {
3644 if (pt_prev) {
3645 ret = deliver_skb(skb, pt_prev, orig_dev);
3646 pt_prev = NULL;
3647 }
3648 if (vlan_do_receive(&skb))
3649 goto another_round;
3650 else if (unlikely(!skb))
3651 goto unlock;
3652 }
3653
3654 rx_handler = rcu_dereference(skb->dev->rx_handler);
3655 if (rx_handler) {
3656 if (pt_prev) {
3657 ret = deliver_skb(skb, pt_prev, orig_dev);
3658 pt_prev = NULL;
3659 }
3660 switch (rx_handler(&skb)) {
3661 case RX_HANDLER_CONSUMED:
3662 ret = NET_RX_SUCCESS;
3663 goto unlock;
3664 case RX_HANDLER_ANOTHER:
3665 goto another_round;
3666 case RX_HANDLER_EXACT:
3667 deliver_exact = true;
3668 case RX_HANDLER_PASS:
3669 break;
3670 default:
3671 BUG();
3672 }
3673 }
3674
3675 if (unlikely(vlan_tx_tag_present(skb))) {
3676 if (vlan_tx_tag_get_id(skb))
3677 skb->pkt_type = PACKET_OTHERHOST;
3678 /* Note: we might in the future use prio bits
3679 * and set skb->priority like in vlan_do_receive()
3680 * For the time being, just ignore Priority Code Point
3681 */
3682 skb->vlan_tci = 0;
3683 }
3684
3685 /* deliver only exact match when indicated */
3686 null_or_dev = deliver_exact ? skb->dev : NULL;
3687
3688 type = skb->protocol;
3689 list_for_each_entry_rcu(ptype,
3690 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3691 if (ptype->type == type &&
3692 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3693 ptype->dev == orig_dev)) {
3694 if (pt_prev)
3695 ret = deliver_skb(skb, pt_prev, orig_dev);
3696 pt_prev = ptype;
3697 }
3698 }
3699
3700 if (pt_prev) {
3701 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3702 goto drop;
3703 else
3704 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3705 } else {
3706 drop:
3707 atomic_long_inc(&skb->dev->rx_dropped);
3708 kfree_skb(skb);
3709 /* Jamal, now you will not able to escape explaining
3710 * me how you were going to use this. :-)
3711 */
3712 ret = NET_RX_DROP;
3713 }
3714
3715 unlock:
3716 rcu_read_unlock();
3717 return ret;
3718 }
3719
3720 static int __netif_receive_skb(struct sk_buff *skb)
3721 {
3722 int ret;
3723
3724 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3725 unsigned long pflags = current->flags;
3726
3727 /*
3728 * PFMEMALLOC skbs are special, they should
3729 * - be delivered to SOCK_MEMALLOC sockets only
3730 * - stay away from userspace
3731 * - have bounded memory usage
3732 *
3733 * Use PF_MEMALLOC as this saves us from propagating the allocation
3734 * context down to all allocation sites.
3735 */
3736 current->flags |= PF_MEMALLOC;
3737 ret = __netif_receive_skb_core(skb, true);
3738 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3739 } else
3740 ret = __netif_receive_skb_core(skb, false);
3741
3742 return ret;
3743 }
3744
3745 static int netif_receive_skb_internal(struct sk_buff *skb)
3746 {
3747 net_timestamp_check(netdev_tstamp_prequeue, skb);
3748
3749 if (skb_defer_rx_timestamp(skb))
3750 return NET_RX_SUCCESS;
3751
3752 #ifdef CONFIG_RPS
3753 if (static_key_false(&rps_needed)) {
3754 struct rps_dev_flow voidflow, *rflow = &voidflow;
3755 int cpu, ret;
3756
3757 rcu_read_lock();
3758
3759 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3760
3761 if (cpu >= 0) {
3762 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3763 rcu_read_unlock();
3764 return ret;
3765 }
3766 rcu_read_unlock();
3767 }
3768 #endif
3769 return __netif_receive_skb(skb);
3770 }
3771
3772 /**
3773 * netif_receive_skb - process receive buffer from network
3774 * @skb: buffer to process
3775 *
3776 * netif_receive_skb() is the main receive data processing function.
3777 * It always succeeds. The buffer may be dropped during processing
3778 * for congestion control or by the protocol layers.
3779 *
3780 * This function may only be called from softirq context and interrupts
3781 * should be enabled.
3782 *
3783 * Return values (usually ignored):
3784 * NET_RX_SUCCESS: no congestion
3785 * NET_RX_DROP: packet was dropped
3786 */
3787 int netif_receive_skb(struct sk_buff *skb)
3788 {
3789 trace_netif_receive_skb_entry(skb);
3790
3791 return netif_receive_skb_internal(skb);
3792 }
3793 EXPORT_SYMBOL(netif_receive_skb);
3794
3795 /* Network device is going away, flush any packets still pending
3796 * Called with irqs disabled.
3797 */
3798 static void flush_backlog(void *arg)
3799 {
3800 struct net_device *dev = arg;
3801 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3802 struct sk_buff *skb, *tmp;
3803
3804 rps_lock(sd);
3805 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3806 if (skb->dev == dev) {
3807 __skb_unlink(skb, &sd->input_pkt_queue);
3808 kfree_skb(skb);
3809 input_queue_head_incr(sd);
3810 }
3811 }
3812 rps_unlock(sd);
3813
3814 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3815 if (skb->dev == dev) {
3816 __skb_unlink(skb, &sd->process_queue);
3817 kfree_skb(skb);
3818 input_queue_head_incr(sd);
3819 }
3820 }
3821 }
3822
3823 static int napi_gro_complete(struct sk_buff *skb)
3824 {
3825 struct packet_offload *ptype;
3826 __be16 type = skb->protocol;
3827 struct list_head *head = &offload_base;
3828 int err = -ENOENT;
3829
3830 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3831
3832 if (NAPI_GRO_CB(skb)->count == 1) {
3833 skb_shinfo(skb)->gso_size = 0;
3834 goto out;
3835 }
3836
3837 rcu_read_lock();
3838 list_for_each_entry_rcu(ptype, head, list) {
3839 if (ptype->type != type || !ptype->callbacks.gro_complete)
3840 continue;
3841
3842 err = ptype->callbacks.gro_complete(skb, 0);
3843 break;
3844 }
3845 rcu_read_unlock();
3846
3847 if (err) {
3848 WARN_ON(&ptype->list == head);
3849 kfree_skb(skb);
3850 return NET_RX_SUCCESS;
3851 }
3852
3853 out:
3854 return netif_receive_skb_internal(skb);
3855 }
3856
3857 /* napi->gro_list contains packets ordered by age.
3858 * youngest packets at the head of it.
3859 * Complete skbs in reverse order to reduce latencies.
3860 */
3861 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3862 {
3863 struct sk_buff *skb, *prev = NULL;
3864
3865 /* scan list and build reverse chain */
3866 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3867 skb->prev = prev;
3868 prev = skb;
3869 }
3870
3871 for (skb = prev; skb; skb = prev) {
3872 skb->next = NULL;
3873
3874 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3875 return;
3876
3877 prev = skb->prev;
3878 napi_gro_complete(skb);
3879 napi->gro_count--;
3880 }
3881
3882 napi->gro_list = NULL;
3883 }
3884 EXPORT_SYMBOL(napi_gro_flush);
3885
3886 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3887 {
3888 struct sk_buff *p;
3889 unsigned int maclen = skb->dev->hard_header_len;
3890 u32 hash = skb_get_hash_raw(skb);
3891
3892 for (p = napi->gro_list; p; p = p->next) {
3893 unsigned long diffs;
3894
3895 NAPI_GRO_CB(p)->flush = 0;
3896
3897 if (hash != skb_get_hash_raw(p)) {
3898 NAPI_GRO_CB(p)->same_flow = 0;
3899 continue;
3900 }
3901
3902 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3903 diffs |= p->vlan_tci ^ skb->vlan_tci;
3904 if (maclen == ETH_HLEN)
3905 diffs |= compare_ether_header(skb_mac_header(p),
3906 skb_mac_header(skb));
3907 else if (!diffs)
3908 diffs = memcmp(skb_mac_header(p),
3909 skb_mac_header(skb),
3910 maclen);
3911 NAPI_GRO_CB(p)->same_flow = !diffs;
3912 }
3913 }
3914
3915 static void skb_gro_reset_offset(struct sk_buff *skb)
3916 {
3917 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3918 const skb_frag_t *frag0 = &pinfo->frags[0];
3919
3920 NAPI_GRO_CB(skb)->data_offset = 0;
3921 NAPI_GRO_CB(skb)->frag0 = NULL;
3922 NAPI_GRO_CB(skb)->frag0_len = 0;
3923
3924 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3925 pinfo->nr_frags &&
3926 !PageHighMem(skb_frag_page(frag0))) {
3927 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3928 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3929 }
3930 }
3931
3932 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3933 {
3934 struct skb_shared_info *pinfo = skb_shinfo(skb);
3935
3936 BUG_ON(skb->end - skb->tail < grow);
3937
3938 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3939
3940 skb->data_len -= grow;
3941 skb->tail += grow;
3942
3943 pinfo->frags[0].page_offset += grow;
3944 skb_frag_size_sub(&pinfo->frags[0], grow);
3945
3946 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3947 skb_frag_unref(skb, 0);
3948 memmove(pinfo->frags, pinfo->frags + 1,
3949 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3950 }
3951 }
3952
3953 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3954 {
3955 struct sk_buff **pp = NULL;
3956 struct packet_offload *ptype;
3957 __be16 type = skb->protocol;
3958 struct list_head *head = &offload_base;
3959 int same_flow;
3960 enum gro_result ret;
3961 int grow;
3962
3963 if (!(skb->dev->features & NETIF_F_GRO))
3964 goto normal;
3965
3966 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3967 goto normal;
3968
3969 gro_list_prepare(napi, skb);
3970 NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
3971
3972 rcu_read_lock();
3973 list_for_each_entry_rcu(ptype, head, list) {
3974 if (ptype->type != type || !ptype->callbacks.gro_receive)
3975 continue;
3976
3977 skb_set_network_header(skb, skb_gro_offset(skb));
3978 skb_reset_mac_len(skb);
3979 NAPI_GRO_CB(skb)->same_flow = 0;
3980 NAPI_GRO_CB(skb)->flush = 0;
3981 NAPI_GRO_CB(skb)->free = 0;
3982 NAPI_GRO_CB(skb)->udp_mark = 0;
3983
3984 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3985 break;
3986 }
3987 rcu_read_unlock();
3988
3989 if (&ptype->list == head)
3990 goto normal;
3991
3992 same_flow = NAPI_GRO_CB(skb)->same_flow;
3993 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3994
3995 if (pp) {
3996 struct sk_buff *nskb = *pp;
3997
3998 *pp = nskb->next;
3999 nskb->next = NULL;
4000 napi_gro_complete(nskb);
4001 napi->gro_count--;
4002 }
4003
4004 if (same_flow)
4005 goto ok;
4006
4007 if (NAPI_GRO_CB(skb)->flush)
4008 goto normal;
4009
4010 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4011 struct sk_buff *nskb = napi->gro_list;
4012
4013 /* locate the end of the list to select the 'oldest' flow */
4014 while (nskb->next) {
4015 pp = &nskb->next;
4016 nskb = *pp;
4017 }
4018 *pp = NULL;
4019 nskb->next = NULL;
4020 napi_gro_complete(nskb);
4021 } else {
4022 napi->gro_count++;
4023 }
4024 NAPI_GRO_CB(skb)->count = 1;
4025 NAPI_GRO_CB(skb)->age = jiffies;
4026 NAPI_GRO_CB(skb)->last = skb;
4027 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4028 skb->next = napi->gro_list;
4029 napi->gro_list = skb;
4030 ret = GRO_HELD;
4031
4032 pull:
4033 grow = skb_gro_offset(skb) - skb_headlen(skb);
4034 if (grow > 0)
4035 gro_pull_from_frag0(skb, grow);
4036 ok:
4037 return ret;
4038
4039 normal:
4040 ret = GRO_NORMAL;
4041 goto pull;
4042 }
4043
4044 struct packet_offload *gro_find_receive_by_type(__be16 type)
4045 {
4046 struct list_head *offload_head = &offload_base;
4047 struct packet_offload *ptype;
4048
4049 list_for_each_entry_rcu(ptype, offload_head, list) {
4050 if (ptype->type != type || !ptype->callbacks.gro_receive)
4051 continue;
4052 return ptype;
4053 }
4054 return NULL;
4055 }
4056 EXPORT_SYMBOL(gro_find_receive_by_type);
4057
4058 struct packet_offload *gro_find_complete_by_type(__be16 type)
4059 {
4060 struct list_head *offload_head = &offload_base;
4061 struct packet_offload *ptype;
4062
4063 list_for_each_entry_rcu(ptype, offload_head, list) {
4064 if (ptype->type != type || !ptype->callbacks.gro_complete)
4065 continue;
4066 return ptype;
4067 }
4068 return NULL;
4069 }
4070 EXPORT_SYMBOL(gro_find_complete_by_type);
4071
4072 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4073 {
4074 switch (ret) {
4075 case GRO_NORMAL:
4076 if (netif_receive_skb_internal(skb))
4077 ret = GRO_DROP;
4078 break;
4079
4080 case GRO_DROP:
4081 kfree_skb(skb);
4082 break;
4083
4084 case GRO_MERGED_FREE:
4085 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4086 kmem_cache_free(skbuff_head_cache, skb);
4087 else
4088 __kfree_skb(skb);
4089 break;
4090
4091 case GRO_HELD:
4092 case GRO_MERGED:
4093 break;
4094 }
4095
4096 return ret;
4097 }
4098
4099 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4100 {
4101 trace_napi_gro_receive_entry(skb);
4102
4103 skb_gro_reset_offset(skb);
4104
4105 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4106 }
4107 EXPORT_SYMBOL(napi_gro_receive);
4108
4109 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4110 {
4111 __skb_pull(skb, skb_headlen(skb));
4112 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4113 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4114 skb->vlan_tci = 0;
4115 skb->dev = napi->dev;
4116 skb->skb_iif = 0;
4117 skb->encapsulation = 0;
4118 skb_shinfo(skb)->gso_type = 0;
4119 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4120
4121 napi->skb = skb;
4122 }
4123
4124 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4125 {
4126 struct sk_buff *skb = napi->skb;
4127
4128 if (!skb) {
4129 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4130 napi->skb = skb;
4131 }
4132 return skb;
4133 }
4134 EXPORT_SYMBOL(napi_get_frags);
4135
4136 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4137 struct sk_buff *skb,
4138 gro_result_t ret)
4139 {
4140 switch (ret) {
4141 case GRO_NORMAL:
4142 case GRO_HELD:
4143 __skb_push(skb, ETH_HLEN);
4144 skb->protocol = eth_type_trans(skb, skb->dev);
4145 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4146 ret = GRO_DROP;
4147 break;
4148
4149 case GRO_DROP:
4150 case GRO_MERGED_FREE:
4151 napi_reuse_skb(napi, skb);
4152 break;
4153
4154 case GRO_MERGED:
4155 break;
4156 }
4157
4158 return ret;
4159 }
4160
4161 /* Upper GRO stack assumes network header starts at gro_offset=0
4162 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4163 * We copy ethernet header into skb->data to have a common layout.
4164 */
4165 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4166 {
4167 struct sk_buff *skb = napi->skb;
4168 const struct ethhdr *eth;
4169 unsigned int hlen = sizeof(*eth);
4170
4171 napi->skb = NULL;
4172
4173 skb_reset_mac_header(skb);
4174 skb_gro_reset_offset(skb);
4175
4176 eth = skb_gro_header_fast(skb, 0);
4177 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4178 eth = skb_gro_header_slow(skb, hlen, 0);
4179 if (unlikely(!eth)) {
4180 napi_reuse_skb(napi, skb);
4181 return NULL;
4182 }
4183 } else {
4184 gro_pull_from_frag0(skb, hlen);
4185 NAPI_GRO_CB(skb)->frag0 += hlen;
4186 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4187 }
4188 __skb_pull(skb, hlen);
4189
4190 /*
4191 * This works because the only protocols we care about don't require
4192 * special handling.
4193 * We'll fix it up properly in napi_frags_finish()
4194 */
4195 skb->protocol = eth->h_proto;
4196
4197 return skb;
4198 }
4199
4200 gro_result_t napi_gro_frags(struct napi_struct *napi)
4201 {
4202 struct sk_buff *skb = napi_frags_skb(napi);
4203
4204 if (!skb)
4205 return GRO_DROP;
4206
4207 trace_napi_gro_frags_entry(skb);
4208
4209 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4210 }
4211 EXPORT_SYMBOL(napi_gro_frags);
4212
4213 /*
4214 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4215 * Note: called with local irq disabled, but exits with local irq enabled.
4216 */
4217 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4218 {
4219 #ifdef CONFIG_RPS
4220 struct softnet_data *remsd = sd->rps_ipi_list;
4221
4222 if (remsd) {
4223 sd->rps_ipi_list = NULL;
4224
4225 local_irq_enable();
4226
4227 /* Send pending IPI's to kick RPS processing on remote cpus. */
4228 while (remsd) {
4229 struct softnet_data *next = remsd->rps_ipi_next;
4230
4231 if (cpu_online(remsd->cpu))
4232 smp_call_function_single_async(remsd->cpu,
4233 &remsd->csd);
4234 remsd = next;
4235 }
4236 } else
4237 #endif
4238 local_irq_enable();
4239 }
4240
4241 static int process_backlog(struct napi_struct *napi, int quota)
4242 {
4243 int work = 0;
4244 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4245
4246 #ifdef CONFIG_RPS
4247 /* Check if we have pending ipi, its better to send them now,
4248 * not waiting net_rx_action() end.
4249 */
4250 if (sd->rps_ipi_list) {
4251 local_irq_disable();
4252 net_rps_action_and_irq_enable(sd);
4253 }
4254 #endif
4255 napi->weight = weight_p;
4256 local_irq_disable();
4257 while (1) {
4258 struct sk_buff *skb;
4259
4260 while ((skb = __skb_dequeue(&sd->process_queue))) {
4261 local_irq_enable();
4262 __netif_receive_skb(skb);
4263 local_irq_disable();
4264 input_queue_head_incr(sd);
4265 if (++work >= quota) {
4266 local_irq_enable();
4267 return work;
4268 }
4269 }
4270
4271 rps_lock(sd);
4272 if (skb_queue_empty(&sd->input_pkt_queue)) {
4273 /*
4274 * Inline a custom version of __napi_complete().
4275 * only current cpu owns and manipulates this napi,
4276 * and NAPI_STATE_SCHED is the only possible flag set
4277 * on backlog.
4278 * We can use a plain write instead of clear_bit(),
4279 * and we dont need an smp_mb() memory barrier.
4280 */
4281 list_del(&napi->poll_list);
4282 napi->state = 0;
4283 rps_unlock(sd);
4284
4285 break;
4286 }
4287
4288 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4289 &sd->process_queue);
4290 rps_unlock(sd);
4291 }
4292 local_irq_enable();
4293
4294 return work;
4295 }
4296
4297 /**
4298 * __napi_schedule - schedule for receive
4299 * @n: entry to schedule
4300 *
4301 * The entry's receive function will be scheduled to run
4302 */
4303 void __napi_schedule(struct napi_struct *n)
4304 {
4305 unsigned long flags;
4306
4307 local_irq_save(flags);
4308 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4309 local_irq_restore(flags);
4310 }
4311 EXPORT_SYMBOL(__napi_schedule);
4312
4313 void __napi_complete(struct napi_struct *n)
4314 {
4315 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4316 BUG_ON(n->gro_list);
4317
4318 list_del(&n->poll_list);
4319 smp_mb__before_atomic();
4320 clear_bit(NAPI_STATE_SCHED, &n->state);
4321 }
4322 EXPORT_SYMBOL(__napi_complete);
4323
4324 void napi_complete(struct napi_struct *n)
4325 {
4326 unsigned long flags;
4327
4328 /*
4329 * don't let napi dequeue from the cpu poll list
4330 * just in case its running on a different cpu
4331 */
4332 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4333 return;
4334
4335 napi_gro_flush(n, false);
4336 local_irq_save(flags);
4337 __napi_complete(n);
4338 local_irq_restore(flags);
4339 }
4340 EXPORT_SYMBOL(napi_complete);
4341
4342 /* must be called under rcu_read_lock(), as we dont take a reference */
4343 struct napi_struct *napi_by_id(unsigned int napi_id)
4344 {
4345 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4346 struct napi_struct *napi;
4347
4348 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4349 if (napi->napi_id == napi_id)
4350 return napi;
4351
4352 return NULL;
4353 }
4354 EXPORT_SYMBOL_GPL(napi_by_id);
4355
4356 void napi_hash_add(struct napi_struct *napi)
4357 {
4358 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4359
4360 spin_lock(&napi_hash_lock);
4361
4362 /* 0 is not a valid id, we also skip an id that is taken
4363 * we expect both events to be extremely rare
4364 */
4365 napi->napi_id = 0;
4366 while (!napi->napi_id) {
4367 napi->napi_id = ++napi_gen_id;
4368 if (napi_by_id(napi->napi_id))
4369 napi->napi_id = 0;
4370 }
4371
4372 hlist_add_head_rcu(&napi->napi_hash_node,
4373 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4374
4375 spin_unlock(&napi_hash_lock);
4376 }
4377 }
4378 EXPORT_SYMBOL_GPL(napi_hash_add);
4379
4380 /* Warning : caller is responsible to make sure rcu grace period
4381 * is respected before freeing memory containing @napi
4382 */
4383 void napi_hash_del(struct napi_struct *napi)
4384 {
4385 spin_lock(&napi_hash_lock);
4386
4387 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4388 hlist_del_rcu(&napi->napi_hash_node);
4389
4390 spin_unlock(&napi_hash_lock);
4391 }
4392 EXPORT_SYMBOL_GPL(napi_hash_del);
4393
4394 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4395 int (*poll)(struct napi_struct *, int), int weight)
4396 {
4397 INIT_LIST_HEAD(&napi->poll_list);
4398 napi->gro_count = 0;
4399 napi->gro_list = NULL;
4400 napi->skb = NULL;
4401 napi->poll = poll;
4402 if (weight > NAPI_POLL_WEIGHT)
4403 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4404 weight, dev->name);
4405 napi->weight = weight;
4406 list_add(&napi->dev_list, &dev->napi_list);
4407 napi->dev = dev;
4408 #ifdef CONFIG_NETPOLL
4409 spin_lock_init(&napi->poll_lock);
4410 napi->poll_owner = -1;
4411 #endif
4412 set_bit(NAPI_STATE_SCHED, &napi->state);
4413 }
4414 EXPORT_SYMBOL(netif_napi_add);
4415
4416 void netif_napi_del(struct napi_struct *napi)
4417 {
4418 list_del_init(&napi->dev_list);
4419 napi_free_frags(napi);
4420
4421 kfree_skb_list(napi->gro_list);
4422 napi->gro_list = NULL;
4423 napi->gro_count = 0;
4424 }
4425 EXPORT_SYMBOL(netif_napi_del);
4426
4427 static void net_rx_action(struct softirq_action *h)
4428 {
4429 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4430 unsigned long time_limit = jiffies + 2;
4431 int budget = netdev_budget;
4432 void *have;
4433
4434 local_irq_disable();
4435
4436 while (!list_empty(&sd->poll_list)) {
4437 struct napi_struct *n;
4438 int work, weight;
4439
4440 /* If softirq window is exhuasted then punt.
4441 * Allow this to run for 2 jiffies since which will allow
4442 * an average latency of 1.5/HZ.
4443 */
4444 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4445 goto softnet_break;
4446
4447 local_irq_enable();
4448
4449 /* Even though interrupts have been re-enabled, this
4450 * access is safe because interrupts can only add new
4451 * entries to the tail of this list, and only ->poll()
4452 * calls can remove this head entry from the list.
4453 */
4454 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4455
4456 have = netpoll_poll_lock(n);
4457
4458 weight = n->weight;
4459
4460 /* This NAPI_STATE_SCHED test is for avoiding a race
4461 * with netpoll's poll_napi(). Only the entity which
4462 * obtains the lock and sees NAPI_STATE_SCHED set will
4463 * actually make the ->poll() call. Therefore we avoid
4464 * accidentally calling ->poll() when NAPI is not scheduled.
4465 */
4466 work = 0;
4467 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4468 work = n->poll(n, weight);
4469 trace_napi_poll(n);
4470 }
4471
4472 WARN_ON_ONCE(work > weight);
4473
4474 budget -= work;
4475
4476 local_irq_disable();
4477
4478 /* Drivers must not modify the NAPI state if they
4479 * consume the entire weight. In such cases this code
4480 * still "owns" the NAPI instance and therefore can
4481 * move the instance around on the list at-will.
4482 */
4483 if (unlikely(work == weight)) {
4484 if (unlikely(napi_disable_pending(n))) {
4485 local_irq_enable();
4486 napi_complete(n);
4487 local_irq_disable();
4488 } else {
4489 if (n->gro_list) {
4490 /* flush too old packets
4491 * If HZ < 1000, flush all packets.
4492 */
4493 local_irq_enable();
4494 napi_gro_flush(n, HZ >= 1000);
4495 local_irq_disable();
4496 }
4497 list_move_tail(&n->poll_list, &sd->poll_list);
4498 }
4499 }
4500
4501 netpoll_poll_unlock(have);
4502 }
4503 out:
4504 net_rps_action_and_irq_enable(sd);
4505
4506 return;
4507
4508 softnet_break:
4509 sd->time_squeeze++;
4510 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4511 goto out;
4512 }
4513
4514 struct netdev_adjacent {
4515 struct net_device *dev;
4516
4517 /* upper master flag, there can only be one master device per list */
4518 bool master;
4519
4520 /* counter for the number of times this device was added to us */
4521 u16 ref_nr;
4522
4523 /* private field for the users */
4524 void *private;
4525
4526 struct list_head list;
4527 struct rcu_head rcu;
4528 };
4529
4530 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4531 struct net_device *adj_dev,
4532 struct list_head *adj_list)
4533 {
4534 struct netdev_adjacent *adj;
4535
4536 list_for_each_entry(adj, adj_list, list) {
4537 if (adj->dev == adj_dev)
4538 return adj;
4539 }
4540 return NULL;
4541 }
4542
4543 /**
4544 * netdev_has_upper_dev - Check if device is linked to an upper device
4545 * @dev: device
4546 * @upper_dev: upper device to check
4547 *
4548 * Find out if a device is linked to specified upper device and return true
4549 * in case it is. Note that this checks only immediate upper device,
4550 * not through a complete stack of devices. The caller must hold the RTNL lock.
4551 */
4552 bool netdev_has_upper_dev(struct net_device *dev,
4553 struct net_device *upper_dev)
4554 {
4555 ASSERT_RTNL();
4556
4557 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4558 }
4559 EXPORT_SYMBOL(netdev_has_upper_dev);
4560
4561 /**
4562 * netdev_has_any_upper_dev - Check if device is linked to some device
4563 * @dev: device
4564 *
4565 * Find out if a device is linked to an upper device and return true in case
4566 * it is. The caller must hold the RTNL lock.
4567 */
4568 static bool netdev_has_any_upper_dev(struct net_device *dev)
4569 {
4570 ASSERT_RTNL();
4571
4572 return !list_empty(&dev->all_adj_list.upper);
4573 }
4574
4575 /**
4576 * netdev_master_upper_dev_get - Get master upper device
4577 * @dev: device
4578 *
4579 * Find a master upper device and return pointer to it or NULL in case
4580 * it's not there. The caller must hold the RTNL lock.
4581 */
4582 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4583 {
4584 struct netdev_adjacent *upper;
4585
4586 ASSERT_RTNL();
4587
4588 if (list_empty(&dev->adj_list.upper))
4589 return NULL;
4590
4591 upper = list_first_entry(&dev->adj_list.upper,
4592 struct netdev_adjacent, list);
4593 if (likely(upper->master))
4594 return upper->dev;
4595 return NULL;
4596 }
4597 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4598
4599 void *netdev_adjacent_get_private(struct list_head *adj_list)
4600 {
4601 struct netdev_adjacent *adj;
4602
4603 adj = list_entry(adj_list, struct netdev_adjacent, list);
4604
4605 return adj->private;
4606 }
4607 EXPORT_SYMBOL(netdev_adjacent_get_private);
4608
4609 /**
4610 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4611 * @dev: device
4612 * @iter: list_head ** of the current position
4613 *
4614 * Gets the next device from the dev's upper list, starting from iter
4615 * position. The caller must hold RCU read lock.
4616 */
4617 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4618 struct list_head **iter)
4619 {
4620 struct netdev_adjacent *upper;
4621
4622 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4623
4624 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4625
4626 if (&upper->list == &dev->adj_list.upper)
4627 return NULL;
4628
4629 *iter = &upper->list;
4630
4631 return upper->dev;
4632 }
4633 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4634
4635 /**
4636 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4637 * @dev: device
4638 * @iter: list_head ** of the current position
4639 *
4640 * Gets the next device from the dev's upper list, starting from iter
4641 * position. The caller must hold RCU read lock.
4642 */
4643 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4644 struct list_head **iter)
4645 {
4646 struct netdev_adjacent *upper;
4647
4648 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4649
4650 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4651
4652 if (&upper->list == &dev->all_adj_list.upper)
4653 return NULL;
4654
4655 *iter = &upper->list;
4656
4657 return upper->dev;
4658 }
4659 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4660
4661 /**
4662 * netdev_lower_get_next_private - Get the next ->private from the
4663 * lower neighbour list
4664 * @dev: device
4665 * @iter: list_head ** of the current position
4666 *
4667 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4668 * list, starting from iter position. The caller must hold either hold the
4669 * RTNL lock or its own locking that guarantees that the neighbour lower
4670 * list will remain unchainged.
4671 */
4672 void *netdev_lower_get_next_private(struct net_device *dev,
4673 struct list_head **iter)
4674 {
4675 struct netdev_adjacent *lower;
4676
4677 lower = list_entry(*iter, struct netdev_adjacent, list);
4678
4679 if (&lower->list == &dev->adj_list.lower)
4680 return NULL;
4681
4682 *iter = lower->list.next;
4683
4684 return lower->private;
4685 }
4686 EXPORT_SYMBOL(netdev_lower_get_next_private);
4687
4688 /**
4689 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4690 * lower neighbour list, RCU
4691 * variant
4692 * @dev: device
4693 * @iter: list_head ** of the current position
4694 *
4695 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4696 * list, starting from iter position. The caller must hold RCU read lock.
4697 */
4698 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4699 struct list_head **iter)
4700 {
4701 struct netdev_adjacent *lower;
4702
4703 WARN_ON_ONCE(!rcu_read_lock_held());
4704
4705 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4706
4707 if (&lower->list == &dev->adj_list.lower)
4708 return NULL;
4709
4710 *iter = &lower->list;
4711
4712 return lower->private;
4713 }
4714 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4715
4716 /**
4717 * netdev_lower_get_next - Get the next device from the lower neighbour
4718 * list
4719 * @dev: device
4720 * @iter: list_head ** of the current position
4721 *
4722 * Gets the next netdev_adjacent from the dev's lower neighbour
4723 * list, starting from iter position. The caller must hold RTNL lock or
4724 * its own locking that guarantees that the neighbour lower
4725 * list will remain unchainged.
4726 */
4727 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4728 {
4729 struct netdev_adjacent *lower;
4730
4731 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4732
4733 if (&lower->list == &dev->adj_list.lower)
4734 return NULL;
4735
4736 *iter = &lower->list;
4737
4738 return lower->dev;
4739 }
4740 EXPORT_SYMBOL(netdev_lower_get_next);
4741
4742 /**
4743 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4744 * lower neighbour list, RCU
4745 * variant
4746 * @dev: device
4747 *
4748 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4749 * list. The caller must hold RCU read lock.
4750 */
4751 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4752 {
4753 struct netdev_adjacent *lower;
4754
4755 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4756 struct netdev_adjacent, list);
4757 if (lower)
4758 return lower->private;
4759 return NULL;
4760 }
4761 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4762
4763 /**
4764 * netdev_master_upper_dev_get_rcu - Get master upper device
4765 * @dev: device
4766 *
4767 * Find a master upper device and return pointer to it or NULL in case
4768 * it's not there. The caller must hold the RCU read lock.
4769 */
4770 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4771 {
4772 struct netdev_adjacent *upper;
4773
4774 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4775 struct netdev_adjacent, list);
4776 if (upper && likely(upper->master))
4777 return upper->dev;
4778 return NULL;
4779 }
4780 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4781
4782 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4783 struct net_device *adj_dev,
4784 struct list_head *dev_list)
4785 {
4786 char linkname[IFNAMSIZ+7];
4787 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4788 "upper_%s" : "lower_%s", adj_dev->name);
4789 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4790 linkname);
4791 }
4792 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4793 char *name,
4794 struct list_head *dev_list)
4795 {
4796 char linkname[IFNAMSIZ+7];
4797 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4798 "upper_%s" : "lower_%s", name);
4799 sysfs_remove_link(&(dev->dev.kobj), linkname);
4800 }
4801
4802 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4803 struct net_device *adj_dev,
4804 struct list_head *dev_list)
4805 {
4806 return (dev_list == &dev->adj_list.upper ||
4807 dev_list == &dev->adj_list.lower) &&
4808 net_eq(dev_net(dev), dev_net(adj_dev));
4809 }
4810
4811 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4812 struct net_device *adj_dev,
4813 struct list_head *dev_list,
4814 void *private, bool master)
4815 {
4816 struct netdev_adjacent *adj;
4817 int ret;
4818
4819 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4820
4821 if (adj) {
4822 adj->ref_nr++;
4823 return 0;
4824 }
4825
4826 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4827 if (!adj)
4828 return -ENOMEM;
4829
4830 adj->dev = adj_dev;
4831 adj->master = master;
4832 adj->ref_nr = 1;
4833 adj->private = private;
4834 dev_hold(adj_dev);
4835
4836 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4837 adj_dev->name, dev->name, adj_dev->name);
4838
4839 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
4840 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4841 if (ret)
4842 goto free_adj;
4843 }
4844
4845 /* Ensure that master link is always the first item in list. */
4846 if (master) {
4847 ret = sysfs_create_link(&(dev->dev.kobj),
4848 &(adj_dev->dev.kobj), "master");
4849 if (ret)
4850 goto remove_symlinks;
4851
4852 list_add_rcu(&adj->list, dev_list);
4853 } else {
4854 list_add_tail_rcu(&adj->list, dev_list);
4855 }
4856
4857 return 0;
4858
4859 remove_symlinks:
4860 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
4861 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4862 free_adj:
4863 kfree(adj);
4864 dev_put(adj_dev);
4865
4866 return ret;
4867 }
4868
4869 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4870 struct net_device *adj_dev,
4871 struct list_head *dev_list)
4872 {
4873 struct netdev_adjacent *adj;
4874
4875 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4876
4877 if (!adj) {
4878 pr_err("tried to remove device %s from %s\n",
4879 dev->name, adj_dev->name);
4880 BUG();
4881 }
4882
4883 if (adj->ref_nr > 1) {
4884 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4885 adj->ref_nr-1);
4886 adj->ref_nr--;
4887 return;
4888 }
4889
4890 if (adj->master)
4891 sysfs_remove_link(&(dev->dev.kobj), "master");
4892
4893 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
4894 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4895
4896 list_del_rcu(&adj->list);
4897 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4898 adj_dev->name, dev->name, adj_dev->name);
4899 dev_put(adj_dev);
4900 kfree_rcu(adj, rcu);
4901 }
4902
4903 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4904 struct net_device *upper_dev,
4905 struct list_head *up_list,
4906 struct list_head *down_list,
4907 void *private, bool master)
4908 {
4909 int ret;
4910
4911 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4912 master);
4913 if (ret)
4914 return ret;
4915
4916 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4917 false);
4918 if (ret) {
4919 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4920 return ret;
4921 }
4922
4923 return 0;
4924 }
4925
4926 static int __netdev_adjacent_dev_link(struct net_device *dev,
4927 struct net_device *upper_dev)
4928 {
4929 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4930 &dev->all_adj_list.upper,
4931 &upper_dev->all_adj_list.lower,
4932 NULL, false);
4933 }
4934
4935 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4936 struct net_device *upper_dev,
4937 struct list_head *up_list,
4938 struct list_head *down_list)
4939 {
4940 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4941 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4942 }
4943
4944 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4945 struct net_device *upper_dev)
4946 {
4947 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4948 &dev->all_adj_list.upper,
4949 &upper_dev->all_adj_list.lower);
4950 }
4951
4952 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4953 struct net_device *upper_dev,
4954 void *private, bool master)
4955 {
4956 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4957
4958 if (ret)
4959 return ret;
4960
4961 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4962 &dev->adj_list.upper,
4963 &upper_dev->adj_list.lower,
4964 private, master);
4965 if (ret) {
4966 __netdev_adjacent_dev_unlink(dev, upper_dev);
4967 return ret;
4968 }
4969
4970 return 0;
4971 }
4972
4973 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4974 struct net_device *upper_dev)
4975 {
4976 __netdev_adjacent_dev_unlink(dev, upper_dev);
4977 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4978 &dev->adj_list.upper,
4979 &upper_dev->adj_list.lower);
4980 }
4981
4982 static int __netdev_upper_dev_link(struct net_device *dev,
4983 struct net_device *upper_dev, bool master,
4984 void *private)
4985 {
4986 struct netdev_adjacent *i, *j, *to_i, *to_j;
4987 int ret = 0;
4988
4989 ASSERT_RTNL();
4990
4991 if (dev == upper_dev)
4992 return -EBUSY;
4993
4994 /* To prevent loops, check if dev is not upper device to upper_dev. */
4995 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4996 return -EBUSY;
4997
4998 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4999 return -EEXIST;
5000
5001 if (master && netdev_master_upper_dev_get(dev))
5002 return -EBUSY;
5003
5004 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5005 master);
5006 if (ret)
5007 return ret;
5008
5009 /* Now that we linked these devs, make all the upper_dev's
5010 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5011 * versa, and don't forget the devices itself. All of these
5012 * links are non-neighbours.
5013 */
5014 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5015 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5016 pr_debug("Interlinking %s with %s, non-neighbour\n",
5017 i->dev->name, j->dev->name);
5018 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5019 if (ret)
5020 goto rollback_mesh;
5021 }
5022 }
5023
5024 /* add dev to every upper_dev's upper device */
5025 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5026 pr_debug("linking %s's upper device %s with %s\n",
5027 upper_dev->name, i->dev->name, dev->name);
5028 ret = __netdev_adjacent_dev_link(dev, i->dev);
5029 if (ret)
5030 goto rollback_upper_mesh;
5031 }
5032
5033 /* add upper_dev to every dev's lower device */
5034 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5035 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5036 i->dev->name, upper_dev->name);
5037 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5038 if (ret)
5039 goto rollback_lower_mesh;
5040 }
5041
5042 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5043 return 0;
5044
5045 rollback_lower_mesh:
5046 to_i = i;
5047 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5048 if (i == to_i)
5049 break;
5050 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5051 }
5052
5053 i = NULL;
5054
5055 rollback_upper_mesh:
5056 to_i = i;
5057 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5058 if (i == to_i)
5059 break;
5060 __netdev_adjacent_dev_unlink(dev, i->dev);
5061 }
5062
5063 i = j = NULL;
5064
5065 rollback_mesh:
5066 to_i = i;
5067 to_j = j;
5068 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5069 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5070 if (i == to_i && j == to_j)
5071 break;
5072 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5073 }
5074 if (i == to_i)
5075 break;
5076 }
5077
5078 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5079
5080 return ret;
5081 }
5082
5083 /**
5084 * netdev_upper_dev_link - Add a link to the upper device
5085 * @dev: device
5086 * @upper_dev: new upper device
5087 *
5088 * Adds a link to device which is upper to this one. The caller must hold
5089 * the RTNL lock. On a failure a negative errno code is returned.
5090 * On success the reference counts are adjusted and the function
5091 * returns zero.
5092 */
5093 int netdev_upper_dev_link(struct net_device *dev,
5094 struct net_device *upper_dev)
5095 {
5096 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5097 }
5098 EXPORT_SYMBOL(netdev_upper_dev_link);
5099
5100 /**
5101 * netdev_master_upper_dev_link - Add a master link to the upper device
5102 * @dev: device
5103 * @upper_dev: new upper device
5104 *
5105 * Adds a link to device which is upper to this one. In this case, only
5106 * one master upper device can be linked, although other non-master devices
5107 * might be linked as well. The caller must hold the RTNL lock.
5108 * On a failure a negative errno code is returned. On success the reference
5109 * counts are adjusted and the function returns zero.
5110 */
5111 int netdev_master_upper_dev_link(struct net_device *dev,
5112 struct net_device *upper_dev)
5113 {
5114 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5115 }
5116 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5117
5118 int netdev_master_upper_dev_link_private(struct net_device *dev,
5119 struct net_device *upper_dev,
5120 void *private)
5121 {
5122 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5123 }
5124 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5125
5126 /**
5127 * netdev_upper_dev_unlink - Removes a link to upper device
5128 * @dev: device
5129 * @upper_dev: new upper device
5130 *
5131 * Removes a link to device which is upper to this one. The caller must hold
5132 * the RTNL lock.
5133 */
5134 void netdev_upper_dev_unlink(struct net_device *dev,
5135 struct net_device *upper_dev)
5136 {
5137 struct netdev_adjacent *i, *j;
5138 ASSERT_RTNL();
5139
5140 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5141
5142 /* Here is the tricky part. We must remove all dev's lower
5143 * devices from all upper_dev's upper devices and vice
5144 * versa, to maintain the graph relationship.
5145 */
5146 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5147 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5148 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5149
5150 /* remove also the devices itself from lower/upper device
5151 * list
5152 */
5153 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5154 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5155
5156 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5157 __netdev_adjacent_dev_unlink(dev, i->dev);
5158
5159 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5160 }
5161 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5162
5163 void netdev_adjacent_add_links(struct net_device *dev)
5164 {
5165 struct netdev_adjacent *iter;
5166
5167 struct net *net = dev_net(dev);
5168
5169 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5170 if (!net_eq(net,dev_net(iter->dev)))
5171 continue;
5172 netdev_adjacent_sysfs_add(iter->dev, dev,
5173 &iter->dev->adj_list.lower);
5174 netdev_adjacent_sysfs_add(dev, iter->dev,
5175 &dev->adj_list.upper);
5176 }
5177
5178 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5179 if (!net_eq(net,dev_net(iter->dev)))
5180 continue;
5181 netdev_adjacent_sysfs_add(iter->dev, dev,
5182 &iter->dev->adj_list.upper);
5183 netdev_adjacent_sysfs_add(dev, iter->dev,
5184 &dev->adj_list.lower);
5185 }
5186 }
5187
5188 void netdev_adjacent_del_links(struct net_device *dev)
5189 {
5190 struct netdev_adjacent *iter;
5191
5192 struct net *net = dev_net(dev);
5193
5194 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5195 if (!net_eq(net,dev_net(iter->dev)))
5196 continue;
5197 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5198 &iter->dev->adj_list.lower);
5199 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5200 &dev->adj_list.upper);
5201 }
5202
5203 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5204 if (!net_eq(net,dev_net(iter->dev)))
5205 continue;
5206 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5207 &iter->dev->adj_list.upper);
5208 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5209 &dev->adj_list.lower);
5210 }
5211 }
5212
5213 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5214 {
5215 struct netdev_adjacent *iter;
5216
5217 struct net *net = dev_net(dev);
5218
5219 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5220 if (!net_eq(net,dev_net(iter->dev)))
5221 continue;
5222 netdev_adjacent_sysfs_del(iter->dev, oldname,
5223 &iter->dev->adj_list.lower);
5224 netdev_adjacent_sysfs_add(iter->dev, dev,
5225 &iter->dev->adj_list.lower);
5226 }
5227
5228 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5229 if (!net_eq(net,dev_net(iter->dev)))
5230 continue;
5231 netdev_adjacent_sysfs_del(iter->dev, oldname,
5232 &iter->dev->adj_list.upper);
5233 netdev_adjacent_sysfs_add(iter->dev, dev,
5234 &iter->dev->adj_list.upper);
5235 }
5236 }
5237
5238 void *netdev_lower_dev_get_private(struct net_device *dev,
5239 struct net_device *lower_dev)
5240 {
5241 struct netdev_adjacent *lower;
5242
5243 if (!lower_dev)
5244 return NULL;
5245 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5246 if (!lower)
5247 return NULL;
5248
5249 return lower->private;
5250 }
5251 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5252
5253
5254 int dev_get_nest_level(struct net_device *dev,
5255 bool (*type_check)(struct net_device *dev))
5256 {
5257 struct net_device *lower = NULL;
5258 struct list_head *iter;
5259 int max_nest = -1;
5260 int nest;
5261
5262 ASSERT_RTNL();
5263
5264 netdev_for_each_lower_dev(dev, lower, iter) {
5265 nest = dev_get_nest_level(lower, type_check);
5266 if (max_nest < nest)
5267 max_nest = nest;
5268 }
5269
5270 if (type_check(dev))
5271 max_nest++;
5272
5273 return max_nest;
5274 }
5275 EXPORT_SYMBOL(dev_get_nest_level);
5276
5277 static void dev_change_rx_flags(struct net_device *dev, int flags)
5278 {
5279 const struct net_device_ops *ops = dev->netdev_ops;
5280
5281 if (ops->ndo_change_rx_flags)
5282 ops->ndo_change_rx_flags(dev, flags);
5283 }
5284
5285 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5286 {
5287 unsigned int old_flags = dev->flags;
5288 kuid_t uid;
5289 kgid_t gid;
5290
5291 ASSERT_RTNL();
5292
5293 dev->flags |= IFF_PROMISC;
5294 dev->promiscuity += inc;
5295 if (dev->promiscuity == 0) {
5296 /*
5297 * Avoid overflow.
5298 * If inc causes overflow, untouch promisc and return error.
5299 */
5300 if (inc < 0)
5301 dev->flags &= ~IFF_PROMISC;
5302 else {
5303 dev->promiscuity -= inc;
5304 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5305 dev->name);
5306 return -EOVERFLOW;
5307 }
5308 }
5309 if (dev->flags != old_flags) {
5310 pr_info("device %s %s promiscuous mode\n",
5311 dev->name,
5312 dev->flags & IFF_PROMISC ? "entered" : "left");
5313 if (audit_enabled) {
5314 current_uid_gid(&uid, &gid);
5315 audit_log(current->audit_context, GFP_ATOMIC,
5316 AUDIT_ANOM_PROMISCUOUS,
5317 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5318 dev->name, (dev->flags & IFF_PROMISC),
5319 (old_flags & IFF_PROMISC),
5320 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5321 from_kuid(&init_user_ns, uid),
5322 from_kgid(&init_user_ns, gid),
5323 audit_get_sessionid(current));
5324 }
5325
5326 dev_change_rx_flags(dev, IFF_PROMISC);
5327 }
5328 if (notify)
5329 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5330 return 0;
5331 }
5332
5333 /**
5334 * dev_set_promiscuity - update promiscuity count on a device
5335 * @dev: device
5336 * @inc: modifier
5337 *
5338 * Add or remove promiscuity from a device. While the count in the device
5339 * remains above zero the interface remains promiscuous. Once it hits zero
5340 * the device reverts back to normal filtering operation. A negative inc
5341 * value is used to drop promiscuity on the device.
5342 * Return 0 if successful or a negative errno code on error.
5343 */
5344 int dev_set_promiscuity(struct net_device *dev, int inc)
5345 {
5346 unsigned int old_flags = dev->flags;
5347 int err;
5348
5349 err = __dev_set_promiscuity(dev, inc, true);
5350 if (err < 0)
5351 return err;
5352 if (dev->flags != old_flags)
5353 dev_set_rx_mode(dev);
5354 return err;
5355 }
5356 EXPORT_SYMBOL(dev_set_promiscuity);
5357
5358 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5359 {
5360 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5361
5362 ASSERT_RTNL();
5363
5364 dev->flags |= IFF_ALLMULTI;
5365 dev->allmulti += inc;
5366 if (dev->allmulti == 0) {
5367 /*
5368 * Avoid overflow.
5369 * If inc causes overflow, untouch allmulti and return error.
5370 */
5371 if (inc < 0)
5372 dev->flags &= ~IFF_ALLMULTI;
5373 else {
5374 dev->allmulti -= inc;
5375 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5376 dev->name);
5377 return -EOVERFLOW;
5378 }
5379 }
5380 if (dev->flags ^ old_flags) {
5381 dev_change_rx_flags(dev, IFF_ALLMULTI);
5382 dev_set_rx_mode(dev);
5383 if (notify)
5384 __dev_notify_flags(dev, old_flags,
5385 dev->gflags ^ old_gflags);
5386 }
5387 return 0;
5388 }
5389
5390 /**
5391 * dev_set_allmulti - update allmulti count on a device
5392 * @dev: device
5393 * @inc: modifier
5394 *
5395 * Add or remove reception of all multicast frames to a device. While the
5396 * count in the device remains above zero the interface remains listening
5397 * to all interfaces. Once it hits zero the device reverts back to normal
5398 * filtering operation. A negative @inc value is used to drop the counter
5399 * when releasing a resource needing all multicasts.
5400 * Return 0 if successful or a negative errno code on error.
5401 */
5402
5403 int dev_set_allmulti(struct net_device *dev, int inc)
5404 {
5405 return __dev_set_allmulti(dev, inc, true);
5406 }
5407 EXPORT_SYMBOL(dev_set_allmulti);
5408
5409 /*
5410 * Upload unicast and multicast address lists to device and
5411 * configure RX filtering. When the device doesn't support unicast
5412 * filtering it is put in promiscuous mode while unicast addresses
5413 * are present.
5414 */
5415 void __dev_set_rx_mode(struct net_device *dev)
5416 {
5417 const struct net_device_ops *ops = dev->netdev_ops;
5418
5419 /* dev_open will call this function so the list will stay sane. */
5420 if (!(dev->flags&IFF_UP))
5421 return;
5422
5423 if (!netif_device_present(dev))
5424 return;
5425
5426 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5427 /* Unicast addresses changes may only happen under the rtnl,
5428 * therefore calling __dev_set_promiscuity here is safe.
5429 */
5430 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5431 __dev_set_promiscuity(dev, 1, false);
5432 dev->uc_promisc = true;
5433 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5434 __dev_set_promiscuity(dev, -1, false);
5435 dev->uc_promisc = false;
5436 }
5437 }
5438
5439 if (ops->ndo_set_rx_mode)
5440 ops->ndo_set_rx_mode(dev);
5441 }
5442
5443 void dev_set_rx_mode(struct net_device *dev)
5444 {
5445 netif_addr_lock_bh(dev);
5446 __dev_set_rx_mode(dev);
5447 netif_addr_unlock_bh(dev);
5448 }
5449
5450 /**
5451 * dev_get_flags - get flags reported to userspace
5452 * @dev: device
5453 *
5454 * Get the combination of flag bits exported through APIs to userspace.
5455 */
5456 unsigned int dev_get_flags(const struct net_device *dev)
5457 {
5458 unsigned int flags;
5459
5460 flags = (dev->flags & ~(IFF_PROMISC |
5461 IFF_ALLMULTI |
5462 IFF_RUNNING |
5463 IFF_LOWER_UP |
5464 IFF_DORMANT)) |
5465 (dev->gflags & (IFF_PROMISC |
5466 IFF_ALLMULTI));
5467
5468 if (netif_running(dev)) {
5469 if (netif_oper_up(dev))
5470 flags |= IFF_RUNNING;
5471 if (netif_carrier_ok(dev))
5472 flags |= IFF_LOWER_UP;
5473 if (netif_dormant(dev))
5474 flags |= IFF_DORMANT;
5475 }
5476
5477 return flags;
5478 }
5479 EXPORT_SYMBOL(dev_get_flags);
5480
5481 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5482 {
5483 unsigned int old_flags = dev->flags;
5484 int ret;
5485
5486 ASSERT_RTNL();
5487
5488 /*
5489 * Set the flags on our device.
5490 */
5491
5492 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5493 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5494 IFF_AUTOMEDIA)) |
5495 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5496 IFF_ALLMULTI));
5497
5498 /*
5499 * Load in the correct multicast list now the flags have changed.
5500 */
5501
5502 if ((old_flags ^ flags) & IFF_MULTICAST)
5503 dev_change_rx_flags(dev, IFF_MULTICAST);
5504
5505 dev_set_rx_mode(dev);
5506
5507 /*
5508 * Have we downed the interface. We handle IFF_UP ourselves
5509 * according to user attempts to set it, rather than blindly
5510 * setting it.
5511 */
5512
5513 ret = 0;
5514 if ((old_flags ^ flags) & IFF_UP)
5515 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5516
5517 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5518 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5519 unsigned int old_flags = dev->flags;
5520
5521 dev->gflags ^= IFF_PROMISC;
5522
5523 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5524 if (dev->flags != old_flags)
5525 dev_set_rx_mode(dev);
5526 }
5527
5528 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5529 is important. Some (broken) drivers set IFF_PROMISC, when
5530 IFF_ALLMULTI is requested not asking us and not reporting.
5531 */
5532 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5533 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5534
5535 dev->gflags ^= IFF_ALLMULTI;
5536 __dev_set_allmulti(dev, inc, false);
5537 }
5538
5539 return ret;
5540 }
5541
5542 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5543 unsigned int gchanges)
5544 {
5545 unsigned int changes = dev->flags ^ old_flags;
5546
5547 if (gchanges)
5548 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5549
5550 if (changes & IFF_UP) {
5551 if (dev->flags & IFF_UP)
5552 call_netdevice_notifiers(NETDEV_UP, dev);
5553 else
5554 call_netdevice_notifiers(NETDEV_DOWN, dev);
5555 }
5556
5557 if (dev->flags & IFF_UP &&
5558 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5559 struct netdev_notifier_change_info change_info;
5560
5561 change_info.flags_changed = changes;
5562 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5563 &change_info.info);
5564 }
5565 }
5566
5567 /**
5568 * dev_change_flags - change device settings
5569 * @dev: device
5570 * @flags: device state flags
5571 *
5572 * Change settings on device based state flags. The flags are
5573 * in the userspace exported format.
5574 */
5575 int dev_change_flags(struct net_device *dev, unsigned int flags)
5576 {
5577 int ret;
5578 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5579
5580 ret = __dev_change_flags(dev, flags);
5581 if (ret < 0)
5582 return ret;
5583
5584 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5585 __dev_notify_flags(dev, old_flags, changes);
5586 return ret;
5587 }
5588 EXPORT_SYMBOL(dev_change_flags);
5589
5590 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5591 {
5592 const struct net_device_ops *ops = dev->netdev_ops;
5593
5594 if (ops->ndo_change_mtu)
5595 return ops->ndo_change_mtu(dev, new_mtu);
5596
5597 dev->mtu = new_mtu;
5598 return 0;
5599 }
5600
5601 /**
5602 * dev_set_mtu - Change maximum transfer unit
5603 * @dev: device
5604 * @new_mtu: new transfer unit
5605 *
5606 * Change the maximum transfer size of the network device.
5607 */
5608 int dev_set_mtu(struct net_device *dev, int new_mtu)
5609 {
5610 int err, orig_mtu;
5611
5612 if (new_mtu == dev->mtu)
5613 return 0;
5614
5615 /* MTU must be positive. */
5616 if (new_mtu < 0)
5617 return -EINVAL;
5618
5619 if (!netif_device_present(dev))
5620 return -ENODEV;
5621
5622 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5623 err = notifier_to_errno(err);
5624 if (err)
5625 return err;
5626
5627 orig_mtu = dev->mtu;
5628 err = __dev_set_mtu(dev, new_mtu);
5629
5630 if (!err) {
5631 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5632 err = notifier_to_errno(err);
5633 if (err) {
5634 /* setting mtu back and notifying everyone again,
5635 * so that they have a chance to revert changes.
5636 */
5637 __dev_set_mtu(dev, orig_mtu);
5638 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5639 }
5640 }
5641 return err;
5642 }
5643 EXPORT_SYMBOL(dev_set_mtu);
5644
5645 /**
5646 * dev_set_group - Change group this device belongs to
5647 * @dev: device
5648 * @new_group: group this device should belong to
5649 */
5650 void dev_set_group(struct net_device *dev, int new_group)
5651 {
5652 dev->group = new_group;
5653 }
5654 EXPORT_SYMBOL(dev_set_group);
5655
5656 /**
5657 * dev_set_mac_address - Change Media Access Control Address
5658 * @dev: device
5659 * @sa: new address
5660 *
5661 * Change the hardware (MAC) address of the device
5662 */
5663 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5664 {
5665 const struct net_device_ops *ops = dev->netdev_ops;
5666 int err;
5667
5668 if (!ops->ndo_set_mac_address)
5669 return -EOPNOTSUPP;
5670 if (sa->sa_family != dev->type)
5671 return -EINVAL;
5672 if (!netif_device_present(dev))
5673 return -ENODEV;
5674 err = ops->ndo_set_mac_address(dev, sa);
5675 if (err)
5676 return err;
5677 dev->addr_assign_type = NET_ADDR_SET;
5678 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5679 add_device_randomness(dev->dev_addr, dev->addr_len);
5680 return 0;
5681 }
5682 EXPORT_SYMBOL(dev_set_mac_address);
5683
5684 /**
5685 * dev_change_carrier - Change device carrier
5686 * @dev: device
5687 * @new_carrier: new value
5688 *
5689 * Change device carrier
5690 */
5691 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5692 {
5693 const struct net_device_ops *ops = dev->netdev_ops;
5694
5695 if (!ops->ndo_change_carrier)
5696 return -EOPNOTSUPP;
5697 if (!netif_device_present(dev))
5698 return -ENODEV;
5699 return ops->ndo_change_carrier(dev, new_carrier);
5700 }
5701 EXPORT_SYMBOL(dev_change_carrier);
5702
5703 /**
5704 * dev_get_phys_port_id - Get device physical port ID
5705 * @dev: device
5706 * @ppid: port ID
5707 *
5708 * Get device physical port ID
5709 */
5710 int dev_get_phys_port_id(struct net_device *dev,
5711 struct netdev_phys_port_id *ppid)
5712 {
5713 const struct net_device_ops *ops = dev->netdev_ops;
5714
5715 if (!ops->ndo_get_phys_port_id)
5716 return -EOPNOTSUPP;
5717 return ops->ndo_get_phys_port_id(dev, ppid);
5718 }
5719 EXPORT_SYMBOL(dev_get_phys_port_id);
5720
5721 /**
5722 * dev_new_index - allocate an ifindex
5723 * @net: the applicable net namespace
5724 *
5725 * Returns a suitable unique value for a new device interface
5726 * number. The caller must hold the rtnl semaphore or the
5727 * dev_base_lock to be sure it remains unique.
5728 */
5729 static int dev_new_index(struct net *net)
5730 {
5731 int ifindex = net->ifindex;
5732 for (;;) {
5733 if (++ifindex <= 0)
5734 ifindex = 1;
5735 if (!__dev_get_by_index(net, ifindex))
5736 return net->ifindex = ifindex;
5737 }
5738 }
5739
5740 /* Delayed registration/unregisteration */
5741 static LIST_HEAD(net_todo_list);
5742 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5743
5744 static void net_set_todo(struct net_device *dev)
5745 {
5746 list_add_tail(&dev->todo_list, &net_todo_list);
5747 dev_net(dev)->dev_unreg_count++;
5748 }
5749
5750 static void rollback_registered_many(struct list_head *head)
5751 {
5752 struct net_device *dev, *tmp;
5753 LIST_HEAD(close_head);
5754
5755 BUG_ON(dev_boot_phase);
5756 ASSERT_RTNL();
5757
5758 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5759 /* Some devices call without registering
5760 * for initialization unwind. Remove those
5761 * devices and proceed with the remaining.
5762 */
5763 if (dev->reg_state == NETREG_UNINITIALIZED) {
5764 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5765 dev->name, dev);
5766
5767 WARN_ON(1);
5768 list_del(&dev->unreg_list);
5769 continue;
5770 }
5771 dev->dismantle = true;
5772 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5773 }
5774
5775 /* If device is running, close it first. */
5776 list_for_each_entry(dev, head, unreg_list)
5777 list_add_tail(&dev->close_list, &close_head);
5778 dev_close_many(&close_head);
5779
5780 list_for_each_entry(dev, head, unreg_list) {
5781 /* And unlink it from device chain. */
5782 unlist_netdevice(dev);
5783
5784 dev->reg_state = NETREG_UNREGISTERING;
5785 }
5786
5787 synchronize_net();
5788
5789 list_for_each_entry(dev, head, unreg_list) {
5790 /* Shutdown queueing discipline. */
5791 dev_shutdown(dev);
5792
5793
5794 /* Notify protocols, that we are about to destroy
5795 this device. They should clean all the things.
5796 */
5797 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5798
5799 /*
5800 * Flush the unicast and multicast chains
5801 */
5802 dev_uc_flush(dev);
5803 dev_mc_flush(dev);
5804
5805 if (dev->netdev_ops->ndo_uninit)
5806 dev->netdev_ops->ndo_uninit(dev);
5807
5808 if (!dev->rtnl_link_ops ||
5809 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5810 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5811
5812 /* Notifier chain MUST detach us all upper devices. */
5813 WARN_ON(netdev_has_any_upper_dev(dev));
5814
5815 /* Remove entries from kobject tree */
5816 netdev_unregister_kobject(dev);
5817 #ifdef CONFIG_XPS
5818 /* Remove XPS queueing entries */
5819 netif_reset_xps_queues_gt(dev, 0);
5820 #endif
5821 }
5822
5823 synchronize_net();
5824
5825 list_for_each_entry(dev, head, unreg_list)
5826 dev_put(dev);
5827 }
5828
5829 static void rollback_registered(struct net_device *dev)
5830 {
5831 LIST_HEAD(single);
5832
5833 list_add(&dev->unreg_list, &single);
5834 rollback_registered_many(&single);
5835 list_del(&single);
5836 }
5837
5838 static netdev_features_t netdev_fix_features(struct net_device *dev,
5839 netdev_features_t features)
5840 {
5841 /* Fix illegal checksum combinations */
5842 if ((features & NETIF_F_HW_CSUM) &&
5843 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5844 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5845 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5846 }
5847
5848 /* TSO requires that SG is present as well. */
5849 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5850 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5851 features &= ~NETIF_F_ALL_TSO;
5852 }
5853
5854 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5855 !(features & NETIF_F_IP_CSUM)) {
5856 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5857 features &= ~NETIF_F_TSO;
5858 features &= ~NETIF_F_TSO_ECN;
5859 }
5860
5861 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5862 !(features & NETIF_F_IPV6_CSUM)) {
5863 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5864 features &= ~NETIF_F_TSO6;
5865 }
5866
5867 /* TSO ECN requires that TSO is present as well. */
5868 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5869 features &= ~NETIF_F_TSO_ECN;
5870
5871 /* Software GSO depends on SG. */
5872 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5873 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5874 features &= ~NETIF_F_GSO;
5875 }
5876
5877 /* UFO needs SG and checksumming */
5878 if (features & NETIF_F_UFO) {
5879 /* maybe split UFO into V4 and V6? */
5880 if (!((features & NETIF_F_GEN_CSUM) ||
5881 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5882 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5883 netdev_dbg(dev,
5884 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5885 features &= ~NETIF_F_UFO;
5886 }
5887
5888 if (!(features & NETIF_F_SG)) {
5889 netdev_dbg(dev,
5890 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5891 features &= ~NETIF_F_UFO;
5892 }
5893 }
5894
5895 #ifdef CONFIG_NET_RX_BUSY_POLL
5896 if (dev->netdev_ops->ndo_busy_poll)
5897 features |= NETIF_F_BUSY_POLL;
5898 else
5899 #endif
5900 features &= ~NETIF_F_BUSY_POLL;
5901
5902 return features;
5903 }
5904
5905 int __netdev_update_features(struct net_device *dev)
5906 {
5907 netdev_features_t features;
5908 int err = 0;
5909
5910 ASSERT_RTNL();
5911
5912 features = netdev_get_wanted_features(dev);
5913
5914 if (dev->netdev_ops->ndo_fix_features)
5915 features = dev->netdev_ops->ndo_fix_features(dev, features);
5916
5917 /* driver might be less strict about feature dependencies */
5918 features = netdev_fix_features(dev, features);
5919
5920 if (dev->features == features)
5921 return 0;
5922
5923 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5924 &dev->features, &features);
5925
5926 if (dev->netdev_ops->ndo_set_features)
5927 err = dev->netdev_ops->ndo_set_features(dev, features);
5928
5929 if (unlikely(err < 0)) {
5930 netdev_err(dev,
5931 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5932 err, &features, &dev->features);
5933 return -1;
5934 }
5935
5936 if (!err)
5937 dev->features = features;
5938
5939 return 1;
5940 }
5941
5942 /**
5943 * netdev_update_features - recalculate device features
5944 * @dev: the device to check
5945 *
5946 * Recalculate dev->features set and send notifications if it
5947 * has changed. Should be called after driver or hardware dependent
5948 * conditions might have changed that influence the features.
5949 */
5950 void netdev_update_features(struct net_device *dev)
5951 {
5952 if (__netdev_update_features(dev))
5953 netdev_features_change(dev);
5954 }
5955 EXPORT_SYMBOL(netdev_update_features);
5956
5957 /**
5958 * netdev_change_features - recalculate device features
5959 * @dev: the device to check
5960 *
5961 * Recalculate dev->features set and send notifications even
5962 * if they have not changed. Should be called instead of
5963 * netdev_update_features() if also dev->vlan_features might
5964 * have changed to allow the changes to be propagated to stacked
5965 * VLAN devices.
5966 */
5967 void netdev_change_features(struct net_device *dev)
5968 {
5969 __netdev_update_features(dev);
5970 netdev_features_change(dev);
5971 }
5972 EXPORT_SYMBOL(netdev_change_features);
5973
5974 /**
5975 * netif_stacked_transfer_operstate - transfer operstate
5976 * @rootdev: the root or lower level device to transfer state from
5977 * @dev: the device to transfer operstate to
5978 *
5979 * Transfer operational state from root to device. This is normally
5980 * called when a stacking relationship exists between the root
5981 * device and the device(a leaf device).
5982 */
5983 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5984 struct net_device *dev)
5985 {
5986 if (rootdev->operstate == IF_OPER_DORMANT)
5987 netif_dormant_on(dev);
5988 else
5989 netif_dormant_off(dev);
5990
5991 if (netif_carrier_ok(rootdev)) {
5992 if (!netif_carrier_ok(dev))
5993 netif_carrier_on(dev);
5994 } else {
5995 if (netif_carrier_ok(dev))
5996 netif_carrier_off(dev);
5997 }
5998 }
5999 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6000
6001 #ifdef CONFIG_SYSFS
6002 static int netif_alloc_rx_queues(struct net_device *dev)
6003 {
6004 unsigned int i, count = dev->num_rx_queues;
6005 struct netdev_rx_queue *rx;
6006
6007 BUG_ON(count < 1);
6008
6009 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
6010 if (!rx)
6011 return -ENOMEM;
6012
6013 dev->_rx = rx;
6014
6015 for (i = 0; i < count; i++)
6016 rx[i].dev = dev;
6017 return 0;
6018 }
6019 #endif
6020
6021 static void netdev_init_one_queue(struct net_device *dev,
6022 struct netdev_queue *queue, void *_unused)
6023 {
6024 /* Initialize queue lock */
6025 spin_lock_init(&queue->_xmit_lock);
6026 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6027 queue->xmit_lock_owner = -1;
6028 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6029 queue->dev = dev;
6030 #ifdef CONFIG_BQL
6031 dql_init(&queue->dql, HZ);
6032 #endif
6033 }
6034
6035 static void netif_free_tx_queues(struct net_device *dev)
6036 {
6037 kvfree(dev->_tx);
6038 }
6039
6040 static int netif_alloc_netdev_queues(struct net_device *dev)
6041 {
6042 unsigned int count = dev->num_tx_queues;
6043 struct netdev_queue *tx;
6044 size_t sz = count * sizeof(*tx);
6045
6046 BUG_ON(count < 1 || count > 0xffff);
6047
6048 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6049 if (!tx) {
6050 tx = vzalloc(sz);
6051 if (!tx)
6052 return -ENOMEM;
6053 }
6054 dev->_tx = tx;
6055
6056 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6057 spin_lock_init(&dev->tx_global_lock);
6058
6059 return 0;
6060 }
6061
6062 /**
6063 * register_netdevice - register a network device
6064 * @dev: device to register
6065 *
6066 * Take a completed network device structure and add it to the kernel
6067 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6068 * chain. 0 is returned on success. A negative errno code is returned
6069 * on a failure to set up the device, or if the name is a duplicate.
6070 *
6071 * Callers must hold the rtnl semaphore. You may want
6072 * register_netdev() instead of this.
6073 *
6074 * BUGS:
6075 * The locking appears insufficient to guarantee two parallel registers
6076 * will not get the same name.
6077 */
6078
6079 int register_netdevice(struct net_device *dev)
6080 {
6081 int ret;
6082 struct net *net = dev_net(dev);
6083
6084 BUG_ON(dev_boot_phase);
6085 ASSERT_RTNL();
6086
6087 might_sleep();
6088
6089 /* When net_device's are persistent, this will be fatal. */
6090 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6091 BUG_ON(!net);
6092
6093 spin_lock_init(&dev->addr_list_lock);
6094 netdev_set_addr_lockdep_class(dev);
6095
6096 dev->iflink = -1;
6097
6098 ret = dev_get_valid_name(net, dev, dev->name);
6099 if (ret < 0)
6100 goto out;
6101
6102 /* Init, if this function is available */
6103 if (dev->netdev_ops->ndo_init) {
6104 ret = dev->netdev_ops->ndo_init(dev);
6105 if (ret) {
6106 if (ret > 0)
6107 ret = -EIO;
6108 goto out;
6109 }
6110 }
6111
6112 if (((dev->hw_features | dev->features) &
6113 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6114 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6115 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6116 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6117 ret = -EINVAL;
6118 goto err_uninit;
6119 }
6120
6121 ret = -EBUSY;
6122 if (!dev->ifindex)
6123 dev->ifindex = dev_new_index(net);
6124 else if (__dev_get_by_index(net, dev->ifindex))
6125 goto err_uninit;
6126
6127 if (dev->iflink == -1)
6128 dev->iflink = dev->ifindex;
6129
6130 /* Transfer changeable features to wanted_features and enable
6131 * software offloads (GSO and GRO).
6132 */
6133 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6134 dev->features |= NETIF_F_SOFT_FEATURES;
6135 dev->wanted_features = dev->features & dev->hw_features;
6136
6137 if (!(dev->flags & IFF_LOOPBACK)) {
6138 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6139 }
6140
6141 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6142 */
6143 dev->vlan_features |= NETIF_F_HIGHDMA;
6144
6145 /* Make NETIF_F_SG inheritable to tunnel devices.
6146 */
6147 dev->hw_enc_features |= NETIF_F_SG;
6148
6149 /* Make NETIF_F_SG inheritable to MPLS.
6150 */
6151 dev->mpls_features |= NETIF_F_SG;
6152
6153 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6154 ret = notifier_to_errno(ret);
6155 if (ret)
6156 goto err_uninit;
6157
6158 ret = netdev_register_kobject(dev);
6159 if (ret)
6160 goto err_uninit;
6161 dev->reg_state = NETREG_REGISTERED;
6162
6163 __netdev_update_features(dev);
6164
6165 /*
6166 * Default initial state at registry is that the
6167 * device is present.
6168 */
6169
6170 set_bit(__LINK_STATE_PRESENT, &dev->state);
6171
6172 linkwatch_init_dev(dev);
6173
6174 dev_init_scheduler(dev);
6175 dev_hold(dev);
6176 list_netdevice(dev);
6177 add_device_randomness(dev->dev_addr, dev->addr_len);
6178
6179 /* If the device has permanent device address, driver should
6180 * set dev_addr and also addr_assign_type should be set to
6181 * NET_ADDR_PERM (default value).
6182 */
6183 if (dev->addr_assign_type == NET_ADDR_PERM)
6184 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6185
6186 /* Notify protocols, that a new device appeared. */
6187 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6188 ret = notifier_to_errno(ret);
6189 if (ret) {
6190 rollback_registered(dev);
6191 dev->reg_state = NETREG_UNREGISTERED;
6192 }
6193 /*
6194 * Prevent userspace races by waiting until the network
6195 * device is fully setup before sending notifications.
6196 */
6197 if (!dev->rtnl_link_ops ||
6198 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6199 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6200
6201 out:
6202 return ret;
6203
6204 err_uninit:
6205 if (dev->netdev_ops->ndo_uninit)
6206 dev->netdev_ops->ndo_uninit(dev);
6207 goto out;
6208 }
6209 EXPORT_SYMBOL(register_netdevice);
6210
6211 /**
6212 * init_dummy_netdev - init a dummy network device for NAPI
6213 * @dev: device to init
6214 *
6215 * This takes a network device structure and initialize the minimum
6216 * amount of fields so it can be used to schedule NAPI polls without
6217 * registering a full blown interface. This is to be used by drivers
6218 * that need to tie several hardware interfaces to a single NAPI
6219 * poll scheduler due to HW limitations.
6220 */
6221 int init_dummy_netdev(struct net_device *dev)
6222 {
6223 /* Clear everything. Note we don't initialize spinlocks
6224 * are they aren't supposed to be taken by any of the
6225 * NAPI code and this dummy netdev is supposed to be
6226 * only ever used for NAPI polls
6227 */
6228 memset(dev, 0, sizeof(struct net_device));
6229
6230 /* make sure we BUG if trying to hit standard
6231 * register/unregister code path
6232 */
6233 dev->reg_state = NETREG_DUMMY;
6234
6235 /* NAPI wants this */
6236 INIT_LIST_HEAD(&dev->napi_list);
6237
6238 /* a dummy interface is started by default */
6239 set_bit(__LINK_STATE_PRESENT, &dev->state);
6240 set_bit(__LINK_STATE_START, &dev->state);
6241
6242 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6243 * because users of this 'device' dont need to change
6244 * its refcount.
6245 */
6246
6247 return 0;
6248 }
6249 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6250
6251
6252 /**
6253 * register_netdev - register a network device
6254 * @dev: device to register
6255 *
6256 * Take a completed network device structure and add it to the kernel
6257 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6258 * chain. 0 is returned on success. A negative errno code is returned
6259 * on a failure to set up the device, or if the name is a duplicate.
6260 *
6261 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6262 * and expands the device name if you passed a format string to
6263 * alloc_netdev.
6264 */
6265 int register_netdev(struct net_device *dev)
6266 {
6267 int err;
6268
6269 rtnl_lock();
6270 err = register_netdevice(dev);
6271 rtnl_unlock();
6272 return err;
6273 }
6274 EXPORT_SYMBOL(register_netdev);
6275
6276 int netdev_refcnt_read(const struct net_device *dev)
6277 {
6278 int i, refcnt = 0;
6279
6280 for_each_possible_cpu(i)
6281 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6282 return refcnt;
6283 }
6284 EXPORT_SYMBOL(netdev_refcnt_read);
6285
6286 /**
6287 * netdev_wait_allrefs - wait until all references are gone.
6288 * @dev: target net_device
6289 *
6290 * This is called when unregistering network devices.
6291 *
6292 * Any protocol or device that holds a reference should register
6293 * for netdevice notification, and cleanup and put back the
6294 * reference if they receive an UNREGISTER event.
6295 * We can get stuck here if buggy protocols don't correctly
6296 * call dev_put.
6297 */
6298 static void netdev_wait_allrefs(struct net_device *dev)
6299 {
6300 unsigned long rebroadcast_time, warning_time;
6301 int refcnt;
6302
6303 linkwatch_forget_dev(dev);
6304
6305 rebroadcast_time = warning_time = jiffies;
6306 refcnt = netdev_refcnt_read(dev);
6307
6308 while (refcnt != 0) {
6309 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6310 rtnl_lock();
6311
6312 /* Rebroadcast unregister notification */
6313 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6314
6315 __rtnl_unlock();
6316 rcu_barrier();
6317 rtnl_lock();
6318
6319 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6320 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6321 &dev->state)) {
6322 /* We must not have linkwatch events
6323 * pending on unregister. If this
6324 * happens, we simply run the queue
6325 * unscheduled, resulting in a noop
6326 * for this device.
6327 */
6328 linkwatch_run_queue();
6329 }
6330
6331 __rtnl_unlock();
6332
6333 rebroadcast_time = jiffies;
6334 }
6335
6336 msleep(250);
6337
6338 refcnt = netdev_refcnt_read(dev);
6339
6340 if (time_after(jiffies, warning_time + 10 * HZ)) {
6341 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6342 dev->name, refcnt);
6343 warning_time = jiffies;
6344 }
6345 }
6346 }
6347
6348 /* The sequence is:
6349 *
6350 * rtnl_lock();
6351 * ...
6352 * register_netdevice(x1);
6353 * register_netdevice(x2);
6354 * ...
6355 * unregister_netdevice(y1);
6356 * unregister_netdevice(y2);
6357 * ...
6358 * rtnl_unlock();
6359 * free_netdev(y1);
6360 * free_netdev(y2);
6361 *
6362 * We are invoked by rtnl_unlock().
6363 * This allows us to deal with problems:
6364 * 1) We can delete sysfs objects which invoke hotplug
6365 * without deadlocking with linkwatch via keventd.
6366 * 2) Since we run with the RTNL semaphore not held, we can sleep
6367 * safely in order to wait for the netdev refcnt to drop to zero.
6368 *
6369 * We must not return until all unregister events added during
6370 * the interval the lock was held have been completed.
6371 */
6372 void netdev_run_todo(void)
6373 {
6374 struct list_head list;
6375
6376 /* Snapshot list, allow later requests */
6377 list_replace_init(&net_todo_list, &list);
6378
6379 __rtnl_unlock();
6380
6381
6382 /* Wait for rcu callbacks to finish before next phase */
6383 if (!list_empty(&list))
6384 rcu_barrier();
6385
6386 while (!list_empty(&list)) {
6387 struct net_device *dev
6388 = list_first_entry(&list, struct net_device, todo_list);
6389 list_del(&dev->todo_list);
6390
6391 rtnl_lock();
6392 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6393 __rtnl_unlock();
6394
6395 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6396 pr_err("network todo '%s' but state %d\n",
6397 dev->name, dev->reg_state);
6398 dump_stack();
6399 continue;
6400 }
6401
6402 dev->reg_state = NETREG_UNREGISTERED;
6403
6404 on_each_cpu(flush_backlog, dev, 1);
6405
6406 netdev_wait_allrefs(dev);
6407
6408 /* paranoia */
6409 BUG_ON(netdev_refcnt_read(dev));
6410 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6411 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6412 WARN_ON(dev->dn_ptr);
6413
6414 if (dev->destructor)
6415 dev->destructor(dev);
6416
6417 /* Report a network device has been unregistered */
6418 rtnl_lock();
6419 dev_net(dev)->dev_unreg_count--;
6420 __rtnl_unlock();
6421 wake_up(&netdev_unregistering_wq);
6422
6423 /* Free network device */
6424 kobject_put(&dev->dev.kobj);
6425 }
6426 }
6427
6428 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6429 * fields in the same order, with only the type differing.
6430 */
6431 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6432 const struct net_device_stats *netdev_stats)
6433 {
6434 #if BITS_PER_LONG == 64
6435 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6436 memcpy(stats64, netdev_stats, sizeof(*stats64));
6437 #else
6438 size_t i, n = sizeof(*stats64) / sizeof(u64);
6439 const unsigned long *src = (const unsigned long *)netdev_stats;
6440 u64 *dst = (u64 *)stats64;
6441
6442 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6443 sizeof(*stats64) / sizeof(u64));
6444 for (i = 0; i < n; i++)
6445 dst[i] = src[i];
6446 #endif
6447 }
6448 EXPORT_SYMBOL(netdev_stats_to_stats64);
6449
6450 /**
6451 * dev_get_stats - get network device statistics
6452 * @dev: device to get statistics from
6453 * @storage: place to store stats
6454 *
6455 * Get network statistics from device. Return @storage.
6456 * The device driver may provide its own method by setting
6457 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6458 * otherwise the internal statistics structure is used.
6459 */
6460 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6461 struct rtnl_link_stats64 *storage)
6462 {
6463 const struct net_device_ops *ops = dev->netdev_ops;
6464
6465 if (ops->ndo_get_stats64) {
6466 memset(storage, 0, sizeof(*storage));
6467 ops->ndo_get_stats64(dev, storage);
6468 } else if (ops->ndo_get_stats) {
6469 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6470 } else {
6471 netdev_stats_to_stats64(storage, &dev->stats);
6472 }
6473 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6474 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6475 return storage;
6476 }
6477 EXPORT_SYMBOL(dev_get_stats);
6478
6479 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6480 {
6481 struct netdev_queue *queue = dev_ingress_queue(dev);
6482
6483 #ifdef CONFIG_NET_CLS_ACT
6484 if (queue)
6485 return queue;
6486 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6487 if (!queue)
6488 return NULL;
6489 netdev_init_one_queue(dev, queue, NULL);
6490 queue->qdisc = &noop_qdisc;
6491 queue->qdisc_sleeping = &noop_qdisc;
6492 rcu_assign_pointer(dev->ingress_queue, queue);
6493 #endif
6494 return queue;
6495 }
6496
6497 static const struct ethtool_ops default_ethtool_ops;
6498
6499 void netdev_set_default_ethtool_ops(struct net_device *dev,
6500 const struct ethtool_ops *ops)
6501 {
6502 if (dev->ethtool_ops == &default_ethtool_ops)
6503 dev->ethtool_ops = ops;
6504 }
6505 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6506
6507 void netdev_freemem(struct net_device *dev)
6508 {
6509 char *addr = (char *)dev - dev->padded;
6510
6511 kvfree(addr);
6512 }
6513
6514 /**
6515 * alloc_netdev_mqs - allocate network device
6516 * @sizeof_priv: size of private data to allocate space for
6517 * @name: device name format string
6518 * @name_assign_type: origin of device name
6519 * @setup: callback to initialize device
6520 * @txqs: the number of TX subqueues to allocate
6521 * @rxqs: the number of RX subqueues to allocate
6522 *
6523 * Allocates a struct net_device with private data area for driver use
6524 * and performs basic initialization. Also allocates subqueue structs
6525 * for each queue on the device.
6526 */
6527 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6528 unsigned char name_assign_type,
6529 void (*setup)(struct net_device *),
6530 unsigned int txqs, unsigned int rxqs)
6531 {
6532 struct net_device *dev;
6533 size_t alloc_size;
6534 struct net_device *p;
6535
6536 BUG_ON(strlen(name) >= sizeof(dev->name));
6537
6538 if (txqs < 1) {
6539 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6540 return NULL;
6541 }
6542
6543 #ifdef CONFIG_SYSFS
6544 if (rxqs < 1) {
6545 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6546 return NULL;
6547 }
6548 #endif
6549
6550 alloc_size = sizeof(struct net_device);
6551 if (sizeof_priv) {
6552 /* ensure 32-byte alignment of private area */
6553 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6554 alloc_size += sizeof_priv;
6555 }
6556 /* ensure 32-byte alignment of whole construct */
6557 alloc_size += NETDEV_ALIGN - 1;
6558
6559 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6560 if (!p)
6561 p = vzalloc(alloc_size);
6562 if (!p)
6563 return NULL;
6564
6565 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6566 dev->padded = (char *)dev - (char *)p;
6567
6568 dev->pcpu_refcnt = alloc_percpu(int);
6569 if (!dev->pcpu_refcnt)
6570 goto free_dev;
6571
6572 if (dev_addr_init(dev))
6573 goto free_pcpu;
6574
6575 dev_mc_init(dev);
6576 dev_uc_init(dev);
6577
6578 dev_net_set(dev, &init_net);
6579
6580 dev->gso_max_size = GSO_MAX_SIZE;
6581 dev->gso_max_segs = GSO_MAX_SEGS;
6582
6583 INIT_LIST_HEAD(&dev->napi_list);
6584 INIT_LIST_HEAD(&dev->unreg_list);
6585 INIT_LIST_HEAD(&dev->close_list);
6586 INIT_LIST_HEAD(&dev->link_watch_list);
6587 INIT_LIST_HEAD(&dev->adj_list.upper);
6588 INIT_LIST_HEAD(&dev->adj_list.lower);
6589 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6590 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6591 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6592 setup(dev);
6593
6594 dev->num_tx_queues = txqs;
6595 dev->real_num_tx_queues = txqs;
6596 if (netif_alloc_netdev_queues(dev))
6597 goto free_all;
6598
6599 #ifdef CONFIG_SYSFS
6600 dev->num_rx_queues = rxqs;
6601 dev->real_num_rx_queues = rxqs;
6602 if (netif_alloc_rx_queues(dev))
6603 goto free_all;
6604 #endif
6605
6606 strcpy(dev->name, name);
6607 dev->name_assign_type = name_assign_type;
6608 dev->group = INIT_NETDEV_GROUP;
6609 if (!dev->ethtool_ops)
6610 dev->ethtool_ops = &default_ethtool_ops;
6611 return dev;
6612
6613 free_all:
6614 free_netdev(dev);
6615 return NULL;
6616
6617 free_pcpu:
6618 free_percpu(dev->pcpu_refcnt);
6619 free_dev:
6620 netdev_freemem(dev);
6621 return NULL;
6622 }
6623 EXPORT_SYMBOL(alloc_netdev_mqs);
6624
6625 /**
6626 * free_netdev - free network device
6627 * @dev: device
6628 *
6629 * This function does the last stage of destroying an allocated device
6630 * interface. The reference to the device object is released.
6631 * If this is the last reference then it will be freed.
6632 */
6633 void free_netdev(struct net_device *dev)
6634 {
6635 struct napi_struct *p, *n;
6636
6637 release_net(dev_net(dev));
6638
6639 netif_free_tx_queues(dev);
6640 #ifdef CONFIG_SYSFS
6641 kfree(dev->_rx);
6642 #endif
6643
6644 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6645
6646 /* Flush device addresses */
6647 dev_addr_flush(dev);
6648
6649 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6650 netif_napi_del(p);
6651
6652 free_percpu(dev->pcpu_refcnt);
6653 dev->pcpu_refcnt = NULL;
6654
6655 /* Compatibility with error handling in drivers */
6656 if (dev->reg_state == NETREG_UNINITIALIZED) {
6657 netdev_freemem(dev);
6658 return;
6659 }
6660
6661 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6662 dev->reg_state = NETREG_RELEASED;
6663
6664 /* will free via device release */
6665 put_device(&dev->dev);
6666 }
6667 EXPORT_SYMBOL(free_netdev);
6668
6669 /**
6670 * synchronize_net - Synchronize with packet receive processing
6671 *
6672 * Wait for packets currently being received to be done.
6673 * Does not block later packets from starting.
6674 */
6675 void synchronize_net(void)
6676 {
6677 might_sleep();
6678 if (rtnl_is_locked())
6679 synchronize_rcu_expedited();
6680 else
6681 synchronize_rcu();
6682 }
6683 EXPORT_SYMBOL(synchronize_net);
6684
6685 /**
6686 * unregister_netdevice_queue - remove device from the kernel
6687 * @dev: device
6688 * @head: list
6689 *
6690 * This function shuts down a device interface and removes it
6691 * from the kernel tables.
6692 * If head not NULL, device is queued to be unregistered later.
6693 *
6694 * Callers must hold the rtnl semaphore. You may want
6695 * unregister_netdev() instead of this.
6696 */
6697
6698 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6699 {
6700 ASSERT_RTNL();
6701
6702 if (head) {
6703 list_move_tail(&dev->unreg_list, head);
6704 } else {
6705 rollback_registered(dev);
6706 /* Finish processing unregister after unlock */
6707 net_set_todo(dev);
6708 }
6709 }
6710 EXPORT_SYMBOL(unregister_netdevice_queue);
6711
6712 /**
6713 * unregister_netdevice_many - unregister many devices
6714 * @head: list of devices
6715 *
6716 * Note: As most callers use a stack allocated list_head,
6717 * we force a list_del() to make sure stack wont be corrupted later.
6718 */
6719 void unregister_netdevice_many(struct list_head *head)
6720 {
6721 struct net_device *dev;
6722
6723 if (!list_empty(head)) {
6724 rollback_registered_many(head);
6725 list_for_each_entry(dev, head, unreg_list)
6726 net_set_todo(dev);
6727 list_del(head);
6728 }
6729 }
6730 EXPORT_SYMBOL(unregister_netdevice_many);
6731
6732 /**
6733 * unregister_netdev - remove device from the kernel
6734 * @dev: device
6735 *
6736 * This function shuts down a device interface and removes it
6737 * from the kernel tables.
6738 *
6739 * This is just a wrapper for unregister_netdevice that takes
6740 * the rtnl semaphore. In general you want to use this and not
6741 * unregister_netdevice.
6742 */
6743 void unregister_netdev(struct net_device *dev)
6744 {
6745 rtnl_lock();
6746 unregister_netdevice(dev);
6747 rtnl_unlock();
6748 }
6749 EXPORT_SYMBOL(unregister_netdev);
6750
6751 /**
6752 * dev_change_net_namespace - move device to different nethost namespace
6753 * @dev: device
6754 * @net: network namespace
6755 * @pat: If not NULL name pattern to try if the current device name
6756 * is already taken in the destination network namespace.
6757 *
6758 * This function shuts down a device interface and moves it
6759 * to a new network namespace. On success 0 is returned, on
6760 * a failure a netagive errno code is returned.
6761 *
6762 * Callers must hold the rtnl semaphore.
6763 */
6764
6765 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6766 {
6767 int err;
6768
6769 ASSERT_RTNL();
6770
6771 /* Don't allow namespace local devices to be moved. */
6772 err = -EINVAL;
6773 if (dev->features & NETIF_F_NETNS_LOCAL)
6774 goto out;
6775
6776 /* Ensure the device has been registrered */
6777 if (dev->reg_state != NETREG_REGISTERED)
6778 goto out;
6779
6780 /* Get out if there is nothing todo */
6781 err = 0;
6782 if (net_eq(dev_net(dev), net))
6783 goto out;
6784
6785 /* Pick the destination device name, and ensure
6786 * we can use it in the destination network namespace.
6787 */
6788 err = -EEXIST;
6789 if (__dev_get_by_name(net, dev->name)) {
6790 /* We get here if we can't use the current device name */
6791 if (!pat)
6792 goto out;
6793 if (dev_get_valid_name(net, dev, pat) < 0)
6794 goto out;
6795 }
6796
6797 /*
6798 * And now a mini version of register_netdevice unregister_netdevice.
6799 */
6800
6801 /* If device is running close it first. */
6802 dev_close(dev);
6803
6804 /* And unlink it from device chain */
6805 err = -ENODEV;
6806 unlist_netdevice(dev);
6807
6808 synchronize_net();
6809
6810 /* Shutdown queueing discipline. */
6811 dev_shutdown(dev);
6812
6813 /* Notify protocols, that we are about to destroy
6814 this device. They should clean all the things.
6815
6816 Note that dev->reg_state stays at NETREG_REGISTERED.
6817 This is wanted because this way 8021q and macvlan know
6818 the device is just moving and can keep their slaves up.
6819 */
6820 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6821 rcu_barrier();
6822 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6823 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6824
6825 /*
6826 * Flush the unicast and multicast chains
6827 */
6828 dev_uc_flush(dev);
6829 dev_mc_flush(dev);
6830
6831 /* Send a netdev-removed uevent to the old namespace */
6832 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6833 netdev_adjacent_del_links(dev);
6834
6835 /* Actually switch the network namespace */
6836 dev_net_set(dev, net);
6837
6838 /* If there is an ifindex conflict assign a new one */
6839 if (__dev_get_by_index(net, dev->ifindex)) {
6840 int iflink = (dev->iflink == dev->ifindex);
6841 dev->ifindex = dev_new_index(net);
6842 if (iflink)
6843 dev->iflink = dev->ifindex;
6844 }
6845
6846 /* Send a netdev-add uevent to the new namespace */
6847 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6848 netdev_adjacent_add_links(dev);
6849
6850 /* Fixup kobjects */
6851 err = device_rename(&dev->dev, dev->name);
6852 WARN_ON(err);
6853
6854 /* Add the device back in the hashes */
6855 list_netdevice(dev);
6856
6857 /* Notify protocols, that a new device appeared. */
6858 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6859
6860 /*
6861 * Prevent userspace races by waiting until the network
6862 * device is fully setup before sending notifications.
6863 */
6864 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6865
6866 synchronize_net();
6867 err = 0;
6868 out:
6869 return err;
6870 }
6871 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6872
6873 static int dev_cpu_callback(struct notifier_block *nfb,
6874 unsigned long action,
6875 void *ocpu)
6876 {
6877 struct sk_buff **list_skb;
6878 struct sk_buff *skb;
6879 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6880 struct softnet_data *sd, *oldsd;
6881
6882 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6883 return NOTIFY_OK;
6884
6885 local_irq_disable();
6886 cpu = smp_processor_id();
6887 sd = &per_cpu(softnet_data, cpu);
6888 oldsd = &per_cpu(softnet_data, oldcpu);
6889
6890 /* Find end of our completion_queue. */
6891 list_skb = &sd->completion_queue;
6892 while (*list_skb)
6893 list_skb = &(*list_skb)->next;
6894 /* Append completion queue from offline CPU. */
6895 *list_skb = oldsd->completion_queue;
6896 oldsd->completion_queue = NULL;
6897
6898 /* Append output queue from offline CPU. */
6899 if (oldsd->output_queue) {
6900 *sd->output_queue_tailp = oldsd->output_queue;
6901 sd->output_queue_tailp = oldsd->output_queue_tailp;
6902 oldsd->output_queue = NULL;
6903 oldsd->output_queue_tailp = &oldsd->output_queue;
6904 }
6905 /* Append NAPI poll list from offline CPU. */
6906 if (!list_empty(&oldsd->poll_list)) {
6907 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6908 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6909 }
6910
6911 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6912 local_irq_enable();
6913
6914 /* Process offline CPU's input_pkt_queue */
6915 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6916 netif_rx_internal(skb);
6917 input_queue_head_incr(oldsd);
6918 }
6919 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6920 netif_rx_internal(skb);
6921 input_queue_head_incr(oldsd);
6922 }
6923
6924 return NOTIFY_OK;
6925 }
6926
6927
6928 /**
6929 * netdev_increment_features - increment feature set by one
6930 * @all: current feature set
6931 * @one: new feature set
6932 * @mask: mask feature set
6933 *
6934 * Computes a new feature set after adding a device with feature set
6935 * @one to the master device with current feature set @all. Will not
6936 * enable anything that is off in @mask. Returns the new feature set.
6937 */
6938 netdev_features_t netdev_increment_features(netdev_features_t all,
6939 netdev_features_t one, netdev_features_t mask)
6940 {
6941 if (mask & NETIF_F_GEN_CSUM)
6942 mask |= NETIF_F_ALL_CSUM;
6943 mask |= NETIF_F_VLAN_CHALLENGED;
6944
6945 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6946 all &= one | ~NETIF_F_ALL_FOR_ALL;
6947
6948 /* If one device supports hw checksumming, set for all. */
6949 if (all & NETIF_F_GEN_CSUM)
6950 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6951
6952 return all;
6953 }
6954 EXPORT_SYMBOL(netdev_increment_features);
6955
6956 static struct hlist_head * __net_init netdev_create_hash(void)
6957 {
6958 int i;
6959 struct hlist_head *hash;
6960
6961 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6962 if (hash != NULL)
6963 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6964 INIT_HLIST_HEAD(&hash[i]);
6965
6966 return hash;
6967 }
6968
6969 /* Initialize per network namespace state */
6970 static int __net_init netdev_init(struct net *net)
6971 {
6972 if (net != &init_net)
6973 INIT_LIST_HEAD(&net->dev_base_head);
6974
6975 net->dev_name_head = netdev_create_hash();
6976 if (net->dev_name_head == NULL)
6977 goto err_name;
6978
6979 net->dev_index_head = netdev_create_hash();
6980 if (net->dev_index_head == NULL)
6981 goto err_idx;
6982
6983 return 0;
6984
6985 err_idx:
6986 kfree(net->dev_name_head);
6987 err_name:
6988 return -ENOMEM;
6989 }
6990
6991 /**
6992 * netdev_drivername - network driver for the device
6993 * @dev: network device
6994 *
6995 * Determine network driver for device.
6996 */
6997 const char *netdev_drivername(const struct net_device *dev)
6998 {
6999 const struct device_driver *driver;
7000 const struct device *parent;
7001 const char *empty = "";
7002
7003 parent = dev->dev.parent;
7004 if (!parent)
7005 return empty;
7006
7007 driver = parent->driver;
7008 if (driver && driver->name)
7009 return driver->name;
7010 return empty;
7011 }
7012
7013 static int __netdev_printk(const char *level, const struct net_device *dev,
7014 struct va_format *vaf)
7015 {
7016 int r;
7017
7018 if (dev && dev->dev.parent) {
7019 r = dev_printk_emit(level[1] - '0',
7020 dev->dev.parent,
7021 "%s %s %s%s: %pV",
7022 dev_driver_string(dev->dev.parent),
7023 dev_name(dev->dev.parent),
7024 netdev_name(dev), netdev_reg_state(dev),
7025 vaf);
7026 } else if (dev) {
7027 r = printk("%s%s%s: %pV", level, netdev_name(dev),
7028 netdev_reg_state(dev), vaf);
7029 } else {
7030 r = printk("%s(NULL net_device): %pV", level, vaf);
7031 }
7032
7033 return r;
7034 }
7035
7036 int netdev_printk(const char *level, const struct net_device *dev,
7037 const char *format, ...)
7038 {
7039 struct va_format vaf;
7040 va_list args;
7041 int r;
7042
7043 va_start(args, format);
7044
7045 vaf.fmt = format;
7046 vaf.va = &args;
7047
7048 r = __netdev_printk(level, dev, &vaf);
7049
7050 va_end(args);
7051
7052 return r;
7053 }
7054 EXPORT_SYMBOL(netdev_printk);
7055
7056 #define define_netdev_printk_level(func, level) \
7057 int func(const struct net_device *dev, const char *fmt, ...) \
7058 { \
7059 int r; \
7060 struct va_format vaf; \
7061 va_list args; \
7062 \
7063 va_start(args, fmt); \
7064 \
7065 vaf.fmt = fmt; \
7066 vaf.va = &args; \
7067 \
7068 r = __netdev_printk(level, dev, &vaf); \
7069 \
7070 va_end(args); \
7071 \
7072 return r; \
7073 } \
7074 EXPORT_SYMBOL(func);
7075
7076 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7077 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7078 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7079 define_netdev_printk_level(netdev_err, KERN_ERR);
7080 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7081 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7082 define_netdev_printk_level(netdev_info, KERN_INFO);
7083
7084 static void __net_exit netdev_exit(struct net *net)
7085 {
7086 kfree(net->dev_name_head);
7087 kfree(net->dev_index_head);
7088 }
7089
7090 static struct pernet_operations __net_initdata netdev_net_ops = {
7091 .init = netdev_init,
7092 .exit = netdev_exit,
7093 };
7094
7095 static void __net_exit default_device_exit(struct net *net)
7096 {
7097 struct net_device *dev, *aux;
7098 /*
7099 * Push all migratable network devices back to the
7100 * initial network namespace
7101 */
7102 rtnl_lock();
7103 for_each_netdev_safe(net, dev, aux) {
7104 int err;
7105 char fb_name[IFNAMSIZ];
7106
7107 /* Ignore unmoveable devices (i.e. loopback) */
7108 if (dev->features & NETIF_F_NETNS_LOCAL)
7109 continue;
7110
7111 /* Leave virtual devices for the generic cleanup */
7112 if (dev->rtnl_link_ops)
7113 continue;
7114
7115 /* Push remaining network devices to init_net */
7116 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7117 err = dev_change_net_namespace(dev, &init_net, fb_name);
7118 if (err) {
7119 pr_emerg("%s: failed to move %s to init_net: %d\n",
7120 __func__, dev->name, err);
7121 BUG();
7122 }
7123 }
7124 rtnl_unlock();
7125 }
7126
7127 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7128 {
7129 /* Return with the rtnl_lock held when there are no network
7130 * devices unregistering in any network namespace in net_list.
7131 */
7132 struct net *net;
7133 bool unregistering;
7134 DEFINE_WAIT(wait);
7135
7136 for (;;) {
7137 prepare_to_wait(&netdev_unregistering_wq, &wait,
7138 TASK_UNINTERRUPTIBLE);
7139 unregistering = false;
7140 rtnl_lock();
7141 list_for_each_entry(net, net_list, exit_list) {
7142 if (net->dev_unreg_count > 0) {
7143 unregistering = true;
7144 break;
7145 }
7146 }
7147 if (!unregistering)
7148 break;
7149 __rtnl_unlock();
7150 schedule();
7151 }
7152 finish_wait(&netdev_unregistering_wq, &wait);
7153 }
7154
7155 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7156 {
7157 /* At exit all network devices most be removed from a network
7158 * namespace. Do this in the reverse order of registration.
7159 * Do this across as many network namespaces as possible to
7160 * improve batching efficiency.
7161 */
7162 struct net_device *dev;
7163 struct net *net;
7164 LIST_HEAD(dev_kill_list);
7165
7166 /* To prevent network device cleanup code from dereferencing
7167 * loopback devices or network devices that have been freed
7168 * wait here for all pending unregistrations to complete,
7169 * before unregistring the loopback device and allowing the
7170 * network namespace be freed.
7171 *
7172 * The netdev todo list containing all network devices
7173 * unregistrations that happen in default_device_exit_batch
7174 * will run in the rtnl_unlock() at the end of
7175 * default_device_exit_batch.
7176 */
7177 rtnl_lock_unregistering(net_list);
7178 list_for_each_entry(net, net_list, exit_list) {
7179 for_each_netdev_reverse(net, dev) {
7180 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7181 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7182 else
7183 unregister_netdevice_queue(dev, &dev_kill_list);
7184 }
7185 }
7186 unregister_netdevice_many(&dev_kill_list);
7187 rtnl_unlock();
7188 }
7189
7190 static struct pernet_operations __net_initdata default_device_ops = {
7191 .exit = default_device_exit,
7192 .exit_batch = default_device_exit_batch,
7193 };
7194
7195 /*
7196 * Initialize the DEV module. At boot time this walks the device list and
7197 * unhooks any devices that fail to initialise (normally hardware not
7198 * present) and leaves us with a valid list of present and active devices.
7199 *
7200 */
7201
7202 /*
7203 * This is called single threaded during boot, so no need
7204 * to take the rtnl semaphore.
7205 */
7206 static int __init net_dev_init(void)
7207 {
7208 int i, rc = -ENOMEM;
7209
7210 BUG_ON(!dev_boot_phase);
7211
7212 if (dev_proc_init())
7213 goto out;
7214
7215 if (netdev_kobject_init())
7216 goto out;
7217
7218 INIT_LIST_HEAD(&ptype_all);
7219 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7220 INIT_LIST_HEAD(&ptype_base[i]);
7221
7222 INIT_LIST_HEAD(&offload_base);
7223
7224 if (register_pernet_subsys(&netdev_net_ops))
7225 goto out;
7226
7227 /*
7228 * Initialise the packet receive queues.
7229 */
7230
7231 for_each_possible_cpu(i) {
7232 struct softnet_data *sd = &per_cpu(softnet_data, i);
7233
7234 skb_queue_head_init(&sd->input_pkt_queue);
7235 skb_queue_head_init(&sd->process_queue);
7236 INIT_LIST_HEAD(&sd->poll_list);
7237 sd->output_queue_tailp = &sd->output_queue;
7238 #ifdef CONFIG_RPS
7239 sd->csd.func = rps_trigger_softirq;
7240 sd->csd.info = sd;
7241 sd->cpu = i;
7242 #endif
7243
7244 sd->backlog.poll = process_backlog;
7245 sd->backlog.weight = weight_p;
7246 }
7247
7248 dev_boot_phase = 0;
7249
7250 /* The loopback device is special if any other network devices
7251 * is present in a network namespace the loopback device must
7252 * be present. Since we now dynamically allocate and free the
7253 * loopback device ensure this invariant is maintained by
7254 * keeping the loopback device as the first device on the
7255 * list of network devices. Ensuring the loopback devices
7256 * is the first device that appears and the last network device
7257 * that disappears.
7258 */
7259 if (register_pernet_device(&loopback_net_ops))
7260 goto out;
7261
7262 if (register_pernet_device(&default_device_ops))
7263 goto out;
7264
7265 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7266 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7267
7268 hotcpu_notifier(dev_cpu_callback, 0);
7269 dst_init();
7270 rc = 0;
7271 out:
7272 return rc;
7273 }
7274
7275 subsys_initcall(net_dev_init);