]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/dev.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless-next
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135
136 #include "net-sysfs.h"
137
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144 static DEFINE_SPINLOCK(ptype_lock);
145 static DEFINE_SPINLOCK(offload_lock);
146 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
147 struct list_head ptype_all __read_mostly; /* Taps */
148 static struct list_head offload_base __read_mostly;
149
150 static int netif_rx_internal(struct sk_buff *skb);
151
152 /*
153 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
154 * semaphore.
155 *
156 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
157 *
158 * Writers must hold the rtnl semaphore while they loop through the
159 * dev_base_head list, and hold dev_base_lock for writing when they do the
160 * actual updates. This allows pure readers to access the list even
161 * while a writer is preparing to update it.
162 *
163 * To put it another way, dev_base_lock is held for writing only to
164 * protect against pure readers; the rtnl semaphore provides the
165 * protection against other writers.
166 *
167 * See, for example usages, register_netdevice() and
168 * unregister_netdevice(), which must be called with the rtnl
169 * semaphore held.
170 */
171 DEFINE_RWLOCK(dev_base_lock);
172 EXPORT_SYMBOL(dev_base_lock);
173
174 /* protects napi_hash addition/deletion and napi_gen_id */
175 static DEFINE_SPINLOCK(napi_hash_lock);
176
177 static unsigned int napi_gen_id;
178 static DEFINE_HASHTABLE(napi_hash, 8);
179
180 static seqcount_t devnet_rename_seq;
181
182 static inline void dev_base_seq_inc(struct net *net)
183 {
184 while (++net->dev_base_seq == 0);
185 }
186
187 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
188 {
189 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
190
191 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
192 }
193
194 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
195 {
196 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
197 }
198
199 static inline void rps_lock(struct softnet_data *sd)
200 {
201 #ifdef CONFIG_RPS
202 spin_lock(&sd->input_pkt_queue.lock);
203 #endif
204 }
205
206 static inline void rps_unlock(struct softnet_data *sd)
207 {
208 #ifdef CONFIG_RPS
209 spin_unlock(&sd->input_pkt_queue.lock);
210 #endif
211 }
212
213 /* Device list insertion */
214 static void list_netdevice(struct net_device *dev)
215 {
216 struct net *net = dev_net(dev);
217
218 ASSERT_RTNL();
219
220 write_lock_bh(&dev_base_lock);
221 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
222 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
223 hlist_add_head_rcu(&dev->index_hlist,
224 dev_index_hash(net, dev->ifindex));
225 write_unlock_bh(&dev_base_lock);
226
227 dev_base_seq_inc(net);
228 }
229
230 /* Device list removal
231 * caller must respect a RCU grace period before freeing/reusing dev
232 */
233 static void unlist_netdevice(struct net_device *dev)
234 {
235 ASSERT_RTNL();
236
237 /* Unlink dev from the device chain */
238 write_lock_bh(&dev_base_lock);
239 list_del_rcu(&dev->dev_list);
240 hlist_del_rcu(&dev->name_hlist);
241 hlist_del_rcu(&dev->index_hlist);
242 write_unlock_bh(&dev_base_lock);
243
244 dev_base_seq_inc(dev_net(dev));
245 }
246
247 /*
248 * Our notifier list
249 */
250
251 static RAW_NOTIFIER_HEAD(netdev_chain);
252
253 /*
254 * Device drivers call our routines to queue packets here. We empty the
255 * queue in the local softnet handler.
256 */
257
258 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
259 EXPORT_PER_CPU_SYMBOL(softnet_data);
260
261 #ifdef CONFIG_LOCKDEP
262 /*
263 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
264 * according to dev->type
265 */
266 static const unsigned short netdev_lock_type[] =
267 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
268 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
269 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
270 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
271 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
272 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
273 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
274 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
275 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
276 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
277 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
278 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
279 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
280 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
281 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
282
283 static const char *const netdev_lock_name[] =
284 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
285 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
286 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
287 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
288 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
289 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
290 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
291 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
292 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
293 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
294 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
295 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
296 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
297 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
298 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
299
300 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
301 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
302
303 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
304 {
305 int i;
306
307 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
308 if (netdev_lock_type[i] == dev_type)
309 return i;
310 /* the last key is used by default */
311 return ARRAY_SIZE(netdev_lock_type) - 1;
312 }
313
314 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
315 unsigned short dev_type)
316 {
317 int i;
318
319 i = netdev_lock_pos(dev_type);
320 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
321 netdev_lock_name[i]);
322 }
323
324 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
325 {
326 int i;
327
328 i = netdev_lock_pos(dev->type);
329 lockdep_set_class_and_name(&dev->addr_list_lock,
330 &netdev_addr_lock_key[i],
331 netdev_lock_name[i]);
332 }
333 #else
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 unsigned short dev_type)
336 {
337 }
338 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
339 {
340 }
341 #endif
342
343 /*******************************************************************************
344
345 Protocol management and registration routines
346
347 *******************************************************************************/
348
349 /*
350 * Add a protocol ID to the list. Now that the input handler is
351 * smarter we can dispense with all the messy stuff that used to be
352 * here.
353 *
354 * BEWARE!!! Protocol handlers, mangling input packets,
355 * MUST BE last in hash buckets and checking protocol handlers
356 * MUST start from promiscuous ptype_all chain in net_bh.
357 * It is true now, do not change it.
358 * Explanation follows: if protocol handler, mangling packet, will
359 * be the first on list, it is not able to sense, that packet
360 * is cloned and should be copied-on-write, so that it will
361 * change it and subsequent readers will get broken packet.
362 * --ANK (980803)
363 */
364
365 static inline struct list_head *ptype_head(const struct packet_type *pt)
366 {
367 if (pt->type == htons(ETH_P_ALL))
368 return &ptype_all;
369 else
370 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
371 }
372
373 /**
374 * dev_add_pack - add packet handler
375 * @pt: packet type declaration
376 *
377 * Add a protocol handler to the networking stack. The passed &packet_type
378 * is linked into kernel lists and may not be freed until it has been
379 * removed from the kernel lists.
380 *
381 * This call does not sleep therefore it can not
382 * guarantee all CPU's that are in middle of receiving packets
383 * will see the new packet type (until the next received packet).
384 */
385
386 void dev_add_pack(struct packet_type *pt)
387 {
388 struct list_head *head = ptype_head(pt);
389
390 spin_lock(&ptype_lock);
391 list_add_rcu(&pt->list, head);
392 spin_unlock(&ptype_lock);
393 }
394 EXPORT_SYMBOL(dev_add_pack);
395
396 /**
397 * __dev_remove_pack - remove packet handler
398 * @pt: packet type declaration
399 *
400 * Remove a protocol handler that was previously added to the kernel
401 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
402 * from the kernel lists and can be freed or reused once this function
403 * returns.
404 *
405 * The packet type might still be in use by receivers
406 * and must not be freed until after all the CPU's have gone
407 * through a quiescent state.
408 */
409 void __dev_remove_pack(struct packet_type *pt)
410 {
411 struct list_head *head = ptype_head(pt);
412 struct packet_type *pt1;
413
414 spin_lock(&ptype_lock);
415
416 list_for_each_entry(pt1, head, list) {
417 if (pt == pt1) {
418 list_del_rcu(&pt->list);
419 goto out;
420 }
421 }
422
423 pr_warn("dev_remove_pack: %p not found\n", pt);
424 out:
425 spin_unlock(&ptype_lock);
426 }
427 EXPORT_SYMBOL(__dev_remove_pack);
428
429 /**
430 * dev_remove_pack - remove packet handler
431 * @pt: packet type declaration
432 *
433 * Remove a protocol handler that was previously added to the kernel
434 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
435 * from the kernel lists and can be freed or reused once this function
436 * returns.
437 *
438 * This call sleeps to guarantee that no CPU is looking at the packet
439 * type after return.
440 */
441 void dev_remove_pack(struct packet_type *pt)
442 {
443 __dev_remove_pack(pt);
444
445 synchronize_net();
446 }
447 EXPORT_SYMBOL(dev_remove_pack);
448
449
450 /**
451 * dev_add_offload - register offload handlers
452 * @po: protocol offload declaration
453 *
454 * Add protocol offload handlers to the networking stack. The passed
455 * &proto_offload is linked into kernel lists and may not be freed until
456 * it has been removed from the kernel lists.
457 *
458 * This call does not sleep therefore it can not
459 * guarantee all CPU's that are in middle of receiving packets
460 * will see the new offload handlers (until the next received packet).
461 */
462 void dev_add_offload(struct packet_offload *po)
463 {
464 struct list_head *head = &offload_base;
465
466 spin_lock(&offload_lock);
467 list_add_rcu(&po->list, head);
468 spin_unlock(&offload_lock);
469 }
470 EXPORT_SYMBOL(dev_add_offload);
471
472 /**
473 * __dev_remove_offload - remove offload handler
474 * @po: packet offload declaration
475 *
476 * Remove a protocol offload handler that was previously added to the
477 * kernel offload handlers by dev_add_offload(). The passed &offload_type
478 * is removed from the kernel lists and can be freed or reused once this
479 * function returns.
480 *
481 * The packet type might still be in use by receivers
482 * and must not be freed until after all the CPU's have gone
483 * through a quiescent state.
484 */
485 static void __dev_remove_offload(struct packet_offload *po)
486 {
487 struct list_head *head = &offload_base;
488 struct packet_offload *po1;
489
490 spin_lock(&offload_lock);
491
492 list_for_each_entry(po1, head, list) {
493 if (po == po1) {
494 list_del_rcu(&po->list);
495 goto out;
496 }
497 }
498
499 pr_warn("dev_remove_offload: %p not found\n", po);
500 out:
501 spin_unlock(&offload_lock);
502 }
503
504 /**
505 * dev_remove_offload - remove packet offload handler
506 * @po: packet offload declaration
507 *
508 * Remove a packet offload handler that was previously added to the kernel
509 * offload handlers by dev_add_offload(). The passed &offload_type is
510 * removed from the kernel lists and can be freed or reused once this
511 * function returns.
512 *
513 * This call sleeps to guarantee that no CPU is looking at the packet
514 * type after return.
515 */
516 void dev_remove_offload(struct packet_offload *po)
517 {
518 __dev_remove_offload(po);
519
520 synchronize_net();
521 }
522 EXPORT_SYMBOL(dev_remove_offload);
523
524 /******************************************************************************
525
526 Device Boot-time Settings Routines
527
528 *******************************************************************************/
529
530 /* Boot time configuration table */
531 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
532
533 /**
534 * netdev_boot_setup_add - add new setup entry
535 * @name: name of the device
536 * @map: configured settings for the device
537 *
538 * Adds new setup entry to the dev_boot_setup list. The function
539 * returns 0 on error and 1 on success. This is a generic routine to
540 * all netdevices.
541 */
542 static int netdev_boot_setup_add(char *name, struct ifmap *map)
543 {
544 struct netdev_boot_setup *s;
545 int i;
546
547 s = dev_boot_setup;
548 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
549 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
550 memset(s[i].name, 0, sizeof(s[i].name));
551 strlcpy(s[i].name, name, IFNAMSIZ);
552 memcpy(&s[i].map, map, sizeof(s[i].map));
553 break;
554 }
555 }
556
557 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
558 }
559
560 /**
561 * netdev_boot_setup_check - check boot time settings
562 * @dev: the netdevice
563 *
564 * Check boot time settings for the device.
565 * The found settings are set for the device to be used
566 * later in the device probing.
567 * Returns 0 if no settings found, 1 if they are.
568 */
569 int netdev_boot_setup_check(struct net_device *dev)
570 {
571 struct netdev_boot_setup *s = dev_boot_setup;
572 int i;
573
574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
576 !strcmp(dev->name, s[i].name)) {
577 dev->irq = s[i].map.irq;
578 dev->base_addr = s[i].map.base_addr;
579 dev->mem_start = s[i].map.mem_start;
580 dev->mem_end = s[i].map.mem_end;
581 return 1;
582 }
583 }
584 return 0;
585 }
586 EXPORT_SYMBOL(netdev_boot_setup_check);
587
588
589 /**
590 * netdev_boot_base - get address from boot time settings
591 * @prefix: prefix for network device
592 * @unit: id for network device
593 *
594 * Check boot time settings for the base address of device.
595 * The found settings are set for the device to be used
596 * later in the device probing.
597 * Returns 0 if no settings found.
598 */
599 unsigned long netdev_boot_base(const char *prefix, int unit)
600 {
601 const struct netdev_boot_setup *s = dev_boot_setup;
602 char name[IFNAMSIZ];
603 int i;
604
605 sprintf(name, "%s%d", prefix, unit);
606
607 /*
608 * If device already registered then return base of 1
609 * to indicate not to probe for this interface
610 */
611 if (__dev_get_by_name(&init_net, name))
612 return 1;
613
614 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
615 if (!strcmp(name, s[i].name))
616 return s[i].map.base_addr;
617 return 0;
618 }
619
620 /*
621 * Saves at boot time configured settings for any netdevice.
622 */
623 int __init netdev_boot_setup(char *str)
624 {
625 int ints[5];
626 struct ifmap map;
627
628 str = get_options(str, ARRAY_SIZE(ints), ints);
629 if (!str || !*str)
630 return 0;
631
632 /* Save settings */
633 memset(&map, 0, sizeof(map));
634 if (ints[0] > 0)
635 map.irq = ints[1];
636 if (ints[0] > 1)
637 map.base_addr = ints[2];
638 if (ints[0] > 2)
639 map.mem_start = ints[3];
640 if (ints[0] > 3)
641 map.mem_end = ints[4];
642
643 /* Add new entry to the list */
644 return netdev_boot_setup_add(str, &map);
645 }
646
647 __setup("netdev=", netdev_boot_setup);
648
649 /*******************************************************************************
650
651 Device Interface Subroutines
652
653 *******************************************************************************/
654
655 /**
656 * __dev_get_by_name - find a device by its name
657 * @net: the applicable net namespace
658 * @name: name to find
659 *
660 * Find an interface by name. Must be called under RTNL semaphore
661 * or @dev_base_lock. If the name is found a pointer to the device
662 * is returned. If the name is not found then %NULL is returned. The
663 * reference counters are not incremented so the caller must be
664 * careful with locks.
665 */
666
667 struct net_device *__dev_get_by_name(struct net *net, const char *name)
668 {
669 struct net_device *dev;
670 struct hlist_head *head = dev_name_hash(net, name);
671
672 hlist_for_each_entry(dev, head, name_hlist)
673 if (!strncmp(dev->name, name, IFNAMSIZ))
674 return dev;
675
676 return NULL;
677 }
678 EXPORT_SYMBOL(__dev_get_by_name);
679
680 /**
681 * dev_get_by_name_rcu - find a device by its name
682 * @net: the applicable net namespace
683 * @name: name to find
684 *
685 * Find an interface by name.
686 * If the name is found a pointer to the device is returned.
687 * If the name is not found then %NULL is returned.
688 * The reference counters are not incremented so the caller must be
689 * careful with locks. The caller must hold RCU lock.
690 */
691
692 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
693 {
694 struct net_device *dev;
695 struct hlist_head *head = dev_name_hash(net, name);
696
697 hlist_for_each_entry_rcu(dev, head, name_hlist)
698 if (!strncmp(dev->name, name, IFNAMSIZ))
699 return dev;
700
701 return NULL;
702 }
703 EXPORT_SYMBOL(dev_get_by_name_rcu);
704
705 /**
706 * dev_get_by_name - find a device by its name
707 * @net: the applicable net namespace
708 * @name: name to find
709 *
710 * Find an interface by name. This can be called from any
711 * context and does its own locking. The returned handle has
712 * the usage count incremented and the caller must use dev_put() to
713 * release it when it is no longer needed. %NULL is returned if no
714 * matching device is found.
715 */
716
717 struct net_device *dev_get_by_name(struct net *net, const char *name)
718 {
719 struct net_device *dev;
720
721 rcu_read_lock();
722 dev = dev_get_by_name_rcu(net, name);
723 if (dev)
724 dev_hold(dev);
725 rcu_read_unlock();
726 return dev;
727 }
728 EXPORT_SYMBOL(dev_get_by_name);
729
730 /**
731 * __dev_get_by_index - find a device by its ifindex
732 * @net: the applicable net namespace
733 * @ifindex: index of device
734 *
735 * Search for an interface by index. Returns %NULL if the device
736 * is not found or a pointer to the device. The device has not
737 * had its reference counter increased so the caller must be careful
738 * about locking. The caller must hold either the RTNL semaphore
739 * or @dev_base_lock.
740 */
741
742 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
743 {
744 struct net_device *dev;
745 struct hlist_head *head = dev_index_hash(net, ifindex);
746
747 hlist_for_each_entry(dev, head, index_hlist)
748 if (dev->ifindex == ifindex)
749 return dev;
750
751 return NULL;
752 }
753 EXPORT_SYMBOL(__dev_get_by_index);
754
755 /**
756 * dev_get_by_index_rcu - find a device by its ifindex
757 * @net: the applicable net namespace
758 * @ifindex: index of device
759 *
760 * Search for an interface by index. Returns %NULL if the device
761 * is not found or a pointer to the device. The device has not
762 * had its reference counter increased so the caller must be careful
763 * about locking. The caller must hold RCU lock.
764 */
765
766 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
767 {
768 struct net_device *dev;
769 struct hlist_head *head = dev_index_hash(net, ifindex);
770
771 hlist_for_each_entry_rcu(dev, head, index_hlist)
772 if (dev->ifindex == ifindex)
773 return dev;
774
775 return NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_index_rcu);
778
779
780 /**
781 * dev_get_by_index - find a device by its ifindex
782 * @net: the applicable net namespace
783 * @ifindex: index of device
784 *
785 * Search for an interface by index. Returns NULL if the device
786 * is not found or a pointer to the device. The device returned has
787 * had a reference added and the pointer is safe until the user calls
788 * dev_put to indicate they have finished with it.
789 */
790
791 struct net_device *dev_get_by_index(struct net *net, int ifindex)
792 {
793 struct net_device *dev;
794
795 rcu_read_lock();
796 dev = dev_get_by_index_rcu(net, ifindex);
797 if (dev)
798 dev_hold(dev);
799 rcu_read_unlock();
800 return dev;
801 }
802 EXPORT_SYMBOL(dev_get_by_index);
803
804 /**
805 * netdev_get_name - get a netdevice name, knowing its ifindex.
806 * @net: network namespace
807 * @name: a pointer to the buffer where the name will be stored.
808 * @ifindex: the ifindex of the interface to get the name from.
809 *
810 * The use of raw_seqcount_begin() and cond_resched() before
811 * retrying is required as we want to give the writers a chance
812 * to complete when CONFIG_PREEMPT is not set.
813 */
814 int netdev_get_name(struct net *net, char *name, int ifindex)
815 {
816 struct net_device *dev;
817 unsigned int seq;
818
819 retry:
820 seq = raw_seqcount_begin(&devnet_rename_seq);
821 rcu_read_lock();
822 dev = dev_get_by_index_rcu(net, ifindex);
823 if (!dev) {
824 rcu_read_unlock();
825 return -ENODEV;
826 }
827
828 strcpy(name, dev->name);
829 rcu_read_unlock();
830 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
831 cond_resched();
832 goto retry;
833 }
834
835 return 0;
836 }
837
838 /**
839 * dev_getbyhwaddr_rcu - find a device by its hardware address
840 * @net: the applicable net namespace
841 * @type: media type of device
842 * @ha: hardware address
843 *
844 * Search for an interface by MAC address. Returns NULL if the device
845 * is not found or a pointer to the device.
846 * The caller must hold RCU or RTNL.
847 * The returned device has not had its ref count increased
848 * and the caller must therefore be careful about locking
849 *
850 */
851
852 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
853 const char *ha)
854 {
855 struct net_device *dev;
856
857 for_each_netdev_rcu(net, dev)
858 if (dev->type == type &&
859 !memcmp(dev->dev_addr, ha, dev->addr_len))
860 return dev;
861
862 return NULL;
863 }
864 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
865
866 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
867 {
868 struct net_device *dev;
869
870 ASSERT_RTNL();
871 for_each_netdev(net, dev)
872 if (dev->type == type)
873 return dev;
874
875 return NULL;
876 }
877 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
878
879 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
880 {
881 struct net_device *dev, *ret = NULL;
882
883 rcu_read_lock();
884 for_each_netdev_rcu(net, dev)
885 if (dev->type == type) {
886 dev_hold(dev);
887 ret = dev;
888 break;
889 }
890 rcu_read_unlock();
891 return ret;
892 }
893 EXPORT_SYMBOL(dev_getfirstbyhwtype);
894
895 /**
896 * dev_get_by_flags_rcu - find any device with given flags
897 * @net: the applicable net namespace
898 * @if_flags: IFF_* values
899 * @mask: bitmask of bits in if_flags to check
900 *
901 * Search for any interface with the given flags. Returns NULL if a device
902 * is not found or a pointer to the device. Must be called inside
903 * rcu_read_lock(), and result refcount is unchanged.
904 */
905
906 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
907 unsigned short mask)
908 {
909 struct net_device *dev, *ret;
910
911 ret = NULL;
912 for_each_netdev_rcu(net, dev) {
913 if (((dev->flags ^ if_flags) & mask) == 0) {
914 ret = dev;
915 break;
916 }
917 }
918 return ret;
919 }
920 EXPORT_SYMBOL(dev_get_by_flags_rcu);
921
922 /**
923 * dev_valid_name - check if name is okay for network device
924 * @name: name string
925 *
926 * Network device names need to be valid file names to
927 * to allow sysfs to work. We also disallow any kind of
928 * whitespace.
929 */
930 bool dev_valid_name(const char *name)
931 {
932 if (*name == '\0')
933 return false;
934 if (strlen(name) >= IFNAMSIZ)
935 return false;
936 if (!strcmp(name, ".") || !strcmp(name, ".."))
937 return false;
938
939 while (*name) {
940 if (*name == '/' || isspace(*name))
941 return false;
942 name++;
943 }
944 return true;
945 }
946 EXPORT_SYMBOL(dev_valid_name);
947
948 /**
949 * __dev_alloc_name - allocate a name for a device
950 * @net: network namespace to allocate the device name in
951 * @name: name format string
952 * @buf: scratch buffer and result name string
953 *
954 * Passed a format string - eg "lt%d" it will try and find a suitable
955 * id. It scans list of devices to build up a free map, then chooses
956 * the first empty slot. The caller must hold the dev_base or rtnl lock
957 * while allocating the name and adding the device in order to avoid
958 * duplicates.
959 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
960 * Returns the number of the unit assigned or a negative errno code.
961 */
962
963 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
964 {
965 int i = 0;
966 const char *p;
967 const int max_netdevices = 8*PAGE_SIZE;
968 unsigned long *inuse;
969 struct net_device *d;
970
971 p = strnchr(name, IFNAMSIZ-1, '%');
972 if (p) {
973 /*
974 * Verify the string as this thing may have come from
975 * the user. There must be either one "%d" and no other "%"
976 * characters.
977 */
978 if (p[1] != 'd' || strchr(p + 2, '%'))
979 return -EINVAL;
980
981 /* Use one page as a bit array of possible slots */
982 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
983 if (!inuse)
984 return -ENOMEM;
985
986 for_each_netdev(net, d) {
987 if (!sscanf(d->name, name, &i))
988 continue;
989 if (i < 0 || i >= max_netdevices)
990 continue;
991
992 /* avoid cases where sscanf is not exact inverse of printf */
993 snprintf(buf, IFNAMSIZ, name, i);
994 if (!strncmp(buf, d->name, IFNAMSIZ))
995 set_bit(i, inuse);
996 }
997
998 i = find_first_zero_bit(inuse, max_netdevices);
999 free_page((unsigned long) inuse);
1000 }
1001
1002 if (buf != name)
1003 snprintf(buf, IFNAMSIZ, name, i);
1004 if (!__dev_get_by_name(net, buf))
1005 return i;
1006
1007 /* It is possible to run out of possible slots
1008 * when the name is long and there isn't enough space left
1009 * for the digits, or if all bits are used.
1010 */
1011 return -ENFILE;
1012 }
1013
1014 /**
1015 * dev_alloc_name - allocate a name for a device
1016 * @dev: device
1017 * @name: name format string
1018 *
1019 * Passed a format string - eg "lt%d" it will try and find a suitable
1020 * id. It scans list of devices to build up a free map, then chooses
1021 * the first empty slot. The caller must hold the dev_base or rtnl lock
1022 * while allocating the name and adding the device in order to avoid
1023 * duplicates.
1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025 * Returns the number of the unit assigned or a negative errno code.
1026 */
1027
1028 int dev_alloc_name(struct net_device *dev, const char *name)
1029 {
1030 char buf[IFNAMSIZ];
1031 struct net *net;
1032 int ret;
1033
1034 BUG_ON(!dev_net(dev));
1035 net = dev_net(dev);
1036 ret = __dev_alloc_name(net, name, buf);
1037 if (ret >= 0)
1038 strlcpy(dev->name, buf, IFNAMSIZ);
1039 return ret;
1040 }
1041 EXPORT_SYMBOL(dev_alloc_name);
1042
1043 static int dev_alloc_name_ns(struct net *net,
1044 struct net_device *dev,
1045 const char *name)
1046 {
1047 char buf[IFNAMSIZ];
1048 int ret;
1049
1050 ret = __dev_alloc_name(net, name, buf);
1051 if (ret >= 0)
1052 strlcpy(dev->name, buf, IFNAMSIZ);
1053 return ret;
1054 }
1055
1056 static int dev_get_valid_name(struct net *net,
1057 struct net_device *dev,
1058 const char *name)
1059 {
1060 BUG_ON(!net);
1061
1062 if (!dev_valid_name(name))
1063 return -EINVAL;
1064
1065 if (strchr(name, '%'))
1066 return dev_alloc_name_ns(net, dev, name);
1067 else if (__dev_get_by_name(net, name))
1068 return -EEXIST;
1069 else if (dev->name != name)
1070 strlcpy(dev->name, name, IFNAMSIZ);
1071
1072 return 0;
1073 }
1074
1075 /**
1076 * dev_change_name - change name of a device
1077 * @dev: device
1078 * @newname: name (or format string) must be at least IFNAMSIZ
1079 *
1080 * Change name of a device, can pass format strings "eth%d".
1081 * for wildcarding.
1082 */
1083 int dev_change_name(struct net_device *dev, const char *newname)
1084 {
1085 char oldname[IFNAMSIZ];
1086 int err = 0;
1087 int ret;
1088 struct net *net;
1089
1090 ASSERT_RTNL();
1091 BUG_ON(!dev_net(dev));
1092
1093 net = dev_net(dev);
1094 if (dev->flags & IFF_UP)
1095 return -EBUSY;
1096
1097 write_seqcount_begin(&devnet_rename_seq);
1098
1099 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1100 write_seqcount_end(&devnet_rename_seq);
1101 return 0;
1102 }
1103
1104 memcpy(oldname, dev->name, IFNAMSIZ);
1105
1106 err = dev_get_valid_name(net, dev, newname);
1107 if (err < 0) {
1108 write_seqcount_end(&devnet_rename_seq);
1109 return err;
1110 }
1111
1112 rollback:
1113 ret = device_rename(&dev->dev, dev->name);
1114 if (ret) {
1115 memcpy(dev->name, oldname, IFNAMSIZ);
1116 write_seqcount_end(&devnet_rename_seq);
1117 return ret;
1118 }
1119
1120 write_seqcount_end(&devnet_rename_seq);
1121
1122 netdev_adjacent_rename_links(dev, oldname);
1123
1124 write_lock_bh(&dev_base_lock);
1125 hlist_del_rcu(&dev->name_hlist);
1126 write_unlock_bh(&dev_base_lock);
1127
1128 synchronize_rcu();
1129
1130 write_lock_bh(&dev_base_lock);
1131 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1132 write_unlock_bh(&dev_base_lock);
1133
1134 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1135 ret = notifier_to_errno(ret);
1136
1137 if (ret) {
1138 /* err >= 0 after dev_alloc_name() or stores the first errno */
1139 if (err >= 0) {
1140 err = ret;
1141 write_seqcount_begin(&devnet_rename_seq);
1142 memcpy(dev->name, oldname, IFNAMSIZ);
1143 memcpy(oldname, newname, IFNAMSIZ);
1144 goto rollback;
1145 } else {
1146 pr_err("%s: name change rollback failed: %d\n",
1147 dev->name, ret);
1148 }
1149 }
1150
1151 return err;
1152 }
1153
1154 /**
1155 * dev_set_alias - change ifalias of a device
1156 * @dev: device
1157 * @alias: name up to IFALIASZ
1158 * @len: limit of bytes to copy from info
1159 *
1160 * Set ifalias for a device,
1161 */
1162 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1163 {
1164 char *new_ifalias;
1165
1166 ASSERT_RTNL();
1167
1168 if (len >= IFALIASZ)
1169 return -EINVAL;
1170
1171 if (!len) {
1172 kfree(dev->ifalias);
1173 dev->ifalias = NULL;
1174 return 0;
1175 }
1176
1177 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1178 if (!new_ifalias)
1179 return -ENOMEM;
1180 dev->ifalias = new_ifalias;
1181
1182 strlcpy(dev->ifalias, alias, len+1);
1183 return len;
1184 }
1185
1186
1187 /**
1188 * netdev_features_change - device changes features
1189 * @dev: device to cause notification
1190 *
1191 * Called to indicate a device has changed features.
1192 */
1193 void netdev_features_change(struct net_device *dev)
1194 {
1195 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1196 }
1197 EXPORT_SYMBOL(netdev_features_change);
1198
1199 /**
1200 * netdev_state_change - device changes state
1201 * @dev: device to cause notification
1202 *
1203 * Called to indicate a device has changed state. This function calls
1204 * the notifier chains for netdev_chain and sends a NEWLINK message
1205 * to the routing socket.
1206 */
1207 void netdev_state_change(struct net_device *dev)
1208 {
1209 if (dev->flags & IFF_UP) {
1210 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1211 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1212 }
1213 }
1214 EXPORT_SYMBOL(netdev_state_change);
1215
1216 /**
1217 * netdev_notify_peers - notify network peers about existence of @dev
1218 * @dev: network device
1219 *
1220 * Generate traffic such that interested network peers are aware of
1221 * @dev, such as by generating a gratuitous ARP. This may be used when
1222 * a device wants to inform the rest of the network about some sort of
1223 * reconfiguration such as a failover event or virtual machine
1224 * migration.
1225 */
1226 void netdev_notify_peers(struct net_device *dev)
1227 {
1228 rtnl_lock();
1229 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1230 rtnl_unlock();
1231 }
1232 EXPORT_SYMBOL(netdev_notify_peers);
1233
1234 static int __dev_open(struct net_device *dev)
1235 {
1236 const struct net_device_ops *ops = dev->netdev_ops;
1237 int ret;
1238
1239 ASSERT_RTNL();
1240
1241 if (!netif_device_present(dev))
1242 return -ENODEV;
1243
1244 /* Block netpoll from trying to do any rx path servicing.
1245 * If we don't do this there is a chance ndo_poll_controller
1246 * or ndo_poll may be running while we open the device
1247 */
1248 netpoll_poll_disable(dev);
1249
1250 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1251 ret = notifier_to_errno(ret);
1252 if (ret)
1253 return ret;
1254
1255 set_bit(__LINK_STATE_START, &dev->state);
1256
1257 if (ops->ndo_validate_addr)
1258 ret = ops->ndo_validate_addr(dev);
1259
1260 if (!ret && ops->ndo_open)
1261 ret = ops->ndo_open(dev);
1262
1263 netpoll_poll_enable(dev);
1264
1265 if (ret)
1266 clear_bit(__LINK_STATE_START, &dev->state);
1267 else {
1268 dev->flags |= IFF_UP;
1269 net_dmaengine_get();
1270 dev_set_rx_mode(dev);
1271 dev_activate(dev);
1272 add_device_randomness(dev->dev_addr, dev->addr_len);
1273 }
1274
1275 return ret;
1276 }
1277
1278 /**
1279 * dev_open - prepare an interface for use.
1280 * @dev: device to open
1281 *
1282 * Takes a device from down to up state. The device's private open
1283 * function is invoked and then the multicast lists are loaded. Finally
1284 * the device is moved into the up state and a %NETDEV_UP message is
1285 * sent to the netdev notifier chain.
1286 *
1287 * Calling this function on an active interface is a nop. On a failure
1288 * a negative errno code is returned.
1289 */
1290 int dev_open(struct net_device *dev)
1291 {
1292 int ret;
1293
1294 if (dev->flags & IFF_UP)
1295 return 0;
1296
1297 ret = __dev_open(dev);
1298 if (ret < 0)
1299 return ret;
1300
1301 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1302 call_netdevice_notifiers(NETDEV_UP, dev);
1303
1304 return ret;
1305 }
1306 EXPORT_SYMBOL(dev_open);
1307
1308 static int __dev_close_many(struct list_head *head)
1309 {
1310 struct net_device *dev;
1311
1312 ASSERT_RTNL();
1313 might_sleep();
1314
1315 list_for_each_entry(dev, head, close_list) {
1316 /* Temporarily disable netpoll until the interface is down */
1317 netpoll_poll_disable(dev);
1318
1319 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1320
1321 clear_bit(__LINK_STATE_START, &dev->state);
1322
1323 /* Synchronize to scheduled poll. We cannot touch poll list, it
1324 * can be even on different cpu. So just clear netif_running().
1325 *
1326 * dev->stop() will invoke napi_disable() on all of it's
1327 * napi_struct instances on this device.
1328 */
1329 smp_mb__after_atomic(); /* Commit netif_running(). */
1330 }
1331
1332 dev_deactivate_many(head);
1333
1334 list_for_each_entry(dev, head, close_list) {
1335 const struct net_device_ops *ops = dev->netdev_ops;
1336
1337 /*
1338 * Call the device specific close. This cannot fail.
1339 * Only if device is UP
1340 *
1341 * We allow it to be called even after a DETACH hot-plug
1342 * event.
1343 */
1344 if (ops->ndo_stop)
1345 ops->ndo_stop(dev);
1346
1347 dev->flags &= ~IFF_UP;
1348 net_dmaengine_put();
1349 netpoll_poll_enable(dev);
1350 }
1351
1352 return 0;
1353 }
1354
1355 static int __dev_close(struct net_device *dev)
1356 {
1357 int retval;
1358 LIST_HEAD(single);
1359
1360 list_add(&dev->close_list, &single);
1361 retval = __dev_close_many(&single);
1362 list_del(&single);
1363
1364 return retval;
1365 }
1366
1367 static int dev_close_many(struct list_head *head)
1368 {
1369 struct net_device *dev, *tmp;
1370
1371 /* Remove the devices that don't need to be closed */
1372 list_for_each_entry_safe(dev, tmp, head, close_list)
1373 if (!(dev->flags & IFF_UP))
1374 list_del_init(&dev->close_list);
1375
1376 __dev_close_many(head);
1377
1378 list_for_each_entry_safe(dev, tmp, head, close_list) {
1379 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1380 call_netdevice_notifiers(NETDEV_DOWN, dev);
1381 list_del_init(&dev->close_list);
1382 }
1383
1384 return 0;
1385 }
1386
1387 /**
1388 * dev_close - shutdown an interface.
1389 * @dev: device to shutdown
1390 *
1391 * This function moves an active device into down state. A
1392 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1393 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1394 * chain.
1395 */
1396 int dev_close(struct net_device *dev)
1397 {
1398 if (dev->flags & IFF_UP) {
1399 LIST_HEAD(single);
1400
1401 list_add(&dev->close_list, &single);
1402 dev_close_many(&single);
1403 list_del(&single);
1404 }
1405 return 0;
1406 }
1407 EXPORT_SYMBOL(dev_close);
1408
1409
1410 /**
1411 * dev_disable_lro - disable Large Receive Offload on a device
1412 * @dev: device
1413 *
1414 * Disable Large Receive Offload (LRO) on a net device. Must be
1415 * called under RTNL. This is needed if received packets may be
1416 * forwarded to another interface.
1417 */
1418 void dev_disable_lro(struct net_device *dev)
1419 {
1420 /*
1421 * If we're trying to disable lro on a vlan device
1422 * use the underlying physical device instead
1423 */
1424 if (is_vlan_dev(dev))
1425 dev = vlan_dev_real_dev(dev);
1426
1427 /* the same for macvlan devices */
1428 if (netif_is_macvlan(dev))
1429 dev = macvlan_dev_real_dev(dev);
1430
1431 dev->wanted_features &= ~NETIF_F_LRO;
1432 netdev_update_features(dev);
1433
1434 if (unlikely(dev->features & NETIF_F_LRO))
1435 netdev_WARN(dev, "failed to disable LRO!\n");
1436 }
1437 EXPORT_SYMBOL(dev_disable_lro);
1438
1439 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1440 struct net_device *dev)
1441 {
1442 struct netdev_notifier_info info;
1443
1444 netdev_notifier_info_init(&info, dev);
1445 return nb->notifier_call(nb, val, &info);
1446 }
1447
1448 static int dev_boot_phase = 1;
1449
1450 /**
1451 * register_netdevice_notifier - register a network notifier block
1452 * @nb: notifier
1453 *
1454 * Register a notifier to be called when network device events occur.
1455 * The notifier passed is linked into the kernel structures and must
1456 * not be reused until it has been unregistered. A negative errno code
1457 * is returned on a failure.
1458 *
1459 * When registered all registration and up events are replayed
1460 * to the new notifier to allow device to have a race free
1461 * view of the network device list.
1462 */
1463
1464 int register_netdevice_notifier(struct notifier_block *nb)
1465 {
1466 struct net_device *dev;
1467 struct net_device *last;
1468 struct net *net;
1469 int err;
1470
1471 rtnl_lock();
1472 err = raw_notifier_chain_register(&netdev_chain, nb);
1473 if (err)
1474 goto unlock;
1475 if (dev_boot_phase)
1476 goto unlock;
1477 for_each_net(net) {
1478 for_each_netdev(net, dev) {
1479 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1480 err = notifier_to_errno(err);
1481 if (err)
1482 goto rollback;
1483
1484 if (!(dev->flags & IFF_UP))
1485 continue;
1486
1487 call_netdevice_notifier(nb, NETDEV_UP, dev);
1488 }
1489 }
1490
1491 unlock:
1492 rtnl_unlock();
1493 return err;
1494
1495 rollback:
1496 last = dev;
1497 for_each_net(net) {
1498 for_each_netdev(net, dev) {
1499 if (dev == last)
1500 goto outroll;
1501
1502 if (dev->flags & IFF_UP) {
1503 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1504 dev);
1505 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1506 }
1507 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1508 }
1509 }
1510
1511 outroll:
1512 raw_notifier_chain_unregister(&netdev_chain, nb);
1513 goto unlock;
1514 }
1515 EXPORT_SYMBOL(register_netdevice_notifier);
1516
1517 /**
1518 * unregister_netdevice_notifier - unregister a network notifier block
1519 * @nb: notifier
1520 *
1521 * Unregister a notifier previously registered by
1522 * register_netdevice_notifier(). The notifier is unlinked into the
1523 * kernel structures and may then be reused. A negative errno code
1524 * is returned on a failure.
1525 *
1526 * After unregistering unregister and down device events are synthesized
1527 * for all devices on the device list to the removed notifier to remove
1528 * the need for special case cleanup code.
1529 */
1530
1531 int unregister_netdevice_notifier(struct notifier_block *nb)
1532 {
1533 struct net_device *dev;
1534 struct net *net;
1535 int err;
1536
1537 rtnl_lock();
1538 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1539 if (err)
1540 goto unlock;
1541
1542 for_each_net(net) {
1543 for_each_netdev(net, dev) {
1544 if (dev->flags & IFF_UP) {
1545 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1546 dev);
1547 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1548 }
1549 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1550 }
1551 }
1552 unlock:
1553 rtnl_unlock();
1554 return err;
1555 }
1556 EXPORT_SYMBOL(unregister_netdevice_notifier);
1557
1558 /**
1559 * call_netdevice_notifiers_info - call all network notifier blocks
1560 * @val: value passed unmodified to notifier function
1561 * @dev: net_device pointer passed unmodified to notifier function
1562 * @info: notifier information data
1563 *
1564 * Call all network notifier blocks. Parameters and return value
1565 * are as for raw_notifier_call_chain().
1566 */
1567
1568 static int call_netdevice_notifiers_info(unsigned long val,
1569 struct net_device *dev,
1570 struct netdev_notifier_info *info)
1571 {
1572 ASSERT_RTNL();
1573 netdev_notifier_info_init(info, dev);
1574 return raw_notifier_call_chain(&netdev_chain, val, info);
1575 }
1576
1577 /**
1578 * call_netdevice_notifiers - call all network notifier blocks
1579 * @val: value passed unmodified to notifier function
1580 * @dev: net_device pointer passed unmodified to notifier function
1581 *
1582 * Call all network notifier blocks. Parameters and return value
1583 * are as for raw_notifier_call_chain().
1584 */
1585
1586 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1587 {
1588 struct netdev_notifier_info info;
1589
1590 return call_netdevice_notifiers_info(val, dev, &info);
1591 }
1592 EXPORT_SYMBOL(call_netdevice_notifiers);
1593
1594 static struct static_key netstamp_needed __read_mostly;
1595 #ifdef HAVE_JUMP_LABEL
1596 /* We are not allowed to call static_key_slow_dec() from irq context
1597 * If net_disable_timestamp() is called from irq context, defer the
1598 * static_key_slow_dec() calls.
1599 */
1600 static atomic_t netstamp_needed_deferred;
1601 #endif
1602
1603 void net_enable_timestamp(void)
1604 {
1605 #ifdef HAVE_JUMP_LABEL
1606 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1607
1608 if (deferred) {
1609 while (--deferred)
1610 static_key_slow_dec(&netstamp_needed);
1611 return;
1612 }
1613 #endif
1614 static_key_slow_inc(&netstamp_needed);
1615 }
1616 EXPORT_SYMBOL(net_enable_timestamp);
1617
1618 void net_disable_timestamp(void)
1619 {
1620 #ifdef HAVE_JUMP_LABEL
1621 if (in_interrupt()) {
1622 atomic_inc(&netstamp_needed_deferred);
1623 return;
1624 }
1625 #endif
1626 static_key_slow_dec(&netstamp_needed);
1627 }
1628 EXPORT_SYMBOL(net_disable_timestamp);
1629
1630 static inline void net_timestamp_set(struct sk_buff *skb)
1631 {
1632 skb->tstamp.tv64 = 0;
1633 if (static_key_false(&netstamp_needed))
1634 __net_timestamp(skb);
1635 }
1636
1637 #define net_timestamp_check(COND, SKB) \
1638 if (static_key_false(&netstamp_needed)) { \
1639 if ((COND) && !(SKB)->tstamp.tv64) \
1640 __net_timestamp(SKB); \
1641 } \
1642
1643 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1644 {
1645 unsigned int len;
1646
1647 if (!(dev->flags & IFF_UP))
1648 return false;
1649
1650 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1651 if (skb->len <= len)
1652 return true;
1653
1654 /* if TSO is enabled, we don't care about the length as the packet
1655 * could be forwarded without being segmented before
1656 */
1657 if (skb_is_gso(skb))
1658 return true;
1659
1660 return false;
1661 }
1662 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1663
1664 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1665 {
1666 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1667 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1668 atomic_long_inc(&dev->rx_dropped);
1669 kfree_skb(skb);
1670 return NET_RX_DROP;
1671 }
1672 }
1673
1674 if (unlikely(!is_skb_forwardable(dev, skb))) {
1675 atomic_long_inc(&dev->rx_dropped);
1676 kfree_skb(skb);
1677 return NET_RX_DROP;
1678 }
1679
1680 skb_scrub_packet(skb, true);
1681 skb->protocol = eth_type_trans(skb, dev);
1682
1683 return 0;
1684 }
1685 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1686
1687 /**
1688 * dev_forward_skb - loopback an skb to another netif
1689 *
1690 * @dev: destination network device
1691 * @skb: buffer to forward
1692 *
1693 * return values:
1694 * NET_RX_SUCCESS (no congestion)
1695 * NET_RX_DROP (packet was dropped, but freed)
1696 *
1697 * dev_forward_skb can be used for injecting an skb from the
1698 * start_xmit function of one device into the receive queue
1699 * of another device.
1700 *
1701 * The receiving device may be in another namespace, so
1702 * we have to clear all information in the skb that could
1703 * impact namespace isolation.
1704 */
1705 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1706 {
1707 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1708 }
1709 EXPORT_SYMBOL_GPL(dev_forward_skb);
1710
1711 static inline int deliver_skb(struct sk_buff *skb,
1712 struct packet_type *pt_prev,
1713 struct net_device *orig_dev)
1714 {
1715 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1716 return -ENOMEM;
1717 atomic_inc(&skb->users);
1718 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1719 }
1720
1721 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1722 {
1723 if (!ptype->af_packet_priv || !skb->sk)
1724 return false;
1725
1726 if (ptype->id_match)
1727 return ptype->id_match(ptype, skb->sk);
1728 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1729 return true;
1730
1731 return false;
1732 }
1733
1734 /*
1735 * Support routine. Sends outgoing frames to any network
1736 * taps currently in use.
1737 */
1738
1739 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1740 {
1741 struct packet_type *ptype;
1742 struct sk_buff *skb2 = NULL;
1743 struct packet_type *pt_prev = NULL;
1744
1745 rcu_read_lock();
1746 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1747 /* Never send packets back to the socket
1748 * they originated from - MvS (miquels@drinkel.ow.org)
1749 */
1750 if ((ptype->dev == dev || !ptype->dev) &&
1751 (!skb_loop_sk(ptype, skb))) {
1752 if (pt_prev) {
1753 deliver_skb(skb2, pt_prev, skb->dev);
1754 pt_prev = ptype;
1755 continue;
1756 }
1757
1758 skb2 = skb_clone(skb, GFP_ATOMIC);
1759 if (!skb2)
1760 break;
1761
1762 net_timestamp_set(skb2);
1763
1764 /* skb->nh should be correctly
1765 set by sender, so that the second statement is
1766 just protection against buggy protocols.
1767 */
1768 skb_reset_mac_header(skb2);
1769
1770 if (skb_network_header(skb2) < skb2->data ||
1771 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1772 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1773 ntohs(skb2->protocol),
1774 dev->name);
1775 skb_reset_network_header(skb2);
1776 }
1777
1778 skb2->transport_header = skb2->network_header;
1779 skb2->pkt_type = PACKET_OUTGOING;
1780 pt_prev = ptype;
1781 }
1782 }
1783 if (pt_prev)
1784 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1785 rcu_read_unlock();
1786 }
1787
1788 /**
1789 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1790 * @dev: Network device
1791 * @txq: number of queues available
1792 *
1793 * If real_num_tx_queues is changed the tc mappings may no longer be
1794 * valid. To resolve this verify the tc mapping remains valid and if
1795 * not NULL the mapping. With no priorities mapping to this
1796 * offset/count pair it will no longer be used. In the worst case TC0
1797 * is invalid nothing can be done so disable priority mappings. If is
1798 * expected that drivers will fix this mapping if they can before
1799 * calling netif_set_real_num_tx_queues.
1800 */
1801 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1802 {
1803 int i;
1804 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1805
1806 /* If TC0 is invalidated disable TC mapping */
1807 if (tc->offset + tc->count > txq) {
1808 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1809 dev->num_tc = 0;
1810 return;
1811 }
1812
1813 /* Invalidated prio to tc mappings set to TC0 */
1814 for (i = 1; i < TC_BITMASK + 1; i++) {
1815 int q = netdev_get_prio_tc_map(dev, i);
1816
1817 tc = &dev->tc_to_txq[q];
1818 if (tc->offset + tc->count > txq) {
1819 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1820 i, q);
1821 netdev_set_prio_tc_map(dev, i, 0);
1822 }
1823 }
1824 }
1825
1826 #ifdef CONFIG_XPS
1827 static DEFINE_MUTEX(xps_map_mutex);
1828 #define xmap_dereference(P) \
1829 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1830
1831 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1832 int cpu, u16 index)
1833 {
1834 struct xps_map *map = NULL;
1835 int pos;
1836
1837 if (dev_maps)
1838 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1839
1840 for (pos = 0; map && pos < map->len; pos++) {
1841 if (map->queues[pos] == index) {
1842 if (map->len > 1) {
1843 map->queues[pos] = map->queues[--map->len];
1844 } else {
1845 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1846 kfree_rcu(map, rcu);
1847 map = NULL;
1848 }
1849 break;
1850 }
1851 }
1852
1853 return map;
1854 }
1855
1856 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1857 {
1858 struct xps_dev_maps *dev_maps;
1859 int cpu, i;
1860 bool active = false;
1861
1862 mutex_lock(&xps_map_mutex);
1863 dev_maps = xmap_dereference(dev->xps_maps);
1864
1865 if (!dev_maps)
1866 goto out_no_maps;
1867
1868 for_each_possible_cpu(cpu) {
1869 for (i = index; i < dev->num_tx_queues; i++) {
1870 if (!remove_xps_queue(dev_maps, cpu, i))
1871 break;
1872 }
1873 if (i == dev->num_tx_queues)
1874 active = true;
1875 }
1876
1877 if (!active) {
1878 RCU_INIT_POINTER(dev->xps_maps, NULL);
1879 kfree_rcu(dev_maps, rcu);
1880 }
1881
1882 for (i = index; i < dev->num_tx_queues; i++)
1883 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1884 NUMA_NO_NODE);
1885
1886 out_no_maps:
1887 mutex_unlock(&xps_map_mutex);
1888 }
1889
1890 static struct xps_map *expand_xps_map(struct xps_map *map,
1891 int cpu, u16 index)
1892 {
1893 struct xps_map *new_map;
1894 int alloc_len = XPS_MIN_MAP_ALLOC;
1895 int i, pos;
1896
1897 for (pos = 0; map && pos < map->len; pos++) {
1898 if (map->queues[pos] != index)
1899 continue;
1900 return map;
1901 }
1902
1903 /* Need to add queue to this CPU's existing map */
1904 if (map) {
1905 if (pos < map->alloc_len)
1906 return map;
1907
1908 alloc_len = map->alloc_len * 2;
1909 }
1910
1911 /* Need to allocate new map to store queue on this CPU's map */
1912 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1913 cpu_to_node(cpu));
1914 if (!new_map)
1915 return NULL;
1916
1917 for (i = 0; i < pos; i++)
1918 new_map->queues[i] = map->queues[i];
1919 new_map->alloc_len = alloc_len;
1920 new_map->len = pos;
1921
1922 return new_map;
1923 }
1924
1925 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1926 u16 index)
1927 {
1928 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1929 struct xps_map *map, *new_map;
1930 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1931 int cpu, numa_node_id = -2;
1932 bool active = false;
1933
1934 mutex_lock(&xps_map_mutex);
1935
1936 dev_maps = xmap_dereference(dev->xps_maps);
1937
1938 /* allocate memory for queue storage */
1939 for_each_online_cpu(cpu) {
1940 if (!cpumask_test_cpu(cpu, mask))
1941 continue;
1942
1943 if (!new_dev_maps)
1944 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1945 if (!new_dev_maps) {
1946 mutex_unlock(&xps_map_mutex);
1947 return -ENOMEM;
1948 }
1949
1950 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1951 NULL;
1952
1953 map = expand_xps_map(map, cpu, index);
1954 if (!map)
1955 goto error;
1956
1957 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1958 }
1959
1960 if (!new_dev_maps)
1961 goto out_no_new_maps;
1962
1963 for_each_possible_cpu(cpu) {
1964 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1965 /* add queue to CPU maps */
1966 int pos = 0;
1967
1968 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1969 while ((pos < map->len) && (map->queues[pos] != index))
1970 pos++;
1971
1972 if (pos == map->len)
1973 map->queues[map->len++] = index;
1974 #ifdef CONFIG_NUMA
1975 if (numa_node_id == -2)
1976 numa_node_id = cpu_to_node(cpu);
1977 else if (numa_node_id != cpu_to_node(cpu))
1978 numa_node_id = -1;
1979 #endif
1980 } else if (dev_maps) {
1981 /* fill in the new device map from the old device map */
1982 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1983 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1984 }
1985
1986 }
1987
1988 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1989
1990 /* Cleanup old maps */
1991 if (dev_maps) {
1992 for_each_possible_cpu(cpu) {
1993 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1994 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1995 if (map && map != new_map)
1996 kfree_rcu(map, rcu);
1997 }
1998
1999 kfree_rcu(dev_maps, rcu);
2000 }
2001
2002 dev_maps = new_dev_maps;
2003 active = true;
2004
2005 out_no_new_maps:
2006 /* update Tx queue numa node */
2007 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2008 (numa_node_id >= 0) ? numa_node_id :
2009 NUMA_NO_NODE);
2010
2011 if (!dev_maps)
2012 goto out_no_maps;
2013
2014 /* removes queue from unused CPUs */
2015 for_each_possible_cpu(cpu) {
2016 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2017 continue;
2018
2019 if (remove_xps_queue(dev_maps, cpu, index))
2020 active = true;
2021 }
2022
2023 /* free map if not active */
2024 if (!active) {
2025 RCU_INIT_POINTER(dev->xps_maps, NULL);
2026 kfree_rcu(dev_maps, rcu);
2027 }
2028
2029 out_no_maps:
2030 mutex_unlock(&xps_map_mutex);
2031
2032 return 0;
2033 error:
2034 /* remove any maps that we added */
2035 for_each_possible_cpu(cpu) {
2036 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2037 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2038 NULL;
2039 if (new_map && new_map != map)
2040 kfree(new_map);
2041 }
2042
2043 mutex_unlock(&xps_map_mutex);
2044
2045 kfree(new_dev_maps);
2046 return -ENOMEM;
2047 }
2048 EXPORT_SYMBOL(netif_set_xps_queue);
2049
2050 #endif
2051 /*
2052 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2053 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2054 */
2055 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2056 {
2057 int rc;
2058
2059 if (txq < 1 || txq > dev->num_tx_queues)
2060 return -EINVAL;
2061
2062 if (dev->reg_state == NETREG_REGISTERED ||
2063 dev->reg_state == NETREG_UNREGISTERING) {
2064 ASSERT_RTNL();
2065
2066 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2067 txq);
2068 if (rc)
2069 return rc;
2070
2071 if (dev->num_tc)
2072 netif_setup_tc(dev, txq);
2073
2074 if (txq < dev->real_num_tx_queues) {
2075 qdisc_reset_all_tx_gt(dev, txq);
2076 #ifdef CONFIG_XPS
2077 netif_reset_xps_queues_gt(dev, txq);
2078 #endif
2079 }
2080 }
2081
2082 dev->real_num_tx_queues = txq;
2083 return 0;
2084 }
2085 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2086
2087 #ifdef CONFIG_SYSFS
2088 /**
2089 * netif_set_real_num_rx_queues - set actual number of RX queues used
2090 * @dev: Network device
2091 * @rxq: Actual number of RX queues
2092 *
2093 * This must be called either with the rtnl_lock held or before
2094 * registration of the net device. Returns 0 on success, or a
2095 * negative error code. If called before registration, it always
2096 * succeeds.
2097 */
2098 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2099 {
2100 int rc;
2101
2102 if (rxq < 1 || rxq > dev->num_rx_queues)
2103 return -EINVAL;
2104
2105 if (dev->reg_state == NETREG_REGISTERED) {
2106 ASSERT_RTNL();
2107
2108 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2109 rxq);
2110 if (rc)
2111 return rc;
2112 }
2113
2114 dev->real_num_rx_queues = rxq;
2115 return 0;
2116 }
2117 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2118 #endif
2119
2120 /**
2121 * netif_get_num_default_rss_queues - default number of RSS queues
2122 *
2123 * This routine should set an upper limit on the number of RSS queues
2124 * used by default by multiqueue devices.
2125 */
2126 int netif_get_num_default_rss_queues(void)
2127 {
2128 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2129 }
2130 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2131
2132 static inline void __netif_reschedule(struct Qdisc *q)
2133 {
2134 struct softnet_data *sd;
2135 unsigned long flags;
2136
2137 local_irq_save(flags);
2138 sd = &__get_cpu_var(softnet_data);
2139 q->next_sched = NULL;
2140 *sd->output_queue_tailp = q;
2141 sd->output_queue_tailp = &q->next_sched;
2142 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2143 local_irq_restore(flags);
2144 }
2145
2146 void __netif_schedule(struct Qdisc *q)
2147 {
2148 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2149 __netif_reschedule(q);
2150 }
2151 EXPORT_SYMBOL(__netif_schedule);
2152
2153 struct dev_kfree_skb_cb {
2154 enum skb_free_reason reason;
2155 };
2156
2157 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2158 {
2159 return (struct dev_kfree_skb_cb *)skb->cb;
2160 }
2161
2162 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2163 {
2164 unsigned long flags;
2165
2166 if (likely(atomic_read(&skb->users) == 1)) {
2167 smp_rmb();
2168 atomic_set(&skb->users, 0);
2169 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2170 return;
2171 }
2172 get_kfree_skb_cb(skb)->reason = reason;
2173 local_irq_save(flags);
2174 skb->next = __this_cpu_read(softnet_data.completion_queue);
2175 __this_cpu_write(softnet_data.completion_queue, skb);
2176 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2177 local_irq_restore(flags);
2178 }
2179 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2180
2181 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2182 {
2183 if (in_irq() || irqs_disabled())
2184 __dev_kfree_skb_irq(skb, reason);
2185 else
2186 dev_kfree_skb(skb);
2187 }
2188 EXPORT_SYMBOL(__dev_kfree_skb_any);
2189
2190
2191 /**
2192 * netif_device_detach - mark device as removed
2193 * @dev: network device
2194 *
2195 * Mark device as removed from system and therefore no longer available.
2196 */
2197 void netif_device_detach(struct net_device *dev)
2198 {
2199 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2200 netif_running(dev)) {
2201 netif_tx_stop_all_queues(dev);
2202 }
2203 }
2204 EXPORT_SYMBOL(netif_device_detach);
2205
2206 /**
2207 * netif_device_attach - mark device as attached
2208 * @dev: network device
2209 *
2210 * Mark device as attached from system and restart if needed.
2211 */
2212 void netif_device_attach(struct net_device *dev)
2213 {
2214 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2215 netif_running(dev)) {
2216 netif_tx_wake_all_queues(dev);
2217 __netdev_watchdog_up(dev);
2218 }
2219 }
2220 EXPORT_SYMBOL(netif_device_attach);
2221
2222 static void skb_warn_bad_offload(const struct sk_buff *skb)
2223 {
2224 static const netdev_features_t null_features = 0;
2225 struct net_device *dev = skb->dev;
2226 const char *driver = "";
2227
2228 if (!net_ratelimit())
2229 return;
2230
2231 if (dev && dev->dev.parent)
2232 driver = dev_driver_string(dev->dev.parent);
2233
2234 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2235 "gso_type=%d ip_summed=%d\n",
2236 driver, dev ? &dev->features : &null_features,
2237 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2238 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2239 skb_shinfo(skb)->gso_type, skb->ip_summed);
2240 }
2241
2242 /*
2243 * Invalidate hardware checksum when packet is to be mangled, and
2244 * complete checksum manually on outgoing path.
2245 */
2246 int skb_checksum_help(struct sk_buff *skb)
2247 {
2248 __wsum csum;
2249 int ret = 0, offset;
2250
2251 if (skb->ip_summed == CHECKSUM_COMPLETE)
2252 goto out_set_summed;
2253
2254 if (unlikely(skb_shinfo(skb)->gso_size)) {
2255 skb_warn_bad_offload(skb);
2256 return -EINVAL;
2257 }
2258
2259 /* Before computing a checksum, we should make sure no frag could
2260 * be modified by an external entity : checksum could be wrong.
2261 */
2262 if (skb_has_shared_frag(skb)) {
2263 ret = __skb_linearize(skb);
2264 if (ret)
2265 goto out;
2266 }
2267
2268 offset = skb_checksum_start_offset(skb);
2269 BUG_ON(offset >= skb_headlen(skb));
2270 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2271
2272 offset += skb->csum_offset;
2273 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2274
2275 if (skb_cloned(skb) &&
2276 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2277 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2278 if (ret)
2279 goto out;
2280 }
2281
2282 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2283 out_set_summed:
2284 skb->ip_summed = CHECKSUM_NONE;
2285 out:
2286 return ret;
2287 }
2288 EXPORT_SYMBOL(skb_checksum_help);
2289
2290 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2291 {
2292 unsigned int vlan_depth = skb->mac_len;
2293 __be16 type = skb->protocol;
2294
2295 /* Tunnel gso handlers can set protocol to ethernet. */
2296 if (type == htons(ETH_P_TEB)) {
2297 struct ethhdr *eth;
2298
2299 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2300 return 0;
2301
2302 eth = (struct ethhdr *)skb_mac_header(skb);
2303 type = eth->h_proto;
2304 }
2305
2306 /* if skb->protocol is 802.1Q/AD then the header should already be
2307 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2308 * ETH_HLEN otherwise
2309 */
2310 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2311 if (vlan_depth) {
2312 if (unlikely(WARN_ON(vlan_depth < VLAN_HLEN)))
2313 return 0;
2314 vlan_depth -= VLAN_HLEN;
2315 } else {
2316 vlan_depth = ETH_HLEN;
2317 }
2318 do {
2319 struct vlan_hdr *vh;
2320
2321 if (unlikely(!pskb_may_pull(skb,
2322 vlan_depth + VLAN_HLEN)))
2323 return 0;
2324
2325 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2326 type = vh->h_vlan_encapsulated_proto;
2327 vlan_depth += VLAN_HLEN;
2328 } while (type == htons(ETH_P_8021Q) ||
2329 type == htons(ETH_P_8021AD));
2330 }
2331
2332 *depth = vlan_depth;
2333
2334 return type;
2335 }
2336
2337 /**
2338 * skb_mac_gso_segment - mac layer segmentation handler.
2339 * @skb: buffer to segment
2340 * @features: features for the output path (see dev->features)
2341 */
2342 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2343 netdev_features_t features)
2344 {
2345 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2346 struct packet_offload *ptype;
2347 int vlan_depth = skb->mac_len;
2348 __be16 type = skb_network_protocol(skb, &vlan_depth);
2349
2350 if (unlikely(!type))
2351 return ERR_PTR(-EINVAL);
2352
2353 __skb_pull(skb, vlan_depth);
2354
2355 rcu_read_lock();
2356 list_for_each_entry_rcu(ptype, &offload_base, list) {
2357 if (ptype->type == type && ptype->callbacks.gso_segment) {
2358 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2359 int err;
2360
2361 err = ptype->callbacks.gso_send_check(skb);
2362 segs = ERR_PTR(err);
2363 if (err || skb_gso_ok(skb, features))
2364 break;
2365 __skb_push(skb, (skb->data -
2366 skb_network_header(skb)));
2367 }
2368 segs = ptype->callbacks.gso_segment(skb, features);
2369 break;
2370 }
2371 }
2372 rcu_read_unlock();
2373
2374 __skb_push(skb, skb->data - skb_mac_header(skb));
2375
2376 return segs;
2377 }
2378 EXPORT_SYMBOL(skb_mac_gso_segment);
2379
2380
2381 /* openvswitch calls this on rx path, so we need a different check.
2382 */
2383 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2384 {
2385 if (tx_path)
2386 return skb->ip_summed != CHECKSUM_PARTIAL;
2387 else
2388 return skb->ip_summed == CHECKSUM_NONE;
2389 }
2390
2391 /**
2392 * __skb_gso_segment - Perform segmentation on skb.
2393 * @skb: buffer to segment
2394 * @features: features for the output path (see dev->features)
2395 * @tx_path: whether it is called in TX path
2396 *
2397 * This function segments the given skb and returns a list of segments.
2398 *
2399 * It may return NULL if the skb requires no segmentation. This is
2400 * only possible when GSO is used for verifying header integrity.
2401 */
2402 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2403 netdev_features_t features, bool tx_path)
2404 {
2405 if (unlikely(skb_needs_check(skb, tx_path))) {
2406 int err;
2407
2408 skb_warn_bad_offload(skb);
2409
2410 if (skb_header_cloned(skb) &&
2411 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2412 return ERR_PTR(err);
2413 }
2414
2415 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2416 SKB_GSO_CB(skb)->encap_level = 0;
2417
2418 skb_reset_mac_header(skb);
2419 skb_reset_mac_len(skb);
2420
2421 return skb_mac_gso_segment(skb, features);
2422 }
2423 EXPORT_SYMBOL(__skb_gso_segment);
2424
2425 /* Take action when hardware reception checksum errors are detected. */
2426 #ifdef CONFIG_BUG
2427 void netdev_rx_csum_fault(struct net_device *dev)
2428 {
2429 if (net_ratelimit()) {
2430 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2431 dump_stack();
2432 }
2433 }
2434 EXPORT_SYMBOL(netdev_rx_csum_fault);
2435 #endif
2436
2437 /* Actually, we should eliminate this check as soon as we know, that:
2438 * 1. IOMMU is present and allows to map all the memory.
2439 * 2. No high memory really exists on this machine.
2440 */
2441
2442 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2443 {
2444 #ifdef CONFIG_HIGHMEM
2445 int i;
2446 if (!(dev->features & NETIF_F_HIGHDMA)) {
2447 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2448 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2449 if (PageHighMem(skb_frag_page(frag)))
2450 return 1;
2451 }
2452 }
2453
2454 if (PCI_DMA_BUS_IS_PHYS) {
2455 struct device *pdev = dev->dev.parent;
2456
2457 if (!pdev)
2458 return 0;
2459 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2460 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2461 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2462 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2463 return 1;
2464 }
2465 }
2466 #endif
2467 return 0;
2468 }
2469
2470 struct dev_gso_cb {
2471 void (*destructor)(struct sk_buff *skb);
2472 };
2473
2474 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2475
2476 static void dev_gso_skb_destructor(struct sk_buff *skb)
2477 {
2478 struct dev_gso_cb *cb;
2479
2480 kfree_skb_list(skb->next);
2481 skb->next = NULL;
2482
2483 cb = DEV_GSO_CB(skb);
2484 if (cb->destructor)
2485 cb->destructor(skb);
2486 }
2487
2488 /**
2489 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2490 * @skb: buffer to segment
2491 * @features: device features as applicable to this skb
2492 *
2493 * This function segments the given skb and stores the list of segments
2494 * in skb->next.
2495 */
2496 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2497 {
2498 struct sk_buff *segs;
2499
2500 segs = skb_gso_segment(skb, features);
2501
2502 /* Verifying header integrity only. */
2503 if (!segs)
2504 return 0;
2505
2506 if (IS_ERR(segs))
2507 return PTR_ERR(segs);
2508
2509 skb->next = segs;
2510 DEV_GSO_CB(skb)->destructor = skb->destructor;
2511 skb->destructor = dev_gso_skb_destructor;
2512
2513 return 0;
2514 }
2515
2516 /* If MPLS offload request, verify we are testing hardware MPLS features
2517 * instead of standard features for the netdev.
2518 */
2519 #ifdef CONFIG_NET_MPLS_GSO
2520 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2521 netdev_features_t features,
2522 __be16 type)
2523 {
2524 if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC))
2525 features &= skb->dev->mpls_features;
2526
2527 return features;
2528 }
2529 #else
2530 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2531 netdev_features_t features,
2532 __be16 type)
2533 {
2534 return features;
2535 }
2536 #endif
2537
2538 static netdev_features_t harmonize_features(struct sk_buff *skb,
2539 netdev_features_t features)
2540 {
2541 int tmp;
2542 __be16 type;
2543
2544 type = skb_network_protocol(skb, &tmp);
2545 features = net_mpls_features(skb, features, type);
2546
2547 if (skb->ip_summed != CHECKSUM_NONE &&
2548 !can_checksum_protocol(features, type)) {
2549 features &= ~NETIF_F_ALL_CSUM;
2550 } else if (illegal_highdma(skb->dev, skb)) {
2551 features &= ~NETIF_F_SG;
2552 }
2553
2554 return features;
2555 }
2556
2557 netdev_features_t netif_skb_features(struct sk_buff *skb)
2558 {
2559 __be16 protocol = skb->protocol;
2560 netdev_features_t features = skb->dev->features;
2561
2562 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2563 features &= ~NETIF_F_GSO_MASK;
2564
2565 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2566 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2567 protocol = veh->h_vlan_encapsulated_proto;
2568 } else if (!vlan_tx_tag_present(skb)) {
2569 return harmonize_features(skb, features);
2570 }
2571
2572 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2573 NETIF_F_HW_VLAN_STAG_TX);
2574
2575 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2576 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2577 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2578 NETIF_F_HW_VLAN_STAG_TX;
2579
2580 return harmonize_features(skb, features);
2581 }
2582 EXPORT_SYMBOL(netif_skb_features);
2583
2584 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2585 struct netdev_queue *txq)
2586 {
2587 const struct net_device_ops *ops = dev->netdev_ops;
2588 int rc = NETDEV_TX_OK;
2589 unsigned int skb_len;
2590
2591 if (likely(!skb->next)) {
2592 netdev_features_t features;
2593
2594 /*
2595 * If device doesn't need skb->dst, release it right now while
2596 * its hot in this cpu cache
2597 */
2598 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2599 skb_dst_drop(skb);
2600
2601 features = netif_skb_features(skb);
2602
2603 if (vlan_tx_tag_present(skb) &&
2604 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2605 skb = __vlan_put_tag(skb, skb->vlan_proto,
2606 vlan_tx_tag_get(skb));
2607 if (unlikely(!skb))
2608 goto out;
2609
2610 skb->vlan_tci = 0;
2611 }
2612
2613 /* If encapsulation offload request, verify we are testing
2614 * hardware encapsulation features instead of standard
2615 * features for the netdev
2616 */
2617 if (skb->encapsulation)
2618 features &= dev->hw_enc_features;
2619
2620 if (netif_needs_gso(skb, features)) {
2621 if (unlikely(dev_gso_segment(skb, features)))
2622 goto out_kfree_skb;
2623 if (skb->next)
2624 goto gso;
2625 } else {
2626 if (skb_needs_linearize(skb, features) &&
2627 __skb_linearize(skb))
2628 goto out_kfree_skb;
2629
2630 /* If packet is not checksummed and device does not
2631 * support checksumming for this protocol, complete
2632 * checksumming here.
2633 */
2634 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2635 if (skb->encapsulation)
2636 skb_set_inner_transport_header(skb,
2637 skb_checksum_start_offset(skb));
2638 else
2639 skb_set_transport_header(skb,
2640 skb_checksum_start_offset(skb));
2641 if (!(features & NETIF_F_ALL_CSUM) &&
2642 skb_checksum_help(skb))
2643 goto out_kfree_skb;
2644 }
2645 }
2646
2647 if (!list_empty(&ptype_all))
2648 dev_queue_xmit_nit(skb, dev);
2649
2650 skb_len = skb->len;
2651 trace_net_dev_start_xmit(skb, dev);
2652 rc = ops->ndo_start_xmit(skb, dev);
2653 trace_net_dev_xmit(skb, rc, dev, skb_len);
2654 if (rc == NETDEV_TX_OK)
2655 txq_trans_update(txq);
2656 return rc;
2657 }
2658
2659 gso:
2660 do {
2661 struct sk_buff *nskb = skb->next;
2662
2663 skb->next = nskb->next;
2664 nskb->next = NULL;
2665
2666 if (!list_empty(&ptype_all))
2667 dev_queue_xmit_nit(nskb, dev);
2668
2669 skb_len = nskb->len;
2670 trace_net_dev_start_xmit(nskb, dev);
2671 rc = ops->ndo_start_xmit(nskb, dev);
2672 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2673 if (unlikely(rc != NETDEV_TX_OK)) {
2674 if (rc & ~NETDEV_TX_MASK)
2675 goto out_kfree_gso_skb;
2676 nskb->next = skb->next;
2677 skb->next = nskb;
2678 return rc;
2679 }
2680 txq_trans_update(txq);
2681 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2682 return NETDEV_TX_BUSY;
2683 } while (skb->next);
2684
2685 out_kfree_gso_skb:
2686 if (likely(skb->next == NULL)) {
2687 skb->destructor = DEV_GSO_CB(skb)->destructor;
2688 consume_skb(skb);
2689 return rc;
2690 }
2691 out_kfree_skb:
2692 kfree_skb(skb);
2693 out:
2694 return rc;
2695 }
2696 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2697
2698 static void qdisc_pkt_len_init(struct sk_buff *skb)
2699 {
2700 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2701
2702 qdisc_skb_cb(skb)->pkt_len = skb->len;
2703
2704 /* To get more precise estimation of bytes sent on wire,
2705 * we add to pkt_len the headers size of all segments
2706 */
2707 if (shinfo->gso_size) {
2708 unsigned int hdr_len;
2709 u16 gso_segs = shinfo->gso_segs;
2710
2711 /* mac layer + network layer */
2712 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2713
2714 /* + transport layer */
2715 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2716 hdr_len += tcp_hdrlen(skb);
2717 else
2718 hdr_len += sizeof(struct udphdr);
2719
2720 if (shinfo->gso_type & SKB_GSO_DODGY)
2721 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2722 shinfo->gso_size);
2723
2724 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2725 }
2726 }
2727
2728 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2729 struct net_device *dev,
2730 struct netdev_queue *txq)
2731 {
2732 spinlock_t *root_lock = qdisc_lock(q);
2733 bool contended;
2734 int rc;
2735
2736 qdisc_pkt_len_init(skb);
2737 qdisc_calculate_pkt_len(skb, q);
2738 /*
2739 * Heuristic to force contended enqueues to serialize on a
2740 * separate lock before trying to get qdisc main lock.
2741 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2742 * often and dequeue packets faster.
2743 */
2744 contended = qdisc_is_running(q);
2745 if (unlikely(contended))
2746 spin_lock(&q->busylock);
2747
2748 spin_lock(root_lock);
2749 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2750 kfree_skb(skb);
2751 rc = NET_XMIT_DROP;
2752 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2753 qdisc_run_begin(q)) {
2754 /*
2755 * This is a work-conserving queue; there are no old skbs
2756 * waiting to be sent out; and the qdisc is not running -
2757 * xmit the skb directly.
2758 */
2759 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2760 skb_dst_force(skb);
2761
2762 qdisc_bstats_update(q, skb);
2763
2764 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2765 if (unlikely(contended)) {
2766 spin_unlock(&q->busylock);
2767 contended = false;
2768 }
2769 __qdisc_run(q);
2770 } else
2771 qdisc_run_end(q);
2772
2773 rc = NET_XMIT_SUCCESS;
2774 } else {
2775 skb_dst_force(skb);
2776 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2777 if (qdisc_run_begin(q)) {
2778 if (unlikely(contended)) {
2779 spin_unlock(&q->busylock);
2780 contended = false;
2781 }
2782 __qdisc_run(q);
2783 }
2784 }
2785 spin_unlock(root_lock);
2786 if (unlikely(contended))
2787 spin_unlock(&q->busylock);
2788 return rc;
2789 }
2790
2791 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2792 static void skb_update_prio(struct sk_buff *skb)
2793 {
2794 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2795
2796 if (!skb->priority && skb->sk && map) {
2797 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2798
2799 if (prioidx < map->priomap_len)
2800 skb->priority = map->priomap[prioidx];
2801 }
2802 }
2803 #else
2804 #define skb_update_prio(skb)
2805 #endif
2806
2807 static DEFINE_PER_CPU(int, xmit_recursion);
2808 #define RECURSION_LIMIT 10
2809
2810 /**
2811 * dev_loopback_xmit - loop back @skb
2812 * @skb: buffer to transmit
2813 */
2814 int dev_loopback_xmit(struct sk_buff *skb)
2815 {
2816 skb_reset_mac_header(skb);
2817 __skb_pull(skb, skb_network_offset(skb));
2818 skb->pkt_type = PACKET_LOOPBACK;
2819 skb->ip_summed = CHECKSUM_UNNECESSARY;
2820 WARN_ON(!skb_dst(skb));
2821 skb_dst_force(skb);
2822 netif_rx_ni(skb);
2823 return 0;
2824 }
2825 EXPORT_SYMBOL(dev_loopback_xmit);
2826
2827 /**
2828 * __dev_queue_xmit - transmit a buffer
2829 * @skb: buffer to transmit
2830 * @accel_priv: private data used for L2 forwarding offload
2831 *
2832 * Queue a buffer for transmission to a network device. The caller must
2833 * have set the device and priority and built the buffer before calling
2834 * this function. The function can be called from an interrupt.
2835 *
2836 * A negative errno code is returned on a failure. A success does not
2837 * guarantee the frame will be transmitted as it may be dropped due
2838 * to congestion or traffic shaping.
2839 *
2840 * -----------------------------------------------------------------------------------
2841 * I notice this method can also return errors from the queue disciplines,
2842 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2843 * be positive.
2844 *
2845 * Regardless of the return value, the skb is consumed, so it is currently
2846 * difficult to retry a send to this method. (You can bump the ref count
2847 * before sending to hold a reference for retry if you are careful.)
2848 *
2849 * When calling this method, interrupts MUST be enabled. This is because
2850 * the BH enable code must have IRQs enabled so that it will not deadlock.
2851 * --BLG
2852 */
2853 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2854 {
2855 struct net_device *dev = skb->dev;
2856 struct netdev_queue *txq;
2857 struct Qdisc *q;
2858 int rc = -ENOMEM;
2859
2860 skb_reset_mac_header(skb);
2861
2862 /* Disable soft irqs for various locks below. Also
2863 * stops preemption for RCU.
2864 */
2865 rcu_read_lock_bh();
2866
2867 skb_update_prio(skb);
2868
2869 txq = netdev_pick_tx(dev, skb, accel_priv);
2870 q = rcu_dereference_bh(txq->qdisc);
2871
2872 #ifdef CONFIG_NET_CLS_ACT
2873 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2874 #endif
2875 trace_net_dev_queue(skb);
2876 if (q->enqueue) {
2877 rc = __dev_xmit_skb(skb, q, dev, txq);
2878 goto out;
2879 }
2880
2881 /* The device has no queue. Common case for software devices:
2882 loopback, all the sorts of tunnels...
2883
2884 Really, it is unlikely that netif_tx_lock protection is necessary
2885 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2886 counters.)
2887 However, it is possible, that they rely on protection
2888 made by us here.
2889
2890 Check this and shot the lock. It is not prone from deadlocks.
2891 Either shot noqueue qdisc, it is even simpler 8)
2892 */
2893 if (dev->flags & IFF_UP) {
2894 int cpu = smp_processor_id(); /* ok because BHs are off */
2895
2896 if (txq->xmit_lock_owner != cpu) {
2897
2898 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2899 goto recursion_alert;
2900
2901 HARD_TX_LOCK(dev, txq, cpu);
2902
2903 if (!netif_xmit_stopped(txq)) {
2904 __this_cpu_inc(xmit_recursion);
2905 rc = dev_hard_start_xmit(skb, dev, txq);
2906 __this_cpu_dec(xmit_recursion);
2907 if (dev_xmit_complete(rc)) {
2908 HARD_TX_UNLOCK(dev, txq);
2909 goto out;
2910 }
2911 }
2912 HARD_TX_UNLOCK(dev, txq);
2913 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2914 dev->name);
2915 } else {
2916 /* Recursion is detected! It is possible,
2917 * unfortunately
2918 */
2919 recursion_alert:
2920 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2921 dev->name);
2922 }
2923 }
2924
2925 rc = -ENETDOWN;
2926 rcu_read_unlock_bh();
2927
2928 atomic_long_inc(&dev->tx_dropped);
2929 kfree_skb(skb);
2930 return rc;
2931 out:
2932 rcu_read_unlock_bh();
2933 return rc;
2934 }
2935
2936 int dev_queue_xmit(struct sk_buff *skb)
2937 {
2938 return __dev_queue_xmit(skb, NULL);
2939 }
2940 EXPORT_SYMBOL(dev_queue_xmit);
2941
2942 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2943 {
2944 return __dev_queue_xmit(skb, accel_priv);
2945 }
2946 EXPORT_SYMBOL(dev_queue_xmit_accel);
2947
2948
2949 /*=======================================================================
2950 Receiver routines
2951 =======================================================================*/
2952
2953 int netdev_max_backlog __read_mostly = 1000;
2954 EXPORT_SYMBOL(netdev_max_backlog);
2955
2956 int netdev_tstamp_prequeue __read_mostly = 1;
2957 int netdev_budget __read_mostly = 300;
2958 int weight_p __read_mostly = 64; /* old backlog weight */
2959
2960 /* Called with irq disabled */
2961 static inline void ____napi_schedule(struct softnet_data *sd,
2962 struct napi_struct *napi)
2963 {
2964 list_add_tail(&napi->poll_list, &sd->poll_list);
2965 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2966 }
2967
2968 #ifdef CONFIG_RPS
2969
2970 /* One global table that all flow-based protocols share. */
2971 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2972 EXPORT_SYMBOL(rps_sock_flow_table);
2973
2974 struct static_key rps_needed __read_mostly;
2975
2976 static struct rps_dev_flow *
2977 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2978 struct rps_dev_flow *rflow, u16 next_cpu)
2979 {
2980 if (next_cpu != RPS_NO_CPU) {
2981 #ifdef CONFIG_RFS_ACCEL
2982 struct netdev_rx_queue *rxqueue;
2983 struct rps_dev_flow_table *flow_table;
2984 struct rps_dev_flow *old_rflow;
2985 u32 flow_id;
2986 u16 rxq_index;
2987 int rc;
2988
2989 /* Should we steer this flow to a different hardware queue? */
2990 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2991 !(dev->features & NETIF_F_NTUPLE))
2992 goto out;
2993 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2994 if (rxq_index == skb_get_rx_queue(skb))
2995 goto out;
2996
2997 rxqueue = dev->_rx + rxq_index;
2998 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2999 if (!flow_table)
3000 goto out;
3001 flow_id = skb_get_hash(skb) & flow_table->mask;
3002 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3003 rxq_index, flow_id);
3004 if (rc < 0)
3005 goto out;
3006 old_rflow = rflow;
3007 rflow = &flow_table->flows[flow_id];
3008 rflow->filter = rc;
3009 if (old_rflow->filter == rflow->filter)
3010 old_rflow->filter = RPS_NO_FILTER;
3011 out:
3012 #endif
3013 rflow->last_qtail =
3014 per_cpu(softnet_data, next_cpu).input_queue_head;
3015 }
3016
3017 rflow->cpu = next_cpu;
3018 return rflow;
3019 }
3020
3021 /*
3022 * get_rps_cpu is called from netif_receive_skb and returns the target
3023 * CPU from the RPS map of the receiving queue for a given skb.
3024 * rcu_read_lock must be held on entry.
3025 */
3026 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3027 struct rps_dev_flow **rflowp)
3028 {
3029 struct netdev_rx_queue *rxqueue;
3030 struct rps_map *map;
3031 struct rps_dev_flow_table *flow_table;
3032 struct rps_sock_flow_table *sock_flow_table;
3033 int cpu = -1;
3034 u16 tcpu;
3035 u32 hash;
3036
3037 if (skb_rx_queue_recorded(skb)) {
3038 u16 index = skb_get_rx_queue(skb);
3039 if (unlikely(index >= dev->real_num_rx_queues)) {
3040 WARN_ONCE(dev->real_num_rx_queues > 1,
3041 "%s received packet on queue %u, but number "
3042 "of RX queues is %u\n",
3043 dev->name, index, dev->real_num_rx_queues);
3044 goto done;
3045 }
3046 rxqueue = dev->_rx + index;
3047 } else
3048 rxqueue = dev->_rx;
3049
3050 map = rcu_dereference(rxqueue->rps_map);
3051 if (map) {
3052 if (map->len == 1 &&
3053 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3054 tcpu = map->cpus[0];
3055 if (cpu_online(tcpu))
3056 cpu = tcpu;
3057 goto done;
3058 }
3059 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3060 goto done;
3061 }
3062
3063 skb_reset_network_header(skb);
3064 hash = skb_get_hash(skb);
3065 if (!hash)
3066 goto done;
3067
3068 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3069 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3070 if (flow_table && sock_flow_table) {
3071 u16 next_cpu;
3072 struct rps_dev_flow *rflow;
3073
3074 rflow = &flow_table->flows[hash & flow_table->mask];
3075 tcpu = rflow->cpu;
3076
3077 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3078
3079 /*
3080 * If the desired CPU (where last recvmsg was done) is
3081 * different from current CPU (one in the rx-queue flow
3082 * table entry), switch if one of the following holds:
3083 * - Current CPU is unset (equal to RPS_NO_CPU).
3084 * - Current CPU is offline.
3085 * - The current CPU's queue tail has advanced beyond the
3086 * last packet that was enqueued using this table entry.
3087 * This guarantees that all previous packets for the flow
3088 * have been dequeued, thus preserving in order delivery.
3089 */
3090 if (unlikely(tcpu != next_cpu) &&
3091 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3092 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3093 rflow->last_qtail)) >= 0)) {
3094 tcpu = next_cpu;
3095 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3096 }
3097
3098 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3099 *rflowp = rflow;
3100 cpu = tcpu;
3101 goto done;
3102 }
3103 }
3104
3105 if (map) {
3106 tcpu = map->cpus[((u64) hash * map->len) >> 32];
3107
3108 if (cpu_online(tcpu)) {
3109 cpu = tcpu;
3110 goto done;
3111 }
3112 }
3113
3114 done:
3115 return cpu;
3116 }
3117
3118 #ifdef CONFIG_RFS_ACCEL
3119
3120 /**
3121 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3122 * @dev: Device on which the filter was set
3123 * @rxq_index: RX queue index
3124 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3125 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3126 *
3127 * Drivers that implement ndo_rx_flow_steer() should periodically call
3128 * this function for each installed filter and remove the filters for
3129 * which it returns %true.
3130 */
3131 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3132 u32 flow_id, u16 filter_id)
3133 {
3134 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3135 struct rps_dev_flow_table *flow_table;
3136 struct rps_dev_flow *rflow;
3137 bool expire = true;
3138 int cpu;
3139
3140 rcu_read_lock();
3141 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3142 if (flow_table && flow_id <= flow_table->mask) {
3143 rflow = &flow_table->flows[flow_id];
3144 cpu = ACCESS_ONCE(rflow->cpu);
3145 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3146 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3147 rflow->last_qtail) <
3148 (int)(10 * flow_table->mask)))
3149 expire = false;
3150 }
3151 rcu_read_unlock();
3152 return expire;
3153 }
3154 EXPORT_SYMBOL(rps_may_expire_flow);
3155
3156 #endif /* CONFIG_RFS_ACCEL */
3157
3158 /* Called from hardirq (IPI) context */
3159 static void rps_trigger_softirq(void *data)
3160 {
3161 struct softnet_data *sd = data;
3162
3163 ____napi_schedule(sd, &sd->backlog);
3164 sd->received_rps++;
3165 }
3166
3167 #endif /* CONFIG_RPS */
3168
3169 /*
3170 * Check if this softnet_data structure is another cpu one
3171 * If yes, queue it to our IPI list and return 1
3172 * If no, return 0
3173 */
3174 static int rps_ipi_queued(struct softnet_data *sd)
3175 {
3176 #ifdef CONFIG_RPS
3177 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3178
3179 if (sd != mysd) {
3180 sd->rps_ipi_next = mysd->rps_ipi_list;
3181 mysd->rps_ipi_list = sd;
3182
3183 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3184 return 1;
3185 }
3186 #endif /* CONFIG_RPS */
3187 return 0;
3188 }
3189
3190 #ifdef CONFIG_NET_FLOW_LIMIT
3191 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3192 #endif
3193
3194 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3195 {
3196 #ifdef CONFIG_NET_FLOW_LIMIT
3197 struct sd_flow_limit *fl;
3198 struct softnet_data *sd;
3199 unsigned int old_flow, new_flow;
3200
3201 if (qlen < (netdev_max_backlog >> 1))
3202 return false;
3203
3204 sd = &__get_cpu_var(softnet_data);
3205
3206 rcu_read_lock();
3207 fl = rcu_dereference(sd->flow_limit);
3208 if (fl) {
3209 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3210 old_flow = fl->history[fl->history_head];
3211 fl->history[fl->history_head] = new_flow;
3212
3213 fl->history_head++;
3214 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3215
3216 if (likely(fl->buckets[old_flow]))
3217 fl->buckets[old_flow]--;
3218
3219 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3220 fl->count++;
3221 rcu_read_unlock();
3222 return true;
3223 }
3224 }
3225 rcu_read_unlock();
3226 #endif
3227 return false;
3228 }
3229
3230 /*
3231 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3232 * queue (may be a remote CPU queue).
3233 */
3234 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3235 unsigned int *qtail)
3236 {
3237 struct softnet_data *sd;
3238 unsigned long flags;
3239 unsigned int qlen;
3240
3241 sd = &per_cpu(softnet_data, cpu);
3242
3243 local_irq_save(flags);
3244
3245 rps_lock(sd);
3246 qlen = skb_queue_len(&sd->input_pkt_queue);
3247 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3248 if (skb_queue_len(&sd->input_pkt_queue)) {
3249 enqueue:
3250 __skb_queue_tail(&sd->input_pkt_queue, skb);
3251 input_queue_tail_incr_save(sd, qtail);
3252 rps_unlock(sd);
3253 local_irq_restore(flags);
3254 return NET_RX_SUCCESS;
3255 }
3256
3257 /* Schedule NAPI for backlog device
3258 * We can use non atomic operation since we own the queue lock
3259 */
3260 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3261 if (!rps_ipi_queued(sd))
3262 ____napi_schedule(sd, &sd->backlog);
3263 }
3264 goto enqueue;
3265 }
3266
3267 sd->dropped++;
3268 rps_unlock(sd);
3269
3270 local_irq_restore(flags);
3271
3272 atomic_long_inc(&skb->dev->rx_dropped);
3273 kfree_skb(skb);
3274 return NET_RX_DROP;
3275 }
3276
3277 static int netif_rx_internal(struct sk_buff *skb)
3278 {
3279 int ret;
3280
3281 net_timestamp_check(netdev_tstamp_prequeue, skb);
3282
3283 trace_netif_rx(skb);
3284 #ifdef CONFIG_RPS
3285 if (static_key_false(&rps_needed)) {
3286 struct rps_dev_flow voidflow, *rflow = &voidflow;
3287 int cpu;
3288
3289 preempt_disable();
3290 rcu_read_lock();
3291
3292 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3293 if (cpu < 0)
3294 cpu = smp_processor_id();
3295
3296 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3297
3298 rcu_read_unlock();
3299 preempt_enable();
3300 } else
3301 #endif
3302 {
3303 unsigned int qtail;
3304 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3305 put_cpu();
3306 }
3307 return ret;
3308 }
3309
3310 /**
3311 * netif_rx - post buffer to the network code
3312 * @skb: buffer to post
3313 *
3314 * This function receives a packet from a device driver and queues it for
3315 * the upper (protocol) levels to process. It always succeeds. The buffer
3316 * may be dropped during processing for congestion control or by the
3317 * protocol layers.
3318 *
3319 * return values:
3320 * NET_RX_SUCCESS (no congestion)
3321 * NET_RX_DROP (packet was dropped)
3322 *
3323 */
3324
3325 int netif_rx(struct sk_buff *skb)
3326 {
3327 trace_netif_rx_entry(skb);
3328
3329 return netif_rx_internal(skb);
3330 }
3331 EXPORT_SYMBOL(netif_rx);
3332
3333 int netif_rx_ni(struct sk_buff *skb)
3334 {
3335 int err;
3336
3337 trace_netif_rx_ni_entry(skb);
3338
3339 preempt_disable();
3340 err = netif_rx_internal(skb);
3341 if (local_softirq_pending())
3342 do_softirq();
3343 preempt_enable();
3344
3345 return err;
3346 }
3347 EXPORT_SYMBOL(netif_rx_ni);
3348
3349 static void net_tx_action(struct softirq_action *h)
3350 {
3351 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3352
3353 if (sd->completion_queue) {
3354 struct sk_buff *clist;
3355
3356 local_irq_disable();
3357 clist = sd->completion_queue;
3358 sd->completion_queue = NULL;
3359 local_irq_enable();
3360
3361 while (clist) {
3362 struct sk_buff *skb = clist;
3363 clist = clist->next;
3364
3365 WARN_ON(atomic_read(&skb->users));
3366 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3367 trace_consume_skb(skb);
3368 else
3369 trace_kfree_skb(skb, net_tx_action);
3370 __kfree_skb(skb);
3371 }
3372 }
3373
3374 if (sd->output_queue) {
3375 struct Qdisc *head;
3376
3377 local_irq_disable();
3378 head = sd->output_queue;
3379 sd->output_queue = NULL;
3380 sd->output_queue_tailp = &sd->output_queue;
3381 local_irq_enable();
3382
3383 while (head) {
3384 struct Qdisc *q = head;
3385 spinlock_t *root_lock;
3386
3387 head = head->next_sched;
3388
3389 root_lock = qdisc_lock(q);
3390 if (spin_trylock(root_lock)) {
3391 smp_mb__before_atomic();
3392 clear_bit(__QDISC_STATE_SCHED,
3393 &q->state);
3394 qdisc_run(q);
3395 spin_unlock(root_lock);
3396 } else {
3397 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3398 &q->state)) {
3399 __netif_reschedule(q);
3400 } else {
3401 smp_mb__before_atomic();
3402 clear_bit(__QDISC_STATE_SCHED,
3403 &q->state);
3404 }
3405 }
3406 }
3407 }
3408 }
3409
3410 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3411 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3412 /* This hook is defined here for ATM LANE */
3413 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3414 unsigned char *addr) __read_mostly;
3415 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3416 #endif
3417
3418 #ifdef CONFIG_NET_CLS_ACT
3419 /* TODO: Maybe we should just force sch_ingress to be compiled in
3420 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3421 * a compare and 2 stores extra right now if we dont have it on
3422 * but have CONFIG_NET_CLS_ACT
3423 * NOTE: This doesn't stop any functionality; if you dont have
3424 * the ingress scheduler, you just can't add policies on ingress.
3425 *
3426 */
3427 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3428 {
3429 struct net_device *dev = skb->dev;
3430 u32 ttl = G_TC_RTTL(skb->tc_verd);
3431 int result = TC_ACT_OK;
3432 struct Qdisc *q;
3433
3434 if (unlikely(MAX_RED_LOOP < ttl++)) {
3435 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3436 skb->skb_iif, dev->ifindex);
3437 return TC_ACT_SHOT;
3438 }
3439
3440 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3441 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3442
3443 q = rxq->qdisc;
3444 if (q != &noop_qdisc) {
3445 spin_lock(qdisc_lock(q));
3446 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3447 result = qdisc_enqueue_root(skb, q);
3448 spin_unlock(qdisc_lock(q));
3449 }
3450
3451 return result;
3452 }
3453
3454 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3455 struct packet_type **pt_prev,
3456 int *ret, struct net_device *orig_dev)
3457 {
3458 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3459
3460 if (!rxq || rxq->qdisc == &noop_qdisc)
3461 goto out;
3462
3463 if (*pt_prev) {
3464 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3465 *pt_prev = NULL;
3466 }
3467
3468 switch (ing_filter(skb, rxq)) {
3469 case TC_ACT_SHOT:
3470 case TC_ACT_STOLEN:
3471 kfree_skb(skb);
3472 return NULL;
3473 }
3474
3475 out:
3476 skb->tc_verd = 0;
3477 return skb;
3478 }
3479 #endif
3480
3481 /**
3482 * netdev_rx_handler_register - register receive handler
3483 * @dev: device to register a handler for
3484 * @rx_handler: receive handler to register
3485 * @rx_handler_data: data pointer that is used by rx handler
3486 *
3487 * Register a receive handler for a device. This handler will then be
3488 * called from __netif_receive_skb. A negative errno code is returned
3489 * on a failure.
3490 *
3491 * The caller must hold the rtnl_mutex.
3492 *
3493 * For a general description of rx_handler, see enum rx_handler_result.
3494 */
3495 int netdev_rx_handler_register(struct net_device *dev,
3496 rx_handler_func_t *rx_handler,
3497 void *rx_handler_data)
3498 {
3499 ASSERT_RTNL();
3500
3501 if (dev->rx_handler)
3502 return -EBUSY;
3503
3504 /* Note: rx_handler_data must be set before rx_handler */
3505 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3506 rcu_assign_pointer(dev->rx_handler, rx_handler);
3507
3508 return 0;
3509 }
3510 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3511
3512 /**
3513 * netdev_rx_handler_unregister - unregister receive handler
3514 * @dev: device to unregister a handler from
3515 *
3516 * Unregister a receive handler from a device.
3517 *
3518 * The caller must hold the rtnl_mutex.
3519 */
3520 void netdev_rx_handler_unregister(struct net_device *dev)
3521 {
3522
3523 ASSERT_RTNL();
3524 RCU_INIT_POINTER(dev->rx_handler, NULL);
3525 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3526 * section has a guarantee to see a non NULL rx_handler_data
3527 * as well.
3528 */
3529 synchronize_net();
3530 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3531 }
3532 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3533
3534 /*
3535 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3536 * the special handling of PFMEMALLOC skbs.
3537 */
3538 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3539 {
3540 switch (skb->protocol) {
3541 case htons(ETH_P_ARP):
3542 case htons(ETH_P_IP):
3543 case htons(ETH_P_IPV6):
3544 case htons(ETH_P_8021Q):
3545 case htons(ETH_P_8021AD):
3546 return true;
3547 default:
3548 return false;
3549 }
3550 }
3551
3552 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3553 {
3554 struct packet_type *ptype, *pt_prev;
3555 rx_handler_func_t *rx_handler;
3556 struct net_device *orig_dev;
3557 struct net_device *null_or_dev;
3558 bool deliver_exact = false;
3559 int ret = NET_RX_DROP;
3560 __be16 type;
3561
3562 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3563
3564 trace_netif_receive_skb(skb);
3565
3566 orig_dev = skb->dev;
3567
3568 skb_reset_network_header(skb);
3569 if (!skb_transport_header_was_set(skb))
3570 skb_reset_transport_header(skb);
3571 skb_reset_mac_len(skb);
3572
3573 pt_prev = NULL;
3574
3575 rcu_read_lock();
3576
3577 another_round:
3578 skb->skb_iif = skb->dev->ifindex;
3579
3580 __this_cpu_inc(softnet_data.processed);
3581
3582 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3583 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3584 skb = vlan_untag(skb);
3585 if (unlikely(!skb))
3586 goto unlock;
3587 }
3588
3589 #ifdef CONFIG_NET_CLS_ACT
3590 if (skb->tc_verd & TC_NCLS) {
3591 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3592 goto ncls;
3593 }
3594 #endif
3595
3596 if (pfmemalloc)
3597 goto skip_taps;
3598
3599 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3600 if (!ptype->dev || ptype->dev == skb->dev) {
3601 if (pt_prev)
3602 ret = deliver_skb(skb, pt_prev, orig_dev);
3603 pt_prev = ptype;
3604 }
3605 }
3606
3607 skip_taps:
3608 #ifdef CONFIG_NET_CLS_ACT
3609 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3610 if (!skb)
3611 goto unlock;
3612 ncls:
3613 #endif
3614
3615 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3616 goto drop;
3617
3618 if (vlan_tx_tag_present(skb)) {
3619 if (pt_prev) {
3620 ret = deliver_skb(skb, pt_prev, orig_dev);
3621 pt_prev = NULL;
3622 }
3623 if (vlan_do_receive(&skb))
3624 goto another_round;
3625 else if (unlikely(!skb))
3626 goto unlock;
3627 }
3628
3629 rx_handler = rcu_dereference(skb->dev->rx_handler);
3630 if (rx_handler) {
3631 if (pt_prev) {
3632 ret = deliver_skb(skb, pt_prev, orig_dev);
3633 pt_prev = NULL;
3634 }
3635 switch (rx_handler(&skb)) {
3636 case RX_HANDLER_CONSUMED:
3637 ret = NET_RX_SUCCESS;
3638 goto unlock;
3639 case RX_HANDLER_ANOTHER:
3640 goto another_round;
3641 case RX_HANDLER_EXACT:
3642 deliver_exact = true;
3643 case RX_HANDLER_PASS:
3644 break;
3645 default:
3646 BUG();
3647 }
3648 }
3649
3650 if (unlikely(vlan_tx_tag_present(skb))) {
3651 if (vlan_tx_tag_get_id(skb))
3652 skb->pkt_type = PACKET_OTHERHOST;
3653 /* Note: we might in the future use prio bits
3654 * and set skb->priority like in vlan_do_receive()
3655 * For the time being, just ignore Priority Code Point
3656 */
3657 skb->vlan_tci = 0;
3658 }
3659
3660 /* deliver only exact match when indicated */
3661 null_or_dev = deliver_exact ? skb->dev : NULL;
3662
3663 type = skb->protocol;
3664 list_for_each_entry_rcu(ptype,
3665 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3666 if (ptype->type == type &&
3667 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3668 ptype->dev == orig_dev)) {
3669 if (pt_prev)
3670 ret = deliver_skb(skb, pt_prev, orig_dev);
3671 pt_prev = ptype;
3672 }
3673 }
3674
3675 if (pt_prev) {
3676 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3677 goto drop;
3678 else
3679 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3680 } else {
3681 drop:
3682 atomic_long_inc(&skb->dev->rx_dropped);
3683 kfree_skb(skb);
3684 /* Jamal, now you will not able to escape explaining
3685 * me how you were going to use this. :-)
3686 */
3687 ret = NET_RX_DROP;
3688 }
3689
3690 unlock:
3691 rcu_read_unlock();
3692 return ret;
3693 }
3694
3695 static int __netif_receive_skb(struct sk_buff *skb)
3696 {
3697 int ret;
3698
3699 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3700 unsigned long pflags = current->flags;
3701
3702 /*
3703 * PFMEMALLOC skbs are special, they should
3704 * - be delivered to SOCK_MEMALLOC sockets only
3705 * - stay away from userspace
3706 * - have bounded memory usage
3707 *
3708 * Use PF_MEMALLOC as this saves us from propagating the allocation
3709 * context down to all allocation sites.
3710 */
3711 current->flags |= PF_MEMALLOC;
3712 ret = __netif_receive_skb_core(skb, true);
3713 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3714 } else
3715 ret = __netif_receive_skb_core(skb, false);
3716
3717 return ret;
3718 }
3719
3720 static int netif_receive_skb_internal(struct sk_buff *skb)
3721 {
3722 net_timestamp_check(netdev_tstamp_prequeue, skb);
3723
3724 if (skb_defer_rx_timestamp(skb))
3725 return NET_RX_SUCCESS;
3726
3727 #ifdef CONFIG_RPS
3728 if (static_key_false(&rps_needed)) {
3729 struct rps_dev_flow voidflow, *rflow = &voidflow;
3730 int cpu, ret;
3731
3732 rcu_read_lock();
3733
3734 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3735
3736 if (cpu >= 0) {
3737 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3738 rcu_read_unlock();
3739 return ret;
3740 }
3741 rcu_read_unlock();
3742 }
3743 #endif
3744 return __netif_receive_skb(skb);
3745 }
3746
3747 /**
3748 * netif_receive_skb - process receive buffer from network
3749 * @skb: buffer to process
3750 *
3751 * netif_receive_skb() is the main receive data processing function.
3752 * It always succeeds. The buffer may be dropped during processing
3753 * for congestion control or by the protocol layers.
3754 *
3755 * This function may only be called from softirq context and interrupts
3756 * should be enabled.
3757 *
3758 * Return values (usually ignored):
3759 * NET_RX_SUCCESS: no congestion
3760 * NET_RX_DROP: packet was dropped
3761 */
3762 int netif_receive_skb(struct sk_buff *skb)
3763 {
3764 trace_netif_receive_skb_entry(skb);
3765
3766 return netif_receive_skb_internal(skb);
3767 }
3768 EXPORT_SYMBOL(netif_receive_skb);
3769
3770 /* Network device is going away, flush any packets still pending
3771 * Called with irqs disabled.
3772 */
3773 static void flush_backlog(void *arg)
3774 {
3775 struct net_device *dev = arg;
3776 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3777 struct sk_buff *skb, *tmp;
3778
3779 rps_lock(sd);
3780 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3781 if (skb->dev == dev) {
3782 __skb_unlink(skb, &sd->input_pkt_queue);
3783 kfree_skb(skb);
3784 input_queue_head_incr(sd);
3785 }
3786 }
3787 rps_unlock(sd);
3788
3789 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3790 if (skb->dev == dev) {
3791 __skb_unlink(skb, &sd->process_queue);
3792 kfree_skb(skb);
3793 input_queue_head_incr(sd);
3794 }
3795 }
3796 }
3797
3798 static int napi_gro_complete(struct sk_buff *skb)
3799 {
3800 struct packet_offload *ptype;
3801 __be16 type = skb->protocol;
3802 struct list_head *head = &offload_base;
3803 int err = -ENOENT;
3804
3805 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3806
3807 if (NAPI_GRO_CB(skb)->count == 1) {
3808 skb_shinfo(skb)->gso_size = 0;
3809 goto out;
3810 }
3811
3812 rcu_read_lock();
3813 list_for_each_entry_rcu(ptype, head, list) {
3814 if (ptype->type != type || !ptype->callbacks.gro_complete)
3815 continue;
3816
3817 err = ptype->callbacks.gro_complete(skb, 0);
3818 break;
3819 }
3820 rcu_read_unlock();
3821
3822 if (err) {
3823 WARN_ON(&ptype->list == head);
3824 kfree_skb(skb);
3825 return NET_RX_SUCCESS;
3826 }
3827
3828 out:
3829 return netif_receive_skb_internal(skb);
3830 }
3831
3832 /* napi->gro_list contains packets ordered by age.
3833 * youngest packets at the head of it.
3834 * Complete skbs in reverse order to reduce latencies.
3835 */
3836 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3837 {
3838 struct sk_buff *skb, *prev = NULL;
3839
3840 /* scan list and build reverse chain */
3841 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3842 skb->prev = prev;
3843 prev = skb;
3844 }
3845
3846 for (skb = prev; skb; skb = prev) {
3847 skb->next = NULL;
3848
3849 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3850 return;
3851
3852 prev = skb->prev;
3853 napi_gro_complete(skb);
3854 napi->gro_count--;
3855 }
3856
3857 napi->gro_list = NULL;
3858 }
3859 EXPORT_SYMBOL(napi_gro_flush);
3860
3861 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3862 {
3863 struct sk_buff *p;
3864 unsigned int maclen = skb->dev->hard_header_len;
3865 u32 hash = skb_get_hash_raw(skb);
3866
3867 for (p = napi->gro_list; p; p = p->next) {
3868 unsigned long diffs;
3869
3870 NAPI_GRO_CB(p)->flush = 0;
3871
3872 if (hash != skb_get_hash_raw(p)) {
3873 NAPI_GRO_CB(p)->same_flow = 0;
3874 continue;
3875 }
3876
3877 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3878 diffs |= p->vlan_tci ^ skb->vlan_tci;
3879 if (maclen == ETH_HLEN)
3880 diffs |= compare_ether_header(skb_mac_header(p),
3881 skb_mac_header(skb));
3882 else if (!diffs)
3883 diffs = memcmp(skb_mac_header(p),
3884 skb_mac_header(skb),
3885 maclen);
3886 NAPI_GRO_CB(p)->same_flow = !diffs;
3887 }
3888 }
3889
3890 static void skb_gro_reset_offset(struct sk_buff *skb)
3891 {
3892 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3893 const skb_frag_t *frag0 = &pinfo->frags[0];
3894
3895 NAPI_GRO_CB(skb)->data_offset = 0;
3896 NAPI_GRO_CB(skb)->frag0 = NULL;
3897 NAPI_GRO_CB(skb)->frag0_len = 0;
3898
3899 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3900 pinfo->nr_frags &&
3901 !PageHighMem(skb_frag_page(frag0))) {
3902 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3903 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3904 }
3905 }
3906
3907 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3908 {
3909 struct skb_shared_info *pinfo = skb_shinfo(skb);
3910
3911 BUG_ON(skb->end - skb->tail < grow);
3912
3913 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3914
3915 skb->data_len -= grow;
3916 skb->tail += grow;
3917
3918 pinfo->frags[0].page_offset += grow;
3919 skb_frag_size_sub(&pinfo->frags[0], grow);
3920
3921 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3922 skb_frag_unref(skb, 0);
3923 memmove(pinfo->frags, pinfo->frags + 1,
3924 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3925 }
3926 }
3927
3928 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3929 {
3930 struct sk_buff **pp = NULL;
3931 struct packet_offload *ptype;
3932 __be16 type = skb->protocol;
3933 struct list_head *head = &offload_base;
3934 int same_flow;
3935 enum gro_result ret;
3936 int grow;
3937
3938 if (!(skb->dev->features & NETIF_F_GRO))
3939 goto normal;
3940
3941 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3942 goto normal;
3943
3944 gro_list_prepare(napi, skb);
3945 NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
3946
3947 rcu_read_lock();
3948 list_for_each_entry_rcu(ptype, head, list) {
3949 if (ptype->type != type || !ptype->callbacks.gro_receive)
3950 continue;
3951
3952 skb_set_network_header(skb, skb_gro_offset(skb));
3953 skb_reset_mac_len(skb);
3954 NAPI_GRO_CB(skb)->same_flow = 0;
3955 NAPI_GRO_CB(skb)->flush = 0;
3956 NAPI_GRO_CB(skb)->free = 0;
3957 NAPI_GRO_CB(skb)->udp_mark = 0;
3958
3959 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3960 break;
3961 }
3962 rcu_read_unlock();
3963
3964 if (&ptype->list == head)
3965 goto normal;
3966
3967 same_flow = NAPI_GRO_CB(skb)->same_flow;
3968 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3969
3970 if (pp) {
3971 struct sk_buff *nskb = *pp;
3972
3973 *pp = nskb->next;
3974 nskb->next = NULL;
3975 napi_gro_complete(nskb);
3976 napi->gro_count--;
3977 }
3978
3979 if (same_flow)
3980 goto ok;
3981
3982 if (NAPI_GRO_CB(skb)->flush)
3983 goto normal;
3984
3985 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
3986 struct sk_buff *nskb = napi->gro_list;
3987
3988 /* locate the end of the list to select the 'oldest' flow */
3989 while (nskb->next) {
3990 pp = &nskb->next;
3991 nskb = *pp;
3992 }
3993 *pp = NULL;
3994 nskb->next = NULL;
3995 napi_gro_complete(nskb);
3996 } else {
3997 napi->gro_count++;
3998 }
3999 NAPI_GRO_CB(skb)->count = 1;
4000 NAPI_GRO_CB(skb)->age = jiffies;
4001 NAPI_GRO_CB(skb)->last = skb;
4002 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4003 skb->next = napi->gro_list;
4004 napi->gro_list = skb;
4005 ret = GRO_HELD;
4006
4007 pull:
4008 grow = skb_gro_offset(skb) - skb_headlen(skb);
4009 if (grow > 0)
4010 gro_pull_from_frag0(skb, grow);
4011 ok:
4012 return ret;
4013
4014 normal:
4015 ret = GRO_NORMAL;
4016 goto pull;
4017 }
4018
4019 struct packet_offload *gro_find_receive_by_type(__be16 type)
4020 {
4021 struct list_head *offload_head = &offload_base;
4022 struct packet_offload *ptype;
4023
4024 list_for_each_entry_rcu(ptype, offload_head, list) {
4025 if (ptype->type != type || !ptype->callbacks.gro_receive)
4026 continue;
4027 return ptype;
4028 }
4029 return NULL;
4030 }
4031 EXPORT_SYMBOL(gro_find_receive_by_type);
4032
4033 struct packet_offload *gro_find_complete_by_type(__be16 type)
4034 {
4035 struct list_head *offload_head = &offload_base;
4036 struct packet_offload *ptype;
4037
4038 list_for_each_entry_rcu(ptype, offload_head, list) {
4039 if (ptype->type != type || !ptype->callbacks.gro_complete)
4040 continue;
4041 return ptype;
4042 }
4043 return NULL;
4044 }
4045 EXPORT_SYMBOL(gro_find_complete_by_type);
4046
4047 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4048 {
4049 switch (ret) {
4050 case GRO_NORMAL:
4051 if (netif_receive_skb_internal(skb))
4052 ret = GRO_DROP;
4053 break;
4054
4055 case GRO_DROP:
4056 kfree_skb(skb);
4057 break;
4058
4059 case GRO_MERGED_FREE:
4060 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4061 kmem_cache_free(skbuff_head_cache, skb);
4062 else
4063 __kfree_skb(skb);
4064 break;
4065
4066 case GRO_HELD:
4067 case GRO_MERGED:
4068 break;
4069 }
4070
4071 return ret;
4072 }
4073
4074 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4075 {
4076 trace_napi_gro_receive_entry(skb);
4077
4078 skb_gro_reset_offset(skb);
4079
4080 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4081 }
4082 EXPORT_SYMBOL(napi_gro_receive);
4083
4084 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4085 {
4086 __skb_pull(skb, skb_headlen(skb));
4087 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4088 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4089 skb->vlan_tci = 0;
4090 skb->dev = napi->dev;
4091 skb->skb_iif = 0;
4092 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4093
4094 napi->skb = skb;
4095 }
4096
4097 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4098 {
4099 struct sk_buff *skb = napi->skb;
4100
4101 if (!skb) {
4102 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4103 napi->skb = skb;
4104 }
4105 return skb;
4106 }
4107 EXPORT_SYMBOL(napi_get_frags);
4108
4109 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4110 struct sk_buff *skb,
4111 gro_result_t ret)
4112 {
4113 switch (ret) {
4114 case GRO_NORMAL:
4115 case GRO_HELD:
4116 __skb_push(skb, ETH_HLEN);
4117 skb->protocol = eth_type_trans(skb, skb->dev);
4118 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4119 ret = GRO_DROP;
4120 break;
4121
4122 case GRO_DROP:
4123 case GRO_MERGED_FREE:
4124 napi_reuse_skb(napi, skb);
4125 break;
4126
4127 case GRO_MERGED:
4128 break;
4129 }
4130
4131 return ret;
4132 }
4133
4134 /* Upper GRO stack assumes network header starts at gro_offset=0
4135 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4136 * We copy ethernet header into skb->data to have a common layout.
4137 */
4138 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4139 {
4140 struct sk_buff *skb = napi->skb;
4141 const struct ethhdr *eth;
4142 unsigned int hlen = sizeof(*eth);
4143
4144 napi->skb = NULL;
4145
4146 skb_reset_mac_header(skb);
4147 skb_gro_reset_offset(skb);
4148
4149 eth = skb_gro_header_fast(skb, 0);
4150 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4151 eth = skb_gro_header_slow(skb, hlen, 0);
4152 if (unlikely(!eth)) {
4153 napi_reuse_skb(napi, skb);
4154 return NULL;
4155 }
4156 } else {
4157 gro_pull_from_frag0(skb, hlen);
4158 NAPI_GRO_CB(skb)->frag0 += hlen;
4159 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4160 }
4161 __skb_pull(skb, hlen);
4162
4163 /*
4164 * This works because the only protocols we care about don't require
4165 * special handling.
4166 * We'll fix it up properly in napi_frags_finish()
4167 */
4168 skb->protocol = eth->h_proto;
4169
4170 return skb;
4171 }
4172
4173 gro_result_t napi_gro_frags(struct napi_struct *napi)
4174 {
4175 struct sk_buff *skb = napi_frags_skb(napi);
4176
4177 if (!skb)
4178 return GRO_DROP;
4179
4180 trace_napi_gro_frags_entry(skb);
4181
4182 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4183 }
4184 EXPORT_SYMBOL(napi_gro_frags);
4185
4186 /*
4187 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4188 * Note: called with local irq disabled, but exits with local irq enabled.
4189 */
4190 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4191 {
4192 #ifdef CONFIG_RPS
4193 struct softnet_data *remsd = sd->rps_ipi_list;
4194
4195 if (remsd) {
4196 sd->rps_ipi_list = NULL;
4197
4198 local_irq_enable();
4199
4200 /* Send pending IPI's to kick RPS processing on remote cpus. */
4201 while (remsd) {
4202 struct softnet_data *next = remsd->rps_ipi_next;
4203
4204 if (cpu_online(remsd->cpu))
4205 smp_call_function_single_async(remsd->cpu,
4206 &remsd->csd);
4207 remsd = next;
4208 }
4209 } else
4210 #endif
4211 local_irq_enable();
4212 }
4213
4214 static int process_backlog(struct napi_struct *napi, int quota)
4215 {
4216 int work = 0;
4217 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4218
4219 #ifdef CONFIG_RPS
4220 /* Check if we have pending ipi, its better to send them now,
4221 * not waiting net_rx_action() end.
4222 */
4223 if (sd->rps_ipi_list) {
4224 local_irq_disable();
4225 net_rps_action_and_irq_enable(sd);
4226 }
4227 #endif
4228 napi->weight = weight_p;
4229 local_irq_disable();
4230 while (work < quota) {
4231 struct sk_buff *skb;
4232 unsigned int qlen;
4233
4234 while ((skb = __skb_dequeue(&sd->process_queue))) {
4235 local_irq_enable();
4236 __netif_receive_skb(skb);
4237 local_irq_disable();
4238 input_queue_head_incr(sd);
4239 if (++work >= quota) {
4240 local_irq_enable();
4241 return work;
4242 }
4243 }
4244
4245 rps_lock(sd);
4246 qlen = skb_queue_len(&sd->input_pkt_queue);
4247 if (qlen)
4248 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4249 &sd->process_queue);
4250
4251 if (qlen < quota - work) {
4252 /*
4253 * Inline a custom version of __napi_complete().
4254 * only current cpu owns and manipulates this napi,
4255 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4256 * we can use a plain write instead of clear_bit(),
4257 * and we dont need an smp_mb() memory barrier.
4258 */
4259 list_del(&napi->poll_list);
4260 napi->state = 0;
4261
4262 quota = work + qlen;
4263 }
4264 rps_unlock(sd);
4265 }
4266 local_irq_enable();
4267
4268 return work;
4269 }
4270
4271 /**
4272 * __napi_schedule - schedule for receive
4273 * @n: entry to schedule
4274 *
4275 * The entry's receive function will be scheduled to run
4276 */
4277 void __napi_schedule(struct napi_struct *n)
4278 {
4279 unsigned long flags;
4280
4281 local_irq_save(flags);
4282 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4283 local_irq_restore(flags);
4284 }
4285 EXPORT_SYMBOL(__napi_schedule);
4286
4287 void __napi_complete(struct napi_struct *n)
4288 {
4289 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4290 BUG_ON(n->gro_list);
4291
4292 list_del(&n->poll_list);
4293 smp_mb__before_atomic();
4294 clear_bit(NAPI_STATE_SCHED, &n->state);
4295 }
4296 EXPORT_SYMBOL(__napi_complete);
4297
4298 void napi_complete(struct napi_struct *n)
4299 {
4300 unsigned long flags;
4301
4302 /*
4303 * don't let napi dequeue from the cpu poll list
4304 * just in case its running on a different cpu
4305 */
4306 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4307 return;
4308
4309 napi_gro_flush(n, false);
4310 local_irq_save(flags);
4311 __napi_complete(n);
4312 local_irq_restore(flags);
4313 }
4314 EXPORT_SYMBOL(napi_complete);
4315
4316 /* must be called under rcu_read_lock(), as we dont take a reference */
4317 struct napi_struct *napi_by_id(unsigned int napi_id)
4318 {
4319 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4320 struct napi_struct *napi;
4321
4322 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4323 if (napi->napi_id == napi_id)
4324 return napi;
4325
4326 return NULL;
4327 }
4328 EXPORT_SYMBOL_GPL(napi_by_id);
4329
4330 void napi_hash_add(struct napi_struct *napi)
4331 {
4332 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4333
4334 spin_lock(&napi_hash_lock);
4335
4336 /* 0 is not a valid id, we also skip an id that is taken
4337 * we expect both events to be extremely rare
4338 */
4339 napi->napi_id = 0;
4340 while (!napi->napi_id) {
4341 napi->napi_id = ++napi_gen_id;
4342 if (napi_by_id(napi->napi_id))
4343 napi->napi_id = 0;
4344 }
4345
4346 hlist_add_head_rcu(&napi->napi_hash_node,
4347 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4348
4349 spin_unlock(&napi_hash_lock);
4350 }
4351 }
4352 EXPORT_SYMBOL_GPL(napi_hash_add);
4353
4354 /* Warning : caller is responsible to make sure rcu grace period
4355 * is respected before freeing memory containing @napi
4356 */
4357 void napi_hash_del(struct napi_struct *napi)
4358 {
4359 spin_lock(&napi_hash_lock);
4360
4361 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4362 hlist_del_rcu(&napi->napi_hash_node);
4363
4364 spin_unlock(&napi_hash_lock);
4365 }
4366 EXPORT_SYMBOL_GPL(napi_hash_del);
4367
4368 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4369 int (*poll)(struct napi_struct *, int), int weight)
4370 {
4371 INIT_LIST_HEAD(&napi->poll_list);
4372 napi->gro_count = 0;
4373 napi->gro_list = NULL;
4374 napi->skb = NULL;
4375 napi->poll = poll;
4376 if (weight > NAPI_POLL_WEIGHT)
4377 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4378 weight, dev->name);
4379 napi->weight = weight;
4380 list_add(&napi->dev_list, &dev->napi_list);
4381 napi->dev = dev;
4382 #ifdef CONFIG_NETPOLL
4383 spin_lock_init(&napi->poll_lock);
4384 napi->poll_owner = -1;
4385 #endif
4386 set_bit(NAPI_STATE_SCHED, &napi->state);
4387 }
4388 EXPORT_SYMBOL(netif_napi_add);
4389
4390 void netif_napi_del(struct napi_struct *napi)
4391 {
4392 list_del_init(&napi->dev_list);
4393 napi_free_frags(napi);
4394
4395 kfree_skb_list(napi->gro_list);
4396 napi->gro_list = NULL;
4397 napi->gro_count = 0;
4398 }
4399 EXPORT_SYMBOL(netif_napi_del);
4400
4401 static void net_rx_action(struct softirq_action *h)
4402 {
4403 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4404 unsigned long time_limit = jiffies + 2;
4405 int budget = netdev_budget;
4406 void *have;
4407
4408 local_irq_disable();
4409
4410 while (!list_empty(&sd->poll_list)) {
4411 struct napi_struct *n;
4412 int work, weight;
4413
4414 /* If softirq window is exhuasted then punt.
4415 * Allow this to run for 2 jiffies since which will allow
4416 * an average latency of 1.5/HZ.
4417 */
4418 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4419 goto softnet_break;
4420
4421 local_irq_enable();
4422
4423 /* Even though interrupts have been re-enabled, this
4424 * access is safe because interrupts can only add new
4425 * entries to the tail of this list, and only ->poll()
4426 * calls can remove this head entry from the list.
4427 */
4428 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4429
4430 have = netpoll_poll_lock(n);
4431
4432 weight = n->weight;
4433
4434 /* This NAPI_STATE_SCHED test is for avoiding a race
4435 * with netpoll's poll_napi(). Only the entity which
4436 * obtains the lock and sees NAPI_STATE_SCHED set will
4437 * actually make the ->poll() call. Therefore we avoid
4438 * accidentally calling ->poll() when NAPI is not scheduled.
4439 */
4440 work = 0;
4441 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4442 work = n->poll(n, weight);
4443 trace_napi_poll(n);
4444 }
4445
4446 WARN_ON_ONCE(work > weight);
4447
4448 budget -= work;
4449
4450 local_irq_disable();
4451
4452 /* Drivers must not modify the NAPI state if they
4453 * consume the entire weight. In such cases this code
4454 * still "owns" the NAPI instance and therefore can
4455 * move the instance around on the list at-will.
4456 */
4457 if (unlikely(work == weight)) {
4458 if (unlikely(napi_disable_pending(n))) {
4459 local_irq_enable();
4460 napi_complete(n);
4461 local_irq_disable();
4462 } else {
4463 if (n->gro_list) {
4464 /* flush too old packets
4465 * If HZ < 1000, flush all packets.
4466 */
4467 local_irq_enable();
4468 napi_gro_flush(n, HZ >= 1000);
4469 local_irq_disable();
4470 }
4471 list_move_tail(&n->poll_list, &sd->poll_list);
4472 }
4473 }
4474
4475 netpoll_poll_unlock(have);
4476 }
4477 out:
4478 net_rps_action_and_irq_enable(sd);
4479
4480 #ifdef CONFIG_NET_DMA
4481 /*
4482 * There may not be any more sk_buffs coming right now, so push
4483 * any pending DMA copies to hardware
4484 */
4485 dma_issue_pending_all();
4486 #endif
4487
4488 return;
4489
4490 softnet_break:
4491 sd->time_squeeze++;
4492 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4493 goto out;
4494 }
4495
4496 struct netdev_adjacent {
4497 struct net_device *dev;
4498
4499 /* upper master flag, there can only be one master device per list */
4500 bool master;
4501
4502 /* counter for the number of times this device was added to us */
4503 u16 ref_nr;
4504
4505 /* private field for the users */
4506 void *private;
4507
4508 struct list_head list;
4509 struct rcu_head rcu;
4510 };
4511
4512 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4513 struct net_device *adj_dev,
4514 struct list_head *adj_list)
4515 {
4516 struct netdev_adjacent *adj;
4517
4518 list_for_each_entry(adj, adj_list, list) {
4519 if (adj->dev == adj_dev)
4520 return adj;
4521 }
4522 return NULL;
4523 }
4524
4525 /**
4526 * netdev_has_upper_dev - Check if device is linked to an upper device
4527 * @dev: device
4528 * @upper_dev: upper device to check
4529 *
4530 * Find out if a device is linked to specified upper device and return true
4531 * in case it is. Note that this checks only immediate upper device,
4532 * not through a complete stack of devices. The caller must hold the RTNL lock.
4533 */
4534 bool netdev_has_upper_dev(struct net_device *dev,
4535 struct net_device *upper_dev)
4536 {
4537 ASSERT_RTNL();
4538
4539 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4540 }
4541 EXPORT_SYMBOL(netdev_has_upper_dev);
4542
4543 /**
4544 * netdev_has_any_upper_dev - Check if device is linked to some device
4545 * @dev: device
4546 *
4547 * Find out if a device is linked to an upper device and return true in case
4548 * it is. The caller must hold the RTNL lock.
4549 */
4550 static bool netdev_has_any_upper_dev(struct net_device *dev)
4551 {
4552 ASSERT_RTNL();
4553
4554 return !list_empty(&dev->all_adj_list.upper);
4555 }
4556
4557 /**
4558 * netdev_master_upper_dev_get - Get master upper device
4559 * @dev: device
4560 *
4561 * Find a master upper device and return pointer to it or NULL in case
4562 * it's not there. The caller must hold the RTNL lock.
4563 */
4564 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4565 {
4566 struct netdev_adjacent *upper;
4567
4568 ASSERT_RTNL();
4569
4570 if (list_empty(&dev->adj_list.upper))
4571 return NULL;
4572
4573 upper = list_first_entry(&dev->adj_list.upper,
4574 struct netdev_adjacent, list);
4575 if (likely(upper->master))
4576 return upper->dev;
4577 return NULL;
4578 }
4579 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4580
4581 void *netdev_adjacent_get_private(struct list_head *adj_list)
4582 {
4583 struct netdev_adjacent *adj;
4584
4585 adj = list_entry(adj_list, struct netdev_adjacent, list);
4586
4587 return adj->private;
4588 }
4589 EXPORT_SYMBOL(netdev_adjacent_get_private);
4590
4591 /**
4592 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4593 * @dev: device
4594 * @iter: list_head ** of the current position
4595 *
4596 * Gets the next device from the dev's upper list, starting from iter
4597 * position. The caller must hold RCU read lock.
4598 */
4599 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4600 struct list_head **iter)
4601 {
4602 struct netdev_adjacent *upper;
4603
4604 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4605
4606 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4607
4608 if (&upper->list == &dev->adj_list.upper)
4609 return NULL;
4610
4611 *iter = &upper->list;
4612
4613 return upper->dev;
4614 }
4615 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4616
4617 /**
4618 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4619 * @dev: device
4620 * @iter: list_head ** of the current position
4621 *
4622 * Gets the next device from the dev's upper list, starting from iter
4623 * position. The caller must hold RCU read lock.
4624 */
4625 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4626 struct list_head **iter)
4627 {
4628 struct netdev_adjacent *upper;
4629
4630 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4631
4632 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4633
4634 if (&upper->list == &dev->all_adj_list.upper)
4635 return NULL;
4636
4637 *iter = &upper->list;
4638
4639 return upper->dev;
4640 }
4641 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4642
4643 /**
4644 * netdev_lower_get_next_private - Get the next ->private from the
4645 * lower neighbour list
4646 * @dev: device
4647 * @iter: list_head ** of the current position
4648 *
4649 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4650 * list, starting from iter position. The caller must hold either hold the
4651 * RTNL lock or its own locking that guarantees that the neighbour lower
4652 * list will remain unchainged.
4653 */
4654 void *netdev_lower_get_next_private(struct net_device *dev,
4655 struct list_head **iter)
4656 {
4657 struct netdev_adjacent *lower;
4658
4659 lower = list_entry(*iter, struct netdev_adjacent, list);
4660
4661 if (&lower->list == &dev->adj_list.lower)
4662 return NULL;
4663
4664 *iter = lower->list.next;
4665
4666 return lower->private;
4667 }
4668 EXPORT_SYMBOL(netdev_lower_get_next_private);
4669
4670 /**
4671 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4672 * lower neighbour list, RCU
4673 * variant
4674 * @dev: device
4675 * @iter: list_head ** of the current position
4676 *
4677 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4678 * list, starting from iter position. The caller must hold RCU read lock.
4679 */
4680 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4681 struct list_head **iter)
4682 {
4683 struct netdev_adjacent *lower;
4684
4685 WARN_ON_ONCE(!rcu_read_lock_held());
4686
4687 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4688
4689 if (&lower->list == &dev->adj_list.lower)
4690 return NULL;
4691
4692 *iter = &lower->list;
4693
4694 return lower->private;
4695 }
4696 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4697
4698 /**
4699 * netdev_lower_get_next - Get the next device from the lower neighbour
4700 * list
4701 * @dev: device
4702 * @iter: list_head ** of the current position
4703 *
4704 * Gets the next netdev_adjacent from the dev's lower neighbour
4705 * list, starting from iter position. The caller must hold RTNL lock or
4706 * its own locking that guarantees that the neighbour lower
4707 * list will remain unchainged.
4708 */
4709 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4710 {
4711 struct netdev_adjacent *lower;
4712
4713 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4714
4715 if (&lower->list == &dev->adj_list.lower)
4716 return NULL;
4717
4718 *iter = &lower->list;
4719
4720 return lower->dev;
4721 }
4722 EXPORT_SYMBOL(netdev_lower_get_next);
4723
4724 /**
4725 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4726 * lower neighbour list, RCU
4727 * variant
4728 * @dev: device
4729 *
4730 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4731 * list. The caller must hold RCU read lock.
4732 */
4733 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4734 {
4735 struct netdev_adjacent *lower;
4736
4737 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4738 struct netdev_adjacent, list);
4739 if (lower)
4740 return lower->private;
4741 return NULL;
4742 }
4743 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4744
4745 /**
4746 * netdev_master_upper_dev_get_rcu - Get master upper device
4747 * @dev: device
4748 *
4749 * Find a master upper device and return pointer to it or NULL in case
4750 * it's not there. The caller must hold the RCU read lock.
4751 */
4752 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4753 {
4754 struct netdev_adjacent *upper;
4755
4756 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4757 struct netdev_adjacent, list);
4758 if (upper && likely(upper->master))
4759 return upper->dev;
4760 return NULL;
4761 }
4762 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4763
4764 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4765 struct net_device *adj_dev,
4766 struct list_head *dev_list)
4767 {
4768 char linkname[IFNAMSIZ+7];
4769 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4770 "upper_%s" : "lower_%s", adj_dev->name);
4771 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4772 linkname);
4773 }
4774 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4775 char *name,
4776 struct list_head *dev_list)
4777 {
4778 char linkname[IFNAMSIZ+7];
4779 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4780 "upper_%s" : "lower_%s", name);
4781 sysfs_remove_link(&(dev->dev.kobj), linkname);
4782 }
4783
4784 #define netdev_adjacent_is_neigh_list(dev, dev_list) \
4785 (dev_list == &dev->adj_list.upper || \
4786 dev_list == &dev->adj_list.lower)
4787
4788 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4789 struct net_device *adj_dev,
4790 struct list_head *dev_list,
4791 void *private, bool master)
4792 {
4793 struct netdev_adjacent *adj;
4794 int ret;
4795
4796 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4797
4798 if (adj) {
4799 adj->ref_nr++;
4800 return 0;
4801 }
4802
4803 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4804 if (!adj)
4805 return -ENOMEM;
4806
4807 adj->dev = adj_dev;
4808 adj->master = master;
4809 adj->ref_nr = 1;
4810 adj->private = private;
4811 dev_hold(adj_dev);
4812
4813 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4814 adj_dev->name, dev->name, adj_dev->name);
4815
4816 if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4817 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4818 if (ret)
4819 goto free_adj;
4820 }
4821
4822 /* Ensure that master link is always the first item in list. */
4823 if (master) {
4824 ret = sysfs_create_link(&(dev->dev.kobj),
4825 &(adj_dev->dev.kobj), "master");
4826 if (ret)
4827 goto remove_symlinks;
4828
4829 list_add_rcu(&adj->list, dev_list);
4830 } else {
4831 list_add_tail_rcu(&adj->list, dev_list);
4832 }
4833
4834 return 0;
4835
4836 remove_symlinks:
4837 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4838 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4839 free_adj:
4840 kfree(adj);
4841 dev_put(adj_dev);
4842
4843 return ret;
4844 }
4845
4846 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4847 struct net_device *adj_dev,
4848 struct list_head *dev_list)
4849 {
4850 struct netdev_adjacent *adj;
4851
4852 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4853
4854 if (!adj) {
4855 pr_err("tried to remove device %s from %s\n",
4856 dev->name, adj_dev->name);
4857 BUG();
4858 }
4859
4860 if (adj->ref_nr > 1) {
4861 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4862 adj->ref_nr-1);
4863 adj->ref_nr--;
4864 return;
4865 }
4866
4867 if (adj->master)
4868 sysfs_remove_link(&(dev->dev.kobj), "master");
4869
4870 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4871 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4872
4873 list_del_rcu(&adj->list);
4874 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4875 adj_dev->name, dev->name, adj_dev->name);
4876 dev_put(adj_dev);
4877 kfree_rcu(adj, rcu);
4878 }
4879
4880 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4881 struct net_device *upper_dev,
4882 struct list_head *up_list,
4883 struct list_head *down_list,
4884 void *private, bool master)
4885 {
4886 int ret;
4887
4888 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4889 master);
4890 if (ret)
4891 return ret;
4892
4893 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4894 false);
4895 if (ret) {
4896 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4897 return ret;
4898 }
4899
4900 return 0;
4901 }
4902
4903 static int __netdev_adjacent_dev_link(struct net_device *dev,
4904 struct net_device *upper_dev)
4905 {
4906 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4907 &dev->all_adj_list.upper,
4908 &upper_dev->all_adj_list.lower,
4909 NULL, false);
4910 }
4911
4912 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4913 struct net_device *upper_dev,
4914 struct list_head *up_list,
4915 struct list_head *down_list)
4916 {
4917 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4918 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4919 }
4920
4921 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4922 struct net_device *upper_dev)
4923 {
4924 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4925 &dev->all_adj_list.upper,
4926 &upper_dev->all_adj_list.lower);
4927 }
4928
4929 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4930 struct net_device *upper_dev,
4931 void *private, bool master)
4932 {
4933 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4934
4935 if (ret)
4936 return ret;
4937
4938 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4939 &dev->adj_list.upper,
4940 &upper_dev->adj_list.lower,
4941 private, master);
4942 if (ret) {
4943 __netdev_adjacent_dev_unlink(dev, upper_dev);
4944 return ret;
4945 }
4946
4947 return 0;
4948 }
4949
4950 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4951 struct net_device *upper_dev)
4952 {
4953 __netdev_adjacent_dev_unlink(dev, upper_dev);
4954 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4955 &dev->adj_list.upper,
4956 &upper_dev->adj_list.lower);
4957 }
4958
4959 static int __netdev_upper_dev_link(struct net_device *dev,
4960 struct net_device *upper_dev, bool master,
4961 void *private)
4962 {
4963 struct netdev_adjacent *i, *j, *to_i, *to_j;
4964 int ret = 0;
4965
4966 ASSERT_RTNL();
4967
4968 if (dev == upper_dev)
4969 return -EBUSY;
4970
4971 /* To prevent loops, check if dev is not upper device to upper_dev. */
4972 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4973 return -EBUSY;
4974
4975 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4976 return -EEXIST;
4977
4978 if (master && netdev_master_upper_dev_get(dev))
4979 return -EBUSY;
4980
4981 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4982 master);
4983 if (ret)
4984 return ret;
4985
4986 /* Now that we linked these devs, make all the upper_dev's
4987 * all_adj_list.upper visible to every dev's all_adj_list.lower an
4988 * versa, and don't forget the devices itself. All of these
4989 * links are non-neighbours.
4990 */
4991 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4992 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4993 pr_debug("Interlinking %s with %s, non-neighbour\n",
4994 i->dev->name, j->dev->name);
4995 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4996 if (ret)
4997 goto rollback_mesh;
4998 }
4999 }
5000
5001 /* add dev to every upper_dev's upper device */
5002 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5003 pr_debug("linking %s's upper device %s with %s\n",
5004 upper_dev->name, i->dev->name, dev->name);
5005 ret = __netdev_adjacent_dev_link(dev, i->dev);
5006 if (ret)
5007 goto rollback_upper_mesh;
5008 }
5009
5010 /* add upper_dev to every dev's lower device */
5011 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5012 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5013 i->dev->name, upper_dev->name);
5014 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5015 if (ret)
5016 goto rollback_lower_mesh;
5017 }
5018
5019 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5020 return 0;
5021
5022 rollback_lower_mesh:
5023 to_i = i;
5024 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5025 if (i == to_i)
5026 break;
5027 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5028 }
5029
5030 i = NULL;
5031
5032 rollback_upper_mesh:
5033 to_i = i;
5034 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5035 if (i == to_i)
5036 break;
5037 __netdev_adjacent_dev_unlink(dev, i->dev);
5038 }
5039
5040 i = j = NULL;
5041
5042 rollback_mesh:
5043 to_i = i;
5044 to_j = j;
5045 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5046 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5047 if (i == to_i && j == to_j)
5048 break;
5049 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5050 }
5051 if (i == to_i)
5052 break;
5053 }
5054
5055 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5056
5057 return ret;
5058 }
5059
5060 /**
5061 * netdev_upper_dev_link - Add a link to the upper device
5062 * @dev: device
5063 * @upper_dev: new upper device
5064 *
5065 * Adds a link to device which is upper to this one. The caller must hold
5066 * the RTNL lock. On a failure a negative errno code is returned.
5067 * On success the reference counts are adjusted and the function
5068 * returns zero.
5069 */
5070 int netdev_upper_dev_link(struct net_device *dev,
5071 struct net_device *upper_dev)
5072 {
5073 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5074 }
5075 EXPORT_SYMBOL(netdev_upper_dev_link);
5076
5077 /**
5078 * netdev_master_upper_dev_link - Add a master link to the upper device
5079 * @dev: device
5080 * @upper_dev: new upper device
5081 *
5082 * Adds a link to device which is upper to this one. In this case, only
5083 * one master upper device can be linked, although other non-master devices
5084 * might be linked as well. The caller must hold the RTNL lock.
5085 * On a failure a negative errno code is returned. On success the reference
5086 * counts are adjusted and the function returns zero.
5087 */
5088 int netdev_master_upper_dev_link(struct net_device *dev,
5089 struct net_device *upper_dev)
5090 {
5091 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5092 }
5093 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5094
5095 int netdev_master_upper_dev_link_private(struct net_device *dev,
5096 struct net_device *upper_dev,
5097 void *private)
5098 {
5099 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5100 }
5101 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5102
5103 /**
5104 * netdev_upper_dev_unlink - Removes a link to upper device
5105 * @dev: device
5106 * @upper_dev: new upper device
5107 *
5108 * Removes a link to device which is upper to this one. The caller must hold
5109 * the RTNL lock.
5110 */
5111 void netdev_upper_dev_unlink(struct net_device *dev,
5112 struct net_device *upper_dev)
5113 {
5114 struct netdev_adjacent *i, *j;
5115 ASSERT_RTNL();
5116
5117 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5118
5119 /* Here is the tricky part. We must remove all dev's lower
5120 * devices from all upper_dev's upper devices and vice
5121 * versa, to maintain the graph relationship.
5122 */
5123 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5124 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5125 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5126
5127 /* remove also the devices itself from lower/upper device
5128 * list
5129 */
5130 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5131 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5132
5133 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5134 __netdev_adjacent_dev_unlink(dev, i->dev);
5135
5136 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5137 }
5138 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5139
5140 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5141 {
5142 struct netdev_adjacent *iter;
5143
5144 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5145 netdev_adjacent_sysfs_del(iter->dev, oldname,
5146 &iter->dev->adj_list.lower);
5147 netdev_adjacent_sysfs_add(iter->dev, dev,
5148 &iter->dev->adj_list.lower);
5149 }
5150
5151 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5152 netdev_adjacent_sysfs_del(iter->dev, oldname,
5153 &iter->dev->adj_list.upper);
5154 netdev_adjacent_sysfs_add(iter->dev, dev,
5155 &iter->dev->adj_list.upper);
5156 }
5157 }
5158
5159 void *netdev_lower_dev_get_private(struct net_device *dev,
5160 struct net_device *lower_dev)
5161 {
5162 struct netdev_adjacent *lower;
5163
5164 if (!lower_dev)
5165 return NULL;
5166 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5167 if (!lower)
5168 return NULL;
5169
5170 return lower->private;
5171 }
5172 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5173
5174
5175 int dev_get_nest_level(struct net_device *dev,
5176 bool (*type_check)(struct net_device *dev))
5177 {
5178 struct net_device *lower = NULL;
5179 struct list_head *iter;
5180 int max_nest = -1;
5181 int nest;
5182
5183 ASSERT_RTNL();
5184
5185 netdev_for_each_lower_dev(dev, lower, iter) {
5186 nest = dev_get_nest_level(lower, type_check);
5187 if (max_nest < nest)
5188 max_nest = nest;
5189 }
5190
5191 if (type_check(dev))
5192 max_nest++;
5193
5194 return max_nest;
5195 }
5196 EXPORT_SYMBOL(dev_get_nest_level);
5197
5198 static void dev_change_rx_flags(struct net_device *dev, int flags)
5199 {
5200 const struct net_device_ops *ops = dev->netdev_ops;
5201
5202 if (ops->ndo_change_rx_flags)
5203 ops->ndo_change_rx_flags(dev, flags);
5204 }
5205
5206 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5207 {
5208 unsigned int old_flags = dev->flags;
5209 kuid_t uid;
5210 kgid_t gid;
5211
5212 ASSERT_RTNL();
5213
5214 dev->flags |= IFF_PROMISC;
5215 dev->promiscuity += inc;
5216 if (dev->promiscuity == 0) {
5217 /*
5218 * Avoid overflow.
5219 * If inc causes overflow, untouch promisc and return error.
5220 */
5221 if (inc < 0)
5222 dev->flags &= ~IFF_PROMISC;
5223 else {
5224 dev->promiscuity -= inc;
5225 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5226 dev->name);
5227 return -EOVERFLOW;
5228 }
5229 }
5230 if (dev->flags != old_flags) {
5231 pr_info("device %s %s promiscuous mode\n",
5232 dev->name,
5233 dev->flags & IFF_PROMISC ? "entered" : "left");
5234 if (audit_enabled) {
5235 current_uid_gid(&uid, &gid);
5236 audit_log(current->audit_context, GFP_ATOMIC,
5237 AUDIT_ANOM_PROMISCUOUS,
5238 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5239 dev->name, (dev->flags & IFF_PROMISC),
5240 (old_flags & IFF_PROMISC),
5241 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5242 from_kuid(&init_user_ns, uid),
5243 from_kgid(&init_user_ns, gid),
5244 audit_get_sessionid(current));
5245 }
5246
5247 dev_change_rx_flags(dev, IFF_PROMISC);
5248 }
5249 if (notify)
5250 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5251 return 0;
5252 }
5253
5254 /**
5255 * dev_set_promiscuity - update promiscuity count on a device
5256 * @dev: device
5257 * @inc: modifier
5258 *
5259 * Add or remove promiscuity from a device. While the count in the device
5260 * remains above zero the interface remains promiscuous. Once it hits zero
5261 * the device reverts back to normal filtering operation. A negative inc
5262 * value is used to drop promiscuity on the device.
5263 * Return 0 if successful or a negative errno code on error.
5264 */
5265 int dev_set_promiscuity(struct net_device *dev, int inc)
5266 {
5267 unsigned int old_flags = dev->flags;
5268 int err;
5269
5270 err = __dev_set_promiscuity(dev, inc, true);
5271 if (err < 0)
5272 return err;
5273 if (dev->flags != old_flags)
5274 dev_set_rx_mode(dev);
5275 return err;
5276 }
5277 EXPORT_SYMBOL(dev_set_promiscuity);
5278
5279 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5280 {
5281 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5282
5283 ASSERT_RTNL();
5284
5285 dev->flags |= IFF_ALLMULTI;
5286 dev->allmulti += inc;
5287 if (dev->allmulti == 0) {
5288 /*
5289 * Avoid overflow.
5290 * If inc causes overflow, untouch allmulti and return error.
5291 */
5292 if (inc < 0)
5293 dev->flags &= ~IFF_ALLMULTI;
5294 else {
5295 dev->allmulti -= inc;
5296 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5297 dev->name);
5298 return -EOVERFLOW;
5299 }
5300 }
5301 if (dev->flags ^ old_flags) {
5302 dev_change_rx_flags(dev, IFF_ALLMULTI);
5303 dev_set_rx_mode(dev);
5304 if (notify)
5305 __dev_notify_flags(dev, old_flags,
5306 dev->gflags ^ old_gflags);
5307 }
5308 return 0;
5309 }
5310
5311 /**
5312 * dev_set_allmulti - update allmulti count on a device
5313 * @dev: device
5314 * @inc: modifier
5315 *
5316 * Add or remove reception of all multicast frames to a device. While the
5317 * count in the device remains above zero the interface remains listening
5318 * to all interfaces. Once it hits zero the device reverts back to normal
5319 * filtering operation. A negative @inc value is used to drop the counter
5320 * when releasing a resource needing all multicasts.
5321 * Return 0 if successful or a negative errno code on error.
5322 */
5323
5324 int dev_set_allmulti(struct net_device *dev, int inc)
5325 {
5326 return __dev_set_allmulti(dev, inc, true);
5327 }
5328 EXPORT_SYMBOL(dev_set_allmulti);
5329
5330 /*
5331 * Upload unicast and multicast address lists to device and
5332 * configure RX filtering. When the device doesn't support unicast
5333 * filtering it is put in promiscuous mode while unicast addresses
5334 * are present.
5335 */
5336 void __dev_set_rx_mode(struct net_device *dev)
5337 {
5338 const struct net_device_ops *ops = dev->netdev_ops;
5339
5340 /* dev_open will call this function so the list will stay sane. */
5341 if (!(dev->flags&IFF_UP))
5342 return;
5343
5344 if (!netif_device_present(dev))
5345 return;
5346
5347 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5348 /* Unicast addresses changes may only happen under the rtnl,
5349 * therefore calling __dev_set_promiscuity here is safe.
5350 */
5351 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5352 __dev_set_promiscuity(dev, 1, false);
5353 dev->uc_promisc = true;
5354 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5355 __dev_set_promiscuity(dev, -1, false);
5356 dev->uc_promisc = false;
5357 }
5358 }
5359
5360 if (ops->ndo_set_rx_mode)
5361 ops->ndo_set_rx_mode(dev);
5362 }
5363
5364 void dev_set_rx_mode(struct net_device *dev)
5365 {
5366 netif_addr_lock_bh(dev);
5367 __dev_set_rx_mode(dev);
5368 netif_addr_unlock_bh(dev);
5369 }
5370
5371 /**
5372 * dev_get_flags - get flags reported to userspace
5373 * @dev: device
5374 *
5375 * Get the combination of flag bits exported through APIs to userspace.
5376 */
5377 unsigned int dev_get_flags(const struct net_device *dev)
5378 {
5379 unsigned int flags;
5380
5381 flags = (dev->flags & ~(IFF_PROMISC |
5382 IFF_ALLMULTI |
5383 IFF_RUNNING |
5384 IFF_LOWER_UP |
5385 IFF_DORMANT)) |
5386 (dev->gflags & (IFF_PROMISC |
5387 IFF_ALLMULTI));
5388
5389 if (netif_running(dev)) {
5390 if (netif_oper_up(dev))
5391 flags |= IFF_RUNNING;
5392 if (netif_carrier_ok(dev))
5393 flags |= IFF_LOWER_UP;
5394 if (netif_dormant(dev))
5395 flags |= IFF_DORMANT;
5396 }
5397
5398 return flags;
5399 }
5400 EXPORT_SYMBOL(dev_get_flags);
5401
5402 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5403 {
5404 unsigned int old_flags = dev->flags;
5405 int ret;
5406
5407 ASSERT_RTNL();
5408
5409 /*
5410 * Set the flags on our device.
5411 */
5412
5413 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5414 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5415 IFF_AUTOMEDIA)) |
5416 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5417 IFF_ALLMULTI));
5418
5419 /*
5420 * Load in the correct multicast list now the flags have changed.
5421 */
5422
5423 if ((old_flags ^ flags) & IFF_MULTICAST)
5424 dev_change_rx_flags(dev, IFF_MULTICAST);
5425
5426 dev_set_rx_mode(dev);
5427
5428 /*
5429 * Have we downed the interface. We handle IFF_UP ourselves
5430 * according to user attempts to set it, rather than blindly
5431 * setting it.
5432 */
5433
5434 ret = 0;
5435 if ((old_flags ^ flags) & IFF_UP)
5436 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5437
5438 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5439 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5440 unsigned int old_flags = dev->flags;
5441
5442 dev->gflags ^= IFF_PROMISC;
5443
5444 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5445 if (dev->flags != old_flags)
5446 dev_set_rx_mode(dev);
5447 }
5448
5449 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5450 is important. Some (broken) drivers set IFF_PROMISC, when
5451 IFF_ALLMULTI is requested not asking us and not reporting.
5452 */
5453 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5454 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5455
5456 dev->gflags ^= IFF_ALLMULTI;
5457 __dev_set_allmulti(dev, inc, false);
5458 }
5459
5460 return ret;
5461 }
5462
5463 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5464 unsigned int gchanges)
5465 {
5466 unsigned int changes = dev->flags ^ old_flags;
5467
5468 if (gchanges)
5469 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5470
5471 if (changes & IFF_UP) {
5472 if (dev->flags & IFF_UP)
5473 call_netdevice_notifiers(NETDEV_UP, dev);
5474 else
5475 call_netdevice_notifiers(NETDEV_DOWN, dev);
5476 }
5477
5478 if (dev->flags & IFF_UP &&
5479 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5480 struct netdev_notifier_change_info change_info;
5481
5482 change_info.flags_changed = changes;
5483 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5484 &change_info.info);
5485 }
5486 }
5487
5488 /**
5489 * dev_change_flags - change device settings
5490 * @dev: device
5491 * @flags: device state flags
5492 *
5493 * Change settings on device based state flags. The flags are
5494 * in the userspace exported format.
5495 */
5496 int dev_change_flags(struct net_device *dev, unsigned int flags)
5497 {
5498 int ret;
5499 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5500
5501 ret = __dev_change_flags(dev, flags);
5502 if (ret < 0)
5503 return ret;
5504
5505 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5506 __dev_notify_flags(dev, old_flags, changes);
5507 return ret;
5508 }
5509 EXPORT_SYMBOL(dev_change_flags);
5510
5511 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5512 {
5513 const struct net_device_ops *ops = dev->netdev_ops;
5514
5515 if (ops->ndo_change_mtu)
5516 return ops->ndo_change_mtu(dev, new_mtu);
5517
5518 dev->mtu = new_mtu;
5519 return 0;
5520 }
5521
5522 /**
5523 * dev_set_mtu - Change maximum transfer unit
5524 * @dev: device
5525 * @new_mtu: new transfer unit
5526 *
5527 * Change the maximum transfer size of the network device.
5528 */
5529 int dev_set_mtu(struct net_device *dev, int new_mtu)
5530 {
5531 int err, orig_mtu;
5532
5533 if (new_mtu == dev->mtu)
5534 return 0;
5535
5536 /* MTU must be positive. */
5537 if (new_mtu < 0)
5538 return -EINVAL;
5539
5540 if (!netif_device_present(dev))
5541 return -ENODEV;
5542
5543 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5544 err = notifier_to_errno(err);
5545 if (err)
5546 return err;
5547
5548 orig_mtu = dev->mtu;
5549 err = __dev_set_mtu(dev, new_mtu);
5550
5551 if (!err) {
5552 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5553 err = notifier_to_errno(err);
5554 if (err) {
5555 /* setting mtu back and notifying everyone again,
5556 * so that they have a chance to revert changes.
5557 */
5558 __dev_set_mtu(dev, orig_mtu);
5559 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5560 }
5561 }
5562 return err;
5563 }
5564 EXPORT_SYMBOL(dev_set_mtu);
5565
5566 /**
5567 * dev_set_group - Change group this device belongs to
5568 * @dev: device
5569 * @new_group: group this device should belong to
5570 */
5571 void dev_set_group(struct net_device *dev, int new_group)
5572 {
5573 dev->group = new_group;
5574 }
5575 EXPORT_SYMBOL(dev_set_group);
5576
5577 /**
5578 * dev_set_mac_address - Change Media Access Control Address
5579 * @dev: device
5580 * @sa: new address
5581 *
5582 * Change the hardware (MAC) address of the device
5583 */
5584 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5585 {
5586 const struct net_device_ops *ops = dev->netdev_ops;
5587 int err;
5588
5589 if (!ops->ndo_set_mac_address)
5590 return -EOPNOTSUPP;
5591 if (sa->sa_family != dev->type)
5592 return -EINVAL;
5593 if (!netif_device_present(dev))
5594 return -ENODEV;
5595 err = ops->ndo_set_mac_address(dev, sa);
5596 if (err)
5597 return err;
5598 dev->addr_assign_type = NET_ADDR_SET;
5599 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5600 add_device_randomness(dev->dev_addr, dev->addr_len);
5601 return 0;
5602 }
5603 EXPORT_SYMBOL(dev_set_mac_address);
5604
5605 /**
5606 * dev_change_carrier - Change device carrier
5607 * @dev: device
5608 * @new_carrier: new value
5609 *
5610 * Change device carrier
5611 */
5612 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5613 {
5614 const struct net_device_ops *ops = dev->netdev_ops;
5615
5616 if (!ops->ndo_change_carrier)
5617 return -EOPNOTSUPP;
5618 if (!netif_device_present(dev))
5619 return -ENODEV;
5620 return ops->ndo_change_carrier(dev, new_carrier);
5621 }
5622 EXPORT_SYMBOL(dev_change_carrier);
5623
5624 /**
5625 * dev_get_phys_port_id - Get device physical port ID
5626 * @dev: device
5627 * @ppid: port ID
5628 *
5629 * Get device physical port ID
5630 */
5631 int dev_get_phys_port_id(struct net_device *dev,
5632 struct netdev_phys_port_id *ppid)
5633 {
5634 const struct net_device_ops *ops = dev->netdev_ops;
5635
5636 if (!ops->ndo_get_phys_port_id)
5637 return -EOPNOTSUPP;
5638 return ops->ndo_get_phys_port_id(dev, ppid);
5639 }
5640 EXPORT_SYMBOL(dev_get_phys_port_id);
5641
5642 /**
5643 * dev_new_index - allocate an ifindex
5644 * @net: the applicable net namespace
5645 *
5646 * Returns a suitable unique value for a new device interface
5647 * number. The caller must hold the rtnl semaphore or the
5648 * dev_base_lock to be sure it remains unique.
5649 */
5650 static int dev_new_index(struct net *net)
5651 {
5652 int ifindex = net->ifindex;
5653 for (;;) {
5654 if (++ifindex <= 0)
5655 ifindex = 1;
5656 if (!__dev_get_by_index(net, ifindex))
5657 return net->ifindex = ifindex;
5658 }
5659 }
5660
5661 /* Delayed registration/unregisteration */
5662 static LIST_HEAD(net_todo_list);
5663 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5664
5665 static void net_set_todo(struct net_device *dev)
5666 {
5667 list_add_tail(&dev->todo_list, &net_todo_list);
5668 dev_net(dev)->dev_unreg_count++;
5669 }
5670
5671 static void rollback_registered_many(struct list_head *head)
5672 {
5673 struct net_device *dev, *tmp;
5674 LIST_HEAD(close_head);
5675
5676 BUG_ON(dev_boot_phase);
5677 ASSERT_RTNL();
5678
5679 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5680 /* Some devices call without registering
5681 * for initialization unwind. Remove those
5682 * devices and proceed with the remaining.
5683 */
5684 if (dev->reg_state == NETREG_UNINITIALIZED) {
5685 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5686 dev->name, dev);
5687
5688 WARN_ON(1);
5689 list_del(&dev->unreg_list);
5690 continue;
5691 }
5692 dev->dismantle = true;
5693 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5694 }
5695
5696 /* If device is running, close it first. */
5697 list_for_each_entry(dev, head, unreg_list)
5698 list_add_tail(&dev->close_list, &close_head);
5699 dev_close_many(&close_head);
5700
5701 list_for_each_entry(dev, head, unreg_list) {
5702 /* And unlink it from device chain. */
5703 unlist_netdevice(dev);
5704
5705 dev->reg_state = NETREG_UNREGISTERING;
5706 }
5707
5708 synchronize_net();
5709
5710 list_for_each_entry(dev, head, unreg_list) {
5711 /* Shutdown queueing discipline. */
5712 dev_shutdown(dev);
5713
5714
5715 /* Notify protocols, that we are about to destroy
5716 this device. They should clean all the things.
5717 */
5718 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5719
5720 /*
5721 * Flush the unicast and multicast chains
5722 */
5723 dev_uc_flush(dev);
5724 dev_mc_flush(dev);
5725
5726 if (dev->netdev_ops->ndo_uninit)
5727 dev->netdev_ops->ndo_uninit(dev);
5728
5729 if (!dev->rtnl_link_ops ||
5730 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5731 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5732
5733 /* Notifier chain MUST detach us all upper devices. */
5734 WARN_ON(netdev_has_any_upper_dev(dev));
5735
5736 /* Remove entries from kobject tree */
5737 netdev_unregister_kobject(dev);
5738 #ifdef CONFIG_XPS
5739 /* Remove XPS queueing entries */
5740 netif_reset_xps_queues_gt(dev, 0);
5741 #endif
5742 }
5743
5744 synchronize_net();
5745
5746 list_for_each_entry(dev, head, unreg_list)
5747 dev_put(dev);
5748 }
5749
5750 static void rollback_registered(struct net_device *dev)
5751 {
5752 LIST_HEAD(single);
5753
5754 list_add(&dev->unreg_list, &single);
5755 rollback_registered_many(&single);
5756 list_del(&single);
5757 }
5758
5759 static netdev_features_t netdev_fix_features(struct net_device *dev,
5760 netdev_features_t features)
5761 {
5762 /* Fix illegal checksum combinations */
5763 if ((features & NETIF_F_HW_CSUM) &&
5764 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5765 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5766 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5767 }
5768
5769 /* TSO requires that SG is present as well. */
5770 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5771 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5772 features &= ~NETIF_F_ALL_TSO;
5773 }
5774
5775 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5776 !(features & NETIF_F_IP_CSUM)) {
5777 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5778 features &= ~NETIF_F_TSO;
5779 features &= ~NETIF_F_TSO_ECN;
5780 }
5781
5782 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5783 !(features & NETIF_F_IPV6_CSUM)) {
5784 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5785 features &= ~NETIF_F_TSO6;
5786 }
5787
5788 /* TSO ECN requires that TSO is present as well. */
5789 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5790 features &= ~NETIF_F_TSO_ECN;
5791
5792 /* Software GSO depends on SG. */
5793 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5794 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5795 features &= ~NETIF_F_GSO;
5796 }
5797
5798 /* UFO needs SG and checksumming */
5799 if (features & NETIF_F_UFO) {
5800 /* maybe split UFO into V4 and V6? */
5801 if (!((features & NETIF_F_GEN_CSUM) ||
5802 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5803 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5804 netdev_dbg(dev,
5805 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5806 features &= ~NETIF_F_UFO;
5807 }
5808
5809 if (!(features & NETIF_F_SG)) {
5810 netdev_dbg(dev,
5811 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5812 features &= ~NETIF_F_UFO;
5813 }
5814 }
5815
5816 #ifdef CONFIG_NET_RX_BUSY_POLL
5817 if (dev->netdev_ops->ndo_busy_poll)
5818 features |= NETIF_F_BUSY_POLL;
5819 else
5820 #endif
5821 features &= ~NETIF_F_BUSY_POLL;
5822
5823 return features;
5824 }
5825
5826 int __netdev_update_features(struct net_device *dev)
5827 {
5828 netdev_features_t features;
5829 int err = 0;
5830
5831 ASSERT_RTNL();
5832
5833 features = netdev_get_wanted_features(dev);
5834
5835 if (dev->netdev_ops->ndo_fix_features)
5836 features = dev->netdev_ops->ndo_fix_features(dev, features);
5837
5838 /* driver might be less strict about feature dependencies */
5839 features = netdev_fix_features(dev, features);
5840
5841 if (dev->features == features)
5842 return 0;
5843
5844 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5845 &dev->features, &features);
5846
5847 if (dev->netdev_ops->ndo_set_features)
5848 err = dev->netdev_ops->ndo_set_features(dev, features);
5849
5850 if (unlikely(err < 0)) {
5851 netdev_err(dev,
5852 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5853 err, &features, &dev->features);
5854 return -1;
5855 }
5856
5857 if (!err)
5858 dev->features = features;
5859
5860 return 1;
5861 }
5862
5863 /**
5864 * netdev_update_features - recalculate device features
5865 * @dev: the device to check
5866 *
5867 * Recalculate dev->features set and send notifications if it
5868 * has changed. Should be called after driver or hardware dependent
5869 * conditions might have changed that influence the features.
5870 */
5871 void netdev_update_features(struct net_device *dev)
5872 {
5873 if (__netdev_update_features(dev))
5874 netdev_features_change(dev);
5875 }
5876 EXPORT_SYMBOL(netdev_update_features);
5877
5878 /**
5879 * netdev_change_features - recalculate device features
5880 * @dev: the device to check
5881 *
5882 * Recalculate dev->features set and send notifications even
5883 * if they have not changed. Should be called instead of
5884 * netdev_update_features() if also dev->vlan_features might
5885 * have changed to allow the changes to be propagated to stacked
5886 * VLAN devices.
5887 */
5888 void netdev_change_features(struct net_device *dev)
5889 {
5890 __netdev_update_features(dev);
5891 netdev_features_change(dev);
5892 }
5893 EXPORT_SYMBOL(netdev_change_features);
5894
5895 /**
5896 * netif_stacked_transfer_operstate - transfer operstate
5897 * @rootdev: the root or lower level device to transfer state from
5898 * @dev: the device to transfer operstate to
5899 *
5900 * Transfer operational state from root to device. This is normally
5901 * called when a stacking relationship exists between the root
5902 * device and the device(a leaf device).
5903 */
5904 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5905 struct net_device *dev)
5906 {
5907 if (rootdev->operstate == IF_OPER_DORMANT)
5908 netif_dormant_on(dev);
5909 else
5910 netif_dormant_off(dev);
5911
5912 if (netif_carrier_ok(rootdev)) {
5913 if (!netif_carrier_ok(dev))
5914 netif_carrier_on(dev);
5915 } else {
5916 if (netif_carrier_ok(dev))
5917 netif_carrier_off(dev);
5918 }
5919 }
5920 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5921
5922 #ifdef CONFIG_SYSFS
5923 static int netif_alloc_rx_queues(struct net_device *dev)
5924 {
5925 unsigned int i, count = dev->num_rx_queues;
5926 struct netdev_rx_queue *rx;
5927
5928 BUG_ON(count < 1);
5929
5930 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5931 if (!rx)
5932 return -ENOMEM;
5933
5934 dev->_rx = rx;
5935
5936 for (i = 0; i < count; i++)
5937 rx[i].dev = dev;
5938 return 0;
5939 }
5940 #endif
5941
5942 static void netdev_init_one_queue(struct net_device *dev,
5943 struct netdev_queue *queue, void *_unused)
5944 {
5945 /* Initialize queue lock */
5946 spin_lock_init(&queue->_xmit_lock);
5947 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5948 queue->xmit_lock_owner = -1;
5949 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5950 queue->dev = dev;
5951 #ifdef CONFIG_BQL
5952 dql_init(&queue->dql, HZ);
5953 #endif
5954 }
5955
5956 static void netif_free_tx_queues(struct net_device *dev)
5957 {
5958 kvfree(dev->_tx);
5959 }
5960
5961 static int netif_alloc_netdev_queues(struct net_device *dev)
5962 {
5963 unsigned int count = dev->num_tx_queues;
5964 struct netdev_queue *tx;
5965 size_t sz = count * sizeof(*tx);
5966
5967 BUG_ON(count < 1 || count > 0xffff);
5968
5969 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5970 if (!tx) {
5971 tx = vzalloc(sz);
5972 if (!tx)
5973 return -ENOMEM;
5974 }
5975 dev->_tx = tx;
5976
5977 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5978 spin_lock_init(&dev->tx_global_lock);
5979
5980 return 0;
5981 }
5982
5983 /**
5984 * register_netdevice - register a network device
5985 * @dev: device to register
5986 *
5987 * Take a completed network device structure and add it to the kernel
5988 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5989 * chain. 0 is returned on success. A negative errno code is returned
5990 * on a failure to set up the device, or if the name is a duplicate.
5991 *
5992 * Callers must hold the rtnl semaphore. You may want
5993 * register_netdev() instead of this.
5994 *
5995 * BUGS:
5996 * The locking appears insufficient to guarantee two parallel registers
5997 * will not get the same name.
5998 */
5999
6000 int register_netdevice(struct net_device *dev)
6001 {
6002 int ret;
6003 struct net *net = dev_net(dev);
6004
6005 BUG_ON(dev_boot_phase);
6006 ASSERT_RTNL();
6007
6008 might_sleep();
6009
6010 /* When net_device's are persistent, this will be fatal. */
6011 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6012 BUG_ON(!net);
6013
6014 spin_lock_init(&dev->addr_list_lock);
6015 netdev_set_addr_lockdep_class(dev);
6016
6017 dev->iflink = -1;
6018
6019 ret = dev_get_valid_name(net, dev, dev->name);
6020 if (ret < 0)
6021 goto out;
6022
6023 /* Init, if this function is available */
6024 if (dev->netdev_ops->ndo_init) {
6025 ret = dev->netdev_ops->ndo_init(dev);
6026 if (ret) {
6027 if (ret > 0)
6028 ret = -EIO;
6029 goto out;
6030 }
6031 }
6032
6033 if (((dev->hw_features | dev->features) &
6034 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6035 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6036 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6037 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6038 ret = -EINVAL;
6039 goto err_uninit;
6040 }
6041
6042 ret = -EBUSY;
6043 if (!dev->ifindex)
6044 dev->ifindex = dev_new_index(net);
6045 else if (__dev_get_by_index(net, dev->ifindex))
6046 goto err_uninit;
6047
6048 if (dev->iflink == -1)
6049 dev->iflink = dev->ifindex;
6050
6051 /* Transfer changeable features to wanted_features and enable
6052 * software offloads (GSO and GRO).
6053 */
6054 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6055 dev->features |= NETIF_F_SOFT_FEATURES;
6056 dev->wanted_features = dev->features & dev->hw_features;
6057
6058 if (!(dev->flags & IFF_LOOPBACK)) {
6059 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6060 }
6061
6062 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6063 */
6064 dev->vlan_features |= NETIF_F_HIGHDMA;
6065
6066 /* Make NETIF_F_SG inheritable to tunnel devices.
6067 */
6068 dev->hw_enc_features |= NETIF_F_SG;
6069
6070 /* Make NETIF_F_SG inheritable to MPLS.
6071 */
6072 dev->mpls_features |= NETIF_F_SG;
6073
6074 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6075 ret = notifier_to_errno(ret);
6076 if (ret)
6077 goto err_uninit;
6078
6079 ret = netdev_register_kobject(dev);
6080 if (ret)
6081 goto err_uninit;
6082 dev->reg_state = NETREG_REGISTERED;
6083
6084 __netdev_update_features(dev);
6085
6086 /*
6087 * Default initial state at registry is that the
6088 * device is present.
6089 */
6090
6091 set_bit(__LINK_STATE_PRESENT, &dev->state);
6092
6093 linkwatch_init_dev(dev);
6094
6095 dev_init_scheduler(dev);
6096 dev_hold(dev);
6097 list_netdevice(dev);
6098 add_device_randomness(dev->dev_addr, dev->addr_len);
6099
6100 /* If the device has permanent device address, driver should
6101 * set dev_addr and also addr_assign_type should be set to
6102 * NET_ADDR_PERM (default value).
6103 */
6104 if (dev->addr_assign_type == NET_ADDR_PERM)
6105 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6106
6107 /* Notify protocols, that a new device appeared. */
6108 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6109 ret = notifier_to_errno(ret);
6110 if (ret) {
6111 rollback_registered(dev);
6112 dev->reg_state = NETREG_UNREGISTERED;
6113 }
6114 /*
6115 * Prevent userspace races by waiting until the network
6116 * device is fully setup before sending notifications.
6117 */
6118 if (!dev->rtnl_link_ops ||
6119 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6120 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6121
6122 out:
6123 return ret;
6124
6125 err_uninit:
6126 if (dev->netdev_ops->ndo_uninit)
6127 dev->netdev_ops->ndo_uninit(dev);
6128 goto out;
6129 }
6130 EXPORT_SYMBOL(register_netdevice);
6131
6132 /**
6133 * init_dummy_netdev - init a dummy network device for NAPI
6134 * @dev: device to init
6135 *
6136 * This takes a network device structure and initialize the minimum
6137 * amount of fields so it can be used to schedule NAPI polls without
6138 * registering a full blown interface. This is to be used by drivers
6139 * that need to tie several hardware interfaces to a single NAPI
6140 * poll scheduler due to HW limitations.
6141 */
6142 int init_dummy_netdev(struct net_device *dev)
6143 {
6144 /* Clear everything. Note we don't initialize spinlocks
6145 * are they aren't supposed to be taken by any of the
6146 * NAPI code and this dummy netdev is supposed to be
6147 * only ever used for NAPI polls
6148 */
6149 memset(dev, 0, sizeof(struct net_device));
6150
6151 /* make sure we BUG if trying to hit standard
6152 * register/unregister code path
6153 */
6154 dev->reg_state = NETREG_DUMMY;
6155
6156 /* NAPI wants this */
6157 INIT_LIST_HEAD(&dev->napi_list);
6158
6159 /* a dummy interface is started by default */
6160 set_bit(__LINK_STATE_PRESENT, &dev->state);
6161 set_bit(__LINK_STATE_START, &dev->state);
6162
6163 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6164 * because users of this 'device' dont need to change
6165 * its refcount.
6166 */
6167
6168 return 0;
6169 }
6170 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6171
6172
6173 /**
6174 * register_netdev - register a network device
6175 * @dev: device to register
6176 *
6177 * Take a completed network device structure and add it to the kernel
6178 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6179 * chain. 0 is returned on success. A negative errno code is returned
6180 * on a failure to set up the device, or if the name is a duplicate.
6181 *
6182 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6183 * and expands the device name if you passed a format string to
6184 * alloc_netdev.
6185 */
6186 int register_netdev(struct net_device *dev)
6187 {
6188 int err;
6189
6190 rtnl_lock();
6191 err = register_netdevice(dev);
6192 rtnl_unlock();
6193 return err;
6194 }
6195 EXPORT_SYMBOL(register_netdev);
6196
6197 int netdev_refcnt_read(const struct net_device *dev)
6198 {
6199 int i, refcnt = 0;
6200
6201 for_each_possible_cpu(i)
6202 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6203 return refcnt;
6204 }
6205 EXPORT_SYMBOL(netdev_refcnt_read);
6206
6207 /**
6208 * netdev_wait_allrefs - wait until all references are gone.
6209 * @dev: target net_device
6210 *
6211 * This is called when unregistering network devices.
6212 *
6213 * Any protocol or device that holds a reference should register
6214 * for netdevice notification, and cleanup and put back the
6215 * reference if they receive an UNREGISTER event.
6216 * We can get stuck here if buggy protocols don't correctly
6217 * call dev_put.
6218 */
6219 static void netdev_wait_allrefs(struct net_device *dev)
6220 {
6221 unsigned long rebroadcast_time, warning_time;
6222 int refcnt;
6223
6224 linkwatch_forget_dev(dev);
6225
6226 rebroadcast_time = warning_time = jiffies;
6227 refcnt = netdev_refcnt_read(dev);
6228
6229 while (refcnt != 0) {
6230 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6231 rtnl_lock();
6232
6233 /* Rebroadcast unregister notification */
6234 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6235
6236 __rtnl_unlock();
6237 rcu_barrier();
6238 rtnl_lock();
6239
6240 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6241 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6242 &dev->state)) {
6243 /* We must not have linkwatch events
6244 * pending on unregister. If this
6245 * happens, we simply run the queue
6246 * unscheduled, resulting in a noop
6247 * for this device.
6248 */
6249 linkwatch_run_queue();
6250 }
6251
6252 __rtnl_unlock();
6253
6254 rebroadcast_time = jiffies;
6255 }
6256
6257 msleep(250);
6258
6259 refcnt = netdev_refcnt_read(dev);
6260
6261 if (time_after(jiffies, warning_time + 10 * HZ)) {
6262 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6263 dev->name, refcnt);
6264 warning_time = jiffies;
6265 }
6266 }
6267 }
6268
6269 /* The sequence is:
6270 *
6271 * rtnl_lock();
6272 * ...
6273 * register_netdevice(x1);
6274 * register_netdevice(x2);
6275 * ...
6276 * unregister_netdevice(y1);
6277 * unregister_netdevice(y2);
6278 * ...
6279 * rtnl_unlock();
6280 * free_netdev(y1);
6281 * free_netdev(y2);
6282 *
6283 * We are invoked by rtnl_unlock().
6284 * This allows us to deal with problems:
6285 * 1) We can delete sysfs objects which invoke hotplug
6286 * without deadlocking with linkwatch via keventd.
6287 * 2) Since we run with the RTNL semaphore not held, we can sleep
6288 * safely in order to wait for the netdev refcnt to drop to zero.
6289 *
6290 * We must not return until all unregister events added during
6291 * the interval the lock was held have been completed.
6292 */
6293 void netdev_run_todo(void)
6294 {
6295 struct list_head list;
6296
6297 /* Snapshot list, allow later requests */
6298 list_replace_init(&net_todo_list, &list);
6299
6300 __rtnl_unlock();
6301
6302
6303 /* Wait for rcu callbacks to finish before next phase */
6304 if (!list_empty(&list))
6305 rcu_barrier();
6306
6307 while (!list_empty(&list)) {
6308 struct net_device *dev
6309 = list_first_entry(&list, struct net_device, todo_list);
6310 list_del(&dev->todo_list);
6311
6312 rtnl_lock();
6313 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6314 __rtnl_unlock();
6315
6316 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6317 pr_err("network todo '%s' but state %d\n",
6318 dev->name, dev->reg_state);
6319 dump_stack();
6320 continue;
6321 }
6322
6323 dev->reg_state = NETREG_UNREGISTERED;
6324
6325 on_each_cpu(flush_backlog, dev, 1);
6326
6327 netdev_wait_allrefs(dev);
6328
6329 /* paranoia */
6330 BUG_ON(netdev_refcnt_read(dev));
6331 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6332 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6333 WARN_ON(dev->dn_ptr);
6334
6335 if (dev->destructor)
6336 dev->destructor(dev);
6337
6338 /* Report a network device has been unregistered */
6339 rtnl_lock();
6340 dev_net(dev)->dev_unreg_count--;
6341 __rtnl_unlock();
6342 wake_up(&netdev_unregistering_wq);
6343
6344 /* Free network device */
6345 kobject_put(&dev->dev.kobj);
6346 }
6347 }
6348
6349 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6350 * fields in the same order, with only the type differing.
6351 */
6352 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6353 const struct net_device_stats *netdev_stats)
6354 {
6355 #if BITS_PER_LONG == 64
6356 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6357 memcpy(stats64, netdev_stats, sizeof(*stats64));
6358 #else
6359 size_t i, n = sizeof(*stats64) / sizeof(u64);
6360 const unsigned long *src = (const unsigned long *)netdev_stats;
6361 u64 *dst = (u64 *)stats64;
6362
6363 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6364 sizeof(*stats64) / sizeof(u64));
6365 for (i = 0; i < n; i++)
6366 dst[i] = src[i];
6367 #endif
6368 }
6369 EXPORT_SYMBOL(netdev_stats_to_stats64);
6370
6371 /**
6372 * dev_get_stats - get network device statistics
6373 * @dev: device to get statistics from
6374 * @storage: place to store stats
6375 *
6376 * Get network statistics from device. Return @storage.
6377 * The device driver may provide its own method by setting
6378 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6379 * otherwise the internal statistics structure is used.
6380 */
6381 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6382 struct rtnl_link_stats64 *storage)
6383 {
6384 const struct net_device_ops *ops = dev->netdev_ops;
6385
6386 if (ops->ndo_get_stats64) {
6387 memset(storage, 0, sizeof(*storage));
6388 ops->ndo_get_stats64(dev, storage);
6389 } else if (ops->ndo_get_stats) {
6390 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6391 } else {
6392 netdev_stats_to_stats64(storage, &dev->stats);
6393 }
6394 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6395 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6396 return storage;
6397 }
6398 EXPORT_SYMBOL(dev_get_stats);
6399
6400 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6401 {
6402 struct netdev_queue *queue = dev_ingress_queue(dev);
6403
6404 #ifdef CONFIG_NET_CLS_ACT
6405 if (queue)
6406 return queue;
6407 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6408 if (!queue)
6409 return NULL;
6410 netdev_init_one_queue(dev, queue, NULL);
6411 queue->qdisc = &noop_qdisc;
6412 queue->qdisc_sleeping = &noop_qdisc;
6413 rcu_assign_pointer(dev->ingress_queue, queue);
6414 #endif
6415 return queue;
6416 }
6417
6418 static const struct ethtool_ops default_ethtool_ops;
6419
6420 void netdev_set_default_ethtool_ops(struct net_device *dev,
6421 const struct ethtool_ops *ops)
6422 {
6423 if (dev->ethtool_ops == &default_ethtool_ops)
6424 dev->ethtool_ops = ops;
6425 }
6426 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6427
6428 void netdev_freemem(struct net_device *dev)
6429 {
6430 char *addr = (char *)dev - dev->padded;
6431
6432 kvfree(addr);
6433 }
6434
6435 /**
6436 * alloc_netdev_mqs - allocate network device
6437 * @sizeof_priv: size of private data to allocate space for
6438 * @name: device name format string
6439 * @setup: callback to initialize device
6440 * @txqs: the number of TX subqueues to allocate
6441 * @rxqs: the number of RX subqueues to allocate
6442 *
6443 * Allocates a struct net_device with private data area for driver use
6444 * and performs basic initialization. Also allocates subqueue structs
6445 * for each queue on the device.
6446 */
6447 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6448 void (*setup)(struct net_device *),
6449 unsigned int txqs, unsigned int rxqs)
6450 {
6451 struct net_device *dev;
6452 size_t alloc_size;
6453 struct net_device *p;
6454
6455 BUG_ON(strlen(name) >= sizeof(dev->name));
6456
6457 if (txqs < 1) {
6458 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6459 return NULL;
6460 }
6461
6462 #ifdef CONFIG_SYSFS
6463 if (rxqs < 1) {
6464 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6465 return NULL;
6466 }
6467 #endif
6468
6469 alloc_size = sizeof(struct net_device);
6470 if (sizeof_priv) {
6471 /* ensure 32-byte alignment of private area */
6472 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6473 alloc_size += sizeof_priv;
6474 }
6475 /* ensure 32-byte alignment of whole construct */
6476 alloc_size += NETDEV_ALIGN - 1;
6477
6478 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6479 if (!p)
6480 p = vzalloc(alloc_size);
6481 if (!p)
6482 return NULL;
6483
6484 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6485 dev->padded = (char *)dev - (char *)p;
6486
6487 dev->pcpu_refcnt = alloc_percpu(int);
6488 if (!dev->pcpu_refcnt)
6489 goto free_dev;
6490
6491 if (dev_addr_init(dev))
6492 goto free_pcpu;
6493
6494 dev_mc_init(dev);
6495 dev_uc_init(dev);
6496
6497 dev_net_set(dev, &init_net);
6498
6499 dev->gso_max_size = GSO_MAX_SIZE;
6500 dev->gso_max_segs = GSO_MAX_SEGS;
6501
6502 INIT_LIST_HEAD(&dev->napi_list);
6503 INIT_LIST_HEAD(&dev->unreg_list);
6504 INIT_LIST_HEAD(&dev->close_list);
6505 INIT_LIST_HEAD(&dev->link_watch_list);
6506 INIT_LIST_HEAD(&dev->adj_list.upper);
6507 INIT_LIST_HEAD(&dev->adj_list.lower);
6508 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6509 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6510 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6511 setup(dev);
6512
6513 dev->num_tx_queues = txqs;
6514 dev->real_num_tx_queues = txqs;
6515 if (netif_alloc_netdev_queues(dev))
6516 goto free_all;
6517
6518 #ifdef CONFIG_SYSFS
6519 dev->num_rx_queues = rxqs;
6520 dev->real_num_rx_queues = rxqs;
6521 if (netif_alloc_rx_queues(dev))
6522 goto free_all;
6523 #endif
6524
6525 strcpy(dev->name, name);
6526 dev->group = INIT_NETDEV_GROUP;
6527 if (!dev->ethtool_ops)
6528 dev->ethtool_ops = &default_ethtool_ops;
6529 return dev;
6530
6531 free_all:
6532 free_netdev(dev);
6533 return NULL;
6534
6535 free_pcpu:
6536 free_percpu(dev->pcpu_refcnt);
6537 free_dev:
6538 netdev_freemem(dev);
6539 return NULL;
6540 }
6541 EXPORT_SYMBOL(alloc_netdev_mqs);
6542
6543 /**
6544 * free_netdev - free network device
6545 * @dev: device
6546 *
6547 * This function does the last stage of destroying an allocated device
6548 * interface. The reference to the device object is released.
6549 * If this is the last reference then it will be freed.
6550 */
6551 void free_netdev(struct net_device *dev)
6552 {
6553 struct napi_struct *p, *n;
6554
6555 release_net(dev_net(dev));
6556
6557 netif_free_tx_queues(dev);
6558 #ifdef CONFIG_SYSFS
6559 kfree(dev->_rx);
6560 #endif
6561
6562 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6563
6564 /* Flush device addresses */
6565 dev_addr_flush(dev);
6566
6567 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6568 netif_napi_del(p);
6569
6570 free_percpu(dev->pcpu_refcnt);
6571 dev->pcpu_refcnt = NULL;
6572
6573 /* Compatibility with error handling in drivers */
6574 if (dev->reg_state == NETREG_UNINITIALIZED) {
6575 netdev_freemem(dev);
6576 return;
6577 }
6578
6579 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6580 dev->reg_state = NETREG_RELEASED;
6581
6582 /* will free via device release */
6583 put_device(&dev->dev);
6584 }
6585 EXPORT_SYMBOL(free_netdev);
6586
6587 /**
6588 * synchronize_net - Synchronize with packet receive processing
6589 *
6590 * Wait for packets currently being received to be done.
6591 * Does not block later packets from starting.
6592 */
6593 void synchronize_net(void)
6594 {
6595 might_sleep();
6596 if (rtnl_is_locked())
6597 synchronize_rcu_expedited();
6598 else
6599 synchronize_rcu();
6600 }
6601 EXPORT_SYMBOL(synchronize_net);
6602
6603 /**
6604 * unregister_netdevice_queue - remove device from the kernel
6605 * @dev: device
6606 * @head: list
6607 *
6608 * This function shuts down a device interface and removes it
6609 * from the kernel tables.
6610 * If head not NULL, device is queued to be unregistered later.
6611 *
6612 * Callers must hold the rtnl semaphore. You may want
6613 * unregister_netdev() instead of this.
6614 */
6615
6616 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6617 {
6618 ASSERT_RTNL();
6619
6620 if (head) {
6621 list_move_tail(&dev->unreg_list, head);
6622 } else {
6623 rollback_registered(dev);
6624 /* Finish processing unregister after unlock */
6625 net_set_todo(dev);
6626 }
6627 }
6628 EXPORT_SYMBOL(unregister_netdevice_queue);
6629
6630 /**
6631 * unregister_netdevice_many - unregister many devices
6632 * @head: list of devices
6633 *
6634 * Note: As most callers use a stack allocated list_head,
6635 * we force a list_del() to make sure stack wont be corrupted later.
6636 */
6637 void unregister_netdevice_many(struct list_head *head)
6638 {
6639 struct net_device *dev;
6640
6641 if (!list_empty(head)) {
6642 rollback_registered_many(head);
6643 list_for_each_entry(dev, head, unreg_list)
6644 net_set_todo(dev);
6645 list_del(head);
6646 }
6647 }
6648 EXPORT_SYMBOL(unregister_netdevice_many);
6649
6650 /**
6651 * unregister_netdev - remove device from the kernel
6652 * @dev: device
6653 *
6654 * This function shuts down a device interface and removes it
6655 * from the kernel tables.
6656 *
6657 * This is just a wrapper for unregister_netdevice that takes
6658 * the rtnl semaphore. In general you want to use this and not
6659 * unregister_netdevice.
6660 */
6661 void unregister_netdev(struct net_device *dev)
6662 {
6663 rtnl_lock();
6664 unregister_netdevice(dev);
6665 rtnl_unlock();
6666 }
6667 EXPORT_SYMBOL(unregister_netdev);
6668
6669 /**
6670 * dev_change_net_namespace - move device to different nethost namespace
6671 * @dev: device
6672 * @net: network namespace
6673 * @pat: If not NULL name pattern to try if the current device name
6674 * is already taken in the destination network namespace.
6675 *
6676 * This function shuts down a device interface and moves it
6677 * to a new network namespace. On success 0 is returned, on
6678 * a failure a netagive errno code is returned.
6679 *
6680 * Callers must hold the rtnl semaphore.
6681 */
6682
6683 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6684 {
6685 int err;
6686
6687 ASSERT_RTNL();
6688
6689 /* Don't allow namespace local devices to be moved. */
6690 err = -EINVAL;
6691 if (dev->features & NETIF_F_NETNS_LOCAL)
6692 goto out;
6693
6694 /* Ensure the device has been registrered */
6695 if (dev->reg_state != NETREG_REGISTERED)
6696 goto out;
6697
6698 /* Get out if there is nothing todo */
6699 err = 0;
6700 if (net_eq(dev_net(dev), net))
6701 goto out;
6702
6703 /* Pick the destination device name, and ensure
6704 * we can use it in the destination network namespace.
6705 */
6706 err = -EEXIST;
6707 if (__dev_get_by_name(net, dev->name)) {
6708 /* We get here if we can't use the current device name */
6709 if (!pat)
6710 goto out;
6711 if (dev_get_valid_name(net, dev, pat) < 0)
6712 goto out;
6713 }
6714
6715 /*
6716 * And now a mini version of register_netdevice unregister_netdevice.
6717 */
6718
6719 /* If device is running close it first. */
6720 dev_close(dev);
6721
6722 /* And unlink it from device chain */
6723 err = -ENODEV;
6724 unlist_netdevice(dev);
6725
6726 synchronize_net();
6727
6728 /* Shutdown queueing discipline. */
6729 dev_shutdown(dev);
6730
6731 /* Notify protocols, that we are about to destroy
6732 this device. They should clean all the things.
6733
6734 Note that dev->reg_state stays at NETREG_REGISTERED.
6735 This is wanted because this way 8021q and macvlan know
6736 the device is just moving and can keep their slaves up.
6737 */
6738 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6739 rcu_barrier();
6740 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6741 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6742
6743 /*
6744 * Flush the unicast and multicast chains
6745 */
6746 dev_uc_flush(dev);
6747 dev_mc_flush(dev);
6748
6749 /* Send a netdev-removed uevent to the old namespace */
6750 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6751
6752 /* Actually switch the network namespace */
6753 dev_net_set(dev, net);
6754
6755 /* If there is an ifindex conflict assign a new one */
6756 if (__dev_get_by_index(net, dev->ifindex)) {
6757 int iflink = (dev->iflink == dev->ifindex);
6758 dev->ifindex = dev_new_index(net);
6759 if (iflink)
6760 dev->iflink = dev->ifindex;
6761 }
6762
6763 /* Send a netdev-add uevent to the new namespace */
6764 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6765
6766 /* Fixup kobjects */
6767 err = device_rename(&dev->dev, dev->name);
6768 WARN_ON(err);
6769
6770 /* Add the device back in the hashes */
6771 list_netdevice(dev);
6772
6773 /* Notify protocols, that a new device appeared. */
6774 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6775
6776 /*
6777 * Prevent userspace races by waiting until the network
6778 * device is fully setup before sending notifications.
6779 */
6780 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6781
6782 synchronize_net();
6783 err = 0;
6784 out:
6785 return err;
6786 }
6787 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6788
6789 static int dev_cpu_callback(struct notifier_block *nfb,
6790 unsigned long action,
6791 void *ocpu)
6792 {
6793 struct sk_buff **list_skb;
6794 struct sk_buff *skb;
6795 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6796 struct softnet_data *sd, *oldsd;
6797
6798 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6799 return NOTIFY_OK;
6800
6801 local_irq_disable();
6802 cpu = smp_processor_id();
6803 sd = &per_cpu(softnet_data, cpu);
6804 oldsd = &per_cpu(softnet_data, oldcpu);
6805
6806 /* Find end of our completion_queue. */
6807 list_skb = &sd->completion_queue;
6808 while (*list_skb)
6809 list_skb = &(*list_skb)->next;
6810 /* Append completion queue from offline CPU. */
6811 *list_skb = oldsd->completion_queue;
6812 oldsd->completion_queue = NULL;
6813
6814 /* Append output queue from offline CPU. */
6815 if (oldsd->output_queue) {
6816 *sd->output_queue_tailp = oldsd->output_queue;
6817 sd->output_queue_tailp = oldsd->output_queue_tailp;
6818 oldsd->output_queue = NULL;
6819 oldsd->output_queue_tailp = &oldsd->output_queue;
6820 }
6821 /* Append NAPI poll list from offline CPU. */
6822 if (!list_empty(&oldsd->poll_list)) {
6823 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6824 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6825 }
6826
6827 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6828 local_irq_enable();
6829
6830 /* Process offline CPU's input_pkt_queue */
6831 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6832 netif_rx_internal(skb);
6833 input_queue_head_incr(oldsd);
6834 }
6835 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6836 netif_rx_internal(skb);
6837 input_queue_head_incr(oldsd);
6838 }
6839
6840 return NOTIFY_OK;
6841 }
6842
6843
6844 /**
6845 * netdev_increment_features - increment feature set by one
6846 * @all: current feature set
6847 * @one: new feature set
6848 * @mask: mask feature set
6849 *
6850 * Computes a new feature set after adding a device with feature set
6851 * @one to the master device with current feature set @all. Will not
6852 * enable anything that is off in @mask. Returns the new feature set.
6853 */
6854 netdev_features_t netdev_increment_features(netdev_features_t all,
6855 netdev_features_t one, netdev_features_t mask)
6856 {
6857 if (mask & NETIF_F_GEN_CSUM)
6858 mask |= NETIF_F_ALL_CSUM;
6859 mask |= NETIF_F_VLAN_CHALLENGED;
6860
6861 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6862 all &= one | ~NETIF_F_ALL_FOR_ALL;
6863
6864 /* If one device supports hw checksumming, set for all. */
6865 if (all & NETIF_F_GEN_CSUM)
6866 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6867
6868 return all;
6869 }
6870 EXPORT_SYMBOL(netdev_increment_features);
6871
6872 static struct hlist_head * __net_init netdev_create_hash(void)
6873 {
6874 int i;
6875 struct hlist_head *hash;
6876
6877 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6878 if (hash != NULL)
6879 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6880 INIT_HLIST_HEAD(&hash[i]);
6881
6882 return hash;
6883 }
6884
6885 /* Initialize per network namespace state */
6886 static int __net_init netdev_init(struct net *net)
6887 {
6888 if (net != &init_net)
6889 INIT_LIST_HEAD(&net->dev_base_head);
6890
6891 net->dev_name_head = netdev_create_hash();
6892 if (net->dev_name_head == NULL)
6893 goto err_name;
6894
6895 net->dev_index_head = netdev_create_hash();
6896 if (net->dev_index_head == NULL)
6897 goto err_idx;
6898
6899 return 0;
6900
6901 err_idx:
6902 kfree(net->dev_name_head);
6903 err_name:
6904 return -ENOMEM;
6905 }
6906
6907 /**
6908 * netdev_drivername - network driver for the device
6909 * @dev: network device
6910 *
6911 * Determine network driver for device.
6912 */
6913 const char *netdev_drivername(const struct net_device *dev)
6914 {
6915 const struct device_driver *driver;
6916 const struct device *parent;
6917 const char *empty = "";
6918
6919 parent = dev->dev.parent;
6920 if (!parent)
6921 return empty;
6922
6923 driver = parent->driver;
6924 if (driver && driver->name)
6925 return driver->name;
6926 return empty;
6927 }
6928
6929 static int __netdev_printk(const char *level, const struct net_device *dev,
6930 struct va_format *vaf)
6931 {
6932 int r;
6933
6934 if (dev && dev->dev.parent) {
6935 r = dev_printk_emit(level[1] - '0',
6936 dev->dev.parent,
6937 "%s %s %s: %pV",
6938 dev_driver_string(dev->dev.parent),
6939 dev_name(dev->dev.parent),
6940 netdev_name(dev), vaf);
6941 } else if (dev) {
6942 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6943 } else {
6944 r = printk("%s(NULL net_device): %pV", level, vaf);
6945 }
6946
6947 return r;
6948 }
6949
6950 int netdev_printk(const char *level, const struct net_device *dev,
6951 const char *format, ...)
6952 {
6953 struct va_format vaf;
6954 va_list args;
6955 int r;
6956
6957 va_start(args, format);
6958
6959 vaf.fmt = format;
6960 vaf.va = &args;
6961
6962 r = __netdev_printk(level, dev, &vaf);
6963
6964 va_end(args);
6965
6966 return r;
6967 }
6968 EXPORT_SYMBOL(netdev_printk);
6969
6970 #define define_netdev_printk_level(func, level) \
6971 int func(const struct net_device *dev, const char *fmt, ...) \
6972 { \
6973 int r; \
6974 struct va_format vaf; \
6975 va_list args; \
6976 \
6977 va_start(args, fmt); \
6978 \
6979 vaf.fmt = fmt; \
6980 vaf.va = &args; \
6981 \
6982 r = __netdev_printk(level, dev, &vaf); \
6983 \
6984 va_end(args); \
6985 \
6986 return r; \
6987 } \
6988 EXPORT_SYMBOL(func);
6989
6990 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6991 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6992 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6993 define_netdev_printk_level(netdev_err, KERN_ERR);
6994 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6995 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6996 define_netdev_printk_level(netdev_info, KERN_INFO);
6997
6998 static void __net_exit netdev_exit(struct net *net)
6999 {
7000 kfree(net->dev_name_head);
7001 kfree(net->dev_index_head);
7002 }
7003
7004 static struct pernet_operations __net_initdata netdev_net_ops = {
7005 .init = netdev_init,
7006 .exit = netdev_exit,
7007 };
7008
7009 static void __net_exit default_device_exit(struct net *net)
7010 {
7011 struct net_device *dev, *aux;
7012 /*
7013 * Push all migratable network devices back to the
7014 * initial network namespace
7015 */
7016 rtnl_lock();
7017 for_each_netdev_safe(net, dev, aux) {
7018 int err;
7019 char fb_name[IFNAMSIZ];
7020
7021 /* Ignore unmoveable devices (i.e. loopback) */
7022 if (dev->features & NETIF_F_NETNS_LOCAL)
7023 continue;
7024
7025 /* Leave virtual devices for the generic cleanup */
7026 if (dev->rtnl_link_ops)
7027 continue;
7028
7029 /* Push remaining network devices to init_net */
7030 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7031 err = dev_change_net_namespace(dev, &init_net, fb_name);
7032 if (err) {
7033 pr_emerg("%s: failed to move %s to init_net: %d\n",
7034 __func__, dev->name, err);
7035 BUG();
7036 }
7037 }
7038 rtnl_unlock();
7039 }
7040
7041 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7042 {
7043 /* Return with the rtnl_lock held when there are no network
7044 * devices unregistering in any network namespace in net_list.
7045 */
7046 struct net *net;
7047 bool unregistering;
7048 DEFINE_WAIT(wait);
7049
7050 for (;;) {
7051 prepare_to_wait(&netdev_unregistering_wq, &wait,
7052 TASK_UNINTERRUPTIBLE);
7053 unregistering = false;
7054 rtnl_lock();
7055 list_for_each_entry(net, net_list, exit_list) {
7056 if (net->dev_unreg_count > 0) {
7057 unregistering = true;
7058 break;
7059 }
7060 }
7061 if (!unregistering)
7062 break;
7063 __rtnl_unlock();
7064 schedule();
7065 }
7066 finish_wait(&netdev_unregistering_wq, &wait);
7067 }
7068
7069 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7070 {
7071 /* At exit all network devices most be removed from a network
7072 * namespace. Do this in the reverse order of registration.
7073 * Do this across as many network namespaces as possible to
7074 * improve batching efficiency.
7075 */
7076 struct net_device *dev;
7077 struct net *net;
7078 LIST_HEAD(dev_kill_list);
7079
7080 /* To prevent network device cleanup code from dereferencing
7081 * loopback devices or network devices that have been freed
7082 * wait here for all pending unregistrations to complete,
7083 * before unregistring the loopback device and allowing the
7084 * network namespace be freed.
7085 *
7086 * The netdev todo list containing all network devices
7087 * unregistrations that happen in default_device_exit_batch
7088 * will run in the rtnl_unlock() at the end of
7089 * default_device_exit_batch.
7090 */
7091 rtnl_lock_unregistering(net_list);
7092 list_for_each_entry(net, net_list, exit_list) {
7093 for_each_netdev_reverse(net, dev) {
7094 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7095 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7096 else
7097 unregister_netdevice_queue(dev, &dev_kill_list);
7098 }
7099 }
7100 unregister_netdevice_many(&dev_kill_list);
7101 rtnl_unlock();
7102 }
7103
7104 static struct pernet_operations __net_initdata default_device_ops = {
7105 .exit = default_device_exit,
7106 .exit_batch = default_device_exit_batch,
7107 };
7108
7109 /*
7110 * Initialize the DEV module. At boot time this walks the device list and
7111 * unhooks any devices that fail to initialise (normally hardware not
7112 * present) and leaves us with a valid list of present and active devices.
7113 *
7114 */
7115
7116 /*
7117 * This is called single threaded during boot, so no need
7118 * to take the rtnl semaphore.
7119 */
7120 static int __init net_dev_init(void)
7121 {
7122 int i, rc = -ENOMEM;
7123
7124 BUG_ON(!dev_boot_phase);
7125
7126 if (dev_proc_init())
7127 goto out;
7128
7129 if (netdev_kobject_init())
7130 goto out;
7131
7132 INIT_LIST_HEAD(&ptype_all);
7133 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7134 INIT_LIST_HEAD(&ptype_base[i]);
7135
7136 INIT_LIST_HEAD(&offload_base);
7137
7138 if (register_pernet_subsys(&netdev_net_ops))
7139 goto out;
7140
7141 /*
7142 * Initialise the packet receive queues.
7143 */
7144
7145 for_each_possible_cpu(i) {
7146 struct softnet_data *sd = &per_cpu(softnet_data, i);
7147
7148 skb_queue_head_init(&sd->input_pkt_queue);
7149 skb_queue_head_init(&sd->process_queue);
7150 INIT_LIST_HEAD(&sd->poll_list);
7151 sd->output_queue_tailp = &sd->output_queue;
7152 #ifdef CONFIG_RPS
7153 sd->csd.func = rps_trigger_softirq;
7154 sd->csd.info = sd;
7155 sd->cpu = i;
7156 #endif
7157
7158 sd->backlog.poll = process_backlog;
7159 sd->backlog.weight = weight_p;
7160 }
7161
7162 dev_boot_phase = 0;
7163
7164 /* The loopback device is special if any other network devices
7165 * is present in a network namespace the loopback device must
7166 * be present. Since we now dynamically allocate and free the
7167 * loopback device ensure this invariant is maintained by
7168 * keeping the loopback device as the first device on the
7169 * list of network devices. Ensuring the loopback devices
7170 * is the first device that appears and the last network device
7171 * that disappears.
7172 */
7173 if (register_pernet_device(&loopback_net_ops))
7174 goto out;
7175
7176 if (register_pernet_device(&default_device_ops))
7177 goto out;
7178
7179 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7180 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7181
7182 hotcpu_notifier(dev_cpu_callback, 0);
7183 dst_init();
7184 rc = 0;
7185 out:
7186 return rc;
7187 }
7188
7189 subsys_initcall(net_dev_init);