]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/dev.c
net: add a recursion limit in xmit path
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133
134 #include "net-sysfs.h"
135
136 /* Instead of increasing this, you should create a hash table. */
137 #define MAX_GRO_SKBS 8
138
139 /* This should be increased if a protocol with a bigger head is added. */
140 #define GRO_MAX_HEAD (MAX_HEADER + 128)
141
142 /*
143 * The list of packet types we will receive (as opposed to discard)
144 * and the routines to invoke.
145 *
146 * Why 16. Because with 16 the only overlap we get on a hash of the
147 * low nibble of the protocol value is RARP/SNAP/X.25.
148 *
149 * NOTE: That is no longer true with the addition of VLAN tags. Not
150 * sure which should go first, but I bet it won't make much
151 * difference if we are running VLANs. The good news is that
152 * this protocol won't be in the list unless compiled in, so
153 * the average user (w/out VLANs) will not be adversely affected.
154 * --BLG
155 *
156 * 0800 IP
157 * 8100 802.1Q VLAN
158 * 0001 802.3
159 * 0002 AX.25
160 * 0004 802.2
161 * 8035 RARP
162 * 0005 SNAP
163 * 0805 X.25
164 * 0806 ARP
165 * 8137 IPX
166 * 0009 Localtalk
167 * 86DD IPv6
168 */
169
170 #define PTYPE_HASH_SIZE (16)
171 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
172
173 static DEFINE_SPINLOCK(ptype_lock);
174 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
175 static struct list_head ptype_all __read_mostly; /* Taps */
176
177 /*
178 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
179 * semaphore.
180 *
181 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
182 *
183 * Writers must hold the rtnl semaphore while they loop through the
184 * dev_base_head list, and hold dev_base_lock for writing when they do the
185 * actual updates. This allows pure readers to access the list even
186 * while a writer is preparing to update it.
187 *
188 * To put it another way, dev_base_lock is held for writing only to
189 * protect against pure readers; the rtnl semaphore provides the
190 * protection against other writers.
191 *
192 * See, for example usages, register_netdevice() and
193 * unregister_netdevice(), which must be called with the rtnl
194 * semaphore held.
195 */
196 DEFINE_RWLOCK(dev_base_lock);
197 EXPORT_SYMBOL(dev_base_lock);
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
208 }
209
210 static inline void rps_lock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213 spin_lock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 static inline void rps_unlock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 spin_unlock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 /* Device list insertion */
225 static int list_netdevice(struct net_device *dev)
226 {
227 struct net *net = dev_net(dev);
228
229 ASSERT_RTNL();
230
231 write_lock_bh(&dev_base_lock);
232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
234 hlist_add_head_rcu(&dev->index_hlist,
235 dev_index_hash(net, dev->ifindex));
236 write_unlock_bh(&dev_base_lock);
237 return 0;
238 }
239
240 /* Device list removal
241 * caller must respect a RCU grace period before freeing/reusing dev
242 */
243 static void unlist_netdevice(struct net_device *dev)
244 {
245 ASSERT_RTNL();
246
247 /* Unlink dev from the device chain */
248 write_lock_bh(&dev_base_lock);
249 list_del_rcu(&dev->dev_list);
250 hlist_del_rcu(&dev->name_hlist);
251 hlist_del_rcu(&dev->index_hlist);
252 write_unlock_bh(&dev_base_lock);
253 }
254
255 /*
256 * Our notifier list
257 */
258
259 static RAW_NOTIFIER_HEAD(netdev_chain);
260
261 /*
262 * Device drivers call our routines to queue packets here. We empty the
263 * queue in the local softnet handler.
264 */
265
266 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
267 EXPORT_PER_CPU_SYMBOL(softnet_data);
268
269 #ifdef CONFIG_LOCKDEP
270 /*
271 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
272 * according to dev->type
273 */
274 static const unsigned short netdev_lock_type[] =
275 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
276 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
277 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
278 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
279 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
280 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
281 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
282 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
283 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
284 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
285 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
286 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
287 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
288 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
289 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
290 ARPHRD_VOID, ARPHRD_NONE};
291
292 static const char *const netdev_lock_name[] =
293 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
294 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
295 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
296 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
297 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
298 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
299 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
300 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
301 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
302 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
303 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
304 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
305 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
306 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
307 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
308 "_xmit_VOID", "_xmit_NONE"};
309
310 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
311 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
312
313 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
314 {
315 int i;
316
317 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
318 if (netdev_lock_type[i] == dev_type)
319 return i;
320 /* the last key is used by default */
321 return ARRAY_SIZE(netdev_lock_type) - 1;
322 }
323
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326 {
327 int i;
328
329 i = netdev_lock_pos(dev_type);
330 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
331 netdev_lock_name[i]);
332 }
333
334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335 {
336 int i;
337
338 i = netdev_lock_pos(dev->type);
339 lockdep_set_class_and_name(&dev->addr_list_lock,
340 &netdev_addr_lock_key[i],
341 netdev_lock_name[i]);
342 }
343 #else
344 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
345 unsigned short dev_type)
346 {
347 }
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 }
351 #endif
352
353 /*******************************************************************************
354
355 Protocol management and registration routines
356
357 *******************************************************************************/
358
359 /*
360 * Add a protocol ID to the list. Now that the input handler is
361 * smarter we can dispense with all the messy stuff that used to be
362 * here.
363 *
364 * BEWARE!!! Protocol handlers, mangling input packets,
365 * MUST BE last in hash buckets and checking protocol handlers
366 * MUST start from promiscuous ptype_all chain in net_bh.
367 * It is true now, do not change it.
368 * Explanation follows: if protocol handler, mangling packet, will
369 * be the first on list, it is not able to sense, that packet
370 * is cloned and should be copied-on-write, so that it will
371 * change it and subsequent readers will get broken packet.
372 * --ANK (980803)
373 */
374
375 static inline struct list_head *ptype_head(const struct packet_type *pt)
376 {
377 if (pt->type == htons(ETH_P_ALL))
378 return &ptype_all;
379 else
380 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
381 }
382
383 /**
384 * dev_add_pack - add packet handler
385 * @pt: packet type declaration
386 *
387 * Add a protocol handler to the networking stack. The passed &packet_type
388 * is linked into kernel lists and may not be freed until it has been
389 * removed from the kernel lists.
390 *
391 * This call does not sleep therefore it can not
392 * guarantee all CPU's that are in middle of receiving packets
393 * will see the new packet type (until the next received packet).
394 */
395
396 void dev_add_pack(struct packet_type *pt)
397 {
398 struct list_head *head = ptype_head(pt);
399
400 spin_lock(&ptype_lock);
401 list_add_rcu(&pt->list, head);
402 spin_unlock(&ptype_lock);
403 }
404 EXPORT_SYMBOL(dev_add_pack);
405
406 /**
407 * __dev_remove_pack - remove packet handler
408 * @pt: packet type declaration
409 *
410 * Remove a protocol handler that was previously added to the kernel
411 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
412 * from the kernel lists and can be freed or reused once this function
413 * returns.
414 *
415 * The packet type might still be in use by receivers
416 * and must not be freed until after all the CPU's have gone
417 * through a quiescent state.
418 */
419 void __dev_remove_pack(struct packet_type *pt)
420 {
421 struct list_head *head = ptype_head(pt);
422 struct packet_type *pt1;
423
424 spin_lock(&ptype_lock);
425
426 list_for_each_entry(pt1, head, list) {
427 if (pt == pt1) {
428 list_del_rcu(&pt->list);
429 goto out;
430 }
431 }
432
433 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
434 out:
435 spin_unlock(&ptype_lock);
436 }
437 EXPORT_SYMBOL(__dev_remove_pack);
438
439 /**
440 * dev_remove_pack - remove packet handler
441 * @pt: packet type declaration
442 *
443 * Remove a protocol handler that was previously added to the kernel
444 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
445 * from the kernel lists and can be freed or reused once this function
446 * returns.
447 *
448 * This call sleeps to guarantee that no CPU is looking at the packet
449 * type after return.
450 */
451 void dev_remove_pack(struct packet_type *pt)
452 {
453 __dev_remove_pack(pt);
454
455 synchronize_net();
456 }
457 EXPORT_SYMBOL(dev_remove_pack);
458
459 /******************************************************************************
460
461 Device Boot-time Settings Routines
462
463 *******************************************************************************/
464
465 /* Boot time configuration table */
466 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
467
468 /**
469 * netdev_boot_setup_add - add new setup entry
470 * @name: name of the device
471 * @map: configured settings for the device
472 *
473 * Adds new setup entry to the dev_boot_setup list. The function
474 * returns 0 on error and 1 on success. This is a generic routine to
475 * all netdevices.
476 */
477 static int netdev_boot_setup_add(char *name, struct ifmap *map)
478 {
479 struct netdev_boot_setup *s;
480 int i;
481
482 s = dev_boot_setup;
483 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
484 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
485 memset(s[i].name, 0, sizeof(s[i].name));
486 strlcpy(s[i].name, name, IFNAMSIZ);
487 memcpy(&s[i].map, map, sizeof(s[i].map));
488 break;
489 }
490 }
491
492 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
493 }
494
495 /**
496 * netdev_boot_setup_check - check boot time settings
497 * @dev: the netdevice
498 *
499 * Check boot time settings for the device.
500 * The found settings are set for the device to be used
501 * later in the device probing.
502 * Returns 0 if no settings found, 1 if they are.
503 */
504 int netdev_boot_setup_check(struct net_device *dev)
505 {
506 struct netdev_boot_setup *s = dev_boot_setup;
507 int i;
508
509 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
510 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
511 !strcmp(dev->name, s[i].name)) {
512 dev->irq = s[i].map.irq;
513 dev->base_addr = s[i].map.base_addr;
514 dev->mem_start = s[i].map.mem_start;
515 dev->mem_end = s[i].map.mem_end;
516 return 1;
517 }
518 }
519 return 0;
520 }
521 EXPORT_SYMBOL(netdev_boot_setup_check);
522
523
524 /**
525 * netdev_boot_base - get address from boot time settings
526 * @prefix: prefix for network device
527 * @unit: id for network device
528 *
529 * Check boot time settings for the base address of device.
530 * The found settings are set for the device to be used
531 * later in the device probing.
532 * Returns 0 if no settings found.
533 */
534 unsigned long netdev_boot_base(const char *prefix, int unit)
535 {
536 const struct netdev_boot_setup *s = dev_boot_setup;
537 char name[IFNAMSIZ];
538 int i;
539
540 sprintf(name, "%s%d", prefix, unit);
541
542 /*
543 * If device already registered then return base of 1
544 * to indicate not to probe for this interface
545 */
546 if (__dev_get_by_name(&init_net, name))
547 return 1;
548
549 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
550 if (!strcmp(name, s[i].name))
551 return s[i].map.base_addr;
552 return 0;
553 }
554
555 /*
556 * Saves at boot time configured settings for any netdevice.
557 */
558 int __init netdev_boot_setup(char *str)
559 {
560 int ints[5];
561 struct ifmap map;
562
563 str = get_options(str, ARRAY_SIZE(ints), ints);
564 if (!str || !*str)
565 return 0;
566
567 /* Save settings */
568 memset(&map, 0, sizeof(map));
569 if (ints[0] > 0)
570 map.irq = ints[1];
571 if (ints[0] > 1)
572 map.base_addr = ints[2];
573 if (ints[0] > 2)
574 map.mem_start = ints[3];
575 if (ints[0] > 3)
576 map.mem_end = ints[4];
577
578 /* Add new entry to the list */
579 return netdev_boot_setup_add(str, &map);
580 }
581
582 __setup("netdev=", netdev_boot_setup);
583
584 /*******************************************************************************
585
586 Device Interface Subroutines
587
588 *******************************************************************************/
589
590 /**
591 * __dev_get_by_name - find a device by its name
592 * @net: the applicable net namespace
593 * @name: name to find
594 *
595 * Find an interface by name. Must be called under RTNL semaphore
596 * or @dev_base_lock. If the name is found a pointer to the device
597 * is returned. If the name is not found then %NULL is returned. The
598 * reference counters are not incremented so the caller must be
599 * careful with locks.
600 */
601
602 struct net_device *__dev_get_by_name(struct net *net, const char *name)
603 {
604 struct hlist_node *p;
605 struct net_device *dev;
606 struct hlist_head *head = dev_name_hash(net, name);
607
608 hlist_for_each_entry(dev, p, head, name_hlist)
609 if (!strncmp(dev->name, name, IFNAMSIZ))
610 return dev;
611
612 return NULL;
613 }
614 EXPORT_SYMBOL(__dev_get_by_name);
615
616 /**
617 * dev_get_by_name_rcu - find a device by its name
618 * @net: the applicable net namespace
619 * @name: name to find
620 *
621 * Find an interface by name.
622 * If the name is found a pointer to the device is returned.
623 * If the name is not found then %NULL is returned.
624 * The reference counters are not incremented so the caller must be
625 * careful with locks. The caller must hold RCU lock.
626 */
627
628 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
629 {
630 struct hlist_node *p;
631 struct net_device *dev;
632 struct hlist_head *head = dev_name_hash(net, name);
633
634 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
635 if (!strncmp(dev->name, name, IFNAMSIZ))
636 return dev;
637
638 return NULL;
639 }
640 EXPORT_SYMBOL(dev_get_by_name_rcu);
641
642 /**
643 * dev_get_by_name - find a device by its name
644 * @net: the applicable net namespace
645 * @name: name to find
646 *
647 * Find an interface by name. This can be called from any
648 * context and does its own locking. The returned handle has
649 * the usage count incremented and the caller must use dev_put() to
650 * release it when it is no longer needed. %NULL is returned if no
651 * matching device is found.
652 */
653
654 struct net_device *dev_get_by_name(struct net *net, const char *name)
655 {
656 struct net_device *dev;
657
658 rcu_read_lock();
659 dev = dev_get_by_name_rcu(net, name);
660 if (dev)
661 dev_hold(dev);
662 rcu_read_unlock();
663 return dev;
664 }
665 EXPORT_SYMBOL(dev_get_by_name);
666
667 /**
668 * __dev_get_by_index - find a device by its ifindex
669 * @net: the applicable net namespace
670 * @ifindex: index of device
671 *
672 * Search for an interface by index. Returns %NULL if the device
673 * is not found or a pointer to the device. The device has not
674 * had its reference counter increased so the caller must be careful
675 * about locking. The caller must hold either the RTNL semaphore
676 * or @dev_base_lock.
677 */
678
679 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
680 {
681 struct hlist_node *p;
682 struct net_device *dev;
683 struct hlist_head *head = dev_index_hash(net, ifindex);
684
685 hlist_for_each_entry(dev, p, head, index_hlist)
686 if (dev->ifindex == ifindex)
687 return dev;
688
689 return NULL;
690 }
691 EXPORT_SYMBOL(__dev_get_by_index);
692
693 /**
694 * dev_get_by_index_rcu - find a device by its ifindex
695 * @net: the applicable net namespace
696 * @ifindex: index of device
697 *
698 * Search for an interface by index. Returns %NULL if the device
699 * is not found or a pointer to the device. The device has not
700 * had its reference counter increased so the caller must be careful
701 * about locking. The caller must hold RCU lock.
702 */
703
704 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
705 {
706 struct hlist_node *p;
707 struct net_device *dev;
708 struct hlist_head *head = dev_index_hash(net, ifindex);
709
710 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
711 if (dev->ifindex == ifindex)
712 return dev;
713
714 return NULL;
715 }
716 EXPORT_SYMBOL(dev_get_by_index_rcu);
717
718
719 /**
720 * dev_get_by_index - find a device by its ifindex
721 * @net: the applicable net namespace
722 * @ifindex: index of device
723 *
724 * Search for an interface by index. Returns NULL if the device
725 * is not found or a pointer to the device. The device returned has
726 * had a reference added and the pointer is safe until the user calls
727 * dev_put to indicate they have finished with it.
728 */
729
730 struct net_device *dev_get_by_index(struct net *net, int ifindex)
731 {
732 struct net_device *dev;
733
734 rcu_read_lock();
735 dev = dev_get_by_index_rcu(net, ifindex);
736 if (dev)
737 dev_hold(dev);
738 rcu_read_unlock();
739 return dev;
740 }
741 EXPORT_SYMBOL(dev_get_by_index);
742
743 /**
744 * dev_getbyhwaddr - find a device by its hardware address
745 * @net: the applicable net namespace
746 * @type: media type of device
747 * @ha: hardware address
748 *
749 * Search for an interface by MAC address. Returns NULL if the device
750 * is not found or a pointer to the device. The caller must hold the
751 * rtnl semaphore. The returned device has not had its ref count increased
752 * and the caller must therefore be careful about locking
753 *
754 * BUGS:
755 * If the API was consistent this would be __dev_get_by_hwaddr
756 */
757
758 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
759 {
760 struct net_device *dev;
761
762 ASSERT_RTNL();
763
764 for_each_netdev(net, dev)
765 if (dev->type == type &&
766 !memcmp(dev->dev_addr, ha, dev->addr_len))
767 return dev;
768
769 return NULL;
770 }
771 EXPORT_SYMBOL(dev_getbyhwaddr);
772
773 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
774 {
775 struct net_device *dev;
776
777 ASSERT_RTNL();
778 for_each_netdev(net, dev)
779 if (dev->type == type)
780 return dev;
781
782 return NULL;
783 }
784 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
785
786 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
787 {
788 struct net_device *dev, *ret = NULL;
789
790 rcu_read_lock();
791 for_each_netdev_rcu(net, dev)
792 if (dev->type == type) {
793 dev_hold(dev);
794 ret = dev;
795 break;
796 }
797 rcu_read_unlock();
798 return ret;
799 }
800 EXPORT_SYMBOL(dev_getfirstbyhwtype);
801
802 /**
803 * dev_get_by_flags_rcu - find any device with given flags
804 * @net: the applicable net namespace
805 * @if_flags: IFF_* values
806 * @mask: bitmask of bits in if_flags to check
807 *
808 * Search for any interface with the given flags. Returns NULL if a device
809 * is not found or a pointer to the device. Must be called inside
810 * rcu_read_lock(), and result refcount is unchanged.
811 */
812
813 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
814 unsigned short mask)
815 {
816 struct net_device *dev, *ret;
817
818 ret = NULL;
819 for_each_netdev_rcu(net, dev) {
820 if (((dev->flags ^ if_flags) & mask) == 0) {
821 ret = dev;
822 break;
823 }
824 }
825 return ret;
826 }
827 EXPORT_SYMBOL(dev_get_by_flags_rcu);
828
829 /**
830 * dev_valid_name - check if name is okay for network device
831 * @name: name string
832 *
833 * Network device names need to be valid file names to
834 * to allow sysfs to work. We also disallow any kind of
835 * whitespace.
836 */
837 int dev_valid_name(const char *name)
838 {
839 if (*name == '\0')
840 return 0;
841 if (strlen(name) >= IFNAMSIZ)
842 return 0;
843 if (!strcmp(name, ".") || !strcmp(name, ".."))
844 return 0;
845
846 while (*name) {
847 if (*name == '/' || isspace(*name))
848 return 0;
849 name++;
850 }
851 return 1;
852 }
853 EXPORT_SYMBOL(dev_valid_name);
854
855 /**
856 * __dev_alloc_name - allocate a name for a device
857 * @net: network namespace to allocate the device name in
858 * @name: name format string
859 * @buf: scratch buffer and result name string
860 *
861 * Passed a format string - eg "lt%d" it will try and find a suitable
862 * id. It scans list of devices to build up a free map, then chooses
863 * the first empty slot. The caller must hold the dev_base or rtnl lock
864 * while allocating the name and adding the device in order to avoid
865 * duplicates.
866 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
867 * Returns the number of the unit assigned or a negative errno code.
868 */
869
870 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
871 {
872 int i = 0;
873 const char *p;
874 const int max_netdevices = 8*PAGE_SIZE;
875 unsigned long *inuse;
876 struct net_device *d;
877
878 p = strnchr(name, IFNAMSIZ-1, '%');
879 if (p) {
880 /*
881 * Verify the string as this thing may have come from
882 * the user. There must be either one "%d" and no other "%"
883 * characters.
884 */
885 if (p[1] != 'd' || strchr(p + 2, '%'))
886 return -EINVAL;
887
888 /* Use one page as a bit array of possible slots */
889 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
890 if (!inuse)
891 return -ENOMEM;
892
893 for_each_netdev(net, d) {
894 if (!sscanf(d->name, name, &i))
895 continue;
896 if (i < 0 || i >= max_netdevices)
897 continue;
898
899 /* avoid cases where sscanf is not exact inverse of printf */
900 snprintf(buf, IFNAMSIZ, name, i);
901 if (!strncmp(buf, d->name, IFNAMSIZ))
902 set_bit(i, inuse);
903 }
904
905 i = find_first_zero_bit(inuse, max_netdevices);
906 free_page((unsigned long) inuse);
907 }
908
909 if (buf != name)
910 snprintf(buf, IFNAMSIZ, name, i);
911 if (!__dev_get_by_name(net, buf))
912 return i;
913
914 /* It is possible to run out of possible slots
915 * when the name is long and there isn't enough space left
916 * for the digits, or if all bits are used.
917 */
918 return -ENFILE;
919 }
920
921 /**
922 * dev_alloc_name - allocate a name for a device
923 * @dev: device
924 * @name: name format string
925 *
926 * Passed a format string - eg "lt%d" it will try and find a suitable
927 * id. It scans list of devices to build up a free map, then chooses
928 * the first empty slot. The caller must hold the dev_base or rtnl lock
929 * while allocating the name and adding the device in order to avoid
930 * duplicates.
931 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
932 * Returns the number of the unit assigned or a negative errno code.
933 */
934
935 int dev_alloc_name(struct net_device *dev, const char *name)
936 {
937 char buf[IFNAMSIZ];
938 struct net *net;
939 int ret;
940
941 BUG_ON(!dev_net(dev));
942 net = dev_net(dev);
943 ret = __dev_alloc_name(net, name, buf);
944 if (ret >= 0)
945 strlcpy(dev->name, buf, IFNAMSIZ);
946 return ret;
947 }
948 EXPORT_SYMBOL(dev_alloc_name);
949
950 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
951 {
952 struct net *net;
953
954 BUG_ON(!dev_net(dev));
955 net = dev_net(dev);
956
957 if (!dev_valid_name(name))
958 return -EINVAL;
959
960 if (fmt && strchr(name, '%'))
961 return dev_alloc_name(dev, name);
962 else if (__dev_get_by_name(net, name))
963 return -EEXIST;
964 else if (dev->name != name)
965 strlcpy(dev->name, name, IFNAMSIZ);
966
967 return 0;
968 }
969
970 /**
971 * dev_change_name - change name of a device
972 * @dev: device
973 * @newname: name (or format string) must be at least IFNAMSIZ
974 *
975 * Change name of a device, can pass format strings "eth%d".
976 * for wildcarding.
977 */
978 int dev_change_name(struct net_device *dev, const char *newname)
979 {
980 char oldname[IFNAMSIZ];
981 int err = 0;
982 int ret;
983 struct net *net;
984
985 ASSERT_RTNL();
986 BUG_ON(!dev_net(dev));
987
988 net = dev_net(dev);
989 if (dev->flags & IFF_UP)
990 return -EBUSY;
991
992 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
993 return 0;
994
995 memcpy(oldname, dev->name, IFNAMSIZ);
996
997 err = dev_get_valid_name(dev, newname, 1);
998 if (err < 0)
999 return err;
1000
1001 rollback:
1002 ret = device_rename(&dev->dev, dev->name);
1003 if (ret) {
1004 memcpy(dev->name, oldname, IFNAMSIZ);
1005 return ret;
1006 }
1007
1008 write_lock_bh(&dev_base_lock);
1009 hlist_del(&dev->name_hlist);
1010 write_unlock_bh(&dev_base_lock);
1011
1012 synchronize_rcu();
1013
1014 write_lock_bh(&dev_base_lock);
1015 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1016 write_unlock_bh(&dev_base_lock);
1017
1018 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1019 ret = notifier_to_errno(ret);
1020
1021 if (ret) {
1022 /* err >= 0 after dev_alloc_name() or stores the first errno */
1023 if (err >= 0) {
1024 err = ret;
1025 memcpy(dev->name, oldname, IFNAMSIZ);
1026 goto rollback;
1027 } else {
1028 printk(KERN_ERR
1029 "%s: name change rollback failed: %d.\n",
1030 dev->name, ret);
1031 }
1032 }
1033
1034 return err;
1035 }
1036
1037 /**
1038 * dev_set_alias - change ifalias of a device
1039 * @dev: device
1040 * @alias: name up to IFALIASZ
1041 * @len: limit of bytes to copy from info
1042 *
1043 * Set ifalias for a device,
1044 */
1045 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1046 {
1047 ASSERT_RTNL();
1048
1049 if (len >= IFALIASZ)
1050 return -EINVAL;
1051
1052 if (!len) {
1053 if (dev->ifalias) {
1054 kfree(dev->ifalias);
1055 dev->ifalias = NULL;
1056 }
1057 return 0;
1058 }
1059
1060 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1061 if (!dev->ifalias)
1062 return -ENOMEM;
1063
1064 strlcpy(dev->ifalias, alias, len+1);
1065 return len;
1066 }
1067
1068
1069 /**
1070 * netdev_features_change - device changes features
1071 * @dev: device to cause notification
1072 *
1073 * Called to indicate a device has changed features.
1074 */
1075 void netdev_features_change(struct net_device *dev)
1076 {
1077 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1078 }
1079 EXPORT_SYMBOL(netdev_features_change);
1080
1081 /**
1082 * netdev_state_change - device changes state
1083 * @dev: device to cause notification
1084 *
1085 * Called to indicate a device has changed state. This function calls
1086 * the notifier chains for netdev_chain and sends a NEWLINK message
1087 * to the routing socket.
1088 */
1089 void netdev_state_change(struct net_device *dev)
1090 {
1091 if (dev->flags & IFF_UP) {
1092 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1093 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1094 }
1095 }
1096 EXPORT_SYMBOL(netdev_state_change);
1097
1098 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1099 {
1100 return call_netdevice_notifiers(event, dev);
1101 }
1102 EXPORT_SYMBOL(netdev_bonding_change);
1103
1104 /**
1105 * dev_load - load a network module
1106 * @net: the applicable net namespace
1107 * @name: name of interface
1108 *
1109 * If a network interface is not present and the process has suitable
1110 * privileges this function loads the module. If module loading is not
1111 * available in this kernel then it becomes a nop.
1112 */
1113
1114 void dev_load(struct net *net, const char *name)
1115 {
1116 struct net_device *dev;
1117
1118 rcu_read_lock();
1119 dev = dev_get_by_name_rcu(net, name);
1120 rcu_read_unlock();
1121
1122 if (!dev && capable(CAP_NET_ADMIN))
1123 request_module("%s", name);
1124 }
1125 EXPORT_SYMBOL(dev_load);
1126
1127 static int __dev_open(struct net_device *dev)
1128 {
1129 const struct net_device_ops *ops = dev->netdev_ops;
1130 int ret;
1131
1132 ASSERT_RTNL();
1133
1134 /*
1135 * Is it even present?
1136 */
1137 if (!netif_device_present(dev))
1138 return -ENODEV;
1139
1140 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1141 ret = notifier_to_errno(ret);
1142 if (ret)
1143 return ret;
1144
1145 /*
1146 * Call device private open method
1147 */
1148 set_bit(__LINK_STATE_START, &dev->state);
1149
1150 if (ops->ndo_validate_addr)
1151 ret = ops->ndo_validate_addr(dev);
1152
1153 if (!ret && ops->ndo_open)
1154 ret = ops->ndo_open(dev);
1155
1156 /*
1157 * If it went open OK then:
1158 */
1159
1160 if (ret)
1161 clear_bit(__LINK_STATE_START, &dev->state);
1162 else {
1163 /*
1164 * Set the flags.
1165 */
1166 dev->flags |= IFF_UP;
1167
1168 /*
1169 * Enable NET_DMA
1170 */
1171 net_dmaengine_get();
1172
1173 /*
1174 * Initialize multicasting status
1175 */
1176 dev_set_rx_mode(dev);
1177
1178 /*
1179 * Wakeup transmit queue engine
1180 */
1181 dev_activate(dev);
1182 }
1183
1184 return ret;
1185 }
1186
1187 /**
1188 * dev_open - prepare an interface for use.
1189 * @dev: device to open
1190 *
1191 * Takes a device from down to up state. The device's private open
1192 * function is invoked and then the multicast lists are loaded. Finally
1193 * the device is moved into the up state and a %NETDEV_UP message is
1194 * sent to the netdev notifier chain.
1195 *
1196 * Calling this function on an active interface is a nop. On a failure
1197 * a negative errno code is returned.
1198 */
1199 int dev_open(struct net_device *dev)
1200 {
1201 int ret;
1202
1203 /*
1204 * Is it already up?
1205 */
1206 if (dev->flags & IFF_UP)
1207 return 0;
1208
1209 /*
1210 * Open device
1211 */
1212 ret = __dev_open(dev);
1213 if (ret < 0)
1214 return ret;
1215
1216 /*
1217 * ... and announce new interface.
1218 */
1219 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1220 call_netdevice_notifiers(NETDEV_UP, dev);
1221
1222 return ret;
1223 }
1224 EXPORT_SYMBOL(dev_open);
1225
1226 static int __dev_close(struct net_device *dev)
1227 {
1228 const struct net_device_ops *ops = dev->netdev_ops;
1229
1230 ASSERT_RTNL();
1231 might_sleep();
1232
1233 /*
1234 * Tell people we are going down, so that they can
1235 * prepare to death, when device is still operating.
1236 */
1237 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1238
1239 clear_bit(__LINK_STATE_START, &dev->state);
1240
1241 /* Synchronize to scheduled poll. We cannot touch poll list,
1242 * it can be even on different cpu. So just clear netif_running().
1243 *
1244 * dev->stop() will invoke napi_disable() on all of it's
1245 * napi_struct instances on this device.
1246 */
1247 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1248
1249 dev_deactivate(dev);
1250
1251 /*
1252 * Call the device specific close. This cannot fail.
1253 * Only if device is UP
1254 *
1255 * We allow it to be called even after a DETACH hot-plug
1256 * event.
1257 */
1258 if (ops->ndo_stop)
1259 ops->ndo_stop(dev);
1260
1261 /*
1262 * Device is now down.
1263 */
1264
1265 dev->flags &= ~IFF_UP;
1266
1267 /*
1268 * Shutdown NET_DMA
1269 */
1270 net_dmaengine_put();
1271
1272 return 0;
1273 }
1274
1275 /**
1276 * dev_close - shutdown an interface.
1277 * @dev: device to shutdown
1278 *
1279 * This function moves an active device into down state. A
1280 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1281 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1282 * chain.
1283 */
1284 int dev_close(struct net_device *dev)
1285 {
1286 if (!(dev->flags & IFF_UP))
1287 return 0;
1288
1289 __dev_close(dev);
1290
1291 /*
1292 * Tell people we are down
1293 */
1294 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1295 call_netdevice_notifiers(NETDEV_DOWN, dev);
1296
1297 return 0;
1298 }
1299 EXPORT_SYMBOL(dev_close);
1300
1301
1302 /**
1303 * dev_disable_lro - disable Large Receive Offload on a device
1304 * @dev: device
1305 *
1306 * Disable Large Receive Offload (LRO) on a net device. Must be
1307 * called under RTNL. This is needed if received packets may be
1308 * forwarded to another interface.
1309 */
1310 void dev_disable_lro(struct net_device *dev)
1311 {
1312 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1313 dev->ethtool_ops->set_flags) {
1314 u32 flags = dev->ethtool_ops->get_flags(dev);
1315 if (flags & ETH_FLAG_LRO) {
1316 flags &= ~ETH_FLAG_LRO;
1317 dev->ethtool_ops->set_flags(dev, flags);
1318 }
1319 }
1320 WARN_ON(dev->features & NETIF_F_LRO);
1321 }
1322 EXPORT_SYMBOL(dev_disable_lro);
1323
1324
1325 static int dev_boot_phase = 1;
1326
1327 /*
1328 * Device change register/unregister. These are not inline or static
1329 * as we export them to the world.
1330 */
1331
1332 /**
1333 * register_netdevice_notifier - register a network notifier block
1334 * @nb: notifier
1335 *
1336 * Register a notifier to be called when network device events occur.
1337 * The notifier passed is linked into the kernel structures and must
1338 * not be reused until it has been unregistered. A negative errno code
1339 * is returned on a failure.
1340 *
1341 * When registered all registration and up events are replayed
1342 * to the new notifier to allow device to have a race free
1343 * view of the network device list.
1344 */
1345
1346 int register_netdevice_notifier(struct notifier_block *nb)
1347 {
1348 struct net_device *dev;
1349 struct net_device *last;
1350 struct net *net;
1351 int err;
1352
1353 rtnl_lock();
1354 err = raw_notifier_chain_register(&netdev_chain, nb);
1355 if (err)
1356 goto unlock;
1357 if (dev_boot_phase)
1358 goto unlock;
1359 for_each_net(net) {
1360 for_each_netdev(net, dev) {
1361 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1362 err = notifier_to_errno(err);
1363 if (err)
1364 goto rollback;
1365
1366 if (!(dev->flags & IFF_UP))
1367 continue;
1368
1369 nb->notifier_call(nb, NETDEV_UP, dev);
1370 }
1371 }
1372
1373 unlock:
1374 rtnl_unlock();
1375 return err;
1376
1377 rollback:
1378 last = dev;
1379 for_each_net(net) {
1380 for_each_netdev(net, dev) {
1381 if (dev == last)
1382 break;
1383
1384 if (dev->flags & IFF_UP) {
1385 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1386 nb->notifier_call(nb, NETDEV_DOWN, dev);
1387 }
1388 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1389 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1390 }
1391 }
1392
1393 raw_notifier_chain_unregister(&netdev_chain, nb);
1394 goto unlock;
1395 }
1396 EXPORT_SYMBOL(register_netdevice_notifier);
1397
1398 /**
1399 * unregister_netdevice_notifier - unregister a network notifier block
1400 * @nb: notifier
1401 *
1402 * Unregister a notifier previously registered by
1403 * register_netdevice_notifier(). The notifier is unlinked into the
1404 * kernel structures and may then be reused. A negative errno code
1405 * is returned on a failure.
1406 */
1407
1408 int unregister_netdevice_notifier(struct notifier_block *nb)
1409 {
1410 int err;
1411
1412 rtnl_lock();
1413 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1414 rtnl_unlock();
1415 return err;
1416 }
1417 EXPORT_SYMBOL(unregister_netdevice_notifier);
1418
1419 /**
1420 * call_netdevice_notifiers - call all network notifier blocks
1421 * @val: value passed unmodified to notifier function
1422 * @dev: net_device pointer passed unmodified to notifier function
1423 *
1424 * Call all network notifier blocks. Parameters and return value
1425 * are as for raw_notifier_call_chain().
1426 */
1427
1428 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1429 {
1430 ASSERT_RTNL();
1431 return raw_notifier_call_chain(&netdev_chain, val, dev);
1432 }
1433
1434 /* When > 0 there are consumers of rx skb time stamps */
1435 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1436
1437 void net_enable_timestamp(void)
1438 {
1439 atomic_inc(&netstamp_needed);
1440 }
1441 EXPORT_SYMBOL(net_enable_timestamp);
1442
1443 void net_disable_timestamp(void)
1444 {
1445 atomic_dec(&netstamp_needed);
1446 }
1447 EXPORT_SYMBOL(net_disable_timestamp);
1448
1449 static inline void net_timestamp_set(struct sk_buff *skb)
1450 {
1451 if (atomic_read(&netstamp_needed))
1452 __net_timestamp(skb);
1453 else
1454 skb->tstamp.tv64 = 0;
1455 }
1456
1457 static inline void net_timestamp_check(struct sk_buff *skb)
1458 {
1459 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1460 __net_timestamp(skb);
1461 }
1462
1463 /**
1464 * dev_forward_skb - loopback an skb to another netif
1465 *
1466 * @dev: destination network device
1467 * @skb: buffer to forward
1468 *
1469 * return values:
1470 * NET_RX_SUCCESS (no congestion)
1471 * NET_RX_DROP (packet was dropped, but freed)
1472 *
1473 * dev_forward_skb can be used for injecting an skb from the
1474 * start_xmit function of one device into the receive queue
1475 * of another device.
1476 *
1477 * The receiving device may be in another namespace, so
1478 * we have to clear all information in the skb that could
1479 * impact namespace isolation.
1480 */
1481 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1482 {
1483 skb_orphan(skb);
1484 nf_reset(skb);
1485
1486 if (!(dev->flags & IFF_UP) ||
1487 (skb->len > (dev->mtu + dev->hard_header_len))) {
1488 kfree_skb(skb);
1489 return NET_RX_DROP;
1490 }
1491 skb_set_dev(skb, dev);
1492 skb->tstamp.tv64 = 0;
1493 skb->pkt_type = PACKET_HOST;
1494 skb->protocol = eth_type_trans(skb, dev);
1495 return netif_rx(skb);
1496 }
1497 EXPORT_SYMBOL_GPL(dev_forward_skb);
1498
1499 /*
1500 * Support routine. Sends outgoing frames to any network
1501 * taps currently in use.
1502 */
1503
1504 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1505 {
1506 struct packet_type *ptype;
1507
1508 #ifdef CONFIG_NET_CLS_ACT
1509 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1510 net_timestamp_set(skb);
1511 #else
1512 net_timestamp_set(skb);
1513 #endif
1514
1515 rcu_read_lock();
1516 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1517 /* Never send packets back to the socket
1518 * they originated from - MvS (miquels@drinkel.ow.org)
1519 */
1520 if ((ptype->dev == dev || !ptype->dev) &&
1521 (ptype->af_packet_priv == NULL ||
1522 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1523 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1524 if (!skb2)
1525 break;
1526
1527 /* skb->nh should be correctly
1528 set by sender, so that the second statement is
1529 just protection against buggy protocols.
1530 */
1531 skb_reset_mac_header(skb2);
1532
1533 if (skb_network_header(skb2) < skb2->data ||
1534 skb2->network_header > skb2->tail) {
1535 if (net_ratelimit())
1536 printk(KERN_CRIT "protocol %04x is "
1537 "buggy, dev %s\n",
1538 ntohs(skb2->protocol),
1539 dev->name);
1540 skb_reset_network_header(skb2);
1541 }
1542
1543 skb2->transport_header = skb2->network_header;
1544 skb2->pkt_type = PACKET_OUTGOING;
1545 ptype->func(skb2, skb->dev, ptype, skb->dev);
1546 }
1547 }
1548 rcu_read_unlock();
1549 }
1550
1551 /*
1552 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1553 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1554 */
1555 void netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1556 {
1557 unsigned int real_num = dev->real_num_tx_queues;
1558
1559 if (unlikely(txq > dev->num_tx_queues))
1560 ;
1561 else if (txq > real_num)
1562 dev->real_num_tx_queues = txq;
1563 else if (txq < real_num) {
1564 dev->real_num_tx_queues = txq;
1565 qdisc_reset_all_tx_gt(dev, txq);
1566 }
1567 }
1568 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1569
1570 #ifdef CONFIG_RPS
1571 /**
1572 * netif_set_real_num_rx_queues - set actual number of RX queues used
1573 * @dev: Network device
1574 * @rxq: Actual number of RX queues
1575 *
1576 * This must be called either with the rtnl_lock held or before
1577 * registration of the net device. Returns 0 on success, or a
1578 * negative error code. If called before registration, it also
1579 * sets the maximum number of queues, and always succeeds.
1580 */
1581 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1582 {
1583 int rc;
1584
1585 if (dev->reg_state == NETREG_REGISTERED) {
1586 ASSERT_RTNL();
1587
1588 if (rxq > dev->num_rx_queues)
1589 return -EINVAL;
1590
1591 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1592 rxq);
1593 if (rc)
1594 return rc;
1595 } else {
1596 dev->num_rx_queues = rxq;
1597 }
1598
1599 dev->real_num_rx_queues = rxq;
1600 return 0;
1601 }
1602 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1603 #endif
1604
1605 static inline void __netif_reschedule(struct Qdisc *q)
1606 {
1607 struct softnet_data *sd;
1608 unsigned long flags;
1609
1610 local_irq_save(flags);
1611 sd = &__get_cpu_var(softnet_data);
1612 q->next_sched = NULL;
1613 *sd->output_queue_tailp = q;
1614 sd->output_queue_tailp = &q->next_sched;
1615 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1616 local_irq_restore(flags);
1617 }
1618
1619 void __netif_schedule(struct Qdisc *q)
1620 {
1621 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1622 __netif_reschedule(q);
1623 }
1624 EXPORT_SYMBOL(__netif_schedule);
1625
1626 void dev_kfree_skb_irq(struct sk_buff *skb)
1627 {
1628 if (atomic_dec_and_test(&skb->users)) {
1629 struct softnet_data *sd;
1630 unsigned long flags;
1631
1632 local_irq_save(flags);
1633 sd = &__get_cpu_var(softnet_data);
1634 skb->next = sd->completion_queue;
1635 sd->completion_queue = skb;
1636 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1637 local_irq_restore(flags);
1638 }
1639 }
1640 EXPORT_SYMBOL(dev_kfree_skb_irq);
1641
1642 void dev_kfree_skb_any(struct sk_buff *skb)
1643 {
1644 if (in_irq() || irqs_disabled())
1645 dev_kfree_skb_irq(skb);
1646 else
1647 dev_kfree_skb(skb);
1648 }
1649 EXPORT_SYMBOL(dev_kfree_skb_any);
1650
1651
1652 /**
1653 * netif_device_detach - mark device as removed
1654 * @dev: network device
1655 *
1656 * Mark device as removed from system and therefore no longer available.
1657 */
1658 void netif_device_detach(struct net_device *dev)
1659 {
1660 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1661 netif_running(dev)) {
1662 netif_tx_stop_all_queues(dev);
1663 }
1664 }
1665 EXPORT_SYMBOL(netif_device_detach);
1666
1667 /**
1668 * netif_device_attach - mark device as attached
1669 * @dev: network device
1670 *
1671 * Mark device as attached from system and restart if needed.
1672 */
1673 void netif_device_attach(struct net_device *dev)
1674 {
1675 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1676 netif_running(dev)) {
1677 netif_tx_wake_all_queues(dev);
1678 __netdev_watchdog_up(dev);
1679 }
1680 }
1681 EXPORT_SYMBOL(netif_device_attach);
1682
1683 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1684 {
1685 return ((features & NETIF_F_GEN_CSUM) ||
1686 ((features & NETIF_F_IP_CSUM) &&
1687 protocol == htons(ETH_P_IP)) ||
1688 ((features & NETIF_F_IPV6_CSUM) &&
1689 protocol == htons(ETH_P_IPV6)) ||
1690 ((features & NETIF_F_FCOE_CRC) &&
1691 protocol == htons(ETH_P_FCOE)));
1692 }
1693
1694 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1695 {
1696 if (can_checksum_protocol(dev->features, skb->protocol))
1697 return true;
1698
1699 if (skb->protocol == htons(ETH_P_8021Q)) {
1700 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1701 if (can_checksum_protocol(dev->features & dev->vlan_features,
1702 veh->h_vlan_encapsulated_proto))
1703 return true;
1704 }
1705
1706 return false;
1707 }
1708
1709 /**
1710 * skb_dev_set -- assign a new device to a buffer
1711 * @skb: buffer for the new device
1712 * @dev: network device
1713 *
1714 * If an skb is owned by a device already, we have to reset
1715 * all data private to the namespace a device belongs to
1716 * before assigning it a new device.
1717 */
1718 #ifdef CONFIG_NET_NS
1719 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1720 {
1721 skb_dst_drop(skb);
1722 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1723 secpath_reset(skb);
1724 nf_reset(skb);
1725 skb_init_secmark(skb);
1726 skb->mark = 0;
1727 skb->priority = 0;
1728 skb->nf_trace = 0;
1729 skb->ipvs_property = 0;
1730 #ifdef CONFIG_NET_SCHED
1731 skb->tc_index = 0;
1732 #endif
1733 }
1734 skb->dev = dev;
1735 }
1736 EXPORT_SYMBOL(skb_set_dev);
1737 #endif /* CONFIG_NET_NS */
1738
1739 /*
1740 * Invalidate hardware checksum when packet is to be mangled, and
1741 * complete checksum manually on outgoing path.
1742 */
1743 int skb_checksum_help(struct sk_buff *skb)
1744 {
1745 __wsum csum;
1746 int ret = 0, offset;
1747
1748 if (skb->ip_summed == CHECKSUM_COMPLETE)
1749 goto out_set_summed;
1750
1751 if (unlikely(skb_shinfo(skb)->gso_size)) {
1752 /* Let GSO fix up the checksum. */
1753 goto out_set_summed;
1754 }
1755
1756 offset = skb->csum_start - skb_headroom(skb);
1757 BUG_ON(offset >= skb_headlen(skb));
1758 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1759
1760 offset += skb->csum_offset;
1761 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1762
1763 if (skb_cloned(skb) &&
1764 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1765 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1766 if (ret)
1767 goto out;
1768 }
1769
1770 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1771 out_set_summed:
1772 skb->ip_summed = CHECKSUM_NONE;
1773 out:
1774 return ret;
1775 }
1776 EXPORT_SYMBOL(skb_checksum_help);
1777
1778 /**
1779 * skb_gso_segment - Perform segmentation on skb.
1780 * @skb: buffer to segment
1781 * @features: features for the output path (see dev->features)
1782 *
1783 * This function segments the given skb and returns a list of segments.
1784 *
1785 * It may return NULL if the skb requires no segmentation. This is
1786 * only possible when GSO is used for verifying header integrity.
1787 */
1788 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1789 {
1790 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1791 struct packet_type *ptype;
1792 __be16 type = skb->protocol;
1793 int err;
1794
1795 skb_reset_mac_header(skb);
1796 skb->mac_len = skb->network_header - skb->mac_header;
1797 __skb_pull(skb, skb->mac_len);
1798
1799 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1800 struct net_device *dev = skb->dev;
1801 struct ethtool_drvinfo info = {};
1802
1803 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1804 dev->ethtool_ops->get_drvinfo(dev, &info);
1805
1806 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1807 "ip_summed=%d",
1808 info.driver, dev ? dev->features : 0L,
1809 skb->sk ? skb->sk->sk_route_caps : 0L,
1810 skb->len, skb->data_len, skb->ip_summed);
1811
1812 if (skb_header_cloned(skb) &&
1813 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1814 return ERR_PTR(err);
1815 }
1816
1817 rcu_read_lock();
1818 list_for_each_entry_rcu(ptype,
1819 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1820 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1821 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1822 err = ptype->gso_send_check(skb);
1823 segs = ERR_PTR(err);
1824 if (err || skb_gso_ok(skb, features))
1825 break;
1826 __skb_push(skb, (skb->data -
1827 skb_network_header(skb)));
1828 }
1829 segs = ptype->gso_segment(skb, features);
1830 break;
1831 }
1832 }
1833 rcu_read_unlock();
1834
1835 __skb_push(skb, skb->data - skb_mac_header(skb));
1836
1837 return segs;
1838 }
1839 EXPORT_SYMBOL(skb_gso_segment);
1840
1841 /* Take action when hardware reception checksum errors are detected. */
1842 #ifdef CONFIG_BUG
1843 void netdev_rx_csum_fault(struct net_device *dev)
1844 {
1845 if (net_ratelimit()) {
1846 printk(KERN_ERR "%s: hw csum failure.\n",
1847 dev ? dev->name : "<unknown>");
1848 dump_stack();
1849 }
1850 }
1851 EXPORT_SYMBOL(netdev_rx_csum_fault);
1852 #endif
1853
1854 /* Actually, we should eliminate this check as soon as we know, that:
1855 * 1. IOMMU is present and allows to map all the memory.
1856 * 2. No high memory really exists on this machine.
1857 */
1858
1859 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1860 {
1861 #ifdef CONFIG_HIGHMEM
1862 int i;
1863 if (!(dev->features & NETIF_F_HIGHDMA)) {
1864 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1865 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1866 return 1;
1867 }
1868
1869 if (PCI_DMA_BUS_IS_PHYS) {
1870 struct device *pdev = dev->dev.parent;
1871
1872 if (!pdev)
1873 return 0;
1874 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1875 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1876 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1877 return 1;
1878 }
1879 }
1880 #endif
1881 return 0;
1882 }
1883
1884 struct dev_gso_cb {
1885 void (*destructor)(struct sk_buff *skb);
1886 };
1887
1888 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1889
1890 static void dev_gso_skb_destructor(struct sk_buff *skb)
1891 {
1892 struct dev_gso_cb *cb;
1893
1894 do {
1895 struct sk_buff *nskb = skb->next;
1896
1897 skb->next = nskb->next;
1898 nskb->next = NULL;
1899 kfree_skb(nskb);
1900 } while (skb->next);
1901
1902 cb = DEV_GSO_CB(skb);
1903 if (cb->destructor)
1904 cb->destructor(skb);
1905 }
1906
1907 /**
1908 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1909 * @skb: buffer to segment
1910 *
1911 * This function segments the given skb and stores the list of segments
1912 * in skb->next.
1913 */
1914 static int dev_gso_segment(struct sk_buff *skb)
1915 {
1916 struct net_device *dev = skb->dev;
1917 struct sk_buff *segs;
1918 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1919 NETIF_F_SG : 0);
1920
1921 segs = skb_gso_segment(skb, features);
1922
1923 /* Verifying header integrity only. */
1924 if (!segs)
1925 return 0;
1926
1927 if (IS_ERR(segs))
1928 return PTR_ERR(segs);
1929
1930 skb->next = segs;
1931 DEV_GSO_CB(skb)->destructor = skb->destructor;
1932 skb->destructor = dev_gso_skb_destructor;
1933
1934 return 0;
1935 }
1936
1937 /*
1938 * Try to orphan skb early, right before transmission by the device.
1939 * We cannot orphan skb if tx timestamp is requested or the sk-reference
1940 * is needed on driver level for other reasons, e.g. see net/can/raw.c
1941 */
1942 static inline void skb_orphan_try(struct sk_buff *skb)
1943 {
1944 struct sock *sk = skb->sk;
1945
1946 if (sk && !skb_shinfo(skb)->tx_flags) {
1947 /* skb_tx_hash() wont be able to get sk.
1948 * We copy sk_hash into skb->rxhash
1949 */
1950 if (!skb->rxhash)
1951 skb->rxhash = sk->sk_hash;
1952 skb_orphan(skb);
1953 }
1954 }
1955
1956 /*
1957 * Returns true if either:
1958 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
1959 * 2. skb is fragmented and the device does not support SG, or if
1960 * at least one of fragments is in highmem and device does not
1961 * support DMA from it.
1962 */
1963 static inline int skb_needs_linearize(struct sk_buff *skb,
1964 struct net_device *dev)
1965 {
1966 return skb_is_nonlinear(skb) &&
1967 ((skb_has_frag_list(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
1968 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
1969 illegal_highdma(dev, skb))));
1970 }
1971
1972 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1973 struct netdev_queue *txq)
1974 {
1975 const struct net_device_ops *ops = dev->netdev_ops;
1976 int rc = NETDEV_TX_OK;
1977
1978 if (likely(!skb->next)) {
1979 if (!list_empty(&ptype_all))
1980 dev_queue_xmit_nit(skb, dev);
1981
1982 /*
1983 * If device doesnt need skb->dst, release it right now while
1984 * its hot in this cpu cache
1985 */
1986 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1987 skb_dst_drop(skb);
1988
1989 skb_orphan_try(skb);
1990
1991 if (netif_needs_gso(dev, skb)) {
1992 if (unlikely(dev_gso_segment(skb)))
1993 goto out_kfree_skb;
1994 if (skb->next)
1995 goto gso;
1996 } else {
1997 if (skb_needs_linearize(skb, dev) &&
1998 __skb_linearize(skb))
1999 goto out_kfree_skb;
2000
2001 /* If packet is not checksummed and device does not
2002 * support checksumming for this protocol, complete
2003 * checksumming here.
2004 */
2005 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2006 skb_set_transport_header(skb, skb->csum_start -
2007 skb_headroom(skb));
2008 if (!dev_can_checksum(dev, skb) &&
2009 skb_checksum_help(skb))
2010 goto out_kfree_skb;
2011 }
2012 }
2013
2014 rc = ops->ndo_start_xmit(skb, dev);
2015 if (rc == NETDEV_TX_OK)
2016 txq_trans_update(txq);
2017 return rc;
2018 }
2019
2020 gso:
2021 do {
2022 struct sk_buff *nskb = skb->next;
2023
2024 skb->next = nskb->next;
2025 nskb->next = NULL;
2026
2027 /*
2028 * If device doesnt need nskb->dst, release it right now while
2029 * its hot in this cpu cache
2030 */
2031 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2032 skb_dst_drop(nskb);
2033
2034 rc = ops->ndo_start_xmit(nskb, dev);
2035 if (unlikely(rc != NETDEV_TX_OK)) {
2036 if (rc & ~NETDEV_TX_MASK)
2037 goto out_kfree_gso_skb;
2038 nskb->next = skb->next;
2039 skb->next = nskb;
2040 return rc;
2041 }
2042 txq_trans_update(txq);
2043 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2044 return NETDEV_TX_BUSY;
2045 } while (skb->next);
2046
2047 out_kfree_gso_skb:
2048 if (likely(skb->next == NULL))
2049 skb->destructor = DEV_GSO_CB(skb)->destructor;
2050 out_kfree_skb:
2051 kfree_skb(skb);
2052 return rc;
2053 }
2054
2055 static u32 hashrnd __read_mostly;
2056
2057 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
2058 {
2059 u32 hash;
2060
2061 if (skb_rx_queue_recorded(skb)) {
2062 hash = skb_get_rx_queue(skb);
2063 while (unlikely(hash >= dev->real_num_tx_queues))
2064 hash -= dev->real_num_tx_queues;
2065 return hash;
2066 }
2067
2068 if (skb->sk && skb->sk->sk_hash)
2069 hash = skb->sk->sk_hash;
2070 else
2071 hash = (__force u16) skb->protocol ^ skb->rxhash;
2072 hash = jhash_1word(hash, hashrnd);
2073
2074 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
2075 }
2076 EXPORT_SYMBOL(skb_tx_hash);
2077
2078 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2079 {
2080 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2081 if (net_ratelimit()) {
2082 pr_warning("%s selects TX queue %d, but "
2083 "real number of TX queues is %d\n",
2084 dev->name, queue_index, dev->real_num_tx_queues);
2085 }
2086 return 0;
2087 }
2088 return queue_index;
2089 }
2090
2091 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2092 struct sk_buff *skb)
2093 {
2094 int queue_index;
2095 const struct net_device_ops *ops = dev->netdev_ops;
2096
2097 if (ops->ndo_select_queue) {
2098 queue_index = ops->ndo_select_queue(dev, skb);
2099 queue_index = dev_cap_txqueue(dev, queue_index);
2100 } else {
2101 struct sock *sk = skb->sk;
2102 queue_index = sk_tx_queue_get(sk);
2103 if (queue_index < 0) {
2104
2105 queue_index = 0;
2106 if (dev->real_num_tx_queues > 1)
2107 queue_index = skb_tx_hash(dev, skb);
2108
2109 if (sk) {
2110 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2111
2112 if (dst && skb_dst(skb) == dst)
2113 sk_tx_queue_set(sk, queue_index);
2114 }
2115 }
2116 }
2117
2118 skb_set_queue_mapping(skb, queue_index);
2119 return netdev_get_tx_queue(dev, queue_index);
2120 }
2121
2122 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2123 struct net_device *dev,
2124 struct netdev_queue *txq)
2125 {
2126 spinlock_t *root_lock = qdisc_lock(q);
2127 bool contended = qdisc_is_running(q);
2128 int rc;
2129
2130 /*
2131 * Heuristic to force contended enqueues to serialize on a
2132 * separate lock before trying to get qdisc main lock.
2133 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2134 * and dequeue packets faster.
2135 */
2136 if (unlikely(contended))
2137 spin_lock(&q->busylock);
2138
2139 spin_lock(root_lock);
2140 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2141 kfree_skb(skb);
2142 rc = NET_XMIT_DROP;
2143 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2144 qdisc_run_begin(q)) {
2145 /*
2146 * This is a work-conserving queue; there are no old skbs
2147 * waiting to be sent out; and the qdisc is not running -
2148 * xmit the skb directly.
2149 */
2150 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2151 skb_dst_force(skb);
2152 __qdisc_update_bstats(q, skb->len);
2153 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2154 if (unlikely(contended)) {
2155 spin_unlock(&q->busylock);
2156 contended = false;
2157 }
2158 __qdisc_run(q);
2159 } else
2160 qdisc_run_end(q);
2161
2162 rc = NET_XMIT_SUCCESS;
2163 } else {
2164 skb_dst_force(skb);
2165 rc = qdisc_enqueue_root(skb, q);
2166 if (qdisc_run_begin(q)) {
2167 if (unlikely(contended)) {
2168 spin_unlock(&q->busylock);
2169 contended = false;
2170 }
2171 __qdisc_run(q);
2172 }
2173 }
2174 spin_unlock(root_lock);
2175 if (unlikely(contended))
2176 spin_unlock(&q->busylock);
2177 return rc;
2178 }
2179
2180 static DEFINE_PER_CPU(int, xmit_recursion);
2181 #define RECURSION_LIMIT 3
2182
2183 /**
2184 * dev_queue_xmit - transmit a buffer
2185 * @skb: buffer to transmit
2186 *
2187 * Queue a buffer for transmission to a network device. The caller must
2188 * have set the device and priority and built the buffer before calling
2189 * this function. The function can be called from an interrupt.
2190 *
2191 * A negative errno code is returned on a failure. A success does not
2192 * guarantee the frame will be transmitted as it may be dropped due
2193 * to congestion or traffic shaping.
2194 *
2195 * -----------------------------------------------------------------------------------
2196 * I notice this method can also return errors from the queue disciplines,
2197 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2198 * be positive.
2199 *
2200 * Regardless of the return value, the skb is consumed, so it is currently
2201 * difficult to retry a send to this method. (You can bump the ref count
2202 * before sending to hold a reference for retry if you are careful.)
2203 *
2204 * When calling this method, interrupts MUST be enabled. This is because
2205 * the BH enable code must have IRQs enabled so that it will not deadlock.
2206 * --BLG
2207 */
2208 int dev_queue_xmit(struct sk_buff *skb)
2209 {
2210 struct net_device *dev = skb->dev;
2211 struct netdev_queue *txq;
2212 struct Qdisc *q;
2213 int rc = -ENOMEM;
2214
2215 /* Disable soft irqs for various locks below. Also
2216 * stops preemption for RCU.
2217 */
2218 rcu_read_lock_bh();
2219
2220 txq = dev_pick_tx(dev, skb);
2221 q = rcu_dereference_bh(txq->qdisc);
2222
2223 #ifdef CONFIG_NET_CLS_ACT
2224 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2225 #endif
2226 if (q->enqueue) {
2227 rc = __dev_xmit_skb(skb, q, dev, txq);
2228 goto out;
2229 }
2230
2231 /* The device has no queue. Common case for software devices:
2232 loopback, all the sorts of tunnels...
2233
2234 Really, it is unlikely that netif_tx_lock protection is necessary
2235 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2236 counters.)
2237 However, it is possible, that they rely on protection
2238 made by us here.
2239
2240 Check this and shot the lock. It is not prone from deadlocks.
2241 Either shot noqueue qdisc, it is even simpler 8)
2242 */
2243 if (dev->flags & IFF_UP) {
2244 int cpu = smp_processor_id(); /* ok because BHs are off */
2245
2246 if (txq->xmit_lock_owner != cpu) {
2247
2248 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2249 goto recursion_alert;
2250
2251 HARD_TX_LOCK(dev, txq, cpu);
2252
2253 if (!netif_tx_queue_stopped(txq)) {
2254 __this_cpu_inc(xmit_recursion);
2255 rc = dev_hard_start_xmit(skb, dev, txq);
2256 __this_cpu_dec(xmit_recursion);
2257 if (dev_xmit_complete(rc)) {
2258 HARD_TX_UNLOCK(dev, txq);
2259 goto out;
2260 }
2261 }
2262 HARD_TX_UNLOCK(dev, txq);
2263 if (net_ratelimit())
2264 printk(KERN_CRIT "Virtual device %s asks to "
2265 "queue packet!\n", dev->name);
2266 } else {
2267 /* Recursion is detected! It is possible,
2268 * unfortunately
2269 */
2270 recursion_alert:
2271 if (net_ratelimit())
2272 printk(KERN_CRIT "Dead loop on virtual device "
2273 "%s, fix it urgently!\n", dev->name);
2274 }
2275 }
2276
2277 rc = -ENETDOWN;
2278 rcu_read_unlock_bh();
2279
2280 kfree_skb(skb);
2281 return rc;
2282 out:
2283 rcu_read_unlock_bh();
2284 return rc;
2285 }
2286 EXPORT_SYMBOL(dev_queue_xmit);
2287
2288
2289 /*=======================================================================
2290 Receiver routines
2291 =======================================================================*/
2292
2293 int netdev_max_backlog __read_mostly = 1000;
2294 int netdev_tstamp_prequeue __read_mostly = 1;
2295 int netdev_budget __read_mostly = 300;
2296 int weight_p __read_mostly = 64; /* old backlog weight */
2297
2298 /* Called with irq disabled */
2299 static inline void ____napi_schedule(struct softnet_data *sd,
2300 struct napi_struct *napi)
2301 {
2302 list_add_tail(&napi->poll_list, &sd->poll_list);
2303 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2304 }
2305
2306 /*
2307 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2308 * and src/dst port numbers. Returns a non-zero hash number on success
2309 * and 0 on failure.
2310 */
2311 __u32 __skb_get_rxhash(struct sk_buff *skb)
2312 {
2313 int nhoff, hash = 0, poff;
2314 struct ipv6hdr *ip6;
2315 struct iphdr *ip;
2316 u8 ip_proto;
2317 u32 addr1, addr2, ihl;
2318 union {
2319 u32 v32;
2320 u16 v16[2];
2321 } ports;
2322
2323 nhoff = skb_network_offset(skb);
2324
2325 switch (skb->protocol) {
2326 case __constant_htons(ETH_P_IP):
2327 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2328 goto done;
2329
2330 ip = (struct iphdr *) (skb->data + nhoff);
2331 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2332 ip_proto = 0;
2333 else
2334 ip_proto = ip->protocol;
2335 addr1 = (__force u32) ip->saddr;
2336 addr2 = (__force u32) ip->daddr;
2337 ihl = ip->ihl;
2338 break;
2339 case __constant_htons(ETH_P_IPV6):
2340 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2341 goto done;
2342
2343 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2344 ip_proto = ip6->nexthdr;
2345 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2346 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2347 ihl = (40 >> 2);
2348 break;
2349 default:
2350 goto done;
2351 }
2352
2353 ports.v32 = 0;
2354 poff = proto_ports_offset(ip_proto);
2355 if (poff >= 0) {
2356 nhoff += ihl * 4 + poff;
2357 if (pskb_may_pull(skb, nhoff + 4)) {
2358 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2359 if (ports.v16[1] < ports.v16[0])
2360 swap(ports.v16[0], ports.v16[1]);
2361 }
2362 }
2363
2364 /* get a consistent hash (same value on both flow directions) */
2365 if (addr2 < addr1)
2366 swap(addr1, addr2);
2367
2368 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2369 if (!hash)
2370 hash = 1;
2371
2372 done:
2373 return hash;
2374 }
2375 EXPORT_SYMBOL(__skb_get_rxhash);
2376
2377 #ifdef CONFIG_RPS
2378
2379 /* One global table that all flow-based protocols share. */
2380 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2381 EXPORT_SYMBOL(rps_sock_flow_table);
2382
2383 /*
2384 * get_rps_cpu is called from netif_receive_skb and returns the target
2385 * CPU from the RPS map of the receiving queue for a given skb.
2386 * rcu_read_lock must be held on entry.
2387 */
2388 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2389 struct rps_dev_flow **rflowp)
2390 {
2391 struct netdev_rx_queue *rxqueue;
2392 struct rps_map *map = NULL;
2393 struct rps_dev_flow_table *flow_table;
2394 struct rps_sock_flow_table *sock_flow_table;
2395 int cpu = -1;
2396 u16 tcpu;
2397
2398 if (skb_rx_queue_recorded(skb)) {
2399 u16 index = skb_get_rx_queue(skb);
2400 if (unlikely(index >= dev->real_num_rx_queues)) {
2401 WARN_ONCE(dev->real_num_rx_queues > 1,
2402 "%s received packet on queue %u, but number "
2403 "of RX queues is %u\n",
2404 dev->name, index, dev->real_num_rx_queues);
2405 goto done;
2406 }
2407 rxqueue = dev->_rx + index;
2408 } else
2409 rxqueue = dev->_rx;
2410
2411 if (rxqueue->rps_map) {
2412 map = rcu_dereference(rxqueue->rps_map);
2413 if (map && map->len == 1) {
2414 tcpu = map->cpus[0];
2415 if (cpu_online(tcpu))
2416 cpu = tcpu;
2417 goto done;
2418 }
2419 } else if (!rxqueue->rps_flow_table) {
2420 goto done;
2421 }
2422
2423 skb_reset_network_header(skb);
2424 if (!skb_get_rxhash(skb))
2425 goto done;
2426
2427 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2428 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2429 if (flow_table && sock_flow_table) {
2430 u16 next_cpu;
2431 struct rps_dev_flow *rflow;
2432
2433 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2434 tcpu = rflow->cpu;
2435
2436 next_cpu = sock_flow_table->ents[skb->rxhash &
2437 sock_flow_table->mask];
2438
2439 /*
2440 * If the desired CPU (where last recvmsg was done) is
2441 * different from current CPU (one in the rx-queue flow
2442 * table entry), switch if one of the following holds:
2443 * - Current CPU is unset (equal to RPS_NO_CPU).
2444 * - Current CPU is offline.
2445 * - The current CPU's queue tail has advanced beyond the
2446 * last packet that was enqueued using this table entry.
2447 * This guarantees that all previous packets for the flow
2448 * have been dequeued, thus preserving in order delivery.
2449 */
2450 if (unlikely(tcpu != next_cpu) &&
2451 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2452 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2453 rflow->last_qtail)) >= 0)) {
2454 tcpu = rflow->cpu = next_cpu;
2455 if (tcpu != RPS_NO_CPU)
2456 rflow->last_qtail = per_cpu(softnet_data,
2457 tcpu).input_queue_head;
2458 }
2459 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2460 *rflowp = rflow;
2461 cpu = tcpu;
2462 goto done;
2463 }
2464 }
2465
2466 if (map) {
2467 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2468
2469 if (cpu_online(tcpu)) {
2470 cpu = tcpu;
2471 goto done;
2472 }
2473 }
2474
2475 done:
2476 return cpu;
2477 }
2478
2479 /* Called from hardirq (IPI) context */
2480 static void rps_trigger_softirq(void *data)
2481 {
2482 struct softnet_data *sd = data;
2483
2484 ____napi_schedule(sd, &sd->backlog);
2485 sd->received_rps++;
2486 }
2487
2488 #endif /* CONFIG_RPS */
2489
2490 /*
2491 * Check if this softnet_data structure is another cpu one
2492 * If yes, queue it to our IPI list and return 1
2493 * If no, return 0
2494 */
2495 static int rps_ipi_queued(struct softnet_data *sd)
2496 {
2497 #ifdef CONFIG_RPS
2498 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2499
2500 if (sd != mysd) {
2501 sd->rps_ipi_next = mysd->rps_ipi_list;
2502 mysd->rps_ipi_list = sd;
2503
2504 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2505 return 1;
2506 }
2507 #endif /* CONFIG_RPS */
2508 return 0;
2509 }
2510
2511 /*
2512 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2513 * queue (may be a remote CPU queue).
2514 */
2515 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2516 unsigned int *qtail)
2517 {
2518 struct softnet_data *sd;
2519 unsigned long flags;
2520
2521 sd = &per_cpu(softnet_data, cpu);
2522
2523 local_irq_save(flags);
2524
2525 rps_lock(sd);
2526 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2527 if (skb_queue_len(&sd->input_pkt_queue)) {
2528 enqueue:
2529 __skb_queue_tail(&sd->input_pkt_queue, skb);
2530 input_queue_tail_incr_save(sd, qtail);
2531 rps_unlock(sd);
2532 local_irq_restore(flags);
2533 return NET_RX_SUCCESS;
2534 }
2535
2536 /* Schedule NAPI for backlog device
2537 * We can use non atomic operation since we own the queue lock
2538 */
2539 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2540 if (!rps_ipi_queued(sd))
2541 ____napi_schedule(sd, &sd->backlog);
2542 }
2543 goto enqueue;
2544 }
2545
2546 sd->dropped++;
2547 rps_unlock(sd);
2548
2549 local_irq_restore(flags);
2550
2551 kfree_skb(skb);
2552 return NET_RX_DROP;
2553 }
2554
2555 /**
2556 * netif_rx - post buffer to the network code
2557 * @skb: buffer to post
2558 *
2559 * This function receives a packet from a device driver and queues it for
2560 * the upper (protocol) levels to process. It always succeeds. The buffer
2561 * may be dropped during processing for congestion control or by the
2562 * protocol layers.
2563 *
2564 * return values:
2565 * NET_RX_SUCCESS (no congestion)
2566 * NET_RX_DROP (packet was dropped)
2567 *
2568 */
2569
2570 int netif_rx(struct sk_buff *skb)
2571 {
2572 int ret;
2573
2574 /* if netpoll wants it, pretend we never saw it */
2575 if (netpoll_rx(skb))
2576 return NET_RX_DROP;
2577
2578 if (netdev_tstamp_prequeue)
2579 net_timestamp_check(skb);
2580
2581 #ifdef CONFIG_RPS
2582 {
2583 struct rps_dev_flow voidflow, *rflow = &voidflow;
2584 int cpu;
2585
2586 preempt_disable();
2587 rcu_read_lock();
2588
2589 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2590 if (cpu < 0)
2591 cpu = smp_processor_id();
2592
2593 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2594
2595 rcu_read_unlock();
2596 preempt_enable();
2597 }
2598 #else
2599 {
2600 unsigned int qtail;
2601 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2602 put_cpu();
2603 }
2604 #endif
2605 return ret;
2606 }
2607 EXPORT_SYMBOL(netif_rx);
2608
2609 int netif_rx_ni(struct sk_buff *skb)
2610 {
2611 int err;
2612
2613 preempt_disable();
2614 err = netif_rx(skb);
2615 if (local_softirq_pending())
2616 do_softirq();
2617 preempt_enable();
2618
2619 return err;
2620 }
2621 EXPORT_SYMBOL(netif_rx_ni);
2622
2623 static void net_tx_action(struct softirq_action *h)
2624 {
2625 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2626
2627 if (sd->completion_queue) {
2628 struct sk_buff *clist;
2629
2630 local_irq_disable();
2631 clist = sd->completion_queue;
2632 sd->completion_queue = NULL;
2633 local_irq_enable();
2634
2635 while (clist) {
2636 struct sk_buff *skb = clist;
2637 clist = clist->next;
2638
2639 WARN_ON(atomic_read(&skb->users));
2640 __kfree_skb(skb);
2641 }
2642 }
2643
2644 if (sd->output_queue) {
2645 struct Qdisc *head;
2646
2647 local_irq_disable();
2648 head = sd->output_queue;
2649 sd->output_queue = NULL;
2650 sd->output_queue_tailp = &sd->output_queue;
2651 local_irq_enable();
2652
2653 while (head) {
2654 struct Qdisc *q = head;
2655 spinlock_t *root_lock;
2656
2657 head = head->next_sched;
2658
2659 root_lock = qdisc_lock(q);
2660 if (spin_trylock(root_lock)) {
2661 smp_mb__before_clear_bit();
2662 clear_bit(__QDISC_STATE_SCHED,
2663 &q->state);
2664 qdisc_run(q);
2665 spin_unlock(root_lock);
2666 } else {
2667 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2668 &q->state)) {
2669 __netif_reschedule(q);
2670 } else {
2671 smp_mb__before_clear_bit();
2672 clear_bit(__QDISC_STATE_SCHED,
2673 &q->state);
2674 }
2675 }
2676 }
2677 }
2678 }
2679
2680 static inline int deliver_skb(struct sk_buff *skb,
2681 struct packet_type *pt_prev,
2682 struct net_device *orig_dev)
2683 {
2684 atomic_inc(&skb->users);
2685 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2686 }
2687
2688 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2689 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2690 /* This hook is defined here for ATM LANE */
2691 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2692 unsigned char *addr) __read_mostly;
2693 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2694 #endif
2695
2696 #ifdef CONFIG_NET_CLS_ACT
2697 /* TODO: Maybe we should just force sch_ingress to be compiled in
2698 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2699 * a compare and 2 stores extra right now if we dont have it on
2700 * but have CONFIG_NET_CLS_ACT
2701 * NOTE: This doesnt stop any functionality; if you dont have
2702 * the ingress scheduler, you just cant add policies on ingress.
2703 *
2704 */
2705 static int ing_filter(struct sk_buff *skb)
2706 {
2707 struct net_device *dev = skb->dev;
2708 u32 ttl = G_TC_RTTL(skb->tc_verd);
2709 struct netdev_queue *rxq;
2710 int result = TC_ACT_OK;
2711 struct Qdisc *q;
2712
2713 if (unlikely(MAX_RED_LOOP < ttl++)) {
2714 if (net_ratelimit())
2715 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2716 skb->skb_iif, dev->ifindex);
2717 return TC_ACT_SHOT;
2718 }
2719
2720 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2721 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2722
2723 rxq = &dev->rx_queue;
2724
2725 q = rxq->qdisc;
2726 if (q != &noop_qdisc) {
2727 spin_lock(qdisc_lock(q));
2728 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2729 result = qdisc_enqueue_root(skb, q);
2730 spin_unlock(qdisc_lock(q));
2731 }
2732
2733 return result;
2734 }
2735
2736 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2737 struct packet_type **pt_prev,
2738 int *ret, struct net_device *orig_dev)
2739 {
2740 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2741 goto out;
2742
2743 if (*pt_prev) {
2744 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2745 *pt_prev = NULL;
2746 }
2747
2748 switch (ing_filter(skb)) {
2749 case TC_ACT_SHOT:
2750 case TC_ACT_STOLEN:
2751 kfree_skb(skb);
2752 return NULL;
2753 }
2754
2755 out:
2756 skb->tc_verd = 0;
2757 return skb;
2758 }
2759 #endif
2760
2761 /*
2762 * netif_nit_deliver - deliver received packets to network taps
2763 * @skb: buffer
2764 *
2765 * This function is used to deliver incoming packets to network
2766 * taps. It should be used when the normal netif_receive_skb path
2767 * is bypassed, for example because of VLAN acceleration.
2768 */
2769 void netif_nit_deliver(struct sk_buff *skb)
2770 {
2771 struct packet_type *ptype;
2772
2773 if (list_empty(&ptype_all))
2774 return;
2775
2776 skb_reset_network_header(skb);
2777 skb_reset_transport_header(skb);
2778 skb->mac_len = skb->network_header - skb->mac_header;
2779
2780 rcu_read_lock();
2781 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2782 if (!ptype->dev || ptype->dev == skb->dev)
2783 deliver_skb(skb, ptype, skb->dev);
2784 }
2785 rcu_read_unlock();
2786 }
2787
2788 /**
2789 * netdev_rx_handler_register - register receive handler
2790 * @dev: device to register a handler for
2791 * @rx_handler: receive handler to register
2792 * @rx_handler_data: data pointer that is used by rx handler
2793 *
2794 * Register a receive hander for a device. This handler will then be
2795 * called from __netif_receive_skb. A negative errno code is returned
2796 * on a failure.
2797 *
2798 * The caller must hold the rtnl_mutex.
2799 */
2800 int netdev_rx_handler_register(struct net_device *dev,
2801 rx_handler_func_t *rx_handler,
2802 void *rx_handler_data)
2803 {
2804 ASSERT_RTNL();
2805
2806 if (dev->rx_handler)
2807 return -EBUSY;
2808
2809 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2810 rcu_assign_pointer(dev->rx_handler, rx_handler);
2811
2812 return 0;
2813 }
2814 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2815
2816 /**
2817 * netdev_rx_handler_unregister - unregister receive handler
2818 * @dev: device to unregister a handler from
2819 *
2820 * Unregister a receive hander from a device.
2821 *
2822 * The caller must hold the rtnl_mutex.
2823 */
2824 void netdev_rx_handler_unregister(struct net_device *dev)
2825 {
2826
2827 ASSERT_RTNL();
2828 rcu_assign_pointer(dev->rx_handler, NULL);
2829 rcu_assign_pointer(dev->rx_handler_data, NULL);
2830 }
2831 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2832
2833 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2834 struct net_device *master)
2835 {
2836 if (skb->pkt_type == PACKET_HOST) {
2837 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2838
2839 memcpy(dest, master->dev_addr, ETH_ALEN);
2840 }
2841 }
2842
2843 /* On bonding slaves other than the currently active slave, suppress
2844 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2845 * ARP on active-backup slaves with arp_validate enabled.
2846 */
2847 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2848 {
2849 struct net_device *dev = skb->dev;
2850
2851 if (master->priv_flags & IFF_MASTER_ARPMON)
2852 dev->last_rx = jiffies;
2853
2854 if ((master->priv_flags & IFF_MASTER_ALB) &&
2855 (master->priv_flags & IFF_BRIDGE_PORT)) {
2856 /* Do address unmangle. The local destination address
2857 * will be always the one master has. Provides the right
2858 * functionality in a bridge.
2859 */
2860 skb_bond_set_mac_by_master(skb, master);
2861 }
2862
2863 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2864 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2865 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2866 return 0;
2867
2868 if (master->priv_flags & IFF_MASTER_ALB) {
2869 if (skb->pkt_type != PACKET_BROADCAST &&
2870 skb->pkt_type != PACKET_MULTICAST)
2871 return 0;
2872 }
2873 if (master->priv_flags & IFF_MASTER_8023AD &&
2874 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2875 return 0;
2876
2877 return 1;
2878 }
2879 return 0;
2880 }
2881 EXPORT_SYMBOL(__skb_bond_should_drop);
2882
2883 static int __netif_receive_skb(struct sk_buff *skb)
2884 {
2885 struct packet_type *ptype, *pt_prev;
2886 rx_handler_func_t *rx_handler;
2887 struct net_device *orig_dev;
2888 struct net_device *master;
2889 struct net_device *null_or_orig;
2890 struct net_device *orig_or_bond;
2891 int ret = NET_RX_DROP;
2892 __be16 type;
2893
2894 if (!netdev_tstamp_prequeue)
2895 net_timestamp_check(skb);
2896
2897 if (vlan_tx_tag_present(skb))
2898 vlan_hwaccel_do_receive(skb);
2899
2900 /* if we've gotten here through NAPI, check netpoll */
2901 if (netpoll_receive_skb(skb))
2902 return NET_RX_DROP;
2903
2904 if (!skb->skb_iif)
2905 skb->skb_iif = skb->dev->ifindex;
2906
2907 /*
2908 * bonding note: skbs received on inactive slaves should only
2909 * be delivered to pkt handlers that are exact matches. Also
2910 * the deliver_no_wcard flag will be set. If packet handlers
2911 * are sensitive to duplicate packets these skbs will need to
2912 * be dropped at the handler. The vlan accel path may have
2913 * already set the deliver_no_wcard flag.
2914 */
2915 null_or_orig = NULL;
2916 orig_dev = skb->dev;
2917 master = ACCESS_ONCE(orig_dev->master);
2918 if (skb->deliver_no_wcard)
2919 null_or_orig = orig_dev;
2920 else if (master) {
2921 if (skb_bond_should_drop(skb, master)) {
2922 skb->deliver_no_wcard = 1;
2923 null_or_orig = orig_dev; /* deliver only exact match */
2924 } else
2925 skb->dev = master;
2926 }
2927
2928 __this_cpu_inc(softnet_data.processed);
2929 skb_reset_network_header(skb);
2930 skb_reset_transport_header(skb);
2931 skb->mac_len = skb->network_header - skb->mac_header;
2932
2933 pt_prev = NULL;
2934
2935 rcu_read_lock();
2936
2937 #ifdef CONFIG_NET_CLS_ACT
2938 if (skb->tc_verd & TC_NCLS) {
2939 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2940 goto ncls;
2941 }
2942 #endif
2943
2944 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2945 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2946 ptype->dev == orig_dev) {
2947 if (pt_prev)
2948 ret = deliver_skb(skb, pt_prev, orig_dev);
2949 pt_prev = ptype;
2950 }
2951 }
2952
2953 #ifdef CONFIG_NET_CLS_ACT
2954 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2955 if (!skb)
2956 goto out;
2957 ncls:
2958 #endif
2959
2960 /* Handle special case of bridge or macvlan */
2961 rx_handler = rcu_dereference(skb->dev->rx_handler);
2962 if (rx_handler) {
2963 if (pt_prev) {
2964 ret = deliver_skb(skb, pt_prev, orig_dev);
2965 pt_prev = NULL;
2966 }
2967 skb = rx_handler(skb);
2968 if (!skb)
2969 goto out;
2970 }
2971
2972 /*
2973 * Make sure frames received on VLAN interfaces stacked on
2974 * bonding interfaces still make their way to any base bonding
2975 * device that may have registered for a specific ptype. The
2976 * handler may have to adjust skb->dev and orig_dev.
2977 */
2978 orig_or_bond = orig_dev;
2979 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2980 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2981 orig_or_bond = vlan_dev_real_dev(skb->dev);
2982 }
2983
2984 type = skb->protocol;
2985 list_for_each_entry_rcu(ptype,
2986 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2987 if (ptype->type == type && (ptype->dev == null_or_orig ||
2988 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2989 ptype->dev == orig_or_bond)) {
2990 if (pt_prev)
2991 ret = deliver_skb(skb, pt_prev, orig_dev);
2992 pt_prev = ptype;
2993 }
2994 }
2995
2996 if (pt_prev) {
2997 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2998 } else {
2999 kfree_skb(skb);
3000 /* Jamal, now you will not able to escape explaining
3001 * me how you were going to use this. :-)
3002 */
3003 ret = NET_RX_DROP;
3004 }
3005
3006 out:
3007 rcu_read_unlock();
3008 return ret;
3009 }
3010
3011 /**
3012 * netif_receive_skb - process receive buffer from network
3013 * @skb: buffer to process
3014 *
3015 * netif_receive_skb() is the main receive data processing function.
3016 * It always succeeds. The buffer may be dropped during processing
3017 * for congestion control or by the protocol layers.
3018 *
3019 * This function may only be called from softirq context and interrupts
3020 * should be enabled.
3021 *
3022 * Return values (usually ignored):
3023 * NET_RX_SUCCESS: no congestion
3024 * NET_RX_DROP: packet was dropped
3025 */
3026 int netif_receive_skb(struct sk_buff *skb)
3027 {
3028 if (netdev_tstamp_prequeue)
3029 net_timestamp_check(skb);
3030
3031 if (skb_defer_rx_timestamp(skb))
3032 return NET_RX_SUCCESS;
3033
3034 #ifdef CONFIG_RPS
3035 {
3036 struct rps_dev_flow voidflow, *rflow = &voidflow;
3037 int cpu, ret;
3038
3039 rcu_read_lock();
3040
3041 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3042
3043 if (cpu >= 0) {
3044 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3045 rcu_read_unlock();
3046 } else {
3047 rcu_read_unlock();
3048 ret = __netif_receive_skb(skb);
3049 }
3050
3051 return ret;
3052 }
3053 #else
3054 return __netif_receive_skb(skb);
3055 #endif
3056 }
3057 EXPORT_SYMBOL(netif_receive_skb);
3058
3059 /* Network device is going away, flush any packets still pending
3060 * Called with irqs disabled.
3061 */
3062 static void flush_backlog(void *arg)
3063 {
3064 struct net_device *dev = arg;
3065 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3066 struct sk_buff *skb, *tmp;
3067
3068 rps_lock(sd);
3069 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3070 if (skb->dev == dev) {
3071 __skb_unlink(skb, &sd->input_pkt_queue);
3072 kfree_skb(skb);
3073 input_queue_head_incr(sd);
3074 }
3075 }
3076 rps_unlock(sd);
3077
3078 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3079 if (skb->dev == dev) {
3080 __skb_unlink(skb, &sd->process_queue);
3081 kfree_skb(skb);
3082 input_queue_head_incr(sd);
3083 }
3084 }
3085 }
3086
3087 static int napi_gro_complete(struct sk_buff *skb)
3088 {
3089 struct packet_type *ptype;
3090 __be16 type = skb->protocol;
3091 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3092 int err = -ENOENT;
3093
3094 if (NAPI_GRO_CB(skb)->count == 1) {
3095 skb_shinfo(skb)->gso_size = 0;
3096 goto out;
3097 }
3098
3099 rcu_read_lock();
3100 list_for_each_entry_rcu(ptype, head, list) {
3101 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3102 continue;
3103
3104 err = ptype->gro_complete(skb);
3105 break;
3106 }
3107 rcu_read_unlock();
3108
3109 if (err) {
3110 WARN_ON(&ptype->list == head);
3111 kfree_skb(skb);
3112 return NET_RX_SUCCESS;
3113 }
3114
3115 out:
3116 return netif_receive_skb(skb);
3117 }
3118
3119 inline void napi_gro_flush(struct napi_struct *napi)
3120 {
3121 struct sk_buff *skb, *next;
3122
3123 for (skb = napi->gro_list; skb; skb = next) {
3124 next = skb->next;
3125 skb->next = NULL;
3126 napi_gro_complete(skb);
3127 }
3128
3129 napi->gro_count = 0;
3130 napi->gro_list = NULL;
3131 }
3132 EXPORT_SYMBOL(napi_gro_flush);
3133
3134 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3135 {
3136 struct sk_buff **pp = NULL;
3137 struct packet_type *ptype;
3138 __be16 type = skb->protocol;
3139 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3140 int same_flow;
3141 int mac_len;
3142 enum gro_result ret;
3143
3144 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3145 goto normal;
3146
3147 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3148 goto normal;
3149
3150 rcu_read_lock();
3151 list_for_each_entry_rcu(ptype, head, list) {
3152 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3153 continue;
3154
3155 skb_set_network_header(skb, skb_gro_offset(skb));
3156 mac_len = skb->network_header - skb->mac_header;
3157 skb->mac_len = mac_len;
3158 NAPI_GRO_CB(skb)->same_flow = 0;
3159 NAPI_GRO_CB(skb)->flush = 0;
3160 NAPI_GRO_CB(skb)->free = 0;
3161
3162 pp = ptype->gro_receive(&napi->gro_list, skb);
3163 break;
3164 }
3165 rcu_read_unlock();
3166
3167 if (&ptype->list == head)
3168 goto normal;
3169
3170 same_flow = NAPI_GRO_CB(skb)->same_flow;
3171 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3172
3173 if (pp) {
3174 struct sk_buff *nskb = *pp;
3175
3176 *pp = nskb->next;
3177 nskb->next = NULL;
3178 napi_gro_complete(nskb);
3179 napi->gro_count--;
3180 }
3181
3182 if (same_flow)
3183 goto ok;
3184
3185 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3186 goto normal;
3187
3188 napi->gro_count++;
3189 NAPI_GRO_CB(skb)->count = 1;
3190 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3191 skb->next = napi->gro_list;
3192 napi->gro_list = skb;
3193 ret = GRO_HELD;
3194
3195 pull:
3196 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3197 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3198
3199 BUG_ON(skb->end - skb->tail < grow);
3200
3201 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3202
3203 skb->tail += grow;
3204 skb->data_len -= grow;
3205
3206 skb_shinfo(skb)->frags[0].page_offset += grow;
3207 skb_shinfo(skb)->frags[0].size -= grow;
3208
3209 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3210 put_page(skb_shinfo(skb)->frags[0].page);
3211 memmove(skb_shinfo(skb)->frags,
3212 skb_shinfo(skb)->frags + 1,
3213 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3214 }
3215 }
3216
3217 ok:
3218 return ret;
3219
3220 normal:
3221 ret = GRO_NORMAL;
3222 goto pull;
3223 }
3224 EXPORT_SYMBOL(dev_gro_receive);
3225
3226 static inline gro_result_t
3227 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3228 {
3229 struct sk_buff *p;
3230
3231 for (p = napi->gro_list; p; p = p->next) {
3232 unsigned long diffs;
3233
3234 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3235 diffs |= compare_ether_header(skb_mac_header(p),
3236 skb_gro_mac_header(skb));
3237 NAPI_GRO_CB(p)->same_flow = !diffs;
3238 NAPI_GRO_CB(p)->flush = 0;
3239 }
3240
3241 return dev_gro_receive(napi, skb);
3242 }
3243
3244 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3245 {
3246 switch (ret) {
3247 case GRO_NORMAL:
3248 if (netif_receive_skb(skb))
3249 ret = GRO_DROP;
3250 break;
3251
3252 case GRO_DROP:
3253 case GRO_MERGED_FREE:
3254 kfree_skb(skb);
3255 break;
3256
3257 case GRO_HELD:
3258 case GRO_MERGED:
3259 break;
3260 }
3261
3262 return ret;
3263 }
3264 EXPORT_SYMBOL(napi_skb_finish);
3265
3266 void skb_gro_reset_offset(struct sk_buff *skb)
3267 {
3268 NAPI_GRO_CB(skb)->data_offset = 0;
3269 NAPI_GRO_CB(skb)->frag0 = NULL;
3270 NAPI_GRO_CB(skb)->frag0_len = 0;
3271
3272 if (skb->mac_header == skb->tail &&
3273 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3274 NAPI_GRO_CB(skb)->frag0 =
3275 page_address(skb_shinfo(skb)->frags[0].page) +
3276 skb_shinfo(skb)->frags[0].page_offset;
3277 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3278 }
3279 }
3280 EXPORT_SYMBOL(skb_gro_reset_offset);
3281
3282 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3283 {
3284 skb_gro_reset_offset(skb);
3285
3286 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3287 }
3288 EXPORT_SYMBOL(napi_gro_receive);
3289
3290 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3291 {
3292 __skb_pull(skb, skb_headlen(skb));
3293 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3294
3295 napi->skb = skb;
3296 }
3297 EXPORT_SYMBOL(napi_reuse_skb);
3298
3299 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3300 {
3301 struct sk_buff *skb = napi->skb;
3302
3303 if (!skb) {
3304 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3305 if (skb)
3306 napi->skb = skb;
3307 }
3308 return skb;
3309 }
3310 EXPORT_SYMBOL(napi_get_frags);
3311
3312 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3313 gro_result_t ret)
3314 {
3315 switch (ret) {
3316 case GRO_NORMAL:
3317 case GRO_HELD:
3318 skb->protocol = eth_type_trans(skb, skb->dev);
3319
3320 if (ret == GRO_HELD)
3321 skb_gro_pull(skb, -ETH_HLEN);
3322 else if (netif_receive_skb(skb))
3323 ret = GRO_DROP;
3324 break;
3325
3326 case GRO_DROP:
3327 case GRO_MERGED_FREE:
3328 napi_reuse_skb(napi, skb);
3329 break;
3330
3331 case GRO_MERGED:
3332 break;
3333 }
3334
3335 return ret;
3336 }
3337 EXPORT_SYMBOL(napi_frags_finish);
3338
3339 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3340 {
3341 struct sk_buff *skb = napi->skb;
3342 struct ethhdr *eth;
3343 unsigned int hlen;
3344 unsigned int off;
3345
3346 napi->skb = NULL;
3347
3348 skb_reset_mac_header(skb);
3349 skb_gro_reset_offset(skb);
3350
3351 off = skb_gro_offset(skb);
3352 hlen = off + sizeof(*eth);
3353 eth = skb_gro_header_fast(skb, off);
3354 if (skb_gro_header_hard(skb, hlen)) {
3355 eth = skb_gro_header_slow(skb, hlen, off);
3356 if (unlikely(!eth)) {
3357 napi_reuse_skb(napi, skb);
3358 skb = NULL;
3359 goto out;
3360 }
3361 }
3362
3363 skb_gro_pull(skb, sizeof(*eth));
3364
3365 /*
3366 * This works because the only protocols we care about don't require
3367 * special handling. We'll fix it up properly at the end.
3368 */
3369 skb->protocol = eth->h_proto;
3370
3371 out:
3372 return skb;
3373 }
3374 EXPORT_SYMBOL(napi_frags_skb);
3375
3376 gro_result_t napi_gro_frags(struct napi_struct *napi)
3377 {
3378 struct sk_buff *skb = napi_frags_skb(napi);
3379
3380 if (!skb)
3381 return GRO_DROP;
3382
3383 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3384 }
3385 EXPORT_SYMBOL(napi_gro_frags);
3386
3387 /*
3388 * net_rps_action sends any pending IPI's for rps.
3389 * Note: called with local irq disabled, but exits with local irq enabled.
3390 */
3391 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3392 {
3393 #ifdef CONFIG_RPS
3394 struct softnet_data *remsd = sd->rps_ipi_list;
3395
3396 if (remsd) {
3397 sd->rps_ipi_list = NULL;
3398
3399 local_irq_enable();
3400
3401 /* Send pending IPI's to kick RPS processing on remote cpus. */
3402 while (remsd) {
3403 struct softnet_data *next = remsd->rps_ipi_next;
3404
3405 if (cpu_online(remsd->cpu))
3406 __smp_call_function_single(remsd->cpu,
3407 &remsd->csd, 0);
3408 remsd = next;
3409 }
3410 } else
3411 #endif
3412 local_irq_enable();
3413 }
3414
3415 static int process_backlog(struct napi_struct *napi, int quota)
3416 {
3417 int work = 0;
3418 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3419
3420 #ifdef CONFIG_RPS
3421 /* Check if we have pending ipi, its better to send them now,
3422 * not waiting net_rx_action() end.
3423 */
3424 if (sd->rps_ipi_list) {
3425 local_irq_disable();
3426 net_rps_action_and_irq_enable(sd);
3427 }
3428 #endif
3429 napi->weight = weight_p;
3430 local_irq_disable();
3431 while (work < quota) {
3432 struct sk_buff *skb;
3433 unsigned int qlen;
3434
3435 while ((skb = __skb_dequeue(&sd->process_queue))) {
3436 local_irq_enable();
3437 __netif_receive_skb(skb);
3438 local_irq_disable();
3439 input_queue_head_incr(sd);
3440 if (++work >= quota) {
3441 local_irq_enable();
3442 return work;
3443 }
3444 }
3445
3446 rps_lock(sd);
3447 qlen = skb_queue_len(&sd->input_pkt_queue);
3448 if (qlen)
3449 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3450 &sd->process_queue);
3451
3452 if (qlen < quota - work) {
3453 /*
3454 * Inline a custom version of __napi_complete().
3455 * only current cpu owns and manipulates this napi,
3456 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3457 * we can use a plain write instead of clear_bit(),
3458 * and we dont need an smp_mb() memory barrier.
3459 */
3460 list_del(&napi->poll_list);
3461 napi->state = 0;
3462
3463 quota = work + qlen;
3464 }
3465 rps_unlock(sd);
3466 }
3467 local_irq_enable();
3468
3469 return work;
3470 }
3471
3472 /**
3473 * __napi_schedule - schedule for receive
3474 * @n: entry to schedule
3475 *
3476 * The entry's receive function will be scheduled to run
3477 */
3478 void __napi_schedule(struct napi_struct *n)
3479 {
3480 unsigned long flags;
3481
3482 local_irq_save(flags);
3483 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3484 local_irq_restore(flags);
3485 }
3486 EXPORT_SYMBOL(__napi_schedule);
3487
3488 void __napi_complete(struct napi_struct *n)
3489 {
3490 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3491 BUG_ON(n->gro_list);
3492
3493 list_del(&n->poll_list);
3494 smp_mb__before_clear_bit();
3495 clear_bit(NAPI_STATE_SCHED, &n->state);
3496 }
3497 EXPORT_SYMBOL(__napi_complete);
3498
3499 void napi_complete(struct napi_struct *n)
3500 {
3501 unsigned long flags;
3502
3503 /*
3504 * don't let napi dequeue from the cpu poll list
3505 * just in case its running on a different cpu
3506 */
3507 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3508 return;
3509
3510 napi_gro_flush(n);
3511 local_irq_save(flags);
3512 __napi_complete(n);
3513 local_irq_restore(flags);
3514 }
3515 EXPORT_SYMBOL(napi_complete);
3516
3517 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3518 int (*poll)(struct napi_struct *, int), int weight)
3519 {
3520 INIT_LIST_HEAD(&napi->poll_list);
3521 napi->gro_count = 0;
3522 napi->gro_list = NULL;
3523 napi->skb = NULL;
3524 napi->poll = poll;
3525 napi->weight = weight;
3526 list_add(&napi->dev_list, &dev->napi_list);
3527 napi->dev = dev;
3528 #ifdef CONFIG_NETPOLL
3529 spin_lock_init(&napi->poll_lock);
3530 napi->poll_owner = -1;
3531 #endif
3532 set_bit(NAPI_STATE_SCHED, &napi->state);
3533 }
3534 EXPORT_SYMBOL(netif_napi_add);
3535
3536 void netif_napi_del(struct napi_struct *napi)
3537 {
3538 struct sk_buff *skb, *next;
3539
3540 list_del_init(&napi->dev_list);
3541 napi_free_frags(napi);
3542
3543 for (skb = napi->gro_list; skb; skb = next) {
3544 next = skb->next;
3545 skb->next = NULL;
3546 kfree_skb(skb);
3547 }
3548
3549 napi->gro_list = NULL;
3550 napi->gro_count = 0;
3551 }
3552 EXPORT_SYMBOL(netif_napi_del);
3553
3554 static void net_rx_action(struct softirq_action *h)
3555 {
3556 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3557 unsigned long time_limit = jiffies + 2;
3558 int budget = netdev_budget;
3559 void *have;
3560
3561 local_irq_disable();
3562
3563 while (!list_empty(&sd->poll_list)) {
3564 struct napi_struct *n;
3565 int work, weight;
3566
3567 /* If softirq window is exhuasted then punt.
3568 * Allow this to run for 2 jiffies since which will allow
3569 * an average latency of 1.5/HZ.
3570 */
3571 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3572 goto softnet_break;
3573
3574 local_irq_enable();
3575
3576 /* Even though interrupts have been re-enabled, this
3577 * access is safe because interrupts can only add new
3578 * entries to the tail of this list, and only ->poll()
3579 * calls can remove this head entry from the list.
3580 */
3581 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3582
3583 have = netpoll_poll_lock(n);
3584
3585 weight = n->weight;
3586
3587 /* This NAPI_STATE_SCHED test is for avoiding a race
3588 * with netpoll's poll_napi(). Only the entity which
3589 * obtains the lock and sees NAPI_STATE_SCHED set will
3590 * actually make the ->poll() call. Therefore we avoid
3591 * accidently calling ->poll() when NAPI is not scheduled.
3592 */
3593 work = 0;
3594 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3595 work = n->poll(n, weight);
3596 trace_napi_poll(n);
3597 }
3598
3599 WARN_ON_ONCE(work > weight);
3600
3601 budget -= work;
3602
3603 local_irq_disable();
3604
3605 /* Drivers must not modify the NAPI state if they
3606 * consume the entire weight. In such cases this code
3607 * still "owns" the NAPI instance and therefore can
3608 * move the instance around on the list at-will.
3609 */
3610 if (unlikely(work == weight)) {
3611 if (unlikely(napi_disable_pending(n))) {
3612 local_irq_enable();
3613 napi_complete(n);
3614 local_irq_disable();
3615 } else
3616 list_move_tail(&n->poll_list, &sd->poll_list);
3617 }
3618
3619 netpoll_poll_unlock(have);
3620 }
3621 out:
3622 net_rps_action_and_irq_enable(sd);
3623
3624 #ifdef CONFIG_NET_DMA
3625 /*
3626 * There may not be any more sk_buffs coming right now, so push
3627 * any pending DMA copies to hardware
3628 */
3629 dma_issue_pending_all();
3630 #endif
3631
3632 return;
3633
3634 softnet_break:
3635 sd->time_squeeze++;
3636 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3637 goto out;
3638 }
3639
3640 static gifconf_func_t *gifconf_list[NPROTO];
3641
3642 /**
3643 * register_gifconf - register a SIOCGIF handler
3644 * @family: Address family
3645 * @gifconf: Function handler
3646 *
3647 * Register protocol dependent address dumping routines. The handler
3648 * that is passed must not be freed or reused until it has been replaced
3649 * by another handler.
3650 */
3651 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3652 {
3653 if (family >= NPROTO)
3654 return -EINVAL;
3655 gifconf_list[family] = gifconf;
3656 return 0;
3657 }
3658 EXPORT_SYMBOL(register_gifconf);
3659
3660
3661 /*
3662 * Map an interface index to its name (SIOCGIFNAME)
3663 */
3664
3665 /*
3666 * We need this ioctl for efficient implementation of the
3667 * if_indextoname() function required by the IPv6 API. Without
3668 * it, we would have to search all the interfaces to find a
3669 * match. --pb
3670 */
3671
3672 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3673 {
3674 struct net_device *dev;
3675 struct ifreq ifr;
3676
3677 /*
3678 * Fetch the caller's info block.
3679 */
3680
3681 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3682 return -EFAULT;
3683
3684 rcu_read_lock();
3685 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3686 if (!dev) {
3687 rcu_read_unlock();
3688 return -ENODEV;
3689 }
3690
3691 strcpy(ifr.ifr_name, dev->name);
3692 rcu_read_unlock();
3693
3694 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3695 return -EFAULT;
3696 return 0;
3697 }
3698
3699 /*
3700 * Perform a SIOCGIFCONF call. This structure will change
3701 * size eventually, and there is nothing I can do about it.
3702 * Thus we will need a 'compatibility mode'.
3703 */
3704
3705 static int dev_ifconf(struct net *net, char __user *arg)
3706 {
3707 struct ifconf ifc;
3708 struct net_device *dev;
3709 char __user *pos;
3710 int len;
3711 int total;
3712 int i;
3713
3714 /*
3715 * Fetch the caller's info block.
3716 */
3717
3718 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3719 return -EFAULT;
3720
3721 pos = ifc.ifc_buf;
3722 len = ifc.ifc_len;
3723
3724 /*
3725 * Loop over the interfaces, and write an info block for each.
3726 */
3727
3728 total = 0;
3729 for_each_netdev(net, dev) {
3730 for (i = 0; i < NPROTO; i++) {
3731 if (gifconf_list[i]) {
3732 int done;
3733 if (!pos)
3734 done = gifconf_list[i](dev, NULL, 0);
3735 else
3736 done = gifconf_list[i](dev, pos + total,
3737 len - total);
3738 if (done < 0)
3739 return -EFAULT;
3740 total += done;
3741 }
3742 }
3743 }
3744
3745 /*
3746 * All done. Write the updated control block back to the caller.
3747 */
3748 ifc.ifc_len = total;
3749
3750 /*
3751 * Both BSD and Solaris return 0 here, so we do too.
3752 */
3753 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3754 }
3755
3756 #ifdef CONFIG_PROC_FS
3757 /*
3758 * This is invoked by the /proc filesystem handler to display a device
3759 * in detail.
3760 */
3761 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3762 __acquires(RCU)
3763 {
3764 struct net *net = seq_file_net(seq);
3765 loff_t off;
3766 struct net_device *dev;
3767
3768 rcu_read_lock();
3769 if (!*pos)
3770 return SEQ_START_TOKEN;
3771
3772 off = 1;
3773 for_each_netdev_rcu(net, dev)
3774 if (off++ == *pos)
3775 return dev;
3776
3777 return NULL;
3778 }
3779
3780 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3781 {
3782 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3783 first_net_device(seq_file_net(seq)) :
3784 next_net_device((struct net_device *)v);
3785
3786 ++*pos;
3787 return rcu_dereference(dev);
3788 }
3789
3790 void dev_seq_stop(struct seq_file *seq, void *v)
3791 __releases(RCU)
3792 {
3793 rcu_read_unlock();
3794 }
3795
3796 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3797 {
3798 struct rtnl_link_stats64 temp;
3799 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3800
3801 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3802 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3803 dev->name, stats->rx_bytes, stats->rx_packets,
3804 stats->rx_errors,
3805 stats->rx_dropped + stats->rx_missed_errors,
3806 stats->rx_fifo_errors,
3807 stats->rx_length_errors + stats->rx_over_errors +
3808 stats->rx_crc_errors + stats->rx_frame_errors,
3809 stats->rx_compressed, stats->multicast,
3810 stats->tx_bytes, stats->tx_packets,
3811 stats->tx_errors, stats->tx_dropped,
3812 stats->tx_fifo_errors, stats->collisions,
3813 stats->tx_carrier_errors +
3814 stats->tx_aborted_errors +
3815 stats->tx_window_errors +
3816 stats->tx_heartbeat_errors,
3817 stats->tx_compressed);
3818 }
3819
3820 /*
3821 * Called from the PROCfs module. This now uses the new arbitrary sized
3822 * /proc/net interface to create /proc/net/dev
3823 */
3824 static int dev_seq_show(struct seq_file *seq, void *v)
3825 {
3826 if (v == SEQ_START_TOKEN)
3827 seq_puts(seq, "Inter-| Receive "
3828 " | Transmit\n"
3829 " face |bytes packets errs drop fifo frame "
3830 "compressed multicast|bytes packets errs "
3831 "drop fifo colls carrier compressed\n");
3832 else
3833 dev_seq_printf_stats(seq, v);
3834 return 0;
3835 }
3836
3837 static struct softnet_data *softnet_get_online(loff_t *pos)
3838 {
3839 struct softnet_data *sd = NULL;
3840
3841 while (*pos < nr_cpu_ids)
3842 if (cpu_online(*pos)) {
3843 sd = &per_cpu(softnet_data, *pos);
3844 break;
3845 } else
3846 ++*pos;
3847 return sd;
3848 }
3849
3850 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3851 {
3852 return softnet_get_online(pos);
3853 }
3854
3855 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3856 {
3857 ++*pos;
3858 return softnet_get_online(pos);
3859 }
3860
3861 static void softnet_seq_stop(struct seq_file *seq, void *v)
3862 {
3863 }
3864
3865 static int softnet_seq_show(struct seq_file *seq, void *v)
3866 {
3867 struct softnet_data *sd = v;
3868
3869 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3870 sd->processed, sd->dropped, sd->time_squeeze, 0,
3871 0, 0, 0, 0, /* was fastroute */
3872 sd->cpu_collision, sd->received_rps);
3873 return 0;
3874 }
3875
3876 static const struct seq_operations dev_seq_ops = {
3877 .start = dev_seq_start,
3878 .next = dev_seq_next,
3879 .stop = dev_seq_stop,
3880 .show = dev_seq_show,
3881 };
3882
3883 static int dev_seq_open(struct inode *inode, struct file *file)
3884 {
3885 return seq_open_net(inode, file, &dev_seq_ops,
3886 sizeof(struct seq_net_private));
3887 }
3888
3889 static const struct file_operations dev_seq_fops = {
3890 .owner = THIS_MODULE,
3891 .open = dev_seq_open,
3892 .read = seq_read,
3893 .llseek = seq_lseek,
3894 .release = seq_release_net,
3895 };
3896
3897 static const struct seq_operations softnet_seq_ops = {
3898 .start = softnet_seq_start,
3899 .next = softnet_seq_next,
3900 .stop = softnet_seq_stop,
3901 .show = softnet_seq_show,
3902 };
3903
3904 static int softnet_seq_open(struct inode *inode, struct file *file)
3905 {
3906 return seq_open(file, &softnet_seq_ops);
3907 }
3908
3909 static const struct file_operations softnet_seq_fops = {
3910 .owner = THIS_MODULE,
3911 .open = softnet_seq_open,
3912 .read = seq_read,
3913 .llseek = seq_lseek,
3914 .release = seq_release,
3915 };
3916
3917 static void *ptype_get_idx(loff_t pos)
3918 {
3919 struct packet_type *pt = NULL;
3920 loff_t i = 0;
3921 int t;
3922
3923 list_for_each_entry_rcu(pt, &ptype_all, list) {
3924 if (i == pos)
3925 return pt;
3926 ++i;
3927 }
3928
3929 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3930 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3931 if (i == pos)
3932 return pt;
3933 ++i;
3934 }
3935 }
3936 return NULL;
3937 }
3938
3939 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3940 __acquires(RCU)
3941 {
3942 rcu_read_lock();
3943 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3944 }
3945
3946 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3947 {
3948 struct packet_type *pt;
3949 struct list_head *nxt;
3950 int hash;
3951
3952 ++*pos;
3953 if (v == SEQ_START_TOKEN)
3954 return ptype_get_idx(0);
3955
3956 pt = v;
3957 nxt = pt->list.next;
3958 if (pt->type == htons(ETH_P_ALL)) {
3959 if (nxt != &ptype_all)
3960 goto found;
3961 hash = 0;
3962 nxt = ptype_base[0].next;
3963 } else
3964 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3965
3966 while (nxt == &ptype_base[hash]) {
3967 if (++hash >= PTYPE_HASH_SIZE)
3968 return NULL;
3969 nxt = ptype_base[hash].next;
3970 }
3971 found:
3972 return list_entry(nxt, struct packet_type, list);
3973 }
3974
3975 static void ptype_seq_stop(struct seq_file *seq, void *v)
3976 __releases(RCU)
3977 {
3978 rcu_read_unlock();
3979 }
3980
3981 static int ptype_seq_show(struct seq_file *seq, void *v)
3982 {
3983 struct packet_type *pt = v;
3984
3985 if (v == SEQ_START_TOKEN)
3986 seq_puts(seq, "Type Device Function\n");
3987 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3988 if (pt->type == htons(ETH_P_ALL))
3989 seq_puts(seq, "ALL ");
3990 else
3991 seq_printf(seq, "%04x", ntohs(pt->type));
3992
3993 seq_printf(seq, " %-8s %pF\n",
3994 pt->dev ? pt->dev->name : "", pt->func);
3995 }
3996
3997 return 0;
3998 }
3999
4000 static const struct seq_operations ptype_seq_ops = {
4001 .start = ptype_seq_start,
4002 .next = ptype_seq_next,
4003 .stop = ptype_seq_stop,
4004 .show = ptype_seq_show,
4005 };
4006
4007 static int ptype_seq_open(struct inode *inode, struct file *file)
4008 {
4009 return seq_open_net(inode, file, &ptype_seq_ops,
4010 sizeof(struct seq_net_private));
4011 }
4012
4013 static const struct file_operations ptype_seq_fops = {
4014 .owner = THIS_MODULE,
4015 .open = ptype_seq_open,
4016 .read = seq_read,
4017 .llseek = seq_lseek,
4018 .release = seq_release_net,
4019 };
4020
4021
4022 static int __net_init dev_proc_net_init(struct net *net)
4023 {
4024 int rc = -ENOMEM;
4025
4026 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4027 goto out;
4028 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4029 goto out_dev;
4030 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4031 goto out_softnet;
4032
4033 if (wext_proc_init(net))
4034 goto out_ptype;
4035 rc = 0;
4036 out:
4037 return rc;
4038 out_ptype:
4039 proc_net_remove(net, "ptype");
4040 out_softnet:
4041 proc_net_remove(net, "softnet_stat");
4042 out_dev:
4043 proc_net_remove(net, "dev");
4044 goto out;
4045 }
4046
4047 static void __net_exit dev_proc_net_exit(struct net *net)
4048 {
4049 wext_proc_exit(net);
4050
4051 proc_net_remove(net, "ptype");
4052 proc_net_remove(net, "softnet_stat");
4053 proc_net_remove(net, "dev");
4054 }
4055
4056 static struct pernet_operations __net_initdata dev_proc_ops = {
4057 .init = dev_proc_net_init,
4058 .exit = dev_proc_net_exit,
4059 };
4060
4061 static int __init dev_proc_init(void)
4062 {
4063 return register_pernet_subsys(&dev_proc_ops);
4064 }
4065 #else
4066 #define dev_proc_init() 0
4067 #endif /* CONFIG_PROC_FS */
4068
4069
4070 /**
4071 * netdev_set_master - set up master/slave pair
4072 * @slave: slave device
4073 * @master: new master device
4074 *
4075 * Changes the master device of the slave. Pass %NULL to break the
4076 * bonding. The caller must hold the RTNL semaphore. On a failure
4077 * a negative errno code is returned. On success the reference counts
4078 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4079 * function returns zero.
4080 */
4081 int netdev_set_master(struct net_device *slave, struct net_device *master)
4082 {
4083 struct net_device *old = slave->master;
4084
4085 ASSERT_RTNL();
4086
4087 if (master) {
4088 if (old)
4089 return -EBUSY;
4090 dev_hold(master);
4091 }
4092
4093 slave->master = master;
4094
4095 if (old) {
4096 synchronize_net();
4097 dev_put(old);
4098 }
4099 if (master)
4100 slave->flags |= IFF_SLAVE;
4101 else
4102 slave->flags &= ~IFF_SLAVE;
4103
4104 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4105 return 0;
4106 }
4107 EXPORT_SYMBOL(netdev_set_master);
4108
4109 static void dev_change_rx_flags(struct net_device *dev, int flags)
4110 {
4111 const struct net_device_ops *ops = dev->netdev_ops;
4112
4113 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4114 ops->ndo_change_rx_flags(dev, flags);
4115 }
4116
4117 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4118 {
4119 unsigned short old_flags = dev->flags;
4120 uid_t uid;
4121 gid_t gid;
4122
4123 ASSERT_RTNL();
4124
4125 dev->flags |= IFF_PROMISC;
4126 dev->promiscuity += inc;
4127 if (dev->promiscuity == 0) {
4128 /*
4129 * Avoid overflow.
4130 * If inc causes overflow, untouch promisc and return error.
4131 */
4132 if (inc < 0)
4133 dev->flags &= ~IFF_PROMISC;
4134 else {
4135 dev->promiscuity -= inc;
4136 printk(KERN_WARNING "%s: promiscuity touches roof, "
4137 "set promiscuity failed, promiscuity feature "
4138 "of device might be broken.\n", dev->name);
4139 return -EOVERFLOW;
4140 }
4141 }
4142 if (dev->flags != old_flags) {
4143 printk(KERN_INFO "device %s %s promiscuous mode\n",
4144 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4145 "left");
4146 if (audit_enabled) {
4147 current_uid_gid(&uid, &gid);
4148 audit_log(current->audit_context, GFP_ATOMIC,
4149 AUDIT_ANOM_PROMISCUOUS,
4150 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4151 dev->name, (dev->flags & IFF_PROMISC),
4152 (old_flags & IFF_PROMISC),
4153 audit_get_loginuid(current),
4154 uid, gid,
4155 audit_get_sessionid(current));
4156 }
4157
4158 dev_change_rx_flags(dev, IFF_PROMISC);
4159 }
4160 return 0;
4161 }
4162
4163 /**
4164 * dev_set_promiscuity - update promiscuity count on a device
4165 * @dev: device
4166 * @inc: modifier
4167 *
4168 * Add or remove promiscuity from a device. While the count in the device
4169 * remains above zero the interface remains promiscuous. Once it hits zero
4170 * the device reverts back to normal filtering operation. A negative inc
4171 * value is used to drop promiscuity on the device.
4172 * Return 0 if successful or a negative errno code on error.
4173 */
4174 int dev_set_promiscuity(struct net_device *dev, int inc)
4175 {
4176 unsigned short old_flags = dev->flags;
4177 int err;
4178
4179 err = __dev_set_promiscuity(dev, inc);
4180 if (err < 0)
4181 return err;
4182 if (dev->flags != old_flags)
4183 dev_set_rx_mode(dev);
4184 return err;
4185 }
4186 EXPORT_SYMBOL(dev_set_promiscuity);
4187
4188 /**
4189 * dev_set_allmulti - update allmulti count on a device
4190 * @dev: device
4191 * @inc: modifier
4192 *
4193 * Add or remove reception of all multicast frames to a device. While the
4194 * count in the device remains above zero the interface remains listening
4195 * to all interfaces. Once it hits zero the device reverts back to normal
4196 * filtering operation. A negative @inc value is used to drop the counter
4197 * when releasing a resource needing all multicasts.
4198 * Return 0 if successful or a negative errno code on error.
4199 */
4200
4201 int dev_set_allmulti(struct net_device *dev, int inc)
4202 {
4203 unsigned short old_flags = dev->flags;
4204
4205 ASSERT_RTNL();
4206
4207 dev->flags |= IFF_ALLMULTI;
4208 dev->allmulti += inc;
4209 if (dev->allmulti == 0) {
4210 /*
4211 * Avoid overflow.
4212 * If inc causes overflow, untouch allmulti and return error.
4213 */
4214 if (inc < 0)
4215 dev->flags &= ~IFF_ALLMULTI;
4216 else {
4217 dev->allmulti -= inc;
4218 printk(KERN_WARNING "%s: allmulti touches roof, "
4219 "set allmulti failed, allmulti feature of "
4220 "device might be broken.\n", dev->name);
4221 return -EOVERFLOW;
4222 }
4223 }
4224 if (dev->flags ^ old_flags) {
4225 dev_change_rx_flags(dev, IFF_ALLMULTI);
4226 dev_set_rx_mode(dev);
4227 }
4228 return 0;
4229 }
4230 EXPORT_SYMBOL(dev_set_allmulti);
4231
4232 /*
4233 * Upload unicast and multicast address lists to device and
4234 * configure RX filtering. When the device doesn't support unicast
4235 * filtering it is put in promiscuous mode while unicast addresses
4236 * are present.
4237 */
4238 void __dev_set_rx_mode(struct net_device *dev)
4239 {
4240 const struct net_device_ops *ops = dev->netdev_ops;
4241
4242 /* dev_open will call this function so the list will stay sane. */
4243 if (!(dev->flags&IFF_UP))
4244 return;
4245
4246 if (!netif_device_present(dev))
4247 return;
4248
4249 if (ops->ndo_set_rx_mode)
4250 ops->ndo_set_rx_mode(dev);
4251 else {
4252 /* Unicast addresses changes may only happen under the rtnl,
4253 * therefore calling __dev_set_promiscuity here is safe.
4254 */
4255 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4256 __dev_set_promiscuity(dev, 1);
4257 dev->uc_promisc = 1;
4258 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4259 __dev_set_promiscuity(dev, -1);
4260 dev->uc_promisc = 0;
4261 }
4262
4263 if (ops->ndo_set_multicast_list)
4264 ops->ndo_set_multicast_list(dev);
4265 }
4266 }
4267
4268 void dev_set_rx_mode(struct net_device *dev)
4269 {
4270 netif_addr_lock_bh(dev);
4271 __dev_set_rx_mode(dev);
4272 netif_addr_unlock_bh(dev);
4273 }
4274
4275 /**
4276 * dev_get_flags - get flags reported to userspace
4277 * @dev: device
4278 *
4279 * Get the combination of flag bits exported through APIs to userspace.
4280 */
4281 unsigned dev_get_flags(const struct net_device *dev)
4282 {
4283 unsigned flags;
4284
4285 flags = (dev->flags & ~(IFF_PROMISC |
4286 IFF_ALLMULTI |
4287 IFF_RUNNING |
4288 IFF_LOWER_UP |
4289 IFF_DORMANT)) |
4290 (dev->gflags & (IFF_PROMISC |
4291 IFF_ALLMULTI));
4292
4293 if (netif_running(dev)) {
4294 if (netif_oper_up(dev))
4295 flags |= IFF_RUNNING;
4296 if (netif_carrier_ok(dev))
4297 flags |= IFF_LOWER_UP;
4298 if (netif_dormant(dev))
4299 flags |= IFF_DORMANT;
4300 }
4301
4302 return flags;
4303 }
4304 EXPORT_SYMBOL(dev_get_flags);
4305
4306 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4307 {
4308 int old_flags = dev->flags;
4309 int ret;
4310
4311 ASSERT_RTNL();
4312
4313 /*
4314 * Set the flags on our device.
4315 */
4316
4317 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4318 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4319 IFF_AUTOMEDIA)) |
4320 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4321 IFF_ALLMULTI));
4322
4323 /*
4324 * Load in the correct multicast list now the flags have changed.
4325 */
4326
4327 if ((old_flags ^ flags) & IFF_MULTICAST)
4328 dev_change_rx_flags(dev, IFF_MULTICAST);
4329
4330 dev_set_rx_mode(dev);
4331
4332 /*
4333 * Have we downed the interface. We handle IFF_UP ourselves
4334 * according to user attempts to set it, rather than blindly
4335 * setting it.
4336 */
4337
4338 ret = 0;
4339 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4340 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4341
4342 if (!ret)
4343 dev_set_rx_mode(dev);
4344 }
4345
4346 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4347 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4348
4349 dev->gflags ^= IFF_PROMISC;
4350 dev_set_promiscuity(dev, inc);
4351 }
4352
4353 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4354 is important. Some (broken) drivers set IFF_PROMISC, when
4355 IFF_ALLMULTI is requested not asking us and not reporting.
4356 */
4357 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4358 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4359
4360 dev->gflags ^= IFF_ALLMULTI;
4361 dev_set_allmulti(dev, inc);
4362 }
4363
4364 return ret;
4365 }
4366
4367 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4368 {
4369 unsigned int changes = dev->flags ^ old_flags;
4370
4371 if (changes & IFF_UP) {
4372 if (dev->flags & IFF_UP)
4373 call_netdevice_notifiers(NETDEV_UP, dev);
4374 else
4375 call_netdevice_notifiers(NETDEV_DOWN, dev);
4376 }
4377
4378 if (dev->flags & IFF_UP &&
4379 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4380 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4381 }
4382
4383 /**
4384 * dev_change_flags - change device settings
4385 * @dev: device
4386 * @flags: device state flags
4387 *
4388 * Change settings on device based state flags. The flags are
4389 * in the userspace exported format.
4390 */
4391 int dev_change_flags(struct net_device *dev, unsigned flags)
4392 {
4393 int ret, changes;
4394 int old_flags = dev->flags;
4395
4396 ret = __dev_change_flags(dev, flags);
4397 if (ret < 0)
4398 return ret;
4399
4400 changes = old_flags ^ dev->flags;
4401 if (changes)
4402 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4403
4404 __dev_notify_flags(dev, old_flags);
4405 return ret;
4406 }
4407 EXPORT_SYMBOL(dev_change_flags);
4408
4409 /**
4410 * dev_set_mtu - Change maximum transfer unit
4411 * @dev: device
4412 * @new_mtu: new transfer unit
4413 *
4414 * Change the maximum transfer size of the network device.
4415 */
4416 int dev_set_mtu(struct net_device *dev, int new_mtu)
4417 {
4418 const struct net_device_ops *ops = dev->netdev_ops;
4419 int err;
4420
4421 if (new_mtu == dev->mtu)
4422 return 0;
4423
4424 /* MTU must be positive. */
4425 if (new_mtu < 0)
4426 return -EINVAL;
4427
4428 if (!netif_device_present(dev))
4429 return -ENODEV;
4430
4431 err = 0;
4432 if (ops->ndo_change_mtu)
4433 err = ops->ndo_change_mtu(dev, new_mtu);
4434 else
4435 dev->mtu = new_mtu;
4436
4437 if (!err && dev->flags & IFF_UP)
4438 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4439 return err;
4440 }
4441 EXPORT_SYMBOL(dev_set_mtu);
4442
4443 /**
4444 * dev_set_mac_address - Change Media Access Control Address
4445 * @dev: device
4446 * @sa: new address
4447 *
4448 * Change the hardware (MAC) address of the device
4449 */
4450 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4451 {
4452 const struct net_device_ops *ops = dev->netdev_ops;
4453 int err;
4454
4455 if (!ops->ndo_set_mac_address)
4456 return -EOPNOTSUPP;
4457 if (sa->sa_family != dev->type)
4458 return -EINVAL;
4459 if (!netif_device_present(dev))
4460 return -ENODEV;
4461 err = ops->ndo_set_mac_address(dev, sa);
4462 if (!err)
4463 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4464 return err;
4465 }
4466 EXPORT_SYMBOL(dev_set_mac_address);
4467
4468 /*
4469 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4470 */
4471 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4472 {
4473 int err;
4474 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4475
4476 if (!dev)
4477 return -ENODEV;
4478
4479 switch (cmd) {
4480 case SIOCGIFFLAGS: /* Get interface flags */
4481 ifr->ifr_flags = (short) dev_get_flags(dev);
4482 return 0;
4483
4484 case SIOCGIFMETRIC: /* Get the metric on the interface
4485 (currently unused) */
4486 ifr->ifr_metric = 0;
4487 return 0;
4488
4489 case SIOCGIFMTU: /* Get the MTU of a device */
4490 ifr->ifr_mtu = dev->mtu;
4491 return 0;
4492
4493 case SIOCGIFHWADDR:
4494 if (!dev->addr_len)
4495 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4496 else
4497 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4498 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4499 ifr->ifr_hwaddr.sa_family = dev->type;
4500 return 0;
4501
4502 case SIOCGIFSLAVE:
4503 err = -EINVAL;
4504 break;
4505
4506 case SIOCGIFMAP:
4507 ifr->ifr_map.mem_start = dev->mem_start;
4508 ifr->ifr_map.mem_end = dev->mem_end;
4509 ifr->ifr_map.base_addr = dev->base_addr;
4510 ifr->ifr_map.irq = dev->irq;
4511 ifr->ifr_map.dma = dev->dma;
4512 ifr->ifr_map.port = dev->if_port;
4513 return 0;
4514
4515 case SIOCGIFINDEX:
4516 ifr->ifr_ifindex = dev->ifindex;
4517 return 0;
4518
4519 case SIOCGIFTXQLEN:
4520 ifr->ifr_qlen = dev->tx_queue_len;
4521 return 0;
4522
4523 default:
4524 /* dev_ioctl() should ensure this case
4525 * is never reached
4526 */
4527 WARN_ON(1);
4528 err = -EINVAL;
4529 break;
4530
4531 }
4532 return err;
4533 }
4534
4535 /*
4536 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4537 */
4538 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4539 {
4540 int err;
4541 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4542 const struct net_device_ops *ops;
4543
4544 if (!dev)
4545 return -ENODEV;
4546
4547 ops = dev->netdev_ops;
4548
4549 switch (cmd) {
4550 case SIOCSIFFLAGS: /* Set interface flags */
4551 return dev_change_flags(dev, ifr->ifr_flags);
4552
4553 case SIOCSIFMETRIC: /* Set the metric on the interface
4554 (currently unused) */
4555 return -EOPNOTSUPP;
4556
4557 case SIOCSIFMTU: /* Set the MTU of a device */
4558 return dev_set_mtu(dev, ifr->ifr_mtu);
4559
4560 case SIOCSIFHWADDR:
4561 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4562
4563 case SIOCSIFHWBROADCAST:
4564 if (ifr->ifr_hwaddr.sa_family != dev->type)
4565 return -EINVAL;
4566 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4567 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4568 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4569 return 0;
4570
4571 case SIOCSIFMAP:
4572 if (ops->ndo_set_config) {
4573 if (!netif_device_present(dev))
4574 return -ENODEV;
4575 return ops->ndo_set_config(dev, &ifr->ifr_map);
4576 }
4577 return -EOPNOTSUPP;
4578
4579 case SIOCADDMULTI:
4580 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4581 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4582 return -EINVAL;
4583 if (!netif_device_present(dev))
4584 return -ENODEV;
4585 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4586
4587 case SIOCDELMULTI:
4588 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4589 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4590 return -EINVAL;
4591 if (!netif_device_present(dev))
4592 return -ENODEV;
4593 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4594
4595 case SIOCSIFTXQLEN:
4596 if (ifr->ifr_qlen < 0)
4597 return -EINVAL;
4598 dev->tx_queue_len = ifr->ifr_qlen;
4599 return 0;
4600
4601 case SIOCSIFNAME:
4602 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4603 return dev_change_name(dev, ifr->ifr_newname);
4604
4605 /*
4606 * Unknown or private ioctl
4607 */
4608 default:
4609 if ((cmd >= SIOCDEVPRIVATE &&
4610 cmd <= SIOCDEVPRIVATE + 15) ||
4611 cmd == SIOCBONDENSLAVE ||
4612 cmd == SIOCBONDRELEASE ||
4613 cmd == SIOCBONDSETHWADDR ||
4614 cmd == SIOCBONDSLAVEINFOQUERY ||
4615 cmd == SIOCBONDINFOQUERY ||
4616 cmd == SIOCBONDCHANGEACTIVE ||
4617 cmd == SIOCGMIIPHY ||
4618 cmd == SIOCGMIIREG ||
4619 cmd == SIOCSMIIREG ||
4620 cmd == SIOCBRADDIF ||
4621 cmd == SIOCBRDELIF ||
4622 cmd == SIOCSHWTSTAMP ||
4623 cmd == SIOCWANDEV) {
4624 err = -EOPNOTSUPP;
4625 if (ops->ndo_do_ioctl) {
4626 if (netif_device_present(dev))
4627 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4628 else
4629 err = -ENODEV;
4630 }
4631 } else
4632 err = -EINVAL;
4633
4634 }
4635 return err;
4636 }
4637
4638 /*
4639 * This function handles all "interface"-type I/O control requests. The actual
4640 * 'doing' part of this is dev_ifsioc above.
4641 */
4642
4643 /**
4644 * dev_ioctl - network device ioctl
4645 * @net: the applicable net namespace
4646 * @cmd: command to issue
4647 * @arg: pointer to a struct ifreq in user space
4648 *
4649 * Issue ioctl functions to devices. This is normally called by the
4650 * user space syscall interfaces but can sometimes be useful for
4651 * other purposes. The return value is the return from the syscall if
4652 * positive or a negative errno code on error.
4653 */
4654
4655 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4656 {
4657 struct ifreq ifr;
4658 int ret;
4659 char *colon;
4660
4661 /* One special case: SIOCGIFCONF takes ifconf argument
4662 and requires shared lock, because it sleeps writing
4663 to user space.
4664 */
4665
4666 if (cmd == SIOCGIFCONF) {
4667 rtnl_lock();
4668 ret = dev_ifconf(net, (char __user *) arg);
4669 rtnl_unlock();
4670 return ret;
4671 }
4672 if (cmd == SIOCGIFNAME)
4673 return dev_ifname(net, (struct ifreq __user *)arg);
4674
4675 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4676 return -EFAULT;
4677
4678 ifr.ifr_name[IFNAMSIZ-1] = 0;
4679
4680 colon = strchr(ifr.ifr_name, ':');
4681 if (colon)
4682 *colon = 0;
4683
4684 /*
4685 * See which interface the caller is talking about.
4686 */
4687
4688 switch (cmd) {
4689 /*
4690 * These ioctl calls:
4691 * - can be done by all.
4692 * - atomic and do not require locking.
4693 * - return a value
4694 */
4695 case SIOCGIFFLAGS:
4696 case SIOCGIFMETRIC:
4697 case SIOCGIFMTU:
4698 case SIOCGIFHWADDR:
4699 case SIOCGIFSLAVE:
4700 case SIOCGIFMAP:
4701 case SIOCGIFINDEX:
4702 case SIOCGIFTXQLEN:
4703 dev_load(net, ifr.ifr_name);
4704 rcu_read_lock();
4705 ret = dev_ifsioc_locked(net, &ifr, cmd);
4706 rcu_read_unlock();
4707 if (!ret) {
4708 if (colon)
4709 *colon = ':';
4710 if (copy_to_user(arg, &ifr,
4711 sizeof(struct ifreq)))
4712 ret = -EFAULT;
4713 }
4714 return ret;
4715
4716 case SIOCETHTOOL:
4717 dev_load(net, ifr.ifr_name);
4718 rtnl_lock();
4719 ret = dev_ethtool(net, &ifr);
4720 rtnl_unlock();
4721 if (!ret) {
4722 if (colon)
4723 *colon = ':';
4724 if (copy_to_user(arg, &ifr,
4725 sizeof(struct ifreq)))
4726 ret = -EFAULT;
4727 }
4728 return ret;
4729
4730 /*
4731 * These ioctl calls:
4732 * - require superuser power.
4733 * - require strict serialization.
4734 * - return a value
4735 */
4736 case SIOCGMIIPHY:
4737 case SIOCGMIIREG:
4738 case SIOCSIFNAME:
4739 if (!capable(CAP_NET_ADMIN))
4740 return -EPERM;
4741 dev_load(net, ifr.ifr_name);
4742 rtnl_lock();
4743 ret = dev_ifsioc(net, &ifr, cmd);
4744 rtnl_unlock();
4745 if (!ret) {
4746 if (colon)
4747 *colon = ':';
4748 if (copy_to_user(arg, &ifr,
4749 sizeof(struct ifreq)))
4750 ret = -EFAULT;
4751 }
4752 return ret;
4753
4754 /*
4755 * These ioctl calls:
4756 * - require superuser power.
4757 * - require strict serialization.
4758 * - do not return a value
4759 */
4760 case SIOCSIFFLAGS:
4761 case SIOCSIFMETRIC:
4762 case SIOCSIFMTU:
4763 case SIOCSIFMAP:
4764 case SIOCSIFHWADDR:
4765 case SIOCSIFSLAVE:
4766 case SIOCADDMULTI:
4767 case SIOCDELMULTI:
4768 case SIOCSIFHWBROADCAST:
4769 case SIOCSIFTXQLEN:
4770 case SIOCSMIIREG:
4771 case SIOCBONDENSLAVE:
4772 case SIOCBONDRELEASE:
4773 case SIOCBONDSETHWADDR:
4774 case SIOCBONDCHANGEACTIVE:
4775 case SIOCBRADDIF:
4776 case SIOCBRDELIF:
4777 case SIOCSHWTSTAMP:
4778 if (!capable(CAP_NET_ADMIN))
4779 return -EPERM;
4780 /* fall through */
4781 case SIOCBONDSLAVEINFOQUERY:
4782 case SIOCBONDINFOQUERY:
4783 dev_load(net, ifr.ifr_name);
4784 rtnl_lock();
4785 ret = dev_ifsioc(net, &ifr, cmd);
4786 rtnl_unlock();
4787 return ret;
4788
4789 case SIOCGIFMEM:
4790 /* Get the per device memory space. We can add this but
4791 * currently do not support it */
4792 case SIOCSIFMEM:
4793 /* Set the per device memory buffer space.
4794 * Not applicable in our case */
4795 case SIOCSIFLINK:
4796 return -EINVAL;
4797
4798 /*
4799 * Unknown or private ioctl.
4800 */
4801 default:
4802 if (cmd == SIOCWANDEV ||
4803 (cmd >= SIOCDEVPRIVATE &&
4804 cmd <= SIOCDEVPRIVATE + 15)) {
4805 dev_load(net, ifr.ifr_name);
4806 rtnl_lock();
4807 ret = dev_ifsioc(net, &ifr, cmd);
4808 rtnl_unlock();
4809 if (!ret && copy_to_user(arg, &ifr,
4810 sizeof(struct ifreq)))
4811 ret = -EFAULT;
4812 return ret;
4813 }
4814 /* Take care of Wireless Extensions */
4815 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4816 return wext_handle_ioctl(net, &ifr, cmd, arg);
4817 return -EINVAL;
4818 }
4819 }
4820
4821
4822 /**
4823 * dev_new_index - allocate an ifindex
4824 * @net: the applicable net namespace
4825 *
4826 * Returns a suitable unique value for a new device interface
4827 * number. The caller must hold the rtnl semaphore or the
4828 * dev_base_lock to be sure it remains unique.
4829 */
4830 static int dev_new_index(struct net *net)
4831 {
4832 static int ifindex;
4833 for (;;) {
4834 if (++ifindex <= 0)
4835 ifindex = 1;
4836 if (!__dev_get_by_index(net, ifindex))
4837 return ifindex;
4838 }
4839 }
4840
4841 /* Delayed registration/unregisteration */
4842 static LIST_HEAD(net_todo_list);
4843
4844 static void net_set_todo(struct net_device *dev)
4845 {
4846 list_add_tail(&dev->todo_list, &net_todo_list);
4847 }
4848
4849 static void rollback_registered_many(struct list_head *head)
4850 {
4851 struct net_device *dev, *tmp;
4852
4853 BUG_ON(dev_boot_phase);
4854 ASSERT_RTNL();
4855
4856 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4857 /* Some devices call without registering
4858 * for initialization unwind. Remove those
4859 * devices and proceed with the remaining.
4860 */
4861 if (dev->reg_state == NETREG_UNINITIALIZED) {
4862 pr_debug("unregister_netdevice: device %s/%p never "
4863 "was registered\n", dev->name, dev);
4864
4865 WARN_ON(1);
4866 list_del(&dev->unreg_list);
4867 continue;
4868 }
4869
4870 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4871
4872 /* If device is running, close it first. */
4873 dev_close(dev);
4874
4875 /* And unlink it from device chain. */
4876 unlist_netdevice(dev);
4877
4878 dev->reg_state = NETREG_UNREGISTERING;
4879 }
4880
4881 synchronize_net();
4882
4883 list_for_each_entry(dev, head, unreg_list) {
4884 /* Shutdown queueing discipline. */
4885 dev_shutdown(dev);
4886
4887
4888 /* Notify protocols, that we are about to destroy
4889 this device. They should clean all the things.
4890 */
4891 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4892
4893 if (!dev->rtnl_link_ops ||
4894 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4895 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4896
4897 /*
4898 * Flush the unicast and multicast chains
4899 */
4900 dev_uc_flush(dev);
4901 dev_mc_flush(dev);
4902
4903 if (dev->netdev_ops->ndo_uninit)
4904 dev->netdev_ops->ndo_uninit(dev);
4905
4906 /* Notifier chain MUST detach us from master device. */
4907 WARN_ON(dev->master);
4908
4909 /* Remove entries from kobject tree */
4910 netdev_unregister_kobject(dev);
4911 }
4912
4913 /* Process any work delayed until the end of the batch */
4914 dev = list_first_entry(head, struct net_device, unreg_list);
4915 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4916
4917 rcu_barrier();
4918
4919 list_for_each_entry(dev, head, unreg_list)
4920 dev_put(dev);
4921 }
4922
4923 static void rollback_registered(struct net_device *dev)
4924 {
4925 LIST_HEAD(single);
4926
4927 list_add(&dev->unreg_list, &single);
4928 rollback_registered_many(&single);
4929 }
4930
4931 static void __netdev_init_queue_locks_one(struct net_device *dev,
4932 struct netdev_queue *dev_queue,
4933 void *_unused)
4934 {
4935 spin_lock_init(&dev_queue->_xmit_lock);
4936 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4937 dev_queue->xmit_lock_owner = -1;
4938 }
4939
4940 static void netdev_init_queue_locks(struct net_device *dev)
4941 {
4942 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4943 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4944 }
4945
4946 unsigned long netdev_fix_features(unsigned long features, const char *name)
4947 {
4948 /* Fix illegal SG+CSUM combinations. */
4949 if ((features & NETIF_F_SG) &&
4950 !(features & NETIF_F_ALL_CSUM)) {
4951 if (name)
4952 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4953 "checksum feature.\n", name);
4954 features &= ~NETIF_F_SG;
4955 }
4956
4957 /* TSO requires that SG is present as well. */
4958 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4959 if (name)
4960 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4961 "SG feature.\n", name);
4962 features &= ~NETIF_F_TSO;
4963 }
4964
4965 if (features & NETIF_F_UFO) {
4966 if (!(features & NETIF_F_GEN_CSUM)) {
4967 if (name)
4968 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4969 "since no NETIF_F_HW_CSUM feature.\n",
4970 name);
4971 features &= ~NETIF_F_UFO;
4972 }
4973
4974 if (!(features & NETIF_F_SG)) {
4975 if (name)
4976 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4977 "since no NETIF_F_SG feature.\n", name);
4978 features &= ~NETIF_F_UFO;
4979 }
4980 }
4981
4982 return features;
4983 }
4984 EXPORT_SYMBOL(netdev_fix_features);
4985
4986 /**
4987 * netif_stacked_transfer_operstate - transfer operstate
4988 * @rootdev: the root or lower level device to transfer state from
4989 * @dev: the device to transfer operstate to
4990 *
4991 * Transfer operational state from root to device. This is normally
4992 * called when a stacking relationship exists between the root
4993 * device and the device(a leaf device).
4994 */
4995 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4996 struct net_device *dev)
4997 {
4998 if (rootdev->operstate == IF_OPER_DORMANT)
4999 netif_dormant_on(dev);
5000 else
5001 netif_dormant_off(dev);
5002
5003 if (netif_carrier_ok(rootdev)) {
5004 if (!netif_carrier_ok(dev))
5005 netif_carrier_on(dev);
5006 } else {
5007 if (netif_carrier_ok(dev))
5008 netif_carrier_off(dev);
5009 }
5010 }
5011 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5012
5013 static int netif_alloc_rx_queues(struct net_device *dev)
5014 {
5015 #ifdef CONFIG_RPS
5016 unsigned int i, count = dev->num_rx_queues;
5017
5018 if (count) {
5019 struct netdev_rx_queue *rx;
5020
5021 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5022 if (!rx) {
5023 pr_err("netdev: Unable to allocate %u rx queues.\n",
5024 count);
5025 return -ENOMEM;
5026 }
5027 dev->_rx = rx;
5028 atomic_set(&rx->count, count);
5029
5030 /*
5031 * Set a pointer to first element in the array which holds the
5032 * reference count.
5033 */
5034 for (i = 0; i < count; i++)
5035 rx[i].first = rx;
5036 }
5037 #endif
5038 return 0;
5039 }
5040
5041 /**
5042 * register_netdevice - register a network device
5043 * @dev: device to register
5044 *
5045 * Take a completed network device structure and add it to the kernel
5046 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5047 * chain. 0 is returned on success. A negative errno code is returned
5048 * on a failure to set up the device, or if the name is a duplicate.
5049 *
5050 * Callers must hold the rtnl semaphore. You may want
5051 * register_netdev() instead of this.
5052 *
5053 * BUGS:
5054 * The locking appears insufficient to guarantee two parallel registers
5055 * will not get the same name.
5056 */
5057
5058 int register_netdevice(struct net_device *dev)
5059 {
5060 int ret;
5061 struct net *net = dev_net(dev);
5062
5063 BUG_ON(dev_boot_phase);
5064 ASSERT_RTNL();
5065
5066 might_sleep();
5067
5068 /* When net_device's are persistent, this will be fatal. */
5069 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5070 BUG_ON(!net);
5071
5072 spin_lock_init(&dev->addr_list_lock);
5073 netdev_set_addr_lockdep_class(dev);
5074 netdev_init_queue_locks(dev);
5075
5076 dev->iflink = -1;
5077
5078 ret = netif_alloc_rx_queues(dev);
5079 if (ret)
5080 goto out;
5081
5082 /* Init, if this function is available */
5083 if (dev->netdev_ops->ndo_init) {
5084 ret = dev->netdev_ops->ndo_init(dev);
5085 if (ret) {
5086 if (ret > 0)
5087 ret = -EIO;
5088 goto out;
5089 }
5090 }
5091
5092 ret = dev_get_valid_name(dev, dev->name, 0);
5093 if (ret)
5094 goto err_uninit;
5095
5096 dev->ifindex = dev_new_index(net);
5097 if (dev->iflink == -1)
5098 dev->iflink = dev->ifindex;
5099
5100 /* Fix illegal checksum combinations */
5101 if ((dev->features & NETIF_F_HW_CSUM) &&
5102 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5103 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5104 dev->name);
5105 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5106 }
5107
5108 if ((dev->features & NETIF_F_NO_CSUM) &&
5109 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5110 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5111 dev->name);
5112 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5113 }
5114
5115 dev->features = netdev_fix_features(dev->features, dev->name);
5116
5117 /* Enable software GSO if SG is supported. */
5118 if (dev->features & NETIF_F_SG)
5119 dev->features |= NETIF_F_GSO;
5120
5121 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5122 * vlan_dev_init() will do the dev->features check, so these features
5123 * are enabled only if supported by underlying device.
5124 */
5125 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5126
5127 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5128 ret = notifier_to_errno(ret);
5129 if (ret)
5130 goto err_uninit;
5131
5132 ret = netdev_register_kobject(dev);
5133 if (ret)
5134 goto err_uninit;
5135 dev->reg_state = NETREG_REGISTERED;
5136
5137 /*
5138 * Default initial state at registry is that the
5139 * device is present.
5140 */
5141
5142 set_bit(__LINK_STATE_PRESENT, &dev->state);
5143
5144 dev_init_scheduler(dev);
5145 dev_hold(dev);
5146 list_netdevice(dev);
5147
5148 /* Notify protocols, that a new device appeared. */
5149 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5150 ret = notifier_to_errno(ret);
5151 if (ret) {
5152 rollback_registered(dev);
5153 dev->reg_state = NETREG_UNREGISTERED;
5154 }
5155 /*
5156 * Prevent userspace races by waiting until the network
5157 * device is fully setup before sending notifications.
5158 */
5159 if (!dev->rtnl_link_ops ||
5160 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5161 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5162
5163 out:
5164 return ret;
5165
5166 err_uninit:
5167 if (dev->netdev_ops->ndo_uninit)
5168 dev->netdev_ops->ndo_uninit(dev);
5169 goto out;
5170 }
5171 EXPORT_SYMBOL(register_netdevice);
5172
5173 /**
5174 * init_dummy_netdev - init a dummy network device for NAPI
5175 * @dev: device to init
5176 *
5177 * This takes a network device structure and initialize the minimum
5178 * amount of fields so it can be used to schedule NAPI polls without
5179 * registering a full blown interface. This is to be used by drivers
5180 * that need to tie several hardware interfaces to a single NAPI
5181 * poll scheduler due to HW limitations.
5182 */
5183 int init_dummy_netdev(struct net_device *dev)
5184 {
5185 /* Clear everything. Note we don't initialize spinlocks
5186 * are they aren't supposed to be taken by any of the
5187 * NAPI code and this dummy netdev is supposed to be
5188 * only ever used for NAPI polls
5189 */
5190 memset(dev, 0, sizeof(struct net_device));
5191
5192 /* make sure we BUG if trying to hit standard
5193 * register/unregister code path
5194 */
5195 dev->reg_state = NETREG_DUMMY;
5196
5197 /* initialize the ref count */
5198 atomic_set(&dev->refcnt, 1);
5199
5200 /* NAPI wants this */
5201 INIT_LIST_HEAD(&dev->napi_list);
5202
5203 /* a dummy interface is started by default */
5204 set_bit(__LINK_STATE_PRESENT, &dev->state);
5205 set_bit(__LINK_STATE_START, &dev->state);
5206
5207 return 0;
5208 }
5209 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5210
5211
5212 /**
5213 * register_netdev - register a network device
5214 * @dev: device to register
5215 *
5216 * Take a completed network device structure and add it to the kernel
5217 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5218 * chain. 0 is returned on success. A negative errno code is returned
5219 * on a failure to set up the device, or if the name is a duplicate.
5220 *
5221 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5222 * and expands the device name if you passed a format string to
5223 * alloc_netdev.
5224 */
5225 int register_netdev(struct net_device *dev)
5226 {
5227 int err;
5228
5229 rtnl_lock();
5230
5231 /*
5232 * If the name is a format string the caller wants us to do a
5233 * name allocation.
5234 */
5235 if (strchr(dev->name, '%')) {
5236 err = dev_alloc_name(dev, dev->name);
5237 if (err < 0)
5238 goto out;
5239 }
5240
5241 err = register_netdevice(dev);
5242 out:
5243 rtnl_unlock();
5244 return err;
5245 }
5246 EXPORT_SYMBOL(register_netdev);
5247
5248 /*
5249 * netdev_wait_allrefs - wait until all references are gone.
5250 *
5251 * This is called when unregistering network devices.
5252 *
5253 * Any protocol or device that holds a reference should register
5254 * for netdevice notification, and cleanup and put back the
5255 * reference if they receive an UNREGISTER event.
5256 * We can get stuck here if buggy protocols don't correctly
5257 * call dev_put.
5258 */
5259 static void netdev_wait_allrefs(struct net_device *dev)
5260 {
5261 unsigned long rebroadcast_time, warning_time;
5262
5263 linkwatch_forget_dev(dev);
5264
5265 rebroadcast_time = warning_time = jiffies;
5266 while (atomic_read(&dev->refcnt) != 0) {
5267 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5268 rtnl_lock();
5269
5270 /* Rebroadcast unregister notification */
5271 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5272 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5273 * should have already handle it the first time */
5274
5275 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5276 &dev->state)) {
5277 /* We must not have linkwatch events
5278 * pending on unregister. If this
5279 * happens, we simply run the queue
5280 * unscheduled, resulting in a noop
5281 * for this device.
5282 */
5283 linkwatch_run_queue();
5284 }
5285
5286 __rtnl_unlock();
5287
5288 rebroadcast_time = jiffies;
5289 }
5290
5291 msleep(250);
5292
5293 if (time_after(jiffies, warning_time + 10 * HZ)) {
5294 printk(KERN_EMERG "unregister_netdevice: "
5295 "waiting for %s to become free. Usage "
5296 "count = %d\n",
5297 dev->name, atomic_read(&dev->refcnt));
5298 warning_time = jiffies;
5299 }
5300 }
5301 }
5302
5303 /* The sequence is:
5304 *
5305 * rtnl_lock();
5306 * ...
5307 * register_netdevice(x1);
5308 * register_netdevice(x2);
5309 * ...
5310 * unregister_netdevice(y1);
5311 * unregister_netdevice(y2);
5312 * ...
5313 * rtnl_unlock();
5314 * free_netdev(y1);
5315 * free_netdev(y2);
5316 *
5317 * We are invoked by rtnl_unlock().
5318 * This allows us to deal with problems:
5319 * 1) We can delete sysfs objects which invoke hotplug
5320 * without deadlocking with linkwatch via keventd.
5321 * 2) Since we run with the RTNL semaphore not held, we can sleep
5322 * safely in order to wait for the netdev refcnt to drop to zero.
5323 *
5324 * We must not return until all unregister events added during
5325 * the interval the lock was held have been completed.
5326 */
5327 void netdev_run_todo(void)
5328 {
5329 struct list_head list;
5330
5331 /* Snapshot list, allow later requests */
5332 list_replace_init(&net_todo_list, &list);
5333
5334 __rtnl_unlock();
5335
5336 while (!list_empty(&list)) {
5337 struct net_device *dev
5338 = list_first_entry(&list, struct net_device, todo_list);
5339 list_del(&dev->todo_list);
5340
5341 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5342 printk(KERN_ERR "network todo '%s' but state %d\n",
5343 dev->name, dev->reg_state);
5344 dump_stack();
5345 continue;
5346 }
5347
5348 dev->reg_state = NETREG_UNREGISTERED;
5349
5350 on_each_cpu(flush_backlog, dev, 1);
5351
5352 netdev_wait_allrefs(dev);
5353
5354 /* paranoia */
5355 BUG_ON(atomic_read(&dev->refcnt));
5356 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5357 WARN_ON(dev->ip6_ptr);
5358 WARN_ON(dev->dn_ptr);
5359
5360 if (dev->destructor)
5361 dev->destructor(dev);
5362
5363 /* Free network device */
5364 kobject_put(&dev->dev.kobj);
5365 }
5366 }
5367
5368 /**
5369 * dev_txq_stats_fold - fold tx_queues stats
5370 * @dev: device to get statistics from
5371 * @stats: struct rtnl_link_stats64 to hold results
5372 */
5373 void dev_txq_stats_fold(const struct net_device *dev,
5374 struct rtnl_link_stats64 *stats)
5375 {
5376 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5377 unsigned int i;
5378 struct netdev_queue *txq;
5379
5380 for (i = 0; i < dev->num_tx_queues; i++) {
5381 txq = netdev_get_tx_queue(dev, i);
5382 spin_lock_bh(&txq->_xmit_lock);
5383 tx_bytes += txq->tx_bytes;
5384 tx_packets += txq->tx_packets;
5385 tx_dropped += txq->tx_dropped;
5386 spin_unlock_bh(&txq->_xmit_lock);
5387 }
5388 if (tx_bytes || tx_packets || tx_dropped) {
5389 stats->tx_bytes = tx_bytes;
5390 stats->tx_packets = tx_packets;
5391 stats->tx_dropped = tx_dropped;
5392 }
5393 }
5394 EXPORT_SYMBOL(dev_txq_stats_fold);
5395
5396 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5397 * fields in the same order, with only the type differing.
5398 */
5399 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5400 const struct net_device_stats *netdev_stats)
5401 {
5402 #if BITS_PER_LONG == 64
5403 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5404 memcpy(stats64, netdev_stats, sizeof(*stats64));
5405 #else
5406 size_t i, n = sizeof(*stats64) / sizeof(u64);
5407 const unsigned long *src = (const unsigned long *)netdev_stats;
5408 u64 *dst = (u64 *)stats64;
5409
5410 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5411 sizeof(*stats64) / sizeof(u64));
5412 for (i = 0; i < n; i++)
5413 dst[i] = src[i];
5414 #endif
5415 }
5416
5417 /**
5418 * dev_get_stats - get network device statistics
5419 * @dev: device to get statistics from
5420 * @storage: place to store stats
5421 *
5422 * Get network statistics from device. Return @storage.
5423 * The device driver may provide its own method by setting
5424 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5425 * otherwise the internal statistics structure is used.
5426 */
5427 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5428 struct rtnl_link_stats64 *storage)
5429 {
5430 const struct net_device_ops *ops = dev->netdev_ops;
5431
5432 if (ops->ndo_get_stats64) {
5433 memset(storage, 0, sizeof(*storage));
5434 return ops->ndo_get_stats64(dev, storage);
5435 }
5436 if (ops->ndo_get_stats) {
5437 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5438 return storage;
5439 }
5440 netdev_stats_to_stats64(storage, &dev->stats);
5441 dev_txq_stats_fold(dev, storage);
5442 return storage;
5443 }
5444 EXPORT_SYMBOL(dev_get_stats);
5445
5446 static void netdev_init_one_queue(struct net_device *dev,
5447 struct netdev_queue *queue,
5448 void *_unused)
5449 {
5450 queue->dev = dev;
5451 }
5452
5453 static void netdev_init_queues(struct net_device *dev)
5454 {
5455 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5456 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5457 spin_lock_init(&dev->tx_global_lock);
5458 }
5459
5460 /**
5461 * alloc_netdev_mq - allocate network device
5462 * @sizeof_priv: size of private data to allocate space for
5463 * @name: device name format string
5464 * @setup: callback to initialize device
5465 * @queue_count: the number of subqueues to allocate
5466 *
5467 * Allocates a struct net_device with private data area for driver use
5468 * and performs basic initialization. Also allocates subquue structs
5469 * for each queue on the device at the end of the netdevice.
5470 */
5471 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5472 void (*setup)(struct net_device *), unsigned int queue_count)
5473 {
5474 struct netdev_queue *tx;
5475 struct net_device *dev;
5476 size_t alloc_size;
5477 struct net_device *p;
5478
5479 BUG_ON(strlen(name) >= sizeof(dev->name));
5480
5481 alloc_size = sizeof(struct net_device);
5482 if (sizeof_priv) {
5483 /* ensure 32-byte alignment of private area */
5484 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5485 alloc_size += sizeof_priv;
5486 }
5487 /* ensure 32-byte alignment of whole construct */
5488 alloc_size += NETDEV_ALIGN - 1;
5489
5490 p = kzalloc(alloc_size, GFP_KERNEL);
5491 if (!p) {
5492 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5493 return NULL;
5494 }
5495
5496 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5497 if (!tx) {
5498 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5499 "tx qdiscs.\n");
5500 goto free_p;
5501 }
5502
5503
5504 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5505 dev->padded = (char *)dev - (char *)p;
5506
5507 if (dev_addr_init(dev))
5508 goto free_tx;
5509
5510 dev_mc_init(dev);
5511 dev_uc_init(dev);
5512
5513 dev_net_set(dev, &init_net);
5514
5515 dev->_tx = tx;
5516 dev->num_tx_queues = queue_count;
5517 dev->real_num_tx_queues = queue_count;
5518
5519 #ifdef CONFIG_RPS
5520 dev->num_rx_queues = queue_count;
5521 dev->real_num_rx_queues = queue_count;
5522 #endif
5523
5524 dev->gso_max_size = GSO_MAX_SIZE;
5525
5526 netdev_init_queues(dev);
5527
5528 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5529 dev->ethtool_ntuple_list.count = 0;
5530 INIT_LIST_HEAD(&dev->napi_list);
5531 INIT_LIST_HEAD(&dev->unreg_list);
5532 INIT_LIST_HEAD(&dev->link_watch_list);
5533 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5534 setup(dev);
5535 strcpy(dev->name, name);
5536 return dev;
5537
5538 free_tx:
5539 kfree(tx);
5540 free_p:
5541 kfree(p);
5542 return NULL;
5543 }
5544 EXPORT_SYMBOL(alloc_netdev_mq);
5545
5546 /**
5547 * free_netdev - free network device
5548 * @dev: device
5549 *
5550 * This function does the last stage of destroying an allocated device
5551 * interface. The reference to the device object is released.
5552 * If this is the last reference then it will be freed.
5553 */
5554 void free_netdev(struct net_device *dev)
5555 {
5556 struct napi_struct *p, *n;
5557
5558 release_net(dev_net(dev));
5559
5560 kfree(dev->_tx);
5561
5562 /* Flush device addresses */
5563 dev_addr_flush(dev);
5564
5565 /* Clear ethtool n-tuple list */
5566 ethtool_ntuple_flush(dev);
5567
5568 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5569 netif_napi_del(p);
5570
5571 /* Compatibility with error handling in drivers */
5572 if (dev->reg_state == NETREG_UNINITIALIZED) {
5573 kfree((char *)dev - dev->padded);
5574 return;
5575 }
5576
5577 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5578 dev->reg_state = NETREG_RELEASED;
5579
5580 /* will free via device release */
5581 put_device(&dev->dev);
5582 }
5583 EXPORT_SYMBOL(free_netdev);
5584
5585 /**
5586 * synchronize_net - Synchronize with packet receive processing
5587 *
5588 * Wait for packets currently being received to be done.
5589 * Does not block later packets from starting.
5590 */
5591 void synchronize_net(void)
5592 {
5593 might_sleep();
5594 synchronize_rcu();
5595 }
5596 EXPORT_SYMBOL(synchronize_net);
5597
5598 /**
5599 * unregister_netdevice_queue - remove device from the kernel
5600 * @dev: device
5601 * @head: list
5602 *
5603 * This function shuts down a device interface and removes it
5604 * from the kernel tables.
5605 * If head not NULL, device is queued to be unregistered later.
5606 *
5607 * Callers must hold the rtnl semaphore. You may want
5608 * unregister_netdev() instead of this.
5609 */
5610
5611 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5612 {
5613 ASSERT_RTNL();
5614
5615 if (head) {
5616 list_move_tail(&dev->unreg_list, head);
5617 } else {
5618 rollback_registered(dev);
5619 /* Finish processing unregister after unlock */
5620 net_set_todo(dev);
5621 }
5622 }
5623 EXPORT_SYMBOL(unregister_netdevice_queue);
5624
5625 /**
5626 * unregister_netdevice_many - unregister many devices
5627 * @head: list of devices
5628 */
5629 void unregister_netdevice_many(struct list_head *head)
5630 {
5631 struct net_device *dev;
5632
5633 if (!list_empty(head)) {
5634 rollback_registered_many(head);
5635 list_for_each_entry(dev, head, unreg_list)
5636 net_set_todo(dev);
5637 }
5638 }
5639 EXPORT_SYMBOL(unregister_netdevice_many);
5640
5641 /**
5642 * unregister_netdev - remove device from the kernel
5643 * @dev: device
5644 *
5645 * This function shuts down a device interface and removes it
5646 * from the kernel tables.
5647 *
5648 * This is just a wrapper for unregister_netdevice that takes
5649 * the rtnl semaphore. In general you want to use this and not
5650 * unregister_netdevice.
5651 */
5652 void unregister_netdev(struct net_device *dev)
5653 {
5654 rtnl_lock();
5655 unregister_netdevice(dev);
5656 rtnl_unlock();
5657 }
5658 EXPORT_SYMBOL(unregister_netdev);
5659
5660 /**
5661 * dev_change_net_namespace - move device to different nethost namespace
5662 * @dev: device
5663 * @net: network namespace
5664 * @pat: If not NULL name pattern to try if the current device name
5665 * is already taken in the destination network namespace.
5666 *
5667 * This function shuts down a device interface and moves it
5668 * to a new network namespace. On success 0 is returned, on
5669 * a failure a netagive errno code is returned.
5670 *
5671 * Callers must hold the rtnl semaphore.
5672 */
5673
5674 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5675 {
5676 int err;
5677
5678 ASSERT_RTNL();
5679
5680 /* Don't allow namespace local devices to be moved. */
5681 err = -EINVAL;
5682 if (dev->features & NETIF_F_NETNS_LOCAL)
5683 goto out;
5684
5685 /* Ensure the device has been registrered */
5686 err = -EINVAL;
5687 if (dev->reg_state != NETREG_REGISTERED)
5688 goto out;
5689
5690 /* Get out if there is nothing todo */
5691 err = 0;
5692 if (net_eq(dev_net(dev), net))
5693 goto out;
5694
5695 /* Pick the destination device name, and ensure
5696 * we can use it in the destination network namespace.
5697 */
5698 err = -EEXIST;
5699 if (__dev_get_by_name(net, dev->name)) {
5700 /* We get here if we can't use the current device name */
5701 if (!pat)
5702 goto out;
5703 if (dev_get_valid_name(dev, pat, 1))
5704 goto out;
5705 }
5706
5707 /*
5708 * And now a mini version of register_netdevice unregister_netdevice.
5709 */
5710
5711 /* If device is running close it first. */
5712 dev_close(dev);
5713
5714 /* And unlink it from device chain */
5715 err = -ENODEV;
5716 unlist_netdevice(dev);
5717
5718 synchronize_net();
5719
5720 /* Shutdown queueing discipline. */
5721 dev_shutdown(dev);
5722
5723 /* Notify protocols, that we are about to destroy
5724 this device. They should clean all the things.
5725
5726 Note that dev->reg_state stays at NETREG_REGISTERED.
5727 This is wanted because this way 8021q and macvlan know
5728 the device is just moving and can keep their slaves up.
5729 */
5730 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5731 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5732
5733 /*
5734 * Flush the unicast and multicast chains
5735 */
5736 dev_uc_flush(dev);
5737 dev_mc_flush(dev);
5738
5739 /* Actually switch the network namespace */
5740 dev_net_set(dev, net);
5741
5742 /* If there is an ifindex conflict assign a new one */
5743 if (__dev_get_by_index(net, dev->ifindex)) {
5744 int iflink = (dev->iflink == dev->ifindex);
5745 dev->ifindex = dev_new_index(net);
5746 if (iflink)
5747 dev->iflink = dev->ifindex;
5748 }
5749
5750 /* Fixup kobjects */
5751 err = device_rename(&dev->dev, dev->name);
5752 WARN_ON(err);
5753
5754 /* Add the device back in the hashes */
5755 list_netdevice(dev);
5756
5757 /* Notify protocols, that a new device appeared. */
5758 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5759
5760 /*
5761 * Prevent userspace races by waiting until the network
5762 * device is fully setup before sending notifications.
5763 */
5764 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5765
5766 synchronize_net();
5767 err = 0;
5768 out:
5769 return err;
5770 }
5771 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5772
5773 static int dev_cpu_callback(struct notifier_block *nfb,
5774 unsigned long action,
5775 void *ocpu)
5776 {
5777 struct sk_buff **list_skb;
5778 struct sk_buff *skb;
5779 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5780 struct softnet_data *sd, *oldsd;
5781
5782 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5783 return NOTIFY_OK;
5784
5785 local_irq_disable();
5786 cpu = smp_processor_id();
5787 sd = &per_cpu(softnet_data, cpu);
5788 oldsd = &per_cpu(softnet_data, oldcpu);
5789
5790 /* Find end of our completion_queue. */
5791 list_skb = &sd->completion_queue;
5792 while (*list_skb)
5793 list_skb = &(*list_skb)->next;
5794 /* Append completion queue from offline CPU. */
5795 *list_skb = oldsd->completion_queue;
5796 oldsd->completion_queue = NULL;
5797
5798 /* Append output queue from offline CPU. */
5799 if (oldsd->output_queue) {
5800 *sd->output_queue_tailp = oldsd->output_queue;
5801 sd->output_queue_tailp = oldsd->output_queue_tailp;
5802 oldsd->output_queue = NULL;
5803 oldsd->output_queue_tailp = &oldsd->output_queue;
5804 }
5805
5806 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5807 local_irq_enable();
5808
5809 /* Process offline CPU's input_pkt_queue */
5810 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5811 netif_rx(skb);
5812 input_queue_head_incr(oldsd);
5813 }
5814 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5815 netif_rx(skb);
5816 input_queue_head_incr(oldsd);
5817 }
5818
5819 return NOTIFY_OK;
5820 }
5821
5822
5823 /**
5824 * netdev_increment_features - increment feature set by one
5825 * @all: current feature set
5826 * @one: new feature set
5827 * @mask: mask feature set
5828 *
5829 * Computes a new feature set after adding a device with feature set
5830 * @one to the master device with current feature set @all. Will not
5831 * enable anything that is off in @mask. Returns the new feature set.
5832 */
5833 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5834 unsigned long mask)
5835 {
5836 /* If device needs checksumming, downgrade to it. */
5837 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5838 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5839 else if (mask & NETIF_F_ALL_CSUM) {
5840 /* If one device supports v4/v6 checksumming, set for all. */
5841 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5842 !(all & NETIF_F_GEN_CSUM)) {
5843 all &= ~NETIF_F_ALL_CSUM;
5844 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5845 }
5846
5847 /* If one device supports hw checksumming, set for all. */
5848 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5849 all &= ~NETIF_F_ALL_CSUM;
5850 all |= NETIF_F_HW_CSUM;
5851 }
5852 }
5853
5854 one |= NETIF_F_ALL_CSUM;
5855
5856 one |= all & NETIF_F_ONE_FOR_ALL;
5857 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5858 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5859
5860 return all;
5861 }
5862 EXPORT_SYMBOL(netdev_increment_features);
5863
5864 static struct hlist_head *netdev_create_hash(void)
5865 {
5866 int i;
5867 struct hlist_head *hash;
5868
5869 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5870 if (hash != NULL)
5871 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5872 INIT_HLIST_HEAD(&hash[i]);
5873
5874 return hash;
5875 }
5876
5877 /* Initialize per network namespace state */
5878 static int __net_init netdev_init(struct net *net)
5879 {
5880 INIT_LIST_HEAD(&net->dev_base_head);
5881
5882 net->dev_name_head = netdev_create_hash();
5883 if (net->dev_name_head == NULL)
5884 goto err_name;
5885
5886 net->dev_index_head = netdev_create_hash();
5887 if (net->dev_index_head == NULL)
5888 goto err_idx;
5889
5890 return 0;
5891
5892 err_idx:
5893 kfree(net->dev_name_head);
5894 err_name:
5895 return -ENOMEM;
5896 }
5897
5898 /**
5899 * netdev_drivername - network driver for the device
5900 * @dev: network device
5901 * @buffer: buffer for resulting name
5902 * @len: size of buffer
5903 *
5904 * Determine network driver for device.
5905 */
5906 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5907 {
5908 const struct device_driver *driver;
5909 const struct device *parent;
5910
5911 if (len <= 0 || !buffer)
5912 return buffer;
5913 buffer[0] = 0;
5914
5915 parent = dev->dev.parent;
5916
5917 if (!parent)
5918 return buffer;
5919
5920 driver = parent->driver;
5921 if (driver && driver->name)
5922 strlcpy(buffer, driver->name, len);
5923 return buffer;
5924 }
5925
5926 static int __netdev_printk(const char *level, const struct net_device *dev,
5927 struct va_format *vaf)
5928 {
5929 int r;
5930
5931 if (dev && dev->dev.parent)
5932 r = dev_printk(level, dev->dev.parent, "%s: %pV",
5933 netdev_name(dev), vaf);
5934 else if (dev)
5935 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
5936 else
5937 r = printk("%s(NULL net_device): %pV", level, vaf);
5938
5939 return r;
5940 }
5941
5942 int netdev_printk(const char *level, const struct net_device *dev,
5943 const char *format, ...)
5944 {
5945 struct va_format vaf;
5946 va_list args;
5947 int r;
5948
5949 va_start(args, format);
5950
5951 vaf.fmt = format;
5952 vaf.va = &args;
5953
5954 r = __netdev_printk(level, dev, &vaf);
5955 va_end(args);
5956
5957 return r;
5958 }
5959 EXPORT_SYMBOL(netdev_printk);
5960
5961 #define define_netdev_printk_level(func, level) \
5962 int func(const struct net_device *dev, const char *fmt, ...) \
5963 { \
5964 int r; \
5965 struct va_format vaf; \
5966 va_list args; \
5967 \
5968 va_start(args, fmt); \
5969 \
5970 vaf.fmt = fmt; \
5971 vaf.va = &args; \
5972 \
5973 r = __netdev_printk(level, dev, &vaf); \
5974 va_end(args); \
5975 \
5976 return r; \
5977 } \
5978 EXPORT_SYMBOL(func);
5979
5980 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
5981 define_netdev_printk_level(netdev_alert, KERN_ALERT);
5982 define_netdev_printk_level(netdev_crit, KERN_CRIT);
5983 define_netdev_printk_level(netdev_err, KERN_ERR);
5984 define_netdev_printk_level(netdev_warn, KERN_WARNING);
5985 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
5986 define_netdev_printk_level(netdev_info, KERN_INFO);
5987
5988 static void __net_exit netdev_exit(struct net *net)
5989 {
5990 kfree(net->dev_name_head);
5991 kfree(net->dev_index_head);
5992 }
5993
5994 static struct pernet_operations __net_initdata netdev_net_ops = {
5995 .init = netdev_init,
5996 .exit = netdev_exit,
5997 };
5998
5999 static void __net_exit default_device_exit(struct net *net)
6000 {
6001 struct net_device *dev, *aux;
6002 /*
6003 * Push all migratable network devices back to the
6004 * initial network namespace
6005 */
6006 rtnl_lock();
6007 for_each_netdev_safe(net, dev, aux) {
6008 int err;
6009 char fb_name[IFNAMSIZ];
6010
6011 /* Ignore unmoveable devices (i.e. loopback) */
6012 if (dev->features & NETIF_F_NETNS_LOCAL)
6013 continue;
6014
6015 /* Leave virtual devices for the generic cleanup */
6016 if (dev->rtnl_link_ops)
6017 continue;
6018
6019 /* Push remaing network devices to init_net */
6020 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6021 err = dev_change_net_namespace(dev, &init_net, fb_name);
6022 if (err) {
6023 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6024 __func__, dev->name, err);
6025 BUG();
6026 }
6027 }
6028 rtnl_unlock();
6029 }
6030
6031 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6032 {
6033 /* At exit all network devices most be removed from a network
6034 * namespace. Do this in the reverse order of registeration.
6035 * Do this across as many network namespaces as possible to
6036 * improve batching efficiency.
6037 */
6038 struct net_device *dev;
6039 struct net *net;
6040 LIST_HEAD(dev_kill_list);
6041
6042 rtnl_lock();
6043 list_for_each_entry(net, net_list, exit_list) {
6044 for_each_netdev_reverse(net, dev) {
6045 if (dev->rtnl_link_ops)
6046 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6047 else
6048 unregister_netdevice_queue(dev, &dev_kill_list);
6049 }
6050 }
6051 unregister_netdevice_many(&dev_kill_list);
6052 rtnl_unlock();
6053 }
6054
6055 static struct pernet_operations __net_initdata default_device_ops = {
6056 .exit = default_device_exit,
6057 .exit_batch = default_device_exit_batch,
6058 };
6059
6060 /*
6061 * Initialize the DEV module. At boot time this walks the device list and
6062 * unhooks any devices that fail to initialise (normally hardware not
6063 * present) and leaves us with a valid list of present and active devices.
6064 *
6065 */
6066
6067 /*
6068 * This is called single threaded during boot, so no need
6069 * to take the rtnl semaphore.
6070 */
6071 static int __init net_dev_init(void)
6072 {
6073 int i, rc = -ENOMEM;
6074
6075 BUG_ON(!dev_boot_phase);
6076
6077 if (dev_proc_init())
6078 goto out;
6079
6080 if (netdev_kobject_init())
6081 goto out;
6082
6083 INIT_LIST_HEAD(&ptype_all);
6084 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6085 INIT_LIST_HEAD(&ptype_base[i]);
6086
6087 if (register_pernet_subsys(&netdev_net_ops))
6088 goto out;
6089
6090 /*
6091 * Initialise the packet receive queues.
6092 */
6093
6094 for_each_possible_cpu(i) {
6095 struct softnet_data *sd = &per_cpu(softnet_data, i);
6096
6097 memset(sd, 0, sizeof(*sd));
6098 skb_queue_head_init(&sd->input_pkt_queue);
6099 skb_queue_head_init(&sd->process_queue);
6100 sd->completion_queue = NULL;
6101 INIT_LIST_HEAD(&sd->poll_list);
6102 sd->output_queue = NULL;
6103 sd->output_queue_tailp = &sd->output_queue;
6104 #ifdef CONFIG_RPS
6105 sd->csd.func = rps_trigger_softirq;
6106 sd->csd.info = sd;
6107 sd->csd.flags = 0;
6108 sd->cpu = i;
6109 #endif
6110
6111 sd->backlog.poll = process_backlog;
6112 sd->backlog.weight = weight_p;
6113 sd->backlog.gro_list = NULL;
6114 sd->backlog.gro_count = 0;
6115 }
6116
6117 dev_boot_phase = 0;
6118
6119 /* The loopback device is special if any other network devices
6120 * is present in a network namespace the loopback device must
6121 * be present. Since we now dynamically allocate and free the
6122 * loopback device ensure this invariant is maintained by
6123 * keeping the loopback device as the first device on the
6124 * list of network devices. Ensuring the loopback devices
6125 * is the first device that appears and the last network device
6126 * that disappears.
6127 */
6128 if (register_pernet_device(&loopback_net_ops))
6129 goto out;
6130
6131 if (register_pernet_device(&default_device_ops))
6132 goto out;
6133
6134 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6135 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6136
6137 hotcpu_notifier(dev_cpu_callback, 0);
6138 dst_init();
6139 dev_mcast_init();
6140 rc = 0;
6141 out:
6142 return rc;
6143 }
6144
6145 subsys_initcall(net_dev_init);
6146
6147 static int __init initialize_hashrnd(void)
6148 {
6149 get_random_bytes(&hashrnd, sizeof(hashrnd));
6150 return 0;
6151 }
6152
6153 late_initcall_sync(initialize_hashrnd);
6154