]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/core/dev.c
Merge branch 'mailbox-for-next' of git://git.linaro.org/landing-teams/working/fujitsu...
[mirror_ubuntu-bionic-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/sctp.h>
142
143 #include "net-sysfs.h"
144
145 /* Instead of increasing this, you should create a hash table. */
146 #define MAX_GRO_SKBS 8
147
148 /* This should be increased if a protocol with a bigger head is added. */
149 #define GRO_MAX_HEAD (MAX_HEADER + 128)
150
151 static DEFINE_SPINLOCK(ptype_lock);
152 static DEFINE_SPINLOCK(offload_lock);
153 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
154 struct list_head ptype_all __read_mostly; /* Taps */
155 static struct list_head offload_base __read_mostly;
156
157 static int netif_rx_internal(struct sk_buff *skb);
158 static int call_netdevice_notifiers_info(unsigned long val,
159 struct net_device *dev,
160 struct netdev_notifier_info *info);
161
162 /*
163 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
164 * semaphore.
165 *
166 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
167 *
168 * Writers must hold the rtnl semaphore while they loop through the
169 * dev_base_head list, and hold dev_base_lock for writing when they do the
170 * actual updates. This allows pure readers to access the list even
171 * while a writer is preparing to update it.
172 *
173 * To put it another way, dev_base_lock is held for writing only to
174 * protect against pure readers; the rtnl semaphore provides the
175 * protection against other writers.
176 *
177 * See, for example usages, register_netdevice() and
178 * unregister_netdevice(), which must be called with the rtnl
179 * semaphore held.
180 */
181 DEFINE_RWLOCK(dev_base_lock);
182 EXPORT_SYMBOL(dev_base_lock);
183
184 /* protects napi_hash addition/deletion and napi_gen_id */
185 static DEFINE_SPINLOCK(napi_hash_lock);
186
187 static unsigned int napi_gen_id = NR_CPUS;
188 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
189
190 static seqcount_t devnet_rename_seq;
191
192 static inline void dev_base_seq_inc(struct net *net)
193 {
194 while (++net->dev_base_seq == 0);
195 }
196
197 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
198 {
199 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
200
201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
202 }
203
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205 {
206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
207 }
208
209 static inline void rps_lock(struct softnet_data *sd)
210 {
211 #ifdef CONFIG_RPS
212 spin_lock(&sd->input_pkt_queue.lock);
213 #endif
214 }
215
216 static inline void rps_unlock(struct softnet_data *sd)
217 {
218 #ifdef CONFIG_RPS
219 spin_unlock(&sd->input_pkt_queue.lock);
220 #endif
221 }
222
223 /* Device list insertion */
224 static void list_netdevice(struct net_device *dev)
225 {
226 struct net *net = dev_net(dev);
227
228 ASSERT_RTNL();
229
230 write_lock_bh(&dev_base_lock);
231 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
232 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
233 hlist_add_head_rcu(&dev->index_hlist,
234 dev_index_hash(net, dev->ifindex));
235 write_unlock_bh(&dev_base_lock);
236
237 dev_base_seq_inc(net);
238 }
239
240 /* Device list removal
241 * caller must respect a RCU grace period before freeing/reusing dev
242 */
243 static void unlist_netdevice(struct net_device *dev)
244 {
245 ASSERT_RTNL();
246
247 /* Unlink dev from the device chain */
248 write_lock_bh(&dev_base_lock);
249 list_del_rcu(&dev->dev_list);
250 hlist_del_rcu(&dev->name_hlist);
251 hlist_del_rcu(&dev->index_hlist);
252 write_unlock_bh(&dev_base_lock);
253
254 dev_base_seq_inc(dev_net(dev));
255 }
256
257 /*
258 * Our notifier list
259 */
260
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262
263 /*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
267
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270
271 #ifdef CONFIG_LOCKDEP
272 /*
273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274 * according to dev->type
275 */
276 static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
290 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
291 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
292
293 static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
307 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
308 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
309
310 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
311 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
312
313 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
314 {
315 int i;
316
317 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
318 if (netdev_lock_type[i] == dev_type)
319 return i;
320 /* the last key is used by default */
321 return ARRAY_SIZE(netdev_lock_type) - 1;
322 }
323
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326 {
327 int i;
328
329 i = netdev_lock_pos(dev_type);
330 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
331 netdev_lock_name[i]);
332 }
333
334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335 {
336 int i;
337
338 i = netdev_lock_pos(dev->type);
339 lockdep_set_class_and_name(&dev->addr_list_lock,
340 &netdev_addr_lock_key[i],
341 netdev_lock_name[i]);
342 }
343 #else
344 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
345 unsigned short dev_type)
346 {
347 }
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 }
351 #endif
352
353 /*******************************************************************************
354
355 Protocol management and registration routines
356
357 *******************************************************************************/
358
359 /*
360 * Add a protocol ID to the list. Now that the input handler is
361 * smarter we can dispense with all the messy stuff that used to be
362 * here.
363 *
364 * BEWARE!!! Protocol handlers, mangling input packets,
365 * MUST BE last in hash buckets and checking protocol handlers
366 * MUST start from promiscuous ptype_all chain in net_bh.
367 * It is true now, do not change it.
368 * Explanation follows: if protocol handler, mangling packet, will
369 * be the first on list, it is not able to sense, that packet
370 * is cloned and should be copied-on-write, so that it will
371 * change it and subsequent readers will get broken packet.
372 * --ANK (980803)
373 */
374
375 static inline struct list_head *ptype_head(const struct packet_type *pt)
376 {
377 if (pt->type == htons(ETH_P_ALL))
378 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
379 else
380 return pt->dev ? &pt->dev->ptype_specific :
381 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
382 }
383
384 /**
385 * dev_add_pack - add packet handler
386 * @pt: packet type declaration
387 *
388 * Add a protocol handler to the networking stack. The passed &packet_type
389 * is linked into kernel lists and may not be freed until it has been
390 * removed from the kernel lists.
391 *
392 * This call does not sleep therefore it can not
393 * guarantee all CPU's that are in middle of receiving packets
394 * will see the new packet type (until the next received packet).
395 */
396
397 void dev_add_pack(struct packet_type *pt)
398 {
399 struct list_head *head = ptype_head(pt);
400
401 spin_lock(&ptype_lock);
402 list_add_rcu(&pt->list, head);
403 spin_unlock(&ptype_lock);
404 }
405 EXPORT_SYMBOL(dev_add_pack);
406
407 /**
408 * __dev_remove_pack - remove packet handler
409 * @pt: packet type declaration
410 *
411 * Remove a protocol handler that was previously added to the kernel
412 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
413 * from the kernel lists and can be freed or reused once this function
414 * returns.
415 *
416 * The packet type might still be in use by receivers
417 * and must not be freed until after all the CPU's have gone
418 * through a quiescent state.
419 */
420 void __dev_remove_pack(struct packet_type *pt)
421 {
422 struct list_head *head = ptype_head(pt);
423 struct packet_type *pt1;
424
425 spin_lock(&ptype_lock);
426
427 list_for_each_entry(pt1, head, list) {
428 if (pt == pt1) {
429 list_del_rcu(&pt->list);
430 goto out;
431 }
432 }
433
434 pr_warn("dev_remove_pack: %p not found\n", pt);
435 out:
436 spin_unlock(&ptype_lock);
437 }
438 EXPORT_SYMBOL(__dev_remove_pack);
439
440 /**
441 * dev_remove_pack - remove packet handler
442 * @pt: packet type declaration
443 *
444 * Remove a protocol handler that was previously added to the kernel
445 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
446 * from the kernel lists and can be freed or reused once this function
447 * returns.
448 *
449 * This call sleeps to guarantee that no CPU is looking at the packet
450 * type after return.
451 */
452 void dev_remove_pack(struct packet_type *pt)
453 {
454 __dev_remove_pack(pt);
455
456 synchronize_net();
457 }
458 EXPORT_SYMBOL(dev_remove_pack);
459
460
461 /**
462 * dev_add_offload - register offload handlers
463 * @po: protocol offload declaration
464 *
465 * Add protocol offload handlers to the networking stack. The passed
466 * &proto_offload is linked into kernel lists and may not be freed until
467 * it has been removed from the kernel lists.
468 *
469 * This call does not sleep therefore it can not
470 * guarantee all CPU's that are in middle of receiving packets
471 * will see the new offload handlers (until the next received packet).
472 */
473 void dev_add_offload(struct packet_offload *po)
474 {
475 struct packet_offload *elem;
476
477 spin_lock(&offload_lock);
478 list_for_each_entry(elem, &offload_base, list) {
479 if (po->priority < elem->priority)
480 break;
481 }
482 list_add_rcu(&po->list, elem->list.prev);
483 spin_unlock(&offload_lock);
484 }
485 EXPORT_SYMBOL(dev_add_offload);
486
487 /**
488 * __dev_remove_offload - remove offload handler
489 * @po: packet offload declaration
490 *
491 * Remove a protocol offload handler that was previously added to the
492 * kernel offload handlers by dev_add_offload(). The passed &offload_type
493 * is removed from the kernel lists and can be freed or reused once this
494 * function returns.
495 *
496 * The packet type might still be in use by receivers
497 * and must not be freed until after all the CPU's have gone
498 * through a quiescent state.
499 */
500 static void __dev_remove_offload(struct packet_offload *po)
501 {
502 struct list_head *head = &offload_base;
503 struct packet_offload *po1;
504
505 spin_lock(&offload_lock);
506
507 list_for_each_entry(po1, head, list) {
508 if (po == po1) {
509 list_del_rcu(&po->list);
510 goto out;
511 }
512 }
513
514 pr_warn("dev_remove_offload: %p not found\n", po);
515 out:
516 spin_unlock(&offload_lock);
517 }
518
519 /**
520 * dev_remove_offload - remove packet offload handler
521 * @po: packet offload declaration
522 *
523 * Remove a packet offload handler that was previously added to the kernel
524 * offload handlers by dev_add_offload(). The passed &offload_type is
525 * removed from the kernel lists and can be freed or reused once this
526 * function returns.
527 *
528 * This call sleeps to guarantee that no CPU is looking at the packet
529 * type after return.
530 */
531 void dev_remove_offload(struct packet_offload *po)
532 {
533 __dev_remove_offload(po);
534
535 synchronize_net();
536 }
537 EXPORT_SYMBOL(dev_remove_offload);
538
539 /******************************************************************************
540
541 Device Boot-time Settings Routines
542
543 *******************************************************************************/
544
545 /* Boot time configuration table */
546 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
547
548 /**
549 * netdev_boot_setup_add - add new setup entry
550 * @name: name of the device
551 * @map: configured settings for the device
552 *
553 * Adds new setup entry to the dev_boot_setup list. The function
554 * returns 0 on error and 1 on success. This is a generic routine to
555 * all netdevices.
556 */
557 static int netdev_boot_setup_add(char *name, struct ifmap *map)
558 {
559 struct netdev_boot_setup *s;
560 int i;
561
562 s = dev_boot_setup;
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
564 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
565 memset(s[i].name, 0, sizeof(s[i].name));
566 strlcpy(s[i].name, name, IFNAMSIZ);
567 memcpy(&s[i].map, map, sizeof(s[i].map));
568 break;
569 }
570 }
571
572 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
573 }
574
575 /**
576 * netdev_boot_setup_check - check boot time settings
577 * @dev: the netdevice
578 *
579 * Check boot time settings for the device.
580 * The found settings are set for the device to be used
581 * later in the device probing.
582 * Returns 0 if no settings found, 1 if they are.
583 */
584 int netdev_boot_setup_check(struct net_device *dev)
585 {
586 struct netdev_boot_setup *s = dev_boot_setup;
587 int i;
588
589 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
590 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
591 !strcmp(dev->name, s[i].name)) {
592 dev->irq = s[i].map.irq;
593 dev->base_addr = s[i].map.base_addr;
594 dev->mem_start = s[i].map.mem_start;
595 dev->mem_end = s[i].map.mem_end;
596 return 1;
597 }
598 }
599 return 0;
600 }
601 EXPORT_SYMBOL(netdev_boot_setup_check);
602
603
604 /**
605 * netdev_boot_base - get address from boot time settings
606 * @prefix: prefix for network device
607 * @unit: id for network device
608 *
609 * Check boot time settings for the base address of device.
610 * The found settings are set for the device to be used
611 * later in the device probing.
612 * Returns 0 if no settings found.
613 */
614 unsigned long netdev_boot_base(const char *prefix, int unit)
615 {
616 const struct netdev_boot_setup *s = dev_boot_setup;
617 char name[IFNAMSIZ];
618 int i;
619
620 sprintf(name, "%s%d", prefix, unit);
621
622 /*
623 * If device already registered then return base of 1
624 * to indicate not to probe for this interface
625 */
626 if (__dev_get_by_name(&init_net, name))
627 return 1;
628
629 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
630 if (!strcmp(name, s[i].name))
631 return s[i].map.base_addr;
632 return 0;
633 }
634
635 /*
636 * Saves at boot time configured settings for any netdevice.
637 */
638 int __init netdev_boot_setup(char *str)
639 {
640 int ints[5];
641 struct ifmap map;
642
643 str = get_options(str, ARRAY_SIZE(ints), ints);
644 if (!str || !*str)
645 return 0;
646
647 /* Save settings */
648 memset(&map, 0, sizeof(map));
649 if (ints[0] > 0)
650 map.irq = ints[1];
651 if (ints[0] > 1)
652 map.base_addr = ints[2];
653 if (ints[0] > 2)
654 map.mem_start = ints[3];
655 if (ints[0] > 3)
656 map.mem_end = ints[4];
657
658 /* Add new entry to the list */
659 return netdev_boot_setup_add(str, &map);
660 }
661
662 __setup("netdev=", netdev_boot_setup);
663
664 /*******************************************************************************
665
666 Device Interface Subroutines
667
668 *******************************************************************************/
669
670 /**
671 * dev_get_iflink - get 'iflink' value of a interface
672 * @dev: targeted interface
673 *
674 * Indicates the ifindex the interface is linked to.
675 * Physical interfaces have the same 'ifindex' and 'iflink' values.
676 */
677
678 int dev_get_iflink(const struct net_device *dev)
679 {
680 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
681 return dev->netdev_ops->ndo_get_iflink(dev);
682
683 return dev->ifindex;
684 }
685 EXPORT_SYMBOL(dev_get_iflink);
686
687 /**
688 * dev_fill_metadata_dst - Retrieve tunnel egress information.
689 * @dev: targeted interface
690 * @skb: The packet.
691 *
692 * For better visibility of tunnel traffic OVS needs to retrieve
693 * egress tunnel information for a packet. Following API allows
694 * user to get this info.
695 */
696 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
697 {
698 struct ip_tunnel_info *info;
699
700 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
701 return -EINVAL;
702
703 info = skb_tunnel_info_unclone(skb);
704 if (!info)
705 return -ENOMEM;
706 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
707 return -EINVAL;
708
709 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
710 }
711 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
712
713 /**
714 * __dev_get_by_name - find a device by its name
715 * @net: the applicable net namespace
716 * @name: name to find
717 *
718 * Find an interface by name. Must be called under RTNL semaphore
719 * or @dev_base_lock. If the name is found a pointer to the device
720 * is returned. If the name is not found then %NULL is returned. The
721 * reference counters are not incremented so the caller must be
722 * careful with locks.
723 */
724
725 struct net_device *__dev_get_by_name(struct net *net, const char *name)
726 {
727 struct net_device *dev;
728 struct hlist_head *head = dev_name_hash(net, name);
729
730 hlist_for_each_entry(dev, head, name_hlist)
731 if (!strncmp(dev->name, name, IFNAMSIZ))
732 return dev;
733
734 return NULL;
735 }
736 EXPORT_SYMBOL(__dev_get_by_name);
737
738 /**
739 * dev_get_by_name_rcu - find a device by its name
740 * @net: the applicable net namespace
741 * @name: name to find
742 *
743 * Find an interface by name.
744 * If the name is found a pointer to the device is returned.
745 * If the name is not found then %NULL is returned.
746 * The reference counters are not incremented so the caller must be
747 * careful with locks. The caller must hold RCU lock.
748 */
749
750 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
751 {
752 struct net_device *dev;
753 struct hlist_head *head = dev_name_hash(net, name);
754
755 hlist_for_each_entry_rcu(dev, head, name_hlist)
756 if (!strncmp(dev->name, name, IFNAMSIZ))
757 return dev;
758
759 return NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762
763 /**
764 * dev_get_by_name - find a device by its name
765 * @net: the applicable net namespace
766 * @name: name to find
767 *
768 * Find an interface by name. This can be called from any
769 * context and does its own locking. The returned handle has
770 * the usage count incremented and the caller must use dev_put() to
771 * release it when it is no longer needed. %NULL is returned if no
772 * matching device is found.
773 */
774
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777 struct net_device *dev;
778
779 rcu_read_lock();
780 dev = dev_get_by_name_rcu(net, name);
781 if (dev)
782 dev_hold(dev);
783 rcu_read_unlock();
784 return dev;
785 }
786 EXPORT_SYMBOL(dev_get_by_name);
787
788 /**
789 * __dev_get_by_index - find a device by its ifindex
790 * @net: the applicable net namespace
791 * @ifindex: index of device
792 *
793 * Search for an interface by index. Returns %NULL if the device
794 * is not found or a pointer to the device. The device has not
795 * had its reference counter increased so the caller must be careful
796 * about locking. The caller must hold either the RTNL semaphore
797 * or @dev_base_lock.
798 */
799
800 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
801 {
802 struct net_device *dev;
803 struct hlist_head *head = dev_index_hash(net, ifindex);
804
805 hlist_for_each_entry(dev, head, index_hlist)
806 if (dev->ifindex == ifindex)
807 return dev;
808
809 return NULL;
810 }
811 EXPORT_SYMBOL(__dev_get_by_index);
812
813 /**
814 * dev_get_by_index_rcu - find a device by its ifindex
815 * @net: the applicable net namespace
816 * @ifindex: index of device
817 *
818 * Search for an interface by index. Returns %NULL if the device
819 * is not found or a pointer to the device. The device has not
820 * had its reference counter increased so the caller must be careful
821 * about locking. The caller must hold RCU lock.
822 */
823
824 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
825 {
826 struct net_device *dev;
827 struct hlist_head *head = dev_index_hash(net, ifindex);
828
829 hlist_for_each_entry_rcu(dev, head, index_hlist)
830 if (dev->ifindex == ifindex)
831 return dev;
832
833 return NULL;
834 }
835 EXPORT_SYMBOL(dev_get_by_index_rcu);
836
837
838 /**
839 * dev_get_by_index - find a device by its ifindex
840 * @net: the applicable net namespace
841 * @ifindex: index of device
842 *
843 * Search for an interface by index. Returns NULL if the device
844 * is not found or a pointer to the device. The device returned has
845 * had a reference added and the pointer is safe until the user calls
846 * dev_put to indicate they have finished with it.
847 */
848
849 struct net_device *dev_get_by_index(struct net *net, int ifindex)
850 {
851 struct net_device *dev;
852
853 rcu_read_lock();
854 dev = dev_get_by_index_rcu(net, ifindex);
855 if (dev)
856 dev_hold(dev);
857 rcu_read_unlock();
858 return dev;
859 }
860 EXPORT_SYMBOL(dev_get_by_index);
861
862 /**
863 * netdev_get_name - get a netdevice name, knowing its ifindex.
864 * @net: network namespace
865 * @name: a pointer to the buffer where the name will be stored.
866 * @ifindex: the ifindex of the interface to get the name from.
867 *
868 * The use of raw_seqcount_begin() and cond_resched() before
869 * retrying is required as we want to give the writers a chance
870 * to complete when CONFIG_PREEMPT is not set.
871 */
872 int netdev_get_name(struct net *net, char *name, int ifindex)
873 {
874 struct net_device *dev;
875 unsigned int seq;
876
877 retry:
878 seq = raw_seqcount_begin(&devnet_rename_seq);
879 rcu_read_lock();
880 dev = dev_get_by_index_rcu(net, ifindex);
881 if (!dev) {
882 rcu_read_unlock();
883 return -ENODEV;
884 }
885
886 strcpy(name, dev->name);
887 rcu_read_unlock();
888 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
889 cond_resched();
890 goto retry;
891 }
892
893 return 0;
894 }
895
896 /**
897 * dev_getbyhwaddr_rcu - find a device by its hardware address
898 * @net: the applicable net namespace
899 * @type: media type of device
900 * @ha: hardware address
901 *
902 * Search for an interface by MAC address. Returns NULL if the device
903 * is not found or a pointer to the device.
904 * The caller must hold RCU or RTNL.
905 * The returned device has not had its ref count increased
906 * and the caller must therefore be careful about locking
907 *
908 */
909
910 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
911 const char *ha)
912 {
913 struct net_device *dev;
914
915 for_each_netdev_rcu(net, dev)
916 if (dev->type == type &&
917 !memcmp(dev->dev_addr, ha, dev->addr_len))
918 return dev;
919
920 return NULL;
921 }
922 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
923
924 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
925 {
926 struct net_device *dev;
927
928 ASSERT_RTNL();
929 for_each_netdev(net, dev)
930 if (dev->type == type)
931 return dev;
932
933 return NULL;
934 }
935 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
936
937 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
938 {
939 struct net_device *dev, *ret = NULL;
940
941 rcu_read_lock();
942 for_each_netdev_rcu(net, dev)
943 if (dev->type == type) {
944 dev_hold(dev);
945 ret = dev;
946 break;
947 }
948 rcu_read_unlock();
949 return ret;
950 }
951 EXPORT_SYMBOL(dev_getfirstbyhwtype);
952
953 /**
954 * __dev_get_by_flags - find any device with given flags
955 * @net: the applicable net namespace
956 * @if_flags: IFF_* values
957 * @mask: bitmask of bits in if_flags to check
958 *
959 * Search for any interface with the given flags. Returns NULL if a device
960 * is not found or a pointer to the device. Must be called inside
961 * rtnl_lock(), and result refcount is unchanged.
962 */
963
964 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
965 unsigned short mask)
966 {
967 struct net_device *dev, *ret;
968
969 ASSERT_RTNL();
970
971 ret = NULL;
972 for_each_netdev(net, dev) {
973 if (((dev->flags ^ if_flags) & mask) == 0) {
974 ret = dev;
975 break;
976 }
977 }
978 return ret;
979 }
980 EXPORT_SYMBOL(__dev_get_by_flags);
981
982 /**
983 * dev_valid_name - check if name is okay for network device
984 * @name: name string
985 *
986 * Network device names need to be valid file names to
987 * to allow sysfs to work. We also disallow any kind of
988 * whitespace.
989 */
990 bool dev_valid_name(const char *name)
991 {
992 if (*name == '\0')
993 return false;
994 if (strlen(name) >= IFNAMSIZ)
995 return false;
996 if (!strcmp(name, ".") || !strcmp(name, ".."))
997 return false;
998
999 while (*name) {
1000 if (*name == '/' || *name == ':' || isspace(*name))
1001 return false;
1002 name++;
1003 }
1004 return true;
1005 }
1006 EXPORT_SYMBOL(dev_valid_name);
1007
1008 /**
1009 * __dev_alloc_name - allocate a name for a device
1010 * @net: network namespace to allocate the device name in
1011 * @name: name format string
1012 * @buf: scratch buffer and result name string
1013 *
1014 * Passed a format string - eg "lt%d" it will try and find a suitable
1015 * id. It scans list of devices to build up a free map, then chooses
1016 * the first empty slot. The caller must hold the dev_base or rtnl lock
1017 * while allocating the name and adding the device in order to avoid
1018 * duplicates.
1019 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1020 * Returns the number of the unit assigned or a negative errno code.
1021 */
1022
1023 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1024 {
1025 int i = 0;
1026 const char *p;
1027 const int max_netdevices = 8*PAGE_SIZE;
1028 unsigned long *inuse;
1029 struct net_device *d;
1030
1031 p = strnchr(name, IFNAMSIZ-1, '%');
1032 if (p) {
1033 /*
1034 * Verify the string as this thing may have come from
1035 * the user. There must be either one "%d" and no other "%"
1036 * characters.
1037 */
1038 if (p[1] != 'd' || strchr(p + 2, '%'))
1039 return -EINVAL;
1040
1041 /* Use one page as a bit array of possible slots */
1042 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1043 if (!inuse)
1044 return -ENOMEM;
1045
1046 for_each_netdev(net, d) {
1047 if (!sscanf(d->name, name, &i))
1048 continue;
1049 if (i < 0 || i >= max_netdevices)
1050 continue;
1051
1052 /* avoid cases where sscanf is not exact inverse of printf */
1053 snprintf(buf, IFNAMSIZ, name, i);
1054 if (!strncmp(buf, d->name, IFNAMSIZ))
1055 set_bit(i, inuse);
1056 }
1057
1058 i = find_first_zero_bit(inuse, max_netdevices);
1059 free_page((unsigned long) inuse);
1060 }
1061
1062 if (buf != name)
1063 snprintf(buf, IFNAMSIZ, name, i);
1064 if (!__dev_get_by_name(net, buf))
1065 return i;
1066
1067 /* It is possible to run out of possible slots
1068 * when the name is long and there isn't enough space left
1069 * for the digits, or if all bits are used.
1070 */
1071 return -ENFILE;
1072 }
1073
1074 /**
1075 * dev_alloc_name - allocate a name for a device
1076 * @dev: device
1077 * @name: name format string
1078 *
1079 * Passed a format string - eg "lt%d" it will try and find a suitable
1080 * id. It scans list of devices to build up a free map, then chooses
1081 * the first empty slot. The caller must hold the dev_base or rtnl lock
1082 * while allocating the name and adding the device in order to avoid
1083 * duplicates.
1084 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1085 * Returns the number of the unit assigned or a negative errno code.
1086 */
1087
1088 int dev_alloc_name(struct net_device *dev, const char *name)
1089 {
1090 char buf[IFNAMSIZ];
1091 struct net *net;
1092 int ret;
1093
1094 BUG_ON(!dev_net(dev));
1095 net = dev_net(dev);
1096 ret = __dev_alloc_name(net, name, buf);
1097 if (ret >= 0)
1098 strlcpy(dev->name, buf, IFNAMSIZ);
1099 return ret;
1100 }
1101 EXPORT_SYMBOL(dev_alloc_name);
1102
1103 static int dev_alloc_name_ns(struct net *net,
1104 struct net_device *dev,
1105 const char *name)
1106 {
1107 char buf[IFNAMSIZ];
1108 int ret;
1109
1110 ret = __dev_alloc_name(net, name, buf);
1111 if (ret >= 0)
1112 strlcpy(dev->name, buf, IFNAMSIZ);
1113 return ret;
1114 }
1115
1116 static int dev_get_valid_name(struct net *net,
1117 struct net_device *dev,
1118 const char *name)
1119 {
1120 BUG_ON(!net);
1121
1122 if (!dev_valid_name(name))
1123 return -EINVAL;
1124
1125 if (strchr(name, '%'))
1126 return dev_alloc_name_ns(net, dev, name);
1127 else if (__dev_get_by_name(net, name))
1128 return -EEXIST;
1129 else if (dev->name != name)
1130 strlcpy(dev->name, name, IFNAMSIZ);
1131
1132 return 0;
1133 }
1134
1135 /**
1136 * dev_change_name - change name of a device
1137 * @dev: device
1138 * @newname: name (or format string) must be at least IFNAMSIZ
1139 *
1140 * Change name of a device, can pass format strings "eth%d".
1141 * for wildcarding.
1142 */
1143 int dev_change_name(struct net_device *dev, const char *newname)
1144 {
1145 unsigned char old_assign_type;
1146 char oldname[IFNAMSIZ];
1147 int err = 0;
1148 int ret;
1149 struct net *net;
1150
1151 ASSERT_RTNL();
1152 BUG_ON(!dev_net(dev));
1153
1154 net = dev_net(dev);
1155 if (dev->flags & IFF_UP)
1156 return -EBUSY;
1157
1158 write_seqcount_begin(&devnet_rename_seq);
1159
1160 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1161 write_seqcount_end(&devnet_rename_seq);
1162 return 0;
1163 }
1164
1165 memcpy(oldname, dev->name, IFNAMSIZ);
1166
1167 err = dev_get_valid_name(net, dev, newname);
1168 if (err < 0) {
1169 write_seqcount_end(&devnet_rename_seq);
1170 return err;
1171 }
1172
1173 if (oldname[0] && !strchr(oldname, '%'))
1174 netdev_info(dev, "renamed from %s\n", oldname);
1175
1176 old_assign_type = dev->name_assign_type;
1177 dev->name_assign_type = NET_NAME_RENAMED;
1178
1179 rollback:
1180 ret = device_rename(&dev->dev, dev->name);
1181 if (ret) {
1182 memcpy(dev->name, oldname, IFNAMSIZ);
1183 dev->name_assign_type = old_assign_type;
1184 write_seqcount_end(&devnet_rename_seq);
1185 return ret;
1186 }
1187
1188 write_seqcount_end(&devnet_rename_seq);
1189
1190 netdev_adjacent_rename_links(dev, oldname);
1191
1192 write_lock_bh(&dev_base_lock);
1193 hlist_del_rcu(&dev->name_hlist);
1194 write_unlock_bh(&dev_base_lock);
1195
1196 synchronize_rcu();
1197
1198 write_lock_bh(&dev_base_lock);
1199 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1200 write_unlock_bh(&dev_base_lock);
1201
1202 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1203 ret = notifier_to_errno(ret);
1204
1205 if (ret) {
1206 /* err >= 0 after dev_alloc_name() or stores the first errno */
1207 if (err >= 0) {
1208 err = ret;
1209 write_seqcount_begin(&devnet_rename_seq);
1210 memcpy(dev->name, oldname, IFNAMSIZ);
1211 memcpy(oldname, newname, IFNAMSIZ);
1212 dev->name_assign_type = old_assign_type;
1213 old_assign_type = NET_NAME_RENAMED;
1214 goto rollback;
1215 } else {
1216 pr_err("%s: name change rollback failed: %d\n",
1217 dev->name, ret);
1218 }
1219 }
1220
1221 return err;
1222 }
1223
1224 /**
1225 * dev_set_alias - change ifalias of a device
1226 * @dev: device
1227 * @alias: name up to IFALIASZ
1228 * @len: limit of bytes to copy from info
1229 *
1230 * Set ifalias for a device,
1231 */
1232 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1233 {
1234 char *new_ifalias;
1235
1236 ASSERT_RTNL();
1237
1238 if (len >= IFALIASZ)
1239 return -EINVAL;
1240
1241 if (!len) {
1242 kfree(dev->ifalias);
1243 dev->ifalias = NULL;
1244 return 0;
1245 }
1246
1247 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1248 if (!new_ifalias)
1249 return -ENOMEM;
1250 dev->ifalias = new_ifalias;
1251
1252 strlcpy(dev->ifalias, alias, len+1);
1253 return len;
1254 }
1255
1256
1257 /**
1258 * netdev_features_change - device changes features
1259 * @dev: device to cause notification
1260 *
1261 * Called to indicate a device has changed features.
1262 */
1263 void netdev_features_change(struct net_device *dev)
1264 {
1265 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1266 }
1267 EXPORT_SYMBOL(netdev_features_change);
1268
1269 /**
1270 * netdev_state_change - device changes state
1271 * @dev: device to cause notification
1272 *
1273 * Called to indicate a device has changed state. This function calls
1274 * the notifier chains for netdev_chain and sends a NEWLINK message
1275 * to the routing socket.
1276 */
1277 void netdev_state_change(struct net_device *dev)
1278 {
1279 if (dev->flags & IFF_UP) {
1280 struct netdev_notifier_change_info change_info;
1281
1282 change_info.flags_changed = 0;
1283 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1284 &change_info.info);
1285 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1286 }
1287 }
1288 EXPORT_SYMBOL(netdev_state_change);
1289
1290 /**
1291 * netdev_notify_peers - notify network peers about existence of @dev
1292 * @dev: network device
1293 *
1294 * Generate traffic such that interested network peers are aware of
1295 * @dev, such as by generating a gratuitous ARP. This may be used when
1296 * a device wants to inform the rest of the network about some sort of
1297 * reconfiguration such as a failover event or virtual machine
1298 * migration.
1299 */
1300 void netdev_notify_peers(struct net_device *dev)
1301 {
1302 rtnl_lock();
1303 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1304 rtnl_unlock();
1305 }
1306 EXPORT_SYMBOL(netdev_notify_peers);
1307
1308 static int __dev_open(struct net_device *dev)
1309 {
1310 const struct net_device_ops *ops = dev->netdev_ops;
1311 int ret;
1312
1313 ASSERT_RTNL();
1314
1315 if (!netif_device_present(dev))
1316 return -ENODEV;
1317
1318 /* Block netpoll from trying to do any rx path servicing.
1319 * If we don't do this there is a chance ndo_poll_controller
1320 * or ndo_poll may be running while we open the device
1321 */
1322 netpoll_poll_disable(dev);
1323
1324 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1325 ret = notifier_to_errno(ret);
1326 if (ret)
1327 return ret;
1328
1329 set_bit(__LINK_STATE_START, &dev->state);
1330
1331 if (ops->ndo_validate_addr)
1332 ret = ops->ndo_validate_addr(dev);
1333
1334 if (!ret && ops->ndo_open)
1335 ret = ops->ndo_open(dev);
1336
1337 netpoll_poll_enable(dev);
1338
1339 if (ret)
1340 clear_bit(__LINK_STATE_START, &dev->state);
1341 else {
1342 dev->flags |= IFF_UP;
1343 dev_set_rx_mode(dev);
1344 dev_activate(dev);
1345 add_device_randomness(dev->dev_addr, dev->addr_len);
1346 }
1347
1348 return ret;
1349 }
1350
1351 /**
1352 * dev_open - prepare an interface for use.
1353 * @dev: device to open
1354 *
1355 * Takes a device from down to up state. The device's private open
1356 * function is invoked and then the multicast lists are loaded. Finally
1357 * the device is moved into the up state and a %NETDEV_UP message is
1358 * sent to the netdev notifier chain.
1359 *
1360 * Calling this function on an active interface is a nop. On a failure
1361 * a negative errno code is returned.
1362 */
1363 int dev_open(struct net_device *dev)
1364 {
1365 int ret;
1366
1367 if (dev->flags & IFF_UP)
1368 return 0;
1369
1370 ret = __dev_open(dev);
1371 if (ret < 0)
1372 return ret;
1373
1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1375 call_netdevice_notifiers(NETDEV_UP, dev);
1376
1377 return ret;
1378 }
1379 EXPORT_SYMBOL(dev_open);
1380
1381 static int __dev_close_many(struct list_head *head)
1382 {
1383 struct net_device *dev;
1384
1385 ASSERT_RTNL();
1386 might_sleep();
1387
1388 list_for_each_entry(dev, head, close_list) {
1389 /* Temporarily disable netpoll until the interface is down */
1390 netpoll_poll_disable(dev);
1391
1392 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1393
1394 clear_bit(__LINK_STATE_START, &dev->state);
1395
1396 /* Synchronize to scheduled poll. We cannot touch poll list, it
1397 * can be even on different cpu. So just clear netif_running().
1398 *
1399 * dev->stop() will invoke napi_disable() on all of it's
1400 * napi_struct instances on this device.
1401 */
1402 smp_mb__after_atomic(); /* Commit netif_running(). */
1403 }
1404
1405 dev_deactivate_many(head);
1406
1407 list_for_each_entry(dev, head, close_list) {
1408 const struct net_device_ops *ops = dev->netdev_ops;
1409
1410 /*
1411 * Call the device specific close. This cannot fail.
1412 * Only if device is UP
1413 *
1414 * We allow it to be called even after a DETACH hot-plug
1415 * event.
1416 */
1417 if (ops->ndo_stop)
1418 ops->ndo_stop(dev);
1419
1420 dev->flags &= ~IFF_UP;
1421 netpoll_poll_enable(dev);
1422 }
1423
1424 return 0;
1425 }
1426
1427 static int __dev_close(struct net_device *dev)
1428 {
1429 int retval;
1430 LIST_HEAD(single);
1431
1432 list_add(&dev->close_list, &single);
1433 retval = __dev_close_many(&single);
1434 list_del(&single);
1435
1436 return retval;
1437 }
1438
1439 int dev_close_many(struct list_head *head, bool unlink)
1440 {
1441 struct net_device *dev, *tmp;
1442
1443 /* Remove the devices that don't need to be closed */
1444 list_for_each_entry_safe(dev, tmp, head, close_list)
1445 if (!(dev->flags & IFF_UP))
1446 list_del_init(&dev->close_list);
1447
1448 __dev_close_many(head);
1449
1450 list_for_each_entry_safe(dev, tmp, head, close_list) {
1451 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1452 call_netdevice_notifiers(NETDEV_DOWN, dev);
1453 if (unlink)
1454 list_del_init(&dev->close_list);
1455 }
1456
1457 return 0;
1458 }
1459 EXPORT_SYMBOL(dev_close_many);
1460
1461 /**
1462 * dev_close - shutdown an interface.
1463 * @dev: device to shutdown
1464 *
1465 * This function moves an active device into down state. A
1466 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1467 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1468 * chain.
1469 */
1470 int dev_close(struct net_device *dev)
1471 {
1472 if (dev->flags & IFF_UP) {
1473 LIST_HEAD(single);
1474
1475 list_add(&dev->close_list, &single);
1476 dev_close_many(&single, true);
1477 list_del(&single);
1478 }
1479 return 0;
1480 }
1481 EXPORT_SYMBOL(dev_close);
1482
1483
1484 /**
1485 * dev_disable_lro - disable Large Receive Offload on a device
1486 * @dev: device
1487 *
1488 * Disable Large Receive Offload (LRO) on a net device. Must be
1489 * called under RTNL. This is needed if received packets may be
1490 * forwarded to another interface.
1491 */
1492 void dev_disable_lro(struct net_device *dev)
1493 {
1494 struct net_device *lower_dev;
1495 struct list_head *iter;
1496
1497 dev->wanted_features &= ~NETIF_F_LRO;
1498 netdev_update_features(dev);
1499
1500 if (unlikely(dev->features & NETIF_F_LRO))
1501 netdev_WARN(dev, "failed to disable LRO!\n");
1502
1503 netdev_for_each_lower_dev(dev, lower_dev, iter)
1504 dev_disable_lro(lower_dev);
1505 }
1506 EXPORT_SYMBOL(dev_disable_lro);
1507
1508 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1509 struct net_device *dev)
1510 {
1511 struct netdev_notifier_info info;
1512
1513 netdev_notifier_info_init(&info, dev);
1514 return nb->notifier_call(nb, val, &info);
1515 }
1516
1517 static int dev_boot_phase = 1;
1518
1519 /**
1520 * register_netdevice_notifier - register a network notifier block
1521 * @nb: notifier
1522 *
1523 * Register a notifier to be called when network device events occur.
1524 * The notifier passed is linked into the kernel structures and must
1525 * not be reused until it has been unregistered. A negative errno code
1526 * is returned on a failure.
1527 *
1528 * When registered all registration and up events are replayed
1529 * to the new notifier to allow device to have a race free
1530 * view of the network device list.
1531 */
1532
1533 int register_netdevice_notifier(struct notifier_block *nb)
1534 {
1535 struct net_device *dev;
1536 struct net_device *last;
1537 struct net *net;
1538 int err;
1539
1540 rtnl_lock();
1541 err = raw_notifier_chain_register(&netdev_chain, nb);
1542 if (err)
1543 goto unlock;
1544 if (dev_boot_phase)
1545 goto unlock;
1546 for_each_net(net) {
1547 for_each_netdev(net, dev) {
1548 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1549 err = notifier_to_errno(err);
1550 if (err)
1551 goto rollback;
1552
1553 if (!(dev->flags & IFF_UP))
1554 continue;
1555
1556 call_netdevice_notifier(nb, NETDEV_UP, dev);
1557 }
1558 }
1559
1560 unlock:
1561 rtnl_unlock();
1562 return err;
1563
1564 rollback:
1565 last = dev;
1566 for_each_net(net) {
1567 for_each_netdev(net, dev) {
1568 if (dev == last)
1569 goto outroll;
1570
1571 if (dev->flags & IFF_UP) {
1572 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1573 dev);
1574 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1575 }
1576 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1577 }
1578 }
1579
1580 outroll:
1581 raw_notifier_chain_unregister(&netdev_chain, nb);
1582 goto unlock;
1583 }
1584 EXPORT_SYMBOL(register_netdevice_notifier);
1585
1586 /**
1587 * unregister_netdevice_notifier - unregister a network notifier block
1588 * @nb: notifier
1589 *
1590 * Unregister a notifier previously registered by
1591 * register_netdevice_notifier(). The notifier is unlinked into the
1592 * kernel structures and may then be reused. A negative errno code
1593 * is returned on a failure.
1594 *
1595 * After unregistering unregister and down device events are synthesized
1596 * for all devices on the device list to the removed notifier to remove
1597 * the need for special case cleanup code.
1598 */
1599
1600 int unregister_netdevice_notifier(struct notifier_block *nb)
1601 {
1602 struct net_device *dev;
1603 struct net *net;
1604 int err;
1605
1606 rtnl_lock();
1607 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1608 if (err)
1609 goto unlock;
1610
1611 for_each_net(net) {
1612 for_each_netdev(net, dev) {
1613 if (dev->flags & IFF_UP) {
1614 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1615 dev);
1616 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1617 }
1618 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1619 }
1620 }
1621 unlock:
1622 rtnl_unlock();
1623 return err;
1624 }
1625 EXPORT_SYMBOL(unregister_netdevice_notifier);
1626
1627 /**
1628 * call_netdevice_notifiers_info - call all network notifier blocks
1629 * @val: value passed unmodified to notifier function
1630 * @dev: net_device pointer passed unmodified to notifier function
1631 * @info: notifier information data
1632 *
1633 * Call all network notifier blocks. Parameters and return value
1634 * are as for raw_notifier_call_chain().
1635 */
1636
1637 static int call_netdevice_notifiers_info(unsigned long val,
1638 struct net_device *dev,
1639 struct netdev_notifier_info *info)
1640 {
1641 ASSERT_RTNL();
1642 netdev_notifier_info_init(info, dev);
1643 return raw_notifier_call_chain(&netdev_chain, val, info);
1644 }
1645
1646 /**
1647 * call_netdevice_notifiers - call all network notifier blocks
1648 * @val: value passed unmodified to notifier function
1649 * @dev: net_device pointer passed unmodified to notifier function
1650 *
1651 * Call all network notifier blocks. Parameters and return value
1652 * are as for raw_notifier_call_chain().
1653 */
1654
1655 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1656 {
1657 struct netdev_notifier_info info;
1658
1659 return call_netdevice_notifiers_info(val, dev, &info);
1660 }
1661 EXPORT_SYMBOL(call_netdevice_notifiers);
1662
1663 #ifdef CONFIG_NET_INGRESS
1664 static struct static_key ingress_needed __read_mostly;
1665
1666 void net_inc_ingress_queue(void)
1667 {
1668 static_key_slow_inc(&ingress_needed);
1669 }
1670 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1671
1672 void net_dec_ingress_queue(void)
1673 {
1674 static_key_slow_dec(&ingress_needed);
1675 }
1676 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1677 #endif
1678
1679 #ifdef CONFIG_NET_EGRESS
1680 static struct static_key egress_needed __read_mostly;
1681
1682 void net_inc_egress_queue(void)
1683 {
1684 static_key_slow_inc(&egress_needed);
1685 }
1686 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1687
1688 void net_dec_egress_queue(void)
1689 {
1690 static_key_slow_dec(&egress_needed);
1691 }
1692 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1693 #endif
1694
1695 static struct static_key netstamp_needed __read_mostly;
1696 #ifdef HAVE_JUMP_LABEL
1697 /* We are not allowed to call static_key_slow_dec() from irq context
1698 * If net_disable_timestamp() is called from irq context, defer the
1699 * static_key_slow_dec() calls.
1700 */
1701 static atomic_t netstamp_needed_deferred;
1702 #endif
1703
1704 void net_enable_timestamp(void)
1705 {
1706 #ifdef HAVE_JUMP_LABEL
1707 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1708
1709 if (deferred) {
1710 while (--deferred)
1711 static_key_slow_dec(&netstamp_needed);
1712 return;
1713 }
1714 #endif
1715 static_key_slow_inc(&netstamp_needed);
1716 }
1717 EXPORT_SYMBOL(net_enable_timestamp);
1718
1719 void net_disable_timestamp(void)
1720 {
1721 #ifdef HAVE_JUMP_LABEL
1722 if (in_interrupt()) {
1723 atomic_inc(&netstamp_needed_deferred);
1724 return;
1725 }
1726 #endif
1727 static_key_slow_dec(&netstamp_needed);
1728 }
1729 EXPORT_SYMBOL(net_disable_timestamp);
1730
1731 static inline void net_timestamp_set(struct sk_buff *skb)
1732 {
1733 skb->tstamp.tv64 = 0;
1734 if (static_key_false(&netstamp_needed))
1735 __net_timestamp(skb);
1736 }
1737
1738 #define net_timestamp_check(COND, SKB) \
1739 if (static_key_false(&netstamp_needed)) { \
1740 if ((COND) && !(SKB)->tstamp.tv64) \
1741 __net_timestamp(SKB); \
1742 } \
1743
1744 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1745 {
1746 unsigned int len;
1747
1748 if (!(dev->flags & IFF_UP))
1749 return false;
1750
1751 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1752 if (skb->len <= len)
1753 return true;
1754
1755 /* if TSO is enabled, we don't care about the length as the packet
1756 * could be forwarded without being segmented before
1757 */
1758 if (skb_is_gso(skb))
1759 return true;
1760
1761 return false;
1762 }
1763 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1764
1765 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1766 {
1767 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1768 unlikely(!is_skb_forwardable(dev, skb))) {
1769 atomic_long_inc(&dev->rx_dropped);
1770 kfree_skb(skb);
1771 return NET_RX_DROP;
1772 }
1773
1774 skb_scrub_packet(skb, true);
1775 skb->priority = 0;
1776 skb->protocol = eth_type_trans(skb, dev);
1777 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1778
1779 return 0;
1780 }
1781 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1782
1783 /**
1784 * dev_forward_skb - loopback an skb to another netif
1785 *
1786 * @dev: destination network device
1787 * @skb: buffer to forward
1788 *
1789 * return values:
1790 * NET_RX_SUCCESS (no congestion)
1791 * NET_RX_DROP (packet was dropped, but freed)
1792 *
1793 * dev_forward_skb can be used for injecting an skb from the
1794 * start_xmit function of one device into the receive queue
1795 * of another device.
1796 *
1797 * The receiving device may be in another namespace, so
1798 * we have to clear all information in the skb that could
1799 * impact namespace isolation.
1800 */
1801 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1802 {
1803 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1804 }
1805 EXPORT_SYMBOL_GPL(dev_forward_skb);
1806
1807 static inline int deliver_skb(struct sk_buff *skb,
1808 struct packet_type *pt_prev,
1809 struct net_device *orig_dev)
1810 {
1811 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1812 return -ENOMEM;
1813 atomic_inc(&skb->users);
1814 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1815 }
1816
1817 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1818 struct packet_type **pt,
1819 struct net_device *orig_dev,
1820 __be16 type,
1821 struct list_head *ptype_list)
1822 {
1823 struct packet_type *ptype, *pt_prev = *pt;
1824
1825 list_for_each_entry_rcu(ptype, ptype_list, list) {
1826 if (ptype->type != type)
1827 continue;
1828 if (pt_prev)
1829 deliver_skb(skb, pt_prev, orig_dev);
1830 pt_prev = ptype;
1831 }
1832 *pt = pt_prev;
1833 }
1834
1835 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1836 {
1837 if (!ptype->af_packet_priv || !skb->sk)
1838 return false;
1839
1840 if (ptype->id_match)
1841 return ptype->id_match(ptype, skb->sk);
1842 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1843 return true;
1844
1845 return false;
1846 }
1847
1848 /*
1849 * Support routine. Sends outgoing frames to any network
1850 * taps currently in use.
1851 */
1852
1853 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1854 {
1855 struct packet_type *ptype;
1856 struct sk_buff *skb2 = NULL;
1857 struct packet_type *pt_prev = NULL;
1858 struct list_head *ptype_list = &ptype_all;
1859
1860 rcu_read_lock();
1861 again:
1862 list_for_each_entry_rcu(ptype, ptype_list, list) {
1863 /* Never send packets back to the socket
1864 * they originated from - MvS (miquels@drinkel.ow.org)
1865 */
1866 if (skb_loop_sk(ptype, skb))
1867 continue;
1868
1869 if (pt_prev) {
1870 deliver_skb(skb2, pt_prev, skb->dev);
1871 pt_prev = ptype;
1872 continue;
1873 }
1874
1875 /* need to clone skb, done only once */
1876 skb2 = skb_clone(skb, GFP_ATOMIC);
1877 if (!skb2)
1878 goto out_unlock;
1879
1880 net_timestamp_set(skb2);
1881
1882 /* skb->nh should be correctly
1883 * set by sender, so that the second statement is
1884 * just protection against buggy protocols.
1885 */
1886 skb_reset_mac_header(skb2);
1887
1888 if (skb_network_header(skb2) < skb2->data ||
1889 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1890 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1891 ntohs(skb2->protocol),
1892 dev->name);
1893 skb_reset_network_header(skb2);
1894 }
1895
1896 skb2->transport_header = skb2->network_header;
1897 skb2->pkt_type = PACKET_OUTGOING;
1898 pt_prev = ptype;
1899 }
1900
1901 if (ptype_list == &ptype_all) {
1902 ptype_list = &dev->ptype_all;
1903 goto again;
1904 }
1905 out_unlock:
1906 if (pt_prev)
1907 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1908 rcu_read_unlock();
1909 }
1910
1911 /**
1912 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1913 * @dev: Network device
1914 * @txq: number of queues available
1915 *
1916 * If real_num_tx_queues is changed the tc mappings may no longer be
1917 * valid. To resolve this verify the tc mapping remains valid and if
1918 * not NULL the mapping. With no priorities mapping to this
1919 * offset/count pair it will no longer be used. In the worst case TC0
1920 * is invalid nothing can be done so disable priority mappings. If is
1921 * expected that drivers will fix this mapping if they can before
1922 * calling netif_set_real_num_tx_queues.
1923 */
1924 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1925 {
1926 int i;
1927 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1928
1929 /* If TC0 is invalidated disable TC mapping */
1930 if (tc->offset + tc->count > txq) {
1931 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1932 dev->num_tc = 0;
1933 return;
1934 }
1935
1936 /* Invalidated prio to tc mappings set to TC0 */
1937 for (i = 1; i < TC_BITMASK + 1; i++) {
1938 int q = netdev_get_prio_tc_map(dev, i);
1939
1940 tc = &dev->tc_to_txq[q];
1941 if (tc->offset + tc->count > txq) {
1942 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1943 i, q);
1944 netdev_set_prio_tc_map(dev, i, 0);
1945 }
1946 }
1947 }
1948
1949 #ifdef CONFIG_XPS
1950 static DEFINE_MUTEX(xps_map_mutex);
1951 #define xmap_dereference(P) \
1952 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1953
1954 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1955 int cpu, u16 index)
1956 {
1957 struct xps_map *map = NULL;
1958 int pos;
1959
1960 if (dev_maps)
1961 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1962
1963 for (pos = 0; map && pos < map->len; pos++) {
1964 if (map->queues[pos] == index) {
1965 if (map->len > 1) {
1966 map->queues[pos] = map->queues[--map->len];
1967 } else {
1968 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1969 kfree_rcu(map, rcu);
1970 map = NULL;
1971 }
1972 break;
1973 }
1974 }
1975
1976 return map;
1977 }
1978
1979 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1980 {
1981 struct xps_dev_maps *dev_maps;
1982 int cpu, i;
1983 bool active = false;
1984
1985 mutex_lock(&xps_map_mutex);
1986 dev_maps = xmap_dereference(dev->xps_maps);
1987
1988 if (!dev_maps)
1989 goto out_no_maps;
1990
1991 for_each_possible_cpu(cpu) {
1992 for (i = index; i < dev->num_tx_queues; i++) {
1993 if (!remove_xps_queue(dev_maps, cpu, i))
1994 break;
1995 }
1996 if (i == dev->num_tx_queues)
1997 active = true;
1998 }
1999
2000 if (!active) {
2001 RCU_INIT_POINTER(dev->xps_maps, NULL);
2002 kfree_rcu(dev_maps, rcu);
2003 }
2004
2005 for (i = index; i < dev->num_tx_queues; i++)
2006 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2007 NUMA_NO_NODE);
2008
2009 out_no_maps:
2010 mutex_unlock(&xps_map_mutex);
2011 }
2012
2013 static struct xps_map *expand_xps_map(struct xps_map *map,
2014 int cpu, u16 index)
2015 {
2016 struct xps_map *new_map;
2017 int alloc_len = XPS_MIN_MAP_ALLOC;
2018 int i, pos;
2019
2020 for (pos = 0; map && pos < map->len; pos++) {
2021 if (map->queues[pos] != index)
2022 continue;
2023 return map;
2024 }
2025
2026 /* Need to add queue to this CPU's existing map */
2027 if (map) {
2028 if (pos < map->alloc_len)
2029 return map;
2030
2031 alloc_len = map->alloc_len * 2;
2032 }
2033
2034 /* Need to allocate new map to store queue on this CPU's map */
2035 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2036 cpu_to_node(cpu));
2037 if (!new_map)
2038 return NULL;
2039
2040 for (i = 0; i < pos; i++)
2041 new_map->queues[i] = map->queues[i];
2042 new_map->alloc_len = alloc_len;
2043 new_map->len = pos;
2044
2045 return new_map;
2046 }
2047
2048 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2049 u16 index)
2050 {
2051 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2052 struct xps_map *map, *new_map;
2053 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2054 int cpu, numa_node_id = -2;
2055 bool active = false;
2056
2057 mutex_lock(&xps_map_mutex);
2058
2059 dev_maps = xmap_dereference(dev->xps_maps);
2060
2061 /* allocate memory for queue storage */
2062 for_each_online_cpu(cpu) {
2063 if (!cpumask_test_cpu(cpu, mask))
2064 continue;
2065
2066 if (!new_dev_maps)
2067 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2068 if (!new_dev_maps) {
2069 mutex_unlock(&xps_map_mutex);
2070 return -ENOMEM;
2071 }
2072
2073 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2074 NULL;
2075
2076 map = expand_xps_map(map, cpu, index);
2077 if (!map)
2078 goto error;
2079
2080 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2081 }
2082
2083 if (!new_dev_maps)
2084 goto out_no_new_maps;
2085
2086 for_each_possible_cpu(cpu) {
2087 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2088 /* add queue to CPU maps */
2089 int pos = 0;
2090
2091 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2092 while ((pos < map->len) && (map->queues[pos] != index))
2093 pos++;
2094
2095 if (pos == map->len)
2096 map->queues[map->len++] = index;
2097 #ifdef CONFIG_NUMA
2098 if (numa_node_id == -2)
2099 numa_node_id = cpu_to_node(cpu);
2100 else if (numa_node_id != cpu_to_node(cpu))
2101 numa_node_id = -1;
2102 #endif
2103 } else if (dev_maps) {
2104 /* fill in the new device map from the old device map */
2105 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2106 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2107 }
2108
2109 }
2110
2111 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2112
2113 /* Cleanup old maps */
2114 if (dev_maps) {
2115 for_each_possible_cpu(cpu) {
2116 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2117 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2118 if (map && map != new_map)
2119 kfree_rcu(map, rcu);
2120 }
2121
2122 kfree_rcu(dev_maps, rcu);
2123 }
2124
2125 dev_maps = new_dev_maps;
2126 active = true;
2127
2128 out_no_new_maps:
2129 /* update Tx queue numa node */
2130 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2131 (numa_node_id >= 0) ? numa_node_id :
2132 NUMA_NO_NODE);
2133
2134 if (!dev_maps)
2135 goto out_no_maps;
2136
2137 /* removes queue from unused CPUs */
2138 for_each_possible_cpu(cpu) {
2139 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2140 continue;
2141
2142 if (remove_xps_queue(dev_maps, cpu, index))
2143 active = true;
2144 }
2145
2146 /* free map if not active */
2147 if (!active) {
2148 RCU_INIT_POINTER(dev->xps_maps, NULL);
2149 kfree_rcu(dev_maps, rcu);
2150 }
2151
2152 out_no_maps:
2153 mutex_unlock(&xps_map_mutex);
2154
2155 return 0;
2156 error:
2157 /* remove any maps that we added */
2158 for_each_possible_cpu(cpu) {
2159 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2160 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2161 NULL;
2162 if (new_map && new_map != map)
2163 kfree(new_map);
2164 }
2165
2166 mutex_unlock(&xps_map_mutex);
2167
2168 kfree(new_dev_maps);
2169 return -ENOMEM;
2170 }
2171 EXPORT_SYMBOL(netif_set_xps_queue);
2172
2173 #endif
2174 /*
2175 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2176 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2177 */
2178 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2179 {
2180 int rc;
2181
2182 if (txq < 1 || txq > dev->num_tx_queues)
2183 return -EINVAL;
2184
2185 if (dev->reg_state == NETREG_REGISTERED ||
2186 dev->reg_state == NETREG_UNREGISTERING) {
2187 ASSERT_RTNL();
2188
2189 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2190 txq);
2191 if (rc)
2192 return rc;
2193
2194 if (dev->num_tc)
2195 netif_setup_tc(dev, txq);
2196
2197 if (txq < dev->real_num_tx_queues) {
2198 qdisc_reset_all_tx_gt(dev, txq);
2199 #ifdef CONFIG_XPS
2200 netif_reset_xps_queues_gt(dev, txq);
2201 #endif
2202 }
2203 }
2204
2205 dev->real_num_tx_queues = txq;
2206 return 0;
2207 }
2208 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2209
2210 #ifdef CONFIG_SYSFS
2211 /**
2212 * netif_set_real_num_rx_queues - set actual number of RX queues used
2213 * @dev: Network device
2214 * @rxq: Actual number of RX queues
2215 *
2216 * This must be called either with the rtnl_lock held or before
2217 * registration of the net device. Returns 0 on success, or a
2218 * negative error code. If called before registration, it always
2219 * succeeds.
2220 */
2221 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2222 {
2223 int rc;
2224
2225 if (rxq < 1 || rxq > dev->num_rx_queues)
2226 return -EINVAL;
2227
2228 if (dev->reg_state == NETREG_REGISTERED) {
2229 ASSERT_RTNL();
2230
2231 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2232 rxq);
2233 if (rc)
2234 return rc;
2235 }
2236
2237 dev->real_num_rx_queues = rxq;
2238 return 0;
2239 }
2240 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2241 #endif
2242
2243 /**
2244 * netif_get_num_default_rss_queues - default number of RSS queues
2245 *
2246 * This routine should set an upper limit on the number of RSS queues
2247 * used by default by multiqueue devices.
2248 */
2249 int netif_get_num_default_rss_queues(void)
2250 {
2251 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2252 }
2253 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2254
2255 static inline void __netif_reschedule(struct Qdisc *q)
2256 {
2257 struct softnet_data *sd;
2258 unsigned long flags;
2259
2260 local_irq_save(flags);
2261 sd = this_cpu_ptr(&softnet_data);
2262 q->next_sched = NULL;
2263 *sd->output_queue_tailp = q;
2264 sd->output_queue_tailp = &q->next_sched;
2265 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2266 local_irq_restore(flags);
2267 }
2268
2269 void __netif_schedule(struct Qdisc *q)
2270 {
2271 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2272 __netif_reschedule(q);
2273 }
2274 EXPORT_SYMBOL(__netif_schedule);
2275
2276 struct dev_kfree_skb_cb {
2277 enum skb_free_reason reason;
2278 };
2279
2280 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2281 {
2282 return (struct dev_kfree_skb_cb *)skb->cb;
2283 }
2284
2285 void netif_schedule_queue(struct netdev_queue *txq)
2286 {
2287 rcu_read_lock();
2288 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2289 struct Qdisc *q = rcu_dereference(txq->qdisc);
2290
2291 __netif_schedule(q);
2292 }
2293 rcu_read_unlock();
2294 }
2295 EXPORT_SYMBOL(netif_schedule_queue);
2296
2297 /**
2298 * netif_wake_subqueue - allow sending packets on subqueue
2299 * @dev: network device
2300 * @queue_index: sub queue index
2301 *
2302 * Resume individual transmit queue of a device with multiple transmit queues.
2303 */
2304 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2305 {
2306 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2307
2308 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2309 struct Qdisc *q;
2310
2311 rcu_read_lock();
2312 q = rcu_dereference(txq->qdisc);
2313 __netif_schedule(q);
2314 rcu_read_unlock();
2315 }
2316 }
2317 EXPORT_SYMBOL(netif_wake_subqueue);
2318
2319 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2320 {
2321 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2322 struct Qdisc *q;
2323
2324 rcu_read_lock();
2325 q = rcu_dereference(dev_queue->qdisc);
2326 __netif_schedule(q);
2327 rcu_read_unlock();
2328 }
2329 }
2330 EXPORT_SYMBOL(netif_tx_wake_queue);
2331
2332 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2333 {
2334 unsigned long flags;
2335
2336 if (likely(atomic_read(&skb->users) == 1)) {
2337 smp_rmb();
2338 atomic_set(&skb->users, 0);
2339 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2340 return;
2341 }
2342 get_kfree_skb_cb(skb)->reason = reason;
2343 local_irq_save(flags);
2344 skb->next = __this_cpu_read(softnet_data.completion_queue);
2345 __this_cpu_write(softnet_data.completion_queue, skb);
2346 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2347 local_irq_restore(flags);
2348 }
2349 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2350
2351 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2352 {
2353 if (in_irq() || irqs_disabled())
2354 __dev_kfree_skb_irq(skb, reason);
2355 else
2356 dev_kfree_skb(skb);
2357 }
2358 EXPORT_SYMBOL(__dev_kfree_skb_any);
2359
2360
2361 /**
2362 * netif_device_detach - mark device as removed
2363 * @dev: network device
2364 *
2365 * Mark device as removed from system and therefore no longer available.
2366 */
2367 void netif_device_detach(struct net_device *dev)
2368 {
2369 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2370 netif_running(dev)) {
2371 netif_tx_stop_all_queues(dev);
2372 }
2373 }
2374 EXPORT_SYMBOL(netif_device_detach);
2375
2376 /**
2377 * netif_device_attach - mark device as attached
2378 * @dev: network device
2379 *
2380 * Mark device as attached from system and restart if needed.
2381 */
2382 void netif_device_attach(struct net_device *dev)
2383 {
2384 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2385 netif_running(dev)) {
2386 netif_tx_wake_all_queues(dev);
2387 __netdev_watchdog_up(dev);
2388 }
2389 }
2390 EXPORT_SYMBOL(netif_device_attach);
2391
2392 /*
2393 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2394 * to be used as a distribution range.
2395 */
2396 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2397 unsigned int num_tx_queues)
2398 {
2399 u32 hash;
2400 u16 qoffset = 0;
2401 u16 qcount = num_tx_queues;
2402
2403 if (skb_rx_queue_recorded(skb)) {
2404 hash = skb_get_rx_queue(skb);
2405 while (unlikely(hash >= num_tx_queues))
2406 hash -= num_tx_queues;
2407 return hash;
2408 }
2409
2410 if (dev->num_tc) {
2411 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2412 qoffset = dev->tc_to_txq[tc].offset;
2413 qcount = dev->tc_to_txq[tc].count;
2414 }
2415
2416 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2417 }
2418 EXPORT_SYMBOL(__skb_tx_hash);
2419
2420 static void skb_warn_bad_offload(const struct sk_buff *skb)
2421 {
2422 static const netdev_features_t null_features = 0;
2423 struct net_device *dev = skb->dev;
2424 const char *name = "";
2425
2426 if (!net_ratelimit())
2427 return;
2428
2429 if (dev) {
2430 if (dev->dev.parent)
2431 name = dev_driver_string(dev->dev.parent);
2432 else
2433 name = netdev_name(dev);
2434 }
2435 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2436 "gso_type=%d ip_summed=%d\n",
2437 name, dev ? &dev->features : &null_features,
2438 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2439 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2440 skb_shinfo(skb)->gso_type, skb->ip_summed);
2441 }
2442
2443 /*
2444 * Invalidate hardware checksum when packet is to be mangled, and
2445 * complete checksum manually on outgoing path.
2446 */
2447 int skb_checksum_help(struct sk_buff *skb)
2448 {
2449 __wsum csum;
2450 int ret = 0, offset;
2451
2452 if (skb->ip_summed == CHECKSUM_COMPLETE)
2453 goto out_set_summed;
2454
2455 if (unlikely(skb_shinfo(skb)->gso_size)) {
2456 skb_warn_bad_offload(skb);
2457 return -EINVAL;
2458 }
2459
2460 /* Before computing a checksum, we should make sure no frag could
2461 * be modified by an external entity : checksum could be wrong.
2462 */
2463 if (skb_has_shared_frag(skb)) {
2464 ret = __skb_linearize(skb);
2465 if (ret)
2466 goto out;
2467 }
2468
2469 offset = skb_checksum_start_offset(skb);
2470 BUG_ON(offset >= skb_headlen(skb));
2471 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2472
2473 offset += skb->csum_offset;
2474 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2475
2476 if (skb_cloned(skb) &&
2477 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2478 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2479 if (ret)
2480 goto out;
2481 }
2482
2483 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2484 out_set_summed:
2485 skb->ip_summed = CHECKSUM_NONE;
2486 out:
2487 return ret;
2488 }
2489 EXPORT_SYMBOL(skb_checksum_help);
2490
2491 /* skb_csum_offload_check - Driver helper function to determine if a device
2492 * with limited checksum offload capabilities is able to offload the checksum
2493 * for a given packet.
2494 *
2495 * Arguments:
2496 * skb - sk_buff for the packet in question
2497 * spec - contains the description of what device can offload
2498 * csum_encapped - returns true if the checksum being offloaded is
2499 * encpasulated. That is it is checksum for the transport header
2500 * in the inner headers.
2501 * checksum_help - when set indicates that helper function should
2502 * call skb_checksum_help if offload checks fail
2503 *
2504 * Returns:
2505 * true: Packet has passed the checksum checks and should be offloadable to
2506 * the device (a driver may still need to check for additional
2507 * restrictions of its device)
2508 * false: Checksum is not offloadable. If checksum_help was set then
2509 * skb_checksum_help was called to resolve checksum for non-GSO
2510 * packets and when IP protocol is not SCTP
2511 */
2512 bool __skb_csum_offload_chk(struct sk_buff *skb,
2513 const struct skb_csum_offl_spec *spec,
2514 bool *csum_encapped,
2515 bool csum_help)
2516 {
2517 struct iphdr *iph;
2518 struct ipv6hdr *ipv6;
2519 void *nhdr;
2520 int protocol;
2521 u8 ip_proto;
2522
2523 if (skb->protocol == htons(ETH_P_8021Q) ||
2524 skb->protocol == htons(ETH_P_8021AD)) {
2525 if (!spec->vlan_okay)
2526 goto need_help;
2527 }
2528
2529 /* We check whether the checksum refers to a transport layer checksum in
2530 * the outermost header or an encapsulated transport layer checksum that
2531 * corresponds to the inner headers of the skb. If the checksum is for
2532 * something else in the packet we need help.
2533 */
2534 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2535 /* Non-encapsulated checksum */
2536 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2537 nhdr = skb_network_header(skb);
2538 *csum_encapped = false;
2539 if (spec->no_not_encapped)
2540 goto need_help;
2541 } else if (skb->encapsulation && spec->encap_okay &&
2542 skb_checksum_start_offset(skb) ==
2543 skb_inner_transport_offset(skb)) {
2544 /* Encapsulated checksum */
2545 *csum_encapped = true;
2546 switch (skb->inner_protocol_type) {
2547 case ENCAP_TYPE_ETHER:
2548 protocol = eproto_to_ipproto(skb->inner_protocol);
2549 break;
2550 case ENCAP_TYPE_IPPROTO:
2551 protocol = skb->inner_protocol;
2552 break;
2553 }
2554 nhdr = skb_inner_network_header(skb);
2555 } else {
2556 goto need_help;
2557 }
2558
2559 switch (protocol) {
2560 case IPPROTO_IP:
2561 if (!spec->ipv4_okay)
2562 goto need_help;
2563 iph = nhdr;
2564 ip_proto = iph->protocol;
2565 if (iph->ihl != 5 && !spec->ip_options_okay)
2566 goto need_help;
2567 break;
2568 case IPPROTO_IPV6:
2569 if (!spec->ipv6_okay)
2570 goto need_help;
2571 if (spec->no_encapped_ipv6 && *csum_encapped)
2572 goto need_help;
2573 ipv6 = nhdr;
2574 nhdr += sizeof(*ipv6);
2575 ip_proto = ipv6->nexthdr;
2576 break;
2577 default:
2578 goto need_help;
2579 }
2580
2581 ip_proto_again:
2582 switch (ip_proto) {
2583 case IPPROTO_TCP:
2584 if (!spec->tcp_okay ||
2585 skb->csum_offset != offsetof(struct tcphdr, check))
2586 goto need_help;
2587 break;
2588 case IPPROTO_UDP:
2589 if (!spec->udp_okay ||
2590 skb->csum_offset != offsetof(struct udphdr, check))
2591 goto need_help;
2592 break;
2593 case IPPROTO_SCTP:
2594 if (!spec->sctp_okay ||
2595 skb->csum_offset != offsetof(struct sctphdr, checksum))
2596 goto cant_help;
2597 break;
2598 case NEXTHDR_HOP:
2599 case NEXTHDR_ROUTING:
2600 case NEXTHDR_DEST: {
2601 u8 *opthdr = nhdr;
2602
2603 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2604 goto need_help;
2605
2606 ip_proto = opthdr[0];
2607 nhdr += (opthdr[1] + 1) << 3;
2608
2609 goto ip_proto_again;
2610 }
2611 default:
2612 goto need_help;
2613 }
2614
2615 /* Passed the tests for offloading checksum */
2616 return true;
2617
2618 need_help:
2619 if (csum_help && !skb_shinfo(skb)->gso_size)
2620 skb_checksum_help(skb);
2621 cant_help:
2622 return false;
2623 }
2624 EXPORT_SYMBOL(__skb_csum_offload_chk);
2625
2626 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2627 {
2628 __be16 type = skb->protocol;
2629
2630 /* Tunnel gso handlers can set protocol to ethernet. */
2631 if (type == htons(ETH_P_TEB)) {
2632 struct ethhdr *eth;
2633
2634 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2635 return 0;
2636
2637 eth = (struct ethhdr *)skb_mac_header(skb);
2638 type = eth->h_proto;
2639 }
2640
2641 return __vlan_get_protocol(skb, type, depth);
2642 }
2643
2644 /**
2645 * skb_mac_gso_segment - mac layer segmentation handler.
2646 * @skb: buffer to segment
2647 * @features: features for the output path (see dev->features)
2648 */
2649 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2650 netdev_features_t features)
2651 {
2652 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2653 struct packet_offload *ptype;
2654 int vlan_depth = skb->mac_len;
2655 __be16 type = skb_network_protocol(skb, &vlan_depth);
2656
2657 if (unlikely(!type))
2658 return ERR_PTR(-EINVAL);
2659
2660 __skb_pull(skb, vlan_depth);
2661
2662 rcu_read_lock();
2663 list_for_each_entry_rcu(ptype, &offload_base, list) {
2664 if (ptype->type == type && ptype->callbacks.gso_segment) {
2665 segs = ptype->callbacks.gso_segment(skb, features);
2666 break;
2667 }
2668 }
2669 rcu_read_unlock();
2670
2671 __skb_push(skb, skb->data - skb_mac_header(skb));
2672
2673 return segs;
2674 }
2675 EXPORT_SYMBOL(skb_mac_gso_segment);
2676
2677
2678 /* openvswitch calls this on rx path, so we need a different check.
2679 */
2680 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2681 {
2682 if (tx_path)
2683 return skb->ip_summed != CHECKSUM_PARTIAL;
2684 else
2685 return skb->ip_summed == CHECKSUM_NONE;
2686 }
2687
2688 /**
2689 * __skb_gso_segment - Perform segmentation on skb.
2690 * @skb: buffer to segment
2691 * @features: features for the output path (see dev->features)
2692 * @tx_path: whether it is called in TX path
2693 *
2694 * This function segments the given skb and returns a list of segments.
2695 *
2696 * It may return NULL if the skb requires no segmentation. This is
2697 * only possible when GSO is used for verifying header integrity.
2698 */
2699 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2700 netdev_features_t features, bool tx_path)
2701 {
2702 if (unlikely(skb_needs_check(skb, tx_path))) {
2703 int err;
2704
2705 skb_warn_bad_offload(skb);
2706
2707 err = skb_cow_head(skb, 0);
2708 if (err < 0)
2709 return ERR_PTR(err);
2710 }
2711
2712 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2713 SKB_GSO_CB(skb)->encap_level = 0;
2714
2715 skb_reset_mac_header(skb);
2716 skb_reset_mac_len(skb);
2717
2718 return skb_mac_gso_segment(skb, features);
2719 }
2720 EXPORT_SYMBOL(__skb_gso_segment);
2721
2722 /* Take action when hardware reception checksum errors are detected. */
2723 #ifdef CONFIG_BUG
2724 void netdev_rx_csum_fault(struct net_device *dev)
2725 {
2726 if (net_ratelimit()) {
2727 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2728 dump_stack();
2729 }
2730 }
2731 EXPORT_SYMBOL(netdev_rx_csum_fault);
2732 #endif
2733
2734 /* Actually, we should eliminate this check as soon as we know, that:
2735 * 1. IOMMU is present and allows to map all the memory.
2736 * 2. No high memory really exists on this machine.
2737 */
2738
2739 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2740 {
2741 #ifdef CONFIG_HIGHMEM
2742 int i;
2743 if (!(dev->features & NETIF_F_HIGHDMA)) {
2744 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2745 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2746 if (PageHighMem(skb_frag_page(frag)))
2747 return 1;
2748 }
2749 }
2750
2751 if (PCI_DMA_BUS_IS_PHYS) {
2752 struct device *pdev = dev->dev.parent;
2753
2754 if (!pdev)
2755 return 0;
2756 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2757 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2758 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2759 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2760 return 1;
2761 }
2762 }
2763 #endif
2764 return 0;
2765 }
2766
2767 /* If MPLS offload request, verify we are testing hardware MPLS features
2768 * instead of standard features for the netdev.
2769 */
2770 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2771 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2772 netdev_features_t features,
2773 __be16 type)
2774 {
2775 if (eth_p_mpls(type))
2776 features &= skb->dev->mpls_features;
2777
2778 return features;
2779 }
2780 #else
2781 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2782 netdev_features_t features,
2783 __be16 type)
2784 {
2785 return features;
2786 }
2787 #endif
2788
2789 static netdev_features_t harmonize_features(struct sk_buff *skb,
2790 netdev_features_t features)
2791 {
2792 int tmp;
2793 __be16 type;
2794
2795 type = skb_network_protocol(skb, &tmp);
2796 features = net_mpls_features(skb, features, type);
2797
2798 if (skb->ip_summed != CHECKSUM_NONE &&
2799 !can_checksum_protocol(features, type)) {
2800 features &= ~NETIF_F_CSUM_MASK;
2801 } else if (illegal_highdma(skb->dev, skb)) {
2802 features &= ~NETIF_F_SG;
2803 }
2804
2805 return features;
2806 }
2807
2808 netdev_features_t passthru_features_check(struct sk_buff *skb,
2809 struct net_device *dev,
2810 netdev_features_t features)
2811 {
2812 return features;
2813 }
2814 EXPORT_SYMBOL(passthru_features_check);
2815
2816 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2817 struct net_device *dev,
2818 netdev_features_t features)
2819 {
2820 return vlan_features_check(skb, features);
2821 }
2822
2823 netdev_features_t netif_skb_features(struct sk_buff *skb)
2824 {
2825 struct net_device *dev = skb->dev;
2826 netdev_features_t features = dev->features;
2827 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2828
2829 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2830 features &= ~NETIF_F_GSO_MASK;
2831
2832 /* If encapsulation offload request, verify we are testing
2833 * hardware encapsulation features instead of standard
2834 * features for the netdev
2835 */
2836 if (skb->encapsulation)
2837 features &= dev->hw_enc_features;
2838
2839 if (skb_vlan_tagged(skb))
2840 features = netdev_intersect_features(features,
2841 dev->vlan_features |
2842 NETIF_F_HW_VLAN_CTAG_TX |
2843 NETIF_F_HW_VLAN_STAG_TX);
2844
2845 if (dev->netdev_ops->ndo_features_check)
2846 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2847 features);
2848 else
2849 features &= dflt_features_check(skb, dev, features);
2850
2851 return harmonize_features(skb, features);
2852 }
2853 EXPORT_SYMBOL(netif_skb_features);
2854
2855 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2856 struct netdev_queue *txq, bool more)
2857 {
2858 unsigned int len;
2859 int rc;
2860
2861 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2862 dev_queue_xmit_nit(skb, dev);
2863
2864 len = skb->len;
2865 trace_net_dev_start_xmit(skb, dev);
2866 rc = netdev_start_xmit(skb, dev, txq, more);
2867 trace_net_dev_xmit(skb, rc, dev, len);
2868
2869 return rc;
2870 }
2871
2872 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2873 struct netdev_queue *txq, int *ret)
2874 {
2875 struct sk_buff *skb = first;
2876 int rc = NETDEV_TX_OK;
2877
2878 while (skb) {
2879 struct sk_buff *next = skb->next;
2880
2881 skb->next = NULL;
2882 rc = xmit_one(skb, dev, txq, next != NULL);
2883 if (unlikely(!dev_xmit_complete(rc))) {
2884 skb->next = next;
2885 goto out;
2886 }
2887
2888 skb = next;
2889 if (netif_xmit_stopped(txq) && skb) {
2890 rc = NETDEV_TX_BUSY;
2891 break;
2892 }
2893 }
2894
2895 out:
2896 *ret = rc;
2897 return skb;
2898 }
2899
2900 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2901 netdev_features_t features)
2902 {
2903 if (skb_vlan_tag_present(skb) &&
2904 !vlan_hw_offload_capable(features, skb->vlan_proto))
2905 skb = __vlan_hwaccel_push_inside(skb);
2906 return skb;
2907 }
2908
2909 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2910 {
2911 netdev_features_t features;
2912
2913 if (skb->next)
2914 return skb;
2915
2916 features = netif_skb_features(skb);
2917 skb = validate_xmit_vlan(skb, features);
2918 if (unlikely(!skb))
2919 goto out_null;
2920
2921 if (netif_needs_gso(skb, features)) {
2922 struct sk_buff *segs;
2923
2924 segs = skb_gso_segment(skb, features);
2925 if (IS_ERR(segs)) {
2926 goto out_kfree_skb;
2927 } else if (segs) {
2928 consume_skb(skb);
2929 skb = segs;
2930 }
2931 } else {
2932 if (skb_needs_linearize(skb, features) &&
2933 __skb_linearize(skb))
2934 goto out_kfree_skb;
2935
2936 /* If packet is not checksummed and device does not
2937 * support checksumming for this protocol, complete
2938 * checksumming here.
2939 */
2940 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2941 if (skb->encapsulation)
2942 skb_set_inner_transport_header(skb,
2943 skb_checksum_start_offset(skb));
2944 else
2945 skb_set_transport_header(skb,
2946 skb_checksum_start_offset(skb));
2947 if (!(features & NETIF_F_CSUM_MASK) &&
2948 skb_checksum_help(skb))
2949 goto out_kfree_skb;
2950 }
2951 }
2952
2953 return skb;
2954
2955 out_kfree_skb:
2956 kfree_skb(skb);
2957 out_null:
2958 return NULL;
2959 }
2960
2961 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2962 {
2963 struct sk_buff *next, *head = NULL, *tail;
2964
2965 for (; skb != NULL; skb = next) {
2966 next = skb->next;
2967 skb->next = NULL;
2968
2969 /* in case skb wont be segmented, point to itself */
2970 skb->prev = skb;
2971
2972 skb = validate_xmit_skb(skb, dev);
2973 if (!skb)
2974 continue;
2975
2976 if (!head)
2977 head = skb;
2978 else
2979 tail->next = skb;
2980 /* If skb was segmented, skb->prev points to
2981 * the last segment. If not, it still contains skb.
2982 */
2983 tail = skb->prev;
2984 }
2985 return head;
2986 }
2987
2988 static void qdisc_pkt_len_init(struct sk_buff *skb)
2989 {
2990 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2991
2992 qdisc_skb_cb(skb)->pkt_len = skb->len;
2993
2994 /* To get more precise estimation of bytes sent on wire,
2995 * we add to pkt_len the headers size of all segments
2996 */
2997 if (shinfo->gso_size) {
2998 unsigned int hdr_len;
2999 u16 gso_segs = shinfo->gso_segs;
3000
3001 /* mac layer + network layer */
3002 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3003
3004 /* + transport layer */
3005 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3006 hdr_len += tcp_hdrlen(skb);
3007 else
3008 hdr_len += sizeof(struct udphdr);
3009
3010 if (shinfo->gso_type & SKB_GSO_DODGY)
3011 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3012 shinfo->gso_size);
3013
3014 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3015 }
3016 }
3017
3018 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3019 struct net_device *dev,
3020 struct netdev_queue *txq)
3021 {
3022 spinlock_t *root_lock = qdisc_lock(q);
3023 bool contended;
3024 int rc;
3025
3026 qdisc_calculate_pkt_len(skb, q);
3027 /*
3028 * Heuristic to force contended enqueues to serialize on a
3029 * separate lock before trying to get qdisc main lock.
3030 * This permits __QDISC___STATE_RUNNING owner to get the lock more
3031 * often and dequeue packets faster.
3032 */
3033 contended = qdisc_is_running(q);
3034 if (unlikely(contended))
3035 spin_lock(&q->busylock);
3036
3037 spin_lock(root_lock);
3038 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3039 kfree_skb(skb);
3040 rc = NET_XMIT_DROP;
3041 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3042 qdisc_run_begin(q)) {
3043 /*
3044 * This is a work-conserving queue; there are no old skbs
3045 * waiting to be sent out; and the qdisc is not running -
3046 * xmit the skb directly.
3047 */
3048
3049 qdisc_bstats_update(q, skb);
3050
3051 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3052 if (unlikely(contended)) {
3053 spin_unlock(&q->busylock);
3054 contended = false;
3055 }
3056 __qdisc_run(q);
3057 } else
3058 qdisc_run_end(q);
3059
3060 rc = NET_XMIT_SUCCESS;
3061 } else {
3062 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
3063 if (qdisc_run_begin(q)) {
3064 if (unlikely(contended)) {
3065 spin_unlock(&q->busylock);
3066 contended = false;
3067 }
3068 __qdisc_run(q);
3069 }
3070 }
3071 spin_unlock(root_lock);
3072 if (unlikely(contended))
3073 spin_unlock(&q->busylock);
3074 return rc;
3075 }
3076
3077 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3078 static void skb_update_prio(struct sk_buff *skb)
3079 {
3080 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3081
3082 if (!skb->priority && skb->sk && map) {
3083 unsigned int prioidx =
3084 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3085
3086 if (prioidx < map->priomap_len)
3087 skb->priority = map->priomap[prioidx];
3088 }
3089 }
3090 #else
3091 #define skb_update_prio(skb)
3092 #endif
3093
3094 DEFINE_PER_CPU(int, xmit_recursion);
3095 EXPORT_SYMBOL(xmit_recursion);
3096
3097 #define RECURSION_LIMIT 10
3098
3099 /**
3100 * dev_loopback_xmit - loop back @skb
3101 * @net: network namespace this loopback is happening in
3102 * @sk: sk needed to be a netfilter okfn
3103 * @skb: buffer to transmit
3104 */
3105 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3106 {
3107 skb_reset_mac_header(skb);
3108 __skb_pull(skb, skb_network_offset(skb));
3109 skb->pkt_type = PACKET_LOOPBACK;
3110 skb->ip_summed = CHECKSUM_UNNECESSARY;
3111 WARN_ON(!skb_dst(skb));
3112 skb_dst_force(skb);
3113 netif_rx_ni(skb);
3114 return 0;
3115 }
3116 EXPORT_SYMBOL(dev_loopback_xmit);
3117
3118 #ifdef CONFIG_NET_EGRESS
3119 static struct sk_buff *
3120 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3121 {
3122 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3123 struct tcf_result cl_res;
3124
3125 if (!cl)
3126 return skb;
3127
3128 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3129 * earlier by the caller.
3130 */
3131 qdisc_bstats_cpu_update(cl->q, skb);
3132
3133 switch (tc_classify(skb, cl, &cl_res, false)) {
3134 case TC_ACT_OK:
3135 case TC_ACT_RECLASSIFY:
3136 skb->tc_index = TC_H_MIN(cl_res.classid);
3137 break;
3138 case TC_ACT_SHOT:
3139 qdisc_qstats_cpu_drop(cl->q);
3140 *ret = NET_XMIT_DROP;
3141 goto drop;
3142 case TC_ACT_STOLEN:
3143 case TC_ACT_QUEUED:
3144 *ret = NET_XMIT_SUCCESS;
3145 drop:
3146 kfree_skb(skb);
3147 return NULL;
3148 case TC_ACT_REDIRECT:
3149 /* No need to push/pop skb's mac_header here on egress! */
3150 skb_do_redirect(skb);
3151 *ret = NET_XMIT_SUCCESS;
3152 return NULL;
3153 default:
3154 break;
3155 }
3156
3157 return skb;
3158 }
3159 #endif /* CONFIG_NET_EGRESS */
3160
3161 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3162 {
3163 #ifdef CONFIG_XPS
3164 struct xps_dev_maps *dev_maps;
3165 struct xps_map *map;
3166 int queue_index = -1;
3167
3168 rcu_read_lock();
3169 dev_maps = rcu_dereference(dev->xps_maps);
3170 if (dev_maps) {
3171 map = rcu_dereference(
3172 dev_maps->cpu_map[skb->sender_cpu - 1]);
3173 if (map) {
3174 if (map->len == 1)
3175 queue_index = map->queues[0];
3176 else
3177 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3178 map->len)];
3179 if (unlikely(queue_index >= dev->real_num_tx_queues))
3180 queue_index = -1;
3181 }
3182 }
3183 rcu_read_unlock();
3184
3185 return queue_index;
3186 #else
3187 return -1;
3188 #endif
3189 }
3190
3191 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3192 {
3193 struct sock *sk = skb->sk;
3194 int queue_index = sk_tx_queue_get(sk);
3195
3196 if (queue_index < 0 || skb->ooo_okay ||
3197 queue_index >= dev->real_num_tx_queues) {
3198 int new_index = get_xps_queue(dev, skb);
3199 if (new_index < 0)
3200 new_index = skb_tx_hash(dev, skb);
3201
3202 if (queue_index != new_index && sk &&
3203 sk_fullsock(sk) &&
3204 rcu_access_pointer(sk->sk_dst_cache))
3205 sk_tx_queue_set(sk, new_index);
3206
3207 queue_index = new_index;
3208 }
3209
3210 return queue_index;
3211 }
3212
3213 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3214 struct sk_buff *skb,
3215 void *accel_priv)
3216 {
3217 int queue_index = 0;
3218
3219 #ifdef CONFIG_XPS
3220 u32 sender_cpu = skb->sender_cpu - 1;
3221
3222 if (sender_cpu >= (u32)NR_CPUS)
3223 skb->sender_cpu = raw_smp_processor_id() + 1;
3224 #endif
3225
3226 if (dev->real_num_tx_queues != 1) {
3227 const struct net_device_ops *ops = dev->netdev_ops;
3228 if (ops->ndo_select_queue)
3229 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3230 __netdev_pick_tx);
3231 else
3232 queue_index = __netdev_pick_tx(dev, skb);
3233
3234 if (!accel_priv)
3235 queue_index = netdev_cap_txqueue(dev, queue_index);
3236 }
3237
3238 skb_set_queue_mapping(skb, queue_index);
3239 return netdev_get_tx_queue(dev, queue_index);
3240 }
3241
3242 /**
3243 * __dev_queue_xmit - transmit a buffer
3244 * @skb: buffer to transmit
3245 * @accel_priv: private data used for L2 forwarding offload
3246 *
3247 * Queue a buffer for transmission to a network device. The caller must
3248 * have set the device and priority and built the buffer before calling
3249 * this function. The function can be called from an interrupt.
3250 *
3251 * A negative errno code is returned on a failure. A success does not
3252 * guarantee the frame will be transmitted as it may be dropped due
3253 * to congestion or traffic shaping.
3254 *
3255 * -----------------------------------------------------------------------------------
3256 * I notice this method can also return errors from the queue disciplines,
3257 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3258 * be positive.
3259 *
3260 * Regardless of the return value, the skb is consumed, so it is currently
3261 * difficult to retry a send to this method. (You can bump the ref count
3262 * before sending to hold a reference for retry if you are careful.)
3263 *
3264 * When calling this method, interrupts MUST be enabled. This is because
3265 * the BH enable code must have IRQs enabled so that it will not deadlock.
3266 * --BLG
3267 */
3268 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3269 {
3270 struct net_device *dev = skb->dev;
3271 struct netdev_queue *txq;
3272 struct Qdisc *q;
3273 int rc = -ENOMEM;
3274
3275 skb_reset_mac_header(skb);
3276
3277 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3278 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3279
3280 /* Disable soft irqs for various locks below. Also
3281 * stops preemption for RCU.
3282 */
3283 rcu_read_lock_bh();
3284
3285 skb_update_prio(skb);
3286
3287 qdisc_pkt_len_init(skb);
3288 #ifdef CONFIG_NET_CLS_ACT
3289 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3290 # ifdef CONFIG_NET_EGRESS
3291 if (static_key_false(&egress_needed)) {
3292 skb = sch_handle_egress(skb, &rc, dev);
3293 if (!skb)
3294 goto out;
3295 }
3296 # endif
3297 #endif
3298 /* If device/qdisc don't need skb->dst, release it right now while
3299 * its hot in this cpu cache.
3300 */
3301 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3302 skb_dst_drop(skb);
3303 else
3304 skb_dst_force(skb);
3305
3306 #ifdef CONFIG_NET_SWITCHDEV
3307 /* Don't forward if offload device already forwarded */
3308 if (skb->offload_fwd_mark &&
3309 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3310 consume_skb(skb);
3311 rc = NET_XMIT_SUCCESS;
3312 goto out;
3313 }
3314 #endif
3315
3316 txq = netdev_pick_tx(dev, skb, accel_priv);
3317 q = rcu_dereference_bh(txq->qdisc);
3318
3319 trace_net_dev_queue(skb);
3320 if (q->enqueue) {
3321 rc = __dev_xmit_skb(skb, q, dev, txq);
3322 goto out;
3323 }
3324
3325 /* The device has no queue. Common case for software devices:
3326 loopback, all the sorts of tunnels...
3327
3328 Really, it is unlikely that netif_tx_lock protection is necessary
3329 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3330 counters.)
3331 However, it is possible, that they rely on protection
3332 made by us here.
3333
3334 Check this and shot the lock. It is not prone from deadlocks.
3335 Either shot noqueue qdisc, it is even simpler 8)
3336 */
3337 if (dev->flags & IFF_UP) {
3338 int cpu = smp_processor_id(); /* ok because BHs are off */
3339
3340 if (txq->xmit_lock_owner != cpu) {
3341
3342 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3343 goto recursion_alert;
3344
3345 skb = validate_xmit_skb(skb, dev);
3346 if (!skb)
3347 goto drop;
3348
3349 HARD_TX_LOCK(dev, txq, cpu);
3350
3351 if (!netif_xmit_stopped(txq)) {
3352 __this_cpu_inc(xmit_recursion);
3353 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3354 __this_cpu_dec(xmit_recursion);
3355 if (dev_xmit_complete(rc)) {
3356 HARD_TX_UNLOCK(dev, txq);
3357 goto out;
3358 }
3359 }
3360 HARD_TX_UNLOCK(dev, txq);
3361 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3362 dev->name);
3363 } else {
3364 /* Recursion is detected! It is possible,
3365 * unfortunately
3366 */
3367 recursion_alert:
3368 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3369 dev->name);
3370 }
3371 }
3372
3373 rc = -ENETDOWN;
3374 drop:
3375 rcu_read_unlock_bh();
3376
3377 atomic_long_inc(&dev->tx_dropped);
3378 kfree_skb_list(skb);
3379 return rc;
3380 out:
3381 rcu_read_unlock_bh();
3382 return rc;
3383 }
3384
3385 int dev_queue_xmit(struct sk_buff *skb)
3386 {
3387 return __dev_queue_xmit(skb, NULL);
3388 }
3389 EXPORT_SYMBOL(dev_queue_xmit);
3390
3391 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3392 {
3393 return __dev_queue_xmit(skb, accel_priv);
3394 }
3395 EXPORT_SYMBOL(dev_queue_xmit_accel);
3396
3397
3398 /*=======================================================================
3399 Receiver routines
3400 =======================================================================*/
3401
3402 int netdev_max_backlog __read_mostly = 1000;
3403 EXPORT_SYMBOL(netdev_max_backlog);
3404
3405 int netdev_tstamp_prequeue __read_mostly = 1;
3406 int netdev_budget __read_mostly = 300;
3407 int weight_p __read_mostly = 64; /* old backlog weight */
3408
3409 /* Called with irq disabled */
3410 static inline void ____napi_schedule(struct softnet_data *sd,
3411 struct napi_struct *napi)
3412 {
3413 list_add_tail(&napi->poll_list, &sd->poll_list);
3414 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3415 }
3416
3417 #ifdef CONFIG_RPS
3418
3419 /* One global table that all flow-based protocols share. */
3420 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3421 EXPORT_SYMBOL(rps_sock_flow_table);
3422 u32 rps_cpu_mask __read_mostly;
3423 EXPORT_SYMBOL(rps_cpu_mask);
3424
3425 struct static_key rps_needed __read_mostly;
3426
3427 static struct rps_dev_flow *
3428 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3429 struct rps_dev_flow *rflow, u16 next_cpu)
3430 {
3431 if (next_cpu < nr_cpu_ids) {
3432 #ifdef CONFIG_RFS_ACCEL
3433 struct netdev_rx_queue *rxqueue;
3434 struct rps_dev_flow_table *flow_table;
3435 struct rps_dev_flow *old_rflow;
3436 u32 flow_id;
3437 u16 rxq_index;
3438 int rc;
3439
3440 /* Should we steer this flow to a different hardware queue? */
3441 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3442 !(dev->features & NETIF_F_NTUPLE))
3443 goto out;
3444 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3445 if (rxq_index == skb_get_rx_queue(skb))
3446 goto out;
3447
3448 rxqueue = dev->_rx + rxq_index;
3449 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3450 if (!flow_table)
3451 goto out;
3452 flow_id = skb_get_hash(skb) & flow_table->mask;
3453 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3454 rxq_index, flow_id);
3455 if (rc < 0)
3456 goto out;
3457 old_rflow = rflow;
3458 rflow = &flow_table->flows[flow_id];
3459 rflow->filter = rc;
3460 if (old_rflow->filter == rflow->filter)
3461 old_rflow->filter = RPS_NO_FILTER;
3462 out:
3463 #endif
3464 rflow->last_qtail =
3465 per_cpu(softnet_data, next_cpu).input_queue_head;
3466 }
3467
3468 rflow->cpu = next_cpu;
3469 return rflow;
3470 }
3471
3472 /*
3473 * get_rps_cpu is called from netif_receive_skb and returns the target
3474 * CPU from the RPS map of the receiving queue for a given skb.
3475 * rcu_read_lock must be held on entry.
3476 */
3477 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3478 struct rps_dev_flow **rflowp)
3479 {
3480 const struct rps_sock_flow_table *sock_flow_table;
3481 struct netdev_rx_queue *rxqueue = dev->_rx;
3482 struct rps_dev_flow_table *flow_table;
3483 struct rps_map *map;
3484 int cpu = -1;
3485 u32 tcpu;
3486 u32 hash;
3487
3488 if (skb_rx_queue_recorded(skb)) {
3489 u16 index = skb_get_rx_queue(skb);
3490
3491 if (unlikely(index >= dev->real_num_rx_queues)) {
3492 WARN_ONCE(dev->real_num_rx_queues > 1,
3493 "%s received packet on queue %u, but number "
3494 "of RX queues is %u\n",
3495 dev->name, index, dev->real_num_rx_queues);
3496 goto done;
3497 }
3498 rxqueue += index;
3499 }
3500
3501 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3502
3503 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3504 map = rcu_dereference(rxqueue->rps_map);
3505 if (!flow_table && !map)
3506 goto done;
3507
3508 skb_reset_network_header(skb);
3509 hash = skb_get_hash(skb);
3510 if (!hash)
3511 goto done;
3512
3513 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3514 if (flow_table && sock_flow_table) {
3515 struct rps_dev_flow *rflow;
3516 u32 next_cpu;
3517 u32 ident;
3518
3519 /* First check into global flow table if there is a match */
3520 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3521 if ((ident ^ hash) & ~rps_cpu_mask)
3522 goto try_rps;
3523
3524 next_cpu = ident & rps_cpu_mask;
3525
3526 /* OK, now we know there is a match,
3527 * we can look at the local (per receive queue) flow table
3528 */
3529 rflow = &flow_table->flows[hash & flow_table->mask];
3530 tcpu = rflow->cpu;
3531
3532 /*
3533 * If the desired CPU (where last recvmsg was done) is
3534 * different from current CPU (one in the rx-queue flow
3535 * table entry), switch if one of the following holds:
3536 * - Current CPU is unset (>= nr_cpu_ids).
3537 * - Current CPU is offline.
3538 * - The current CPU's queue tail has advanced beyond the
3539 * last packet that was enqueued using this table entry.
3540 * This guarantees that all previous packets for the flow
3541 * have been dequeued, thus preserving in order delivery.
3542 */
3543 if (unlikely(tcpu != next_cpu) &&
3544 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3545 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3546 rflow->last_qtail)) >= 0)) {
3547 tcpu = next_cpu;
3548 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3549 }
3550
3551 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3552 *rflowp = rflow;
3553 cpu = tcpu;
3554 goto done;
3555 }
3556 }
3557
3558 try_rps:
3559
3560 if (map) {
3561 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3562 if (cpu_online(tcpu)) {
3563 cpu = tcpu;
3564 goto done;
3565 }
3566 }
3567
3568 done:
3569 return cpu;
3570 }
3571
3572 #ifdef CONFIG_RFS_ACCEL
3573
3574 /**
3575 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3576 * @dev: Device on which the filter was set
3577 * @rxq_index: RX queue index
3578 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3579 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3580 *
3581 * Drivers that implement ndo_rx_flow_steer() should periodically call
3582 * this function for each installed filter and remove the filters for
3583 * which it returns %true.
3584 */
3585 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3586 u32 flow_id, u16 filter_id)
3587 {
3588 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3589 struct rps_dev_flow_table *flow_table;
3590 struct rps_dev_flow *rflow;
3591 bool expire = true;
3592 unsigned int cpu;
3593
3594 rcu_read_lock();
3595 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3596 if (flow_table && flow_id <= flow_table->mask) {
3597 rflow = &flow_table->flows[flow_id];
3598 cpu = ACCESS_ONCE(rflow->cpu);
3599 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3600 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3601 rflow->last_qtail) <
3602 (int)(10 * flow_table->mask)))
3603 expire = false;
3604 }
3605 rcu_read_unlock();
3606 return expire;
3607 }
3608 EXPORT_SYMBOL(rps_may_expire_flow);
3609
3610 #endif /* CONFIG_RFS_ACCEL */
3611
3612 /* Called from hardirq (IPI) context */
3613 static void rps_trigger_softirq(void *data)
3614 {
3615 struct softnet_data *sd = data;
3616
3617 ____napi_schedule(sd, &sd->backlog);
3618 sd->received_rps++;
3619 }
3620
3621 #endif /* CONFIG_RPS */
3622
3623 /*
3624 * Check if this softnet_data structure is another cpu one
3625 * If yes, queue it to our IPI list and return 1
3626 * If no, return 0
3627 */
3628 static int rps_ipi_queued(struct softnet_data *sd)
3629 {
3630 #ifdef CONFIG_RPS
3631 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3632
3633 if (sd != mysd) {
3634 sd->rps_ipi_next = mysd->rps_ipi_list;
3635 mysd->rps_ipi_list = sd;
3636
3637 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3638 return 1;
3639 }
3640 #endif /* CONFIG_RPS */
3641 return 0;
3642 }
3643
3644 #ifdef CONFIG_NET_FLOW_LIMIT
3645 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3646 #endif
3647
3648 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3649 {
3650 #ifdef CONFIG_NET_FLOW_LIMIT
3651 struct sd_flow_limit *fl;
3652 struct softnet_data *sd;
3653 unsigned int old_flow, new_flow;
3654
3655 if (qlen < (netdev_max_backlog >> 1))
3656 return false;
3657
3658 sd = this_cpu_ptr(&softnet_data);
3659
3660 rcu_read_lock();
3661 fl = rcu_dereference(sd->flow_limit);
3662 if (fl) {
3663 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3664 old_flow = fl->history[fl->history_head];
3665 fl->history[fl->history_head] = new_flow;
3666
3667 fl->history_head++;
3668 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3669
3670 if (likely(fl->buckets[old_flow]))
3671 fl->buckets[old_flow]--;
3672
3673 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3674 fl->count++;
3675 rcu_read_unlock();
3676 return true;
3677 }
3678 }
3679 rcu_read_unlock();
3680 #endif
3681 return false;
3682 }
3683
3684 /*
3685 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3686 * queue (may be a remote CPU queue).
3687 */
3688 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3689 unsigned int *qtail)
3690 {
3691 struct softnet_data *sd;
3692 unsigned long flags;
3693 unsigned int qlen;
3694
3695 sd = &per_cpu(softnet_data, cpu);
3696
3697 local_irq_save(flags);
3698
3699 rps_lock(sd);
3700 if (!netif_running(skb->dev))
3701 goto drop;
3702 qlen = skb_queue_len(&sd->input_pkt_queue);
3703 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3704 if (qlen) {
3705 enqueue:
3706 __skb_queue_tail(&sd->input_pkt_queue, skb);
3707 input_queue_tail_incr_save(sd, qtail);
3708 rps_unlock(sd);
3709 local_irq_restore(flags);
3710 return NET_RX_SUCCESS;
3711 }
3712
3713 /* Schedule NAPI for backlog device
3714 * We can use non atomic operation since we own the queue lock
3715 */
3716 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3717 if (!rps_ipi_queued(sd))
3718 ____napi_schedule(sd, &sd->backlog);
3719 }
3720 goto enqueue;
3721 }
3722
3723 drop:
3724 sd->dropped++;
3725 rps_unlock(sd);
3726
3727 local_irq_restore(flags);
3728
3729 atomic_long_inc(&skb->dev->rx_dropped);
3730 kfree_skb(skb);
3731 return NET_RX_DROP;
3732 }
3733
3734 static int netif_rx_internal(struct sk_buff *skb)
3735 {
3736 int ret;
3737
3738 net_timestamp_check(netdev_tstamp_prequeue, skb);
3739
3740 trace_netif_rx(skb);
3741 #ifdef CONFIG_RPS
3742 if (static_key_false(&rps_needed)) {
3743 struct rps_dev_flow voidflow, *rflow = &voidflow;
3744 int cpu;
3745
3746 preempt_disable();
3747 rcu_read_lock();
3748
3749 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3750 if (cpu < 0)
3751 cpu = smp_processor_id();
3752
3753 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3754
3755 rcu_read_unlock();
3756 preempt_enable();
3757 } else
3758 #endif
3759 {
3760 unsigned int qtail;
3761 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3762 put_cpu();
3763 }
3764 return ret;
3765 }
3766
3767 /**
3768 * netif_rx - post buffer to the network code
3769 * @skb: buffer to post
3770 *
3771 * This function receives a packet from a device driver and queues it for
3772 * the upper (protocol) levels to process. It always succeeds. The buffer
3773 * may be dropped during processing for congestion control or by the
3774 * protocol layers.
3775 *
3776 * return values:
3777 * NET_RX_SUCCESS (no congestion)
3778 * NET_RX_DROP (packet was dropped)
3779 *
3780 */
3781
3782 int netif_rx(struct sk_buff *skb)
3783 {
3784 trace_netif_rx_entry(skb);
3785
3786 return netif_rx_internal(skb);
3787 }
3788 EXPORT_SYMBOL(netif_rx);
3789
3790 int netif_rx_ni(struct sk_buff *skb)
3791 {
3792 int err;
3793
3794 trace_netif_rx_ni_entry(skb);
3795
3796 preempt_disable();
3797 err = netif_rx_internal(skb);
3798 if (local_softirq_pending())
3799 do_softirq();
3800 preempt_enable();
3801
3802 return err;
3803 }
3804 EXPORT_SYMBOL(netif_rx_ni);
3805
3806 static void net_tx_action(struct softirq_action *h)
3807 {
3808 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3809
3810 if (sd->completion_queue) {
3811 struct sk_buff *clist;
3812
3813 local_irq_disable();
3814 clist = sd->completion_queue;
3815 sd->completion_queue = NULL;
3816 local_irq_enable();
3817
3818 while (clist) {
3819 struct sk_buff *skb = clist;
3820 clist = clist->next;
3821
3822 WARN_ON(atomic_read(&skb->users));
3823 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3824 trace_consume_skb(skb);
3825 else
3826 trace_kfree_skb(skb, net_tx_action);
3827 __kfree_skb(skb);
3828 }
3829 }
3830
3831 if (sd->output_queue) {
3832 struct Qdisc *head;
3833
3834 local_irq_disable();
3835 head = sd->output_queue;
3836 sd->output_queue = NULL;
3837 sd->output_queue_tailp = &sd->output_queue;
3838 local_irq_enable();
3839
3840 while (head) {
3841 struct Qdisc *q = head;
3842 spinlock_t *root_lock;
3843
3844 head = head->next_sched;
3845
3846 root_lock = qdisc_lock(q);
3847 if (spin_trylock(root_lock)) {
3848 smp_mb__before_atomic();
3849 clear_bit(__QDISC_STATE_SCHED,
3850 &q->state);
3851 qdisc_run(q);
3852 spin_unlock(root_lock);
3853 } else {
3854 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3855 &q->state)) {
3856 __netif_reschedule(q);
3857 } else {
3858 smp_mb__before_atomic();
3859 clear_bit(__QDISC_STATE_SCHED,
3860 &q->state);
3861 }
3862 }
3863 }
3864 }
3865 }
3866
3867 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3868 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3869 /* This hook is defined here for ATM LANE */
3870 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3871 unsigned char *addr) __read_mostly;
3872 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3873 #endif
3874
3875 static inline struct sk_buff *
3876 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3877 struct net_device *orig_dev)
3878 {
3879 #ifdef CONFIG_NET_CLS_ACT
3880 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3881 struct tcf_result cl_res;
3882
3883 /* If there's at least one ingress present somewhere (so
3884 * we get here via enabled static key), remaining devices
3885 * that are not configured with an ingress qdisc will bail
3886 * out here.
3887 */
3888 if (!cl)
3889 return skb;
3890 if (*pt_prev) {
3891 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3892 *pt_prev = NULL;
3893 }
3894
3895 qdisc_skb_cb(skb)->pkt_len = skb->len;
3896 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3897 qdisc_bstats_cpu_update(cl->q, skb);
3898
3899 switch (tc_classify(skb, cl, &cl_res, false)) {
3900 case TC_ACT_OK:
3901 case TC_ACT_RECLASSIFY:
3902 skb->tc_index = TC_H_MIN(cl_res.classid);
3903 break;
3904 case TC_ACT_SHOT:
3905 qdisc_qstats_cpu_drop(cl->q);
3906 case TC_ACT_STOLEN:
3907 case TC_ACT_QUEUED:
3908 kfree_skb(skb);
3909 return NULL;
3910 case TC_ACT_REDIRECT:
3911 /* skb_mac_header check was done by cls/act_bpf, so
3912 * we can safely push the L2 header back before
3913 * redirecting to another netdev
3914 */
3915 __skb_push(skb, skb->mac_len);
3916 skb_do_redirect(skb);
3917 return NULL;
3918 default:
3919 break;
3920 }
3921 #endif /* CONFIG_NET_CLS_ACT */
3922 return skb;
3923 }
3924
3925 /**
3926 * netdev_rx_handler_register - register receive handler
3927 * @dev: device to register a handler for
3928 * @rx_handler: receive handler to register
3929 * @rx_handler_data: data pointer that is used by rx handler
3930 *
3931 * Register a receive handler for a device. This handler will then be
3932 * called from __netif_receive_skb. A negative errno code is returned
3933 * on a failure.
3934 *
3935 * The caller must hold the rtnl_mutex.
3936 *
3937 * For a general description of rx_handler, see enum rx_handler_result.
3938 */
3939 int netdev_rx_handler_register(struct net_device *dev,
3940 rx_handler_func_t *rx_handler,
3941 void *rx_handler_data)
3942 {
3943 ASSERT_RTNL();
3944
3945 if (dev->rx_handler)
3946 return -EBUSY;
3947
3948 /* Note: rx_handler_data must be set before rx_handler */
3949 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3950 rcu_assign_pointer(dev->rx_handler, rx_handler);
3951
3952 return 0;
3953 }
3954 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3955
3956 /**
3957 * netdev_rx_handler_unregister - unregister receive handler
3958 * @dev: device to unregister a handler from
3959 *
3960 * Unregister a receive handler from a device.
3961 *
3962 * The caller must hold the rtnl_mutex.
3963 */
3964 void netdev_rx_handler_unregister(struct net_device *dev)
3965 {
3966
3967 ASSERT_RTNL();
3968 RCU_INIT_POINTER(dev->rx_handler, NULL);
3969 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3970 * section has a guarantee to see a non NULL rx_handler_data
3971 * as well.
3972 */
3973 synchronize_net();
3974 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3975 }
3976 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3977
3978 /*
3979 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3980 * the special handling of PFMEMALLOC skbs.
3981 */
3982 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3983 {
3984 switch (skb->protocol) {
3985 case htons(ETH_P_ARP):
3986 case htons(ETH_P_IP):
3987 case htons(ETH_P_IPV6):
3988 case htons(ETH_P_8021Q):
3989 case htons(ETH_P_8021AD):
3990 return true;
3991 default:
3992 return false;
3993 }
3994 }
3995
3996 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3997 int *ret, struct net_device *orig_dev)
3998 {
3999 #ifdef CONFIG_NETFILTER_INGRESS
4000 if (nf_hook_ingress_active(skb)) {
4001 if (*pt_prev) {
4002 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4003 *pt_prev = NULL;
4004 }
4005
4006 return nf_hook_ingress(skb);
4007 }
4008 #endif /* CONFIG_NETFILTER_INGRESS */
4009 return 0;
4010 }
4011
4012 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4013 {
4014 struct packet_type *ptype, *pt_prev;
4015 rx_handler_func_t *rx_handler;
4016 struct net_device *orig_dev;
4017 bool deliver_exact = false;
4018 int ret = NET_RX_DROP;
4019 __be16 type;
4020
4021 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4022
4023 trace_netif_receive_skb(skb);
4024
4025 orig_dev = skb->dev;
4026
4027 skb_reset_network_header(skb);
4028 if (!skb_transport_header_was_set(skb))
4029 skb_reset_transport_header(skb);
4030 skb_reset_mac_len(skb);
4031
4032 pt_prev = NULL;
4033
4034 another_round:
4035 skb->skb_iif = skb->dev->ifindex;
4036
4037 __this_cpu_inc(softnet_data.processed);
4038
4039 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4040 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4041 skb = skb_vlan_untag(skb);
4042 if (unlikely(!skb))
4043 goto out;
4044 }
4045
4046 #ifdef CONFIG_NET_CLS_ACT
4047 if (skb->tc_verd & TC_NCLS) {
4048 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4049 goto ncls;
4050 }
4051 #endif
4052
4053 if (pfmemalloc)
4054 goto skip_taps;
4055
4056 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4057 if (pt_prev)
4058 ret = deliver_skb(skb, pt_prev, orig_dev);
4059 pt_prev = ptype;
4060 }
4061
4062 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4063 if (pt_prev)
4064 ret = deliver_skb(skb, pt_prev, orig_dev);
4065 pt_prev = ptype;
4066 }
4067
4068 skip_taps:
4069 #ifdef CONFIG_NET_INGRESS
4070 if (static_key_false(&ingress_needed)) {
4071 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4072 if (!skb)
4073 goto out;
4074
4075 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4076 goto out;
4077 }
4078 #endif
4079 #ifdef CONFIG_NET_CLS_ACT
4080 skb->tc_verd = 0;
4081 ncls:
4082 #endif
4083 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4084 goto drop;
4085
4086 if (skb_vlan_tag_present(skb)) {
4087 if (pt_prev) {
4088 ret = deliver_skb(skb, pt_prev, orig_dev);
4089 pt_prev = NULL;
4090 }
4091 if (vlan_do_receive(&skb))
4092 goto another_round;
4093 else if (unlikely(!skb))
4094 goto out;
4095 }
4096
4097 rx_handler = rcu_dereference(skb->dev->rx_handler);
4098 if (rx_handler) {
4099 if (pt_prev) {
4100 ret = deliver_skb(skb, pt_prev, orig_dev);
4101 pt_prev = NULL;
4102 }
4103 switch (rx_handler(&skb)) {
4104 case RX_HANDLER_CONSUMED:
4105 ret = NET_RX_SUCCESS;
4106 goto out;
4107 case RX_HANDLER_ANOTHER:
4108 goto another_round;
4109 case RX_HANDLER_EXACT:
4110 deliver_exact = true;
4111 case RX_HANDLER_PASS:
4112 break;
4113 default:
4114 BUG();
4115 }
4116 }
4117
4118 if (unlikely(skb_vlan_tag_present(skb))) {
4119 if (skb_vlan_tag_get_id(skb))
4120 skb->pkt_type = PACKET_OTHERHOST;
4121 /* Note: we might in the future use prio bits
4122 * and set skb->priority like in vlan_do_receive()
4123 * For the time being, just ignore Priority Code Point
4124 */
4125 skb->vlan_tci = 0;
4126 }
4127
4128 type = skb->protocol;
4129
4130 /* deliver only exact match when indicated */
4131 if (likely(!deliver_exact)) {
4132 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4133 &ptype_base[ntohs(type) &
4134 PTYPE_HASH_MASK]);
4135 }
4136
4137 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4138 &orig_dev->ptype_specific);
4139
4140 if (unlikely(skb->dev != orig_dev)) {
4141 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4142 &skb->dev->ptype_specific);
4143 }
4144
4145 if (pt_prev) {
4146 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4147 goto drop;
4148 else
4149 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4150 } else {
4151 drop:
4152 atomic_long_inc(&skb->dev->rx_dropped);
4153 kfree_skb(skb);
4154 /* Jamal, now you will not able to escape explaining
4155 * me how you were going to use this. :-)
4156 */
4157 ret = NET_RX_DROP;
4158 }
4159
4160 out:
4161 return ret;
4162 }
4163
4164 static int __netif_receive_skb(struct sk_buff *skb)
4165 {
4166 int ret;
4167
4168 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4169 unsigned long pflags = current->flags;
4170
4171 /*
4172 * PFMEMALLOC skbs are special, they should
4173 * - be delivered to SOCK_MEMALLOC sockets only
4174 * - stay away from userspace
4175 * - have bounded memory usage
4176 *
4177 * Use PF_MEMALLOC as this saves us from propagating the allocation
4178 * context down to all allocation sites.
4179 */
4180 current->flags |= PF_MEMALLOC;
4181 ret = __netif_receive_skb_core(skb, true);
4182 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4183 } else
4184 ret = __netif_receive_skb_core(skb, false);
4185
4186 return ret;
4187 }
4188
4189 static int netif_receive_skb_internal(struct sk_buff *skb)
4190 {
4191 int ret;
4192
4193 net_timestamp_check(netdev_tstamp_prequeue, skb);
4194
4195 if (skb_defer_rx_timestamp(skb))
4196 return NET_RX_SUCCESS;
4197
4198 rcu_read_lock();
4199
4200 #ifdef CONFIG_RPS
4201 if (static_key_false(&rps_needed)) {
4202 struct rps_dev_flow voidflow, *rflow = &voidflow;
4203 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4204
4205 if (cpu >= 0) {
4206 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4207 rcu_read_unlock();
4208 return ret;
4209 }
4210 }
4211 #endif
4212 ret = __netif_receive_skb(skb);
4213 rcu_read_unlock();
4214 return ret;
4215 }
4216
4217 /**
4218 * netif_receive_skb - process receive buffer from network
4219 * @skb: buffer to process
4220 *
4221 * netif_receive_skb() is the main receive data processing function.
4222 * It always succeeds. The buffer may be dropped during processing
4223 * for congestion control or by the protocol layers.
4224 *
4225 * This function may only be called from softirq context and interrupts
4226 * should be enabled.
4227 *
4228 * Return values (usually ignored):
4229 * NET_RX_SUCCESS: no congestion
4230 * NET_RX_DROP: packet was dropped
4231 */
4232 int netif_receive_skb(struct sk_buff *skb)
4233 {
4234 trace_netif_receive_skb_entry(skb);
4235
4236 return netif_receive_skb_internal(skb);
4237 }
4238 EXPORT_SYMBOL(netif_receive_skb);
4239
4240 /* Network device is going away, flush any packets still pending
4241 * Called with irqs disabled.
4242 */
4243 static void flush_backlog(void *arg)
4244 {
4245 struct net_device *dev = arg;
4246 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4247 struct sk_buff *skb, *tmp;
4248
4249 rps_lock(sd);
4250 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4251 if (skb->dev == dev) {
4252 __skb_unlink(skb, &sd->input_pkt_queue);
4253 kfree_skb(skb);
4254 input_queue_head_incr(sd);
4255 }
4256 }
4257 rps_unlock(sd);
4258
4259 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4260 if (skb->dev == dev) {
4261 __skb_unlink(skb, &sd->process_queue);
4262 kfree_skb(skb);
4263 input_queue_head_incr(sd);
4264 }
4265 }
4266 }
4267
4268 static int napi_gro_complete(struct sk_buff *skb)
4269 {
4270 struct packet_offload *ptype;
4271 __be16 type = skb->protocol;
4272 struct list_head *head = &offload_base;
4273 int err = -ENOENT;
4274
4275 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4276
4277 if (NAPI_GRO_CB(skb)->count == 1) {
4278 skb_shinfo(skb)->gso_size = 0;
4279 goto out;
4280 }
4281
4282 rcu_read_lock();
4283 list_for_each_entry_rcu(ptype, head, list) {
4284 if (ptype->type != type || !ptype->callbacks.gro_complete)
4285 continue;
4286
4287 err = ptype->callbacks.gro_complete(skb, 0);
4288 break;
4289 }
4290 rcu_read_unlock();
4291
4292 if (err) {
4293 WARN_ON(&ptype->list == head);
4294 kfree_skb(skb);
4295 return NET_RX_SUCCESS;
4296 }
4297
4298 out:
4299 return netif_receive_skb_internal(skb);
4300 }
4301
4302 /* napi->gro_list contains packets ordered by age.
4303 * youngest packets at the head of it.
4304 * Complete skbs in reverse order to reduce latencies.
4305 */
4306 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4307 {
4308 struct sk_buff *skb, *prev = NULL;
4309
4310 /* scan list and build reverse chain */
4311 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4312 skb->prev = prev;
4313 prev = skb;
4314 }
4315
4316 for (skb = prev; skb; skb = prev) {
4317 skb->next = NULL;
4318
4319 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4320 return;
4321
4322 prev = skb->prev;
4323 napi_gro_complete(skb);
4324 napi->gro_count--;
4325 }
4326
4327 napi->gro_list = NULL;
4328 }
4329 EXPORT_SYMBOL(napi_gro_flush);
4330
4331 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4332 {
4333 struct sk_buff *p;
4334 unsigned int maclen = skb->dev->hard_header_len;
4335 u32 hash = skb_get_hash_raw(skb);
4336
4337 for (p = napi->gro_list; p; p = p->next) {
4338 unsigned long diffs;
4339
4340 NAPI_GRO_CB(p)->flush = 0;
4341
4342 if (hash != skb_get_hash_raw(p)) {
4343 NAPI_GRO_CB(p)->same_flow = 0;
4344 continue;
4345 }
4346
4347 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4348 diffs |= p->vlan_tci ^ skb->vlan_tci;
4349 if (maclen == ETH_HLEN)
4350 diffs |= compare_ether_header(skb_mac_header(p),
4351 skb_mac_header(skb));
4352 else if (!diffs)
4353 diffs = memcmp(skb_mac_header(p),
4354 skb_mac_header(skb),
4355 maclen);
4356 NAPI_GRO_CB(p)->same_flow = !diffs;
4357 }
4358 }
4359
4360 static void skb_gro_reset_offset(struct sk_buff *skb)
4361 {
4362 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4363 const skb_frag_t *frag0 = &pinfo->frags[0];
4364
4365 NAPI_GRO_CB(skb)->data_offset = 0;
4366 NAPI_GRO_CB(skb)->frag0 = NULL;
4367 NAPI_GRO_CB(skb)->frag0_len = 0;
4368
4369 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4370 pinfo->nr_frags &&
4371 !PageHighMem(skb_frag_page(frag0))) {
4372 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4373 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4374 }
4375 }
4376
4377 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4378 {
4379 struct skb_shared_info *pinfo = skb_shinfo(skb);
4380
4381 BUG_ON(skb->end - skb->tail < grow);
4382
4383 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4384
4385 skb->data_len -= grow;
4386 skb->tail += grow;
4387
4388 pinfo->frags[0].page_offset += grow;
4389 skb_frag_size_sub(&pinfo->frags[0], grow);
4390
4391 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4392 skb_frag_unref(skb, 0);
4393 memmove(pinfo->frags, pinfo->frags + 1,
4394 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4395 }
4396 }
4397
4398 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4399 {
4400 struct sk_buff **pp = NULL;
4401 struct packet_offload *ptype;
4402 __be16 type = skb->protocol;
4403 struct list_head *head = &offload_base;
4404 int same_flow;
4405 enum gro_result ret;
4406 int grow;
4407
4408 if (!(skb->dev->features & NETIF_F_GRO))
4409 goto normal;
4410
4411 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4412 goto normal;
4413
4414 gro_list_prepare(napi, skb);
4415
4416 rcu_read_lock();
4417 list_for_each_entry_rcu(ptype, head, list) {
4418 if (ptype->type != type || !ptype->callbacks.gro_receive)
4419 continue;
4420
4421 skb_set_network_header(skb, skb_gro_offset(skb));
4422 skb_reset_mac_len(skb);
4423 NAPI_GRO_CB(skb)->same_flow = 0;
4424 NAPI_GRO_CB(skb)->flush = 0;
4425 NAPI_GRO_CB(skb)->free = 0;
4426 NAPI_GRO_CB(skb)->udp_mark = 0;
4427 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4428
4429 /* Setup for GRO checksum validation */
4430 switch (skb->ip_summed) {
4431 case CHECKSUM_COMPLETE:
4432 NAPI_GRO_CB(skb)->csum = skb->csum;
4433 NAPI_GRO_CB(skb)->csum_valid = 1;
4434 NAPI_GRO_CB(skb)->csum_cnt = 0;
4435 break;
4436 case CHECKSUM_UNNECESSARY:
4437 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4438 NAPI_GRO_CB(skb)->csum_valid = 0;
4439 break;
4440 default:
4441 NAPI_GRO_CB(skb)->csum_cnt = 0;
4442 NAPI_GRO_CB(skb)->csum_valid = 0;
4443 }
4444
4445 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4446 break;
4447 }
4448 rcu_read_unlock();
4449
4450 if (&ptype->list == head)
4451 goto normal;
4452
4453 same_flow = NAPI_GRO_CB(skb)->same_flow;
4454 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4455
4456 if (pp) {
4457 struct sk_buff *nskb = *pp;
4458
4459 *pp = nskb->next;
4460 nskb->next = NULL;
4461 napi_gro_complete(nskb);
4462 napi->gro_count--;
4463 }
4464
4465 if (same_flow)
4466 goto ok;
4467
4468 if (NAPI_GRO_CB(skb)->flush)
4469 goto normal;
4470
4471 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4472 struct sk_buff *nskb = napi->gro_list;
4473
4474 /* locate the end of the list to select the 'oldest' flow */
4475 while (nskb->next) {
4476 pp = &nskb->next;
4477 nskb = *pp;
4478 }
4479 *pp = NULL;
4480 nskb->next = NULL;
4481 napi_gro_complete(nskb);
4482 } else {
4483 napi->gro_count++;
4484 }
4485 NAPI_GRO_CB(skb)->count = 1;
4486 NAPI_GRO_CB(skb)->age = jiffies;
4487 NAPI_GRO_CB(skb)->last = skb;
4488 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4489 skb->next = napi->gro_list;
4490 napi->gro_list = skb;
4491 ret = GRO_HELD;
4492
4493 pull:
4494 grow = skb_gro_offset(skb) - skb_headlen(skb);
4495 if (grow > 0)
4496 gro_pull_from_frag0(skb, grow);
4497 ok:
4498 return ret;
4499
4500 normal:
4501 ret = GRO_NORMAL;
4502 goto pull;
4503 }
4504
4505 struct packet_offload *gro_find_receive_by_type(__be16 type)
4506 {
4507 struct list_head *offload_head = &offload_base;
4508 struct packet_offload *ptype;
4509
4510 list_for_each_entry_rcu(ptype, offload_head, list) {
4511 if (ptype->type != type || !ptype->callbacks.gro_receive)
4512 continue;
4513 return ptype;
4514 }
4515 return NULL;
4516 }
4517 EXPORT_SYMBOL(gro_find_receive_by_type);
4518
4519 struct packet_offload *gro_find_complete_by_type(__be16 type)
4520 {
4521 struct list_head *offload_head = &offload_base;
4522 struct packet_offload *ptype;
4523
4524 list_for_each_entry_rcu(ptype, offload_head, list) {
4525 if (ptype->type != type || !ptype->callbacks.gro_complete)
4526 continue;
4527 return ptype;
4528 }
4529 return NULL;
4530 }
4531 EXPORT_SYMBOL(gro_find_complete_by_type);
4532
4533 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4534 {
4535 switch (ret) {
4536 case GRO_NORMAL:
4537 if (netif_receive_skb_internal(skb))
4538 ret = GRO_DROP;
4539 break;
4540
4541 case GRO_DROP:
4542 kfree_skb(skb);
4543 break;
4544
4545 case GRO_MERGED_FREE:
4546 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4547 kmem_cache_free(skbuff_head_cache, skb);
4548 else
4549 __kfree_skb(skb);
4550 break;
4551
4552 case GRO_HELD:
4553 case GRO_MERGED:
4554 break;
4555 }
4556
4557 return ret;
4558 }
4559
4560 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4561 {
4562 skb_mark_napi_id(skb, napi);
4563 trace_napi_gro_receive_entry(skb);
4564
4565 skb_gro_reset_offset(skb);
4566
4567 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4568 }
4569 EXPORT_SYMBOL(napi_gro_receive);
4570
4571 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4572 {
4573 if (unlikely(skb->pfmemalloc)) {
4574 consume_skb(skb);
4575 return;
4576 }
4577 __skb_pull(skb, skb_headlen(skb));
4578 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4579 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4580 skb->vlan_tci = 0;
4581 skb->dev = napi->dev;
4582 skb->skb_iif = 0;
4583 skb->encapsulation = 0;
4584 skb_shinfo(skb)->gso_type = 0;
4585 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4586
4587 napi->skb = skb;
4588 }
4589
4590 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4591 {
4592 struct sk_buff *skb = napi->skb;
4593
4594 if (!skb) {
4595 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4596 if (skb) {
4597 napi->skb = skb;
4598 skb_mark_napi_id(skb, napi);
4599 }
4600 }
4601 return skb;
4602 }
4603 EXPORT_SYMBOL(napi_get_frags);
4604
4605 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4606 struct sk_buff *skb,
4607 gro_result_t ret)
4608 {
4609 switch (ret) {
4610 case GRO_NORMAL:
4611 case GRO_HELD:
4612 __skb_push(skb, ETH_HLEN);
4613 skb->protocol = eth_type_trans(skb, skb->dev);
4614 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4615 ret = GRO_DROP;
4616 break;
4617
4618 case GRO_DROP:
4619 case GRO_MERGED_FREE:
4620 napi_reuse_skb(napi, skb);
4621 break;
4622
4623 case GRO_MERGED:
4624 break;
4625 }
4626
4627 return ret;
4628 }
4629
4630 /* Upper GRO stack assumes network header starts at gro_offset=0
4631 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4632 * We copy ethernet header into skb->data to have a common layout.
4633 */
4634 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4635 {
4636 struct sk_buff *skb = napi->skb;
4637 const struct ethhdr *eth;
4638 unsigned int hlen = sizeof(*eth);
4639
4640 napi->skb = NULL;
4641
4642 skb_reset_mac_header(skb);
4643 skb_gro_reset_offset(skb);
4644
4645 eth = skb_gro_header_fast(skb, 0);
4646 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4647 eth = skb_gro_header_slow(skb, hlen, 0);
4648 if (unlikely(!eth)) {
4649 napi_reuse_skb(napi, skb);
4650 return NULL;
4651 }
4652 } else {
4653 gro_pull_from_frag0(skb, hlen);
4654 NAPI_GRO_CB(skb)->frag0 += hlen;
4655 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4656 }
4657 __skb_pull(skb, hlen);
4658
4659 /*
4660 * This works because the only protocols we care about don't require
4661 * special handling.
4662 * We'll fix it up properly in napi_frags_finish()
4663 */
4664 skb->protocol = eth->h_proto;
4665
4666 return skb;
4667 }
4668
4669 gro_result_t napi_gro_frags(struct napi_struct *napi)
4670 {
4671 struct sk_buff *skb = napi_frags_skb(napi);
4672
4673 if (!skb)
4674 return GRO_DROP;
4675
4676 trace_napi_gro_frags_entry(skb);
4677
4678 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4679 }
4680 EXPORT_SYMBOL(napi_gro_frags);
4681
4682 /* Compute the checksum from gro_offset and return the folded value
4683 * after adding in any pseudo checksum.
4684 */
4685 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4686 {
4687 __wsum wsum;
4688 __sum16 sum;
4689
4690 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4691
4692 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4693 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4694 if (likely(!sum)) {
4695 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4696 !skb->csum_complete_sw)
4697 netdev_rx_csum_fault(skb->dev);
4698 }
4699
4700 NAPI_GRO_CB(skb)->csum = wsum;
4701 NAPI_GRO_CB(skb)->csum_valid = 1;
4702
4703 return sum;
4704 }
4705 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4706
4707 /*
4708 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4709 * Note: called with local irq disabled, but exits with local irq enabled.
4710 */
4711 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4712 {
4713 #ifdef CONFIG_RPS
4714 struct softnet_data *remsd = sd->rps_ipi_list;
4715
4716 if (remsd) {
4717 sd->rps_ipi_list = NULL;
4718
4719 local_irq_enable();
4720
4721 /* Send pending IPI's to kick RPS processing on remote cpus. */
4722 while (remsd) {
4723 struct softnet_data *next = remsd->rps_ipi_next;
4724
4725 if (cpu_online(remsd->cpu))
4726 smp_call_function_single_async(remsd->cpu,
4727 &remsd->csd);
4728 remsd = next;
4729 }
4730 } else
4731 #endif
4732 local_irq_enable();
4733 }
4734
4735 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4736 {
4737 #ifdef CONFIG_RPS
4738 return sd->rps_ipi_list != NULL;
4739 #else
4740 return false;
4741 #endif
4742 }
4743
4744 static int process_backlog(struct napi_struct *napi, int quota)
4745 {
4746 int work = 0;
4747 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4748
4749 /* Check if we have pending ipi, its better to send them now,
4750 * not waiting net_rx_action() end.
4751 */
4752 if (sd_has_rps_ipi_waiting(sd)) {
4753 local_irq_disable();
4754 net_rps_action_and_irq_enable(sd);
4755 }
4756
4757 napi->weight = weight_p;
4758 local_irq_disable();
4759 while (1) {
4760 struct sk_buff *skb;
4761
4762 while ((skb = __skb_dequeue(&sd->process_queue))) {
4763 rcu_read_lock();
4764 local_irq_enable();
4765 __netif_receive_skb(skb);
4766 rcu_read_unlock();
4767 local_irq_disable();
4768 input_queue_head_incr(sd);
4769 if (++work >= quota) {
4770 local_irq_enable();
4771 return work;
4772 }
4773 }
4774
4775 rps_lock(sd);
4776 if (skb_queue_empty(&sd->input_pkt_queue)) {
4777 /*
4778 * Inline a custom version of __napi_complete().
4779 * only current cpu owns and manipulates this napi,
4780 * and NAPI_STATE_SCHED is the only possible flag set
4781 * on backlog.
4782 * We can use a plain write instead of clear_bit(),
4783 * and we dont need an smp_mb() memory barrier.
4784 */
4785 napi->state = 0;
4786 rps_unlock(sd);
4787
4788 break;
4789 }
4790
4791 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4792 &sd->process_queue);
4793 rps_unlock(sd);
4794 }
4795 local_irq_enable();
4796
4797 return work;
4798 }
4799
4800 /**
4801 * __napi_schedule - schedule for receive
4802 * @n: entry to schedule
4803 *
4804 * The entry's receive function will be scheduled to run.
4805 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4806 */
4807 void __napi_schedule(struct napi_struct *n)
4808 {
4809 unsigned long flags;
4810
4811 local_irq_save(flags);
4812 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4813 local_irq_restore(flags);
4814 }
4815 EXPORT_SYMBOL(__napi_schedule);
4816
4817 /**
4818 * __napi_schedule_irqoff - schedule for receive
4819 * @n: entry to schedule
4820 *
4821 * Variant of __napi_schedule() assuming hard irqs are masked
4822 */
4823 void __napi_schedule_irqoff(struct napi_struct *n)
4824 {
4825 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4826 }
4827 EXPORT_SYMBOL(__napi_schedule_irqoff);
4828
4829 void __napi_complete(struct napi_struct *n)
4830 {
4831 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4832
4833 list_del_init(&n->poll_list);
4834 smp_mb__before_atomic();
4835 clear_bit(NAPI_STATE_SCHED, &n->state);
4836 }
4837 EXPORT_SYMBOL(__napi_complete);
4838
4839 void napi_complete_done(struct napi_struct *n, int work_done)
4840 {
4841 unsigned long flags;
4842
4843 /*
4844 * don't let napi dequeue from the cpu poll list
4845 * just in case its running on a different cpu
4846 */
4847 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4848 return;
4849
4850 if (n->gro_list) {
4851 unsigned long timeout = 0;
4852
4853 if (work_done)
4854 timeout = n->dev->gro_flush_timeout;
4855
4856 if (timeout)
4857 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4858 HRTIMER_MODE_REL_PINNED);
4859 else
4860 napi_gro_flush(n, false);
4861 }
4862 if (likely(list_empty(&n->poll_list))) {
4863 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4864 } else {
4865 /* If n->poll_list is not empty, we need to mask irqs */
4866 local_irq_save(flags);
4867 __napi_complete(n);
4868 local_irq_restore(flags);
4869 }
4870 }
4871 EXPORT_SYMBOL(napi_complete_done);
4872
4873 /* must be called under rcu_read_lock(), as we dont take a reference */
4874 static struct napi_struct *napi_by_id(unsigned int napi_id)
4875 {
4876 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4877 struct napi_struct *napi;
4878
4879 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4880 if (napi->napi_id == napi_id)
4881 return napi;
4882
4883 return NULL;
4884 }
4885
4886 #if defined(CONFIG_NET_RX_BUSY_POLL)
4887 #define BUSY_POLL_BUDGET 8
4888 bool sk_busy_loop(struct sock *sk, int nonblock)
4889 {
4890 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4891 int (*busy_poll)(struct napi_struct *dev);
4892 struct napi_struct *napi;
4893 int rc = false;
4894
4895 rcu_read_lock();
4896
4897 napi = napi_by_id(sk->sk_napi_id);
4898 if (!napi)
4899 goto out;
4900
4901 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4902 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4903
4904 do {
4905 rc = 0;
4906 local_bh_disable();
4907 if (busy_poll) {
4908 rc = busy_poll(napi);
4909 } else if (napi_schedule_prep(napi)) {
4910 void *have = netpoll_poll_lock(napi);
4911
4912 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4913 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4914 trace_napi_poll(napi);
4915 if (rc == BUSY_POLL_BUDGET) {
4916 napi_complete_done(napi, rc);
4917 napi_schedule(napi);
4918 }
4919 }
4920 netpoll_poll_unlock(have);
4921 }
4922 if (rc > 0)
4923 NET_ADD_STATS_BH(sock_net(sk),
4924 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4925 local_bh_enable();
4926
4927 if (rc == LL_FLUSH_FAILED)
4928 break; /* permanent failure */
4929
4930 cpu_relax();
4931 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4932 !need_resched() && !busy_loop_timeout(end_time));
4933
4934 rc = !skb_queue_empty(&sk->sk_receive_queue);
4935 out:
4936 rcu_read_unlock();
4937 return rc;
4938 }
4939 EXPORT_SYMBOL(sk_busy_loop);
4940
4941 #endif /* CONFIG_NET_RX_BUSY_POLL */
4942
4943 void napi_hash_add(struct napi_struct *napi)
4944 {
4945 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
4946 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
4947 return;
4948
4949 spin_lock(&napi_hash_lock);
4950
4951 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
4952 do {
4953 if (unlikely(++napi_gen_id < NR_CPUS + 1))
4954 napi_gen_id = NR_CPUS + 1;
4955 } while (napi_by_id(napi_gen_id));
4956 napi->napi_id = napi_gen_id;
4957
4958 hlist_add_head_rcu(&napi->napi_hash_node,
4959 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4960
4961 spin_unlock(&napi_hash_lock);
4962 }
4963 EXPORT_SYMBOL_GPL(napi_hash_add);
4964
4965 /* Warning : caller is responsible to make sure rcu grace period
4966 * is respected before freeing memory containing @napi
4967 */
4968 bool napi_hash_del(struct napi_struct *napi)
4969 {
4970 bool rcu_sync_needed = false;
4971
4972 spin_lock(&napi_hash_lock);
4973
4974 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
4975 rcu_sync_needed = true;
4976 hlist_del_rcu(&napi->napi_hash_node);
4977 }
4978 spin_unlock(&napi_hash_lock);
4979 return rcu_sync_needed;
4980 }
4981 EXPORT_SYMBOL_GPL(napi_hash_del);
4982
4983 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4984 {
4985 struct napi_struct *napi;
4986
4987 napi = container_of(timer, struct napi_struct, timer);
4988 if (napi->gro_list)
4989 napi_schedule(napi);
4990
4991 return HRTIMER_NORESTART;
4992 }
4993
4994 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4995 int (*poll)(struct napi_struct *, int), int weight)
4996 {
4997 INIT_LIST_HEAD(&napi->poll_list);
4998 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4999 napi->timer.function = napi_watchdog;
5000 napi->gro_count = 0;
5001 napi->gro_list = NULL;
5002 napi->skb = NULL;
5003 napi->poll = poll;
5004 if (weight > NAPI_POLL_WEIGHT)
5005 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5006 weight, dev->name);
5007 napi->weight = weight;
5008 list_add(&napi->dev_list, &dev->napi_list);
5009 napi->dev = dev;
5010 #ifdef CONFIG_NETPOLL
5011 spin_lock_init(&napi->poll_lock);
5012 napi->poll_owner = -1;
5013 #endif
5014 set_bit(NAPI_STATE_SCHED, &napi->state);
5015 napi_hash_add(napi);
5016 }
5017 EXPORT_SYMBOL(netif_napi_add);
5018
5019 void napi_disable(struct napi_struct *n)
5020 {
5021 might_sleep();
5022 set_bit(NAPI_STATE_DISABLE, &n->state);
5023
5024 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5025 msleep(1);
5026 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5027 msleep(1);
5028
5029 hrtimer_cancel(&n->timer);
5030
5031 clear_bit(NAPI_STATE_DISABLE, &n->state);
5032 }
5033 EXPORT_SYMBOL(napi_disable);
5034
5035 /* Must be called in process context */
5036 void netif_napi_del(struct napi_struct *napi)
5037 {
5038 might_sleep();
5039 if (napi_hash_del(napi))
5040 synchronize_net();
5041 list_del_init(&napi->dev_list);
5042 napi_free_frags(napi);
5043
5044 kfree_skb_list(napi->gro_list);
5045 napi->gro_list = NULL;
5046 napi->gro_count = 0;
5047 }
5048 EXPORT_SYMBOL(netif_napi_del);
5049
5050 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5051 {
5052 void *have;
5053 int work, weight;
5054
5055 list_del_init(&n->poll_list);
5056
5057 have = netpoll_poll_lock(n);
5058
5059 weight = n->weight;
5060
5061 /* This NAPI_STATE_SCHED test is for avoiding a race
5062 * with netpoll's poll_napi(). Only the entity which
5063 * obtains the lock and sees NAPI_STATE_SCHED set will
5064 * actually make the ->poll() call. Therefore we avoid
5065 * accidentally calling ->poll() when NAPI is not scheduled.
5066 */
5067 work = 0;
5068 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5069 work = n->poll(n, weight);
5070 trace_napi_poll(n);
5071 }
5072
5073 WARN_ON_ONCE(work > weight);
5074
5075 if (likely(work < weight))
5076 goto out_unlock;
5077
5078 /* Drivers must not modify the NAPI state if they
5079 * consume the entire weight. In such cases this code
5080 * still "owns" the NAPI instance and therefore can
5081 * move the instance around on the list at-will.
5082 */
5083 if (unlikely(napi_disable_pending(n))) {
5084 napi_complete(n);
5085 goto out_unlock;
5086 }
5087
5088 if (n->gro_list) {
5089 /* flush too old packets
5090 * If HZ < 1000, flush all packets.
5091 */
5092 napi_gro_flush(n, HZ >= 1000);
5093 }
5094
5095 /* Some drivers may have called napi_schedule
5096 * prior to exhausting their budget.
5097 */
5098 if (unlikely(!list_empty(&n->poll_list))) {
5099 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5100 n->dev ? n->dev->name : "backlog");
5101 goto out_unlock;
5102 }
5103
5104 list_add_tail(&n->poll_list, repoll);
5105
5106 out_unlock:
5107 netpoll_poll_unlock(have);
5108
5109 return work;
5110 }
5111
5112 static void net_rx_action(struct softirq_action *h)
5113 {
5114 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5115 unsigned long time_limit = jiffies + 2;
5116 int budget = netdev_budget;
5117 LIST_HEAD(list);
5118 LIST_HEAD(repoll);
5119
5120 local_irq_disable();
5121 list_splice_init(&sd->poll_list, &list);
5122 local_irq_enable();
5123
5124 for (;;) {
5125 struct napi_struct *n;
5126
5127 if (list_empty(&list)) {
5128 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5129 return;
5130 break;
5131 }
5132
5133 n = list_first_entry(&list, struct napi_struct, poll_list);
5134 budget -= napi_poll(n, &repoll);
5135
5136 /* If softirq window is exhausted then punt.
5137 * Allow this to run for 2 jiffies since which will allow
5138 * an average latency of 1.5/HZ.
5139 */
5140 if (unlikely(budget <= 0 ||
5141 time_after_eq(jiffies, time_limit))) {
5142 sd->time_squeeze++;
5143 break;
5144 }
5145 }
5146
5147 local_irq_disable();
5148
5149 list_splice_tail_init(&sd->poll_list, &list);
5150 list_splice_tail(&repoll, &list);
5151 list_splice(&list, &sd->poll_list);
5152 if (!list_empty(&sd->poll_list))
5153 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5154
5155 net_rps_action_and_irq_enable(sd);
5156 }
5157
5158 struct netdev_adjacent {
5159 struct net_device *dev;
5160
5161 /* upper master flag, there can only be one master device per list */
5162 bool master;
5163
5164 /* counter for the number of times this device was added to us */
5165 u16 ref_nr;
5166
5167 /* private field for the users */
5168 void *private;
5169
5170 struct list_head list;
5171 struct rcu_head rcu;
5172 };
5173
5174 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5175 struct list_head *adj_list)
5176 {
5177 struct netdev_adjacent *adj;
5178
5179 list_for_each_entry(adj, adj_list, list) {
5180 if (adj->dev == adj_dev)
5181 return adj;
5182 }
5183 return NULL;
5184 }
5185
5186 /**
5187 * netdev_has_upper_dev - Check if device is linked to an upper device
5188 * @dev: device
5189 * @upper_dev: upper device to check
5190 *
5191 * Find out if a device is linked to specified upper device and return true
5192 * in case it is. Note that this checks only immediate upper device,
5193 * not through a complete stack of devices. The caller must hold the RTNL lock.
5194 */
5195 bool netdev_has_upper_dev(struct net_device *dev,
5196 struct net_device *upper_dev)
5197 {
5198 ASSERT_RTNL();
5199
5200 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5201 }
5202 EXPORT_SYMBOL(netdev_has_upper_dev);
5203
5204 /**
5205 * netdev_has_any_upper_dev - Check if device is linked to some device
5206 * @dev: device
5207 *
5208 * Find out if a device is linked to an upper device and return true in case
5209 * it is. The caller must hold the RTNL lock.
5210 */
5211 static bool netdev_has_any_upper_dev(struct net_device *dev)
5212 {
5213 ASSERT_RTNL();
5214
5215 return !list_empty(&dev->all_adj_list.upper);
5216 }
5217
5218 /**
5219 * netdev_master_upper_dev_get - Get master upper device
5220 * @dev: device
5221 *
5222 * Find a master upper device and return pointer to it or NULL in case
5223 * it's not there. The caller must hold the RTNL lock.
5224 */
5225 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5226 {
5227 struct netdev_adjacent *upper;
5228
5229 ASSERT_RTNL();
5230
5231 if (list_empty(&dev->adj_list.upper))
5232 return NULL;
5233
5234 upper = list_first_entry(&dev->adj_list.upper,
5235 struct netdev_adjacent, list);
5236 if (likely(upper->master))
5237 return upper->dev;
5238 return NULL;
5239 }
5240 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5241
5242 void *netdev_adjacent_get_private(struct list_head *adj_list)
5243 {
5244 struct netdev_adjacent *adj;
5245
5246 adj = list_entry(adj_list, struct netdev_adjacent, list);
5247
5248 return adj->private;
5249 }
5250 EXPORT_SYMBOL(netdev_adjacent_get_private);
5251
5252 /**
5253 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5254 * @dev: device
5255 * @iter: list_head ** of the current position
5256 *
5257 * Gets the next device from the dev's upper list, starting from iter
5258 * position. The caller must hold RCU read lock.
5259 */
5260 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5261 struct list_head **iter)
5262 {
5263 struct netdev_adjacent *upper;
5264
5265 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5266
5267 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5268
5269 if (&upper->list == &dev->adj_list.upper)
5270 return NULL;
5271
5272 *iter = &upper->list;
5273
5274 return upper->dev;
5275 }
5276 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5277
5278 /**
5279 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5280 * @dev: device
5281 * @iter: list_head ** of the current position
5282 *
5283 * Gets the next device from the dev's upper list, starting from iter
5284 * position. The caller must hold RCU read lock.
5285 */
5286 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5287 struct list_head **iter)
5288 {
5289 struct netdev_adjacent *upper;
5290
5291 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5292
5293 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5294
5295 if (&upper->list == &dev->all_adj_list.upper)
5296 return NULL;
5297
5298 *iter = &upper->list;
5299
5300 return upper->dev;
5301 }
5302 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5303
5304 /**
5305 * netdev_lower_get_next_private - Get the next ->private from the
5306 * lower neighbour list
5307 * @dev: device
5308 * @iter: list_head ** of the current position
5309 *
5310 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5311 * list, starting from iter position. The caller must hold either hold the
5312 * RTNL lock or its own locking that guarantees that the neighbour lower
5313 * list will remain unchanged.
5314 */
5315 void *netdev_lower_get_next_private(struct net_device *dev,
5316 struct list_head **iter)
5317 {
5318 struct netdev_adjacent *lower;
5319
5320 lower = list_entry(*iter, struct netdev_adjacent, list);
5321
5322 if (&lower->list == &dev->adj_list.lower)
5323 return NULL;
5324
5325 *iter = lower->list.next;
5326
5327 return lower->private;
5328 }
5329 EXPORT_SYMBOL(netdev_lower_get_next_private);
5330
5331 /**
5332 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5333 * lower neighbour list, RCU
5334 * variant
5335 * @dev: device
5336 * @iter: list_head ** of the current position
5337 *
5338 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5339 * list, starting from iter position. The caller must hold RCU read lock.
5340 */
5341 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5342 struct list_head **iter)
5343 {
5344 struct netdev_adjacent *lower;
5345
5346 WARN_ON_ONCE(!rcu_read_lock_held());
5347
5348 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5349
5350 if (&lower->list == &dev->adj_list.lower)
5351 return NULL;
5352
5353 *iter = &lower->list;
5354
5355 return lower->private;
5356 }
5357 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5358
5359 /**
5360 * netdev_lower_get_next - Get the next device from the lower neighbour
5361 * list
5362 * @dev: device
5363 * @iter: list_head ** of the current position
5364 *
5365 * Gets the next netdev_adjacent from the dev's lower neighbour
5366 * list, starting from iter position. The caller must hold RTNL lock or
5367 * its own locking that guarantees that the neighbour lower
5368 * list will remain unchanged.
5369 */
5370 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5371 {
5372 struct netdev_adjacent *lower;
5373
5374 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5375
5376 if (&lower->list == &dev->adj_list.lower)
5377 return NULL;
5378
5379 *iter = &lower->list;
5380
5381 return lower->dev;
5382 }
5383 EXPORT_SYMBOL(netdev_lower_get_next);
5384
5385 /**
5386 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5387 * lower neighbour list, RCU
5388 * variant
5389 * @dev: device
5390 *
5391 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5392 * list. The caller must hold RCU read lock.
5393 */
5394 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5395 {
5396 struct netdev_adjacent *lower;
5397
5398 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5399 struct netdev_adjacent, list);
5400 if (lower)
5401 return lower->private;
5402 return NULL;
5403 }
5404 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5405
5406 /**
5407 * netdev_master_upper_dev_get_rcu - Get master upper device
5408 * @dev: device
5409 *
5410 * Find a master upper device and return pointer to it or NULL in case
5411 * it's not there. The caller must hold the RCU read lock.
5412 */
5413 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5414 {
5415 struct netdev_adjacent *upper;
5416
5417 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5418 struct netdev_adjacent, list);
5419 if (upper && likely(upper->master))
5420 return upper->dev;
5421 return NULL;
5422 }
5423 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5424
5425 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5426 struct net_device *adj_dev,
5427 struct list_head *dev_list)
5428 {
5429 char linkname[IFNAMSIZ+7];
5430 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5431 "upper_%s" : "lower_%s", adj_dev->name);
5432 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5433 linkname);
5434 }
5435 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5436 char *name,
5437 struct list_head *dev_list)
5438 {
5439 char linkname[IFNAMSIZ+7];
5440 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5441 "upper_%s" : "lower_%s", name);
5442 sysfs_remove_link(&(dev->dev.kobj), linkname);
5443 }
5444
5445 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5446 struct net_device *adj_dev,
5447 struct list_head *dev_list)
5448 {
5449 return (dev_list == &dev->adj_list.upper ||
5450 dev_list == &dev->adj_list.lower) &&
5451 net_eq(dev_net(dev), dev_net(adj_dev));
5452 }
5453
5454 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5455 struct net_device *adj_dev,
5456 struct list_head *dev_list,
5457 void *private, bool master)
5458 {
5459 struct netdev_adjacent *adj;
5460 int ret;
5461
5462 adj = __netdev_find_adj(adj_dev, dev_list);
5463
5464 if (adj) {
5465 adj->ref_nr++;
5466 return 0;
5467 }
5468
5469 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5470 if (!adj)
5471 return -ENOMEM;
5472
5473 adj->dev = adj_dev;
5474 adj->master = master;
5475 adj->ref_nr = 1;
5476 adj->private = private;
5477 dev_hold(adj_dev);
5478
5479 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5480 adj_dev->name, dev->name, adj_dev->name);
5481
5482 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5483 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5484 if (ret)
5485 goto free_adj;
5486 }
5487
5488 /* Ensure that master link is always the first item in list. */
5489 if (master) {
5490 ret = sysfs_create_link(&(dev->dev.kobj),
5491 &(adj_dev->dev.kobj), "master");
5492 if (ret)
5493 goto remove_symlinks;
5494
5495 list_add_rcu(&adj->list, dev_list);
5496 } else {
5497 list_add_tail_rcu(&adj->list, dev_list);
5498 }
5499
5500 return 0;
5501
5502 remove_symlinks:
5503 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5504 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5505 free_adj:
5506 kfree(adj);
5507 dev_put(adj_dev);
5508
5509 return ret;
5510 }
5511
5512 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5513 struct net_device *adj_dev,
5514 struct list_head *dev_list)
5515 {
5516 struct netdev_adjacent *adj;
5517
5518 adj = __netdev_find_adj(adj_dev, dev_list);
5519
5520 if (!adj) {
5521 pr_err("tried to remove device %s from %s\n",
5522 dev->name, adj_dev->name);
5523 BUG();
5524 }
5525
5526 if (adj->ref_nr > 1) {
5527 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5528 adj->ref_nr-1);
5529 adj->ref_nr--;
5530 return;
5531 }
5532
5533 if (adj->master)
5534 sysfs_remove_link(&(dev->dev.kobj), "master");
5535
5536 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5537 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5538
5539 list_del_rcu(&adj->list);
5540 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5541 adj_dev->name, dev->name, adj_dev->name);
5542 dev_put(adj_dev);
5543 kfree_rcu(adj, rcu);
5544 }
5545
5546 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5547 struct net_device *upper_dev,
5548 struct list_head *up_list,
5549 struct list_head *down_list,
5550 void *private, bool master)
5551 {
5552 int ret;
5553
5554 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5555 master);
5556 if (ret)
5557 return ret;
5558
5559 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5560 false);
5561 if (ret) {
5562 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5563 return ret;
5564 }
5565
5566 return 0;
5567 }
5568
5569 static int __netdev_adjacent_dev_link(struct net_device *dev,
5570 struct net_device *upper_dev)
5571 {
5572 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5573 &dev->all_adj_list.upper,
5574 &upper_dev->all_adj_list.lower,
5575 NULL, false);
5576 }
5577
5578 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5579 struct net_device *upper_dev,
5580 struct list_head *up_list,
5581 struct list_head *down_list)
5582 {
5583 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5584 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5585 }
5586
5587 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5588 struct net_device *upper_dev)
5589 {
5590 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5591 &dev->all_adj_list.upper,
5592 &upper_dev->all_adj_list.lower);
5593 }
5594
5595 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5596 struct net_device *upper_dev,
5597 void *private, bool master)
5598 {
5599 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5600
5601 if (ret)
5602 return ret;
5603
5604 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5605 &dev->adj_list.upper,
5606 &upper_dev->adj_list.lower,
5607 private, master);
5608 if (ret) {
5609 __netdev_adjacent_dev_unlink(dev, upper_dev);
5610 return ret;
5611 }
5612
5613 return 0;
5614 }
5615
5616 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5617 struct net_device *upper_dev)
5618 {
5619 __netdev_adjacent_dev_unlink(dev, upper_dev);
5620 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5621 &dev->adj_list.upper,
5622 &upper_dev->adj_list.lower);
5623 }
5624
5625 static int __netdev_upper_dev_link(struct net_device *dev,
5626 struct net_device *upper_dev, bool master,
5627 void *upper_priv, void *upper_info)
5628 {
5629 struct netdev_notifier_changeupper_info changeupper_info;
5630 struct netdev_adjacent *i, *j, *to_i, *to_j;
5631 int ret = 0;
5632
5633 ASSERT_RTNL();
5634
5635 if (dev == upper_dev)
5636 return -EBUSY;
5637
5638 /* To prevent loops, check if dev is not upper device to upper_dev. */
5639 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5640 return -EBUSY;
5641
5642 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5643 return -EEXIST;
5644
5645 if (master && netdev_master_upper_dev_get(dev))
5646 return -EBUSY;
5647
5648 changeupper_info.upper_dev = upper_dev;
5649 changeupper_info.master = master;
5650 changeupper_info.linking = true;
5651 changeupper_info.upper_info = upper_info;
5652
5653 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5654 &changeupper_info.info);
5655 ret = notifier_to_errno(ret);
5656 if (ret)
5657 return ret;
5658
5659 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5660 master);
5661 if (ret)
5662 return ret;
5663
5664 /* Now that we linked these devs, make all the upper_dev's
5665 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5666 * versa, and don't forget the devices itself. All of these
5667 * links are non-neighbours.
5668 */
5669 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5670 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5671 pr_debug("Interlinking %s with %s, non-neighbour\n",
5672 i->dev->name, j->dev->name);
5673 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5674 if (ret)
5675 goto rollback_mesh;
5676 }
5677 }
5678
5679 /* add dev to every upper_dev's upper device */
5680 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5681 pr_debug("linking %s's upper device %s with %s\n",
5682 upper_dev->name, i->dev->name, dev->name);
5683 ret = __netdev_adjacent_dev_link(dev, i->dev);
5684 if (ret)
5685 goto rollback_upper_mesh;
5686 }
5687
5688 /* add upper_dev to every dev's lower device */
5689 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5690 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5691 i->dev->name, upper_dev->name);
5692 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5693 if (ret)
5694 goto rollback_lower_mesh;
5695 }
5696
5697 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5698 &changeupper_info.info);
5699 ret = notifier_to_errno(ret);
5700 if (ret)
5701 goto rollback_lower_mesh;
5702
5703 return 0;
5704
5705 rollback_lower_mesh:
5706 to_i = i;
5707 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5708 if (i == to_i)
5709 break;
5710 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5711 }
5712
5713 i = NULL;
5714
5715 rollback_upper_mesh:
5716 to_i = i;
5717 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5718 if (i == to_i)
5719 break;
5720 __netdev_adjacent_dev_unlink(dev, i->dev);
5721 }
5722
5723 i = j = NULL;
5724
5725 rollback_mesh:
5726 to_i = i;
5727 to_j = j;
5728 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5729 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5730 if (i == to_i && j == to_j)
5731 break;
5732 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5733 }
5734 if (i == to_i)
5735 break;
5736 }
5737
5738 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5739
5740 return ret;
5741 }
5742
5743 /**
5744 * netdev_upper_dev_link - Add a link to the upper device
5745 * @dev: device
5746 * @upper_dev: new upper device
5747 *
5748 * Adds a link to device which is upper to this one. The caller must hold
5749 * the RTNL lock. On a failure a negative errno code is returned.
5750 * On success the reference counts are adjusted and the function
5751 * returns zero.
5752 */
5753 int netdev_upper_dev_link(struct net_device *dev,
5754 struct net_device *upper_dev)
5755 {
5756 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5757 }
5758 EXPORT_SYMBOL(netdev_upper_dev_link);
5759
5760 /**
5761 * netdev_master_upper_dev_link - Add a master link to the upper device
5762 * @dev: device
5763 * @upper_dev: new upper device
5764 * @upper_priv: upper device private
5765 * @upper_info: upper info to be passed down via notifier
5766 *
5767 * Adds a link to device which is upper to this one. In this case, only
5768 * one master upper device can be linked, although other non-master devices
5769 * might be linked as well. The caller must hold the RTNL lock.
5770 * On a failure a negative errno code is returned. On success the reference
5771 * counts are adjusted and the function returns zero.
5772 */
5773 int netdev_master_upper_dev_link(struct net_device *dev,
5774 struct net_device *upper_dev,
5775 void *upper_priv, void *upper_info)
5776 {
5777 return __netdev_upper_dev_link(dev, upper_dev, true,
5778 upper_priv, upper_info);
5779 }
5780 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5781
5782 /**
5783 * netdev_upper_dev_unlink - Removes a link to upper device
5784 * @dev: device
5785 * @upper_dev: new upper device
5786 *
5787 * Removes a link to device which is upper to this one. The caller must hold
5788 * the RTNL lock.
5789 */
5790 void netdev_upper_dev_unlink(struct net_device *dev,
5791 struct net_device *upper_dev)
5792 {
5793 struct netdev_notifier_changeupper_info changeupper_info;
5794 struct netdev_adjacent *i, *j;
5795 ASSERT_RTNL();
5796
5797 changeupper_info.upper_dev = upper_dev;
5798 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5799 changeupper_info.linking = false;
5800
5801 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5802 &changeupper_info.info);
5803
5804 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5805
5806 /* Here is the tricky part. We must remove all dev's lower
5807 * devices from all upper_dev's upper devices and vice
5808 * versa, to maintain the graph relationship.
5809 */
5810 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5811 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5812 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5813
5814 /* remove also the devices itself from lower/upper device
5815 * list
5816 */
5817 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5818 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5819
5820 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5821 __netdev_adjacent_dev_unlink(dev, i->dev);
5822
5823 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5824 &changeupper_info.info);
5825 }
5826 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5827
5828 /**
5829 * netdev_bonding_info_change - Dispatch event about slave change
5830 * @dev: device
5831 * @bonding_info: info to dispatch
5832 *
5833 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5834 * The caller must hold the RTNL lock.
5835 */
5836 void netdev_bonding_info_change(struct net_device *dev,
5837 struct netdev_bonding_info *bonding_info)
5838 {
5839 struct netdev_notifier_bonding_info info;
5840
5841 memcpy(&info.bonding_info, bonding_info,
5842 sizeof(struct netdev_bonding_info));
5843 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5844 &info.info);
5845 }
5846 EXPORT_SYMBOL(netdev_bonding_info_change);
5847
5848 static void netdev_adjacent_add_links(struct net_device *dev)
5849 {
5850 struct netdev_adjacent *iter;
5851
5852 struct net *net = dev_net(dev);
5853
5854 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5855 if (!net_eq(net,dev_net(iter->dev)))
5856 continue;
5857 netdev_adjacent_sysfs_add(iter->dev, dev,
5858 &iter->dev->adj_list.lower);
5859 netdev_adjacent_sysfs_add(dev, iter->dev,
5860 &dev->adj_list.upper);
5861 }
5862
5863 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5864 if (!net_eq(net,dev_net(iter->dev)))
5865 continue;
5866 netdev_adjacent_sysfs_add(iter->dev, dev,
5867 &iter->dev->adj_list.upper);
5868 netdev_adjacent_sysfs_add(dev, iter->dev,
5869 &dev->adj_list.lower);
5870 }
5871 }
5872
5873 static void netdev_adjacent_del_links(struct net_device *dev)
5874 {
5875 struct netdev_adjacent *iter;
5876
5877 struct net *net = dev_net(dev);
5878
5879 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5880 if (!net_eq(net,dev_net(iter->dev)))
5881 continue;
5882 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5883 &iter->dev->adj_list.lower);
5884 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5885 &dev->adj_list.upper);
5886 }
5887
5888 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5889 if (!net_eq(net,dev_net(iter->dev)))
5890 continue;
5891 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5892 &iter->dev->adj_list.upper);
5893 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5894 &dev->adj_list.lower);
5895 }
5896 }
5897
5898 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5899 {
5900 struct netdev_adjacent *iter;
5901
5902 struct net *net = dev_net(dev);
5903
5904 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5905 if (!net_eq(net,dev_net(iter->dev)))
5906 continue;
5907 netdev_adjacent_sysfs_del(iter->dev, oldname,
5908 &iter->dev->adj_list.lower);
5909 netdev_adjacent_sysfs_add(iter->dev, dev,
5910 &iter->dev->adj_list.lower);
5911 }
5912
5913 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5914 if (!net_eq(net,dev_net(iter->dev)))
5915 continue;
5916 netdev_adjacent_sysfs_del(iter->dev, oldname,
5917 &iter->dev->adj_list.upper);
5918 netdev_adjacent_sysfs_add(iter->dev, dev,
5919 &iter->dev->adj_list.upper);
5920 }
5921 }
5922
5923 void *netdev_lower_dev_get_private(struct net_device *dev,
5924 struct net_device *lower_dev)
5925 {
5926 struct netdev_adjacent *lower;
5927
5928 if (!lower_dev)
5929 return NULL;
5930 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5931 if (!lower)
5932 return NULL;
5933
5934 return lower->private;
5935 }
5936 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5937
5938
5939 int dev_get_nest_level(struct net_device *dev,
5940 bool (*type_check)(const struct net_device *dev))
5941 {
5942 struct net_device *lower = NULL;
5943 struct list_head *iter;
5944 int max_nest = -1;
5945 int nest;
5946
5947 ASSERT_RTNL();
5948
5949 netdev_for_each_lower_dev(dev, lower, iter) {
5950 nest = dev_get_nest_level(lower, type_check);
5951 if (max_nest < nest)
5952 max_nest = nest;
5953 }
5954
5955 if (type_check(dev))
5956 max_nest++;
5957
5958 return max_nest;
5959 }
5960 EXPORT_SYMBOL(dev_get_nest_level);
5961
5962 /**
5963 * netdev_lower_change - Dispatch event about lower device state change
5964 * @lower_dev: device
5965 * @lower_state_info: state to dispatch
5966 *
5967 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
5968 * The caller must hold the RTNL lock.
5969 */
5970 void netdev_lower_state_changed(struct net_device *lower_dev,
5971 void *lower_state_info)
5972 {
5973 struct netdev_notifier_changelowerstate_info changelowerstate_info;
5974
5975 ASSERT_RTNL();
5976 changelowerstate_info.lower_state_info = lower_state_info;
5977 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
5978 &changelowerstate_info.info);
5979 }
5980 EXPORT_SYMBOL(netdev_lower_state_changed);
5981
5982 static void dev_change_rx_flags(struct net_device *dev, int flags)
5983 {
5984 const struct net_device_ops *ops = dev->netdev_ops;
5985
5986 if (ops->ndo_change_rx_flags)
5987 ops->ndo_change_rx_flags(dev, flags);
5988 }
5989
5990 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5991 {
5992 unsigned int old_flags = dev->flags;
5993 kuid_t uid;
5994 kgid_t gid;
5995
5996 ASSERT_RTNL();
5997
5998 dev->flags |= IFF_PROMISC;
5999 dev->promiscuity += inc;
6000 if (dev->promiscuity == 0) {
6001 /*
6002 * Avoid overflow.
6003 * If inc causes overflow, untouch promisc and return error.
6004 */
6005 if (inc < 0)
6006 dev->flags &= ~IFF_PROMISC;
6007 else {
6008 dev->promiscuity -= inc;
6009 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6010 dev->name);
6011 return -EOVERFLOW;
6012 }
6013 }
6014 if (dev->flags != old_flags) {
6015 pr_info("device %s %s promiscuous mode\n",
6016 dev->name,
6017 dev->flags & IFF_PROMISC ? "entered" : "left");
6018 if (audit_enabled) {
6019 current_uid_gid(&uid, &gid);
6020 audit_log(current->audit_context, GFP_ATOMIC,
6021 AUDIT_ANOM_PROMISCUOUS,
6022 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6023 dev->name, (dev->flags & IFF_PROMISC),
6024 (old_flags & IFF_PROMISC),
6025 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6026 from_kuid(&init_user_ns, uid),
6027 from_kgid(&init_user_ns, gid),
6028 audit_get_sessionid(current));
6029 }
6030
6031 dev_change_rx_flags(dev, IFF_PROMISC);
6032 }
6033 if (notify)
6034 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6035 return 0;
6036 }
6037
6038 /**
6039 * dev_set_promiscuity - update promiscuity count on a device
6040 * @dev: device
6041 * @inc: modifier
6042 *
6043 * Add or remove promiscuity from a device. While the count in the device
6044 * remains above zero the interface remains promiscuous. Once it hits zero
6045 * the device reverts back to normal filtering operation. A negative inc
6046 * value is used to drop promiscuity on the device.
6047 * Return 0 if successful or a negative errno code on error.
6048 */
6049 int dev_set_promiscuity(struct net_device *dev, int inc)
6050 {
6051 unsigned int old_flags = dev->flags;
6052 int err;
6053
6054 err = __dev_set_promiscuity(dev, inc, true);
6055 if (err < 0)
6056 return err;
6057 if (dev->flags != old_flags)
6058 dev_set_rx_mode(dev);
6059 return err;
6060 }
6061 EXPORT_SYMBOL(dev_set_promiscuity);
6062
6063 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6064 {
6065 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6066
6067 ASSERT_RTNL();
6068
6069 dev->flags |= IFF_ALLMULTI;
6070 dev->allmulti += inc;
6071 if (dev->allmulti == 0) {
6072 /*
6073 * Avoid overflow.
6074 * If inc causes overflow, untouch allmulti and return error.
6075 */
6076 if (inc < 0)
6077 dev->flags &= ~IFF_ALLMULTI;
6078 else {
6079 dev->allmulti -= inc;
6080 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6081 dev->name);
6082 return -EOVERFLOW;
6083 }
6084 }
6085 if (dev->flags ^ old_flags) {
6086 dev_change_rx_flags(dev, IFF_ALLMULTI);
6087 dev_set_rx_mode(dev);
6088 if (notify)
6089 __dev_notify_flags(dev, old_flags,
6090 dev->gflags ^ old_gflags);
6091 }
6092 return 0;
6093 }
6094
6095 /**
6096 * dev_set_allmulti - update allmulti count on a device
6097 * @dev: device
6098 * @inc: modifier
6099 *
6100 * Add or remove reception of all multicast frames to a device. While the
6101 * count in the device remains above zero the interface remains listening
6102 * to all interfaces. Once it hits zero the device reverts back to normal
6103 * filtering operation. A negative @inc value is used to drop the counter
6104 * when releasing a resource needing all multicasts.
6105 * Return 0 if successful or a negative errno code on error.
6106 */
6107
6108 int dev_set_allmulti(struct net_device *dev, int inc)
6109 {
6110 return __dev_set_allmulti(dev, inc, true);
6111 }
6112 EXPORT_SYMBOL(dev_set_allmulti);
6113
6114 /*
6115 * Upload unicast and multicast address lists to device and
6116 * configure RX filtering. When the device doesn't support unicast
6117 * filtering it is put in promiscuous mode while unicast addresses
6118 * are present.
6119 */
6120 void __dev_set_rx_mode(struct net_device *dev)
6121 {
6122 const struct net_device_ops *ops = dev->netdev_ops;
6123
6124 /* dev_open will call this function so the list will stay sane. */
6125 if (!(dev->flags&IFF_UP))
6126 return;
6127
6128 if (!netif_device_present(dev))
6129 return;
6130
6131 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6132 /* Unicast addresses changes may only happen under the rtnl,
6133 * therefore calling __dev_set_promiscuity here is safe.
6134 */
6135 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6136 __dev_set_promiscuity(dev, 1, false);
6137 dev->uc_promisc = true;
6138 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6139 __dev_set_promiscuity(dev, -1, false);
6140 dev->uc_promisc = false;
6141 }
6142 }
6143
6144 if (ops->ndo_set_rx_mode)
6145 ops->ndo_set_rx_mode(dev);
6146 }
6147
6148 void dev_set_rx_mode(struct net_device *dev)
6149 {
6150 netif_addr_lock_bh(dev);
6151 __dev_set_rx_mode(dev);
6152 netif_addr_unlock_bh(dev);
6153 }
6154
6155 /**
6156 * dev_get_flags - get flags reported to userspace
6157 * @dev: device
6158 *
6159 * Get the combination of flag bits exported through APIs to userspace.
6160 */
6161 unsigned int dev_get_flags(const struct net_device *dev)
6162 {
6163 unsigned int flags;
6164
6165 flags = (dev->flags & ~(IFF_PROMISC |
6166 IFF_ALLMULTI |
6167 IFF_RUNNING |
6168 IFF_LOWER_UP |
6169 IFF_DORMANT)) |
6170 (dev->gflags & (IFF_PROMISC |
6171 IFF_ALLMULTI));
6172
6173 if (netif_running(dev)) {
6174 if (netif_oper_up(dev))
6175 flags |= IFF_RUNNING;
6176 if (netif_carrier_ok(dev))
6177 flags |= IFF_LOWER_UP;
6178 if (netif_dormant(dev))
6179 flags |= IFF_DORMANT;
6180 }
6181
6182 return flags;
6183 }
6184 EXPORT_SYMBOL(dev_get_flags);
6185
6186 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6187 {
6188 unsigned int old_flags = dev->flags;
6189 int ret;
6190
6191 ASSERT_RTNL();
6192
6193 /*
6194 * Set the flags on our device.
6195 */
6196
6197 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6198 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6199 IFF_AUTOMEDIA)) |
6200 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6201 IFF_ALLMULTI));
6202
6203 /*
6204 * Load in the correct multicast list now the flags have changed.
6205 */
6206
6207 if ((old_flags ^ flags) & IFF_MULTICAST)
6208 dev_change_rx_flags(dev, IFF_MULTICAST);
6209
6210 dev_set_rx_mode(dev);
6211
6212 /*
6213 * Have we downed the interface. We handle IFF_UP ourselves
6214 * according to user attempts to set it, rather than blindly
6215 * setting it.
6216 */
6217
6218 ret = 0;
6219 if ((old_flags ^ flags) & IFF_UP)
6220 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6221
6222 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6223 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6224 unsigned int old_flags = dev->flags;
6225
6226 dev->gflags ^= IFF_PROMISC;
6227
6228 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6229 if (dev->flags != old_flags)
6230 dev_set_rx_mode(dev);
6231 }
6232
6233 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6234 is important. Some (broken) drivers set IFF_PROMISC, when
6235 IFF_ALLMULTI is requested not asking us and not reporting.
6236 */
6237 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6238 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6239
6240 dev->gflags ^= IFF_ALLMULTI;
6241 __dev_set_allmulti(dev, inc, false);
6242 }
6243
6244 return ret;
6245 }
6246
6247 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6248 unsigned int gchanges)
6249 {
6250 unsigned int changes = dev->flags ^ old_flags;
6251
6252 if (gchanges)
6253 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6254
6255 if (changes & IFF_UP) {
6256 if (dev->flags & IFF_UP)
6257 call_netdevice_notifiers(NETDEV_UP, dev);
6258 else
6259 call_netdevice_notifiers(NETDEV_DOWN, dev);
6260 }
6261
6262 if (dev->flags & IFF_UP &&
6263 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6264 struct netdev_notifier_change_info change_info;
6265
6266 change_info.flags_changed = changes;
6267 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6268 &change_info.info);
6269 }
6270 }
6271
6272 /**
6273 * dev_change_flags - change device settings
6274 * @dev: device
6275 * @flags: device state flags
6276 *
6277 * Change settings on device based state flags. The flags are
6278 * in the userspace exported format.
6279 */
6280 int dev_change_flags(struct net_device *dev, unsigned int flags)
6281 {
6282 int ret;
6283 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6284
6285 ret = __dev_change_flags(dev, flags);
6286 if (ret < 0)
6287 return ret;
6288
6289 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6290 __dev_notify_flags(dev, old_flags, changes);
6291 return ret;
6292 }
6293 EXPORT_SYMBOL(dev_change_flags);
6294
6295 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6296 {
6297 const struct net_device_ops *ops = dev->netdev_ops;
6298
6299 if (ops->ndo_change_mtu)
6300 return ops->ndo_change_mtu(dev, new_mtu);
6301
6302 dev->mtu = new_mtu;
6303 return 0;
6304 }
6305
6306 /**
6307 * dev_set_mtu - Change maximum transfer unit
6308 * @dev: device
6309 * @new_mtu: new transfer unit
6310 *
6311 * Change the maximum transfer size of the network device.
6312 */
6313 int dev_set_mtu(struct net_device *dev, int new_mtu)
6314 {
6315 int err, orig_mtu;
6316
6317 if (new_mtu == dev->mtu)
6318 return 0;
6319
6320 /* MTU must be positive. */
6321 if (new_mtu < 0)
6322 return -EINVAL;
6323
6324 if (!netif_device_present(dev))
6325 return -ENODEV;
6326
6327 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6328 err = notifier_to_errno(err);
6329 if (err)
6330 return err;
6331
6332 orig_mtu = dev->mtu;
6333 err = __dev_set_mtu(dev, new_mtu);
6334
6335 if (!err) {
6336 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6337 err = notifier_to_errno(err);
6338 if (err) {
6339 /* setting mtu back and notifying everyone again,
6340 * so that they have a chance to revert changes.
6341 */
6342 __dev_set_mtu(dev, orig_mtu);
6343 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6344 }
6345 }
6346 return err;
6347 }
6348 EXPORT_SYMBOL(dev_set_mtu);
6349
6350 /**
6351 * dev_set_group - Change group this device belongs to
6352 * @dev: device
6353 * @new_group: group this device should belong to
6354 */
6355 void dev_set_group(struct net_device *dev, int new_group)
6356 {
6357 dev->group = new_group;
6358 }
6359 EXPORT_SYMBOL(dev_set_group);
6360
6361 /**
6362 * dev_set_mac_address - Change Media Access Control Address
6363 * @dev: device
6364 * @sa: new address
6365 *
6366 * Change the hardware (MAC) address of the device
6367 */
6368 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6369 {
6370 const struct net_device_ops *ops = dev->netdev_ops;
6371 int err;
6372
6373 if (!ops->ndo_set_mac_address)
6374 return -EOPNOTSUPP;
6375 if (sa->sa_family != dev->type)
6376 return -EINVAL;
6377 if (!netif_device_present(dev))
6378 return -ENODEV;
6379 err = ops->ndo_set_mac_address(dev, sa);
6380 if (err)
6381 return err;
6382 dev->addr_assign_type = NET_ADDR_SET;
6383 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6384 add_device_randomness(dev->dev_addr, dev->addr_len);
6385 return 0;
6386 }
6387 EXPORT_SYMBOL(dev_set_mac_address);
6388
6389 /**
6390 * dev_change_carrier - Change device carrier
6391 * @dev: device
6392 * @new_carrier: new value
6393 *
6394 * Change device carrier
6395 */
6396 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6397 {
6398 const struct net_device_ops *ops = dev->netdev_ops;
6399
6400 if (!ops->ndo_change_carrier)
6401 return -EOPNOTSUPP;
6402 if (!netif_device_present(dev))
6403 return -ENODEV;
6404 return ops->ndo_change_carrier(dev, new_carrier);
6405 }
6406 EXPORT_SYMBOL(dev_change_carrier);
6407
6408 /**
6409 * dev_get_phys_port_id - Get device physical port ID
6410 * @dev: device
6411 * @ppid: port ID
6412 *
6413 * Get device physical port ID
6414 */
6415 int dev_get_phys_port_id(struct net_device *dev,
6416 struct netdev_phys_item_id *ppid)
6417 {
6418 const struct net_device_ops *ops = dev->netdev_ops;
6419
6420 if (!ops->ndo_get_phys_port_id)
6421 return -EOPNOTSUPP;
6422 return ops->ndo_get_phys_port_id(dev, ppid);
6423 }
6424 EXPORT_SYMBOL(dev_get_phys_port_id);
6425
6426 /**
6427 * dev_get_phys_port_name - Get device physical port name
6428 * @dev: device
6429 * @name: port name
6430 *
6431 * Get device physical port name
6432 */
6433 int dev_get_phys_port_name(struct net_device *dev,
6434 char *name, size_t len)
6435 {
6436 const struct net_device_ops *ops = dev->netdev_ops;
6437
6438 if (!ops->ndo_get_phys_port_name)
6439 return -EOPNOTSUPP;
6440 return ops->ndo_get_phys_port_name(dev, name, len);
6441 }
6442 EXPORT_SYMBOL(dev_get_phys_port_name);
6443
6444 /**
6445 * dev_change_proto_down - update protocol port state information
6446 * @dev: device
6447 * @proto_down: new value
6448 *
6449 * This info can be used by switch drivers to set the phys state of the
6450 * port.
6451 */
6452 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6453 {
6454 const struct net_device_ops *ops = dev->netdev_ops;
6455
6456 if (!ops->ndo_change_proto_down)
6457 return -EOPNOTSUPP;
6458 if (!netif_device_present(dev))
6459 return -ENODEV;
6460 return ops->ndo_change_proto_down(dev, proto_down);
6461 }
6462 EXPORT_SYMBOL(dev_change_proto_down);
6463
6464 /**
6465 * dev_new_index - allocate an ifindex
6466 * @net: the applicable net namespace
6467 *
6468 * Returns a suitable unique value for a new device interface
6469 * number. The caller must hold the rtnl semaphore or the
6470 * dev_base_lock to be sure it remains unique.
6471 */
6472 static int dev_new_index(struct net *net)
6473 {
6474 int ifindex = net->ifindex;
6475 for (;;) {
6476 if (++ifindex <= 0)
6477 ifindex = 1;
6478 if (!__dev_get_by_index(net, ifindex))
6479 return net->ifindex = ifindex;
6480 }
6481 }
6482
6483 /* Delayed registration/unregisteration */
6484 static LIST_HEAD(net_todo_list);
6485 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6486
6487 static void net_set_todo(struct net_device *dev)
6488 {
6489 list_add_tail(&dev->todo_list, &net_todo_list);
6490 dev_net(dev)->dev_unreg_count++;
6491 }
6492
6493 static void rollback_registered_many(struct list_head *head)
6494 {
6495 struct net_device *dev, *tmp;
6496 LIST_HEAD(close_head);
6497
6498 BUG_ON(dev_boot_phase);
6499 ASSERT_RTNL();
6500
6501 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6502 /* Some devices call without registering
6503 * for initialization unwind. Remove those
6504 * devices and proceed with the remaining.
6505 */
6506 if (dev->reg_state == NETREG_UNINITIALIZED) {
6507 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6508 dev->name, dev);
6509
6510 WARN_ON(1);
6511 list_del(&dev->unreg_list);
6512 continue;
6513 }
6514 dev->dismantle = true;
6515 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6516 }
6517
6518 /* If device is running, close it first. */
6519 list_for_each_entry(dev, head, unreg_list)
6520 list_add_tail(&dev->close_list, &close_head);
6521 dev_close_many(&close_head, true);
6522
6523 list_for_each_entry(dev, head, unreg_list) {
6524 /* And unlink it from device chain. */
6525 unlist_netdevice(dev);
6526
6527 dev->reg_state = NETREG_UNREGISTERING;
6528 on_each_cpu(flush_backlog, dev, 1);
6529 }
6530
6531 synchronize_net();
6532
6533 list_for_each_entry(dev, head, unreg_list) {
6534 struct sk_buff *skb = NULL;
6535
6536 /* Shutdown queueing discipline. */
6537 dev_shutdown(dev);
6538
6539
6540 /* Notify protocols, that we are about to destroy
6541 this device. They should clean all the things.
6542 */
6543 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6544
6545 if (!dev->rtnl_link_ops ||
6546 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6547 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6548 GFP_KERNEL);
6549
6550 /*
6551 * Flush the unicast and multicast chains
6552 */
6553 dev_uc_flush(dev);
6554 dev_mc_flush(dev);
6555
6556 if (dev->netdev_ops->ndo_uninit)
6557 dev->netdev_ops->ndo_uninit(dev);
6558
6559 if (skb)
6560 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6561
6562 /* Notifier chain MUST detach us all upper devices. */
6563 WARN_ON(netdev_has_any_upper_dev(dev));
6564
6565 /* Remove entries from kobject tree */
6566 netdev_unregister_kobject(dev);
6567 #ifdef CONFIG_XPS
6568 /* Remove XPS queueing entries */
6569 netif_reset_xps_queues_gt(dev, 0);
6570 #endif
6571 }
6572
6573 synchronize_net();
6574
6575 list_for_each_entry(dev, head, unreg_list)
6576 dev_put(dev);
6577 }
6578
6579 static void rollback_registered(struct net_device *dev)
6580 {
6581 LIST_HEAD(single);
6582
6583 list_add(&dev->unreg_list, &single);
6584 rollback_registered_many(&single);
6585 list_del(&single);
6586 }
6587
6588 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6589 struct net_device *upper, netdev_features_t features)
6590 {
6591 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6592 netdev_features_t feature;
6593 int feature_bit;
6594
6595 for_each_netdev_feature(&upper_disables, feature_bit) {
6596 feature = __NETIF_F_BIT(feature_bit);
6597 if (!(upper->wanted_features & feature)
6598 && (features & feature)) {
6599 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6600 &feature, upper->name);
6601 features &= ~feature;
6602 }
6603 }
6604
6605 return features;
6606 }
6607
6608 static void netdev_sync_lower_features(struct net_device *upper,
6609 struct net_device *lower, netdev_features_t features)
6610 {
6611 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6612 netdev_features_t feature;
6613 int feature_bit;
6614
6615 for_each_netdev_feature(&upper_disables, feature_bit) {
6616 feature = __NETIF_F_BIT(feature_bit);
6617 if (!(features & feature) && (lower->features & feature)) {
6618 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6619 &feature, lower->name);
6620 lower->wanted_features &= ~feature;
6621 netdev_update_features(lower);
6622
6623 if (unlikely(lower->features & feature))
6624 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6625 &feature, lower->name);
6626 }
6627 }
6628 }
6629
6630 static netdev_features_t netdev_fix_features(struct net_device *dev,
6631 netdev_features_t features)
6632 {
6633 /* Fix illegal checksum combinations */
6634 if ((features & NETIF_F_HW_CSUM) &&
6635 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6636 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6637 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6638 }
6639
6640 /* TSO requires that SG is present as well. */
6641 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6642 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6643 features &= ~NETIF_F_ALL_TSO;
6644 }
6645
6646 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6647 !(features & NETIF_F_IP_CSUM)) {
6648 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6649 features &= ~NETIF_F_TSO;
6650 features &= ~NETIF_F_TSO_ECN;
6651 }
6652
6653 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6654 !(features & NETIF_F_IPV6_CSUM)) {
6655 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6656 features &= ~NETIF_F_TSO6;
6657 }
6658
6659 /* TSO ECN requires that TSO is present as well. */
6660 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6661 features &= ~NETIF_F_TSO_ECN;
6662
6663 /* Software GSO depends on SG. */
6664 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6665 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6666 features &= ~NETIF_F_GSO;
6667 }
6668
6669 /* UFO needs SG and checksumming */
6670 if (features & NETIF_F_UFO) {
6671 /* maybe split UFO into V4 and V6? */
6672 if (!(features & NETIF_F_HW_CSUM) &&
6673 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6674 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6675 netdev_dbg(dev,
6676 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6677 features &= ~NETIF_F_UFO;
6678 }
6679
6680 if (!(features & NETIF_F_SG)) {
6681 netdev_dbg(dev,
6682 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6683 features &= ~NETIF_F_UFO;
6684 }
6685 }
6686
6687 #ifdef CONFIG_NET_RX_BUSY_POLL
6688 if (dev->netdev_ops->ndo_busy_poll)
6689 features |= NETIF_F_BUSY_POLL;
6690 else
6691 #endif
6692 features &= ~NETIF_F_BUSY_POLL;
6693
6694 return features;
6695 }
6696
6697 int __netdev_update_features(struct net_device *dev)
6698 {
6699 struct net_device *upper, *lower;
6700 netdev_features_t features;
6701 struct list_head *iter;
6702 int err = -1;
6703
6704 ASSERT_RTNL();
6705
6706 features = netdev_get_wanted_features(dev);
6707
6708 if (dev->netdev_ops->ndo_fix_features)
6709 features = dev->netdev_ops->ndo_fix_features(dev, features);
6710
6711 /* driver might be less strict about feature dependencies */
6712 features = netdev_fix_features(dev, features);
6713
6714 /* some features can't be enabled if they're off an an upper device */
6715 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6716 features = netdev_sync_upper_features(dev, upper, features);
6717
6718 if (dev->features == features)
6719 goto sync_lower;
6720
6721 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6722 &dev->features, &features);
6723
6724 if (dev->netdev_ops->ndo_set_features)
6725 err = dev->netdev_ops->ndo_set_features(dev, features);
6726 else
6727 err = 0;
6728
6729 if (unlikely(err < 0)) {
6730 netdev_err(dev,
6731 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6732 err, &features, &dev->features);
6733 /* return non-0 since some features might have changed and
6734 * it's better to fire a spurious notification than miss it
6735 */
6736 return -1;
6737 }
6738
6739 sync_lower:
6740 /* some features must be disabled on lower devices when disabled
6741 * on an upper device (think: bonding master or bridge)
6742 */
6743 netdev_for_each_lower_dev(dev, lower, iter)
6744 netdev_sync_lower_features(dev, lower, features);
6745
6746 if (!err)
6747 dev->features = features;
6748
6749 return err < 0 ? 0 : 1;
6750 }
6751
6752 /**
6753 * netdev_update_features - recalculate device features
6754 * @dev: the device to check
6755 *
6756 * Recalculate dev->features set and send notifications if it
6757 * has changed. Should be called after driver or hardware dependent
6758 * conditions might have changed that influence the features.
6759 */
6760 void netdev_update_features(struct net_device *dev)
6761 {
6762 if (__netdev_update_features(dev))
6763 netdev_features_change(dev);
6764 }
6765 EXPORT_SYMBOL(netdev_update_features);
6766
6767 /**
6768 * netdev_change_features - recalculate device features
6769 * @dev: the device to check
6770 *
6771 * Recalculate dev->features set and send notifications even
6772 * if they have not changed. Should be called instead of
6773 * netdev_update_features() if also dev->vlan_features might
6774 * have changed to allow the changes to be propagated to stacked
6775 * VLAN devices.
6776 */
6777 void netdev_change_features(struct net_device *dev)
6778 {
6779 __netdev_update_features(dev);
6780 netdev_features_change(dev);
6781 }
6782 EXPORT_SYMBOL(netdev_change_features);
6783
6784 /**
6785 * netif_stacked_transfer_operstate - transfer operstate
6786 * @rootdev: the root or lower level device to transfer state from
6787 * @dev: the device to transfer operstate to
6788 *
6789 * Transfer operational state from root to device. This is normally
6790 * called when a stacking relationship exists between the root
6791 * device and the device(a leaf device).
6792 */
6793 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6794 struct net_device *dev)
6795 {
6796 if (rootdev->operstate == IF_OPER_DORMANT)
6797 netif_dormant_on(dev);
6798 else
6799 netif_dormant_off(dev);
6800
6801 if (netif_carrier_ok(rootdev)) {
6802 if (!netif_carrier_ok(dev))
6803 netif_carrier_on(dev);
6804 } else {
6805 if (netif_carrier_ok(dev))
6806 netif_carrier_off(dev);
6807 }
6808 }
6809 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6810
6811 #ifdef CONFIG_SYSFS
6812 static int netif_alloc_rx_queues(struct net_device *dev)
6813 {
6814 unsigned int i, count = dev->num_rx_queues;
6815 struct netdev_rx_queue *rx;
6816 size_t sz = count * sizeof(*rx);
6817
6818 BUG_ON(count < 1);
6819
6820 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6821 if (!rx) {
6822 rx = vzalloc(sz);
6823 if (!rx)
6824 return -ENOMEM;
6825 }
6826 dev->_rx = rx;
6827
6828 for (i = 0; i < count; i++)
6829 rx[i].dev = dev;
6830 return 0;
6831 }
6832 #endif
6833
6834 static void netdev_init_one_queue(struct net_device *dev,
6835 struct netdev_queue *queue, void *_unused)
6836 {
6837 /* Initialize queue lock */
6838 spin_lock_init(&queue->_xmit_lock);
6839 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6840 queue->xmit_lock_owner = -1;
6841 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6842 queue->dev = dev;
6843 #ifdef CONFIG_BQL
6844 dql_init(&queue->dql, HZ);
6845 #endif
6846 }
6847
6848 static void netif_free_tx_queues(struct net_device *dev)
6849 {
6850 kvfree(dev->_tx);
6851 }
6852
6853 static int netif_alloc_netdev_queues(struct net_device *dev)
6854 {
6855 unsigned int count = dev->num_tx_queues;
6856 struct netdev_queue *tx;
6857 size_t sz = count * sizeof(*tx);
6858
6859 if (count < 1 || count > 0xffff)
6860 return -EINVAL;
6861
6862 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6863 if (!tx) {
6864 tx = vzalloc(sz);
6865 if (!tx)
6866 return -ENOMEM;
6867 }
6868 dev->_tx = tx;
6869
6870 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6871 spin_lock_init(&dev->tx_global_lock);
6872
6873 return 0;
6874 }
6875
6876 void netif_tx_stop_all_queues(struct net_device *dev)
6877 {
6878 unsigned int i;
6879
6880 for (i = 0; i < dev->num_tx_queues; i++) {
6881 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6882 netif_tx_stop_queue(txq);
6883 }
6884 }
6885 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6886
6887 /**
6888 * register_netdevice - register a network device
6889 * @dev: device to register
6890 *
6891 * Take a completed network device structure and add it to the kernel
6892 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6893 * chain. 0 is returned on success. A negative errno code is returned
6894 * on a failure to set up the device, or if the name is a duplicate.
6895 *
6896 * Callers must hold the rtnl semaphore. You may want
6897 * register_netdev() instead of this.
6898 *
6899 * BUGS:
6900 * The locking appears insufficient to guarantee two parallel registers
6901 * will not get the same name.
6902 */
6903
6904 int register_netdevice(struct net_device *dev)
6905 {
6906 int ret;
6907 struct net *net = dev_net(dev);
6908
6909 BUG_ON(dev_boot_phase);
6910 ASSERT_RTNL();
6911
6912 might_sleep();
6913
6914 /* When net_device's are persistent, this will be fatal. */
6915 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6916 BUG_ON(!net);
6917
6918 spin_lock_init(&dev->addr_list_lock);
6919 netdev_set_addr_lockdep_class(dev);
6920
6921 ret = dev_get_valid_name(net, dev, dev->name);
6922 if (ret < 0)
6923 goto out;
6924
6925 /* Init, if this function is available */
6926 if (dev->netdev_ops->ndo_init) {
6927 ret = dev->netdev_ops->ndo_init(dev);
6928 if (ret) {
6929 if (ret > 0)
6930 ret = -EIO;
6931 goto out;
6932 }
6933 }
6934
6935 if (((dev->hw_features | dev->features) &
6936 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6937 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6938 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6939 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6940 ret = -EINVAL;
6941 goto err_uninit;
6942 }
6943
6944 ret = -EBUSY;
6945 if (!dev->ifindex)
6946 dev->ifindex = dev_new_index(net);
6947 else if (__dev_get_by_index(net, dev->ifindex))
6948 goto err_uninit;
6949
6950 /* Transfer changeable features to wanted_features and enable
6951 * software offloads (GSO and GRO).
6952 */
6953 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6954 dev->features |= NETIF_F_SOFT_FEATURES;
6955 dev->wanted_features = dev->features & dev->hw_features;
6956
6957 if (!(dev->flags & IFF_LOOPBACK)) {
6958 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6959 }
6960
6961 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6962 */
6963 dev->vlan_features |= NETIF_F_HIGHDMA;
6964
6965 /* Make NETIF_F_SG inheritable to tunnel devices.
6966 */
6967 dev->hw_enc_features |= NETIF_F_SG;
6968
6969 /* Make NETIF_F_SG inheritable to MPLS.
6970 */
6971 dev->mpls_features |= NETIF_F_SG;
6972
6973 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6974 ret = notifier_to_errno(ret);
6975 if (ret)
6976 goto err_uninit;
6977
6978 ret = netdev_register_kobject(dev);
6979 if (ret)
6980 goto err_uninit;
6981 dev->reg_state = NETREG_REGISTERED;
6982
6983 __netdev_update_features(dev);
6984
6985 /*
6986 * Default initial state at registry is that the
6987 * device is present.
6988 */
6989
6990 set_bit(__LINK_STATE_PRESENT, &dev->state);
6991
6992 linkwatch_init_dev(dev);
6993
6994 dev_init_scheduler(dev);
6995 dev_hold(dev);
6996 list_netdevice(dev);
6997 add_device_randomness(dev->dev_addr, dev->addr_len);
6998
6999 /* If the device has permanent device address, driver should
7000 * set dev_addr and also addr_assign_type should be set to
7001 * NET_ADDR_PERM (default value).
7002 */
7003 if (dev->addr_assign_type == NET_ADDR_PERM)
7004 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7005
7006 /* Notify protocols, that a new device appeared. */
7007 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7008 ret = notifier_to_errno(ret);
7009 if (ret) {
7010 rollback_registered(dev);
7011 dev->reg_state = NETREG_UNREGISTERED;
7012 }
7013 /*
7014 * Prevent userspace races by waiting until the network
7015 * device is fully setup before sending notifications.
7016 */
7017 if (!dev->rtnl_link_ops ||
7018 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7019 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7020
7021 out:
7022 return ret;
7023
7024 err_uninit:
7025 if (dev->netdev_ops->ndo_uninit)
7026 dev->netdev_ops->ndo_uninit(dev);
7027 goto out;
7028 }
7029 EXPORT_SYMBOL(register_netdevice);
7030
7031 /**
7032 * init_dummy_netdev - init a dummy network device for NAPI
7033 * @dev: device to init
7034 *
7035 * This takes a network device structure and initialize the minimum
7036 * amount of fields so it can be used to schedule NAPI polls without
7037 * registering a full blown interface. This is to be used by drivers
7038 * that need to tie several hardware interfaces to a single NAPI
7039 * poll scheduler due to HW limitations.
7040 */
7041 int init_dummy_netdev(struct net_device *dev)
7042 {
7043 /* Clear everything. Note we don't initialize spinlocks
7044 * are they aren't supposed to be taken by any of the
7045 * NAPI code and this dummy netdev is supposed to be
7046 * only ever used for NAPI polls
7047 */
7048 memset(dev, 0, sizeof(struct net_device));
7049
7050 /* make sure we BUG if trying to hit standard
7051 * register/unregister code path
7052 */
7053 dev->reg_state = NETREG_DUMMY;
7054
7055 /* NAPI wants this */
7056 INIT_LIST_HEAD(&dev->napi_list);
7057
7058 /* a dummy interface is started by default */
7059 set_bit(__LINK_STATE_PRESENT, &dev->state);
7060 set_bit(__LINK_STATE_START, &dev->state);
7061
7062 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7063 * because users of this 'device' dont need to change
7064 * its refcount.
7065 */
7066
7067 return 0;
7068 }
7069 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7070
7071
7072 /**
7073 * register_netdev - register a network device
7074 * @dev: device to register
7075 *
7076 * Take a completed network device structure and add it to the kernel
7077 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7078 * chain. 0 is returned on success. A negative errno code is returned
7079 * on a failure to set up the device, or if the name is a duplicate.
7080 *
7081 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7082 * and expands the device name if you passed a format string to
7083 * alloc_netdev.
7084 */
7085 int register_netdev(struct net_device *dev)
7086 {
7087 int err;
7088
7089 rtnl_lock();
7090 err = register_netdevice(dev);
7091 rtnl_unlock();
7092 return err;
7093 }
7094 EXPORT_SYMBOL(register_netdev);
7095
7096 int netdev_refcnt_read(const struct net_device *dev)
7097 {
7098 int i, refcnt = 0;
7099
7100 for_each_possible_cpu(i)
7101 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7102 return refcnt;
7103 }
7104 EXPORT_SYMBOL(netdev_refcnt_read);
7105
7106 /**
7107 * netdev_wait_allrefs - wait until all references are gone.
7108 * @dev: target net_device
7109 *
7110 * This is called when unregistering network devices.
7111 *
7112 * Any protocol or device that holds a reference should register
7113 * for netdevice notification, and cleanup and put back the
7114 * reference if they receive an UNREGISTER event.
7115 * We can get stuck here if buggy protocols don't correctly
7116 * call dev_put.
7117 */
7118 static void netdev_wait_allrefs(struct net_device *dev)
7119 {
7120 unsigned long rebroadcast_time, warning_time;
7121 int refcnt;
7122
7123 linkwatch_forget_dev(dev);
7124
7125 rebroadcast_time = warning_time = jiffies;
7126 refcnt = netdev_refcnt_read(dev);
7127
7128 while (refcnt != 0) {
7129 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7130 rtnl_lock();
7131
7132 /* Rebroadcast unregister notification */
7133 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7134
7135 __rtnl_unlock();
7136 rcu_barrier();
7137 rtnl_lock();
7138
7139 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7140 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7141 &dev->state)) {
7142 /* We must not have linkwatch events
7143 * pending on unregister. If this
7144 * happens, we simply run the queue
7145 * unscheduled, resulting in a noop
7146 * for this device.
7147 */
7148 linkwatch_run_queue();
7149 }
7150
7151 __rtnl_unlock();
7152
7153 rebroadcast_time = jiffies;
7154 }
7155
7156 msleep(250);
7157
7158 refcnt = netdev_refcnt_read(dev);
7159
7160 if (time_after(jiffies, warning_time + 10 * HZ)) {
7161 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7162 dev->name, refcnt);
7163 warning_time = jiffies;
7164 }
7165 }
7166 }
7167
7168 /* The sequence is:
7169 *
7170 * rtnl_lock();
7171 * ...
7172 * register_netdevice(x1);
7173 * register_netdevice(x2);
7174 * ...
7175 * unregister_netdevice(y1);
7176 * unregister_netdevice(y2);
7177 * ...
7178 * rtnl_unlock();
7179 * free_netdev(y1);
7180 * free_netdev(y2);
7181 *
7182 * We are invoked by rtnl_unlock().
7183 * This allows us to deal with problems:
7184 * 1) We can delete sysfs objects which invoke hotplug
7185 * without deadlocking with linkwatch via keventd.
7186 * 2) Since we run with the RTNL semaphore not held, we can sleep
7187 * safely in order to wait for the netdev refcnt to drop to zero.
7188 *
7189 * We must not return until all unregister events added during
7190 * the interval the lock was held have been completed.
7191 */
7192 void netdev_run_todo(void)
7193 {
7194 struct list_head list;
7195
7196 /* Snapshot list, allow later requests */
7197 list_replace_init(&net_todo_list, &list);
7198
7199 __rtnl_unlock();
7200
7201
7202 /* Wait for rcu callbacks to finish before next phase */
7203 if (!list_empty(&list))
7204 rcu_barrier();
7205
7206 while (!list_empty(&list)) {
7207 struct net_device *dev
7208 = list_first_entry(&list, struct net_device, todo_list);
7209 list_del(&dev->todo_list);
7210
7211 rtnl_lock();
7212 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7213 __rtnl_unlock();
7214
7215 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7216 pr_err("network todo '%s' but state %d\n",
7217 dev->name, dev->reg_state);
7218 dump_stack();
7219 continue;
7220 }
7221
7222 dev->reg_state = NETREG_UNREGISTERED;
7223
7224 netdev_wait_allrefs(dev);
7225
7226 /* paranoia */
7227 BUG_ON(netdev_refcnt_read(dev));
7228 BUG_ON(!list_empty(&dev->ptype_all));
7229 BUG_ON(!list_empty(&dev->ptype_specific));
7230 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7231 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7232 WARN_ON(dev->dn_ptr);
7233
7234 if (dev->destructor)
7235 dev->destructor(dev);
7236
7237 /* Report a network device has been unregistered */
7238 rtnl_lock();
7239 dev_net(dev)->dev_unreg_count--;
7240 __rtnl_unlock();
7241 wake_up(&netdev_unregistering_wq);
7242
7243 /* Free network device */
7244 kobject_put(&dev->dev.kobj);
7245 }
7246 }
7247
7248 /* Convert net_device_stats to rtnl_link_stats64. They have the same
7249 * fields in the same order, with only the type differing.
7250 */
7251 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7252 const struct net_device_stats *netdev_stats)
7253 {
7254 #if BITS_PER_LONG == 64
7255 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
7256 memcpy(stats64, netdev_stats, sizeof(*stats64));
7257 #else
7258 size_t i, n = sizeof(*stats64) / sizeof(u64);
7259 const unsigned long *src = (const unsigned long *)netdev_stats;
7260 u64 *dst = (u64 *)stats64;
7261
7262 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
7263 sizeof(*stats64) / sizeof(u64));
7264 for (i = 0; i < n; i++)
7265 dst[i] = src[i];
7266 #endif
7267 }
7268 EXPORT_SYMBOL(netdev_stats_to_stats64);
7269
7270 /**
7271 * dev_get_stats - get network device statistics
7272 * @dev: device to get statistics from
7273 * @storage: place to store stats
7274 *
7275 * Get network statistics from device. Return @storage.
7276 * The device driver may provide its own method by setting
7277 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7278 * otherwise the internal statistics structure is used.
7279 */
7280 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7281 struct rtnl_link_stats64 *storage)
7282 {
7283 const struct net_device_ops *ops = dev->netdev_ops;
7284
7285 if (ops->ndo_get_stats64) {
7286 memset(storage, 0, sizeof(*storage));
7287 ops->ndo_get_stats64(dev, storage);
7288 } else if (ops->ndo_get_stats) {
7289 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7290 } else {
7291 netdev_stats_to_stats64(storage, &dev->stats);
7292 }
7293 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7294 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7295 return storage;
7296 }
7297 EXPORT_SYMBOL(dev_get_stats);
7298
7299 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7300 {
7301 struct netdev_queue *queue = dev_ingress_queue(dev);
7302
7303 #ifdef CONFIG_NET_CLS_ACT
7304 if (queue)
7305 return queue;
7306 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7307 if (!queue)
7308 return NULL;
7309 netdev_init_one_queue(dev, queue, NULL);
7310 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7311 queue->qdisc_sleeping = &noop_qdisc;
7312 rcu_assign_pointer(dev->ingress_queue, queue);
7313 #endif
7314 return queue;
7315 }
7316
7317 static const struct ethtool_ops default_ethtool_ops;
7318
7319 void netdev_set_default_ethtool_ops(struct net_device *dev,
7320 const struct ethtool_ops *ops)
7321 {
7322 if (dev->ethtool_ops == &default_ethtool_ops)
7323 dev->ethtool_ops = ops;
7324 }
7325 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7326
7327 void netdev_freemem(struct net_device *dev)
7328 {
7329 char *addr = (char *)dev - dev->padded;
7330
7331 kvfree(addr);
7332 }
7333
7334 /**
7335 * alloc_netdev_mqs - allocate network device
7336 * @sizeof_priv: size of private data to allocate space for
7337 * @name: device name format string
7338 * @name_assign_type: origin of device name
7339 * @setup: callback to initialize device
7340 * @txqs: the number of TX subqueues to allocate
7341 * @rxqs: the number of RX subqueues to allocate
7342 *
7343 * Allocates a struct net_device with private data area for driver use
7344 * and performs basic initialization. Also allocates subqueue structs
7345 * for each queue on the device.
7346 */
7347 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7348 unsigned char name_assign_type,
7349 void (*setup)(struct net_device *),
7350 unsigned int txqs, unsigned int rxqs)
7351 {
7352 struct net_device *dev;
7353 size_t alloc_size;
7354 struct net_device *p;
7355
7356 BUG_ON(strlen(name) >= sizeof(dev->name));
7357
7358 if (txqs < 1) {
7359 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7360 return NULL;
7361 }
7362
7363 #ifdef CONFIG_SYSFS
7364 if (rxqs < 1) {
7365 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7366 return NULL;
7367 }
7368 #endif
7369
7370 alloc_size = sizeof(struct net_device);
7371 if (sizeof_priv) {
7372 /* ensure 32-byte alignment of private area */
7373 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7374 alloc_size += sizeof_priv;
7375 }
7376 /* ensure 32-byte alignment of whole construct */
7377 alloc_size += NETDEV_ALIGN - 1;
7378
7379 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7380 if (!p)
7381 p = vzalloc(alloc_size);
7382 if (!p)
7383 return NULL;
7384
7385 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7386 dev->padded = (char *)dev - (char *)p;
7387
7388 dev->pcpu_refcnt = alloc_percpu(int);
7389 if (!dev->pcpu_refcnt)
7390 goto free_dev;
7391
7392 if (dev_addr_init(dev))
7393 goto free_pcpu;
7394
7395 dev_mc_init(dev);
7396 dev_uc_init(dev);
7397
7398 dev_net_set(dev, &init_net);
7399
7400 dev->gso_max_size = GSO_MAX_SIZE;
7401 dev->gso_max_segs = GSO_MAX_SEGS;
7402 dev->gso_min_segs = 0;
7403
7404 INIT_LIST_HEAD(&dev->napi_list);
7405 INIT_LIST_HEAD(&dev->unreg_list);
7406 INIT_LIST_HEAD(&dev->close_list);
7407 INIT_LIST_HEAD(&dev->link_watch_list);
7408 INIT_LIST_HEAD(&dev->adj_list.upper);
7409 INIT_LIST_HEAD(&dev->adj_list.lower);
7410 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7411 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7412 INIT_LIST_HEAD(&dev->ptype_all);
7413 INIT_LIST_HEAD(&dev->ptype_specific);
7414 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7415 setup(dev);
7416
7417 if (!dev->tx_queue_len)
7418 dev->priv_flags |= IFF_NO_QUEUE;
7419
7420 dev->num_tx_queues = txqs;
7421 dev->real_num_tx_queues = txqs;
7422 if (netif_alloc_netdev_queues(dev))
7423 goto free_all;
7424
7425 #ifdef CONFIG_SYSFS
7426 dev->num_rx_queues = rxqs;
7427 dev->real_num_rx_queues = rxqs;
7428 if (netif_alloc_rx_queues(dev))
7429 goto free_all;
7430 #endif
7431
7432 strcpy(dev->name, name);
7433 dev->name_assign_type = name_assign_type;
7434 dev->group = INIT_NETDEV_GROUP;
7435 if (!dev->ethtool_ops)
7436 dev->ethtool_ops = &default_ethtool_ops;
7437
7438 nf_hook_ingress_init(dev);
7439
7440 return dev;
7441
7442 free_all:
7443 free_netdev(dev);
7444 return NULL;
7445
7446 free_pcpu:
7447 free_percpu(dev->pcpu_refcnt);
7448 free_dev:
7449 netdev_freemem(dev);
7450 return NULL;
7451 }
7452 EXPORT_SYMBOL(alloc_netdev_mqs);
7453
7454 /**
7455 * free_netdev - free network device
7456 * @dev: device
7457 *
7458 * This function does the last stage of destroying an allocated device
7459 * interface. The reference to the device object is released.
7460 * If this is the last reference then it will be freed.
7461 * Must be called in process context.
7462 */
7463 void free_netdev(struct net_device *dev)
7464 {
7465 struct napi_struct *p, *n;
7466
7467 might_sleep();
7468 netif_free_tx_queues(dev);
7469 #ifdef CONFIG_SYSFS
7470 kvfree(dev->_rx);
7471 #endif
7472
7473 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7474
7475 /* Flush device addresses */
7476 dev_addr_flush(dev);
7477
7478 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7479 netif_napi_del(p);
7480
7481 free_percpu(dev->pcpu_refcnt);
7482 dev->pcpu_refcnt = NULL;
7483
7484 /* Compatibility with error handling in drivers */
7485 if (dev->reg_state == NETREG_UNINITIALIZED) {
7486 netdev_freemem(dev);
7487 return;
7488 }
7489
7490 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7491 dev->reg_state = NETREG_RELEASED;
7492
7493 /* will free via device release */
7494 put_device(&dev->dev);
7495 }
7496 EXPORT_SYMBOL(free_netdev);
7497
7498 /**
7499 * synchronize_net - Synchronize with packet receive processing
7500 *
7501 * Wait for packets currently being received to be done.
7502 * Does not block later packets from starting.
7503 */
7504 void synchronize_net(void)
7505 {
7506 might_sleep();
7507 if (rtnl_is_locked())
7508 synchronize_rcu_expedited();
7509 else
7510 synchronize_rcu();
7511 }
7512 EXPORT_SYMBOL(synchronize_net);
7513
7514 /**
7515 * unregister_netdevice_queue - remove device from the kernel
7516 * @dev: device
7517 * @head: list
7518 *
7519 * This function shuts down a device interface and removes it
7520 * from the kernel tables.
7521 * If head not NULL, device is queued to be unregistered later.
7522 *
7523 * Callers must hold the rtnl semaphore. You may want
7524 * unregister_netdev() instead of this.
7525 */
7526
7527 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7528 {
7529 ASSERT_RTNL();
7530
7531 if (head) {
7532 list_move_tail(&dev->unreg_list, head);
7533 } else {
7534 rollback_registered(dev);
7535 /* Finish processing unregister after unlock */
7536 net_set_todo(dev);
7537 }
7538 }
7539 EXPORT_SYMBOL(unregister_netdevice_queue);
7540
7541 /**
7542 * unregister_netdevice_many - unregister many devices
7543 * @head: list of devices
7544 *
7545 * Note: As most callers use a stack allocated list_head,
7546 * we force a list_del() to make sure stack wont be corrupted later.
7547 */
7548 void unregister_netdevice_many(struct list_head *head)
7549 {
7550 struct net_device *dev;
7551
7552 if (!list_empty(head)) {
7553 rollback_registered_many(head);
7554 list_for_each_entry(dev, head, unreg_list)
7555 net_set_todo(dev);
7556 list_del(head);
7557 }
7558 }
7559 EXPORT_SYMBOL(unregister_netdevice_many);
7560
7561 /**
7562 * unregister_netdev - remove device from the kernel
7563 * @dev: device
7564 *
7565 * This function shuts down a device interface and removes it
7566 * from the kernel tables.
7567 *
7568 * This is just a wrapper for unregister_netdevice that takes
7569 * the rtnl semaphore. In general you want to use this and not
7570 * unregister_netdevice.
7571 */
7572 void unregister_netdev(struct net_device *dev)
7573 {
7574 rtnl_lock();
7575 unregister_netdevice(dev);
7576 rtnl_unlock();
7577 }
7578 EXPORT_SYMBOL(unregister_netdev);
7579
7580 /**
7581 * dev_change_net_namespace - move device to different nethost namespace
7582 * @dev: device
7583 * @net: network namespace
7584 * @pat: If not NULL name pattern to try if the current device name
7585 * is already taken in the destination network namespace.
7586 *
7587 * This function shuts down a device interface and moves it
7588 * to a new network namespace. On success 0 is returned, on
7589 * a failure a netagive errno code is returned.
7590 *
7591 * Callers must hold the rtnl semaphore.
7592 */
7593
7594 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7595 {
7596 int err;
7597
7598 ASSERT_RTNL();
7599
7600 /* Don't allow namespace local devices to be moved. */
7601 err = -EINVAL;
7602 if (dev->features & NETIF_F_NETNS_LOCAL)
7603 goto out;
7604
7605 /* Ensure the device has been registrered */
7606 if (dev->reg_state != NETREG_REGISTERED)
7607 goto out;
7608
7609 /* Get out if there is nothing todo */
7610 err = 0;
7611 if (net_eq(dev_net(dev), net))
7612 goto out;
7613
7614 /* Pick the destination device name, and ensure
7615 * we can use it in the destination network namespace.
7616 */
7617 err = -EEXIST;
7618 if (__dev_get_by_name(net, dev->name)) {
7619 /* We get here if we can't use the current device name */
7620 if (!pat)
7621 goto out;
7622 if (dev_get_valid_name(net, dev, pat) < 0)
7623 goto out;
7624 }
7625
7626 /*
7627 * And now a mini version of register_netdevice unregister_netdevice.
7628 */
7629
7630 /* If device is running close it first. */
7631 dev_close(dev);
7632
7633 /* And unlink it from device chain */
7634 err = -ENODEV;
7635 unlist_netdevice(dev);
7636
7637 synchronize_net();
7638
7639 /* Shutdown queueing discipline. */
7640 dev_shutdown(dev);
7641
7642 /* Notify protocols, that we are about to destroy
7643 this device. They should clean all the things.
7644
7645 Note that dev->reg_state stays at NETREG_REGISTERED.
7646 This is wanted because this way 8021q and macvlan know
7647 the device is just moving and can keep their slaves up.
7648 */
7649 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7650 rcu_barrier();
7651 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7652 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7653
7654 /*
7655 * Flush the unicast and multicast chains
7656 */
7657 dev_uc_flush(dev);
7658 dev_mc_flush(dev);
7659
7660 /* Send a netdev-removed uevent to the old namespace */
7661 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7662 netdev_adjacent_del_links(dev);
7663
7664 /* Actually switch the network namespace */
7665 dev_net_set(dev, net);
7666
7667 /* If there is an ifindex conflict assign a new one */
7668 if (__dev_get_by_index(net, dev->ifindex))
7669 dev->ifindex = dev_new_index(net);
7670
7671 /* Send a netdev-add uevent to the new namespace */
7672 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7673 netdev_adjacent_add_links(dev);
7674
7675 /* Fixup kobjects */
7676 err = device_rename(&dev->dev, dev->name);
7677 WARN_ON(err);
7678
7679 /* Add the device back in the hashes */
7680 list_netdevice(dev);
7681
7682 /* Notify protocols, that a new device appeared. */
7683 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7684
7685 /*
7686 * Prevent userspace races by waiting until the network
7687 * device is fully setup before sending notifications.
7688 */
7689 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7690
7691 synchronize_net();
7692 err = 0;
7693 out:
7694 return err;
7695 }
7696 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7697
7698 static int dev_cpu_callback(struct notifier_block *nfb,
7699 unsigned long action,
7700 void *ocpu)
7701 {
7702 struct sk_buff **list_skb;
7703 struct sk_buff *skb;
7704 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7705 struct softnet_data *sd, *oldsd;
7706
7707 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7708 return NOTIFY_OK;
7709
7710 local_irq_disable();
7711 cpu = smp_processor_id();
7712 sd = &per_cpu(softnet_data, cpu);
7713 oldsd = &per_cpu(softnet_data, oldcpu);
7714
7715 /* Find end of our completion_queue. */
7716 list_skb = &sd->completion_queue;
7717 while (*list_skb)
7718 list_skb = &(*list_skb)->next;
7719 /* Append completion queue from offline CPU. */
7720 *list_skb = oldsd->completion_queue;
7721 oldsd->completion_queue = NULL;
7722
7723 /* Append output queue from offline CPU. */
7724 if (oldsd->output_queue) {
7725 *sd->output_queue_tailp = oldsd->output_queue;
7726 sd->output_queue_tailp = oldsd->output_queue_tailp;
7727 oldsd->output_queue = NULL;
7728 oldsd->output_queue_tailp = &oldsd->output_queue;
7729 }
7730 /* Append NAPI poll list from offline CPU, with one exception :
7731 * process_backlog() must be called by cpu owning percpu backlog.
7732 * We properly handle process_queue & input_pkt_queue later.
7733 */
7734 while (!list_empty(&oldsd->poll_list)) {
7735 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7736 struct napi_struct,
7737 poll_list);
7738
7739 list_del_init(&napi->poll_list);
7740 if (napi->poll == process_backlog)
7741 napi->state = 0;
7742 else
7743 ____napi_schedule(sd, napi);
7744 }
7745
7746 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7747 local_irq_enable();
7748
7749 /* Process offline CPU's input_pkt_queue */
7750 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7751 netif_rx_ni(skb);
7752 input_queue_head_incr(oldsd);
7753 }
7754 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7755 netif_rx_ni(skb);
7756 input_queue_head_incr(oldsd);
7757 }
7758
7759 return NOTIFY_OK;
7760 }
7761
7762
7763 /**
7764 * netdev_increment_features - increment feature set by one
7765 * @all: current feature set
7766 * @one: new feature set
7767 * @mask: mask feature set
7768 *
7769 * Computes a new feature set after adding a device with feature set
7770 * @one to the master device with current feature set @all. Will not
7771 * enable anything that is off in @mask. Returns the new feature set.
7772 */
7773 netdev_features_t netdev_increment_features(netdev_features_t all,
7774 netdev_features_t one, netdev_features_t mask)
7775 {
7776 if (mask & NETIF_F_HW_CSUM)
7777 mask |= NETIF_F_CSUM_MASK;
7778 mask |= NETIF_F_VLAN_CHALLENGED;
7779
7780 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
7781 all &= one | ~NETIF_F_ALL_FOR_ALL;
7782
7783 /* If one device supports hw checksumming, set for all. */
7784 if (all & NETIF_F_HW_CSUM)
7785 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7786
7787 return all;
7788 }
7789 EXPORT_SYMBOL(netdev_increment_features);
7790
7791 static struct hlist_head * __net_init netdev_create_hash(void)
7792 {
7793 int i;
7794 struct hlist_head *hash;
7795
7796 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7797 if (hash != NULL)
7798 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7799 INIT_HLIST_HEAD(&hash[i]);
7800
7801 return hash;
7802 }
7803
7804 /* Initialize per network namespace state */
7805 static int __net_init netdev_init(struct net *net)
7806 {
7807 if (net != &init_net)
7808 INIT_LIST_HEAD(&net->dev_base_head);
7809
7810 net->dev_name_head = netdev_create_hash();
7811 if (net->dev_name_head == NULL)
7812 goto err_name;
7813
7814 net->dev_index_head = netdev_create_hash();
7815 if (net->dev_index_head == NULL)
7816 goto err_idx;
7817
7818 return 0;
7819
7820 err_idx:
7821 kfree(net->dev_name_head);
7822 err_name:
7823 return -ENOMEM;
7824 }
7825
7826 /**
7827 * netdev_drivername - network driver for the device
7828 * @dev: network device
7829 *
7830 * Determine network driver for device.
7831 */
7832 const char *netdev_drivername(const struct net_device *dev)
7833 {
7834 const struct device_driver *driver;
7835 const struct device *parent;
7836 const char *empty = "";
7837
7838 parent = dev->dev.parent;
7839 if (!parent)
7840 return empty;
7841
7842 driver = parent->driver;
7843 if (driver && driver->name)
7844 return driver->name;
7845 return empty;
7846 }
7847
7848 static void __netdev_printk(const char *level, const struct net_device *dev,
7849 struct va_format *vaf)
7850 {
7851 if (dev && dev->dev.parent) {
7852 dev_printk_emit(level[1] - '0',
7853 dev->dev.parent,
7854 "%s %s %s%s: %pV",
7855 dev_driver_string(dev->dev.parent),
7856 dev_name(dev->dev.parent),
7857 netdev_name(dev), netdev_reg_state(dev),
7858 vaf);
7859 } else if (dev) {
7860 printk("%s%s%s: %pV",
7861 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7862 } else {
7863 printk("%s(NULL net_device): %pV", level, vaf);
7864 }
7865 }
7866
7867 void netdev_printk(const char *level, const struct net_device *dev,
7868 const char *format, ...)
7869 {
7870 struct va_format vaf;
7871 va_list args;
7872
7873 va_start(args, format);
7874
7875 vaf.fmt = format;
7876 vaf.va = &args;
7877
7878 __netdev_printk(level, dev, &vaf);
7879
7880 va_end(args);
7881 }
7882 EXPORT_SYMBOL(netdev_printk);
7883
7884 #define define_netdev_printk_level(func, level) \
7885 void func(const struct net_device *dev, const char *fmt, ...) \
7886 { \
7887 struct va_format vaf; \
7888 va_list args; \
7889 \
7890 va_start(args, fmt); \
7891 \
7892 vaf.fmt = fmt; \
7893 vaf.va = &args; \
7894 \
7895 __netdev_printk(level, dev, &vaf); \
7896 \
7897 va_end(args); \
7898 } \
7899 EXPORT_SYMBOL(func);
7900
7901 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7902 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7903 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7904 define_netdev_printk_level(netdev_err, KERN_ERR);
7905 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7906 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7907 define_netdev_printk_level(netdev_info, KERN_INFO);
7908
7909 static void __net_exit netdev_exit(struct net *net)
7910 {
7911 kfree(net->dev_name_head);
7912 kfree(net->dev_index_head);
7913 }
7914
7915 static struct pernet_operations __net_initdata netdev_net_ops = {
7916 .init = netdev_init,
7917 .exit = netdev_exit,
7918 };
7919
7920 static void __net_exit default_device_exit(struct net *net)
7921 {
7922 struct net_device *dev, *aux;
7923 /*
7924 * Push all migratable network devices back to the
7925 * initial network namespace
7926 */
7927 rtnl_lock();
7928 for_each_netdev_safe(net, dev, aux) {
7929 int err;
7930 char fb_name[IFNAMSIZ];
7931
7932 /* Ignore unmoveable devices (i.e. loopback) */
7933 if (dev->features & NETIF_F_NETNS_LOCAL)
7934 continue;
7935
7936 /* Leave virtual devices for the generic cleanup */
7937 if (dev->rtnl_link_ops)
7938 continue;
7939
7940 /* Push remaining network devices to init_net */
7941 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7942 err = dev_change_net_namespace(dev, &init_net, fb_name);
7943 if (err) {
7944 pr_emerg("%s: failed to move %s to init_net: %d\n",
7945 __func__, dev->name, err);
7946 BUG();
7947 }
7948 }
7949 rtnl_unlock();
7950 }
7951
7952 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7953 {
7954 /* Return with the rtnl_lock held when there are no network
7955 * devices unregistering in any network namespace in net_list.
7956 */
7957 struct net *net;
7958 bool unregistering;
7959 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7960
7961 add_wait_queue(&netdev_unregistering_wq, &wait);
7962 for (;;) {
7963 unregistering = false;
7964 rtnl_lock();
7965 list_for_each_entry(net, net_list, exit_list) {
7966 if (net->dev_unreg_count > 0) {
7967 unregistering = true;
7968 break;
7969 }
7970 }
7971 if (!unregistering)
7972 break;
7973 __rtnl_unlock();
7974
7975 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7976 }
7977 remove_wait_queue(&netdev_unregistering_wq, &wait);
7978 }
7979
7980 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7981 {
7982 /* At exit all network devices most be removed from a network
7983 * namespace. Do this in the reverse order of registration.
7984 * Do this across as many network namespaces as possible to
7985 * improve batching efficiency.
7986 */
7987 struct net_device *dev;
7988 struct net *net;
7989 LIST_HEAD(dev_kill_list);
7990
7991 /* To prevent network device cleanup code from dereferencing
7992 * loopback devices or network devices that have been freed
7993 * wait here for all pending unregistrations to complete,
7994 * before unregistring the loopback device and allowing the
7995 * network namespace be freed.
7996 *
7997 * The netdev todo list containing all network devices
7998 * unregistrations that happen in default_device_exit_batch
7999 * will run in the rtnl_unlock() at the end of
8000 * default_device_exit_batch.
8001 */
8002 rtnl_lock_unregistering(net_list);
8003 list_for_each_entry(net, net_list, exit_list) {
8004 for_each_netdev_reverse(net, dev) {
8005 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8006 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8007 else
8008 unregister_netdevice_queue(dev, &dev_kill_list);
8009 }
8010 }
8011 unregister_netdevice_many(&dev_kill_list);
8012 rtnl_unlock();
8013 }
8014
8015 static struct pernet_operations __net_initdata default_device_ops = {
8016 .exit = default_device_exit,
8017 .exit_batch = default_device_exit_batch,
8018 };
8019
8020 /*
8021 * Initialize the DEV module. At boot time this walks the device list and
8022 * unhooks any devices that fail to initialise (normally hardware not
8023 * present) and leaves us with a valid list of present and active devices.
8024 *
8025 */
8026
8027 /*
8028 * This is called single threaded during boot, so no need
8029 * to take the rtnl semaphore.
8030 */
8031 static int __init net_dev_init(void)
8032 {
8033 int i, rc = -ENOMEM;
8034
8035 BUG_ON(!dev_boot_phase);
8036
8037 if (dev_proc_init())
8038 goto out;
8039
8040 if (netdev_kobject_init())
8041 goto out;
8042
8043 INIT_LIST_HEAD(&ptype_all);
8044 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8045 INIT_LIST_HEAD(&ptype_base[i]);
8046
8047 INIT_LIST_HEAD(&offload_base);
8048
8049 if (register_pernet_subsys(&netdev_net_ops))
8050 goto out;
8051
8052 /*
8053 * Initialise the packet receive queues.
8054 */
8055
8056 for_each_possible_cpu(i) {
8057 struct softnet_data *sd = &per_cpu(softnet_data, i);
8058
8059 skb_queue_head_init(&sd->input_pkt_queue);
8060 skb_queue_head_init(&sd->process_queue);
8061 INIT_LIST_HEAD(&sd->poll_list);
8062 sd->output_queue_tailp = &sd->output_queue;
8063 #ifdef CONFIG_RPS
8064 sd->csd.func = rps_trigger_softirq;
8065 sd->csd.info = sd;
8066 sd->cpu = i;
8067 #endif
8068
8069 sd->backlog.poll = process_backlog;
8070 sd->backlog.weight = weight_p;
8071 }
8072
8073 dev_boot_phase = 0;
8074
8075 /* The loopback device is special if any other network devices
8076 * is present in a network namespace the loopback device must
8077 * be present. Since we now dynamically allocate and free the
8078 * loopback device ensure this invariant is maintained by
8079 * keeping the loopback device as the first device on the
8080 * list of network devices. Ensuring the loopback devices
8081 * is the first device that appears and the last network device
8082 * that disappears.
8083 */
8084 if (register_pernet_device(&loopback_net_ops))
8085 goto out;
8086
8087 if (register_pernet_device(&default_device_ops))
8088 goto out;
8089
8090 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8091 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8092
8093 hotcpu_notifier(dev_cpu_callback, 0);
8094 dst_subsys_init();
8095 rc = 0;
8096 out:
8097 return rc;
8098 }
8099
8100 subsys_initcall(net_dev_init);