]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/core/dev.c
packet: doc: describe PACKET_MMAP with one packet socket for rx and tx
[mirror_ubuntu-hirsute-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135
136 #include "net-sysfs.h"
137
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144 static DEFINE_SPINLOCK(ptype_lock);
145 static DEFINE_SPINLOCK(offload_lock);
146 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
147 struct list_head ptype_all __read_mostly; /* Taps */
148 static struct list_head offload_base __read_mostly;
149
150 /*
151 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
152 * semaphore.
153 *
154 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
155 *
156 * Writers must hold the rtnl semaphore while they loop through the
157 * dev_base_head list, and hold dev_base_lock for writing when they do the
158 * actual updates. This allows pure readers to access the list even
159 * while a writer is preparing to update it.
160 *
161 * To put it another way, dev_base_lock is held for writing only to
162 * protect against pure readers; the rtnl semaphore provides the
163 * protection against other writers.
164 *
165 * See, for example usages, register_netdevice() and
166 * unregister_netdevice(), which must be called with the rtnl
167 * semaphore held.
168 */
169 DEFINE_RWLOCK(dev_base_lock);
170 EXPORT_SYMBOL(dev_base_lock);
171
172 /* protects napi_hash addition/deletion and napi_gen_id */
173 static DEFINE_SPINLOCK(napi_hash_lock);
174
175 static unsigned int napi_gen_id;
176 static DEFINE_HASHTABLE(napi_hash, 8);
177
178 static seqcount_t devnet_rename_seq;
179
180 static inline void dev_base_seq_inc(struct net *net)
181 {
182 while (++net->dev_base_seq == 0);
183 }
184
185 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
186 {
187 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
188
189 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
190 }
191
192 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
193 {
194 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
195 }
196
197 static inline void rps_lock(struct softnet_data *sd)
198 {
199 #ifdef CONFIG_RPS
200 spin_lock(&sd->input_pkt_queue.lock);
201 #endif
202 }
203
204 static inline void rps_unlock(struct softnet_data *sd)
205 {
206 #ifdef CONFIG_RPS
207 spin_unlock(&sd->input_pkt_queue.lock);
208 #endif
209 }
210
211 /* Device list insertion */
212 static void list_netdevice(struct net_device *dev)
213 {
214 struct net *net = dev_net(dev);
215
216 ASSERT_RTNL();
217
218 write_lock_bh(&dev_base_lock);
219 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
220 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
221 hlist_add_head_rcu(&dev->index_hlist,
222 dev_index_hash(net, dev->ifindex));
223 write_unlock_bh(&dev_base_lock);
224
225 dev_base_seq_inc(net);
226 }
227
228 /* Device list removal
229 * caller must respect a RCU grace period before freeing/reusing dev
230 */
231 static void unlist_netdevice(struct net_device *dev)
232 {
233 ASSERT_RTNL();
234
235 /* Unlink dev from the device chain */
236 write_lock_bh(&dev_base_lock);
237 list_del_rcu(&dev->dev_list);
238 hlist_del_rcu(&dev->name_hlist);
239 hlist_del_rcu(&dev->index_hlist);
240 write_unlock_bh(&dev_base_lock);
241
242 dev_base_seq_inc(dev_net(dev));
243 }
244
245 /*
246 * Our notifier list
247 */
248
249 static RAW_NOTIFIER_HEAD(netdev_chain);
250
251 /*
252 * Device drivers call our routines to queue packets here. We empty the
253 * queue in the local softnet handler.
254 */
255
256 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
257 EXPORT_PER_CPU_SYMBOL(softnet_data);
258
259 #ifdef CONFIG_LOCKDEP
260 /*
261 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
262 * according to dev->type
263 */
264 static const unsigned short netdev_lock_type[] =
265 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
266 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
267 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
268 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
269 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
270 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
271 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
272 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
273 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
274 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
275 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
276 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
277 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
278 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
279 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
280
281 static const char *const netdev_lock_name[] =
282 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
283 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
284 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
285 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
286 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
287 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
288 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
289 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
290 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
291 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
292 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
293 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
294 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
295 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
296 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
297
298 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
299 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
300
301 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
302 {
303 int i;
304
305 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
306 if (netdev_lock_type[i] == dev_type)
307 return i;
308 /* the last key is used by default */
309 return ARRAY_SIZE(netdev_lock_type) - 1;
310 }
311
312 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
313 unsigned short dev_type)
314 {
315 int i;
316
317 i = netdev_lock_pos(dev_type);
318 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
319 netdev_lock_name[i]);
320 }
321
322 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
323 {
324 int i;
325
326 i = netdev_lock_pos(dev->type);
327 lockdep_set_class_and_name(&dev->addr_list_lock,
328 &netdev_addr_lock_key[i],
329 netdev_lock_name[i]);
330 }
331 #else
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 unsigned short dev_type)
334 {
335 }
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 }
339 #endif
340
341 /*******************************************************************************
342
343 Protocol management and registration routines
344
345 *******************************************************************************/
346
347 /*
348 * Add a protocol ID to the list. Now that the input handler is
349 * smarter we can dispense with all the messy stuff that used to be
350 * here.
351 *
352 * BEWARE!!! Protocol handlers, mangling input packets,
353 * MUST BE last in hash buckets and checking protocol handlers
354 * MUST start from promiscuous ptype_all chain in net_bh.
355 * It is true now, do not change it.
356 * Explanation follows: if protocol handler, mangling packet, will
357 * be the first on list, it is not able to sense, that packet
358 * is cloned and should be copied-on-write, so that it will
359 * change it and subsequent readers will get broken packet.
360 * --ANK (980803)
361 */
362
363 static inline struct list_head *ptype_head(const struct packet_type *pt)
364 {
365 if (pt->type == htons(ETH_P_ALL))
366 return &ptype_all;
367 else
368 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
369 }
370
371 /**
372 * dev_add_pack - add packet handler
373 * @pt: packet type declaration
374 *
375 * Add a protocol handler to the networking stack. The passed &packet_type
376 * is linked into kernel lists and may not be freed until it has been
377 * removed from the kernel lists.
378 *
379 * This call does not sleep therefore it can not
380 * guarantee all CPU's that are in middle of receiving packets
381 * will see the new packet type (until the next received packet).
382 */
383
384 void dev_add_pack(struct packet_type *pt)
385 {
386 struct list_head *head = ptype_head(pt);
387
388 spin_lock(&ptype_lock);
389 list_add_rcu(&pt->list, head);
390 spin_unlock(&ptype_lock);
391 }
392 EXPORT_SYMBOL(dev_add_pack);
393
394 /**
395 * __dev_remove_pack - remove packet handler
396 * @pt: packet type declaration
397 *
398 * Remove a protocol handler that was previously added to the kernel
399 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
400 * from the kernel lists and can be freed or reused once this function
401 * returns.
402 *
403 * The packet type might still be in use by receivers
404 * and must not be freed until after all the CPU's have gone
405 * through a quiescent state.
406 */
407 void __dev_remove_pack(struct packet_type *pt)
408 {
409 struct list_head *head = ptype_head(pt);
410 struct packet_type *pt1;
411
412 spin_lock(&ptype_lock);
413
414 list_for_each_entry(pt1, head, list) {
415 if (pt == pt1) {
416 list_del_rcu(&pt->list);
417 goto out;
418 }
419 }
420
421 pr_warn("dev_remove_pack: %p not found\n", pt);
422 out:
423 spin_unlock(&ptype_lock);
424 }
425 EXPORT_SYMBOL(__dev_remove_pack);
426
427 /**
428 * dev_remove_pack - remove packet handler
429 * @pt: packet type declaration
430 *
431 * Remove a protocol handler that was previously added to the kernel
432 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
433 * from the kernel lists and can be freed or reused once this function
434 * returns.
435 *
436 * This call sleeps to guarantee that no CPU is looking at the packet
437 * type after return.
438 */
439 void dev_remove_pack(struct packet_type *pt)
440 {
441 __dev_remove_pack(pt);
442
443 synchronize_net();
444 }
445 EXPORT_SYMBOL(dev_remove_pack);
446
447
448 /**
449 * dev_add_offload - register offload handlers
450 * @po: protocol offload declaration
451 *
452 * Add protocol offload handlers to the networking stack. The passed
453 * &proto_offload is linked into kernel lists and may not be freed until
454 * it has been removed from the kernel lists.
455 *
456 * This call does not sleep therefore it can not
457 * guarantee all CPU's that are in middle of receiving packets
458 * will see the new offload handlers (until the next received packet).
459 */
460 void dev_add_offload(struct packet_offload *po)
461 {
462 struct list_head *head = &offload_base;
463
464 spin_lock(&offload_lock);
465 list_add_rcu(&po->list, head);
466 spin_unlock(&offload_lock);
467 }
468 EXPORT_SYMBOL(dev_add_offload);
469
470 /**
471 * __dev_remove_offload - remove offload handler
472 * @po: packet offload declaration
473 *
474 * Remove a protocol offload handler that was previously added to the
475 * kernel offload handlers by dev_add_offload(). The passed &offload_type
476 * is removed from the kernel lists and can be freed or reused once this
477 * function returns.
478 *
479 * The packet type might still be in use by receivers
480 * and must not be freed until after all the CPU's have gone
481 * through a quiescent state.
482 */
483 static void __dev_remove_offload(struct packet_offload *po)
484 {
485 struct list_head *head = &offload_base;
486 struct packet_offload *po1;
487
488 spin_lock(&offload_lock);
489
490 list_for_each_entry(po1, head, list) {
491 if (po == po1) {
492 list_del_rcu(&po->list);
493 goto out;
494 }
495 }
496
497 pr_warn("dev_remove_offload: %p not found\n", po);
498 out:
499 spin_unlock(&offload_lock);
500 }
501
502 /**
503 * dev_remove_offload - remove packet offload handler
504 * @po: packet offload declaration
505 *
506 * Remove a packet offload handler that was previously added to the kernel
507 * offload handlers by dev_add_offload(). The passed &offload_type is
508 * removed from the kernel lists and can be freed or reused once this
509 * function returns.
510 *
511 * This call sleeps to guarantee that no CPU is looking at the packet
512 * type after return.
513 */
514 void dev_remove_offload(struct packet_offload *po)
515 {
516 __dev_remove_offload(po);
517
518 synchronize_net();
519 }
520 EXPORT_SYMBOL(dev_remove_offload);
521
522 /******************************************************************************
523
524 Device Boot-time Settings Routines
525
526 *******************************************************************************/
527
528 /* Boot time configuration table */
529 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
530
531 /**
532 * netdev_boot_setup_add - add new setup entry
533 * @name: name of the device
534 * @map: configured settings for the device
535 *
536 * Adds new setup entry to the dev_boot_setup list. The function
537 * returns 0 on error and 1 on success. This is a generic routine to
538 * all netdevices.
539 */
540 static int netdev_boot_setup_add(char *name, struct ifmap *map)
541 {
542 struct netdev_boot_setup *s;
543 int i;
544
545 s = dev_boot_setup;
546 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
547 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
548 memset(s[i].name, 0, sizeof(s[i].name));
549 strlcpy(s[i].name, name, IFNAMSIZ);
550 memcpy(&s[i].map, map, sizeof(s[i].map));
551 break;
552 }
553 }
554
555 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
556 }
557
558 /**
559 * netdev_boot_setup_check - check boot time settings
560 * @dev: the netdevice
561 *
562 * Check boot time settings for the device.
563 * The found settings are set for the device to be used
564 * later in the device probing.
565 * Returns 0 if no settings found, 1 if they are.
566 */
567 int netdev_boot_setup_check(struct net_device *dev)
568 {
569 struct netdev_boot_setup *s = dev_boot_setup;
570 int i;
571
572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
574 !strcmp(dev->name, s[i].name)) {
575 dev->irq = s[i].map.irq;
576 dev->base_addr = s[i].map.base_addr;
577 dev->mem_start = s[i].map.mem_start;
578 dev->mem_end = s[i].map.mem_end;
579 return 1;
580 }
581 }
582 return 0;
583 }
584 EXPORT_SYMBOL(netdev_boot_setup_check);
585
586
587 /**
588 * netdev_boot_base - get address from boot time settings
589 * @prefix: prefix for network device
590 * @unit: id for network device
591 *
592 * Check boot time settings for the base address of device.
593 * The found settings are set for the device to be used
594 * later in the device probing.
595 * Returns 0 if no settings found.
596 */
597 unsigned long netdev_boot_base(const char *prefix, int unit)
598 {
599 const struct netdev_boot_setup *s = dev_boot_setup;
600 char name[IFNAMSIZ];
601 int i;
602
603 sprintf(name, "%s%d", prefix, unit);
604
605 /*
606 * If device already registered then return base of 1
607 * to indicate not to probe for this interface
608 */
609 if (__dev_get_by_name(&init_net, name))
610 return 1;
611
612 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
613 if (!strcmp(name, s[i].name))
614 return s[i].map.base_addr;
615 return 0;
616 }
617
618 /*
619 * Saves at boot time configured settings for any netdevice.
620 */
621 int __init netdev_boot_setup(char *str)
622 {
623 int ints[5];
624 struct ifmap map;
625
626 str = get_options(str, ARRAY_SIZE(ints), ints);
627 if (!str || !*str)
628 return 0;
629
630 /* Save settings */
631 memset(&map, 0, sizeof(map));
632 if (ints[0] > 0)
633 map.irq = ints[1];
634 if (ints[0] > 1)
635 map.base_addr = ints[2];
636 if (ints[0] > 2)
637 map.mem_start = ints[3];
638 if (ints[0] > 3)
639 map.mem_end = ints[4];
640
641 /* Add new entry to the list */
642 return netdev_boot_setup_add(str, &map);
643 }
644
645 __setup("netdev=", netdev_boot_setup);
646
647 /*******************************************************************************
648
649 Device Interface Subroutines
650
651 *******************************************************************************/
652
653 /**
654 * __dev_get_by_name - find a device by its name
655 * @net: the applicable net namespace
656 * @name: name to find
657 *
658 * Find an interface by name. Must be called under RTNL semaphore
659 * or @dev_base_lock. If the name is found a pointer to the device
660 * is returned. If the name is not found then %NULL is returned. The
661 * reference counters are not incremented so the caller must be
662 * careful with locks.
663 */
664
665 struct net_device *__dev_get_by_name(struct net *net, const char *name)
666 {
667 struct net_device *dev;
668 struct hlist_head *head = dev_name_hash(net, name);
669
670 hlist_for_each_entry(dev, head, name_hlist)
671 if (!strncmp(dev->name, name, IFNAMSIZ))
672 return dev;
673
674 return NULL;
675 }
676 EXPORT_SYMBOL(__dev_get_by_name);
677
678 /**
679 * dev_get_by_name_rcu - find a device by its name
680 * @net: the applicable net namespace
681 * @name: name to find
682 *
683 * Find an interface by name.
684 * If the name is found a pointer to the device is returned.
685 * If the name is not found then %NULL is returned.
686 * The reference counters are not incremented so the caller must be
687 * careful with locks. The caller must hold RCU lock.
688 */
689
690 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
691 {
692 struct net_device *dev;
693 struct hlist_head *head = dev_name_hash(net, name);
694
695 hlist_for_each_entry_rcu(dev, head, name_hlist)
696 if (!strncmp(dev->name, name, IFNAMSIZ))
697 return dev;
698
699 return NULL;
700 }
701 EXPORT_SYMBOL(dev_get_by_name_rcu);
702
703 /**
704 * dev_get_by_name - find a device by its name
705 * @net: the applicable net namespace
706 * @name: name to find
707 *
708 * Find an interface by name. This can be called from any
709 * context and does its own locking. The returned handle has
710 * the usage count incremented and the caller must use dev_put() to
711 * release it when it is no longer needed. %NULL is returned if no
712 * matching device is found.
713 */
714
715 struct net_device *dev_get_by_name(struct net *net, const char *name)
716 {
717 struct net_device *dev;
718
719 rcu_read_lock();
720 dev = dev_get_by_name_rcu(net, name);
721 if (dev)
722 dev_hold(dev);
723 rcu_read_unlock();
724 return dev;
725 }
726 EXPORT_SYMBOL(dev_get_by_name);
727
728 /**
729 * __dev_get_by_index - find a device by its ifindex
730 * @net: the applicable net namespace
731 * @ifindex: index of device
732 *
733 * Search for an interface by index. Returns %NULL if the device
734 * is not found or a pointer to the device. The device has not
735 * had its reference counter increased so the caller must be careful
736 * about locking. The caller must hold either the RTNL semaphore
737 * or @dev_base_lock.
738 */
739
740 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
741 {
742 struct net_device *dev;
743 struct hlist_head *head = dev_index_hash(net, ifindex);
744
745 hlist_for_each_entry(dev, head, index_hlist)
746 if (dev->ifindex == ifindex)
747 return dev;
748
749 return NULL;
750 }
751 EXPORT_SYMBOL(__dev_get_by_index);
752
753 /**
754 * dev_get_by_index_rcu - find a device by its ifindex
755 * @net: the applicable net namespace
756 * @ifindex: index of device
757 *
758 * Search for an interface by index. Returns %NULL if the device
759 * is not found or a pointer to the device. The device has not
760 * had its reference counter increased so the caller must be careful
761 * about locking. The caller must hold RCU lock.
762 */
763
764 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
765 {
766 struct net_device *dev;
767 struct hlist_head *head = dev_index_hash(net, ifindex);
768
769 hlist_for_each_entry_rcu(dev, head, index_hlist)
770 if (dev->ifindex == ifindex)
771 return dev;
772
773 return NULL;
774 }
775 EXPORT_SYMBOL(dev_get_by_index_rcu);
776
777
778 /**
779 * dev_get_by_index - find a device by its ifindex
780 * @net: the applicable net namespace
781 * @ifindex: index of device
782 *
783 * Search for an interface by index. Returns NULL if the device
784 * is not found or a pointer to the device. The device returned has
785 * had a reference added and the pointer is safe until the user calls
786 * dev_put to indicate they have finished with it.
787 */
788
789 struct net_device *dev_get_by_index(struct net *net, int ifindex)
790 {
791 struct net_device *dev;
792
793 rcu_read_lock();
794 dev = dev_get_by_index_rcu(net, ifindex);
795 if (dev)
796 dev_hold(dev);
797 rcu_read_unlock();
798 return dev;
799 }
800 EXPORT_SYMBOL(dev_get_by_index);
801
802 /**
803 * netdev_get_name - get a netdevice name, knowing its ifindex.
804 * @net: network namespace
805 * @name: a pointer to the buffer where the name will be stored.
806 * @ifindex: the ifindex of the interface to get the name from.
807 *
808 * The use of raw_seqcount_begin() and cond_resched() before
809 * retrying is required as we want to give the writers a chance
810 * to complete when CONFIG_PREEMPT is not set.
811 */
812 int netdev_get_name(struct net *net, char *name, int ifindex)
813 {
814 struct net_device *dev;
815 unsigned int seq;
816
817 retry:
818 seq = raw_seqcount_begin(&devnet_rename_seq);
819 rcu_read_lock();
820 dev = dev_get_by_index_rcu(net, ifindex);
821 if (!dev) {
822 rcu_read_unlock();
823 return -ENODEV;
824 }
825
826 strcpy(name, dev->name);
827 rcu_read_unlock();
828 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
829 cond_resched();
830 goto retry;
831 }
832
833 return 0;
834 }
835
836 /**
837 * dev_getbyhwaddr_rcu - find a device by its hardware address
838 * @net: the applicable net namespace
839 * @type: media type of device
840 * @ha: hardware address
841 *
842 * Search for an interface by MAC address. Returns NULL if the device
843 * is not found or a pointer to the device.
844 * The caller must hold RCU or RTNL.
845 * The returned device has not had its ref count increased
846 * and the caller must therefore be careful about locking
847 *
848 */
849
850 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
851 const char *ha)
852 {
853 struct net_device *dev;
854
855 for_each_netdev_rcu(net, dev)
856 if (dev->type == type &&
857 !memcmp(dev->dev_addr, ha, dev->addr_len))
858 return dev;
859
860 return NULL;
861 }
862 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
863
864 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
865 {
866 struct net_device *dev;
867
868 ASSERT_RTNL();
869 for_each_netdev(net, dev)
870 if (dev->type == type)
871 return dev;
872
873 return NULL;
874 }
875 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
876
877 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
878 {
879 struct net_device *dev, *ret = NULL;
880
881 rcu_read_lock();
882 for_each_netdev_rcu(net, dev)
883 if (dev->type == type) {
884 dev_hold(dev);
885 ret = dev;
886 break;
887 }
888 rcu_read_unlock();
889 return ret;
890 }
891 EXPORT_SYMBOL(dev_getfirstbyhwtype);
892
893 /**
894 * dev_get_by_flags_rcu - find any device with given flags
895 * @net: the applicable net namespace
896 * @if_flags: IFF_* values
897 * @mask: bitmask of bits in if_flags to check
898 *
899 * Search for any interface with the given flags. Returns NULL if a device
900 * is not found or a pointer to the device. Must be called inside
901 * rcu_read_lock(), and result refcount is unchanged.
902 */
903
904 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
905 unsigned short mask)
906 {
907 struct net_device *dev, *ret;
908
909 ret = NULL;
910 for_each_netdev_rcu(net, dev) {
911 if (((dev->flags ^ if_flags) & mask) == 0) {
912 ret = dev;
913 break;
914 }
915 }
916 return ret;
917 }
918 EXPORT_SYMBOL(dev_get_by_flags_rcu);
919
920 /**
921 * dev_valid_name - check if name is okay for network device
922 * @name: name string
923 *
924 * Network device names need to be valid file names to
925 * to allow sysfs to work. We also disallow any kind of
926 * whitespace.
927 */
928 bool dev_valid_name(const char *name)
929 {
930 if (*name == '\0')
931 return false;
932 if (strlen(name) >= IFNAMSIZ)
933 return false;
934 if (!strcmp(name, ".") || !strcmp(name, ".."))
935 return false;
936
937 while (*name) {
938 if (*name == '/' || isspace(*name))
939 return false;
940 name++;
941 }
942 return true;
943 }
944 EXPORT_SYMBOL(dev_valid_name);
945
946 /**
947 * __dev_alloc_name - allocate a name for a device
948 * @net: network namespace to allocate the device name in
949 * @name: name format string
950 * @buf: scratch buffer and result name string
951 *
952 * Passed a format string - eg "lt%d" it will try and find a suitable
953 * id. It scans list of devices to build up a free map, then chooses
954 * the first empty slot. The caller must hold the dev_base or rtnl lock
955 * while allocating the name and adding the device in order to avoid
956 * duplicates.
957 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
958 * Returns the number of the unit assigned or a negative errno code.
959 */
960
961 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
962 {
963 int i = 0;
964 const char *p;
965 const int max_netdevices = 8*PAGE_SIZE;
966 unsigned long *inuse;
967 struct net_device *d;
968
969 p = strnchr(name, IFNAMSIZ-1, '%');
970 if (p) {
971 /*
972 * Verify the string as this thing may have come from
973 * the user. There must be either one "%d" and no other "%"
974 * characters.
975 */
976 if (p[1] != 'd' || strchr(p + 2, '%'))
977 return -EINVAL;
978
979 /* Use one page as a bit array of possible slots */
980 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
981 if (!inuse)
982 return -ENOMEM;
983
984 for_each_netdev(net, d) {
985 if (!sscanf(d->name, name, &i))
986 continue;
987 if (i < 0 || i >= max_netdevices)
988 continue;
989
990 /* avoid cases where sscanf is not exact inverse of printf */
991 snprintf(buf, IFNAMSIZ, name, i);
992 if (!strncmp(buf, d->name, IFNAMSIZ))
993 set_bit(i, inuse);
994 }
995
996 i = find_first_zero_bit(inuse, max_netdevices);
997 free_page((unsigned long) inuse);
998 }
999
1000 if (buf != name)
1001 snprintf(buf, IFNAMSIZ, name, i);
1002 if (!__dev_get_by_name(net, buf))
1003 return i;
1004
1005 /* It is possible to run out of possible slots
1006 * when the name is long and there isn't enough space left
1007 * for the digits, or if all bits are used.
1008 */
1009 return -ENFILE;
1010 }
1011
1012 /**
1013 * dev_alloc_name - allocate a name for a device
1014 * @dev: device
1015 * @name: name format string
1016 *
1017 * Passed a format string - eg "lt%d" it will try and find a suitable
1018 * id. It scans list of devices to build up a free map, then chooses
1019 * the first empty slot. The caller must hold the dev_base or rtnl lock
1020 * while allocating the name and adding the device in order to avoid
1021 * duplicates.
1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023 * Returns the number of the unit assigned or a negative errno code.
1024 */
1025
1026 int dev_alloc_name(struct net_device *dev, const char *name)
1027 {
1028 char buf[IFNAMSIZ];
1029 struct net *net;
1030 int ret;
1031
1032 BUG_ON(!dev_net(dev));
1033 net = dev_net(dev);
1034 ret = __dev_alloc_name(net, name, buf);
1035 if (ret >= 0)
1036 strlcpy(dev->name, buf, IFNAMSIZ);
1037 return ret;
1038 }
1039 EXPORT_SYMBOL(dev_alloc_name);
1040
1041 static int dev_alloc_name_ns(struct net *net,
1042 struct net_device *dev,
1043 const char *name)
1044 {
1045 char buf[IFNAMSIZ];
1046 int ret;
1047
1048 ret = __dev_alloc_name(net, name, buf);
1049 if (ret >= 0)
1050 strlcpy(dev->name, buf, IFNAMSIZ);
1051 return ret;
1052 }
1053
1054 static int dev_get_valid_name(struct net *net,
1055 struct net_device *dev,
1056 const char *name)
1057 {
1058 BUG_ON(!net);
1059
1060 if (!dev_valid_name(name))
1061 return -EINVAL;
1062
1063 if (strchr(name, '%'))
1064 return dev_alloc_name_ns(net, dev, name);
1065 else if (__dev_get_by_name(net, name))
1066 return -EEXIST;
1067 else if (dev->name != name)
1068 strlcpy(dev->name, name, IFNAMSIZ);
1069
1070 return 0;
1071 }
1072
1073 /**
1074 * dev_change_name - change name of a device
1075 * @dev: device
1076 * @newname: name (or format string) must be at least IFNAMSIZ
1077 *
1078 * Change name of a device, can pass format strings "eth%d".
1079 * for wildcarding.
1080 */
1081 int dev_change_name(struct net_device *dev, const char *newname)
1082 {
1083 char oldname[IFNAMSIZ];
1084 int err = 0;
1085 int ret;
1086 struct net *net;
1087
1088 ASSERT_RTNL();
1089 BUG_ON(!dev_net(dev));
1090
1091 net = dev_net(dev);
1092 if (dev->flags & IFF_UP)
1093 return -EBUSY;
1094
1095 write_seqcount_begin(&devnet_rename_seq);
1096
1097 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1098 write_seqcount_end(&devnet_rename_seq);
1099 return 0;
1100 }
1101
1102 memcpy(oldname, dev->name, IFNAMSIZ);
1103
1104 err = dev_get_valid_name(net, dev, newname);
1105 if (err < 0) {
1106 write_seqcount_end(&devnet_rename_seq);
1107 return err;
1108 }
1109
1110 rollback:
1111 ret = device_rename(&dev->dev, dev->name);
1112 if (ret) {
1113 memcpy(dev->name, oldname, IFNAMSIZ);
1114 write_seqcount_end(&devnet_rename_seq);
1115 return ret;
1116 }
1117
1118 write_seqcount_end(&devnet_rename_seq);
1119
1120 write_lock_bh(&dev_base_lock);
1121 hlist_del_rcu(&dev->name_hlist);
1122 write_unlock_bh(&dev_base_lock);
1123
1124 synchronize_rcu();
1125
1126 write_lock_bh(&dev_base_lock);
1127 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1128 write_unlock_bh(&dev_base_lock);
1129
1130 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1131 ret = notifier_to_errno(ret);
1132
1133 if (ret) {
1134 /* err >= 0 after dev_alloc_name() or stores the first errno */
1135 if (err >= 0) {
1136 err = ret;
1137 write_seqcount_begin(&devnet_rename_seq);
1138 memcpy(dev->name, oldname, IFNAMSIZ);
1139 goto rollback;
1140 } else {
1141 pr_err("%s: name change rollback failed: %d\n",
1142 dev->name, ret);
1143 }
1144 }
1145
1146 return err;
1147 }
1148
1149 /**
1150 * dev_set_alias - change ifalias of a device
1151 * @dev: device
1152 * @alias: name up to IFALIASZ
1153 * @len: limit of bytes to copy from info
1154 *
1155 * Set ifalias for a device,
1156 */
1157 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1158 {
1159 char *new_ifalias;
1160
1161 ASSERT_RTNL();
1162
1163 if (len >= IFALIASZ)
1164 return -EINVAL;
1165
1166 if (!len) {
1167 kfree(dev->ifalias);
1168 dev->ifalias = NULL;
1169 return 0;
1170 }
1171
1172 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1173 if (!new_ifalias)
1174 return -ENOMEM;
1175 dev->ifalias = new_ifalias;
1176
1177 strlcpy(dev->ifalias, alias, len+1);
1178 return len;
1179 }
1180
1181
1182 /**
1183 * netdev_features_change - device changes features
1184 * @dev: device to cause notification
1185 *
1186 * Called to indicate a device has changed features.
1187 */
1188 void netdev_features_change(struct net_device *dev)
1189 {
1190 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1191 }
1192 EXPORT_SYMBOL(netdev_features_change);
1193
1194 /**
1195 * netdev_state_change - device changes state
1196 * @dev: device to cause notification
1197 *
1198 * Called to indicate a device has changed state. This function calls
1199 * the notifier chains for netdev_chain and sends a NEWLINK message
1200 * to the routing socket.
1201 */
1202 void netdev_state_change(struct net_device *dev)
1203 {
1204 if (dev->flags & IFF_UP) {
1205 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1206 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1207 }
1208 }
1209 EXPORT_SYMBOL(netdev_state_change);
1210
1211 /**
1212 * netdev_notify_peers - notify network peers about existence of @dev
1213 * @dev: network device
1214 *
1215 * Generate traffic such that interested network peers are aware of
1216 * @dev, such as by generating a gratuitous ARP. This may be used when
1217 * a device wants to inform the rest of the network about some sort of
1218 * reconfiguration such as a failover event or virtual machine
1219 * migration.
1220 */
1221 void netdev_notify_peers(struct net_device *dev)
1222 {
1223 rtnl_lock();
1224 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1225 rtnl_unlock();
1226 }
1227 EXPORT_SYMBOL(netdev_notify_peers);
1228
1229 static int __dev_open(struct net_device *dev)
1230 {
1231 const struct net_device_ops *ops = dev->netdev_ops;
1232 int ret;
1233
1234 ASSERT_RTNL();
1235
1236 if (!netif_device_present(dev))
1237 return -ENODEV;
1238
1239 /* Block netpoll from trying to do any rx path servicing.
1240 * If we don't do this there is a chance ndo_poll_controller
1241 * or ndo_poll may be running while we open the device
1242 */
1243 netpoll_rx_disable(dev);
1244
1245 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1246 ret = notifier_to_errno(ret);
1247 if (ret)
1248 return ret;
1249
1250 set_bit(__LINK_STATE_START, &dev->state);
1251
1252 if (ops->ndo_validate_addr)
1253 ret = ops->ndo_validate_addr(dev);
1254
1255 if (!ret && ops->ndo_open)
1256 ret = ops->ndo_open(dev);
1257
1258 netpoll_rx_enable(dev);
1259
1260 if (ret)
1261 clear_bit(__LINK_STATE_START, &dev->state);
1262 else {
1263 dev->flags |= IFF_UP;
1264 net_dmaengine_get();
1265 dev_set_rx_mode(dev);
1266 dev_activate(dev);
1267 add_device_randomness(dev->dev_addr, dev->addr_len);
1268 }
1269
1270 return ret;
1271 }
1272
1273 /**
1274 * dev_open - prepare an interface for use.
1275 * @dev: device to open
1276 *
1277 * Takes a device from down to up state. The device's private open
1278 * function is invoked and then the multicast lists are loaded. Finally
1279 * the device is moved into the up state and a %NETDEV_UP message is
1280 * sent to the netdev notifier chain.
1281 *
1282 * Calling this function on an active interface is a nop. On a failure
1283 * a negative errno code is returned.
1284 */
1285 int dev_open(struct net_device *dev)
1286 {
1287 int ret;
1288
1289 if (dev->flags & IFF_UP)
1290 return 0;
1291
1292 ret = __dev_open(dev);
1293 if (ret < 0)
1294 return ret;
1295
1296 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1297 call_netdevice_notifiers(NETDEV_UP, dev);
1298
1299 return ret;
1300 }
1301 EXPORT_SYMBOL(dev_open);
1302
1303 static int __dev_close_many(struct list_head *head)
1304 {
1305 struct net_device *dev;
1306
1307 ASSERT_RTNL();
1308 might_sleep();
1309
1310 list_for_each_entry(dev, head, close_list) {
1311 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1312
1313 clear_bit(__LINK_STATE_START, &dev->state);
1314
1315 /* Synchronize to scheduled poll. We cannot touch poll list, it
1316 * can be even on different cpu. So just clear netif_running().
1317 *
1318 * dev->stop() will invoke napi_disable() on all of it's
1319 * napi_struct instances on this device.
1320 */
1321 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1322 }
1323
1324 dev_deactivate_many(head);
1325
1326 list_for_each_entry(dev, head, close_list) {
1327 const struct net_device_ops *ops = dev->netdev_ops;
1328
1329 /*
1330 * Call the device specific close. This cannot fail.
1331 * Only if device is UP
1332 *
1333 * We allow it to be called even after a DETACH hot-plug
1334 * event.
1335 */
1336 if (ops->ndo_stop)
1337 ops->ndo_stop(dev);
1338
1339 dev->flags &= ~IFF_UP;
1340 net_dmaengine_put();
1341 }
1342
1343 return 0;
1344 }
1345
1346 static int __dev_close(struct net_device *dev)
1347 {
1348 int retval;
1349 LIST_HEAD(single);
1350
1351 /* Temporarily disable netpoll until the interface is down */
1352 netpoll_rx_disable(dev);
1353
1354 list_add(&dev->close_list, &single);
1355 retval = __dev_close_many(&single);
1356 list_del(&single);
1357
1358 netpoll_rx_enable(dev);
1359 return retval;
1360 }
1361
1362 static int dev_close_many(struct list_head *head)
1363 {
1364 struct net_device *dev, *tmp;
1365
1366 /* Remove the devices that don't need to be closed */
1367 list_for_each_entry_safe(dev, tmp, head, close_list)
1368 if (!(dev->flags & IFF_UP))
1369 list_del_init(&dev->close_list);
1370
1371 __dev_close_many(head);
1372
1373 list_for_each_entry_safe(dev, tmp, head, close_list) {
1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1375 call_netdevice_notifiers(NETDEV_DOWN, dev);
1376 list_del_init(&dev->close_list);
1377 }
1378
1379 return 0;
1380 }
1381
1382 /**
1383 * dev_close - shutdown an interface.
1384 * @dev: device to shutdown
1385 *
1386 * This function moves an active device into down state. A
1387 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1388 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1389 * chain.
1390 */
1391 int dev_close(struct net_device *dev)
1392 {
1393 if (dev->flags & IFF_UP) {
1394 LIST_HEAD(single);
1395
1396 /* Block netpoll rx while the interface is going down */
1397 netpoll_rx_disable(dev);
1398
1399 list_add(&dev->close_list, &single);
1400 dev_close_many(&single);
1401 list_del(&single);
1402
1403 netpoll_rx_enable(dev);
1404 }
1405 return 0;
1406 }
1407 EXPORT_SYMBOL(dev_close);
1408
1409
1410 /**
1411 * dev_disable_lro - disable Large Receive Offload on a device
1412 * @dev: device
1413 *
1414 * Disable Large Receive Offload (LRO) on a net device. Must be
1415 * called under RTNL. This is needed if received packets may be
1416 * forwarded to another interface.
1417 */
1418 void dev_disable_lro(struct net_device *dev)
1419 {
1420 /*
1421 * If we're trying to disable lro on a vlan device
1422 * use the underlying physical device instead
1423 */
1424 if (is_vlan_dev(dev))
1425 dev = vlan_dev_real_dev(dev);
1426
1427 /* the same for macvlan devices */
1428 if (netif_is_macvlan(dev))
1429 dev = macvlan_dev_real_dev(dev);
1430
1431 dev->wanted_features &= ~NETIF_F_LRO;
1432 netdev_update_features(dev);
1433
1434 if (unlikely(dev->features & NETIF_F_LRO))
1435 netdev_WARN(dev, "failed to disable LRO!\n");
1436 }
1437 EXPORT_SYMBOL(dev_disable_lro);
1438
1439 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1440 struct net_device *dev)
1441 {
1442 struct netdev_notifier_info info;
1443
1444 netdev_notifier_info_init(&info, dev);
1445 return nb->notifier_call(nb, val, &info);
1446 }
1447
1448 static int dev_boot_phase = 1;
1449
1450 /**
1451 * register_netdevice_notifier - register a network notifier block
1452 * @nb: notifier
1453 *
1454 * Register a notifier to be called when network device events occur.
1455 * The notifier passed is linked into the kernel structures and must
1456 * not be reused until it has been unregistered. A negative errno code
1457 * is returned on a failure.
1458 *
1459 * When registered all registration and up events are replayed
1460 * to the new notifier to allow device to have a race free
1461 * view of the network device list.
1462 */
1463
1464 int register_netdevice_notifier(struct notifier_block *nb)
1465 {
1466 struct net_device *dev;
1467 struct net_device *last;
1468 struct net *net;
1469 int err;
1470
1471 rtnl_lock();
1472 err = raw_notifier_chain_register(&netdev_chain, nb);
1473 if (err)
1474 goto unlock;
1475 if (dev_boot_phase)
1476 goto unlock;
1477 for_each_net(net) {
1478 for_each_netdev(net, dev) {
1479 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1480 err = notifier_to_errno(err);
1481 if (err)
1482 goto rollback;
1483
1484 if (!(dev->flags & IFF_UP))
1485 continue;
1486
1487 call_netdevice_notifier(nb, NETDEV_UP, dev);
1488 }
1489 }
1490
1491 unlock:
1492 rtnl_unlock();
1493 return err;
1494
1495 rollback:
1496 last = dev;
1497 for_each_net(net) {
1498 for_each_netdev(net, dev) {
1499 if (dev == last)
1500 goto outroll;
1501
1502 if (dev->flags & IFF_UP) {
1503 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1504 dev);
1505 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1506 }
1507 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1508 }
1509 }
1510
1511 outroll:
1512 raw_notifier_chain_unregister(&netdev_chain, nb);
1513 goto unlock;
1514 }
1515 EXPORT_SYMBOL(register_netdevice_notifier);
1516
1517 /**
1518 * unregister_netdevice_notifier - unregister a network notifier block
1519 * @nb: notifier
1520 *
1521 * Unregister a notifier previously registered by
1522 * register_netdevice_notifier(). The notifier is unlinked into the
1523 * kernel structures and may then be reused. A negative errno code
1524 * is returned on a failure.
1525 *
1526 * After unregistering unregister and down device events are synthesized
1527 * for all devices on the device list to the removed notifier to remove
1528 * the need for special case cleanup code.
1529 */
1530
1531 int unregister_netdevice_notifier(struct notifier_block *nb)
1532 {
1533 struct net_device *dev;
1534 struct net *net;
1535 int err;
1536
1537 rtnl_lock();
1538 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1539 if (err)
1540 goto unlock;
1541
1542 for_each_net(net) {
1543 for_each_netdev(net, dev) {
1544 if (dev->flags & IFF_UP) {
1545 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1546 dev);
1547 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1548 }
1549 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1550 }
1551 }
1552 unlock:
1553 rtnl_unlock();
1554 return err;
1555 }
1556 EXPORT_SYMBOL(unregister_netdevice_notifier);
1557
1558 /**
1559 * call_netdevice_notifiers_info - call all network notifier blocks
1560 * @val: value passed unmodified to notifier function
1561 * @dev: net_device pointer passed unmodified to notifier function
1562 * @info: notifier information data
1563 *
1564 * Call all network notifier blocks. Parameters and return value
1565 * are as for raw_notifier_call_chain().
1566 */
1567
1568 static int call_netdevice_notifiers_info(unsigned long val,
1569 struct net_device *dev,
1570 struct netdev_notifier_info *info)
1571 {
1572 ASSERT_RTNL();
1573 netdev_notifier_info_init(info, dev);
1574 return raw_notifier_call_chain(&netdev_chain, val, info);
1575 }
1576
1577 /**
1578 * call_netdevice_notifiers - call all network notifier blocks
1579 * @val: value passed unmodified to notifier function
1580 * @dev: net_device pointer passed unmodified to notifier function
1581 *
1582 * Call all network notifier blocks. Parameters and return value
1583 * are as for raw_notifier_call_chain().
1584 */
1585
1586 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1587 {
1588 struct netdev_notifier_info info;
1589
1590 return call_netdevice_notifiers_info(val, dev, &info);
1591 }
1592 EXPORT_SYMBOL(call_netdevice_notifiers);
1593
1594 static struct static_key netstamp_needed __read_mostly;
1595 #ifdef HAVE_JUMP_LABEL
1596 /* We are not allowed to call static_key_slow_dec() from irq context
1597 * If net_disable_timestamp() is called from irq context, defer the
1598 * static_key_slow_dec() calls.
1599 */
1600 static atomic_t netstamp_needed_deferred;
1601 #endif
1602
1603 void net_enable_timestamp(void)
1604 {
1605 #ifdef HAVE_JUMP_LABEL
1606 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1607
1608 if (deferred) {
1609 while (--deferred)
1610 static_key_slow_dec(&netstamp_needed);
1611 return;
1612 }
1613 #endif
1614 static_key_slow_inc(&netstamp_needed);
1615 }
1616 EXPORT_SYMBOL(net_enable_timestamp);
1617
1618 void net_disable_timestamp(void)
1619 {
1620 #ifdef HAVE_JUMP_LABEL
1621 if (in_interrupt()) {
1622 atomic_inc(&netstamp_needed_deferred);
1623 return;
1624 }
1625 #endif
1626 static_key_slow_dec(&netstamp_needed);
1627 }
1628 EXPORT_SYMBOL(net_disable_timestamp);
1629
1630 static inline void net_timestamp_set(struct sk_buff *skb)
1631 {
1632 skb->tstamp.tv64 = 0;
1633 if (static_key_false(&netstamp_needed))
1634 __net_timestamp(skb);
1635 }
1636
1637 #define net_timestamp_check(COND, SKB) \
1638 if (static_key_false(&netstamp_needed)) { \
1639 if ((COND) && !(SKB)->tstamp.tv64) \
1640 __net_timestamp(SKB); \
1641 } \
1642
1643 static inline bool is_skb_forwardable(struct net_device *dev,
1644 struct sk_buff *skb)
1645 {
1646 unsigned int len;
1647
1648 if (!(dev->flags & IFF_UP))
1649 return false;
1650
1651 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1652 if (skb->len <= len)
1653 return true;
1654
1655 /* if TSO is enabled, we don't care about the length as the packet
1656 * could be forwarded without being segmented before
1657 */
1658 if (skb_is_gso(skb))
1659 return true;
1660
1661 return false;
1662 }
1663
1664 /**
1665 * dev_forward_skb - loopback an skb to another netif
1666 *
1667 * @dev: destination network device
1668 * @skb: buffer to forward
1669 *
1670 * return values:
1671 * NET_RX_SUCCESS (no congestion)
1672 * NET_RX_DROP (packet was dropped, but freed)
1673 *
1674 * dev_forward_skb can be used for injecting an skb from the
1675 * start_xmit function of one device into the receive queue
1676 * of another device.
1677 *
1678 * The receiving device may be in another namespace, so
1679 * we have to clear all information in the skb that could
1680 * impact namespace isolation.
1681 */
1682 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1683 {
1684 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1685 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1686 atomic_long_inc(&dev->rx_dropped);
1687 kfree_skb(skb);
1688 return NET_RX_DROP;
1689 }
1690 }
1691
1692 if (unlikely(!is_skb_forwardable(dev, skb))) {
1693 atomic_long_inc(&dev->rx_dropped);
1694 kfree_skb(skb);
1695 return NET_RX_DROP;
1696 }
1697
1698 skb_scrub_packet(skb, true);
1699 skb->protocol = eth_type_trans(skb, dev);
1700
1701 return netif_rx(skb);
1702 }
1703 EXPORT_SYMBOL_GPL(dev_forward_skb);
1704
1705 static inline int deliver_skb(struct sk_buff *skb,
1706 struct packet_type *pt_prev,
1707 struct net_device *orig_dev)
1708 {
1709 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1710 return -ENOMEM;
1711 atomic_inc(&skb->users);
1712 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1713 }
1714
1715 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1716 {
1717 if (!ptype->af_packet_priv || !skb->sk)
1718 return false;
1719
1720 if (ptype->id_match)
1721 return ptype->id_match(ptype, skb->sk);
1722 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1723 return true;
1724
1725 return false;
1726 }
1727
1728 /*
1729 * Support routine. Sends outgoing frames to any network
1730 * taps currently in use.
1731 */
1732
1733 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1734 {
1735 struct packet_type *ptype;
1736 struct sk_buff *skb2 = NULL;
1737 struct packet_type *pt_prev = NULL;
1738
1739 rcu_read_lock();
1740 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1741 /* Never send packets back to the socket
1742 * they originated from - MvS (miquels@drinkel.ow.org)
1743 */
1744 if ((ptype->dev == dev || !ptype->dev) &&
1745 (!skb_loop_sk(ptype, skb))) {
1746 if (pt_prev) {
1747 deliver_skb(skb2, pt_prev, skb->dev);
1748 pt_prev = ptype;
1749 continue;
1750 }
1751
1752 skb2 = skb_clone(skb, GFP_ATOMIC);
1753 if (!skb2)
1754 break;
1755
1756 net_timestamp_set(skb2);
1757
1758 /* skb->nh should be correctly
1759 set by sender, so that the second statement is
1760 just protection against buggy protocols.
1761 */
1762 skb_reset_mac_header(skb2);
1763
1764 if (skb_network_header(skb2) < skb2->data ||
1765 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1766 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1767 ntohs(skb2->protocol),
1768 dev->name);
1769 skb_reset_network_header(skb2);
1770 }
1771
1772 skb2->transport_header = skb2->network_header;
1773 skb2->pkt_type = PACKET_OUTGOING;
1774 pt_prev = ptype;
1775 }
1776 }
1777 if (pt_prev)
1778 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1779 rcu_read_unlock();
1780 }
1781
1782 /**
1783 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1784 * @dev: Network device
1785 * @txq: number of queues available
1786 *
1787 * If real_num_tx_queues is changed the tc mappings may no longer be
1788 * valid. To resolve this verify the tc mapping remains valid and if
1789 * not NULL the mapping. With no priorities mapping to this
1790 * offset/count pair it will no longer be used. In the worst case TC0
1791 * is invalid nothing can be done so disable priority mappings. If is
1792 * expected that drivers will fix this mapping if they can before
1793 * calling netif_set_real_num_tx_queues.
1794 */
1795 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1796 {
1797 int i;
1798 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1799
1800 /* If TC0 is invalidated disable TC mapping */
1801 if (tc->offset + tc->count > txq) {
1802 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1803 dev->num_tc = 0;
1804 return;
1805 }
1806
1807 /* Invalidated prio to tc mappings set to TC0 */
1808 for (i = 1; i < TC_BITMASK + 1; i++) {
1809 int q = netdev_get_prio_tc_map(dev, i);
1810
1811 tc = &dev->tc_to_txq[q];
1812 if (tc->offset + tc->count > txq) {
1813 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1814 i, q);
1815 netdev_set_prio_tc_map(dev, i, 0);
1816 }
1817 }
1818 }
1819
1820 #ifdef CONFIG_XPS
1821 static DEFINE_MUTEX(xps_map_mutex);
1822 #define xmap_dereference(P) \
1823 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1824
1825 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1826 int cpu, u16 index)
1827 {
1828 struct xps_map *map = NULL;
1829 int pos;
1830
1831 if (dev_maps)
1832 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1833
1834 for (pos = 0; map && pos < map->len; pos++) {
1835 if (map->queues[pos] == index) {
1836 if (map->len > 1) {
1837 map->queues[pos] = map->queues[--map->len];
1838 } else {
1839 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1840 kfree_rcu(map, rcu);
1841 map = NULL;
1842 }
1843 break;
1844 }
1845 }
1846
1847 return map;
1848 }
1849
1850 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1851 {
1852 struct xps_dev_maps *dev_maps;
1853 int cpu, i;
1854 bool active = false;
1855
1856 mutex_lock(&xps_map_mutex);
1857 dev_maps = xmap_dereference(dev->xps_maps);
1858
1859 if (!dev_maps)
1860 goto out_no_maps;
1861
1862 for_each_possible_cpu(cpu) {
1863 for (i = index; i < dev->num_tx_queues; i++) {
1864 if (!remove_xps_queue(dev_maps, cpu, i))
1865 break;
1866 }
1867 if (i == dev->num_tx_queues)
1868 active = true;
1869 }
1870
1871 if (!active) {
1872 RCU_INIT_POINTER(dev->xps_maps, NULL);
1873 kfree_rcu(dev_maps, rcu);
1874 }
1875
1876 for (i = index; i < dev->num_tx_queues; i++)
1877 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1878 NUMA_NO_NODE);
1879
1880 out_no_maps:
1881 mutex_unlock(&xps_map_mutex);
1882 }
1883
1884 static struct xps_map *expand_xps_map(struct xps_map *map,
1885 int cpu, u16 index)
1886 {
1887 struct xps_map *new_map;
1888 int alloc_len = XPS_MIN_MAP_ALLOC;
1889 int i, pos;
1890
1891 for (pos = 0; map && pos < map->len; pos++) {
1892 if (map->queues[pos] != index)
1893 continue;
1894 return map;
1895 }
1896
1897 /* Need to add queue to this CPU's existing map */
1898 if (map) {
1899 if (pos < map->alloc_len)
1900 return map;
1901
1902 alloc_len = map->alloc_len * 2;
1903 }
1904
1905 /* Need to allocate new map to store queue on this CPU's map */
1906 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1907 cpu_to_node(cpu));
1908 if (!new_map)
1909 return NULL;
1910
1911 for (i = 0; i < pos; i++)
1912 new_map->queues[i] = map->queues[i];
1913 new_map->alloc_len = alloc_len;
1914 new_map->len = pos;
1915
1916 return new_map;
1917 }
1918
1919 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1920 u16 index)
1921 {
1922 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1923 struct xps_map *map, *new_map;
1924 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1925 int cpu, numa_node_id = -2;
1926 bool active = false;
1927
1928 mutex_lock(&xps_map_mutex);
1929
1930 dev_maps = xmap_dereference(dev->xps_maps);
1931
1932 /* allocate memory for queue storage */
1933 for_each_online_cpu(cpu) {
1934 if (!cpumask_test_cpu(cpu, mask))
1935 continue;
1936
1937 if (!new_dev_maps)
1938 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1939 if (!new_dev_maps) {
1940 mutex_unlock(&xps_map_mutex);
1941 return -ENOMEM;
1942 }
1943
1944 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1945 NULL;
1946
1947 map = expand_xps_map(map, cpu, index);
1948 if (!map)
1949 goto error;
1950
1951 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1952 }
1953
1954 if (!new_dev_maps)
1955 goto out_no_new_maps;
1956
1957 for_each_possible_cpu(cpu) {
1958 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1959 /* add queue to CPU maps */
1960 int pos = 0;
1961
1962 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1963 while ((pos < map->len) && (map->queues[pos] != index))
1964 pos++;
1965
1966 if (pos == map->len)
1967 map->queues[map->len++] = index;
1968 #ifdef CONFIG_NUMA
1969 if (numa_node_id == -2)
1970 numa_node_id = cpu_to_node(cpu);
1971 else if (numa_node_id != cpu_to_node(cpu))
1972 numa_node_id = -1;
1973 #endif
1974 } else if (dev_maps) {
1975 /* fill in the new device map from the old device map */
1976 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1977 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1978 }
1979
1980 }
1981
1982 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1983
1984 /* Cleanup old maps */
1985 if (dev_maps) {
1986 for_each_possible_cpu(cpu) {
1987 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1988 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1989 if (map && map != new_map)
1990 kfree_rcu(map, rcu);
1991 }
1992
1993 kfree_rcu(dev_maps, rcu);
1994 }
1995
1996 dev_maps = new_dev_maps;
1997 active = true;
1998
1999 out_no_new_maps:
2000 /* update Tx queue numa node */
2001 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2002 (numa_node_id >= 0) ? numa_node_id :
2003 NUMA_NO_NODE);
2004
2005 if (!dev_maps)
2006 goto out_no_maps;
2007
2008 /* removes queue from unused CPUs */
2009 for_each_possible_cpu(cpu) {
2010 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2011 continue;
2012
2013 if (remove_xps_queue(dev_maps, cpu, index))
2014 active = true;
2015 }
2016
2017 /* free map if not active */
2018 if (!active) {
2019 RCU_INIT_POINTER(dev->xps_maps, NULL);
2020 kfree_rcu(dev_maps, rcu);
2021 }
2022
2023 out_no_maps:
2024 mutex_unlock(&xps_map_mutex);
2025
2026 return 0;
2027 error:
2028 /* remove any maps that we added */
2029 for_each_possible_cpu(cpu) {
2030 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2031 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2032 NULL;
2033 if (new_map && new_map != map)
2034 kfree(new_map);
2035 }
2036
2037 mutex_unlock(&xps_map_mutex);
2038
2039 kfree(new_dev_maps);
2040 return -ENOMEM;
2041 }
2042 EXPORT_SYMBOL(netif_set_xps_queue);
2043
2044 #endif
2045 /*
2046 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2047 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2048 */
2049 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2050 {
2051 int rc;
2052
2053 if (txq < 1 || txq > dev->num_tx_queues)
2054 return -EINVAL;
2055
2056 if (dev->reg_state == NETREG_REGISTERED ||
2057 dev->reg_state == NETREG_UNREGISTERING) {
2058 ASSERT_RTNL();
2059
2060 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2061 txq);
2062 if (rc)
2063 return rc;
2064
2065 if (dev->num_tc)
2066 netif_setup_tc(dev, txq);
2067
2068 if (txq < dev->real_num_tx_queues) {
2069 qdisc_reset_all_tx_gt(dev, txq);
2070 #ifdef CONFIG_XPS
2071 netif_reset_xps_queues_gt(dev, txq);
2072 #endif
2073 }
2074 }
2075
2076 dev->real_num_tx_queues = txq;
2077 return 0;
2078 }
2079 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2080
2081 #ifdef CONFIG_RPS
2082 /**
2083 * netif_set_real_num_rx_queues - set actual number of RX queues used
2084 * @dev: Network device
2085 * @rxq: Actual number of RX queues
2086 *
2087 * This must be called either with the rtnl_lock held or before
2088 * registration of the net device. Returns 0 on success, or a
2089 * negative error code. If called before registration, it always
2090 * succeeds.
2091 */
2092 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2093 {
2094 int rc;
2095
2096 if (rxq < 1 || rxq > dev->num_rx_queues)
2097 return -EINVAL;
2098
2099 if (dev->reg_state == NETREG_REGISTERED) {
2100 ASSERT_RTNL();
2101
2102 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2103 rxq);
2104 if (rc)
2105 return rc;
2106 }
2107
2108 dev->real_num_rx_queues = rxq;
2109 return 0;
2110 }
2111 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2112 #endif
2113
2114 /**
2115 * netif_get_num_default_rss_queues - default number of RSS queues
2116 *
2117 * This routine should set an upper limit on the number of RSS queues
2118 * used by default by multiqueue devices.
2119 */
2120 int netif_get_num_default_rss_queues(void)
2121 {
2122 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2123 }
2124 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2125
2126 static inline void __netif_reschedule(struct Qdisc *q)
2127 {
2128 struct softnet_data *sd;
2129 unsigned long flags;
2130
2131 local_irq_save(flags);
2132 sd = &__get_cpu_var(softnet_data);
2133 q->next_sched = NULL;
2134 *sd->output_queue_tailp = q;
2135 sd->output_queue_tailp = &q->next_sched;
2136 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2137 local_irq_restore(flags);
2138 }
2139
2140 void __netif_schedule(struct Qdisc *q)
2141 {
2142 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2143 __netif_reschedule(q);
2144 }
2145 EXPORT_SYMBOL(__netif_schedule);
2146
2147 struct dev_kfree_skb_cb {
2148 enum skb_free_reason reason;
2149 };
2150
2151 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2152 {
2153 return (struct dev_kfree_skb_cb *)skb->cb;
2154 }
2155
2156 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2157 {
2158 unsigned long flags;
2159
2160 if (likely(atomic_read(&skb->users) == 1)) {
2161 smp_rmb();
2162 atomic_set(&skb->users, 0);
2163 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2164 return;
2165 }
2166 get_kfree_skb_cb(skb)->reason = reason;
2167 local_irq_save(flags);
2168 skb->next = __this_cpu_read(softnet_data.completion_queue);
2169 __this_cpu_write(softnet_data.completion_queue, skb);
2170 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2171 local_irq_restore(flags);
2172 }
2173 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2174
2175 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2176 {
2177 if (in_irq() || irqs_disabled())
2178 __dev_kfree_skb_irq(skb, reason);
2179 else
2180 dev_kfree_skb(skb);
2181 }
2182 EXPORT_SYMBOL(__dev_kfree_skb_any);
2183
2184
2185 /**
2186 * netif_device_detach - mark device as removed
2187 * @dev: network device
2188 *
2189 * Mark device as removed from system and therefore no longer available.
2190 */
2191 void netif_device_detach(struct net_device *dev)
2192 {
2193 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2194 netif_running(dev)) {
2195 netif_tx_stop_all_queues(dev);
2196 }
2197 }
2198 EXPORT_SYMBOL(netif_device_detach);
2199
2200 /**
2201 * netif_device_attach - mark device as attached
2202 * @dev: network device
2203 *
2204 * Mark device as attached from system and restart if needed.
2205 */
2206 void netif_device_attach(struct net_device *dev)
2207 {
2208 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2209 netif_running(dev)) {
2210 netif_tx_wake_all_queues(dev);
2211 __netdev_watchdog_up(dev);
2212 }
2213 }
2214 EXPORT_SYMBOL(netif_device_attach);
2215
2216 static void skb_warn_bad_offload(const struct sk_buff *skb)
2217 {
2218 static const netdev_features_t null_features = 0;
2219 struct net_device *dev = skb->dev;
2220 const char *driver = "";
2221
2222 if (!net_ratelimit())
2223 return;
2224
2225 if (dev && dev->dev.parent)
2226 driver = dev_driver_string(dev->dev.parent);
2227
2228 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2229 "gso_type=%d ip_summed=%d\n",
2230 driver, dev ? &dev->features : &null_features,
2231 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2232 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2233 skb_shinfo(skb)->gso_type, skb->ip_summed);
2234 }
2235
2236 /*
2237 * Invalidate hardware checksum when packet is to be mangled, and
2238 * complete checksum manually on outgoing path.
2239 */
2240 int skb_checksum_help(struct sk_buff *skb)
2241 {
2242 __wsum csum;
2243 int ret = 0, offset;
2244
2245 if (skb->ip_summed == CHECKSUM_COMPLETE)
2246 goto out_set_summed;
2247
2248 if (unlikely(skb_shinfo(skb)->gso_size)) {
2249 skb_warn_bad_offload(skb);
2250 return -EINVAL;
2251 }
2252
2253 /* Before computing a checksum, we should make sure no frag could
2254 * be modified by an external entity : checksum could be wrong.
2255 */
2256 if (skb_has_shared_frag(skb)) {
2257 ret = __skb_linearize(skb);
2258 if (ret)
2259 goto out;
2260 }
2261
2262 offset = skb_checksum_start_offset(skb);
2263 BUG_ON(offset >= skb_headlen(skb));
2264 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2265
2266 offset += skb->csum_offset;
2267 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2268
2269 if (skb_cloned(skb) &&
2270 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2271 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2272 if (ret)
2273 goto out;
2274 }
2275
2276 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2277 out_set_summed:
2278 skb->ip_summed = CHECKSUM_NONE;
2279 out:
2280 return ret;
2281 }
2282 EXPORT_SYMBOL(skb_checksum_help);
2283
2284 __be16 skb_network_protocol(struct sk_buff *skb)
2285 {
2286 __be16 type = skb->protocol;
2287 int vlan_depth = ETH_HLEN;
2288
2289 /* Tunnel gso handlers can set protocol to ethernet. */
2290 if (type == htons(ETH_P_TEB)) {
2291 struct ethhdr *eth;
2292
2293 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2294 return 0;
2295
2296 eth = (struct ethhdr *)skb_mac_header(skb);
2297 type = eth->h_proto;
2298 }
2299
2300 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2301 struct vlan_hdr *vh;
2302
2303 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2304 return 0;
2305
2306 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2307 type = vh->h_vlan_encapsulated_proto;
2308 vlan_depth += VLAN_HLEN;
2309 }
2310
2311 return type;
2312 }
2313
2314 /**
2315 * skb_mac_gso_segment - mac layer segmentation handler.
2316 * @skb: buffer to segment
2317 * @features: features for the output path (see dev->features)
2318 */
2319 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2320 netdev_features_t features)
2321 {
2322 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2323 struct packet_offload *ptype;
2324 __be16 type = skb_network_protocol(skb);
2325
2326 if (unlikely(!type))
2327 return ERR_PTR(-EINVAL);
2328
2329 __skb_pull(skb, skb->mac_len);
2330
2331 rcu_read_lock();
2332 list_for_each_entry_rcu(ptype, &offload_base, list) {
2333 if (ptype->type == type && ptype->callbacks.gso_segment) {
2334 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2335 int err;
2336
2337 err = ptype->callbacks.gso_send_check(skb);
2338 segs = ERR_PTR(err);
2339 if (err || skb_gso_ok(skb, features))
2340 break;
2341 __skb_push(skb, (skb->data -
2342 skb_network_header(skb)));
2343 }
2344 segs = ptype->callbacks.gso_segment(skb, features);
2345 break;
2346 }
2347 }
2348 rcu_read_unlock();
2349
2350 __skb_push(skb, skb->data - skb_mac_header(skb));
2351
2352 return segs;
2353 }
2354 EXPORT_SYMBOL(skb_mac_gso_segment);
2355
2356
2357 /* openvswitch calls this on rx path, so we need a different check.
2358 */
2359 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2360 {
2361 if (tx_path)
2362 return skb->ip_summed != CHECKSUM_PARTIAL;
2363 else
2364 return skb->ip_summed == CHECKSUM_NONE;
2365 }
2366
2367 /**
2368 * __skb_gso_segment - Perform segmentation on skb.
2369 * @skb: buffer to segment
2370 * @features: features for the output path (see dev->features)
2371 * @tx_path: whether it is called in TX path
2372 *
2373 * This function segments the given skb and returns a list of segments.
2374 *
2375 * It may return NULL if the skb requires no segmentation. This is
2376 * only possible when GSO is used for verifying header integrity.
2377 */
2378 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2379 netdev_features_t features, bool tx_path)
2380 {
2381 if (unlikely(skb_needs_check(skb, tx_path))) {
2382 int err;
2383
2384 skb_warn_bad_offload(skb);
2385
2386 if (skb_header_cloned(skb) &&
2387 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2388 return ERR_PTR(err);
2389 }
2390
2391 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2392 SKB_GSO_CB(skb)->encap_level = 0;
2393
2394 skb_reset_mac_header(skb);
2395 skb_reset_mac_len(skb);
2396
2397 return skb_mac_gso_segment(skb, features);
2398 }
2399 EXPORT_SYMBOL(__skb_gso_segment);
2400
2401 /* Take action when hardware reception checksum errors are detected. */
2402 #ifdef CONFIG_BUG
2403 void netdev_rx_csum_fault(struct net_device *dev)
2404 {
2405 if (net_ratelimit()) {
2406 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2407 dump_stack();
2408 }
2409 }
2410 EXPORT_SYMBOL(netdev_rx_csum_fault);
2411 #endif
2412
2413 /* Actually, we should eliminate this check as soon as we know, that:
2414 * 1. IOMMU is present and allows to map all the memory.
2415 * 2. No high memory really exists on this machine.
2416 */
2417
2418 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2419 {
2420 #ifdef CONFIG_HIGHMEM
2421 int i;
2422 if (!(dev->features & NETIF_F_HIGHDMA)) {
2423 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2424 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2425 if (PageHighMem(skb_frag_page(frag)))
2426 return 1;
2427 }
2428 }
2429
2430 if (PCI_DMA_BUS_IS_PHYS) {
2431 struct device *pdev = dev->dev.parent;
2432
2433 if (!pdev)
2434 return 0;
2435 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2436 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2437 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2438 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2439 return 1;
2440 }
2441 }
2442 #endif
2443 return 0;
2444 }
2445
2446 struct dev_gso_cb {
2447 void (*destructor)(struct sk_buff *skb);
2448 };
2449
2450 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2451
2452 static void dev_gso_skb_destructor(struct sk_buff *skb)
2453 {
2454 struct dev_gso_cb *cb;
2455
2456 kfree_skb_list(skb->next);
2457 skb->next = NULL;
2458
2459 cb = DEV_GSO_CB(skb);
2460 if (cb->destructor)
2461 cb->destructor(skb);
2462 }
2463
2464 /**
2465 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2466 * @skb: buffer to segment
2467 * @features: device features as applicable to this skb
2468 *
2469 * This function segments the given skb and stores the list of segments
2470 * in skb->next.
2471 */
2472 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2473 {
2474 struct sk_buff *segs;
2475
2476 segs = skb_gso_segment(skb, features);
2477
2478 /* Verifying header integrity only. */
2479 if (!segs)
2480 return 0;
2481
2482 if (IS_ERR(segs))
2483 return PTR_ERR(segs);
2484
2485 skb->next = segs;
2486 DEV_GSO_CB(skb)->destructor = skb->destructor;
2487 skb->destructor = dev_gso_skb_destructor;
2488
2489 return 0;
2490 }
2491
2492 static netdev_features_t harmonize_features(struct sk_buff *skb,
2493 netdev_features_t features)
2494 {
2495 if (skb->ip_summed != CHECKSUM_NONE &&
2496 !can_checksum_protocol(features, skb_network_protocol(skb))) {
2497 features &= ~NETIF_F_ALL_CSUM;
2498 } else if (illegal_highdma(skb->dev, skb)) {
2499 features &= ~NETIF_F_SG;
2500 }
2501
2502 return features;
2503 }
2504
2505 netdev_features_t netif_skb_features(struct sk_buff *skb)
2506 {
2507 __be16 protocol = skb->protocol;
2508 netdev_features_t features = skb->dev->features;
2509
2510 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2511 features &= ~NETIF_F_GSO_MASK;
2512
2513 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2514 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2515 protocol = veh->h_vlan_encapsulated_proto;
2516 } else if (!vlan_tx_tag_present(skb)) {
2517 return harmonize_features(skb, features);
2518 }
2519
2520 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2521 NETIF_F_HW_VLAN_STAG_TX);
2522
2523 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2524 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2525 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2526 NETIF_F_HW_VLAN_STAG_TX;
2527
2528 return harmonize_features(skb, features);
2529 }
2530 EXPORT_SYMBOL(netif_skb_features);
2531
2532 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2533 struct netdev_queue *txq, void *accel_priv)
2534 {
2535 const struct net_device_ops *ops = dev->netdev_ops;
2536 int rc = NETDEV_TX_OK;
2537 unsigned int skb_len;
2538
2539 if (likely(!skb->next)) {
2540 netdev_features_t features;
2541
2542 /*
2543 * If device doesn't need skb->dst, release it right now while
2544 * its hot in this cpu cache
2545 */
2546 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2547 skb_dst_drop(skb);
2548
2549 features = netif_skb_features(skb);
2550
2551 if (vlan_tx_tag_present(skb) &&
2552 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2553 skb = __vlan_put_tag(skb, skb->vlan_proto,
2554 vlan_tx_tag_get(skb));
2555 if (unlikely(!skb))
2556 goto out;
2557
2558 skb->vlan_tci = 0;
2559 }
2560
2561 /* If encapsulation offload request, verify we are testing
2562 * hardware encapsulation features instead of standard
2563 * features for the netdev
2564 */
2565 if (skb->encapsulation)
2566 features &= dev->hw_enc_features;
2567
2568 if (netif_needs_gso(skb, features)) {
2569 if (unlikely(dev_gso_segment(skb, features)))
2570 goto out_kfree_skb;
2571 if (skb->next)
2572 goto gso;
2573 } else {
2574 if (skb_needs_linearize(skb, features) &&
2575 __skb_linearize(skb))
2576 goto out_kfree_skb;
2577
2578 /* If packet is not checksummed and device does not
2579 * support checksumming for this protocol, complete
2580 * checksumming here.
2581 */
2582 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2583 if (skb->encapsulation)
2584 skb_set_inner_transport_header(skb,
2585 skb_checksum_start_offset(skb));
2586 else
2587 skb_set_transport_header(skb,
2588 skb_checksum_start_offset(skb));
2589 if (!(features & NETIF_F_ALL_CSUM) &&
2590 skb_checksum_help(skb))
2591 goto out_kfree_skb;
2592 }
2593 }
2594
2595 if (!list_empty(&ptype_all))
2596 dev_queue_xmit_nit(skb, dev);
2597
2598 skb_len = skb->len;
2599 if (accel_priv)
2600 rc = ops->ndo_dfwd_start_xmit(skb, dev, accel_priv);
2601 else
2602 rc = ops->ndo_start_xmit(skb, dev);
2603
2604 trace_net_dev_xmit(skb, rc, dev, skb_len);
2605 if (rc == NETDEV_TX_OK && txq)
2606 txq_trans_update(txq);
2607 return rc;
2608 }
2609
2610 gso:
2611 do {
2612 struct sk_buff *nskb = skb->next;
2613
2614 skb->next = nskb->next;
2615 nskb->next = NULL;
2616
2617 if (!list_empty(&ptype_all))
2618 dev_queue_xmit_nit(nskb, dev);
2619
2620 skb_len = nskb->len;
2621 if (accel_priv)
2622 rc = ops->ndo_dfwd_start_xmit(nskb, dev, accel_priv);
2623 else
2624 rc = ops->ndo_start_xmit(nskb, dev);
2625 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2626 if (unlikely(rc != NETDEV_TX_OK)) {
2627 if (rc & ~NETDEV_TX_MASK)
2628 goto out_kfree_gso_skb;
2629 nskb->next = skb->next;
2630 skb->next = nskb;
2631 return rc;
2632 }
2633 txq_trans_update(txq);
2634 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2635 return NETDEV_TX_BUSY;
2636 } while (skb->next);
2637
2638 out_kfree_gso_skb:
2639 if (likely(skb->next == NULL)) {
2640 skb->destructor = DEV_GSO_CB(skb)->destructor;
2641 consume_skb(skb);
2642 return rc;
2643 }
2644 out_kfree_skb:
2645 kfree_skb(skb);
2646 out:
2647 return rc;
2648 }
2649 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2650
2651 static void qdisc_pkt_len_init(struct sk_buff *skb)
2652 {
2653 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2654
2655 qdisc_skb_cb(skb)->pkt_len = skb->len;
2656
2657 /* To get more precise estimation of bytes sent on wire,
2658 * we add to pkt_len the headers size of all segments
2659 */
2660 if (shinfo->gso_size) {
2661 unsigned int hdr_len;
2662 u16 gso_segs = shinfo->gso_segs;
2663
2664 /* mac layer + network layer */
2665 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2666
2667 /* + transport layer */
2668 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2669 hdr_len += tcp_hdrlen(skb);
2670 else
2671 hdr_len += sizeof(struct udphdr);
2672
2673 if (shinfo->gso_type & SKB_GSO_DODGY)
2674 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2675 shinfo->gso_size);
2676
2677 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2678 }
2679 }
2680
2681 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2682 struct net_device *dev,
2683 struct netdev_queue *txq)
2684 {
2685 spinlock_t *root_lock = qdisc_lock(q);
2686 bool contended;
2687 int rc;
2688
2689 qdisc_pkt_len_init(skb);
2690 qdisc_calculate_pkt_len(skb, q);
2691 /*
2692 * Heuristic to force contended enqueues to serialize on a
2693 * separate lock before trying to get qdisc main lock.
2694 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2695 * and dequeue packets faster.
2696 */
2697 contended = qdisc_is_running(q);
2698 if (unlikely(contended))
2699 spin_lock(&q->busylock);
2700
2701 spin_lock(root_lock);
2702 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2703 kfree_skb(skb);
2704 rc = NET_XMIT_DROP;
2705 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2706 qdisc_run_begin(q)) {
2707 /*
2708 * This is a work-conserving queue; there are no old skbs
2709 * waiting to be sent out; and the qdisc is not running -
2710 * xmit the skb directly.
2711 */
2712 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2713 skb_dst_force(skb);
2714
2715 qdisc_bstats_update(q, skb);
2716
2717 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2718 if (unlikely(contended)) {
2719 spin_unlock(&q->busylock);
2720 contended = false;
2721 }
2722 __qdisc_run(q);
2723 } else
2724 qdisc_run_end(q);
2725
2726 rc = NET_XMIT_SUCCESS;
2727 } else {
2728 skb_dst_force(skb);
2729 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2730 if (qdisc_run_begin(q)) {
2731 if (unlikely(contended)) {
2732 spin_unlock(&q->busylock);
2733 contended = false;
2734 }
2735 __qdisc_run(q);
2736 }
2737 }
2738 spin_unlock(root_lock);
2739 if (unlikely(contended))
2740 spin_unlock(&q->busylock);
2741 return rc;
2742 }
2743
2744 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2745 static void skb_update_prio(struct sk_buff *skb)
2746 {
2747 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2748
2749 if (!skb->priority && skb->sk && map) {
2750 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2751
2752 if (prioidx < map->priomap_len)
2753 skb->priority = map->priomap[prioidx];
2754 }
2755 }
2756 #else
2757 #define skb_update_prio(skb)
2758 #endif
2759
2760 static DEFINE_PER_CPU(int, xmit_recursion);
2761 #define RECURSION_LIMIT 10
2762
2763 /**
2764 * dev_loopback_xmit - loop back @skb
2765 * @skb: buffer to transmit
2766 */
2767 int dev_loopback_xmit(struct sk_buff *skb)
2768 {
2769 skb_reset_mac_header(skb);
2770 __skb_pull(skb, skb_network_offset(skb));
2771 skb->pkt_type = PACKET_LOOPBACK;
2772 skb->ip_summed = CHECKSUM_UNNECESSARY;
2773 WARN_ON(!skb_dst(skb));
2774 skb_dst_force(skb);
2775 netif_rx_ni(skb);
2776 return 0;
2777 }
2778 EXPORT_SYMBOL(dev_loopback_xmit);
2779
2780 /**
2781 * dev_queue_xmit - transmit a buffer
2782 * @skb: buffer to transmit
2783 *
2784 * Queue a buffer for transmission to a network device. The caller must
2785 * have set the device and priority and built the buffer before calling
2786 * this function. The function can be called from an interrupt.
2787 *
2788 * A negative errno code is returned on a failure. A success does not
2789 * guarantee the frame will be transmitted as it may be dropped due
2790 * to congestion or traffic shaping.
2791 *
2792 * -----------------------------------------------------------------------------------
2793 * I notice this method can also return errors from the queue disciplines,
2794 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2795 * be positive.
2796 *
2797 * Regardless of the return value, the skb is consumed, so it is currently
2798 * difficult to retry a send to this method. (You can bump the ref count
2799 * before sending to hold a reference for retry if you are careful.)
2800 *
2801 * When calling this method, interrupts MUST be enabled. This is because
2802 * the BH enable code must have IRQs enabled so that it will not deadlock.
2803 * --BLG
2804 */
2805 int dev_queue_xmit(struct sk_buff *skb)
2806 {
2807 struct net_device *dev = skb->dev;
2808 struct netdev_queue *txq;
2809 struct Qdisc *q;
2810 int rc = -ENOMEM;
2811
2812 skb_reset_mac_header(skb);
2813
2814 /* Disable soft irqs for various locks below. Also
2815 * stops preemption for RCU.
2816 */
2817 rcu_read_lock_bh();
2818
2819 skb_update_prio(skb);
2820
2821 txq = netdev_pick_tx(dev, skb);
2822 q = rcu_dereference_bh(txq->qdisc);
2823
2824 #ifdef CONFIG_NET_CLS_ACT
2825 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2826 #endif
2827 trace_net_dev_queue(skb);
2828 if (q->enqueue) {
2829 rc = __dev_xmit_skb(skb, q, dev, txq);
2830 goto out;
2831 }
2832
2833 /* The device has no queue. Common case for software devices:
2834 loopback, all the sorts of tunnels...
2835
2836 Really, it is unlikely that netif_tx_lock protection is necessary
2837 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2838 counters.)
2839 However, it is possible, that they rely on protection
2840 made by us here.
2841
2842 Check this and shot the lock. It is not prone from deadlocks.
2843 Either shot noqueue qdisc, it is even simpler 8)
2844 */
2845 if (dev->flags & IFF_UP) {
2846 int cpu = smp_processor_id(); /* ok because BHs are off */
2847
2848 if (txq->xmit_lock_owner != cpu) {
2849
2850 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2851 goto recursion_alert;
2852
2853 HARD_TX_LOCK(dev, txq, cpu);
2854
2855 if (!netif_xmit_stopped(txq)) {
2856 __this_cpu_inc(xmit_recursion);
2857 rc = dev_hard_start_xmit(skb, dev, txq, NULL);
2858 __this_cpu_dec(xmit_recursion);
2859 if (dev_xmit_complete(rc)) {
2860 HARD_TX_UNLOCK(dev, txq);
2861 goto out;
2862 }
2863 }
2864 HARD_TX_UNLOCK(dev, txq);
2865 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2866 dev->name);
2867 } else {
2868 /* Recursion is detected! It is possible,
2869 * unfortunately
2870 */
2871 recursion_alert:
2872 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2873 dev->name);
2874 }
2875 }
2876
2877 rc = -ENETDOWN;
2878 rcu_read_unlock_bh();
2879
2880 kfree_skb(skb);
2881 return rc;
2882 out:
2883 rcu_read_unlock_bh();
2884 return rc;
2885 }
2886 EXPORT_SYMBOL(dev_queue_xmit);
2887
2888
2889 /*=======================================================================
2890 Receiver routines
2891 =======================================================================*/
2892
2893 int netdev_max_backlog __read_mostly = 1000;
2894 EXPORT_SYMBOL(netdev_max_backlog);
2895
2896 int netdev_tstamp_prequeue __read_mostly = 1;
2897 int netdev_budget __read_mostly = 300;
2898 int weight_p __read_mostly = 64; /* old backlog weight */
2899
2900 /* Called with irq disabled */
2901 static inline void ____napi_schedule(struct softnet_data *sd,
2902 struct napi_struct *napi)
2903 {
2904 list_add_tail(&napi->poll_list, &sd->poll_list);
2905 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2906 }
2907
2908 #ifdef CONFIG_RPS
2909
2910 /* One global table that all flow-based protocols share. */
2911 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2912 EXPORT_SYMBOL(rps_sock_flow_table);
2913
2914 struct static_key rps_needed __read_mostly;
2915
2916 static struct rps_dev_flow *
2917 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2918 struct rps_dev_flow *rflow, u16 next_cpu)
2919 {
2920 if (next_cpu != RPS_NO_CPU) {
2921 #ifdef CONFIG_RFS_ACCEL
2922 struct netdev_rx_queue *rxqueue;
2923 struct rps_dev_flow_table *flow_table;
2924 struct rps_dev_flow *old_rflow;
2925 u32 flow_id;
2926 u16 rxq_index;
2927 int rc;
2928
2929 /* Should we steer this flow to a different hardware queue? */
2930 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2931 !(dev->features & NETIF_F_NTUPLE))
2932 goto out;
2933 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2934 if (rxq_index == skb_get_rx_queue(skb))
2935 goto out;
2936
2937 rxqueue = dev->_rx + rxq_index;
2938 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2939 if (!flow_table)
2940 goto out;
2941 flow_id = skb->rxhash & flow_table->mask;
2942 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2943 rxq_index, flow_id);
2944 if (rc < 0)
2945 goto out;
2946 old_rflow = rflow;
2947 rflow = &flow_table->flows[flow_id];
2948 rflow->filter = rc;
2949 if (old_rflow->filter == rflow->filter)
2950 old_rflow->filter = RPS_NO_FILTER;
2951 out:
2952 #endif
2953 rflow->last_qtail =
2954 per_cpu(softnet_data, next_cpu).input_queue_head;
2955 }
2956
2957 rflow->cpu = next_cpu;
2958 return rflow;
2959 }
2960
2961 /*
2962 * get_rps_cpu is called from netif_receive_skb and returns the target
2963 * CPU from the RPS map of the receiving queue for a given skb.
2964 * rcu_read_lock must be held on entry.
2965 */
2966 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2967 struct rps_dev_flow **rflowp)
2968 {
2969 struct netdev_rx_queue *rxqueue;
2970 struct rps_map *map;
2971 struct rps_dev_flow_table *flow_table;
2972 struct rps_sock_flow_table *sock_flow_table;
2973 int cpu = -1;
2974 u16 tcpu;
2975
2976 if (skb_rx_queue_recorded(skb)) {
2977 u16 index = skb_get_rx_queue(skb);
2978 if (unlikely(index >= dev->real_num_rx_queues)) {
2979 WARN_ONCE(dev->real_num_rx_queues > 1,
2980 "%s received packet on queue %u, but number "
2981 "of RX queues is %u\n",
2982 dev->name, index, dev->real_num_rx_queues);
2983 goto done;
2984 }
2985 rxqueue = dev->_rx + index;
2986 } else
2987 rxqueue = dev->_rx;
2988
2989 map = rcu_dereference(rxqueue->rps_map);
2990 if (map) {
2991 if (map->len == 1 &&
2992 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2993 tcpu = map->cpus[0];
2994 if (cpu_online(tcpu))
2995 cpu = tcpu;
2996 goto done;
2997 }
2998 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2999 goto done;
3000 }
3001
3002 skb_reset_network_header(skb);
3003 if (!skb_get_hash(skb))
3004 goto done;
3005
3006 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3007 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3008 if (flow_table && sock_flow_table) {
3009 u16 next_cpu;
3010 struct rps_dev_flow *rflow;
3011
3012 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
3013 tcpu = rflow->cpu;
3014
3015 next_cpu = sock_flow_table->ents[skb->rxhash &
3016 sock_flow_table->mask];
3017
3018 /*
3019 * If the desired CPU (where last recvmsg was done) is
3020 * different from current CPU (one in the rx-queue flow
3021 * table entry), switch if one of the following holds:
3022 * - Current CPU is unset (equal to RPS_NO_CPU).
3023 * - Current CPU is offline.
3024 * - The current CPU's queue tail has advanced beyond the
3025 * last packet that was enqueued using this table entry.
3026 * This guarantees that all previous packets for the flow
3027 * have been dequeued, thus preserving in order delivery.
3028 */
3029 if (unlikely(tcpu != next_cpu) &&
3030 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3031 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3032 rflow->last_qtail)) >= 0)) {
3033 tcpu = next_cpu;
3034 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3035 }
3036
3037 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3038 *rflowp = rflow;
3039 cpu = tcpu;
3040 goto done;
3041 }
3042 }
3043
3044 if (map) {
3045 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
3046
3047 if (cpu_online(tcpu)) {
3048 cpu = tcpu;
3049 goto done;
3050 }
3051 }
3052
3053 done:
3054 return cpu;
3055 }
3056
3057 #ifdef CONFIG_RFS_ACCEL
3058
3059 /**
3060 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3061 * @dev: Device on which the filter was set
3062 * @rxq_index: RX queue index
3063 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3064 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3065 *
3066 * Drivers that implement ndo_rx_flow_steer() should periodically call
3067 * this function for each installed filter and remove the filters for
3068 * which it returns %true.
3069 */
3070 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3071 u32 flow_id, u16 filter_id)
3072 {
3073 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3074 struct rps_dev_flow_table *flow_table;
3075 struct rps_dev_flow *rflow;
3076 bool expire = true;
3077 int cpu;
3078
3079 rcu_read_lock();
3080 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3081 if (flow_table && flow_id <= flow_table->mask) {
3082 rflow = &flow_table->flows[flow_id];
3083 cpu = ACCESS_ONCE(rflow->cpu);
3084 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3085 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3086 rflow->last_qtail) <
3087 (int)(10 * flow_table->mask)))
3088 expire = false;
3089 }
3090 rcu_read_unlock();
3091 return expire;
3092 }
3093 EXPORT_SYMBOL(rps_may_expire_flow);
3094
3095 #endif /* CONFIG_RFS_ACCEL */
3096
3097 /* Called from hardirq (IPI) context */
3098 static void rps_trigger_softirq(void *data)
3099 {
3100 struct softnet_data *sd = data;
3101
3102 ____napi_schedule(sd, &sd->backlog);
3103 sd->received_rps++;
3104 }
3105
3106 #endif /* CONFIG_RPS */
3107
3108 /*
3109 * Check if this softnet_data structure is another cpu one
3110 * If yes, queue it to our IPI list and return 1
3111 * If no, return 0
3112 */
3113 static int rps_ipi_queued(struct softnet_data *sd)
3114 {
3115 #ifdef CONFIG_RPS
3116 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3117
3118 if (sd != mysd) {
3119 sd->rps_ipi_next = mysd->rps_ipi_list;
3120 mysd->rps_ipi_list = sd;
3121
3122 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3123 return 1;
3124 }
3125 #endif /* CONFIG_RPS */
3126 return 0;
3127 }
3128
3129 #ifdef CONFIG_NET_FLOW_LIMIT
3130 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3131 #endif
3132
3133 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3134 {
3135 #ifdef CONFIG_NET_FLOW_LIMIT
3136 struct sd_flow_limit *fl;
3137 struct softnet_data *sd;
3138 unsigned int old_flow, new_flow;
3139
3140 if (qlen < (netdev_max_backlog >> 1))
3141 return false;
3142
3143 sd = &__get_cpu_var(softnet_data);
3144
3145 rcu_read_lock();
3146 fl = rcu_dereference(sd->flow_limit);
3147 if (fl) {
3148 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3149 old_flow = fl->history[fl->history_head];
3150 fl->history[fl->history_head] = new_flow;
3151
3152 fl->history_head++;
3153 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3154
3155 if (likely(fl->buckets[old_flow]))
3156 fl->buckets[old_flow]--;
3157
3158 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3159 fl->count++;
3160 rcu_read_unlock();
3161 return true;
3162 }
3163 }
3164 rcu_read_unlock();
3165 #endif
3166 return false;
3167 }
3168
3169 /*
3170 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3171 * queue (may be a remote CPU queue).
3172 */
3173 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3174 unsigned int *qtail)
3175 {
3176 struct softnet_data *sd;
3177 unsigned long flags;
3178 unsigned int qlen;
3179
3180 sd = &per_cpu(softnet_data, cpu);
3181
3182 local_irq_save(flags);
3183
3184 rps_lock(sd);
3185 qlen = skb_queue_len(&sd->input_pkt_queue);
3186 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3187 if (skb_queue_len(&sd->input_pkt_queue)) {
3188 enqueue:
3189 __skb_queue_tail(&sd->input_pkt_queue, skb);
3190 input_queue_tail_incr_save(sd, qtail);
3191 rps_unlock(sd);
3192 local_irq_restore(flags);
3193 return NET_RX_SUCCESS;
3194 }
3195
3196 /* Schedule NAPI for backlog device
3197 * We can use non atomic operation since we own the queue lock
3198 */
3199 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3200 if (!rps_ipi_queued(sd))
3201 ____napi_schedule(sd, &sd->backlog);
3202 }
3203 goto enqueue;
3204 }
3205
3206 sd->dropped++;
3207 rps_unlock(sd);
3208
3209 local_irq_restore(flags);
3210
3211 atomic_long_inc(&skb->dev->rx_dropped);
3212 kfree_skb(skb);
3213 return NET_RX_DROP;
3214 }
3215
3216 /**
3217 * netif_rx - post buffer to the network code
3218 * @skb: buffer to post
3219 *
3220 * This function receives a packet from a device driver and queues it for
3221 * the upper (protocol) levels to process. It always succeeds. The buffer
3222 * may be dropped during processing for congestion control or by the
3223 * protocol layers.
3224 *
3225 * return values:
3226 * NET_RX_SUCCESS (no congestion)
3227 * NET_RX_DROP (packet was dropped)
3228 *
3229 */
3230
3231 int netif_rx(struct sk_buff *skb)
3232 {
3233 int ret;
3234
3235 /* if netpoll wants it, pretend we never saw it */
3236 if (netpoll_rx(skb))
3237 return NET_RX_DROP;
3238
3239 net_timestamp_check(netdev_tstamp_prequeue, skb);
3240
3241 trace_netif_rx(skb);
3242 #ifdef CONFIG_RPS
3243 if (static_key_false(&rps_needed)) {
3244 struct rps_dev_flow voidflow, *rflow = &voidflow;
3245 int cpu;
3246
3247 preempt_disable();
3248 rcu_read_lock();
3249
3250 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3251 if (cpu < 0)
3252 cpu = smp_processor_id();
3253
3254 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3255
3256 rcu_read_unlock();
3257 preempt_enable();
3258 } else
3259 #endif
3260 {
3261 unsigned int qtail;
3262 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3263 put_cpu();
3264 }
3265 return ret;
3266 }
3267 EXPORT_SYMBOL(netif_rx);
3268
3269 int netif_rx_ni(struct sk_buff *skb)
3270 {
3271 int err;
3272
3273 preempt_disable();
3274 err = netif_rx(skb);
3275 if (local_softirq_pending())
3276 do_softirq();
3277 preempt_enable();
3278
3279 return err;
3280 }
3281 EXPORT_SYMBOL(netif_rx_ni);
3282
3283 static void net_tx_action(struct softirq_action *h)
3284 {
3285 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3286
3287 if (sd->completion_queue) {
3288 struct sk_buff *clist;
3289
3290 local_irq_disable();
3291 clist = sd->completion_queue;
3292 sd->completion_queue = NULL;
3293 local_irq_enable();
3294
3295 while (clist) {
3296 struct sk_buff *skb = clist;
3297 clist = clist->next;
3298
3299 WARN_ON(atomic_read(&skb->users));
3300 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3301 trace_consume_skb(skb);
3302 else
3303 trace_kfree_skb(skb, net_tx_action);
3304 __kfree_skb(skb);
3305 }
3306 }
3307
3308 if (sd->output_queue) {
3309 struct Qdisc *head;
3310
3311 local_irq_disable();
3312 head = sd->output_queue;
3313 sd->output_queue = NULL;
3314 sd->output_queue_tailp = &sd->output_queue;
3315 local_irq_enable();
3316
3317 while (head) {
3318 struct Qdisc *q = head;
3319 spinlock_t *root_lock;
3320
3321 head = head->next_sched;
3322
3323 root_lock = qdisc_lock(q);
3324 if (spin_trylock(root_lock)) {
3325 smp_mb__before_clear_bit();
3326 clear_bit(__QDISC_STATE_SCHED,
3327 &q->state);
3328 qdisc_run(q);
3329 spin_unlock(root_lock);
3330 } else {
3331 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3332 &q->state)) {
3333 __netif_reschedule(q);
3334 } else {
3335 smp_mb__before_clear_bit();
3336 clear_bit(__QDISC_STATE_SCHED,
3337 &q->state);
3338 }
3339 }
3340 }
3341 }
3342 }
3343
3344 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3345 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3346 /* This hook is defined here for ATM LANE */
3347 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3348 unsigned char *addr) __read_mostly;
3349 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3350 #endif
3351
3352 #ifdef CONFIG_NET_CLS_ACT
3353 /* TODO: Maybe we should just force sch_ingress to be compiled in
3354 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3355 * a compare and 2 stores extra right now if we dont have it on
3356 * but have CONFIG_NET_CLS_ACT
3357 * NOTE: This doesn't stop any functionality; if you dont have
3358 * the ingress scheduler, you just can't add policies on ingress.
3359 *
3360 */
3361 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3362 {
3363 struct net_device *dev = skb->dev;
3364 u32 ttl = G_TC_RTTL(skb->tc_verd);
3365 int result = TC_ACT_OK;
3366 struct Qdisc *q;
3367
3368 if (unlikely(MAX_RED_LOOP < ttl++)) {
3369 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3370 skb->skb_iif, dev->ifindex);
3371 return TC_ACT_SHOT;
3372 }
3373
3374 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3375 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3376
3377 q = rxq->qdisc;
3378 if (q != &noop_qdisc) {
3379 spin_lock(qdisc_lock(q));
3380 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3381 result = qdisc_enqueue_root(skb, q);
3382 spin_unlock(qdisc_lock(q));
3383 }
3384
3385 return result;
3386 }
3387
3388 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3389 struct packet_type **pt_prev,
3390 int *ret, struct net_device *orig_dev)
3391 {
3392 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3393
3394 if (!rxq || rxq->qdisc == &noop_qdisc)
3395 goto out;
3396
3397 if (*pt_prev) {
3398 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3399 *pt_prev = NULL;
3400 }
3401
3402 switch (ing_filter(skb, rxq)) {
3403 case TC_ACT_SHOT:
3404 case TC_ACT_STOLEN:
3405 kfree_skb(skb);
3406 return NULL;
3407 }
3408
3409 out:
3410 skb->tc_verd = 0;
3411 return skb;
3412 }
3413 #endif
3414
3415 /**
3416 * netdev_rx_handler_register - register receive handler
3417 * @dev: device to register a handler for
3418 * @rx_handler: receive handler to register
3419 * @rx_handler_data: data pointer that is used by rx handler
3420 *
3421 * Register a receive hander for a device. This handler will then be
3422 * called from __netif_receive_skb. A negative errno code is returned
3423 * on a failure.
3424 *
3425 * The caller must hold the rtnl_mutex.
3426 *
3427 * For a general description of rx_handler, see enum rx_handler_result.
3428 */
3429 int netdev_rx_handler_register(struct net_device *dev,
3430 rx_handler_func_t *rx_handler,
3431 void *rx_handler_data)
3432 {
3433 ASSERT_RTNL();
3434
3435 if (dev->rx_handler)
3436 return -EBUSY;
3437
3438 /* Note: rx_handler_data must be set before rx_handler */
3439 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3440 rcu_assign_pointer(dev->rx_handler, rx_handler);
3441
3442 return 0;
3443 }
3444 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3445
3446 /**
3447 * netdev_rx_handler_unregister - unregister receive handler
3448 * @dev: device to unregister a handler from
3449 *
3450 * Unregister a receive handler from a device.
3451 *
3452 * The caller must hold the rtnl_mutex.
3453 */
3454 void netdev_rx_handler_unregister(struct net_device *dev)
3455 {
3456
3457 ASSERT_RTNL();
3458 RCU_INIT_POINTER(dev->rx_handler, NULL);
3459 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3460 * section has a guarantee to see a non NULL rx_handler_data
3461 * as well.
3462 */
3463 synchronize_net();
3464 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3465 }
3466 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3467
3468 /*
3469 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3470 * the special handling of PFMEMALLOC skbs.
3471 */
3472 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3473 {
3474 switch (skb->protocol) {
3475 case __constant_htons(ETH_P_ARP):
3476 case __constant_htons(ETH_P_IP):
3477 case __constant_htons(ETH_P_IPV6):
3478 case __constant_htons(ETH_P_8021Q):
3479 case __constant_htons(ETH_P_8021AD):
3480 return true;
3481 default:
3482 return false;
3483 }
3484 }
3485
3486 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3487 {
3488 struct packet_type *ptype, *pt_prev;
3489 rx_handler_func_t *rx_handler;
3490 struct net_device *orig_dev;
3491 struct net_device *null_or_dev;
3492 bool deliver_exact = false;
3493 int ret = NET_RX_DROP;
3494 __be16 type;
3495
3496 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3497
3498 trace_netif_receive_skb(skb);
3499
3500 /* if we've gotten here through NAPI, check netpoll */
3501 if (netpoll_receive_skb(skb))
3502 goto out;
3503
3504 orig_dev = skb->dev;
3505
3506 skb_reset_network_header(skb);
3507 if (!skb_transport_header_was_set(skb))
3508 skb_reset_transport_header(skb);
3509 skb_reset_mac_len(skb);
3510
3511 pt_prev = NULL;
3512
3513 rcu_read_lock();
3514
3515 another_round:
3516 skb->skb_iif = skb->dev->ifindex;
3517
3518 __this_cpu_inc(softnet_data.processed);
3519
3520 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3521 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3522 skb = vlan_untag(skb);
3523 if (unlikely(!skb))
3524 goto unlock;
3525 }
3526
3527 #ifdef CONFIG_NET_CLS_ACT
3528 if (skb->tc_verd & TC_NCLS) {
3529 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3530 goto ncls;
3531 }
3532 #endif
3533
3534 if (pfmemalloc)
3535 goto skip_taps;
3536
3537 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3538 if (!ptype->dev || ptype->dev == skb->dev) {
3539 if (pt_prev)
3540 ret = deliver_skb(skb, pt_prev, orig_dev);
3541 pt_prev = ptype;
3542 }
3543 }
3544
3545 skip_taps:
3546 #ifdef CONFIG_NET_CLS_ACT
3547 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3548 if (!skb)
3549 goto unlock;
3550 ncls:
3551 #endif
3552
3553 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3554 goto drop;
3555
3556 if (vlan_tx_tag_present(skb)) {
3557 if (pt_prev) {
3558 ret = deliver_skb(skb, pt_prev, orig_dev);
3559 pt_prev = NULL;
3560 }
3561 if (vlan_do_receive(&skb))
3562 goto another_round;
3563 else if (unlikely(!skb))
3564 goto unlock;
3565 }
3566
3567 rx_handler = rcu_dereference(skb->dev->rx_handler);
3568 if (rx_handler) {
3569 if (pt_prev) {
3570 ret = deliver_skb(skb, pt_prev, orig_dev);
3571 pt_prev = NULL;
3572 }
3573 switch (rx_handler(&skb)) {
3574 case RX_HANDLER_CONSUMED:
3575 ret = NET_RX_SUCCESS;
3576 goto unlock;
3577 case RX_HANDLER_ANOTHER:
3578 goto another_round;
3579 case RX_HANDLER_EXACT:
3580 deliver_exact = true;
3581 case RX_HANDLER_PASS:
3582 break;
3583 default:
3584 BUG();
3585 }
3586 }
3587
3588 if (unlikely(vlan_tx_tag_present(skb))) {
3589 if (vlan_tx_tag_get_id(skb))
3590 skb->pkt_type = PACKET_OTHERHOST;
3591 /* Note: we might in the future use prio bits
3592 * and set skb->priority like in vlan_do_receive()
3593 * For the time being, just ignore Priority Code Point
3594 */
3595 skb->vlan_tci = 0;
3596 }
3597
3598 /* deliver only exact match when indicated */
3599 null_or_dev = deliver_exact ? skb->dev : NULL;
3600
3601 type = skb->protocol;
3602 list_for_each_entry_rcu(ptype,
3603 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3604 if (ptype->type == type &&
3605 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3606 ptype->dev == orig_dev)) {
3607 if (pt_prev)
3608 ret = deliver_skb(skb, pt_prev, orig_dev);
3609 pt_prev = ptype;
3610 }
3611 }
3612
3613 if (pt_prev) {
3614 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3615 goto drop;
3616 else
3617 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3618 } else {
3619 drop:
3620 atomic_long_inc(&skb->dev->rx_dropped);
3621 kfree_skb(skb);
3622 /* Jamal, now you will not able to escape explaining
3623 * me how you were going to use this. :-)
3624 */
3625 ret = NET_RX_DROP;
3626 }
3627
3628 unlock:
3629 rcu_read_unlock();
3630 out:
3631 return ret;
3632 }
3633
3634 static int __netif_receive_skb(struct sk_buff *skb)
3635 {
3636 int ret;
3637
3638 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3639 unsigned long pflags = current->flags;
3640
3641 /*
3642 * PFMEMALLOC skbs are special, they should
3643 * - be delivered to SOCK_MEMALLOC sockets only
3644 * - stay away from userspace
3645 * - have bounded memory usage
3646 *
3647 * Use PF_MEMALLOC as this saves us from propagating the allocation
3648 * context down to all allocation sites.
3649 */
3650 current->flags |= PF_MEMALLOC;
3651 ret = __netif_receive_skb_core(skb, true);
3652 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3653 } else
3654 ret = __netif_receive_skb_core(skb, false);
3655
3656 return ret;
3657 }
3658
3659 /**
3660 * netif_receive_skb - process receive buffer from network
3661 * @skb: buffer to process
3662 *
3663 * netif_receive_skb() is the main receive data processing function.
3664 * It always succeeds. The buffer may be dropped during processing
3665 * for congestion control or by the protocol layers.
3666 *
3667 * This function may only be called from softirq context and interrupts
3668 * should be enabled.
3669 *
3670 * Return values (usually ignored):
3671 * NET_RX_SUCCESS: no congestion
3672 * NET_RX_DROP: packet was dropped
3673 */
3674 int netif_receive_skb(struct sk_buff *skb)
3675 {
3676 net_timestamp_check(netdev_tstamp_prequeue, skb);
3677
3678 if (skb_defer_rx_timestamp(skb))
3679 return NET_RX_SUCCESS;
3680
3681 #ifdef CONFIG_RPS
3682 if (static_key_false(&rps_needed)) {
3683 struct rps_dev_flow voidflow, *rflow = &voidflow;
3684 int cpu, ret;
3685
3686 rcu_read_lock();
3687
3688 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3689
3690 if (cpu >= 0) {
3691 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3692 rcu_read_unlock();
3693 return ret;
3694 }
3695 rcu_read_unlock();
3696 }
3697 #endif
3698 return __netif_receive_skb(skb);
3699 }
3700 EXPORT_SYMBOL(netif_receive_skb);
3701
3702 /* Network device is going away, flush any packets still pending
3703 * Called with irqs disabled.
3704 */
3705 static void flush_backlog(void *arg)
3706 {
3707 struct net_device *dev = arg;
3708 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3709 struct sk_buff *skb, *tmp;
3710
3711 rps_lock(sd);
3712 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3713 if (skb->dev == dev) {
3714 __skb_unlink(skb, &sd->input_pkt_queue);
3715 kfree_skb(skb);
3716 input_queue_head_incr(sd);
3717 }
3718 }
3719 rps_unlock(sd);
3720
3721 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3722 if (skb->dev == dev) {
3723 __skb_unlink(skb, &sd->process_queue);
3724 kfree_skb(skb);
3725 input_queue_head_incr(sd);
3726 }
3727 }
3728 }
3729
3730 static int napi_gro_complete(struct sk_buff *skb)
3731 {
3732 struct packet_offload *ptype;
3733 __be16 type = skb->protocol;
3734 struct list_head *head = &offload_base;
3735 int err = -ENOENT;
3736
3737 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3738
3739 if (NAPI_GRO_CB(skb)->count == 1) {
3740 skb_shinfo(skb)->gso_size = 0;
3741 goto out;
3742 }
3743
3744 rcu_read_lock();
3745 list_for_each_entry_rcu(ptype, head, list) {
3746 if (ptype->type != type || !ptype->callbacks.gro_complete)
3747 continue;
3748
3749 err = ptype->callbacks.gro_complete(skb, 0);
3750 break;
3751 }
3752 rcu_read_unlock();
3753
3754 if (err) {
3755 WARN_ON(&ptype->list == head);
3756 kfree_skb(skb);
3757 return NET_RX_SUCCESS;
3758 }
3759
3760 out:
3761 return netif_receive_skb(skb);
3762 }
3763
3764 /* napi->gro_list contains packets ordered by age.
3765 * youngest packets at the head of it.
3766 * Complete skbs in reverse order to reduce latencies.
3767 */
3768 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3769 {
3770 struct sk_buff *skb, *prev = NULL;
3771
3772 /* scan list and build reverse chain */
3773 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3774 skb->prev = prev;
3775 prev = skb;
3776 }
3777
3778 for (skb = prev; skb; skb = prev) {
3779 skb->next = NULL;
3780
3781 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3782 return;
3783
3784 prev = skb->prev;
3785 napi_gro_complete(skb);
3786 napi->gro_count--;
3787 }
3788
3789 napi->gro_list = NULL;
3790 }
3791 EXPORT_SYMBOL(napi_gro_flush);
3792
3793 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3794 {
3795 struct sk_buff *p;
3796 unsigned int maclen = skb->dev->hard_header_len;
3797
3798 for (p = napi->gro_list; p; p = p->next) {
3799 unsigned long diffs;
3800
3801 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3802 diffs |= p->vlan_tci ^ skb->vlan_tci;
3803 if (maclen == ETH_HLEN)
3804 diffs |= compare_ether_header(skb_mac_header(p),
3805 skb_gro_mac_header(skb));
3806 else if (!diffs)
3807 diffs = memcmp(skb_mac_header(p),
3808 skb_gro_mac_header(skb),
3809 maclen);
3810 NAPI_GRO_CB(p)->same_flow = !diffs;
3811 NAPI_GRO_CB(p)->flush = 0;
3812 }
3813 }
3814
3815 static void skb_gro_reset_offset(struct sk_buff *skb)
3816 {
3817 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3818 const skb_frag_t *frag0 = &pinfo->frags[0];
3819
3820 NAPI_GRO_CB(skb)->data_offset = 0;
3821 NAPI_GRO_CB(skb)->frag0 = NULL;
3822 NAPI_GRO_CB(skb)->frag0_len = 0;
3823
3824 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3825 pinfo->nr_frags &&
3826 !PageHighMem(skb_frag_page(frag0))) {
3827 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3828 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3829 }
3830 }
3831
3832 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3833 {
3834 struct sk_buff **pp = NULL;
3835 struct packet_offload *ptype;
3836 __be16 type = skb->protocol;
3837 struct list_head *head = &offload_base;
3838 int same_flow;
3839 enum gro_result ret;
3840
3841 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3842 goto normal;
3843
3844 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3845 goto normal;
3846
3847 skb_gro_reset_offset(skb);
3848 gro_list_prepare(napi, skb);
3849 NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
3850
3851 rcu_read_lock();
3852 list_for_each_entry_rcu(ptype, head, list) {
3853 if (ptype->type != type || !ptype->callbacks.gro_receive)
3854 continue;
3855
3856 skb_set_network_header(skb, skb_gro_offset(skb));
3857 skb_reset_mac_len(skb);
3858 NAPI_GRO_CB(skb)->same_flow = 0;
3859 NAPI_GRO_CB(skb)->flush = 0;
3860 NAPI_GRO_CB(skb)->free = 0;
3861
3862 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3863 break;
3864 }
3865 rcu_read_unlock();
3866
3867 if (&ptype->list == head)
3868 goto normal;
3869
3870 same_flow = NAPI_GRO_CB(skb)->same_flow;
3871 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3872
3873 if (pp) {
3874 struct sk_buff *nskb = *pp;
3875
3876 *pp = nskb->next;
3877 nskb->next = NULL;
3878 napi_gro_complete(nskb);
3879 napi->gro_count--;
3880 }
3881
3882 if (same_flow)
3883 goto ok;
3884
3885 if (NAPI_GRO_CB(skb)->flush)
3886 goto normal;
3887
3888 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
3889 struct sk_buff *nskb = napi->gro_list;
3890
3891 /* locate the end of the list to select the 'oldest' flow */
3892 while (nskb->next) {
3893 pp = &nskb->next;
3894 nskb = *pp;
3895 }
3896 *pp = NULL;
3897 nskb->next = NULL;
3898 napi_gro_complete(nskb);
3899 } else {
3900 napi->gro_count++;
3901 }
3902 NAPI_GRO_CB(skb)->count = 1;
3903 NAPI_GRO_CB(skb)->age = jiffies;
3904 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3905 skb->next = napi->gro_list;
3906 napi->gro_list = skb;
3907 ret = GRO_HELD;
3908
3909 pull:
3910 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3911 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3912
3913 BUG_ON(skb->end - skb->tail < grow);
3914
3915 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3916
3917 skb->tail += grow;
3918 skb->data_len -= grow;
3919
3920 skb_shinfo(skb)->frags[0].page_offset += grow;
3921 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3922
3923 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3924 skb_frag_unref(skb, 0);
3925 memmove(skb_shinfo(skb)->frags,
3926 skb_shinfo(skb)->frags + 1,
3927 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3928 }
3929 }
3930
3931 ok:
3932 return ret;
3933
3934 normal:
3935 ret = GRO_NORMAL;
3936 goto pull;
3937 }
3938
3939 struct packet_offload *gro_find_receive_by_type(__be16 type)
3940 {
3941 struct list_head *offload_head = &offload_base;
3942 struct packet_offload *ptype;
3943
3944 list_for_each_entry_rcu(ptype, offload_head, list) {
3945 if (ptype->type != type || !ptype->callbacks.gro_receive)
3946 continue;
3947 return ptype;
3948 }
3949 return NULL;
3950 }
3951
3952 struct packet_offload *gro_find_complete_by_type(__be16 type)
3953 {
3954 struct list_head *offload_head = &offload_base;
3955 struct packet_offload *ptype;
3956
3957 list_for_each_entry_rcu(ptype, offload_head, list) {
3958 if (ptype->type != type || !ptype->callbacks.gro_complete)
3959 continue;
3960 return ptype;
3961 }
3962 return NULL;
3963 }
3964
3965 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3966 {
3967 switch (ret) {
3968 case GRO_NORMAL:
3969 if (netif_receive_skb(skb))
3970 ret = GRO_DROP;
3971 break;
3972
3973 case GRO_DROP:
3974 kfree_skb(skb);
3975 break;
3976
3977 case GRO_MERGED_FREE:
3978 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3979 kmem_cache_free(skbuff_head_cache, skb);
3980 else
3981 __kfree_skb(skb);
3982 break;
3983
3984 case GRO_HELD:
3985 case GRO_MERGED:
3986 break;
3987 }
3988
3989 return ret;
3990 }
3991
3992 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3993 {
3994 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3995 }
3996 EXPORT_SYMBOL(napi_gro_receive);
3997
3998 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3999 {
4000 __skb_pull(skb, skb_headlen(skb));
4001 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4002 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4003 skb->vlan_tci = 0;
4004 skb->dev = napi->dev;
4005 skb->skb_iif = 0;
4006
4007 napi->skb = skb;
4008 }
4009
4010 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4011 {
4012 struct sk_buff *skb = napi->skb;
4013
4014 if (!skb) {
4015 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4016 napi->skb = skb;
4017 }
4018 return skb;
4019 }
4020 EXPORT_SYMBOL(napi_get_frags);
4021
4022 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
4023 gro_result_t ret)
4024 {
4025 switch (ret) {
4026 case GRO_NORMAL:
4027 if (netif_receive_skb(skb))
4028 ret = GRO_DROP;
4029 break;
4030
4031 case GRO_DROP:
4032 case GRO_MERGED_FREE:
4033 napi_reuse_skb(napi, skb);
4034 break;
4035
4036 case GRO_HELD:
4037 case GRO_MERGED:
4038 break;
4039 }
4040
4041 return ret;
4042 }
4043
4044 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4045 {
4046 struct sk_buff *skb = napi->skb;
4047
4048 napi->skb = NULL;
4049
4050 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) {
4051 napi_reuse_skb(napi, skb);
4052 return NULL;
4053 }
4054 skb->protocol = eth_type_trans(skb, skb->dev);
4055
4056 return skb;
4057 }
4058
4059 gro_result_t napi_gro_frags(struct napi_struct *napi)
4060 {
4061 struct sk_buff *skb = napi_frags_skb(napi);
4062
4063 if (!skb)
4064 return GRO_DROP;
4065
4066 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4067 }
4068 EXPORT_SYMBOL(napi_gro_frags);
4069
4070 /*
4071 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4072 * Note: called with local irq disabled, but exits with local irq enabled.
4073 */
4074 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4075 {
4076 #ifdef CONFIG_RPS
4077 struct softnet_data *remsd = sd->rps_ipi_list;
4078
4079 if (remsd) {
4080 sd->rps_ipi_list = NULL;
4081
4082 local_irq_enable();
4083
4084 /* Send pending IPI's to kick RPS processing on remote cpus. */
4085 while (remsd) {
4086 struct softnet_data *next = remsd->rps_ipi_next;
4087
4088 if (cpu_online(remsd->cpu))
4089 __smp_call_function_single(remsd->cpu,
4090 &remsd->csd, 0);
4091 remsd = next;
4092 }
4093 } else
4094 #endif
4095 local_irq_enable();
4096 }
4097
4098 static int process_backlog(struct napi_struct *napi, int quota)
4099 {
4100 int work = 0;
4101 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4102
4103 #ifdef CONFIG_RPS
4104 /* Check if we have pending ipi, its better to send them now,
4105 * not waiting net_rx_action() end.
4106 */
4107 if (sd->rps_ipi_list) {
4108 local_irq_disable();
4109 net_rps_action_and_irq_enable(sd);
4110 }
4111 #endif
4112 napi->weight = weight_p;
4113 local_irq_disable();
4114 while (work < quota) {
4115 struct sk_buff *skb;
4116 unsigned int qlen;
4117
4118 while ((skb = __skb_dequeue(&sd->process_queue))) {
4119 local_irq_enable();
4120 __netif_receive_skb(skb);
4121 local_irq_disable();
4122 input_queue_head_incr(sd);
4123 if (++work >= quota) {
4124 local_irq_enable();
4125 return work;
4126 }
4127 }
4128
4129 rps_lock(sd);
4130 qlen = skb_queue_len(&sd->input_pkt_queue);
4131 if (qlen)
4132 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4133 &sd->process_queue);
4134
4135 if (qlen < quota - work) {
4136 /*
4137 * Inline a custom version of __napi_complete().
4138 * only current cpu owns and manipulates this napi,
4139 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4140 * we can use a plain write instead of clear_bit(),
4141 * and we dont need an smp_mb() memory barrier.
4142 */
4143 list_del(&napi->poll_list);
4144 napi->state = 0;
4145
4146 quota = work + qlen;
4147 }
4148 rps_unlock(sd);
4149 }
4150 local_irq_enable();
4151
4152 return work;
4153 }
4154
4155 /**
4156 * __napi_schedule - schedule for receive
4157 * @n: entry to schedule
4158 *
4159 * The entry's receive function will be scheduled to run
4160 */
4161 void __napi_schedule(struct napi_struct *n)
4162 {
4163 unsigned long flags;
4164
4165 local_irq_save(flags);
4166 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4167 local_irq_restore(flags);
4168 }
4169 EXPORT_SYMBOL(__napi_schedule);
4170
4171 void __napi_complete(struct napi_struct *n)
4172 {
4173 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4174 BUG_ON(n->gro_list);
4175
4176 list_del(&n->poll_list);
4177 smp_mb__before_clear_bit();
4178 clear_bit(NAPI_STATE_SCHED, &n->state);
4179 }
4180 EXPORT_SYMBOL(__napi_complete);
4181
4182 void napi_complete(struct napi_struct *n)
4183 {
4184 unsigned long flags;
4185
4186 /*
4187 * don't let napi dequeue from the cpu poll list
4188 * just in case its running on a different cpu
4189 */
4190 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4191 return;
4192
4193 napi_gro_flush(n, false);
4194 local_irq_save(flags);
4195 __napi_complete(n);
4196 local_irq_restore(flags);
4197 }
4198 EXPORT_SYMBOL(napi_complete);
4199
4200 /* must be called under rcu_read_lock(), as we dont take a reference */
4201 struct napi_struct *napi_by_id(unsigned int napi_id)
4202 {
4203 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4204 struct napi_struct *napi;
4205
4206 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4207 if (napi->napi_id == napi_id)
4208 return napi;
4209
4210 return NULL;
4211 }
4212 EXPORT_SYMBOL_GPL(napi_by_id);
4213
4214 void napi_hash_add(struct napi_struct *napi)
4215 {
4216 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4217
4218 spin_lock(&napi_hash_lock);
4219
4220 /* 0 is not a valid id, we also skip an id that is taken
4221 * we expect both events to be extremely rare
4222 */
4223 napi->napi_id = 0;
4224 while (!napi->napi_id) {
4225 napi->napi_id = ++napi_gen_id;
4226 if (napi_by_id(napi->napi_id))
4227 napi->napi_id = 0;
4228 }
4229
4230 hlist_add_head_rcu(&napi->napi_hash_node,
4231 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4232
4233 spin_unlock(&napi_hash_lock);
4234 }
4235 }
4236 EXPORT_SYMBOL_GPL(napi_hash_add);
4237
4238 /* Warning : caller is responsible to make sure rcu grace period
4239 * is respected before freeing memory containing @napi
4240 */
4241 void napi_hash_del(struct napi_struct *napi)
4242 {
4243 spin_lock(&napi_hash_lock);
4244
4245 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4246 hlist_del_rcu(&napi->napi_hash_node);
4247
4248 spin_unlock(&napi_hash_lock);
4249 }
4250 EXPORT_SYMBOL_GPL(napi_hash_del);
4251
4252 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4253 int (*poll)(struct napi_struct *, int), int weight)
4254 {
4255 INIT_LIST_HEAD(&napi->poll_list);
4256 napi->gro_count = 0;
4257 napi->gro_list = NULL;
4258 napi->skb = NULL;
4259 napi->poll = poll;
4260 if (weight > NAPI_POLL_WEIGHT)
4261 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4262 weight, dev->name);
4263 napi->weight = weight;
4264 list_add(&napi->dev_list, &dev->napi_list);
4265 napi->dev = dev;
4266 #ifdef CONFIG_NETPOLL
4267 spin_lock_init(&napi->poll_lock);
4268 napi->poll_owner = -1;
4269 #endif
4270 set_bit(NAPI_STATE_SCHED, &napi->state);
4271 }
4272 EXPORT_SYMBOL(netif_napi_add);
4273
4274 void netif_napi_del(struct napi_struct *napi)
4275 {
4276 list_del_init(&napi->dev_list);
4277 napi_free_frags(napi);
4278
4279 kfree_skb_list(napi->gro_list);
4280 napi->gro_list = NULL;
4281 napi->gro_count = 0;
4282 }
4283 EXPORT_SYMBOL(netif_napi_del);
4284
4285 static void net_rx_action(struct softirq_action *h)
4286 {
4287 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4288 unsigned long time_limit = jiffies + 2;
4289 int budget = netdev_budget;
4290 void *have;
4291
4292 local_irq_disable();
4293
4294 while (!list_empty(&sd->poll_list)) {
4295 struct napi_struct *n;
4296 int work, weight;
4297
4298 /* If softirq window is exhuasted then punt.
4299 * Allow this to run for 2 jiffies since which will allow
4300 * an average latency of 1.5/HZ.
4301 */
4302 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4303 goto softnet_break;
4304
4305 local_irq_enable();
4306
4307 /* Even though interrupts have been re-enabled, this
4308 * access is safe because interrupts can only add new
4309 * entries to the tail of this list, and only ->poll()
4310 * calls can remove this head entry from the list.
4311 */
4312 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4313
4314 have = netpoll_poll_lock(n);
4315
4316 weight = n->weight;
4317
4318 /* This NAPI_STATE_SCHED test is for avoiding a race
4319 * with netpoll's poll_napi(). Only the entity which
4320 * obtains the lock and sees NAPI_STATE_SCHED set will
4321 * actually make the ->poll() call. Therefore we avoid
4322 * accidentally calling ->poll() when NAPI is not scheduled.
4323 */
4324 work = 0;
4325 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4326 work = n->poll(n, weight);
4327 trace_napi_poll(n);
4328 }
4329
4330 WARN_ON_ONCE(work > weight);
4331
4332 budget -= work;
4333
4334 local_irq_disable();
4335
4336 /* Drivers must not modify the NAPI state if they
4337 * consume the entire weight. In such cases this code
4338 * still "owns" the NAPI instance and therefore can
4339 * move the instance around on the list at-will.
4340 */
4341 if (unlikely(work == weight)) {
4342 if (unlikely(napi_disable_pending(n))) {
4343 local_irq_enable();
4344 napi_complete(n);
4345 local_irq_disable();
4346 } else {
4347 if (n->gro_list) {
4348 /* flush too old packets
4349 * If HZ < 1000, flush all packets.
4350 */
4351 local_irq_enable();
4352 napi_gro_flush(n, HZ >= 1000);
4353 local_irq_disable();
4354 }
4355 list_move_tail(&n->poll_list, &sd->poll_list);
4356 }
4357 }
4358
4359 netpoll_poll_unlock(have);
4360 }
4361 out:
4362 net_rps_action_and_irq_enable(sd);
4363
4364 #ifdef CONFIG_NET_DMA
4365 /*
4366 * There may not be any more sk_buffs coming right now, so push
4367 * any pending DMA copies to hardware
4368 */
4369 dma_issue_pending_all();
4370 #endif
4371
4372 return;
4373
4374 softnet_break:
4375 sd->time_squeeze++;
4376 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4377 goto out;
4378 }
4379
4380 struct netdev_adjacent {
4381 struct net_device *dev;
4382
4383 /* upper master flag, there can only be one master device per list */
4384 bool master;
4385
4386 /* counter for the number of times this device was added to us */
4387 u16 ref_nr;
4388
4389 /* private field for the users */
4390 void *private;
4391
4392 struct list_head list;
4393 struct rcu_head rcu;
4394 };
4395
4396 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4397 struct net_device *adj_dev,
4398 struct list_head *adj_list)
4399 {
4400 struct netdev_adjacent *adj;
4401
4402 list_for_each_entry(adj, adj_list, list) {
4403 if (adj->dev == adj_dev)
4404 return adj;
4405 }
4406 return NULL;
4407 }
4408
4409 /**
4410 * netdev_has_upper_dev - Check if device is linked to an upper device
4411 * @dev: device
4412 * @upper_dev: upper device to check
4413 *
4414 * Find out if a device is linked to specified upper device and return true
4415 * in case it is. Note that this checks only immediate upper device,
4416 * not through a complete stack of devices. The caller must hold the RTNL lock.
4417 */
4418 bool netdev_has_upper_dev(struct net_device *dev,
4419 struct net_device *upper_dev)
4420 {
4421 ASSERT_RTNL();
4422
4423 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4424 }
4425 EXPORT_SYMBOL(netdev_has_upper_dev);
4426
4427 /**
4428 * netdev_has_any_upper_dev - Check if device is linked to some device
4429 * @dev: device
4430 *
4431 * Find out if a device is linked to an upper device and return true in case
4432 * it is. The caller must hold the RTNL lock.
4433 */
4434 static bool netdev_has_any_upper_dev(struct net_device *dev)
4435 {
4436 ASSERT_RTNL();
4437
4438 return !list_empty(&dev->all_adj_list.upper);
4439 }
4440
4441 /**
4442 * netdev_master_upper_dev_get - Get master upper device
4443 * @dev: device
4444 *
4445 * Find a master upper device and return pointer to it or NULL in case
4446 * it's not there. The caller must hold the RTNL lock.
4447 */
4448 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4449 {
4450 struct netdev_adjacent *upper;
4451
4452 ASSERT_RTNL();
4453
4454 if (list_empty(&dev->adj_list.upper))
4455 return NULL;
4456
4457 upper = list_first_entry(&dev->adj_list.upper,
4458 struct netdev_adjacent, list);
4459 if (likely(upper->master))
4460 return upper->dev;
4461 return NULL;
4462 }
4463 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4464
4465 void *netdev_adjacent_get_private(struct list_head *adj_list)
4466 {
4467 struct netdev_adjacent *adj;
4468
4469 adj = list_entry(adj_list, struct netdev_adjacent, list);
4470
4471 return adj->private;
4472 }
4473 EXPORT_SYMBOL(netdev_adjacent_get_private);
4474
4475 /**
4476 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4477 * @dev: device
4478 * @iter: list_head ** of the current position
4479 *
4480 * Gets the next device from the dev's upper list, starting from iter
4481 * position. The caller must hold RCU read lock.
4482 */
4483 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4484 struct list_head **iter)
4485 {
4486 struct netdev_adjacent *upper;
4487
4488 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4489
4490 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4491
4492 if (&upper->list == &dev->all_adj_list.upper)
4493 return NULL;
4494
4495 *iter = &upper->list;
4496
4497 return upper->dev;
4498 }
4499 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4500
4501 /**
4502 * netdev_lower_get_next_private - Get the next ->private from the
4503 * lower neighbour list
4504 * @dev: device
4505 * @iter: list_head ** of the current position
4506 *
4507 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4508 * list, starting from iter position. The caller must hold either hold the
4509 * RTNL lock or its own locking that guarantees that the neighbour lower
4510 * list will remain unchainged.
4511 */
4512 void *netdev_lower_get_next_private(struct net_device *dev,
4513 struct list_head **iter)
4514 {
4515 struct netdev_adjacent *lower;
4516
4517 lower = list_entry(*iter, struct netdev_adjacent, list);
4518
4519 if (&lower->list == &dev->adj_list.lower)
4520 return NULL;
4521
4522 if (iter)
4523 *iter = lower->list.next;
4524
4525 return lower->private;
4526 }
4527 EXPORT_SYMBOL(netdev_lower_get_next_private);
4528
4529 /**
4530 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4531 * lower neighbour list, RCU
4532 * variant
4533 * @dev: device
4534 * @iter: list_head ** of the current position
4535 *
4536 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4537 * list, starting from iter position. The caller must hold RCU read lock.
4538 */
4539 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4540 struct list_head **iter)
4541 {
4542 struct netdev_adjacent *lower;
4543
4544 WARN_ON_ONCE(!rcu_read_lock_held());
4545
4546 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4547
4548 if (&lower->list == &dev->adj_list.lower)
4549 return NULL;
4550
4551 if (iter)
4552 *iter = &lower->list;
4553
4554 return lower->private;
4555 }
4556 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4557
4558 /**
4559 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4560 * lower neighbour list, RCU
4561 * variant
4562 * @dev: device
4563 *
4564 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4565 * list. The caller must hold RCU read lock.
4566 */
4567 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4568 {
4569 struct netdev_adjacent *lower;
4570
4571 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4572 struct netdev_adjacent, list);
4573 if (lower)
4574 return lower->private;
4575 return NULL;
4576 }
4577 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4578
4579 /**
4580 * netdev_master_upper_dev_get_rcu - Get master upper device
4581 * @dev: device
4582 *
4583 * Find a master upper device and return pointer to it or NULL in case
4584 * it's not there. The caller must hold the RCU read lock.
4585 */
4586 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4587 {
4588 struct netdev_adjacent *upper;
4589
4590 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4591 struct netdev_adjacent, list);
4592 if (upper && likely(upper->master))
4593 return upper->dev;
4594 return NULL;
4595 }
4596 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4597
4598 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4599 struct net_device *adj_dev,
4600 struct list_head *dev_list,
4601 void *private, bool master)
4602 {
4603 struct netdev_adjacent *adj;
4604 char linkname[IFNAMSIZ+7];
4605 int ret;
4606
4607 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4608
4609 if (adj) {
4610 adj->ref_nr++;
4611 return 0;
4612 }
4613
4614 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4615 if (!adj)
4616 return -ENOMEM;
4617
4618 adj->dev = adj_dev;
4619 adj->master = master;
4620 adj->ref_nr = 1;
4621 adj->private = private;
4622 dev_hold(adj_dev);
4623
4624 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4625 adj_dev->name, dev->name, adj_dev->name);
4626
4627 if (dev_list == &dev->adj_list.lower) {
4628 sprintf(linkname, "lower_%s", adj_dev->name);
4629 ret = sysfs_create_link(&(dev->dev.kobj),
4630 &(adj_dev->dev.kobj), linkname);
4631 if (ret)
4632 goto free_adj;
4633 } else if (dev_list == &dev->adj_list.upper) {
4634 sprintf(linkname, "upper_%s", adj_dev->name);
4635 ret = sysfs_create_link(&(dev->dev.kobj),
4636 &(adj_dev->dev.kobj), linkname);
4637 if (ret)
4638 goto free_adj;
4639 }
4640
4641 /* Ensure that master link is always the first item in list. */
4642 if (master) {
4643 ret = sysfs_create_link(&(dev->dev.kobj),
4644 &(adj_dev->dev.kobj), "master");
4645 if (ret)
4646 goto remove_symlinks;
4647
4648 list_add_rcu(&adj->list, dev_list);
4649 } else {
4650 list_add_tail_rcu(&adj->list, dev_list);
4651 }
4652
4653 return 0;
4654
4655 remove_symlinks:
4656 if (dev_list == &dev->adj_list.lower) {
4657 sprintf(linkname, "lower_%s", adj_dev->name);
4658 sysfs_remove_link(&(dev->dev.kobj), linkname);
4659 } else if (dev_list == &dev->adj_list.upper) {
4660 sprintf(linkname, "upper_%s", adj_dev->name);
4661 sysfs_remove_link(&(dev->dev.kobj), linkname);
4662 }
4663
4664 free_adj:
4665 kfree(adj);
4666 dev_put(adj_dev);
4667
4668 return ret;
4669 }
4670
4671 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4672 struct net_device *adj_dev,
4673 struct list_head *dev_list)
4674 {
4675 struct netdev_adjacent *adj;
4676 char linkname[IFNAMSIZ+7];
4677
4678 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4679
4680 if (!adj) {
4681 pr_err("tried to remove device %s from %s\n",
4682 dev->name, adj_dev->name);
4683 BUG();
4684 }
4685
4686 if (adj->ref_nr > 1) {
4687 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4688 adj->ref_nr-1);
4689 adj->ref_nr--;
4690 return;
4691 }
4692
4693 if (adj->master)
4694 sysfs_remove_link(&(dev->dev.kobj), "master");
4695
4696 if (dev_list == &dev->adj_list.lower) {
4697 sprintf(linkname, "lower_%s", adj_dev->name);
4698 sysfs_remove_link(&(dev->dev.kobj), linkname);
4699 } else if (dev_list == &dev->adj_list.upper) {
4700 sprintf(linkname, "upper_%s", adj_dev->name);
4701 sysfs_remove_link(&(dev->dev.kobj), linkname);
4702 }
4703
4704 list_del_rcu(&adj->list);
4705 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4706 adj_dev->name, dev->name, adj_dev->name);
4707 dev_put(adj_dev);
4708 kfree_rcu(adj, rcu);
4709 }
4710
4711 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4712 struct net_device *upper_dev,
4713 struct list_head *up_list,
4714 struct list_head *down_list,
4715 void *private, bool master)
4716 {
4717 int ret;
4718
4719 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4720 master);
4721 if (ret)
4722 return ret;
4723
4724 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4725 false);
4726 if (ret) {
4727 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4728 return ret;
4729 }
4730
4731 return 0;
4732 }
4733
4734 static int __netdev_adjacent_dev_link(struct net_device *dev,
4735 struct net_device *upper_dev)
4736 {
4737 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4738 &dev->all_adj_list.upper,
4739 &upper_dev->all_adj_list.lower,
4740 NULL, false);
4741 }
4742
4743 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4744 struct net_device *upper_dev,
4745 struct list_head *up_list,
4746 struct list_head *down_list)
4747 {
4748 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4749 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4750 }
4751
4752 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4753 struct net_device *upper_dev)
4754 {
4755 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4756 &dev->all_adj_list.upper,
4757 &upper_dev->all_adj_list.lower);
4758 }
4759
4760 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4761 struct net_device *upper_dev,
4762 void *private, bool master)
4763 {
4764 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4765
4766 if (ret)
4767 return ret;
4768
4769 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4770 &dev->adj_list.upper,
4771 &upper_dev->adj_list.lower,
4772 private, master);
4773 if (ret) {
4774 __netdev_adjacent_dev_unlink(dev, upper_dev);
4775 return ret;
4776 }
4777
4778 return 0;
4779 }
4780
4781 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4782 struct net_device *upper_dev)
4783 {
4784 __netdev_adjacent_dev_unlink(dev, upper_dev);
4785 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4786 &dev->adj_list.upper,
4787 &upper_dev->adj_list.lower);
4788 }
4789
4790 static int __netdev_upper_dev_link(struct net_device *dev,
4791 struct net_device *upper_dev, bool master,
4792 void *private)
4793 {
4794 struct netdev_adjacent *i, *j, *to_i, *to_j;
4795 int ret = 0;
4796
4797 ASSERT_RTNL();
4798
4799 if (dev == upper_dev)
4800 return -EBUSY;
4801
4802 /* To prevent loops, check if dev is not upper device to upper_dev. */
4803 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4804 return -EBUSY;
4805
4806 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4807 return -EEXIST;
4808
4809 if (master && netdev_master_upper_dev_get(dev))
4810 return -EBUSY;
4811
4812 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4813 master);
4814 if (ret)
4815 return ret;
4816
4817 /* Now that we linked these devs, make all the upper_dev's
4818 * all_adj_list.upper visible to every dev's all_adj_list.lower an
4819 * versa, and don't forget the devices itself. All of these
4820 * links are non-neighbours.
4821 */
4822 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4823 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4824 pr_debug("Interlinking %s with %s, non-neighbour\n",
4825 i->dev->name, j->dev->name);
4826 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4827 if (ret)
4828 goto rollback_mesh;
4829 }
4830 }
4831
4832 /* add dev to every upper_dev's upper device */
4833 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4834 pr_debug("linking %s's upper device %s with %s\n",
4835 upper_dev->name, i->dev->name, dev->name);
4836 ret = __netdev_adjacent_dev_link(dev, i->dev);
4837 if (ret)
4838 goto rollback_upper_mesh;
4839 }
4840
4841 /* add upper_dev to every dev's lower device */
4842 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4843 pr_debug("linking %s's lower device %s with %s\n", dev->name,
4844 i->dev->name, upper_dev->name);
4845 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4846 if (ret)
4847 goto rollback_lower_mesh;
4848 }
4849
4850 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4851 return 0;
4852
4853 rollback_lower_mesh:
4854 to_i = i;
4855 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4856 if (i == to_i)
4857 break;
4858 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4859 }
4860
4861 i = NULL;
4862
4863 rollback_upper_mesh:
4864 to_i = i;
4865 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4866 if (i == to_i)
4867 break;
4868 __netdev_adjacent_dev_unlink(dev, i->dev);
4869 }
4870
4871 i = j = NULL;
4872
4873 rollback_mesh:
4874 to_i = i;
4875 to_j = j;
4876 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4877 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4878 if (i == to_i && j == to_j)
4879 break;
4880 __netdev_adjacent_dev_unlink(i->dev, j->dev);
4881 }
4882 if (i == to_i)
4883 break;
4884 }
4885
4886 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4887
4888 return ret;
4889 }
4890
4891 /**
4892 * netdev_upper_dev_link - Add a link to the upper device
4893 * @dev: device
4894 * @upper_dev: new upper device
4895 *
4896 * Adds a link to device which is upper to this one. The caller must hold
4897 * the RTNL lock. On a failure a negative errno code is returned.
4898 * On success the reference counts are adjusted and the function
4899 * returns zero.
4900 */
4901 int netdev_upper_dev_link(struct net_device *dev,
4902 struct net_device *upper_dev)
4903 {
4904 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
4905 }
4906 EXPORT_SYMBOL(netdev_upper_dev_link);
4907
4908 /**
4909 * netdev_master_upper_dev_link - Add a master link to the upper device
4910 * @dev: device
4911 * @upper_dev: new upper device
4912 *
4913 * Adds a link to device which is upper to this one. In this case, only
4914 * one master upper device can be linked, although other non-master devices
4915 * might be linked as well. The caller must hold the RTNL lock.
4916 * On a failure a negative errno code is returned. On success the reference
4917 * counts are adjusted and the function returns zero.
4918 */
4919 int netdev_master_upper_dev_link(struct net_device *dev,
4920 struct net_device *upper_dev)
4921 {
4922 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
4923 }
4924 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4925
4926 int netdev_master_upper_dev_link_private(struct net_device *dev,
4927 struct net_device *upper_dev,
4928 void *private)
4929 {
4930 return __netdev_upper_dev_link(dev, upper_dev, true, private);
4931 }
4932 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
4933
4934 /**
4935 * netdev_upper_dev_unlink - Removes a link to upper device
4936 * @dev: device
4937 * @upper_dev: new upper device
4938 *
4939 * Removes a link to device which is upper to this one. The caller must hold
4940 * the RTNL lock.
4941 */
4942 void netdev_upper_dev_unlink(struct net_device *dev,
4943 struct net_device *upper_dev)
4944 {
4945 struct netdev_adjacent *i, *j;
4946 ASSERT_RTNL();
4947
4948 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4949
4950 /* Here is the tricky part. We must remove all dev's lower
4951 * devices from all upper_dev's upper devices and vice
4952 * versa, to maintain the graph relationship.
4953 */
4954 list_for_each_entry(i, &dev->all_adj_list.lower, list)
4955 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
4956 __netdev_adjacent_dev_unlink(i->dev, j->dev);
4957
4958 /* remove also the devices itself from lower/upper device
4959 * list
4960 */
4961 list_for_each_entry(i, &dev->all_adj_list.lower, list)
4962 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4963
4964 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
4965 __netdev_adjacent_dev_unlink(dev, i->dev);
4966
4967 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4968 }
4969 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4970
4971 void *netdev_lower_dev_get_private(struct net_device *dev,
4972 struct net_device *lower_dev)
4973 {
4974 struct netdev_adjacent *lower;
4975
4976 if (!lower_dev)
4977 return NULL;
4978 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
4979 if (!lower)
4980 return NULL;
4981
4982 return lower->private;
4983 }
4984 EXPORT_SYMBOL(netdev_lower_dev_get_private);
4985
4986 static void dev_change_rx_flags(struct net_device *dev, int flags)
4987 {
4988 const struct net_device_ops *ops = dev->netdev_ops;
4989
4990 if (ops->ndo_change_rx_flags)
4991 ops->ndo_change_rx_flags(dev, flags);
4992 }
4993
4994 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
4995 {
4996 unsigned int old_flags = dev->flags;
4997 kuid_t uid;
4998 kgid_t gid;
4999
5000 ASSERT_RTNL();
5001
5002 dev->flags |= IFF_PROMISC;
5003 dev->promiscuity += inc;
5004 if (dev->promiscuity == 0) {
5005 /*
5006 * Avoid overflow.
5007 * If inc causes overflow, untouch promisc and return error.
5008 */
5009 if (inc < 0)
5010 dev->flags &= ~IFF_PROMISC;
5011 else {
5012 dev->promiscuity -= inc;
5013 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5014 dev->name);
5015 return -EOVERFLOW;
5016 }
5017 }
5018 if (dev->flags != old_flags) {
5019 pr_info("device %s %s promiscuous mode\n",
5020 dev->name,
5021 dev->flags & IFF_PROMISC ? "entered" : "left");
5022 if (audit_enabled) {
5023 current_uid_gid(&uid, &gid);
5024 audit_log(current->audit_context, GFP_ATOMIC,
5025 AUDIT_ANOM_PROMISCUOUS,
5026 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5027 dev->name, (dev->flags & IFF_PROMISC),
5028 (old_flags & IFF_PROMISC),
5029 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5030 from_kuid(&init_user_ns, uid),
5031 from_kgid(&init_user_ns, gid),
5032 audit_get_sessionid(current));
5033 }
5034
5035 dev_change_rx_flags(dev, IFF_PROMISC);
5036 }
5037 if (notify)
5038 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5039 return 0;
5040 }
5041
5042 /**
5043 * dev_set_promiscuity - update promiscuity count on a device
5044 * @dev: device
5045 * @inc: modifier
5046 *
5047 * Add or remove promiscuity from a device. While the count in the device
5048 * remains above zero the interface remains promiscuous. Once it hits zero
5049 * the device reverts back to normal filtering operation. A negative inc
5050 * value is used to drop promiscuity on the device.
5051 * Return 0 if successful or a negative errno code on error.
5052 */
5053 int dev_set_promiscuity(struct net_device *dev, int inc)
5054 {
5055 unsigned int old_flags = dev->flags;
5056 int err;
5057
5058 err = __dev_set_promiscuity(dev, inc, true);
5059 if (err < 0)
5060 return err;
5061 if (dev->flags != old_flags)
5062 dev_set_rx_mode(dev);
5063 return err;
5064 }
5065 EXPORT_SYMBOL(dev_set_promiscuity);
5066
5067 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5068 {
5069 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5070
5071 ASSERT_RTNL();
5072
5073 dev->flags |= IFF_ALLMULTI;
5074 dev->allmulti += inc;
5075 if (dev->allmulti == 0) {
5076 /*
5077 * Avoid overflow.
5078 * If inc causes overflow, untouch allmulti and return error.
5079 */
5080 if (inc < 0)
5081 dev->flags &= ~IFF_ALLMULTI;
5082 else {
5083 dev->allmulti -= inc;
5084 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5085 dev->name);
5086 return -EOVERFLOW;
5087 }
5088 }
5089 if (dev->flags ^ old_flags) {
5090 dev_change_rx_flags(dev, IFF_ALLMULTI);
5091 dev_set_rx_mode(dev);
5092 if (notify)
5093 __dev_notify_flags(dev, old_flags,
5094 dev->gflags ^ old_gflags);
5095 }
5096 return 0;
5097 }
5098
5099 /**
5100 * dev_set_allmulti - update allmulti count on a device
5101 * @dev: device
5102 * @inc: modifier
5103 *
5104 * Add or remove reception of all multicast frames to a device. While the
5105 * count in the device remains above zero the interface remains listening
5106 * to all interfaces. Once it hits zero the device reverts back to normal
5107 * filtering operation. A negative @inc value is used to drop the counter
5108 * when releasing a resource needing all multicasts.
5109 * Return 0 if successful or a negative errno code on error.
5110 */
5111
5112 int dev_set_allmulti(struct net_device *dev, int inc)
5113 {
5114 return __dev_set_allmulti(dev, inc, true);
5115 }
5116 EXPORT_SYMBOL(dev_set_allmulti);
5117
5118 /*
5119 * Upload unicast and multicast address lists to device and
5120 * configure RX filtering. When the device doesn't support unicast
5121 * filtering it is put in promiscuous mode while unicast addresses
5122 * are present.
5123 */
5124 void __dev_set_rx_mode(struct net_device *dev)
5125 {
5126 const struct net_device_ops *ops = dev->netdev_ops;
5127
5128 /* dev_open will call this function so the list will stay sane. */
5129 if (!(dev->flags&IFF_UP))
5130 return;
5131
5132 if (!netif_device_present(dev))
5133 return;
5134
5135 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5136 /* Unicast addresses changes may only happen under the rtnl,
5137 * therefore calling __dev_set_promiscuity here is safe.
5138 */
5139 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5140 __dev_set_promiscuity(dev, 1, false);
5141 dev->uc_promisc = true;
5142 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5143 __dev_set_promiscuity(dev, -1, false);
5144 dev->uc_promisc = false;
5145 }
5146 }
5147
5148 if (ops->ndo_set_rx_mode)
5149 ops->ndo_set_rx_mode(dev);
5150 }
5151
5152 void dev_set_rx_mode(struct net_device *dev)
5153 {
5154 netif_addr_lock_bh(dev);
5155 __dev_set_rx_mode(dev);
5156 netif_addr_unlock_bh(dev);
5157 }
5158
5159 /**
5160 * dev_get_flags - get flags reported to userspace
5161 * @dev: device
5162 *
5163 * Get the combination of flag bits exported through APIs to userspace.
5164 */
5165 unsigned int dev_get_flags(const struct net_device *dev)
5166 {
5167 unsigned int flags;
5168
5169 flags = (dev->flags & ~(IFF_PROMISC |
5170 IFF_ALLMULTI |
5171 IFF_RUNNING |
5172 IFF_LOWER_UP |
5173 IFF_DORMANT)) |
5174 (dev->gflags & (IFF_PROMISC |
5175 IFF_ALLMULTI));
5176
5177 if (netif_running(dev)) {
5178 if (netif_oper_up(dev))
5179 flags |= IFF_RUNNING;
5180 if (netif_carrier_ok(dev))
5181 flags |= IFF_LOWER_UP;
5182 if (netif_dormant(dev))
5183 flags |= IFF_DORMANT;
5184 }
5185
5186 return flags;
5187 }
5188 EXPORT_SYMBOL(dev_get_flags);
5189
5190 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5191 {
5192 unsigned int old_flags = dev->flags;
5193 int ret;
5194
5195 ASSERT_RTNL();
5196
5197 /*
5198 * Set the flags on our device.
5199 */
5200
5201 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5202 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5203 IFF_AUTOMEDIA)) |
5204 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5205 IFF_ALLMULTI));
5206
5207 /*
5208 * Load in the correct multicast list now the flags have changed.
5209 */
5210
5211 if ((old_flags ^ flags) & IFF_MULTICAST)
5212 dev_change_rx_flags(dev, IFF_MULTICAST);
5213
5214 dev_set_rx_mode(dev);
5215
5216 /*
5217 * Have we downed the interface. We handle IFF_UP ourselves
5218 * according to user attempts to set it, rather than blindly
5219 * setting it.
5220 */
5221
5222 ret = 0;
5223 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
5224 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5225
5226 if (!ret)
5227 dev_set_rx_mode(dev);
5228 }
5229
5230 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5231 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5232 unsigned int old_flags = dev->flags;
5233
5234 dev->gflags ^= IFF_PROMISC;
5235
5236 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5237 if (dev->flags != old_flags)
5238 dev_set_rx_mode(dev);
5239 }
5240
5241 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5242 is important. Some (broken) drivers set IFF_PROMISC, when
5243 IFF_ALLMULTI is requested not asking us and not reporting.
5244 */
5245 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5246 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5247
5248 dev->gflags ^= IFF_ALLMULTI;
5249 __dev_set_allmulti(dev, inc, false);
5250 }
5251
5252 return ret;
5253 }
5254
5255 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5256 unsigned int gchanges)
5257 {
5258 unsigned int changes = dev->flags ^ old_flags;
5259
5260 if (gchanges)
5261 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5262
5263 if (changes & IFF_UP) {
5264 if (dev->flags & IFF_UP)
5265 call_netdevice_notifiers(NETDEV_UP, dev);
5266 else
5267 call_netdevice_notifiers(NETDEV_DOWN, dev);
5268 }
5269
5270 if (dev->flags & IFF_UP &&
5271 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5272 struct netdev_notifier_change_info change_info;
5273
5274 change_info.flags_changed = changes;
5275 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5276 &change_info.info);
5277 }
5278 }
5279
5280 /**
5281 * dev_change_flags - change device settings
5282 * @dev: device
5283 * @flags: device state flags
5284 *
5285 * Change settings on device based state flags. The flags are
5286 * in the userspace exported format.
5287 */
5288 int dev_change_flags(struct net_device *dev, unsigned int flags)
5289 {
5290 int ret;
5291 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5292
5293 ret = __dev_change_flags(dev, flags);
5294 if (ret < 0)
5295 return ret;
5296
5297 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5298 __dev_notify_flags(dev, old_flags, changes);
5299 return ret;
5300 }
5301 EXPORT_SYMBOL(dev_change_flags);
5302
5303 /**
5304 * dev_set_mtu - Change maximum transfer unit
5305 * @dev: device
5306 * @new_mtu: new transfer unit
5307 *
5308 * Change the maximum transfer size of the network device.
5309 */
5310 int dev_set_mtu(struct net_device *dev, int new_mtu)
5311 {
5312 const struct net_device_ops *ops = dev->netdev_ops;
5313 int err;
5314
5315 if (new_mtu == dev->mtu)
5316 return 0;
5317
5318 /* MTU must be positive. */
5319 if (new_mtu < 0)
5320 return -EINVAL;
5321
5322 if (!netif_device_present(dev))
5323 return -ENODEV;
5324
5325 err = 0;
5326 if (ops->ndo_change_mtu)
5327 err = ops->ndo_change_mtu(dev, new_mtu);
5328 else
5329 dev->mtu = new_mtu;
5330
5331 if (!err)
5332 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5333 return err;
5334 }
5335 EXPORT_SYMBOL(dev_set_mtu);
5336
5337 /**
5338 * dev_set_group - Change group this device belongs to
5339 * @dev: device
5340 * @new_group: group this device should belong to
5341 */
5342 void dev_set_group(struct net_device *dev, int new_group)
5343 {
5344 dev->group = new_group;
5345 }
5346 EXPORT_SYMBOL(dev_set_group);
5347
5348 /**
5349 * dev_set_mac_address - Change Media Access Control Address
5350 * @dev: device
5351 * @sa: new address
5352 *
5353 * Change the hardware (MAC) address of the device
5354 */
5355 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5356 {
5357 const struct net_device_ops *ops = dev->netdev_ops;
5358 int err;
5359
5360 if (!ops->ndo_set_mac_address)
5361 return -EOPNOTSUPP;
5362 if (sa->sa_family != dev->type)
5363 return -EINVAL;
5364 if (!netif_device_present(dev))
5365 return -ENODEV;
5366 err = ops->ndo_set_mac_address(dev, sa);
5367 if (err)
5368 return err;
5369 dev->addr_assign_type = NET_ADDR_SET;
5370 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5371 add_device_randomness(dev->dev_addr, dev->addr_len);
5372 return 0;
5373 }
5374 EXPORT_SYMBOL(dev_set_mac_address);
5375
5376 /**
5377 * dev_change_carrier - Change device carrier
5378 * @dev: device
5379 * @new_carrier: new value
5380 *
5381 * Change device carrier
5382 */
5383 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5384 {
5385 const struct net_device_ops *ops = dev->netdev_ops;
5386
5387 if (!ops->ndo_change_carrier)
5388 return -EOPNOTSUPP;
5389 if (!netif_device_present(dev))
5390 return -ENODEV;
5391 return ops->ndo_change_carrier(dev, new_carrier);
5392 }
5393 EXPORT_SYMBOL(dev_change_carrier);
5394
5395 /**
5396 * dev_get_phys_port_id - Get device physical port ID
5397 * @dev: device
5398 * @ppid: port ID
5399 *
5400 * Get device physical port ID
5401 */
5402 int dev_get_phys_port_id(struct net_device *dev,
5403 struct netdev_phys_port_id *ppid)
5404 {
5405 const struct net_device_ops *ops = dev->netdev_ops;
5406
5407 if (!ops->ndo_get_phys_port_id)
5408 return -EOPNOTSUPP;
5409 return ops->ndo_get_phys_port_id(dev, ppid);
5410 }
5411 EXPORT_SYMBOL(dev_get_phys_port_id);
5412
5413 /**
5414 * dev_new_index - allocate an ifindex
5415 * @net: the applicable net namespace
5416 *
5417 * Returns a suitable unique value for a new device interface
5418 * number. The caller must hold the rtnl semaphore or the
5419 * dev_base_lock to be sure it remains unique.
5420 */
5421 static int dev_new_index(struct net *net)
5422 {
5423 int ifindex = net->ifindex;
5424 for (;;) {
5425 if (++ifindex <= 0)
5426 ifindex = 1;
5427 if (!__dev_get_by_index(net, ifindex))
5428 return net->ifindex = ifindex;
5429 }
5430 }
5431
5432 /* Delayed registration/unregisteration */
5433 static LIST_HEAD(net_todo_list);
5434 static DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5435
5436 static void net_set_todo(struct net_device *dev)
5437 {
5438 list_add_tail(&dev->todo_list, &net_todo_list);
5439 dev_net(dev)->dev_unreg_count++;
5440 }
5441
5442 static void rollback_registered_many(struct list_head *head)
5443 {
5444 struct net_device *dev, *tmp;
5445 LIST_HEAD(close_head);
5446
5447 BUG_ON(dev_boot_phase);
5448 ASSERT_RTNL();
5449
5450 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5451 /* Some devices call without registering
5452 * for initialization unwind. Remove those
5453 * devices and proceed with the remaining.
5454 */
5455 if (dev->reg_state == NETREG_UNINITIALIZED) {
5456 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5457 dev->name, dev);
5458
5459 WARN_ON(1);
5460 list_del(&dev->unreg_list);
5461 continue;
5462 }
5463 dev->dismantle = true;
5464 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5465 }
5466
5467 /* If device is running, close it first. */
5468 list_for_each_entry(dev, head, unreg_list)
5469 list_add_tail(&dev->close_list, &close_head);
5470 dev_close_many(&close_head);
5471
5472 list_for_each_entry(dev, head, unreg_list) {
5473 /* And unlink it from device chain. */
5474 unlist_netdevice(dev);
5475
5476 dev->reg_state = NETREG_UNREGISTERING;
5477 }
5478
5479 synchronize_net();
5480
5481 list_for_each_entry(dev, head, unreg_list) {
5482 /* Shutdown queueing discipline. */
5483 dev_shutdown(dev);
5484
5485
5486 /* Notify protocols, that we are about to destroy
5487 this device. They should clean all the things.
5488 */
5489 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5490
5491 if (!dev->rtnl_link_ops ||
5492 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5493 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5494
5495 /*
5496 * Flush the unicast and multicast chains
5497 */
5498 dev_uc_flush(dev);
5499 dev_mc_flush(dev);
5500
5501 if (dev->netdev_ops->ndo_uninit)
5502 dev->netdev_ops->ndo_uninit(dev);
5503
5504 /* Notifier chain MUST detach us all upper devices. */
5505 WARN_ON(netdev_has_any_upper_dev(dev));
5506
5507 /* Remove entries from kobject tree */
5508 netdev_unregister_kobject(dev);
5509 #ifdef CONFIG_XPS
5510 /* Remove XPS queueing entries */
5511 netif_reset_xps_queues_gt(dev, 0);
5512 #endif
5513 }
5514
5515 synchronize_net();
5516
5517 list_for_each_entry(dev, head, unreg_list)
5518 dev_put(dev);
5519 }
5520
5521 static void rollback_registered(struct net_device *dev)
5522 {
5523 LIST_HEAD(single);
5524
5525 list_add(&dev->unreg_list, &single);
5526 rollback_registered_many(&single);
5527 list_del(&single);
5528 }
5529
5530 static netdev_features_t netdev_fix_features(struct net_device *dev,
5531 netdev_features_t features)
5532 {
5533 /* Fix illegal checksum combinations */
5534 if ((features & NETIF_F_HW_CSUM) &&
5535 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5536 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5537 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5538 }
5539
5540 /* TSO requires that SG is present as well. */
5541 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5542 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5543 features &= ~NETIF_F_ALL_TSO;
5544 }
5545
5546 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5547 !(features & NETIF_F_IP_CSUM)) {
5548 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5549 features &= ~NETIF_F_TSO;
5550 features &= ~NETIF_F_TSO_ECN;
5551 }
5552
5553 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5554 !(features & NETIF_F_IPV6_CSUM)) {
5555 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5556 features &= ~NETIF_F_TSO6;
5557 }
5558
5559 /* TSO ECN requires that TSO is present as well. */
5560 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5561 features &= ~NETIF_F_TSO_ECN;
5562
5563 /* Software GSO depends on SG. */
5564 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5565 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5566 features &= ~NETIF_F_GSO;
5567 }
5568
5569 /* UFO needs SG and checksumming */
5570 if (features & NETIF_F_UFO) {
5571 /* maybe split UFO into V4 and V6? */
5572 if (!((features & NETIF_F_GEN_CSUM) ||
5573 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5574 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5575 netdev_dbg(dev,
5576 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5577 features &= ~NETIF_F_UFO;
5578 }
5579
5580 if (!(features & NETIF_F_SG)) {
5581 netdev_dbg(dev,
5582 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5583 features &= ~NETIF_F_UFO;
5584 }
5585 }
5586
5587 return features;
5588 }
5589
5590 int __netdev_update_features(struct net_device *dev)
5591 {
5592 netdev_features_t features;
5593 int err = 0;
5594
5595 ASSERT_RTNL();
5596
5597 features = netdev_get_wanted_features(dev);
5598
5599 if (dev->netdev_ops->ndo_fix_features)
5600 features = dev->netdev_ops->ndo_fix_features(dev, features);
5601
5602 /* driver might be less strict about feature dependencies */
5603 features = netdev_fix_features(dev, features);
5604
5605 if (dev->features == features)
5606 return 0;
5607
5608 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5609 &dev->features, &features);
5610
5611 if (dev->netdev_ops->ndo_set_features)
5612 err = dev->netdev_ops->ndo_set_features(dev, features);
5613
5614 if (unlikely(err < 0)) {
5615 netdev_err(dev,
5616 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5617 err, &features, &dev->features);
5618 return -1;
5619 }
5620
5621 if (!err)
5622 dev->features = features;
5623
5624 return 1;
5625 }
5626
5627 /**
5628 * netdev_update_features - recalculate device features
5629 * @dev: the device to check
5630 *
5631 * Recalculate dev->features set and send notifications if it
5632 * has changed. Should be called after driver or hardware dependent
5633 * conditions might have changed that influence the features.
5634 */
5635 void netdev_update_features(struct net_device *dev)
5636 {
5637 if (__netdev_update_features(dev))
5638 netdev_features_change(dev);
5639 }
5640 EXPORT_SYMBOL(netdev_update_features);
5641
5642 /**
5643 * netdev_change_features - recalculate device features
5644 * @dev: the device to check
5645 *
5646 * Recalculate dev->features set and send notifications even
5647 * if they have not changed. Should be called instead of
5648 * netdev_update_features() if also dev->vlan_features might
5649 * have changed to allow the changes to be propagated to stacked
5650 * VLAN devices.
5651 */
5652 void netdev_change_features(struct net_device *dev)
5653 {
5654 __netdev_update_features(dev);
5655 netdev_features_change(dev);
5656 }
5657 EXPORT_SYMBOL(netdev_change_features);
5658
5659 /**
5660 * netif_stacked_transfer_operstate - transfer operstate
5661 * @rootdev: the root or lower level device to transfer state from
5662 * @dev: the device to transfer operstate to
5663 *
5664 * Transfer operational state from root to device. This is normally
5665 * called when a stacking relationship exists between the root
5666 * device and the device(a leaf device).
5667 */
5668 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5669 struct net_device *dev)
5670 {
5671 if (rootdev->operstate == IF_OPER_DORMANT)
5672 netif_dormant_on(dev);
5673 else
5674 netif_dormant_off(dev);
5675
5676 if (netif_carrier_ok(rootdev)) {
5677 if (!netif_carrier_ok(dev))
5678 netif_carrier_on(dev);
5679 } else {
5680 if (netif_carrier_ok(dev))
5681 netif_carrier_off(dev);
5682 }
5683 }
5684 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5685
5686 #ifdef CONFIG_RPS
5687 static int netif_alloc_rx_queues(struct net_device *dev)
5688 {
5689 unsigned int i, count = dev->num_rx_queues;
5690 struct netdev_rx_queue *rx;
5691
5692 BUG_ON(count < 1);
5693
5694 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5695 if (!rx)
5696 return -ENOMEM;
5697
5698 dev->_rx = rx;
5699
5700 for (i = 0; i < count; i++)
5701 rx[i].dev = dev;
5702 return 0;
5703 }
5704 #endif
5705
5706 static void netdev_init_one_queue(struct net_device *dev,
5707 struct netdev_queue *queue, void *_unused)
5708 {
5709 /* Initialize queue lock */
5710 spin_lock_init(&queue->_xmit_lock);
5711 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5712 queue->xmit_lock_owner = -1;
5713 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5714 queue->dev = dev;
5715 #ifdef CONFIG_BQL
5716 dql_init(&queue->dql, HZ);
5717 #endif
5718 }
5719
5720 static void netif_free_tx_queues(struct net_device *dev)
5721 {
5722 if (is_vmalloc_addr(dev->_tx))
5723 vfree(dev->_tx);
5724 else
5725 kfree(dev->_tx);
5726 }
5727
5728 static int netif_alloc_netdev_queues(struct net_device *dev)
5729 {
5730 unsigned int count = dev->num_tx_queues;
5731 struct netdev_queue *tx;
5732 size_t sz = count * sizeof(*tx);
5733
5734 BUG_ON(count < 1 || count > 0xffff);
5735
5736 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5737 if (!tx) {
5738 tx = vzalloc(sz);
5739 if (!tx)
5740 return -ENOMEM;
5741 }
5742 dev->_tx = tx;
5743
5744 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5745 spin_lock_init(&dev->tx_global_lock);
5746
5747 return 0;
5748 }
5749
5750 /**
5751 * register_netdevice - register a network device
5752 * @dev: device to register
5753 *
5754 * Take a completed network device structure and add it to the kernel
5755 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5756 * chain. 0 is returned on success. A negative errno code is returned
5757 * on a failure to set up the device, or if the name is a duplicate.
5758 *
5759 * Callers must hold the rtnl semaphore. You may want
5760 * register_netdev() instead of this.
5761 *
5762 * BUGS:
5763 * The locking appears insufficient to guarantee two parallel registers
5764 * will not get the same name.
5765 */
5766
5767 int register_netdevice(struct net_device *dev)
5768 {
5769 int ret;
5770 struct net *net = dev_net(dev);
5771
5772 BUG_ON(dev_boot_phase);
5773 ASSERT_RTNL();
5774
5775 might_sleep();
5776
5777 /* When net_device's are persistent, this will be fatal. */
5778 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5779 BUG_ON(!net);
5780
5781 spin_lock_init(&dev->addr_list_lock);
5782 netdev_set_addr_lockdep_class(dev);
5783
5784 dev->iflink = -1;
5785
5786 ret = dev_get_valid_name(net, dev, dev->name);
5787 if (ret < 0)
5788 goto out;
5789
5790 /* Init, if this function is available */
5791 if (dev->netdev_ops->ndo_init) {
5792 ret = dev->netdev_ops->ndo_init(dev);
5793 if (ret) {
5794 if (ret > 0)
5795 ret = -EIO;
5796 goto out;
5797 }
5798 }
5799
5800 if (((dev->hw_features | dev->features) &
5801 NETIF_F_HW_VLAN_CTAG_FILTER) &&
5802 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5803 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5804 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5805 ret = -EINVAL;
5806 goto err_uninit;
5807 }
5808
5809 ret = -EBUSY;
5810 if (!dev->ifindex)
5811 dev->ifindex = dev_new_index(net);
5812 else if (__dev_get_by_index(net, dev->ifindex))
5813 goto err_uninit;
5814
5815 if (dev->iflink == -1)
5816 dev->iflink = dev->ifindex;
5817
5818 /* Transfer changeable features to wanted_features and enable
5819 * software offloads (GSO and GRO).
5820 */
5821 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5822 dev->features |= NETIF_F_SOFT_FEATURES;
5823 dev->wanted_features = dev->features & dev->hw_features;
5824
5825 if (!(dev->flags & IFF_LOOPBACK)) {
5826 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5827 }
5828
5829 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5830 */
5831 dev->vlan_features |= NETIF_F_HIGHDMA;
5832
5833 /* Make NETIF_F_SG inheritable to tunnel devices.
5834 */
5835 dev->hw_enc_features |= NETIF_F_SG;
5836
5837 /* Make NETIF_F_SG inheritable to MPLS.
5838 */
5839 dev->mpls_features |= NETIF_F_SG;
5840
5841 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5842 ret = notifier_to_errno(ret);
5843 if (ret)
5844 goto err_uninit;
5845
5846 ret = netdev_register_kobject(dev);
5847 if (ret)
5848 goto err_uninit;
5849 dev->reg_state = NETREG_REGISTERED;
5850
5851 __netdev_update_features(dev);
5852
5853 /*
5854 * Default initial state at registry is that the
5855 * device is present.
5856 */
5857
5858 set_bit(__LINK_STATE_PRESENT, &dev->state);
5859
5860 linkwatch_init_dev(dev);
5861
5862 dev_init_scheduler(dev);
5863 dev_hold(dev);
5864 list_netdevice(dev);
5865 add_device_randomness(dev->dev_addr, dev->addr_len);
5866
5867 /* If the device has permanent device address, driver should
5868 * set dev_addr and also addr_assign_type should be set to
5869 * NET_ADDR_PERM (default value).
5870 */
5871 if (dev->addr_assign_type == NET_ADDR_PERM)
5872 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5873
5874 /* Notify protocols, that a new device appeared. */
5875 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5876 ret = notifier_to_errno(ret);
5877 if (ret) {
5878 rollback_registered(dev);
5879 dev->reg_state = NETREG_UNREGISTERED;
5880 }
5881 /*
5882 * Prevent userspace races by waiting until the network
5883 * device is fully setup before sending notifications.
5884 */
5885 if (!dev->rtnl_link_ops ||
5886 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5887 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
5888
5889 out:
5890 return ret;
5891
5892 err_uninit:
5893 if (dev->netdev_ops->ndo_uninit)
5894 dev->netdev_ops->ndo_uninit(dev);
5895 goto out;
5896 }
5897 EXPORT_SYMBOL(register_netdevice);
5898
5899 /**
5900 * init_dummy_netdev - init a dummy network device for NAPI
5901 * @dev: device to init
5902 *
5903 * This takes a network device structure and initialize the minimum
5904 * amount of fields so it can be used to schedule NAPI polls without
5905 * registering a full blown interface. This is to be used by drivers
5906 * that need to tie several hardware interfaces to a single NAPI
5907 * poll scheduler due to HW limitations.
5908 */
5909 int init_dummy_netdev(struct net_device *dev)
5910 {
5911 /* Clear everything. Note we don't initialize spinlocks
5912 * are they aren't supposed to be taken by any of the
5913 * NAPI code and this dummy netdev is supposed to be
5914 * only ever used for NAPI polls
5915 */
5916 memset(dev, 0, sizeof(struct net_device));
5917
5918 /* make sure we BUG if trying to hit standard
5919 * register/unregister code path
5920 */
5921 dev->reg_state = NETREG_DUMMY;
5922
5923 /* NAPI wants this */
5924 INIT_LIST_HEAD(&dev->napi_list);
5925
5926 /* a dummy interface is started by default */
5927 set_bit(__LINK_STATE_PRESENT, &dev->state);
5928 set_bit(__LINK_STATE_START, &dev->state);
5929
5930 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5931 * because users of this 'device' dont need to change
5932 * its refcount.
5933 */
5934
5935 return 0;
5936 }
5937 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5938
5939
5940 /**
5941 * register_netdev - register a network device
5942 * @dev: device to register
5943 *
5944 * Take a completed network device structure and add it to the kernel
5945 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5946 * chain. 0 is returned on success. A negative errno code is returned
5947 * on a failure to set up the device, or if the name is a duplicate.
5948 *
5949 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5950 * and expands the device name if you passed a format string to
5951 * alloc_netdev.
5952 */
5953 int register_netdev(struct net_device *dev)
5954 {
5955 int err;
5956
5957 rtnl_lock();
5958 err = register_netdevice(dev);
5959 rtnl_unlock();
5960 return err;
5961 }
5962 EXPORT_SYMBOL(register_netdev);
5963
5964 int netdev_refcnt_read(const struct net_device *dev)
5965 {
5966 int i, refcnt = 0;
5967
5968 for_each_possible_cpu(i)
5969 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5970 return refcnt;
5971 }
5972 EXPORT_SYMBOL(netdev_refcnt_read);
5973
5974 /**
5975 * netdev_wait_allrefs - wait until all references are gone.
5976 * @dev: target net_device
5977 *
5978 * This is called when unregistering network devices.
5979 *
5980 * Any protocol or device that holds a reference should register
5981 * for netdevice notification, and cleanup and put back the
5982 * reference if they receive an UNREGISTER event.
5983 * We can get stuck here if buggy protocols don't correctly
5984 * call dev_put.
5985 */
5986 static void netdev_wait_allrefs(struct net_device *dev)
5987 {
5988 unsigned long rebroadcast_time, warning_time;
5989 int refcnt;
5990
5991 linkwatch_forget_dev(dev);
5992
5993 rebroadcast_time = warning_time = jiffies;
5994 refcnt = netdev_refcnt_read(dev);
5995
5996 while (refcnt != 0) {
5997 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5998 rtnl_lock();
5999
6000 /* Rebroadcast unregister notification */
6001 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6002
6003 __rtnl_unlock();
6004 rcu_barrier();
6005 rtnl_lock();
6006
6007 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6008 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6009 &dev->state)) {
6010 /* We must not have linkwatch events
6011 * pending on unregister. If this
6012 * happens, we simply run the queue
6013 * unscheduled, resulting in a noop
6014 * for this device.
6015 */
6016 linkwatch_run_queue();
6017 }
6018
6019 __rtnl_unlock();
6020
6021 rebroadcast_time = jiffies;
6022 }
6023
6024 msleep(250);
6025
6026 refcnt = netdev_refcnt_read(dev);
6027
6028 if (time_after(jiffies, warning_time + 10 * HZ)) {
6029 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6030 dev->name, refcnt);
6031 warning_time = jiffies;
6032 }
6033 }
6034 }
6035
6036 /* The sequence is:
6037 *
6038 * rtnl_lock();
6039 * ...
6040 * register_netdevice(x1);
6041 * register_netdevice(x2);
6042 * ...
6043 * unregister_netdevice(y1);
6044 * unregister_netdevice(y2);
6045 * ...
6046 * rtnl_unlock();
6047 * free_netdev(y1);
6048 * free_netdev(y2);
6049 *
6050 * We are invoked by rtnl_unlock().
6051 * This allows us to deal with problems:
6052 * 1) We can delete sysfs objects which invoke hotplug
6053 * without deadlocking with linkwatch via keventd.
6054 * 2) Since we run with the RTNL semaphore not held, we can sleep
6055 * safely in order to wait for the netdev refcnt to drop to zero.
6056 *
6057 * We must not return until all unregister events added during
6058 * the interval the lock was held have been completed.
6059 */
6060 void netdev_run_todo(void)
6061 {
6062 struct list_head list;
6063
6064 /* Snapshot list, allow later requests */
6065 list_replace_init(&net_todo_list, &list);
6066
6067 __rtnl_unlock();
6068
6069
6070 /* Wait for rcu callbacks to finish before next phase */
6071 if (!list_empty(&list))
6072 rcu_barrier();
6073
6074 while (!list_empty(&list)) {
6075 struct net_device *dev
6076 = list_first_entry(&list, struct net_device, todo_list);
6077 list_del(&dev->todo_list);
6078
6079 rtnl_lock();
6080 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6081 __rtnl_unlock();
6082
6083 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6084 pr_err("network todo '%s' but state %d\n",
6085 dev->name, dev->reg_state);
6086 dump_stack();
6087 continue;
6088 }
6089
6090 dev->reg_state = NETREG_UNREGISTERED;
6091
6092 on_each_cpu(flush_backlog, dev, 1);
6093
6094 netdev_wait_allrefs(dev);
6095
6096 /* paranoia */
6097 BUG_ON(netdev_refcnt_read(dev));
6098 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6099 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6100 WARN_ON(dev->dn_ptr);
6101
6102 if (dev->destructor)
6103 dev->destructor(dev);
6104
6105 /* Report a network device has been unregistered */
6106 rtnl_lock();
6107 dev_net(dev)->dev_unreg_count--;
6108 __rtnl_unlock();
6109 wake_up(&netdev_unregistering_wq);
6110
6111 /* Free network device */
6112 kobject_put(&dev->dev.kobj);
6113 }
6114 }
6115
6116 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6117 * fields in the same order, with only the type differing.
6118 */
6119 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6120 const struct net_device_stats *netdev_stats)
6121 {
6122 #if BITS_PER_LONG == 64
6123 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6124 memcpy(stats64, netdev_stats, sizeof(*stats64));
6125 #else
6126 size_t i, n = sizeof(*stats64) / sizeof(u64);
6127 const unsigned long *src = (const unsigned long *)netdev_stats;
6128 u64 *dst = (u64 *)stats64;
6129
6130 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6131 sizeof(*stats64) / sizeof(u64));
6132 for (i = 0; i < n; i++)
6133 dst[i] = src[i];
6134 #endif
6135 }
6136 EXPORT_SYMBOL(netdev_stats_to_stats64);
6137
6138 /**
6139 * dev_get_stats - get network device statistics
6140 * @dev: device to get statistics from
6141 * @storage: place to store stats
6142 *
6143 * Get network statistics from device. Return @storage.
6144 * The device driver may provide its own method by setting
6145 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6146 * otherwise the internal statistics structure is used.
6147 */
6148 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6149 struct rtnl_link_stats64 *storage)
6150 {
6151 const struct net_device_ops *ops = dev->netdev_ops;
6152
6153 if (ops->ndo_get_stats64) {
6154 memset(storage, 0, sizeof(*storage));
6155 ops->ndo_get_stats64(dev, storage);
6156 } else if (ops->ndo_get_stats) {
6157 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6158 } else {
6159 netdev_stats_to_stats64(storage, &dev->stats);
6160 }
6161 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6162 return storage;
6163 }
6164 EXPORT_SYMBOL(dev_get_stats);
6165
6166 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6167 {
6168 struct netdev_queue *queue = dev_ingress_queue(dev);
6169
6170 #ifdef CONFIG_NET_CLS_ACT
6171 if (queue)
6172 return queue;
6173 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6174 if (!queue)
6175 return NULL;
6176 netdev_init_one_queue(dev, queue, NULL);
6177 queue->qdisc = &noop_qdisc;
6178 queue->qdisc_sleeping = &noop_qdisc;
6179 rcu_assign_pointer(dev->ingress_queue, queue);
6180 #endif
6181 return queue;
6182 }
6183
6184 static const struct ethtool_ops default_ethtool_ops;
6185
6186 void netdev_set_default_ethtool_ops(struct net_device *dev,
6187 const struct ethtool_ops *ops)
6188 {
6189 if (dev->ethtool_ops == &default_ethtool_ops)
6190 dev->ethtool_ops = ops;
6191 }
6192 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6193
6194 void netdev_freemem(struct net_device *dev)
6195 {
6196 char *addr = (char *)dev - dev->padded;
6197
6198 if (is_vmalloc_addr(addr))
6199 vfree(addr);
6200 else
6201 kfree(addr);
6202 }
6203
6204 /**
6205 * alloc_netdev_mqs - allocate network device
6206 * @sizeof_priv: size of private data to allocate space for
6207 * @name: device name format string
6208 * @setup: callback to initialize device
6209 * @txqs: the number of TX subqueues to allocate
6210 * @rxqs: the number of RX subqueues to allocate
6211 *
6212 * Allocates a struct net_device with private data area for driver use
6213 * and performs basic initialization. Also allocates subquue structs
6214 * for each queue on the device.
6215 */
6216 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6217 void (*setup)(struct net_device *),
6218 unsigned int txqs, unsigned int rxqs)
6219 {
6220 struct net_device *dev;
6221 size_t alloc_size;
6222 struct net_device *p;
6223
6224 BUG_ON(strlen(name) >= sizeof(dev->name));
6225
6226 if (txqs < 1) {
6227 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6228 return NULL;
6229 }
6230
6231 #ifdef CONFIG_RPS
6232 if (rxqs < 1) {
6233 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6234 return NULL;
6235 }
6236 #endif
6237
6238 alloc_size = sizeof(struct net_device);
6239 if (sizeof_priv) {
6240 /* ensure 32-byte alignment of private area */
6241 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6242 alloc_size += sizeof_priv;
6243 }
6244 /* ensure 32-byte alignment of whole construct */
6245 alloc_size += NETDEV_ALIGN - 1;
6246
6247 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6248 if (!p)
6249 p = vzalloc(alloc_size);
6250 if (!p)
6251 return NULL;
6252
6253 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6254 dev->padded = (char *)dev - (char *)p;
6255
6256 dev->pcpu_refcnt = alloc_percpu(int);
6257 if (!dev->pcpu_refcnt)
6258 goto free_dev;
6259
6260 if (dev_addr_init(dev))
6261 goto free_pcpu;
6262
6263 dev_mc_init(dev);
6264 dev_uc_init(dev);
6265
6266 dev_net_set(dev, &init_net);
6267
6268 dev->gso_max_size = GSO_MAX_SIZE;
6269 dev->gso_max_segs = GSO_MAX_SEGS;
6270
6271 INIT_LIST_HEAD(&dev->napi_list);
6272 INIT_LIST_HEAD(&dev->unreg_list);
6273 INIT_LIST_HEAD(&dev->close_list);
6274 INIT_LIST_HEAD(&dev->link_watch_list);
6275 INIT_LIST_HEAD(&dev->adj_list.upper);
6276 INIT_LIST_HEAD(&dev->adj_list.lower);
6277 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6278 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6279 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6280 setup(dev);
6281
6282 dev->num_tx_queues = txqs;
6283 dev->real_num_tx_queues = txqs;
6284 if (netif_alloc_netdev_queues(dev))
6285 goto free_all;
6286
6287 #ifdef CONFIG_RPS
6288 dev->num_rx_queues = rxqs;
6289 dev->real_num_rx_queues = rxqs;
6290 if (netif_alloc_rx_queues(dev))
6291 goto free_all;
6292 #endif
6293
6294 strcpy(dev->name, name);
6295 dev->group = INIT_NETDEV_GROUP;
6296 if (!dev->ethtool_ops)
6297 dev->ethtool_ops = &default_ethtool_ops;
6298 return dev;
6299
6300 free_all:
6301 free_netdev(dev);
6302 return NULL;
6303
6304 free_pcpu:
6305 free_percpu(dev->pcpu_refcnt);
6306 netif_free_tx_queues(dev);
6307 #ifdef CONFIG_RPS
6308 kfree(dev->_rx);
6309 #endif
6310
6311 free_dev:
6312 netdev_freemem(dev);
6313 return NULL;
6314 }
6315 EXPORT_SYMBOL(alloc_netdev_mqs);
6316
6317 /**
6318 * free_netdev - free network device
6319 * @dev: device
6320 *
6321 * This function does the last stage of destroying an allocated device
6322 * interface. The reference to the device object is released.
6323 * If this is the last reference then it will be freed.
6324 */
6325 void free_netdev(struct net_device *dev)
6326 {
6327 struct napi_struct *p, *n;
6328
6329 release_net(dev_net(dev));
6330
6331 netif_free_tx_queues(dev);
6332 #ifdef CONFIG_RPS
6333 kfree(dev->_rx);
6334 #endif
6335
6336 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6337
6338 /* Flush device addresses */
6339 dev_addr_flush(dev);
6340
6341 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6342 netif_napi_del(p);
6343
6344 free_percpu(dev->pcpu_refcnt);
6345 dev->pcpu_refcnt = NULL;
6346
6347 /* Compatibility with error handling in drivers */
6348 if (dev->reg_state == NETREG_UNINITIALIZED) {
6349 netdev_freemem(dev);
6350 return;
6351 }
6352
6353 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6354 dev->reg_state = NETREG_RELEASED;
6355
6356 /* will free via device release */
6357 put_device(&dev->dev);
6358 }
6359 EXPORT_SYMBOL(free_netdev);
6360
6361 /**
6362 * synchronize_net - Synchronize with packet receive processing
6363 *
6364 * Wait for packets currently being received to be done.
6365 * Does not block later packets from starting.
6366 */
6367 void synchronize_net(void)
6368 {
6369 might_sleep();
6370 if (rtnl_is_locked())
6371 synchronize_rcu_expedited();
6372 else
6373 synchronize_rcu();
6374 }
6375 EXPORT_SYMBOL(synchronize_net);
6376
6377 /**
6378 * unregister_netdevice_queue - remove device from the kernel
6379 * @dev: device
6380 * @head: list
6381 *
6382 * This function shuts down a device interface and removes it
6383 * from the kernel tables.
6384 * If head not NULL, device is queued to be unregistered later.
6385 *
6386 * Callers must hold the rtnl semaphore. You may want
6387 * unregister_netdev() instead of this.
6388 */
6389
6390 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6391 {
6392 ASSERT_RTNL();
6393
6394 if (head) {
6395 list_move_tail(&dev->unreg_list, head);
6396 } else {
6397 rollback_registered(dev);
6398 /* Finish processing unregister after unlock */
6399 net_set_todo(dev);
6400 }
6401 }
6402 EXPORT_SYMBOL(unregister_netdevice_queue);
6403
6404 /**
6405 * unregister_netdevice_many - unregister many devices
6406 * @head: list of devices
6407 */
6408 void unregister_netdevice_many(struct list_head *head)
6409 {
6410 struct net_device *dev;
6411
6412 if (!list_empty(head)) {
6413 rollback_registered_many(head);
6414 list_for_each_entry(dev, head, unreg_list)
6415 net_set_todo(dev);
6416 }
6417 }
6418 EXPORT_SYMBOL(unregister_netdevice_many);
6419
6420 /**
6421 * unregister_netdev - remove device from the kernel
6422 * @dev: device
6423 *
6424 * This function shuts down a device interface and removes it
6425 * from the kernel tables.
6426 *
6427 * This is just a wrapper for unregister_netdevice that takes
6428 * the rtnl semaphore. In general you want to use this and not
6429 * unregister_netdevice.
6430 */
6431 void unregister_netdev(struct net_device *dev)
6432 {
6433 rtnl_lock();
6434 unregister_netdevice(dev);
6435 rtnl_unlock();
6436 }
6437 EXPORT_SYMBOL(unregister_netdev);
6438
6439 /**
6440 * dev_change_net_namespace - move device to different nethost namespace
6441 * @dev: device
6442 * @net: network namespace
6443 * @pat: If not NULL name pattern to try if the current device name
6444 * is already taken in the destination network namespace.
6445 *
6446 * This function shuts down a device interface and moves it
6447 * to a new network namespace. On success 0 is returned, on
6448 * a failure a netagive errno code is returned.
6449 *
6450 * Callers must hold the rtnl semaphore.
6451 */
6452
6453 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6454 {
6455 int err;
6456
6457 ASSERT_RTNL();
6458
6459 /* Don't allow namespace local devices to be moved. */
6460 err = -EINVAL;
6461 if (dev->features & NETIF_F_NETNS_LOCAL)
6462 goto out;
6463
6464 /* Ensure the device has been registrered */
6465 if (dev->reg_state != NETREG_REGISTERED)
6466 goto out;
6467
6468 /* Get out if there is nothing todo */
6469 err = 0;
6470 if (net_eq(dev_net(dev), net))
6471 goto out;
6472
6473 /* Pick the destination device name, and ensure
6474 * we can use it in the destination network namespace.
6475 */
6476 err = -EEXIST;
6477 if (__dev_get_by_name(net, dev->name)) {
6478 /* We get here if we can't use the current device name */
6479 if (!pat)
6480 goto out;
6481 if (dev_get_valid_name(net, dev, pat) < 0)
6482 goto out;
6483 }
6484
6485 /*
6486 * And now a mini version of register_netdevice unregister_netdevice.
6487 */
6488
6489 /* If device is running close it first. */
6490 dev_close(dev);
6491
6492 /* And unlink it from device chain */
6493 err = -ENODEV;
6494 unlist_netdevice(dev);
6495
6496 synchronize_net();
6497
6498 /* Shutdown queueing discipline. */
6499 dev_shutdown(dev);
6500
6501 /* Notify protocols, that we are about to destroy
6502 this device. They should clean all the things.
6503
6504 Note that dev->reg_state stays at NETREG_REGISTERED.
6505 This is wanted because this way 8021q and macvlan know
6506 the device is just moving and can keep their slaves up.
6507 */
6508 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6509 rcu_barrier();
6510 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6511 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6512
6513 /*
6514 * Flush the unicast and multicast chains
6515 */
6516 dev_uc_flush(dev);
6517 dev_mc_flush(dev);
6518
6519 /* Send a netdev-removed uevent to the old namespace */
6520 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6521
6522 /* Actually switch the network namespace */
6523 dev_net_set(dev, net);
6524
6525 /* If there is an ifindex conflict assign a new one */
6526 if (__dev_get_by_index(net, dev->ifindex)) {
6527 int iflink = (dev->iflink == dev->ifindex);
6528 dev->ifindex = dev_new_index(net);
6529 if (iflink)
6530 dev->iflink = dev->ifindex;
6531 }
6532
6533 /* Send a netdev-add uevent to the new namespace */
6534 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6535
6536 /* Fixup kobjects */
6537 err = device_rename(&dev->dev, dev->name);
6538 WARN_ON(err);
6539
6540 /* Add the device back in the hashes */
6541 list_netdevice(dev);
6542
6543 /* Notify protocols, that a new device appeared. */
6544 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6545
6546 /*
6547 * Prevent userspace races by waiting until the network
6548 * device is fully setup before sending notifications.
6549 */
6550 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6551
6552 synchronize_net();
6553 err = 0;
6554 out:
6555 return err;
6556 }
6557 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6558
6559 static int dev_cpu_callback(struct notifier_block *nfb,
6560 unsigned long action,
6561 void *ocpu)
6562 {
6563 struct sk_buff **list_skb;
6564 struct sk_buff *skb;
6565 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6566 struct softnet_data *sd, *oldsd;
6567
6568 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6569 return NOTIFY_OK;
6570
6571 local_irq_disable();
6572 cpu = smp_processor_id();
6573 sd = &per_cpu(softnet_data, cpu);
6574 oldsd = &per_cpu(softnet_data, oldcpu);
6575
6576 /* Find end of our completion_queue. */
6577 list_skb = &sd->completion_queue;
6578 while (*list_skb)
6579 list_skb = &(*list_skb)->next;
6580 /* Append completion queue from offline CPU. */
6581 *list_skb = oldsd->completion_queue;
6582 oldsd->completion_queue = NULL;
6583
6584 /* Append output queue from offline CPU. */
6585 if (oldsd->output_queue) {
6586 *sd->output_queue_tailp = oldsd->output_queue;
6587 sd->output_queue_tailp = oldsd->output_queue_tailp;
6588 oldsd->output_queue = NULL;
6589 oldsd->output_queue_tailp = &oldsd->output_queue;
6590 }
6591 /* Append NAPI poll list from offline CPU. */
6592 if (!list_empty(&oldsd->poll_list)) {
6593 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6594 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6595 }
6596
6597 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6598 local_irq_enable();
6599
6600 /* Process offline CPU's input_pkt_queue */
6601 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6602 netif_rx(skb);
6603 input_queue_head_incr(oldsd);
6604 }
6605 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6606 netif_rx(skb);
6607 input_queue_head_incr(oldsd);
6608 }
6609
6610 return NOTIFY_OK;
6611 }
6612
6613
6614 /**
6615 * netdev_increment_features - increment feature set by one
6616 * @all: current feature set
6617 * @one: new feature set
6618 * @mask: mask feature set
6619 *
6620 * Computes a new feature set after adding a device with feature set
6621 * @one to the master device with current feature set @all. Will not
6622 * enable anything that is off in @mask. Returns the new feature set.
6623 */
6624 netdev_features_t netdev_increment_features(netdev_features_t all,
6625 netdev_features_t one, netdev_features_t mask)
6626 {
6627 if (mask & NETIF_F_GEN_CSUM)
6628 mask |= NETIF_F_ALL_CSUM;
6629 mask |= NETIF_F_VLAN_CHALLENGED;
6630
6631 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6632 all &= one | ~NETIF_F_ALL_FOR_ALL;
6633
6634 /* If one device supports hw checksumming, set for all. */
6635 if (all & NETIF_F_GEN_CSUM)
6636 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6637
6638 return all;
6639 }
6640 EXPORT_SYMBOL(netdev_increment_features);
6641
6642 static struct hlist_head * __net_init netdev_create_hash(void)
6643 {
6644 int i;
6645 struct hlist_head *hash;
6646
6647 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6648 if (hash != NULL)
6649 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6650 INIT_HLIST_HEAD(&hash[i]);
6651
6652 return hash;
6653 }
6654
6655 /* Initialize per network namespace state */
6656 static int __net_init netdev_init(struct net *net)
6657 {
6658 if (net != &init_net)
6659 INIT_LIST_HEAD(&net->dev_base_head);
6660
6661 net->dev_name_head = netdev_create_hash();
6662 if (net->dev_name_head == NULL)
6663 goto err_name;
6664
6665 net->dev_index_head = netdev_create_hash();
6666 if (net->dev_index_head == NULL)
6667 goto err_idx;
6668
6669 return 0;
6670
6671 err_idx:
6672 kfree(net->dev_name_head);
6673 err_name:
6674 return -ENOMEM;
6675 }
6676
6677 /**
6678 * netdev_drivername - network driver for the device
6679 * @dev: network device
6680 *
6681 * Determine network driver for device.
6682 */
6683 const char *netdev_drivername(const struct net_device *dev)
6684 {
6685 const struct device_driver *driver;
6686 const struct device *parent;
6687 const char *empty = "";
6688
6689 parent = dev->dev.parent;
6690 if (!parent)
6691 return empty;
6692
6693 driver = parent->driver;
6694 if (driver && driver->name)
6695 return driver->name;
6696 return empty;
6697 }
6698
6699 static int __netdev_printk(const char *level, const struct net_device *dev,
6700 struct va_format *vaf)
6701 {
6702 int r;
6703
6704 if (dev && dev->dev.parent) {
6705 r = dev_printk_emit(level[1] - '0',
6706 dev->dev.parent,
6707 "%s %s %s: %pV",
6708 dev_driver_string(dev->dev.parent),
6709 dev_name(dev->dev.parent),
6710 netdev_name(dev), vaf);
6711 } else if (dev) {
6712 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6713 } else {
6714 r = printk("%s(NULL net_device): %pV", level, vaf);
6715 }
6716
6717 return r;
6718 }
6719
6720 int netdev_printk(const char *level, const struct net_device *dev,
6721 const char *format, ...)
6722 {
6723 struct va_format vaf;
6724 va_list args;
6725 int r;
6726
6727 va_start(args, format);
6728
6729 vaf.fmt = format;
6730 vaf.va = &args;
6731
6732 r = __netdev_printk(level, dev, &vaf);
6733
6734 va_end(args);
6735
6736 return r;
6737 }
6738 EXPORT_SYMBOL(netdev_printk);
6739
6740 #define define_netdev_printk_level(func, level) \
6741 int func(const struct net_device *dev, const char *fmt, ...) \
6742 { \
6743 int r; \
6744 struct va_format vaf; \
6745 va_list args; \
6746 \
6747 va_start(args, fmt); \
6748 \
6749 vaf.fmt = fmt; \
6750 vaf.va = &args; \
6751 \
6752 r = __netdev_printk(level, dev, &vaf); \
6753 \
6754 va_end(args); \
6755 \
6756 return r; \
6757 } \
6758 EXPORT_SYMBOL(func);
6759
6760 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6761 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6762 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6763 define_netdev_printk_level(netdev_err, KERN_ERR);
6764 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6765 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6766 define_netdev_printk_level(netdev_info, KERN_INFO);
6767
6768 static void __net_exit netdev_exit(struct net *net)
6769 {
6770 kfree(net->dev_name_head);
6771 kfree(net->dev_index_head);
6772 }
6773
6774 static struct pernet_operations __net_initdata netdev_net_ops = {
6775 .init = netdev_init,
6776 .exit = netdev_exit,
6777 };
6778
6779 static void __net_exit default_device_exit(struct net *net)
6780 {
6781 struct net_device *dev, *aux;
6782 /*
6783 * Push all migratable network devices back to the
6784 * initial network namespace
6785 */
6786 rtnl_lock();
6787 for_each_netdev_safe(net, dev, aux) {
6788 int err;
6789 char fb_name[IFNAMSIZ];
6790
6791 /* Ignore unmoveable devices (i.e. loopback) */
6792 if (dev->features & NETIF_F_NETNS_LOCAL)
6793 continue;
6794
6795 /* Leave virtual devices for the generic cleanup */
6796 if (dev->rtnl_link_ops)
6797 continue;
6798
6799 /* Push remaining network devices to init_net */
6800 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6801 err = dev_change_net_namespace(dev, &init_net, fb_name);
6802 if (err) {
6803 pr_emerg("%s: failed to move %s to init_net: %d\n",
6804 __func__, dev->name, err);
6805 BUG();
6806 }
6807 }
6808 rtnl_unlock();
6809 }
6810
6811 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
6812 {
6813 /* Return with the rtnl_lock held when there are no network
6814 * devices unregistering in any network namespace in net_list.
6815 */
6816 struct net *net;
6817 bool unregistering;
6818 DEFINE_WAIT(wait);
6819
6820 for (;;) {
6821 prepare_to_wait(&netdev_unregistering_wq, &wait,
6822 TASK_UNINTERRUPTIBLE);
6823 unregistering = false;
6824 rtnl_lock();
6825 list_for_each_entry(net, net_list, exit_list) {
6826 if (net->dev_unreg_count > 0) {
6827 unregistering = true;
6828 break;
6829 }
6830 }
6831 if (!unregistering)
6832 break;
6833 __rtnl_unlock();
6834 schedule();
6835 }
6836 finish_wait(&netdev_unregistering_wq, &wait);
6837 }
6838
6839 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6840 {
6841 /* At exit all network devices most be removed from a network
6842 * namespace. Do this in the reverse order of registration.
6843 * Do this across as many network namespaces as possible to
6844 * improve batching efficiency.
6845 */
6846 struct net_device *dev;
6847 struct net *net;
6848 LIST_HEAD(dev_kill_list);
6849
6850 /* To prevent network device cleanup code from dereferencing
6851 * loopback devices or network devices that have been freed
6852 * wait here for all pending unregistrations to complete,
6853 * before unregistring the loopback device and allowing the
6854 * network namespace be freed.
6855 *
6856 * The netdev todo list containing all network devices
6857 * unregistrations that happen in default_device_exit_batch
6858 * will run in the rtnl_unlock() at the end of
6859 * default_device_exit_batch.
6860 */
6861 rtnl_lock_unregistering(net_list);
6862 list_for_each_entry(net, net_list, exit_list) {
6863 for_each_netdev_reverse(net, dev) {
6864 if (dev->rtnl_link_ops)
6865 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6866 else
6867 unregister_netdevice_queue(dev, &dev_kill_list);
6868 }
6869 }
6870 unregister_netdevice_many(&dev_kill_list);
6871 list_del(&dev_kill_list);
6872 rtnl_unlock();
6873 }
6874
6875 static struct pernet_operations __net_initdata default_device_ops = {
6876 .exit = default_device_exit,
6877 .exit_batch = default_device_exit_batch,
6878 };
6879
6880 /*
6881 * Initialize the DEV module. At boot time this walks the device list and
6882 * unhooks any devices that fail to initialise (normally hardware not
6883 * present) and leaves us with a valid list of present and active devices.
6884 *
6885 */
6886
6887 /*
6888 * This is called single threaded during boot, so no need
6889 * to take the rtnl semaphore.
6890 */
6891 static int __init net_dev_init(void)
6892 {
6893 int i, rc = -ENOMEM;
6894
6895 BUG_ON(!dev_boot_phase);
6896
6897 if (dev_proc_init())
6898 goto out;
6899
6900 if (netdev_kobject_init())
6901 goto out;
6902
6903 INIT_LIST_HEAD(&ptype_all);
6904 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6905 INIT_LIST_HEAD(&ptype_base[i]);
6906
6907 INIT_LIST_HEAD(&offload_base);
6908
6909 if (register_pernet_subsys(&netdev_net_ops))
6910 goto out;
6911
6912 /*
6913 * Initialise the packet receive queues.
6914 */
6915
6916 for_each_possible_cpu(i) {
6917 struct softnet_data *sd = &per_cpu(softnet_data, i);
6918
6919 memset(sd, 0, sizeof(*sd));
6920 skb_queue_head_init(&sd->input_pkt_queue);
6921 skb_queue_head_init(&sd->process_queue);
6922 sd->completion_queue = NULL;
6923 INIT_LIST_HEAD(&sd->poll_list);
6924 sd->output_queue = NULL;
6925 sd->output_queue_tailp = &sd->output_queue;
6926 #ifdef CONFIG_RPS
6927 sd->csd.func = rps_trigger_softirq;
6928 sd->csd.info = sd;
6929 sd->csd.flags = 0;
6930 sd->cpu = i;
6931 #endif
6932
6933 sd->backlog.poll = process_backlog;
6934 sd->backlog.weight = weight_p;
6935 sd->backlog.gro_list = NULL;
6936 sd->backlog.gro_count = 0;
6937
6938 #ifdef CONFIG_NET_FLOW_LIMIT
6939 sd->flow_limit = NULL;
6940 #endif
6941 }
6942
6943 dev_boot_phase = 0;
6944
6945 /* The loopback device is special if any other network devices
6946 * is present in a network namespace the loopback device must
6947 * be present. Since we now dynamically allocate and free the
6948 * loopback device ensure this invariant is maintained by
6949 * keeping the loopback device as the first device on the
6950 * list of network devices. Ensuring the loopback devices
6951 * is the first device that appears and the last network device
6952 * that disappears.
6953 */
6954 if (register_pernet_device(&loopback_net_ops))
6955 goto out;
6956
6957 if (register_pernet_device(&default_device_ops))
6958 goto out;
6959
6960 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6961 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6962
6963 hotcpu_notifier(dev_cpu_callback, 0);
6964 dst_init();
6965 rc = 0;
6966 out:
6967 return rc;
6968 }
6969
6970 subsys_initcall(net_dev_init);