]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/core/dev.c
Merge tag 'mac80211-next-for-davem-2018-06-29' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-jammy-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149
150 #include "net-sysfs.h"
151
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly; /* Taps */
162 static struct list_head offload_base __read_mostly;
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166 struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169 /*
170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171 * semaphore.
172 *
173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174 *
175 * Writers must hold the rtnl semaphore while they loop through the
176 * dev_base_head list, and hold dev_base_lock for writing when they do the
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
179 *
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
183 *
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
187 */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190
191 static DEFINE_MUTEX(ifalias_mutex);
192
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199 static seqcount_t devnet_rename_seq;
200
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 while (++net->dev_base_seq == 0)
204 ;
205 }
206
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236 struct net *net = dev_net(dev);
237
238 ASSERT_RTNL();
239
240 write_lock_bh(&dev_base_lock);
241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 hlist_add_head_rcu(&dev->index_hlist,
244 dev_index_hash(net, dev->ifindex));
245 write_unlock_bh(&dev_base_lock);
246
247 dev_base_seq_inc(net);
248 }
249
250 /* Device list removal
251 * caller must respect a RCU grace period before freeing/reusing dev
252 */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255 ASSERT_RTNL();
256
257 /* Unlink dev from the device chain */
258 write_lock_bh(&dev_base_lock);
259 list_del_rcu(&dev->dev_list);
260 hlist_del_rcu(&dev->name_hlist);
261 hlist_del_rcu(&dev->index_hlist);
262 write_unlock_bh(&dev_base_lock);
263
264 dev_base_seq_inc(dev_net(dev));
265 }
266
267 /*
268 * Our notifier list
269 */
270
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272
273 /*
274 * Device drivers call our routines to queue packets here. We empty the
275 * queue in the local softnet handler.
276 */
277
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280
281 #ifdef CONFIG_LOCKDEP
282 /*
283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284 * according to dev->type
285 */
286 static const unsigned short netdev_lock_type[] = {
287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302
303 static const char *const netdev_lock_name[] = {
304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325 int i;
326
327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 if (netdev_lock_type[i] == dev_type)
329 return i;
330 /* the last key is used by default */
331 return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 unsigned short dev_type)
336 {
337 int i;
338
339 i = netdev_lock_pos(dev_type);
340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 netdev_lock_name[i]);
342 }
343
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 int i;
347
348 i = netdev_lock_pos(dev->type);
349 lockdep_set_class_and_name(&dev->addr_list_lock,
350 &netdev_addr_lock_key[i],
351 netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362
363 /*******************************************************************************
364 *
365 * Protocol management and registration routines
366 *
367 *******************************************************************************/
368
369
370 /*
371 * Add a protocol ID to the list. Now that the input handler is
372 * smarter we can dispense with all the messy stuff that used to be
373 * here.
374 *
375 * BEWARE!!! Protocol handlers, mangling input packets,
376 * MUST BE last in hash buckets and checking protocol handlers
377 * MUST start from promiscuous ptype_all chain in net_bh.
378 * It is true now, do not change it.
379 * Explanation follows: if protocol handler, mangling packet, will
380 * be the first on list, it is not able to sense, that packet
381 * is cloned and should be copied-on-write, so that it will
382 * change it and subsequent readers will get broken packet.
383 * --ANK (980803)
384 */
385
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388 if (pt->type == htons(ETH_P_ALL))
389 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 else
391 return pt->dev ? &pt->dev->ptype_specific :
392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394
395 /**
396 * dev_add_pack - add packet handler
397 * @pt: packet type declaration
398 *
399 * Add a protocol handler to the networking stack. The passed &packet_type
400 * is linked into kernel lists and may not be freed until it has been
401 * removed from the kernel lists.
402 *
403 * This call does not sleep therefore it can not
404 * guarantee all CPU's that are in middle of receiving packets
405 * will see the new packet type (until the next received packet).
406 */
407
408 void dev_add_pack(struct packet_type *pt)
409 {
410 struct list_head *head = ptype_head(pt);
411
412 spin_lock(&ptype_lock);
413 list_add_rcu(&pt->list, head);
414 spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417
418 /**
419 * __dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
425 * returns.
426 *
427 * The packet type might still be in use by receivers
428 * and must not be freed until after all the CPU's have gone
429 * through a quiescent state.
430 */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433 struct list_head *head = ptype_head(pt);
434 struct packet_type *pt1;
435
436 spin_lock(&ptype_lock);
437
438 list_for_each_entry(pt1, head, list) {
439 if (pt == pt1) {
440 list_del_rcu(&pt->list);
441 goto out;
442 }
443 }
444
445 pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447 spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450
451 /**
452 * dev_remove_pack - remove packet handler
453 * @pt: packet type declaration
454 *
455 * Remove a protocol handler that was previously added to the kernel
456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
457 * from the kernel lists and can be freed or reused once this function
458 * returns.
459 *
460 * This call sleeps to guarantee that no CPU is looking at the packet
461 * type after return.
462 */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465 __dev_remove_pack(pt);
466
467 synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470
471
472 /**
473 * dev_add_offload - register offload handlers
474 * @po: protocol offload declaration
475 *
476 * Add protocol offload handlers to the networking stack. The passed
477 * &proto_offload is linked into kernel lists and may not be freed until
478 * it has been removed from the kernel lists.
479 *
480 * This call does not sleep therefore it can not
481 * guarantee all CPU's that are in middle of receiving packets
482 * will see the new offload handlers (until the next received packet).
483 */
484 void dev_add_offload(struct packet_offload *po)
485 {
486 struct packet_offload *elem;
487
488 spin_lock(&offload_lock);
489 list_for_each_entry(elem, &offload_base, list) {
490 if (po->priority < elem->priority)
491 break;
492 }
493 list_add_rcu(&po->list, elem->list.prev);
494 spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497
498 /**
499 * __dev_remove_offload - remove offload handler
500 * @po: packet offload declaration
501 *
502 * Remove a protocol offload handler that was previously added to the
503 * kernel offload handlers by dev_add_offload(). The passed &offload_type
504 * is removed from the kernel lists and can be freed or reused once this
505 * function returns.
506 *
507 * The packet type might still be in use by receivers
508 * and must not be freed until after all the CPU's have gone
509 * through a quiescent state.
510 */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513 struct list_head *head = &offload_base;
514 struct packet_offload *po1;
515
516 spin_lock(&offload_lock);
517
518 list_for_each_entry(po1, head, list) {
519 if (po == po1) {
520 list_del_rcu(&po->list);
521 goto out;
522 }
523 }
524
525 pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527 spin_unlock(&offload_lock);
528 }
529
530 /**
531 * dev_remove_offload - remove packet offload handler
532 * @po: packet offload declaration
533 *
534 * Remove a packet offload handler that was previously added to the kernel
535 * offload handlers by dev_add_offload(). The passed &offload_type is
536 * removed from the kernel lists and can be freed or reused once this
537 * function returns.
538 *
539 * This call sleeps to guarantee that no CPU is looking at the packet
540 * type after return.
541 */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544 __dev_remove_offload(po);
545
546 synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549
550 /******************************************************************************
551 *
552 * Device Boot-time Settings Routines
553 *
554 ******************************************************************************/
555
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558
559 /**
560 * netdev_boot_setup_add - add new setup entry
561 * @name: name of the device
562 * @map: configured settings for the device
563 *
564 * Adds new setup entry to the dev_boot_setup list. The function
565 * returns 0 on error and 1 on success. This is a generic routine to
566 * all netdevices.
567 */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570 struct netdev_boot_setup *s;
571 int i;
572
573 s = dev_boot_setup;
574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 memset(s[i].name, 0, sizeof(s[i].name));
577 strlcpy(s[i].name, name, IFNAMSIZ);
578 memcpy(&s[i].map, map, sizeof(s[i].map));
579 break;
580 }
581 }
582
583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585
586 /**
587 * netdev_boot_setup_check - check boot time settings
588 * @dev: the netdevice
589 *
590 * Check boot time settings for the device.
591 * The found settings are set for the device to be used
592 * later in the device probing.
593 * Returns 0 if no settings found, 1 if they are.
594 */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597 struct netdev_boot_setup *s = dev_boot_setup;
598 int i;
599
600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 !strcmp(dev->name, s[i].name)) {
603 dev->irq = s[i].map.irq;
604 dev->base_addr = s[i].map.base_addr;
605 dev->mem_start = s[i].map.mem_start;
606 dev->mem_end = s[i].map.mem_end;
607 return 1;
608 }
609 }
610 return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613
614
615 /**
616 * netdev_boot_base - get address from boot time settings
617 * @prefix: prefix for network device
618 * @unit: id for network device
619 *
620 * Check boot time settings for the base address of device.
621 * The found settings are set for the device to be used
622 * later in the device probing.
623 * Returns 0 if no settings found.
624 */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627 const struct netdev_boot_setup *s = dev_boot_setup;
628 char name[IFNAMSIZ];
629 int i;
630
631 sprintf(name, "%s%d", prefix, unit);
632
633 /*
634 * If device already registered then return base of 1
635 * to indicate not to probe for this interface
636 */
637 if (__dev_get_by_name(&init_net, name))
638 return 1;
639
640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 if (!strcmp(name, s[i].name))
642 return s[i].map.base_addr;
643 return 0;
644 }
645
646 /*
647 * Saves at boot time configured settings for any netdevice.
648 */
649 int __init netdev_boot_setup(char *str)
650 {
651 int ints[5];
652 struct ifmap map;
653
654 str = get_options(str, ARRAY_SIZE(ints), ints);
655 if (!str || !*str)
656 return 0;
657
658 /* Save settings */
659 memset(&map, 0, sizeof(map));
660 if (ints[0] > 0)
661 map.irq = ints[1];
662 if (ints[0] > 1)
663 map.base_addr = ints[2];
664 if (ints[0] > 2)
665 map.mem_start = ints[3];
666 if (ints[0] > 3)
667 map.mem_end = ints[4];
668
669 /* Add new entry to the list */
670 return netdev_boot_setup_add(str, &map);
671 }
672
673 __setup("netdev=", netdev_boot_setup);
674
675 /*******************************************************************************
676 *
677 * Device Interface Subroutines
678 *
679 *******************************************************************************/
680
681 /**
682 * dev_get_iflink - get 'iflink' value of a interface
683 * @dev: targeted interface
684 *
685 * Indicates the ifindex the interface is linked to.
686 * Physical interfaces have the same 'ifindex' and 'iflink' values.
687 */
688
689 int dev_get_iflink(const struct net_device *dev)
690 {
691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 return dev->netdev_ops->ndo_get_iflink(dev);
693
694 return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697
698 /**
699 * dev_fill_metadata_dst - Retrieve tunnel egress information.
700 * @dev: targeted interface
701 * @skb: The packet.
702 *
703 * For better visibility of tunnel traffic OVS needs to retrieve
704 * egress tunnel information for a packet. Following API allows
705 * user to get this info.
706 */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 struct ip_tunnel_info *info;
710
711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
712 return -EINVAL;
713
714 info = skb_tunnel_info_unclone(skb);
715 if (!info)
716 return -ENOMEM;
717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 return -EINVAL;
719
720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
724 /**
725 * __dev_get_by_name - find a device by its name
726 * @net: the applicable net namespace
727 * @name: name to find
728 *
729 * Find an interface by name. Must be called under RTNL semaphore
730 * or @dev_base_lock. If the name is found a pointer to the device
731 * is returned. If the name is not found then %NULL is returned. The
732 * reference counters are not incremented so the caller must be
733 * careful with locks.
734 */
735
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738 struct net_device *dev;
739 struct hlist_head *head = dev_name_hash(net, name);
740
741 hlist_for_each_entry(dev, head, name_hlist)
742 if (!strncmp(dev->name, name, IFNAMSIZ))
743 return dev;
744
745 return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748
749 /**
750 * dev_get_by_name_rcu - find a device by its name
751 * @net: the applicable net namespace
752 * @name: name to find
753 *
754 * Find an interface by name.
755 * If the name is found a pointer to the device is returned.
756 * If the name is not found then %NULL is returned.
757 * The reference counters are not incremented so the caller must be
758 * careful with locks. The caller must hold RCU lock.
759 */
760
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763 struct net_device *dev;
764 struct hlist_head *head = dev_name_hash(net, name);
765
766 hlist_for_each_entry_rcu(dev, head, name_hlist)
767 if (!strncmp(dev->name, name, IFNAMSIZ))
768 return dev;
769
770 return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773
774 /**
775 * dev_get_by_name - find a device by its name
776 * @net: the applicable net namespace
777 * @name: name to find
778 *
779 * Find an interface by name. This can be called from any
780 * context and does its own locking. The returned handle has
781 * the usage count incremented and the caller must use dev_put() to
782 * release it when it is no longer needed. %NULL is returned if no
783 * matching device is found.
784 */
785
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788 struct net_device *dev;
789
790 rcu_read_lock();
791 dev = dev_get_by_name_rcu(net, name);
792 if (dev)
793 dev_hold(dev);
794 rcu_read_unlock();
795 return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798
799 /**
800 * __dev_get_by_index - find a device by its ifindex
801 * @net: the applicable net namespace
802 * @ifindex: index of device
803 *
804 * Search for an interface by index. Returns %NULL if the device
805 * is not found or a pointer to the device. The device has not
806 * had its reference counter increased so the caller must be careful
807 * about locking. The caller must hold either the RTNL semaphore
808 * or @dev_base_lock.
809 */
810
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813 struct net_device *dev;
814 struct hlist_head *head = dev_index_hash(net, ifindex);
815
816 hlist_for_each_entry(dev, head, index_hlist)
817 if (dev->ifindex == ifindex)
818 return dev;
819
820 return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823
824 /**
825 * dev_get_by_index_rcu - find a device by its ifindex
826 * @net: the applicable net namespace
827 * @ifindex: index of device
828 *
829 * Search for an interface by index. Returns %NULL if the device
830 * is not found or a pointer to the device. The device has not
831 * had its reference counter increased so the caller must be careful
832 * about locking. The caller must hold RCU lock.
833 */
834
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837 struct net_device *dev;
838 struct hlist_head *head = dev_index_hash(net, ifindex);
839
840 hlist_for_each_entry_rcu(dev, head, index_hlist)
841 if (dev->ifindex == ifindex)
842 return dev;
843
844 return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847
848
849 /**
850 * dev_get_by_index - find a device by its ifindex
851 * @net: the applicable net namespace
852 * @ifindex: index of device
853 *
854 * Search for an interface by index. Returns NULL if the device
855 * is not found or a pointer to the device. The device returned has
856 * had a reference added and the pointer is safe until the user calls
857 * dev_put to indicate they have finished with it.
858 */
859
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862 struct net_device *dev;
863
864 rcu_read_lock();
865 dev = dev_get_by_index_rcu(net, ifindex);
866 if (dev)
867 dev_hold(dev);
868 rcu_read_unlock();
869 return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872
873 /**
874 * dev_get_by_napi_id - find a device by napi_id
875 * @napi_id: ID of the NAPI struct
876 *
877 * Search for an interface by NAPI ID. Returns %NULL if the device
878 * is not found or a pointer to the device. The device has not had
879 * its reference counter increased so the caller must be careful
880 * about locking. The caller must hold RCU lock.
881 */
882
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885 struct napi_struct *napi;
886
887 WARN_ON_ONCE(!rcu_read_lock_held());
888
889 if (napi_id < MIN_NAPI_ID)
890 return NULL;
891
892 napi = napi_by_id(napi_id);
893
894 return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897
898 /**
899 * netdev_get_name - get a netdevice name, knowing its ifindex.
900 * @net: network namespace
901 * @name: a pointer to the buffer where the name will be stored.
902 * @ifindex: the ifindex of the interface to get the name from.
903 *
904 * The use of raw_seqcount_begin() and cond_resched() before
905 * retrying is required as we want to give the writers a chance
906 * to complete when CONFIG_PREEMPT is not set.
907 */
908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910 struct net_device *dev;
911 unsigned int seq;
912
913 retry:
914 seq = raw_seqcount_begin(&devnet_rename_seq);
915 rcu_read_lock();
916 dev = dev_get_by_index_rcu(net, ifindex);
917 if (!dev) {
918 rcu_read_unlock();
919 return -ENODEV;
920 }
921
922 strcpy(name, dev->name);
923 rcu_read_unlock();
924 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 cond_resched();
926 goto retry;
927 }
928
929 return 0;
930 }
931
932 /**
933 * dev_getbyhwaddr_rcu - find a device by its hardware address
934 * @net: the applicable net namespace
935 * @type: media type of device
936 * @ha: hardware address
937 *
938 * Search for an interface by MAC address. Returns NULL if the device
939 * is not found or a pointer to the device.
940 * The caller must hold RCU or RTNL.
941 * The returned device has not had its ref count increased
942 * and the caller must therefore be careful about locking
943 *
944 */
945
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 const char *ha)
948 {
949 struct net_device *dev;
950
951 for_each_netdev_rcu(net, dev)
952 if (dev->type == type &&
953 !memcmp(dev->dev_addr, ha, dev->addr_len))
954 return dev;
955
956 return NULL;
957 }
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 {
962 struct net_device *dev;
963
964 ASSERT_RTNL();
965 for_each_netdev(net, dev)
966 if (dev->type == type)
967 return dev;
968
969 return NULL;
970 }
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975 struct net_device *dev, *ret = NULL;
976
977 rcu_read_lock();
978 for_each_netdev_rcu(net, dev)
979 if (dev->type == type) {
980 dev_hold(dev);
981 ret = dev;
982 break;
983 }
984 rcu_read_unlock();
985 return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988
989 /**
990 * __dev_get_by_flags - find any device with given flags
991 * @net: the applicable net namespace
992 * @if_flags: IFF_* values
993 * @mask: bitmask of bits in if_flags to check
994 *
995 * Search for any interface with the given flags. Returns NULL if a device
996 * is not found or a pointer to the device. Must be called inside
997 * rtnl_lock(), and result refcount is unchanged.
998 */
999
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 unsigned short mask)
1002 {
1003 struct net_device *dev, *ret;
1004
1005 ASSERT_RTNL();
1006
1007 ret = NULL;
1008 for_each_netdev(net, dev) {
1009 if (((dev->flags ^ if_flags) & mask) == 0) {
1010 ret = dev;
1011 break;
1012 }
1013 }
1014 return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017
1018 /**
1019 * dev_valid_name - check if name is okay for network device
1020 * @name: name string
1021 *
1022 * Network device names need to be valid file names to
1023 * to allow sysfs to work. We also disallow any kind of
1024 * whitespace.
1025 */
1026 bool dev_valid_name(const char *name)
1027 {
1028 if (*name == '\0')
1029 return false;
1030 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1031 return false;
1032 if (!strcmp(name, ".") || !strcmp(name, ".."))
1033 return false;
1034
1035 while (*name) {
1036 if (*name == '/' || *name == ':' || isspace(*name))
1037 return false;
1038 name++;
1039 }
1040 return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043
1044 /**
1045 * __dev_alloc_name - allocate a name for a device
1046 * @net: network namespace to allocate the device name in
1047 * @name: name format string
1048 * @buf: scratch buffer and result name string
1049 *
1050 * Passed a format string - eg "lt%d" it will try and find a suitable
1051 * id. It scans list of devices to build up a free map, then chooses
1052 * the first empty slot. The caller must hold the dev_base or rtnl lock
1053 * while allocating the name and adding the device in order to avoid
1054 * duplicates.
1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 * Returns the number of the unit assigned or a negative errno code.
1057 */
1058
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061 int i = 0;
1062 const char *p;
1063 const int max_netdevices = 8*PAGE_SIZE;
1064 unsigned long *inuse;
1065 struct net_device *d;
1066
1067 if (!dev_valid_name(name))
1068 return -EINVAL;
1069
1070 p = strchr(name, '%');
1071 if (p) {
1072 /*
1073 * Verify the string as this thing may have come from
1074 * the user. There must be either one "%d" and no other "%"
1075 * characters.
1076 */
1077 if (p[1] != 'd' || strchr(p + 2, '%'))
1078 return -EINVAL;
1079
1080 /* Use one page as a bit array of possible slots */
1081 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082 if (!inuse)
1083 return -ENOMEM;
1084
1085 for_each_netdev(net, d) {
1086 if (!sscanf(d->name, name, &i))
1087 continue;
1088 if (i < 0 || i >= max_netdevices)
1089 continue;
1090
1091 /* avoid cases where sscanf is not exact inverse of printf */
1092 snprintf(buf, IFNAMSIZ, name, i);
1093 if (!strncmp(buf, d->name, IFNAMSIZ))
1094 set_bit(i, inuse);
1095 }
1096
1097 i = find_first_zero_bit(inuse, max_netdevices);
1098 free_page((unsigned long) inuse);
1099 }
1100
1101 snprintf(buf, IFNAMSIZ, name, i);
1102 if (!__dev_get_by_name(net, buf))
1103 return i;
1104
1105 /* It is possible to run out of possible slots
1106 * when the name is long and there isn't enough space left
1107 * for the digits, or if all bits are used.
1108 */
1109 return -ENFILE;
1110 }
1111
1112 static int dev_alloc_name_ns(struct net *net,
1113 struct net_device *dev,
1114 const char *name)
1115 {
1116 char buf[IFNAMSIZ];
1117 int ret;
1118
1119 BUG_ON(!net);
1120 ret = __dev_alloc_name(net, name, buf);
1121 if (ret >= 0)
1122 strlcpy(dev->name, buf, IFNAMSIZ);
1123 return ret;
1124 }
1125
1126 /**
1127 * dev_alloc_name - allocate a name for a device
1128 * @dev: device
1129 * @name: name format string
1130 *
1131 * Passed a format string - eg "lt%d" it will try and find a suitable
1132 * id. It scans list of devices to build up a free map, then chooses
1133 * the first empty slot. The caller must hold the dev_base or rtnl lock
1134 * while allocating the name and adding the device in order to avoid
1135 * duplicates.
1136 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137 * Returns the number of the unit assigned or a negative errno code.
1138 */
1139
1140 int dev_alloc_name(struct net_device *dev, const char *name)
1141 {
1142 return dev_alloc_name_ns(dev_net(dev), dev, name);
1143 }
1144 EXPORT_SYMBOL(dev_alloc_name);
1145
1146 int dev_get_valid_name(struct net *net, struct net_device *dev,
1147 const char *name)
1148 {
1149 BUG_ON(!net);
1150
1151 if (!dev_valid_name(name))
1152 return -EINVAL;
1153
1154 if (strchr(name, '%'))
1155 return dev_alloc_name_ns(net, dev, name);
1156 else if (__dev_get_by_name(net, name))
1157 return -EEXIST;
1158 else if (dev->name != name)
1159 strlcpy(dev->name, name, IFNAMSIZ);
1160
1161 return 0;
1162 }
1163 EXPORT_SYMBOL(dev_get_valid_name);
1164
1165 /**
1166 * dev_change_name - change name of a device
1167 * @dev: device
1168 * @newname: name (or format string) must be at least IFNAMSIZ
1169 *
1170 * Change name of a device, can pass format strings "eth%d".
1171 * for wildcarding.
1172 */
1173 int dev_change_name(struct net_device *dev, const char *newname)
1174 {
1175 unsigned char old_assign_type;
1176 char oldname[IFNAMSIZ];
1177 int err = 0;
1178 int ret;
1179 struct net *net;
1180
1181 ASSERT_RTNL();
1182 BUG_ON(!dev_net(dev));
1183
1184 net = dev_net(dev);
1185 if (dev->flags & IFF_UP)
1186 return -EBUSY;
1187
1188 write_seqcount_begin(&devnet_rename_seq);
1189
1190 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191 write_seqcount_end(&devnet_rename_seq);
1192 return 0;
1193 }
1194
1195 memcpy(oldname, dev->name, IFNAMSIZ);
1196
1197 err = dev_get_valid_name(net, dev, newname);
1198 if (err < 0) {
1199 write_seqcount_end(&devnet_rename_seq);
1200 return err;
1201 }
1202
1203 if (oldname[0] && !strchr(oldname, '%'))
1204 netdev_info(dev, "renamed from %s\n", oldname);
1205
1206 old_assign_type = dev->name_assign_type;
1207 dev->name_assign_type = NET_NAME_RENAMED;
1208
1209 rollback:
1210 ret = device_rename(&dev->dev, dev->name);
1211 if (ret) {
1212 memcpy(dev->name, oldname, IFNAMSIZ);
1213 dev->name_assign_type = old_assign_type;
1214 write_seqcount_end(&devnet_rename_seq);
1215 return ret;
1216 }
1217
1218 write_seqcount_end(&devnet_rename_seq);
1219
1220 netdev_adjacent_rename_links(dev, oldname);
1221
1222 write_lock_bh(&dev_base_lock);
1223 hlist_del_rcu(&dev->name_hlist);
1224 write_unlock_bh(&dev_base_lock);
1225
1226 synchronize_rcu();
1227
1228 write_lock_bh(&dev_base_lock);
1229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230 write_unlock_bh(&dev_base_lock);
1231
1232 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233 ret = notifier_to_errno(ret);
1234
1235 if (ret) {
1236 /* err >= 0 after dev_alloc_name() or stores the first errno */
1237 if (err >= 0) {
1238 err = ret;
1239 write_seqcount_begin(&devnet_rename_seq);
1240 memcpy(dev->name, oldname, IFNAMSIZ);
1241 memcpy(oldname, newname, IFNAMSIZ);
1242 dev->name_assign_type = old_assign_type;
1243 old_assign_type = NET_NAME_RENAMED;
1244 goto rollback;
1245 } else {
1246 pr_err("%s: name change rollback failed: %d\n",
1247 dev->name, ret);
1248 }
1249 }
1250
1251 return err;
1252 }
1253
1254 /**
1255 * dev_set_alias - change ifalias of a device
1256 * @dev: device
1257 * @alias: name up to IFALIASZ
1258 * @len: limit of bytes to copy from info
1259 *
1260 * Set ifalias for a device,
1261 */
1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263 {
1264 struct dev_ifalias *new_alias = NULL;
1265
1266 if (len >= IFALIASZ)
1267 return -EINVAL;
1268
1269 if (len) {
1270 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271 if (!new_alias)
1272 return -ENOMEM;
1273
1274 memcpy(new_alias->ifalias, alias, len);
1275 new_alias->ifalias[len] = 0;
1276 }
1277
1278 mutex_lock(&ifalias_mutex);
1279 rcu_swap_protected(dev->ifalias, new_alias,
1280 mutex_is_locked(&ifalias_mutex));
1281 mutex_unlock(&ifalias_mutex);
1282
1283 if (new_alias)
1284 kfree_rcu(new_alias, rcuhead);
1285
1286 return len;
1287 }
1288 EXPORT_SYMBOL(dev_set_alias);
1289
1290 /**
1291 * dev_get_alias - get ifalias of a device
1292 * @dev: device
1293 * @name: buffer to store name of ifalias
1294 * @len: size of buffer
1295 *
1296 * get ifalias for a device. Caller must make sure dev cannot go
1297 * away, e.g. rcu read lock or own a reference count to device.
1298 */
1299 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1300 {
1301 const struct dev_ifalias *alias;
1302 int ret = 0;
1303
1304 rcu_read_lock();
1305 alias = rcu_dereference(dev->ifalias);
1306 if (alias)
1307 ret = snprintf(name, len, "%s", alias->ifalias);
1308 rcu_read_unlock();
1309
1310 return ret;
1311 }
1312
1313 /**
1314 * netdev_features_change - device changes features
1315 * @dev: device to cause notification
1316 *
1317 * Called to indicate a device has changed features.
1318 */
1319 void netdev_features_change(struct net_device *dev)
1320 {
1321 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1322 }
1323 EXPORT_SYMBOL(netdev_features_change);
1324
1325 /**
1326 * netdev_state_change - device changes state
1327 * @dev: device to cause notification
1328 *
1329 * Called to indicate a device has changed state. This function calls
1330 * the notifier chains for netdev_chain and sends a NEWLINK message
1331 * to the routing socket.
1332 */
1333 void netdev_state_change(struct net_device *dev)
1334 {
1335 if (dev->flags & IFF_UP) {
1336 struct netdev_notifier_change_info change_info = {
1337 .info.dev = dev,
1338 };
1339
1340 call_netdevice_notifiers_info(NETDEV_CHANGE,
1341 &change_info.info);
1342 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1343 }
1344 }
1345 EXPORT_SYMBOL(netdev_state_change);
1346
1347 /**
1348 * netdev_notify_peers - notify network peers about existence of @dev
1349 * @dev: network device
1350 *
1351 * Generate traffic such that interested network peers are aware of
1352 * @dev, such as by generating a gratuitous ARP. This may be used when
1353 * a device wants to inform the rest of the network about some sort of
1354 * reconfiguration such as a failover event or virtual machine
1355 * migration.
1356 */
1357 void netdev_notify_peers(struct net_device *dev)
1358 {
1359 rtnl_lock();
1360 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1361 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1362 rtnl_unlock();
1363 }
1364 EXPORT_SYMBOL(netdev_notify_peers);
1365
1366 static int __dev_open(struct net_device *dev)
1367 {
1368 const struct net_device_ops *ops = dev->netdev_ops;
1369 int ret;
1370
1371 ASSERT_RTNL();
1372
1373 if (!netif_device_present(dev))
1374 return -ENODEV;
1375
1376 /* Block netpoll from trying to do any rx path servicing.
1377 * If we don't do this there is a chance ndo_poll_controller
1378 * or ndo_poll may be running while we open the device
1379 */
1380 netpoll_poll_disable(dev);
1381
1382 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1383 ret = notifier_to_errno(ret);
1384 if (ret)
1385 return ret;
1386
1387 set_bit(__LINK_STATE_START, &dev->state);
1388
1389 if (ops->ndo_validate_addr)
1390 ret = ops->ndo_validate_addr(dev);
1391
1392 if (!ret && ops->ndo_open)
1393 ret = ops->ndo_open(dev);
1394
1395 netpoll_poll_enable(dev);
1396
1397 if (ret)
1398 clear_bit(__LINK_STATE_START, &dev->state);
1399 else {
1400 dev->flags |= IFF_UP;
1401 dev_set_rx_mode(dev);
1402 dev_activate(dev);
1403 add_device_randomness(dev->dev_addr, dev->addr_len);
1404 }
1405
1406 return ret;
1407 }
1408
1409 /**
1410 * dev_open - prepare an interface for use.
1411 * @dev: device to open
1412 *
1413 * Takes a device from down to up state. The device's private open
1414 * function is invoked and then the multicast lists are loaded. Finally
1415 * the device is moved into the up state and a %NETDEV_UP message is
1416 * sent to the netdev notifier chain.
1417 *
1418 * Calling this function on an active interface is a nop. On a failure
1419 * a negative errno code is returned.
1420 */
1421 int dev_open(struct net_device *dev)
1422 {
1423 int ret;
1424
1425 if (dev->flags & IFF_UP)
1426 return 0;
1427
1428 ret = __dev_open(dev);
1429 if (ret < 0)
1430 return ret;
1431
1432 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1433 call_netdevice_notifiers(NETDEV_UP, dev);
1434
1435 return ret;
1436 }
1437 EXPORT_SYMBOL(dev_open);
1438
1439 static void __dev_close_many(struct list_head *head)
1440 {
1441 struct net_device *dev;
1442
1443 ASSERT_RTNL();
1444 might_sleep();
1445
1446 list_for_each_entry(dev, head, close_list) {
1447 /* Temporarily disable netpoll until the interface is down */
1448 netpoll_poll_disable(dev);
1449
1450 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1451
1452 clear_bit(__LINK_STATE_START, &dev->state);
1453
1454 /* Synchronize to scheduled poll. We cannot touch poll list, it
1455 * can be even on different cpu. So just clear netif_running().
1456 *
1457 * dev->stop() will invoke napi_disable() on all of it's
1458 * napi_struct instances on this device.
1459 */
1460 smp_mb__after_atomic(); /* Commit netif_running(). */
1461 }
1462
1463 dev_deactivate_many(head);
1464
1465 list_for_each_entry(dev, head, close_list) {
1466 const struct net_device_ops *ops = dev->netdev_ops;
1467
1468 /*
1469 * Call the device specific close. This cannot fail.
1470 * Only if device is UP
1471 *
1472 * We allow it to be called even after a DETACH hot-plug
1473 * event.
1474 */
1475 if (ops->ndo_stop)
1476 ops->ndo_stop(dev);
1477
1478 dev->flags &= ~IFF_UP;
1479 netpoll_poll_enable(dev);
1480 }
1481 }
1482
1483 static void __dev_close(struct net_device *dev)
1484 {
1485 LIST_HEAD(single);
1486
1487 list_add(&dev->close_list, &single);
1488 __dev_close_many(&single);
1489 list_del(&single);
1490 }
1491
1492 void dev_close_many(struct list_head *head, bool unlink)
1493 {
1494 struct net_device *dev, *tmp;
1495
1496 /* Remove the devices that don't need to be closed */
1497 list_for_each_entry_safe(dev, tmp, head, close_list)
1498 if (!(dev->flags & IFF_UP))
1499 list_del_init(&dev->close_list);
1500
1501 __dev_close_many(head);
1502
1503 list_for_each_entry_safe(dev, tmp, head, close_list) {
1504 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1505 call_netdevice_notifiers(NETDEV_DOWN, dev);
1506 if (unlink)
1507 list_del_init(&dev->close_list);
1508 }
1509 }
1510 EXPORT_SYMBOL(dev_close_many);
1511
1512 /**
1513 * dev_close - shutdown an interface.
1514 * @dev: device to shutdown
1515 *
1516 * This function moves an active device into down state. A
1517 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1518 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1519 * chain.
1520 */
1521 void dev_close(struct net_device *dev)
1522 {
1523 if (dev->flags & IFF_UP) {
1524 LIST_HEAD(single);
1525
1526 list_add(&dev->close_list, &single);
1527 dev_close_many(&single, true);
1528 list_del(&single);
1529 }
1530 }
1531 EXPORT_SYMBOL(dev_close);
1532
1533
1534 /**
1535 * dev_disable_lro - disable Large Receive Offload on a device
1536 * @dev: device
1537 *
1538 * Disable Large Receive Offload (LRO) on a net device. Must be
1539 * called under RTNL. This is needed if received packets may be
1540 * forwarded to another interface.
1541 */
1542 void dev_disable_lro(struct net_device *dev)
1543 {
1544 struct net_device *lower_dev;
1545 struct list_head *iter;
1546
1547 dev->wanted_features &= ~NETIF_F_LRO;
1548 netdev_update_features(dev);
1549
1550 if (unlikely(dev->features & NETIF_F_LRO))
1551 netdev_WARN(dev, "failed to disable LRO!\n");
1552
1553 netdev_for_each_lower_dev(dev, lower_dev, iter)
1554 dev_disable_lro(lower_dev);
1555 }
1556 EXPORT_SYMBOL(dev_disable_lro);
1557
1558 /**
1559 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1560 * @dev: device
1561 *
1562 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1563 * called under RTNL. This is needed if Generic XDP is installed on
1564 * the device.
1565 */
1566 static void dev_disable_gro_hw(struct net_device *dev)
1567 {
1568 dev->wanted_features &= ~NETIF_F_GRO_HW;
1569 netdev_update_features(dev);
1570
1571 if (unlikely(dev->features & NETIF_F_GRO_HW))
1572 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1573 }
1574
1575 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1576 {
1577 #define N(val) \
1578 case NETDEV_##val: \
1579 return "NETDEV_" __stringify(val);
1580 switch (cmd) {
1581 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1582 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1583 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1584 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1585 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1586 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1587 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1588 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1589 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1590 }
1591 #undef N
1592 return "UNKNOWN_NETDEV_EVENT";
1593 }
1594 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1595
1596 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1597 struct net_device *dev)
1598 {
1599 struct netdev_notifier_info info = {
1600 .dev = dev,
1601 };
1602
1603 return nb->notifier_call(nb, val, &info);
1604 }
1605
1606 static int dev_boot_phase = 1;
1607
1608 /**
1609 * register_netdevice_notifier - register a network notifier block
1610 * @nb: notifier
1611 *
1612 * Register a notifier to be called when network device events occur.
1613 * The notifier passed is linked into the kernel structures and must
1614 * not be reused until it has been unregistered. A negative errno code
1615 * is returned on a failure.
1616 *
1617 * When registered all registration and up events are replayed
1618 * to the new notifier to allow device to have a race free
1619 * view of the network device list.
1620 */
1621
1622 int register_netdevice_notifier(struct notifier_block *nb)
1623 {
1624 struct net_device *dev;
1625 struct net_device *last;
1626 struct net *net;
1627 int err;
1628
1629 /* Close race with setup_net() and cleanup_net() */
1630 down_write(&pernet_ops_rwsem);
1631 rtnl_lock();
1632 err = raw_notifier_chain_register(&netdev_chain, nb);
1633 if (err)
1634 goto unlock;
1635 if (dev_boot_phase)
1636 goto unlock;
1637 for_each_net(net) {
1638 for_each_netdev(net, dev) {
1639 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1640 err = notifier_to_errno(err);
1641 if (err)
1642 goto rollback;
1643
1644 if (!(dev->flags & IFF_UP))
1645 continue;
1646
1647 call_netdevice_notifier(nb, NETDEV_UP, dev);
1648 }
1649 }
1650
1651 unlock:
1652 rtnl_unlock();
1653 up_write(&pernet_ops_rwsem);
1654 return err;
1655
1656 rollback:
1657 last = dev;
1658 for_each_net(net) {
1659 for_each_netdev(net, dev) {
1660 if (dev == last)
1661 goto outroll;
1662
1663 if (dev->flags & IFF_UP) {
1664 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1665 dev);
1666 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1667 }
1668 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1669 }
1670 }
1671
1672 outroll:
1673 raw_notifier_chain_unregister(&netdev_chain, nb);
1674 goto unlock;
1675 }
1676 EXPORT_SYMBOL(register_netdevice_notifier);
1677
1678 /**
1679 * unregister_netdevice_notifier - unregister a network notifier block
1680 * @nb: notifier
1681 *
1682 * Unregister a notifier previously registered by
1683 * register_netdevice_notifier(). The notifier is unlinked into the
1684 * kernel structures and may then be reused. A negative errno code
1685 * is returned on a failure.
1686 *
1687 * After unregistering unregister and down device events are synthesized
1688 * for all devices on the device list to the removed notifier to remove
1689 * the need for special case cleanup code.
1690 */
1691
1692 int unregister_netdevice_notifier(struct notifier_block *nb)
1693 {
1694 struct net_device *dev;
1695 struct net *net;
1696 int err;
1697
1698 /* Close race with setup_net() and cleanup_net() */
1699 down_write(&pernet_ops_rwsem);
1700 rtnl_lock();
1701 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1702 if (err)
1703 goto unlock;
1704
1705 for_each_net(net) {
1706 for_each_netdev(net, dev) {
1707 if (dev->flags & IFF_UP) {
1708 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1709 dev);
1710 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1711 }
1712 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1713 }
1714 }
1715 unlock:
1716 rtnl_unlock();
1717 up_write(&pernet_ops_rwsem);
1718 return err;
1719 }
1720 EXPORT_SYMBOL(unregister_netdevice_notifier);
1721
1722 /**
1723 * call_netdevice_notifiers_info - call all network notifier blocks
1724 * @val: value passed unmodified to notifier function
1725 * @info: notifier information data
1726 *
1727 * Call all network notifier blocks. Parameters and return value
1728 * are as for raw_notifier_call_chain().
1729 */
1730
1731 static int call_netdevice_notifiers_info(unsigned long val,
1732 struct netdev_notifier_info *info)
1733 {
1734 ASSERT_RTNL();
1735 return raw_notifier_call_chain(&netdev_chain, val, info);
1736 }
1737
1738 /**
1739 * call_netdevice_notifiers - call all network notifier blocks
1740 * @val: value passed unmodified to notifier function
1741 * @dev: net_device pointer passed unmodified to notifier function
1742 *
1743 * Call all network notifier blocks. Parameters and return value
1744 * are as for raw_notifier_call_chain().
1745 */
1746
1747 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1748 {
1749 struct netdev_notifier_info info = {
1750 .dev = dev,
1751 };
1752
1753 return call_netdevice_notifiers_info(val, &info);
1754 }
1755 EXPORT_SYMBOL(call_netdevice_notifiers);
1756
1757 #ifdef CONFIG_NET_INGRESS
1758 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1759
1760 void net_inc_ingress_queue(void)
1761 {
1762 static_branch_inc(&ingress_needed_key);
1763 }
1764 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1765
1766 void net_dec_ingress_queue(void)
1767 {
1768 static_branch_dec(&ingress_needed_key);
1769 }
1770 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1771 #endif
1772
1773 #ifdef CONFIG_NET_EGRESS
1774 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1775
1776 void net_inc_egress_queue(void)
1777 {
1778 static_branch_inc(&egress_needed_key);
1779 }
1780 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1781
1782 void net_dec_egress_queue(void)
1783 {
1784 static_branch_dec(&egress_needed_key);
1785 }
1786 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1787 #endif
1788
1789 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1790 #ifdef HAVE_JUMP_LABEL
1791 static atomic_t netstamp_needed_deferred;
1792 static atomic_t netstamp_wanted;
1793 static void netstamp_clear(struct work_struct *work)
1794 {
1795 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1796 int wanted;
1797
1798 wanted = atomic_add_return(deferred, &netstamp_wanted);
1799 if (wanted > 0)
1800 static_branch_enable(&netstamp_needed_key);
1801 else
1802 static_branch_disable(&netstamp_needed_key);
1803 }
1804 static DECLARE_WORK(netstamp_work, netstamp_clear);
1805 #endif
1806
1807 void net_enable_timestamp(void)
1808 {
1809 #ifdef HAVE_JUMP_LABEL
1810 int wanted;
1811
1812 while (1) {
1813 wanted = atomic_read(&netstamp_wanted);
1814 if (wanted <= 0)
1815 break;
1816 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1817 return;
1818 }
1819 atomic_inc(&netstamp_needed_deferred);
1820 schedule_work(&netstamp_work);
1821 #else
1822 static_branch_inc(&netstamp_needed_key);
1823 #endif
1824 }
1825 EXPORT_SYMBOL(net_enable_timestamp);
1826
1827 void net_disable_timestamp(void)
1828 {
1829 #ifdef HAVE_JUMP_LABEL
1830 int wanted;
1831
1832 while (1) {
1833 wanted = atomic_read(&netstamp_wanted);
1834 if (wanted <= 1)
1835 break;
1836 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1837 return;
1838 }
1839 atomic_dec(&netstamp_needed_deferred);
1840 schedule_work(&netstamp_work);
1841 #else
1842 static_branch_dec(&netstamp_needed_key);
1843 #endif
1844 }
1845 EXPORT_SYMBOL(net_disable_timestamp);
1846
1847 static inline void net_timestamp_set(struct sk_buff *skb)
1848 {
1849 skb->tstamp = 0;
1850 if (static_branch_unlikely(&netstamp_needed_key))
1851 __net_timestamp(skb);
1852 }
1853
1854 #define net_timestamp_check(COND, SKB) \
1855 if (static_branch_unlikely(&netstamp_needed_key)) { \
1856 if ((COND) && !(SKB)->tstamp) \
1857 __net_timestamp(SKB); \
1858 } \
1859
1860 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1861 {
1862 unsigned int len;
1863
1864 if (!(dev->flags & IFF_UP))
1865 return false;
1866
1867 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1868 if (skb->len <= len)
1869 return true;
1870
1871 /* if TSO is enabled, we don't care about the length as the packet
1872 * could be forwarded without being segmented before
1873 */
1874 if (skb_is_gso(skb))
1875 return true;
1876
1877 return false;
1878 }
1879 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1880
1881 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1882 {
1883 int ret = ____dev_forward_skb(dev, skb);
1884
1885 if (likely(!ret)) {
1886 skb->protocol = eth_type_trans(skb, dev);
1887 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1888 }
1889
1890 return ret;
1891 }
1892 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1893
1894 /**
1895 * dev_forward_skb - loopback an skb to another netif
1896 *
1897 * @dev: destination network device
1898 * @skb: buffer to forward
1899 *
1900 * return values:
1901 * NET_RX_SUCCESS (no congestion)
1902 * NET_RX_DROP (packet was dropped, but freed)
1903 *
1904 * dev_forward_skb can be used for injecting an skb from the
1905 * start_xmit function of one device into the receive queue
1906 * of another device.
1907 *
1908 * The receiving device may be in another namespace, so
1909 * we have to clear all information in the skb that could
1910 * impact namespace isolation.
1911 */
1912 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1913 {
1914 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1915 }
1916 EXPORT_SYMBOL_GPL(dev_forward_skb);
1917
1918 static inline int deliver_skb(struct sk_buff *skb,
1919 struct packet_type *pt_prev,
1920 struct net_device *orig_dev)
1921 {
1922 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1923 return -ENOMEM;
1924 refcount_inc(&skb->users);
1925 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1926 }
1927
1928 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1929 struct packet_type **pt,
1930 struct net_device *orig_dev,
1931 __be16 type,
1932 struct list_head *ptype_list)
1933 {
1934 struct packet_type *ptype, *pt_prev = *pt;
1935
1936 list_for_each_entry_rcu(ptype, ptype_list, list) {
1937 if (ptype->type != type)
1938 continue;
1939 if (pt_prev)
1940 deliver_skb(skb, pt_prev, orig_dev);
1941 pt_prev = ptype;
1942 }
1943 *pt = pt_prev;
1944 }
1945
1946 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1947 {
1948 if (!ptype->af_packet_priv || !skb->sk)
1949 return false;
1950
1951 if (ptype->id_match)
1952 return ptype->id_match(ptype, skb->sk);
1953 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1954 return true;
1955
1956 return false;
1957 }
1958
1959 /*
1960 * Support routine. Sends outgoing frames to any network
1961 * taps currently in use.
1962 */
1963
1964 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1965 {
1966 struct packet_type *ptype;
1967 struct sk_buff *skb2 = NULL;
1968 struct packet_type *pt_prev = NULL;
1969 struct list_head *ptype_list = &ptype_all;
1970
1971 rcu_read_lock();
1972 again:
1973 list_for_each_entry_rcu(ptype, ptype_list, list) {
1974 /* Never send packets back to the socket
1975 * they originated from - MvS (miquels@drinkel.ow.org)
1976 */
1977 if (skb_loop_sk(ptype, skb))
1978 continue;
1979
1980 if (pt_prev) {
1981 deliver_skb(skb2, pt_prev, skb->dev);
1982 pt_prev = ptype;
1983 continue;
1984 }
1985
1986 /* need to clone skb, done only once */
1987 skb2 = skb_clone(skb, GFP_ATOMIC);
1988 if (!skb2)
1989 goto out_unlock;
1990
1991 net_timestamp_set(skb2);
1992
1993 /* skb->nh should be correctly
1994 * set by sender, so that the second statement is
1995 * just protection against buggy protocols.
1996 */
1997 skb_reset_mac_header(skb2);
1998
1999 if (skb_network_header(skb2) < skb2->data ||
2000 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2001 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2002 ntohs(skb2->protocol),
2003 dev->name);
2004 skb_reset_network_header(skb2);
2005 }
2006
2007 skb2->transport_header = skb2->network_header;
2008 skb2->pkt_type = PACKET_OUTGOING;
2009 pt_prev = ptype;
2010 }
2011
2012 if (ptype_list == &ptype_all) {
2013 ptype_list = &dev->ptype_all;
2014 goto again;
2015 }
2016 out_unlock:
2017 if (pt_prev) {
2018 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2019 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2020 else
2021 kfree_skb(skb2);
2022 }
2023 rcu_read_unlock();
2024 }
2025 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2026
2027 /**
2028 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2029 * @dev: Network device
2030 * @txq: number of queues available
2031 *
2032 * If real_num_tx_queues is changed the tc mappings may no longer be
2033 * valid. To resolve this verify the tc mapping remains valid and if
2034 * not NULL the mapping. With no priorities mapping to this
2035 * offset/count pair it will no longer be used. In the worst case TC0
2036 * is invalid nothing can be done so disable priority mappings. If is
2037 * expected that drivers will fix this mapping if they can before
2038 * calling netif_set_real_num_tx_queues.
2039 */
2040 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2041 {
2042 int i;
2043 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2044
2045 /* If TC0 is invalidated disable TC mapping */
2046 if (tc->offset + tc->count > txq) {
2047 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2048 dev->num_tc = 0;
2049 return;
2050 }
2051
2052 /* Invalidated prio to tc mappings set to TC0 */
2053 for (i = 1; i < TC_BITMASK + 1; i++) {
2054 int q = netdev_get_prio_tc_map(dev, i);
2055
2056 tc = &dev->tc_to_txq[q];
2057 if (tc->offset + tc->count > txq) {
2058 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2059 i, q);
2060 netdev_set_prio_tc_map(dev, i, 0);
2061 }
2062 }
2063 }
2064
2065 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2066 {
2067 if (dev->num_tc) {
2068 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2069 int i;
2070
2071 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2072 if ((txq - tc->offset) < tc->count)
2073 return i;
2074 }
2075
2076 return -1;
2077 }
2078
2079 return 0;
2080 }
2081 EXPORT_SYMBOL(netdev_txq_to_tc);
2082
2083 #ifdef CONFIG_XPS
2084 static DEFINE_MUTEX(xps_map_mutex);
2085 #define xmap_dereference(P) \
2086 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2087
2088 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2089 int tci, u16 index)
2090 {
2091 struct xps_map *map = NULL;
2092 int pos;
2093
2094 if (dev_maps)
2095 map = xmap_dereference(dev_maps->cpu_map[tci]);
2096 if (!map)
2097 return false;
2098
2099 for (pos = map->len; pos--;) {
2100 if (map->queues[pos] != index)
2101 continue;
2102
2103 if (map->len > 1) {
2104 map->queues[pos] = map->queues[--map->len];
2105 break;
2106 }
2107
2108 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2109 kfree_rcu(map, rcu);
2110 return false;
2111 }
2112
2113 return true;
2114 }
2115
2116 static bool remove_xps_queue_cpu(struct net_device *dev,
2117 struct xps_dev_maps *dev_maps,
2118 int cpu, u16 offset, u16 count)
2119 {
2120 int num_tc = dev->num_tc ? : 1;
2121 bool active = false;
2122 int tci;
2123
2124 for (tci = cpu * num_tc; num_tc--; tci++) {
2125 int i, j;
2126
2127 for (i = count, j = offset; i--; j++) {
2128 if (!remove_xps_queue(dev_maps, tci, j))
2129 break;
2130 }
2131
2132 active |= i < 0;
2133 }
2134
2135 return active;
2136 }
2137
2138 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2139 u16 count)
2140 {
2141 struct xps_dev_maps *dev_maps;
2142 int cpu, i;
2143 bool active = false;
2144
2145 mutex_lock(&xps_map_mutex);
2146 dev_maps = xmap_dereference(dev->xps_maps);
2147
2148 if (!dev_maps)
2149 goto out_no_maps;
2150
2151 for_each_possible_cpu(cpu)
2152 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2153 offset, count);
2154
2155 if (!active) {
2156 RCU_INIT_POINTER(dev->xps_maps, NULL);
2157 kfree_rcu(dev_maps, rcu);
2158 }
2159
2160 for (i = offset + (count - 1); count--; i--)
2161 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2162 NUMA_NO_NODE);
2163
2164 out_no_maps:
2165 mutex_unlock(&xps_map_mutex);
2166 }
2167
2168 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2169 {
2170 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2171 }
2172
2173 static struct xps_map *expand_xps_map(struct xps_map *map,
2174 int cpu, u16 index)
2175 {
2176 struct xps_map *new_map;
2177 int alloc_len = XPS_MIN_MAP_ALLOC;
2178 int i, pos;
2179
2180 for (pos = 0; map && pos < map->len; pos++) {
2181 if (map->queues[pos] != index)
2182 continue;
2183 return map;
2184 }
2185
2186 /* Need to add queue to this CPU's existing map */
2187 if (map) {
2188 if (pos < map->alloc_len)
2189 return map;
2190
2191 alloc_len = map->alloc_len * 2;
2192 }
2193
2194 /* Need to allocate new map to store queue on this CPU's map */
2195 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2196 cpu_to_node(cpu));
2197 if (!new_map)
2198 return NULL;
2199
2200 for (i = 0; i < pos; i++)
2201 new_map->queues[i] = map->queues[i];
2202 new_map->alloc_len = alloc_len;
2203 new_map->len = pos;
2204
2205 return new_map;
2206 }
2207
2208 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2209 u16 index)
2210 {
2211 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2212 int i, cpu, tci, numa_node_id = -2;
2213 int maps_sz, num_tc = 1, tc = 0;
2214 struct xps_map *map, *new_map;
2215 bool active = false;
2216
2217 if (dev->num_tc) {
2218 num_tc = dev->num_tc;
2219 tc = netdev_txq_to_tc(dev, index);
2220 if (tc < 0)
2221 return -EINVAL;
2222 }
2223
2224 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2225 if (maps_sz < L1_CACHE_BYTES)
2226 maps_sz = L1_CACHE_BYTES;
2227
2228 mutex_lock(&xps_map_mutex);
2229
2230 dev_maps = xmap_dereference(dev->xps_maps);
2231
2232 /* allocate memory for queue storage */
2233 for_each_cpu_and(cpu, cpu_online_mask, mask) {
2234 if (!new_dev_maps)
2235 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2236 if (!new_dev_maps) {
2237 mutex_unlock(&xps_map_mutex);
2238 return -ENOMEM;
2239 }
2240
2241 tci = cpu * num_tc + tc;
2242 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2243 NULL;
2244
2245 map = expand_xps_map(map, cpu, index);
2246 if (!map)
2247 goto error;
2248
2249 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2250 }
2251
2252 if (!new_dev_maps)
2253 goto out_no_new_maps;
2254
2255 for_each_possible_cpu(cpu) {
2256 /* copy maps belonging to foreign traffic classes */
2257 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2258 /* fill in the new device map from the old device map */
2259 map = xmap_dereference(dev_maps->cpu_map[tci]);
2260 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2261 }
2262
2263 /* We need to explicitly update tci as prevous loop
2264 * could break out early if dev_maps is NULL.
2265 */
2266 tci = cpu * num_tc + tc;
2267
2268 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2269 /* add queue to CPU maps */
2270 int pos = 0;
2271
2272 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2273 while ((pos < map->len) && (map->queues[pos] != index))
2274 pos++;
2275
2276 if (pos == map->len)
2277 map->queues[map->len++] = index;
2278 #ifdef CONFIG_NUMA
2279 if (numa_node_id == -2)
2280 numa_node_id = cpu_to_node(cpu);
2281 else if (numa_node_id != cpu_to_node(cpu))
2282 numa_node_id = -1;
2283 #endif
2284 } else if (dev_maps) {
2285 /* fill in the new device map from the old device map */
2286 map = xmap_dereference(dev_maps->cpu_map[tci]);
2287 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2288 }
2289
2290 /* copy maps belonging to foreign traffic classes */
2291 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2292 /* fill in the new device map from the old device map */
2293 map = xmap_dereference(dev_maps->cpu_map[tci]);
2294 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2295 }
2296 }
2297
2298 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2299
2300 /* Cleanup old maps */
2301 if (!dev_maps)
2302 goto out_no_old_maps;
2303
2304 for_each_possible_cpu(cpu) {
2305 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2306 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2307 map = xmap_dereference(dev_maps->cpu_map[tci]);
2308 if (map && map != new_map)
2309 kfree_rcu(map, rcu);
2310 }
2311 }
2312
2313 kfree_rcu(dev_maps, rcu);
2314
2315 out_no_old_maps:
2316 dev_maps = new_dev_maps;
2317 active = true;
2318
2319 out_no_new_maps:
2320 /* update Tx queue numa node */
2321 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2322 (numa_node_id >= 0) ? numa_node_id :
2323 NUMA_NO_NODE);
2324
2325 if (!dev_maps)
2326 goto out_no_maps;
2327
2328 /* removes queue from unused CPUs */
2329 for_each_possible_cpu(cpu) {
2330 for (i = tc, tci = cpu * num_tc; i--; tci++)
2331 active |= remove_xps_queue(dev_maps, tci, index);
2332 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2333 active |= remove_xps_queue(dev_maps, tci, index);
2334 for (i = num_tc - tc, tci++; --i; tci++)
2335 active |= remove_xps_queue(dev_maps, tci, index);
2336 }
2337
2338 /* free map if not active */
2339 if (!active) {
2340 RCU_INIT_POINTER(dev->xps_maps, NULL);
2341 kfree_rcu(dev_maps, rcu);
2342 }
2343
2344 out_no_maps:
2345 mutex_unlock(&xps_map_mutex);
2346
2347 return 0;
2348 error:
2349 /* remove any maps that we added */
2350 for_each_possible_cpu(cpu) {
2351 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2352 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2353 map = dev_maps ?
2354 xmap_dereference(dev_maps->cpu_map[tci]) :
2355 NULL;
2356 if (new_map && new_map != map)
2357 kfree(new_map);
2358 }
2359 }
2360
2361 mutex_unlock(&xps_map_mutex);
2362
2363 kfree(new_dev_maps);
2364 return -ENOMEM;
2365 }
2366 EXPORT_SYMBOL(netif_set_xps_queue);
2367
2368 #endif
2369 void netdev_reset_tc(struct net_device *dev)
2370 {
2371 #ifdef CONFIG_XPS
2372 netif_reset_xps_queues_gt(dev, 0);
2373 #endif
2374 dev->num_tc = 0;
2375 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2376 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2377 }
2378 EXPORT_SYMBOL(netdev_reset_tc);
2379
2380 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2381 {
2382 if (tc >= dev->num_tc)
2383 return -EINVAL;
2384
2385 #ifdef CONFIG_XPS
2386 netif_reset_xps_queues(dev, offset, count);
2387 #endif
2388 dev->tc_to_txq[tc].count = count;
2389 dev->tc_to_txq[tc].offset = offset;
2390 return 0;
2391 }
2392 EXPORT_SYMBOL(netdev_set_tc_queue);
2393
2394 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2395 {
2396 if (num_tc > TC_MAX_QUEUE)
2397 return -EINVAL;
2398
2399 #ifdef CONFIG_XPS
2400 netif_reset_xps_queues_gt(dev, 0);
2401 #endif
2402 dev->num_tc = num_tc;
2403 return 0;
2404 }
2405 EXPORT_SYMBOL(netdev_set_num_tc);
2406
2407 /*
2408 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2409 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2410 */
2411 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2412 {
2413 bool disabling;
2414 int rc;
2415
2416 disabling = txq < dev->real_num_tx_queues;
2417
2418 if (txq < 1 || txq > dev->num_tx_queues)
2419 return -EINVAL;
2420
2421 if (dev->reg_state == NETREG_REGISTERED ||
2422 dev->reg_state == NETREG_UNREGISTERING) {
2423 ASSERT_RTNL();
2424
2425 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2426 txq);
2427 if (rc)
2428 return rc;
2429
2430 if (dev->num_tc)
2431 netif_setup_tc(dev, txq);
2432
2433 dev->real_num_tx_queues = txq;
2434
2435 if (disabling) {
2436 synchronize_net();
2437 qdisc_reset_all_tx_gt(dev, txq);
2438 #ifdef CONFIG_XPS
2439 netif_reset_xps_queues_gt(dev, txq);
2440 #endif
2441 }
2442 } else {
2443 dev->real_num_tx_queues = txq;
2444 }
2445
2446 return 0;
2447 }
2448 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2449
2450 #ifdef CONFIG_SYSFS
2451 /**
2452 * netif_set_real_num_rx_queues - set actual number of RX queues used
2453 * @dev: Network device
2454 * @rxq: Actual number of RX queues
2455 *
2456 * This must be called either with the rtnl_lock held or before
2457 * registration of the net device. Returns 0 on success, or a
2458 * negative error code. If called before registration, it always
2459 * succeeds.
2460 */
2461 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2462 {
2463 int rc;
2464
2465 if (rxq < 1 || rxq > dev->num_rx_queues)
2466 return -EINVAL;
2467
2468 if (dev->reg_state == NETREG_REGISTERED) {
2469 ASSERT_RTNL();
2470
2471 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2472 rxq);
2473 if (rc)
2474 return rc;
2475 }
2476
2477 dev->real_num_rx_queues = rxq;
2478 return 0;
2479 }
2480 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2481 #endif
2482
2483 /**
2484 * netif_get_num_default_rss_queues - default number of RSS queues
2485 *
2486 * This routine should set an upper limit on the number of RSS queues
2487 * used by default by multiqueue devices.
2488 */
2489 int netif_get_num_default_rss_queues(void)
2490 {
2491 return is_kdump_kernel() ?
2492 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2493 }
2494 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2495
2496 static void __netif_reschedule(struct Qdisc *q)
2497 {
2498 struct softnet_data *sd;
2499 unsigned long flags;
2500
2501 local_irq_save(flags);
2502 sd = this_cpu_ptr(&softnet_data);
2503 q->next_sched = NULL;
2504 *sd->output_queue_tailp = q;
2505 sd->output_queue_tailp = &q->next_sched;
2506 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2507 local_irq_restore(flags);
2508 }
2509
2510 void __netif_schedule(struct Qdisc *q)
2511 {
2512 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2513 __netif_reschedule(q);
2514 }
2515 EXPORT_SYMBOL(__netif_schedule);
2516
2517 struct dev_kfree_skb_cb {
2518 enum skb_free_reason reason;
2519 };
2520
2521 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2522 {
2523 return (struct dev_kfree_skb_cb *)skb->cb;
2524 }
2525
2526 void netif_schedule_queue(struct netdev_queue *txq)
2527 {
2528 rcu_read_lock();
2529 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2530 struct Qdisc *q = rcu_dereference(txq->qdisc);
2531
2532 __netif_schedule(q);
2533 }
2534 rcu_read_unlock();
2535 }
2536 EXPORT_SYMBOL(netif_schedule_queue);
2537
2538 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2539 {
2540 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2541 struct Qdisc *q;
2542
2543 rcu_read_lock();
2544 q = rcu_dereference(dev_queue->qdisc);
2545 __netif_schedule(q);
2546 rcu_read_unlock();
2547 }
2548 }
2549 EXPORT_SYMBOL(netif_tx_wake_queue);
2550
2551 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2552 {
2553 unsigned long flags;
2554
2555 if (unlikely(!skb))
2556 return;
2557
2558 if (likely(refcount_read(&skb->users) == 1)) {
2559 smp_rmb();
2560 refcount_set(&skb->users, 0);
2561 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2562 return;
2563 }
2564 get_kfree_skb_cb(skb)->reason = reason;
2565 local_irq_save(flags);
2566 skb->next = __this_cpu_read(softnet_data.completion_queue);
2567 __this_cpu_write(softnet_data.completion_queue, skb);
2568 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2569 local_irq_restore(flags);
2570 }
2571 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2572
2573 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2574 {
2575 if (in_irq() || irqs_disabled())
2576 __dev_kfree_skb_irq(skb, reason);
2577 else
2578 dev_kfree_skb(skb);
2579 }
2580 EXPORT_SYMBOL(__dev_kfree_skb_any);
2581
2582
2583 /**
2584 * netif_device_detach - mark device as removed
2585 * @dev: network device
2586 *
2587 * Mark device as removed from system and therefore no longer available.
2588 */
2589 void netif_device_detach(struct net_device *dev)
2590 {
2591 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2592 netif_running(dev)) {
2593 netif_tx_stop_all_queues(dev);
2594 }
2595 }
2596 EXPORT_SYMBOL(netif_device_detach);
2597
2598 /**
2599 * netif_device_attach - mark device as attached
2600 * @dev: network device
2601 *
2602 * Mark device as attached from system and restart if needed.
2603 */
2604 void netif_device_attach(struct net_device *dev)
2605 {
2606 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2607 netif_running(dev)) {
2608 netif_tx_wake_all_queues(dev);
2609 __netdev_watchdog_up(dev);
2610 }
2611 }
2612 EXPORT_SYMBOL(netif_device_attach);
2613
2614 /*
2615 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2616 * to be used as a distribution range.
2617 */
2618 static u16 skb_tx_hash(const struct net_device *dev, struct sk_buff *skb)
2619 {
2620 u32 hash;
2621 u16 qoffset = 0;
2622 u16 qcount = dev->real_num_tx_queues;
2623
2624 if (skb_rx_queue_recorded(skb)) {
2625 hash = skb_get_rx_queue(skb);
2626 while (unlikely(hash >= qcount))
2627 hash -= qcount;
2628 return hash;
2629 }
2630
2631 if (dev->num_tc) {
2632 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2633
2634 qoffset = dev->tc_to_txq[tc].offset;
2635 qcount = dev->tc_to_txq[tc].count;
2636 }
2637
2638 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2639 }
2640
2641 static void skb_warn_bad_offload(const struct sk_buff *skb)
2642 {
2643 static const netdev_features_t null_features;
2644 struct net_device *dev = skb->dev;
2645 const char *name = "";
2646
2647 if (!net_ratelimit())
2648 return;
2649
2650 if (dev) {
2651 if (dev->dev.parent)
2652 name = dev_driver_string(dev->dev.parent);
2653 else
2654 name = netdev_name(dev);
2655 }
2656 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2657 "gso_type=%d ip_summed=%d\n",
2658 name, dev ? &dev->features : &null_features,
2659 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2660 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2661 skb_shinfo(skb)->gso_type, skb->ip_summed);
2662 }
2663
2664 /*
2665 * Invalidate hardware checksum when packet is to be mangled, and
2666 * complete checksum manually on outgoing path.
2667 */
2668 int skb_checksum_help(struct sk_buff *skb)
2669 {
2670 __wsum csum;
2671 int ret = 0, offset;
2672
2673 if (skb->ip_summed == CHECKSUM_COMPLETE)
2674 goto out_set_summed;
2675
2676 if (unlikely(skb_shinfo(skb)->gso_size)) {
2677 skb_warn_bad_offload(skb);
2678 return -EINVAL;
2679 }
2680
2681 /* Before computing a checksum, we should make sure no frag could
2682 * be modified by an external entity : checksum could be wrong.
2683 */
2684 if (skb_has_shared_frag(skb)) {
2685 ret = __skb_linearize(skb);
2686 if (ret)
2687 goto out;
2688 }
2689
2690 offset = skb_checksum_start_offset(skb);
2691 BUG_ON(offset >= skb_headlen(skb));
2692 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2693
2694 offset += skb->csum_offset;
2695 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2696
2697 if (skb_cloned(skb) &&
2698 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2699 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2700 if (ret)
2701 goto out;
2702 }
2703
2704 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2705 out_set_summed:
2706 skb->ip_summed = CHECKSUM_NONE;
2707 out:
2708 return ret;
2709 }
2710 EXPORT_SYMBOL(skb_checksum_help);
2711
2712 int skb_crc32c_csum_help(struct sk_buff *skb)
2713 {
2714 __le32 crc32c_csum;
2715 int ret = 0, offset, start;
2716
2717 if (skb->ip_summed != CHECKSUM_PARTIAL)
2718 goto out;
2719
2720 if (unlikely(skb_is_gso(skb)))
2721 goto out;
2722
2723 /* Before computing a checksum, we should make sure no frag could
2724 * be modified by an external entity : checksum could be wrong.
2725 */
2726 if (unlikely(skb_has_shared_frag(skb))) {
2727 ret = __skb_linearize(skb);
2728 if (ret)
2729 goto out;
2730 }
2731 start = skb_checksum_start_offset(skb);
2732 offset = start + offsetof(struct sctphdr, checksum);
2733 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2734 ret = -EINVAL;
2735 goto out;
2736 }
2737 if (skb_cloned(skb) &&
2738 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2739 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2740 if (ret)
2741 goto out;
2742 }
2743 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2744 skb->len - start, ~(__u32)0,
2745 crc32c_csum_stub));
2746 *(__le32 *)(skb->data + offset) = crc32c_csum;
2747 skb->ip_summed = CHECKSUM_NONE;
2748 skb->csum_not_inet = 0;
2749 out:
2750 return ret;
2751 }
2752
2753 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2754 {
2755 __be16 type = skb->protocol;
2756
2757 /* Tunnel gso handlers can set protocol to ethernet. */
2758 if (type == htons(ETH_P_TEB)) {
2759 struct ethhdr *eth;
2760
2761 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2762 return 0;
2763
2764 eth = (struct ethhdr *)skb->data;
2765 type = eth->h_proto;
2766 }
2767
2768 return __vlan_get_protocol(skb, type, depth);
2769 }
2770
2771 /**
2772 * skb_mac_gso_segment - mac layer segmentation handler.
2773 * @skb: buffer to segment
2774 * @features: features for the output path (see dev->features)
2775 */
2776 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2777 netdev_features_t features)
2778 {
2779 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2780 struct packet_offload *ptype;
2781 int vlan_depth = skb->mac_len;
2782 __be16 type = skb_network_protocol(skb, &vlan_depth);
2783
2784 if (unlikely(!type))
2785 return ERR_PTR(-EINVAL);
2786
2787 __skb_pull(skb, vlan_depth);
2788
2789 rcu_read_lock();
2790 list_for_each_entry_rcu(ptype, &offload_base, list) {
2791 if (ptype->type == type && ptype->callbacks.gso_segment) {
2792 segs = ptype->callbacks.gso_segment(skb, features);
2793 break;
2794 }
2795 }
2796 rcu_read_unlock();
2797
2798 __skb_push(skb, skb->data - skb_mac_header(skb));
2799
2800 return segs;
2801 }
2802 EXPORT_SYMBOL(skb_mac_gso_segment);
2803
2804
2805 /* openvswitch calls this on rx path, so we need a different check.
2806 */
2807 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2808 {
2809 if (tx_path)
2810 return skb->ip_summed != CHECKSUM_PARTIAL &&
2811 skb->ip_summed != CHECKSUM_UNNECESSARY;
2812
2813 return skb->ip_summed == CHECKSUM_NONE;
2814 }
2815
2816 /**
2817 * __skb_gso_segment - Perform segmentation on skb.
2818 * @skb: buffer to segment
2819 * @features: features for the output path (see dev->features)
2820 * @tx_path: whether it is called in TX path
2821 *
2822 * This function segments the given skb and returns a list of segments.
2823 *
2824 * It may return NULL if the skb requires no segmentation. This is
2825 * only possible when GSO is used for verifying header integrity.
2826 *
2827 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2828 */
2829 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2830 netdev_features_t features, bool tx_path)
2831 {
2832 struct sk_buff *segs;
2833
2834 if (unlikely(skb_needs_check(skb, tx_path))) {
2835 int err;
2836
2837 /* We're going to init ->check field in TCP or UDP header */
2838 err = skb_cow_head(skb, 0);
2839 if (err < 0)
2840 return ERR_PTR(err);
2841 }
2842
2843 /* Only report GSO partial support if it will enable us to
2844 * support segmentation on this frame without needing additional
2845 * work.
2846 */
2847 if (features & NETIF_F_GSO_PARTIAL) {
2848 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2849 struct net_device *dev = skb->dev;
2850
2851 partial_features |= dev->features & dev->gso_partial_features;
2852 if (!skb_gso_ok(skb, features | partial_features))
2853 features &= ~NETIF_F_GSO_PARTIAL;
2854 }
2855
2856 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2857 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2858
2859 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2860 SKB_GSO_CB(skb)->encap_level = 0;
2861
2862 skb_reset_mac_header(skb);
2863 skb_reset_mac_len(skb);
2864
2865 segs = skb_mac_gso_segment(skb, features);
2866
2867 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2868 skb_warn_bad_offload(skb);
2869
2870 return segs;
2871 }
2872 EXPORT_SYMBOL(__skb_gso_segment);
2873
2874 /* Take action when hardware reception checksum errors are detected. */
2875 #ifdef CONFIG_BUG
2876 void netdev_rx_csum_fault(struct net_device *dev)
2877 {
2878 if (net_ratelimit()) {
2879 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2880 dump_stack();
2881 }
2882 }
2883 EXPORT_SYMBOL(netdev_rx_csum_fault);
2884 #endif
2885
2886 /* XXX: check that highmem exists at all on the given machine. */
2887 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2888 {
2889 #ifdef CONFIG_HIGHMEM
2890 int i;
2891
2892 if (!(dev->features & NETIF_F_HIGHDMA)) {
2893 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2894 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2895
2896 if (PageHighMem(skb_frag_page(frag)))
2897 return 1;
2898 }
2899 }
2900 #endif
2901 return 0;
2902 }
2903
2904 /* If MPLS offload request, verify we are testing hardware MPLS features
2905 * instead of standard features for the netdev.
2906 */
2907 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2908 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2909 netdev_features_t features,
2910 __be16 type)
2911 {
2912 if (eth_p_mpls(type))
2913 features &= skb->dev->mpls_features;
2914
2915 return features;
2916 }
2917 #else
2918 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2919 netdev_features_t features,
2920 __be16 type)
2921 {
2922 return features;
2923 }
2924 #endif
2925
2926 static netdev_features_t harmonize_features(struct sk_buff *skb,
2927 netdev_features_t features)
2928 {
2929 int tmp;
2930 __be16 type;
2931
2932 type = skb_network_protocol(skb, &tmp);
2933 features = net_mpls_features(skb, features, type);
2934
2935 if (skb->ip_summed != CHECKSUM_NONE &&
2936 !can_checksum_protocol(features, type)) {
2937 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2938 }
2939 if (illegal_highdma(skb->dev, skb))
2940 features &= ~NETIF_F_SG;
2941
2942 return features;
2943 }
2944
2945 netdev_features_t passthru_features_check(struct sk_buff *skb,
2946 struct net_device *dev,
2947 netdev_features_t features)
2948 {
2949 return features;
2950 }
2951 EXPORT_SYMBOL(passthru_features_check);
2952
2953 static netdev_features_t dflt_features_check(struct sk_buff *skb,
2954 struct net_device *dev,
2955 netdev_features_t features)
2956 {
2957 return vlan_features_check(skb, features);
2958 }
2959
2960 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2961 struct net_device *dev,
2962 netdev_features_t features)
2963 {
2964 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2965
2966 if (gso_segs > dev->gso_max_segs)
2967 return features & ~NETIF_F_GSO_MASK;
2968
2969 /* Support for GSO partial features requires software
2970 * intervention before we can actually process the packets
2971 * so we need to strip support for any partial features now
2972 * and we can pull them back in after we have partially
2973 * segmented the frame.
2974 */
2975 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2976 features &= ~dev->gso_partial_features;
2977
2978 /* Make sure to clear the IPv4 ID mangling feature if the
2979 * IPv4 header has the potential to be fragmented.
2980 */
2981 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2982 struct iphdr *iph = skb->encapsulation ?
2983 inner_ip_hdr(skb) : ip_hdr(skb);
2984
2985 if (!(iph->frag_off & htons(IP_DF)))
2986 features &= ~NETIF_F_TSO_MANGLEID;
2987 }
2988
2989 return features;
2990 }
2991
2992 netdev_features_t netif_skb_features(struct sk_buff *skb)
2993 {
2994 struct net_device *dev = skb->dev;
2995 netdev_features_t features = dev->features;
2996
2997 if (skb_is_gso(skb))
2998 features = gso_features_check(skb, dev, features);
2999
3000 /* If encapsulation offload request, verify we are testing
3001 * hardware encapsulation features instead of standard
3002 * features for the netdev
3003 */
3004 if (skb->encapsulation)
3005 features &= dev->hw_enc_features;
3006
3007 if (skb_vlan_tagged(skb))
3008 features = netdev_intersect_features(features,
3009 dev->vlan_features |
3010 NETIF_F_HW_VLAN_CTAG_TX |
3011 NETIF_F_HW_VLAN_STAG_TX);
3012
3013 if (dev->netdev_ops->ndo_features_check)
3014 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3015 features);
3016 else
3017 features &= dflt_features_check(skb, dev, features);
3018
3019 return harmonize_features(skb, features);
3020 }
3021 EXPORT_SYMBOL(netif_skb_features);
3022
3023 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3024 struct netdev_queue *txq, bool more)
3025 {
3026 unsigned int len;
3027 int rc;
3028
3029 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3030 dev_queue_xmit_nit(skb, dev);
3031
3032 len = skb->len;
3033 trace_net_dev_start_xmit(skb, dev);
3034 rc = netdev_start_xmit(skb, dev, txq, more);
3035 trace_net_dev_xmit(skb, rc, dev, len);
3036
3037 return rc;
3038 }
3039
3040 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3041 struct netdev_queue *txq, int *ret)
3042 {
3043 struct sk_buff *skb = first;
3044 int rc = NETDEV_TX_OK;
3045
3046 while (skb) {
3047 struct sk_buff *next = skb->next;
3048
3049 skb->next = NULL;
3050 rc = xmit_one(skb, dev, txq, next != NULL);
3051 if (unlikely(!dev_xmit_complete(rc))) {
3052 skb->next = next;
3053 goto out;
3054 }
3055
3056 skb = next;
3057 if (netif_xmit_stopped(txq) && skb) {
3058 rc = NETDEV_TX_BUSY;
3059 break;
3060 }
3061 }
3062
3063 out:
3064 *ret = rc;
3065 return skb;
3066 }
3067
3068 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3069 netdev_features_t features)
3070 {
3071 if (skb_vlan_tag_present(skb) &&
3072 !vlan_hw_offload_capable(features, skb->vlan_proto))
3073 skb = __vlan_hwaccel_push_inside(skb);
3074 return skb;
3075 }
3076
3077 int skb_csum_hwoffload_help(struct sk_buff *skb,
3078 const netdev_features_t features)
3079 {
3080 if (unlikely(skb->csum_not_inet))
3081 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3082 skb_crc32c_csum_help(skb);
3083
3084 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3085 }
3086 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3087
3088 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3089 {
3090 netdev_features_t features;
3091
3092 features = netif_skb_features(skb);
3093 skb = validate_xmit_vlan(skb, features);
3094 if (unlikely(!skb))
3095 goto out_null;
3096
3097 skb = sk_validate_xmit_skb(skb, dev);
3098 if (unlikely(!skb))
3099 goto out_null;
3100
3101 if (netif_needs_gso(skb, features)) {
3102 struct sk_buff *segs;
3103
3104 segs = skb_gso_segment(skb, features);
3105 if (IS_ERR(segs)) {
3106 goto out_kfree_skb;
3107 } else if (segs) {
3108 consume_skb(skb);
3109 skb = segs;
3110 }
3111 } else {
3112 if (skb_needs_linearize(skb, features) &&
3113 __skb_linearize(skb))
3114 goto out_kfree_skb;
3115
3116 /* If packet is not checksummed and device does not
3117 * support checksumming for this protocol, complete
3118 * checksumming here.
3119 */
3120 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3121 if (skb->encapsulation)
3122 skb_set_inner_transport_header(skb,
3123 skb_checksum_start_offset(skb));
3124 else
3125 skb_set_transport_header(skb,
3126 skb_checksum_start_offset(skb));
3127 if (skb_csum_hwoffload_help(skb, features))
3128 goto out_kfree_skb;
3129 }
3130 }
3131
3132 skb = validate_xmit_xfrm(skb, features, again);
3133
3134 return skb;
3135
3136 out_kfree_skb:
3137 kfree_skb(skb);
3138 out_null:
3139 atomic_long_inc(&dev->tx_dropped);
3140 return NULL;
3141 }
3142
3143 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3144 {
3145 struct sk_buff *next, *head = NULL, *tail;
3146
3147 for (; skb != NULL; skb = next) {
3148 next = skb->next;
3149 skb->next = NULL;
3150
3151 /* in case skb wont be segmented, point to itself */
3152 skb->prev = skb;
3153
3154 skb = validate_xmit_skb(skb, dev, again);
3155 if (!skb)
3156 continue;
3157
3158 if (!head)
3159 head = skb;
3160 else
3161 tail->next = skb;
3162 /* If skb was segmented, skb->prev points to
3163 * the last segment. If not, it still contains skb.
3164 */
3165 tail = skb->prev;
3166 }
3167 return head;
3168 }
3169 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3170
3171 static void qdisc_pkt_len_init(struct sk_buff *skb)
3172 {
3173 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3174
3175 qdisc_skb_cb(skb)->pkt_len = skb->len;
3176
3177 /* To get more precise estimation of bytes sent on wire,
3178 * we add to pkt_len the headers size of all segments
3179 */
3180 if (shinfo->gso_size) {
3181 unsigned int hdr_len;
3182 u16 gso_segs = shinfo->gso_segs;
3183
3184 /* mac layer + network layer */
3185 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3186
3187 /* + transport layer */
3188 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3189 const struct tcphdr *th;
3190 struct tcphdr _tcphdr;
3191
3192 th = skb_header_pointer(skb, skb_transport_offset(skb),
3193 sizeof(_tcphdr), &_tcphdr);
3194 if (likely(th))
3195 hdr_len += __tcp_hdrlen(th);
3196 } else {
3197 struct udphdr _udphdr;
3198
3199 if (skb_header_pointer(skb, skb_transport_offset(skb),
3200 sizeof(_udphdr), &_udphdr))
3201 hdr_len += sizeof(struct udphdr);
3202 }
3203
3204 if (shinfo->gso_type & SKB_GSO_DODGY)
3205 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3206 shinfo->gso_size);
3207
3208 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3209 }
3210 }
3211
3212 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3213 struct net_device *dev,
3214 struct netdev_queue *txq)
3215 {
3216 spinlock_t *root_lock = qdisc_lock(q);
3217 struct sk_buff *to_free = NULL;
3218 bool contended;
3219 int rc;
3220
3221 qdisc_calculate_pkt_len(skb, q);
3222
3223 if (q->flags & TCQ_F_NOLOCK) {
3224 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3225 __qdisc_drop(skb, &to_free);
3226 rc = NET_XMIT_DROP;
3227 } else {
3228 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3229 qdisc_run(q);
3230 }
3231
3232 if (unlikely(to_free))
3233 kfree_skb_list(to_free);
3234 return rc;
3235 }
3236
3237 /*
3238 * Heuristic to force contended enqueues to serialize on a
3239 * separate lock before trying to get qdisc main lock.
3240 * This permits qdisc->running owner to get the lock more
3241 * often and dequeue packets faster.
3242 */
3243 contended = qdisc_is_running(q);
3244 if (unlikely(contended))
3245 spin_lock(&q->busylock);
3246
3247 spin_lock(root_lock);
3248 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3249 __qdisc_drop(skb, &to_free);
3250 rc = NET_XMIT_DROP;
3251 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3252 qdisc_run_begin(q)) {
3253 /*
3254 * This is a work-conserving queue; there are no old skbs
3255 * waiting to be sent out; and the qdisc is not running -
3256 * xmit the skb directly.
3257 */
3258
3259 qdisc_bstats_update(q, skb);
3260
3261 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3262 if (unlikely(contended)) {
3263 spin_unlock(&q->busylock);
3264 contended = false;
3265 }
3266 __qdisc_run(q);
3267 }
3268
3269 qdisc_run_end(q);
3270 rc = NET_XMIT_SUCCESS;
3271 } else {
3272 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3273 if (qdisc_run_begin(q)) {
3274 if (unlikely(contended)) {
3275 spin_unlock(&q->busylock);
3276 contended = false;
3277 }
3278 __qdisc_run(q);
3279 qdisc_run_end(q);
3280 }
3281 }
3282 spin_unlock(root_lock);
3283 if (unlikely(to_free))
3284 kfree_skb_list(to_free);
3285 if (unlikely(contended))
3286 spin_unlock(&q->busylock);
3287 return rc;
3288 }
3289
3290 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3291 static void skb_update_prio(struct sk_buff *skb)
3292 {
3293 const struct netprio_map *map;
3294 const struct sock *sk;
3295 unsigned int prioidx;
3296
3297 if (skb->priority)
3298 return;
3299 map = rcu_dereference_bh(skb->dev->priomap);
3300 if (!map)
3301 return;
3302 sk = skb_to_full_sk(skb);
3303 if (!sk)
3304 return;
3305
3306 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3307
3308 if (prioidx < map->priomap_len)
3309 skb->priority = map->priomap[prioidx];
3310 }
3311 #else
3312 #define skb_update_prio(skb)
3313 #endif
3314
3315 DEFINE_PER_CPU(int, xmit_recursion);
3316 EXPORT_SYMBOL(xmit_recursion);
3317
3318 /**
3319 * dev_loopback_xmit - loop back @skb
3320 * @net: network namespace this loopback is happening in
3321 * @sk: sk needed to be a netfilter okfn
3322 * @skb: buffer to transmit
3323 */
3324 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3325 {
3326 skb_reset_mac_header(skb);
3327 __skb_pull(skb, skb_network_offset(skb));
3328 skb->pkt_type = PACKET_LOOPBACK;
3329 skb->ip_summed = CHECKSUM_UNNECESSARY;
3330 WARN_ON(!skb_dst(skb));
3331 skb_dst_force(skb);
3332 netif_rx_ni(skb);
3333 return 0;
3334 }
3335 EXPORT_SYMBOL(dev_loopback_xmit);
3336
3337 #ifdef CONFIG_NET_EGRESS
3338 static struct sk_buff *
3339 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3340 {
3341 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3342 struct tcf_result cl_res;
3343
3344 if (!miniq)
3345 return skb;
3346
3347 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3348 mini_qdisc_bstats_cpu_update(miniq, skb);
3349
3350 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3351 case TC_ACT_OK:
3352 case TC_ACT_RECLASSIFY:
3353 skb->tc_index = TC_H_MIN(cl_res.classid);
3354 break;
3355 case TC_ACT_SHOT:
3356 mini_qdisc_qstats_cpu_drop(miniq);
3357 *ret = NET_XMIT_DROP;
3358 kfree_skb(skb);
3359 return NULL;
3360 case TC_ACT_STOLEN:
3361 case TC_ACT_QUEUED:
3362 case TC_ACT_TRAP:
3363 *ret = NET_XMIT_SUCCESS;
3364 consume_skb(skb);
3365 return NULL;
3366 case TC_ACT_REDIRECT:
3367 /* No need to push/pop skb's mac_header here on egress! */
3368 skb_do_redirect(skb);
3369 *ret = NET_XMIT_SUCCESS;
3370 return NULL;
3371 default:
3372 break;
3373 }
3374
3375 return skb;
3376 }
3377 #endif /* CONFIG_NET_EGRESS */
3378
3379 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3380 {
3381 #ifdef CONFIG_XPS
3382 struct xps_dev_maps *dev_maps;
3383 struct xps_map *map;
3384 int queue_index = -1;
3385
3386 rcu_read_lock();
3387 dev_maps = rcu_dereference(dev->xps_maps);
3388 if (dev_maps) {
3389 unsigned int tci = skb->sender_cpu - 1;
3390
3391 if (dev->num_tc) {
3392 tci *= dev->num_tc;
3393 tci += netdev_get_prio_tc_map(dev, skb->priority);
3394 }
3395
3396 map = rcu_dereference(dev_maps->cpu_map[tci]);
3397 if (map) {
3398 if (map->len == 1)
3399 queue_index = map->queues[0];
3400 else
3401 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3402 map->len)];
3403 if (unlikely(queue_index >= dev->real_num_tx_queues))
3404 queue_index = -1;
3405 }
3406 }
3407 rcu_read_unlock();
3408
3409 return queue_index;
3410 #else
3411 return -1;
3412 #endif
3413 }
3414
3415 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3416 {
3417 struct sock *sk = skb->sk;
3418 int queue_index = sk_tx_queue_get(sk);
3419
3420 if (queue_index < 0 || skb->ooo_okay ||
3421 queue_index >= dev->real_num_tx_queues) {
3422 int new_index = get_xps_queue(dev, skb);
3423
3424 if (new_index < 0)
3425 new_index = skb_tx_hash(dev, skb);
3426
3427 if (queue_index != new_index && sk &&
3428 sk_fullsock(sk) &&
3429 rcu_access_pointer(sk->sk_dst_cache))
3430 sk_tx_queue_set(sk, new_index);
3431
3432 queue_index = new_index;
3433 }
3434
3435 return queue_index;
3436 }
3437
3438 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3439 struct sk_buff *skb,
3440 void *accel_priv)
3441 {
3442 int queue_index = 0;
3443
3444 #ifdef CONFIG_XPS
3445 u32 sender_cpu = skb->sender_cpu - 1;
3446
3447 if (sender_cpu >= (u32)NR_CPUS)
3448 skb->sender_cpu = raw_smp_processor_id() + 1;
3449 #endif
3450
3451 if (dev->real_num_tx_queues != 1) {
3452 const struct net_device_ops *ops = dev->netdev_ops;
3453
3454 if (ops->ndo_select_queue)
3455 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3456 __netdev_pick_tx);
3457 else
3458 queue_index = __netdev_pick_tx(dev, skb);
3459
3460 queue_index = netdev_cap_txqueue(dev, queue_index);
3461 }
3462
3463 skb_set_queue_mapping(skb, queue_index);
3464 return netdev_get_tx_queue(dev, queue_index);
3465 }
3466
3467 /**
3468 * __dev_queue_xmit - transmit a buffer
3469 * @skb: buffer to transmit
3470 * @accel_priv: private data used for L2 forwarding offload
3471 *
3472 * Queue a buffer for transmission to a network device. The caller must
3473 * have set the device and priority and built the buffer before calling
3474 * this function. The function can be called from an interrupt.
3475 *
3476 * A negative errno code is returned on a failure. A success does not
3477 * guarantee the frame will be transmitted as it may be dropped due
3478 * to congestion or traffic shaping.
3479 *
3480 * -----------------------------------------------------------------------------------
3481 * I notice this method can also return errors from the queue disciplines,
3482 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3483 * be positive.
3484 *
3485 * Regardless of the return value, the skb is consumed, so it is currently
3486 * difficult to retry a send to this method. (You can bump the ref count
3487 * before sending to hold a reference for retry if you are careful.)
3488 *
3489 * When calling this method, interrupts MUST be enabled. This is because
3490 * the BH enable code must have IRQs enabled so that it will not deadlock.
3491 * --BLG
3492 */
3493 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3494 {
3495 struct net_device *dev = skb->dev;
3496 struct netdev_queue *txq;
3497 struct Qdisc *q;
3498 int rc = -ENOMEM;
3499 bool again = false;
3500
3501 skb_reset_mac_header(skb);
3502
3503 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3504 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3505
3506 /* Disable soft irqs for various locks below. Also
3507 * stops preemption for RCU.
3508 */
3509 rcu_read_lock_bh();
3510
3511 skb_update_prio(skb);
3512
3513 qdisc_pkt_len_init(skb);
3514 #ifdef CONFIG_NET_CLS_ACT
3515 skb->tc_at_ingress = 0;
3516 # ifdef CONFIG_NET_EGRESS
3517 if (static_branch_unlikely(&egress_needed_key)) {
3518 skb = sch_handle_egress(skb, &rc, dev);
3519 if (!skb)
3520 goto out;
3521 }
3522 # endif
3523 #endif
3524 /* If device/qdisc don't need skb->dst, release it right now while
3525 * its hot in this cpu cache.
3526 */
3527 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3528 skb_dst_drop(skb);
3529 else
3530 skb_dst_force(skb);
3531
3532 txq = netdev_pick_tx(dev, skb, accel_priv);
3533 q = rcu_dereference_bh(txq->qdisc);
3534
3535 trace_net_dev_queue(skb);
3536 if (q->enqueue) {
3537 rc = __dev_xmit_skb(skb, q, dev, txq);
3538 goto out;
3539 }
3540
3541 /* The device has no queue. Common case for software devices:
3542 * loopback, all the sorts of tunnels...
3543
3544 * Really, it is unlikely that netif_tx_lock protection is necessary
3545 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3546 * counters.)
3547 * However, it is possible, that they rely on protection
3548 * made by us here.
3549
3550 * Check this and shot the lock. It is not prone from deadlocks.
3551 *Either shot noqueue qdisc, it is even simpler 8)
3552 */
3553 if (dev->flags & IFF_UP) {
3554 int cpu = smp_processor_id(); /* ok because BHs are off */
3555
3556 if (txq->xmit_lock_owner != cpu) {
3557 if (unlikely(__this_cpu_read(xmit_recursion) >
3558 XMIT_RECURSION_LIMIT))
3559 goto recursion_alert;
3560
3561 skb = validate_xmit_skb(skb, dev, &again);
3562 if (!skb)
3563 goto out;
3564
3565 HARD_TX_LOCK(dev, txq, cpu);
3566
3567 if (!netif_xmit_stopped(txq)) {
3568 __this_cpu_inc(xmit_recursion);
3569 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3570 __this_cpu_dec(xmit_recursion);
3571 if (dev_xmit_complete(rc)) {
3572 HARD_TX_UNLOCK(dev, txq);
3573 goto out;
3574 }
3575 }
3576 HARD_TX_UNLOCK(dev, txq);
3577 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3578 dev->name);
3579 } else {
3580 /* Recursion is detected! It is possible,
3581 * unfortunately
3582 */
3583 recursion_alert:
3584 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3585 dev->name);
3586 }
3587 }
3588
3589 rc = -ENETDOWN;
3590 rcu_read_unlock_bh();
3591
3592 atomic_long_inc(&dev->tx_dropped);
3593 kfree_skb_list(skb);
3594 return rc;
3595 out:
3596 rcu_read_unlock_bh();
3597 return rc;
3598 }
3599
3600 int dev_queue_xmit(struct sk_buff *skb)
3601 {
3602 return __dev_queue_xmit(skb, NULL);
3603 }
3604 EXPORT_SYMBOL(dev_queue_xmit);
3605
3606 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3607 {
3608 return __dev_queue_xmit(skb, accel_priv);
3609 }
3610 EXPORT_SYMBOL(dev_queue_xmit_accel);
3611
3612 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3613 {
3614 struct net_device *dev = skb->dev;
3615 struct sk_buff *orig_skb = skb;
3616 struct netdev_queue *txq;
3617 int ret = NETDEV_TX_BUSY;
3618 bool again = false;
3619
3620 if (unlikely(!netif_running(dev) ||
3621 !netif_carrier_ok(dev)))
3622 goto drop;
3623
3624 skb = validate_xmit_skb_list(skb, dev, &again);
3625 if (skb != orig_skb)
3626 goto drop;
3627
3628 skb_set_queue_mapping(skb, queue_id);
3629 txq = skb_get_tx_queue(dev, skb);
3630
3631 local_bh_disable();
3632
3633 HARD_TX_LOCK(dev, txq, smp_processor_id());
3634 if (!netif_xmit_frozen_or_drv_stopped(txq))
3635 ret = netdev_start_xmit(skb, dev, txq, false);
3636 HARD_TX_UNLOCK(dev, txq);
3637
3638 local_bh_enable();
3639
3640 if (!dev_xmit_complete(ret))
3641 kfree_skb(skb);
3642
3643 return ret;
3644 drop:
3645 atomic_long_inc(&dev->tx_dropped);
3646 kfree_skb_list(skb);
3647 return NET_XMIT_DROP;
3648 }
3649 EXPORT_SYMBOL(dev_direct_xmit);
3650
3651 /*************************************************************************
3652 * Receiver routines
3653 *************************************************************************/
3654
3655 int netdev_max_backlog __read_mostly = 1000;
3656 EXPORT_SYMBOL(netdev_max_backlog);
3657
3658 int netdev_tstamp_prequeue __read_mostly = 1;
3659 int netdev_budget __read_mostly = 300;
3660 unsigned int __read_mostly netdev_budget_usecs = 2000;
3661 int weight_p __read_mostly = 64; /* old backlog weight */
3662 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3663 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3664 int dev_rx_weight __read_mostly = 64;
3665 int dev_tx_weight __read_mostly = 64;
3666
3667 /* Called with irq disabled */
3668 static inline void ____napi_schedule(struct softnet_data *sd,
3669 struct napi_struct *napi)
3670 {
3671 list_add_tail(&napi->poll_list, &sd->poll_list);
3672 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3673 }
3674
3675 #ifdef CONFIG_RPS
3676
3677 /* One global table that all flow-based protocols share. */
3678 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3679 EXPORT_SYMBOL(rps_sock_flow_table);
3680 u32 rps_cpu_mask __read_mostly;
3681 EXPORT_SYMBOL(rps_cpu_mask);
3682
3683 struct static_key rps_needed __read_mostly;
3684 EXPORT_SYMBOL(rps_needed);
3685 struct static_key rfs_needed __read_mostly;
3686 EXPORT_SYMBOL(rfs_needed);
3687
3688 static struct rps_dev_flow *
3689 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3690 struct rps_dev_flow *rflow, u16 next_cpu)
3691 {
3692 if (next_cpu < nr_cpu_ids) {
3693 #ifdef CONFIG_RFS_ACCEL
3694 struct netdev_rx_queue *rxqueue;
3695 struct rps_dev_flow_table *flow_table;
3696 struct rps_dev_flow *old_rflow;
3697 u32 flow_id;
3698 u16 rxq_index;
3699 int rc;
3700
3701 /* Should we steer this flow to a different hardware queue? */
3702 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3703 !(dev->features & NETIF_F_NTUPLE))
3704 goto out;
3705 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3706 if (rxq_index == skb_get_rx_queue(skb))
3707 goto out;
3708
3709 rxqueue = dev->_rx + rxq_index;
3710 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3711 if (!flow_table)
3712 goto out;
3713 flow_id = skb_get_hash(skb) & flow_table->mask;
3714 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3715 rxq_index, flow_id);
3716 if (rc < 0)
3717 goto out;
3718 old_rflow = rflow;
3719 rflow = &flow_table->flows[flow_id];
3720 rflow->filter = rc;
3721 if (old_rflow->filter == rflow->filter)
3722 old_rflow->filter = RPS_NO_FILTER;
3723 out:
3724 #endif
3725 rflow->last_qtail =
3726 per_cpu(softnet_data, next_cpu).input_queue_head;
3727 }
3728
3729 rflow->cpu = next_cpu;
3730 return rflow;
3731 }
3732
3733 /*
3734 * get_rps_cpu is called from netif_receive_skb and returns the target
3735 * CPU from the RPS map of the receiving queue for a given skb.
3736 * rcu_read_lock must be held on entry.
3737 */
3738 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3739 struct rps_dev_flow **rflowp)
3740 {
3741 const struct rps_sock_flow_table *sock_flow_table;
3742 struct netdev_rx_queue *rxqueue = dev->_rx;
3743 struct rps_dev_flow_table *flow_table;
3744 struct rps_map *map;
3745 int cpu = -1;
3746 u32 tcpu;
3747 u32 hash;
3748
3749 if (skb_rx_queue_recorded(skb)) {
3750 u16 index = skb_get_rx_queue(skb);
3751
3752 if (unlikely(index >= dev->real_num_rx_queues)) {
3753 WARN_ONCE(dev->real_num_rx_queues > 1,
3754 "%s received packet on queue %u, but number "
3755 "of RX queues is %u\n",
3756 dev->name, index, dev->real_num_rx_queues);
3757 goto done;
3758 }
3759 rxqueue += index;
3760 }
3761
3762 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3763
3764 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3765 map = rcu_dereference(rxqueue->rps_map);
3766 if (!flow_table && !map)
3767 goto done;
3768
3769 skb_reset_network_header(skb);
3770 hash = skb_get_hash(skb);
3771 if (!hash)
3772 goto done;
3773
3774 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3775 if (flow_table && sock_flow_table) {
3776 struct rps_dev_flow *rflow;
3777 u32 next_cpu;
3778 u32 ident;
3779
3780 /* First check into global flow table if there is a match */
3781 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3782 if ((ident ^ hash) & ~rps_cpu_mask)
3783 goto try_rps;
3784
3785 next_cpu = ident & rps_cpu_mask;
3786
3787 /* OK, now we know there is a match,
3788 * we can look at the local (per receive queue) flow table
3789 */
3790 rflow = &flow_table->flows[hash & flow_table->mask];
3791 tcpu = rflow->cpu;
3792
3793 /*
3794 * If the desired CPU (where last recvmsg was done) is
3795 * different from current CPU (one in the rx-queue flow
3796 * table entry), switch if one of the following holds:
3797 * - Current CPU is unset (>= nr_cpu_ids).
3798 * - Current CPU is offline.
3799 * - The current CPU's queue tail has advanced beyond the
3800 * last packet that was enqueued using this table entry.
3801 * This guarantees that all previous packets for the flow
3802 * have been dequeued, thus preserving in order delivery.
3803 */
3804 if (unlikely(tcpu != next_cpu) &&
3805 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3806 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3807 rflow->last_qtail)) >= 0)) {
3808 tcpu = next_cpu;
3809 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3810 }
3811
3812 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3813 *rflowp = rflow;
3814 cpu = tcpu;
3815 goto done;
3816 }
3817 }
3818
3819 try_rps:
3820
3821 if (map) {
3822 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3823 if (cpu_online(tcpu)) {
3824 cpu = tcpu;
3825 goto done;
3826 }
3827 }
3828
3829 done:
3830 return cpu;
3831 }
3832
3833 #ifdef CONFIG_RFS_ACCEL
3834
3835 /**
3836 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3837 * @dev: Device on which the filter was set
3838 * @rxq_index: RX queue index
3839 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3840 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3841 *
3842 * Drivers that implement ndo_rx_flow_steer() should periodically call
3843 * this function for each installed filter and remove the filters for
3844 * which it returns %true.
3845 */
3846 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3847 u32 flow_id, u16 filter_id)
3848 {
3849 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3850 struct rps_dev_flow_table *flow_table;
3851 struct rps_dev_flow *rflow;
3852 bool expire = true;
3853 unsigned int cpu;
3854
3855 rcu_read_lock();
3856 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3857 if (flow_table && flow_id <= flow_table->mask) {
3858 rflow = &flow_table->flows[flow_id];
3859 cpu = READ_ONCE(rflow->cpu);
3860 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3861 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3862 rflow->last_qtail) <
3863 (int)(10 * flow_table->mask)))
3864 expire = false;
3865 }
3866 rcu_read_unlock();
3867 return expire;
3868 }
3869 EXPORT_SYMBOL(rps_may_expire_flow);
3870
3871 #endif /* CONFIG_RFS_ACCEL */
3872
3873 /* Called from hardirq (IPI) context */
3874 static void rps_trigger_softirq(void *data)
3875 {
3876 struct softnet_data *sd = data;
3877
3878 ____napi_schedule(sd, &sd->backlog);
3879 sd->received_rps++;
3880 }
3881
3882 #endif /* CONFIG_RPS */
3883
3884 /*
3885 * Check if this softnet_data structure is another cpu one
3886 * If yes, queue it to our IPI list and return 1
3887 * If no, return 0
3888 */
3889 static int rps_ipi_queued(struct softnet_data *sd)
3890 {
3891 #ifdef CONFIG_RPS
3892 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3893
3894 if (sd != mysd) {
3895 sd->rps_ipi_next = mysd->rps_ipi_list;
3896 mysd->rps_ipi_list = sd;
3897
3898 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3899 return 1;
3900 }
3901 #endif /* CONFIG_RPS */
3902 return 0;
3903 }
3904
3905 #ifdef CONFIG_NET_FLOW_LIMIT
3906 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3907 #endif
3908
3909 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3910 {
3911 #ifdef CONFIG_NET_FLOW_LIMIT
3912 struct sd_flow_limit *fl;
3913 struct softnet_data *sd;
3914 unsigned int old_flow, new_flow;
3915
3916 if (qlen < (netdev_max_backlog >> 1))
3917 return false;
3918
3919 sd = this_cpu_ptr(&softnet_data);
3920
3921 rcu_read_lock();
3922 fl = rcu_dereference(sd->flow_limit);
3923 if (fl) {
3924 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3925 old_flow = fl->history[fl->history_head];
3926 fl->history[fl->history_head] = new_flow;
3927
3928 fl->history_head++;
3929 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3930
3931 if (likely(fl->buckets[old_flow]))
3932 fl->buckets[old_flow]--;
3933
3934 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3935 fl->count++;
3936 rcu_read_unlock();
3937 return true;
3938 }
3939 }
3940 rcu_read_unlock();
3941 #endif
3942 return false;
3943 }
3944
3945 /*
3946 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3947 * queue (may be a remote CPU queue).
3948 */
3949 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3950 unsigned int *qtail)
3951 {
3952 struct softnet_data *sd;
3953 unsigned long flags;
3954 unsigned int qlen;
3955
3956 sd = &per_cpu(softnet_data, cpu);
3957
3958 local_irq_save(flags);
3959
3960 rps_lock(sd);
3961 if (!netif_running(skb->dev))
3962 goto drop;
3963 qlen = skb_queue_len(&sd->input_pkt_queue);
3964 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3965 if (qlen) {
3966 enqueue:
3967 __skb_queue_tail(&sd->input_pkt_queue, skb);
3968 input_queue_tail_incr_save(sd, qtail);
3969 rps_unlock(sd);
3970 local_irq_restore(flags);
3971 return NET_RX_SUCCESS;
3972 }
3973
3974 /* Schedule NAPI for backlog device
3975 * We can use non atomic operation since we own the queue lock
3976 */
3977 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3978 if (!rps_ipi_queued(sd))
3979 ____napi_schedule(sd, &sd->backlog);
3980 }
3981 goto enqueue;
3982 }
3983
3984 drop:
3985 sd->dropped++;
3986 rps_unlock(sd);
3987
3988 local_irq_restore(flags);
3989
3990 atomic_long_inc(&skb->dev->rx_dropped);
3991 kfree_skb(skb);
3992 return NET_RX_DROP;
3993 }
3994
3995 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
3996 {
3997 struct net_device *dev = skb->dev;
3998 struct netdev_rx_queue *rxqueue;
3999
4000 rxqueue = dev->_rx;
4001
4002 if (skb_rx_queue_recorded(skb)) {
4003 u16 index = skb_get_rx_queue(skb);
4004
4005 if (unlikely(index >= dev->real_num_rx_queues)) {
4006 WARN_ONCE(dev->real_num_rx_queues > 1,
4007 "%s received packet on queue %u, but number "
4008 "of RX queues is %u\n",
4009 dev->name, index, dev->real_num_rx_queues);
4010
4011 return rxqueue; /* Return first rxqueue */
4012 }
4013 rxqueue += index;
4014 }
4015 return rxqueue;
4016 }
4017
4018 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4019 struct xdp_buff *xdp,
4020 struct bpf_prog *xdp_prog)
4021 {
4022 struct netdev_rx_queue *rxqueue;
4023 void *orig_data, *orig_data_end;
4024 u32 metalen, act = XDP_DROP;
4025 int hlen, off;
4026 u32 mac_len;
4027
4028 /* Reinjected packets coming from act_mirred or similar should
4029 * not get XDP generic processing.
4030 */
4031 if (skb_cloned(skb))
4032 return XDP_PASS;
4033
4034 /* XDP packets must be linear and must have sufficient headroom
4035 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4036 * native XDP provides, thus we need to do it here as well.
4037 */
4038 if (skb_is_nonlinear(skb) ||
4039 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4040 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4041 int troom = skb->tail + skb->data_len - skb->end;
4042
4043 /* In case we have to go down the path and also linearize,
4044 * then lets do the pskb_expand_head() work just once here.
4045 */
4046 if (pskb_expand_head(skb,
4047 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4048 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4049 goto do_drop;
4050 if (skb_linearize(skb))
4051 goto do_drop;
4052 }
4053
4054 /* The XDP program wants to see the packet starting at the MAC
4055 * header.
4056 */
4057 mac_len = skb->data - skb_mac_header(skb);
4058 hlen = skb_headlen(skb) + mac_len;
4059 xdp->data = skb->data - mac_len;
4060 xdp->data_meta = xdp->data;
4061 xdp->data_end = xdp->data + hlen;
4062 xdp->data_hard_start = skb->data - skb_headroom(skb);
4063 orig_data_end = xdp->data_end;
4064 orig_data = xdp->data;
4065
4066 rxqueue = netif_get_rxqueue(skb);
4067 xdp->rxq = &rxqueue->xdp_rxq;
4068
4069 act = bpf_prog_run_xdp(xdp_prog, xdp);
4070
4071 off = xdp->data - orig_data;
4072 if (off > 0)
4073 __skb_pull(skb, off);
4074 else if (off < 0)
4075 __skb_push(skb, -off);
4076 skb->mac_header += off;
4077
4078 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4079 * pckt.
4080 */
4081 off = orig_data_end - xdp->data_end;
4082 if (off != 0) {
4083 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4084 skb->len -= off;
4085
4086 }
4087
4088 switch (act) {
4089 case XDP_REDIRECT:
4090 case XDP_TX:
4091 __skb_push(skb, mac_len);
4092 break;
4093 case XDP_PASS:
4094 metalen = xdp->data - xdp->data_meta;
4095 if (metalen)
4096 skb_metadata_set(skb, metalen);
4097 break;
4098 default:
4099 bpf_warn_invalid_xdp_action(act);
4100 /* fall through */
4101 case XDP_ABORTED:
4102 trace_xdp_exception(skb->dev, xdp_prog, act);
4103 /* fall through */
4104 case XDP_DROP:
4105 do_drop:
4106 kfree_skb(skb);
4107 break;
4108 }
4109
4110 return act;
4111 }
4112
4113 /* When doing generic XDP we have to bypass the qdisc layer and the
4114 * network taps in order to match in-driver-XDP behavior.
4115 */
4116 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4117 {
4118 struct net_device *dev = skb->dev;
4119 struct netdev_queue *txq;
4120 bool free_skb = true;
4121 int cpu, rc;
4122
4123 txq = netdev_pick_tx(dev, skb, NULL);
4124 cpu = smp_processor_id();
4125 HARD_TX_LOCK(dev, txq, cpu);
4126 if (!netif_xmit_stopped(txq)) {
4127 rc = netdev_start_xmit(skb, dev, txq, 0);
4128 if (dev_xmit_complete(rc))
4129 free_skb = false;
4130 }
4131 HARD_TX_UNLOCK(dev, txq);
4132 if (free_skb) {
4133 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4134 kfree_skb(skb);
4135 }
4136 }
4137 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4138
4139 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4140
4141 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4142 {
4143 if (xdp_prog) {
4144 struct xdp_buff xdp;
4145 u32 act;
4146 int err;
4147
4148 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4149 if (act != XDP_PASS) {
4150 switch (act) {
4151 case XDP_REDIRECT:
4152 err = xdp_do_generic_redirect(skb->dev, skb,
4153 &xdp, xdp_prog);
4154 if (err)
4155 goto out_redir;
4156 break;
4157 case XDP_TX:
4158 generic_xdp_tx(skb, xdp_prog);
4159 break;
4160 }
4161 return XDP_DROP;
4162 }
4163 }
4164 return XDP_PASS;
4165 out_redir:
4166 kfree_skb(skb);
4167 return XDP_DROP;
4168 }
4169 EXPORT_SYMBOL_GPL(do_xdp_generic);
4170
4171 static int netif_rx_internal(struct sk_buff *skb)
4172 {
4173 int ret;
4174
4175 net_timestamp_check(netdev_tstamp_prequeue, skb);
4176
4177 trace_netif_rx(skb);
4178
4179 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4180 int ret;
4181
4182 preempt_disable();
4183 rcu_read_lock();
4184 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4185 rcu_read_unlock();
4186 preempt_enable();
4187
4188 /* Consider XDP consuming the packet a success from
4189 * the netdev point of view we do not want to count
4190 * this as an error.
4191 */
4192 if (ret != XDP_PASS)
4193 return NET_RX_SUCCESS;
4194 }
4195
4196 #ifdef CONFIG_RPS
4197 if (static_key_false(&rps_needed)) {
4198 struct rps_dev_flow voidflow, *rflow = &voidflow;
4199 int cpu;
4200
4201 preempt_disable();
4202 rcu_read_lock();
4203
4204 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4205 if (cpu < 0)
4206 cpu = smp_processor_id();
4207
4208 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4209
4210 rcu_read_unlock();
4211 preempt_enable();
4212 } else
4213 #endif
4214 {
4215 unsigned int qtail;
4216
4217 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4218 put_cpu();
4219 }
4220 return ret;
4221 }
4222
4223 /**
4224 * netif_rx - post buffer to the network code
4225 * @skb: buffer to post
4226 *
4227 * This function receives a packet from a device driver and queues it for
4228 * the upper (protocol) levels to process. It always succeeds. The buffer
4229 * may be dropped during processing for congestion control or by the
4230 * protocol layers.
4231 *
4232 * return values:
4233 * NET_RX_SUCCESS (no congestion)
4234 * NET_RX_DROP (packet was dropped)
4235 *
4236 */
4237
4238 int netif_rx(struct sk_buff *skb)
4239 {
4240 trace_netif_rx_entry(skb);
4241
4242 return netif_rx_internal(skb);
4243 }
4244 EXPORT_SYMBOL(netif_rx);
4245
4246 int netif_rx_ni(struct sk_buff *skb)
4247 {
4248 int err;
4249
4250 trace_netif_rx_ni_entry(skb);
4251
4252 preempt_disable();
4253 err = netif_rx_internal(skb);
4254 if (local_softirq_pending())
4255 do_softirq();
4256 preempt_enable();
4257
4258 return err;
4259 }
4260 EXPORT_SYMBOL(netif_rx_ni);
4261
4262 static __latent_entropy void net_tx_action(struct softirq_action *h)
4263 {
4264 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4265
4266 if (sd->completion_queue) {
4267 struct sk_buff *clist;
4268
4269 local_irq_disable();
4270 clist = sd->completion_queue;
4271 sd->completion_queue = NULL;
4272 local_irq_enable();
4273
4274 while (clist) {
4275 struct sk_buff *skb = clist;
4276
4277 clist = clist->next;
4278
4279 WARN_ON(refcount_read(&skb->users));
4280 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4281 trace_consume_skb(skb);
4282 else
4283 trace_kfree_skb(skb, net_tx_action);
4284
4285 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4286 __kfree_skb(skb);
4287 else
4288 __kfree_skb_defer(skb);
4289 }
4290
4291 __kfree_skb_flush();
4292 }
4293
4294 if (sd->output_queue) {
4295 struct Qdisc *head;
4296
4297 local_irq_disable();
4298 head = sd->output_queue;
4299 sd->output_queue = NULL;
4300 sd->output_queue_tailp = &sd->output_queue;
4301 local_irq_enable();
4302
4303 while (head) {
4304 struct Qdisc *q = head;
4305 spinlock_t *root_lock = NULL;
4306
4307 head = head->next_sched;
4308
4309 if (!(q->flags & TCQ_F_NOLOCK)) {
4310 root_lock = qdisc_lock(q);
4311 spin_lock(root_lock);
4312 }
4313 /* We need to make sure head->next_sched is read
4314 * before clearing __QDISC_STATE_SCHED
4315 */
4316 smp_mb__before_atomic();
4317 clear_bit(__QDISC_STATE_SCHED, &q->state);
4318 qdisc_run(q);
4319 if (root_lock)
4320 spin_unlock(root_lock);
4321 }
4322 }
4323
4324 xfrm_dev_backlog(sd);
4325 }
4326
4327 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4328 /* This hook is defined here for ATM LANE */
4329 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4330 unsigned char *addr) __read_mostly;
4331 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4332 #endif
4333
4334 static inline struct sk_buff *
4335 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4336 struct net_device *orig_dev)
4337 {
4338 #ifdef CONFIG_NET_CLS_ACT
4339 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4340 struct tcf_result cl_res;
4341
4342 /* If there's at least one ingress present somewhere (so
4343 * we get here via enabled static key), remaining devices
4344 * that are not configured with an ingress qdisc will bail
4345 * out here.
4346 */
4347 if (!miniq)
4348 return skb;
4349
4350 if (*pt_prev) {
4351 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4352 *pt_prev = NULL;
4353 }
4354
4355 qdisc_skb_cb(skb)->pkt_len = skb->len;
4356 skb->tc_at_ingress = 1;
4357 mini_qdisc_bstats_cpu_update(miniq, skb);
4358
4359 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4360 case TC_ACT_OK:
4361 case TC_ACT_RECLASSIFY:
4362 skb->tc_index = TC_H_MIN(cl_res.classid);
4363 break;
4364 case TC_ACT_SHOT:
4365 mini_qdisc_qstats_cpu_drop(miniq);
4366 kfree_skb(skb);
4367 return NULL;
4368 case TC_ACT_STOLEN:
4369 case TC_ACT_QUEUED:
4370 case TC_ACT_TRAP:
4371 consume_skb(skb);
4372 return NULL;
4373 case TC_ACT_REDIRECT:
4374 /* skb_mac_header check was done by cls/act_bpf, so
4375 * we can safely push the L2 header back before
4376 * redirecting to another netdev
4377 */
4378 __skb_push(skb, skb->mac_len);
4379 skb_do_redirect(skb);
4380 return NULL;
4381 default:
4382 break;
4383 }
4384 #endif /* CONFIG_NET_CLS_ACT */
4385 return skb;
4386 }
4387
4388 /**
4389 * netdev_is_rx_handler_busy - check if receive handler is registered
4390 * @dev: device to check
4391 *
4392 * Check if a receive handler is already registered for a given device.
4393 * Return true if there one.
4394 *
4395 * The caller must hold the rtnl_mutex.
4396 */
4397 bool netdev_is_rx_handler_busy(struct net_device *dev)
4398 {
4399 ASSERT_RTNL();
4400 return dev && rtnl_dereference(dev->rx_handler);
4401 }
4402 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4403
4404 /**
4405 * netdev_rx_handler_register - register receive handler
4406 * @dev: device to register a handler for
4407 * @rx_handler: receive handler to register
4408 * @rx_handler_data: data pointer that is used by rx handler
4409 *
4410 * Register a receive handler for a device. This handler will then be
4411 * called from __netif_receive_skb. A negative errno code is returned
4412 * on a failure.
4413 *
4414 * The caller must hold the rtnl_mutex.
4415 *
4416 * For a general description of rx_handler, see enum rx_handler_result.
4417 */
4418 int netdev_rx_handler_register(struct net_device *dev,
4419 rx_handler_func_t *rx_handler,
4420 void *rx_handler_data)
4421 {
4422 if (netdev_is_rx_handler_busy(dev))
4423 return -EBUSY;
4424
4425 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4426 return -EINVAL;
4427
4428 /* Note: rx_handler_data must be set before rx_handler */
4429 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4430 rcu_assign_pointer(dev->rx_handler, rx_handler);
4431
4432 return 0;
4433 }
4434 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4435
4436 /**
4437 * netdev_rx_handler_unregister - unregister receive handler
4438 * @dev: device to unregister a handler from
4439 *
4440 * Unregister a receive handler from a device.
4441 *
4442 * The caller must hold the rtnl_mutex.
4443 */
4444 void netdev_rx_handler_unregister(struct net_device *dev)
4445 {
4446
4447 ASSERT_RTNL();
4448 RCU_INIT_POINTER(dev->rx_handler, NULL);
4449 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4450 * section has a guarantee to see a non NULL rx_handler_data
4451 * as well.
4452 */
4453 synchronize_net();
4454 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4455 }
4456 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4457
4458 /*
4459 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4460 * the special handling of PFMEMALLOC skbs.
4461 */
4462 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4463 {
4464 switch (skb->protocol) {
4465 case htons(ETH_P_ARP):
4466 case htons(ETH_P_IP):
4467 case htons(ETH_P_IPV6):
4468 case htons(ETH_P_8021Q):
4469 case htons(ETH_P_8021AD):
4470 return true;
4471 default:
4472 return false;
4473 }
4474 }
4475
4476 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4477 int *ret, struct net_device *orig_dev)
4478 {
4479 #ifdef CONFIG_NETFILTER_INGRESS
4480 if (nf_hook_ingress_active(skb)) {
4481 int ingress_retval;
4482
4483 if (*pt_prev) {
4484 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4485 *pt_prev = NULL;
4486 }
4487
4488 rcu_read_lock();
4489 ingress_retval = nf_hook_ingress(skb);
4490 rcu_read_unlock();
4491 return ingress_retval;
4492 }
4493 #endif /* CONFIG_NETFILTER_INGRESS */
4494 return 0;
4495 }
4496
4497 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4498 {
4499 struct packet_type *ptype, *pt_prev;
4500 rx_handler_func_t *rx_handler;
4501 struct net_device *orig_dev;
4502 bool deliver_exact = false;
4503 int ret = NET_RX_DROP;
4504 __be16 type;
4505
4506 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4507
4508 trace_netif_receive_skb(skb);
4509
4510 orig_dev = skb->dev;
4511
4512 skb_reset_network_header(skb);
4513 if (!skb_transport_header_was_set(skb))
4514 skb_reset_transport_header(skb);
4515 skb_reset_mac_len(skb);
4516
4517 pt_prev = NULL;
4518
4519 another_round:
4520 skb->skb_iif = skb->dev->ifindex;
4521
4522 __this_cpu_inc(softnet_data.processed);
4523
4524 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4525 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4526 skb = skb_vlan_untag(skb);
4527 if (unlikely(!skb))
4528 goto out;
4529 }
4530
4531 if (skb_skip_tc_classify(skb))
4532 goto skip_classify;
4533
4534 if (pfmemalloc)
4535 goto skip_taps;
4536
4537 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4538 if (pt_prev)
4539 ret = deliver_skb(skb, pt_prev, orig_dev);
4540 pt_prev = ptype;
4541 }
4542
4543 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4544 if (pt_prev)
4545 ret = deliver_skb(skb, pt_prev, orig_dev);
4546 pt_prev = ptype;
4547 }
4548
4549 skip_taps:
4550 #ifdef CONFIG_NET_INGRESS
4551 if (static_branch_unlikely(&ingress_needed_key)) {
4552 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4553 if (!skb)
4554 goto out;
4555
4556 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4557 goto out;
4558 }
4559 #endif
4560 skb_reset_tc(skb);
4561 skip_classify:
4562 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4563 goto drop;
4564
4565 if (skb_vlan_tag_present(skb)) {
4566 if (pt_prev) {
4567 ret = deliver_skb(skb, pt_prev, orig_dev);
4568 pt_prev = NULL;
4569 }
4570 if (vlan_do_receive(&skb))
4571 goto another_round;
4572 else if (unlikely(!skb))
4573 goto out;
4574 }
4575
4576 rx_handler = rcu_dereference(skb->dev->rx_handler);
4577 if (rx_handler) {
4578 if (pt_prev) {
4579 ret = deliver_skb(skb, pt_prev, orig_dev);
4580 pt_prev = NULL;
4581 }
4582 switch (rx_handler(&skb)) {
4583 case RX_HANDLER_CONSUMED:
4584 ret = NET_RX_SUCCESS;
4585 goto out;
4586 case RX_HANDLER_ANOTHER:
4587 goto another_round;
4588 case RX_HANDLER_EXACT:
4589 deliver_exact = true;
4590 case RX_HANDLER_PASS:
4591 break;
4592 default:
4593 BUG();
4594 }
4595 }
4596
4597 if (unlikely(skb_vlan_tag_present(skb))) {
4598 if (skb_vlan_tag_get_id(skb))
4599 skb->pkt_type = PACKET_OTHERHOST;
4600 /* Note: we might in the future use prio bits
4601 * and set skb->priority like in vlan_do_receive()
4602 * For the time being, just ignore Priority Code Point
4603 */
4604 skb->vlan_tci = 0;
4605 }
4606
4607 type = skb->protocol;
4608
4609 /* deliver only exact match when indicated */
4610 if (likely(!deliver_exact)) {
4611 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4612 &ptype_base[ntohs(type) &
4613 PTYPE_HASH_MASK]);
4614 }
4615
4616 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4617 &orig_dev->ptype_specific);
4618
4619 if (unlikely(skb->dev != orig_dev)) {
4620 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4621 &skb->dev->ptype_specific);
4622 }
4623
4624 if (pt_prev) {
4625 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4626 goto drop;
4627 else
4628 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4629 } else {
4630 drop:
4631 if (!deliver_exact)
4632 atomic_long_inc(&skb->dev->rx_dropped);
4633 else
4634 atomic_long_inc(&skb->dev->rx_nohandler);
4635 kfree_skb(skb);
4636 /* Jamal, now you will not able to escape explaining
4637 * me how you were going to use this. :-)
4638 */
4639 ret = NET_RX_DROP;
4640 }
4641
4642 out:
4643 return ret;
4644 }
4645
4646 /**
4647 * netif_receive_skb_core - special purpose version of netif_receive_skb
4648 * @skb: buffer to process
4649 *
4650 * More direct receive version of netif_receive_skb(). It should
4651 * only be used by callers that have a need to skip RPS and Generic XDP.
4652 * Caller must also take care of handling if (page_is_)pfmemalloc.
4653 *
4654 * This function may only be called from softirq context and interrupts
4655 * should be enabled.
4656 *
4657 * Return values (usually ignored):
4658 * NET_RX_SUCCESS: no congestion
4659 * NET_RX_DROP: packet was dropped
4660 */
4661 int netif_receive_skb_core(struct sk_buff *skb)
4662 {
4663 int ret;
4664
4665 rcu_read_lock();
4666 ret = __netif_receive_skb_core(skb, false);
4667 rcu_read_unlock();
4668
4669 return ret;
4670 }
4671 EXPORT_SYMBOL(netif_receive_skb_core);
4672
4673 static int __netif_receive_skb(struct sk_buff *skb)
4674 {
4675 int ret;
4676
4677 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4678 unsigned int noreclaim_flag;
4679
4680 /*
4681 * PFMEMALLOC skbs are special, they should
4682 * - be delivered to SOCK_MEMALLOC sockets only
4683 * - stay away from userspace
4684 * - have bounded memory usage
4685 *
4686 * Use PF_MEMALLOC as this saves us from propagating the allocation
4687 * context down to all allocation sites.
4688 */
4689 noreclaim_flag = memalloc_noreclaim_save();
4690 ret = __netif_receive_skb_core(skb, true);
4691 memalloc_noreclaim_restore(noreclaim_flag);
4692 } else
4693 ret = __netif_receive_skb_core(skb, false);
4694
4695 return ret;
4696 }
4697
4698 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4699 {
4700 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4701 struct bpf_prog *new = xdp->prog;
4702 int ret = 0;
4703
4704 switch (xdp->command) {
4705 case XDP_SETUP_PROG:
4706 rcu_assign_pointer(dev->xdp_prog, new);
4707 if (old)
4708 bpf_prog_put(old);
4709
4710 if (old && !new) {
4711 static_branch_dec(&generic_xdp_needed_key);
4712 } else if (new && !old) {
4713 static_branch_inc(&generic_xdp_needed_key);
4714 dev_disable_lro(dev);
4715 dev_disable_gro_hw(dev);
4716 }
4717 break;
4718
4719 case XDP_QUERY_PROG:
4720 xdp->prog_attached = !!old;
4721 xdp->prog_id = old ? old->aux->id : 0;
4722 break;
4723
4724 default:
4725 ret = -EINVAL;
4726 break;
4727 }
4728
4729 return ret;
4730 }
4731
4732 static int netif_receive_skb_internal(struct sk_buff *skb)
4733 {
4734 int ret;
4735
4736 net_timestamp_check(netdev_tstamp_prequeue, skb);
4737
4738 if (skb_defer_rx_timestamp(skb))
4739 return NET_RX_SUCCESS;
4740
4741 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4742 int ret;
4743
4744 preempt_disable();
4745 rcu_read_lock();
4746 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4747 rcu_read_unlock();
4748 preempt_enable();
4749
4750 if (ret != XDP_PASS)
4751 return NET_RX_DROP;
4752 }
4753
4754 rcu_read_lock();
4755 #ifdef CONFIG_RPS
4756 if (static_key_false(&rps_needed)) {
4757 struct rps_dev_flow voidflow, *rflow = &voidflow;
4758 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4759
4760 if (cpu >= 0) {
4761 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4762 rcu_read_unlock();
4763 return ret;
4764 }
4765 }
4766 #endif
4767 ret = __netif_receive_skb(skb);
4768 rcu_read_unlock();
4769 return ret;
4770 }
4771
4772 /**
4773 * netif_receive_skb - process receive buffer from network
4774 * @skb: buffer to process
4775 *
4776 * netif_receive_skb() is the main receive data processing function.
4777 * It always succeeds. The buffer may be dropped during processing
4778 * for congestion control or by the protocol layers.
4779 *
4780 * This function may only be called from softirq context and interrupts
4781 * should be enabled.
4782 *
4783 * Return values (usually ignored):
4784 * NET_RX_SUCCESS: no congestion
4785 * NET_RX_DROP: packet was dropped
4786 */
4787 int netif_receive_skb(struct sk_buff *skb)
4788 {
4789 trace_netif_receive_skb_entry(skb);
4790
4791 return netif_receive_skb_internal(skb);
4792 }
4793 EXPORT_SYMBOL(netif_receive_skb);
4794
4795 DEFINE_PER_CPU(struct work_struct, flush_works);
4796
4797 /* Network device is going away, flush any packets still pending */
4798 static void flush_backlog(struct work_struct *work)
4799 {
4800 struct sk_buff *skb, *tmp;
4801 struct softnet_data *sd;
4802
4803 local_bh_disable();
4804 sd = this_cpu_ptr(&softnet_data);
4805
4806 local_irq_disable();
4807 rps_lock(sd);
4808 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4809 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4810 __skb_unlink(skb, &sd->input_pkt_queue);
4811 kfree_skb(skb);
4812 input_queue_head_incr(sd);
4813 }
4814 }
4815 rps_unlock(sd);
4816 local_irq_enable();
4817
4818 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4819 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4820 __skb_unlink(skb, &sd->process_queue);
4821 kfree_skb(skb);
4822 input_queue_head_incr(sd);
4823 }
4824 }
4825 local_bh_enable();
4826 }
4827
4828 static void flush_all_backlogs(void)
4829 {
4830 unsigned int cpu;
4831
4832 get_online_cpus();
4833
4834 for_each_online_cpu(cpu)
4835 queue_work_on(cpu, system_highpri_wq,
4836 per_cpu_ptr(&flush_works, cpu));
4837
4838 for_each_online_cpu(cpu)
4839 flush_work(per_cpu_ptr(&flush_works, cpu));
4840
4841 put_online_cpus();
4842 }
4843
4844 static int napi_gro_complete(struct sk_buff *skb)
4845 {
4846 struct packet_offload *ptype;
4847 __be16 type = skb->protocol;
4848 struct list_head *head = &offload_base;
4849 int err = -ENOENT;
4850
4851 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4852
4853 if (NAPI_GRO_CB(skb)->count == 1) {
4854 skb_shinfo(skb)->gso_size = 0;
4855 goto out;
4856 }
4857
4858 rcu_read_lock();
4859 list_for_each_entry_rcu(ptype, head, list) {
4860 if (ptype->type != type || !ptype->callbacks.gro_complete)
4861 continue;
4862
4863 err = ptype->callbacks.gro_complete(skb, 0);
4864 break;
4865 }
4866 rcu_read_unlock();
4867
4868 if (err) {
4869 WARN_ON(&ptype->list == head);
4870 kfree_skb(skb);
4871 return NET_RX_SUCCESS;
4872 }
4873
4874 out:
4875 return netif_receive_skb_internal(skb);
4876 }
4877
4878 static void __napi_gro_flush_chain(struct napi_struct *napi, struct list_head *head,
4879 bool flush_old)
4880 {
4881 struct sk_buff *skb, *p;
4882
4883 list_for_each_entry_safe_reverse(skb, p, head, list) {
4884 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4885 return;
4886 list_del_init(&skb->list);
4887 napi_gro_complete(skb);
4888 napi->gro_count--;
4889 }
4890 }
4891
4892 /* napi->gro_hash contains packets ordered by age.
4893 * youngest packets at the head of it.
4894 * Complete skbs in reverse order to reduce latencies.
4895 */
4896 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4897 {
4898 int i;
4899
4900 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
4901 struct list_head *head = &napi->gro_hash[i];
4902
4903 __napi_gro_flush_chain(napi, head, flush_old);
4904 }
4905 }
4906 EXPORT_SYMBOL(napi_gro_flush);
4907
4908 static struct list_head *gro_list_prepare(struct napi_struct *napi,
4909 struct sk_buff *skb)
4910 {
4911 unsigned int maclen = skb->dev->hard_header_len;
4912 u32 hash = skb_get_hash_raw(skb);
4913 struct list_head *head;
4914 struct sk_buff *p;
4915
4916 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)];
4917 list_for_each_entry(p, head, list) {
4918 unsigned long diffs;
4919
4920 NAPI_GRO_CB(p)->flush = 0;
4921
4922 if (hash != skb_get_hash_raw(p)) {
4923 NAPI_GRO_CB(p)->same_flow = 0;
4924 continue;
4925 }
4926
4927 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4928 diffs |= p->vlan_tci ^ skb->vlan_tci;
4929 diffs |= skb_metadata_dst_cmp(p, skb);
4930 diffs |= skb_metadata_differs(p, skb);
4931 if (maclen == ETH_HLEN)
4932 diffs |= compare_ether_header(skb_mac_header(p),
4933 skb_mac_header(skb));
4934 else if (!diffs)
4935 diffs = memcmp(skb_mac_header(p),
4936 skb_mac_header(skb),
4937 maclen);
4938 NAPI_GRO_CB(p)->same_flow = !diffs;
4939 }
4940
4941 return head;
4942 }
4943
4944 static void skb_gro_reset_offset(struct sk_buff *skb)
4945 {
4946 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4947 const skb_frag_t *frag0 = &pinfo->frags[0];
4948
4949 NAPI_GRO_CB(skb)->data_offset = 0;
4950 NAPI_GRO_CB(skb)->frag0 = NULL;
4951 NAPI_GRO_CB(skb)->frag0_len = 0;
4952
4953 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4954 pinfo->nr_frags &&
4955 !PageHighMem(skb_frag_page(frag0))) {
4956 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4957 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4958 skb_frag_size(frag0),
4959 skb->end - skb->tail);
4960 }
4961 }
4962
4963 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4964 {
4965 struct skb_shared_info *pinfo = skb_shinfo(skb);
4966
4967 BUG_ON(skb->end - skb->tail < grow);
4968
4969 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4970
4971 skb->data_len -= grow;
4972 skb->tail += grow;
4973
4974 pinfo->frags[0].page_offset += grow;
4975 skb_frag_size_sub(&pinfo->frags[0], grow);
4976
4977 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4978 skb_frag_unref(skb, 0);
4979 memmove(pinfo->frags, pinfo->frags + 1,
4980 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4981 }
4982 }
4983
4984 static void gro_flush_oldest(struct napi_struct *napi)
4985 {
4986 struct sk_buff *oldest = NULL;
4987 unsigned long age = jiffies;
4988 int i;
4989
4990 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
4991 struct list_head *head = &napi->gro_hash[i];
4992 struct sk_buff *skb;
4993
4994 if (list_empty(head))
4995 continue;
4996
4997 skb = list_last_entry(head, struct sk_buff, list);
4998 if (!oldest || time_before(NAPI_GRO_CB(skb)->age, age)) {
4999 oldest = skb;
5000 age = NAPI_GRO_CB(skb)->age;
5001 }
5002 }
5003
5004 /* We are called with napi->gro_count >= MAX_GRO_SKBS, so this is
5005 * impossible.
5006 */
5007 if (WARN_ON_ONCE(!oldest))
5008 return;
5009
5010 /* Do not adjust napi->gro_count, caller is adding a new SKB to
5011 * the chain.
5012 */
5013 list_del(&oldest->list);
5014 napi_gro_complete(oldest);
5015 }
5016
5017 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5018 {
5019 struct list_head *head = &offload_base;
5020 struct packet_offload *ptype;
5021 __be16 type = skb->protocol;
5022 struct list_head *gro_head;
5023 struct sk_buff *pp = NULL;
5024 enum gro_result ret;
5025 int same_flow;
5026 int grow;
5027
5028 if (netif_elide_gro(skb->dev))
5029 goto normal;
5030
5031 gro_head = gro_list_prepare(napi, skb);
5032
5033 rcu_read_lock();
5034 list_for_each_entry_rcu(ptype, head, list) {
5035 if (ptype->type != type || !ptype->callbacks.gro_receive)
5036 continue;
5037
5038 skb_set_network_header(skb, skb_gro_offset(skb));
5039 skb_reset_mac_len(skb);
5040 NAPI_GRO_CB(skb)->same_flow = 0;
5041 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5042 NAPI_GRO_CB(skb)->free = 0;
5043 NAPI_GRO_CB(skb)->encap_mark = 0;
5044 NAPI_GRO_CB(skb)->recursion_counter = 0;
5045 NAPI_GRO_CB(skb)->is_fou = 0;
5046 NAPI_GRO_CB(skb)->is_atomic = 1;
5047 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5048
5049 /* Setup for GRO checksum validation */
5050 switch (skb->ip_summed) {
5051 case CHECKSUM_COMPLETE:
5052 NAPI_GRO_CB(skb)->csum = skb->csum;
5053 NAPI_GRO_CB(skb)->csum_valid = 1;
5054 NAPI_GRO_CB(skb)->csum_cnt = 0;
5055 break;
5056 case CHECKSUM_UNNECESSARY:
5057 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5058 NAPI_GRO_CB(skb)->csum_valid = 0;
5059 break;
5060 default:
5061 NAPI_GRO_CB(skb)->csum_cnt = 0;
5062 NAPI_GRO_CB(skb)->csum_valid = 0;
5063 }
5064
5065 pp = ptype->callbacks.gro_receive(gro_head, skb);
5066 break;
5067 }
5068 rcu_read_unlock();
5069
5070 if (&ptype->list == head)
5071 goto normal;
5072
5073 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5074 ret = GRO_CONSUMED;
5075 goto ok;
5076 }
5077
5078 same_flow = NAPI_GRO_CB(skb)->same_flow;
5079 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5080
5081 if (pp) {
5082 list_del_init(&pp->list);
5083 napi_gro_complete(pp);
5084 napi->gro_count--;
5085 }
5086
5087 if (same_flow)
5088 goto ok;
5089
5090 if (NAPI_GRO_CB(skb)->flush)
5091 goto normal;
5092
5093 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
5094 gro_flush_oldest(napi);
5095 } else {
5096 napi->gro_count++;
5097 }
5098 NAPI_GRO_CB(skb)->count = 1;
5099 NAPI_GRO_CB(skb)->age = jiffies;
5100 NAPI_GRO_CB(skb)->last = skb;
5101 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5102 list_add(&skb->list, gro_head);
5103 ret = GRO_HELD;
5104
5105 pull:
5106 grow = skb_gro_offset(skb) - skb_headlen(skb);
5107 if (grow > 0)
5108 gro_pull_from_frag0(skb, grow);
5109 ok:
5110 return ret;
5111
5112 normal:
5113 ret = GRO_NORMAL;
5114 goto pull;
5115 }
5116
5117 struct packet_offload *gro_find_receive_by_type(__be16 type)
5118 {
5119 struct list_head *offload_head = &offload_base;
5120 struct packet_offload *ptype;
5121
5122 list_for_each_entry_rcu(ptype, offload_head, list) {
5123 if (ptype->type != type || !ptype->callbacks.gro_receive)
5124 continue;
5125 return ptype;
5126 }
5127 return NULL;
5128 }
5129 EXPORT_SYMBOL(gro_find_receive_by_type);
5130
5131 struct packet_offload *gro_find_complete_by_type(__be16 type)
5132 {
5133 struct list_head *offload_head = &offload_base;
5134 struct packet_offload *ptype;
5135
5136 list_for_each_entry_rcu(ptype, offload_head, list) {
5137 if (ptype->type != type || !ptype->callbacks.gro_complete)
5138 continue;
5139 return ptype;
5140 }
5141 return NULL;
5142 }
5143 EXPORT_SYMBOL(gro_find_complete_by_type);
5144
5145 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5146 {
5147 skb_dst_drop(skb);
5148 secpath_reset(skb);
5149 kmem_cache_free(skbuff_head_cache, skb);
5150 }
5151
5152 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5153 {
5154 switch (ret) {
5155 case GRO_NORMAL:
5156 if (netif_receive_skb_internal(skb))
5157 ret = GRO_DROP;
5158 break;
5159
5160 case GRO_DROP:
5161 kfree_skb(skb);
5162 break;
5163
5164 case GRO_MERGED_FREE:
5165 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5166 napi_skb_free_stolen_head(skb);
5167 else
5168 __kfree_skb(skb);
5169 break;
5170
5171 case GRO_HELD:
5172 case GRO_MERGED:
5173 case GRO_CONSUMED:
5174 break;
5175 }
5176
5177 return ret;
5178 }
5179
5180 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5181 {
5182 skb_mark_napi_id(skb, napi);
5183 trace_napi_gro_receive_entry(skb);
5184
5185 skb_gro_reset_offset(skb);
5186
5187 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5188 }
5189 EXPORT_SYMBOL(napi_gro_receive);
5190
5191 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5192 {
5193 if (unlikely(skb->pfmemalloc)) {
5194 consume_skb(skb);
5195 return;
5196 }
5197 __skb_pull(skb, skb_headlen(skb));
5198 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5199 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5200 skb->vlan_tci = 0;
5201 skb->dev = napi->dev;
5202 skb->skb_iif = 0;
5203 skb->encapsulation = 0;
5204 skb_shinfo(skb)->gso_type = 0;
5205 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5206 secpath_reset(skb);
5207
5208 napi->skb = skb;
5209 }
5210
5211 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5212 {
5213 struct sk_buff *skb = napi->skb;
5214
5215 if (!skb) {
5216 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5217 if (skb) {
5218 napi->skb = skb;
5219 skb_mark_napi_id(skb, napi);
5220 }
5221 }
5222 return skb;
5223 }
5224 EXPORT_SYMBOL(napi_get_frags);
5225
5226 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5227 struct sk_buff *skb,
5228 gro_result_t ret)
5229 {
5230 switch (ret) {
5231 case GRO_NORMAL:
5232 case GRO_HELD:
5233 __skb_push(skb, ETH_HLEN);
5234 skb->protocol = eth_type_trans(skb, skb->dev);
5235 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5236 ret = GRO_DROP;
5237 break;
5238
5239 case GRO_DROP:
5240 napi_reuse_skb(napi, skb);
5241 break;
5242
5243 case GRO_MERGED_FREE:
5244 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5245 napi_skb_free_stolen_head(skb);
5246 else
5247 napi_reuse_skb(napi, skb);
5248 break;
5249
5250 case GRO_MERGED:
5251 case GRO_CONSUMED:
5252 break;
5253 }
5254
5255 return ret;
5256 }
5257
5258 /* Upper GRO stack assumes network header starts at gro_offset=0
5259 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5260 * We copy ethernet header into skb->data to have a common layout.
5261 */
5262 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5263 {
5264 struct sk_buff *skb = napi->skb;
5265 const struct ethhdr *eth;
5266 unsigned int hlen = sizeof(*eth);
5267
5268 napi->skb = NULL;
5269
5270 skb_reset_mac_header(skb);
5271 skb_gro_reset_offset(skb);
5272
5273 eth = skb_gro_header_fast(skb, 0);
5274 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5275 eth = skb_gro_header_slow(skb, hlen, 0);
5276 if (unlikely(!eth)) {
5277 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5278 __func__, napi->dev->name);
5279 napi_reuse_skb(napi, skb);
5280 return NULL;
5281 }
5282 } else {
5283 gro_pull_from_frag0(skb, hlen);
5284 NAPI_GRO_CB(skb)->frag0 += hlen;
5285 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5286 }
5287 __skb_pull(skb, hlen);
5288
5289 /*
5290 * This works because the only protocols we care about don't require
5291 * special handling.
5292 * We'll fix it up properly in napi_frags_finish()
5293 */
5294 skb->protocol = eth->h_proto;
5295
5296 return skb;
5297 }
5298
5299 gro_result_t napi_gro_frags(struct napi_struct *napi)
5300 {
5301 struct sk_buff *skb = napi_frags_skb(napi);
5302
5303 if (!skb)
5304 return GRO_DROP;
5305
5306 trace_napi_gro_frags_entry(skb);
5307
5308 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5309 }
5310 EXPORT_SYMBOL(napi_gro_frags);
5311
5312 /* Compute the checksum from gro_offset and return the folded value
5313 * after adding in any pseudo checksum.
5314 */
5315 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5316 {
5317 __wsum wsum;
5318 __sum16 sum;
5319
5320 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5321
5322 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5323 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5324 if (likely(!sum)) {
5325 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5326 !skb->csum_complete_sw)
5327 netdev_rx_csum_fault(skb->dev);
5328 }
5329
5330 NAPI_GRO_CB(skb)->csum = wsum;
5331 NAPI_GRO_CB(skb)->csum_valid = 1;
5332
5333 return sum;
5334 }
5335 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5336
5337 static void net_rps_send_ipi(struct softnet_data *remsd)
5338 {
5339 #ifdef CONFIG_RPS
5340 while (remsd) {
5341 struct softnet_data *next = remsd->rps_ipi_next;
5342
5343 if (cpu_online(remsd->cpu))
5344 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5345 remsd = next;
5346 }
5347 #endif
5348 }
5349
5350 /*
5351 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5352 * Note: called with local irq disabled, but exits with local irq enabled.
5353 */
5354 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5355 {
5356 #ifdef CONFIG_RPS
5357 struct softnet_data *remsd = sd->rps_ipi_list;
5358
5359 if (remsd) {
5360 sd->rps_ipi_list = NULL;
5361
5362 local_irq_enable();
5363
5364 /* Send pending IPI's to kick RPS processing on remote cpus. */
5365 net_rps_send_ipi(remsd);
5366 } else
5367 #endif
5368 local_irq_enable();
5369 }
5370
5371 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5372 {
5373 #ifdef CONFIG_RPS
5374 return sd->rps_ipi_list != NULL;
5375 #else
5376 return false;
5377 #endif
5378 }
5379
5380 static int process_backlog(struct napi_struct *napi, int quota)
5381 {
5382 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5383 bool again = true;
5384 int work = 0;
5385
5386 /* Check if we have pending ipi, its better to send them now,
5387 * not waiting net_rx_action() end.
5388 */
5389 if (sd_has_rps_ipi_waiting(sd)) {
5390 local_irq_disable();
5391 net_rps_action_and_irq_enable(sd);
5392 }
5393
5394 napi->weight = dev_rx_weight;
5395 while (again) {
5396 struct sk_buff *skb;
5397
5398 while ((skb = __skb_dequeue(&sd->process_queue))) {
5399 rcu_read_lock();
5400 __netif_receive_skb(skb);
5401 rcu_read_unlock();
5402 input_queue_head_incr(sd);
5403 if (++work >= quota)
5404 return work;
5405
5406 }
5407
5408 local_irq_disable();
5409 rps_lock(sd);
5410 if (skb_queue_empty(&sd->input_pkt_queue)) {
5411 /*
5412 * Inline a custom version of __napi_complete().
5413 * only current cpu owns and manipulates this napi,
5414 * and NAPI_STATE_SCHED is the only possible flag set
5415 * on backlog.
5416 * We can use a plain write instead of clear_bit(),
5417 * and we dont need an smp_mb() memory barrier.
5418 */
5419 napi->state = 0;
5420 again = false;
5421 } else {
5422 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5423 &sd->process_queue);
5424 }
5425 rps_unlock(sd);
5426 local_irq_enable();
5427 }
5428
5429 return work;
5430 }
5431
5432 /**
5433 * __napi_schedule - schedule for receive
5434 * @n: entry to schedule
5435 *
5436 * The entry's receive function will be scheduled to run.
5437 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5438 */
5439 void __napi_schedule(struct napi_struct *n)
5440 {
5441 unsigned long flags;
5442
5443 local_irq_save(flags);
5444 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5445 local_irq_restore(flags);
5446 }
5447 EXPORT_SYMBOL(__napi_schedule);
5448
5449 /**
5450 * napi_schedule_prep - check if napi can be scheduled
5451 * @n: napi context
5452 *
5453 * Test if NAPI routine is already running, and if not mark
5454 * it as running. This is used as a condition variable
5455 * insure only one NAPI poll instance runs. We also make
5456 * sure there is no pending NAPI disable.
5457 */
5458 bool napi_schedule_prep(struct napi_struct *n)
5459 {
5460 unsigned long val, new;
5461
5462 do {
5463 val = READ_ONCE(n->state);
5464 if (unlikely(val & NAPIF_STATE_DISABLE))
5465 return false;
5466 new = val | NAPIF_STATE_SCHED;
5467
5468 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5469 * This was suggested by Alexander Duyck, as compiler
5470 * emits better code than :
5471 * if (val & NAPIF_STATE_SCHED)
5472 * new |= NAPIF_STATE_MISSED;
5473 */
5474 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5475 NAPIF_STATE_MISSED;
5476 } while (cmpxchg(&n->state, val, new) != val);
5477
5478 return !(val & NAPIF_STATE_SCHED);
5479 }
5480 EXPORT_SYMBOL(napi_schedule_prep);
5481
5482 /**
5483 * __napi_schedule_irqoff - schedule for receive
5484 * @n: entry to schedule
5485 *
5486 * Variant of __napi_schedule() assuming hard irqs are masked
5487 */
5488 void __napi_schedule_irqoff(struct napi_struct *n)
5489 {
5490 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5491 }
5492 EXPORT_SYMBOL(__napi_schedule_irqoff);
5493
5494 bool napi_complete_done(struct napi_struct *n, int work_done)
5495 {
5496 unsigned long flags, val, new;
5497
5498 /*
5499 * 1) Don't let napi dequeue from the cpu poll list
5500 * just in case its running on a different cpu.
5501 * 2) If we are busy polling, do nothing here, we have
5502 * the guarantee we will be called later.
5503 */
5504 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5505 NAPIF_STATE_IN_BUSY_POLL)))
5506 return false;
5507
5508 if (n->gro_count) {
5509 unsigned long timeout = 0;
5510
5511 if (work_done)
5512 timeout = n->dev->gro_flush_timeout;
5513
5514 if (timeout)
5515 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5516 HRTIMER_MODE_REL_PINNED);
5517 else
5518 napi_gro_flush(n, false);
5519 }
5520 if (unlikely(!list_empty(&n->poll_list))) {
5521 /* If n->poll_list is not empty, we need to mask irqs */
5522 local_irq_save(flags);
5523 list_del_init(&n->poll_list);
5524 local_irq_restore(flags);
5525 }
5526
5527 do {
5528 val = READ_ONCE(n->state);
5529
5530 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5531
5532 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5533
5534 /* If STATE_MISSED was set, leave STATE_SCHED set,
5535 * because we will call napi->poll() one more time.
5536 * This C code was suggested by Alexander Duyck to help gcc.
5537 */
5538 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5539 NAPIF_STATE_SCHED;
5540 } while (cmpxchg(&n->state, val, new) != val);
5541
5542 if (unlikely(val & NAPIF_STATE_MISSED)) {
5543 __napi_schedule(n);
5544 return false;
5545 }
5546
5547 return true;
5548 }
5549 EXPORT_SYMBOL(napi_complete_done);
5550
5551 /* must be called under rcu_read_lock(), as we dont take a reference */
5552 static struct napi_struct *napi_by_id(unsigned int napi_id)
5553 {
5554 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5555 struct napi_struct *napi;
5556
5557 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5558 if (napi->napi_id == napi_id)
5559 return napi;
5560
5561 return NULL;
5562 }
5563
5564 #if defined(CONFIG_NET_RX_BUSY_POLL)
5565
5566 #define BUSY_POLL_BUDGET 8
5567
5568 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5569 {
5570 int rc;
5571
5572 /* Busy polling means there is a high chance device driver hard irq
5573 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5574 * set in napi_schedule_prep().
5575 * Since we are about to call napi->poll() once more, we can safely
5576 * clear NAPI_STATE_MISSED.
5577 *
5578 * Note: x86 could use a single "lock and ..." instruction
5579 * to perform these two clear_bit()
5580 */
5581 clear_bit(NAPI_STATE_MISSED, &napi->state);
5582 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5583
5584 local_bh_disable();
5585
5586 /* All we really want here is to re-enable device interrupts.
5587 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5588 */
5589 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5590 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5591 netpoll_poll_unlock(have_poll_lock);
5592 if (rc == BUSY_POLL_BUDGET)
5593 __napi_schedule(napi);
5594 local_bh_enable();
5595 }
5596
5597 void napi_busy_loop(unsigned int napi_id,
5598 bool (*loop_end)(void *, unsigned long),
5599 void *loop_end_arg)
5600 {
5601 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5602 int (*napi_poll)(struct napi_struct *napi, int budget);
5603 void *have_poll_lock = NULL;
5604 struct napi_struct *napi;
5605
5606 restart:
5607 napi_poll = NULL;
5608
5609 rcu_read_lock();
5610
5611 napi = napi_by_id(napi_id);
5612 if (!napi)
5613 goto out;
5614
5615 preempt_disable();
5616 for (;;) {
5617 int work = 0;
5618
5619 local_bh_disable();
5620 if (!napi_poll) {
5621 unsigned long val = READ_ONCE(napi->state);
5622
5623 /* If multiple threads are competing for this napi,
5624 * we avoid dirtying napi->state as much as we can.
5625 */
5626 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5627 NAPIF_STATE_IN_BUSY_POLL))
5628 goto count;
5629 if (cmpxchg(&napi->state, val,
5630 val | NAPIF_STATE_IN_BUSY_POLL |
5631 NAPIF_STATE_SCHED) != val)
5632 goto count;
5633 have_poll_lock = netpoll_poll_lock(napi);
5634 napi_poll = napi->poll;
5635 }
5636 work = napi_poll(napi, BUSY_POLL_BUDGET);
5637 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5638 count:
5639 if (work > 0)
5640 __NET_ADD_STATS(dev_net(napi->dev),
5641 LINUX_MIB_BUSYPOLLRXPACKETS, work);
5642 local_bh_enable();
5643
5644 if (!loop_end || loop_end(loop_end_arg, start_time))
5645 break;
5646
5647 if (unlikely(need_resched())) {
5648 if (napi_poll)
5649 busy_poll_stop(napi, have_poll_lock);
5650 preempt_enable();
5651 rcu_read_unlock();
5652 cond_resched();
5653 if (loop_end(loop_end_arg, start_time))
5654 return;
5655 goto restart;
5656 }
5657 cpu_relax();
5658 }
5659 if (napi_poll)
5660 busy_poll_stop(napi, have_poll_lock);
5661 preempt_enable();
5662 out:
5663 rcu_read_unlock();
5664 }
5665 EXPORT_SYMBOL(napi_busy_loop);
5666
5667 #endif /* CONFIG_NET_RX_BUSY_POLL */
5668
5669 static void napi_hash_add(struct napi_struct *napi)
5670 {
5671 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5672 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5673 return;
5674
5675 spin_lock(&napi_hash_lock);
5676
5677 /* 0..NR_CPUS range is reserved for sender_cpu use */
5678 do {
5679 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5680 napi_gen_id = MIN_NAPI_ID;
5681 } while (napi_by_id(napi_gen_id));
5682 napi->napi_id = napi_gen_id;
5683
5684 hlist_add_head_rcu(&napi->napi_hash_node,
5685 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5686
5687 spin_unlock(&napi_hash_lock);
5688 }
5689
5690 /* Warning : caller is responsible to make sure rcu grace period
5691 * is respected before freeing memory containing @napi
5692 */
5693 bool napi_hash_del(struct napi_struct *napi)
5694 {
5695 bool rcu_sync_needed = false;
5696
5697 spin_lock(&napi_hash_lock);
5698
5699 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5700 rcu_sync_needed = true;
5701 hlist_del_rcu(&napi->napi_hash_node);
5702 }
5703 spin_unlock(&napi_hash_lock);
5704 return rcu_sync_needed;
5705 }
5706 EXPORT_SYMBOL_GPL(napi_hash_del);
5707
5708 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5709 {
5710 struct napi_struct *napi;
5711
5712 napi = container_of(timer, struct napi_struct, timer);
5713
5714 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5715 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5716 */
5717 if (napi->gro_count && !napi_disable_pending(napi) &&
5718 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5719 __napi_schedule_irqoff(napi);
5720
5721 return HRTIMER_NORESTART;
5722 }
5723
5724 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5725 int (*poll)(struct napi_struct *, int), int weight)
5726 {
5727 int i;
5728
5729 INIT_LIST_HEAD(&napi->poll_list);
5730 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5731 napi->timer.function = napi_watchdog;
5732 napi->gro_count = 0;
5733 for (i = 0; i < GRO_HASH_BUCKETS; i++)
5734 INIT_LIST_HEAD(&napi->gro_hash[i]);
5735 napi->skb = NULL;
5736 napi->poll = poll;
5737 if (weight > NAPI_POLL_WEIGHT)
5738 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5739 weight, dev->name);
5740 napi->weight = weight;
5741 list_add(&napi->dev_list, &dev->napi_list);
5742 napi->dev = dev;
5743 #ifdef CONFIG_NETPOLL
5744 napi->poll_owner = -1;
5745 #endif
5746 set_bit(NAPI_STATE_SCHED, &napi->state);
5747 napi_hash_add(napi);
5748 }
5749 EXPORT_SYMBOL(netif_napi_add);
5750
5751 void napi_disable(struct napi_struct *n)
5752 {
5753 might_sleep();
5754 set_bit(NAPI_STATE_DISABLE, &n->state);
5755
5756 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5757 msleep(1);
5758 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5759 msleep(1);
5760
5761 hrtimer_cancel(&n->timer);
5762
5763 clear_bit(NAPI_STATE_DISABLE, &n->state);
5764 }
5765 EXPORT_SYMBOL(napi_disable);
5766
5767 static void flush_gro_hash(struct napi_struct *napi)
5768 {
5769 int i;
5770
5771 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5772 struct sk_buff *skb, *n;
5773
5774 list_for_each_entry_safe(skb, n, &napi->gro_hash[i], list)
5775 kfree_skb(skb);
5776 }
5777 }
5778
5779 /* Must be called in process context */
5780 void netif_napi_del(struct napi_struct *napi)
5781 {
5782 might_sleep();
5783 if (napi_hash_del(napi))
5784 synchronize_net();
5785 list_del_init(&napi->dev_list);
5786 napi_free_frags(napi);
5787
5788 flush_gro_hash(napi);
5789 napi->gro_count = 0;
5790 }
5791 EXPORT_SYMBOL(netif_napi_del);
5792
5793 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5794 {
5795 void *have;
5796 int work, weight;
5797
5798 list_del_init(&n->poll_list);
5799
5800 have = netpoll_poll_lock(n);
5801
5802 weight = n->weight;
5803
5804 /* This NAPI_STATE_SCHED test is for avoiding a race
5805 * with netpoll's poll_napi(). Only the entity which
5806 * obtains the lock and sees NAPI_STATE_SCHED set will
5807 * actually make the ->poll() call. Therefore we avoid
5808 * accidentally calling ->poll() when NAPI is not scheduled.
5809 */
5810 work = 0;
5811 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5812 work = n->poll(n, weight);
5813 trace_napi_poll(n, work, weight);
5814 }
5815
5816 WARN_ON_ONCE(work > weight);
5817
5818 if (likely(work < weight))
5819 goto out_unlock;
5820
5821 /* Drivers must not modify the NAPI state if they
5822 * consume the entire weight. In such cases this code
5823 * still "owns" the NAPI instance and therefore can
5824 * move the instance around on the list at-will.
5825 */
5826 if (unlikely(napi_disable_pending(n))) {
5827 napi_complete(n);
5828 goto out_unlock;
5829 }
5830
5831 if (n->gro_count) {
5832 /* flush too old packets
5833 * If HZ < 1000, flush all packets.
5834 */
5835 napi_gro_flush(n, HZ >= 1000);
5836 }
5837
5838 /* Some drivers may have called napi_schedule
5839 * prior to exhausting their budget.
5840 */
5841 if (unlikely(!list_empty(&n->poll_list))) {
5842 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5843 n->dev ? n->dev->name : "backlog");
5844 goto out_unlock;
5845 }
5846
5847 list_add_tail(&n->poll_list, repoll);
5848
5849 out_unlock:
5850 netpoll_poll_unlock(have);
5851
5852 return work;
5853 }
5854
5855 static __latent_entropy void net_rx_action(struct softirq_action *h)
5856 {
5857 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5858 unsigned long time_limit = jiffies +
5859 usecs_to_jiffies(netdev_budget_usecs);
5860 int budget = netdev_budget;
5861 LIST_HEAD(list);
5862 LIST_HEAD(repoll);
5863
5864 local_irq_disable();
5865 list_splice_init(&sd->poll_list, &list);
5866 local_irq_enable();
5867
5868 for (;;) {
5869 struct napi_struct *n;
5870
5871 if (list_empty(&list)) {
5872 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5873 goto out;
5874 break;
5875 }
5876
5877 n = list_first_entry(&list, struct napi_struct, poll_list);
5878 budget -= napi_poll(n, &repoll);
5879
5880 /* If softirq window is exhausted then punt.
5881 * Allow this to run for 2 jiffies since which will allow
5882 * an average latency of 1.5/HZ.
5883 */
5884 if (unlikely(budget <= 0 ||
5885 time_after_eq(jiffies, time_limit))) {
5886 sd->time_squeeze++;
5887 break;
5888 }
5889 }
5890
5891 local_irq_disable();
5892
5893 list_splice_tail_init(&sd->poll_list, &list);
5894 list_splice_tail(&repoll, &list);
5895 list_splice(&list, &sd->poll_list);
5896 if (!list_empty(&sd->poll_list))
5897 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5898
5899 net_rps_action_and_irq_enable(sd);
5900 out:
5901 __kfree_skb_flush();
5902 }
5903
5904 struct netdev_adjacent {
5905 struct net_device *dev;
5906
5907 /* upper master flag, there can only be one master device per list */
5908 bool master;
5909
5910 /* counter for the number of times this device was added to us */
5911 u16 ref_nr;
5912
5913 /* private field for the users */
5914 void *private;
5915
5916 struct list_head list;
5917 struct rcu_head rcu;
5918 };
5919
5920 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5921 struct list_head *adj_list)
5922 {
5923 struct netdev_adjacent *adj;
5924
5925 list_for_each_entry(adj, adj_list, list) {
5926 if (adj->dev == adj_dev)
5927 return adj;
5928 }
5929 return NULL;
5930 }
5931
5932 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5933 {
5934 struct net_device *dev = data;
5935
5936 return upper_dev == dev;
5937 }
5938
5939 /**
5940 * netdev_has_upper_dev - Check if device is linked to an upper device
5941 * @dev: device
5942 * @upper_dev: upper device to check
5943 *
5944 * Find out if a device is linked to specified upper device and return true
5945 * in case it is. Note that this checks only immediate upper device,
5946 * not through a complete stack of devices. The caller must hold the RTNL lock.
5947 */
5948 bool netdev_has_upper_dev(struct net_device *dev,
5949 struct net_device *upper_dev)
5950 {
5951 ASSERT_RTNL();
5952
5953 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5954 upper_dev);
5955 }
5956 EXPORT_SYMBOL(netdev_has_upper_dev);
5957
5958 /**
5959 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5960 * @dev: device
5961 * @upper_dev: upper device to check
5962 *
5963 * Find out if a device is linked to specified upper device and return true
5964 * in case it is. Note that this checks the entire upper device chain.
5965 * The caller must hold rcu lock.
5966 */
5967
5968 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5969 struct net_device *upper_dev)
5970 {
5971 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5972 upper_dev);
5973 }
5974 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5975
5976 /**
5977 * netdev_has_any_upper_dev - Check if device is linked to some device
5978 * @dev: device
5979 *
5980 * Find out if a device is linked to an upper device and return true in case
5981 * it is. The caller must hold the RTNL lock.
5982 */
5983 bool netdev_has_any_upper_dev(struct net_device *dev)
5984 {
5985 ASSERT_RTNL();
5986
5987 return !list_empty(&dev->adj_list.upper);
5988 }
5989 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5990
5991 /**
5992 * netdev_master_upper_dev_get - Get master upper device
5993 * @dev: device
5994 *
5995 * Find a master upper device and return pointer to it or NULL in case
5996 * it's not there. The caller must hold the RTNL lock.
5997 */
5998 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5999 {
6000 struct netdev_adjacent *upper;
6001
6002 ASSERT_RTNL();
6003
6004 if (list_empty(&dev->adj_list.upper))
6005 return NULL;
6006
6007 upper = list_first_entry(&dev->adj_list.upper,
6008 struct netdev_adjacent, list);
6009 if (likely(upper->master))
6010 return upper->dev;
6011 return NULL;
6012 }
6013 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6014
6015 /**
6016 * netdev_has_any_lower_dev - Check if device is linked to some device
6017 * @dev: device
6018 *
6019 * Find out if a device is linked to a lower device and return true in case
6020 * it is. The caller must hold the RTNL lock.
6021 */
6022 static bool netdev_has_any_lower_dev(struct net_device *dev)
6023 {
6024 ASSERT_RTNL();
6025
6026 return !list_empty(&dev->adj_list.lower);
6027 }
6028
6029 void *netdev_adjacent_get_private(struct list_head *adj_list)
6030 {
6031 struct netdev_adjacent *adj;
6032
6033 adj = list_entry(adj_list, struct netdev_adjacent, list);
6034
6035 return adj->private;
6036 }
6037 EXPORT_SYMBOL(netdev_adjacent_get_private);
6038
6039 /**
6040 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6041 * @dev: device
6042 * @iter: list_head ** of the current position
6043 *
6044 * Gets the next device from the dev's upper list, starting from iter
6045 * position. The caller must hold RCU read lock.
6046 */
6047 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6048 struct list_head **iter)
6049 {
6050 struct netdev_adjacent *upper;
6051
6052 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6053
6054 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6055
6056 if (&upper->list == &dev->adj_list.upper)
6057 return NULL;
6058
6059 *iter = &upper->list;
6060
6061 return upper->dev;
6062 }
6063 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6064
6065 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6066 struct list_head **iter)
6067 {
6068 struct netdev_adjacent *upper;
6069
6070 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6071
6072 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6073
6074 if (&upper->list == &dev->adj_list.upper)
6075 return NULL;
6076
6077 *iter = &upper->list;
6078
6079 return upper->dev;
6080 }
6081
6082 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6083 int (*fn)(struct net_device *dev,
6084 void *data),
6085 void *data)
6086 {
6087 struct net_device *udev;
6088 struct list_head *iter;
6089 int ret;
6090
6091 for (iter = &dev->adj_list.upper,
6092 udev = netdev_next_upper_dev_rcu(dev, &iter);
6093 udev;
6094 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6095 /* first is the upper device itself */
6096 ret = fn(udev, data);
6097 if (ret)
6098 return ret;
6099
6100 /* then look at all of its upper devices */
6101 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6102 if (ret)
6103 return ret;
6104 }
6105
6106 return 0;
6107 }
6108 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6109
6110 /**
6111 * netdev_lower_get_next_private - Get the next ->private from the
6112 * lower neighbour list
6113 * @dev: device
6114 * @iter: list_head ** of the current position
6115 *
6116 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6117 * list, starting from iter position. The caller must hold either hold the
6118 * RTNL lock or its own locking that guarantees that the neighbour lower
6119 * list will remain unchanged.
6120 */
6121 void *netdev_lower_get_next_private(struct net_device *dev,
6122 struct list_head **iter)
6123 {
6124 struct netdev_adjacent *lower;
6125
6126 lower = list_entry(*iter, struct netdev_adjacent, list);
6127
6128 if (&lower->list == &dev->adj_list.lower)
6129 return NULL;
6130
6131 *iter = lower->list.next;
6132
6133 return lower->private;
6134 }
6135 EXPORT_SYMBOL(netdev_lower_get_next_private);
6136
6137 /**
6138 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6139 * lower neighbour list, RCU
6140 * variant
6141 * @dev: device
6142 * @iter: list_head ** of the current position
6143 *
6144 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6145 * list, starting from iter position. The caller must hold RCU read lock.
6146 */
6147 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6148 struct list_head **iter)
6149 {
6150 struct netdev_adjacent *lower;
6151
6152 WARN_ON_ONCE(!rcu_read_lock_held());
6153
6154 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6155
6156 if (&lower->list == &dev->adj_list.lower)
6157 return NULL;
6158
6159 *iter = &lower->list;
6160
6161 return lower->private;
6162 }
6163 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6164
6165 /**
6166 * netdev_lower_get_next - Get the next device from the lower neighbour
6167 * list
6168 * @dev: device
6169 * @iter: list_head ** of the current position
6170 *
6171 * Gets the next netdev_adjacent from the dev's lower neighbour
6172 * list, starting from iter position. The caller must hold RTNL lock or
6173 * its own locking that guarantees that the neighbour lower
6174 * list will remain unchanged.
6175 */
6176 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6177 {
6178 struct netdev_adjacent *lower;
6179
6180 lower = list_entry(*iter, struct netdev_adjacent, list);
6181
6182 if (&lower->list == &dev->adj_list.lower)
6183 return NULL;
6184
6185 *iter = lower->list.next;
6186
6187 return lower->dev;
6188 }
6189 EXPORT_SYMBOL(netdev_lower_get_next);
6190
6191 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6192 struct list_head **iter)
6193 {
6194 struct netdev_adjacent *lower;
6195
6196 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6197
6198 if (&lower->list == &dev->adj_list.lower)
6199 return NULL;
6200
6201 *iter = &lower->list;
6202
6203 return lower->dev;
6204 }
6205
6206 int netdev_walk_all_lower_dev(struct net_device *dev,
6207 int (*fn)(struct net_device *dev,
6208 void *data),
6209 void *data)
6210 {
6211 struct net_device *ldev;
6212 struct list_head *iter;
6213 int ret;
6214
6215 for (iter = &dev->adj_list.lower,
6216 ldev = netdev_next_lower_dev(dev, &iter);
6217 ldev;
6218 ldev = netdev_next_lower_dev(dev, &iter)) {
6219 /* first is the lower device itself */
6220 ret = fn(ldev, data);
6221 if (ret)
6222 return ret;
6223
6224 /* then look at all of its lower devices */
6225 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6226 if (ret)
6227 return ret;
6228 }
6229
6230 return 0;
6231 }
6232 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6233
6234 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6235 struct list_head **iter)
6236 {
6237 struct netdev_adjacent *lower;
6238
6239 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6240 if (&lower->list == &dev->adj_list.lower)
6241 return NULL;
6242
6243 *iter = &lower->list;
6244
6245 return lower->dev;
6246 }
6247
6248 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6249 int (*fn)(struct net_device *dev,
6250 void *data),
6251 void *data)
6252 {
6253 struct net_device *ldev;
6254 struct list_head *iter;
6255 int ret;
6256
6257 for (iter = &dev->adj_list.lower,
6258 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6259 ldev;
6260 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6261 /* first is the lower device itself */
6262 ret = fn(ldev, data);
6263 if (ret)
6264 return ret;
6265
6266 /* then look at all of its lower devices */
6267 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6268 if (ret)
6269 return ret;
6270 }
6271
6272 return 0;
6273 }
6274 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6275
6276 /**
6277 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6278 * lower neighbour list, RCU
6279 * variant
6280 * @dev: device
6281 *
6282 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6283 * list. The caller must hold RCU read lock.
6284 */
6285 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6286 {
6287 struct netdev_adjacent *lower;
6288
6289 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6290 struct netdev_adjacent, list);
6291 if (lower)
6292 return lower->private;
6293 return NULL;
6294 }
6295 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6296
6297 /**
6298 * netdev_master_upper_dev_get_rcu - Get master upper device
6299 * @dev: device
6300 *
6301 * Find a master upper device and return pointer to it or NULL in case
6302 * it's not there. The caller must hold the RCU read lock.
6303 */
6304 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6305 {
6306 struct netdev_adjacent *upper;
6307
6308 upper = list_first_or_null_rcu(&dev->adj_list.upper,
6309 struct netdev_adjacent, list);
6310 if (upper && likely(upper->master))
6311 return upper->dev;
6312 return NULL;
6313 }
6314 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6315
6316 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6317 struct net_device *adj_dev,
6318 struct list_head *dev_list)
6319 {
6320 char linkname[IFNAMSIZ+7];
6321
6322 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6323 "upper_%s" : "lower_%s", adj_dev->name);
6324 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6325 linkname);
6326 }
6327 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6328 char *name,
6329 struct list_head *dev_list)
6330 {
6331 char linkname[IFNAMSIZ+7];
6332
6333 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6334 "upper_%s" : "lower_%s", name);
6335 sysfs_remove_link(&(dev->dev.kobj), linkname);
6336 }
6337
6338 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6339 struct net_device *adj_dev,
6340 struct list_head *dev_list)
6341 {
6342 return (dev_list == &dev->adj_list.upper ||
6343 dev_list == &dev->adj_list.lower) &&
6344 net_eq(dev_net(dev), dev_net(adj_dev));
6345 }
6346
6347 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6348 struct net_device *adj_dev,
6349 struct list_head *dev_list,
6350 void *private, bool master)
6351 {
6352 struct netdev_adjacent *adj;
6353 int ret;
6354
6355 adj = __netdev_find_adj(adj_dev, dev_list);
6356
6357 if (adj) {
6358 adj->ref_nr += 1;
6359 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6360 dev->name, adj_dev->name, adj->ref_nr);
6361
6362 return 0;
6363 }
6364
6365 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6366 if (!adj)
6367 return -ENOMEM;
6368
6369 adj->dev = adj_dev;
6370 adj->master = master;
6371 adj->ref_nr = 1;
6372 adj->private = private;
6373 dev_hold(adj_dev);
6374
6375 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6376 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6377
6378 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6379 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6380 if (ret)
6381 goto free_adj;
6382 }
6383
6384 /* Ensure that master link is always the first item in list. */
6385 if (master) {
6386 ret = sysfs_create_link(&(dev->dev.kobj),
6387 &(adj_dev->dev.kobj), "master");
6388 if (ret)
6389 goto remove_symlinks;
6390
6391 list_add_rcu(&adj->list, dev_list);
6392 } else {
6393 list_add_tail_rcu(&adj->list, dev_list);
6394 }
6395
6396 return 0;
6397
6398 remove_symlinks:
6399 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6400 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6401 free_adj:
6402 kfree(adj);
6403 dev_put(adj_dev);
6404
6405 return ret;
6406 }
6407
6408 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6409 struct net_device *adj_dev,
6410 u16 ref_nr,
6411 struct list_head *dev_list)
6412 {
6413 struct netdev_adjacent *adj;
6414
6415 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6416 dev->name, adj_dev->name, ref_nr);
6417
6418 adj = __netdev_find_adj(adj_dev, dev_list);
6419
6420 if (!adj) {
6421 pr_err("Adjacency does not exist for device %s from %s\n",
6422 dev->name, adj_dev->name);
6423 WARN_ON(1);
6424 return;
6425 }
6426
6427 if (adj->ref_nr > ref_nr) {
6428 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6429 dev->name, adj_dev->name, ref_nr,
6430 adj->ref_nr - ref_nr);
6431 adj->ref_nr -= ref_nr;
6432 return;
6433 }
6434
6435 if (adj->master)
6436 sysfs_remove_link(&(dev->dev.kobj), "master");
6437
6438 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6439 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6440
6441 list_del_rcu(&adj->list);
6442 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6443 adj_dev->name, dev->name, adj_dev->name);
6444 dev_put(adj_dev);
6445 kfree_rcu(adj, rcu);
6446 }
6447
6448 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6449 struct net_device *upper_dev,
6450 struct list_head *up_list,
6451 struct list_head *down_list,
6452 void *private, bool master)
6453 {
6454 int ret;
6455
6456 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6457 private, master);
6458 if (ret)
6459 return ret;
6460
6461 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6462 private, false);
6463 if (ret) {
6464 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6465 return ret;
6466 }
6467
6468 return 0;
6469 }
6470
6471 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6472 struct net_device *upper_dev,
6473 u16 ref_nr,
6474 struct list_head *up_list,
6475 struct list_head *down_list)
6476 {
6477 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6478 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6479 }
6480
6481 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6482 struct net_device *upper_dev,
6483 void *private, bool master)
6484 {
6485 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6486 &dev->adj_list.upper,
6487 &upper_dev->adj_list.lower,
6488 private, master);
6489 }
6490
6491 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6492 struct net_device *upper_dev)
6493 {
6494 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6495 &dev->adj_list.upper,
6496 &upper_dev->adj_list.lower);
6497 }
6498
6499 static int __netdev_upper_dev_link(struct net_device *dev,
6500 struct net_device *upper_dev, bool master,
6501 void *upper_priv, void *upper_info,
6502 struct netlink_ext_ack *extack)
6503 {
6504 struct netdev_notifier_changeupper_info changeupper_info = {
6505 .info = {
6506 .dev = dev,
6507 .extack = extack,
6508 },
6509 .upper_dev = upper_dev,
6510 .master = master,
6511 .linking = true,
6512 .upper_info = upper_info,
6513 };
6514 struct net_device *master_dev;
6515 int ret = 0;
6516
6517 ASSERT_RTNL();
6518
6519 if (dev == upper_dev)
6520 return -EBUSY;
6521
6522 /* To prevent loops, check if dev is not upper device to upper_dev. */
6523 if (netdev_has_upper_dev(upper_dev, dev))
6524 return -EBUSY;
6525
6526 if (!master) {
6527 if (netdev_has_upper_dev(dev, upper_dev))
6528 return -EEXIST;
6529 } else {
6530 master_dev = netdev_master_upper_dev_get(dev);
6531 if (master_dev)
6532 return master_dev == upper_dev ? -EEXIST : -EBUSY;
6533 }
6534
6535 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6536 &changeupper_info.info);
6537 ret = notifier_to_errno(ret);
6538 if (ret)
6539 return ret;
6540
6541 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6542 master);
6543 if (ret)
6544 return ret;
6545
6546 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6547 &changeupper_info.info);
6548 ret = notifier_to_errno(ret);
6549 if (ret)
6550 goto rollback;
6551
6552 return 0;
6553
6554 rollback:
6555 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6556
6557 return ret;
6558 }
6559
6560 /**
6561 * netdev_upper_dev_link - Add a link to the upper device
6562 * @dev: device
6563 * @upper_dev: new upper device
6564 * @extack: netlink extended ack
6565 *
6566 * Adds a link to device which is upper to this one. The caller must hold
6567 * the RTNL lock. On a failure a negative errno code is returned.
6568 * On success the reference counts are adjusted and the function
6569 * returns zero.
6570 */
6571 int netdev_upper_dev_link(struct net_device *dev,
6572 struct net_device *upper_dev,
6573 struct netlink_ext_ack *extack)
6574 {
6575 return __netdev_upper_dev_link(dev, upper_dev, false,
6576 NULL, NULL, extack);
6577 }
6578 EXPORT_SYMBOL(netdev_upper_dev_link);
6579
6580 /**
6581 * netdev_master_upper_dev_link - Add a master link to the upper device
6582 * @dev: device
6583 * @upper_dev: new upper device
6584 * @upper_priv: upper device private
6585 * @upper_info: upper info to be passed down via notifier
6586 * @extack: netlink extended ack
6587 *
6588 * Adds a link to device which is upper to this one. In this case, only
6589 * one master upper device can be linked, although other non-master devices
6590 * might be linked as well. The caller must hold the RTNL lock.
6591 * On a failure a negative errno code is returned. On success the reference
6592 * counts are adjusted and the function returns zero.
6593 */
6594 int netdev_master_upper_dev_link(struct net_device *dev,
6595 struct net_device *upper_dev,
6596 void *upper_priv, void *upper_info,
6597 struct netlink_ext_ack *extack)
6598 {
6599 return __netdev_upper_dev_link(dev, upper_dev, true,
6600 upper_priv, upper_info, extack);
6601 }
6602 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6603
6604 /**
6605 * netdev_upper_dev_unlink - Removes a link to upper device
6606 * @dev: device
6607 * @upper_dev: new upper device
6608 *
6609 * Removes a link to device which is upper to this one. The caller must hold
6610 * the RTNL lock.
6611 */
6612 void netdev_upper_dev_unlink(struct net_device *dev,
6613 struct net_device *upper_dev)
6614 {
6615 struct netdev_notifier_changeupper_info changeupper_info = {
6616 .info = {
6617 .dev = dev,
6618 },
6619 .upper_dev = upper_dev,
6620 .linking = false,
6621 };
6622
6623 ASSERT_RTNL();
6624
6625 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6626
6627 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6628 &changeupper_info.info);
6629
6630 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6631
6632 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6633 &changeupper_info.info);
6634 }
6635 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6636
6637 /**
6638 * netdev_bonding_info_change - Dispatch event about slave change
6639 * @dev: device
6640 * @bonding_info: info to dispatch
6641 *
6642 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6643 * The caller must hold the RTNL lock.
6644 */
6645 void netdev_bonding_info_change(struct net_device *dev,
6646 struct netdev_bonding_info *bonding_info)
6647 {
6648 struct netdev_notifier_bonding_info info = {
6649 .info.dev = dev,
6650 };
6651
6652 memcpy(&info.bonding_info, bonding_info,
6653 sizeof(struct netdev_bonding_info));
6654 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6655 &info.info);
6656 }
6657 EXPORT_SYMBOL(netdev_bonding_info_change);
6658
6659 static void netdev_adjacent_add_links(struct net_device *dev)
6660 {
6661 struct netdev_adjacent *iter;
6662
6663 struct net *net = dev_net(dev);
6664
6665 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6666 if (!net_eq(net, dev_net(iter->dev)))
6667 continue;
6668 netdev_adjacent_sysfs_add(iter->dev, dev,
6669 &iter->dev->adj_list.lower);
6670 netdev_adjacent_sysfs_add(dev, iter->dev,
6671 &dev->adj_list.upper);
6672 }
6673
6674 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6675 if (!net_eq(net, dev_net(iter->dev)))
6676 continue;
6677 netdev_adjacent_sysfs_add(iter->dev, dev,
6678 &iter->dev->adj_list.upper);
6679 netdev_adjacent_sysfs_add(dev, iter->dev,
6680 &dev->adj_list.lower);
6681 }
6682 }
6683
6684 static void netdev_adjacent_del_links(struct net_device *dev)
6685 {
6686 struct netdev_adjacent *iter;
6687
6688 struct net *net = dev_net(dev);
6689
6690 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6691 if (!net_eq(net, dev_net(iter->dev)))
6692 continue;
6693 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6694 &iter->dev->adj_list.lower);
6695 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6696 &dev->adj_list.upper);
6697 }
6698
6699 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6700 if (!net_eq(net, dev_net(iter->dev)))
6701 continue;
6702 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6703 &iter->dev->adj_list.upper);
6704 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6705 &dev->adj_list.lower);
6706 }
6707 }
6708
6709 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6710 {
6711 struct netdev_adjacent *iter;
6712
6713 struct net *net = dev_net(dev);
6714
6715 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6716 if (!net_eq(net, dev_net(iter->dev)))
6717 continue;
6718 netdev_adjacent_sysfs_del(iter->dev, oldname,
6719 &iter->dev->adj_list.lower);
6720 netdev_adjacent_sysfs_add(iter->dev, dev,
6721 &iter->dev->adj_list.lower);
6722 }
6723
6724 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6725 if (!net_eq(net, dev_net(iter->dev)))
6726 continue;
6727 netdev_adjacent_sysfs_del(iter->dev, oldname,
6728 &iter->dev->adj_list.upper);
6729 netdev_adjacent_sysfs_add(iter->dev, dev,
6730 &iter->dev->adj_list.upper);
6731 }
6732 }
6733
6734 void *netdev_lower_dev_get_private(struct net_device *dev,
6735 struct net_device *lower_dev)
6736 {
6737 struct netdev_adjacent *lower;
6738
6739 if (!lower_dev)
6740 return NULL;
6741 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6742 if (!lower)
6743 return NULL;
6744
6745 return lower->private;
6746 }
6747 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6748
6749
6750 int dev_get_nest_level(struct net_device *dev)
6751 {
6752 struct net_device *lower = NULL;
6753 struct list_head *iter;
6754 int max_nest = -1;
6755 int nest;
6756
6757 ASSERT_RTNL();
6758
6759 netdev_for_each_lower_dev(dev, lower, iter) {
6760 nest = dev_get_nest_level(lower);
6761 if (max_nest < nest)
6762 max_nest = nest;
6763 }
6764
6765 return max_nest + 1;
6766 }
6767 EXPORT_SYMBOL(dev_get_nest_level);
6768
6769 /**
6770 * netdev_lower_change - Dispatch event about lower device state change
6771 * @lower_dev: device
6772 * @lower_state_info: state to dispatch
6773 *
6774 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6775 * The caller must hold the RTNL lock.
6776 */
6777 void netdev_lower_state_changed(struct net_device *lower_dev,
6778 void *lower_state_info)
6779 {
6780 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6781 .info.dev = lower_dev,
6782 };
6783
6784 ASSERT_RTNL();
6785 changelowerstate_info.lower_state_info = lower_state_info;
6786 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6787 &changelowerstate_info.info);
6788 }
6789 EXPORT_SYMBOL(netdev_lower_state_changed);
6790
6791 static void dev_change_rx_flags(struct net_device *dev, int flags)
6792 {
6793 const struct net_device_ops *ops = dev->netdev_ops;
6794
6795 if (ops->ndo_change_rx_flags)
6796 ops->ndo_change_rx_flags(dev, flags);
6797 }
6798
6799 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6800 {
6801 unsigned int old_flags = dev->flags;
6802 kuid_t uid;
6803 kgid_t gid;
6804
6805 ASSERT_RTNL();
6806
6807 dev->flags |= IFF_PROMISC;
6808 dev->promiscuity += inc;
6809 if (dev->promiscuity == 0) {
6810 /*
6811 * Avoid overflow.
6812 * If inc causes overflow, untouch promisc and return error.
6813 */
6814 if (inc < 0)
6815 dev->flags &= ~IFF_PROMISC;
6816 else {
6817 dev->promiscuity -= inc;
6818 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6819 dev->name);
6820 return -EOVERFLOW;
6821 }
6822 }
6823 if (dev->flags != old_flags) {
6824 pr_info("device %s %s promiscuous mode\n",
6825 dev->name,
6826 dev->flags & IFF_PROMISC ? "entered" : "left");
6827 if (audit_enabled) {
6828 current_uid_gid(&uid, &gid);
6829 audit_log(audit_context(), GFP_ATOMIC,
6830 AUDIT_ANOM_PROMISCUOUS,
6831 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6832 dev->name, (dev->flags & IFF_PROMISC),
6833 (old_flags & IFF_PROMISC),
6834 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6835 from_kuid(&init_user_ns, uid),
6836 from_kgid(&init_user_ns, gid),
6837 audit_get_sessionid(current));
6838 }
6839
6840 dev_change_rx_flags(dev, IFF_PROMISC);
6841 }
6842 if (notify)
6843 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6844 return 0;
6845 }
6846
6847 /**
6848 * dev_set_promiscuity - update promiscuity count on a device
6849 * @dev: device
6850 * @inc: modifier
6851 *
6852 * Add or remove promiscuity from a device. While the count in the device
6853 * remains above zero the interface remains promiscuous. Once it hits zero
6854 * the device reverts back to normal filtering operation. A negative inc
6855 * value is used to drop promiscuity on the device.
6856 * Return 0 if successful or a negative errno code on error.
6857 */
6858 int dev_set_promiscuity(struct net_device *dev, int inc)
6859 {
6860 unsigned int old_flags = dev->flags;
6861 int err;
6862
6863 err = __dev_set_promiscuity(dev, inc, true);
6864 if (err < 0)
6865 return err;
6866 if (dev->flags != old_flags)
6867 dev_set_rx_mode(dev);
6868 return err;
6869 }
6870 EXPORT_SYMBOL(dev_set_promiscuity);
6871
6872 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6873 {
6874 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6875
6876 ASSERT_RTNL();
6877
6878 dev->flags |= IFF_ALLMULTI;
6879 dev->allmulti += inc;
6880 if (dev->allmulti == 0) {
6881 /*
6882 * Avoid overflow.
6883 * If inc causes overflow, untouch allmulti and return error.
6884 */
6885 if (inc < 0)
6886 dev->flags &= ~IFF_ALLMULTI;
6887 else {
6888 dev->allmulti -= inc;
6889 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6890 dev->name);
6891 return -EOVERFLOW;
6892 }
6893 }
6894 if (dev->flags ^ old_flags) {
6895 dev_change_rx_flags(dev, IFF_ALLMULTI);
6896 dev_set_rx_mode(dev);
6897 if (notify)
6898 __dev_notify_flags(dev, old_flags,
6899 dev->gflags ^ old_gflags);
6900 }
6901 return 0;
6902 }
6903
6904 /**
6905 * dev_set_allmulti - update allmulti count on a device
6906 * @dev: device
6907 * @inc: modifier
6908 *
6909 * Add or remove reception of all multicast frames to a device. While the
6910 * count in the device remains above zero the interface remains listening
6911 * to all interfaces. Once it hits zero the device reverts back to normal
6912 * filtering operation. A negative @inc value is used to drop the counter
6913 * when releasing a resource needing all multicasts.
6914 * Return 0 if successful or a negative errno code on error.
6915 */
6916
6917 int dev_set_allmulti(struct net_device *dev, int inc)
6918 {
6919 return __dev_set_allmulti(dev, inc, true);
6920 }
6921 EXPORT_SYMBOL(dev_set_allmulti);
6922
6923 /*
6924 * Upload unicast and multicast address lists to device and
6925 * configure RX filtering. When the device doesn't support unicast
6926 * filtering it is put in promiscuous mode while unicast addresses
6927 * are present.
6928 */
6929 void __dev_set_rx_mode(struct net_device *dev)
6930 {
6931 const struct net_device_ops *ops = dev->netdev_ops;
6932
6933 /* dev_open will call this function so the list will stay sane. */
6934 if (!(dev->flags&IFF_UP))
6935 return;
6936
6937 if (!netif_device_present(dev))
6938 return;
6939
6940 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6941 /* Unicast addresses changes may only happen under the rtnl,
6942 * therefore calling __dev_set_promiscuity here is safe.
6943 */
6944 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6945 __dev_set_promiscuity(dev, 1, false);
6946 dev->uc_promisc = true;
6947 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6948 __dev_set_promiscuity(dev, -1, false);
6949 dev->uc_promisc = false;
6950 }
6951 }
6952
6953 if (ops->ndo_set_rx_mode)
6954 ops->ndo_set_rx_mode(dev);
6955 }
6956
6957 void dev_set_rx_mode(struct net_device *dev)
6958 {
6959 netif_addr_lock_bh(dev);
6960 __dev_set_rx_mode(dev);
6961 netif_addr_unlock_bh(dev);
6962 }
6963
6964 /**
6965 * dev_get_flags - get flags reported to userspace
6966 * @dev: device
6967 *
6968 * Get the combination of flag bits exported through APIs to userspace.
6969 */
6970 unsigned int dev_get_flags(const struct net_device *dev)
6971 {
6972 unsigned int flags;
6973
6974 flags = (dev->flags & ~(IFF_PROMISC |
6975 IFF_ALLMULTI |
6976 IFF_RUNNING |
6977 IFF_LOWER_UP |
6978 IFF_DORMANT)) |
6979 (dev->gflags & (IFF_PROMISC |
6980 IFF_ALLMULTI));
6981
6982 if (netif_running(dev)) {
6983 if (netif_oper_up(dev))
6984 flags |= IFF_RUNNING;
6985 if (netif_carrier_ok(dev))
6986 flags |= IFF_LOWER_UP;
6987 if (netif_dormant(dev))
6988 flags |= IFF_DORMANT;
6989 }
6990
6991 return flags;
6992 }
6993 EXPORT_SYMBOL(dev_get_flags);
6994
6995 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6996 {
6997 unsigned int old_flags = dev->flags;
6998 int ret;
6999
7000 ASSERT_RTNL();
7001
7002 /*
7003 * Set the flags on our device.
7004 */
7005
7006 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7007 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7008 IFF_AUTOMEDIA)) |
7009 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7010 IFF_ALLMULTI));
7011
7012 /*
7013 * Load in the correct multicast list now the flags have changed.
7014 */
7015
7016 if ((old_flags ^ flags) & IFF_MULTICAST)
7017 dev_change_rx_flags(dev, IFF_MULTICAST);
7018
7019 dev_set_rx_mode(dev);
7020
7021 /*
7022 * Have we downed the interface. We handle IFF_UP ourselves
7023 * according to user attempts to set it, rather than blindly
7024 * setting it.
7025 */
7026
7027 ret = 0;
7028 if ((old_flags ^ flags) & IFF_UP) {
7029 if (old_flags & IFF_UP)
7030 __dev_close(dev);
7031 else
7032 ret = __dev_open(dev);
7033 }
7034
7035 if ((flags ^ dev->gflags) & IFF_PROMISC) {
7036 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7037 unsigned int old_flags = dev->flags;
7038
7039 dev->gflags ^= IFF_PROMISC;
7040
7041 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7042 if (dev->flags != old_flags)
7043 dev_set_rx_mode(dev);
7044 }
7045
7046 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7047 * is important. Some (broken) drivers set IFF_PROMISC, when
7048 * IFF_ALLMULTI is requested not asking us and not reporting.
7049 */
7050 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7051 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7052
7053 dev->gflags ^= IFF_ALLMULTI;
7054 __dev_set_allmulti(dev, inc, false);
7055 }
7056
7057 return ret;
7058 }
7059
7060 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7061 unsigned int gchanges)
7062 {
7063 unsigned int changes = dev->flags ^ old_flags;
7064
7065 if (gchanges)
7066 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7067
7068 if (changes & IFF_UP) {
7069 if (dev->flags & IFF_UP)
7070 call_netdevice_notifiers(NETDEV_UP, dev);
7071 else
7072 call_netdevice_notifiers(NETDEV_DOWN, dev);
7073 }
7074
7075 if (dev->flags & IFF_UP &&
7076 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7077 struct netdev_notifier_change_info change_info = {
7078 .info = {
7079 .dev = dev,
7080 },
7081 .flags_changed = changes,
7082 };
7083
7084 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7085 }
7086 }
7087
7088 /**
7089 * dev_change_flags - change device settings
7090 * @dev: device
7091 * @flags: device state flags
7092 *
7093 * Change settings on device based state flags. The flags are
7094 * in the userspace exported format.
7095 */
7096 int dev_change_flags(struct net_device *dev, unsigned int flags)
7097 {
7098 int ret;
7099 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7100
7101 ret = __dev_change_flags(dev, flags);
7102 if (ret < 0)
7103 return ret;
7104
7105 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7106 __dev_notify_flags(dev, old_flags, changes);
7107 return ret;
7108 }
7109 EXPORT_SYMBOL(dev_change_flags);
7110
7111 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7112 {
7113 const struct net_device_ops *ops = dev->netdev_ops;
7114
7115 if (ops->ndo_change_mtu)
7116 return ops->ndo_change_mtu(dev, new_mtu);
7117
7118 dev->mtu = new_mtu;
7119 return 0;
7120 }
7121 EXPORT_SYMBOL(__dev_set_mtu);
7122
7123 /**
7124 * dev_set_mtu - Change maximum transfer unit
7125 * @dev: device
7126 * @new_mtu: new transfer unit
7127 *
7128 * Change the maximum transfer size of the network device.
7129 */
7130 int dev_set_mtu(struct net_device *dev, int new_mtu)
7131 {
7132 int err, orig_mtu;
7133
7134 if (new_mtu == dev->mtu)
7135 return 0;
7136
7137 /* MTU must be positive, and in range */
7138 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7139 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7140 dev->name, new_mtu, dev->min_mtu);
7141 return -EINVAL;
7142 }
7143
7144 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7145 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7146 dev->name, new_mtu, dev->max_mtu);
7147 return -EINVAL;
7148 }
7149
7150 if (!netif_device_present(dev))
7151 return -ENODEV;
7152
7153 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7154 err = notifier_to_errno(err);
7155 if (err)
7156 return err;
7157
7158 orig_mtu = dev->mtu;
7159 err = __dev_set_mtu(dev, new_mtu);
7160
7161 if (!err) {
7162 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7163 err = notifier_to_errno(err);
7164 if (err) {
7165 /* setting mtu back and notifying everyone again,
7166 * so that they have a chance to revert changes.
7167 */
7168 __dev_set_mtu(dev, orig_mtu);
7169 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7170 }
7171 }
7172 return err;
7173 }
7174 EXPORT_SYMBOL(dev_set_mtu);
7175
7176 /**
7177 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7178 * @dev: device
7179 * @new_len: new tx queue length
7180 */
7181 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7182 {
7183 unsigned int orig_len = dev->tx_queue_len;
7184 int res;
7185
7186 if (new_len != (unsigned int)new_len)
7187 return -ERANGE;
7188
7189 if (new_len != orig_len) {
7190 dev->tx_queue_len = new_len;
7191 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7192 res = notifier_to_errno(res);
7193 if (res) {
7194 netdev_err(dev,
7195 "refused to change device tx_queue_len\n");
7196 dev->tx_queue_len = orig_len;
7197 return res;
7198 }
7199 return dev_qdisc_change_tx_queue_len(dev);
7200 }
7201
7202 return 0;
7203 }
7204
7205 /**
7206 * dev_set_group - Change group this device belongs to
7207 * @dev: device
7208 * @new_group: group this device should belong to
7209 */
7210 void dev_set_group(struct net_device *dev, int new_group)
7211 {
7212 dev->group = new_group;
7213 }
7214 EXPORT_SYMBOL(dev_set_group);
7215
7216 /**
7217 * dev_set_mac_address - Change Media Access Control Address
7218 * @dev: device
7219 * @sa: new address
7220 *
7221 * Change the hardware (MAC) address of the device
7222 */
7223 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7224 {
7225 const struct net_device_ops *ops = dev->netdev_ops;
7226 int err;
7227
7228 if (!ops->ndo_set_mac_address)
7229 return -EOPNOTSUPP;
7230 if (sa->sa_family != dev->type)
7231 return -EINVAL;
7232 if (!netif_device_present(dev))
7233 return -ENODEV;
7234 err = ops->ndo_set_mac_address(dev, sa);
7235 if (err)
7236 return err;
7237 dev->addr_assign_type = NET_ADDR_SET;
7238 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7239 add_device_randomness(dev->dev_addr, dev->addr_len);
7240 return 0;
7241 }
7242 EXPORT_SYMBOL(dev_set_mac_address);
7243
7244 /**
7245 * dev_change_carrier - Change device carrier
7246 * @dev: device
7247 * @new_carrier: new value
7248 *
7249 * Change device carrier
7250 */
7251 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7252 {
7253 const struct net_device_ops *ops = dev->netdev_ops;
7254
7255 if (!ops->ndo_change_carrier)
7256 return -EOPNOTSUPP;
7257 if (!netif_device_present(dev))
7258 return -ENODEV;
7259 return ops->ndo_change_carrier(dev, new_carrier);
7260 }
7261 EXPORT_SYMBOL(dev_change_carrier);
7262
7263 /**
7264 * dev_get_phys_port_id - Get device physical port ID
7265 * @dev: device
7266 * @ppid: port ID
7267 *
7268 * Get device physical port ID
7269 */
7270 int dev_get_phys_port_id(struct net_device *dev,
7271 struct netdev_phys_item_id *ppid)
7272 {
7273 const struct net_device_ops *ops = dev->netdev_ops;
7274
7275 if (!ops->ndo_get_phys_port_id)
7276 return -EOPNOTSUPP;
7277 return ops->ndo_get_phys_port_id(dev, ppid);
7278 }
7279 EXPORT_SYMBOL(dev_get_phys_port_id);
7280
7281 /**
7282 * dev_get_phys_port_name - Get device physical port name
7283 * @dev: device
7284 * @name: port name
7285 * @len: limit of bytes to copy to name
7286 *
7287 * Get device physical port name
7288 */
7289 int dev_get_phys_port_name(struct net_device *dev,
7290 char *name, size_t len)
7291 {
7292 const struct net_device_ops *ops = dev->netdev_ops;
7293
7294 if (!ops->ndo_get_phys_port_name)
7295 return -EOPNOTSUPP;
7296 return ops->ndo_get_phys_port_name(dev, name, len);
7297 }
7298 EXPORT_SYMBOL(dev_get_phys_port_name);
7299
7300 /**
7301 * dev_change_proto_down - update protocol port state information
7302 * @dev: device
7303 * @proto_down: new value
7304 *
7305 * This info can be used by switch drivers to set the phys state of the
7306 * port.
7307 */
7308 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7309 {
7310 const struct net_device_ops *ops = dev->netdev_ops;
7311
7312 if (!ops->ndo_change_proto_down)
7313 return -EOPNOTSUPP;
7314 if (!netif_device_present(dev))
7315 return -ENODEV;
7316 return ops->ndo_change_proto_down(dev, proto_down);
7317 }
7318 EXPORT_SYMBOL(dev_change_proto_down);
7319
7320 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7321 struct netdev_bpf *xdp)
7322 {
7323 memset(xdp, 0, sizeof(*xdp));
7324 xdp->command = XDP_QUERY_PROG;
7325
7326 /* Query must always succeed. */
7327 WARN_ON(bpf_op(dev, xdp) < 0);
7328 }
7329
7330 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7331 {
7332 struct netdev_bpf xdp;
7333
7334 __dev_xdp_query(dev, bpf_op, &xdp);
7335
7336 return xdp.prog_attached;
7337 }
7338
7339 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7340 struct netlink_ext_ack *extack, u32 flags,
7341 struct bpf_prog *prog)
7342 {
7343 struct netdev_bpf xdp;
7344
7345 memset(&xdp, 0, sizeof(xdp));
7346 if (flags & XDP_FLAGS_HW_MODE)
7347 xdp.command = XDP_SETUP_PROG_HW;
7348 else
7349 xdp.command = XDP_SETUP_PROG;
7350 xdp.extack = extack;
7351 xdp.flags = flags;
7352 xdp.prog = prog;
7353
7354 return bpf_op(dev, &xdp);
7355 }
7356
7357 static void dev_xdp_uninstall(struct net_device *dev)
7358 {
7359 struct netdev_bpf xdp;
7360 bpf_op_t ndo_bpf;
7361
7362 /* Remove generic XDP */
7363 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7364
7365 /* Remove from the driver */
7366 ndo_bpf = dev->netdev_ops->ndo_bpf;
7367 if (!ndo_bpf)
7368 return;
7369
7370 __dev_xdp_query(dev, ndo_bpf, &xdp);
7371 if (xdp.prog_attached == XDP_ATTACHED_NONE)
7372 return;
7373
7374 /* Program removal should always succeed */
7375 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7376 }
7377
7378 /**
7379 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7380 * @dev: device
7381 * @extack: netlink extended ack
7382 * @fd: new program fd or negative value to clear
7383 * @flags: xdp-related flags
7384 *
7385 * Set or clear a bpf program for a device
7386 */
7387 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7388 int fd, u32 flags)
7389 {
7390 const struct net_device_ops *ops = dev->netdev_ops;
7391 struct bpf_prog *prog = NULL;
7392 bpf_op_t bpf_op, bpf_chk;
7393 int err;
7394
7395 ASSERT_RTNL();
7396
7397 bpf_op = bpf_chk = ops->ndo_bpf;
7398 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7399 return -EOPNOTSUPP;
7400 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7401 bpf_op = generic_xdp_install;
7402 if (bpf_op == bpf_chk)
7403 bpf_chk = generic_xdp_install;
7404
7405 if (fd >= 0) {
7406 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7407 return -EEXIST;
7408 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7409 __dev_xdp_attached(dev, bpf_op))
7410 return -EBUSY;
7411
7412 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7413 bpf_op == ops->ndo_bpf);
7414 if (IS_ERR(prog))
7415 return PTR_ERR(prog);
7416
7417 if (!(flags & XDP_FLAGS_HW_MODE) &&
7418 bpf_prog_is_dev_bound(prog->aux)) {
7419 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7420 bpf_prog_put(prog);
7421 return -EINVAL;
7422 }
7423 }
7424
7425 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7426 if (err < 0 && prog)
7427 bpf_prog_put(prog);
7428
7429 return err;
7430 }
7431
7432 /**
7433 * dev_new_index - allocate an ifindex
7434 * @net: the applicable net namespace
7435 *
7436 * Returns a suitable unique value for a new device interface
7437 * number. The caller must hold the rtnl semaphore or the
7438 * dev_base_lock to be sure it remains unique.
7439 */
7440 static int dev_new_index(struct net *net)
7441 {
7442 int ifindex = net->ifindex;
7443
7444 for (;;) {
7445 if (++ifindex <= 0)
7446 ifindex = 1;
7447 if (!__dev_get_by_index(net, ifindex))
7448 return net->ifindex = ifindex;
7449 }
7450 }
7451
7452 /* Delayed registration/unregisteration */
7453 static LIST_HEAD(net_todo_list);
7454 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7455
7456 static void net_set_todo(struct net_device *dev)
7457 {
7458 list_add_tail(&dev->todo_list, &net_todo_list);
7459 dev_net(dev)->dev_unreg_count++;
7460 }
7461
7462 static void rollback_registered_many(struct list_head *head)
7463 {
7464 struct net_device *dev, *tmp;
7465 LIST_HEAD(close_head);
7466
7467 BUG_ON(dev_boot_phase);
7468 ASSERT_RTNL();
7469
7470 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7471 /* Some devices call without registering
7472 * for initialization unwind. Remove those
7473 * devices and proceed with the remaining.
7474 */
7475 if (dev->reg_state == NETREG_UNINITIALIZED) {
7476 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7477 dev->name, dev);
7478
7479 WARN_ON(1);
7480 list_del(&dev->unreg_list);
7481 continue;
7482 }
7483 dev->dismantle = true;
7484 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7485 }
7486
7487 /* If device is running, close it first. */
7488 list_for_each_entry(dev, head, unreg_list)
7489 list_add_tail(&dev->close_list, &close_head);
7490 dev_close_many(&close_head, true);
7491
7492 list_for_each_entry(dev, head, unreg_list) {
7493 /* And unlink it from device chain. */
7494 unlist_netdevice(dev);
7495
7496 dev->reg_state = NETREG_UNREGISTERING;
7497 }
7498 flush_all_backlogs();
7499
7500 synchronize_net();
7501
7502 list_for_each_entry(dev, head, unreg_list) {
7503 struct sk_buff *skb = NULL;
7504
7505 /* Shutdown queueing discipline. */
7506 dev_shutdown(dev);
7507
7508 dev_xdp_uninstall(dev);
7509
7510 /* Notify protocols, that we are about to destroy
7511 * this device. They should clean all the things.
7512 */
7513 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7514
7515 if (!dev->rtnl_link_ops ||
7516 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7517 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7518 GFP_KERNEL, NULL, 0);
7519
7520 /*
7521 * Flush the unicast and multicast chains
7522 */
7523 dev_uc_flush(dev);
7524 dev_mc_flush(dev);
7525
7526 if (dev->netdev_ops->ndo_uninit)
7527 dev->netdev_ops->ndo_uninit(dev);
7528
7529 if (skb)
7530 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7531
7532 /* Notifier chain MUST detach us all upper devices. */
7533 WARN_ON(netdev_has_any_upper_dev(dev));
7534 WARN_ON(netdev_has_any_lower_dev(dev));
7535
7536 /* Remove entries from kobject tree */
7537 netdev_unregister_kobject(dev);
7538 #ifdef CONFIG_XPS
7539 /* Remove XPS queueing entries */
7540 netif_reset_xps_queues_gt(dev, 0);
7541 #endif
7542 }
7543
7544 synchronize_net();
7545
7546 list_for_each_entry(dev, head, unreg_list)
7547 dev_put(dev);
7548 }
7549
7550 static void rollback_registered(struct net_device *dev)
7551 {
7552 LIST_HEAD(single);
7553
7554 list_add(&dev->unreg_list, &single);
7555 rollback_registered_many(&single);
7556 list_del(&single);
7557 }
7558
7559 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7560 struct net_device *upper, netdev_features_t features)
7561 {
7562 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7563 netdev_features_t feature;
7564 int feature_bit;
7565
7566 for_each_netdev_feature(&upper_disables, feature_bit) {
7567 feature = __NETIF_F_BIT(feature_bit);
7568 if (!(upper->wanted_features & feature)
7569 && (features & feature)) {
7570 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7571 &feature, upper->name);
7572 features &= ~feature;
7573 }
7574 }
7575
7576 return features;
7577 }
7578
7579 static void netdev_sync_lower_features(struct net_device *upper,
7580 struct net_device *lower, netdev_features_t features)
7581 {
7582 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7583 netdev_features_t feature;
7584 int feature_bit;
7585
7586 for_each_netdev_feature(&upper_disables, feature_bit) {
7587 feature = __NETIF_F_BIT(feature_bit);
7588 if (!(features & feature) && (lower->features & feature)) {
7589 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7590 &feature, lower->name);
7591 lower->wanted_features &= ~feature;
7592 netdev_update_features(lower);
7593
7594 if (unlikely(lower->features & feature))
7595 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7596 &feature, lower->name);
7597 }
7598 }
7599 }
7600
7601 static netdev_features_t netdev_fix_features(struct net_device *dev,
7602 netdev_features_t features)
7603 {
7604 /* Fix illegal checksum combinations */
7605 if ((features & NETIF_F_HW_CSUM) &&
7606 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7607 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7608 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7609 }
7610
7611 /* TSO requires that SG is present as well. */
7612 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7613 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7614 features &= ~NETIF_F_ALL_TSO;
7615 }
7616
7617 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7618 !(features & NETIF_F_IP_CSUM)) {
7619 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7620 features &= ~NETIF_F_TSO;
7621 features &= ~NETIF_F_TSO_ECN;
7622 }
7623
7624 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7625 !(features & NETIF_F_IPV6_CSUM)) {
7626 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7627 features &= ~NETIF_F_TSO6;
7628 }
7629
7630 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7631 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7632 features &= ~NETIF_F_TSO_MANGLEID;
7633
7634 /* TSO ECN requires that TSO is present as well. */
7635 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7636 features &= ~NETIF_F_TSO_ECN;
7637
7638 /* Software GSO depends on SG. */
7639 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7640 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7641 features &= ~NETIF_F_GSO;
7642 }
7643
7644 /* GSO partial features require GSO partial be set */
7645 if ((features & dev->gso_partial_features) &&
7646 !(features & NETIF_F_GSO_PARTIAL)) {
7647 netdev_dbg(dev,
7648 "Dropping partially supported GSO features since no GSO partial.\n");
7649 features &= ~dev->gso_partial_features;
7650 }
7651
7652 if (!(features & NETIF_F_RXCSUM)) {
7653 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7654 * successfully merged by hardware must also have the
7655 * checksum verified by hardware. If the user does not
7656 * want to enable RXCSUM, logically, we should disable GRO_HW.
7657 */
7658 if (features & NETIF_F_GRO_HW) {
7659 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7660 features &= ~NETIF_F_GRO_HW;
7661 }
7662 }
7663
7664 /* LRO/HW-GRO features cannot be combined with RX-FCS */
7665 if (features & NETIF_F_RXFCS) {
7666 if (features & NETIF_F_LRO) {
7667 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
7668 features &= ~NETIF_F_LRO;
7669 }
7670
7671 if (features & NETIF_F_GRO_HW) {
7672 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
7673 features &= ~NETIF_F_GRO_HW;
7674 }
7675 }
7676
7677 return features;
7678 }
7679
7680 int __netdev_update_features(struct net_device *dev)
7681 {
7682 struct net_device *upper, *lower;
7683 netdev_features_t features;
7684 struct list_head *iter;
7685 int err = -1;
7686
7687 ASSERT_RTNL();
7688
7689 features = netdev_get_wanted_features(dev);
7690
7691 if (dev->netdev_ops->ndo_fix_features)
7692 features = dev->netdev_ops->ndo_fix_features(dev, features);
7693
7694 /* driver might be less strict about feature dependencies */
7695 features = netdev_fix_features(dev, features);
7696
7697 /* some features can't be enabled if they're off an an upper device */
7698 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7699 features = netdev_sync_upper_features(dev, upper, features);
7700
7701 if (dev->features == features)
7702 goto sync_lower;
7703
7704 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7705 &dev->features, &features);
7706
7707 if (dev->netdev_ops->ndo_set_features)
7708 err = dev->netdev_ops->ndo_set_features(dev, features);
7709 else
7710 err = 0;
7711
7712 if (unlikely(err < 0)) {
7713 netdev_err(dev,
7714 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7715 err, &features, &dev->features);
7716 /* return non-0 since some features might have changed and
7717 * it's better to fire a spurious notification than miss it
7718 */
7719 return -1;
7720 }
7721
7722 sync_lower:
7723 /* some features must be disabled on lower devices when disabled
7724 * on an upper device (think: bonding master or bridge)
7725 */
7726 netdev_for_each_lower_dev(dev, lower, iter)
7727 netdev_sync_lower_features(dev, lower, features);
7728
7729 if (!err) {
7730 netdev_features_t diff = features ^ dev->features;
7731
7732 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7733 /* udp_tunnel_{get,drop}_rx_info both need
7734 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7735 * device, or they won't do anything.
7736 * Thus we need to update dev->features
7737 * *before* calling udp_tunnel_get_rx_info,
7738 * but *after* calling udp_tunnel_drop_rx_info.
7739 */
7740 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7741 dev->features = features;
7742 udp_tunnel_get_rx_info(dev);
7743 } else {
7744 udp_tunnel_drop_rx_info(dev);
7745 }
7746 }
7747
7748 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
7749 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
7750 dev->features = features;
7751 err |= vlan_get_rx_ctag_filter_info(dev);
7752 } else {
7753 vlan_drop_rx_ctag_filter_info(dev);
7754 }
7755 }
7756
7757 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
7758 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
7759 dev->features = features;
7760 err |= vlan_get_rx_stag_filter_info(dev);
7761 } else {
7762 vlan_drop_rx_stag_filter_info(dev);
7763 }
7764 }
7765
7766 dev->features = features;
7767 }
7768
7769 return err < 0 ? 0 : 1;
7770 }
7771
7772 /**
7773 * netdev_update_features - recalculate device features
7774 * @dev: the device to check
7775 *
7776 * Recalculate dev->features set and send notifications if it
7777 * has changed. Should be called after driver or hardware dependent
7778 * conditions might have changed that influence the features.
7779 */
7780 void netdev_update_features(struct net_device *dev)
7781 {
7782 if (__netdev_update_features(dev))
7783 netdev_features_change(dev);
7784 }
7785 EXPORT_SYMBOL(netdev_update_features);
7786
7787 /**
7788 * netdev_change_features - recalculate device features
7789 * @dev: the device to check
7790 *
7791 * Recalculate dev->features set and send notifications even
7792 * if they have not changed. Should be called instead of
7793 * netdev_update_features() if also dev->vlan_features might
7794 * have changed to allow the changes to be propagated to stacked
7795 * VLAN devices.
7796 */
7797 void netdev_change_features(struct net_device *dev)
7798 {
7799 __netdev_update_features(dev);
7800 netdev_features_change(dev);
7801 }
7802 EXPORT_SYMBOL(netdev_change_features);
7803
7804 /**
7805 * netif_stacked_transfer_operstate - transfer operstate
7806 * @rootdev: the root or lower level device to transfer state from
7807 * @dev: the device to transfer operstate to
7808 *
7809 * Transfer operational state from root to device. This is normally
7810 * called when a stacking relationship exists between the root
7811 * device and the device(a leaf device).
7812 */
7813 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7814 struct net_device *dev)
7815 {
7816 if (rootdev->operstate == IF_OPER_DORMANT)
7817 netif_dormant_on(dev);
7818 else
7819 netif_dormant_off(dev);
7820
7821 if (netif_carrier_ok(rootdev))
7822 netif_carrier_on(dev);
7823 else
7824 netif_carrier_off(dev);
7825 }
7826 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7827
7828 static int netif_alloc_rx_queues(struct net_device *dev)
7829 {
7830 unsigned int i, count = dev->num_rx_queues;
7831 struct netdev_rx_queue *rx;
7832 size_t sz = count * sizeof(*rx);
7833 int err = 0;
7834
7835 BUG_ON(count < 1);
7836
7837 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7838 if (!rx)
7839 return -ENOMEM;
7840
7841 dev->_rx = rx;
7842
7843 for (i = 0; i < count; i++) {
7844 rx[i].dev = dev;
7845
7846 /* XDP RX-queue setup */
7847 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
7848 if (err < 0)
7849 goto err_rxq_info;
7850 }
7851 return 0;
7852
7853 err_rxq_info:
7854 /* Rollback successful reg's and free other resources */
7855 while (i--)
7856 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
7857 kvfree(dev->_rx);
7858 dev->_rx = NULL;
7859 return err;
7860 }
7861
7862 static void netif_free_rx_queues(struct net_device *dev)
7863 {
7864 unsigned int i, count = dev->num_rx_queues;
7865
7866 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
7867 if (!dev->_rx)
7868 return;
7869
7870 for (i = 0; i < count; i++)
7871 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
7872
7873 kvfree(dev->_rx);
7874 }
7875
7876 static void netdev_init_one_queue(struct net_device *dev,
7877 struct netdev_queue *queue, void *_unused)
7878 {
7879 /* Initialize queue lock */
7880 spin_lock_init(&queue->_xmit_lock);
7881 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7882 queue->xmit_lock_owner = -1;
7883 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7884 queue->dev = dev;
7885 #ifdef CONFIG_BQL
7886 dql_init(&queue->dql, HZ);
7887 #endif
7888 }
7889
7890 static void netif_free_tx_queues(struct net_device *dev)
7891 {
7892 kvfree(dev->_tx);
7893 }
7894
7895 static int netif_alloc_netdev_queues(struct net_device *dev)
7896 {
7897 unsigned int count = dev->num_tx_queues;
7898 struct netdev_queue *tx;
7899 size_t sz = count * sizeof(*tx);
7900
7901 if (count < 1 || count > 0xffff)
7902 return -EINVAL;
7903
7904 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7905 if (!tx)
7906 return -ENOMEM;
7907
7908 dev->_tx = tx;
7909
7910 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7911 spin_lock_init(&dev->tx_global_lock);
7912
7913 return 0;
7914 }
7915
7916 void netif_tx_stop_all_queues(struct net_device *dev)
7917 {
7918 unsigned int i;
7919
7920 for (i = 0; i < dev->num_tx_queues; i++) {
7921 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7922
7923 netif_tx_stop_queue(txq);
7924 }
7925 }
7926 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7927
7928 /**
7929 * register_netdevice - register a network device
7930 * @dev: device to register
7931 *
7932 * Take a completed network device structure and add it to the kernel
7933 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7934 * chain. 0 is returned on success. A negative errno code is returned
7935 * on a failure to set up the device, or if the name is a duplicate.
7936 *
7937 * Callers must hold the rtnl semaphore. You may want
7938 * register_netdev() instead of this.
7939 *
7940 * BUGS:
7941 * The locking appears insufficient to guarantee two parallel registers
7942 * will not get the same name.
7943 */
7944
7945 int register_netdevice(struct net_device *dev)
7946 {
7947 int ret;
7948 struct net *net = dev_net(dev);
7949
7950 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
7951 NETDEV_FEATURE_COUNT);
7952 BUG_ON(dev_boot_phase);
7953 ASSERT_RTNL();
7954
7955 might_sleep();
7956
7957 /* When net_device's are persistent, this will be fatal. */
7958 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7959 BUG_ON(!net);
7960
7961 spin_lock_init(&dev->addr_list_lock);
7962 netdev_set_addr_lockdep_class(dev);
7963
7964 ret = dev_get_valid_name(net, dev, dev->name);
7965 if (ret < 0)
7966 goto out;
7967
7968 /* Init, if this function is available */
7969 if (dev->netdev_ops->ndo_init) {
7970 ret = dev->netdev_ops->ndo_init(dev);
7971 if (ret) {
7972 if (ret > 0)
7973 ret = -EIO;
7974 goto out;
7975 }
7976 }
7977
7978 if (((dev->hw_features | dev->features) &
7979 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7980 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7981 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7982 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7983 ret = -EINVAL;
7984 goto err_uninit;
7985 }
7986
7987 ret = -EBUSY;
7988 if (!dev->ifindex)
7989 dev->ifindex = dev_new_index(net);
7990 else if (__dev_get_by_index(net, dev->ifindex))
7991 goto err_uninit;
7992
7993 /* Transfer changeable features to wanted_features and enable
7994 * software offloads (GSO and GRO).
7995 */
7996 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7997 dev->features |= NETIF_F_SOFT_FEATURES;
7998
7999 if (dev->netdev_ops->ndo_udp_tunnel_add) {
8000 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8001 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8002 }
8003
8004 dev->wanted_features = dev->features & dev->hw_features;
8005
8006 if (!(dev->flags & IFF_LOOPBACK))
8007 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8008
8009 /* If IPv4 TCP segmentation offload is supported we should also
8010 * allow the device to enable segmenting the frame with the option
8011 * of ignoring a static IP ID value. This doesn't enable the
8012 * feature itself but allows the user to enable it later.
8013 */
8014 if (dev->hw_features & NETIF_F_TSO)
8015 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8016 if (dev->vlan_features & NETIF_F_TSO)
8017 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8018 if (dev->mpls_features & NETIF_F_TSO)
8019 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8020 if (dev->hw_enc_features & NETIF_F_TSO)
8021 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8022
8023 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8024 */
8025 dev->vlan_features |= NETIF_F_HIGHDMA;
8026
8027 /* Make NETIF_F_SG inheritable to tunnel devices.
8028 */
8029 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8030
8031 /* Make NETIF_F_SG inheritable to MPLS.
8032 */
8033 dev->mpls_features |= NETIF_F_SG;
8034
8035 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8036 ret = notifier_to_errno(ret);
8037 if (ret)
8038 goto err_uninit;
8039
8040 ret = netdev_register_kobject(dev);
8041 if (ret)
8042 goto err_uninit;
8043 dev->reg_state = NETREG_REGISTERED;
8044
8045 __netdev_update_features(dev);
8046
8047 /*
8048 * Default initial state at registry is that the
8049 * device is present.
8050 */
8051
8052 set_bit(__LINK_STATE_PRESENT, &dev->state);
8053
8054 linkwatch_init_dev(dev);
8055
8056 dev_init_scheduler(dev);
8057 dev_hold(dev);
8058 list_netdevice(dev);
8059 add_device_randomness(dev->dev_addr, dev->addr_len);
8060
8061 /* If the device has permanent device address, driver should
8062 * set dev_addr and also addr_assign_type should be set to
8063 * NET_ADDR_PERM (default value).
8064 */
8065 if (dev->addr_assign_type == NET_ADDR_PERM)
8066 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8067
8068 /* Notify protocols, that a new device appeared. */
8069 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8070 ret = notifier_to_errno(ret);
8071 if (ret) {
8072 rollback_registered(dev);
8073 dev->reg_state = NETREG_UNREGISTERED;
8074 }
8075 /*
8076 * Prevent userspace races by waiting until the network
8077 * device is fully setup before sending notifications.
8078 */
8079 if (!dev->rtnl_link_ops ||
8080 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8081 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8082
8083 out:
8084 return ret;
8085
8086 err_uninit:
8087 if (dev->netdev_ops->ndo_uninit)
8088 dev->netdev_ops->ndo_uninit(dev);
8089 if (dev->priv_destructor)
8090 dev->priv_destructor(dev);
8091 goto out;
8092 }
8093 EXPORT_SYMBOL(register_netdevice);
8094
8095 /**
8096 * init_dummy_netdev - init a dummy network device for NAPI
8097 * @dev: device to init
8098 *
8099 * This takes a network device structure and initialize the minimum
8100 * amount of fields so it can be used to schedule NAPI polls without
8101 * registering a full blown interface. This is to be used by drivers
8102 * that need to tie several hardware interfaces to a single NAPI
8103 * poll scheduler due to HW limitations.
8104 */
8105 int init_dummy_netdev(struct net_device *dev)
8106 {
8107 /* Clear everything. Note we don't initialize spinlocks
8108 * are they aren't supposed to be taken by any of the
8109 * NAPI code and this dummy netdev is supposed to be
8110 * only ever used for NAPI polls
8111 */
8112 memset(dev, 0, sizeof(struct net_device));
8113
8114 /* make sure we BUG if trying to hit standard
8115 * register/unregister code path
8116 */
8117 dev->reg_state = NETREG_DUMMY;
8118
8119 /* NAPI wants this */
8120 INIT_LIST_HEAD(&dev->napi_list);
8121
8122 /* a dummy interface is started by default */
8123 set_bit(__LINK_STATE_PRESENT, &dev->state);
8124 set_bit(__LINK_STATE_START, &dev->state);
8125
8126 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8127 * because users of this 'device' dont need to change
8128 * its refcount.
8129 */
8130
8131 return 0;
8132 }
8133 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8134
8135
8136 /**
8137 * register_netdev - register a network device
8138 * @dev: device to register
8139 *
8140 * Take a completed network device structure and add it to the kernel
8141 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8142 * chain. 0 is returned on success. A negative errno code is returned
8143 * on a failure to set up the device, or if the name is a duplicate.
8144 *
8145 * This is a wrapper around register_netdevice that takes the rtnl semaphore
8146 * and expands the device name if you passed a format string to
8147 * alloc_netdev.
8148 */
8149 int register_netdev(struct net_device *dev)
8150 {
8151 int err;
8152
8153 if (rtnl_lock_killable())
8154 return -EINTR;
8155 err = register_netdevice(dev);
8156 rtnl_unlock();
8157 return err;
8158 }
8159 EXPORT_SYMBOL(register_netdev);
8160
8161 int netdev_refcnt_read(const struct net_device *dev)
8162 {
8163 int i, refcnt = 0;
8164
8165 for_each_possible_cpu(i)
8166 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8167 return refcnt;
8168 }
8169 EXPORT_SYMBOL(netdev_refcnt_read);
8170
8171 /**
8172 * netdev_wait_allrefs - wait until all references are gone.
8173 * @dev: target net_device
8174 *
8175 * This is called when unregistering network devices.
8176 *
8177 * Any protocol or device that holds a reference should register
8178 * for netdevice notification, and cleanup and put back the
8179 * reference if they receive an UNREGISTER event.
8180 * We can get stuck here if buggy protocols don't correctly
8181 * call dev_put.
8182 */
8183 static void netdev_wait_allrefs(struct net_device *dev)
8184 {
8185 unsigned long rebroadcast_time, warning_time;
8186 int refcnt;
8187
8188 linkwatch_forget_dev(dev);
8189
8190 rebroadcast_time = warning_time = jiffies;
8191 refcnt = netdev_refcnt_read(dev);
8192
8193 while (refcnt != 0) {
8194 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8195 rtnl_lock();
8196
8197 /* Rebroadcast unregister notification */
8198 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8199
8200 __rtnl_unlock();
8201 rcu_barrier();
8202 rtnl_lock();
8203
8204 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8205 &dev->state)) {
8206 /* We must not have linkwatch events
8207 * pending on unregister. If this
8208 * happens, we simply run the queue
8209 * unscheduled, resulting in a noop
8210 * for this device.
8211 */
8212 linkwatch_run_queue();
8213 }
8214
8215 __rtnl_unlock();
8216
8217 rebroadcast_time = jiffies;
8218 }
8219
8220 msleep(250);
8221
8222 refcnt = netdev_refcnt_read(dev);
8223
8224 if (time_after(jiffies, warning_time + 10 * HZ)) {
8225 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8226 dev->name, refcnt);
8227 warning_time = jiffies;
8228 }
8229 }
8230 }
8231
8232 /* The sequence is:
8233 *
8234 * rtnl_lock();
8235 * ...
8236 * register_netdevice(x1);
8237 * register_netdevice(x2);
8238 * ...
8239 * unregister_netdevice(y1);
8240 * unregister_netdevice(y2);
8241 * ...
8242 * rtnl_unlock();
8243 * free_netdev(y1);
8244 * free_netdev(y2);
8245 *
8246 * We are invoked by rtnl_unlock().
8247 * This allows us to deal with problems:
8248 * 1) We can delete sysfs objects which invoke hotplug
8249 * without deadlocking with linkwatch via keventd.
8250 * 2) Since we run with the RTNL semaphore not held, we can sleep
8251 * safely in order to wait for the netdev refcnt to drop to zero.
8252 *
8253 * We must not return until all unregister events added during
8254 * the interval the lock was held have been completed.
8255 */
8256 void netdev_run_todo(void)
8257 {
8258 struct list_head list;
8259
8260 /* Snapshot list, allow later requests */
8261 list_replace_init(&net_todo_list, &list);
8262
8263 __rtnl_unlock();
8264
8265
8266 /* Wait for rcu callbacks to finish before next phase */
8267 if (!list_empty(&list))
8268 rcu_barrier();
8269
8270 while (!list_empty(&list)) {
8271 struct net_device *dev
8272 = list_first_entry(&list, struct net_device, todo_list);
8273 list_del(&dev->todo_list);
8274
8275 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8276 pr_err("network todo '%s' but state %d\n",
8277 dev->name, dev->reg_state);
8278 dump_stack();
8279 continue;
8280 }
8281
8282 dev->reg_state = NETREG_UNREGISTERED;
8283
8284 netdev_wait_allrefs(dev);
8285
8286 /* paranoia */
8287 BUG_ON(netdev_refcnt_read(dev));
8288 BUG_ON(!list_empty(&dev->ptype_all));
8289 BUG_ON(!list_empty(&dev->ptype_specific));
8290 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8291 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8292 #if IS_ENABLED(CONFIG_DECNET)
8293 WARN_ON(dev->dn_ptr);
8294 #endif
8295 if (dev->priv_destructor)
8296 dev->priv_destructor(dev);
8297 if (dev->needs_free_netdev)
8298 free_netdev(dev);
8299
8300 /* Report a network device has been unregistered */
8301 rtnl_lock();
8302 dev_net(dev)->dev_unreg_count--;
8303 __rtnl_unlock();
8304 wake_up(&netdev_unregistering_wq);
8305
8306 /* Free network device */
8307 kobject_put(&dev->dev.kobj);
8308 }
8309 }
8310
8311 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8312 * all the same fields in the same order as net_device_stats, with only
8313 * the type differing, but rtnl_link_stats64 may have additional fields
8314 * at the end for newer counters.
8315 */
8316 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8317 const struct net_device_stats *netdev_stats)
8318 {
8319 #if BITS_PER_LONG == 64
8320 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8321 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8322 /* zero out counters that only exist in rtnl_link_stats64 */
8323 memset((char *)stats64 + sizeof(*netdev_stats), 0,
8324 sizeof(*stats64) - sizeof(*netdev_stats));
8325 #else
8326 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8327 const unsigned long *src = (const unsigned long *)netdev_stats;
8328 u64 *dst = (u64 *)stats64;
8329
8330 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8331 for (i = 0; i < n; i++)
8332 dst[i] = src[i];
8333 /* zero out counters that only exist in rtnl_link_stats64 */
8334 memset((char *)stats64 + n * sizeof(u64), 0,
8335 sizeof(*stats64) - n * sizeof(u64));
8336 #endif
8337 }
8338 EXPORT_SYMBOL(netdev_stats_to_stats64);
8339
8340 /**
8341 * dev_get_stats - get network device statistics
8342 * @dev: device to get statistics from
8343 * @storage: place to store stats
8344 *
8345 * Get network statistics from device. Return @storage.
8346 * The device driver may provide its own method by setting
8347 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8348 * otherwise the internal statistics structure is used.
8349 */
8350 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8351 struct rtnl_link_stats64 *storage)
8352 {
8353 const struct net_device_ops *ops = dev->netdev_ops;
8354
8355 if (ops->ndo_get_stats64) {
8356 memset(storage, 0, sizeof(*storage));
8357 ops->ndo_get_stats64(dev, storage);
8358 } else if (ops->ndo_get_stats) {
8359 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8360 } else {
8361 netdev_stats_to_stats64(storage, &dev->stats);
8362 }
8363 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8364 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8365 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8366 return storage;
8367 }
8368 EXPORT_SYMBOL(dev_get_stats);
8369
8370 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8371 {
8372 struct netdev_queue *queue = dev_ingress_queue(dev);
8373
8374 #ifdef CONFIG_NET_CLS_ACT
8375 if (queue)
8376 return queue;
8377 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8378 if (!queue)
8379 return NULL;
8380 netdev_init_one_queue(dev, queue, NULL);
8381 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8382 queue->qdisc_sleeping = &noop_qdisc;
8383 rcu_assign_pointer(dev->ingress_queue, queue);
8384 #endif
8385 return queue;
8386 }
8387
8388 static const struct ethtool_ops default_ethtool_ops;
8389
8390 void netdev_set_default_ethtool_ops(struct net_device *dev,
8391 const struct ethtool_ops *ops)
8392 {
8393 if (dev->ethtool_ops == &default_ethtool_ops)
8394 dev->ethtool_ops = ops;
8395 }
8396 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8397
8398 void netdev_freemem(struct net_device *dev)
8399 {
8400 char *addr = (char *)dev - dev->padded;
8401
8402 kvfree(addr);
8403 }
8404
8405 /**
8406 * alloc_netdev_mqs - allocate network device
8407 * @sizeof_priv: size of private data to allocate space for
8408 * @name: device name format string
8409 * @name_assign_type: origin of device name
8410 * @setup: callback to initialize device
8411 * @txqs: the number of TX subqueues to allocate
8412 * @rxqs: the number of RX subqueues to allocate
8413 *
8414 * Allocates a struct net_device with private data area for driver use
8415 * and performs basic initialization. Also allocates subqueue structs
8416 * for each queue on the device.
8417 */
8418 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8419 unsigned char name_assign_type,
8420 void (*setup)(struct net_device *),
8421 unsigned int txqs, unsigned int rxqs)
8422 {
8423 struct net_device *dev;
8424 unsigned int alloc_size;
8425 struct net_device *p;
8426
8427 BUG_ON(strlen(name) >= sizeof(dev->name));
8428
8429 if (txqs < 1) {
8430 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8431 return NULL;
8432 }
8433
8434 if (rxqs < 1) {
8435 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8436 return NULL;
8437 }
8438
8439 alloc_size = sizeof(struct net_device);
8440 if (sizeof_priv) {
8441 /* ensure 32-byte alignment of private area */
8442 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8443 alloc_size += sizeof_priv;
8444 }
8445 /* ensure 32-byte alignment of whole construct */
8446 alloc_size += NETDEV_ALIGN - 1;
8447
8448 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8449 if (!p)
8450 return NULL;
8451
8452 dev = PTR_ALIGN(p, NETDEV_ALIGN);
8453 dev->padded = (char *)dev - (char *)p;
8454
8455 dev->pcpu_refcnt = alloc_percpu(int);
8456 if (!dev->pcpu_refcnt)
8457 goto free_dev;
8458
8459 if (dev_addr_init(dev))
8460 goto free_pcpu;
8461
8462 dev_mc_init(dev);
8463 dev_uc_init(dev);
8464
8465 dev_net_set(dev, &init_net);
8466
8467 dev->gso_max_size = GSO_MAX_SIZE;
8468 dev->gso_max_segs = GSO_MAX_SEGS;
8469
8470 INIT_LIST_HEAD(&dev->napi_list);
8471 INIT_LIST_HEAD(&dev->unreg_list);
8472 INIT_LIST_HEAD(&dev->close_list);
8473 INIT_LIST_HEAD(&dev->link_watch_list);
8474 INIT_LIST_HEAD(&dev->adj_list.upper);
8475 INIT_LIST_HEAD(&dev->adj_list.lower);
8476 INIT_LIST_HEAD(&dev->ptype_all);
8477 INIT_LIST_HEAD(&dev->ptype_specific);
8478 #ifdef CONFIG_NET_SCHED
8479 hash_init(dev->qdisc_hash);
8480 #endif
8481 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8482 setup(dev);
8483
8484 if (!dev->tx_queue_len) {
8485 dev->priv_flags |= IFF_NO_QUEUE;
8486 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8487 }
8488
8489 dev->num_tx_queues = txqs;
8490 dev->real_num_tx_queues = txqs;
8491 if (netif_alloc_netdev_queues(dev))
8492 goto free_all;
8493
8494 dev->num_rx_queues = rxqs;
8495 dev->real_num_rx_queues = rxqs;
8496 if (netif_alloc_rx_queues(dev))
8497 goto free_all;
8498
8499 strcpy(dev->name, name);
8500 dev->name_assign_type = name_assign_type;
8501 dev->group = INIT_NETDEV_GROUP;
8502 if (!dev->ethtool_ops)
8503 dev->ethtool_ops = &default_ethtool_ops;
8504
8505 nf_hook_ingress_init(dev);
8506
8507 return dev;
8508
8509 free_all:
8510 free_netdev(dev);
8511 return NULL;
8512
8513 free_pcpu:
8514 free_percpu(dev->pcpu_refcnt);
8515 free_dev:
8516 netdev_freemem(dev);
8517 return NULL;
8518 }
8519 EXPORT_SYMBOL(alloc_netdev_mqs);
8520
8521 /**
8522 * free_netdev - free network device
8523 * @dev: device
8524 *
8525 * This function does the last stage of destroying an allocated device
8526 * interface. The reference to the device object is released. If this
8527 * is the last reference then it will be freed.Must be called in process
8528 * context.
8529 */
8530 void free_netdev(struct net_device *dev)
8531 {
8532 struct napi_struct *p, *n;
8533
8534 might_sleep();
8535 netif_free_tx_queues(dev);
8536 netif_free_rx_queues(dev);
8537
8538 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8539
8540 /* Flush device addresses */
8541 dev_addr_flush(dev);
8542
8543 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8544 netif_napi_del(p);
8545
8546 free_percpu(dev->pcpu_refcnt);
8547 dev->pcpu_refcnt = NULL;
8548
8549 /* Compatibility with error handling in drivers */
8550 if (dev->reg_state == NETREG_UNINITIALIZED) {
8551 netdev_freemem(dev);
8552 return;
8553 }
8554
8555 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8556 dev->reg_state = NETREG_RELEASED;
8557
8558 /* will free via device release */
8559 put_device(&dev->dev);
8560 }
8561 EXPORT_SYMBOL(free_netdev);
8562
8563 /**
8564 * synchronize_net - Synchronize with packet receive processing
8565 *
8566 * Wait for packets currently being received to be done.
8567 * Does not block later packets from starting.
8568 */
8569 void synchronize_net(void)
8570 {
8571 might_sleep();
8572 if (rtnl_is_locked())
8573 synchronize_rcu_expedited();
8574 else
8575 synchronize_rcu();
8576 }
8577 EXPORT_SYMBOL(synchronize_net);
8578
8579 /**
8580 * unregister_netdevice_queue - remove device from the kernel
8581 * @dev: device
8582 * @head: list
8583 *
8584 * This function shuts down a device interface and removes it
8585 * from the kernel tables.
8586 * If head not NULL, device is queued to be unregistered later.
8587 *
8588 * Callers must hold the rtnl semaphore. You may want
8589 * unregister_netdev() instead of this.
8590 */
8591
8592 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8593 {
8594 ASSERT_RTNL();
8595
8596 if (head) {
8597 list_move_tail(&dev->unreg_list, head);
8598 } else {
8599 rollback_registered(dev);
8600 /* Finish processing unregister after unlock */
8601 net_set_todo(dev);
8602 }
8603 }
8604 EXPORT_SYMBOL(unregister_netdevice_queue);
8605
8606 /**
8607 * unregister_netdevice_many - unregister many devices
8608 * @head: list of devices
8609 *
8610 * Note: As most callers use a stack allocated list_head,
8611 * we force a list_del() to make sure stack wont be corrupted later.
8612 */
8613 void unregister_netdevice_many(struct list_head *head)
8614 {
8615 struct net_device *dev;
8616
8617 if (!list_empty(head)) {
8618 rollback_registered_many(head);
8619 list_for_each_entry(dev, head, unreg_list)
8620 net_set_todo(dev);
8621 list_del(head);
8622 }
8623 }
8624 EXPORT_SYMBOL(unregister_netdevice_many);
8625
8626 /**
8627 * unregister_netdev - remove device from the kernel
8628 * @dev: device
8629 *
8630 * This function shuts down a device interface and removes it
8631 * from the kernel tables.
8632 *
8633 * This is just a wrapper for unregister_netdevice that takes
8634 * the rtnl semaphore. In general you want to use this and not
8635 * unregister_netdevice.
8636 */
8637 void unregister_netdev(struct net_device *dev)
8638 {
8639 rtnl_lock();
8640 unregister_netdevice(dev);
8641 rtnl_unlock();
8642 }
8643 EXPORT_SYMBOL(unregister_netdev);
8644
8645 /**
8646 * dev_change_net_namespace - move device to different nethost namespace
8647 * @dev: device
8648 * @net: network namespace
8649 * @pat: If not NULL name pattern to try if the current device name
8650 * is already taken in the destination network namespace.
8651 *
8652 * This function shuts down a device interface and moves it
8653 * to a new network namespace. On success 0 is returned, on
8654 * a failure a netagive errno code is returned.
8655 *
8656 * Callers must hold the rtnl semaphore.
8657 */
8658
8659 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8660 {
8661 int err, new_nsid, new_ifindex;
8662
8663 ASSERT_RTNL();
8664
8665 /* Don't allow namespace local devices to be moved. */
8666 err = -EINVAL;
8667 if (dev->features & NETIF_F_NETNS_LOCAL)
8668 goto out;
8669
8670 /* Ensure the device has been registrered */
8671 if (dev->reg_state != NETREG_REGISTERED)
8672 goto out;
8673
8674 /* Get out if there is nothing todo */
8675 err = 0;
8676 if (net_eq(dev_net(dev), net))
8677 goto out;
8678
8679 /* Pick the destination device name, and ensure
8680 * we can use it in the destination network namespace.
8681 */
8682 err = -EEXIST;
8683 if (__dev_get_by_name(net, dev->name)) {
8684 /* We get here if we can't use the current device name */
8685 if (!pat)
8686 goto out;
8687 err = dev_get_valid_name(net, dev, pat);
8688 if (err < 0)
8689 goto out;
8690 }
8691
8692 /*
8693 * And now a mini version of register_netdevice unregister_netdevice.
8694 */
8695
8696 /* If device is running close it first. */
8697 dev_close(dev);
8698
8699 /* And unlink it from device chain */
8700 unlist_netdevice(dev);
8701
8702 synchronize_net();
8703
8704 /* Shutdown queueing discipline. */
8705 dev_shutdown(dev);
8706
8707 /* Notify protocols, that we are about to destroy
8708 * this device. They should clean all the things.
8709 *
8710 * Note that dev->reg_state stays at NETREG_REGISTERED.
8711 * This is wanted because this way 8021q and macvlan know
8712 * the device is just moving and can keep their slaves up.
8713 */
8714 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8715 rcu_barrier();
8716
8717 new_nsid = peernet2id_alloc(dev_net(dev), net);
8718 /* If there is an ifindex conflict assign a new one */
8719 if (__dev_get_by_index(net, dev->ifindex))
8720 new_ifindex = dev_new_index(net);
8721 else
8722 new_ifindex = dev->ifindex;
8723
8724 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
8725 new_ifindex);
8726
8727 /*
8728 * Flush the unicast and multicast chains
8729 */
8730 dev_uc_flush(dev);
8731 dev_mc_flush(dev);
8732
8733 /* Send a netdev-removed uevent to the old namespace */
8734 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8735 netdev_adjacent_del_links(dev);
8736
8737 /* Actually switch the network namespace */
8738 dev_net_set(dev, net);
8739 dev->ifindex = new_ifindex;
8740
8741 /* Send a netdev-add uevent to the new namespace */
8742 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8743 netdev_adjacent_add_links(dev);
8744
8745 /* Fixup kobjects */
8746 err = device_rename(&dev->dev, dev->name);
8747 WARN_ON(err);
8748
8749 /* Add the device back in the hashes */
8750 list_netdevice(dev);
8751
8752 /* Notify protocols, that a new device appeared. */
8753 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8754
8755 /*
8756 * Prevent userspace races by waiting until the network
8757 * device is fully setup before sending notifications.
8758 */
8759 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8760
8761 synchronize_net();
8762 err = 0;
8763 out:
8764 return err;
8765 }
8766 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8767
8768 static int dev_cpu_dead(unsigned int oldcpu)
8769 {
8770 struct sk_buff **list_skb;
8771 struct sk_buff *skb;
8772 unsigned int cpu;
8773 struct softnet_data *sd, *oldsd, *remsd = NULL;
8774
8775 local_irq_disable();
8776 cpu = smp_processor_id();
8777 sd = &per_cpu(softnet_data, cpu);
8778 oldsd = &per_cpu(softnet_data, oldcpu);
8779
8780 /* Find end of our completion_queue. */
8781 list_skb = &sd->completion_queue;
8782 while (*list_skb)
8783 list_skb = &(*list_skb)->next;
8784 /* Append completion queue from offline CPU. */
8785 *list_skb = oldsd->completion_queue;
8786 oldsd->completion_queue = NULL;
8787
8788 /* Append output queue from offline CPU. */
8789 if (oldsd->output_queue) {
8790 *sd->output_queue_tailp = oldsd->output_queue;
8791 sd->output_queue_tailp = oldsd->output_queue_tailp;
8792 oldsd->output_queue = NULL;
8793 oldsd->output_queue_tailp = &oldsd->output_queue;
8794 }
8795 /* Append NAPI poll list from offline CPU, with one exception :
8796 * process_backlog() must be called by cpu owning percpu backlog.
8797 * We properly handle process_queue & input_pkt_queue later.
8798 */
8799 while (!list_empty(&oldsd->poll_list)) {
8800 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8801 struct napi_struct,
8802 poll_list);
8803
8804 list_del_init(&napi->poll_list);
8805 if (napi->poll == process_backlog)
8806 napi->state = 0;
8807 else
8808 ____napi_schedule(sd, napi);
8809 }
8810
8811 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8812 local_irq_enable();
8813
8814 #ifdef CONFIG_RPS
8815 remsd = oldsd->rps_ipi_list;
8816 oldsd->rps_ipi_list = NULL;
8817 #endif
8818 /* send out pending IPI's on offline CPU */
8819 net_rps_send_ipi(remsd);
8820
8821 /* Process offline CPU's input_pkt_queue */
8822 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8823 netif_rx_ni(skb);
8824 input_queue_head_incr(oldsd);
8825 }
8826 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8827 netif_rx_ni(skb);
8828 input_queue_head_incr(oldsd);
8829 }
8830
8831 return 0;
8832 }
8833
8834 /**
8835 * netdev_increment_features - increment feature set by one
8836 * @all: current feature set
8837 * @one: new feature set
8838 * @mask: mask feature set
8839 *
8840 * Computes a new feature set after adding a device with feature set
8841 * @one to the master device with current feature set @all. Will not
8842 * enable anything that is off in @mask. Returns the new feature set.
8843 */
8844 netdev_features_t netdev_increment_features(netdev_features_t all,
8845 netdev_features_t one, netdev_features_t mask)
8846 {
8847 if (mask & NETIF_F_HW_CSUM)
8848 mask |= NETIF_F_CSUM_MASK;
8849 mask |= NETIF_F_VLAN_CHALLENGED;
8850
8851 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8852 all &= one | ~NETIF_F_ALL_FOR_ALL;
8853
8854 /* If one device supports hw checksumming, set for all. */
8855 if (all & NETIF_F_HW_CSUM)
8856 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8857
8858 return all;
8859 }
8860 EXPORT_SYMBOL(netdev_increment_features);
8861
8862 static struct hlist_head * __net_init netdev_create_hash(void)
8863 {
8864 int i;
8865 struct hlist_head *hash;
8866
8867 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
8868 if (hash != NULL)
8869 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8870 INIT_HLIST_HEAD(&hash[i]);
8871
8872 return hash;
8873 }
8874
8875 /* Initialize per network namespace state */
8876 static int __net_init netdev_init(struct net *net)
8877 {
8878 if (net != &init_net)
8879 INIT_LIST_HEAD(&net->dev_base_head);
8880
8881 net->dev_name_head = netdev_create_hash();
8882 if (net->dev_name_head == NULL)
8883 goto err_name;
8884
8885 net->dev_index_head = netdev_create_hash();
8886 if (net->dev_index_head == NULL)
8887 goto err_idx;
8888
8889 return 0;
8890
8891 err_idx:
8892 kfree(net->dev_name_head);
8893 err_name:
8894 return -ENOMEM;
8895 }
8896
8897 /**
8898 * netdev_drivername - network driver for the device
8899 * @dev: network device
8900 *
8901 * Determine network driver for device.
8902 */
8903 const char *netdev_drivername(const struct net_device *dev)
8904 {
8905 const struct device_driver *driver;
8906 const struct device *parent;
8907 const char *empty = "";
8908
8909 parent = dev->dev.parent;
8910 if (!parent)
8911 return empty;
8912
8913 driver = parent->driver;
8914 if (driver && driver->name)
8915 return driver->name;
8916 return empty;
8917 }
8918
8919 static void __netdev_printk(const char *level, const struct net_device *dev,
8920 struct va_format *vaf)
8921 {
8922 if (dev && dev->dev.parent) {
8923 dev_printk_emit(level[1] - '0',
8924 dev->dev.parent,
8925 "%s %s %s%s: %pV",
8926 dev_driver_string(dev->dev.parent),
8927 dev_name(dev->dev.parent),
8928 netdev_name(dev), netdev_reg_state(dev),
8929 vaf);
8930 } else if (dev) {
8931 printk("%s%s%s: %pV",
8932 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8933 } else {
8934 printk("%s(NULL net_device): %pV", level, vaf);
8935 }
8936 }
8937
8938 void netdev_printk(const char *level, const struct net_device *dev,
8939 const char *format, ...)
8940 {
8941 struct va_format vaf;
8942 va_list args;
8943
8944 va_start(args, format);
8945
8946 vaf.fmt = format;
8947 vaf.va = &args;
8948
8949 __netdev_printk(level, dev, &vaf);
8950
8951 va_end(args);
8952 }
8953 EXPORT_SYMBOL(netdev_printk);
8954
8955 #define define_netdev_printk_level(func, level) \
8956 void func(const struct net_device *dev, const char *fmt, ...) \
8957 { \
8958 struct va_format vaf; \
8959 va_list args; \
8960 \
8961 va_start(args, fmt); \
8962 \
8963 vaf.fmt = fmt; \
8964 vaf.va = &args; \
8965 \
8966 __netdev_printk(level, dev, &vaf); \
8967 \
8968 va_end(args); \
8969 } \
8970 EXPORT_SYMBOL(func);
8971
8972 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8973 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8974 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8975 define_netdev_printk_level(netdev_err, KERN_ERR);
8976 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8977 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8978 define_netdev_printk_level(netdev_info, KERN_INFO);
8979
8980 static void __net_exit netdev_exit(struct net *net)
8981 {
8982 kfree(net->dev_name_head);
8983 kfree(net->dev_index_head);
8984 if (net != &init_net)
8985 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8986 }
8987
8988 static struct pernet_operations __net_initdata netdev_net_ops = {
8989 .init = netdev_init,
8990 .exit = netdev_exit,
8991 };
8992
8993 static void __net_exit default_device_exit(struct net *net)
8994 {
8995 struct net_device *dev, *aux;
8996 /*
8997 * Push all migratable network devices back to the
8998 * initial network namespace
8999 */
9000 rtnl_lock();
9001 for_each_netdev_safe(net, dev, aux) {
9002 int err;
9003 char fb_name[IFNAMSIZ];
9004
9005 /* Ignore unmoveable devices (i.e. loopback) */
9006 if (dev->features & NETIF_F_NETNS_LOCAL)
9007 continue;
9008
9009 /* Leave virtual devices for the generic cleanup */
9010 if (dev->rtnl_link_ops)
9011 continue;
9012
9013 /* Push remaining network devices to init_net */
9014 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9015 err = dev_change_net_namespace(dev, &init_net, fb_name);
9016 if (err) {
9017 pr_emerg("%s: failed to move %s to init_net: %d\n",
9018 __func__, dev->name, err);
9019 BUG();
9020 }
9021 }
9022 rtnl_unlock();
9023 }
9024
9025 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9026 {
9027 /* Return with the rtnl_lock held when there are no network
9028 * devices unregistering in any network namespace in net_list.
9029 */
9030 struct net *net;
9031 bool unregistering;
9032 DEFINE_WAIT_FUNC(wait, woken_wake_function);
9033
9034 add_wait_queue(&netdev_unregistering_wq, &wait);
9035 for (;;) {
9036 unregistering = false;
9037 rtnl_lock();
9038 list_for_each_entry(net, net_list, exit_list) {
9039 if (net->dev_unreg_count > 0) {
9040 unregistering = true;
9041 break;
9042 }
9043 }
9044 if (!unregistering)
9045 break;
9046 __rtnl_unlock();
9047
9048 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9049 }
9050 remove_wait_queue(&netdev_unregistering_wq, &wait);
9051 }
9052
9053 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9054 {
9055 /* At exit all network devices most be removed from a network
9056 * namespace. Do this in the reverse order of registration.
9057 * Do this across as many network namespaces as possible to
9058 * improve batching efficiency.
9059 */
9060 struct net_device *dev;
9061 struct net *net;
9062 LIST_HEAD(dev_kill_list);
9063
9064 /* To prevent network device cleanup code from dereferencing
9065 * loopback devices or network devices that have been freed
9066 * wait here for all pending unregistrations to complete,
9067 * before unregistring the loopback device and allowing the
9068 * network namespace be freed.
9069 *
9070 * The netdev todo list containing all network devices
9071 * unregistrations that happen in default_device_exit_batch
9072 * will run in the rtnl_unlock() at the end of
9073 * default_device_exit_batch.
9074 */
9075 rtnl_lock_unregistering(net_list);
9076 list_for_each_entry(net, net_list, exit_list) {
9077 for_each_netdev_reverse(net, dev) {
9078 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9079 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9080 else
9081 unregister_netdevice_queue(dev, &dev_kill_list);
9082 }
9083 }
9084 unregister_netdevice_many(&dev_kill_list);
9085 rtnl_unlock();
9086 }
9087
9088 static struct pernet_operations __net_initdata default_device_ops = {
9089 .exit = default_device_exit,
9090 .exit_batch = default_device_exit_batch,
9091 };
9092
9093 /*
9094 * Initialize the DEV module. At boot time this walks the device list and
9095 * unhooks any devices that fail to initialise (normally hardware not
9096 * present) and leaves us with a valid list of present and active devices.
9097 *
9098 */
9099
9100 /*
9101 * This is called single threaded during boot, so no need
9102 * to take the rtnl semaphore.
9103 */
9104 static int __init net_dev_init(void)
9105 {
9106 int i, rc = -ENOMEM;
9107
9108 BUG_ON(!dev_boot_phase);
9109
9110 if (dev_proc_init())
9111 goto out;
9112
9113 if (netdev_kobject_init())
9114 goto out;
9115
9116 INIT_LIST_HEAD(&ptype_all);
9117 for (i = 0; i < PTYPE_HASH_SIZE; i++)
9118 INIT_LIST_HEAD(&ptype_base[i]);
9119
9120 INIT_LIST_HEAD(&offload_base);
9121
9122 if (register_pernet_subsys(&netdev_net_ops))
9123 goto out;
9124
9125 /*
9126 * Initialise the packet receive queues.
9127 */
9128
9129 for_each_possible_cpu(i) {
9130 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9131 struct softnet_data *sd = &per_cpu(softnet_data, i);
9132
9133 INIT_WORK(flush, flush_backlog);
9134
9135 skb_queue_head_init(&sd->input_pkt_queue);
9136 skb_queue_head_init(&sd->process_queue);
9137 #ifdef CONFIG_XFRM_OFFLOAD
9138 skb_queue_head_init(&sd->xfrm_backlog);
9139 #endif
9140 INIT_LIST_HEAD(&sd->poll_list);
9141 sd->output_queue_tailp = &sd->output_queue;
9142 #ifdef CONFIG_RPS
9143 sd->csd.func = rps_trigger_softirq;
9144 sd->csd.info = sd;
9145 sd->cpu = i;
9146 #endif
9147
9148 sd->backlog.poll = process_backlog;
9149 sd->backlog.weight = weight_p;
9150 }
9151
9152 dev_boot_phase = 0;
9153
9154 /* The loopback device is special if any other network devices
9155 * is present in a network namespace the loopback device must
9156 * be present. Since we now dynamically allocate and free the
9157 * loopback device ensure this invariant is maintained by
9158 * keeping the loopback device as the first device on the
9159 * list of network devices. Ensuring the loopback devices
9160 * is the first device that appears and the last network device
9161 * that disappears.
9162 */
9163 if (register_pernet_device(&loopback_net_ops))
9164 goto out;
9165
9166 if (register_pernet_device(&default_device_ops))
9167 goto out;
9168
9169 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9170 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9171
9172 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9173 NULL, dev_cpu_dead);
9174 WARN_ON(rc < 0);
9175 rc = 0;
9176 out:
9177 return rc;
9178 }
9179
9180 subsys_initcall(net_dev_init);