]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - net/core/dev.c
UBUNTU: Ubuntu-5.4.0-117.132
[mirror_ubuntu-focal-kernel.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/dst_metadata.h>
103 #include <net/pkt_sched.h>
104 #include <net/pkt_cls.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/inetdevice.h>
132 #include <linux/cpu_rmap.h>
133 #include <linux/static_key.h>
134 #include <linux/hashtable.h>
135 #include <linux/vmalloc.h>
136 #include <linux/if_macvlan.h>
137 #include <linux/errqueue.h>
138 #include <linux/hrtimer.h>
139 #include <linux/netfilter_ingress.h>
140 #include <linux/crash_dump.h>
141 #include <linux/sctp.h>
142 #include <net/udp_tunnel.h>
143 #include <linux/net_namespace.h>
144 #include <linux/indirect_call_wrapper.h>
145 #include <net/devlink.h>
146
147 #include "net-sysfs.h"
148
149 #define MAX_GRO_SKBS 8
150
151 /* This should be increased if a protocol with a bigger head is added. */
152 #define GRO_MAX_HEAD (MAX_HEADER + 128)
153
154 static DEFINE_SPINLOCK(ptype_lock);
155 static DEFINE_SPINLOCK(offload_lock);
156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157 struct list_head ptype_all __read_mostly; /* Taps */
158 static struct list_head offload_base __read_mostly;
159
160 static int netif_rx_internal(struct sk_buff *skb);
161 static int call_netdevice_notifiers_info(unsigned long val,
162 struct netdev_notifier_info *info);
163 static int call_netdevice_notifiers_extack(unsigned long val,
164 struct net_device *dev,
165 struct netlink_ext_ack *extack);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167
168 /*
169 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170 * semaphore.
171 *
172 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173 *
174 * Writers must hold the rtnl semaphore while they loop through the
175 * dev_base_head list, and hold dev_base_lock for writing when they do the
176 * actual updates. This allows pure readers to access the list even
177 * while a writer is preparing to update it.
178 *
179 * To put it another way, dev_base_lock is held for writing only to
180 * protect against pure readers; the rtnl semaphore provides the
181 * protection against other writers.
182 *
183 * See, for example usages, register_netdevice() and
184 * unregister_netdevice(), which must be called with the rtnl
185 * semaphore held.
186 */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189
190 static DEFINE_MUTEX(ifalias_mutex);
191
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197
198 static DECLARE_RWSEM(devnet_rename_sem);
199
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202 while (++net->dev_base_seq == 0)
203 ;
204 }
205
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209
210 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217
218 static inline void rps_lock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 spin_lock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 static inline void rps_unlock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228 spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 /* Device list insertion */
233 static void list_netdevice(struct net_device *dev)
234 {
235 struct net *net = dev_net(dev);
236
237 ASSERT_RTNL();
238
239 write_lock_bh(&dev_base_lock);
240 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
241 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
242 hlist_add_head_rcu(&dev->index_hlist,
243 dev_index_hash(net, dev->ifindex));
244 write_unlock_bh(&dev_base_lock);
245
246 dev_base_seq_inc(net);
247 }
248
249 /* Device list removal
250 * caller must respect a RCU grace period before freeing/reusing dev
251 */
252 static void unlist_netdevice(struct net_device *dev)
253 {
254 ASSERT_RTNL();
255
256 /* Unlink dev from the device chain */
257 write_lock_bh(&dev_base_lock);
258 list_del_rcu(&dev->dev_list);
259 hlist_del_rcu(&dev->name_hlist);
260 hlist_del_rcu(&dev->index_hlist);
261 write_unlock_bh(&dev_base_lock);
262
263 dev_base_seq_inc(dev_net(dev));
264 }
265
266 /*
267 * Our notifier list
268 */
269
270 static RAW_NOTIFIER_HEAD(netdev_chain);
271
272 /*
273 * Device drivers call our routines to queue packets here. We empty the
274 * queue in the local softnet handler.
275 */
276
277 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
278 EXPORT_PER_CPU_SYMBOL(softnet_data);
279
280 /*******************************************************************************
281 *
282 * Protocol management and registration routines
283 *
284 *******************************************************************************/
285
286
287 /*
288 * Add a protocol ID to the list. Now that the input handler is
289 * smarter we can dispense with all the messy stuff that used to be
290 * here.
291 *
292 * BEWARE!!! Protocol handlers, mangling input packets,
293 * MUST BE last in hash buckets and checking protocol handlers
294 * MUST start from promiscuous ptype_all chain in net_bh.
295 * It is true now, do not change it.
296 * Explanation follows: if protocol handler, mangling packet, will
297 * be the first on list, it is not able to sense, that packet
298 * is cloned and should be copied-on-write, so that it will
299 * change it and subsequent readers will get broken packet.
300 * --ANK (980803)
301 */
302
303 static inline struct list_head *ptype_head(const struct packet_type *pt)
304 {
305 if (pt->type == htons(ETH_P_ALL))
306 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
307 else
308 return pt->dev ? &pt->dev->ptype_specific :
309 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
310 }
311
312 /**
313 * dev_add_pack - add packet handler
314 * @pt: packet type declaration
315 *
316 * Add a protocol handler to the networking stack. The passed &packet_type
317 * is linked into kernel lists and may not be freed until it has been
318 * removed from the kernel lists.
319 *
320 * This call does not sleep therefore it can not
321 * guarantee all CPU's that are in middle of receiving packets
322 * will see the new packet type (until the next received packet).
323 */
324
325 void dev_add_pack(struct packet_type *pt)
326 {
327 struct list_head *head = ptype_head(pt);
328
329 spin_lock(&ptype_lock);
330 list_add_rcu(&pt->list, head);
331 spin_unlock(&ptype_lock);
332 }
333 EXPORT_SYMBOL(dev_add_pack);
334
335 /**
336 * __dev_remove_pack - remove packet handler
337 * @pt: packet type declaration
338 *
339 * Remove a protocol handler that was previously added to the kernel
340 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
341 * from the kernel lists and can be freed or reused once this function
342 * returns.
343 *
344 * The packet type might still be in use by receivers
345 * and must not be freed until after all the CPU's have gone
346 * through a quiescent state.
347 */
348 void __dev_remove_pack(struct packet_type *pt)
349 {
350 struct list_head *head = ptype_head(pt);
351 struct packet_type *pt1;
352
353 spin_lock(&ptype_lock);
354
355 list_for_each_entry(pt1, head, list) {
356 if (pt == pt1) {
357 list_del_rcu(&pt->list);
358 goto out;
359 }
360 }
361
362 pr_warn("dev_remove_pack: %p not found\n", pt);
363 out:
364 spin_unlock(&ptype_lock);
365 }
366 EXPORT_SYMBOL(__dev_remove_pack);
367
368 /**
369 * dev_remove_pack - remove packet handler
370 * @pt: packet type declaration
371 *
372 * Remove a protocol handler that was previously added to the kernel
373 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
374 * from the kernel lists and can be freed or reused once this function
375 * returns.
376 *
377 * This call sleeps to guarantee that no CPU is looking at the packet
378 * type after return.
379 */
380 void dev_remove_pack(struct packet_type *pt)
381 {
382 __dev_remove_pack(pt);
383
384 synchronize_net();
385 }
386 EXPORT_SYMBOL(dev_remove_pack);
387
388
389 /**
390 * dev_add_offload - register offload handlers
391 * @po: protocol offload declaration
392 *
393 * Add protocol offload handlers to the networking stack. The passed
394 * &proto_offload is linked into kernel lists and may not be freed until
395 * it has been removed from the kernel lists.
396 *
397 * This call does not sleep therefore it can not
398 * guarantee all CPU's that are in middle of receiving packets
399 * will see the new offload handlers (until the next received packet).
400 */
401 void dev_add_offload(struct packet_offload *po)
402 {
403 struct packet_offload *elem;
404
405 spin_lock(&offload_lock);
406 list_for_each_entry(elem, &offload_base, list) {
407 if (po->priority < elem->priority)
408 break;
409 }
410 list_add_rcu(&po->list, elem->list.prev);
411 spin_unlock(&offload_lock);
412 }
413 EXPORT_SYMBOL(dev_add_offload);
414
415 /**
416 * __dev_remove_offload - remove offload handler
417 * @po: packet offload declaration
418 *
419 * Remove a protocol offload handler that was previously added to the
420 * kernel offload handlers by dev_add_offload(). The passed &offload_type
421 * is removed from the kernel lists and can be freed or reused once this
422 * function returns.
423 *
424 * The packet type might still be in use by receivers
425 * and must not be freed until after all the CPU's have gone
426 * through a quiescent state.
427 */
428 static void __dev_remove_offload(struct packet_offload *po)
429 {
430 struct list_head *head = &offload_base;
431 struct packet_offload *po1;
432
433 spin_lock(&offload_lock);
434
435 list_for_each_entry(po1, head, list) {
436 if (po == po1) {
437 list_del_rcu(&po->list);
438 goto out;
439 }
440 }
441
442 pr_warn("dev_remove_offload: %p not found\n", po);
443 out:
444 spin_unlock(&offload_lock);
445 }
446
447 /**
448 * dev_remove_offload - remove packet offload handler
449 * @po: packet offload declaration
450 *
451 * Remove a packet offload handler that was previously added to the kernel
452 * offload handlers by dev_add_offload(). The passed &offload_type is
453 * removed from the kernel lists and can be freed or reused once this
454 * function returns.
455 *
456 * This call sleeps to guarantee that no CPU is looking at the packet
457 * type after return.
458 */
459 void dev_remove_offload(struct packet_offload *po)
460 {
461 __dev_remove_offload(po);
462
463 synchronize_net();
464 }
465 EXPORT_SYMBOL(dev_remove_offload);
466
467 /******************************************************************************
468 *
469 * Device Boot-time Settings Routines
470 *
471 ******************************************************************************/
472
473 /* Boot time configuration table */
474 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
475
476 /**
477 * netdev_boot_setup_add - add new setup entry
478 * @name: name of the device
479 * @map: configured settings for the device
480 *
481 * Adds new setup entry to the dev_boot_setup list. The function
482 * returns 0 on error and 1 on success. This is a generic routine to
483 * all netdevices.
484 */
485 static int netdev_boot_setup_add(char *name, struct ifmap *map)
486 {
487 struct netdev_boot_setup *s;
488 int i;
489
490 s = dev_boot_setup;
491 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
492 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
493 memset(s[i].name, 0, sizeof(s[i].name));
494 strlcpy(s[i].name, name, IFNAMSIZ);
495 memcpy(&s[i].map, map, sizeof(s[i].map));
496 break;
497 }
498 }
499
500 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
501 }
502
503 /**
504 * netdev_boot_setup_check - check boot time settings
505 * @dev: the netdevice
506 *
507 * Check boot time settings for the device.
508 * The found settings are set for the device to be used
509 * later in the device probing.
510 * Returns 0 if no settings found, 1 if they are.
511 */
512 int netdev_boot_setup_check(struct net_device *dev)
513 {
514 struct netdev_boot_setup *s = dev_boot_setup;
515 int i;
516
517 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
518 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
519 !strcmp(dev->name, s[i].name)) {
520 dev->irq = s[i].map.irq;
521 dev->base_addr = s[i].map.base_addr;
522 dev->mem_start = s[i].map.mem_start;
523 dev->mem_end = s[i].map.mem_end;
524 return 1;
525 }
526 }
527 return 0;
528 }
529 EXPORT_SYMBOL(netdev_boot_setup_check);
530
531
532 /**
533 * netdev_boot_base - get address from boot time settings
534 * @prefix: prefix for network device
535 * @unit: id for network device
536 *
537 * Check boot time settings for the base address of device.
538 * The found settings are set for the device to be used
539 * later in the device probing.
540 * Returns 0 if no settings found.
541 */
542 unsigned long netdev_boot_base(const char *prefix, int unit)
543 {
544 const struct netdev_boot_setup *s = dev_boot_setup;
545 char name[IFNAMSIZ];
546 int i;
547
548 sprintf(name, "%s%d", prefix, unit);
549
550 /*
551 * If device already registered then return base of 1
552 * to indicate not to probe for this interface
553 */
554 if (__dev_get_by_name(&init_net, name))
555 return 1;
556
557 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
558 if (!strcmp(name, s[i].name))
559 return s[i].map.base_addr;
560 return 0;
561 }
562
563 /*
564 * Saves at boot time configured settings for any netdevice.
565 */
566 int __init netdev_boot_setup(char *str)
567 {
568 int ints[5];
569 struct ifmap map;
570
571 str = get_options(str, ARRAY_SIZE(ints), ints);
572 if (!str || !*str)
573 return 0;
574
575 /* Save settings */
576 memset(&map, 0, sizeof(map));
577 if (ints[0] > 0)
578 map.irq = ints[1];
579 if (ints[0] > 1)
580 map.base_addr = ints[2];
581 if (ints[0] > 2)
582 map.mem_start = ints[3];
583 if (ints[0] > 3)
584 map.mem_end = ints[4];
585
586 /* Add new entry to the list */
587 return netdev_boot_setup_add(str, &map);
588 }
589
590 __setup("netdev=", netdev_boot_setup);
591
592 /*******************************************************************************
593 *
594 * Device Interface Subroutines
595 *
596 *******************************************************************************/
597
598 /**
599 * dev_get_iflink - get 'iflink' value of a interface
600 * @dev: targeted interface
601 *
602 * Indicates the ifindex the interface is linked to.
603 * Physical interfaces have the same 'ifindex' and 'iflink' values.
604 */
605
606 int dev_get_iflink(const struct net_device *dev)
607 {
608 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
609 return dev->netdev_ops->ndo_get_iflink(dev);
610
611 return dev->ifindex;
612 }
613 EXPORT_SYMBOL(dev_get_iflink);
614
615 /**
616 * dev_fill_metadata_dst - Retrieve tunnel egress information.
617 * @dev: targeted interface
618 * @skb: The packet.
619 *
620 * For better visibility of tunnel traffic OVS needs to retrieve
621 * egress tunnel information for a packet. Following API allows
622 * user to get this info.
623 */
624 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
625 {
626 struct ip_tunnel_info *info;
627
628 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
629 return -EINVAL;
630
631 info = skb_tunnel_info_unclone(skb);
632 if (!info)
633 return -ENOMEM;
634 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
635 return -EINVAL;
636
637 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
638 }
639 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
640
641 /**
642 * __dev_get_by_name - find a device by its name
643 * @net: the applicable net namespace
644 * @name: name to find
645 *
646 * Find an interface by name. Must be called under RTNL semaphore
647 * or @dev_base_lock. If the name is found a pointer to the device
648 * is returned. If the name is not found then %NULL is returned. The
649 * reference counters are not incremented so the caller must be
650 * careful with locks.
651 */
652
653 struct net_device *__dev_get_by_name(struct net *net, const char *name)
654 {
655 struct net_device *dev;
656 struct hlist_head *head = dev_name_hash(net, name);
657
658 hlist_for_each_entry(dev, head, name_hlist)
659 if (!strncmp(dev->name, name, IFNAMSIZ))
660 return dev;
661
662 return NULL;
663 }
664 EXPORT_SYMBOL(__dev_get_by_name);
665
666 /**
667 * dev_get_by_name_rcu - find a device by its name
668 * @net: the applicable net namespace
669 * @name: name to find
670 *
671 * Find an interface by name.
672 * If the name is found a pointer to the device is returned.
673 * If the name is not found then %NULL is returned.
674 * The reference counters are not incremented so the caller must be
675 * careful with locks. The caller must hold RCU lock.
676 */
677
678 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
679 {
680 struct net_device *dev;
681 struct hlist_head *head = dev_name_hash(net, name);
682
683 hlist_for_each_entry_rcu(dev, head, name_hlist)
684 if (!strncmp(dev->name, name, IFNAMSIZ))
685 return dev;
686
687 return NULL;
688 }
689 EXPORT_SYMBOL(dev_get_by_name_rcu);
690
691 /**
692 * dev_get_by_name - find a device by its name
693 * @net: the applicable net namespace
694 * @name: name to find
695 *
696 * Find an interface by name. This can be called from any
697 * context and does its own locking. The returned handle has
698 * the usage count incremented and the caller must use dev_put() to
699 * release it when it is no longer needed. %NULL is returned if no
700 * matching device is found.
701 */
702
703 struct net_device *dev_get_by_name(struct net *net, const char *name)
704 {
705 struct net_device *dev;
706
707 rcu_read_lock();
708 dev = dev_get_by_name_rcu(net, name);
709 if (dev)
710 dev_hold(dev);
711 rcu_read_unlock();
712 return dev;
713 }
714 EXPORT_SYMBOL(dev_get_by_name);
715
716 /**
717 * __dev_get_by_index - find a device by its ifindex
718 * @net: the applicable net namespace
719 * @ifindex: index of device
720 *
721 * Search for an interface by index. Returns %NULL if the device
722 * is not found or a pointer to the device. The device has not
723 * had its reference counter increased so the caller must be careful
724 * about locking. The caller must hold either the RTNL semaphore
725 * or @dev_base_lock.
726 */
727
728 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
729 {
730 struct net_device *dev;
731 struct hlist_head *head = dev_index_hash(net, ifindex);
732
733 hlist_for_each_entry(dev, head, index_hlist)
734 if (dev->ifindex == ifindex)
735 return dev;
736
737 return NULL;
738 }
739 EXPORT_SYMBOL(__dev_get_by_index);
740
741 /**
742 * dev_get_by_index_rcu - find a device by its ifindex
743 * @net: the applicable net namespace
744 * @ifindex: index of device
745 *
746 * Search for an interface by index. Returns %NULL if the device
747 * is not found or a pointer to the device. The device has not
748 * had its reference counter increased so the caller must be careful
749 * about locking. The caller must hold RCU lock.
750 */
751
752 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
753 {
754 struct net_device *dev;
755 struct hlist_head *head = dev_index_hash(net, ifindex);
756
757 hlist_for_each_entry_rcu(dev, head, index_hlist)
758 if (dev->ifindex == ifindex)
759 return dev;
760
761 return NULL;
762 }
763 EXPORT_SYMBOL(dev_get_by_index_rcu);
764
765
766 /**
767 * dev_get_by_index - find a device by its ifindex
768 * @net: the applicable net namespace
769 * @ifindex: index of device
770 *
771 * Search for an interface by index. Returns NULL if the device
772 * is not found or a pointer to the device. The device returned has
773 * had a reference added and the pointer is safe until the user calls
774 * dev_put to indicate they have finished with it.
775 */
776
777 struct net_device *dev_get_by_index(struct net *net, int ifindex)
778 {
779 struct net_device *dev;
780
781 rcu_read_lock();
782 dev = dev_get_by_index_rcu(net, ifindex);
783 if (dev)
784 dev_hold(dev);
785 rcu_read_unlock();
786 return dev;
787 }
788 EXPORT_SYMBOL(dev_get_by_index);
789
790 /**
791 * dev_get_by_napi_id - find a device by napi_id
792 * @napi_id: ID of the NAPI struct
793 *
794 * Search for an interface by NAPI ID. Returns %NULL if the device
795 * is not found or a pointer to the device. The device has not had
796 * its reference counter increased so the caller must be careful
797 * about locking. The caller must hold RCU lock.
798 */
799
800 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
801 {
802 struct napi_struct *napi;
803
804 WARN_ON_ONCE(!rcu_read_lock_held());
805
806 if (napi_id < MIN_NAPI_ID)
807 return NULL;
808
809 napi = napi_by_id(napi_id);
810
811 return napi ? napi->dev : NULL;
812 }
813 EXPORT_SYMBOL(dev_get_by_napi_id);
814
815 /**
816 * netdev_get_name - get a netdevice name, knowing its ifindex.
817 * @net: network namespace
818 * @name: a pointer to the buffer where the name will be stored.
819 * @ifindex: the ifindex of the interface to get the name from.
820 */
821 int netdev_get_name(struct net *net, char *name, int ifindex)
822 {
823 struct net_device *dev;
824 int ret;
825
826 down_read(&devnet_rename_sem);
827 rcu_read_lock();
828
829 dev = dev_get_by_index_rcu(net, ifindex);
830 if (!dev) {
831 ret = -ENODEV;
832 goto out;
833 }
834
835 strcpy(name, dev->name);
836
837 ret = 0;
838 out:
839 rcu_read_unlock();
840 up_read(&devnet_rename_sem);
841 return ret;
842 }
843
844 /**
845 * dev_getbyhwaddr_rcu - find a device by its hardware address
846 * @net: the applicable net namespace
847 * @type: media type of device
848 * @ha: hardware address
849 *
850 * Search for an interface by MAC address. Returns NULL if the device
851 * is not found or a pointer to the device.
852 * The caller must hold RCU or RTNL.
853 * The returned device has not had its ref count increased
854 * and the caller must therefore be careful about locking
855 *
856 */
857
858 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
859 const char *ha)
860 {
861 struct net_device *dev;
862
863 for_each_netdev_rcu(net, dev)
864 if (dev->type == type &&
865 !memcmp(dev->dev_addr, ha, dev->addr_len))
866 return dev;
867
868 return NULL;
869 }
870 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
871
872 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
873 {
874 struct net_device *dev;
875
876 ASSERT_RTNL();
877 for_each_netdev(net, dev)
878 if (dev->type == type)
879 return dev;
880
881 return NULL;
882 }
883 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
884
885 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
886 {
887 struct net_device *dev, *ret = NULL;
888
889 rcu_read_lock();
890 for_each_netdev_rcu(net, dev)
891 if (dev->type == type) {
892 dev_hold(dev);
893 ret = dev;
894 break;
895 }
896 rcu_read_unlock();
897 return ret;
898 }
899 EXPORT_SYMBOL(dev_getfirstbyhwtype);
900
901 /**
902 * __dev_get_by_flags - find any device with given flags
903 * @net: the applicable net namespace
904 * @if_flags: IFF_* values
905 * @mask: bitmask of bits in if_flags to check
906 *
907 * Search for any interface with the given flags. Returns NULL if a device
908 * is not found or a pointer to the device. Must be called inside
909 * rtnl_lock(), and result refcount is unchanged.
910 */
911
912 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
913 unsigned short mask)
914 {
915 struct net_device *dev, *ret;
916
917 ASSERT_RTNL();
918
919 ret = NULL;
920 for_each_netdev(net, dev) {
921 if (((dev->flags ^ if_flags) & mask) == 0) {
922 ret = dev;
923 break;
924 }
925 }
926 return ret;
927 }
928 EXPORT_SYMBOL(__dev_get_by_flags);
929
930 /**
931 * dev_valid_name - check if name is okay for network device
932 * @name: name string
933 *
934 * Network device names need to be valid file names to
935 * to allow sysfs to work. We also disallow any kind of
936 * whitespace.
937 */
938 bool dev_valid_name(const char *name)
939 {
940 if (*name == '\0')
941 return false;
942 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
943 return false;
944 if (!strcmp(name, ".") || !strcmp(name, ".."))
945 return false;
946
947 while (*name) {
948 if (*name == '/' || *name == ':' || isspace(*name))
949 return false;
950 name++;
951 }
952 return true;
953 }
954 EXPORT_SYMBOL(dev_valid_name);
955
956 /**
957 * __dev_alloc_name - allocate a name for a device
958 * @net: network namespace to allocate the device name in
959 * @name: name format string
960 * @buf: scratch buffer and result name string
961 *
962 * Passed a format string - eg "lt%d" it will try and find a suitable
963 * id. It scans list of devices to build up a free map, then chooses
964 * the first empty slot. The caller must hold the dev_base or rtnl lock
965 * while allocating the name and adding the device in order to avoid
966 * duplicates.
967 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
968 * Returns the number of the unit assigned or a negative errno code.
969 */
970
971 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
972 {
973 int i = 0;
974 const char *p;
975 const int max_netdevices = 8*PAGE_SIZE;
976 unsigned long *inuse;
977 struct net_device *d;
978
979 if (!dev_valid_name(name))
980 return -EINVAL;
981
982 p = strchr(name, '%');
983 if (p) {
984 /*
985 * Verify the string as this thing may have come from
986 * the user. There must be either one "%d" and no other "%"
987 * characters.
988 */
989 if (p[1] != 'd' || strchr(p + 2, '%'))
990 return -EINVAL;
991
992 /* Use one page as a bit array of possible slots */
993 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
994 if (!inuse)
995 return -ENOMEM;
996
997 for_each_netdev(net, d) {
998 if (!sscanf(d->name, name, &i))
999 continue;
1000 if (i < 0 || i >= max_netdevices)
1001 continue;
1002
1003 /* avoid cases where sscanf is not exact inverse of printf */
1004 snprintf(buf, IFNAMSIZ, name, i);
1005 if (!strncmp(buf, d->name, IFNAMSIZ))
1006 set_bit(i, inuse);
1007 }
1008
1009 i = find_first_zero_bit(inuse, max_netdevices);
1010 free_page((unsigned long) inuse);
1011 }
1012
1013 snprintf(buf, IFNAMSIZ, name, i);
1014 if (!__dev_get_by_name(net, buf))
1015 return i;
1016
1017 /* It is possible to run out of possible slots
1018 * when the name is long and there isn't enough space left
1019 * for the digits, or if all bits are used.
1020 */
1021 return -ENFILE;
1022 }
1023
1024 static int dev_alloc_name_ns(struct net *net,
1025 struct net_device *dev,
1026 const char *name)
1027 {
1028 char buf[IFNAMSIZ];
1029 int ret;
1030
1031 BUG_ON(!net);
1032 ret = __dev_alloc_name(net, name, buf);
1033 if (ret >= 0)
1034 strlcpy(dev->name, buf, IFNAMSIZ);
1035 return ret;
1036 }
1037
1038 /**
1039 * dev_alloc_name - allocate a name for a device
1040 * @dev: device
1041 * @name: name format string
1042 *
1043 * Passed a format string - eg "lt%d" it will try and find a suitable
1044 * id. It scans list of devices to build up a free map, then chooses
1045 * the first empty slot. The caller must hold the dev_base or rtnl lock
1046 * while allocating the name and adding the device in order to avoid
1047 * duplicates.
1048 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1049 * Returns the number of the unit assigned or a negative errno code.
1050 */
1051
1052 int dev_alloc_name(struct net_device *dev, const char *name)
1053 {
1054 return dev_alloc_name_ns(dev_net(dev), dev, name);
1055 }
1056 EXPORT_SYMBOL(dev_alloc_name);
1057
1058 int dev_get_valid_name(struct net *net, struct net_device *dev,
1059 const char *name)
1060 {
1061 BUG_ON(!net);
1062
1063 if (!dev_valid_name(name))
1064 return -EINVAL;
1065
1066 if (strchr(name, '%'))
1067 return dev_alloc_name_ns(net, dev, name);
1068 else if (__dev_get_by_name(net, name))
1069 return -EEXIST;
1070 else if (dev->name != name)
1071 strlcpy(dev->name, name, IFNAMSIZ);
1072
1073 return 0;
1074 }
1075 EXPORT_SYMBOL(dev_get_valid_name);
1076
1077 /**
1078 * dev_change_name - change name of a device
1079 * @dev: device
1080 * @newname: name (or format string) must be at least IFNAMSIZ
1081 *
1082 * Change name of a device, can pass format strings "eth%d".
1083 * for wildcarding.
1084 */
1085 int dev_change_name(struct net_device *dev, const char *newname)
1086 {
1087 unsigned char old_assign_type;
1088 char oldname[IFNAMSIZ];
1089 int err = 0;
1090 int ret;
1091 struct net *net;
1092
1093 ASSERT_RTNL();
1094 BUG_ON(!dev_net(dev));
1095
1096 net = dev_net(dev);
1097
1098 /* Some auto-enslaved devices e.g. failover slaves are
1099 * special, as userspace might rename the device after
1100 * the interface had been brought up and running since
1101 * the point kernel initiated auto-enslavement. Allow
1102 * live name change even when these slave devices are
1103 * up and running.
1104 *
1105 * Typically, users of these auto-enslaving devices
1106 * don't actually care about slave name change, as
1107 * they are supposed to operate on master interface
1108 * directly.
1109 */
1110 if (dev->flags & IFF_UP &&
1111 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1112 return -EBUSY;
1113
1114 down_write(&devnet_rename_sem);
1115
1116 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1117 up_write(&devnet_rename_sem);
1118 return 0;
1119 }
1120
1121 memcpy(oldname, dev->name, IFNAMSIZ);
1122
1123 err = dev_get_valid_name(net, dev, newname);
1124 if (err < 0) {
1125 up_write(&devnet_rename_sem);
1126 return err;
1127 }
1128
1129 if (oldname[0] && !strchr(oldname, '%'))
1130 netdev_info(dev, "renamed from %s\n", oldname);
1131
1132 old_assign_type = dev->name_assign_type;
1133 dev->name_assign_type = NET_NAME_RENAMED;
1134
1135 rollback:
1136 ret = device_rename(&dev->dev, dev->name);
1137 if (ret) {
1138 memcpy(dev->name, oldname, IFNAMSIZ);
1139 dev->name_assign_type = old_assign_type;
1140 up_write(&devnet_rename_sem);
1141 return ret;
1142 }
1143
1144 up_write(&devnet_rename_sem);
1145
1146 netdev_adjacent_rename_links(dev, oldname);
1147
1148 write_lock_bh(&dev_base_lock);
1149 hlist_del_rcu(&dev->name_hlist);
1150 write_unlock_bh(&dev_base_lock);
1151
1152 synchronize_rcu();
1153
1154 write_lock_bh(&dev_base_lock);
1155 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1156 write_unlock_bh(&dev_base_lock);
1157
1158 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1159 ret = notifier_to_errno(ret);
1160
1161 if (ret) {
1162 /* err >= 0 after dev_alloc_name() or stores the first errno */
1163 if (err >= 0) {
1164 err = ret;
1165 down_write(&devnet_rename_sem);
1166 memcpy(dev->name, oldname, IFNAMSIZ);
1167 memcpy(oldname, newname, IFNAMSIZ);
1168 dev->name_assign_type = old_assign_type;
1169 old_assign_type = NET_NAME_RENAMED;
1170 goto rollback;
1171 } else {
1172 pr_err("%s: name change rollback failed: %d\n",
1173 dev->name, ret);
1174 }
1175 }
1176
1177 return err;
1178 }
1179
1180 /**
1181 * dev_set_alias - change ifalias of a device
1182 * @dev: device
1183 * @alias: name up to IFALIASZ
1184 * @len: limit of bytes to copy from info
1185 *
1186 * Set ifalias for a device,
1187 */
1188 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1189 {
1190 struct dev_ifalias *new_alias = NULL;
1191
1192 if (len >= IFALIASZ)
1193 return -EINVAL;
1194
1195 if (len) {
1196 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1197 if (!new_alias)
1198 return -ENOMEM;
1199
1200 memcpy(new_alias->ifalias, alias, len);
1201 new_alias->ifalias[len] = 0;
1202 }
1203
1204 mutex_lock(&ifalias_mutex);
1205 rcu_swap_protected(dev->ifalias, new_alias,
1206 mutex_is_locked(&ifalias_mutex));
1207 mutex_unlock(&ifalias_mutex);
1208
1209 if (new_alias)
1210 kfree_rcu(new_alias, rcuhead);
1211
1212 return len;
1213 }
1214 EXPORT_SYMBOL(dev_set_alias);
1215
1216 /**
1217 * dev_get_alias - get ifalias of a device
1218 * @dev: device
1219 * @name: buffer to store name of ifalias
1220 * @len: size of buffer
1221 *
1222 * get ifalias for a device. Caller must make sure dev cannot go
1223 * away, e.g. rcu read lock or own a reference count to device.
1224 */
1225 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1226 {
1227 const struct dev_ifalias *alias;
1228 int ret = 0;
1229
1230 rcu_read_lock();
1231 alias = rcu_dereference(dev->ifalias);
1232 if (alias)
1233 ret = snprintf(name, len, "%s", alias->ifalias);
1234 rcu_read_unlock();
1235
1236 return ret;
1237 }
1238
1239 /**
1240 * netdev_features_change - device changes features
1241 * @dev: device to cause notification
1242 *
1243 * Called to indicate a device has changed features.
1244 */
1245 void netdev_features_change(struct net_device *dev)
1246 {
1247 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1248 }
1249 EXPORT_SYMBOL(netdev_features_change);
1250
1251 /**
1252 * netdev_state_change - device changes state
1253 * @dev: device to cause notification
1254 *
1255 * Called to indicate a device has changed state. This function calls
1256 * the notifier chains for netdev_chain and sends a NEWLINK message
1257 * to the routing socket.
1258 */
1259 void netdev_state_change(struct net_device *dev)
1260 {
1261 if (dev->flags & IFF_UP) {
1262 struct netdev_notifier_change_info change_info = {
1263 .info.dev = dev,
1264 };
1265
1266 call_netdevice_notifiers_info(NETDEV_CHANGE,
1267 &change_info.info);
1268 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1269 }
1270 }
1271 EXPORT_SYMBOL(netdev_state_change);
1272
1273 /**
1274 * netdev_notify_peers - notify network peers about existence of @dev
1275 * @dev: network device
1276 *
1277 * Generate traffic such that interested network peers are aware of
1278 * @dev, such as by generating a gratuitous ARP. This may be used when
1279 * a device wants to inform the rest of the network about some sort of
1280 * reconfiguration such as a failover event or virtual machine
1281 * migration.
1282 */
1283 void netdev_notify_peers(struct net_device *dev)
1284 {
1285 rtnl_lock();
1286 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1287 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1288 rtnl_unlock();
1289 }
1290 EXPORT_SYMBOL(netdev_notify_peers);
1291
1292 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1293 {
1294 const struct net_device_ops *ops = dev->netdev_ops;
1295 int ret;
1296
1297 ASSERT_RTNL();
1298
1299 if (!netif_device_present(dev))
1300 return -ENODEV;
1301
1302 /* Block netpoll from trying to do any rx path servicing.
1303 * If we don't do this there is a chance ndo_poll_controller
1304 * or ndo_poll may be running while we open the device
1305 */
1306 netpoll_poll_disable(dev);
1307
1308 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1309 ret = notifier_to_errno(ret);
1310 if (ret)
1311 return ret;
1312
1313 set_bit(__LINK_STATE_START, &dev->state);
1314
1315 if (ops->ndo_validate_addr)
1316 ret = ops->ndo_validate_addr(dev);
1317
1318 if (!ret && ops->ndo_open)
1319 ret = ops->ndo_open(dev);
1320
1321 netpoll_poll_enable(dev);
1322
1323 if (ret)
1324 clear_bit(__LINK_STATE_START, &dev->state);
1325 else {
1326 dev->flags |= IFF_UP;
1327 dev_set_rx_mode(dev);
1328 dev_activate(dev);
1329 add_device_randomness(dev->dev_addr, dev->addr_len);
1330 }
1331
1332 return ret;
1333 }
1334
1335 /**
1336 * dev_open - prepare an interface for use.
1337 * @dev: device to open
1338 * @extack: netlink extended ack
1339 *
1340 * Takes a device from down to up state. The device's private open
1341 * function is invoked and then the multicast lists are loaded. Finally
1342 * the device is moved into the up state and a %NETDEV_UP message is
1343 * sent to the netdev notifier chain.
1344 *
1345 * Calling this function on an active interface is a nop. On a failure
1346 * a negative errno code is returned.
1347 */
1348 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1349 {
1350 int ret;
1351
1352 if (dev->flags & IFF_UP)
1353 return 0;
1354
1355 ret = __dev_open(dev, extack);
1356 if (ret < 0)
1357 return ret;
1358
1359 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1360 call_netdevice_notifiers(NETDEV_UP, dev);
1361
1362 return ret;
1363 }
1364 EXPORT_SYMBOL(dev_open);
1365
1366 static void __dev_close_many(struct list_head *head)
1367 {
1368 struct net_device *dev;
1369
1370 ASSERT_RTNL();
1371 might_sleep();
1372
1373 list_for_each_entry(dev, head, close_list) {
1374 /* Temporarily disable netpoll until the interface is down */
1375 netpoll_poll_disable(dev);
1376
1377 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1378
1379 clear_bit(__LINK_STATE_START, &dev->state);
1380
1381 /* Synchronize to scheduled poll. We cannot touch poll list, it
1382 * can be even on different cpu. So just clear netif_running().
1383 *
1384 * dev->stop() will invoke napi_disable() on all of it's
1385 * napi_struct instances on this device.
1386 */
1387 smp_mb__after_atomic(); /* Commit netif_running(). */
1388 }
1389
1390 dev_deactivate_many(head);
1391
1392 list_for_each_entry(dev, head, close_list) {
1393 const struct net_device_ops *ops = dev->netdev_ops;
1394
1395 /*
1396 * Call the device specific close. This cannot fail.
1397 * Only if device is UP
1398 *
1399 * We allow it to be called even after a DETACH hot-plug
1400 * event.
1401 */
1402 if (ops->ndo_stop)
1403 ops->ndo_stop(dev);
1404
1405 dev->flags &= ~IFF_UP;
1406 netpoll_poll_enable(dev);
1407 }
1408 }
1409
1410 static void __dev_close(struct net_device *dev)
1411 {
1412 LIST_HEAD(single);
1413
1414 list_add(&dev->close_list, &single);
1415 __dev_close_many(&single);
1416 list_del(&single);
1417 }
1418
1419 void dev_close_many(struct list_head *head, bool unlink)
1420 {
1421 struct net_device *dev, *tmp;
1422
1423 /* Remove the devices that don't need to be closed */
1424 list_for_each_entry_safe(dev, tmp, head, close_list)
1425 if (!(dev->flags & IFF_UP))
1426 list_del_init(&dev->close_list);
1427
1428 __dev_close_many(head);
1429
1430 list_for_each_entry_safe(dev, tmp, head, close_list) {
1431 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432 call_netdevice_notifiers(NETDEV_DOWN, dev);
1433 if (unlink)
1434 list_del_init(&dev->close_list);
1435 }
1436 }
1437 EXPORT_SYMBOL(dev_close_many);
1438
1439 /**
1440 * dev_close - shutdown an interface.
1441 * @dev: device to shutdown
1442 *
1443 * This function moves an active device into down state. A
1444 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1445 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1446 * chain.
1447 */
1448 void dev_close(struct net_device *dev)
1449 {
1450 if (dev->flags & IFF_UP) {
1451 LIST_HEAD(single);
1452
1453 list_add(&dev->close_list, &single);
1454 dev_close_many(&single, true);
1455 list_del(&single);
1456 }
1457 }
1458 EXPORT_SYMBOL(dev_close);
1459
1460
1461 /**
1462 * dev_disable_lro - disable Large Receive Offload on a device
1463 * @dev: device
1464 *
1465 * Disable Large Receive Offload (LRO) on a net device. Must be
1466 * called under RTNL. This is needed if received packets may be
1467 * forwarded to another interface.
1468 */
1469 void dev_disable_lro(struct net_device *dev)
1470 {
1471 struct net_device *lower_dev;
1472 struct list_head *iter;
1473
1474 dev->wanted_features &= ~NETIF_F_LRO;
1475 netdev_update_features(dev);
1476
1477 if (unlikely(dev->features & NETIF_F_LRO))
1478 netdev_WARN(dev, "failed to disable LRO!\n");
1479
1480 netdev_for_each_lower_dev(dev, lower_dev, iter)
1481 dev_disable_lro(lower_dev);
1482 }
1483 EXPORT_SYMBOL(dev_disable_lro);
1484
1485 /**
1486 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1487 * @dev: device
1488 *
1489 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1490 * called under RTNL. This is needed if Generic XDP is installed on
1491 * the device.
1492 */
1493 static void dev_disable_gro_hw(struct net_device *dev)
1494 {
1495 dev->wanted_features &= ~NETIF_F_GRO_HW;
1496 netdev_update_features(dev);
1497
1498 if (unlikely(dev->features & NETIF_F_GRO_HW))
1499 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1500 }
1501
1502 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1503 {
1504 #define N(val) \
1505 case NETDEV_##val: \
1506 return "NETDEV_" __stringify(val);
1507 switch (cmd) {
1508 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1509 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1510 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1511 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1512 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1513 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1514 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1515 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1516 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1517 N(PRE_CHANGEADDR)
1518 }
1519 #undef N
1520 return "UNKNOWN_NETDEV_EVENT";
1521 }
1522 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1523
1524 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1525 struct net_device *dev)
1526 {
1527 struct netdev_notifier_info info = {
1528 .dev = dev,
1529 };
1530
1531 return nb->notifier_call(nb, val, &info);
1532 }
1533
1534 static int dev_boot_phase = 1;
1535
1536 /**
1537 * register_netdevice_notifier - register a network notifier block
1538 * @nb: notifier
1539 *
1540 * Register a notifier to be called when network device events occur.
1541 * The notifier passed is linked into the kernel structures and must
1542 * not be reused until it has been unregistered. A negative errno code
1543 * is returned on a failure.
1544 *
1545 * When registered all registration and up events are replayed
1546 * to the new notifier to allow device to have a race free
1547 * view of the network device list.
1548 */
1549
1550 int register_netdevice_notifier(struct notifier_block *nb)
1551 {
1552 struct net_device *dev;
1553 struct net_device *last;
1554 struct net *net;
1555 int err;
1556
1557 /* Close race with setup_net() and cleanup_net() */
1558 down_write(&pernet_ops_rwsem);
1559 rtnl_lock();
1560 err = raw_notifier_chain_register(&netdev_chain, nb);
1561 if (err)
1562 goto unlock;
1563 if (dev_boot_phase)
1564 goto unlock;
1565 for_each_net(net) {
1566 for_each_netdev(net, dev) {
1567 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1568 err = notifier_to_errno(err);
1569 if (err)
1570 goto rollback;
1571
1572 if (!(dev->flags & IFF_UP))
1573 continue;
1574
1575 call_netdevice_notifier(nb, NETDEV_UP, dev);
1576 }
1577 }
1578
1579 unlock:
1580 rtnl_unlock();
1581 up_write(&pernet_ops_rwsem);
1582 return err;
1583
1584 rollback:
1585 last = dev;
1586 for_each_net(net) {
1587 for_each_netdev(net, dev) {
1588 if (dev == last)
1589 goto outroll;
1590
1591 if (dev->flags & IFF_UP) {
1592 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1593 dev);
1594 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1595 }
1596 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1597 }
1598 }
1599
1600 outroll:
1601 raw_notifier_chain_unregister(&netdev_chain, nb);
1602 goto unlock;
1603 }
1604 EXPORT_SYMBOL(register_netdevice_notifier);
1605
1606 /**
1607 * unregister_netdevice_notifier - unregister a network notifier block
1608 * @nb: notifier
1609 *
1610 * Unregister a notifier previously registered by
1611 * register_netdevice_notifier(). The notifier is unlinked into the
1612 * kernel structures and may then be reused. A negative errno code
1613 * is returned on a failure.
1614 *
1615 * After unregistering unregister and down device events are synthesized
1616 * for all devices on the device list to the removed notifier to remove
1617 * the need for special case cleanup code.
1618 */
1619
1620 int unregister_netdevice_notifier(struct notifier_block *nb)
1621 {
1622 struct net_device *dev;
1623 struct net *net;
1624 int err;
1625
1626 /* Close race with setup_net() and cleanup_net() */
1627 down_write(&pernet_ops_rwsem);
1628 rtnl_lock();
1629 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1630 if (err)
1631 goto unlock;
1632
1633 for_each_net(net) {
1634 for_each_netdev(net, dev) {
1635 if (dev->flags & IFF_UP) {
1636 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1637 dev);
1638 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1639 }
1640 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1641 }
1642 }
1643 unlock:
1644 rtnl_unlock();
1645 up_write(&pernet_ops_rwsem);
1646 return err;
1647 }
1648 EXPORT_SYMBOL(unregister_netdevice_notifier);
1649
1650 /**
1651 * call_netdevice_notifiers_info - call all network notifier blocks
1652 * @val: value passed unmodified to notifier function
1653 * @info: notifier information data
1654 *
1655 * Call all network notifier blocks. Parameters and return value
1656 * are as for raw_notifier_call_chain().
1657 */
1658
1659 static int call_netdevice_notifiers_info(unsigned long val,
1660 struct netdev_notifier_info *info)
1661 {
1662 ASSERT_RTNL();
1663 return raw_notifier_call_chain(&netdev_chain, val, info);
1664 }
1665
1666 static int call_netdevice_notifiers_extack(unsigned long val,
1667 struct net_device *dev,
1668 struct netlink_ext_ack *extack)
1669 {
1670 struct netdev_notifier_info info = {
1671 .dev = dev,
1672 .extack = extack,
1673 };
1674
1675 return call_netdevice_notifiers_info(val, &info);
1676 }
1677
1678 /**
1679 * call_netdevice_notifiers - call all network notifier blocks
1680 * @val: value passed unmodified to notifier function
1681 * @dev: net_device pointer passed unmodified to notifier function
1682 *
1683 * Call all network notifier blocks. Parameters and return value
1684 * are as for raw_notifier_call_chain().
1685 */
1686
1687 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1688 {
1689 return call_netdevice_notifiers_extack(val, dev, NULL);
1690 }
1691 EXPORT_SYMBOL(call_netdevice_notifiers);
1692
1693 /**
1694 * call_netdevice_notifiers_mtu - call all network notifier blocks
1695 * @val: value passed unmodified to notifier function
1696 * @dev: net_device pointer passed unmodified to notifier function
1697 * @arg: additional u32 argument passed to the notifier function
1698 *
1699 * Call all network notifier blocks. Parameters and return value
1700 * are as for raw_notifier_call_chain().
1701 */
1702 static int call_netdevice_notifiers_mtu(unsigned long val,
1703 struct net_device *dev, u32 arg)
1704 {
1705 struct netdev_notifier_info_ext info = {
1706 .info.dev = dev,
1707 .ext.mtu = arg,
1708 };
1709
1710 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1711
1712 return call_netdevice_notifiers_info(val, &info.info);
1713 }
1714
1715 #ifdef CONFIG_NET_INGRESS
1716 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1717
1718 void net_inc_ingress_queue(void)
1719 {
1720 static_branch_inc(&ingress_needed_key);
1721 }
1722 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1723
1724 void net_dec_ingress_queue(void)
1725 {
1726 static_branch_dec(&ingress_needed_key);
1727 }
1728 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1729 #endif
1730
1731 #ifdef CONFIG_NET_EGRESS
1732 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1733
1734 void net_inc_egress_queue(void)
1735 {
1736 static_branch_inc(&egress_needed_key);
1737 }
1738 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1739
1740 void net_dec_egress_queue(void)
1741 {
1742 static_branch_dec(&egress_needed_key);
1743 }
1744 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1745 #endif
1746
1747 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1748 #ifdef CONFIG_JUMP_LABEL
1749 static atomic_t netstamp_needed_deferred;
1750 static atomic_t netstamp_wanted;
1751 static void netstamp_clear(struct work_struct *work)
1752 {
1753 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1754 int wanted;
1755
1756 wanted = atomic_add_return(deferred, &netstamp_wanted);
1757 if (wanted > 0)
1758 static_branch_enable(&netstamp_needed_key);
1759 else
1760 static_branch_disable(&netstamp_needed_key);
1761 }
1762 static DECLARE_WORK(netstamp_work, netstamp_clear);
1763 #endif
1764
1765 void net_enable_timestamp(void)
1766 {
1767 #ifdef CONFIG_JUMP_LABEL
1768 int wanted;
1769
1770 while (1) {
1771 wanted = atomic_read(&netstamp_wanted);
1772 if (wanted <= 0)
1773 break;
1774 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1775 return;
1776 }
1777 atomic_inc(&netstamp_needed_deferred);
1778 schedule_work(&netstamp_work);
1779 #else
1780 static_branch_inc(&netstamp_needed_key);
1781 #endif
1782 }
1783 EXPORT_SYMBOL(net_enable_timestamp);
1784
1785 void net_disable_timestamp(void)
1786 {
1787 #ifdef CONFIG_JUMP_LABEL
1788 int wanted;
1789
1790 while (1) {
1791 wanted = atomic_read(&netstamp_wanted);
1792 if (wanted <= 1)
1793 break;
1794 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1795 return;
1796 }
1797 atomic_dec(&netstamp_needed_deferred);
1798 schedule_work(&netstamp_work);
1799 #else
1800 static_branch_dec(&netstamp_needed_key);
1801 #endif
1802 }
1803 EXPORT_SYMBOL(net_disable_timestamp);
1804
1805 static inline void net_timestamp_set(struct sk_buff *skb)
1806 {
1807 skb->tstamp = 0;
1808 if (static_branch_unlikely(&netstamp_needed_key))
1809 __net_timestamp(skb);
1810 }
1811
1812 #define net_timestamp_check(COND, SKB) \
1813 if (static_branch_unlikely(&netstamp_needed_key)) { \
1814 if ((COND) && !(SKB)->tstamp) \
1815 __net_timestamp(SKB); \
1816 } \
1817
1818 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1819 {
1820 unsigned int len;
1821
1822 if (!(dev->flags & IFF_UP))
1823 return false;
1824
1825 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1826 if (skb->len <= len)
1827 return true;
1828
1829 /* if TSO is enabled, we don't care about the length as the packet
1830 * could be forwarded without being segmented before
1831 */
1832 if (skb_is_gso(skb))
1833 return true;
1834
1835 return false;
1836 }
1837 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1838
1839 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1840 {
1841 int ret = ____dev_forward_skb(dev, skb);
1842
1843 if (likely(!ret)) {
1844 skb->protocol = eth_type_trans(skb, dev);
1845 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1846 }
1847
1848 return ret;
1849 }
1850 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1851
1852 /**
1853 * dev_forward_skb - loopback an skb to another netif
1854 *
1855 * @dev: destination network device
1856 * @skb: buffer to forward
1857 *
1858 * return values:
1859 * NET_RX_SUCCESS (no congestion)
1860 * NET_RX_DROP (packet was dropped, but freed)
1861 *
1862 * dev_forward_skb can be used for injecting an skb from the
1863 * start_xmit function of one device into the receive queue
1864 * of another device.
1865 *
1866 * The receiving device may be in another namespace, so
1867 * we have to clear all information in the skb that could
1868 * impact namespace isolation.
1869 */
1870 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1871 {
1872 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1873 }
1874 EXPORT_SYMBOL_GPL(dev_forward_skb);
1875
1876 static inline int deliver_skb(struct sk_buff *skb,
1877 struct packet_type *pt_prev,
1878 struct net_device *orig_dev)
1879 {
1880 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1881 return -ENOMEM;
1882 refcount_inc(&skb->users);
1883 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1884 }
1885
1886 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1887 struct packet_type **pt,
1888 struct net_device *orig_dev,
1889 __be16 type,
1890 struct list_head *ptype_list)
1891 {
1892 struct packet_type *ptype, *pt_prev = *pt;
1893
1894 list_for_each_entry_rcu(ptype, ptype_list, list) {
1895 if (ptype->type != type)
1896 continue;
1897 if (pt_prev)
1898 deliver_skb(skb, pt_prev, orig_dev);
1899 pt_prev = ptype;
1900 }
1901 *pt = pt_prev;
1902 }
1903
1904 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1905 {
1906 if (!ptype->af_packet_priv || !skb->sk)
1907 return false;
1908
1909 if (ptype->id_match)
1910 return ptype->id_match(ptype, skb->sk);
1911 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1912 return true;
1913
1914 return false;
1915 }
1916
1917 /**
1918 * dev_nit_active - return true if any network interface taps are in use
1919 *
1920 * @dev: network device to check for the presence of taps
1921 */
1922 bool dev_nit_active(struct net_device *dev)
1923 {
1924 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
1925 }
1926 EXPORT_SYMBOL_GPL(dev_nit_active);
1927
1928 /*
1929 * Support routine. Sends outgoing frames to any network
1930 * taps currently in use.
1931 */
1932
1933 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1934 {
1935 struct packet_type *ptype;
1936 struct sk_buff *skb2 = NULL;
1937 struct packet_type *pt_prev = NULL;
1938 struct list_head *ptype_list = &ptype_all;
1939
1940 rcu_read_lock();
1941 again:
1942 list_for_each_entry_rcu(ptype, ptype_list, list) {
1943 if (ptype->ignore_outgoing)
1944 continue;
1945
1946 /* Never send packets back to the socket
1947 * they originated from - MvS (miquels@drinkel.ow.org)
1948 */
1949 if (skb_loop_sk(ptype, skb))
1950 continue;
1951
1952 if (pt_prev) {
1953 deliver_skb(skb2, pt_prev, skb->dev);
1954 pt_prev = ptype;
1955 continue;
1956 }
1957
1958 /* need to clone skb, done only once */
1959 skb2 = skb_clone(skb, GFP_ATOMIC);
1960 if (!skb2)
1961 goto out_unlock;
1962
1963 net_timestamp_set(skb2);
1964
1965 /* skb->nh should be correctly
1966 * set by sender, so that the second statement is
1967 * just protection against buggy protocols.
1968 */
1969 skb_reset_mac_header(skb2);
1970
1971 if (skb_network_header(skb2) < skb2->data ||
1972 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1973 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1974 ntohs(skb2->protocol),
1975 dev->name);
1976 skb_reset_network_header(skb2);
1977 }
1978
1979 skb2->transport_header = skb2->network_header;
1980 skb2->pkt_type = PACKET_OUTGOING;
1981 pt_prev = ptype;
1982 }
1983
1984 if (ptype_list == &ptype_all) {
1985 ptype_list = &dev->ptype_all;
1986 goto again;
1987 }
1988 out_unlock:
1989 if (pt_prev) {
1990 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1991 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1992 else
1993 kfree_skb(skb2);
1994 }
1995 rcu_read_unlock();
1996 }
1997 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1998
1999 /**
2000 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2001 * @dev: Network device
2002 * @txq: number of queues available
2003 *
2004 * If real_num_tx_queues is changed the tc mappings may no longer be
2005 * valid. To resolve this verify the tc mapping remains valid and if
2006 * not NULL the mapping. With no priorities mapping to this
2007 * offset/count pair it will no longer be used. In the worst case TC0
2008 * is invalid nothing can be done so disable priority mappings. If is
2009 * expected that drivers will fix this mapping if they can before
2010 * calling netif_set_real_num_tx_queues.
2011 */
2012 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2013 {
2014 int i;
2015 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2016
2017 /* If TC0 is invalidated disable TC mapping */
2018 if (tc->offset + tc->count > txq) {
2019 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2020 dev->num_tc = 0;
2021 return;
2022 }
2023
2024 /* Invalidated prio to tc mappings set to TC0 */
2025 for (i = 1; i < TC_BITMASK + 1; i++) {
2026 int q = netdev_get_prio_tc_map(dev, i);
2027
2028 tc = &dev->tc_to_txq[q];
2029 if (tc->offset + tc->count > txq) {
2030 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2031 i, q);
2032 netdev_set_prio_tc_map(dev, i, 0);
2033 }
2034 }
2035 }
2036
2037 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2038 {
2039 if (dev->num_tc) {
2040 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2041 int i;
2042
2043 /* walk through the TCs and see if it falls into any of them */
2044 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2045 if ((txq - tc->offset) < tc->count)
2046 return i;
2047 }
2048
2049 /* didn't find it, just return -1 to indicate no match */
2050 return -1;
2051 }
2052
2053 return 0;
2054 }
2055 EXPORT_SYMBOL(netdev_txq_to_tc);
2056
2057 #ifdef CONFIG_XPS
2058 struct static_key xps_needed __read_mostly;
2059 EXPORT_SYMBOL(xps_needed);
2060 struct static_key xps_rxqs_needed __read_mostly;
2061 EXPORT_SYMBOL(xps_rxqs_needed);
2062 static DEFINE_MUTEX(xps_map_mutex);
2063 #define xmap_dereference(P) \
2064 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2065
2066 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2067 int tci, u16 index)
2068 {
2069 struct xps_map *map = NULL;
2070 int pos;
2071
2072 if (dev_maps)
2073 map = xmap_dereference(dev_maps->attr_map[tci]);
2074 if (!map)
2075 return false;
2076
2077 for (pos = map->len; pos--;) {
2078 if (map->queues[pos] != index)
2079 continue;
2080
2081 if (map->len > 1) {
2082 map->queues[pos] = map->queues[--map->len];
2083 break;
2084 }
2085
2086 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2087 kfree_rcu(map, rcu);
2088 return false;
2089 }
2090
2091 return true;
2092 }
2093
2094 static bool remove_xps_queue_cpu(struct net_device *dev,
2095 struct xps_dev_maps *dev_maps,
2096 int cpu, u16 offset, u16 count)
2097 {
2098 int num_tc = dev->num_tc ? : 1;
2099 bool active = false;
2100 int tci;
2101
2102 for (tci = cpu * num_tc; num_tc--; tci++) {
2103 int i, j;
2104
2105 for (i = count, j = offset; i--; j++) {
2106 if (!remove_xps_queue(dev_maps, tci, j))
2107 break;
2108 }
2109
2110 active |= i < 0;
2111 }
2112
2113 return active;
2114 }
2115
2116 static void reset_xps_maps(struct net_device *dev,
2117 struct xps_dev_maps *dev_maps,
2118 bool is_rxqs_map)
2119 {
2120 if (is_rxqs_map) {
2121 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2122 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2123 } else {
2124 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2125 }
2126 static_key_slow_dec_cpuslocked(&xps_needed);
2127 kfree_rcu(dev_maps, rcu);
2128 }
2129
2130 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2131 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2132 u16 offset, u16 count, bool is_rxqs_map)
2133 {
2134 bool active = false;
2135 int i, j;
2136
2137 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2138 j < nr_ids;)
2139 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2140 count);
2141 if (!active)
2142 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2143
2144 if (!is_rxqs_map) {
2145 for (i = offset + (count - 1); count--; i--) {
2146 netdev_queue_numa_node_write(
2147 netdev_get_tx_queue(dev, i),
2148 NUMA_NO_NODE);
2149 }
2150 }
2151 }
2152
2153 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2154 u16 count)
2155 {
2156 const unsigned long *possible_mask = NULL;
2157 struct xps_dev_maps *dev_maps;
2158 unsigned int nr_ids;
2159
2160 if (!static_key_false(&xps_needed))
2161 return;
2162
2163 cpus_read_lock();
2164 mutex_lock(&xps_map_mutex);
2165
2166 if (static_key_false(&xps_rxqs_needed)) {
2167 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2168 if (dev_maps) {
2169 nr_ids = dev->num_rx_queues;
2170 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2171 offset, count, true);
2172 }
2173 }
2174
2175 dev_maps = xmap_dereference(dev->xps_cpus_map);
2176 if (!dev_maps)
2177 goto out_no_maps;
2178
2179 if (num_possible_cpus() > 1)
2180 possible_mask = cpumask_bits(cpu_possible_mask);
2181 nr_ids = nr_cpu_ids;
2182 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2183 false);
2184
2185 out_no_maps:
2186 mutex_unlock(&xps_map_mutex);
2187 cpus_read_unlock();
2188 }
2189
2190 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2191 {
2192 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2193 }
2194
2195 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2196 u16 index, bool is_rxqs_map)
2197 {
2198 struct xps_map *new_map;
2199 int alloc_len = XPS_MIN_MAP_ALLOC;
2200 int i, pos;
2201
2202 for (pos = 0; map && pos < map->len; pos++) {
2203 if (map->queues[pos] != index)
2204 continue;
2205 return map;
2206 }
2207
2208 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2209 if (map) {
2210 if (pos < map->alloc_len)
2211 return map;
2212
2213 alloc_len = map->alloc_len * 2;
2214 }
2215
2216 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2217 * map
2218 */
2219 if (is_rxqs_map)
2220 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2221 else
2222 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2223 cpu_to_node(attr_index));
2224 if (!new_map)
2225 return NULL;
2226
2227 for (i = 0; i < pos; i++)
2228 new_map->queues[i] = map->queues[i];
2229 new_map->alloc_len = alloc_len;
2230 new_map->len = pos;
2231
2232 return new_map;
2233 }
2234
2235 /* Must be called under cpus_read_lock */
2236 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2237 u16 index, bool is_rxqs_map)
2238 {
2239 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2240 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2241 int i, j, tci, numa_node_id = -2;
2242 int maps_sz, num_tc = 1, tc = 0;
2243 struct xps_map *map, *new_map;
2244 bool active = false;
2245 unsigned int nr_ids;
2246
2247 if (dev->num_tc) {
2248 /* Do not allow XPS on subordinate device directly */
2249 num_tc = dev->num_tc;
2250 if (num_tc < 0)
2251 return -EINVAL;
2252
2253 /* If queue belongs to subordinate dev use its map */
2254 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2255
2256 tc = netdev_txq_to_tc(dev, index);
2257 if (tc < 0)
2258 return -EINVAL;
2259 }
2260
2261 mutex_lock(&xps_map_mutex);
2262 if (is_rxqs_map) {
2263 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2264 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2265 nr_ids = dev->num_rx_queues;
2266 } else {
2267 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2268 if (num_possible_cpus() > 1) {
2269 online_mask = cpumask_bits(cpu_online_mask);
2270 possible_mask = cpumask_bits(cpu_possible_mask);
2271 }
2272 dev_maps = xmap_dereference(dev->xps_cpus_map);
2273 nr_ids = nr_cpu_ids;
2274 }
2275
2276 if (maps_sz < L1_CACHE_BYTES)
2277 maps_sz = L1_CACHE_BYTES;
2278
2279 /* allocate memory for queue storage */
2280 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2281 j < nr_ids;) {
2282 if (!new_dev_maps)
2283 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2284 if (!new_dev_maps) {
2285 mutex_unlock(&xps_map_mutex);
2286 return -ENOMEM;
2287 }
2288
2289 tci = j * num_tc + tc;
2290 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2291 NULL;
2292
2293 map = expand_xps_map(map, j, index, is_rxqs_map);
2294 if (!map)
2295 goto error;
2296
2297 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2298 }
2299
2300 if (!new_dev_maps)
2301 goto out_no_new_maps;
2302
2303 if (!dev_maps) {
2304 /* Increment static keys at most once per type */
2305 static_key_slow_inc_cpuslocked(&xps_needed);
2306 if (is_rxqs_map)
2307 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2308 }
2309
2310 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2311 j < nr_ids;) {
2312 /* copy maps belonging to foreign traffic classes */
2313 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2314 /* fill in the new device map from the old device map */
2315 map = xmap_dereference(dev_maps->attr_map[tci]);
2316 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2317 }
2318
2319 /* We need to explicitly update tci as prevous loop
2320 * could break out early if dev_maps is NULL.
2321 */
2322 tci = j * num_tc + tc;
2323
2324 if (netif_attr_test_mask(j, mask, nr_ids) &&
2325 netif_attr_test_online(j, online_mask, nr_ids)) {
2326 /* add tx-queue to CPU/rx-queue maps */
2327 int pos = 0;
2328
2329 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2330 while ((pos < map->len) && (map->queues[pos] != index))
2331 pos++;
2332
2333 if (pos == map->len)
2334 map->queues[map->len++] = index;
2335 #ifdef CONFIG_NUMA
2336 if (!is_rxqs_map) {
2337 if (numa_node_id == -2)
2338 numa_node_id = cpu_to_node(j);
2339 else if (numa_node_id != cpu_to_node(j))
2340 numa_node_id = -1;
2341 }
2342 #endif
2343 } else if (dev_maps) {
2344 /* fill in the new device map from the old device map */
2345 map = xmap_dereference(dev_maps->attr_map[tci]);
2346 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2347 }
2348
2349 /* copy maps belonging to foreign traffic classes */
2350 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2351 /* fill in the new device map from the old device map */
2352 map = xmap_dereference(dev_maps->attr_map[tci]);
2353 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2354 }
2355 }
2356
2357 if (is_rxqs_map)
2358 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2359 else
2360 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2361
2362 /* Cleanup old maps */
2363 if (!dev_maps)
2364 goto out_no_old_maps;
2365
2366 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2367 j < nr_ids;) {
2368 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2369 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2370 map = xmap_dereference(dev_maps->attr_map[tci]);
2371 if (map && map != new_map)
2372 kfree_rcu(map, rcu);
2373 }
2374 }
2375
2376 kfree_rcu(dev_maps, rcu);
2377
2378 out_no_old_maps:
2379 dev_maps = new_dev_maps;
2380 active = true;
2381
2382 out_no_new_maps:
2383 if (!is_rxqs_map) {
2384 /* update Tx queue numa node */
2385 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2386 (numa_node_id >= 0) ?
2387 numa_node_id : NUMA_NO_NODE);
2388 }
2389
2390 if (!dev_maps)
2391 goto out_no_maps;
2392
2393 /* removes tx-queue from unused CPUs/rx-queues */
2394 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2395 j < nr_ids;) {
2396 for (i = tc, tci = j * num_tc; i--; tci++)
2397 active |= remove_xps_queue(dev_maps, tci, index);
2398 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2399 !netif_attr_test_online(j, online_mask, nr_ids))
2400 active |= remove_xps_queue(dev_maps, tci, index);
2401 for (i = num_tc - tc, tci++; --i; tci++)
2402 active |= remove_xps_queue(dev_maps, tci, index);
2403 }
2404
2405 /* free map if not active */
2406 if (!active)
2407 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2408
2409 out_no_maps:
2410 mutex_unlock(&xps_map_mutex);
2411
2412 return 0;
2413 error:
2414 /* remove any maps that we added */
2415 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2416 j < nr_ids;) {
2417 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2418 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2419 map = dev_maps ?
2420 xmap_dereference(dev_maps->attr_map[tci]) :
2421 NULL;
2422 if (new_map && new_map != map)
2423 kfree(new_map);
2424 }
2425 }
2426
2427 mutex_unlock(&xps_map_mutex);
2428
2429 kfree(new_dev_maps);
2430 return -ENOMEM;
2431 }
2432 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2433
2434 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2435 u16 index)
2436 {
2437 int ret;
2438
2439 cpus_read_lock();
2440 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2441 cpus_read_unlock();
2442
2443 return ret;
2444 }
2445 EXPORT_SYMBOL(netif_set_xps_queue);
2446
2447 #endif
2448 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2449 {
2450 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2451
2452 /* Unbind any subordinate channels */
2453 while (txq-- != &dev->_tx[0]) {
2454 if (txq->sb_dev)
2455 netdev_unbind_sb_channel(dev, txq->sb_dev);
2456 }
2457 }
2458
2459 void netdev_reset_tc(struct net_device *dev)
2460 {
2461 #ifdef CONFIG_XPS
2462 netif_reset_xps_queues_gt(dev, 0);
2463 #endif
2464 netdev_unbind_all_sb_channels(dev);
2465
2466 /* Reset TC configuration of device */
2467 dev->num_tc = 0;
2468 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2469 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2470 }
2471 EXPORT_SYMBOL(netdev_reset_tc);
2472
2473 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2474 {
2475 if (tc >= dev->num_tc)
2476 return -EINVAL;
2477
2478 #ifdef CONFIG_XPS
2479 netif_reset_xps_queues(dev, offset, count);
2480 #endif
2481 dev->tc_to_txq[tc].count = count;
2482 dev->tc_to_txq[tc].offset = offset;
2483 return 0;
2484 }
2485 EXPORT_SYMBOL(netdev_set_tc_queue);
2486
2487 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2488 {
2489 if (num_tc > TC_MAX_QUEUE)
2490 return -EINVAL;
2491
2492 #ifdef CONFIG_XPS
2493 netif_reset_xps_queues_gt(dev, 0);
2494 #endif
2495 netdev_unbind_all_sb_channels(dev);
2496
2497 dev->num_tc = num_tc;
2498 return 0;
2499 }
2500 EXPORT_SYMBOL(netdev_set_num_tc);
2501
2502 void netdev_unbind_sb_channel(struct net_device *dev,
2503 struct net_device *sb_dev)
2504 {
2505 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2506
2507 #ifdef CONFIG_XPS
2508 netif_reset_xps_queues_gt(sb_dev, 0);
2509 #endif
2510 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2511 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2512
2513 while (txq-- != &dev->_tx[0]) {
2514 if (txq->sb_dev == sb_dev)
2515 txq->sb_dev = NULL;
2516 }
2517 }
2518 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2519
2520 int netdev_bind_sb_channel_queue(struct net_device *dev,
2521 struct net_device *sb_dev,
2522 u8 tc, u16 count, u16 offset)
2523 {
2524 /* Make certain the sb_dev and dev are already configured */
2525 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2526 return -EINVAL;
2527
2528 /* We cannot hand out queues we don't have */
2529 if ((offset + count) > dev->real_num_tx_queues)
2530 return -EINVAL;
2531
2532 /* Record the mapping */
2533 sb_dev->tc_to_txq[tc].count = count;
2534 sb_dev->tc_to_txq[tc].offset = offset;
2535
2536 /* Provide a way for Tx queue to find the tc_to_txq map or
2537 * XPS map for itself.
2538 */
2539 while (count--)
2540 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2541
2542 return 0;
2543 }
2544 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2545
2546 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2547 {
2548 /* Do not use a multiqueue device to represent a subordinate channel */
2549 if (netif_is_multiqueue(dev))
2550 return -ENODEV;
2551
2552 /* We allow channels 1 - 32767 to be used for subordinate channels.
2553 * Channel 0 is meant to be "native" mode and used only to represent
2554 * the main root device. We allow writing 0 to reset the device back
2555 * to normal mode after being used as a subordinate channel.
2556 */
2557 if (channel > S16_MAX)
2558 return -EINVAL;
2559
2560 dev->num_tc = -channel;
2561
2562 return 0;
2563 }
2564 EXPORT_SYMBOL(netdev_set_sb_channel);
2565
2566 /*
2567 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2568 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2569 */
2570 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2571 {
2572 bool disabling;
2573 int rc;
2574
2575 disabling = txq < dev->real_num_tx_queues;
2576
2577 if (txq < 1 || txq > dev->num_tx_queues)
2578 return -EINVAL;
2579
2580 if (dev->reg_state == NETREG_REGISTERED ||
2581 dev->reg_state == NETREG_UNREGISTERING) {
2582 ASSERT_RTNL();
2583
2584 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2585 txq);
2586 if (rc)
2587 return rc;
2588
2589 if (dev->num_tc)
2590 netif_setup_tc(dev, txq);
2591
2592 dev_qdisc_change_real_num_tx(dev, txq);
2593
2594 dev->real_num_tx_queues = txq;
2595
2596 if (disabling) {
2597 synchronize_net();
2598 qdisc_reset_all_tx_gt(dev, txq);
2599 #ifdef CONFIG_XPS
2600 netif_reset_xps_queues_gt(dev, txq);
2601 #endif
2602 }
2603 } else {
2604 dev->real_num_tx_queues = txq;
2605 }
2606
2607 return 0;
2608 }
2609 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2610
2611 #ifdef CONFIG_SYSFS
2612 /**
2613 * netif_set_real_num_rx_queues - set actual number of RX queues used
2614 * @dev: Network device
2615 * @rxq: Actual number of RX queues
2616 *
2617 * This must be called either with the rtnl_lock held or before
2618 * registration of the net device. Returns 0 on success, or a
2619 * negative error code. If called before registration, it always
2620 * succeeds.
2621 */
2622 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2623 {
2624 int rc;
2625
2626 if (rxq < 1 || rxq > dev->num_rx_queues)
2627 return -EINVAL;
2628
2629 if (dev->reg_state == NETREG_REGISTERED) {
2630 ASSERT_RTNL();
2631
2632 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2633 rxq);
2634 if (rc)
2635 return rc;
2636 }
2637
2638 dev->real_num_rx_queues = rxq;
2639 return 0;
2640 }
2641 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2642 #endif
2643
2644 /**
2645 * netif_get_num_default_rss_queues - default number of RSS queues
2646 *
2647 * This routine should set an upper limit on the number of RSS queues
2648 * used by default by multiqueue devices.
2649 */
2650 int netif_get_num_default_rss_queues(void)
2651 {
2652 return is_kdump_kernel() ?
2653 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2654 }
2655 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2656
2657 static void __netif_reschedule(struct Qdisc *q)
2658 {
2659 struct softnet_data *sd;
2660 unsigned long flags;
2661
2662 local_irq_save(flags);
2663 sd = this_cpu_ptr(&softnet_data);
2664 q->next_sched = NULL;
2665 *sd->output_queue_tailp = q;
2666 sd->output_queue_tailp = &q->next_sched;
2667 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2668 local_irq_restore(flags);
2669 }
2670
2671 void __netif_schedule(struct Qdisc *q)
2672 {
2673 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2674 __netif_reschedule(q);
2675 }
2676 EXPORT_SYMBOL(__netif_schedule);
2677
2678 struct dev_kfree_skb_cb {
2679 enum skb_free_reason reason;
2680 };
2681
2682 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2683 {
2684 return (struct dev_kfree_skb_cb *)skb->cb;
2685 }
2686
2687 void netif_schedule_queue(struct netdev_queue *txq)
2688 {
2689 rcu_read_lock();
2690 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2691 struct Qdisc *q = rcu_dereference(txq->qdisc);
2692
2693 __netif_schedule(q);
2694 }
2695 rcu_read_unlock();
2696 }
2697 EXPORT_SYMBOL(netif_schedule_queue);
2698
2699 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2700 {
2701 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2702 struct Qdisc *q;
2703
2704 rcu_read_lock();
2705 q = rcu_dereference(dev_queue->qdisc);
2706 __netif_schedule(q);
2707 rcu_read_unlock();
2708 }
2709 }
2710 EXPORT_SYMBOL(netif_tx_wake_queue);
2711
2712 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2713 {
2714 unsigned long flags;
2715
2716 if (unlikely(!skb))
2717 return;
2718
2719 if (likely(refcount_read(&skb->users) == 1)) {
2720 smp_rmb();
2721 refcount_set(&skb->users, 0);
2722 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2723 return;
2724 }
2725 get_kfree_skb_cb(skb)->reason = reason;
2726 local_irq_save(flags);
2727 skb->next = __this_cpu_read(softnet_data.completion_queue);
2728 __this_cpu_write(softnet_data.completion_queue, skb);
2729 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2730 local_irq_restore(flags);
2731 }
2732 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2733
2734 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2735 {
2736 if (in_irq() || irqs_disabled())
2737 __dev_kfree_skb_irq(skb, reason);
2738 else
2739 dev_kfree_skb(skb);
2740 }
2741 EXPORT_SYMBOL(__dev_kfree_skb_any);
2742
2743
2744 /**
2745 * netif_device_detach - mark device as removed
2746 * @dev: network device
2747 *
2748 * Mark device as removed from system and therefore no longer available.
2749 */
2750 void netif_device_detach(struct net_device *dev)
2751 {
2752 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2753 netif_running(dev)) {
2754 netif_tx_stop_all_queues(dev);
2755 }
2756 }
2757 EXPORT_SYMBOL(netif_device_detach);
2758
2759 /**
2760 * netif_device_attach - mark device as attached
2761 * @dev: network device
2762 *
2763 * Mark device as attached from system and restart if needed.
2764 */
2765 void netif_device_attach(struct net_device *dev)
2766 {
2767 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2768 netif_running(dev)) {
2769 netif_tx_wake_all_queues(dev);
2770 __netdev_watchdog_up(dev);
2771 }
2772 }
2773 EXPORT_SYMBOL(netif_device_attach);
2774
2775 /*
2776 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2777 * to be used as a distribution range.
2778 */
2779 static u16 skb_tx_hash(const struct net_device *dev,
2780 const struct net_device *sb_dev,
2781 struct sk_buff *skb)
2782 {
2783 u32 hash;
2784 u16 qoffset = 0;
2785 u16 qcount = dev->real_num_tx_queues;
2786
2787 if (dev->num_tc) {
2788 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2789
2790 qoffset = sb_dev->tc_to_txq[tc].offset;
2791 qcount = sb_dev->tc_to_txq[tc].count;
2792 if (unlikely(!qcount)) {
2793 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
2794 sb_dev->name, qoffset, tc);
2795 qoffset = 0;
2796 qcount = dev->real_num_tx_queues;
2797 }
2798 }
2799
2800 if (skb_rx_queue_recorded(skb)) {
2801 hash = skb_get_rx_queue(skb);
2802 if (hash >= qoffset)
2803 hash -= qoffset;
2804 while (unlikely(hash >= qcount))
2805 hash -= qcount;
2806 return hash + qoffset;
2807 }
2808
2809 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2810 }
2811
2812 static void skb_warn_bad_offload(const struct sk_buff *skb)
2813 {
2814 static const netdev_features_t null_features;
2815 struct net_device *dev = skb->dev;
2816 const char *name = "";
2817
2818 if (!net_ratelimit())
2819 return;
2820
2821 if (dev) {
2822 if (dev->dev.parent)
2823 name = dev_driver_string(dev->dev.parent);
2824 else
2825 name = netdev_name(dev);
2826 }
2827 skb_dump(KERN_WARNING, skb, false);
2828 WARN(1, "%s: caps=(%pNF, %pNF)\n",
2829 name, dev ? &dev->features : &null_features,
2830 skb->sk ? &skb->sk->sk_route_caps : &null_features);
2831 }
2832
2833 /*
2834 * Invalidate hardware checksum when packet is to be mangled, and
2835 * complete checksum manually on outgoing path.
2836 */
2837 int skb_checksum_help(struct sk_buff *skb)
2838 {
2839 __wsum csum;
2840 int ret = 0, offset;
2841
2842 if (skb->ip_summed == CHECKSUM_COMPLETE)
2843 goto out_set_summed;
2844
2845 if (unlikely(skb_shinfo(skb)->gso_size)) {
2846 skb_warn_bad_offload(skb);
2847 return -EINVAL;
2848 }
2849
2850 /* Before computing a checksum, we should make sure no frag could
2851 * be modified by an external entity : checksum could be wrong.
2852 */
2853 if (skb_has_shared_frag(skb)) {
2854 ret = __skb_linearize(skb);
2855 if (ret)
2856 goto out;
2857 }
2858
2859 offset = skb_checksum_start_offset(skb);
2860 BUG_ON(offset >= skb_headlen(skb));
2861 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2862
2863 offset += skb->csum_offset;
2864 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2865
2866 if (skb_cloned(skb) &&
2867 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2868 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2869 if (ret)
2870 goto out;
2871 }
2872
2873 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2874 out_set_summed:
2875 skb->ip_summed = CHECKSUM_NONE;
2876 out:
2877 return ret;
2878 }
2879 EXPORT_SYMBOL(skb_checksum_help);
2880
2881 int skb_crc32c_csum_help(struct sk_buff *skb)
2882 {
2883 __le32 crc32c_csum;
2884 int ret = 0, offset, start;
2885
2886 if (skb->ip_summed != CHECKSUM_PARTIAL)
2887 goto out;
2888
2889 if (unlikely(skb_is_gso(skb)))
2890 goto out;
2891
2892 /* Before computing a checksum, we should make sure no frag could
2893 * be modified by an external entity : checksum could be wrong.
2894 */
2895 if (unlikely(skb_has_shared_frag(skb))) {
2896 ret = __skb_linearize(skb);
2897 if (ret)
2898 goto out;
2899 }
2900 start = skb_checksum_start_offset(skb);
2901 offset = start + offsetof(struct sctphdr, checksum);
2902 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2903 ret = -EINVAL;
2904 goto out;
2905 }
2906 if (skb_cloned(skb) &&
2907 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2908 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2909 if (ret)
2910 goto out;
2911 }
2912 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2913 skb->len - start, ~(__u32)0,
2914 crc32c_csum_stub));
2915 *(__le32 *)(skb->data + offset) = crc32c_csum;
2916 skb->ip_summed = CHECKSUM_NONE;
2917 skb->csum_not_inet = 0;
2918 out:
2919 return ret;
2920 }
2921
2922 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2923 {
2924 __be16 type = skb->protocol;
2925
2926 /* Tunnel gso handlers can set protocol to ethernet. */
2927 if (type == htons(ETH_P_TEB)) {
2928 struct ethhdr *eth;
2929
2930 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2931 return 0;
2932
2933 eth = (struct ethhdr *)skb->data;
2934 type = eth->h_proto;
2935 }
2936
2937 return __vlan_get_protocol(skb, type, depth);
2938 }
2939
2940 /**
2941 * skb_mac_gso_segment - mac layer segmentation handler.
2942 * @skb: buffer to segment
2943 * @features: features for the output path (see dev->features)
2944 */
2945 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2946 netdev_features_t features)
2947 {
2948 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2949 struct packet_offload *ptype;
2950 int vlan_depth = skb->mac_len;
2951 __be16 type = skb_network_protocol(skb, &vlan_depth);
2952
2953 if (unlikely(!type))
2954 return ERR_PTR(-EINVAL);
2955
2956 __skb_pull(skb, vlan_depth);
2957
2958 rcu_read_lock();
2959 list_for_each_entry_rcu(ptype, &offload_base, list) {
2960 if (ptype->type == type && ptype->callbacks.gso_segment) {
2961 segs = ptype->callbacks.gso_segment(skb, features);
2962 break;
2963 }
2964 }
2965 rcu_read_unlock();
2966
2967 __skb_push(skb, skb->data - skb_mac_header(skb));
2968
2969 return segs;
2970 }
2971 EXPORT_SYMBOL(skb_mac_gso_segment);
2972
2973
2974 /* openvswitch calls this on rx path, so we need a different check.
2975 */
2976 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2977 {
2978 if (tx_path)
2979 return skb->ip_summed != CHECKSUM_PARTIAL &&
2980 skb->ip_summed != CHECKSUM_UNNECESSARY;
2981
2982 return skb->ip_summed == CHECKSUM_NONE;
2983 }
2984
2985 /**
2986 * __skb_gso_segment - Perform segmentation on skb.
2987 * @skb: buffer to segment
2988 * @features: features for the output path (see dev->features)
2989 * @tx_path: whether it is called in TX path
2990 *
2991 * This function segments the given skb and returns a list of segments.
2992 *
2993 * It may return NULL if the skb requires no segmentation. This is
2994 * only possible when GSO is used for verifying header integrity.
2995 *
2996 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2997 */
2998 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2999 netdev_features_t features, bool tx_path)
3000 {
3001 struct sk_buff *segs;
3002
3003 if (unlikely(skb_needs_check(skb, tx_path))) {
3004 int err;
3005
3006 /* We're going to init ->check field in TCP or UDP header */
3007 err = skb_cow_head(skb, 0);
3008 if (err < 0)
3009 return ERR_PTR(err);
3010 }
3011
3012 /* Only report GSO partial support if it will enable us to
3013 * support segmentation on this frame without needing additional
3014 * work.
3015 */
3016 if (features & NETIF_F_GSO_PARTIAL) {
3017 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3018 struct net_device *dev = skb->dev;
3019
3020 partial_features |= dev->features & dev->gso_partial_features;
3021 if (!skb_gso_ok(skb, features | partial_features))
3022 features &= ~NETIF_F_GSO_PARTIAL;
3023 }
3024
3025 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3026 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3027
3028 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3029 SKB_GSO_CB(skb)->encap_level = 0;
3030
3031 skb_reset_mac_header(skb);
3032 skb_reset_mac_len(skb);
3033
3034 segs = skb_mac_gso_segment(skb, features);
3035
3036 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3037 skb_warn_bad_offload(skb);
3038
3039 return segs;
3040 }
3041 EXPORT_SYMBOL(__skb_gso_segment);
3042
3043 /* Take action when hardware reception checksum errors are detected. */
3044 #ifdef CONFIG_BUG
3045 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3046 {
3047 if (net_ratelimit()) {
3048 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3049 skb_dump(KERN_ERR, skb, true);
3050 dump_stack();
3051 }
3052 }
3053 EXPORT_SYMBOL(netdev_rx_csum_fault);
3054 #endif
3055
3056 /* XXX: check that highmem exists at all on the given machine. */
3057 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3058 {
3059 #ifdef CONFIG_HIGHMEM
3060 int i;
3061
3062 if (!(dev->features & NETIF_F_HIGHDMA)) {
3063 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3064 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3065
3066 if (PageHighMem(skb_frag_page(frag)))
3067 return 1;
3068 }
3069 }
3070 #endif
3071 return 0;
3072 }
3073
3074 /* If MPLS offload request, verify we are testing hardware MPLS features
3075 * instead of standard features for the netdev.
3076 */
3077 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3078 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3079 netdev_features_t features,
3080 __be16 type)
3081 {
3082 if (eth_p_mpls(type))
3083 features &= skb->dev->mpls_features;
3084
3085 return features;
3086 }
3087 #else
3088 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3089 netdev_features_t features,
3090 __be16 type)
3091 {
3092 return features;
3093 }
3094 #endif
3095
3096 static netdev_features_t harmonize_features(struct sk_buff *skb,
3097 netdev_features_t features)
3098 {
3099 int tmp;
3100 __be16 type;
3101
3102 type = skb_network_protocol(skb, &tmp);
3103 features = net_mpls_features(skb, features, type);
3104
3105 if (skb->ip_summed != CHECKSUM_NONE &&
3106 !can_checksum_protocol(features, type)) {
3107 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3108 }
3109 if (illegal_highdma(skb->dev, skb))
3110 features &= ~NETIF_F_SG;
3111
3112 return features;
3113 }
3114
3115 netdev_features_t passthru_features_check(struct sk_buff *skb,
3116 struct net_device *dev,
3117 netdev_features_t features)
3118 {
3119 return features;
3120 }
3121 EXPORT_SYMBOL(passthru_features_check);
3122
3123 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3124 struct net_device *dev,
3125 netdev_features_t features)
3126 {
3127 return vlan_features_check(skb, features);
3128 }
3129
3130 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3131 struct net_device *dev,
3132 netdev_features_t features)
3133 {
3134 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3135
3136 if (gso_segs > dev->gso_max_segs)
3137 return features & ~NETIF_F_GSO_MASK;
3138
3139 /* Support for GSO partial features requires software
3140 * intervention before we can actually process the packets
3141 * so we need to strip support for any partial features now
3142 * and we can pull them back in after we have partially
3143 * segmented the frame.
3144 */
3145 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3146 features &= ~dev->gso_partial_features;
3147
3148 /* Make sure to clear the IPv4 ID mangling feature if the
3149 * IPv4 header has the potential to be fragmented.
3150 */
3151 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3152 struct iphdr *iph = skb->encapsulation ?
3153 inner_ip_hdr(skb) : ip_hdr(skb);
3154
3155 if (!(iph->frag_off & htons(IP_DF)))
3156 features &= ~NETIF_F_TSO_MANGLEID;
3157 }
3158
3159 return features;
3160 }
3161
3162 netdev_features_t netif_skb_features(struct sk_buff *skb)
3163 {
3164 struct net_device *dev = skb->dev;
3165 netdev_features_t features = dev->features;
3166
3167 if (skb_is_gso(skb))
3168 features = gso_features_check(skb, dev, features);
3169
3170 /* If encapsulation offload request, verify we are testing
3171 * hardware encapsulation features instead of standard
3172 * features for the netdev
3173 */
3174 if (skb->encapsulation)
3175 features &= dev->hw_enc_features;
3176
3177 if (skb_vlan_tagged(skb))
3178 features = netdev_intersect_features(features,
3179 dev->vlan_features |
3180 NETIF_F_HW_VLAN_CTAG_TX |
3181 NETIF_F_HW_VLAN_STAG_TX);
3182
3183 if (dev->netdev_ops->ndo_features_check)
3184 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3185 features);
3186 else
3187 features &= dflt_features_check(skb, dev, features);
3188
3189 return harmonize_features(skb, features);
3190 }
3191 EXPORT_SYMBOL(netif_skb_features);
3192
3193 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3194 struct netdev_queue *txq, bool more)
3195 {
3196 unsigned int len;
3197 int rc;
3198
3199 if (dev_nit_active(dev))
3200 dev_queue_xmit_nit(skb, dev);
3201
3202 len = skb->len;
3203 trace_net_dev_start_xmit(skb, dev);
3204 rc = netdev_start_xmit(skb, dev, txq, more);
3205 trace_net_dev_xmit(skb, rc, dev, len);
3206
3207 return rc;
3208 }
3209
3210 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3211 struct netdev_queue *txq, int *ret)
3212 {
3213 struct sk_buff *skb = first;
3214 int rc = NETDEV_TX_OK;
3215
3216 while (skb) {
3217 struct sk_buff *next = skb->next;
3218
3219 skb_mark_not_on_list(skb);
3220 rc = xmit_one(skb, dev, txq, next != NULL);
3221 if (unlikely(!dev_xmit_complete(rc))) {
3222 skb->next = next;
3223 goto out;
3224 }
3225
3226 skb = next;
3227 if (netif_tx_queue_stopped(txq) && skb) {
3228 rc = NETDEV_TX_BUSY;
3229 break;
3230 }
3231 }
3232
3233 out:
3234 *ret = rc;
3235 return skb;
3236 }
3237
3238 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3239 netdev_features_t features)
3240 {
3241 if (skb_vlan_tag_present(skb) &&
3242 !vlan_hw_offload_capable(features, skb->vlan_proto))
3243 skb = __vlan_hwaccel_push_inside(skb);
3244 return skb;
3245 }
3246
3247 int skb_csum_hwoffload_help(struct sk_buff *skb,
3248 const netdev_features_t features)
3249 {
3250 if (unlikely(skb->csum_not_inet))
3251 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3252 skb_crc32c_csum_help(skb);
3253
3254 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3255 }
3256 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3257
3258 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3259 {
3260 netdev_features_t features;
3261
3262 features = netif_skb_features(skb);
3263 skb = validate_xmit_vlan(skb, features);
3264 if (unlikely(!skb))
3265 goto out_null;
3266
3267 skb = sk_validate_xmit_skb(skb, dev);
3268 if (unlikely(!skb))
3269 goto out_null;
3270
3271 if (netif_needs_gso(skb, features)) {
3272 struct sk_buff *segs;
3273
3274 segs = skb_gso_segment(skb, features);
3275 if (IS_ERR(segs)) {
3276 goto out_kfree_skb;
3277 } else if (segs) {
3278 consume_skb(skb);
3279 skb = segs;
3280 }
3281 } else {
3282 if (skb_needs_linearize(skb, features) &&
3283 __skb_linearize(skb))
3284 goto out_kfree_skb;
3285
3286 /* If packet is not checksummed and device does not
3287 * support checksumming for this protocol, complete
3288 * checksumming here.
3289 */
3290 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3291 if (skb->encapsulation)
3292 skb_set_inner_transport_header(skb,
3293 skb_checksum_start_offset(skb));
3294 else
3295 skb_set_transport_header(skb,
3296 skb_checksum_start_offset(skb));
3297 if (skb_csum_hwoffload_help(skb, features))
3298 goto out_kfree_skb;
3299 }
3300 }
3301
3302 skb = validate_xmit_xfrm(skb, features, again);
3303
3304 return skb;
3305
3306 out_kfree_skb:
3307 kfree_skb(skb);
3308 out_null:
3309 atomic_long_inc(&dev->tx_dropped);
3310 return NULL;
3311 }
3312
3313 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3314 {
3315 struct sk_buff *next, *head = NULL, *tail;
3316
3317 for (; skb != NULL; skb = next) {
3318 next = skb->next;
3319 skb_mark_not_on_list(skb);
3320
3321 /* in case skb wont be segmented, point to itself */
3322 skb->prev = skb;
3323
3324 skb = validate_xmit_skb(skb, dev, again);
3325 if (!skb)
3326 continue;
3327
3328 if (!head)
3329 head = skb;
3330 else
3331 tail->next = skb;
3332 /* If skb was segmented, skb->prev points to
3333 * the last segment. If not, it still contains skb.
3334 */
3335 tail = skb->prev;
3336 }
3337 return head;
3338 }
3339 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3340
3341 static void qdisc_pkt_len_init(struct sk_buff *skb)
3342 {
3343 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3344
3345 qdisc_skb_cb(skb)->pkt_len = skb->len;
3346
3347 /* To get more precise estimation of bytes sent on wire,
3348 * we add to pkt_len the headers size of all segments
3349 */
3350 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3351 unsigned int hdr_len;
3352 u16 gso_segs = shinfo->gso_segs;
3353
3354 /* mac layer + network layer */
3355 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3356
3357 /* + transport layer */
3358 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3359 const struct tcphdr *th;
3360 struct tcphdr _tcphdr;
3361
3362 th = skb_header_pointer(skb, skb_transport_offset(skb),
3363 sizeof(_tcphdr), &_tcphdr);
3364 if (likely(th))
3365 hdr_len += __tcp_hdrlen(th);
3366 } else {
3367 struct udphdr _udphdr;
3368
3369 if (skb_header_pointer(skb, skb_transport_offset(skb),
3370 sizeof(_udphdr), &_udphdr))
3371 hdr_len += sizeof(struct udphdr);
3372 }
3373
3374 if (shinfo->gso_type & SKB_GSO_DODGY)
3375 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3376 shinfo->gso_size);
3377
3378 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3379 }
3380 }
3381
3382 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3383 struct net_device *dev,
3384 struct netdev_queue *txq)
3385 {
3386 spinlock_t *root_lock = qdisc_lock(q);
3387 struct sk_buff *to_free = NULL;
3388 bool contended;
3389 int rc;
3390
3391 qdisc_calculate_pkt_len(skb, q);
3392
3393 if (q->flags & TCQ_F_NOLOCK) {
3394 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3395 if (likely(!netif_xmit_frozen_or_stopped(txq)))
3396 qdisc_run(q);
3397
3398 if (unlikely(to_free))
3399 kfree_skb_list(to_free);
3400 return rc;
3401 }
3402
3403 /*
3404 * Heuristic to force contended enqueues to serialize on a
3405 * separate lock before trying to get qdisc main lock.
3406 * This permits qdisc->running owner to get the lock more
3407 * often and dequeue packets faster.
3408 */
3409 contended = qdisc_is_running(q);
3410 if (unlikely(contended))
3411 spin_lock(&q->busylock);
3412
3413 spin_lock(root_lock);
3414 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3415 __qdisc_drop(skb, &to_free);
3416 rc = NET_XMIT_DROP;
3417 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3418 qdisc_run_begin(q)) {
3419 /*
3420 * This is a work-conserving queue; there are no old skbs
3421 * waiting to be sent out; and the qdisc is not running -
3422 * xmit the skb directly.
3423 */
3424
3425 qdisc_bstats_update(q, skb);
3426
3427 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3428 if (unlikely(contended)) {
3429 spin_unlock(&q->busylock);
3430 contended = false;
3431 }
3432 __qdisc_run(q);
3433 }
3434
3435 qdisc_run_end(q);
3436 rc = NET_XMIT_SUCCESS;
3437 } else {
3438 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3439 if (qdisc_run_begin(q)) {
3440 if (unlikely(contended)) {
3441 spin_unlock(&q->busylock);
3442 contended = false;
3443 }
3444 __qdisc_run(q);
3445 qdisc_run_end(q);
3446 }
3447 }
3448 spin_unlock(root_lock);
3449 if (unlikely(to_free))
3450 kfree_skb_list(to_free);
3451 if (unlikely(contended))
3452 spin_unlock(&q->busylock);
3453 return rc;
3454 }
3455
3456 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3457 static void skb_update_prio(struct sk_buff *skb)
3458 {
3459 const struct netprio_map *map;
3460 const struct sock *sk;
3461 unsigned int prioidx;
3462
3463 if (skb->priority)
3464 return;
3465 map = rcu_dereference_bh(skb->dev->priomap);
3466 if (!map)
3467 return;
3468 sk = skb_to_full_sk(skb);
3469 if (!sk)
3470 return;
3471
3472 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3473
3474 if (prioidx < map->priomap_len)
3475 skb->priority = map->priomap[prioidx];
3476 }
3477 #else
3478 #define skb_update_prio(skb)
3479 #endif
3480
3481 /**
3482 * dev_loopback_xmit - loop back @skb
3483 * @net: network namespace this loopback is happening in
3484 * @sk: sk needed to be a netfilter okfn
3485 * @skb: buffer to transmit
3486 */
3487 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3488 {
3489 skb_reset_mac_header(skb);
3490 __skb_pull(skb, skb_network_offset(skb));
3491 skb->pkt_type = PACKET_LOOPBACK;
3492 if (skb->ip_summed == CHECKSUM_NONE)
3493 skb->ip_summed = CHECKSUM_UNNECESSARY;
3494 WARN_ON(!skb_dst(skb));
3495 skb_dst_force(skb);
3496 netif_rx_ni(skb);
3497 return 0;
3498 }
3499 EXPORT_SYMBOL(dev_loopback_xmit);
3500
3501 #ifdef CONFIG_NET_EGRESS
3502 static struct sk_buff *
3503 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3504 {
3505 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3506 struct tcf_result cl_res;
3507
3508 if (!miniq)
3509 return skb;
3510
3511 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3512 mini_qdisc_bstats_cpu_update(miniq, skb);
3513
3514 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3515 case TC_ACT_OK:
3516 case TC_ACT_RECLASSIFY:
3517 skb->tc_index = TC_H_MIN(cl_res.classid);
3518 break;
3519 case TC_ACT_SHOT:
3520 mini_qdisc_qstats_cpu_drop(miniq);
3521 *ret = NET_XMIT_DROP;
3522 kfree_skb(skb);
3523 return NULL;
3524 case TC_ACT_STOLEN:
3525 case TC_ACT_QUEUED:
3526 case TC_ACT_TRAP:
3527 *ret = NET_XMIT_SUCCESS;
3528 consume_skb(skb);
3529 return NULL;
3530 case TC_ACT_REDIRECT:
3531 /* No need to push/pop skb's mac_header here on egress! */
3532 skb_do_redirect(skb);
3533 *ret = NET_XMIT_SUCCESS;
3534 return NULL;
3535 default:
3536 break;
3537 }
3538
3539 return skb;
3540 }
3541 #endif /* CONFIG_NET_EGRESS */
3542
3543 #ifdef CONFIG_XPS
3544 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3545 struct xps_dev_maps *dev_maps, unsigned int tci)
3546 {
3547 struct xps_map *map;
3548 int queue_index = -1;
3549
3550 if (dev->num_tc) {
3551 tci *= dev->num_tc;
3552 tci += netdev_get_prio_tc_map(dev, skb->priority);
3553 }
3554
3555 map = rcu_dereference(dev_maps->attr_map[tci]);
3556 if (map) {
3557 if (map->len == 1)
3558 queue_index = map->queues[0];
3559 else
3560 queue_index = map->queues[reciprocal_scale(
3561 skb_get_hash(skb), map->len)];
3562 if (unlikely(queue_index >= dev->real_num_tx_queues))
3563 queue_index = -1;
3564 }
3565 return queue_index;
3566 }
3567 #endif
3568
3569 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3570 struct sk_buff *skb)
3571 {
3572 #ifdef CONFIG_XPS
3573 struct xps_dev_maps *dev_maps;
3574 struct sock *sk = skb->sk;
3575 int queue_index = -1;
3576
3577 if (!static_key_false(&xps_needed))
3578 return -1;
3579
3580 rcu_read_lock();
3581 if (!static_key_false(&xps_rxqs_needed))
3582 goto get_cpus_map;
3583
3584 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3585 if (dev_maps) {
3586 int tci = sk_rx_queue_get(sk);
3587
3588 if (tci >= 0 && tci < dev->num_rx_queues)
3589 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3590 tci);
3591 }
3592
3593 get_cpus_map:
3594 if (queue_index < 0) {
3595 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3596 if (dev_maps) {
3597 unsigned int tci = skb->sender_cpu - 1;
3598
3599 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3600 tci);
3601 }
3602 }
3603 rcu_read_unlock();
3604
3605 return queue_index;
3606 #else
3607 return -1;
3608 #endif
3609 }
3610
3611 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3612 struct net_device *sb_dev)
3613 {
3614 return 0;
3615 }
3616 EXPORT_SYMBOL(dev_pick_tx_zero);
3617
3618 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3619 struct net_device *sb_dev)
3620 {
3621 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3622 }
3623 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3624
3625 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3626 struct net_device *sb_dev)
3627 {
3628 struct sock *sk = skb->sk;
3629 int queue_index = sk_tx_queue_get(sk);
3630
3631 sb_dev = sb_dev ? : dev;
3632
3633 if (queue_index < 0 || skb->ooo_okay ||
3634 queue_index >= dev->real_num_tx_queues) {
3635 int new_index = get_xps_queue(dev, sb_dev, skb);
3636
3637 if (new_index < 0)
3638 new_index = skb_tx_hash(dev, sb_dev, skb);
3639
3640 if (queue_index != new_index && sk &&
3641 sk_fullsock(sk) &&
3642 rcu_access_pointer(sk->sk_dst_cache))
3643 sk_tx_queue_set(sk, new_index);
3644
3645 queue_index = new_index;
3646 }
3647
3648 return queue_index;
3649 }
3650 EXPORT_SYMBOL(netdev_pick_tx);
3651
3652 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3653 struct sk_buff *skb,
3654 struct net_device *sb_dev)
3655 {
3656 int queue_index = 0;
3657
3658 #ifdef CONFIG_XPS
3659 u32 sender_cpu = skb->sender_cpu - 1;
3660
3661 if (sender_cpu >= (u32)NR_CPUS)
3662 skb->sender_cpu = raw_smp_processor_id() + 1;
3663 #endif
3664
3665 if (dev->real_num_tx_queues != 1) {
3666 const struct net_device_ops *ops = dev->netdev_ops;
3667
3668 if (ops->ndo_select_queue)
3669 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3670 else
3671 queue_index = netdev_pick_tx(dev, skb, sb_dev);
3672
3673 queue_index = netdev_cap_txqueue(dev, queue_index);
3674 }
3675
3676 skb_set_queue_mapping(skb, queue_index);
3677 return netdev_get_tx_queue(dev, queue_index);
3678 }
3679
3680 /**
3681 * __dev_queue_xmit - transmit a buffer
3682 * @skb: buffer to transmit
3683 * @sb_dev: suboordinate device used for L2 forwarding offload
3684 *
3685 * Queue a buffer for transmission to a network device. The caller must
3686 * have set the device and priority and built the buffer before calling
3687 * this function. The function can be called from an interrupt.
3688 *
3689 * A negative errno code is returned on a failure. A success does not
3690 * guarantee the frame will be transmitted as it may be dropped due
3691 * to congestion or traffic shaping.
3692 *
3693 * -----------------------------------------------------------------------------------
3694 * I notice this method can also return errors from the queue disciplines,
3695 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3696 * be positive.
3697 *
3698 * Regardless of the return value, the skb is consumed, so it is currently
3699 * difficult to retry a send to this method. (You can bump the ref count
3700 * before sending to hold a reference for retry if you are careful.)
3701 *
3702 * When calling this method, interrupts MUST be enabled. This is because
3703 * the BH enable code must have IRQs enabled so that it will not deadlock.
3704 * --BLG
3705 */
3706 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3707 {
3708 struct net_device *dev = skb->dev;
3709 struct netdev_queue *txq;
3710 struct Qdisc *q;
3711 int rc = -ENOMEM;
3712 bool again = false;
3713
3714 skb_reset_mac_header(skb);
3715
3716 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3717 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3718
3719 /* Disable soft irqs for various locks below. Also
3720 * stops preemption for RCU.
3721 */
3722 rcu_read_lock_bh();
3723
3724 skb_update_prio(skb);
3725
3726 qdisc_pkt_len_init(skb);
3727 #ifdef CONFIG_NET_CLS_ACT
3728 skb->tc_at_ingress = 0;
3729 # ifdef CONFIG_NET_EGRESS
3730 if (static_branch_unlikely(&egress_needed_key)) {
3731 skb = sch_handle_egress(skb, &rc, dev);
3732 if (!skb)
3733 goto out;
3734 }
3735 # endif
3736 #endif
3737 /* If device/qdisc don't need skb->dst, release it right now while
3738 * its hot in this cpu cache.
3739 */
3740 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3741 skb_dst_drop(skb);
3742 else
3743 skb_dst_force(skb);
3744
3745 txq = netdev_core_pick_tx(dev, skb, sb_dev);
3746 q = rcu_dereference_bh(txq->qdisc);
3747
3748 trace_net_dev_queue(skb);
3749 if (q->enqueue) {
3750 rc = __dev_xmit_skb(skb, q, dev, txq);
3751 goto out;
3752 }
3753
3754 /* The device has no queue. Common case for software devices:
3755 * loopback, all the sorts of tunnels...
3756
3757 * Really, it is unlikely that netif_tx_lock protection is necessary
3758 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3759 * counters.)
3760 * However, it is possible, that they rely on protection
3761 * made by us here.
3762
3763 * Check this and shot the lock. It is not prone from deadlocks.
3764 *Either shot noqueue qdisc, it is even simpler 8)
3765 */
3766 if (dev->flags & IFF_UP) {
3767 int cpu = smp_processor_id(); /* ok because BHs are off */
3768
3769 /* Other cpus might concurrently change txq->xmit_lock_owner
3770 * to -1 or to their cpu id, but not to our id.
3771 */
3772 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
3773 if (dev_xmit_recursion())
3774 goto recursion_alert;
3775
3776 skb = validate_xmit_skb(skb, dev, &again);
3777 if (!skb)
3778 goto out;
3779
3780 HARD_TX_LOCK(dev, txq, cpu);
3781
3782 if (!netif_xmit_stopped(txq)) {
3783 dev_xmit_recursion_inc();
3784 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3785 dev_xmit_recursion_dec();
3786 if (dev_xmit_complete(rc)) {
3787 HARD_TX_UNLOCK(dev, txq);
3788 goto out;
3789 }
3790 }
3791 HARD_TX_UNLOCK(dev, txq);
3792 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3793 dev->name);
3794 } else {
3795 /* Recursion is detected! It is possible,
3796 * unfortunately
3797 */
3798 recursion_alert:
3799 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3800 dev->name);
3801 }
3802 }
3803
3804 rc = -ENETDOWN;
3805 rcu_read_unlock_bh();
3806
3807 atomic_long_inc(&dev->tx_dropped);
3808 kfree_skb_list(skb);
3809 return rc;
3810 out:
3811 rcu_read_unlock_bh();
3812 return rc;
3813 }
3814
3815 int dev_queue_xmit(struct sk_buff *skb)
3816 {
3817 return __dev_queue_xmit(skb, NULL);
3818 }
3819 EXPORT_SYMBOL(dev_queue_xmit);
3820
3821 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3822 {
3823 return __dev_queue_xmit(skb, sb_dev);
3824 }
3825 EXPORT_SYMBOL(dev_queue_xmit_accel);
3826
3827 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3828 {
3829 struct net_device *dev = skb->dev;
3830 struct sk_buff *orig_skb = skb;
3831 struct netdev_queue *txq;
3832 int ret = NETDEV_TX_BUSY;
3833 bool again = false;
3834
3835 if (unlikely(!netif_running(dev) ||
3836 !netif_carrier_ok(dev)))
3837 goto drop;
3838
3839 skb = validate_xmit_skb_list(skb, dev, &again);
3840 if (skb != orig_skb)
3841 goto drop;
3842
3843 skb_set_queue_mapping(skb, queue_id);
3844 txq = skb_get_tx_queue(dev, skb);
3845
3846 local_bh_disable();
3847
3848 dev_xmit_recursion_inc();
3849 HARD_TX_LOCK(dev, txq, smp_processor_id());
3850 if (!netif_xmit_frozen_or_drv_stopped(txq))
3851 ret = netdev_start_xmit(skb, dev, txq, false);
3852 HARD_TX_UNLOCK(dev, txq);
3853 dev_xmit_recursion_dec();
3854
3855 local_bh_enable();
3856
3857 if (!dev_xmit_complete(ret))
3858 kfree_skb(skb);
3859
3860 return ret;
3861 drop:
3862 atomic_long_inc(&dev->tx_dropped);
3863 kfree_skb_list(skb);
3864 return NET_XMIT_DROP;
3865 }
3866 EXPORT_SYMBOL(dev_direct_xmit);
3867
3868 /*************************************************************************
3869 * Receiver routines
3870 *************************************************************************/
3871
3872 int netdev_max_backlog __read_mostly = 1000;
3873 EXPORT_SYMBOL(netdev_max_backlog);
3874
3875 int netdev_tstamp_prequeue __read_mostly = 1;
3876 int netdev_budget __read_mostly = 300;
3877 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
3878 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
3879 int weight_p __read_mostly = 64; /* old backlog weight */
3880 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3881 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3882 int dev_rx_weight __read_mostly = 64;
3883 int dev_tx_weight __read_mostly = 64;
3884 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
3885 int gro_normal_batch __read_mostly = 8;
3886
3887 /* Called with irq disabled */
3888 static inline void ____napi_schedule(struct softnet_data *sd,
3889 struct napi_struct *napi)
3890 {
3891 list_add_tail(&napi->poll_list, &sd->poll_list);
3892 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3893 }
3894
3895 #ifdef CONFIG_RPS
3896
3897 /* One global table that all flow-based protocols share. */
3898 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3899 EXPORT_SYMBOL(rps_sock_flow_table);
3900 u32 rps_cpu_mask __read_mostly;
3901 EXPORT_SYMBOL(rps_cpu_mask);
3902
3903 struct static_key_false rps_needed __read_mostly;
3904 EXPORT_SYMBOL(rps_needed);
3905 struct static_key_false rfs_needed __read_mostly;
3906 EXPORT_SYMBOL(rfs_needed);
3907
3908 static struct rps_dev_flow *
3909 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3910 struct rps_dev_flow *rflow, u16 next_cpu)
3911 {
3912 if (next_cpu < nr_cpu_ids) {
3913 #ifdef CONFIG_RFS_ACCEL
3914 struct netdev_rx_queue *rxqueue;
3915 struct rps_dev_flow_table *flow_table;
3916 struct rps_dev_flow *old_rflow;
3917 u32 flow_id;
3918 u16 rxq_index;
3919 int rc;
3920
3921 /* Should we steer this flow to a different hardware queue? */
3922 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3923 !(dev->features & NETIF_F_NTUPLE))
3924 goto out;
3925 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3926 if (rxq_index == skb_get_rx_queue(skb))
3927 goto out;
3928
3929 rxqueue = dev->_rx + rxq_index;
3930 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3931 if (!flow_table)
3932 goto out;
3933 flow_id = skb_get_hash(skb) & flow_table->mask;
3934 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3935 rxq_index, flow_id);
3936 if (rc < 0)
3937 goto out;
3938 old_rflow = rflow;
3939 rflow = &flow_table->flows[flow_id];
3940 rflow->filter = rc;
3941 if (old_rflow->filter == rflow->filter)
3942 old_rflow->filter = RPS_NO_FILTER;
3943 out:
3944 #endif
3945 rflow->last_qtail =
3946 per_cpu(softnet_data, next_cpu).input_queue_head;
3947 }
3948
3949 rflow->cpu = next_cpu;
3950 return rflow;
3951 }
3952
3953 /*
3954 * get_rps_cpu is called from netif_receive_skb and returns the target
3955 * CPU from the RPS map of the receiving queue for a given skb.
3956 * rcu_read_lock must be held on entry.
3957 */
3958 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3959 struct rps_dev_flow **rflowp)
3960 {
3961 const struct rps_sock_flow_table *sock_flow_table;
3962 struct netdev_rx_queue *rxqueue = dev->_rx;
3963 struct rps_dev_flow_table *flow_table;
3964 struct rps_map *map;
3965 int cpu = -1;
3966 u32 tcpu;
3967 u32 hash;
3968
3969 if (skb_rx_queue_recorded(skb)) {
3970 u16 index = skb_get_rx_queue(skb);
3971
3972 if (unlikely(index >= dev->real_num_rx_queues)) {
3973 WARN_ONCE(dev->real_num_rx_queues > 1,
3974 "%s received packet on queue %u, but number "
3975 "of RX queues is %u\n",
3976 dev->name, index, dev->real_num_rx_queues);
3977 goto done;
3978 }
3979 rxqueue += index;
3980 }
3981
3982 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3983
3984 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3985 map = rcu_dereference(rxqueue->rps_map);
3986 if (!flow_table && !map)
3987 goto done;
3988
3989 skb_reset_network_header(skb);
3990 hash = skb_get_hash(skb);
3991 if (!hash)
3992 goto done;
3993
3994 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3995 if (flow_table && sock_flow_table) {
3996 struct rps_dev_flow *rflow;
3997 u32 next_cpu;
3998 u32 ident;
3999
4000 /* First check into global flow table if there is a match */
4001 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4002 if ((ident ^ hash) & ~rps_cpu_mask)
4003 goto try_rps;
4004
4005 next_cpu = ident & rps_cpu_mask;
4006
4007 /* OK, now we know there is a match,
4008 * we can look at the local (per receive queue) flow table
4009 */
4010 rflow = &flow_table->flows[hash & flow_table->mask];
4011 tcpu = rflow->cpu;
4012
4013 /*
4014 * If the desired CPU (where last recvmsg was done) is
4015 * different from current CPU (one in the rx-queue flow
4016 * table entry), switch if one of the following holds:
4017 * - Current CPU is unset (>= nr_cpu_ids).
4018 * - Current CPU is offline.
4019 * - The current CPU's queue tail has advanced beyond the
4020 * last packet that was enqueued using this table entry.
4021 * This guarantees that all previous packets for the flow
4022 * have been dequeued, thus preserving in order delivery.
4023 */
4024 if (unlikely(tcpu != next_cpu) &&
4025 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4026 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4027 rflow->last_qtail)) >= 0)) {
4028 tcpu = next_cpu;
4029 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4030 }
4031
4032 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4033 *rflowp = rflow;
4034 cpu = tcpu;
4035 goto done;
4036 }
4037 }
4038
4039 try_rps:
4040
4041 if (map) {
4042 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4043 if (cpu_online(tcpu)) {
4044 cpu = tcpu;
4045 goto done;
4046 }
4047 }
4048
4049 done:
4050 return cpu;
4051 }
4052
4053 #ifdef CONFIG_RFS_ACCEL
4054
4055 /**
4056 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4057 * @dev: Device on which the filter was set
4058 * @rxq_index: RX queue index
4059 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4060 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4061 *
4062 * Drivers that implement ndo_rx_flow_steer() should periodically call
4063 * this function for each installed filter and remove the filters for
4064 * which it returns %true.
4065 */
4066 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4067 u32 flow_id, u16 filter_id)
4068 {
4069 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4070 struct rps_dev_flow_table *flow_table;
4071 struct rps_dev_flow *rflow;
4072 bool expire = true;
4073 unsigned int cpu;
4074
4075 rcu_read_lock();
4076 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4077 if (flow_table && flow_id <= flow_table->mask) {
4078 rflow = &flow_table->flows[flow_id];
4079 cpu = READ_ONCE(rflow->cpu);
4080 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4081 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4082 rflow->last_qtail) <
4083 (int)(10 * flow_table->mask)))
4084 expire = false;
4085 }
4086 rcu_read_unlock();
4087 return expire;
4088 }
4089 EXPORT_SYMBOL(rps_may_expire_flow);
4090
4091 #endif /* CONFIG_RFS_ACCEL */
4092
4093 /* Called from hardirq (IPI) context */
4094 static void rps_trigger_softirq(void *data)
4095 {
4096 struct softnet_data *sd = data;
4097
4098 ____napi_schedule(sd, &sd->backlog);
4099 sd->received_rps++;
4100 }
4101
4102 #endif /* CONFIG_RPS */
4103
4104 /*
4105 * Check if this softnet_data structure is another cpu one
4106 * If yes, queue it to our IPI list and return 1
4107 * If no, return 0
4108 */
4109 static int rps_ipi_queued(struct softnet_data *sd)
4110 {
4111 #ifdef CONFIG_RPS
4112 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4113
4114 if (sd != mysd) {
4115 sd->rps_ipi_next = mysd->rps_ipi_list;
4116 mysd->rps_ipi_list = sd;
4117
4118 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4119 return 1;
4120 }
4121 #endif /* CONFIG_RPS */
4122 return 0;
4123 }
4124
4125 #ifdef CONFIG_NET_FLOW_LIMIT
4126 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4127 #endif
4128
4129 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4130 {
4131 #ifdef CONFIG_NET_FLOW_LIMIT
4132 struct sd_flow_limit *fl;
4133 struct softnet_data *sd;
4134 unsigned int old_flow, new_flow;
4135
4136 if (qlen < (netdev_max_backlog >> 1))
4137 return false;
4138
4139 sd = this_cpu_ptr(&softnet_data);
4140
4141 rcu_read_lock();
4142 fl = rcu_dereference(sd->flow_limit);
4143 if (fl) {
4144 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4145 old_flow = fl->history[fl->history_head];
4146 fl->history[fl->history_head] = new_flow;
4147
4148 fl->history_head++;
4149 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4150
4151 if (likely(fl->buckets[old_flow]))
4152 fl->buckets[old_flow]--;
4153
4154 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4155 fl->count++;
4156 rcu_read_unlock();
4157 return true;
4158 }
4159 }
4160 rcu_read_unlock();
4161 #endif
4162 return false;
4163 }
4164
4165 /*
4166 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4167 * queue (may be a remote CPU queue).
4168 */
4169 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4170 unsigned int *qtail)
4171 {
4172 struct softnet_data *sd;
4173 unsigned long flags;
4174 unsigned int qlen;
4175
4176 sd = &per_cpu(softnet_data, cpu);
4177
4178 local_irq_save(flags);
4179
4180 rps_lock(sd);
4181 if (!netif_running(skb->dev))
4182 goto drop;
4183 qlen = skb_queue_len(&sd->input_pkt_queue);
4184 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4185 if (qlen) {
4186 enqueue:
4187 __skb_queue_tail(&sd->input_pkt_queue, skb);
4188 input_queue_tail_incr_save(sd, qtail);
4189 rps_unlock(sd);
4190 local_irq_restore(flags);
4191 return NET_RX_SUCCESS;
4192 }
4193
4194 /* Schedule NAPI for backlog device
4195 * We can use non atomic operation since we own the queue lock
4196 */
4197 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4198 if (!rps_ipi_queued(sd))
4199 ____napi_schedule(sd, &sd->backlog);
4200 }
4201 goto enqueue;
4202 }
4203
4204 drop:
4205 sd->dropped++;
4206 rps_unlock(sd);
4207
4208 local_irq_restore(flags);
4209
4210 atomic_long_inc(&skb->dev->rx_dropped);
4211 kfree_skb(skb);
4212 return NET_RX_DROP;
4213 }
4214
4215 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4216 {
4217 struct net_device *dev = skb->dev;
4218 struct netdev_rx_queue *rxqueue;
4219
4220 rxqueue = dev->_rx;
4221
4222 if (skb_rx_queue_recorded(skb)) {
4223 u16 index = skb_get_rx_queue(skb);
4224
4225 if (unlikely(index >= dev->real_num_rx_queues)) {
4226 WARN_ONCE(dev->real_num_rx_queues > 1,
4227 "%s received packet on queue %u, but number "
4228 "of RX queues is %u\n",
4229 dev->name, index, dev->real_num_rx_queues);
4230
4231 return rxqueue; /* Return first rxqueue */
4232 }
4233 rxqueue += index;
4234 }
4235 return rxqueue;
4236 }
4237
4238 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4239 struct xdp_buff *xdp,
4240 struct bpf_prog *xdp_prog)
4241 {
4242 struct netdev_rx_queue *rxqueue;
4243 void *orig_data, *orig_data_end;
4244 u32 metalen, act = XDP_DROP;
4245 __be16 orig_eth_type;
4246 struct ethhdr *eth;
4247 bool orig_bcast;
4248 int hlen, off;
4249 u32 mac_len;
4250
4251 /* Reinjected packets coming from act_mirred or similar should
4252 * not get XDP generic processing.
4253 */
4254 if (skb_is_redirected(skb))
4255 return XDP_PASS;
4256
4257 /* XDP packets must be linear and must have sufficient headroom
4258 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4259 * native XDP provides, thus we need to do it here as well.
4260 */
4261 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4262 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4263 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4264 int troom = skb->tail + skb->data_len - skb->end;
4265
4266 /* In case we have to go down the path and also linearize,
4267 * then lets do the pskb_expand_head() work just once here.
4268 */
4269 if (pskb_expand_head(skb,
4270 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4271 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4272 goto do_drop;
4273 if (skb_linearize(skb))
4274 goto do_drop;
4275 }
4276
4277 /* The XDP program wants to see the packet starting at the MAC
4278 * header.
4279 */
4280 mac_len = skb->data - skb_mac_header(skb);
4281 hlen = skb_headlen(skb) + mac_len;
4282 xdp->data = skb->data - mac_len;
4283 xdp->data_meta = xdp->data;
4284 xdp->data_end = xdp->data + hlen;
4285 xdp->data_hard_start = skb->data - skb_headroom(skb);
4286 orig_data_end = xdp->data_end;
4287 orig_data = xdp->data;
4288 eth = (struct ethhdr *)xdp->data;
4289 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4290 orig_eth_type = eth->h_proto;
4291
4292 rxqueue = netif_get_rxqueue(skb);
4293 xdp->rxq = &rxqueue->xdp_rxq;
4294
4295 act = bpf_prog_run_xdp(xdp_prog, xdp);
4296
4297 /* check if bpf_xdp_adjust_head was used */
4298 off = xdp->data - orig_data;
4299 if (off) {
4300 if (off > 0)
4301 __skb_pull(skb, off);
4302 else if (off < 0)
4303 __skb_push(skb, -off);
4304
4305 skb->mac_header += off;
4306 skb_reset_network_header(skb);
4307 }
4308
4309 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4310 * pckt.
4311 */
4312 off = orig_data_end - xdp->data_end;
4313 if (off != 0) {
4314 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4315 skb->len -= off;
4316
4317 }
4318
4319 /* check if XDP changed eth hdr such SKB needs update */
4320 eth = (struct ethhdr *)xdp->data;
4321 if ((orig_eth_type != eth->h_proto) ||
4322 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4323 __skb_push(skb, ETH_HLEN);
4324 skb->protocol = eth_type_trans(skb, skb->dev);
4325 }
4326
4327 switch (act) {
4328 case XDP_REDIRECT:
4329 case XDP_TX:
4330 __skb_push(skb, mac_len);
4331 break;
4332 case XDP_PASS:
4333 metalen = xdp->data - xdp->data_meta;
4334 if (metalen)
4335 skb_metadata_set(skb, metalen);
4336 break;
4337 default:
4338 bpf_warn_invalid_xdp_action(act);
4339 /* fall through */
4340 case XDP_ABORTED:
4341 trace_xdp_exception(skb->dev, xdp_prog, act);
4342 /* fall through */
4343 case XDP_DROP:
4344 do_drop:
4345 kfree_skb(skb);
4346 break;
4347 }
4348
4349 return act;
4350 }
4351
4352 /* When doing generic XDP we have to bypass the qdisc layer and the
4353 * network taps in order to match in-driver-XDP behavior.
4354 */
4355 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4356 {
4357 struct net_device *dev = skb->dev;
4358 struct netdev_queue *txq;
4359 bool free_skb = true;
4360 int cpu, rc;
4361
4362 txq = netdev_core_pick_tx(dev, skb, NULL);
4363 cpu = smp_processor_id();
4364 HARD_TX_LOCK(dev, txq, cpu);
4365 if (!netif_xmit_stopped(txq)) {
4366 rc = netdev_start_xmit(skb, dev, txq, 0);
4367 if (dev_xmit_complete(rc))
4368 free_skb = false;
4369 }
4370 HARD_TX_UNLOCK(dev, txq);
4371 if (free_skb) {
4372 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4373 kfree_skb(skb);
4374 }
4375 }
4376 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4377
4378 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4379
4380 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4381 {
4382 if (xdp_prog) {
4383 struct xdp_buff xdp;
4384 u32 act;
4385 int err;
4386
4387 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4388 if (act != XDP_PASS) {
4389 switch (act) {
4390 case XDP_REDIRECT:
4391 err = xdp_do_generic_redirect(skb->dev, skb,
4392 &xdp, xdp_prog);
4393 if (err)
4394 goto out_redir;
4395 break;
4396 case XDP_TX:
4397 generic_xdp_tx(skb, xdp_prog);
4398 break;
4399 }
4400 return XDP_DROP;
4401 }
4402 }
4403 return XDP_PASS;
4404 out_redir:
4405 kfree_skb(skb);
4406 return XDP_DROP;
4407 }
4408 EXPORT_SYMBOL_GPL(do_xdp_generic);
4409
4410 static int netif_rx_internal(struct sk_buff *skb)
4411 {
4412 int ret;
4413
4414 net_timestamp_check(netdev_tstamp_prequeue, skb);
4415
4416 trace_netif_rx(skb);
4417
4418 #ifdef CONFIG_RPS
4419 if (static_branch_unlikely(&rps_needed)) {
4420 struct rps_dev_flow voidflow, *rflow = &voidflow;
4421 int cpu;
4422
4423 preempt_disable();
4424 rcu_read_lock();
4425
4426 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4427 if (cpu < 0)
4428 cpu = smp_processor_id();
4429
4430 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4431
4432 rcu_read_unlock();
4433 preempt_enable();
4434 } else
4435 #endif
4436 {
4437 unsigned int qtail;
4438
4439 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4440 put_cpu();
4441 }
4442 return ret;
4443 }
4444
4445 /**
4446 * netif_rx - post buffer to the network code
4447 * @skb: buffer to post
4448 *
4449 * This function receives a packet from a device driver and queues it for
4450 * the upper (protocol) levels to process. It always succeeds. The buffer
4451 * may be dropped during processing for congestion control or by the
4452 * protocol layers.
4453 *
4454 * return values:
4455 * NET_RX_SUCCESS (no congestion)
4456 * NET_RX_DROP (packet was dropped)
4457 *
4458 */
4459
4460 int netif_rx(struct sk_buff *skb)
4461 {
4462 int ret;
4463
4464 trace_netif_rx_entry(skb);
4465
4466 ret = netif_rx_internal(skb);
4467 trace_netif_rx_exit(ret);
4468
4469 return ret;
4470 }
4471 EXPORT_SYMBOL(netif_rx);
4472
4473 int netif_rx_ni(struct sk_buff *skb)
4474 {
4475 int err;
4476
4477 trace_netif_rx_ni_entry(skb);
4478
4479 preempt_disable();
4480 err = netif_rx_internal(skb);
4481 if (local_softirq_pending())
4482 do_softirq();
4483 preempt_enable();
4484 trace_netif_rx_ni_exit(err);
4485
4486 return err;
4487 }
4488 EXPORT_SYMBOL(netif_rx_ni);
4489
4490 static __latent_entropy void net_tx_action(struct softirq_action *h)
4491 {
4492 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4493
4494 if (sd->completion_queue) {
4495 struct sk_buff *clist;
4496
4497 local_irq_disable();
4498 clist = sd->completion_queue;
4499 sd->completion_queue = NULL;
4500 local_irq_enable();
4501
4502 while (clist) {
4503 struct sk_buff *skb = clist;
4504
4505 clist = clist->next;
4506
4507 WARN_ON(refcount_read(&skb->users));
4508 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4509 trace_consume_skb(skb);
4510 else
4511 trace_kfree_skb(skb, net_tx_action);
4512
4513 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4514 __kfree_skb(skb);
4515 else
4516 __kfree_skb_defer(skb);
4517 }
4518
4519 __kfree_skb_flush();
4520 }
4521
4522 if (sd->output_queue) {
4523 struct Qdisc *head;
4524
4525 local_irq_disable();
4526 head = sd->output_queue;
4527 sd->output_queue = NULL;
4528 sd->output_queue_tailp = &sd->output_queue;
4529 local_irq_enable();
4530
4531 rcu_read_lock();
4532
4533 while (head) {
4534 struct Qdisc *q = head;
4535 spinlock_t *root_lock = NULL;
4536
4537 head = head->next_sched;
4538
4539 /* We need to make sure head->next_sched is read
4540 * before clearing __QDISC_STATE_SCHED
4541 */
4542 smp_mb__before_atomic();
4543
4544 if (!(q->flags & TCQ_F_NOLOCK)) {
4545 root_lock = qdisc_lock(q);
4546 spin_lock(root_lock);
4547 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4548 &q->state))) {
4549 /* There is a synchronize_net() between
4550 * STATE_DEACTIVATED flag being set and
4551 * qdisc_reset()/some_qdisc_is_busy() in
4552 * dev_deactivate(), so we can safely bail out
4553 * early here to avoid data race between
4554 * qdisc_deactivate() and some_qdisc_is_busy()
4555 * for lockless qdisc.
4556 */
4557 clear_bit(__QDISC_STATE_SCHED, &q->state);
4558 continue;
4559 }
4560
4561 clear_bit(__QDISC_STATE_SCHED, &q->state);
4562 qdisc_run(q);
4563 if (root_lock)
4564 spin_unlock(root_lock);
4565 }
4566
4567 rcu_read_unlock();
4568 }
4569
4570 xfrm_dev_backlog(sd);
4571 }
4572
4573 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4574 /* This hook is defined here for ATM LANE */
4575 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4576 unsigned char *addr) __read_mostly;
4577 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4578 #endif
4579
4580 static inline struct sk_buff *
4581 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4582 struct net_device *orig_dev)
4583 {
4584 #ifdef CONFIG_NET_CLS_ACT
4585 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4586 struct tcf_result cl_res;
4587
4588 /* If there's at least one ingress present somewhere (so
4589 * we get here via enabled static key), remaining devices
4590 * that are not configured with an ingress qdisc will bail
4591 * out here.
4592 */
4593 if (!miniq)
4594 return skb;
4595
4596 if (*pt_prev) {
4597 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4598 *pt_prev = NULL;
4599 }
4600
4601 qdisc_skb_cb(skb)->pkt_len = skb->len;
4602 skb->tc_at_ingress = 1;
4603 mini_qdisc_bstats_cpu_update(miniq, skb);
4604
4605 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4606 case TC_ACT_OK:
4607 case TC_ACT_RECLASSIFY:
4608 skb->tc_index = TC_H_MIN(cl_res.classid);
4609 break;
4610 case TC_ACT_SHOT:
4611 mini_qdisc_qstats_cpu_drop(miniq);
4612 kfree_skb(skb);
4613 return NULL;
4614 case TC_ACT_STOLEN:
4615 case TC_ACT_QUEUED:
4616 case TC_ACT_TRAP:
4617 consume_skb(skb);
4618 return NULL;
4619 case TC_ACT_REDIRECT:
4620 /* skb_mac_header check was done by cls/act_bpf, so
4621 * we can safely push the L2 header back before
4622 * redirecting to another netdev
4623 */
4624 __skb_push(skb, skb->mac_len);
4625 skb_do_redirect(skb);
4626 return NULL;
4627 case TC_ACT_CONSUMED:
4628 return NULL;
4629 default:
4630 break;
4631 }
4632 #endif /* CONFIG_NET_CLS_ACT */
4633 return skb;
4634 }
4635
4636 /**
4637 * netdev_is_rx_handler_busy - check if receive handler is registered
4638 * @dev: device to check
4639 *
4640 * Check if a receive handler is already registered for a given device.
4641 * Return true if there one.
4642 *
4643 * The caller must hold the rtnl_mutex.
4644 */
4645 bool netdev_is_rx_handler_busy(struct net_device *dev)
4646 {
4647 ASSERT_RTNL();
4648 return dev && rtnl_dereference(dev->rx_handler);
4649 }
4650 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4651
4652 /**
4653 * netdev_rx_handler_register - register receive handler
4654 * @dev: device to register a handler for
4655 * @rx_handler: receive handler to register
4656 * @rx_handler_data: data pointer that is used by rx handler
4657 *
4658 * Register a receive handler for a device. This handler will then be
4659 * called from __netif_receive_skb. A negative errno code is returned
4660 * on a failure.
4661 *
4662 * The caller must hold the rtnl_mutex.
4663 *
4664 * For a general description of rx_handler, see enum rx_handler_result.
4665 */
4666 int netdev_rx_handler_register(struct net_device *dev,
4667 rx_handler_func_t *rx_handler,
4668 void *rx_handler_data)
4669 {
4670 if (netdev_is_rx_handler_busy(dev))
4671 return -EBUSY;
4672
4673 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4674 return -EINVAL;
4675
4676 /* Note: rx_handler_data must be set before rx_handler */
4677 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4678 rcu_assign_pointer(dev->rx_handler, rx_handler);
4679
4680 return 0;
4681 }
4682 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4683
4684 /**
4685 * netdev_rx_handler_unregister - unregister receive handler
4686 * @dev: device to unregister a handler from
4687 *
4688 * Unregister a receive handler from a device.
4689 *
4690 * The caller must hold the rtnl_mutex.
4691 */
4692 void netdev_rx_handler_unregister(struct net_device *dev)
4693 {
4694
4695 ASSERT_RTNL();
4696 RCU_INIT_POINTER(dev->rx_handler, NULL);
4697 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4698 * section has a guarantee to see a non NULL rx_handler_data
4699 * as well.
4700 */
4701 synchronize_net();
4702 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4703 }
4704 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4705
4706 /*
4707 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4708 * the special handling of PFMEMALLOC skbs.
4709 */
4710 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4711 {
4712 switch (skb->protocol) {
4713 case htons(ETH_P_ARP):
4714 case htons(ETH_P_IP):
4715 case htons(ETH_P_IPV6):
4716 case htons(ETH_P_8021Q):
4717 case htons(ETH_P_8021AD):
4718 return true;
4719 default:
4720 return false;
4721 }
4722 }
4723
4724 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4725 int *ret, struct net_device *orig_dev)
4726 {
4727 #ifdef CONFIG_NETFILTER_INGRESS
4728 if (nf_hook_ingress_active(skb)) {
4729 int ingress_retval;
4730
4731 if (*pt_prev) {
4732 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4733 *pt_prev = NULL;
4734 }
4735
4736 rcu_read_lock();
4737 ingress_retval = nf_hook_ingress(skb);
4738 rcu_read_unlock();
4739 return ingress_retval;
4740 }
4741 #endif /* CONFIG_NETFILTER_INGRESS */
4742 return 0;
4743 }
4744
4745 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
4746 struct packet_type **ppt_prev)
4747 {
4748 struct packet_type *ptype, *pt_prev;
4749 rx_handler_func_t *rx_handler;
4750 struct sk_buff *skb = *pskb;
4751 struct net_device *orig_dev;
4752 bool deliver_exact = false;
4753 int ret = NET_RX_DROP;
4754 __be16 type;
4755
4756 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4757
4758 trace_netif_receive_skb(skb);
4759
4760 orig_dev = skb->dev;
4761
4762 skb_reset_network_header(skb);
4763 if (!skb_transport_header_was_set(skb))
4764 skb_reset_transport_header(skb);
4765 skb_reset_mac_len(skb);
4766
4767 pt_prev = NULL;
4768
4769 another_round:
4770 skb->skb_iif = skb->dev->ifindex;
4771
4772 __this_cpu_inc(softnet_data.processed);
4773
4774 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4775 int ret2;
4776
4777 preempt_disable();
4778 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4779 preempt_enable();
4780
4781 if (ret2 != XDP_PASS) {
4782 ret = NET_RX_DROP;
4783 goto out;
4784 }
4785 skb_reset_mac_len(skb);
4786 }
4787
4788 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4789 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4790 skb = skb_vlan_untag(skb);
4791 if (unlikely(!skb))
4792 goto out;
4793 }
4794
4795 if (skb_skip_tc_classify(skb))
4796 goto skip_classify;
4797
4798 if (pfmemalloc)
4799 goto skip_taps;
4800
4801 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4802 if (pt_prev)
4803 ret = deliver_skb(skb, pt_prev, orig_dev);
4804 pt_prev = ptype;
4805 }
4806
4807 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4808 if (pt_prev)
4809 ret = deliver_skb(skb, pt_prev, orig_dev);
4810 pt_prev = ptype;
4811 }
4812
4813 skip_taps:
4814 #ifdef CONFIG_NET_INGRESS
4815 if (static_branch_unlikely(&ingress_needed_key)) {
4816 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4817 if (!skb)
4818 goto out;
4819
4820 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4821 goto out;
4822 }
4823 #endif
4824 skb_reset_redirect(skb);
4825 skip_classify:
4826 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4827 goto drop;
4828
4829 if (skb_vlan_tag_present(skb)) {
4830 if (pt_prev) {
4831 ret = deliver_skb(skb, pt_prev, orig_dev);
4832 pt_prev = NULL;
4833 }
4834 if (vlan_do_receive(&skb))
4835 goto another_round;
4836 else if (unlikely(!skb))
4837 goto out;
4838 }
4839
4840 rx_handler = rcu_dereference(skb->dev->rx_handler);
4841 if (rx_handler) {
4842 if (pt_prev) {
4843 ret = deliver_skb(skb, pt_prev, orig_dev);
4844 pt_prev = NULL;
4845 }
4846 switch (rx_handler(&skb)) {
4847 case RX_HANDLER_CONSUMED:
4848 ret = NET_RX_SUCCESS;
4849 goto out;
4850 case RX_HANDLER_ANOTHER:
4851 goto another_round;
4852 case RX_HANDLER_EXACT:
4853 deliver_exact = true;
4854 case RX_HANDLER_PASS:
4855 break;
4856 default:
4857 BUG();
4858 }
4859 }
4860
4861 if (unlikely(skb_vlan_tag_present(skb))) {
4862 check_vlan_id:
4863 if (skb_vlan_tag_get_id(skb)) {
4864 /* Vlan id is non 0 and vlan_do_receive() above couldn't
4865 * find vlan device.
4866 */
4867 skb->pkt_type = PACKET_OTHERHOST;
4868 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4869 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4870 /* Outer header is 802.1P with vlan 0, inner header is
4871 * 802.1Q or 802.1AD and vlan_do_receive() above could
4872 * not find vlan dev for vlan id 0.
4873 */
4874 __vlan_hwaccel_clear_tag(skb);
4875 skb = skb_vlan_untag(skb);
4876 if (unlikely(!skb))
4877 goto out;
4878 if (vlan_do_receive(&skb))
4879 /* After stripping off 802.1P header with vlan 0
4880 * vlan dev is found for inner header.
4881 */
4882 goto another_round;
4883 else if (unlikely(!skb))
4884 goto out;
4885 else
4886 /* We have stripped outer 802.1P vlan 0 header.
4887 * But could not find vlan dev.
4888 * check again for vlan id to set OTHERHOST.
4889 */
4890 goto check_vlan_id;
4891 }
4892 /* Note: we might in the future use prio bits
4893 * and set skb->priority like in vlan_do_receive()
4894 * For the time being, just ignore Priority Code Point
4895 */
4896 __vlan_hwaccel_clear_tag(skb);
4897 }
4898
4899 type = skb->protocol;
4900
4901 /* deliver only exact match when indicated */
4902 if (likely(!deliver_exact)) {
4903 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4904 &ptype_base[ntohs(type) &
4905 PTYPE_HASH_MASK]);
4906 }
4907
4908 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4909 &orig_dev->ptype_specific);
4910
4911 if (unlikely(skb->dev != orig_dev)) {
4912 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4913 &skb->dev->ptype_specific);
4914 }
4915
4916 if (pt_prev) {
4917 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4918 goto drop;
4919 *ppt_prev = pt_prev;
4920 } else {
4921 drop:
4922 if (!deliver_exact)
4923 atomic_long_inc(&skb->dev->rx_dropped);
4924 else
4925 atomic_long_inc(&skb->dev->rx_nohandler);
4926 kfree_skb(skb);
4927 /* Jamal, now you will not able to escape explaining
4928 * me how you were going to use this. :-)
4929 */
4930 ret = NET_RX_DROP;
4931 }
4932
4933 out:
4934 /* The invariant here is that if *ppt_prev is not NULL
4935 * then skb should also be non-NULL.
4936 *
4937 * Apparently *ppt_prev assignment above holds this invariant due to
4938 * skb dereferencing near it.
4939 */
4940 *pskb = skb;
4941 return ret;
4942 }
4943
4944 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4945 {
4946 struct net_device *orig_dev = skb->dev;
4947 struct packet_type *pt_prev = NULL;
4948 int ret;
4949
4950 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
4951 if (pt_prev)
4952 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
4953 skb->dev, pt_prev, orig_dev);
4954 return ret;
4955 }
4956
4957 /**
4958 * netif_receive_skb_core - special purpose version of netif_receive_skb
4959 * @skb: buffer to process
4960 *
4961 * More direct receive version of netif_receive_skb(). It should
4962 * only be used by callers that have a need to skip RPS and Generic XDP.
4963 * Caller must also take care of handling if (page_is_)pfmemalloc.
4964 *
4965 * This function may only be called from softirq context and interrupts
4966 * should be enabled.
4967 *
4968 * Return values (usually ignored):
4969 * NET_RX_SUCCESS: no congestion
4970 * NET_RX_DROP: packet was dropped
4971 */
4972 int netif_receive_skb_core(struct sk_buff *skb)
4973 {
4974 int ret;
4975
4976 rcu_read_lock();
4977 ret = __netif_receive_skb_one_core(skb, false);
4978 rcu_read_unlock();
4979
4980 return ret;
4981 }
4982 EXPORT_SYMBOL(netif_receive_skb_core);
4983
4984 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4985 struct packet_type *pt_prev,
4986 struct net_device *orig_dev)
4987 {
4988 struct sk_buff *skb, *next;
4989
4990 if (!pt_prev)
4991 return;
4992 if (list_empty(head))
4993 return;
4994 if (pt_prev->list_func != NULL)
4995 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
4996 ip_list_rcv, head, pt_prev, orig_dev);
4997 else
4998 list_for_each_entry_safe(skb, next, head, list) {
4999 skb_list_del_init(skb);
5000 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5001 }
5002 }
5003
5004 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5005 {
5006 /* Fast-path assumptions:
5007 * - There is no RX handler.
5008 * - Only one packet_type matches.
5009 * If either of these fails, we will end up doing some per-packet
5010 * processing in-line, then handling the 'last ptype' for the whole
5011 * sublist. This can't cause out-of-order delivery to any single ptype,
5012 * because the 'last ptype' must be constant across the sublist, and all
5013 * other ptypes are handled per-packet.
5014 */
5015 /* Current (common) ptype of sublist */
5016 struct packet_type *pt_curr = NULL;
5017 /* Current (common) orig_dev of sublist */
5018 struct net_device *od_curr = NULL;
5019 struct list_head sublist;
5020 struct sk_buff *skb, *next;
5021
5022 INIT_LIST_HEAD(&sublist);
5023 list_for_each_entry_safe(skb, next, head, list) {
5024 struct net_device *orig_dev = skb->dev;
5025 struct packet_type *pt_prev = NULL;
5026
5027 skb_list_del_init(skb);
5028 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5029 if (!pt_prev)
5030 continue;
5031 if (pt_curr != pt_prev || od_curr != orig_dev) {
5032 /* dispatch old sublist */
5033 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5034 /* start new sublist */
5035 INIT_LIST_HEAD(&sublist);
5036 pt_curr = pt_prev;
5037 od_curr = orig_dev;
5038 }
5039 list_add_tail(&skb->list, &sublist);
5040 }
5041
5042 /* dispatch final sublist */
5043 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5044 }
5045
5046 static int __netif_receive_skb(struct sk_buff *skb)
5047 {
5048 int ret;
5049
5050 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5051 unsigned int noreclaim_flag;
5052
5053 /*
5054 * PFMEMALLOC skbs are special, they should
5055 * - be delivered to SOCK_MEMALLOC sockets only
5056 * - stay away from userspace
5057 * - have bounded memory usage
5058 *
5059 * Use PF_MEMALLOC as this saves us from propagating the allocation
5060 * context down to all allocation sites.
5061 */
5062 noreclaim_flag = memalloc_noreclaim_save();
5063 ret = __netif_receive_skb_one_core(skb, true);
5064 memalloc_noreclaim_restore(noreclaim_flag);
5065 } else
5066 ret = __netif_receive_skb_one_core(skb, false);
5067
5068 return ret;
5069 }
5070
5071 static void __netif_receive_skb_list(struct list_head *head)
5072 {
5073 unsigned long noreclaim_flag = 0;
5074 struct sk_buff *skb, *next;
5075 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5076
5077 list_for_each_entry_safe(skb, next, head, list) {
5078 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5079 struct list_head sublist;
5080
5081 /* Handle the previous sublist */
5082 list_cut_before(&sublist, head, &skb->list);
5083 if (!list_empty(&sublist))
5084 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5085 pfmemalloc = !pfmemalloc;
5086 /* See comments in __netif_receive_skb */
5087 if (pfmemalloc)
5088 noreclaim_flag = memalloc_noreclaim_save();
5089 else
5090 memalloc_noreclaim_restore(noreclaim_flag);
5091 }
5092 }
5093 /* Handle the remaining sublist */
5094 if (!list_empty(head))
5095 __netif_receive_skb_list_core(head, pfmemalloc);
5096 /* Restore pflags */
5097 if (pfmemalloc)
5098 memalloc_noreclaim_restore(noreclaim_flag);
5099 }
5100
5101 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5102 {
5103 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5104 struct bpf_prog *new = xdp->prog;
5105 int ret = 0;
5106
5107 switch (xdp->command) {
5108 case XDP_SETUP_PROG:
5109 rcu_assign_pointer(dev->xdp_prog, new);
5110 if (old)
5111 bpf_prog_put(old);
5112
5113 if (old && !new) {
5114 static_branch_dec(&generic_xdp_needed_key);
5115 } else if (new && !old) {
5116 static_branch_inc(&generic_xdp_needed_key);
5117 dev_disable_lro(dev);
5118 dev_disable_gro_hw(dev);
5119 }
5120 break;
5121
5122 case XDP_QUERY_PROG:
5123 xdp->prog_id = old ? old->aux->id : 0;
5124 break;
5125
5126 default:
5127 ret = -EINVAL;
5128 break;
5129 }
5130
5131 return ret;
5132 }
5133
5134 static int netif_receive_skb_internal(struct sk_buff *skb)
5135 {
5136 int ret;
5137
5138 net_timestamp_check(netdev_tstamp_prequeue, skb);
5139
5140 if (skb_defer_rx_timestamp(skb))
5141 return NET_RX_SUCCESS;
5142
5143 rcu_read_lock();
5144 #ifdef CONFIG_RPS
5145 if (static_branch_unlikely(&rps_needed)) {
5146 struct rps_dev_flow voidflow, *rflow = &voidflow;
5147 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5148
5149 if (cpu >= 0) {
5150 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5151 rcu_read_unlock();
5152 return ret;
5153 }
5154 }
5155 #endif
5156 ret = __netif_receive_skb(skb);
5157 rcu_read_unlock();
5158 return ret;
5159 }
5160
5161 static void netif_receive_skb_list_internal(struct list_head *head)
5162 {
5163 struct sk_buff *skb, *next;
5164 struct list_head sublist;
5165
5166 INIT_LIST_HEAD(&sublist);
5167 list_for_each_entry_safe(skb, next, head, list) {
5168 net_timestamp_check(netdev_tstamp_prequeue, skb);
5169 skb_list_del_init(skb);
5170 if (!skb_defer_rx_timestamp(skb))
5171 list_add_tail(&skb->list, &sublist);
5172 }
5173 list_splice_init(&sublist, head);
5174
5175 rcu_read_lock();
5176 #ifdef CONFIG_RPS
5177 if (static_branch_unlikely(&rps_needed)) {
5178 list_for_each_entry_safe(skb, next, head, list) {
5179 struct rps_dev_flow voidflow, *rflow = &voidflow;
5180 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5181
5182 if (cpu >= 0) {
5183 /* Will be handled, remove from list */
5184 skb_list_del_init(skb);
5185 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5186 }
5187 }
5188 }
5189 #endif
5190 __netif_receive_skb_list(head);
5191 rcu_read_unlock();
5192 }
5193
5194 /**
5195 * netif_receive_skb - process receive buffer from network
5196 * @skb: buffer to process
5197 *
5198 * netif_receive_skb() is the main receive data processing function.
5199 * It always succeeds. The buffer may be dropped during processing
5200 * for congestion control or by the protocol layers.
5201 *
5202 * This function may only be called from softirq context and interrupts
5203 * should be enabled.
5204 *
5205 * Return values (usually ignored):
5206 * NET_RX_SUCCESS: no congestion
5207 * NET_RX_DROP: packet was dropped
5208 */
5209 int netif_receive_skb(struct sk_buff *skb)
5210 {
5211 int ret;
5212
5213 trace_netif_receive_skb_entry(skb);
5214
5215 ret = netif_receive_skb_internal(skb);
5216 trace_netif_receive_skb_exit(ret);
5217
5218 return ret;
5219 }
5220 EXPORT_SYMBOL(netif_receive_skb);
5221
5222 /**
5223 * netif_receive_skb_list - process many receive buffers from network
5224 * @head: list of skbs to process.
5225 *
5226 * Since return value of netif_receive_skb() is normally ignored, and
5227 * wouldn't be meaningful for a list, this function returns void.
5228 *
5229 * This function may only be called from softirq context and interrupts
5230 * should be enabled.
5231 */
5232 void netif_receive_skb_list(struct list_head *head)
5233 {
5234 struct sk_buff *skb;
5235
5236 if (list_empty(head))
5237 return;
5238 if (trace_netif_receive_skb_list_entry_enabled()) {
5239 list_for_each_entry(skb, head, list)
5240 trace_netif_receive_skb_list_entry(skb);
5241 }
5242 netif_receive_skb_list_internal(head);
5243 trace_netif_receive_skb_list_exit(0);
5244 }
5245 EXPORT_SYMBOL(netif_receive_skb_list);
5246
5247 DEFINE_PER_CPU(struct work_struct, flush_works);
5248
5249 /* Network device is going away, flush any packets still pending */
5250 static void flush_backlog(struct work_struct *work)
5251 {
5252 struct sk_buff *skb, *tmp;
5253 struct softnet_data *sd;
5254
5255 local_bh_disable();
5256 sd = this_cpu_ptr(&softnet_data);
5257
5258 local_irq_disable();
5259 rps_lock(sd);
5260 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5261 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5262 __skb_unlink(skb, &sd->input_pkt_queue);
5263 dev_kfree_skb_irq(skb);
5264 input_queue_head_incr(sd);
5265 }
5266 }
5267 rps_unlock(sd);
5268 local_irq_enable();
5269
5270 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5271 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5272 __skb_unlink(skb, &sd->process_queue);
5273 kfree_skb(skb);
5274 input_queue_head_incr(sd);
5275 }
5276 }
5277 local_bh_enable();
5278 }
5279
5280 static void flush_all_backlogs(void)
5281 {
5282 unsigned int cpu;
5283
5284 get_online_cpus();
5285
5286 for_each_online_cpu(cpu)
5287 queue_work_on(cpu, system_highpri_wq,
5288 per_cpu_ptr(&flush_works, cpu));
5289
5290 for_each_online_cpu(cpu)
5291 flush_work(per_cpu_ptr(&flush_works, cpu));
5292
5293 put_online_cpus();
5294 }
5295
5296 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5297 static void gro_normal_list(struct napi_struct *napi)
5298 {
5299 if (!napi->rx_count)
5300 return;
5301 netif_receive_skb_list_internal(&napi->rx_list);
5302 INIT_LIST_HEAD(&napi->rx_list);
5303 napi->rx_count = 0;
5304 }
5305
5306 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5307 * pass the whole batch up to the stack.
5308 */
5309 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5310 {
5311 list_add_tail(&skb->list, &napi->rx_list);
5312 napi->rx_count += segs;
5313 if (napi->rx_count >= gro_normal_batch)
5314 gro_normal_list(napi);
5315 }
5316
5317 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5318 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5319 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5320 {
5321 struct packet_offload *ptype;
5322 __be16 type = skb->protocol;
5323 struct list_head *head = &offload_base;
5324 int err = -ENOENT;
5325
5326 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5327
5328 if (NAPI_GRO_CB(skb)->count == 1) {
5329 skb_shinfo(skb)->gso_size = 0;
5330 goto out;
5331 }
5332
5333 rcu_read_lock();
5334 list_for_each_entry_rcu(ptype, head, list) {
5335 if (ptype->type != type || !ptype->callbacks.gro_complete)
5336 continue;
5337
5338 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5339 ipv6_gro_complete, inet_gro_complete,
5340 skb, 0);
5341 break;
5342 }
5343 rcu_read_unlock();
5344
5345 if (err) {
5346 WARN_ON(&ptype->list == head);
5347 kfree_skb(skb);
5348 return NET_RX_SUCCESS;
5349 }
5350
5351 out:
5352 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5353 return NET_RX_SUCCESS;
5354 }
5355
5356 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5357 bool flush_old)
5358 {
5359 struct list_head *head = &napi->gro_hash[index].list;
5360 struct sk_buff *skb, *p;
5361
5362 list_for_each_entry_safe_reverse(skb, p, head, list) {
5363 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5364 return;
5365 skb_list_del_init(skb);
5366 napi_gro_complete(napi, skb);
5367 napi->gro_hash[index].count--;
5368 }
5369
5370 if (!napi->gro_hash[index].count)
5371 __clear_bit(index, &napi->gro_bitmask);
5372 }
5373
5374 /* napi->gro_hash[].list contains packets ordered by age.
5375 * youngest packets at the head of it.
5376 * Complete skbs in reverse order to reduce latencies.
5377 */
5378 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5379 {
5380 unsigned long bitmask = napi->gro_bitmask;
5381 unsigned int i, base = ~0U;
5382
5383 while ((i = ffs(bitmask)) != 0) {
5384 bitmask >>= i;
5385 base += i;
5386 __napi_gro_flush_chain(napi, base, flush_old);
5387 }
5388 }
5389 EXPORT_SYMBOL(napi_gro_flush);
5390
5391 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5392 struct sk_buff *skb)
5393 {
5394 unsigned int maclen = skb->dev->hard_header_len;
5395 u32 hash = skb_get_hash_raw(skb);
5396 struct list_head *head;
5397 struct sk_buff *p;
5398
5399 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5400 list_for_each_entry(p, head, list) {
5401 unsigned long diffs;
5402
5403 NAPI_GRO_CB(p)->flush = 0;
5404
5405 if (hash != skb_get_hash_raw(p)) {
5406 NAPI_GRO_CB(p)->same_flow = 0;
5407 continue;
5408 }
5409
5410 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5411 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5412 if (skb_vlan_tag_present(p))
5413 diffs |= p->vlan_tci ^ skb->vlan_tci;
5414 diffs |= skb_metadata_dst_cmp(p, skb);
5415 diffs |= skb_metadata_differs(p, skb);
5416 if (maclen == ETH_HLEN)
5417 diffs |= compare_ether_header(skb_mac_header(p),
5418 skb_mac_header(skb));
5419 else if (!diffs)
5420 diffs = memcmp(skb_mac_header(p),
5421 skb_mac_header(skb),
5422 maclen);
5423 NAPI_GRO_CB(p)->same_flow = !diffs;
5424 }
5425
5426 return head;
5427 }
5428
5429 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5430 {
5431 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5432 const skb_frag_t *frag0 = &pinfo->frags[0];
5433
5434 NAPI_GRO_CB(skb)->data_offset = 0;
5435 NAPI_GRO_CB(skb)->frag0 = NULL;
5436 NAPI_GRO_CB(skb)->frag0_len = 0;
5437
5438 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5439 pinfo->nr_frags &&
5440 !PageHighMem(skb_frag_page(frag0)) &&
5441 (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
5442 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5443 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5444 skb_frag_size(frag0),
5445 skb->end - skb->tail);
5446 }
5447 }
5448
5449 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5450 {
5451 struct skb_shared_info *pinfo = skb_shinfo(skb);
5452
5453 BUG_ON(skb->end - skb->tail < grow);
5454
5455 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5456
5457 skb->data_len -= grow;
5458 skb->tail += grow;
5459
5460 skb_frag_off_add(&pinfo->frags[0], grow);
5461 skb_frag_size_sub(&pinfo->frags[0], grow);
5462
5463 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5464 skb_frag_unref(skb, 0);
5465 memmove(pinfo->frags, pinfo->frags + 1,
5466 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5467 }
5468 }
5469
5470 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5471 {
5472 struct sk_buff *oldest;
5473
5474 oldest = list_last_entry(head, struct sk_buff, list);
5475
5476 /* We are called with head length >= MAX_GRO_SKBS, so this is
5477 * impossible.
5478 */
5479 if (WARN_ON_ONCE(!oldest))
5480 return;
5481
5482 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5483 * SKB to the chain.
5484 */
5485 skb_list_del_init(oldest);
5486 napi_gro_complete(napi, oldest);
5487 }
5488
5489 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5490 struct sk_buff *));
5491 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5492 struct sk_buff *));
5493 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5494 {
5495 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5496 struct list_head *head = &offload_base;
5497 struct packet_offload *ptype;
5498 __be16 type = skb->protocol;
5499 struct list_head *gro_head;
5500 struct sk_buff *pp = NULL;
5501 enum gro_result ret;
5502 int same_flow;
5503 int grow;
5504
5505 if (netif_elide_gro(skb->dev))
5506 goto normal;
5507
5508 gro_head = gro_list_prepare(napi, skb);
5509
5510 rcu_read_lock();
5511 list_for_each_entry_rcu(ptype, head, list) {
5512 if (ptype->type != type || !ptype->callbacks.gro_receive)
5513 continue;
5514
5515 skb_set_network_header(skb, skb_gro_offset(skb));
5516 skb_reset_mac_len(skb);
5517 NAPI_GRO_CB(skb)->same_flow = 0;
5518 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5519 NAPI_GRO_CB(skb)->free = 0;
5520 NAPI_GRO_CB(skb)->encap_mark = 0;
5521 NAPI_GRO_CB(skb)->recursion_counter = 0;
5522 NAPI_GRO_CB(skb)->is_fou = 0;
5523 NAPI_GRO_CB(skb)->is_atomic = 1;
5524 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5525
5526 /* Setup for GRO checksum validation */
5527 switch (skb->ip_summed) {
5528 case CHECKSUM_COMPLETE:
5529 NAPI_GRO_CB(skb)->csum = skb->csum;
5530 NAPI_GRO_CB(skb)->csum_valid = 1;
5531 NAPI_GRO_CB(skb)->csum_cnt = 0;
5532 break;
5533 case CHECKSUM_UNNECESSARY:
5534 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5535 NAPI_GRO_CB(skb)->csum_valid = 0;
5536 break;
5537 default:
5538 NAPI_GRO_CB(skb)->csum_cnt = 0;
5539 NAPI_GRO_CB(skb)->csum_valid = 0;
5540 }
5541
5542 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5543 ipv6_gro_receive, inet_gro_receive,
5544 gro_head, skb);
5545 break;
5546 }
5547 rcu_read_unlock();
5548
5549 if (&ptype->list == head)
5550 goto normal;
5551
5552 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5553 ret = GRO_CONSUMED;
5554 goto ok;
5555 }
5556
5557 same_flow = NAPI_GRO_CB(skb)->same_flow;
5558 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5559
5560 if (pp) {
5561 skb_list_del_init(pp);
5562 napi_gro_complete(napi, pp);
5563 napi->gro_hash[hash].count--;
5564 }
5565
5566 if (same_flow)
5567 goto ok;
5568
5569 if (NAPI_GRO_CB(skb)->flush)
5570 goto normal;
5571
5572 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5573 gro_flush_oldest(napi, gro_head);
5574 } else {
5575 napi->gro_hash[hash].count++;
5576 }
5577 NAPI_GRO_CB(skb)->count = 1;
5578 NAPI_GRO_CB(skb)->age = jiffies;
5579 NAPI_GRO_CB(skb)->last = skb;
5580 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5581 list_add(&skb->list, gro_head);
5582 ret = GRO_HELD;
5583
5584 pull:
5585 grow = skb_gro_offset(skb) - skb_headlen(skb);
5586 if (grow > 0)
5587 gro_pull_from_frag0(skb, grow);
5588 ok:
5589 if (napi->gro_hash[hash].count) {
5590 if (!test_bit(hash, &napi->gro_bitmask))
5591 __set_bit(hash, &napi->gro_bitmask);
5592 } else if (test_bit(hash, &napi->gro_bitmask)) {
5593 __clear_bit(hash, &napi->gro_bitmask);
5594 }
5595
5596 return ret;
5597
5598 normal:
5599 ret = GRO_NORMAL;
5600 goto pull;
5601 }
5602
5603 struct packet_offload *gro_find_receive_by_type(__be16 type)
5604 {
5605 struct list_head *offload_head = &offload_base;
5606 struct packet_offload *ptype;
5607
5608 list_for_each_entry_rcu(ptype, offload_head, list) {
5609 if (ptype->type != type || !ptype->callbacks.gro_receive)
5610 continue;
5611 return ptype;
5612 }
5613 return NULL;
5614 }
5615 EXPORT_SYMBOL(gro_find_receive_by_type);
5616
5617 struct packet_offload *gro_find_complete_by_type(__be16 type)
5618 {
5619 struct list_head *offload_head = &offload_base;
5620 struct packet_offload *ptype;
5621
5622 list_for_each_entry_rcu(ptype, offload_head, list) {
5623 if (ptype->type != type || !ptype->callbacks.gro_complete)
5624 continue;
5625 return ptype;
5626 }
5627 return NULL;
5628 }
5629 EXPORT_SYMBOL(gro_find_complete_by_type);
5630
5631 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5632 {
5633 skb_dst_drop(skb);
5634 skb_ext_put(skb);
5635 kmem_cache_free(skbuff_head_cache, skb);
5636 }
5637
5638 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5639 struct sk_buff *skb,
5640 gro_result_t ret)
5641 {
5642 switch (ret) {
5643 case GRO_NORMAL:
5644 gro_normal_one(napi, skb, 1);
5645 break;
5646
5647 case GRO_DROP:
5648 kfree_skb(skb);
5649 break;
5650
5651 case GRO_MERGED_FREE:
5652 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5653 napi_skb_free_stolen_head(skb);
5654 else
5655 __kfree_skb(skb);
5656 break;
5657
5658 case GRO_HELD:
5659 case GRO_MERGED:
5660 case GRO_CONSUMED:
5661 break;
5662 }
5663
5664 return ret;
5665 }
5666
5667 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5668 {
5669 gro_result_t ret;
5670
5671 skb_mark_napi_id(skb, napi);
5672 trace_napi_gro_receive_entry(skb);
5673
5674 skb_gro_reset_offset(skb, 0);
5675
5676 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
5677 trace_napi_gro_receive_exit(ret);
5678
5679 return ret;
5680 }
5681 EXPORT_SYMBOL(napi_gro_receive);
5682
5683 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5684 {
5685 if (unlikely(skb->pfmemalloc)) {
5686 consume_skb(skb);
5687 return;
5688 }
5689 __skb_pull(skb, skb_headlen(skb));
5690 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5691 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5692 __vlan_hwaccel_clear_tag(skb);
5693 skb->dev = napi->dev;
5694 skb->skb_iif = 0;
5695
5696 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5697 skb->pkt_type = PACKET_HOST;
5698
5699 skb->encapsulation = 0;
5700 skb_shinfo(skb)->gso_type = 0;
5701 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5702 skb_ext_reset(skb);
5703
5704 napi->skb = skb;
5705 }
5706
5707 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5708 {
5709 struct sk_buff *skb = napi->skb;
5710
5711 if (!skb) {
5712 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5713 if (skb) {
5714 napi->skb = skb;
5715 skb_mark_napi_id(skb, napi);
5716 }
5717 }
5718 return skb;
5719 }
5720 EXPORT_SYMBOL(napi_get_frags);
5721
5722 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5723 struct sk_buff *skb,
5724 gro_result_t ret)
5725 {
5726 switch (ret) {
5727 case GRO_NORMAL:
5728 case GRO_HELD:
5729 __skb_push(skb, ETH_HLEN);
5730 skb->protocol = eth_type_trans(skb, skb->dev);
5731 if (ret == GRO_NORMAL)
5732 gro_normal_one(napi, skb, 1);
5733 break;
5734
5735 case GRO_DROP:
5736 napi_reuse_skb(napi, skb);
5737 break;
5738
5739 case GRO_MERGED_FREE:
5740 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5741 napi_skb_free_stolen_head(skb);
5742 else
5743 napi_reuse_skb(napi, skb);
5744 break;
5745
5746 case GRO_MERGED:
5747 case GRO_CONSUMED:
5748 break;
5749 }
5750
5751 return ret;
5752 }
5753
5754 /* Upper GRO stack assumes network header starts at gro_offset=0
5755 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5756 * We copy ethernet header into skb->data to have a common layout.
5757 */
5758 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5759 {
5760 struct sk_buff *skb = napi->skb;
5761 const struct ethhdr *eth;
5762 unsigned int hlen = sizeof(*eth);
5763
5764 napi->skb = NULL;
5765
5766 skb_reset_mac_header(skb);
5767 skb_gro_reset_offset(skb, hlen);
5768
5769 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5770 eth = skb_gro_header_slow(skb, hlen, 0);
5771 if (unlikely(!eth)) {
5772 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5773 __func__, napi->dev->name);
5774 napi_reuse_skb(napi, skb);
5775 return NULL;
5776 }
5777 } else {
5778 eth = (const struct ethhdr *)skb->data;
5779 gro_pull_from_frag0(skb, hlen);
5780 NAPI_GRO_CB(skb)->frag0 += hlen;
5781 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5782 }
5783 __skb_pull(skb, hlen);
5784
5785 /*
5786 * This works because the only protocols we care about don't require
5787 * special handling.
5788 * We'll fix it up properly in napi_frags_finish()
5789 */
5790 skb->protocol = eth->h_proto;
5791
5792 return skb;
5793 }
5794
5795 gro_result_t napi_gro_frags(struct napi_struct *napi)
5796 {
5797 gro_result_t ret;
5798 struct sk_buff *skb = napi_frags_skb(napi);
5799
5800 if (!skb)
5801 return GRO_DROP;
5802
5803 trace_napi_gro_frags_entry(skb);
5804
5805 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5806 trace_napi_gro_frags_exit(ret);
5807
5808 return ret;
5809 }
5810 EXPORT_SYMBOL(napi_gro_frags);
5811
5812 /* Compute the checksum from gro_offset and return the folded value
5813 * after adding in any pseudo checksum.
5814 */
5815 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5816 {
5817 __wsum wsum;
5818 __sum16 sum;
5819
5820 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5821
5822 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5823 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5824 /* See comments in __skb_checksum_complete(). */
5825 if (likely(!sum)) {
5826 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5827 !skb->csum_complete_sw)
5828 netdev_rx_csum_fault(skb->dev, skb);
5829 }
5830
5831 NAPI_GRO_CB(skb)->csum = wsum;
5832 NAPI_GRO_CB(skb)->csum_valid = 1;
5833
5834 return sum;
5835 }
5836 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5837
5838 static void net_rps_send_ipi(struct softnet_data *remsd)
5839 {
5840 #ifdef CONFIG_RPS
5841 while (remsd) {
5842 struct softnet_data *next = remsd->rps_ipi_next;
5843
5844 if (cpu_online(remsd->cpu))
5845 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5846 remsd = next;
5847 }
5848 #endif
5849 }
5850
5851 /*
5852 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5853 * Note: called with local irq disabled, but exits with local irq enabled.
5854 */
5855 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5856 {
5857 #ifdef CONFIG_RPS
5858 struct softnet_data *remsd = sd->rps_ipi_list;
5859
5860 if (remsd) {
5861 sd->rps_ipi_list = NULL;
5862
5863 local_irq_enable();
5864
5865 /* Send pending IPI's to kick RPS processing on remote cpus. */
5866 net_rps_send_ipi(remsd);
5867 } else
5868 #endif
5869 local_irq_enable();
5870 }
5871
5872 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5873 {
5874 #ifdef CONFIG_RPS
5875 return sd->rps_ipi_list != NULL;
5876 #else
5877 return false;
5878 #endif
5879 }
5880
5881 static int process_backlog(struct napi_struct *napi, int quota)
5882 {
5883 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5884 bool again = true;
5885 int work = 0;
5886
5887 /* Check if we have pending ipi, its better to send them now,
5888 * not waiting net_rx_action() end.
5889 */
5890 if (sd_has_rps_ipi_waiting(sd)) {
5891 local_irq_disable();
5892 net_rps_action_and_irq_enable(sd);
5893 }
5894
5895 napi->weight = dev_rx_weight;
5896 while (again) {
5897 struct sk_buff *skb;
5898
5899 while ((skb = __skb_dequeue(&sd->process_queue))) {
5900 rcu_read_lock();
5901 __netif_receive_skb(skb);
5902 rcu_read_unlock();
5903 input_queue_head_incr(sd);
5904 if (++work >= quota)
5905 return work;
5906
5907 }
5908
5909 local_irq_disable();
5910 rps_lock(sd);
5911 if (skb_queue_empty(&sd->input_pkt_queue)) {
5912 /*
5913 * Inline a custom version of __napi_complete().
5914 * only current cpu owns and manipulates this napi,
5915 * and NAPI_STATE_SCHED is the only possible flag set
5916 * on backlog.
5917 * We can use a plain write instead of clear_bit(),
5918 * and we dont need an smp_mb() memory barrier.
5919 */
5920 napi->state = 0;
5921 again = false;
5922 } else {
5923 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5924 &sd->process_queue);
5925 }
5926 rps_unlock(sd);
5927 local_irq_enable();
5928 }
5929
5930 return work;
5931 }
5932
5933 /**
5934 * __napi_schedule - schedule for receive
5935 * @n: entry to schedule
5936 *
5937 * The entry's receive function will be scheduled to run.
5938 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5939 */
5940 void __napi_schedule(struct napi_struct *n)
5941 {
5942 unsigned long flags;
5943
5944 local_irq_save(flags);
5945 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5946 local_irq_restore(flags);
5947 }
5948 EXPORT_SYMBOL(__napi_schedule);
5949
5950 /**
5951 * napi_schedule_prep - check if napi can be scheduled
5952 * @n: napi context
5953 *
5954 * Test if NAPI routine is already running, and if not mark
5955 * it as running. This is used as a condition variable
5956 * insure only one NAPI poll instance runs. We also make
5957 * sure there is no pending NAPI disable.
5958 */
5959 bool napi_schedule_prep(struct napi_struct *n)
5960 {
5961 unsigned long val, new;
5962
5963 do {
5964 val = READ_ONCE(n->state);
5965 if (unlikely(val & NAPIF_STATE_DISABLE))
5966 return false;
5967 new = val | NAPIF_STATE_SCHED;
5968
5969 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5970 * This was suggested by Alexander Duyck, as compiler
5971 * emits better code than :
5972 * if (val & NAPIF_STATE_SCHED)
5973 * new |= NAPIF_STATE_MISSED;
5974 */
5975 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5976 NAPIF_STATE_MISSED;
5977 } while (cmpxchg(&n->state, val, new) != val);
5978
5979 return !(val & NAPIF_STATE_SCHED);
5980 }
5981 EXPORT_SYMBOL(napi_schedule_prep);
5982
5983 /**
5984 * __napi_schedule_irqoff - schedule for receive
5985 * @n: entry to schedule
5986 *
5987 * Variant of __napi_schedule() assuming hard irqs are masked.
5988 *
5989 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
5990 * because the interrupt disabled assumption might not be true
5991 * due to force-threaded interrupts and spinlock substitution.
5992 */
5993 void __napi_schedule_irqoff(struct napi_struct *n)
5994 {
5995 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
5996 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5997 else
5998 __napi_schedule(n);
5999 }
6000 EXPORT_SYMBOL(__napi_schedule_irqoff);
6001
6002 bool napi_complete_done(struct napi_struct *n, int work_done)
6003 {
6004 unsigned long flags, val, new;
6005
6006 /*
6007 * 1) Don't let napi dequeue from the cpu poll list
6008 * just in case its running on a different cpu.
6009 * 2) If we are busy polling, do nothing here, we have
6010 * the guarantee we will be called later.
6011 */
6012 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6013 NAPIF_STATE_IN_BUSY_POLL)))
6014 return false;
6015
6016 if (n->gro_bitmask) {
6017 unsigned long timeout = 0;
6018
6019 if (work_done)
6020 timeout = n->dev->gro_flush_timeout;
6021
6022 /* When the NAPI instance uses a timeout and keeps postponing
6023 * it, we need to bound somehow the time packets are kept in
6024 * the GRO layer
6025 */
6026 napi_gro_flush(n, !!timeout);
6027 if (timeout)
6028 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6029 HRTIMER_MODE_REL_PINNED);
6030 }
6031
6032 gro_normal_list(n);
6033
6034 if (unlikely(!list_empty(&n->poll_list))) {
6035 /* If n->poll_list is not empty, we need to mask irqs */
6036 local_irq_save(flags);
6037 list_del_init(&n->poll_list);
6038 local_irq_restore(flags);
6039 }
6040
6041 do {
6042 val = READ_ONCE(n->state);
6043
6044 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6045
6046 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6047
6048 /* If STATE_MISSED was set, leave STATE_SCHED set,
6049 * because we will call napi->poll() one more time.
6050 * This C code was suggested by Alexander Duyck to help gcc.
6051 */
6052 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6053 NAPIF_STATE_SCHED;
6054 } while (cmpxchg(&n->state, val, new) != val);
6055
6056 if (unlikely(val & NAPIF_STATE_MISSED)) {
6057 __napi_schedule(n);
6058 return false;
6059 }
6060
6061 return true;
6062 }
6063 EXPORT_SYMBOL(napi_complete_done);
6064
6065 /* must be called under rcu_read_lock(), as we dont take a reference */
6066 static struct napi_struct *napi_by_id(unsigned int napi_id)
6067 {
6068 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6069 struct napi_struct *napi;
6070
6071 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6072 if (napi->napi_id == napi_id)
6073 return napi;
6074
6075 return NULL;
6076 }
6077
6078 #if defined(CONFIG_NET_RX_BUSY_POLL)
6079
6080 #define BUSY_POLL_BUDGET 8
6081
6082 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6083 {
6084 int rc;
6085
6086 /* Busy polling means there is a high chance device driver hard irq
6087 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6088 * set in napi_schedule_prep().
6089 * Since we are about to call napi->poll() once more, we can safely
6090 * clear NAPI_STATE_MISSED.
6091 *
6092 * Note: x86 could use a single "lock and ..." instruction
6093 * to perform these two clear_bit()
6094 */
6095 clear_bit(NAPI_STATE_MISSED, &napi->state);
6096 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6097
6098 local_bh_disable();
6099
6100 /* All we really want here is to re-enable device interrupts.
6101 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6102 */
6103 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6104 /* We can't gro_normal_list() here, because napi->poll() might have
6105 * rearmed the napi (napi_complete_done()) in which case it could
6106 * already be running on another CPU.
6107 */
6108 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6109 netpoll_poll_unlock(have_poll_lock);
6110 if (rc == BUSY_POLL_BUDGET) {
6111 /* As the whole budget was spent, we still own the napi so can
6112 * safely handle the rx_list.
6113 */
6114 gro_normal_list(napi);
6115 __napi_schedule(napi);
6116 }
6117 local_bh_enable();
6118 }
6119
6120 void napi_busy_loop(unsigned int napi_id,
6121 bool (*loop_end)(void *, unsigned long),
6122 void *loop_end_arg)
6123 {
6124 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6125 int (*napi_poll)(struct napi_struct *napi, int budget);
6126 void *have_poll_lock = NULL;
6127 struct napi_struct *napi;
6128
6129 restart:
6130 napi_poll = NULL;
6131
6132 rcu_read_lock();
6133
6134 napi = napi_by_id(napi_id);
6135 if (!napi)
6136 goto out;
6137
6138 preempt_disable();
6139 for (;;) {
6140 int work = 0;
6141
6142 local_bh_disable();
6143 if (!napi_poll) {
6144 unsigned long val = READ_ONCE(napi->state);
6145
6146 /* If multiple threads are competing for this napi,
6147 * we avoid dirtying napi->state as much as we can.
6148 */
6149 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6150 NAPIF_STATE_IN_BUSY_POLL))
6151 goto count;
6152 if (cmpxchg(&napi->state, val,
6153 val | NAPIF_STATE_IN_BUSY_POLL |
6154 NAPIF_STATE_SCHED) != val)
6155 goto count;
6156 have_poll_lock = netpoll_poll_lock(napi);
6157 napi_poll = napi->poll;
6158 }
6159 work = napi_poll(napi, BUSY_POLL_BUDGET);
6160 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6161 gro_normal_list(napi);
6162 count:
6163 if (work > 0)
6164 __NET_ADD_STATS(dev_net(napi->dev),
6165 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6166 local_bh_enable();
6167
6168 if (!loop_end || loop_end(loop_end_arg, start_time))
6169 break;
6170
6171 if (unlikely(need_resched())) {
6172 if (napi_poll)
6173 busy_poll_stop(napi, have_poll_lock);
6174 preempt_enable();
6175 rcu_read_unlock();
6176 cond_resched();
6177 if (loop_end(loop_end_arg, start_time))
6178 return;
6179 goto restart;
6180 }
6181 cpu_relax();
6182 }
6183 if (napi_poll)
6184 busy_poll_stop(napi, have_poll_lock);
6185 preempt_enable();
6186 out:
6187 rcu_read_unlock();
6188 }
6189 EXPORT_SYMBOL(napi_busy_loop);
6190
6191 #endif /* CONFIG_NET_RX_BUSY_POLL */
6192
6193 static void napi_hash_add(struct napi_struct *napi)
6194 {
6195 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6196 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6197 return;
6198
6199 spin_lock(&napi_hash_lock);
6200
6201 /* 0..NR_CPUS range is reserved for sender_cpu use */
6202 do {
6203 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6204 napi_gen_id = MIN_NAPI_ID;
6205 } while (napi_by_id(napi_gen_id));
6206 napi->napi_id = napi_gen_id;
6207
6208 hlist_add_head_rcu(&napi->napi_hash_node,
6209 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6210
6211 spin_unlock(&napi_hash_lock);
6212 }
6213
6214 /* Warning : caller is responsible to make sure rcu grace period
6215 * is respected before freeing memory containing @napi
6216 */
6217 bool napi_hash_del(struct napi_struct *napi)
6218 {
6219 bool rcu_sync_needed = false;
6220
6221 spin_lock(&napi_hash_lock);
6222
6223 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6224 rcu_sync_needed = true;
6225 hlist_del_rcu(&napi->napi_hash_node);
6226 }
6227 spin_unlock(&napi_hash_lock);
6228 return rcu_sync_needed;
6229 }
6230 EXPORT_SYMBOL_GPL(napi_hash_del);
6231
6232 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6233 {
6234 struct napi_struct *napi;
6235
6236 napi = container_of(timer, struct napi_struct, timer);
6237
6238 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6239 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6240 */
6241 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6242 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6243 __napi_schedule_irqoff(napi);
6244
6245 return HRTIMER_NORESTART;
6246 }
6247
6248 static void init_gro_hash(struct napi_struct *napi)
6249 {
6250 int i;
6251
6252 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6253 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6254 napi->gro_hash[i].count = 0;
6255 }
6256 napi->gro_bitmask = 0;
6257 }
6258
6259 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6260 int (*poll)(struct napi_struct *, int), int weight)
6261 {
6262 INIT_LIST_HEAD(&napi->poll_list);
6263 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6264 napi->timer.function = napi_watchdog;
6265 init_gro_hash(napi);
6266 napi->skb = NULL;
6267 INIT_LIST_HEAD(&napi->rx_list);
6268 napi->rx_count = 0;
6269 napi->poll = poll;
6270 if (weight > NAPI_POLL_WEIGHT)
6271 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6272 weight);
6273 napi->weight = weight;
6274 napi->dev = dev;
6275 #ifdef CONFIG_NETPOLL
6276 napi->poll_owner = -1;
6277 #endif
6278 set_bit(NAPI_STATE_SCHED, &napi->state);
6279 set_bit(NAPI_STATE_NPSVC, &napi->state);
6280 list_add_rcu(&napi->dev_list, &dev->napi_list);
6281 napi_hash_add(napi);
6282 }
6283 EXPORT_SYMBOL(netif_napi_add);
6284
6285 void napi_disable(struct napi_struct *n)
6286 {
6287 might_sleep();
6288 set_bit(NAPI_STATE_DISABLE, &n->state);
6289
6290 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6291 msleep(1);
6292 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6293 msleep(1);
6294
6295 hrtimer_cancel(&n->timer);
6296
6297 clear_bit(NAPI_STATE_DISABLE, &n->state);
6298 }
6299 EXPORT_SYMBOL(napi_disable);
6300
6301 static void flush_gro_hash(struct napi_struct *napi)
6302 {
6303 int i;
6304
6305 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6306 struct sk_buff *skb, *n;
6307
6308 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6309 kfree_skb(skb);
6310 napi->gro_hash[i].count = 0;
6311 }
6312 }
6313
6314 /* Must be called in process context */
6315 void netif_napi_del(struct napi_struct *napi)
6316 {
6317 might_sleep();
6318 if (napi_hash_del(napi))
6319 synchronize_net();
6320 list_del_init(&napi->dev_list);
6321 napi_free_frags(napi);
6322
6323 flush_gro_hash(napi);
6324 napi->gro_bitmask = 0;
6325 }
6326 EXPORT_SYMBOL(netif_napi_del);
6327
6328 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6329 {
6330 void *have;
6331 int work, weight;
6332
6333 list_del_init(&n->poll_list);
6334
6335 have = netpoll_poll_lock(n);
6336
6337 weight = n->weight;
6338
6339 /* This NAPI_STATE_SCHED test is for avoiding a race
6340 * with netpoll's poll_napi(). Only the entity which
6341 * obtains the lock and sees NAPI_STATE_SCHED set will
6342 * actually make the ->poll() call. Therefore we avoid
6343 * accidentally calling ->poll() when NAPI is not scheduled.
6344 */
6345 work = 0;
6346 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6347 work = n->poll(n, weight);
6348 trace_napi_poll(n, work, weight);
6349 }
6350
6351 if (unlikely(work > weight))
6352 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6353 n->poll, work, weight);
6354
6355 if (likely(work < weight))
6356 goto out_unlock;
6357
6358 /* Drivers must not modify the NAPI state if they
6359 * consume the entire weight. In such cases this code
6360 * still "owns" the NAPI instance and therefore can
6361 * move the instance around on the list at-will.
6362 */
6363 if (unlikely(napi_disable_pending(n))) {
6364 napi_complete(n);
6365 goto out_unlock;
6366 }
6367
6368 if (n->gro_bitmask) {
6369 /* flush too old packets
6370 * If HZ < 1000, flush all packets.
6371 */
6372 napi_gro_flush(n, HZ >= 1000);
6373 }
6374
6375 gro_normal_list(n);
6376
6377 /* Some drivers may have called napi_schedule
6378 * prior to exhausting their budget.
6379 */
6380 if (unlikely(!list_empty(&n->poll_list))) {
6381 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6382 n->dev ? n->dev->name : "backlog");
6383 goto out_unlock;
6384 }
6385
6386 list_add_tail(&n->poll_list, repoll);
6387
6388 out_unlock:
6389 netpoll_poll_unlock(have);
6390
6391 return work;
6392 }
6393
6394 static __latent_entropy void net_rx_action(struct softirq_action *h)
6395 {
6396 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6397 unsigned long time_limit = jiffies +
6398 usecs_to_jiffies(netdev_budget_usecs);
6399 int budget = netdev_budget;
6400 LIST_HEAD(list);
6401 LIST_HEAD(repoll);
6402
6403 local_irq_disable();
6404 list_splice_init(&sd->poll_list, &list);
6405 local_irq_enable();
6406
6407 for (;;) {
6408 struct napi_struct *n;
6409
6410 if (list_empty(&list)) {
6411 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6412 goto out;
6413 break;
6414 }
6415
6416 n = list_first_entry(&list, struct napi_struct, poll_list);
6417 budget -= napi_poll(n, &repoll);
6418
6419 /* If softirq window is exhausted then punt.
6420 * Allow this to run for 2 jiffies since which will allow
6421 * an average latency of 1.5/HZ.
6422 */
6423 if (unlikely(budget <= 0 ||
6424 time_after_eq(jiffies, time_limit))) {
6425 sd->time_squeeze++;
6426 break;
6427 }
6428 }
6429
6430 local_irq_disable();
6431
6432 list_splice_tail_init(&sd->poll_list, &list);
6433 list_splice_tail(&repoll, &list);
6434 list_splice(&list, &sd->poll_list);
6435 if (!list_empty(&sd->poll_list))
6436 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6437
6438 net_rps_action_and_irq_enable(sd);
6439 out:
6440 __kfree_skb_flush();
6441 }
6442
6443 struct netdev_adjacent {
6444 struct net_device *dev;
6445
6446 /* upper master flag, there can only be one master device per list */
6447 bool master;
6448
6449 /* lookup ignore flag */
6450 bool ignore;
6451
6452 /* counter for the number of times this device was added to us */
6453 u16 ref_nr;
6454
6455 /* private field for the users */
6456 void *private;
6457
6458 struct list_head list;
6459 struct rcu_head rcu;
6460 };
6461
6462 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6463 struct list_head *adj_list)
6464 {
6465 struct netdev_adjacent *adj;
6466
6467 list_for_each_entry(adj, adj_list, list) {
6468 if (adj->dev == adj_dev)
6469 return adj;
6470 }
6471 return NULL;
6472 }
6473
6474 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6475 {
6476 struct net_device *dev = data;
6477
6478 return upper_dev == dev;
6479 }
6480
6481 /**
6482 * netdev_has_upper_dev - Check if device is linked to an upper device
6483 * @dev: device
6484 * @upper_dev: upper device to check
6485 *
6486 * Find out if a device is linked to specified upper device and return true
6487 * in case it is. Note that this checks only immediate upper device,
6488 * not through a complete stack of devices. The caller must hold the RTNL lock.
6489 */
6490 bool netdev_has_upper_dev(struct net_device *dev,
6491 struct net_device *upper_dev)
6492 {
6493 ASSERT_RTNL();
6494
6495 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6496 upper_dev);
6497 }
6498 EXPORT_SYMBOL(netdev_has_upper_dev);
6499
6500 /**
6501 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6502 * @dev: device
6503 * @upper_dev: upper device to check
6504 *
6505 * Find out if a device is linked to specified upper device and return true
6506 * in case it is. Note that this checks the entire upper device chain.
6507 * The caller must hold rcu lock.
6508 */
6509
6510 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6511 struct net_device *upper_dev)
6512 {
6513 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6514 upper_dev);
6515 }
6516 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6517
6518 /**
6519 * netdev_has_any_upper_dev - Check if device is linked to some device
6520 * @dev: device
6521 *
6522 * Find out if a device is linked to an upper device and return true in case
6523 * it is. The caller must hold the RTNL lock.
6524 */
6525 bool netdev_has_any_upper_dev(struct net_device *dev)
6526 {
6527 ASSERT_RTNL();
6528
6529 return !list_empty(&dev->adj_list.upper);
6530 }
6531 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6532
6533 /**
6534 * netdev_master_upper_dev_get - Get master upper device
6535 * @dev: device
6536 *
6537 * Find a master upper device and return pointer to it or NULL in case
6538 * it's not there. The caller must hold the RTNL lock.
6539 */
6540 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6541 {
6542 struct netdev_adjacent *upper;
6543
6544 ASSERT_RTNL();
6545
6546 if (list_empty(&dev->adj_list.upper))
6547 return NULL;
6548
6549 upper = list_first_entry(&dev->adj_list.upper,
6550 struct netdev_adjacent, list);
6551 if (likely(upper->master))
6552 return upper->dev;
6553 return NULL;
6554 }
6555 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6556
6557 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6558 {
6559 struct netdev_adjacent *upper;
6560
6561 ASSERT_RTNL();
6562
6563 if (list_empty(&dev->adj_list.upper))
6564 return NULL;
6565
6566 upper = list_first_entry(&dev->adj_list.upper,
6567 struct netdev_adjacent, list);
6568 if (likely(upper->master) && !upper->ignore)
6569 return upper->dev;
6570 return NULL;
6571 }
6572
6573 /**
6574 * netdev_has_any_lower_dev - Check if device is linked to some device
6575 * @dev: device
6576 *
6577 * Find out if a device is linked to a lower device and return true in case
6578 * it is. The caller must hold the RTNL lock.
6579 */
6580 static bool netdev_has_any_lower_dev(struct net_device *dev)
6581 {
6582 ASSERT_RTNL();
6583
6584 return !list_empty(&dev->adj_list.lower);
6585 }
6586
6587 void *netdev_adjacent_get_private(struct list_head *adj_list)
6588 {
6589 struct netdev_adjacent *adj;
6590
6591 adj = list_entry(adj_list, struct netdev_adjacent, list);
6592
6593 return adj->private;
6594 }
6595 EXPORT_SYMBOL(netdev_adjacent_get_private);
6596
6597 /**
6598 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6599 * @dev: device
6600 * @iter: list_head ** of the current position
6601 *
6602 * Gets the next device from the dev's upper list, starting from iter
6603 * position. The caller must hold RCU read lock.
6604 */
6605 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6606 struct list_head **iter)
6607 {
6608 struct netdev_adjacent *upper;
6609
6610 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6611
6612 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6613
6614 if (&upper->list == &dev->adj_list.upper)
6615 return NULL;
6616
6617 *iter = &upper->list;
6618
6619 return upper->dev;
6620 }
6621 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6622
6623 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6624 struct list_head **iter,
6625 bool *ignore)
6626 {
6627 struct netdev_adjacent *upper;
6628
6629 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6630
6631 if (&upper->list == &dev->adj_list.upper)
6632 return NULL;
6633
6634 *iter = &upper->list;
6635 *ignore = upper->ignore;
6636
6637 return upper->dev;
6638 }
6639
6640 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6641 struct list_head **iter)
6642 {
6643 struct netdev_adjacent *upper;
6644
6645 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6646
6647 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6648
6649 if (&upper->list == &dev->adj_list.upper)
6650 return NULL;
6651
6652 *iter = &upper->list;
6653
6654 return upper->dev;
6655 }
6656
6657 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6658 int (*fn)(struct net_device *dev,
6659 void *data),
6660 void *data)
6661 {
6662 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6663 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6664 int ret, cur = 0;
6665 bool ignore;
6666
6667 now = dev;
6668 iter = &dev->adj_list.upper;
6669
6670 while (1) {
6671 if (now != dev) {
6672 ret = fn(now, data);
6673 if (ret)
6674 return ret;
6675 }
6676
6677 next = NULL;
6678 while (1) {
6679 udev = __netdev_next_upper_dev(now, &iter, &ignore);
6680 if (!udev)
6681 break;
6682 if (ignore)
6683 continue;
6684
6685 next = udev;
6686 niter = &udev->adj_list.upper;
6687 dev_stack[cur] = now;
6688 iter_stack[cur++] = iter;
6689 break;
6690 }
6691
6692 if (!next) {
6693 if (!cur)
6694 return 0;
6695 next = dev_stack[--cur];
6696 niter = iter_stack[cur];
6697 }
6698
6699 now = next;
6700 iter = niter;
6701 }
6702
6703 return 0;
6704 }
6705
6706 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6707 int (*fn)(struct net_device *dev,
6708 void *data),
6709 void *data)
6710 {
6711 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6712 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6713 int ret, cur = 0;
6714
6715 now = dev;
6716 iter = &dev->adj_list.upper;
6717
6718 while (1) {
6719 if (now != dev) {
6720 ret = fn(now, data);
6721 if (ret)
6722 return ret;
6723 }
6724
6725 next = NULL;
6726 while (1) {
6727 udev = netdev_next_upper_dev_rcu(now, &iter);
6728 if (!udev)
6729 break;
6730
6731 next = udev;
6732 niter = &udev->adj_list.upper;
6733 dev_stack[cur] = now;
6734 iter_stack[cur++] = iter;
6735 break;
6736 }
6737
6738 if (!next) {
6739 if (!cur)
6740 return 0;
6741 next = dev_stack[--cur];
6742 niter = iter_stack[cur];
6743 }
6744
6745 now = next;
6746 iter = niter;
6747 }
6748
6749 return 0;
6750 }
6751 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6752
6753 static bool __netdev_has_upper_dev(struct net_device *dev,
6754 struct net_device *upper_dev)
6755 {
6756 ASSERT_RTNL();
6757
6758 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6759 upper_dev);
6760 }
6761
6762 /**
6763 * netdev_lower_get_next_private - Get the next ->private from the
6764 * lower neighbour list
6765 * @dev: device
6766 * @iter: list_head ** of the current position
6767 *
6768 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6769 * list, starting from iter position. The caller must hold either hold the
6770 * RTNL lock or its own locking that guarantees that the neighbour lower
6771 * list will remain unchanged.
6772 */
6773 void *netdev_lower_get_next_private(struct net_device *dev,
6774 struct list_head **iter)
6775 {
6776 struct netdev_adjacent *lower;
6777
6778 lower = list_entry(*iter, struct netdev_adjacent, list);
6779
6780 if (&lower->list == &dev->adj_list.lower)
6781 return NULL;
6782
6783 *iter = lower->list.next;
6784
6785 return lower->private;
6786 }
6787 EXPORT_SYMBOL(netdev_lower_get_next_private);
6788
6789 /**
6790 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6791 * lower neighbour list, RCU
6792 * variant
6793 * @dev: device
6794 * @iter: list_head ** of the current position
6795 *
6796 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6797 * list, starting from iter position. The caller must hold RCU read lock.
6798 */
6799 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6800 struct list_head **iter)
6801 {
6802 struct netdev_adjacent *lower;
6803
6804 WARN_ON_ONCE(!rcu_read_lock_held());
6805
6806 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6807
6808 if (&lower->list == &dev->adj_list.lower)
6809 return NULL;
6810
6811 *iter = &lower->list;
6812
6813 return lower->private;
6814 }
6815 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6816
6817 /**
6818 * netdev_lower_get_next - Get the next device from the lower neighbour
6819 * list
6820 * @dev: device
6821 * @iter: list_head ** of the current position
6822 *
6823 * Gets the next netdev_adjacent from the dev's lower neighbour
6824 * list, starting from iter position. The caller must hold RTNL lock or
6825 * its own locking that guarantees that the neighbour lower
6826 * list will remain unchanged.
6827 */
6828 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6829 {
6830 struct netdev_adjacent *lower;
6831
6832 lower = list_entry(*iter, struct netdev_adjacent, list);
6833
6834 if (&lower->list == &dev->adj_list.lower)
6835 return NULL;
6836
6837 *iter = lower->list.next;
6838
6839 return lower->dev;
6840 }
6841 EXPORT_SYMBOL(netdev_lower_get_next);
6842
6843 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6844 struct list_head **iter)
6845 {
6846 struct netdev_adjacent *lower;
6847
6848 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6849
6850 if (&lower->list == &dev->adj_list.lower)
6851 return NULL;
6852
6853 *iter = &lower->list;
6854
6855 return lower->dev;
6856 }
6857
6858 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
6859 struct list_head **iter,
6860 bool *ignore)
6861 {
6862 struct netdev_adjacent *lower;
6863
6864 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6865
6866 if (&lower->list == &dev->adj_list.lower)
6867 return NULL;
6868
6869 *iter = &lower->list;
6870 *ignore = lower->ignore;
6871
6872 return lower->dev;
6873 }
6874
6875 int netdev_walk_all_lower_dev(struct net_device *dev,
6876 int (*fn)(struct net_device *dev,
6877 void *data),
6878 void *data)
6879 {
6880 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6881 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6882 int ret, cur = 0;
6883
6884 now = dev;
6885 iter = &dev->adj_list.lower;
6886
6887 while (1) {
6888 if (now != dev) {
6889 ret = fn(now, data);
6890 if (ret)
6891 return ret;
6892 }
6893
6894 next = NULL;
6895 while (1) {
6896 ldev = netdev_next_lower_dev(now, &iter);
6897 if (!ldev)
6898 break;
6899
6900 next = ldev;
6901 niter = &ldev->adj_list.lower;
6902 dev_stack[cur] = now;
6903 iter_stack[cur++] = iter;
6904 break;
6905 }
6906
6907 if (!next) {
6908 if (!cur)
6909 return 0;
6910 next = dev_stack[--cur];
6911 niter = iter_stack[cur];
6912 }
6913
6914 now = next;
6915 iter = niter;
6916 }
6917
6918 return 0;
6919 }
6920 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6921
6922 static int __netdev_walk_all_lower_dev(struct net_device *dev,
6923 int (*fn)(struct net_device *dev,
6924 void *data),
6925 void *data)
6926 {
6927 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6928 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6929 int ret, cur = 0;
6930 bool ignore;
6931
6932 now = dev;
6933 iter = &dev->adj_list.lower;
6934
6935 while (1) {
6936 if (now != dev) {
6937 ret = fn(now, data);
6938 if (ret)
6939 return ret;
6940 }
6941
6942 next = NULL;
6943 while (1) {
6944 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
6945 if (!ldev)
6946 break;
6947 if (ignore)
6948 continue;
6949
6950 next = ldev;
6951 niter = &ldev->adj_list.lower;
6952 dev_stack[cur] = now;
6953 iter_stack[cur++] = iter;
6954 break;
6955 }
6956
6957 if (!next) {
6958 if (!cur)
6959 return 0;
6960 next = dev_stack[--cur];
6961 niter = iter_stack[cur];
6962 }
6963
6964 now = next;
6965 iter = niter;
6966 }
6967
6968 return 0;
6969 }
6970
6971 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6972 struct list_head **iter)
6973 {
6974 struct netdev_adjacent *lower;
6975
6976 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6977 if (&lower->list == &dev->adj_list.lower)
6978 return NULL;
6979
6980 *iter = &lower->list;
6981
6982 return lower->dev;
6983 }
6984 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
6985
6986 static u8 __netdev_upper_depth(struct net_device *dev)
6987 {
6988 struct net_device *udev;
6989 struct list_head *iter;
6990 u8 max_depth = 0;
6991 bool ignore;
6992
6993 for (iter = &dev->adj_list.upper,
6994 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
6995 udev;
6996 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
6997 if (ignore)
6998 continue;
6999 if (max_depth < udev->upper_level)
7000 max_depth = udev->upper_level;
7001 }
7002
7003 return max_depth;
7004 }
7005
7006 static u8 __netdev_lower_depth(struct net_device *dev)
7007 {
7008 struct net_device *ldev;
7009 struct list_head *iter;
7010 u8 max_depth = 0;
7011 bool ignore;
7012
7013 for (iter = &dev->adj_list.lower,
7014 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7015 ldev;
7016 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7017 if (ignore)
7018 continue;
7019 if (max_depth < ldev->lower_level)
7020 max_depth = ldev->lower_level;
7021 }
7022
7023 return max_depth;
7024 }
7025
7026 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7027 {
7028 dev->upper_level = __netdev_upper_depth(dev) + 1;
7029 return 0;
7030 }
7031
7032 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7033 {
7034 dev->lower_level = __netdev_lower_depth(dev) + 1;
7035 return 0;
7036 }
7037
7038 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7039 int (*fn)(struct net_device *dev,
7040 void *data),
7041 void *data)
7042 {
7043 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7044 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7045 int ret, cur = 0;
7046
7047 now = dev;
7048 iter = &dev->adj_list.lower;
7049
7050 while (1) {
7051 if (now != dev) {
7052 ret = fn(now, data);
7053 if (ret)
7054 return ret;
7055 }
7056
7057 next = NULL;
7058 while (1) {
7059 ldev = netdev_next_lower_dev_rcu(now, &iter);
7060 if (!ldev)
7061 break;
7062
7063 next = ldev;
7064 niter = &ldev->adj_list.lower;
7065 dev_stack[cur] = now;
7066 iter_stack[cur++] = iter;
7067 break;
7068 }
7069
7070 if (!next) {
7071 if (!cur)
7072 return 0;
7073 next = dev_stack[--cur];
7074 niter = iter_stack[cur];
7075 }
7076
7077 now = next;
7078 iter = niter;
7079 }
7080
7081 return 0;
7082 }
7083 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7084
7085 /**
7086 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7087 * lower neighbour list, RCU
7088 * variant
7089 * @dev: device
7090 *
7091 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7092 * list. The caller must hold RCU read lock.
7093 */
7094 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7095 {
7096 struct netdev_adjacent *lower;
7097
7098 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7099 struct netdev_adjacent, list);
7100 if (lower)
7101 return lower->private;
7102 return NULL;
7103 }
7104 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7105
7106 /**
7107 * netdev_master_upper_dev_get_rcu - Get master upper device
7108 * @dev: device
7109 *
7110 * Find a master upper device and return pointer to it or NULL in case
7111 * it's not there. The caller must hold the RCU read lock.
7112 */
7113 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7114 {
7115 struct netdev_adjacent *upper;
7116
7117 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7118 struct netdev_adjacent, list);
7119 if (upper && likely(upper->master))
7120 return upper->dev;
7121 return NULL;
7122 }
7123 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7124
7125 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7126 struct net_device *adj_dev,
7127 struct list_head *dev_list)
7128 {
7129 char linkname[IFNAMSIZ+7];
7130
7131 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7132 "upper_%s" : "lower_%s", adj_dev->name);
7133 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7134 linkname);
7135 }
7136 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7137 char *name,
7138 struct list_head *dev_list)
7139 {
7140 char linkname[IFNAMSIZ+7];
7141
7142 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7143 "upper_%s" : "lower_%s", name);
7144 sysfs_remove_link(&(dev->dev.kobj), linkname);
7145 }
7146
7147 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7148 struct net_device *adj_dev,
7149 struct list_head *dev_list)
7150 {
7151 return (dev_list == &dev->adj_list.upper ||
7152 dev_list == &dev->adj_list.lower) &&
7153 net_eq(dev_net(dev), dev_net(adj_dev));
7154 }
7155
7156 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7157 struct net_device *adj_dev,
7158 struct list_head *dev_list,
7159 void *private, bool master)
7160 {
7161 struct netdev_adjacent *adj;
7162 int ret;
7163
7164 adj = __netdev_find_adj(adj_dev, dev_list);
7165
7166 if (adj) {
7167 adj->ref_nr += 1;
7168 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7169 dev->name, adj_dev->name, adj->ref_nr);
7170
7171 return 0;
7172 }
7173
7174 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7175 if (!adj)
7176 return -ENOMEM;
7177
7178 adj->dev = adj_dev;
7179 adj->master = master;
7180 adj->ref_nr = 1;
7181 adj->private = private;
7182 adj->ignore = false;
7183 dev_hold(adj_dev);
7184
7185 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7186 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7187
7188 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7189 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7190 if (ret)
7191 goto free_adj;
7192 }
7193
7194 /* Ensure that master link is always the first item in list. */
7195 if (master) {
7196 ret = sysfs_create_link(&(dev->dev.kobj),
7197 &(adj_dev->dev.kobj), "master");
7198 if (ret)
7199 goto remove_symlinks;
7200
7201 list_add_rcu(&adj->list, dev_list);
7202 } else {
7203 list_add_tail_rcu(&adj->list, dev_list);
7204 }
7205
7206 return 0;
7207
7208 remove_symlinks:
7209 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7210 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7211 free_adj:
7212 kfree(adj);
7213 dev_put(adj_dev);
7214
7215 return ret;
7216 }
7217
7218 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7219 struct net_device *adj_dev,
7220 u16 ref_nr,
7221 struct list_head *dev_list)
7222 {
7223 struct netdev_adjacent *adj;
7224
7225 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7226 dev->name, adj_dev->name, ref_nr);
7227
7228 adj = __netdev_find_adj(adj_dev, dev_list);
7229
7230 if (!adj) {
7231 pr_err("Adjacency does not exist for device %s from %s\n",
7232 dev->name, adj_dev->name);
7233 WARN_ON(1);
7234 return;
7235 }
7236
7237 if (adj->ref_nr > ref_nr) {
7238 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7239 dev->name, adj_dev->name, ref_nr,
7240 adj->ref_nr - ref_nr);
7241 adj->ref_nr -= ref_nr;
7242 return;
7243 }
7244
7245 if (adj->master)
7246 sysfs_remove_link(&(dev->dev.kobj), "master");
7247
7248 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7249 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7250
7251 list_del_rcu(&adj->list);
7252 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7253 adj_dev->name, dev->name, adj_dev->name);
7254 dev_put(adj_dev);
7255 kfree_rcu(adj, rcu);
7256 }
7257
7258 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7259 struct net_device *upper_dev,
7260 struct list_head *up_list,
7261 struct list_head *down_list,
7262 void *private, bool master)
7263 {
7264 int ret;
7265
7266 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7267 private, master);
7268 if (ret)
7269 return ret;
7270
7271 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7272 private, false);
7273 if (ret) {
7274 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7275 return ret;
7276 }
7277
7278 return 0;
7279 }
7280
7281 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7282 struct net_device *upper_dev,
7283 u16 ref_nr,
7284 struct list_head *up_list,
7285 struct list_head *down_list)
7286 {
7287 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7288 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7289 }
7290
7291 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7292 struct net_device *upper_dev,
7293 void *private, bool master)
7294 {
7295 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7296 &dev->adj_list.upper,
7297 &upper_dev->adj_list.lower,
7298 private, master);
7299 }
7300
7301 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7302 struct net_device *upper_dev)
7303 {
7304 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7305 &dev->adj_list.upper,
7306 &upper_dev->adj_list.lower);
7307 }
7308
7309 static int __netdev_upper_dev_link(struct net_device *dev,
7310 struct net_device *upper_dev, bool master,
7311 void *upper_priv, void *upper_info,
7312 struct netlink_ext_ack *extack)
7313 {
7314 struct netdev_notifier_changeupper_info changeupper_info = {
7315 .info = {
7316 .dev = dev,
7317 .extack = extack,
7318 },
7319 .upper_dev = upper_dev,
7320 .master = master,
7321 .linking = true,
7322 .upper_info = upper_info,
7323 };
7324 struct net_device *master_dev;
7325 int ret = 0;
7326
7327 ASSERT_RTNL();
7328
7329 if (dev == upper_dev)
7330 return -EBUSY;
7331
7332 /* To prevent loops, check if dev is not upper device to upper_dev. */
7333 if (__netdev_has_upper_dev(upper_dev, dev))
7334 return -EBUSY;
7335
7336 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7337 return -EMLINK;
7338
7339 if (!master) {
7340 if (__netdev_has_upper_dev(dev, upper_dev))
7341 return -EEXIST;
7342 } else {
7343 master_dev = __netdev_master_upper_dev_get(dev);
7344 if (master_dev)
7345 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7346 }
7347
7348 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7349 &changeupper_info.info);
7350 ret = notifier_to_errno(ret);
7351 if (ret)
7352 return ret;
7353
7354 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7355 master);
7356 if (ret)
7357 return ret;
7358
7359 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7360 &changeupper_info.info);
7361 ret = notifier_to_errno(ret);
7362 if (ret)
7363 goto rollback;
7364
7365 __netdev_update_upper_level(dev, NULL);
7366 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7367
7368 __netdev_update_lower_level(upper_dev, NULL);
7369 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7370 NULL);
7371
7372 return 0;
7373
7374 rollback:
7375 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7376
7377 return ret;
7378 }
7379
7380 /**
7381 * netdev_upper_dev_link - Add a link to the upper device
7382 * @dev: device
7383 * @upper_dev: new upper device
7384 * @extack: netlink extended ack
7385 *
7386 * Adds a link to device which is upper to this one. The caller must hold
7387 * the RTNL lock. On a failure a negative errno code is returned.
7388 * On success the reference counts are adjusted and the function
7389 * returns zero.
7390 */
7391 int netdev_upper_dev_link(struct net_device *dev,
7392 struct net_device *upper_dev,
7393 struct netlink_ext_ack *extack)
7394 {
7395 return __netdev_upper_dev_link(dev, upper_dev, false,
7396 NULL, NULL, extack);
7397 }
7398 EXPORT_SYMBOL(netdev_upper_dev_link);
7399
7400 /**
7401 * netdev_master_upper_dev_link - Add a master link to the upper device
7402 * @dev: device
7403 * @upper_dev: new upper device
7404 * @upper_priv: upper device private
7405 * @upper_info: upper info to be passed down via notifier
7406 * @extack: netlink extended ack
7407 *
7408 * Adds a link to device which is upper to this one. In this case, only
7409 * one master upper device can be linked, although other non-master devices
7410 * might be linked as well. The caller must hold the RTNL lock.
7411 * On a failure a negative errno code is returned. On success the reference
7412 * counts are adjusted and the function returns zero.
7413 */
7414 int netdev_master_upper_dev_link(struct net_device *dev,
7415 struct net_device *upper_dev,
7416 void *upper_priv, void *upper_info,
7417 struct netlink_ext_ack *extack)
7418 {
7419 return __netdev_upper_dev_link(dev, upper_dev, true,
7420 upper_priv, upper_info, extack);
7421 }
7422 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7423
7424 /**
7425 * netdev_upper_dev_unlink - Removes a link to upper device
7426 * @dev: device
7427 * @upper_dev: new upper device
7428 *
7429 * Removes a link to device which is upper to this one. The caller must hold
7430 * the RTNL lock.
7431 */
7432 void netdev_upper_dev_unlink(struct net_device *dev,
7433 struct net_device *upper_dev)
7434 {
7435 struct netdev_notifier_changeupper_info changeupper_info = {
7436 .info = {
7437 .dev = dev,
7438 },
7439 .upper_dev = upper_dev,
7440 .linking = false,
7441 };
7442
7443 ASSERT_RTNL();
7444
7445 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7446
7447 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7448 &changeupper_info.info);
7449
7450 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7451
7452 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7453 &changeupper_info.info);
7454
7455 __netdev_update_upper_level(dev, NULL);
7456 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7457
7458 __netdev_update_lower_level(upper_dev, NULL);
7459 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7460 NULL);
7461 }
7462 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7463
7464 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7465 struct net_device *lower_dev,
7466 bool val)
7467 {
7468 struct netdev_adjacent *adj;
7469
7470 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7471 if (adj)
7472 adj->ignore = val;
7473
7474 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7475 if (adj)
7476 adj->ignore = val;
7477 }
7478
7479 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7480 struct net_device *lower_dev)
7481 {
7482 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7483 }
7484
7485 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7486 struct net_device *lower_dev)
7487 {
7488 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7489 }
7490
7491 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7492 struct net_device *new_dev,
7493 struct net_device *dev,
7494 struct netlink_ext_ack *extack)
7495 {
7496 int err;
7497
7498 if (!new_dev)
7499 return 0;
7500
7501 if (old_dev && new_dev != old_dev)
7502 netdev_adjacent_dev_disable(dev, old_dev);
7503
7504 err = netdev_upper_dev_link(new_dev, dev, extack);
7505 if (err) {
7506 if (old_dev && new_dev != old_dev)
7507 netdev_adjacent_dev_enable(dev, old_dev);
7508 return err;
7509 }
7510
7511 return 0;
7512 }
7513 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7514
7515 void netdev_adjacent_change_commit(struct net_device *old_dev,
7516 struct net_device *new_dev,
7517 struct net_device *dev)
7518 {
7519 if (!new_dev || !old_dev)
7520 return;
7521
7522 if (new_dev == old_dev)
7523 return;
7524
7525 netdev_adjacent_dev_enable(dev, old_dev);
7526 netdev_upper_dev_unlink(old_dev, dev);
7527 }
7528 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7529
7530 void netdev_adjacent_change_abort(struct net_device *old_dev,
7531 struct net_device *new_dev,
7532 struct net_device *dev)
7533 {
7534 if (!new_dev)
7535 return;
7536
7537 if (old_dev && new_dev != old_dev)
7538 netdev_adjacent_dev_enable(dev, old_dev);
7539
7540 netdev_upper_dev_unlink(new_dev, dev);
7541 }
7542 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7543
7544 /**
7545 * netdev_bonding_info_change - Dispatch event about slave change
7546 * @dev: device
7547 * @bonding_info: info to dispatch
7548 *
7549 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7550 * The caller must hold the RTNL lock.
7551 */
7552 void netdev_bonding_info_change(struct net_device *dev,
7553 struct netdev_bonding_info *bonding_info)
7554 {
7555 struct netdev_notifier_bonding_info info = {
7556 .info.dev = dev,
7557 };
7558
7559 memcpy(&info.bonding_info, bonding_info,
7560 sizeof(struct netdev_bonding_info));
7561 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7562 &info.info);
7563 }
7564 EXPORT_SYMBOL(netdev_bonding_info_change);
7565
7566 static void netdev_adjacent_add_links(struct net_device *dev)
7567 {
7568 struct netdev_adjacent *iter;
7569
7570 struct net *net = dev_net(dev);
7571
7572 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7573 if (!net_eq(net, dev_net(iter->dev)))
7574 continue;
7575 netdev_adjacent_sysfs_add(iter->dev, dev,
7576 &iter->dev->adj_list.lower);
7577 netdev_adjacent_sysfs_add(dev, iter->dev,
7578 &dev->adj_list.upper);
7579 }
7580
7581 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7582 if (!net_eq(net, dev_net(iter->dev)))
7583 continue;
7584 netdev_adjacent_sysfs_add(iter->dev, dev,
7585 &iter->dev->adj_list.upper);
7586 netdev_adjacent_sysfs_add(dev, iter->dev,
7587 &dev->adj_list.lower);
7588 }
7589 }
7590
7591 static void netdev_adjacent_del_links(struct net_device *dev)
7592 {
7593 struct netdev_adjacent *iter;
7594
7595 struct net *net = dev_net(dev);
7596
7597 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7598 if (!net_eq(net, dev_net(iter->dev)))
7599 continue;
7600 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7601 &iter->dev->adj_list.lower);
7602 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7603 &dev->adj_list.upper);
7604 }
7605
7606 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7607 if (!net_eq(net, dev_net(iter->dev)))
7608 continue;
7609 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7610 &iter->dev->adj_list.upper);
7611 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7612 &dev->adj_list.lower);
7613 }
7614 }
7615
7616 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7617 {
7618 struct netdev_adjacent *iter;
7619
7620 struct net *net = dev_net(dev);
7621
7622 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7623 if (!net_eq(net, dev_net(iter->dev)))
7624 continue;
7625 netdev_adjacent_sysfs_del(iter->dev, oldname,
7626 &iter->dev->adj_list.lower);
7627 netdev_adjacent_sysfs_add(iter->dev, dev,
7628 &iter->dev->adj_list.lower);
7629 }
7630
7631 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7632 if (!net_eq(net, dev_net(iter->dev)))
7633 continue;
7634 netdev_adjacent_sysfs_del(iter->dev, oldname,
7635 &iter->dev->adj_list.upper);
7636 netdev_adjacent_sysfs_add(iter->dev, dev,
7637 &iter->dev->adj_list.upper);
7638 }
7639 }
7640
7641 void *netdev_lower_dev_get_private(struct net_device *dev,
7642 struct net_device *lower_dev)
7643 {
7644 struct netdev_adjacent *lower;
7645
7646 if (!lower_dev)
7647 return NULL;
7648 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7649 if (!lower)
7650 return NULL;
7651
7652 return lower->private;
7653 }
7654 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7655
7656
7657 /**
7658 * netdev_lower_change - Dispatch event about lower device state change
7659 * @lower_dev: device
7660 * @lower_state_info: state to dispatch
7661 *
7662 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7663 * The caller must hold the RTNL lock.
7664 */
7665 void netdev_lower_state_changed(struct net_device *lower_dev,
7666 void *lower_state_info)
7667 {
7668 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7669 .info.dev = lower_dev,
7670 };
7671
7672 ASSERT_RTNL();
7673 changelowerstate_info.lower_state_info = lower_state_info;
7674 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7675 &changelowerstate_info.info);
7676 }
7677 EXPORT_SYMBOL(netdev_lower_state_changed);
7678
7679 static void dev_change_rx_flags(struct net_device *dev, int flags)
7680 {
7681 const struct net_device_ops *ops = dev->netdev_ops;
7682
7683 if (ops->ndo_change_rx_flags)
7684 ops->ndo_change_rx_flags(dev, flags);
7685 }
7686
7687 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7688 {
7689 unsigned int old_flags = dev->flags;
7690 kuid_t uid;
7691 kgid_t gid;
7692
7693 ASSERT_RTNL();
7694
7695 dev->flags |= IFF_PROMISC;
7696 dev->promiscuity += inc;
7697 if (dev->promiscuity == 0) {
7698 /*
7699 * Avoid overflow.
7700 * If inc causes overflow, untouch promisc and return error.
7701 */
7702 if (inc < 0)
7703 dev->flags &= ~IFF_PROMISC;
7704 else {
7705 dev->promiscuity -= inc;
7706 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7707 dev->name);
7708 return -EOVERFLOW;
7709 }
7710 }
7711 if (dev->flags != old_flags) {
7712 pr_info("device %s %s promiscuous mode\n",
7713 dev->name,
7714 dev->flags & IFF_PROMISC ? "entered" : "left");
7715 if (audit_enabled) {
7716 current_uid_gid(&uid, &gid);
7717 audit_log(audit_context(), GFP_ATOMIC,
7718 AUDIT_ANOM_PROMISCUOUS,
7719 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7720 dev->name, (dev->flags & IFF_PROMISC),
7721 (old_flags & IFF_PROMISC),
7722 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7723 from_kuid(&init_user_ns, uid),
7724 from_kgid(&init_user_ns, gid),
7725 audit_get_sessionid(current));
7726 }
7727
7728 dev_change_rx_flags(dev, IFF_PROMISC);
7729 }
7730 if (notify)
7731 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7732 return 0;
7733 }
7734
7735 /**
7736 * dev_set_promiscuity - update promiscuity count on a device
7737 * @dev: device
7738 * @inc: modifier
7739 *
7740 * Add or remove promiscuity from a device. While the count in the device
7741 * remains above zero the interface remains promiscuous. Once it hits zero
7742 * the device reverts back to normal filtering operation. A negative inc
7743 * value is used to drop promiscuity on the device.
7744 * Return 0 if successful or a negative errno code on error.
7745 */
7746 int dev_set_promiscuity(struct net_device *dev, int inc)
7747 {
7748 unsigned int old_flags = dev->flags;
7749 int err;
7750
7751 err = __dev_set_promiscuity(dev, inc, true);
7752 if (err < 0)
7753 return err;
7754 if (dev->flags != old_flags)
7755 dev_set_rx_mode(dev);
7756 return err;
7757 }
7758 EXPORT_SYMBOL(dev_set_promiscuity);
7759
7760 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7761 {
7762 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7763
7764 ASSERT_RTNL();
7765
7766 dev->flags |= IFF_ALLMULTI;
7767 dev->allmulti += inc;
7768 if (dev->allmulti == 0) {
7769 /*
7770 * Avoid overflow.
7771 * If inc causes overflow, untouch allmulti and return error.
7772 */
7773 if (inc < 0)
7774 dev->flags &= ~IFF_ALLMULTI;
7775 else {
7776 dev->allmulti -= inc;
7777 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7778 dev->name);
7779 return -EOVERFLOW;
7780 }
7781 }
7782 if (dev->flags ^ old_flags) {
7783 dev_change_rx_flags(dev, IFF_ALLMULTI);
7784 dev_set_rx_mode(dev);
7785 if (notify)
7786 __dev_notify_flags(dev, old_flags,
7787 dev->gflags ^ old_gflags);
7788 }
7789 return 0;
7790 }
7791
7792 /**
7793 * dev_set_allmulti - update allmulti count on a device
7794 * @dev: device
7795 * @inc: modifier
7796 *
7797 * Add or remove reception of all multicast frames to a device. While the
7798 * count in the device remains above zero the interface remains listening
7799 * to all interfaces. Once it hits zero the device reverts back to normal
7800 * filtering operation. A negative @inc value is used to drop the counter
7801 * when releasing a resource needing all multicasts.
7802 * Return 0 if successful or a negative errno code on error.
7803 */
7804
7805 int dev_set_allmulti(struct net_device *dev, int inc)
7806 {
7807 return __dev_set_allmulti(dev, inc, true);
7808 }
7809 EXPORT_SYMBOL(dev_set_allmulti);
7810
7811 /*
7812 * Upload unicast and multicast address lists to device and
7813 * configure RX filtering. When the device doesn't support unicast
7814 * filtering it is put in promiscuous mode while unicast addresses
7815 * are present.
7816 */
7817 void __dev_set_rx_mode(struct net_device *dev)
7818 {
7819 const struct net_device_ops *ops = dev->netdev_ops;
7820
7821 /* dev_open will call this function so the list will stay sane. */
7822 if (!(dev->flags&IFF_UP))
7823 return;
7824
7825 if (!netif_device_present(dev))
7826 return;
7827
7828 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7829 /* Unicast addresses changes may only happen under the rtnl,
7830 * therefore calling __dev_set_promiscuity here is safe.
7831 */
7832 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7833 __dev_set_promiscuity(dev, 1, false);
7834 dev->uc_promisc = true;
7835 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7836 __dev_set_promiscuity(dev, -1, false);
7837 dev->uc_promisc = false;
7838 }
7839 }
7840
7841 if (ops->ndo_set_rx_mode)
7842 ops->ndo_set_rx_mode(dev);
7843 }
7844
7845 void dev_set_rx_mode(struct net_device *dev)
7846 {
7847 netif_addr_lock_bh(dev);
7848 __dev_set_rx_mode(dev);
7849 netif_addr_unlock_bh(dev);
7850 }
7851
7852 /**
7853 * dev_get_flags - get flags reported to userspace
7854 * @dev: device
7855 *
7856 * Get the combination of flag bits exported through APIs to userspace.
7857 */
7858 unsigned int dev_get_flags(const struct net_device *dev)
7859 {
7860 unsigned int flags;
7861
7862 flags = (dev->flags & ~(IFF_PROMISC |
7863 IFF_ALLMULTI |
7864 IFF_RUNNING |
7865 IFF_LOWER_UP |
7866 IFF_DORMANT)) |
7867 (dev->gflags & (IFF_PROMISC |
7868 IFF_ALLMULTI));
7869
7870 if (netif_running(dev)) {
7871 if (netif_oper_up(dev))
7872 flags |= IFF_RUNNING;
7873 if (netif_carrier_ok(dev))
7874 flags |= IFF_LOWER_UP;
7875 if (netif_dormant(dev))
7876 flags |= IFF_DORMANT;
7877 }
7878
7879 return flags;
7880 }
7881 EXPORT_SYMBOL(dev_get_flags);
7882
7883 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7884 struct netlink_ext_ack *extack)
7885 {
7886 unsigned int old_flags = dev->flags;
7887 int ret;
7888
7889 ASSERT_RTNL();
7890
7891 /*
7892 * Set the flags on our device.
7893 */
7894
7895 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7896 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7897 IFF_AUTOMEDIA)) |
7898 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7899 IFF_ALLMULTI));
7900
7901 /*
7902 * Load in the correct multicast list now the flags have changed.
7903 */
7904
7905 if ((old_flags ^ flags) & IFF_MULTICAST)
7906 dev_change_rx_flags(dev, IFF_MULTICAST);
7907
7908 dev_set_rx_mode(dev);
7909
7910 /*
7911 * Have we downed the interface. We handle IFF_UP ourselves
7912 * according to user attempts to set it, rather than blindly
7913 * setting it.
7914 */
7915
7916 ret = 0;
7917 if ((old_flags ^ flags) & IFF_UP) {
7918 if (old_flags & IFF_UP)
7919 __dev_close(dev);
7920 else
7921 ret = __dev_open(dev, extack);
7922 }
7923
7924 if ((flags ^ dev->gflags) & IFF_PROMISC) {
7925 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7926 unsigned int old_flags = dev->flags;
7927
7928 dev->gflags ^= IFF_PROMISC;
7929
7930 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7931 if (dev->flags != old_flags)
7932 dev_set_rx_mode(dev);
7933 }
7934
7935 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7936 * is important. Some (broken) drivers set IFF_PROMISC, when
7937 * IFF_ALLMULTI is requested not asking us and not reporting.
7938 */
7939 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7940 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7941
7942 dev->gflags ^= IFF_ALLMULTI;
7943 __dev_set_allmulti(dev, inc, false);
7944 }
7945
7946 return ret;
7947 }
7948
7949 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7950 unsigned int gchanges)
7951 {
7952 unsigned int changes = dev->flags ^ old_flags;
7953
7954 if (gchanges)
7955 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7956
7957 if (changes & IFF_UP) {
7958 if (dev->flags & IFF_UP)
7959 call_netdevice_notifiers(NETDEV_UP, dev);
7960 else
7961 call_netdevice_notifiers(NETDEV_DOWN, dev);
7962 }
7963
7964 if (dev->flags & IFF_UP &&
7965 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7966 struct netdev_notifier_change_info change_info = {
7967 .info = {
7968 .dev = dev,
7969 },
7970 .flags_changed = changes,
7971 };
7972
7973 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7974 }
7975 }
7976
7977 /**
7978 * dev_change_flags - change device settings
7979 * @dev: device
7980 * @flags: device state flags
7981 * @extack: netlink extended ack
7982 *
7983 * Change settings on device based state flags. The flags are
7984 * in the userspace exported format.
7985 */
7986 int dev_change_flags(struct net_device *dev, unsigned int flags,
7987 struct netlink_ext_ack *extack)
7988 {
7989 int ret;
7990 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7991
7992 ret = __dev_change_flags(dev, flags, extack);
7993 if (ret < 0)
7994 return ret;
7995
7996 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7997 __dev_notify_flags(dev, old_flags, changes);
7998 return ret;
7999 }
8000 EXPORT_SYMBOL(dev_change_flags);
8001
8002 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8003 {
8004 const struct net_device_ops *ops = dev->netdev_ops;
8005
8006 if (ops->ndo_change_mtu)
8007 return ops->ndo_change_mtu(dev, new_mtu);
8008
8009 /* Pairs with all the lockless reads of dev->mtu in the stack */
8010 WRITE_ONCE(dev->mtu, new_mtu);
8011 return 0;
8012 }
8013 EXPORT_SYMBOL(__dev_set_mtu);
8014
8015 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8016 struct netlink_ext_ack *extack)
8017 {
8018 /* MTU must be positive, and in range */
8019 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8020 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8021 return -EINVAL;
8022 }
8023
8024 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8025 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8026 return -EINVAL;
8027 }
8028 return 0;
8029 }
8030
8031 /**
8032 * dev_set_mtu_ext - Change maximum transfer unit
8033 * @dev: device
8034 * @new_mtu: new transfer unit
8035 * @extack: netlink extended ack
8036 *
8037 * Change the maximum transfer size of the network device.
8038 */
8039 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8040 struct netlink_ext_ack *extack)
8041 {
8042 int err, orig_mtu;
8043
8044 if (new_mtu == dev->mtu)
8045 return 0;
8046
8047 err = dev_validate_mtu(dev, new_mtu, extack);
8048 if (err)
8049 return err;
8050
8051 if (!netif_device_present(dev))
8052 return -ENODEV;
8053
8054 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8055 err = notifier_to_errno(err);
8056 if (err)
8057 return err;
8058
8059 orig_mtu = dev->mtu;
8060 err = __dev_set_mtu(dev, new_mtu);
8061
8062 if (!err) {
8063 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8064 orig_mtu);
8065 err = notifier_to_errno(err);
8066 if (err) {
8067 /* setting mtu back and notifying everyone again,
8068 * so that they have a chance to revert changes.
8069 */
8070 __dev_set_mtu(dev, orig_mtu);
8071 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8072 new_mtu);
8073 }
8074 }
8075 return err;
8076 }
8077
8078 int dev_set_mtu(struct net_device *dev, int new_mtu)
8079 {
8080 struct netlink_ext_ack extack;
8081 int err;
8082
8083 memset(&extack, 0, sizeof(extack));
8084 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8085 if (err && extack._msg)
8086 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8087 return err;
8088 }
8089 EXPORT_SYMBOL(dev_set_mtu);
8090
8091 /**
8092 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8093 * @dev: device
8094 * @new_len: new tx queue length
8095 */
8096 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8097 {
8098 unsigned int orig_len = dev->tx_queue_len;
8099 int res;
8100
8101 if (new_len != (unsigned int)new_len)
8102 return -ERANGE;
8103
8104 if (new_len != orig_len) {
8105 dev->tx_queue_len = new_len;
8106 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8107 res = notifier_to_errno(res);
8108 if (res)
8109 goto err_rollback;
8110 res = dev_qdisc_change_tx_queue_len(dev);
8111 if (res)
8112 goto err_rollback;
8113 }
8114
8115 return 0;
8116
8117 err_rollback:
8118 netdev_err(dev, "refused to change device tx_queue_len\n");
8119 dev->tx_queue_len = orig_len;
8120 return res;
8121 }
8122
8123 /**
8124 * dev_set_group - Change group this device belongs to
8125 * @dev: device
8126 * @new_group: group this device should belong to
8127 */
8128 void dev_set_group(struct net_device *dev, int new_group)
8129 {
8130 dev->group = new_group;
8131 }
8132 EXPORT_SYMBOL(dev_set_group);
8133
8134 /**
8135 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8136 * @dev: device
8137 * @addr: new address
8138 * @extack: netlink extended ack
8139 */
8140 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8141 struct netlink_ext_ack *extack)
8142 {
8143 struct netdev_notifier_pre_changeaddr_info info = {
8144 .info.dev = dev,
8145 .info.extack = extack,
8146 .dev_addr = addr,
8147 };
8148 int rc;
8149
8150 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8151 return notifier_to_errno(rc);
8152 }
8153 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8154
8155 /**
8156 * dev_set_mac_address - Change Media Access Control Address
8157 * @dev: device
8158 * @sa: new address
8159 * @extack: netlink extended ack
8160 *
8161 * Change the hardware (MAC) address of the device
8162 */
8163 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8164 struct netlink_ext_ack *extack)
8165 {
8166 const struct net_device_ops *ops = dev->netdev_ops;
8167 int err;
8168
8169 if (!ops->ndo_set_mac_address)
8170 return -EOPNOTSUPP;
8171 if (sa->sa_family != dev->type)
8172 return -EINVAL;
8173 if (!netif_device_present(dev))
8174 return -ENODEV;
8175 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8176 if (err)
8177 return err;
8178 err = ops->ndo_set_mac_address(dev, sa);
8179 if (err)
8180 return err;
8181 dev->addr_assign_type = NET_ADDR_SET;
8182 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8183 add_device_randomness(dev->dev_addr, dev->addr_len);
8184 return 0;
8185 }
8186 EXPORT_SYMBOL(dev_set_mac_address);
8187
8188 static DECLARE_RWSEM(dev_addr_sem);
8189
8190 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8191 struct netlink_ext_ack *extack)
8192 {
8193 int ret;
8194
8195 down_write(&dev_addr_sem);
8196 ret = dev_set_mac_address(dev, sa, extack);
8197 up_write(&dev_addr_sem);
8198 return ret;
8199 }
8200 EXPORT_SYMBOL(dev_set_mac_address_user);
8201
8202 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8203 {
8204 size_t size = sizeof(sa->sa_data);
8205 struct net_device *dev;
8206 int ret = 0;
8207
8208 down_read(&dev_addr_sem);
8209 rcu_read_lock();
8210
8211 dev = dev_get_by_name_rcu(net, dev_name);
8212 if (!dev) {
8213 ret = -ENODEV;
8214 goto unlock;
8215 }
8216 if (!dev->addr_len)
8217 memset(sa->sa_data, 0, size);
8218 else
8219 memcpy(sa->sa_data, dev->dev_addr,
8220 min_t(size_t, size, dev->addr_len));
8221 sa->sa_family = dev->type;
8222
8223 unlock:
8224 rcu_read_unlock();
8225 up_read(&dev_addr_sem);
8226 return ret;
8227 }
8228 EXPORT_SYMBOL(dev_get_mac_address);
8229
8230 /**
8231 * dev_change_carrier - Change device carrier
8232 * @dev: device
8233 * @new_carrier: new value
8234 *
8235 * Change device carrier
8236 */
8237 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8238 {
8239 const struct net_device_ops *ops = dev->netdev_ops;
8240
8241 if (!ops->ndo_change_carrier)
8242 return -EOPNOTSUPP;
8243 if (!netif_device_present(dev))
8244 return -ENODEV;
8245 return ops->ndo_change_carrier(dev, new_carrier);
8246 }
8247 EXPORT_SYMBOL(dev_change_carrier);
8248
8249 /**
8250 * dev_get_phys_port_id - Get device physical port ID
8251 * @dev: device
8252 * @ppid: port ID
8253 *
8254 * Get device physical port ID
8255 */
8256 int dev_get_phys_port_id(struct net_device *dev,
8257 struct netdev_phys_item_id *ppid)
8258 {
8259 const struct net_device_ops *ops = dev->netdev_ops;
8260
8261 if (!ops->ndo_get_phys_port_id)
8262 return -EOPNOTSUPP;
8263 return ops->ndo_get_phys_port_id(dev, ppid);
8264 }
8265 EXPORT_SYMBOL(dev_get_phys_port_id);
8266
8267 /**
8268 * dev_get_phys_port_name - Get device physical port name
8269 * @dev: device
8270 * @name: port name
8271 * @len: limit of bytes to copy to name
8272 *
8273 * Get device physical port name
8274 */
8275 int dev_get_phys_port_name(struct net_device *dev,
8276 char *name, size_t len)
8277 {
8278 const struct net_device_ops *ops = dev->netdev_ops;
8279 int err;
8280
8281 if (ops->ndo_get_phys_port_name) {
8282 err = ops->ndo_get_phys_port_name(dev, name, len);
8283 if (err != -EOPNOTSUPP)
8284 return err;
8285 }
8286 return devlink_compat_phys_port_name_get(dev, name, len);
8287 }
8288 EXPORT_SYMBOL(dev_get_phys_port_name);
8289
8290 /**
8291 * dev_get_port_parent_id - Get the device's port parent identifier
8292 * @dev: network device
8293 * @ppid: pointer to a storage for the port's parent identifier
8294 * @recurse: allow/disallow recursion to lower devices
8295 *
8296 * Get the devices's port parent identifier
8297 */
8298 int dev_get_port_parent_id(struct net_device *dev,
8299 struct netdev_phys_item_id *ppid,
8300 bool recurse)
8301 {
8302 const struct net_device_ops *ops = dev->netdev_ops;
8303 struct netdev_phys_item_id first = { };
8304 struct net_device *lower_dev;
8305 struct list_head *iter;
8306 int err;
8307
8308 if (ops->ndo_get_port_parent_id) {
8309 err = ops->ndo_get_port_parent_id(dev, ppid);
8310 if (err != -EOPNOTSUPP)
8311 return err;
8312 }
8313
8314 err = devlink_compat_switch_id_get(dev, ppid);
8315 if (!err || err != -EOPNOTSUPP)
8316 return err;
8317
8318 if (!recurse)
8319 return -EOPNOTSUPP;
8320
8321 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8322 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8323 if (err)
8324 break;
8325 if (!first.id_len)
8326 first = *ppid;
8327 else if (memcmp(&first, ppid, sizeof(*ppid)))
8328 return -EOPNOTSUPP;
8329 }
8330
8331 return err;
8332 }
8333 EXPORT_SYMBOL(dev_get_port_parent_id);
8334
8335 /**
8336 * netdev_port_same_parent_id - Indicate if two network devices have
8337 * the same port parent identifier
8338 * @a: first network device
8339 * @b: second network device
8340 */
8341 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8342 {
8343 struct netdev_phys_item_id a_id = { };
8344 struct netdev_phys_item_id b_id = { };
8345
8346 if (dev_get_port_parent_id(a, &a_id, true) ||
8347 dev_get_port_parent_id(b, &b_id, true))
8348 return false;
8349
8350 return netdev_phys_item_id_same(&a_id, &b_id);
8351 }
8352 EXPORT_SYMBOL(netdev_port_same_parent_id);
8353
8354 /**
8355 * dev_change_proto_down - update protocol port state information
8356 * @dev: device
8357 * @proto_down: new value
8358 *
8359 * This info can be used by switch drivers to set the phys state of the
8360 * port.
8361 */
8362 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8363 {
8364 const struct net_device_ops *ops = dev->netdev_ops;
8365
8366 if (!ops->ndo_change_proto_down)
8367 return -EOPNOTSUPP;
8368 if (!netif_device_present(dev))
8369 return -ENODEV;
8370 return ops->ndo_change_proto_down(dev, proto_down);
8371 }
8372 EXPORT_SYMBOL(dev_change_proto_down);
8373
8374 /**
8375 * dev_change_proto_down_generic - generic implementation for
8376 * ndo_change_proto_down that sets carrier according to
8377 * proto_down.
8378 *
8379 * @dev: device
8380 * @proto_down: new value
8381 */
8382 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8383 {
8384 if (proto_down)
8385 netif_carrier_off(dev);
8386 else
8387 netif_carrier_on(dev);
8388 dev->proto_down = proto_down;
8389 return 0;
8390 }
8391 EXPORT_SYMBOL(dev_change_proto_down_generic);
8392
8393 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8394 enum bpf_netdev_command cmd)
8395 {
8396 struct netdev_bpf xdp;
8397
8398 if (!bpf_op)
8399 return 0;
8400
8401 memset(&xdp, 0, sizeof(xdp));
8402 xdp.command = cmd;
8403
8404 /* Query must always succeed. */
8405 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8406
8407 return xdp.prog_id;
8408 }
8409
8410 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8411 struct netlink_ext_ack *extack, u32 flags,
8412 struct bpf_prog *prog)
8413 {
8414 struct netdev_bpf xdp;
8415
8416 memset(&xdp, 0, sizeof(xdp));
8417 if (flags & XDP_FLAGS_HW_MODE)
8418 xdp.command = XDP_SETUP_PROG_HW;
8419 else
8420 xdp.command = XDP_SETUP_PROG;
8421 xdp.extack = extack;
8422 xdp.flags = flags;
8423 xdp.prog = prog;
8424
8425 return bpf_op(dev, &xdp);
8426 }
8427
8428 static void dev_xdp_uninstall(struct net_device *dev)
8429 {
8430 struct netdev_bpf xdp;
8431 bpf_op_t ndo_bpf;
8432
8433 /* Remove generic XDP */
8434 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8435
8436 /* Remove from the driver */
8437 ndo_bpf = dev->netdev_ops->ndo_bpf;
8438 if (!ndo_bpf)
8439 return;
8440
8441 memset(&xdp, 0, sizeof(xdp));
8442 xdp.command = XDP_QUERY_PROG;
8443 WARN_ON(ndo_bpf(dev, &xdp));
8444 if (xdp.prog_id)
8445 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8446 NULL));
8447
8448 /* Remove HW offload */
8449 memset(&xdp, 0, sizeof(xdp));
8450 xdp.command = XDP_QUERY_PROG_HW;
8451 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8452 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8453 NULL));
8454 }
8455
8456 /**
8457 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8458 * @dev: device
8459 * @extack: netlink extended ack
8460 * @fd: new program fd or negative value to clear
8461 * @flags: xdp-related flags
8462 *
8463 * Set or clear a bpf program for a device
8464 */
8465 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8466 int fd, u32 flags)
8467 {
8468 const struct net_device_ops *ops = dev->netdev_ops;
8469 enum bpf_netdev_command query;
8470 struct bpf_prog *prog = NULL;
8471 bpf_op_t bpf_op, bpf_chk;
8472 bool offload;
8473 int err;
8474
8475 ASSERT_RTNL();
8476
8477 offload = flags & XDP_FLAGS_HW_MODE;
8478 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8479
8480 bpf_op = bpf_chk = ops->ndo_bpf;
8481 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8482 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8483 return -EOPNOTSUPP;
8484 }
8485 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8486 bpf_op = generic_xdp_install;
8487 if (bpf_op == bpf_chk)
8488 bpf_chk = generic_xdp_install;
8489
8490 if (fd >= 0) {
8491 u32 prog_id;
8492
8493 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8494 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8495 return -EEXIST;
8496 }
8497
8498 prog_id = __dev_xdp_query(dev, bpf_op, query);
8499 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8500 NL_SET_ERR_MSG(extack, "XDP program already attached");
8501 return -EBUSY;
8502 }
8503
8504 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8505 bpf_op == ops->ndo_bpf);
8506 if (IS_ERR(prog))
8507 return PTR_ERR(prog);
8508
8509 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8510 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8511 bpf_prog_put(prog);
8512 return -EINVAL;
8513 }
8514
8515 /* prog->aux->id may be 0 for orphaned device-bound progs */
8516 if (prog->aux->id && prog->aux->id == prog_id) {
8517 bpf_prog_put(prog);
8518 return 0;
8519 }
8520 } else {
8521 if (!__dev_xdp_query(dev, bpf_op, query))
8522 return 0;
8523 }
8524
8525 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8526 if (err < 0 && prog)
8527 bpf_prog_put(prog);
8528
8529 return err;
8530 }
8531
8532 /**
8533 * dev_new_index - allocate an ifindex
8534 * @net: the applicable net namespace
8535 *
8536 * Returns a suitable unique value for a new device interface
8537 * number. The caller must hold the rtnl semaphore or the
8538 * dev_base_lock to be sure it remains unique.
8539 */
8540 static int dev_new_index(struct net *net)
8541 {
8542 int ifindex = net->ifindex;
8543
8544 for (;;) {
8545 if (++ifindex <= 0)
8546 ifindex = 1;
8547 if (!__dev_get_by_index(net, ifindex))
8548 return net->ifindex = ifindex;
8549 }
8550 }
8551
8552 /* Delayed registration/unregisteration */
8553 static LIST_HEAD(net_todo_list);
8554 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8555
8556 static void net_set_todo(struct net_device *dev)
8557 {
8558 list_add_tail(&dev->todo_list, &net_todo_list);
8559 dev_net(dev)->dev_unreg_count++;
8560 }
8561
8562 static void rollback_registered_many(struct list_head *head)
8563 {
8564 struct net_device *dev, *tmp;
8565 LIST_HEAD(close_head);
8566
8567 BUG_ON(dev_boot_phase);
8568 ASSERT_RTNL();
8569
8570 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8571 /* Some devices call without registering
8572 * for initialization unwind. Remove those
8573 * devices and proceed with the remaining.
8574 */
8575 if (dev->reg_state == NETREG_UNINITIALIZED) {
8576 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8577 dev->name, dev);
8578
8579 WARN_ON(1);
8580 list_del(&dev->unreg_list);
8581 continue;
8582 }
8583 dev->dismantle = true;
8584 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8585 }
8586
8587 /* If device is running, close it first. */
8588 list_for_each_entry(dev, head, unreg_list)
8589 list_add_tail(&dev->close_list, &close_head);
8590 dev_close_many(&close_head, true);
8591
8592 list_for_each_entry(dev, head, unreg_list) {
8593 /* And unlink it from device chain. */
8594 unlist_netdevice(dev);
8595
8596 dev->reg_state = NETREG_UNREGISTERING;
8597 }
8598 flush_all_backlogs();
8599
8600 synchronize_net();
8601
8602 list_for_each_entry(dev, head, unreg_list) {
8603 struct sk_buff *skb = NULL;
8604
8605 /* Shutdown queueing discipline. */
8606 dev_shutdown(dev);
8607
8608 dev_xdp_uninstall(dev);
8609
8610 /* Notify protocols, that we are about to destroy
8611 * this device. They should clean all the things.
8612 */
8613 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8614
8615 if (!dev->rtnl_link_ops ||
8616 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8617 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8618 GFP_KERNEL, NULL, 0);
8619
8620 /*
8621 * Flush the unicast and multicast chains
8622 */
8623 dev_uc_flush(dev);
8624 dev_mc_flush(dev);
8625
8626 if (dev->netdev_ops->ndo_uninit)
8627 dev->netdev_ops->ndo_uninit(dev);
8628
8629 if (skb)
8630 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8631
8632 /* Notifier chain MUST detach us all upper devices. */
8633 WARN_ON(netdev_has_any_upper_dev(dev));
8634 WARN_ON(netdev_has_any_lower_dev(dev));
8635
8636 /* Remove entries from kobject tree */
8637 netdev_unregister_kobject(dev);
8638 #ifdef CONFIG_XPS
8639 /* Remove XPS queueing entries */
8640 netif_reset_xps_queues_gt(dev, 0);
8641 #endif
8642 }
8643
8644 synchronize_net();
8645
8646 list_for_each_entry(dev, head, unreg_list)
8647 dev_put(dev);
8648 }
8649
8650 static void rollback_registered(struct net_device *dev)
8651 {
8652 LIST_HEAD(single);
8653
8654 list_add(&dev->unreg_list, &single);
8655 rollback_registered_many(&single);
8656 list_del(&single);
8657 }
8658
8659 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8660 struct net_device *upper, netdev_features_t features)
8661 {
8662 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8663 netdev_features_t feature;
8664 int feature_bit;
8665
8666 for_each_netdev_feature(upper_disables, feature_bit) {
8667 feature = __NETIF_F_BIT(feature_bit);
8668 if (!(upper->wanted_features & feature)
8669 && (features & feature)) {
8670 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8671 &feature, upper->name);
8672 features &= ~feature;
8673 }
8674 }
8675
8676 return features;
8677 }
8678
8679 static void netdev_sync_lower_features(struct net_device *upper,
8680 struct net_device *lower, netdev_features_t features)
8681 {
8682 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8683 netdev_features_t feature;
8684 int feature_bit;
8685
8686 for_each_netdev_feature(upper_disables, feature_bit) {
8687 feature = __NETIF_F_BIT(feature_bit);
8688 if (!(features & feature) && (lower->features & feature)) {
8689 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8690 &feature, lower->name);
8691 lower->wanted_features &= ~feature;
8692 __netdev_update_features(lower);
8693
8694 if (unlikely(lower->features & feature))
8695 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8696 &feature, lower->name);
8697 else
8698 netdev_features_change(lower);
8699 }
8700 }
8701 }
8702
8703 static netdev_features_t netdev_fix_features(struct net_device *dev,
8704 netdev_features_t features)
8705 {
8706 /* Fix illegal checksum combinations */
8707 if ((features & NETIF_F_HW_CSUM) &&
8708 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8709 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8710 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8711 }
8712
8713 /* TSO requires that SG is present as well. */
8714 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8715 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8716 features &= ~NETIF_F_ALL_TSO;
8717 }
8718
8719 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8720 !(features & NETIF_F_IP_CSUM)) {
8721 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8722 features &= ~NETIF_F_TSO;
8723 features &= ~NETIF_F_TSO_ECN;
8724 }
8725
8726 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8727 !(features & NETIF_F_IPV6_CSUM)) {
8728 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8729 features &= ~NETIF_F_TSO6;
8730 }
8731
8732 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8733 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8734 features &= ~NETIF_F_TSO_MANGLEID;
8735
8736 /* TSO ECN requires that TSO is present as well. */
8737 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8738 features &= ~NETIF_F_TSO_ECN;
8739
8740 /* Software GSO depends on SG. */
8741 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8742 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8743 features &= ~NETIF_F_GSO;
8744 }
8745
8746 /* GSO partial features require GSO partial be set */
8747 if ((features & dev->gso_partial_features) &&
8748 !(features & NETIF_F_GSO_PARTIAL)) {
8749 netdev_dbg(dev,
8750 "Dropping partially supported GSO features since no GSO partial.\n");
8751 features &= ~dev->gso_partial_features;
8752 }
8753
8754 if (!(features & NETIF_F_RXCSUM)) {
8755 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8756 * successfully merged by hardware must also have the
8757 * checksum verified by hardware. If the user does not
8758 * want to enable RXCSUM, logically, we should disable GRO_HW.
8759 */
8760 if (features & NETIF_F_GRO_HW) {
8761 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8762 features &= ~NETIF_F_GRO_HW;
8763 }
8764 }
8765
8766 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8767 if (features & NETIF_F_RXFCS) {
8768 if (features & NETIF_F_LRO) {
8769 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8770 features &= ~NETIF_F_LRO;
8771 }
8772
8773 if (features & NETIF_F_GRO_HW) {
8774 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8775 features &= ~NETIF_F_GRO_HW;
8776 }
8777 }
8778
8779 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
8780 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
8781 features &= ~NETIF_F_HW_TLS_RX;
8782 }
8783
8784 return features;
8785 }
8786
8787 int __netdev_update_features(struct net_device *dev)
8788 {
8789 struct net_device *upper, *lower;
8790 netdev_features_t features;
8791 struct list_head *iter;
8792 int err = -1;
8793
8794 ASSERT_RTNL();
8795
8796 features = netdev_get_wanted_features(dev);
8797
8798 if (dev->netdev_ops->ndo_fix_features)
8799 features = dev->netdev_ops->ndo_fix_features(dev, features);
8800
8801 /* driver might be less strict about feature dependencies */
8802 features = netdev_fix_features(dev, features);
8803
8804 /* some features can't be enabled if they're off an an upper device */
8805 netdev_for_each_upper_dev_rcu(dev, upper, iter)
8806 features = netdev_sync_upper_features(dev, upper, features);
8807
8808 if (dev->features == features)
8809 goto sync_lower;
8810
8811 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8812 &dev->features, &features);
8813
8814 if (dev->netdev_ops->ndo_set_features)
8815 err = dev->netdev_ops->ndo_set_features(dev, features);
8816 else
8817 err = 0;
8818
8819 if (unlikely(err < 0)) {
8820 netdev_err(dev,
8821 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8822 err, &features, &dev->features);
8823 /* return non-0 since some features might have changed and
8824 * it's better to fire a spurious notification than miss it
8825 */
8826 return -1;
8827 }
8828
8829 sync_lower:
8830 /* some features must be disabled on lower devices when disabled
8831 * on an upper device (think: bonding master or bridge)
8832 */
8833 netdev_for_each_lower_dev(dev, lower, iter)
8834 netdev_sync_lower_features(dev, lower, features);
8835
8836 if (!err) {
8837 netdev_features_t diff = features ^ dev->features;
8838
8839 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8840 /* udp_tunnel_{get,drop}_rx_info both need
8841 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8842 * device, or they won't do anything.
8843 * Thus we need to update dev->features
8844 * *before* calling udp_tunnel_get_rx_info,
8845 * but *after* calling udp_tunnel_drop_rx_info.
8846 */
8847 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8848 dev->features = features;
8849 udp_tunnel_get_rx_info(dev);
8850 } else {
8851 udp_tunnel_drop_rx_info(dev);
8852 }
8853 }
8854
8855 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8856 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8857 dev->features = features;
8858 err |= vlan_get_rx_ctag_filter_info(dev);
8859 } else {
8860 vlan_drop_rx_ctag_filter_info(dev);
8861 }
8862 }
8863
8864 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8865 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8866 dev->features = features;
8867 err |= vlan_get_rx_stag_filter_info(dev);
8868 } else {
8869 vlan_drop_rx_stag_filter_info(dev);
8870 }
8871 }
8872
8873 dev->features = features;
8874 }
8875
8876 return err < 0 ? 0 : 1;
8877 }
8878
8879 /**
8880 * netdev_update_features - recalculate device features
8881 * @dev: the device to check
8882 *
8883 * Recalculate dev->features set and send notifications if it
8884 * has changed. Should be called after driver or hardware dependent
8885 * conditions might have changed that influence the features.
8886 */
8887 void netdev_update_features(struct net_device *dev)
8888 {
8889 if (__netdev_update_features(dev))
8890 netdev_features_change(dev);
8891 }
8892 EXPORT_SYMBOL(netdev_update_features);
8893
8894 /**
8895 * netdev_change_features - recalculate device features
8896 * @dev: the device to check
8897 *
8898 * Recalculate dev->features set and send notifications even
8899 * if they have not changed. Should be called instead of
8900 * netdev_update_features() if also dev->vlan_features might
8901 * have changed to allow the changes to be propagated to stacked
8902 * VLAN devices.
8903 */
8904 void netdev_change_features(struct net_device *dev)
8905 {
8906 __netdev_update_features(dev);
8907 netdev_features_change(dev);
8908 }
8909 EXPORT_SYMBOL(netdev_change_features);
8910
8911 /**
8912 * netif_stacked_transfer_operstate - transfer operstate
8913 * @rootdev: the root or lower level device to transfer state from
8914 * @dev: the device to transfer operstate to
8915 *
8916 * Transfer operational state from root to device. This is normally
8917 * called when a stacking relationship exists between the root
8918 * device and the device(a leaf device).
8919 */
8920 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8921 struct net_device *dev)
8922 {
8923 if (rootdev->operstate == IF_OPER_DORMANT)
8924 netif_dormant_on(dev);
8925 else
8926 netif_dormant_off(dev);
8927
8928 if (netif_carrier_ok(rootdev))
8929 netif_carrier_on(dev);
8930 else
8931 netif_carrier_off(dev);
8932 }
8933 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8934
8935 static int netif_alloc_rx_queues(struct net_device *dev)
8936 {
8937 unsigned int i, count = dev->num_rx_queues;
8938 struct netdev_rx_queue *rx;
8939 size_t sz = count * sizeof(*rx);
8940 int err = 0;
8941
8942 BUG_ON(count < 1);
8943
8944 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8945 if (!rx)
8946 return -ENOMEM;
8947
8948 dev->_rx = rx;
8949
8950 for (i = 0; i < count; i++) {
8951 rx[i].dev = dev;
8952
8953 /* XDP RX-queue setup */
8954 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8955 if (err < 0)
8956 goto err_rxq_info;
8957 }
8958 return 0;
8959
8960 err_rxq_info:
8961 /* Rollback successful reg's and free other resources */
8962 while (i--)
8963 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8964 kvfree(dev->_rx);
8965 dev->_rx = NULL;
8966 return err;
8967 }
8968
8969 static void netif_free_rx_queues(struct net_device *dev)
8970 {
8971 unsigned int i, count = dev->num_rx_queues;
8972
8973 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8974 if (!dev->_rx)
8975 return;
8976
8977 for (i = 0; i < count; i++)
8978 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8979
8980 kvfree(dev->_rx);
8981 }
8982
8983 static void netdev_init_one_queue(struct net_device *dev,
8984 struct netdev_queue *queue, void *_unused)
8985 {
8986 /* Initialize queue lock */
8987 spin_lock_init(&queue->_xmit_lock);
8988 lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
8989 queue->xmit_lock_owner = -1;
8990 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8991 queue->dev = dev;
8992 #ifdef CONFIG_BQL
8993 dql_init(&queue->dql, HZ);
8994 #endif
8995 }
8996
8997 static void netif_free_tx_queues(struct net_device *dev)
8998 {
8999 kvfree(dev->_tx);
9000 }
9001
9002 static int netif_alloc_netdev_queues(struct net_device *dev)
9003 {
9004 unsigned int count = dev->num_tx_queues;
9005 struct netdev_queue *tx;
9006 size_t sz = count * sizeof(*tx);
9007
9008 if (count < 1 || count > 0xffff)
9009 return -EINVAL;
9010
9011 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9012 if (!tx)
9013 return -ENOMEM;
9014
9015 dev->_tx = tx;
9016
9017 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9018 spin_lock_init(&dev->tx_global_lock);
9019
9020 return 0;
9021 }
9022
9023 void netif_tx_stop_all_queues(struct net_device *dev)
9024 {
9025 unsigned int i;
9026
9027 for (i = 0; i < dev->num_tx_queues; i++) {
9028 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9029
9030 netif_tx_stop_queue(txq);
9031 }
9032 }
9033 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9034
9035 static void netdev_register_lockdep_key(struct net_device *dev)
9036 {
9037 lockdep_register_key(&dev->qdisc_tx_busylock_key);
9038 lockdep_register_key(&dev->qdisc_running_key);
9039 lockdep_register_key(&dev->qdisc_xmit_lock_key);
9040 lockdep_register_key(&dev->addr_list_lock_key);
9041 }
9042
9043 static void netdev_unregister_lockdep_key(struct net_device *dev)
9044 {
9045 lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
9046 lockdep_unregister_key(&dev->qdisc_running_key);
9047 lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9048 lockdep_unregister_key(&dev->addr_list_lock_key);
9049 }
9050
9051 void netdev_update_lockdep_key(struct net_device *dev)
9052 {
9053 lockdep_unregister_key(&dev->addr_list_lock_key);
9054 lockdep_register_key(&dev->addr_list_lock_key);
9055
9056 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9057 }
9058 EXPORT_SYMBOL(netdev_update_lockdep_key);
9059
9060 /**
9061 * register_netdevice - register a network device
9062 * @dev: device to register
9063 *
9064 * Take a completed network device structure and add it to the kernel
9065 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9066 * chain. 0 is returned on success. A negative errno code is returned
9067 * on a failure to set up the device, or if the name is a duplicate.
9068 *
9069 * Callers must hold the rtnl semaphore. You may want
9070 * register_netdev() instead of this.
9071 *
9072 * BUGS:
9073 * The locking appears insufficient to guarantee two parallel registers
9074 * will not get the same name.
9075 */
9076
9077 int register_netdevice(struct net_device *dev)
9078 {
9079 int ret;
9080 struct net *net = dev_net(dev);
9081
9082 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9083 NETDEV_FEATURE_COUNT);
9084 BUG_ON(dev_boot_phase);
9085 ASSERT_RTNL();
9086
9087 might_sleep();
9088
9089 /* When net_device's are persistent, this will be fatal. */
9090 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9091 BUG_ON(!net);
9092
9093 spin_lock_init(&dev->addr_list_lock);
9094 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9095
9096 ret = dev_get_valid_name(net, dev, dev->name);
9097 if (ret < 0)
9098 goto out;
9099
9100 /* Init, if this function is available */
9101 if (dev->netdev_ops->ndo_init) {
9102 ret = dev->netdev_ops->ndo_init(dev);
9103 if (ret) {
9104 if (ret > 0)
9105 ret = -EIO;
9106 goto out;
9107 }
9108 }
9109
9110 if (((dev->hw_features | dev->features) &
9111 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9112 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9113 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9114 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9115 ret = -EINVAL;
9116 goto err_uninit;
9117 }
9118
9119 ret = -EBUSY;
9120 if (!dev->ifindex)
9121 dev->ifindex = dev_new_index(net);
9122 else if (__dev_get_by_index(net, dev->ifindex))
9123 goto err_uninit;
9124
9125 /* Transfer changeable features to wanted_features and enable
9126 * software offloads (GSO and GRO).
9127 */
9128 dev->hw_features |= NETIF_F_SOFT_FEATURES;
9129 dev->features |= NETIF_F_SOFT_FEATURES;
9130
9131 if (dev->netdev_ops->ndo_udp_tunnel_add) {
9132 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9133 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9134 }
9135
9136 dev->wanted_features = dev->features & dev->hw_features;
9137
9138 if (!(dev->flags & IFF_LOOPBACK))
9139 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9140
9141 /* If IPv4 TCP segmentation offload is supported we should also
9142 * allow the device to enable segmenting the frame with the option
9143 * of ignoring a static IP ID value. This doesn't enable the
9144 * feature itself but allows the user to enable it later.
9145 */
9146 if (dev->hw_features & NETIF_F_TSO)
9147 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9148 if (dev->vlan_features & NETIF_F_TSO)
9149 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9150 if (dev->mpls_features & NETIF_F_TSO)
9151 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9152 if (dev->hw_enc_features & NETIF_F_TSO)
9153 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9154
9155 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9156 */
9157 dev->vlan_features |= NETIF_F_HIGHDMA;
9158
9159 /* Make NETIF_F_SG inheritable to tunnel devices.
9160 */
9161 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9162
9163 /* Make NETIF_F_SG inheritable to MPLS.
9164 */
9165 dev->mpls_features |= NETIF_F_SG;
9166
9167 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9168 ret = notifier_to_errno(ret);
9169 if (ret)
9170 goto err_uninit;
9171
9172 ret = netdev_register_kobject(dev);
9173 if (ret) {
9174 dev->reg_state = NETREG_UNREGISTERED;
9175 goto err_uninit;
9176 }
9177 dev->reg_state = NETREG_REGISTERED;
9178
9179 __netdev_update_features(dev);
9180
9181 /*
9182 * Default initial state at registry is that the
9183 * device is present.
9184 */
9185
9186 set_bit(__LINK_STATE_PRESENT, &dev->state);
9187
9188 linkwatch_init_dev(dev);
9189
9190 dev_init_scheduler(dev);
9191 dev_hold(dev);
9192 list_netdevice(dev);
9193 add_device_randomness(dev->dev_addr, dev->addr_len);
9194
9195 /* If the device has permanent device address, driver should
9196 * set dev_addr and also addr_assign_type should be set to
9197 * NET_ADDR_PERM (default value).
9198 */
9199 if (dev->addr_assign_type == NET_ADDR_PERM)
9200 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9201
9202 /* Notify protocols, that a new device appeared. */
9203 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9204 ret = notifier_to_errno(ret);
9205 if (ret) {
9206 rollback_registered(dev);
9207 rcu_barrier();
9208
9209 dev->reg_state = NETREG_UNREGISTERED;
9210 /* We should put the kobject that hold in
9211 * netdev_unregister_kobject(), otherwise
9212 * the net device cannot be freed when
9213 * driver calls free_netdev(), because the
9214 * kobject is being hold.
9215 */
9216 kobject_put(&dev->dev.kobj);
9217 }
9218 /*
9219 * Prevent userspace races by waiting until the network
9220 * device is fully setup before sending notifications.
9221 */
9222 if (!dev->rtnl_link_ops ||
9223 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9224 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9225
9226 out:
9227 return ret;
9228
9229 err_uninit:
9230 if (dev->netdev_ops->ndo_uninit)
9231 dev->netdev_ops->ndo_uninit(dev);
9232 if (dev->priv_destructor)
9233 dev->priv_destructor(dev);
9234 goto out;
9235 }
9236 EXPORT_SYMBOL(register_netdevice);
9237
9238 /**
9239 * init_dummy_netdev - init a dummy network device for NAPI
9240 * @dev: device to init
9241 *
9242 * This takes a network device structure and initialize the minimum
9243 * amount of fields so it can be used to schedule NAPI polls without
9244 * registering a full blown interface. This is to be used by drivers
9245 * that need to tie several hardware interfaces to a single NAPI
9246 * poll scheduler due to HW limitations.
9247 */
9248 int init_dummy_netdev(struct net_device *dev)
9249 {
9250 /* Clear everything. Note we don't initialize spinlocks
9251 * are they aren't supposed to be taken by any of the
9252 * NAPI code and this dummy netdev is supposed to be
9253 * only ever used for NAPI polls
9254 */
9255 memset(dev, 0, sizeof(struct net_device));
9256
9257 /* make sure we BUG if trying to hit standard
9258 * register/unregister code path
9259 */
9260 dev->reg_state = NETREG_DUMMY;
9261
9262 /* NAPI wants this */
9263 INIT_LIST_HEAD(&dev->napi_list);
9264
9265 /* a dummy interface is started by default */
9266 set_bit(__LINK_STATE_PRESENT, &dev->state);
9267 set_bit(__LINK_STATE_START, &dev->state);
9268
9269 /* napi_busy_loop stats accounting wants this */
9270 dev_net_set(dev, &init_net);
9271
9272 /* Note : We dont allocate pcpu_refcnt for dummy devices,
9273 * because users of this 'device' dont need to change
9274 * its refcount.
9275 */
9276
9277 return 0;
9278 }
9279 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9280
9281
9282 /**
9283 * register_netdev - register a network device
9284 * @dev: device to register
9285 *
9286 * Take a completed network device structure and add it to the kernel
9287 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9288 * chain. 0 is returned on success. A negative errno code is returned
9289 * on a failure to set up the device, or if the name is a duplicate.
9290 *
9291 * This is a wrapper around register_netdevice that takes the rtnl semaphore
9292 * and expands the device name if you passed a format string to
9293 * alloc_netdev.
9294 */
9295 int register_netdev(struct net_device *dev)
9296 {
9297 int err;
9298
9299 if (rtnl_lock_killable())
9300 return -EINTR;
9301 err = register_netdevice(dev);
9302 rtnl_unlock();
9303 return err;
9304 }
9305 EXPORT_SYMBOL(register_netdev);
9306
9307 int netdev_refcnt_read(const struct net_device *dev)
9308 {
9309 int i, refcnt = 0;
9310
9311 for_each_possible_cpu(i)
9312 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9313 return refcnt;
9314 }
9315 EXPORT_SYMBOL(netdev_refcnt_read);
9316
9317 /**
9318 * netdev_wait_allrefs - wait until all references are gone.
9319 * @dev: target net_device
9320 *
9321 * This is called when unregistering network devices.
9322 *
9323 * Any protocol or device that holds a reference should register
9324 * for netdevice notification, and cleanup and put back the
9325 * reference if they receive an UNREGISTER event.
9326 * We can get stuck here if buggy protocols don't correctly
9327 * call dev_put.
9328 */
9329 static void netdev_wait_allrefs(struct net_device *dev)
9330 {
9331 unsigned long rebroadcast_time, warning_time;
9332 int refcnt;
9333
9334 linkwatch_forget_dev(dev);
9335
9336 rebroadcast_time = warning_time = jiffies;
9337 refcnt = netdev_refcnt_read(dev);
9338
9339 while (refcnt != 0) {
9340 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9341 rtnl_lock();
9342
9343 /* Rebroadcast unregister notification */
9344 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9345
9346 __rtnl_unlock();
9347 rcu_barrier();
9348 rtnl_lock();
9349
9350 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9351 &dev->state)) {
9352 /* We must not have linkwatch events
9353 * pending on unregister. If this
9354 * happens, we simply run the queue
9355 * unscheduled, resulting in a noop
9356 * for this device.
9357 */
9358 linkwatch_run_queue();
9359 }
9360
9361 __rtnl_unlock();
9362
9363 rebroadcast_time = jiffies;
9364 }
9365
9366 msleep(250);
9367
9368 refcnt = netdev_refcnt_read(dev);
9369
9370 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9371 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9372 dev->name, refcnt);
9373 warning_time = jiffies;
9374 }
9375 }
9376 }
9377
9378 /* The sequence is:
9379 *
9380 * rtnl_lock();
9381 * ...
9382 * register_netdevice(x1);
9383 * register_netdevice(x2);
9384 * ...
9385 * unregister_netdevice(y1);
9386 * unregister_netdevice(y2);
9387 * ...
9388 * rtnl_unlock();
9389 * free_netdev(y1);
9390 * free_netdev(y2);
9391 *
9392 * We are invoked by rtnl_unlock().
9393 * This allows us to deal with problems:
9394 * 1) We can delete sysfs objects which invoke hotplug
9395 * without deadlocking with linkwatch via keventd.
9396 * 2) Since we run with the RTNL semaphore not held, we can sleep
9397 * safely in order to wait for the netdev refcnt to drop to zero.
9398 *
9399 * We must not return until all unregister events added during
9400 * the interval the lock was held have been completed.
9401 */
9402 void netdev_run_todo(void)
9403 {
9404 struct list_head list;
9405
9406 /* Snapshot list, allow later requests */
9407 list_replace_init(&net_todo_list, &list);
9408
9409 __rtnl_unlock();
9410
9411
9412 /* Wait for rcu callbacks to finish before next phase */
9413 if (!list_empty(&list))
9414 rcu_barrier();
9415
9416 while (!list_empty(&list)) {
9417 struct net_device *dev
9418 = list_first_entry(&list, struct net_device, todo_list);
9419 list_del(&dev->todo_list);
9420
9421 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9422 pr_err("network todo '%s' but state %d\n",
9423 dev->name, dev->reg_state);
9424 dump_stack();
9425 continue;
9426 }
9427
9428 dev->reg_state = NETREG_UNREGISTERED;
9429
9430 netdev_wait_allrefs(dev);
9431
9432 /* paranoia */
9433 BUG_ON(netdev_refcnt_read(dev));
9434 BUG_ON(!list_empty(&dev->ptype_all));
9435 BUG_ON(!list_empty(&dev->ptype_specific));
9436 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9437 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9438 #if IS_ENABLED(CONFIG_DECNET)
9439 WARN_ON(dev->dn_ptr);
9440 #endif
9441 if (dev->priv_destructor)
9442 dev->priv_destructor(dev);
9443 if (dev->needs_free_netdev)
9444 free_netdev(dev);
9445
9446 /* Report a network device has been unregistered */
9447 rtnl_lock();
9448 dev_net(dev)->dev_unreg_count--;
9449 __rtnl_unlock();
9450 wake_up(&netdev_unregistering_wq);
9451
9452 /* Free network device */
9453 kobject_put(&dev->dev.kobj);
9454 }
9455 }
9456
9457 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9458 * all the same fields in the same order as net_device_stats, with only
9459 * the type differing, but rtnl_link_stats64 may have additional fields
9460 * at the end for newer counters.
9461 */
9462 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9463 const struct net_device_stats *netdev_stats)
9464 {
9465 #if BITS_PER_LONG == 64
9466 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9467 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9468 /* zero out counters that only exist in rtnl_link_stats64 */
9469 memset((char *)stats64 + sizeof(*netdev_stats), 0,
9470 sizeof(*stats64) - sizeof(*netdev_stats));
9471 #else
9472 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9473 const unsigned long *src = (const unsigned long *)netdev_stats;
9474 u64 *dst = (u64 *)stats64;
9475
9476 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9477 for (i = 0; i < n; i++)
9478 dst[i] = src[i];
9479 /* zero out counters that only exist in rtnl_link_stats64 */
9480 memset((char *)stats64 + n * sizeof(u64), 0,
9481 sizeof(*stats64) - n * sizeof(u64));
9482 #endif
9483 }
9484 EXPORT_SYMBOL(netdev_stats_to_stats64);
9485
9486 /**
9487 * dev_get_stats - get network device statistics
9488 * @dev: device to get statistics from
9489 * @storage: place to store stats
9490 *
9491 * Get network statistics from device. Return @storage.
9492 * The device driver may provide its own method by setting
9493 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9494 * otherwise the internal statistics structure is used.
9495 */
9496 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9497 struct rtnl_link_stats64 *storage)
9498 {
9499 const struct net_device_ops *ops = dev->netdev_ops;
9500
9501 if (ops->ndo_get_stats64) {
9502 memset(storage, 0, sizeof(*storage));
9503 ops->ndo_get_stats64(dev, storage);
9504 } else if (ops->ndo_get_stats) {
9505 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9506 } else {
9507 netdev_stats_to_stats64(storage, &dev->stats);
9508 }
9509 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9510 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9511 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9512 return storage;
9513 }
9514 EXPORT_SYMBOL(dev_get_stats);
9515
9516 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9517 {
9518 struct netdev_queue *queue = dev_ingress_queue(dev);
9519
9520 #ifdef CONFIG_NET_CLS_ACT
9521 if (queue)
9522 return queue;
9523 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9524 if (!queue)
9525 return NULL;
9526 netdev_init_one_queue(dev, queue, NULL);
9527 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9528 queue->qdisc_sleeping = &noop_qdisc;
9529 rcu_assign_pointer(dev->ingress_queue, queue);
9530 #endif
9531 return queue;
9532 }
9533
9534 static const struct ethtool_ops default_ethtool_ops;
9535
9536 void netdev_set_default_ethtool_ops(struct net_device *dev,
9537 const struct ethtool_ops *ops)
9538 {
9539 if (dev->ethtool_ops == &default_ethtool_ops)
9540 dev->ethtool_ops = ops;
9541 }
9542 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9543
9544 void netdev_freemem(struct net_device *dev)
9545 {
9546 char *addr = (char *)dev - dev->padded;
9547
9548 kvfree(addr);
9549 }
9550
9551 /**
9552 * alloc_netdev_mqs - allocate network device
9553 * @sizeof_priv: size of private data to allocate space for
9554 * @name: device name format string
9555 * @name_assign_type: origin of device name
9556 * @setup: callback to initialize device
9557 * @txqs: the number of TX subqueues to allocate
9558 * @rxqs: the number of RX subqueues to allocate
9559 *
9560 * Allocates a struct net_device with private data area for driver use
9561 * and performs basic initialization. Also allocates subqueue structs
9562 * for each queue on the device.
9563 */
9564 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9565 unsigned char name_assign_type,
9566 void (*setup)(struct net_device *),
9567 unsigned int txqs, unsigned int rxqs)
9568 {
9569 struct net_device *dev;
9570 unsigned int alloc_size;
9571 struct net_device *p;
9572
9573 BUG_ON(strlen(name) >= sizeof(dev->name));
9574
9575 if (txqs < 1) {
9576 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9577 return NULL;
9578 }
9579
9580 if (rxqs < 1) {
9581 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9582 return NULL;
9583 }
9584
9585 alloc_size = sizeof(struct net_device);
9586 if (sizeof_priv) {
9587 /* ensure 32-byte alignment of private area */
9588 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9589 alloc_size += sizeof_priv;
9590 }
9591 /* ensure 32-byte alignment of whole construct */
9592 alloc_size += NETDEV_ALIGN - 1;
9593
9594 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9595 if (!p)
9596 return NULL;
9597
9598 dev = PTR_ALIGN(p, NETDEV_ALIGN);
9599 dev->padded = (char *)dev - (char *)p;
9600
9601 dev->pcpu_refcnt = alloc_percpu(int);
9602 if (!dev->pcpu_refcnt)
9603 goto free_dev;
9604
9605 if (dev_addr_init(dev))
9606 goto free_pcpu;
9607
9608 dev_mc_init(dev);
9609 dev_uc_init(dev);
9610
9611 dev_net_set(dev, &init_net);
9612
9613 netdev_register_lockdep_key(dev);
9614
9615 dev->gso_max_size = GSO_MAX_SIZE;
9616 dev->gso_max_segs = GSO_MAX_SEGS;
9617 dev->upper_level = 1;
9618 dev->lower_level = 1;
9619
9620 INIT_LIST_HEAD(&dev->napi_list);
9621 INIT_LIST_HEAD(&dev->unreg_list);
9622 INIT_LIST_HEAD(&dev->close_list);
9623 INIT_LIST_HEAD(&dev->link_watch_list);
9624 INIT_LIST_HEAD(&dev->adj_list.upper);
9625 INIT_LIST_HEAD(&dev->adj_list.lower);
9626 INIT_LIST_HEAD(&dev->ptype_all);
9627 INIT_LIST_HEAD(&dev->ptype_specific);
9628 #ifdef CONFIG_NET_SCHED
9629 hash_init(dev->qdisc_hash);
9630 #endif
9631 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9632 setup(dev);
9633
9634 if (!dev->tx_queue_len) {
9635 dev->priv_flags |= IFF_NO_QUEUE;
9636 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9637 }
9638
9639 dev->num_tx_queues = txqs;
9640 dev->real_num_tx_queues = txqs;
9641 if (netif_alloc_netdev_queues(dev))
9642 goto free_all;
9643
9644 dev->num_rx_queues = rxqs;
9645 dev->real_num_rx_queues = rxqs;
9646 if (netif_alloc_rx_queues(dev))
9647 goto free_all;
9648
9649 strcpy(dev->name, name);
9650 dev->name_assign_type = name_assign_type;
9651 dev->group = INIT_NETDEV_GROUP;
9652 if (!dev->ethtool_ops)
9653 dev->ethtool_ops = &default_ethtool_ops;
9654
9655 nf_hook_ingress_init(dev);
9656
9657 return dev;
9658
9659 free_all:
9660 free_netdev(dev);
9661 return NULL;
9662
9663 free_pcpu:
9664 free_percpu(dev->pcpu_refcnt);
9665 free_dev:
9666 netdev_freemem(dev);
9667 return NULL;
9668 }
9669 EXPORT_SYMBOL(alloc_netdev_mqs);
9670
9671 /**
9672 * free_netdev - free network device
9673 * @dev: device
9674 *
9675 * This function does the last stage of destroying an allocated device
9676 * interface. The reference to the device object is released. If this
9677 * is the last reference then it will be freed.Must be called in process
9678 * context.
9679 */
9680 void free_netdev(struct net_device *dev)
9681 {
9682 struct napi_struct *p, *n;
9683
9684 might_sleep();
9685 netif_free_tx_queues(dev);
9686 netif_free_rx_queues(dev);
9687
9688 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9689
9690 /* Flush device addresses */
9691 dev_addr_flush(dev);
9692
9693 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9694 netif_napi_del(p);
9695
9696 free_percpu(dev->pcpu_refcnt);
9697 dev->pcpu_refcnt = NULL;
9698
9699 netdev_unregister_lockdep_key(dev);
9700
9701 /* Compatibility with error handling in drivers */
9702 if (dev->reg_state == NETREG_UNINITIALIZED) {
9703 netdev_freemem(dev);
9704 return;
9705 }
9706
9707 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9708 dev->reg_state = NETREG_RELEASED;
9709
9710 /* will free via device release */
9711 put_device(&dev->dev);
9712 }
9713 EXPORT_SYMBOL(free_netdev);
9714
9715 /**
9716 * synchronize_net - Synchronize with packet receive processing
9717 *
9718 * Wait for packets currently being received to be done.
9719 * Does not block later packets from starting.
9720 */
9721 void synchronize_net(void)
9722 {
9723 might_sleep();
9724 if (rtnl_is_locked())
9725 synchronize_rcu_expedited();
9726 else
9727 synchronize_rcu();
9728 }
9729 EXPORT_SYMBOL(synchronize_net);
9730
9731 /**
9732 * unregister_netdevice_queue - remove device from the kernel
9733 * @dev: device
9734 * @head: list
9735 *
9736 * This function shuts down a device interface and removes it
9737 * from the kernel tables.
9738 * If head not NULL, device is queued to be unregistered later.
9739 *
9740 * Callers must hold the rtnl semaphore. You may want
9741 * unregister_netdev() instead of this.
9742 */
9743
9744 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9745 {
9746 ASSERT_RTNL();
9747
9748 if (head) {
9749 list_move_tail(&dev->unreg_list, head);
9750 } else {
9751 rollback_registered(dev);
9752 /* Finish processing unregister after unlock */
9753 net_set_todo(dev);
9754 }
9755 }
9756 EXPORT_SYMBOL(unregister_netdevice_queue);
9757
9758 /**
9759 * unregister_netdevice_many - unregister many devices
9760 * @head: list of devices
9761 *
9762 * Note: As most callers use a stack allocated list_head,
9763 * we force a list_del() to make sure stack wont be corrupted later.
9764 */
9765 void unregister_netdevice_many(struct list_head *head)
9766 {
9767 struct net_device *dev;
9768
9769 if (!list_empty(head)) {
9770 rollback_registered_many(head);
9771 list_for_each_entry(dev, head, unreg_list)
9772 net_set_todo(dev);
9773 list_del(head);
9774 }
9775 }
9776 EXPORT_SYMBOL(unregister_netdevice_many);
9777
9778 /**
9779 * unregister_netdev - remove device from the kernel
9780 * @dev: device
9781 *
9782 * This function shuts down a device interface and removes it
9783 * from the kernel tables.
9784 *
9785 * This is just a wrapper for unregister_netdevice that takes
9786 * the rtnl semaphore. In general you want to use this and not
9787 * unregister_netdevice.
9788 */
9789 void unregister_netdev(struct net_device *dev)
9790 {
9791 rtnl_lock();
9792 unregister_netdevice(dev);
9793 rtnl_unlock();
9794 }
9795 EXPORT_SYMBOL(unregister_netdev);
9796
9797 /**
9798 * dev_change_net_namespace - move device to different nethost namespace
9799 * @dev: device
9800 * @net: network namespace
9801 * @pat: If not NULL name pattern to try if the current device name
9802 * is already taken in the destination network namespace.
9803 *
9804 * This function shuts down a device interface and moves it
9805 * to a new network namespace. On success 0 is returned, on
9806 * a failure a netagive errno code is returned.
9807 *
9808 * Callers must hold the rtnl semaphore.
9809 */
9810
9811 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9812 {
9813 struct net *net_old = dev_net(dev);
9814 int err, new_nsid, new_ifindex;
9815
9816 ASSERT_RTNL();
9817
9818 /* Don't allow namespace local devices to be moved. */
9819 err = -EINVAL;
9820 if (dev->features & NETIF_F_NETNS_LOCAL)
9821 goto out;
9822
9823 /* Ensure the device has been registrered */
9824 if (dev->reg_state != NETREG_REGISTERED)
9825 goto out;
9826
9827 /* Get out if there is nothing todo */
9828 err = 0;
9829 if (net_eq(net_old, net))
9830 goto out;
9831
9832 /* Pick the destination device name, and ensure
9833 * we can use it in the destination network namespace.
9834 */
9835 err = -EEXIST;
9836 if (__dev_get_by_name(net, dev->name)) {
9837 /* We get here if we can't use the current device name */
9838 if (!pat)
9839 goto out;
9840 err = dev_get_valid_name(net, dev, pat);
9841 if (err < 0)
9842 goto out;
9843 }
9844
9845 /*
9846 * And now a mini version of register_netdevice unregister_netdevice.
9847 */
9848
9849 /* If device is running close it first. */
9850 dev_close(dev);
9851
9852 /* And unlink it from device chain */
9853 unlist_netdevice(dev);
9854
9855 synchronize_net();
9856
9857 /* Shutdown queueing discipline. */
9858 dev_shutdown(dev);
9859
9860 /* Notify protocols, that we are about to destroy
9861 * this device. They should clean all the things.
9862 *
9863 * Note that dev->reg_state stays at NETREG_REGISTERED.
9864 * This is wanted because this way 8021q and macvlan know
9865 * the device is just moving and can keep their slaves up.
9866 */
9867 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9868 rcu_barrier();
9869
9870 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
9871 /* If there is an ifindex conflict assign a new one */
9872 if (__dev_get_by_index(net, dev->ifindex))
9873 new_ifindex = dev_new_index(net);
9874 else
9875 new_ifindex = dev->ifindex;
9876
9877 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9878 new_ifindex);
9879
9880 /*
9881 * Flush the unicast and multicast chains
9882 */
9883 dev_uc_flush(dev);
9884 dev_mc_flush(dev);
9885
9886 /* Send a netdev-removed uevent to the old namespace */
9887 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9888 netdev_adjacent_del_links(dev);
9889
9890 /* Actually switch the network namespace */
9891 dev_net_set(dev, net);
9892 dev->ifindex = new_ifindex;
9893
9894 /* Send a netdev-add uevent to the new namespace */
9895 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9896 netdev_adjacent_add_links(dev);
9897
9898 /* Fixup kobjects */
9899 err = device_rename(&dev->dev, dev->name);
9900 WARN_ON(err);
9901
9902 /* Adapt owner in case owning user namespace of target network
9903 * namespace is different from the original one.
9904 */
9905 err = netdev_change_owner(dev, net_old, net);
9906 WARN_ON(err);
9907
9908 /* Add the device back in the hashes */
9909 list_netdevice(dev);
9910
9911 /* Notify protocols, that a new device appeared. */
9912 call_netdevice_notifiers(NETDEV_REGISTER, dev);
9913
9914 /*
9915 * Prevent userspace races by waiting until the network
9916 * device is fully setup before sending notifications.
9917 */
9918 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9919
9920 synchronize_net();
9921 err = 0;
9922 out:
9923 return err;
9924 }
9925 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9926
9927 static int dev_cpu_dead(unsigned int oldcpu)
9928 {
9929 struct sk_buff **list_skb;
9930 struct sk_buff *skb;
9931 unsigned int cpu;
9932 struct softnet_data *sd, *oldsd, *remsd = NULL;
9933
9934 local_irq_disable();
9935 cpu = smp_processor_id();
9936 sd = &per_cpu(softnet_data, cpu);
9937 oldsd = &per_cpu(softnet_data, oldcpu);
9938
9939 /* Find end of our completion_queue. */
9940 list_skb = &sd->completion_queue;
9941 while (*list_skb)
9942 list_skb = &(*list_skb)->next;
9943 /* Append completion queue from offline CPU. */
9944 *list_skb = oldsd->completion_queue;
9945 oldsd->completion_queue = NULL;
9946
9947 /* Append output queue from offline CPU. */
9948 if (oldsd->output_queue) {
9949 *sd->output_queue_tailp = oldsd->output_queue;
9950 sd->output_queue_tailp = oldsd->output_queue_tailp;
9951 oldsd->output_queue = NULL;
9952 oldsd->output_queue_tailp = &oldsd->output_queue;
9953 }
9954 /* Append NAPI poll list from offline CPU, with one exception :
9955 * process_backlog() must be called by cpu owning percpu backlog.
9956 * We properly handle process_queue & input_pkt_queue later.
9957 */
9958 while (!list_empty(&oldsd->poll_list)) {
9959 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9960 struct napi_struct,
9961 poll_list);
9962
9963 list_del_init(&napi->poll_list);
9964 if (napi->poll == process_backlog)
9965 napi->state = 0;
9966 else
9967 ____napi_schedule(sd, napi);
9968 }
9969
9970 raise_softirq_irqoff(NET_TX_SOFTIRQ);
9971 local_irq_enable();
9972
9973 #ifdef CONFIG_RPS
9974 remsd = oldsd->rps_ipi_list;
9975 oldsd->rps_ipi_list = NULL;
9976 #endif
9977 /* send out pending IPI's on offline CPU */
9978 net_rps_send_ipi(remsd);
9979
9980 /* Process offline CPU's input_pkt_queue */
9981 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9982 netif_rx_ni(skb);
9983 input_queue_head_incr(oldsd);
9984 }
9985 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9986 netif_rx_ni(skb);
9987 input_queue_head_incr(oldsd);
9988 }
9989
9990 return 0;
9991 }
9992
9993 /**
9994 * netdev_increment_features - increment feature set by one
9995 * @all: current feature set
9996 * @one: new feature set
9997 * @mask: mask feature set
9998 *
9999 * Computes a new feature set after adding a device with feature set
10000 * @one to the master device with current feature set @all. Will not
10001 * enable anything that is off in @mask. Returns the new feature set.
10002 */
10003 netdev_features_t netdev_increment_features(netdev_features_t all,
10004 netdev_features_t one, netdev_features_t mask)
10005 {
10006 if (mask & NETIF_F_HW_CSUM)
10007 mask |= NETIF_F_CSUM_MASK;
10008 mask |= NETIF_F_VLAN_CHALLENGED;
10009
10010 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10011 all &= one | ~NETIF_F_ALL_FOR_ALL;
10012
10013 /* If one device supports hw checksumming, set for all. */
10014 if (all & NETIF_F_HW_CSUM)
10015 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10016
10017 return all;
10018 }
10019 EXPORT_SYMBOL(netdev_increment_features);
10020
10021 static struct hlist_head * __net_init netdev_create_hash(void)
10022 {
10023 int i;
10024 struct hlist_head *hash;
10025
10026 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10027 if (hash != NULL)
10028 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10029 INIT_HLIST_HEAD(&hash[i]);
10030
10031 return hash;
10032 }
10033
10034 /* Initialize per network namespace state */
10035 static int __net_init netdev_init(struct net *net)
10036 {
10037 BUILD_BUG_ON(GRO_HASH_BUCKETS >
10038 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
10039
10040 if (net != &init_net)
10041 INIT_LIST_HEAD(&net->dev_base_head);
10042
10043 net->dev_name_head = netdev_create_hash();
10044 if (net->dev_name_head == NULL)
10045 goto err_name;
10046
10047 net->dev_index_head = netdev_create_hash();
10048 if (net->dev_index_head == NULL)
10049 goto err_idx;
10050
10051 return 0;
10052
10053 err_idx:
10054 kfree(net->dev_name_head);
10055 err_name:
10056 return -ENOMEM;
10057 }
10058
10059 /**
10060 * netdev_drivername - network driver for the device
10061 * @dev: network device
10062 *
10063 * Determine network driver for device.
10064 */
10065 const char *netdev_drivername(const struct net_device *dev)
10066 {
10067 const struct device_driver *driver;
10068 const struct device *parent;
10069 const char *empty = "";
10070
10071 parent = dev->dev.parent;
10072 if (!parent)
10073 return empty;
10074
10075 driver = parent->driver;
10076 if (driver && driver->name)
10077 return driver->name;
10078 return empty;
10079 }
10080
10081 static void __netdev_printk(const char *level, const struct net_device *dev,
10082 struct va_format *vaf)
10083 {
10084 if (dev && dev->dev.parent) {
10085 dev_printk_emit(level[1] - '0',
10086 dev->dev.parent,
10087 "%s %s %s%s: %pV",
10088 dev_driver_string(dev->dev.parent),
10089 dev_name(dev->dev.parent),
10090 netdev_name(dev), netdev_reg_state(dev),
10091 vaf);
10092 } else if (dev) {
10093 printk("%s%s%s: %pV",
10094 level, netdev_name(dev), netdev_reg_state(dev), vaf);
10095 } else {
10096 printk("%s(NULL net_device): %pV", level, vaf);
10097 }
10098 }
10099
10100 void netdev_printk(const char *level, const struct net_device *dev,
10101 const char *format, ...)
10102 {
10103 struct va_format vaf;
10104 va_list args;
10105
10106 va_start(args, format);
10107
10108 vaf.fmt = format;
10109 vaf.va = &args;
10110
10111 __netdev_printk(level, dev, &vaf);
10112
10113 va_end(args);
10114 }
10115 EXPORT_SYMBOL(netdev_printk);
10116
10117 #define define_netdev_printk_level(func, level) \
10118 void func(const struct net_device *dev, const char *fmt, ...) \
10119 { \
10120 struct va_format vaf; \
10121 va_list args; \
10122 \
10123 va_start(args, fmt); \
10124 \
10125 vaf.fmt = fmt; \
10126 vaf.va = &args; \
10127 \
10128 __netdev_printk(level, dev, &vaf); \
10129 \
10130 va_end(args); \
10131 } \
10132 EXPORT_SYMBOL(func);
10133
10134 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10135 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10136 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10137 define_netdev_printk_level(netdev_err, KERN_ERR);
10138 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10139 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10140 define_netdev_printk_level(netdev_info, KERN_INFO);
10141
10142 static void __net_exit netdev_exit(struct net *net)
10143 {
10144 kfree(net->dev_name_head);
10145 kfree(net->dev_index_head);
10146 if (net != &init_net)
10147 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10148 }
10149
10150 static struct pernet_operations __net_initdata netdev_net_ops = {
10151 .init = netdev_init,
10152 .exit = netdev_exit,
10153 };
10154
10155 static void __net_exit default_device_exit(struct net *net)
10156 {
10157 struct net_device *dev, *aux;
10158 /*
10159 * Push all migratable network devices back to the
10160 * initial network namespace
10161 */
10162 rtnl_lock();
10163 for_each_netdev_safe(net, dev, aux) {
10164 int err;
10165 char fb_name[IFNAMSIZ];
10166
10167 /* Ignore unmoveable devices (i.e. loopback) */
10168 if (dev->features & NETIF_F_NETNS_LOCAL)
10169 continue;
10170
10171 /* Leave virtual devices for the generic cleanup */
10172 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
10173 continue;
10174
10175 /* Push remaining network devices to init_net */
10176 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10177 if (__dev_get_by_name(&init_net, fb_name))
10178 snprintf(fb_name, IFNAMSIZ, "dev%%d");
10179 err = dev_change_net_namespace(dev, &init_net, fb_name);
10180 if (err) {
10181 pr_emerg("%s: failed to move %s to init_net: %d\n",
10182 __func__, dev->name, err);
10183 BUG();
10184 }
10185 }
10186 rtnl_unlock();
10187 }
10188
10189 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10190 {
10191 /* Return with the rtnl_lock held when there are no network
10192 * devices unregistering in any network namespace in net_list.
10193 */
10194 struct net *net;
10195 bool unregistering;
10196 DEFINE_WAIT_FUNC(wait, woken_wake_function);
10197
10198 add_wait_queue(&netdev_unregistering_wq, &wait);
10199 for (;;) {
10200 unregistering = false;
10201 rtnl_lock();
10202 list_for_each_entry(net, net_list, exit_list) {
10203 if (net->dev_unreg_count > 0) {
10204 unregistering = true;
10205 break;
10206 }
10207 }
10208 if (!unregistering)
10209 break;
10210 __rtnl_unlock();
10211
10212 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10213 }
10214 remove_wait_queue(&netdev_unregistering_wq, &wait);
10215 }
10216
10217 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10218 {
10219 /* At exit all network devices most be removed from a network
10220 * namespace. Do this in the reverse order of registration.
10221 * Do this across as many network namespaces as possible to
10222 * improve batching efficiency.
10223 */
10224 struct net_device *dev;
10225 struct net *net;
10226 LIST_HEAD(dev_kill_list);
10227
10228 /* To prevent network device cleanup code from dereferencing
10229 * loopback devices or network devices that have been freed
10230 * wait here for all pending unregistrations to complete,
10231 * before unregistring the loopback device and allowing the
10232 * network namespace be freed.
10233 *
10234 * The netdev todo list containing all network devices
10235 * unregistrations that happen in default_device_exit_batch
10236 * will run in the rtnl_unlock() at the end of
10237 * default_device_exit_batch.
10238 */
10239 rtnl_lock_unregistering(net_list);
10240 list_for_each_entry(net, net_list, exit_list) {
10241 for_each_netdev_reverse(net, dev) {
10242 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10243 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10244 else
10245 unregister_netdevice_queue(dev, &dev_kill_list);
10246 }
10247 }
10248 unregister_netdevice_many(&dev_kill_list);
10249 rtnl_unlock();
10250 }
10251
10252 static struct pernet_operations __net_initdata default_device_ops = {
10253 .exit = default_device_exit,
10254 .exit_batch = default_device_exit_batch,
10255 };
10256
10257 /*
10258 * Initialize the DEV module. At boot time this walks the device list and
10259 * unhooks any devices that fail to initialise (normally hardware not
10260 * present) and leaves us with a valid list of present and active devices.
10261 *
10262 */
10263
10264 /*
10265 * This is called single threaded during boot, so no need
10266 * to take the rtnl semaphore.
10267 */
10268 static int __init net_dev_init(void)
10269 {
10270 int i, rc = -ENOMEM;
10271
10272 BUG_ON(!dev_boot_phase);
10273
10274 if (dev_proc_init())
10275 goto out;
10276
10277 if (netdev_kobject_init())
10278 goto out;
10279
10280 INIT_LIST_HEAD(&ptype_all);
10281 for (i = 0; i < PTYPE_HASH_SIZE; i++)
10282 INIT_LIST_HEAD(&ptype_base[i]);
10283
10284 INIT_LIST_HEAD(&offload_base);
10285
10286 if (register_pernet_subsys(&netdev_net_ops))
10287 goto out;
10288
10289 /*
10290 * Initialise the packet receive queues.
10291 */
10292
10293 for_each_possible_cpu(i) {
10294 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10295 struct softnet_data *sd = &per_cpu(softnet_data, i);
10296
10297 INIT_WORK(flush, flush_backlog);
10298
10299 skb_queue_head_init(&sd->input_pkt_queue);
10300 skb_queue_head_init(&sd->process_queue);
10301 #ifdef CONFIG_XFRM_OFFLOAD
10302 skb_queue_head_init(&sd->xfrm_backlog);
10303 #endif
10304 INIT_LIST_HEAD(&sd->poll_list);
10305 sd->output_queue_tailp = &sd->output_queue;
10306 #ifdef CONFIG_RPS
10307 sd->csd.func = rps_trigger_softirq;
10308 sd->csd.info = sd;
10309 sd->cpu = i;
10310 #endif
10311
10312 init_gro_hash(&sd->backlog);
10313 sd->backlog.poll = process_backlog;
10314 sd->backlog.weight = weight_p;
10315 }
10316
10317 dev_boot_phase = 0;
10318
10319 /* The loopback device is special if any other network devices
10320 * is present in a network namespace the loopback device must
10321 * be present. Since we now dynamically allocate and free the
10322 * loopback device ensure this invariant is maintained by
10323 * keeping the loopback device as the first device on the
10324 * list of network devices. Ensuring the loopback devices
10325 * is the first device that appears and the last network device
10326 * that disappears.
10327 */
10328 if (register_pernet_device(&loopback_net_ops))
10329 goto out;
10330
10331 if (register_pernet_device(&default_device_ops))
10332 goto out;
10333
10334 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10335 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10336
10337 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10338 NULL, dev_cpu_dead);
10339 WARN_ON(rc < 0);
10340 rc = 0;
10341 out:
10342 return rc;
10343 }
10344
10345 subsys_initcall(net_dev_init);