]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/core/dev.c
Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[mirror_ubuntu-bionic-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 /*
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
150 *
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
153 *
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
159 * --BLG
160 *
161 * 0800 IP
162 * 8100 802.1Q VLAN
163 * 0001 802.3
164 * 0002 AX.25
165 * 0004 802.2
166 * 8035 RARP
167 * 0005 SNAP
168 * 0805 X.25
169 * 0806 ARP
170 * 8137 IPX
171 * 0009 Localtalk
172 * 86DD IPv6
173 */
174
175 #define PTYPE_HASH_SIZE (16)
176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
177
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly; /* Taps */
181
182 /*
183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184 * semaphore.
185 *
186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187 *
188 * Writers must hold the rtnl semaphore while they loop through the
189 * dev_base_head list, and hold dev_base_lock for writing when they do the
190 * actual updates. This allows pure readers to access the list even
191 * while a writer is preparing to update it.
192 *
193 * To put it another way, dev_base_lock is held for writing only to
194 * protect against pure readers; the rtnl semaphore provides the
195 * protection against other writers.
196 *
197 * See, for example usages, register_netdevice() and
198 * unregister_netdevice(), which must be called with the rtnl
199 * semaphore held.
200 */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 while (++net->dev_base_seq == 0);
207 }
208
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
237 {
238 struct net *net = dev_net(dev);
239
240 ASSERT_RTNL();
241
242 write_lock_bh(&dev_base_lock);
243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 hlist_add_head_rcu(&dev->index_hlist,
246 dev_index_hash(net, dev->ifindex));
247 write_unlock_bh(&dev_base_lock);
248
249 dev_base_seq_inc(net);
250
251 return 0;
252 }
253
254 /* Device list removal
255 * caller must respect a RCU grace period before freeing/reusing dev
256 */
257 static void unlist_netdevice(struct net_device *dev)
258 {
259 ASSERT_RTNL();
260
261 /* Unlink dev from the device chain */
262 write_lock_bh(&dev_base_lock);
263 list_del_rcu(&dev->dev_list);
264 hlist_del_rcu(&dev->name_hlist);
265 hlist_del_rcu(&dev->index_hlist);
266 write_unlock_bh(&dev_base_lock);
267
268 dev_base_seq_inc(dev_net(dev));
269 }
270
271 /*
272 * Our notifier list
273 */
274
275 static RAW_NOTIFIER_HEAD(netdev_chain);
276
277 /*
278 * Device drivers call our routines to queue packets here. We empty the
279 * queue in the local softnet handler.
280 */
281
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
284
285 #ifdef CONFIG_LOCKDEP
286 /*
287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288 * according to dev->type
289 */
290 static const unsigned short netdev_lock_type[] =
291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
304 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
305 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
306
307 static const char *const netdev_lock_name[] =
308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
321 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
322 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
323
324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
326
327 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
328 {
329 int i;
330
331 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
332 if (netdev_lock_type[i] == dev_type)
333 return i;
334 /* the last key is used by default */
335 return ARRAY_SIZE(netdev_lock_type) - 1;
336 }
337
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340 {
341 int i;
342
343 i = netdev_lock_pos(dev_type);
344 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
345 netdev_lock_name[i]);
346 }
347
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 int i;
351
352 i = netdev_lock_pos(dev->type);
353 lockdep_set_class_and_name(&dev->addr_list_lock,
354 &netdev_addr_lock_key[i],
355 netdev_lock_name[i]);
356 }
357 #else
358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
359 unsigned short dev_type)
360 {
361 }
362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
363 {
364 }
365 #endif
366
367 /*******************************************************************************
368
369 Protocol management and registration routines
370
371 *******************************************************************************/
372
373 /*
374 * Add a protocol ID to the list. Now that the input handler is
375 * smarter we can dispense with all the messy stuff that used to be
376 * here.
377 *
378 * BEWARE!!! Protocol handlers, mangling input packets,
379 * MUST BE last in hash buckets and checking protocol handlers
380 * MUST start from promiscuous ptype_all chain in net_bh.
381 * It is true now, do not change it.
382 * Explanation follows: if protocol handler, mangling packet, will
383 * be the first on list, it is not able to sense, that packet
384 * is cloned and should be copied-on-write, so that it will
385 * change it and subsequent readers will get broken packet.
386 * --ANK (980803)
387 */
388
389 static inline struct list_head *ptype_head(const struct packet_type *pt)
390 {
391 if (pt->type == htons(ETH_P_ALL))
392 return &ptype_all;
393 else
394 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396
397 /**
398 * dev_add_pack - add packet handler
399 * @pt: packet type declaration
400 *
401 * Add a protocol handler to the networking stack. The passed &packet_type
402 * is linked into kernel lists and may not be freed until it has been
403 * removed from the kernel lists.
404 *
405 * This call does not sleep therefore it can not
406 * guarantee all CPU's that are in middle of receiving packets
407 * will see the new packet type (until the next received packet).
408 */
409
410 void dev_add_pack(struct packet_type *pt)
411 {
412 struct list_head *head = ptype_head(pt);
413
414 spin_lock(&ptype_lock);
415 list_add_rcu(&pt->list, head);
416 spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419
420 /**
421 * __dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * The packet type might still be in use by receivers
430 * and must not be freed until after all the CPU's have gone
431 * through a quiescent state.
432 */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 struct list_head *head = ptype_head(pt);
436 struct packet_type *pt1;
437
438 spin_lock(&ptype_lock);
439
440 list_for_each_entry(pt1, head, list) {
441 if (pt == pt1) {
442 list_del_rcu(&pt->list);
443 goto out;
444 }
445 }
446
447 pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452
453 /**
454 * dev_remove_pack - remove packet handler
455 * @pt: packet type declaration
456 *
457 * Remove a protocol handler that was previously added to the kernel
458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
459 * from the kernel lists and can be freed or reused once this function
460 * returns.
461 *
462 * This call sleeps to guarantee that no CPU is looking at the packet
463 * type after return.
464 */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 __dev_remove_pack(pt);
468
469 synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472
473 /******************************************************************************
474
475 Device Boot-time Settings Routines
476
477 *******************************************************************************/
478
479 /* Boot time configuration table */
480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
481
482 /**
483 * netdev_boot_setup_add - add new setup entry
484 * @name: name of the device
485 * @map: configured settings for the device
486 *
487 * Adds new setup entry to the dev_boot_setup list. The function
488 * returns 0 on error and 1 on success. This is a generic routine to
489 * all netdevices.
490 */
491 static int netdev_boot_setup_add(char *name, struct ifmap *map)
492 {
493 struct netdev_boot_setup *s;
494 int i;
495
496 s = dev_boot_setup;
497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
499 memset(s[i].name, 0, sizeof(s[i].name));
500 strlcpy(s[i].name, name, IFNAMSIZ);
501 memcpy(&s[i].map, map, sizeof(s[i].map));
502 break;
503 }
504 }
505
506 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
507 }
508
509 /**
510 * netdev_boot_setup_check - check boot time settings
511 * @dev: the netdevice
512 *
513 * Check boot time settings for the device.
514 * The found settings are set for the device to be used
515 * later in the device probing.
516 * Returns 0 if no settings found, 1 if they are.
517 */
518 int netdev_boot_setup_check(struct net_device *dev)
519 {
520 struct netdev_boot_setup *s = dev_boot_setup;
521 int i;
522
523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
524 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
525 !strcmp(dev->name, s[i].name)) {
526 dev->irq = s[i].map.irq;
527 dev->base_addr = s[i].map.base_addr;
528 dev->mem_start = s[i].map.mem_start;
529 dev->mem_end = s[i].map.mem_end;
530 return 1;
531 }
532 }
533 return 0;
534 }
535 EXPORT_SYMBOL(netdev_boot_setup_check);
536
537
538 /**
539 * netdev_boot_base - get address from boot time settings
540 * @prefix: prefix for network device
541 * @unit: id for network device
542 *
543 * Check boot time settings for the base address of device.
544 * The found settings are set for the device to be used
545 * later in the device probing.
546 * Returns 0 if no settings found.
547 */
548 unsigned long netdev_boot_base(const char *prefix, int unit)
549 {
550 const struct netdev_boot_setup *s = dev_boot_setup;
551 char name[IFNAMSIZ];
552 int i;
553
554 sprintf(name, "%s%d", prefix, unit);
555
556 /*
557 * If device already registered then return base of 1
558 * to indicate not to probe for this interface
559 */
560 if (__dev_get_by_name(&init_net, name))
561 return 1;
562
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
564 if (!strcmp(name, s[i].name))
565 return s[i].map.base_addr;
566 return 0;
567 }
568
569 /*
570 * Saves at boot time configured settings for any netdevice.
571 */
572 int __init netdev_boot_setup(char *str)
573 {
574 int ints[5];
575 struct ifmap map;
576
577 str = get_options(str, ARRAY_SIZE(ints), ints);
578 if (!str || !*str)
579 return 0;
580
581 /* Save settings */
582 memset(&map, 0, sizeof(map));
583 if (ints[0] > 0)
584 map.irq = ints[1];
585 if (ints[0] > 1)
586 map.base_addr = ints[2];
587 if (ints[0] > 2)
588 map.mem_start = ints[3];
589 if (ints[0] > 3)
590 map.mem_end = ints[4];
591
592 /* Add new entry to the list */
593 return netdev_boot_setup_add(str, &map);
594 }
595
596 __setup("netdev=", netdev_boot_setup);
597
598 /*******************************************************************************
599
600 Device Interface Subroutines
601
602 *******************************************************************************/
603
604 /**
605 * __dev_get_by_name - find a device by its name
606 * @net: the applicable net namespace
607 * @name: name to find
608 *
609 * Find an interface by name. Must be called under RTNL semaphore
610 * or @dev_base_lock. If the name is found a pointer to the device
611 * is returned. If the name is not found then %NULL is returned. The
612 * reference counters are not incremented so the caller must be
613 * careful with locks.
614 */
615
616 struct net_device *__dev_get_by_name(struct net *net, const char *name)
617 {
618 struct hlist_node *p;
619 struct net_device *dev;
620 struct hlist_head *head = dev_name_hash(net, name);
621
622 hlist_for_each_entry(dev, p, head, name_hlist)
623 if (!strncmp(dev->name, name, IFNAMSIZ))
624 return dev;
625
626 return NULL;
627 }
628 EXPORT_SYMBOL(__dev_get_by_name);
629
630 /**
631 * dev_get_by_name_rcu - find a device by its name
632 * @net: the applicable net namespace
633 * @name: name to find
634 *
635 * Find an interface by name.
636 * If the name is found a pointer to the device is returned.
637 * If the name is not found then %NULL is returned.
638 * The reference counters are not incremented so the caller must be
639 * careful with locks. The caller must hold RCU lock.
640 */
641
642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
643 {
644 struct hlist_node *p;
645 struct net_device *dev;
646 struct hlist_head *head = dev_name_hash(net, name);
647
648 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
649 if (!strncmp(dev->name, name, IFNAMSIZ))
650 return dev;
651
652 return NULL;
653 }
654 EXPORT_SYMBOL(dev_get_by_name_rcu);
655
656 /**
657 * dev_get_by_name - find a device by its name
658 * @net: the applicable net namespace
659 * @name: name to find
660 *
661 * Find an interface by name. This can be called from any
662 * context and does its own locking. The returned handle has
663 * the usage count incremented and the caller must use dev_put() to
664 * release it when it is no longer needed. %NULL is returned if no
665 * matching device is found.
666 */
667
668 struct net_device *dev_get_by_name(struct net *net, const char *name)
669 {
670 struct net_device *dev;
671
672 rcu_read_lock();
673 dev = dev_get_by_name_rcu(net, name);
674 if (dev)
675 dev_hold(dev);
676 rcu_read_unlock();
677 return dev;
678 }
679 EXPORT_SYMBOL(dev_get_by_name);
680
681 /**
682 * __dev_get_by_index - find a device by its ifindex
683 * @net: the applicable net namespace
684 * @ifindex: index of device
685 *
686 * Search for an interface by index. Returns %NULL if the device
687 * is not found or a pointer to the device. The device has not
688 * had its reference counter increased so the caller must be careful
689 * about locking. The caller must hold either the RTNL semaphore
690 * or @dev_base_lock.
691 */
692
693 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
694 {
695 struct hlist_node *p;
696 struct net_device *dev;
697 struct hlist_head *head = dev_index_hash(net, ifindex);
698
699 hlist_for_each_entry(dev, p, head, index_hlist)
700 if (dev->ifindex == ifindex)
701 return dev;
702
703 return NULL;
704 }
705 EXPORT_SYMBOL(__dev_get_by_index);
706
707 /**
708 * dev_get_by_index_rcu - find a device by its ifindex
709 * @net: the applicable net namespace
710 * @ifindex: index of device
711 *
712 * Search for an interface by index. Returns %NULL if the device
713 * is not found or a pointer to the device. The device has not
714 * had its reference counter increased so the caller must be careful
715 * about locking. The caller must hold RCU lock.
716 */
717
718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
719 {
720 struct hlist_node *p;
721 struct net_device *dev;
722 struct hlist_head *head = dev_index_hash(net, ifindex);
723
724 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
725 if (dev->ifindex == ifindex)
726 return dev;
727
728 return NULL;
729 }
730 EXPORT_SYMBOL(dev_get_by_index_rcu);
731
732
733 /**
734 * dev_get_by_index - find a device by its ifindex
735 * @net: the applicable net namespace
736 * @ifindex: index of device
737 *
738 * Search for an interface by index. Returns NULL if the device
739 * is not found or a pointer to the device. The device returned has
740 * had a reference added and the pointer is safe until the user calls
741 * dev_put to indicate they have finished with it.
742 */
743
744 struct net_device *dev_get_by_index(struct net *net, int ifindex)
745 {
746 struct net_device *dev;
747
748 rcu_read_lock();
749 dev = dev_get_by_index_rcu(net, ifindex);
750 if (dev)
751 dev_hold(dev);
752 rcu_read_unlock();
753 return dev;
754 }
755 EXPORT_SYMBOL(dev_get_by_index);
756
757 /**
758 * dev_getbyhwaddr_rcu - find a device by its hardware address
759 * @net: the applicable net namespace
760 * @type: media type of device
761 * @ha: hardware address
762 *
763 * Search for an interface by MAC address. Returns NULL if the device
764 * is not found or a pointer to the device.
765 * The caller must hold RCU or RTNL.
766 * The returned device has not had its ref count increased
767 * and the caller must therefore be careful about locking
768 *
769 */
770
771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
772 const char *ha)
773 {
774 struct net_device *dev;
775
776 for_each_netdev_rcu(net, dev)
777 if (dev->type == type &&
778 !memcmp(dev->dev_addr, ha, dev->addr_len))
779 return dev;
780
781 return NULL;
782 }
783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
784
785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 struct net_device *dev;
788
789 ASSERT_RTNL();
790 for_each_netdev(net, dev)
791 if (dev->type == type)
792 return dev;
793
794 return NULL;
795 }
796 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
797
798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
799 {
800 struct net_device *dev, *ret = NULL;
801
802 rcu_read_lock();
803 for_each_netdev_rcu(net, dev)
804 if (dev->type == type) {
805 dev_hold(dev);
806 ret = dev;
807 break;
808 }
809 rcu_read_unlock();
810 return ret;
811 }
812 EXPORT_SYMBOL(dev_getfirstbyhwtype);
813
814 /**
815 * dev_get_by_flags_rcu - find any device with given flags
816 * @net: the applicable net namespace
817 * @if_flags: IFF_* values
818 * @mask: bitmask of bits in if_flags to check
819 *
820 * Search for any interface with the given flags. Returns NULL if a device
821 * is not found or a pointer to the device. Must be called inside
822 * rcu_read_lock(), and result refcount is unchanged.
823 */
824
825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
826 unsigned short mask)
827 {
828 struct net_device *dev, *ret;
829
830 ret = NULL;
831 for_each_netdev_rcu(net, dev) {
832 if (((dev->flags ^ if_flags) & mask) == 0) {
833 ret = dev;
834 break;
835 }
836 }
837 return ret;
838 }
839 EXPORT_SYMBOL(dev_get_by_flags_rcu);
840
841 /**
842 * dev_valid_name - check if name is okay for network device
843 * @name: name string
844 *
845 * Network device names need to be valid file names to
846 * to allow sysfs to work. We also disallow any kind of
847 * whitespace.
848 */
849 bool dev_valid_name(const char *name)
850 {
851 if (*name == '\0')
852 return false;
853 if (strlen(name) >= IFNAMSIZ)
854 return false;
855 if (!strcmp(name, ".") || !strcmp(name, ".."))
856 return false;
857
858 while (*name) {
859 if (*name == '/' || isspace(*name))
860 return false;
861 name++;
862 }
863 return true;
864 }
865 EXPORT_SYMBOL(dev_valid_name);
866
867 /**
868 * __dev_alloc_name - allocate a name for a device
869 * @net: network namespace to allocate the device name in
870 * @name: name format string
871 * @buf: scratch buffer and result name string
872 *
873 * Passed a format string - eg "lt%d" it will try and find a suitable
874 * id. It scans list of devices to build up a free map, then chooses
875 * the first empty slot. The caller must hold the dev_base or rtnl lock
876 * while allocating the name and adding the device in order to avoid
877 * duplicates.
878 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
879 * Returns the number of the unit assigned or a negative errno code.
880 */
881
882 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
883 {
884 int i = 0;
885 const char *p;
886 const int max_netdevices = 8*PAGE_SIZE;
887 unsigned long *inuse;
888 struct net_device *d;
889
890 p = strnchr(name, IFNAMSIZ-1, '%');
891 if (p) {
892 /*
893 * Verify the string as this thing may have come from
894 * the user. There must be either one "%d" and no other "%"
895 * characters.
896 */
897 if (p[1] != 'd' || strchr(p + 2, '%'))
898 return -EINVAL;
899
900 /* Use one page as a bit array of possible slots */
901 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
902 if (!inuse)
903 return -ENOMEM;
904
905 for_each_netdev(net, d) {
906 if (!sscanf(d->name, name, &i))
907 continue;
908 if (i < 0 || i >= max_netdevices)
909 continue;
910
911 /* avoid cases where sscanf is not exact inverse of printf */
912 snprintf(buf, IFNAMSIZ, name, i);
913 if (!strncmp(buf, d->name, IFNAMSIZ))
914 set_bit(i, inuse);
915 }
916
917 i = find_first_zero_bit(inuse, max_netdevices);
918 free_page((unsigned long) inuse);
919 }
920
921 if (buf != name)
922 snprintf(buf, IFNAMSIZ, name, i);
923 if (!__dev_get_by_name(net, buf))
924 return i;
925
926 /* It is possible to run out of possible slots
927 * when the name is long and there isn't enough space left
928 * for the digits, or if all bits are used.
929 */
930 return -ENFILE;
931 }
932
933 /**
934 * dev_alloc_name - allocate a name for a device
935 * @dev: device
936 * @name: name format string
937 *
938 * Passed a format string - eg "lt%d" it will try and find a suitable
939 * id. It scans list of devices to build up a free map, then chooses
940 * the first empty slot. The caller must hold the dev_base or rtnl lock
941 * while allocating the name and adding the device in order to avoid
942 * duplicates.
943 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
944 * Returns the number of the unit assigned or a negative errno code.
945 */
946
947 int dev_alloc_name(struct net_device *dev, const char *name)
948 {
949 char buf[IFNAMSIZ];
950 struct net *net;
951 int ret;
952
953 BUG_ON(!dev_net(dev));
954 net = dev_net(dev);
955 ret = __dev_alloc_name(net, name, buf);
956 if (ret >= 0)
957 strlcpy(dev->name, buf, IFNAMSIZ);
958 return ret;
959 }
960 EXPORT_SYMBOL(dev_alloc_name);
961
962 static int dev_get_valid_name(struct net_device *dev, const char *name)
963 {
964 struct net *net;
965
966 BUG_ON(!dev_net(dev));
967 net = dev_net(dev);
968
969 if (!dev_valid_name(name))
970 return -EINVAL;
971
972 if (strchr(name, '%'))
973 return dev_alloc_name(dev, name);
974 else if (__dev_get_by_name(net, name))
975 return -EEXIST;
976 else if (dev->name != name)
977 strlcpy(dev->name, name, IFNAMSIZ);
978
979 return 0;
980 }
981
982 /**
983 * dev_change_name - change name of a device
984 * @dev: device
985 * @newname: name (or format string) must be at least IFNAMSIZ
986 *
987 * Change name of a device, can pass format strings "eth%d".
988 * for wildcarding.
989 */
990 int dev_change_name(struct net_device *dev, const char *newname)
991 {
992 char oldname[IFNAMSIZ];
993 int err = 0;
994 int ret;
995 struct net *net;
996
997 ASSERT_RTNL();
998 BUG_ON(!dev_net(dev));
999
1000 net = dev_net(dev);
1001 if (dev->flags & IFF_UP)
1002 return -EBUSY;
1003
1004 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1005 return 0;
1006
1007 memcpy(oldname, dev->name, IFNAMSIZ);
1008
1009 err = dev_get_valid_name(dev, newname);
1010 if (err < 0)
1011 return err;
1012
1013 rollback:
1014 ret = device_rename(&dev->dev, dev->name);
1015 if (ret) {
1016 memcpy(dev->name, oldname, IFNAMSIZ);
1017 return ret;
1018 }
1019
1020 write_lock_bh(&dev_base_lock);
1021 hlist_del_rcu(&dev->name_hlist);
1022 write_unlock_bh(&dev_base_lock);
1023
1024 synchronize_rcu();
1025
1026 write_lock_bh(&dev_base_lock);
1027 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1028 write_unlock_bh(&dev_base_lock);
1029
1030 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1031 ret = notifier_to_errno(ret);
1032
1033 if (ret) {
1034 /* err >= 0 after dev_alloc_name() or stores the first errno */
1035 if (err >= 0) {
1036 err = ret;
1037 memcpy(dev->name, oldname, IFNAMSIZ);
1038 goto rollback;
1039 } else {
1040 pr_err("%s: name change rollback failed: %d\n",
1041 dev->name, ret);
1042 }
1043 }
1044
1045 return err;
1046 }
1047
1048 /**
1049 * dev_set_alias - change ifalias of a device
1050 * @dev: device
1051 * @alias: name up to IFALIASZ
1052 * @len: limit of bytes to copy from info
1053 *
1054 * Set ifalias for a device,
1055 */
1056 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1057 {
1058 char *new_ifalias;
1059
1060 ASSERT_RTNL();
1061
1062 if (len >= IFALIASZ)
1063 return -EINVAL;
1064
1065 if (!len) {
1066 if (dev->ifalias) {
1067 kfree(dev->ifalias);
1068 dev->ifalias = NULL;
1069 }
1070 return 0;
1071 }
1072
1073 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1074 if (!new_ifalias)
1075 return -ENOMEM;
1076 dev->ifalias = new_ifalias;
1077
1078 strlcpy(dev->ifalias, alias, len+1);
1079 return len;
1080 }
1081
1082
1083 /**
1084 * netdev_features_change - device changes features
1085 * @dev: device to cause notification
1086 *
1087 * Called to indicate a device has changed features.
1088 */
1089 void netdev_features_change(struct net_device *dev)
1090 {
1091 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1092 }
1093 EXPORT_SYMBOL(netdev_features_change);
1094
1095 /**
1096 * netdev_state_change - device changes state
1097 * @dev: device to cause notification
1098 *
1099 * Called to indicate a device has changed state. This function calls
1100 * the notifier chains for netdev_chain and sends a NEWLINK message
1101 * to the routing socket.
1102 */
1103 void netdev_state_change(struct net_device *dev)
1104 {
1105 if (dev->flags & IFF_UP) {
1106 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1107 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1108 }
1109 }
1110 EXPORT_SYMBOL(netdev_state_change);
1111
1112 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1113 {
1114 return call_netdevice_notifiers(event, dev);
1115 }
1116 EXPORT_SYMBOL(netdev_bonding_change);
1117
1118 /**
1119 * dev_load - load a network module
1120 * @net: the applicable net namespace
1121 * @name: name of interface
1122 *
1123 * If a network interface is not present and the process has suitable
1124 * privileges this function loads the module. If module loading is not
1125 * available in this kernel then it becomes a nop.
1126 */
1127
1128 void dev_load(struct net *net, const char *name)
1129 {
1130 struct net_device *dev;
1131 int no_module;
1132
1133 rcu_read_lock();
1134 dev = dev_get_by_name_rcu(net, name);
1135 rcu_read_unlock();
1136
1137 no_module = !dev;
1138 if (no_module && capable(CAP_NET_ADMIN))
1139 no_module = request_module("netdev-%s", name);
1140 if (no_module && capable(CAP_SYS_MODULE)) {
1141 if (!request_module("%s", name))
1142 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1143 name);
1144 }
1145 }
1146 EXPORT_SYMBOL(dev_load);
1147
1148 static int __dev_open(struct net_device *dev)
1149 {
1150 const struct net_device_ops *ops = dev->netdev_ops;
1151 int ret;
1152
1153 ASSERT_RTNL();
1154
1155 if (!netif_device_present(dev))
1156 return -ENODEV;
1157
1158 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1159 ret = notifier_to_errno(ret);
1160 if (ret)
1161 return ret;
1162
1163 set_bit(__LINK_STATE_START, &dev->state);
1164
1165 if (ops->ndo_validate_addr)
1166 ret = ops->ndo_validate_addr(dev);
1167
1168 if (!ret && ops->ndo_open)
1169 ret = ops->ndo_open(dev);
1170
1171 if (ret)
1172 clear_bit(__LINK_STATE_START, &dev->state);
1173 else {
1174 dev->flags |= IFF_UP;
1175 net_dmaengine_get();
1176 dev_set_rx_mode(dev);
1177 dev_activate(dev);
1178 add_device_randomness(dev->dev_addr, dev->addr_len);
1179 }
1180
1181 return ret;
1182 }
1183
1184 /**
1185 * dev_open - prepare an interface for use.
1186 * @dev: device to open
1187 *
1188 * Takes a device from down to up state. The device's private open
1189 * function is invoked and then the multicast lists are loaded. Finally
1190 * the device is moved into the up state and a %NETDEV_UP message is
1191 * sent to the netdev notifier chain.
1192 *
1193 * Calling this function on an active interface is a nop. On a failure
1194 * a negative errno code is returned.
1195 */
1196 int dev_open(struct net_device *dev)
1197 {
1198 int ret;
1199
1200 if (dev->flags & IFF_UP)
1201 return 0;
1202
1203 ret = __dev_open(dev);
1204 if (ret < 0)
1205 return ret;
1206
1207 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1208 call_netdevice_notifiers(NETDEV_UP, dev);
1209
1210 return ret;
1211 }
1212 EXPORT_SYMBOL(dev_open);
1213
1214 static int __dev_close_many(struct list_head *head)
1215 {
1216 struct net_device *dev;
1217
1218 ASSERT_RTNL();
1219 might_sleep();
1220
1221 list_for_each_entry(dev, head, unreg_list) {
1222 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1223
1224 clear_bit(__LINK_STATE_START, &dev->state);
1225
1226 /* Synchronize to scheduled poll. We cannot touch poll list, it
1227 * can be even on different cpu. So just clear netif_running().
1228 *
1229 * dev->stop() will invoke napi_disable() on all of it's
1230 * napi_struct instances on this device.
1231 */
1232 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1233 }
1234
1235 dev_deactivate_many(head);
1236
1237 list_for_each_entry(dev, head, unreg_list) {
1238 const struct net_device_ops *ops = dev->netdev_ops;
1239
1240 /*
1241 * Call the device specific close. This cannot fail.
1242 * Only if device is UP
1243 *
1244 * We allow it to be called even after a DETACH hot-plug
1245 * event.
1246 */
1247 if (ops->ndo_stop)
1248 ops->ndo_stop(dev);
1249
1250 dev->flags &= ~IFF_UP;
1251 net_dmaengine_put();
1252 }
1253
1254 return 0;
1255 }
1256
1257 static int __dev_close(struct net_device *dev)
1258 {
1259 int retval;
1260 LIST_HEAD(single);
1261
1262 list_add(&dev->unreg_list, &single);
1263 retval = __dev_close_many(&single);
1264 list_del(&single);
1265 return retval;
1266 }
1267
1268 static int dev_close_many(struct list_head *head)
1269 {
1270 struct net_device *dev, *tmp;
1271 LIST_HEAD(tmp_list);
1272
1273 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1274 if (!(dev->flags & IFF_UP))
1275 list_move(&dev->unreg_list, &tmp_list);
1276
1277 __dev_close_many(head);
1278
1279 list_for_each_entry(dev, head, unreg_list) {
1280 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1281 call_netdevice_notifiers(NETDEV_DOWN, dev);
1282 }
1283
1284 /* rollback_registered_many needs the complete original list */
1285 list_splice(&tmp_list, head);
1286 return 0;
1287 }
1288
1289 /**
1290 * dev_close - shutdown an interface.
1291 * @dev: device to shutdown
1292 *
1293 * This function moves an active device into down state. A
1294 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1295 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1296 * chain.
1297 */
1298 int dev_close(struct net_device *dev)
1299 {
1300 if (dev->flags & IFF_UP) {
1301 LIST_HEAD(single);
1302
1303 list_add(&dev->unreg_list, &single);
1304 dev_close_many(&single);
1305 list_del(&single);
1306 }
1307 return 0;
1308 }
1309 EXPORT_SYMBOL(dev_close);
1310
1311
1312 /**
1313 * dev_disable_lro - disable Large Receive Offload on a device
1314 * @dev: device
1315 *
1316 * Disable Large Receive Offload (LRO) on a net device. Must be
1317 * called under RTNL. This is needed if received packets may be
1318 * forwarded to another interface.
1319 */
1320 void dev_disable_lro(struct net_device *dev)
1321 {
1322 /*
1323 * If we're trying to disable lro on a vlan device
1324 * use the underlying physical device instead
1325 */
1326 if (is_vlan_dev(dev))
1327 dev = vlan_dev_real_dev(dev);
1328
1329 dev->wanted_features &= ~NETIF_F_LRO;
1330 netdev_update_features(dev);
1331
1332 if (unlikely(dev->features & NETIF_F_LRO))
1333 netdev_WARN(dev, "failed to disable LRO!\n");
1334 }
1335 EXPORT_SYMBOL(dev_disable_lro);
1336
1337
1338 static int dev_boot_phase = 1;
1339
1340 /**
1341 * register_netdevice_notifier - register a network notifier block
1342 * @nb: notifier
1343 *
1344 * Register a notifier to be called when network device events occur.
1345 * The notifier passed is linked into the kernel structures and must
1346 * not be reused until it has been unregistered. A negative errno code
1347 * is returned on a failure.
1348 *
1349 * When registered all registration and up events are replayed
1350 * to the new notifier to allow device to have a race free
1351 * view of the network device list.
1352 */
1353
1354 int register_netdevice_notifier(struct notifier_block *nb)
1355 {
1356 struct net_device *dev;
1357 struct net_device *last;
1358 struct net *net;
1359 int err;
1360
1361 rtnl_lock();
1362 err = raw_notifier_chain_register(&netdev_chain, nb);
1363 if (err)
1364 goto unlock;
1365 if (dev_boot_phase)
1366 goto unlock;
1367 for_each_net(net) {
1368 for_each_netdev(net, dev) {
1369 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1370 err = notifier_to_errno(err);
1371 if (err)
1372 goto rollback;
1373
1374 if (!(dev->flags & IFF_UP))
1375 continue;
1376
1377 nb->notifier_call(nb, NETDEV_UP, dev);
1378 }
1379 }
1380
1381 unlock:
1382 rtnl_unlock();
1383 return err;
1384
1385 rollback:
1386 last = dev;
1387 for_each_net(net) {
1388 for_each_netdev(net, dev) {
1389 if (dev == last)
1390 goto outroll;
1391
1392 if (dev->flags & IFF_UP) {
1393 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1394 nb->notifier_call(nb, NETDEV_DOWN, dev);
1395 }
1396 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1397 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1398 }
1399 }
1400
1401 outroll:
1402 raw_notifier_chain_unregister(&netdev_chain, nb);
1403 goto unlock;
1404 }
1405 EXPORT_SYMBOL(register_netdevice_notifier);
1406
1407 /**
1408 * unregister_netdevice_notifier - unregister a network notifier block
1409 * @nb: notifier
1410 *
1411 * Unregister a notifier previously registered by
1412 * register_netdevice_notifier(). The notifier is unlinked into the
1413 * kernel structures and may then be reused. A negative errno code
1414 * is returned on a failure.
1415 *
1416 * After unregistering unregister and down device events are synthesized
1417 * for all devices on the device list to the removed notifier to remove
1418 * the need for special case cleanup code.
1419 */
1420
1421 int unregister_netdevice_notifier(struct notifier_block *nb)
1422 {
1423 struct net_device *dev;
1424 struct net *net;
1425 int err;
1426
1427 rtnl_lock();
1428 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1429 if (err)
1430 goto unlock;
1431
1432 for_each_net(net) {
1433 for_each_netdev(net, dev) {
1434 if (dev->flags & IFF_UP) {
1435 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1436 nb->notifier_call(nb, NETDEV_DOWN, dev);
1437 }
1438 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1439 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1440 }
1441 }
1442 unlock:
1443 rtnl_unlock();
1444 return err;
1445 }
1446 EXPORT_SYMBOL(unregister_netdevice_notifier);
1447
1448 /**
1449 * call_netdevice_notifiers - call all network notifier blocks
1450 * @val: value passed unmodified to notifier function
1451 * @dev: net_device pointer passed unmodified to notifier function
1452 *
1453 * Call all network notifier blocks. Parameters and return value
1454 * are as for raw_notifier_call_chain().
1455 */
1456
1457 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1458 {
1459 ASSERT_RTNL();
1460 return raw_notifier_call_chain(&netdev_chain, val, dev);
1461 }
1462 EXPORT_SYMBOL(call_netdevice_notifiers);
1463
1464 static struct static_key netstamp_needed __read_mostly;
1465 #ifdef HAVE_JUMP_LABEL
1466 /* We are not allowed to call static_key_slow_dec() from irq context
1467 * If net_disable_timestamp() is called from irq context, defer the
1468 * static_key_slow_dec() calls.
1469 */
1470 static atomic_t netstamp_needed_deferred;
1471 #endif
1472
1473 void net_enable_timestamp(void)
1474 {
1475 #ifdef HAVE_JUMP_LABEL
1476 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1477
1478 if (deferred) {
1479 while (--deferred)
1480 static_key_slow_dec(&netstamp_needed);
1481 return;
1482 }
1483 #endif
1484 WARN_ON(in_interrupt());
1485 static_key_slow_inc(&netstamp_needed);
1486 }
1487 EXPORT_SYMBOL(net_enable_timestamp);
1488
1489 void net_disable_timestamp(void)
1490 {
1491 #ifdef HAVE_JUMP_LABEL
1492 if (in_interrupt()) {
1493 atomic_inc(&netstamp_needed_deferred);
1494 return;
1495 }
1496 #endif
1497 static_key_slow_dec(&netstamp_needed);
1498 }
1499 EXPORT_SYMBOL(net_disable_timestamp);
1500
1501 static inline void net_timestamp_set(struct sk_buff *skb)
1502 {
1503 skb->tstamp.tv64 = 0;
1504 if (static_key_false(&netstamp_needed))
1505 __net_timestamp(skb);
1506 }
1507
1508 #define net_timestamp_check(COND, SKB) \
1509 if (static_key_false(&netstamp_needed)) { \
1510 if ((COND) && !(SKB)->tstamp.tv64) \
1511 __net_timestamp(SKB); \
1512 } \
1513
1514 static int net_hwtstamp_validate(struct ifreq *ifr)
1515 {
1516 struct hwtstamp_config cfg;
1517 enum hwtstamp_tx_types tx_type;
1518 enum hwtstamp_rx_filters rx_filter;
1519 int tx_type_valid = 0;
1520 int rx_filter_valid = 0;
1521
1522 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1523 return -EFAULT;
1524
1525 if (cfg.flags) /* reserved for future extensions */
1526 return -EINVAL;
1527
1528 tx_type = cfg.tx_type;
1529 rx_filter = cfg.rx_filter;
1530
1531 switch (tx_type) {
1532 case HWTSTAMP_TX_OFF:
1533 case HWTSTAMP_TX_ON:
1534 case HWTSTAMP_TX_ONESTEP_SYNC:
1535 tx_type_valid = 1;
1536 break;
1537 }
1538
1539 switch (rx_filter) {
1540 case HWTSTAMP_FILTER_NONE:
1541 case HWTSTAMP_FILTER_ALL:
1542 case HWTSTAMP_FILTER_SOME:
1543 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1544 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1545 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1546 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1547 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1548 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1549 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1550 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1551 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1552 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1553 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1554 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1555 rx_filter_valid = 1;
1556 break;
1557 }
1558
1559 if (!tx_type_valid || !rx_filter_valid)
1560 return -ERANGE;
1561
1562 return 0;
1563 }
1564
1565 static inline bool is_skb_forwardable(struct net_device *dev,
1566 struct sk_buff *skb)
1567 {
1568 unsigned int len;
1569
1570 if (!(dev->flags & IFF_UP))
1571 return false;
1572
1573 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1574 if (skb->len <= len)
1575 return true;
1576
1577 /* if TSO is enabled, we don't care about the length as the packet
1578 * could be forwarded without being segmented before
1579 */
1580 if (skb_is_gso(skb))
1581 return true;
1582
1583 return false;
1584 }
1585
1586 /**
1587 * dev_forward_skb - loopback an skb to another netif
1588 *
1589 * @dev: destination network device
1590 * @skb: buffer to forward
1591 *
1592 * return values:
1593 * NET_RX_SUCCESS (no congestion)
1594 * NET_RX_DROP (packet was dropped, but freed)
1595 *
1596 * dev_forward_skb can be used for injecting an skb from the
1597 * start_xmit function of one device into the receive queue
1598 * of another device.
1599 *
1600 * The receiving device may be in another namespace, so
1601 * we have to clear all information in the skb that could
1602 * impact namespace isolation.
1603 */
1604 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1605 {
1606 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1607 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1608 atomic_long_inc(&dev->rx_dropped);
1609 kfree_skb(skb);
1610 return NET_RX_DROP;
1611 }
1612 }
1613
1614 skb_orphan(skb);
1615 nf_reset(skb);
1616
1617 if (unlikely(!is_skb_forwardable(dev, skb))) {
1618 atomic_long_inc(&dev->rx_dropped);
1619 kfree_skb(skb);
1620 return NET_RX_DROP;
1621 }
1622 skb->skb_iif = 0;
1623 skb->dev = dev;
1624 skb_dst_drop(skb);
1625 skb->tstamp.tv64 = 0;
1626 skb->pkt_type = PACKET_HOST;
1627 skb->protocol = eth_type_trans(skb, dev);
1628 skb->mark = 0;
1629 secpath_reset(skb);
1630 nf_reset(skb);
1631 return netif_rx(skb);
1632 }
1633 EXPORT_SYMBOL_GPL(dev_forward_skb);
1634
1635 static inline int deliver_skb(struct sk_buff *skb,
1636 struct packet_type *pt_prev,
1637 struct net_device *orig_dev)
1638 {
1639 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1640 return -ENOMEM;
1641 atomic_inc(&skb->users);
1642 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1643 }
1644
1645 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1646 {
1647 if (ptype->af_packet_priv == NULL)
1648 return false;
1649
1650 if (ptype->id_match)
1651 return ptype->id_match(ptype, skb->sk);
1652 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1653 return true;
1654
1655 return false;
1656 }
1657
1658 /*
1659 * Support routine. Sends outgoing frames to any network
1660 * taps currently in use.
1661 */
1662
1663 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1664 {
1665 struct packet_type *ptype;
1666 struct sk_buff *skb2 = NULL;
1667 struct packet_type *pt_prev = NULL;
1668
1669 rcu_read_lock();
1670 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1671 /* Never send packets back to the socket
1672 * they originated from - MvS (miquels@drinkel.ow.org)
1673 */
1674 if ((ptype->dev == dev || !ptype->dev) &&
1675 (!skb_loop_sk(ptype, skb))) {
1676 if (pt_prev) {
1677 deliver_skb(skb2, pt_prev, skb->dev);
1678 pt_prev = ptype;
1679 continue;
1680 }
1681
1682 skb2 = skb_clone(skb, GFP_ATOMIC);
1683 if (!skb2)
1684 break;
1685
1686 net_timestamp_set(skb2);
1687
1688 /* skb->nh should be correctly
1689 set by sender, so that the second statement is
1690 just protection against buggy protocols.
1691 */
1692 skb_reset_mac_header(skb2);
1693
1694 if (skb_network_header(skb2) < skb2->data ||
1695 skb2->network_header > skb2->tail) {
1696 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1697 ntohs(skb2->protocol),
1698 dev->name);
1699 skb_reset_network_header(skb2);
1700 }
1701
1702 skb2->transport_header = skb2->network_header;
1703 skb2->pkt_type = PACKET_OUTGOING;
1704 pt_prev = ptype;
1705 }
1706 }
1707 if (pt_prev)
1708 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1709 rcu_read_unlock();
1710 }
1711
1712 /**
1713 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1714 * @dev: Network device
1715 * @txq: number of queues available
1716 *
1717 * If real_num_tx_queues is changed the tc mappings may no longer be
1718 * valid. To resolve this verify the tc mapping remains valid and if
1719 * not NULL the mapping. With no priorities mapping to this
1720 * offset/count pair it will no longer be used. In the worst case TC0
1721 * is invalid nothing can be done so disable priority mappings. If is
1722 * expected that drivers will fix this mapping if they can before
1723 * calling netif_set_real_num_tx_queues.
1724 */
1725 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1726 {
1727 int i;
1728 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1729
1730 /* If TC0 is invalidated disable TC mapping */
1731 if (tc->offset + tc->count > txq) {
1732 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1733 dev->num_tc = 0;
1734 return;
1735 }
1736
1737 /* Invalidated prio to tc mappings set to TC0 */
1738 for (i = 1; i < TC_BITMASK + 1; i++) {
1739 int q = netdev_get_prio_tc_map(dev, i);
1740
1741 tc = &dev->tc_to_txq[q];
1742 if (tc->offset + tc->count > txq) {
1743 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1744 i, q);
1745 netdev_set_prio_tc_map(dev, i, 0);
1746 }
1747 }
1748 }
1749
1750 /*
1751 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1752 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1753 */
1754 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1755 {
1756 int rc;
1757
1758 if (txq < 1 || txq > dev->num_tx_queues)
1759 return -EINVAL;
1760
1761 if (dev->reg_state == NETREG_REGISTERED ||
1762 dev->reg_state == NETREG_UNREGISTERING) {
1763 ASSERT_RTNL();
1764
1765 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1766 txq);
1767 if (rc)
1768 return rc;
1769
1770 if (dev->num_tc)
1771 netif_setup_tc(dev, txq);
1772
1773 if (txq < dev->real_num_tx_queues)
1774 qdisc_reset_all_tx_gt(dev, txq);
1775 }
1776
1777 dev->real_num_tx_queues = txq;
1778 return 0;
1779 }
1780 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1781
1782 #ifdef CONFIG_RPS
1783 /**
1784 * netif_set_real_num_rx_queues - set actual number of RX queues used
1785 * @dev: Network device
1786 * @rxq: Actual number of RX queues
1787 *
1788 * This must be called either with the rtnl_lock held or before
1789 * registration of the net device. Returns 0 on success, or a
1790 * negative error code. If called before registration, it always
1791 * succeeds.
1792 */
1793 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1794 {
1795 int rc;
1796
1797 if (rxq < 1 || rxq > dev->num_rx_queues)
1798 return -EINVAL;
1799
1800 if (dev->reg_state == NETREG_REGISTERED) {
1801 ASSERT_RTNL();
1802
1803 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1804 rxq);
1805 if (rc)
1806 return rc;
1807 }
1808
1809 dev->real_num_rx_queues = rxq;
1810 return 0;
1811 }
1812 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1813 #endif
1814
1815 /**
1816 * netif_get_num_default_rss_queues - default number of RSS queues
1817 *
1818 * This routine should set an upper limit on the number of RSS queues
1819 * used by default by multiqueue devices.
1820 */
1821 int netif_get_num_default_rss_queues(void)
1822 {
1823 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
1824 }
1825 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
1826
1827 static inline void __netif_reschedule(struct Qdisc *q)
1828 {
1829 struct softnet_data *sd;
1830 unsigned long flags;
1831
1832 local_irq_save(flags);
1833 sd = &__get_cpu_var(softnet_data);
1834 q->next_sched = NULL;
1835 *sd->output_queue_tailp = q;
1836 sd->output_queue_tailp = &q->next_sched;
1837 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1838 local_irq_restore(flags);
1839 }
1840
1841 void __netif_schedule(struct Qdisc *q)
1842 {
1843 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1844 __netif_reschedule(q);
1845 }
1846 EXPORT_SYMBOL(__netif_schedule);
1847
1848 void dev_kfree_skb_irq(struct sk_buff *skb)
1849 {
1850 if (atomic_dec_and_test(&skb->users)) {
1851 struct softnet_data *sd;
1852 unsigned long flags;
1853
1854 local_irq_save(flags);
1855 sd = &__get_cpu_var(softnet_data);
1856 skb->next = sd->completion_queue;
1857 sd->completion_queue = skb;
1858 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1859 local_irq_restore(flags);
1860 }
1861 }
1862 EXPORT_SYMBOL(dev_kfree_skb_irq);
1863
1864 void dev_kfree_skb_any(struct sk_buff *skb)
1865 {
1866 if (in_irq() || irqs_disabled())
1867 dev_kfree_skb_irq(skb);
1868 else
1869 dev_kfree_skb(skb);
1870 }
1871 EXPORT_SYMBOL(dev_kfree_skb_any);
1872
1873
1874 /**
1875 * netif_device_detach - mark device as removed
1876 * @dev: network device
1877 *
1878 * Mark device as removed from system and therefore no longer available.
1879 */
1880 void netif_device_detach(struct net_device *dev)
1881 {
1882 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1883 netif_running(dev)) {
1884 netif_tx_stop_all_queues(dev);
1885 }
1886 }
1887 EXPORT_SYMBOL(netif_device_detach);
1888
1889 /**
1890 * netif_device_attach - mark device as attached
1891 * @dev: network device
1892 *
1893 * Mark device as attached from system and restart if needed.
1894 */
1895 void netif_device_attach(struct net_device *dev)
1896 {
1897 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1898 netif_running(dev)) {
1899 netif_tx_wake_all_queues(dev);
1900 __netdev_watchdog_up(dev);
1901 }
1902 }
1903 EXPORT_SYMBOL(netif_device_attach);
1904
1905 static void skb_warn_bad_offload(const struct sk_buff *skb)
1906 {
1907 static const netdev_features_t null_features = 0;
1908 struct net_device *dev = skb->dev;
1909 const char *driver = "";
1910
1911 if (dev && dev->dev.parent)
1912 driver = dev_driver_string(dev->dev.parent);
1913
1914 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1915 "gso_type=%d ip_summed=%d\n",
1916 driver, dev ? &dev->features : &null_features,
1917 skb->sk ? &skb->sk->sk_route_caps : &null_features,
1918 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1919 skb_shinfo(skb)->gso_type, skb->ip_summed);
1920 }
1921
1922 /*
1923 * Invalidate hardware checksum when packet is to be mangled, and
1924 * complete checksum manually on outgoing path.
1925 */
1926 int skb_checksum_help(struct sk_buff *skb)
1927 {
1928 __wsum csum;
1929 int ret = 0, offset;
1930
1931 if (skb->ip_summed == CHECKSUM_COMPLETE)
1932 goto out_set_summed;
1933
1934 if (unlikely(skb_shinfo(skb)->gso_size)) {
1935 skb_warn_bad_offload(skb);
1936 return -EINVAL;
1937 }
1938
1939 offset = skb_checksum_start_offset(skb);
1940 BUG_ON(offset >= skb_headlen(skb));
1941 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1942
1943 offset += skb->csum_offset;
1944 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1945
1946 if (skb_cloned(skb) &&
1947 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1948 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1949 if (ret)
1950 goto out;
1951 }
1952
1953 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1954 out_set_summed:
1955 skb->ip_summed = CHECKSUM_NONE;
1956 out:
1957 return ret;
1958 }
1959 EXPORT_SYMBOL(skb_checksum_help);
1960
1961 /**
1962 * skb_gso_segment - Perform segmentation on skb.
1963 * @skb: buffer to segment
1964 * @features: features for the output path (see dev->features)
1965 *
1966 * This function segments the given skb and returns a list of segments.
1967 *
1968 * It may return NULL if the skb requires no segmentation. This is
1969 * only possible when GSO is used for verifying header integrity.
1970 */
1971 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1972 netdev_features_t features)
1973 {
1974 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1975 struct packet_type *ptype;
1976 __be16 type = skb->protocol;
1977 int vlan_depth = ETH_HLEN;
1978 int err;
1979
1980 while (type == htons(ETH_P_8021Q)) {
1981 struct vlan_hdr *vh;
1982
1983 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1984 return ERR_PTR(-EINVAL);
1985
1986 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1987 type = vh->h_vlan_encapsulated_proto;
1988 vlan_depth += VLAN_HLEN;
1989 }
1990
1991 skb_reset_mac_header(skb);
1992 skb->mac_len = skb->network_header - skb->mac_header;
1993 __skb_pull(skb, skb->mac_len);
1994
1995 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1996 skb_warn_bad_offload(skb);
1997
1998 if (skb_header_cloned(skb) &&
1999 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2000 return ERR_PTR(err);
2001 }
2002
2003 rcu_read_lock();
2004 list_for_each_entry_rcu(ptype,
2005 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2006 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
2007 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2008 err = ptype->gso_send_check(skb);
2009 segs = ERR_PTR(err);
2010 if (err || skb_gso_ok(skb, features))
2011 break;
2012 __skb_push(skb, (skb->data -
2013 skb_network_header(skb)));
2014 }
2015 segs = ptype->gso_segment(skb, features);
2016 break;
2017 }
2018 }
2019 rcu_read_unlock();
2020
2021 __skb_push(skb, skb->data - skb_mac_header(skb));
2022
2023 return segs;
2024 }
2025 EXPORT_SYMBOL(skb_gso_segment);
2026
2027 /* Take action when hardware reception checksum errors are detected. */
2028 #ifdef CONFIG_BUG
2029 void netdev_rx_csum_fault(struct net_device *dev)
2030 {
2031 if (net_ratelimit()) {
2032 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2033 dump_stack();
2034 }
2035 }
2036 EXPORT_SYMBOL(netdev_rx_csum_fault);
2037 #endif
2038
2039 /* Actually, we should eliminate this check as soon as we know, that:
2040 * 1. IOMMU is present and allows to map all the memory.
2041 * 2. No high memory really exists on this machine.
2042 */
2043
2044 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2045 {
2046 #ifdef CONFIG_HIGHMEM
2047 int i;
2048 if (!(dev->features & NETIF_F_HIGHDMA)) {
2049 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2050 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2051 if (PageHighMem(skb_frag_page(frag)))
2052 return 1;
2053 }
2054 }
2055
2056 if (PCI_DMA_BUS_IS_PHYS) {
2057 struct device *pdev = dev->dev.parent;
2058
2059 if (!pdev)
2060 return 0;
2061 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2062 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2063 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2064 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2065 return 1;
2066 }
2067 }
2068 #endif
2069 return 0;
2070 }
2071
2072 struct dev_gso_cb {
2073 void (*destructor)(struct sk_buff *skb);
2074 };
2075
2076 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2077
2078 static void dev_gso_skb_destructor(struct sk_buff *skb)
2079 {
2080 struct dev_gso_cb *cb;
2081
2082 do {
2083 struct sk_buff *nskb = skb->next;
2084
2085 skb->next = nskb->next;
2086 nskb->next = NULL;
2087 kfree_skb(nskb);
2088 } while (skb->next);
2089
2090 cb = DEV_GSO_CB(skb);
2091 if (cb->destructor)
2092 cb->destructor(skb);
2093 }
2094
2095 /**
2096 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2097 * @skb: buffer to segment
2098 * @features: device features as applicable to this skb
2099 *
2100 * This function segments the given skb and stores the list of segments
2101 * in skb->next.
2102 */
2103 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2104 {
2105 struct sk_buff *segs;
2106
2107 segs = skb_gso_segment(skb, features);
2108
2109 /* Verifying header integrity only. */
2110 if (!segs)
2111 return 0;
2112
2113 if (IS_ERR(segs))
2114 return PTR_ERR(segs);
2115
2116 skb->next = segs;
2117 DEV_GSO_CB(skb)->destructor = skb->destructor;
2118 skb->destructor = dev_gso_skb_destructor;
2119
2120 return 0;
2121 }
2122
2123 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2124 {
2125 return ((features & NETIF_F_GEN_CSUM) ||
2126 ((features & NETIF_F_V4_CSUM) &&
2127 protocol == htons(ETH_P_IP)) ||
2128 ((features & NETIF_F_V6_CSUM) &&
2129 protocol == htons(ETH_P_IPV6)) ||
2130 ((features & NETIF_F_FCOE_CRC) &&
2131 protocol == htons(ETH_P_FCOE)));
2132 }
2133
2134 static netdev_features_t harmonize_features(struct sk_buff *skb,
2135 __be16 protocol, netdev_features_t features)
2136 {
2137 if (!can_checksum_protocol(features, protocol)) {
2138 features &= ~NETIF_F_ALL_CSUM;
2139 features &= ~NETIF_F_SG;
2140 } else if (illegal_highdma(skb->dev, skb)) {
2141 features &= ~NETIF_F_SG;
2142 }
2143
2144 return features;
2145 }
2146
2147 netdev_features_t netif_skb_features(struct sk_buff *skb)
2148 {
2149 __be16 protocol = skb->protocol;
2150 netdev_features_t features = skb->dev->features;
2151
2152 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2153 features &= ~NETIF_F_GSO_MASK;
2154
2155 if (protocol == htons(ETH_P_8021Q)) {
2156 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2157 protocol = veh->h_vlan_encapsulated_proto;
2158 } else if (!vlan_tx_tag_present(skb)) {
2159 return harmonize_features(skb, protocol, features);
2160 }
2161
2162 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2163
2164 if (protocol != htons(ETH_P_8021Q)) {
2165 return harmonize_features(skb, protocol, features);
2166 } else {
2167 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2168 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2169 return harmonize_features(skb, protocol, features);
2170 }
2171 }
2172 EXPORT_SYMBOL(netif_skb_features);
2173
2174 /*
2175 * Returns true if either:
2176 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2177 * 2. skb is fragmented and the device does not support SG, or if
2178 * at least one of fragments is in highmem and device does not
2179 * support DMA from it.
2180 */
2181 static inline int skb_needs_linearize(struct sk_buff *skb,
2182 int features)
2183 {
2184 return skb_is_nonlinear(skb) &&
2185 ((skb_has_frag_list(skb) &&
2186 !(features & NETIF_F_FRAGLIST)) ||
2187 (skb_shinfo(skb)->nr_frags &&
2188 !(features & NETIF_F_SG)));
2189 }
2190
2191 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2192 struct netdev_queue *txq)
2193 {
2194 const struct net_device_ops *ops = dev->netdev_ops;
2195 int rc = NETDEV_TX_OK;
2196 unsigned int skb_len;
2197
2198 if (likely(!skb->next)) {
2199 netdev_features_t features;
2200
2201 /*
2202 * If device doesn't need skb->dst, release it right now while
2203 * its hot in this cpu cache
2204 */
2205 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2206 skb_dst_drop(skb);
2207
2208 if (!list_empty(&ptype_all))
2209 dev_queue_xmit_nit(skb, dev);
2210
2211 features = netif_skb_features(skb);
2212
2213 if (vlan_tx_tag_present(skb) &&
2214 !(features & NETIF_F_HW_VLAN_TX)) {
2215 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2216 if (unlikely(!skb))
2217 goto out;
2218
2219 skb->vlan_tci = 0;
2220 }
2221
2222 if (netif_needs_gso(skb, features)) {
2223 if (unlikely(dev_gso_segment(skb, features)))
2224 goto out_kfree_skb;
2225 if (skb->next)
2226 goto gso;
2227 } else {
2228 if (skb_needs_linearize(skb, features) &&
2229 __skb_linearize(skb))
2230 goto out_kfree_skb;
2231
2232 /* If packet is not checksummed and device does not
2233 * support checksumming for this protocol, complete
2234 * checksumming here.
2235 */
2236 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2237 skb_set_transport_header(skb,
2238 skb_checksum_start_offset(skb));
2239 if (!(features & NETIF_F_ALL_CSUM) &&
2240 skb_checksum_help(skb))
2241 goto out_kfree_skb;
2242 }
2243 }
2244
2245 skb_len = skb->len;
2246 rc = ops->ndo_start_xmit(skb, dev);
2247 trace_net_dev_xmit(skb, rc, dev, skb_len);
2248 if (rc == NETDEV_TX_OK)
2249 txq_trans_update(txq);
2250 return rc;
2251 }
2252
2253 gso:
2254 do {
2255 struct sk_buff *nskb = skb->next;
2256
2257 skb->next = nskb->next;
2258 nskb->next = NULL;
2259
2260 /*
2261 * If device doesn't need nskb->dst, release it right now while
2262 * its hot in this cpu cache
2263 */
2264 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2265 skb_dst_drop(nskb);
2266
2267 skb_len = nskb->len;
2268 rc = ops->ndo_start_xmit(nskb, dev);
2269 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2270 if (unlikely(rc != NETDEV_TX_OK)) {
2271 if (rc & ~NETDEV_TX_MASK)
2272 goto out_kfree_gso_skb;
2273 nskb->next = skb->next;
2274 skb->next = nskb;
2275 return rc;
2276 }
2277 txq_trans_update(txq);
2278 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2279 return NETDEV_TX_BUSY;
2280 } while (skb->next);
2281
2282 out_kfree_gso_skb:
2283 if (likely(skb->next == NULL))
2284 skb->destructor = DEV_GSO_CB(skb)->destructor;
2285 out_kfree_skb:
2286 kfree_skb(skb);
2287 out:
2288 return rc;
2289 }
2290
2291 static u32 hashrnd __read_mostly;
2292
2293 /*
2294 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2295 * to be used as a distribution range.
2296 */
2297 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2298 unsigned int num_tx_queues)
2299 {
2300 u32 hash;
2301 u16 qoffset = 0;
2302 u16 qcount = num_tx_queues;
2303
2304 if (skb_rx_queue_recorded(skb)) {
2305 hash = skb_get_rx_queue(skb);
2306 while (unlikely(hash >= num_tx_queues))
2307 hash -= num_tx_queues;
2308 return hash;
2309 }
2310
2311 if (dev->num_tc) {
2312 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2313 qoffset = dev->tc_to_txq[tc].offset;
2314 qcount = dev->tc_to_txq[tc].count;
2315 }
2316
2317 if (skb->sk && skb->sk->sk_hash)
2318 hash = skb->sk->sk_hash;
2319 else
2320 hash = (__force u16) skb->protocol;
2321 hash = jhash_1word(hash, hashrnd);
2322
2323 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2324 }
2325 EXPORT_SYMBOL(__skb_tx_hash);
2326
2327 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2328 {
2329 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2330 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2331 dev->name, queue_index,
2332 dev->real_num_tx_queues);
2333 return 0;
2334 }
2335 return queue_index;
2336 }
2337
2338 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2339 {
2340 #ifdef CONFIG_XPS
2341 struct xps_dev_maps *dev_maps;
2342 struct xps_map *map;
2343 int queue_index = -1;
2344
2345 rcu_read_lock();
2346 dev_maps = rcu_dereference(dev->xps_maps);
2347 if (dev_maps) {
2348 map = rcu_dereference(
2349 dev_maps->cpu_map[raw_smp_processor_id()]);
2350 if (map) {
2351 if (map->len == 1)
2352 queue_index = map->queues[0];
2353 else {
2354 u32 hash;
2355 if (skb->sk && skb->sk->sk_hash)
2356 hash = skb->sk->sk_hash;
2357 else
2358 hash = (__force u16) skb->protocol ^
2359 skb->rxhash;
2360 hash = jhash_1word(hash, hashrnd);
2361 queue_index = map->queues[
2362 ((u64)hash * map->len) >> 32];
2363 }
2364 if (unlikely(queue_index >= dev->real_num_tx_queues))
2365 queue_index = -1;
2366 }
2367 }
2368 rcu_read_unlock();
2369
2370 return queue_index;
2371 #else
2372 return -1;
2373 #endif
2374 }
2375
2376 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2377 struct sk_buff *skb)
2378 {
2379 int queue_index;
2380 const struct net_device_ops *ops = dev->netdev_ops;
2381
2382 if (dev->real_num_tx_queues == 1)
2383 queue_index = 0;
2384 else if (ops->ndo_select_queue) {
2385 queue_index = ops->ndo_select_queue(dev, skb);
2386 queue_index = dev_cap_txqueue(dev, queue_index);
2387 } else {
2388 struct sock *sk = skb->sk;
2389 queue_index = sk_tx_queue_get(sk);
2390
2391 if (queue_index < 0 || skb->ooo_okay ||
2392 queue_index >= dev->real_num_tx_queues) {
2393 int old_index = queue_index;
2394
2395 queue_index = get_xps_queue(dev, skb);
2396 if (queue_index < 0)
2397 queue_index = skb_tx_hash(dev, skb);
2398
2399 if (queue_index != old_index && sk) {
2400 struct dst_entry *dst =
2401 rcu_dereference_check(sk->sk_dst_cache, 1);
2402
2403 if (dst && skb_dst(skb) == dst)
2404 sk_tx_queue_set(sk, queue_index);
2405 }
2406 }
2407 }
2408
2409 skb_set_queue_mapping(skb, queue_index);
2410 return netdev_get_tx_queue(dev, queue_index);
2411 }
2412
2413 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2414 struct net_device *dev,
2415 struct netdev_queue *txq)
2416 {
2417 spinlock_t *root_lock = qdisc_lock(q);
2418 bool contended;
2419 int rc;
2420
2421 qdisc_skb_cb(skb)->pkt_len = skb->len;
2422 qdisc_calculate_pkt_len(skb, q);
2423 /*
2424 * Heuristic to force contended enqueues to serialize on a
2425 * separate lock before trying to get qdisc main lock.
2426 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2427 * and dequeue packets faster.
2428 */
2429 contended = qdisc_is_running(q);
2430 if (unlikely(contended))
2431 spin_lock(&q->busylock);
2432
2433 spin_lock(root_lock);
2434 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2435 kfree_skb(skb);
2436 rc = NET_XMIT_DROP;
2437 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2438 qdisc_run_begin(q)) {
2439 /*
2440 * This is a work-conserving queue; there are no old skbs
2441 * waiting to be sent out; and the qdisc is not running -
2442 * xmit the skb directly.
2443 */
2444 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2445 skb_dst_force(skb);
2446
2447 qdisc_bstats_update(q, skb);
2448
2449 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2450 if (unlikely(contended)) {
2451 spin_unlock(&q->busylock);
2452 contended = false;
2453 }
2454 __qdisc_run(q);
2455 } else
2456 qdisc_run_end(q);
2457
2458 rc = NET_XMIT_SUCCESS;
2459 } else {
2460 skb_dst_force(skb);
2461 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2462 if (qdisc_run_begin(q)) {
2463 if (unlikely(contended)) {
2464 spin_unlock(&q->busylock);
2465 contended = false;
2466 }
2467 __qdisc_run(q);
2468 }
2469 }
2470 spin_unlock(root_lock);
2471 if (unlikely(contended))
2472 spin_unlock(&q->busylock);
2473 return rc;
2474 }
2475
2476 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2477 static void skb_update_prio(struct sk_buff *skb)
2478 {
2479 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2480
2481 if (!skb->priority && skb->sk && map) {
2482 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2483
2484 if (prioidx < map->priomap_len)
2485 skb->priority = map->priomap[prioidx];
2486 }
2487 }
2488 #else
2489 #define skb_update_prio(skb)
2490 #endif
2491
2492 static DEFINE_PER_CPU(int, xmit_recursion);
2493 #define RECURSION_LIMIT 10
2494
2495 /**
2496 * dev_loopback_xmit - loop back @skb
2497 * @skb: buffer to transmit
2498 */
2499 int dev_loopback_xmit(struct sk_buff *skb)
2500 {
2501 skb_reset_mac_header(skb);
2502 __skb_pull(skb, skb_network_offset(skb));
2503 skb->pkt_type = PACKET_LOOPBACK;
2504 skb->ip_summed = CHECKSUM_UNNECESSARY;
2505 WARN_ON(!skb_dst(skb));
2506 skb_dst_force(skb);
2507 netif_rx_ni(skb);
2508 return 0;
2509 }
2510 EXPORT_SYMBOL(dev_loopback_xmit);
2511
2512 /**
2513 * dev_queue_xmit - transmit a buffer
2514 * @skb: buffer to transmit
2515 *
2516 * Queue a buffer for transmission to a network device. The caller must
2517 * have set the device and priority and built the buffer before calling
2518 * this function. The function can be called from an interrupt.
2519 *
2520 * A negative errno code is returned on a failure. A success does not
2521 * guarantee the frame will be transmitted as it may be dropped due
2522 * to congestion or traffic shaping.
2523 *
2524 * -----------------------------------------------------------------------------------
2525 * I notice this method can also return errors from the queue disciplines,
2526 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2527 * be positive.
2528 *
2529 * Regardless of the return value, the skb is consumed, so it is currently
2530 * difficult to retry a send to this method. (You can bump the ref count
2531 * before sending to hold a reference for retry if you are careful.)
2532 *
2533 * When calling this method, interrupts MUST be enabled. This is because
2534 * the BH enable code must have IRQs enabled so that it will not deadlock.
2535 * --BLG
2536 */
2537 int dev_queue_xmit(struct sk_buff *skb)
2538 {
2539 struct net_device *dev = skb->dev;
2540 struct netdev_queue *txq;
2541 struct Qdisc *q;
2542 int rc = -ENOMEM;
2543
2544 /* Disable soft irqs for various locks below. Also
2545 * stops preemption for RCU.
2546 */
2547 rcu_read_lock_bh();
2548
2549 skb_update_prio(skb);
2550
2551 txq = dev_pick_tx(dev, skb);
2552 q = rcu_dereference_bh(txq->qdisc);
2553
2554 #ifdef CONFIG_NET_CLS_ACT
2555 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2556 #endif
2557 trace_net_dev_queue(skb);
2558 if (q->enqueue) {
2559 rc = __dev_xmit_skb(skb, q, dev, txq);
2560 goto out;
2561 }
2562
2563 /* The device has no queue. Common case for software devices:
2564 loopback, all the sorts of tunnels...
2565
2566 Really, it is unlikely that netif_tx_lock protection is necessary
2567 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2568 counters.)
2569 However, it is possible, that they rely on protection
2570 made by us here.
2571
2572 Check this and shot the lock. It is not prone from deadlocks.
2573 Either shot noqueue qdisc, it is even simpler 8)
2574 */
2575 if (dev->flags & IFF_UP) {
2576 int cpu = smp_processor_id(); /* ok because BHs are off */
2577
2578 if (txq->xmit_lock_owner != cpu) {
2579
2580 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2581 goto recursion_alert;
2582
2583 HARD_TX_LOCK(dev, txq, cpu);
2584
2585 if (!netif_xmit_stopped(txq)) {
2586 __this_cpu_inc(xmit_recursion);
2587 rc = dev_hard_start_xmit(skb, dev, txq);
2588 __this_cpu_dec(xmit_recursion);
2589 if (dev_xmit_complete(rc)) {
2590 HARD_TX_UNLOCK(dev, txq);
2591 goto out;
2592 }
2593 }
2594 HARD_TX_UNLOCK(dev, txq);
2595 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2596 dev->name);
2597 } else {
2598 /* Recursion is detected! It is possible,
2599 * unfortunately
2600 */
2601 recursion_alert:
2602 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2603 dev->name);
2604 }
2605 }
2606
2607 rc = -ENETDOWN;
2608 rcu_read_unlock_bh();
2609
2610 kfree_skb(skb);
2611 return rc;
2612 out:
2613 rcu_read_unlock_bh();
2614 return rc;
2615 }
2616 EXPORT_SYMBOL(dev_queue_xmit);
2617
2618
2619 /*=======================================================================
2620 Receiver routines
2621 =======================================================================*/
2622
2623 int netdev_max_backlog __read_mostly = 1000;
2624 int netdev_tstamp_prequeue __read_mostly = 1;
2625 int netdev_budget __read_mostly = 300;
2626 int weight_p __read_mostly = 64; /* old backlog weight */
2627
2628 /* Called with irq disabled */
2629 static inline void ____napi_schedule(struct softnet_data *sd,
2630 struct napi_struct *napi)
2631 {
2632 list_add_tail(&napi->poll_list, &sd->poll_list);
2633 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2634 }
2635
2636 /*
2637 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2638 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2639 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2640 * if hash is a canonical 4-tuple hash over transport ports.
2641 */
2642 void __skb_get_rxhash(struct sk_buff *skb)
2643 {
2644 struct flow_keys keys;
2645 u32 hash;
2646
2647 if (!skb_flow_dissect(skb, &keys))
2648 return;
2649
2650 if (keys.ports) {
2651 if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0])
2652 swap(keys.port16[0], keys.port16[1]);
2653 skb->l4_rxhash = 1;
2654 }
2655
2656 /* get a consistent hash (same value on both flow directions) */
2657 if ((__force u32)keys.dst < (__force u32)keys.src)
2658 swap(keys.dst, keys.src);
2659
2660 hash = jhash_3words((__force u32)keys.dst,
2661 (__force u32)keys.src,
2662 (__force u32)keys.ports, hashrnd);
2663 if (!hash)
2664 hash = 1;
2665
2666 skb->rxhash = hash;
2667 }
2668 EXPORT_SYMBOL(__skb_get_rxhash);
2669
2670 #ifdef CONFIG_RPS
2671
2672 /* One global table that all flow-based protocols share. */
2673 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2674 EXPORT_SYMBOL(rps_sock_flow_table);
2675
2676 struct static_key rps_needed __read_mostly;
2677
2678 static struct rps_dev_flow *
2679 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2680 struct rps_dev_flow *rflow, u16 next_cpu)
2681 {
2682 if (next_cpu != RPS_NO_CPU) {
2683 #ifdef CONFIG_RFS_ACCEL
2684 struct netdev_rx_queue *rxqueue;
2685 struct rps_dev_flow_table *flow_table;
2686 struct rps_dev_flow *old_rflow;
2687 u32 flow_id;
2688 u16 rxq_index;
2689 int rc;
2690
2691 /* Should we steer this flow to a different hardware queue? */
2692 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2693 !(dev->features & NETIF_F_NTUPLE))
2694 goto out;
2695 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2696 if (rxq_index == skb_get_rx_queue(skb))
2697 goto out;
2698
2699 rxqueue = dev->_rx + rxq_index;
2700 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2701 if (!flow_table)
2702 goto out;
2703 flow_id = skb->rxhash & flow_table->mask;
2704 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2705 rxq_index, flow_id);
2706 if (rc < 0)
2707 goto out;
2708 old_rflow = rflow;
2709 rflow = &flow_table->flows[flow_id];
2710 rflow->filter = rc;
2711 if (old_rflow->filter == rflow->filter)
2712 old_rflow->filter = RPS_NO_FILTER;
2713 out:
2714 #endif
2715 rflow->last_qtail =
2716 per_cpu(softnet_data, next_cpu).input_queue_head;
2717 }
2718
2719 rflow->cpu = next_cpu;
2720 return rflow;
2721 }
2722
2723 /*
2724 * get_rps_cpu is called from netif_receive_skb and returns the target
2725 * CPU from the RPS map of the receiving queue for a given skb.
2726 * rcu_read_lock must be held on entry.
2727 */
2728 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2729 struct rps_dev_flow **rflowp)
2730 {
2731 struct netdev_rx_queue *rxqueue;
2732 struct rps_map *map;
2733 struct rps_dev_flow_table *flow_table;
2734 struct rps_sock_flow_table *sock_flow_table;
2735 int cpu = -1;
2736 u16 tcpu;
2737
2738 if (skb_rx_queue_recorded(skb)) {
2739 u16 index = skb_get_rx_queue(skb);
2740 if (unlikely(index >= dev->real_num_rx_queues)) {
2741 WARN_ONCE(dev->real_num_rx_queues > 1,
2742 "%s received packet on queue %u, but number "
2743 "of RX queues is %u\n",
2744 dev->name, index, dev->real_num_rx_queues);
2745 goto done;
2746 }
2747 rxqueue = dev->_rx + index;
2748 } else
2749 rxqueue = dev->_rx;
2750
2751 map = rcu_dereference(rxqueue->rps_map);
2752 if (map) {
2753 if (map->len == 1 &&
2754 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2755 tcpu = map->cpus[0];
2756 if (cpu_online(tcpu))
2757 cpu = tcpu;
2758 goto done;
2759 }
2760 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2761 goto done;
2762 }
2763
2764 skb_reset_network_header(skb);
2765 if (!skb_get_rxhash(skb))
2766 goto done;
2767
2768 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2769 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2770 if (flow_table && sock_flow_table) {
2771 u16 next_cpu;
2772 struct rps_dev_flow *rflow;
2773
2774 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2775 tcpu = rflow->cpu;
2776
2777 next_cpu = sock_flow_table->ents[skb->rxhash &
2778 sock_flow_table->mask];
2779
2780 /*
2781 * If the desired CPU (where last recvmsg was done) is
2782 * different from current CPU (one in the rx-queue flow
2783 * table entry), switch if one of the following holds:
2784 * - Current CPU is unset (equal to RPS_NO_CPU).
2785 * - Current CPU is offline.
2786 * - The current CPU's queue tail has advanced beyond the
2787 * last packet that was enqueued using this table entry.
2788 * This guarantees that all previous packets for the flow
2789 * have been dequeued, thus preserving in order delivery.
2790 */
2791 if (unlikely(tcpu != next_cpu) &&
2792 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2793 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2794 rflow->last_qtail)) >= 0))
2795 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2796
2797 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2798 *rflowp = rflow;
2799 cpu = tcpu;
2800 goto done;
2801 }
2802 }
2803
2804 if (map) {
2805 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2806
2807 if (cpu_online(tcpu)) {
2808 cpu = tcpu;
2809 goto done;
2810 }
2811 }
2812
2813 done:
2814 return cpu;
2815 }
2816
2817 #ifdef CONFIG_RFS_ACCEL
2818
2819 /**
2820 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2821 * @dev: Device on which the filter was set
2822 * @rxq_index: RX queue index
2823 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2824 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2825 *
2826 * Drivers that implement ndo_rx_flow_steer() should periodically call
2827 * this function for each installed filter and remove the filters for
2828 * which it returns %true.
2829 */
2830 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2831 u32 flow_id, u16 filter_id)
2832 {
2833 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2834 struct rps_dev_flow_table *flow_table;
2835 struct rps_dev_flow *rflow;
2836 bool expire = true;
2837 int cpu;
2838
2839 rcu_read_lock();
2840 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2841 if (flow_table && flow_id <= flow_table->mask) {
2842 rflow = &flow_table->flows[flow_id];
2843 cpu = ACCESS_ONCE(rflow->cpu);
2844 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2845 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2846 rflow->last_qtail) <
2847 (int)(10 * flow_table->mask)))
2848 expire = false;
2849 }
2850 rcu_read_unlock();
2851 return expire;
2852 }
2853 EXPORT_SYMBOL(rps_may_expire_flow);
2854
2855 #endif /* CONFIG_RFS_ACCEL */
2856
2857 /* Called from hardirq (IPI) context */
2858 static void rps_trigger_softirq(void *data)
2859 {
2860 struct softnet_data *sd = data;
2861
2862 ____napi_schedule(sd, &sd->backlog);
2863 sd->received_rps++;
2864 }
2865
2866 #endif /* CONFIG_RPS */
2867
2868 /*
2869 * Check if this softnet_data structure is another cpu one
2870 * If yes, queue it to our IPI list and return 1
2871 * If no, return 0
2872 */
2873 static int rps_ipi_queued(struct softnet_data *sd)
2874 {
2875 #ifdef CONFIG_RPS
2876 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2877
2878 if (sd != mysd) {
2879 sd->rps_ipi_next = mysd->rps_ipi_list;
2880 mysd->rps_ipi_list = sd;
2881
2882 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2883 return 1;
2884 }
2885 #endif /* CONFIG_RPS */
2886 return 0;
2887 }
2888
2889 /*
2890 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2891 * queue (may be a remote CPU queue).
2892 */
2893 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2894 unsigned int *qtail)
2895 {
2896 struct softnet_data *sd;
2897 unsigned long flags;
2898
2899 sd = &per_cpu(softnet_data, cpu);
2900
2901 local_irq_save(flags);
2902
2903 rps_lock(sd);
2904 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2905 if (skb_queue_len(&sd->input_pkt_queue)) {
2906 enqueue:
2907 __skb_queue_tail(&sd->input_pkt_queue, skb);
2908 input_queue_tail_incr_save(sd, qtail);
2909 rps_unlock(sd);
2910 local_irq_restore(flags);
2911 return NET_RX_SUCCESS;
2912 }
2913
2914 /* Schedule NAPI for backlog device
2915 * We can use non atomic operation since we own the queue lock
2916 */
2917 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2918 if (!rps_ipi_queued(sd))
2919 ____napi_schedule(sd, &sd->backlog);
2920 }
2921 goto enqueue;
2922 }
2923
2924 sd->dropped++;
2925 rps_unlock(sd);
2926
2927 local_irq_restore(flags);
2928
2929 atomic_long_inc(&skb->dev->rx_dropped);
2930 kfree_skb(skb);
2931 return NET_RX_DROP;
2932 }
2933
2934 /**
2935 * netif_rx - post buffer to the network code
2936 * @skb: buffer to post
2937 *
2938 * This function receives a packet from a device driver and queues it for
2939 * the upper (protocol) levels to process. It always succeeds. The buffer
2940 * may be dropped during processing for congestion control or by the
2941 * protocol layers.
2942 *
2943 * return values:
2944 * NET_RX_SUCCESS (no congestion)
2945 * NET_RX_DROP (packet was dropped)
2946 *
2947 */
2948
2949 int netif_rx(struct sk_buff *skb)
2950 {
2951 int ret;
2952
2953 /* if netpoll wants it, pretend we never saw it */
2954 if (netpoll_rx(skb))
2955 return NET_RX_DROP;
2956
2957 net_timestamp_check(netdev_tstamp_prequeue, skb);
2958
2959 trace_netif_rx(skb);
2960 #ifdef CONFIG_RPS
2961 if (static_key_false(&rps_needed)) {
2962 struct rps_dev_flow voidflow, *rflow = &voidflow;
2963 int cpu;
2964
2965 preempt_disable();
2966 rcu_read_lock();
2967
2968 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2969 if (cpu < 0)
2970 cpu = smp_processor_id();
2971
2972 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2973
2974 rcu_read_unlock();
2975 preempt_enable();
2976 } else
2977 #endif
2978 {
2979 unsigned int qtail;
2980 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2981 put_cpu();
2982 }
2983 return ret;
2984 }
2985 EXPORT_SYMBOL(netif_rx);
2986
2987 int netif_rx_ni(struct sk_buff *skb)
2988 {
2989 int err;
2990
2991 preempt_disable();
2992 err = netif_rx(skb);
2993 if (local_softirq_pending())
2994 do_softirq();
2995 preempt_enable();
2996
2997 return err;
2998 }
2999 EXPORT_SYMBOL(netif_rx_ni);
3000
3001 static void net_tx_action(struct softirq_action *h)
3002 {
3003 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3004
3005 if (sd->completion_queue) {
3006 struct sk_buff *clist;
3007
3008 local_irq_disable();
3009 clist = sd->completion_queue;
3010 sd->completion_queue = NULL;
3011 local_irq_enable();
3012
3013 while (clist) {
3014 struct sk_buff *skb = clist;
3015 clist = clist->next;
3016
3017 WARN_ON(atomic_read(&skb->users));
3018 trace_kfree_skb(skb, net_tx_action);
3019 __kfree_skb(skb);
3020 }
3021 }
3022
3023 if (sd->output_queue) {
3024 struct Qdisc *head;
3025
3026 local_irq_disable();
3027 head = sd->output_queue;
3028 sd->output_queue = NULL;
3029 sd->output_queue_tailp = &sd->output_queue;
3030 local_irq_enable();
3031
3032 while (head) {
3033 struct Qdisc *q = head;
3034 spinlock_t *root_lock;
3035
3036 head = head->next_sched;
3037
3038 root_lock = qdisc_lock(q);
3039 if (spin_trylock(root_lock)) {
3040 smp_mb__before_clear_bit();
3041 clear_bit(__QDISC_STATE_SCHED,
3042 &q->state);
3043 qdisc_run(q);
3044 spin_unlock(root_lock);
3045 } else {
3046 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3047 &q->state)) {
3048 __netif_reschedule(q);
3049 } else {
3050 smp_mb__before_clear_bit();
3051 clear_bit(__QDISC_STATE_SCHED,
3052 &q->state);
3053 }
3054 }
3055 }
3056 }
3057 }
3058
3059 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3060 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3061 /* This hook is defined here for ATM LANE */
3062 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3063 unsigned char *addr) __read_mostly;
3064 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3065 #endif
3066
3067 #ifdef CONFIG_NET_CLS_ACT
3068 /* TODO: Maybe we should just force sch_ingress to be compiled in
3069 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3070 * a compare and 2 stores extra right now if we dont have it on
3071 * but have CONFIG_NET_CLS_ACT
3072 * NOTE: This doesn't stop any functionality; if you dont have
3073 * the ingress scheduler, you just can't add policies on ingress.
3074 *
3075 */
3076 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3077 {
3078 struct net_device *dev = skb->dev;
3079 u32 ttl = G_TC_RTTL(skb->tc_verd);
3080 int result = TC_ACT_OK;
3081 struct Qdisc *q;
3082
3083 if (unlikely(MAX_RED_LOOP < ttl++)) {
3084 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3085 skb->skb_iif, dev->ifindex);
3086 return TC_ACT_SHOT;
3087 }
3088
3089 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3090 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3091
3092 q = rxq->qdisc;
3093 if (q != &noop_qdisc) {
3094 spin_lock(qdisc_lock(q));
3095 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3096 result = qdisc_enqueue_root(skb, q);
3097 spin_unlock(qdisc_lock(q));
3098 }
3099
3100 return result;
3101 }
3102
3103 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3104 struct packet_type **pt_prev,
3105 int *ret, struct net_device *orig_dev)
3106 {
3107 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3108
3109 if (!rxq || rxq->qdisc == &noop_qdisc)
3110 goto out;
3111
3112 if (*pt_prev) {
3113 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3114 *pt_prev = NULL;
3115 }
3116
3117 switch (ing_filter(skb, rxq)) {
3118 case TC_ACT_SHOT:
3119 case TC_ACT_STOLEN:
3120 kfree_skb(skb);
3121 return NULL;
3122 }
3123
3124 out:
3125 skb->tc_verd = 0;
3126 return skb;
3127 }
3128 #endif
3129
3130 /**
3131 * netdev_rx_handler_register - register receive handler
3132 * @dev: device to register a handler for
3133 * @rx_handler: receive handler to register
3134 * @rx_handler_data: data pointer that is used by rx handler
3135 *
3136 * Register a receive hander for a device. This handler will then be
3137 * called from __netif_receive_skb. A negative errno code is returned
3138 * on a failure.
3139 *
3140 * The caller must hold the rtnl_mutex.
3141 *
3142 * For a general description of rx_handler, see enum rx_handler_result.
3143 */
3144 int netdev_rx_handler_register(struct net_device *dev,
3145 rx_handler_func_t *rx_handler,
3146 void *rx_handler_data)
3147 {
3148 ASSERT_RTNL();
3149
3150 if (dev->rx_handler)
3151 return -EBUSY;
3152
3153 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3154 rcu_assign_pointer(dev->rx_handler, rx_handler);
3155
3156 return 0;
3157 }
3158 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3159
3160 /**
3161 * netdev_rx_handler_unregister - unregister receive handler
3162 * @dev: device to unregister a handler from
3163 *
3164 * Unregister a receive hander from a device.
3165 *
3166 * The caller must hold the rtnl_mutex.
3167 */
3168 void netdev_rx_handler_unregister(struct net_device *dev)
3169 {
3170
3171 ASSERT_RTNL();
3172 RCU_INIT_POINTER(dev->rx_handler, NULL);
3173 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3174 }
3175 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3176
3177 /*
3178 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3179 * the special handling of PFMEMALLOC skbs.
3180 */
3181 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3182 {
3183 switch (skb->protocol) {
3184 case __constant_htons(ETH_P_ARP):
3185 case __constant_htons(ETH_P_IP):
3186 case __constant_htons(ETH_P_IPV6):
3187 case __constant_htons(ETH_P_8021Q):
3188 return true;
3189 default:
3190 return false;
3191 }
3192 }
3193
3194 static int __netif_receive_skb(struct sk_buff *skb)
3195 {
3196 struct packet_type *ptype, *pt_prev;
3197 rx_handler_func_t *rx_handler;
3198 struct net_device *orig_dev;
3199 struct net_device *null_or_dev;
3200 bool deliver_exact = false;
3201 int ret = NET_RX_DROP;
3202 __be16 type;
3203 unsigned long pflags = current->flags;
3204
3205 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3206
3207 trace_netif_receive_skb(skb);
3208
3209 /*
3210 * PFMEMALLOC skbs are special, they should
3211 * - be delivered to SOCK_MEMALLOC sockets only
3212 * - stay away from userspace
3213 * - have bounded memory usage
3214 *
3215 * Use PF_MEMALLOC as this saves us from propagating the allocation
3216 * context down to all allocation sites.
3217 */
3218 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3219 current->flags |= PF_MEMALLOC;
3220
3221 /* if we've gotten here through NAPI, check netpoll */
3222 if (netpoll_receive_skb(skb))
3223 goto out;
3224
3225 orig_dev = skb->dev;
3226
3227 skb_reset_network_header(skb);
3228 skb_reset_transport_header(skb);
3229 skb_reset_mac_len(skb);
3230
3231 pt_prev = NULL;
3232
3233 rcu_read_lock();
3234
3235 another_round:
3236 skb->skb_iif = skb->dev->ifindex;
3237
3238 __this_cpu_inc(softnet_data.processed);
3239
3240 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3241 skb = vlan_untag(skb);
3242 if (unlikely(!skb))
3243 goto unlock;
3244 }
3245
3246 #ifdef CONFIG_NET_CLS_ACT
3247 if (skb->tc_verd & TC_NCLS) {
3248 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3249 goto ncls;
3250 }
3251 #endif
3252
3253 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3254 goto skip_taps;
3255
3256 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3257 if (!ptype->dev || ptype->dev == skb->dev) {
3258 if (pt_prev)
3259 ret = deliver_skb(skb, pt_prev, orig_dev);
3260 pt_prev = ptype;
3261 }
3262 }
3263
3264 skip_taps:
3265 #ifdef CONFIG_NET_CLS_ACT
3266 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3267 if (!skb)
3268 goto unlock;
3269 ncls:
3270 #endif
3271
3272 if (sk_memalloc_socks() && skb_pfmemalloc(skb)
3273 && !skb_pfmemalloc_protocol(skb))
3274 goto drop;
3275
3276 rx_handler = rcu_dereference(skb->dev->rx_handler);
3277 if (vlan_tx_tag_present(skb)) {
3278 if (pt_prev) {
3279 ret = deliver_skb(skb, pt_prev, orig_dev);
3280 pt_prev = NULL;
3281 }
3282 if (vlan_do_receive(&skb, !rx_handler))
3283 goto another_round;
3284 else if (unlikely(!skb))
3285 goto unlock;
3286 }
3287
3288 if (rx_handler) {
3289 if (pt_prev) {
3290 ret = deliver_skb(skb, pt_prev, orig_dev);
3291 pt_prev = NULL;
3292 }
3293 switch (rx_handler(&skb)) {
3294 case RX_HANDLER_CONSUMED:
3295 goto unlock;
3296 case RX_HANDLER_ANOTHER:
3297 goto another_round;
3298 case RX_HANDLER_EXACT:
3299 deliver_exact = true;
3300 case RX_HANDLER_PASS:
3301 break;
3302 default:
3303 BUG();
3304 }
3305 }
3306
3307 /* deliver only exact match when indicated */
3308 null_or_dev = deliver_exact ? skb->dev : NULL;
3309
3310 type = skb->protocol;
3311 list_for_each_entry_rcu(ptype,
3312 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3313 if (ptype->type == type &&
3314 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3315 ptype->dev == orig_dev)) {
3316 if (pt_prev)
3317 ret = deliver_skb(skb, pt_prev, orig_dev);
3318 pt_prev = ptype;
3319 }
3320 }
3321
3322 if (pt_prev) {
3323 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3324 ret = -ENOMEM;
3325 else
3326 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3327 } else {
3328 drop:
3329 atomic_long_inc(&skb->dev->rx_dropped);
3330 kfree_skb(skb);
3331 /* Jamal, now you will not able to escape explaining
3332 * me how you were going to use this. :-)
3333 */
3334 ret = NET_RX_DROP;
3335 }
3336
3337 unlock:
3338 rcu_read_unlock();
3339 out:
3340 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3341 return ret;
3342 }
3343
3344 /**
3345 * netif_receive_skb - process receive buffer from network
3346 * @skb: buffer to process
3347 *
3348 * netif_receive_skb() is the main receive data processing function.
3349 * It always succeeds. The buffer may be dropped during processing
3350 * for congestion control or by the protocol layers.
3351 *
3352 * This function may only be called from softirq context and interrupts
3353 * should be enabled.
3354 *
3355 * Return values (usually ignored):
3356 * NET_RX_SUCCESS: no congestion
3357 * NET_RX_DROP: packet was dropped
3358 */
3359 int netif_receive_skb(struct sk_buff *skb)
3360 {
3361 net_timestamp_check(netdev_tstamp_prequeue, skb);
3362
3363 if (skb_defer_rx_timestamp(skb))
3364 return NET_RX_SUCCESS;
3365
3366 #ifdef CONFIG_RPS
3367 if (static_key_false(&rps_needed)) {
3368 struct rps_dev_flow voidflow, *rflow = &voidflow;
3369 int cpu, ret;
3370
3371 rcu_read_lock();
3372
3373 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3374
3375 if (cpu >= 0) {
3376 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3377 rcu_read_unlock();
3378 return ret;
3379 }
3380 rcu_read_unlock();
3381 }
3382 #endif
3383 return __netif_receive_skb(skb);
3384 }
3385 EXPORT_SYMBOL(netif_receive_skb);
3386
3387 /* Network device is going away, flush any packets still pending
3388 * Called with irqs disabled.
3389 */
3390 static void flush_backlog(void *arg)
3391 {
3392 struct net_device *dev = arg;
3393 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3394 struct sk_buff *skb, *tmp;
3395
3396 rps_lock(sd);
3397 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3398 if (skb->dev == dev) {
3399 __skb_unlink(skb, &sd->input_pkt_queue);
3400 kfree_skb(skb);
3401 input_queue_head_incr(sd);
3402 }
3403 }
3404 rps_unlock(sd);
3405
3406 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3407 if (skb->dev == dev) {
3408 __skb_unlink(skb, &sd->process_queue);
3409 kfree_skb(skb);
3410 input_queue_head_incr(sd);
3411 }
3412 }
3413 }
3414
3415 static int napi_gro_complete(struct sk_buff *skb)
3416 {
3417 struct packet_type *ptype;
3418 __be16 type = skb->protocol;
3419 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3420 int err = -ENOENT;
3421
3422 if (NAPI_GRO_CB(skb)->count == 1) {
3423 skb_shinfo(skb)->gso_size = 0;
3424 goto out;
3425 }
3426
3427 rcu_read_lock();
3428 list_for_each_entry_rcu(ptype, head, list) {
3429 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3430 continue;
3431
3432 err = ptype->gro_complete(skb);
3433 break;
3434 }
3435 rcu_read_unlock();
3436
3437 if (err) {
3438 WARN_ON(&ptype->list == head);
3439 kfree_skb(skb);
3440 return NET_RX_SUCCESS;
3441 }
3442
3443 out:
3444 return netif_receive_skb(skb);
3445 }
3446
3447 inline void napi_gro_flush(struct napi_struct *napi)
3448 {
3449 struct sk_buff *skb, *next;
3450
3451 for (skb = napi->gro_list; skb; skb = next) {
3452 next = skb->next;
3453 skb->next = NULL;
3454 napi_gro_complete(skb);
3455 }
3456
3457 napi->gro_count = 0;
3458 napi->gro_list = NULL;
3459 }
3460 EXPORT_SYMBOL(napi_gro_flush);
3461
3462 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3463 {
3464 struct sk_buff **pp = NULL;
3465 struct packet_type *ptype;
3466 __be16 type = skb->protocol;
3467 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3468 int same_flow;
3469 int mac_len;
3470 enum gro_result ret;
3471
3472 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3473 goto normal;
3474
3475 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3476 goto normal;
3477
3478 rcu_read_lock();
3479 list_for_each_entry_rcu(ptype, head, list) {
3480 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3481 continue;
3482
3483 skb_set_network_header(skb, skb_gro_offset(skb));
3484 mac_len = skb->network_header - skb->mac_header;
3485 skb->mac_len = mac_len;
3486 NAPI_GRO_CB(skb)->same_flow = 0;
3487 NAPI_GRO_CB(skb)->flush = 0;
3488 NAPI_GRO_CB(skb)->free = 0;
3489
3490 pp = ptype->gro_receive(&napi->gro_list, skb);
3491 break;
3492 }
3493 rcu_read_unlock();
3494
3495 if (&ptype->list == head)
3496 goto normal;
3497
3498 same_flow = NAPI_GRO_CB(skb)->same_flow;
3499 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3500
3501 if (pp) {
3502 struct sk_buff *nskb = *pp;
3503
3504 *pp = nskb->next;
3505 nskb->next = NULL;
3506 napi_gro_complete(nskb);
3507 napi->gro_count--;
3508 }
3509
3510 if (same_flow)
3511 goto ok;
3512
3513 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3514 goto normal;
3515
3516 napi->gro_count++;
3517 NAPI_GRO_CB(skb)->count = 1;
3518 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3519 skb->next = napi->gro_list;
3520 napi->gro_list = skb;
3521 ret = GRO_HELD;
3522
3523 pull:
3524 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3525 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3526
3527 BUG_ON(skb->end - skb->tail < grow);
3528
3529 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3530
3531 skb->tail += grow;
3532 skb->data_len -= grow;
3533
3534 skb_shinfo(skb)->frags[0].page_offset += grow;
3535 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3536
3537 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3538 skb_frag_unref(skb, 0);
3539 memmove(skb_shinfo(skb)->frags,
3540 skb_shinfo(skb)->frags + 1,
3541 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3542 }
3543 }
3544
3545 ok:
3546 return ret;
3547
3548 normal:
3549 ret = GRO_NORMAL;
3550 goto pull;
3551 }
3552 EXPORT_SYMBOL(dev_gro_receive);
3553
3554 static inline gro_result_t
3555 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3556 {
3557 struct sk_buff *p;
3558 unsigned int maclen = skb->dev->hard_header_len;
3559
3560 for (p = napi->gro_list; p; p = p->next) {
3561 unsigned long diffs;
3562
3563 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3564 diffs |= p->vlan_tci ^ skb->vlan_tci;
3565 if (maclen == ETH_HLEN)
3566 diffs |= compare_ether_header(skb_mac_header(p),
3567 skb_gro_mac_header(skb));
3568 else if (!diffs)
3569 diffs = memcmp(skb_mac_header(p),
3570 skb_gro_mac_header(skb),
3571 maclen);
3572 NAPI_GRO_CB(p)->same_flow = !diffs;
3573 NAPI_GRO_CB(p)->flush = 0;
3574 }
3575
3576 return dev_gro_receive(napi, skb);
3577 }
3578
3579 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3580 {
3581 switch (ret) {
3582 case GRO_NORMAL:
3583 if (netif_receive_skb(skb))
3584 ret = GRO_DROP;
3585 break;
3586
3587 case GRO_DROP:
3588 kfree_skb(skb);
3589 break;
3590
3591 case GRO_MERGED_FREE:
3592 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3593 kmem_cache_free(skbuff_head_cache, skb);
3594 else
3595 __kfree_skb(skb);
3596 break;
3597
3598 case GRO_HELD:
3599 case GRO_MERGED:
3600 break;
3601 }
3602
3603 return ret;
3604 }
3605 EXPORT_SYMBOL(napi_skb_finish);
3606
3607 void skb_gro_reset_offset(struct sk_buff *skb)
3608 {
3609 NAPI_GRO_CB(skb)->data_offset = 0;
3610 NAPI_GRO_CB(skb)->frag0 = NULL;
3611 NAPI_GRO_CB(skb)->frag0_len = 0;
3612
3613 if (skb->mac_header == skb->tail &&
3614 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3615 NAPI_GRO_CB(skb)->frag0 =
3616 skb_frag_address(&skb_shinfo(skb)->frags[0]);
3617 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3618 }
3619 }
3620 EXPORT_SYMBOL(skb_gro_reset_offset);
3621
3622 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3623 {
3624 skb_gro_reset_offset(skb);
3625
3626 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3627 }
3628 EXPORT_SYMBOL(napi_gro_receive);
3629
3630 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3631 {
3632 __skb_pull(skb, skb_headlen(skb));
3633 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3634 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3635 skb->vlan_tci = 0;
3636 skb->dev = napi->dev;
3637 skb->skb_iif = 0;
3638
3639 napi->skb = skb;
3640 }
3641
3642 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3643 {
3644 struct sk_buff *skb = napi->skb;
3645
3646 if (!skb) {
3647 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3648 if (skb)
3649 napi->skb = skb;
3650 }
3651 return skb;
3652 }
3653 EXPORT_SYMBOL(napi_get_frags);
3654
3655 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3656 gro_result_t ret)
3657 {
3658 switch (ret) {
3659 case GRO_NORMAL:
3660 case GRO_HELD:
3661 skb->protocol = eth_type_trans(skb, skb->dev);
3662
3663 if (ret == GRO_HELD)
3664 skb_gro_pull(skb, -ETH_HLEN);
3665 else if (netif_receive_skb(skb))
3666 ret = GRO_DROP;
3667 break;
3668
3669 case GRO_DROP:
3670 case GRO_MERGED_FREE:
3671 napi_reuse_skb(napi, skb);
3672 break;
3673
3674 case GRO_MERGED:
3675 break;
3676 }
3677
3678 return ret;
3679 }
3680 EXPORT_SYMBOL(napi_frags_finish);
3681
3682 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3683 {
3684 struct sk_buff *skb = napi->skb;
3685 struct ethhdr *eth;
3686 unsigned int hlen;
3687 unsigned int off;
3688
3689 napi->skb = NULL;
3690
3691 skb_reset_mac_header(skb);
3692 skb_gro_reset_offset(skb);
3693
3694 off = skb_gro_offset(skb);
3695 hlen = off + sizeof(*eth);
3696 eth = skb_gro_header_fast(skb, off);
3697 if (skb_gro_header_hard(skb, hlen)) {
3698 eth = skb_gro_header_slow(skb, hlen, off);
3699 if (unlikely(!eth)) {
3700 napi_reuse_skb(napi, skb);
3701 skb = NULL;
3702 goto out;
3703 }
3704 }
3705
3706 skb_gro_pull(skb, sizeof(*eth));
3707
3708 /*
3709 * This works because the only protocols we care about don't require
3710 * special handling. We'll fix it up properly at the end.
3711 */
3712 skb->protocol = eth->h_proto;
3713
3714 out:
3715 return skb;
3716 }
3717
3718 gro_result_t napi_gro_frags(struct napi_struct *napi)
3719 {
3720 struct sk_buff *skb = napi_frags_skb(napi);
3721
3722 if (!skb)
3723 return GRO_DROP;
3724
3725 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3726 }
3727 EXPORT_SYMBOL(napi_gro_frags);
3728
3729 /*
3730 * net_rps_action sends any pending IPI's for rps.
3731 * Note: called with local irq disabled, but exits with local irq enabled.
3732 */
3733 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3734 {
3735 #ifdef CONFIG_RPS
3736 struct softnet_data *remsd = sd->rps_ipi_list;
3737
3738 if (remsd) {
3739 sd->rps_ipi_list = NULL;
3740
3741 local_irq_enable();
3742
3743 /* Send pending IPI's to kick RPS processing on remote cpus. */
3744 while (remsd) {
3745 struct softnet_data *next = remsd->rps_ipi_next;
3746
3747 if (cpu_online(remsd->cpu))
3748 __smp_call_function_single(remsd->cpu,
3749 &remsd->csd, 0);
3750 remsd = next;
3751 }
3752 } else
3753 #endif
3754 local_irq_enable();
3755 }
3756
3757 static int process_backlog(struct napi_struct *napi, int quota)
3758 {
3759 int work = 0;
3760 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3761
3762 #ifdef CONFIG_RPS
3763 /* Check if we have pending ipi, its better to send them now,
3764 * not waiting net_rx_action() end.
3765 */
3766 if (sd->rps_ipi_list) {
3767 local_irq_disable();
3768 net_rps_action_and_irq_enable(sd);
3769 }
3770 #endif
3771 napi->weight = weight_p;
3772 local_irq_disable();
3773 while (work < quota) {
3774 struct sk_buff *skb;
3775 unsigned int qlen;
3776
3777 while ((skb = __skb_dequeue(&sd->process_queue))) {
3778 local_irq_enable();
3779 __netif_receive_skb(skb);
3780 local_irq_disable();
3781 input_queue_head_incr(sd);
3782 if (++work >= quota) {
3783 local_irq_enable();
3784 return work;
3785 }
3786 }
3787
3788 rps_lock(sd);
3789 qlen = skb_queue_len(&sd->input_pkt_queue);
3790 if (qlen)
3791 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3792 &sd->process_queue);
3793
3794 if (qlen < quota - work) {
3795 /*
3796 * Inline a custom version of __napi_complete().
3797 * only current cpu owns and manipulates this napi,
3798 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3799 * we can use a plain write instead of clear_bit(),
3800 * and we dont need an smp_mb() memory barrier.
3801 */
3802 list_del(&napi->poll_list);
3803 napi->state = 0;
3804
3805 quota = work + qlen;
3806 }
3807 rps_unlock(sd);
3808 }
3809 local_irq_enable();
3810
3811 return work;
3812 }
3813
3814 /**
3815 * __napi_schedule - schedule for receive
3816 * @n: entry to schedule
3817 *
3818 * The entry's receive function will be scheduled to run
3819 */
3820 void __napi_schedule(struct napi_struct *n)
3821 {
3822 unsigned long flags;
3823
3824 local_irq_save(flags);
3825 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3826 local_irq_restore(flags);
3827 }
3828 EXPORT_SYMBOL(__napi_schedule);
3829
3830 void __napi_complete(struct napi_struct *n)
3831 {
3832 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3833 BUG_ON(n->gro_list);
3834
3835 list_del(&n->poll_list);
3836 smp_mb__before_clear_bit();
3837 clear_bit(NAPI_STATE_SCHED, &n->state);
3838 }
3839 EXPORT_SYMBOL(__napi_complete);
3840
3841 void napi_complete(struct napi_struct *n)
3842 {
3843 unsigned long flags;
3844
3845 /*
3846 * don't let napi dequeue from the cpu poll list
3847 * just in case its running on a different cpu
3848 */
3849 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3850 return;
3851
3852 napi_gro_flush(n);
3853 local_irq_save(flags);
3854 __napi_complete(n);
3855 local_irq_restore(flags);
3856 }
3857 EXPORT_SYMBOL(napi_complete);
3858
3859 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3860 int (*poll)(struct napi_struct *, int), int weight)
3861 {
3862 INIT_LIST_HEAD(&napi->poll_list);
3863 napi->gro_count = 0;
3864 napi->gro_list = NULL;
3865 napi->skb = NULL;
3866 napi->poll = poll;
3867 napi->weight = weight;
3868 list_add(&napi->dev_list, &dev->napi_list);
3869 napi->dev = dev;
3870 #ifdef CONFIG_NETPOLL
3871 spin_lock_init(&napi->poll_lock);
3872 napi->poll_owner = -1;
3873 #endif
3874 set_bit(NAPI_STATE_SCHED, &napi->state);
3875 }
3876 EXPORT_SYMBOL(netif_napi_add);
3877
3878 void netif_napi_del(struct napi_struct *napi)
3879 {
3880 struct sk_buff *skb, *next;
3881
3882 list_del_init(&napi->dev_list);
3883 napi_free_frags(napi);
3884
3885 for (skb = napi->gro_list; skb; skb = next) {
3886 next = skb->next;
3887 skb->next = NULL;
3888 kfree_skb(skb);
3889 }
3890
3891 napi->gro_list = NULL;
3892 napi->gro_count = 0;
3893 }
3894 EXPORT_SYMBOL(netif_napi_del);
3895
3896 static void net_rx_action(struct softirq_action *h)
3897 {
3898 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3899 unsigned long time_limit = jiffies + 2;
3900 int budget = netdev_budget;
3901 void *have;
3902
3903 local_irq_disable();
3904
3905 while (!list_empty(&sd->poll_list)) {
3906 struct napi_struct *n;
3907 int work, weight;
3908
3909 /* If softirq window is exhuasted then punt.
3910 * Allow this to run for 2 jiffies since which will allow
3911 * an average latency of 1.5/HZ.
3912 */
3913 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3914 goto softnet_break;
3915
3916 local_irq_enable();
3917
3918 /* Even though interrupts have been re-enabled, this
3919 * access is safe because interrupts can only add new
3920 * entries to the tail of this list, and only ->poll()
3921 * calls can remove this head entry from the list.
3922 */
3923 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3924
3925 have = netpoll_poll_lock(n);
3926
3927 weight = n->weight;
3928
3929 /* This NAPI_STATE_SCHED test is for avoiding a race
3930 * with netpoll's poll_napi(). Only the entity which
3931 * obtains the lock and sees NAPI_STATE_SCHED set will
3932 * actually make the ->poll() call. Therefore we avoid
3933 * accidentally calling ->poll() when NAPI is not scheduled.
3934 */
3935 work = 0;
3936 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3937 work = n->poll(n, weight);
3938 trace_napi_poll(n);
3939 }
3940
3941 WARN_ON_ONCE(work > weight);
3942
3943 budget -= work;
3944
3945 local_irq_disable();
3946
3947 /* Drivers must not modify the NAPI state if they
3948 * consume the entire weight. In such cases this code
3949 * still "owns" the NAPI instance and therefore can
3950 * move the instance around on the list at-will.
3951 */
3952 if (unlikely(work == weight)) {
3953 if (unlikely(napi_disable_pending(n))) {
3954 local_irq_enable();
3955 napi_complete(n);
3956 local_irq_disable();
3957 } else
3958 list_move_tail(&n->poll_list, &sd->poll_list);
3959 }
3960
3961 netpoll_poll_unlock(have);
3962 }
3963 out:
3964 net_rps_action_and_irq_enable(sd);
3965
3966 #ifdef CONFIG_NET_DMA
3967 /*
3968 * There may not be any more sk_buffs coming right now, so push
3969 * any pending DMA copies to hardware
3970 */
3971 dma_issue_pending_all();
3972 #endif
3973
3974 return;
3975
3976 softnet_break:
3977 sd->time_squeeze++;
3978 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3979 goto out;
3980 }
3981
3982 static gifconf_func_t *gifconf_list[NPROTO];
3983
3984 /**
3985 * register_gifconf - register a SIOCGIF handler
3986 * @family: Address family
3987 * @gifconf: Function handler
3988 *
3989 * Register protocol dependent address dumping routines. The handler
3990 * that is passed must not be freed or reused until it has been replaced
3991 * by another handler.
3992 */
3993 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3994 {
3995 if (family >= NPROTO)
3996 return -EINVAL;
3997 gifconf_list[family] = gifconf;
3998 return 0;
3999 }
4000 EXPORT_SYMBOL(register_gifconf);
4001
4002
4003 /*
4004 * Map an interface index to its name (SIOCGIFNAME)
4005 */
4006
4007 /*
4008 * We need this ioctl for efficient implementation of the
4009 * if_indextoname() function required by the IPv6 API. Without
4010 * it, we would have to search all the interfaces to find a
4011 * match. --pb
4012 */
4013
4014 static int dev_ifname(struct net *net, struct ifreq __user *arg)
4015 {
4016 struct net_device *dev;
4017 struct ifreq ifr;
4018
4019 /*
4020 * Fetch the caller's info block.
4021 */
4022
4023 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4024 return -EFAULT;
4025
4026 rcu_read_lock();
4027 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4028 if (!dev) {
4029 rcu_read_unlock();
4030 return -ENODEV;
4031 }
4032
4033 strcpy(ifr.ifr_name, dev->name);
4034 rcu_read_unlock();
4035
4036 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4037 return -EFAULT;
4038 return 0;
4039 }
4040
4041 /*
4042 * Perform a SIOCGIFCONF call. This structure will change
4043 * size eventually, and there is nothing I can do about it.
4044 * Thus we will need a 'compatibility mode'.
4045 */
4046
4047 static int dev_ifconf(struct net *net, char __user *arg)
4048 {
4049 struct ifconf ifc;
4050 struct net_device *dev;
4051 char __user *pos;
4052 int len;
4053 int total;
4054 int i;
4055
4056 /*
4057 * Fetch the caller's info block.
4058 */
4059
4060 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4061 return -EFAULT;
4062
4063 pos = ifc.ifc_buf;
4064 len = ifc.ifc_len;
4065
4066 /*
4067 * Loop over the interfaces, and write an info block for each.
4068 */
4069
4070 total = 0;
4071 for_each_netdev(net, dev) {
4072 for (i = 0; i < NPROTO; i++) {
4073 if (gifconf_list[i]) {
4074 int done;
4075 if (!pos)
4076 done = gifconf_list[i](dev, NULL, 0);
4077 else
4078 done = gifconf_list[i](dev, pos + total,
4079 len - total);
4080 if (done < 0)
4081 return -EFAULT;
4082 total += done;
4083 }
4084 }
4085 }
4086
4087 /*
4088 * All done. Write the updated control block back to the caller.
4089 */
4090 ifc.ifc_len = total;
4091
4092 /*
4093 * Both BSD and Solaris return 0 here, so we do too.
4094 */
4095 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4096 }
4097
4098 #ifdef CONFIG_PROC_FS
4099
4100 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4101
4102 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4103 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4104 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4105
4106 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4107 {
4108 struct net *net = seq_file_net(seq);
4109 struct net_device *dev;
4110 struct hlist_node *p;
4111 struct hlist_head *h;
4112 unsigned int count = 0, offset = get_offset(*pos);
4113
4114 h = &net->dev_name_head[get_bucket(*pos)];
4115 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4116 if (++count == offset)
4117 return dev;
4118 }
4119
4120 return NULL;
4121 }
4122
4123 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4124 {
4125 struct net_device *dev;
4126 unsigned int bucket;
4127
4128 do {
4129 dev = dev_from_same_bucket(seq, pos);
4130 if (dev)
4131 return dev;
4132
4133 bucket = get_bucket(*pos) + 1;
4134 *pos = set_bucket_offset(bucket, 1);
4135 } while (bucket < NETDEV_HASHENTRIES);
4136
4137 return NULL;
4138 }
4139
4140 /*
4141 * This is invoked by the /proc filesystem handler to display a device
4142 * in detail.
4143 */
4144 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4145 __acquires(RCU)
4146 {
4147 rcu_read_lock();
4148 if (!*pos)
4149 return SEQ_START_TOKEN;
4150
4151 if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4152 return NULL;
4153
4154 return dev_from_bucket(seq, pos);
4155 }
4156
4157 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4158 {
4159 ++*pos;
4160 return dev_from_bucket(seq, pos);
4161 }
4162
4163 void dev_seq_stop(struct seq_file *seq, void *v)
4164 __releases(RCU)
4165 {
4166 rcu_read_unlock();
4167 }
4168
4169 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4170 {
4171 struct rtnl_link_stats64 temp;
4172 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4173
4174 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4175 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4176 dev->name, stats->rx_bytes, stats->rx_packets,
4177 stats->rx_errors,
4178 stats->rx_dropped + stats->rx_missed_errors,
4179 stats->rx_fifo_errors,
4180 stats->rx_length_errors + stats->rx_over_errors +
4181 stats->rx_crc_errors + stats->rx_frame_errors,
4182 stats->rx_compressed, stats->multicast,
4183 stats->tx_bytes, stats->tx_packets,
4184 stats->tx_errors, stats->tx_dropped,
4185 stats->tx_fifo_errors, stats->collisions,
4186 stats->tx_carrier_errors +
4187 stats->tx_aborted_errors +
4188 stats->tx_window_errors +
4189 stats->tx_heartbeat_errors,
4190 stats->tx_compressed);
4191 }
4192
4193 /*
4194 * Called from the PROCfs module. This now uses the new arbitrary sized
4195 * /proc/net interface to create /proc/net/dev
4196 */
4197 static int dev_seq_show(struct seq_file *seq, void *v)
4198 {
4199 if (v == SEQ_START_TOKEN)
4200 seq_puts(seq, "Inter-| Receive "
4201 " | Transmit\n"
4202 " face |bytes packets errs drop fifo frame "
4203 "compressed multicast|bytes packets errs "
4204 "drop fifo colls carrier compressed\n");
4205 else
4206 dev_seq_printf_stats(seq, v);
4207 return 0;
4208 }
4209
4210 static struct softnet_data *softnet_get_online(loff_t *pos)
4211 {
4212 struct softnet_data *sd = NULL;
4213
4214 while (*pos < nr_cpu_ids)
4215 if (cpu_online(*pos)) {
4216 sd = &per_cpu(softnet_data, *pos);
4217 break;
4218 } else
4219 ++*pos;
4220 return sd;
4221 }
4222
4223 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4224 {
4225 return softnet_get_online(pos);
4226 }
4227
4228 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4229 {
4230 ++*pos;
4231 return softnet_get_online(pos);
4232 }
4233
4234 static void softnet_seq_stop(struct seq_file *seq, void *v)
4235 {
4236 }
4237
4238 static int softnet_seq_show(struct seq_file *seq, void *v)
4239 {
4240 struct softnet_data *sd = v;
4241
4242 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4243 sd->processed, sd->dropped, sd->time_squeeze, 0,
4244 0, 0, 0, 0, /* was fastroute */
4245 sd->cpu_collision, sd->received_rps);
4246 return 0;
4247 }
4248
4249 static const struct seq_operations dev_seq_ops = {
4250 .start = dev_seq_start,
4251 .next = dev_seq_next,
4252 .stop = dev_seq_stop,
4253 .show = dev_seq_show,
4254 };
4255
4256 static int dev_seq_open(struct inode *inode, struct file *file)
4257 {
4258 return seq_open_net(inode, file, &dev_seq_ops,
4259 sizeof(struct seq_net_private));
4260 }
4261
4262 static const struct file_operations dev_seq_fops = {
4263 .owner = THIS_MODULE,
4264 .open = dev_seq_open,
4265 .read = seq_read,
4266 .llseek = seq_lseek,
4267 .release = seq_release_net,
4268 };
4269
4270 static const struct seq_operations softnet_seq_ops = {
4271 .start = softnet_seq_start,
4272 .next = softnet_seq_next,
4273 .stop = softnet_seq_stop,
4274 .show = softnet_seq_show,
4275 };
4276
4277 static int softnet_seq_open(struct inode *inode, struct file *file)
4278 {
4279 return seq_open(file, &softnet_seq_ops);
4280 }
4281
4282 static const struct file_operations softnet_seq_fops = {
4283 .owner = THIS_MODULE,
4284 .open = softnet_seq_open,
4285 .read = seq_read,
4286 .llseek = seq_lseek,
4287 .release = seq_release,
4288 };
4289
4290 static void *ptype_get_idx(loff_t pos)
4291 {
4292 struct packet_type *pt = NULL;
4293 loff_t i = 0;
4294 int t;
4295
4296 list_for_each_entry_rcu(pt, &ptype_all, list) {
4297 if (i == pos)
4298 return pt;
4299 ++i;
4300 }
4301
4302 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4303 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4304 if (i == pos)
4305 return pt;
4306 ++i;
4307 }
4308 }
4309 return NULL;
4310 }
4311
4312 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4313 __acquires(RCU)
4314 {
4315 rcu_read_lock();
4316 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4317 }
4318
4319 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4320 {
4321 struct packet_type *pt;
4322 struct list_head *nxt;
4323 int hash;
4324
4325 ++*pos;
4326 if (v == SEQ_START_TOKEN)
4327 return ptype_get_idx(0);
4328
4329 pt = v;
4330 nxt = pt->list.next;
4331 if (pt->type == htons(ETH_P_ALL)) {
4332 if (nxt != &ptype_all)
4333 goto found;
4334 hash = 0;
4335 nxt = ptype_base[0].next;
4336 } else
4337 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4338
4339 while (nxt == &ptype_base[hash]) {
4340 if (++hash >= PTYPE_HASH_SIZE)
4341 return NULL;
4342 nxt = ptype_base[hash].next;
4343 }
4344 found:
4345 return list_entry(nxt, struct packet_type, list);
4346 }
4347
4348 static void ptype_seq_stop(struct seq_file *seq, void *v)
4349 __releases(RCU)
4350 {
4351 rcu_read_unlock();
4352 }
4353
4354 static int ptype_seq_show(struct seq_file *seq, void *v)
4355 {
4356 struct packet_type *pt = v;
4357
4358 if (v == SEQ_START_TOKEN)
4359 seq_puts(seq, "Type Device Function\n");
4360 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4361 if (pt->type == htons(ETH_P_ALL))
4362 seq_puts(seq, "ALL ");
4363 else
4364 seq_printf(seq, "%04x", ntohs(pt->type));
4365
4366 seq_printf(seq, " %-8s %pF\n",
4367 pt->dev ? pt->dev->name : "", pt->func);
4368 }
4369
4370 return 0;
4371 }
4372
4373 static const struct seq_operations ptype_seq_ops = {
4374 .start = ptype_seq_start,
4375 .next = ptype_seq_next,
4376 .stop = ptype_seq_stop,
4377 .show = ptype_seq_show,
4378 };
4379
4380 static int ptype_seq_open(struct inode *inode, struct file *file)
4381 {
4382 return seq_open_net(inode, file, &ptype_seq_ops,
4383 sizeof(struct seq_net_private));
4384 }
4385
4386 static const struct file_operations ptype_seq_fops = {
4387 .owner = THIS_MODULE,
4388 .open = ptype_seq_open,
4389 .read = seq_read,
4390 .llseek = seq_lseek,
4391 .release = seq_release_net,
4392 };
4393
4394
4395 static int __net_init dev_proc_net_init(struct net *net)
4396 {
4397 int rc = -ENOMEM;
4398
4399 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4400 goto out;
4401 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4402 goto out_dev;
4403 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4404 goto out_softnet;
4405
4406 if (wext_proc_init(net))
4407 goto out_ptype;
4408 rc = 0;
4409 out:
4410 return rc;
4411 out_ptype:
4412 proc_net_remove(net, "ptype");
4413 out_softnet:
4414 proc_net_remove(net, "softnet_stat");
4415 out_dev:
4416 proc_net_remove(net, "dev");
4417 goto out;
4418 }
4419
4420 static void __net_exit dev_proc_net_exit(struct net *net)
4421 {
4422 wext_proc_exit(net);
4423
4424 proc_net_remove(net, "ptype");
4425 proc_net_remove(net, "softnet_stat");
4426 proc_net_remove(net, "dev");
4427 }
4428
4429 static struct pernet_operations __net_initdata dev_proc_ops = {
4430 .init = dev_proc_net_init,
4431 .exit = dev_proc_net_exit,
4432 };
4433
4434 static int __init dev_proc_init(void)
4435 {
4436 return register_pernet_subsys(&dev_proc_ops);
4437 }
4438 #else
4439 #define dev_proc_init() 0
4440 #endif /* CONFIG_PROC_FS */
4441
4442
4443 /**
4444 * netdev_set_master - set up master pointer
4445 * @slave: slave device
4446 * @master: new master device
4447 *
4448 * Changes the master device of the slave. Pass %NULL to break the
4449 * bonding. The caller must hold the RTNL semaphore. On a failure
4450 * a negative errno code is returned. On success the reference counts
4451 * are adjusted and the function returns zero.
4452 */
4453 int netdev_set_master(struct net_device *slave, struct net_device *master)
4454 {
4455 struct net_device *old = slave->master;
4456
4457 ASSERT_RTNL();
4458
4459 if (master) {
4460 if (old)
4461 return -EBUSY;
4462 dev_hold(master);
4463 }
4464
4465 slave->master = master;
4466
4467 if (old)
4468 dev_put(old);
4469 return 0;
4470 }
4471 EXPORT_SYMBOL(netdev_set_master);
4472
4473 /**
4474 * netdev_set_bond_master - set up bonding master/slave pair
4475 * @slave: slave device
4476 * @master: new master device
4477 *
4478 * Changes the master device of the slave. Pass %NULL to break the
4479 * bonding. The caller must hold the RTNL semaphore. On a failure
4480 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4481 * to the routing socket and the function returns zero.
4482 */
4483 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4484 {
4485 int err;
4486
4487 ASSERT_RTNL();
4488
4489 err = netdev_set_master(slave, master);
4490 if (err)
4491 return err;
4492 if (master)
4493 slave->flags |= IFF_SLAVE;
4494 else
4495 slave->flags &= ~IFF_SLAVE;
4496
4497 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4498 return 0;
4499 }
4500 EXPORT_SYMBOL(netdev_set_bond_master);
4501
4502 static void dev_change_rx_flags(struct net_device *dev, int flags)
4503 {
4504 const struct net_device_ops *ops = dev->netdev_ops;
4505
4506 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4507 ops->ndo_change_rx_flags(dev, flags);
4508 }
4509
4510 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4511 {
4512 unsigned int old_flags = dev->flags;
4513 uid_t uid;
4514 gid_t gid;
4515
4516 ASSERT_RTNL();
4517
4518 dev->flags |= IFF_PROMISC;
4519 dev->promiscuity += inc;
4520 if (dev->promiscuity == 0) {
4521 /*
4522 * Avoid overflow.
4523 * If inc causes overflow, untouch promisc and return error.
4524 */
4525 if (inc < 0)
4526 dev->flags &= ~IFF_PROMISC;
4527 else {
4528 dev->promiscuity -= inc;
4529 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4530 dev->name);
4531 return -EOVERFLOW;
4532 }
4533 }
4534 if (dev->flags != old_flags) {
4535 pr_info("device %s %s promiscuous mode\n",
4536 dev->name,
4537 dev->flags & IFF_PROMISC ? "entered" : "left");
4538 if (audit_enabled) {
4539 current_uid_gid(&uid, &gid);
4540 audit_log(current->audit_context, GFP_ATOMIC,
4541 AUDIT_ANOM_PROMISCUOUS,
4542 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4543 dev->name, (dev->flags & IFF_PROMISC),
4544 (old_flags & IFF_PROMISC),
4545 audit_get_loginuid(current),
4546 uid, gid,
4547 audit_get_sessionid(current));
4548 }
4549
4550 dev_change_rx_flags(dev, IFF_PROMISC);
4551 }
4552 return 0;
4553 }
4554
4555 /**
4556 * dev_set_promiscuity - update promiscuity count on a device
4557 * @dev: device
4558 * @inc: modifier
4559 *
4560 * Add or remove promiscuity from a device. While the count in the device
4561 * remains above zero the interface remains promiscuous. Once it hits zero
4562 * the device reverts back to normal filtering operation. A negative inc
4563 * value is used to drop promiscuity on the device.
4564 * Return 0 if successful or a negative errno code on error.
4565 */
4566 int dev_set_promiscuity(struct net_device *dev, int inc)
4567 {
4568 unsigned int old_flags = dev->flags;
4569 int err;
4570
4571 err = __dev_set_promiscuity(dev, inc);
4572 if (err < 0)
4573 return err;
4574 if (dev->flags != old_flags)
4575 dev_set_rx_mode(dev);
4576 return err;
4577 }
4578 EXPORT_SYMBOL(dev_set_promiscuity);
4579
4580 /**
4581 * dev_set_allmulti - update allmulti count on a device
4582 * @dev: device
4583 * @inc: modifier
4584 *
4585 * Add or remove reception of all multicast frames to a device. While the
4586 * count in the device remains above zero the interface remains listening
4587 * to all interfaces. Once it hits zero the device reverts back to normal
4588 * filtering operation. A negative @inc value is used to drop the counter
4589 * when releasing a resource needing all multicasts.
4590 * Return 0 if successful or a negative errno code on error.
4591 */
4592
4593 int dev_set_allmulti(struct net_device *dev, int inc)
4594 {
4595 unsigned int old_flags = dev->flags;
4596
4597 ASSERT_RTNL();
4598
4599 dev->flags |= IFF_ALLMULTI;
4600 dev->allmulti += inc;
4601 if (dev->allmulti == 0) {
4602 /*
4603 * Avoid overflow.
4604 * If inc causes overflow, untouch allmulti and return error.
4605 */
4606 if (inc < 0)
4607 dev->flags &= ~IFF_ALLMULTI;
4608 else {
4609 dev->allmulti -= inc;
4610 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4611 dev->name);
4612 return -EOVERFLOW;
4613 }
4614 }
4615 if (dev->flags ^ old_flags) {
4616 dev_change_rx_flags(dev, IFF_ALLMULTI);
4617 dev_set_rx_mode(dev);
4618 }
4619 return 0;
4620 }
4621 EXPORT_SYMBOL(dev_set_allmulti);
4622
4623 /*
4624 * Upload unicast and multicast address lists to device and
4625 * configure RX filtering. When the device doesn't support unicast
4626 * filtering it is put in promiscuous mode while unicast addresses
4627 * are present.
4628 */
4629 void __dev_set_rx_mode(struct net_device *dev)
4630 {
4631 const struct net_device_ops *ops = dev->netdev_ops;
4632
4633 /* dev_open will call this function so the list will stay sane. */
4634 if (!(dev->flags&IFF_UP))
4635 return;
4636
4637 if (!netif_device_present(dev))
4638 return;
4639
4640 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4641 /* Unicast addresses changes may only happen under the rtnl,
4642 * therefore calling __dev_set_promiscuity here is safe.
4643 */
4644 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4645 __dev_set_promiscuity(dev, 1);
4646 dev->uc_promisc = true;
4647 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4648 __dev_set_promiscuity(dev, -1);
4649 dev->uc_promisc = false;
4650 }
4651 }
4652
4653 if (ops->ndo_set_rx_mode)
4654 ops->ndo_set_rx_mode(dev);
4655 }
4656
4657 void dev_set_rx_mode(struct net_device *dev)
4658 {
4659 netif_addr_lock_bh(dev);
4660 __dev_set_rx_mode(dev);
4661 netif_addr_unlock_bh(dev);
4662 }
4663
4664 /**
4665 * dev_get_flags - get flags reported to userspace
4666 * @dev: device
4667 *
4668 * Get the combination of flag bits exported through APIs to userspace.
4669 */
4670 unsigned int dev_get_flags(const struct net_device *dev)
4671 {
4672 unsigned int flags;
4673
4674 flags = (dev->flags & ~(IFF_PROMISC |
4675 IFF_ALLMULTI |
4676 IFF_RUNNING |
4677 IFF_LOWER_UP |
4678 IFF_DORMANT)) |
4679 (dev->gflags & (IFF_PROMISC |
4680 IFF_ALLMULTI));
4681
4682 if (netif_running(dev)) {
4683 if (netif_oper_up(dev))
4684 flags |= IFF_RUNNING;
4685 if (netif_carrier_ok(dev))
4686 flags |= IFF_LOWER_UP;
4687 if (netif_dormant(dev))
4688 flags |= IFF_DORMANT;
4689 }
4690
4691 return flags;
4692 }
4693 EXPORT_SYMBOL(dev_get_flags);
4694
4695 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4696 {
4697 unsigned int old_flags = dev->flags;
4698 int ret;
4699
4700 ASSERT_RTNL();
4701
4702 /*
4703 * Set the flags on our device.
4704 */
4705
4706 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4707 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4708 IFF_AUTOMEDIA)) |
4709 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4710 IFF_ALLMULTI));
4711
4712 /*
4713 * Load in the correct multicast list now the flags have changed.
4714 */
4715
4716 if ((old_flags ^ flags) & IFF_MULTICAST)
4717 dev_change_rx_flags(dev, IFF_MULTICAST);
4718
4719 dev_set_rx_mode(dev);
4720
4721 /*
4722 * Have we downed the interface. We handle IFF_UP ourselves
4723 * according to user attempts to set it, rather than blindly
4724 * setting it.
4725 */
4726
4727 ret = 0;
4728 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4729 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4730
4731 if (!ret)
4732 dev_set_rx_mode(dev);
4733 }
4734
4735 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4736 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4737
4738 dev->gflags ^= IFF_PROMISC;
4739 dev_set_promiscuity(dev, inc);
4740 }
4741
4742 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4743 is important. Some (broken) drivers set IFF_PROMISC, when
4744 IFF_ALLMULTI is requested not asking us and not reporting.
4745 */
4746 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4747 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4748
4749 dev->gflags ^= IFF_ALLMULTI;
4750 dev_set_allmulti(dev, inc);
4751 }
4752
4753 return ret;
4754 }
4755
4756 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4757 {
4758 unsigned int changes = dev->flags ^ old_flags;
4759
4760 if (changes & IFF_UP) {
4761 if (dev->flags & IFF_UP)
4762 call_netdevice_notifiers(NETDEV_UP, dev);
4763 else
4764 call_netdevice_notifiers(NETDEV_DOWN, dev);
4765 }
4766
4767 if (dev->flags & IFF_UP &&
4768 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4769 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4770 }
4771
4772 /**
4773 * dev_change_flags - change device settings
4774 * @dev: device
4775 * @flags: device state flags
4776 *
4777 * Change settings on device based state flags. The flags are
4778 * in the userspace exported format.
4779 */
4780 int dev_change_flags(struct net_device *dev, unsigned int flags)
4781 {
4782 int ret;
4783 unsigned int changes, old_flags = dev->flags;
4784
4785 ret = __dev_change_flags(dev, flags);
4786 if (ret < 0)
4787 return ret;
4788
4789 changes = old_flags ^ dev->flags;
4790 if (changes)
4791 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4792
4793 __dev_notify_flags(dev, old_flags);
4794 return ret;
4795 }
4796 EXPORT_SYMBOL(dev_change_flags);
4797
4798 /**
4799 * dev_set_mtu - Change maximum transfer unit
4800 * @dev: device
4801 * @new_mtu: new transfer unit
4802 *
4803 * Change the maximum transfer size of the network device.
4804 */
4805 int dev_set_mtu(struct net_device *dev, int new_mtu)
4806 {
4807 const struct net_device_ops *ops = dev->netdev_ops;
4808 int err;
4809
4810 if (new_mtu == dev->mtu)
4811 return 0;
4812
4813 /* MTU must be positive. */
4814 if (new_mtu < 0)
4815 return -EINVAL;
4816
4817 if (!netif_device_present(dev))
4818 return -ENODEV;
4819
4820 err = 0;
4821 if (ops->ndo_change_mtu)
4822 err = ops->ndo_change_mtu(dev, new_mtu);
4823 else
4824 dev->mtu = new_mtu;
4825
4826 if (!err && dev->flags & IFF_UP)
4827 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4828 return err;
4829 }
4830 EXPORT_SYMBOL(dev_set_mtu);
4831
4832 /**
4833 * dev_set_group - Change group this device belongs to
4834 * @dev: device
4835 * @new_group: group this device should belong to
4836 */
4837 void dev_set_group(struct net_device *dev, int new_group)
4838 {
4839 dev->group = new_group;
4840 }
4841 EXPORT_SYMBOL(dev_set_group);
4842
4843 /**
4844 * dev_set_mac_address - Change Media Access Control Address
4845 * @dev: device
4846 * @sa: new address
4847 *
4848 * Change the hardware (MAC) address of the device
4849 */
4850 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4851 {
4852 const struct net_device_ops *ops = dev->netdev_ops;
4853 int err;
4854
4855 if (!ops->ndo_set_mac_address)
4856 return -EOPNOTSUPP;
4857 if (sa->sa_family != dev->type)
4858 return -EINVAL;
4859 if (!netif_device_present(dev))
4860 return -ENODEV;
4861 err = ops->ndo_set_mac_address(dev, sa);
4862 if (!err)
4863 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4864 add_device_randomness(dev->dev_addr, dev->addr_len);
4865 return err;
4866 }
4867 EXPORT_SYMBOL(dev_set_mac_address);
4868
4869 /*
4870 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4871 */
4872 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4873 {
4874 int err;
4875 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4876
4877 if (!dev)
4878 return -ENODEV;
4879
4880 switch (cmd) {
4881 case SIOCGIFFLAGS: /* Get interface flags */
4882 ifr->ifr_flags = (short) dev_get_flags(dev);
4883 return 0;
4884
4885 case SIOCGIFMETRIC: /* Get the metric on the interface
4886 (currently unused) */
4887 ifr->ifr_metric = 0;
4888 return 0;
4889
4890 case SIOCGIFMTU: /* Get the MTU of a device */
4891 ifr->ifr_mtu = dev->mtu;
4892 return 0;
4893
4894 case SIOCGIFHWADDR:
4895 if (!dev->addr_len)
4896 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4897 else
4898 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4899 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4900 ifr->ifr_hwaddr.sa_family = dev->type;
4901 return 0;
4902
4903 case SIOCGIFSLAVE:
4904 err = -EINVAL;
4905 break;
4906
4907 case SIOCGIFMAP:
4908 ifr->ifr_map.mem_start = dev->mem_start;
4909 ifr->ifr_map.mem_end = dev->mem_end;
4910 ifr->ifr_map.base_addr = dev->base_addr;
4911 ifr->ifr_map.irq = dev->irq;
4912 ifr->ifr_map.dma = dev->dma;
4913 ifr->ifr_map.port = dev->if_port;
4914 return 0;
4915
4916 case SIOCGIFINDEX:
4917 ifr->ifr_ifindex = dev->ifindex;
4918 return 0;
4919
4920 case SIOCGIFTXQLEN:
4921 ifr->ifr_qlen = dev->tx_queue_len;
4922 return 0;
4923
4924 default:
4925 /* dev_ioctl() should ensure this case
4926 * is never reached
4927 */
4928 WARN_ON(1);
4929 err = -ENOTTY;
4930 break;
4931
4932 }
4933 return err;
4934 }
4935
4936 /*
4937 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4938 */
4939 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4940 {
4941 int err;
4942 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4943 const struct net_device_ops *ops;
4944
4945 if (!dev)
4946 return -ENODEV;
4947
4948 ops = dev->netdev_ops;
4949
4950 switch (cmd) {
4951 case SIOCSIFFLAGS: /* Set interface flags */
4952 return dev_change_flags(dev, ifr->ifr_flags);
4953
4954 case SIOCSIFMETRIC: /* Set the metric on the interface
4955 (currently unused) */
4956 return -EOPNOTSUPP;
4957
4958 case SIOCSIFMTU: /* Set the MTU of a device */
4959 return dev_set_mtu(dev, ifr->ifr_mtu);
4960
4961 case SIOCSIFHWADDR:
4962 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4963
4964 case SIOCSIFHWBROADCAST:
4965 if (ifr->ifr_hwaddr.sa_family != dev->type)
4966 return -EINVAL;
4967 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4968 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4969 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4970 return 0;
4971
4972 case SIOCSIFMAP:
4973 if (ops->ndo_set_config) {
4974 if (!netif_device_present(dev))
4975 return -ENODEV;
4976 return ops->ndo_set_config(dev, &ifr->ifr_map);
4977 }
4978 return -EOPNOTSUPP;
4979
4980 case SIOCADDMULTI:
4981 if (!ops->ndo_set_rx_mode ||
4982 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4983 return -EINVAL;
4984 if (!netif_device_present(dev))
4985 return -ENODEV;
4986 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4987
4988 case SIOCDELMULTI:
4989 if (!ops->ndo_set_rx_mode ||
4990 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4991 return -EINVAL;
4992 if (!netif_device_present(dev))
4993 return -ENODEV;
4994 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4995
4996 case SIOCSIFTXQLEN:
4997 if (ifr->ifr_qlen < 0)
4998 return -EINVAL;
4999 dev->tx_queue_len = ifr->ifr_qlen;
5000 return 0;
5001
5002 case SIOCSIFNAME:
5003 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
5004 return dev_change_name(dev, ifr->ifr_newname);
5005
5006 case SIOCSHWTSTAMP:
5007 err = net_hwtstamp_validate(ifr);
5008 if (err)
5009 return err;
5010 /* fall through */
5011
5012 /*
5013 * Unknown or private ioctl
5014 */
5015 default:
5016 if ((cmd >= SIOCDEVPRIVATE &&
5017 cmd <= SIOCDEVPRIVATE + 15) ||
5018 cmd == SIOCBONDENSLAVE ||
5019 cmd == SIOCBONDRELEASE ||
5020 cmd == SIOCBONDSETHWADDR ||
5021 cmd == SIOCBONDSLAVEINFOQUERY ||
5022 cmd == SIOCBONDINFOQUERY ||
5023 cmd == SIOCBONDCHANGEACTIVE ||
5024 cmd == SIOCGMIIPHY ||
5025 cmd == SIOCGMIIREG ||
5026 cmd == SIOCSMIIREG ||
5027 cmd == SIOCBRADDIF ||
5028 cmd == SIOCBRDELIF ||
5029 cmd == SIOCSHWTSTAMP ||
5030 cmd == SIOCWANDEV) {
5031 err = -EOPNOTSUPP;
5032 if (ops->ndo_do_ioctl) {
5033 if (netif_device_present(dev))
5034 err = ops->ndo_do_ioctl(dev, ifr, cmd);
5035 else
5036 err = -ENODEV;
5037 }
5038 } else
5039 err = -EINVAL;
5040
5041 }
5042 return err;
5043 }
5044
5045 /*
5046 * This function handles all "interface"-type I/O control requests. The actual
5047 * 'doing' part of this is dev_ifsioc above.
5048 */
5049
5050 /**
5051 * dev_ioctl - network device ioctl
5052 * @net: the applicable net namespace
5053 * @cmd: command to issue
5054 * @arg: pointer to a struct ifreq in user space
5055 *
5056 * Issue ioctl functions to devices. This is normally called by the
5057 * user space syscall interfaces but can sometimes be useful for
5058 * other purposes. The return value is the return from the syscall if
5059 * positive or a negative errno code on error.
5060 */
5061
5062 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5063 {
5064 struct ifreq ifr;
5065 int ret;
5066 char *colon;
5067
5068 /* One special case: SIOCGIFCONF takes ifconf argument
5069 and requires shared lock, because it sleeps writing
5070 to user space.
5071 */
5072
5073 if (cmd == SIOCGIFCONF) {
5074 rtnl_lock();
5075 ret = dev_ifconf(net, (char __user *) arg);
5076 rtnl_unlock();
5077 return ret;
5078 }
5079 if (cmd == SIOCGIFNAME)
5080 return dev_ifname(net, (struct ifreq __user *)arg);
5081
5082 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5083 return -EFAULT;
5084
5085 ifr.ifr_name[IFNAMSIZ-1] = 0;
5086
5087 colon = strchr(ifr.ifr_name, ':');
5088 if (colon)
5089 *colon = 0;
5090
5091 /*
5092 * See which interface the caller is talking about.
5093 */
5094
5095 switch (cmd) {
5096 /*
5097 * These ioctl calls:
5098 * - can be done by all.
5099 * - atomic and do not require locking.
5100 * - return a value
5101 */
5102 case SIOCGIFFLAGS:
5103 case SIOCGIFMETRIC:
5104 case SIOCGIFMTU:
5105 case SIOCGIFHWADDR:
5106 case SIOCGIFSLAVE:
5107 case SIOCGIFMAP:
5108 case SIOCGIFINDEX:
5109 case SIOCGIFTXQLEN:
5110 dev_load(net, ifr.ifr_name);
5111 rcu_read_lock();
5112 ret = dev_ifsioc_locked(net, &ifr, cmd);
5113 rcu_read_unlock();
5114 if (!ret) {
5115 if (colon)
5116 *colon = ':';
5117 if (copy_to_user(arg, &ifr,
5118 sizeof(struct ifreq)))
5119 ret = -EFAULT;
5120 }
5121 return ret;
5122
5123 case SIOCETHTOOL:
5124 dev_load(net, ifr.ifr_name);
5125 rtnl_lock();
5126 ret = dev_ethtool(net, &ifr);
5127 rtnl_unlock();
5128 if (!ret) {
5129 if (colon)
5130 *colon = ':';
5131 if (copy_to_user(arg, &ifr,
5132 sizeof(struct ifreq)))
5133 ret = -EFAULT;
5134 }
5135 return ret;
5136
5137 /*
5138 * These ioctl calls:
5139 * - require superuser power.
5140 * - require strict serialization.
5141 * - return a value
5142 */
5143 case SIOCGMIIPHY:
5144 case SIOCGMIIREG:
5145 case SIOCSIFNAME:
5146 if (!capable(CAP_NET_ADMIN))
5147 return -EPERM;
5148 dev_load(net, ifr.ifr_name);
5149 rtnl_lock();
5150 ret = dev_ifsioc(net, &ifr, cmd);
5151 rtnl_unlock();
5152 if (!ret) {
5153 if (colon)
5154 *colon = ':';
5155 if (copy_to_user(arg, &ifr,
5156 sizeof(struct ifreq)))
5157 ret = -EFAULT;
5158 }
5159 return ret;
5160
5161 /*
5162 * These ioctl calls:
5163 * - require superuser power.
5164 * - require strict serialization.
5165 * - do not return a value
5166 */
5167 case SIOCSIFFLAGS:
5168 case SIOCSIFMETRIC:
5169 case SIOCSIFMTU:
5170 case SIOCSIFMAP:
5171 case SIOCSIFHWADDR:
5172 case SIOCSIFSLAVE:
5173 case SIOCADDMULTI:
5174 case SIOCDELMULTI:
5175 case SIOCSIFHWBROADCAST:
5176 case SIOCSIFTXQLEN:
5177 case SIOCSMIIREG:
5178 case SIOCBONDENSLAVE:
5179 case SIOCBONDRELEASE:
5180 case SIOCBONDSETHWADDR:
5181 case SIOCBONDCHANGEACTIVE:
5182 case SIOCBRADDIF:
5183 case SIOCBRDELIF:
5184 case SIOCSHWTSTAMP:
5185 if (!capable(CAP_NET_ADMIN))
5186 return -EPERM;
5187 /* fall through */
5188 case SIOCBONDSLAVEINFOQUERY:
5189 case SIOCBONDINFOQUERY:
5190 dev_load(net, ifr.ifr_name);
5191 rtnl_lock();
5192 ret = dev_ifsioc(net, &ifr, cmd);
5193 rtnl_unlock();
5194 return ret;
5195
5196 case SIOCGIFMEM:
5197 /* Get the per device memory space. We can add this but
5198 * currently do not support it */
5199 case SIOCSIFMEM:
5200 /* Set the per device memory buffer space.
5201 * Not applicable in our case */
5202 case SIOCSIFLINK:
5203 return -ENOTTY;
5204
5205 /*
5206 * Unknown or private ioctl.
5207 */
5208 default:
5209 if (cmd == SIOCWANDEV ||
5210 (cmd >= SIOCDEVPRIVATE &&
5211 cmd <= SIOCDEVPRIVATE + 15)) {
5212 dev_load(net, ifr.ifr_name);
5213 rtnl_lock();
5214 ret = dev_ifsioc(net, &ifr, cmd);
5215 rtnl_unlock();
5216 if (!ret && copy_to_user(arg, &ifr,
5217 sizeof(struct ifreq)))
5218 ret = -EFAULT;
5219 return ret;
5220 }
5221 /* Take care of Wireless Extensions */
5222 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5223 return wext_handle_ioctl(net, &ifr, cmd, arg);
5224 return -ENOTTY;
5225 }
5226 }
5227
5228
5229 /**
5230 * dev_new_index - allocate an ifindex
5231 * @net: the applicable net namespace
5232 *
5233 * Returns a suitable unique value for a new device interface
5234 * number. The caller must hold the rtnl semaphore or the
5235 * dev_base_lock to be sure it remains unique.
5236 */
5237 static int dev_new_index(struct net *net)
5238 {
5239 static int ifindex;
5240 for (;;) {
5241 if (++ifindex <= 0)
5242 ifindex = 1;
5243 if (!__dev_get_by_index(net, ifindex))
5244 return ifindex;
5245 }
5246 }
5247
5248 /* Delayed registration/unregisteration */
5249 static LIST_HEAD(net_todo_list);
5250
5251 static void net_set_todo(struct net_device *dev)
5252 {
5253 list_add_tail(&dev->todo_list, &net_todo_list);
5254 }
5255
5256 static void rollback_registered_many(struct list_head *head)
5257 {
5258 struct net_device *dev, *tmp;
5259
5260 BUG_ON(dev_boot_phase);
5261 ASSERT_RTNL();
5262
5263 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5264 /* Some devices call without registering
5265 * for initialization unwind. Remove those
5266 * devices and proceed with the remaining.
5267 */
5268 if (dev->reg_state == NETREG_UNINITIALIZED) {
5269 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5270 dev->name, dev);
5271
5272 WARN_ON(1);
5273 list_del(&dev->unreg_list);
5274 continue;
5275 }
5276 dev->dismantle = true;
5277 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5278 }
5279
5280 /* If device is running, close it first. */
5281 dev_close_many(head);
5282
5283 list_for_each_entry(dev, head, unreg_list) {
5284 /* And unlink it from device chain. */
5285 unlist_netdevice(dev);
5286
5287 dev->reg_state = NETREG_UNREGISTERING;
5288 }
5289
5290 synchronize_net();
5291
5292 list_for_each_entry(dev, head, unreg_list) {
5293 /* Shutdown queueing discipline. */
5294 dev_shutdown(dev);
5295
5296
5297 /* Notify protocols, that we are about to destroy
5298 this device. They should clean all the things.
5299 */
5300 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5301
5302 if (!dev->rtnl_link_ops ||
5303 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5304 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5305
5306 /*
5307 * Flush the unicast and multicast chains
5308 */
5309 dev_uc_flush(dev);
5310 dev_mc_flush(dev);
5311
5312 if (dev->netdev_ops->ndo_uninit)
5313 dev->netdev_ops->ndo_uninit(dev);
5314
5315 /* Notifier chain MUST detach us from master device. */
5316 WARN_ON(dev->master);
5317
5318 /* Remove entries from kobject tree */
5319 netdev_unregister_kobject(dev);
5320 }
5321
5322 /* Process any work delayed until the end of the batch */
5323 dev = list_first_entry(head, struct net_device, unreg_list);
5324 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5325
5326 synchronize_net();
5327
5328 list_for_each_entry(dev, head, unreg_list)
5329 dev_put(dev);
5330 }
5331
5332 static void rollback_registered(struct net_device *dev)
5333 {
5334 LIST_HEAD(single);
5335
5336 list_add(&dev->unreg_list, &single);
5337 rollback_registered_many(&single);
5338 list_del(&single);
5339 }
5340
5341 static netdev_features_t netdev_fix_features(struct net_device *dev,
5342 netdev_features_t features)
5343 {
5344 /* Fix illegal checksum combinations */
5345 if ((features & NETIF_F_HW_CSUM) &&
5346 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5347 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5348 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5349 }
5350
5351 /* Fix illegal SG+CSUM combinations. */
5352 if ((features & NETIF_F_SG) &&
5353 !(features & NETIF_F_ALL_CSUM)) {
5354 netdev_dbg(dev,
5355 "Dropping NETIF_F_SG since no checksum feature.\n");
5356 features &= ~NETIF_F_SG;
5357 }
5358
5359 /* TSO requires that SG is present as well. */
5360 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5361 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5362 features &= ~NETIF_F_ALL_TSO;
5363 }
5364
5365 /* TSO ECN requires that TSO is present as well. */
5366 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5367 features &= ~NETIF_F_TSO_ECN;
5368
5369 /* Software GSO depends on SG. */
5370 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5371 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5372 features &= ~NETIF_F_GSO;
5373 }
5374
5375 /* UFO needs SG and checksumming */
5376 if (features & NETIF_F_UFO) {
5377 /* maybe split UFO into V4 and V6? */
5378 if (!((features & NETIF_F_GEN_CSUM) ||
5379 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5380 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5381 netdev_dbg(dev,
5382 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5383 features &= ~NETIF_F_UFO;
5384 }
5385
5386 if (!(features & NETIF_F_SG)) {
5387 netdev_dbg(dev,
5388 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5389 features &= ~NETIF_F_UFO;
5390 }
5391 }
5392
5393 return features;
5394 }
5395
5396 int __netdev_update_features(struct net_device *dev)
5397 {
5398 netdev_features_t features;
5399 int err = 0;
5400
5401 ASSERT_RTNL();
5402
5403 features = netdev_get_wanted_features(dev);
5404
5405 if (dev->netdev_ops->ndo_fix_features)
5406 features = dev->netdev_ops->ndo_fix_features(dev, features);
5407
5408 /* driver might be less strict about feature dependencies */
5409 features = netdev_fix_features(dev, features);
5410
5411 if (dev->features == features)
5412 return 0;
5413
5414 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5415 &dev->features, &features);
5416
5417 if (dev->netdev_ops->ndo_set_features)
5418 err = dev->netdev_ops->ndo_set_features(dev, features);
5419
5420 if (unlikely(err < 0)) {
5421 netdev_err(dev,
5422 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5423 err, &features, &dev->features);
5424 return -1;
5425 }
5426
5427 if (!err)
5428 dev->features = features;
5429
5430 return 1;
5431 }
5432
5433 /**
5434 * netdev_update_features - recalculate device features
5435 * @dev: the device to check
5436 *
5437 * Recalculate dev->features set and send notifications if it
5438 * has changed. Should be called after driver or hardware dependent
5439 * conditions might have changed that influence the features.
5440 */
5441 void netdev_update_features(struct net_device *dev)
5442 {
5443 if (__netdev_update_features(dev))
5444 netdev_features_change(dev);
5445 }
5446 EXPORT_SYMBOL(netdev_update_features);
5447
5448 /**
5449 * netdev_change_features - recalculate device features
5450 * @dev: the device to check
5451 *
5452 * Recalculate dev->features set and send notifications even
5453 * if they have not changed. Should be called instead of
5454 * netdev_update_features() if also dev->vlan_features might
5455 * have changed to allow the changes to be propagated to stacked
5456 * VLAN devices.
5457 */
5458 void netdev_change_features(struct net_device *dev)
5459 {
5460 __netdev_update_features(dev);
5461 netdev_features_change(dev);
5462 }
5463 EXPORT_SYMBOL(netdev_change_features);
5464
5465 /**
5466 * netif_stacked_transfer_operstate - transfer operstate
5467 * @rootdev: the root or lower level device to transfer state from
5468 * @dev: the device to transfer operstate to
5469 *
5470 * Transfer operational state from root to device. This is normally
5471 * called when a stacking relationship exists between the root
5472 * device and the device(a leaf device).
5473 */
5474 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5475 struct net_device *dev)
5476 {
5477 if (rootdev->operstate == IF_OPER_DORMANT)
5478 netif_dormant_on(dev);
5479 else
5480 netif_dormant_off(dev);
5481
5482 if (netif_carrier_ok(rootdev)) {
5483 if (!netif_carrier_ok(dev))
5484 netif_carrier_on(dev);
5485 } else {
5486 if (netif_carrier_ok(dev))
5487 netif_carrier_off(dev);
5488 }
5489 }
5490 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5491
5492 #ifdef CONFIG_RPS
5493 static int netif_alloc_rx_queues(struct net_device *dev)
5494 {
5495 unsigned int i, count = dev->num_rx_queues;
5496 struct netdev_rx_queue *rx;
5497
5498 BUG_ON(count < 1);
5499
5500 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5501 if (!rx) {
5502 pr_err("netdev: Unable to allocate %u rx queues\n", count);
5503 return -ENOMEM;
5504 }
5505 dev->_rx = rx;
5506
5507 for (i = 0; i < count; i++)
5508 rx[i].dev = dev;
5509 return 0;
5510 }
5511 #endif
5512
5513 static void netdev_init_one_queue(struct net_device *dev,
5514 struct netdev_queue *queue, void *_unused)
5515 {
5516 /* Initialize queue lock */
5517 spin_lock_init(&queue->_xmit_lock);
5518 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5519 queue->xmit_lock_owner = -1;
5520 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5521 queue->dev = dev;
5522 #ifdef CONFIG_BQL
5523 dql_init(&queue->dql, HZ);
5524 #endif
5525 }
5526
5527 static int netif_alloc_netdev_queues(struct net_device *dev)
5528 {
5529 unsigned int count = dev->num_tx_queues;
5530 struct netdev_queue *tx;
5531
5532 BUG_ON(count < 1);
5533
5534 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5535 if (!tx) {
5536 pr_err("netdev: Unable to allocate %u tx queues\n", count);
5537 return -ENOMEM;
5538 }
5539 dev->_tx = tx;
5540
5541 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5542 spin_lock_init(&dev->tx_global_lock);
5543
5544 return 0;
5545 }
5546
5547 /**
5548 * register_netdevice - register a network device
5549 * @dev: device to register
5550 *
5551 * Take a completed network device structure and add it to the kernel
5552 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5553 * chain. 0 is returned on success. A negative errno code is returned
5554 * on a failure to set up the device, or if the name is a duplicate.
5555 *
5556 * Callers must hold the rtnl semaphore. You may want
5557 * register_netdev() instead of this.
5558 *
5559 * BUGS:
5560 * The locking appears insufficient to guarantee two parallel registers
5561 * will not get the same name.
5562 */
5563
5564 int register_netdevice(struct net_device *dev)
5565 {
5566 int ret;
5567 struct net *net = dev_net(dev);
5568
5569 BUG_ON(dev_boot_phase);
5570 ASSERT_RTNL();
5571
5572 might_sleep();
5573
5574 /* When net_device's are persistent, this will be fatal. */
5575 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5576 BUG_ON(!net);
5577
5578 spin_lock_init(&dev->addr_list_lock);
5579 netdev_set_addr_lockdep_class(dev);
5580
5581 dev->iflink = -1;
5582
5583 ret = dev_get_valid_name(dev, dev->name);
5584 if (ret < 0)
5585 goto out;
5586
5587 /* Init, if this function is available */
5588 if (dev->netdev_ops->ndo_init) {
5589 ret = dev->netdev_ops->ndo_init(dev);
5590 if (ret) {
5591 if (ret > 0)
5592 ret = -EIO;
5593 goto out;
5594 }
5595 }
5596
5597 dev->ifindex = dev_new_index(net);
5598 if (dev->iflink == -1)
5599 dev->iflink = dev->ifindex;
5600
5601 /* Transfer changeable features to wanted_features and enable
5602 * software offloads (GSO and GRO).
5603 */
5604 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5605 dev->features |= NETIF_F_SOFT_FEATURES;
5606 dev->wanted_features = dev->features & dev->hw_features;
5607
5608 /* Turn on no cache copy if HW is doing checksum */
5609 if (!(dev->flags & IFF_LOOPBACK)) {
5610 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5611 if (dev->features & NETIF_F_ALL_CSUM) {
5612 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5613 dev->features |= NETIF_F_NOCACHE_COPY;
5614 }
5615 }
5616
5617 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5618 */
5619 dev->vlan_features |= NETIF_F_HIGHDMA;
5620
5621 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5622 ret = notifier_to_errno(ret);
5623 if (ret)
5624 goto err_uninit;
5625
5626 ret = netdev_register_kobject(dev);
5627 if (ret)
5628 goto err_uninit;
5629 dev->reg_state = NETREG_REGISTERED;
5630
5631 __netdev_update_features(dev);
5632
5633 /*
5634 * Default initial state at registry is that the
5635 * device is present.
5636 */
5637
5638 set_bit(__LINK_STATE_PRESENT, &dev->state);
5639
5640 dev_init_scheduler(dev);
5641 dev_hold(dev);
5642 list_netdevice(dev);
5643 add_device_randomness(dev->dev_addr, dev->addr_len);
5644
5645 /* Notify protocols, that a new device appeared. */
5646 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5647 ret = notifier_to_errno(ret);
5648 if (ret) {
5649 rollback_registered(dev);
5650 dev->reg_state = NETREG_UNREGISTERED;
5651 }
5652 /*
5653 * Prevent userspace races by waiting until the network
5654 * device is fully setup before sending notifications.
5655 */
5656 if (!dev->rtnl_link_ops ||
5657 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5658 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5659
5660 out:
5661 return ret;
5662
5663 err_uninit:
5664 if (dev->netdev_ops->ndo_uninit)
5665 dev->netdev_ops->ndo_uninit(dev);
5666 goto out;
5667 }
5668 EXPORT_SYMBOL(register_netdevice);
5669
5670 /**
5671 * init_dummy_netdev - init a dummy network device for NAPI
5672 * @dev: device to init
5673 *
5674 * This takes a network device structure and initialize the minimum
5675 * amount of fields so it can be used to schedule NAPI polls without
5676 * registering a full blown interface. This is to be used by drivers
5677 * that need to tie several hardware interfaces to a single NAPI
5678 * poll scheduler due to HW limitations.
5679 */
5680 int init_dummy_netdev(struct net_device *dev)
5681 {
5682 /* Clear everything. Note we don't initialize spinlocks
5683 * are they aren't supposed to be taken by any of the
5684 * NAPI code and this dummy netdev is supposed to be
5685 * only ever used for NAPI polls
5686 */
5687 memset(dev, 0, sizeof(struct net_device));
5688
5689 /* make sure we BUG if trying to hit standard
5690 * register/unregister code path
5691 */
5692 dev->reg_state = NETREG_DUMMY;
5693
5694 /* NAPI wants this */
5695 INIT_LIST_HEAD(&dev->napi_list);
5696
5697 /* a dummy interface is started by default */
5698 set_bit(__LINK_STATE_PRESENT, &dev->state);
5699 set_bit(__LINK_STATE_START, &dev->state);
5700
5701 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5702 * because users of this 'device' dont need to change
5703 * its refcount.
5704 */
5705
5706 return 0;
5707 }
5708 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5709
5710
5711 /**
5712 * register_netdev - register a network device
5713 * @dev: device to register
5714 *
5715 * Take a completed network device structure and add it to the kernel
5716 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5717 * chain. 0 is returned on success. A negative errno code is returned
5718 * on a failure to set up the device, or if the name is a duplicate.
5719 *
5720 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5721 * and expands the device name if you passed a format string to
5722 * alloc_netdev.
5723 */
5724 int register_netdev(struct net_device *dev)
5725 {
5726 int err;
5727
5728 rtnl_lock();
5729 err = register_netdevice(dev);
5730 rtnl_unlock();
5731 return err;
5732 }
5733 EXPORT_SYMBOL(register_netdev);
5734
5735 int netdev_refcnt_read(const struct net_device *dev)
5736 {
5737 int i, refcnt = 0;
5738
5739 for_each_possible_cpu(i)
5740 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5741 return refcnt;
5742 }
5743 EXPORT_SYMBOL(netdev_refcnt_read);
5744
5745 /**
5746 * netdev_wait_allrefs - wait until all references are gone.
5747 * @dev: target net_device
5748 *
5749 * This is called when unregistering network devices.
5750 *
5751 * Any protocol or device that holds a reference should register
5752 * for netdevice notification, and cleanup and put back the
5753 * reference if they receive an UNREGISTER event.
5754 * We can get stuck here if buggy protocols don't correctly
5755 * call dev_put.
5756 */
5757 static void netdev_wait_allrefs(struct net_device *dev)
5758 {
5759 unsigned long rebroadcast_time, warning_time;
5760 int refcnt;
5761
5762 linkwatch_forget_dev(dev);
5763
5764 rebroadcast_time = warning_time = jiffies;
5765 refcnt = netdev_refcnt_read(dev);
5766
5767 while (refcnt != 0) {
5768 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5769 rtnl_lock();
5770
5771 /* Rebroadcast unregister notification */
5772 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5773 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5774 * should have already handle it the first time */
5775
5776 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5777 &dev->state)) {
5778 /* We must not have linkwatch events
5779 * pending on unregister. If this
5780 * happens, we simply run the queue
5781 * unscheduled, resulting in a noop
5782 * for this device.
5783 */
5784 linkwatch_run_queue();
5785 }
5786
5787 __rtnl_unlock();
5788
5789 rebroadcast_time = jiffies;
5790 }
5791
5792 msleep(250);
5793
5794 refcnt = netdev_refcnt_read(dev);
5795
5796 if (time_after(jiffies, warning_time + 10 * HZ)) {
5797 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5798 dev->name, refcnt);
5799 warning_time = jiffies;
5800 }
5801 }
5802 }
5803
5804 /* The sequence is:
5805 *
5806 * rtnl_lock();
5807 * ...
5808 * register_netdevice(x1);
5809 * register_netdevice(x2);
5810 * ...
5811 * unregister_netdevice(y1);
5812 * unregister_netdevice(y2);
5813 * ...
5814 * rtnl_unlock();
5815 * free_netdev(y1);
5816 * free_netdev(y2);
5817 *
5818 * We are invoked by rtnl_unlock().
5819 * This allows us to deal with problems:
5820 * 1) We can delete sysfs objects which invoke hotplug
5821 * without deadlocking with linkwatch via keventd.
5822 * 2) Since we run with the RTNL semaphore not held, we can sleep
5823 * safely in order to wait for the netdev refcnt to drop to zero.
5824 *
5825 * We must not return until all unregister events added during
5826 * the interval the lock was held have been completed.
5827 */
5828 void netdev_run_todo(void)
5829 {
5830 struct list_head list;
5831
5832 /* Snapshot list, allow later requests */
5833 list_replace_init(&net_todo_list, &list);
5834
5835 __rtnl_unlock();
5836
5837 /* Wait for rcu callbacks to finish before attempting to drain
5838 * the device list. This usually avoids a 250ms wait.
5839 */
5840 if (!list_empty(&list))
5841 rcu_barrier();
5842
5843 while (!list_empty(&list)) {
5844 struct net_device *dev
5845 = list_first_entry(&list, struct net_device, todo_list);
5846 list_del(&dev->todo_list);
5847
5848 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5849 pr_err("network todo '%s' but state %d\n",
5850 dev->name, dev->reg_state);
5851 dump_stack();
5852 continue;
5853 }
5854
5855 dev->reg_state = NETREG_UNREGISTERED;
5856
5857 on_each_cpu(flush_backlog, dev, 1);
5858
5859 netdev_wait_allrefs(dev);
5860
5861 /* paranoia */
5862 BUG_ON(netdev_refcnt_read(dev));
5863 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5864 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5865 WARN_ON(dev->dn_ptr);
5866
5867 if (dev->destructor)
5868 dev->destructor(dev);
5869
5870 /* Free network device */
5871 kobject_put(&dev->dev.kobj);
5872 }
5873 }
5874
5875 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5876 * fields in the same order, with only the type differing.
5877 */
5878 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5879 const struct net_device_stats *netdev_stats)
5880 {
5881 #if BITS_PER_LONG == 64
5882 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5883 memcpy(stats64, netdev_stats, sizeof(*stats64));
5884 #else
5885 size_t i, n = sizeof(*stats64) / sizeof(u64);
5886 const unsigned long *src = (const unsigned long *)netdev_stats;
5887 u64 *dst = (u64 *)stats64;
5888
5889 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5890 sizeof(*stats64) / sizeof(u64));
5891 for (i = 0; i < n; i++)
5892 dst[i] = src[i];
5893 #endif
5894 }
5895 EXPORT_SYMBOL(netdev_stats_to_stats64);
5896
5897 /**
5898 * dev_get_stats - get network device statistics
5899 * @dev: device to get statistics from
5900 * @storage: place to store stats
5901 *
5902 * Get network statistics from device. Return @storage.
5903 * The device driver may provide its own method by setting
5904 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5905 * otherwise the internal statistics structure is used.
5906 */
5907 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5908 struct rtnl_link_stats64 *storage)
5909 {
5910 const struct net_device_ops *ops = dev->netdev_ops;
5911
5912 if (ops->ndo_get_stats64) {
5913 memset(storage, 0, sizeof(*storage));
5914 ops->ndo_get_stats64(dev, storage);
5915 } else if (ops->ndo_get_stats) {
5916 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5917 } else {
5918 netdev_stats_to_stats64(storage, &dev->stats);
5919 }
5920 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5921 return storage;
5922 }
5923 EXPORT_SYMBOL(dev_get_stats);
5924
5925 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5926 {
5927 struct netdev_queue *queue = dev_ingress_queue(dev);
5928
5929 #ifdef CONFIG_NET_CLS_ACT
5930 if (queue)
5931 return queue;
5932 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5933 if (!queue)
5934 return NULL;
5935 netdev_init_one_queue(dev, queue, NULL);
5936 queue->qdisc = &noop_qdisc;
5937 queue->qdisc_sleeping = &noop_qdisc;
5938 rcu_assign_pointer(dev->ingress_queue, queue);
5939 #endif
5940 return queue;
5941 }
5942
5943 /**
5944 * alloc_netdev_mqs - allocate network device
5945 * @sizeof_priv: size of private data to allocate space for
5946 * @name: device name format string
5947 * @setup: callback to initialize device
5948 * @txqs: the number of TX subqueues to allocate
5949 * @rxqs: the number of RX subqueues to allocate
5950 *
5951 * Allocates a struct net_device with private data area for driver use
5952 * and performs basic initialization. Also allocates subquue structs
5953 * for each queue on the device.
5954 */
5955 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5956 void (*setup)(struct net_device *),
5957 unsigned int txqs, unsigned int rxqs)
5958 {
5959 struct net_device *dev;
5960 size_t alloc_size;
5961 struct net_device *p;
5962
5963 BUG_ON(strlen(name) >= sizeof(dev->name));
5964
5965 if (txqs < 1) {
5966 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5967 return NULL;
5968 }
5969
5970 #ifdef CONFIG_RPS
5971 if (rxqs < 1) {
5972 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5973 return NULL;
5974 }
5975 #endif
5976
5977 alloc_size = sizeof(struct net_device);
5978 if (sizeof_priv) {
5979 /* ensure 32-byte alignment of private area */
5980 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5981 alloc_size += sizeof_priv;
5982 }
5983 /* ensure 32-byte alignment of whole construct */
5984 alloc_size += NETDEV_ALIGN - 1;
5985
5986 p = kzalloc(alloc_size, GFP_KERNEL);
5987 if (!p) {
5988 pr_err("alloc_netdev: Unable to allocate device\n");
5989 return NULL;
5990 }
5991
5992 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5993 dev->padded = (char *)dev - (char *)p;
5994
5995 dev->pcpu_refcnt = alloc_percpu(int);
5996 if (!dev->pcpu_refcnt)
5997 goto free_p;
5998
5999 if (dev_addr_init(dev))
6000 goto free_pcpu;
6001
6002 dev_mc_init(dev);
6003 dev_uc_init(dev);
6004
6005 dev_net_set(dev, &init_net);
6006
6007 dev->gso_max_size = GSO_MAX_SIZE;
6008 dev->gso_max_segs = GSO_MAX_SEGS;
6009
6010 INIT_LIST_HEAD(&dev->napi_list);
6011 INIT_LIST_HEAD(&dev->unreg_list);
6012 INIT_LIST_HEAD(&dev->link_watch_list);
6013 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6014 setup(dev);
6015
6016 dev->num_tx_queues = txqs;
6017 dev->real_num_tx_queues = txqs;
6018 if (netif_alloc_netdev_queues(dev))
6019 goto free_all;
6020
6021 #ifdef CONFIG_RPS
6022 dev->num_rx_queues = rxqs;
6023 dev->real_num_rx_queues = rxqs;
6024 if (netif_alloc_rx_queues(dev))
6025 goto free_all;
6026 #endif
6027
6028 strcpy(dev->name, name);
6029 dev->group = INIT_NETDEV_GROUP;
6030 return dev;
6031
6032 free_all:
6033 free_netdev(dev);
6034 return NULL;
6035
6036 free_pcpu:
6037 free_percpu(dev->pcpu_refcnt);
6038 kfree(dev->_tx);
6039 #ifdef CONFIG_RPS
6040 kfree(dev->_rx);
6041 #endif
6042
6043 free_p:
6044 kfree(p);
6045 return NULL;
6046 }
6047 EXPORT_SYMBOL(alloc_netdev_mqs);
6048
6049 /**
6050 * free_netdev - free network device
6051 * @dev: device
6052 *
6053 * This function does the last stage of destroying an allocated device
6054 * interface. The reference to the device object is released.
6055 * If this is the last reference then it will be freed.
6056 */
6057 void free_netdev(struct net_device *dev)
6058 {
6059 struct napi_struct *p, *n;
6060
6061 release_net(dev_net(dev));
6062
6063 kfree(dev->_tx);
6064 #ifdef CONFIG_RPS
6065 kfree(dev->_rx);
6066 #endif
6067
6068 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6069
6070 /* Flush device addresses */
6071 dev_addr_flush(dev);
6072
6073 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6074 netif_napi_del(p);
6075
6076 free_percpu(dev->pcpu_refcnt);
6077 dev->pcpu_refcnt = NULL;
6078
6079 /* Compatibility with error handling in drivers */
6080 if (dev->reg_state == NETREG_UNINITIALIZED) {
6081 kfree((char *)dev - dev->padded);
6082 return;
6083 }
6084
6085 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6086 dev->reg_state = NETREG_RELEASED;
6087
6088 /* will free via device release */
6089 put_device(&dev->dev);
6090 }
6091 EXPORT_SYMBOL(free_netdev);
6092
6093 /**
6094 * synchronize_net - Synchronize with packet receive processing
6095 *
6096 * Wait for packets currently being received to be done.
6097 * Does not block later packets from starting.
6098 */
6099 void synchronize_net(void)
6100 {
6101 might_sleep();
6102 if (rtnl_is_locked())
6103 synchronize_rcu_expedited();
6104 else
6105 synchronize_rcu();
6106 }
6107 EXPORT_SYMBOL(synchronize_net);
6108
6109 /**
6110 * unregister_netdevice_queue - remove device from the kernel
6111 * @dev: device
6112 * @head: list
6113 *
6114 * This function shuts down a device interface and removes it
6115 * from the kernel tables.
6116 * If head not NULL, device is queued to be unregistered later.
6117 *
6118 * Callers must hold the rtnl semaphore. You may want
6119 * unregister_netdev() instead of this.
6120 */
6121
6122 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6123 {
6124 ASSERT_RTNL();
6125
6126 if (head) {
6127 list_move_tail(&dev->unreg_list, head);
6128 } else {
6129 rollback_registered(dev);
6130 /* Finish processing unregister after unlock */
6131 net_set_todo(dev);
6132 }
6133 }
6134 EXPORT_SYMBOL(unregister_netdevice_queue);
6135
6136 /**
6137 * unregister_netdevice_many - unregister many devices
6138 * @head: list of devices
6139 */
6140 void unregister_netdevice_many(struct list_head *head)
6141 {
6142 struct net_device *dev;
6143
6144 if (!list_empty(head)) {
6145 rollback_registered_many(head);
6146 list_for_each_entry(dev, head, unreg_list)
6147 net_set_todo(dev);
6148 }
6149 }
6150 EXPORT_SYMBOL(unregister_netdevice_many);
6151
6152 /**
6153 * unregister_netdev - remove device from the kernel
6154 * @dev: device
6155 *
6156 * This function shuts down a device interface and removes it
6157 * from the kernel tables.
6158 *
6159 * This is just a wrapper for unregister_netdevice that takes
6160 * the rtnl semaphore. In general you want to use this and not
6161 * unregister_netdevice.
6162 */
6163 void unregister_netdev(struct net_device *dev)
6164 {
6165 rtnl_lock();
6166 unregister_netdevice(dev);
6167 rtnl_unlock();
6168 }
6169 EXPORT_SYMBOL(unregister_netdev);
6170
6171 /**
6172 * dev_change_net_namespace - move device to different nethost namespace
6173 * @dev: device
6174 * @net: network namespace
6175 * @pat: If not NULL name pattern to try if the current device name
6176 * is already taken in the destination network namespace.
6177 *
6178 * This function shuts down a device interface and moves it
6179 * to a new network namespace. On success 0 is returned, on
6180 * a failure a netagive errno code is returned.
6181 *
6182 * Callers must hold the rtnl semaphore.
6183 */
6184
6185 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6186 {
6187 int err;
6188
6189 ASSERT_RTNL();
6190
6191 /* Don't allow namespace local devices to be moved. */
6192 err = -EINVAL;
6193 if (dev->features & NETIF_F_NETNS_LOCAL)
6194 goto out;
6195
6196 /* Ensure the device has been registrered */
6197 err = -EINVAL;
6198 if (dev->reg_state != NETREG_REGISTERED)
6199 goto out;
6200
6201 /* Get out if there is nothing todo */
6202 err = 0;
6203 if (net_eq(dev_net(dev), net))
6204 goto out;
6205
6206 /* Pick the destination device name, and ensure
6207 * we can use it in the destination network namespace.
6208 */
6209 err = -EEXIST;
6210 if (__dev_get_by_name(net, dev->name)) {
6211 /* We get here if we can't use the current device name */
6212 if (!pat)
6213 goto out;
6214 if (dev_get_valid_name(dev, pat) < 0)
6215 goto out;
6216 }
6217
6218 /*
6219 * And now a mini version of register_netdevice unregister_netdevice.
6220 */
6221
6222 /* If device is running close it first. */
6223 dev_close(dev);
6224
6225 /* And unlink it from device chain */
6226 err = -ENODEV;
6227 unlist_netdevice(dev);
6228
6229 synchronize_net();
6230
6231 /* Shutdown queueing discipline. */
6232 dev_shutdown(dev);
6233
6234 /* Notify protocols, that we are about to destroy
6235 this device. They should clean all the things.
6236
6237 Note that dev->reg_state stays at NETREG_REGISTERED.
6238 This is wanted because this way 8021q and macvlan know
6239 the device is just moving and can keep their slaves up.
6240 */
6241 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6242 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6243 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6244
6245 /*
6246 * Flush the unicast and multicast chains
6247 */
6248 dev_uc_flush(dev);
6249 dev_mc_flush(dev);
6250
6251 /* Actually switch the network namespace */
6252 dev_net_set(dev, net);
6253
6254 /* If there is an ifindex conflict assign a new one */
6255 if (__dev_get_by_index(net, dev->ifindex)) {
6256 int iflink = (dev->iflink == dev->ifindex);
6257 dev->ifindex = dev_new_index(net);
6258 if (iflink)
6259 dev->iflink = dev->ifindex;
6260 }
6261
6262 /* Fixup kobjects */
6263 err = device_rename(&dev->dev, dev->name);
6264 WARN_ON(err);
6265
6266 /* Add the device back in the hashes */
6267 list_netdevice(dev);
6268
6269 /* Notify protocols, that a new device appeared. */
6270 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6271
6272 /*
6273 * Prevent userspace races by waiting until the network
6274 * device is fully setup before sending notifications.
6275 */
6276 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6277
6278 synchronize_net();
6279 err = 0;
6280 out:
6281 return err;
6282 }
6283 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6284
6285 static int dev_cpu_callback(struct notifier_block *nfb,
6286 unsigned long action,
6287 void *ocpu)
6288 {
6289 struct sk_buff **list_skb;
6290 struct sk_buff *skb;
6291 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6292 struct softnet_data *sd, *oldsd;
6293
6294 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6295 return NOTIFY_OK;
6296
6297 local_irq_disable();
6298 cpu = smp_processor_id();
6299 sd = &per_cpu(softnet_data, cpu);
6300 oldsd = &per_cpu(softnet_data, oldcpu);
6301
6302 /* Find end of our completion_queue. */
6303 list_skb = &sd->completion_queue;
6304 while (*list_skb)
6305 list_skb = &(*list_skb)->next;
6306 /* Append completion queue from offline CPU. */
6307 *list_skb = oldsd->completion_queue;
6308 oldsd->completion_queue = NULL;
6309
6310 /* Append output queue from offline CPU. */
6311 if (oldsd->output_queue) {
6312 *sd->output_queue_tailp = oldsd->output_queue;
6313 sd->output_queue_tailp = oldsd->output_queue_tailp;
6314 oldsd->output_queue = NULL;
6315 oldsd->output_queue_tailp = &oldsd->output_queue;
6316 }
6317 /* Append NAPI poll list from offline CPU. */
6318 if (!list_empty(&oldsd->poll_list)) {
6319 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6320 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6321 }
6322
6323 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6324 local_irq_enable();
6325
6326 /* Process offline CPU's input_pkt_queue */
6327 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6328 netif_rx(skb);
6329 input_queue_head_incr(oldsd);
6330 }
6331 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6332 netif_rx(skb);
6333 input_queue_head_incr(oldsd);
6334 }
6335
6336 return NOTIFY_OK;
6337 }
6338
6339
6340 /**
6341 * netdev_increment_features - increment feature set by one
6342 * @all: current feature set
6343 * @one: new feature set
6344 * @mask: mask feature set
6345 *
6346 * Computes a new feature set after adding a device with feature set
6347 * @one to the master device with current feature set @all. Will not
6348 * enable anything that is off in @mask. Returns the new feature set.
6349 */
6350 netdev_features_t netdev_increment_features(netdev_features_t all,
6351 netdev_features_t one, netdev_features_t mask)
6352 {
6353 if (mask & NETIF_F_GEN_CSUM)
6354 mask |= NETIF_F_ALL_CSUM;
6355 mask |= NETIF_F_VLAN_CHALLENGED;
6356
6357 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6358 all &= one | ~NETIF_F_ALL_FOR_ALL;
6359
6360 /* If one device supports hw checksumming, set for all. */
6361 if (all & NETIF_F_GEN_CSUM)
6362 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6363
6364 return all;
6365 }
6366 EXPORT_SYMBOL(netdev_increment_features);
6367
6368 static struct hlist_head *netdev_create_hash(void)
6369 {
6370 int i;
6371 struct hlist_head *hash;
6372
6373 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6374 if (hash != NULL)
6375 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6376 INIT_HLIST_HEAD(&hash[i]);
6377
6378 return hash;
6379 }
6380
6381 /* Initialize per network namespace state */
6382 static int __net_init netdev_init(struct net *net)
6383 {
6384 if (net != &init_net)
6385 INIT_LIST_HEAD(&net->dev_base_head);
6386
6387 net->dev_name_head = netdev_create_hash();
6388 if (net->dev_name_head == NULL)
6389 goto err_name;
6390
6391 net->dev_index_head = netdev_create_hash();
6392 if (net->dev_index_head == NULL)
6393 goto err_idx;
6394
6395 return 0;
6396
6397 err_idx:
6398 kfree(net->dev_name_head);
6399 err_name:
6400 return -ENOMEM;
6401 }
6402
6403 /**
6404 * netdev_drivername - network driver for the device
6405 * @dev: network device
6406 *
6407 * Determine network driver for device.
6408 */
6409 const char *netdev_drivername(const struct net_device *dev)
6410 {
6411 const struct device_driver *driver;
6412 const struct device *parent;
6413 const char *empty = "";
6414
6415 parent = dev->dev.parent;
6416 if (!parent)
6417 return empty;
6418
6419 driver = parent->driver;
6420 if (driver && driver->name)
6421 return driver->name;
6422 return empty;
6423 }
6424
6425 int __netdev_printk(const char *level, const struct net_device *dev,
6426 struct va_format *vaf)
6427 {
6428 int r;
6429
6430 if (dev && dev->dev.parent)
6431 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6432 netdev_name(dev), vaf);
6433 else if (dev)
6434 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6435 else
6436 r = printk("%s(NULL net_device): %pV", level, vaf);
6437
6438 return r;
6439 }
6440 EXPORT_SYMBOL(__netdev_printk);
6441
6442 int netdev_printk(const char *level, const struct net_device *dev,
6443 const char *format, ...)
6444 {
6445 struct va_format vaf;
6446 va_list args;
6447 int r;
6448
6449 va_start(args, format);
6450
6451 vaf.fmt = format;
6452 vaf.va = &args;
6453
6454 r = __netdev_printk(level, dev, &vaf);
6455 va_end(args);
6456
6457 return r;
6458 }
6459 EXPORT_SYMBOL(netdev_printk);
6460
6461 #define define_netdev_printk_level(func, level) \
6462 int func(const struct net_device *dev, const char *fmt, ...) \
6463 { \
6464 int r; \
6465 struct va_format vaf; \
6466 va_list args; \
6467 \
6468 va_start(args, fmt); \
6469 \
6470 vaf.fmt = fmt; \
6471 vaf.va = &args; \
6472 \
6473 r = __netdev_printk(level, dev, &vaf); \
6474 va_end(args); \
6475 \
6476 return r; \
6477 } \
6478 EXPORT_SYMBOL(func);
6479
6480 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6481 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6482 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6483 define_netdev_printk_level(netdev_err, KERN_ERR);
6484 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6485 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6486 define_netdev_printk_level(netdev_info, KERN_INFO);
6487
6488 static void __net_exit netdev_exit(struct net *net)
6489 {
6490 kfree(net->dev_name_head);
6491 kfree(net->dev_index_head);
6492 }
6493
6494 static struct pernet_operations __net_initdata netdev_net_ops = {
6495 .init = netdev_init,
6496 .exit = netdev_exit,
6497 };
6498
6499 static void __net_exit default_device_exit(struct net *net)
6500 {
6501 struct net_device *dev, *aux;
6502 /*
6503 * Push all migratable network devices back to the
6504 * initial network namespace
6505 */
6506 rtnl_lock();
6507 for_each_netdev_safe(net, dev, aux) {
6508 int err;
6509 char fb_name[IFNAMSIZ];
6510
6511 /* Ignore unmoveable devices (i.e. loopback) */
6512 if (dev->features & NETIF_F_NETNS_LOCAL)
6513 continue;
6514
6515 /* Leave virtual devices for the generic cleanup */
6516 if (dev->rtnl_link_ops)
6517 continue;
6518
6519 /* Push remaining network devices to init_net */
6520 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6521 err = dev_change_net_namespace(dev, &init_net, fb_name);
6522 if (err) {
6523 pr_emerg("%s: failed to move %s to init_net: %d\n",
6524 __func__, dev->name, err);
6525 BUG();
6526 }
6527 }
6528 rtnl_unlock();
6529 }
6530
6531 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6532 {
6533 /* At exit all network devices most be removed from a network
6534 * namespace. Do this in the reverse order of registration.
6535 * Do this across as many network namespaces as possible to
6536 * improve batching efficiency.
6537 */
6538 struct net_device *dev;
6539 struct net *net;
6540 LIST_HEAD(dev_kill_list);
6541
6542 rtnl_lock();
6543 list_for_each_entry(net, net_list, exit_list) {
6544 for_each_netdev_reverse(net, dev) {
6545 if (dev->rtnl_link_ops)
6546 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6547 else
6548 unregister_netdevice_queue(dev, &dev_kill_list);
6549 }
6550 }
6551 unregister_netdevice_many(&dev_kill_list);
6552 list_del(&dev_kill_list);
6553 rtnl_unlock();
6554 }
6555
6556 static struct pernet_operations __net_initdata default_device_ops = {
6557 .exit = default_device_exit,
6558 .exit_batch = default_device_exit_batch,
6559 };
6560
6561 /*
6562 * Initialize the DEV module. At boot time this walks the device list and
6563 * unhooks any devices that fail to initialise (normally hardware not
6564 * present) and leaves us with a valid list of present and active devices.
6565 *
6566 */
6567
6568 /*
6569 * This is called single threaded during boot, so no need
6570 * to take the rtnl semaphore.
6571 */
6572 static int __init net_dev_init(void)
6573 {
6574 int i, rc = -ENOMEM;
6575
6576 BUG_ON(!dev_boot_phase);
6577
6578 if (dev_proc_init())
6579 goto out;
6580
6581 if (netdev_kobject_init())
6582 goto out;
6583
6584 INIT_LIST_HEAD(&ptype_all);
6585 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6586 INIT_LIST_HEAD(&ptype_base[i]);
6587
6588 if (register_pernet_subsys(&netdev_net_ops))
6589 goto out;
6590
6591 /*
6592 * Initialise the packet receive queues.
6593 */
6594
6595 for_each_possible_cpu(i) {
6596 struct softnet_data *sd = &per_cpu(softnet_data, i);
6597
6598 memset(sd, 0, sizeof(*sd));
6599 skb_queue_head_init(&sd->input_pkt_queue);
6600 skb_queue_head_init(&sd->process_queue);
6601 sd->completion_queue = NULL;
6602 INIT_LIST_HEAD(&sd->poll_list);
6603 sd->output_queue = NULL;
6604 sd->output_queue_tailp = &sd->output_queue;
6605 #ifdef CONFIG_RPS
6606 sd->csd.func = rps_trigger_softirq;
6607 sd->csd.info = sd;
6608 sd->csd.flags = 0;
6609 sd->cpu = i;
6610 #endif
6611
6612 sd->backlog.poll = process_backlog;
6613 sd->backlog.weight = weight_p;
6614 sd->backlog.gro_list = NULL;
6615 sd->backlog.gro_count = 0;
6616 }
6617
6618 dev_boot_phase = 0;
6619
6620 /* The loopback device is special if any other network devices
6621 * is present in a network namespace the loopback device must
6622 * be present. Since we now dynamically allocate and free the
6623 * loopback device ensure this invariant is maintained by
6624 * keeping the loopback device as the first device on the
6625 * list of network devices. Ensuring the loopback devices
6626 * is the first device that appears and the last network device
6627 * that disappears.
6628 */
6629 if (register_pernet_device(&loopback_net_ops))
6630 goto out;
6631
6632 if (register_pernet_device(&default_device_ops))
6633 goto out;
6634
6635 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6636 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6637
6638 hotcpu_notifier(dev_cpu_callback, 0);
6639 dst_init();
6640 dev_mcast_init();
6641 rc = 0;
6642 out:
6643 return rc;
6644 }
6645
6646 subsys_initcall(net_dev_init);
6647
6648 static int __init initialize_hashrnd(void)
6649 {
6650 get_random_bytes(&hashrnd, sizeof(hashrnd));
6651 return 0;
6652 }
6653
6654 late_initcall_sync(initialize_hashrnd);
6655