]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/core/dev.c
vxge: Version update
[mirror_ubuntu-jammy-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130
131 #include "net-sysfs.h"
132
133 /* Instead of increasing this, you should create a hash table. */
134 #define MAX_GRO_SKBS 8
135
136 /* This should be increased if a protocol with a bigger head is added. */
137 #define GRO_MAX_HEAD (MAX_HEADER + 128)
138
139 /*
140 * The list of packet types we will receive (as opposed to discard)
141 * and the routines to invoke.
142 *
143 * Why 16. Because with 16 the only overlap we get on a hash of the
144 * low nibble of the protocol value is RARP/SNAP/X.25.
145 *
146 * NOTE: That is no longer true with the addition of VLAN tags. Not
147 * sure which should go first, but I bet it won't make much
148 * difference if we are running VLANs. The good news is that
149 * this protocol won't be in the list unless compiled in, so
150 * the average user (w/out VLANs) will not be adversely affected.
151 * --BLG
152 *
153 * 0800 IP
154 * 8100 802.1Q VLAN
155 * 0001 802.3
156 * 0002 AX.25
157 * 0004 802.2
158 * 8035 RARP
159 * 0005 SNAP
160 * 0805 X.25
161 * 0806 ARP
162 * 8137 IPX
163 * 0009 Localtalk
164 * 86DD IPv6
165 */
166
167 #define PTYPE_HASH_SIZE (16)
168 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
169
170 static DEFINE_SPINLOCK(ptype_lock);
171 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
172 static struct list_head ptype_all __read_mostly; /* Taps */
173
174 /*
175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
176 * semaphore.
177 *
178 * Pure readers hold dev_base_lock for reading.
179 *
180 * Writers must hold the rtnl semaphore while they loop through the
181 * dev_base_head list, and hold dev_base_lock for writing when they do the
182 * actual updates. This allows pure readers to access the list even
183 * while a writer is preparing to update it.
184 *
185 * To put it another way, dev_base_lock is held for writing only to
186 * protect against pure readers; the rtnl semaphore provides the
187 * protection against other writers.
188 *
189 * See, for example usages, register_netdevice() and
190 * unregister_netdevice(), which must be called with the rtnl
191 * semaphore held.
192 */
193 DEFINE_RWLOCK(dev_base_lock);
194
195 EXPORT_SYMBOL(dev_base_lock);
196
197 #define NETDEV_HASHBITS 8
198 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
199
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201 {
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
209 }
210
211 /* Device list insertion */
212 static int list_netdevice(struct net_device *dev)
213 {
214 struct net *net = dev_net(dev);
215
216 ASSERT_RTNL();
217
218 write_lock_bh(&dev_base_lock);
219 list_add_tail(&dev->dev_list, &net->dev_base_head);
220 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
221 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
222 write_unlock_bh(&dev_base_lock);
223 return 0;
224 }
225
226 /* Device list removal */
227 static void unlist_netdevice(struct net_device *dev)
228 {
229 ASSERT_RTNL();
230
231 /* Unlink dev from the device chain */
232 write_lock_bh(&dev_base_lock);
233 list_del(&dev->dev_list);
234 hlist_del(&dev->name_hlist);
235 hlist_del(&dev->index_hlist);
236 write_unlock_bh(&dev_base_lock);
237 }
238
239 /*
240 * Our notifier list
241 */
242
243 static RAW_NOTIFIER_HEAD(netdev_chain);
244
245 /*
246 * Device drivers call our routines to queue packets here. We empty the
247 * queue in the local softnet handler.
248 */
249
250 DEFINE_PER_CPU(struct softnet_data, softnet_data);
251
252 #ifdef CONFIG_LOCKDEP
253 /*
254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255 * according to dev->type
256 */
257 static const unsigned short netdev_lock_type[] =
258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
271 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
272 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, ARPHRD_IEEE802154_PHY,
273 ARPHRD_VOID, ARPHRD_NONE};
274
275 static const char *netdev_lock_name[] =
276 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
277 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
278 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
279 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
280 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
281 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
282 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
283 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
284 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
285 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
286 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
287 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
288 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
289 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
290 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", "_xmit_IEEE802154_PHY",
291 "_xmit_VOID", "_xmit_NONE"};
292
293 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
294 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
295
296 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
297 {
298 int i;
299
300 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
301 if (netdev_lock_type[i] == dev_type)
302 return i;
303 /* the last key is used by default */
304 return ARRAY_SIZE(netdev_lock_type) - 1;
305 }
306
307 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
308 unsigned short dev_type)
309 {
310 int i;
311
312 i = netdev_lock_pos(dev_type);
313 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
314 netdev_lock_name[i]);
315 }
316
317 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
318 {
319 int i;
320
321 i = netdev_lock_pos(dev->type);
322 lockdep_set_class_and_name(&dev->addr_list_lock,
323 &netdev_addr_lock_key[i],
324 netdev_lock_name[i]);
325 }
326 #else
327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
328 unsigned short dev_type)
329 {
330 }
331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
332 {
333 }
334 #endif
335
336 /*******************************************************************************
337
338 Protocol management and registration routines
339
340 *******************************************************************************/
341
342 /*
343 * Add a protocol ID to the list. Now that the input handler is
344 * smarter we can dispense with all the messy stuff that used to be
345 * here.
346 *
347 * BEWARE!!! Protocol handlers, mangling input packets,
348 * MUST BE last in hash buckets and checking protocol handlers
349 * MUST start from promiscuous ptype_all chain in net_bh.
350 * It is true now, do not change it.
351 * Explanation follows: if protocol handler, mangling packet, will
352 * be the first on list, it is not able to sense, that packet
353 * is cloned and should be copied-on-write, so that it will
354 * change it and subsequent readers will get broken packet.
355 * --ANK (980803)
356 */
357
358 /**
359 * dev_add_pack - add packet handler
360 * @pt: packet type declaration
361 *
362 * Add a protocol handler to the networking stack. The passed &packet_type
363 * is linked into kernel lists and may not be freed until it has been
364 * removed from the kernel lists.
365 *
366 * This call does not sleep therefore it can not
367 * guarantee all CPU's that are in middle of receiving packets
368 * will see the new packet type (until the next received packet).
369 */
370
371 void dev_add_pack(struct packet_type *pt)
372 {
373 int hash;
374
375 spin_lock_bh(&ptype_lock);
376 if (pt->type == htons(ETH_P_ALL))
377 list_add_rcu(&pt->list, &ptype_all);
378 else {
379 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
380 list_add_rcu(&pt->list, &ptype_base[hash]);
381 }
382 spin_unlock_bh(&ptype_lock);
383 }
384
385 /**
386 * __dev_remove_pack - remove packet handler
387 * @pt: packet type declaration
388 *
389 * Remove a protocol handler that was previously added to the kernel
390 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
391 * from the kernel lists and can be freed or reused once this function
392 * returns.
393 *
394 * The packet type might still be in use by receivers
395 * and must not be freed until after all the CPU's have gone
396 * through a quiescent state.
397 */
398 void __dev_remove_pack(struct packet_type *pt)
399 {
400 struct list_head *head;
401 struct packet_type *pt1;
402
403 spin_lock_bh(&ptype_lock);
404
405 if (pt->type == htons(ETH_P_ALL))
406 head = &ptype_all;
407 else
408 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
409
410 list_for_each_entry(pt1, head, list) {
411 if (pt == pt1) {
412 list_del_rcu(&pt->list);
413 goto out;
414 }
415 }
416
417 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
418 out:
419 spin_unlock_bh(&ptype_lock);
420 }
421 /**
422 * dev_remove_pack - remove packet handler
423 * @pt: packet type declaration
424 *
425 * Remove a protocol handler that was previously added to the kernel
426 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
427 * from the kernel lists and can be freed or reused once this function
428 * returns.
429 *
430 * This call sleeps to guarantee that no CPU is looking at the packet
431 * type after return.
432 */
433 void dev_remove_pack(struct packet_type *pt)
434 {
435 __dev_remove_pack(pt);
436
437 synchronize_net();
438 }
439
440 /******************************************************************************
441
442 Device Boot-time Settings Routines
443
444 *******************************************************************************/
445
446 /* Boot time configuration table */
447 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
448
449 /**
450 * netdev_boot_setup_add - add new setup entry
451 * @name: name of the device
452 * @map: configured settings for the device
453 *
454 * Adds new setup entry to the dev_boot_setup list. The function
455 * returns 0 on error and 1 on success. This is a generic routine to
456 * all netdevices.
457 */
458 static int netdev_boot_setup_add(char *name, struct ifmap *map)
459 {
460 struct netdev_boot_setup *s;
461 int i;
462
463 s = dev_boot_setup;
464 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
465 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
466 memset(s[i].name, 0, sizeof(s[i].name));
467 strlcpy(s[i].name, name, IFNAMSIZ);
468 memcpy(&s[i].map, map, sizeof(s[i].map));
469 break;
470 }
471 }
472
473 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
474 }
475
476 /**
477 * netdev_boot_setup_check - check boot time settings
478 * @dev: the netdevice
479 *
480 * Check boot time settings for the device.
481 * The found settings are set for the device to be used
482 * later in the device probing.
483 * Returns 0 if no settings found, 1 if they are.
484 */
485 int netdev_boot_setup_check(struct net_device *dev)
486 {
487 struct netdev_boot_setup *s = dev_boot_setup;
488 int i;
489
490 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
491 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
492 !strcmp(dev->name, s[i].name)) {
493 dev->irq = s[i].map.irq;
494 dev->base_addr = s[i].map.base_addr;
495 dev->mem_start = s[i].map.mem_start;
496 dev->mem_end = s[i].map.mem_end;
497 return 1;
498 }
499 }
500 return 0;
501 }
502
503
504 /**
505 * netdev_boot_base - get address from boot time settings
506 * @prefix: prefix for network device
507 * @unit: id for network device
508 *
509 * Check boot time settings for the base address of device.
510 * The found settings are set for the device to be used
511 * later in the device probing.
512 * Returns 0 if no settings found.
513 */
514 unsigned long netdev_boot_base(const char *prefix, int unit)
515 {
516 const struct netdev_boot_setup *s = dev_boot_setup;
517 char name[IFNAMSIZ];
518 int i;
519
520 sprintf(name, "%s%d", prefix, unit);
521
522 /*
523 * If device already registered then return base of 1
524 * to indicate not to probe for this interface
525 */
526 if (__dev_get_by_name(&init_net, name))
527 return 1;
528
529 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
530 if (!strcmp(name, s[i].name))
531 return s[i].map.base_addr;
532 return 0;
533 }
534
535 /*
536 * Saves at boot time configured settings for any netdevice.
537 */
538 int __init netdev_boot_setup(char *str)
539 {
540 int ints[5];
541 struct ifmap map;
542
543 str = get_options(str, ARRAY_SIZE(ints), ints);
544 if (!str || !*str)
545 return 0;
546
547 /* Save settings */
548 memset(&map, 0, sizeof(map));
549 if (ints[0] > 0)
550 map.irq = ints[1];
551 if (ints[0] > 1)
552 map.base_addr = ints[2];
553 if (ints[0] > 2)
554 map.mem_start = ints[3];
555 if (ints[0] > 3)
556 map.mem_end = ints[4];
557
558 /* Add new entry to the list */
559 return netdev_boot_setup_add(str, &map);
560 }
561
562 __setup("netdev=", netdev_boot_setup);
563
564 /*******************************************************************************
565
566 Device Interface Subroutines
567
568 *******************************************************************************/
569
570 /**
571 * __dev_get_by_name - find a device by its name
572 * @net: the applicable net namespace
573 * @name: name to find
574 *
575 * Find an interface by name. Must be called under RTNL semaphore
576 * or @dev_base_lock. If the name is found a pointer to the device
577 * is returned. If the name is not found then %NULL is returned. The
578 * reference counters are not incremented so the caller must be
579 * careful with locks.
580 */
581
582 struct net_device *__dev_get_by_name(struct net *net, const char *name)
583 {
584 struct hlist_node *p;
585
586 hlist_for_each(p, dev_name_hash(net, name)) {
587 struct net_device *dev
588 = hlist_entry(p, struct net_device, name_hlist);
589 if (!strncmp(dev->name, name, IFNAMSIZ))
590 return dev;
591 }
592 return NULL;
593 }
594
595 /**
596 * dev_get_by_name - find a device by its name
597 * @net: the applicable net namespace
598 * @name: name to find
599 *
600 * Find an interface by name. This can be called from any
601 * context and does its own locking. The returned handle has
602 * the usage count incremented and the caller must use dev_put() to
603 * release it when it is no longer needed. %NULL is returned if no
604 * matching device is found.
605 */
606
607 struct net_device *dev_get_by_name(struct net *net, const char *name)
608 {
609 struct net_device *dev;
610
611 read_lock(&dev_base_lock);
612 dev = __dev_get_by_name(net, name);
613 if (dev)
614 dev_hold(dev);
615 read_unlock(&dev_base_lock);
616 return dev;
617 }
618
619 /**
620 * __dev_get_by_index - find a device by its ifindex
621 * @net: the applicable net namespace
622 * @ifindex: index of device
623 *
624 * Search for an interface by index. Returns %NULL if the device
625 * is not found or a pointer to the device. The device has not
626 * had its reference counter increased so the caller must be careful
627 * about locking. The caller must hold either the RTNL semaphore
628 * or @dev_base_lock.
629 */
630
631 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
632 {
633 struct hlist_node *p;
634
635 hlist_for_each(p, dev_index_hash(net, ifindex)) {
636 struct net_device *dev
637 = hlist_entry(p, struct net_device, index_hlist);
638 if (dev->ifindex == ifindex)
639 return dev;
640 }
641 return NULL;
642 }
643
644
645 /**
646 * dev_get_by_index - find a device by its ifindex
647 * @net: the applicable net namespace
648 * @ifindex: index of device
649 *
650 * Search for an interface by index. Returns NULL if the device
651 * is not found or a pointer to the device. The device returned has
652 * had a reference added and the pointer is safe until the user calls
653 * dev_put to indicate they have finished with it.
654 */
655
656 struct net_device *dev_get_by_index(struct net *net, int ifindex)
657 {
658 struct net_device *dev;
659
660 read_lock(&dev_base_lock);
661 dev = __dev_get_by_index(net, ifindex);
662 if (dev)
663 dev_hold(dev);
664 read_unlock(&dev_base_lock);
665 return dev;
666 }
667
668 /**
669 * dev_getbyhwaddr - find a device by its hardware address
670 * @net: the applicable net namespace
671 * @type: media type of device
672 * @ha: hardware address
673 *
674 * Search for an interface by MAC address. Returns NULL if the device
675 * is not found or a pointer to the device. The caller must hold the
676 * rtnl semaphore. The returned device has not had its ref count increased
677 * and the caller must therefore be careful about locking
678 *
679 * BUGS:
680 * If the API was consistent this would be __dev_get_by_hwaddr
681 */
682
683 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
684 {
685 struct net_device *dev;
686
687 ASSERT_RTNL();
688
689 for_each_netdev(net, dev)
690 if (dev->type == type &&
691 !memcmp(dev->dev_addr, ha, dev->addr_len))
692 return dev;
693
694 return NULL;
695 }
696
697 EXPORT_SYMBOL(dev_getbyhwaddr);
698
699 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
700 {
701 struct net_device *dev;
702
703 ASSERT_RTNL();
704 for_each_netdev(net, dev)
705 if (dev->type == type)
706 return dev;
707
708 return NULL;
709 }
710
711 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
712
713 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
714 {
715 struct net_device *dev;
716
717 rtnl_lock();
718 dev = __dev_getfirstbyhwtype(net, type);
719 if (dev)
720 dev_hold(dev);
721 rtnl_unlock();
722 return dev;
723 }
724
725 EXPORT_SYMBOL(dev_getfirstbyhwtype);
726
727 /**
728 * dev_get_by_flags - find any device with given flags
729 * @net: the applicable net namespace
730 * @if_flags: IFF_* values
731 * @mask: bitmask of bits in if_flags to check
732 *
733 * Search for any interface with the given flags. Returns NULL if a device
734 * is not found or a pointer to the device. The device returned has
735 * had a reference added and the pointer is safe until the user calls
736 * dev_put to indicate they have finished with it.
737 */
738
739 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
740 {
741 struct net_device *dev, *ret;
742
743 ret = NULL;
744 read_lock(&dev_base_lock);
745 for_each_netdev(net, dev) {
746 if (((dev->flags ^ if_flags) & mask) == 0) {
747 dev_hold(dev);
748 ret = dev;
749 break;
750 }
751 }
752 read_unlock(&dev_base_lock);
753 return ret;
754 }
755
756 /**
757 * dev_valid_name - check if name is okay for network device
758 * @name: name string
759 *
760 * Network device names need to be valid file names to
761 * to allow sysfs to work. We also disallow any kind of
762 * whitespace.
763 */
764 int dev_valid_name(const char *name)
765 {
766 if (*name == '\0')
767 return 0;
768 if (strlen(name) >= IFNAMSIZ)
769 return 0;
770 if (!strcmp(name, ".") || !strcmp(name, ".."))
771 return 0;
772
773 while (*name) {
774 if (*name == '/' || isspace(*name))
775 return 0;
776 name++;
777 }
778 return 1;
779 }
780
781 /**
782 * __dev_alloc_name - allocate a name for a device
783 * @net: network namespace to allocate the device name in
784 * @name: name format string
785 * @buf: scratch buffer and result name string
786 *
787 * Passed a format string - eg "lt%d" it will try and find a suitable
788 * id. It scans list of devices to build up a free map, then chooses
789 * the first empty slot. The caller must hold the dev_base or rtnl lock
790 * while allocating the name and adding the device in order to avoid
791 * duplicates.
792 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
793 * Returns the number of the unit assigned or a negative errno code.
794 */
795
796 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
797 {
798 int i = 0;
799 const char *p;
800 const int max_netdevices = 8*PAGE_SIZE;
801 unsigned long *inuse;
802 struct net_device *d;
803
804 p = strnchr(name, IFNAMSIZ-1, '%');
805 if (p) {
806 /*
807 * Verify the string as this thing may have come from
808 * the user. There must be either one "%d" and no other "%"
809 * characters.
810 */
811 if (p[1] != 'd' || strchr(p + 2, '%'))
812 return -EINVAL;
813
814 /* Use one page as a bit array of possible slots */
815 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
816 if (!inuse)
817 return -ENOMEM;
818
819 for_each_netdev(net, d) {
820 if (!sscanf(d->name, name, &i))
821 continue;
822 if (i < 0 || i >= max_netdevices)
823 continue;
824
825 /* avoid cases where sscanf is not exact inverse of printf */
826 snprintf(buf, IFNAMSIZ, name, i);
827 if (!strncmp(buf, d->name, IFNAMSIZ))
828 set_bit(i, inuse);
829 }
830
831 i = find_first_zero_bit(inuse, max_netdevices);
832 free_page((unsigned long) inuse);
833 }
834
835 snprintf(buf, IFNAMSIZ, name, i);
836 if (!__dev_get_by_name(net, buf))
837 return i;
838
839 /* It is possible to run out of possible slots
840 * when the name is long and there isn't enough space left
841 * for the digits, or if all bits are used.
842 */
843 return -ENFILE;
844 }
845
846 /**
847 * dev_alloc_name - allocate a name for a device
848 * @dev: device
849 * @name: name format string
850 *
851 * Passed a format string - eg "lt%d" it will try and find a suitable
852 * id. It scans list of devices to build up a free map, then chooses
853 * the first empty slot. The caller must hold the dev_base or rtnl lock
854 * while allocating the name and adding the device in order to avoid
855 * duplicates.
856 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
857 * Returns the number of the unit assigned or a negative errno code.
858 */
859
860 int dev_alloc_name(struct net_device *dev, const char *name)
861 {
862 char buf[IFNAMSIZ];
863 struct net *net;
864 int ret;
865
866 BUG_ON(!dev_net(dev));
867 net = dev_net(dev);
868 ret = __dev_alloc_name(net, name, buf);
869 if (ret >= 0)
870 strlcpy(dev->name, buf, IFNAMSIZ);
871 return ret;
872 }
873
874
875 /**
876 * dev_change_name - change name of a device
877 * @dev: device
878 * @newname: name (or format string) must be at least IFNAMSIZ
879 *
880 * Change name of a device, can pass format strings "eth%d".
881 * for wildcarding.
882 */
883 int dev_change_name(struct net_device *dev, const char *newname)
884 {
885 char oldname[IFNAMSIZ];
886 int err = 0;
887 int ret;
888 struct net *net;
889
890 ASSERT_RTNL();
891 BUG_ON(!dev_net(dev));
892
893 net = dev_net(dev);
894 if (dev->flags & IFF_UP)
895 return -EBUSY;
896
897 if (!dev_valid_name(newname))
898 return -EINVAL;
899
900 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
901 return 0;
902
903 memcpy(oldname, dev->name, IFNAMSIZ);
904
905 if (strchr(newname, '%')) {
906 err = dev_alloc_name(dev, newname);
907 if (err < 0)
908 return err;
909 }
910 else if (__dev_get_by_name(net, newname))
911 return -EEXIST;
912 else
913 strlcpy(dev->name, newname, IFNAMSIZ);
914
915 rollback:
916 /* For now only devices in the initial network namespace
917 * are in sysfs.
918 */
919 if (net == &init_net) {
920 ret = device_rename(&dev->dev, dev->name);
921 if (ret) {
922 memcpy(dev->name, oldname, IFNAMSIZ);
923 return ret;
924 }
925 }
926
927 write_lock_bh(&dev_base_lock);
928 hlist_del(&dev->name_hlist);
929 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
930 write_unlock_bh(&dev_base_lock);
931
932 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
933 ret = notifier_to_errno(ret);
934
935 if (ret) {
936 if (err) {
937 printk(KERN_ERR
938 "%s: name change rollback failed: %d.\n",
939 dev->name, ret);
940 } else {
941 err = ret;
942 memcpy(dev->name, oldname, IFNAMSIZ);
943 goto rollback;
944 }
945 }
946
947 return err;
948 }
949
950 /**
951 * dev_set_alias - change ifalias of a device
952 * @dev: device
953 * @alias: name up to IFALIASZ
954 * @len: limit of bytes to copy from info
955 *
956 * Set ifalias for a device,
957 */
958 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
959 {
960 ASSERT_RTNL();
961
962 if (len >= IFALIASZ)
963 return -EINVAL;
964
965 if (!len) {
966 if (dev->ifalias) {
967 kfree(dev->ifalias);
968 dev->ifalias = NULL;
969 }
970 return 0;
971 }
972
973 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
974 if (!dev->ifalias)
975 return -ENOMEM;
976
977 strlcpy(dev->ifalias, alias, len+1);
978 return len;
979 }
980
981
982 /**
983 * netdev_features_change - device changes features
984 * @dev: device to cause notification
985 *
986 * Called to indicate a device has changed features.
987 */
988 void netdev_features_change(struct net_device *dev)
989 {
990 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
991 }
992 EXPORT_SYMBOL(netdev_features_change);
993
994 /**
995 * netdev_state_change - device changes state
996 * @dev: device to cause notification
997 *
998 * Called to indicate a device has changed state. This function calls
999 * the notifier chains for netdev_chain and sends a NEWLINK message
1000 * to the routing socket.
1001 */
1002 void netdev_state_change(struct net_device *dev)
1003 {
1004 if (dev->flags & IFF_UP) {
1005 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1006 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1007 }
1008 }
1009
1010 void netdev_bonding_change(struct net_device *dev)
1011 {
1012 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1013 }
1014 EXPORT_SYMBOL(netdev_bonding_change);
1015
1016 /**
1017 * dev_load - load a network module
1018 * @net: the applicable net namespace
1019 * @name: name of interface
1020 *
1021 * If a network interface is not present and the process has suitable
1022 * privileges this function loads the module. If module loading is not
1023 * available in this kernel then it becomes a nop.
1024 */
1025
1026 void dev_load(struct net *net, const char *name)
1027 {
1028 struct net_device *dev;
1029
1030 read_lock(&dev_base_lock);
1031 dev = __dev_get_by_name(net, name);
1032 read_unlock(&dev_base_lock);
1033
1034 if (!dev && capable(CAP_SYS_MODULE))
1035 request_module("%s", name);
1036 }
1037
1038 /**
1039 * dev_open - prepare an interface for use.
1040 * @dev: device to open
1041 *
1042 * Takes a device from down to up state. The device's private open
1043 * function is invoked and then the multicast lists are loaded. Finally
1044 * the device is moved into the up state and a %NETDEV_UP message is
1045 * sent to the netdev notifier chain.
1046 *
1047 * Calling this function on an active interface is a nop. On a failure
1048 * a negative errno code is returned.
1049 */
1050 int dev_open(struct net_device *dev)
1051 {
1052 const struct net_device_ops *ops = dev->netdev_ops;
1053 int ret;
1054
1055 ASSERT_RTNL();
1056
1057 /*
1058 * Is it already up?
1059 */
1060
1061 if (dev->flags & IFF_UP)
1062 return 0;
1063
1064 /*
1065 * Is it even present?
1066 */
1067 if (!netif_device_present(dev))
1068 return -ENODEV;
1069
1070 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1071 ret = notifier_to_errno(ret);
1072 if (ret)
1073 return ret;
1074
1075 /*
1076 * Call device private open method
1077 */
1078 set_bit(__LINK_STATE_START, &dev->state);
1079
1080 if (ops->ndo_validate_addr)
1081 ret = ops->ndo_validate_addr(dev);
1082
1083 if (!ret && ops->ndo_open)
1084 ret = ops->ndo_open(dev);
1085
1086 /*
1087 * If it went open OK then:
1088 */
1089
1090 if (ret)
1091 clear_bit(__LINK_STATE_START, &dev->state);
1092 else {
1093 /*
1094 * Set the flags.
1095 */
1096 dev->flags |= IFF_UP;
1097
1098 /*
1099 * Enable NET_DMA
1100 */
1101 net_dmaengine_get();
1102
1103 /*
1104 * Initialize multicasting status
1105 */
1106 dev_set_rx_mode(dev);
1107
1108 /*
1109 * Wakeup transmit queue engine
1110 */
1111 dev_activate(dev);
1112
1113 /*
1114 * ... and announce new interface.
1115 */
1116 call_netdevice_notifiers(NETDEV_UP, dev);
1117 }
1118
1119 return ret;
1120 }
1121
1122 /**
1123 * dev_close - shutdown an interface.
1124 * @dev: device to shutdown
1125 *
1126 * This function moves an active device into down state. A
1127 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1128 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1129 * chain.
1130 */
1131 int dev_close(struct net_device *dev)
1132 {
1133 const struct net_device_ops *ops = dev->netdev_ops;
1134 ASSERT_RTNL();
1135
1136 might_sleep();
1137
1138 if (!(dev->flags & IFF_UP))
1139 return 0;
1140
1141 /*
1142 * Tell people we are going down, so that they can
1143 * prepare to death, when device is still operating.
1144 */
1145 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1146
1147 clear_bit(__LINK_STATE_START, &dev->state);
1148
1149 /* Synchronize to scheduled poll. We cannot touch poll list,
1150 * it can be even on different cpu. So just clear netif_running().
1151 *
1152 * dev->stop() will invoke napi_disable() on all of it's
1153 * napi_struct instances on this device.
1154 */
1155 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1156
1157 dev_deactivate(dev);
1158
1159 /*
1160 * Call the device specific close. This cannot fail.
1161 * Only if device is UP
1162 *
1163 * We allow it to be called even after a DETACH hot-plug
1164 * event.
1165 */
1166 if (ops->ndo_stop)
1167 ops->ndo_stop(dev);
1168
1169 /*
1170 * Device is now down.
1171 */
1172
1173 dev->flags &= ~IFF_UP;
1174
1175 /*
1176 * Tell people we are down
1177 */
1178 call_netdevice_notifiers(NETDEV_DOWN, dev);
1179
1180 /*
1181 * Shutdown NET_DMA
1182 */
1183 net_dmaengine_put();
1184
1185 return 0;
1186 }
1187
1188
1189 /**
1190 * dev_disable_lro - disable Large Receive Offload on a device
1191 * @dev: device
1192 *
1193 * Disable Large Receive Offload (LRO) on a net device. Must be
1194 * called under RTNL. This is needed if received packets may be
1195 * forwarded to another interface.
1196 */
1197 void dev_disable_lro(struct net_device *dev)
1198 {
1199 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1200 dev->ethtool_ops->set_flags) {
1201 u32 flags = dev->ethtool_ops->get_flags(dev);
1202 if (flags & ETH_FLAG_LRO) {
1203 flags &= ~ETH_FLAG_LRO;
1204 dev->ethtool_ops->set_flags(dev, flags);
1205 }
1206 }
1207 WARN_ON(dev->features & NETIF_F_LRO);
1208 }
1209 EXPORT_SYMBOL(dev_disable_lro);
1210
1211
1212 static int dev_boot_phase = 1;
1213
1214 /*
1215 * Device change register/unregister. These are not inline or static
1216 * as we export them to the world.
1217 */
1218
1219 /**
1220 * register_netdevice_notifier - register a network notifier block
1221 * @nb: notifier
1222 *
1223 * Register a notifier to be called when network device events occur.
1224 * The notifier passed is linked into the kernel structures and must
1225 * not be reused until it has been unregistered. A negative errno code
1226 * is returned on a failure.
1227 *
1228 * When registered all registration and up events are replayed
1229 * to the new notifier to allow device to have a race free
1230 * view of the network device list.
1231 */
1232
1233 int register_netdevice_notifier(struct notifier_block *nb)
1234 {
1235 struct net_device *dev;
1236 struct net_device *last;
1237 struct net *net;
1238 int err;
1239
1240 rtnl_lock();
1241 err = raw_notifier_chain_register(&netdev_chain, nb);
1242 if (err)
1243 goto unlock;
1244 if (dev_boot_phase)
1245 goto unlock;
1246 for_each_net(net) {
1247 for_each_netdev(net, dev) {
1248 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1249 err = notifier_to_errno(err);
1250 if (err)
1251 goto rollback;
1252
1253 if (!(dev->flags & IFF_UP))
1254 continue;
1255
1256 nb->notifier_call(nb, NETDEV_UP, dev);
1257 }
1258 }
1259
1260 unlock:
1261 rtnl_unlock();
1262 return err;
1263
1264 rollback:
1265 last = dev;
1266 for_each_net(net) {
1267 for_each_netdev(net, dev) {
1268 if (dev == last)
1269 break;
1270
1271 if (dev->flags & IFF_UP) {
1272 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1273 nb->notifier_call(nb, NETDEV_DOWN, dev);
1274 }
1275 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1276 }
1277 }
1278
1279 raw_notifier_chain_unregister(&netdev_chain, nb);
1280 goto unlock;
1281 }
1282
1283 /**
1284 * unregister_netdevice_notifier - unregister a network notifier block
1285 * @nb: notifier
1286 *
1287 * Unregister a notifier previously registered by
1288 * register_netdevice_notifier(). The notifier is unlinked into the
1289 * kernel structures and may then be reused. A negative errno code
1290 * is returned on a failure.
1291 */
1292
1293 int unregister_netdevice_notifier(struct notifier_block *nb)
1294 {
1295 int err;
1296
1297 rtnl_lock();
1298 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1299 rtnl_unlock();
1300 return err;
1301 }
1302
1303 /**
1304 * call_netdevice_notifiers - call all network notifier blocks
1305 * @val: value passed unmodified to notifier function
1306 * @dev: net_device pointer passed unmodified to notifier function
1307 *
1308 * Call all network notifier blocks. Parameters and return value
1309 * are as for raw_notifier_call_chain().
1310 */
1311
1312 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1313 {
1314 return raw_notifier_call_chain(&netdev_chain, val, dev);
1315 }
1316
1317 /* When > 0 there are consumers of rx skb time stamps */
1318 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1319
1320 void net_enable_timestamp(void)
1321 {
1322 atomic_inc(&netstamp_needed);
1323 }
1324
1325 void net_disable_timestamp(void)
1326 {
1327 atomic_dec(&netstamp_needed);
1328 }
1329
1330 static inline void net_timestamp(struct sk_buff *skb)
1331 {
1332 if (atomic_read(&netstamp_needed))
1333 __net_timestamp(skb);
1334 else
1335 skb->tstamp.tv64 = 0;
1336 }
1337
1338 /*
1339 * Support routine. Sends outgoing frames to any network
1340 * taps currently in use.
1341 */
1342
1343 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1344 {
1345 struct packet_type *ptype;
1346
1347 #ifdef CONFIG_NET_CLS_ACT
1348 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1349 net_timestamp(skb);
1350 #else
1351 net_timestamp(skb);
1352 #endif
1353
1354 rcu_read_lock();
1355 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1356 /* Never send packets back to the socket
1357 * they originated from - MvS (miquels@drinkel.ow.org)
1358 */
1359 if ((ptype->dev == dev || !ptype->dev) &&
1360 (ptype->af_packet_priv == NULL ||
1361 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1362 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1363 if (!skb2)
1364 break;
1365
1366 /* skb->nh should be correctly
1367 set by sender, so that the second statement is
1368 just protection against buggy protocols.
1369 */
1370 skb_reset_mac_header(skb2);
1371
1372 if (skb_network_header(skb2) < skb2->data ||
1373 skb2->network_header > skb2->tail) {
1374 if (net_ratelimit())
1375 printk(KERN_CRIT "protocol %04x is "
1376 "buggy, dev %s\n",
1377 skb2->protocol, dev->name);
1378 skb_reset_network_header(skb2);
1379 }
1380
1381 skb2->transport_header = skb2->network_header;
1382 skb2->pkt_type = PACKET_OUTGOING;
1383 ptype->func(skb2, skb->dev, ptype, skb->dev);
1384 }
1385 }
1386 rcu_read_unlock();
1387 }
1388
1389
1390 static inline void __netif_reschedule(struct Qdisc *q)
1391 {
1392 struct softnet_data *sd;
1393 unsigned long flags;
1394
1395 local_irq_save(flags);
1396 sd = &__get_cpu_var(softnet_data);
1397 q->next_sched = sd->output_queue;
1398 sd->output_queue = q;
1399 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1400 local_irq_restore(flags);
1401 }
1402
1403 void __netif_schedule(struct Qdisc *q)
1404 {
1405 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1406 __netif_reschedule(q);
1407 }
1408 EXPORT_SYMBOL(__netif_schedule);
1409
1410 void dev_kfree_skb_irq(struct sk_buff *skb)
1411 {
1412 if (atomic_dec_and_test(&skb->users)) {
1413 struct softnet_data *sd;
1414 unsigned long flags;
1415
1416 local_irq_save(flags);
1417 sd = &__get_cpu_var(softnet_data);
1418 skb->next = sd->completion_queue;
1419 sd->completion_queue = skb;
1420 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1421 local_irq_restore(flags);
1422 }
1423 }
1424 EXPORT_SYMBOL(dev_kfree_skb_irq);
1425
1426 void dev_kfree_skb_any(struct sk_buff *skb)
1427 {
1428 if (in_irq() || irqs_disabled())
1429 dev_kfree_skb_irq(skb);
1430 else
1431 dev_kfree_skb(skb);
1432 }
1433 EXPORT_SYMBOL(dev_kfree_skb_any);
1434
1435
1436 /**
1437 * netif_device_detach - mark device as removed
1438 * @dev: network device
1439 *
1440 * Mark device as removed from system and therefore no longer available.
1441 */
1442 void netif_device_detach(struct net_device *dev)
1443 {
1444 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1445 netif_running(dev)) {
1446 netif_tx_stop_all_queues(dev);
1447 }
1448 }
1449 EXPORT_SYMBOL(netif_device_detach);
1450
1451 /**
1452 * netif_device_attach - mark device as attached
1453 * @dev: network device
1454 *
1455 * Mark device as attached from system and restart if needed.
1456 */
1457 void netif_device_attach(struct net_device *dev)
1458 {
1459 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1460 netif_running(dev)) {
1461 netif_tx_wake_all_queues(dev);
1462 __netdev_watchdog_up(dev);
1463 }
1464 }
1465 EXPORT_SYMBOL(netif_device_attach);
1466
1467 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1468 {
1469 return ((features & NETIF_F_GEN_CSUM) ||
1470 ((features & NETIF_F_IP_CSUM) &&
1471 protocol == htons(ETH_P_IP)) ||
1472 ((features & NETIF_F_IPV6_CSUM) &&
1473 protocol == htons(ETH_P_IPV6)) ||
1474 ((features & NETIF_F_FCOE_CRC) &&
1475 protocol == htons(ETH_P_FCOE)));
1476 }
1477
1478 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1479 {
1480 if (can_checksum_protocol(dev->features, skb->protocol))
1481 return true;
1482
1483 if (skb->protocol == htons(ETH_P_8021Q)) {
1484 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1485 if (can_checksum_protocol(dev->features & dev->vlan_features,
1486 veh->h_vlan_encapsulated_proto))
1487 return true;
1488 }
1489
1490 return false;
1491 }
1492
1493 /*
1494 * Invalidate hardware checksum when packet is to be mangled, and
1495 * complete checksum manually on outgoing path.
1496 */
1497 int skb_checksum_help(struct sk_buff *skb)
1498 {
1499 __wsum csum;
1500 int ret = 0, offset;
1501
1502 if (skb->ip_summed == CHECKSUM_COMPLETE)
1503 goto out_set_summed;
1504
1505 if (unlikely(skb_shinfo(skb)->gso_size)) {
1506 /* Let GSO fix up the checksum. */
1507 goto out_set_summed;
1508 }
1509
1510 offset = skb->csum_start - skb_headroom(skb);
1511 BUG_ON(offset >= skb_headlen(skb));
1512 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1513
1514 offset += skb->csum_offset;
1515 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1516
1517 if (skb_cloned(skb) &&
1518 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1519 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1520 if (ret)
1521 goto out;
1522 }
1523
1524 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1525 out_set_summed:
1526 skb->ip_summed = CHECKSUM_NONE;
1527 out:
1528 return ret;
1529 }
1530
1531 /**
1532 * skb_gso_segment - Perform segmentation on skb.
1533 * @skb: buffer to segment
1534 * @features: features for the output path (see dev->features)
1535 *
1536 * This function segments the given skb and returns a list of segments.
1537 *
1538 * It may return NULL if the skb requires no segmentation. This is
1539 * only possible when GSO is used for verifying header integrity.
1540 */
1541 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1542 {
1543 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1544 struct packet_type *ptype;
1545 __be16 type = skb->protocol;
1546 int err;
1547
1548 skb_reset_mac_header(skb);
1549 skb->mac_len = skb->network_header - skb->mac_header;
1550 __skb_pull(skb, skb->mac_len);
1551
1552 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1553 struct net_device *dev = skb->dev;
1554 struct ethtool_drvinfo info = {};
1555
1556 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1557 dev->ethtool_ops->get_drvinfo(dev, &info);
1558
1559 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1560 "ip_summed=%d",
1561 info.driver, dev ? dev->features : 0L,
1562 skb->sk ? skb->sk->sk_route_caps : 0L,
1563 skb->len, skb->data_len, skb->ip_summed);
1564
1565 if (skb_header_cloned(skb) &&
1566 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1567 return ERR_PTR(err);
1568 }
1569
1570 rcu_read_lock();
1571 list_for_each_entry_rcu(ptype,
1572 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1573 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1574 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1575 err = ptype->gso_send_check(skb);
1576 segs = ERR_PTR(err);
1577 if (err || skb_gso_ok(skb, features))
1578 break;
1579 __skb_push(skb, (skb->data -
1580 skb_network_header(skb)));
1581 }
1582 segs = ptype->gso_segment(skb, features);
1583 break;
1584 }
1585 }
1586 rcu_read_unlock();
1587
1588 __skb_push(skb, skb->data - skb_mac_header(skb));
1589
1590 return segs;
1591 }
1592
1593 EXPORT_SYMBOL(skb_gso_segment);
1594
1595 /* Take action when hardware reception checksum errors are detected. */
1596 #ifdef CONFIG_BUG
1597 void netdev_rx_csum_fault(struct net_device *dev)
1598 {
1599 if (net_ratelimit()) {
1600 printk(KERN_ERR "%s: hw csum failure.\n",
1601 dev ? dev->name : "<unknown>");
1602 dump_stack();
1603 }
1604 }
1605 EXPORT_SYMBOL(netdev_rx_csum_fault);
1606 #endif
1607
1608 /* Actually, we should eliminate this check as soon as we know, that:
1609 * 1. IOMMU is present and allows to map all the memory.
1610 * 2. No high memory really exists on this machine.
1611 */
1612
1613 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1614 {
1615 #ifdef CONFIG_HIGHMEM
1616 int i;
1617
1618 if (dev->features & NETIF_F_HIGHDMA)
1619 return 0;
1620
1621 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1622 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1623 return 1;
1624
1625 #endif
1626 return 0;
1627 }
1628
1629 struct dev_gso_cb {
1630 void (*destructor)(struct sk_buff *skb);
1631 };
1632
1633 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1634
1635 static void dev_gso_skb_destructor(struct sk_buff *skb)
1636 {
1637 struct dev_gso_cb *cb;
1638
1639 do {
1640 struct sk_buff *nskb = skb->next;
1641
1642 skb->next = nskb->next;
1643 nskb->next = NULL;
1644 kfree_skb(nskb);
1645 } while (skb->next);
1646
1647 cb = DEV_GSO_CB(skb);
1648 if (cb->destructor)
1649 cb->destructor(skb);
1650 }
1651
1652 /**
1653 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1654 * @skb: buffer to segment
1655 *
1656 * This function segments the given skb and stores the list of segments
1657 * in skb->next.
1658 */
1659 static int dev_gso_segment(struct sk_buff *skb)
1660 {
1661 struct net_device *dev = skb->dev;
1662 struct sk_buff *segs;
1663 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1664 NETIF_F_SG : 0);
1665
1666 segs = skb_gso_segment(skb, features);
1667
1668 /* Verifying header integrity only. */
1669 if (!segs)
1670 return 0;
1671
1672 if (IS_ERR(segs))
1673 return PTR_ERR(segs);
1674
1675 skb->next = segs;
1676 DEV_GSO_CB(skb)->destructor = skb->destructor;
1677 skb->destructor = dev_gso_skb_destructor;
1678
1679 return 0;
1680 }
1681
1682 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1683 struct netdev_queue *txq)
1684 {
1685 const struct net_device_ops *ops = dev->netdev_ops;
1686 int rc;
1687
1688 if (likely(!skb->next)) {
1689 if (!list_empty(&ptype_all))
1690 dev_queue_xmit_nit(skb, dev);
1691
1692 if (netif_needs_gso(dev, skb)) {
1693 if (unlikely(dev_gso_segment(skb)))
1694 goto out_kfree_skb;
1695 if (skb->next)
1696 goto gso;
1697 }
1698
1699 /*
1700 * If device doesnt need skb->dst, release it right now while
1701 * its hot in this cpu cache
1702 */
1703 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1704 skb_dst_drop(skb);
1705
1706 rc = ops->ndo_start_xmit(skb, dev);
1707 if (rc == 0)
1708 txq_trans_update(txq);
1709 /*
1710 * TODO: if skb_orphan() was called by
1711 * dev->hard_start_xmit() (for example, the unmodified
1712 * igb driver does that; bnx2 doesn't), then
1713 * skb_tx_software_timestamp() will be unable to send
1714 * back the time stamp.
1715 *
1716 * How can this be prevented? Always create another
1717 * reference to the socket before calling
1718 * dev->hard_start_xmit()? Prevent that skb_orphan()
1719 * does anything in dev->hard_start_xmit() by clearing
1720 * the skb destructor before the call and restoring it
1721 * afterwards, then doing the skb_orphan() ourselves?
1722 */
1723 return rc;
1724 }
1725
1726 gso:
1727 do {
1728 struct sk_buff *nskb = skb->next;
1729
1730 skb->next = nskb->next;
1731 nskb->next = NULL;
1732 rc = ops->ndo_start_xmit(nskb, dev);
1733 if (unlikely(rc)) {
1734 nskb->next = skb->next;
1735 skb->next = nskb;
1736 return rc;
1737 }
1738 txq_trans_update(txq);
1739 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1740 return NETDEV_TX_BUSY;
1741 } while (skb->next);
1742
1743 skb->destructor = DEV_GSO_CB(skb)->destructor;
1744
1745 out_kfree_skb:
1746 kfree_skb(skb);
1747 return 0;
1748 }
1749
1750 static u32 skb_tx_hashrnd;
1751
1752 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1753 {
1754 u32 hash;
1755
1756 if (skb_rx_queue_recorded(skb)) {
1757 hash = skb_get_rx_queue(skb);
1758 while (unlikely (hash >= dev->real_num_tx_queues))
1759 hash -= dev->real_num_tx_queues;
1760 return hash;
1761 }
1762
1763 if (skb->sk && skb->sk->sk_hash)
1764 hash = skb->sk->sk_hash;
1765 else
1766 hash = skb->protocol;
1767
1768 hash = jhash_1word(hash, skb_tx_hashrnd);
1769
1770 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1771 }
1772 EXPORT_SYMBOL(skb_tx_hash);
1773
1774 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1775 struct sk_buff *skb)
1776 {
1777 const struct net_device_ops *ops = dev->netdev_ops;
1778 u16 queue_index = 0;
1779
1780 if (ops->ndo_select_queue)
1781 queue_index = ops->ndo_select_queue(dev, skb);
1782 else if (dev->real_num_tx_queues > 1)
1783 queue_index = skb_tx_hash(dev, skb);
1784
1785 skb_set_queue_mapping(skb, queue_index);
1786 return netdev_get_tx_queue(dev, queue_index);
1787 }
1788
1789 /**
1790 * dev_queue_xmit - transmit a buffer
1791 * @skb: buffer to transmit
1792 *
1793 * Queue a buffer for transmission to a network device. The caller must
1794 * have set the device and priority and built the buffer before calling
1795 * this function. The function can be called from an interrupt.
1796 *
1797 * A negative errno code is returned on a failure. A success does not
1798 * guarantee the frame will be transmitted as it may be dropped due
1799 * to congestion or traffic shaping.
1800 *
1801 * -----------------------------------------------------------------------------------
1802 * I notice this method can also return errors from the queue disciplines,
1803 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1804 * be positive.
1805 *
1806 * Regardless of the return value, the skb is consumed, so it is currently
1807 * difficult to retry a send to this method. (You can bump the ref count
1808 * before sending to hold a reference for retry if you are careful.)
1809 *
1810 * When calling this method, interrupts MUST be enabled. This is because
1811 * the BH enable code must have IRQs enabled so that it will not deadlock.
1812 * --BLG
1813 */
1814 int dev_queue_xmit(struct sk_buff *skb)
1815 {
1816 struct net_device *dev = skb->dev;
1817 struct netdev_queue *txq;
1818 struct Qdisc *q;
1819 int rc = -ENOMEM;
1820
1821 /* GSO will handle the following emulations directly. */
1822 if (netif_needs_gso(dev, skb))
1823 goto gso;
1824
1825 if (skb_has_frags(skb) &&
1826 !(dev->features & NETIF_F_FRAGLIST) &&
1827 __skb_linearize(skb))
1828 goto out_kfree_skb;
1829
1830 /* Fragmented skb is linearized if device does not support SG,
1831 * or if at least one of fragments is in highmem and device
1832 * does not support DMA from it.
1833 */
1834 if (skb_shinfo(skb)->nr_frags &&
1835 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1836 __skb_linearize(skb))
1837 goto out_kfree_skb;
1838
1839 /* If packet is not checksummed and device does not support
1840 * checksumming for this protocol, complete checksumming here.
1841 */
1842 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1843 skb_set_transport_header(skb, skb->csum_start -
1844 skb_headroom(skb));
1845 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1846 goto out_kfree_skb;
1847 }
1848
1849 gso:
1850 /* Disable soft irqs for various locks below. Also
1851 * stops preemption for RCU.
1852 */
1853 rcu_read_lock_bh();
1854
1855 txq = dev_pick_tx(dev, skb);
1856 q = rcu_dereference(txq->qdisc);
1857
1858 #ifdef CONFIG_NET_CLS_ACT
1859 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1860 #endif
1861 if (q->enqueue) {
1862 spinlock_t *root_lock = qdisc_lock(q);
1863
1864 spin_lock(root_lock);
1865
1866 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1867 kfree_skb(skb);
1868 rc = NET_XMIT_DROP;
1869 } else {
1870 rc = qdisc_enqueue_root(skb, q);
1871 qdisc_run(q);
1872 }
1873 spin_unlock(root_lock);
1874
1875 goto out;
1876 }
1877
1878 /* The device has no queue. Common case for software devices:
1879 loopback, all the sorts of tunnels...
1880
1881 Really, it is unlikely that netif_tx_lock protection is necessary
1882 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1883 counters.)
1884 However, it is possible, that they rely on protection
1885 made by us here.
1886
1887 Check this and shot the lock. It is not prone from deadlocks.
1888 Either shot noqueue qdisc, it is even simpler 8)
1889 */
1890 if (dev->flags & IFF_UP) {
1891 int cpu = smp_processor_id(); /* ok because BHs are off */
1892
1893 if (txq->xmit_lock_owner != cpu) {
1894
1895 HARD_TX_LOCK(dev, txq, cpu);
1896
1897 if (!netif_tx_queue_stopped(txq)) {
1898 rc = 0;
1899 if (!dev_hard_start_xmit(skb, dev, txq)) {
1900 HARD_TX_UNLOCK(dev, txq);
1901 goto out;
1902 }
1903 }
1904 HARD_TX_UNLOCK(dev, txq);
1905 if (net_ratelimit())
1906 printk(KERN_CRIT "Virtual device %s asks to "
1907 "queue packet!\n", dev->name);
1908 } else {
1909 /* Recursion is detected! It is possible,
1910 * unfortunately */
1911 if (net_ratelimit())
1912 printk(KERN_CRIT "Dead loop on virtual device "
1913 "%s, fix it urgently!\n", dev->name);
1914 }
1915 }
1916
1917 rc = -ENETDOWN;
1918 rcu_read_unlock_bh();
1919
1920 out_kfree_skb:
1921 kfree_skb(skb);
1922 return rc;
1923 out:
1924 rcu_read_unlock_bh();
1925 return rc;
1926 }
1927
1928
1929 /*=======================================================================
1930 Receiver routines
1931 =======================================================================*/
1932
1933 int netdev_max_backlog __read_mostly = 1000;
1934 int netdev_budget __read_mostly = 300;
1935 int weight_p __read_mostly = 64; /* old backlog weight */
1936
1937 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1938
1939
1940 /**
1941 * netif_rx - post buffer to the network code
1942 * @skb: buffer to post
1943 *
1944 * This function receives a packet from a device driver and queues it for
1945 * the upper (protocol) levels to process. It always succeeds. The buffer
1946 * may be dropped during processing for congestion control or by the
1947 * protocol layers.
1948 *
1949 * return values:
1950 * NET_RX_SUCCESS (no congestion)
1951 * NET_RX_DROP (packet was dropped)
1952 *
1953 */
1954
1955 int netif_rx(struct sk_buff *skb)
1956 {
1957 struct softnet_data *queue;
1958 unsigned long flags;
1959
1960 /* if netpoll wants it, pretend we never saw it */
1961 if (netpoll_rx(skb))
1962 return NET_RX_DROP;
1963
1964 if (!skb->tstamp.tv64)
1965 net_timestamp(skb);
1966
1967 /*
1968 * The code is rearranged so that the path is the most
1969 * short when CPU is congested, but is still operating.
1970 */
1971 local_irq_save(flags);
1972 queue = &__get_cpu_var(softnet_data);
1973
1974 __get_cpu_var(netdev_rx_stat).total++;
1975 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1976 if (queue->input_pkt_queue.qlen) {
1977 enqueue:
1978 __skb_queue_tail(&queue->input_pkt_queue, skb);
1979 local_irq_restore(flags);
1980 return NET_RX_SUCCESS;
1981 }
1982
1983 napi_schedule(&queue->backlog);
1984 goto enqueue;
1985 }
1986
1987 __get_cpu_var(netdev_rx_stat).dropped++;
1988 local_irq_restore(flags);
1989
1990 kfree_skb(skb);
1991 return NET_RX_DROP;
1992 }
1993
1994 int netif_rx_ni(struct sk_buff *skb)
1995 {
1996 int err;
1997
1998 preempt_disable();
1999 err = netif_rx(skb);
2000 if (local_softirq_pending())
2001 do_softirq();
2002 preempt_enable();
2003
2004 return err;
2005 }
2006
2007 EXPORT_SYMBOL(netif_rx_ni);
2008
2009 static void net_tx_action(struct softirq_action *h)
2010 {
2011 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2012
2013 if (sd->completion_queue) {
2014 struct sk_buff *clist;
2015
2016 local_irq_disable();
2017 clist = sd->completion_queue;
2018 sd->completion_queue = NULL;
2019 local_irq_enable();
2020
2021 while (clist) {
2022 struct sk_buff *skb = clist;
2023 clist = clist->next;
2024
2025 WARN_ON(atomic_read(&skb->users));
2026 __kfree_skb(skb);
2027 }
2028 }
2029
2030 if (sd->output_queue) {
2031 struct Qdisc *head;
2032
2033 local_irq_disable();
2034 head = sd->output_queue;
2035 sd->output_queue = NULL;
2036 local_irq_enable();
2037
2038 while (head) {
2039 struct Qdisc *q = head;
2040 spinlock_t *root_lock;
2041
2042 head = head->next_sched;
2043
2044 root_lock = qdisc_lock(q);
2045 if (spin_trylock(root_lock)) {
2046 smp_mb__before_clear_bit();
2047 clear_bit(__QDISC_STATE_SCHED,
2048 &q->state);
2049 qdisc_run(q);
2050 spin_unlock(root_lock);
2051 } else {
2052 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2053 &q->state)) {
2054 __netif_reschedule(q);
2055 } else {
2056 smp_mb__before_clear_bit();
2057 clear_bit(__QDISC_STATE_SCHED,
2058 &q->state);
2059 }
2060 }
2061 }
2062 }
2063 }
2064
2065 static inline int deliver_skb(struct sk_buff *skb,
2066 struct packet_type *pt_prev,
2067 struct net_device *orig_dev)
2068 {
2069 atomic_inc(&skb->users);
2070 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2071 }
2072
2073 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2074
2075 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2076 /* This hook is defined here for ATM LANE */
2077 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2078 unsigned char *addr) __read_mostly;
2079 EXPORT_SYMBOL(br_fdb_test_addr_hook);
2080 #endif
2081
2082 /*
2083 * If bridge module is loaded call bridging hook.
2084 * returns NULL if packet was consumed.
2085 */
2086 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2087 struct sk_buff *skb) __read_mostly;
2088 EXPORT_SYMBOL(br_handle_frame_hook);
2089
2090 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2091 struct packet_type **pt_prev, int *ret,
2092 struct net_device *orig_dev)
2093 {
2094 struct net_bridge_port *port;
2095
2096 if (skb->pkt_type == PACKET_LOOPBACK ||
2097 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2098 return skb;
2099
2100 if (*pt_prev) {
2101 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2102 *pt_prev = NULL;
2103 }
2104
2105 return br_handle_frame_hook(port, skb);
2106 }
2107 #else
2108 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2109 #endif
2110
2111 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2112 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2113 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2114
2115 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2116 struct packet_type **pt_prev,
2117 int *ret,
2118 struct net_device *orig_dev)
2119 {
2120 if (skb->dev->macvlan_port == NULL)
2121 return skb;
2122
2123 if (*pt_prev) {
2124 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2125 *pt_prev = NULL;
2126 }
2127 return macvlan_handle_frame_hook(skb);
2128 }
2129 #else
2130 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2131 #endif
2132
2133 #ifdef CONFIG_NET_CLS_ACT
2134 /* TODO: Maybe we should just force sch_ingress to be compiled in
2135 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2136 * a compare and 2 stores extra right now if we dont have it on
2137 * but have CONFIG_NET_CLS_ACT
2138 * NOTE: This doesnt stop any functionality; if you dont have
2139 * the ingress scheduler, you just cant add policies on ingress.
2140 *
2141 */
2142 static int ing_filter(struct sk_buff *skb)
2143 {
2144 struct net_device *dev = skb->dev;
2145 u32 ttl = G_TC_RTTL(skb->tc_verd);
2146 struct netdev_queue *rxq;
2147 int result = TC_ACT_OK;
2148 struct Qdisc *q;
2149
2150 if (MAX_RED_LOOP < ttl++) {
2151 printk(KERN_WARNING
2152 "Redir loop detected Dropping packet (%d->%d)\n",
2153 skb->iif, dev->ifindex);
2154 return TC_ACT_SHOT;
2155 }
2156
2157 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2158 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2159
2160 rxq = &dev->rx_queue;
2161
2162 q = rxq->qdisc;
2163 if (q != &noop_qdisc) {
2164 spin_lock(qdisc_lock(q));
2165 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2166 result = qdisc_enqueue_root(skb, q);
2167 spin_unlock(qdisc_lock(q));
2168 }
2169
2170 return result;
2171 }
2172
2173 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2174 struct packet_type **pt_prev,
2175 int *ret, struct net_device *orig_dev)
2176 {
2177 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2178 goto out;
2179
2180 if (*pt_prev) {
2181 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2182 *pt_prev = NULL;
2183 } else {
2184 /* Huh? Why does turning on AF_PACKET affect this? */
2185 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2186 }
2187
2188 switch (ing_filter(skb)) {
2189 case TC_ACT_SHOT:
2190 case TC_ACT_STOLEN:
2191 kfree_skb(skb);
2192 return NULL;
2193 }
2194
2195 out:
2196 skb->tc_verd = 0;
2197 return skb;
2198 }
2199 #endif
2200
2201 /*
2202 * netif_nit_deliver - deliver received packets to network taps
2203 * @skb: buffer
2204 *
2205 * This function is used to deliver incoming packets to network
2206 * taps. It should be used when the normal netif_receive_skb path
2207 * is bypassed, for example because of VLAN acceleration.
2208 */
2209 void netif_nit_deliver(struct sk_buff *skb)
2210 {
2211 struct packet_type *ptype;
2212
2213 if (list_empty(&ptype_all))
2214 return;
2215
2216 skb_reset_network_header(skb);
2217 skb_reset_transport_header(skb);
2218 skb->mac_len = skb->network_header - skb->mac_header;
2219
2220 rcu_read_lock();
2221 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2222 if (!ptype->dev || ptype->dev == skb->dev)
2223 deliver_skb(skb, ptype, skb->dev);
2224 }
2225 rcu_read_unlock();
2226 }
2227
2228 /**
2229 * netif_receive_skb - process receive buffer from network
2230 * @skb: buffer to process
2231 *
2232 * netif_receive_skb() is the main receive data processing function.
2233 * It always succeeds. The buffer may be dropped during processing
2234 * for congestion control or by the protocol layers.
2235 *
2236 * This function may only be called from softirq context and interrupts
2237 * should be enabled.
2238 *
2239 * Return values (usually ignored):
2240 * NET_RX_SUCCESS: no congestion
2241 * NET_RX_DROP: packet was dropped
2242 */
2243 int netif_receive_skb(struct sk_buff *skb)
2244 {
2245 struct packet_type *ptype, *pt_prev;
2246 struct net_device *orig_dev;
2247 struct net_device *null_or_orig;
2248 int ret = NET_RX_DROP;
2249 __be16 type;
2250
2251 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2252 return NET_RX_SUCCESS;
2253
2254 /* if we've gotten here through NAPI, check netpoll */
2255 if (netpoll_receive_skb(skb))
2256 return NET_RX_DROP;
2257
2258 if (!skb->tstamp.tv64)
2259 net_timestamp(skb);
2260
2261 if (!skb->iif)
2262 skb->iif = skb->dev->ifindex;
2263
2264 null_or_orig = NULL;
2265 orig_dev = skb->dev;
2266 if (orig_dev->master) {
2267 if (skb_bond_should_drop(skb))
2268 null_or_orig = orig_dev; /* deliver only exact match */
2269 else
2270 skb->dev = orig_dev->master;
2271 }
2272
2273 __get_cpu_var(netdev_rx_stat).total++;
2274
2275 skb_reset_network_header(skb);
2276 skb_reset_transport_header(skb);
2277 skb->mac_len = skb->network_header - skb->mac_header;
2278
2279 pt_prev = NULL;
2280
2281 rcu_read_lock();
2282
2283 #ifdef CONFIG_NET_CLS_ACT
2284 if (skb->tc_verd & TC_NCLS) {
2285 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2286 goto ncls;
2287 }
2288 #endif
2289
2290 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2291 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2292 ptype->dev == orig_dev) {
2293 if (pt_prev)
2294 ret = deliver_skb(skb, pt_prev, orig_dev);
2295 pt_prev = ptype;
2296 }
2297 }
2298
2299 #ifdef CONFIG_NET_CLS_ACT
2300 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2301 if (!skb)
2302 goto out;
2303 ncls:
2304 #endif
2305
2306 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2307 if (!skb)
2308 goto out;
2309 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2310 if (!skb)
2311 goto out;
2312
2313 type = skb->protocol;
2314 list_for_each_entry_rcu(ptype,
2315 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2316 if (ptype->type == type &&
2317 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2318 ptype->dev == orig_dev)) {
2319 if (pt_prev)
2320 ret = deliver_skb(skb, pt_prev, orig_dev);
2321 pt_prev = ptype;
2322 }
2323 }
2324
2325 if (pt_prev) {
2326 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2327 } else {
2328 kfree_skb(skb);
2329 /* Jamal, now you will not able to escape explaining
2330 * me how you were going to use this. :-)
2331 */
2332 ret = NET_RX_DROP;
2333 }
2334
2335 out:
2336 rcu_read_unlock();
2337 return ret;
2338 }
2339
2340 /* Network device is going away, flush any packets still pending */
2341 static void flush_backlog(void *arg)
2342 {
2343 struct net_device *dev = arg;
2344 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2345 struct sk_buff *skb, *tmp;
2346
2347 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2348 if (skb->dev == dev) {
2349 __skb_unlink(skb, &queue->input_pkt_queue);
2350 kfree_skb(skb);
2351 }
2352 }
2353
2354 static int napi_gro_complete(struct sk_buff *skb)
2355 {
2356 struct packet_type *ptype;
2357 __be16 type = skb->protocol;
2358 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2359 int err = -ENOENT;
2360
2361 if (NAPI_GRO_CB(skb)->count == 1) {
2362 skb_shinfo(skb)->gso_size = 0;
2363 goto out;
2364 }
2365
2366 rcu_read_lock();
2367 list_for_each_entry_rcu(ptype, head, list) {
2368 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2369 continue;
2370
2371 err = ptype->gro_complete(skb);
2372 break;
2373 }
2374 rcu_read_unlock();
2375
2376 if (err) {
2377 WARN_ON(&ptype->list == head);
2378 kfree_skb(skb);
2379 return NET_RX_SUCCESS;
2380 }
2381
2382 out:
2383 return netif_receive_skb(skb);
2384 }
2385
2386 void napi_gro_flush(struct napi_struct *napi)
2387 {
2388 struct sk_buff *skb, *next;
2389
2390 for (skb = napi->gro_list; skb; skb = next) {
2391 next = skb->next;
2392 skb->next = NULL;
2393 napi_gro_complete(skb);
2394 }
2395
2396 napi->gro_count = 0;
2397 napi->gro_list = NULL;
2398 }
2399 EXPORT_SYMBOL(napi_gro_flush);
2400
2401 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2402 {
2403 struct sk_buff **pp = NULL;
2404 struct packet_type *ptype;
2405 __be16 type = skb->protocol;
2406 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2407 int same_flow;
2408 int mac_len;
2409 int ret;
2410
2411 if (!(skb->dev->features & NETIF_F_GRO))
2412 goto normal;
2413
2414 if (skb_is_gso(skb) || skb_has_frags(skb))
2415 goto normal;
2416
2417 rcu_read_lock();
2418 list_for_each_entry_rcu(ptype, head, list) {
2419 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2420 continue;
2421
2422 skb_set_network_header(skb, skb_gro_offset(skb));
2423 mac_len = skb->network_header - skb->mac_header;
2424 skb->mac_len = mac_len;
2425 NAPI_GRO_CB(skb)->same_flow = 0;
2426 NAPI_GRO_CB(skb)->flush = 0;
2427 NAPI_GRO_CB(skb)->free = 0;
2428
2429 pp = ptype->gro_receive(&napi->gro_list, skb);
2430 break;
2431 }
2432 rcu_read_unlock();
2433
2434 if (&ptype->list == head)
2435 goto normal;
2436
2437 same_flow = NAPI_GRO_CB(skb)->same_flow;
2438 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2439
2440 if (pp) {
2441 struct sk_buff *nskb = *pp;
2442
2443 *pp = nskb->next;
2444 nskb->next = NULL;
2445 napi_gro_complete(nskb);
2446 napi->gro_count--;
2447 }
2448
2449 if (same_flow)
2450 goto ok;
2451
2452 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2453 goto normal;
2454
2455 napi->gro_count++;
2456 NAPI_GRO_CB(skb)->count = 1;
2457 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2458 skb->next = napi->gro_list;
2459 napi->gro_list = skb;
2460 ret = GRO_HELD;
2461
2462 pull:
2463 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2464 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2465
2466 BUG_ON(skb->end - skb->tail < grow);
2467
2468 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2469
2470 skb->tail += grow;
2471 skb->data_len -= grow;
2472
2473 skb_shinfo(skb)->frags[0].page_offset += grow;
2474 skb_shinfo(skb)->frags[0].size -= grow;
2475
2476 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2477 put_page(skb_shinfo(skb)->frags[0].page);
2478 memmove(skb_shinfo(skb)->frags,
2479 skb_shinfo(skb)->frags + 1,
2480 --skb_shinfo(skb)->nr_frags);
2481 }
2482 }
2483
2484 ok:
2485 return ret;
2486
2487 normal:
2488 ret = GRO_NORMAL;
2489 goto pull;
2490 }
2491 EXPORT_SYMBOL(dev_gro_receive);
2492
2493 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2494 {
2495 struct sk_buff *p;
2496
2497 if (netpoll_rx_on(skb))
2498 return GRO_NORMAL;
2499
2500 for (p = napi->gro_list; p; p = p->next) {
2501 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev)
2502 && !compare_ether_header(skb_mac_header(p),
2503 skb_gro_mac_header(skb));
2504 NAPI_GRO_CB(p)->flush = 0;
2505 }
2506
2507 return dev_gro_receive(napi, skb);
2508 }
2509
2510 int napi_skb_finish(int ret, struct sk_buff *skb)
2511 {
2512 int err = NET_RX_SUCCESS;
2513
2514 switch (ret) {
2515 case GRO_NORMAL:
2516 return netif_receive_skb(skb);
2517
2518 case GRO_DROP:
2519 err = NET_RX_DROP;
2520 /* fall through */
2521
2522 case GRO_MERGED_FREE:
2523 kfree_skb(skb);
2524 break;
2525 }
2526
2527 return err;
2528 }
2529 EXPORT_SYMBOL(napi_skb_finish);
2530
2531 void skb_gro_reset_offset(struct sk_buff *skb)
2532 {
2533 NAPI_GRO_CB(skb)->data_offset = 0;
2534 NAPI_GRO_CB(skb)->frag0 = NULL;
2535 NAPI_GRO_CB(skb)->frag0_len = 0;
2536
2537 if (skb->mac_header == skb->tail &&
2538 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2539 NAPI_GRO_CB(skb)->frag0 =
2540 page_address(skb_shinfo(skb)->frags[0].page) +
2541 skb_shinfo(skb)->frags[0].page_offset;
2542 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2543 }
2544 }
2545 EXPORT_SYMBOL(skb_gro_reset_offset);
2546
2547 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2548 {
2549 skb_gro_reset_offset(skb);
2550
2551 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2552 }
2553 EXPORT_SYMBOL(napi_gro_receive);
2554
2555 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2556 {
2557 __skb_pull(skb, skb_headlen(skb));
2558 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2559
2560 napi->skb = skb;
2561 }
2562 EXPORT_SYMBOL(napi_reuse_skb);
2563
2564 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2565 {
2566 struct net_device *dev = napi->dev;
2567 struct sk_buff *skb = napi->skb;
2568
2569 if (!skb) {
2570 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2571 if (!skb)
2572 goto out;
2573
2574 skb_reserve(skb, NET_IP_ALIGN);
2575
2576 napi->skb = skb;
2577 }
2578
2579 out:
2580 return skb;
2581 }
2582 EXPORT_SYMBOL(napi_get_frags);
2583
2584 int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret)
2585 {
2586 int err = NET_RX_SUCCESS;
2587
2588 switch (ret) {
2589 case GRO_NORMAL:
2590 case GRO_HELD:
2591 skb->protocol = eth_type_trans(skb, napi->dev);
2592
2593 if (ret == GRO_NORMAL)
2594 return netif_receive_skb(skb);
2595
2596 skb_gro_pull(skb, -ETH_HLEN);
2597 break;
2598
2599 case GRO_DROP:
2600 err = NET_RX_DROP;
2601 /* fall through */
2602
2603 case GRO_MERGED_FREE:
2604 napi_reuse_skb(napi, skb);
2605 break;
2606 }
2607
2608 return err;
2609 }
2610 EXPORT_SYMBOL(napi_frags_finish);
2611
2612 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2613 {
2614 struct sk_buff *skb = napi->skb;
2615 struct ethhdr *eth;
2616 unsigned int hlen;
2617 unsigned int off;
2618
2619 napi->skb = NULL;
2620
2621 skb_reset_mac_header(skb);
2622 skb_gro_reset_offset(skb);
2623
2624 off = skb_gro_offset(skb);
2625 hlen = off + sizeof(*eth);
2626 eth = skb_gro_header_fast(skb, off);
2627 if (skb_gro_header_hard(skb, hlen)) {
2628 eth = skb_gro_header_slow(skb, hlen, off);
2629 if (unlikely(!eth)) {
2630 napi_reuse_skb(napi, skb);
2631 skb = NULL;
2632 goto out;
2633 }
2634 }
2635
2636 skb_gro_pull(skb, sizeof(*eth));
2637
2638 /*
2639 * This works because the only protocols we care about don't require
2640 * special handling. We'll fix it up properly at the end.
2641 */
2642 skb->protocol = eth->h_proto;
2643
2644 out:
2645 return skb;
2646 }
2647 EXPORT_SYMBOL(napi_frags_skb);
2648
2649 int napi_gro_frags(struct napi_struct *napi)
2650 {
2651 struct sk_buff *skb = napi_frags_skb(napi);
2652
2653 if (!skb)
2654 return NET_RX_DROP;
2655
2656 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2657 }
2658 EXPORT_SYMBOL(napi_gro_frags);
2659
2660 static int process_backlog(struct napi_struct *napi, int quota)
2661 {
2662 int work = 0;
2663 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2664 unsigned long start_time = jiffies;
2665
2666 napi->weight = weight_p;
2667 do {
2668 struct sk_buff *skb;
2669
2670 local_irq_disable();
2671 skb = __skb_dequeue(&queue->input_pkt_queue);
2672 if (!skb) {
2673 __napi_complete(napi);
2674 local_irq_enable();
2675 break;
2676 }
2677 local_irq_enable();
2678
2679 netif_receive_skb(skb);
2680 } while (++work < quota && jiffies == start_time);
2681
2682 return work;
2683 }
2684
2685 /**
2686 * __napi_schedule - schedule for receive
2687 * @n: entry to schedule
2688 *
2689 * The entry's receive function will be scheduled to run
2690 */
2691 void __napi_schedule(struct napi_struct *n)
2692 {
2693 unsigned long flags;
2694
2695 local_irq_save(flags);
2696 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2697 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2698 local_irq_restore(flags);
2699 }
2700 EXPORT_SYMBOL(__napi_schedule);
2701
2702 void __napi_complete(struct napi_struct *n)
2703 {
2704 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2705 BUG_ON(n->gro_list);
2706
2707 list_del(&n->poll_list);
2708 smp_mb__before_clear_bit();
2709 clear_bit(NAPI_STATE_SCHED, &n->state);
2710 }
2711 EXPORT_SYMBOL(__napi_complete);
2712
2713 void napi_complete(struct napi_struct *n)
2714 {
2715 unsigned long flags;
2716
2717 /*
2718 * don't let napi dequeue from the cpu poll list
2719 * just in case its running on a different cpu
2720 */
2721 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2722 return;
2723
2724 napi_gro_flush(n);
2725 local_irq_save(flags);
2726 __napi_complete(n);
2727 local_irq_restore(flags);
2728 }
2729 EXPORT_SYMBOL(napi_complete);
2730
2731 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2732 int (*poll)(struct napi_struct *, int), int weight)
2733 {
2734 INIT_LIST_HEAD(&napi->poll_list);
2735 napi->gro_count = 0;
2736 napi->gro_list = NULL;
2737 napi->skb = NULL;
2738 napi->poll = poll;
2739 napi->weight = weight;
2740 list_add(&napi->dev_list, &dev->napi_list);
2741 napi->dev = dev;
2742 #ifdef CONFIG_NETPOLL
2743 spin_lock_init(&napi->poll_lock);
2744 napi->poll_owner = -1;
2745 #endif
2746 set_bit(NAPI_STATE_SCHED, &napi->state);
2747 }
2748 EXPORT_SYMBOL(netif_napi_add);
2749
2750 void netif_napi_del(struct napi_struct *napi)
2751 {
2752 struct sk_buff *skb, *next;
2753
2754 list_del_init(&napi->dev_list);
2755 napi_free_frags(napi);
2756
2757 for (skb = napi->gro_list; skb; skb = next) {
2758 next = skb->next;
2759 skb->next = NULL;
2760 kfree_skb(skb);
2761 }
2762
2763 napi->gro_list = NULL;
2764 napi->gro_count = 0;
2765 }
2766 EXPORT_SYMBOL(netif_napi_del);
2767
2768
2769 static void net_rx_action(struct softirq_action *h)
2770 {
2771 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2772 unsigned long time_limit = jiffies + 2;
2773 int budget = netdev_budget;
2774 void *have;
2775
2776 local_irq_disable();
2777
2778 while (!list_empty(list)) {
2779 struct napi_struct *n;
2780 int work, weight;
2781
2782 /* If softirq window is exhuasted then punt.
2783 * Allow this to run for 2 jiffies since which will allow
2784 * an average latency of 1.5/HZ.
2785 */
2786 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2787 goto softnet_break;
2788
2789 local_irq_enable();
2790
2791 /* Even though interrupts have been re-enabled, this
2792 * access is safe because interrupts can only add new
2793 * entries to the tail of this list, and only ->poll()
2794 * calls can remove this head entry from the list.
2795 */
2796 n = list_entry(list->next, struct napi_struct, poll_list);
2797
2798 have = netpoll_poll_lock(n);
2799
2800 weight = n->weight;
2801
2802 /* This NAPI_STATE_SCHED test is for avoiding a race
2803 * with netpoll's poll_napi(). Only the entity which
2804 * obtains the lock and sees NAPI_STATE_SCHED set will
2805 * actually make the ->poll() call. Therefore we avoid
2806 * accidently calling ->poll() when NAPI is not scheduled.
2807 */
2808 work = 0;
2809 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
2810 work = n->poll(n, weight);
2811 trace_napi_poll(n);
2812 }
2813
2814 WARN_ON_ONCE(work > weight);
2815
2816 budget -= work;
2817
2818 local_irq_disable();
2819
2820 /* Drivers must not modify the NAPI state if they
2821 * consume the entire weight. In such cases this code
2822 * still "owns" the NAPI instance and therefore can
2823 * move the instance around on the list at-will.
2824 */
2825 if (unlikely(work == weight)) {
2826 if (unlikely(napi_disable_pending(n))) {
2827 local_irq_enable();
2828 napi_complete(n);
2829 local_irq_disable();
2830 } else
2831 list_move_tail(&n->poll_list, list);
2832 }
2833
2834 netpoll_poll_unlock(have);
2835 }
2836 out:
2837 local_irq_enable();
2838
2839 #ifdef CONFIG_NET_DMA
2840 /*
2841 * There may not be any more sk_buffs coming right now, so push
2842 * any pending DMA copies to hardware
2843 */
2844 dma_issue_pending_all();
2845 #endif
2846
2847 return;
2848
2849 softnet_break:
2850 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2851 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2852 goto out;
2853 }
2854
2855 static gifconf_func_t * gifconf_list [NPROTO];
2856
2857 /**
2858 * register_gifconf - register a SIOCGIF handler
2859 * @family: Address family
2860 * @gifconf: Function handler
2861 *
2862 * Register protocol dependent address dumping routines. The handler
2863 * that is passed must not be freed or reused until it has been replaced
2864 * by another handler.
2865 */
2866 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2867 {
2868 if (family >= NPROTO)
2869 return -EINVAL;
2870 gifconf_list[family] = gifconf;
2871 return 0;
2872 }
2873
2874
2875 /*
2876 * Map an interface index to its name (SIOCGIFNAME)
2877 */
2878
2879 /*
2880 * We need this ioctl for efficient implementation of the
2881 * if_indextoname() function required by the IPv6 API. Without
2882 * it, we would have to search all the interfaces to find a
2883 * match. --pb
2884 */
2885
2886 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2887 {
2888 struct net_device *dev;
2889 struct ifreq ifr;
2890
2891 /*
2892 * Fetch the caller's info block.
2893 */
2894
2895 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2896 return -EFAULT;
2897
2898 read_lock(&dev_base_lock);
2899 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2900 if (!dev) {
2901 read_unlock(&dev_base_lock);
2902 return -ENODEV;
2903 }
2904
2905 strcpy(ifr.ifr_name, dev->name);
2906 read_unlock(&dev_base_lock);
2907
2908 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2909 return -EFAULT;
2910 return 0;
2911 }
2912
2913 /*
2914 * Perform a SIOCGIFCONF call. This structure will change
2915 * size eventually, and there is nothing I can do about it.
2916 * Thus we will need a 'compatibility mode'.
2917 */
2918
2919 static int dev_ifconf(struct net *net, char __user *arg)
2920 {
2921 struct ifconf ifc;
2922 struct net_device *dev;
2923 char __user *pos;
2924 int len;
2925 int total;
2926 int i;
2927
2928 /*
2929 * Fetch the caller's info block.
2930 */
2931
2932 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2933 return -EFAULT;
2934
2935 pos = ifc.ifc_buf;
2936 len = ifc.ifc_len;
2937
2938 /*
2939 * Loop over the interfaces, and write an info block for each.
2940 */
2941
2942 total = 0;
2943 for_each_netdev(net, dev) {
2944 for (i = 0; i < NPROTO; i++) {
2945 if (gifconf_list[i]) {
2946 int done;
2947 if (!pos)
2948 done = gifconf_list[i](dev, NULL, 0);
2949 else
2950 done = gifconf_list[i](dev, pos + total,
2951 len - total);
2952 if (done < 0)
2953 return -EFAULT;
2954 total += done;
2955 }
2956 }
2957 }
2958
2959 /*
2960 * All done. Write the updated control block back to the caller.
2961 */
2962 ifc.ifc_len = total;
2963
2964 /*
2965 * Both BSD and Solaris return 0 here, so we do too.
2966 */
2967 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2968 }
2969
2970 #ifdef CONFIG_PROC_FS
2971 /*
2972 * This is invoked by the /proc filesystem handler to display a device
2973 * in detail.
2974 */
2975 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2976 __acquires(dev_base_lock)
2977 {
2978 struct net *net = seq_file_net(seq);
2979 loff_t off;
2980 struct net_device *dev;
2981
2982 read_lock(&dev_base_lock);
2983 if (!*pos)
2984 return SEQ_START_TOKEN;
2985
2986 off = 1;
2987 for_each_netdev(net, dev)
2988 if (off++ == *pos)
2989 return dev;
2990
2991 return NULL;
2992 }
2993
2994 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2995 {
2996 struct net *net = seq_file_net(seq);
2997 ++*pos;
2998 return v == SEQ_START_TOKEN ?
2999 first_net_device(net) : next_net_device((struct net_device *)v);
3000 }
3001
3002 void dev_seq_stop(struct seq_file *seq, void *v)
3003 __releases(dev_base_lock)
3004 {
3005 read_unlock(&dev_base_lock);
3006 }
3007
3008 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3009 {
3010 const struct net_device_stats *stats = dev_get_stats(dev);
3011
3012 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3013 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3014 dev->name, stats->rx_bytes, stats->rx_packets,
3015 stats->rx_errors,
3016 stats->rx_dropped + stats->rx_missed_errors,
3017 stats->rx_fifo_errors,
3018 stats->rx_length_errors + stats->rx_over_errors +
3019 stats->rx_crc_errors + stats->rx_frame_errors,
3020 stats->rx_compressed, stats->multicast,
3021 stats->tx_bytes, stats->tx_packets,
3022 stats->tx_errors, stats->tx_dropped,
3023 stats->tx_fifo_errors, stats->collisions,
3024 stats->tx_carrier_errors +
3025 stats->tx_aborted_errors +
3026 stats->tx_window_errors +
3027 stats->tx_heartbeat_errors,
3028 stats->tx_compressed);
3029 }
3030
3031 /*
3032 * Called from the PROCfs module. This now uses the new arbitrary sized
3033 * /proc/net interface to create /proc/net/dev
3034 */
3035 static int dev_seq_show(struct seq_file *seq, void *v)
3036 {
3037 if (v == SEQ_START_TOKEN)
3038 seq_puts(seq, "Inter-| Receive "
3039 " | Transmit\n"
3040 " face |bytes packets errs drop fifo frame "
3041 "compressed multicast|bytes packets errs "
3042 "drop fifo colls carrier compressed\n");
3043 else
3044 dev_seq_printf_stats(seq, v);
3045 return 0;
3046 }
3047
3048 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3049 {
3050 struct netif_rx_stats *rc = NULL;
3051
3052 while (*pos < nr_cpu_ids)
3053 if (cpu_online(*pos)) {
3054 rc = &per_cpu(netdev_rx_stat, *pos);
3055 break;
3056 } else
3057 ++*pos;
3058 return rc;
3059 }
3060
3061 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3062 {
3063 return softnet_get_online(pos);
3064 }
3065
3066 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3067 {
3068 ++*pos;
3069 return softnet_get_online(pos);
3070 }
3071
3072 static void softnet_seq_stop(struct seq_file *seq, void *v)
3073 {
3074 }
3075
3076 static int softnet_seq_show(struct seq_file *seq, void *v)
3077 {
3078 struct netif_rx_stats *s = v;
3079
3080 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3081 s->total, s->dropped, s->time_squeeze, 0,
3082 0, 0, 0, 0, /* was fastroute */
3083 s->cpu_collision );
3084 return 0;
3085 }
3086
3087 static const struct seq_operations dev_seq_ops = {
3088 .start = dev_seq_start,
3089 .next = dev_seq_next,
3090 .stop = dev_seq_stop,
3091 .show = dev_seq_show,
3092 };
3093
3094 static int dev_seq_open(struct inode *inode, struct file *file)
3095 {
3096 return seq_open_net(inode, file, &dev_seq_ops,
3097 sizeof(struct seq_net_private));
3098 }
3099
3100 static const struct file_operations dev_seq_fops = {
3101 .owner = THIS_MODULE,
3102 .open = dev_seq_open,
3103 .read = seq_read,
3104 .llseek = seq_lseek,
3105 .release = seq_release_net,
3106 };
3107
3108 static const struct seq_operations softnet_seq_ops = {
3109 .start = softnet_seq_start,
3110 .next = softnet_seq_next,
3111 .stop = softnet_seq_stop,
3112 .show = softnet_seq_show,
3113 };
3114
3115 static int softnet_seq_open(struct inode *inode, struct file *file)
3116 {
3117 return seq_open(file, &softnet_seq_ops);
3118 }
3119
3120 static const struct file_operations softnet_seq_fops = {
3121 .owner = THIS_MODULE,
3122 .open = softnet_seq_open,
3123 .read = seq_read,
3124 .llseek = seq_lseek,
3125 .release = seq_release,
3126 };
3127
3128 static void *ptype_get_idx(loff_t pos)
3129 {
3130 struct packet_type *pt = NULL;
3131 loff_t i = 0;
3132 int t;
3133
3134 list_for_each_entry_rcu(pt, &ptype_all, list) {
3135 if (i == pos)
3136 return pt;
3137 ++i;
3138 }
3139
3140 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3141 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3142 if (i == pos)
3143 return pt;
3144 ++i;
3145 }
3146 }
3147 return NULL;
3148 }
3149
3150 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3151 __acquires(RCU)
3152 {
3153 rcu_read_lock();
3154 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3155 }
3156
3157 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3158 {
3159 struct packet_type *pt;
3160 struct list_head *nxt;
3161 int hash;
3162
3163 ++*pos;
3164 if (v == SEQ_START_TOKEN)
3165 return ptype_get_idx(0);
3166
3167 pt = v;
3168 nxt = pt->list.next;
3169 if (pt->type == htons(ETH_P_ALL)) {
3170 if (nxt != &ptype_all)
3171 goto found;
3172 hash = 0;
3173 nxt = ptype_base[0].next;
3174 } else
3175 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3176
3177 while (nxt == &ptype_base[hash]) {
3178 if (++hash >= PTYPE_HASH_SIZE)
3179 return NULL;
3180 nxt = ptype_base[hash].next;
3181 }
3182 found:
3183 return list_entry(nxt, struct packet_type, list);
3184 }
3185
3186 static void ptype_seq_stop(struct seq_file *seq, void *v)
3187 __releases(RCU)
3188 {
3189 rcu_read_unlock();
3190 }
3191
3192 static int ptype_seq_show(struct seq_file *seq, void *v)
3193 {
3194 struct packet_type *pt = v;
3195
3196 if (v == SEQ_START_TOKEN)
3197 seq_puts(seq, "Type Device Function\n");
3198 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3199 if (pt->type == htons(ETH_P_ALL))
3200 seq_puts(seq, "ALL ");
3201 else
3202 seq_printf(seq, "%04x", ntohs(pt->type));
3203
3204 seq_printf(seq, " %-8s %pF\n",
3205 pt->dev ? pt->dev->name : "", pt->func);
3206 }
3207
3208 return 0;
3209 }
3210
3211 static const struct seq_operations ptype_seq_ops = {
3212 .start = ptype_seq_start,
3213 .next = ptype_seq_next,
3214 .stop = ptype_seq_stop,
3215 .show = ptype_seq_show,
3216 };
3217
3218 static int ptype_seq_open(struct inode *inode, struct file *file)
3219 {
3220 return seq_open_net(inode, file, &ptype_seq_ops,
3221 sizeof(struct seq_net_private));
3222 }
3223
3224 static const struct file_operations ptype_seq_fops = {
3225 .owner = THIS_MODULE,
3226 .open = ptype_seq_open,
3227 .read = seq_read,
3228 .llseek = seq_lseek,
3229 .release = seq_release_net,
3230 };
3231
3232
3233 static int __net_init dev_proc_net_init(struct net *net)
3234 {
3235 int rc = -ENOMEM;
3236
3237 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3238 goto out;
3239 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3240 goto out_dev;
3241 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3242 goto out_softnet;
3243
3244 if (wext_proc_init(net))
3245 goto out_ptype;
3246 rc = 0;
3247 out:
3248 return rc;
3249 out_ptype:
3250 proc_net_remove(net, "ptype");
3251 out_softnet:
3252 proc_net_remove(net, "softnet_stat");
3253 out_dev:
3254 proc_net_remove(net, "dev");
3255 goto out;
3256 }
3257
3258 static void __net_exit dev_proc_net_exit(struct net *net)
3259 {
3260 wext_proc_exit(net);
3261
3262 proc_net_remove(net, "ptype");
3263 proc_net_remove(net, "softnet_stat");
3264 proc_net_remove(net, "dev");
3265 }
3266
3267 static struct pernet_operations __net_initdata dev_proc_ops = {
3268 .init = dev_proc_net_init,
3269 .exit = dev_proc_net_exit,
3270 };
3271
3272 static int __init dev_proc_init(void)
3273 {
3274 return register_pernet_subsys(&dev_proc_ops);
3275 }
3276 #else
3277 #define dev_proc_init() 0
3278 #endif /* CONFIG_PROC_FS */
3279
3280
3281 /**
3282 * netdev_set_master - set up master/slave pair
3283 * @slave: slave device
3284 * @master: new master device
3285 *
3286 * Changes the master device of the slave. Pass %NULL to break the
3287 * bonding. The caller must hold the RTNL semaphore. On a failure
3288 * a negative errno code is returned. On success the reference counts
3289 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3290 * function returns zero.
3291 */
3292 int netdev_set_master(struct net_device *slave, struct net_device *master)
3293 {
3294 struct net_device *old = slave->master;
3295
3296 ASSERT_RTNL();
3297
3298 if (master) {
3299 if (old)
3300 return -EBUSY;
3301 dev_hold(master);
3302 }
3303
3304 slave->master = master;
3305
3306 synchronize_net();
3307
3308 if (old)
3309 dev_put(old);
3310
3311 if (master)
3312 slave->flags |= IFF_SLAVE;
3313 else
3314 slave->flags &= ~IFF_SLAVE;
3315
3316 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3317 return 0;
3318 }
3319
3320 static void dev_change_rx_flags(struct net_device *dev, int flags)
3321 {
3322 const struct net_device_ops *ops = dev->netdev_ops;
3323
3324 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3325 ops->ndo_change_rx_flags(dev, flags);
3326 }
3327
3328 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3329 {
3330 unsigned short old_flags = dev->flags;
3331 uid_t uid;
3332 gid_t gid;
3333
3334 ASSERT_RTNL();
3335
3336 dev->flags |= IFF_PROMISC;
3337 dev->promiscuity += inc;
3338 if (dev->promiscuity == 0) {
3339 /*
3340 * Avoid overflow.
3341 * If inc causes overflow, untouch promisc and return error.
3342 */
3343 if (inc < 0)
3344 dev->flags &= ~IFF_PROMISC;
3345 else {
3346 dev->promiscuity -= inc;
3347 printk(KERN_WARNING "%s: promiscuity touches roof, "
3348 "set promiscuity failed, promiscuity feature "
3349 "of device might be broken.\n", dev->name);
3350 return -EOVERFLOW;
3351 }
3352 }
3353 if (dev->flags != old_flags) {
3354 printk(KERN_INFO "device %s %s promiscuous mode\n",
3355 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3356 "left");
3357 if (audit_enabled) {
3358 current_uid_gid(&uid, &gid);
3359 audit_log(current->audit_context, GFP_ATOMIC,
3360 AUDIT_ANOM_PROMISCUOUS,
3361 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3362 dev->name, (dev->flags & IFF_PROMISC),
3363 (old_flags & IFF_PROMISC),
3364 audit_get_loginuid(current),
3365 uid, gid,
3366 audit_get_sessionid(current));
3367 }
3368
3369 dev_change_rx_flags(dev, IFF_PROMISC);
3370 }
3371 return 0;
3372 }
3373
3374 /**
3375 * dev_set_promiscuity - update promiscuity count on a device
3376 * @dev: device
3377 * @inc: modifier
3378 *
3379 * Add or remove promiscuity from a device. While the count in the device
3380 * remains above zero the interface remains promiscuous. Once it hits zero
3381 * the device reverts back to normal filtering operation. A negative inc
3382 * value is used to drop promiscuity on the device.
3383 * Return 0 if successful or a negative errno code on error.
3384 */
3385 int dev_set_promiscuity(struct net_device *dev, int inc)
3386 {
3387 unsigned short old_flags = dev->flags;
3388 int err;
3389
3390 err = __dev_set_promiscuity(dev, inc);
3391 if (err < 0)
3392 return err;
3393 if (dev->flags != old_flags)
3394 dev_set_rx_mode(dev);
3395 return err;
3396 }
3397
3398 /**
3399 * dev_set_allmulti - update allmulti count on a device
3400 * @dev: device
3401 * @inc: modifier
3402 *
3403 * Add or remove reception of all multicast frames to a device. While the
3404 * count in the device remains above zero the interface remains listening
3405 * to all interfaces. Once it hits zero the device reverts back to normal
3406 * filtering operation. A negative @inc value is used to drop the counter
3407 * when releasing a resource needing all multicasts.
3408 * Return 0 if successful or a negative errno code on error.
3409 */
3410
3411 int dev_set_allmulti(struct net_device *dev, int inc)
3412 {
3413 unsigned short old_flags = dev->flags;
3414
3415 ASSERT_RTNL();
3416
3417 dev->flags |= IFF_ALLMULTI;
3418 dev->allmulti += inc;
3419 if (dev->allmulti == 0) {
3420 /*
3421 * Avoid overflow.
3422 * If inc causes overflow, untouch allmulti and return error.
3423 */
3424 if (inc < 0)
3425 dev->flags &= ~IFF_ALLMULTI;
3426 else {
3427 dev->allmulti -= inc;
3428 printk(KERN_WARNING "%s: allmulti touches roof, "
3429 "set allmulti failed, allmulti feature of "
3430 "device might be broken.\n", dev->name);
3431 return -EOVERFLOW;
3432 }
3433 }
3434 if (dev->flags ^ old_flags) {
3435 dev_change_rx_flags(dev, IFF_ALLMULTI);
3436 dev_set_rx_mode(dev);
3437 }
3438 return 0;
3439 }
3440
3441 /*
3442 * Upload unicast and multicast address lists to device and
3443 * configure RX filtering. When the device doesn't support unicast
3444 * filtering it is put in promiscuous mode while unicast addresses
3445 * are present.
3446 */
3447 void __dev_set_rx_mode(struct net_device *dev)
3448 {
3449 const struct net_device_ops *ops = dev->netdev_ops;
3450
3451 /* dev_open will call this function so the list will stay sane. */
3452 if (!(dev->flags&IFF_UP))
3453 return;
3454
3455 if (!netif_device_present(dev))
3456 return;
3457
3458 if (ops->ndo_set_rx_mode)
3459 ops->ndo_set_rx_mode(dev);
3460 else {
3461 /* Unicast addresses changes may only happen under the rtnl,
3462 * therefore calling __dev_set_promiscuity here is safe.
3463 */
3464 if (dev->uc.count > 0 && !dev->uc_promisc) {
3465 __dev_set_promiscuity(dev, 1);
3466 dev->uc_promisc = 1;
3467 } else if (dev->uc.count == 0 && dev->uc_promisc) {
3468 __dev_set_promiscuity(dev, -1);
3469 dev->uc_promisc = 0;
3470 }
3471
3472 if (ops->ndo_set_multicast_list)
3473 ops->ndo_set_multicast_list(dev);
3474 }
3475 }
3476
3477 void dev_set_rx_mode(struct net_device *dev)
3478 {
3479 netif_addr_lock_bh(dev);
3480 __dev_set_rx_mode(dev);
3481 netif_addr_unlock_bh(dev);
3482 }
3483
3484 /* hw addresses list handling functions */
3485
3486 static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3487 int addr_len, unsigned char addr_type)
3488 {
3489 struct netdev_hw_addr *ha;
3490 int alloc_size;
3491
3492 if (addr_len > MAX_ADDR_LEN)
3493 return -EINVAL;
3494
3495 list_for_each_entry(ha, &list->list, list) {
3496 if (!memcmp(ha->addr, addr, addr_len) &&
3497 ha->type == addr_type) {
3498 ha->refcount++;
3499 return 0;
3500 }
3501 }
3502
3503
3504 alloc_size = sizeof(*ha);
3505 if (alloc_size < L1_CACHE_BYTES)
3506 alloc_size = L1_CACHE_BYTES;
3507 ha = kmalloc(alloc_size, GFP_ATOMIC);
3508 if (!ha)
3509 return -ENOMEM;
3510 memcpy(ha->addr, addr, addr_len);
3511 ha->type = addr_type;
3512 ha->refcount = 1;
3513 ha->synced = false;
3514 list_add_tail_rcu(&ha->list, &list->list);
3515 list->count++;
3516 return 0;
3517 }
3518
3519 static void ha_rcu_free(struct rcu_head *head)
3520 {
3521 struct netdev_hw_addr *ha;
3522
3523 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3524 kfree(ha);
3525 }
3526
3527 static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3528 int addr_len, unsigned char addr_type)
3529 {
3530 struct netdev_hw_addr *ha;
3531
3532 list_for_each_entry(ha, &list->list, list) {
3533 if (!memcmp(ha->addr, addr, addr_len) &&
3534 (ha->type == addr_type || !addr_type)) {
3535 if (--ha->refcount)
3536 return 0;
3537 list_del_rcu(&ha->list);
3538 call_rcu(&ha->rcu_head, ha_rcu_free);
3539 list->count--;
3540 return 0;
3541 }
3542 }
3543 return -ENOENT;
3544 }
3545
3546 static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
3547 struct netdev_hw_addr_list *from_list,
3548 int addr_len,
3549 unsigned char addr_type)
3550 {
3551 int err;
3552 struct netdev_hw_addr *ha, *ha2;
3553 unsigned char type;
3554
3555 list_for_each_entry(ha, &from_list->list, list) {
3556 type = addr_type ? addr_type : ha->type;
3557 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
3558 if (err)
3559 goto unroll;
3560 }
3561 return 0;
3562
3563 unroll:
3564 list_for_each_entry(ha2, &from_list->list, list) {
3565 if (ha2 == ha)
3566 break;
3567 type = addr_type ? addr_type : ha2->type;
3568 __hw_addr_del(to_list, ha2->addr, addr_len, type);
3569 }
3570 return err;
3571 }
3572
3573 static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
3574 struct netdev_hw_addr_list *from_list,
3575 int addr_len,
3576 unsigned char addr_type)
3577 {
3578 struct netdev_hw_addr *ha;
3579 unsigned char type;
3580
3581 list_for_each_entry(ha, &from_list->list, list) {
3582 type = addr_type ? addr_type : ha->type;
3583 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
3584 }
3585 }
3586
3587 static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3588 struct netdev_hw_addr_list *from_list,
3589 int addr_len)
3590 {
3591 int err = 0;
3592 struct netdev_hw_addr *ha, *tmp;
3593
3594 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3595 if (!ha->synced) {
3596 err = __hw_addr_add(to_list, ha->addr,
3597 addr_len, ha->type);
3598 if (err)
3599 break;
3600 ha->synced = true;
3601 ha->refcount++;
3602 } else if (ha->refcount == 1) {
3603 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
3604 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
3605 }
3606 }
3607 return err;
3608 }
3609
3610 static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3611 struct netdev_hw_addr_list *from_list,
3612 int addr_len)
3613 {
3614 struct netdev_hw_addr *ha, *tmp;
3615
3616 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3617 if (ha->synced) {
3618 __hw_addr_del(to_list, ha->addr,
3619 addr_len, ha->type);
3620 ha->synced = false;
3621 __hw_addr_del(from_list, ha->addr,
3622 addr_len, ha->type);
3623 }
3624 }
3625 }
3626
3627 static void __hw_addr_flush(struct netdev_hw_addr_list *list)
3628 {
3629 struct netdev_hw_addr *ha, *tmp;
3630
3631 list_for_each_entry_safe(ha, tmp, &list->list, list) {
3632 list_del_rcu(&ha->list);
3633 call_rcu(&ha->rcu_head, ha_rcu_free);
3634 }
3635 list->count = 0;
3636 }
3637
3638 static void __hw_addr_init(struct netdev_hw_addr_list *list)
3639 {
3640 INIT_LIST_HEAD(&list->list);
3641 list->count = 0;
3642 }
3643
3644 /* Device addresses handling functions */
3645
3646 static void dev_addr_flush(struct net_device *dev)
3647 {
3648 /* rtnl_mutex must be held here */
3649
3650 __hw_addr_flush(&dev->dev_addrs);
3651 dev->dev_addr = NULL;
3652 }
3653
3654 static int dev_addr_init(struct net_device *dev)
3655 {
3656 unsigned char addr[MAX_ADDR_LEN];
3657 struct netdev_hw_addr *ha;
3658 int err;
3659
3660 /* rtnl_mutex must be held here */
3661
3662 __hw_addr_init(&dev->dev_addrs);
3663 memset(addr, 0, sizeof(addr));
3664 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
3665 NETDEV_HW_ADDR_T_LAN);
3666 if (!err) {
3667 /*
3668 * Get the first (previously created) address from the list
3669 * and set dev_addr pointer to this location.
3670 */
3671 ha = list_first_entry(&dev->dev_addrs.list,
3672 struct netdev_hw_addr, list);
3673 dev->dev_addr = ha->addr;
3674 }
3675 return err;
3676 }
3677
3678 /**
3679 * dev_addr_add - Add a device address
3680 * @dev: device
3681 * @addr: address to add
3682 * @addr_type: address type
3683 *
3684 * Add a device address to the device or increase the reference count if
3685 * it already exists.
3686 *
3687 * The caller must hold the rtnl_mutex.
3688 */
3689 int dev_addr_add(struct net_device *dev, unsigned char *addr,
3690 unsigned char addr_type)
3691 {
3692 int err;
3693
3694 ASSERT_RTNL();
3695
3696 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
3697 if (!err)
3698 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3699 return err;
3700 }
3701 EXPORT_SYMBOL(dev_addr_add);
3702
3703 /**
3704 * dev_addr_del - Release a device address.
3705 * @dev: device
3706 * @addr: address to delete
3707 * @addr_type: address type
3708 *
3709 * Release reference to a device address and remove it from the device
3710 * if the reference count drops to zero.
3711 *
3712 * The caller must hold the rtnl_mutex.
3713 */
3714 int dev_addr_del(struct net_device *dev, unsigned char *addr,
3715 unsigned char addr_type)
3716 {
3717 int err;
3718 struct netdev_hw_addr *ha;
3719
3720 ASSERT_RTNL();
3721
3722 /*
3723 * We can not remove the first address from the list because
3724 * dev->dev_addr points to that.
3725 */
3726 ha = list_first_entry(&dev->dev_addrs.list,
3727 struct netdev_hw_addr, list);
3728 if (ha->addr == dev->dev_addr && ha->refcount == 1)
3729 return -ENOENT;
3730
3731 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
3732 addr_type);
3733 if (!err)
3734 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3735 return err;
3736 }
3737 EXPORT_SYMBOL(dev_addr_del);
3738
3739 /**
3740 * dev_addr_add_multiple - Add device addresses from another device
3741 * @to_dev: device to which addresses will be added
3742 * @from_dev: device from which addresses will be added
3743 * @addr_type: address type - 0 means type will be used from from_dev
3744 *
3745 * Add device addresses of the one device to another.
3746 **
3747 * The caller must hold the rtnl_mutex.
3748 */
3749 int dev_addr_add_multiple(struct net_device *to_dev,
3750 struct net_device *from_dev,
3751 unsigned char addr_type)
3752 {
3753 int err;
3754
3755 ASSERT_RTNL();
3756
3757 if (from_dev->addr_len != to_dev->addr_len)
3758 return -EINVAL;
3759 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3760 to_dev->addr_len, addr_type);
3761 if (!err)
3762 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3763 return err;
3764 }
3765 EXPORT_SYMBOL(dev_addr_add_multiple);
3766
3767 /**
3768 * dev_addr_del_multiple - Delete device addresses by another device
3769 * @to_dev: device where the addresses will be deleted
3770 * @from_dev: device by which addresses the addresses will be deleted
3771 * @addr_type: address type - 0 means type will used from from_dev
3772 *
3773 * Deletes addresses in to device by the list of addresses in from device.
3774 *
3775 * The caller must hold the rtnl_mutex.
3776 */
3777 int dev_addr_del_multiple(struct net_device *to_dev,
3778 struct net_device *from_dev,
3779 unsigned char addr_type)
3780 {
3781 ASSERT_RTNL();
3782
3783 if (from_dev->addr_len != to_dev->addr_len)
3784 return -EINVAL;
3785 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3786 to_dev->addr_len, addr_type);
3787 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3788 return 0;
3789 }
3790 EXPORT_SYMBOL(dev_addr_del_multiple);
3791
3792 /* multicast addresses handling functions */
3793
3794 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3795 void *addr, int alen, int glbl)
3796 {
3797 struct dev_addr_list *da;
3798
3799 for (; (da = *list) != NULL; list = &da->next) {
3800 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3801 alen == da->da_addrlen) {
3802 if (glbl) {
3803 int old_glbl = da->da_gusers;
3804 da->da_gusers = 0;
3805 if (old_glbl == 0)
3806 break;
3807 }
3808 if (--da->da_users)
3809 return 0;
3810
3811 *list = da->next;
3812 kfree(da);
3813 (*count)--;
3814 return 0;
3815 }
3816 }
3817 return -ENOENT;
3818 }
3819
3820 int __dev_addr_add(struct dev_addr_list **list, int *count,
3821 void *addr, int alen, int glbl)
3822 {
3823 struct dev_addr_list *da;
3824
3825 for (da = *list; da != NULL; da = da->next) {
3826 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3827 da->da_addrlen == alen) {
3828 if (glbl) {
3829 int old_glbl = da->da_gusers;
3830 da->da_gusers = 1;
3831 if (old_glbl)
3832 return 0;
3833 }
3834 da->da_users++;
3835 return 0;
3836 }
3837 }
3838
3839 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3840 if (da == NULL)
3841 return -ENOMEM;
3842 memcpy(da->da_addr, addr, alen);
3843 da->da_addrlen = alen;
3844 da->da_users = 1;
3845 da->da_gusers = glbl ? 1 : 0;
3846 da->next = *list;
3847 *list = da;
3848 (*count)++;
3849 return 0;
3850 }
3851
3852 /**
3853 * dev_unicast_delete - Release secondary unicast address.
3854 * @dev: device
3855 * @addr: address to delete
3856 *
3857 * Release reference to a secondary unicast address and remove it
3858 * from the device if the reference count drops to zero.
3859 *
3860 * The caller must hold the rtnl_mutex.
3861 */
3862 int dev_unicast_delete(struct net_device *dev, void *addr)
3863 {
3864 int err;
3865
3866 ASSERT_RTNL();
3867
3868 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
3869 NETDEV_HW_ADDR_T_UNICAST);
3870 if (!err)
3871 __dev_set_rx_mode(dev);
3872 return err;
3873 }
3874 EXPORT_SYMBOL(dev_unicast_delete);
3875
3876 /**
3877 * dev_unicast_add - add a secondary unicast address
3878 * @dev: device
3879 * @addr: address to add
3880 *
3881 * Add a secondary unicast address to the device or increase
3882 * the reference count if it already exists.
3883 *
3884 * The caller must hold the rtnl_mutex.
3885 */
3886 int dev_unicast_add(struct net_device *dev, void *addr)
3887 {
3888 int err;
3889
3890 ASSERT_RTNL();
3891
3892 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
3893 NETDEV_HW_ADDR_T_UNICAST);
3894 if (!err)
3895 __dev_set_rx_mode(dev);
3896 return err;
3897 }
3898 EXPORT_SYMBOL(dev_unicast_add);
3899
3900 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3901 struct dev_addr_list **from, int *from_count)
3902 {
3903 struct dev_addr_list *da, *next;
3904 int err = 0;
3905
3906 da = *from;
3907 while (da != NULL) {
3908 next = da->next;
3909 if (!da->da_synced) {
3910 err = __dev_addr_add(to, to_count,
3911 da->da_addr, da->da_addrlen, 0);
3912 if (err < 0)
3913 break;
3914 da->da_synced = 1;
3915 da->da_users++;
3916 } else if (da->da_users == 1) {
3917 __dev_addr_delete(to, to_count,
3918 da->da_addr, da->da_addrlen, 0);
3919 __dev_addr_delete(from, from_count,
3920 da->da_addr, da->da_addrlen, 0);
3921 }
3922 da = next;
3923 }
3924 return err;
3925 }
3926
3927 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3928 struct dev_addr_list **from, int *from_count)
3929 {
3930 struct dev_addr_list *da, *next;
3931
3932 da = *from;
3933 while (da != NULL) {
3934 next = da->next;
3935 if (da->da_synced) {
3936 __dev_addr_delete(to, to_count,
3937 da->da_addr, da->da_addrlen, 0);
3938 da->da_synced = 0;
3939 __dev_addr_delete(from, from_count,
3940 da->da_addr, da->da_addrlen, 0);
3941 }
3942 da = next;
3943 }
3944 }
3945
3946 /**
3947 * dev_unicast_sync - Synchronize device's unicast list to another device
3948 * @to: destination device
3949 * @from: source device
3950 *
3951 * Add newly added addresses to the destination device and release
3952 * addresses that have no users left.
3953 *
3954 * This function is intended to be called from the dev->set_rx_mode
3955 * function of layered software devices.
3956 */
3957 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3958 {
3959 int err = 0;
3960
3961 ASSERT_RTNL();
3962
3963 if (to->addr_len != from->addr_len)
3964 return -EINVAL;
3965
3966 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
3967 if (!err)
3968 __dev_set_rx_mode(to);
3969 return err;
3970 }
3971 EXPORT_SYMBOL(dev_unicast_sync);
3972
3973 /**
3974 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3975 * @to: destination device
3976 * @from: source device
3977 *
3978 * Remove all addresses that were added to the destination device by
3979 * dev_unicast_sync(). This function is intended to be called from the
3980 * dev->stop function of layered software devices.
3981 */
3982 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3983 {
3984 ASSERT_RTNL();
3985
3986 if (to->addr_len != from->addr_len)
3987 return;
3988
3989 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
3990 __dev_set_rx_mode(to);
3991 }
3992 EXPORT_SYMBOL(dev_unicast_unsync);
3993
3994 static void dev_unicast_flush(struct net_device *dev)
3995 {
3996 /* rtnl_mutex must be held here */
3997
3998 __hw_addr_flush(&dev->uc);
3999 }
4000
4001 static void dev_unicast_init(struct net_device *dev)
4002 {
4003 /* rtnl_mutex must be held here */
4004
4005 __hw_addr_init(&dev->uc);
4006 }
4007
4008
4009 static void __dev_addr_discard(struct dev_addr_list **list)
4010 {
4011 struct dev_addr_list *tmp;
4012
4013 while (*list != NULL) {
4014 tmp = *list;
4015 *list = tmp->next;
4016 if (tmp->da_users > tmp->da_gusers)
4017 printk("__dev_addr_discard: address leakage! "
4018 "da_users=%d\n", tmp->da_users);
4019 kfree(tmp);
4020 }
4021 }
4022
4023 static void dev_addr_discard(struct net_device *dev)
4024 {
4025 netif_addr_lock_bh(dev);
4026
4027 __dev_addr_discard(&dev->mc_list);
4028 dev->mc_count = 0;
4029
4030 netif_addr_unlock_bh(dev);
4031 }
4032
4033 /**
4034 * dev_get_flags - get flags reported to userspace
4035 * @dev: device
4036 *
4037 * Get the combination of flag bits exported through APIs to userspace.
4038 */
4039 unsigned dev_get_flags(const struct net_device *dev)
4040 {
4041 unsigned flags;
4042
4043 flags = (dev->flags & ~(IFF_PROMISC |
4044 IFF_ALLMULTI |
4045 IFF_RUNNING |
4046 IFF_LOWER_UP |
4047 IFF_DORMANT)) |
4048 (dev->gflags & (IFF_PROMISC |
4049 IFF_ALLMULTI));
4050
4051 if (netif_running(dev)) {
4052 if (netif_oper_up(dev))
4053 flags |= IFF_RUNNING;
4054 if (netif_carrier_ok(dev))
4055 flags |= IFF_LOWER_UP;
4056 if (netif_dormant(dev))
4057 flags |= IFF_DORMANT;
4058 }
4059
4060 return flags;
4061 }
4062
4063 /**
4064 * dev_change_flags - change device settings
4065 * @dev: device
4066 * @flags: device state flags
4067 *
4068 * Change settings on device based state flags. The flags are
4069 * in the userspace exported format.
4070 */
4071 int dev_change_flags(struct net_device *dev, unsigned flags)
4072 {
4073 int ret, changes;
4074 int old_flags = dev->flags;
4075
4076 ASSERT_RTNL();
4077
4078 /*
4079 * Set the flags on our device.
4080 */
4081
4082 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4083 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4084 IFF_AUTOMEDIA)) |
4085 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4086 IFF_ALLMULTI));
4087
4088 /*
4089 * Load in the correct multicast list now the flags have changed.
4090 */
4091
4092 if ((old_flags ^ flags) & IFF_MULTICAST)
4093 dev_change_rx_flags(dev, IFF_MULTICAST);
4094
4095 dev_set_rx_mode(dev);
4096
4097 /*
4098 * Have we downed the interface. We handle IFF_UP ourselves
4099 * according to user attempts to set it, rather than blindly
4100 * setting it.
4101 */
4102
4103 ret = 0;
4104 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4105 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
4106
4107 if (!ret)
4108 dev_set_rx_mode(dev);
4109 }
4110
4111 if (dev->flags & IFF_UP &&
4112 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
4113 IFF_VOLATILE)))
4114 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4115
4116 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4117 int inc = (flags & IFF_PROMISC) ? +1 : -1;
4118 dev->gflags ^= IFF_PROMISC;
4119 dev_set_promiscuity(dev, inc);
4120 }
4121
4122 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4123 is important. Some (broken) drivers set IFF_PROMISC, when
4124 IFF_ALLMULTI is requested not asking us and not reporting.
4125 */
4126 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4127 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
4128 dev->gflags ^= IFF_ALLMULTI;
4129 dev_set_allmulti(dev, inc);
4130 }
4131
4132 /* Exclude state transition flags, already notified */
4133 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
4134 if (changes)
4135 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4136
4137 return ret;
4138 }
4139
4140 /**
4141 * dev_set_mtu - Change maximum transfer unit
4142 * @dev: device
4143 * @new_mtu: new transfer unit
4144 *
4145 * Change the maximum transfer size of the network device.
4146 */
4147 int dev_set_mtu(struct net_device *dev, int new_mtu)
4148 {
4149 const struct net_device_ops *ops = dev->netdev_ops;
4150 int err;
4151
4152 if (new_mtu == dev->mtu)
4153 return 0;
4154
4155 /* MTU must be positive. */
4156 if (new_mtu < 0)
4157 return -EINVAL;
4158
4159 if (!netif_device_present(dev))
4160 return -ENODEV;
4161
4162 err = 0;
4163 if (ops->ndo_change_mtu)
4164 err = ops->ndo_change_mtu(dev, new_mtu);
4165 else
4166 dev->mtu = new_mtu;
4167
4168 if (!err && dev->flags & IFF_UP)
4169 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4170 return err;
4171 }
4172
4173 /**
4174 * dev_set_mac_address - Change Media Access Control Address
4175 * @dev: device
4176 * @sa: new address
4177 *
4178 * Change the hardware (MAC) address of the device
4179 */
4180 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4181 {
4182 const struct net_device_ops *ops = dev->netdev_ops;
4183 int err;
4184
4185 if (!ops->ndo_set_mac_address)
4186 return -EOPNOTSUPP;
4187 if (sa->sa_family != dev->type)
4188 return -EINVAL;
4189 if (!netif_device_present(dev))
4190 return -ENODEV;
4191 err = ops->ndo_set_mac_address(dev, sa);
4192 if (!err)
4193 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4194 return err;
4195 }
4196
4197 /*
4198 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
4199 */
4200 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4201 {
4202 int err;
4203 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4204
4205 if (!dev)
4206 return -ENODEV;
4207
4208 switch (cmd) {
4209 case SIOCGIFFLAGS: /* Get interface flags */
4210 ifr->ifr_flags = (short) dev_get_flags(dev);
4211 return 0;
4212
4213 case SIOCGIFMETRIC: /* Get the metric on the interface
4214 (currently unused) */
4215 ifr->ifr_metric = 0;
4216 return 0;
4217
4218 case SIOCGIFMTU: /* Get the MTU of a device */
4219 ifr->ifr_mtu = dev->mtu;
4220 return 0;
4221
4222 case SIOCGIFHWADDR:
4223 if (!dev->addr_len)
4224 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4225 else
4226 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4227 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4228 ifr->ifr_hwaddr.sa_family = dev->type;
4229 return 0;
4230
4231 case SIOCGIFSLAVE:
4232 err = -EINVAL;
4233 break;
4234
4235 case SIOCGIFMAP:
4236 ifr->ifr_map.mem_start = dev->mem_start;
4237 ifr->ifr_map.mem_end = dev->mem_end;
4238 ifr->ifr_map.base_addr = dev->base_addr;
4239 ifr->ifr_map.irq = dev->irq;
4240 ifr->ifr_map.dma = dev->dma;
4241 ifr->ifr_map.port = dev->if_port;
4242 return 0;
4243
4244 case SIOCGIFINDEX:
4245 ifr->ifr_ifindex = dev->ifindex;
4246 return 0;
4247
4248 case SIOCGIFTXQLEN:
4249 ifr->ifr_qlen = dev->tx_queue_len;
4250 return 0;
4251
4252 default:
4253 /* dev_ioctl() should ensure this case
4254 * is never reached
4255 */
4256 WARN_ON(1);
4257 err = -EINVAL;
4258 break;
4259
4260 }
4261 return err;
4262 }
4263
4264 /*
4265 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4266 */
4267 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4268 {
4269 int err;
4270 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4271 const struct net_device_ops *ops;
4272
4273 if (!dev)
4274 return -ENODEV;
4275
4276 ops = dev->netdev_ops;
4277
4278 switch (cmd) {
4279 case SIOCSIFFLAGS: /* Set interface flags */
4280 return dev_change_flags(dev, ifr->ifr_flags);
4281
4282 case SIOCSIFMETRIC: /* Set the metric on the interface
4283 (currently unused) */
4284 return -EOPNOTSUPP;
4285
4286 case SIOCSIFMTU: /* Set the MTU of a device */
4287 return dev_set_mtu(dev, ifr->ifr_mtu);
4288
4289 case SIOCSIFHWADDR:
4290 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4291
4292 case SIOCSIFHWBROADCAST:
4293 if (ifr->ifr_hwaddr.sa_family != dev->type)
4294 return -EINVAL;
4295 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4296 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4297 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4298 return 0;
4299
4300 case SIOCSIFMAP:
4301 if (ops->ndo_set_config) {
4302 if (!netif_device_present(dev))
4303 return -ENODEV;
4304 return ops->ndo_set_config(dev, &ifr->ifr_map);
4305 }
4306 return -EOPNOTSUPP;
4307
4308 case SIOCADDMULTI:
4309 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4310 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4311 return -EINVAL;
4312 if (!netif_device_present(dev))
4313 return -ENODEV;
4314 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4315 dev->addr_len, 1);
4316
4317 case SIOCDELMULTI:
4318 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4319 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4320 return -EINVAL;
4321 if (!netif_device_present(dev))
4322 return -ENODEV;
4323 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4324 dev->addr_len, 1);
4325
4326 case SIOCSIFTXQLEN:
4327 if (ifr->ifr_qlen < 0)
4328 return -EINVAL;
4329 dev->tx_queue_len = ifr->ifr_qlen;
4330 return 0;
4331
4332 case SIOCSIFNAME:
4333 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4334 return dev_change_name(dev, ifr->ifr_newname);
4335
4336 /*
4337 * Unknown or private ioctl
4338 */
4339
4340 default:
4341 if ((cmd >= SIOCDEVPRIVATE &&
4342 cmd <= SIOCDEVPRIVATE + 15) ||
4343 cmd == SIOCBONDENSLAVE ||
4344 cmd == SIOCBONDRELEASE ||
4345 cmd == SIOCBONDSETHWADDR ||
4346 cmd == SIOCBONDSLAVEINFOQUERY ||
4347 cmd == SIOCBONDINFOQUERY ||
4348 cmd == SIOCBONDCHANGEACTIVE ||
4349 cmd == SIOCGMIIPHY ||
4350 cmd == SIOCGMIIREG ||
4351 cmd == SIOCSMIIREG ||
4352 cmd == SIOCBRADDIF ||
4353 cmd == SIOCBRDELIF ||
4354 cmd == SIOCSHWTSTAMP ||
4355 cmd == SIOCWANDEV) {
4356 err = -EOPNOTSUPP;
4357 if (ops->ndo_do_ioctl) {
4358 if (netif_device_present(dev))
4359 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4360 else
4361 err = -ENODEV;
4362 }
4363 } else
4364 err = -EINVAL;
4365
4366 }
4367 return err;
4368 }
4369
4370 /*
4371 * This function handles all "interface"-type I/O control requests. The actual
4372 * 'doing' part of this is dev_ifsioc above.
4373 */
4374
4375 /**
4376 * dev_ioctl - network device ioctl
4377 * @net: the applicable net namespace
4378 * @cmd: command to issue
4379 * @arg: pointer to a struct ifreq in user space
4380 *
4381 * Issue ioctl functions to devices. This is normally called by the
4382 * user space syscall interfaces but can sometimes be useful for
4383 * other purposes. The return value is the return from the syscall if
4384 * positive or a negative errno code on error.
4385 */
4386
4387 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4388 {
4389 struct ifreq ifr;
4390 int ret;
4391 char *colon;
4392
4393 /* One special case: SIOCGIFCONF takes ifconf argument
4394 and requires shared lock, because it sleeps writing
4395 to user space.
4396 */
4397
4398 if (cmd == SIOCGIFCONF) {
4399 rtnl_lock();
4400 ret = dev_ifconf(net, (char __user *) arg);
4401 rtnl_unlock();
4402 return ret;
4403 }
4404 if (cmd == SIOCGIFNAME)
4405 return dev_ifname(net, (struct ifreq __user *)arg);
4406
4407 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4408 return -EFAULT;
4409
4410 ifr.ifr_name[IFNAMSIZ-1] = 0;
4411
4412 colon = strchr(ifr.ifr_name, ':');
4413 if (colon)
4414 *colon = 0;
4415
4416 /*
4417 * See which interface the caller is talking about.
4418 */
4419
4420 switch (cmd) {
4421 /*
4422 * These ioctl calls:
4423 * - can be done by all.
4424 * - atomic and do not require locking.
4425 * - return a value
4426 */
4427 case SIOCGIFFLAGS:
4428 case SIOCGIFMETRIC:
4429 case SIOCGIFMTU:
4430 case SIOCGIFHWADDR:
4431 case SIOCGIFSLAVE:
4432 case SIOCGIFMAP:
4433 case SIOCGIFINDEX:
4434 case SIOCGIFTXQLEN:
4435 dev_load(net, ifr.ifr_name);
4436 read_lock(&dev_base_lock);
4437 ret = dev_ifsioc_locked(net, &ifr, cmd);
4438 read_unlock(&dev_base_lock);
4439 if (!ret) {
4440 if (colon)
4441 *colon = ':';
4442 if (copy_to_user(arg, &ifr,
4443 sizeof(struct ifreq)))
4444 ret = -EFAULT;
4445 }
4446 return ret;
4447
4448 case SIOCETHTOOL:
4449 dev_load(net, ifr.ifr_name);
4450 rtnl_lock();
4451 ret = dev_ethtool(net, &ifr);
4452 rtnl_unlock();
4453 if (!ret) {
4454 if (colon)
4455 *colon = ':';
4456 if (copy_to_user(arg, &ifr,
4457 sizeof(struct ifreq)))
4458 ret = -EFAULT;
4459 }
4460 return ret;
4461
4462 /*
4463 * These ioctl calls:
4464 * - require superuser power.
4465 * - require strict serialization.
4466 * - return a value
4467 */
4468 case SIOCGMIIPHY:
4469 case SIOCGMIIREG:
4470 case SIOCSIFNAME:
4471 if (!capable(CAP_NET_ADMIN))
4472 return -EPERM;
4473 dev_load(net, ifr.ifr_name);
4474 rtnl_lock();
4475 ret = dev_ifsioc(net, &ifr, cmd);
4476 rtnl_unlock();
4477 if (!ret) {
4478 if (colon)
4479 *colon = ':';
4480 if (copy_to_user(arg, &ifr,
4481 sizeof(struct ifreq)))
4482 ret = -EFAULT;
4483 }
4484 return ret;
4485
4486 /*
4487 * These ioctl calls:
4488 * - require superuser power.
4489 * - require strict serialization.
4490 * - do not return a value
4491 */
4492 case SIOCSIFFLAGS:
4493 case SIOCSIFMETRIC:
4494 case SIOCSIFMTU:
4495 case SIOCSIFMAP:
4496 case SIOCSIFHWADDR:
4497 case SIOCSIFSLAVE:
4498 case SIOCADDMULTI:
4499 case SIOCDELMULTI:
4500 case SIOCSIFHWBROADCAST:
4501 case SIOCSIFTXQLEN:
4502 case SIOCSMIIREG:
4503 case SIOCBONDENSLAVE:
4504 case SIOCBONDRELEASE:
4505 case SIOCBONDSETHWADDR:
4506 case SIOCBONDCHANGEACTIVE:
4507 case SIOCBRADDIF:
4508 case SIOCBRDELIF:
4509 case SIOCSHWTSTAMP:
4510 if (!capable(CAP_NET_ADMIN))
4511 return -EPERM;
4512 /* fall through */
4513 case SIOCBONDSLAVEINFOQUERY:
4514 case SIOCBONDINFOQUERY:
4515 dev_load(net, ifr.ifr_name);
4516 rtnl_lock();
4517 ret = dev_ifsioc(net, &ifr, cmd);
4518 rtnl_unlock();
4519 return ret;
4520
4521 case SIOCGIFMEM:
4522 /* Get the per device memory space. We can add this but
4523 * currently do not support it */
4524 case SIOCSIFMEM:
4525 /* Set the per device memory buffer space.
4526 * Not applicable in our case */
4527 case SIOCSIFLINK:
4528 return -EINVAL;
4529
4530 /*
4531 * Unknown or private ioctl.
4532 */
4533 default:
4534 if (cmd == SIOCWANDEV ||
4535 (cmd >= SIOCDEVPRIVATE &&
4536 cmd <= SIOCDEVPRIVATE + 15)) {
4537 dev_load(net, ifr.ifr_name);
4538 rtnl_lock();
4539 ret = dev_ifsioc(net, &ifr, cmd);
4540 rtnl_unlock();
4541 if (!ret && copy_to_user(arg, &ifr,
4542 sizeof(struct ifreq)))
4543 ret = -EFAULT;
4544 return ret;
4545 }
4546 /* Take care of Wireless Extensions */
4547 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4548 return wext_handle_ioctl(net, &ifr, cmd, arg);
4549 return -EINVAL;
4550 }
4551 }
4552
4553
4554 /**
4555 * dev_new_index - allocate an ifindex
4556 * @net: the applicable net namespace
4557 *
4558 * Returns a suitable unique value for a new device interface
4559 * number. The caller must hold the rtnl semaphore or the
4560 * dev_base_lock to be sure it remains unique.
4561 */
4562 static int dev_new_index(struct net *net)
4563 {
4564 static int ifindex;
4565 for (;;) {
4566 if (++ifindex <= 0)
4567 ifindex = 1;
4568 if (!__dev_get_by_index(net, ifindex))
4569 return ifindex;
4570 }
4571 }
4572
4573 /* Delayed registration/unregisteration */
4574 static LIST_HEAD(net_todo_list);
4575
4576 static void net_set_todo(struct net_device *dev)
4577 {
4578 list_add_tail(&dev->todo_list, &net_todo_list);
4579 }
4580
4581 static void rollback_registered(struct net_device *dev)
4582 {
4583 BUG_ON(dev_boot_phase);
4584 ASSERT_RTNL();
4585
4586 /* Some devices call without registering for initialization unwind. */
4587 if (dev->reg_state == NETREG_UNINITIALIZED) {
4588 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4589 "was registered\n", dev->name, dev);
4590
4591 WARN_ON(1);
4592 return;
4593 }
4594
4595 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4596
4597 /* If device is running, close it first. */
4598 dev_close(dev);
4599
4600 /* And unlink it from device chain. */
4601 unlist_netdevice(dev);
4602
4603 dev->reg_state = NETREG_UNREGISTERING;
4604
4605 synchronize_net();
4606
4607 /* Shutdown queueing discipline. */
4608 dev_shutdown(dev);
4609
4610
4611 /* Notify protocols, that we are about to destroy
4612 this device. They should clean all the things.
4613 */
4614 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4615
4616 /*
4617 * Flush the unicast and multicast chains
4618 */
4619 dev_unicast_flush(dev);
4620 dev_addr_discard(dev);
4621
4622 if (dev->netdev_ops->ndo_uninit)
4623 dev->netdev_ops->ndo_uninit(dev);
4624
4625 /* Notifier chain MUST detach us from master device. */
4626 WARN_ON(dev->master);
4627
4628 /* Remove entries from kobject tree */
4629 netdev_unregister_kobject(dev);
4630
4631 synchronize_net();
4632
4633 dev_put(dev);
4634 }
4635
4636 static void __netdev_init_queue_locks_one(struct net_device *dev,
4637 struct netdev_queue *dev_queue,
4638 void *_unused)
4639 {
4640 spin_lock_init(&dev_queue->_xmit_lock);
4641 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4642 dev_queue->xmit_lock_owner = -1;
4643 }
4644
4645 static void netdev_init_queue_locks(struct net_device *dev)
4646 {
4647 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4648 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4649 }
4650
4651 unsigned long netdev_fix_features(unsigned long features, const char *name)
4652 {
4653 /* Fix illegal SG+CSUM combinations. */
4654 if ((features & NETIF_F_SG) &&
4655 !(features & NETIF_F_ALL_CSUM)) {
4656 if (name)
4657 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4658 "checksum feature.\n", name);
4659 features &= ~NETIF_F_SG;
4660 }
4661
4662 /* TSO requires that SG is present as well. */
4663 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4664 if (name)
4665 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4666 "SG feature.\n", name);
4667 features &= ~NETIF_F_TSO;
4668 }
4669
4670 if (features & NETIF_F_UFO) {
4671 if (!(features & NETIF_F_GEN_CSUM)) {
4672 if (name)
4673 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4674 "since no NETIF_F_HW_CSUM feature.\n",
4675 name);
4676 features &= ~NETIF_F_UFO;
4677 }
4678
4679 if (!(features & NETIF_F_SG)) {
4680 if (name)
4681 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4682 "since no NETIF_F_SG feature.\n", name);
4683 features &= ~NETIF_F_UFO;
4684 }
4685 }
4686
4687 return features;
4688 }
4689 EXPORT_SYMBOL(netdev_fix_features);
4690
4691 /**
4692 * register_netdevice - register a network device
4693 * @dev: device to register
4694 *
4695 * Take a completed network device structure and add it to the kernel
4696 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4697 * chain. 0 is returned on success. A negative errno code is returned
4698 * on a failure to set up the device, or if the name is a duplicate.
4699 *
4700 * Callers must hold the rtnl semaphore. You may want
4701 * register_netdev() instead of this.
4702 *
4703 * BUGS:
4704 * The locking appears insufficient to guarantee two parallel registers
4705 * will not get the same name.
4706 */
4707
4708 int register_netdevice(struct net_device *dev)
4709 {
4710 struct hlist_head *head;
4711 struct hlist_node *p;
4712 int ret;
4713 struct net *net = dev_net(dev);
4714
4715 BUG_ON(dev_boot_phase);
4716 ASSERT_RTNL();
4717
4718 might_sleep();
4719
4720 /* When net_device's are persistent, this will be fatal. */
4721 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4722 BUG_ON(!net);
4723
4724 spin_lock_init(&dev->addr_list_lock);
4725 netdev_set_addr_lockdep_class(dev);
4726 netdev_init_queue_locks(dev);
4727
4728 dev->iflink = -1;
4729
4730 /* Init, if this function is available */
4731 if (dev->netdev_ops->ndo_init) {
4732 ret = dev->netdev_ops->ndo_init(dev);
4733 if (ret) {
4734 if (ret > 0)
4735 ret = -EIO;
4736 goto out;
4737 }
4738 }
4739
4740 if (!dev_valid_name(dev->name)) {
4741 ret = -EINVAL;
4742 goto err_uninit;
4743 }
4744
4745 dev->ifindex = dev_new_index(net);
4746 if (dev->iflink == -1)
4747 dev->iflink = dev->ifindex;
4748
4749 /* Check for existence of name */
4750 head = dev_name_hash(net, dev->name);
4751 hlist_for_each(p, head) {
4752 struct net_device *d
4753 = hlist_entry(p, struct net_device, name_hlist);
4754 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4755 ret = -EEXIST;
4756 goto err_uninit;
4757 }
4758 }
4759
4760 /* Fix illegal checksum combinations */
4761 if ((dev->features & NETIF_F_HW_CSUM) &&
4762 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4763 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4764 dev->name);
4765 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4766 }
4767
4768 if ((dev->features & NETIF_F_NO_CSUM) &&
4769 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4770 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4771 dev->name);
4772 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4773 }
4774
4775 dev->features = netdev_fix_features(dev->features, dev->name);
4776
4777 /* Enable software GSO if SG is supported. */
4778 if (dev->features & NETIF_F_SG)
4779 dev->features |= NETIF_F_GSO;
4780
4781 netdev_initialize_kobject(dev);
4782 ret = netdev_register_kobject(dev);
4783 if (ret)
4784 goto err_uninit;
4785 dev->reg_state = NETREG_REGISTERED;
4786
4787 /*
4788 * Default initial state at registry is that the
4789 * device is present.
4790 */
4791
4792 set_bit(__LINK_STATE_PRESENT, &dev->state);
4793
4794 dev_init_scheduler(dev);
4795 dev_hold(dev);
4796 list_netdevice(dev);
4797
4798 /* Notify protocols, that a new device appeared. */
4799 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4800 ret = notifier_to_errno(ret);
4801 if (ret) {
4802 rollback_registered(dev);
4803 dev->reg_state = NETREG_UNREGISTERED;
4804 }
4805
4806 out:
4807 return ret;
4808
4809 err_uninit:
4810 if (dev->netdev_ops->ndo_uninit)
4811 dev->netdev_ops->ndo_uninit(dev);
4812 goto out;
4813 }
4814
4815 /**
4816 * init_dummy_netdev - init a dummy network device for NAPI
4817 * @dev: device to init
4818 *
4819 * This takes a network device structure and initialize the minimum
4820 * amount of fields so it can be used to schedule NAPI polls without
4821 * registering a full blown interface. This is to be used by drivers
4822 * that need to tie several hardware interfaces to a single NAPI
4823 * poll scheduler due to HW limitations.
4824 */
4825 int init_dummy_netdev(struct net_device *dev)
4826 {
4827 /* Clear everything. Note we don't initialize spinlocks
4828 * are they aren't supposed to be taken by any of the
4829 * NAPI code and this dummy netdev is supposed to be
4830 * only ever used for NAPI polls
4831 */
4832 memset(dev, 0, sizeof(struct net_device));
4833
4834 /* make sure we BUG if trying to hit standard
4835 * register/unregister code path
4836 */
4837 dev->reg_state = NETREG_DUMMY;
4838
4839 /* initialize the ref count */
4840 atomic_set(&dev->refcnt, 1);
4841
4842 /* NAPI wants this */
4843 INIT_LIST_HEAD(&dev->napi_list);
4844
4845 /* a dummy interface is started by default */
4846 set_bit(__LINK_STATE_PRESENT, &dev->state);
4847 set_bit(__LINK_STATE_START, &dev->state);
4848
4849 return 0;
4850 }
4851 EXPORT_SYMBOL_GPL(init_dummy_netdev);
4852
4853
4854 /**
4855 * register_netdev - register a network device
4856 * @dev: device to register
4857 *
4858 * Take a completed network device structure and add it to the kernel
4859 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4860 * chain. 0 is returned on success. A negative errno code is returned
4861 * on a failure to set up the device, or if the name is a duplicate.
4862 *
4863 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4864 * and expands the device name if you passed a format string to
4865 * alloc_netdev.
4866 */
4867 int register_netdev(struct net_device *dev)
4868 {
4869 int err;
4870
4871 rtnl_lock();
4872
4873 /*
4874 * If the name is a format string the caller wants us to do a
4875 * name allocation.
4876 */
4877 if (strchr(dev->name, '%')) {
4878 err = dev_alloc_name(dev, dev->name);
4879 if (err < 0)
4880 goto out;
4881 }
4882
4883 err = register_netdevice(dev);
4884 out:
4885 rtnl_unlock();
4886 return err;
4887 }
4888 EXPORT_SYMBOL(register_netdev);
4889
4890 /*
4891 * netdev_wait_allrefs - wait until all references are gone.
4892 *
4893 * This is called when unregistering network devices.
4894 *
4895 * Any protocol or device that holds a reference should register
4896 * for netdevice notification, and cleanup and put back the
4897 * reference if they receive an UNREGISTER event.
4898 * We can get stuck here if buggy protocols don't correctly
4899 * call dev_put.
4900 */
4901 static void netdev_wait_allrefs(struct net_device *dev)
4902 {
4903 unsigned long rebroadcast_time, warning_time;
4904
4905 rebroadcast_time = warning_time = jiffies;
4906 while (atomic_read(&dev->refcnt) != 0) {
4907 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4908 rtnl_lock();
4909
4910 /* Rebroadcast unregister notification */
4911 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4912
4913 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4914 &dev->state)) {
4915 /* We must not have linkwatch events
4916 * pending on unregister. If this
4917 * happens, we simply run the queue
4918 * unscheduled, resulting in a noop
4919 * for this device.
4920 */
4921 linkwatch_run_queue();
4922 }
4923
4924 __rtnl_unlock();
4925
4926 rebroadcast_time = jiffies;
4927 }
4928
4929 msleep(250);
4930
4931 if (time_after(jiffies, warning_time + 10 * HZ)) {
4932 printk(KERN_EMERG "unregister_netdevice: "
4933 "waiting for %s to become free. Usage "
4934 "count = %d\n",
4935 dev->name, atomic_read(&dev->refcnt));
4936 warning_time = jiffies;
4937 }
4938 }
4939 }
4940
4941 /* The sequence is:
4942 *
4943 * rtnl_lock();
4944 * ...
4945 * register_netdevice(x1);
4946 * register_netdevice(x2);
4947 * ...
4948 * unregister_netdevice(y1);
4949 * unregister_netdevice(y2);
4950 * ...
4951 * rtnl_unlock();
4952 * free_netdev(y1);
4953 * free_netdev(y2);
4954 *
4955 * We are invoked by rtnl_unlock().
4956 * This allows us to deal with problems:
4957 * 1) We can delete sysfs objects which invoke hotplug
4958 * without deadlocking with linkwatch via keventd.
4959 * 2) Since we run with the RTNL semaphore not held, we can sleep
4960 * safely in order to wait for the netdev refcnt to drop to zero.
4961 *
4962 * We must not return until all unregister events added during
4963 * the interval the lock was held have been completed.
4964 */
4965 void netdev_run_todo(void)
4966 {
4967 struct list_head list;
4968
4969 /* Snapshot list, allow later requests */
4970 list_replace_init(&net_todo_list, &list);
4971
4972 __rtnl_unlock();
4973
4974 while (!list_empty(&list)) {
4975 struct net_device *dev
4976 = list_entry(list.next, struct net_device, todo_list);
4977 list_del(&dev->todo_list);
4978
4979 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4980 printk(KERN_ERR "network todo '%s' but state %d\n",
4981 dev->name, dev->reg_state);
4982 dump_stack();
4983 continue;
4984 }
4985
4986 dev->reg_state = NETREG_UNREGISTERED;
4987
4988 on_each_cpu(flush_backlog, dev, 1);
4989
4990 netdev_wait_allrefs(dev);
4991
4992 /* paranoia */
4993 BUG_ON(atomic_read(&dev->refcnt));
4994 WARN_ON(dev->ip_ptr);
4995 WARN_ON(dev->ip6_ptr);
4996 WARN_ON(dev->dn_ptr);
4997
4998 if (dev->destructor)
4999 dev->destructor(dev);
5000
5001 /* Free network device */
5002 kobject_put(&dev->dev.kobj);
5003 }
5004 }
5005
5006 /**
5007 * dev_get_stats - get network device statistics
5008 * @dev: device to get statistics from
5009 *
5010 * Get network statistics from device. The device driver may provide
5011 * its own method by setting dev->netdev_ops->get_stats; otherwise
5012 * the internal statistics structure is used.
5013 */
5014 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5015 {
5016 const struct net_device_ops *ops = dev->netdev_ops;
5017
5018 if (ops->ndo_get_stats)
5019 return ops->ndo_get_stats(dev);
5020 else {
5021 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5022 struct net_device_stats *stats = &dev->stats;
5023 unsigned int i;
5024 struct netdev_queue *txq;
5025
5026 for (i = 0; i < dev->num_tx_queues; i++) {
5027 txq = netdev_get_tx_queue(dev, i);
5028 tx_bytes += txq->tx_bytes;
5029 tx_packets += txq->tx_packets;
5030 tx_dropped += txq->tx_dropped;
5031 }
5032 if (tx_bytes || tx_packets || tx_dropped) {
5033 stats->tx_bytes = tx_bytes;
5034 stats->tx_packets = tx_packets;
5035 stats->tx_dropped = tx_dropped;
5036 }
5037 return stats;
5038 }
5039 }
5040 EXPORT_SYMBOL(dev_get_stats);
5041
5042 static void netdev_init_one_queue(struct net_device *dev,
5043 struct netdev_queue *queue,
5044 void *_unused)
5045 {
5046 queue->dev = dev;
5047 }
5048
5049 static void netdev_init_queues(struct net_device *dev)
5050 {
5051 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5052 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5053 spin_lock_init(&dev->tx_global_lock);
5054 }
5055
5056 /**
5057 * alloc_netdev_mq - allocate network device
5058 * @sizeof_priv: size of private data to allocate space for
5059 * @name: device name format string
5060 * @setup: callback to initialize device
5061 * @queue_count: the number of subqueues to allocate
5062 *
5063 * Allocates a struct net_device with private data area for driver use
5064 * and performs basic initialization. Also allocates subquue structs
5065 * for each queue on the device at the end of the netdevice.
5066 */
5067 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5068 void (*setup)(struct net_device *), unsigned int queue_count)
5069 {
5070 struct netdev_queue *tx;
5071 struct net_device *dev;
5072 size_t alloc_size;
5073 struct net_device *p;
5074
5075 BUG_ON(strlen(name) >= sizeof(dev->name));
5076
5077 alloc_size = sizeof(struct net_device);
5078 if (sizeof_priv) {
5079 /* ensure 32-byte alignment of private area */
5080 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5081 alloc_size += sizeof_priv;
5082 }
5083 /* ensure 32-byte alignment of whole construct */
5084 alloc_size += NETDEV_ALIGN - 1;
5085
5086 p = kzalloc(alloc_size, GFP_KERNEL);
5087 if (!p) {
5088 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5089 return NULL;
5090 }
5091
5092 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5093 if (!tx) {
5094 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5095 "tx qdiscs.\n");
5096 goto free_p;
5097 }
5098
5099 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5100 dev->padded = (char *)dev - (char *)p;
5101
5102 if (dev_addr_init(dev))
5103 goto free_tx;
5104
5105 dev_unicast_init(dev);
5106
5107 dev_net_set(dev, &init_net);
5108
5109 dev->_tx = tx;
5110 dev->num_tx_queues = queue_count;
5111 dev->real_num_tx_queues = queue_count;
5112
5113 dev->gso_max_size = GSO_MAX_SIZE;
5114
5115 netdev_init_queues(dev);
5116
5117 INIT_LIST_HEAD(&dev->napi_list);
5118 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5119 setup(dev);
5120 strcpy(dev->name, name);
5121 return dev;
5122
5123 free_tx:
5124 kfree(tx);
5125
5126 free_p:
5127 kfree(p);
5128 return NULL;
5129 }
5130 EXPORT_SYMBOL(alloc_netdev_mq);
5131
5132 /**
5133 * free_netdev - free network device
5134 * @dev: device
5135 *
5136 * This function does the last stage of destroying an allocated device
5137 * interface. The reference to the device object is released.
5138 * If this is the last reference then it will be freed.
5139 */
5140 void free_netdev(struct net_device *dev)
5141 {
5142 struct napi_struct *p, *n;
5143
5144 release_net(dev_net(dev));
5145
5146 kfree(dev->_tx);
5147
5148 /* Flush device addresses */
5149 dev_addr_flush(dev);
5150
5151 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5152 netif_napi_del(p);
5153
5154 /* Compatibility with error handling in drivers */
5155 if (dev->reg_state == NETREG_UNINITIALIZED) {
5156 kfree((char *)dev - dev->padded);
5157 return;
5158 }
5159
5160 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5161 dev->reg_state = NETREG_RELEASED;
5162
5163 /* will free via device release */
5164 put_device(&dev->dev);
5165 }
5166
5167 /**
5168 * synchronize_net - Synchronize with packet receive processing
5169 *
5170 * Wait for packets currently being received to be done.
5171 * Does not block later packets from starting.
5172 */
5173 void synchronize_net(void)
5174 {
5175 might_sleep();
5176 synchronize_rcu();
5177 }
5178
5179 /**
5180 * unregister_netdevice - remove device from the kernel
5181 * @dev: device
5182 *
5183 * This function shuts down a device interface and removes it
5184 * from the kernel tables.
5185 *
5186 * Callers must hold the rtnl semaphore. You may want
5187 * unregister_netdev() instead of this.
5188 */
5189
5190 void unregister_netdevice(struct net_device *dev)
5191 {
5192 ASSERT_RTNL();
5193
5194 rollback_registered(dev);
5195 /* Finish processing unregister after unlock */
5196 net_set_todo(dev);
5197 }
5198
5199 /**
5200 * unregister_netdev - remove device from the kernel
5201 * @dev: device
5202 *
5203 * This function shuts down a device interface and removes it
5204 * from the kernel tables.
5205 *
5206 * This is just a wrapper for unregister_netdevice that takes
5207 * the rtnl semaphore. In general you want to use this and not
5208 * unregister_netdevice.
5209 */
5210 void unregister_netdev(struct net_device *dev)
5211 {
5212 rtnl_lock();
5213 unregister_netdevice(dev);
5214 rtnl_unlock();
5215 }
5216
5217 EXPORT_SYMBOL(unregister_netdev);
5218
5219 /**
5220 * dev_change_net_namespace - move device to different nethost namespace
5221 * @dev: device
5222 * @net: network namespace
5223 * @pat: If not NULL name pattern to try if the current device name
5224 * is already taken in the destination network namespace.
5225 *
5226 * This function shuts down a device interface and moves it
5227 * to a new network namespace. On success 0 is returned, on
5228 * a failure a netagive errno code is returned.
5229 *
5230 * Callers must hold the rtnl semaphore.
5231 */
5232
5233 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5234 {
5235 char buf[IFNAMSIZ];
5236 const char *destname;
5237 int err;
5238
5239 ASSERT_RTNL();
5240
5241 /* Don't allow namespace local devices to be moved. */
5242 err = -EINVAL;
5243 if (dev->features & NETIF_F_NETNS_LOCAL)
5244 goto out;
5245
5246 #ifdef CONFIG_SYSFS
5247 /* Don't allow real devices to be moved when sysfs
5248 * is enabled.
5249 */
5250 err = -EINVAL;
5251 if (dev->dev.parent)
5252 goto out;
5253 #endif
5254
5255 /* Ensure the device has been registrered */
5256 err = -EINVAL;
5257 if (dev->reg_state != NETREG_REGISTERED)
5258 goto out;
5259
5260 /* Get out if there is nothing todo */
5261 err = 0;
5262 if (net_eq(dev_net(dev), net))
5263 goto out;
5264
5265 /* Pick the destination device name, and ensure
5266 * we can use it in the destination network namespace.
5267 */
5268 err = -EEXIST;
5269 destname = dev->name;
5270 if (__dev_get_by_name(net, destname)) {
5271 /* We get here if we can't use the current device name */
5272 if (!pat)
5273 goto out;
5274 if (!dev_valid_name(pat))
5275 goto out;
5276 if (strchr(pat, '%')) {
5277 if (__dev_alloc_name(net, pat, buf) < 0)
5278 goto out;
5279 destname = buf;
5280 } else
5281 destname = pat;
5282 if (__dev_get_by_name(net, destname))
5283 goto out;
5284 }
5285
5286 /*
5287 * And now a mini version of register_netdevice unregister_netdevice.
5288 */
5289
5290 /* If device is running close it first. */
5291 dev_close(dev);
5292
5293 /* And unlink it from device chain */
5294 err = -ENODEV;
5295 unlist_netdevice(dev);
5296
5297 synchronize_net();
5298
5299 /* Shutdown queueing discipline. */
5300 dev_shutdown(dev);
5301
5302 /* Notify protocols, that we are about to destroy
5303 this device. They should clean all the things.
5304 */
5305 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5306
5307 /*
5308 * Flush the unicast and multicast chains
5309 */
5310 dev_unicast_flush(dev);
5311 dev_addr_discard(dev);
5312
5313 netdev_unregister_kobject(dev);
5314
5315 /* Actually switch the network namespace */
5316 dev_net_set(dev, net);
5317
5318 /* Assign the new device name */
5319 if (destname != dev->name)
5320 strcpy(dev->name, destname);
5321
5322 /* If there is an ifindex conflict assign a new one */
5323 if (__dev_get_by_index(net, dev->ifindex)) {
5324 int iflink = (dev->iflink == dev->ifindex);
5325 dev->ifindex = dev_new_index(net);
5326 if (iflink)
5327 dev->iflink = dev->ifindex;
5328 }
5329
5330 /* Fixup kobjects */
5331 err = netdev_register_kobject(dev);
5332 WARN_ON(err);
5333
5334 /* Add the device back in the hashes */
5335 list_netdevice(dev);
5336
5337 /* Notify protocols, that a new device appeared. */
5338 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5339
5340 synchronize_net();
5341 err = 0;
5342 out:
5343 return err;
5344 }
5345
5346 static int dev_cpu_callback(struct notifier_block *nfb,
5347 unsigned long action,
5348 void *ocpu)
5349 {
5350 struct sk_buff **list_skb;
5351 struct Qdisc **list_net;
5352 struct sk_buff *skb;
5353 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5354 struct softnet_data *sd, *oldsd;
5355
5356 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5357 return NOTIFY_OK;
5358
5359 local_irq_disable();
5360 cpu = smp_processor_id();
5361 sd = &per_cpu(softnet_data, cpu);
5362 oldsd = &per_cpu(softnet_data, oldcpu);
5363
5364 /* Find end of our completion_queue. */
5365 list_skb = &sd->completion_queue;
5366 while (*list_skb)
5367 list_skb = &(*list_skb)->next;
5368 /* Append completion queue from offline CPU. */
5369 *list_skb = oldsd->completion_queue;
5370 oldsd->completion_queue = NULL;
5371
5372 /* Find end of our output_queue. */
5373 list_net = &sd->output_queue;
5374 while (*list_net)
5375 list_net = &(*list_net)->next_sched;
5376 /* Append output queue from offline CPU. */
5377 *list_net = oldsd->output_queue;
5378 oldsd->output_queue = NULL;
5379
5380 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5381 local_irq_enable();
5382
5383 /* Process offline CPU's input_pkt_queue */
5384 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5385 netif_rx(skb);
5386
5387 return NOTIFY_OK;
5388 }
5389
5390
5391 /**
5392 * netdev_increment_features - increment feature set by one
5393 * @all: current feature set
5394 * @one: new feature set
5395 * @mask: mask feature set
5396 *
5397 * Computes a new feature set after adding a device with feature set
5398 * @one to the master device with current feature set @all. Will not
5399 * enable anything that is off in @mask. Returns the new feature set.
5400 */
5401 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5402 unsigned long mask)
5403 {
5404 /* If device needs checksumming, downgrade to it. */
5405 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5406 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5407 else if (mask & NETIF_F_ALL_CSUM) {
5408 /* If one device supports v4/v6 checksumming, set for all. */
5409 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5410 !(all & NETIF_F_GEN_CSUM)) {
5411 all &= ~NETIF_F_ALL_CSUM;
5412 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5413 }
5414
5415 /* If one device supports hw checksumming, set for all. */
5416 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5417 all &= ~NETIF_F_ALL_CSUM;
5418 all |= NETIF_F_HW_CSUM;
5419 }
5420 }
5421
5422 one |= NETIF_F_ALL_CSUM;
5423
5424 one |= all & NETIF_F_ONE_FOR_ALL;
5425 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
5426 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5427
5428 return all;
5429 }
5430 EXPORT_SYMBOL(netdev_increment_features);
5431
5432 static struct hlist_head *netdev_create_hash(void)
5433 {
5434 int i;
5435 struct hlist_head *hash;
5436
5437 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5438 if (hash != NULL)
5439 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5440 INIT_HLIST_HEAD(&hash[i]);
5441
5442 return hash;
5443 }
5444
5445 /* Initialize per network namespace state */
5446 static int __net_init netdev_init(struct net *net)
5447 {
5448 INIT_LIST_HEAD(&net->dev_base_head);
5449
5450 net->dev_name_head = netdev_create_hash();
5451 if (net->dev_name_head == NULL)
5452 goto err_name;
5453
5454 net->dev_index_head = netdev_create_hash();
5455 if (net->dev_index_head == NULL)
5456 goto err_idx;
5457
5458 return 0;
5459
5460 err_idx:
5461 kfree(net->dev_name_head);
5462 err_name:
5463 return -ENOMEM;
5464 }
5465
5466 /**
5467 * netdev_drivername - network driver for the device
5468 * @dev: network device
5469 * @buffer: buffer for resulting name
5470 * @len: size of buffer
5471 *
5472 * Determine network driver for device.
5473 */
5474 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5475 {
5476 const struct device_driver *driver;
5477 const struct device *parent;
5478
5479 if (len <= 0 || !buffer)
5480 return buffer;
5481 buffer[0] = 0;
5482
5483 parent = dev->dev.parent;
5484
5485 if (!parent)
5486 return buffer;
5487
5488 driver = parent->driver;
5489 if (driver && driver->name)
5490 strlcpy(buffer, driver->name, len);
5491 return buffer;
5492 }
5493
5494 static void __net_exit netdev_exit(struct net *net)
5495 {
5496 kfree(net->dev_name_head);
5497 kfree(net->dev_index_head);
5498 }
5499
5500 static struct pernet_operations __net_initdata netdev_net_ops = {
5501 .init = netdev_init,
5502 .exit = netdev_exit,
5503 };
5504
5505 static void __net_exit default_device_exit(struct net *net)
5506 {
5507 struct net_device *dev;
5508 /*
5509 * Push all migratable of the network devices back to the
5510 * initial network namespace
5511 */
5512 rtnl_lock();
5513 restart:
5514 for_each_netdev(net, dev) {
5515 int err;
5516 char fb_name[IFNAMSIZ];
5517
5518 /* Ignore unmoveable devices (i.e. loopback) */
5519 if (dev->features & NETIF_F_NETNS_LOCAL)
5520 continue;
5521
5522 /* Delete virtual devices */
5523 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5524 dev->rtnl_link_ops->dellink(dev);
5525 goto restart;
5526 }
5527
5528 /* Push remaing network devices to init_net */
5529 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5530 err = dev_change_net_namespace(dev, &init_net, fb_name);
5531 if (err) {
5532 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5533 __func__, dev->name, err);
5534 BUG();
5535 }
5536 goto restart;
5537 }
5538 rtnl_unlock();
5539 }
5540
5541 static struct pernet_operations __net_initdata default_device_ops = {
5542 .exit = default_device_exit,
5543 };
5544
5545 /*
5546 * Initialize the DEV module. At boot time this walks the device list and
5547 * unhooks any devices that fail to initialise (normally hardware not
5548 * present) and leaves us with a valid list of present and active devices.
5549 *
5550 */
5551
5552 /*
5553 * This is called single threaded during boot, so no need
5554 * to take the rtnl semaphore.
5555 */
5556 static int __init net_dev_init(void)
5557 {
5558 int i, rc = -ENOMEM;
5559
5560 BUG_ON(!dev_boot_phase);
5561
5562 if (dev_proc_init())
5563 goto out;
5564
5565 if (netdev_kobject_init())
5566 goto out;
5567
5568 INIT_LIST_HEAD(&ptype_all);
5569 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5570 INIT_LIST_HEAD(&ptype_base[i]);
5571
5572 if (register_pernet_subsys(&netdev_net_ops))
5573 goto out;
5574
5575 /*
5576 * Initialise the packet receive queues.
5577 */
5578
5579 for_each_possible_cpu(i) {
5580 struct softnet_data *queue;
5581
5582 queue = &per_cpu(softnet_data, i);
5583 skb_queue_head_init(&queue->input_pkt_queue);
5584 queue->completion_queue = NULL;
5585 INIT_LIST_HEAD(&queue->poll_list);
5586
5587 queue->backlog.poll = process_backlog;
5588 queue->backlog.weight = weight_p;
5589 queue->backlog.gro_list = NULL;
5590 queue->backlog.gro_count = 0;
5591 }
5592
5593 dev_boot_phase = 0;
5594
5595 /* The loopback device is special if any other network devices
5596 * is present in a network namespace the loopback device must
5597 * be present. Since we now dynamically allocate and free the
5598 * loopback device ensure this invariant is maintained by
5599 * keeping the loopback device as the first device on the
5600 * list of network devices. Ensuring the loopback devices
5601 * is the first device that appears and the last network device
5602 * that disappears.
5603 */
5604 if (register_pernet_device(&loopback_net_ops))
5605 goto out;
5606
5607 if (register_pernet_device(&default_device_ops))
5608 goto out;
5609
5610 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5611 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5612
5613 hotcpu_notifier(dev_cpu_callback, 0);
5614 dst_init();
5615 dev_mcast_init();
5616 rc = 0;
5617 out:
5618 return rc;
5619 }
5620
5621 subsys_initcall(net_dev_init);
5622
5623 static int __init initialize_hashrnd(void)
5624 {
5625 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5626 return 0;
5627 }
5628
5629 late_initcall_sync(initialize_hashrnd);
5630
5631 EXPORT_SYMBOL(__dev_get_by_index);
5632 EXPORT_SYMBOL(__dev_get_by_name);
5633 EXPORT_SYMBOL(__dev_remove_pack);
5634 EXPORT_SYMBOL(dev_valid_name);
5635 EXPORT_SYMBOL(dev_add_pack);
5636 EXPORT_SYMBOL(dev_alloc_name);
5637 EXPORT_SYMBOL(dev_close);
5638 EXPORT_SYMBOL(dev_get_by_flags);
5639 EXPORT_SYMBOL(dev_get_by_index);
5640 EXPORT_SYMBOL(dev_get_by_name);
5641 EXPORT_SYMBOL(dev_open);
5642 EXPORT_SYMBOL(dev_queue_xmit);
5643 EXPORT_SYMBOL(dev_remove_pack);
5644 EXPORT_SYMBOL(dev_set_allmulti);
5645 EXPORT_SYMBOL(dev_set_promiscuity);
5646 EXPORT_SYMBOL(dev_change_flags);
5647 EXPORT_SYMBOL(dev_set_mtu);
5648 EXPORT_SYMBOL(dev_set_mac_address);
5649 EXPORT_SYMBOL(free_netdev);
5650 EXPORT_SYMBOL(netdev_boot_setup_check);
5651 EXPORT_SYMBOL(netdev_set_master);
5652 EXPORT_SYMBOL(netdev_state_change);
5653 EXPORT_SYMBOL(netif_receive_skb);
5654 EXPORT_SYMBOL(netif_rx);
5655 EXPORT_SYMBOL(register_gifconf);
5656 EXPORT_SYMBOL(register_netdevice);
5657 EXPORT_SYMBOL(register_netdevice_notifier);
5658 EXPORT_SYMBOL(skb_checksum_help);
5659 EXPORT_SYMBOL(synchronize_net);
5660 EXPORT_SYMBOL(unregister_netdevice);
5661 EXPORT_SYMBOL(unregister_netdevice_notifier);
5662 EXPORT_SYMBOL(net_enable_timestamp);
5663 EXPORT_SYMBOL(net_disable_timestamp);
5664 EXPORT_SYMBOL(dev_get_flags);
5665
5666 EXPORT_SYMBOL(dev_load);
5667
5668 EXPORT_PER_CPU_SYMBOL(softnet_data);