]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/core/dev.c
netns: Fix arbitrary net_device-s corruptions on net_ns stop.
[mirror_ubuntu-jammy-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/notifier.h>
94 #include <linux/skbuff.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <linux/rtnetlink.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/stat.h>
101 #include <linux/if_bridge.h>
102 #include <linux/if_macvlan.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/kmod.h>
109 #include <linux/module.h>
110 #include <linux/kallsyms.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122
123 #include "net-sysfs.h"
124
125 /*
126 * The list of packet types we will receive (as opposed to discard)
127 * and the routines to invoke.
128 *
129 * Why 16. Because with 16 the only overlap we get on a hash of the
130 * low nibble of the protocol value is RARP/SNAP/X.25.
131 *
132 * NOTE: That is no longer true with the addition of VLAN tags. Not
133 * sure which should go first, but I bet it won't make much
134 * difference if we are running VLANs. The good news is that
135 * this protocol won't be in the list unless compiled in, so
136 * the average user (w/out VLANs) will not be adversely affected.
137 * --BLG
138 *
139 * 0800 IP
140 * 8100 802.1Q VLAN
141 * 0001 802.3
142 * 0002 AX.25
143 * 0004 802.2
144 * 8035 RARP
145 * 0005 SNAP
146 * 0805 X.25
147 * 0806 ARP
148 * 8137 IPX
149 * 0009 Localtalk
150 * 86DD IPv6
151 */
152
153 #define PTYPE_HASH_SIZE (16)
154 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
155
156 static DEFINE_SPINLOCK(ptype_lock);
157 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
158 static struct list_head ptype_all __read_mostly; /* Taps */
159
160 #ifdef CONFIG_NET_DMA
161 struct net_dma {
162 struct dma_client client;
163 spinlock_t lock;
164 cpumask_t channel_mask;
165 struct dma_chan **channels;
166 };
167
168 static enum dma_state_client
169 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
170 enum dma_state state);
171
172 static struct net_dma net_dma = {
173 .client = {
174 .event_callback = netdev_dma_event,
175 },
176 };
177 #endif
178
179 /*
180 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
181 * semaphore.
182 *
183 * Pure readers hold dev_base_lock for reading.
184 *
185 * Writers must hold the rtnl semaphore while they loop through the
186 * dev_base_head list, and hold dev_base_lock for writing when they do the
187 * actual updates. This allows pure readers to access the list even
188 * while a writer is preparing to update it.
189 *
190 * To put it another way, dev_base_lock is held for writing only to
191 * protect against pure readers; the rtnl semaphore provides the
192 * protection against other writers.
193 *
194 * See, for example usages, register_netdevice() and
195 * unregister_netdevice(), which must be called with the rtnl
196 * semaphore held.
197 */
198 DEFINE_RWLOCK(dev_base_lock);
199
200 EXPORT_SYMBOL(dev_base_lock);
201
202 #define NETDEV_HASHBITS 8
203 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
204
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
208 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
209 }
210
211 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
212 {
213 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
214 }
215
216 /* Device list insertion */
217 static int list_netdevice(struct net_device *dev)
218 {
219 struct net *net = dev_net(dev);
220
221 ASSERT_RTNL();
222
223 write_lock_bh(&dev_base_lock);
224 list_add_tail(&dev->dev_list, &net->dev_base_head);
225 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
226 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
227 write_unlock_bh(&dev_base_lock);
228 return 0;
229 }
230
231 /* Device list removal */
232 static void unlist_netdevice(struct net_device *dev)
233 {
234 ASSERT_RTNL();
235
236 /* Unlink dev from the device chain */
237 write_lock_bh(&dev_base_lock);
238 list_del(&dev->dev_list);
239 hlist_del(&dev->name_hlist);
240 hlist_del(&dev->index_hlist);
241 write_unlock_bh(&dev_base_lock);
242 }
243
244 /*
245 * Our notifier list
246 */
247
248 static RAW_NOTIFIER_HEAD(netdev_chain);
249
250 /*
251 * Device drivers call our routines to queue packets here. We empty the
252 * queue in the local softnet handler.
253 */
254
255 DEFINE_PER_CPU(struct softnet_data, softnet_data);
256
257 #ifdef CONFIG_DEBUG_LOCK_ALLOC
258 /*
259 * register_netdevice() inits dev->_xmit_lock and sets lockdep class
260 * according to dev->type
261 */
262 static const unsigned short netdev_lock_type[] =
263 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
264 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
265 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
266 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
267 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
268 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
269 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
270 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
271 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
272 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
273 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
274 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
275 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
276 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
277 ARPHRD_NONE};
278
279 static const char *netdev_lock_name[] =
280 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
281 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
282 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
283 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
284 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
285 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
286 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
287 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
288 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
289 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
290 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
291 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
292 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
293 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
294 "_xmit_NONE"};
295
296 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
297
298 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
299 {
300 int i;
301
302 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
303 if (netdev_lock_type[i] == dev_type)
304 return i;
305 /* the last key is used by default */
306 return ARRAY_SIZE(netdev_lock_type) - 1;
307 }
308
309 static inline void netdev_set_lockdep_class(spinlock_t *lock,
310 unsigned short dev_type)
311 {
312 int i;
313
314 i = netdev_lock_pos(dev_type);
315 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
316 netdev_lock_name[i]);
317 }
318 #else
319 static inline void netdev_set_lockdep_class(spinlock_t *lock,
320 unsigned short dev_type)
321 {
322 }
323 #endif
324
325 /*******************************************************************************
326
327 Protocol management and registration routines
328
329 *******************************************************************************/
330
331 /*
332 * Add a protocol ID to the list. Now that the input handler is
333 * smarter we can dispense with all the messy stuff that used to be
334 * here.
335 *
336 * BEWARE!!! Protocol handlers, mangling input packets,
337 * MUST BE last in hash buckets and checking protocol handlers
338 * MUST start from promiscuous ptype_all chain in net_bh.
339 * It is true now, do not change it.
340 * Explanation follows: if protocol handler, mangling packet, will
341 * be the first on list, it is not able to sense, that packet
342 * is cloned and should be copied-on-write, so that it will
343 * change it and subsequent readers will get broken packet.
344 * --ANK (980803)
345 */
346
347 /**
348 * dev_add_pack - add packet handler
349 * @pt: packet type declaration
350 *
351 * Add a protocol handler to the networking stack. The passed &packet_type
352 * is linked into kernel lists and may not be freed until it has been
353 * removed from the kernel lists.
354 *
355 * This call does not sleep therefore it can not
356 * guarantee all CPU's that are in middle of receiving packets
357 * will see the new packet type (until the next received packet).
358 */
359
360 void dev_add_pack(struct packet_type *pt)
361 {
362 int hash;
363
364 spin_lock_bh(&ptype_lock);
365 if (pt->type == htons(ETH_P_ALL))
366 list_add_rcu(&pt->list, &ptype_all);
367 else {
368 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
369 list_add_rcu(&pt->list, &ptype_base[hash]);
370 }
371 spin_unlock_bh(&ptype_lock);
372 }
373
374 /**
375 * __dev_remove_pack - remove packet handler
376 * @pt: packet type declaration
377 *
378 * Remove a protocol handler that was previously added to the kernel
379 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
380 * from the kernel lists and can be freed or reused once this function
381 * returns.
382 *
383 * The packet type might still be in use by receivers
384 * and must not be freed until after all the CPU's have gone
385 * through a quiescent state.
386 */
387 void __dev_remove_pack(struct packet_type *pt)
388 {
389 struct list_head *head;
390 struct packet_type *pt1;
391
392 spin_lock_bh(&ptype_lock);
393
394 if (pt->type == htons(ETH_P_ALL))
395 head = &ptype_all;
396 else
397 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
398
399 list_for_each_entry(pt1, head, list) {
400 if (pt == pt1) {
401 list_del_rcu(&pt->list);
402 goto out;
403 }
404 }
405
406 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
407 out:
408 spin_unlock_bh(&ptype_lock);
409 }
410 /**
411 * dev_remove_pack - remove packet handler
412 * @pt: packet type declaration
413 *
414 * Remove a protocol handler that was previously added to the kernel
415 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
416 * from the kernel lists and can be freed or reused once this function
417 * returns.
418 *
419 * This call sleeps to guarantee that no CPU is looking at the packet
420 * type after return.
421 */
422 void dev_remove_pack(struct packet_type *pt)
423 {
424 __dev_remove_pack(pt);
425
426 synchronize_net();
427 }
428
429 /******************************************************************************
430
431 Device Boot-time Settings Routines
432
433 *******************************************************************************/
434
435 /* Boot time configuration table */
436 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
437
438 /**
439 * netdev_boot_setup_add - add new setup entry
440 * @name: name of the device
441 * @map: configured settings for the device
442 *
443 * Adds new setup entry to the dev_boot_setup list. The function
444 * returns 0 on error and 1 on success. This is a generic routine to
445 * all netdevices.
446 */
447 static int netdev_boot_setup_add(char *name, struct ifmap *map)
448 {
449 struct netdev_boot_setup *s;
450 int i;
451
452 s = dev_boot_setup;
453 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
454 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
455 memset(s[i].name, 0, sizeof(s[i].name));
456 strcpy(s[i].name, name);
457 memcpy(&s[i].map, map, sizeof(s[i].map));
458 break;
459 }
460 }
461
462 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
463 }
464
465 /**
466 * netdev_boot_setup_check - check boot time settings
467 * @dev: the netdevice
468 *
469 * Check boot time settings for the device.
470 * The found settings are set for the device to be used
471 * later in the device probing.
472 * Returns 0 if no settings found, 1 if they are.
473 */
474 int netdev_boot_setup_check(struct net_device *dev)
475 {
476 struct netdev_boot_setup *s = dev_boot_setup;
477 int i;
478
479 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
480 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
481 !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
482 dev->irq = s[i].map.irq;
483 dev->base_addr = s[i].map.base_addr;
484 dev->mem_start = s[i].map.mem_start;
485 dev->mem_end = s[i].map.mem_end;
486 return 1;
487 }
488 }
489 return 0;
490 }
491
492
493 /**
494 * netdev_boot_base - get address from boot time settings
495 * @prefix: prefix for network device
496 * @unit: id for network device
497 *
498 * Check boot time settings for the base address of device.
499 * The found settings are set for the device to be used
500 * later in the device probing.
501 * Returns 0 if no settings found.
502 */
503 unsigned long netdev_boot_base(const char *prefix, int unit)
504 {
505 const struct netdev_boot_setup *s = dev_boot_setup;
506 char name[IFNAMSIZ];
507 int i;
508
509 sprintf(name, "%s%d", prefix, unit);
510
511 /*
512 * If device already registered then return base of 1
513 * to indicate not to probe for this interface
514 */
515 if (__dev_get_by_name(&init_net, name))
516 return 1;
517
518 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
519 if (!strcmp(name, s[i].name))
520 return s[i].map.base_addr;
521 return 0;
522 }
523
524 /*
525 * Saves at boot time configured settings for any netdevice.
526 */
527 int __init netdev_boot_setup(char *str)
528 {
529 int ints[5];
530 struct ifmap map;
531
532 str = get_options(str, ARRAY_SIZE(ints), ints);
533 if (!str || !*str)
534 return 0;
535
536 /* Save settings */
537 memset(&map, 0, sizeof(map));
538 if (ints[0] > 0)
539 map.irq = ints[1];
540 if (ints[0] > 1)
541 map.base_addr = ints[2];
542 if (ints[0] > 2)
543 map.mem_start = ints[3];
544 if (ints[0] > 3)
545 map.mem_end = ints[4];
546
547 /* Add new entry to the list */
548 return netdev_boot_setup_add(str, &map);
549 }
550
551 __setup("netdev=", netdev_boot_setup);
552
553 /*******************************************************************************
554
555 Device Interface Subroutines
556
557 *******************************************************************************/
558
559 /**
560 * __dev_get_by_name - find a device by its name
561 * @net: the applicable net namespace
562 * @name: name to find
563 *
564 * Find an interface by name. Must be called under RTNL semaphore
565 * or @dev_base_lock. If the name is found a pointer to the device
566 * is returned. If the name is not found then %NULL is returned. The
567 * reference counters are not incremented so the caller must be
568 * careful with locks.
569 */
570
571 struct net_device *__dev_get_by_name(struct net *net, const char *name)
572 {
573 struct hlist_node *p;
574
575 hlist_for_each(p, dev_name_hash(net, name)) {
576 struct net_device *dev
577 = hlist_entry(p, struct net_device, name_hlist);
578 if (!strncmp(dev->name, name, IFNAMSIZ))
579 return dev;
580 }
581 return NULL;
582 }
583
584 /**
585 * dev_get_by_name - find a device by its name
586 * @net: the applicable net namespace
587 * @name: name to find
588 *
589 * Find an interface by name. This can be called from any
590 * context and does its own locking. The returned handle has
591 * the usage count incremented and the caller must use dev_put() to
592 * release it when it is no longer needed. %NULL is returned if no
593 * matching device is found.
594 */
595
596 struct net_device *dev_get_by_name(struct net *net, const char *name)
597 {
598 struct net_device *dev;
599
600 read_lock(&dev_base_lock);
601 dev = __dev_get_by_name(net, name);
602 if (dev)
603 dev_hold(dev);
604 read_unlock(&dev_base_lock);
605 return dev;
606 }
607
608 /**
609 * __dev_get_by_index - find a device by its ifindex
610 * @net: the applicable net namespace
611 * @ifindex: index of device
612 *
613 * Search for an interface by index. Returns %NULL if the device
614 * is not found or a pointer to the device. The device has not
615 * had its reference counter increased so the caller must be careful
616 * about locking. The caller must hold either the RTNL semaphore
617 * or @dev_base_lock.
618 */
619
620 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
621 {
622 struct hlist_node *p;
623
624 hlist_for_each(p, dev_index_hash(net, ifindex)) {
625 struct net_device *dev
626 = hlist_entry(p, struct net_device, index_hlist);
627 if (dev->ifindex == ifindex)
628 return dev;
629 }
630 return NULL;
631 }
632
633
634 /**
635 * dev_get_by_index - find a device by its ifindex
636 * @net: the applicable net namespace
637 * @ifindex: index of device
638 *
639 * Search for an interface by index. Returns NULL if the device
640 * is not found or a pointer to the device. The device returned has
641 * had a reference added and the pointer is safe until the user calls
642 * dev_put to indicate they have finished with it.
643 */
644
645 struct net_device *dev_get_by_index(struct net *net, int ifindex)
646 {
647 struct net_device *dev;
648
649 read_lock(&dev_base_lock);
650 dev = __dev_get_by_index(net, ifindex);
651 if (dev)
652 dev_hold(dev);
653 read_unlock(&dev_base_lock);
654 return dev;
655 }
656
657 /**
658 * dev_getbyhwaddr - find a device by its hardware address
659 * @net: the applicable net namespace
660 * @type: media type of device
661 * @ha: hardware address
662 *
663 * Search for an interface by MAC address. Returns NULL if the device
664 * is not found or a pointer to the device. The caller must hold the
665 * rtnl semaphore. The returned device has not had its ref count increased
666 * and the caller must therefore be careful about locking
667 *
668 * BUGS:
669 * If the API was consistent this would be __dev_get_by_hwaddr
670 */
671
672 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
673 {
674 struct net_device *dev;
675
676 ASSERT_RTNL();
677
678 for_each_netdev(net, dev)
679 if (dev->type == type &&
680 !memcmp(dev->dev_addr, ha, dev->addr_len))
681 return dev;
682
683 return NULL;
684 }
685
686 EXPORT_SYMBOL(dev_getbyhwaddr);
687
688 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
689 {
690 struct net_device *dev;
691
692 ASSERT_RTNL();
693 for_each_netdev(net, dev)
694 if (dev->type == type)
695 return dev;
696
697 return NULL;
698 }
699
700 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
701
702 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
703 {
704 struct net_device *dev;
705
706 rtnl_lock();
707 dev = __dev_getfirstbyhwtype(net, type);
708 if (dev)
709 dev_hold(dev);
710 rtnl_unlock();
711 return dev;
712 }
713
714 EXPORT_SYMBOL(dev_getfirstbyhwtype);
715
716 /**
717 * dev_get_by_flags - find any device with given flags
718 * @net: the applicable net namespace
719 * @if_flags: IFF_* values
720 * @mask: bitmask of bits in if_flags to check
721 *
722 * Search for any interface with the given flags. Returns NULL if a device
723 * is not found or a pointer to the device. The device returned has
724 * had a reference added and the pointer is safe until the user calls
725 * dev_put to indicate they have finished with it.
726 */
727
728 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
729 {
730 struct net_device *dev, *ret;
731
732 ret = NULL;
733 read_lock(&dev_base_lock);
734 for_each_netdev(net, dev) {
735 if (((dev->flags ^ if_flags) & mask) == 0) {
736 dev_hold(dev);
737 ret = dev;
738 break;
739 }
740 }
741 read_unlock(&dev_base_lock);
742 return ret;
743 }
744
745 /**
746 * dev_valid_name - check if name is okay for network device
747 * @name: name string
748 *
749 * Network device names need to be valid file names to
750 * to allow sysfs to work. We also disallow any kind of
751 * whitespace.
752 */
753 int dev_valid_name(const char *name)
754 {
755 if (*name == '\0')
756 return 0;
757 if (strlen(name) >= IFNAMSIZ)
758 return 0;
759 if (!strcmp(name, ".") || !strcmp(name, ".."))
760 return 0;
761
762 while (*name) {
763 if (*name == '/' || isspace(*name))
764 return 0;
765 name++;
766 }
767 return 1;
768 }
769
770 /**
771 * __dev_alloc_name - allocate a name for a device
772 * @net: network namespace to allocate the device name in
773 * @name: name format string
774 * @buf: scratch buffer and result name string
775 *
776 * Passed a format string - eg "lt%d" it will try and find a suitable
777 * id. It scans list of devices to build up a free map, then chooses
778 * the first empty slot. The caller must hold the dev_base or rtnl lock
779 * while allocating the name and adding the device in order to avoid
780 * duplicates.
781 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
782 * Returns the number of the unit assigned or a negative errno code.
783 */
784
785 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
786 {
787 int i = 0;
788 const char *p;
789 const int max_netdevices = 8*PAGE_SIZE;
790 unsigned long *inuse;
791 struct net_device *d;
792
793 p = strnchr(name, IFNAMSIZ-1, '%');
794 if (p) {
795 /*
796 * Verify the string as this thing may have come from
797 * the user. There must be either one "%d" and no other "%"
798 * characters.
799 */
800 if (p[1] != 'd' || strchr(p + 2, '%'))
801 return -EINVAL;
802
803 /* Use one page as a bit array of possible slots */
804 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
805 if (!inuse)
806 return -ENOMEM;
807
808 for_each_netdev(net, d) {
809 if (!sscanf(d->name, name, &i))
810 continue;
811 if (i < 0 || i >= max_netdevices)
812 continue;
813
814 /* avoid cases where sscanf is not exact inverse of printf */
815 snprintf(buf, IFNAMSIZ, name, i);
816 if (!strncmp(buf, d->name, IFNAMSIZ))
817 set_bit(i, inuse);
818 }
819
820 i = find_first_zero_bit(inuse, max_netdevices);
821 free_page((unsigned long) inuse);
822 }
823
824 snprintf(buf, IFNAMSIZ, name, i);
825 if (!__dev_get_by_name(net, buf))
826 return i;
827
828 /* It is possible to run out of possible slots
829 * when the name is long and there isn't enough space left
830 * for the digits, or if all bits are used.
831 */
832 return -ENFILE;
833 }
834
835 /**
836 * dev_alloc_name - allocate a name for a device
837 * @dev: device
838 * @name: name format string
839 *
840 * Passed a format string - eg "lt%d" it will try and find a suitable
841 * id. It scans list of devices to build up a free map, then chooses
842 * the first empty slot. The caller must hold the dev_base or rtnl lock
843 * while allocating the name and adding the device in order to avoid
844 * duplicates.
845 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
846 * Returns the number of the unit assigned or a negative errno code.
847 */
848
849 int dev_alloc_name(struct net_device *dev, const char *name)
850 {
851 char buf[IFNAMSIZ];
852 struct net *net;
853 int ret;
854
855 BUG_ON(!dev_net(dev));
856 net = dev_net(dev);
857 ret = __dev_alloc_name(net, name, buf);
858 if (ret >= 0)
859 strlcpy(dev->name, buf, IFNAMSIZ);
860 return ret;
861 }
862
863
864 /**
865 * dev_change_name - change name of a device
866 * @dev: device
867 * @newname: name (or format string) must be at least IFNAMSIZ
868 *
869 * Change name of a device, can pass format strings "eth%d".
870 * for wildcarding.
871 */
872 int dev_change_name(struct net_device *dev, char *newname)
873 {
874 char oldname[IFNAMSIZ];
875 int err = 0;
876 int ret;
877 struct net *net;
878
879 ASSERT_RTNL();
880 BUG_ON(!dev_net(dev));
881
882 net = dev_net(dev);
883 if (dev->flags & IFF_UP)
884 return -EBUSY;
885
886 if (!dev_valid_name(newname))
887 return -EINVAL;
888
889 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
890 return 0;
891
892 memcpy(oldname, dev->name, IFNAMSIZ);
893
894 if (strchr(newname, '%')) {
895 err = dev_alloc_name(dev, newname);
896 if (err < 0)
897 return err;
898 strcpy(newname, dev->name);
899 }
900 else if (__dev_get_by_name(net, newname))
901 return -EEXIST;
902 else
903 strlcpy(dev->name, newname, IFNAMSIZ);
904
905 rollback:
906 device_rename(&dev->dev, dev->name);
907
908 write_lock_bh(&dev_base_lock);
909 hlist_del(&dev->name_hlist);
910 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
911 write_unlock_bh(&dev_base_lock);
912
913 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
914 ret = notifier_to_errno(ret);
915
916 if (ret) {
917 if (err) {
918 printk(KERN_ERR
919 "%s: name change rollback failed: %d.\n",
920 dev->name, ret);
921 } else {
922 err = ret;
923 memcpy(dev->name, oldname, IFNAMSIZ);
924 goto rollback;
925 }
926 }
927
928 return err;
929 }
930
931 /**
932 * netdev_features_change - device changes features
933 * @dev: device to cause notification
934 *
935 * Called to indicate a device has changed features.
936 */
937 void netdev_features_change(struct net_device *dev)
938 {
939 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
940 }
941 EXPORT_SYMBOL(netdev_features_change);
942
943 /**
944 * netdev_state_change - device changes state
945 * @dev: device to cause notification
946 *
947 * Called to indicate a device has changed state. This function calls
948 * the notifier chains for netdev_chain and sends a NEWLINK message
949 * to the routing socket.
950 */
951 void netdev_state_change(struct net_device *dev)
952 {
953 if (dev->flags & IFF_UP) {
954 call_netdevice_notifiers(NETDEV_CHANGE, dev);
955 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
956 }
957 }
958
959 /**
960 * dev_load - load a network module
961 * @net: the applicable net namespace
962 * @name: name of interface
963 *
964 * If a network interface is not present and the process has suitable
965 * privileges this function loads the module. If module loading is not
966 * available in this kernel then it becomes a nop.
967 */
968
969 void dev_load(struct net *net, const char *name)
970 {
971 struct net_device *dev;
972
973 read_lock(&dev_base_lock);
974 dev = __dev_get_by_name(net, name);
975 read_unlock(&dev_base_lock);
976
977 if (!dev && capable(CAP_SYS_MODULE))
978 request_module("%s", name);
979 }
980
981 /**
982 * dev_open - prepare an interface for use.
983 * @dev: device to open
984 *
985 * Takes a device from down to up state. The device's private open
986 * function is invoked and then the multicast lists are loaded. Finally
987 * the device is moved into the up state and a %NETDEV_UP message is
988 * sent to the netdev notifier chain.
989 *
990 * Calling this function on an active interface is a nop. On a failure
991 * a negative errno code is returned.
992 */
993 int dev_open(struct net_device *dev)
994 {
995 int ret = 0;
996
997 /*
998 * Is it already up?
999 */
1000
1001 if (dev->flags & IFF_UP)
1002 return 0;
1003
1004 /*
1005 * Is it even present?
1006 */
1007 if (!netif_device_present(dev))
1008 return -ENODEV;
1009
1010 /*
1011 * Call device private open method
1012 */
1013 set_bit(__LINK_STATE_START, &dev->state);
1014
1015 if (dev->validate_addr)
1016 ret = dev->validate_addr(dev);
1017
1018 if (!ret && dev->open)
1019 ret = dev->open(dev);
1020
1021 /*
1022 * If it went open OK then:
1023 */
1024
1025 if (ret)
1026 clear_bit(__LINK_STATE_START, &dev->state);
1027 else {
1028 /*
1029 * Set the flags.
1030 */
1031 dev->flags |= IFF_UP;
1032
1033 /*
1034 * Initialize multicasting status
1035 */
1036 dev_set_rx_mode(dev);
1037
1038 /*
1039 * Wakeup transmit queue engine
1040 */
1041 dev_activate(dev);
1042
1043 /*
1044 * ... and announce new interface.
1045 */
1046 call_netdevice_notifiers(NETDEV_UP, dev);
1047 }
1048
1049 return ret;
1050 }
1051
1052 /**
1053 * dev_close - shutdown an interface.
1054 * @dev: device to shutdown
1055 *
1056 * This function moves an active device into down state. A
1057 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1058 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1059 * chain.
1060 */
1061 int dev_close(struct net_device *dev)
1062 {
1063 might_sleep();
1064
1065 if (!(dev->flags & IFF_UP))
1066 return 0;
1067
1068 /*
1069 * Tell people we are going down, so that they can
1070 * prepare to death, when device is still operating.
1071 */
1072 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1073
1074 clear_bit(__LINK_STATE_START, &dev->state);
1075
1076 /* Synchronize to scheduled poll. We cannot touch poll list,
1077 * it can be even on different cpu. So just clear netif_running().
1078 *
1079 * dev->stop() will invoke napi_disable() on all of it's
1080 * napi_struct instances on this device.
1081 */
1082 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1083
1084 dev_deactivate(dev);
1085
1086 /*
1087 * Call the device specific close. This cannot fail.
1088 * Only if device is UP
1089 *
1090 * We allow it to be called even after a DETACH hot-plug
1091 * event.
1092 */
1093 if (dev->stop)
1094 dev->stop(dev);
1095
1096 /*
1097 * Device is now down.
1098 */
1099
1100 dev->flags &= ~IFF_UP;
1101
1102 /*
1103 * Tell people we are down
1104 */
1105 call_netdevice_notifiers(NETDEV_DOWN, dev);
1106
1107 return 0;
1108 }
1109
1110
1111 static int dev_boot_phase = 1;
1112
1113 /*
1114 * Device change register/unregister. These are not inline or static
1115 * as we export them to the world.
1116 */
1117
1118 /**
1119 * register_netdevice_notifier - register a network notifier block
1120 * @nb: notifier
1121 *
1122 * Register a notifier to be called when network device events occur.
1123 * The notifier passed is linked into the kernel structures and must
1124 * not be reused until it has been unregistered. A negative errno code
1125 * is returned on a failure.
1126 *
1127 * When registered all registration and up events are replayed
1128 * to the new notifier to allow device to have a race free
1129 * view of the network device list.
1130 */
1131
1132 int register_netdevice_notifier(struct notifier_block *nb)
1133 {
1134 struct net_device *dev;
1135 struct net_device *last;
1136 struct net *net;
1137 int err;
1138
1139 rtnl_lock();
1140 err = raw_notifier_chain_register(&netdev_chain, nb);
1141 if (err)
1142 goto unlock;
1143 if (dev_boot_phase)
1144 goto unlock;
1145 for_each_net(net) {
1146 for_each_netdev(net, dev) {
1147 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1148 err = notifier_to_errno(err);
1149 if (err)
1150 goto rollback;
1151
1152 if (!(dev->flags & IFF_UP))
1153 continue;
1154
1155 nb->notifier_call(nb, NETDEV_UP, dev);
1156 }
1157 }
1158
1159 unlock:
1160 rtnl_unlock();
1161 return err;
1162
1163 rollback:
1164 last = dev;
1165 for_each_net(net) {
1166 for_each_netdev(net, dev) {
1167 if (dev == last)
1168 break;
1169
1170 if (dev->flags & IFF_UP) {
1171 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1172 nb->notifier_call(nb, NETDEV_DOWN, dev);
1173 }
1174 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1175 }
1176 }
1177
1178 raw_notifier_chain_unregister(&netdev_chain, nb);
1179 goto unlock;
1180 }
1181
1182 /**
1183 * unregister_netdevice_notifier - unregister a network notifier block
1184 * @nb: notifier
1185 *
1186 * Unregister a notifier previously registered by
1187 * register_netdevice_notifier(). The notifier is unlinked into the
1188 * kernel structures and may then be reused. A negative errno code
1189 * is returned on a failure.
1190 */
1191
1192 int unregister_netdevice_notifier(struct notifier_block *nb)
1193 {
1194 int err;
1195
1196 rtnl_lock();
1197 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1198 rtnl_unlock();
1199 return err;
1200 }
1201
1202 /**
1203 * call_netdevice_notifiers - call all network notifier blocks
1204 * @val: value passed unmodified to notifier function
1205 * @dev: net_device pointer passed unmodified to notifier function
1206 *
1207 * Call all network notifier blocks. Parameters and return value
1208 * are as for raw_notifier_call_chain().
1209 */
1210
1211 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1212 {
1213 return raw_notifier_call_chain(&netdev_chain, val, dev);
1214 }
1215
1216 /* When > 0 there are consumers of rx skb time stamps */
1217 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1218
1219 void net_enable_timestamp(void)
1220 {
1221 atomic_inc(&netstamp_needed);
1222 }
1223
1224 void net_disable_timestamp(void)
1225 {
1226 atomic_dec(&netstamp_needed);
1227 }
1228
1229 static inline void net_timestamp(struct sk_buff *skb)
1230 {
1231 if (atomic_read(&netstamp_needed))
1232 __net_timestamp(skb);
1233 else
1234 skb->tstamp.tv64 = 0;
1235 }
1236
1237 /*
1238 * Support routine. Sends outgoing frames to any network
1239 * taps currently in use.
1240 */
1241
1242 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1243 {
1244 struct packet_type *ptype;
1245
1246 net_timestamp(skb);
1247
1248 rcu_read_lock();
1249 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1250 /* Never send packets back to the socket
1251 * they originated from - MvS (miquels@drinkel.ow.org)
1252 */
1253 if ((ptype->dev == dev || !ptype->dev) &&
1254 (ptype->af_packet_priv == NULL ||
1255 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1256 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1257 if (!skb2)
1258 break;
1259
1260 /* skb->nh should be correctly
1261 set by sender, so that the second statement is
1262 just protection against buggy protocols.
1263 */
1264 skb_reset_mac_header(skb2);
1265
1266 if (skb_network_header(skb2) < skb2->data ||
1267 skb2->network_header > skb2->tail) {
1268 if (net_ratelimit())
1269 printk(KERN_CRIT "protocol %04x is "
1270 "buggy, dev %s\n",
1271 skb2->protocol, dev->name);
1272 skb_reset_network_header(skb2);
1273 }
1274
1275 skb2->transport_header = skb2->network_header;
1276 skb2->pkt_type = PACKET_OUTGOING;
1277 ptype->func(skb2, skb->dev, ptype, skb->dev);
1278 }
1279 }
1280 rcu_read_unlock();
1281 }
1282
1283
1284 void __netif_schedule(struct net_device *dev)
1285 {
1286 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1287 unsigned long flags;
1288 struct softnet_data *sd;
1289
1290 local_irq_save(flags);
1291 sd = &__get_cpu_var(softnet_data);
1292 dev->next_sched = sd->output_queue;
1293 sd->output_queue = dev;
1294 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1295 local_irq_restore(flags);
1296 }
1297 }
1298 EXPORT_SYMBOL(__netif_schedule);
1299
1300 void dev_kfree_skb_irq(struct sk_buff *skb)
1301 {
1302 if (atomic_dec_and_test(&skb->users)) {
1303 struct softnet_data *sd;
1304 unsigned long flags;
1305
1306 local_irq_save(flags);
1307 sd = &__get_cpu_var(softnet_data);
1308 skb->next = sd->completion_queue;
1309 sd->completion_queue = skb;
1310 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1311 local_irq_restore(flags);
1312 }
1313 }
1314 EXPORT_SYMBOL(dev_kfree_skb_irq);
1315
1316 void dev_kfree_skb_any(struct sk_buff *skb)
1317 {
1318 if (in_irq() || irqs_disabled())
1319 dev_kfree_skb_irq(skb);
1320 else
1321 dev_kfree_skb(skb);
1322 }
1323 EXPORT_SYMBOL(dev_kfree_skb_any);
1324
1325
1326 /**
1327 * netif_device_detach - mark device as removed
1328 * @dev: network device
1329 *
1330 * Mark device as removed from system and therefore no longer available.
1331 */
1332 void netif_device_detach(struct net_device *dev)
1333 {
1334 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1335 netif_running(dev)) {
1336 netif_stop_queue(dev);
1337 }
1338 }
1339 EXPORT_SYMBOL(netif_device_detach);
1340
1341 /**
1342 * netif_device_attach - mark device as attached
1343 * @dev: network device
1344 *
1345 * Mark device as attached from system and restart if needed.
1346 */
1347 void netif_device_attach(struct net_device *dev)
1348 {
1349 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1350 netif_running(dev)) {
1351 netif_wake_queue(dev);
1352 __netdev_watchdog_up(dev);
1353 }
1354 }
1355 EXPORT_SYMBOL(netif_device_attach);
1356
1357
1358 /*
1359 * Invalidate hardware checksum when packet is to be mangled, and
1360 * complete checksum manually on outgoing path.
1361 */
1362 int skb_checksum_help(struct sk_buff *skb)
1363 {
1364 __wsum csum;
1365 int ret = 0, offset;
1366
1367 if (skb->ip_summed == CHECKSUM_COMPLETE)
1368 goto out_set_summed;
1369
1370 if (unlikely(skb_shinfo(skb)->gso_size)) {
1371 /* Let GSO fix up the checksum. */
1372 goto out_set_summed;
1373 }
1374
1375 offset = skb->csum_start - skb_headroom(skb);
1376 BUG_ON(offset >= skb_headlen(skb));
1377 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1378
1379 offset += skb->csum_offset;
1380 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1381
1382 if (skb_cloned(skb) &&
1383 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1384 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1385 if (ret)
1386 goto out;
1387 }
1388
1389 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1390 out_set_summed:
1391 skb->ip_summed = CHECKSUM_NONE;
1392 out:
1393 return ret;
1394 }
1395
1396 /**
1397 * skb_gso_segment - Perform segmentation on skb.
1398 * @skb: buffer to segment
1399 * @features: features for the output path (see dev->features)
1400 *
1401 * This function segments the given skb and returns a list of segments.
1402 *
1403 * It may return NULL if the skb requires no segmentation. This is
1404 * only possible when GSO is used for verifying header integrity.
1405 */
1406 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1407 {
1408 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1409 struct packet_type *ptype;
1410 __be16 type = skb->protocol;
1411 int err;
1412
1413 BUG_ON(skb_shinfo(skb)->frag_list);
1414
1415 skb_reset_mac_header(skb);
1416 skb->mac_len = skb->network_header - skb->mac_header;
1417 __skb_pull(skb, skb->mac_len);
1418
1419 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1420 if (skb_header_cloned(skb) &&
1421 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1422 return ERR_PTR(err);
1423 }
1424
1425 rcu_read_lock();
1426 list_for_each_entry_rcu(ptype,
1427 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1428 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1429 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1430 err = ptype->gso_send_check(skb);
1431 segs = ERR_PTR(err);
1432 if (err || skb_gso_ok(skb, features))
1433 break;
1434 __skb_push(skb, (skb->data -
1435 skb_network_header(skb)));
1436 }
1437 segs = ptype->gso_segment(skb, features);
1438 break;
1439 }
1440 }
1441 rcu_read_unlock();
1442
1443 __skb_push(skb, skb->data - skb_mac_header(skb));
1444
1445 return segs;
1446 }
1447
1448 EXPORT_SYMBOL(skb_gso_segment);
1449
1450 /* Take action when hardware reception checksum errors are detected. */
1451 #ifdef CONFIG_BUG
1452 void netdev_rx_csum_fault(struct net_device *dev)
1453 {
1454 if (net_ratelimit()) {
1455 printk(KERN_ERR "%s: hw csum failure.\n",
1456 dev ? dev->name : "<unknown>");
1457 dump_stack();
1458 }
1459 }
1460 EXPORT_SYMBOL(netdev_rx_csum_fault);
1461 #endif
1462
1463 /* Actually, we should eliminate this check as soon as we know, that:
1464 * 1. IOMMU is present and allows to map all the memory.
1465 * 2. No high memory really exists on this machine.
1466 */
1467
1468 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1469 {
1470 #ifdef CONFIG_HIGHMEM
1471 int i;
1472
1473 if (dev->features & NETIF_F_HIGHDMA)
1474 return 0;
1475
1476 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1477 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1478 return 1;
1479
1480 #endif
1481 return 0;
1482 }
1483
1484 struct dev_gso_cb {
1485 void (*destructor)(struct sk_buff *skb);
1486 };
1487
1488 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1489
1490 static void dev_gso_skb_destructor(struct sk_buff *skb)
1491 {
1492 struct dev_gso_cb *cb;
1493
1494 do {
1495 struct sk_buff *nskb = skb->next;
1496
1497 skb->next = nskb->next;
1498 nskb->next = NULL;
1499 kfree_skb(nskb);
1500 } while (skb->next);
1501
1502 cb = DEV_GSO_CB(skb);
1503 if (cb->destructor)
1504 cb->destructor(skb);
1505 }
1506
1507 /**
1508 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1509 * @skb: buffer to segment
1510 *
1511 * This function segments the given skb and stores the list of segments
1512 * in skb->next.
1513 */
1514 static int dev_gso_segment(struct sk_buff *skb)
1515 {
1516 struct net_device *dev = skb->dev;
1517 struct sk_buff *segs;
1518 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1519 NETIF_F_SG : 0);
1520
1521 segs = skb_gso_segment(skb, features);
1522
1523 /* Verifying header integrity only. */
1524 if (!segs)
1525 return 0;
1526
1527 if (IS_ERR(segs))
1528 return PTR_ERR(segs);
1529
1530 skb->next = segs;
1531 DEV_GSO_CB(skb)->destructor = skb->destructor;
1532 skb->destructor = dev_gso_skb_destructor;
1533
1534 return 0;
1535 }
1536
1537 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1538 {
1539 if (likely(!skb->next)) {
1540 if (!list_empty(&ptype_all))
1541 dev_queue_xmit_nit(skb, dev);
1542
1543 if (netif_needs_gso(dev, skb)) {
1544 if (unlikely(dev_gso_segment(skb)))
1545 goto out_kfree_skb;
1546 if (skb->next)
1547 goto gso;
1548 }
1549
1550 return dev->hard_start_xmit(skb, dev);
1551 }
1552
1553 gso:
1554 do {
1555 struct sk_buff *nskb = skb->next;
1556 int rc;
1557
1558 skb->next = nskb->next;
1559 nskb->next = NULL;
1560 rc = dev->hard_start_xmit(nskb, dev);
1561 if (unlikely(rc)) {
1562 nskb->next = skb->next;
1563 skb->next = nskb;
1564 return rc;
1565 }
1566 if (unlikely((netif_queue_stopped(dev) ||
1567 netif_subqueue_stopped(dev, skb)) &&
1568 skb->next))
1569 return NETDEV_TX_BUSY;
1570 } while (skb->next);
1571
1572 skb->destructor = DEV_GSO_CB(skb)->destructor;
1573
1574 out_kfree_skb:
1575 kfree_skb(skb);
1576 return 0;
1577 }
1578
1579 /**
1580 * dev_queue_xmit - transmit a buffer
1581 * @skb: buffer to transmit
1582 *
1583 * Queue a buffer for transmission to a network device. The caller must
1584 * have set the device and priority and built the buffer before calling
1585 * this function. The function can be called from an interrupt.
1586 *
1587 * A negative errno code is returned on a failure. A success does not
1588 * guarantee the frame will be transmitted as it may be dropped due
1589 * to congestion or traffic shaping.
1590 *
1591 * -----------------------------------------------------------------------------------
1592 * I notice this method can also return errors from the queue disciplines,
1593 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1594 * be positive.
1595 *
1596 * Regardless of the return value, the skb is consumed, so it is currently
1597 * difficult to retry a send to this method. (You can bump the ref count
1598 * before sending to hold a reference for retry if you are careful.)
1599 *
1600 * When calling this method, interrupts MUST be enabled. This is because
1601 * the BH enable code must have IRQs enabled so that it will not deadlock.
1602 * --BLG
1603 */
1604
1605 int dev_queue_xmit(struct sk_buff *skb)
1606 {
1607 struct net_device *dev = skb->dev;
1608 struct Qdisc *q;
1609 int rc = -ENOMEM;
1610
1611 /* GSO will handle the following emulations directly. */
1612 if (netif_needs_gso(dev, skb))
1613 goto gso;
1614
1615 if (skb_shinfo(skb)->frag_list &&
1616 !(dev->features & NETIF_F_FRAGLIST) &&
1617 __skb_linearize(skb))
1618 goto out_kfree_skb;
1619
1620 /* Fragmented skb is linearized if device does not support SG,
1621 * or if at least one of fragments is in highmem and device
1622 * does not support DMA from it.
1623 */
1624 if (skb_shinfo(skb)->nr_frags &&
1625 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1626 __skb_linearize(skb))
1627 goto out_kfree_skb;
1628
1629 /* If packet is not checksummed and device does not support
1630 * checksumming for this protocol, complete checksumming here.
1631 */
1632 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1633 skb_set_transport_header(skb, skb->csum_start -
1634 skb_headroom(skb));
1635
1636 if (!(dev->features & NETIF_F_GEN_CSUM) &&
1637 !((dev->features & NETIF_F_IP_CSUM) &&
1638 skb->protocol == htons(ETH_P_IP)) &&
1639 !((dev->features & NETIF_F_IPV6_CSUM) &&
1640 skb->protocol == htons(ETH_P_IPV6)))
1641 if (skb_checksum_help(skb))
1642 goto out_kfree_skb;
1643 }
1644
1645 gso:
1646 spin_lock_prefetch(&dev->queue_lock);
1647
1648 /* Disable soft irqs for various locks below. Also
1649 * stops preemption for RCU.
1650 */
1651 rcu_read_lock_bh();
1652
1653 /* Updates of qdisc are serialized by queue_lock.
1654 * The struct Qdisc which is pointed to by qdisc is now a
1655 * rcu structure - it may be accessed without acquiring
1656 * a lock (but the structure may be stale.) The freeing of the
1657 * qdisc will be deferred until it's known that there are no
1658 * more references to it.
1659 *
1660 * If the qdisc has an enqueue function, we still need to
1661 * hold the queue_lock before calling it, since queue_lock
1662 * also serializes access to the device queue.
1663 */
1664
1665 q = rcu_dereference(dev->qdisc);
1666 #ifdef CONFIG_NET_CLS_ACT
1667 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1668 #endif
1669 if (q->enqueue) {
1670 /* Grab device queue */
1671 spin_lock(&dev->queue_lock);
1672 q = dev->qdisc;
1673 if (q->enqueue) {
1674 /* reset queue_mapping to zero */
1675 skb_set_queue_mapping(skb, 0);
1676 rc = q->enqueue(skb, q);
1677 qdisc_run(dev);
1678 spin_unlock(&dev->queue_lock);
1679
1680 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1681 goto out;
1682 }
1683 spin_unlock(&dev->queue_lock);
1684 }
1685
1686 /* The device has no queue. Common case for software devices:
1687 loopback, all the sorts of tunnels...
1688
1689 Really, it is unlikely that netif_tx_lock protection is necessary
1690 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1691 counters.)
1692 However, it is possible, that they rely on protection
1693 made by us here.
1694
1695 Check this and shot the lock. It is not prone from deadlocks.
1696 Either shot noqueue qdisc, it is even simpler 8)
1697 */
1698 if (dev->flags & IFF_UP) {
1699 int cpu = smp_processor_id(); /* ok because BHs are off */
1700
1701 if (dev->xmit_lock_owner != cpu) {
1702
1703 HARD_TX_LOCK(dev, cpu);
1704
1705 if (!netif_queue_stopped(dev) &&
1706 !netif_subqueue_stopped(dev, skb)) {
1707 rc = 0;
1708 if (!dev_hard_start_xmit(skb, dev)) {
1709 HARD_TX_UNLOCK(dev);
1710 goto out;
1711 }
1712 }
1713 HARD_TX_UNLOCK(dev);
1714 if (net_ratelimit())
1715 printk(KERN_CRIT "Virtual device %s asks to "
1716 "queue packet!\n", dev->name);
1717 } else {
1718 /* Recursion is detected! It is possible,
1719 * unfortunately */
1720 if (net_ratelimit())
1721 printk(KERN_CRIT "Dead loop on virtual device "
1722 "%s, fix it urgently!\n", dev->name);
1723 }
1724 }
1725
1726 rc = -ENETDOWN;
1727 rcu_read_unlock_bh();
1728
1729 out_kfree_skb:
1730 kfree_skb(skb);
1731 return rc;
1732 out:
1733 rcu_read_unlock_bh();
1734 return rc;
1735 }
1736
1737
1738 /*=======================================================================
1739 Receiver routines
1740 =======================================================================*/
1741
1742 int netdev_max_backlog __read_mostly = 1000;
1743 int netdev_budget __read_mostly = 300;
1744 int weight_p __read_mostly = 64; /* old backlog weight */
1745
1746 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1747
1748
1749 /**
1750 * netif_rx - post buffer to the network code
1751 * @skb: buffer to post
1752 *
1753 * This function receives a packet from a device driver and queues it for
1754 * the upper (protocol) levels to process. It always succeeds. The buffer
1755 * may be dropped during processing for congestion control or by the
1756 * protocol layers.
1757 *
1758 * return values:
1759 * NET_RX_SUCCESS (no congestion)
1760 * NET_RX_DROP (packet was dropped)
1761 *
1762 */
1763
1764 int netif_rx(struct sk_buff *skb)
1765 {
1766 struct softnet_data *queue;
1767 unsigned long flags;
1768
1769 /* if netpoll wants it, pretend we never saw it */
1770 if (netpoll_rx(skb))
1771 return NET_RX_DROP;
1772
1773 if (!skb->tstamp.tv64)
1774 net_timestamp(skb);
1775
1776 /*
1777 * The code is rearranged so that the path is the most
1778 * short when CPU is congested, but is still operating.
1779 */
1780 local_irq_save(flags);
1781 queue = &__get_cpu_var(softnet_data);
1782
1783 __get_cpu_var(netdev_rx_stat).total++;
1784 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1785 if (queue->input_pkt_queue.qlen) {
1786 enqueue:
1787 dev_hold(skb->dev);
1788 __skb_queue_tail(&queue->input_pkt_queue, skb);
1789 local_irq_restore(flags);
1790 return NET_RX_SUCCESS;
1791 }
1792
1793 napi_schedule(&queue->backlog);
1794 goto enqueue;
1795 }
1796
1797 __get_cpu_var(netdev_rx_stat).dropped++;
1798 local_irq_restore(flags);
1799
1800 kfree_skb(skb);
1801 return NET_RX_DROP;
1802 }
1803
1804 int netif_rx_ni(struct sk_buff *skb)
1805 {
1806 int err;
1807
1808 preempt_disable();
1809 err = netif_rx(skb);
1810 if (local_softirq_pending())
1811 do_softirq();
1812 preempt_enable();
1813
1814 return err;
1815 }
1816
1817 EXPORT_SYMBOL(netif_rx_ni);
1818
1819 static inline struct net_device *skb_bond(struct sk_buff *skb)
1820 {
1821 struct net_device *dev = skb->dev;
1822
1823 if (dev->master) {
1824 if (skb_bond_should_drop(skb)) {
1825 kfree_skb(skb);
1826 return NULL;
1827 }
1828 skb->dev = dev->master;
1829 }
1830
1831 return dev;
1832 }
1833
1834
1835 static void net_tx_action(struct softirq_action *h)
1836 {
1837 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1838
1839 if (sd->completion_queue) {
1840 struct sk_buff *clist;
1841
1842 local_irq_disable();
1843 clist = sd->completion_queue;
1844 sd->completion_queue = NULL;
1845 local_irq_enable();
1846
1847 while (clist) {
1848 struct sk_buff *skb = clist;
1849 clist = clist->next;
1850
1851 BUG_TRAP(!atomic_read(&skb->users));
1852 __kfree_skb(skb);
1853 }
1854 }
1855
1856 if (sd->output_queue) {
1857 struct net_device *head;
1858
1859 local_irq_disable();
1860 head = sd->output_queue;
1861 sd->output_queue = NULL;
1862 local_irq_enable();
1863
1864 while (head) {
1865 struct net_device *dev = head;
1866 head = head->next_sched;
1867
1868 smp_mb__before_clear_bit();
1869 clear_bit(__LINK_STATE_SCHED, &dev->state);
1870
1871 if (spin_trylock(&dev->queue_lock)) {
1872 qdisc_run(dev);
1873 spin_unlock(&dev->queue_lock);
1874 } else {
1875 netif_schedule(dev);
1876 }
1877 }
1878 }
1879 }
1880
1881 static inline int deliver_skb(struct sk_buff *skb,
1882 struct packet_type *pt_prev,
1883 struct net_device *orig_dev)
1884 {
1885 atomic_inc(&skb->users);
1886 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1887 }
1888
1889 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1890 /* These hooks defined here for ATM */
1891 struct net_bridge;
1892 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1893 unsigned char *addr);
1894 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1895
1896 /*
1897 * If bridge module is loaded call bridging hook.
1898 * returns NULL if packet was consumed.
1899 */
1900 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1901 struct sk_buff *skb) __read_mostly;
1902 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1903 struct packet_type **pt_prev, int *ret,
1904 struct net_device *orig_dev)
1905 {
1906 struct net_bridge_port *port;
1907
1908 if (skb->pkt_type == PACKET_LOOPBACK ||
1909 (port = rcu_dereference(skb->dev->br_port)) == NULL)
1910 return skb;
1911
1912 if (*pt_prev) {
1913 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1914 *pt_prev = NULL;
1915 }
1916
1917 return br_handle_frame_hook(port, skb);
1918 }
1919 #else
1920 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1921 #endif
1922
1923 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1924 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1925 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1926
1927 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1928 struct packet_type **pt_prev,
1929 int *ret,
1930 struct net_device *orig_dev)
1931 {
1932 if (skb->dev->macvlan_port == NULL)
1933 return skb;
1934
1935 if (*pt_prev) {
1936 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1937 *pt_prev = NULL;
1938 }
1939 return macvlan_handle_frame_hook(skb);
1940 }
1941 #else
1942 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
1943 #endif
1944
1945 #ifdef CONFIG_NET_CLS_ACT
1946 /* TODO: Maybe we should just force sch_ingress to be compiled in
1947 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1948 * a compare and 2 stores extra right now if we dont have it on
1949 * but have CONFIG_NET_CLS_ACT
1950 * NOTE: This doesnt stop any functionality; if you dont have
1951 * the ingress scheduler, you just cant add policies on ingress.
1952 *
1953 */
1954 static int ing_filter(struct sk_buff *skb)
1955 {
1956 struct Qdisc *q;
1957 struct net_device *dev = skb->dev;
1958 int result = TC_ACT_OK;
1959 u32 ttl = G_TC_RTTL(skb->tc_verd);
1960
1961 if (MAX_RED_LOOP < ttl++) {
1962 printk(KERN_WARNING
1963 "Redir loop detected Dropping packet (%d->%d)\n",
1964 skb->iif, dev->ifindex);
1965 return TC_ACT_SHOT;
1966 }
1967
1968 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
1969 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1970
1971 spin_lock(&dev->ingress_lock);
1972 if ((q = dev->qdisc_ingress) != NULL)
1973 result = q->enqueue(skb, q);
1974 spin_unlock(&dev->ingress_lock);
1975
1976 return result;
1977 }
1978
1979 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
1980 struct packet_type **pt_prev,
1981 int *ret, struct net_device *orig_dev)
1982 {
1983 if (!skb->dev->qdisc_ingress)
1984 goto out;
1985
1986 if (*pt_prev) {
1987 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1988 *pt_prev = NULL;
1989 } else {
1990 /* Huh? Why does turning on AF_PACKET affect this? */
1991 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1992 }
1993
1994 switch (ing_filter(skb)) {
1995 case TC_ACT_SHOT:
1996 case TC_ACT_STOLEN:
1997 kfree_skb(skb);
1998 return NULL;
1999 }
2000
2001 out:
2002 skb->tc_verd = 0;
2003 return skb;
2004 }
2005 #endif
2006
2007 /**
2008 * netif_receive_skb - process receive buffer from network
2009 * @skb: buffer to process
2010 *
2011 * netif_receive_skb() is the main receive data processing function.
2012 * It always succeeds. The buffer may be dropped during processing
2013 * for congestion control or by the protocol layers.
2014 *
2015 * This function may only be called from softirq context and interrupts
2016 * should be enabled.
2017 *
2018 * Return values (usually ignored):
2019 * NET_RX_SUCCESS: no congestion
2020 * NET_RX_DROP: packet was dropped
2021 */
2022 int netif_receive_skb(struct sk_buff *skb)
2023 {
2024 struct packet_type *ptype, *pt_prev;
2025 struct net_device *orig_dev;
2026 int ret = NET_RX_DROP;
2027 __be16 type;
2028
2029 /* if we've gotten here through NAPI, check netpoll */
2030 if (netpoll_receive_skb(skb))
2031 return NET_RX_DROP;
2032
2033 if (!skb->tstamp.tv64)
2034 net_timestamp(skb);
2035
2036 if (!skb->iif)
2037 skb->iif = skb->dev->ifindex;
2038
2039 orig_dev = skb_bond(skb);
2040
2041 if (!orig_dev)
2042 return NET_RX_DROP;
2043
2044 __get_cpu_var(netdev_rx_stat).total++;
2045
2046 skb_reset_network_header(skb);
2047 skb_reset_transport_header(skb);
2048 skb->mac_len = skb->network_header - skb->mac_header;
2049
2050 pt_prev = NULL;
2051
2052 rcu_read_lock();
2053
2054 #ifdef CONFIG_NET_CLS_ACT
2055 if (skb->tc_verd & TC_NCLS) {
2056 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2057 goto ncls;
2058 }
2059 #endif
2060
2061 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2062 if (!ptype->dev || ptype->dev == skb->dev) {
2063 if (pt_prev)
2064 ret = deliver_skb(skb, pt_prev, orig_dev);
2065 pt_prev = ptype;
2066 }
2067 }
2068
2069 #ifdef CONFIG_NET_CLS_ACT
2070 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2071 if (!skb)
2072 goto out;
2073 ncls:
2074 #endif
2075
2076 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2077 if (!skb)
2078 goto out;
2079 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2080 if (!skb)
2081 goto out;
2082
2083 type = skb->protocol;
2084 list_for_each_entry_rcu(ptype,
2085 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2086 if (ptype->type == type &&
2087 (!ptype->dev || ptype->dev == skb->dev)) {
2088 if (pt_prev)
2089 ret = deliver_skb(skb, pt_prev, orig_dev);
2090 pt_prev = ptype;
2091 }
2092 }
2093
2094 if (pt_prev) {
2095 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2096 } else {
2097 kfree_skb(skb);
2098 /* Jamal, now you will not able to escape explaining
2099 * me how you were going to use this. :-)
2100 */
2101 ret = NET_RX_DROP;
2102 }
2103
2104 out:
2105 rcu_read_unlock();
2106 return ret;
2107 }
2108
2109 static int process_backlog(struct napi_struct *napi, int quota)
2110 {
2111 int work = 0;
2112 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2113 unsigned long start_time = jiffies;
2114
2115 napi->weight = weight_p;
2116 do {
2117 struct sk_buff *skb;
2118 struct net_device *dev;
2119
2120 local_irq_disable();
2121 skb = __skb_dequeue(&queue->input_pkt_queue);
2122 if (!skb) {
2123 __napi_complete(napi);
2124 local_irq_enable();
2125 break;
2126 }
2127
2128 local_irq_enable();
2129
2130 dev = skb->dev;
2131
2132 netif_receive_skb(skb);
2133
2134 dev_put(dev);
2135 } while (++work < quota && jiffies == start_time);
2136
2137 return work;
2138 }
2139
2140 /**
2141 * __napi_schedule - schedule for receive
2142 * @n: entry to schedule
2143 *
2144 * The entry's receive function will be scheduled to run
2145 */
2146 void __napi_schedule(struct napi_struct *n)
2147 {
2148 unsigned long flags;
2149
2150 local_irq_save(flags);
2151 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2152 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2153 local_irq_restore(flags);
2154 }
2155 EXPORT_SYMBOL(__napi_schedule);
2156
2157
2158 static void net_rx_action(struct softirq_action *h)
2159 {
2160 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2161 unsigned long start_time = jiffies;
2162 int budget = netdev_budget;
2163 void *have;
2164
2165 local_irq_disable();
2166
2167 while (!list_empty(list)) {
2168 struct napi_struct *n;
2169 int work, weight;
2170
2171 /* If softirq window is exhuasted then punt.
2172 *
2173 * Note that this is a slight policy change from the
2174 * previous NAPI code, which would allow up to 2
2175 * jiffies to pass before breaking out. The test
2176 * used to be "jiffies - start_time > 1".
2177 */
2178 if (unlikely(budget <= 0 || jiffies != start_time))
2179 goto softnet_break;
2180
2181 local_irq_enable();
2182
2183 /* Even though interrupts have been re-enabled, this
2184 * access is safe because interrupts can only add new
2185 * entries to the tail of this list, and only ->poll()
2186 * calls can remove this head entry from the list.
2187 */
2188 n = list_entry(list->next, struct napi_struct, poll_list);
2189
2190 have = netpoll_poll_lock(n);
2191
2192 weight = n->weight;
2193
2194 /* This NAPI_STATE_SCHED test is for avoiding a race
2195 * with netpoll's poll_napi(). Only the entity which
2196 * obtains the lock and sees NAPI_STATE_SCHED set will
2197 * actually make the ->poll() call. Therefore we avoid
2198 * accidently calling ->poll() when NAPI is not scheduled.
2199 */
2200 work = 0;
2201 if (test_bit(NAPI_STATE_SCHED, &n->state))
2202 work = n->poll(n, weight);
2203
2204 WARN_ON_ONCE(work > weight);
2205
2206 budget -= work;
2207
2208 local_irq_disable();
2209
2210 /* Drivers must not modify the NAPI state if they
2211 * consume the entire weight. In such cases this code
2212 * still "owns" the NAPI instance and therefore can
2213 * move the instance around on the list at-will.
2214 */
2215 if (unlikely(work == weight)) {
2216 if (unlikely(napi_disable_pending(n)))
2217 __napi_complete(n);
2218 else
2219 list_move_tail(&n->poll_list, list);
2220 }
2221
2222 netpoll_poll_unlock(have);
2223 }
2224 out:
2225 local_irq_enable();
2226
2227 #ifdef CONFIG_NET_DMA
2228 /*
2229 * There may not be any more sk_buffs coming right now, so push
2230 * any pending DMA copies to hardware
2231 */
2232 if (!cpus_empty(net_dma.channel_mask)) {
2233 int chan_idx;
2234 for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2235 struct dma_chan *chan = net_dma.channels[chan_idx];
2236 if (chan)
2237 dma_async_memcpy_issue_pending(chan);
2238 }
2239 }
2240 #endif
2241
2242 return;
2243
2244 softnet_break:
2245 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2246 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2247 goto out;
2248 }
2249
2250 static gifconf_func_t * gifconf_list [NPROTO];
2251
2252 /**
2253 * register_gifconf - register a SIOCGIF handler
2254 * @family: Address family
2255 * @gifconf: Function handler
2256 *
2257 * Register protocol dependent address dumping routines. The handler
2258 * that is passed must not be freed or reused until it has been replaced
2259 * by another handler.
2260 */
2261 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2262 {
2263 if (family >= NPROTO)
2264 return -EINVAL;
2265 gifconf_list[family] = gifconf;
2266 return 0;
2267 }
2268
2269
2270 /*
2271 * Map an interface index to its name (SIOCGIFNAME)
2272 */
2273
2274 /*
2275 * We need this ioctl for efficient implementation of the
2276 * if_indextoname() function required by the IPv6 API. Without
2277 * it, we would have to search all the interfaces to find a
2278 * match. --pb
2279 */
2280
2281 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2282 {
2283 struct net_device *dev;
2284 struct ifreq ifr;
2285
2286 /*
2287 * Fetch the caller's info block.
2288 */
2289
2290 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2291 return -EFAULT;
2292
2293 read_lock(&dev_base_lock);
2294 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2295 if (!dev) {
2296 read_unlock(&dev_base_lock);
2297 return -ENODEV;
2298 }
2299
2300 strcpy(ifr.ifr_name, dev->name);
2301 read_unlock(&dev_base_lock);
2302
2303 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2304 return -EFAULT;
2305 return 0;
2306 }
2307
2308 /*
2309 * Perform a SIOCGIFCONF call. This structure will change
2310 * size eventually, and there is nothing I can do about it.
2311 * Thus we will need a 'compatibility mode'.
2312 */
2313
2314 static int dev_ifconf(struct net *net, char __user *arg)
2315 {
2316 struct ifconf ifc;
2317 struct net_device *dev;
2318 char __user *pos;
2319 int len;
2320 int total;
2321 int i;
2322
2323 /*
2324 * Fetch the caller's info block.
2325 */
2326
2327 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2328 return -EFAULT;
2329
2330 pos = ifc.ifc_buf;
2331 len = ifc.ifc_len;
2332
2333 /*
2334 * Loop over the interfaces, and write an info block for each.
2335 */
2336
2337 total = 0;
2338 for_each_netdev(net, dev) {
2339 for (i = 0; i < NPROTO; i++) {
2340 if (gifconf_list[i]) {
2341 int done;
2342 if (!pos)
2343 done = gifconf_list[i](dev, NULL, 0);
2344 else
2345 done = gifconf_list[i](dev, pos + total,
2346 len - total);
2347 if (done < 0)
2348 return -EFAULT;
2349 total += done;
2350 }
2351 }
2352 }
2353
2354 /*
2355 * All done. Write the updated control block back to the caller.
2356 */
2357 ifc.ifc_len = total;
2358
2359 /*
2360 * Both BSD and Solaris return 0 here, so we do too.
2361 */
2362 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2363 }
2364
2365 #ifdef CONFIG_PROC_FS
2366 /*
2367 * This is invoked by the /proc filesystem handler to display a device
2368 * in detail.
2369 */
2370 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2371 __acquires(dev_base_lock)
2372 {
2373 struct net *net = seq_file_net(seq);
2374 loff_t off;
2375 struct net_device *dev;
2376
2377 read_lock(&dev_base_lock);
2378 if (!*pos)
2379 return SEQ_START_TOKEN;
2380
2381 off = 1;
2382 for_each_netdev(net, dev)
2383 if (off++ == *pos)
2384 return dev;
2385
2386 return NULL;
2387 }
2388
2389 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2390 {
2391 struct net *net = seq_file_net(seq);
2392 ++*pos;
2393 return v == SEQ_START_TOKEN ?
2394 first_net_device(net) : next_net_device((struct net_device *)v);
2395 }
2396
2397 void dev_seq_stop(struct seq_file *seq, void *v)
2398 __releases(dev_base_lock)
2399 {
2400 read_unlock(&dev_base_lock);
2401 }
2402
2403 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2404 {
2405 struct net_device_stats *stats = dev->get_stats(dev);
2406
2407 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2408 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2409 dev->name, stats->rx_bytes, stats->rx_packets,
2410 stats->rx_errors,
2411 stats->rx_dropped + stats->rx_missed_errors,
2412 stats->rx_fifo_errors,
2413 stats->rx_length_errors + stats->rx_over_errors +
2414 stats->rx_crc_errors + stats->rx_frame_errors,
2415 stats->rx_compressed, stats->multicast,
2416 stats->tx_bytes, stats->tx_packets,
2417 stats->tx_errors, stats->tx_dropped,
2418 stats->tx_fifo_errors, stats->collisions,
2419 stats->tx_carrier_errors +
2420 stats->tx_aborted_errors +
2421 stats->tx_window_errors +
2422 stats->tx_heartbeat_errors,
2423 stats->tx_compressed);
2424 }
2425
2426 /*
2427 * Called from the PROCfs module. This now uses the new arbitrary sized
2428 * /proc/net interface to create /proc/net/dev
2429 */
2430 static int dev_seq_show(struct seq_file *seq, void *v)
2431 {
2432 if (v == SEQ_START_TOKEN)
2433 seq_puts(seq, "Inter-| Receive "
2434 " | Transmit\n"
2435 " face |bytes packets errs drop fifo frame "
2436 "compressed multicast|bytes packets errs "
2437 "drop fifo colls carrier compressed\n");
2438 else
2439 dev_seq_printf_stats(seq, v);
2440 return 0;
2441 }
2442
2443 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2444 {
2445 struct netif_rx_stats *rc = NULL;
2446
2447 while (*pos < nr_cpu_ids)
2448 if (cpu_online(*pos)) {
2449 rc = &per_cpu(netdev_rx_stat, *pos);
2450 break;
2451 } else
2452 ++*pos;
2453 return rc;
2454 }
2455
2456 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2457 {
2458 return softnet_get_online(pos);
2459 }
2460
2461 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2462 {
2463 ++*pos;
2464 return softnet_get_online(pos);
2465 }
2466
2467 static void softnet_seq_stop(struct seq_file *seq, void *v)
2468 {
2469 }
2470
2471 static int softnet_seq_show(struct seq_file *seq, void *v)
2472 {
2473 struct netif_rx_stats *s = v;
2474
2475 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2476 s->total, s->dropped, s->time_squeeze, 0,
2477 0, 0, 0, 0, /* was fastroute */
2478 s->cpu_collision );
2479 return 0;
2480 }
2481
2482 static const struct seq_operations dev_seq_ops = {
2483 .start = dev_seq_start,
2484 .next = dev_seq_next,
2485 .stop = dev_seq_stop,
2486 .show = dev_seq_show,
2487 };
2488
2489 static int dev_seq_open(struct inode *inode, struct file *file)
2490 {
2491 return seq_open_net(inode, file, &dev_seq_ops,
2492 sizeof(struct seq_net_private));
2493 }
2494
2495 static const struct file_operations dev_seq_fops = {
2496 .owner = THIS_MODULE,
2497 .open = dev_seq_open,
2498 .read = seq_read,
2499 .llseek = seq_lseek,
2500 .release = seq_release_net,
2501 };
2502
2503 static const struct seq_operations softnet_seq_ops = {
2504 .start = softnet_seq_start,
2505 .next = softnet_seq_next,
2506 .stop = softnet_seq_stop,
2507 .show = softnet_seq_show,
2508 };
2509
2510 static int softnet_seq_open(struct inode *inode, struct file *file)
2511 {
2512 return seq_open(file, &softnet_seq_ops);
2513 }
2514
2515 static const struct file_operations softnet_seq_fops = {
2516 .owner = THIS_MODULE,
2517 .open = softnet_seq_open,
2518 .read = seq_read,
2519 .llseek = seq_lseek,
2520 .release = seq_release,
2521 };
2522
2523 static void *ptype_get_idx(loff_t pos)
2524 {
2525 struct packet_type *pt = NULL;
2526 loff_t i = 0;
2527 int t;
2528
2529 list_for_each_entry_rcu(pt, &ptype_all, list) {
2530 if (i == pos)
2531 return pt;
2532 ++i;
2533 }
2534
2535 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2536 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2537 if (i == pos)
2538 return pt;
2539 ++i;
2540 }
2541 }
2542 return NULL;
2543 }
2544
2545 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2546 __acquires(RCU)
2547 {
2548 rcu_read_lock();
2549 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2550 }
2551
2552 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2553 {
2554 struct packet_type *pt;
2555 struct list_head *nxt;
2556 int hash;
2557
2558 ++*pos;
2559 if (v == SEQ_START_TOKEN)
2560 return ptype_get_idx(0);
2561
2562 pt = v;
2563 nxt = pt->list.next;
2564 if (pt->type == htons(ETH_P_ALL)) {
2565 if (nxt != &ptype_all)
2566 goto found;
2567 hash = 0;
2568 nxt = ptype_base[0].next;
2569 } else
2570 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2571
2572 while (nxt == &ptype_base[hash]) {
2573 if (++hash >= PTYPE_HASH_SIZE)
2574 return NULL;
2575 nxt = ptype_base[hash].next;
2576 }
2577 found:
2578 return list_entry(nxt, struct packet_type, list);
2579 }
2580
2581 static void ptype_seq_stop(struct seq_file *seq, void *v)
2582 __releases(RCU)
2583 {
2584 rcu_read_unlock();
2585 }
2586
2587 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2588 {
2589 #ifdef CONFIG_KALLSYMS
2590 unsigned long offset = 0, symsize;
2591 const char *symname;
2592 char *modname;
2593 char namebuf[128];
2594
2595 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2596 &modname, namebuf);
2597
2598 if (symname) {
2599 char *delim = ":";
2600
2601 if (!modname)
2602 modname = delim = "";
2603 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2604 symname, offset);
2605 return;
2606 }
2607 #endif
2608
2609 seq_printf(seq, "[%p]", sym);
2610 }
2611
2612 static int ptype_seq_show(struct seq_file *seq, void *v)
2613 {
2614 struct packet_type *pt = v;
2615
2616 if (v == SEQ_START_TOKEN)
2617 seq_puts(seq, "Type Device Function\n");
2618 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2619 if (pt->type == htons(ETH_P_ALL))
2620 seq_puts(seq, "ALL ");
2621 else
2622 seq_printf(seq, "%04x", ntohs(pt->type));
2623
2624 seq_printf(seq, " %-8s ",
2625 pt->dev ? pt->dev->name : "");
2626 ptype_seq_decode(seq, pt->func);
2627 seq_putc(seq, '\n');
2628 }
2629
2630 return 0;
2631 }
2632
2633 static const struct seq_operations ptype_seq_ops = {
2634 .start = ptype_seq_start,
2635 .next = ptype_seq_next,
2636 .stop = ptype_seq_stop,
2637 .show = ptype_seq_show,
2638 };
2639
2640 static int ptype_seq_open(struct inode *inode, struct file *file)
2641 {
2642 return seq_open_net(inode, file, &ptype_seq_ops,
2643 sizeof(struct seq_net_private));
2644 }
2645
2646 static const struct file_operations ptype_seq_fops = {
2647 .owner = THIS_MODULE,
2648 .open = ptype_seq_open,
2649 .read = seq_read,
2650 .llseek = seq_lseek,
2651 .release = seq_release_net,
2652 };
2653
2654
2655 static int __net_init dev_proc_net_init(struct net *net)
2656 {
2657 int rc = -ENOMEM;
2658
2659 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2660 goto out;
2661 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2662 goto out_dev;
2663 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2664 goto out_softnet;
2665
2666 if (wext_proc_init(net))
2667 goto out_ptype;
2668 rc = 0;
2669 out:
2670 return rc;
2671 out_ptype:
2672 proc_net_remove(net, "ptype");
2673 out_softnet:
2674 proc_net_remove(net, "softnet_stat");
2675 out_dev:
2676 proc_net_remove(net, "dev");
2677 goto out;
2678 }
2679
2680 static void __net_exit dev_proc_net_exit(struct net *net)
2681 {
2682 wext_proc_exit(net);
2683
2684 proc_net_remove(net, "ptype");
2685 proc_net_remove(net, "softnet_stat");
2686 proc_net_remove(net, "dev");
2687 }
2688
2689 static struct pernet_operations __net_initdata dev_proc_ops = {
2690 .init = dev_proc_net_init,
2691 .exit = dev_proc_net_exit,
2692 };
2693
2694 static int __init dev_proc_init(void)
2695 {
2696 return register_pernet_subsys(&dev_proc_ops);
2697 }
2698 #else
2699 #define dev_proc_init() 0
2700 #endif /* CONFIG_PROC_FS */
2701
2702
2703 /**
2704 * netdev_set_master - set up master/slave pair
2705 * @slave: slave device
2706 * @master: new master device
2707 *
2708 * Changes the master device of the slave. Pass %NULL to break the
2709 * bonding. The caller must hold the RTNL semaphore. On a failure
2710 * a negative errno code is returned. On success the reference counts
2711 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2712 * function returns zero.
2713 */
2714 int netdev_set_master(struct net_device *slave, struct net_device *master)
2715 {
2716 struct net_device *old = slave->master;
2717
2718 ASSERT_RTNL();
2719
2720 if (master) {
2721 if (old)
2722 return -EBUSY;
2723 dev_hold(master);
2724 }
2725
2726 slave->master = master;
2727
2728 synchronize_net();
2729
2730 if (old)
2731 dev_put(old);
2732
2733 if (master)
2734 slave->flags |= IFF_SLAVE;
2735 else
2736 slave->flags &= ~IFF_SLAVE;
2737
2738 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2739 return 0;
2740 }
2741
2742 static void __dev_set_promiscuity(struct net_device *dev, int inc)
2743 {
2744 unsigned short old_flags = dev->flags;
2745
2746 ASSERT_RTNL();
2747
2748 if ((dev->promiscuity += inc) == 0)
2749 dev->flags &= ~IFF_PROMISC;
2750 else
2751 dev->flags |= IFF_PROMISC;
2752 if (dev->flags != old_flags) {
2753 printk(KERN_INFO "device %s %s promiscuous mode\n",
2754 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2755 "left");
2756 if (audit_enabled)
2757 audit_log(current->audit_context, GFP_ATOMIC,
2758 AUDIT_ANOM_PROMISCUOUS,
2759 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2760 dev->name, (dev->flags & IFF_PROMISC),
2761 (old_flags & IFF_PROMISC),
2762 audit_get_loginuid(current),
2763 current->uid, current->gid,
2764 audit_get_sessionid(current));
2765
2766 if (dev->change_rx_flags)
2767 dev->change_rx_flags(dev, IFF_PROMISC);
2768 }
2769 }
2770
2771 /**
2772 * dev_set_promiscuity - update promiscuity count on a device
2773 * @dev: device
2774 * @inc: modifier
2775 *
2776 * Add or remove promiscuity from a device. While the count in the device
2777 * remains above zero the interface remains promiscuous. Once it hits zero
2778 * the device reverts back to normal filtering operation. A negative inc
2779 * value is used to drop promiscuity on the device.
2780 */
2781 void dev_set_promiscuity(struct net_device *dev, int inc)
2782 {
2783 unsigned short old_flags = dev->flags;
2784
2785 __dev_set_promiscuity(dev, inc);
2786 if (dev->flags != old_flags)
2787 dev_set_rx_mode(dev);
2788 }
2789
2790 /**
2791 * dev_set_allmulti - update allmulti count on a device
2792 * @dev: device
2793 * @inc: modifier
2794 *
2795 * Add or remove reception of all multicast frames to a device. While the
2796 * count in the device remains above zero the interface remains listening
2797 * to all interfaces. Once it hits zero the device reverts back to normal
2798 * filtering operation. A negative @inc value is used to drop the counter
2799 * when releasing a resource needing all multicasts.
2800 */
2801
2802 void dev_set_allmulti(struct net_device *dev, int inc)
2803 {
2804 unsigned short old_flags = dev->flags;
2805
2806 ASSERT_RTNL();
2807
2808 dev->flags |= IFF_ALLMULTI;
2809 if ((dev->allmulti += inc) == 0)
2810 dev->flags &= ~IFF_ALLMULTI;
2811 if (dev->flags ^ old_flags) {
2812 if (dev->change_rx_flags)
2813 dev->change_rx_flags(dev, IFF_ALLMULTI);
2814 dev_set_rx_mode(dev);
2815 }
2816 }
2817
2818 /*
2819 * Upload unicast and multicast address lists to device and
2820 * configure RX filtering. When the device doesn't support unicast
2821 * filtering it is put in promiscuous mode while unicast addresses
2822 * are present.
2823 */
2824 void __dev_set_rx_mode(struct net_device *dev)
2825 {
2826 /* dev_open will call this function so the list will stay sane. */
2827 if (!(dev->flags&IFF_UP))
2828 return;
2829
2830 if (!netif_device_present(dev))
2831 return;
2832
2833 if (dev->set_rx_mode)
2834 dev->set_rx_mode(dev);
2835 else {
2836 /* Unicast addresses changes may only happen under the rtnl,
2837 * therefore calling __dev_set_promiscuity here is safe.
2838 */
2839 if (dev->uc_count > 0 && !dev->uc_promisc) {
2840 __dev_set_promiscuity(dev, 1);
2841 dev->uc_promisc = 1;
2842 } else if (dev->uc_count == 0 && dev->uc_promisc) {
2843 __dev_set_promiscuity(dev, -1);
2844 dev->uc_promisc = 0;
2845 }
2846
2847 if (dev->set_multicast_list)
2848 dev->set_multicast_list(dev);
2849 }
2850 }
2851
2852 void dev_set_rx_mode(struct net_device *dev)
2853 {
2854 netif_tx_lock_bh(dev);
2855 __dev_set_rx_mode(dev);
2856 netif_tx_unlock_bh(dev);
2857 }
2858
2859 int __dev_addr_delete(struct dev_addr_list **list, int *count,
2860 void *addr, int alen, int glbl)
2861 {
2862 struct dev_addr_list *da;
2863
2864 for (; (da = *list) != NULL; list = &da->next) {
2865 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2866 alen == da->da_addrlen) {
2867 if (glbl) {
2868 int old_glbl = da->da_gusers;
2869 da->da_gusers = 0;
2870 if (old_glbl == 0)
2871 break;
2872 }
2873 if (--da->da_users)
2874 return 0;
2875
2876 *list = da->next;
2877 kfree(da);
2878 (*count)--;
2879 return 0;
2880 }
2881 }
2882 return -ENOENT;
2883 }
2884
2885 int __dev_addr_add(struct dev_addr_list **list, int *count,
2886 void *addr, int alen, int glbl)
2887 {
2888 struct dev_addr_list *da;
2889
2890 for (da = *list; da != NULL; da = da->next) {
2891 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2892 da->da_addrlen == alen) {
2893 if (glbl) {
2894 int old_glbl = da->da_gusers;
2895 da->da_gusers = 1;
2896 if (old_glbl)
2897 return 0;
2898 }
2899 da->da_users++;
2900 return 0;
2901 }
2902 }
2903
2904 da = kzalloc(sizeof(*da), GFP_ATOMIC);
2905 if (da == NULL)
2906 return -ENOMEM;
2907 memcpy(da->da_addr, addr, alen);
2908 da->da_addrlen = alen;
2909 da->da_users = 1;
2910 da->da_gusers = glbl ? 1 : 0;
2911 da->next = *list;
2912 *list = da;
2913 (*count)++;
2914 return 0;
2915 }
2916
2917 /**
2918 * dev_unicast_delete - Release secondary unicast address.
2919 * @dev: device
2920 * @addr: address to delete
2921 * @alen: length of @addr
2922 *
2923 * Release reference to a secondary unicast address and remove it
2924 * from the device if the reference count drops to zero.
2925 *
2926 * The caller must hold the rtnl_mutex.
2927 */
2928 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
2929 {
2930 int err;
2931
2932 ASSERT_RTNL();
2933
2934 netif_tx_lock_bh(dev);
2935 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2936 if (!err)
2937 __dev_set_rx_mode(dev);
2938 netif_tx_unlock_bh(dev);
2939 return err;
2940 }
2941 EXPORT_SYMBOL(dev_unicast_delete);
2942
2943 /**
2944 * dev_unicast_add - add a secondary unicast address
2945 * @dev: device
2946 * @addr: address to delete
2947 * @alen: length of @addr
2948 *
2949 * Add a secondary unicast address to the device or increase
2950 * the reference count if it already exists.
2951 *
2952 * The caller must hold the rtnl_mutex.
2953 */
2954 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
2955 {
2956 int err;
2957
2958 ASSERT_RTNL();
2959
2960 netif_tx_lock_bh(dev);
2961 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2962 if (!err)
2963 __dev_set_rx_mode(dev);
2964 netif_tx_unlock_bh(dev);
2965 return err;
2966 }
2967 EXPORT_SYMBOL(dev_unicast_add);
2968
2969 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
2970 struct dev_addr_list **from, int *from_count)
2971 {
2972 struct dev_addr_list *da, *next;
2973 int err = 0;
2974
2975 da = *from;
2976 while (da != NULL) {
2977 next = da->next;
2978 if (!da->da_synced) {
2979 err = __dev_addr_add(to, to_count,
2980 da->da_addr, da->da_addrlen, 0);
2981 if (err < 0)
2982 break;
2983 da->da_synced = 1;
2984 da->da_users++;
2985 } else if (da->da_users == 1) {
2986 __dev_addr_delete(to, to_count,
2987 da->da_addr, da->da_addrlen, 0);
2988 __dev_addr_delete(from, from_count,
2989 da->da_addr, da->da_addrlen, 0);
2990 }
2991 da = next;
2992 }
2993 return err;
2994 }
2995
2996 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
2997 struct dev_addr_list **from, int *from_count)
2998 {
2999 struct dev_addr_list *da, *next;
3000
3001 da = *from;
3002 while (da != NULL) {
3003 next = da->next;
3004 if (da->da_synced) {
3005 __dev_addr_delete(to, to_count,
3006 da->da_addr, da->da_addrlen, 0);
3007 da->da_synced = 0;
3008 __dev_addr_delete(from, from_count,
3009 da->da_addr, da->da_addrlen, 0);
3010 }
3011 da = next;
3012 }
3013 }
3014
3015 /**
3016 * dev_unicast_sync - Synchronize device's unicast list to another device
3017 * @to: destination device
3018 * @from: source device
3019 *
3020 * Add newly added addresses to the destination device and release
3021 * addresses that have no users left. The source device must be
3022 * locked by netif_tx_lock_bh.
3023 *
3024 * This function is intended to be called from the dev->set_rx_mode
3025 * function of layered software devices.
3026 */
3027 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3028 {
3029 int err = 0;
3030
3031 netif_tx_lock_bh(to);
3032 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3033 &from->uc_list, &from->uc_count);
3034 if (!err)
3035 __dev_set_rx_mode(to);
3036 netif_tx_unlock_bh(to);
3037 return err;
3038 }
3039 EXPORT_SYMBOL(dev_unicast_sync);
3040
3041 /**
3042 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3043 * @to: destination device
3044 * @from: source device
3045 *
3046 * Remove all addresses that were added to the destination device by
3047 * dev_unicast_sync(). This function is intended to be called from the
3048 * dev->stop function of layered software devices.
3049 */
3050 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3051 {
3052 netif_tx_lock_bh(from);
3053 netif_tx_lock_bh(to);
3054
3055 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3056 &from->uc_list, &from->uc_count);
3057 __dev_set_rx_mode(to);
3058
3059 netif_tx_unlock_bh(to);
3060 netif_tx_unlock_bh(from);
3061 }
3062 EXPORT_SYMBOL(dev_unicast_unsync);
3063
3064 static void __dev_addr_discard(struct dev_addr_list **list)
3065 {
3066 struct dev_addr_list *tmp;
3067
3068 while (*list != NULL) {
3069 tmp = *list;
3070 *list = tmp->next;
3071 if (tmp->da_users > tmp->da_gusers)
3072 printk("__dev_addr_discard: address leakage! "
3073 "da_users=%d\n", tmp->da_users);
3074 kfree(tmp);
3075 }
3076 }
3077
3078 static void dev_addr_discard(struct net_device *dev)
3079 {
3080 netif_tx_lock_bh(dev);
3081
3082 __dev_addr_discard(&dev->uc_list);
3083 dev->uc_count = 0;
3084
3085 __dev_addr_discard(&dev->mc_list);
3086 dev->mc_count = 0;
3087
3088 netif_tx_unlock_bh(dev);
3089 }
3090
3091 unsigned dev_get_flags(const struct net_device *dev)
3092 {
3093 unsigned flags;
3094
3095 flags = (dev->flags & ~(IFF_PROMISC |
3096 IFF_ALLMULTI |
3097 IFF_RUNNING |
3098 IFF_LOWER_UP |
3099 IFF_DORMANT)) |
3100 (dev->gflags & (IFF_PROMISC |
3101 IFF_ALLMULTI));
3102
3103 if (netif_running(dev)) {
3104 if (netif_oper_up(dev))
3105 flags |= IFF_RUNNING;
3106 if (netif_carrier_ok(dev))
3107 flags |= IFF_LOWER_UP;
3108 if (netif_dormant(dev))
3109 flags |= IFF_DORMANT;
3110 }
3111
3112 return flags;
3113 }
3114
3115 int dev_change_flags(struct net_device *dev, unsigned flags)
3116 {
3117 int ret, changes;
3118 int old_flags = dev->flags;
3119
3120 ASSERT_RTNL();
3121
3122 /*
3123 * Set the flags on our device.
3124 */
3125
3126 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3127 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3128 IFF_AUTOMEDIA)) |
3129 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3130 IFF_ALLMULTI));
3131
3132 /*
3133 * Load in the correct multicast list now the flags have changed.
3134 */
3135
3136 if (dev->change_rx_flags && (dev->flags ^ flags) & IFF_MULTICAST)
3137 dev->change_rx_flags(dev, IFF_MULTICAST);
3138
3139 dev_set_rx_mode(dev);
3140
3141 /*
3142 * Have we downed the interface. We handle IFF_UP ourselves
3143 * according to user attempts to set it, rather than blindly
3144 * setting it.
3145 */
3146
3147 ret = 0;
3148 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3149 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3150
3151 if (!ret)
3152 dev_set_rx_mode(dev);
3153 }
3154
3155 if (dev->flags & IFF_UP &&
3156 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3157 IFF_VOLATILE)))
3158 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3159
3160 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3161 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3162 dev->gflags ^= IFF_PROMISC;
3163 dev_set_promiscuity(dev, inc);
3164 }
3165
3166 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3167 is important. Some (broken) drivers set IFF_PROMISC, when
3168 IFF_ALLMULTI is requested not asking us and not reporting.
3169 */
3170 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3171 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3172 dev->gflags ^= IFF_ALLMULTI;
3173 dev_set_allmulti(dev, inc);
3174 }
3175
3176 /* Exclude state transition flags, already notified */
3177 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3178 if (changes)
3179 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3180
3181 return ret;
3182 }
3183
3184 int dev_set_mtu(struct net_device *dev, int new_mtu)
3185 {
3186 int err;
3187
3188 if (new_mtu == dev->mtu)
3189 return 0;
3190
3191 /* MTU must be positive. */
3192 if (new_mtu < 0)
3193 return -EINVAL;
3194
3195 if (!netif_device_present(dev))
3196 return -ENODEV;
3197
3198 err = 0;
3199 if (dev->change_mtu)
3200 err = dev->change_mtu(dev, new_mtu);
3201 else
3202 dev->mtu = new_mtu;
3203 if (!err && dev->flags & IFF_UP)
3204 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3205 return err;
3206 }
3207
3208 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3209 {
3210 int err;
3211
3212 if (!dev->set_mac_address)
3213 return -EOPNOTSUPP;
3214 if (sa->sa_family != dev->type)
3215 return -EINVAL;
3216 if (!netif_device_present(dev))
3217 return -ENODEV;
3218 err = dev->set_mac_address(dev, sa);
3219 if (!err)
3220 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3221 return err;
3222 }
3223
3224 /*
3225 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3226 */
3227 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3228 {
3229 int err;
3230 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3231
3232 if (!dev)
3233 return -ENODEV;
3234
3235 switch (cmd) {
3236 case SIOCGIFFLAGS: /* Get interface flags */
3237 ifr->ifr_flags = dev_get_flags(dev);
3238 return 0;
3239
3240 case SIOCGIFMETRIC: /* Get the metric on the interface
3241 (currently unused) */
3242 ifr->ifr_metric = 0;
3243 return 0;
3244
3245 case SIOCGIFMTU: /* Get the MTU of a device */
3246 ifr->ifr_mtu = dev->mtu;
3247 return 0;
3248
3249 case SIOCGIFHWADDR:
3250 if (!dev->addr_len)
3251 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3252 else
3253 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3254 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3255 ifr->ifr_hwaddr.sa_family = dev->type;
3256 return 0;
3257
3258 case SIOCGIFSLAVE:
3259 err = -EINVAL;
3260 break;
3261
3262 case SIOCGIFMAP:
3263 ifr->ifr_map.mem_start = dev->mem_start;
3264 ifr->ifr_map.mem_end = dev->mem_end;
3265 ifr->ifr_map.base_addr = dev->base_addr;
3266 ifr->ifr_map.irq = dev->irq;
3267 ifr->ifr_map.dma = dev->dma;
3268 ifr->ifr_map.port = dev->if_port;
3269 return 0;
3270
3271 case SIOCGIFINDEX:
3272 ifr->ifr_ifindex = dev->ifindex;
3273 return 0;
3274
3275 case SIOCGIFTXQLEN:
3276 ifr->ifr_qlen = dev->tx_queue_len;
3277 return 0;
3278
3279 default:
3280 /* dev_ioctl() should ensure this case
3281 * is never reached
3282 */
3283 WARN_ON(1);
3284 err = -EINVAL;
3285 break;
3286
3287 }
3288 return err;
3289 }
3290
3291 /*
3292 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3293 */
3294 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3295 {
3296 int err;
3297 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3298
3299 if (!dev)
3300 return -ENODEV;
3301
3302 switch (cmd) {
3303 case SIOCSIFFLAGS: /* Set interface flags */
3304 return dev_change_flags(dev, ifr->ifr_flags);
3305
3306 case SIOCSIFMETRIC: /* Set the metric on the interface
3307 (currently unused) */
3308 return -EOPNOTSUPP;
3309
3310 case SIOCSIFMTU: /* Set the MTU of a device */
3311 return dev_set_mtu(dev, ifr->ifr_mtu);
3312
3313 case SIOCSIFHWADDR:
3314 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3315
3316 case SIOCSIFHWBROADCAST:
3317 if (ifr->ifr_hwaddr.sa_family != dev->type)
3318 return -EINVAL;
3319 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3320 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3321 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3322 return 0;
3323
3324 case SIOCSIFMAP:
3325 if (dev->set_config) {
3326 if (!netif_device_present(dev))
3327 return -ENODEV;
3328 return dev->set_config(dev, &ifr->ifr_map);
3329 }
3330 return -EOPNOTSUPP;
3331
3332 case SIOCADDMULTI:
3333 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3334 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3335 return -EINVAL;
3336 if (!netif_device_present(dev))
3337 return -ENODEV;
3338 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3339 dev->addr_len, 1);
3340
3341 case SIOCDELMULTI:
3342 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3343 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3344 return -EINVAL;
3345 if (!netif_device_present(dev))
3346 return -ENODEV;
3347 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3348 dev->addr_len, 1);
3349
3350 case SIOCSIFTXQLEN:
3351 if (ifr->ifr_qlen < 0)
3352 return -EINVAL;
3353 dev->tx_queue_len = ifr->ifr_qlen;
3354 return 0;
3355
3356 case SIOCSIFNAME:
3357 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3358 return dev_change_name(dev, ifr->ifr_newname);
3359
3360 /*
3361 * Unknown or private ioctl
3362 */
3363
3364 default:
3365 if ((cmd >= SIOCDEVPRIVATE &&
3366 cmd <= SIOCDEVPRIVATE + 15) ||
3367 cmd == SIOCBONDENSLAVE ||
3368 cmd == SIOCBONDRELEASE ||
3369 cmd == SIOCBONDSETHWADDR ||
3370 cmd == SIOCBONDSLAVEINFOQUERY ||
3371 cmd == SIOCBONDINFOQUERY ||
3372 cmd == SIOCBONDCHANGEACTIVE ||
3373 cmd == SIOCGMIIPHY ||
3374 cmd == SIOCGMIIREG ||
3375 cmd == SIOCSMIIREG ||
3376 cmd == SIOCBRADDIF ||
3377 cmd == SIOCBRDELIF ||
3378 cmd == SIOCWANDEV) {
3379 err = -EOPNOTSUPP;
3380 if (dev->do_ioctl) {
3381 if (netif_device_present(dev))
3382 err = dev->do_ioctl(dev, ifr,
3383 cmd);
3384 else
3385 err = -ENODEV;
3386 }
3387 } else
3388 err = -EINVAL;
3389
3390 }
3391 return err;
3392 }
3393
3394 /*
3395 * This function handles all "interface"-type I/O control requests. The actual
3396 * 'doing' part of this is dev_ifsioc above.
3397 */
3398
3399 /**
3400 * dev_ioctl - network device ioctl
3401 * @net: the applicable net namespace
3402 * @cmd: command to issue
3403 * @arg: pointer to a struct ifreq in user space
3404 *
3405 * Issue ioctl functions to devices. This is normally called by the
3406 * user space syscall interfaces but can sometimes be useful for
3407 * other purposes. The return value is the return from the syscall if
3408 * positive or a negative errno code on error.
3409 */
3410
3411 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3412 {
3413 struct ifreq ifr;
3414 int ret;
3415 char *colon;
3416
3417 /* One special case: SIOCGIFCONF takes ifconf argument
3418 and requires shared lock, because it sleeps writing
3419 to user space.
3420 */
3421
3422 if (cmd == SIOCGIFCONF) {
3423 rtnl_lock();
3424 ret = dev_ifconf(net, (char __user *) arg);
3425 rtnl_unlock();
3426 return ret;
3427 }
3428 if (cmd == SIOCGIFNAME)
3429 return dev_ifname(net, (struct ifreq __user *)arg);
3430
3431 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3432 return -EFAULT;
3433
3434 ifr.ifr_name[IFNAMSIZ-1] = 0;
3435
3436 colon = strchr(ifr.ifr_name, ':');
3437 if (colon)
3438 *colon = 0;
3439
3440 /*
3441 * See which interface the caller is talking about.
3442 */
3443
3444 switch (cmd) {
3445 /*
3446 * These ioctl calls:
3447 * - can be done by all.
3448 * - atomic and do not require locking.
3449 * - return a value
3450 */
3451 case SIOCGIFFLAGS:
3452 case SIOCGIFMETRIC:
3453 case SIOCGIFMTU:
3454 case SIOCGIFHWADDR:
3455 case SIOCGIFSLAVE:
3456 case SIOCGIFMAP:
3457 case SIOCGIFINDEX:
3458 case SIOCGIFTXQLEN:
3459 dev_load(net, ifr.ifr_name);
3460 read_lock(&dev_base_lock);
3461 ret = dev_ifsioc_locked(net, &ifr, cmd);
3462 read_unlock(&dev_base_lock);
3463 if (!ret) {
3464 if (colon)
3465 *colon = ':';
3466 if (copy_to_user(arg, &ifr,
3467 sizeof(struct ifreq)))
3468 ret = -EFAULT;
3469 }
3470 return ret;
3471
3472 case SIOCETHTOOL:
3473 dev_load(net, ifr.ifr_name);
3474 rtnl_lock();
3475 ret = dev_ethtool(net, &ifr);
3476 rtnl_unlock();
3477 if (!ret) {
3478 if (colon)
3479 *colon = ':';
3480 if (copy_to_user(arg, &ifr,
3481 sizeof(struct ifreq)))
3482 ret = -EFAULT;
3483 }
3484 return ret;
3485
3486 /*
3487 * These ioctl calls:
3488 * - require superuser power.
3489 * - require strict serialization.
3490 * - return a value
3491 */
3492 case SIOCGMIIPHY:
3493 case SIOCGMIIREG:
3494 case SIOCSIFNAME:
3495 if (!capable(CAP_NET_ADMIN))
3496 return -EPERM;
3497 dev_load(net, ifr.ifr_name);
3498 rtnl_lock();
3499 ret = dev_ifsioc(net, &ifr, cmd);
3500 rtnl_unlock();
3501 if (!ret) {
3502 if (colon)
3503 *colon = ':';
3504 if (copy_to_user(arg, &ifr,
3505 sizeof(struct ifreq)))
3506 ret = -EFAULT;
3507 }
3508 return ret;
3509
3510 /*
3511 * These ioctl calls:
3512 * - require superuser power.
3513 * - require strict serialization.
3514 * - do not return a value
3515 */
3516 case SIOCSIFFLAGS:
3517 case SIOCSIFMETRIC:
3518 case SIOCSIFMTU:
3519 case SIOCSIFMAP:
3520 case SIOCSIFHWADDR:
3521 case SIOCSIFSLAVE:
3522 case SIOCADDMULTI:
3523 case SIOCDELMULTI:
3524 case SIOCSIFHWBROADCAST:
3525 case SIOCSIFTXQLEN:
3526 case SIOCSMIIREG:
3527 case SIOCBONDENSLAVE:
3528 case SIOCBONDRELEASE:
3529 case SIOCBONDSETHWADDR:
3530 case SIOCBONDCHANGEACTIVE:
3531 case SIOCBRADDIF:
3532 case SIOCBRDELIF:
3533 if (!capable(CAP_NET_ADMIN))
3534 return -EPERM;
3535 /* fall through */
3536 case SIOCBONDSLAVEINFOQUERY:
3537 case SIOCBONDINFOQUERY:
3538 dev_load(net, ifr.ifr_name);
3539 rtnl_lock();
3540 ret = dev_ifsioc(net, &ifr, cmd);
3541 rtnl_unlock();
3542 return ret;
3543
3544 case SIOCGIFMEM:
3545 /* Get the per device memory space. We can add this but
3546 * currently do not support it */
3547 case SIOCSIFMEM:
3548 /* Set the per device memory buffer space.
3549 * Not applicable in our case */
3550 case SIOCSIFLINK:
3551 return -EINVAL;
3552
3553 /*
3554 * Unknown or private ioctl.
3555 */
3556 default:
3557 if (cmd == SIOCWANDEV ||
3558 (cmd >= SIOCDEVPRIVATE &&
3559 cmd <= SIOCDEVPRIVATE + 15)) {
3560 dev_load(net, ifr.ifr_name);
3561 rtnl_lock();
3562 ret = dev_ifsioc(net, &ifr, cmd);
3563 rtnl_unlock();
3564 if (!ret && copy_to_user(arg, &ifr,
3565 sizeof(struct ifreq)))
3566 ret = -EFAULT;
3567 return ret;
3568 }
3569 /* Take care of Wireless Extensions */
3570 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3571 return wext_handle_ioctl(net, &ifr, cmd, arg);
3572 return -EINVAL;
3573 }
3574 }
3575
3576
3577 /**
3578 * dev_new_index - allocate an ifindex
3579 * @net: the applicable net namespace
3580 *
3581 * Returns a suitable unique value for a new device interface
3582 * number. The caller must hold the rtnl semaphore or the
3583 * dev_base_lock to be sure it remains unique.
3584 */
3585 static int dev_new_index(struct net *net)
3586 {
3587 static int ifindex;
3588 for (;;) {
3589 if (++ifindex <= 0)
3590 ifindex = 1;
3591 if (!__dev_get_by_index(net, ifindex))
3592 return ifindex;
3593 }
3594 }
3595
3596 /* Delayed registration/unregisteration */
3597 static DEFINE_SPINLOCK(net_todo_list_lock);
3598 static LIST_HEAD(net_todo_list);
3599
3600 static void net_set_todo(struct net_device *dev)
3601 {
3602 spin_lock(&net_todo_list_lock);
3603 list_add_tail(&dev->todo_list, &net_todo_list);
3604 spin_unlock(&net_todo_list_lock);
3605 }
3606
3607 static void rollback_registered(struct net_device *dev)
3608 {
3609 BUG_ON(dev_boot_phase);
3610 ASSERT_RTNL();
3611
3612 /* Some devices call without registering for initialization unwind. */
3613 if (dev->reg_state == NETREG_UNINITIALIZED) {
3614 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3615 "was registered\n", dev->name, dev);
3616
3617 WARN_ON(1);
3618 return;
3619 }
3620
3621 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3622
3623 /* If device is running, close it first. */
3624 dev_close(dev);
3625
3626 /* And unlink it from device chain. */
3627 unlist_netdevice(dev);
3628
3629 dev->reg_state = NETREG_UNREGISTERING;
3630
3631 synchronize_net();
3632
3633 /* Shutdown queueing discipline. */
3634 dev_shutdown(dev);
3635
3636
3637 /* Notify protocols, that we are about to destroy
3638 this device. They should clean all the things.
3639 */
3640 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3641
3642 /*
3643 * Flush the unicast and multicast chains
3644 */
3645 dev_addr_discard(dev);
3646
3647 if (dev->uninit)
3648 dev->uninit(dev);
3649
3650 /* Notifier chain MUST detach us from master device. */
3651 BUG_TRAP(!dev->master);
3652
3653 /* Remove entries from kobject tree */
3654 netdev_unregister_kobject(dev);
3655
3656 synchronize_net();
3657
3658 dev_put(dev);
3659 }
3660
3661 /**
3662 * register_netdevice - register a network device
3663 * @dev: device to register
3664 *
3665 * Take a completed network device structure and add it to the kernel
3666 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3667 * chain. 0 is returned on success. A negative errno code is returned
3668 * on a failure to set up the device, or if the name is a duplicate.
3669 *
3670 * Callers must hold the rtnl semaphore. You may want
3671 * register_netdev() instead of this.
3672 *
3673 * BUGS:
3674 * The locking appears insufficient to guarantee two parallel registers
3675 * will not get the same name.
3676 */
3677
3678 int register_netdevice(struct net_device *dev)
3679 {
3680 struct hlist_head *head;
3681 struct hlist_node *p;
3682 int ret;
3683 struct net *net;
3684
3685 BUG_ON(dev_boot_phase);
3686 ASSERT_RTNL();
3687
3688 might_sleep();
3689
3690 /* When net_device's are persistent, this will be fatal. */
3691 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3692 BUG_ON(!dev_net(dev));
3693 net = dev_net(dev);
3694
3695 spin_lock_init(&dev->queue_lock);
3696 spin_lock_init(&dev->_xmit_lock);
3697 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
3698 dev->xmit_lock_owner = -1;
3699 spin_lock_init(&dev->ingress_lock);
3700
3701 dev->iflink = -1;
3702
3703 /* Init, if this function is available */
3704 if (dev->init) {
3705 ret = dev->init(dev);
3706 if (ret) {
3707 if (ret > 0)
3708 ret = -EIO;
3709 goto out;
3710 }
3711 }
3712
3713 if (!dev_valid_name(dev->name)) {
3714 ret = -EINVAL;
3715 goto err_uninit;
3716 }
3717
3718 dev->ifindex = dev_new_index(net);
3719 if (dev->iflink == -1)
3720 dev->iflink = dev->ifindex;
3721
3722 /* Check for existence of name */
3723 head = dev_name_hash(net, dev->name);
3724 hlist_for_each(p, head) {
3725 struct net_device *d
3726 = hlist_entry(p, struct net_device, name_hlist);
3727 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3728 ret = -EEXIST;
3729 goto err_uninit;
3730 }
3731 }
3732
3733 /* Fix illegal checksum combinations */
3734 if ((dev->features & NETIF_F_HW_CSUM) &&
3735 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3736 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3737 dev->name);
3738 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3739 }
3740
3741 if ((dev->features & NETIF_F_NO_CSUM) &&
3742 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3743 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3744 dev->name);
3745 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3746 }
3747
3748
3749 /* Fix illegal SG+CSUM combinations. */
3750 if ((dev->features & NETIF_F_SG) &&
3751 !(dev->features & NETIF_F_ALL_CSUM)) {
3752 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3753 dev->name);
3754 dev->features &= ~NETIF_F_SG;
3755 }
3756
3757 /* TSO requires that SG is present as well. */
3758 if ((dev->features & NETIF_F_TSO) &&
3759 !(dev->features & NETIF_F_SG)) {
3760 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3761 dev->name);
3762 dev->features &= ~NETIF_F_TSO;
3763 }
3764 if (dev->features & NETIF_F_UFO) {
3765 if (!(dev->features & NETIF_F_HW_CSUM)) {
3766 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3767 "NETIF_F_HW_CSUM feature.\n",
3768 dev->name);
3769 dev->features &= ~NETIF_F_UFO;
3770 }
3771 if (!(dev->features & NETIF_F_SG)) {
3772 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3773 "NETIF_F_SG feature.\n",
3774 dev->name);
3775 dev->features &= ~NETIF_F_UFO;
3776 }
3777 }
3778
3779 netdev_initialize_kobject(dev);
3780 ret = netdev_register_kobject(dev);
3781 if (ret)
3782 goto err_uninit;
3783 dev->reg_state = NETREG_REGISTERED;
3784
3785 /*
3786 * Default initial state at registry is that the
3787 * device is present.
3788 */
3789
3790 set_bit(__LINK_STATE_PRESENT, &dev->state);
3791
3792 dev_init_scheduler(dev);
3793 dev_hold(dev);
3794 list_netdevice(dev);
3795
3796 /* Notify protocols, that a new device appeared. */
3797 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
3798 ret = notifier_to_errno(ret);
3799 if (ret) {
3800 rollback_registered(dev);
3801 dev->reg_state = NETREG_UNREGISTERED;
3802 }
3803
3804 out:
3805 return ret;
3806
3807 err_uninit:
3808 if (dev->uninit)
3809 dev->uninit(dev);
3810 goto out;
3811 }
3812
3813 /**
3814 * register_netdev - register a network device
3815 * @dev: device to register
3816 *
3817 * Take a completed network device structure and add it to the kernel
3818 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3819 * chain. 0 is returned on success. A negative errno code is returned
3820 * on a failure to set up the device, or if the name is a duplicate.
3821 *
3822 * This is a wrapper around register_netdevice that takes the rtnl semaphore
3823 * and expands the device name if you passed a format string to
3824 * alloc_netdev.
3825 */
3826 int register_netdev(struct net_device *dev)
3827 {
3828 int err;
3829
3830 rtnl_lock();
3831
3832 /*
3833 * If the name is a format string the caller wants us to do a
3834 * name allocation.
3835 */
3836 if (strchr(dev->name, '%')) {
3837 err = dev_alloc_name(dev, dev->name);
3838 if (err < 0)
3839 goto out;
3840 }
3841
3842 err = register_netdevice(dev);
3843 out:
3844 rtnl_unlock();
3845 return err;
3846 }
3847 EXPORT_SYMBOL(register_netdev);
3848
3849 /*
3850 * netdev_wait_allrefs - wait until all references are gone.
3851 *
3852 * This is called when unregistering network devices.
3853 *
3854 * Any protocol or device that holds a reference should register
3855 * for netdevice notification, and cleanup and put back the
3856 * reference if they receive an UNREGISTER event.
3857 * We can get stuck here if buggy protocols don't correctly
3858 * call dev_put.
3859 */
3860 static void netdev_wait_allrefs(struct net_device *dev)
3861 {
3862 unsigned long rebroadcast_time, warning_time;
3863
3864 rebroadcast_time = warning_time = jiffies;
3865 while (atomic_read(&dev->refcnt) != 0) {
3866 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3867 rtnl_lock();
3868
3869 /* Rebroadcast unregister notification */
3870 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3871
3872 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3873 &dev->state)) {
3874 /* We must not have linkwatch events
3875 * pending on unregister. If this
3876 * happens, we simply run the queue
3877 * unscheduled, resulting in a noop
3878 * for this device.
3879 */
3880 linkwatch_run_queue();
3881 }
3882
3883 __rtnl_unlock();
3884
3885 rebroadcast_time = jiffies;
3886 }
3887
3888 msleep(250);
3889
3890 if (time_after(jiffies, warning_time + 10 * HZ)) {
3891 printk(KERN_EMERG "unregister_netdevice: "
3892 "waiting for %s to become free. Usage "
3893 "count = %d\n",
3894 dev->name, atomic_read(&dev->refcnt));
3895 warning_time = jiffies;
3896 }
3897 }
3898 }
3899
3900 /* The sequence is:
3901 *
3902 * rtnl_lock();
3903 * ...
3904 * register_netdevice(x1);
3905 * register_netdevice(x2);
3906 * ...
3907 * unregister_netdevice(y1);
3908 * unregister_netdevice(y2);
3909 * ...
3910 * rtnl_unlock();
3911 * free_netdev(y1);
3912 * free_netdev(y2);
3913 *
3914 * We are invoked by rtnl_unlock() after it drops the semaphore.
3915 * This allows us to deal with problems:
3916 * 1) We can delete sysfs objects which invoke hotplug
3917 * without deadlocking with linkwatch via keventd.
3918 * 2) Since we run with the RTNL semaphore not held, we can sleep
3919 * safely in order to wait for the netdev refcnt to drop to zero.
3920 */
3921 static DEFINE_MUTEX(net_todo_run_mutex);
3922 void netdev_run_todo(void)
3923 {
3924 struct list_head list;
3925
3926 /* Need to guard against multiple cpu's getting out of order. */
3927 mutex_lock(&net_todo_run_mutex);
3928
3929 /* Not safe to do outside the semaphore. We must not return
3930 * until all unregister events invoked by the local processor
3931 * have been completed (either by this todo run, or one on
3932 * another cpu).
3933 */
3934 if (list_empty(&net_todo_list))
3935 goto out;
3936
3937 /* Snapshot list, allow later requests */
3938 spin_lock(&net_todo_list_lock);
3939 list_replace_init(&net_todo_list, &list);
3940 spin_unlock(&net_todo_list_lock);
3941
3942 while (!list_empty(&list)) {
3943 struct net_device *dev
3944 = list_entry(list.next, struct net_device, todo_list);
3945 list_del(&dev->todo_list);
3946
3947 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3948 printk(KERN_ERR "network todo '%s' but state %d\n",
3949 dev->name, dev->reg_state);
3950 dump_stack();
3951 continue;
3952 }
3953
3954 dev->reg_state = NETREG_UNREGISTERED;
3955
3956 netdev_wait_allrefs(dev);
3957
3958 /* paranoia */
3959 BUG_ON(atomic_read(&dev->refcnt));
3960 BUG_TRAP(!dev->ip_ptr);
3961 BUG_TRAP(!dev->ip6_ptr);
3962 BUG_TRAP(!dev->dn_ptr);
3963
3964 if (dev->destructor)
3965 dev->destructor(dev);
3966
3967 /* Free network device */
3968 kobject_put(&dev->dev.kobj);
3969 }
3970
3971 out:
3972 mutex_unlock(&net_todo_run_mutex);
3973 }
3974
3975 static struct net_device_stats *internal_stats(struct net_device *dev)
3976 {
3977 return &dev->stats;
3978 }
3979
3980 /**
3981 * alloc_netdev_mq - allocate network device
3982 * @sizeof_priv: size of private data to allocate space for
3983 * @name: device name format string
3984 * @setup: callback to initialize device
3985 * @queue_count: the number of subqueues to allocate
3986 *
3987 * Allocates a struct net_device with private data area for driver use
3988 * and performs basic initialization. Also allocates subquue structs
3989 * for each queue on the device at the end of the netdevice.
3990 */
3991 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
3992 void (*setup)(struct net_device *), unsigned int queue_count)
3993 {
3994 void *p;
3995 struct net_device *dev;
3996 int alloc_size;
3997
3998 BUG_ON(strlen(name) >= sizeof(dev->name));
3999
4000 alloc_size = sizeof(struct net_device) +
4001 sizeof(struct net_device_subqueue) * (queue_count - 1);
4002 if (sizeof_priv) {
4003 /* ensure 32-byte alignment of private area */
4004 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4005 alloc_size += sizeof_priv;
4006 }
4007 /* ensure 32-byte alignment of whole construct */
4008 alloc_size += NETDEV_ALIGN_CONST;
4009
4010 p = kzalloc(alloc_size, GFP_KERNEL);
4011 if (!p) {
4012 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4013 return NULL;
4014 }
4015
4016 dev = (struct net_device *)
4017 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4018 dev->padded = (char *)dev - (char *)p;
4019 dev_net_set(dev, &init_net);
4020
4021 if (sizeof_priv) {
4022 dev->priv = ((char *)dev +
4023 ((sizeof(struct net_device) +
4024 (sizeof(struct net_device_subqueue) *
4025 (queue_count - 1)) + NETDEV_ALIGN_CONST)
4026 & ~NETDEV_ALIGN_CONST));
4027 }
4028
4029 dev->egress_subqueue_count = queue_count;
4030 dev->gso_max_size = GSO_MAX_SIZE;
4031
4032 dev->get_stats = internal_stats;
4033 netpoll_netdev_init(dev);
4034 setup(dev);
4035 strcpy(dev->name, name);
4036 return dev;
4037 }
4038 EXPORT_SYMBOL(alloc_netdev_mq);
4039
4040 /**
4041 * free_netdev - free network device
4042 * @dev: device
4043 *
4044 * This function does the last stage of destroying an allocated device
4045 * interface. The reference to the device object is released.
4046 * If this is the last reference then it will be freed.
4047 */
4048 void free_netdev(struct net_device *dev)
4049 {
4050 release_net(dev_net(dev));
4051
4052 /* Compatibility with error handling in drivers */
4053 if (dev->reg_state == NETREG_UNINITIALIZED) {
4054 kfree((char *)dev - dev->padded);
4055 return;
4056 }
4057
4058 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4059 dev->reg_state = NETREG_RELEASED;
4060
4061 /* will free via device release */
4062 put_device(&dev->dev);
4063 }
4064
4065 /* Synchronize with packet receive processing. */
4066 void synchronize_net(void)
4067 {
4068 might_sleep();
4069 synchronize_rcu();
4070 }
4071
4072 /**
4073 * unregister_netdevice - remove device from the kernel
4074 * @dev: device
4075 *
4076 * This function shuts down a device interface and removes it
4077 * from the kernel tables.
4078 *
4079 * Callers must hold the rtnl semaphore. You may want
4080 * unregister_netdev() instead of this.
4081 */
4082
4083 void unregister_netdevice(struct net_device *dev)
4084 {
4085 ASSERT_RTNL();
4086
4087 rollback_registered(dev);
4088 /* Finish processing unregister after unlock */
4089 net_set_todo(dev);
4090 }
4091
4092 /**
4093 * unregister_netdev - remove device from the kernel
4094 * @dev: device
4095 *
4096 * This function shuts down a device interface and removes it
4097 * from the kernel tables.
4098 *
4099 * This is just a wrapper for unregister_netdevice that takes
4100 * the rtnl semaphore. In general you want to use this and not
4101 * unregister_netdevice.
4102 */
4103 void unregister_netdev(struct net_device *dev)
4104 {
4105 rtnl_lock();
4106 unregister_netdevice(dev);
4107 rtnl_unlock();
4108 }
4109
4110 EXPORT_SYMBOL(unregister_netdev);
4111
4112 /**
4113 * dev_change_net_namespace - move device to different nethost namespace
4114 * @dev: device
4115 * @net: network namespace
4116 * @pat: If not NULL name pattern to try if the current device name
4117 * is already taken in the destination network namespace.
4118 *
4119 * This function shuts down a device interface and moves it
4120 * to a new network namespace. On success 0 is returned, on
4121 * a failure a netagive errno code is returned.
4122 *
4123 * Callers must hold the rtnl semaphore.
4124 */
4125
4126 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4127 {
4128 char buf[IFNAMSIZ];
4129 const char *destname;
4130 int err;
4131
4132 ASSERT_RTNL();
4133
4134 /* Don't allow namespace local devices to be moved. */
4135 err = -EINVAL;
4136 if (dev->features & NETIF_F_NETNS_LOCAL)
4137 goto out;
4138
4139 /* Ensure the device has been registrered */
4140 err = -EINVAL;
4141 if (dev->reg_state != NETREG_REGISTERED)
4142 goto out;
4143
4144 /* Get out if there is nothing todo */
4145 err = 0;
4146 if (net_eq(dev_net(dev), net))
4147 goto out;
4148
4149 /* Pick the destination device name, and ensure
4150 * we can use it in the destination network namespace.
4151 */
4152 err = -EEXIST;
4153 destname = dev->name;
4154 if (__dev_get_by_name(net, destname)) {
4155 /* We get here if we can't use the current device name */
4156 if (!pat)
4157 goto out;
4158 if (!dev_valid_name(pat))
4159 goto out;
4160 if (strchr(pat, '%')) {
4161 if (__dev_alloc_name(net, pat, buf) < 0)
4162 goto out;
4163 destname = buf;
4164 } else
4165 destname = pat;
4166 if (__dev_get_by_name(net, destname))
4167 goto out;
4168 }
4169
4170 /*
4171 * And now a mini version of register_netdevice unregister_netdevice.
4172 */
4173
4174 /* If device is running close it first. */
4175 dev_close(dev);
4176
4177 /* And unlink it from device chain */
4178 err = -ENODEV;
4179 unlist_netdevice(dev);
4180
4181 synchronize_net();
4182
4183 /* Shutdown queueing discipline. */
4184 dev_shutdown(dev);
4185
4186 /* Notify protocols, that we are about to destroy
4187 this device. They should clean all the things.
4188 */
4189 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4190
4191 /*
4192 * Flush the unicast and multicast chains
4193 */
4194 dev_addr_discard(dev);
4195
4196 /* Actually switch the network namespace */
4197 dev_net_set(dev, net);
4198
4199 /* Assign the new device name */
4200 if (destname != dev->name)
4201 strcpy(dev->name, destname);
4202
4203 /* If there is an ifindex conflict assign a new one */
4204 if (__dev_get_by_index(net, dev->ifindex)) {
4205 int iflink = (dev->iflink == dev->ifindex);
4206 dev->ifindex = dev_new_index(net);
4207 if (iflink)
4208 dev->iflink = dev->ifindex;
4209 }
4210
4211 /* Fixup kobjects */
4212 netdev_unregister_kobject(dev);
4213 err = netdev_register_kobject(dev);
4214 WARN_ON(err);
4215
4216 /* Add the device back in the hashes */
4217 list_netdevice(dev);
4218
4219 /* Notify protocols, that a new device appeared. */
4220 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4221
4222 synchronize_net();
4223 err = 0;
4224 out:
4225 return err;
4226 }
4227
4228 static int dev_cpu_callback(struct notifier_block *nfb,
4229 unsigned long action,
4230 void *ocpu)
4231 {
4232 struct sk_buff **list_skb;
4233 struct net_device **list_net;
4234 struct sk_buff *skb;
4235 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4236 struct softnet_data *sd, *oldsd;
4237
4238 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4239 return NOTIFY_OK;
4240
4241 local_irq_disable();
4242 cpu = smp_processor_id();
4243 sd = &per_cpu(softnet_data, cpu);
4244 oldsd = &per_cpu(softnet_data, oldcpu);
4245
4246 /* Find end of our completion_queue. */
4247 list_skb = &sd->completion_queue;
4248 while (*list_skb)
4249 list_skb = &(*list_skb)->next;
4250 /* Append completion queue from offline CPU. */
4251 *list_skb = oldsd->completion_queue;
4252 oldsd->completion_queue = NULL;
4253
4254 /* Find end of our output_queue. */
4255 list_net = &sd->output_queue;
4256 while (*list_net)
4257 list_net = &(*list_net)->next_sched;
4258 /* Append output queue from offline CPU. */
4259 *list_net = oldsd->output_queue;
4260 oldsd->output_queue = NULL;
4261
4262 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4263 local_irq_enable();
4264
4265 /* Process offline CPU's input_pkt_queue */
4266 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4267 netif_rx(skb);
4268
4269 return NOTIFY_OK;
4270 }
4271
4272 #ifdef CONFIG_NET_DMA
4273 /**
4274 * net_dma_rebalance - try to maintain one DMA channel per CPU
4275 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4276 *
4277 * This is called when the number of channels allocated to the net_dma client
4278 * changes. The net_dma client tries to have one DMA channel per CPU.
4279 */
4280
4281 static void net_dma_rebalance(struct net_dma *net_dma)
4282 {
4283 unsigned int cpu, i, n, chan_idx;
4284 struct dma_chan *chan;
4285
4286 if (cpus_empty(net_dma->channel_mask)) {
4287 for_each_online_cpu(cpu)
4288 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4289 return;
4290 }
4291
4292 i = 0;
4293 cpu = first_cpu(cpu_online_map);
4294
4295 for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4296 chan = net_dma->channels[chan_idx];
4297
4298 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4299 + (i < (num_online_cpus() %
4300 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4301
4302 while(n) {
4303 per_cpu(softnet_data, cpu).net_dma = chan;
4304 cpu = next_cpu(cpu, cpu_online_map);
4305 n--;
4306 }
4307 i++;
4308 }
4309 }
4310
4311 /**
4312 * netdev_dma_event - event callback for the net_dma_client
4313 * @client: should always be net_dma_client
4314 * @chan: DMA channel for the event
4315 * @state: DMA state to be handled
4316 */
4317 static enum dma_state_client
4318 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4319 enum dma_state state)
4320 {
4321 int i, found = 0, pos = -1;
4322 struct net_dma *net_dma =
4323 container_of(client, struct net_dma, client);
4324 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4325
4326 spin_lock(&net_dma->lock);
4327 switch (state) {
4328 case DMA_RESOURCE_AVAILABLE:
4329 for (i = 0; i < nr_cpu_ids; i++)
4330 if (net_dma->channels[i] == chan) {
4331 found = 1;
4332 break;
4333 } else if (net_dma->channels[i] == NULL && pos < 0)
4334 pos = i;
4335
4336 if (!found && pos >= 0) {
4337 ack = DMA_ACK;
4338 net_dma->channels[pos] = chan;
4339 cpu_set(pos, net_dma->channel_mask);
4340 net_dma_rebalance(net_dma);
4341 }
4342 break;
4343 case DMA_RESOURCE_REMOVED:
4344 for (i = 0; i < nr_cpu_ids; i++)
4345 if (net_dma->channels[i] == chan) {
4346 found = 1;
4347 pos = i;
4348 break;
4349 }
4350
4351 if (found) {
4352 ack = DMA_ACK;
4353 cpu_clear(pos, net_dma->channel_mask);
4354 net_dma->channels[i] = NULL;
4355 net_dma_rebalance(net_dma);
4356 }
4357 break;
4358 default:
4359 break;
4360 }
4361 spin_unlock(&net_dma->lock);
4362
4363 return ack;
4364 }
4365
4366 /**
4367 * netdev_dma_regiser - register the networking subsystem as a DMA client
4368 */
4369 static int __init netdev_dma_register(void)
4370 {
4371 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4372 GFP_KERNEL);
4373 if (unlikely(!net_dma.channels)) {
4374 printk(KERN_NOTICE
4375 "netdev_dma: no memory for net_dma.channels\n");
4376 return -ENOMEM;
4377 }
4378 spin_lock_init(&net_dma.lock);
4379 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4380 dma_async_client_register(&net_dma.client);
4381 dma_async_client_chan_request(&net_dma.client);
4382 return 0;
4383 }
4384
4385 #else
4386 static int __init netdev_dma_register(void) { return -ENODEV; }
4387 #endif /* CONFIG_NET_DMA */
4388
4389 /**
4390 * netdev_compute_feature - compute conjunction of two feature sets
4391 * @all: first feature set
4392 * @one: second feature set
4393 *
4394 * Computes a new feature set after adding a device with feature set
4395 * @one to the master device with current feature set @all. Returns
4396 * the new feature set.
4397 */
4398 int netdev_compute_features(unsigned long all, unsigned long one)
4399 {
4400 /* if device needs checksumming, downgrade to hw checksumming */
4401 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4402 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4403
4404 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4405 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4406 all ^= NETIF_F_HW_CSUM
4407 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4408
4409 if (one & NETIF_F_GSO)
4410 one |= NETIF_F_GSO_SOFTWARE;
4411 one |= NETIF_F_GSO;
4412
4413 /* If even one device supports robust GSO, enable it for all. */
4414 if (one & NETIF_F_GSO_ROBUST)
4415 all |= NETIF_F_GSO_ROBUST;
4416
4417 all &= one | NETIF_F_LLTX;
4418
4419 if (!(all & NETIF_F_ALL_CSUM))
4420 all &= ~NETIF_F_SG;
4421 if (!(all & NETIF_F_SG))
4422 all &= ~NETIF_F_GSO_MASK;
4423
4424 return all;
4425 }
4426 EXPORT_SYMBOL(netdev_compute_features);
4427
4428 static struct hlist_head *netdev_create_hash(void)
4429 {
4430 int i;
4431 struct hlist_head *hash;
4432
4433 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4434 if (hash != NULL)
4435 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4436 INIT_HLIST_HEAD(&hash[i]);
4437
4438 return hash;
4439 }
4440
4441 /* Initialize per network namespace state */
4442 static int __net_init netdev_init(struct net *net)
4443 {
4444 INIT_LIST_HEAD(&net->dev_base_head);
4445
4446 net->dev_name_head = netdev_create_hash();
4447 if (net->dev_name_head == NULL)
4448 goto err_name;
4449
4450 net->dev_index_head = netdev_create_hash();
4451 if (net->dev_index_head == NULL)
4452 goto err_idx;
4453
4454 return 0;
4455
4456 err_idx:
4457 kfree(net->dev_name_head);
4458 err_name:
4459 return -ENOMEM;
4460 }
4461
4462 static void __net_exit netdev_exit(struct net *net)
4463 {
4464 kfree(net->dev_name_head);
4465 kfree(net->dev_index_head);
4466 }
4467
4468 static struct pernet_operations __net_initdata netdev_net_ops = {
4469 .init = netdev_init,
4470 .exit = netdev_exit,
4471 };
4472
4473 static void __net_exit default_device_exit(struct net *net)
4474 {
4475 struct net_device *dev, *next;
4476 /*
4477 * Push all migratable of the network devices back to the
4478 * initial network namespace
4479 */
4480 rtnl_lock();
4481 for_each_netdev_safe(net, dev, next) {
4482 int err;
4483 char fb_name[IFNAMSIZ];
4484
4485 /* Ignore unmoveable devices (i.e. loopback) */
4486 if (dev->features & NETIF_F_NETNS_LOCAL)
4487 continue;
4488
4489 /* Push remaing network devices to init_net */
4490 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4491 err = dev_change_net_namespace(dev, &init_net, fb_name);
4492 if (err) {
4493 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
4494 __func__, dev->name, err);
4495 BUG();
4496 }
4497 }
4498 rtnl_unlock();
4499 }
4500
4501 static struct pernet_operations __net_initdata default_device_ops = {
4502 .exit = default_device_exit,
4503 };
4504
4505 /*
4506 * Initialize the DEV module. At boot time this walks the device list and
4507 * unhooks any devices that fail to initialise (normally hardware not
4508 * present) and leaves us with a valid list of present and active devices.
4509 *
4510 */
4511
4512 /*
4513 * This is called single threaded during boot, so no need
4514 * to take the rtnl semaphore.
4515 */
4516 static int __init net_dev_init(void)
4517 {
4518 int i, rc = -ENOMEM;
4519
4520 BUG_ON(!dev_boot_phase);
4521
4522 if (dev_proc_init())
4523 goto out;
4524
4525 if (netdev_kobject_init())
4526 goto out;
4527
4528 INIT_LIST_HEAD(&ptype_all);
4529 for (i = 0; i < PTYPE_HASH_SIZE; i++)
4530 INIT_LIST_HEAD(&ptype_base[i]);
4531
4532 if (register_pernet_subsys(&netdev_net_ops))
4533 goto out;
4534
4535 if (register_pernet_device(&default_device_ops))
4536 goto out;
4537
4538 /*
4539 * Initialise the packet receive queues.
4540 */
4541
4542 for_each_possible_cpu(i) {
4543 struct softnet_data *queue;
4544
4545 queue = &per_cpu(softnet_data, i);
4546 skb_queue_head_init(&queue->input_pkt_queue);
4547 queue->completion_queue = NULL;
4548 INIT_LIST_HEAD(&queue->poll_list);
4549
4550 queue->backlog.poll = process_backlog;
4551 queue->backlog.weight = weight_p;
4552 }
4553
4554 netdev_dma_register();
4555
4556 dev_boot_phase = 0;
4557
4558 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4559 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4560
4561 hotcpu_notifier(dev_cpu_callback, 0);
4562 dst_init();
4563 dev_mcast_init();
4564 rc = 0;
4565 out:
4566 return rc;
4567 }
4568
4569 subsys_initcall(net_dev_init);
4570
4571 EXPORT_SYMBOL(__dev_get_by_index);
4572 EXPORT_SYMBOL(__dev_get_by_name);
4573 EXPORT_SYMBOL(__dev_remove_pack);
4574 EXPORT_SYMBOL(dev_valid_name);
4575 EXPORT_SYMBOL(dev_add_pack);
4576 EXPORT_SYMBOL(dev_alloc_name);
4577 EXPORT_SYMBOL(dev_close);
4578 EXPORT_SYMBOL(dev_get_by_flags);
4579 EXPORT_SYMBOL(dev_get_by_index);
4580 EXPORT_SYMBOL(dev_get_by_name);
4581 EXPORT_SYMBOL(dev_open);
4582 EXPORT_SYMBOL(dev_queue_xmit);
4583 EXPORT_SYMBOL(dev_remove_pack);
4584 EXPORT_SYMBOL(dev_set_allmulti);
4585 EXPORT_SYMBOL(dev_set_promiscuity);
4586 EXPORT_SYMBOL(dev_change_flags);
4587 EXPORT_SYMBOL(dev_set_mtu);
4588 EXPORT_SYMBOL(dev_set_mac_address);
4589 EXPORT_SYMBOL(free_netdev);
4590 EXPORT_SYMBOL(netdev_boot_setup_check);
4591 EXPORT_SYMBOL(netdev_set_master);
4592 EXPORT_SYMBOL(netdev_state_change);
4593 EXPORT_SYMBOL(netif_receive_skb);
4594 EXPORT_SYMBOL(netif_rx);
4595 EXPORT_SYMBOL(register_gifconf);
4596 EXPORT_SYMBOL(register_netdevice);
4597 EXPORT_SYMBOL(register_netdevice_notifier);
4598 EXPORT_SYMBOL(skb_checksum_help);
4599 EXPORT_SYMBOL(synchronize_net);
4600 EXPORT_SYMBOL(unregister_netdevice);
4601 EXPORT_SYMBOL(unregister_netdevice_notifier);
4602 EXPORT_SYMBOL(net_enable_timestamp);
4603 EXPORT_SYMBOL(net_disable_timestamp);
4604 EXPORT_SYMBOL(dev_get_flags);
4605
4606 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4607 EXPORT_SYMBOL(br_handle_frame_hook);
4608 EXPORT_SYMBOL(br_fdb_get_hook);
4609 EXPORT_SYMBOL(br_fdb_put_hook);
4610 #endif
4611
4612 #ifdef CONFIG_KMOD
4613 EXPORT_SYMBOL(dev_load);
4614 #endif
4615
4616 EXPORT_PER_CPU_SYMBOL(softnet_data);