]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/core/dev.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/davej/cpufreq
[mirror_ubuntu-bionic-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/notifier.h>
94 #include <linux/skbuff.h>
95 #include <net/sock.h>
96 #include <linux/rtnetlink.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/stat.h>
100 #include <linux/if_bridge.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <linux/highmem.h>
105 #include <linux/init.h>
106 #include <linux/kmod.h>
107 #include <linux/module.h>
108 #include <linux/kallsyms.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/wext.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120
121 /*
122 * The list of packet types we will receive (as opposed to discard)
123 * and the routines to invoke.
124 *
125 * Why 16. Because with 16 the only overlap we get on a hash of the
126 * low nibble of the protocol value is RARP/SNAP/X.25.
127 *
128 * NOTE: That is no longer true with the addition of VLAN tags. Not
129 * sure which should go first, but I bet it won't make much
130 * difference if we are running VLANs. The good news is that
131 * this protocol won't be in the list unless compiled in, so
132 * the average user (w/out VLANs) will not be adversely affected.
133 * --BLG
134 *
135 * 0800 IP
136 * 8100 802.1Q VLAN
137 * 0001 802.3
138 * 0002 AX.25
139 * 0004 802.2
140 * 8035 RARP
141 * 0005 SNAP
142 * 0805 X.25
143 * 0806 ARP
144 * 8137 IPX
145 * 0009 Localtalk
146 * 86DD IPv6
147 */
148
149 static DEFINE_SPINLOCK(ptype_lock);
150 static struct list_head ptype_base[16] __read_mostly; /* 16 way hashed list */
151 static struct list_head ptype_all __read_mostly; /* Taps */
152
153 #ifdef CONFIG_NET_DMA
154 struct net_dma {
155 struct dma_client client;
156 spinlock_t lock;
157 cpumask_t channel_mask;
158 struct dma_chan *channels[NR_CPUS];
159 };
160
161 static enum dma_state_client
162 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
163 enum dma_state state);
164
165 static struct net_dma net_dma = {
166 .client = {
167 .event_callback = netdev_dma_event,
168 },
169 };
170 #endif
171
172 /*
173 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
174 * semaphore.
175 *
176 * Pure readers hold dev_base_lock for reading.
177 *
178 * Writers must hold the rtnl semaphore while they loop through the
179 * dev_base_head list, and hold dev_base_lock for writing when they do the
180 * actual updates. This allows pure readers to access the list even
181 * while a writer is preparing to update it.
182 *
183 * To put it another way, dev_base_lock is held for writing only to
184 * protect against pure readers; the rtnl semaphore provides the
185 * protection against other writers.
186 *
187 * See, for example usages, register_netdevice() and
188 * unregister_netdevice(), which must be called with the rtnl
189 * semaphore held.
190 */
191 LIST_HEAD(dev_base_head);
192 DEFINE_RWLOCK(dev_base_lock);
193
194 EXPORT_SYMBOL(dev_base_head);
195 EXPORT_SYMBOL(dev_base_lock);
196
197 #define NETDEV_HASHBITS 8
198 static struct hlist_head dev_name_head[1<<NETDEV_HASHBITS];
199 static struct hlist_head dev_index_head[1<<NETDEV_HASHBITS];
200
201 static inline struct hlist_head *dev_name_hash(const char *name)
202 {
203 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
204 return &dev_name_head[hash & ((1<<NETDEV_HASHBITS)-1)];
205 }
206
207 static inline struct hlist_head *dev_index_hash(int ifindex)
208 {
209 return &dev_index_head[ifindex & ((1<<NETDEV_HASHBITS)-1)];
210 }
211
212 /*
213 * Our notifier list
214 */
215
216 static RAW_NOTIFIER_HEAD(netdev_chain);
217
218 /*
219 * Device drivers call our routines to queue packets here. We empty the
220 * queue in the local softnet handler.
221 */
222 DEFINE_PER_CPU(struct softnet_data, softnet_data) = { NULL };
223
224 #ifdef CONFIG_SYSFS
225 extern int netdev_sysfs_init(void);
226 extern int netdev_register_sysfs(struct net_device *);
227 extern void netdev_unregister_sysfs(struct net_device *);
228 #else
229 #define netdev_sysfs_init() (0)
230 #define netdev_register_sysfs(dev) (0)
231 #define netdev_unregister_sysfs(dev) do { } while(0)
232 #endif
233
234 #ifdef CONFIG_DEBUG_LOCK_ALLOC
235 /*
236 * register_netdevice() inits dev->_xmit_lock and sets lockdep class
237 * according to dev->type
238 */
239 static const unsigned short netdev_lock_type[] =
240 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
241 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
242 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
243 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
244 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
245 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
246 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
247 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
248 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
249 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
250 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
251 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
252 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
253 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
254 ARPHRD_NONE};
255
256 static const char *netdev_lock_name[] =
257 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
258 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
259 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
260 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
261 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
262 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
263 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
264 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
265 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
266 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
267 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
268 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
269 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
270 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
271 "_xmit_NONE"};
272
273 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
274
275 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
276 {
277 int i;
278
279 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
280 if (netdev_lock_type[i] == dev_type)
281 return i;
282 /* the last key is used by default */
283 return ARRAY_SIZE(netdev_lock_type) - 1;
284 }
285
286 static inline void netdev_set_lockdep_class(spinlock_t *lock,
287 unsigned short dev_type)
288 {
289 int i;
290
291 i = netdev_lock_pos(dev_type);
292 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
293 netdev_lock_name[i]);
294 }
295 #else
296 static inline void netdev_set_lockdep_class(spinlock_t *lock,
297 unsigned short dev_type)
298 {
299 }
300 #endif
301
302 /*******************************************************************************
303
304 Protocol management and registration routines
305
306 *******************************************************************************/
307
308 /*
309 * Add a protocol ID to the list. Now that the input handler is
310 * smarter we can dispense with all the messy stuff that used to be
311 * here.
312 *
313 * BEWARE!!! Protocol handlers, mangling input packets,
314 * MUST BE last in hash buckets and checking protocol handlers
315 * MUST start from promiscuous ptype_all chain in net_bh.
316 * It is true now, do not change it.
317 * Explanation follows: if protocol handler, mangling packet, will
318 * be the first on list, it is not able to sense, that packet
319 * is cloned and should be copied-on-write, so that it will
320 * change it and subsequent readers will get broken packet.
321 * --ANK (980803)
322 */
323
324 /**
325 * dev_add_pack - add packet handler
326 * @pt: packet type declaration
327 *
328 * Add a protocol handler to the networking stack. The passed &packet_type
329 * is linked into kernel lists and may not be freed until it has been
330 * removed from the kernel lists.
331 *
332 * This call does not sleep therefore it can not
333 * guarantee all CPU's that are in middle of receiving packets
334 * will see the new packet type (until the next received packet).
335 */
336
337 void dev_add_pack(struct packet_type *pt)
338 {
339 int hash;
340
341 spin_lock_bh(&ptype_lock);
342 if (pt->type == htons(ETH_P_ALL))
343 list_add_rcu(&pt->list, &ptype_all);
344 else {
345 hash = ntohs(pt->type) & 15;
346 list_add_rcu(&pt->list, &ptype_base[hash]);
347 }
348 spin_unlock_bh(&ptype_lock);
349 }
350
351 /**
352 * __dev_remove_pack - remove packet handler
353 * @pt: packet type declaration
354 *
355 * Remove a protocol handler that was previously added to the kernel
356 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
357 * from the kernel lists and can be freed or reused once this function
358 * returns.
359 *
360 * The packet type might still be in use by receivers
361 * and must not be freed until after all the CPU's have gone
362 * through a quiescent state.
363 */
364 void __dev_remove_pack(struct packet_type *pt)
365 {
366 struct list_head *head;
367 struct packet_type *pt1;
368
369 spin_lock_bh(&ptype_lock);
370
371 if (pt->type == htons(ETH_P_ALL))
372 head = &ptype_all;
373 else
374 head = &ptype_base[ntohs(pt->type) & 15];
375
376 list_for_each_entry(pt1, head, list) {
377 if (pt == pt1) {
378 list_del_rcu(&pt->list);
379 goto out;
380 }
381 }
382
383 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
384 out:
385 spin_unlock_bh(&ptype_lock);
386 }
387 /**
388 * dev_remove_pack - remove packet handler
389 * @pt: packet type declaration
390 *
391 * Remove a protocol handler that was previously added to the kernel
392 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
393 * from the kernel lists and can be freed or reused once this function
394 * returns.
395 *
396 * This call sleeps to guarantee that no CPU is looking at the packet
397 * type after return.
398 */
399 void dev_remove_pack(struct packet_type *pt)
400 {
401 __dev_remove_pack(pt);
402
403 synchronize_net();
404 }
405
406 /******************************************************************************
407
408 Device Boot-time Settings Routines
409
410 *******************************************************************************/
411
412 /* Boot time configuration table */
413 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
414
415 /**
416 * netdev_boot_setup_add - add new setup entry
417 * @name: name of the device
418 * @map: configured settings for the device
419 *
420 * Adds new setup entry to the dev_boot_setup list. The function
421 * returns 0 on error and 1 on success. This is a generic routine to
422 * all netdevices.
423 */
424 static int netdev_boot_setup_add(char *name, struct ifmap *map)
425 {
426 struct netdev_boot_setup *s;
427 int i;
428
429 s = dev_boot_setup;
430 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
431 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
432 memset(s[i].name, 0, sizeof(s[i].name));
433 strcpy(s[i].name, name);
434 memcpy(&s[i].map, map, sizeof(s[i].map));
435 break;
436 }
437 }
438
439 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
440 }
441
442 /**
443 * netdev_boot_setup_check - check boot time settings
444 * @dev: the netdevice
445 *
446 * Check boot time settings for the device.
447 * The found settings are set for the device to be used
448 * later in the device probing.
449 * Returns 0 if no settings found, 1 if they are.
450 */
451 int netdev_boot_setup_check(struct net_device *dev)
452 {
453 struct netdev_boot_setup *s = dev_boot_setup;
454 int i;
455
456 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
457 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
458 !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
459 dev->irq = s[i].map.irq;
460 dev->base_addr = s[i].map.base_addr;
461 dev->mem_start = s[i].map.mem_start;
462 dev->mem_end = s[i].map.mem_end;
463 return 1;
464 }
465 }
466 return 0;
467 }
468
469
470 /**
471 * netdev_boot_base - get address from boot time settings
472 * @prefix: prefix for network device
473 * @unit: id for network device
474 *
475 * Check boot time settings for the base address of device.
476 * The found settings are set for the device to be used
477 * later in the device probing.
478 * Returns 0 if no settings found.
479 */
480 unsigned long netdev_boot_base(const char *prefix, int unit)
481 {
482 const struct netdev_boot_setup *s = dev_boot_setup;
483 char name[IFNAMSIZ];
484 int i;
485
486 sprintf(name, "%s%d", prefix, unit);
487
488 /*
489 * If device already registered then return base of 1
490 * to indicate not to probe for this interface
491 */
492 if (__dev_get_by_name(name))
493 return 1;
494
495 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
496 if (!strcmp(name, s[i].name))
497 return s[i].map.base_addr;
498 return 0;
499 }
500
501 /*
502 * Saves at boot time configured settings for any netdevice.
503 */
504 int __init netdev_boot_setup(char *str)
505 {
506 int ints[5];
507 struct ifmap map;
508
509 str = get_options(str, ARRAY_SIZE(ints), ints);
510 if (!str || !*str)
511 return 0;
512
513 /* Save settings */
514 memset(&map, 0, sizeof(map));
515 if (ints[0] > 0)
516 map.irq = ints[1];
517 if (ints[0] > 1)
518 map.base_addr = ints[2];
519 if (ints[0] > 2)
520 map.mem_start = ints[3];
521 if (ints[0] > 3)
522 map.mem_end = ints[4];
523
524 /* Add new entry to the list */
525 return netdev_boot_setup_add(str, &map);
526 }
527
528 __setup("netdev=", netdev_boot_setup);
529
530 /*******************************************************************************
531
532 Device Interface Subroutines
533
534 *******************************************************************************/
535
536 /**
537 * __dev_get_by_name - find a device by its name
538 * @name: name to find
539 *
540 * Find an interface by name. Must be called under RTNL semaphore
541 * or @dev_base_lock. If the name is found a pointer to the device
542 * is returned. If the name is not found then %NULL is returned. The
543 * reference counters are not incremented so the caller must be
544 * careful with locks.
545 */
546
547 struct net_device *__dev_get_by_name(const char *name)
548 {
549 struct hlist_node *p;
550
551 hlist_for_each(p, dev_name_hash(name)) {
552 struct net_device *dev
553 = hlist_entry(p, struct net_device, name_hlist);
554 if (!strncmp(dev->name, name, IFNAMSIZ))
555 return dev;
556 }
557 return NULL;
558 }
559
560 /**
561 * dev_get_by_name - find a device by its name
562 * @name: name to find
563 *
564 * Find an interface by name. This can be called from any
565 * context and does its own locking. The returned handle has
566 * the usage count incremented and the caller must use dev_put() to
567 * release it when it is no longer needed. %NULL is returned if no
568 * matching device is found.
569 */
570
571 struct net_device *dev_get_by_name(const char *name)
572 {
573 struct net_device *dev;
574
575 read_lock(&dev_base_lock);
576 dev = __dev_get_by_name(name);
577 if (dev)
578 dev_hold(dev);
579 read_unlock(&dev_base_lock);
580 return dev;
581 }
582
583 /**
584 * __dev_get_by_index - find a device by its ifindex
585 * @ifindex: index of device
586 *
587 * Search for an interface by index. Returns %NULL if the device
588 * is not found or a pointer to the device. The device has not
589 * had its reference counter increased so the caller must be careful
590 * about locking. The caller must hold either the RTNL semaphore
591 * or @dev_base_lock.
592 */
593
594 struct net_device *__dev_get_by_index(int ifindex)
595 {
596 struct hlist_node *p;
597
598 hlist_for_each(p, dev_index_hash(ifindex)) {
599 struct net_device *dev
600 = hlist_entry(p, struct net_device, index_hlist);
601 if (dev->ifindex == ifindex)
602 return dev;
603 }
604 return NULL;
605 }
606
607
608 /**
609 * dev_get_by_index - find a device by its ifindex
610 * @ifindex: index of device
611 *
612 * Search for an interface by index. Returns NULL if the device
613 * is not found or a pointer to the device. The device returned has
614 * had a reference added and the pointer is safe until the user calls
615 * dev_put to indicate they have finished with it.
616 */
617
618 struct net_device *dev_get_by_index(int ifindex)
619 {
620 struct net_device *dev;
621
622 read_lock(&dev_base_lock);
623 dev = __dev_get_by_index(ifindex);
624 if (dev)
625 dev_hold(dev);
626 read_unlock(&dev_base_lock);
627 return dev;
628 }
629
630 /**
631 * dev_getbyhwaddr - find a device by its hardware address
632 * @type: media type of device
633 * @ha: hardware address
634 *
635 * Search for an interface by MAC address. Returns NULL if the device
636 * is not found or a pointer to the device. The caller must hold the
637 * rtnl semaphore. The returned device has not had its ref count increased
638 * and the caller must therefore be careful about locking
639 *
640 * BUGS:
641 * If the API was consistent this would be __dev_get_by_hwaddr
642 */
643
644 struct net_device *dev_getbyhwaddr(unsigned short type, char *ha)
645 {
646 struct net_device *dev;
647
648 ASSERT_RTNL();
649
650 for_each_netdev(dev)
651 if (dev->type == type &&
652 !memcmp(dev->dev_addr, ha, dev->addr_len))
653 return dev;
654
655 return NULL;
656 }
657
658 EXPORT_SYMBOL(dev_getbyhwaddr);
659
660 struct net_device *__dev_getfirstbyhwtype(unsigned short type)
661 {
662 struct net_device *dev;
663
664 ASSERT_RTNL();
665 for_each_netdev(dev)
666 if (dev->type == type)
667 return dev;
668
669 return NULL;
670 }
671
672 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
673
674 struct net_device *dev_getfirstbyhwtype(unsigned short type)
675 {
676 struct net_device *dev;
677
678 rtnl_lock();
679 dev = __dev_getfirstbyhwtype(type);
680 if (dev)
681 dev_hold(dev);
682 rtnl_unlock();
683 return dev;
684 }
685
686 EXPORT_SYMBOL(dev_getfirstbyhwtype);
687
688 /**
689 * dev_get_by_flags - find any device with given flags
690 * @if_flags: IFF_* values
691 * @mask: bitmask of bits in if_flags to check
692 *
693 * Search for any interface with the given flags. Returns NULL if a device
694 * is not found or a pointer to the device. The device returned has
695 * had a reference added and the pointer is safe until the user calls
696 * dev_put to indicate they have finished with it.
697 */
698
699 struct net_device * dev_get_by_flags(unsigned short if_flags, unsigned short mask)
700 {
701 struct net_device *dev, *ret;
702
703 ret = NULL;
704 read_lock(&dev_base_lock);
705 for_each_netdev(dev) {
706 if (((dev->flags ^ if_flags) & mask) == 0) {
707 dev_hold(dev);
708 ret = dev;
709 break;
710 }
711 }
712 read_unlock(&dev_base_lock);
713 return ret;
714 }
715
716 /**
717 * dev_valid_name - check if name is okay for network device
718 * @name: name string
719 *
720 * Network device names need to be valid file names to
721 * to allow sysfs to work. We also disallow any kind of
722 * whitespace.
723 */
724 int dev_valid_name(const char *name)
725 {
726 if (*name == '\0')
727 return 0;
728 if (strlen(name) >= IFNAMSIZ)
729 return 0;
730 if (!strcmp(name, ".") || !strcmp(name, ".."))
731 return 0;
732
733 while (*name) {
734 if (*name == '/' || isspace(*name))
735 return 0;
736 name++;
737 }
738 return 1;
739 }
740
741 /**
742 * dev_alloc_name - allocate a name for a device
743 * @dev: device
744 * @name: name format string
745 *
746 * Passed a format string - eg "lt%d" it will try and find a suitable
747 * id. It scans list of devices to build up a free map, then chooses
748 * the first empty slot. The caller must hold the dev_base or rtnl lock
749 * while allocating the name and adding the device in order to avoid
750 * duplicates.
751 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
752 * Returns the number of the unit assigned or a negative errno code.
753 */
754
755 int dev_alloc_name(struct net_device *dev, const char *name)
756 {
757 int i = 0;
758 char buf[IFNAMSIZ];
759 const char *p;
760 const int max_netdevices = 8*PAGE_SIZE;
761 long *inuse;
762 struct net_device *d;
763
764 p = strnchr(name, IFNAMSIZ-1, '%');
765 if (p) {
766 /*
767 * Verify the string as this thing may have come from
768 * the user. There must be either one "%d" and no other "%"
769 * characters.
770 */
771 if (p[1] != 'd' || strchr(p + 2, '%'))
772 return -EINVAL;
773
774 /* Use one page as a bit array of possible slots */
775 inuse = (long *) get_zeroed_page(GFP_ATOMIC);
776 if (!inuse)
777 return -ENOMEM;
778
779 for_each_netdev(d) {
780 if (!sscanf(d->name, name, &i))
781 continue;
782 if (i < 0 || i >= max_netdevices)
783 continue;
784
785 /* avoid cases where sscanf is not exact inverse of printf */
786 snprintf(buf, sizeof(buf), name, i);
787 if (!strncmp(buf, d->name, IFNAMSIZ))
788 set_bit(i, inuse);
789 }
790
791 i = find_first_zero_bit(inuse, max_netdevices);
792 free_page((unsigned long) inuse);
793 }
794
795 snprintf(buf, sizeof(buf), name, i);
796 if (!__dev_get_by_name(buf)) {
797 strlcpy(dev->name, buf, IFNAMSIZ);
798 return i;
799 }
800
801 /* It is possible to run out of possible slots
802 * when the name is long and there isn't enough space left
803 * for the digits, or if all bits are used.
804 */
805 return -ENFILE;
806 }
807
808
809 /**
810 * dev_change_name - change name of a device
811 * @dev: device
812 * @newname: name (or format string) must be at least IFNAMSIZ
813 *
814 * Change name of a device, can pass format strings "eth%d".
815 * for wildcarding.
816 */
817 int dev_change_name(struct net_device *dev, char *newname)
818 {
819 int err = 0;
820
821 ASSERT_RTNL();
822
823 if (dev->flags & IFF_UP)
824 return -EBUSY;
825
826 if (!dev_valid_name(newname))
827 return -EINVAL;
828
829 if (strchr(newname, '%')) {
830 err = dev_alloc_name(dev, newname);
831 if (err < 0)
832 return err;
833 strcpy(newname, dev->name);
834 }
835 else if (__dev_get_by_name(newname))
836 return -EEXIST;
837 else
838 strlcpy(dev->name, newname, IFNAMSIZ);
839
840 device_rename(&dev->dev, dev->name);
841 hlist_del(&dev->name_hlist);
842 hlist_add_head(&dev->name_hlist, dev_name_hash(dev->name));
843 raw_notifier_call_chain(&netdev_chain, NETDEV_CHANGENAME, dev);
844
845 return err;
846 }
847
848 /**
849 * netdev_features_change - device changes features
850 * @dev: device to cause notification
851 *
852 * Called to indicate a device has changed features.
853 */
854 void netdev_features_change(struct net_device *dev)
855 {
856 raw_notifier_call_chain(&netdev_chain, NETDEV_FEAT_CHANGE, dev);
857 }
858 EXPORT_SYMBOL(netdev_features_change);
859
860 /**
861 * netdev_state_change - device changes state
862 * @dev: device to cause notification
863 *
864 * Called to indicate a device has changed state. This function calls
865 * the notifier chains for netdev_chain and sends a NEWLINK message
866 * to the routing socket.
867 */
868 void netdev_state_change(struct net_device *dev)
869 {
870 if (dev->flags & IFF_UP) {
871 raw_notifier_call_chain(&netdev_chain,
872 NETDEV_CHANGE, dev);
873 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
874 }
875 }
876
877 /**
878 * dev_load - load a network module
879 * @name: name of interface
880 *
881 * If a network interface is not present and the process has suitable
882 * privileges this function loads the module. If module loading is not
883 * available in this kernel then it becomes a nop.
884 */
885
886 void dev_load(const char *name)
887 {
888 struct net_device *dev;
889
890 read_lock(&dev_base_lock);
891 dev = __dev_get_by_name(name);
892 read_unlock(&dev_base_lock);
893
894 if (!dev && capable(CAP_SYS_MODULE))
895 request_module("%s", name);
896 }
897
898 static int default_rebuild_header(struct sk_buff *skb)
899 {
900 printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n",
901 skb->dev ? skb->dev->name : "NULL!!!");
902 kfree_skb(skb);
903 return 1;
904 }
905
906 /**
907 * dev_open - prepare an interface for use.
908 * @dev: device to open
909 *
910 * Takes a device from down to up state. The device's private open
911 * function is invoked and then the multicast lists are loaded. Finally
912 * the device is moved into the up state and a %NETDEV_UP message is
913 * sent to the netdev notifier chain.
914 *
915 * Calling this function on an active interface is a nop. On a failure
916 * a negative errno code is returned.
917 */
918 int dev_open(struct net_device *dev)
919 {
920 int ret = 0;
921
922 /*
923 * Is it already up?
924 */
925
926 if (dev->flags & IFF_UP)
927 return 0;
928
929 /*
930 * Is it even present?
931 */
932 if (!netif_device_present(dev))
933 return -ENODEV;
934
935 /*
936 * Call device private open method
937 */
938 set_bit(__LINK_STATE_START, &dev->state);
939 if (dev->open) {
940 ret = dev->open(dev);
941 if (ret)
942 clear_bit(__LINK_STATE_START, &dev->state);
943 }
944
945 /*
946 * If it went open OK then:
947 */
948
949 if (!ret) {
950 /*
951 * Set the flags.
952 */
953 dev->flags |= IFF_UP;
954
955 /*
956 * Initialize multicasting status
957 */
958 dev_set_rx_mode(dev);
959
960 /*
961 * Wakeup transmit queue engine
962 */
963 dev_activate(dev);
964
965 /*
966 * ... and announce new interface.
967 */
968 raw_notifier_call_chain(&netdev_chain, NETDEV_UP, dev);
969 }
970 return ret;
971 }
972
973 /**
974 * dev_close - shutdown an interface.
975 * @dev: device to shutdown
976 *
977 * This function moves an active device into down state. A
978 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
979 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
980 * chain.
981 */
982 int dev_close(struct net_device *dev)
983 {
984 if (!(dev->flags & IFF_UP))
985 return 0;
986
987 /*
988 * Tell people we are going down, so that they can
989 * prepare to death, when device is still operating.
990 */
991 raw_notifier_call_chain(&netdev_chain, NETDEV_GOING_DOWN, dev);
992
993 dev_deactivate(dev);
994
995 clear_bit(__LINK_STATE_START, &dev->state);
996
997 /* Synchronize to scheduled poll. We cannot touch poll list,
998 * it can be even on different cpu. So just clear netif_running(),
999 * and wait when poll really will happen. Actually, the best place
1000 * for this is inside dev->stop() after device stopped its irq
1001 * engine, but this requires more changes in devices. */
1002
1003 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1004 while (test_bit(__LINK_STATE_RX_SCHED, &dev->state)) {
1005 /* No hurry. */
1006 msleep(1);
1007 }
1008
1009 /*
1010 * Call the device specific close. This cannot fail.
1011 * Only if device is UP
1012 *
1013 * We allow it to be called even after a DETACH hot-plug
1014 * event.
1015 */
1016 if (dev->stop)
1017 dev->stop(dev);
1018
1019 /*
1020 * Device is now down.
1021 */
1022
1023 dev->flags &= ~IFF_UP;
1024
1025 /*
1026 * Tell people we are down
1027 */
1028 raw_notifier_call_chain(&netdev_chain, NETDEV_DOWN, dev);
1029
1030 return 0;
1031 }
1032
1033
1034 /*
1035 * Device change register/unregister. These are not inline or static
1036 * as we export them to the world.
1037 */
1038
1039 /**
1040 * register_netdevice_notifier - register a network notifier block
1041 * @nb: notifier
1042 *
1043 * Register a notifier to be called when network device events occur.
1044 * The notifier passed is linked into the kernel structures and must
1045 * not be reused until it has been unregistered. A negative errno code
1046 * is returned on a failure.
1047 *
1048 * When registered all registration and up events are replayed
1049 * to the new notifier to allow device to have a race free
1050 * view of the network device list.
1051 */
1052
1053 int register_netdevice_notifier(struct notifier_block *nb)
1054 {
1055 struct net_device *dev;
1056 int err;
1057
1058 rtnl_lock();
1059 err = raw_notifier_chain_register(&netdev_chain, nb);
1060 if (!err) {
1061 for_each_netdev(dev) {
1062 nb->notifier_call(nb, NETDEV_REGISTER, dev);
1063
1064 if (dev->flags & IFF_UP)
1065 nb->notifier_call(nb, NETDEV_UP, dev);
1066 }
1067 }
1068 rtnl_unlock();
1069 return err;
1070 }
1071
1072 /**
1073 * unregister_netdevice_notifier - unregister a network notifier block
1074 * @nb: notifier
1075 *
1076 * Unregister a notifier previously registered by
1077 * register_netdevice_notifier(). The notifier is unlinked into the
1078 * kernel structures and may then be reused. A negative errno code
1079 * is returned on a failure.
1080 */
1081
1082 int unregister_netdevice_notifier(struct notifier_block *nb)
1083 {
1084 int err;
1085
1086 rtnl_lock();
1087 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1088 rtnl_unlock();
1089 return err;
1090 }
1091
1092 /**
1093 * call_netdevice_notifiers - call all network notifier blocks
1094 * @val: value passed unmodified to notifier function
1095 * @v: pointer passed unmodified to notifier function
1096 *
1097 * Call all network notifier blocks. Parameters and return value
1098 * are as for raw_notifier_call_chain().
1099 */
1100
1101 int call_netdevice_notifiers(unsigned long val, void *v)
1102 {
1103 return raw_notifier_call_chain(&netdev_chain, val, v);
1104 }
1105
1106 /* When > 0 there are consumers of rx skb time stamps */
1107 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1108
1109 void net_enable_timestamp(void)
1110 {
1111 atomic_inc(&netstamp_needed);
1112 }
1113
1114 void net_disable_timestamp(void)
1115 {
1116 atomic_dec(&netstamp_needed);
1117 }
1118
1119 static inline void net_timestamp(struct sk_buff *skb)
1120 {
1121 if (atomic_read(&netstamp_needed))
1122 __net_timestamp(skb);
1123 else
1124 skb->tstamp.tv64 = 0;
1125 }
1126
1127 /*
1128 * Support routine. Sends outgoing frames to any network
1129 * taps currently in use.
1130 */
1131
1132 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1133 {
1134 struct packet_type *ptype;
1135
1136 net_timestamp(skb);
1137
1138 rcu_read_lock();
1139 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1140 /* Never send packets back to the socket
1141 * they originated from - MvS (miquels@drinkel.ow.org)
1142 */
1143 if ((ptype->dev == dev || !ptype->dev) &&
1144 (ptype->af_packet_priv == NULL ||
1145 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1146 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1147 if (!skb2)
1148 break;
1149
1150 /* skb->nh should be correctly
1151 set by sender, so that the second statement is
1152 just protection against buggy protocols.
1153 */
1154 skb_reset_mac_header(skb2);
1155
1156 if (skb_network_header(skb2) < skb2->data ||
1157 skb2->network_header > skb2->tail) {
1158 if (net_ratelimit())
1159 printk(KERN_CRIT "protocol %04x is "
1160 "buggy, dev %s\n",
1161 skb2->protocol, dev->name);
1162 skb_reset_network_header(skb2);
1163 }
1164
1165 skb2->transport_header = skb2->network_header;
1166 skb2->pkt_type = PACKET_OUTGOING;
1167 ptype->func(skb2, skb->dev, ptype, skb->dev);
1168 }
1169 }
1170 rcu_read_unlock();
1171 }
1172
1173
1174 void __netif_schedule(struct net_device *dev)
1175 {
1176 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1177 unsigned long flags;
1178 struct softnet_data *sd;
1179
1180 local_irq_save(flags);
1181 sd = &__get_cpu_var(softnet_data);
1182 dev->next_sched = sd->output_queue;
1183 sd->output_queue = dev;
1184 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1185 local_irq_restore(flags);
1186 }
1187 }
1188 EXPORT_SYMBOL(__netif_schedule);
1189
1190 void __netif_rx_schedule(struct net_device *dev)
1191 {
1192 unsigned long flags;
1193
1194 local_irq_save(flags);
1195 dev_hold(dev);
1196 list_add_tail(&dev->poll_list, &__get_cpu_var(softnet_data).poll_list);
1197 if (dev->quota < 0)
1198 dev->quota += dev->weight;
1199 else
1200 dev->quota = dev->weight;
1201 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
1202 local_irq_restore(flags);
1203 }
1204 EXPORT_SYMBOL(__netif_rx_schedule);
1205
1206 void dev_kfree_skb_any(struct sk_buff *skb)
1207 {
1208 if (in_irq() || irqs_disabled())
1209 dev_kfree_skb_irq(skb);
1210 else
1211 dev_kfree_skb(skb);
1212 }
1213 EXPORT_SYMBOL(dev_kfree_skb_any);
1214
1215
1216 /* Hot-plugging. */
1217 void netif_device_detach(struct net_device *dev)
1218 {
1219 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1220 netif_running(dev)) {
1221 netif_stop_queue(dev);
1222 }
1223 }
1224 EXPORT_SYMBOL(netif_device_detach);
1225
1226 void netif_device_attach(struct net_device *dev)
1227 {
1228 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1229 netif_running(dev)) {
1230 netif_wake_queue(dev);
1231 __netdev_watchdog_up(dev);
1232 }
1233 }
1234 EXPORT_SYMBOL(netif_device_attach);
1235
1236
1237 /*
1238 * Invalidate hardware checksum when packet is to be mangled, and
1239 * complete checksum manually on outgoing path.
1240 */
1241 int skb_checksum_help(struct sk_buff *skb)
1242 {
1243 __wsum csum;
1244 int ret = 0, offset;
1245
1246 if (skb->ip_summed == CHECKSUM_COMPLETE)
1247 goto out_set_summed;
1248
1249 if (unlikely(skb_shinfo(skb)->gso_size)) {
1250 /* Let GSO fix up the checksum. */
1251 goto out_set_summed;
1252 }
1253
1254 if (skb_cloned(skb)) {
1255 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1256 if (ret)
1257 goto out;
1258 }
1259
1260 offset = skb->csum_start - skb_headroom(skb);
1261 BUG_ON(offset > (int)skb->len);
1262 csum = skb_checksum(skb, offset, skb->len-offset, 0);
1263
1264 offset = skb_headlen(skb) - offset;
1265 BUG_ON(offset <= 0);
1266 BUG_ON(skb->csum_offset + 2 > offset);
1267
1268 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) =
1269 csum_fold(csum);
1270 out_set_summed:
1271 skb->ip_summed = CHECKSUM_NONE;
1272 out:
1273 return ret;
1274 }
1275
1276 /**
1277 * skb_gso_segment - Perform segmentation on skb.
1278 * @skb: buffer to segment
1279 * @features: features for the output path (see dev->features)
1280 *
1281 * This function segments the given skb and returns a list of segments.
1282 *
1283 * It may return NULL if the skb requires no segmentation. This is
1284 * only possible when GSO is used for verifying header integrity.
1285 */
1286 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1287 {
1288 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1289 struct packet_type *ptype;
1290 __be16 type = skb->protocol;
1291 int err;
1292
1293 BUG_ON(skb_shinfo(skb)->frag_list);
1294
1295 skb_reset_mac_header(skb);
1296 skb->mac_len = skb->network_header - skb->mac_header;
1297 __skb_pull(skb, skb->mac_len);
1298
1299 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1300 if (skb_header_cloned(skb) &&
1301 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1302 return ERR_PTR(err);
1303 }
1304
1305 rcu_read_lock();
1306 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) {
1307 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1308 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1309 err = ptype->gso_send_check(skb);
1310 segs = ERR_PTR(err);
1311 if (err || skb_gso_ok(skb, features))
1312 break;
1313 __skb_push(skb, (skb->data -
1314 skb_network_header(skb)));
1315 }
1316 segs = ptype->gso_segment(skb, features);
1317 break;
1318 }
1319 }
1320 rcu_read_unlock();
1321
1322 __skb_push(skb, skb->data - skb_mac_header(skb));
1323
1324 return segs;
1325 }
1326
1327 EXPORT_SYMBOL(skb_gso_segment);
1328
1329 /* Take action when hardware reception checksum errors are detected. */
1330 #ifdef CONFIG_BUG
1331 void netdev_rx_csum_fault(struct net_device *dev)
1332 {
1333 if (net_ratelimit()) {
1334 printk(KERN_ERR "%s: hw csum failure.\n",
1335 dev ? dev->name : "<unknown>");
1336 dump_stack();
1337 }
1338 }
1339 EXPORT_SYMBOL(netdev_rx_csum_fault);
1340 #endif
1341
1342 /* Actually, we should eliminate this check as soon as we know, that:
1343 * 1. IOMMU is present and allows to map all the memory.
1344 * 2. No high memory really exists on this machine.
1345 */
1346
1347 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1348 {
1349 #ifdef CONFIG_HIGHMEM
1350 int i;
1351
1352 if (dev->features & NETIF_F_HIGHDMA)
1353 return 0;
1354
1355 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1356 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1357 return 1;
1358
1359 #endif
1360 return 0;
1361 }
1362
1363 struct dev_gso_cb {
1364 void (*destructor)(struct sk_buff *skb);
1365 };
1366
1367 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1368
1369 static void dev_gso_skb_destructor(struct sk_buff *skb)
1370 {
1371 struct dev_gso_cb *cb;
1372
1373 do {
1374 struct sk_buff *nskb = skb->next;
1375
1376 skb->next = nskb->next;
1377 nskb->next = NULL;
1378 kfree_skb(nskb);
1379 } while (skb->next);
1380
1381 cb = DEV_GSO_CB(skb);
1382 if (cb->destructor)
1383 cb->destructor(skb);
1384 }
1385
1386 /**
1387 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1388 * @skb: buffer to segment
1389 *
1390 * This function segments the given skb and stores the list of segments
1391 * in skb->next.
1392 */
1393 static int dev_gso_segment(struct sk_buff *skb)
1394 {
1395 struct net_device *dev = skb->dev;
1396 struct sk_buff *segs;
1397 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1398 NETIF_F_SG : 0);
1399
1400 segs = skb_gso_segment(skb, features);
1401
1402 /* Verifying header integrity only. */
1403 if (!segs)
1404 return 0;
1405
1406 if (unlikely(IS_ERR(segs)))
1407 return PTR_ERR(segs);
1408
1409 skb->next = segs;
1410 DEV_GSO_CB(skb)->destructor = skb->destructor;
1411 skb->destructor = dev_gso_skb_destructor;
1412
1413 return 0;
1414 }
1415
1416 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1417 {
1418 if (likely(!skb->next)) {
1419 if (!list_empty(&ptype_all))
1420 dev_queue_xmit_nit(skb, dev);
1421
1422 if (netif_needs_gso(dev, skb)) {
1423 if (unlikely(dev_gso_segment(skb)))
1424 goto out_kfree_skb;
1425 if (skb->next)
1426 goto gso;
1427 }
1428
1429 return dev->hard_start_xmit(skb, dev);
1430 }
1431
1432 gso:
1433 do {
1434 struct sk_buff *nskb = skb->next;
1435 int rc;
1436
1437 skb->next = nskb->next;
1438 nskb->next = NULL;
1439 rc = dev->hard_start_xmit(nskb, dev);
1440 if (unlikely(rc)) {
1441 nskb->next = skb->next;
1442 skb->next = nskb;
1443 return rc;
1444 }
1445 if (unlikely((netif_queue_stopped(dev) ||
1446 netif_subqueue_stopped(dev, skb->queue_mapping)) &&
1447 skb->next))
1448 return NETDEV_TX_BUSY;
1449 } while (skb->next);
1450
1451 skb->destructor = DEV_GSO_CB(skb)->destructor;
1452
1453 out_kfree_skb:
1454 kfree_skb(skb);
1455 return 0;
1456 }
1457
1458 #define HARD_TX_LOCK(dev, cpu) { \
1459 if ((dev->features & NETIF_F_LLTX) == 0) { \
1460 netif_tx_lock(dev); \
1461 } \
1462 }
1463
1464 #define HARD_TX_UNLOCK(dev) { \
1465 if ((dev->features & NETIF_F_LLTX) == 0) { \
1466 netif_tx_unlock(dev); \
1467 } \
1468 }
1469
1470 /**
1471 * dev_queue_xmit - transmit a buffer
1472 * @skb: buffer to transmit
1473 *
1474 * Queue a buffer for transmission to a network device. The caller must
1475 * have set the device and priority and built the buffer before calling
1476 * this function. The function can be called from an interrupt.
1477 *
1478 * A negative errno code is returned on a failure. A success does not
1479 * guarantee the frame will be transmitted as it may be dropped due
1480 * to congestion or traffic shaping.
1481 *
1482 * -----------------------------------------------------------------------------------
1483 * I notice this method can also return errors from the queue disciplines,
1484 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1485 * be positive.
1486 *
1487 * Regardless of the return value, the skb is consumed, so it is currently
1488 * difficult to retry a send to this method. (You can bump the ref count
1489 * before sending to hold a reference for retry if you are careful.)
1490 *
1491 * When calling this method, interrupts MUST be enabled. This is because
1492 * the BH enable code must have IRQs enabled so that it will not deadlock.
1493 * --BLG
1494 */
1495
1496 int dev_queue_xmit(struct sk_buff *skb)
1497 {
1498 struct net_device *dev = skb->dev;
1499 struct Qdisc *q;
1500 int rc = -ENOMEM;
1501
1502 /* GSO will handle the following emulations directly. */
1503 if (netif_needs_gso(dev, skb))
1504 goto gso;
1505
1506 if (skb_shinfo(skb)->frag_list &&
1507 !(dev->features & NETIF_F_FRAGLIST) &&
1508 __skb_linearize(skb))
1509 goto out_kfree_skb;
1510
1511 /* Fragmented skb is linearized if device does not support SG,
1512 * or if at least one of fragments is in highmem and device
1513 * does not support DMA from it.
1514 */
1515 if (skb_shinfo(skb)->nr_frags &&
1516 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1517 __skb_linearize(skb))
1518 goto out_kfree_skb;
1519
1520 /* If packet is not checksummed and device does not support
1521 * checksumming for this protocol, complete checksumming here.
1522 */
1523 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1524 skb_set_transport_header(skb, skb->csum_start -
1525 skb_headroom(skb));
1526
1527 if (!(dev->features & NETIF_F_GEN_CSUM) &&
1528 !((dev->features & NETIF_F_IP_CSUM) &&
1529 skb->protocol == htons(ETH_P_IP)) &&
1530 !((dev->features & NETIF_F_IPV6_CSUM) &&
1531 skb->protocol == htons(ETH_P_IPV6)))
1532 if (skb_checksum_help(skb))
1533 goto out_kfree_skb;
1534 }
1535
1536 gso:
1537 spin_lock_prefetch(&dev->queue_lock);
1538
1539 /* Disable soft irqs for various locks below. Also
1540 * stops preemption for RCU.
1541 */
1542 rcu_read_lock_bh();
1543
1544 /* Updates of qdisc are serialized by queue_lock.
1545 * The struct Qdisc which is pointed to by qdisc is now a
1546 * rcu structure - it may be accessed without acquiring
1547 * a lock (but the structure may be stale.) The freeing of the
1548 * qdisc will be deferred until it's known that there are no
1549 * more references to it.
1550 *
1551 * If the qdisc has an enqueue function, we still need to
1552 * hold the queue_lock before calling it, since queue_lock
1553 * also serializes access to the device queue.
1554 */
1555
1556 q = rcu_dereference(dev->qdisc);
1557 #ifdef CONFIG_NET_CLS_ACT
1558 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1559 #endif
1560 if (q->enqueue) {
1561 /* Grab device queue */
1562 spin_lock(&dev->queue_lock);
1563 q = dev->qdisc;
1564 if (q->enqueue) {
1565 /* reset queue_mapping to zero */
1566 skb->queue_mapping = 0;
1567 rc = q->enqueue(skb, q);
1568 qdisc_run(dev);
1569 spin_unlock(&dev->queue_lock);
1570
1571 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1572 goto out;
1573 }
1574 spin_unlock(&dev->queue_lock);
1575 }
1576
1577 /* The device has no queue. Common case for software devices:
1578 loopback, all the sorts of tunnels...
1579
1580 Really, it is unlikely that netif_tx_lock protection is necessary
1581 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1582 counters.)
1583 However, it is possible, that they rely on protection
1584 made by us here.
1585
1586 Check this and shot the lock. It is not prone from deadlocks.
1587 Either shot noqueue qdisc, it is even simpler 8)
1588 */
1589 if (dev->flags & IFF_UP) {
1590 int cpu = smp_processor_id(); /* ok because BHs are off */
1591
1592 if (dev->xmit_lock_owner != cpu) {
1593
1594 HARD_TX_LOCK(dev, cpu);
1595
1596 if (!netif_queue_stopped(dev) &&
1597 !netif_subqueue_stopped(dev, skb->queue_mapping)) {
1598 rc = 0;
1599 if (!dev_hard_start_xmit(skb, dev)) {
1600 HARD_TX_UNLOCK(dev);
1601 goto out;
1602 }
1603 }
1604 HARD_TX_UNLOCK(dev);
1605 if (net_ratelimit())
1606 printk(KERN_CRIT "Virtual device %s asks to "
1607 "queue packet!\n", dev->name);
1608 } else {
1609 /* Recursion is detected! It is possible,
1610 * unfortunately */
1611 if (net_ratelimit())
1612 printk(KERN_CRIT "Dead loop on virtual device "
1613 "%s, fix it urgently!\n", dev->name);
1614 }
1615 }
1616
1617 rc = -ENETDOWN;
1618 rcu_read_unlock_bh();
1619
1620 out_kfree_skb:
1621 kfree_skb(skb);
1622 return rc;
1623 out:
1624 rcu_read_unlock_bh();
1625 return rc;
1626 }
1627
1628
1629 /*=======================================================================
1630 Receiver routines
1631 =======================================================================*/
1632
1633 int netdev_max_backlog __read_mostly = 1000;
1634 int netdev_budget __read_mostly = 300;
1635 int weight_p __read_mostly = 64; /* old backlog weight */
1636
1637 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1638
1639
1640 /**
1641 * netif_rx - post buffer to the network code
1642 * @skb: buffer to post
1643 *
1644 * This function receives a packet from a device driver and queues it for
1645 * the upper (protocol) levels to process. It always succeeds. The buffer
1646 * may be dropped during processing for congestion control or by the
1647 * protocol layers.
1648 *
1649 * return values:
1650 * NET_RX_SUCCESS (no congestion)
1651 * NET_RX_CN_LOW (low congestion)
1652 * NET_RX_CN_MOD (moderate congestion)
1653 * NET_RX_CN_HIGH (high congestion)
1654 * NET_RX_DROP (packet was dropped)
1655 *
1656 */
1657
1658 int netif_rx(struct sk_buff *skb)
1659 {
1660 struct softnet_data *queue;
1661 unsigned long flags;
1662
1663 /* if netpoll wants it, pretend we never saw it */
1664 if (netpoll_rx(skb))
1665 return NET_RX_DROP;
1666
1667 if (!skb->tstamp.tv64)
1668 net_timestamp(skb);
1669
1670 /*
1671 * The code is rearranged so that the path is the most
1672 * short when CPU is congested, but is still operating.
1673 */
1674 local_irq_save(flags);
1675 queue = &__get_cpu_var(softnet_data);
1676
1677 __get_cpu_var(netdev_rx_stat).total++;
1678 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1679 if (queue->input_pkt_queue.qlen) {
1680 enqueue:
1681 dev_hold(skb->dev);
1682 __skb_queue_tail(&queue->input_pkt_queue, skb);
1683 local_irq_restore(flags);
1684 return NET_RX_SUCCESS;
1685 }
1686
1687 netif_rx_schedule(&queue->backlog_dev);
1688 goto enqueue;
1689 }
1690
1691 __get_cpu_var(netdev_rx_stat).dropped++;
1692 local_irq_restore(flags);
1693
1694 kfree_skb(skb);
1695 return NET_RX_DROP;
1696 }
1697
1698 int netif_rx_ni(struct sk_buff *skb)
1699 {
1700 int err;
1701
1702 preempt_disable();
1703 err = netif_rx(skb);
1704 if (local_softirq_pending())
1705 do_softirq();
1706 preempt_enable();
1707
1708 return err;
1709 }
1710
1711 EXPORT_SYMBOL(netif_rx_ni);
1712
1713 static inline struct net_device *skb_bond(struct sk_buff *skb)
1714 {
1715 struct net_device *dev = skb->dev;
1716
1717 if (dev->master) {
1718 if (skb_bond_should_drop(skb)) {
1719 kfree_skb(skb);
1720 return NULL;
1721 }
1722 skb->dev = dev->master;
1723 }
1724
1725 return dev;
1726 }
1727
1728 static void net_tx_action(struct softirq_action *h)
1729 {
1730 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1731
1732 if (sd->completion_queue) {
1733 struct sk_buff *clist;
1734
1735 local_irq_disable();
1736 clist = sd->completion_queue;
1737 sd->completion_queue = NULL;
1738 local_irq_enable();
1739
1740 while (clist) {
1741 struct sk_buff *skb = clist;
1742 clist = clist->next;
1743
1744 BUG_TRAP(!atomic_read(&skb->users));
1745 __kfree_skb(skb);
1746 }
1747 }
1748
1749 if (sd->output_queue) {
1750 struct net_device *head;
1751
1752 local_irq_disable();
1753 head = sd->output_queue;
1754 sd->output_queue = NULL;
1755 local_irq_enable();
1756
1757 while (head) {
1758 struct net_device *dev = head;
1759 head = head->next_sched;
1760
1761 smp_mb__before_clear_bit();
1762 clear_bit(__LINK_STATE_SCHED, &dev->state);
1763
1764 if (spin_trylock(&dev->queue_lock)) {
1765 qdisc_run(dev);
1766 spin_unlock(&dev->queue_lock);
1767 } else {
1768 netif_schedule(dev);
1769 }
1770 }
1771 }
1772 }
1773
1774 static inline int deliver_skb(struct sk_buff *skb,
1775 struct packet_type *pt_prev,
1776 struct net_device *orig_dev)
1777 {
1778 atomic_inc(&skb->users);
1779 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1780 }
1781
1782 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1783 /* These hooks defined here for ATM */
1784 struct net_bridge;
1785 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1786 unsigned char *addr);
1787 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1788
1789 /*
1790 * If bridge module is loaded call bridging hook.
1791 * returns NULL if packet was consumed.
1792 */
1793 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1794 struct sk_buff *skb) __read_mostly;
1795 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1796 struct packet_type **pt_prev, int *ret,
1797 struct net_device *orig_dev)
1798 {
1799 struct net_bridge_port *port;
1800
1801 if (skb->pkt_type == PACKET_LOOPBACK ||
1802 (port = rcu_dereference(skb->dev->br_port)) == NULL)
1803 return skb;
1804
1805 if (*pt_prev) {
1806 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1807 *pt_prev = NULL;
1808 }
1809
1810 return br_handle_frame_hook(port, skb);
1811 }
1812 #else
1813 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1814 #endif
1815
1816 #ifdef CONFIG_NET_CLS_ACT
1817 /* TODO: Maybe we should just force sch_ingress to be compiled in
1818 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1819 * a compare and 2 stores extra right now if we dont have it on
1820 * but have CONFIG_NET_CLS_ACT
1821 * NOTE: This doesnt stop any functionality; if you dont have
1822 * the ingress scheduler, you just cant add policies on ingress.
1823 *
1824 */
1825 static int ing_filter(struct sk_buff *skb)
1826 {
1827 struct Qdisc *q;
1828 struct net_device *dev = skb->dev;
1829 int result = TC_ACT_OK;
1830
1831 if (dev->qdisc_ingress) {
1832 __u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd);
1833 if (MAX_RED_LOOP < ttl++) {
1834 printk(KERN_WARNING "Redir loop detected Dropping packet (%d->%d)\n",
1835 skb->iif, skb->dev->ifindex);
1836 return TC_ACT_SHOT;
1837 }
1838
1839 skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl);
1840
1841 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS);
1842
1843 spin_lock(&dev->ingress_lock);
1844 if ((q = dev->qdisc_ingress) != NULL)
1845 result = q->enqueue(skb, q);
1846 spin_unlock(&dev->ingress_lock);
1847
1848 }
1849
1850 return result;
1851 }
1852 #endif
1853
1854 int netif_receive_skb(struct sk_buff *skb)
1855 {
1856 struct packet_type *ptype, *pt_prev;
1857 struct net_device *orig_dev;
1858 int ret = NET_RX_DROP;
1859 __be16 type;
1860
1861 /* if we've gotten here through NAPI, check netpoll */
1862 if (skb->dev->poll && netpoll_rx(skb))
1863 return NET_RX_DROP;
1864
1865 if (!skb->tstamp.tv64)
1866 net_timestamp(skb);
1867
1868 if (!skb->iif)
1869 skb->iif = skb->dev->ifindex;
1870
1871 orig_dev = skb_bond(skb);
1872
1873 if (!orig_dev)
1874 return NET_RX_DROP;
1875
1876 __get_cpu_var(netdev_rx_stat).total++;
1877
1878 skb_reset_network_header(skb);
1879 skb_reset_transport_header(skb);
1880 skb->mac_len = skb->network_header - skb->mac_header;
1881
1882 pt_prev = NULL;
1883
1884 rcu_read_lock();
1885
1886 #ifdef CONFIG_NET_CLS_ACT
1887 if (skb->tc_verd & TC_NCLS) {
1888 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
1889 goto ncls;
1890 }
1891 #endif
1892
1893 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1894 if (!ptype->dev || ptype->dev == skb->dev) {
1895 if (pt_prev)
1896 ret = deliver_skb(skb, pt_prev, orig_dev);
1897 pt_prev = ptype;
1898 }
1899 }
1900
1901 #ifdef CONFIG_NET_CLS_ACT
1902 if (pt_prev) {
1903 ret = deliver_skb(skb, pt_prev, orig_dev);
1904 pt_prev = NULL; /* noone else should process this after*/
1905 } else {
1906 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1907 }
1908
1909 ret = ing_filter(skb);
1910
1911 if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) {
1912 kfree_skb(skb);
1913 goto out;
1914 }
1915
1916 skb->tc_verd = 0;
1917 ncls:
1918 #endif
1919
1920 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
1921 if (!skb)
1922 goto out;
1923
1924 type = skb->protocol;
1925 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) {
1926 if (ptype->type == type &&
1927 (!ptype->dev || ptype->dev == skb->dev)) {
1928 if (pt_prev)
1929 ret = deliver_skb(skb, pt_prev, orig_dev);
1930 pt_prev = ptype;
1931 }
1932 }
1933
1934 if (pt_prev) {
1935 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1936 } else {
1937 kfree_skb(skb);
1938 /* Jamal, now you will not able to escape explaining
1939 * me how you were going to use this. :-)
1940 */
1941 ret = NET_RX_DROP;
1942 }
1943
1944 out:
1945 rcu_read_unlock();
1946 return ret;
1947 }
1948
1949 static int process_backlog(struct net_device *backlog_dev, int *budget)
1950 {
1951 int work = 0;
1952 int quota = min(backlog_dev->quota, *budget);
1953 struct softnet_data *queue = &__get_cpu_var(softnet_data);
1954 unsigned long start_time = jiffies;
1955
1956 backlog_dev->weight = weight_p;
1957 for (;;) {
1958 struct sk_buff *skb;
1959 struct net_device *dev;
1960
1961 local_irq_disable();
1962 skb = __skb_dequeue(&queue->input_pkt_queue);
1963 if (!skb)
1964 goto job_done;
1965 local_irq_enable();
1966
1967 dev = skb->dev;
1968
1969 netif_receive_skb(skb);
1970
1971 dev_put(dev);
1972
1973 work++;
1974
1975 if (work >= quota || jiffies - start_time > 1)
1976 break;
1977
1978 }
1979
1980 backlog_dev->quota -= work;
1981 *budget -= work;
1982 return -1;
1983
1984 job_done:
1985 backlog_dev->quota -= work;
1986 *budget -= work;
1987
1988 list_del(&backlog_dev->poll_list);
1989 smp_mb__before_clear_bit();
1990 netif_poll_enable(backlog_dev);
1991
1992 local_irq_enable();
1993 return 0;
1994 }
1995
1996 static void net_rx_action(struct softirq_action *h)
1997 {
1998 struct softnet_data *queue = &__get_cpu_var(softnet_data);
1999 unsigned long start_time = jiffies;
2000 int budget = netdev_budget;
2001 void *have;
2002
2003 local_irq_disable();
2004
2005 while (!list_empty(&queue->poll_list)) {
2006 struct net_device *dev;
2007
2008 if (budget <= 0 || jiffies - start_time > 1)
2009 goto softnet_break;
2010
2011 local_irq_enable();
2012
2013 dev = list_entry(queue->poll_list.next,
2014 struct net_device, poll_list);
2015 have = netpoll_poll_lock(dev);
2016
2017 if (dev->quota <= 0 || dev->poll(dev, &budget)) {
2018 netpoll_poll_unlock(have);
2019 local_irq_disable();
2020 list_move_tail(&dev->poll_list, &queue->poll_list);
2021 if (dev->quota < 0)
2022 dev->quota += dev->weight;
2023 else
2024 dev->quota = dev->weight;
2025 } else {
2026 netpoll_poll_unlock(have);
2027 dev_put(dev);
2028 local_irq_disable();
2029 }
2030 }
2031 out:
2032 local_irq_enable();
2033 #ifdef CONFIG_NET_DMA
2034 /*
2035 * There may not be any more sk_buffs coming right now, so push
2036 * any pending DMA copies to hardware
2037 */
2038 if (!cpus_empty(net_dma.channel_mask)) {
2039 int chan_idx;
2040 for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2041 struct dma_chan *chan = net_dma.channels[chan_idx];
2042 if (chan)
2043 dma_async_memcpy_issue_pending(chan);
2044 }
2045 }
2046 #endif
2047 return;
2048
2049 softnet_break:
2050 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2051 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2052 goto out;
2053 }
2054
2055 static gifconf_func_t * gifconf_list [NPROTO];
2056
2057 /**
2058 * register_gifconf - register a SIOCGIF handler
2059 * @family: Address family
2060 * @gifconf: Function handler
2061 *
2062 * Register protocol dependent address dumping routines. The handler
2063 * that is passed must not be freed or reused until it has been replaced
2064 * by another handler.
2065 */
2066 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2067 {
2068 if (family >= NPROTO)
2069 return -EINVAL;
2070 gifconf_list[family] = gifconf;
2071 return 0;
2072 }
2073
2074
2075 /*
2076 * Map an interface index to its name (SIOCGIFNAME)
2077 */
2078
2079 /*
2080 * We need this ioctl for efficient implementation of the
2081 * if_indextoname() function required by the IPv6 API. Without
2082 * it, we would have to search all the interfaces to find a
2083 * match. --pb
2084 */
2085
2086 static int dev_ifname(struct ifreq __user *arg)
2087 {
2088 struct net_device *dev;
2089 struct ifreq ifr;
2090
2091 /*
2092 * Fetch the caller's info block.
2093 */
2094
2095 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2096 return -EFAULT;
2097
2098 read_lock(&dev_base_lock);
2099 dev = __dev_get_by_index(ifr.ifr_ifindex);
2100 if (!dev) {
2101 read_unlock(&dev_base_lock);
2102 return -ENODEV;
2103 }
2104
2105 strcpy(ifr.ifr_name, dev->name);
2106 read_unlock(&dev_base_lock);
2107
2108 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2109 return -EFAULT;
2110 return 0;
2111 }
2112
2113 /*
2114 * Perform a SIOCGIFCONF call. This structure will change
2115 * size eventually, and there is nothing I can do about it.
2116 * Thus we will need a 'compatibility mode'.
2117 */
2118
2119 static int dev_ifconf(char __user *arg)
2120 {
2121 struct ifconf ifc;
2122 struct net_device *dev;
2123 char __user *pos;
2124 int len;
2125 int total;
2126 int i;
2127
2128 /*
2129 * Fetch the caller's info block.
2130 */
2131
2132 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2133 return -EFAULT;
2134
2135 pos = ifc.ifc_buf;
2136 len = ifc.ifc_len;
2137
2138 /*
2139 * Loop over the interfaces, and write an info block for each.
2140 */
2141
2142 total = 0;
2143 for_each_netdev(dev) {
2144 for (i = 0; i < NPROTO; i++) {
2145 if (gifconf_list[i]) {
2146 int done;
2147 if (!pos)
2148 done = gifconf_list[i](dev, NULL, 0);
2149 else
2150 done = gifconf_list[i](dev, pos + total,
2151 len - total);
2152 if (done < 0)
2153 return -EFAULT;
2154 total += done;
2155 }
2156 }
2157 }
2158
2159 /*
2160 * All done. Write the updated control block back to the caller.
2161 */
2162 ifc.ifc_len = total;
2163
2164 /*
2165 * Both BSD and Solaris return 0 here, so we do too.
2166 */
2167 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2168 }
2169
2170 #ifdef CONFIG_PROC_FS
2171 /*
2172 * This is invoked by the /proc filesystem handler to display a device
2173 * in detail.
2174 */
2175 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2176 {
2177 loff_t off;
2178 struct net_device *dev;
2179
2180 read_lock(&dev_base_lock);
2181 if (!*pos)
2182 return SEQ_START_TOKEN;
2183
2184 off = 1;
2185 for_each_netdev(dev)
2186 if (off++ == *pos)
2187 return dev;
2188
2189 return NULL;
2190 }
2191
2192 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2193 {
2194 ++*pos;
2195 return v == SEQ_START_TOKEN ?
2196 first_net_device() : next_net_device((struct net_device *)v);
2197 }
2198
2199 void dev_seq_stop(struct seq_file *seq, void *v)
2200 {
2201 read_unlock(&dev_base_lock);
2202 }
2203
2204 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2205 {
2206 struct net_device_stats *stats = dev->get_stats(dev);
2207
2208 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2209 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2210 dev->name, stats->rx_bytes, stats->rx_packets,
2211 stats->rx_errors,
2212 stats->rx_dropped + stats->rx_missed_errors,
2213 stats->rx_fifo_errors,
2214 stats->rx_length_errors + stats->rx_over_errors +
2215 stats->rx_crc_errors + stats->rx_frame_errors,
2216 stats->rx_compressed, stats->multicast,
2217 stats->tx_bytes, stats->tx_packets,
2218 stats->tx_errors, stats->tx_dropped,
2219 stats->tx_fifo_errors, stats->collisions,
2220 stats->tx_carrier_errors +
2221 stats->tx_aborted_errors +
2222 stats->tx_window_errors +
2223 stats->tx_heartbeat_errors,
2224 stats->tx_compressed);
2225 }
2226
2227 /*
2228 * Called from the PROCfs module. This now uses the new arbitrary sized
2229 * /proc/net interface to create /proc/net/dev
2230 */
2231 static int dev_seq_show(struct seq_file *seq, void *v)
2232 {
2233 if (v == SEQ_START_TOKEN)
2234 seq_puts(seq, "Inter-| Receive "
2235 " | Transmit\n"
2236 " face |bytes packets errs drop fifo frame "
2237 "compressed multicast|bytes packets errs "
2238 "drop fifo colls carrier compressed\n");
2239 else
2240 dev_seq_printf_stats(seq, v);
2241 return 0;
2242 }
2243
2244 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2245 {
2246 struct netif_rx_stats *rc = NULL;
2247
2248 while (*pos < NR_CPUS)
2249 if (cpu_online(*pos)) {
2250 rc = &per_cpu(netdev_rx_stat, *pos);
2251 break;
2252 } else
2253 ++*pos;
2254 return rc;
2255 }
2256
2257 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2258 {
2259 return softnet_get_online(pos);
2260 }
2261
2262 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2263 {
2264 ++*pos;
2265 return softnet_get_online(pos);
2266 }
2267
2268 static void softnet_seq_stop(struct seq_file *seq, void *v)
2269 {
2270 }
2271
2272 static int softnet_seq_show(struct seq_file *seq, void *v)
2273 {
2274 struct netif_rx_stats *s = v;
2275
2276 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2277 s->total, s->dropped, s->time_squeeze, 0,
2278 0, 0, 0, 0, /* was fastroute */
2279 s->cpu_collision );
2280 return 0;
2281 }
2282
2283 static const struct seq_operations dev_seq_ops = {
2284 .start = dev_seq_start,
2285 .next = dev_seq_next,
2286 .stop = dev_seq_stop,
2287 .show = dev_seq_show,
2288 };
2289
2290 static int dev_seq_open(struct inode *inode, struct file *file)
2291 {
2292 return seq_open(file, &dev_seq_ops);
2293 }
2294
2295 static const struct file_operations dev_seq_fops = {
2296 .owner = THIS_MODULE,
2297 .open = dev_seq_open,
2298 .read = seq_read,
2299 .llseek = seq_lseek,
2300 .release = seq_release,
2301 };
2302
2303 static const struct seq_operations softnet_seq_ops = {
2304 .start = softnet_seq_start,
2305 .next = softnet_seq_next,
2306 .stop = softnet_seq_stop,
2307 .show = softnet_seq_show,
2308 };
2309
2310 static int softnet_seq_open(struct inode *inode, struct file *file)
2311 {
2312 return seq_open(file, &softnet_seq_ops);
2313 }
2314
2315 static const struct file_operations softnet_seq_fops = {
2316 .owner = THIS_MODULE,
2317 .open = softnet_seq_open,
2318 .read = seq_read,
2319 .llseek = seq_lseek,
2320 .release = seq_release,
2321 };
2322
2323 static void *ptype_get_idx(loff_t pos)
2324 {
2325 struct packet_type *pt = NULL;
2326 loff_t i = 0;
2327 int t;
2328
2329 list_for_each_entry_rcu(pt, &ptype_all, list) {
2330 if (i == pos)
2331 return pt;
2332 ++i;
2333 }
2334
2335 for (t = 0; t < 16; t++) {
2336 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2337 if (i == pos)
2338 return pt;
2339 ++i;
2340 }
2341 }
2342 return NULL;
2343 }
2344
2345 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2346 {
2347 rcu_read_lock();
2348 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2349 }
2350
2351 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2352 {
2353 struct packet_type *pt;
2354 struct list_head *nxt;
2355 int hash;
2356
2357 ++*pos;
2358 if (v == SEQ_START_TOKEN)
2359 return ptype_get_idx(0);
2360
2361 pt = v;
2362 nxt = pt->list.next;
2363 if (pt->type == htons(ETH_P_ALL)) {
2364 if (nxt != &ptype_all)
2365 goto found;
2366 hash = 0;
2367 nxt = ptype_base[0].next;
2368 } else
2369 hash = ntohs(pt->type) & 15;
2370
2371 while (nxt == &ptype_base[hash]) {
2372 if (++hash >= 16)
2373 return NULL;
2374 nxt = ptype_base[hash].next;
2375 }
2376 found:
2377 return list_entry(nxt, struct packet_type, list);
2378 }
2379
2380 static void ptype_seq_stop(struct seq_file *seq, void *v)
2381 {
2382 rcu_read_unlock();
2383 }
2384
2385 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2386 {
2387 #ifdef CONFIG_KALLSYMS
2388 unsigned long offset = 0, symsize;
2389 const char *symname;
2390 char *modname;
2391 char namebuf[128];
2392
2393 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2394 &modname, namebuf);
2395
2396 if (symname) {
2397 char *delim = ":";
2398
2399 if (!modname)
2400 modname = delim = "";
2401 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2402 symname, offset);
2403 return;
2404 }
2405 #endif
2406
2407 seq_printf(seq, "[%p]", sym);
2408 }
2409
2410 static int ptype_seq_show(struct seq_file *seq, void *v)
2411 {
2412 struct packet_type *pt = v;
2413
2414 if (v == SEQ_START_TOKEN)
2415 seq_puts(seq, "Type Device Function\n");
2416 else {
2417 if (pt->type == htons(ETH_P_ALL))
2418 seq_puts(seq, "ALL ");
2419 else
2420 seq_printf(seq, "%04x", ntohs(pt->type));
2421
2422 seq_printf(seq, " %-8s ",
2423 pt->dev ? pt->dev->name : "");
2424 ptype_seq_decode(seq, pt->func);
2425 seq_putc(seq, '\n');
2426 }
2427
2428 return 0;
2429 }
2430
2431 static const struct seq_operations ptype_seq_ops = {
2432 .start = ptype_seq_start,
2433 .next = ptype_seq_next,
2434 .stop = ptype_seq_stop,
2435 .show = ptype_seq_show,
2436 };
2437
2438 static int ptype_seq_open(struct inode *inode, struct file *file)
2439 {
2440 return seq_open(file, &ptype_seq_ops);
2441 }
2442
2443 static const struct file_operations ptype_seq_fops = {
2444 .owner = THIS_MODULE,
2445 .open = ptype_seq_open,
2446 .read = seq_read,
2447 .llseek = seq_lseek,
2448 .release = seq_release,
2449 };
2450
2451
2452 static int __init dev_proc_init(void)
2453 {
2454 int rc = -ENOMEM;
2455
2456 if (!proc_net_fops_create("dev", S_IRUGO, &dev_seq_fops))
2457 goto out;
2458 if (!proc_net_fops_create("softnet_stat", S_IRUGO, &softnet_seq_fops))
2459 goto out_dev;
2460 if (!proc_net_fops_create("ptype", S_IRUGO, &ptype_seq_fops))
2461 goto out_dev2;
2462
2463 if (wext_proc_init())
2464 goto out_softnet;
2465 rc = 0;
2466 out:
2467 return rc;
2468 out_softnet:
2469 proc_net_remove("ptype");
2470 out_dev2:
2471 proc_net_remove("softnet_stat");
2472 out_dev:
2473 proc_net_remove("dev");
2474 goto out;
2475 }
2476 #else
2477 #define dev_proc_init() 0
2478 #endif /* CONFIG_PROC_FS */
2479
2480
2481 /**
2482 * netdev_set_master - set up master/slave pair
2483 * @slave: slave device
2484 * @master: new master device
2485 *
2486 * Changes the master device of the slave. Pass %NULL to break the
2487 * bonding. The caller must hold the RTNL semaphore. On a failure
2488 * a negative errno code is returned. On success the reference counts
2489 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2490 * function returns zero.
2491 */
2492 int netdev_set_master(struct net_device *slave, struct net_device *master)
2493 {
2494 struct net_device *old = slave->master;
2495
2496 ASSERT_RTNL();
2497
2498 if (master) {
2499 if (old)
2500 return -EBUSY;
2501 dev_hold(master);
2502 }
2503
2504 slave->master = master;
2505
2506 synchronize_net();
2507
2508 if (old)
2509 dev_put(old);
2510
2511 if (master)
2512 slave->flags |= IFF_SLAVE;
2513 else
2514 slave->flags &= ~IFF_SLAVE;
2515
2516 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2517 return 0;
2518 }
2519
2520 static void __dev_set_promiscuity(struct net_device *dev, int inc)
2521 {
2522 unsigned short old_flags = dev->flags;
2523
2524 if ((dev->promiscuity += inc) == 0)
2525 dev->flags &= ~IFF_PROMISC;
2526 else
2527 dev->flags |= IFF_PROMISC;
2528 if (dev->flags != old_flags) {
2529 printk(KERN_INFO "device %s %s promiscuous mode\n",
2530 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2531 "left");
2532 audit_log(current->audit_context, GFP_ATOMIC,
2533 AUDIT_ANOM_PROMISCUOUS,
2534 "dev=%s prom=%d old_prom=%d auid=%u",
2535 dev->name, (dev->flags & IFF_PROMISC),
2536 (old_flags & IFF_PROMISC),
2537 audit_get_loginuid(current->audit_context));
2538 }
2539 }
2540
2541 /**
2542 * dev_set_promiscuity - update promiscuity count on a device
2543 * @dev: device
2544 * @inc: modifier
2545 *
2546 * Add or remove promiscuity from a device. While the count in the device
2547 * remains above zero the interface remains promiscuous. Once it hits zero
2548 * the device reverts back to normal filtering operation. A negative inc
2549 * value is used to drop promiscuity on the device.
2550 */
2551 void dev_set_promiscuity(struct net_device *dev, int inc)
2552 {
2553 unsigned short old_flags = dev->flags;
2554
2555 __dev_set_promiscuity(dev, inc);
2556 if (dev->flags != old_flags)
2557 dev_set_rx_mode(dev);
2558 }
2559
2560 /**
2561 * dev_set_allmulti - update allmulti count on a device
2562 * @dev: device
2563 * @inc: modifier
2564 *
2565 * Add or remove reception of all multicast frames to a device. While the
2566 * count in the device remains above zero the interface remains listening
2567 * to all interfaces. Once it hits zero the device reverts back to normal
2568 * filtering operation. A negative @inc value is used to drop the counter
2569 * when releasing a resource needing all multicasts.
2570 */
2571
2572 void dev_set_allmulti(struct net_device *dev, int inc)
2573 {
2574 unsigned short old_flags = dev->flags;
2575
2576 dev->flags |= IFF_ALLMULTI;
2577 if ((dev->allmulti += inc) == 0)
2578 dev->flags &= ~IFF_ALLMULTI;
2579 if (dev->flags ^ old_flags)
2580 dev_set_rx_mode(dev);
2581 }
2582
2583 /*
2584 * Upload unicast and multicast address lists to device and
2585 * configure RX filtering. When the device doesn't support unicast
2586 * filtering it is put in promiscous mode while unicast addresses
2587 * are present.
2588 */
2589 void __dev_set_rx_mode(struct net_device *dev)
2590 {
2591 /* dev_open will call this function so the list will stay sane. */
2592 if (!(dev->flags&IFF_UP))
2593 return;
2594
2595 if (!netif_device_present(dev))
2596 return;
2597
2598 if (dev->set_rx_mode)
2599 dev->set_rx_mode(dev);
2600 else {
2601 /* Unicast addresses changes may only happen under the rtnl,
2602 * therefore calling __dev_set_promiscuity here is safe.
2603 */
2604 if (dev->uc_count > 0 && !dev->uc_promisc) {
2605 __dev_set_promiscuity(dev, 1);
2606 dev->uc_promisc = 1;
2607 } else if (dev->uc_count == 0 && dev->uc_promisc) {
2608 __dev_set_promiscuity(dev, -1);
2609 dev->uc_promisc = 0;
2610 }
2611
2612 if (dev->set_multicast_list)
2613 dev->set_multicast_list(dev);
2614 }
2615 }
2616
2617 void dev_set_rx_mode(struct net_device *dev)
2618 {
2619 netif_tx_lock_bh(dev);
2620 __dev_set_rx_mode(dev);
2621 netif_tx_unlock_bh(dev);
2622 }
2623
2624 int __dev_addr_delete(struct dev_addr_list **list, int *count,
2625 void *addr, int alen, int glbl)
2626 {
2627 struct dev_addr_list *da;
2628
2629 for (; (da = *list) != NULL; list = &da->next) {
2630 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2631 alen == da->da_addrlen) {
2632 if (glbl) {
2633 int old_glbl = da->da_gusers;
2634 da->da_gusers = 0;
2635 if (old_glbl == 0)
2636 break;
2637 }
2638 if (--da->da_users)
2639 return 0;
2640
2641 *list = da->next;
2642 kfree(da);
2643 (*count)--;
2644 return 0;
2645 }
2646 }
2647 return -ENOENT;
2648 }
2649
2650 int __dev_addr_add(struct dev_addr_list **list, int *count,
2651 void *addr, int alen, int glbl)
2652 {
2653 struct dev_addr_list *da;
2654
2655 for (da = *list; da != NULL; da = da->next) {
2656 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2657 da->da_addrlen == alen) {
2658 if (glbl) {
2659 int old_glbl = da->da_gusers;
2660 da->da_gusers = 1;
2661 if (old_glbl)
2662 return 0;
2663 }
2664 da->da_users++;
2665 return 0;
2666 }
2667 }
2668
2669 da = kmalloc(sizeof(*da), GFP_ATOMIC);
2670 if (da == NULL)
2671 return -ENOMEM;
2672 memcpy(da->da_addr, addr, alen);
2673 da->da_addrlen = alen;
2674 da->da_users = 1;
2675 da->da_gusers = glbl ? 1 : 0;
2676 da->next = *list;
2677 *list = da;
2678 (*count)++;
2679 return 0;
2680 }
2681
2682 void __dev_addr_discard(struct dev_addr_list **list)
2683 {
2684 struct dev_addr_list *tmp;
2685
2686 while (*list != NULL) {
2687 tmp = *list;
2688 *list = tmp->next;
2689 if (tmp->da_users > tmp->da_gusers)
2690 printk("__dev_addr_discard: address leakage! "
2691 "da_users=%d\n", tmp->da_users);
2692 kfree(tmp);
2693 }
2694 }
2695
2696 /**
2697 * dev_unicast_delete - Release secondary unicast address.
2698 * @dev: device
2699 *
2700 * Release reference to a secondary unicast address and remove it
2701 * from the device if the reference count drop to zero.
2702 *
2703 * The caller must hold the rtnl_mutex.
2704 */
2705 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
2706 {
2707 int err;
2708
2709 ASSERT_RTNL();
2710
2711 netif_tx_lock_bh(dev);
2712 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2713 if (!err)
2714 __dev_set_rx_mode(dev);
2715 netif_tx_unlock_bh(dev);
2716 return err;
2717 }
2718 EXPORT_SYMBOL(dev_unicast_delete);
2719
2720 /**
2721 * dev_unicast_add - add a secondary unicast address
2722 * @dev: device
2723 *
2724 * Add a secondary unicast address to the device or increase
2725 * the reference count if it already exists.
2726 *
2727 * The caller must hold the rtnl_mutex.
2728 */
2729 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
2730 {
2731 int err;
2732
2733 ASSERT_RTNL();
2734
2735 netif_tx_lock_bh(dev);
2736 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2737 if (!err)
2738 __dev_set_rx_mode(dev);
2739 netif_tx_unlock_bh(dev);
2740 return err;
2741 }
2742 EXPORT_SYMBOL(dev_unicast_add);
2743
2744 static void dev_unicast_discard(struct net_device *dev)
2745 {
2746 netif_tx_lock_bh(dev);
2747 __dev_addr_discard(&dev->uc_list);
2748 dev->uc_count = 0;
2749 netif_tx_unlock_bh(dev);
2750 }
2751
2752 unsigned dev_get_flags(const struct net_device *dev)
2753 {
2754 unsigned flags;
2755
2756 flags = (dev->flags & ~(IFF_PROMISC |
2757 IFF_ALLMULTI |
2758 IFF_RUNNING |
2759 IFF_LOWER_UP |
2760 IFF_DORMANT)) |
2761 (dev->gflags & (IFF_PROMISC |
2762 IFF_ALLMULTI));
2763
2764 if (netif_running(dev)) {
2765 if (netif_oper_up(dev))
2766 flags |= IFF_RUNNING;
2767 if (netif_carrier_ok(dev))
2768 flags |= IFF_LOWER_UP;
2769 if (netif_dormant(dev))
2770 flags |= IFF_DORMANT;
2771 }
2772
2773 return flags;
2774 }
2775
2776 int dev_change_flags(struct net_device *dev, unsigned flags)
2777 {
2778 int ret, changes;
2779 int old_flags = dev->flags;
2780
2781 /*
2782 * Set the flags on our device.
2783 */
2784
2785 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
2786 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
2787 IFF_AUTOMEDIA)) |
2788 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
2789 IFF_ALLMULTI));
2790
2791 /*
2792 * Load in the correct multicast list now the flags have changed.
2793 */
2794
2795 dev_set_rx_mode(dev);
2796
2797 /*
2798 * Have we downed the interface. We handle IFF_UP ourselves
2799 * according to user attempts to set it, rather than blindly
2800 * setting it.
2801 */
2802
2803 ret = 0;
2804 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
2805 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
2806
2807 if (!ret)
2808 dev_set_rx_mode(dev);
2809 }
2810
2811 if (dev->flags & IFF_UP &&
2812 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
2813 IFF_VOLATILE)))
2814 raw_notifier_call_chain(&netdev_chain,
2815 NETDEV_CHANGE, dev);
2816
2817 if ((flags ^ dev->gflags) & IFF_PROMISC) {
2818 int inc = (flags & IFF_PROMISC) ? +1 : -1;
2819 dev->gflags ^= IFF_PROMISC;
2820 dev_set_promiscuity(dev, inc);
2821 }
2822
2823 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
2824 is important. Some (broken) drivers set IFF_PROMISC, when
2825 IFF_ALLMULTI is requested not asking us and not reporting.
2826 */
2827 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
2828 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
2829 dev->gflags ^= IFF_ALLMULTI;
2830 dev_set_allmulti(dev, inc);
2831 }
2832
2833 /* Exclude state transition flags, already notified */
2834 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
2835 if (changes)
2836 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
2837
2838 return ret;
2839 }
2840
2841 int dev_set_mtu(struct net_device *dev, int new_mtu)
2842 {
2843 int err;
2844
2845 if (new_mtu == dev->mtu)
2846 return 0;
2847
2848 /* MTU must be positive. */
2849 if (new_mtu < 0)
2850 return -EINVAL;
2851
2852 if (!netif_device_present(dev))
2853 return -ENODEV;
2854
2855 err = 0;
2856 if (dev->change_mtu)
2857 err = dev->change_mtu(dev, new_mtu);
2858 else
2859 dev->mtu = new_mtu;
2860 if (!err && dev->flags & IFF_UP)
2861 raw_notifier_call_chain(&netdev_chain,
2862 NETDEV_CHANGEMTU, dev);
2863 return err;
2864 }
2865
2866 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
2867 {
2868 int err;
2869
2870 if (!dev->set_mac_address)
2871 return -EOPNOTSUPP;
2872 if (sa->sa_family != dev->type)
2873 return -EINVAL;
2874 if (!netif_device_present(dev))
2875 return -ENODEV;
2876 err = dev->set_mac_address(dev, sa);
2877 if (!err)
2878 raw_notifier_call_chain(&netdev_chain,
2879 NETDEV_CHANGEADDR, dev);
2880 return err;
2881 }
2882
2883 /*
2884 * Perform the SIOCxIFxxx calls.
2885 */
2886 static int dev_ifsioc(struct ifreq *ifr, unsigned int cmd)
2887 {
2888 int err;
2889 struct net_device *dev = __dev_get_by_name(ifr->ifr_name);
2890
2891 if (!dev)
2892 return -ENODEV;
2893
2894 switch (cmd) {
2895 case SIOCGIFFLAGS: /* Get interface flags */
2896 ifr->ifr_flags = dev_get_flags(dev);
2897 return 0;
2898
2899 case SIOCSIFFLAGS: /* Set interface flags */
2900 return dev_change_flags(dev, ifr->ifr_flags);
2901
2902 case SIOCGIFMETRIC: /* Get the metric on the interface
2903 (currently unused) */
2904 ifr->ifr_metric = 0;
2905 return 0;
2906
2907 case SIOCSIFMETRIC: /* Set the metric on the interface
2908 (currently unused) */
2909 return -EOPNOTSUPP;
2910
2911 case SIOCGIFMTU: /* Get the MTU of a device */
2912 ifr->ifr_mtu = dev->mtu;
2913 return 0;
2914
2915 case SIOCSIFMTU: /* Set the MTU of a device */
2916 return dev_set_mtu(dev, ifr->ifr_mtu);
2917
2918 case SIOCGIFHWADDR:
2919 if (!dev->addr_len)
2920 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
2921 else
2922 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
2923 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
2924 ifr->ifr_hwaddr.sa_family = dev->type;
2925 return 0;
2926
2927 case SIOCSIFHWADDR:
2928 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
2929
2930 case SIOCSIFHWBROADCAST:
2931 if (ifr->ifr_hwaddr.sa_family != dev->type)
2932 return -EINVAL;
2933 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
2934 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
2935 raw_notifier_call_chain(&netdev_chain,
2936 NETDEV_CHANGEADDR, dev);
2937 return 0;
2938
2939 case SIOCGIFMAP:
2940 ifr->ifr_map.mem_start = dev->mem_start;
2941 ifr->ifr_map.mem_end = dev->mem_end;
2942 ifr->ifr_map.base_addr = dev->base_addr;
2943 ifr->ifr_map.irq = dev->irq;
2944 ifr->ifr_map.dma = dev->dma;
2945 ifr->ifr_map.port = dev->if_port;
2946 return 0;
2947
2948 case SIOCSIFMAP:
2949 if (dev->set_config) {
2950 if (!netif_device_present(dev))
2951 return -ENODEV;
2952 return dev->set_config(dev, &ifr->ifr_map);
2953 }
2954 return -EOPNOTSUPP;
2955
2956 case SIOCADDMULTI:
2957 if (!dev->set_multicast_list ||
2958 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
2959 return -EINVAL;
2960 if (!netif_device_present(dev))
2961 return -ENODEV;
2962 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
2963 dev->addr_len, 1);
2964
2965 case SIOCDELMULTI:
2966 if (!dev->set_multicast_list ||
2967 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
2968 return -EINVAL;
2969 if (!netif_device_present(dev))
2970 return -ENODEV;
2971 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
2972 dev->addr_len, 1);
2973
2974 case SIOCGIFINDEX:
2975 ifr->ifr_ifindex = dev->ifindex;
2976 return 0;
2977
2978 case SIOCGIFTXQLEN:
2979 ifr->ifr_qlen = dev->tx_queue_len;
2980 return 0;
2981
2982 case SIOCSIFTXQLEN:
2983 if (ifr->ifr_qlen < 0)
2984 return -EINVAL;
2985 dev->tx_queue_len = ifr->ifr_qlen;
2986 return 0;
2987
2988 case SIOCSIFNAME:
2989 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
2990 return dev_change_name(dev, ifr->ifr_newname);
2991
2992 /*
2993 * Unknown or private ioctl
2994 */
2995
2996 default:
2997 if ((cmd >= SIOCDEVPRIVATE &&
2998 cmd <= SIOCDEVPRIVATE + 15) ||
2999 cmd == SIOCBONDENSLAVE ||
3000 cmd == SIOCBONDRELEASE ||
3001 cmd == SIOCBONDSETHWADDR ||
3002 cmd == SIOCBONDSLAVEINFOQUERY ||
3003 cmd == SIOCBONDINFOQUERY ||
3004 cmd == SIOCBONDCHANGEACTIVE ||
3005 cmd == SIOCGMIIPHY ||
3006 cmd == SIOCGMIIREG ||
3007 cmd == SIOCSMIIREG ||
3008 cmd == SIOCBRADDIF ||
3009 cmd == SIOCBRDELIF ||
3010 cmd == SIOCWANDEV) {
3011 err = -EOPNOTSUPP;
3012 if (dev->do_ioctl) {
3013 if (netif_device_present(dev))
3014 err = dev->do_ioctl(dev, ifr,
3015 cmd);
3016 else
3017 err = -ENODEV;
3018 }
3019 } else
3020 err = -EINVAL;
3021
3022 }
3023 return err;
3024 }
3025
3026 /*
3027 * This function handles all "interface"-type I/O control requests. The actual
3028 * 'doing' part of this is dev_ifsioc above.
3029 */
3030
3031 /**
3032 * dev_ioctl - network device ioctl
3033 * @cmd: command to issue
3034 * @arg: pointer to a struct ifreq in user space
3035 *
3036 * Issue ioctl functions to devices. This is normally called by the
3037 * user space syscall interfaces but can sometimes be useful for
3038 * other purposes. The return value is the return from the syscall if
3039 * positive or a negative errno code on error.
3040 */
3041
3042 int dev_ioctl(unsigned int cmd, void __user *arg)
3043 {
3044 struct ifreq ifr;
3045 int ret;
3046 char *colon;
3047
3048 /* One special case: SIOCGIFCONF takes ifconf argument
3049 and requires shared lock, because it sleeps writing
3050 to user space.
3051 */
3052
3053 if (cmd == SIOCGIFCONF) {
3054 rtnl_lock();
3055 ret = dev_ifconf((char __user *) arg);
3056 rtnl_unlock();
3057 return ret;
3058 }
3059 if (cmd == SIOCGIFNAME)
3060 return dev_ifname((struct ifreq __user *)arg);
3061
3062 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3063 return -EFAULT;
3064
3065 ifr.ifr_name[IFNAMSIZ-1] = 0;
3066
3067 colon = strchr(ifr.ifr_name, ':');
3068 if (colon)
3069 *colon = 0;
3070
3071 /*
3072 * See which interface the caller is talking about.
3073 */
3074
3075 switch (cmd) {
3076 /*
3077 * These ioctl calls:
3078 * - can be done by all.
3079 * - atomic and do not require locking.
3080 * - return a value
3081 */
3082 case SIOCGIFFLAGS:
3083 case SIOCGIFMETRIC:
3084 case SIOCGIFMTU:
3085 case SIOCGIFHWADDR:
3086 case SIOCGIFSLAVE:
3087 case SIOCGIFMAP:
3088 case SIOCGIFINDEX:
3089 case SIOCGIFTXQLEN:
3090 dev_load(ifr.ifr_name);
3091 read_lock(&dev_base_lock);
3092 ret = dev_ifsioc(&ifr, cmd);
3093 read_unlock(&dev_base_lock);
3094 if (!ret) {
3095 if (colon)
3096 *colon = ':';
3097 if (copy_to_user(arg, &ifr,
3098 sizeof(struct ifreq)))
3099 ret = -EFAULT;
3100 }
3101 return ret;
3102
3103 case SIOCETHTOOL:
3104 dev_load(ifr.ifr_name);
3105 rtnl_lock();
3106 ret = dev_ethtool(&ifr);
3107 rtnl_unlock();
3108 if (!ret) {
3109 if (colon)
3110 *colon = ':';
3111 if (copy_to_user(arg, &ifr,
3112 sizeof(struct ifreq)))
3113 ret = -EFAULT;
3114 }
3115 return ret;
3116
3117 /*
3118 * These ioctl calls:
3119 * - require superuser power.
3120 * - require strict serialization.
3121 * - return a value
3122 */
3123 case SIOCGMIIPHY:
3124 case SIOCGMIIREG:
3125 case SIOCSIFNAME:
3126 if (!capable(CAP_NET_ADMIN))
3127 return -EPERM;
3128 dev_load(ifr.ifr_name);
3129 rtnl_lock();
3130 ret = dev_ifsioc(&ifr, cmd);
3131 rtnl_unlock();
3132 if (!ret) {
3133 if (colon)
3134 *colon = ':';
3135 if (copy_to_user(arg, &ifr,
3136 sizeof(struct ifreq)))
3137 ret = -EFAULT;
3138 }
3139 return ret;
3140
3141 /*
3142 * These ioctl calls:
3143 * - require superuser power.
3144 * - require strict serialization.
3145 * - do not return a value
3146 */
3147 case SIOCSIFFLAGS:
3148 case SIOCSIFMETRIC:
3149 case SIOCSIFMTU:
3150 case SIOCSIFMAP:
3151 case SIOCSIFHWADDR:
3152 case SIOCSIFSLAVE:
3153 case SIOCADDMULTI:
3154 case SIOCDELMULTI:
3155 case SIOCSIFHWBROADCAST:
3156 case SIOCSIFTXQLEN:
3157 case SIOCSMIIREG:
3158 case SIOCBONDENSLAVE:
3159 case SIOCBONDRELEASE:
3160 case SIOCBONDSETHWADDR:
3161 case SIOCBONDCHANGEACTIVE:
3162 case SIOCBRADDIF:
3163 case SIOCBRDELIF:
3164 if (!capable(CAP_NET_ADMIN))
3165 return -EPERM;
3166 /* fall through */
3167 case SIOCBONDSLAVEINFOQUERY:
3168 case SIOCBONDINFOQUERY:
3169 dev_load(ifr.ifr_name);
3170 rtnl_lock();
3171 ret = dev_ifsioc(&ifr, cmd);
3172 rtnl_unlock();
3173 return ret;
3174
3175 case SIOCGIFMEM:
3176 /* Get the per device memory space. We can add this but
3177 * currently do not support it */
3178 case SIOCSIFMEM:
3179 /* Set the per device memory buffer space.
3180 * Not applicable in our case */
3181 case SIOCSIFLINK:
3182 return -EINVAL;
3183
3184 /*
3185 * Unknown or private ioctl.
3186 */
3187 default:
3188 if (cmd == SIOCWANDEV ||
3189 (cmd >= SIOCDEVPRIVATE &&
3190 cmd <= SIOCDEVPRIVATE + 15)) {
3191 dev_load(ifr.ifr_name);
3192 rtnl_lock();
3193 ret = dev_ifsioc(&ifr, cmd);
3194 rtnl_unlock();
3195 if (!ret && copy_to_user(arg, &ifr,
3196 sizeof(struct ifreq)))
3197 ret = -EFAULT;
3198 return ret;
3199 }
3200 /* Take care of Wireless Extensions */
3201 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3202 return wext_handle_ioctl(&ifr, cmd, arg);
3203 return -EINVAL;
3204 }
3205 }
3206
3207
3208 /**
3209 * dev_new_index - allocate an ifindex
3210 *
3211 * Returns a suitable unique value for a new device interface
3212 * number. The caller must hold the rtnl semaphore or the
3213 * dev_base_lock to be sure it remains unique.
3214 */
3215 static int dev_new_index(void)
3216 {
3217 static int ifindex;
3218 for (;;) {
3219 if (++ifindex <= 0)
3220 ifindex = 1;
3221 if (!__dev_get_by_index(ifindex))
3222 return ifindex;
3223 }
3224 }
3225
3226 static int dev_boot_phase = 1;
3227
3228 /* Delayed registration/unregisteration */
3229 static DEFINE_SPINLOCK(net_todo_list_lock);
3230 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list);
3231
3232 static void net_set_todo(struct net_device *dev)
3233 {
3234 spin_lock(&net_todo_list_lock);
3235 list_add_tail(&dev->todo_list, &net_todo_list);
3236 spin_unlock(&net_todo_list_lock);
3237 }
3238
3239 /**
3240 * register_netdevice - register a network device
3241 * @dev: device to register
3242 *
3243 * Take a completed network device structure and add it to the kernel
3244 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3245 * chain. 0 is returned on success. A negative errno code is returned
3246 * on a failure to set up the device, or if the name is a duplicate.
3247 *
3248 * Callers must hold the rtnl semaphore. You may want
3249 * register_netdev() instead of this.
3250 *
3251 * BUGS:
3252 * The locking appears insufficient to guarantee two parallel registers
3253 * will not get the same name.
3254 */
3255
3256 int register_netdevice(struct net_device *dev)
3257 {
3258 struct hlist_head *head;
3259 struct hlist_node *p;
3260 int ret;
3261
3262 BUG_ON(dev_boot_phase);
3263 ASSERT_RTNL();
3264
3265 might_sleep();
3266
3267 /* When net_device's are persistent, this will be fatal. */
3268 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3269
3270 spin_lock_init(&dev->queue_lock);
3271 spin_lock_init(&dev->_xmit_lock);
3272 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
3273 dev->xmit_lock_owner = -1;
3274 spin_lock_init(&dev->ingress_lock);
3275
3276 dev->iflink = -1;
3277
3278 /* Init, if this function is available */
3279 if (dev->init) {
3280 ret = dev->init(dev);
3281 if (ret) {
3282 if (ret > 0)
3283 ret = -EIO;
3284 goto out;
3285 }
3286 }
3287
3288 if (!dev_valid_name(dev->name)) {
3289 ret = -EINVAL;
3290 goto out;
3291 }
3292
3293 dev->ifindex = dev_new_index();
3294 if (dev->iflink == -1)
3295 dev->iflink = dev->ifindex;
3296
3297 /* Check for existence of name */
3298 head = dev_name_hash(dev->name);
3299 hlist_for_each(p, head) {
3300 struct net_device *d
3301 = hlist_entry(p, struct net_device, name_hlist);
3302 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3303 ret = -EEXIST;
3304 goto out;
3305 }
3306 }
3307
3308 /* Fix illegal checksum combinations */
3309 if ((dev->features & NETIF_F_HW_CSUM) &&
3310 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3311 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3312 dev->name);
3313 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3314 }
3315
3316 if ((dev->features & NETIF_F_NO_CSUM) &&
3317 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3318 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3319 dev->name);
3320 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3321 }
3322
3323
3324 /* Fix illegal SG+CSUM combinations. */
3325 if ((dev->features & NETIF_F_SG) &&
3326 !(dev->features & NETIF_F_ALL_CSUM)) {
3327 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3328 dev->name);
3329 dev->features &= ~NETIF_F_SG;
3330 }
3331
3332 /* TSO requires that SG is present as well. */
3333 if ((dev->features & NETIF_F_TSO) &&
3334 !(dev->features & NETIF_F_SG)) {
3335 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3336 dev->name);
3337 dev->features &= ~NETIF_F_TSO;
3338 }
3339 if (dev->features & NETIF_F_UFO) {
3340 if (!(dev->features & NETIF_F_HW_CSUM)) {
3341 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3342 "NETIF_F_HW_CSUM feature.\n",
3343 dev->name);
3344 dev->features &= ~NETIF_F_UFO;
3345 }
3346 if (!(dev->features & NETIF_F_SG)) {
3347 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3348 "NETIF_F_SG feature.\n",
3349 dev->name);
3350 dev->features &= ~NETIF_F_UFO;
3351 }
3352 }
3353
3354 /*
3355 * nil rebuild_header routine,
3356 * that should be never called and used as just bug trap.
3357 */
3358
3359 if (!dev->rebuild_header)
3360 dev->rebuild_header = default_rebuild_header;
3361
3362 ret = netdev_register_sysfs(dev);
3363 if (ret)
3364 goto out;
3365 dev->reg_state = NETREG_REGISTERED;
3366
3367 /*
3368 * Default initial state at registry is that the
3369 * device is present.
3370 */
3371
3372 set_bit(__LINK_STATE_PRESENT, &dev->state);
3373
3374 dev_init_scheduler(dev);
3375 write_lock_bh(&dev_base_lock);
3376 list_add_tail(&dev->dev_list, &dev_base_head);
3377 hlist_add_head(&dev->name_hlist, head);
3378 hlist_add_head(&dev->index_hlist, dev_index_hash(dev->ifindex));
3379 dev_hold(dev);
3380 write_unlock_bh(&dev_base_lock);
3381
3382 /* Notify protocols, that a new device appeared. */
3383 raw_notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev);
3384
3385 ret = 0;
3386
3387 out:
3388 return ret;
3389 }
3390
3391 /**
3392 * register_netdev - register a network device
3393 * @dev: device to register
3394 *
3395 * Take a completed network device structure and add it to the kernel
3396 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3397 * chain. 0 is returned on success. A negative errno code is returned
3398 * on a failure to set up the device, or if the name is a duplicate.
3399 *
3400 * This is a wrapper around register_netdevice that takes the rtnl semaphore
3401 * and expands the device name if you passed a format string to
3402 * alloc_netdev.
3403 */
3404 int register_netdev(struct net_device *dev)
3405 {
3406 int err;
3407
3408 rtnl_lock();
3409
3410 /*
3411 * If the name is a format string the caller wants us to do a
3412 * name allocation.
3413 */
3414 if (strchr(dev->name, '%')) {
3415 err = dev_alloc_name(dev, dev->name);
3416 if (err < 0)
3417 goto out;
3418 }
3419
3420 err = register_netdevice(dev);
3421 out:
3422 rtnl_unlock();
3423 return err;
3424 }
3425 EXPORT_SYMBOL(register_netdev);
3426
3427 /*
3428 * netdev_wait_allrefs - wait until all references are gone.
3429 *
3430 * This is called when unregistering network devices.
3431 *
3432 * Any protocol or device that holds a reference should register
3433 * for netdevice notification, and cleanup and put back the
3434 * reference if they receive an UNREGISTER event.
3435 * We can get stuck here if buggy protocols don't correctly
3436 * call dev_put.
3437 */
3438 static void netdev_wait_allrefs(struct net_device *dev)
3439 {
3440 unsigned long rebroadcast_time, warning_time;
3441
3442 rebroadcast_time = warning_time = jiffies;
3443 while (atomic_read(&dev->refcnt) != 0) {
3444 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3445 rtnl_lock();
3446
3447 /* Rebroadcast unregister notification */
3448 raw_notifier_call_chain(&netdev_chain,
3449 NETDEV_UNREGISTER, dev);
3450
3451 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3452 &dev->state)) {
3453 /* We must not have linkwatch events
3454 * pending on unregister. If this
3455 * happens, we simply run the queue
3456 * unscheduled, resulting in a noop
3457 * for this device.
3458 */
3459 linkwatch_run_queue();
3460 }
3461
3462 __rtnl_unlock();
3463
3464 rebroadcast_time = jiffies;
3465 }
3466
3467 msleep(250);
3468
3469 if (time_after(jiffies, warning_time + 10 * HZ)) {
3470 printk(KERN_EMERG "unregister_netdevice: "
3471 "waiting for %s to become free. Usage "
3472 "count = %d\n",
3473 dev->name, atomic_read(&dev->refcnt));
3474 warning_time = jiffies;
3475 }
3476 }
3477 }
3478
3479 /* The sequence is:
3480 *
3481 * rtnl_lock();
3482 * ...
3483 * register_netdevice(x1);
3484 * register_netdevice(x2);
3485 * ...
3486 * unregister_netdevice(y1);
3487 * unregister_netdevice(y2);
3488 * ...
3489 * rtnl_unlock();
3490 * free_netdev(y1);
3491 * free_netdev(y2);
3492 *
3493 * We are invoked by rtnl_unlock() after it drops the semaphore.
3494 * This allows us to deal with problems:
3495 * 1) We can delete sysfs objects which invoke hotplug
3496 * without deadlocking with linkwatch via keventd.
3497 * 2) Since we run with the RTNL semaphore not held, we can sleep
3498 * safely in order to wait for the netdev refcnt to drop to zero.
3499 */
3500 static DEFINE_MUTEX(net_todo_run_mutex);
3501 void netdev_run_todo(void)
3502 {
3503 struct list_head list;
3504
3505 /* Need to guard against multiple cpu's getting out of order. */
3506 mutex_lock(&net_todo_run_mutex);
3507
3508 /* Not safe to do outside the semaphore. We must not return
3509 * until all unregister events invoked by the local processor
3510 * have been completed (either by this todo run, or one on
3511 * another cpu).
3512 */
3513 if (list_empty(&net_todo_list))
3514 goto out;
3515
3516 /* Snapshot list, allow later requests */
3517 spin_lock(&net_todo_list_lock);
3518 list_replace_init(&net_todo_list, &list);
3519 spin_unlock(&net_todo_list_lock);
3520
3521 while (!list_empty(&list)) {
3522 struct net_device *dev
3523 = list_entry(list.next, struct net_device, todo_list);
3524 list_del(&dev->todo_list);
3525
3526 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3527 printk(KERN_ERR "network todo '%s' but state %d\n",
3528 dev->name, dev->reg_state);
3529 dump_stack();
3530 continue;
3531 }
3532
3533 dev->reg_state = NETREG_UNREGISTERED;
3534
3535 netdev_wait_allrefs(dev);
3536
3537 /* paranoia */
3538 BUG_ON(atomic_read(&dev->refcnt));
3539 BUG_TRAP(!dev->ip_ptr);
3540 BUG_TRAP(!dev->ip6_ptr);
3541 BUG_TRAP(!dev->dn_ptr);
3542
3543 if (dev->destructor)
3544 dev->destructor(dev);
3545
3546 /* Free network device */
3547 kobject_put(&dev->dev.kobj);
3548 }
3549
3550 out:
3551 mutex_unlock(&net_todo_run_mutex);
3552 }
3553
3554 static struct net_device_stats *internal_stats(struct net_device *dev)
3555 {
3556 return &dev->stats;
3557 }
3558
3559 /**
3560 * alloc_netdev_mq - allocate network device
3561 * @sizeof_priv: size of private data to allocate space for
3562 * @name: device name format string
3563 * @setup: callback to initialize device
3564 * @queue_count: the number of subqueues to allocate
3565 *
3566 * Allocates a struct net_device with private data area for driver use
3567 * and performs basic initialization. Also allocates subquue structs
3568 * for each queue on the device at the end of the netdevice.
3569 */
3570 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
3571 void (*setup)(struct net_device *), unsigned int queue_count)
3572 {
3573 void *p;
3574 struct net_device *dev;
3575 int alloc_size;
3576
3577 BUG_ON(strlen(name) >= sizeof(dev->name));
3578
3579 /* ensure 32-byte alignment of both the device and private area */
3580 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST +
3581 (sizeof(struct net_device_subqueue) * queue_count)) &
3582 ~NETDEV_ALIGN_CONST;
3583 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST;
3584
3585 p = kzalloc(alloc_size, GFP_KERNEL);
3586 if (!p) {
3587 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
3588 return NULL;
3589 }
3590
3591 dev = (struct net_device *)
3592 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
3593 dev->padded = (char *)dev - (char *)p;
3594
3595 if (sizeof_priv) {
3596 dev->priv = ((char *)dev +
3597 ((sizeof(struct net_device) +
3598 (sizeof(struct net_device_subqueue) *
3599 queue_count) + NETDEV_ALIGN_CONST)
3600 & ~NETDEV_ALIGN_CONST));
3601 }
3602
3603 dev->egress_subqueue_count = queue_count;
3604
3605 dev->get_stats = internal_stats;
3606 setup(dev);
3607 strcpy(dev->name, name);
3608 return dev;
3609 }
3610 EXPORT_SYMBOL(alloc_netdev_mq);
3611
3612 /**
3613 * free_netdev - free network device
3614 * @dev: device
3615 *
3616 * This function does the last stage of destroying an allocated device
3617 * interface. The reference to the device object is released.
3618 * If this is the last reference then it will be freed.
3619 */
3620 void free_netdev(struct net_device *dev)
3621 {
3622 #ifdef CONFIG_SYSFS
3623 /* Compatibility with error handling in drivers */
3624 if (dev->reg_state == NETREG_UNINITIALIZED) {
3625 kfree((char *)dev - dev->padded);
3626 return;
3627 }
3628
3629 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
3630 dev->reg_state = NETREG_RELEASED;
3631
3632 /* will free via device release */
3633 put_device(&dev->dev);
3634 #else
3635 kfree((char *)dev - dev->padded);
3636 #endif
3637 }
3638
3639 /* Synchronize with packet receive processing. */
3640 void synchronize_net(void)
3641 {
3642 might_sleep();
3643 synchronize_rcu();
3644 }
3645
3646 /**
3647 * unregister_netdevice - remove device from the kernel
3648 * @dev: device
3649 *
3650 * This function shuts down a device interface and removes it
3651 * from the kernel tables. On success 0 is returned, on a failure
3652 * a negative errno code is returned.
3653 *
3654 * Callers must hold the rtnl semaphore. You may want
3655 * unregister_netdev() instead of this.
3656 */
3657
3658 void unregister_netdevice(struct net_device *dev)
3659 {
3660 BUG_ON(dev_boot_phase);
3661 ASSERT_RTNL();
3662
3663 /* Some devices call without registering for initialization unwind. */
3664 if (dev->reg_state == NETREG_UNINITIALIZED) {
3665 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3666 "was registered\n", dev->name, dev);
3667
3668 WARN_ON(1);
3669 return;
3670 }
3671
3672 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3673
3674 /* If device is running, close it first. */
3675 if (dev->flags & IFF_UP)
3676 dev_close(dev);
3677
3678 /* And unlink it from device chain. */
3679 write_lock_bh(&dev_base_lock);
3680 list_del(&dev->dev_list);
3681 hlist_del(&dev->name_hlist);
3682 hlist_del(&dev->index_hlist);
3683 write_unlock_bh(&dev_base_lock);
3684
3685 dev->reg_state = NETREG_UNREGISTERING;
3686
3687 synchronize_net();
3688
3689 /* Shutdown queueing discipline. */
3690 dev_shutdown(dev);
3691
3692
3693 /* Notify protocols, that we are about to destroy
3694 this device. They should clean all the things.
3695 */
3696 raw_notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev);
3697
3698 /*
3699 * Flush the unicast and multicast chains
3700 */
3701 dev_unicast_discard(dev);
3702 dev_mc_discard(dev);
3703
3704 if (dev->uninit)
3705 dev->uninit(dev);
3706
3707 /* Notifier chain MUST detach us from master device. */
3708 BUG_TRAP(!dev->master);
3709
3710 /* Remove entries from sysfs */
3711 netdev_unregister_sysfs(dev);
3712
3713 /* Finish processing unregister after unlock */
3714 net_set_todo(dev);
3715
3716 synchronize_net();
3717
3718 dev_put(dev);
3719 }
3720
3721 /**
3722 * unregister_netdev - remove device from the kernel
3723 * @dev: device
3724 *
3725 * This function shuts down a device interface and removes it
3726 * from the kernel tables. On success 0 is returned, on a failure
3727 * a negative errno code is returned.
3728 *
3729 * This is just a wrapper for unregister_netdevice that takes
3730 * the rtnl semaphore. In general you want to use this and not
3731 * unregister_netdevice.
3732 */
3733 void unregister_netdev(struct net_device *dev)
3734 {
3735 rtnl_lock();
3736 unregister_netdevice(dev);
3737 rtnl_unlock();
3738 }
3739
3740 EXPORT_SYMBOL(unregister_netdev);
3741
3742 static int dev_cpu_callback(struct notifier_block *nfb,
3743 unsigned long action,
3744 void *ocpu)
3745 {
3746 struct sk_buff **list_skb;
3747 struct net_device **list_net;
3748 struct sk_buff *skb;
3749 unsigned int cpu, oldcpu = (unsigned long)ocpu;
3750 struct softnet_data *sd, *oldsd;
3751
3752 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
3753 return NOTIFY_OK;
3754
3755 local_irq_disable();
3756 cpu = smp_processor_id();
3757 sd = &per_cpu(softnet_data, cpu);
3758 oldsd = &per_cpu(softnet_data, oldcpu);
3759
3760 /* Find end of our completion_queue. */
3761 list_skb = &sd->completion_queue;
3762 while (*list_skb)
3763 list_skb = &(*list_skb)->next;
3764 /* Append completion queue from offline CPU. */
3765 *list_skb = oldsd->completion_queue;
3766 oldsd->completion_queue = NULL;
3767
3768 /* Find end of our output_queue. */
3769 list_net = &sd->output_queue;
3770 while (*list_net)
3771 list_net = &(*list_net)->next_sched;
3772 /* Append output queue from offline CPU. */
3773 *list_net = oldsd->output_queue;
3774 oldsd->output_queue = NULL;
3775
3776 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3777 local_irq_enable();
3778
3779 /* Process offline CPU's input_pkt_queue */
3780 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
3781 netif_rx(skb);
3782
3783 return NOTIFY_OK;
3784 }
3785
3786 #ifdef CONFIG_NET_DMA
3787 /**
3788 * net_dma_rebalance -
3789 * This is called when the number of channels allocated to the net_dma_client
3790 * changes. The net_dma_client tries to have one DMA channel per CPU.
3791 */
3792
3793 static void net_dma_rebalance(struct net_dma *net_dma)
3794 {
3795 unsigned int cpu, i, n, chan_idx;
3796 struct dma_chan *chan;
3797
3798 if (cpus_empty(net_dma->channel_mask)) {
3799 for_each_online_cpu(cpu)
3800 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
3801 return;
3802 }
3803
3804 i = 0;
3805 cpu = first_cpu(cpu_online_map);
3806
3807 for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
3808 chan = net_dma->channels[chan_idx];
3809
3810 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
3811 + (i < (num_online_cpus() %
3812 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
3813
3814 while(n) {
3815 per_cpu(softnet_data, cpu).net_dma = chan;
3816 cpu = next_cpu(cpu, cpu_online_map);
3817 n--;
3818 }
3819 i++;
3820 }
3821 }
3822
3823 /**
3824 * netdev_dma_event - event callback for the net_dma_client
3825 * @client: should always be net_dma_client
3826 * @chan: DMA channel for the event
3827 * @event: event type
3828 */
3829 static enum dma_state_client
3830 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
3831 enum dma_state state)
3832 {
3833 int i, found = 0, pos = -1;
3834 struct net_dma *net_dma =
3835 container_of(client, struct net_dma, client);
3836 enum dma_state_client ack = DMA_DUP; /* default: take no action */
3837
3838 spin_lock(&net_dma->lock);
3839 switch (state) {
3840 case DMA_RESOURCE_AVAILABLE:
3841 for (i = 0; i < NR_CPUS; i++)
3842 if (net_dma->channels[i] == chan) {
3843 found = 1;
3844 break;
3845 } else if (net_dma->channels[i] == NULL && pos < 0)
3846 pos = i;
3847
3848 if (!found && pos >= 0) {
3849 ack = DMA_ACK;
3850 net_dma->channels[pos] = chan;
3851 cpu_set(pos, net_dma->channel_mask);
3852 net_dma_rebalance(net_dma);
3853 }
3854 break;
3855 case DMA_RESOURCE_REMOVED:
3856 for (i = 0; i < NR_CPUS; i++)
3857 if (net_dma->channels[i] == chan) {
3858 found = 1;
3859 pos = i;
3860 break;
3861 }
3862
3863 if (found) {
3864 ack = DMA_ACK;
3865 cpu_clear(pos, net_dma->channel_mask);
3866 net_dma->channels[i] = NULL;
3867 net_dma_rebalance(net_dma);
3868 }
3869 break;
3870 default:
3871 break;
3872 }
3873 spin_unlock(&net_dma->lock);
3874
3875 return ack;
3876 }
3877
3878 /**
3879 * netdev_dma_regiser - register the networking subsystem as a DMA client
3880 */
3881 static int __init netdev_dma_register(void)
3882 {
3883 spin_lock_init(&net_dma.lock);
3884 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
3885 dma_async_client_register(&net_dma.client);
3886 dma_async_client_chan_request(&net_dma.client);
3887 return 0;
3888 }
3889
3890 #else
3891 static int __init netdev_dma_register(void) { return -ENODEV; }
3892 #endif /* CONFIG_NET_DMA */
3893
3894 /*
3895 * Initialize the DEV module. At boot time this walks the device list and
3896 * unhooks any devices that fail to initialise (normally hardware not
3897 * present) and leaves us with a valid list of present and active devices.
3898 *
3899 */
3900
3901 /*
3902 * This is called single threaded during boot, so no need
3903 * to take the rtnl semaphore.
3904 */
3905 static int __init net_dev_init(void)
3906 {
3907 int i, rc = -ENOMEM;
3908
3909 BUG_ON(!dev_boot_phase);
3910
3911 if (dev_proc_init())
3912 goto out;
3913
3914 if (netdev_sysfs_init())
3915 goto out;
3916
3917 INIT_LIST_HEAD(&ptype_all);
3918 for (i = 0; i < 16; i++)
3919 INIT_LIST_HEAD(&ptype_base[i]);
3920
3921 for (i = 0; i < ARRAY_SIZE(dev_name_head); i++)
3922 INIT_HLIST_HEAD(&dev_name_head[i]);
3923
3924 for (i = 0; i < ARRAY_SIZE(dev_index_head); i++)
3925 INIT_HLIST_HEAD(&dev_index_head[i]);
3926
3927 /*
3928 * Initialise the packet receive queues.
3929 */
3930
3931 for_each_possible_cpu(i) {
3932 struct softnet_data *queue;
3933
3934 queue = &per_cpu(softnet_data, i);
3935 skb_queue_head_init(&queue->input_pkt_queue);
3936 queue->completion_queue = NULL;
3937 INIT_LIST_HEAD(&queue->poll_list);
3938 set_bit(__LINK_STATE_START, &queue->backlog_dev.state);
3939 queue->backlog_dev.weight = weight_p;
3940 queue->backlog_dev.poll = process_backlog;
3941 atomic_set(&queue->backlog_dev.refcnt, 1);
3942 }
3943
3944 netdev_dma_register();
3945
3946 dev_boot_phase = 0;
3947
3948 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
3949 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
3950
3951 hotcpu_notifier(dev_cpu_callback, 0);
3952 dst_init();
3953 dev_mcast_init();
3954 rc = 0;
3955 out:
3956 return rc;
3957 }
3958
3959 subsys_initcall(net_dev_init);
3960
3961 EXPORT_SYMBOL(__dev_get_by_index);
3962 EXPORT_SYMBOL(__dev_get_by_name);
3963 EXPORT_SYMBOL(__dev_remove_pack);
3964 EXPORT_SYMBOL(dev_valid_name);
3965 EXPORT_SYMBOL(dev_add_pack);
3966 EXPORT_SYMBOL(dev_alloc_name);
3967 EXPORT_SYMBOL(dev_close);
3968 EXPORT_SYMBOL(dev_get_by_flags);
3969 EXPORT_SYMBOL(dev_get_by_index);
3970 EXPORT_SYMBOL(dev_get_by_name);
3971 EXPORT_SYMBOL(dev_open);
3972 EXPORT_SYMBOL(dev_queue_xmit);
3973 EXPORT_SYMBOL(dev_remove_pack);
3974 EXPORT_SYMBOL(dev_set_allmulti);
3975 EXPORT_SYMBOL(dev_set_promiscuity);
3976 EXPORT_SYMBOL(dev_change_flags);
3977 EXPORT_SYMBOL(dev_set_mtu);
3978 EXPORT_SYMBOL(dev_set_mac_address);
3979 EXPORT_SYMBOL(free_netdev);
3980 EXPORT_SYMBOL(netdev_boot_setup_check);
3981 EXPORT_SYMBOL(netdev_set_master);
3982 EXPORT_SYMBOL(netdev_state_change);
3983 EXPORT_SYMBOL(netif_receive_skb);
3984 EXPORT_SYMBOL(netif_rx);
3985 EXPORT_SYMBOL(register_gifconf);
3986 EXPORT_SYMBOL(register_netdevice);
3987 EXPORT_SYMBOL(register_netdevice_notifier);
3988 EXPORT_SYMBOL(skb_checksum_help);
3989 EXPORT_SYMBOL(synchronize_net);
3990 EXPORT_SYMBOL(unregister_netdevice);
3991 EXPORT_SYMBOL(unregister_netdevice_notifier);
3992 EXPORT_SYMBOL(net_enable_timestamp);
3993 EXPORT_SYMBOL(net_disable_timestamp);
3994 EXPORT_SYMBOL(dev_get_flags);
3995
3996 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
3997 EXPORT_SYMBOL(br_handle_frame_hook);
3998 EXPORT_SYMBOL(br_fdb_get_hook);
3999 EXPORT_SYMBOL(br_fdb_put_hook);
4000 #endif
4001
4002 #ifdef CONFIG_KMOD
4003 EXPORT_SYMBOL(dev_load);
4004 #endif
4005
4006 EXPORT_PER_CPU_SYMBOL(softnet_data);