]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/core/dev.c
macvlan: introduce macvlan_dev_real_dev() helper function
[mirror_ubuntu-hirsute-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134
135 #include "net-sysfs.h"
136
137 /* Instead of increasing this, you should create a hash table. */
138 #define MAX_GRO_SKBS 8
139
140 /* This should be increased if a protocol with a bigger head is added. */
141 #define GRO_MAX_HEAD (MAX_HEADER + 128)
142
143 static DEFINE_SPINLOCK(ptype_lock);
144 static DEFINE_SPINLOCK(offload_lock);
145 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
146 struct list_head ptype_all __read_mostly; /* Taps */
147 static struct list_head offload_base __read_mostly;
148
149 /*
150 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
151 * semaphore.
152 *
153 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
154 *
155 * Writers must hold the rtnl semaphore while they loop through the
156 * dev_base_head list, and hold dev_base_lock for writing when they do the
157 * actual updates. This allows pure readers to access the list even
158 * while a writer is preparing to update it.
159 *
160 * To put it another way, dev_base_lock is held for writing only to
161 * protect against pure readers; the rtnl semaphore provides the
162 * protection against other writers.
163 *
164 * See, for example usages, register_netdevice() and
165 * unregister_netdevice(), which must be called with the rtnl
166 * semaphore held.
167 */
168 DEFINE_RWLOCK(dev_base_lock);
169 EXPORT_SYMBOL(dev_base_lock);
170
171 /* protects napi_hash addition/deletion and napi_gen_id */
172 static DEFINE_SPINLOCK(napi_hash_lock);
173
174 static unsigned int napi_gen_id;
175 static DEFINE_HASHTABLE(napi_hash, 8);
176
177 static seqcount_t devnet_rename_seq;
178
179 static inline void dev_base_seq_inc(struct net *net)
180 {
181 while (++net->dev_base_seq == 0);
182 }
183
184 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
185 {
186 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
187
188 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
189 }
190
191 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
192 {
193 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
194 }
195
196 static inline void rps_lock(struct softnet_data *sd)
197 {
198 #ifdef CONFIG_RPS
199 spin_lock(&sd->input_pkt_queue.lock);
200 #endif
201 }
202
203 static inline void rps_unlock(struct softnet_data *sd)
204 {
205 #ifdef CONFIG_RPS
206 spin_unlock(&sd->input_pkt_queue.lock);
207 #endif
208 }
209
210 /* Device list insertion */
211 static void list_netdevice(struct net_device *dev)
212 {
213 struct net *net = dev_net(dev);
214
215 ASSERT_RTNL();
216
217 write_lock_bh(&dev_base_lock);
218 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
219 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
220 hlist_add_head_rcu(&dev->index_hlist,
221 dev_index_hash(net, dev->ifindex));
222 write_unlock_bh(&dev_base_lock);
223
224 dev_base_seq_inc(net);
225 }
226
227 /* Device list removal
228 * caller must respect a RCU grace period before freeing/reusing dev
229 */
230 static void unlist_netdevice(struct net_device *dev)
231 {
232 ASSERT_RTNL();
233
234 /* Unlink dev from the device chain */
235 write_lock_bh(&dev_base_lock);
236 list_del_rcu(&dev->dev_list);
237 hlist_del_rcu(&dev->name_hlist);
238 hlist_del_rcu(&dev->index_hlist);
239 write_unlock_bh(&dev_base_lock);
240
241 dev_base_seq_inc(dev_net(dev));
242 }
243
244 /*
245 * Our notifier list
246 */
247
248 static RAW_NOTIFIER_HEAD(netdev_chain);
249
250 /*
251 * Device drivers call our routines to queue packets here. We empty the
252 * queue in the local softnet handler.
253 */
254
255 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
256 EXPORT_PER_CPU_SYMBOL(softnet_data);
257
258 #ifdef CONFIG_LOCKDEP
259 /*
260 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
261 * according to dev->type
262 */
263 static const unsigned short netdev_lock_type[] =
264 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
265 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
266 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
267 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
268 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
269 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
270 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
271 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
272 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
273 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
274 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
275 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
276 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
277 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
278 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
279
280 static const char *const netdev_lock_name[] =
281 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
282 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
283 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
284 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
285 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
286 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
287 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
288 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
289 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
290 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
291 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
292 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
293 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
294 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
295 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
296
297 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
298 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
299
300 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
301 {
302 int i;
303
304 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
305 if (netdev_lock_type[i] == dev_type)
306 return i;
307 /* the last key is used by default */
308 return ARRAY_SIZE(netdev_lock_type) - 1;
309 }
310
311 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
312 unsigned short dev_type)
313 {
314 int i;
315
316 i = netdev_lock_pos(dev_type);
317 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
318 netdev_lock_name[i]);
319 }
320
321 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
322 {
323 int i;
324
325 i = netdev_lock_pos(dev->type);
326 lockdep_set_class_and_name(&dev->addr_list_lock,
327 &netdev_addr_lock_key[i],
328 netdev_lock_name[i]);
329 }
330 #else
331 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
332 unsigned short dev_type)
333 {
334 }
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 }
338 #endif
339
340 /*******************************************************************************
341
342 Protocol management and registration routines
343
344 *******************************************************************************/
345
346 /*
347 * Add a protocol ID to the list. Now that the input handler is
348 * smarter we can dispense with all the messy stuff that used to be
349 * here.
350 *
351 * BEWARE!!! Protocol handlers, mangling input packets,
352 * MUST BE last in hash buckets and checking protocol handlers
353 * MUST start from promiscuous ptype_all chain in net_bh.
354 * It is true now, do not change it.
355 * Explanation follows: if protocol handler, mangling packet, will
356 * be the first on list, it is not able to sense, that packet
357 * is cloned and should be copied-on-write, so that it will
358 * change it and subsequent readers will get broken packet.
359 * --ANK (980803)
360 */
361
362 static inline struct list_head *ptype_head(const struct packet_type *pt)
363 {
364 if (pt->type == htons(ETH_P_ALL))
365 return &ptype_all;
366 else
367 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
368 }
369
370 /**
371 * dev_add_pack - add packet handler
372 * @pt: packet type declaration
373 *
374 * Add a protocol handler to the networking stack. The passed &packet_type
375 * is linked into kernel lists and may not be freed until it has been
376 * removed from the kernel lists.
377 *
378 * This call does not sleep therefore it can not
379 * guarantee all CPU's that are in middle of receiving packets
380 * will see the new packet type (until the next received packet).
381 */
382
383 void dev_add_pack(struct packet_type *pt)
384 {
385 struct list_head *head = ptype_head(pt);
386
387 spin_lock(&ptype_lock);
388 list_add_rcu(&pt->list, head);
389 spin_unlock(&ptype_lock);
390 }
391 EXPORT_SYMBOL(dev_add_pack);
392
393 /**
394 * __dev_remove_pack - remove packet handler
395 * @pt: packet type declaration
396 *
397 * Remove a protocol handler that was previously added to the kernel
398 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
399 * from the kernel lists and can be freed or reused once this function
400 * returns.
401 *
402 * The packet type might still be in use by receivers
403 * and must not be freed until after all the CPU's have gone
404 * through a quiescent state.
405 */
406 void __dev_remove_pack(struct packet_type *pt)
407 {
408 struct list_head *head = ptype_head(pt);
409 struct packet_type *pt1;
410
411 spin_lock(&ptype_lock);
412
413 list_for_each_entry(pt1, head, list) {
414 if (pt == pt1) {
415 list_del_rcu(&pt->list);
416 goto out;
417 }
418 }
419
420 pr_warn("dev_remove_pack: %p not found\n", pt);
421 out:
422 spin_unlock(&ptype_lock);
423 }
424 EXPORT_SYMBOL(__dev_remove_pack);
425
426 /**
427 * dev_remove_pack - remove packet handler
428 * @pt: packet type declaration
429 *
430 * Remove a protocol handler that was previously added to the kernel
431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
432 * from the kernel lists and can be freed or reused once this function
433 * returns.
434 *
435 * This call sleeps to guarantee that no CPU is looking at the packet
436 * type after return.
437 */
438 void dev_remove_pack(struct packet_type *pt)
439 {
440 __dev_remove_pack(pt);
441
442 synchronize_net();
443 }
444 EXPORT_SYMBOL(dev_remove_pack);
445
446
447 /**
448 * dev_add_offload - register offload handlers
449 * @po: protocol offload declaration
450 *
451 * Add protocol offload handlers to the networking stack. The passed
452 * &proto_offload is linked into kernel lists and may not be freed until
453 * it has been removed from the kernel lists.
454 *
455 * This call does not sleep therefore it can not
456 * guarantee all CPU's that are in middle of receiving packets
457 * will see the new offload handlers (until the next received packet).
458 */
459 void dev_add_offload(struct packet_offload *po)
460 {
461 struct list_head *head = &offload_base;
462
463 spin_lock(&offload_lock);
464 list_add_rcu(&po->list, head);
465 spin_unlock(&offload_lock);
466 }
467 EXPORT_SYMBOL(dev_add_offload);
468
469 /**
470 * __dev_remove_offload - remove offload handler
471 * @po: packet offload declaration
472 *
473 * Remove a protocol offload handler that was previously added to the
474 * kernel offload handlers by dev_add_offload(). The passed &offload_type
475 * is removed from the kernel lists and can be freed or reused once this
476 * function returns.
477 *
478 * The packet type might still be in use by receivers
479 * and must not be freed until after all the CPU's have gone
480 * through a quiescent state.
481 */
482 void __dev_remove_offload(struct packet_offload *po)
483 {
484 struct list_head *head = &offload_base;
485 struct packet_offload *po1;
486
487 spin_lock(&offload_lock);
488
489 list_for_each_entry(po1, head, list) {
490 if (po == po1) {
491 list_del_rcu(&po->list);
492 goto out;
493 }
494 }
495
496 pr_warn("dev_remove_offload: %p not found\n", po);
497 out:
498 spin_unlock(&offload_lock);
499 }
500 EXPORT_SYMBOL(__dev_remove_offload);
501
502 /**
503 * dev_remove_offload - remove packet offload handler
504 * @po: packet offload declaration
505 *
506 * Remove a packet offload handler that was previously added to the kernel
507 * offload handlers by dev_add_offload(). The passed &offload_type is
508 * removed from the kernel lists and can be freed or reused once this
509 * function returns.
510 *
511 * This call sleeps to guarantee that no CPU is looking at the packet
512 * type after return.
513 */
514 void dev_remove_offload(struct packet_offload *po)
515 {
516 __dev_remove_offload(po);
517
518 synchronize_net();
519 }
520 EXPORT_SYMBOL(dev_remove_offload);
521
522 /******************************************************************************
523
524 Device Boot-time Settings Routines
525
526 *******************************************************************************/
527
528 /* Boot time configuration table */
529 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
530
531 /**
532 * netdev_boot_setup_add - add new setup entry
533 * @name: name of the device
534 * @map: configured settings for the device
535 *
536 * Adds new setup entry to the dev_boot_setup list. The function
537 * returns 0 on error and 1 on success. This is a generic routine to
538 * all netdevices.
539 */
540 static int netdev_boot_setup_add(char *name, struct ifmap *map)
541 {
542 struct netdev_boot_setup *s;
543 int i;
544
545 s = dev_boot_setup;
546 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
547 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
548 memset(s[i].name, 0, sizeof(s[i].name));
549 strlcpy(s[i].name, name, IFNAMSIZ);
550 memcpy(&s[i].map, map, sizeof(s[i].map));
551 break;
552 }
553 }
554
555 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
556 }
557
558 /**
559 * netdev_boot_setup_check - check boot time settings
560 * @dev: the netdevice
561 *
562 * Check boot time settings for the device.
563 * The found settings are set for the device to be used
564 * later in the device probing.
565 * Returns 0 if no settings found, 1 if they are.
566 */
567 int netdev_boot_setup_check(struct net_device *dev)
568 {
569 struct netdev_boot_setup *s = dev_boot_setup;
570 int i;
571
572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
574 !strcmp(dev->name, s[i].name)) {
575 dev->irq = s[i].map.irq;
576 dev->base_addr = s[i].map.base_addr;
577 dev->mem_start = s[i].map.mem_start;
578 dev->mem_end = s[i].map.mem_end;
579 return 1;
580 }
581 }
582 return 0;
583 }
584 EXPORT_SYMBOL(netdev_boot_setup_check);
585
586
587 /**
588 * netdev_boot_base - get address from boot time settings
589 * @prefix: prefix for network device
590 * @unit: id for network device
591 *
592 * Check boot time settings for the base address of device.
593 * The found settings are set for the device to be used
594 * later in the device probing.
595 * Returns 0 if no settings found.
596 */
597 unsigned long netdev_boot_base(const char *prefix, int unit)
598 {
599 const struct netdev_boot_setup *s = dev_boot_setup;
600 char name[IFNAMSIZ];
601 int i;
602
603 sprintf(name, "%s%d", prefix, unit);
604
605 /*
606 * If device already registered then return base of 1
607 * to indicate not to probe for this interface
608 */
609 if (__dev_get_by_name(&init_net, name))
610 return 1;
611
612 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
613 if (!strcmp(name, s[i].name))
614 return s[i].map.base_addr;
615 return 0;
616 }
617
618 /*
619 * Saves at boot time configured settings for any netdevice.
620 */
621 int __init netdev_boot_setup(char *str)
622 {
623 int ints[5];
624 struct ifmap map;
625
626 str = get_options(str, ARRAY_SIZE(ints), ints);
627 if (!str || !*str)
628 return 0;
629
630 /* Save settings */
631 memset(&map, 0, sizeof(map));
632 if (ints[0] > 0)
633 map.irq = ints[1];
634 if (ints[0] > 1)
635 map.base_addr = ints[2];
636 if (ints[0] > 2)
637 map.mem_start = ints[3];
638 if (ints[0] > 3)
639 map.mem_end = ints[4];
640
641 /* Add new entry to the list */
642 return netdev_boot_setup_add(str, &map);
643 }
644
645 __setup("netdev=", netdev_boot_setup);
646
647 /*******************************************************************************
648
649 Device Interface Subroutines
650
651 *******************************************************************************/
652
653 /**
654 * __dev_get_by_name - find a device by its name
655 * @net: the applicable net namespace
656 * @name: name to find
657 *
658 * Find an interface by name. Must be called under RTNL semaphore
659 * or @dev_base_lock. If the name is found a pointer to the device
660 * is returned. If the name is not found then %NULL is returned. The
661 * reference counters are not incremented so the caller must be
662 * careful with locks.
663 */
664
665 struct net_device *__dev_get_by_name(struct net *net, const char *name)
666 {
667 struct net_device *dev;
668 struct hlist_head *head = dev_name_hash(net, name);
669
670 hlist_for_each_entry(dev, head, name_hlist)
671 if (!strncmp(dev->name, name, IFNAMSIZ))
672 return dev;
673
674 return NULL;
675 }
676 EXPORT_SYMBOL(__dev_get_by_name);
677
678 /**
679 * dev_get_by_name_rcu - find a device by its name
680 * @net: the applicable net namespace
681 * @name: name to find
682 *
683 * Find an interface by name.
684 * If the name is found a pointer to the device is returned.
685 * If the name is not found then %NULL is returned.
686 * The reference counters are not incremented so the caller must be
687 * careful with locks. The caller must hold RCU lock.
688 */
689
690 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
691 {
692 struct net_device *dev;
693 struct hlist_head *head = dev_name_hash(net, name);
694
695 hlist_for_each_entry_rcu(dev, head, name_hlist)
696 if (!strncmp(dev->name, name, IFNAMSIZ))
697 return dev;
698
699 return NULL;
700 }
701 EXPORT_SYMBOL(dev_get_by_name_rcu);
702
703 /**
704 * dev_get_by_name - find a device by its name
705 * @net: the applicable net namespace
706 * @name: name to find
707 *
708 * Find an interface by name. This can be called from any
709 * context and does its own locking. The returned handle has
710 * the usage count incremented and the caller must use dev_put() to
711 * release it when it is no longer needed. %NULL is returned if no
712 * matching device is found.
713 */
714
715 struct net_device *dev_get_by_name(struct net *net, const char *name)
716 {
717 struct net_device *dev;
718
719 rcu_read_lock();
720 dev = dev_get_by_name_rcu(net, name);
721 if (dev)
722 dev_hold(dev);
723 rcu_read_unlock();
724 return dev;
725 }
726 EXPORT_SYMBOL(dev_get_by_name);
727
728 /**
729 * __dev_get_by_index - find a device by its ifindex
730 * @net: the applicable net namespace
731 * @ifindex: index of device
732 *
733 * Search for an interface by index. Returns %NULL if the device
734 * is not found or a pointer to the device. The device has not
735 * had its reference counter increased so the caller must be careful
736 * about locking. The caller must hold either the RTNL semaphore
737 * or @dev_base_lock.
738 */
739
740 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
741 {
742 struct net_device *dev;
743 struct hlist_head *head = dev_index_hash(net, ifindex);
744
745 hlist_for_each_entry(dev, head, index_hlist)
746 if (dev->ifindex == ifindex)
747 return dev;
748
749 return NULL;
750 }
751 EXPORT_SYMBOL(__dev_get_by_index);
752
753 /**
754 * dev_get_by_index_rcu - find a device by its ifindex
755 * @net: the applicable net namespace
756 * @ifindex: index of device
757 *
758 * Search for an interface by index. Returns %NULL if the device
759 * is not found or a pointer to the device. The device has not
760 * had its reference counter increased so the caller must be careful
761 * about locking. The caller must hold RCU lock.
762 */
763
764 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
765 {
766 struct net_device *dev;
767 struct hlist_head *head = dev_index_hash(net, ifindex);
768
769 hlist_for_each_entry_rcu(dev, head, index_hlist)
770 if (dev->ifindex == ifindex)
771 return dev;
772
773 return NULL;
774 }
775 EXPORT_SYMBOL(dev_get_by_index_rcu);
776
777
778 /**
779 * dev_get_by_index - find a device by its ifindex
780 * @net: the applicable net namespace
781 * @ifindex: index of device
782 *
783 * Search for an interface by index. Returns NULL if the device
784 * is not found or a pointer to the device. The device returned has
785 * had a reference added and the pointer is safe until the user calls
786 * dev_put to indicate they have finished with it.
787 */
788
789 struct net_device *dev_get_by_index(struct net *net, int ifindex)
790 {
791 struct net_device *dev;
792
793 rcu_read_lock();
794 dev = dev_get_by_index_rcu(net, ifindex);
795 if (dev)
796 dev_hold(dev);
797 rcu_read_unlock();
798 return dev;
799 }
800 EXPORT_SYMBOL(dev_get_by_index);
801
802 /**
803 * netdev_get_name - get a netdevice name, knowing its ifindex.
804 * @net: network namespace
805 * @name: a pointer to the buffer where the name will be stored.
806 * @ifindex: the ifindex of the interface to get the name from.
807 *
808 * The use of raw_seqcount_begin() and cond_resched() before
809 * retrying is required as we want to give the writers a chance
810 * to complete when CONFIG_PREEMPT is not set.
811 */
812 int netdev_get_name(struct net *net, char *name, int ifindex)
813 {
814 struct net_device *dev;
815 unsigned int seq;
816
817 retry:
818 seq = raw_seqcount_begin(&devnet_rename_seq);
819 rcu_read_lock();
820 dev = dev_get_by_index_rcu(net, ifindex);
821 if (!dev) {
822 rcu_read_unlock();
823 return -ENODEV;
824 }
825
826 strcpy(name, dev->name);
827 rcu_read_unlock();
828 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
829 cond_resched();
830 goto retry;
831 }
832
833 return 0;
834 }
835
836 /**
837 * dev_getbyhwaddr_rcu - find a device by its hardware address
838 * @net: the applicable net namespace
839 * @type: media type of device
840 * @ha: hardware address
841 *
842 * Search for an interface by MAC address. Returns NULL if the device
843 * is not found or a pointer to the device.
844 * The caller must hold RCU or RTNL.
845 * The returned device has not had its ref count increased
846 * and the caller must therefore be careful about locking
847 *
848 */
849
850 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
851 const char *ha)
852 {
853 struct net_device *dev;
854
855 for_each_netdev_rcu(net, dev)
856 if (dev->type == type &&
857 !memcmp(dev->dev_addr, ha, dev->addr_len))
858 return dev;
859
860 return NULL;
861 }
862 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
863
864 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
865 {
866 struct net_device *dev;
867
868 ASSERT_RTNL();
869 for_each_netdev(net, dev)
870 if (dev->type == type)
871 return dev;
872
873 return NULL;
874 }
875 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
876
877 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
878 {
879 struct net_device *dev, *ret = NULL;
880
881 rcu_read_lock();
882 for_each_netdev_rcu(net, dev)
883 if (dev->type == type) {
884 dev_hold(dev);
885 ret = dev;
886 break;
887 }
888 rcu_read_unlock();
889 return ret;
890 }
891 EXPORT_SYMBOL(dev_getfirstbyhwtype);
892
893 /**
894 * dev_get_by_flags_rcu - find any device with given flags
895 * @net: the applicable net namespace
896 * @if_flags: IFF_* values
897 * @mask: bitmask of bits in if_flags to check
898 *
899 * Search for any interface with the given flags. Returns NULL if a device
900 * is not found or a pointer to the device. Must be called inside
901 * rcu_read_lock(), and result refcount is unchanged.
902 */
903
904 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
905 unsigned short mask)
906 {
907 struct net_device *dev, *ret;
908
909 ret = NULL;
910 for_each_netdev_rcu(net, dev) {
911 if (((dev->flags ^ if_flags) & mask) == 0) {
912 ret = dev;
913 break;
914 }
915 }
916 return ret;
917 }
918 EXPORT_SYMBOL(dev_get_by_flags_rcu);
919
920 /**
921 * dev_valid_name - check if name is okay for network device
922 * @name: name string
923 *
924 * Network device names need to be valid file names to
925 * to allow sysfs to work. We also disallow any kind of
926 * whitespace.
927 */
928 bool dev_valid_name(const char *name)
929 {
930 if (*name == '\0')
931 return false;
932 if (strlen(name) >= IFNAMSIZ)
933 return false;
934 if (!strcmp(name, ".") || !strcmp(name, ".."))
935 return false;
936
937 while (*name) {
938 if (*name == '/' || isspace(*name))
939 return false;
940 name++;
941 }
942 return true;
943 }
944 EXPORT_SYMBOL(dev_valid_name);
945
946 /**
947 * __dev_alloc_name - allocate a name for a device
948 * @net: network namespace to allocate the device name in
949 * @name: name format string
950 * @buf: scratch buffer and result name string
951 *
952 * Passed a format string - eg "lt%d" it will try and find a suitable
953 * id. It scans list of devices to build up a free map, then chooses
954 * the first empty slot. The caller must hold the dev_base or rtnl lock
955 * while allocating the name and adding the device in order to avoid
956 * duplicates.
957 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
958 * Returns the number of the unit assigned or a negative errno code.
959 */
960
961 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
962 {
963 int i = 0;
964 const char *p;
965 const int max_netdevices = 8*PAGE_SIZE;
966 unsigned long *inuse;
967 struct net_device *d;
968
969 p = strnchr(name, IFNAMSIZ-1, '%');
970 if (p) {
971 /*
972 * Verify the string as this thing may have come from
973 * the user. There must be either one "%d" and no other "%"
974 * characters.
975 */
976 if (p[1] != 'd' || strchr(p + 2, '%'))
977 return -EINVAL;
978
979 /* Use one page as a bit array of possible slots */
980 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
981 if (!inuse)
982 return -ENOMEM;
983
984 for_each_netdev(net, d) {
985 if (!sscanf(d->name, name, &i))
986 continue;
987 if (i < 0 || i >= max_netdevices)
988 continue;
989
990 /* avoid cases where sscanf is not exact inverse of printf */
991 snprintf(buf, IFNAMSIZ, name, i);
992 if (!strncmp(buf, d->name, IFNAMSIZ))
993 set_bit(i, inuse);
994 }
995
996 i = find_first_zero_bit(inuse, max_netdevices);
997 free_page((unsigned long) inuse);
998 }
999
1000 if (buf != name)
1001 snprintf(buf, IFNAMSIZ, name, i);
1002 if (!__dev_get_by_name(net, buf))
1003 return i;
1004
1005 /* It is possible to run out of possible slots
1006 * when the name is long and there isn't enough space left
1007 * for the digits, or if all bits are used.
1008 */
1009 return -ENFILE;
1010 }
1011
1012 /**
1013 * dev_alloc_name - allocate a name for a device
1014 * @dev: device
1015 * @name: name format string
1016 *
1017 * Passed a format string - eg "lt%d" it will try and find a suitable
1018 * id. It scans list of devices to build up a free map, then chooses
1019 * the first empty slot. The caller must hold the dev_base or rtnl lock
1020 * while allocating the name and adding the device in order to avoid
1021 * duplicates.
1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023 * Returns the number of the unit assigned or a negative errno code.
1024 */
1025
1026 int dev_alloc_name(struct net_device *dev, const char *name)
1027 {
1028 char buf[IFNAMSIZ];
1029 struct net *net;
1030 int ret;
1031
1032 BUG_ON(!dev_net(dev));
1033 net = dev_net(dev);
1034 ret = __dev_alloc_name(net, name, buf);
1035 if (ret >= 0)
1036 strlcpy(dev->name, buf, IFNAMSIZ);
1037 return ret;
1038 }
1039 EXPORT_SYMBOL(dev_alloc_name);
1040
1041 static int dev_alloc_name_ns(struct net *net,
1042 struct net_device *dev,
1043 const char *name)
1044 {
1045 char buf[IFNAMSIZ];
1046 int ret;
1047
1048 ret = __dev_alloc_name(net, name, buf);
1049 if (ret >= 0)
1050 strlcpy(dev->name, buf, IFNAMSIZ);
1051 return ret;
1052 }
1053
1054 static int dev_get_valid_name(struct net *net,
1055 struct net_device *dev,
1056 const char *name)
1057 {
1058 BUG_ON(!net);
1059
1060 if (!dev_valid_name(name))
1061 return -EINVAL;
1062
1063 if (strchr(name, '%'))
1064 return dev_alloc_name_ns(net, dev, name);
1065 else if (__dev_get_by_name(net, name))
1066 return -EEXIST;
1067 else if (dev->name != name)
1068 strlcpy(dev->name, name, IFNAMSIZ);
1069
1070 return 0;
1071 }
1072
1073 /**
1074 * dev_change_name - change name of a device
1075 * @dev: device
1076 * @newname: name (or format string) must be at least IFNAMSIZ
1077 *
1078 * Change name of a device, can pass format strings "eth%d".
1079 * for wildcarding.
1080 */
1081 int dev_change_name(struct net_device *dev, const char *newname)
1082 {
1083 char oldname[IFNAMSIZ];
1084 int err = 0;
1085 int ret;
1086 struct net *net;
1087
1088 ASSERT_RTNL();
1089 BUG_ON(!dev_net(dev));
1090
1091 net = dev_net(dev);
1092 if (dev->flags & IFF_UP)
1093 return -EBUSY;
1094
1095 write_seqcount_begin(&devnet_rename_seq);
1096
1097 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1098 write_seqcount_end(&devnet_rename_seq);
1099 return 0;
1100 }
1101
1102 memcpy(oldname, dev->name, IFNAMSIZ);
1103
1104 err = dev_get_valid_name(net, dev, newname);
1105 if (err < 0) {
1106 write_seqcount_end(&devnet_rename_seq);
1107 return err;
1108 }
1109
1110 rollback:
1111 ret = device_rename(&dev->dev, dev->name);
1112 if (ret) {
1113 memcpy(dev->name, oldname, IFNAMSIZ);
1114 write_seqcount_end(&devnet_rename_seq);
1115 return ret;
1116 }
1117
1118 write_seqcount_end(&devnet_rename_seq);
1119
1120 write_lock_bh(&dev_base_lock);
1121 hlist_del_rcu(&dev->name_hlist);
1122 write_unlock_bh(&dev_base_lock);
1123
1124 synchronize_rcu();
1125
1126 write_lock_bh(&dev_base_lock);
1127 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1128 write_unlock_bh(&dev_base_lock);
1129
1130 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1131 ret = notifier_to_errno(ret);
1132
1133 if (ret) {
1134 /* err >= 0 after dev_alloc_name() or stores the first errno */
1135 if (err >= 0) {
1136 err = ret;
1137 write_seqcount_begin(&devnet_rename_seq);
1138 memcpy(dev->name, oldname, IFNAMSIZ);
1139 goto rollback;
1140 } else {
1141 pr_err("%s: name change rollback failed: %d\n",
1142 dev->name, ret);
1143 }
1144 }
1145
1146 return err;
1147 }
1148
1149 /**
1150 * dev_set_alias - change ifalias of a device
1151 * @dev: device
1152 * @alias: name up to IFALIASZ
1153 * @len: limit of bytes to copy from info
1154 *
1155 * Set ifalias for a device,
1156 */
1157 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1158 {
1159 char *new_ifalias;
1160
1161 ASSERT_RTNL();
1162
1163 if (len >= IFALIASZ)
1164 return -EINVAL;
1165
1166 if (!len) {
1167 kfree(dev->ifalias);
1168 dev->ifalias = NULL;
1169 return 0;
1170 }
1171
1172 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1173 if (!new_ifalias)
1174 return -ENOMEM;
1175 dev->ifalias = new_ifalias;
1176
1177 strlcpy(dev->ifalias, alias, len+1);
1178 return len;
1179 }
1180
1181
1182 /**
1183 * netdev_features_change - device changes features
1184 * @dev: device to cause notification
1185 *
1186 * Called to indicate a device has changed features.
1187 */
1188 void netdev_features_change(struct net_device *dev)
1189 {
1190 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1191 }
1192 EXPORT_SYMBOL(netdev_features_change);
1193
1194 /**
1195 * netdev_state_change - device changes state
1196 * @dev: device to cause notification
1197 *
1198 * Called to indicate a device has changed state. This function calls
1199 * the notifier chains for netdev_chain and sends a NEWLINK message
1200 * to the routing socket.
1201 */
1202 void netdev_state_change(struct net_device *dev)
1203 {
1204 if (dev->flags & IFF_UP) {
1205 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1206 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1207 }
1208 }
1209 EXPORT_SYMBOL(netdev_state_change);
1210
1211 /**
1212 * netdev_notify_peers - notify network peers about existence of @dev
1213 * @dev: network device
1214 *
1215 * Generate traffic such that interested network peers are aware of
1216 * @dev, such as by generating a gratuitous ARP. This may be used when
1217 * a device wants to inform the rest of the network about some sort of
1218 * reconfiguration such as a failover event or virtual machine
1219 * migration.
1220 */
1221 void netdev_notify_peers(struct net_device *dev)
1222 {
1223 rtnl_lock();
1224 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1225 rtnl_unlock();
1226 }
1227 EXPORT_SYMBOL(netdev_notify_peers);
1228
1229 static int __dev_open(struct net_device *dev)
1230 {
1231 const struct net_device_ops *ops = dev->netdev_ops;
1232 int ret;
1233
1234 ASSERT_RTNL();
1235
1236 if (!netif_device_present(dev))
1237 return -ENODEV;
1238
1239 /* Block netpoll from trying to do any rx path servicing.
1240 * If we don't do this there is a chance ndo_poll_controller
1241 * or ndo_poll may be running while we open the device
1242 */
1243 netpoll_rx_disable(dev);
1244
1245 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1246 ret = notifier_to_errno(ret);
1247 if (ret)
1248 return ret;
1249
1250 set_bit(__LINK_STATE_START, &dev->state);
1251
1252 if (ops->ndo_validate_addr)
1253 ret = ops->ndo_validate_addr(dev);
1254
1255 if (!ret && ops->ndo_open)
1256 ret = ops->ndo_open(dev);
1257
1258 netpoll_rx_enable(dev);
1259
1260 if (ret)
1261 clear_bit(__LINK_STATE_START, &dev->state);
1262 else {
1263 dev->flags |= IFF_UP;
1264 net_dmaengine_get();
1265 dev_set_rx_mode(dev);
1266 dev_activate(dev);
1267 add_device_randomness(dev->dev_addr, dev->addr_len);
1268 }
1269
1270 return ret;
1271 }
1272
1273 /**
1274 * dev_open - prepare an interface for use.
1275 * @dev: device to open
1276 *
1277 * Takes a device from down to up state. The device's private open
1278 * function is invoked and then the multicast lists are loaded. Finally
1279 * the device is moved into the up state and a %NETDEV_UP message is
1280 * sent to the netdev notifier chain.
1281 *
1282 * Calling this function on an active interface is a nop. On a failure
1283 * a negative errno code is returned.
1284 */
1285 int dev_open(struct net_device *dev)
1286 {
1287 int ret;
1288
1289 if (dev->flags & IFF_UP)
1290 return 0;
1291
1292 ret = __dev_open(dev);
1293 if (ret < 0)
1294 return ret;
1295
1296 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1297 call_netdevice_notifiers(NETDEV_UP, dev);
1298
1299 return ret;
1300 }
1301 EXPORT_SYMBOL(dev_open);
1302
1303 static int __dev_close_many(struct list_head *head)
1304 {
1305 struct net_device *dev;
1306
1307 ASSERT_RTNL();
1308 might_sleep();
1309
1310 list_for_each_entry(dev, head, close_list) {
1311 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1312
1313 clear_bit(__LINK_STATE_START, &dev->state);
1314
1315 /* Synchronize to scheduled poll. We cannot touch poll list, it
1316 * can be even on different cpu. So just clear netif_running().
1317 *
1318 * dev->stop() will invoke napi_disable() on all of it's
1319 * napi_struct instances on this device.
1320 */
1321 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1322 }
1323
1324 dev_deactivate_many(head);
1325
1326 list_for_each_entry(dev, head, close_list) {
1327 const struct net_device_ops *ops = dev->netdev_ops;
1328
1329 /*
1330 * Call the device specific close. This cannot fail.
1331 * Only if device is UP
1332 *
1333 * We allow it to be called even after a DETACH hot-plug
1334 * event.
1335 */
1336 if (ops->ndo_stop)
1337 ops->ndo_stop(dev);
1338
1339 dev->flags &= ~IFF_UP;
1340 net_dmaengine_put();
1341 }
1342
1343 return 0;
1344 }
1345
1346 static int __dev_close(struct net_device *dev)
1347 {
1348 int retval;
1349 LIST_HEAD(single);
1350
1351 /* Temporarily disable netpoll until the interface is down */
1352 netpoll_rx_disable(dev);
1353
1354 list_add(&dev->close_list, &single);
1355 retval = __dev_close_many(&single);
1356 list_del(&single);
1357
1358 netpoll_rx_enable(dev);
1359 return retval;
1360 }
1361
1362 static int dev_close_many(struct list_head *head)
1363 {
1364 struct net_device *dev, *tmp;
1365
1366 /* Remove the devices that don't need to be closed */
1367 list_for_each_entry_safe(dev, tmp, head, close_list)
1368 if (!(dev->flags & IFF_UP))
1369 list_del_init(&dev->close_list);
1370
1371 __dev_close_many(head);
1372
1373 list_for_each_entry_safe(dev, tmp, head, close_list) {
1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1375 call_netdevice_notifiers(NETDEV_DOWN, dev);
1376 list_del_init(&dev->close_list);
1377 }
1378
1379 return 0;
1380 }
1381
1382 /**
1383 * dev_close - shutdown an interface.
1384 * @dev: device to shutdown
1385 *
1386 * This function moves an active device into down state. A
1387 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1388 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1389 * chain.
1390 */
1391 int dev_close(struct net_device *dev)
1392 {
1393 if (dev->flags & IFF_UP) {
1394 LIST_HEAD(single);
1395
1396 /* Block netpoll rx while the interface is going down */
1397 netpoll_rx_disable(dev);
1398
1399 list_add(&dev->close_list, &single);
1400 dev_close_many(&single);
1401 list_del(&single);
1402
1403 netpoll_rx_enable(dev);
1404 }
1405 return 0;
1406 }
1407 EXPORT_SYMBOL(dev_close);
1408
1409
1410 /**
1411 * dev_disable_lro - disable Large Receive Offload on a device
1412 * @dev: device
1413 *
1414 * Disable Large Receive Offload (LRO) on a net device. Must be
1415 * called under RTNL. This is needed if received packets may be
1416 * forwarded to another interface.
1417 */
1418 void dev_disable_lro(struct net_device *dev)
1419 {
1420 /*
1421 * If we're trying to disable lro on a vlan device
1422 * use the underlying physical device instead
1423 */
1424 if (is_vlan_dev(dev))
1425 dev = vlan_dev_real_dev(dev);
1426
1427 dev->wanted_features &= ~NETIF_F_LRO;
1428 netdev_update_features(dev);
1429
1430 if (unlikely(dev->features & NETIF_F_LRO))
1431 netdev_WARN(dev, "failed to disable LRO!\n");
1432 }
1433 EXPORT_SYMBOL(dev_disable_lro);
1434
1435 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1436 struct net_device *dev)
1437 {
1438 struct netdev_notifier_info info;
1439
1440 netdev_notifier_info_init(&info, dev);
1441 return nb->notifier_call(nb, val, &info);
1442 }
1443
1444 static int dev_boot_phase = 1;
1445
1446 /**
1447 * register_netdevice_notifier - register a network notifier block
1448 * @nb: notifier
1449 *
1450 * Register a notifier to be called when network device events occur.
1451 * The notifier passed is linked into the kernel structures and must
1452 * not be reused until it has been unregistered. A negative errno code
1453 * is returned on a failure.
1454 *
1455 * When registered all registration and up events are replayed
1456 * to the new notifier to allow device to have a race free
1457 * view of the network device list.
1458 */
1459
1460 int register_netdevice_notifier(struct notifier_block *nb)
1461 {
1462 struct net_device *dev;
1463 struct net_device *last;
1464 struct net *net;
1465 int err;
1466
1467 rtnl_lock();
1468 err = raw_notifier_chain_register(&netdev_chain, nb);
1469 if (err)
1470 goto unlock;
1471 if (dev_boot_phase)
1472 goto unlock;
1473 for_each_net(net) {
1474 for_each_netdev(net, dev) {
1475 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1476 err = notifier_to_errno(err);
1477 if (err)
1478 goto rollback;
1479
1480 if (!(dev->flags & IFF_UP))
1481 continue;
1482
1483 call_netdevice_notifier(nb, NETDEV_UP, dev);
1484 }
1485 }
1486
1487 unlock:
1488 rtnl_unlock();
1489 return err;
1490
1491 rollback:
1492 last = dev;
1493 for_each_net(net) {
1494 for_each_netdev(net, dev) {
1495 if (dev == last)
1496 goto outroll;
1497
1498 if (dev->flags & IFF_UP) {
1499 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1500 dev);
1501 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1502 }
1503 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1504 }
1505 }
1506
1507 outroll:
1508 raw_notifier_chain_unregister(&netdev_chain, nb);
1509 goto unlock;
1510 }
1511 EXPORT_SYMBOL(register_netdevice_notifier);
1512
1513 /**
1514 * unregister_netdevice_notifier - unregister a network notifier block
1515 * @nb: notifier
1516 *
1517 * Unregister a notifier previously registered by
1518 * register_netdevice_notifier(). The notifier is unlinked into the
1519 * kernel structures and may then be reused. A negative errno code
1520 * is returned on a failure.
1521 *
1522 * After unregistering unregister and down device events are synthesized
1523 * for all devices on the device list to the removed notifier to remove
1524 * the need for special case cleanup code.
1525 */
1526
1527 int unregister_netdevice_notifier(struct notifier_block *nb)
1528 {
1529 struct net_device *dev;
1530 struct net *net;
1531 int err;
1532
1533 rtnl_lock();
1534 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1535 if (err)
1536 goto unlock;
1537
1538 for_each_net(net) {
1539 for_each_netdev(net, dev) {
1540 if (dev->flags & IFF_UP) {
1541 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1542 dev);
1543 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1544 }
1545 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1546 }
1547 }
1548 unlock:
1549 rtnl_unlock();
1550 return err;
1551 }
1552 EXPORT_SYMBOL(unregister_netdevice_notifier);
1553
1554 /**
1555 * call_netdevice_notifiers_info - call all network notifier blocks
1556 * @val: value passed unmodified to notifier function
1557 * @dev: net_device pointer passed unmodified to notifier function
1558 * @info: notifier information data
1559 *
1560 * Call all network notifier blocks. Parameters and return value
1561 * are as for raw_notifier_call_chain().
1562 */
1563
1564 int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev,
1565 struct netdev_notifier_info *info)
1566 {
1567 ASSERT_RTNL();
1568 netdev_notifier_info_init(info, dev);
1569 return raw_notifier_call_chain(&netdev_chain, val, info);
1570 }
1571 EXPORT_SYMBOL(call_netdevice_notifiers_info);
1572
1573 /**
1574 * call_netdevice_notifiers - call all network notifier blocks
1575 * @val: value passed unmodified to notifier function
1576 * @dev: net_device pointer passed unmodified to notifier function
1577 *
1578 * Call all network notifier blocks. Parameters and return value
1579 * are as for raw_notifier_call_chain().
1580 */
1581
1582 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1583 {
1584 struct netdev_notifier_info info;
1585
1586 return call_netdevice_notifiers_info(val, dev, &info);
1587 }
1588 EXPORT_SYMBOL(call_netdevice_notifiers);
1589
1590 static struct static_key netstamp_needed __read_mostly;
1591 #ifdef HAVE_JUMP_LABEL
1592 /* We are not allowed to call static_key_slow_dec() from irq context
1593 * If net_disable_timestamp() is called from irq context, defer the
1594 * static_key_slow_dec() calls.
1595 */
1596 static atomic_t netstamp_needed_deferred;
1597 #endif
1598
1599 void net_enable_timestamp(void)
1600 {
1601 #ifdef HAVE_JUMP_LABEL
1602 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1603
1604 if (deferred) {
1605 while (--deferred)
1606 static_key_slow_dec(&netstamp_needed);
1607 return;
1608 }
1609 #endif
1610 static_key_slow_inc(&netstamp_needed);
1611 }
1612 EXPORT_SYMBOL(net_enable_timestamp);
1613
1614 void net_disable_timestamp(void)
1615 {
1616 #ifdef HAVE_JUMP_LABEL
1617 if (in_interrupt()) {
1618 atomic_inc(&netstamp_needed_deferred);
1619 return;
1620 }
1621 #endif
1622 static_key_slow_dec(&netstamp_needed);
1623 }
1624 EXPORT_SYMBOL(net_disable_timestamp);
1625
1626 static inline void net_timestamp_set(struct sk_buff *skb)
1627 {
1628 skb->tstamp.tv64 = 0;
1629 if (static_key_false(&netstamp_needed))
1630 __net_timestamp(skb);
1631 }
1632
1633 #define net_timestamp_check(COND, SKB) \
1634 if (static_key_false(&netstamp_needed)) { \
1635 if ((COND) && !(SKB)->tstamp.tv64) \
1636 __net_timestamp(SKB); \
1637 } \
1638
1639 static inline bool is_skb_forwardable(struct net_device *dev,
1640 struct sk_buff *skb)
1641 {
1642 unsigned int len;
1643
1644 if (!(dev->flags & IFF_UP))
1645 return false;
1646
1647 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1648 if (skb->len <= len)
1649 return true;
1650
1651 /* if TSO is enabled, we don't care about the length as the packet
1652 * could be forwarded without being segmented before
1653 */
1654 if (skb_is_gso(skb))
1655 return true;
1656
1657 return false;
1658 }
1659
1660 /**
1661 * dev_forward_skb - loopback an skb to another netif
1662 *
1663 * @dev: destination network device
1664 * @skb: buffer to forward
1665 *
1666 * return values:
1667 * NET_RX_SUCCESS (no congestion)
1668 * NET_RX_DROP (packet was dropped, but freed)
1669 *
1670 * dev_forward_skb can be used for injecting an skb from the
1671 * start_xmit function of one device into the receive queue
1672 * of another device.
1673 *
1674 * The receiving device may be in another namespace, so
1675 * we have to clear all information in the skb that could
1676 * impact namespace isolation.
1677 */
1678 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1679 {
1680 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1681 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1682 atomic_long_inc(&dev->rx_dropped);
1683 kfree_skb(skb);
1684 return NET_RX_DROP;
1685 }
1686 }
1687
1688 if (unlikely(!is_skb_forwardable(dev, skb))) {
1689 atomic_long_inc(&dev->rx_dropped);
1690 kfree_skb(skb);
1691 return NET_RX_DROP;
1692 }
1693
1694 skb_scrub_packet(skb, true);
1695 skb->protocol = eth_type_trans(skb, dev);
1696
1697 return netif_rx(skb);
1698 }
1699 EXPORT_SYMBOL_GPL(dev_forward_skb);
1700
1701 static inline int deliver_skb(struct sk_buff *skb,
1702 struct packet_type *pt_prev,
1703 struct net_device *orig_dev)
1704 {
1705 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1706 return -ENOMEM;
1707 atomic_inc(&skb->users);
1708 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1709 }
1710
1711 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1712 {
1713 if (!ptype->af_packet_priv || !skb->sk)
1714 return false;
1715
1716 if (ptype->id_match)
1717 return ptype->id_match(ptype, skb->sk);
1718 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1719 return true;
1720
1721 return false;
1722 }
1723
1724 /*
1725 * Support routine. Sends outgoing frames to any network
1726 * taps currently in use.
1727 */
1728
1729 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1730 {
1731 struct packet_type *ptype;
1732 struct sk_buff *skb2 = NULL;
1733 struct packet_type *pt_prev = NULL;
1734
1735 rcu_read_lock();
1736 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1737 /* Never send packets back to the socket
1738 * they originated from - MvS (miquels@drinkel.ow.org)
1739 */
1740 if ((ptype->dev == dev || !ptype->dev) &&
1741 (!skb_loop_sk(ptype, skb))) {
1742 if (pt_prev) {
1743 deliver_skb(skb2, pt_prev, skb->dev);
1744 pt_prev = ptype;
1745 continue;
1746 }
1747
1748 skb2 = skb_clone(skb, GFP_ATOMIC);
1749 if (!skb2)
1750 break;
1751
1752 net_timestamp_set(skb2);
1753
1754 /* skb->nh should be correctly
1755 set by sender, so that the second statement is
1756 just protection against buggy protocols.
1757 */
1758 skb_reset_mac_header(skb2);
1759
1760 if (skb_network_header(skb2) < skb2->data ||
1761 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1762 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1763 ntohs(skb2->protocol),
1764 dev->name);
1765 skb_reset_network_header(skb2);
1766 }
1767
1768 skb2->transport_header = skb2->network_header;
1769 skb2->pkt_type = PACKET_OUTGOING;
1770 pt_prev = ptype;
1771 }
1772 }
1773 if (pt_prev)
1774 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1775 rcu_read_unlock();
1776 }
1777
1778 /**
1779 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1780 * @dev: Network device
1781 * @txq: number of queues available
1782 *
1783 * If real_num_tx_queues is changed the tc mappings may no longer be
1784 * valid. To resolve this verify the tc mapping remains valid and if
1785 * not NULL the mapping. With no priorities mapping to this
1786 * offset/count pair it will no longer be used. In the worst case TC0
1787 * is invalid nothing can be done so disable priority mappings. If is
1788 * expected that drivers will fix this mapping if they can before
1789 * calling netif_set_real_num_tx_queues.
1790 */
1791 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1792 {
1793 int i;
1794 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1795
1796 /* If TC0 is invalidated disable TC mapping */
1797 if (tc->offset + tc->count > txq) {
1798 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1799 dev->num_tc = 0;
1800 return;
1801 }
1802
1803 /* Invalidated prio to tc mappings set to TC0 */
1804 for (i = 1; i < TC_BITMASK + 1; i++) {
1805 int q = netdev_get_prio_tc_map(dev, i);
1806
1807 tc = &dev->tc_to_txq[q];
1808 if (tc->offset + tc->count > txq) {
1809 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1810 i, q);
1811 netdev_set_prio_tc_map(dev, i, 0);
1812 }
1813 }
1814 }
1815
1816 #ifdef CONFIG_XPS
1817 static DEFINE_MUTEX(xps_map_mutex);
1818 #define xmap_dereference(P) \
1819 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1820
1821 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1822 int cpu, u16 index)
1823 {
1824 struct xps_map *map = NULL;
1825 int pos;
1826
1827 if (dev_maps)
1828 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1829
1830 for (pos = 0; map && pos < map->len; pos++) {
1831 if (map->queues[pos] == index) {
1832 if (map->len > 1) {
1833 map->queues[pos] = map->queues[--map->len];
1834 } else {
1835 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1836 kfree_rcu(map, rcu);
1837 map = NULL;
1838 }
1839 break;
1840 }
1841 }
1842
1843 return map;
1844 }
1845
1846 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1847 {
1848 struct xps_dev_maps *dev_maps;
1849 int cpu, i;
1850 bool active = false;
1851
1852 mutex_lock(&xps_map_mutex);
1853 dev_maps = xmap_dereference(dev->xps_maps);
1854
1855 if (!dev_maps)
1856 goto out_no_maps;
1857
1858 for_each_possible_cpu(cpu) {
1859 for (i = index; i < dev->num_tx_queues; i++) {
1860 if (!remove_xps_queue(dev_maps, cpu, i))
1861 break;
1862 }
1863 if (i == dev->num_tx_queues)
1864 active = true;
1865 }
1866
1867 if (!active) {
1868 RCU_INIT_POINTER(dev->xps_maps, NULL);
1869 kfree_rcu(dev_maps, rcu);
1870 }
1871
1872 for (i = index; i < dev->num_tx_queues; i++)
1873 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1874 NUMA_NO_NODE);
1875
1876 out_no_maps:
1877 mutex_unlock(&xps_map_mutex);
1878 }
1879
1880 static struct xps_map *expand_xps_map(struct xps_map *map,
1881 int cpu, u16 index)
1882 {
1883 struct xps_map *new_map;
1884 int alloc_len = XPS_MIN_MAP_ALLOC;
1885 int i, pos;
1886
1887 for (pos = 0; map && pos < map->len; pos++) {
1888 if (map->queues[pos] != index)
1889 continue;
1890 return map;
1891 }
1892
1893 /* Need to add queue to this CPU's existing map */
1894 if (map) {
1895 if (pos < map->alloc_len)
1896 return map;
1897
1898 alloc_len = map->alloc_len * 2;
1899 }
1900
1901 /* Need to allocate new map to store queue on this CPU's map */
1902 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1903 cpu_to_node(cpu));
1904 if (!new_map)
1905 return NULL;
1906
1907 for (i = 0; i < pos; i++)
1908 new_map->queues[i] = map->queues[i];
1909 new_map->alloc_len = alloc_len;
1910 new_map->len = pos;
1911
1912 return new_map;
1913 }
1914
1915 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1916 u16 index)
1917 {
1918 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1919 struct xps_map *map, *new_map;
1920 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1921 int cpu, numa_node_id = -2;
1922 bool active = false;
1923
1924 mutex_lock(&xps_map_mutex);
1925
1926 dev_maps = xmap_dereference(dev->xps_maps);
1927
1928 /* allocate memory for queue storage */
1929 for_each_online_cpu(cpu) {
1930 if (!cpumask_test_cpu(cpu, mask))
1931 continue;
1932
1933 if (!new_dev_maps)
1934 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1935 if (!new_dev_maps) {
1936 mutex_unlock(&xps_map_mutex);
1937 return -ENOMEM;
1938 }
1939
1940 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1941 NULL;
1942
1943 map = expand_xps_map(map, cpu, index);
1944 if (!map)
1945 goto error;
1946
1947 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1948 }
1949
1950 if (!new_dev_maps)
1951 goto out_no_new_maps;
1952
1953 for_each_possible_cpu(cpu) {
1954 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1955 /* add queue to CPU maps */
1956 int pos = 0;
1957
1958 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1959 while ((pos < map->len) && (map->queues[pos] != index))
1960 pos++;
1961
1962 if (pos == map->len)
1963 map->queues[map->len++] = index;
1964 #ifdef CONFIG_NUMA
1965 if (numa_node_id == -2)
1966 numa_node_id = cpu_to_node(cpu);
1967 else if (numa_node_id != cpu_to_node(cpu))
1968 numa_node_id = -1;
1969 #endif
1970 } else if (dev_maps) {
1971 /* fill in the new device map from the old device map */
1972 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1973 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1974 }
1975
1976 }
1977
1978 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1979
1980 /* Cleanup old maps */
1981 if (dev_maps) {
1982 for_each_possible_cpu(cpu) {
1983 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1984 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1985 if (map && map != new_map)
1986 kfree_rcu(map, rcu);
1987 }
1988
1989 kfree_rcu(dev_maps, rcu);
1990 }
1991
1992 dev_maps = new_dev_maps;
1993 active = true;
1994
1995 out_no_new_maps:
1996 /* update Tx queue numa node */
1997 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
1998 (numa_node_id >= 0) ? numa_node_id :
1999 NUMA_NO_NODE);
2000
2001 if (!dev_maps)
2002 goto out_no_maps;
2003
2004 /* removes queue from unused CPUs */
2005 for_each_possible_cpu(cpu) {
2006 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2007 continue;
2008
2009 if (remove_xps_queue(dev_maps, cpu, index))
2010 active = true;
2011 }
2012
2013 /* free map if not active */
2014 if (!active) {
2015 RCU_INIT_POINTER(dev->xps_maps, NULL);
2016 kfree_rcu(dev_maps, rcu);
2017 }
2018
2019 out_no_maps:
2020 mutex_unlock(&xps_map_mutex);
2021
2022 return 0;
2023 error:
2024 /* remove any maps that we added */
2025 for_each_possible_cpu(cpu) {
2026 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2027 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2028 NULL;
2029 if (new_map && new_map != map)
2030 kfree(new_map);
2031 }
2032
2033 mutex_unlock(&xps_map_mutex);
2034
2035 kfree(new_dev_maps);
2036 return -ENOMEM;
2037 }
2038 EXPORT_SYMBOL(netif_set_xps_queue);
2039
2040 #endif
2041 /*
2042 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2043 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2044 */
2045 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2046 {
2047 int rc;
2048
2049 if (txq < 1 || txq > dev->num_tx_queues)
2050 return -EINVAL;
2051
2052 if (dev->reg_state == NETREG_REGISTERED ||
2053 dev->reg_state == NETREG_UNREGISTERING) {
2054 ASSERT_RTNL();
2055
2056 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2057 txq);
2058 if (rc)
2059 return rc;
2060
2061 if (dev->num_tc)
2062 netif_setup_tc(dev, txq);
2063
2064 if (txq < dev->real_num_tx_queues) {
2065 qdisc_reset_all_tx_gt(dev, txq);
2066 #ifdef CONFIG_XPS
2067 netif_reset_xps_queues_gt(dev, txq);
2068 #endif
2069 }
2070 }
2071
2072 dev->real_num_tx_queues = txq;
2073 return 0;
2074 }
2075 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2076
2077 #ifdef CONFIG_RPS
2078 /**
2079 * netif_set_real_num_rx_queues - set actual number of RX queues used
2080 * @dev: Network device
2081 * @rxq: Actual number of RX queues
2082 *
2083 * This must be called either with the rtnl_lock held or before
2084 * registration of the net device. Returns 0 on success, or a
2085 * negative error code. If called before registration, it always
2086 * succeeds.
2087 */
2088 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2089 {
2090 int rc;
2091
2092 if (rxq < 1 || rxq > dev->num_rx_queues)
2093 return -EINVAL;
2094
2095 if (dev->reg_state == NETREG_REGISTERED) {
2096 ASSERT_RTNL();
2097
2098 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2099 rxq);
2100 if (rc)
2101 return rc;
2102 }
2103
2104 dev->real_num_rx_queues = rxq;
2105 return 0;
2106 }
2107 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2108 #endif
2109
2110 /**
2111 * netif_get_num_default_rss_queues - default number of RSS queues
2112 *
2113 * This routine should set an upper limit on the number of RSS queues
2114 * used by default by multiqueue devices.
2115 */
2116 int netif_get_num_default_rss_queues(void)
2117 {
2118 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2119 }
2120 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2121
2122 static inline void __netif_reschedule(struct Qdisc *q)
2123 {
2124 struct softnet_data *sd;
2125 unsigned long flags;
2126
2127 local_irq_save(flags);
2128 sd = &__get_cpu_var(softnet_data);
2129 q->next_sched = NULL;
2130 *sd->output_queue_tailp = q;
2131 sd->output_queue_tailp = &q->next_sched;
2132 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2133 local_irq_restore(flags);
2134 }
2135
2136 void __netif_schedule(struct Qdisc *q)
2137 {
2138 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2139 __netif_reschedule(q);
2140 }
2141 EXPORT_SYMBOL(__netif_schedule);
2142
2143 void dev_kfree_skb_irq(struct sk_buff *skb)
2144 {
2145 if (atomic_dec_and_test(&skb->users)) {
2146 struct softnet_data *sd;
2147 unsigned long flags;
2148
2149 local_irq_save(flags);
2150 sd = &__get_cpu_var(softnet_data);
2151 skb->next = sd->completion_queue;
2152 sd->completion_queue = skb;
2153 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2154 local_irq_restore(flags);
2155 }
2156 }
2157 EXPORT_SYMBOL(dev_kfree_skb_irq);
2158
2159 void dev_kfree_skb_any(struct sk_buff *skb)
2160 {
2161 if (in_irq() || irqs_disabled())
2162 dev_kfree_skb_irq(skb);
2163 else
2164 dev_kfree_skb(skb);
2165 }
2166 EXPORT_SYMBOL(dev_kfree_skb_any);
2167
2168
2169 /**
2170 * netif_device_detach - mark device as removed
2171 * @dev: network device
2172 *
2173 * Mark device as removed from system and therefore no longer available.
2174 */
2175 void netif_device_detach(struct net_device *dev)
2176 {
2177 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2178 netif_running(dev)) {
2179 netif_tx_stop_all_queues(dev);
2180 }
2181 }
2182 EXPORT_SYMBOL(netif_device_detach);
2183
2184 /**
2185 * netif_device_attach - mark device as attached
2186 * @dev: network device
2187 *
2188 * Mark device as attached from system and restart if needed.
2189 */
2190 void netif_device_attach(struct net_device *dev)
2191 {
2192 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2193 netif_running(dev)) {
2194 netif_tx_wake_all_queues(dev);
2195 __netdev_watchdog_up(dev);
2196 }
2197 }
2198 EXPORT_SYMBOL(netif_device_attach);
2199
2200 static void skb_warn_bad_offload(const struct sk_buff *skb)
2201 {
2202 static const netdev_features_t null_features = 0;
2203 struct net_device *dev = skb->dev;
2204 const char *driver = "";
2205
2206 if (!net_ratelimit())
2207 return;
2208
2209 if (dev && dev->dev.parent)
2210 driver = dev_driver_string(dev->dev.parent);
2211
2212 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2213 "gso_type=%d ip_summed=%d\n",
2214 driver, dev ? &dev->features : &null_features,
2215 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2216 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2217 skb_shinfo(skb)->gso_type, skb->ip_summed);
2218 }
2219
2220 /*
2221 * Invalidate hardware checksum when packet is to be mangled, and
2222 * complete checksum manually on outgoing path.
2223 */
2224 int skb_checksum_help(struct sk_buff *skb)
2225 {
2226 __wsum csum;
2227 int ret = 0, offset;
2228
2229 if (skb->ip_summed == CHECKSUM_COMPLETE)
2230 goto out_set_summed;
2231
2232 if (unlikely(skb_shinfo(skb)->gso_size)) {
2233 skb_warn_bad_offload(skb);
2234 return -EINVAL;
2235 }
2236
2237 /* Before computing a checksum, we should make sure no frag could
2238 * be modified by an external entity : checksum could be wrong.
2239 */
2240 if (skb_has_shared_frag(skb)) {
2241 ret = __skb_linearize(skb);
2242 if (ret)
2243 goto out;
2244 }
2245
2246 offset = skb_checksum_start_offset(skb);
2247 BUG_ON(offset >= skb_headlen(skb));
2248 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2249
2250 offset += skb->csum_offset;
2251 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2252
2253 if (skb_cloned(skb) &&
2254 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2255 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2256 if (ret)
2257 goto out;
2258 }
2259
2260 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2261 out_set_summed:
2262 skb->ip_summed = CHECKSUM_NONE;
2263 out:
2264 return ret;
2265 }
2266 EXPORT_SYMBOL(skb_checksum_help);
2267
2268 __be16 skb_network_protocol(struct sk_buff *skb)
2269 {
2270 __be16 type = skb->protocol;
2271 int vlan_depth = ETH_HLEN;
2272
2273 /* Tunnel gso handlers can set protocol to ethernet. */
2274 if (type == htons(ETH_P_TEB)) {
2275 struct ethhdr *eth;
2276
2277 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2278 return 0;
2279
2280 eth = (struct ethhdr *)skb_mac_header(skb);
2281 type = eth->h_proto;
2282 }
2283
2284 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2285 struct vlan_hdr *vh;
2286
2287 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2288 return 0;
2289
2290 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2291 type = vh->h_vlan_encapsulated_proto;
2292 vlan_depth += VLAN_HLEN;
2293 }
2294
2295 return type;
2296 }
2297
2298 /**
2299 * skb_mac_gso_segment - mac layer segmentation handler.
2300 * @skb: buffer to segment
2301 * @features: features for the output path (see dev->features)
2302 */
2303 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2304 netdev_features_t features)
2305 {
2306 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2307 struct packet_offload *ptype;
2308 __be16 type = skb_network_protocol(skb);
2309
2310 if (unlikely(!type))
2311 return ERR_PTR(-EINVAL);
2312
2313 __skb_pull(skb, skb->mac_len);
2314
2315 rcu_read_lock();
2316 list_for_each_entry_rcu(ptype, &offload_base, list) {
2317 if (ptype->type == type && ptype->callbacks.gso_segment) {
2318 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2319 int err;
2320
2321 err = ptype->callbacks.gso_send_check(skb);
2322 segs = ERR_PTR(err);
2323 if (err || skb_gso_ok(skb, features))
2324 break;
2325 __skb_push(skb, (skb->data -
2326 skb_network_header(skb)));
2327 }
2328 segs = ptype->callbacks.gso_segment(skb, features);
2329 break;
2330 }
2331 }
2332 rcu_read_unlock();
2333
2334 __skb_push(skb, skb->data - skb_mac_header(skb));
2335
2336 return segs;
2337 }
2338 EXPORT_SYMBOL(skb_mac_gso_segment);
2339
2340
2341 /* openvswitch calls this on rx path, so we need a different check.
2342 */
2343 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2344 {
2345 if (tx_path)
2346 return skb->ip_summed != CHECKSUM_PARTIAL;
2347 else
2348 return skb->ip_summed == CHECKSUM_NONE;
2349 }
2350
2351 /**
2352 * __skb_gso_segment - Perform segmentation on skb.
2353 * @skb: buffer to segment
2354 * @features: features for the output path (see dev->features)
2355 * @tx_path: whether it is called in TX path
2356 *
2357 * This function segments the given skb and returns a list of segments.
2358 *
2359 * It may return NULL if the skb requires no segmentation. This is
2360 * only possible when GSO is used for verifying header integrity.
2361 */
2362 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2363 netdev_features_t features, bool tx_path)
2364 {
2365 if (unlikely(skb_needs_check(skb, tx_path))) {
2366 int err;
2367
2368 skb_warn_bad_offload(skb);
2369
2370 if (skb_header_cloned(skb) &&
2371 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2372 return ERR_PTR(err);
2373 }
2374
2375 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2376 SKB_GSO_CB(skb)->encap_level = 0;
2377
2378 skb_reset_mac_header(skb);
2379 skb_reset_mac_len(skb);
2380
2381 return skb_mac_gso_segment(skb, features);
2382 }
2383 EXPORT_SYMBOL(__skb_gso_segment);
2384
2385 /* Take action when hardware reception checksum errors are detected. */
2386 #ifdef CONFIG_BUG
2387 void netdev_rx_csum_fault(struct net_device *dev)
2388 {
2389 if (net_ratelimit()) {
2390 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2391 dump_stack();
2392 }
2393 }
2394 EXPORT_SYMBOL(netdev_rx_csum_fault);
2395 #endif
2396
2397 /* Actually, we should eliminate this check as soon as we know, that:
2398 * 1. IOMMU is present and allows to map all the memory.
2399 * 2. No high memory really exists on this machine.
2400 */
2401
2402 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2403 {
2404 #ifdef CONFIG_HIGHMEM
2405 int i;
2406 if (!(dev->features & NETIF_F_HIGHDMA)) {
2407 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2408 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2409 if (PageHighMem(skb_frag_page(frag)))
2410 return 1;
2411 }
2412 }
2413
2414 if (PCI_DMA_BUS_IS_PHYS) {
2415 struct device *pdev = dev->dev.parent;
2416
2417 if (!pdev)
2418 return 0;
2419 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2420 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2421 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2422 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2423 return 1;
2424 }
2425 }
2426 #endif
2427 return 0;
2428 }
2429
2430 struct dev_gso_cb {
2431 void (*destructor)(struct sk_buff *skb);
2432 };
2433
2434 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2435
2436 static void dev_gso_skb_destructor(struct sk_buff *skb)
2437 {
2438 struct dev_gso_cb *cb;
2439
2440 do {
2441 struct sk_buff *nskb = skb->next;
2442
2443 skb->next = nskb->next;
2444 nskb->next = NULL;
2445 kfree_skb(nskb);
2446 } while (skb->next);
2447
2448 cb = DEV_GSO_CB(skb);
2449 if (cb->destructor)
2450 cb->destructor(skb);
2451 }
2452
2453 /**
2454 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2455 * @skb: buffer to segment
2456 * @features: device features as applicable to this skb
2457 *
2458 * This function segments the given skb and stores the list of segments
2459 * in skb->next.
2460 */
2461 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2462 {
2463 struct sk_buff *segs;
2464
2465 segs = skb_gso_segment(skb, features);
2466
2467 /* Verifying header integrity only. */
2468 if (!segs)
2469 return 0;
2470
2471 if (IS_ERR(segs))
2472 return PTR_ERR(segs);
2473
2474 skb->next = segs;
2475 DEV_GSO_CB(skb)->destructor = skb->destructor;
2476 skb->destructor = dev_gso_skb_destructor;
2477
2478 return 0;
2479 }
2480
2481 static netdev_features_t harmonize_features(struct sk_buff *skb,
2482 netdev_features_t features)
2483 {
2484 if (skb->ip_summed != CHECKSUM_NONE &&
2485 !can_checksum_protocol(features, skb_network_protocol(skb))) {
2486 features &= ~NETIF_F_ALL_CSUM;
2487 } else if (illegal_highdma(skb->dev, skb)) {
2488 features &= ~NETIF_F_SG;
2489 }
2490
2491 return features;
2492 }
2493
2494 netdev_features_t netif_skb_features(struct sk_buff *skb)
2495 {
2496 __be16 protocol = skb->protocol;
2497 netdev_features_t features = skb->dev->features;
2498
2499 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2500 features &= ~NETIF_F_GSO_MASK;
2501
2502 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2503 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2504 protocol = veh->h_vlan_encapsulated_proto;
2505 } else if (!vlan_tx_tag_present(skb)) {
2506 return harmonize_features(skb, features);
2507 }
2508
2509 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2510 NETIF_F_HW_VLAN_STAG_TX);
2511
2512 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2513 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2514 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2515 NETIF_F_HW_VLAN_STAG_TX;
2516
2517 return harmonize_features(skb, features);
2518 }
2519 EXPORT_SYMBOL(netif_skb_features);
2520
2521 /*
2522 * Returns true if either:
2523 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2524 * 2. skb is fragmented and the device does not support SG.
2525 */
2526 static inline int skb_needs_linearize(struct sk_buff *skb,
2527 netdev_features_t features)
2528 {
2529 return skb_is_nonlinear(skb) &&
2530 ((skb_has_frag_list(skb) &&
2531 !(features & NETIF_F_FRAGLIST)) ||
2532 (skb_shinfo(skb)->nr_frags &&
2533 !(features & NETIF_F_SG)));
2534 }
2535
2536 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2537 struct netdev_queue *txq, void *accel_priv)
2538 {
2539 const struct net_device_ops *ops = dev->netdev_ops;
2540 int rc = NETDEV_TX_OK;
2541 unsigned int skb_len;
2542
2543 if (likely(!skb->next)) {
2544 netdev_features_t features;
2545
2546 /*
2547 * If device doesn't need skb->dst, release it right now while
2548 * its hot in this cpu cache
2549 */
2550 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2551 skb_dst_drop(skb);
2552
2553 features = netif_skb_features(skb);
2554
2555 if (vlan_tx_tag_present(skb) &&
2556 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2557 skb = __vlan_put_tag(skb, skb->vlan_proto,
2558 vlan_tx_tag_get(skb));
2559 if (unlikely(!skb))
2560 goto out;
2561
2562 skb->vlan_tci = 0;
2563 }
2564
2565 /* If encapsulation offload request, verify we are testing
2566 * hardware encapsulation features instead of standard
2567 * features for the netdev
2568 */
2569 if (skb->encapsulation)
2570 features &= dev->hw_enc_features;
2571
2572 if (netif_needs_gso(skb, features)) {
2573 if (unlikely(dev_gso_segment(skb, features)))
2574 goto out_kfree_skb;
2575 if (skb->next)
2576 goto gso;
2577 } else {
2578 if (skb_needs_linearize(skb, features) &&
2579 __skb_linearize(skb))
2580 goto out_kfree_skb;
2581
2582 /* If packet is not checksummed and device does not
2583 * support checksumming for this protocol, complete
2584 * checksumming here.
2585 */
2586 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2587 if (skb->encapsulation)
2588 skb_set_inner_transport_header(skb,
2589 skb_checksum_start_offset(skb));
2590 else
2591 skb_set_transport_header(skb,
2592 skb_checksum_start_offset(skb));
2593 if (!(features & NETIF_F_ALL_CSUM) &&
2594 skb_checksum_help(skb))
2595 goto out_kfree_skb;
2596 }
2597 }
2598
2599 if (!list_empty(&ptype_all))
2600 dev_queue_xmit_nit(skb, dev);
2601
2602 skb_len = skb->len;
2603 if (accel_priv)
2604 rc = ops->ndo_dfwd_start_xmit(skb, dev, accel_priv);
2605 else
2606 rc = ops->ndo_start_xmit(skb, dev);
2607
2608 trace_net_dev_xmit(skb, rc, dev, skb_len);
2609 if (rc == NETDEV_TX_OK && txq)
2610 txq_trans_update(txq);
2611 return rc;
2612 }
2613
2614 gso:
2615 do {
2616 struct sk_buff *nskb = skb->next;
2617
2618 skb->next = nskb->next;
2619 nskb->next = NULL;
2620
2621 if (!list_empty(&ptype_all))
2622 dev_queue_xmit_nit(nskb, dev);
2623
2624 skb_len = nskb->len;
2625 if (accel_priv)
2626 rc = ops->ndo_dfwd_start_xmit(nskb, dev, accel_priv);
2627 else
2628 rc = ops->ndo_start_xmit(nskb, dev);
2629 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2630 if (unlikely(rc != NETDEV_TX_OK)) {
2631 if (rc & ~NETDEV_TX_MASK)
2632 goto out_kfree_gso_skb;
2633 nskb->next = skb->next;
2634 skb->next = nskb;
2635 return rc;
2636 }
2637 txq_trans_update(txq);
2638 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2639 return NETDEV_TX_BUSY;
2640 } while (skb->next);
2641
2642 out_kfree_gso_skb:
2643 if (likely(skb->next == NULL)) {
2644 skb->destructor = DEV_GSO_CB(skb)->destructor;
2645 consume_skb(skb);
2646 return rc;
2647 }
2648 out_kfree_skb:
2649 kfree_skb(skb);
2650 out:
2651 return rc;
2652 }
2653 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2654
2655 static void qdisc_pkt_len_init(struct sk_buff *skb)
2656 {
2657 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2658
2659 qdisc_skb_cb(skb)->pkt_len = skb->len;
2660
2661 /* To get more precise estimation of bytes sent on wire,
2662 * we add to pkt_len the headers size of all segments
2663 */
2664 if (shinfo->gso_size) {
2665 unsigned int hdr_len;
2666 u16 gso_segs = shinfo->gso_segs;
2667
2668 /* mac layer + network layer */
2669 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2670
2671 /* + transport layer */
2672 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2673 hdr_len += tcp_hdrlen(skb);
2674 else
2675 hdr_len += sizeof(struct udphdr);
2676
2677 if (shinfo->gso_type & SKB_GSO_DODGY)
2678 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2679 shinfo->gso_size);
2680
2681 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2682 }
2683 }
2684
2685 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2686 struct net_device *dev,
2687 struct netdev_queue *txq)
2688 {
2689 spinlock_t *root_lock = qdisc_lock(q);
2690 bool contended;
2691 int rc;
2692
2693 qdisc_pkt_len_init(skb);
2694 qdisc_calculate_pkt_len(skb, q);
2695 /*
2696 * Heuristic to force contended enqueues to serialize on a
2697 * separate lock before trying to get qdisc main lock.
2698 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2699 * and dequeue packets faster.
2700 */
2701 contended = qdisc_is_running(q);
2702 if (unlikely(contended))
2703 spin_lock(&q->busylock);
2704
2705 spin_lock(root_lock);
2706 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2707 kfree_skb(skb);
2708 rc = NET_XMIT_DROP;
2709 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2710 qdisc_run_begin(q)) {
2711 /*
2712 * This is a work-conserving queue; there are no old skbs
2713 * waiting to be sent out; and the qdisc is not running -
2714 * xmit the skb directly.
2715 */
2716 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2717 skb_dst_force(skb);
2718
2719 qdisc_bstats_update(q, skb);
2720
2721 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2722 if (unlikely(contended)) {
2723 spin_unlock(&q->busylock);
2724 contended = false;
2725 }
2726 __qdisc_run(q);
2727 } else
2728 qdisc_run_end(q);
2729
2730 rc = NET_XMIT_SUCCESS;
2731 } else {
2732 skb_dst_force(skb);
2733 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2734 if (qdisc_run_begin(q)) {
2735 if (unlikely(contended)) {
2736 spin_unlock(&q->busylock);
2737 contended = false;
2738 }
2739 __qdisc_run(q);
2740 }
2741 }
2742 spin_unlock(root_lock);
2743 if (unlikely(contended))
2744 spin_unlock(&q->busylock);
2745 return rc;
2746 }
2747
2748 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2749 static void skb_update_prio(struct sk_buff *skb)
2750 {
2751 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2752
2753 if (!skb->priority && skb->sk && map) {
2754 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2755
2756 if (prioidx < map->priomap_len)
2757 skb->priority = map->priomap[prioidx];
2758 }
2759 }
2760 #else
2761 #define skb_update_prio(skb)
2762 #endif
2763
2764 static DEFINE_PER_CPU(int, xmit_recursion);
2765 #define RECURSION_LIMIT 10
2766
2767 /**
2768 * dev_loopback_xmit - loop back @skb
2769 * @skb: buffer to transmit
2770 */
2771 int dev_loopback_xmit(struct sk_buff *skb)
2772 {
2773 skb_reset_mac_header(skb);
2774 __skb_pull(skb, skb_network_offset(skb));
2775 skb->pkt_type = PACKET_LOOPBACK;
2776 skb->ip_summed = CHECKSUM_UNNECESSARY;
2777 WARN_ON(!skb_dst(skb));
2778 skb_dst_force(skb);
2779 netif_rx_ni(skb);
2780 return 0;
2781 }
2782 EXPORT_SYMBOL(dev_loopback_xmit);
2783
2784 /**
2785 * dev_queue_xmit - transmit a buffer
2786 * @skb: buffer to transmit
2787 *
2788 * Queue a buffer for transmission to a network device. The caller must
2789 * have set the device and priority and built the buffer before calling
2790 * this function. The function can be called from an interrupt.
2791 *
2792 * A negative errno code is returned on a failure. A success does not
2793 * guarantee the frame will be transmitted as it may be dropped due
2794 * to congestion or traffic shaping.
2795 *
2796 * -----------------------------------------------------------------------------------
2797 * I notice this method can also return errors from the queue disciplines,
2798 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2799 * be positive.
2800 *
2801 * Regardless of the return value, the skb is consumed, so it is currently
2802 * difficult to retry a send to this method. (You can bump the ref count
2803 * before sending to hold a reference for retry if you are careful.)
2804 *
2805 * When calling this method, interrupts MUST be enabled. This is because
2806 * the BH enable code must have IRQs enabled so that it will not deadlock.
2807 * --BLG
2808 */
2809 int dev_queue_xmit(struct sk_buff *skb)
2810 {
2811 struct net_device *dev = skb->dev;
2812 struct netdev_queue *txq;
2813 struct Qdisc *q;
2814 int rc = -ENOMEM;
2815
2816 skb_reset_mac_header(skb);
2817
2818 /* Disable soft irqs for various locks below. Also
2819 * stops preemption for RCU.
2820 */
2821 rcu_read_lock_bh();
2822
2823 skb_update_prio(skb);
2824
2825 txq = netdev_pick_tx(dev, skb);
2826 q = rcu_dereference_bh(txq->qdisc);
2827
2828 #ifdef CONFIG_NET_CLS_ACT
2829 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2830 #endif
2831 trace_net_dev_queue(skb);
2832 if (q->enqueue) {
2833 rc = __dev_xmit_skb(skb, q, dev, txq);
2834 goto out;
2835 }
2836
2837 /* The device has no queue. Common case for software devices:
2838 loopback, all the sorts of tunnels...
2839
2840 Really, it is unlikely that netif_tx_lock protection is necessary
2841 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2842 counters.)
2843 However, it is possible, that they rely on protection
2844 made by us here.
2845
2846 Check this and shot the lock. It is not prone from deadlocks.
2847 Either shot noqueue qdisc, it is even simpler 8)
2848 */
2849 if (dev->flags & IFF_UP) {
2850 int cpu = smp_processor_id(); /* ok because BHs are off */
2851
2852 if (txq->xmit_lock_owner != cpu) {
2853
2854 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2855 goto recursion_alert;
2856
2857 HARD_TX_LOCK(dev, txq, cpu);
2858
2859 if (!netif_xmit_stopped(txq)) {
2860 __this_cpu_inc(xmit_recursion);
2861 rc = dev_hard_start_xmit(skb, dev, txq, NULL);
2862 __this_cpu_dec(xmit_recursion);
2863 if (dev_xmit_complete(rc)) {
2864 HARD_TX_UNLOCK(dev, txq);
2865 goto out;
2866 }
2867 }
2868 HARD_TX_UNLOCK(dev, txq);
2869 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2870 dev->name);
2871 } else {
2872 /* Recursion is detected! It is possible,
2873 * unfortunately
2874 */
2875 recursion_alert:
2876 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2877 dev->name);
2878 }
2879 }
2880
2881 rc = -ENETDOWN;
2882 rcu_read_unlock_bh();
2883
2884 kfree_skb(skb);
2885 return rc;
2886 out:
2887 rcu_read_unlock_bh();
2888 return rc;
2889 }
2890 EXPORT_SYMBOL(dev_queue_xmit);
2891
2892
2893 /*=======================================================================
2894 Receiver routines
2895 =======================================================================*/
2896
2897 int netdev_max_backlog __read_mostly = 1000;
2898 EXPORT_SYMBOL(netdev_max_backlog);
2899
2900 int netdev_tstamp_prequeue __read_mostly = 1;
2901 int netdev_budget __read_mostly = 300;
2902 int weight_p __read_mostly = 64; /* old backlog weight */
2903
2904 /* Called with irq disabled */
2905 static inline void ____napi_schedule(struct softnet_data *sd,
2906 struct napi_struct *napi)
2907 {
2908 list_add_tail(&napi->poll_list, &sd->poll_list);
2909 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2910 }
2911
2912 #ifdef CONFIG_RPS
2913
2914 /* One global table that all flow-based protocols share. */
2915 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2916 EXPORT_SYMBOL(rps_sock_flow_table);
2917
2918 struct static_key rps_needed __read_mostly;
2919
2920 static struct rps_dev_flow *
2921 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2922 struct rps_dev_flow *rflow, u16 next_cpu)
2923 {
2924 if (next_cpu != RPS_NO_CPU) {
2925 #ifdef CONFIG_RFS_ACCEL
2926 struct netdev_rx_queue *rxqueue;
2927 struct rps_dev_flow_table *flow_table;
2928 struct rps_dev_flow *old_rflow;
2929 u32 flow_id;
2930 u16 rxq_index;
2931 int rc;
2932
2933 /* Should we steer this flow to a different hardware queue? */
2934 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2935 !(dev->features & NETIF_F_NTUPLE))
2936 goto out;
2937 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2938 if (rxq_index == skb_get_rx_queue(skb))
2939 goto out;
2940
2941 rxqueue = dev->_rx + rxq_index;
2942 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2943 if (!flow_table)
2944 goto out;
2945 flow_id = skb->rxhash & flow_table->mask;
2946 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2947 rxq_index, flow_id);
2948 if (rc < 0)
2949 goto out;
2950 old_rflow = rflow;
2951 rflow = &flow_table->flows[flow_id];
2952 rflow->filter = rc;
2953 if (old_rflow->filter == rflow->filter)
2954 old_rflow->filter = RPS_NO_FILTER;
2955 out:
2956 #endif
2957 rflow->last_qtail =
2958 per_cpu(softnet_data, next_cpu).input_queue_head;
2959 }
2960
2961 rflow->cpu = next_cpu;
2962 return rflow;
2963 }
2964
2965 /*
2966 * get_rps_cpu is called from netif_receive_skb and returns the target
2967 * CPU from the RPS map of the receiving queue for a given skb.
2968 * rcu_read_lock must be held on entry.
2969 */
2970 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2971 struct rps_dev_flow **rflowp)
2972 {
2973 struct netdev_rx_queue *rxqueue;
2974 struct rps_map *map;
2975 struct rps_dev_flow_table *flow_table;
2976 struct rps_sock_flow_table *sock_flow_table;
2977 int cpu = -1;
2978 u16 tcpu;
2979
2980 if (skb_rx_queue_recorded(skb)) {
2981 u16 index = skb_get_rx_queue(skb);
2982 if (unlikely(index >= dev->real_num_rx_queues)) {
2983 WARN_ONCE(dev->real_num_rx_queues > 1,
2984 "%s received packet on queue %u, but number "
2985 "of RX queues is %u\n",
2986 dev->name, index, dev->real_num_rx_queues);
2987 goto done;
2988 }
2989 rxqueue = dev->_rx + index;
2990 } else
2991 rxqueue = dev->_rx;
2992
2993 map = rcu_dereference(rxqueue->rps_map);
2994 if (map) {
2995 if (map->len == 1 &&
2996 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2997 tcpu = map->cpus[0];
2998 if (cpu_online(tcpu))
2999 cpu = tcpu;
3000 goto done;
3001 }
3002 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3003 goto done;
3004 }
3005
3006 skb_reset_network_header(skb);
3007 if (!skb_get_rxhash(skb))
3008 goto done;
3009
3010 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3011 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3012 if (flow_table && sock_flow_table) {
3013 u16 next_cpu;
3014 struct rps_dev_flow *rflow;
3015
3016 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
3017 tcpu = rflow->cpu;
3018
3019 next_cpu = sock_flow_table->ents[skb->rxhash &
3020 sock_flow_table->mask];
3021
3022 /*
3023 * If the desired CPU (where last recvmsg was done) is
3024 * different from current CPU (one in the rx-queue flow
3025 * table entry), switch if one of the following holds:
3026 * - Current CPU is unset (equal to RPS_NO_CPU).
3027 * - Current CPU is offline.
3028 * - The current CPU's queue tail has advanced beyond the
3029 * last packet that was enqueued using this table entry.
3030 * This guarantees that all previous packets for the flow
3031 * have been dequeued, thus preserving in order delivery.
3032 */
3033 if (unlikely(tcpu != next_cpu) &&
3034 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3035 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3036 rflow->last_qtail)) >= 0)) {
3037 tcpu = next_cpu;
3038 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3039 }
3040
3041 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3042 *rflowp = rflow;
3043 cpu = tcpu;
3044 goto done;
3045 }
3046 }
3047
3048 if (map) {
3049 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
3050
3051 if (cpu_online(tcpu)) {
3052 cpu = tcpu;
3053 goto done;
3054 }
3055 }
3056
3057 done:
3058 return cpu;
3059 }
3060
3061 #ifdef CONFIG_RFS_ACCEL
3062
3063 /**
3064 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3065 * @dev: Device on which the filter was set
3066 * @rxq_index: RX queue index
3067 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3068 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3069 *
3070 * Drivers that implement ndo_rx_flow_steer() should periodically call
3071 * this function for each installed filter and remove the filters for
3072 * which it returns %true.
3073 */
3074 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3075 u32 flow_id, u16 filter_id)
3076 {
3077 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3078 struct rps_dev_flow_table *flow_table;
3079 struct rps_dev_flow *rflow;
3080 bool expire = true;
3081 int cpu;
3082
3083 rcu_read_lock();
3084 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3085 if (flow_table && flow_id <= flow_table->mask) {
3086 rflow = &flow_table->flows[flow_id];
3087 cpu = ACCESS_ONCE(rflow->cpu);
3088 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3089 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3090 rflow->last_qtail) <
3091 (int)(10 * flow_table->mask)))
3092 expire = false;
3093 }
3094 rcu_read_unlock();
3095 return expire;
3096 }
3097 EXPORT_SYMBOL(rps_may_expire_flow);
3098
3099 #endif /* CONFIG_RFS_ACCEL */
3100
3101 /* Called from hardirq (IPI) context */
3102 static void rps_trigger_softirq(void *data)
3103 {
3104 struct softnet_data *sd = data;
3105
3106 ____napi_schedule(sd, &sd->backlog);
3107 sd->received_rps++;
3108 }
3109
3110 #endif /* CONFIG_RPS */
3111
3112 /*
3113 * Check if this softnet_data structure is another cpu one
3114 * If yes, queue it to our IPI list and return 1
3115 * If no, return 0
3116 */
3117 static int rps_ipi_queued(struct softnet_data *sd)
3118 {
3119 #ifdef CONFIG_RPS
3120 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3121
3122 if (sd != mysd) {
3123 sd->rps_ipi_next = mysd->rps_ipi_list;
3124 mysd->rps_ipi_list = sd;
3125
3126 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3127 return 1;
3128 }
3129 #endif /* CONFIG_RPS */
3130 return 0;
3131 }
3132
3133 #ifdef CONFIG_NET_FLOW_LIMIT
3134 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3135 #endif
3136
3137 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3138 {
3139 #ifdef CONFIG_NET_FLOW_LIMIT
3140 struct sd_flow_limit *fl;
3141 struct softnet_data *sd;
3142 unsigned int old_flow, new_flow;
3143
3144 if (qlen < (netdev_max_backlog >> 1))
3145 return false;
3146
3147 sd = &__get_cpu_var(softnet_data);
3148
3149 rcu_read_lock();
3150 fl = rcu_dereference(sd->flow_limit);
3151 if (fl) {
3152 new_flow = skb_get_rxhash(skb) & (fl->num_buckets - 1);
3153 old_flow = fl->history[fl->history_head];
3154 fl->history[fl->history_head] = new_flow;
3155
3156 fl->history_head++;
3157 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3158
3159 if (likely(fl->buckets[old_flow]))
3160 fl->buckets[old_flow]--;
3161
3162 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3163 fl->count++;
3164 rcu_read_unlock();
3165 return true;
3166 }
3167 }
3168 rcu_read_unlock();
3169 #endif
3170 return false;
3171 }
3172
3173 /*
3174 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3175 * queue (may be a remote CPU queue).
3176 */
3177 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3178 unsigned int *qtail)
3179 {
3180 struct softnet_data *sd;
3181 unsigned long flags;
3182 unsigned int qlen;
3183
3184 sd = &per_cpu(softnet_data, cpu);
3185
3186 local_irq_save(flags);
3187
3188 rps_lock(sd);
3189 qlen = skb_queue_len(&sd->input_pkt_queue);
3190 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3191 if (skb_queue_len(&sd->input_pkt_queue)) {
3192 enqueue:
3193 __skb_queue_tail(&sd->input_pkt_queue, skb);
3194 input_queue_tail_incr_save(sd, qtail);
3195 rps_unlock(sd);
3196 local_irq_restore(flags);
3197 return NET_RX_SUCCESS;
3198 }
3199
3200 /* Schedule NAPI for backlog device
3201 * We can use non atomic operation since we own the queue lock
3202 */
3203 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3204 if (!rps_ipi_queued(sd))
3205 ____napi_schedule(sd, &sd->backlog);
3206 }
3207 goto enqueue;
3208 }
3209
3210 sd->dropped++;
3211 rps_unlock(sd);
3212
3213 local_irq_restore(flags);
3214
3215 atomic_long_inc(&skb->dev->rx_dropped);
3216 kfree_skb(skb);
3217 return NET_RX_DROP;
3218 }
3219
3220 /**
3221 * netif_rx - post buffer to the network code
3222 * @skb: buffer to post
3223 *
3224 * This function receives a packet from a device driver and queues it for
3225 * the upper (protocol) levels to process. It always succeeds. The buffer
3226 * may be dropped during processing for congestion control or by the
3227 * protocol layers.
3228 *
3229 * return values:
3230 * NET_RX_SUCCESS (no congestion)
3231 * NET_RX_DROP (packet was dropped)
3232 *
3233 */
3234
3235 int netif_rx(struct sk_buff *skb)
3236 {
3237 int ret;
3238
3239 /* if netpoll wants it, pretend we never saw it */
3240 if (netpoll_rx(skb))
3241 return NET_RX_DROP;
3242
3243 net_timestamp_check(netdev_tstamp_prequeue, skb);
3244
3245 trace_netif_rx(skb);
3246 #ifdef CONFIG_RPS
3247 if (static_key_false(&rps_needed)) {
3248 struct rps_dev_flow voidflow, *rflow = &voidflow;
3249 int cpu;
3250
3251 preempt_disable();
3252 rcu_read_lock();
3253
3254 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3255 if (cpu < 0)
3256 cpu = smp_processor_id();
3257
3258 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3259
3260 rcu_read_unlock();
3261 preempt_enable();
3262 } else
3263 #endif
3264 {
3265 unsigned int qtail;
3266 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3267 put_cpu();
3268 }
3269 return ret;
3270 }
3271 EXPORT_SYMBOL(netif_rx);
3272
3273 int netif_rx_ni(struct sk_buff *skb)
3274 {
3275 int err;
3276
3277 preempt_disable();
3278 err = netif_rx(skb);
3279 if (local_softirq_pending())
3280 do_softirq();
3281 preempt_enable();
3282
3283 return err;
3284 }
3285 EXPORT_SYMBOL(netif_rx_ni);
3286
3287 static void net_tx_action(struct softirq_action *h)
3288 {
3289 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3290
3291 if (sd->completion_queue) {
3292 struct sk_buff *clist;
3293
3294 local_irq_disable();
3295 clist = sd->completion_queue;
3296 sd->completion_queue = NULL;
3297 local_irq_enable();
3298
3299 while (clist) {
3300 struct sk_buff *skb = clist;
3301 clist = clist->next;
3302
3303 WARN_ON(atomic_read(&skb->users));
3304 trace_kfree_skb(skb, net_tx_action);
3305 __kfree_skb(skb);
3306 }
3307 }
3308
3309 if (sd->output_queue) {
3310 struct Qdisc *head;
3311
3312 local_irq_disable();
3313 head = sd->output_queue;
3314 sd->output_queue = NULL;
3315 sd->output_queue_tailp = &sd->output_queue;
3316 local_irq_enable();
3317
3318 while (head) {
3319 struct Qdisc *q = head;
3320 spinlock_t *root_lock;
3321
3322 head = head->next_sched;
3323
3324 root_lock = qdisc_lock(q);
3325 if (spin_trylock(root_lock)) {
3326 smp_mb__before_clear_bit();
3327 clear_bit(__QDISC_STATE_SCHED,
3328 &q->state);
3329 qdisc_run(q);
3330 spin_unlock(root_lock);
3331 } else {
3332 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3333 &q->state)) {
3334 __netif_reschedule(q);
3335 } else {
3336 smp_mb__before_clear_bit();
3337 clear_bit(__QDISC_STATE_SCHED,
3338 &q->state);
3339 }
3340 }
3341 }
3342 }
3343 }
3344
3345 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3346 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3347 /* This hook is defined here for ATM LANE */
3348 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3349 unsigned char *addr) __read_mostly;
3350 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3351 #endif
3352
3353 #ifdef CONFIG_NET_CLS_ACT
3354 /* TODO: Maybe we should just force sch_ingress to be compiled in
3355 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3356 * a compare and 2 stores extra right now if we dont have it on
3357 * but have CONFIG_NET_CLS_ACT
3358 * NOTE: This doesn't stop any functionality; if you dont have
3359 * the ingress scheduler, you just can't add policies on ingress.
3360 *
3361 */
3362 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3363 {
3364 struct net_device *dev = skb->dev;
3365 u32 ttl = G_TC_RTTL(skb->tc_verd);
3366 int result = TC_ACT_OK;
3367 struct Qdisc *q;
3368
3369 if (unlikely(MAX_RED_LOOP < ttl++)) {
3370 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3371 skb->skb_iif, dev->ifindex);
3372 return TC_ACT_SHOT;
3373 }
3374
3375 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3376 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3377
3378 q = rxq->qdisc;
3379 if (q != &noop_qdisc) {
3380 spin_lock(qdisc_lock(q));
3381 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3382 result = qdisc_enqueue_root(skb, q);
3383 spin_unlock(qdisc_lock(q));
3384 }
3385
3386 return result;
3387 }
3388
3389 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3390 struct packet_type **pt_prev,
3391 int *ret, struct net_device *orig_dev)
3392 {
3393 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3394
3395 if (!rxq || rxq->qdisc == &noop_qdisc)
3396 goto out;
3397
3398 if (*pt_prev) {
3399 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3400 *pt_prev = NULL;
3401 }
3402
3403 switch (ing_filter(skb, rxq)) {
3404 case TC_ACT_SHOT:
3405 case TC_ACT_STOLEN:
3406 kfree_skb(skb);
3407 return NULL;
3408 }
3409
3410 out:
3411 skb->tc_verd = 0;
3412 return skb;
3413 }
3414 #endif
3415
3416 /**
3417 * netdev_rx_handler_register - register receive handler
3418 * @dev: device to register a handler for
3419 * @rx_handler: receive handler to register
3420 * @rx_handler_data: data pointer that is used by rx handler
3421 *
3422 * Register a receive hander for a device. This handler will then be
3423 * called from __netif_receive_skb. A negative errno code is returned
3424 * on a failure.
3425 *
3426 * The caller must hold the rtnl_mutex.
3427 *
3428 * For a general description of rx_handler, see enum rx_handler_result.
3429 */
3430 int netdev_rx_handler_register(struct net_device *dev,
3431 rx_handler_func_t *rx_handler,
3432 void *rx_handler_data)
3433 {
3434 ASSERT_RTNL();
3435
3436 if (dev->rx_handler)
3437 return -EBUSY;
3438
3439 /* Note: rx_handler_data must be set before rx_handler */
3440 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3441 rcu_assign_pointer(dev->rx_handler, rx_handler);
3442
3443 return 0;
3444 }
3445 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3446
3447 /**
3448 * netdev_rx_handler_unregister - unregister receive handler
3449 * @dev: device to unregister a handler from
3450 *
3451 * Unregister a receive handler from a device.
3452 *
3453 * The caller must hold the rtnl_mutex.
3454 */
3455 void netdev_rx_handler_unregister(struct net_device *dev)
3456 {
3457
3458 ASSERT_RTNL();
3459 RCU_INIT_POINTER(dev->rx_handler, NULL);
3460 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3461 * section has a guarantee to see a non NULL rx_handler_data
3462 * as well.
3463 */
3464 synchronize_net();
3465 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3466 }
3467 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3468
3469 /*
3470 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3471 * the special handling of PFMEMALLOC skbs.
3472 */
3473 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3474 {
3475 switch (skb->protocol) {
3476 case __constant_htons(ETH_P_ARP):
3477 case __constant_htons(ETH_P_IP):
3478 case __constant_htons(ETH_P_IPV6):
3479 case __constant_htons(ETH_P_8021Q):
3480 case __constant_htons(ETH_P_8021AD):
3481 return true;
3482 default:
3483 return false;
3484 }
3485 }
3486
3487 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3488 {
3489 struct packet_type *ptype, *pt_prev;
3490 rx_handler_func_t *rx_handler;
3491 struct net_device *orig_dev;
3492 struct net_device *null_or_dev;
3493 bool deliver_exact = false;
3494 int ret = NET_RX_DROP;
3495 __be16 type;
3496
3497 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3498
3499 trace_netif_receive_skb(skb);
3500
3501 /* if we've gotten here through NAPI, check netpoll */
3502 if (netpoll_receive_skb(skb))
3503 goto out;
3504
3505 orig_dev = skb->dev;
3506
3507 skb_reset_network_header(skb);
3508 if (!skb_transport_header_was_set(skb))
3509 skb_reset_transport_header(skb);
3510 skb_reset_mac_len(skb);
3511
3512 pt_prev = NULL;
3513
3514 rcu_read_lock();
3515
3516 another_round:
3517 skb->skb_iif = skb->dev->ifindex;
3518
3519 __this_cpu_inc(softnet_data.processed);
3520
3521 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3522 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3523 skb = vlan_untag(skb);
3524 if (unlikely(!skb))
3525 goto unlock;
3526 }
3527
3528 #ifdef CONFIG_NET_CLS_ACT
3529 if (skb->tc_verd & TC_NCLS) {
3530 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3531 goto ncls;
3532 }
3533 #endif
3534
3535 if (pfmemalloc)
3536 goto skip_taps;
3537
3538 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3539 if (!ptype->dev || ptype->dev == skb->dev) {
3540 if (pt_prev)
3541 ret = deliver_skb(skb, pt_prev, orig_dev);
3542 pt_prev = ptype;
3543 }
3544 }
3545
3546 skip_taps:
3547 #ifdef CONFIG_NET_CLS_ACT
3548 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3549 if (!skb)
3550 goto unlock;
3551 ncls:
3552 #endif
3553
3554 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3555 goto drop;
3556
3557 if (vlan_tx_tag_present(skb)) {
3558 if (pt_prev) {
3559 ret = deliver_skb(skb, pt_prev, orig_dev);
3560 pt_prev = NULL;
3561 }
3562 if (vlan_do_receive(&skb))
3563 goto another_round;
3564 else if (unlikely(!skb))
3565 goto unlock;
3566 }
3567
3568 rx_handler = rcu_dereference(skb->dev->rx_handler);
3569 if (rx_handler) {
3570 if (pt_prev) {
3571 ret = deliver_skb(skb, pt_prev, orig_dev);
3572 pt_prev = NULL;
3573 }
3574 switch (rx_handler(&skb)) {
3575 case RX_HANDLER_CONSUMED:
3576 ret = NET_RX_SUCCESS;
3577 goto unlock;
3578 case RX_HANDLER_ANOTHER:
3579 goto another_round;
3580 case RX_HANDLER_EXACT:
3581 deliver_exact = true;
3582 case RX_HANDLER_PASS:
3583 break;
3584 default:
3585 BUG();
3586 }
3587 }
3588
3589 if (unlikely(vlan_tx_tag_present(skb))) {
3590 if (vlan_tx_tag_get_id(skb))
3591 skb->pkt_type = PACKET_OTHERHOST;
3592 /* Note: we might in the future use prio bits
3593 * and set skb->priority like in vlan_do_receive()
3594 * For the time being, just ignore Priority Code Point
3595 */
3596 skb->vlan_tci = 0;
3597 }
3598
3599 /* deliver only exact match when indicated */
3600 null_or_dev = deliver_exact ? skb->dev : NULL;
3601
3602 type = skb->protocol;
3603 list_for_each_entry_rcu(ptype,
3604 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3605 if (ptype->type == type &&
3606 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3607 ptype->dev == orig_dev)) {
3608 if (pt_prev)
3609 ret = deliver_skb(skb, pt_prev, orig_dev);
3610 pt_prev = ptype;
3611 }
3612 }
3613
3614 if (pt_prev) {
3615 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3616 goto drop;
3617 else
3618 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3619 } else {
3620 drop:
3621 atomic_long_inc(&skb->dev->rx_dropped);
3622 kfree_skb(skb);
3623 /* Jamal, now you will not able to escape explaining
3624 * me how you were going to use this. :-)
3625 */
3626 ret = NET_RX_DROP;
3627 }
3628
3629 unlock:
3630 rcu_read_unlock();
3631 out:
3632 return ret;
3633 }
3634
3635 static int __netif_receive_skb(struct sk_buff *skb)
3636 {
3637 int ret;
3638
3639 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3640 unsigned long pflags = current->flags;
3641
3642 /*
3643 * PFMEMALLOC skbs are special, they should
3644 * - be delivered to SOCK_MEMALLOC sockets only
3645 * - stay away from userspace
3646 * - have bounded memory usage
3647 *
3648 * Use PF_MEMALLOC as this saves us from propagating the allocation
3649 * context down to all allocation sites.
3650 */
3651 current->flags |= PF_MEMALLOC;
3652 ret = __netif_receive_skb_core(skb, true);
3653 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3654 } else
3655 ret = __netif_receive_skb_core(skb, false);
3656
3657 return ret;
3658 }
3659
3660 /**
3661 * netif_receive_skb - process receive buffer from network
3662 * @skb: buffer to process
3663 *
3664 * netif_receive_skb() is the main receive data processing function.
3665 * It always succeeds. The buffer may be dropped during processing
3666 * for congestion control or by the protocol layers.
3667 *
3668 * This function may only be called from softirq context and interrupts
3669 * should be enabled.
3670 *
3671 * Return values (usually ignored):
3672 * NET_RX_SUCCESS: no congestion
3673 * NET_RX_DROP: packet was dropped
3674 */
3675 int netif_receive_skb(struct sk_buff *skb)
3676 {
3677 net_timestamp_check(netdev_tstamp_prequeue, skb);
3678
3679 if (skb_defer_rx_timestamp(skb))
3680 return NET_RX_SUCCESS;
3681
3682 #ifdef CONFIG_RPS
3683 if (static_key_false(&rps_needed)) {
3684 struct rps_dev_flow voidflow, *rflow = &voidflow;
3685 int cpu, ret;
3686
3687 rcu_read_lock();
3688
3689 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3690
3691 if (cpu >= 0) {
3692 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3693 rcu_read_unlock();
3694 return ret;
3695 }
3696 rcu_read_unlock();
3697 }
3698 #endif
3699 return __netif_receive_skb(skb);
3700 }
3701 EXPORT_SYMBOL(netif_receive_skb);
3702
3703 /* Network device is going away, flush any packets still pending
3704 * Called with irqs disabled.
3705 */
3706 static void flush_backlog(void *arg)
3707 {
3708 struct net_device *dev = arg;
3709 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3710 struct sk_buff *skb, *tmp;
3711
3712 rps_lock(sd);
3713 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3714 if (skb->dev == dev) {
3715 __skb_unlink(skb, &sd->input_pkt_queue);
3716 kfree_skb(skb);
3717 input_queue_head_incr(sd);
3718 }
3719 }
3720 rps_unlock(sd);
3721
3722 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3723 if (skb->dev == dev) {
3724 __skb_unlink(skb, &sd->process_queue);
3725 kfree_skb(skb);
3726 input_queue_head_incr(sd);
3727 }
3728 }
3729 }
3730
3731 static int napi_gro_complete(struct sk_buff *skb)
3732 {
3733 struct packet_offload *ptype;
3734 __be16 type = skb->protocol;
3735 struct list_head *head = &offload_base;
3736 int err = -ENOENT;
3737
3738 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3739
3740 if (NAPI_GRO_CB(skb)->count == 1) {
3741 skb_shinfo(skb)->gso_size = 0;
3742 goto out;
3743 }
3744
3745 rcu_read_lock();
3746 list_for_each_entry_rcu(ptype, head, list) {
3747 if (ptype->type != type || !ptype->callbacks.gro_complete)
3748 continue;
3749
3750 err = ptype->callbacks.gro_complete(skb);
3751 break;
3752 }
3753 rcu_read_unlock();
3754
3755 if (err) {
3756 WARN_ON(&ptype->list == head);
3757 kfree_skb(skb);
3758 return NET_RX_SUCCESS;
3759 }
3760
3761 out:
3762 return netif_receive_skb(skb);
3763 }
3764
3765 /* napi->gro_list contains packets ordered by age.
3766 * youngest packets at the head of it.
3767 * Complete skbs in reverse order to reduce latencies.
3768 */
3769 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3770 {
3771 struct sk_buff *skb, *prev = NULL;
3772
3773 /* scan list and build reverse chain */
3774 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3775 skb->prev = prev;
3776 prev = skb;
3777 }
3778
3779 for (skb = prev; skb; skb = prev) {
3780 skb->next = NULL;
3781
3782 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3783 return;
3784
3785 prev = skb->prev;
3786 napi_gro_complete(skb);
3787 napi->gro_count--;
3788 }
3789
3790 napi->gro_list = NULL;
3791 }
3792 EXPORT_SYMBOL(napi_gro_flush);
3793
3794 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3795 {
3796 struct sk_buff *p;
3797 unsigned int maclen = skb->dev->hard_header_len;
3798
3799 for (p = napi->gro_list; p; p = p->next) {
3800 unsigned long diffs;
3801
3802 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3803 diffs |= p->vlan_tci ^ skb->vlan_tci;
3804 if (maclen == ETH_HLEN)
3805 diffs |= compare_ether_header(skb_mac_header(p),
3806 skb_gro_mac_header(skb));
3807 else if (!diffs)
3808 diffs = memcmp(skb_mac_header(p),
3809 skb_gro_mac_header(skb),
3810 maclen);
3811 NAPI_GRO_CB(p)->same_flow = !diffs;
3812 NAPI_GRO_CB(p)->flush = 0;
3813 }
3814 }
3815
3816 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3817 {
3818 struct sk_buff **pp = NULL;
3819 struct packet_offload *ptype;
3820 __be16 type = skb->protocol;
3821 struct list_head *head = &offload_base;
3822 int same_flow;
3823 enum gro_result ret;
3824
3825 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3826 goto normal;
3827
3828 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3829 goto normal;
3830
3831 gro_list_prepare(napi, skb);
3832
3833 rcu_read_lock();
3834 list_for_each_entry_rcu(ptype, head, list) {
3835 if (ptype->type != type || !ptype->callbacks.gro_receive)
3836 continue;
3837
3838 skb_set_network_header(skb, skb_gro_offset(skb));
3839 skb_reset_mac_len(skb);
3840 NAPI_GRO_CB(skb)->same_flow = 0;
3841 NAPI_GRO_CB(skb)->flush = 0;
3842 NAPI_GRO_CB(skb)->free = 0;
3843
3844 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3845 break;
3846 }
3847 rcu_read_unlock();
3848
3849 if (&ptype->list == head)
3850 goto normal;
3851
3852 same_flow = NAPI_GRO_CB(skb)->same_flow;
3853 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3854
3855 if (pp) {
3856 struct sk_buff *nskb = *pp;
3857
3858 *pp = nskb->next;
3859 nskb->next = NULL;
3860 napi_gro_complete(nskb);
3861 napi->gro_count--;
3862 }
3863
3864 if (same_flow)
3865 goto ok;
3866
3867 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3868 goto normal;
3869
3870 napi->gro_count++;
3871 NAPI_GRO_CB(skb)->count = 1;
3872 NAPI_GRO_CB(skb)->age = jiffies;
3873 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3874 skb->next = napi->gro_list;
3875 napi->gro_list = skb;
3876 ret = GRO_HELD;
3877
3878 pull:
3879 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3880 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3881
3882 BUG_ON(skb->end - skb->tail < grow);
3883
3884 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3885
3886 skb->tail += grow;
3887 skb->data_len -= grow;
3888
3889 skb_shinfo(skb)->frags[0].page_offset += grow;
3890 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3891
3892 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3893 skb_frag_unref(skb, 0);
3894 memmove(skb_shinfo(skb)->frags,
3895 skb_shinfo(skb)->frags + 1,
3896 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3897 }
3898 }
3899
3900 ok:
3901 return ret;
3902
3903 normal:
3904 ret = GRO_NORMAL;
3905 goto pull;
3906 }
3907
3908
3909 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3910 {
3911 switch (ret) {
3912 case GRO_NORMAL:
3913 if (netif_receive_skb(skb))
3914 ret = GRO_DROP;
3915 break;
3916
3917 case GRO_DROP:
3918 kfree_skb(skb);
3919 break;
3920
3921 case GRO_MERGED_FREE:
3922 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3923 kmem_cache_free(skbuff_head_cache, skb);
3924 else
3925 __kfree_skb(skb);
3926 break;
3927
3928 case GRO_HELD:
3929 case GRO_MERGED:
3930 break;
3931 }
3932
3933 return ret;
3934 }
3935
3936 static void skb_gro_reset_offset(struct sk_buff *skb)
3937 {
3938 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3939 const skb_frag_t *frag0 = &pinfo->frags[0];
3940
3941 NAPI_GRO_CB(skb)->data_offset = 0;
3942 NAPI_GRO_CB(skb)->frag0 = NULL;
3943 NAPI_GRO_CB(skb)->frag0_len = 0;
3944
3945 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3946 pinfo->nr_frags &&
3947 !PageHighMem(skb_frag_page(frag0))) {
3948 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3949 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3950 }
3951 }
3952
3953 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3954 {
3955 skb_gro_reset_offset(skb);
3956
3957 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3958 }
3959 EXPORT_SYMBOL(napi_gro_receive);
3960
3961 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3962 {
3963 __skb_pull(skb, skb_headlen(skb));
3964 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3965 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3966 skb->vlan_tci = 0;
3967 skb->dev = napi->dev;
3968 skb->skb_iif = 0;
3969
3970 napi->skb = skb;
3971 }
3972
3973 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3974 {
3975 struct sk_buff *skb = napi->skb;
3976
3977 if (!skb) {
3978 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3979 if (skb)
3980 napi->skb = skb;
3981 }
3982 return skb;
3983 }
3984 EXPORT_SYMBOL(napi_get_frags);
3985
3986 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3987 gro_result_t ret)
3988 {
3989 switch (ret) {
3990 case GRO_NORMAL:
3991 case GRO_HELD:
3992 skb->protocol = eth_type_trans(skb, skb->dev);
3993
3994 if (ret == GRO_HELD)
3995 skb_gro_pull(skb, -ETH_HLEN);
3996 else if (netif_receive_skb(skb))
3997 ret = GRO_DROP;
3998 break;
3999
4000 case GRO_DROP:
4001 case GRO_MERGED_FREE:
4002 napi_reuse_skb(napi, skb);
4003 break;
4004
4005 case GRO_MERGED:
4006 break;
4007 }
4008
4009 return ret;
4010 }
4011
4012 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4013 {
4014 struct sk_buff *skb = napi->skb;
4015 struct ethhdr *eth;
4016 unsigned int hlen;
4017 unsigned int off;
4018
4019 napi->skb = NULL;
4020
4021 skb_reset_mac_header(skb);
4022 skb_gro_reset_offset(skb);
4023
4024 off = skb_gro_offset(skb);
4025 hlen = off + sizeof(*eth);
4026 eth = skb_gro_header_fast(skb, off);
4027 if (skb_gro_header_hard(skb, hlen)) {
4028 eth = skb_gro_header_slow(skb, hlen, off);
4029 if (unlikely(!eth)) {
4030 napi_reuse_skb(napi, skb);
4031 skb = NULL;
4032 goto out;
4033 }
4034 }
4035
4036 skb_gro_pull(skb, sizeof(*eth));
4037
4038 /*
4039 * This works because the only protocols we care about don't require
4040 * special handling. We'll fix it up properly at the end.
4041 */
4042 skb->protocol = eth->h_proto;
4043
4044 out:
4045 return skb;
4046 }
4047
4048 gro_result_t napi_gro_frags(struct napi_struct *napi)
4049 {
4050 struct sk_buff *skb = napi_frags_skb(napi);
4051
4052 if (!skb)
4053 return GRO_DROP;
4054
4055 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4056 }
4057 EXPORT_SYMBOL(napi_gro_frags);
4058
4059 /*
4060 * net_rps_action sends any pending IPI's for rps.
4061 * Note: called with local irq disabled, but exits with local irq enabled.
4062 */
4063 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4064 {
4065 #ifdef CONFIG_RPS
4066 struct softnet_data *remsd = sd->rps_ipi_list;
4067
4068 if (remsd) {
4069 sd->rps_ipi_list = NULL;
4070
4071 local_irq_enable();
4072
4073 /* Send pending IPI's to kick RPS processing on remote cpus. */
4074 while (remsd) {
4075 struct softnet_data *next = remsd->rps_ipi_next;
4076
4077 if (cpu_online(remsd->cpu))
4078 __smp_call_function_single(remsd->cpu,
4079 &remsd->csd, 0);
4080 remsd = next;
4081 }
4082 } else
4083 #endif
4084 local_irq_enable();
4085 }
4086
4087 static int process_backlog(struct napi_struct *napi, int quota)
4088 {
4089 int work = 0;
4090 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4091
4092 #ifdef CONFIG_RPS
4093 /* Check if we have pending ipi, its better to send them now,
4094 * not waiting net_rx_action() end.
4095 */
4096 if (sd->rps_ipi_list) {
4097 local_irq_disable();
4098 net_rps_action_and_irq_enable(sd);
4099 }
4100 #endif
4101 napi->weight = weight_p;
4102 local_irq_disable();
4103 while (work < quota) {
4104 struct sk_buff *skb;
4105 unsigned int qlen;
4106
4107 while ((skb = __skb_dequeue(&sd->process_queue))) {
4108 local_irq_enable();
4109 __netif_receive_skb(skb);
4110 local_irq_disable();
4111 input_queue_head_incr(sd);
4112 if (++work >= quota) {
4113 local_irq_enable();
4114 return work;
4115 }
4116 }
4117
4118 rps_lock(sd);
4119 qlen = skb_queue_len(&sd->input_pkt_queue);
4120 if (qlen)
4121 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4122 &sd->process_queue);
4123
4124 if (qlen < quota - work) {
4125 /*
4126 * Inline a custom version of __napi_complete().
4127 * only current cpu owns and manipulates this napi,
4128 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4129 * we can use a plain write instead of clear_bit(),
4130 * and we dont need an smp_mb() memory barrier.
4131 */
4132 list_del(&napi->poll_list);
4133 napi->state = 0;
4134
4135 quota = work + qlen;
4136 }
4137 rps_unlock(sd);
4138 }
4139 local_irq_enable();
4140
4141 return work;
4142 }
4143
4144 /**
4145 * __napi_schedule - schedule for receive
4146 * @n: entry to schedule
4147 *
4148 * The entry's receive function will be scheduled to run
4149 */
4150 void __napi_schedule(struct napi_struct *n)
4151 {
4152 unsigned long flags;
4153
4154 local_irq_save(flags);
4155 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4156 local_irq_restore(flags);
4157 }
4158 EXPORT_SYMBOL(__napi_schedule);
4159
4160 void __napi_complete(struct napi_struct *n)
4161 {
4162 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4163 BUG_ON(n->gro_list);
4164
4165 list_del(&n->poll_list);
4166 smp_mb__before_clear_bit();
4167 clear_bit(NAPI_STATE_SCHED, &n->state);
4168 }
4169 EXPORT_SYMBOL(__napi_complete);
4170
4171 void napi_complete(struct napi_struct *n)
4172 {
4173 unsigned long flags;
4174
4175 /*
4176 * don't let napi dequeue from the cpu poll list
4177 * just in case its running on a different cpu
4178 */
4179 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4180 return;
4181
4182 napi_gro_flush(n, false);
4183 local_irq_save(flags);
4184 __napi_complete(n);
4185 local_irq_restore(flags);
4186 }
4187 EXPORT_SYMBOL(napi_complete);
4188
4189 /* must be called under rcu_read_lock(), as we dont take a reference */
4190 struct napi_struct *napi_by_id(unsigned int napi_id)
4191 {
4192 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4193 struct napi_struct *napi;
4194
4195 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4196 if (napi->napi_id == napi_id)
4197 return napi;
4198
4199 return NULL;
4200 }
4201 EXPORT_SYMBOL_GPL(napi_by_id);
4202
4203 void napi_hash_add(struct napi_struct *napi)
4204 {
4205 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4206
4207 spin_lock(&napi_hash_lock);
4208
4209 /* 0 is not a valid id, we also skip an id that is taken
4210 * we expect both events to be extremely rare
4211 */
4212 napi->napi_id = 0;
4213 while (!napi->napi_id) {
4214 napi->napi_id = ++napi_gen_id;
4215 if (napi_by_id(napi->napi_id))
4216 napi->napi_id = 0;
4217 }
4218
4219 hlist_add_head_rcu(&napi->napi_hash_node,
4220 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4221
4222 spin_unlock(&napi_hash_lock);
4223 }
4224 }
4225 EXPORT_SYMBOL_GPL(napi_hash_add);
4226
4227 /* Warning : caller is responsible to make sure rcu grace period
4228 * is respected before freeing memory containing @napi
4229 */
4230 void napi_hash_del(struct napi_struct *napi)
4231 {
4232 spin_lock(&napi_hash_lock);
4233
4234 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4235 hlist_del_rcu(&napi->napi_hash_node);
4236
4237 spin_unlock(&napi_hash_lock);
4238 }
4239 EXPORT_SYMBOL_GPL(napi_hash_del);
4240
4241 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4242 int (*poll)(struct napi_struct *, int), int weight)
4243 {
4244 INIT_LIST_HEAD(&napi->poll_list);
4245 napi->gro_count = 0;
4246 napi->gro_list = NULL;
4247 napi->skb = NULL;
4248 napi->poll = poll;
4249 if (weight > NAPI_POLL_WEIGHT)
4250 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4251 weight, dev->name);
4252 napi->weight = weight;
4253 list_add(&napi->dev_list, &dev->napi_list);
4254 napi->dev = dev;
4255 #ifdef CONFIG_NETPOLL
4256 spin_lock_init(&napi->poll_lock);
4257 napi->poll_owner = -1;
4258 #endif
4259 set_bit(NAPI_STATE_SCHED, &napi->state);
4260 }
4261 EXPORT_SYMBOL(netif_napi_add);
4262
4263 void netif_napi_del(struct napi_struct *napi)
4264 {
4265 struct sk_buff *skb, *next;
4266
4267 list_del_init(&napi->dev_list);
4268 napi_free_frags(napi);
4269
4270 for (skb = napi->gro_list; skb; skb = next) {
4271 next = skb->next;
4272 skb->next = NULL;
4273 kfree_skb(skb);
4274 }
4275
4276 napi->gro_list = NULL;
4277 napi->gro_count = 0;
4278 }
4279 EXPORT_SYMBOL(netif_napi_del);
4280
4281 static void net_rx_action(struct softirq_action *h)
4282 {
4283 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4284 unsigned long time_limit = jiffies + 2;
4285 int budget = netdev_budget;
4286 void *have;
4287
4288 local_irq_disable();
4289
4290 while (!list_empty(&sd->poll_list)) {
4291 struct napi_struct *n;
4292 int work, weight;
4293
4294 /* If softirq window is exhuasted then punt.
4295 * Allow this to run for 2 jiffies since which will allow
4296 * an average latency of 1.5/HZ.
4297 */
4298 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4299 goto softnet_break;
4300
4301 local_irq_enable();
4302
4303 /* Even though interrupts have been re-enabled, this
4304 * access is safe because interrupts can only add new
4305 * entries to the tail of this list, and only ->poll()
4306 * calls can remove this head entry from the list.
4307 */
4308 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4309
4310 have = netpoll_poll_lock(n);
4311
4312 weight = n->weight;
4313
4314 /* This NAPI_STATE_SCHED test is for avoiding a race
4315 * with netpoll's poll_napi(). Only the entity which
4316 * obtains the lock and sees NAPI_STATE_SCHED set will
4317 * actually make the ->poll() call. Therefore we avoid
4318 * accidentally calling ->poll() when NAPI is not scheduled.
4319 */
4320 work = 0;
4321 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4322 work = n->poll(n, weight);
4323 trace_napi_poll(n);
4324 }
4325
4326 WARN_ON_ONCE(work > weight);
4327
4328 budget -= work;
4329
4330 local_irq_disable();
4331
4332 /* Drivers must not modify the NAPI state if they
4333 * consume the entire weight. In such cases this code
4334 * still "owns" the NAPI instance and therefore can
4335 * move the instance around on the list at-will.
4336 */
4337 if (unlikely(work == weight)) {
4338 if (unlikely(napi_disable_pending(n))) {
4339 local_irq_enable();
4340 napi_complete(n);
4341 local_irq_disable();
4342 } else {
4343 if (n->gro_list) {
4344 /* flush too old packets
4345 * If HZ < 1000, flush all packets.
4346 */
4347 local_irq_enable();
4348 napi_gro_flush(n, HZ >= 1000);
4349 local_irq_disable();
4350 }
4351 list_move_tail(&n->poll_list, &sd->poll_list);
4352 }
4353 }
4354
4355 netpoll_poll_unlock(have);
4356 }
4357 out:
4358 net_rps_action_and_irq_enable(sd);
4359
4360 #ifdef CONFIG_NET_DMA
4361 /*
4362 * There may not be any more sk_buffs coming right now, so push
4363 * any pending DMA copies to hardware
4364 */
4365 dma_issue_pending_all();
4366 #endif
4367
4368 return;
4369
4370 softnet_break:
4371 sd->time_squeeze++;
4372 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4373 goto out;
4374 }
4375
4376 struct netdev_adjacent {
4377 struct net_device *dev;
4378
4379 /* upper master flag, there can only be one master device per list */
4380 bool master;
4381
4382 /* counter for the number of times this device was added to us */
4383 u16 ref_nr;
4384
4385 /* private field for the users */
4386 void *private;
4387
4388 struct list_head list;
4389 struct rcu_head rcu;
4390 };
4391
4392 static struct netdev_adjacent *__netdev_find_adj_rcu(struct net_device *dev,
4393 struct net_device *adj_dev,
4394 struct list_head *adj_list)
4395 {
4396 struct netdev_adjacent *adj;
4397
4398 list_for_each_entry_rcu(adj, adj_list, list) {
4399 if (adj->dev == adj_dev)
4400 return adj;
4401 }
4402 return NULL;
4403 }
4404
4405 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4406 struct net_device *adj_dev,
4407 struct list_head *adj_list)
4408 {
4409 struct netdev_adjacent *adj;
4410
4411 list_for_each_entry(adj, adj_list, list) {
4412 if (adj->dev == adj_dev)
4413 return adj;
4414 }
4415 return NULL;
4416 }
4417
4418 /**
4419 * netdev_has_upper_dev - Check if device is linked to an upper device
4420 * @dev: device
4421 * @upper_dev: upper device to check
4422 *
4423 * Find out if a device is linked to specified upper device and return true
4424 * in case it is. Note that this checks only immediate upper device,
4425 * not through a complete stack of devices. The caller must hold the RTNL lock.
4426 */
4427 bool netdev_has_upper_dev(struct net_device *dev,
4428 struct net_device *upper_dev)
4429 {
4430 ASSERT_RTNL();
4431
4432 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4433 }
4434 EXPORT_SYMBOL(netdev_has_upper_dev);
4435
4436 /**
4437 * netdev_has_any_upper_dev - Check if device is linked to some device
4438 * @dev: device
4439 *
4440 * Find out if a device is linked to an upper device and return true in case
4441 * it is. The caller must hold the RTNL lock.
4442 */
4443 bool netdev_has_any_upper_dev(struct net_device *dev)
4444 {
4445 ASSERT_RTNL();
4446
4447 return !list_empty(&dev->all_adj_list.upper);
4448 }
4449 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4450
4451 /**
4452 * netdev_master_upper_dev_get - Get master upper device
4453 * @dev: device
4454 *
4455 * Find a master upper device and return pointer to it or NULL in case
4456 * it's not there. The caller must hold the RTNL lock.
4457 */
4458 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4459 {
4460 struct netdev_adjacent *upper;
4461
4462 ASSERT_RTNL();
4463
4464 if (list_empty(&dev->adj_list.upper))
4465 return NULL;
4466
4467 upper = list_first_entry(&dev->adj_list.upper,
4468 struct netdev_adjacent, list);
4469 if (likely(upper->master))
4470 return upper->dev;
4471 return NULL;
4472 }
4473 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4474
4475 void *netdev_adjacent_get_private(struct list_head *adj_list)
4476 {
4477 struct netdev_adjacent *adj;
4478
4479 adj = list_entry(adj_list, struct netdev_adjacent, list);
4480
4481 return adj->private;
4482 }
4483 EXPORT_SYMBOL(netdev_adjacent_get_private);
4484
4485 /**
4486 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4487 * @dev: device
4488 * @iter: list_head ** of the current position
4489 *
4490 * Gets the next device from the dev's upper list, starting from iter
4491 * position. The caller must hold RCU read lock.
4492 */
4493 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4494 struct list_head **iter)
4495 {
4496 struct netdev_adjacent *upper;
4497
4498 WARN_ON_ONCE(!rcu_read_lock_held());
4499
4500 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4501
4502 if (&upper->list == &dev->all_adj_list.upper)
4503 return NULL;
4504
4505 *iter = &upper->list;
4506
4507 return upper->dev;
4508 }
4509 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4510
4511 /**
4512 * netdev_lower_get_next_private - Get the next ->private from the
4513 * lower neighbour list
4514 * @dev: device
4515 * @iter: list_head ** of the current position
4516 *
4517 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4518 * list, starting from iter position. The caller must hold either hold the
4519 * RTNL lock or its own locking that guarantees that the neighbour lower
4520 * list will remain unchainged.
4521 */
4522 void *netdev_lower_get_next_private(struct net_device *dev,
4523 struct list_head **iter)
4524 {
4525 struct netdev_adjacent *lower;
4526
4527 lower = list_entry(*iter, struct netdev_adjacent, list);
4528
4529 if (&lower->list == &dev->adj_list.lower)
4530 return NULL;
4531
4532 if (iter)
4533 *iter = lower->list.next;
4534
4535 return lower->private;
4536 }
4537 EXPORT_SYMBOL(netdev_lower_get_next_private);
4538
4539 /**
4540 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4541 * lower neighbour list, RCU
4542 * variant
4543 * @dev: device
4544 * @iter: list_head ** of the current position
4545 *
4546 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4547 * list, starting from iter position. The caller must hold RCU read lock.
4548 */
4549 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4550 struct list_head **iter)
4551 {
4552 struct netdev_adjacent *lower;
4553
4554 WARN_ON_ONCE(!rcu_read_lock_held());
4555
4556 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4557
4558 if (&lower->list == &dev->adj_list.lower)
4559 return NULL;
4560
4561 if (iter)
4562 *iter = &lower->list;
4563
4564 return lower->private;
4565 }
4566 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4567
4568 /**
4569 * netdev_master_upper_dev_get_rcu - Get master upper device
4570 * @dev: device
4571 *
4572 * Find a master upper device and return pointer to it or NULL in case
4573 * it's not there. The caller must hold the RCU read lock.
4574 */
4575 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4576 {
4577 struct netdev_adjacent *upper;
4578
4579 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4580 struct netdev_adjacent, list);
4581 if (upper && likely(upper->master))
4582 return upper->dev;
4583 return NULL;
4584 }
4585 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4586
4587 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4588 struct net_device *adj_dev,
4589 struct list_head *dev_list,
4590 void *private, bool master)
4591 {
4592 struct netdev_adjacent *adj;
4593 char linkname[IFNAMSIZ+7];
4594 int ret;
4595
4596 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4597
4598 if (adj) {
4599 adj->ref_nr++;
4600 return 0;
4601 }
4602
4603 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4604 if (!adj)
4605 return -ENOMEM;
4606
4607 adj->dev = adj_dev;
4608 adj->master = master;
4609 adj->ref_nr = 1;
4610 adj->private = private;
4611 dev_hold(adj_dev);
4612
4613 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4614 adj_dev->name, dev->name, adj_dev->name);
4615
4616 if (dev_list == &dev->adj_list.lower) {
4617 sprintf(linkname, "lower_%s", adj_dev->name);
4618 ret = sysfs_create_link(&(dev->dev.kobj),
4619 &(adj_dev->dev.kobj), linkname);
4620 if (ret)
4621 goto free_adj;
4622 } else if (dev_list == &dev->adj_list.upper) {
4623 sprintf(linkname, "upper_%s", adj_dev->name);
4624 ret = sysfs_create_link(&(dev->dev.kobj),
4625 &(adj_dev->dev.kobj), linkname);
4626 if (ret)
4627 goto free_adj;
4628 }
4629
4630 /* Ensure that master link is always the first item in list. */
4631 if (master) {
4632 ret = sysfs_create_link(&(dev->dev.kobj),
4633 &(adj_dev->dev.kobj), "master");
4634 if (ret)
4635 goto remove_symlinks;
4636
4637 list_add_rcu(&adj->list, dev_list);
4638 } else {
4639 list_add_tail_rcu(&adj->list, dev_list);
4640 }
4641
4642 return 0;
4643
4644 remove_symlinks:
4645 if (dev_list == &dev->adj_list.lower) {
4646 sprintf(linkname, "lower_%s", adj_dev->name);
4647 sysfs_remove_link(&(dev->dev.kobj), linkname);
4648 } else if (dev_list == &dev->adj_list.upper) {
4649 sprintf(linkname, "upper_%s", adj_dev->name);
4650 sysfs_remove_link(&(dev->dev.kobj), linkname);
4651 }
4652
4653 free_adj:
4654 kfree(adj);
4655 dev_put(adj_dev);
4656
4657 return ret;
4658 }
4659
4660 void __netdev_adjacent_dev_remove(struct net_device *dev,
4661 struct net_device *adj_dev,
4662 struct list_head *dev_list)
4663 {
4664 struct netdev_adjacent *adj;
4665 char linkname[IFNAMSIZ+7];
4666
4667 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4668
4669 if (!adj) {
4670 pr_err("tried to remove device %s from %s\n",
4671 dev->name, adj_dev->name);
4672 BUG();
4673 }
4674
4675 if (adj->ref_nr > 1) {
4676 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4677 adj->ref_nr-1);
4678 adj->ref_nr--;
4679 return;
4680 }
4681
4682 if (adj->master)
4683 sysfs_remove_link(&(dev->dev.kobj), "master");
4684
4685 if (dev_list == &dev->adj_list.lower) {
4686 sprintf(linkname, "lower_%s", adj_dev->name);
4687 sysfs_remove_link(&(dev->dev.kobj), linkname);
4688 } else if (dev_list == &dev->adj_list.upper) {
4689 sprintf(linkname, "upper_%s", adj_dev->name);
4690 sysfs_remove_link(&(dev->dev.kobj), linkname);
4691 }
4692
4693 list_del_rcu(&adj->list);
4694 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4695 adj_dev->name, dev->name, adj_dev->name);
4696 dev_put(adj_dev);
4697 kfree_rcu(adj, rcu);
4698 }
4699
4700 int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4701 struct net_device *upper_dev,
4702 struct list_head *up_list,
4703 struct list_head *down_list,
4704 void *private, bool master)
4705 {
4706 int ret;
4707
4708 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4709 master);
4710 if (ret)
4711 return ret;
4712
4713 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4714 false);
4715 if (ret) {
4716 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4717 return ret;
4718 }
4719
4720 return 0;
4721 }
4722
4723 int __netdev_adjacent_dev_link(struct net_device *dev,
4724 struct net_device *upper_dev)
4725 {
4726 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4727 &dev->all_adj_list.upper,
4728 &upper_dev->all_adj_list.lower,
4729 NULL, false);
4730 }
4731
4732 void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4733 struct net_device *upper_dev,
4734 struct list_head *up_list,
4735 struct list_head *down_list)
4736 {
4737 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4738 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4739 }
4740
4741 void __netdev_adjacent_dev_unlink(struct net_device *dev,
4742 struct net_device *upper_dev)
4743 {
4744 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4745 &dev->all_adj_list.upper,
4746 &upper_dev->all_adj_list.lower);
4747 }
4748
4749 int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4750 struct net_device *upper_dev,
4751 void *private, bool master)
4752 {
4753 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4754
4755 if (ret)
4756 return ret;
4757
4758 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4759 &dev->adj_list.upper,
4760 &upper_dev->adj_list.lower,
4761 private, master);
4762 if (ret) {
4763 __netdev_adjacent_dev_unlink(dev, upper_dev);
4764 return ret;
4765 }
4766
4767 return 0;
4768 }
4769
4770 void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4771 struct net_device *upper_dev)
4772 {
4773 __netdev_adjacent_dev_unlink(dev, upper_dev);
4774 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4775 &dev->adj_list.upper,
4776 &upper_dev->adj_list.lower);
4777 }
4778
4779 static int __netdev_upper_dev_link(struct net_device *dev,
4780 struct net_device *upper_dev, bool master,
4781 void *private)
4782 {
4783 struct netdev_adjacent *i, *j, *to_i, *to_j;
4784 int ret = 0;
4785
4786 ASSERT_RTNL();
4787
4788 if (dev == upper_dev)
4789 return -EBUSY;
4790
4791 /* To prevent loops, check if dev is not upper device to upper_dev. */
4792 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4793 return -EBUSY;
4794
4795 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4796 return -EEXIST;
4797
4798 if (master && netdev_master_upper_dev_get(dev))
4799 return -EBUSY;
4800
4801 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4802 master);
4803 if (ret)
4804 return ret;
4805
4806 /* Now that we linked these devs, make all the upper_dev's
4807 * all_adj_list.upper visible to every dev's all_adj_list.lower an
4808 * versa, and don't forget the devices itself. All of these
4809 * links are non-neighbours.
4810 */
4811 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4812 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4813 pr_debug("Interlinking %s with %s, non-neighbour\n",
4814 i->dev->name, j->dev->name);
4815 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4816 if (ret)
4817 goto rollback_mesh;
4818 }
4819 }
4820
4821 /* add dev to every upper_dev's upper device */
4822 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4823 pr_debug("linking %s's upper device %s with %s\n",
4824 upper_dev->name, i->dev->name, dev->name);
4825 ret = __netdev_adjacent_dev_link(dev, i->dev);
4826 if (ret)
4827 goto rollback_upper_mesh;
4828 }
4829
4830 /* add upper_dev to every dev's lower device */
4831 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4832 pr_debug("linking %s's lower device %s with %s\n", dev->name,
4833 i->dev->name, upper_dev->name);
4834 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4835 if (ret)
4836 goto rollback_lower_mesh;
4837 }
4838
4839 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4840 return 0;
4841
4842 rollback_lower_mesh:
4843 to_i = i;
4844 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4845 if (i == to_i)
4846 break;
4847 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4848 }
4849
4850 i = NULL;
4851
4852 rollback_upper_mesh:
4853 to_i = i;
4854 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4855 if (i == to_i)
4856 break;
4857 __netdev_adjacent_dev_unlink(dev, i->dev);
4858 }
4859
4860 i = j = NULL;
4861
4862 rollback_mesh:
4863 to_i = i;
4864 to_j = j;
4865 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4866 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4867 if (i == to_i && j == to_j)
4868 break;
4869 __netdev_adjacent_dev_unlink(i->dev, j->dev);
4870 }
4871 if (i == to_i)
4872 break;
4873 }
4874
4875 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4876
4877 return ret;
4878 }
4879
4880 /**
4881 * netdev_upper_dev_link - Add a link to the upper device
4882 * @dev: device
4883 * @upper_dev: new upper device
4884 *
4885 * Adds a link to device which is upper to this one. The caller must hold
4886 * the RTNL lock. On a failure a negative errno code is returned.
4887 * On success the reference counts are adjusted and the function
4888 * returns zero.
4889 */
4890 int netdev_upper_dev_link(struct net_device *dev,
4891 struct net_device *upper_dev)
4892 {
4893 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
4894 }
4895 EXPORT_SYMBOL(netdev_upper_dev_link);
4896
4897 /**
4898 * netdev_master_upper_dev_link - Add a master link to the upper device
4899 * @dev: device
4900 * @upper_dev: new upper device
4901 *
4902 * Adds a link to device which is upper to this one. In this case, only
4903 * one master upper device can be linked, although other non-master devices
4904 * might be linked as well. The caller must hold the RTNL lock.
4905 * On a failure a negative errno code is returned. On success the reference
4906 * counts are adjusted and the function returns zero.
4907 */
4908 int netdev_master_upper_dev_link(struct net_device *dev,
4909 struct net_device *upper_dev)
4910 {
4911 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
4912 }
4913 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4914
4915 int netdev_master_upper_dev_link_private(struct net_device *dev,
4916 struct net_device *upper_dev,
4917 void *private)
4918 {
4919 return __netdev_upper_dev_link(dev, upper_dev, true, private);
4920 }
4921 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
4922
4923 /**
4924 * netdev_upper_dev_unlink - Removes a link to upper device
4925 * @dev: device
4926 * @upper_dev: new upper device
4927 *
4928 * Removes a link to device which is upper to this one. The caller must hold
4929 * the RTNL lock.
4930 */
4931 void netdev_upper_dev_unlink(struct net_device *dev,
4932 struct net_device *upper_dev)
4933 {
4934 struct netdev_adjacent *i, *j;
4935 ASSERT_RTNL();
4936
4937 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4938
4939 /* Here is the tricky part. We must remove all dev's lower
4940 * devices from all upper_dev's upper devices and vice
4941 * versa, to maintain the graph relationship.
4942 */
4943 list_for_each_entry(i, &dev->all_adj_list.lower, list)
4944 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
4945 __netdev_adjacent_dev_unlink(i->dev, j->dev);
4946
4947 /* remove also the devices itself from lower/upper device
4948 * list
4949 */
4950 list_for_each_entry(i, &dev->all_adj_list.lower, list)
4951 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4952
4953 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
4954 __netdev_adjacent_dev_unlink(dev, i->dev);
4955
4956 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4957 }
4958 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4959
4960 void *netdev_lower_dev_get_private_rcu(struct net_device *dev,
4961 struct net_device *lower_dev)
4962 {
4963 struct netdev_adjacent *lower;
4964
4965 if (!lower_dev)
4966 return NULL;
4967 lower = __netdev_find_adj_rcu(dev, lower_dev, &dev->adj_list.lower);
4968 if (!lower)
4969 return NULL;
4970
4971 return lower->private;
4972 }
4973 EXPORT_SYMBOL(netdev_lower_dev_get_private_rcu);
4974
4975 void *netdev_lower_dev_get_private(struct net_device *dev,
4976 struct net_device *lower_dev)
4977 {
4978 struct netdev_adjacent *lower;
4979
4980 if (!lower_dev)
4981 return NULL;
4982 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
4983 if (!lower)
4984 return NULL;
4985
4986 return lower->private;
4987 }
4988 EXPORT_SYMBOL(netdev_lower_dev_get_private);
4989
4990 static void dev_change_rx_flags(struct net_device *dev, int flags)
4991 {
4992 const struct net_device_ops *ops = dev->netdev_ops;
4993
4994 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4995 ops->ndo_change_rx_flags(dev, flags);
4996 }
4997
4998 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
4999 {
5000 unsigned int old_flags = dev->flags;
5001 kuid_t uid;
5002 kgid_t gid;
5003
5004 ASSERT_RTNL();
5005
5006 dev->flags |= IFF_PROMISC;
5007 dev->promiscuity += inc;
5008 if (dev->promiscuity == 0) {
5009 /*
5010 * Avoid overflow.
5011 * If inc causes overflow, untouch promisc and return error.
5012 */
5013 if (inc < 0)
5014 dev->flags &= ~IFF_PROMISC;
5015 else {
5016 dev->promiscuity -= inc;
5017 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5018 dev->name);
5019 return -EOVERFLOW;
5020 }
5021 }
5022 if (dev->flags != old_flags) {
5023 pr_info("device %s %s promiscuous mode\n",
5024 dev->name,
5025 dev->flags & IFF_PROMISC ? "entered" : "left");
5026 if (audit_enabled) {
5027 current_uid_gid(&uid, &gid);
5028 audit_log(current->audit_context, GFP_ATOMIC,
5029 AUDIT_ANOM_PROMISCUOUS,
5030 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5031 dev->name, (dev->flags & IFF_PROMISC),
5032 (old_flags & IFF_PROMISC),
5033 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5034 from_kuid(&init_user_ns, uid),
5035 from_kgid(&init_user_ns, gid),
5036 audit_get_sessionid(current));
5037 }
5038
5039 dev_change_rx_flags(dev, IFF_PROMISC);
5040 }
5041 if (notify)
5042 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5043 return 0;
5044 }
5045
5046 /**
5047 * dev_set_promiscuity - update promiscuity count on a device
5048 * @dev: device
5049 * @inc: modifier
5050 *
5051 * Add or remove promiscuity from a device. While the count in the device
5052 * remains above zero the interface remains promiscuous. Once it hits zero
5053 * the device reverts back to normal filtering operation. A negative inc
5054 * value is used to drop promiscuity on the device.
5055 * Return 0 if successful or a negative errno code on error.
5056 */
5057 int dev_set_promiscuity(struct net_device *dev, int inc)
5058 {
5059 unsigned int old_flags = dev->flags;
5060 int err;
5061
5062 err = __dev_set_promiscuity(dev, inc, true);
5063 if (err < 0)
5064 return err;
5065 if (dev->flags != old_flags)
5066 dev_set_rx_mode(dev);
5067 return err;
5068 }
5069 EXPORT_SYMBOL(dev_set_promiscuity);
5070
5071 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5072 {
5073 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5074
5075 ASSERT_RTNL();
5076
5077 dev->flags |= IFF_ALLMULTI;
5078 dev->allmulti += inc;
5079 if (dev->allmulti == 0) {
5080 /*
5081 * Avoid overflow.
5082 * If inc causes overflow, untouch allmulti and return error.
5083 */
5084 if (inc < 0)
5085 dev->flags &= ~IFF_ALLMULTI;
5086 else {
5087 dev->allmulti -= inc;
5088 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5089 dev->name);
5090 return -EOVERFLOW;
5091 }
5092 }
5093 if (dev->flags ^ old_flags) {
5094 dev_change_rx_flags(dev, IFF_ALLMULTI);
5095 dev_set_rx_mode(dev);
5096 if (notify)
5097 __dev_notify_flags(dev, old_flags,
5098 dev->gflags ^ old_gflags);
5099 }
5100 return 0;
5101 }
5102
5103 /**
5104 * dev_set_allmulti - update allmulti count on a device
5105 * @dev: device
5106 * @inc: modifier
5107 *
5108 * Add or remove reception of all multicast frames to a device. While the
5109 * count in the device remains above zero the interface remains listening
5110 * to all interfaces. Once it hits zero the device reverts back to normal
5111 * filtering operation. A negative @inc value is used to drop the counter
5112 * when releasing a resource needing all multicasts.
5113 * Return 0 if successful or a negative errno code on error.
5114 */
5115
5116 int dev_set_allmulti(struct net_device *dev, int inc)
5117 {
5118 return __dev_set_allmulti(dev, inc, true);
5119 }
5120 EXPORT_SYMBOL(dev_set_allmulti);
5121
5122 /*
5123 * Upload unicast and multicast address lists to device and
5124 * configure RX filtering. When the device doesn't support unicast
5125 * filtering it is put in promiscuous mode while unicast addresses
5126 * are present.
5127 */
5128 void __dev_set_rx_mode(struct net_device *dev)
5129 {
5130 const struct net_device_ops *ops = dev->netdev_ops;
5131
5132 /* dev_open will call this function so the list will stay sane. */
5133 if (!(dev->flags&IFF_UP))
5134 return;
5135
5136 if (!netif_device_present(dev))
5137 return;
5138
5139 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5140 /* Unicast addresses changes may only happen under the rtnl,
5141 * therefore calling __dev_set_promiscuity here is safe.
5142 */
5143 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5144 __dev_set_promiscuity(dev, 1, false);
5145 dev->uc_promisc = true;
5146 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5147 __dev_set_promiscuity(dev, -1, false);
5148 dev->uc_promisc = false;
5149 }
5150 }
5151
5152 if (ops->ndo_set_rx_mode)
5153 ops->ndo_set_rx_mode(dev);
5154 }
5155
5156 void dev_set_rx_mode(struct net_device *dev)
5157 {
5158 netif_addr_lock_bh(dev);
5159 __dev_set_rx_mode(dev);
5160 netif_addr_unlock_bh(dev);
5161 }
5162
5163 /**
5164 * dev_get_flags - get flags reported to userspace
5165 * @dev: device
5166 *
5167 * Get the combination of flag bits exported through APIs to userspace.
5168 */
5169 unsigned int dev_get_flags(const struct net_device *dev)
5170 {
5171 unsigned int flags;
5172
5173 flags = (dev->flags & ~(IFF_PROMISC |
5174 IFF_ALLMULTI |
5175 IFF_RUNNING |
5176 IFF_LOWER_UP |
5177 IFF_DORMANT)) |
5178 (dev->gflags & (IFF_PROMISC |
5179 IFF_ALLMULTI));
5180
5181 if (netif_running(dev)) {
5182 if (netif_oper_up(dev))
5183 flags |= IFF_RUNNING;
5184 if (netif_carrier_ok(dev))
5185 flags |= IFF_LOWER_UP;
5186 if (netif_dormant(dev))
5187 flags |= IFF_DORMANT;
5188 }
5189
5190 return flags;
5191 }
5192 EXPORT_SYMBOL(dev_get_flags);
5193
5194 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5195 {
5196 unsigned int old_flags = dev->flags;
5197 int ret;
5198
5199 ASSERT_RTNL();
5200
5201 /*
5202 * Set the flags on our device.
5203 */
5204
5205 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5206 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5207 IFF_AUTOMEDIA)) |
5208 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5209 IFF_ALLMULTI));
5210
5211 /*
5212 * Load in the correct multicast list now the flags have changed.
5213 */
5214
5215 if ((old_flags ^ flags) & IFF_MULTICAST)
5216 dev_change_rx_flags(dev, IFF_MULTICAST);
5217
5218 dev_set_rx_mode(dev);
5219
5220 /*
5221 * Have we downed the interface. We handle IFF_UP ourselves
5222 * according to user attempts to set it, rather than blindly
5223 * setting it.
5224 */
5225
5226 ret = 0;
5227 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
5228 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5229
5230 if (!ret)
5231 dev_set_rx_mode(dev);
5232 }
5233
5234 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5235 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5236 unsigned int old_flags = dev->flags;
5237
5238 dev->gflags ^= IFF_PROMISC;
5239
5240 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5241 if (dev->flags != old_flags)
5242 dev_set_rx_mode(dev);
5243 }
5244
5245 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5246 is important. Some (broken) drivers set IFF_PROMISC, when
5247 IFF_ALLMULTI is requested not asking us and not reporting.
5248 */
5249 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5250 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5251
5252 dev->gflags ^= IFF_ALLMULTI;
5253 __dev_set_allmulti(dev, inc, false);
5254 }
5255
5256 return ret;
5257 }
5258
5259 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5260 unsigned int gchanges)
5261 {
5262 unsigned int changes = dev->flags ^ old_flags;
5263
5264 if (gchanges)
5265 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5266
5267 if (changes & IFF_UP) {
5268 if (dev->flags & IFF_UP)
5269 call_netdevice_notifiers(NETDEV_UP, dev);
5270 else
5271 call_netdevice_notifiers(NETDEV_DOWN, dev);
5272 }
5273
5274 if (dev->flags & IFF_UP &&
5275 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5276 struct netdev_notifier_change_info change_info;
5277
5278 change_info.flags_changed = changes;
5279 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5280 &change_info.info);
5281 }
5282 }
5283
5284 /**
5285 * dev_change_flags - change device settings
5286 * @dev: device
5287 * @flags: device state flags
5288 *
5289 * Change settings on device based state flags. The flags are
5290 * in the userspace exported format.
5291 */
5292 int dev_change_flags(struct net_device *dev, unsigned int flags)
5293 {
5294 int ret;
5295 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5296
5297 ret = __dev_change_flags(dev, flags);
5298 if (ret < 0)
5299 return ret;
5300
5301 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5302 __dev_notify_flags(dev, old_flags, changes);
5303 return ret;
5304 }
5305 EXPORT_SYMBOL(dev_change_flags);
5306
5307 /**
5308 * dev_set_mtu - Change maximum transfer unit
5309 * @dev: device
5310 * @new_mtu: new transfer unit
5311 *
5312 * Change the maximum transfer size of the network device.
5313 */
5314 int dev_set_mtu(struct net_device *dev, int new_mtu)
5315 {
5316 const struct net_device_ops *ops = dev->netdev_ops;
5317 int err;
5318
5319 if (new_mtu == dev->mtu)
5320 return 0;
5321
5322 /* MTU must be positive. */
5323 if (new_mtu < 0)
5324 return -EINVAL;
5325
5326 if (!netif_device_present(dev))
5327 return -ENODEV;
5328
5329 err = 0;
5330 if (ops->ndo_change_mtu)
5331 err = ops->ndo_change_mtu(dev, new_mtu);
5332 else
5333 dev->mtu = new_mtu;
5334
5335 if (!err)
5336 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5337 return err;
5338 }
5339 EXPORT_SYMBOL(dev_set_mtu);
5340
5341 /**
5342 * dev_set_group - Change group this device belongs to
5343 * @dev: device
5344 * @new_group: group this device should belong to
5345 */
5346 void dev_set_group(struct net_device *dev, int new_group)
5347 {
5348 dev->group = new_group;
5349 }
5350 EXPORT_SYMBOL(dev_set_group);
5351
5352 /**
5353 * dev_set_mac_address - Change Media Access Control Address
5354 * @dev: device
5355 * @sa: new address
5356 *
5357 * Change the hardware (MAC) address of the device
5358 */
5359 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5360 {
5361 const struct net_device_ops *ops = dev->netdev_ops;
5362 int err;
5363
5364 if (!ops->ndo_set_mac_address)
5365 return -EOPNOTSUPP;
5366 if (sa->sa_family != dev->type)
5367 return -EINVAL;
5368 if (!netif_device_present(dev))
5369 return -ENODEV;
5370 err = ops->ndo_set_mac_address(dev, sa);
5371 if (err)
5372 return err;
5373 dev->addr_assign_type = NET_ADDR_SET;
5374 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5375 add_device_randomness(dev->dev_addr, dev->addr_len);
5376 return 0;
5377 }
5378 EXPORT_SYMBOL(dev_set_mac_address);
5379
5380 /**
5381 * dev_change_carrier - Change device carrier
5382 * @dev: device
5383 * @new_carrier: new value
5384 *
5385 * Change device carrier
5386 */
5387 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5388 {
5389 const struct net_device_ops *ops = dev->netdev_ops;
5390
5391 if (!ops->ndo_change_carrier)
5392 return -EOPNOTSUPP;
5393 if (!netif_device_present(dev))
5394 return -ENODEV;
5395 return ops->ndo_change_carrier(dev, new_carrier);
5396 }
5397 EXPORT_SYMBOL(dev_change_carrier);
5398
5399 /**
5400 * dev_get_phys_port_id - Get device physical port ID
5401 * @dev: device
5402 * @ppid: port ID
5403 *
5404 * Get device physical port ID
5405 */
5406 int dev_get_phys_port_id(struct net_device *dev,
5407 struct netdev_phys_port_id *ppid)
5408 {
5409 const struct net_device_ops *ops = dev->netdev_ops;
5410
5411 if (!ops->ndo_get_phys_port_id)
5412 return -EOPNOTSUPP;
5413 return ops->ndo_get_phys_port_id(dev, ppid);
5414 }
5415 EXPORT_SYMBOL(dev_get_phys_port_id);
5416
5417 /**
5418 * dev_new_index - allocate an ifindex
5419 * @net: the applicable net namespace
5420 *
5421 * Returns a suitable unique value for a new device interface
5422 * number. The caller must hold the rtnl semaphore or the
5423 * dev_base_lock to be sure it remains unique.
5424 */
5425 static int dev_new_index(struct net *net)
5426 {
5427 int ifindex = net->ifindex;
5428 for (;;) {
5429 if (++ifindex <= 0)
5430 ifindex = 1;
5431 if (!__dev_get_by_index(net, ifindex))
5432 return net->ifindex = ifindex;
5433 }
5434 }
5435
5436 /* Delayed registration/unregisteration */
5437 static LIST_HEAD(net_todo_list);
5438 static DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5439
5440 static void net_set_todo(struct net_device *dev)
5441 {
5442 list_add_tail(&dev->todo_list, &net_todo_list);
5443 dev_net(dev)->dev_unreg_count++;
5444 }
5445
5446 static void rollback_registered_many(struct list_head *head)
5447 {
5448 struct net_device *dev, *tmp;
5449 LIST_HEAD(close_head);
5450
5451 BUG_ON(dev_boot_phase);
5452 ASSERT_RTNL();
5453
5454 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5455 /* Some devices call without registering
5456 * for initialization unwind. Remove those
5457 * devices and proceed with the remaining.
5458 */
5459 if (dev->reg_state == NETREG_UNINITIALIZED) {
5460 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5461 dev->name, dev);
5462
5463 WARN_ON(1);
5464 list_del(&dev->unreg_list);
5465 continue;
5466 }
5467 dev->dismantle = true;
5468 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5469 }
5470
5471 /* If device is running, close it first. */
5472 list_for_each_entry(dev, head, unreg_list)
5473 list_add_tail(&dev->close_list, &close_head);
5474 dev_close_many(&close_head);
5475
5476 list_for_each_entry(dev, head, unreg_list) {
5477 /* And unlink it from device chain. */
5478 unlist_netdevice(dev);
5479
5480 dev->reg_state = NETREG_UNREGISTERING;
5481 }
5482
5483 synchronize_net();
5484
5485 list_for_each_entry(dev, head, unreg_list) {
5486 /* Shutdown queueing discipline. */
5487 dev_shutdown(dev);
5488
5489
5490 /* Notify protocols, that we are about to destroy
5491 this device. They should clean all the things.
5492 */
5493 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5494
5495 if (!dev->rtnl_link_ops ||
5496 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5497 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5498
5499 /*
5500 * Flush the unicast and multicast chains
5501 */
5502 dev_uc_flush(dev);
5503 dev_mc_flush(dev);
5504
5505 if (dev->netdev_ops->ndo_uninit)
5506 dev->netdev_ops->ndo_uninit(dev);
5507
5508 /* Notifier chain MUST detach us all upper devices. */
5509 WARN_ON(netdev_has_any_upper_dev(dev));
5510
5511 /* Remove entries from kobject tree */
5512 netdev_unregister_kobject(dev);
5513 #ifdef CONFIG_XPS
5514 /* Remove XPS queueing entries */
5515 netif_reset_xps_queues_gt(dev, 0);
5516 #endif
5517 }
5518
5519 synchronize_net();
5520
5521 list_for_each_entry(dev, head, unreg_list)
5522 dev_put(dev);
5523 }
5524
5525 static void rollback_registered(struct net_device *dev)
5526 {
5527 LIST_HEAD(single);
5528
5529 list_add(&dev->unreg_list, &single);
5530 rollback_registered_many(&single);
5531 list_del(&single);
5532 }
5533
5534 static netdev_features_t netdev_fix_features(struct net_device *dev,
5535 netdev_features_t features)
5536 {
5537 /* Fix illegal checksum combinations */
5538 if ((features & NETIF_F_HW_CSUM) &&
5539 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5540 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5541 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5542 }
5543
5544 /* TSO requires that SG is present as well. */
5545 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5546 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5547 features &= ~NETIF_F_ALL_TSO;
5548 }
5549
5550 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5551 !(features & NETIF_F_IP_CSUM)) {
5552 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5553 features &= ~NETIF_F_TSO;
5554 features &= ~NETIF_F_TSO_ECN;
5555 }
5556
5557 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5558 !(features & NETIF_F_IPV6_CSUM)) {
5559 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5560 features &= ~NETIF_F_TSO6;
5561 }
5562
5563 /* TSO ECN requires that TSO is present as well. */
5564 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5565 features &= ~NETIF_F_TSO_ECN;
5566
5567 /* Software GSO depends on SG. */
5568 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5569 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5570 features &= ~NETIF_F_GSO;
5571 }
5572
5573 /* UFO needs SG and checksumming */
5574 if (features & NETIF_F_UFO) {
5575 /* maybe split UFO into V4 and V6? */
5576 if (!((features & NETIF_F_GEN_CSUM) ||
5577 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5578 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5579 netdev_dbg(dev,
5580 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5581 features &= ~NETIF_F_UFO;
5582 }
5583
5584 if (!(features & NETIF_F_SG)) {
5585 netdev_dbg(dev,
5586 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5587 features &= ~NETIF_F_UFO;
5588 }
5589 }
5590
5591 return features;
5592 }
5593
5594 int __netdev_update_features(struct net_device *dev)
5595 {
5596 netdev_features_t features;
5597 int err = 0;
5598
5599 ASSERT_RTNL();
5600
5601 features = netdev_get_wanted_features(dev);
5602
5603 if (dev->netdev_ops->ndo_fix_features)
5604 features = dev->netdev_ops->ndo_fix_features(dev, features);
5605
5606 /* driver might be less strict about feature dependencies */
5607 features = netdev_fix_features(dev, features);
5608
5609 if (dev->features == features)
5610 return 0;
5611
5612 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5613 &dev->features, &features);
5614
5615 if (dev->netdev_ops->ndo_set_features)
5616 err = dev->netdev_ops->ndo_set_features(dev, features);
5617
5618 if (unlikely(err < 0)) {
5619 netdev_err(dev,
5620 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5621 err, &features, &dev->features);
5622 return -1;
5623 }
5624
5625 if (!err)
5626 dev->features = features;
5627
5628 return 1;
5629 }
5630
5631 /**
5632 * netdev_update_features - recalculate device features
5633 * @dev: the device to check
5634 *
5635 * Recalculate dev->features set and send notifications if it
5636 * has changed. Should be called after driver or hardware dependent
5637 * conditions might have changed that influence the features.
5638 */
5639 void netdev_update_features(struct net_device *dev)
5640 {
5641 if (__netdev_update_features(dev))
5642 netdev_features_change(dev);
5643 }
5644 EXPORT_SYMBOL(netdev_update_features);
5645
5646 /**
5647 * netdev_change_features - recalculate device features
5648 * @dev: the device to check
5649 *
5650 * Recalculate dev->features set and send notifications even
5651 * if they have not changed. Should be called instead of
5652 * netdev_update_features() if also dev->vlan_features might
5653 * have changed to allow the changes to be propagated to stacked
5654 * VLAN devices.
5655 */
5656 void netdev_change_features(struct net_device *dev)
5657 {
5658 __netdev_update_features(dev);
5659 netdev_features_change(dev);
5660 }
5661 EXPORT_SYMBOL(netdev_change_features);
5662
5663 /**
5664 * netif_stacked_transfer_operstate - transfer operstate
5665 * @rootdev: the root or lower level device to transfer state from
5666 * @dev: the device to transfer operstate to
5667 *
5668 * Transfer operational state from root to device. This is normally
5669 * called when a stacking relationship exists between the root
5670 * device and the device(a leaf device).
5671 */
5672 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5673 struct net_device *dev)
5674 {
5675 if (rootdev->operstate == IF_OPER_DORMANT)
5676 netif_dormant_on(dev);
5677 else
5678 netif_dormant_off(dev);
5679
5680 if (netif_carrier_ok(rootdev)) {
5681 if (!netif_carrier_ok(dev))
5682 netif_carrier_on(dev);
5683 } else {
5684 if (netif_carrier_ok(dev))
5685 netif_carrier_off(dev);
5686 }
5687 }
5688 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5689
5690 #ifdef CONFIG_RPS
5691 static int netif_alloc_rx_queues(struct net_device *dev)
5692 {
5693 unsigned int i, count = dev->num_rx_queues;
5694 struct netdev_rx_queue *rx;
5695
5696 BUG_ON(count < 1);
5697
5698 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5699 if (!rx)
5700 return -ENOMEM;
5701
5702 dev->_rx = rx;
5703
5704 for (i = 0; i < count; i++)
5705 rx[i].dev = dev;
5706 return 0;
5707 }
5708 #endif
5709
5710 static void netdev_init_one_queue(struct net_device *dev,
5711 struct netdev_queue *queue, void *_unused)
5712 {
5713 /* Initialize queue lock */
5714 spin_lock_init(&queue->_xmit_lock);
5715 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5716 queue->xmit_lock_owner = -1;
5717 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5718 queue->dev = dev;
5719 #ifdef CONFIG_BQL
5720 dql_init(&queue->dql, HZ);
5721 #endif
5722 }
5723
5724 static void netif_free_tx_queues(struct net_device *dev)
5725 {
5726 if (is_vmalloc_addr(dev->_tx))
5727 vfree(dev->_tx);
5728 else
5729 kfree(dev->_tx);
5730 }
5731
5732 static int netif_alloc_netdev_queues(struct net_device *dev)
5733 {
5734 unsigned int count = dev->num_tx_queues;
5735 struct netdev_queue *tx;
5736 size_t sz = count * sizeof(*tx);
5737
5738 BUG_ON(count < 1 || count > 0xffff);
5739
5740 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5741 if (!tx) {
5742 tx = vzalloc(sz);
5743 if (!tx)
5744 return -ENOMEM;
5745 }
5746 dev->_tx = tx;
5747
5748 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5749 spin_lock_init(&dev->tx_global_lock);
5750
5751 return 0;
5752 }
5753
5754 /**
5755 * register_netdevice - register a network device
5756 * @dev: device to register
5757 *
5758 * Take a completed network device structure and add it to the kernel
5759 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5760 * chain. 0 is returned on success. A negative errno code is returned
5761 * on a failure to set up the device, or if the name is a duplicate.
5762 *
5763 * Callers must hold the rtnl semaphore. You may want
5764 * register_netdev() instead of this.
5765 *
5766 * BUGS:
5767 * The locking appears insufficient to guarantee two parallel registers
5768 * will not get the same name.
5769 */
5770
5771 int register_netdevice(struct net_device *dev)
5772 {
5773 int ret;
5774 struct net *net = dev_net(dev);
5775
5776 BUG_ON(dev_boot_phase);
5777 ASSERT_RTNL();
5778
5779 might_sleep();
5780
5781 /* When net_device's are persistent, this will be fatal. */
5782 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5783 BUG_ON(!net);
5784
5785 spin_lock_init(&dev->addr_list_lock);
5786 netdev_set_addr_lockdep_class(dev);
5787
5788 dev->iflink = -1;
5789
5790 ret = dev_get_valid_name(net, dev, dev->name);
5791 if (ret < 0)
5792 goto out;
5793
5794 /* Init, if this function is available */
5795 if (dev->netdev_ops->ndo_init) {
5796 ret = dev->netdev_ops->ndo_init(dev);
5797 if (ret) {
5798 if (ret > 0)
5799 ret = -EIO;
5800 goto out;
5801 }
5802 }
5803
5804 if (((dev->hw_features | dev->features) &
5805 NETIF_F_HW_VLAN_CTAG_FILTER) &&
5806 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5807 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5808 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5809 ret = -EINVAL;
5810 goto err_uninit;
5811 }
5812
5813 ret = -EBUSY;
5814 if (!dev->ifindex)
5815 dev->ifindex = dev_new_index(net);
5816 else if (__dev_get_by_index(net, dev->ifindex))
5817 goto err_uninit;
5818
5819 if (dev->iflink == -1)
5820 dev->iflink = dev->ifindex;
5821
5822 /* Transfer changeable features to wanted_features and enable
5823 * software offloads (GSO and GRO).
5824 */
5825 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5826 dev->features |= NETIF_F_SOFT_FEATURES;
5827 dev->wanted_features = dev->features & dev->hw_features;
5828
5829 /* Turn on no cache copy if HW is doing checksum */
5830 if (!(dev->flags & IFF_LOOPBACK)) {
5831 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5832 if (dev->features & NETIF_F_ALL_CSUM) {
5833 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5834 dev->features |= NETIF_F_NOCACHE_COPY;
5835 }
5836 }
5837
5838 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5839 */
5840 dev->vlan_features |= NETIF_F_HIGHDMA;
5841
5842 /* Make NETIF_F_SG inheritable to tunnel devices.
5843 */
5844 dev->hw_enc_features |= NETIF_F_SG;
5845
5846 /* Make NETIF_F_SG inheritable to MPLS.
5847 */
5848 dev->mpls_features |= NETIF_F_SG;
5849
5850 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5851 ret = notifier_to_errno(ret);
5852 if (ret)
5853 goto err_uninit;
5854
5855 ret = netdev_register_kobject(dev);
5856 if (ret)
5857 goto err_uninit;
5858 dev->reg_state = NETREG_REGISTERED;
5859
5860 __netdev_update_features(dev);
5861
5862 /*
5863 * Default initial state at registry is that the
5864 * device is present.
5865 */
5866
5867 set_bit(__LINK_STATE_PRESENT, &dev->state);
5868
5869 linkwatch_init_dev(dev);
5870
5871 dev_init_scheduler(dev);
5872 dev_hold(dev);
5873 list_netdevice(dev);
5874 add_device_randomness(dev->dev_addr, dev->addr_len);
5875
5876 /* If the device has permanent device address, driver should
5877 * set dev_addr and also addr_assign_type should be set to
5878 * NET_ADDR_PERM (default value).
5879 */
5880 if (dev->addr_assign_type == NET_ADDR_PERM)
5881 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5882
5883 /* Notify protocols, that a new device appeared. */
5884 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5885 ret = notifier_to_errno(ret);
5886 if (ret) {
5887 rollback_registered(dev);
5888 dev->reg_state = NETREG_UNREGISTERED;
5889 }
5890 /*
5891 * Prevent userspace races by waiting until the network
5892 * device is fully setup before sending notifications.
5893 */
5894 if (!dev->rtnl_link_ops ||
5895 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5896 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
5897
5898 out:
5899 return ret;
5900
5901 err_uninit:
5902 if (dev->netdev_ops->ndo_uninit)
5903 dev->netdev_ops->ndo_uninit(dev);
5904 goto out;
5905 }
5906 EXPORT_SYMBOL(register_netdevice);
5907
5908 /**
5909 * init_dummy_netdev - init a dummy network device for NAPI
5910 * @dev: device to init
5911 *
5912 * This takes a network device structure and initialize the minimum
5913 * amount of fields so it can be used to schedule NAPI polls without
5914 * registering a full blown interface. This is to be used by drivers
5915 * that need to tie several hardware interfaces to a single NAPI
5916 * poll scheduler due to HW limitations.
5917 */
5918 int init_dummy_netdev(struct net_device *dev)
5919 {
5920 /* Clear everything. Note we don't initialize spinlocks
5921 * are they aren't supposed to be taken by any of the
5922 * NAPI code and this dummy netdev is supposed to be
5923 * only ever used for NAPI polls
5924 */
5925 memset(dev, 0, sizeof(struct net_device));
5926
5927 /* make sure we BUG if trying to hit standard
5928 * register/unregister code path
5929 */
5930 dev->reg_state = NETREG_DUMMY;
5931
5932 /* NAPI wants this */
5933 INIT_LIST_HEAD(&dev->napi_list);
5934
5935 /* a dummy interface is started by default */
5936 set_bit(__LINK_STATE_PRESENT, &dev->state);
5937 set_bit(__LINK_STATE_START, &dev->state);
5938
5939 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5940 * because users of this 'device' dont need to change
5941 * its refcount.
5942 */
5943
5944 return 0;
5945 }
5946 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5947
5948
5949 /**
5950 * register_netdev - register a network device
5951 * @dev: device to register
5952 *
5953 * Take a completed network device structure and add it to the kernel
5954 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5955 * chain. 0 is returned on success. A negative errno code is returned
5956 * on a failure to set up the device, or if the name is a duplicate.
5957 *
5958 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5959 * and expands the device name if you passed a format string to
5960 * alloc_netdev.
5961 */
5962 int register_netdev(struct net_device *dev)
5963 {
5964 int err;
5965
5966 rtnl_lock();
5967 err = register_netdevice(dev);
5968 rtnl_unlock();
5969 return err;
5970 }
5971 EXPORT_SYMBOL(register_netdev);
5972
5973 int netdev_refcnt_read(const struct net_device *dev)
5974 {
5975 int i, refcnt = 0;
5976
5977 for_each_possible_cpu(i)
5978 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5979 return refcnt;
5980 }
5981 EXPORT_SYMBOL(netdev_refcnt_read);
5982
5983 /**
5984 * netdev_wait_allrefs - wait until all references are gone.
5985 * @dev: target net_device
5986 *
5987 * This is called when unregistering network devices.
5988 *
5989 * Any protocol or device that holds a reference should register
5990 * for netdevice notification, and cleanup and put back the
5991 * reference if they receive an UNREGISTER event.
5992 * We can get stuck here if buggy protocols don't correctly
5993 * call dev_put.
5994 */
5995 static void netdev_wait_allrefs(struct net_device *dev)
5996 {
5997 unsigned long rebroadcast_time, warning_time;
5998 int refcnt;
5999
6000 linkwatch_forget_dev(dev);
6001
6002 rebroadcast_time = warning_time = jiffies;
6003 refcnt = netdev_refcnt_read(dev);
6004
6005 while (refcnt != 0) {
6006 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6007 rtnl_lock();
6008
6009 /* Rebroadcast unregister notification */
6010 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6011
6012 __rtnl_unlock();
6013 rcu_barrier();
6014 rtnl_lock();
6015
6016 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6017 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6018 &dev->state)) {
6019 /* We must not have linkwatch events
6020 * pending on unregister. If this
6021 * happens, we simply run the queue
6022 * unscheduled, resulting in a noop
6023 * for this device.
6024 */
6025 linkwatch_run_queue();
6026 }
6027
6028 __rtnl_unlock();
6029
6030 rebroadcast_time = jiffies;
6031 }
6032
6033 msleep(250);
6034
6035 refcnt = netdev_refcnt_read(dev);
6036
6037 if (time_after(jiffies, warning_time + 10 * HZ)) {
6038 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6039 dev->name, refcnt);
6040 warning_time = jiffies;
6041 }
6042 }
6043 }
6044
6045 /* The sequence is:
6046 *
6047 * rtnl_lock();
6048 * ...
6049 * register_netdevice(x1);
6050 * register_netdevice(x2);
6051 * ...
6052 * unregister_netdevice(y1);
6053 * unregister_netdevice(y2);
6054 * ...
6055 * rtnl_unlock();
6056 * free_netdev(y1);
6057 * free_netdev(y2);
6058 *
6059 * We are invoked by rtnl_unlock().
6060 * This allows us to deal with problems:
6061 * 1) We can delete sysfs objects which invoke hotplug
6062 * without deadlocking with linkwatch via keventd.
6063 * 2) Since we run with the RTNL semaphore not held, we can sleep
6064 * safely in order to wait for the netdev refcnt to drop to zero.
6065 *
6066 * We must not return until all unregister events added during
6067 * the interval the lock was held have been completed.
6068 */
6069 void netdev_run_todo(void)
6070 {
6071 struct list_head list;
6072
6073 /* Snapshot list, allow later requests */
6074 list_replace_init(&net_todo_list, &list);
6075
6076 __rtnl_unlock();
6077
6078
6079 /* Wait for rcu callbacks to finish before next phase */
6080 if (!list_empty(&list))
6081 rcu_barrier();
6082
6083 while (!list_empty(&list)) {
6084 struct net_device *dev
6085 = list_first_entry(&list, struct net_device, todo_list);
6086 list_del(&dev->todo_list);
6087
6088 rtnl_lock();
6089 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6090 __rtnl_unlock();
6091
6092 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6093 pr_err("network todo '%s' but state %d\n",
6094 dev->name, dev->reg_state);
6095 dump_stack();
6096 continue;
6097 }
6098
6099 dev->reg_state = NETREG_UNREGISTERED;
6100
6101 on_each_cpu(flush_backlog, dev, 1);
6102
6103 netdev_wait_allrefs(dev);
6104
6105 /* paranoia */
6106 BUG_ON(netdev_refcnt_read(dev));
6107 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6108 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6109 WARN_ON(dev->dn_ptr);
6110
6111 if (dev->destructor)
6112 dev->destructor(dev);
6113
6114 /* Report a network device has been unregistered */
6115 rtnl_lock();
6116 dev_net(dev)->dev_unreg_count--;
6117 __rtnl_unlock();
6118 wake_up(&netdev_unregistering_wq);
6119
6120 /* Free network device */
6121 kobject_put(&dev->dev.kobj);
6122 }
6123 }
6124
6125 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6126 * fields in the same order, with only the type differing.
6127 */
6128 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6129 const struct net_device_stats *netdev_stats)
6130 {
6131 #if BITS_PER_LONG == 64
6132 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6133 memcpy(stats64, netdev_stats, sizeof(*stats64));
6134 #else
6135 size_t i, n = sizeof(*stats64) / sizeof(u64);
6136 const unsigned long *src = (const unsigned long *)netdev_stats;
6137 u64 *dst = (u64 *)stats64;
6138
6139 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6140 sizeof(*stats64) / sizeof(u64));
6141 for (i = 0; i < n; i++)
6142 dst[i] = src[i];
6143 #endif
6144 }
6145 EXPORT_SYMBOL(netdev_stats_to_stats64);
6146
6147 /**
6148 * dev_get_stats - get network device statistics
6149 * @dev: device to get statistics from
6150 * @storage: place to store stats
6151 *
6152 * Get network statistics from device. Return @storage.
6153 * The device driver may provide its own method by setting
6154 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6155 * otherwise the internal statistics structure is used.
6156 */
6157 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6158 struct rtnl_link_stats64 *storage)
6159 {
6160 const struct net_device_ops *ops = dev->netdev_ops;
6161
6162 if (ops->ndo_get_stats64) {
6163 memset(storage, 0, sizeof(*storage));
6164 ops->ndo_get_stats64(dev, storage);
6165 } else if (ops->ndo_get_stats) {
6166 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6167 } else {
6168 netdev_stats_to_stats64(storage, &dev->stats);
6169 }
6170 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6171 return storage;
6172 }
6173 EXPORT_SYMBOL(dev_get_stats);
6174
6175 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6176 {
6177 struct netdev_queue *queue = dev_ingress_queue(dev);
6178
6179 #ifdef CONFIG_NET_CLS_ACT
6180 if (queue)
6181 return queue;
6182 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6183 if (!queue)
6184 return NULL;
6185 netdev_init_one_queue(dev, queue, NULL);
6186 queue->qdisc = &noop_qdisc;
6187 queue->qdisc_sleeping = &noop_qdisc;
6188 rcu_assign_pointer(dev->ingress_queue, queue);
6189 #endif
6190 return queue;
6191 }
6192
6193 static const struct ethtool_ops default_ethtool_ops;
6194
6195 void netdev_set_default_ethtool_ops(struct net_device *dev,
6196 const struct ethtool_ops *ops)
6197 {
6198 if (dev->ethtool_ops == &default_ethtool_ops)
6199 dev->ethtool_ops = ops;
6200 }
6201 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6202
6203 void netdev_freemem(struct net_device *dev)
6204 {
6205 char *addr = (char *)dev - dev->padded;
6206
6207 if (is_vmalloc_addr(addr))
6208 vfree(addr);
6209 else
6210 kfree(addr);
6211 }
6212
6213 /**
6214 * alloc_netdev_mqs - allocate network device
6215 * @sizeof_priv: size of private data to allocate space for
6216 * @name: device name format string
6217 * @setup: callback to initialize device
6218 * @txqs: the number of TX subqueues to allocate
6219 * @rxqs: the number of RX subqueues to allocate
6220 *
6221 * Allocates a struct net_device with private data area for driver use
6222 * and performs basic initialization. Also allocates subquue structs
6223 * for each queue on the device.
6224 */
6225 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6226 void (*setup)(struct net_device *),
6227 unsigned int txqs, unsigned int rxqs)
6228 {
6229 struct net_device *dev;
6230 size_t alloc_size;
6231 struct net_device *p;
6232
6233 BUG_ON(strlen(name) >= sizeof(dev->name));
6234
6235 if (txqs < 1) {
6236 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6237 return NULL;
6238 }
6239
6240 #ifdef CONFIG_RPS
6241 if (rxqs < 1) {
6242 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6243 return NULL;
6244 }
6245 #endif
6246
6247 alloc_size = sizeof(struct net_device);
6248 if (sizeof_priv) {
6249 /* ensure 32-byte alignment of private area */
6250 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6251 alloc_size += sizeof_priv;
6252 }
6253 /* ensure 32-byte alignment of whole construct */
6254 alloc_size += NETDEV_ALIGN - 1;
6255
6256 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6257 if (!p)
6258 p = vzalloc(alloc_size);
6259 if (!p)
6260 return NULL;
6261
6262 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6263 dev->padded = (char *)dev - (char *)p;
6264
6265 dev->pcpu_refcnt = alloc_percpu(int);
6266 if (!dev->pcpu_refcnt)
6267 goto free_dev;
6268
6269 if (dev_addr_init(dev))
6270 goto free_pcpu;
6271
6272 dev_mc_init(dev);
6273 dev_uc_init(dev);
6274
6275 dev_net_set(dev, &init_net);
6276
6277 dev->gso_max_size = GSO_MAX_SIZE;
6278 dev->gso_max_segs = GSO_MAX_SEGS;
6279
6280 INIT_LIST_HEAD(&dev->napi_list);
6281 INIT_LIST_HEAD(&dev->unreg_list);
6282 INIT_LIST_HEAD(&dev->close_list);
6283 INIT_LIST_HEAD(&dev->link_watch_list);
6284 INIT_LIST_HEAD(&dev->adj_list.upper);
6285 INIT_LIST_HEAD(&dev->adj_list.lower);
6286 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6287 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6288 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6289 setup(dev);
6290
6291 dev->num_tx_queues = txqs;
6292 dev->real_num_tx_queues = txqs;
6293 if (netif_alloc_netdev_queues(dev))
6294 goto free_all;
6295
6296 #ifdef CONFIG_RPS
6297 dev->num_rx_queues = rxqs;
6298 dev->real_num_rx_queues = rxqs;
6299 if (netif_alloc_rx_queues(dev))
6300 goto free_all;
6301 #endif
6302
6303 strcpy(dev->name, name);
6304 dev->group = INIT_NETDEV_GROUP;
6305 if (!dev->ethtool_ops)
6306 dev->ethtool_ops = &default_ethtool_ops;
6307 return dev;
6308
6309 free_all:
6310 free_netdev(dev);
6311 return NULL;
6312
6313 free_pcpu:
6314 free_percpu(dev->pcpu_refcnt);
6315 netif_free_tx_queues(dev);
6316 #ifdef CONFIG_RPS
6317 kfree(dev->_rx);
6318 #endif
6319
6320 free_dev:
6321 netdev_freemem(dev);
6322 return NULL;
6323 }
6324 EXPORT_SYMBOL(alloc_netdev_mqs);
6325
6326 /**
6327 * free_netdev - free network device
6328 * @dev: device
6329 *
6330 * This function does the last stage of destroying an allocated device
6331 * interface. The reference to the device object is released.
6332 * If this is the last reference then it will be freed.
6333 */
6334 void free_netdev(struct net_device *dev)
6335 {
6336 struct napi_struct *p, *n;
6337
6338 release_net(dev_net(dev));
6339
6340 netif_free_tx_queues(dev);
6341 #ifdef CONFIG_RPS
6342 kfree(dev->_rx);
6343 #endif
6344
6345 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6346
6347 /* Flush device addresses */
6348 dev_addr_flush(dev);
6349
6350 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6351 netif_napi_del(p);
6352
6353 free_percpu(dev->pcpu_refcnt);
6354 dev->pcpu_refcnt = NULL;
6355
6356 /* Compatibility with error handling in drivers */
6357 if (dev->reg_state == NETREG_UNINITIALIZED) {
6358 netdev_freemem(dev);
6359 return;
6360 }
6361
6362 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6363 dev->reg_state = NETREG_RELEASED;
6364
6365 /* will free via device release */
6366 put_device(&dev->dev);
6367 }
6368 EXPORT_SYMBOL(free_netdev);
6369
6370 /**
6371 * synchronize_net - Synchronize with packet receive processing
6372 *
6373 * Wait for packets currently being received to be done.
6374 * Does not block later packets from starting.
6375 */
6376 void synchronize_net(void)
6377 {
6378 might_sleep();
6379 if (rtnl_is_locked())
6380 synchronize_rcu_expedited();
6381 else
6382 synchronize_rcu();
6383 }
6384 EXPORT_SYMBOL(synchronize_net);
6385
6386 /**
6387 * unregister_netdevice_queue - remove device from the kernel
6388 * @dev: device
6389 * @head: list
6390 *
6391 * This function shuts down a device interface and removes it
6392 * from the kernel tables.
6393 * If head not NULL, device is queued to be unregistered later.
6394 *
6395 * Callers must hold the rtnl semaphore. You may want
6396 * unregister_netdev() instead of this.
6397 */
6398
6399 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6400 {
6401 ASSERT_RTNL();
6402
6403 if (head) {
6404 list_move_tail(&dev->unreg_list, head);
6405 } else {
6406 rollback_registered(dev);
6407 /* Finish processing unregister after unlock */
6408 net_set_todo(dev);
6409 }
6410 }
6411 EXPORT_SYMBOL(unregister_netdevice_queue);
6412
6413 /**
6414 * unregister_netdevice_many - unregister many devices
6415 * @head: list of devices
6416 */
6417 void unregister_netdevice_many(struct list_head *head)
6418 {
6419 struct net_device *dev;
6420
6421 if (!list_empty(head)) {
6422 rollback_registered_many(head);
6423 list_for_each_entry(dev, head, unreg_list)
6424 net_set_todo(dev);
6425 }
6426 }
6427 EXPORT_SYMBOL(unregister_netdevice_many);
6428
6429 /**
6430 * unregister_netdev - remove device from the kernel
6431 * @dev: device
6432 *
6433 * This function shuts down a device interface and removes it
6434 * from the kernel tables.
6435 *
6436 * This is just a wrapper for unregister_netdevice that takes
6437 * the rtnl semaphore. In general you want to use this and not
6438 * unregister_netdevice.
6439 */
6440 void unregister_netdev(struct net_device *dev)
6441 {
6442 rtnl_lock();
6443 unregister_netdevice(dev);
6444 rtnl_unlock();
6445 }
6446 EXPORT_SYMBOL(unregister_netdev);
6447
6448 /**
6449 * dev_change_net_namespace - move device to different nethost namespace
6450 * @dev: device
6451 * @net: network namespace
6452 * @pat: If not NULL name pattern to try if the current device name
6453 * is already taken in the destination network namespace.
6454 *
6455 * This function shuts down a device interface and moves it
6456 * to a new network namespace. On success 0 is returned, on
6457 * a failure a netagive errno code is returned.
6458 *
6459 * Callers must hold the rtnl semaphore.
6460 */
6461
6462 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6463 {
6464 int err;
6465
6466 ASSERT_RTNL();
6467
6468 /* Don't allow namespace local devices to be moved. */
6469 err = -EINVAL;
6470 if (dev->features & NETIF_F_NETNS_LOCAL)
6471 goto out;
6472
6473 /* Ensure the device has been registrered */
6474 if (dev->reg_state != NETREG_REGISTERED)
6475 goto out;
6476
6477 /* Get out if there is nothing todo */
6478 err = 0;
6479 if (net_eq(dev_net(dev), net))
6480 goto out;
6481
6482 /* Pick the destination device name, and ensure
6483 * we can use it in the destination network namespace.
6484 */
6485 err = -EEXIST;
6486 if (__dev_get_by_name(net, dev->name)) {
6487 /* We get here if we can't use the current device name */
6488 if (!pat)
6489 goto out;
6490 if (dev_get_valid_name(net, dev, pat) < 0)
6491 goto out;
6492 }
6493
6494 /*
6495 * And now a mini version of register_netdevice unregister_netdevice.
6496 */
6497
6498 /* If device is running close it first. */
6499 dev_close(dev);
6500
6501 /* And unlink it from device chain */
6502 err = -ENODEV;
6503 unlist_netdevice(dev);
6504
6505 synchronize_net();
6506
6507 /* Shutdown queueing discipline. */
6508 dev_shutdown(dev);
6509
6510 /* Notify protocols, that we are about to destroy
6511 this device. They should clean all the things.
6512
6513 Note that dev->reg_state stays at NETREG_REGISTERED.
6514 This is wanted because this way 8021q and macvlan know
6515 the device is just moving and can keep their slaves up.
6516 */
6517 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6518 rcu_barrier();
6519 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6520 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6521
6522 /*
6523 * Flush the unicast and multicast chains
6524 */
6525 dev_uc_flush(dev);
6526 dev_mc_flush(dev);
6527
6528 /* Send a netdev-removed uevent to the old namespace */
6529 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6530
6531 /* Actually switch the network namespace */
6532 dev_net_set(dev, net);
6533
6534 /* If there is an ifindex conflict assign a new one */
6535 if (__dev_get_by_index(net, dev->ifindex)) {
6536 int iflink = (dev->iflink == dev->ifindex);
6537 dev->ifindex = dev_new_index(net);
6538 if (iflink)
6539 dev->iflink = dev->ifindex;
6540 }
6541
6542 /* Send a netdev-add uevent to the new namespace */
6543 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6544
6545 /* Fixup kobjects */
6546 err = device_rename(&dev->dev, dev->name);
6547 WARN_ON(err);
6548
6549 /* Add the device back in the hashes */
6550 list_netdevice(dev);
6551
6552 /* Notify protocols, that a new device appeared. */
6553 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6554
6555 /*
6556 * Prevent userspace races by waiting until the network
6557 * device is fully setup before sending notifications.
6558 */
6559 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6560
6561 synchronize_net();
6562 err = 0;
6563 out:
6564 return err;
6565 }
6566 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6567
6568 static int dev_cpu_callback(struct notifier_block *nfb,
6569 unsigned long action,
6570 void *ocpu)
6571 {
6572 struct sk_buff **list_skb;
6573 struct sk_buff *skb;
6574 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6575 struct softnet_data *sd, *oldsd;
6576
6577 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6578 return NOTIFY_OK;
6579
6580 local_irq_disable();
6581 cpu = smp_processor_id();
6582 sd = &per_cpu(softnet_data, cpu);
6583 oldsd = &per_cpu(softnet_data, oldcpu);
6584
6585 /* Find end of our completion_queue. */
6586 list_skb = &sd->completion_queue;
6587 while (*list_skb)
6588 list_skb = &(*list_skb)->next;
6589 /* Append completion queue from offline CPU. */
6590 *list_skb = oldsd->completion_queue;
6591 oldsd->completion_queue = NULL;
6592
6593 /* Append output queue from offline CPU. */
6594 if (oldsd->output_queue) {
6595 *sd->output_queue_tailp = oldsd->output_queue;
6596 sd->output_queue_tailp = oldsd->output_queue_tailp;
6597 oldsd->output_queue = NULL;
6598 oldsd->output_queue_tailp = &oldsd->output_queue;
6599 }
6600 /* Append NAPI poll list from offline CPU. */
6601 if (!list_empty(&oldsd->poll_list)) {
6602 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6603 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6604 }
6605
6606 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6607 local_irq_enable();
6608
6609 /* Process offline CPU's input_pkt_queue */
6610 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6611 netif_rx(skb);
6612 input_queue_head_incr(oldsd);
6613 }
6614 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6615 netif_rx(skb);
6616 input_queue_head_incr(oldsd);
6617 }
6618
6619 return NOTIFY_OK;
6620 }
6621
6622
6623 /**
6624 * netdev_increment_features - increment feature set by one
6625 * @all: current feature set
6626 * @one: new feature set
6627 * @mask: mask feature set
6628 *
6629 * Computes a new feature set after adding a device with feature set
6630 * @one to the master device with current feature set @all. Will not
6631 * enable anything that is off in @mask. Returns the new feature set.
6632 */
6633 netdev_features_t netdev_increment_features(netdev_features_t all,
6634 netdev_features_t one, netdev_features_t mask)
6635 {
6636 if (mask & NETIF_F_GEN_CSUM)
6637 mask |= NETIF_F_ALL_CSUM;
6638 mask |= NETIF_F_VLAN_CHALLENGED;
6639
6640 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6641 all &= one | ~NETIF_F_ALL_FOR_ALL;
6642
6643 /* If one device supports hw checksumming, set for all. */
6644 if (all & NETIF_F_GEN_CSUM)
6645 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6646
6647 return all;
6648 }
6649 EXPORT_SYMBOL(netdev_increment_features);
6650
6651 static struct hlist_head * __net_init netdev_create_hash(void)
6652 {
6653 int i;
6654 struct hlist_head *hash;
6655
6656 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6657 if (hash != NULL)
6658 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6659 INIT_HLIST_HEAD(&hash[i]);
6660
6661 return hash;
6662 }
6663
6664 /* Initialize per network namespace state */
6665 static int __net_init netdev_init(struct net *net)
6666 {
6667 if (net != &init_net)
6668 INIT_LIST_HEAD(&net->dev_base_head);
6669
6670 net->dev_name_head = netdev_create_hash();
6671 if (net->dev_name_head == NULL)
6672 goto err_name;
6673
6674 net->dev_index_head = netdev_create_hash();
6675 if (net->dev_index_head == NULL)
6676 goto err_idx;
6677
6678 return 0;
6679
6680 err_idx:
6681 kfree(net->dev_name_head);
6682 err_name:
6683 return -ENOMEM;
6684 }
6685
6686 /**
6687 * netdev_drivername - network driver for the device
6688 * @dev: network device
6689 *
6690 * Determine network driver for device.
6691 */
6692 const char *netdev_drivername(const struct net_device *dev)
6693 {
6694 const struct device_driver *driver;
6695 const struct device *parent;
6696 const char *empty = "";
6697
6698 parent = dev->dev.parent;
6699 if (!parent)
6700 return empty;
6701
6702 driver = parent->driver;
6703 if (driver && driver->name)
6704 return driver->name;
6705 return empty;
6706 }
6707
6708 static int __netdev_printk(const char *level, const struct net_device *dev,
6709 struct va_format *vaf)
6710 {
6711 int r;
6712
6713 if (dev && dev->dev.parent) {
6714 r = dev_printk_emit(level[1] - '0',
6715 dev->dev.parent,
6716 "%s %s %s: %pV",
6717 dev_driver_string(dev->dev.parent),
6718 dev_name(dev->dev.parent),
6719 netdev_name(dev), vaf);
6720 } else if (dev) {
6721 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6722 } else {
6723 r = printk("%s(NULL net_device): %pV", level, vaf);
6724 }
6725
6726 return r;
6727 }
6728
6729 int netdev_printk(const char *level, const struct net_device *dev,
6730 const char *format, ...)
6731 {
6732 struct va_format vaf;
6733 va_list args;
6734 int r;
6735
6736 va_start(args, format);
6737
6738 vaf.fmt = format;
6739 vaf.va = &args;
6740
6741 r = __netdev_printk(level, dev, &vaf);
6742
6743 va_end(args);
6744
6745 return r;
6746 }
6747 EXPORT_SYMBOL(netdev_printk);
6748
6749 #define define_netdev_printk_level(func, level) \
6750 int func(const struct net_device *dev, const char *fmt, ...) \
6751 { \
6752 int r; \
6753 struct va_format vaf; \
6754 va_list args; \
6755 \
6756 va_start(args, fmt); \
6757 \
6758 vaf.fmt = fmt; \
6759 vaf.va = &args; \
6760 \
6761 r = __netdev_printk(level, dev, &vaf); \
6762 \
6763 va_end(args); \
6764 \
6765 return r; \
6766 } \
6767 EXPORT_SYMBOL(func);
6768
6769 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6770 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6771 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6772 define_netdev_printk_level(netdev_err, KERN_ERR);
6773 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6774 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6775 define_netdev_printk_level(netdev_info, KERN_INFO);
6776
6777 static void __net_exit netdev_exit(struct net *net)
6778 {
6779 kfree(net->dev_name_head);
6780 kfree(net->dev_index_head);
6781 }
6782
6783 static struct pernet_operations __net_initdata netdev_net_ops = {
6784 .init = netdev_init,
6785 .exit = netdev_exit,
6786 };
6787
6788 static void __net_exit default_device_exit(struct net *net)
6789 {
6790 struct net_device *dev, *aux;
6791 /*
6792 * Push all migratable network devices back to the
6793 * initial network namespace
6794 */
6795 rtnl_lock();
6796 for_each_netdev_safe(net, dev, aux) {
6797 int err;
6798 char fb_name[IFNAMSIZ];
6799
6800 /* Ignore unmoveable devices (i.e. loopback) */
6801 if (dev->features & NETIF_F_NETNS_LOCAL)
6802 continue;
6803
6804 /* Leave virtual devices for the generic cleanup */
6805 if (dev->rtnl_link_ops)
6806 continue;
6807
6808 /* Push remaining network devices to init_net */
6809 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6810 err = dev_change_net_namespace(dev, &init_net, fb_name);
6811 if (err) {
6812 pr_emerg("%s: failed to move %s to init_net: %d\n",
6813 __func__, dev->name, err);
6814 BUG();
6815 }
6816 }
6817 rtnl_unlock();
6818 }
6819
6820 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
6821 {
6822 /* Return with the rtnl_lock held when there are no network
6823 * devices unregistering in any network namespace in net_list.
6824 */
6825 struct net *net;
6826 bool unregistering;
6827 DEFINE_WAIT(wait);
6828
6829 for (;;) {
6830 prepare_to_wait(&netdev_unregistering_wq, &wait,
6831 TASK_UNINTERRUPTIBLE);
6832 unregistering = false;
6833 rtnl_lock();
6834 list_for_each_entry(net, net_list, exit_list) {
6835 if (net->dev_unreg_count > 0) {
6836 unregistering = true;
6837 break;
6838 }
6839 }
6840 if (!unregistering)
6841 break;
6842 __rtnl_unlock();
6843 schedule();
6844 }
6845 finish_wait(&netdev_unregistering_wq, &wait);
6846 }
6847
6848 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6849 {
6850 /* At exit all network devices most be removed from a network
6851 * namespace. Do this in the reverse order of registration.
6852 * Do this across as many network namespaces as possible to
6853 * improve batching efficiency.
6854 */
6855 struct net_device *dev;
6856 struct net *net;
6857 LIST_HEAD(dev_kill_list);
6858
6859 /* To prevent network device cleanup code from dereferencing
6860 * loopback devices or network devices that have been freed
6861 * wait here for all pending unregistrations to complete,
6862 * before unregistring the loopback device and allowing the
6863 * network namespace be freed.
6864 *
6865 * The netdev todo list containing all network devices
6866 * unregistrations that happen in default_device_exit_batch
6867 * will run in the rtnl_unlock() at the end of
6868 * default_device_exit_batch.
6869 */
6870 rtnl_lock_unregistering(net_list);
6871 list_for_each_entry(net, net_list, exit_list) {
6872 for_each_netdev_reverse(net, dev) {
6873 if (dev->rtnl_link_ops)
6874 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6875 else
6876 unregister_netdevice_queue(dev, &dev_kill_list);
6877 }
6878 }
6879 unregister_netdevice_many(&dev_kill_list);
6880 list_del(&dev_kill_list);
6881 rtnl_unlock();
6882 }
6883
6884 static struct pernet_operations __net_initdata default_device_ops = {
6885 .exit = default_device_exit,
6886 .exit_batch = default_device_exit_batch,
6887 };
6888
6889 /*
6890 * Initialize the DEV module. At boot time this walks the device list and
6891 * unhooks any devices that fail to initialise (normally hardware not
6892 * present) and leaves us with a valid list of present and active devices.
6893 *
6894 */
6895
6896 /*
6897 * This is called single threaded during boot, so no need
6898 * to take the rtnl semaphore.
6899 */
6900 static int __init net_dev_init(void)
6901 {
6902 int i, rc = -ENOMEM;
6903
6904 BUG_ON(!dev_boot_phase);
6905
6906 if (dev_proc_init())
6907 goto out;
6908
6909 if (netdev_kobject_init())
6910 goto out;
6911
6912 INIT_LIST_HEAD(&ptype_all);
6913 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6914 INIT_LIST_HEAD(&ptype_base[i]);
6915
6916 INIT_LIST_HEAD(&offload_base);
6917
6918 if (register_pernet_subsys(&netdev_net_ops))
6919 goto out;
6920
6921 /*
6922 * Initialise the packet receive queues.
6923 */
6924
6925 for_each_possible_cpu(i) {
6926 struct softnet_data *sd = &per_cpu(softnet_data, i);
6927
6928 memset(sd, 0, sizeof(*sd));
6929 skb_queue_head_init(&sd->input_pkt_queue);
6930 skb_queue_head_init(&sd->process_queue);
6931 sd->completion_queue = NULL;
6932 INIT_LIST_HEAD(&sd->poll_list);
6933 sd->output_queue = NULL;
6934 sd->output_queue_tailp = &sd->output_queue;
6935 #ifdef CONFIG_RPS
6936 sd->csd.func = rps_trigger_softirq;
6937 sd->csd.info = sd;
6938 sd->csd.flags = 0;
6939 sd->cpu = i;
6940 #endif
6941
6942 sd->backlog.poll = process_backlog;
6943 sd->backlog.weight = weight_p;
6944 sd->backlog.gro_list = NULL;
6945 sd->backlog.gro_count = 0;
6946
6947 #ifdef CONFIG_NET_FLOW_LIMIT
6948 sd->flow_limit = NULL;
6949 #endif
6950 }
6951
6952 dev_boot_phase = 0;
6953
6954 /* The loopback device is special if any other network devices
6955 * is present in a network namespace the loopback device must
6956 * be present. Since we now dynamically allocate and free the
6957 * loopback device ensure this invariant is maintained by
6958 * keeping the loopback device as the first device on the
6959 * list of network devices. Ensuring the loopback devices
6960 * is the first device that appears and the last network device
6961 * that disappears.
6962 */
6963 if (register_pernet_device(&loopback_net_ops))
6964 goto out;
6965
6966 if (register_pernet_device(&default_device_ops))
6967 goto out;
6968
6969 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6970 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6971
6972 hotcpu_notifier(dev_cpu_callback, 0);
6973 dst_init();
6974 rc = 0;
6975 out:
6976 return rc;
6977 }
6978
6979 subsys_initcall(net_dev_init);