]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/core/dev.c
net: include inetdevice.h for rcu_dereference_raw api change
[mirror_ubuntu-zesty-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133
134 #include "net-sysfs.h"
135
136 /* Instead of increasing this, you should create a hash table. */
137 #define MAX_GRO_SKBS 8
138
139 /* This should be increased if a protocol with a bigger head is added. */
140 #define GRO_MAX_HEAD (MAX_HEADER + 128)
141
142 /*
143 * The list of packet types we will receive (as opposed to discard)
144 * and the routines to invoke.
145 *
146 * Why 16. Because with 16 the only overlap we get on a hash of the
147 * low nibble of the protocol value is RARP/SNAP/X.25.
148 *
149 * NOTE: That is no longer true with the addition of VLAN tags. Not
150 * sure which should go first, but I bet it won't make much
151 * difference if we are running VLANs. The good news is that
152 * this protocol won't be in the list unless compiled in, so
153 * the average user (w/out VLANs) will not be adversely affected.
154 * --BLG
155 *
156 * 0800 IP
157 * 8100 802.1Q VLAN
158 * 0001 802.3
159 * 0002 AX.25
160 * 0004 802.2
161 * 8035 RARP
162 * 0005 SNAP
163 * 0805 X.25
164 * 0806 ARP
165 * 8137 IPX
166 * 0009 Localtalk
167 * 86DD IPv6
168 */
169
170 #define PTYPE_HASH_SIZE (16)
171 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
172
173 static DEFINE_SPINLOCK(ptype_lock);
174 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
175 static struct list_head ptype_all __read_mostly; /* Taps */
176
177 /*
178 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
179 * semaphore.
180 *
181 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
182 *
183 * Writers must hold the rtnl semaphore while they loop through the
184 * dev_base_head list, and hold dev_base_lock for writing when they do the
185 * actual updates. This allows pure readers to access the list even
186 * while a writer is preparing to update it.
187 *
188 * To put it another way, dev_base_lock is held for writing only to
189 * protect against pure readers; the rtnl semaphore provides the
190 * protection against other writers.
191 *
192 * See, for example usages, register_netdevice() and
193 * unregister_netdevice(), which must be called with the rtnl
194 * semaphore held.
195 */
196 DEFINE_RWLOCK(dev_base_lock);
197 EXPORT_SYMBOL(dev_base_lock);
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
208 }
209
210 static inline void rps_lock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213 spin_lock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 static inline void rps_unlock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 spin_unlock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 /* Device list insertion */
225 static int list_netdevice(struct net_device *dev)
226 {
227 struct net *net = dev_net(dev);
228
229 ASSERT_RTNL();
230
231 write_lock_bh(&dev_base_lock);
232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
234 hlist_add_head_rcu(&dev->index_hlist,
235 dev_index_hash(net, dev->ifindex));
236 write_unlock_bh(&dev_base_lock);
237 return 0;
238 }
239
240 /* Device list removal
241 * caller must respect a RCU grace period before freeing/reusing dev
242 */
243 static void unlist_netdevice(struct net_device *dev)
244 {
245 ASSERT_RTNL();
246
247 /* Unlink dev from the device chain */
248 write_lock_bh(&dev_base_lock);
249 list_del_rcu(&dev->dev_list);
250 hlist_del_rcu(&dev->name_hlist);
251 hlist_del_rcu(&dev->index_hlist);
252 write_unlock_bh(&dev_base_lock);
253 }
254
255 /*
256 * Our notifier list
257 */
258
259 static RAW_NOTIFIER_HEAD(netdev_chain);
260
261 /*
262 * Device drivers call our routines to queue packets here. We empty the
263 * queue in the local softnet handler.
264 */
265
266 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
267 EXPORT_PER_CPU_SYMBOL(softnet_data);
268
269 #ifdef CONFIG_LOCKDEP
270 /*
271 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
272 * according to dev->type
273 */
274 static const unsigned short netdev_lock_type[] =
275 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
276 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
277 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
278 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
279 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
280 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
281 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
282 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
283 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
284 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
285 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
286 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
287 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
288 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
289 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
290 ARPHRD_VOID, ARPHRD_NONE};
291
292 static const char *const netdev_lock_name[] =
293 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
294 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
295 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
296 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
297 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
298 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
299 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
300 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
301 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
302 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
303 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
304 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
305 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
306 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
307 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
308 "_xmit_VOID", "_xmit_NONE"};
309
310 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
311 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
312
313 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
314 {
315 int i;
316
317 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
318 if (netdev_lock_type[i] == dev_type)
319 return i;
320 /* the last key is used by default */
321 return ARRAY_SIZE(netdev_lock_type) - 1;
322 }
323
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326 {
327 int i;
328
329 i = netdev_lock_pos(dev_type);
330 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
331 netdev_lock_name[i]);
332 }
333
334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335 {
336 int i;
337
338 i = netdev_lock_pos(dev->type);
339 lockdep_set_class_and_name(&dev->addr_list_lock,
340 &netdev_addr_lock_key[i],
341 netdev_lock_name[i]);
342 }
343 #else
344 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
345 unsigned short dev_type)
346 {
347 }
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 }
351 #endif
352
353 /*******************************************************************************
354
355 Protocol management and registration routines
356
357 *******************************************************************************/
358
359 /*
360 * Add a protocol ID to the list. Now that the input handler is
361 * smarter we can dispense with all the messy stuff that used to be
362 * here.
363 *
364 * BEWARE!!! Protocol handlers, mangling input packets,
365 * MUST BE last in hash buckets and checking protocol handlers
366 * MUST start from promiscuous ptype_all chain in net_bh.
367 * It is true now, do not change it.
368 * Explanation follows: if protocol handler, mangling packet, will
369 * be the first on list, it is not able to sense, that packet
370 * is cloned and should be copied-on-write, so that it will
371 * change it and subsequent readers will get broken packet.
372 * --ANK (980803)
373 */
374
375 static inline struct list_head *ptype_head(const struct packet_type *pt)
376 {
377 if (pt->type == htons(ETH_P_ALL))
378 return &ptype_all;
379 else
380 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
381 }
382
383 /**
384 * dev_add_pack - add packet handler
385 * @pt: packet type declaration
386 *
387 * Add a protocol handler to the networking stack. The passed &packet_type
388 * is linked into kernel lists and may not be freed until it has been
389 * removed from the kernel lists.
390 *
391 * This call does not sleep therefore it can not
392 * guarantee all CPU's that are in middle of receiving packets
393 * will see the new packet type (until the next received packet).
394 */
395
396 void dev_add_pack(struct packet_type *pt)
397 {
398 struct list_head *head = ptype_head(pt);
399
400 spin_lock(&ptype_lock);
401 list_add_rcu(&pt->list, head);
402 spin_unlock(&ptype_lock);
403 }
404 EXPORT_SYMBOL(dev_add_pack);
405
406 /**
407 * __dev_remove_pack - remove packet handler
408 * @pt: packet type declaration
409 *
410 * Remove a protocol handler that was previously added to the kernel
411 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
412 * from the kernel lists and can be freed or reused once this function
413 * returns.
414 *
415 * The packet type might still be in use by receivers
416 * and must not be freed until after all the CPU's have gone
417 * through a quiescent state.
418 */
419 void __dev_remove_pack(struct packet_type *pt)
420 {
421 struct list_head *head = ptype_head(pt);
422 struct packet_type *pt1;
423
424 spin_lock(&ptype_lock);
425
426 list_for_each_entry(pt1, head, list) {
427 if (pt == pt1) {
428 list_del_rcu(&pt->list);
429 goto out;
430 }
431 }
432
433 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
434 out:
435 spin_unlock(&ptype_lock);
436 }
437 EXPORT_SYMBOL(__dev_remove_pack);
438
439 /**
440 * dev_remove_pack - remove packet handler
441 * @pt: packet type declaration
442 *
443 * Remove a protocol handler that was previously added to the kernel
444 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
445 * from the kernel lists and can be freed or reused once this function
446 * returns.
447 *
448 * This call sleeps to guarantee that no CPU is looking at the packet
449 * type after return.
450 */
451 void dev_remove_pack(struct packet_type *pt)
452 {
453 __dev_remove_pack(pt);
454
455 synchronize_net();
456 }
457 EXPORT_SYMBOL(dev_remove_pack);
458
459 /******************************************************************************
460
461 Device Boot-time Settings Routines
462
463 *******************************************************************************/
464
465 /* Boot time configuration table */
466 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
467
468 /**
469 * netdev_boot_setup_add - add new setup entry
470 * @name: name of the device
471 * @map: configured settings for the device
472 *
473 * Adds new setup entry to the dev_boot_setup list. The function
474 * returns 0 on error and 1 on success. This is a generic routine to
475 * all netdevices.
476 */
477 static int netdev_boot_setup_add(char *name, struct ifmap *map)
478 {
479 struct netdev_boot_setup *s;
480 int i;
481
482 s = dev_boot_setup;
483 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
484 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
485 memset(s[i].name, 0, sizeof(s[i].name));
486 strlcpy(s[i].name, name, IFNAMSIZ);
487 memcpy(&s[i].map, map, sizeof(s[i].map));
488 break;
489 }
490 }
491
492 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
493 }
494
495 /**
496 * netdev_boot_setup_check - check boot time settings
497 * @dev: the netdevice
498 *
499 * Check boot time settings for the device.
500 * The found settings are set for the device to be used
501 * later in the device probing.
502 * Returns 0 if no settings found, 1 if they are.
503 */
504 int netdev_boot_setup_check(struct net_device *dev)
505 {
506 struct netdev_boot_setup *s = dev_boot_setup;
507 int i;
508
509 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
510 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
511 !strcmp(dev->name, s[i].name)) {
512 dev->irq = s[i].map.irq;
513 dev->base_addr = s[i].map.base_addr;
514 dev->mem_start = s[i].map.mem_start;
515 dev->mem_end = s[i].map.mem_end;
516 return 1;
517 }
518 }
519 return 0;
520 }
521 EXPORT_SYMBOL(netdev_boot_setup_check);
522
523
524 /**
525 * netdev_boot_base - get address from boot time settings
526 * @prefix: prefix for network device
527 * @unit: id for network device
528 *
529 * Check boot time settings for the base address of device.
530 * The found settings are set for the device to be used
531 * later in the device probing.
532 * Returns 0 if no settings found.
533 */
534 unsigned long netdev_boot_base(const char *prefix, int unit)
535 {
536 const struct netdev_boot_setup *s = dev_boot_setup;
537 char name[IFNAMSIZ];
538 int i;
539
540 sprintf(name, "%s%d", prefix, unit);
541
542 /*
543 * If device already registered then return base of 1
544 * to indicate not to probe for this interface
545 */
546 if (__dev_get_by_name(&init_net, name))
547 return 1;
548
549 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
550 if (!strcmp(name, s[i].name))
551 return s[i].map.base_addr;
552 return 0;
553 }
554
555 /*
556 * Saves at boot time configured settings for any netdevice.
557 */
558 int __init netdev_boot_setup(char *str)
559 {
560 int ints[5];
561 struct ifmap map;
562
563 str = get_options(str, ARRAY_SIZE(ints), ints);
564 if (!str || !*str)
565 return 0;
566
567 /* Save settings */
568 memset(&map, 0, sizeof(map));
569 if (ints[0] > 0)
570 map.irq = ints[1];
571 if (ints[0] > 1)
572 map.base_addr = ints[2];
573 if (ints[0] > 2)
574 map.mem_start = ints[3];
575 if (ints[0] > 3)
576 map.mem_end = ints[4];
577
578 /* Add new entry to the list */
579 return netdev_boot_setup_add(str, &map);
580 }
581
582 __setup("netdev=", netdev_boot_setup);
583
584 /*******************************************************************************
585
586 Device Interface Subroutines
587
588 *******************************************************************************/
589
590 /**
591 * __dev_get_by_name - find a device by its name
592 * @net: the applicable net namespace
593 * @name: name to find
594 *
595 * Find an interface by name. Must be called under RTNL semaphore
596 * or @dev_base_lock. If the name is found a pointer to the device
597 * is returned. If the name is not found then %NULL is returned. The
598 * reference counters are not incremented so the caller must be
599 * careful with locks.
600 */
601
602 struct net_device *__dev_get_by_name(struct net *net, const char *name)
603 {
604 struct hlist_node *p;
605 struct net_device *dev;
606 struct hlist_head *head = dev_name_hash(net, name);
607
608 hlist_for_each_entry(dev, p, head, name_hlist)
609 if (!strncmp(dev->name, name, IFNAMSIZ))
610 return dev;
611
612 return NULL;
613 }
614 EXPORT_SYMBOL(__dev_get_by_name);
615
616 /**
617 * dev_get_by_name_rcu - find a device by its name
618 * @net: the applicable net namespace
619 * @name: name to find
620 *
621 * Find an interface by name.
622 * If the name is found a pointer to the device is returned.
623 * If the name is not found then %NULL is returned.
624 * The reference counters are not incremented so the caller must be
625 * careful with locks. The caller must hold RCU lock.
626 */
627
628 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
629 {
630 struct hlist_node *p;
631 struct net_device *dev;
632 struct hlist_head *head = dev_name_hash(net, name);
633
634 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
635 if (!strncmp(dev->name, name, IFNAMSIZ))
636 return dev;
637
638 return NULL;
639 }
640 EXPORT_SYMBOL(dev_get_by_name_rcu);
641
642 /**
643 * dev_get_by_name - find a device by its name
644 * @net: the applicable net namespace
645 * @name: name to find
646 *
647 * Find an interface by name. This can be called from any
648 * context and does its own locking. The returned handle has
649 * the usage count incremented and the caller must use dev_put() to
650 * release it when it is no longer needed. %NULL is returned if no
651 * matching device is found.
652 */
653
654 struct net_device *dev_get_by_name(struct net *net, const char *name)
655 {
656 struct net_device *dev;
657
658 rcu_read_lock();
659 dev = dev_get_by_name_rcu(net, name);
660 if (dev)
661 dev_hold(dev);
662 rcu_read_unlock();
663 return dev;
664 }
665 EXPORT_SYMBOL(dev_get_by_name);
666
667 /**
668 * __dev_get_by_index - find a device by its ifindex
669 * @net: the applicable net namespace
670 * @ifindex: index of device
671 *
672 * Search for an interface by index. Returns %NULL if the device
673 * is not found or a pointer to the device. The device has not
674 * had its reference counter increased so the caller must be careful
675 * about locking. The caller must hold either the RTNL semaphore
676 * or @dev_base_lock.
677 */
678
679 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
680 {
681 struct hlist_node *p;
682 struct net_device *dev;
683 struct hlist_head *head = dev_index_hash(net, ifindex);
684
685 hlist_for_each_entry(dev, p, head, index_hlist)
686 if (dev->ifindex == ifindex)
687 return dev;
688
689 return NULL;
690 }
691 EXPORT_SYMBOL(__dev_get_by_index);
692
693 /**
694 * dev_get_by_index_rcu - find a device by its ifindex
695 * @net: the applicable net namespace
696 * @ifindex: index of device
697 *
698 * Search for an interface by index. Returns %NULL if the device
699 * is not found or a pointer to the device. The device has not
700 * had its reference counter increased so the caller must be careful
701 * about locking. The caller must hold RCU lock.
702 */
703
704 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
705 {
706 struct hlist_node *p;
707 struct net_device *dev;
708 struct hlist_head *head = dev_index_hash(net, ifindex);
709
710 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
711 if (dev->ifindex == ifindex)
712 return dev;
713
714 return NULL;
715 }
716 EXPORT_SYMBOL(dev_get_by_index_rcu);
717
718
719 /**
720 * dev_get_by_index - find a device by its ifindex
721 * @net: the applicable net namespace
722 * @ifindex: index of device
723 *
724 * Search for an interface by index. Returns NULL if the device
725 * is not found or a pointer to the device. The device returned has
726 * had a reference added and the pointer is safe until the user calls
727 * dev_put to indicate they have finished with it.
728 */
729
730 struct net_device *dev_get_by_index(struct net *net, int ifindex)
731 {
732 struct net_device *dev;
733
734 rcu_read_lock();
735 dev = dev_get_by_index_rcu(net, ifindex);
736 if (dev)
737 dev_hold(dev);
738 rcu_read_unlock();
739 return dev;
740 }
741 EXPORT_SYMBOL(dev_get_by_index);
742
743 /**
744 * dev_getbyhwaddr - find a device by its hardware address
745 * @net: the applicable net namespace
746 * @type: media type of device
747 * @ha: hardware address
748 *
749 * Search for an interface by MAC address. Returns NULL if the device
750 * is not found or a pointer to the device. The caller must hold the
751 * rtnl semaphore. The returned device has not had its ref count increased
752 * and the caller must therefore be careful about locking
753 *
754 * BUGS:
755 * If the API was consistent this would be __dev_get_by_hwaddr
756 */
757
758 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
759 {
760 struct net_device *dev;
761
762 ASSERT_RTNL();
763
764 for_each_netdev(net, dev)
765 if (dev->type == type &&
766 !memcmp(dev->dev_addr, ha, dev->addr_len))
767 return dev;
768
769 return NULL;
770 }
771 EXPORT_SYMBOL(dev_getbyhwaddr);
772
773 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
774 {
775 struct net_device *dev;
776
777 ASSERT_RTNL();
778 for_each_netdev(net, dev)
779 if (dev->type == type)
780 return dev;
781
782 return NULL;
783 }
784 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
785
786 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
787 {
788 struct net_device *dev, *ret = NULL;
789
790 rcu_read_lock();
791 for_each_netdev_rcu(net, dev)
792 if (dev->type == type) {
793 dev_hold(dev);
794 ret = dev;
795 break;
796 }
797 rcu_read_unlock();
798 return ret;
799 }
800 EXPORT_SYMBOL(dev_getfirstbyhwtype);
801
802 /**
803 * dev_get_by_flags_rcu - find any device with given flags
804 * @net: the applicable net namespace
805 * @if_flags: IFF_* values
806 * @mask: bitmask of bits in if_flags to check
807 *
808 * Search for any interface with the given flags. Returns NULL if a device
809 * is not found or a pointer to the device. Must be called inside
810 * rcu_read_lock(), and result refcount is unchanged.
811 */
812
813 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
814 unsigned short mask)
815 {
816 struct net_device *dev, *ret;
817
818 ret = NULL;
819 for_each_netdev_rcu(net, dev) {
820 if (((dev->flags ^ if_flags) & mask) == 0) {
821 ret = dev;
822 break;
823 }
824 }
825 return ret;
826 }
827 EXPORT_SYMBOL(dev_get_by_flags_rcu);
828
829 /**
830 * dev_valid_name - check if name is okay for network device
831 * @name: name string
832 *
833 * Network device names need to be valid file names to
834 * to allow sysfs to work. We also disallow any kind of
835 * whitespace.
836 */
837 int dev_valid_name(const char *name)
838 {
839 if (*name == '\0')
840 return 0;
841 if (strlen(name) >= IFNAMSIZ)
842 return 0;
843 if (!strcmp(name, ".") || !strcmp(name, ".."))
844 return 0;
845
846 while (*name) {
847 if (*name == '/' || isspace(*name))
848 return 0;
849 name++;
850 }
851 return 1;
852 }
853 EXPORT_SYMBOL(dev_valid_name);
854
855 /**
856 * __dev_alloc_name - allocate a name for a device
857 * @net: network namespace to allocate the device name in
858 * @name: name format string
859 * @buf: scratch buffer and result name string
860 *
861 * Passed a format string - eg "lt%d" it will try and find a suitable
862 * id. It scans list of devices to build up a free map, then chooses
863 * the first empty slot. The caller must hold the dev_base or rtnl lock
864 * while allocating the name and adding the device in order to avoid
865 * duplicates.
866 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
867 * Returns the number of the unit assigned or a negative errno code.
868 */
869
870 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
871 {
872 int i = 0;
873 const char *p;
874 const int max_netdevices = 8*PAGE_SIZE;
875 unsigned long *inuse;
876 struct net_device *d;
877
878 p = strnchr(name, IFNAMSIZ-1, '%');
879 if (p) {
880 /*
881 * Verify the string as this thing may have come from
882 * the user. There must be either one "%d" and no other "%"
883 * characters.
884 */
885 if (p[1] != 'd' || strchr(p + 2, '%'))
886 return -EINVAL;
887
888 /* Use one page as a bit array of possible slots */
889 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
890 if (!inuse)
891 return -ENOMEM;
892
893 for_each_netdev(net, d) {
894 if (!sscanf(d->name, name, &i))
895 continue;
896 if (i < 0 || i >= max_netdevices)
897 continue;
898
899 /* avoid cases where sscanf is not exact inverse of printf */
900 snprintf(buf, IFNAMSIZ, name, i);
901 if (!strncmp(buf, d->name, IFNAMSIZ))
902 set_bit(i, inuse);
903 }
904
905 i = find_first_zero_bit(inuse, max_netdevices);
906 free_page((unsigned long) inuse);
907 }
908
909 if (buf != name)
910 snprintf(buf, IFNAMSIZ, name, i);
911 if (!__dev_get_by_name(net, buf))
912 return i;
913
914 /* It is possible to run out of possible slots
915 * when the name is long and there isn't enough space left
916 * for the digits, or if all bits are used.
917 */
918 return -ENFILE;
919 }
920
921 /**
922 * dev_alloc_name - allocate a name for a device
923 * @dev: device
924 * @name: name format string
925 *
926 * Passed a format string - eg "lt%d" it will try and find a suitable
927 * id. It scans list of devices to build up a free map, then chooses
928 * the first empty slot. The caller must hold the dev_base or rtnl lock
929 * while allocating the name and adding the device in order to avoid
930 * duplicates.
931 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
932 * Returns the number of the unit assigned or a negative errno code.
933 */
934
935 int dev_alloc_name(struct net_device *dev, const char *name)
936 {
937 char buf[IFNAMSIZ];
938 struct net *net;
939 int ret;
940
941 BUG_ON(!dev_net(dev));
942 net = dev_net(dev);
943 ret = __dev_alloc_name(net, name, buf);
944 if (ret >= 0)
945 strlcpy(dev->name, buf, IFNAMSIZ);
946 return ret;
947 }
948 EXPORT_SYMBOL(dev_alloc_name);
949
950 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
951 {
952 struct net *net;
953
954 BUG_ON(!dev_net(dev));
955 net = dev_net(dev);
956
957 if (!dev_valid_name(name))
958 return -EINVAL;
959
960 if (fmt && strchr(name, '%'))
961 return dev_alloc_name(dev, name);
962 else if (__dev_get_by_name(net, name))
963 return -EEXIST;
964 else if (dev->name != name)
965 strlcpy(dev->name, name, IFNAMSIZ);
966
967 return 0;
968 }
969
970 /**
971 * dev_change_name - change name of a device
972 * @dev: device
973 * @newname: name (or format string) must be at least IFNAMSIZ
974 *
975 * Change name of a device, can pass format strings "eth%d".
976 * for wildcarding.
977 */
978 int dev_change_name(struct net_device *dev, const char *newname)
979 {
980 char oldname[IFNAMSIZ];
981 int err = 0;
982 int ret;
983 struct net *net;
984
985 ASSERT_RTNL();
986 BUG_ON(!dev_net(dev));
987
988 net = dev_net(dev);
989 if (dev->flags & IFF_UP)
990 return -EBUSY;
991
992 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
993 return 0;
994
995 memcpy(oldname, dev->name, IFNAMSIZ);
996
997 err = dev_get_valid_name(dev, newname, 1);
998 if (err < 0)
999 return err;
1000
1001 rollback:
1002 ret = device_rename(&dev->dev, dev->name);
1003 if (ret) {
1004 memcpy(dev->name, oldname, IFNAMSIZ);
1005 return ret;
1006 }
1007
1008 write_lock_bh(&dev_base_lock);
1009 hlist_del(&dev->name_hlist);
1010 write_unlock_bh(&dev_base_lock);
1011
1012 synchronize_rcu();
1013
1014 write_lock_bh(&dev_base_lock);
1015 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1016 write_unlock_bh(&dev_base_lock);
1017
1018 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1019 ret = notifier_to_errno(ret);
1020
1021 if (ret) {
1022 /* err >= 0 after dev_alloc_name() or stores the first errno */
1023 if (err >= 0) {
1024 err = ret;
1025 memcpy(dev->name, oldname, IFNAMSIZ);
1026 goto rollback;
1027 } else {
1028 printk(KERN_ERR
1029 "%s: name change rollback failed: %d.\n",
1030 dev->name, ret);
1031 }
1032 }
1033
1034 return err;
1035 }
1036
1037 /**
1038 * dev_set_alias - change ifalias of a device
1039 * @dev: device
1040 * @alias: name up to IFALIASZ
1041 * @len: limit of bytes to copy from info
1042 *
1043 * Set ifalias for a device,
1044 */
1045 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1046 {
1047 ASSERT_RTNL();
1048
1049 if (len >= IFALIASZ)
1050 return -EINVAL;
1051
1052 if (!len) {
1053 if (dev->ifalias) {
1054 kfree(dev->ifalias);
1055 dev->ifalias = NULL;
1056 }
1057 return 0;
1058 }
1059
1060 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1061 if (!dev->ifalias)
1062 return -ENOMEM;
1063
1064 strlcpy(dev->ifalias, alias, len+1);
1065 return len;
1066 }
1067
1068
1069 /**
1070 * netdev_features_change - device changes features
1071 * @dev: device to cause notification
1072 *
1073 * Called to indicate a device has changed features.
1074 */
1075 void netdev_features_change(struct net_device *dev)
1076 {
1077 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1078 }
1079 EXPORT_SYMBOL(netdev_features_change);
1080
1081 /**
1082 * netdev_state_change - device changes state
1083 * @dev: device to cause notification
1084 *
1085 * Called to indicate a device has changed state. This function calls
1086 * the notifier chains for netdev_chain and sends a NEWLINK message
1087 * to the routing socket.
1088 */
1089 void netdev_state_change(struct net_device *dev)
1090 {
1091 if (dev->flags & IFF_UP) {
1092 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1093 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1094 }
1095 }
1096 EXPORT_SYMBOL(netdev_state_change);
1097
1098 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1099 {
1100 return call_netdevice_notifiers(event, dev);
1101 }
1102 EXPORT_SYMBOL(netdev_bonding_change);
1103
1104 /**
1105 * dev_load - load a network module
1106 * @net: the applicable net namespace
1107 * @name: name of interface
1108 *
1109 * If a network interface is not present and the process has suitable
1110 * privileges this function loads the module. If module loading is not
1111 * available in this kernel then it becomes a nop.
1112 */
1113
1114 void dev_load(struct net *net, const char *name)
1115 {
1116 struct net_device *dev;
1117
1118 rcu_read_lock();
1119 dev = dev_get_by_name_rcu(net, name);
1120 rcu_read_unlock();
1121
1122 if (!dev && capable(CAP_NET_ADMIN))
1123 request_module("%s", name);
1124 }
1125 EXPORT_SYMBOL(dev_load);
1126
1127 static int __dev_open(struct net_device *dev)
1128 {
1129 const struct net_device_ops *ops = dev->netdev_ops;
1130 int ret;
1131
1132 ASSERT_RTNL();
1133
1134 /*
1135 * Is it even present?
1136 */
1137 if (!netif_device_present(dev))
1138 return -ENODEV;
1139
1140 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1141 ret = notifier_to_errno(ret);
1142 if (ret)
1143 return ret;
1144
1145 /*
1146 * Call device private open method
1147 */
1148 set_bit(__LINK_STATE_START, &dev->state);
1149
1150 if (ops->ndo_validate_addr)
1151 ret = ops->ndo_validate_addr(dev);
1152
1153 if (!ret && ops->ndo_open)
1154 ret = ops->ndo_open(dev);
1155
1156 /*
1157 * If it went open OK then:
1158 */
1159
1160 if (ret)
1161 clear_bit(__LINK_STATE_START, &dev->state);
1162 else {
1163 /*
1164 * Set the flags.
1165 */
1166 dev->flags |= IFF_UP;
1167
1168 /*
1169 * Enable NET_DMA
1170 */
1171 net_dmaengine_get();
1172
1173 /*
1174 * Initialize multicasting status
1175 */
1176 dev_set_rx_mode(dev);
1177
1178 /*
1179 * Wakeup transmit queue engine
1180 */
1181 dev_activate(dev);
1182 }
1183
1184 return ret;
1185 }
1186
1187 /**
1188 * dev_open - prepare an interface for use.
1189 * @dev: device to open
1190 *
1191 * Takes a device from down to up state. The device's private open
1192 * function is invoked and then the multicast lists are loaded. Finally
1193 * the device is moved into the up state and a %NETDEV_UP message is
1194 * sent to the netdev notifier chain.
1195 *
1196 * Calling this function on an active interface is a nop. On a failure
1197 * a negative errno code is returned.
1198 */
1199 int dev_open(struct net_device *dev)
1200 {
1201 int ret;
1202
1203 /*
1204 * Is it already up?
1205 */
1206 if (dev->flags & IFF_UP)
1207 return 0;
1208
1209 /*
1210 * Open device
1211 */
1212 ret = __dev_open(dev);
1213 if (ret < 0)
1214 return ret;
1215
1216 /*
1217 * ... and announce new interface.
1218 */
1219 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1220 call_netdevice_notifiers(NETDEV_UP, dev);
1221
1222 return ret;
1223 }
1224 EXPORT_SYMBOL(dev_open);
1225
1226 static int __dev_close(struct net_device *dev)
1227 {
1228 const struct net_device_ops *ops = dev->netdev_ops;
1229
1230 ASSERT_RTNL();
1231 might_sleep();
1232
1233 /*
1234 * Tell people we are going down, so that they can
1235 * prepare to death, when device is still operating.
1236 */
1237 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1238
1239 clear_bit(__LINK_STATE_START, &dev->state);
1240
1241 /* Synchronize to scheduled poll. We cannot touch poll list,
1242 * it can be even on different cpu. So just clear netif_running().
1243 *
1244 * dev->stop() will invoke napi_disable() on all of it's
1245 * napi_struct instances on this device.
1246 */
1247 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1248
1249 dev_deactivate(dev);
1250
1251 /*
1252 * Call the device specific close. This cannot fail.
1253 * Only if device is UP
1254 *
1255 * We allow it to be called even after a DETACH hot-plug
1256 * event.
1257 */
1258 if (ops->ndo_stop)
1259 ops->ndo_stop(dev);
1260
1261 /*
1262 * Device is now down.
1263 */
1264
1265 dev->flags &= ~IFF_UP;
1266
1267 /*
1268 * Shutdown NET_DMA
1269 */
1270 net_dmaengine_put();
1271
1272 return 0;
1273 }
1274
1275 /**
1276 * dev_close - shutdown an interface.
1277 * @dev: device to shutdown
1278 *
1279 * This function moves an active device into down state. A
1280 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1281 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1282 * chain.
1283 */
1284 int dev_close(struct net_device *dev)
1285 {
1286 if (!(dev->flags & IFF_UP))
1287 return 0;
1288
1289 __dev_close(dev);
1290
1291 /*
1292 * Tell people we are down
1293 */
1294 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1295 call_netdevice_notifiers(NETDEV_DOWN, dev);
1296
1297 return 0;
1298 }
1299 EXPORT_SYMBOL(dev_close);
1300
1301
1302 /**
1303 * dev_disable_lro - disable Large Receive Offload on a device
1304 * @dev: device
1305 *
1306 * Disable Large Receive Offload (LRO) on a net device. Must be
1307 * called under RTNL. This is needed if received packets may be
1308 * forwarded to another interface.
1309 */
1310 void dev_disable_lro(struct net_device *dev)
1311 {
1312 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1313 dev->ethtool_ops->set_flags) {
1314 u32 flags = dev->ethtool_ops->get_flags(dev);
1315 if (flags & ETH_FLAG_LRO) {
1316 flags &= ~ETH_FLAG_LRO;
1317 dev->ethtool_ops->set_flags(dev, flags);
1318 }
1319 }
1320 WARN_ON(dev->features & NETIF_F_LRO);
1321 }
1322 EXPORT_SYMBOL(dev_disable_lro);
1323
1324
1325 static int dev_boot_phase = 1;
1326
1327 /*
1328 * Device change register/unregister. These are not inline or static
1329 * as we export them to the world.
1330 */
1331
1332 /**
1333 * register_netdevice_notifier - register a network notifier block
1334 * @nb: notifier
1335 *
1336 * Register a notifier to be called when network device events occur.
1337 * The notifier passed is linked into the kernel structures and must
1338 * not be reused until it has been unregistered. A negative errno code
1339 * is returned on a failure.
1340 *
1341 * When registered all registration and up events are replayed
1342 * to the new notifier to allow device to have a race free
1343 * view of the network device list.
1344 */
1345
1346 int register_netdevice_notifier(struct notifier_block *nb)
1347 {
1348 struct net_device *dev;
1349 struct net_device *last;
1350 struct net *net;
1351 int err;
1352
1353 rtnl_lock();
1354 err = raw_notifier_chain_register(&netdev_chain, nb);
1355 if (err)
1356 goto unlock;
1357 if (dev_boot_phase)
1358 goto unlock;
1359 for_each_net(net) {
1360 for_each_netdev(net, dev) {
1361 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1362 err = notifier_to_errno(err);
1363 if (err)
1364 goto rollback;
1365
1366 if (!(dev->flags & IFF_UP))
1367 continue;
1368
1369 nb->notifier_call(nb, NETDEV_UP, dev);
1370 }
1371 }
1372
1373 unlock:
1374 rtnl_unlock();
1375 return err;
1376
1377 rollback:
1378 last = dev;
1379 for_each_net(net) {
1380 for_each_netdev(net, dev) {
1381 if (dev == last)
1382 break;
1383
1384 if (dev->flags & IFF_UP) {
1385 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1386 nb->notifier_call(nb, NETDEV_DOWN, dev);
1387 }
1388 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1389 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1390 }
1391 }
1392
1393 raw_notifier_chain_unregister(&netdev_chain, nb);
1394 goto unlock;
1395 }
1396 EXPORT_SYMBOL(register_netdevice_notifier);
1397
1398 /**
1399 * unregister_netdevice_notifier - unregister a network notifier block
1400 * @nb: notifier
1401 *
1402 * Unregister a notifier previously registered by
1403 * register_netdevice_notifier(). The notifier is unlinked into the
1404 * kernel structures and may then be reused. A negative errno code
1405 * is returned on a failure.
1406 */
1407
1408 int unregister_netdevice_notifier(struct notifier_block *nb)
1409 {
1410 int err;
1411
1412 rtnl_lock();
1413 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1414 rtnl_unlock();
1415 return err;
1416 }
1417 EXPORT_SYMBOL(unregister_netdevice_notifier);
1418
1419 /**
1420 * call_netdevice_notifiers - call all network notifier blocks
1421 * @val: value passed unmodified to notifier function
1422 * @dev: net_device pointer passed unmodified to notifier function
1423 *
1424 * Call all network notifier blocks. Parameters and return value
1425 * are as for raw_notifier_call_chain().
1426 */
1427
1428 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1429 {
1430 ASSERT_RTNL();
1431 return raw_notifier_call_chain(&netdev_chain, val, dev);
1432 }
1433
1434 /* When > 0 there are consumers of rx skb time stamps */
1435 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1436
1437 void net_enable_timestamp(void)
1438 {
1439 atomic_inc(&netstamp_needed);
1440 }
1441 EXPORT_SYMBOL(net_enable_timestamp);
1442
1443 void net_disable_timestamp(void)
1444 {
1445 atomic_dec(&netstamp_needed);
1446 }
1447 EXPORT_SYMBOL(net_disable_timestamp);
1448
1449 static inline void net_timestamp_set(struct sk_buff *skb)
1450 {
1451 if (atomic_read(&netstamp_needed))
1452 __net_timestamp(skb);
1453 else
1454 skb->tstamp.tv64 = 0;
1455 }
1456
1457 static inline void net_timestamp_check(struct sk_buff *skb)
1458 {
1459 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1460 __net_timestamp(skb);
1461 }
1462
1463 /**
1464 * dev_forward_skb - loopback an skb to another netif
1465 *
1466 * @dev: destination network device
1467 * @skb: buffer to forward
1468 *
1469 * return values:
1470 * NET_RX_SUCCESS (no congestion)
1471 * NET_RX_DROP (packet was dropped, but freed)
1472 *
1473 * dev_forward_skb can be used for injecting an skb from the
1474 * start_xmit function of one device into the receive queue
1475 * of another device.
1476 *
1477 * The receiving device may be in another namespace, so
1478 * we have to clear all information in the skb that could
1479 * impact namespace isolation.
1480 */
1481 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1482 {
1483 skb_orphan(skb);
1484 nf_reset(skb);
1485
1486 if (!(dev->flags & IFF_UP) ||
1487 (skb->len > (dev->mtu + dev->hard_header_len))) {
1488 kfree_skb(skb);
1489 return NET_RX_DROP;
1490 }
1491 skb_set_dev(skb, dev);
1492 skb->tstamp.tv64 = 0;
1493 skb->pkt_type = PACKET_HOST;
1494 skb->protocol = eth_type_trans(skb, dev);
1495 return netif_rx(skb);
1496 }
1497 EXPORT_SYMBOL_GPL(dev_forward_skb);
1498
1499 /*
1500 * Support routine. Sends outgoing frames to any network
1501 * taps currently in use.
1502 */
1503
1504 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1505 {
1506 struct packet_type *ptype;
1507
1508 #ifdef CONFIG_NET_CLS_ACT
1509 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1510 net_timestamp_set(skb);
1511 #else
1512 net_timestamp_set(skb);
1513 #endif
1514
1515 rcu_read_lock();
1516 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1517 /* Never send packets back to the socket
1518 * they originated from - MvS (miquels@drinkel.ow.org)
1519 */
1520 if ((ptype->dev == dev || !ptype->dev) &&
1521 (ptype->af_packet_priv == NULL ||
1522 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1523 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1524 if (!skb2)
1525 break;
1526
1527 /* skb->nh should be correctly
1528 set by sender, so that the second statement is
1529 just protection against buggy protocols.
1530 */
1531 skb_reset_mac_header(skb2);
1532
1533 if (skb_network_header(skb2) < skb2->data ||
1534 skb2->network_header > skb2->tail) {
1535 if (net_ratelimit())
1536 printk(KERN_CRIT "protocol %04x is "
1537 "buggy, dev %s\n",
1538 ntohs(skb2->protocol),
1539 dev->name);
1540 skb_reset_network_header(skb2);
1541 }
1542
1543 skb2->transport_header = skb2->network_header;
1544 skb2->pkt_type = PACKET_OUTGOING;
1545 ptype->func(skb2, skb->dev, ptype, skb->dev);
1546 }
1547 }
1548 rcu_read_unlock();
1549 }
1550
1551 /*
1552 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1553 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1554 */
1555 void netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1556 {
1557 unsigned int real_num = dev->real_num_tx_queues;
1558
1559 if (unlikely(txq > dev->num_tx_queues))
1560 ;
1561 else if (txq > real_num)
1562 dev->real_num_tx_queues = txq;
1563 else if (txq < real_num) {
1564 dev->real_num_tx_queues = txq;
1565 qdisc_reset_all_tx_gt(dev, txq);
1566 }
1567 }
1568 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1569
1570 static inline void __netif_reschedule(struct Qdisc *q)
1571 {
1572 struct softnet_data *sd;
1573 unsigned long flags;
1574
1575 local_irq_save(flags);
1576 sd = &__get_cpu_var(softnet_data);
1577 q->next_sched = NULL;
1578 *sd->output_queue_tailp = q;
1579 sd->output_queue_tailp = &q->next_sched;
1580 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1581 local_irq_restore(flags);
1582 }
1583
1584 void __netif_schedule(struct Qdisc *q)
1585 {
1586 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1587 __netif_reschedule(q);
1588 }
1589 EXPORT_SYMBOL(__netif_schedule);
1590
1591 void dev_kfree_skb_irq(struct sk_buff *skb)
1592 {
1593 if (atomic_dec_and_test(&skb->users)) {
1594 struct softnet_data *sd;
1595 unsigned long flags;
1596
1597 local_irq_save(flags);
1598 sd = &__get_cpu_var(softnet_data);
1599 skb->next = sd->completion_queue;
1600 sd->completion_queue = skb;
1601 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1602 local_irq_restore(flags);
1603 }
1604 }
1605 EXPORT_SYMBOL(dev_kfree_skb_irq);
1606
1607 void dev_kfree_skb_any(struct sk_buff *skb)
1608 {
1609 if (in_irq() || irqs_disabled())
1610 dev_kfree_skb_irq(skb);
1611 else
1612 dev_kfree_skb(skb);
1613 }
1614 EXPORT_SYMBOL(dev_kfree_skb_any);
1615
1616
1617 /**
1618 * netif_device_detach - mark device as removed
1619 * @dev: network device
1620 *
1621 * Mark device as removed from system and therefore no longer available.
1622 */
1623 void netif_device_detach(struct net_device *dev)
1624 {
1625 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1626 netif_running(dev)) {
1627 netif_tx_stop_all_queues(dev);
1628 }
1629 }
1630 EXPORT_SYMBOL(netif_device_detach);
1631
1632 /**
1633 * netif_device_attach - mark device as attached
1634 * @dev: network device
1635 *
1636 * Mark device as attached from system and restart if needed.
1637 */
1638 void netif_device_attach(struct net_device *dev)
1639 {
1640 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1641 netif_running(dev)) {
1642 netif_tx_wake_all_queues(dev);
1643 __netdev_watchdog_up(dev);
1644 }
1645 }
1646 EXPORT_SYMBOL(netif_device_attach);
1647
1648 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1649 {
1650 return ((features & NETIF_F_GEN_CSUM) ||
1651 ((features & NETIF_F_IP_CSUM) &&
1652 protocol == htons(ETH_P_IP)) ||
1653 ((features & NETIF_F_IPV6_CSUM) &&
1654 protocol == htons(ETH_P_IPV6)) ||
1655 ((features & NETIF_F_FCOE_CRC) &&
1656 protocol == htons(ETH_P_FCOE)));
1657 }
1658
1659 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1660 {
1661 if (can_checksum_protocol(dev->features, skb->protocol))
1662 return true;
1663
1664 if (skb->protocol == htons(ETH_P_8021Q)) {
1665 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1666 if (can_checksum_protocol(dev->features & dev->vlan_features,
1667 veh->h_vlan_encapsulated_proto))
1668 return true;
1669 }
1670
1671 return false;
1672 }
1673
1674 /**
1675 * skb_dev_set -- assign a new device to a buffer
1676 * @skb: buffer for the new device
1677 * @dev: network device
1678 *
1679 * If an skb is owned by a device already, we have to reset
1680 * all data private to the namespace a device belongs to
1681 * before assigning it a new device.
1682 */
1683 #ifdef CONFIG_NET_NS
1684 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1685 {
1686 skb_dst_drop(skb);
1687 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1688 secpath_reset(skb);
1689 nf_reset(skb);
1690 skb_init_secmark(skb);
1691 skb->mark = 0;
1692 skb->priority = 0;
1693 skb->nf_trace = 0;
1694 skb->ipvs_property = 0;
1695 #ifdef CONFIG_NET_SCHED
1696 skb->tc_index = 0;
1697 #endif
1698 }
1699 skb->dev = dev;
1700 }
1701 EXPORT_SYMBOL(skb_set_dev);
1702 #endif /* CONFIG_NET_NS */
1703
1704 /*
1705 * Invalidate hardware checksum when packet is to be mangled, and
1706 * complete checksum manually on outgoing path.
1707 */
1708 int skb_checksum_help(struct sk_buff *skb)
1709 {
1710 __wsum csum;
1711 int ret = 0, offset;
1712
1713 if (skb->ip_summed == CHECKSUM_COMPLETE)
1714 goto out_set_summed;
1715
1716 if (unlikely(skb_shinfo(skb)->gso_size)) {
1717 /* Let GSO fix up the checksum. */
1718 goto out_set_summed;
1719 }
1720
1721 offset = skb->csum_start - skb_headroom(skb);
1722 BUG_ON(offset >= skb_headlen(skb));
1723 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1724
1725 offset += skb->csum_offset;
1726 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1727
1728 if (skb_cloned(skb) &&
1729 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1730 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1731 if (ret)
1732 goto out;
1733 }
1734
1735 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1736 out_set_summed:
1737 skb->ip_summed = CHECKSUM_NONE;
1738 out:
1739 return ret;
1740 }
1741 EXPORT_SYMBOL(skb_checksum_help);
1742
1743 /**
1744 * skb_gso_segment - Perform segmentation on skb.
1745 * @skb: buffer to segment
1746 * @features: features for the output path (see dev->features)
1747 *
1748 * This function segments the given skb and returns a list of segments.
1749 *
1750 * It may return NULL if the skb requires no segmentation. This is
1751 * only possible when GSO is used for verifying header integrity.
1752 */
1753 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1754 {
1755 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1756 struct packet_type *ptype;
1757 __be16 type = skb->protocol;
1758 int err;
1759
1760 skb_reset_mac_header(skb);
1761 skb->mac_len = skb->network_header - skb->mac_header;
1762 __skb_pull(skb, skb->mac_len);
1763
1764 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1765 struct net_device *dev = skb->dev;
1766 struct ethtool_drvinfo info = {};
1767
1768 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1769 dev->ethtool_ops->get_drvinfo(dev, &info);
1770
1771 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1772 "ip_summed=%d",
1773 info.driver, dev ? dev->features : 0L,
1774 skb->sk ? skb->sk->sk_route_caps : 0L,
1775 skb->len, skb->data_len, skb->ip_summed);
1776
1777 if (skb_header_cloned(skb) &&
1778 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1779 return ERR_PTR(err);
1780 }
1781
1782 rcu_read_lock();
1783 list_for_each_entry_rcu(ptype,
1784 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1785 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1786 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1787 err = ptype->gso_send_check(skb);
1788 segs = ERR_PTR(err);
1789 if (err || skb_gso_ok(skb, features))
1790 break;
1791 __skb_push(skb, (skb->data -
1792 skb_network_header(skb)));
1793 }
1794 segs = ptype->gso_segment(skb, features);
1795 break;
1796 }
1797 }
1798 rcu_read_unlock();
1799
1800 __skb_push(skb, skb->data - skb_mac_header(skb));
1801
1802 return segs;
1803 }
1804 EXPORT_SYMBOL(skb_gso_segment);
1805
1806 /* Take action when hardware reception checksum errors are detected. */
1807 #ifdef CONFIG_BUG
1808 void netdev_rx_csum_fault(struct net_device *dev)
1809 {
1810 if (net_ratelimit()) {
1811 printk(KERN_ERR "%s: hw csum failure.\n",
1812 dev ? dev->name : "<unknown>");
1813 dump_stack();
1814 }
1815 }
1816 EXPORT_SYMBOL(netdev_rx_csum_fault);
1817 #endif
1818
1819 /* Actually, we should eliminate this check as soon as we know, that:
1820 * 1. IOMMU is present and allows to map all the memory.
1821 * 2. No high memory really exists on this machine.
1822 */
1823
1824 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1825 {
1826 #ifdef CONFIG_HIGHMEM
1827 int i;
1828 if (!(dev->features & NETIF_F_HIGHDMA)) {
1829 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1830 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1831 return 1;
1832 }
1833
1834 if (PCI_DMA_BUS_IS_PHYS) {
1835 struct device *pdev = dev->dev.parent;
1836
1837 if (!pdev)
1838 return 0;
1839 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1840 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1841 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1842 return 1;
1843 }
1844 }
1845 #endif
1846 return 0;
1847 }
1848
1849 struct dev_gso_cb {
1850 void (*destructor)(struct sk_buff *skb);
1851 };
1852
1853 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1854
1855 static void dev_gso_skb_destructor(struct sk_buff *skb)
1856 {
1857 struct dev_gso_cb *cb;
1858
1859 do {
1860 struct sk_buff *nskb = skb->next;
1861
1862 skb->next = nskb->next;
1863 nskb->next = NULL;
1864 kfree_skb(nskb);
1865 } while (skb->next);
1866
1867 cb = DEV_GSO_CB(skb);
1868 if (cb->destructor)
1869 cb->destructor(skb);
1870 }
1871
1872 /**
1873 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1874 * @skb: buffer to segment
1875 *
1876 * This function segments the given skb and stores the list of segments
1877 * in skb->next.
1878 */
1879 static int dev_gso_segment(struct sk_buff *skb)
1880 {
1881 struct net_device *dev = skb->dev;
1882 struct sk_buff *segs;
1883 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1884 NETIF_F_SG : 0);
1885
1886 segs = skb_gso_segment(skb, features);
1887
1888 /* Verifying header integrity only. */
1889 if (!segs)
1890 return 0;
1891
1892 if (IS_ERR(segs))
1893 return PTR_ERR(segs);
1894
1895 skb->next = segs;
1896 DEV_GSO_CB(skb)->destructor = skb->destructor;
1897 skb->destructor = dev_gso_skb_destructor;
1898
1899 return 0;
1900 }
1901
1902 /*
1903 * Try to orphan skb early, right before transmission by the device.
1904 * We cannot orphan skb if tx timestamp is requested or the sk-reference
1905 * is needed on driver level for other reasons, e.g. see net/can/raw.c
1906 */
1907 static inline void skb_orphan_try(struct sk_buff *skb)
1908 {
1909 struct sock *sk = skb->sk;
1910
1911 if (sk && !skb_shinfo(skb)->tx_flags) {
1912 /* skb_tx_hash() wont be able to get sk.
1913 * We copy sk_hash into skb->rxhash
1914 */
1915 if (!skb->rxhash)
1916 skb->rxhash = sk->sk_hash;
1917 skb_orphan(skb);
1918 }
1919 }
1920
1921 /*
1922 * Returns true if either:
1923 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
1924 * 2. skb is fragmented and the device does not support SG, or if
1925 * at least one of fragments is in highmem and device does not
1926 * support DMA from it.
1927 */
1928 static inline int skb_needs_linearize(struct sk_buff *skb,
1929 struct net_device *dev)
1930 {
1931 return skb_is_nonlinear(skb) &&
1932 ((skb_has_frag_list(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
1933 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
1934 illegal_highdma(dev, skb))));
1935 }
1936
1937 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1938 struct netdev_queue *txq)
1939 {
1940 const struct net_device_ops *ops = dev->netdev_ops;
1941 int rc = NETDEV_TX_OK;
1942
1943 if (likely(!skb->next)) {
1944 if (!list_empty(&ptype_all))
1945 dev_queue_xmit_nit(skb, dev);
1946
1947 /*
1948 * If device doesnt need skb->dst, release it right now while
1949 * its hot in this cpu cache
1950 */
1951 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1952 skb_dst_drop(skb);
1953
1954 skb_orphan_try(skb);
1955
1956 if (netif_needs_gso(dev, skb)) {
1957 if (unlikely(dev_gso_segment(skb)))
1958 goto out_kfree_skb;
1959 if (skb->next)
1960 goto gso;
1961 } else {
1962 if (skb_needs_linearize(skb, dev) &&
1963 __skb_linearize(skb))
1964 goto out_kfree_skb;
1965
1966 /* If packet is not checksummed and device does not
1967 * support checksumming for this protocol, complete
1968 * checksumming here.
1969 */
1970 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1971 skb_set_transport_header(skb, skb->csum_start -
1972 skb_headroom(skb));
1973 if (!dev_can_checksum(dev, skb) &&
1974 skb_checksum_help(skb))
1975 goto out_kfree_skb;
1976 }
1977 }
1978
1979 rc = ops->ndo_start_xmit(skb, dev);
1980 if (rc == NETDEV_TX_OK)
1981 txq_trans_update(txq);
1982 return rc;
1983 }
1984
1985 gso:
1986 do {
1987 struct sk_buff *nskb = skb->next;
1988
1989 skb->next = nskb->next;
1990 nskb->next = NULL;
1991
1992 /*
1993 * If device doesnt need nskb->dst, release it right now while
1994 * its hot in this cpu cache
1995 */
1996 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1997 skb_dst_drop(nskb);
1998
1999 rc = ops->ndo_start_xmit(nskb, dev);
2000 if (unlikely(rc != NETDEV_TX_OK)) {
2001 if (rc & ~NETDEV_TX_MASK)
2002 goto out_kfree_gso_skb;
2003 nskb->next = skb->next;
2004 skb->next = nskb;
2005 return rc;
2006 }
2007 txq_trans_update(txq);
2008 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2009 return NETDEV_TX_BUSY;
2010 } while (skb->next);
2011
2012 out_kfree_gso_skb:
2013 if (likely(skb->next == NULL))
2014 skb->destructor = DEV_GSO_CB(skb)->destructor;
2015 out_kfree_skb:
2016 kfree_skb(skb);
2017 return rc;
2018 }
2019
2020 static u32 hashrnd __read_mostly;
2021
2022 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
2023 {
2024 u32 hash;
2025
2026 if (skb_rx_queue_recorded(skb)) {
2027 hash = skb_get_rx_queue(skb);
2028 while (unlikely(hash >= dev->real_num_tx_queues))
2029 hash -= dev->real_num_tx_queues;
2030 return hash;
2031 }
2032
2033 if (skb->sk && skb->sk->sk_hash)
2034 hash = skb->sk->sk_hash;
2035 else
2036 hash = (__force u16) skb->protocol ^ skb->rxhash;
2037 hash = jhash_1word(hash, hashrnd);
2038
2039 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
2040 }
2041 EXPORT_SYMBOL(skb_tx_hash);
2042
2043 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2044 {
2045 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2046 if (net_ratelimit()) {
2047 pr_warning("%s selects TX queue %d, but "
2048 "real number of TX queues is %d\n",
2049 dev->name, queue_index, dev->real_num_tx_queues);
2050 }
2051 return 0;
2052 }
2053 return queue_index;
2054 }
2055
2056 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2057 struct sk_buff *skb)
2058 {
2059 int queue_index;
2060 const struct net_device_ops *ops = dev->netdev_ops;
2061
2062 if (ops->ndo_select_queue) {
2063 queue_index = ops->ndo_select_queue(dev, skb);
2064 queue_index = dev_cap_txqueue(dev, queue_index);
2065 } else {
2066 struct sock *sk = skb->sk;
2067 queue_index = sk_tx_queue_get(sk);
2068 if (queue_index < 0) {
2069
2070 queue_index = 0;
2071 if (dev->real_num_tx_queues > 1)
2072 queue_index = skb_tx_hash(dev, skb);
2073
2074 if (sk) {
2075 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2076
2077 if (dst && skb_dst(skb) == dst)
2078 sk_tx_queue_set(sk, queue_index);
2079 }
2080 }
2081 }
2082
2083 skb_set_queue_mapping(skb, queue_index);
2084 return netdev_get_tx_queue(dev, queue_index);
2085 }
2086
2087 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2088 struct net_device *dev,
2089 struct netdev_queue *txq)
2090 {
2091 spinlock_t *root_lock = qdisc_lock(q);
2092 bool contended = qdisc_is_running(q);
2093 int rc;
2094
2095 /*
2096 * Heuristic to force contended enqueues to serialize on a
2097 * separate lock before trying to get qdisc main lock.
2098 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2099 * and dequeue packets faster.
2100 */
2101 if (unlikely(contended))
2102 spin_lock(&q->busylock);
2103
2104 spin_lock(root_lock);
2105 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2106 kfree_skb(skb);
2107 rc = NET_XMIT_DROP;
2108 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2109 qdisc_run_begin(q)) {
2110 /*
2111 * This is a work-conserving queue; there are no old skbs
2112 * waiting to be sent out; and the qdisc is not running -
2113 * xmit the skb directly.
2114 */
2115 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2116 skb_dst_force(skb);
2117 __qdisc_update_bstats(q, skb->len);
2118 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2119 if (unlikely(contended)) {
2120 spin_unlock(&q->busylock);
2121 contended = false;
2122 }
2123 __qdisc_run(q);
2124 } else
2125 qdisc_run_end(q);
2126
2127 rc = NET_XMIT_SUCCESS;
2128 } else {
2129 skb_dst_force(skb);
2130 rc = qdisc_enqueue_root(skb, q);
2131 if (qdisc_run_begin(q)) {
2132 if (unlikely(contended)) {
2133 spin_unlock(&q->busylock);
2134 contended = false;
2135 }
2136 __qdisc_run(q);
2137 }
2138 }
2139 spin_unlock(root_lock);
2140 if (unlikely(contended))
2141 spin_unlock(&q->busylock);
2142 return rc;
2143 }
2144
2145 /**
2146 * dev_queue_xmit - transmit a buffer
2147 * @skb: buffer to transmit
2148 *
2149 * Queue a buffer for transmission to a network device. The caller must
2150 * have set the device and priority and built the buffer before calling
2151 * this function. The function can be called from an interrupt.
2152 *
2153 * A negative errno code is returned on a failure. A success does not
2154 * guarantee the frame will be transmitted as it may be dropped due
2155 * to congestion or traffic shaping.
2156 *
2157 * -----------------------------------------------------------------------------------
2158 * I notice this method can also return errors from the queue disciplines,
2159 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2160 * be positive.
2161 *
2162 * Regardless of the return value, the skb is consumed, so it is currently
2163 * difficult to retry a send to this method. (You can bump the ref count
2164 * before sending to hold a reference for retry if you are careful.)
2165 *
2166 * When calling this method, interrupts MUST be enabled. This is because
2167 * the BH enable code must have IRQs enabled so that it will not deadlock.
2168 * --BLG
2169 */
2170 int dev_queue_xmit(struct sk_buff *skb)
2171 {
2172 struct net_device *dev = skb->dev;
2173 struct netdev_queue *txq;
2174 struct Qdisc *q;
2175 int rc = -ENOMEM;
2176
2177 /* Disable soft irqs for various locks below. Also
2178 * stops preemption for RCU.
2179 */
2180 rcu_read_lock_bh();
2181
2182 txq = dev_pick_tx(dev, skb);
2183 q = rcu_dereference_bh(txq->qdisc);
2184
2185 #ifdef CONFIG_NET_CLS_ACT
2186 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2187 #endif
2188 if (q->enqueue) {
2189 rc = __dev_xmit_skb(skb, q, dev, txq);
2190 goto out;
2191 }
2192
2193 /* The device has no queue. Common case for software devices:
2194 loopback, all the sorts of tunnels...
2195
2196 Really, it is unlikely that netif_tx_lock protection is necessary
2197 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2198 counters.)
2199 However, it is possible, that they rely on protection
2200 made by us here.
2201
2202 Check this and shot the lock. It is not prone from deadlocks.
2203 Either shot noqueue qdisc, it is even simpler 8)
2204 */
2205 if (dev->flags & IFF_UP) {
2206 int cpu = smp_processor_id(); /* ok because BHs are off */
2207
2208 if (txq->xmit_lock_owner != cpu) {
2209
2210 HARD_TX_LOCK(dev, txq, cpu);
2211
2212 if (!netif_tx_queue_stopped(txq)) {
2213 rc = dev_hard_start_xmit(skb, dev, txq);
2214 if (dev_xmit_complete(rc)) {
2215 HARD_TX_UNLOCK(dev, txq);
2216 goto out;
2217 }
2218 }
2219 HARD_TX_UNLOCK(dev, txq);
2220 if (net_ratelimit())
2221 printk(KERN_CRIT "Virtual device %s asks to "
2222 "queue packet!\n", dev->name);
2223 } else {
2224 /* Recursion is detected! It is possible,
2225 * unfortunately */
2226 if (net_ratelimit())
2227 printk(KERN_CRIT "Dead loop on virtual device "
2228 "%s, fix it urgently!\n", dev->name);
2229 }
2230 }
2231
2232 rc = -ENETDOWN;
2233 rcu_read_unlock_bh();
2234
2235 kfree_skb(skb);
2236 return rc;
2237 out:
2238 rcu_read_unlock_bh();
2239 return rc;
2240 }
2241 EXPORT_SYMBOL(dev_queue_xmit);
2242
2243
2244 /*=======================================================================
2245 Receiver routines
2246 =======================================================================*/
2247
2248 int netdev_max_backlog __read_mostly = 1000;
2249 int netdev_tstamp_prequeue __read_mostly = 1;
2250 int netdev_budget __read_mostly = 300;
2251 int weight_p __read_mostly = 64; /* old backlog weight */
2252
2253 /* Called with irq disabled */
2254 static inline void ____napi_schedule(struct softnet_data *sd,
2255 struct napi_struct *napi)
2256 {
2257 list_add_tail(&napi->poll_list, &sd->poll_list);
2258 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2259 }
2260
2261 /*
2262 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2263 * and src/dst port numbers. Returns a non-zero hash number on success
2264 * and 0 on failure.
2265 */
2266 __u32 __skb_get_rxhash(struct sk_buff *skb)
2267 {
2268 int nhoff, hash = 0, poff;
2269 struct ipv6hdr *ip6;
2270 struct iphdr *ip;
2271 u8 ip_proto;
2272 u32 addr1, addr2, ihl;
2273 union {
2274 u32 v32;
2275 u16 v16[2];
2276 } ports;
2277
2278 nhoff = skb_network_offset(skb);
2279
2280 switch (skb->protocol) {
2281 case __constant_htons(ETH_P_IP):
2282 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2283 goto done;
2284
2285 ip = (struct iphdr *) (skb->data + nhoff);
2286 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2287 ip_proto = 0;
2288 else
2289 ip_proto = ip->protocol;
2290 addr1 = (__force u32) ip->saddr;
2291 addr2 = (__force u32) ip->daddr;
2292 ihl = ip->ihl;
2293 break;
2294 case __constant_htons(ETH_P_IPV6):
2295 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2296 goto done;
2297
2298 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2299 ip_proto = ip6->nexthdr;
2300 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2301 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2302 ihl = (40 >> 2);
2303 break;
2304 default:
2305 goto done;
2306 }
2307
2308 ports.v32 = 0;
2309 poff = proto_ports_offset(ip_proto);
2310 if (poff >= 0) {
2311 nhoff += ihl * 4 + poff;
2312 if (pskb_may_pull(skb, nhoff + 4)) {
2313 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2314 if (ports.v16[1] < ports.v16[0])
2315 swap(ports.v16[0], ports.v16[1]);
2316 }
2317 }
2318
2319 /* get a consistent hash (same value on both flow directions) */
2320 if (addr2 < addr1)
2321 swap(addr1, addr2);
2322
2323 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2324 if (!hash)
2325 hash = 1;
2326
2327 done:
2328 return hash;
2329 }
2330 EXPORT_SYMBOL(__skb_get_rxhash);
2331
2332 #ifdef CONFIG_RPS
2333
2334 /* One global table that all flow-based protocols share. */
2335 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2336 EXPORT_SYMBOL(rps_sock_flow_table);
2337
2338 /*
2339 * get_rps_cpu is called from netif_receive_skb and returns the target
2340 * CPU from the RPS map of the receiving queue for a given skb.
2341 * rcu_read_lock must be held on entry.
2342 */
2343 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2344 struct rps_dev_flow **rflowp)
2345 {
2346 struct netdev_rx_queue *rxqueue;
2347 struct rps_map *map = NULL;
2348 struct rps_dev_flow_table *flow_table;
2349 struct rps_sock_flow_table *sock_flow_table;
2350 int cpu = -1;
2351 u16 tcpu;
2352
2353 if (skb_rx_queue_recorded(skb)) {
2354 u16 index = skb_get_rx_queue(skb);
2355 if (unlikely(index >= dev->num_rx_queues)) {
2356 WARN_ONCE(dev->num_rx_queues > 1, "%s received packet "
2357 "on queue %u, but number of RX queues is %u\n",
2358 dev->name, index, dev->num_rx_queues);
2359 goto done;
2360 }
2361 rxqueue = dev->_rx + index;
2362 } else
2363 rxqueue = dev->_rx;
2364
2365 if (rxqueue->rps_map) {
2366 map = rcu_dereference(rxqueue->rps_map);
2367 if (map && map->len == 1) {
2368 tcpu = map->cpus[0];
2369 if (cpu_online(tcpu))
2370 cpu = tcpu;
2371 goto done;
2372 }
2373 } else if (!rxqueue->rps_flow_table) {
2374 goto done;
2375 }
2376
2377 skb_reset_network_header(skb);
2378 if (!skb_get_rxhash(skb))
2379 goto done;
2380
2381 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2382 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2383 if (flow_table && sock_flow_table) {
2384 u16 next_cpu;
2385 struct rps_dev_flow *rflow;
2386
2387 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2388 tcpu = rflow->cpu;
2389
2390 next_cpu = sock_flow_table->ents[skb->rxhash &
2391 sock_flow_table->mask];
2392
2393 /*
2394 * If the desired CPU (where last recvmsg was done) is
2395 * different from current CPU (one in the rx-queue flow
2396 * table entry), switch if one of the following holds:
2397 * - Current CPU is unset (equal to RPS_NO_CPU).
2398 * - Current CPU is offline.
2399 * - The current CPU's queue tail has advanced beyond the
2400 * last packet that was enqueued using this table entry.
2401 * This guarantees that all previous packets for the flow
2402 * have been dequeued, thus preserving in order delivery.
2403 */
2404 if (unlikely(tcpu != next_cpu) &&
2405 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2406 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2407 rflow->last_qtail)) >= 0)) {
2408 tcpu = rflow->cpu = next_cpu;
2409 if (tcpu != RPS_NO_CPU)
2410 rflow->last_qtail = per_cpu(softnet_data,
2411 tcpu).input_queue_head;
2412 }
2413 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2414 *rflowp = rflow;
2415 cpu = tcpu;
2416 goto done;
2417 }
2418 }
2419
2420 if (map) {
2421 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2422
2423 if (cpu_online(tcpu)) {
2424 cpu = tcpu;
2425 goto done;
2426 }
2427 }
2428
2429 done:
2430 return cpu;
2431 }
2432
2433 /* Called from hardirq (IPI) context */
2434 static void rps_trigger_softirq(void *data)
2435 {
2436 struct softnet_data *sd = data;
2437
2438 ____napi_schedule(sd, &sd->backlog);
2439 sd->received_rps++;
2440 }
2441
2442 #endif /* CONFIG_RPS */
2443
2444 /*
2445 * Check if this softnet_data structure is another cpu one
2446 * If yes, queue it to our IPI list and return 1
2447 * If no, return 0
2448 */
2449 static int rps_ipi_queued(struct softnet_data *sd)
2450 {
2451 #ifdef CONFIG_RPS
2452 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2453
2454 if (sd != mysd) {
2455 sd->rps_ipi_next = mysd->rps_ipi_list;
2456 mysd->rps_ipi_list = sd;
2457
2458 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2459 return 1;
2460 }
2461 #endif /* CONFIG_RPS */
2462 return 0;
2463 }
2464
2465 /*
2466 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2467 * queue (may be a remote CPU queue).
2468 */
2469 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2470 unsigned int *qtail)
2471 {
2472 struct softnet_data *sd;
2473 unsigned long flags;
2474
2475 sd = &per_cpu(softnet_data, cpu);
2476
2477 local_irq_save(flags);
2478
2479 rps_lock(sd);
2480 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2481 if (skb_queue_len(&sd->input_pkt_queue)) {
2482 enqueue:
2483 __skb_queue_tail(&sd->input_pkt_queue, skb);
2484 input_queue_tail_incr_save(sd, qtail);
2485 rps_unlock(sd);
2486 local_irq_restore(flags);
2487 return NET_RX_SUCCESS;
2488 }
2489
2490 /* Schedule NAPI for backlog device
2491 * We can use non atomic operation since we own the queue lock
2492 */
2493 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2494 if (!rps_ipi_queued(sd))
2495 ____napi_schedule(sd, &sd->backlog);
2496 }
2497 goto enqueue;
2498 }
2499
2500 sd->dropped++;
2501 rps_unlock(sd);
2502
2503 local_irq_restore(flags);
2504
2505 kfree_skb(skb);
2506 return NET_RX_DROP;
2507 }
2508
2509 /**
2510 * netif_rx - post buffer to the network code
2511 * @skb: buffer to post
2512 *
2513 * This function receives a packet from a device driver and queues it for
2514 * the upper (protocol) levels to process. It always succeeds. The buffer
2515 * may be dropped during processing for congestion control or by the
2516 * protocol layers.
2517 *
2518 * return values:
2519 * NET_RX_SUCCESS (no congestion)
2520 * NET_RX_DROP (packet was dropped)
2521 *
2522 */
2523
2524 int netif_rx(struct sk_buff *skb)
2525 {
2526 int ret;
2527
2528 /* if netpoll wants it, pretend we never saw it */
2529 if (netpoll_rx(skb))
2530 return NET_RX_DROP;
2531
2532 if (netdev_tstamp_prequeue)
2533 net_timestamp_check(skb);
2534
2535 #ifdef CONFIG_RPS
2536 {
2537 struct rps_dev_flow voidflow, *rflow = &voidflow;
2538 int cpu;
2539
2540 preempt_disable();
2541 rcu_read_lock();
2542
2543 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2544 if (cpu < 0)
2545 cpu = smp_processor_id();
2546
2547 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2548
2549 rcu_read_unlock();
2550 preempt_enable();
2551 }
2552 #else
2553 {
2554 unsigned int qtail;
2555 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2556 put_cpu();
2557 }
2558 #endif
2559 return ret;
2560 }
2561 EXPORT_SYMBOL(netif_rx);
2562
2563 int netif_rx_ni(struct sk_buff *skb)
2564 {
2565 int err;
2566
2567 preempt_disable();
2568 err = netif_rx(skb);
2569 if (local_softirq_pending())
2570 do_softirq();
2571 preempt_enable();
2572
2573 return err;
2574 }
2575 EXPORT_SYMBOL(netif_rx_ni);
2576
2577 static void net_tx_action(struct softirq_action *h)
2578 {
2579 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2580
2581 if (sd->completion_queue) {
2582 struct sk_buff *clist;
2583
2584 local_irq_disable();
2585 clist = sd->completion_queue;
2586 sd->completion_queue = NULL;
2587 local_irq_enable();
2588
2589 while (clist) {
2590 struct sk_buff *skb = clist;
2591 clist = clist->next;
2592
2593 WARN_ON(atomic_read(&skb->users));
2594 __kfree_skb(skb);
2595 }
2596 }
2597
2598 if (sd->output_queue) {
2599 struct Qdisc *head;
2600
2601 local_irq_disable();
2602 head = sd->output_queue;
2603 sd->output_queue = NULL;
2604 sd->output_queue_tailp = &sd->output_queue;
2605 local_irq_enable();
2606
2607 while (head) {
2608 struct Qdisc *q = head;
2609 spinlock_t *root_lock;
2610
2611 head = head->next_sched;
2612
2613 root_lock = qdisc_lock(q);
2614 if (spin_trylock(root_lock)) {
2615 smp_mb__before_clear_bit();
2616 clear_bit(__QDISC_STATE_SCHED,
2617 &q->state);
2618 qdisc_run(q);
2619 spin_unlock(root_lock);
2620 } else {
2621 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2622 &q->state)) {
2623 __netif_reschedule(q);
2624 } else {
2625 smp_mb__before_clear_bit();
2626 clear_bit(__QDISC_STATE_SCHED,
2627 &q->state);
2628 }
2629 }
2630 }
2631 }
2632 }
2633
2634 static inline int deliver_skb(struct sk_buff *skb,
2635 struct packet_type *pt_prev,
2636 struct net_device *orig_dev)
2637 {
2638 atomic_inc(&skb->users);
2639 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2640 }
2641
2642 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2643 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2644 /* This hook is defined here for ATM LANE */
2645 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2646 unsigned char *addr) __read_mostly;
2647 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2648 #endif
2649
2650 #ifdef CONFIG_NET_CLS_ACT
2651 /* TODO: Maybe we should just force sch_ingress to be compiled in
2652 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2653 * a compare and 2 stores extra right now if we dont have it on
2654 * but have CONFIG_NET_CLS_ACT
2655 * NOTE: This doesnt stop any functionality; if you dont have
2656 * the ingress scheduler, you just cant add policies on ingress.
2657 *
2658 */
2659 static int ing_filter(struct sk_buff *skb)
2660 {
2661 struct net_device *dev = skb->dev;
2662 u32 ttl = G_TC_RTTL(skb->tc_verd);
2663 struct netdev_queue *rxq;
2664 int result = TC_ACT_OK;
2665 struct Qdisc *q;
2666
2667 if (unlikely(MAX_RED_LOOP < ttl++)) {
2668 if (net_ratelimit())
2669 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2670 skb->skb_iif, dev->ifindex);
2671 return TC_ACT_SHOT;
2672 }
2673
2674 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2675 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2676
2677 rxq = &dev->rx_queue;
2678
2679 q = rxq->qdisc;
2680 if (q != &noop_qdisc) {
2681 spin_lock(qdisc_lock(q));
2682 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2683 result = qdisc_enqueue_root(skb, q);
2684 spin_unlock(qdisc_lock(q));
2685 }
2686
2687 return result;
2688 }
2689
2690 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2691 struct packet_type **pt_prev,
2692 int *ret, struct net_device *orig_dev)
2693 {
2694 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2695 goto out;
2696
2697 if (*pt_prev) {
2698 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2699 *pt_prev = NULL;
2700 }
2701
2702 switch (ing_filter(skb)) {
2703 case TC_ACT_SHOT:
2704 case TC_ACT_STOLEN:
2705 kfree_skb(skb);
2706 return NULL;
2707 }
2708
2709 out:
2710 skb->tc_verd = 0;
2711 return skb;
2712 }
2713 #endif
2714
2715 /*
2716 * netif_nit_deliver - deliver received packets to network taps
2717 * @skb: buffer
2718 *
2719 * This function is used to deliver incoming packets to network
2720 * taps. It should be used when the normal netif_receive_skb path
2721 * is bypassed, for example because of VLAN acceleration.
2722 */
2723 void netif_nit_deliver(struct sk_buff *skb)
2724 {
2725 struct packet_type *ptype;
2726
2727 if (list_empty(&ptype_all))
2728 return;
2729
2730 skb_reset_network_header(skb);
2731 skb_reset_transport_header(skb);
2732 skb->mac_len = skb->network_header - skb->mac_header;
2733
2734 rcu_read_lock();
2735 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2736 if (!ptype->dev || ptype->dev == skb->dev)
2737 deliver_skb(skb, ptype, skb->dev);
2738 }
2739 rcu_read_unlock();
2740 }
2741
2742 /**
2743 * netdev_rx_handler_register - register receive handler
2744 * @dev: device to register a handler for
2745 * @rx_handler: receive handler to register
2746 * @rx_handler_data: data pointer that is used by rx handler
2747 *
2748 * Register a receive hander for a device. This handler will then be
2749 * called from __netif_receive_skb. A negative errno code is returned
2750 * on a failure.
2751 *
2752 * The caller must hold the rtnl_mutex.
2753 */
2754 int netdev_rx_handler_register(struct net_device *dev,
2755 rx_handler_func_t *rx_handler,
2756 void *rx_handler_data)
2757 {
2758 ASSERT_RTNL();
2759
2760 if (dev->rx_handler)
2761 return -EBUSY;
2762
2763 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2764 rcu_assign_pointer(dev->rx_handler, rx_handler);
2765
2766 return 0;
2767 }
2768 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2769
2770 /**
2771 * netdev_rx_handler_unregister - unregister receive handler
2772 * @dev: device to unregister a handler from
2773 *
2774 * Unregister a receive hander from a device.
2775 *
2776 * The caller must hold the rtnl_mutex.
2777 */
2778 void netdev_rx_handler_unregister(struct net_device *dev)
2779 {
2780
2781 ASSERT_RTNL();
2782 rcu_assign_pointer(dev->rx_handler, NULL);
2783 rcu_assign_pointer(dev->rx_handler_data, NULL);
2784 }
2785 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2786
2787 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2788 struct net_device *master)
2789 {
2790 if (skb->pkt_type == PACKET_HOST) {
2791 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2792
2793 memcpy(dest, master->dev_addr, ETH_ALEN);
2794 }
2795 }
2796
2797 /* On bonding slaves other than the currently active slave, suppress
2798 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2799 * ARP on active-backup slaves with arp_validate enabled.
2800 */
2801 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2802 {
2803 struct net_device *dev = skb->dev;
2804
2805 if (master->priv_flags & IFF_MASTER_ARPMON)
2806 dev->last_rx = jiffies;
2807
2808 if ((master->priv_flags & IFF_MASTER_ALB) &&
2809 (master->priv_flags & IFF_BRIDGE_PORT)) {
2810 /* Do address unmangle. The local destination address
2811 * will be always the one master has. Provides the right
2812 * functionality in a bridge.
2813 */
2814 skb_bond_set_mac_by_master(skb, master);
2815 }
2816
2817 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2818 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2819 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2820 return 0;
2821
2822 if (master->priv_flags & IFF_MASTER_ALB) {
2823 if (skb->pkt_type != PACKET_BROADCAST &&
2824 skb->pkt_type != PACKET_MULTICAST)
2825 return 0;
2826 }
2827 if (master->priv_flags & IFF_MASTER_8023AD &&
2828 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2829 return 0;
2830
2831 return 1;
2832 }
2833 return 0;
2834 }
2835 EXPORT_SYMBOL(__skb_bond_should_drop);
2836
2837 static int __netif_receive_skb(struct sk_buff *skb)
2838 {
2839 struct packet_type *ptype, *pt_prev;
2840 rx_handler_func_t *rx_handler;
2841 struct net_device *orig_dev;
2842 struct net_device *master;
2843 struct net_device *null_or_orig;
2844 struct net_device *orig_or_bond;
2845 int ret = NET_RX_DROP;
2846 __be16 type;
2847
2848 if (!netdev_tstamp_prequeue)
2849 net_timestamp_check(skb);
2850
2851 if (vlan_tx_tag_present(skb))
2852 vlan_hwaccel_do_receive(skb);
2853
2854 /* if we've gotten here through NAPI, check netpoll */
2855 if (netpoll_receive_skb(skb))
2856 return NET_RX_DROP;
2857
2858 if (!skb->skb_iif)
2859 skb->skb_iif = skb->dev->ifindex;
2860
2861 /*
2862 * bonding note: skbs received on inactive slaves should only
2863 * be delivered to pkt handlers that are exact matches. Also
2864 * the deliver_no_wcard flag will be set. If packet handlers
2865 * are sensitive to duplicate packets these skbs will need to
2866 * be dropped at the handler. The vlan accel path may have
2867 * already set the deliver_no_wcard flag.
2868 */
2869 null_or_orig = NULL;
2870 orig_dev = skb->dev;
2871 master = ACCESS_ONCE(orig_dev->master);
2872 if (skb->deliver_no_wcard)
2873 null_or_orig = orig_dev;
2874 else if (master) {
2875 if (skb_bond_should_drop(skb, master)) {
2876 skb->deliver_no_wcard = 1;
2877 null_or_orig = orig_dev; /* deliver only exact match */
2878 } else
2879 skb->dev = master;
2880 }
2881
2882 __this_cpu_inc(softnet_data.processed);
2883 skb_reset_network_header(skb);
2884 skb_reset_transport_header(skb);
2885 skb->mac_len = skb->network_header - skb->mac_header;
2886
2887 pt_prev = NULL;
2888
2889 rcu_read_lock();
2890
2891 #ifdef CONFIG_NET_CLS_ACT
2892 if (skb->tc_verd & TC_NCLS) {
2893 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2894 goto ncls;
2895 }
2896 #endif
2897
2898 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2899 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2900 ptype->dev == orig_dev) {
2901 if (pt_prev)
2902 ret = deliver_skb(skb, pt_prev, orig_dev);
2903 pt_prev = ptype;
2904 }
2905 }
2906
2907 #ifdef CONFIG_NET_CLS_ACT
2908 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2909 if (!skb)
2910 goto out;
2911 ncls:
2912 #endif
2913
2914 /* Handle special case of bridge or macvlan */
2915 rx_handler = rcu_dereference(skb->dev->rx_handler);
2916 if (rx_handler) {
2917 if (pt_prev) {
2918 ret = deliver_skb(skb, pt_prev, orig_dev);
2919 pt_prev = NULL;
2920 }
2921 skb = rx_handler(skb);
2922 if (!skb)
2923 goto out;
2924 }
2925
2926 /*
2927 * Make sure frames received on VLAN interfaces stacked on
2928 * bonding interfaces still make their way to any base bonding
2929 * device that may have registered for a specific ptype. The
2930 * handler may have to adjust skb->dev and orig_dev.
2931 */
2932 orig_or_bond = orig_dev;
2933 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2934 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2935 orig_or_bond = vlan_dev_real_dev(skb->dev);
2936 }
2937
2938 type = skb->protocol;
2939 list_for_each_entry_rcu(ptype,
2940 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2941 if (ptype->type == type && (ptype->dev == null_or_orig ||
2942 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2943 ptype->dev == orig_or_bond)) {
2944 if (pt_prev)
2945 ret = deliver_skb(skb, pt_prev, orig_dev);
2946 pt_prev = ptype;
2947 }
2948 }
2949
2950 if (pt_prev) {
2951 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2952 } else {
2953 kfree_skb(skb);
2954 /* Jamal, now you will not able to escape explaining
2955 * me how you were going to use this. :-)
2956 */
2957 ret = NET_RX_DROP;
2958 }
2959
2960 out:
2961 rcu_read_unlock();
2962 return ret;
2963 }
2964
2965 /**
2966 * netif_receive_skb - process receive buffer from network
2967 * @skb: buffer to process
2968 *
2969 * netif_receive_skb() is the main receive data processing function.
2970 * It always succeeds. The buffer may be dropped during processing
2971 * for congestion control or by the protocol layers.
2972 *
2973 * This function may only be called from softirq context and interrupts
2974 * should be enabled.
2975 *
2976 * Return values (usually ignored):
2977 * NET_RX_SUCCESS: no congestion
2978 * NET_RX_DROP: packet was dropped
2979 */
2980 int netif_receive_skb(struct sk_buff *skb)
2981 {
2982 if (netdev_tstamp_prequeue)
2983 net_timestamp_check(skb);
2984
2985 if (skb_defer_rx_timestamp(skb))
2986 return NET_RX_SUCCESS;
2987
2988 #ifdef CONFIG_RPS
2989 {
2990 struct rps_dev_flow voidflow, *rflow = &voidflow;
2991 int cpu, ret;
2992
2993 rcu_read_lock();
2994
2995 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2996
2997 if (cpu >= 0) {
2998 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2999 rcu_read_unlock();
3000 } else {
3001 rcu_read_unlock();
3002 ret = __netif_receive_skb(skb);
3003 }
3004
3005 return ret;
3006 }
3007 #else
3008 return __netif_receive_skb(skb);
3009 #endif
3010 }
3011 EXPORT_SYMBOL(netif_receive_skb);
3012
3013 /* Network device is going away, flush any packets still pending
3014 * Called with irqs disabled.
3015 */
3016 static void flush_backlog(void *arg)
3017 {
3018 struct net_device *dev = arg;
3019 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3020 struct sk_buff *skb, *tmp;
3021
3022 rps_lock(sd);
3023 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3024 if (skb->dev == dev) {
3025 __skb_unlink(skb, &sd->input_pkt_queue);
3026 kfree_skb(skb);
3027 input_queue_head_incr(sd);
3028 }
3029 }
3030 rps_unlock(sd);
3031
3032 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3033 if (skb->dev == dev) {
3034 __skb_unlink(skb, &sd->process_queue);
3035 kfree_skb(skb);
3036 input_queue_head_incr(sd);
3037 }
3038 }
3039 }
3040
3041 static int napi_gro_complete(struct sk_buff *skb)
3042 {
3043 struct packet_type *ptype;
3044 __be16 type = skb->protocol;
3045 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3046 int err = -ENOENT;
3047
3048 if (NAPI_GRO_CB(skb)->count == 1) {
3049 skb_shinfo(skb)->gso_size = 0;
3050 goto out;
3051 }
3052
3053 rcu_read_lock();
3054 list_for_each_entry_rcu(ptype, head, list) {
3055 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3056 continue;
3057
3058 err = ptype->gro_complete(skb);
3059 break;
3060 }
3061 rcu_read_unlock();
3062
3063 if (err) {
3064 WARN_ON(&ptype->list == head);
3065 kfree_skb(skb);
3066 return NET_RX_SUCCESS;
3067 }
3068
3069 out:
3070 return netif_receive_skb(skb);
3071 }
3072
3073 inline void napi_gro_flush(struct napi_struct *napi)
3074 {
3075 struct sk_buff *skb, *next;
3076
3077 for (skb = napi->gro_list; skb; skb = next) {
3078 next = skb->next;
3079 skb->next = NULL;
3080 napi_gro_complete(skb);
3081 }
3082
3083 napi->gro_count = 0;
3084 napi->gro_list = NULL;
3085 }
3086 EXPORT_SYMBOL(napi_gro_flush);
3087
3088 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3089 {
3090 struct sk_buff **pp = NULL;
3091 struct packet_type *ptype;
3092 __be16 type = skb->protocol;
3093 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3094 int same_flow;
3095 int mac_len;
3096 enum gro_result ret;
3097
3098 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3099 goto normal;
3100
3101 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3102 goto normal;
3103
3104 rcu_read_lock();
3105 list_for_each_entry_rcu(ptype, head, list) {
3106 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3107 continue;
3108
3109 skb_set_network_header(skb, skb_gro_offset(skb));
3110 mac_len = skb->network_header - skb->mac_header;
3111 skb->mac_len = mac_len;
3112 NAPI_GRO_CB(skb)->same_flow = 0;
3113 NAPI_GRO_CB(skb)->flush = 0;
3114 NAPI_GRO_CB(skb)->free = 0;
3115
3116 pp = ptype->gro_receive(&napi->gro_list, skb);
3117 break;
3118 }
3119 rcu_read_unlock();
3120
3121 if (&ptype->list == head)
3122 goto normal;
3123
3124 same_flow = NAPI_GRO_CB(skb)->same_flow;
3125 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3126
3127 if (pp) {
3128 struct sk_buff *nskb = *pp;
3129
3130 *pp = nskb->next;
3131 nskb->next = NULL;
3132 napi_gro_complete(nskb);
3133 napi->gro_count--;
3134 }
3135
3136 if (same_flow)
3137 goto ok;
3138
3139 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3140 goto normal;
3141
3142 napi->gro_count++;
3143 NAPI_GRO_CB(skb)->count = 1;
3144 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3145 skb->next = napi->gro_list;
3146 napi->gro_list = skb;
3147 ret = GRO_HELD;
3148
3149 pull:
3150 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3151 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3152
3153 BUG_ON(skb->end - skb->tail < grow);
3154
3155 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3156
3157 skb->tail += grow;
3158 skb->data_len -= grow;
3159
3160 skb_shinfo(skb)->frags[0].page_offset += grow;
3161 skb_shinfo(skb)->frags[0].size -= grow;
3162
3163 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3164 put_page(skb_shinfo(skb)->frags[0].page);
3165 memmove(skb_shinfo(skb)->frags,
3166 skb_shinfo(skb)->frags + 1,
3167 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3168 }
3169 }
3170
3171 ok:
3172 return ret;
3173
3174 normal:
3175 ret = GRO_NORMAL;
3176 goto pull;
3177 }
3178 EXPORT_SYMBOL(dev_gro_receive);
3179
3180 static inline gro_result_t
3181 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3182 {
3183 struct sk_buff *p;
3184
3185 for (p = napi->gro_list; p; p = p->next) {
3186 unsigned long diffs;
3187
3188 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3189 diffs |= compare_ether_header(skb_mac_header(p),
3190 skb_gro_mac_header(skb));
3191 NAPI_GRO_CB(p)->same_flow = !diffs;
3192 NAPI_GRO_CB(p)->flush = 0;
3193 }
3194
3195 return dev_gro_receive(napi, skb);
3196 }
3197
3198 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3199 {
3200 switch (ret) {
3201 case GRO_NORMAL:
3202 if (netif_receive_skb(skb))
3203 ret = GRO_DROP;
3204 break;
3205
3206 case GRO_DROP:
3207 case GRO_MERGED_FREE:
3208 kfree_skb(skb);
3209 break;
3210
3211 case GRO_HELD:
3212 case GRO_MERGED:
3213 break;
3214 }
3215
3216 return ret;
3217 }
3218 EXPORT_SYMBOL(napi_skb_finish);
3219
3220 void skb_gro_reset_offset(struct sk_buff *skb)
3221 {
3222 NAPI_GRO_CB(skb)->data_offset = 0;
3223 NAPI_GRO_CB(skb)->frag0 = NULL;
3224 NAPI_GRO_CB(skb)->frag0_len = 0;
3225
3226 if (skb->mac_header == skb->tail &&
3227 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3228 NAPI_GRO_CB(skb)->frag0 =
3229 page_address(skb_shinfo(skb)->frags[0].page) +
3230 skb_shinfo(skb)->frags[0].page_offset;
3231 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3232 }
3233 }
3234 EXPORT_SYMBOL(skb_gro_reset_offset);
3235
3236 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3237 {
3238 skb_gro_reset_offset(skb);
3239
3240 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3241 }
3242 EXPORT_SYMBOL(napi_gro_receive);
3243
3244 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3245 {
3246 __skb_pull(skb, skb_headlen(skb));
3247 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3248
3249 napi->skb = skb;
3250 }
3251 EXPORT_SYMBOL(napi_reuse_skb);
3252
3253 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3254 {
3255 struct sk_buff *skb = napi->skb;
3256
3257 if (!skb) {
3258 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3259 if (skb)
3260 napi->skb = skb;
3261 }
3262 return skb;
3263 }
3264 EXPORT_SYMBOL(napi_get_frags);
3265
3266 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3267 gro_result_t ret)
3268 {
3269 switch (ret) {
3270 case GRO_NORMAL:
3271 case GRO_HELD:
3272 skb->protocol = eth_type_trans(skb, skb->dev);
3273
3274 if (ret == GRO_HELD)
3275 skb_gro_pull(skb, -ETH_HLEN);
3276 else if (netif_receive_skb(skb))
3277 ret = GRO_DROP;
3278 break;
3279
3280 case GRO_DROP:
3281 case GRO_MERGED_FREE:
3282 napi_reuse_skb(napi, skb);
3283 break;
3284
3285 case GRO_MERGED:
3286 break;
3287 }
3288
3289 return ret;
3290 }
3291 EXPORT_SYMBOL(napi_frags_finish);
3292
3293 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3294 {
3295 struct sk_buff *skb = napi->skb;
3296 struct ethhdr *eth;
3297 unsigned int hlen;
3298 unsigned int off;
3299
3300 napi->skb = NULL;
3301
3302 skb_reset_mac_header(skb);
3303 skb_gro_reset_offset(skb);
3304
3305 off = skb_gro_offset(skb);
3306 hlen = off + sizeof(*eth);
3307 eth = skb_gro_header_fast(skb, off);
3308 if (skb_gro_header_hard(skb, hlen)) {
3309 eth = skb_gro_header_slow(skb, hlen, off);
3310 if (unlikely(!eth)) {
3311 napi_reuse_skb(napi, skb);
3312 skb = NULL;
3313 goto out;
3314 }
3315 }
3316
3317 skb_gro_pull(skb, sizeof(*eth));
3318
3319 /*
3320 * This works because the only protocols we care about don't require
3321 * special handling. We'll fix it up properly at the end.
3322 */
3323 skb->protocol = eth->h_proto;
3324
3325 out:
3326 return skb;
3327 }
3328 EXPORT_SYMBOL(napi_frags_skb);
3329
3330 gro_result_t napi_gro_frags(struct napi_struct *napi)
3331 {
3332 struct sk_buff *skb = napi_frags_skb(napi);
3333
3334 if (!skb)
3335 return GRO_DROP;
3336
3337 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3338 }
3339 EXPORT_SYMBOL(napi_gro_frags);
3340
3341 /*
3342 * net_rps_action sends any pending IPI's for rps.
3343 * Note: called with local irq disabled, but exits with local irq enabled.
3344 */
3345 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3346 {
3347 #ifdef CONFIG_RPS
3348 struct softnet_data *remsd = sd->rps_ipi_list;
3349
3350 if (remsd) {
3351 sd->rps_ipi_list = NULL;
3352
3353 local_irq_enable();
3354
3355 /* Send pending IPI's to kick RPS processing on remote cpus. */
3356 while (remsd) {
3357 struct softnet_data *next = remsd->rps_ipi_next;
3358
3359 if (cpu_online(remsd->cpu))
3360 __smp_call_function_single(remsd->cpu,
3361 &remsd->csd, 0);
3362 remsd = next;
3363 }
3364 } else
3365 #endif
3366 local_irq_enable();
3367 }
3368
3369 static int process_backlog(struct napi_struct *napi, int quota)
3370 {
3371 int work = 0;
3372 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3373
3374 #ifdef CONFIG_RPS
3375 /* Check if we have pending ipi, its better to send them now,
3376 * not waiting net_rx_action() end.
3377 */
3378 if (sd->rps_ipi_list) {
3379 local_irq_disable();
3380 net_rps_action_and_irq_enable(sd);
3381 }
3382 #endif
3383 napi->weight = weight_p;
3384 local_irq_disable();
3385 while (work < quota) {
3386 struct sk_buff *skb;
3387 unsigned int qlen;
3388
3389 while ((skb = __skb_dequeue(&sd->process_queue))) {
3390 local_irq_enable();
3391 __netif_receive_skb(skb);
3392 local_irq_disable();
3393 input_queue_head_incr(sd);
3394 if (++work >= quota) {
3395 local_irq_enable();
3396 return work;
3397 }
3398 }
3399
3400 rps_lock(sd);
3401 qlen = skb_queue_len(&sd->input_pkt_queue);
3402 if (qlen)
3403 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3404 &sd->process_queue);
3405
3406 if (qlen < quota - work) {
3407 /*
3408 * Inline a custom version of __napi_complete().
3409 * only current cpu owns and manipulates this napi,
3410 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3411 * we can use a plain write instead of clear_bit(),
3412 * and we dont need an smp_mb() memory barrier.
3413 */
3414 list_del(&napi->poll_list);
3415 napi->state = 0;
3416
3417 quota = work + qlen;
3418 }
3419 rps_unlock(sd);
3420 }
3421 local_irq_enable();
3422
3423 return work;
3424 }
3425
3426 /**
3427 * __napi_schedule - schedule for receive
3428 * @n: entry to schedule
3429 *
3430 * The entry's receive function will be scheduled to run
3431 */
3432 void __napi_schedule(struct napi_struct *n)
3433 {
3434 unsigned long flags;
3435
3436 local_irq_save(flags);
3437 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3438 local_irq_restore(flags);
3439 }
3440 EXPORT_SYMBOL(__napi_schedule);
3441
3442 void __napi_complete(struct napi_struct *n)
3443 {
3444 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3445 BUG_ON(n->gro_list);
3446
3447 list_del(&n->poll_list);
3448 smp_mb__before_clear_bit();
3449 clear_bit(NAPI_STATE_SCHED, &n->state);
3450 }
3451 EXPORT_SYMBOL(__napi_complete);
3452
3453 void napi_complete(struct napi_struct *n)
3454 {
3455 unsigned long flags;
3456
3457 /*
3458 * don't let napi dequeue from the cpu poll list
3459 * just in case its running on a different cpu
3460 */
3461 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3462 return;
3463
3464 napi_gro_flush(n);
3465 local_irq_save(flags);
3466 __napi_complete(n);
3467 local_irq_restore(flags);
3468 }
3469 EXPORT_SYMBOL(napi_complete);
3470
3471 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3472 int (*poll)(struct napi_struct *, int), int weight)
3473 {
3474 INIT_LIST_HEAD(&napi->poll_list);
3475 napi->gro_count = 0;
3476 napi->gro_list = NULL;
3477 napi->skb = NULL;
3478 napi->poll = poll;
3479 napi->weight = weight;
3480 list_add(&napi->dev_list, &dev->napi_list);
3481 napi->dev = dev;
3482 #ifdef CONFIG_NETPOLL
3483 spin_lock_init(&napi->poll_lock);
3484 napi->poll_owner = -1;
3485 #endif
3486 set_bit(NAPI_STATE_SCHED, &napi->state);
3487 }
3488 EXPORT_SYMBOL(netif_napi_add);
3489
3490 void netif_napi_del(struct napi_struct *napi)
3491 {
3492 struct sk_buff *skb, *next;
3493
3494 list_del_init(&napi->dev_list);
3495 napi_free_frags(napi);
3496
3497 for (skb = napi->gro_list; skb; skb = next) {
3498 next = skb->next;
3499 skb->next = NULL;
3500 kfree_skb(skb);
3501 }
3502
3503 napi->gro_list = NULL;
3504 napi->gro_count = 0;
3505 }
3506 EXPORT_SYMBOL(netif_napi_del);
3507
3508 static void net_rx_action(struct softirq_action *h)
3509 {
3510 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3511 unsigned long time_limit = jiffies + 2;
3512 int budget = netdev_budget;
3513 void *have;
3514
3515 local_irq_disable();
3516
3517 while (!list_empty(&sd->poll_list)) {
3518 struct napi_struct *n;
3519 int work, weight;
3520
3521 /* If softirq window is exhuasted then punt.
3522 * Allow this to run for 2 jiffies since which will allow
3523 * an average latency of 1.5/HZ.
3524 */
3525 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3526 goto softnet_break;
3527
3528 local_irq_enable();
3529
3530 /* Even though interrupts have been re-enabled, this
3531 * access is safe because interrupts can only add new
3532 * entries to the tail of this list, and only ->poll()
3533 * calls can remove this head entry from the list.
3534 */
3535 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3536
3537 have = netpoll_poll_lock(n);
3538
3539 weight = n->weight;
3540
3541 /* This NAPI_STATE_SCHED test is for avoiding a race
3542 * with netpoll's poll_napi(). Only the entity which
3543 * obtains the lock and sees NAPI_STATE_SCHED set will
3544 * actually make the ->poll() call. Therefore we avoid
3545 * accidently calling ->poll() when NAPI is not scheduled.
3546 */
3547 work = 0;
3548 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3549 work = n->poll(n, weight);
3550 trace_napi_poll(n);
3551 }
3552
3553 WARN_ON_ONCE(work > weight);
3554
3555 budget -= work;
3556
3557 local_irq_disable();
3558
3559 /* Drivers must not modify the NAPI state if they
3560 * consume the entire weight. In such cases this code
3561 * still "owns" the NAPI instance and therefore can
3562 * move the instance around on the list at-will.
3563 */
3564 if (unlikely(work == weight)) {
3565 if (unlikely(napi_disable_pending(n))) {
3566 local_irq_enable();
3567 napi_complete(n);
3568 local_irq_disable();
3569 } else
3570 list_move_tail(&n->poll_list, &sd->poll_list);
3571 }
3572
3573 netpoll_poll_unlock(have);
3574 }
3575 out:
3576 net_rps_action_and_irq_enable(sd);
3577
3578 #ifdef CONFIG_NET_DMA
3579 /*
3580 * There may not be any more sk_buffs coming right now, so push
3581 * any pending DMA copies to hardware
3582 */
3583 dma_issue_pending_all();
3584 #endif
3585
3586 return;
3587
3588 softnet_break:
3589 sd->time_squeeze++;
3590 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3591 goto out;
3592 }
3593
3594 static gifconf_func_t *gifconf_list[NPROTO];
3595
3596 /**
3597 * register_gifconf - register a SIOCGIF handler
3598 * @family: Address family
3599 * @gifconf: Function handler
3600 *
3601 * Register protocol dependent address dumping routines. The handler
3602 * that is passed must not be freed or reused until it has been replaced
3603 * by another handler.
3604 */
3605 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3606 {
3607 if (family >= NPROTO)
3608 return -EINVAL;
3609 gifconf_list[family] = gifconf;
3610 return 0;
3611 }
3612 EXPORT_SYMBOL(register_gifconf);
3613
3614
3615 /*
3616 * Map an interface index to its name (SIOCGIFNAME)
3617 */
3618
3619 /*
3620 * We need this ioctl for efficient implementation of the
3621 * if_indextoname() function required by the IPv6 API. Without
3622 * it, we would have to search all the interfaces to find a
3623 * match. --pb
3624 */
3625
3626 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3627 {
3628 struct net_device *dev;
3629 struct ifreq ifr;
3630
3631 /*
3632 * Fetch the caller's info block.
3633 */
3634
3635 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3636 return -EFAULT;
3637
3638 rcu_read_lock();
3639 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3640 if (!dev) {
3641 rcu_read_unlock();
3642 return -ENODEV;
3643 }
3644
3645 strcpy(ifr.ifr_name, dev->name);
3646 rcu_read_unlock();
3647
3648 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3649 return -EFAULT;
3650 return 0;
3651 }
3652
3653 /*
3654 * Perform a SIOCGIFCONF call. This structure will change
3655 * size eventually, and there is nothing I can do about it.
3656 * Thus we will need a 'compatibility mode'.
3657 */
3658
3659 static int dev_ifconf(struct net *net, char __user *arg)
3660 {
3661 struct ifconf ifc;
3662 struct net_device *dev;
3663 char __user *pos;
3664 int len;
3665 int total;
3666 int i;
3667
3668 /*
3669 * Fetch the caller's info block.
3670 */
3671
3672 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3673 return -EFAULT;
3674
3675 pos = ifc.ifc_buf;
3676 len = ifc.ifc_len;
3677
3678 /*
3679 * Loop over the interfaces, and write an info block for each.
3680 */
3681
3682 total = 0;
3683 for_each_netdev(net, dev) {
3684 for (i = 0; i < NPROTO; i++) {
3685 if (gifconf_list[i]) {
3686 int done;
3687 if (!pos)
3688 done = gifconf_list[i](dev, NULL, 0);
3689 else
3690 done = gifconf_list[i](dev, pos + total,
3691 len - total);
3692 if (done < 0)
3693 return -EFAULT;
3694 total += done;
3695 }
3696 }
3697 }
3698
3699 /*
3700 * All done. Write the updated control block back to the caller.
3701 */
3702 ifc.ifc_len = total;
3703
3704 /*
3705 * Both BSD and Solaris return 0 here, so we do too.
3706 */
3707 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3708 }
3709
3710 #ifdef CONFIG_PROC_FS
3711 /*
3712 * This is invoked by the /proc filesystem handler to display a device
3713 * in detail.
3714 */
3715 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3716 __acquires(RCU)
3717 {
3718 struct net *net = seq_file_net(seq);
3719 loff_t off;
3720 struct net_device *dev;
3721
3722 rcu_read_lock();
3723 if (!*pos)
3724 return SEQ_START_TOKEN;
3725
3726 off = 1;
3727 for_each_netdev_rcu(net, dev)
3728 if (off++ == *pos)
3729 return dev;
3730
3731 return NULL;
3732 }
3733
3734 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3735 {
3736 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3737 first_net_device(seq_file_net(seq)) :
3738 next_net_device((struct net_device *)v);
3739
3740 ++*pos;
3741 return rcu_dereference(dev);
3742 }
3743
3744 void dev_seq_stop(struct seq_file *seq, void *v)
3745 __releases(RCU)
3746 {
3747 rcu_read_unlock();
3748 }
3749
3750 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3751 {
3752 struct rtnl_link_stats64 temp;
3753 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3754
3755 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3756 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3757 dev->name, stats->rx_bytes, stats->rx_packets,
3758 stats->rx_errors,
3759 stats->rx_dropped + stats->rx_missed_errors,
3760 stats->rx_fifo_errors,
3761 stats->rx_length_errors + stats->rx_over_errors +
3762 stats->rx_crc_errors + stats->rx_frame_errors,
3763 stats->rx_compressed, stats->multicast,
3764 stats->tx_bytes, stats->tx_packets,
3765 stats->tx_errors, stats->tx_dropped,
3766 stats->tx_fifo_errors, stats->collisions,
3767 stats->tx_carrier_errors +
3768 stats->tx_aborted_errors +
3769 stats->tx_window_errors +
3770 stats->tx_heartbeat_errors,
3771 stats->tx_compressed);
3772 }
3773
3774 /*
3775 * Called from the PROCfs module. This now uses the new arbitrary sized
3776 * /proc/net interface to create /proc/net/dev
3777 */
3778 static int dev_seq_show(struct seq_file *seq, void *v)
3779 {
3780 if (v == SEQ_START_TOKEN)
3781 seq_puts(seq, "Inter-| Receive "
3782 " | Transmit\n"
3783 " face |bytes packets errs drop fifo frame "
3784 "compressed multicast|bytes packets errs "
3785 "drop fifo colls carrier compressed\n");
3786 else
3787 dev_seq_printf_stats(seq, v);
3788 return 0;
3789 }
3790
3791 static struct softnet_data *softnet_get_online(loff_t *pos)
3792 {
3793 struct softnet_data *sd = NULL;
3794
3795 while (*pos < nr_cpu_ids)
3796 if (cpu_online(*pos)) {
3797 sd = &per_cpu(softnet_data, *pos);
3798 break;
3799 } else
3800 ++*pos;
3801 return sd;
3802 }
3803
3804 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3805 {
3806 return softnet_get_online(pos);
3807 }
3808
3809 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3810 {
3811 ++*pos;
3812 return softnet_get_online(pos);
3813 }
3814
3815 static void softnet_seq_stop(struct seq_file *seq, void *v)
3816 {
3817 }
3818
3819 static int softnet_seq_show(struct seq_file *seq, void *v)
3820 {
3821 struct softnet_data *sd = v;
3822
3823 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3824 sd->processed, sd->dropped, sd->time_squeeze, 0,
3825 0, 0, 0, 0, /* was fastroute */
3826 sd->cpu_collision, sd->received_rps);
3827 return 0;
3828 }
3829
3830 static const struct seq_operations dev_seq_ops = {
3831 .start = dev_seq_start,
3832 .next = dev_seq_next,
3833 .stop = dev_seq_stop,
3834 .show = dev_seq_show,
3835 };
3836
3837 static int dev_seq_open(struct inode *inode, struct file *file)
3838 {
3839 return seq_open_net(inode, file, &dev_seq_ops,
3840 sizeof(struct seq_net_private));
3841 }
3842
3843 static const struct file_operations dev_seq_fops = {
3844 .owner = THIS_MODULE,
3845 .open = dev_seq_open,
3846 .read = seq_read,
3847 .llseek = seq_lseek,
3848 .release = seq_release_net,
3849 };
3850
3851 static const struct seq_operations softnet_seq_ops = {
3852 .start = softnet_seq_start,
3853 .next = softnet_seq_next,
3854 .stop = softnet_seq_stop,
3855 .show = softnet_seq_show,
3856 };
3857
3858 static int softnet_seq_open(struct inode *inode, struct file *file)
3859 {
3860 return seq_open(file, &softnet_seq_ops);
3861 }
3862
3863 static const struct file_operations softnet_seq_fops = {
3864 .owner = THIS_MODULE,
3865 .open = softnet_seq_open,
3866 .read = seq_read,
3867 .llseek = seq_lseek,
3868 .release = seq_release,
3869 };
3870
3871 static void *ptype_get_idx(loff_t pos)
3872 {
3873 struct packet_type *pt = NULL;
3874 loff_t i = 0;
3875 int t;
3876
3877 list_for_each_entry_rcu(pt, &ptype_all, list) {
3878 if (i == pos)
3879 return pt;
3880 ++i;
3881 }
3882
3883 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3884 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3885 if (i == pos)
3886 return pt;
3887 ++i;
3888 }
3889 }
3890 return NULL;
3891 }
3892
3893 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3894 __acquires(RCU)
3895 {
3896 rcu_read_lock();
3897 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3898 }
3899
3900 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3901 {
3902 struct packet_type *pt;
3903 struct list_head *nxt;
3904 int hash;
3905
3906 ++*pos;
3907 if (v == SEQ_START_TOKEN)
3908 return ptype_get_idx(0);
3909
3910 pt = v;
3911 nxt = pt->list.next;
3912 if (pt->type == htons(ETH_P_ALL)) {
3913 if (nxt != &ptype_all)
3914 goto found;
3915 hash = 0;
3916 nxt = ptype_base[0].next;
3917 } else
3918 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3919
3920 while (nxt == &ptype_base[hash]) {
3921 if (++hash >= PTYPE_HASH_SIZE)
3922 return NULL;
3923 nxt = ptype_base[hash].next;
3924 }
3925 found:
3926 return list_entry(nxt, struct packet_type, list);
3927 }
3928
3929 static void ptype_seq_stop(struct seq_file *seq, void *v)
3930 __releases(RCU)
3931 {
3932 rcu_read_unlock();
3933 }
3934
3935 static int ptype_seq_show(struct seq_file *seq, void *v)
3936 {
3937 struct packet_type *pt = v;
3938
3939 if (v == SEQ_START_TOKEN)
3940 seq_puts(seq, "Type Device Function\n");
3941 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3942 if (pt->type == htons(ETH_P_ALL))
3943 seq_puts(seq, "ALL ");
3944 else
3945 seq_printf(seq, "%04x", ntohs(pt->type));
3946
3947 seq_printf(seq, " %-8s %pF\n",
3948 pt->dev ? pt->dev->name : "", pt->func);
3949 }
3950
3951 return 0;
3952 }
3953
3954 static const struct seq_operations ptype_seq_ops = {
3955 .start = ptype_seq_start,
3956 .next = ptype_seq_next,
3957 .stop = ptype_seq_stop,
3958 .show = ptype_seq_show,
3959 };
3960
3961 static int ptype_seq_open(struct inode *inode, struct file *file)
3962 {
3963 return seq_open_net(inode, file, &ptype_seq_ops,
3964 sizeof(struct seq_net_private));
3965 }
3966
3967 static const struct file_operations ptype_seq_fops = {
3968 .owner = THIS_MODULE,
3969 .open = ptype_seq_open,
3970 .read = seq_read,
3971 .llseek = seq_lseek,
3972 .release = seq_release_net,
3973 };
3974
3975
3976 static int __net_init dev_proc_net_init(struct net *net)
3977 {
3978 int rc = -ENOMEM;
3979
3980 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3981 goto out;
3982 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3983 goto out_dev;
3984 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3985 goto out_softnet;
3986
3987 if (wext_proc_init(net))
3988 goto out_ptype;
3989 rc = 0;
3990 out:
3991 return rc;
3992 out_ptype:
3993 proc_net_remove(net, "ptype");
3994 out_softnet:
3995 proc_net_remove(net, "softnet_stat");
3996 out_dev:
3997 proc_net_remove(net, "dev");
3998 goto out;
3999 }
4000
4001 static void __net_exit dev_proc_net_exit(struct net *net)
4002 {
4003 wext_proc_exit(net);
4004
4005 proc_net_remove(net, "ptype");
4006 proc_net_remove(net, "softnet_stat");
4007 proc_net_remove(net, "dev");
4008 }
4009
4010 static struct pernet_operations __net_initdata dev_proc_ops = {
4011 .init = dev_proc_net_init,
4012 .exit = dev_proc_net_exit,
4013 };
4014
4015 static int __init dev_proc_init(void)
4016 {
4017 return register_pernet_subsys(&dev_proc_ops);
4018 }
4019 #else
4020 #define dev_proc_init() 0
4021 #endif /* CONFIG_PROC_FS */
4022
4023
4024 /**
4025 * netdev_set_master - set up master/slave pair
4026 * @slave: slave device
4027 * @master: new master device
4028 *
4029 * Changes the master device of the slave. Pass %NULL to break the
4030 * bonding. The caller must hold the RTNL semaphore. On a failure
4031 * a negative errno code is returned. On success the reference counts
4032 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4033 * function returns zero.
4034 */
4035 int netdev_set_master(struct net_device *slave, struct net_device *master)
4036 {
4037 struct net_device *old = slave->master;
4038
4039 ASSERT_RTNL();
4040
4041 if (master) {
4042 if (old)
4043 return -EBUSY;
4044 dev_hold(master);
4045 }
4046
4047 slave->master = master;
4048
4049 if (old) {
4050 synchronize_net();
4051 dev_put(old);
4052 }
4053 if (master)
4054 slave->flags |= IFF_SLAVE;
4055 else
4056 slave->flags &= ~IFF_SLAVE;
4057
4058 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4059 return 0;
4060 }
4061 EXPORT_SYMBOL(netdev_set_master);
4062
4063 static void dev_change_rx_flags(struct net_device *dev, int flags)
4064 {
4065 const struct net_device_ops *ops = dev->netdev_ops;
4066
4067 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4068 ops->ndo_change_rx_flags(dev, flags);
4069 }
4070
4071 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4072 {
4073 unsigned short old_flags = dev->flags;
4074 uid_t uid;
4075 gid_t gid;
4076
4077 ASSERT_RTNL();
4078
4079 dev->flags |= IFF_PROMISC;
4080 dev->promiscuity += inc;
4081 if (dev->promiscuity == 0) {
4082 /*
4083 * Avoid overflow.
4084 * If inc causes overflow, untouch promisc and return error.
4085 */
4086 if (inc < 0)
4087 dev->flags &= ~IFF_PROMISC;
4088 else {
4089 dev->promiscuity -= inc;
4090 printk(KERN_WARNING "%s: promiscuity touches roof, "
4091 "set promiscuity failed, promiscuity feature "
4092 "of device might be broken.\n", dev->name);
4093 return -EOVERFLOW;
4094 }
4095 }
4096 if (dev->flags != old_flags) {
4097 printk(KERN_INFO "device %s %s promiscuous mode\n",
4098 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4099 "left");
4100 if (audit_enabled) {
4101 current_uid_gid(&uid, &gid);
4102 audit_log(current->audit_context, GFP_ATOMIC,
4103 AUDIT_ANOM_PROMISCUOUS,
4104 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4105 dev->name, (dev->flags & IFF_PROMISC),
4106 (old_flags & IFF_PROMISC),
4107 audit_get_loginuid(current),
4108 uid, gid,
4109 audit_get_sessionid(current));
4110 }
4111
4112 dev_change_rx_flags(dev, IFF_PROMISC);
4113 }
4114 return 0;
4115 }
4116
4117 /**
4118 * dev_set_promiscuity - update promiscuity count on a device
4119 * @dev: device
4120 * @inc: modifier
4121 *
4122 * Add or remove promiscuity from a device. While the count in the device
4123 * remains above zero the interface remains promiscuous. Once it hits zero
4124 * the device reverts back to normal filtering operation. A negative inc
4125 * value is used to drop promiscuity on the device.
4126 * Return 0 if successful or a negative errno code on error.
4127 */
4128 int dev_set_promiscuity(struct net_device *dev, int inc)
4129 {
4130 unsigned short old_flags = dev->flags;
4131 int err;
4132
4133 err = __dev_set_promiscuity(dev, inc);
4134 if (err < 0)
4135 return err;
4136 if (dev->flags != old_flags)
4137 dev_set_rx_mode(dev);
4138 return err;
4139 }
4140 EXPORT_SYMBOL(dev_set_promiscuity);
4141
4142 /**
4143 * dev_set_allmulti - update allmulti count on a device
4144 * @dev: device
4145 * @inc: modifier
4146 *
4147 * Add or remove reception of all multicast frames to a device. While the
4148 * count in the device remains above zero the interface remains listening
4149 * to all interfaces. Once it hits zero the device reverts back to normal
4150 * filtering operation. A negative @inc value is used to drop the counter
4151 * when releasing a resource needing all multicasts.
4152 * Return 0 if successful or a negative errno code on error.
4153 */
4154
4155 int dev_set_allmulti(struct net_device *dev, int inc)
4156 {
4157 unsigned short old_flags = dev->flags;
4158
4159 ASSERT_RTNL();
4160
4161 dev->flags |= IFF_ALLMULTI;
4162 dev->allmulti += inc;
4163 if (dev->allmulti == 0) {
4164 /*
4165 * Avoid overflow.
4166 * If inc causes overflow, untouch allmulti and return error.
4167 */
4168 if (inc < 0)
4169 dev->flags &= ~IFF_ALLMULTI;
4170 else {
4171 dev->allmulti -= inc;
4172 printk(KERN_WARNING "%s: allmulti touches roof, "
4173 "set allmulti failed, allmulti feature of "
4174 "device might be broken.\n", dev->name);
4175 return -EOVERFLOW;
4176 }
4177 }
4178 if (dev->flags ^ old_flags) {
4179 dev_change_rx_flags(dev, IFF_ALLMULTI);
4180 dev_set_rx_mode(dev);
4181 }
4182 return 0;
4183 }
4184 EXPORT_SYMBOL(dev_set_allmulti);
4185
4186 /*
4187 * Upload unicast and multicast address lists to device and
4188 * configure RX filtering. When the device doesn't support unicast
4189 * filtering it is put in promiscuous mode while unicast addresses
4190 * are present.
4191 */
4192 void __dev_set_rx_mode(struct net_device *dev)
4193 {
4194 const struct net_device_ops *ops = dev->netdev_ops;
4195
4196 /* dev_open will call this function so the list will stay sane. */
4197 if (!(dev->flags&IFF_UP))
4198 return;
4199
4200 if (!netif_device_present(dev))
4201 return;
4202
4203 if (ops->ndo_set_rx_mode)
4204 ops->ndo_set_rx_mode(dev);
4205 else {
4206 /* Unicast addresses changes may only happen under the rtnl,
4207 * therefore calling __dev_set_promiscuity here is safe.
4208 */
4209 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4210 __dev_set_promiscuity(dev, 1);
4211 dev->uc_promisc = 1;
4212 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4213 __dev_set_promiscuity(dev, -1);
4214 dev->uc_promisc = 0;
4215 }
4216
4217 if (ops->ndo_set_multicast_list)
4218 ops->ndo_set_multicast_list(dev);
4219 }
4220 }
4221
4222 void dev_set_rx_mode(struct net_device *dev)
4223 {
4224 netif_addr_lock_bh(dev);
4225 __dev_set_rx_mode(dev);
4226 netif_addr_unlock_bh(dev);
4227 }
4228
4229 /**
4230 * dev_get_flags - get flags reported to userspace
4231 * @dev: device
4232 *
4233 * Get the combination of flag bits exported through APIs to userspace.
4234 */
4235 unsigned dev_get_flags(const struct net_device *dev)
4236 {
4237 unsigned flags;
4238
4239 flags = (dev->flags & ~(IFF_PROMISC |
4240 IFF_ALLMULTI |
4241 IFF_RUNNING |
4242 IFF_LOWER_UP |
4243 IFF_DORMANT)) |
4244 (dev->gflags & (IFF_PROMISC |
4245 IFF_ALLMULTI));
4246
4247 if (netif_running(dev)) {
4248 if (netif_oper_up(dev))
4249 flags |= IFF_RUNNING;
4250 if (netif_carrier_ok(dev))
4251 flags |= IFF_LOWER_UP;
4252 if (netif_dormant(dev))
4253 flags |= IFF_DORMANT;
4254 }
4255
4256 return flags;
4257 }
4258 EXPORT_SYMBOL(dev_get_flags);
4259
4260 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4261 {
4262 int old_flags = dev->flags;
4263 int ret;
4264
4265 ASSERT_RTNL();
4266
4267 /*
4268 * Set the flags on our device.
4269 */
4270
4271 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4272 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4273 IFF_AUTOMEDIA)) |
4274 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4275 IFF_ALLMULTI));
4276
4277 /*
4278 * Load in the correct multicast list now the flags have changed.
4279 */
4280
4281 if ((old_flags ^ flags) & IFF_MULTICAST)
4282 dev_change_rx_flags(dev, IFF_MULTICAST);
4283
4284 dev_set_rx_mode(dev);
4285
4286 /*
4287 * Have we downed the interface. We handle IFF_UP ourselves
4288 * according to user attempts to set it, rather than blindly
4289 * setting it.
4290 */
4291
4292 ret = 0;
4293 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4294 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4295
4296 if (!ret)
4297 dev_set_rx_mode(dev);
4298 }
4299
4300 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4301 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4302
4303 dev->gflags ^= IFF_PROMISC;
4304 dev_set_promiscuity(dev, inc);
4305 }
4306
4307 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4308 is important. Some (broken) drivers set IFF_PROMISC, when
4309 IFF_ALLMULTI is requested not asking us and not reporting.
4310 */
4311 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4312 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4313
4314 dev->gflags ^= IFF_ALLMULTI;
4315 dev_set_allmulti(dev, inc);
4316 }
4317
4318 return ret;
4319 }
4320
4321 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4322 {
4323 unsigned int changes = dev->flags ^ old_flags;
4324
4325 if (changes & IFF_UP) {
4326 if (dev->flags & IFF_UP)
4327 call_netdevice_notifiers(NETDEV_UP, dev);
4328 else
4329 call_netdevice_notifiers(NETDEV_DOWN, dev);
4330 }
4331
4332 if (dev->flags & IFF_UP &&
4333 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4334 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4335 }
4336
4337 /**
4338 * dev_change_flags - change device settings
4339 * @dev: device
4340 * @flags: device state flags
4341 *
4342 * Change settings on device based state flags. The flags are
4343 * in the userspace exported format.
4344 */
4345 int dev_change_flags(struct net_device *dev, unsigned flags)
4346 {
4347 int ret, changes;
4348 int old_flags = dev->flags;
4349
4350 ret = __dev_change_flags(dev, flags);
4351 if (ret < 0)
4352 return ret;
4353
4354 changes = old_flags ^ dev->flags;
4355 if (changes)
4356 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4357
4358 __dev_notify_flags(dev, old_flags);
4359 return ret;
4360 }
4361 EXPORT_SYMBOL(dev_change_flags);
4362
4363 /**
4364 * dev_set_mtu - Change maximum transfer unit
4365 * @dev: device
4366 * @new_mtu: new transfer unit
4367 *
4368 * Change the maximum transfer size of the network device.
4369 */
4370 int dev_set_mtu(struct net_device *dev, int new_mtu)
4371 {
4372 const struct net_device_ops *ops = dev->netdev_ops;
4373 int err;
4374
4375 if (new_mtu == dev->mtu)
4376 return 0;
4377
4378 /* MTU must be positive. */
4379 if (new_mtu < 0)
4380 return -EINVAL;
4381
4382 if (!netif_device_present(dev))
4383 return -ENODEV;
4384
4385 err = 0;
4386 if (ops->ndo_change_mtu)
4387 err = ops->ndo_change_mtu(dev, new_mtu);
4388 else
4389 dev->mtu = new_mtu;
4390
4391 if (!err && dev->flags & IFF_UP)
4392 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4393 return err;
4394 }
4395 EXPORT_SYMBOL(dev_set_mtu);
4396
4397 /**
4398 * dev_set_mac_address - Change Media Access Control Address
4399 * @dev: device
4400 * @sa: new address
4401 *
4402 * Change the hardware (MAC) address of the device
4403 */
4404 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4405 {
4406 const struct net_device_ops *ops = dev->netdev_ops;
4407 int err;
4408
4409 if (!ops->ndo_set_mac_address)
4410 return -EOPNOTSUPP;
4411 if (sa->sa_family != dev->type)
4412 return -EINVAL;
4413 if (!netif_device_present(dev))
4414 return -ENODEV;
4415 err = ops->ndo_set_mac_address(dev, sa);
4416 if (!err)
4417 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4418 return err;
4419 }
4420 EXPORT_SYMBOL(dev_set_mac_address);
4421
4422 /*
4423 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4424 */
4425 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4426 {
4427 int err;
4428 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4429
4430 if (!dev)
4431 return -ENODEV;
4432
4433 switch (cmd) {
4434 case SIOCGIFFLAGS: /* Get interface flags */
4435 ifr->ifr_flags = (short) dev_get_flags(dev);
4436 return 0;
4437
4438 case SIOCGIFMETRIC: /* Get the metric on the interface
4439 (currently unused) */
4440 ifr->ifr_metric = 0;
4441 return 0;
4442
4443 case SIOCGIFMTU: /* Get the MTU of a device */
4444 ifr->ifr_mtu = dev->mtu;
4445 return 0;
4446
4447 case SIOCGIFHWADDR:
4448 if (!dev->addr_len)
4449 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4450 else
4451 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4452 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4453 ifr->ifr_hwaddr.sa_family = dev->type;
4454 return 0;
4455
4456 case SIOCGIFSLAVE:
4457 err = -EINVAL;
4458 break;
4459
4460 case SIOCGIFMAP:
4461 ifr->ifr_map.mem_start = dev->mem_start;
4462 ifr->ifr_map.mem_end = dev->mem_end;
4463 ifr->ifr_map.base_addr = dev->base_addr;
4464 ifr->ifr_map.irq = dev->irq;
4465 ifr->ifr_map.dma = dev->dma;
4466 ifr->ifr_map.port = dev->if_port;
4467 return 0;
4468
4469 case SIOCGIFINDEX:
4470 ifr->ifr_ifindex = dev->ifindex;
4471 return 0;
4472
4473 case SIOCGIFTXQLEN:
4474 ifr->ifr_qlen = dev->tx_queue_len;
4475 return 0;
4476
4477 default:
4478 /* dev_ioctl() should ensure this case
4479 * is never reached
4480 */
4481 WARN_ON(1);
4482 err = -EINVAL;
4483 break;
4484
4485 }
4486 return err;
4487 }
4488
4489 /*
4490 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4491 */
4492 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4493 {
4494 int err;
4495 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4496 const struct net_device_ops *ops;
4497
4498 if (!dev)
4499 return -ENODEV;
4500
4501 ops = dev->netdev_ops;
4502
4503 switch (cmd) {
4504 case SIOCSIFFLAGS: /* Set interface flags */
4505 return dev_change_flags(dev, ifr->ifr_flags);
4506
4507 case SIOCSIFMETRIC: /* Set the metric on the interface
4508 (currently unused) */
4509 return -EOPNOTSUPP;
4510
4511 case SIOCSIFMTU: /* Set the MTU of a device */
4512 return dev_set_mtu(dev, ifr->ifr_mtu);
4513
4514 case SIOCSIFHWADDR:
4515 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4516
4517 case SIOCSIFHWBROADCAST:
4518 if (ifr->ifr_hwaddr.sa_family != dev->type)
4519 return -EINVAL;
4520 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4521 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4522 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4523 return 0;
4524
4525 case SIOCSIFMAP:
4526 if (ops->ndo_set_config) {
4527 if (!netif_device_present(dev))
4528 return -ENODEV;
4529 return ops->ndo_set_config(dev, &ifr->ifr_map);
4530 }
4531 return -EOPNOTSUPP;
4532
4533 case SIOCADDMULTI:
4534 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4535 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4536 return -EINVAL;
4537 if (!netif_device_present(dev))
4538 return -ENODEV;
4539 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4540
4541 case SIOCDELMULTI:
4542 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4543 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4544 return -EINVAL;
4545 if (!netif_device_present(dev))
4546 return -ENODEV;
4547 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4548
4549 case SIOCSIFTXQLEN:
4550 if (ifr->ifr_qlen < 0)
4551 return -EINVAL;
4552 dev->tx_queue_len = ifr->ifr_qlen;
4553 return 0;
4554
4555 case SIOCSIFNAME:
4556 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4557 return dev_change_name(dev, ifr->ifr_newname);
4558
4559 /*
4560 * Unknown or private ioctl
4561 */
4562 default:
4563 if ((cmd >= SIOCDEVPRIVATE &&
4564 cmd <= SIOCDEVPRIVATE + 15) ||
4565 cmd == SIOCBONDENSLAVE ||
4566 cmd == SIOCBONDRELEASE ||
4567 cmd == SIOCBONDSETHWADDR ||
4568 cmd == SIOCBONDSLAVEINFOQUERY ||
4569 cmd == SIOCBONDINFOQUERY ||
4570 cmd == SIOCBONDCHANGEACTIVE ||
4571 cmd == SIOCGMIIPHY ||
4572 cmd == SIOCGMIIREG ||
4573 cmd == SIOCSMIIREG ||
4574 cmd == SIOCBRADDIF ||
4575 cmd == SIOCBRDELIF ||
4576 cmd == SIOCSHWTSTAMP ||
4577 cmd == SIOCWANDEV) {
4578 err = -EOPNOTSUPP;
4579 if (ops->ndo_do_ioctl) {
4580 if (netif_device_present(dev))
4581 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4582 else
4583 err = -ENODEV;
4584 }
4585 } else
4586 err = -EINVAL;
4587
4588 }
4589 return err;
4590 }
4591
4592 /*
4593 * This function handles all "interface"-type I/O control requests. The actual
4594 * 'doing' part of this is dev_ifsioc above.
4595 */
4596
4597 /**
4598 * dev_ioctl - network device ioctl
4599 * @net: the applicable net namespace
4600 * @cmd: command to issue
4601 * @arg: pointer to a struct ifreq in user space
4602 *
4603 * Issue ioctl functions to devices. This is normally called by the
4604 * user space syscall interfaces but can sometimes be useful for
4605 * other purposes. The return value is the return from the syscall if
4606 * positive or a negative errno code on error.
4607 */
4608
4609 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4610 {
4611 struct ifreq ifr;
4612 int ret;
4613 char *colon;
4614
4615 /* One special case: SIOCGIFCONF takes ifconf argument
4616 and requires shared lock, because it sleeps writing
4617 to user space.
4618 */
4619
4620 if (cmd == SIOCGIFCONF) {
4621 rtnl_lock();
4622 ret = dev_ifconf(net, (char __user *) arg);
4623 rtnl_unlock();
4624 return ret;
4625 }
4626 if (cmd == SIOCGIFNAME)
4627 return dev_ifname(net, (struct ifreq __user *)arg);
4628
4629 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4630 return -EFAULT;
4631
4632 ifr.ifr_name[IFNAMSIZ-1] = 0;
4633
4634 colon = strchr(ifr.ifr_name, ':');
4635 if (colon)
4636 *colon = 0;
4637
4638 /*
4639 * See which interface the caller is talking about.
4640 */
4641
4642 switch (cmd) {
4643 /*
4644 * These ioctl calls:
4645 * - can be done by all.
4646 * - atomic and do not require locking.
4647 * - return a value
4648 */
4649 case SIOCGIFFLAGS:
4650 case SIOCGIFMETRIC:
4651 case SIOCGIFMTU:
4652 case SIOCGIFHWADDR:
4653 case SIOCGIFSLAVE:
4654 case SIOCGIFMAP:
4655 case SIOCGIFINDEX:
4656 case SIOCGIFTXQLEN:
4657 dev_load(net, ifr.ifr_name);
4658 rcu_read_lock();
4659 ret = dev_ifsioc_locked(net, &ifr, cmd);
4660 rcu_read_unlock();
4661 if (!ret) {
4662 if (colon)
4663 *colon = ':';
4664 if (copy_to_user(arg, &ifr,
4665 sizeof(struct ifreq)))
4666 ret = -EFAULT;
4667 }
4668 return ret;
4669
4670 case SIOCETHTOOL:
4671 dev_load(net, ifr.ifr_name);
4672 rtnl_lock();
4673 ret = dev_ethtool(net, &ifr);
4674 rtnl_unlock();
4675 if (!ret) {
4676 if (colon)
4677 *colon = ':';
4678 if (copy_to_user(arg, &ifr,
4679 sizeof(struct ifreq)))
4680 ret = -EFAULT;
4681 }
4682 return ret;
4683
4684 /*
4685 * These ioctl calls:
4686 * - require superuser power.
4687 * - require strict serialization.
4688 * - return a value
4689 */
4690 case SIOCGMIIPHY:
4691 case SIOCGMIIREG:
4692 case SIOCSIFNAME:
4693 if (!capable(CAP_NET_ADMIN))
4694 return -EPERM;
4695 dev_load(net, ifr.ifr_name);
4696 rtnl_lock();
4697 ret = dev_ifsioc(net, &ifr, cmd);
4698 rtnl_unlock();
4699 if (!ret) {
4700 if (colon)
4701 *colon = ':';
4702 if (copy_to_user(arg, &ifr,
4703 sizeof(struct ifreq)))
4704 ret = -EFAULT;
4705 }
4706 return ret;
4707
4708 /*
4709 * These ioctl calls:
4710 * - require superuser power.
4711 * - require strict serialization.
4712 * - do not return a value
4713 */
4714 case SIOCSIFFLAGS:
4715 case SIOCSIFMETRIC:
4716 case SIOCSIFMTU:
4717 case SIOCSIFMAP:
4718 case SIOCSIFHWADDR:
4719 case SIOCSIFSLAVE:
4720 case SIOCADDMULTI:
4721 case SIOCDELMULTI:
4722 case SIOCSIFHWBROADCAST:
4723 case SIOCSIFTXQLEN:
4724 case SIOCSMIIREG:
4725 case SIOCBONDENSLAVE:
4726 case SIOCBONDRELEASE:
4727 case SIOCBONDSETHWADDR:
4728 case SIOCBONDCHANGEACTIVE:
4729 case SIOCBRADDIF:
4730 case SIOCBRDELIF:
4731 case SIOCSHWTSTAMP:
4732 if (!capable(CAP_NET_ADMIN))
4733 return -EPERM;
4734 /* fall through */
4735 case SIOCBONDSLAVEINFOQUERY:
4736 case SIOCBONDINFOQUERY:
4737 dev_load(net, ifr.ifr_name);
4738 rtnl_lock();
4739 ret = dev_ifsioc(net, &ifr, cmd);
4740 rtnl_unlock();
4741 return ret;
4742
4743 case SIOCGIFMEM:
4744 /* Get the per device memory space. We can add this but
4745 * currently do not support it */
4746 case SIOCSIFMEM:
4747 /* Set the per device memory buffer space.
4748 * Not applicable in our case */
4749 case SIOCSIFLINK:
4750 return -EINVAL;
4751
4752 /*
4753 * Unknown or private ioctl.
4754 */
4755 default:
4756 if (cmd == SIOCWANDEV ||
4757 (cmd >= SIOCDEVPRIVATE &&
4758 cmd <= SIOCDEVPRIVATE + 15)) {
4759 dev_load(net, ifr.ifr_name);
4760 rtnl_lock();
4761 ret = dev_ifsioc(net, &ifr, cmd);
4762 rtnl_unlock();
4763 if (!ret && copy_to_user(arg, &ifr,
4764 sizeof(struct ifreq)))
4765 ret = -EFAULT;
4766 return ret;
4767 }
4768 /* Take care of Wireless Extensions */
4769 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4770 return wext_handle_ioctl(net, &ifr, cmd, arg);
4771 return -EINVAL;
4772 }
4773 }
4774
4775
4776 /**
4777 * dev_new_index - allocate an ifindex
4778 * @net: the applicable net namespace
4779 *
4780 * Returns a suitable unique value for a new device interface
4781 * number. The caller must hold the rtnl semaphore or the
4782 * dev_base_lock to be sure it remains unique.
4783 */
4784 static int dev_new_index(struct net *net)
4785 {
4786 static int ifindex;
4787 for (;;) {
4788 if (++ifindex <= 0)
4789 ifindex = 1;
4790 if (!__dev_get_by_index(net, ifindex))
4791 return ifindex;
4792 }
4793 }
4794
4795 /* Delayed registration/unregisteration */
4796 static LIST_HEAD(net_todo_list);
4797
4798 static void net_set_todo(struct net_device *dev)
4799 {
4800 list_add_tail(&dev->todo_list, &net_todo_list);
4801 }
4802
4803 static void rollback_registered_many(struct list_head *head)
4804 {
4805 struct net_device *dev, *tmp;
4806
4807 BUG_ON(dev_boot_phase);
4808 ASSERT_RTNL();
4809
4810 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4811 /* Some devices call without registering
4812 * for initialization unwind. Remove those
4813 * devices and proceed with the remaining.
4814 */
4815 if (dev->reg_state == NETREG_UNINITIALIZED) {
4816 pr_debug("unregister_netdevice: device %s/%p never "
4817 "was registered\n", dev->name, dev);
4818
4819 WARN_ON(1);
4820 list_del(&dev->unreg_list);
4821 continue;
4822 }
4823
4824 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4825
4826 /* If device is running, close it first. */
4827 dev_close(dev);
4828
4829 /* And unlink it from device chain. */
4830 unlist_netdevice(dev);
4831
4832 dev->reg_state = NETREG_UNREGISTERING;
4833 }
4834
4835 synchronize_net();
4836
4837 list_for_each_entry(dev, head, unreg_list) {
4838 /* Shutdown queueing discipline. */
4839 dev_shutdown(dev);
4840
4841
4842 /* Notify protocols, that we are about to destroy
4843 this device. They should clean all the things.
4844 */
4845 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4846
4847 if (!dev->rtnl_link_ops ||
4848 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4849 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4850
4851 /*
4852 * Flush the unicast and multicast chains
4853 */
4854 dev_uc_flush(dev);
4855 dev_mc_flush(dev);
4856
4857 if (dev->netdev_ops->ndo_uninit)
4858 dev->netdev_ops->ndo_uninit(dev);
4859
4860 /* Notifier chain MUST detach us from master device. */
4861 WARN_ON(dev->master);
4862
4863 /* Remove entries from kobject tree */
4864 netdev_unregister_kobject(dev);
4865 }
4866
4867 /* Process any work delayed until the end of the batch */
4868 dev = list_first_entry(head, struct net_device, unreg_list);
4869 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4870
4871 synchronize_net();
4872
4873 list_for_each_entry(dev, head, unreg_list)
4874 dev_put(dev);
4875 }
4876
4877 static void rollback_registered(struct net_device *dev)
4878 {
4879 LIST_HEAD(single);
4880
4881 list_add(&dev->unreg_list, &single);
4882 rollback_registered_many(&single);
4883 }
4884
4885 static void __netdev_init_queue_locks_one(struct net_device *dev,
4886 struct netdev_queue *dev_queue,
4887 void *_unused)
4888 {
4889 spin_lock_init(&dev_queue->_xmit_lock);
4890 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4891 dev_queue->xmit_lock_owner = -1;
4892 }
4893
4894 static void netdev_init_queue_locks(struct net_device *dev)
4895 {
4896 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4897 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4898 }
4899
4900 unsigned long netdev_fix_features(unsigned long features, const char *name)
4901 {
4902 /* Fix illegal SG+CSUM combinations. */
4903 if ((features & NETIF_F_SG) &&
4904 !(features & NETIF_F_ALL_CSUM)) {
4905 if (name)
4906 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4907 "checksum feature.\n", name);
4908 features &= ~NETIF_F_SG;
4909 }
4910
4911 /* TSO requires that SG is present as well. */
4912 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4913 if (name)
4914 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4915 "SG feature.\n", name);
4916 features &= ~NETIF_F_TSO;
4917 }
4918
4919 if (features & NETIF_F_UFO) {
4920 if (!(features & NETIF_F_GEN_CSUM)) {
4921 if (name)
4922 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4923 "since no NETIF_F_HW_CSUM feature.\n",
4924 name);
4925 features &= ~NETIF_F_UFO;
4926 }
4927
4928 if (!(features & NETIF_F_SG)) {
4929 if (name)
4930 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4931 "since no NETIF_F_SG feature.\n", name);
4932 features &= ~NETIF_F_UFO;
4933 }
4934 }
4935
4936 return features;
4937 }
4938 EXPORT_SYMBOL(netdev_fix_features);
4939
4940 /**
4941 * netif_stacked_transfer_operstate - transfer operstate
4942 * @rootdev: the root or lower level device to transfer state from
4943 * @dev: the device to transfer operstate to
4944 *
4945 * Transfer operational state from root to device. This is normally
4946 * called when a stacking relationship exists between the root
4947 * device and the device(a leaf device).
4948 */
4949 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4950 struct net_device *dev)
4951 {
4952 if (rootdev->operstate == IF_OPER_DORMANT)
4953 netif_dormant_on(dev);
4954 else
4955 netif_dormant_off(dev);
4956
4957 if (netif_carrier_ok(rootdev)) {
4958 if (!netif_carrier_ok(dev))
4959 netif_carrier_on(dev);
4960 } else {
4961 if (netif_carrier_ok(dev))
4962 netif_carrier_off(dev);
4963 }
4964 }
4965 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4966
4967 /**
4968 * register_netdevice - register a network device
4969 * @dev: device to register
4970 *
4971 * Take a completed network device structure and add it to the kernel
4972 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4973 * chain. 0 is returned on success. A negative errno code is returned
4974 * on a failure to set up the device, or if the name is a duplicate.
4975 *
4976 * Callers must hold the rtnl semaphore. You may want
4977 * register_netdev() instead of this.
4978 *
4979 * BUGS:
4980 * The locking appears insufficient to guarantee two parallel registers
4981 * will not get the same name.
4982 */
4983
4984 int register_netdevice(struct net_device *dev)
4985 {
4986 int ret;
4987 struct net *net = dev_net(dev);
4988
4989 BUG_ON(dev_boot_phase);
4990 ASSERT_RTNL();
4991
4992 might_sleep();
4993
4994 /* When net_device's are persistent, this will be fatal. */
4995 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4996 BUG_ON(!net);
4997
4998 spin_lock_init(&dev->addr_list_lock);
4999 netdev_set_addr_lockdep_class(dev);
5000 netdev_init_queue_locks(dev);
5001
5002 dev->iflink = -1;
5003
5004 #ifdef CONFIG_RPS
5005 if (!dev->num_rx_queues) {
5006 /*
5007 * Allocate a single RX queue if driver never called
5008 * alloc_netdev_mq
5009 */
5010
5011 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
5012 if (!dev->_rx) {
5013 ret = -ENOMEM;
5014 goto out;
5015 }
5016
5017 dev->_rx->first = dev->_rx;
5018 atomic_set(&dev->_rx->count, 1);
5019 dev->num_rx_queues = 1;
5020 }
5021 #endif
5022 /* Init, if this function is available */
5023 if (dev->netdev_ops->ndo_init) {
5024 ret = dev->netdev_ops->ndo_init(dev);
5025 if (ret) {
5026 if (ret > 0)
5027 ret = -EIO;
5028 goto out;
5029 }
5030 }
5031
5032 ret = dev_get_valid_name(dev, dev->name, 0);
5033 if (ret)
5034 goto err_uninit;
5035
5036 dev->ifindex = dev_new_index(net);
5037 if (dev->iflink == -1)
5038 dev->iflink = dev->ifindex;
5039
5040 /* Fix illegal checksum combinations */
5041 if ((dev->features & NETIF_F_HW_CSUM) &&
5042 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5043 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5044 dev->name);
5045 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5046 }
5047
5048 if ((dev->features & NETIF_F_NO_CSUM) &&
5049 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5050 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5051 dev->name);
5052 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5053 }
5054
5055 dev->features = netdev_fix_features(dev->features, dev->name);
5056
5057 /* Enable software GSO if SG is supported. */
5058 if (dev->features & NETIF_F_SG)
5059 dev->features |= NETIF_F_GSO;
5060
5061 /* Enable GRO for vlans by default if dev->features has GRO also.
5062 * vlan_dev_init() will do the dev->features check.
5063 */
5064 dev->vlan_features |= NETIF_F_GRO;
5065
5066 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5067 ret = notifier_to_errno(ret);
5068 if (ret)
5069 goto err_uninit;
5070
5071 ret = netdev_register_kobject(dev);
5072 if (ret)
5073 goto err_uninit;
5074 dev->reg_state = NETREG_REGISTERED;
5075
5076 /*
5077 * Default initial state at registry is that the
5078 * device is present.
5079 */
5080
5081 set_bit(__LINK_STATE_PRESENT, &dev->state);
5082
5083 dev_init_scheduler(dev);
5084 dev_hold(dev);
5085 list_netdevice(dev);
5086
5087 /* Notify protocols, that a new device appeared. */
5088 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5089 ret = notifier_to_errno(ret);
5090 if (ret) {
5091 rollback_registered(dev);
5092 dev->reg_state = NETREG_UNREGISTERED;
5093 }
5094 /*
5095 * Prevent userspace races by waiting until the network
5096 * device is fully setup before sending notifications.
5097 */
5098 if (!dev->rtnl_link_ops ||
5099 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5100 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5101
5102 out:
5103 return ret;
5104
5105 err_uninit:
5106 if (dev->netdev_ops->ndo_uninit)
5107 dev->netdev_ops->ndo_uninit(dev);
5108 goto out;
5109 }
5110 EXPORT_SYMBOL(register_netdevice);
5111
5112 /**
5113 * init_dummy_netdev - init a dummy network device for NAPI
5114 * @dev: device to init
5115 *
5116 * This takes a network device structure and initialize the minimum
5117 * amount of fields so it can be used to schedule NAPI polls without
5118 * registering a full blown interface. This is to be used by drivers
5119 * that need to tie several hardware interfaces to a single NAPI
5120 * poll scheduler due to HW limitations.
5121 */
5122 int init_dummy_netdev(struct net_device *dev)
5123 {
5124 /* Clear everything. Note we don't initialize spinlocks
5125 * are they aren't supposed to be taken by any of the
5126 * NAPI code and this dummy netdev is supposed to be
5127 * only ever used for NAPI polls
5128 */
5129 memset(dev, 0, sizeof(struct net_device));
5130
5131 /* make sure we BUG if trying to hit standard
5132 * register/unregister code path
5133 */
5134 dev->reg_state = NETREG_DUMMY;
5135
5136 /* initialize the ref count */
5137 atomic_set(&dev->refcnt, 1);
5138
5139 /* NAPI wants this */
5140 INIT_LIST_HEAD(&dev->napi_list);
5141
5142 /* a dummy interface is started by default */
5143 set_bit(__LINK_STATE_PRESENT, &dev->state);
5144 set_bit(__LINK_STATE_START, &dev->state);
5145
5146 return 0;
5147 }
5148 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5149
5150
5151 /**
5152 * register_netdev - register a network device
5153 * @dev: device to register
5154 *
5155 * Take a completed network device structure and add it to the kernel
5156 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5157 * chain. 0 is returned on success. A negative errno code is returned
5158 * on a failure to set up the device, or if the name is a duplicate.
5159 *
5160 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5161 * and expands the device name if you passed a format string to
5162 * alloc_netdev.
5163 */
5164 int register_netdev(struct net_device *dev)
5165 {
5166 int err;
5167
5168 rtnl_lock();
5169
5170 /*
5171 * If the name is a format string the caller wants us to do a
5172 * name allocation.
5173 */
5174 if (strchr(dev->name, '%')) {
5175 err = dev_alloc_name(dev, dev->name);
5176 if (err < 0)
5177 goto out;
5178 }
5179
5180 err = register_netdevice(dev);
5181 out:
5182 rtnl_unlock();
5183 return err;
5184 }
5185 EXPORT_SYMBOL(register_netdev);
5186
5187 /*
5188 * netdev_wait_allrefs - wait until all references are gone.
5189 *
5190 * This is called when unregistering network devices.
5191 *
5192 * Any protocol or device that holds a reference should register
5193 * for netdevice notification, and cleanup and put back the
5194 * reference if they receive an UNREGISTER event.
5195 * We can get stuck here if buggy protocols don't correctly
5196 * call dev_put.
5197 */
5198 static void netdev_wait_allrefs(struct net_device *dev)
5199 {
5200 unsigned long rebroadcast_time, warning_time;
5201
5202 linkwatch_forget_dev(dev);
5203
5204 rebroadcast_time = warning_time = jiffies;
5205 while (atomic_read(&dev->refcnt) != 0) {
5206 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5207 rtnl_lock();
5208
5209 /* Rebroadcast unregister notification */
5210 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5211 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5212 * should have already handle it the first time */
5213
5214 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5215 &dev->state)) {
5216 /* We must not have linkwatch events
5217 * pending on unregister. If this
5218 * happens, we simply run the queue
5219 * unscheduled, resulting in a noop
5220 * for this device.
5221 */
5222 linkwatch_run_queue();
5223 }
5224
5225 __rtnl_unlock();
5226
5227 rebroadcast_time = jiffies;
5228 }
5229
5230 msleep(250);
5231
5232 if (time_after(jiffies, warning_time + 10 * HZ)) {
5233 printk(KERN_EMERG "unregister_netdevice: "
5234 "waiting for %s to become free. Usage "
5235 "count = %d\n",
5236 dev->name, atomic_read(&dev->refcnt));
5237 warning_time = jiffies;
5238 }
5239 }
5240 }
5241
5242 /* The sequence is:
5243 *
5244 * rtnl_lock();
5245 * ...
5246 * register_netdevice(x1);
5247 * register_netdevice(x2);
5248 * ...
5249 * unregister_netdevice(y1);
5250 * unregister_netdevice(y2);
5251 * ...
5252 * rtnl_unlock();
5253 * free_netdev(y1);
5254 * free_netdev(y2);
5255 *
5256 * We are invoked by rtnl_unlock().
5257 * This allows us to deal with problems:
5258 * 1) We can delete sysfs objects which invoke hotplug
5259 * without deadlocking with linkwatch via keventd.
5260 * 2) Since we run with the RTNL semaphore not held, we can sleep
5261 * safely in order to wait for the netdev refcnt to drop to zero.
5262 *
5263 * We must not return until all unregister events added during
5264 * the interval the lock was held have been completed.
5265 */
5266 void netdev_run_todo(void)
5267 {
5268 struct list_head list;
5269
5270 /* Snapshot list, allow later requests */
5271 list_replace_init(&net_todo_list, &list);
5272
5273 __rtnl_unlock();
5274
5275 while (!list_empty(&list)) {
5276 struct net_device *dev
5277 = list_first_entry(&list, struct net_device, todo_list);
5278 list_del(&dev->todo_list);
5279
5280 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5281 printk(KERN_ERR "network todo '%s' but state %d\n",
5282 dev->name, dev->reg_state);
5283 dump_stack();
5284 continue;
5285 }
5286
5287 dev->reg_state = NETREG_UNREGISTERED;
5288
5289 on_each_cpu(flush_backlog, dev, 1);
5290
5291 netdev_wait_allrefs(dev);
5292
5293 /* paranoia */
5294 BUG_ON(atomic_read(&dev->refcnt));
5295 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5296 WARN_ON(dev->ip6_ptr);
5297 WARN_ON(dev->dn_ptr);
5298
5299 if (dev->destructor)
5300 dev->destructor(dev);
5301
5302 /* Free network device */
5303 kobject_put(&dev->dev.kobj);
5304 }
5305 }
5306
5307 /**
5308 * dev_txq_stats_fold - fold tx_queues stats
5309 * @dev: device to get statistics from
5310 * @stats: struct rtnl_link_stats64 to hold results
5311 */
5312 void dev_txq_stats_fold(const struct net_device *dev,
5313 struct rtnl_link_stats64 *stats)
5314 {
5315 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5316 unsigned int i;
5317 struct netdev_queue *txq;
5318
5319 for (i = 0; i < dev->num_tx_queues; i++) {
5320 txq = netdev_get_tx_queue(dev, i);
5321 spin_lock_bh(&txq->_xmit_lock);
5322 tx_bytes += txq->tx_bytes;
5323 tx_packets += txq->tx_packets;
5324 tx_dropped += txq->tx_dropped;
5325 spin_unlock_bh(&txq->_xmit_lock);
5326 }
5327 if (tx_bytes || tx_packets || tx_dropped) {
5328 stats->tx_bytes = tx_bytes;
5329 stats->tx_packets = tx_packets;
5330 stats->tx_dropped = tx_dropped;
5331 }
5332 }
5333 EXPORT_SYMBOL(dev_txq_stats_fold);
5334
5335 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5336 * fields in the same order, with only the type differing.
5337 */
5338 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5339 const struct net_device_stats *netdev_stats)
5340 {
5341 #if BITS_PER_LONG == 64
5342 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5343 memcpy(stats64, netdev_stats, sizeof(*stats64));
5344 #else
5345 size_t i, n = sizeof(*stats64) / sizeof(u64);
5346 const unsigned long *src = (const unsigned long *)netdev_stats;
5347 u64 *dst = (u64 *)stats64;
5348
5349 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5350 sizeof(*stats64) / sizeof(u64));
5351 for (i = 0; i < n; i++)
5352 dst[i] = src[i];
5353 #endif
5354 }
5355
5356 /**
5357 * dev_get_stats - get network device statistics
5358 * @dev: device to get statistics from
5359 * @storage: place to store stats
5360 *
5361 * Get network statistics from device. Return @storage.
5362 * The device driver may provide its own method by setting
5363 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5364 * otherwise the internal statistics structure is used.
5365 */
5366 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5367 struct rtnl_link_stats64 *storage)
5368 {
5369 const struct net_device_ops *ops = dev->netdev_ops;
5370
5371 if (ops->ndo_get_stats64) {
5372 memset(storage, 0, sizeof(*storage));
5373 return ops->ndo_get_stats64(dev, storage);
5374 }
5375 if (ops->ndo_get_stats) {
5376 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5377 return storage;
5378 }
5379 netdev_stats_to_stats64(storage, &dev->stats);
5380 dev_txq_stats_fold(dev, storage);
5381 return storage;
5382 }
5383 EXPORT_SYMBOL(dev_get_stats);
5384
5385 static void netdev_init_one_queue(struct net_device *dev,
5386 struct netdev_queue *queue,
5387 void *_unused)
5388 {
5389 queue->dev = dev;
5390 }
5391
5392 static void netdev_init_queues(struct net_device *dev)
5393 {
5394 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5395 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5396 spin_lock_init(&dev->tx_global_lock);
5397 }
5398
5399 /**
5400 * alloc_netdev_mq - allocate network device
5401 * @sizeof_priv: size of private data to allocate space for
5402 * @name: device name format string
5403 * @setup: callback to initialize device
5404 * @queue_count: the number of subqueues to allocate
5405 *
5406 * Allocates a struct net_device with private data area for driver use
5407 * and performs basic initialization. Also allocates subquue structs
5408 * for each queue on the device at the end of the netdevice.
5409 */
5410 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5411 void (*setup)(struct net_device *), unsigned int queue_count)
5412 {
5413 struct netdev_queue *tx;
5414 struct net_device *dev;
5415 size_t alloc_size;
5416 struct net_device *p;
5417 #ifdef CONFIG_RPS
5418 struct netdev_rx_queue *rx;
5419 int i;
5420 #endif
5421
5422 BUG_ON(strlen(name) >= sizeof(dev->name));
5423
5424 alloc_size = sizeof(struct net_device);
5425 if (sizeof_priv) {
5426 /* ensure 32-byte alignment of private area */
5427 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5428 alloc_size += sizeof_priv;
5429 }
5430 /* ensure 32-byte alignment of whole construct */
5431 alloc_size += NETDEV_ALIGN - 1;
5432
5433 p = kzalloc(alloc_size, GFP_KERNEL);
5434 if (!p) {
5435 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5436 return NULL;
5437 }
5438
5439 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5440 if (!tx) {
5441 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5442 "tx qdiscs.\n");
5443 goto free_p;
5444 }
5445
5446 #ifdef CONFIG_RPS
5447 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5448 if (!rx) {
5449 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5450 "rx queues.\n");
5451 goto free_tx;
5452 }
5453
5454 atomic_set(&rx->count, queue_count);
5455
5456 /*
5457 * Set a pointer to first element in the array which holds the
5458 * reference count.
5459 */
5460 for (i = 0; i < queue_count; i++)
5461 rx[i].first = rx;
5462 #endif
5463
5464 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5465 dev->padded = (char *)dev - (char *)p;
5466
5467 if (dev_addr_init(dev))
5468 goto free_rx;
5469
5470 dev_mc_init(dev);
5471 dev_uc_init(dev);
5472
5473 dev_net_set(dev, &init_net);
5474
5475 dev->_tx = tx;
5476 dev->num_tx_queues = queue_count;
5477 dev->real_num_tx_queues = queue_count;
5478
5479 #ifdef CONFIG_RPS
5480 dev->_rx = rx;
5481 dev->num_rx_queues = queue_count;
5482 #endif
5483
5484 dev->gso_max_size = GSO_MAX_SIZE;
5485
5486 netdev_init_queues(dev);
5487
5488 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5489 dev->ethtool_ntuple_list.count = 0;
5490 INIT_LIST_HEAD(&dev->napi_list);
5491 INIT_LIST_HEAD(&dev->unreg_list);
5492 INIT_LIST_HEAD(&dev->link_watch_list);
5493 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5494 setup(dev);
5495 strcpy(dev->name, name);
5496 return dev;
5497
5498 free_rx:
5499 #ifdef CONFIG_RPS
5500 kfree(rx);
5501 free_tx:
5502 #endif
5503 kfree(tx);
5504 free_p:
5505 kfree(p);
5506 return NULL;
5507 }
5508 EXPORT_SYMBOL(alloc_netdev_mq);
5509
5510 /**
5511 * free_netdev - free network device
5512 * @dev: device
5513 *
5514 * This function does the last stage of destroying an allocated device
5515 * interface. The reference to the device object is released.
5516 * If this is the last reference then it will be freed.
5517 */
5518 void free_netdev(struct net_device *dev)
5519 {
5520 struct napi_struct *p, *n;
5521
5522 release_net(dev_net(dev));
5523
5524 kfree(dev->_tx);
5525
5526 /* Flush device addresses */
5527 dev_addr_flush(dev);
5528
5529 /* Clear ethtool n-tuple list */
5530 ethtool_ntuple_flush(dev);
5531
5532 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5533 netif_napi_del(p);
5534
5535 /* Compatibility with error handling in drivers */
5536 if (dev->reg_state == NETREG_UNINITIALIZED) {
5537 kfree((char *)dev - dev->padded);
5538 return;
5539 }
5540
5541 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5542 dev->reg_state = NETREG_RELEASED;
5543
5544 /* will free via device release */
5545 put_device(&dev->dev);
5546 }
5547 EXPORT_SYMBOL(free_netdev);
5548
5549 /**
5550 * synchronize_net - Synchronize with packet receive processing
5551 *
5552 * Wait for packets currently being received to be done.
5553 * Does not block later packets from starting.
5554 */
5555 void synchronize_net(void)
5556 {
5557 might_sleep();
5558 synchronize_rcu();
5559 }
5560 EXPORT_SYMBOL(synchronize_net);
5561
5562 /**
5563 * unregister_netdevice_queue - remove device from the kernel
5564 * @dev: device
5565 * @head: list
5566 *
5567 * This function shuts down a device interface and removes it
5568 * from the kernel tables.
5569 * If head not NULL, device is queued to be unregistered later.
5570 *
5571 * Callers must hold the rtnl semaphore. You may want
5572 * unregister_netdev() instead of this.
5573 */
5574
5575 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5576 {
5577 ASSERT_RTNL();
5578
5579 if (head) {
5580 list_move_tail(&dev->unreg_list, head);
5581 } else {
5582 rollback_registered(dev);
5583 /* Finish processing unregister after unlock */
5584 net_set_todo(dev);
5585 }
5586 }
5587 EXPORT_SYMBOL(unregister_netdevice_queue);
5588
5589 /**
5590 * unregister_netdevice_many - unregister many devices
5591 * @head: list of devices
5592 */
5593 void unregister_netdevice_many(struct list_head *head)
5594 {
5595 struct net_device *dev;
5596
5597 if (!list_empty(head)) {
5598 rollback_registered_many(head);
5599 list_for_each_entry(dev, head, unreg_list)
5600 net_set_todo(dev);
5601 }
5602 }
5603 EXPORT_SYMBOL(unregister_netdevice_many);
5604
5605 /**
5606 * unregister_netdev - remove device from the kernel
5607 * @dev: device
5608 *
5609 * This function shuts down a device interface and removes it
5610 * from the kernel tables.
5611 *
5612 * This is just a wrapper for unregister_netdevice that takes
5613 * the rtnl semaphore. In general you want to use this and not
5614 * unregister_netdevice.
5615 */
5616 void unregister_netdev(struct net_device *dev)
5617 {
5618 rtnl_lock();
5619 unregister_netdevice(dev);
5620 rtnl_unlock();
5621 }
5622 EXPORT_SYMBOL(unregister_netdev);
5623
5624 /**
5625 * dev_change_net_namespace - move device to different nethost namespace
5626 * @dev: device
5627 * @net: network namespace
5628 * @pat: If not NULL name pattern to try if the current device name
5629 * is already taken in the destination network namespace.
5630 *
5631 * This function shuts down a device interface and moves it
5632 * to a new network namespace. On success 0 is returned, on
5633 * a failure a netagive errno code is returned.
5634 *
5635 * Callers must hold the rtnl semaphore.
5636 */
5637
5638 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5639 {
5640 int err;
5641
5642 ASSERT_RTNL();
5643
5644 /* Don't allow namespace local devices to be moved. */
5645 err = -EINVAL;
5646 if (dev->features & NETIF_F_NETNS_LOCAL)
5647 goto out;
5648
5649 /* Ensure the device has been registrered */
5650 err = -EINVAL;
5651 if (dev->reg_state != NETREG_REGISTERED)
5652 goto out;
5653
5654 /* Get out if there is nothing todo */
5655 err = 0;
5656 if (net_eq(dev_net(dev), net))
5657 goto out;
5658
5659 /* Pick the destination device name, and ensure
5660 * we can use it in the destination network namespace.
5661 */
5662 err = -EEXIST;
5663 if (__dev_get_by_name(net, dev->name)) {
5664 /* We get here if we can't use the current device name */
5665 if (!pat)
5666 goto out;
5667 if (dev_get_valid_name(dev, pat, 1))
5668 goto out;
5669 }
5670
5671 /*
5672 * And now a mini version of register_netdevice unregister_netdevice.
5673 */
5674
5675 /* If device is running close it first. */
5676 dev_close(dev);
5677
5678 /* And unlink it from device chain */
5679 err = -ENODEV;
5680 unlist_netdevice(dev);
5681
5682 synchronize_net();
5683
5684 /* Shutdown queueing discipline. */
5685 dev_shutdown(dev);
5686
5687 /* Notify protocols, that we are about to destroy
5688 this device. They should clean all the things.
5689 */
5690 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5691 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5692
5693 /*
5694 * Flush the unicast and multicast chains
5695 */
5696 dev_uc_flush(dev);
5697 dev_mc_flush(dev);
5698
5699 /* Actually switch the network namespace */
5700 dev_net_set(dev, net);
5701
5702 /* If there is an ifindex conflict assign a new one */
5703 if (__dev_get_by_index(net, dev->ifindex)) {
5704 int iflink = (dev->iflink == dev->ifindex);
5705 dev->ifindex = dev_new_index(net);
5706 if (iflink)
5707 dev->iflink = dev->ifindex;
5708 }
5709
5710 /* Fixup kobjects */
5711 err = device_rename(&dev->dev, dev->name);
5712 WARN_ON(err);
5713
5714 /* Add the device back in the hashes */
5715 list_netdevice(dev);
5716
5717 /* Notify protocols, that a new device appeared. */
5718 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5719
5720 /*
5721 * Prevent userspace races by waiting until the network
5722 * device is fully setup before sending notifications.
5723 */
5724 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5725
5726 synchronize_net();
5727 err = 0;
5728 out:
5729 return err;
5730 }
5731 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5732
5733 static int dev_cpu_callback(struct notifier_block *nfb,
5734 unsigned long action,
5735 void *ocpu)
5736 {
5737 struct sk_buff **list_skb;
5738 struct sk_buff *skb;
5739 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5740 struct softnet_data *sd, *oldsd;
5741
5742 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5743 return NOTIFY_OK;
5744
5745 local_irq_disable();
5746 cpu = smp_processor_id();
5747 sd = &per_cpu(softnet_data, cpu);
5748 oldsd = &per_cpu(softnet_data, oldcpu);
5749
5750 /* Find end of our completion_queue. */
5751 list_skb = &sd->completion_queue;
5752 while (*list_skb)
5753 list_skb = &(*list_skb)->next;
5754 /* Append completion queue from offline CPU. */
5755 *list_skb = oldsd->completion_queue;
5756 oldsd->completion_queue = NULL;
5757
5758 /* Append output queue from offline CPU. */
5759 if (oldsd->output_queue) {
5760 *sd->output_queue_tailp = oldsd->output_queue;
5761 sd->output_queue_tailp = oldsd->output_queue_tailp;
5762 oldsd->output_queue = NULL;
5763 oldsd->output_queue_tailp = &oldsd->output_queue;
5764 }
5765
5766 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5767 local_irq_enable();
5768
5769 /* Process offline CPU's input_pkt_queue */
5770 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5771 netif_rx(skb);
5772 input_queue_head_incr(oldsd);
5773 }
5774 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5775 netif_rx(skb);
5776 input_queue_head_incr(oldsd);
5777 }
5778
5779 return NOTIFY_OK;
5780 }
5781
5782
5783 /**
5784 * netdev_increment_features - increment feature set by one
5785 * @all: current feature set
5786 * @one: new feature set
5787 * @mask: mask feature set
5788 *
5789 * Computes a new feature set after adding a device with feature set
5790 * @one to the master device with current feature set @all. Will not
5791 * enable anything that is off in @mask. Returns the new feature set.
5792 */
5793 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5794 unsigned long mask)
5795 {
5796 /* If device needs checksumming, downgrade to it. */
5797 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5798 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5799 else if (mask & NETIF_F_ALL_CSUM) {
5800 /* If one device supports v4/v6 checksumming, set for all. */
5801 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5802 !(all & NETIF_F_GEN_CSUM)) {
5803 all &= ~NETIF_F_ALL_CSUM;
5804 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5805 }
5806
5807 /* If one device supports hw checksumming, set for all. */
5808 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5809 all &= ~NETIF_F_ALL_CSUM;
5810 all |= NETIF_F_HW_CSUM;
5811 }
5812 }
5813
5814 one |= NETIF_F_ALL_CSUM;
5815
5816 one |= all & NETIF_F_ONE_FOR_ALL;
5817 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5818 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5819
5820 return all;
5821 }
5822 EXPORT_SYMBOL(netdev_increment_features);
5823
5824 static struct hlist_head *netdev_create_hash(void)
5825 {
5826 int i;
5827 struct hlist_head *hash;
5828
5829 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5830 if (hash != NULL)
5831 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5832 INIT_HLIST_HEAD(&hash[i]);
5833
5834 return hash;
5835 }
5836
5837 /* Initialize per network namespace state */
5838 static int __net_init netdev_init(struct net *net)
5839 {
5840 INIT_LIST_HEAD(&net->dev_base_head);
5841
5842 net->dev_name_head = netdev_create_hash();
5843 if (net->dev_name_head == NULL)
5844 goto err_name;
5845
5846 net->dev_index_head = netdev_create_hash();
5847 if (net->dev_index_head == NULL)
5848 goto err_idx;
5849
5850 return 0;
5851
5852 err_idx:
5853 kfree(net->dev_name_head);
5854 err_name:
5855 return -ENOMEM;
5856 }
5857
5858 /**
5859 * netdev_drivername - network driver for the device
5860 * @dev: network device
5861 * @buffer: buffer for resulting name
5862 * @len: size of buffer
5863 *
5864 * Determine network driver for device.
5865 */
5866 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5867 {
5868 const struct device_driver *driver;
5869 const struct device *parent;
5870
5871 if (len <= 0 || !buffer)
5872 return buffer;
5873 buffer[0] = 0;
5874
5875 parent = dev->dev.parent;
5876
5877 if (!parent)
5878 return buffer;
5879
5880 driver = parent->driver;
5881 if (driver && driver->name)
5882 strlcpy(buffer, driver->name, len);
5883 return buffer;
5884 }
5885
5886 static int __netdev_printk(const char *level, const struct net_device *dev,
5887 struct va_format *vaf)
5888 {
5889 int r;
5890
5891 if (dev && dev->dev.parent)
5892 r = dev_printk(level, dev->dev.parent, "%s: %pV",
5893 netdev_name(dev), vaf);
5894 else if (dev)
5895 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
5896 else
5897 r = printk("%s(NULL net_device): %pV", level, vaf);
5898
5899 return r;
5900 }
5901
5902 int netdev_printk(const char *level, const struct net_device *dev,
5903 const char *format, ...)
5904 {
5905 struct va_format vaf;
5906 va_list args;
5907 int r;
5908
5909 va_start(args, format);
5910
5911 vaf.fmt = format;
5912 vaf.va = &args;
5913
5914 r = __netdev_printk(level, dev, &vaf);
5915 va_end(args);
5916
5917 return r;
5918 }
5919 EXPORT_SYMBOL(netdev_printk);
5920
5921 #define define_netdev_printk_level(func, level) \
5922 int func(const struct net_device *dev, const char *fmt, ...) \
5923 { \
5924 int r; \
5925 struct va_format vaf; \
5926 va_list args; \
5927 \
5928 va_start(args, fmt); \
5929 \
5930 vaf.fmt = fmt; \
5931 vaf.va = &args; \
5932 \
5933 r = __netdev_printk(level, dev, &vaf); \
5934 va_end(args); \
5935 \
5936 return r; \
5937 } \
5938 EXPORT_SYMBOL(func);
5939
5940 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
5941 define_netdev_printk_level(netdev_alert, KERN_ALERT);
5942 define_netdev_printk_level(netdev_crit, KERN_CRIT);
5943 define_netdev_printk_level(netdev_err, KERN_ERR);
5944 define_netdev_printk_level(netdev_warn, KERN_WARNING);
5945 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
5946 define_netdev_printk_level(netdev_info, KERN_INFO);
5947
5948 static void __net_exit netdev_exit(struct net *net)
5949 {
5950 kfree(net->dev_name_head);
5951 kfree(net->dev_index_head);
5952 }
5953
5954 static struct pernet_operations __net_initdata netdev_net_ops = {
5955 .init = netdev_init,
5956 .exit = netdev_exit,
5957 };
5958
5959 static void __net_exit default_device_exit(struct net *net)
5960 {
5961 struct net_device *dev, *aux;
5962 /*
5963 * Push all migratable network devices back to the
5964 * initial network namespace
5965 */
5966 rtnl_lock();
5967 for_each_netdev_safe(net, dev, aux) {
5968 int err;
5969 char fb_name[IFNAMSIZ];
5970
5971 /* Ignore unmoveable devices (i.e. loopback) */
5972 if (dev->features & NETIF_F_NETNS_LOCAL)
5973 continue;
5974
5975 /* Leave virtual devices for the generic cleanup */
5976 if (dev->rtnl_link_ops)
5977 continue;
5978
5979 /* Push remaing network devices to init_net */
5980 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5981 err = dev_change_net_namespace(dev, &init_net, fb_name);
5982 if (err) {
5983 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5984 __func__, dev->name, err);
5985 BUG();
5986 }
5987 }
5988 rtnl_unlock();
5989 }
5990
5991 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5992 {
5993 /* At exit all network devices most be removed from a network
5994 * namespace. Do this in the reverse order of registeration.
5995 * Do this across as many network namespaces as possible to
5996 * improve batching efficiency.
5997 */
5998 struct net_device *dev;
5999 struct net *net;
6000 LIST_HEAD(dev_kill_list);
6001
6002 rtnl_lock();
6003 list_for_each_entry(net, net_list, exit_list) {
6004 for_each_netdev_reverse(net, dev) {
6005 if (dev->rtnl_link_ops)
6006 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6007 else
6008 unregister_netdevice_queue(dev, &dev_kill_list);
6009 }
6010 }
6011 unregister_netdevice_many(&dev_kill_list);
6012 rtnl_unlock();
6013 }
6014
6015 static struct pernet_operations __net_initdata default_device_ops = {
6016 .exit = default_device_exit,
6017 .exit_batch = default_device_exit_batch,
6018 };
6019
6020 /*
6021 * Initialize the DEV module. At boot time this walks the device list and
6022 * unhooks any devices that fail to initialise (normally hardware not
6023 * present) and leaves us with a valid list of present and active devices.
6024 *
6025 */
6026
6027 /*
6028 * This is called single threaded during boot, so no need
6029 * to take the rtnl semaphore.
6030 */
6031 static int __init net_dev_init(void)
6032 {
6033 int i, rc = -ENOMEM;
6034
6035 BUG_ON(!dev_boot_phase);
6036
6037 if (dev_proc_init())
6038 goto out;
6039
6040 if (netdev_kobject_init())
6041 goto out;
6042
6043 INIT_LIST_HEAD(&ptype_all);
6044 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6045 INIT_LIST_HEAD(&ptype_base[i]);
6046
6047 if (register_pernet_subsys(&netdev_net_ops))
6048 goto out;
6049
6050 /*
6051 * Initialise the packet receive queues.
6052 */
6053
6054 for_each_possible_cpu(i) {
6055 struct softnet_data *sd = &per_cpu(softnet_data, i);
6056
6057 memset(sd, 0, sizeof(*sd));
6058 skb_queue_head_init(&sd->input_pkt_queue);
6059 skb_queue_head_init(&sd->process_queue);
6060 sd->completion_queue = NULL;
6061 INIT_LIST_HEAD(&sd->poll_list);
6062 sd->output_queue = NULL;
6063 sd->output_queue_tailp = &sd->output_queue;
6064 #ifdef CONFIG_RPS
6065 sd->csd.func = rps_trigger_softirq;
6066 sd->csd.info = sd;
6067 sd->csd.flags = 0;
6068 sd->cpu = i;
6069 #endif
6070
6071 sd->backlog.poll = process_backlog;
6072 sd->backlog.weight = weight_p;
6073 sd->backlog.gro_list = NULL;
6074 sd->backlog.gro_count = 0;
6075 }
6076
6077 dev_boot_phase = 0;
6078
6079 /* The loopback device is special if any other network devices
6080 * is present in a network namespace the loopback device must
6081 * be present. Since we now dynamically allocate and free the
6082 * loopback device ensure this invariant is maintained by
6083 * keeping the loopback device as the first device on the
6084 * list of network devices. Ensuring the loopback devices
6085 * is the first device that appears and the last network device
6086 * that disappears.
6087 */
6088 if (register_pernet_device(&loopback_net_ops))
6089 goto out;
6090
6091 if (register_pernet_device(&default_device_ops))
6092 goto out;
6093
6094 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6095 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6096
6097 hotcpu_notifier(dev_cpu_callback, 0);
6098 dst_init();
6099 dev_mcast_init();
6100 rc = 0;
6101 out:
6102 return rc;
6103 }
6104
6105 subsys_initcall(net_dev_init);
6106
6107 static int __init initialize_hashrnd(void)
6108 {
6109 get_random_bytes(&hashrnd, sizeof(hashrnd));
6110 return 0;
6111 }
6112
6113 late_initcall_sync(initialize_hashrnd);
6114