]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/core/dev.c
GSO: Add GSO type for fixed IPv4 ID
[mirror_ubuntu-bionic-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/sctp.h>
142
143 #include "net-sysfs.h"
144
145 /* Instead of increasing this, you should create a hash table. */
146 #define MAX_GRO_SKBS 8
147
148 /* This should be increased if a protocol with a bigger head is added. */
149 #define GRO_MAX_HEAD (MAX_HEADER + 128)
150
151 static DEFINE_SPINLOCK(ptype_lock);
152 static DEFINE_SPINLOCK(offload_lock);
153 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
154 struct list_head ptype_all __read_mostly; /* Taps */
155 static struct list_head offload_base __read_mostly;
156
157 static int netif_rx_internal(struct sk_buff *skb);
158 static int call_netdevice_notifiers_info(unsigned long val,
159 struct net_device *dev,
160 struct netdev_notifier_info *info);
161
162 /*
163 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
164 * semaphore.
165 *
166 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
167 *
168 * Writers must hold the rtnl semaphore while they loop through the
169 * dev_base_head list, and hold dev_base_lock for writing when they do the
170 * actual updates. This allows pure readers to access the list even
171 * while a writer is preparing to update it.
172 *
173 * To put it another way, dev_base_lock is held for writing only to
174 * protect against pure readers; the rtnl semaphore provides the
175 * protection against other writers.
176 *
177 * See, for example usages, register_netdevice() and
178 * unregister_netdevice(), which must be called with the rtnl
179 * semaphore held.
180 */
181 DEFINE_RWLOCK(dev_base_lock);
182 EXPORT_SYMBOL(dev_base_lock);
183
184 /* protects napi_hash addition/deletion and napi_gen_id */
185 static DEFINE_SPINLOCK(napi_hash_lock);
186
187 static unsigned int napi_gen_id = NR_CPUS;
188 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
189
190 static seqcount_t devnet_rename_seq;
191
192 static inline void dev_base_seq_inc(struct net *net)
193 {
194 while (++net->dev_base_seq == 0);
195 }
196
197 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
198 {
199 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
200
201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
202 }
203
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205 {
206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
207 }
208
209 static inline void rps_lock(struct softnet_data *sd)
210 {
211 #ifdef CONFIG_RPS
212 spin_lock(&sd->input_pkt_queue.lock);
213 #endif
214 }
215
216 static inline void rps_unlock(struct softnet_data *sd)
217 {
218 #ifdef CONFIG_RPS
219 spin_unlock(&sd->input_pkt_queue.lock);
220 #endif
221 }
222
223 /* Device list insertion */
224 static void list_netdevice(struct net_device *dev)
225 {
226 struct net *net = dev_net(dev);
227
228 ASSERT_RTNL();
229
230 write_lock_bh(&dev_base_lock);
231 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
232 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
233 hlist_add_head_rcu(&dev->index_hlist,
234 dev_index_hash(net, dev->ifindex));
235 write_unlock_bh(&dev_base_lock);
236
237 dev_base_seq_inc(net);
238 }
239
240 /* Device list removal
241 * caller must respect a RCU grace period before freeing/reusing dev
242 */
243 static void unlist_netdevice(struct net_device *dev)
244 {
245 ASSERT_RTNL();
246
247 /* Unlink dev from the device chain */
248 write_lock_bh(&dev_base_lock);
249 list_del_rcu(&dev->dev_list);
250 hlist_del_rcu(&dev->name_hlist);
251 hlist_del_rcu(&dev->index_hlist);
252 write_unlock_bh(&dev_base_lock);
253
254 dev_base_seq_inc(dev_net(dev));
255 }
256
257 /*
258 * Our notifier list
259 */
260
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262
263 /*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
267
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270
271 #ifdef CONFIG_LOCKDEP
272 /*
273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274 * according to dev->type
275 */
276 static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
290 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
291 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
292
293 static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
307 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
308 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
309
310 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
311 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
312
313 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
314 {
315 int i;
316
317 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
318 if (netdev_lock_type[i] == dev_type)
319 return i;
320 /* the last key is used by default */
321 return ARRAY_SIZE(netdev_lock_type) - 1;
322 }
323
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326 {
327 int i;
328
329 i = netdev_lock_pos(dev_type);
330 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
331 netdev_lock_name[i]);
332 }
333
334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335 {
336 int i;
337
338 i = netdev_lock_pos(dev->type);
339 lockdep_set_class_and_name(&dev->addr_list_lock,
340 &netdev_addr_lock_key[i],
341 netdev_lock_name[i]);
342 }
343 #else
344 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
345 unsigned short dev_type)
346 {
347 }
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 }
351 #endif
352
353 /*******************************************************************************
354
355 Protocol management and registration routines
356
357 *******************************************************************************/
358
359 /*
360 * Add a protocol ID to the list. Now that the input handler is
361 * smarter we can dispense with all the messy stuff that used to be
362 * here.
363 *
364 * BEWARE!!! Protocol handlers, mangling input packets,
365 * MUST BE last in hash buckets and checking protocol handlers
366 * MUST start from promiscuous ptype_all chain in net_bh.
367 * It is true now, do not change it.
368 * Explanation follows: if protocol handler, mangling packet, will
369 * be the first on list, it is not able to sense, that packet
370 * is cloned and should be copied-on-write, so that it will
371 * change it and subsequent readers will get broken packet.
372 * --ANK (980803)
373 */
374
375 static inline struct list_head *ptype_head(const struct packet_type *pt)
376 {
377 if (pt->type == htons(ETH_P_ALL))
378 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
379 else
380 return pt->dev ? &pt->dev->ptype_specific :
381 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
382 }
383
384 /**
385 * dev_add_pack - add packet handler
386 * @pt: packet type declaration
387 *
388 * Add a protocol handler to the networking stack. The passed &packet_type
389 * is linked into kernel lists and may not be freed until it has been
390 * removed from the kernel lists.
391 *
392 * This call does not sleep therefore it can not
393 * guarantee all CPU's that are in middle of receiving packets
394 * will see the new packet type (until the next received packet).
395 */
396
397 void dev_add_pack(struct packet_type *pt)
398 {
399 struct list_head *head = ptype_head(pt);
400
401 spin_lock(&ptype_lock);
402 list_add_rcu(&pt->list, head);
403 spin_unlock(&ptype_lock);
404 }
405 EXPORT_SYMBOL(dev_add_pack);
406
407 /**
408 * __dev_remove_pack - remove packet handler
409 * @pt: packet type declaration
410 *
411 * Remove a protocol handler that was previously added to the kernel
412 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
413 * from the kernel lists and can be freed or reused once this function
414 * returns.
415 *
416 * The packet type might still be in use by receivers
417 * and must not be freed until after all the CPU's have gone
418 * through a quiescent state.
419 */
420 void __dev_remove_pack(struct packet_type *pt)
421 {
422 struct list_head *head = ptype_head(pt);
423 struct packet_type *pt1;
424
425 spin_lock(&ptype_lock);
426
427 list_for_each_entry(pt1, head, list) {
428 if (pt == pt1) {
429 list_del_rcu(&pt->list);
430 goto out;
431 }
432 }
433
434 pr_warn("dev_remove_pack: %p not found\n", pt);
435 out:
436 spin_unlock(&ptype_lock);
437 }
438 EXPORT_SYMBOL(__dev_remove_pack);
439
440 /**
441 * dev_remove_pack - remove packet handler
442 * @pt: packet type declaration
443 *
444 * Remove a protocol handler that was previously added to the kernel
445 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
446 * from the kernel lists and can be freed or reused once this function
447 * returns.
448 *
449 * This call sleeps to guarantee that no CPU is looking at the packet
450 * type after return.
451 */
452 void dev_remove_pack(struct packet_type *pt)
453 {
454 __dev_remove_pack(pt);
455
456 synchronize_net();
457 }
458 EXPORT_SYMBOL(dev_remove_pack);
459
460
461 /**
462 * dev_add_offload - register offload handlers
463 * @po: protocol offload declaration
464 *
465 * Add protocol offload handlers to the networking stack. The passed
466 * &proto_offload is linked into kernel lists and may not be freed until
467 * it has been removed from the kernel lists.
468 *
469 * This call does not sleep therefore it can not
470 * guarantee all CPU's that are in middle of receiving packets
471 * will see the new offload handlers (until the next received packet).
472 */
473 void dev_add_offload(struct packet_offload *po)
474 {
475 struct packet_offload *elem;
476
477 spin_lock(&offload_lock);
478 list_for_each_entry(elem, &offload_base, list) {
479 if (po->priority < elem->priority)
480 break;
481 }
482 list_add_rcu(&po->list, elem->list.prev);
483 spin_unlock(&offload_lock);
484 }
485 EXPORT_SYMBOL(dev_add_offload);
486
487 /**
488 * __dev_remove_offload - remove offload handler
489 * @po: packet offload declaration
490 *
491 * Remove a protocol offload handler that was previously added to the
492 * kernel offload handlers by dev_add_offload(). The passed &offload_type
493 * is removed from the kernel lists and can be freed or reused once this
494 * function returns.
495 *
496 * The packet type might still be in use by receivers
497 * and must not be freed until after all the CPU's have gone
498 * through a quiescent state.
499 */
500 static void __dev_remove_offload(struct packet_offload *po)
501 {
502 struct list_head *head = &offload_base;
503 struct packet_offload *po1;
504
505 spin_lock(&offload_lock);
506
507 list_for_each_entry(po1, head, list) {
508 if (po == po1) {
509 list_del_rcu(&po->list);
510 goto out;
511 }
512 }
513
514 pr_warn("dev_remove_offload: %p not found\n", po);
515 out:
516 spin_unlock(&offload_lock);
517 }
518
519 /**
520 * dev_remove_offload - remove packet offload handler
521 * @po: packet offload declaration
522 *
523 * Remove a packet offload handler that was previously added to the kernel
524 * offload handlers by dev_add_offload(). The passed &offload_type is
525 * removed from the kernel lists and can be freed or reused once this
526 * function returns.
527 *
528 * This call sleeps to guarantee that no CPU is looking at the packet
529 * type after return.
530 */
531 void dev_remove_offload(struct packet_offload *po)
532 {
533 __dev_remove_offload(po);
534
535 synchronize_net();
536 }
537 EXPORT_SYMBOL(dev_remove_offload);
538
539 /******************************************************************************
540
541 Device Boot-time Settings Routines
542
543 *******************************************************************************/
544
545 /* Boot time configuration table */
546 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
547
548 /**
549 * netdev_boot_setup_add - add new setup entry
550 * @name: name of the device
551 * @map: configured settings for the device
552 *
553 * Adds new setup entry to the dev_boot_setup list. The function
554 * returns 0 on error and 1 on success. This is a generic routine to
555 * all netdevices.
556 */
557 static int netdev_boot_setup_add(char *name, struct ifmap *map)
558 {
559 struct netdev_boot_setup *s;
560 int i;
561
562 s = dev_boot_setup;
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
564 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
565 memset(s[i].name, 0, sizeof(s[i].name));
566 strlcpy(s[i].name, name, IFNAMSIZ);
567 memcpy(&s[i].map, map, sizeof(s[i].map));
568 break;
569 }
570 }
571
572 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
573 }
574
575 /**
576 * netdev_boot_setup_check - check boot time settings
577 * @dev: the netdevice
578 *
579 * Check boot time settings for the device.
580 * The found settings are set for the device to be used
581 * later in the device probing.
582 * Returns 0 if no settings found, 1 if they are.
583 */
584 int netdev_boot_setup_check(struct net_device *dev)
585 {
586 struct netdev_boot_setup *s = dev_boot_setup;
587 int i;
588
589 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
590 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
591 !strcmp(dev->name, s[i].name)) {
592 dev->irq = s[i].map.irq;
593 dev->base_addr = s[i].map.base_addr;
594 dev->mem_start = s[i].map.mem_start;
595 dev->mem_end = s[i].map.mem_end;
596 return 1;
597 }
598 }
599 return 0;
600 }
601 EXPORT_SYMBOL(netdev_boot_setup_check);
602
603
604 /**
605 * netdev_boot_base - get address from boot time settings
606 * @prefix: prefix for network device
607 * @unit: id for network device
608 *
609 * Check boot time settings for the base address of device.
610 * The found settings are set for the device to be used
611 * later in the device probing.
612 * Returns 0 if no settings found.
613 */
614 unsigned long netdev_boot_base(const char *prefix, int unit)
615 {
616 const struct netdev_boot_setup *s = dev_boot_setup;
617 char name[IFNAMSIZ];
618 int i;
619
620 sprintf(name, "%s%d", prefix, unit);
621
622 /*
623 * If device already registered then return base of 1
624 * to indicate not to probe for this interface
625 */
626 if (__dev_get_by_name(&init_net, name))
627 return 1;
628
629 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
630 if (!strcmp(name, s[i].name))
631 return s[i].map.base_addr;
632 return 0;
633 }
634
635 /*
636 * Saves at boot time configured settings for any netdevice.
637 */
638 int __init netdev_boot_setup(char *str)
639 {
640 int ints[5];
641 struct ifmap map;
642
643 str = get_options(str, ARRAY_SIZE(ints), ints);
644 if (!str || !*str)
645 return 0;
646
647 /* Save settings */
648 memset(&map, 0, sizeof(map));
649 if (ints[0] > 0)
650 map.irq = ints[1];
651 if (ints[0] > 1)
652 map.base_addr = ints[2];
653 if (ints[0] > 2)
654 map.mem_start = ints[3];
655 if (ints[0] > 3)
656 map.mem_end = ints[4];
657
658 /* Add new entry to the list */
659 return netdev_boot_setup_add(str, &map);
660 }
661
662 __setup("netdev=", netdev_boot_setup);
663
664 /*******************************************************************************
665
666 Device Interface Subroutines
667
668 *******************************************************************************/
669
670 /**
671 * dev_get_iflink - get 'iflink' value of a interface
672 * @dev: targeted interface
673 *
674 * Indicates the ifindex the interface is linked to.
675 * Physical interfaces have the same 'ifindex' and 'iflink' values.
676 */
677
678 int dev_get_iflink(const struct net_device *dev)
679 {
680 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
681 return dev->netdev_ops->ndo_get_iflink(dev);
682
683 return dev->ifindex;
684 }
685 EXPORT_SYMBOL(dev_get_iflink);
686
687 /**
688 * dev_fill_metadata_dst - Retrieve tunnel egress information.
689 * @dev: targeted interface
690 * @skb: The packet.
691 *
692 * For better visibility of tunnel traffic OVS needs to retrieve
693 * egress tunnel information for a packet. Following API allows
694 * user to get this info.
695 */
696 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
697 {
698 struct ip_tunnel_info *info;
699
700 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
701 return -EINVAL;
702
703 info = skb_tunnel_info_unclone(skb);
704 if (!info)
705 return -ENOMEM;
706 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
707 return -EINVAL;
708
709 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
710 }
711 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
712
713 /**
714 * __dev_get_by_name - find a device by its name
715 * @net: the applicable net namespace
716 * @name: name to find
717 *
718 * Find an interface by name. Must be called under RTNL semaphore
719 * or @dev_base_lock. If the name is found a pointer to the device
720 * is returned. If the name is not found then %NULL is returned. The
721 * reference counters are not incremented so the caller must be
722 * careful with locks.
723 */
724
725 struct net_device *__dev_get_by_name(struct net *net, const char *name)
726 {
727 struct net_device *dev;
728 struct hlist_head *head = dev_name_hash(net, name);
729
730 hlist_for_each_entry(dev, head, name_hlist)
731 if (!strncmp(dev->name, name, IFNAMSIZ))
732 return dev;
733
734 return NULL;
735 }
736 EXPORT_SYMBOL(__dev_get_by_name);
737
738 /**
739 * dev_get_by_name_rcu - find a device by its name
740 * @net: the applicable net namespace
741 * @name: name to find
742 *
743 * Find an interface by name.
744 * If the name is found a pointer to the device is returned.
745 * If the name is not found then %NULL is returned.
746 * The reference counters are not incremented so the caller must be
747 * careful with locks. The caller must hold RCU lock.
748 */
749
750 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
751 {
752 struct net_device *dev;
753 struct hlist_head *head = dev_name_hash(net, name);
754
755 hlist_for_each_entry_rcu(dev, head, name_hlist)
756 if (!strncmp(dev->name, name, IFNAMSIZ))
757 return dev;
758
759 return NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762
763 /**
764 * dev_get_by_name - find a device by its name
765 * @net: the applicable net namespace
766 * @name: name to find
767 *
768 * Find an interface by name. This can be called from any
769 * context and does its own locking. The returned handle has
770 * the usage count incremented and the caller must use dev_put() to
771 * release it when it is no longer needed. %NULL is returned if no
772 * matching device is found.
773 */
774
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777 struct net_device *dev;
778
779 rcu_read_lock();
780 dev = dev_get_by_name_rcu(net, name);
781 if (dev)
782 dev_hold(dev);
783 rcu_read_unlock();
784 return dev;
785 }
786 EXPORT_SYMBOL(dev_get_by_name);
787
788 /**
789 * __dev_get_by_index - find a device by its ifindex
790 * @net: the applicable net namespace
791 * @ifindex: index of device
792 *
793 * Search for an interface by index. Returns %NULL if the device
794 * is not found or a pointer to the device. The device has not
795 * had its reference counter increased so the caller must be careful
796 * about locking. The caller must hold either the RTNL semaphore
797 * or @dev_base_lock.
798 */
799
800 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
801 {
802 struct net_device *dev;
803 struct hlist_head *head = dev_index_hash(net, ifindex);
804
805 hlist_for_each_entry(dev, head, index_hlist)
806 if (dev->ifindex == ifindex)
807 return dev;
808
809 return NULL;
810 }
811 EXPORT_SYMBOL(__dev_get_by_index);
812
813 /**
814 * dev_get_by_index_rcu - find a device by its ifindex
815 * @net: the applicable net namespace
816 * @ifindex: index of device
817 *
818 * Search for an interface by index. Returns %NULL if the device
819 * is not found or a pointer to the device. The device has not
820 * had its reference counter increased so the caller must be careful
821 * about locking. The caller must hold RCU lock.
822 */
823
824 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
825 {
826 struct net_device *dev;
827 struct hlist_head *head = dev_index_hash(net, ifindex);
828
829 hlist_for_each_entry_rcu(dev, head, index_hlist)
830 if (dev->ifindex == ifindex)
831 return dev;
832
833 return NULL;
834 }
835 EXPORT_SYMBOL(dev_get_by_index_rcu);
836
837
838 /**
839 * dev_get_by_index - find a device by its ifindex
840 * @net: the applicable net namespace
841 * @ifindex: index of device
842 *
843 * Search for an interface by index. Returns NULL if the device
844 * is not found or a pointer to the device. The device returned has
845 * had a reference added and the pointer is safe until the user calls
846 * dev_put to indicate they have finished with it.
847 */
848
849 struct net_device *dev_get_by_index(struct net *net, int ifindex)
850 {
851 struct net_device *dev;
852
853 rcu_read_lock();
854 dev = dev_get_by_index_rcu(net, ifindex);
855 if (dev)
856 dev_hold(dev);
857 rcu_read_unlock();
858 return dev;
859 }
860 EXPORT_SYMBOL(dev_get_by_index);
861
862 /**
863 * netdev_get_name - get a netdevice name, knowing its ifindex.
864 * @net: network namespace
865 * @name: a pointer to the buffer where the name will be stored.
866 * @ifindex: the ifindex of the interface to get the name from.
867 *
868 * The use of raw_seqcount_begin() and cond_resched() before
869 * retrying is required as we want to give the writers a chance
870 * to complete when CONFIG_PREEMPT is not set.
871 */
872 int netdev_get_name(struct net *net, char *name, int ifindex)
873 {
874 struct net_device *dev;
875 unsigned int seq;
876
877 retry:
878 seq = raw_seqcount_begin(&devnet_rename_seq);
879 rcu_read_lock();
880 dev = dev_get_by_index_rcu(net, ifindex);
881 if (!dev) {
882 rcu_read_unlock();
883 return -ENODEV;
884 }
885
886 strcpy(name, dev->name);
887 rcu_read_unlock();
888 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
889 cond_resched();
890 goto retry;
891 }
892
893 return 0;
894 }
895
896 /**
897 * dev_getbyhwaddr_rcu - find a device by its hardware address
898 * @net: the applicable net namespace
899 * @type: media type of device
900 * @ha: hardware address
901 *
902 * Search for an interface by MAC address. Returns NULL if the device
903 * is not found or a pointer to the device.
904 * The caller must hold RCU or RTNL.
905 * The returned device has not had its ref count increased
906 * and the caller must therefore be careful about locking
907 *
908 */
909
910 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
911 const char *ha)
912 {
913 struct net_device *dev;
914
915 for_each_netdev_rcu(net, dev)
916 if (dev->type == type &&
917 !memcmp(dev->dev_addr, ha, dev->addr_len))
918 return dev;
919
920 return NULL;
921 }
922 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
923
924 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
925 {
926 struct net_device *dev;
927
928 ASSERT_RTNL();
929 for_each_netdev(net, dev)
930 if (dev->type == type)
931 return dev;
932
933 return NULL;
934 }
935 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
936
937 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
938 {
939 struct net_device *dev, *ret = NULL;
940
941 rcu_read_lock();
942 for_each_netdev_rcu(net, dev)
943 if (dev->type == type) {
944 dev_hold(dev);
945 ret = dev;
946 break;
947 }
948 rcu_read_unlock();
949 return ret;
950 }
951 EXPORT_SYMBOL(dev_getfirstbyhwtype);
952
953 /**
954 * __dev_get_by_flags - find any device with given flags
955 * @net: the applicable net namespace
956 * @if_flags: IFF_* values
957 * @mask: bitmask of bits in if_flags to check
958 *
959 * Search for any interface with the given flags. Returns NULL if a device
960 * is not found or a pointer to the device. Must be called inside
961 * rtnl_lock(), and result refcount is unchanged.
962 */
963
964 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
965 unsigned short mask)
966 {
967 struct net_device *dev, *ret;
968
969 ASSERT_RTNL();
970
971 ret = NULL;
972 for_each_netdev(net, dev) {
973 if (((dev->flags ^ if_flags) & mask) == 0) {
974 ret = dev;
975 break;
976 }
977 }
978 return ret;
979 }
980 EXPORT_SYMBOL(__dev_get_by_flags);
981
982 /**
983 * dev_valid_name - check if name is okay for network device
984 * @name: name string
985 *
986 * Network device names need to be valid file names to
987 * to allow sysfs to work. We also disallow any kind of
988 * whitespace.
989 */
990 bool dev_valid_name(const char *name)
991 {
992 if (*name == '\0')
993 return false;
994 if (strlen(name) >= IFNAMSIZ)
995 return false;
996 if (!strcmp(name, ".") || !strcmp(name, ".."))
997 return false;
998
999 while (*name) {
1000 if (*name == '/' || *name == ':' || isspace(*name))
1001 return false;
1002 name++;
1003 }
1004 return true;
1005 }
1006 EXPORT_SYMBOL(dev_valid_name);
1007
1008 /**
1009 * __dev_alloc_name - allocate a name for a device
1010 * @net: network namespace to allocate the device name in
1011 * @name: name format string
1012 * @buf: scratch buffer and result name string
1013 *
1014 * Passed a format string - eg "lt%d" it will try and find a suitable
1015 * id. It scans list of devices to build up a free map, then chooses
1016 * the first empty slot. The caller must hold the dev_base or rtnl lock
1017 * while allocating the name and adding the device in order to avoid
1018 * duplicates.
1019 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1020 * Returns the number of the unit assigned or a negative errno code.
1021 */
1022
1023 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1024 {
1025 int i = 0;
1026 const char *p;
1027 const int max_netdevices = 8*PAGE_SIZE;
1028 unsigned long *inuse;
1029 struct net_device *d;
1030
1031 p = strnchr(name, IFNAMSIZ-1, '%');
1032 if (p) {
1033 /*
1034 * Verify the string as this thing may have come from
1035 * the user. There must be either one "%d" and no other "%"
1036 * characters.
1037 */
1038 if (p[1] != 'd' || strchr(p + 2, '%'))
1039 return -EINVAL;
1040
1041 /* Use one page as a bit array of possible slots */
1042 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1043 if (!inuse)
1044 return -ENOMEM;
1045
1046 for_each_netdev(net, d) {
1047 if (!sscanf(d->name, name, &i))
1048 continue;
1049 if (i < 0 || i >= max_netdevices)
1050 continue;
1051
1052 /* avoid cases where sscanf is not exact inverse of printf */
1053 snprintf(buf, IFNAMSIZ, name, i);
1054 if (!strncmp(buf, d->name, IFNAMSIZ))
1055 set_bit(i, inuse);
1056 }
1057
1058 i = find_first_zero_bit(inuse, max_netdevices);
1059 free_page((unsigned long) inuse);
1060 }
1061
1062 if (buf != name)
1063 snprintf(buf, IFNAMSIZ, name, i);
1064 if (!__dev_get_by_name(net, buf))
1065 return i;
1066
1067 /* It is possible to run out of possible slots
1068 * when the name is long and there isn't enough space left
1069 * for the digits, or if all bits are used.
1070 */
1071 return -ENFILE;
1072 }
1073
1074 /**
1075 * dev_alloc_name - allocate a name for a device
1076 * @dev: device
1077 * @name: name format string
1078 *
1079 * Passed a format string - eg "lt%d" it will try and find a suitable
1080 * id. It scans list of devices to build up a free map, then chooses
1081 * the first empty slot. The caller must hold the dev_base or rtnl lock
1082 * while allocating the name and adding the device in order to avoid
1083 * duplicates.
1084 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1085 * Returns the number of the unit assigned or a negative errno code.
1086 */
1087
1088 int dev_alloc_name(struct net_device *dev, const char *name)
1089 {
1090 char buf[IFNAMSIZ];
1091 struct net *net;
1092 int ret;
1093
1094 BUG_ON(!dev_net(dev));
1095 net = dev_net(dev);
1096 ret = __dev_alloc_name(net, name, buf);
1097 if (ret >= 0)
1098 strlcpy(dev->name, buf, IFNAMSIZ);
1099 return ret;
1100 }
1101 EXPORT_SYMBOL(dev_alloc_name);
1102
1103 static int dev_alloc_name_ns(struct net *net,
1104 struct net_device *dev,
1105 const char *name)
1106 {
1107 char buf[IFNAMSIZ];
1108 int ret;
1109
1110 ret = __dev_alloc_name(net, name, buf);
1111 if (ret >= 0)
1112 strlcpy(dev->name, buf, IFNAMSIZ);
1113 return ret;
1114 }
1115
1116 static int dev_get_valid_name(struct net *net,
1117 struct net_device *dev,
1118 const char *name)
1119 {
1120 BUG_ON(!net);
1121
1122 if (!dev_valid_name(name))
1123 return -EINVAL;
1124
1125 if (strchr(name, '%'))
1126 return dev_alloc_name_ns(net, dev, name);
1127 else if (__dev_get_by_name(net, name))
1128 return -EEXIST;
1129 else if (dev->name != name)
1130 strlcpy(dev->name, name, IFNAMSIZ);
1131
1132 return 0;
1133 }
1134
1135 /**
1136 * dev_change_name - change name of a device
1137 * @dev: device
1138 * @newname: name (or format string) must be at least IFNAMSIZ
1139 *
1140 * Change name of a device, can pass format strings "eth%d".
1141 * for wildcarding.
1142 */
1143 int dev_change_name(struct net_device *dev, const char *newname)
1144 {
1145 unsigned char old_assign_type;
1146 char oldname[IFNAMSIZ];
1147 int err = 0;
1148 int ret;
1149 struct net *net;
1150
1151 ASSERT_RTNL();
1152 BUG_ON(!dev_net(dev));
1153
1154 net = dev_net(dev);
1155 if (dev->flags & IFF_UP)
1156 return -EBUSY;
1157
1158 write_seqcount_begin(&devnet_rename_seq);
1159
1160 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1161 write_seqcount_end(&devnet_rename_seq);
1162 return 0;
1163 }
1164
1165 memcpy(oldname, dev->name, IFNAMSIZ);
1166
1167 err = dev_get_valid_name(net, dev, newname);
1168 if (err < 0) {
1169 write_seqcount_end(&devnet_rename_seq);
1170 return err;
1171 }
1172
1173 if (oldname[0] && !strchr(oldname, '%'))
1174 netdev_info(dev, "renamed from %s\n", oldname);
1175
1176 old_assign_type = dev->name_assign_type;
1177 dev->name_assign_type = NET_NAME_RENAMED;
1178
1179 rollback:
1180 ret = device_rename(&dev->dev, dev->name);
1181 if (ret) {
1182 memcpy(dev->name, oldname, IFNAMSIZ);
1183 dev->name_assign_type = old_assign_type;
1184 write_seqcount_end(&devnet_rename_seq);
1185 return ret;
1186 }
1187
1188 write_seqcount_end(&devnet_rename_seq);
1189
1190 netdev_adjacent_rename_links(dev, oldname);
1191
1192 write_lock_bh(&dev_base_lock);
1193 hlist_del_rcu(&dev->name_hlist);
1194 write_unlock_bh(&dev_base_lock);
1195
1196 synchronize_rcu();
1197
1198 write_lock_bh(&dev_base_lock);
1199 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1200 write_unlock_bh(&dev_base_lock);
1201
1202 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1203 ret = notifier_to_errno(ret);
1204
1205 if (ret) {
1206 /* err >= 0 after dev_alloc_name() or stores the first errno */
1207 if (err >= 0) {
1208 err = ret;
1209 write_seqcount_begin(&devnet_rename_seq);
1210 memcpy(dev->name, oldname, IFNAMSIZ);
1211 memcpy(oldname, newname, IFNAMSIZ);
1212 dev->name_assign_type = old_assign_type;
1213 old_assign_type = NET_NAME_RENAMED;
1214 goto rollback;
1215 } else {
1216 pr_err("%s: name change rollback failed: %d\n",
1217 dev->name, ret);
1218 }
1219 }
1220
1221 return err;
1222 }
1223
1224 /**
1225 * dev_set_alias - change ifalias of a device
1226 * @dev: device
1227 * @alias: name up to IFALIASZ
1228 * @len: limit of bytes to copy from info
1229 *
1230 * Set ifalias for a device,
1231 */
1232 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1233 {
1234 char *new_ifalias;
1235
1236 ASSERT_RTNL();
1237
1238 if (len >= IFALIASZ)
1239 return -EINVAL;
1240
1241 if (!len) {
1242 kfree(dev->ifalias);
1243 dev->ifalias = NULL;
1244 return 0;
1245 }
1246
1247 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1248 if (!new_ifalias)
1249 return -ENOMEM;
1250 dev->ifalias = new_ifalias;
1251
1252 strlcpy(dev->ifalias, alias, len+1);
1253 return len;
1254 }
1255
1256
1257 /**
1258 * netdev_features_change - device changes features
1259 * @dev: device to cause notification
1260 *
1261 * Called to indicate a device has changed features.
1262 */
1263 void netdev_features_change(struct net_device *dev)
1264 {
1265 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1266 }
1267 EXPORT_SYMBOL(netdev_features_change);
1268
1269 /**
1270 * netdev_state_change - device changes state
1271 * @dev: device to cause notification
1272 *
1273 * Called to indicate a device has changed state. This function calls
1274 * the notifier chains for netdev_chain and sends a NEWLINK message
1275 * to the routing socket.
1276 */
1277 void netdev_state_change(struct net_device *dev)
1278 {
1279 if (dev->flags & IFF_UP) {
1280 struct netdev_notifier_change_info change_info;
1281
1282 change_info.flags_changed = 0;
1283 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1284 &change_info.info);
1285 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1286 }
1287 }
1288 EXPORT_SYMBOL(netdev_state_change);
1289
1290 /**
1291 * netdev_notify_peers - notify network peers about existence of @dev
1292 * @dev: network device
1293 *
1294 * Generate traffic such that interested network peers are aware of
1295 * @dev, such as by generating a gratuitous ARP. This may be used when
1296 * a device wants to inform the rest of the network about some sort of
1297 * reconfiguration such as a failover event or virtual machine
1298 * migration.
1299 */
1300 void netdev_notify_peers(struct net_device *dev)
1301 {
1302 rtnl_lock();
1303 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1304 rtnl_unlock();
1305 }
1306 EXPORT_SYMBOL(netdev_notify_peers);
1307
1308 static int __dev_open(struct net_device *dev)
1309 {
1310 const struct net_device_ops *ops = dev->netdev_ops;
1311 int ret;
1312
1313 ASSERT_RTNL();
1314
1315 if (!netif_device_present(dev))
1316 return -ENODEV;
1317
1318 /* Block netpoll from trying to do any rx path servicing.
1319 * If we don't do this there is a chance ndo_poll_controller
1320 * or ndo_poll may be running while we open the device
1321 */
1322 netpoll_poll_disable(dev);
1323
1324 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1325 ret = notifier_to_errno(ret);
1326 if (ret)
1327 return ret;
1328
1329 set_bit(__LINK_STATE_START, &dev->state);
1330
1331 if (ops->ndo_validate_addr)
1332 ret = ops->ndo_validate_addr(dev);
1333
1334 if (!ret && ops->ndo_open)
1335 ret = ops->ndo_open(dev);
1336
1337 netpoll_poll_enable(dev);
1338
1339 if (ret)
1340 clear_bit(__LINK_STATE_START, &dev->state);
1341 else {
1342 dev->flags |= IFF_UP;
1343 dev_set_rx_mode(dev);
1344 dev_activate(dev);
1345 add_device_randomness(dev->dev_addr, dev->addr_len);
1346 }
1347
1348 return ret;
1349 }
1350
1351 /**
1352 * dev_open - prepare an interface for use.
1353 * @dev: device to open
1354 *
1355 * Takes a device from down to up state. The device's private open
1356 * function is invoked and then the multicast lists are loaded. Finally
1357 * the device is moved into the up state and a %NETDEV_UP message is
1358 * sent to the netdev notifier chain.
1359 *
1360 * Calling this function on an active interface is a nop. On a failure
1361 * a negative errno code is returned.
1362 */
1363 int dev_open(struct net_device *dev)
1364 {
1365 int ret;
1366
1367 if (dev->flags & IFF_UP)
1368 return 0;
1369
1370 ret = __dev_open(dev);
1371 if (ret < 0)
1372 return ret;
1373
1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1375 call_netdevice_notifiers(NETDEV_UP, dev);
1376
1377 return ret;
1378 }
1379 EXPORT_SYMBOL(dev_open);
1380
1381 static int __dev_close_many(struct list_head *head)
1382 {
1383 struct net_device *dev;
1384
1385 ASSERT_RTNL();
1386 might_sleep();
1387
1388 list_for_each_entry(dev, head, close_list) {
1389 /* Temporarily disable netpoll until the interface is down */
1390 netpoll_poll_disable(dev);
1391
1392 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1393
1394 clear_bit(__LINK_STATE_START, &dev->state);
1395
1396 /* Synchronize to scheduled poll. We cannot touch poll list, it
1397 * can be even on different cpu. So just clear netif_running().
1398 *
1399 * dev->stop() will invoke napi_disable() on all of it's
1400 * napi_struct instances on this device.
1401 */
1402 smp_mb__after_atomic(); /* Commit netif_running(). */
1403 }
1404
1405 dev_deactivate_many(head);
1406
1407 list_for_each_entry(dev, head, close_list) {
1408 const struct net_device_ops *ops = dev->netdev_ops;
1409
1410 /*
1411 * Call the device specific close. This cannot fail.
1412 * Only if device is UP
1413 *
1414 * We allow it to be called even after a DETACH hot-plug
1415 * event.
1416 */
1417 if (ops->ndo_stop)
1418 ops->ndo_stop(dev);
1419
1420 dev->flags &= ~IFF_UP;
1421 netpoll_poll_enable(dev);
1422 }
1423
1424 return 0;
1425 }
1426
1427 static int __dev_close(struct net_device *dev)
1428 {
1429 int retval;
1430 LIST_HEAD(single);
1431
1432 list_add(&dev->close_list, &single);
1433 retval = __dev_close_many(&single);
1434 list_del(&single);
1435
1436 return retval;
1437 }
1438
1439 int dev_close_many(struct list_head *head, bool unlink)
1440 {
1441 struct net_device *dev, *tmp;
1442
1443 /* Remove the devices that don't need to be closed */
1444 list_for_each_entry_safe(dev, tmp, head, close_list)
1445 if (!(dev->flags & IFF_UP))
1446 list_del_init(&dev->close_list);
1447
1448 __dev_close_many(head);
1449
1450 list_for_each_entry_safe(dev, tmp, head, close_list) {
1451 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1452 call_netdevice_notifiers(NETDEV_DOWN, dev);
1453 if (unlink)
1454 list_del_init(&dev->close_list);
1455 }
1456
1457 return 0;
1458 }
1459 EXPORT_SYMBOL(dev_close_many);
1460
1461 /**
1462 * dev_close - shutdown an interface.
1463 * @dev: device to shutdown
1464 *
1465 * This function moves an active device into down state. A
1466 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1467 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1468 * chain.
1469 */
1470 int dev_close(struct net_device *dev)
1471 {
1472 if (dev->flags & IFF_UP) {
1473 LIST_HEAD(single);
1474
1475 list_add(&dev->close_list, &single);
1476 dev_close_many(&single, true);
1477 list_del(&single);
1478 }
1479 return 0;
1480 }
1481 EXPORT_SYMBOL(dev_close);
1482
1483
1484 /**
1485 * dev_disable_lro - disable Large Receive Offload on a device
1486 * @dev: device
1487 *
1488 * Disable Large Receive Offload (LRO) on a net device. Must be
1489 * called under RTNL. This is needed if received packets may be
1490 * forwarded to another interface.
1491 */
1492 void dev_disable_lro(struct net_device *dev)
1493 {
1494 struct net_device *lower_dev;
1495 struct list_head *iter;
1496
1497 dev->wanted_features &= ~NETIF_F_LRO;
1498 netdev_update_features(dev);
1499
1500 if (unlikely(dev->features & NETIF_F_LRO))
1501 netdev_WARN(dev, "failed to disable LRO!\n");
1502
1503 netdev_for_each_lower_dev(dev, lower_dev, iter)
1504 dev_disable_lro(lower_dev);
1505 }
1506 EXPORT_SYMBOL(dev_disable_lro);
1507
1508 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1509 struct net_device *dev)
1510 {
1511 struct netdev_notifier_info info;
1512
1513 netdev_notifier_info_init(&info, dev);
1514 return nb->notifier_call(nb, val, &info);
1515 }
1516
1517 static int dev_boot_phase = 1;
1518
1519 /**
1520 * register_netdevice_notifier - register a network notifier block
1521 * @nb: notifier
1522 *
1523 * Register a notifier to be called when network device events occur.
1524 * The notifier passed is linked into the kernel structures and must
1525 * not be reused until it has been unregistered. A negative errno code
1526 * is returned on a failure.
1527 *
1528 * When registered all registration and up events are replayed
1529 * to the new notifier to allow device to have a race free
1530 * view of the network device list.
1531 */
1532
1533 int register_netdevice_notifier(struct notifier_block *nb)
1534 {
1535 struct net_device *dev;
1536 struct net_device *last;
1537 struct net *net;
1538 int err;
1539
1540 rtnl_lock();
1541 err = raw_notifier_chain_register(&netdev_chain, nb);
1542 if (err)
1543 goto unlock;
1544 if (dev_boot_phase)
1545 goto unlock;
1546 for_each_net(net) {
1547 for_each_netdev(net, dev) {
1548 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1549 err = notifier_to_errno(err);
1550 if (err)
1551 goto rollback;
1552
1553 if (!(dev->flags & IFF_UP))
1554 continue;
1555
1556 call_netdevice_notifier(nb, NETDEV_UP, dev);
1557 }
1558 }
1559
1560 unlock:
1561 rtnl_unlock();
1562 return err;
1563
1564 rollback:
1565 last = dev;
1566 for_each_net(net) {
1567 for_each_netdev(net, dev) {
1568 if (dev == last)
1569 goto outroll;
1570
1571 if (dev->flags & IFF_UP) {
1572 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1573 dev);
1574 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1575 }
1576 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1577 }
1578 }
1579
1580 outroll:
1581 raw_notifier_chain_unregister(&netdev_chain, nb);
1582 goto unlock;
1583 }
1584 EXPORT_SYMBOL(register_netdevice_notifier);
1585
1586 /**
1587 * unregister_netdevice_notifier - unregister a network notifier block
1588 * @nb: notifier
1589 *
1590 * Unregister a notifier previously registered by
1591 * register_netdevice_notifier(). The notifier is unlinked into the
1592 * kernel structures and may then be reused. A negative errno code
1593 * is returned on a failure.
1594 *
1595 * After unregistering unregister and down device events are synthesized
1596 * for all devices on the device list to the removed notifier to remove
1597 * the need for special case cleanup code.
1598 */
1599
1600 int unregister_netdevice_notifier(struct notifier_block *nb)
1601 {
1602 struct net_device *dev;
1603 struct net *net;
1604 int err;
1605
1606 rtnl_lock();
1607 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1608 if (err)
1609 goto unlock;
1610
1611 for_each_net(net) {
1612 for_each_netdev(net, dev) {
1613 if (dev->flags & IFF_UP) {
1614 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1615 dev);
1616 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1617 }
1618 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1619 }
1620 }
1621 unlock:
1622 rtnl_unlock();
1623 return err;
1624 }
1625 EXPORT_SYMBOL(unregister_netdevice_notifier);
1626
1627 /**
1628 * call_netdevice_notifiers_info - call all network notifier blocks
1629 * @val: value passed unmodified to notifier function
1630 * @dev: net_device pointer passed unmodified to notifier function
1631 * @info: notifier information data
1632 *
1633 * Call all network notifier blocks. Parameters and return value
1634 * are as for raw_notifier_call_chain().
1635 */
1636
1637 static int call_netdevice_notifiers_info(unsigned long val,
1638 struct net_device *dev,
1639 struct netdev_notifier_info *info)
1640 {
1641 ASSERT_RTNL();
1642 netdev_notifier_info_init(info, dev);
1643 return raw_notifier_call_chain(&netdev_chain, val, info);
1644 }
1645
1646 /**
1647 * call_netdevice_notifiers - call all network notifier blocks
1648 * @val: value passed unmodified to notifier function
1649 * @dev: net_device pointer passed unmodified to notifier function
1650 *
1651 * Call all network notifier blocks. Parameters and return value
1652 * are as for raw_notifier_call_chain().
1653 */
1654
1655 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1656 {
1657 struct netdev_notifier_info info;
1658
1659 return call_netdevice_notifiers_info(val, dev, &info);
1660 }
1661 EXPORT_SYMBOL(call_netdevice_notifiers);
1662
1663 #ifdef CONFIG_NET_INGRESS
1664 static struct static_key ingress_needed __read_mostly;
1665
1666 void net_inc_ingress_queue(void)
1667 {
1668 static_key_slow_inc(&ingress_needed);
1669 }
1670 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1671
1672 void net_dec_ingress_queue(void)
1673 {
1674 static_key_slow_dec(&ingress_needed);
1675 }
1676 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1677 #endif
1678
1679 #ifdef CONFIG_NET_EGRESS
1680 static struct static_key egress_needed __read_mostly;
1681
1682 void net_inc_egress_queue(void)
1683 {
1684 static_key_slow_inc(&egress_needed);
1685 }
1686 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1687
1688 void net_dec_egress_queue(void)
1689 {
1690 static_key_slow_dec(&egress_needed);
1691 }
1692 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1693 #endif
1694
1695 static struct static_key netstamp_needed __read_mostly;
1696 #ifdef HAVE_JUMP_LABEL
1697 /* We are not allowed to call static_key_slow_dec() from irq context
1698 * If net_disable_timestamp() is called from irq context, defer the
1699 * static_key_slow_dec() calls.
1700 */
1701 static atomic_t netstamp_needed_deferred;
1702 #endif
1703
1704 void net_enable_timestamp(void)
1705 {
1706 #ifdef HAVE_JUMP_LABEL
1707 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1708
1709 if (deferred) {
1710 while (--deferred)
1711 static_key_slow_dec(&netstamp_needed);
1712 return;
1713 }
1714 #endif
1715 static_key_slow_inc(&netstamp_needed);
1716 }
1717 EXPORT_SYMBOL(net_enable_timestamp);
1718
1719 void net_disable_timestamp(void)
1720 {
1721 #ifdef HAVE_JUMP_LABEL
1722 if (in_interrupt()) {
1723 atomic_inc(&netstamp_needed_deferred);
1724 return;
1725 }
1726 #endif
1727 static_key_slow_dec(&netstamp_needed);
1728 }
1729 EXPORT_SYMBOL(net_disable_timestamp);
1730
1731 static inline void net_timestamp_set(struct sk_buff *skb)
1732 {
1733 skb->tstamp.tv64 = 0;
1734 if (static_key_false(&netstamp_needed))
1735 __net_timestamp(skb);
1736 }
1737
1738 #define net_timestamp_check(COND, SKB) \
1739 if (static_key_false(&netstamp_needed)) { \
1740 if ((COND) && !(SKB)->tstamp.tv64) \
1741 __net_timestamp(SKB); \
1742 } \
1743
1744 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1745 {
1746 unsigned int len;
1747
1748 if (!(dev->flags & IFF_UP))
1749 return false;
1750
1751 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1752 if (skb->len <= len)
1753 return true;
1754
1755 /* if TSO is enabled, we don't care about the length as the packet
1756 * could be forwarded without being segmented before
1757 */
1758 if (skb_is_gso(skb))
1759 return true;
1760
1761 return false;
1762 }
1763 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1764
1765 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1766 {
1767 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1768 unlikely(!is_skb_forwardable(dev, skb))) {
1769 atomic_long_inc(&dev->rx_dropped);
1770 kfree_skb(skb);
1771 return NET_RX_DROP;
1772 }
1773
1774 skb_scrub_packet(skb, true);
1775 skb->priority = 0;
1776 skb->protocol = eth_type_trans(skb, dev);
1777 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1778
1779 return 0;
1780 }
1781 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1782
1783 /**
1784 * dev_forward_skb - loopback an skb to another netif
1785 *
1786 * @dev: destination network device
1787 * @skb: buffer to forward
1788 *
1789 * return values:
1790 * NET_RX_SUCCESS (no congestion)
1791 * NET_RX_DROP (packet was dropped, but freed)
1792 *
1793 * dev_forward_skb can be used for injecting an skb from the
1794 * start_xmit function of one device into the receive queue
1795 * of another device.
1796 *
1797 * The receiving device may be in another namespace, so
1798 * we have to clear all information in the skb that could
1799 * impact namespace isolation.
1800 */
1801 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1802 {
1803 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1804 }
1805 EXPORT_SYMBOL_GPL(dev_forward_skb);
1806
1807 static inline int deliver_skb(struct sk_buff *skb,
1808 struct packet_type *pt_prev,
1809 struct net_device *orig_dev)
1810 {
1811 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1812 return -ENOMEM;
1813 atomic_inc(&skb->users);
1814 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1815 }
1816
1817 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1818 struct packet_type **pt,
1819 struct net_device *orig_dev,
1820 __be16 type,
1821 struct list_head *ptype_list)
1822 {
1823 struct packet_type *ptype, *pt_prev = *pt;
1824
1825 list_for_each_entry_rcu(ptype, ptype_list, list) {
1826 if (ptype->type != type)
1827 continue;
1828 if (pt_prev)
1829 deliver_skb(skb, pt_prev, orig_dev);
1830 pt_prev = ptype;
1831 }
1832 *pt = pt_prev;
1833 }
1834
1835 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1836 {
1837 if (!ptype->af_packet_priv || !skb->sk)
1838 return false;
1839
1840 if (ptype->id_match)
1841 return ptype->id_match(ptype, skb->sk);
1842 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1843 return true;
1844
1845 return false;
1846 }
1847
1848 /*
1849 * Support routine. Sends outgoing frames to any network
1850 * taps currently in use.
1851 */
1852
1853 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1854 {
1855 struct packet_type *ptype;
1856 struct sk_buff *skb2 = NULL;
1857 struct packet_type *pt_prev = NULL;
1858 struct list_head *ptype_list = &ptype_all;
1859
1860 rcu_read_lock();
1861 again:
1862 list_for_each_entry_rcu(ptype, ptype_list, list) {
1863 /* Never send packets back to the socket
1864 * they originated from - MvS (miquels@drinkel.ow.org)
1865 */
1866 if (skb_loop_sk(ptype, skb))
1867 continue;
1868
1869 if (pt_prev) {
1870 deliver_skb(skb2, pt_prev, skb->dev);
1871 pt_prev = ptype;
1872 continue;
1873 }
1874
1875 /* need to clone skb, done only once */
1876 skb2 = skb_clone(skb, GFP_ATOMIC);
1877 if (!skb2)
1878 goto out_unlock;
1879
1880 net_timestamp_set(skb2);
1881
1882 /* skb->nh should be correctly
1883 * set by sender, so that the second statement is
1884 * just protection against buggy protocols.
1885 */
1886 skb_reset_mac_header(skb2);
1887
1888 if (skb_network_header(skb2) < skb2->data ||
1889 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1890 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1891 ntohs(skb2->protocol),
1892 dev->name);
1893 skb_reset_network_header(skb2);
1894 }
1895
1896 skb2->transport_header = skb2->network_header;
1897 skb2->pkt_type = PACKET_OUTGOING;
1898 pt_prev = ptype;
1899 }
1900
1901 if (ptype_list == &ptype_all) {
1902 ptype_list = &dev->ptype_all;
1903 goto again;
1904 }
1905 out_unlock:
1906 if (pt_prev)
1907 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1908 rcu_read_unlock();
1909 }
1910
1911 /**
1912 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1913 * @dev: Network device
1914 * @txq: number of queues available
1915 *
1916 * If real_num_tx_queues is changed the tc mappings may no longer be
1917 * valid. To resolve this verify the tc mapping remains valid and if
1918 * not NULL the mapping. With no priorities mapping to this
1919 * offset/count pair it will no longer be used. In the worst case TC0
1920 * is invalid nothing can be done so disable priority mappings. If is
1921 * expected that drivers will fix this mapping if they can before
1922 * calling netif_set_real_num_tx_queues.
1923 */
1924 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1925 {
1926 int i;
1927 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1928
1929 /* If TC0 is invalidated disable TC mapping */
1930 if (tc->offset + tc->count > txq) {
1931 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1932 dev->num_tc = 0;
1933 return;
1934 }
1935
1936 /* Invalidated prio to tc mappings set to TC0 */
1937 for (i = 1; i < TC_BITMASK + 1; i++) {
1938 int q = netdev_get_prio_tc_map(dev, i);
1939
1940 tc = &dev->tc_to_txq[q];
1941 if (tc->offset + tc->count > txq) {
1942 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1943 i, q);
1944 netdev_set_prio_tc_map(dev, i, 0);
1945 }
1946 }
1947 }
1948
1949 #ifdef CONFIG_XPS
1950 static DEFINE_MUTEX(xps_map_mutex);
1951 #define xmap_dereference(P) \
1952 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1953
1954 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1955 int cpu, u16 index)
1956 {
1957 struct xps_map *map = NULL;
1958 int pos;
1959
1960 if (dev_maps)
1961 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1962
1963 for (pos = 0; map && pos < map->len; pos++) {
1964 if (map->queues[pos] == index) {
1965 if (map->len > 1) {
1966 map->queues[pos] = map->queues[--map->len];
1967 } else {
1968 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1969 kfree_rcu(map, rcu);
1970 map = NULL;
1971 }
1972 break;
1973 }
1974 }
1975
1976 return map;
1977 }
1978
1979 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1980 {
1981 struct xps_dev_maps *dev_maps;
1982 int cpu, i;
1983 bool active = false;
1984
1985 mutex_lock(&xps_map_mutex);
1986 dev_maps = xmap_dereference(dev->xps_maps);
1987
1988 if (!dev_maps)
1989 goto out_no_maps;
1990
1991 for_each_possible_cpu(cpu) {
1992 for (i = index; i < dev->num_tx_queues; i++) {
1993 if (!remove_xps_queue(dev_maps, cpu, i))
1994 break;
1995 }
1996 if (i == dev->num_tx_queues)
1997 active = true;
1998 }
1999
2000 if (!active) {
2001 RCU_INIT_POINTER(dev->xps_maps, NULL);
2002 kfree_rcu(dev_maps, rcu);
2003 }
2004
2005 for (i = index; i < dev->num_tx_queues; i++)
2006 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2007 NUMA_NO_NODE);
2008
2009 out_no_maps:
2010 mutex_unlock(&xps_map_mutex);
2011 }
2012
2013 static struct xps_map *expand_xps_map(struct xps_map *map,
2014 int cpu, u16 index)
2015 {
2016 struct xps_map *new_map;
2017 int alloc_len = XPS_MIN_MAP_ALLOC;
2018 int i, pos;
2019
2020 for (pos = 0; map && pos < map->len; pos++) {
2021 if (map->queues[pos] != index)
2022 continue;
2023 return map;
2024 }
2025
2026 /* Need to add queue to this CPU's existing map */
2027 if (map) {
2028 if (pos < map->alloc_len)
2029 return map;
2030
2031 alloc_len = map->alloc_len * 2;
2032 }
2033
2034 /* Need to allocate new map to store queue on this CPU's map */
2035 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2036 cpu_to_node(cpu));
2037 if (!new_map)
2038 return NULL;
2039
2040 for (i = 0; i < pos; i++)
2041 new_map->queues[i] = map->queues[i];
2042 new_map->alloc_len = alloc_len;
2043 new_map->len = pos;
2044
2045 return new_map;
2046 }
2047
2048 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2049 u16 index)
2050 {
2051 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2052 struct xps_map *map, *new_map;
2053 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2054 int cpu, numa_node_id = -2;
2055 bool active = false;
2056
2057 mutex_lock(&xps_map_mutex);
2058
2059 dev_maps = xmap_dereference(dev->xps_maps);
2060
2061 /* allocate memory for queue storage */
2062 for_each_online_cpu(cpu) {
2063 if (!cpumask_test_cpu(cpu, mask))
2064 continue;
2065
2066 if (!new_dev_maps)
2067 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2068 if (!new_dev_maps) {
2069 mutex_unlock(&xps_map_mutex);
2070 return -ENOMEM;
2071 }
2072
2073 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2074 NULL;
2075
2076 map = expand_xps_map(map, cpu, index);
2077 if (!map)
2078 goto error;
2079
2080 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2081 }
2082
2083 if (!new_dev_maps)
2084 goto out_no_new_maps;
2085
2086 for_each_possible_cpu(cpu) {
2087 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2088 /* add queue to CPU maps */
2089 int pos = 0;
2090
2091 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2092 while ((pos < map->len) && (map->queues[pos] != index))
2093 pos++;
2094
2095 if (pos == map->len)
2096 map->queues[map->len++] = index;
2097 #ifdef CONFIG_NUMA
2098 if (numa_node_id == -2)
2099 numa_node_id = cpu_to_node(cpu);
2100 else if (numa_node_id != cpu_to_node(cpu))
2101 numa_node_id = -1;
2102 #endif
2103 } else if (dev_maps) {
2104 /* fill in the new device map from the old device map */
2105 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2106 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2107 }
2108
2109 }
2110
2111 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2112
2113 /* Cleanup old maps */
2114 if (dev_maps) {
2115 for_each_possible_cpu(cpu) {
2116 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2117 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2118 if (map && map != new_map)
2119 kfree_rcu(map, rcu);
2120 }
2121
2122 kfree_rcu(dev_maps, rcu);
2123 }
2124
2125 dev_maps = new_dev_maps;
2126 active = true;
2127
2128 out_no_new_maps:
2129 /* update Tx queue numa node */
2130 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2131 (numa_node_id >= 0) ? numa_node_id :
2132 NUMA_NO_NODE);
2133
2134 if (!dev_maps)
2135 goto out_no_maps;
2136
2137 /* removes queue from unused CPUs */
2138 for_each_possible_cpu(cpu) {
2139 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2140 continue;
2141
2142 if (remove_xps_queue(dev_maps, cpu, index))
2143 active = true;
2144 }
2145
2146 /* free map if not active */
2147 if (!active) {
2148 RCU_INIT_POINTER(dev->xps_maps, NULL);
2149 kfree_rcu(dev_maps, rcu);
2150 }
2151
2152 out_no_maps:
2153 mutex_unlock(&xps_map_mutex);
2154
2155 return 0;
2156 error:
2157 /* remove any maps that we added */
2158 for_each_possible_cpu(cpu) {
2159 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2160 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2161 NULL;
2162 if (new_map && new_map != map)
2163 kfree(new_map);
2164 }
2165
2166 mutex_unlock(&xps_map_mutex);
2167
2168 kfree(new_dev_maps);
2169 return -ENOMEM;
2170 }
2171 EXPORT_SYMBOL(netif_set_xps_queue);
2172
2173 #endif
2174 /*
2175 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2176 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2177 */
2178 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2179 {
2180 int rc;
2181
2182 if (txq < 1 || txq > dev->num_tx_queues)
2183 return -EINVAL;
2184
2185 if (dev->reg_state == NETREG_REGISTERED ||
2186 dev->reg_state == NETREG_UNREGISTERING) {
2187 ASSERT_RTNL();
2188
2189 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2190 txq);
2191 if (rc)
2192 return rc;
2193
2194 if (dev->num_tc)
2195 netif_setup_tc(dev, txq);
2196
2197 if (txq < dev->real_num_tx_queues) {
2198 qdisc_reset_all_tx_gt(dev, txq);
2199 #ifdef CONFIG_XPS
2200 netif_reset_xps_queues_gt(dev, txq);
2201 #endif
2202 }
2203 }
2204
2205 dev->real_num_tx_queues = txq;
2206 return 0;
2207 }
2208 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2209
2210 #ifdef CONFIG_SYSFS
2211 /**
2212 * netif_set_real_num_rx_queues - set actual number of RX queues used
2213 * @dev: Network device
2214 * @rxq: Actual number of RX queues
2215 *
2216 * This must be called either with the rtnl_lock held or before
2217 * registration of the net device. Returns 0 on success, or a
2218 * negative error code. If called before registration, it always
2219 * succeeds.
2220 */
2221 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2222 {
2223 int rc;
2224
2225 if (rxq < 1 || rxq > dev->num_rx_queues)
2226 return -EINVAL;
2227
2228 if (dev->reg_state == NETREG_REGISTERED) {
2229 ASSERT_RTNL();
2230
2231 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2232 rxq);
2233 if (rc)
2234 return rc;
2235 }
2236
2237 dev->real_num_rx_queues = rxq;
2238 return 0;
2239 }
2240 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2241 #endif
2242
2243 /**
2244 * netif_get_num_default_rss_queues - default number of RSS queues
2245 *
2246 * This routine should set an upper limit on the number of RSS queues
2247 * used by default by multiqueue devices.
2248 */
2249 int netif_get_num_default_rss_queues(void)
2250 {
2251 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2252 }
2253 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2254
2255 static inline void __netif_reschedule(struct Qdisc *q)
2256 {
2257 struct softnet_data *sd;
2258 unsigned long flags;
2259
2260 local_irq_save(flags);
2261 sd = this_cpu_ptr(&softnet_data);
2262 q->next_sched = NULL;
2263 *sd->output_queue_tailp = q;
2264 sd->output_queue_tailp = &q->next_sched;
2265 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2266 local_irq_restore(flags);
2267 }
2268
2269 void __netif_schedule(struct Qdisc *q)
2270 {
2271 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2272 __netif_reschedule(q);
2273 }
2274 EXPORT_SYMBOL(__netif_schedule);
2275
2276 struct dev_kfree_skb_cb {
2277 enum skb_free_reason reason;
2278 };
2279
2280 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2281 {
2282 return (struct dev_kfree_skb_cb *)skb->cb;
2283 }
2284
2285 void netif_schedule_queue(struct netdev_queue *txq)
2286 {
2287 rcu_read_lock();
2288 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2289 struct Qdisc *q = rcu_dereference(txq->qdisc);
2290
2291 __netif_schedule(q);
2292 }
2293 rcu_read_unlock();
2294 }
2295 EXPORT_SYMBOL(netif_schedule_queue);
2296
2297 /**
2298 * netif_wake_subqueue - allow sending packets on subqueue
2299 * @dev: network device
2300 * @queue_index: sub queue index
2301 *
2302 * Resume individual transmit queue of a device with multiple transmit queues.
2303 */
2304 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2305 {
2306 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2307
2308 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2309 struct Qdisc *q;
2310
2311 rcu_read_lock();
2312 q = rcu_dereference(txq->qdisc);
2313 __netif_schedule(q);
2314 rcu_read_unlock();
2315 }
2316 }
2317 EXPORT_SYMBOL(netif_wake_subqueue);
2318
2319 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2320 {
2321 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2322 struct Qdisc *q;
2323
2324 rcu_read_lock();
2325 q = rcu_dereference(dev_queue->qdisc);
2326 __netif_schedule(q);
2327 rcu_read_unlock();
2328 }
2329 }
2330 EXPORT_SYMBOL(netif_tx_wake_queue);
2331
2332 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2333 {
2334 unsigned long flags;
2335
2336 if (likely(atomic_read(&skb->users) == 1)) {
2337 smp_rmb();
2338 atomic_set(&skb->users, 0);
2339 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2340 return;
2341 }
2342 get_kfree_skb_cb(skb)->reason = reason;
2343 local_irq_save(flags);
2344 skb->next = __this_cpu_read(softnet_data.completion_queue);
2345 __this_cpu_write(softnet_data.completion_queue, skb);
2346 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2347 local_irq_restore(flags);
2348 }
2349 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2350
2351 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2352 {
2353 if (in_irq() || irqs_disabled())
2354 __dev_kfree_skb_irq(skb, reason);
2355 else
2356 dev_kfree_skb(skb);
2357 }
2358 EXPORT_SYMBOL(__dev_kfree_skb_any);
2359
2360
2361 /**
2362 * netif_device_detach - mark device as removed
2363 * @dev: network device
2364 *
2365 * Mark device as removed from system and therefore no longer available.
2366 */
2367 void netif_device_detach(struct net_device *dev)
2368 {
2369 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2370 netif_running(dev)) {
2371 netif_tx_stop_all_queues(dev);
2372 }
2373 }
2374 EXPORT_SYMBOL(netif_device_detach);
2375
2376 /**
2377 * netif_device_attach - mark device as attached
2378 * @dev: network device
2379 *
2380 * Mark device as attached from system and restart if needed.
2381 */
2382 void netif_device_attach(struct net_device *dev)
2383 {
2384 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2385 netif_running(dev)) {
2386 netif_tx_wake_all_queues(dev);
2387 __netdev_watchdog_up(dev);
2388 }
2389 }
2390 EXPORT_SYMBOL(netif_device_attach);
2391
2392 /*
2393 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2394 * to be used as a distribution range.
2395 */
2396 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2397 unsigned int num_tx_queues)
2398 {
2399 u32 hash;
2400 u16 qoffset = 0;
2401 u16 qcount = num_tx_queues;
2402
2403 if (skb_rx_queue_recorded(skb)) {
2404 hash = skb_get_rx_queue(skb);
2405 while (unlikely(hash >= num_tx_queues))
2406 hash -= num_tx_queues;
2407 return hash;
2408 }
2409
2410 if (dev->num_tc) {
2411 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2412 qoffset = dev->tc_to_txq[tc].offset;
2413 qcount = dev->tc_to_txq[tc].count;
2414 }
2415
2416 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2417 }
2418 EXPORT_SYMBOL(__skb_tx_hash);
2419
2420 static void skb_warn_bad_offload(const struct sk_buff *skb)
2421 {
2422 static const netdev_features_t null_features = 0;
2423 struct net_device *dev = skb->dev;
2424 const char *name = "";
2425
2426 if (!net_ratelimit())
2427 return;
2428
2429 if (dev) {
2430 if (dev->dev.parent)
2431 name = dev_driver_string(dev->dev.parent);
2432 else
2433 name = netdev_name(dev);
2434 }
2435 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2436 "gso_type=%d ip_summed=%d\n",
2437 name, dev ? &dev->features : &null_features,
2438 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2439 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2440 skb_shinfo(skb)->gso_type, skb->ip_summed);
2441 }
2442
2443 /*
2444 * Invalidate hardware checksum when packet is to be mangled, and
2445 * complete checksum manually on outgoing path.
2446 */
2447 int skb_checksum_help(struct sk_buff *skb)
2448 {
2449 __wsum csum;
2450 int ret = 0, offset;
2451
2452 if (skb->ip_summed == CHECKSUM_COMPLETE)
2453 goto out_set_summed;
2454
2455 if (unlikely(skb_shinfo(skb)->gso_size)) {
2456 skb_warn_bad_offload(skb);
2457 return -EINVAL;
2458 }
2459
2460 /* Before computing a checksum, we should make sure no frag could
2461 * be modified by an external entity : checksum could be wrong.
2462 */
2463 if (skb_has_shared_frag(skb)) {
2464 ret = __skb_linearize(skb);
2465 if (ret)
2466 goto out;
2467 }
2468
2469 offset = skb_checksum_start_offset(skb);
2470 BUG_ON(offset >= skb_headlen(skb));
2471 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2472
2473 offset += skb->csum_offset;
2474 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2475
2476 if (skb_cloned(skb) &&
2477 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2478 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2479 if (ret)
2480 goto out;
2481 }
2482
2483 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2484 out_set_summed:
2485 skb->ip_summed = CHECKSUM_NONE;
2486 out:
2487 return ret;
2488 }
2489 EXPORT_SYMBOL(skb_checksum_help);
2490
2491 /* skb_csum_offload_check - Driver helper function to determine if a device
2492 * with limited checksum offload capabilities is able to offload the checksum
2493 * for a given packet.
2494 *
2495 * Arguments:
2496 * skb - sk_buff for the packet in question
2497 * spec - contains the description of what device can offload
2498 * csum_encapped - returns true if the checksum being offloaded is
2499 * encpasulated. That is it is checksum for the transport header
2500 * in the inner headers.
2501 * checksum_help - when set indicates that helper function should
2502 * call skb_checksum_help if offload checks fail
2503 *
2504 * Returns:
2505 * true: Packet has passed the checksum checks and should be offloadable to
2506 * the device (a driver may still need to check for additional
2507 * restrictions of its device)
2508 * false: Checksum is not offloadable. If checksum_help was set then
2509 * skb_checksum_help was called to resolve checksum for non-GSO
2510 * packets and when IP protocol is not SCTP
2511 */
2512 bool __skb_csum_offload_chk(struct sk_buff *skb,
2513 const struct skb_csum_offl_spec *spec,
2514 bool *csum_encapped,
2515 bool csum_help)
2516 {
2517 struct iphdr *iph;
2518 struct ipv6hdr *ipv6;
2519 void *nhdr;
2520 int protocol;
2521 u8 ip_proto;
2522
2523 if (skb->protocol == htons(ETH_P_8021Q) ||
2524 skb->protocol == htons(ETH_P_8021AD)) {
2525 if (!spec->vlan_okay)
2526 goto need_help;
2527 }
2528
2529 /* We check whether the checksum refers to a transport layer checksum in
2530 * the outermost header or an encapsulated transport layer checksum that
2531 * corresponds to the inner headers of the skb. If the checksum is for
2532 * something else in the packet we need help.
2533 */
2534 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2535 /* Non-encapsulated checksum */
2536 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2537 nhdr = skb_network_header(skb);
2538 *csum_encapped = false;
2539 if (spec->no_not_encapped)
2540 goto need_help;
2541 } else if (skb->encapsulation && spec->encap_okay &&
2542 skb_checksum_start_offset(skb) ==
2543 skb_inner_transport_offset(skb)) {
2544 /* Encapsulated checksum */
2545 *csum_encapped = true;
2546 switch (skb->inner_protocol_type) {
2547 case ENCAP_TYPE_ETHER:
2548 protocol = eproto_to_ipproto(skb->inner_protocol);
2549 break;
2550 case ENCAP_TYPE_IPPROTO:
2551 protocol = skb->inner_protocol;
2552 break;
2553 }
2554 nhdr = skb_inner_network_header(skb);
2555 } else {
2556 goto need_help;
2557 }
2558
2559 switch (protocol) {
2560 case IPPROTO_IP:
2561 if (!spec->ipv4_okay)
2562 goto need_help;
2563 iph = nhdr;
2564 ip_proto = iph->protocol;
2565 if (iph->ihl != 5 && !spec->ip_options_okay)
2566 goto need_help;
2567 break;
2568 case IPPROTO_IPV6:
2569 if (!spec->ipv6_okay)
2570 goto need_help;
2571 if (spec->no_encapped_ipv6 && *csum_encapped)
2572 goto need_help;
2573 ipv6 = nhdr;
2574 nhdr += sizeof(*ipv6);
2575 ip_proto = ipv6->nexthdr;
2576 break;
2577 default:
2578 goto need_help;
2579 }
2580
2581 ip_proto_again:
2582 switch (ip_proto) {
2583 case IPPROTO_TCP:
2584 if (!spec->tcp_okay ||
2585 skb->csum_offset != offsetof(struct tcphdr, check))
2586 goto need_help;
2587 break;
2588 case IPPROTO_UDP:
2589 if (!spec->udp_okay ||
2590 skb->csum_offset != offsetof(struct udphdr, check))
2591 goto need_help;
2592 break;
2593 case IPPROTO_SCTP:
2594 if (!spec->sctp_okay ||
2595 skb->csum_offset != offsetof(struct sctphdr, checksum))
2596 goto cant_help;
2597 break;
2598 case NEXTHDR_HOP:
2599 case NEXTHDR_ROUTING:
2600 case NEXTHDR_DEST: {
2601 u8 *opthdr = nhdr;
2602
2603 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2604 goto need_help;
2605
2606 ip_proto = opthdr[0];
2607 nhdr += (opthdr[1] + 1) << 3;
2608
2609 goto ip_proto_again;
2610 }
2611 default:
2612 goto need_help;
2613 }
2614
2615 /* Passed the tests for offloading checksum */
2616 return true;
2617
2618 need_help:
2619 if (csum_help && !skb_shinfo(skb)->gso_size)
2620 skb_checksum_help(skb);
2621 cant_help:
2622 return false;
2623 }
2624 EXPORT_SYMBOL(__skb_csum_offload_chk);
2625
2626 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2627 {
2628 __be16 type = skb->protocol;
2629
2630 /* Tunnel gso handlers can set protocol to ethernet. */
2631 if (type == htons(ETH_P_TEB)) {
2632 struct ethhdr *eth;
2633
2634 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2635 return 0;
2636
2637 eth = (struct ethhdr *)skb_mac_header(skb);
2638 type = eth->h_proto;
2639 }
2640
2641 return __vlan_get_protocol(skb, type, depth);
2642 }
2643
2644 /**
2645 * skb_mac_gso_segment - mac layer segmentation handler.
2646 * @skb: buffer to segment
2647 * @features: features for the output path (see dev->features)
2648 */
2649 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2650 netdev_features_t features)
2651 {
2652 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2653 struct packet_offload *ptype;
2654 int vlan_depth = skb->mac_len;
2655 __be16 type = skb_network_protocol(skb, &vlan_depth);
2656
2657 if (unlikely(!type))
2658 return ERR_PTR(-EINVAL);
2659
2660 __skb_pull(skb, vlan_depth);
2661
2662 rcu_read_lock();
2663 list_for_each_entry_rcu(ptype, &offload_base, list) {
2664 if (ptype->type == type && ptype->callbacks.gso_segment) {
2665 segs = ptype->callbacks.gso_segment(skb, features);
2666 break;
2667 }
2668 }
2669 rcu_read_unlock();
2670
2671 __skb_push(skb, skb->data - skb_mac_header(skb));
2672
2673 return segs;
2674 }
2675 EXPORT_SYMBOL(skb_mac_gso_segment);
2676
2677
2678 /* openvswitch calls this on rx path, so we need a different check.
2679 */
2680 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2681 {
2682 if (tx_path)
2683 return skb->ip_summed != CHECKSUM_PARTIAL;
2684 else
2685 return skb->ip_summed == CHECKSUM_NONE;
2686 }
2687
2688 /**
2689 * __skb_gso_segment - Perform segmentation on skb.
2690 * @skb: buffer to segment
2691 * @features: features for the output path (see dev->features)
2692 * @tx_path: whether it is called in TX path
2693 *
2694 * This function segments the given skb and returns a list of segments.
2695 *
2696 * It may return NULL if the skb requires no segmentation. This is
2697 * only possible when GSO is used for verifying header integrity.
2698 *
2699 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2700 */
2701 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2702 netdev_features_t features, bool tx_path)
2703 {
2704 if (unlikely(skb_needs_check(skb, tx_path))) {
2705 int err;
2706
2707 skb_warn_bad_offload(skb);
2708
2709 err = skb_cow_head(skb, 0);
2710 if (err < 0)
2711 return ERR_PTR(err);
2712 }
2713
2714 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2715 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2716
2717 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2718 SKB_GSO_CB(skb)->encap_level = 0;
2719
2720 skb_reset_mac_header(skb);
2721 skb_reset_mac_len(skb);
2722
2723 return skb_mac_gso_segment(skb, features);
2724 }
2725 EXPORT_SYMBOL(__skb_gso_segment);
2726
2727 /* Take action when hardware reception checksum errors are detected. */
2728 #ifdef CONFIG_BUG
2729 void netdev_rx_csum_fault(struct net_device *dev)
2730 {
2731 if (net_ratelimit()) {
2732 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2733 dump_stack();
2734 }
2735 }
2736 EXPORT_SYMBOL(netdev_rx_csum_fault);
2737 #endif
2738
2739 /* Actually, we should eliminate this check as soon as we know, that:
2740 * 1. IOMMU is present and allows to map all the memory.
2741 * 2. No high memory really exists on this machine.
2742 */
2743
2744 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2745 {
2746 #ifdef CONFIG_HIGHMEM
2747 int i;
2748 if (!(dev->features & NETIF_F_HIGHDMA)) {
2749 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2750 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2751 if (PageHighMem(skb_frag_page(frag)))
2752 return 1;
2753 }
2754 }
2755
2756 if (PCI_DMA_BUS_IS_PHYS) {
2757 struct device *pdev = dev->dev.parent;
2758
2759 if (!pdev)
2760 return 0;
2761 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2762 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2763 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2764 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2765 return 1;
2766 }
2767 }
2768 #endif
2769 return 0;
2770 }
2771
2772 /* If MPLS offload request, verify we are testing hardware MPLS features
2773 * instead of standard features for the netdev.
2774 */
2775 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2776 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2777 netdev_features_t features,
2778 __be16 type)
2779 {
2780 if (eth_p_mpls(type))
2781 features &= skb->dev->mpls_features;
2782
2783 return features;
2784 }
2785 #else
2786 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2787 netdev_features_t features,
2788 __be16 type)
2789 {
2790 return features;
2791 }
2792 #endif
2793
2794 static netdev_features_t harmonize_features(struct sk_buff *skb,
2795 netdev_features_t features)
2796 {
2797 int tmp;
2798 __be16 type;
2799
2800 type = skb_network_protocol(skb, &tmp);
2801 features = net_mpls_features(skb, features, type);
2802
2803 if (skb->ip_summed != CHECKSUM_NONE &&
2804 !can_checksum_protocol(features, type)) {
2805 features &= ~NETIF_F_CSUM_MASK;
2806 } else if (illegal_highdma(skb->dev, skb)) {
2807 features &= ~NETIF_F_SG;
2808 }
2809
2810 return features;
2811 }
2812
2813 netdev_features_t passthru_features_check(struct sk_buff *skb,
2814 struct net_device *dev,
2815 netdev_features_t features)
2816 {
2817 return features;
2818 }
2819 EXPORT_SYMBOL(passthru_features_check);
2820
2821 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2822 struct net_device *dev,
2823 netdev_features_t features)
2824 {
2825 return vlan_features_check(skb, features);
2826 }
2827
2828 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2829 struct net_device *dev,
2830 netdev_features_t features)
2831 {
2832 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2833
2834 if (gso_segs > dev->gso_max_segs)
2835 return features & ~NETIF_F_GSO_MASK;
2836
2837 /* Make sure to clear the IPv4 ID mangling feature if
2838 * the IPv4 header has the potential to be fragmented.
2839 */
2840 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2841 struct iphdr *iph = skb->encapsulation ?
2842 inner_ip_hdr(skb) : ip_hdr(skb);
2843
2844 if (!(iph->frag_off & htons(IP_DF)))
2845 features &= ~NETIF_F_TSO_MANGLEID;
2846 }
2847
2848 return features;
2849 }
2850
2851 netdev_features_t netif_skb_features(struct sk_buff *skb)
2852 {
2853 struct net_device *dev = skb->dev;
2854 netdev_features_t features = dev->features;
2855
2856 if (skb_is_gso(skb))
2857 features = gso_features_check(skb, dev, features);
2858
2859 /* If encapsulation offload request, verify we are testing
2860 * hardware encapsulation features instead of standard
2861 * features for the netdev
2862 */
2863 if (skb->encapsulation)
2864 features &= dev->hw_enc_features;
2865
2866 if (skb_vlan_tagged(skb))
2867 features = netdev_intersect_features(features,
2868 dev->vlan_features |
2869 NETIF_F_HW_VLAN_CTAG_TX |
2870 NETIF_F_HW_VLAN_STAG_TX);
2871
2872 if (dev->netdev_ops->ndo_features_check)
2873 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2874 features);
2875 else
2876 features &= dflt_features_check(skb, dev, features);
2877
2878 return harmonize_features(skb, features);
2879 }
2880 EXPORT_SYMBOL(netif_skb_features);
2881
2882 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2883 struct netdev_queue *txq, bool more)
2884 {
2885 unsigned int len;
2886 int rc;
2887
2888 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2889 dev_queue_xmit_nit(skb, dev);
2890
2891 len = skb->len;
2892 trace_net_dev_start_xmit(skb, dev);
2893 rc = netdev_start_xmit(skb, dev, txq, more);
2894 trace_net_dev_xmit(skb, rc, dev, len);
2895
2896 return rc;
2897 }
2898
2899 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2900 struct netdev_queue *txq, int *ret)
2901 {
2902 struct sk_buff *skb = first;
2903 int rc = NETDEV_TX_OK;
2904
2905 while (skb) {
2906 struct sk_buff *next = skb->next;
2907
2908 skb->next = NULL;
2909 rc = xmit_one(skb, dev, txq, next != NULL);
2910 if (unlikely(!dev_xmit_complete(rc))) {
2911 skb->next = next;
2912 goto out;
2913 }
2914
2915 skb = next;
2916 if (netif_xmit_stopped(txq) && skb) {
2917 rc = NETDEV_TX_BUSY;
2918 break;
2919 }
2920 }
2921
2922 out:
2923 *ret = rc;
2924 return skb;
2925 }
2926
2927 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2928 netdev_features_t features)
2929 {
2930 if (skb_vlan_tag_present(skb) &&
2931 !vlan_hw_offload_capable(features, skb->vlan_proto))
2932 skb = __vlan_hwaccel_push_inside(skb);
2933 return skb;
2934 }
2935
2936 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2937 {
2938 netdev_features_t features;
2939
2940 if (skb->next)
2941 return skb;
2942
2943 features = netif_skb_features(skb);
2944 skb = validate_xmit_vlan(skb, features);
2945 if (unlikely(!skb))
2946 goto out_null;
2947
2948 if (netif_needs_gso(skb, features)) {
2949 struct sk_buff *segs;
2950
2951 segs = skb_gso_segment(skb, features);
2952 if (IS_ERR(segs)) {
2953 goto out_kfree_skb;
2954 } else if (segs) {
2955 consume_skb(skb);
2956 skb = segs;
2957 }
2958 } else {
2959 if (skb_needs_linearize(skb, features) &&
2960 __skb_linearize(skb))
2961 goto out_kfree_skb;
2962
2963 /* If packet is not checksummed and device does not
2964 * support checksumming for this protocol, complete
2965 * checksumming here.
2966 */
2967 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2968 if (skb->encapsulation)
2969 skb_set_inner_transport_header(skb,
2970 skb_checksum_start_offset(skb));
2971 else
2972 skb_set_transport_header(skb,
2973 skb_checksum_start_offset(skb));
2974 if (!(features & NETIF_F_CSUM_MASK) &&
2975 skb_checksum_help(skb))
2976 goto out_kfree_skb;
2977 }
2978 }
2979
2980 return skb;
2981
2982 out_kfree_skb:
2983 kfree_skb(skb);
2984 out_null:
2985 return NULL;
2986 }
2987
2988 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2989 {
2990 struct sk_buff *next, *head = NULL, *tail;
2991
2992 for (; skb != NULL; skb = next) {
2993 next = skb->next;
2994 skb->next = NULL;
2995
2996 /* in case skb wont be segmented, point to itself */
2997 skb->prev = skb;
2998
2999 skb = validate_xmit_skb(skb, dev);
3000 if (!skb)
3001 continue;
3002
3003 if (!head)
3004 head = skb;
3005 else
3006 tail->next = skb;
3007 /* If skb was segmented, skb->prev points to
3008 * the last segment. If not, it still contains skb.
3009 */
3010 tail = skb->prev;
3011 }
3012 return head;
3013 }
3014
3015 static void qdisc_pkt_len_init(struct sk_buff *skb)
3016 {
3017 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3018
3019 qdisc_skb_cb(skb)->pkt_len = skb->len;
3020
3021 /* To get more precise estimation of bytes sent on wire,
3022 * we add to pkt_len the headers size of all segments
3023 */
3024 if (shinfo->gso_size) {
3025 unsigned int hdr_len;
3026 u16 gso_segs = shinfo->gso_segs;
3027
3028 /* mac layer + network layer */
3029 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3030
3031 /* + transport layer */
3032 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3033 hdr_len += tcp_hdrlen(skb);
3034 else
3035 hdr_len += sizeof(struct udphdr);
3036
3037 if (shinfo->gso_type & SKB_GSO_DODGY)
3038 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3039 shinfo->gso_size);
3040
3041 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3042 }
3043 }
3044
3045 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3046 struct net_device *dev,
3047 struct netdev_queue *txq)
3048 {
3049 spinlock_t *root_lock = qdisc_lock(q);
3050 bool contended;
3051 int rc;
3052
3053 qdisc_calculate_pkt_len(skb, q);
3054 /*
3055 * Heuristic to force contended enqueues to serialize on a
3056 * separate lock before trying to get qdisc main lock.
3057 * This permits __QDISC___STATE_RUNNING owner to get the lock more
3058 * often and dequeue packets faster.
3059 */
3060 contended = qdisc_is_running(q);
3061 if (unlikely(contended))
3062 spin_lock(&q->busylock);
3063
3064 spin_lock(root_lock);
3065 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3066 kfree_skb(skb);
3067 rc = NET_XMIT_DROP;
3068 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3069 qdisc_run_begin(q)) {
3070 /*
3071 * This is a work-conserving queue; there are no old skbs
3072 * waiting to be sent out; and the qdisc is not running -
3073 * xmit the skb directly.
3074 */
3075
3076 qdisc_bstats_update(q, skb);
3077
3078 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3079 if (unlikely(contended)) {
3080 spin_unlock(&q->busylock);
3081 contended = false;
3082 }
3083 __qdisc_run(q);
3084 } else
3085 qdisc_run_end(q);
3086
3087 rc = NET_XMIT_SUCCESS;
3088 } else {
3089 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
3090 if (qdisc_run_begin(q)) {
3091 if (unlikely(contended)) {
3092 spin_unlock(&q->busylock);
3093 contended = false;
3094 }
3095 __qdisc_run(q);
3096 }
3097 }
3098 spin_unlock(root_lock);
3099 if (unlikely(contended))
3100 spin_unlock(&q->busylock);
3101 return rc;
3102 }
3103
3104 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3105 static void skb_update_prio(struct sk_buff *skb)
3106 {
3107 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3108
3109 if (!skb->priority && skb->sk && map) {
3110 unsigned int prioidx =
3111 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3112
3113 if (prioidx < map->priomap_len)
3114 skb->priority = map->priomap[prioidx];
3115 }
3116 }
3117 #else
3118 #define skb_update_prio(skb)
3119 #endif
3120
3121 DEFINE_PER_CPU(int, xmit_recursion);
3122 EXPORT_SYMBOL(xmit_recursion);
3123
3124 #define RECURSION_LIMIT 10
3125
3126 /**
3127 * dev_loopback_xmit - loop back @skb
3128 * @net: network namespace this loopback is happening in
3129 * @sk: sk needed to be a netfilter okfn
3130 * @skb: buffer to transmit
3131 */
3132 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3133 {
3134 skb_reset_mac_header(skb);
3135 __skb_pull(skb, skb_network_offset(skb));
3136 skb->pkt_type = PACKET_LOOPBACK;
3137 skb->ip_summed = CHECKSUM_UNNECESSARY;
3138 WARN_ON(!skb_dst(skb));
3139 skb_dst_force(skb);
3140 netif_rx_ni(skb);
3141 return 0;
3142 }
3143 EXPORT_SYMBOL(dev_loopback_xmit);
3144
3145 #ifdef CONFIG_NET_EGRESS
3146 static struct sk_buff *
3147 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3148 {
3149 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3150 struct tcf_result cl_res;
3151
3152 if (!cl)
3153 return skb;
3154
3155 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3156 * earlier by the caller.
3157 */
3158 qdisc_bstats_cpu_update(cl->q, skb);
3159
3160 switch (tc_classify(skb, cl, &cl_res, false)) {
3161 case TC_ACT_OK:
3162 case TC_ACT_RECLASSIFY:
3163 skb->tc_index = TC_H_MIN(cl_res.classid);
3164 break;
3165 case TC_ACT_SHOT:
3166 qdisc_qstats_cpu_drop(cl->q);
3167 *ret = NET_XMIT_DROP;
3168 goto drop;
3169 case TC_ACT_STOLEN:
3170 case TC_ACT_QUEUED:
3171 *ret = NET_XMIT_SUCCESS;
3172 drop:
3173 kfree_skb(skb);
3174 return NULL;
3175 case TC_ACT_REDIRECT:
3176 /* No need to push/pop skb's mac_header here on egress! */
3177 skb_do_redirect(skb);
3178 *ret = NET_XMIT_SUCCESS;
3179 return NULL;
3180 default:
3181 break;
3182 }
3183
3184 return skb;
3185 }
3186 #endif /* CONFIG_NET_EGRESS */
3187
3188 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3189 {
3190 #ifdef CONFIG_XPS
3191 struct xps_dev_maps *dev_maps;
3192 struct xps_map *map;
3193 int queue_index = -1;
3194
3195 rcu_read_lock();
3196 dev_maps = rcu_dereference(dev->xps_maps);
3197 if (dev_maps) {
3198 map = rcu_dereference(
3199 dev_maps->cpu_map[skb->sender_cpu - 1]);
3200 if (map) {
3201 if (map->len == 1)
3202 queue_index = map->queues[0];
3203 else
3204 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3205 map->len)];
3206 if (unlikely(queue_index >= dev->real_num_tx_queues))
3207 queue_index = -1;
3208 }
3209 }
3210 rcu_read_unlock();
3211
3212 return queue_index;
3213 #else
3214 return -1;
3215 #endif
3216 }
3217
3218 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3219 {
3220 struct sock *sk = skb->sk;
3221 int queue_index = sk_tx_queue_get(sk);
3222
3223 if (queue_index < 0 || skb->ooo_okay ||
3224 queue_index >= dev->real_num_tx_queues) {
3225 int new_index = get_xps_queue(dev, skb);
3226 if (new_index < 0)
3227 new_index = skb_tx_hash(dev, skb);
3228
3229 if (queue_index != new_index && sk &&
3230 sk_fullsock(sk) &&
3231 rcu_access_pointer(sk->sk_dst_cache))
3232 sk_tx_queue_set(sk, new_index);
3233
3234 queue_index = new_index;
3235 }
3236
3237 return queue_index;
3238 }
3239
3240 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3241 struct sk_buff *skb,
3242 void *accel_priv)
3243 {
3244 int queue_index = 0;
3245
3246 #ifdef CONFIG_XPS
3247 u32 sender_cpu = skb->sender_cpu - 1;
3248
3249 if (sender_cpu >= (u32)NR_CPUS)
3250 skb->sender_cpu = raw_smp_processor_id() + 1;
3251 #endif
3252
3253 if (dev->real_num_tx_queues != 1) {
3254 const struct net_device_ops *ops = dev->netdev_ops;
3255 if (ops->ndo_select_queue)
3256 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3257 __netdev_pick_tx);
3258 else
3259 queue_index = __netdev_pick_tx(dev, skb);
3260
3261 if (!accel_priv)
3262 queue_index = netdev_cap_txqueue(dev, queue_index);
3263 }
3264
3265 skb_set_queue_mapping(skb, queue_index);
3266 return netdev_get_tx_queue(dev, queue_index);
3267 }
3268
3269 /**
3270 * __dev_queue_xmit - transmit a buffer
3271 * @skb: buffer to transmit
3272 * @accel_priv: private data used for L2 forwarding offload
3273 *
3274 * Queue a buffer for transmission to a network device. The caller must
3275 * have set the device and priority and built the buffer before calling
3276 * this function. The function can be called from an interrupt.
3277 *
3278 * A negative errno code is returned on a failure. A success does not
3279 * guarantee the frame will be transmitted as it may be dropped due
3280 * to congestion or traffic shaping.
3281 *
3282 * -----------------------------------------------------------------------------------
3283 * I notice this method can also return errors from the queue disciplines,
3284 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3285 * be positive.
3286 *
3287 * Regardless of the return value, the skb is consumed, so it is currently
3288 * difficult to retry a send to this method. (You can bump the ref count
3289 * before sending to hold a reference for retry if you are careful.)
3290 *
3291 * When calling this method, interrupts MUST be enabled. This is because
3292 * the BH enable code must have IRQs enabled so that it will not deadlock.
3293 * --BLG
3294 */
3295 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3296 {
3297 struct net_device *dev = skb->dev;
3298 struct netdev_queue *txq;
3299 struct Qdisc *q;
3300 int rc = -ENOMEM;
3301
3302 skb_reset_mac_header(skb);
3303
3304 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3305 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3306
3307 /* Disable soft irqs for various locks below. Also
3308 * stops preemption for RCU.
3309 */
3310 rcu_read_lock_bh();
3311
3312 skb_update_prio(skb);
3313
3314 qdisc_pkt_len_init(skb);
3315 #ifdef CONFIG_NET_CLS_ACT
3316 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3317 # ifdef CONFIG_NET_EGRESS
3318 if (static_key_false(&egress_needed)) {
3319 skb = sch_handle_egress(skb, &rc, dev);
3320 if (!skb)
3321 goto out;
3322 }
3323 # endif
3324 #endif
3325 /* If device/qdisc don't need skb->dst, release it right now while
3326 * its hot in this cpu cache.
3327 */
3328 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3329 skb_dst_drop(skb);
3330 else
3331 skb_dst_force(skb);
3332
3333 #ifdef CONFIG_NET_SWITCHDEV
3334 /* Don't forward if offload device already forwarded */
3335 if (skb->offload_fwd_mark &&
3336 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3337 consume_skb(skb);
3338 rc = NET_XMIT_SUCCESS;
3339 goto out;
3340 }
3341 #endif
3342
3343 txq = netdev_pick_tx(dev, skb, accel_priv);
3344 q = rcu_dereference_bh(txq->qdisc);
3345
3346 trace_net_dev_queue(skb);
3347 if (q->enqueue) {
3348 rc = __dev_xmit_skb(skb, q, dev, txq);
3349 goto out;
3350 }
3351
3352 /* The device has no queue. Common case for software devices:
3353 loopback, all the sorts of tunnels...
3354
3355 Really, it is unlikely that netif_tx_lock protection is necessary
3356 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3357 counters.)
3358 However, it is possible, that they rely on protection
3359 made by us here.
3360
3361 Check this and shot the lock. It is not prone from deadlocks.
3362 Either shot noqueue qdisc, it is even simpler 8)
3363 */
3364 if (dev->flags & IFF_UP) {
3365 int cpu = smp_processor_id(); /* ok because BHs are off */
3366
3367 if (txq->xmit_lock_owner != cpu) {
3368
3369 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3370 goto recursion_alert;
3371
3372 skb = validate_xmit_skb(skb, dev);
3373 if (!skb)
3374 goto drop;
3375
3376 HARD_TX_LOCK(dev, txq, cpu);
3377
3378 if (!netif_xmit_stopped(txq)) {
3379 __this_cpu_inc(xmit_recursion);
3380 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3381 __this_cpu_dec(xmit_recursion);
3382 if (dev_xmit_complete(rc)) {
3383 HARD_TX_UNLOCK(dev, txq);
3384 goto out;
3385 }
3386 }
3387 HARD_TX_UNLOCK(dev, txq);
3388 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3389 dev->name);
3390 } else {
3391 /* Recursion is detected! It is possible,
3392 * unfortunately
3393 */
3394 recursion_alert:
3395 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3396 dev->name);
3397 }
3398 }
3399
3400 rc = -ENETDOWN;
3401 drop:
3402 rcu_read_unlock_bh();
3403
3404 atomic_long_inc(&dev->tx_dropped);
3405 kfree_skb_list(skb);
3406 return rc;
3407 out:
3408 rcu_read_unlock_bh();
3409 return rc;
3410 }
3411
3412 int dev_queue_xmit(struct sk_buff *skb)
3413 {
3414 return __dev_queue_xmit(skb, NULL);
3415 }
3416 EXPORT_SYMBOL(dev_queue_xmit);
3417
3418 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3419 {
3420 return __dev_queue_xmit(skb, accel_priv);
3421 }
3422 EXPORT_SYMBOL(dev_queue_xmit_accel);
3423
3424
3425 /*=======================================================================
3426 Receiver routines
3427 =======================================================================*/
3428
3429 int netdev_max_backlog __read_mostly = 1000;
3430 EXPORT_SYMBOL(netdev_max_backlog);
3431
3432 int netdev_tstamp_prequeue __read_mostly = 1;
3433 int netdev_budget __read_mostly = 300;
3434 int weight_p __read_mostly = 64; /* old backlog weight */
3435
3436 /* Called with irq disabled */
3437 static inline void ____napi_schedule(struct softnet_data *sd,
3438 struct napi_struct *napi)
3439 {
3440 list_add_tail(&napi->poll_list, &sd->poll_list);
3441 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3442 }
3443
3444 #ifdef CONFIG_RPS
3445
3446 /* One global table that all flow-based protocols share. */
3447 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3448 EXPORT_SYMBOL(rps_sock_flow_table);
3449 u32 rps_cpu_mask __read_mostly;
3450 EXPORT_SYMBOL(rps_cpu_mask);
3451
3452 struct static_key rps_needed __read_mostly;
3453
3454 static struct rps_dev_flow *
3455 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3456 struct rps_dev_flow *rflow, u16 next_cpu)
3457 {
3458 if (next_cpu < nr_cpu_ids) {
3459 #ifdef CONFIG_RFS_ACCEL
3460 struct netdev_rx_queue *rxqueue;
3461 struct rps_dev_flow_table *flow_table;
3462 struct rps_dev_flow *old_rflow;
3463 u32 flow_id;
3464 u16 rxq_index;
3465 int rc;
3466
3467 /* Should we steer this flow to a different hardware queue? */
3468 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3469 !(dev->features & NETIF_F_NTUPLE))
3470 goto out;
3471 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3472 if (rxq_index == skb_get_rx_queue(skb))
3473 goto out;
3474
3475 rxqueue = dev->_rx + rxq_index;
3476 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3477 if (!flow_table)
3478 goto out;
3479 flow_id = skb_get_hash(skb) & flow_table->mask;
3480 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3481 rxq_index, flow_id);
3482 if (rc < 0)
3483 goto out;
3484 old_rflow = rflow;
3485 rflow = &flow_table->flows[flow_id];
3486 rflow->filter = rc;
3487 if (old_rflow->filter == rflow->filter)
3488 old_rflow->filter = RPS_NO_FILTER;
3489 out:
3490 #endif
3491 rflow->last_qtail =
3492 per_cpu(softnet_data, next_cpu).input_queue_head;
3493 }
3494
3495 rflow->cpu = next_cpu;
3496 return rflow;
3497 }
3498
3499 /*
3500 * get_rps_cpu is called from netif_receive_skb and returns the target
3501 * CPU from the RPS map of the receiving queue for a given skb.
3502 * rcu_read_lock must be held on entry.
3503 */
3504 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3505 struct rps_dev_flow **rflowp)
3506 {
3507 const struct rps_sock_flow_table *sock_flow_table;
3508 struct netdev_rx_queue *rxqueue = dev->_rx;
3509 struct rps_dev_flow_table *flow_table;
3510 struct rps_map *map;
3511 int cpu = -1;
3512 u32 tcpu;
3513 u32 hash;
3514
3515 if (skb_rx_queue_recorded(skb)) {
3516 u16 index = skb_get_rx_queue(skb);
3517
3518 if (unlikely(index >= dev->real_num_rx_queues)) {
3519 WARN_ONCE(dev->real_num_rx_queues > 1,
3520 "%s received packet on queue %u, but number "
3521 "of RX queues is %u\n",
3522 dev->name, index, dev->real_num_rx_queues);
3523 goto done;
3524 }
3525 rxqueue += index;
3526 }
3527
3528 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3529
3530 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3531 map = rcu_dereference(rxqueue->rps_map);
3532 if (!flow_table && !map)
3533 goto done;
3534
3535 skb_reset_network_header(skb);
3536 hash = skb_get_hash(skb);
3537 if (!hash)
3538 goto done;
3539
3540 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3541 if (flow_table && sock_flow_table) {
3542 struct rps_dev_flow *rflow;
3543 u32 next_cpu;
3544 u32 ident;
3545
3546 /* First check into global flow table if there is a match */
3547 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3548 if ((ident ^ hash) & ~rps_cpu_mask)
3549 goto try_rps;
3550
3551 next_cpu = ident & rps_cpu_mask;
3552
3553 /* OK, now we know there is a match,
3554 * we can look at the local (per receive queue) flow table
3555 */
3556 rflow = &flow_table->flows[hash & flow_table->mask];
3557 tcpu = rflow->cpu;
3558
3559 /*
3560 * If the desired CPU (where last recvmsg was done) is
3561 * different from current CPU (one in the rx-queue flow
3562 * table entry), switch if one of the following holds:
3563 * - Current CPU is unset (>= nr_cpu_ids).
3564 * - Current CPU is offline.
3565 * - The current CPU's queue tail has advanced beyond the
3566 * last packet that was enqueued using this table entry.
3567 * This guarantees that all previous packets for the flow
3568 * have been dequeued, thus preserving in order delivery.
3569 */
3570 if (unlikely(tcpu != next_cpu) &&
3571 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3572 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3573 rflow->last_qtail)) >= 0)) {
3574 tcpu = next_cpu;
3575 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3576 }
3577
3578 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3579 *rflowp = rflow;
3580 cpu = tcpu;
3581 goto done;
3582 }
3583 }
3584
3585 try_rps:
3586
3587 if (map) {
3588 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3589 if (cpu_online(tcpu)) {
3590 cpu = tcpu;
3591 goto done;
3592 }
3593 }
3594
3595 done:
3596 return cpu;
3597 }
3598
3599 #ifdef CONFIG_RFS_ACCEL
3600
3601 /**
3602 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3603 * @dev: Device on which the filter was set
3604 * @rxq_index: RX queue index
3605 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3606 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3607 *
3608 * Drivers that implement ndo_rx_flow_steer() should periodically call
3609 * this function for each installed filter and remove the filters for
3610 * which it returns %true.
3611 */
3612 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3613 u32 flow_id, u16 filter_id)
3614 {
3615 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3616 struct rps_dev_flow_table *flow_table;
3617 struct rps_dev_flow *rflow;
3618 bool expire = true;
3619 unsigned int cpu;
3620
3621 rcu_read_lock();
3622 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3623 if (flow_table && flow_id <= flow_table->mask) {
3624 rflow = &flow_table->flows[flow_id];
3625 cpu = ACCESS_ONCE(rflow->cpu);
3626 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3627 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3628 rflow->last_qtail) <
3629 (int)(10 * flow_table->mask)))
3630 expire = false;
3631 }
3632 rcu_read_unlock();
3633 return expire;
3634 }
3635 EXPORT_SYMBOL(rps_may_expire_flow);
3636
3637 #endif /* CONFIG_RFS_ACCEL */
3638
3639 /* Called from hardirq (IPI) context */
3640 static void rps_trigger_softirq(void *data)
3641 {
3642 struct softnet_data *sd = data;
3643
3644 ____napi_schedule(sd, &sd->backlog);
3645 sd->received_rps++;
3646 }
3647
3648 #endif /* CONFIG_RPS */
3649
3650 /*
3651 * Check if this softnet_data structure is another cpu one
3652 * If yes, queue it to our IPI list and return 1
3653 * If no, return 0
3654 */
3655 static int rps_ipi_queued(struct softnet_data *sd)
3656 {
3657 #ifdef CONFIG_RPS
3658 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3659
3660 if (sd != mysd) {
3661 sd->rps_ipi_next = mysd->rps_ipi_list;
3662 mysd->rps_ipi_list = sd;
3663
3664 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3665 return 1;
3666 }
3667 #endif /* CONFIG_RPS */
3668 return 0;
3669 }
3670
3671 #ifdef CONFIG_NET_FLOW_LIMIT
3672 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3673 #endif
3674
3675 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3676 {
3677 #ifdef CONFIG_NET_FLOW_LIMIT
3678 struct sd_flow_limit *fl;
3679 struct softnet_data *sd;
3680 unsigned int old_flow, new_flow;
3681
3682 if (qlen < (netdev_max_backlog >> 1))
3683 return false;
3684
3685 sd = this_cpu_ptr(&softnet_data);
3686
3687 rcu_read_lock();
3688 fl = rcu_dereference(sd->flow_limit);
3689 if (fl) {
3690 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3691 old_flow = fl->history[fl->history_head];
3692 fl->history[fl->history_head] = new_flow;
3693
3694 fl->history_head++;
3695 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3696
3697 if (likely(fl->buckets[old_flow]))
3698 fl->buckets[old_flow]--;
3699
3700 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3701 fl->count++;
3702 rcu_read_unlock();
3703 return true;
3704 }
3705 }
3706 rcu_read_unlock();
3707 #endif
3708 return false;
3709 }
3710
3711 /*
3712 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3713 * queue (may be a remote CPU queue).
3714 */
3715 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3716 unsigned int *qtail)
3717 {
3718 struct softnet_data *sd;
3719 unsigned long flags;
3720 unsigned int qlen;
3721
3722 sd = &per_cpu(softnet_data, cpu);
3723
3724 local_irq_save(flags);
3725
3726 rps_lock(sd);
3727 if (!netif_running(skb->dev))
3728 goto drop;
3729 qlen = skb_queue_len(&sd->input_pkt_queue);
3730 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3731 if (qlen) {
3732 enqueue:
3733 __skb_queue_tail(&sd->input_pkt_queue, skb);
3734 input_queue_tail_incr_save(sd, qtail);
3735 rps_unlock(sd);
3736 local_irq_restore(flags);
3737 return NET_RX_SUCCESS;
3738 }
3739
3740 /* Schedule NAPI for backlog device
3741 * We can use non atomic operation since we own the queue lock
3742 */
3743 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3744 if (!rps_ipi_queued(sd))
3745 ____napi_schedule(sd, &sd->backlog);
3746 }
3747 goto enqueue;
3748 }
3749
3750 drop:
3751 sd->dropped++;
3752 rps_unlock(sd);
3753
3754 local_irq_restore(flags);
3755
3756 atomic_long_inc(&skb->dev->rx_dropped);
3757 kfree_skb(skb);
3758 return NET_RX_DROP;
3759 }
3760
3761 static int netif_rx_internal(struct sk_buff *skb)
3762 {
3763 int ret;
3764
3765 net_timestamp_check(netdev_tstamp_prequeue, skb);
3766
3767 trace_netif_rx(skb);
3768 #ifdef CONFIG_RPS
3769 if (static_key_false(&rps_needed)) {
3770 struct rps_dev_flow voidflow, *rflow = &voidflow;
3771 int cpu;
3772
3773 preempt_disable();
3774 rcu_read_lock();
3775
3776 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3777 if (cpu < 0)
3778 cpu = smp_processor_id();
3779
3780 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3781
3782 rcu_read_unlock();
3783 preempt_enable();
3784 } else
3785 #endif
3786 {
3787 unsigned int qtail;
3788 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3789 put_cpu();
3790 }
3791 return ret;
3792 }
3793
3794 /**
3795 * netif_rx - post buffer to the network code
3796 * @skb: buffer to post
3797 *
3798 * This function receives a packet from a device driver and queues it for
3799 * the upper (protocol) levels to process. It always succeeds. The buffer
3800 * may be dropped during processing for congestion control or by the
3801 * protocol layers.
3802 *
3803 * return values:
3804 * NET_RX_SUCCESS (no congestion)
3805 * NET_RX_DROP (packet was dropped)
3806 *
3807 */
3808
3809 int netif_rx(struct sk_buff *skb)
3810 {
3811 trace_netif_rx_entry(skb);
3812
3813 return netif_rx_internal(skb);
3814 }
3815 EXPORT_SYMBOL(netif_rx);
3816
3817 int netif_rx_ni(struct sk_buff *skb)
3818 {
3819 int err;
3820
3821 trace_netif_rx_ni_entry(skb);
3822
3823 preempt_disable();
3824 err = netif_rx_internal(skb);
3825 if (local_softirq_pending())
3826 do_softirq();
3827 preempt_enable();
3828
3829 return err;
3830 }
3831 EXPORT_SYMBOL(netif_rx_ni);
3832
3833 static void net_tx_action(struct softirq_action *h)
3834 {
3835 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3836
3837 if (sd->completion_queue) {
3838 struct sk_buff *clist;
3839
3840 local_irq_disable();
3841 clist = sd->completion_queue;
3842 sd->completion_queue = NULL;
3843 local_irq_enable();
3844
3845 while (clist) {
3846 struct sk_buff *skb = clist;
3847 clist = clist->next;
3848
3849 WARN_ON(atomic_read(&skb->users));
3850 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3851 trace_consume_skb(skb);
3852 else
3853 trace_kfree_skb(skb, net_tx_action);
3854
3855 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3856 __kfree_skb(skb);
3857 else
3858 __kfree_skb_defer(skb);
3859 }
3860
3861 __kfree_skb_flush();
3862 }
3863
3864 if (sd->output_queue) {
3865 struct Qdisc *head;
3866
3867 local_irq_disable();
3868 head = sd->output_queue;
3869 sd->output_queue = NULL;
3870 sd->output_queue_tailp = &sd->output_queue;
3871 local_irq_enable();
3872
3873 while (head) {
3874 struct Qdisc *q = head;
3875 spinlock_t *root_lock;
3876
3877 head = head->next_sched;
3878
3879 root_lock = qdisc_lock(q);
3880 if (spin_trylock(root_lock)) {
3881 smp_mb__before_atomic();
3882 clear_bit(__QDISC_STATE_SCHED,
3883 &q->state);
3884 qdisc_run(q);
3885 spin_unlock(root_lock);
3886 } else {
3887 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3888 &q->state)) {
3889 __netif_reschedule(q);
3890 } else {
3891 smp_mb__before_atomic();
3892 clear_bit(__QDISC_STATE_SCHED,
3893 &q->state);
3894 }
3895 }
3896 }
3897 }
3898 }
3899
3900 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3901 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3902 /* This hook is defined here for ATM LANE */
3903 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3904 unsigned char *addr) __read_mostly;
3905 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3906 #endif
3907
3908 static inline struct sk_buff *
3909 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3910 struct net_device *orig_dev)
3911 {
3912 #ifdef CONFIG_NET_CLS_ACT
3913 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3914 struct tcf_result cl_res;
3915
3916 /* If there's at least one ingress present somewhere (so
3917 * we get here via enabled static key), remaining devices
3918 * that are not configured with an ingress qdisc will bail
3919 * out here.
3920 */
3921 if (!cl)
3922 return skb;
3923 if (*pt_prev) {
3924 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3925 *pt_prev = NULL;
3926 }
3927
3928 qdisc_skb_cb(skb)->pkt_len = skb->len;
3929 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3930 qdisc_bstats_cpu_update(cl->q, skb);
3931
3932 switch (tc_classify(skb, cl, &cl_res, false)) {
3933 case TC_ACT_OK:
3934 case TC_ACT_RECLASSIFY:
3935 skb->tc_index = TC_H_MIN(cl_res.classid);
3936 break;
3937 case TC_ACT_SHOT:
3938 qdisc_qstats_cpu_drop(cl->q);
3939 case TC_ACT_STOLEN:
3940 case TC_ACT_QUEUED:
3941 kfree_skb(skb);
3942 return NULL;
3943 case TC_ACT_REDIRECT:
3944 /* skb_mac_header check was done by cls/act_bpf, so
3945 * we can safely push the L2 header back before
3946 * redirecting to another netdev
3947 */
3948 __skb_push(skb, skb->mac_len);
3949 skb_do_redirect(skb);
3950 return NULL;
3951 default:
3952 break;
3953 }
3954 #endif /* CONFIG_NET_CLS_ACT */
3955 return skb;
3956 }
3957
3958 /**
3959 * netdev_rx_handler_register - register receive handler
3960 * @dev: device to register a handler for
3961 * @rx_handler: receive handler to register
3962 * @rx_handler_data: data pointer that is used by rx handler
3963 *
3964 * Register a receive handler for a device. This handler will then be
3965 * called from __netif_receive_skb. A negative errno code is returned
3966 * on a failure.
3967 *
3968 * The caller must hold the rtnl_mutex.
3969 *
3970 * For a general description of rx_handler, see enum rx_handler_result.
3971 */
3972 int netdev_rx_handler_register(struct net_device *dev,
3973 rx_handler_func_t *rx_handler,
3974 void *rx_handler_data)
3975 {
3976 ASSERT_RTNL();
3977
3978 if (dev->rx_handler)
3979 return -EBUSY;
3980
3981 /* Note: rx_handler_data must be set before rx_handler */
3982 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3983 rcu_assign_pointer(dev->rx_handler, rx_handler);
3984
3985 return 0;
3986 }
3987 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3988
3989 /**
3990 * netdev_rx_handler_unregister - unregister receive handler
3991 * @dev: device to unregister a handler from
3992 *
3993 * Unregister a receive handler from a device.
3994 *
3995 * The caller must hold the rtnl_mutex.
3996 */
3997 void netdev_rx_handler_unregister(struct net_device *dev)
3998 {
3999
4000 ASSERT_RTNL();
4001 RCU_INIT_POINTER(dev->rx_handler, NULL);
4002 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4003 * section has a guarantee to see a non NULL rx_handler_data
4004 * as well.
4005 */
4006 synchronize_net();
4007 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4008 }
4009 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4010
4011 /*
4012 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4013 * the special handling of PFMEMALLOC skbs.
4014 */
4015 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4016 {
4017 switch (skb->protocol) {
4018 case htons(ETH_P_ARP):
4019 case htons(ETH_P_IP):
4020 case htons(ETH_P_IPV6):
4021 case htons(ETH_P_8021Q):
4022 case htons(ETH_P_8021AD):
4023 return true;
4024 default:
4025 return false;
4026 }
4027 }
4028
4029 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4030 int *ret, struct net_device *orig_dev)
4031 {
4032 #ifdef CONFIG_NETFILTER_INGRESS
4033 if (nf_hook_ingress_active(skb)) {
4034 if (*pt_prev) {
4035 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4036 *pt_prev = NULL;
4037 }
4038
4039 return nf_hook_ingress(skb);
4040 }
4041 #endif /* CONFIG_NETFILTER_INGRESS */
4042 return 0;
4043 }
4044
4045 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4046 {
4047 struct packet_type *ptype, *pt_prev;
4048 rx_handler_func_t *rx_handler;
4049 struct net_device *orig_dev;
4050 bool deliver_exact = false;
4051 int ret = NET_RX_DROP;
4052 __be16 type;
4053
4054 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4055
4056 trace_netif_receive_skb(skb);
4057
4058 orig_dev = skb->dev;
4059
4060 skb_reset_network_header(skb);
4061 if (!skb_transport_header_was_set(skb))
4062 skb_reset_transport_header(skb);
4063 skb_reset_mac_len(skb);
4064
4065 pt_prev = NULL;
4066
4067 another_round:
4068 skb->skb_iif = skb->dev->ifindex;
4069
4070 __this_cpu_inc(softnet_data.processed);
4071
4072 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4073 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4074 skb = skb_vlan_untag(skb);
4075 if (unlikely(!skb))
4076 goto out;
4077 }
4078
4079 #ifdef CONFIG_NET_CLS_ACT
4080 if (skb->tc_verd & TC_NCLS) {
4081 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4082 goto ncls;
4083 }
4084 #endif
4085
4086 if (pfmemalloc)
4087 goto skip_taps;
4088
4089 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4090 if (pt_prev)
4091 ret = deliver_skb(skb, pt_prev, orig_dev);
4092 pt_prev = ptype;
4093 }
4094
4095 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4096 if (pt_prev)
4097 ret = deliver_skb(skb, pt_prev, orig_dev);
4098 pt_prev = ptype;
4099 }
4100
4101 skip_taps:
4102 #ifdef CONFIG_NET_INGRESS
4103 if (static_key_false(&ingress_needed)) {
4104 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4105 if (!skb)
4106 goto out;
4107
4108 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4109 goto out;
4110 }
4111 #endif
4112 #ifdef CONFIG_NET_CLS_ACT
4113 skb->tc_verd = 0;
4114 ncls:
4115 #endif
4116 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4117 goto drop;
4118
4119 if (skb_vlan_tag_present(skb)) {
4120 if (pt_prev) {
4121 ret = deliver_skb(skb, pt_prev, orig_dev);
4122 pt_prev = NULL;
4123 }
4124 if (vlan_do_receive(&skb))
4125 goto another_round;
4126 else if (unlikely(!skb))
4127 goto out;
4128 }
4129
4130 rx_handler = rcu_dereference(skb->dev->rx_handler);
4131 if (rx_handler) {
4132 if (pt_prev) {
4133 ret = deliver_skb(skb, pt_prev, orig_dev);
4134 pt_prev = NULL;
4135 }
4136 switch (rx_handler(&skb)) {
4137 case RX_HANDLER_CONSUMED:
4138 ret = NET_RX_SUCCESS;
4139 goto out;
4140 case RX_HANDLER_ANOTHER:
4141 goto another_round;
4142 case RX_HANDLER_EXACT:
4143 deliver_exact = true;
4144 case RX_HANDLER_PASS:
4145 break;
4146 default:
4147 BUG();
4148 }
4149 }
4150
4151 if (unlikely(skb_vlan_tag_present(skb))) {
4152 if (skb_vlan_tag_get_id(skb))
4153 skb->pkt_type = PACKET_OTHERHOST;
4154 /* Note: we might in the future use prio bits
4155 * and set skb->priority like in vlan_do_receive()
4156 * For the time being, just ignore Priority Code Point
4157 */
4158 skb->vlan_tci = 0;
4159 }
4160
4161 type = skb->protocol;
4162
4163 /* deliver only exact match when indicated */
4164 if (likely(!deliver_exact)) {
4165 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4166 &ptype_base[ntohs(type) &
4167 PTYPE_HASH_MASK]);
4168 }
4169
4170 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4171 &orig_dev->ptype_specific);
4172
4173 if (unlikely(skb->dev != orig_dev)) {
4174 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4175 &skb->dev->ptype_specific);
4176 }
4177
4178 if (pt_prev) {
4179 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4180 goto drop;
4181 else
4182 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4183 } else {
4184 drop:
4185 if (!deliver_exact)
4186 atomic_long_inc(&skb->dev->rx_dropped);
4187 else
4188 atomic_long_inc(&skb->dev->rx_nohandler);
4189 kfree_skb(skb);
4190 /* Jamal, now you will not able to escape explaining
4191 * me how you were going to use this. :-)
4192 */
4193 ret = NET_RX_DROP;
4194 }
4195
4196 out:
4197 return ret;
4198 }
4199
4200 static int __netif_receive_skb(struct sk_buff *skb)
4201 {
4202 int ret;
4203
4204 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4205 unsigned long pflags = current->flags;
4206
4207 /*
4208 * PFMEMALLOC skbs are special, they should
4209 * - be delivered to SOCK_MEMALLOC sockets only
4210 * - stay away from userspace
4211 * - have bounded memory usage
4212 *
4213 * Use PF_MEMALLOC as this saves us from propagating the allocation
4214 * context down to all allocation sites.
4215 */
4216 current->flags |= PF_MEMALLOC;
4217 ret = __netif_receive_skb_core(skb, true);
4218 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4219 } else
4220 ret = __netif_receive_skb_core(skb, false);
4221
4222 return ret;
4223 }
4224
4225 static int netif_receive_skb_internal(struct sk_buff *skb)
4226 {
4227 int ret;
4228
4229 net_timestamp_check(netdev_tstamp_prequeue, skb);
4230
4231 if (skb_defer_rx_timestamp(skb))
4232 return NET_RX_SUCCESS;
4233
4234 rcu_read_lock();
4235
4236 #ifdef CONFIG_RPS
4237 if (static_key_false(&rps_needed)) {
4238 struct rps_dev_flow voidflow, *rflow = &voidflow;
4239 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4240
4241 if (cpu >= 0) {
4242 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4243 rcu_read_unlock();
4244 return ret;
4245 }
4246 }
4247 #endif
4248 ret = __netif_receive_skb(skb);
4249 rcu_read_unlock();
4250 return ret;
4251 }
4252
4253 /**
4254 * netif_receive_skb - process receive buffer from network
4255 * @skb: buffer to process
4256 *
4257 * netif_receive_skb() is the main receive data processing function.
4258 * It always succeeds. The buffer may be dropped during processing
4259 * for congestion control or by the protocol layers.
4260 *
4261 * This function may only be called from softirq context and interrupts
4262 * should be enabled.
4263 *
4264 * Return values (usually ignored):
4265 * NET_RX_SUCCESS: no congestion
4266 * NET_RX_DROP: packet was dropped
4267 */
4268 int netif_receive_skb(struct sk_buff *skb)
4269 {
4270 trace_netif_receive_skb_entry(skb);
4271
4272 return netif_receive_skb_internal(skb);
4273 }
4274 EXPORT_SYMBOL(netif_receive_skb);
4275
4276 /* Network device is going away, flush any packets still pending
4277 * Called with irqs disabled.
4278 */
4279 static void flush_backlog(void *arg)
4280 {
4281 struct net_device *dev = arg;
4282 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4283 struct sk_buff *skb, *tmp;
4284
4285 rps_lock(sd);
4286 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4287 if (skb->dev == dev) {
4288 __skb_unlink(skb, &sd->input_pkt_queue);
4289 kfree_skb(skb);
4290 input_queue_head_incr(sd);
4291 }
4292 }
4293 rps_unlock(sd);
4294
4295 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4296 if (skb->dev == dev) {
4297 __skb_unlink(skb, &sd->process_queue);
4298 kfree_skb(skb);
4299 input_queue_head_incr(sd);
4300 }
4301 }
4302 }
4303
4304 static int napi_gro_complete(struct sk_buff *skb)
4305 {
4306 struct packet_offload *ptype;
4307 __be16 type = skb->protocol;
4308 struct list_head *head = &offload_base;
4309 int err = -ENOENT;
4310
4311 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4312
4313 if (NAPI_GRO_CB(skb)->count == 1) {
4314 skb_shinfo(skb)->gso_size = 0;
4315 goto out;
4316 }
4317
4318 rcu_read_lock();
4319 list_for_each_entry_rcu(ptype, head, list) {
4320 if (ptype->type != type || !ptype->callbacks.gro_complete)
4321 continue;
4322
4323 err = ptype->callbacks.gro_complete(skb, 0);
4324 break;
4325 }
4326 rcu_read_unlock();
4327
4328 if (err) {
4329 WARN_ON(&ptype->list == head);
4330 kfree_skb(skb);
4331 return NET_RX_SUCCESS;
4332 }
4333
4334 out:
4335 return netif_receive_skb_internal(skb);
4336 }
4337
4338 /* napi->gro_list contains packets ordered by age.
4339 * youngest packets at the head of it.
4340 * Complete skbs in reverse order to reduce latencies.
4341 */
4342 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4343 {
4344 struct sk_buff *skb, *prev = NULL;
4345
4346 /* scan list and build reverse chain */
4347 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4348 skb->prev = prev;
4349 prev = skb;
4350 }
4351
4352 for (skb = prev; skb; skb = prev) {
4353 skb->next = NULL;
4354
4355 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4356 return;
4357
4358 prev = skb->prev;
4359 napi_gro_complete(skb);
4360 napi->gro_count--;
4361 }
4362
4363 napi->gro_list = NULL;
4364 }
4365 EXPORT_SYMBOL(napi_gro_flush);
4366
4367 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4368 {
4369 struct sk_buff *p;
4370 unsigned int maclen = skb->dev->hard_header_len;
4371 u32 hash = skb_get_hash_raw(skb);
4372
4373 for (p = napi->gro_list; p; p = p->next) {
4374 unsigned long diffs;
4375
4376 NAPI_GRO_CB(p)->flush = 0;
4377
4378 if (hash != skb_get_hash_raw(p)) {
4379 NAPI_GRO_CB(p)->same_flow = 0;
4380 continue;
4381 }
4382
4383 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4384 diffs |= p->vlan_tci ^ skb->vlan_tci;
4385 diffs |= skb_metadata_dst_cmp(p, skb);
4386 if (maclen == ETH_HLEN)
4387 diffs |= compare_ether_header(skb_mac_header(p),
4388 skb_mac_header(skb));
4389 else if (!diffs)
4390 diffs = memcmp(skb_mac_header(p),
4391 skb_mac_header(skb),
4392 maclen);
4393 NAPI_GRO_CB(p)->same_flow = !diffs;
4394 }
4395 }
4396
4397 static void skb_gro_reset_offset(struct sk_buff *skb)
4398 {
4399 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4400 const skb_frag_t *frag0 = &pinfo->frags[0];
4401
4402 NAPI_GRO_CB(skb)->data_offset = 0;
4403 NAPI_GRO_CB(skb)->frag0 = NULL;
4404 NAPI_GRO_CB(skb)->frag0_len = 0;
4405
4406 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4407 pinfo->nr_frags &&
4408 !PageHighMem(skb_frag_page(frag0))) {
4409 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4410 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4411 }
4412 }
4413
4414 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4415 {
4416 struct skb_shared_info *pinfo = skb_shinfo(skb);
4417
4418 BUG_ON(skb->end - skb->tail < grow);
4419
4420 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4421
4422 skb->data_len -= grow;
4423 skb->tail += grow;
4424
4425 pinfo->frags[0].page_offset += grow;
4426 skb_frag_size_sub(&pinfo->frags[0], grow);
4427
4428 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4429 skb_frag_unref(skb, 0);
4430 memmove(pinfo->frags, pinfo->frags + 1,
4431 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4432 }
4433 }
4434
4435 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4436 {
4437 struct sk_buff **pp = NULL;
4438 struct packet_offload *ptype;
4439 __be16 type = skb->protocol;
4440 struct list_head *head = &offload_base;
4441 int same_flow;
4442 enum gro_result ret;
4443 int grow;
4444
4445 if (!(skb->dev->features & NETIF_F_GRO))
4446 goto normal;
4447
4448 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4449 goto normal;
4450
4451 gro_list_prepare(napi, skb);
4452
4453 rcu_read_lock();
4454 list_for_each_entry_rcu(ptype, head, list) {
4455 if (ptype->type != type || !ptype->callbacks.gro_receive)
4456 continue;
4457
4458 skb_set_network_header(skb, skb_gro_offset(skb));
4459 skb_reset_mac_len(skb);
4460 NAPI_GRO_CB(skb)->same_flow = 0;
4461 NAPI_GRO_CB(skb)->flush = 0;
4462 NAPI_GRO_CB(skb)->free = 0;
4463 NAPI_GRO_CB(skb)->encap_mark = 0;
4464 NAPI_GRO_CB(skb)->is_fou = 0;
4465 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4466
4467 /* Setup for GRO checksum validation */
4468 switch (skb->ip_summed) {
4469 case CHECKSUM_COMPLETE:
4470 NAPI_GRO_CB(skb)->csum = skb->csum;
4471 NAPI_GRO_CB(skb)->csum_valid = 1;
4472 NAPI_GRO_CB(skb)->csum_cnt = 0;
4473 break;
4474 case CHECKSUM_UNNECESSARY:
4475 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4476 NAPI_GRO_CB(skb)->csum_valid = 0;
4477 break;
4478 default:
4479 NAPI_GRO_CB(skb)->csum_cnt = 0;
4480 NAPI_GRO_CB(skb)->csum_valid = 0;
4481 }
4482
4483 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4484 break;
4485 }
4486 rcu_read_unlock();
4487
4488 if (&ptype->list == head)
4489 goto normal;
4490
4491 same_flow = NAPI_GRO_CB(skb)->same_flow;
4492 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4493
4494 if (pp) {
4495 struct sk_buff *nskb = *pp;
4496
4497 *pp = nskb->next;
4498 nskb->next = NULL;
4499 napi_gro_complete(nskb);
4500 napi->gro_count--;
4501 }
4502
4503 if (same_flow)
4504 goto ok;
4505
4506 if (NAPI_GRO_CB(skb)->flush)
4507 goto normal;
4508
4509 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4510 struct sk_buff *nskb = napi->gro_list;
4511
4512 /* locate the end of the list to select the 'oldest' flow */
4513 while (nskb->next) {
4514 pp = &nskb->next;
4515 nskb = *pp;
4516 }
4517 *pp = NULL;
4518 nskb->next = NULL;
4519 napi_gro_complete(nskb);
4520 } else {
4521 napi->gro_count++;
4522 }
4523 NAPI_GRO_CB(skb)->count = 1;
4524 NAPI_GRO_CB(skb)->age = jiffies;
4525 NAPI_GRO_CB(skb)->last = skb;
4526 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4527 skb->next = napi->gro_list;
4528 napi->gro_list = skb;
4529 ret = GRO_HELD;
4530
4531 pull:
4532 grow = skb_gro_offset(skb) - skb_headlen(skb);
4533 if (grow > 0)
4534 gro_pull_from_frag0(skb, grow);
4535 ok:
4536 return ret;
4537
4538 normal:
4539 ret = GRO_NORMAL;
4540 goto pull;
4541 }
4542
4543 struct packet_offload *gro_find_receive_by_type(__be16 type)
4544 {
4545 struct list_head *offload_head = &offload_base;
4546 struct packet_offload *ptype;
4547
4548 list_for_each_entry_rcu(ptype, offload_head, list) {
4549 if (ptype->type != type || !ptype->callbacks.gro_receive)
4550 continue;
4551 return ptype;
4552 }
4553 return NULL;
4554 }
4555 EXPORT_SYMBOL(gro_find_receive_by_type);
4556
4557 struct packet_offload *gro_find_complete_by_type(__be16 type)
4558 {
4559 struct list_head *offload_head = &offload_base;
4560 struct packet_offload *ptype;
4561
4562 list_for_each_entry_rcu(ptype, offload_head, list) {
4563 if (ptype->type != type || !ptype->callbacks.gro_complete)
4564 continue;
4565 return ptype;
4566 }
4567 return NULL;
4568 }
4569 EXPORT_SYMBOL(gro_find_complete_by_type);
4570
4571 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4572 {
4573 switch (ret) {
4574 case GRO_NORMAL:
4575 if (netif_receive_skb_internal(skb))
4576 ret = GRO_DROP;
4577 break;
4578
4579 case GRO_DROP:
4580 kfree_skb(skb);
4581 break;
4582
4583 case GRO_MERGED_FREE:
4584 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4585 skb_dst_drop(skb);
4586 kmem_cache_free(skbuff_head_cache, skb);
4587 } else {
4588 __kfree_skb(skb);
4589 }
4590 break;
4591
4592 case GRO_HELD:
4593 case GRO_MERGED:
4594 break;
4595 }
4596
4597 return ret;
4598 }
4599
4600 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4601 {
4602 skb_mark_napi_id(skb, napi);
4603 trace_napi_gro_receive_entry(skb);
4604
4605 skb_gro_reset_offset(skb);
4606
4607 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4608 }
4609 EXPORT_SYMBOL(napi_gro_receive);
4610
4611 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4612 {
4613 if (unlikely(skb->pfmemalloc)) {
4614 consume_skb(skb);
4615 return;
4616 }
4617 __skb_pull(skb, skb_headlen(skb));
4618 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4619 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4620 skb->vlan_tci = 0;
4621 skb->dev = napi->dev;
4622 skb->skb_iif = 0;
4623 skb->encapsulation = 0;
4624 skb_shinfo(skb)->gso_type = 0;
4625 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4626
4627 napi->skb = skb;
4628 }
4629
4630 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4631 {
4632 struct sk_buff *skb = napi->skb;
4633
4634 if (!skb) {
4635 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4636 if (skb) {
4637 napi->skb = skb;
4638 skb_mark_napi_id(skb, napi);
4639 }
4640 }
4641 return skb;
4642 }
4643 EXPORT_SYMBOL(napi_get_frags);
4644
4645 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4646 struct sk_buff *skb,
4647 gro_result_t ret)
4648 {
4649 switch (ret) {
4650 case GRO_NORMAL:
4651 case GRO_HELD:
4652 __skb_push(skb, ETH_HLEN);
4653 skb->protocol = eth_type_trans(skb, skb->dev);
4654 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4655 ret = GRO_DROP;
4656 break;
4657
4658 case GRO_DROP:
4659 case GRO_MERGED_FREE:
4660 napi_reuse_skb(napi, skb);
4661 break;
4662
4663 case GRO_MERGED:
4664 break;
4665 }
4666
4667 return ret;
4668 }
4669
4670 /* Upper GRO stack assumes network header starts at gro_offset=0
4671 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4672 * We copy ethernet header into skb->data to have a common layout.
4673 */
4674 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4675 {
4676 struct sk_buff *skb = napi->skb;
4677 const struct ethhdr *eth;
4678 unsigned int hlen = sizeof(*eth);
4679
4680 napi->skb = NULL;
4681
4682 skb_reset_mac_header(skb);
4683 skb_gro_reset_offset(skb);
4684
4685 eth = skb_gro_header_fast(skb, 0);
4686 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4687 eth = skb_gro_header_slow(skb, hlen, 0);
4688 if (unlikely(!eth)) {
4689 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4690 __func__, napi->dev->name);
4691 napi_reuse_skb(napi, skb);
4692 return NULL;
4693 }
4694 } else {
4695 gro_pull_from_frag0(skb, hlen);
4696 NAPI_GRO_CB(skb)->frag0 += hlen;
4697 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4698 }
4699 __skb_pull(skb, hlen);
4700
4701 /*
4702 * This works because the only protocols we care about don't require
4703 * special handling.
4704 * We'll fix it up properly in napi_frags_finish()
4705 */
4706 skb->protocol = eth->h_proto;
4707
4708 return skb;
4709 }
4710
4711 gro_result_t napi_gro_frags(struct napi_struct *napi)
4712 {
4713 struct sk_buff *skb = napi_frags_skb(napi);
4714
4715 if (!skb)
4716 return GRO_DROP;
4717
4718 trace_napi_gro_frags_entry(skb);
4719
4720 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4721 }
4722 EXPORT_SYMBOL(napi_gro_frags);
4723
4724 /* Compute the checksum from gro_offset and return the folded value
4725 * after adding in any pseudo checksum.
4726 */
4727 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4728 {
4729 __wsum wsum;
4730 __sum16 sum;
4731
4732 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4733
4734 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4735 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4736 if (likely(!sum)) {
4737 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4738 !skb->csum_complete_sw)
4739 netdev_rx_csum_fault(skb->dev);
4740 }
4741
4742 NAPI_GRO_CB(skb)->csum = wsum;
4743 NAPI_GRO_CB(skb)->csum_valid = 1;
4744
4745 return sum;
4746 }
4747 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4748
4749 /*
4750 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4751 * Note: called with local irq disabled, but exits with local irq enabled.
4752 */
4753 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4754 {
4755 #ifdef CONFIG_RPS
4756 struct softnet_data *remsd = sd->rps_ipi_list;
4757
4758 if (remsd) {
4759 sd->rps_ipi_list = NULL;
4760
4761 local_irq_enable();
4762
4763 /* Send pending IPI's to kick RPS processing on remote cpus. */
4764 while (remsd) {
4765 struct softnet_data *next = remsd->rps_ipi_next;
4766
4767 if (cpu_online(remsd->cpu))
4768 smp_call_function_single_async(remsd->cpu,
4769 &remsd->csd);
4770 remsd = next;
4771 }
4772 } else
4773 #endif
4774 local_irq_enable();
4775 }
4776
4777 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4778 {
4779 #ifdef CONFIG_RPS
4780 return sd->rps_ipi_list != NULL;
4781 #else
4782 return false;
4783 #endif
4784 }
4785
4786 static int process_backlog(struct napi_struct *napi, int quota)
4787 {
4788 int work = 0;
4789 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4790
4791 /* Check if we have pending ipi, its better to send them now,
4792 * not waiting net_rx_action() end.
4793 */
4794 if (sd_has_rps_ipi_waiting(sd)) {
4795 local_irq_disable();
4796 net_rps_action_and_irq_enable(sd);
4797 }
4798
4799 napi->weight = weight_p;
4800 local_irq_disable();
4801 while (1) {
4802 struct sk_buff *skb;
4803
4804 while ((skb = __skb_dequeue(&sd->process_queue))) {
4805 rcu_read_lock();
4806 local_irq_enable();
4807 __netif_receive_skb(skb);
4808 rcu_read_unlock();
4809 local_irq_disable();
4810 input_queue_head_incr(sd);
4811 if (++work >= quota) {
4812 local_irq_enable();
4813 return work;
4814 }
4815 }
4816
4817 rps_lock(sd);
4818 if (skb_queue_empty(&sd->input_pkt_queue)) {
4819 /*
4820 * Inline a custom version of __napi_complete().
4821 * only current cpu owns and manipulates this napi,
4822 * and NAPI_STATE_SCHED is the only possible flag set
4823 * on backlog.
4824 * We can use a plain write instead of clear_bit(),
4825 * and we dont need an smp_mb() memory barrier.
4826 */
4827 napi->state = 0;
4828 rps_unlock(sd);
4829
4830 break;
4831 }
4832
4833 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4834 &sd->process_queue);
4835 rps_unlock(sd);
4836 }
4837 local_irq_enable();
4838
4839 return work;
4840 }
4841
4842 /**
4843 * __napi_schedule - schedule for receive
4844 * @n: entry to schedule
4845 *
4846 * The entry's receive function will be scheduled to run.
4847 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4848 */
4849 void __napi_schedule(struct napi_struct *n)
4850 {
4851 unsigned long flags;
4852
4853 local_irq_save(flags);
4854 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4855 local_irq_restore(flags);
4856 }
4857 EXPORT_SYMBOL(__napi_schedule);
4858
4859 /**
4860 * __napi_schedule_irqoff - schedule for receive
4861 * @n: entry to schedule
4862 *
4863 * Variant of __napi_schedule() assuming hard irqs are masked
4864 */
4865 void __napi_schedule_irqoff(struct napi_struct *n)
4866 {
4867 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4868 }
4869 EXPORT_SYMBOL(__napi_schedule_irqoff);
4870
4871 void __napi_complete(struct napi_struct *n)
4872 {
4873 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4874
4875 list_del_init(&n->poll_list);
4876 smp_mb__before_atomic();
4877 clear_bit(NAPI_STATE_SCHED, &n->state);
4878 }
4879 EXPORT_SYMBOL(__napi_complete);
4880
4881 void napi_complete_done(struct napi_struct *n, int work_done)
4882 {
4883 unsigned long flags;
4884
4885 /*
4886 * don't let napi dequeue from the cpu poll list
4887 * just in case its running on a different cpu
4888 */
4889 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4890 return;
4891
4892 if (n->gro_list) {
4893 unsigned long timeout = 0;
4894
4895 if (work_done)
4896 timeout = n->dev->gro_flush_timeout;
4897
4898 if (timeout)
4899 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4900 HRTIMER_MODE_REL_PINNED);
4901 else
4902 napi_gro_flush(n, false);
4903 }
4904 if (likely(list_empty(&n->poll_list))) {
4905 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4906 } else {
4907 /* If n->poll_list is not empty, we need to mask irqs */
4908 local_irq_save(flags);
4909 __napi_complete(n);
4910 local_irq_restore(flags);
4911 }
4912 }
4913 EXPORT_SYMBOL(napi_complete_done);
4914
4915 /* must be called under rcu_read_lock(), as we dont take a reference */
4916 static struct napi_struct *napi_by_id(unsigned int napi_id)
4917 {
4918 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4919 struct napi_struct *napi;
4920
4921 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4922 if (napi->napi_id == napi_id)
4923 return napi;
4924
4925 return NULL;
4926 }
4927
4928 #if defined(CONFIG_NET_RX_BUSY_POLL)
4929 #define BUSY_POLL_BUDGET 8
4930 bool sk_busy_loop(struct sock *sk, int nonblock)
4931 {
4932 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4933 int (*busy_poll)(struct napi_struct *dev);
4934 struct napi_struct *napi;
4935 int rc = false;
4936
4937 rcu_read_lock();
4938
4939 napi = napi_by_id(sk->sk_napi_id);
4940 if (!napi)
4941 goto out;
4942
4943 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4944 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4945
4946 do {
4947 rc = 0;
4948 local_bh_disable();
4949 if (busy_poll) {
4950 rc = busy_poll(napi);
4951 } else if (napi_schedule_prep(napi)) {
4952 void *have = netpoll_poll_lock(napi);
4953
4954 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4955 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4956 trace_napi_poll(napi);
4957 if (rc == BUSY_POLL_BUDGET) {
4958 napi_complete_done(napi, rc);
4959 napi_schedule(napi);
4960 }
4961 }
4962 netpoll_poll_unlock(have);
4963 }
4964 if (rc > 0)
4965 NET_ADD_STATS_BH(sock_net(sk),
4966 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4967 local_bh_enable();
4968
4969 if (rc == LL_FLUSH_FAILED)
4970 break; /* permanent failure */
4971
4972 cpu_relax();
4973 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4974 !need_resched() && !busy_loop_timeout(end_time));
4975
4976 rc = !skb_queue_empty(&sk->sk_receive_queue);
4977 out:
4978 rcu_read_unlock();
4979 return rc;
4980 }
4981 EXPORT_SYMBOL(sk_busy_loop);
4982
4983 #endif /* CONFIG_NET_RX_BUSY_POLL */
4984
4985 void napi_hash_add(struct napi_struct *napi)
4986 {
4987 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
4988 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
4989 return;
4990
4991 spin_lock(&napi_hash_lock);
4992
4993 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
4994 do {
4995 if (unlikely(++napi_gen_id < NR_CPUS + 1))
4996 napi_gen_id = NR_CPUS + 1;
4997 } while (napi_by_id(napi_gen_id));
4998 napi->napi_id = napi_gen_id;
4999
5000 hlist_add_head_rcu(&napi->napi_hash_node,
5001 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5002
5003 spin_unlock(&napi_hash_lock);
5004 }
5005 EXPORT_SYMBOL_GPL(napi_hash_add);
5006
5007 /* Warning : caller is responsible to make sure rcu grace period
5008 * is respected before freeing memory containing @napi
5009 */
5010 bool napi_hash_del(struct napi_struct *napi)
5011 {
5012 bool rcu_sync_needed = false;
5013
5014 spin_lock(&napi_hash_lock);
5015
5016 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5017 rcu_sync_needed = true;
5018 hlist_del_rcu(&napi->napi_hash_node);
5019 }
5020 spin_unlock(&napi_hash_lock);
5021 return rcu_sync_needed;
5022 }
5023 EXPORT_SYMBOL_GPL(napi_hash_del);
5024
5025 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5026 {
5027 struct napi_struct *napi;
5028
5029 napi = container_of(timer, struct napi_struct, timer);
5030 if (napi->gro_list)
5031 napi_schedule(napi);
5032
5033 return HRTIMER_NORESTART;
5034 }
5035
5036 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5037 int (*poll)(struct napi_struct *, int), int weight)
5038 {
5039 INIT_LIST_HEAD(&napi->poll_list);
5040 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5041 napi->timer.function = napi_watchdog;
5042 napi->gro_count = 0;
5043 napi->gro_list = NULL;
5044 napi->skb = NULL;
5045 napi->poll = poll;
5046 if (weight > NAPI_POLL_WEIGHT)
5047 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5048 weight, dev->name);
5049 napi->weight = weight;
5050 list_add(&napi->dev_list, &dev->napi_list);
5051 napi->dev = dev;
5052 #ifdef CONFIG_NETPOLL
5053 spin_lock_init(&napi->poll_lock);
5054 napi->poll_owner = -1;
5055 #endif
5056 set_bit(NAPI_STATE_SCHED, &napi->state);
5057 napi_hash_add(napi);
5058 }
5059 EXPORT_SYMBOL(netif_napi_add);
5060
5061 void napi_disable(struct napi_struct *n)
5062 {
5063 might_sleep();
5064 set_bit(NAPI_STATE_DISABLE, &n->state);
5065
5066 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5067 msleep(1);
5068 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5069 msleep(1);
5070
5071 hrtimer_cancel(&n->timer);
5072
5073 clear_bit(NAPI_STATE_DISABLE, &n->state);
5074 }
5075 EXPORT_SYMBOL(napi_disable);
5076
5077 /* Must be called in process context */
5078 void netif_napi_del(struct napi_struct *napi)
5079 {
5080 might_sleep();
5081 if (napi_hash_del(napi))
5082 synchronize_net();
5083 list_del_init(&napi->dev_list);
5084 napi_free_frags(napi);
5085
5086 kfree_skb_list(napi->gro_list);
5087 napi->gro_list = NULL;
5088 napi->gro_count = 0;
5089 }
5090 EXPORT_SYMBOL(netif_napi_del);
5091
5092 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5093 {
5094 void *have;
5095 int work, weight;
5096
5097 list_del_init(&n->poll_list);
5098
5099 have = netpoll_poll_lock(n);
5100
5101 weight = n->weight;
5102
5103 /* This NAPI_STATE_SCHED test is for avoiding a race
5104 * with netpoll's poll_napi(). Only the entity which
5105 * obtains the lock and sees NAPI_STATE_SCHED set will
5106 * actually make the ->poll() call. Therefore we avoid
5107 * accidentally calling ->poll() when NAPI is not scheduled.
5108 */
5109 work = 0;
5110 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5111 work = n->poll(n, weight);
5112 trace_napi_poll(n);
5113 }
5114
5115 WARN_ON_ONCE(work > weight);
5116
5117 if (likely(work < weight))
5118 goto out_unlock;
5119
5120 /* Drivers must not modify the NAPI state if they
5121 * consume the entire weight. In such cases this code
5122 * still "owns" the NAPI instance and therefore can
5123 * move the instance around on the list at-will.
5124 */
5125 if (unlikely(napi_disable_pending(n))) {
5126 napi_complete(n);
5127 goto out_unlock;
5128 }
5129
5130 if (n->gro_list) {
5131 /* flush too old packets
5132 * If HZ < 1000, flush all packets.
5133 */
5134 napi_gro_flush(n, HZ >= 1000);
5135 }
5136
5137 /* Some drivers may have called napi_schedule
5138 * prior to exhausting their budget.
5139 */
5140 if (unlikely(!list_empty(&n->poll_list))) {
5141 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5142 n->dev ? n->dev->name : "backlog");
5143 goto out_unlock;
5144 }
5145
5146 list_add_tail(&n->poll_list, repoll);
5147
5148 out_unlock:
5149 netpoll_poll_unlock(have);
5150
5151 return work;
5152 }
5153
5154 static void net_rx_action(struct softirq_action *h)
5155 {
5156 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5157 unsigned long time_limit = jiffies + 2;
5158 int budget = netdev_budget;
5159 LIST_HEAD(list);
5160 LIST_HEAD(repoll);
5161
5162 local_irq_disable();
5163 list_splice_init(&sd->poll_list, &list);
5164 local_irq_enable();
5165
5166 for (;;) {
5167 struct napi_struct *n;
5168
5169 if (list_empty(&list)) {
5170 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5171 return;
5172 break;
5173 }
5174
5175 n = list_first_entry(&list, struct napi_struct, poll_list);
5176 budget -= napi_poll(n, &repoll);
5177
5178 /* If softirq window is exhausted then punt.
5179 * Allow this to run for 2 jiffies since which will allow
5180 * an average latency of 1.5/HZ.
5181 */
5182 if (unlikely(budget <= 0 ||
5183 time_after_eq(jiffies, time_limit))) {
5184 sd->time_squeeze++;
5185 break;
5186 }
5187 }
5188
5189 __kfree_skb_flush();
5190 local_irq_disable();
5191
5192 list_splice_tail_init(&sd->poll_list, &list);
5193 list_splice_tail(&repoll, &list);
5194 list_splice(&list, &sd->poll_list);
5195 if (!list_empty(&sd->poll_list))
5196 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5197
5198 net_rps_action_and_irq_enable(sd);
5199 }
5200
5201 struct netdev_adjacent {
5202 struct net_device *dev;
5203
5204 /* upper master flag, there can only be one master device per list */
5205 bool master;
5206
5207 /* counter for the number of times this device was added to us */
5208 u16 ref_nr;
5209
5210 /* private field for the users */
5211 void *private;
5212
5213 struct list_head list;
5214 struct rcu_head rcu;
5215 };
5216
5217 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5218 struct list_head *adj_list)
5219 {
5220 struct netdev_adjacent *adj;
5221
5222 list_for_each_entry(adj, adj_list, list) {
5223 if (adj->dev == adj_dev)
5224 return adj;
5225 }
5226 return NULL;
5227 }
5228
5229 /**
5230 * netdev_has_upper_dev - Check if device is linked to an upper device
5231 * @dev: device
5232 * @upper_dev: upper device to check
5233 *
5234 * Find out if a device is linked to specified upper device and return true
5235 * in case it is. Note that this checks only immediate upper device,
5236 * not through a complete stack of devices. The caller must hold the RTNL lock.
5237 */
5238 bool netdev_has_upper_dev(struct net_device *dev,
5239 struct net_device *upper_dev)
5240 {
5241 ASSERT_RTNL();
5242
5243 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5244 }
5245 EXPORT_SYMBOL(netdev_has_upper_dev);
5246
5247 /**
5248 * netdev_has_any_upper_dev - Check if device is linked to some device
5249 * @dev: device
5250 *
5251 * Find out if a device is linked to an upper device and return true in case
5252 * it is. The caller must hold the RTNL lock.
5253 */
5254 static bool netdev_has_any_upper_dev(struct net_device *dev)
5255 {
5256 ASSERT_RTNL();
5257
5258 return !list_empty(&dev->all_adj_list.upper);
5259 }
5260
5261 /**
5262 * netdev_master_upper_dev_get - Get master upper device
5263 * @dev: device
5264 *
5265 * Find a master upper device and return pointer to it or NULL in case
5266 * it's not there. The caller must hold the RTNL lock.
5267 */
5268 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5269 {
5270 struct netdev_adjacent *upper;
5271
5272 ASSERT_RTNL();
5273
5274 if (list_empty(&dev->adj_list.upper))
5275 return NULL;
5276
5277 upper = list_first_entry(&dev->adj_list.upper,
5278 struct netdev_adjacent, list);
5279 if (likely(upper->master))
5280 return upper->dev;
5281 return NULL;
5282 }
5283 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5284
5285 void *netdev_adjacent_get_private(struct list_head *adj_list)
5286 {
5287 struct netdev_adjacent *adj;
5288
5289 adj = list_entry(adj_list, struct netdev_adjacent, list);
5290
5291 return adj->private;
5292 }
5293 EXPORT_SYMBOL(netdev_adjacent_get_private);
5294
5295 /**
5296 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5297 * @dev: device
5298 * @iter: list_head ** of the current position
5299 *
5300 * Gets the next device from the dev's upper list, starting from iter
5301 * position. The caller must hold RCU read lock.
5302 */
5303 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5304 struct list_head **iter)
5305 {
5306 struct netdev_adjacent *upper;
5307
5308 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5309
5310 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5311
5312 if (&upper->list == &dev->adj_list.upper)
5313 return NULL;
5314
5315 *iter = &upper->list;
5316
5317 return upper->dev;
5318 }
5319 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5320
5321 /**
5322 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5323 * @dev: device
5324 * @iter: list_head ** of the current position
5325 *
5326 * Gets the next device from the dev's upper list, starting from iter
5327 * position. The caller must hold RCU read lock.
5328 */
5329 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5330 struct list_head **iter)
5331 {
5332 struct netdev_adjacent *upper;
5333
5334 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5335
5336 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5337
5338 if (&upper->list == &dev->all_adj_list.upper)
5339 return NULL;
5340
5341 *iter = &upper->list;
5342
5343 return upper->dev;
5344 }
5345 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5346
5347 /**
5348 * netdev_lower_get_next_private - Get the next ->private from the
5349 * lower neighbour list
5350 * @dev: device
5351 * @iter: list_head ** of the current position
5352 *
5353 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5354 * list, starting from iter position. The caller must hold either hold the
5355 * RTNL lock or its own locking that guarantees that the neighbour lower
5356 * list will remain unchanged.
5357 */
5358 void *netdev_lower_get_next_private(struct net_device *dev,
5359 struct list_head **iter)
5360 {
5361 struct netdev_adjacent *lower;
5362
5363 lower = list_entry(*iter, struct netdev_adjacent, list);
5364
5365 if (&lower->list == &dev->adj_list.lower)
5366 return NULL;
5367
5368 *iter = lower->list.next;
5369
5370 return lower->private;
5371 }
5372 EXPORT_SYMBOL(netdev_lower_get_next_private);
5373
5374 /**
5375 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5376 * lower neighbour list, RCU
5377 * variant
5378 * @dev: device
5379 * @iter: list_head ** of the current position
5380 *
5381 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5382 * list, starting from iter position. The caller must hold RCU read lock.
5383 */
5384 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5385 struct list_head **iter)
5386 {
5387 struct netdev_adjacent *lower;
5388
5389 WARN_ON_ONCE(!rcu_read_lock_held());
5390
5391 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5392
5393 if (&lower->list == &dev->adj_list.lower)
5394 return NULL;
5395
5396 *iter = &lower->list;
5397
5398 return lower->private;
5399 }
5400 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5401
5402 /**
5403 * netdev_lower_get_next - Get the next device from the lower neighbour
5404 * list
5405 * @dev: device
5406 * @iter: list_head ** of the current position
5407 *
5408 * Gets the next netdev_adjacent from the dev's lower neighbour
5409 * list, starting from iter position. The caller must hold RTNL lock or
5410 * its own locking that guarantees that the neighbour lower
5411 * list will remain unchanged.
5412 */
5413 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5414 {
5415 struct netdev_adjacent *lower;
5416
5417 lower = list_entry(*iter, struct netdev_adjacent, list);
5418
5419 if (&lower->list == &dev->adj_list.lower)
5420 return NULL;
5421
5422 *iter = lower->list.next;
5423
5424 return lower->dev;
5425 }
5426 EXPORT_SYMBOL(netdev_lower_get_next);
5427
5428 /**
5429 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5430 * lower neighbour list, RCU
5431 * variant
5432 * @dev: device
5433 *
5434 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5435 * list. The caller must hold RCU read lock.
5436 */
5437 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5438 {
5439 struct netdev_adjacent *lower;
5440
5441 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5442 struct netdev_adjacent, list);
5443 if (lower)
5444 return lower->private;
5445 return NULL;
5446 }
5447 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5448
5449 /**
5450 * netdev_master_upper_dev_get_rcu - Get master upper device
5451 * @dev: device
5452 *
5453 * Find a master upper device and return pointer to it or NULL in case
5454 * it's not there. The caller must hold the RCU read lock.
5455 */
5456 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5457 {
5458 struct netdev_adjacent *upper;
5459
5460 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5461 struct netdev_adjacent, list);
5462 if (upper && likely(upper->master))
5463 return upper->dev;
5464 return NULL;
5465 }
5466 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5467
5468 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5469 struct net_device *adj_dev,
5470 struct list_head *dev_list)
5471 {
5472 char linkname[IFNAMSIZ+7];
5473 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5474 "upper_%s" : "lower_%s", adj_dev->name);
5475 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5476 linkname);
5477 }
5478 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5479 char *name,
5480 struct list_head *dev_list)
5481 {
5482 char linkname[IFNAMSIZ+7];
5483 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5484 "upper_%s" : "lower_%s", name);
5485 sysfs_remove_link(&(dev->dev.kobj), linkname);
5486 }
5487
5488 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5489 struct net_device *adj_dev,
5490 struct list_head *dev_list)
5491 {
5492 return (dev_list == &dev->adj_list.upper ||
5493 dev_list == &dev->adj_list.lower) &&
5494 net_eq(dev_net(dev), dev_net(adj_dev));
5495 }
5496
5497 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5498 struct net_device *adj_dev,
5499 struct list_head *dev_list,
5500 void *private, bool master)
5501 {
5502 struct netdev_adjacent *adj;
5503 int ret;
5504
5505 adj = __netdev_find_adj(adj_dev, dev_list);
5506
5507 if (adj) {
5508 adj->ref_nr++;
5509 return 0;
5510 }
5511
5512 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5513 if (!adj)
5514 return -ENOMEM;
5515
5516 adj->dev = adj_dev;
5517 adj->master = master;
5518 adj->ref_nr = 1;
5519 adj->private = private;
5520 dev_hold(adj_dev);
5521
5522 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5523 adj_dev->name, dev->name, adj_dev->name);
5524
5525 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5526 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5527 if (ret)
5528 goto free_adj;
5529 }
5530
5531 /* Ensure that master link is always the first item in list. */
5532 if (master) {
5533 ret = sysfs_create_link(&(dev->dev.kobj),
5534 &(adj_dev->dev.kobj), "master");
5535 if (ret)
5536 goto remove_symlinks;
5537
5538 list_add_rcu(&adj->list, dev_list);
5539 } else {
5540 list_add_tail_rcu(&adj->list, dev_list);
5541 }
5542
5543 return 0;
5544
5545 remove_symlinks:
5546 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5547 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5548 free_adj:
5549 kfree(adj);
5550 dev_put(adj_dev);
5551
5552 return ret;
5553 }
5554
5555 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5556 struct net_device *adj_dev,
5557 struct list_head *dev_list)
5558 {
5559 struct netdev_adjacent *adj;
5560
5561 adj = __netdev_find_adj(adj_dev, dev_list);
5562
5563 if (!adj) {
5564 pr_err("tried to remove device %s from %s\n",
5565 dev->name, adj_dev->name);
5566 BUG();
5567 }
5568
5569 if (adj->ref_nr > 1) {
5570 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5571 adj->ref_nr-1);
5572 adj->ref_nr--;
5573 return;
5574 }
5575
5576 if (adj->master)
5577 sysfs_remove_link(&(dev->dev.kobj), "master");
5578
5579 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5580 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5581
5582 list_del_rcu(&adj->list);
5583 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5584 adj_dev->name, dev->name, adj_dev->name);
5585 dev_put(adj_dev);
5586 kfree_rcu(adj, rcu);
5587 }
5588
5589 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5590 struct net_device *upper_dev,
5591 struct list_head *up_list,
5592 struct list_head *down_list,
5593 void *private, bool master)
5594 {
5595 int ret;
5596
5597 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5598 master);
5599 if (ret)
5600 return ret;
5601
5602 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5603 false);
5604 if (ret) {
5605 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5606 return ret;
5607 }
5608
5609 return 0;
5610 }
5611
5612 static int __netdev_adjacent_dev_link(struct net_device *dev,
5613 struct net_device *upper_dev)
5614 {
5615 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5616 &dev->all_adj_list.upper,
5617 &upper_dev->all_adj_list.lower,
5618 NULL, false);
5619 }
5620
5621 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5622 struct net_device *upper_dev,
5623 struct list_head *up_list,
5624 struct list_head *down_list)
5625 {
5626 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5627 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5628 }
5629
5630 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5631 struct net_device *upper_dev)
5632 {
5633 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5634 &dev->all_adj_list.upper,
5635 &upper_dev->all_adj_list.lower);
5636 }
5637
5638 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5639 struct net_device *upper_dev,
5640 void *private, bool master)
5641 {
5642 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5643
5644 if (ret)
5645 return ret;
5646
5647 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5648 &dev->adj_list.upper,
5649 &upper_dev->adj_list.lower,
5650 private, master);
5651 if (ret) {
5652 __netdev_adjacent_dev_unlink(dev, upper_dev);
5653 return ret;
5654 }
5655
5656 return 0;
5657 }
5658
5659 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5660 struct net_device *upper_dev)
5661 {
5662 __netdev_adjacent_dev_unlink(dev, upper_dev);
5663 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5664 &dev->adj_list.upper,
5665 &upper_dev->adj_list.lower);
5666 }
5667
5668 static int __netdev_upper_dev_link(struct net_device *dev,
5669 struct net_device *upper_dev, bool master,
5670 void *upper_priv, void *upper_info)
5671 {
5672 struct netdev_notifier_changeupper_info changeupper_info;
5673 struct netdev_adjacent *i, *j, *to_i, *to_j;
5674 int ret = 0;
5675
5676 ASSERT_RTNL();
5677
5678 if (dev == upper_dev)
5679 return -EBUSY;
5680
5681 /* To prevent loops, check if dev is not upper device to upper_dev. */
5682 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5683 return -EBUSY;
5684
5685 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5686 return -EEXIST;
5687
5688 if (master && netdev_master_upper_dev_get(dev))
5689 return -EBUSY;
5690
5691 changeupper_info.upper_dev = upper_dev;
5692 changeupper_info.master = master;
5693 changeupper_info.linking = true;
5694 changeupper_info.upper_info = upper_info;
5695
5696 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5697 &changeupper_info.info);
5698 ret = notifier_to_errno(ret);
5699 if (ret)
5700 return ret;
5701
5702 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5703 master);
5704 if (ret)
5705 return ret;
5706
5707 /* Now that we linked these devs, make all the upper_dev's
5708 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5709 * versa, and don't forget the devices itself. All of these
5710 * links are non-neighbours.
5711 */
5712 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5713 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5714 pr_debug("Interlinking %s with %s, non-neighbour\n",
5715 i->dev->name, j->dev->name);
5716 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5717 if (ret)
5718 goto rollback_mesh;
5719 }
5720 }
5721
5722 /* add dev to every upper_dev's upper device */
5723 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5724 pr_debug("linking %s's upper device %s with %s\n",
5725 upper_dev->name, i->dev->name, dev->name);
5726 ret = __netdev_adjacent_dev_link(dev, i->dev);
5727 if (ret)
5728 goto rollback_upper_mesh;
5729 }
5730
5731 /* add upper_dev to every dev's lower device */
5732 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5733 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5734 i->dev->name, upper_dev->name);
5735 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5736 if (ret)
5737 goto rollback_lower_mesh;
5738 }
5739
5740 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5741 &changeupper_info.info);
5742 ret = notifier_to_errno(ret);
5743 if (ret)
5744 goto rollback_lower_mesh;
5745
5746 return 0;
5747
5748 rollback_lower_mesh:
5749 to_i = i;
5750 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5751 if (i == to_i)
5752 break;
5753 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5754 }
5755
5756 i = NULL;
5757
5758 rollback_upper_mesh:
5759 to_i = i;
5760 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5761 if (i == to_i)
5762 break;
5763 __netdev_adjacent_dev_unlink(dev, i->dev);
5764 }
5765
5766 i = j = NULL;
5767
5768 rollback_mesh:
5769 to_i = i;
5770 to_j = j;
5771 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5772 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5773 if (i == to_i && j == to_j)
5774 break;
5775 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5776 }
5777 if (i == to_i)
5778 break;
5779 }
5780
5781 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5782
5783 return ret;
5784 }
5785
5786 /**
5787 * netdev_upper_dev_link - Add a link to the upper device
5788 * @dev: device
5789 * @upper_dev: new upper device
5790 *
5791 * Adds a link to device which is upper to this one. The caller must hold
5792 * the RTNL lock. On a failure a negative errno code is returned.
5793 * On success the reference counts are adjusted and the function
5794 * returns zero.
5795 */
5796 int netdev_upper_dev_link(struct net_device *dev,
5797 struct net_device *upper_dev)
5798 {
5799 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5800 }
5801 EXPORT_SYMBOL(netdev_upper_dev_link);
5802
5803 /**
5804 * netdev_master_upper_dev_link - Add a master link to the upper device
5805 * @dev: device
5806 * @upper_dev: new upper device
5807 * @upper_priv: upper device private
5808 * @upper_info: upper info to be passed down via notifier
5809 *
5810 * Adds a link to device which is upper to this one. In this case, only
5811 * one master upper device can be linked, although other non-master devices
5812 * might be linked as well. The caller must hold the RTNL lock.
5813 * On a failure a negative errno code is returned. On success the reference
5814 * counts are adjusted and the function returns zero.
5815 */
5816 int netdev_master_upper_dev_link(struct net_device *dev,
5817 struct net_device *upper_dev,
5818 void *upper_priv, void *upper_info)
5819 {
5820 return __netdev_upper_dev_link(dev, upper_dev, true,
5821 upper_priv, upper_info);
5822 }
5823 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5824
5825 /**
5826 * netdev_upper_dev_unlink - Removes a link to upper device
5827 * @dev: device
5828 * @upper_dev: new upper device
5829 *
5830 * Removes a link to device which is upper to this one. The caller must hold
5831 * the RTNL lock.
5832 */
5833 void netdev_upper_dev_unlink(struct net_device *dev,
5834 struct net_device *upper_dev)
5835 {
5836 struct netdev_notifier_changeupper_info changeupper_info;
5837 struct netdev_adjacent *i, *j;
5838 ASSERT_RTNL();
5839
5840 changeupper_info.upper_dev = upper_dev;
5841 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5842 changeupper_info.linking = false;
5843
5844 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5845 &changeupper_info.info);
5846
5847 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5848
5849 /* Here is the tricky part. We must remove all dev's lower
5850 * devices from all upper_dev's upper devices and vice
5851 * versa, to maintain the graph relationship.
5852 */
5853 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5854 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5855 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5856
5857 /* remove also the devices itself from lower/upper device
5858 * list
5859 */
5860 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5861 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5862
5863 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5864 __netdev_adjacent_dev_unlink(dev, i->dev);
5865
5866 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5867 &changeupper_info.info);
5868 }
5869 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5870
5871 /**
5872 * netdev_bonding_info_change - Dispatch event about slave change
5873 * @dev: device
5874 * @bonding_info: info to dispatch
5875 *
5876 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5877 * The caller must hold the RTNL lock.
5878 */
5879 void netdev_bonding_info_change(struct net_device *dev,
5880 struct netdev_bonding_info *bonding_info)
5881 {
5882 struct netdev_notifier_bonding_info info;
5883
5884 memcpy(&info.bonding_info, bonding_info,
5885 sizeof(struct netdev_bonding_info));
5886 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5887 &info.info);
5888 }
5889 EXPORT_SYMBOL(netdev_bonding_info_change);
5890
5891 static void netdev_adjacent_add_links(struct net_device *dev)
5892 {
5893 struct netdev_adjacent *iter;
5894
5895 struct net *net = dev_net(dev);
5896
5897 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5898 if (!net_eq(net,dev_net(iter->dev)))
5899 continue;
5900 netdev_adjacent_sysfs_add(iter->dev, dev,
5901 &iter->dev->adj_list.lower);
5902 netdev_adjacent_sysfs_add(dev, iter->dev,
5903 &dev->adj_list.upper);
5904 }
5905
5906 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5907 if (!net_eq(net,dev_net(iter->dev)))
5908 continue;
5909 netdev_adjacent_sysfs_add(iter->dev, dev,
5910 &iter->dev->adj_list.upper);
5911 netdev_adjacent_sysfs_add(dev, iter->dev,
5912 &dev->adj_list.lower);
5913 }
5914 }
5915
5916 static void netdev_adjacent_del_links(struct net_device *dev)
5917 {
5918 struct netdev_adjacent *iter;
5919
5920 struct net *net = dev_net(dev);
5921
5922 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5923 if (!net_eq(net,dev_net(iter->dev)))
5924 continue;
5925 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5926 &iter->dev->adj_list.lower);
5927 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5928 &dev->adj_list.upper);
5929 }
5930
5931 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5932 if (!net_eq(net,dev_net(iter->dev)))
5933 continue;
5934 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5935 &iter->dev->adj_list.upper);
5936 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5937 &dev->adj_list.lower);
5938 }
5939 }
5940
5941 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5942 {
5943 struct netdev_adjacent *iter;
5944
5945 struct net *net = dev_net(dev);
5946
5947 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5948 if (!net_eq(net,dev_net(iter->dev)))
5949 continue;
5950 netdev_adjacent_sysfs_del(iter->dev, oldname,
5951 &iter->dev->adj_list.lower);
5952 netdev_adjacent_sysfs_add(iter->dev, dev,
5953 &iter->dev->adj_list.lower);
5954 }
5955
5956 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5957 if (!net_eq(net,dev_net(iter->dev)))
5958 continue;
5959 netdev_adjacent_sysfs_del(iter->dev, oldname,
5960 &iter->dev->adj_list.upper);
5961 netdev_adjacent_sysfs_add(iter->dev, dev,
5962 &iter->dev->adj_list.upper);
5963 }
5964 }
5965
5966 void *netdev_lower_dev_get_private(struct net_device *dev,
5967 struct net_device *lower_dev)
5968 {
5969 struct netdev_adjacent *lower;
5970
5971 if (!lower_dev)
5972 return NULL;
5973 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5974 if (!lower)
5975 return NULL;
5976
5977 return lower->private;
5978 }
5979 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5980
5981
5982 int dev_get_nest_level(struct net_device *dev,
5983 bool (*type_check)(const struct net_device *dev))
5984 {
5985 struct net_device *lower = NULL;
5986 struct list_head *iter;
5987 int max_nest = -1;
5988 int nest;
5989
5990 ASSERT_RTNL();
5991
5992 netdev_for_each_lower_dev(dev, lower, iter) {
5993 nest = dev_get_nest_level(lower, type_check);
5994 if (max_nest < nest)
5995 max_nest = nest;
5996 }
5997
5998 if (type_check(dev))
5999 max_nest++;
6000
6001 return max_nest;
6002 }
6003 EXPORT_SYMBOL(dev_get_nest_level);
6004
6005 /**
6006 * netdev_lower_change - Dispatch event about lower device state change
6007 * @lower_dev: device
6008 * @lower_state_info: state to dispatch
6009 *
6010 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6011 * The caller must hold the RTNL lock.
6012 */
6013 void netdev_lower_state_changed(struct net_device *lower_dev,
6014 void *lower_state_info)
6015 {
6016 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6017
6018 ASSERT_RTNL();
6019 changelowerstate_info.lower_state_info = lower_state_info;
6020 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6021 &changelowerstate_info.info);
6022 }
6023 EXPORT_SYMBOL(netdev_lower_state_changed);
6024
6025 static void dev_change_rx_flags(struct net_device *dev, int flags)
6026 {
6027 const struct net_device_ops *ops = dev->netdev_ops;
6028
6029 if (ops->ndo_change_rx_flags)
6030 ops->ndo_change_rx_flags(dev, flags);
6031 }
6032
6033 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6034 {
6035 unsigned int old_flags = dev->flags;
6036 kuid_t uid;
6037 kgid_t gid;
6038
6039 ASSERT_RTNL();
6040
6041 dev->flags |= IFF_PROMISC;
6042 dev->promiscuity += inc;
6043 if (dev->promiscuity == 0) {
6044 /*
6045 * Avoid overflow.
6046 * If inc causes overflow, untouch promisc and return error.
6047 */
6048 if (inc < 0)
6049 dev->flags &= ~IFF_PROMISC;
6050 else {
6051 dev->promiscuity -= inc;
6052 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6053 dev->name);
6054 return -EOVERFLOW;
6055 }
6056 }
6057 if (dev->flags != old_flags) {
6058 pr_info("device %s %s promiscuous mode\n",
6059 dev->name,
6060 dev->flags & IFF_PROMISC ? "entered" : "left");
6061 if (audit_enabled) {
6062 current_uid_gid(&uid, &gid);
6063 audit_log(current->audit_context, GFP_ATOMIC,
6064 AUDIT_ANOM_PROMISCUOUS,
6065 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6066 dev->name, (dev->flags & IFF_PROMISC),
6067 (old_flags & IFF_PROMISC),
6068 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6069 from_kuid(&init_user_ns, uid),
6070 from_kgid(&init_user_ns, gid),
6071 audit_get_sessionid(current));
6072 }
6073
6074 dev_change_rx_flags(dev, IFF_PROMISC);
6075 }
6076 if (notify)
6077 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6078 return 0;
6079 }
6080
6081 /**
6082 * dev_set_promiscuity - update promiscuity count on a device
6083 * @dev: device
6084 * @inc: modifier
6085 *
6086 * Add or remove promiscuity from a device. While the count in the device
6087 * remains above zero the interface remains promiscuous. Once it hits zero
6088 * the device reverts back to normal filtering operation. A negative inc
6089 * value is used to drop promiscuity on the device.
6090 * Return 0 if successful or a negative errno code on error.
6091 */
6092 int dev_set_promiscuity(struct net_device *dev, int inc)
6093 {
6094 unsigned int old_flags = dev->flags;
6095 int err;
6096
6097 err = __dev_set_promiscuity(dev, inc, true);
6098 if (err < 0)
6099 return err;
6100 if (dev->flags != old_flags)
6101 dev_set_rx_mode(dev);
6102 return err;
6103 }
6104 EXPORT_SYMBOL(dev_set_promiscuity);
6105
6106 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6107 {
6108 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6109
6110 ASSERT_RTNL();
6111
6112 dev->flags |= IFF_ALLMULTI;
6113 dev->allmulti += inc;
6114 if (dev->allmulti == 0) {
6115 /*
6116 * Avoid overflow.
6117 * If inc causes overflow, untouch allmulti and return error.
6118 */
6119 if (inc < 0)
6120 dev->flags &= ~IFF_ALLMULTI;
6121 else {
6122 dev->allmulti -= inc;
6123 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6124 dev->name);
6125 return -EOVERFLOW;
6126 }
6127 }
6128 if (dev->flags ^ old_flags) {
6129 dev_change_rx_flags(dev, IFF_ALLMULTI);
6130 dev_set_rx_mode(dev);
6131 if (notify)
6132 __dev_notify_flags(dev, old_flags,
6133 dev->gflags ^ old_gflags);
6134 }
6135 return 0;
6136 }
6137
6138 /**
6139 * dev_set_allmulti - update allmulti count on a device
6140 * @dev: device
6141 * @inc: modifier
6142 *
6143 * Add or remove reception of all multicast frames to a device. While the
6144 * count in the device remains above zero the interface remains listening
6145 * to all interfaces. Once it hits zero the device reverts back to normal
6146 * filtering operation. A negative @inc value is used to drop the counter
6147 * when releasing a resource needing all multicasts.
6148 * Return 0 if successful or a negative errno code on error.
6149 */
6150
6151 int dev_set_allmulti(struct net_device *dev, int inc)
6152 {
6153 return __dev_set_allmulti(dev, inc, true);
6154 }
6155 EXPORT_SYMBOL(dev_set_allmulti);
6156
6157 /*
6158 * Upload unicast and multicast address lists to device and
6159 * configure RX filtering. When the device doesn't support unicast
6160 * filtering it is put in promiscuous mode while unicast addresses
6161 * are present.
6162 */
6163 void __dev_set_rx_mode(struct net_device *dev)
6164 {
6165 const struct net_device_ops *ops = dev->netdev_ops;
6166
6167 /* dev_open will call this function so the list will stay sane. */
6168 if (!(dev->flags&IFF_UP))
6169 return;
6170
6171 if (!netif_device_present(dev))
6172 return;
6173
6174 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6175 /* Unicast addresses changes may only happen under the rtnl,
6176 * therefore calling __dev_set_promiscuity here is safe.
6177 */
6178 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6179 __dev_set_promiscuity(dev, 1, false);
6180 dev->uc_promisc = true;
6181 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6182 __dev_set_promiscuity(dev, -1, false);
6183 dev->uc_promisc = false;
6184 }
6185 }
6186
6187 if (ops->ndo_set_rx_mode)
6188 ops->ndo_set_rx_mode(dev);
6189 }
6190
6191 void dev_set_rx_mode(struct net_device *dev)
6192 {
6193 netif_addr_lock_bh(dev);
6194 __dev_set_rx_mode(dev);
6195 netif_addr_unlock_bh(dev);
6196 }
6197
6198 /**
6199 * dev_get_flags - get flags reported to userspace
6200 * @dev: device
6201 *
6202 * Get the combination of flag bits exported through APIs to userspace.
6203 */
6204 unsigned int dev_get_flags(const struct net_device *dev)
6205 {
6206 unsigned int flags;
6207
6208 flags = (dev->flags & ~(IFF_PROMISC |
6209 IFF_ALLMULTI |
6210 IFF_RUNNING |
6211 IFF_LOWER_UP |
6212 IFF_DORMANT)) |
6213 (dev->gflags & (IFF_PROMISC |
6214 IFF_ALLMULTI));
6215
6216 if (netif_running(dev)) {
6217 if (netif_oper_up(dev))
6218 flags |= IFF_RUNNING;
6219 if (netif_carrier_ok(dev))
6220 flags |= IFF_LOWER_UP;
6221 if (netif_dormant(dev))
6222 flags |= IFF_DORMANT;
6223 }
6224
6225 return flags;
6226 }
6227 EXPORT_SYMBOL(dev_get_flags);
6228
6229 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6230 {
6231 unsigned int old_flags = dev->flags;
6232 int ret;
6233
6234 ASSERT_RTNL();
6235
6236 /*
6237 * Set the flags on our device.
6238 */
6239
6240 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6241 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6242 IFF_AUTOMEDIA)) |
6243 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6244 IFF_ALLMULTI));
6245
6246 /*
6247 * Load in the correct multicast list now the flags have changed.
6248 */
6249
6250 if ((old_flags ^ flags) & IFF_MULTICAST)
6251 dev_change_rx_flags(dev, IFF_MULTICAST);
6252
6253 dev_set_rx_mode(dev);
6254
6255 /*
6256 * Have we downed the interface. We handle IFF_UP ourselves
6257 * according to user attempts to set it, rather than blindly
6258 * setting it.
6259 */
6260
6261 ret = 0;
6262 if ((old_flags ^ flags) & IFF_UP)
6263 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6264
6265 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6266 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6267 unsigned int old_flags = dev->flags;
6268
6269 dev->gflags ^= IFF_PROMISC;
6270
6271 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6272 if (dev->flags != old_flags)
6273 dev_set_rx_mode(dev);
6274 }
6275
6276 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6277 is important. Some (broken) drivers set IFF_PROMISC, when
6278 IFF_ALLMULTI is requested not asking us and not reporting.
6279 */
6280 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6281 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6282
6283 dev->gflags ^= IFF_ALLMULTI;
6284 __dev_set_allmulti(dev, inc, false);
6285 }
6286
6287 return ret;
6288 }
6289
6290 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6291 unsigned int gchanges)
6292 {
6293 unsigned int changes = dev->flags ^ old_flags;
6294
6295 if (gchanges)
6296 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6297
6298 if (changes & IFF_UP) {
6299 if (dev->flags & IFF_UP)
6300 call_netdevice_notifiers(NETDEV_UP, dev);
6301 else
6302 call_netdevice_notifiers(NETDEV_DOWN, dev);
6303 }
6304
6305 if (dev->flags & IFF_UP &&
6306 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6307 struct netdev_notifier_change_info change_info;
6308
6309 change_info.flags_changed = changes;
6310 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6311 &change_info.info);
6312 }
6313 }
6314
6315 /**
6316 * dev_change_flags - change device settings
6317 * @dev: device
6318 * @flags: device state flags
6319 *
6320 * Change settings on device based state flags. The flags are
6321 * in the userspace exported format.
6322 */
6323 int dev_change_flags(struct net_device *dev, unsigned int flags)
6324 {
6325 int ret;
6326 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6327
6328 ret = __dev_change_flags(dev, flags);
6329 if (ret < 0)
6330 return ret;
6331
6332 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6333 __dev_notify_flags(dev, old_flags, changes);
6334 return ret;
6335 }
6336 EXPORT_SYMBOL(dev_change_flags);
6337
6338 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6339 {
6340 const struct net_device_ops *ops = dev->netdev_ops;
6341
6342 if (ops->ndo_change_mtu)
6343 return ops->ndo_change_mtu(dev, new_mtu);
6344
6345 dev->mtu = new_mtu;
6346 return 0;
6347 }
6348
6349 /**
6350 * dev_set_mtu - Change maximum transfer unit
6351 * @dev: device
6352 * @new_mtu: new transfer unit
6353 *
6354 * Change the maximum transfer size of the network device.
6355 */
6356 int dev_set_mtu(struct net_device *dev, int new_mtu)
6357 {
6358 int err, orig_mtu;
6359
6360 if (new_mtu == dev->mtu)
6361 return 0;
6362
6363 /* MTU must be positive. */
6364 if (new_mtu < 0)
6365 return -EINVAL;
6366
6367 if (!netif_device_present(dev))
6368 return -ENODEV;
6369
6370 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6371 err = notifier_to_errno(err);
6372 if (err)
6373 return err;
6374
6375 orig_mtu = dev->mtu;
6376 err = __dev_set_mtu(dev, new_mtu);
6377
6378 if (!err) {
6379 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6380 err = notifier_to_errno(err);
6381 if (err) {
6382 /* setting mtu back and notifying everyone again,
6383 * so that they have a chance to revert changes.
6384 */
6385 __dev_set_mtu(dev, orig_mtu);
6386 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6387 }
6388 }
6389 return err;
6390 }
6391 EXPORT_SYMBOL(dev_set_mtu);
6392
6393 /**
6394 * dev_set_group - Change group this device belongs to
6395 * @dev: device
6396 * @new_group: group this device should belong to
6397 */
6398 void dev_set_group(struct net_device *dev, int new_group)
6399 {
6400 dev->group = new_group;
6401 }
6402 EXPORT_SYMBOL(dev_set_group);
6403
6404 /**
6405 * dev_set_mac_address - Change Media Access Control Address
6406 * @dev: device
6407 * @sa: new address
6408 *
6409 * Change the hardware (MAC) address of the device
6410 */
6411 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6412 {
6413 const struct net_device_ops *ops = dev->netdev_ops;
6414 int err;
6415
6416 if (!ops->ndo_set_mac_address)
6417 return -EOPNOTSUPP;
6418 if (sa->sa_family != dev->type)
6419 return -EINVAL;
6420 if (!netif_device_present(dev))
6421 return -ENODEV;
6422 err = ops->ndo_set_mac_address(dev, sa);
6423 if (err)
6424 return err;
6425 dev->addr_assign_type = NET_ADDR_SET;
6426 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6427 add_device_randomness(dev->dev_addr, dev->addr_len);
6428 return 0;
6429 }
6430 EXPORT_SYMBOL(dev_set_mac_address);
6431
6432 /**
6433 * dev_change_carrier - Change device carrier
6434 * @dev: device
6435 * @new_carrier: new value
6436 *
6437 * Change device carrier
6438 */
6439 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6440 {
6441 const struct net_device_ops *ops = dev->netdev_ops;
6442
6443 if (!ops->ndo_change_carrier)
6444 return -EOPNOTSUPP;
6445 if (!netif_device_present(dev))
6446 return -ENODEV;
6447 return ops->ndo_change_carrier(dev, new_carrier);
6448 }
6449 EXPORT_SYMBOL(dev_change_carrier);
6450
6451 /**
6452 * dev_get_phys_port_id - Get device physical port ID
6453 * @dev: device
6454 * @ppid: port ID
6455 *
6456 * Get device physical port ID
6457 */
6458 int dev_get_phys_port_id(struct net_device *dev,
6459 struct netdev_phys_item_id *ppid)
6460 {
6461 const struct net_device_ops *ops = dev->netdev_ops;
6462
6463 if (!ops->ndo_get_phys_port_id)
6464 return -EOPNOTSUPP;
6465 return ops->ndo_get_phys_port_id(dev, ppid);
6466 }
6467 EXPORT_SYMBOL(dev_get_phys_port_id);
6468
6469 /**
6470 * dev_get_phys_port_name - Get device physical port name
6471 * @dev: device
6472 * @name: port name
6473 * @len: limit of bytes to copy to name
6474 *
6475 * Get device physical port name
6476 */
6477 int dev_get_phys_port_name(struct net_device *dev,
6478 char *name, size_t len)
6479 {
6480 const struct net_device_ops *ops = dev->netdev_ops;
6481
6482 if (!ops->ndo_get_phys_port_name)
6483 return -EOPNOTSUPP;
6484 return ops->ndo_get_phys_port_name(dev, name, len);
6485 }
6486 EXPORT_SYMBOL(dev_get_phys_port_name);
6487
6488 /**
6489 * dev_change_proto_down - update protocol port state information
6490 * @dev: device
6491 * @proto_down: new value
6492 *
6493 * This info can be used by switch drivers to set the phys state of the
6494 * port.
6495 */
6496 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6497 {
6498 const struct net_device_ops *ops = dev->netdev_ops;
6499
6500 if (!ops->ndo_change_proto_down)
6501 return -EOPNOTSUPP;
6502 if (!netif_device_present(dev))
6503 return -ENODEV;
6504 return ops->ndo_change_proto_down(dev, proto_down);
6505 }
6506 EXPORT_SYMBOL(dev_change_proto_down);
6507
6508 /**
6509 * dev_new_index - allocate an ifindex
6510 * @net: the applicable net namespace
6511 *
6512 * Returns a suitable unique value for a new device interface
6513 * number. The caller must hold the rtnl semaphore or the
6514 * dev_base_lock to be sure it remains unique.
6515 */
6516 static int dev_new_index(struct net *net)
6517 {
6518 int ifindex = net->ifindex;
6519 for (;;) {
6520 if (++ifindex <= 0)
6521 ifindex = 1;
6522 if (!__dev_get_by_index(net, ifindex))
6523 return net->ifindex = ifindex;
6524 }
6525 }
6526
6527 /* Delayed registration/unregisteration */
6528 static LIST_HEAD(net_todo_list);
6529 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6530
6531 static void net_set_todo(struct net_device *dev)
6532 {
6533 list_add_tail(&dev->todo_list, &net_todo_list);
6534 dev_net(dev)->dev_unreg_count++;
6535 }
6536
6537 static void rollback_registered_many(struct list_head *head)
6538 {
6539 struct net_device *dev, *tmp;
6540 LIST_HEAD(close_head);
6541
6542 BUG_ON(dev_boot_phase);
6543 ASSERT_RTNL();
6544
6545 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6546 /* Some devices call without registering
6547 * for initialization unwind. Remove those
6548 * devices and proceed with the remaining.
6549 */
6550 if (dev->reg_state == NETREG_UNINITIALIZED) {
6551 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6552 dev->name, dev);
6553
6554 WARN_ON(1);
6555 list_del(&dev->unreg_list);
6556 continue;
6557 }
6558 dev->dismantle = true;
6559 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6560 }
6561
6562 /* If device is running, close it first. */
6563 list_for_each_entry(dev, head, unreg_list)
6564 list_add_tail(&dev->close_list, &close_head);
6565 dev_close_many(&close_head, true);
6566
6567 list_for_each_entry(dev, head, unreg_list) {
6568 /* And unlink it from device chain. */
6569 unlist_netdevice(dev);
6570
6571 dev->reg_state = NETREG_UNREGISTERING;
6572 on_each_cpu(flush_backlog, dev, 1);
6573 }
6574
6575 synchronize_net();
6576
6577 list_for_each_entry(dev, head, unreg_list) {
6578 struct sk_buff *skb = NULL;
6579
6580 /* Shutdown queueing discipline. */
6581 dev_shutdown(dev);
6582
6583
6584 /* Notify protocols, that we are about to destroy
6585 this device. They should clean all the things.
6586 */
6587 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6588
6589 if (!dev->rtnl_link_ops ||
6590 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6591 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6592 GFP_KERNEL);
6593
6594 /*
6595 * Flush the unicast and multicast chains
6596 */
6597 dev_uc_flush(dev);
6598 dev_mc_flush(dev);
6599
6600 if (dev->netdev_ops->ndo_uninit)
6601 dev->netdev_ops->ndo_uninit(dev);
6602
6603 if (skb)
6604 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6605
6606 /* Notifier chain MUST detach us all upper devices. */
6607 WARN_ON(netdev_has_any_upper_dev(dev));
6608
6609 /* Remove entries from kobject tree */
6610 netdev_unregister_kobject(dev);
6611 #ifdef CONFIG_XPS
6612 /* Remove XPS queueing entries */
6613 netif_reset_xps_queues_gt(dev, 0);
6614 #endif
6615 }
6616
6617 synchronize_net();
6618
6619 list_for_each_entry(dev, head, unreg_list)
6620 dev_put(dev);
6621 }
6622
6623 static void rollback_registered(struct net_device *dev)
6624 {
6625 LIST_HEAD(single);
6626
6627 list_add(&dev->unreg_list, &single);
6628 rollback_registered_many(&single);
6629 list_del(&single);
6630 }
6631
6632 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6633 struct net_device *upper, netdev_features_t features)
6634 {
6635 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6636 netdev_features_t feature;
6637 int feature_bit;
6638
6639 for_each_netdev_feature(&upper_disables, feature_bit) {
6640 feature = __NETIF_F_BIT(feature_bit);
6641 if (!(upper->wanted_features & feature)
6642 && (features & feature)) {
6643 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6644 &feature, upper->name);
6645 features &= ~feature;
6646 }
6647 }
6648
6649 return features;
6650 }
6651
6652 static void netdev_sync_lower_features(struct net_device *upper,
6653 struct net_device *lower, netdev_features_t features)
6654 {
6655 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6656 netdev_features_t feature;
6657 int feature_bit;
6658
6659 for_each_netdev_feature(&upper_disables, feature_bit) {
6660 feature = __NETIF_F_BIT(feature_bit);
6661 if (!(features & feature) && (lower->features & feature)) {
6662 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6663 &feature, lower->name);
6664 lower->wanted_features &= ~feature;
6665 netdev_update_features(lower);
6666
6667 if (unlikely(lower->features & feature))
6668 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6669 &feature, lower->name);
6670 }
6671 }
6672 }
6673
6674 static netdev_features_t netdev_fix_features(struct net_device *dev,
6675 netdev_features_t features)
6676 {
6677 /* Fix illegal checksum combinations */
6678 if ((features & NETIF_F_HW_CSUM) &&
6679 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6680 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6681 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6682 }
6683
6684 /* TSO requires that SG is present as well. */
6685 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6686 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6687 features &= ~NETIF_F_ALL_TSO;
6688 }
6689
6690 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6691 !(features & NETIF_F_IP_CSUM)) {
6692 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6693 features &= ~NETIF_F_TSO;
6694 features &= ~NETIF_F_TSO_ECN;
6695 }
6696
6697 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6698 !(features & NETIF_F_IPV6_CSUM)) {
6699 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6700 features &= ~NETIF_F_TSO6;
6701 }
6702
6703 /* TSO ECN requires that TSO is present as well. */
6704 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6705 features &= ~NETIF_F_TSO_ECN;
6706
6707 /* Software GSO depends on SG. */
6708 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6709 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6710 features &= ~NETIF_F_GSO;
6711 }
6712
6713 /* UFO needs SG and checksumming */
6714 if (features & NETIF_F_UFO) {
6715 /* maybe split UFO into V4 and V6? */
6716 if (!(features & NETIF_F_HW_CSUM) &&
6717 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6718 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6719 netdev_dbg(dev,
6720 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6721 features &= ~NETIF_F_UFO;
6722 }
6723
6724 if (!(features & NETIF_F_SG)) {
6725 netdev_dbg(dev,
6726 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6727 features &= ~NETIF_F_UFO;
6728 }
6729 }
6730
6731 #ifdef CONFIG_NET_RX_BUSY_POLL
6732 if (dev->netdev_ops->ndo_busy_poll)
6733 features |= NETIF_F_BUSY_POLL;
6734 else
6735 #endif
6736 features &= ~NETIF_F_BUSY_POLL;
6737
6738 return features;
6739 }
6740
6741 int __netdev_update_features(struct net_device *dev)
6742 {
6743 struct net_device *upper, *lower;
6744 netdev_features_t features;
6745 struct list_head *iter;
6746 int err = -1;
6747
6748 ASSERT_RTNL();
6749
6750 features = netdev_get_wanted_features(dev);
6751
6752 if (dev->netdev_ops->ndo_fix_features)
6753 features = dev->netdev_ops->ndo_fix_features(dev, features);
6754
6755 /* driver might be less strict about feature dependencies */
6756 features = netdev_fix_features(dev, features);
6757
6758 /* some features can't be enabled if they're off an an upper device */
6759 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6760 features = netdev_sync_upper_features(dev, upper, features);
6761
6762 if (dev->features == features)
6763 goto sync_lower;
6764
6765 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6766 &dev->features, &features);
6767
6768 if (dev->netdev_ops->ndo_set_features)
6769 err = dev->netdev_ops->ndo_set_features(dev, features);
6770 else
6771 err = 0;
6772
6773 if (unlikely(err < 0)) {
6774 netdev_err(dev,
6775 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6776 err, &features, &dev->features);
6777 /* return non-0 since some features might have changed and
6778 * it's better to fire a spurious notification than miss it
6779 */
6780 return -1;
6781 }
6782
6783 sync_lower:
6784 /* some features must be disabled on lower devices when disabled
6785 * on an upper device (think: bonding master or bridge)
6786 */
6787 netdev_for_each_lower_dev(dev, lower, iter)
6788 netdev_sync_lower_features(dev, lower, features);
6789
6790 if (!err)
6791 dev->features = features;
6792
6793 return err < 0 ? 0 : 1;
6794 }
6795
6796 /**
6797 * netdev_update_features - recalculate device features
6798 * @dev: the device to check
6799 *
6800 * Recalculate dev->features set and send notifications if it
6801 * has changed. Should be called after driver or hardware dependent
6802 * conditions might have changed that influence the features.
6803 */
6804 void netdev_update_features(struct net_device *dev)
6805 {
6806 if (__netdev_update_features(dev))
6807 netdev_features_change(dev);
6808 }
6809 EXPORT_SYMBOL(netdev_update_features);
6810
6811 /**
6812 * netdev_change_features - recalculate device features
6813 * @dev: the device to check
6814 *
6815 * Recalculate dev->features set and send notifications even
6816 * if they have not changed. Should be called instead of
6817 * netdev_update_features() if also dev->vlan_features might
6818 * have changed to allow the changes to be propagated to stacked
6819 * VLAN devices.
6820 */
6821 void netdev_change_features(struct net_device *dev)
6822 {
6823 __netdev_update_features(dev);
6824 netdev_features_change(dev);
6825 }
6826 EXPORT_SYMBOL(netdev_change_features);
6827
6828 /**
6829 * netif_stacked_transfer_operstate - transfer operstate
6830 * @rootdev: the root or lower level device to transfer state from
6831 * @dev: the device to transfer operstate to
6832 *
6833 * Transfer operational state from root to device. This is normally
6834 * called when a stacking relationship exists between the root
6835 * device and the device(a leaf device).
6836 */
6837 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6838 struct net_device *dev)
6839 {
6840 if (rootdev->operstate == IF_OPER_DORMANT)
6841 netif_dormant_on(dev);
6842 else
6843 netif_dormant_off(dev);
6844
6845 if (netif_carrier_ok(rootdev)) {
6846 if (!netif_carrier_ok(dev))
6847 netif_carrier_on(dev);
6848 } else {
6849 if (netif_carrier_ok(dev))
6850 netif_carrier_off(dev);
6851 }
6852 }
6853 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6854
6855 #ifdef CONFIG_SYSFS
6856 static int netif_alloc_rx_queues(struct net_device *dev)
6857 {
6858 unsigned int i, count = dev->num_rx_queues;
6859 struct netdev_rx_queue *rx;
6860 size_t sz = count * sizeof(*rx);
6861
6862 BUG_ON(count < 1);
6863
6864 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6865 if (!rx) {
6866 rx = vzalloc(sz);
6867 if (!rx)
6868 return -ENOMEM;
6869 }
6870 dev->_rx = rx;
6871
6872 for (i = 0; i < count; i++)
6873 rx[i].dev = dev;
6874 return 0;
6875 }
6876 #endif
6877
6878 static void netdev_init_one_queue(struct net_device *dev,
6879 struct netdev_queue *queue, void *_unused)
6880 {
6881 /* Initialize queue lock */
6882 spin_lock_init(&queue->_xmit_lock);
6883 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6884 queue->xmit_lock_owner = -1;
6885 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6886 queue->dev = dev;
6887 #ifdef CONFIG_BQL
6888 dql_init(&queue->dql, HZ);
6889 #endif
6890 }
6891
6892 static void netif_free_tx_queues(struct net_device *dev)
6893 {
6894 kvfree(dev->_tx);
6895 }
6896
6897 static int netif_alloc_netdev_queues(struct net_device *dev)
6898 {
6899 unsigned int count = dev->num_tx_queues;
6900 struct netdev_queue *tx;
6901 size_t sz = count * sizeof(*tx);
6902
6903 if (count < 1 || count > 0xffff)
6904 return -EINVAL;
6905
6906 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6907 if (!tx) {
6908 tx = vzalloc(sz);
6909 if (!tx)
6910 return -ENOMEM;
6911 }
6912 dev->_tx = tx;
6913
6914 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6915 spin_lock_init(&dev->tx_global_lock);
6916
6917 return 0;
6918 }
6919
6920 void netif_tx_stop_all_queues(struct net_device *dev)
6921 {
6922 unsigned int i;
6923
6924 for (i = 0; i < dev->num_tx_queues; i++) {
6925 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6926 netif_tx_stop_queue(txq);
6927 }
6928 }
6929 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6930
6931 /**
6932 * register_netdevice - register a network device
6933 * @dev: device to register
6934 *
6935 * Take a completed network device structure and add it to the kernel
6936 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6937 * chain. 0 is returned on success. A negative errno code is returned
6938 * on a failure to set up the device, or if the name is a duplicate.
6939 *
6940 * Callers must hold the rtnl semaphore. You may want
6941 * register_netdev() instead of this.
6942 *
6943 * BUGS:
6944 * The locking appears insufficient to guarantee two parallel registers
6945 * will not get the same name.
6946 */
6947
6948 int register_netdevice(struct net_device *dev)
6949 {
6950 int ret;
6951 struct net *net = dev_net(dev);
6952
6953 BUG_ON(dev_boot_phase);
6954 ASSERT_RTNL();
6955
6956 might_sleep();
6957
6958 /* When net_device's are persistent, this will be fatal. */
6959 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6960 BUG_ON(!net);
6961
6962 spin_lock_init(&dev->addr_list_lock);
6963 netdev_set_addr_lockdep_class(dev);
6964
6965 ret = dev_get_valid_name(net, dev, dev->name);
6966 if (ret < 0)
6967 goto out;
6968
6969 /* Init, if this function is available */
6970 if (dev->netdev_ops->ndo_init) {
6971 ret = dev->netdev_ops->ndo_init(dev);
6972 if (ret) {
6973 if (ret > 0)
6974 ret = -EIO;
6975 goto out;
6976 }
6977 }
6978
6979 if (((dev->hw_features | dev->features) &
6980 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6981 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6982 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6983 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6984 ret = -EINVAL;
6985 goto err_uninit;
6986 }
6987
6988 ret = -EBUSY;
6989 if (!dev->ifindex)
6990 dev->ifindex = dev_new_index(net);
6991 else if (__dev_get_by_index(net, dev->ifindex))
6992 goto err_uninit;
6993
6994 /* Transfer changeable features to wanted_features and enable
6995 * software offloads (GSO and GRO).
6996 */
6997 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6998 dev->features |= NETIF_F_SOFT_FEATURES;
6999 dev->wanted_features = dev->features & dev->hw_features;
7000
7001 if (!(dev->flags & IFF_LOOPBACK))
7002 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7003
7004 if (dev->hw_features & NETIF_F_TSO)
7005 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7006
7007 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7008 */
7009 dev->vlan_features |= NETIF_F_HIGHDMA;
7010
7011 /* Make NETIF_F_SG inheritable to tunnel devices.
7012 */
7013 dev->hw_enc_features |= NETIF_F_SG;
7014
7015 /* Make NETIF_F_SG inheritable to MPLS.
7016 */
7017 dev->mpls_features |= NETIF_F_SG;
7018
7019 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7020 ret = notifier_to_errno(ret);
7021 if (ret)
7022 goto err_uninit;
7023
7024 ret = netdev_register_kobject(dev);
7025 if (ret)
7026 goto err_uninit;
7027 dev->reg_state = NETREG_REGISTERED;
7028
7029 __netdev_update_features(dev);
7030
7031 /*
7032 * Default initial state at registry is that the
7033 * device is present.
7034 */
7035
7036 set_bit(__LINK_STATE_PRESENT, &dev->state);
7037
7038 linkwatch_init_dev(dev);
7039
7040 dev_init_scheduler(dev);
7041 dev_hold(dev);
7042 list_netdevice(dev);
7043 add_device_randomness(dev->dev_addr, dev->addr_len);
7044
7045 /* If the device has permanent device address, driver should
7046 * set dev_addr and also addr_assign_type should be set to
7047 * NET_ADDR_PERM (default value).
7048 */
7049 if (dev->addr_assign_type == NET_ADDR_PERM)
7050 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7051
7052 /* Notify protocols, that a new device appeared. */
7053 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7054 ret = notifier_to_errno(ret);
7055 if (ret) {
7056 rollback_registered(dev);
7057 dev->reg_state = NETREG_UNREGISTERED;
7058 }
7059 /*
7060 * Prevent userspace races by waiting until the network
7061 * device is fully setup before sending notifications.
7062 */
7063 if (!dev->rtnl_link_ops ||
7064 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7065 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7066
7067 out:
7068 return ret;
7069
7070 err_uninit:
7071 if (dev->netdev_ops->ndo_uninit)
7072 dev->netdev_ops->ndo_uninit(dev);
7073 goto out;
7074 }
7075 EXPORT_SYMBOL(register_netdevice);
7076
7077 /**
7078 * init_dummy_netdev - init a dummy network device for NAPI
7079 * @dev: device to init
7080 *
7081 * This takes a network device structure and initialize the minimum
7082 * amount of fields so it can be used to schedule NAPI polls without
7083 * registering a full blown interface. This is to be used by drivers
7084 * that need to tie several hardware interfaces to a single NAPI
7085 * poll scheduler due to HW limitations.
7086 */
7087 int init_dummy_netdev(struct net_device *dev)
7088 {
7089 /* Clear everything. Note we don't initialize spinlocks
7090 * are they aren't supposed to be taken by any of the
7091 * NAPI code and this dummy netdev is supposed to be
7092 * only ever used for NAPI polls
7093 */
7094 memset(dev, 0, sizeof(struct net_device));
7095
7096 /* make sure we BUG if trying to hit standard
7097 * register/unregister code path
7098 */
7099 dev->reg_state = NETREG_DUMMY;
7100
7101 /* NAPI wants this */
7102 INIT_LIST_HEAD(&dev->napi_list);
7103
7104 /* a dummy interface is started by default */
7105 set_bit(__LINK_STATE_PRESENT, &dev->state);
7106 set_bit(__LINK_STATE_START, &dev->state);
7107
7108 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7109 * because users of this 'device' dont need to change
7110 * its refcount.
7111 */
7112
7113 return 0;
7114 }
7115 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7116
7117
7118 /**
7119 * register_netdev - register a network device
7120 * @dev: device to register
7121 *
7122 * Take a completed network device structure and add it to the kernel
7123 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7124 * chain. 0 is returned on success. A negative errno code is returned
7125 * on a failure to set up the device, or if the name is a duplicate.
7126 *
7127 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7128 * and expands the device name if you passed a format string to
7129 * alloc_netdev.
7130 */
7131 int register_netdev(struct net_device *dev)
7132 {
7133 int err;
7134
7135 rtnl_lock();
7136 err = register_netdevice(dev);
7137 rtnl_unlock();
7138 return err;
7139 }
7140 EXPORT_SYMBOL(register_netdev);
7141
7142 int netdev_refcnt_read(const struct net_device *dev)
7143 {
7144 int i, refcnt = 0;
7145
7146 for_each_possible_cpu(i)
7147 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7148 return refcnt;
7149 }
7150 EXPORT_SYMBOL(netdev_refcnt_read);
7151
7152 /**
7153 * netdev_wait_allrefs - wait until all references are gone.
7154 * @dev: target net_device
7155 *
7156 * This is called when unregistering network devices.
7157 *
7158 * Any protocol or device that holds a reference should register
7159 * for netdevice notification, and cleanup and put back the
7160 * reference if they receive an UNREGISTER event.
7161 * We can get stuck here if buggy protocols don't correctly
7162 * call dev_put.
7163 */
7164 static void netdev_wait_allrefs(struct net_device *dev)
7165 {
7166 unsigned long rebroadcast_time, warning_time;
7167 int refcnt;
7168
7169 linkwatch_forget_dev(dev);
7170
7171 rebroadcast_time = warning_time = jiffies;
7172 refcnt = netdev_refcnt_read(dev);
7173
7174 while (refcnt != 0) {
7175 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7176 rtnl_lock();
7177
7178 /* Rebroadcast unregister notification */
7179 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7180
7181 __rtnl_unlock();
7182 rcu_barrier();
7183 rtnl_lock();
7184
7185 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7186 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7187 &dev->state)) {
7188 /* We must not have linkwatch events
7189 * pending on unregister. If this
7190 * happens, we simply run the queue
7191 * unscheduled, resulting in a noop
7192 * for this device.
7193 */
7194 linkwatch_run_queue();
7195 }
7196
7197 __rtnl_unlock();
7198
7199 rebroadcast_time = jiffies;
7200 }
7201
7202 msleep(250);
7203
7204 refcnt = netdev_refcnt_read(dev);
7205
7206 if (time_after(jiffies, warning_time + 10 * HZ)) {
7207 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7208 dev->name, refcnt);
7209 warning_time = jiffies;
7210 }
7211 }
7212 }
7213
7214 /* The sequence is:
7215 *
7216 * rtnl_lock();
7217 * ...
7218 * register_netdevice(x1);
7219 * register_netdevice(x2);
7220 * ...
7221 * unregister_netdevice(y1);
7222 * unregister_netdevice(y2);
7223 * ...
7224 * rtnl_unlock();
7225 * free_netdev(y1);
7226 * free_netdev(y2);
7227 *
7228 * We are invoked by rtnl_unlock().
7229 * This allows us to deal with problems:
7230 * 1) We can delete sysfs objects which invoke hotplug
7231 * without deadlocking with linkwatch via keventd.
7232 * 2) Since we run with the RTNL semaphore not held, we can sleep
7233 * safely in order to wait for the netdev refcnt to drop to zero.
7234 *
7235 * We must not return until all unregister events added during
7236 * the interval the lock was held have been completed.
7237 */
7238 void netdev_run_todo(void)
7239 {
7240 struct list_head list;
7241
7242 /* Snapshot list, allow later requests */
7243 list_replace_init(&net_todo_list, &list);
7244
7245 __rtnl_unlock();
7246
7247
7248 /* Wait for rcu callbacks to finish before next phase */
7249 if (!list_empty(&list))
7250 rcu_barrier();
7251
7252 while (!list_empty(&list)) {
7253 struct net_device *dev
7254 = list_first_entry(&list, struct net_device, todo_list);
7255 list_del(&dev->todo_list);
7256
7257 rtnl_lock();
7258 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7259 __rtnl_unlock();
7260
7261 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7262 pr_err("network todo '%s' but state %d\n",
7263 dev->name, dev->reg_state);
7264 dump_stack();
7265 continue;
7266 }
7267
7268 dev->reg_state = NETREG_UNREGISTERED;
7269
7270 netdev_wait_allrefs(dev);
7271
7272 /* paranoia */
7273 BUG_ON(netdev_refcnt_read(dev));
7274 BUG_ON(!list_empty(&dev->ptype_all));
7275 BUG_ON(!list_empty(&dev->ptype_specific));
7276 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7277 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7278 WARN_ON(dev->dn_ptr);
7279
7280 if (dev->destructor)
7281 dev->destructor(dev);
7282
7283 /* Report a network device has been unregistered */
7284 rtnl_lock();
7285 dev_net(dev)->dev_unreg_count--;
7286 __rtnl_unlock();
7287 wake_up(&netdev_unregistering_wq);
7288
7289 /* Free network device */
7290 kobject_put(&dev->dev.kobj);
7291 }
7292 }
7293
7294 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7295 * all the same fields in the same order as net_device_stats, with only
7296 * the type differing, but rtnl_link_stats64 may have additional fields
7297 * at the end for newer counters.
7298 */
7299 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7300 const struct net_device_stats *netdev_stats)
7301 {
7302 #if BITS_PER_LONG == 64
7303 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7304 memcpy(stats64, netdev_stats, sizeof(*stats64));
7305 /* zero out counters that only exist in rtnl_link_stats64 */
7306 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7307 sizeof(*stats64) - sizeof(*netdev_stats));
7308 #else
7309 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7310 const unsigned long *src = (const unsigned long *)netdev_stats;
7311 u64 *dst = (u64 *)stats64;
7312
7313 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7314 for (i = 0; i < n; i++)
7315 dst[i] = src[i];
7316 /* zero out counters that only exist in rtnl_link_stats64 */
7317 memset((char *)stats64 + n * sizeof(u64), 0,
7318 sizeof(*stats64) - n * sizeof(u64));
7319 #endif
7320 }
7321 EXPORT_SYMBOL(netdev_stats_to_stats64);
7322
7323 /**
7324 * dev_get_stats - get network device statistics
7325 * @dev: device to get statistics from
7326 * @storage: place to store stats
7327 *
7328 * Get network statistics from device. Return @storage.
7329 * The device driver may provide its own method by setting
7330 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7331 * otherwise the internal statistics structure is used.
7332 */
7333 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7334 struct rtnl_link_stats64 *storage)
7335 {
7336 const struct net_device_ops *ops = dev->netdev_ops;
7337
7338 if (ops->ndo_get_stats64) {
7339 memset(storage, 0, sizeof(*storage));
7340 ops->ndo_get_stats64(dev, storage);
7341 } else if (ops->ndo_get_stats) {
7342 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7343 } else {
7344 netdev_stats_to_stats64(storage, &dev->stats);
7345 }
7346 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7347 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7348 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7349 return storage;
7350 }
7351 EXPORT_SYMBOL(dev_get_stats);
7352
7353 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7354 {
7355 struct netdev_queue *queue = dev_ingress_queue(dev);
7356
7357 #ifdef CONFIG_NET_CLS_ACT
7358 if (queue)
7359 return queue;
7360 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7361 if (!queue)
7362 return NULL;
7363 netdev_init_one_queue(dev, queue, NULL);
7364 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7365 queue->qdisc_sleeping = &noop_qdisc;
7366 rcu_assign_pointer(dev->ingress_queue, queue);
7367 #endif
7368 return queue;
7369 }
7370
7371 static const struct ethtool_ops default_ethtool_ops;
7372
7373 void netdev_set_default_ethtool_ops(struct net_device *dev,
7374 const struct ethtool_ops *ops)
7375 {
7376 if (dev->ethtool_ops == &default_ethtool_ops)
7377 dev->ethtool_ops = ops;
7378 }
7379 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7380
7381 void netdev_freemem(struct net_device *dev)
7382 {
7383 char *addr = (char *)dev - dev->padded;
7384
7385 kvfree(addr);
7386 }
7387
7388 /**
7389 * alloc_netdev_mqs - allocate network device
7390 * @sizeof_priv: size of private data to allocate space for
7391 * @name: device name format string
7392 * @name_assign_type: origin of device name
7393 * @setup: callback to initialize device
7394 * @txqs: the number of TX subqueues to allocate
7395 * @rxqs: the number of RX subqueues to allocate
7396 *
7397 * Allocates a struct net_device with private data area for driver use
7398 * and performs basic initialization. Also allocates subqueue structs
7399 * for each queue on the device.
7400 */
7401 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7402 unsigned char name_assign_type,
7403 void (*setup)(struct net_device *),
7404 unsigned int txqs, unsigned int rxqs)
7405 {
7406 struct net_device *dev;
7407 size_t alloc_size;
7408 struct net_device *p;
7409
7410 BUG_ON(strlen(name) >= sizeof(dev->name));
7411
7412 if (txqs < 1) {
7413 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7414 return NULL;
7415 }
7416
7417 #ifdef CONFIG_SYSFS
7418 if (rxqs < 1) {
7419 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7420 return NULL;
7421 }
7422 #endif
7423
7424 alloc_size = sizeof(struct net_device);
7425 if (sizeof_priv) {
7426 /* ensure 32-byte alignment of private area */
7427 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7428 alloc_size += sizeof_priv;
7429 }
7430 /* ensure 32-byte alignment of whole construct */
7431 alloc_size += NETDEV_ALIGN - 1;
7432
7433 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7434 if (!p)
7435 p = vzalloc(alloc_size);
7436 if (!p)
7437 return NULL;
7438
7439 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7440 dev->padded = (char *)dev - (char *)p;
7441
7442 dev->pcpu_refcnt = alloc_percpu(int);
7443 if (!dev->pcpu_refcnt)
7444 goto free_dev;
7445
7446 if (dev_addr_init(dev))
7447 goto free_pcpu;
7448
7449 dev_mc_init(dev);
7450 dev_uc_init(dev);
7451
7452 dev_net_set(dev, &init_net);
7453
7454 dev->gso_max_size = GSO_MAX_SIZE;
7455 dev->gso_max_segs = GSO_MAX_SEGS;
7456
7457 INIT_LIST_HEAD(&dev->napi_list);
7458 INIT_LIST_HEAD(&dev->unreg_list);
7459 INIT_LIST_HEAD(&dev->close_list);
7460 INIT_LIST_HEAD(&dev->link_watch_list);
7461 INIT_LIST_HEAD(&dev->adj_list.upper);
7462 INIT_LIST_HEAD(&dev->adj_list.lower);
7463 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7464 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7465 INIT_LIST_HEAD(&dev->ptype_all);
7466 INIT_LIST_HEAD(&dev->ptype_specific);
7467 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7468 setup(dev);
7469
7470 if (!dev->tx_queue_len) {
7471 dev->priv_flags |= IFF_NO_QUEUE;
7472 dev->tx_queue_len = 1;
7473 }
7474
7475 dev->num_tx_queues = txqs;
7476 dev->real_num_tx_queues = txqs;
7477 if (netif_alloc_netdev_queues(dev))
7478 goto free_all;
7479
7480 #ifdef CONFIG_SYSFS
7481 dev->num_rx_queues = rxqs;
7482 dev->real_num_rx_queues = rxqs;
7483 if (netif_alloc_rx_queues(dev))
7484 goto free_all;
7485 #endif
7486
7487 strcpy(dev->name, name);
7488 dev->name_assign_type = name_assign_type;
7489 dev->group = INIT_NETDEV_GROUP;
7490 if (!dev->ethtool_ops)
7491 dev->ethtool_ops = &default_ethtool_ops;
7492
7493 nf_hook_ingress_init(dev);
7494
7495 return dev;
7496
7497 free_all:
7498 free_netdev(dev);
7499 return NULL;
7500
7501 free_pcpu:
7502 free_percpu(dev->pcpu_refcnt);
7503 free_dev:
7504 netdev_freemem(dev);
7505 return NULL;
7506 }
7507 EXPORT_SYMBOL(alloc_netdev_mqs);
7508
7509 /**
7510 * free_netdev - free network device
7511 * @dev: device
7512 *
7513 * This function does the last stage of destroying an allocated device
7514 * interface. The reference to the device object is released.
7515 * If this is the last reference then it will be freed.
7516 * Must be called in process context.
7517 */
7518 void free_netdev(struct net_device *dev)
7519 {
7520 struct napi_struct *p, *n;
7521
7522 might_sleep();
7523 netif_free_tx_queues(dev);
7524 #ifdef CONFIG_SYSFS
7525 kvfree(dev->_rx);
7526 #endif
7527
7528 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7529
7530 /* Flush device addresses */
7531 dev_addr_flush(dev);
7532
7533 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7534 netif_napi_del(p);
7535
7536 free_percpu(dev->pcpu_refcnt);
7537 dev->pcpu_refcnt = NULL;
7538
7539 /* Compatibility with error handling in drivers */
7540 if (dev->reg_state == NETREG_UNINITIALIZED) {
7541 netdev_freemem(dev);
7542 return;
7543 }
7544
7545 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7546 dev->reg_state = NETREG_RELEASED;
7547
7548 /* will free via device release */
7549 put_device(&dev->dev);
7550 }
7551 EXPORT_SYMBOL(free_netdev);
7552
7553 /**
7554 * synchronize_net - Synchronize with packet receive processing
7555 *
7556 * Wait for packets currently being received to be done.
7557 * Does not block later packets from starting.
7558 */
7559 void synchronize_net(void)
7560 {
7561 might_sleep();
7562 if (rtnl_is_locked())
7563 synchronize_rcu_expedited();
7564 else
7565 synchronize_rcu();
7566 }
7567 EXPORT_SYMBOL(synchronize_net);
7568
7569 /**
7570 * unregister_netdevice_queue - remove device from the kernel
7571 * @dev: device
7572 * @head: list
7573 *
7574 * This function shuts down a device interface and removes it
7575 * from the kernel tables.
7576 * If head not NULL, device is queued to be unregistered later.
7577 *
7578 * Callers must hold the rtnl semaphore. You may want
7579 * unregister_netdev() instead of this.
7580 */
7581
7582 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7583 {
7584 ASSERT_RTNL();
7585
7586 if (head) {
7587 list_move_tail(&dev->unreg_list, head);
7588 } else {
7589 rollback_registered(dev);
7590 /* Finish processing unregister after unlock */
7591 net_set_todo(dev);
7592 }
7593 }
7594 EXPORT_SYMBOL(unregister_netdevice_queue);
7595
7596 /**
7597 * unregister_netdevice_many - unregister many devices
7598 * @head: list of devices
7599 *
7600 * Note: As most callers use a stack allocated list_head,
7601 * we force a list_del() to make sure stack wont be corrupted later.
7602 */
7603 void unregister_netdevice_many(struct list_head *head)
7604 {
7605 struct net_device *dev;
7606
7607 if (!list_empty(head)) {
7608 rollback_registered_many(head);
7609 list_for_each_entry(dev, head, unreg_list)
7610 net_set_todo(dev);
7611 list_del(head);
7612 }
7613 }
7614 EXPORT_SYMBOL(unregister_netdevice_many);
7615
7616 /**
7617 * unregister_netdev - remove device from the kernel
7618 * @dev: device
7619 *
7620 * This function shuts down a device interface and removes it
7621 * from the kernel tables.
7622 *
7623 * This is just a wrapper for unregister_netdevice that takes
7624 * the rtnl semaphore. In general you want to use this and not
7625 * unregister_netdevice.
7626 */
7627 void unregister_netdev(struct net_device *dev)
7628 {
7629 rtnl_lock();
7630 unregister_netdevice(dev);
7631 rtnl_unlock();
7632 }
7633 EXPORT_SYMBOL(unregister_netdev);
7634
7635 /**
7636 * dev_change_net_namespace - move device to different nethost namespace
7637 * @dev: device
7638 * @net: network namespace
7639 * @pat: If not NULL name pattern to try if the current device name
7640 * is already taken in the destination network namespace.
7641 *
7642 * This function shuts down a device interface and moves it
7643 * to a new network namespace. On success 0 is returned, on
7644 * a failure a netagive errno code is returned.
7645 *
7646 * Callers must hold the rtnl semaphore.
7647 */
7648
7649 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7650 {
7651 int err;
7652
7653 ASSERT_RTNL();
7654
7655 /* Don't allow namespace local devices to be moved. */
7656 err = -EINVAL;
7657 if (dev->features & NETIF_F_NETNS_LOCAL)
7658 goto out;
7659
7660 /* Ensure the device has been registrered */
7661 if (dev->reg_state != NETREG_REGISTERED)
7662 goto out;
7663
7664 /* Get out if there is nothing todo */
7665 err = 0;
7666 if (net_eq(dev_net(dev), net))
7667 goto out;
7668
7669 /* Pick the destination device name, and ensure
7670 * we can use it in the destination network namespace.
7671 */
7672 err = -EEXIST;
7673 if (__dev_get_by_name(net, dev->name)) {
7674 /* We get here if we can't use the current device name */
7675 if (!pat)
7676 goto out;
7677 if (dev_get_valid_name(net, dev, pat) < 0)
7678 goto out;
7679 }
7680
7681 /*
7682 * And now a mini version of register_netdevice unregister_netdevice.
7683 */
7684
7685 /* If device is running close it first. */
7686 dev_close(dev);
7687
7688 /* And unlink it from device chain */
7689 err = -ENODEV;
7690 unlist_netdevice(dev);
7691
7692 synchronize_net();
7693
7694 /* Shutdown queueing discipline. */
7695 dev_shutdown(dev);
7696
7697 /* Notify protocols, that we are about to destroy
7698 this device. They should clean all the things.
7699
7700 Note that dev->reg_state stays at NETREG_REGISTERED.
7701 This is wanted because this way 8021q and macvlan know
7702 the device is just moving and can keep their slaves up.
7703 */
7704 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7705 rcu_barrier();
7706 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7707 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7708
7709 /*
7710 * Flush the unicast and multicast chains
7711 */
7712 dev_uc_flush(dev);
7713 dev_mc_flush(dev);
7714
7715 /* Send a netdev-removed uevent to the old namespace */
7716 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7717 netdev_adjacent_del_links(dev);
7718
7719 /* Actually switch the network namespace */
7720 dev_net_set(dev, net);
7721
7722 /* If there is an ifindex conflict assign a new one */
7723 if (__dev_get_by_index(net, dev->ifindex))
7724 dev->ifindex = dev_new_index(net);
7725
7726 /* Send a netdev-add uevent to the new namespace */
7727 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7728 netdev_adjacent_add_links(dev);
7729
7730 /* Fixup kobjects */
7731 err = device_rename(&dev->dev, dev->name);
7732 WARN_ON(err);
7733
7734 /* Add the device back in the hashes */
7735 list_netdevice(dev);
7736
7737 /* Notify protocols, that a new device appeared. */
7738 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7739
7740 /*
7741 * Prevent userspace races by waiting until the network
7742 * device is fully setup before sending notifications.
7743 */
7744 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7745
7746 synchronize_net();
7747 err = 0;
7748 out:
7749 return err;
7750 }
7751 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7752
7753 static int dev_cpu_callback(struct notifier_block *nfb,
7754 unsigned long action,
7755 void *ocpu)
7756 {
7757 struct sk_buff **list_skb;
7758 struct sk_buff *skb;
7759 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7760 struct softnet_data *sd, *oldsd;
7761
7762 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7763 return NOTIFY_OK;
7764
7765 local_irq_disable();
7766 cpu = smp_processor_id();
7767 sd = &per_cpu(softnet_data, cpu);
7768 oldsd = &per_cpu(softnet_data, oldcpu);
7769
7770 /* Find end of our completion_queue. */
7771 list_skb = &sd->completion_queue;
7772 while (*list_skb)
7773 list_skb = &(*list_skb)->next;
7774 /* Append completion queue from offline CPU. */
7775 *list_skb = oldsd->completion_queue;
7776 oldsd->completion_queue = NULL;
7777
7778 /* Append output queue from offline CPU. */
7779 if (oldsd->output_queue) {
7780 *sd->output_queue_tailp = oldsd->output_queue;
7781 sd->output_queue_tailp = oldsd->output_queue_tailp;
7782 oldsd->output_queue = NULL;
7783 oldsd->output_queue_tailp = &oldsd->output_queue;
7784 }
7785 /* Append NAPI poll list from offline CPU, with one exception :
7786 * process_backlog() must be called by cpu owning percpu backlog.
7787 * We properly handle process_queue & input_pkt_queue later.
7788 */
7789 while (!list_empty(&oldsd->poll_list)) {
7790 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7791 struct napi_struct,
7792 poll_list);
7793
7794 list_del_init(&napi->poll_list);
7795 if (napi->poll == process_backlog)
7796 napi->state = 0;
7797 else
7798 ____napi_schedule(sd, napi);
7799 }
7800
7801 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7802 local_irq_enable();
7803
7804 /* Process offline CPU's input_pkt_queue */
7805 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7806 netif_rx_ni(skb);
7807 input_queue_head_incr(oldsd);
7808 }
7809 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7810 netif_rx_ni(skb);
7811 input_queue_head_incr(oldsd);
7812 }
7813
7814 return NOTIFY_OK;
7815 }
7816
7817
7818 /**
7819 * netdev_increment_features - increment feature set by one
7820 * @all: current feature set
7821 * @one: new feature set
7822 * @mask: mask feature set
7823 *
7824 * Computes a new feature set after adding a device with feature set
7825 * @one to the master device with current feature set @all. Will not
7826 * enable anything that is off in @mask. Returns the new feature set.
7827 */
7828 netdev_features_t netdev_increment_features(netdev_features_t all,
7829 netdev_features_t one, netdev_features_t mask)
7830 {
7831 if (mask & NETIF_F_HW_CSUM)
7832 mask |= NETIF_F_CSUM_MASK;
7833 mask |= NETIF_F_VLAN_CHALLENGED;
7834
7835 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
7836 all &= one | ~NETIF_F_ALL_FOR_ALL;
7837
7838 /* If one device supports hw checksumming, set for all. */
7839 if (all & NETIF_F_HW_CSUM)
7840 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7841
7842 return all;
7843 }
7844 EXPORT_SYMBOL(netdev_increment_features);
7845
7846 static struct hlist_head * __net_init netdev_create_hash(void)
7847 {
7848 int i;
7849 struct hlist_head *hash;
7850
7851 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7852 if (hash != NULL)
7853 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7854 INIT_HLIST_HEAD(&hash[i]);
7855
7856 return hash;
7857 }
7858
7859 /* Initialize per network namespace state */
7860 static int __net_init netdev_init(struct net *net)
7861 {
7862 if (net != &init_net)
7863 INIT_LIST_HEAD(&net->dev_base_head);
7864
7865 net->dev_name_head = netdev_create_hash();
7866 if (net->dev_name_head == NULL)
7867 goto err_name;
7868
7869 net->dev_index_head = netdev_create_hash();
7870 if (net->dev_index_head == NULL)
7871 goto err_idx;
7872
7873 return 0;
7874
7875 err_idx:
7876 kfree(net->dev_name_head);
7877 err_name:
7878 return -ENOMEM;
7879 }
7880
7881 /**
7882 * netdev_drivername - network driver for the device
7883 * @dev: network device
7884 *
7885 * Determine network driver for device.
7886 */
7887 const char *netdev_drivername(const struct net_device *dev)
7888 {
7889 const struct device_driver *driver;
7890 const struct device *parent;
7891 const char *empty = "";
7892
7893 parent = dev->dev.parent;
7894 if (!parent)
7895 return empty;
7896
7897 driver = parent->driver;
7898 if (driver && driver->name)
7899 return driver->name;
7900 return empty;
7901 }
7902
7903 static void __netdev_printk(const char *level, const struct net_device *dev,
7904 struct va_format *vaf)
7905 {
7906 if (dev && dev->dev.parent) {
7907 dev_printk_emit(level[1] - '0',
7908 dev->dev.parent,
7909 "%s %s %s%s: %pV",
7910 dev_driver_string(dev->dev.parent),
7911 dev_name(dev->dev.parent),
7912 netdev_name(dev), netdev_reg_state(dev),
7913 vaf);
7914 } else if (dev) {
7915 printk("%s%s%s: %pV",
7916 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7917 } else {
7918 printk("%s(NULL net_device): %pV", level, vaf);
7919 }
7920 }
7921
7922 void netdev_printk(const char *level, const struct net_device *dev,
7923 const char *format, ...)
7924 {
7925 struct va_format vaf;
7926 va_list args;
7927
7928 va_start(args, format);
7929
7930 vaf.fmt = format;
7931 vaf.va = &args;
7932
7933 __netdev_printk(level, dev, &vaf);
7934
7935 va_end(args);
7936 }
7937 EXPORT_SYMBOL(netdev_printk);
7938
7939 #define define_netdev_printk_level(func, level) \
7940 void func(const struct net_device *dev, const char *fmt, ...) \
7941 { \
7942 struct va_format vaf; \
7943 va_list args; \
7944 \
7945 va_start(args, fmt); \
7946 \
7947 vaf.fmt = fmt; \
7948 vaf.va = &args; \
7949 \
7950 __netdev_printk(level, dev, &vaf); \
7951 \
7952 va_end(args); \
7953 } \
7954 EXPORT_SYMBOL(func);
7955
7956 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7957 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7958 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7959 define_netdev_printk_level(netdev_err, KERN_ERR);
7960 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7961 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7962 define_netdev_printk_level(netdev_info, KERN_INFO);
7963
7964 static void __net_exit netdev_exit(struct net *net)
7965 {
7966 kfree(net->dev_name_head);
7967 kfree(net->dev_index_head);
7968 }
7969
7970 static struct pernet_operations __net_initdata netdev_net_ops = {
7971 .init = netdev_init,
7972 .exit = netdev_exit,
7973 };
7974
7975 static void __net_exit default_device_exit(struct net *net)
7976 {
7977 struct net_device *dev, *aux;
7978 /*
7979 * Push all migratable network devices back to the
7980 * initial network namespace
7981 */
7982 rtnl_lock();
7983 for_each_netdev_safe(net, dev, aux) {
7984 int err;
7985 char fb_name[IFNAMSIZ];
7986
7987 /* Ignore unmoveable devices (i.e. loopback) */
7988 if (dev->features & NETIF_F_NETNS_LOCAL)
7989 continue;
7990
7991 /* Leave virtual devices for the generic cleanup */
7992 if (dev->rtnl_link_ops)
7993 continue;
7994
7995 /* Push remaining network devices to init_net */
7996 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7997 err = dev_change_net_namespace(dev, &init_net, fb_name);
7998 if (err) {
7999 pr_emerg("%s: failed to move %s to init_net: %d\n",
8000 __func__, dev->name, err);
8001 BUG();
8002 }
8003 }
8004 rtnl_unlock();
8005 }
8006
8007 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8008 {
8009 /* Return with the rtnl_lock held when there are no network
8010 * devices unregistering in any network namespace in net_list.
8011 */
8012 struct net *net;
8013 bool unregistering;
8014 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8015
8016 add_wait_queue(&netdev_unregistering_wq, &wait);
8017 for (;;) {
8018 unregistering = false;
8019 rtnl_lock();
8020 list_for_each_entry(net, net_list, exit_list) {
8021 if (net->dev_unreg_count > 0) {
8022 unregistering = true;
8023 break;
8024 }
8025 }
8026 if (!unregistering)
8027 break;
8028 __rtnl_unlock();
8029
8030 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8031 }
8032 remove_wait_queue(&netdev_unregistering_wq, &wait);
8033 }
8034
8035 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8036 {
8037 /* At exit all network devices most be removed from a network
8038 * namespace. Do this in the reverse order of registration.
8039 * Do this across as many network namespaces as possible to
8040 * improve batching efficiency.
8041 */
8042 struct net_device *dev;
8043 struct net *net;
8044 LIST_HEAD(dev_kill_list);
8045
8046 /* To prevent network device cleanup code from dereferencing
8047 * loopback devices or network devices that have been freed
8048 * wait here for all pending unregistrations to complete,
8049 * before unregistring the loopback device and allowing the
8050 * network namespace be freed.
8051 *
8052 * The netdev todo list containing all network devices
8053 * unregistrations that happen in default_device_exit_batch
8054 * will run in the rtnl_unlock() at the end of
8055 * default_device_exit_batch.
8056 */
8057 rtnl_lock_unregistering(net_list);
8058 list_for_each_entry(net, net_list, exit_list) {
8059 for_each_netdev_reverse(net, dev) {
8060 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8061 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8062 else
8063 unregister_netdevice_queue(dev, &dev_kill_list);
8064 }
8065 }
8066 unregister_netdevice_many(&dev_kill_list);
8067 rtnl_unlock();
8068 }
8069
8070 static struct pernet_operations __net_initdata default_device_ops = {
8071 .exit = default_device_exit,
8072 .exit_batch = default_device_exit_batch,
8073 };
8074
8075 /*
8076 * Initialize the DEV module. At boot time this walks the device list and
8077 * unhooks any devices that fail to initialise (normally hardware not
8078 * present) and leaves us with a valid list of present and active devices.
8079 *
8080 */
8081
8082 /*
8083 * This is called single threaded during boot, so no need
8084 * to take the rtnl semaphore.
8085 */
8086 static int __init net_dev_init(void)
8087 {
8088 int i, rc = -ENOMEM;
8089
8090 BUG_ON(!dev_boot_phase);
8091
8092 if (dev_proc_init())
8093 goto out;
8094
8095 if (netdev_kobject_init())
8096 goto out;
8097
8098 INIT_LIST_HEAD(&ptype_all);
8099 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8100 INIT_LIST_HEAD(&ptype_base[i]);
8101
8102 INIT_LIST_HEAD(&offload_base);
8103
8104 if (register_pernet_subsys(&netdev_net_ops))
8105 goto out;
8106
8107 /*
8108 * Initialise the packet receive queues.
8109 */
8110
8111 for_each_possible_cpu(i) {
8112 struct softnet_data *sd = &per_cpu(softnet_data, i);
8113
8114 skb_queue_head_init(&sd->input_pkt_queue);
8115 skb_queue_head_init(&sd->process_queue);
8116 INIT_LIST_HEAD(&sd->poll_list);
8117 sd->output_queue_tailp = &sd->output_queue;
8118 #ifdef CONFIG_RPS
8119 sd->csd.func = rps_trigger_softirq;
8120 sd->csd.info = sd;
8121 sd->cpu = i;
8122 #endif
8123
8124 sd->backlog.poll = process_backlog;
8125 sd->backlog.weight = weight_p;
8126 }
8127
8128 dev_boot_phase = 0;
8129
8130 /* The loopback device is special if any other network devices
8131 * is present in a network namespace the loopback device must
8132 * be present. Since we now dynamically allocate and free the
8133 * loopback device ensure this invariant is maintained by
8134 * keeping the loopback device as the first device on the
8135 * list of network devices. Ensuring the loopback devices
8136 * is the first device that appears and the last network device
8137 * that disappears.
8138 */
8139 if (register_pernet_device(&loopback_net_ops))
8140 goto out;
8141
8142 if (register_pernet_device(&default_device_ops))
8143 goto out;
8144
8145 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8146 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8147
8148 hotcpu_notifier(dev_cpu_callback, 0);
8149 dst_subsys_init();
8150 rc = 0;
8151 out:
8152 return rc;
8153 }
8154
8155 subsys_initcall(net_dev_init);