]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/dev.c
net: print net_device reg_state in netdev_* unless it's registered
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135
136 #include "net-sysfs.h"
137
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144 static DEFINE_SPINLOCK(ptype_lock);
145 static DEFINE_SPINLOCK(offload_lock);
146 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
147 struct list_head ptype_all __read_mostly; /* Taps */
148 static struct list_head offload_base __read_mostly;
149
150 static int netif_rx_internal(struct sk_buff *skb);
151 static int call_netdevice_notifiers_info(unsigned long val,
152 struct net_device *dev,
153 struct netdev_notifier_info *info);
154
155 /*
156 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
157 * semaphore.
158 *
159 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
160 *
161 * Writers must hold the rtnl semaphore while they loop through the
162 * dev_base_head list, and hold dev_base_lock for writing when they do the
163 * actual updates. This allows pure readers to access the list even
164 * while a writer is preparing to update it.
165 *
166 * To put it another way, dev_base_lock is held for writing only to
167 * protect against pure readers; the rtnl semaphore provides the
168 * protection against other writers.
169 *
170 * See, for example usages, register_netdevice() and
171 * unregister_netdevice(), which must be called with the rtnl
172 * semaphore held.
173 */
174 DEFINE_RWLOCK(dev_base_lock);
175 EXPORT_SYMBOL(dev_base_lock);
176
177 /* protects napi_hash addition/deletion and napi_gen_id */
178 static DEFINE_SPINLOCK(napi_hash_lock);
179
180 static unsigned int napi_gen_id;
181 static DEFINE_HASHTABLE(napi_hash, 8);
182
183 static seqcount_t devnet_rename_seq;
184
185 static inline void dev_base_seq_inc(struct net *net)
186 {
187 while (++net->dev_base_seq == 0);
188 }
189
190 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
191 {
192 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
193
194 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
195 }
196
197 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
198 {
199 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
200 }
201
202 static inline void rps_lock(struct softnet_data *sd)
203 {
204 #ifdef CONFIG_RPS
205 spin_lock(&sd->input_pkt_queue.lock);
206 #endif
207 }
208
209 static inline void rps_unlock(struct softnet_data *sd)
210 {
211 #ifdef CONFIG_RPS
212 spin_unlock(&sd->input_pkt_queue.lock);
213 #endif
214 }
215
216 /* Device list insertion */
217 static void list_netdevice(struct net_device *dev)
218 {
219 struct net *net = dev_net(dev);
220
221 ASSERT_RTNL();
222
223 write_lock_bh(&dev_base_lock);
224 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
225 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
226 hlist_add_head_rcu(&dev->index_hlist,
227 dev_index_hash(net, dev->ifindex));
228 write_unlock_bh(&dev_base_lock);
229
230 dev_base_seq_inc(net);
231 }
232
233 /* Device list removal
234 * caller must respect a RCU grace period before freeing/reusing dev
235 */
236 static void unlist_netdevice(struct net_device *dev)
237 {
238 ASSERT_RTNL();
239
240 /* Unlink dev from the device chain */
241 write_lock_bh(&dev_base_lock);
242 list_del_rcu(&dev->dev_list);
243 hlist_del_rcu(&dev->name_hlist);
244 hlist_del_rcu(&dev->index_hlist);
245 write_unlock_bh(&dev_base_lock);
246
247 dev_base_seq_inc(dev_net(dev));
248 }
249
250 /*
251 * Our notifier list
252 */
253
254 static RAW_NOTIFIER_HEAD(netdev_chain);
255
256 /*
257 * Device drivers call our routines to queue packets here. We empty the
258 * queue in the local softnet handler.
259 */
260
261 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
262 EXPORT_PER_CPU_SYMBOL(softnet_data);
263
264 #ifdef CONFIG_LOCKDEP
265 /*
266 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
267 * according to dev->type
268 */
269 static const unsigned short netdev_lock_type[] =
270 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
271 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
272 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
273 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
274 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
275 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
276 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
277 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
278 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
279 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
280 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
281 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
282 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
283 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
284 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
285
286 static const char *const netdev_lock_name[] =
287 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
288 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
289 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
290 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
291 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
292 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
293 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
294 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
295 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
296 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
297 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
298 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
299 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
300 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
301 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
302
303 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
304 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
305
306 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
307 {
308 int i;
309
310 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
311 if (netdev_lock_type[i] == dev_type)
312 return i;
313 /* the last key is used by default */
314 return ARRAY_SIZE(netdev_lock_type) - 1;
315 }
316
317 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
318 unsigned short dev_type)
319 {
320 int i;
321
322 i = netdev_lock_pos(dev_type);
323 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
324 netdev_lock_name[i]);
325 }
326
327 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
328 {
329 int i;
330
331 i = netdev_lock_pos(dev->type);
332 lockdep_set_class_and_name(&dev->addr_list_lock,
333 &netdev_addr_lock_key[i],
334 netdev_lock_name[i]);
335 }
336 #else
337 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
338 unsigned short dev_type)
339 {
340 }
341 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
342 {
343 }
344 #endif
345
346 /*******************************************************************************
347
348 Protocol management and registration routines
349
350 *******************************************************************************/
351
352 /*
353 * Add a protocol ID to the list. Now that the input handler is
354 * smarter we can dispense with all the messy stuff that used to be
355 * here.
356 *
357 * BEWARE!!! Protocol handlers, mangling input packets,
358 * MUST BE last in hash buckets and checking protocol handlers
359 * MUST start from promiscuous ptype_all chain in net_bh.
360 * It is true now, do not change it.
361 * Explanation follows: if protocol handler, mangling packet, will
362 * be the first on list, it is not able to sense, that packet
363 * is cloned and should be copied-on-write, so that it will
364 * change it and subsequent readers will get broken packet.
365 * --ANK (980803)
366 */
367
368 static inline struct list_head *ptype_head(const struct packet_type *pt)
369 {
370 if (pt->type == htons(ETH_P_ALL))
371 return &ptype_all;
372 else
373 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
374 }
375
376 /**
377 * dev_add_pack - add packet handler
378 * @pt: packet type declaration
379 *
380 * Add a protocol handler to the networking stack. The passed &packet_type
381 * is linked into kernel lists and may not be freed until it has been
382 * removed from the kernel lists.
383 *
384 * This call does not sleep therefore it can not
385 * guarantee all CPU's that are in middle of receiving packets
386 * will see the new packet type (until the next received packet).
387 */
388
389 void dev_add_pack(struct packet_type *pt)
390 {
391 struct list_head *head = ptype_head(pt);
392
393 spin_lock(&ptype_lock);
394 list_add_rcu(&pt->list, head);
395 spin_unlock(&ptype_lock);
396 }
397 EXPORT_SYMBOL(dev_add_pack);
398
399 /**
400 * __dev_remove_pack - remove packet handler
401 * @pt: packet type declaration
402 *
403 * Remove a protocol handler that was previously added to the kernel
404 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
405 * from the kernel lists and can be freed or reused once this function
406 * returns.
407 *
408 * The packet type might still be in use by receivers
409 * and must not be freed until after all the CPU's have gone
410 * through a quiescent state.
411 */
412 void __dev_remove_pack(struct packet_type *pt)
413 {
414 struct list_head *head = ptype_head(pt);
415 struct packet_type *pt1;
416
417 spin_lock(&ptype_lock);
418
419 list_for_each_entry(pt1, head, list) {
420 if (pt == pt1) {
421 list_del_rcu(&pt->list);
422 goto out;
423 }
424 }
425
426 pr_warn("dev_remove_pack: %p not found\n", pt);
427 out:
428 spin_unlock(&ptype_lock);
429 }
430 EXPORT_SYMBOL(__dev_remove_pack);
431
432 /**
433 * dev_remove_pack - remove packet handler
434 * @pt: packet type declaration
435 *
436 * Remove a protocol handler that was previously added to the kernel
437 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
438 * from the kernel lists and can be freed or reused once this function
439 * returns.
440 *
441 * This call sleeps to guarantee that no CPU is looking at the packet
442 * type after return.
443 */
444 void dev_remove_pack(struct packet_type *pt)
445 {
446 __dev_remove_pack(pt);
447
448 synchronize_net();
449 }
450 EXPORT_SYMBOL(dev_remove_pack);
451
452
453 /**
454 * dev_add_offload - register offload handlers
455 * @po: protocol offload declaration
456 *
457 * Add protocol offload handlers to the networking stack. The passed
458 * &proto_offload is linked into kernel lists and may not be freed until
459 * it has been removed from the kernel lists.
460 *
461 * This call does not sleep therefore it can not
462 * guarantee all CPU's that are in middle of receiving packets
463 * will see the new offload handlers (until the next received packet).
464 */
465 void dev_add_offload(struct packet_offload *po)
466 {
467 struct list_head *head = &offload_base;
468
469 spin_lock(&offload_lock);
470 list_add_rcu(&po->list, head);
471 spin_unlock(&offload_lock);
472 }
473 EXPORT_SYMBOL(dev_add_offload);
474
475 /**
476 * __dev_remove_offload - remove offload handler
477 * @po: packet offload declaration
478 *
479 * Remove a protocol offload handler that was previously added to the
480 * kernel offload handlers by dev_add_offload(). The passed &offload_type
481 * is removed from the kernel lists and can be freed or reused once this
482 * function returns.
483 *
484 * The packet type might still be in use by receivers
485 * and must not be freed until after all the CPU's have gone
486 * through a quiescent state.
487 */
488 static void __dev_remove_offload(struct packet_offload *po)
489 {
490 struct list_head *head = &offload_base;
491 struct packet_offload *po1;
492
493 spin_lock(&offload_lock);
494
495 list_for_each_entry(po1, head, list) {
496 if (po == po1) {
497 list_del_rcu(&po->list);
498 goto out;
499 }
500 }
501
502 pr_warn("dev_remove_offload: %p not found\n", po);
503 out:
504 spin_unlock(&offload_lock);
505 }
506
507 /**
508 * dev_remove_offload - remove packet offload handler
509 * @po: packet offload declaration
510 *
511 * Remove a packet offload handler that was previously added to the kernel
512 * offload handlers by dev_add_offload(). The passed &offload_type is
513 * removed from the kernel lists and can be freed or reused once this
514 * function returns.
515 *
516 * This call sleeps to guarantee that no CPU is looking at the packet
517 * type after return.
518 */
519 void dev_remove_offload(struct packet_offload *po)
520 {
521 __dev_remove_offload(po);
522
523 synchronize_net();
524 }
525 EXPORT_SYMBOL(dev_remove_offload);
526
527 /******************************************************************************
528
529 Device Boot-time Settings Routines
530
531 *******************************************************************************/
532
533 /* Boot time configuration table */
534 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
535
536 /**
537 * netdev_boot_setup_add - add new setup entry
538 * @name: name of the device
539 * @map: configured settings for the device
540 *
541 * Adds new setup entry to the dev_boot_setup list. The function
542 * returns 0 on error and 1 on success. This is a generic routine to
543 * all netdevices.
544 */
545 static int netdev_boot_setup_add(char *name, struct ifmap *map)
546 {
547 struct netdev_boot_setup *s;
548 int i;
549
550 s = dev_boot_setup;
551 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
552 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
553 memset(s[i].name, 0, sizeof(s[i].name));
554 strlcpy(s[i].name, name, IFNAMSIZ);
555 memcpy(&s[i].map, map, sizeof(s[i].map));
556 break;
557 }
558 }
559
560 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
561 }
562
563 /**
564 * netdev_boot_setup_check - check boot time settings
565 * @dev: the netdevice
566 *
567 * Check boot time settings for the device.
568 * The found settings are set for the device to be used
569 * later in the device probing.
570 * Returns 0 if no settings found, 1 if they are.
571 */
572 int netdev_boot_setup_check(struct net_device *dev)
573 {
574 struct netdev_boot_setup *s = dev_boot_setup;
575 int i;
576
577 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
578 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
579 !strcmp(dev->name, s[i].name)) {
580 dev->irq = s[i].map.irq;
581 dev->base_addr = s[i].map.base_addr;
582 dev->mem_start = s[i].map.mem_start;
583 dev->mem_end = s[i].map.mem_end;
584 return 1;
585 }
586 }
587 return 0;
588 }
589 EXPORT_SYMBOL(netdev_boot_setup_check);
590
591
592 /**
593 * netdev_boot_base - get address from boot time settings
594 * @prefix: prefix for network device
595 * @unit: id for network device
596 *
597 * Check boot time settings for the base address of device.
598 * The found settings are set for the device to be used
599 * later in the device probing.
600 * Returns 0 if no settings found.
601 */
602 unsigned long netdev_boot_base(const char *prefix, int unit)
603 {
604 const struct netdev_boot_setup *s = dev_boot_setup;
605 char name[IFNAMSIZ];
606 int i;
607
608 sprintf(name, "%s%d", prefix, unit);
609
610 /*
611 * If device already registered then return base of 1
612 * to indicate not to probe for this interface
613 */
614 if (__dev_get_by_name(&init_net, name))
615 return 1;
616
617 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
618 if (!strcmp(name, s[i].name))
619 return s[i].map.base_addr;
620 return 0;
621 }
622
623 /*
624 * Saves at boot time configured settings for any netdevice.
625 */
626 int __init netdev_boot_setup(char *str)
627 {
628 int ints[5];
629 struct ifmap map;
630
631 str = get_options(str, ARRAY_SIZE(ints), ints);
632 if (!str || !*str)
633 return 0;
634
635 /* Save settings */
636 memset(&map, 0, sizeof(map));
637 if (ints[0] > 0)
638 map.irq = ints[1];
639 if (ints[0] > 1)
640 map.base_addr = ints[2];
641 if (ints[0] > 2)
642 map.mem_start = ints[3];
643 if (ints[0] > 3)
644 map.mem_end = ints[4];
645
646 /* Add new entry to the list */
647 return netdev_boot_setup_add(str, &map);
648 }
649
650 __setup("netdev=", netdev_boot_setup);
651
652 /*******************************************************************************
653
654 Device Interface Subroutines
655
656 *******************************************************************************/
657
658 /**
659 * __dev_get_by_name - find a device by its name
660 * @net: the applicable net namespace
661 * @name: name to find
662 *
663 * Find an interface by name. Must be called under RTNL semaphore
664 * or @dev_base_lock. If the name is found a pointer to the device
665 * is returned. If the name is not found then %NULL is returned. The
666 * reference counters are not incremented so the caller must be
667 * careful with locks.
668 */
669
670 struct net_device *__dev_get_by_name(struct net *net, const char *name)
671 {
672 struct net_device *dev;
673 struct hlist_head *head = dev_name_hash(net, name);
674
675 hlist_for_each_entry(dev, head, name_hlist)
676 if (!strncmp(dev->name, name, IFNAMSIZ))
677 return dev;
678
679 return NULL;
680 }
681 EXPORT_SYMBOL(__dev_get_by_name);
682
683 /**
684 * dev_get_by_name_rcu - find a device by its name
685 * @net: the applicable net namespace
686 * @name: name to find
687 *
688 * Find an interface by name.
689 * If the name is found a pointer to the device is returned.
690 * If the name is not found then %NULL is returned.
691 * The reference counters are not incremented so the caller must be
692 * careful with locks. The caller must hold RCU lock.
693 */
694
695 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
696 {
697 struct net_device *dev;
698 struct hlist_head *head = dev_name_hash(net, name);
699
700 hlist_for_each_entry_rcu(dev, head, name_hlist)
701 if (!strncmp(dev->name, name, IFNAMSIZ))
702 return dev;
703
704 return NULL;
705 }
706 EXPORT_SYMBOL(dev_get_by_name_rcu);
707
708 /**
709 * dev_get_by_name - find a device by its name
710 * @net: the applicable net namespace
711 * @name: name to find
712 *
713 * Find an interface by name. This can be called from any
714 * context and does its own locking. The returned handle has
715 * the usage count incremented and the caller must use dev_put() to
716 * release it when it is no longer needed. %NULL is returned if no
717 * matching device is found.
718 */
719
720 struct net_device *dev_get_by_name(struct net *net, const char *name)
721 {
722 struct net_device *dev;
723
724 rcu_read_lock();
725 dev = dev_get_by_name_rcu(net, name);
726 if (dev)
727 dev_hold(dev);
728 rcu_read_unlock();
729 return dev;
730 }
731 EXPORT_SYMBOL(dev_get_by_name);
732
733 /**
734 * __dev_get_by_index - find a device by its ifindex
735 * @net: the applicable net namespace
736 * @ifindex: index of device
737 *
738 * Search for an interface by index. Returns %NULL if the device
739 * is not found or a pointer to the device. The device has not
740 * had its reference counter increased so the caller must be careful
741 * about locking. The caller must hold either the RTNL semaphore
742 * or @dev_base_lock.
743 */
744
745 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
746 {
747 struct net_device *dev;
748 struct hlist_head *head = dev_index_hash(net, ifindex);
749
750 hlist_for_each_entry(dev, head, index_hlist)
751 if (dev->ifindex == ifindex)
752 return dev;
753
754 return NULL;
755 }
756 EXPORT_SYMBOL(__dev_get_by_index);
757
758 /**
759 * dev_get_by_index_rcu - find a device by its ifindex
760 * @net: the applicable net namespace
761 * @ifindex: index of device
762 *
763 * Search for an interface by index. Returns %NULL if the device
764 * is not found or a pointer to the device. The device has not
765 * had its reference counter increased so the caller must be careful
766 * about locking. The caller must hold RCU lock.
767 */
768
769 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
770 {
771 struct net_device *dev;
772 struct hlist_head *head = dev_index_hash(net, ifindex);
773
774 hlist_for_each_entry_rcu(dev, head, index_hlist)
775 if (dev->ifindex == ifindex)
776 return dev;
777
778 return NULL;
779 }
780 EXPORT_SYMBOL(dev_get_by_index_rcu);
781
782
783 /**
784 * dev_get_by_index - find a device by its ifindex
785 * @net: the applicable net namespace
786 * @ifindex: index of device
787 *
788 * Search for an interface by index. Returns NULL if the device
789 * is not found or a pointer to the device. The device returned has
790 * had a reference added and the pointer is safe until the user calls
791 * dev_put to indicate they have finished with it.
792 */
793
794 struct net_device *dev_get_by_index(struct net *net, int ifindex)
795 {
796 struct net_device *dev;
797
798 rcu_read_lock();
799 dev = dev_get_by_index_rcu(net, ifindex);
800 if (dev)
801 dev_hold(dev);
802 rcu_read_unlock();
803 return dev;
804 }
805 EXPORT_SYMBOL(dev_get_by_index);
806
807 /**
808 * netdev_get_name - get a netdevice name, knowing its ifindex.
809 * @net: network namespace
810 * @name: a pointer to the buffer where the name will be stored.
811 * @ifindex: the ifindex of the interface to get the name from.
812 *
813 * The use of raw_seqcount_begin() and cond_resched() before
814 * retrying is required as we want to give the writers a chance
815 * to complete when CONFIG_PREEMPT is not set.
816 */
817 int netdev_get_name(struct net *net, char *name, int ifindex)
818 {
819 struct net_device *dev;
820 unsigned int seq;
821
822 retry:
823 seq = raw_seqcount_begin(&devnet_rename_seq);
824 rcu_read_lock();
825 dev = dev_get_by_index_rcu(net, ifindex);
826 if (!dev) {
827 rcu_read_unlock();
828 return -ENODEV;
829 }
830
831 strcpy(name, dev->name);
832 rcu_read_unlock();
833 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
834 cond_resched();
835 goto retry;
836 }
837
838 return 0;
839 }
840
841 /**
842 * dev_getbyhwaddr_rcu - find a device by its hardware address
843 * @net: the applicable net namespace
844 * @type: media type of device
845 * @ha: hardware address
846 *
847 * Search for an interface by MAC address. Returns NULL if the device
848 * is not found or a pointer to the device.
849 * The caller must hold RCU or RTNL.
850 * The returned device has not had its ref count increased
851 * and the caller must therefore be careful about locking
852 *
853 */
854
855 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
856 const char *ha)
857 {
858 struct net_device *dev;
859
860 for_each_netdev_rcu(net, dev)
861 if (dev->type == type &&
862 !memcmp(dev->dev_addr, ha, dev->addr_len))
863 return dev;
864
865 return NULL;
866 }
867 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
868
869 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
870 {
871 struct net_device *dev;
872
873 ASSERT_RTNL();
874 for_each_netdev(net, dev)
875 if (dev->type == type)
876 return dev;
877
878 return NULL;
879 }
880 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
881
882 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
883 {
884 struct net_device *dev, *ret = NULL;
885
886 rcu_read_lock();
887 for_each_netdev_rcu(net, dev)
888 if (dev->type == type) {
889 dev_hold(dev);
890 ret = dev;
891 break;
892 }
893 rcu_read_unlock();
894 return ret;
895 }
896 EXPORT_SYMBOL(dev_getfirstbyhwtype);
897
898 /**
899 * dev_get_by_flags_rcu - find any device with given flags
900 * @net: the applicable net namespace
901 * @if_flags: IFF_* values
902 * @mask: bitmask of bits in if_flags to check
903 *
904 * Search for any interface with the given flags. Returns NULL if a device
905 * is not found or a pointer to the device. Must be called inside
906 * rcu_read_lock(), and result refcount is unchanged.
907 */
908
909 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
910 unsigned short mask)
911 {
912 struct net_device *dev, *ret;
913
914 ret = NULL;
915 for_each_netdev_rcu(net, dev) {
916 if (((dev->flags ^ if_flags) & mask) == 0) {
917 ret = dev;
918 break;
919 }
920 }
921 return ret;
922 }
923 EXPORT_SYMBOL(dev_get_by_flags_rcu);
924
925 /**
926 * dev_valid_name - check if name is okay for network device
927 * @name: name string
928 *
929 * Network device names need to be valid file names to
930 * to allow sysfs to work. We also disallow any kind of
931 * whitespace.
932 */
933 bool dev_valid_name(const char *name)
934 {
935 if (*name == '\0')
936 return false;
937 if (strlen(name) >= IFNAMSIZ)
938 return false;
939 if (!strcmp(name, ".") || !strcmp(name, ".."))
940 return false;
941
942 while (*name) {
943 if (*name == '/' || isspace(*name))
944 return false;
945 name++;
946 }
947 return true;
948 }
949 EXPORT_SYMBOL(dev_valid_name);
950
951 /**
952 * __dev_alloc_name - allocate a name for a device
953 * @net: network namespace to allocate the device name in
954 * @name: name format string
955 * @buf: scratch buffer and result name string
956 *
957 * Passed a format string - eg "lt%d" it will try and find a suitable
958 * id. It scans list of devices to build up a free map, then chooses
959 * the first empty slot. The caller must hold the dev_base or rtnl lock
960 * while allocating the name and adding the device in order to avoid
961 * duplicates.
962 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
963 * Returns the number of the unit assigned or a negative errno code.
964 */
965
966 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
967 {
968 int i = 0;
969 const char *p;
970 const int max_netdevices = 8*PAGE_SIZE;
971 unsigned long *inuse;
972 struct net_device *d;
973
974 p = strnchr(name, IFNAMSIZ-1, '%');
975 if (p) {
976 /*
977 * Verify the string as this thing may have come from
978 * the user. There must be either one "%d" and no other "%"
979 * characters.
980 */
981 if (p[1] != 'd' || strchr(p + 2, '%'))
982 return -EINVAL;
983
984 /* Use one page as a bit array of possible slots */
985 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
986 if (!inuse)
987 return -ENOMEM;
988
989 for_each_netdev(net, d) {
990 if (!sscanf(d->name, name, &i))
991 continue;
992 if (i < 0 || i >= max_netdevices)
993 continue;
994
995 /* avoid cases where sscanf is not exact inverse of printf */
996 snprintf(buf, IFNAMSIZ, name, i);
997 if (!strncmp(buf, d->name, IFNAMSIZ))
998 set_bit(i, inuse);
999 }
1000
1001 i = find_first_zero_bit(inuse, max_netdevices);
1002 free_page((unsigned long) inuse);
1003 }
1004
1005 if (buf != name)
1006 snprintf(buf, IFNAMSIZ, name, i);
1007 if (!__dev_get_by_name(net, buf))
1008 return i;
1009
1010 /* It is possible to run out of possible slots
1011 * when the name is long and there isn't enough space left
1012 * for the digits, or if all bits are used.
1013 */
1014 return -ENFILE;
1015 }
1016
1017 /**
1018 * dev_alloc_name - allocate a name for a device
1019 * @dev: device
1020 * @name: name format string
1021 *
1022 * Passed a format string - eg "lt%d" it will try and find a suitable
1023 * id. It scans list of devices to build up a free map, then chooses
1024 * the first empty slot. The caller must hold the dev_base or rtnl lock
1025 * while allocating the name and adding the device in order to avoid
1026 * duplicates.
1027 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1028 * Returns the number of the unit assigned or a negative errno code.
1029 */
1030
1031 int dev_alloc_name(struct net_device *dev, const char *name)
1032 {
1033 char buf[IFNAMSIZ];
1034 struct net *net;
1035 int ret;
1036
1037 BUG_ON(!dev_net(dev));
1038 net = dev_net(dev);
1039 ret = __dev_alloc_name(net, name, buf);
1040 if (ret >= 0)
1041 strlcpy(dev->name, buf, IFNAMSIZ);
1042 return ret;
1043 }
1044 EXPORT_SYMBOL(dev_alloc_name);
1045
1046 static int dev_alloc_name_ns(struct net *net,
1047 struct net_device *dev,
1048 const char *name)
1049 {
1050 char buf[IFNAMSIZ];
1051 int ret;
1052
1053 ret = __dev_alloc_name(net, name, buf);
1054 if (ret >= 0)
1055 strlcpy(dev->name, buf, IFNAMSIZ);
1056 return ret;
1057 }
1058
1059 static int dev_get_valid_name(struct net *net,
1060 struct net_device *dev,
1061 const char *name)
1062 {
1063 BUG_ON(!net);
1064
1065 if (!dev_valid_name(name))
1066 return -EINVAL;
1067
1068 if (strchr(name, '%'))
1069 return dev_alloc_name_ns(net, dev, name);
1070 else if (__dev_get_by_name(net, name))
1071 return -EEXIST;
1072 else if (dev->name != name)
1073 strlcpy(dev->name, name, IFNAMSIZ);
1074
1075 return 0;
1076 }
1077
1078 /**
1079 * dev_change_name - change name of a device
1080 * @dev: device
1081 * @newname: name (or format string) must be at least IFNAMSIZ
1082 *
1083 * Change name of a device, can pass format strings "eth%d".
1084 * for wildcarding.
1085 */
1086 int dev_change_name(struct net_device *dev, const char *newname)
1087 {
1088 unsigned char old_assign_type;
1089 char oldname[IFNAMSIZ];
1090 int err = 0;
1091 int ret;
1092 struct net *net;
1093
1094 ASSERT_RTNL();
1095 BUG_ON(!dev_net(dev));
1096
1097 net = dev_net(dev);
1098 if (dev->flags & IFF_UP)
1099 return -EBUSY;
1100
1101 write_seqcount_begin(&devnet_rename_seq);
1102
1103 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1104 write_seqcount_end(&devnet_rename_seq);
1105 return 0;
1106 }
1107
1108 memcpy(oldname, dev->name, IFNAMSIZ);
1109
1110 err = dev_get_valid_name(net, dev, newname);
1111 if (err < 0) {
1112 write_seqcount_end(&devnet_rename_seq);
1113 return err;
1114 }
1115
1116 old_assign_type = dev->name_assign_type;
1117 dev->name_assign_type = NET_NAME_RENAMED;
1118
1119 rollback:
1120 ret = device_rename(&dev->dev, dev->name);
1121 if (ret) {
1122 memcpy(dev->name, oldname, IFNAMSIZ);
1123 dev->name_assign_type = old_assign_type;
1124 write_seqcount_end(&devnet_rename_seq);
1125 return ret;
1126 }
1127
1128 write_seqcount_end(&devnet_rename_seq);
1129
1130 netdev_adjacent_rename_links(dev, oldname);
1131
1132 write_lock_bh(&dev_base_lock);
1133 hlist_del_rcu(&dev->name_hlist);
1134 write_unlock_bh(&dev_base_lock);
1135
1136 synchronize_rcu();
1137
1138 write_lock_bh(&dev_base_lock);
1139 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1140 write_unlock_bh(&dev_base_lock);
1141
1142 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1143 ret = notifier_to_errno(ret);
1144
1145 if (ret) {
1146 /* err >= 0 after dev_alloc_name() or stores the first errno */
1147 if (err >= 0) {
1148 err = ret;
1149 write_seqcount_begin(&devnet_rename_seq);
1150 memcpy(dev->name, oldname, IFNAMSIZ);
1151 memcpy(oldname, newname, IFNAMSIZ);
1152 dev->name_assign_type = old_assign_type;
1153 old_assign_type = NET_NAME_RENAMED;
1154 goto rollback;
1155 } else {
1156 pr_err("%s: name change rollback failed: %d\n",
1157 dev->name, ret);
1158 }
1159 }
1160
1161 return err;
1162 }
1163
1164 /**
1165 * dev_set_alias - change ifalias of a device
1166 * @dev: device
1167 * @alias: name up to IFALIASZ
1168 * @len: limit of bytes to copy from info
1169 *
1170 * Set ifalias for a device,
1171 */
1172 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1173 {
1174 char *new_ifalias;
1175
1176 ASSERT_RTNL();
1177
1178 if (len >= IFALIASZ)
1179 return -EINVAL;
1180
1181 if (!len) {
1182 kfree(dev->ifalias);
1183 dev->ifalias = NULL;
1184 return 0;
1185 }
1186
1187 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1188 if (!new_ifalias)
1189 return -ENOMEM;
1190 dev->ifalias = new_ifalias;
1191
1192 strlcpy(dev->ifalias, alias, len+1);
1193 return len;
1194 }
1195
1196
1197 /**
1198 * netdev_features_change - device changes features
1199 * @dev: device to cause notification
1200 *
1201 * Called to indicate a device has changed features.
1202 */
1203 void netdev_features_change(struct net_device *dev)
1204 {
1205 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1206 }
1207 EXPORT_SYMBOL(netdev_features_change);
1208
1209 /**
1210 * netdev_state_change - device changes state
1211 * @dev: device to cause notification
1212 *
1213 * Called to indicate a device has changed state. This function calls
1214 * the notifier chains for netdev_chain and sends a NEWLINK message
1215 * to the routing socket.
1216 */
1217 void netdev_state_change(struct net_device *dev)
1218 {
1219 if (dev->flags & IFF_UP) {
1220 struct netdev_notifier_change_info change_info;
1221
1222 change_info.flags_changed = 0;
1223 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1224 &change_info.info);
1225 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1226 }
1227 }
1228 EXPORT_SYMBOL(netdev_state_change);
1229
1230 /**
1231 * netdev_notify_peers - notify network peers about existence of @dev
1232 * @dev: network device
1233 *
1234 * Generate traffic such that interested network peers are aware of
1235 * @dev, such as by generating a gratuitous ARP. This may be used when
1236 * a device wants to inform the rest of the network about some sort of
1237 * reconfiguration such as a failover event or virtual machine
1238 * migration.
1239 */
1240 void netdev_notify_peers(struct net_device *dev)
1241 {
1242 rtnl_lock();
1243 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1244 rtnl_unlock();
1245 }
1246 EXPORT_SYMBOL(netdev_notify_peers);
1247
1248 static int __dev_open(struct net_device *dev)
1249 {
1250 const struct net_device_ops *ops = dev->netdev_ops;
1251 int ret;
1252
1253 ASSERT_RTNL();
1254
1255 if (!netif_device_present(dev))
1256 return -ENODEV;
1257
1258 /* Block netpoll from trying to do any rx path servicing.
1259 * If we don't do this there is a chance ndo_poll_controller
1260 * or ndo_poll may be running while we open the device
1261 */
1262 netpoll_poll_disable(dev);
1263
1264 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1265 ret = notifier_to_errno(ret);
1266 if (ret)
1267 return ret;
1268
1269 set_bit(__LINK_STATE_START, &dev->state);
1270
1271 if (ops->ndo_validate_addr)
1272 ret = ops->ndo_validate_addr(dev);
1273
1274 if (!ret && ops->ndo_open)
1275 ret = ops->ndo_open(dev);
1276
1277 netpoll_poll_enable(dev);
1278
1279 if (ret)
1280 clear_bit(__LINK_STATE_START, &dev->state);
1281 else {
1282 dev->flags |= IFF_UP;
1283 net_dmaengine_get();
1284 dev_set_rx_mode(dev);
1285 dev_activate(dev);
1286 add_device_randomness(dev->dev_addr, dev->addr_len);
1287 }
1288
1289 return ret;
1290 }
1291
1292 /**
1293 * dev_open - prepare an interface for use.
1294 * @dev: device to open
1295 *
1296 * Takes a device from down to up state. The device's private open
1297 * function is invoked and then the multicast lists are loaded. Finally
1298 * the device is moved into the up state and a %NETDEV_UP message is
1299 * sent to the netdev notifier chain.
1300 *
1301 * Calling this function on an active interface is a nop. On a failure
1302 * a negative errno code is returned.
1303 */
1304 int dev_open(struct net_device *dev)
1305 {
1306 int ret;
1307
1308 if (dev->flags & IFF_UP)
1309 return 0;
1310
1311 ret = __dev_open(dev);
1312 if (ret < 0)
1313 return ret;
1314
1315 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1316 call_netdevice_notifiers(NETDEV_UP, dev);
1317
1318 return ret;
1319 }
1320 EXPORT_SYMBOL(dev_open);
1321
1322 static int __dev_close_many(struct list_head *head)
1323 {
1324 struct net_device *dev;
1325
1326 ASSERT_RTNL();
1327 might_sleep();
1328
1329 list_for_each_entry(dev, head, close_list) {
1330 /* Temporarily disable netpoll until the interface is down */
1331 netpoll_poll_disable(dev);
1332
1333 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1334
1335 clear_bit(__LINK_STATE_START, &dev->state);
1336
1337 /* Synchronize to scheduled poll. We cannot touch poll list, it
1338 * can be even on different cpu. So just clear netif_running().
1339 *
1340 * dev->stop() will invoke napi_disable() on all of it's
1341 * napi_struct instances on this device.
1342 */
1343 smp_mb__after_atomic(); /* Commit netif_running(). */
1344 }
1345
1346 dev_deactivate_many(head);
1347
1348 list_for_each_entry(dev, head, close_list) {
1349 const struct net_device_ops *ops = dev->netdev_ops;
1350
1351 /*
1352 * Call the device specific close. This cannot fail.
1353 * Only if device is UP
1354 *
1355 * We allow it to be called even after a DETACH hot-plug
1356 * event.
1357 */
1358 if (ops->ndo_stop)
1359 ops->ndo_stop(dev);
1360
1361 dev->flags &= ~IFF_UP;
1362 net_dmaengine_put();
1363 netpoll_poll_enable(dev);
1364 }
1365
1366 return 0;
1367 }
1368
1369 static int __dev_close(struct net_device *dev)
1370 {
1371 int retval;
1372 LIST_HEAD(single);
1373
1374 list_add(&dev->close_list, &single);
1375 retval = __dev_close_many(&single);
1376 list_del(&single);
1377
1378 return retval;
1379 }
1380
1381 static int dev_close_many(struct list_head *head)
1382 {
1383 struct net_device *dev, *tmp;
1384
1385 /* Remove the devices that don't need to be closed */
1386 list_for_each_entry_safe(dev, tmp, head, close_list)
1387 if (!(dev->flags & IFF_UP))
1388 list_del_init(&dev->close_list);
1389
1390 __dev_close_many(head);
1391
1392 list_for_each_entry_safe(dev, tmp, head, close_list) {
1393 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1394 call_netdevice_notifiers(NETDEV_DOWN, dev);
1395 list_del_init(&dev->close_list);
1396 }
1397
1398 return 0;
1399 }
1400
1401 /**
1402 * dev_close - shutdown an interface.
1403 * @dev: device to shutdown
1404 *
1405 * This function moves an active device into down state. A
1406 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1407 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1408 * chain.
1409 */
1410 int dev_close(struct net_device *dev)
1411 {
1412 if (dev->flags & IFF_UP) {
1413 LIST_HEAD(single);
1414
1415 list_add(&dev->close_list, &single);
1416 dev_close_many(&single);
1417 list_del(&single);
1418 }
1419 return 0;
1420 }
1421 EXPORT_SYMBOL(dev_close);
1422
1423
1424 /**
1425 * dev_disable_lro - disable Large Receive Offload on a device
1426 * @dev: device
1427 *
1428 * Disable Large Receive Offload (LRO) on a net device. Must be
1429 * called under RTNL. This is needed if received packets may be
1430 * forwarded to another interface.
1431 */
1432 void dev_disable_lro(struct net_device *dev)
1433 {
1434 /*
1435 * If we're trying to disable lro on a vlan device
1436 * use the underlying physical device instead
1437 */
1438 if (is_vlan_dev(dev))
1439 dev = vlan_dev_real_dev(dev);
1440
1441 /* the same for macvlan devices */
1442 if (netif_is_macvlan(dev))
1443 dev = macvlan_dev_real_dev(dev);
1444
1445 dev->wanted_features &= ~NETIF_F_LRO;
1446 netdev_update_features(dev);
1447
1448 if (unlikely(dev->features & NETIF_F_LRO))
1449 netdev_WARN(dev, "failed to disable LRO!\n");
1450 }
1451 EXPORT_SYMBOL(dev_disable_lro);
1452
1453 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1454 struct net_device *dev)
1455 {
1456 struct netdev_notifier_info info;
1457
1458 netdev_notifier_info_init(&info, dev);
1459 return nb->notifier_call(nb, val, &info);
1460 }
1461
1462 static int dev_boot_phase = 1;
1463
1464 /**
1465 * register_netdevice_notifier - register a network notifier block
1466 * @nb: notifier
1467 *
1468 * Register a notifier to be called when network device events occur.
1469 * The notifier passed is linked into the kernel structures and must
1470 * not be reused until it has been unregistered. A negative errno code
1471 * is returned on a failure.
1472 *
1473 * When registered all registration and up events are replayed
1474 * to the new notifier to allow device to have a race free
1475 * view of the network device list.
1476 */
1477
1478 int register_netdevice_notifier(struct notifier_block *nb)
1479 {
1480 struct net_device *dev;
1481 struct net_device *last;
1482 struct net *net;
1483 int err;
1484
1485 rtnl_lock();
1486 err = raw_notifier_chain_register(&netdev_chain, nb);
1487 if (err)
1488 goto unlock;
1489 if (dev_boot_phase)
1490 goto unlock;
1491 for_each_net(net) {
1492 for_each_netdev(net, dev) {
1493 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1494 err = notifier_to_errno(err);
1495 if (err)
1496 goto rollback;
1497
1498 if (!(dev->flags & IFF_UP))
1499 continue;
1500
1501 call_netdevice_notifier(nb, NETDEV_UP, dev);
1502 }
1503 }
1504
1505 unlock:
1506 rtnl_unlock();
1507 return err;
1508
1509 rollback:
1510 last = dev;
1511 for_each_net(net) {
1512 for_each_netdev(net, dev) {
1513 if (dev == last)
1514 goto outroll;
1515
1516 if (dev->flags & IFF_UP) {
1517 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1518 dev);
1519 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1520 }
1521 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1522 }
1523 }
1524
1525 outroll:
1526 raw_notifier_chain_unregister(&netdev_chain, nb);
1527 goto unlock;
1528 }
1529 EXPORT_SYMBOL(register_netdevice_notifier);
1530
1531 /**
1532 * unregister_netdevice_notifier - unregister a network notifier block
1533 * @nb: notifier
1534 *
1535 * Unregister a notifier previously registered by
1536 * register_netdevice_notifier(). The notifier is unlinked into the
1537 * kernel structures and may then be reused. A negative errno code
1538 * is returned on a failure.
1539 *
1540 * After unregistering unregister and down device events are synthesized
1541 * for all devices on the device list to the removed notifier to remove
1542 * the need for special case cleanup code.
1543 */
1544
1545 int unregister_netdevice_notifier(struct notifier_block *nb)
1546 {
1547 struct net_device *dev;
1548 struct net *net;
1549 int err;
1550
1551 rtnl_lock();
1552 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1553 if (err)
1554 goto unlock;
1555
1556 for_each_net(net) {
1557 for_each_netdev(net, dev) {
1558 if (dev->flags & IFF_UP) {
1559 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1560 dev);
1561 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1562 }
1563 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1564 }
1565 }
1566 unlock:
1567 rtnl_unlock();
1568 return err;
1569 }
1570 EXPORT_SYMBOL(unregister_netdevice_notifier);
1571
1572 /**
1573 * call_netdevice_notifiers_info - call all network notifier blocks
1574 * @val: value passed unmodified to notifier function
1575 * @dev: net_device pointer passed unmodified to notifier function
1576 * @info: notifier information data
1577 *
1578 * Call all network notifier blocks. Parameters and return value
1579 * are as for raw_notifier_call_chain().
1580 */
1581
1582 static int call_netdevice_notifiers_info(unsigned long val,
1583 struct net_device *dev,
1584 struct netdev_notifier_info *info)
1585 {
1586 ASSERT_RTNL();
1587 netdev_notifier_info_init(info, dev);
1588 return raw_notifier_call_chain(&netdev_chain, val, info);
1589 }
1590
1591 /**
1592 * call_netdevice_notifiers - call all network notifier blocks
1593 * @val: value passed unmodified to notifier function
1594 * @dev: net_device pointer passed unmodified to notifier function
1595 *
1596 * Call all network notifier blocks. Parameters and return value
1597 * are as for raw_notifier_call_chain().
1598 */
1599
1600 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1601 {
1602 struct netdev_notifier_info info;
1603
1604 return call_netdevice_notifiers_info(val, dev, &info);
1605 }
1606 EXPORT_SYMBOL(call_netdevice_notifiers);
1607
1608 static struct static_key netstamp_needed __read_mostly;
1609 #ifdef HAVE_JUMP_LABEL
1610 /* We are not allowed to call static_key_slow_dec() from irq context
1611 * If net_disable_timestamp() is called from irq context, defer the
1612 * static_key_slow_dec() calls.
1613 */
1614 static atomic_t netstamp_needed_deferred;
1615 #endif
1616
1617 void net_enable_timestamp(void)
1618 {
1619 #ifdef HAVE_JUMP_LABEL
1620 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1621
1622 if (deferred) {
1623 while (--deferred)
1624 static_key_slow_dec(&netstamp_needed);
1625 return;
1626 }
1627 #endif
1628 static_key_slow_inc(&netstamp_needed);
1629 }
1630 EXPORT_SYMBOL(net_enable_timestamp);
1631
1632 void net_disable_timestamp(void)
1633 {
1634 #ifdef HAVE_JUMP_LABEL
1635 if (in_interrupt()) {
1636 atomic_inc(&netstamp_needed_deferred);
1637 return;
1638 }
1639 #endif
1640 static_key_slow_dec(&netstamp_needed);
1641 }
1642 EXPORT_SYMBOL(net_disable_timestamp);
1643
1644 static inline void net_timestamp_set(struct sk_buff *skb)
1645 {
1646 skb->tstamp.tv64 = 0;
1647 if (static_key_false(&netstamp_needed))
1648 __net_timestamp(skb);
1649 }
1650
1651 #define net_timestamp_check(COND, SKB) \
1652 if (static_key_false(&netstamp_needed)) { \
1653 if ((COND) && !(SKB)->tstamp.tv64) \
1654 __net_timestamp(SKB); \
1655 } \
1656
1657 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1658 {
1659 unsigned int len;
1660
1661 if (!(dev->flags & IFF_UP))
1662 return false;
1663
1664 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1665 if (skb->len <= len)
1666 return true;
1667
1668 /* if TSO is enabled, we don't care about the length as the packet
1669 * could be forwarded without being segmented before
1670 */
1671 if (skb_is_gso(skb))
1672 return true;
1673
1674 return false;
1675 }
1676 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1677
1678 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1679 {
1680 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1681 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1682 atomic_long_inc(&dev->rx_dropped);
1683 kfree_skb(skb);
1684 return NET_RX_DROP;
1685 }
1686 }
1687
1688 if (unlikely(!is_skb_forwardable(dev, skb))) {
1689 atomic_long_inc(&dev->rx_dropped);
1690 kfree_skb(skb);
1691 return NET_RX_DROP;
1692 }
1693
1694 skb_scrub_packet(skb, true);
1695 skb->protocol = eth_type_trans(skb, dev);
1696
1697 return 0;
1698 }
1699 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1700
1701 /**
1702 * dev_forward_skb - loopback an skb to another netif
1703 *
1704 * @dev: destination network device
1705 * @skb: buffer to forward
1706 *
1707 * return values:
1708 * NET_RX_SUCCESS (no congestion)
1709 * NET_RX_DROP (packet was dropped, but freed)
1710 *
1711 * dev_forward_skb can be used for injecting an skb from the
1712 * start_xmit function of one device into the receive queue
1713 * of another device.
1714 *
1715 * The receiving device may be in another namespace, so
1716 * we have to clear all information in the skb that could
1717 * impact namespace isolation.
1718 */
1719 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1720 {
1721 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1722 }
1723 EXPORT_SYMBOL_GPL(dev_forward_skb);
1724
1725 static inline int deliver_skb(struct sk_buff *skb,
1726 struct packet_type *pt_prev,
1727 struct net_device *orig_dev)
1728 {
1729 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1730 return -ENOMEM;
1731 atomic_inc(&skb->users);
1732 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1733 }
1734
1735 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1736 {
1737 if (!ptype->af_packet_priv || !skb->sk)
1738 return false;
1739
1740 if (ptype->id_match)
1741 return ptype->id_match(ptype, skb->sk);
1742 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1743 return true;
1744
1745 return false;
1746 }
1747
1748 /*
1749 * Support routine. Sends outgoing frames to any network
1750 * taps currently in use.
1751 */
1752
1753 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1754 {
1755 struct packet_type *ptype;
1756 struct sk_buff *skb2 = NULL;
1757 struct packet_type *pt_prev = NULL;
1758
1759 rcu_read_lock();
1760 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1761 /* Never send packets back to the socket
1762 * they originated from - MvS (miquels@drinkel.ow.org)
1763 */
1764 if ((ptype->dev == dev || !ptype->dev) &&
1765 (!skb_loop_sk(ptype, skb))) {
1766 if (pt_prev) {
1767 deliver_skb(skb2, pt_prev, skb->dev);
1768 pt_prev = ptype;
1769 continue;
1770 }
1771
1772 skb2 = skb_clone(skb, GFP_ATOMIC);
1773 if (!skb2)
1774 break;
1775
1776 net_timestamp_set(skb2);
1777
1778 /* skb->nh should be correctly
1779 set by sender, so that the second statement is
1780 just protection against buggy protocols.
1781 */
1782 skb_reset_mac_header(skb2);
1783
1784 if (skb_network_header(skb2) < skb2->data ||
1785 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1786 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1787 ntohs(skb2->protocol),
1788 dev->name);
1789 skb_reset_network_header(skb2);
1790 }
1791
1792 skb2->transport_header = skb2->network_header;
1793 skb2->pkt_type = PACKET_OUTGOING;
1794 pt_prev = ptype;
1795 }
1796 }
1797 if (pt_prev)
1798 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1799 rcu_read_unlock();
1800 }
1801
1802 /**
1803 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1804 * @dev: Network device
1805 * @txq: number of queues available
1806 *
1807 * If real_num_tx_queues is changed the tc mappings may no longer be
1808 * valid. To resolve this verify the tc mapping remains valid and if
1809 * not NULL the mapping. With no priorities mapping to this
1810 * offset/count pair it will no longer be used. In the worst case TC0
1811 * is invalid nothing can be done so disable priority mappings. If is
1812 * expected that drivers will fix this mapping if they can before
1813 * calling netif_set_real_num_tx_queues.
1814 */
1815 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1816 {
1817 int i;
1818 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1819
1820 /* If TC0 is invalidated disable TC mapping */
1821 if (tc->offset + tc->count > txq) {
1822 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1823 dev->num_tc = 0;
1824 return;
1825 }
1826
1827 /* Invalidated prio to tc mappings set to TC0 */
1828 for (i = 1; i < TC_BITMASK + 1; i++) {
1829 int q = netdev_get_prio_tc_map(dev, i);
1830
1831 tc = &dev->tc_to_txq[q];
1832 if (tc->offset + tc->count > txq) {
1833 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1834 i, q);
1835 netdev_set_prio_tc_map(dev, i, 0);
1836 }
1837 }
1838 }
1839
1840 #ifdef CONFIG_XPS
1841 static DEFINE_MUTEX(xps_map_mutex);
1842 #define xmap_dereference(P) \
1843 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1844
1845 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1846 int cpu, u16 index)
1847 {
1848 struct xps_map *map = NULL;
1849 int pos;
1850
1851 if (dev_maps)
1852 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1853
1854 for (pos = 0; map && pos < map->len; pos++) {
1855 if (map->queues[pos] == index) {
1856 if (map->len > 1) {
1857 map->queues[pos] = map->queues[--map->len];
1858 } else {
1859 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1860 kfree_rcu(map, rcu);
1861 map = NULL;
1862 }
1863 break;
1864 }
1865 }
1866
1867 return map;
1868 }
1869
1870 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1871 {
1872 struct xps_dev_maps *dev_maps;
1873 int cpu, i;
1874 bool active = false;
1875
1876 mutex_lock(&xps_map_mutex);
1877 dev_maps = xmap_dereference(dev->xps_maps);
1878
1879 if (!dev_maps)
1880 goto out_no_maps;
1881
1882 for_each_possible_cpu(cpu) {
1883 for (i = index; i < dev->num_tx_queues; i++) {
1884 if (!remove_xps_queue(dev_maps, cpu, i))
1885 break;
1886 }
1887 if (i == dev->num_tx_queues)
1888 active = true;
1889 }
1890
1891 if (!active) {
1892 RCU_INIT_POINTER(dev->xps_maps, NULL);
1893 kfree_rcu(dev_maps, rcu);
1894 }
1895
1896 for (i = index; i < dev->num_tx_queues; i++)
1897 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1898 NUMA_NO_NODE);
1899
1900 out_no_maps:
1901 mutex_unlock(&xps_map_mutex);
1902 }
1903
1904 static struct xps_map *expand_xps_map(struct xps_map *map,
1905 int cpu, u16 index)
1906 {
1907 struct xps_map *new_map;
1908 int alloc_len = XPS_MIN_MAP_ALLOC;
1909 int i, pos;
1910
1911 for (pos = 0; map && pos < map->len; pos++) {
1912 if (map->queues[pos] != index)
1913 continue;
1914 return map;
1915 }
1916
1917 /* Need to add queue to this CPU's existing map */
1918 if (map) {
1919 if (pos < map->alloc_len)
1920 return map;
1921
1922 alloc_len = map->alloc_len * 2;
1923 }
1924
1925 /* Need to allocate new map to store queue on this CPU's map */
1926 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1927 cpu_to_node(cpu));
1928 if (!new_map)
1929 return NULL;
1930
1931 for (i = 0; i < pos; i++)
1932 new_map->queues[i] = map->queues[i];
1933 new_map->alloc_len = alloc_len;
1934 new_map->len = pos;
1935
1936 return new_map;
1937 }
1938
1939 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1940 u16 index)
1941 {
1942 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1943 struct xps_map *map, *new_map;
1944 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1945 int cpu, numa_node_id = -2;
1946 bool active = false;
1947
1948 mutex_lock(&xps_map_mutex);
1949
1950 dev_maps = xmap_dereference(dev->xps_maps);
1951
1952 /* allocate memory for queue storage */
1953 for_each_online_cpu(cpu) {
1954 if (!cpumask_test_cpu(cpu, mask))
1955 continue;
1956
1957 if (!new_dev_maps)
1958 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1959 if (!new_dev_maps) {
1960 mutex_unlock(&xps_map_mutex);
1961 return -ENOMEM;
1962 }
1963
1964 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1965 NULL;
1966
1967 map = expand_xps_map(map, cpu, index);
1968 if (!map)
1969 goto error;
1970
1971 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1972 }
1973
1974 if (!new_dev_maps)
1975 goto out_no_new_maps;
1976
1977 for_each_possible_cpu(cpu) {
1978 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1979 /* add queue to CPU maps */
1980 int pos = 0;
1981
1982 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1983 while ((pos < map->len) && (map->queues[pos] != index))
1984 pos++;
1985
1986 if (pos == map->len)
1987 map->queues[map->len++] = index;
1988 #ifdef CONFIG_NUMA
1989 if (numa_node_id == -2)
1990 numa_node_id = cpu_to_node(cpu);
1991 else if (numa_node_id != cpu_to_node(cpu))
1992 numa_node_id = -1;
1993 #endif
1994 } else if (dev_maps) {
1995 /* fill in the new device map from the old device map */
1996 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1997 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1998 }
1999
2000 }
2001
2002 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2003
2004 /* Cleanup old maps */
2005 if (dev_maps) {
2006 for_each_possible_cpu(cpu) {
2007 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2008 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2009 if (map && map != new_map)
2010 kfree_rcu(map, rcu);
2011 }
2012
2013 kfree_rcu(dev_maps, rcu);
2014 }
2015
2016 dev_maps = new_dev_maps;
2017 active = true;
2018
2019 out_no_new_maps:
2020 /* update Tx queue numa node */
2021 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2022 (numa_node_id >= 0) ? numa_node_id :
2023 NUMA_NO_NODE);
2024
2025 if (!dev_maps)
2026 goto out_no_maps;
2027
2028 /* removes queue from unused CPUs */
2029 for_each_possible_cpu(cpu) {
2030 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2031 continue;
2032
2033 if (remove_xps_queue(dev_maps, cpu, index))
2034 active = true;
2035 }
2036
2037 /* free map if not active */
2038 if (!active) {
2039 RCU_INIT_POINTER(dev->xps_maps, NULL);
2040 kfree_rcu(dev_maps, rcu);
2041 }
2042
2043 out_no_maps:
2044 mutex_unlock(&xps_map_mutex);
2045
2046 return 0;
2047 error:
2048 /* remove any maps that we added */
2049 for_each_possible_cpu(cpu) {
2050 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2051 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2052 NULL;
2053 if (new_map && new_map != map)
2054 kfree(new_map);
2055 }
2056
2057 mutex_unlock(&xps_map_mutex);
2058
2059 kfree(new_dev_maps);
2060 return -ENOMEM;
2061 }
2062 EXPORT_SYMBOL(netif_set_xps_queue);
2063
2064 #endif
2065 /*
2066 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2067 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2068 */
2069 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2070 {
2071 int rc;
2072
2073 if (txq < 1 || txq > dev->num_tx_queues)
2074 return -EINVAL;
2075
2076 if (dev->reg_state == NETREG_REGISTERED ||
2077 dev->reg_state == NETREG_UNREGISTERING) {
2078 ASSERT_RTNL();
2079
2080 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2081 txq);
2082 if (rc)
2083 return rc;
2084
2085 if (dev->num_tc)
2086 netif_setup_tc(dev, txq);
2087
2088 if (txq < dev->real_num_tx_queues) {
2089 qdisc_reset_all_tx_gt(dev, txq);
2090 #ifdef CONFIG_XPS
2091 netif_reset_xps_queues_gt(dev, txq);
2092 #endif
2093 }
2094 }
2095
2096 dev->real_num_tx_queues = txq;
2097 return 0;
2098 }
2099 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2100
2101 #ifdef CONFIG_SYSFS
2102 /**
2103 * netif_set_real_num_rx_queues - set actual number of RX queues used
2104 * @dev: Network device
2105 * @rxq: Actual number of RX queues
2106 *
2107 * This must be called either with the rtnl_lock held or before
2108 * registration of the net device. Returns 0 on success, or a
2109 * negative error code. If called before registration, it always
2110 * succeeds.
2111 */
2112 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2113 {
2114 int rc;
2115
2116 if (rxq < 1 || rxq > dev->num_rx_queues)
2117 return -EINVAL;
2118
2119 if (dev->reg_state == NETREG_REGISTERED) {
2120 ASSERT_RTNL();
2121
2122 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2123 rxq);
2124 if (rc)
2125 return rc;
2126 }
2127
2128 dev->real_num_rx_queues = rxq;
2129 return 0;
2130 }
2131 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2132 #endif
2133
2134 /**
2135 * netif_get_num_default_rss_queues - default number of RSS queues
2136 *
2137 * This routine should set an upper limit on the number of RSS queues
2138 * used by default by multiqueue devices.
2139 */
2140 int netif_get_num_default_rss_queues(void)
2141 {
2142 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2143 }
2144 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2145
2146 static inline void __netif_reschedule(struct Qdisc *q)
2147 {
2148 struct softnet_data *sd;
2149 unsigned long flags;
2150
2151 local_irq_save(flags);
2152 sd = &__get_cpu_var(softnet_data);
2153 q->next_sched = NULL;
2154 *sd->output_queue_tailp = q;
2155 sd->output_queue_tailp = &q->next_sched;
2156 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2157 local_irq_restore(flags);
2158 }
2159
2160 void __netif_schedule(struct Qdisc *q)
2161 {
2162 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2163 __netif_reschedule(q);
2164 }
2165 EXPORT_SYMBOL(__netif_schedule);
2166
2167 struct dev_kfree_skb_cb {
2168 enum skb_free_reason reason;
2169 };
2170
2171 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2172 {
2173 return (struct dev_kfree_skb_cb *)skb->cb;
2174 }
2175
2176 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2177 {
2178 unsigned long flags;
2179
2180 if (likely(atomic_read(&skb->users) == 1)) {
2181 smp_rmb();
2182 atomic_set(&skb->users, 0);
2183 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2184 return;
2185 }
2186 get_kfree_skb_cb(skb)->reason = reason;
2187 local_irq_save(flags);
2188 skb->next = __this_cpu_read(softnet_data.completion_queue);
2189 __this_cpu_write(softnet_data.completion_queue, skb);
2190 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2191 local_irq_restore(flags);
2192 }
2193 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2194
2195 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2196 {
2197 if (in_irq() || irqs_disabled())
2198 __dev_kfree_skb_irq(skb, reason);
2199 else
2200 dev_kfree_skb(skb);
2201 }
2202 EXPORT_SYMBOL(__dev_kfree_skb_any);
2203
2204
2205 /**
2206 * netif_device_detach - mark device as removed
2207 * @dev: network device
2208 *
2209 * Mark device as removed from system and therefore no longer available.
2210 */
2211 void netif_device_detach(struct net_device *dev)
2212 {
2213 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2214 netif_running(dev)) {
2215 netif_tx_stop_all_queues(dev);
2216 }
2217 }
2218 EXPORT_SYMBOL(netif_device_detach);
2219
2220 /**
2221 * netif_device_attach - mark device as attached
2222 * @dev: network device
2223 *
2224 * Mark device as attached from system and restart if needed.
2225 */
2226 void netif_device_attach(struct net_device *dev)
2227 {
2228 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2229 netif_running(dev)) {
2230 netif_tx_wake_all_queues(dev);
2231 __netdev_watchdog_up(dev);
2232 }
2233 }
2234 EXPORT_SYMBOL(netif_device_attach);
2235
2236 static void skb_warn_bad_offload(const struct sk_buff *skb)
2237 {
2238 static const netdev_features_t null_features = 0;
2239 struct net_device *dev = skb->dev;
2240 const char *driver = "";
2241
2242 if (!net_ratelimit())
2243 return;
2244
2245 if (dev && dev->dev.parent)
2246 driver = dev_driver_string(dev->dev.parent);
2247
2248 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2249 "gso_type=%d ip_summed=%d\n",
2250 driver, dev ? &dev->features : &null_features,
2251 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2252 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2253 skb_shinfo(skb)->gso_type, skb->ip_summed);
2254 }
2255
2256 /*
2257 * Invalidate hardware checksum when packet is to be mangled, and
2258 * complete checksum manually on outgoing path.
2259 */
2260 int skb_checksum_help(struct sk_buff *skb)
2261 {
2262 __wsum csum;
2263 int ret = 0, offset;
2264
2265 if (skb->ip_summed == CHECKSUM_COMPLETE)
2266 goto out_set_summed;
2267
2268 if (unlikely(skb_shinfo(skb)->gso_size)) {
2269 skb_warn_bad_offload(skb);
2270 return -EINVAL;
2271 }
2272
2273 /* Before computing a checksum, we should make sure no frag could
2274 * be modified by an external entity : checksum could be wrong.
2275 */
2276 if (skb_has_shared_frag(skb)) {
2277 ret = __skb_linearize(skb);
2278 if (ret)
2279 goto out;
2280 }
2281
2282 offset = skb_checksum_start_offset(skb);
2283 BUG_ON(offset >= skb_headlen(skb));
2284 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2285
2286 offset += skb->csum_offset;
2287 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2288
2289 if (skb_cloned(skb) &&
2290 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2291 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2292 if (ret)
2293 goto out;
2294 }
2295
2296 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2297 out_set_summed:
2298 skb->ip_summed = CHECKSUM_NONE;
2299 out:
2300 return ret;
2301 }
2302 EXPORT_SYMBOL(skb_checksum_help);
2303
2304 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2305 {
2306 unsigned int vlan_depth = skb->mac_len;
2307 __be16 type = skb->protocol;
2308
2309 /* Tunnel gso handlers can set protocol to ethernet. */
2310 if (type == htons(ETH_P_TEB)) {
2311 struct ethhdr *eth;
2312
2313 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2314 return 0;
2315
2316 eth = (struct ethhdr *)skb_mac_header(skb);
2317 type = eth->h_proto;
2318 }
2319
2320 /* if skb->protocol is 802.1Q/AD then the header should already be
2321 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2322 * ETH_HLEN otherwise
2323 */
2324 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2325 if (vlan_depth) {
2326 if (unlikely(WARN_ON(vlan_depth < VLAN_HLEN)))
2327 return 0;
2328 vlan_depth -= VLAN_HLEN;
2329 } else {
2330 vlan_depth = ETH_HLEN;
2331 }
2332 do {
2333 struct vlan_hdr *vh;
2334
2335 if (unlikely(!pskb_may_pull(skb,
2336 vlan_depth + VLAN_HLEN)))
2337 return 0;
2338
2339 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2340 type = vh->h_vlan_encapsulated_proto;
2341 vlan_depth += VLAN_HLEN;
2342 } while (type == htons(ETH_P_8021Q) ||
2343 type == htons(ETH_P_8021AD));
2344 }
2345
2346 *depth = vlan_depth;
2347
2348 return type;
2349 }
2350
2351 /**
2352 * skb_mac_gso_segment - mac layer segmentation handler.
2353 * @skb: buffer to segment
2354 * @features: features for the output path (see dev->features)
2355 */
2356 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2357 netdev_features_t features)
2358 {
2359 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2360 struct packet_offload *ptype;
2361 int vlan_depth = skb->mac_len;
2362 __be16 type = skb_network_protocol(skb, &vlan_depth);
2363
2364 if (unlikely(!type))
2365 return ERR_PTR(-EINVAL);
2366
2367 __skb_pull(skb, vlan_depth);
2368
2369 rcu_read_lock();
2370 list_for_each_entry_rcu(ptype, &offload_base, list) {
2371 if (ptype->type == type && ptype->callbacks.gso_segment) {
2372 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2373 int err;
2374
2375 err = ptype->callbacks.gso_send_check(skb);
2376 segs = ERR_PTR(err);
2377 if (err || skb_gso_ok(skb, features))
2378 break;
2379 __skb_push(skb, (skb->data -
2380 skb_network_header(skb)));
2381 }
2382 segs = ptype->callbacks.gso_segment(skb, features);
2383 break;
2384 }
2385 }
2386 rcu_read_unlock();
2387
2388 __skb_push(skb, skb->data - skb_mac_header(skb));
2389
2390 return segs;
2391 }
2392 EXPORT_SYMBOL(skb_mac_gso_segment);
2393
2394
2395 /* openvswitch calls this on rx path, so we need a different check.
2396 */
2397 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2398 {
2399 if (tx_path)
2400 return skb->ip_summed != CHECKSUM_PARTIAL;
2401 else
2402 return skb->ip_summed == CHECKSUM_NONE;
2403 }
2404
2405 /**
2406 * __skb_gso_segment - Perform segmentation on skb.
2407 * @skb: buffer to segment
2408 * @features: features for the output path (see dev->features)
2409 * @tx_path: whether it is called in TX path
2410 *
2411 * This function segments the given skb and returns a list of segments.
2412 *
2413 * It may return NULL if the skb requires no segmentation. This is
2414 * only possible when GSO is used for verifying header integrity.
2415 */
2416 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2417 netdev_features_t features, bool tx_path)
2418 {
2419 if (unlikely(skb_needs_check(skb, tx_path))) {
2420 int err;
2421
2422 skb_warn_bad_offload(skb);
2423
2424 err = skb_cow_head(skb, 0);
2425 if (err < 0)
2426 return ERR_PTR(err);
2427 }
2428
2429 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2430 SKB_GSO_CB(skb)->encap_level = 0;
2431
2432 skb_reset_mac_header(skb);
2433 skb_reset_mac_len(skb);
2434
2435 return skb_mac_gso_segment(skb, features);
2436 }
2437 EXPORT_SYMBOL(__skb_gso_segment);
2438
2439 /* Take action when hardware reception checksum errors are detected. */
2440 #ifdef CONFIG_BUG
2441 void netdev_rx_csum_fault(struct net_device *dev)
2442 {
2443 if (net_ratelimit()) {
2444 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2445 dump_stack();
2446 }
2447 }
2448 EXPORT_SYMBOL(netdev_rx_csum_fault);
2449 #endif
2450
2451 /* Actually, we should eliminate this check as soon as we know, that:
2452 * 1. IOMMU is present and allows to map all the memory.
2453 * 2. No high memory really exists on this machine.
2454 */
2455
2456 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2457 {
2458 #ifdef CONFIG_HIGHMEM
2459 int i;
2460 if (!(dev->features & NETIF_F_HIGHDMA)) {
2461 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2462 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2463 if (PageHighMem(skb_frag_page(frag)))
2464 return 1;
2465 }
2466 }
2467
2468 if (PCI_DMA_BUS_IS_PHYS) {
2469 struct device *pdev = dev->dev.parent;
2470
2471 if (!pdev)
2472 return 0;
2473 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2474 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2475 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2476 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2477 return 1;
2478 }
2479 }
2480 #endif
2481 return 0;
2482 }
2483
2484 struct dev_gso_cb {
2485 void (*destructor)(struct sk_buff *skb);
2486 };
2487
2488 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2489
2490 static void dev_gso_skb_destructor(struct sk_buff *skb)
2491 {
2492 struct dev_gso_cb *cb;
2493
2494 kfree_skb_list(skb->next);
2495 skb->next = NULL;
2496
2497 cb = DEV_GSO_CB(skb);
2498 if (cb->destructor)
2499 cb->destructor(skb);
2500 }
2501
2502 /**
2503 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2504 * @skb: buffer to segment
2505 * @features: device features as applicable to this skb
2506 *
2507 * This function segments the given skb and stores the list of segments
2508 * in skb->next.
2509 */
2510 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2511 {
2512 struct sk_buff *segs;
2513
2514 segs = skb_gso_segment(skb, features);
2515
2516 /* Verifying header integrity only. */
2517 if (!segs)
2518 return 0;
2519
2520 if (IS_ERR(segs))
2521 return PTR_ERR(segs);
2522
2523 skb->next = segs;
2524 DEV_GSO_CB(skb)->destructor = skb->destructor;
2525 skb->destructor = dev_gso_skb_destructor;
2526
2527 return 0;
2528 }
2529
2530 /* If MPLS offload request, verify we are testing hardware MPLS features
2531 * instead of standard features for the netdev.
2532 */
2533 #ifdef CONFIG_NET_MPLS_GSO
2534 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2535 netdev_features_t features,
2536 __be16 type)
2537 {
2538 if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC))
2539 features &= skb->dev->mpls_features;
2540
2541 return features;
2542 }
2543 #else
2544 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2545 netdev_features_t features,
2546 __be16 type)
2547 {
2548 return features;
2549 }
2550 #endif
2551
2552 static netdev_features_t harmonize_features(struct sk_buff *skb,
2553 netdev_features_t features)
2554 {
2555 int tmp;
2556 __be16 type;
2557
2558 type = skb_network_protocol(skb, &tmp);
2559 features = net_mpls_features(skb, features, type);
2560
2561 if (skb->ip_summed != CHECKSUM_NONE &&
2562 !can_checksum_protocol(features, type)) {
2563 features &= ~NETIF_F_ALL_CSUM;
2564 } else if (illegal_highdma(skb->dev, skb)) {
2565 features &= ~NETIF_F_SG;
2566 }
2567
2568 return features;
2569 }
2570
2571 netdev_features_t netif_skb_features(struct sk_buff *skb)
2572 {
2573 __be16 protocol = skb->protocol;
2574 netdev_features_t features = skb->dev->features;
2575
2576 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2577 features &= ~NETIF_F_GSO_MASK;
2578
2579 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2580 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2581 protocol = veh->h_vlan_encapsulated_proto;
2582 } else if (!vlan_tx_tag_present(skb)) {
2583 return harmonize_features(skb, features);
2584 }
2585
2586 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2587 NETIF_F_HW_VLAN_STAG_TX);
2588
2589 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2590 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2591 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2592 NETIF_F_HW_VLAN_STAG_TX;
2593
2594 return harmonize_features(skb, features);
2595 }
2596 EXPORT_SYMBOL(netif_skb_features);
2597
2598 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2599 struct netdev_queue *txq)
2600 {
2601 const struct net_device_ops *ops = dev->netdev_ops;
2602 int rc = NETDEV_TX_OK;
2603 unsigned int skb_len;
2604
2605 if (likely(!skb->next)) {
2606 netdev_features_t features;
2607
2608 /*
2609 * If device doesn't need skb->dst, release it right now while
2610 * its hot in this cpu cache
2611 */
2612 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2613 skb_dst_drop(skb);
2614
2615 features = netif_skb_features(skb);
2616
2617 if (vlan_tx_tag_present(skb) &&
2618 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2619 skb = __vlan_put_tag(skb, skb->vlan_proto,
2620 vlan_tx_tag_get(skb));
2621 if (unlikely(!skb))
2622 goto out;
2623
2624 skb->vlan_tci = 0;
2625 }
2626
2627 /* If encapsulation offload request, verify we are testing
2628 * hardware encapsulation features instead of standard
2629 * features for the netdev
2630 */
2631 if (skb->encapsulation)
2632 features &= dev->hw_enc_features;
2633
2634 if (netif_needs_gso(skb, features)) {
2635 if (unlikely(dev_gso_segment(skb, features)))
2636 goto out_kfree_skb;
2637 if (skb->next)
2638 goto gso;
2639 } else {
2640 if (skb_needs_linearize(skb, features) &&
2641 __skb_linearize(skb))
2642 goto out_kfree_skb;
2643
2644 /* If packet is not checksummed and device does not
2645 * support checksumming for this protocol, complete
2646 * checksumming here.
2647 */
2648 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2649 if (skb->encapsulation)
2650 skb_set_inner_transport_header(skb,
2651 skb_checksum_start_offset(skb));
2652 else
2653 skb_set_transport_header(skb,
2654 skb_checksum_start_offset(skb));
2655 if (!(features & NETIF_F_ALL_CSUM) &&
2656 skb_checksum_help(skb))
2657 goto out_kfree_skb;
2658 }
2659 }
2660
2661 if (!list_empty(&ptype_all))
2662 dev_queue_xmit_nit(skb, dev);
2663
2664 skb_len = skb->len;
2665 trace_net_dev_start_xmit(skb, dev);
2666 rc = ops->ndo_start_xmit(skb, dev);
2667 trace_net_dev_xmit(skb, rc, dev, skb_len);
2668 if (rc == NETDEV_TX_OK)
2669 txq_trans_update(txq);
2670 return rc;
2671 }
2672
2673 gso:
2674 do {
2675 struct sk_buff *nskb = skb->next;
2676
2677 skb->next = nskb->next;
2678 nskb->next = NULL;
2679
2680 if (!list_empty(&ptype_all))
2681 dev_queue_xmit_nit(nskb, dev);
2682
2683 skb_len = nskb->len;
2684 trace_net_dev_start_xmit(nskb, dev);
2685 rc = ops->ndo_start_xmit(nskb, dev);
2686 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2687 if (unlikely(rc != NETDEV_TX_OK)) {
2688 if (rc & ~NETDEV_TX_MASK)
2689 goto out_kfree_gso_skb;
2690 nskb->next = skb->next;
2691 skb->next = nskb;
2692 return rc;
2693 }
2694 txq_trans_update(txq);
2695 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2696 return NETDEV_TX_BUSY;
2697 } while (skb->next);
2698
2699 out_kfree_gso_skb:
2700 if (likely(skb->next == NULL)) {
2701 skb->destructor = DEV_GSO_CB(skb)->destructor;
2702 consume_skb(skb);
2703 return rc;
2704 }
2705 out_kfree_skb:
2706 kfree_skb(skb);
2707 out:
2708 return rc;
2709 }
2710 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2711
2712 static void qdisc_pkt_len_init(struct sk_buff *skb)
2713 {
2714 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2715
2716 qdisc_skb_cb(skb)->pkt_len = skb->len;
2717
2718 /* To get more precise estimation of bytes sent on wire,
2719 * we add to pkt_len the headers size of all segments
2720 */
2721 if (shinfo->gso_size) {
2722 unsigned int hdr_len;
2723 u16 gso_segs = shinfo->gso_segs;
2724
2725 /* mac layer + network layer */
2726 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2727
2728 /* + transport layer */
2729 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2730 hdr_len += tcp_hdrlen(skb);
2731 else
2732 hdr_len += sizeof(struct udphdr);
2733
2734 if (shinfo->gso_type & SKB_GSO_DODGY)
2735 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2736 shinfo->gso_size);
2737
2738 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2739 }
2740 }
2741
2742 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2743 struct net_device *dev,
2744 struct netdev_queue *txq)
2745 {
2746 spinlock_t *root_lock = qdisc_lock(q);
2747 bool contended;
2748 int rc;
2749
2750 qdisc_pkt_len_init(skb);
2751 qdisc_calculate_pkt_len(skb, q);
2752 /*
2753 * Heuristic to force contended enqueues to serialize on a
2754 * separate lock before trying to get qdisc main lock.
2755 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2756 * often and dequeue packets faster.
2757 */
2758 contended = qdisc_is_running(q);
2759 if (unlikely(contended))
2760 spin_lock(&q->busylock);
2761
2762 spin_lock(root_lock);
2763 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2764 kfree_skb(skb);
2765 rc = NET_XMIT_DROP;
2766 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2767 qdisc_run_begin(q)) {
2768 /*
2769 * This is a work-conserving queue; there are no old skbs
2770 * waiting to be sent out; and the qdisc is not running -
2771 * xmit the skb directly.
2772 */
2773 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2774 skb_dst_force(skb);
2775
2776 qdisc_bstats_update(q, skb);
2777
2778 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2779 if (unlikely(contended)) {
2780 spin_unlock(&q->busylock);
2781 contended = false;
2782 }
2783 __qdisc_run(q);
2784 } else
2785 qdisc_run_end(q);
2786
2787 rc = NET_XMIT_SUCCESS;
2788 } else {
2789 skb_dst_force(skb);
2790 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2791 if (qdisc_run_begin(q)) {
2792 if (unlikely(contended)) {
2793 spin_unlock(&q->busylock);
2794 contended = false;
2795 }
2796 __qdisc_run(q);
2797 }
2798 }
2799 spin_unlock(root_lock);
2800 if (unlikely(contended))
2801 spin_unlock(&q->busylock);
2802 return rc;
2803 }
2804
2805 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2806 static void skb_update_prio(struct sk_buff *skb)
2807 {
2808 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2809
2810 if (!skb->priority && skb->sk && map) {
2811 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2812
2813 if (prioidx < map->priomap_len)
2814 skb->priority = map->priomap[prioidx];
2815 }
2816 }
2817 #else
2818 #define skb_update_prio(skb)
2819 #endif
2820
2821 static DEFINE_PER_CPU(int, xmit_recursion);
2822 #define RECURSION_LIMIT 10
2823
2824 /**
2825 * dev_loopback_xmit - loop back @skb
2826 * @skb: buffer to transmit
2827 */
2828 int dev_loopback_xmit(struct sk_buff *skb)
2829 {
2830 skb_reset_mac_header(skb);
2831 __skb_pull(skb, skb_network_offset(skb));
2832 skb->pkt_type = PACKET_LOOPBACK;
2833 skb->ip_summed = CHECKSUM_UNNECESSARY;
2834 WARN_ON(!skb_dst(skb));
2835 skb_dst_force(skb);
2836 netif_rx_ni(skb);
2837 return 0;
2838 }
2839 EXPORT_SYMBOL(dev_loopback_xmit);
2840
2841 /**
2842 * __dev_queue_xmit - transmit a buffer
2843 * @skb: buffer to transmit
2844 * @accel_priv: private data used for L2 forwarding offload
2845 *
2846 * Queue a buffer for transmission to a network device. The caller must
2847 * have set the device and priority and built the buffer before calling
2848 * this function. The function can be called from an interrupt.
2849 *
2850 * A negative errno code is returned on a failure. A success does not
2851 * guarantee the frame will be transmitted as it may be dropped due
2852 * to congestion or traffic shaping.
2853 *
2854 * -----------------------------------------------------------------------------------
2855 * I notice this method can also return errors from the queue disciplines,
2856 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2857 * be positive.
2858 *
2859 * Regardless of the return value, the skb is consumed, so it is currently
2860 * difficult to retry a send to this method. (You can bump the ref count
2861 * before sending to hold a reference for retry if you are careful.)
2862 *
2863 * When calling this method, interrupts MUST be enabled. This is because
2864 * the BH enable code must have IRQs enabled so that it will not deadlock.
2865 * --BLG
2866 */
2867 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2868 {
2869 struct net_device *dev = skb->dev;
2870 struct netdev_queue *txq;
2871 struct Qdisc *q;
2872 int rc = -ENOMEM;
2873
2874 skb_reset_mac_header(skb);
2875
2876 /* Disable soft irqs for various locks below. Also
2877 * stops preemption for RCU.
2878 */
2879 rcu_read_lock_bh();
2880
2881 skb_update_prio(skb);
2882
2883 txq = netdev_pick_tx(dev, skb, accel_priv);
2884 q = rcu_dereference_bh(txq->qdisc);
2885
2886 #ifdef CONFIG_NET_CLS_ACT
2887 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2888 #endif
2889 trace_net_dev_queue(skb);
2890 if (q->enqueue) {
2891 rc = __dev_xmit_skb(skb, q, dev, txq);
2892 goto out;
2893 }
2894
2895 /* The device has no queue. Common case for software devices:
2896 loopback, all the sorts of tunnels...
2897
2898 Really, it is unlikely that netif_tx_lock protection is necessary
2899 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2900 counters.)
2901 However, it is possible, that they rely on protection
2902 made by us here.
2903
2904 Check this and shot the lock. It is not prone from deadlocks.
2905 Either shot noqueue qdisc, it is even simpler 8)
2906 */
2907 if (dev->flags & IFF_UP) {
2908 int cpu = smp_processor_id(); /* ok because BHs are off */
2909
2910 if (txq->xmit_lock_owner != cpu) {
2911
2912 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2913 goto recursion_alert;
2914
2915 HARD_TX_LOCK(dev, txq, cpu);
2916
2917 if (!netif_xmit_stopped(txq)) {
2918 __this_cpu_inc(xmit_recursion);
2919 rc = dev_hard_start_xmit(skb, dev, txq);
2920 __this_cpu_dec(xmit_recursion);
2921 if (dev_xmit_complete(rc)) {
2922 HARD_TX_UNLOCK(dev, txq);
2923 goto out;
2924 }
2925 }
2926 HARD_TX_UNLOCK(dev, txq);
2927 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2928 dev->name);
2929 } else {
2930 /* Recursion is detected! It is possible,
2931 * unfortunately
2932 */
2933 recursion_alert:
2934 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2935 dev->name);
2936 }
2937 }
2938
2939 rc = -ENETDOWN;
2940 rcu_read_unlock_bh();
2941
2942 atomic_long_inc(&dev->tx_dropped);
2943 kfree_skb(skb);
2944 return rc;
2945 out:
2946 rcu_read_unlock_bh();
2947 return rc;
2948 }
2949
2950 int dev_queue_xmit(struct sk_buff *skb)
2951 {
2952 return __dev_queue_xmit(skb, NULL);
2953 }
2954 EXPORT_SYMBOL(dev_queue_xmit);
2955
2956 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2957 {
2958 return __dev_queue_xmit(skb, accel_priv);
2959 }
2960 EXPORT_SYMBOL(dev_queue_xmit_accel);
2961
2962
2963 /*=======================================================================
2964 Receiver routines
2965 =======================================================================*/
2966
2967 int netdev_max_backlog __read_mostly = 1000;
2968 EXPORT_SYMBOL(netdev_max_backlog);
2969
2970 int netdev_tstamp_prequeue __read_mostly = 1;
2971 int netdev_budget __read_mostly = 300;
2972 int weight_p __read_mostly = 64; /* old backlog weight */
2973
2974 /* Called with irq disabled */
2975 static inline void ____napi_schedule(struct softnet_data *sd,
2976 struct napi_struct *napi)
2977 {
2978 list_add_tail(&napi->poll_list, &sd->poll_list);
2979 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2980 }
2981
2982 #ifdef CONFIG_RPS
2983
2984 /* One global table that all flow-based protocols share. */
2985 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2986 EXPORT_SYMBOL(rps_sock_flow_table);
2987
2988 struct static_key rps_needed __read_mostly;
2989
2990 static struct rps_dev_flow *
2991 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2992 struct rps_dev_flow *rflow, u16 next_cpu)
2993 {
2994 if (next_cpu != RPS_NO_CPU) {
2995 #ifdef CONFIG_RFS_ACCEL
2996 struct netdev_rx_queue *rxqueue;
2997 struct rps_dev_flow_table *flow_table;
2998 struct rps_dev_flow *old_rflow;
2999 u32 flow_id;
3000 u16 rxq_index;
3001 int rc;
3002
3003 /* Should we steer this flow to a different hardware queue? */
3004 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3005 !(dev->features & NETIF_F_NTUPLE))
3006 goto out;
3007 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3008 if (rxq_index == skb_get_rx_queue(skb))
3009 goto out;
3010
3011 rxqueue = dev->_rx + rxq_index;
3012 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3013 if (!flow_table)
3014 goto out;
3015 flow_id = skb_get_hash(skb) & flow_table->mask;
3016 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3017 rxq_index, flow_id);
3018 if (rc < 0)
3019 goto out;
3020 old_rflow = rflow;
3021 rflow = &flow_table->flows[flow_id];
3022 rflow->filter = rc;
3023 if (old_rflow->filter == rflow->filter)
3024 old_rflow->filter = RPS_NO_FILTER;
3025 out:
3026 #endif
3027 rflow->last_qtail =
3028 per_cpu(softnet_data, next_cpu).input_queue_head;
3029 }
3030
3031 rflow->cpu = next_cpu;
3032 return rflow;
3033 }
3034
3035 /*
3036 * get_rps_cpu is called from netif_receive_skb and returns the target
3037 * CPU from the RPS map of the receiving queue for a given skb.
3038 * rcu_read_lock must be held on entry.
3039 */
3040 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3041 struct rps_dev_flow **rflowp)
3042 {
3043 struct netdev_rx_queue *rxqueue;
3044 struct rps_map *map;
3045 struct rps_dev_flow_table *flow_table;
3046 struct rps_sock_flow_table *sock_flow_table;
3047 int cpu = -1;
3048 u16 tcpu;
3049 u32 hash;
3050
3051 if (skb_rx_queue_recorded(skb)) {
3052 u16 index = skb_get_rx_queue(skb);
3053 if (unlikely(index >= dev->real_num_rx_queues)) {
3054 WARN_ONCE(dev->real_num_rx_queues > 1,
3055 "%s received packet on queue %u, but number "
3056 "of RX queues is %u\n",
3057 dev->name, index, dev->real_num_rx_queues);
3058 goto done;
3059 }
3060 rxqueue = dev->_rx + index;
3061 } else
3062 rxqueue = dev->_rx;
3063
3064 map = rcu_dereference(rxqueue->rps_map);
3065 if (map) {
3066 if (map->len == 1 &&
3067 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3068 tcpu = map->cpus[0];
3069 if (cpu_online(tcpu))
3070 cpu = tcpu;
3071 goto done;
3072 }
3073 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3074 goto done;
3075 }
3076
3077 skb_reset_network_header(skb);
3078 hash = skb_get_hash(skb);
3079 if (!hash)
3080 goto done;
3081
3082 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3083 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3084 if (flow_table && sock_flow_table) {
3085 u16 next_cpu;
3086 struct rps_dev_flow *rflow;
3087
3088 rflow = &flow_table->flows[hash & flow_table->mask];
3089 tcpu = rflow->cpu;
3090
3091 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3092
3093 /*
3094 * If the desired CPU (where last recvmsg was done) is
3095 * different from current CPU (one in the rx-queue flow
3096 * table entry), switch if one of the following holds:
3097 * - Current CPU is unset (equal to RPS_NO_CPU).
3098 * - Current CPU is offline.
3099 * - The current CPU's queue tail has advanced beyond the
3100 * last packet that was enqueued using this table entry.
3101 * This guarantees that all previous packets for the flow
3102 * have been dequeued, thus preserving in order delivery.
3103 */
3104 if (unlikely(tcpu != next_cpu) &&
3105 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3106 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3107 rflow->last_qtail)) >= 0)) {
3108 tcpu = next_cpu;
3109 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3110 }
3111
3112 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3113 *rflowp = rflow;
3114 cpu = tcpu;
3115 goto done;
3116 }
3117 }
3118
3119 if (map) {
3120 tcpu = map->cpus[((u64) hash * map->len) >> 32];
3121
3122 if (cpu_online(tcpu)) {
3123 cpu = tcpu;
3124 goto done;
3125 }
3126 }
3127
3128 done:
3129 return cpu;
3130 }
3131
3132 #ifdef CONFIG_RFS_ACCEL
3133
3134 /**
3135 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3136 * @dev: Device on which the filter was set
3137 * @rxq_index: RX queue index
3138 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3139 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3140 *
3141 * Drivers that implement ndo_rx_flow_steer() should periodically call
3142 * this function for each installed filter and remove the filters for
3143 * which it returns %true.
3144 */
3145 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3146 u32 flow_id, u16 filter_id)
3147 {
3148 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3149 struct rps_dev_flow_table *flow_table;
3150 struct rps_dev_flow *rflow;
3151 bool expire = true;
3152 int cpu;
3153
3154 rcu_read_lock();
3155 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3156 if (flow_table && flow_id <= flow_table->mask) {
3157 rflow = &flow_table->flows[flow_id];
3158 cpu = ACCESS_ONCE(rflow->cpu);
3159 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3160 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3161 rflow->last_qtail) <
3162 (int)(10 * flow_table->mask)))
3163 expire = false;
3164 }
3165 rcu_read_unlock();
3166 return expire;
3167 }
3168 EXPORT_SYMBOL(rps_may_expire_flow);
3169
3170 #endif /* CONFIG_RFS_ACCEL */
3171
3172 /* Called from hardirq (IPI) context */
3173 static void rps_trigger_softirq(void *data)
3174 {
3175 struct softnet_data *sd = data;
3176
3177 ____napi_schedule(sd, &sd->backlog);
3178 sd->received_rps++;
3179 }
3180
3181 #endif /* CONFIG_RPS */
3182
3183 /*
3184 * Check if this softnet_data structure is another cpu one
3185 * If yes, queue it to our IPI list and return 1
3186 * If no, return 0
3187 */
3188 static int rps_ipi_queued(struct softnet_data *sd)
3189 {
3190 #ifdef CONFIG_RPS
3191 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3192
3193 if (sd != mysd) {
3194 sd->rps_ipi_next = mysd->rps_ipi_list;
3195 mysd->rps_ipi_list = sd;
3196
3197 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3198 return 1;
3199 }
3200 #endif /* CONFIG_RPS */
3201 return 0;
3202 }
3203
3204 #ifdef CONFIG_NET_FLOW_LIMIT
3205 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3206 #endif
3207
3208 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3209 {
3210 #ifdef CONFIG_NET_FLOW_LIMIT
3211 struct sd_flow_limit *fl;
3212 struct softnet_data *sd;
3213 unsigned int old_flow, new_flow;
3214
3215 if (qlen < (netdev_max_backlog >> 1))
3216 return false;
3217
3218 sd = &__get_cpu_var(softnet_data);
3219
3220 rcu_read_lock();
3221 fl = rcu_dereference(sd->flow_limit);
3222 if (fl) {
3223 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3224 old_flow = fl->history[fl->history_head];
3225 fl->history[fl->history_head] = new_flow;
3226
3227 fl->history_head++;
3228 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3229
3230 if (likely(fl->buckets[old_flow]))
3231 fl->buckets[old_flow]--;
3232
3233 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3234 fl->count++;
3235 rcu_read_unlock();
3236 return true;
3237 }
3238 }
3239 rcu_read_unlock();
3240 #endif
3241 return false;
3242 }
3243
3244 /*
3245 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3246 * queue (may be a remote CPU queue).
3247 */
3248 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3249 unsigned int *qtail)
3250 {
3251 struct softnet_data *sd;
3252 unsigned long flags;
3253 unsigned int qlen;
3254
3255 sd = &per_cpu(softnet_data, cpu);
3256
3257 local_irq_save(flags);
3258
3259 rps_lock(sd);
3260 qlen = skb_queue_len(&sd->input_pkt_queue);
3261 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3262 if (skb_queue_len(&sd->input_pkt_queue)) {
3263 enqueue:
3264 __skb_queue_tail(&sd->input_pkt_queue, skb);
3265 input_queue_tail_incr_save(sd, qtail);
3266 rps_unlock(sd);
3267 local_irq_restore(flags);
3268 return NET_RX_SUCCESS;
3269 }
3270
3271 /* Schedule NAPI for backlog device
3272 * We can use non atomic operation since we own the queue lock
3273 */
3274 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3275 if (!rps_ipi_queued(sd))
3276 ____napi_schedule(sd, &sd->backlog);
3277 }
3278 goto enqueue;
3279 }
3280
3281 sd->dropped++;
3282 rps_unlock(sd);
3283
3284 local_irq_restore(flags);
3285
3286 atomic_long_inc(&skb->dev->rx_dropped);
3287 kfree_skb(skb);
3288 return NET_RX_DROP;
3289 }
3290
3291 static int netif_rx_internal(struct sk_buff *skb)
3292 {
3293 int ret;
3294
3295 net_timestamp_check(netdev_tstamp_prequeue, skb);
3296
3297 trace_netif_rx(skb);
3298 #ifdef CONFIG_RPS
3299 if (static_key_false(&rps_needed)) {
3300 struct rps_dev_flow voidflow, *rflow = &voidflow;
3301 int cpu;
3302
3303 preempt_disable();
3304 rcu_read_lock();
3305
3306 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3307 if (cpu < 0)
3308 cpu = smp_processor_id();
3309
3310 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3311
3312 rcu_read_unlock();
3313 preempt_enable();
3314 } else
3315 #endif
3316 {
3317 unsigned int qtail;
3318 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3319 put_cpu();
3320 }
3321 return ret;
3322 }
3323
3324 /**
3325 * netif_rx - post buffer to the network code
3326 * @skb: buffer to post
3327 *
3328 * This function receives a packet from a device driver and queues it for
3329 * the upper (protocol) levels to process. It always succeeds. The buffer
3330 * may be dropped during processing for congestion control or by the
3331 * protocol layers.
3332 *
3333 * return values:
3334 * NET_RX_SUCCESS (no congestion)
3335 * NET_RX_DROP (packet was dropped)
3336 *
3337 */
3338
3339 int netif_rx(struct sk_buff *skb)
3340 {
3341 trace_netif_rx_entry(skb);
3342
3343 return netif_rx_internal(skb);
3344 }
3345 EXPORT_SYMBOL(netif_rx);
3346
3347 int netif_rx_ni(struct sk_buff *skb)
3348 {
3349 int err;
3350
3351 trace_netif_rx_ni_entry(skb);
3352
3353 preempt_disable();
3354 err = netif_rx_internal(skb);
3355 if (local_softirq_pending())
3356 do_softirq();
3357 preempt_enable();
3358
3359 return err;
3360 }
3361 EXPORT_SYMBOL(netif_rx_ni);
3362
3363 static void net_tx_action(struct softirq_action *h)
3364 {
3365 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3366
3367 if (sd->completion_queue) {
3368 struct sk_buff *clist;
3369
3370 local_irq_disable();
3371 clist = sd->completion_queue;
3372 sd->completion_queue = NULL;
3373 local_irq_enable();
3374
3375 while (clist) {
3376 struct sk_buff *skb = clist;
3377 clist = clist->next;
3378
3379 WARN_ON(atomic_read(&skb->users));
3380 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3381 trace_consume_skb(skb);
3382 else
3383 trace_kfree_skb(skb, net_tx_action);
3384 __kfree_skb(skb);
3385 }
3386 }
3387
3388 if (sd->output_queue) {
3389 struct Qdisc *head;
3390
3391 local_irq_disable();
3392 head = sd->output_queue;
3393 sd->output_queue = NULL;
3394 sd->output_queue_tailp = &sd->output_queue;
3395 local_irq_enable();
3396
3397 while (head) {
3398 struct Qdisc *q = head;
3399 spinlock_t *root_lock;
3400
3401 head = head->next_sched;
3402
3403 root_lock = qdisc_lock(q);
3404 if (spin_trylock(root_lock)) {
3405 smp_mb__before_atomic();
3406 clear_bit(__QDISC_STATE_SCHED,
3407 &q->state);
3408 qdisc_run(q);
3409 spin_unlock(root_lock);
3410 } else {
3411 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3412 &q->state)) {
3413 __netif_reschedule(q);
3414 } else {
3415 smp_mb__before_atomic();
3416 clear_bit(__QDISC_STATE_SCHED,
3417 &q->state);
3418 }
3419 }
3420 }
3421 }
3422 }
3423
3424 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3425 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3426 /* This hook is defined here for ATM LANE */
3427 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3428 unsigned char *addr) __read_mostly;
3429 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3430 #endif
3431
3432 #ifdef CONFIG_NET_CLS_ACT
3433 /* TODO: Maybe we should just force sch_ingress to be compiled in
3434 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3435 * a compare and 2 stores extra right now if we dont have it on
3436 * but have CONFIG_NET_CLS_ACT
3437 * NOTE: This doesn't stop any functionality; if you dont have
3438 * the ingress scheduler, you just can't add policies on ingress.
3439 *
3440 */
3441 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3442 {
3443 struct net_device *dev = skb->dev;
3444 u32 ttl = G_TC_RTTL(skb->tc_verd);
3445 int result = TC_ACT_OK;
3446 struct Qdisc *q;
3447
3448 if (unlikely(MAX_RED_LOOP < ttl++)) {
3449 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3450 skb->skb_iif, dev->ifindex);
3451 return TC_ACT_SHOT;
3452 }
3453
3454 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3455 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3456
3457 q = rxq->qdisc;
3458 if (q != &noop_qdisc) {
3459 spin_lock(qdisc_lock(q));
3460 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3461 result = qdisc_enqueue_root(skb, q);
3462 spin_unlock(qdisc_lock(q));
3463 }
3464
3465 return result;
3466 }
3467
3468 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3469 struct packet_type **pt_prev,
3470 int *ret, struct net_device *orig_dev)
3471 {
3472 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3473
3474 if (!rxq || rxq->qdisc == &noop_qdisc)
3475 goto out;
3476
3477 if (*pt_prev) {
3478 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3479 *pt_prev = NULL;
3480 }
3481
3482 switch (ing_filter(skb, rxq)) {
3483 case TC_ACT_SHOT:
3484 case TC_ACT_STOLEN:
3485 kfree_skb(skb);
3486 return NULL;
3487 }
3488
3489 out:
3490 skb->tc_verd = 0;
3491 return skb;
3492 }
3493 #endif
3494
3495 /**
3496 * netdev_rx_handler_register - register receive handler
3497 * @dev: device to register a handler for
3498 * @rx_handler: receive handler to register
3499 * @rx_handler_data: data pointer that is used by rx handler
3500 *
3501 * Register a receive handler for a device. This handler will then be
3502 * called from __netif_receive_skb. A negative errno code is returned
3503 * on a failure.
3504 *
3505 * The caller must hold the rtnl_mutex.
3506 *
3507 * For a general description of rx_handler, see enum rx_handler_result.
3508 */
3509 int netdev_rx_handler_register(struct net_device *dev,
3510 rx_handler_func_t *rx_handler,
3511 void *rx_handler_data)
3512 {
3513 ASSERT_RTNL();
3514
3515 if (dev->rx_handler)
3516 return -EBUSY;
3517
3518 /* Note: rx_handler_data must be set before rx_handler */
3519 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3520 rcu_assign_pointer(dev->rx_handler, rx_handler);
3521
3522 return 0;
3523 }
3524 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3525
3526 /**
3527 * netdev_rx_handler_unregister - unregister receive handler
3528 * @dev: device to unregister a handler from
3529 *
3530 * Unregister a receive handler from a device.
3531 *
3532 * The caller must hold the rtnl_mutex.
3533 */
3534 void netdev_rx_handler_unregister(struct net_device *dev)
3535 {
3536
3537 ASSERT_RTNL();
3538 RCU_INIT_POINTER(dev->rx_handler, NULL);
3539 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3540 * section has a guarantee to see a non NULL rx_handler_data
3541 * as well.
3542 */
3543 synchronize_net();
3544 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3545 }
3546 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3547
3548 /*
3549 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3550 * the special handling of PFMEMALLOC skbs.
3551 */
3552 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3553 {
3554 switch (skb->protocol) {
3555 case htons(ETH_P_ARP):
3556 case htons(ETH_P_IP):
3557 case htons(ETH_P_IPV6):
3558 case htons(ETH_P_8021Q):
3559 case htons(ETH_P_8021AD):
3560 return true;
3561 default:
3562 return false;
3563 }
3564 }
3565
3566 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3567 {
3568 struct packet_type *ptype, *pt_prev;
3569 rx_handler_func_t *rx_handler;
3570 struct net_device *orig_dev;
3571 struct net_device *null_or_dev;
3572 bool deliver_exact = false;
3573 int ret = NET_RX_DROP;
3574 __be16 type;
3575
3576 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3577
3578 trace_netif_receive_skb(skb);
3579
3580 orig_dev = skb->dev;
3581
3582 skb_reset_network_header(skb);
3583 if (!skb_transport_header_was_set(skb))
3584 skb_reset_transport_header(skb);
3585 skb_reset_mac_len(skb);
3586
3587 pt_prev = NULL;
3588
3589 rcu_read_lock();
3590
3591 another_round:
3592 skb->skb_iif = skb->dev->ifindex;
3593
3594 __this_cpu_inc(softnet_data.processed);
3595
3596 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3597 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3598 skb = vlan_untag(skb);
3599 if (unlikely(!skb))
3600 goto unlock;
3601 }
3602
3603 #ifdef CONFIG_NET_CLS_ACT
3604 if (skb->tc_verd & TC_NCLS) {
3605 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3606 goto ncls;
3607 }
3608 #endif
3609
3610 if (pfmemalloc)
3611 goto skip_taps;
3612
3613 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3614 if (!ptype->dev || ptype->dev == skb->dev) {
3615 if (pt_prev)
3616 ret = deliver_skb(skb, pt_prev, orig_dev);
3617 pt_prev = ptype;
3618 }
3619 }
3620
3621 skip_taps:
3622 #ifdef CONFIG_NET_CLS_ACT
3623 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3624 if (!skb)
3625 goto unlock;
3626 ncls:
3627 #endif
3628
3629 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3630 goto drop;
3631
3632 if (vlan_tx_tag_present(skb)) {
3633 if (pt_prev) {
3634 ret = deliver_skb(skb, pt_prev, orig_dev);
3635 pt_prev = NULL;
3636 }
3637 if (vlan_do_receive(&skb))
3638 goto another_round;
3639 else if (unlikely(!skb))
3640 goto unlock;
3641 }
3642
3643 rx_handler = rcu_dereference(skb->dev->rx_handler);
3644 if (rx_handler) {
3645 if (pt_prev) {
3646 ret = deliver_skb(skb, pt_prev, orig_dev);
3647 pt_prev = NULL;
3648 }
3649 switch (rx_handler(&skb)) {
3650 case RX_HANDLER_CONSUMED:
3651 ret = NET_RX_SUCCESS;
3652 goto unlock;
3653 case RX_HANDLER_ANOTHER:
3654 goto another_round;
3655 case RX_HANDLER_EXACT:
3656 deliver_exact = true;
3657 case RX_HANDLER_PASS:
3658 break;
3659 default:
3660 BUG();
3661 }
3662 }
3663
3664 if (unlikely(vlan_tx_tag_present(skb))) {
3665 if (vlan_tx_tag_get_id(skb))
3666 skb->pkt_type = PACKET_OTHERHOST;
3667 /* Note: we might in the future use prio bits
3668 * and set skb->priority like in vlan_do_receive()
3669 * For the time being, just ignore Priority Code Point
3670 */
3671 skb->vlan_tci = 0;
3672 }
3673
3674 /* deliver only exact match when indicated */
3675 null_or_dev = deliver_exact ? skb->dev : NULL;
3676
3677 type = skb->protocol;
3678 list_for_each_entry_rcu(ptype,
3679 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3680 if (ptype->type == type &&
3681 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3682 ptype->dev == orig_dev)) {
3683 if (pt_prev)
3684 ret = deliver_skb(skb, pt_prev, orig_dev);
3685 pt_prev = ptype;
3686 }
3687 }
3688
3689 if (pt_prev) {
3690 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3691 goto drop;
3692 else
3693 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3694 } else {
3695 drop:
3696 atomic_long_inc(&skb->dev->rx_dropped);
3697 kfree_skb(skb);
3698 /* Jamal, now you will not able to escape explaining
3699 * me how you were going to use this. :-)
3700 */
3701 ret = NET_RX_DROP;
3702 }
3703
3704 unlock:
3705 rcu_read_unlock();
3706 return ret;
3707 }
3708
3709 static int __netif_receive_skb(struct sk_buff *skb)
3710 {
3711 int ret;
3712
3713 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3714 unsigned long pflags = current->flags;
3715
3716 /*
3717 * PFMEMALLOC skbs are special, they should
3718 * - be delivered to SOCK_MEMALLOC sockets only
3719 * - stay away from userspace
3720 * - have bounded memory usage
3721 *
3722 * Use PF_MEMALLOC as this saves us from propagating the allocation
3723 * context down to all allocation sites.
3724 */
3725 current->flags |= PF_MEMALLOC;
3726 ret = __netif_receive_skb_core(skb, true);
3727 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3728 } else
3729 ret = __netif_receive_skb_core(skb, false);
3730
3731 return ret;
3732 }
3733
3734 static int netif_receive_skb_internal(struct sk_buff *skb)
3735 {
3736 net_timestamp_check(netdev_tstamp_prequeue, skb);
3737
3738 if (skb_defer_rx_timestamp(skb))
3739 return NET_RX_SUCCESS;
3740
3741 #ifdef CONFIG_RPS
3742 if (static_key_false(&rps_needed)) {
3743 struct rps_dev_flow voidflow, *rflow = &voidflow;
3744 int cpu, ret;
3745
3746 rcu_read_lock();
3747
3748 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3749
3750 if (cpu >= 0) {
3751 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3752 rcu_read_unlock();
3753 return ret;
3754 }
3755 rcu_read_unlock();
3756 }
3757 #endif
3758 return __netif_receive_skb(skb);
3759 }
3760
3761 /**
3762 * netif_receive_skb - process receive buffer from network
3763 * @skb: buffer to process
3764 *
3765 * netif_receive_skb() is the main receive data processing function.
3766 * It always succeeds. The buffer may be dropped during processing
3767 * for congestion control or by the protocol layers.
3768 *
3769 * This function may only be called from softirq context and interrupts
3770 * should be enabled.
3771 *
3772 * Return values (usually ignored):
3773 * NET_RX_SUCCESS: no congestion
3774 * NET_RX_DROP: packet was dropped
3775 */
3776 int netif_receive_skb(struct sk_buff *skb)
3777 {
3778 trace_netif_receive_skb_entry(skb);
3779
3780 return netif_receive_skb_internal(skb);
3781 }
3782 EXPORT_SYMBOL(netif_receive_skb);
3783
3784 /* Network device is going away, flush any packets still pending
3785 * Called with irqs disabled.
3786 */
3787 static void flush_backlog(void *arg)
3788 {
3789 struct net_device *dev = arg;
3790 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3791 struct sk_buff *skb, *tmp;
3792
3793 rps_lock(sd);
3794 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3795 if (skb->dev == dev) {
3796 __skb_unlink(skb, &sd->input_pkt_queue);
3797 kfree_skb(skb);
3798 input_queue_head_incr(sd);
3799 }
3800 }
3801 rps_unlock(sd);
3802
3803 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3804 if (skb->dev == dev) {
3805 __skb_unlink(skb, &sd->process_queue);
3806 kfree_skb(skb);
3807 input_queue_head_incr(sd);
3808 }
3809 }
3810 }
3811
3812 static int napi_gro_complete(struct sk_buff *skb)
3813 {
3814 struct packet_offload *ptype;
3815 __be16 type = skb->protocol;
3816 struct list_head *head = &offload_base;
3817 int err = -ENOENT;
3818
3819 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3820
3821 if (NAPI_GRO_CB(skb)->count == 1) {
3822 skb_shinfo(skb)->gso_size = 0;
3823 goto out;
3824 }
3825
3826 rcu_read_lock();
3827 list_for_each_entry_rcu(ptype, head, list) {
3828 if (ptype->type != type || !ptype->callbacks.gro_complete)
3829 continue;
3830
3831 err = ptype->callbacks.gro_complete(skb, 0);
3832 break;
3833 }
3834 rcu_read_unlock();
3835
3836 if (err) {
3837 WARN_ON(&ptype->list == head);
3838 kfree_skb(skb);
3839 return NET_RX_SUCCESS;
3840 }
3841
3842 out:
3843 return netif_receive_skb_internal(skb);
3844 }
3845
3846 /* napi->gro_list contains packets ordered by age.
3847 * youngest packets at the head of it.
3848 * Complete skbs in reverse order to reduce latencies.
3849 */
3850 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3851 {
3852 struct sk_buff *skb, *prev = NULL;
3853
3854 /* scan list and build reverse chain */
3855 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3856 skb->prev = prev;
3857 prev = skb;
3858 }
3859
3860 for (skb = prev; skb; skb = prev) {
3861 skb->next = NULL;
3862
3863 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3864 return;
3865
3866 prev = skb->prev;
3867 napi_gro_complete(skb);
3868 napi->gro_count--;
3869 }
3870
3871 napi->gro_list = NULL;
3872 }
3873 EXPORT_SYMBOL(napi_gro_flush);
3874
3875 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3876 {
3877 struct sk_buff *p;
3878 unsigned int maclen = skb->dev->hard_header_len;
3879 u32 hash = skb_get_hash_raw(skb);
3880
3881 for (p = napi->gro_list; p; p = p->next) {
3882 unsigned long diffs;
3883
3884 NAPI_GRO_CB(p)->flush = 0;
3885
3886 if (hash != skb_get_hash_raw(p)) {
3887 NAPI_GRO_CB(p)->same_flow = 0;
3888 continue;
3889 }
3890
3891 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3892 diffs |= p->vlan_tci ^ skb->vlan_tci;
3893 if (maclen == ETH_HLEN)
3894 diffs |= compare_ether_header(skb_mac_header(p),
3895 skb_mac_header(skb));
3896 else if (!diffs)
3897 diffs = memcmp(skb_mac_header(p),
3898 skb_mac_header(skb),
3899 maclen);
3900 NAPI_GRO_CB(p)->same_flow = !diffs;
3901 }
3902 }
3903
3904 static void skb_gro_reset_offset(struct sk_buff *skb)
3905 {
3906 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3907 const skb_frag_t *frag0 = &pinfo->frags[0];
3908
3909 NAPI_GRO_CB(skb)->data_offset = 0;
3910 NAPI_GRO_CB(skb)->frag0 = NULL;
3911 NAPI_GRO_CB(skb)->frag0_len = 0;
3912
3913 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3914 pinfo->nr_frags &&
3915 !PageHighMem(skb_frag_page(frag0))) {
3916 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3917 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3918 }
3919 }
3920
3921 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3922 {
3923 struct skb_shared_info *pinfo = skb_shinfo(skb);
3924
3925 BUG_ON(skb->end - skb->tail < grow);
3926
3927 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3928
3929 skb->data_len -= grow;
3930 skb->tail += grow;
3931
3932 pinfo->frags[0].page_offset += grow;
3933 skb_frag_size_sub(&pinfo->frags[0], grow);
3934
3935 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3936 skb_frag_unref(skb, 0);
3937 memmove(pinfo->frags, pinfo->frags + 1,
3938 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3939 }
3940 }
3941
3942 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3943 {
3944 struct sk_buff **pp = NULL;
3945 struct packet_offload *ptype;
3946 __be16 type = skb->protocol;
3947 struct list_head *head = &offload_base;
3948 int same_flow;
3949 enum gro_result ret;
3950 int grow;
3951
3952 if (!(skb->dev->features & NETIF_F_GRO))
3953 goto normal;
3954
3955 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3956 goto normal;
3957
3958 gro_list_prepare(napi, skb);
3959 NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
3960
3961 rcu_read_lock();
3962 list_for_each_entry_rcu(ptype, head, list) {
3963 if (ptype->type != type || !ptype->callbacks.gro_receive)
3964 continue;
3965
3966 skb_set_network_header(skb, skb_gro_offset(skb));
3967 skb_reset_mac_len(skb);
3968 NAPI_GRO_CB(skb)->same_flow = 0;
3969 NAPI_GRO_CB(skb)->flush = 0;
3970 NAPI_GRO_CB(skb)->free = 0;
3971 NAPI_GRO_CB(skb)->udp_mark = 0;
3972
3973 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3974 break;
3975 }
3976 rcu_read_unlock();
3977
3978 if (&ptype->list == head)
3979 goto normal;
3980
3981 same_flow = NAPI_GRO_CB(skb)->same_flow;
3982 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3983
3984 if (pp) {
3985 struct sk_buff *nskb = *pp;
3986
3987 *pp = nskb->next;
3988 nskb->next = NULL;
3989 napi_gro_complete(nskb);
3990 napi->gro_count--;
3991 }
3992
3993 if (same_flow)
3994 goto ok;
3995
3996 if (NAPI_GRO_CB(skb)->flush)
3997 goto normal;
3998
3999 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4000 struct sk_buff *nskb = napi->gro_list;
4001
4002 /* locate the end of the list to select the 'oldest' flow */
4003 while (nskb->next) {
4004 pp = &nskb->next;
4005 nskb = *pp;
4006 }
4007 *pp = NULL;
4008 nskb->next = NULL;
4009 napi_gro_complete(nskb);
4010 } else {
4011 napi->gro_count++;
4012 }
4013 NAPI_GRO_CB(skb)->count = 1;
4014 NAPI_GRO_CB(skb)->age = jiffies;
4015 NAPI_GRO_CB(skb)->last = skb;
4016 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4017 skb->next = napi->gro_list;
4018 napi->gro_list = skb;
4019 ret = GRO_HELD;
4020
4021 pull:
4022 grow = skb_gro_offset(skb) - skb_headlen(skb);
4023 if (grow > 0)
4024 gro_pull_from_frag0(skb, grow);
4025 ok:
4026 return ret;
4027
4028 normal:
4029 ret = GRO_NORMAL;
4030 goto pull;
4031 }
4032
4033 struct packet_offload *gro_find_receive_by_type(__be16 type)
4034 {
4035 struct list_head *offload_head = &offload_base;
4036 struct packet_offload *ptype;
4037
4038 list_for_each_entry_rcu(ptype, offload_head, list) {
4039 if (ptype->type != type || !ptype->callbacks.gro_receive)
4040 continue;
4041 return ptype;
4042 }
4043 return NULL;
4044 }
4045 EXPORT_SYMBOL(gro_find_receive_by_type);
4046
4047 struct packet_offload *gro_find_complete_by_type(__be16 type)
4048 {
4049 struct list_head *offload_head = &offload_base;
4050 struct packet_offload *ptype;
4051
4052 list_for_each_entry_rcu(ptype, offload_head, list) {
4053 if (ptype->type != type || !ptype->callbacks.gro_complete)
4054 continue;
4055 return ptype;
4056 }
4057 return NULL;
4058 }
4059 EXPORT_SYMBOL(gro_find_complete_by_type);
4060
4061 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4062 {
4063 switch (ret) {
4064 case GRO_NORMAL:
4065 if (netif_receive_skb_internal(skb))
4066 ret = GRO_DROP;
4067 break;
4068
4069 case GRO_DROP:
4070 kfree_skb(skb);
4071 break;
4072
4073 case GRO_MERGED_FREE:
4074 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4075 kmem_cache_free(skbuff_head_cache, skb);
4076 else
4077 __kfree_skb(skb);
4078 break;
4079
4080 case GRO_HELD:
4081 case GRO_MERGED:
4082 break;
4083 }
4084
4085 return ret;
4086 }
4087
4088 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4089 {
4090 trace_napi_gro_receive_entry(skb);
4091
4092 skb_gro_reset_offset(skb);
4093
4094 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4095 }
4096 EXPORT_SYMBOL(napi_gro_receive);
4097
4098 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4099 {
4100 __skb_pull(skb, skb_headlen(skb));
4101 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4102 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4103 skb->vlan_tci = 0;
4104 skb->dev = napi->dev;
4105 skb->skb_iif = 0;
4106 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4107
4108 napi->skb = skb;
4109 }
4110
4111 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4112 {
4113 struct sk_buff *skb = napi->skb;
4114
4115 if (!skb) {
4116 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4117 napi->skb = skb;
4118 }
4119 return skb;
4120 }
4121 EXPORT_SYMBOL(napi_get_frags);
4122
4123 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4124 struct sk_buff *skb,
4125 gro_result_t ret)
4126 {
4127 switch (ret) {
4128 case GRO_NORMAL:
4129 case GRO_HELD:
4130 __skb_push(skb, ETH_HLEN);
4131 skb->protocol = eth_type_trans(skb, skb->dev);
4132 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4133 ret = GRO_DROP;
4134 break;
4135
4136 case GRO_DROP:
4137 case GRO_MERGED_FREE:
4138 napi_reuse_skb(napi, skb);
4139 break;
4140
4141 case GRO_MERGED:
4142 break;
4143 }
4144
4145 return ret;
4146 }
4147
4148 /* Upper GRO stack assumes network header starts at gro_offset=0
4149 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4150 * We copy ethernet header into skb->data to have a common layout.
4151 */
4152 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4153 {
4154 struct sk_buff *skb = napi->skb;
4155 const struct ethhdr *eth;
4156 unsigned int hlen = sizeof(*eth);
4157
4158 napi->skb = NULL;
4159
4160 skb_reset_mac_header(skb);
4161 skb_gro_reset_offset(skb);
4162
4163 eth = skb_gro_header_fast(skb, 0);
4164 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4165 eth = skb_gro_header_slow(skb, hlen, 0);
4166 if (unlikely(!eth)) {
4167 napi_reuse_skb(napi, skb);
4168 return NULL;
4169 }
4170 } else {
4171 gro_pull_from_frag0(skb, hlen);
4172 NAPI_GRO_CB(skb)->frag0 += hlen;
4173 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4174 }
4175 __skb_pull(skb, hlen);
4176
4177 /*
4178 * This works because the only protocols we care about don't require
4179 * special handling.
4180 * We'll fix it up properly in napi_frags_finish()
4181 */
4182 skb->protocol = eth->h_proto;
4183
4184 return skb;
4185 }
4186
4187 gro_result_t napi_gro_frags(struct napi_struct *napi)
4188 {
4189 struct sk_buff *skb = napi_frags_skb(napi);
4190
4191 if (!skb)
4192 return GRO_DROP;
4193
4194 trace_napi_gro_frags_entry(skb);
4195
4196 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4197 }
4198 EXPORT_SYMBOL(napi_gro_frags);
4199
4200 /*
4201 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4202 * Note: called with local irq disabled, but exits with local irq enabled.
4203 */
4204 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4205 {
4206 #ifdef CONFIG_RPS
4207 struct softnet_data *remsd = sd->rps_ipi_list;
4208
4209 if (remsd) {
4210 sd->rps_ipi_list = NULL;
4211
4212 local_irq_enable();
4213
4214 /* Send pending IPI's to kick RPS processing on remote cpus. */
4215 while (remsd) {
4216 struct softnet_data *next = remsd->rps_ipi_next;
4217
4218 if (cpu_online(remsd->cpu))
4219 smp_call_function_single_async(remsd->cpu,
4220 &remsd->csd);
4221 remsd = next;
4222 }
4223 } else
4224 #endif
4225 local_irq_enable();
4226 }
4227
4228 static int process_backlog(struct napi_struct *napi, int quota)
4229 {
4230 int work = 0;
4231 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4232
4233 #ifdef CONFIG_RPS
4234 /* Check if we have pending ipi, its better to send them now,
4235 * not waiting net_rx_action() end.
4236 */
4237 if (sd->rps_ipi_list) {
4238 local_irq_disable();
4239 net_rps_action_and_irq_enable(sd);
4240 }
4241 #endif
4242 napi->weight = weight_p;
4243 local_irq_disable();
4244 while (1) {
4245 struct sk_buff *skb;
4246
4247 while ((skb = __skb_dequeue(&sd->process_queue))) {
4248 local_irq_enable();
4249 __netif_receive_skb(skb);
4250 local_irq_disable();
4251 input_queue_head_incr(sd);
4252 if (++work >= quota) {
4253 local_irq_enable();
4254 return work;
4255 }
4256 }
4257
4258 rps_lock(sd);
4259 if (skb_queue_empty(&sd->input_pkt_queue)) {
4260 /*
4261 * Inline a custom version of __napi_complete().
4262 * only current cpu owns and manipulates this napi,
4263 * and NAPI_STATE_SCHED is the only possible flag set
4264 * on backlog.
4265 * We can use a plain write instead of clear_bit(),
4266 * and we dont need an smp_mb() memory barrier.
4267 */
4268 list_del(&napi->poll_list);
4269 napi->state = 0;
4270 rps_unlock(sd);
4271
4272 break;
4273 }
4274
4275 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4276 &sd->process_queue);
4277 rps_unlock(sd);
4278 }
4279 local_irq_enable();
4280
4281 return work;
4282 }
4283
4284 /**
4285 * __napi_schedule - schedule for receive
4286 * @n: entry to schedule
4287 *
4288 * The entry's receive function will be scheduled to run
4289 */
4290 void __napi_schedule(struct napi_struct *n)
4291 {
4292 unsigned long flags;
4293
4294 local_irq_save(flags);
4295 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4296 local_irq_restore(flags);
4297 }
4298 EXPORT_SYMBOL(__napi_schedule);
4299
4300 void __napi_complete(struct napi_struct *n)
4301 {
4302 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4303 BUG_ON(n->gro_list);
4304
4305 list_del(&n->poll_list);
4306 smp_mb__before_atomic();
4307 clear_bit(NAPI_STATE_SCHED, &n->state);
4308 }
4309 EXPORT_SYMBOL(__napi_complete);
4310
4311 void napi_complete(struct napi_struct *n)
4312 {
4313 unsigned long flags;
4314
4315 /*
4316 * don't let napi dequeue from the cpu poll list
4317 * just in case its running on a different cpu
4318 */
4319 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4320 return;
4321
4322 napi_gro_flush(n, false);
4323 local_irq_save(flags);
4324 __napi_complete(n);
4325 local_irq_restore(flags);
4326 }
4327 EXPORT_SYMBOL(napi_complete);
4328
4329 /* must be called under rcu_read_lock(), as we dont take a reference */
4330 struct napi_struct *napi_by_id(unsigned int napi_id)
4331 {
4332 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4333 struct napi_struct *napi;
4334
4335 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4336 if (napi->napi_id == napi_id)
4337 return napi;
4338
4339 return NULL;
4340 }
4341 EXPORT_SYMBOL_GPL(napi_by_id);
4342
4343 void napi_hash_add(struct napi_struct *napi)
4344 {
4345 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4346
4347 spin_lock(&napi_hash_lock);
4348
4349 /* 0 is not a valid id, we also skip an id that is taken
4350 * we expect both events to be extremely rare
4351 */
4352 napi->napi_id = 0;
4353 while (!napi->napi_id) {
4354 napi->napi_id = ++napi_gen_id;
4355 if (napi_by_id(napi->napi_id))
4356 napi->napi_id = 0;
4357 }
4358
4359 hlist_add_head_rcu(&napi->napi_hash_node,
4360 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4361
4362 spin_unlock(&napi_hash_lock);
4363 }
4364 }
4365 EXPORT_SYMBOL_GPL(napi_hash_add);
4366
4367 /* Warning : caller is responsible to make sure rcu grace period
4368 * is respected before freeing memory containing @napi
4369 */
4370 void napi_hash_del(struct napi_struct *napi)
4371 {
4372 spin_lock(&napi_hash_lock);
4373
4374 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4375 hlist_del_rcu(&napi->napi_hash_node);
4376
4377 spin_unlock(&napi_hash_lock);
4378 }
4379 EXPORT_SYMBOL_GPL(napi_hash_del);
4380
4381 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4382 int (*poll)(struct napi_struct *, int), int weight)
4383 {
4384 INIT_LIST_HEAD(&napi->poll_list);
4385 napi->gro_count = 0;
4386 napi->gro_list = NULL;
4387 napi->skb = NULL;
4388 napi->poll = poll;
4389 if (weight > NAPI_POLL_WEIGHT)
4390 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4391 weight, dev->name);
4392 napi->weight = weight;
4393 list_add(&napi->dev_list, &dev->napi_list);
4394 napi->dev = dev;
4395 #ifdef CONFIG_NETPOLL
4396 spin_lock_init(&napi->poll_lock);
4397 napi->poll_owner = -1;
4398 #endif
4399 set_bit(NAPI_STATE_SCHED, &napi->state);
4400 }
4401 EXPORT_SYMBOL(netif_napi_add);
4402
4403 void netif_napi_del(struct napi_struct *napi)
4404 {
4405 list_del_init(&napi->dev_list);
4406 napi_free_frags(napi);
4407
4408 kfree_skb_list(napi->gro_list);
4409 napi->gro_list = NULL;
4410 napi->gro_count = 0;
4411 }
4412 EXPORT_SYMBOL(netif_napi_del);
4413
4414 static void net_rx_action(struct softirq_action *h)
4415 {
4416 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4417 unsigned long time_limit = jiffies + 2;
4418 int budget = netdev_budget;
4419 void *have;
4420
4421 local_irq_disable();
4422
4423 while (!list_empty(&sd->poll_list)) {
4424 struct napi_struct *n;
4425 int work, weight;
4426
4427 /* If softirq window is exhuasted then punt.
4428 * Allow this to run for 2 jiffies since which will allow
4429 * an average latency of 1.5/HZ.
4430 */
4431 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4432 goto softnet_break;
4433
4434 local_irq_enable();
4435
4436 /* Even though interrupts have been re-enabled, this
4437 * access is safe because interrupts can only add new
4438 * entries to the tail of this list, and only ->poll()
4439 * calls can remove this head entry from the list.
4440 */
4441 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4442
4443 have = netpoll_poll_lock(n);
4444
4445 weight = n->weight;
4446
4447 /* This NAPI_STATE_SCHED test is for avoiding a race
4448 * with netpoll's poll_napi(). Only the entity which
4449 * obtains the lock and sees NAPI_STATE_SCHED set will
4450 * actually make the ->poll() call. Therefore we avoid
4451 * accidentally calling ->poll() when NAPI is not scheduled.
4452 */
4453 work = 0;
4454 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4455 work = n->poll(n, weight);
4456 trace_napi_poll(n);
4457 }
4458
4459 WARN_ON_ONCE(work > weight);
4460
4461 budget -= work;
4462
4463 local_irq_disable();
4464
4465 /* Drivers must not modify the NAPI state if they
4466 * consume the entire weight. In such cases this code
4467 * still "owns" the NAPI instance and therefore can
4468 * move the instance around on the list at-will.
4469 */
4470 if (unlikely(work == weight)) {
4471 if (unlikely(napi_disable_pending(n))) {
4472 local_irq_enable();
4473 napi_complete(n);
4474 local_irq_disable();
4475 } else {
4476 if (n->gro_list) {
4477 /* flush too old packets
4478 * If HZ < 1000, flush all packets.
4479 */
4480 local_irq_enable();
4481 napi_gro_flush(n, HZ >= 1000);
4482 local_irq_disable();
4483 }
4484 list_move_tail(&n->poll_list, &sd->poll_list);
4485 }
4486 }
4487
4488 netpoll_poll_unlock(have);
4489 }
4490 out:
4491 net_rps_action_and_irq_enable(sd);
4492
4493 #ifdef CONFIG_NET_DMA
4494 /*
4495 * There may not be any more sk_buffs coming right now, so push
4496 * any pending DMA copies to hardware
4497 */
4498 dma_issue_pending_all();
4499 #endif
4500
4501 return;
4502
4503 softnet_break:
4504 sd->time_squeeze++;
4505 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4506 goto out;
4507 }
4508
4509 struct netdev_adjacent {
4510 struct net_device *dev;
4511
4512 /* upper master flag, there can only be one master device per list */
4513 bool master;
4514
4515 /* counter for the number of times this device was added to us */
4516 u16 ref_nr;
4517
4518 /* private field for the users */
4519 void *private;
4520
4521 struct list_head list;
4522 struct rcu_head rcu;
4523 };
4524
4525 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4526 struct net_device *adj_dev,
4527 struct list_head *adj_list)
4528 {
4529 struct netdev_adjacent *adj;
4530
4531 list_for_each_entry(adj, adj_list, list) {
4532 if (adj->dev == adj_dev)
4533 return adj;
4534 }
4535 return NULL;
4536 }
4537
4538 /**
4539 * netdev_has_upper_dev - Check if device is linked to an upper device
4540 * @dev: device
4541 * @upper_dev: upper device to check
4542 *
4543 * Find out if a device is linked to specified upper device and return true
4544 * in case it is. Note that this checks only immediate upper device,
4545 * not through a complete stack of devices. The caller must hold the RTNL lock.
4546 */
4547 bool netdev_has_upper_dev(struct net_device *dev,
4548 struct net_device *upper_dev)
4549 {
4550 ASSERT_RTNL();
4551
4552 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4553 }
4554 EXPORT_SYMBOL(netdev_has_upper_dev);
4555
4556 /**
4557 * netdev_has_any_upper_dev - Check if device is linked to some device
4558 * @dev: device
4559 *
4560 * Find out if a device is linked to an upper device and return true in case
4561 * it is. The caller must hold the RTNL lock.
4562 */
4563 static bool netdev_has_any_upper_dev(struct net_device *dev)
4564 {
4565 ASSERT_RTNL();
4566
4567 return !list_empty(&dev->all_adj_list.upper);
4568 }
4569
4570 /**
4571 * netdev_master_upper_dev_get - Get master upper device
4572 * @dev: device
4573 *
4574 * Find a master upper device and return pointer to it or NULL in case
4575 * it's not there. The caller must hold the RTNL lock.
4576 */
4577 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4578 {
4579 struct netdev_adjacent *upper;
4580
4581 ASSERT_RTNL();
4582
4583 if (list_empty(&dev->adj_list.upper))
4584 return NULL;
4585
4586 upper = list_first_entry(&dev->adj_list.upper,
4587 struct netdev_adjacent, list);
4588 if (likely(upper->master))
4589 return upper->dev;
4590 return NULL;
4591 }
4592 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4593
4594 void *netdev_adjacent_get_private(struct list_head *adj_list)
4595 {
4596 struct netdev_adjacent *adj;
4597
4598 adj = list_entry(adj_list, struct netdev_adjacent, list);
4599
4600 return adj->private;
4601 }
4602 EXPORT_SYMBOL(netdev_adjacent_get_private);
4603
4604 /**
4605 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4606 * @dev: device
4607 * @iter: list_head ** of the current position
4608 *
4609 * Gets the next device from the dev's upper list, starting from iter
4610 * position. The caller must hold RCU read lock.
4611 */
4612 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4613 struct list_head **iter)
4614 {
4615 struct netdev_adjacent *upper;
4616
4617 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4618
4619 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4620
4621 if (&upper->list == &dev->adj_list.upper)
4622 return NULL;
4623
4624 *iter = &upper->list;
4625
4626 return upper->dev;
4627 }
4628 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4629
4630 /**
4631 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4632 * @dev: device
4633 * @iter: list_head ** of the current position
4634 *
4635 * Gets the next device from the dev's upper list, starting from iter
4636 * position. The caller must hold RCU read lock.
4637 */
4638 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4639 struct list_head **iter)
4640 {
4641 struct netdev_adjacent *upper;
4642
4643 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4644
4645 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4646
4647 if (&upper->list == &dev->all_adj_list.upper)
4648 return NULL;
4649
4650 *iter = &upper->list;
4651
4652 return upper->dev;
4653 }
4654 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4655
4656 /**
4657 * netdev_lower_get_next_private - Get the next ->private from the
4658 * lower neighbour list
4659 * @dev: device
4660 * @iter: list_head ** of the current position
4661 *
4662 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4663 * list, starting from iter position. The caller must hold either hold the
4664 * RTNL lock or its own locking that guarantees that the neighbour lower
4665 * list will remain unchainged.
4666 */
4667 void *netdev_lower_get_next_private(struct net_device *dev,
4668 struct list_head **iter)
4669 {
4670 struct netdev_adjacent *lower;
4671
4672 lower = list_entry(*iter, struct netdev_adjacent, list);
4673
4674 if (&lower->list == &dev->adj_list.lower)
4675 return NULL;
4676
4677 *iter = lower->list.next;
4678
4679 return lower->private;
4680 }
4681 EXPORT_SYMBOL(netdev_lower_get_next_private);
4682
4683 /**
4684 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4685 * lower neighbour list, RCU
4686 * variant
4687 * @dev: device
4688 * @iter: list_head ** of the current position
4689 *
4690 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4691 * list, starting from iter position. The caller must hold RCU read lock.
4692 */
4693 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4694 struct list_head **iter)
4695 {
4696 struct netdev_adjacent *lower;
4697
4698 WARN_ON_ONCE(!rcu_read_lock_held());
4699
4700 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4701
4702 if (&lower->list == &dev->adj_list.lower)
4703 return NULL;
4704
4705 *iter = &lower->list;
4706
4707 return lower->private;
4708 }
4709 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4710
4711 /**
4712 * netdev_lower_get_next - Get the next device from the lower neighbour
4713 * list
4714 * @dev: device
4715 * @iter: list_head ** of the current position
4716 *
4717 * Gets the next netdev_adjacent from the dev's lower neighbour
4718 * list, starting from iter position. The caller must hold RTNL lock or
4719 * its own locking that guarantees that the neighbour lower
4720 * list will remain unchainged.
4721 */
4722 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4723 {
4724 struct netdev_adjacent *lower;
4725
4726 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4727
4728 if (&lower->list == &dev->adj_list.lower)
4729 return NULL;
4730
4731 *iter = &lower->list;
4732
4733 return lower->dev;
4734 }
4735 EXPORT_SYMBOL(netdev_lower_get_next);
4736
4737 /**
4738 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4739 * lower neighbour list, RCU
4740 * variant
4741 * @dev: device
4742 *
4743 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4744 * list. The caller must hold RCU read lock.
4745 */
4746 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4747 {
4748 struct netdev_adjacent *lower;
4749
4750 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4751 struct netdev_adjacent, list);
4752 if (lower)
4753 return lower->private;
4754 return NULL;
4755 }
4756 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4757
4758 /**
4759 * netdev_master_upper_dev_get_rcu - Get master upper device
4760 * @dev: device
4761 *
4762 * Find a master upper device and return pointer to it or NULL in case
4763 * it's not there. The caller must hold the RCU read lock.
4764 */
4765 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4766 {
4767 struct netdev_adjacent *upper;
4768
4769 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4770 struct netdev_adjacent, list);
4771 if (upper && likely(upper->master))
4772 return upper->dev;
4773 return NULL;
4774 }
4775 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4776
4777 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4778 struct net_device *adj_dev,
4779 struct list_head *dev_list)
4780 {
4781 char linkname[IFNAMSIZ+7];
4782 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4783 "upper_%s" : "lower_%s", adj_dev->name);
4784 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4785 linkname);
4786 }
4787 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4788 char *name,
4789 struct list_head *dev_list)
4790 {
4791 char linkname[IFNAMSIZ+7];
4792 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4793 "upper_%s" : "lower_%s", name);
4794 sysfs_remove_link(&(dev->dev.kobj), linkname);
4795 }
4796
4797 #define netdev_adjacent_is_neigh_list(dev, dev_list) \
4798 (dev_list == &dev->adj_list.upper || \
4799 dev_list == &dev->adj_list.lower)
4800
4801 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4802 struct net_device *adj_dev,
4803 struct list_head *dev_list,
4804 void *private, bool master)
4805 {
4806 struct netdev_adjacent *adj;
4807 int ret;
4808
4809 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4810
4811 if (adj) {
4812 adj->ref_nr++;
4813 return 0;
4814 }
4815
4816 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4817 if (!adj)
4818 return -ENOMEM;
4819
4820 adj->dev = adj_dev;
4821 adj->master = master;
4822 adj->ref_nr = 1;
4823 adj->private = private;
4824 dev_hold(adj_dev);
4825
4826 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4827 adj_dev->name, dev->name, adj_dev->name);
4828
4829 if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4830 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4831 if (ret)
4832 goto free_adj;
4833 }
4834
4835 /* Ensure that master link is always the first item in list. */
4836 if (master) {
4837 ret = sysfs_create_link(&(dev->dev.kobj),
4838 &(adj_dev->dev.kobj), "master");
4839 if (ret)
4840 goto remove_symlinks;
4841
4842 list_add_rcu(&adj->list, dev_list);
4843 } else {
4844 list_add_tail_rcu(&adj->list, dev_list);
4845 }
4846
4847 return 0;
4848
4849 remove_symlinks:
4850 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4851 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4852 free_adj:
4853 kfree(adj);
4854 dev_put(adj_dev);
4855
4856 return ret;
4857 }
4858
4859 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4860 struct net_device *adj_dev,
4861 struct list_head *dev_list)
4862 {
4863 struct netdev_adjacent *adj;
4864
4865 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4866
4867 if (!adj) {
4868 pr_err("tried to remove device %s from %s\n",
4869 dev->name, adj_dev->name);
4870 BUG();
4871 }
4872
4873 if (adj->ref_nr > 1) {
4874 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4875 adj->ref_nr-1);
4876 adj->ref_nr--;
4877 return;
4878 }
4879
4880 if (adj->master)
4881 sysfs_remove_link(&(dev->dev.kobj), "master");
4882
4883 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4884 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4885
4886 list_del_rcu(&adj->list);
4887 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4888 adj_dev->name, dev->name, adj_dev->name);
4889 dev_put(adj_dev);
4890 kfree_rcu(adj, rcu);
4891 }
4892
4893 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4894 struct net_device *upper_dev,
4895 struct list_head *up_list,
4896 struct list_head *down_list,
4897 void *private, bool master)
4898 {
4899 int ret;
4900
4901 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4902 master);
4903 if (ret)
4904 return ret;
4905
4906 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4907 false);
4908 if (ret) {
4909 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4910 return ret;
4911 }
4912
4913 return 0;
4914 }
4915
4916 static int __netdev_adjacent_dev_link(struct net_device *dev,
4917 struct net_device *upper_dev)
4918 {
4919 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4920 &dev->all_adj_list.upper,
4921 &upper_dev->all_adj_list.lower,
4922 NULL, false);
4923 }
4924
4925 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4926 struct net_device *upper_dev,
4927 struct list_head *up_list,
4928 struct list_head *down_list)
4929 {
4930 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4931 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4932 }
4933
4934 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4935 struct net_device *upper_dev)
4936 {
4937 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4938 &dev->all_adj_list.upper,
4939 &upper_dev->all_adj_list.lower);
4940 }
4941
4942 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4943 struct net_device *upper_dev,
4944 void *private, bool master)
4945 {
4946 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4947
4948 if (ret)
4949 return ret;
4950
4951 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4952 &dev->adj_list.upper,
4953 &upper_dev->adj_list.lower,
4954 private, master);
4955 if (ret) {
4956 __netdev_adjacent_dev_unlink(dev, upper_dev);
4957 return ret;
4958 }
4959
4960 return 0;
4961 }
4962
4963 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4964 struct net_device *upper_dev)
4965 {
4966 __netdev_adjacent_dev_unlink(dev, upper_dev);
4967 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4968 &dev->adj_list.upper,
4969 &upper_dev->adj_list.lower);
4970 }
4971
4972 static int __netdev_upper_dev_link(struct net_device *dev,
4973 struct net_device *upper_dev, bool master,
4974 void *private)
4975 {
4976 struct netdev_adjacent *i, *j, *to_i, *to_j;
4977 int ret = 0;
4978
4979 ASSERT_RTNL();
4980
4981 if (dev == upper_dev)
4982 return -EBUSY;
4983
4984 /* To prevent loops, check if dev is not upper device to upper_dev. */
4985 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4986 return -EBUSY;
4987
4988 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4989 return -EEXIST;
4990
4991 if (master && netdev_master_upper_dev_get(dev))
4992 return -EBUSY;
4993
4994 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4995 master);
4996 if (ret)
4997 return ret;
4998
4999 /* Now that we linked these devs, make all the upper_dev's
5000 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5001 * versa, and don't forget the devices itself. All of these
5002 * links are non-neighbours.
5003 */
5004 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5005 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5006 pr_debug("Interlinking %s with %s, non-neighbour\n",
5007 i->dev->name, j->dev->name);
5008 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5009 if (ret)
5010 goto rollback_mesh;
5011 }
5012 }
5013
5014 /* add dev to every upper_dev's upper device */
5015 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5016 pr_debug("linking %s's upper device %s with %s\n",
5017 upper_dev->name, i->dev->name, dev->name);
5018 ret = __netdev_adjacent_dev_link(dev, i->dev);
5019 if (ret)
5020 goto rollback_upper_mesh;
5021 }
5022
5023 /* add upper_dev to every dev's lower device */
5024 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5025 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5026 i->dev->name, upper_dev->name);
5027 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5028 if (ret)
5029 goto rollback_lower_mesh;
5030 }
5031
5032 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5033 return 0;
5034
5035 rollback_lower_mesh:
5036 to_i = i;
5037 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5038 if (i == to_i)
5039 break;
5040 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5041 }
5042
5043 i = NULL;
5044
5045 rollback_upper_mesh:
5046 to_i = i;
5047 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5048 if (i == to_i)
5049 break;
5050 __netdev_adjacent_dev_unlink(dev, i->dev);
5051 }
5052
5053 i = j = NULL;
5054
5055 rollback_mesh:
5056 to_i = i;
5057 to_j = j;
5058 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5059 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5060 if (i == to_i && j == to_j)
5061 break;
5062 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5063 }
5064 if (i == to_i)
5065 break;
5066 }
5067
5068 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5069
5070 return ret;
5071 }
5072
5073 /**
5074 * netdev_upper_dev_link - Add a link to the upper device
5075 * @dev: device
5076 * @upper_dev: new upper device
5077 *
5078 * Adds a link to device which is upper to this one. The caller must hold
5079 * the RTNL lock. On a failure a negative errno code is returned.
5080 * On success the reference counts are adjusted and the function
5081 * returns zero.
5082 */
5083 int netdev_upper_dev_link(struct net_device *dev,
5084 struct net_device *upper_dev)
5085 {
5086 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5087 }
5088 EXPORT_SYMBOL(netdev_upper_dev_link);
5089
5090 /**
5091 * netdev_master_upper_dev_link - Add a master link to the upper device
5092 * @dev: device
5093 * @upper_dev: new upper device
5094 *
5095 * Adds a link to device which is upper to this one. In this case, only
5096 * one master upper device can be linked, although other non-master devices
5097 * might be linked as well. The caller must hold the RTNL lock.
5098 * On a failure a negative errno code is returned. On success the reference
5099 * counts are adjusted and the function returns zero.
5100 */
5101 int netdev_master_upper_dev_link(struct net_device *dev,
5102 struct net_device *upper_dev)
5103 {
5104 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5105 }
5106 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5107
5108 int netdev_master_upper_dev_link_private(struct net_device *dev,
5109 struct net_device *upper_dev,
5110 void *private)
5111 {
5112 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5113 }
5114 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5115
5116 /**
5117 * netdev_upper_dev_unlink - Removes a link to upper device
5118 * @dev: device
5119 * @upper_dev: new upper device
5120 *
5121 * Removes a link to device which is upper to this one. The caller must hold
5122 * the RTNL lock.
5123 */
5124 void netdev_upper_dev_unlink(struct net_device *dev,
5125 struct net_device *upper_dev)
5126 {
5127 struct netdev_adjacent *i, *j;
5128 ASSERT_RTNL();
5129
5130 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5131
5132 /* Here is the tricky part. We must remove all dev's lower
5133 * devices from all upper_dev's upper devices and vice
5134 * versa, to maintain the graph relationship.
5135 */
5136 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5137 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5138 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5139
5140 /* remove also the devices itself from lower/upper device
5141 * list
5142 */
5143 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5144 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5145
5146 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5147 __netdev_adjacent_dev_unlink(dev, i->dev);
5148
5149 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5150 }
5151 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5152
5153 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5154 {
5155 struct netdev_adjacent *iter;
5156
5157 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5158 netdev_adjacent_sysfs_del(iter->dev, oldname,
5159 &iter->dev->adj_list.lower);
5160 netdev_adjacent_sysfs_add(iter->dev, dev,
5161 &iter->dev->adj_list.lower);
5162 }
5163
5164 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5165 netdev_adjacent_sysfs_del(iter->dev, oldname,
5166 &iter->dev->adj_list.upper);
5167 netdev_adjacent_sysfs_add(iter->dev, dev,
5168 &iter->dev->adj_list.upper);
5169 }
5170 }
5171
5172 void *netdev_lower_dev_get_private(struct net_device *dev,
5173 struct net_device *lower_dev)
5174 {
5175 struct netdev_adjacent *lower;
5176
5177 if (!lower_dev)
5178 return NULL;
5179 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5180 if (!lower)
5181 return NULL;
5182
5183 return lower->private;
5184 }
5185 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5186
5187
5188 int dev_get_nest_level(struct net_device *dev,
5189 bool (*type_check)(struct net_device *dev))
5190 {
5191 struct net_device *lower = NULL;
5192 struct list_head *iter;
5193 int max_nest = -1;
5194 int nest;
5195
5196 ASSERT_RTNL();
5197
5198 netdev_for_each_lower_dev(dev, lower, iter) {
5199 nest = dev_get_nest_level(lower, type_check);
5200 if (max_nest < nest)
5201 max_nest = nest;
5202 }
5203
5204 if (type_check(dev))
5205 max_nest++;
5206
5207 return max_nest;
5208 }
5209 EXPORT_SYMBOL(dev_get_nest_level);
5210
5211 static void dev_change_rx_flags(struct net_device *dev, int flags)
5212 {
5213 const struct net_device_ops *ops = dev->netdev_ops;
5214
5215 if (ops->ndo_change_rx_flags)
5216 ops->ndo_change_rx_flags(dev, flags);
5217 }
5218
5219 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5220 {
5221 unsigned int old_flags = dev->flags;
5222 kuid_t uid;
5223 kgid_t gid;
5224
5225 ASSERT_RTNL();
5226
5227 dev->flags |= IFF_PROMISC;
5228 dev->promiscuity += inc;
5229 if (dev->promiscuity == 0) {
5230 /*
5231 * Avoid overflow.
5232 * If inc causes overflow, untouch promisc and return error.
5233 */
5234 if (inc < 0)
5235 dev->flags &= ~IFF_PROMISC;
5236 else {
5237 dev->promiscuity -= inc;
5238 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5239 dev->name);
5240 return -EOVERFLOW;
5241 }
5242 }
5243 if (dev->flags != old_flags) {
5244 pr_info("device %s %s promiscuous mode\n",
5245 dev->name,
5246 dev->flags & IFF_PROMISC ? "entered" : "left");
5247 if (audit_enabled) {
5248 current_uid_gid(&uid, &gid);
5249 audit_log(current->audit_context, GFP_ATOMIC,
5250 AUDIT_ANOM_PROMISCUOUS,
5251 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5252 dev->name, (dev->flags & IFF_PROMISC),
5253 (old_flags & IFF_PROMISC),
5254 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5255 from_kuid(&init_user_ns, uid),
5256 from_kgid(&init_user_ns, gid),
5257 audit_get_sessionid(current));
5258 }
5259
5260 dev_change_rx_flags(dev, IFF_PROMISC);
5261 }
5262 if (notify)
5263 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5264 return 0;
5265 }
5266
5267 /**
5268 * dev_set_promiscuity - update promiscuity count on a device
5269 * @dev: device
5270 * @inc: modifier
5271 *
5272 * Add or remove promiscuity from a device. While the count in the device
5273 * remains above zero the interface remains promiscuous. Once it hits zero
5274 * the device reverts back to normal filtering operation. A negative inc
5275 * value is used to drop promiscuity on the device.
5276 * Return 0 if successful or a negative errno code on error.
5277 */
5278 int dev_set_promiscuity(struct net_device *dev, int inc)
5279 {
5280 unsigned int old_flags = dev->flags;
5281 int err;
5282
5283 err = __dev_set_promiscuity(dev, inc, true);
5284 if (err < 0)
5285 return err;
5286 if (dev->flags != old_flags)
5287 dev_set_rx_mode(dev);
5288 return err;
5289 }
5290 EXPORT_SYMBOL(dev_set_promiscuity);
5291
5292 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5293 {
5294 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5295
5296 ASSERT_RTNL();
5297
5298 dev->flags |= IFF_ALLMULTI;
5299 dev->allmulti += inc;
5300 if (dev->allmulti == 0) {
5301 /*
5302 * Avoid overflow.
5303 * If inc causes overflow, untouch allmulti and return error.
5304 */
5305 if (inc < 0)
5306 dev->flags &= ~IFF_ALLMULTI;
5307 else {
5308 dev->allmulti -= inc;
5309 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5310 dev->name);
5311 return -EOVERFLOW;
5312 }
5313 }
5314 if (dev->flags ^ old_flags) {
5315 dev_change_rx_flags(dev, IFF_ALLMULTI);
5316 dev_set_rx_mode(dev);
5317 if (notify)
5318 __dev_notify_flags(dev, old_flags,
5319 dev->gflags ^ old_gflags);
5320 }
5321 return 0;
5322 }
5323
5324 /**
5325 * dev_set_allmulti - update allmulti count on a device
5326 * @dev: device
5327 * @inc: modifier
5328 *
5329 * Add or remove reception of all multicast frames to a device. While the
5330 * count in the device remains above zero the interface remains listening
5331 * to all interfaces. Once it hits zero the device reverts back to normal
5332 * filtering operation. A negative @inc value is used to drop the counter
5333 * when releasing a resource needing all multicasts.
5334 * Return 0 if successful or a negative errno code on error.
5335 */
5336
5337 int dev_set_allmulti(struct net_device *dev, int inc)
5338 {
5339 return __dev_set_allmulti(dev, inc, true);
5340 }
5341 EXPORT_SYMBOL(dev_set_allmulti);
5342
5343 /*
5344 * Upload unicast and multicast address lists to device and
5345 * configure RX filtering. When the device doesn't support unicast
5346 * filtering it is put in promiscuous mode while unicast addresses
5347 * are present.
5348 */
5349 void __dev_set_rx_mode(struct net_device *dev)
5350 {
5351 const struct net_device_ops *ops = dev->netdev_ops;
5352
5353 /* dev_open will call this function so the list will stay sane. */
5354 if (!(dev->flags&IFF_UP))
5355 return;
5356
5357 if (!netif_device_present(dev))
5358 return;
5359
5360 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5361 /* Unicast addresses changes may only happen under the rtnl,
5362 * therefore calling __dev_set_promiscuity here is safe.
5363 */
5364 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5365 __dev_set_promiscuity(dev, 1, false);
5366 dev->uc_promisc = true;
5367 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5368 __dev_set_promiscuity(dev, -1, false);
5369 dev->uc_promisc = false;
5370 }
5371 }
5372
5373 if (ops->ndo_set_rx_mode)
5374 ops->ndo_set_rx_mode(dev);
5375 }
5376
5377 void dev_set_rx_mode(struct net_device *dev)
5378 {
5379 netif_addr_lock_bh(dev);
5380 __dev_set_rx_mode(dev);
5381 netif_addr_unlock_bh(dev);
5382 }
5383
5384 /**
5385 * dev_get_flags - get flags reported to userspace
5386 * @dev: device
5387 *
5388 * Get the combination of flag bits exported through APIs to userspace.
5389 */
5390 unsigned int dev_get_flags(const struct net_device *dev)
5391 {
5392 unsigned int flags;
5393
5394 flags = (dev->flags & ~(IFF_PROMISC |
5395 IFF_ALLMULTI |
5396 IFF_RUNNING |
5397 IFF_LOWER_UP |
5398 IFF_DORMANT)) |
5399 (dev->gflags & (IFF_PROMISC |
5400 IFF_ALLMULTI));
5401
5402 if (netif_running(dev)) {
5403 if (netif_oper_up(dev))
5404 flags |= IFF_RUNNING;
5405 if (netif_carrier_ok(dev))
5406 flags |= IFF_LOWER_UP;
5407 if (netif_dormant(dev))
5408 flags |= IFF_DORMANT;
5409 }
5410
5411 return flags;
5412 }
5413 EXPORT_SYMBOL(dev_get_flags);
5414
5415 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5416 {
5417 unsigned int old_flags = dev->flags;
5418 int ret;
5419
5420 ASSERT_RTNL();
5421
5422 /*
5423 * Set the flags on our device.
5424 */
5425
5426 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5427 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5428 IFF_AUTOMEDIA)) |
5429 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5430 IFF_ALLMULTI));
5431
5432 /*
5433 * Load in the correct multicast list now the flags have changed.
5434 */
5435
5436 if ((old_flags ^ flags) & IFF_MULTICAST)
5437 dev_change_rx_flags(dev, IFF_MULTICAST);
5438
5439 dev_set_rx_mode(dev);
5440
5441 /*
5442 * Have we downed the interface. We handle IFF_UP ourselves
5443 * according to user attempts to set it, rather than blindly
5444 * setting it.
5445 */
5446
5447 ret = 0;
5448 if ((old_flags ^ flags) & IFF_UP)
5449 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5450
5451 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5452 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5453 unsigned int old_flags = dev->flags;
5454
5455 dev->gflags ^= IFF_PROMISC;
5456
5457 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5458 if (dev->flags != old_flags)
5459 dev_set_rx_mode(dev);
5460 }
5461
5462 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5463 is important. Some (broken) drivers set IFF_PROMISC, when
5464 IFF_ALLMULTI is requested not asking us and not reporting.
5465 */
5466 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5467 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5468
5469 dev->gflags ^= IFF_ALLMULTI;
5470 __dev_set_allmulti(dev, inc, false);
5471 }
5472
5473 return ret;
5474 }
5475
5476 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5477 unsigned int gchanges)
5478 {
5479 unsigned int changes = dev->flags ^ old_flags;
5480
5481 if (gchanges)
5482 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5483
5484 if (changes & IFF_UP) {
5485 if (dev->flags & IFF_UP)
5486 call_netdevice_notifiers(NETDEV_UP, dev);
5487 else
5488 call_netdevice_notifiers(NETDEV_DOWN, dev);
5489 }
5490
5491 if (dev->flags & IFF_UP &&
5492 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5493 struct netdev_notifier_change_info change_info;
5494
5495 change_info.flags_changed = changes;
5496 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5497 &change_info.info);
5498 }
5499 }
5500
5501 /**
5502 * dev_change_flags - change device settings
5503 * @dev: device
5504 * @flags: device state flags
5505 *
5506 * Change settings on device based state flags. The flags are
5507 * in the userspace exported format.
5508 */
5509 int dev_change_flags(struct net_device *dev, unsigned int flags)
5510 {
5511 int ret;
5512 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5513
5514 ret = __dev_change_flags(dev, flags);
5515 if (ret < 0)
5516 return ret;
5517
5518 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5519 __dev_notify_flags(dev, old_flags, changes);
5520 return ret;
5521 }
5522 EXPORT_SYMBOL(dev_change_flags);
5523
5524 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5525 {
5526 const struct net_device_ops *ops = dev->netdev_ops;
5527
5528 if (ops->ndo_change_mtu)
5529 return ops->ndo_change_mtu(dev, new_mtu);
5530
5531 dev->mtu = new_mtu;
5532 return 0;
5533 }
5534
5535 /**
5536 * dev_set_mtu - Change maximum transfer unit
5537 * @dev: device
5538 * @new_mtu: new transfer unit
5539 *
5540 * Change the maximum transfer size of the network device.
5541 */
5542 int dev_set_mtu(struct net_device *dev, int new_mtu)
5543 {
5544 int err, orig_mtu;
5545
5546 if (new_mtu == dev->mtu)
5547 return 0;
5548
5549 /* MTU must be positive. */
5550 if (new_mtu < 0)
5551 return -EINVAL;
5552
5553 if (!netif_device_present(dev))
5554 return -ENODEV;
5555
5556 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5557 err = notifier_to_errno(err);
5558 if (err)
5559 return err;
5560
5561 orig_mtu = dev->mtu;
5562 err = __dev_set_mtu(dev, new_mtu);
5563
5564 if (!err) {
5565 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5566 err = notifier_to_errno(err);
5567 if (err) {
5568 /* setting mtu back and notifying everyone again,
5569 * so that they have a chance to revert changes.
5570 */
5571 __dev_set_mtu(dev, orig_mtu);
5572 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5573 }
5574 }
5575 return err;
5576 }
5577 EXPORT_SYMBOL(dev_set_mtu);
5578
5579 /**
5580 * dev_set_group - Change group this device belongs to
5581 * @dev: device
5582 * @new_group: group this device should belong to
5583 */
5584 void dev_set_group(struct net_device *dev, int new_group)
5585 {
5586 dev->group = new_group;
5587 }
5588 EXPORT_SYMBOL(dev_set_group);
5589
5590 /**
5591 * dev_set_mac_address - Change Media Access Control Address
5592 * @dev: device
5593 * @sa: new address
5594 *
5595 * Change the hardware (MAC) address of the device
5596 */
5597 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5598 {
5599 const struct net_device_ops *ops = dev->netdev_ops;
5600 int err;
5601
5602 if (!ops->ndo_set_mac_address)
5603 return -EOPNOTSUPP;
5604 if (sa->sa_family != dev->type)
5605 return -EINVAL;
5606 if (!netif_device_present(dev))
5607 return -ENODEV;
5608 err = ops->ndo_set_mac_address(dev, sa);
5609 if (err)
5610 return err;
5611 dev->addr_assign_type = NET_ADDR_SET;
5612 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5613 add_device_randomness(dev->dev_addr, dev->addr_len);
5614 return 0;
5615 }
5616 EXPORT_SYMBOL(dev_set_mac_address);
5617
5618 /**
5619 * dev_change_carrier - Change device carrier
5620 * @dev: device
5621 * @new_carrier: new value
5622 *
5623 * Change device carrier
5624 */
5625 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5626 {
5627 const struct net_device_ops *ops = dev->netdev_ops;
5628
5629 if (!ops->ndo_change_carrier)
5630 return -EOPNOTSUPP;
5631 if (!netif_device_present(dev))
5632 return -ENODEV;
5633 return ops->ndo_change_carrier(dev, new_carrier);
5634 }
5635 EXPORT_SYMBOL(dev_change_carrier);
5636
5637 /**
5638 * dev_get_phys_port_id - Get device physical port ID
5639 * @dev: device
5640 * @ppid: port ID
5641 *
5642 * Get device physical port ID
5643 */
5644 int dev_get_phys_port_id(struct net_device *dev,
5645 struct netdev_phys_port_id *ppid)
5646 {
5647 const struct net_device_ops *ops = dev->netdev_ops;
5648
5649 if (!ops->ndo_get_phys_port_id)
5650 return -EOPNOTSUPP;
5651 return ops->ndo_get_phys_port_id(dev, ppid);
5652 }
5653 EXPORT_SYMBOL(dev_get_phys_port_id);
5654
5655 /**
5656 * dev_new_index - allocate an ifindex
5657 * @net: the applicable net namespace
5658 *
5659 * Returns a suitable unique value for a new device interface
5660 * number. The caller must hold the rtnl semaphore or the
5661 * dev_base_lock to be sure it remains unique.
5662 */
5663 static int dev_new_index(struct net *net)
5664 {
5665 int ifindex = net->ifindex;
5666 for (;;) {
5667 if (++ifindex <= 0)
5668 ifindex = 1;
5669 if (!__dev_get_by_index(net, ifindex))
5670 return net->ifindex = ifindex;
5671 }
5672 }
5673
5674 /* Delayed registration/unregisteration */
5675 static LIST_HEAD(net_todo_list);
5676 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5677
5678 static void net_set_todo(struct net_device *dev)
5679 {
5680 list_add_tail(&dev->todo_list, &net_todo_list);
5681 dev_net(dev)->dev_unreg_count++;
5682 }
5683
5684 static void rollback_registered_many(struct list_head *head)
5685 {
5686 struct net_device *dev, *tmp;
5687 LIST_HEAD(close_head);
5688
5689 BUG_ON(dev_boot_phase);
5690 ASSERT_RTNL();
5691
5692 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5693 /* Some devices call without registering
5694 * for initialization unwind. Remove those
5695 * devices and proceed with the remaining.
5696 */
5697 if (dev->reg_state == NETREG_UNINITIALIZED) {
5698 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5699 dev->name, dev);
5700
5701 WARN_ON(1);
5702 list_del(&dev->unreg_list);
5703 continue;
5704 }
5705 dev->dismantle = true;
5706 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5707 }
5708
5709 /* If device is running, close it first. */
5710 list_for_each_entry(dev, head, unreg_list)
5711 list_add_tail(&dev->close_list, &close_head);
5712 dev_close_many(&close_head);
5713
5714 list_for_each_entry(dev, head, unreg_list) {
5715 /* And unlink it from device chain. */
5716 unlist_netdevice(dev);
5717
5718 dev->reg_state = NETREG_UNREGISTERING;
5719 }
5720
5721 synchronize_net();
5722
5723 list_for_each_entry(dev, head, unreg_list) {
5724 /* Shutdown queueing discipline. */
5725 dev_shutdown(dev);
5726
5727
5728 /* Notify protocols, that we are about to destroy
5729 this device. They should clean all the things.
5730 */
5731 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5732
5733 /*
5734 * Flush the unicast and multicast chains
5735 */
5736 dev_uc_flush(dev);
5737 dev_mc_flush(dev);
5738
5739 if (dev->netdev_ops->ndo_uninit)
5740 dev->netdev_ops->ndo_uninit(dev);
5741
5742 if (!dev->rtnl_link_ops ||
5743 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5744 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5745
5746 /* Notifier chain MUST detach us all upper devices. */
5747 WARN_ON(netdev_has_any_upper_dev(dev));
5748
5749 /* Remove entries from kobject tree */
5750 netdev_unregister_kobject(dev);
5751 #ifdef CONFIG_XPS
5752 /* Remove XPS queueing entries */
5753 netif_reset_xps_queues_gt(dev, 0);
5754 #endif
5755 }
5756
5757 synchronize_net();
5758
5759 list_for_each_entry(dev, head, unreg_list)
5760 dev_put(dev);
5761 }
5762
5763 static void rollback_registered(struct net_device *dev)
5764 {
5765 LIST_HEAD(single);
5766
5767 list_add(&dev->unreg_list, &single);
5768 rollback_registered_many(&single);
5769 list_del(&single);
5770 }
5771
5772 static netdev_features_t netdev_fix_features(struct net_device *dev,
5773 netdev_features_t features)
5774 {
5775 /* Fix illegal checksum combinations */
5776 if ((features & NETIF_F_HW_CSUM) &&
5777 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5778 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5779 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5780 }
5781
5782 /* TSO requires that SG is present as well. */
5783 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5784 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5785 features &= ~NETIF_F_ALL_TSO;
5786 }
5787
5788 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5789 !(features & NETIF_F_IP_CSUM)) {
5790 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5791 features &= ~NETIF_F_TSO;
5792 features &= ~NETIF_F_TSO_ECN;
5793 }
5794
5795 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5796 !(features & NETIF_F_IPV6_CSUM)) {
5797 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5798 features &= ~NETIF_F_TSO6;
5799 }
5800
5801 /* TSO ECN requires that TSO is present as well. */
5802 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5803 features &= ~NETIF_F_TSO_ECN;
5804
5805 /* Software GSO depends on SG. */
5806 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5807 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5808 features &= ~NETIF_F_GSO;
5809 }
5810
5811 /* UFO needs SG and checksumming */
5812 if (features & NETIF_F_UFO) {
5813 /* maybe split UFO into V4 and V6? */
5814 if (!((features & NETIF_F_GEN_CSUM) ||
5815 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5816 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5817 netdev_dbg(dev,
5818 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5819 features &= ~NETIF_F_UFO;
5820 }
5821
5822 if (!(features & NETIF_F_SG)) {
5823 netdev_dbg(dev,
5824 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5825 features &= ~NETIF_F_UFO;
5826 }
5827 }
5828
5829 #ifdef CONFIG_NET_RX_BUSY_POLL
5830 if (dev->netdev_ops->ndo_busy_poll)
5831 features |= NETIF_F_BUSY_POLL;
5832 else
5833 #endif
5834 features &= ~NETIF_F_BUSY_POLL;
5835
5836 return features;
5837 }
5838
5839 int __netdev_update_features(struct net_device *dev)
5840 {
5841 netdev_features_t features;
5842 int err = 0;
5843
5844 ASSERT_RTNL();
5845
5846 features = netdev_get_wanted_features(dev);
5847
5848 if (dev->netdev_ops->ndo_fix_features)
5849 features = dev->netdev_ops->ndo_fix_features(dev, features);
5850
5851 /* driver might be less strict about feature dependencies */
5852 features = netdev_fix_features(dev, features);
5853
5854 if (dev->features == features)
5855 return 0;
5856
5857 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5858 &dev->features, &features);
5859
5860 if (dev->netdev_ops->ndo_set_features)
5861 err = dev->netdev_ops->ndo_set_features(dev, features);
5862
5863 if (unlikely(err < 0)) {
5864 netdev_err(dev,
5865 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5866 err, &features, &dev->features);
5867 return -1;
5868 }
5869
5870 if (!err)
5871 dev->features = features;
5872
5873 return 1;
5874 }
5875
5876 /**
5877 * netdev_update_features - recalculate device features
5878 * @dev: the device to check
5879 *
5880 * Recalculate dev->features set and send notifications if it
5881 * has changed. Should be called after driver or hardware dependent
5882 * conditions might have changed that influence the features.
5883 */
5884 void netdev_update_features(struct net_device *dev)
5885 {
5886 if (__netdev_update_features(dev))
5887 netdev_features_change(dev);
5888 }
5889 EXPORT_SYMBOL(netdev_update_features);
5890
5891 /**
5892 * netdev_change_features - recalculate device features
5893 * @dev: the device to check
5894 *
5895 * Recalculate dev->features set and send notifications even
5896 * if they have not changed. Should be called instead of
5897 * netdev_update_features() if also dev->vlan_features might
5898 * have changed to allow the changes to be propagated to stacked
5899 * VLAN devices.
5900 */
5901 void netdev_change_features(struct net_device *dev)
5902 {
5903 __netdev_update_features(dev);
5904 netdev_features_change(dev);
5905 }
5906 EXPORT_SYMBOL(netdev_change_features);
5907
5908 /**
5909 * netif_stacked_transfer_operstate - transfer operstate
5910 * @rootdev: the root or lower level device to transfer state from
5911 * @dev: the device to transfer operstate to
5912 *
5913 * Transfer operational state from root to device. This is normally
5914 * called when a stacking relationship exists between the root
5915 * device and the device(a leaf device).
5916 */
5917 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5918 struct net_device *dev)
5919 {
5920 if (rootdev->operstate == IF_OPER_DORMANT)
5921 netif_dormant_on(dev);
5922 else
5923 netif_dormant_off(dev);
5924
5925 if (netif_carrier_ok(rootdev)) {
5926 if (!netif_carrier_ok(dev))
5927 netif_carrier_on(dev);
5928 } else {
5929 if (netif_carrier_ok(dev))
5930 netif_carrier_off(dev);
5931 }
5932 }
5933 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5934
5935 #ifdef CONFIG_SYSFS
5936 static int netif_alloc_rx_queues(struct net_device *dev)
5937 {
5938 unsigned int i, count = dev->num_rx_queues;
5939 struct netdev_rx_queue *rx;
5940
5941 BUG_ON(count < 1);
5942
5943 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5944 if (!rx)
5945 return -ENOMEM;
5946
5947 dev->_rx = rx;
5948
5949 for (i = 0; i < count; i++)
5950 rx[i].dev = dev;
5951 return 0;
5952 }
5953 #endif
5954
5955 static void netdev_init_one_queue(struct net_device *dev,
5956 struct netdev_queue *queue, void *_unused)
5957 {
5958 /* Initialize queue lock */
5959 spin_lock_init(&queue->_xmit_lock);
5960 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5961 queue->xmit_lock_owner = -1;
5962 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5963 queue->dev = dev;
5964 #ifdef CONFIG_BQL
5965 dql_init(&queue->dql, HZ);
5966 #endif
5967 }
5968
5969 static void netif_free_tx_queues(struct net_device *dev)
5970 {
5971 kvfree(dev->_tx);
5972 }
5973
5974 static int netif_alloc_netdev_queues(struct net_device *dev)
5975 {
5976 unsigned int count = dev->num_tx_queues;
5977 struct netdev_queue *tx;
5978 size_t sz = count * sizeof(*tx);
5979
5980 BUG_ON(count < 1 || count > 0xffff);
5981
5982 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5983 if (!tx) {
5984 tx = vzalloc(sz);
5985 if (!tx)
5986 return -ENOMEM;
5987 }
5988 dev->_tx = tx;
5989
5990 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5991 spin_lock_init(&dev->tx_global_lock);
5992
5993 return 0;
5994 }
5995
5996 /**
5997 * register_netdevice - register a network device
5998 * @dev: device to register
5999 *
6000 * Take a completed network device structure and add it to the kernel
6001 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6002 * chain. 0 is returned on success. A negative errno code is returned
6003 * on a failure to set up the device, or if the name is a duplicate.
6004 *
6005 * Callers must hold the rtnl semaphore. You may want
6006 * register_netdev() instead of this.
6007 *
6008 * BUGS:
6009 * The locking appears insufficient to guarantee two parallel registers
6010 * will not get the same name.
6011 */
6012
6013 int register_netdevice(struct net_device *dev)
6014 {
6015 int ret;
6016 struct net *net = dev_net(dev);
6017
6018 BUG_ON(dev_boot_phase);
6019 ASSERT_RTNL();
6020
6021 might_sleep();
6022
6023 /* When net_device's are persistent, this will be fatal. */
6024 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6025 BUG_ON(!net);
6026
6027 spin_lock_init(&dev->addr_list_lock);
6028 netdev_set_addr_lockdep_class(dev);
6029
6030 dev->iflink = -1;
6031
6032 ret = dev_get_valid_name(net, dev, dev->name);
6033 if (ret < 0)
6034 goto out;
6035
6036 /* Init, if this function is available */
6037 if (dev->netdev_ops->ndo_init) {
6038 ret = dev->netdev_ops->ndo_init(dev);
6039 if (ret) {
6040 if (ret > 0)
6041 ret = -EIO;
6042 goto out;
6043 }
6044 }
6045
6046 if (((dev->hw_features | dev->features) &
6047 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6048 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6049 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6050 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6051 ret = -EINVAL;
6052 goto err_uninit;
6053 }
6054
6055 ret = -EBUSY;
6056 if (!dev->ifindex)
6057 dev->ifindex = dev_new_index(net);
6058 else if (__dev_get_by_index(net, dev->ifindex))
6059 goto err_uninit;
6060
6061 if (dev->iflink == -1)
6062 dev->iflink = dev->ifindex;
6063
6064 /* Transfer changeable features to wanted_features and enable
6065 * software offloads (GSO and GRO).
6066 */
6067 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6068 dev->features |= NETIF_F_SOFT_FEATURES;
6069 dev->wanted_features = dev->features & dev->hw_features;
6070
6071 if (!(dev->flags & IFF_LOOPBACK)) {
6072 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6073 }
6074
6075 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6076 */
6077 dev->vlan_features |= NETIF_F_HIGHDMA;
6078
6079 /* Make NETIF_F_SG inheritable to tunnel devices.
6080 */
6081 dev->hw_enc_features |= NETIF_F_SG;
6082
6083 /* Make NETIF_F_SG inheritable to MPLS.
6084 */
6085 dev->mpls_features |= NETIF_F_SG;
6086
6087 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6088 ret = notifier_to_errno(ret);
6089 if (ret)
6090 goto err_uninit;
6091
6092 ret = netdev_register_kobject(dev);
6093 if (ret)
6094 goto err_uninit;
6095 dev->reg_state = NETREG_REGISTERED;
6096
6097 __netdev_update_features(dev);
6098
6099 /*
6100 * Default initial state at registry is that the
6101 * device is present.
6102 */
6103
6104 set_bit(__LINK_STATE_PRESENT, &dev->state);
6105
6106 linkwatch_init_dev(dev);
6107
6108 dev_init_scheduler(dev);
6109 dev_hold(dev);
6110 list_netdevice(dev);
6111 add_device_randomness(dev->dev_addr, dev->addr_len);
6112
6113 /* If the device has permanent device address, driver should
6114 * set dev_addr and also addr_assign_type should be set to
6115 * NET_ADDR_PERM (default value).
6116 */
6117 if (dev->addr_assign_type == NET_ADDR_PERM)
6118 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6119
6120 /* Notify protocols, that a new device appeared. */
6121 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6122 ret = notifier_to_errno(ret);
6123 if (ret) {
6124 rollback_registered(dev);
6125 dev->reg_state = NETREG_UNREGISTERED;
6126 }
6127 /*
6128 * Prevent userspace races by waiting until the network
6129 * device is fully setup before sending notifications.
6130 */
6131 if (!dev->rtnl_link_ops ||
6132 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6133 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6134
6135 out:
6136 return ret;
6137
6138 err_uninit:
6139 if (dev->netdev_ops->ndo_uninit)
6140 dev->netdev_ops->ndo_uninit(dev);
6141 goto out;
6142 }
6143 EXPORT_SYMBOL(register_netdevice);
6144
6145 /**
6146 * init_dummy_netdev - init a dummy network device for NAPI
6147 * @dev: device to init
6148 *
6149 * This takes a network device structure and initialize the minimum
6150 * amount of fields so it can be used to schedule NAPI polls without
6151 * registering a full blown interface. This is to be used by drivers
6152 * that need to tie several hardware interfaces to a single NAPI
6153 * poll scheduler due to HW limitations.
6154 */
6155 int init_dummy_netdev(struct net_device *dev)
6156 {
6157 /* Clear everything. Note we don't initialize spinlocks
6158 * are they aren't supposed to be taken by any of the
6159 * NAPI code and this dummy netdev is supposed to be
6160 * only ever used for NAPI polls
6161 */
6162 memset(dev, 0, sizeof(struct net_device));
6163
6164 /* make sure we BUG if trying to hit standard
6165 * register/unregister code path
6166 */
6167 dev->reg_state = NETREG_DUMMY;
6168
6169 /* NAPI wants this */
6170 INIT_LIST_HEAD(&dev->napi_list);
6171
6172 /* a dummy interface is started by default */
6173 set_bit(__LINK_STATE_PRESENT, &dev->state);
6174 set_bit(__LINK_STATE_START, &dev->state);
6175
6176 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6177 * because users of this 'device' dont need to change
6178 * its refcount.
6179 */
6180
6181 return 0;
6182 }
6183 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6184
6185
6186 /**
6187 * register_netdev - register a network device
6188 * @dev: device to register
6189 *
6190 * Take a completed network device structure and add it to the kernel
6191 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6192 * chain. 0 is returned on success. A negative errno code is returned
6193 * on a failure to set up the device, or if the name is a duplicate.
6194 *
6195 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6196 * and expands the device name if you passed a format string to
6197 * alloc_netdev.
6198 */
6199 int register_netdev(struct net_device *dev)
6200 {
6201 int err;
6202
6203 rtnl_lock();
6204 err = register_netdevice(dev);
6205 rtnl_unlock();
6206 return err;
6207 }
6208 EXPORT_SYMBOL(register_netdev);
6209
6210 int netdev_refcnt_read(const struct net_device *dev)
6211 {
6212 int i, refcnt = 0;
6213
6214 for_each_possible_cpu(i)
6215 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6216 return refcnt;
6217 }
6218 EXPORT_SYMBOL(netdev_refcnt_read);
6219
6220 /**
6221 * netdev_wait_allrefs - wait until all references are gone.
6222 * @dev: target net_device
6223 *
6224 * This is called when unregistering network devices.
6225 *
6226 * Any protocol or device that holds a reference should register
6227 * for netdevice notification, and cleanup and put back the
6228 * reference if they receive an UNREGISTER event.
6229 * We can get stuck here if buggy protocols don't correctly
6230 * call dev_put.
6231 */
6232 static void netdev_wait_allrefs(struct net_device *dev)
6233 {
6234 unsigned long rebroadcast_time, warning_time;
6235 int refcnt;
6236
6237 linkwatch_forget_dev(dev);
6238
6239 rebroadcast_time = warning_time = jiffies;
6240 refcnt = netdev_refcnt_read(dev);
6241
6242 while (refcnt != 0) {
6243 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6244 rtnl_lock();
6245
6246 /* Rebroadcast unregister notification */
6247 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6248
6249 __rtnl_unlock();
6250 rcu_barrier();
6251 rtnl_lock();
6252
6253 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6254 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6255 &dev->state)) {
6256 /* We must not have linkwatch events
6257 * pending on unregister. If this
6258 * happens, we simply run the queue
6259 * unscheduled, resulting in a noop
6260 * for this device.
6261 */
6262 linkwatch_run_queue();
6263 }
6264
6265 __rtnl_unlock();
6266
6267 rebroadcast_time = jiffies;
6268 }
6269
6270 msleep(250);
6271
6272 refcnt = netdev_refcnt_read(dev);
6273
6274 if (time_after(jiffies, warning_time + 10 * HZ)) {
6275 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6276 dev->name, refcnt);
6277 warning_time = jiffies;
6278 }
6279 }
6280 }
6281
6282 /* The sequence is:
6283 *
6284 * rtnl_lock();
6285 * ...
6286 * register_netdevice(x1);
6287 * register_netdevice(x2);
6288 * ...
6289 * unregister_netdevice(y1);
6290 * unregister_netdevice(y2);
6291 * ...
6292 * rtnl_unlock();
6293 * free_netdev(y1);
6294 * free_netdev(y2);
6295 *
6296 * We are invoked by rtnl_unlock().
6297 * This allows us to deal with problems:
6298 * 1) We can delete sysfs objects which invoke hotplug
6299 * without deadlocking with linkwatch via keventd.
6300 * 2) Since we run with the RTNL semaphore not held, we can sleep
6301 * safely in order to wait for the netdev refcnt to drop to zero.
6302 *
6303 * We must not return until all unregister events added during
6304 * the interval the lock was held have been completed.
6305 */
6306 void netdev_run_todo(void)
6307 {
6308 struct list_head list;
6309
6310 /* Snapshot list, allow later requests */
6311 list_replace_init(&net_todo_list, &list);
6312
6313 __rtnl_unlock();
6314
6315
6316 /* Wait for rcu callbacks to finish before next phase */
6317 if (!list_empty(&list))
6318 rcu_barrier();
6319
6320 while (!list_empty(&list)) {
6321 struct net_device *dev
6322 = list_first_entry(&list, struct net_device, todo_list);
6323 list_del(&dev->todo_list);
6324
6325 rtnl_lock();
6326 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6327 __rtnl_unlock();
6328
6329 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6330 pr_err("network todo '%s' but state %d\n",
6331 dev->name, dev->reg_state);
6332 dump_stack();
6333 continue;
6334 }
6335
6336 dev->reg_state = NETREG_UNREGISTERED;
6337
6338 on_each_cpu(flush_backlog, dev, 1);
6339
6340 netdev_wait_allrefs(dev);
6341
6342 /* paranoia */
6343 BUG_ON(netdev_refcnt_read(dev));
6344 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6345 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6346 WARN_ON(dev->dn_ptr);
6347
6348 if (dev->destructor)
6349 dev->destructor(dev);
6350
6351 /* Report a network device has been unregistered */
6352 rtnl_lock();
6353 dev_net(dev)->dev_unreg_count--;
6354 __rtnl_unlock();
6355 wake_up(&netdev_unregistering_wq);
6356
6357 /* Free network device */
6358 kobject_put(&dev->dev.kobj);
6359 }
6360 }
6361
6362 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6363 * fields in the same order, with only the type differing.
6364 */
6365 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6366 const struct net_device_stats *netdev_stats)
6367 {
6368 #if BITS_PER_LONG == 64
6369 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6370 memcpy(stats64, netdev_stats, sizeof(*stats64));
6371 #else
6372 size_t i, n = sizeof(*stats64) / sizeof(u64);
6373 const unsigned long *src = (const unsigned long *)netdev_stats;
6374 u64 *dst = (u64 *)stats64;
6375
6376 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6377 sizeof(*stats64) / sizeof(u64));
6378 for (i = 0; i < n; i++)
6379 dst[i] = src[i];
6380 #endif
6381 }
6382 EXPORT_SYMBOL(netdev_stats_to_stats64);
6383
6384 /**
6385 * dev_get_stats - get network device statistics
6386 * @dev: device to get statistics from
6387 * @storage: place to store stats
6388 *
6389 * Get network statistics from device. Return @storage.
6390 * The device driver may provide its own method by setting
6391 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6392 * otherwise the internal statistics structure is used.
6393 */
6394 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6395 struct rtnl_link_stats64 *storage)
6396 {
6397 const struct net_device_ops *ops = dev->netdev_ops;
6398
6399 if (ops->ndo_get_stats64) {
6400 memset(storage, 0, sizeof(*storage));
6401 ops->ndo_get_stats64(dev, storage);
6402 } else if (ops->ndo_get_stats) {
6403 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6404 } else {
6405 netdev_stats_to_stats64(storage, &dev->stats);
6406 }
6407 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6408 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6409 return storage;
6410 }
6411 EXPORT_SYMBOL(dev_get_stats);
6412
6413 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6414 {
6415 struct netdev_queue *queue = dev_ingress_queue(dev);
6416
6417 #ifdef CONFIG_NET_CLS_ACT
6418 if (queue)
6419 return queue;
6420 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6421 if (!queue)
6422 return NULL;
6423 netdev_init_one_queue(dev, queue, NULL);
6424 queue->qdisc = &noop_qdisc;
6425 queue->qdisc_sleeping = &noop_qdisc;
6426 rcu_assign_pointer(dev->ingress_queue, queue);
6427 #endif
6428 return queue;
6429 }
6430
6431 static const struct ethtool_ops default_ethtool_ops;
6432
6433 void netdev_set_default_ethtool_ops(struct net_device *dev,
6434 const struct ethtool_ops *ops)
6435 {
6436 if (dev->ethtool_ops == &default_ethtool_ops)
6437 dev->ethtool_ops = ops;
6438 }
6439 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6440
6441 void netdev_freemem(struct net_device *dev)
6442 {
6443 char *addr = (char *)dev - dev->padded;
6444
6445 kvfree(addr);
6446 }
6447
6448 /**
6449 * alloc_netdev_mqs - allocate network device
6450 * @sizeof_priv: size of private data to allocate space for
6451 * @name: device name format string
6452 * @name_assign_type: origin of device name
6453 * @setup: callback to initialize device
6454 * @txqs: the number of TX subqueues to allocate
6455 * @rxqs: the number of RX subqueues to allocate
6456 *
6457 * Allocates a struct net_device with private data area for driver use
6458 * and performs basic initialization. Also allocates subqueue structs
6459 * for each queue on the device.
6460 */
6461 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6462 unsigned char name_assign_type,
6463 void (*setup)(struct net_device *),
6464 unsigned int txqs, unsigned int rxqs)
6465 {
6466 struct net_device *dev;
6467 size_t alloc_size;
6468 struct net_device *p;
6469
6470 BUG_ON(strlen(name) >= sizeof(dev->name));
6471
6472 if (txqs < 1) {
6473 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6474 return NULL;
6475 }
6476
6477 #ifdef CONFIG_SYSFS
6478 if (rxqs < 1) {
6479 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6480 return NULL;
6481 }
6482 #endif
6483
6484 alloc_size = sizeof(struct net_device);
6485 if (sizeof_priv) {
6486 /* ensure 32-byte alignment of private area */
6487 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6488 alloc_size += sizeof_priv;
6489 }
6490 /* ensure 32-byte alignment of whole construct */
6491 alloc_size += NETDEV_ALIGN - 1;
6492
6493 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6494 if (!p)
6495 p = vzalloc(alloc_size);
6496 if (!p)
6497 return NULL;
6498
6499 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6500 dev->padded = (char *)dev - (char *)p;
6501
6502 dev->pcpu_refcnt = alloc_percpu(int);
6503 if (!dev->pcpu_refcnt)
6504 goto free_dev;
6505
6506 if (dev_addr_init(dev))
6507 goto free_pcpu;
6508
6509 dev_mc_init(dev);
6510 dev_uc_init(dev);
6511
6512 dev_net_set(dev, &init_net);
6513
6514 dev->gso_max_size = GSO_MAX_SIZE;
6515 dev->gso_max_segs = GSO_MAX_SEGS;
6516
6517 INIT_LIST_HEAD(&dev->napi_list);
6518 INIT_LIST_HEAD(&dev->unreg_list);
6519 INIT_LIST_HEAD(&dev->close_list);
6520 INIT_LIST_HEAD(&dev->link_watch_list);
6521 INIT_LIST_HEAD(&dev->adj_list.upper);
6522 INIT_LIST_HEAD(&dev->adj_list.lower);
6523 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6524 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6525 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6526 setup(dev);
6527
6528 dev->num_tx_queues = txqs;
6529 dev->real_num_tx_queues = txqs;
6530 if (netif_alloc_netdev_queues(dev))
6531 goto free_all;
6532
6533 #ifdef CONFIG_SYSFS
6534 dev->num_rx_queues = rxqs;
6535 dev->real_num_rx_queues = rxqs;
6536 if (netif_alloc_rx_queues(dev))
6537 goto free_all;
6538 #endif
6539
6540 strcpy(dev->name, name);
6541 dev->name_assign_type = name_assign_type;
6542 dev->group = INIT_NETDEV_GROUP;
6543 if (!dev->ethtool_ops)
6544 dev->ethtool_ops = &default_ethtool_ops;
6545 return dev;
6546
6547 free_all:
6548 free_netdev(dev);
6549 return NULL;
6550
6551 free_pcpu:
6552 free_percpu(dev->pcpu_refcnt);
6553 free_dev:
6554 netdev_freemem(dev);
6555 return NULL;
6556 }
6557 EXPORT_SYMBOL(alloc_netdev_mqs);
6558
6559 /**
6560 * free_netdev - free network device
6561 * @dev: device
6562 *
6563 * This function does the last stage of destroying an allocated device
6564 * interface. The reference to the device object is released.
6565 * If this is the last reference then it will be freed.
6566 */
6567 void free_netdev(struct net_device *dev)
6568 {
6569 struct napi_struct *p, *n;
6570
6571 release_net(dev_net(dev));
6572
6573 netif_free_tx_queues(dev);
6574 #ifdef CONFIG_SYSFS
6575 kfree(dev->_rx);
6576 #endif
6577
6578 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6579
6580 /* Flush device addresses */
6581 dev_addr_flush(dev);
6582
6583 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6584 netif_napi_del(p);
6585
6586 free_percpu(dev->pcpu_refcnt);
6587 dev->pcpu_refcnt = NULL;
6588
6589 /* Compatibility with error handling in drivers */
6590 if (dev->reg_state == NETREG_UNINITIALIZED) {
6591 netdev_freemem(dev);
6592 return;
6593 }
6594
6595 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6596 dev->reg_state = NETREG_RELEASED;
6597
6598 /* will free via device release */
6599 put_device(&dev->dev);
6600 }
6601 EXPORT_SYMBOL(free_netdev);
6602
6603 /**
6604 * synchronize_net - Synchronize with packet receive processing
6605 *
6606 * Wait for packets currently being received to be done.
6607 * Does not block later packets from starting.
6608 */
6609 void synchronize_net(void)
6610 {
6611 might_sleep();
6612 if (rtnl_is_locked())
6613 synchronize_rcu_expedited();
6614 else
6615 synchronize_rcu();
6616 }
6617 EXPORT_SYMBOL(synchronize_net);
6618
6619 /**
6620 * unregister_netdevice_queue - remove device from the kernel
6621 * @dev: device
6622 * @head: list
6623 *
6624 * This function shuts down a device interface and removes it
6625 * from the kernel tables.
6626 * If head not NULL, device is queued to be unregistered later.
6627 *
6628 * Callers must hold the rtnl semaphore. You may want
6629 * unregister_netdev() instead of this.
6630 */
6631
6632 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6633 {
6634 ASSERT_RTNL();
6635
6636 if (head) {
6637 list_move_tail(&dev->unreg_list, head);
6638 } else {
6639 rollback_registered(dev);
6640 /* Finish processing unregister after unlock */
6641 net_set_todo(dev);
6642 }
6643 }
6644 EXPORT_SYMBOL(unregister_netdevice_queue);
6645
6646 /**
6647 * unregister_netdevice_many - unregister many devices
6648 * @head: list of devices
6649 *
6650 * Note: As most callers use a stack allocated list_head,
6651 * we force a list_del() to make sure stack wont be corrupted later.
6652 */
6653 void unregister_netdevice_many(struct list_head *head)
6654 {
6655 struct net_device *dev;
6656
6657 if (!list_empty(head)) {
6658 rollback_registered_many(head);
6659 list_for_each_entry(dev, head, unreg_list)
6660 net_set_todo(dev);
6661 list_del(head);
6662 }
6663 }
6664 EXPORT_SYMBOL(unregister_netdevice_many);
6665
6666 /**
6667 * unregister_netdev - remove device from the kernel
6668 * @dev: device
6669 *
6670 * This function shuts down a device interface and removes it
6671 * from the kernel tables.
6672 *
6673 * This is just a wrapper for unregister_netdevice that takes
6674 * the rtnl semaphore. In general you want to use this and not
6675 * unregister_netdevice.
6676 */
6677 void unregister_netdev(struct net_device *dev)
6678 {
6679 rtnl_lock();
6680 unregister_netdevice(dev);
6681 rtnl_unlock();
6682 }
6683 EXPORT_SYMBOL(unregister_netdev);
6684
6685 /**
6686 * dev_change_net_namespace - move device to different nethost namespace
6687 * @dev: device
6688 * @net: network namespace
6689 * @pat: If not NULL name pattern to try if the current device name
6690 * is already taken in the destination network namespace.
6691 *
6692 * This function shuts down a device interface and moves it
6693 * to a new network namespace. On success 0 is returned, on
6694 * a failure a netagive errno code is returned.
6695 *
6696 * Callers must hold the rtnl semaphore.
6697 */
6698
6699 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6700 {
6701 int err;
6702
6703 ASSERT_RTNL();
6704
6705 /* Don't allow namespace local devices to be moved. */
6706 err = -EINVAL;
6707 if (dev->features & NETIF_F_NETNS_LOCAL)
6708 goto out;
6709
6710 /* Ensure the device has been registrered */
6711 if (dev->reg_state != NETREG_REGISTERED)
6712 goto out;
6713
6714 /* Get out if there is nothing todo */
6715 err = 0;
6716 if (net_eq(dev_net(dev), net))
6717 goto out;
6718
6719 /* Pick the destination device name, and ensure
6720 * we can use it in the destination network namespace.
6721 */
6722 err = -EEXIST;
6723 if (__dev_get_by_name(net, dev->name)) {
6724 /* We get here if we can't use the current device name */
6725 if (!pat)
6726 goto out;
6727 if (dev_get_valid_name(net, dev, pat) < 0)
6728 goto out;
6729 }
6730
6731 /*
6732 * And now a mini version of register_netdevice unregister_netdevice.
6733 */
6734
6735 /* If device is running close it first. */
6736 dev_close(dev);
6737
6738 /* And unlink it from device chain */
6739 err = -ENODEV;
6740 unlist_netdevice(dev);
6741
6742 synchronize_net();
6743
6744 /* Shutdown queueing discipline. */
6745 dev_shutdown(dev);
6746
6747 /* Notify protocols, that we are about to destroy
6748 this device. They should clean all the things.
6749
6750 Note that dev->reg_state stays at NETREG_REGISTERED.
6751 This is wanted because this way 8021q and macvlan know
6752 the device is just moving and can keep their slaves up.
6753 */
6754 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6755 rcu_barrier();
6756 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6757 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6758
6759 /*
6760 * Flush the unicast and multicast chains
6761 */
6762 dev_uc_flush(dev);
6763 dev_mc_flush(dev);
6764
6765 /* Send a netdev-removed uevent to the old namespace */
6766 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6767
6768 /* Actually switch the network namespace */
6769 dev_net_set(dev, net);
6770
6771 /* If there is an ifindex conflict assign a new one */
6772 if (__dev_get_by_index(net, dev->ifindex)) {
6773 int iflink = (dev->iflink == dev->ifindex);
6774 dev->ifindex = dev_new_index(net);
6775 if (iflink)
6776 dev->iflink = dev->ifindex;
6777 }
6778
6779 /* Send a netdev-add uevent to the new namespace */
6780 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6781
6782 /* Fixup kobjects */
6783 err = device_rename(&dev->dev, dev->name);
6784 WARN_ON(err);
6785
6786 /* Add the device back in the hashes */
6787 list_netdevice(dev);
6788
6789 /* Notify protocols, that a new device appeared. */
6790 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6791
6792 /*
6793 * Prevent userspace races by waiting until the network
6794 * device is fully setup before sending notifications.
6795 */
6796 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6797
6798 synchronize_net();
6799 err = 0;
6800 out:
6801 return err;
6802 }
6803 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6804
6805 static int dev_cpu_callback(struct notifier_block *nfb,
6806 unsigned long action,
6807 void *ocpu)
6808 {
6809 struct sk_buff **list_skb;
6810 struct sk_buff *skb;
6811 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6812 struct softnet_data *sd, *oldsd;
6813
6814 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6815 return NOTIFY_OK;
6816
6817 local_irq_disable();
6818 cpu = smp_processor_id();
6819 sd = &per_cpu(softnet_data, cpu);
6820 oldsd = &per_cpu(softnet_data, oldcpu);
6821
6822 /* Find end of our completion_queue. */
6823 list_skb = &sd->completion_queue;
6824 while (*list_skb)
6825 list_skb = &(*list_skb)->next;
6826 /* Append completion queue from offline CPU. */
6827 *list_skb = oldsd->completion_queue;
6828 oldsd->completion_queue = NULL;
6829
6830 /* Append output queue from offline CPU. */
6831 if (oldsd->output_queue) {
6832 *sd->output_queue_tailp = oldsd->output_queue;
6833 sd->output_queue_tailp = oldsd->output_queue_tailp;
6834 oldsd->output_queue = NULL;
6835 oldsd->output_queue_tailp = &oldsd->output_queue;
6836 }
6837 /* Append NAPI poll list from offline CPU. */
6838 if (!list_empty(&oldsd->poll_list)) {
6839 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6840 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6841 }
6842
6843 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6844 local_irq_enable();
6845
6846 /* Process offline CPU's input_pkt_queue */
6847 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6848 netif_rx_internal(skb);
6849 input_queue_head_incr(oldsd);
6850 }
6851 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6852 netif_rx_internal(skb);
6853 input_queue_head_incr(oldsd);
6854 }
6855
6856 return NOTIFY_OK;
6857 }
6858
6859
6860 /**
6861 * netdev_increment_features - increment feature set by one
6862 * @all: current feature set
6863 * @one: new feature set
6864 * @mask: mask feature set
6865 *
6866 * Computes a new feature set after adding a device with feature set
6867 * @one to the master device with current feature set @all. Will not
6868 * enable anything that is off in @mask. Returns the new feature set.
6869 */
6870 netdev_features_t netdev_increment_features(netdev_features_t all,
6871 netdev_features_t one, netdev_features_t mask)
6872 {
6873 if (mask & NETIF_F_GEN_CSUM)
6874 mask |= NETIF_F_ALL_CSUM;
6875 mask |= NETIF_F_VLAN_CHALLENGED;
6876
6877 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6878 all &= one | ~NETIF_F_ALL_FOR_ALL;
6879
6880 /* If one device supports hw checksumming, set for all. */
6881 if (all & NETIF_F_GEN_CSUM)
6882 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6883
6884 return all;
6885 }
6886 EXPORT_SYMBOL(netdev_increment_features);
6887
6888 static struct hlist_head * __net_init netdev_create_hash(void)
6889 {
6890 int i;
6891 struct hlist_head *hash;
6892
6893 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6894 if (hash != NULL)
6895 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6896 INIT_HLIST_HEAD(&hash[i]);
6897
6898 return hash;
6899 }
6900
6901 /* Initialize per network namespace state */
6902 static int __net_init netdev_init(struct net *net)
6903 {
6904 if (net != &init_net)
6905 INIT_LIST_HEAD(&net->dev_base_head);
6906
6907 net->dev_name_head = netdev_create_hash();
6908 if (net->dev_name_head == NULL)
6909 goto err_name;
6910
6911 net->dev_index_head = netdev_create_hash();
6912 if (net->dev_index_head == NULL)
6913 goto err_idx;
6914
6915 return 0;
6916
6917 err_idx:
6918 kfree(net->dev_name_head);
6919 err_name:
6920 return -ENOMEM;
6921 }
6922
6923 /**
6924 * netdev_drivername - network driver for the device
6925 * @dev: network device
6926 *
6927 * Determine network driver for device.
6928 */
6929 const char *netdev_drivername(const struct net_device *dev)
6930 {
6931 const struct device_driver *driver;
6932 const struct device *parent;
6933 const char *empty = "";
6934
6935 parent = dev->dev.parent;
6936 if (!parent)
6937 return empty;
6938
6939 driver = parent->driver;
6940 if (driver && driver->name)
6941 return driver->name;
6942 return empty;
6943 }
6944
6945 static int __netdev_printk(const char *level, const struct net_device *dev,
6946 struct va_format *vaf)
6947 {
6948 int r;
6949
6950 if (dev && dev->dev.parent) {
6951 r = dev_printk_emit(level[1] - '0',
6952 dev->dev.parent,
6953 "%s %s %s%s: %pV",
6954 dev_driver_string(dev->dev.parent),
6955 dev_name(dev->dev.parent),
6956 netdev_name(dev), netdev_reg_state(dev),
6957 vaf);
6958 } else if (dev) {
6959 r = printk("%s%s%s: %pV", level, netdev_name(dev),
6960 netdev_reg_state(dev), vaf);
6961 } else {
6962 r = printk("%s(NULL net_device): %pV", level, vaf);
6963 }
6964
6965 return r;
6966 }
6967
6968 int netdev_printk(const char *level, const struct net_device *dev,
6969 const char *format, ...)
6970 {
6971 struct va_format vaf;
6972 va_list args;
6973 int r;
6974
6975 va_start(args, format);
6976
6977 vaf.fmt = format;
6978 vaf.va = &args;
6979
6980 r = __netdev_printk(level, dev, &vaf);
6981
6982 va_end(args);
6983
6984 return r;
6985 }
6986 EXPORT_SYMBOL(netdev_printk);
6987
6988 #define define_netdev_printk_level(func, level) \
6989 int func(const struct net_device *dev, const char *fmt, ...) \
6990 { \
6991 int r; \
6992 struct va_format vaf; \
6993 va_list args; \
6994 \
6995 va_start(args, fmt); \
6996 \
6997 vaf.fmt = fmt; \
6998 vaf.va = &args; \
6999 \
7000 r = __netdev_printk(level, dev, &vaf); \
7001 \
7002 va_end(args); \
7003 \
7004 return r; \
7005 } \
7006 EXPORT_SYMBOL(func);
7007
7008 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7009 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7010 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7011 define_netdev_printk_level(netdev_err, KERN_ERR);
7012 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7013 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7014 define_netdev_printk_level(netdev_info, KERN_INFO);
7015
7016 static void __net_exit netdev_exit(struct net *net)
7017 {
7018 kfree(net->dev_name_head);
7019 kfree(net->dev_index_head);
7020 }
7021
7022 static struct pernet_operations __net_initdata netdev_net_ops = {
7023 .init = netdev_init,
7024 .exit = netdev_exit,
7025 };
7026
7027 static void __net_exit default_device_exit(struct net *net)
7028 {
7029 struct net_device *dev, *aux;
7030 /*
7031 * Push all migratable network devices back to the
7032 * initial network namespace
7033 */
7034 rtnl_lock();
7035 for_each_netdev_safe(net, dev, aux) {
7036 int err;
7037 char fb_name[IFNAMSIZ];
7038
7039 /* Ignore unmoveable devices (i.e. loopback) */
7040 if (dev->features & NETIF_F_NETNS_LOCAL)
7041 continue;
7042
7043 /* Leave virtual devices for the generic cleanup */
7044 if (dev->rtnl_link_ops)
7045 continue;
7046
7047 /* Push remaining network devices to init_net */
7048 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7049 err = dev_change_net_namespace(dev, &init_net, fb_name);
7050 if (err) {
7051 pr_emerg("%s: failed to move %s to init_net: %d\n",
7052 __func__, dev->name, err);
7053 BUG();
7054 }
7055 }
7056 rtnl_unlock();
7057 }
7058
7059 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7060 {
7061 /* Return with the rtnl_lock held when there are no network
7062 * devices unregistering in any network namespace in net_list.
7063 */
7064 struct net *net;
7065 bool unregistering;
7066 DEFINE_WAIT(wait);
7067
7068 for (;;) {
7069 prepare_to_wait(&netdev_unregistering_wq, &wait,
7070 TASK_UNINTERRUPTIBLE);
7071 unregistering = false;
7072 rtnl_lock();
7073 list_for_each_entry(net, net_list, exit_list) {
7074 if (net->dev_unreg_count > 0) {
7075 unregistering = true;
7076 break;
7077 }
7078 }
7079 if (!unregistering)
7080 break;
7081 __rtnl_unlock();
7082 schedule();
7083 }
7084 finish_wait(&netdev_unregistering_wq, &wait);
7085 }
7086
7087 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7088 {
7089 /* At exit all network devices most be removed from a network
7090 * namespace. Do this in the reverse order of registration.
7091 * Do this across as many network namespaces as possible to
7092 * improve batching efficiency.
7093 */
7094 struct net_device *dev;
7095 struct net *net;
7096 LIST_HEAD(dev_kill_list);
7097
7098 /* To prevent network device cleanup code from dereferencing
7099 * loopback devices or network devices that have been freed
7100 * wait here for all pending unregistrations to complete,
7101 * before unregistring the loopback device and allowing the
7102 * network namespace be freed.
7103 *
7104 * The netdev todo list containing all network devices
7105 * unregistrations that happen in default_device_exit_batch
7106 * will run in the rtnl_unlock() at the end of
7107 * default_device_exit_batch.
7108 */
7109 rtnl_lock_unregistering(net_list);
7110 list_for_each_entry(net, net_list, exit_list) {
7111 for_each_netdev_reverse(net, dev) {
7112 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7113 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7114 else
7115 unregister_netdevice_queue(dev, &dev_kill_list);
7116 }
7117 }
7118 unregister_netdevice_many(&dev_kill_list);
7119 rtnl_unlock();
7120 }
7121
7122 static struct pernet_operations __net_initdata default_device_ops = {
7123 .exit = default_device_exit,
7124 .exit_batch = default_device_exit_batch,
7125 };
7126
7127 /*
7128 * Initialize the DEV module. At boot time this walks the device list and
7129 * unhooks any devices that fail to initialise (normally hardware not
7130 * present) and leaves us with a valid list of present and active devices.
7131 *
7132 */
7133
7134 /*
7135 * This is called single threaded during boot, so no need
7136 * to take the rtnl semaphore.
7137 */
7138 static int __init net_dev_init(void)
7139 {
7140 int i, rc = -ENOMEM;
7141
7142 BUG_ON(!dev_boot_phase);
7143
7144 if (dev_proc_init())
7145 goto out;
7146
7147 if (netdev_kobject_init())
7148 goto out;
7149
7150 INIT_LIST_HEAD(&ptype_all);
7151 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7152 INIT_LIST_HEAD(&ptype_base[i]);
7153
7154 INIT_LIST_HEAD(&offload_base);
7155
7156 if (register_pernet_subsys(&netdev_net_ops))
7157 goto out;
7158
7159 /*
7160 * Initialise the packet receive queues.
7161 */
7162
7163 for_each_possible_cpu(i) {
7164 struct softnet_data *sd = &per_cpu(softnet_data, i);
7165
7166 skb_queue_head_init(&sd->input_pkt_queue);
7167 skb_queue_head_init(&sd->process_queue);
7168 INIT_LIST_HEAD(&sd->poll_list);
7169 sd->output_queue_tailp = &sd->output_queue;
7170 #ifdef CONFIG_RPS
7171 sd->csd.func = rps_trigger_softirq;
7172 sd->csd.info = sd;
7173 sd->cpu = i;
7174 #endif
7175
7176 sd->backlog.poll = process_backlog;
7177 sd->backlog.weight = weight_p;
7178 }
7179
7180 dev_boot_phase = 0;
7181
7182 /* The loopback device is special if any other network devices
7183 * is present in a network namespace the loopback device must
7184 * be present. Since we now dynamically allocate and free the
7185 * loopback device ensure this invariant is maintained by
7186 * keeping the loopback device as the first device on the
7187 * list of network devices. Ensuring the loopback devices
7188 * is the first device that appears and the last network device
7189 * that disappears.
7190 */
7191 if (register_pernet_device(&loopback_net_ops))
7192 goto out;
7193
7194 if (register_pernet_device(&default_device_ops))
7195 goto out;
7196
7197 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7198 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7199
7200 hotcpu_notifier(dev_cpu_callback, 0);
7201 dst_init();
7202 rc = 0;
7203 out:
7204 return rc;
7205 }
7206
7207 subsys_initcall(net_dev_init);