]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/core/dev.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf-next
[mirror_ubuntu-zesty-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/sctp.h>
142
143 #include "net-sysfs.h"
144
145 /* Instead of increasing this, you should create a hash table. */
146 #define MAX_GRO_SKBS 8
147
148 /* This should be increased if a protocol with a bigger head is added. */
149 #define GRO_MAX_HEAD (MAX_HEADER + 128)
150
151 static DEFINE_SPINLOCK(ptype_lock);
152 static DEFINE_SPINLOCK(offload_lock);
153 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
154 struct list_head ptype_all __read_mostly; /* Taps */
155 static struct list_head offload_base __read_mostly;
156
157 static int netif_rx_internal(struct sk_buff *skb);
158 static int call_netdevice_notifiers_info(unsigned long val,
159 struct net_device *dev,
160 struct netdev_notifier_info *info);
161
162 /*
163 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
164 * semaphore.
165 *
166 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
167 *
168 * Writers must hold the rtnl semaphore while they loop through the
169 * dev_base_head list, and hold dev_base_lock for writing when they do the
170 * actual updates. This allows pure readers to access the list even
171 * while a writer is preparing to update it.
172 *
173 * To put it another way, dev_base_lock is held for writing only to
174 * protect against pure readers; the rtnl semaphore provides the
175 * protection against other writers.
176 *
177 * See, for example usages, register_netdevice() and
178 * unregister_netdevice(), which must be called with the rtnl
179 * semaphore held.
180 */
181 DEFINE_RWLOCK(dev_base_lock);
182 EXPORT_SYMBOL(dev_base_lock);
183
184 /* protects napi_hash addition/deletion and napi_gen_id */
185 static DEFINE_SPINLOCK(napi_hash_lock);
186
187 static unsigned int napi_gen_id = NR_CPUS;
188 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
189
190 static seqcount_t devnet_rename_seq;
191
192 static inline void dev_base_seq_inc(struct net *net)
193 {
194 while (++net->dev_base_seq == 0);
195 }
196
197 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
198 {
199 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
200
201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
202 }
203
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205 {
206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
207 }
208
209 static inline void rps_lock(struct softnet_data *sd)
210 {
211 #ifdef CONFIG_RPS
212 spin_lock(&sd->input_pkt_queue.lock);
213 #endif
214 }
215
216 static inline void rps_unlock(struct softnet_data *sd)
217 {
218 #ifdef CONFIG_RPS
219 spin_unlock(&sd->input_pkt_queue.lock);
220 #endif
221 }
222
223 /* Device list insertion */
224 static void list_netdevice(struct net_device *dev)
225 {
226 struct net *net = dev_net(dev);
227
228 ASSERT_RTNL();
229
230 write_lock_bh(&dev_base_lock);
231 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
232 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
233 hlist_add_head_rcu(&dev->index_hlist,
234 dev_index_hash(net, dev->ifindex));
235 write_unlock_bh(&dev_base_lock);
236
237 dev_base_seq_inc(net);
238 }
239
240 /* Device list removal
241 * caller must respect a RCU grace period before freeing/reusing dev
242 */
243 static void unlist_netdevice(struct net_device *dev)
244 {
245 ASSERT_RTNL();
246
247 /* Unlink dev from the device chain */
248 write_lock_bh(&dev_base_lock);
249 list_del_rcu(&dev->dev_list);
250 hlist_del_rcu(&dev->name_hlist);
251 hlist_del_rcu(&dev->index_hlist);
252 write_unlock_bh(&dev_base_lock);
253
254 dev_base_seq_inc(dev_net(dev));
255 }
256
257 /*
258 * Our notifier list
259 */
260
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262
263 /*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
267
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270
271 #ifdef CONFIG_LOCKDEP
272 /*
273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274 * according to dev->type
275 */
276 static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
290 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
291 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
292
293 static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
307 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
308 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
309
310 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
311 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
312
313 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
314 {
315 int i;
316
317 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
318 if (netdev_lock_type[i] == dev_type)
319 return i;
320 /* the last key is used by default */
321 return ARRAY_SIZE(netdev_lock_type) - 1;
322 }
323
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326 {
327 int i;
328
329 i = netdev_lock_pos(dev_type);
330 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
331 netdev_lock_name[i]);
332 }
333
334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335 {
336 int i;
337
338 i = netdev_lock_pos(dev->type);
339 lockdep_set_class_and_name(&dev->addr_list_lock,
340 &netdev_addr_lock_key[i],
341 netdev_lock_name[i]);
342 }
343 #else
344 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
345 unsigned short dev_type)
346 {
347 }
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 }
351 #endif
352
353 /*******************************************************************************
354
355 Protocol management and registration routines
356
357 *******************************************************************************/
358
359 /*
360 * Add a protocol ID to the list. Now that the input handler is
361 * smarter we can dispense with all the messy stuff that used to be
362 * here.
363 *
364 * BEWARE!!! Protocol handlers, mangling input packets,
365 * MUST BE last in hash buckets and checking protocol handlers
366 * MUST start from promiscuous ptype_all chain in net_bh.
367 * It is true now, do not change it.
368 * Explanation follows: if protocol handler, mangling packet, will
369 * be the first on list, it is not able to sense, that packet
370 * is cloned and should be copied-on-write, so that it will
371 * change it and subsequent readers will get broken packet.
372 * --ANK (980803)
373 */
374
375 static inline struct list_head *ptype_head(const struct packet_type *pt)
376 {
377 if (pt->type == htons(ETH_P_ALL))
378 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
379 else
380 return pt->dev ? &pt->dev->ptype_specific :
381 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
382 }
383
384 /**
385 * dev_add_pack - add packet handler
386 * @pt: packet type declaration
387 *
388 * Add a protocol handler to the networking stack. The passed &packet_type
389 * is linked into kernel lists and may not be freed until it has been
390 * removed from the kernel lists.
391 *
392 * This call does not sleep therefore it can not
393 * guarantee all CPU's that are in middle of receiving packets
394 * will see the new packet type (until the next received packet).
395 */
396
397 void dev_add_pack(struct packet_type *pt)
398 {
399 struct list_head *head = ptype_head(pt);
400
401 spin_lock(&ptype_lock);
402 list_add_rcu(&pt->list, head);
403 spin_unlock(&ptype_lock);
404 }
405 EXPORT_SYMBOL(dev_add_pack);
406
407 /**
408 * __dev_remove_pack - remove packet handler
409 * @pt: packet type declaration
410 *
411 * Remove a protocol handler that was previously added to the kernel
412 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
413 * from the kernel lists and can be freed or reused once this function
414 * returns.
415 *
416 * The packet type might still be in use by receivers
417 * and must not be freed until after all the CPU's have gone
418 * through a quiescent state.
419 */
420 void __dev_remove_pack(struct packet_type *pt)
421 {
422 struct list_head *head = ptype_head(pt);
423 struct packet_type *pt1;
424
425 spin_lock(&ptype_lock);
426
427 list_for_each_entry(pt1, head, list) {
428 if (pt == pt1) {
429 list_del_rcu(&pt->list);
430 goto out;
431 }
432 }
433
434 pr_warn("dev_remove_pack: %p not found\n", pt);
435 out:
436 spin_unlock(&ptype_lock);
437 }
438 EXPORT_SYMBOL(__dev_remove_pack);
439
440 /**
441 * dev_remove_pack - remove packet handler
442 * @pt: packet type declaration
443 *
444 * Remove a protocol handler that was previously added to the kernel
445 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
446 * from the kernel lists and can be freed or reused once this function
447 * returns.
448 *
449 * This call sleeps to guarantee that no CPU is looking at the packet
450 * type after return.
451 */
452 void dev_remove_pack(struct packet_type *pt)
453 {
454 __dev_remove_pack(pt);
455
456 synchronize_net();
457 }
458 EXPORT_SYMBOL(dev_remove_pack);
459
460
461 /**
462 * dev_add_offload - register offload handlers
463 * @po: protocol offload declaration
464 *
465 * Add protocol offload handlers to the networking stack. The passed
466 * &proto_offload is linked into kernel lists and may not be freed until
467 * it has been removed from the kernel lists.
468 *
469 * This call does not sleep therefore it can not
470 * guarantee all CPU's that are in middle of receiving packets
471 * will see the new offload handlers (until the next received packet).
472 */
473 void dev_add_offload(struct packet_offload *po)
474 {
475 struct packet_offload *elem;
476
477 spin_lock(&offload_lock);
478 list_for_each_entry(elem, &offload_base, list) {
479 if (po->priority < elem->priority)
480 break;
481 }
482 list_add_rcu(&po->list, elem->list.prev);
483 spin_unlock(&offload_lock);
484 }
485 EXPORT_SYMBOL(dev_add_offload);
486
487 /**
488 * __dev_remove_offload - remove offload handler
489 * @po: packet offload declaration
490 *
491 * Remove a protocol offload handler that was previously added to the
492 * kernel offload handlers by dev_add_offload(). The passed &offload_type
493 * is removed from the kernel lists and can be freed or reused once this
494 * function returns.
495 *
496 * The packet type might still be in use by receivers
497 * and must not be freed until after all the CPU's have gone
498 * through a quiescent state.
499 */
500 static void __dev_remove_offload(struct packet_offload *po)
501 {
502 struct list_head *head = &offload_base;
503 struct packet_offload *po1;
504
505 spin_lock(&offload_lock);
506
507 list_for_each_entry(po1, head, list) {
508 if (po == po1) {
509 list_del_rcu(&po->list);
510 goto out;
511 }
512 }
513
514 pr_warn("dev_remove_offload: %p not found\n", po);
515 out:
516 spin_unlock(&offload_lock);
517 }
518
519 /**
520 * dev_remove_offload - remove packet offload handler
521 * @po: packet offload declaration
522 *
523 * Remove a packet offload handler that was previously added to the kernel
524 * offload handlers by dev_add_offload(). The passed &offload_type is
525 * removed from the kernel lists and can be freed or reused once this
526 * function returns.
527 *
528 * This call sleeps to guarantee that no CPU is looking at the packet
529 * type after return.
530 */
531 void dev_remove_offload(struct packet_offload *po)
532 {
533 __dev_remove_offload(po);
534
535 synchronize_net();
536 }
537 EXPORT_SYMBOL(dev_remove_offload);
538
539 /******************************************************************************
540
541 Device Boot-time Settings Routines
542
543 *******************************************************************************/
544
545 /* Boot time configuration table */
546 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
547
548 /**
549 * netdev_boot_setup_add - add new setup entry
550 * @name: name of the device
551 * @map: configured settings for the device
552 *
553 * Adds new setup entry to the dev_boot_setup list. The function
554 * returns 0 on error and 1 on success. This is a generic routine to
555 * all netdevices.
556 */
557 static int netdev_boot_setup_add(char *name, struct ifmap *map)
558 {
559 struct netdev_boot_setup *s;
560 int i;
561
562 s = dev_boot_setup;
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
564 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
565 memset(s[i].name, 0, sizeof(s[i].name));
566 strlcpy(s[i].name, name, IFNAMSIZ);
567 memcpy(&s[i].map, map, sizeof(s[i].map));
568 break;
569 }
570 }
571
572 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
573 }
574
575 /**
576 * netdev_boot_setup_check - check boot time settings
577 * @dev: the netdevice
578 *
579 * Check boot time settings for the device.
580 * The found settings are set for the device to be used
581 * later in the device probing.
582 * Returns 0 if no settings found, 1 if they are.
583 */
584 int netdev_boot_setup_check(struct net_device *dev)
585 {
586 struct netdev_boot_setup *s = dev_boot_setup;
587 int i;
588
589 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
590 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
591 !strcmp(dev->name, s[i].name)) {
592 dev->irq = s[i].map.irq;
593 dev->base_addr = s[i].map.base_addr;
594 dev->mem_start = s[i].map.mem_start;
595 dev->mem_end = s[i].map.mem_end;
596 return 1;
597 }
598 }
599 return 0;
600 }
601 EXPORT_SYMBOL(netdev_boot_setup_check);
602
603
604 /**
605 * netdev_boot_base - get address from boot time settings
606 * @prefix: prefix for network device
607 * @unit: id for network device
608 *
609 * Check boot time settings for the base address of device.
610 * The found settings are set for the device to be used
611 * later in the device probing.
612 * Returns 0 if no settings found.
613 */
614 unsigned long netdev_boot_base(const char *prefix, int unit)
615 {
616 const struct netdev_boot_setup *s = dev_boot_setup;
617 char name[IFNAMSIZ];
618 int i;
619
620 sprintf(name, "%s%d", prefix, unit);
621
622 /*
623 * If device already registered then return base of 1
624 * to indicate not to probe for this interface
625 */
626 if (__dev_get_by_name(&init_net, name))
627 return 1;
628
629 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
630 if (!strcmp(name, s[i].name))
631 return s[i].map.base_addr;
632 return 0;
633 }
634
635 /*
636 * Saves at boot time configured settings for any netdevice.
637 */
638 int __init netdev_boot_setup(char *str)
639 {
640 int ints[5];
641 struct ifmap map;
642
643 str = get_options(str, ARRAY_SIZE(ints), ints);
644 if (!str || !*str)
645 return 0;
646
647 /* Save settings */
648 memset(&map, 0, sizeof(map));
649 if (ints[0] > 0)
650 map.irq = ints[1];
651 if (ints[0] > 1)
652 map.base_addr = ints[2];
653 if (ints[0] > 2)
654 map.mem_start = ints[3];
655 if (ints[0] > 3)
656 map.mem_end = ints[4];
657
658 /* Add new entry to the list */
659 return netdev_boot_setup_add(str, &map);
660 }
661
662 __setup("netdev=", netdev_boot_setup);
663
664 /*******************************************************************************
665
666 Device Interface Subroutines
667
668 *******************************************************************************/
669
670 /**
671 * dev_get_iflink - get 'iflink' value of a interface
672 * @dev: targeted interface
673 *
674 * Indicates the ifindex the interface is linked to.
675 * Physical interfaces have the same 'ifindex' and 'iflink' values.
676 */
677
678 int dev_get_iflink(const struct net_device *dev)
679 {
680 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
681 return dev->netdev_ops->ndo_get_iflink(dev);
682
683 return dev->ifindex;
684 }
685 EXPORT_SYMBOL(dev_get_iflink);
686
687 /**
688 * dev_fill_metadata_dst - Retrieve tunnel egress information.
689 * @dev: targeted interface
690 * @skb: The packet.
691 *
692 * For better visibility of tunnel traffic OVS needs to retrieve
693 * egress tunnel information for a packet. Following API allows
694 * user to get this info.
695 */
696 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
697 {
698 struct ip_tunnel_info *info;
699
700 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
701 return -EINVAL;
702
703 info = skb_tunnel_info_unclone(skb);
704 if (!info)
705 return -ENOMEM;
706 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
707 return -EINVAL;
708
709 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
710 }
711 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
712
713 /**
714 * __dev_get_by_name - find a device by its name
715 * @net: the applicable net namespace
716 * @name: name to find
717 *
718 * Find an interface by name. Must be called under RTNL semaphore
719 * or @dev_base_lock. If the name is found a pointer to the device
720 * is returned. If the name is not found then %NULL is returned. The
721 * reference counters are not incremented so the caller must be
722 * careful with locks.
723 */
724
725 struct net_device *__dev_get_by_name(struct net *net, const char *name)
726 {
727 struct net_device *dev;
728 struct hlist_head *head = dev_name_hash(net, name);
729
730 hlist_for_each_entry(dev, head, name_hlist)
731 if (!strncmp(dev->name, name, IFNAMSIZ))
732 return dev;
733
734 return NULL;
735 }
736 EXPORT_SYMBOL(__dev_get_by_name);
737
738 /**
739 * dev_get_by_name_rcu - find a device by its name
740 * @net: the applicable net namespace
741 * @name: name to find
742 *
743 * Find an interface by name.
744 * If the name is found a pointer to the device is returned.
745 * If the name is not found then %NULL is returned.
746 * The reference counters are not incremented so the caller must be
747 * careful with locks. The caller must hold RCU lock.
748 */
749
750 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
751 {
752 struct net_device *dev;
753 struct hlist_head *head = dev_name_hash(net, name);
754
755 hlist_for_each_entry_rcu(dev, head, name_hlist)
756 if (!strncmp(dev->name, name, IFNAMSIZ))
757 return dev;
758
759 return NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762
763 /**
764 * dev_get_by_name - find a device by its name
765 * @net: the applicable net namespace
766 * @name: name to find
767 *
768 * Find an interface by name. This can be called from any
769 * context and does its own locking. The returned handle has
770 * the usage count incremented and the caller must use dev_put() to
771 * release it when it is no longer needed. %NULL is returned if no
772 * matching device is found.
773 */
774
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777 struct net_device *dev;
778
779 rcu_read_lock();
780 dev = dev_get_by_name_rcu(net, name);
781 if (dev)
782 dev_hold(dev);
783 rcu_read_unlock();
784 return dev;
785 }
786 EXPORT_SYMBOL(dev_get_by_name);
787
788 /**
789 * __dev_get_by_index - find a device by its ifindex
790 * @net: the applicable net namespace
791 * @ifindex: index of device
792 *
793 * Search for an interface by index. Returns %NULL if the device
794 * is not found or a pointer to the device. The device has not
795 * had its reference counter increased so the caller must be careful
796 * about locking. The caller must hold either the RTNL semaphore
797 * or @dev_base_lock.
798 */
799
800 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
801 {
802 struct net_device *dev;
803 struct hlist_head *head = dev_index_hash(net, ifindex);
804
805 hlist_for_each_entry(dev, head, index_hlist)
806 if (dev->ifindex == ifindex)
807 return dev;
808
809 return NULL;
810 }
811 EXPORT_SYMBOL(__dev_get_by_index);
812
813 /**
814 * dev_get_by_index_rcu - find a device by its ifindex
815 * @net: the applicable net namespace
816 * @ifindex: index of device
817 *
818 * Search for an interface by index. Returns %NULL if the device
819 * is not found or a pointer to the device. The device has not
820 * had its reference counter increased so the caller must be careful
821 * about locking. The caller must hold RCU lock.
822 */
823
824 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
825 {
826 struct net_device *dev;
827 struct hlist_head *head = dev_index_hash(net, ifindex);
828
829 hlist_for_each_entry_rcu(dev, head, index_hlist)
830 if (dev->ifindex == ifindex)
831 return dev;
832
833 return NULL;
834 }
835 EXPORT_SYMBOL(dev_get_by_index_rcu);
836
837
838 /**
839 * dev_get_by_index - find a device by its ifindex
840 * @net: the applicable net namespace
841 * @ifindex: index of device
842 *
843 * Search for an interface by index. Returns NULL if the device
844 * is not found or a pointer to the device. The device returned has
845 * had a reference added and the pointer is safe until the user calls
846 * dev_put to indicate they have finished with it.
847 */
848
849 struct net_device *dev_get_by_index(struct net *net, int ifindex)
850 {
851 struct net_device *dev;
852
853 rcu_read_lock();
854 dev = dev_get_by_index_rcu(net, ifindex);
855 if (dev)
856 dev_hold(dev);
857 rcu_read_unlock();
858 return dev;
859 }
860 EXPORT_SYMBOL(dev_get_by_index);
861
862 /**
863 * netdev_get_name - get a netdevice name, knowing its ifindex.
864 * @net: network namespace
865 * @name: a pointer to the buffer where the name will be stored.
866 * @ifindex: the ifindex of the interface to get the name from.
867 *
868 * The use of raw_seqcount_begin() and cond_resched() before
869 * retrying is required as we want to give the writers a chance
870 * to complete when CONFIG_PREEMPT is not set.
871 */
872 int netdev_get_name(struct net *net, char *name, int ifindex)
873 {
874 struct net_device *dev;
875 unsigned int seq;
876
877 retry:
878 seq = raw_seqcount_begin(&devnet_rename_seq);
879 rcu_read_lock();
880 dev = dev_get_by_index_rcu(net, ifindex);
881 if (!dev) {
882 rcu_read_unlock();
883 return -ENODEV;
884 }
885
886 strcpy(name, dev->name);
887 rcu_read_unlock();
888 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
889 cond_resched();
890 goto retry;
891 }
892
893 return 0;
894 }
895
896 /**
897 * dev_getbyhwaddr_rcu - find a device by its hardware address
898 * @net: the applicable net namespace
899 * @type: media type of device
900 * @ha: hardware address
901 *
902 * Search for an interface by MAC address. Returns NULL if the device
903 * is not found or a pointer to the device.
904 * The caller must hold RCU or RTNL.
905 * The returned device has not had its ref count increased
906 * and the caller must therefore be careful about locking
907 *
908 */
909
910 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
911 const char *ha)
912 {
913 struct net_device *dev;
914
915 for_each_netdev_rcu(net, dev)
916 if (dev->type == type &&
917 !memcmp(dev->dev_addr, ha, dev->addr_len))
918 return dev;
919
920 return NULL;
921 }
922 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
923
924 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
925 {
926 struct net_device *dev;
927
928 ASSERT_RTNL();
929 for_each_netdev(net, dev)
930 if (dev->type == type)
931 return dev;
932
933 return NULL;
934 }
935 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
936
937 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
938 {
939 struct net_device *dev, *ret = NULL;
940
941 rcu_read_lock();
942 for_each_netdev_rcu(net, dev)
943 if (dev->type == type) {
944 dev_hold(dev);
945 ret = dev;
946 break;
947 }
948 rcu_read_unlock();
949 return ret;
950 }
951 EXPORT_SYMBOL(dev_getfirstbyhwtype);
952
953 /**
954 * __dev_get_by_flags - find any device with given flags
955 * @net: the applicable net namespace
956 * @if_flags: IFF_* values
957 * @mask: bitmask of bits in if_flags to check
958 *
959 * Search for any interface with the given flags. Returns NULL if a device
960 * is not found or a pointer to the device. Must be called inside
961 * rtnl_lock(), and result refcount is unchanged.
962 */
963
964 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
965 unsigned short mask)
966 {
967 struct net_device *dev, *ret;
968
969 ASSERT_RTNL();
970
971 ret = NULL;
972 for_each_netdev(net, dev) {
973 if (((dev->flags ^ if_flags) & mask) == 0) {
974 ret = dev;
975 break;
976 }
977 }
978 return ret;
979 }
980 EXPORT_SYMBOL(__dev_get_by_flags);
981
982 /**
983 * dev_valid_name - check if name is okay for network device
984 * @name: name string
985 *
986 * Network device names need to be valid file names to
987 * to allow sysfs to work. We also disallow any kind of
988 * whitespace.
989 */
990 bool dev_valid_name(const char *name)
991 {
992 if (*name == '\0')
993 return false;
994 if (strlen(name) >= IFNAMSIZ)
995 return false;
996 if (!strcmp(name, ".") || !strcmp(name, ".."))
997 return false;
998
999 while (*name) {
1000 if (*name == '/' || *name == ':' || isspace(*name))
1001 return false;
1002 name++;
1003 }
1004 return true;
1005 }
1006 EXPORT_SYMBOL(dev_valid_name);
1007
1008 /**
1009 * __dev_alloc_name - allocate a name for a device
1010 * @net: network namespace to allocate the device name in
1011 * @name: name format string
1012 * @buf: scratch buffer and result name string
1013 *
1014 * Passed a format string - eg "lt%d" it will try and find a suitable
1015 * id. It scans list of devices to build up a free map, then chooses
1016 * the first empty slot. The caller must hold the dev_base or rtnl lock
1017 * while allocating the name and adding the device in order to avoid
1018 * duplicates.
1019 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1020 * Returns the number of the unit assigned or a negative errno code.
1021 */
1022
1023 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1024 {
1025 int i = 0;
1026 const char *p;
1027 const int max_netdevices = 8*PAGE_SIZE;
1028 unsigned long *inuse;
1029 struct net_device *d;
1030
1031 p = strnchr(name, IFNAMSIZ-1, '%');
1032 if (p) {
1033 /*
1034 * Verify the string as this thing may have come from
1035 * the user. There must be either one "%d" and no other "%"
1036 * characters.
1037 */
1038 if (p[1] != 'd' || strchr(p + 2, '%'))
1039 return -EINVAL;
1040
1041 /* Use one page as a bit array of possible slots */
1042 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1043 if (!inuse)
1044 return -ENOMEM;
1045
1046 for_each_netdev(net, d) {
1047 if (!sscanf(d->name, name, &i))
1048 continue;
1049 if (i < 0 || i >= max_netdevices)
1050 continue;
1051
1052 /* avoid cases where sscanf is not exact inverse of printf */
1053 snprintf(buf, IFNAMSIZ, name, i);
1054 if (!strncmp(buf, d->name, IFNAMSIZ))
1055 set_bit(i, inuse);
1056 }
1057
1058 i = find_first_zero_bit(inuse, max_netdevices);
1059 free_page((unsigned long) inuse);
1060 }
1061
1062 if (buf != name)
1063 snprintf(buf, IFNAMSIZ, name, i);
1064 if (!__dev_get_by_name(net, buf))
1065 return i;
1066
1067 /* It is possible to run out of possible slots
1068 * when the name is long and there isn't enough space left
1069 * for the digits, or if all bits are used.
1070 */
1071 return -ENFILE;
1072 }
1073
1074 /**
1075 * dev_alloc_name - allocate a name for a device
1076 * @dev: device
1077 * @name: name format string
1078 *
1079 * Passed a format string - eg "lt%d" it will try and find a suitable
1080 * id. It scans list of devices to build up a free map, then chooses
1081 * the first empty slot. The caller must hold the dev_base or rtnl lock
1082 * while allocating the name and adding the device in order to avoid
1083 * duplicates.
1084 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1085 * Returns the number of the unit assigned or a negative errno code.
1086 */
1087
1088 int dev_alloc_name(struct net_device *dev, const char *name)
1089 {
1090 char buf[IFNAMSIZ];
1091 struct net *net;
1092 int ret;
1093
1094 BUG_ON(!dev_net(dev));
1095 net = dev_net(dev);
1096 ret = __dev_alloc_name(net, name, buf);
1097 if (ret >= 0)
1098 strlcpy(dev->name, buf, IFNAMSIZ);
1099 return ret;
1100 }
1101 EXPORT_SYMBOL(dev_alloc_name);
1102
1103 static int dev_alloc_name_ns(struct net *net,
1104 struct net_device *dev,
1105 const char *name)
1106 {
1107 char buf[IFNAMSIZ];
1108 int ret;
1109
1110 ret = __dev_alloc_name(net, name, buf);
1111 if (ret >= 0)
1112 strlcpy(dev->name, buf, IFNAMSIZ);
1113 return ret;
1114 }
1115
1116 static int dev_get_valid_name(struct net *net,
1117 struct net_device *dev,
1118 const char *name)
1119 {
1120 BUG_ON(!net);
1121
1122 if (!dev_valid_name(name))
1123 return -EINVAL;
1124
1125 if (strchr(name, '%'))
1126 return dev_alloc_name_ns(net, dev, name);
1127 else if (__dev_get_by_name(net, name))
1128 return -EEXIST;
1129 else if (dev->name != name)
1130 strlcpy(dev->name, name, IFNAMSIZ);
1131
1132 return 0;
1133 }
1134
1135 /**
1136 * dev_change_name - change name of a device
1137 * @dev: device
1138 * @newname: name (or format string) must be at least IFNAMSIZ
1139 *
1140 * Change name of a device, can pass format strings "eth%d".
1141 * for wildcarding.
1142 */
1143 int dev_change_name(struct net_device *dev, const char *newname)
1144 {
1145 unsigned char old_assign_type;
1146 char oldname[IFNAMSIZ];
1147 int err = 0;
1148 int ret;
1149 struct net *net;
1150
1151 ASSERT_RTNL();
1152 BUG_ON(!dev_net(dev));
1153
1154 net = dev_net(dev);
1155 if (dev->flags & IFF_UP)
1156 return -EBUSY;
1157
1158 write_seqcount_begin(&devnet_rename_seq);
1159
1160 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1161 write_seqcount_end(&devnet_rename_seq);
1162 return 0;
1163 }
1164
1165 memcpy(oldname, dev->name, IFNAMSIZ);
1166
1167 err = dev_get_valid_name(net, dev, newname);
1168 if (err < 0) {
1169 write_seqcount_end(&devnet_rename_seq);
1170 return err;
1171 }
1172
1173 if (oldname[0] && !strchr(oldname, '%'))
1174 netdev_info(dev, "renamed from %s\n", oldname);
1175
1176 old_assign_type = dev->name_assign_type;
1177 dev->name_assign_type = NET_NAME_RENAMED;
1178
1179 rollback:
1180 ret = device_rename(&dev->dev, dev->name);
1181 if (ret) {
1182 memcpy(dev->name, oldname, IFNAMSIZ);
1183 dev->name_assign_type = old_assign_type;
1184 write_seqcount_end(&devnet_rename_seq);
1185 return ret;
1186 }
1187
1188 write_seqcount_end(&devnet_rename_seq);
1189
1190 netdev_adjacent_rename_links(dev, oldname);
1191
1192 write_lock_bh(&dev_base_lock);
1193 hlist_del_rcu(&dev->name_hlist);
1194 write_unlock_bh(&dev_base_lock);
1195
1196 synchronize_rcu();
1197
1198 write_lock_bh(&dev_base_lock);
1199 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1200 write_unlock_bh(&dev_base_lock);
1201
1202 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1203 ret = notifier_to_errno(ret);
1204
1205 if (ret) {
1206 /* err >= 0 after dev_alloc_name() or stores the first errno */
1207 if (err >= 0) {
1208 err = ret;
1209 write_seqcount_begin(&devnet_rename_seq);
1210 memcpy(dev->name, oldname, IFNAMSIZ);
1211 memcpy(oldname, newname, IFNAMSIZ);
1212 dev->name_assign_type = old_assign_type;
1213 old_assign_type = NET_NAME_RENAMED;
1214 goto rollback;
1215 } else {
1216 pr_err("%s: name change rollback failed: %d\n",
1217 dev->name, ret);
1218 }
1219 }
1220
1221 return err;
1222 }
1223
1224 /**
1225 * dev_set_alias - change ifalias of a device
1226 * @dev: device
1227 * @alias: name up to IFALIASZ
1228 * @len: limit of bytes to copy from info
1229 *
1230 * Set ifalias for a device,
1231 */
1232 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1233 {
1234 char *new_ifalias;
1235
1236 ASSERT_RTNL();
1237
1238 if (len >= IFALIASZ)
1239 return -EINVAL;
1240
1241 if (!len) {
1242 kfree(dev->ifalias);
1243 dev->ifalias = NULL;
1244 return 0;
1245 }
1246
1247 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1248 if (!new_ifalias)
1249 return -ENOMEM;
1250 dev->ifalias = new_ifalias;
1251
1252 strlcpy(dev->ifalias, alias, len+1);
1253 return len;
1254 }
1255
1256
1257 /**
1258 * netdev_features_change - device changes features
1259 * @dev: device to cause notification
1260 *
1261 * Called to indicate a device has changed features.
1262 */
1263 void netdev_features_change(struct net_device *dev)
1264 {
1265 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1266 }
1267 EXPORT_SYMBOL(netdev_features_change);
1268
1269 /**
1270 * netdev_state_change - device changes state
1271 * @dev: device to cause notification
1272 *
1273 * Called to indicate a device has changed state. This function calls
1274 * the notifier chains for netdev_chain and sends a NEWLINK message
1275 * to the routing socket.
1276 */
1277 void netdev_state_change(struct net_device *dev)
1278 {
1279 if (dev->flags & IFF_UP) {
1280 struct netdev_notifier_change_info change_info;
1281
1282 change_info.flags_changed = 0;
1283 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1284 &change_info.info);
1285 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1286 }
1287 }
1288 EXPORT_SYMBOL(netdev_state_change);
1289
1290 /**
1291 * netdev_notify_peers - notify network peers about existence of @dev
1292 * @dev: network device
1293 *
1294 * Generate traffic such that interested network peers are aware of
1295 * @dev, such as by generating a gratuitous ARP. This may be used when
1296 * a device wants to inform the rest of the network about some sort of
1297 * reconfiguration such as a failover event or virtual machine
1298 * migration.
1299 */
1300 void netdev_notify_peers(struct net_device *dev)
1301 {
1302 rtnl_lock();
1303 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1304 rtnl_unlock();
1305 }
1306 EXPORT_SYMBOL(netdev_notify_peers);
1307
1308 static int __dev_open(struct net_device *dev)
1309 {
1310 const struct net_device_ops *ops = dev->netdev_ops;
1311 int ret;
1312
1313 ASSERT_RTNL();
1314
1315 if (!netif_device_present(dev))
1316 return -ENODEV;
1317
1318 /* Block netpoll from trying to do any rx path servicing.
1319 * If we don't do this there is a chance ndo_poll_controller
1320 * or ndo_poll may be running while we open the device
1321 */
1322 netpoll_poll_disable(dev);
1323
1324 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1325 ret = notifier_to_errno(ret);
1326 if (ret)
1327 return ret;
1328
1329 set_bit(__LINK_STATE_START, &dev->state);
1330
1331 if (ops->ndo_validate_addr)
1332 ret = ops->ndo_validate_addr(dev);
1333
1334 if (!ret && ops->ndo_open)
1335 ret = ops->ndo_open(dev);
1336
1337 netpoll_poll_enable(dev);
1338
1339 if (ret)
1340 clear_bit(__LINK_STATE_START, &dev->state);
1341 else {
1342 dev->flags |= IFF_UP;
1343 dev_set_rx_mode(dev);
1344 dev_activate(dev);
1345 add_device_randomness(dev->dev_addr, dev->addr_len);
1346 }
1347
1348 return ret;
1349 }
1350
1351 /**
1352 * dev_open - prepare an interface for use.
1353 * @dev: device to open
1354 *
1355 * Takes a device from down to up state. The device's private open
1356 * function is invoked and then the multicast lists are loaded. Finally
1357 * the device is moved into the up state and a %NETDEV_UP message is
1358 * sent to the netdev notifier chain.
1359 *
1360 * Calling this function on an active interface is a nop. On a failure
1361 * a negative errno code is returned.
1362 */
1363 int dev_open(struct net_device *dev)
1364 {
1365 int ret;
1366
1367 if (dev->flags & IFF_UP)
1368 return 0;
1369
1370 ret = __dev_open(dev);
1371 if (ret < 0)
1372 return ret;
1373
1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1375 call_netdevice_notifiers(NETDEV_UP, dev);
1376
1377 return ret;
1378 }
1379 EXPORT_SYMBOL(dev_open);
1380
1381 static int __dev_close_many(struct list_head *head)
1382 {
1383 struct net_device *dev;
1384
1385 ASSERT_RTNL();
1386 might_sleep();
1387
1388 list_for_each_entry(dev, head, close_list) {
1389 /* Temporarily disable netpoll until the interface is down */
1390 netpoll_poll_disable(dev);
1391
1392 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1393
1394 clear_bit(__LINK_STATE_START, &dev->state);
1395
1396 /* Synchronize to scheduled poll. We cannot touch poll list, it
1397 * can be even on different cpu. So just clear netif_running().
1398 *
1399 * dev->stop() will invoke napi_disable() on all of it's
1400 * napi_struct instances on this device.
1401 */
1402 smp_mb__after_atomic(); /* Commit netif_running(). */
1403 }
1404
1405 dev_deactivate_many(head);
1406
1407 list_for_each_entry(dev, head, close_list) {
1408 const struct net_device_ops *ops = dev->netdev_ops;
1409
1410 /*
1411 * Call the device specific close. This cannot fail.
1412 * Only if device is UP
1413 *
1414 * We allow it to be called even after a DETACH hot-plug
1415 * event.
1416 */
1417 if (ops->ndo_stop)
1418 ops->ndo_stop(dev);
1419
1420 dev->flags &= ~IFF_UP;
1421 netpoll_poll_enable(dev);
1422 }
1423
1424 return 0;
1425 }
1426
1427 static int __dev_close(struct net_device *dev)
1428 {
1429 int retval;
1430 LIST_HEAD(single);
1431
1432 list_add(&dev->close_list, &single);
1433 retval = __dev_close_many(&single);
1434 list_del(&single);
1435
1436 return retval;
1437 }
1438
1439 int dev_close_many(struct list_head *head, bool unlink)
1440 {
1441 struct net_device *dev, *tmp;
1442
1443 /* Remove the devices that don't need to be closed */
1444 list_for_each_entry_safe(dev, tmp, head, close_list)
1445 if (!(dev->flags & IFF_UP))
1446 list_del_init(&dev->close_list);
1447
1448 __dev_close_many(head);
1449
1450 list_for_each_entry_safe(dev, tmp, head, close_list) {
1451 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1452 call_netdevice_notifiers(NETDEV_DOWN, dev);
1453 if (unlink)
1454 list_del_init(&dev->close_list);
1455 }
1456
1457 return 0;
1458 }
1459 EXPORT_SYMBOL(dev_close_many);
1460
1461 /**
1462 * dev_close - shutdown an interface.
1463 * @dev: device to shutdown
1464 *
1465 * This function moves an active device into down state. A
1466 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1467 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1468 * chain.
1469 */
1470 int dev_close(struct net_device *dev)
1471 {
1472 if (dev->flags & IFF_UP) {
1473 LIST_HEAD(single);
1474
1475 list_add(&dev->close_list, &single);
1476 dev_close_many(&single, true);
1477 list_del(&single);
1478 }
1479 return 0;
1480 }
1481 EXPORT_SYMBOL(dev_close);
1482
1483
1484 /**
1485 * dev_disable_lro - disable Large Receive Offload on a device
1486 * @dev: device
1487 *
1488 * Disable Large Receive Offload (LRO) on a net device. Must be
1489 * called under RTNL. This is needed if received packets may be
1490 * forwarded to another interface.
1491 */
1492 void dev_disable_lro(struct net_device *dev)
1493 {
1494 struct net_device *lower_dev;
1495 struct list_head *iter;
1496
1497 dev->wanted_features &= ~NETIF_F_LRO;
1498 netdev_update_features(dev);
1499
1500 if (unlikely(dev->features & NETIF_F_LRO))
1501 netdev_WARN(dev, "failed to disable LRO!\n");
1502
1503 netdev_for_each_lower_dev(dev, lower_dev, iter)
1504 dev_disable_lro(lower_dev);
1505 }
1506 EXPORT_SYMBOL(dev_disable_lro);
1507
1508 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1509 struct net_device *dev)
1510 {
1511 struct netdev_notifier_info info;
1512
1513 netdev_notifier_info_init(&info, dev);
1514 return nb->notifier_call(nb, val, &info);
1515 }
1516
1517 static int dev_boot_phase = 1;
1518
1519 /**
1520 * register_netdevice_notifier - register a network notifier block
1521 * @nb: notifier
1522 *
1523 * Register a notifier to be called when network device events occur.
1524 * The notifier passed is linked into the kernel structures and must
1525 * not be reused until it has been unregistered. A negative errno code
1526 * is returned on a failure.
1527 *
1528 * When registered all registration and up events are replayed
1529 * to the new notifier to allow device to have a race free
1530 * view of the network device list.
1531 */
1532
1533 int register_netdevice_notifier(struct notifier_block *nb)
1534 {
1535 struct net_device *dev;
1536 struct net_device *last;
1537 struct net *net;
1538 int err;
1539
1540 rtnl_lock();
1541 err = raw_notifier_chain_register(&netdev_chain, nb);
1542 if (err)
1543 goto unlock;
1544 if (dev_boot_phase)
1545 goto unlock;
1546 for_each_net(net) {
1547 for_each_netdev(net, dev) {
1548 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1549 err = notifier_to_errno(err);
1550 if (err)
1551 goto rollback;
1552
1553 if (!(dev->flags & IFF_UP))
1554 continue;
1555
1556 call_netdevice_notifier(nb, NETDEV_UP, dev);
1557 }
1558 }
1559
1560 unlock:
1561 rtnl_unlock();
1562 return err;
1563
1564 rollback:
1565 last = dev;
1566 for_each_net(net) {
1567 for_each_netdev(net, dev) {
1568 if (dev == last)
1569 goto outroll;
1570
1571 if (dev->flags & IFF_UP) {
1572 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1573 dev);
1574 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1575 }
1576 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1577 }
1578 }
1579
1580 outroll:
1581 raw_notifier_chain_unregister(&netdev_chain, nb);
1582 goto unlock;
1583 }
1584 EXPORT_SYMBOL(register_netdevice_notifier);
1585
1586 /**
1587 * unregister_netdevice_notifier - unregister a network notifier block
1588 * @nb: notifier
1589 *
1590 * Unregister a notifier previously registered by
1591 * register_netdevice_notifier(). The notifier is unlinked into the
1592 * kernel structures and may then be reused. A negative errno code
1593 * is returned on a failure.
1594 *
1595 * After unregistering unregister and down device events are synthesized
1596 * for all devices on the device list to the removed notifier to remove
1597 * the need for special case cleanup code.
1598 */
1599
1600 int unregister_netdevice_notifier(struct notifier_block *nb)
1601 {
1602 struct net_device *dev;
1603 struct net *net;
1604 int err;
1605
1606 rtnl_lock();
1607 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1608 if (err)
1609 goto unlock;
1610
1611 for_each_net(net) {
1612 for_each_netdev(net, dev) {
1613 if (dev->flags & IFF_UP) {
1614 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1615 dev);
1616 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1617 }
1618 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1619 }
1620 }
1621 unlock:
1622 rtnl_unlock();
1623 return err;
1624 }
1625 EXPORT_SYMBOL(unregister_netdevice_notifier);
1626
1627 /**
1628 * call_netdevice_notifiers_info - call all network notifier blocks
1629 * @val: value passed unmodified to notifier function
1630 * @dev: net_device pointer passed unmodified to notifier function
1631 * @info: notifier information data
1632 *
1633 * Call all network notifier blocks. Parameters and return value
1634 * are as for raw_notifier_call_chain().
1635 */
1636
1637 static int call_netdevice_notifiers_info(unsigned long val,
1638 struct net_device *dev,
1639 struct netdev_notifier_info *info)
1640 {
1641 ASSERT_RTNL();
1642 netdev_notifier_info_init(info, dev);
1643 return raw_notifier_call_chain(&netdev_chain, val, info);
1644 }
1645
1646 /**
1647 * call_netdevice_notifiers - call all network notifier blocks
1648 * @val: value passed unmodified to notifier function
1649 * @dev: net_device pointer passed unmodified to notifier function
1650 *
1651 * Call all network notifier blocks. Parameters and return value
1652 * are as for raw_notifier_call_chain().
1653 */
1654
1655 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1656 {
1657 struct netdev_notifier_info info;
1658
1659 return call_netdevice_notifiers_info(val, dev, &info);
1660 }
1661 EXPORT_SYMBOL(call_netdevice_notifiers);
1662
1663 #ifdef CONFIG_NET_INGRESS
1664 static struct static_key ingress_needed __read_mostly;
1665
1666 void net_inc_ingress_queue(void)
1667 {
1668 static_key_slow_inc(&ingress_needed);
1669 }
1670 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1671
1672 void net_dec_ingress_queue(void)
1673 {
1674 static_key_slow_dec(&ingress_needed);
1675 }
1676 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1677 #endif
1678
1679 #ifdef CONFIG_NET_EGRESS
1680 static struct static_key egress_needed __read_mostly;
1681
1682 void net_inc_egress_queue(void)
1683 {
1684 static_key_slow_inc(&egress_needed);
1685 }
1686 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1687
1688 void net_dec_egress_queue(void)
1689 {
1690 static_key_slow_dec(&egress_needed);
1691 }
1692 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1693 #endif
1694
1695 static struct static_key netstamp_needed __read_mostly;
1696 #ifdef HAVE_JUMP_LABEL
1697 /* We are not allowed to call static_key_slow_dec() from irq context
1698 * If net_disable_timestamp() is called from irq context, defer the
1699 * static_key_slow_dec() calls.
1700 */
1701 static atomic_t netstamp_needed_deferred;
1702 #endif
1703
1704 void net_enable_timestamp(void)
1705 {
1706 #ifdef HAVE_JUMP_LABEL
1707 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1708
1709 if (deferred) {
1710 while (--deferred)
1711 static_key_slow_dec(&netstamp_needed);
1712 return;
1713 }
1714 #endif
1715 static_key_slow_inc(&netstamp_needed);
1716 }
1717 EXPORT_SYMBOL(net_enable_timestamp);
1718
1719 void net_disable_timestamp(void)
1720 {
1721 #ifdef HAVE_JUMP_LABEL
1722 if (in_interrupt()) {
1723 atomic_inc(&netstamp_needed_deferred);
1724 return;
1725 }
1726 #endif
1727 static_key_slow_dec(&netstamp_needed);
1728 }
1729 EXPORT_SYMBOL(net_disable_timestamp);
1730
1731 static inline void net_timestamp_set(struct sk_buff *skb)
1732 {
1733 skb->tstamp.tv64 = 0;
1734 if (static_key_false(&netstamp_needed))
1735 __net_timestamp(skb);
1736 }
1737
1738 #define net_timestamp_check(COND, SKB) \
1739 if (static_key_false(&netstamp_needed)) { \
1740 if ((COND) && !(SKB)->tstamp.tv64) \
1741 __net_timestamp(SKB); \
1742 } \
1743
1744 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1745 {
1746 unsigned int len;
1747
1748 if (!(dev->flags & IFF_UP))
1749 return false;
1750
1751 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1752 if (skb->len <= len)
1753 return true;
1754
1755 /* if TSO is enabled, we don't care about the length as the packet
1756 * could be forwarded without being segmented before
1757 */
1758 if (skb_is_gso(skb))
1759 return true;
1760
1761 return false;
1762 }
1763 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1764
1765 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1766 {
1767 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1768 unlikely(!is_skb_forwardable(dev, skb))) {
1769 atomic_long_inc(&dev->rx_dropped);
1770 kfree_skb(skb);
1771 return NET_RX_DROP;
1772 }
1773
1774 skb_scrub_packet(skb, true);
1775 skb->priority = 0;
1776 skb->protocol = eth_type_trans(skb, dev);
1777 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1778
1779 return 0;
1780 }
1781 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1782
1783 /**
1784 * dev_forward_skb - loopback an skb to another netif
1785 *
1786 * @dev: destination network device
1787 * @skb: buffer to forward
1788 *
1789 * return values:
1790 * NET_RX_SUCCESS (no congestion)
1791 * NET_RX_DROP (packet was dropped, but freed)
1792 *
1793 * dev_forward_skb can be used for injecting an skb from the
1794 * start_xmit function of one device into the receive queue
1795 * of another device.
1796 *
1797 * The receiving device may be in another namespace, so
1798 * we have to clear all information in the skb that could
1799 * impact namespace isolation.
1800 */
1801 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1802 {
1803 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1804 }
1805 EXPORT_SYMBOL_GPL(dev_forward_skb);
1806
1807 static inline int deliver_skb(struct sk_buff *skb,
1808 struct packet_type *pt_prev,
1809 struct net_device *orig_dev)
1810 {
1811 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1812 return -ENOMEM;
1813 atomic_inc(&skb->users);
1814 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1815 }
1816
1817 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1818 struct packet_type **pt,
1819 struct net_device *orig_dev,
1820 __be16 type,
1821 struct list_head *ptype_list)
1822 {
1823 struct packet_type *ptype, *pt_prev = *pt;
1824
1825 list_for_each_entry_rcu(ptype, ptype_list, list) {
1826 if (ptype->type != type)
1827 continue;
1828 if (pt_prev)
1829 deliver_skb(skb, pt_prev, orig_dev);
1830 pt_prev = ptype;
1831 }
1832 *pt = pt_prev;
1833 }
1834
1835 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1836 {
1837 if (!ptype->af_packet_priv || !skb->sk)
1838 return false;
1839
1840 if (ptype->id_match)
1841 return ptype->id_match(ptype, skb->sk);
1842 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1843 return true;
1844
1845 return false;
1846 }
1847
1848 /*
1849 * Support routine. Sends outgoing frames to any network
1850 * taps currently in use.
1851 */
1852
1853 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1854 {
1855 struct packet_type *ptype;
1856 struct sk_buff *skb2 = NULL;
1857 struct packet_type *pt_prev = NULL;
1858 struct list_head *ptype_list = &ptype_all;
1859
1860 rcu_read_lock();
1861 again:
1862 list_for_each_entry_rcu(ptype, ptype_list, list) {
1863 /* Never send packets back to the socket
1864 * they originated from - MvS (miquels@drinkel.ow.org)
1865 */
1866 if (skb_loop_sk(ptype, skb))
1867 continue;
1868
1869 if (pt_prev) {
1870 deliver_skb(skb2, pt_prev, skb->dev);
1871 pt_prev = ptype;
1872 continue;
1873 }
1874
1875 /* need to clone skb, done only once */
1876 skb2 = skb_clone(skb, GFP_ATOMIC);
1877 if (!skb2)
1878 goto out_unlock;
1879
1880 net_timestamp_set(skb2);
1881
1882 /* skb->nh should be correctly
1883 * set by sender, so that the second statement is
1884 * just protection against buggy protocols.
1885 */
1886 skb_reset_mac_header(skb2);
1887
1888 if (skb_network_header(skb2) < skb2->data ||
1889 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1890 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1891 ntohs(skb2->protocol),
1892 dev->name);
1893 skb_reset_network_header(skb2);
1894 }
1895
1896 skb2->transport_header = skb2->network_header;
1897 skb2->pkt_type = PACKET_OUTGOING;
1898 pt_prev = ptype;
1899 }
1900
1901 if (ptype_list == &ptype_all) {
1902 ptype_list = &dev->ptype_all;
1903 goto again;
1904 }
1905 out_unlock:
1906 if (pt_prev)
1907 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1908 rcu_read_unlock();
1909 }
1910
1911 /**
1912 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1913 * @dev: Network device
1914 * @txq: number of queues available
1915 *
1916 * If real_num_tx_queues is changed the tc mappings may no longer be
1917 * valid. To resolve this verify the tc mapping remains valid and if
1918 * not NULL the mapping. With no priorities mapping to this
1919 * offset/count pair it will no longer be used. In the worst case TC0
1920 * is invalid nothing can be done so disable priority mappings. If is
1921 * expected that drivers will fix this mapping if they can before
1922 * calling netif_set_real_num_tx_queues.
1923 */
1924 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1925 {
1926 int i;
1927 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1928
1929 /* If TC0 is invalidated disable TC mapping */
1930 if (tc->offset + tc->count > txq) {
1931 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1932 dev->num_tc = 0;
1933 return;
1934 }
1935
1936 /* Invalidated prio to tc mappings set to TC0 */
1937 for (i = 1; i < TC_BITMASK + 1; i++) {
1938 int q = netdev_get_prio_tc_map(dev, i);
1939
1940 tc = &dev->tc_to_txq[q];
1941 if (tc->offset + tc->count > txq) {
1942 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1943 i, q);
1944 netdev_set_prio_tc_map(dev, i, 0);
1945 }
1946 }
1947 }
1948
1949 #ifdef CONFIG_XPS
1950 static DEFINE_MUTEX(xps_map_mutex);
1951 #define xmap_dereference(P) \
1952 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1953
1954 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1955 int cpu, u16 index)
1956 {
1957 struct xps_map *map = NULL;
1958 int pos;
1959
1960 if (dev_maps)
1961 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1962
1963 for (pos = 0; map && pos < map->len; pos++) {
1964 if (map->queues[pos] == index) {
1965 if (map->len > 1) {
1966 map->queues[pos] = map->queues[--map->len];
1967 } else {
1968 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1969 kfree_rcu(map, rcu);
1970 map = NULL;
1971 }
1972 break;
1973 }
1974 }
1975
1976 return map;
1977 }
1978
1979 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1980 {
1981 struct xps_dev_maps *dev_maps;
1982 int cpu, i;
1983 bool active = false;
1984
1985 mutex_lock(&xps_map_mutex);
1986 dev_maps = xmap_dereference(dev->xps_maps);
1987
1988 if (!dev_maps)
1989 goto out_no_maps;
1990
1991 for_each_possible_cpu(cpu) {
1992 for (i = index; i < dev->num_tx_queues; i++) {
1993 if (!remove_xps_queue(dev_maps, cpu, i))
1994 break;
1995 }
1996 if (i == dev->num_tx_queues)
1997 active = true;
1998 }
1999
2000 if (!active) {
2001 RCU_INIT_POINTER(dev->xps_maps, NULL);
2002 kfree_rcu(dev_maps, rcu);
2003 }
2004
2005 for (i = index; i < dev->num_tx_queues; i++)
2006 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2007 NUMA_NO_NODE);
2008
2009 out_no_maps:
2010 mutex_unlock(&xps_map_mutex);
2011 }
2012
2013 static struct xps_map *expand_xps_map(struct xps_map *map,
2014 int cpu, u16 index)
2015 {
2016 struct xps_map *new_map;
2017 int alloc_len = XPS_MIN_MAP_ALLOC;
2018 int i, pos;
2019
2020 for (pos = 0; map && pos < map->len; pos++) {
2021 if (map->queues[pos] != index)
2022 continue;
2023 return map;
2024 }
2025
2026 /* Need to add queue to this CPU's existing map */
2027 if (map) {
2028 if (pos < map->alloc_len)
2029 return map;
2030
2031 alloc_len = map->alloc_len * 2;
2032 }
2033
2034 /* Need to allocate new map to store queue on this CPU's map */
2035 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2036 cpu_to_node(cpu));
2037 if (!new_map)
2038 return NULL;
2039
2040 for (i = 0; i < pos; i++)
2041 new_map->queues[i] = map->queues[i];
2042 new_map->alloc_len = alloc_len;
2043 new_map->len = pos;
2044
2045 return new_map;
2046 }
2047
2048 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2049 u16 index)
2050 {
2051 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2052 struct xps_map *map, *new_map;
2053 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2054 int cpu, numa_node_id = -2;
2055 bool active = false;
2056
2057 mutex_lock(&xps_map_mutex);
2058
2059 dev_maps = xmap_dereference(dev->xps_maps);
2060
2061 /* allocate memory for queue storage */
2062 for_each_online_cpu(cpu) {
2063 if (!cpumask_test_cpu(cpu, mask))
2064 continue;
2065
2066 if (!new_dev_maps)
2067 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2068 if (!new_dev_maps) {
2069 mutex_unlock(&xps_map_mutex);
2070 return -ENOMEM;
2071 }
2072
2073 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2074 NULL;
2075
2076 map = expand_xps_map(map, cpu, index);
2077 if (!map)
2078 goto error;
2079
2080 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2081 }
2082
2083 if (!new_dev_maps)
2084 goto out_no_new_maps;
2085
2086 for_each_possible_cpu(cpu) {
2087 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2088 /* add queue to CPU maps */
2089 int pos = 0;
2090
2091 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2092 while ((pos < map->len) && (map->queues[pos] != index))
2093 pos++;
2094
2095 if (pos == map->len)
2096 map->queues[map->len++] = index;
2097 #ifdef CONFIG_NUMA
2098 if (numa_node_id == -2)
2099 numa_node_id = cpu_to_node(cpu);
2100 else if (numa_node_id != cpu_to_node(cpu))
2101 numa_node_id = -1;
2102 #endif
2103 } else if (dev_maps) {
2104 /* fill in the new device map from the old device map */
2105 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2106 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2107 }
2108
2109 }
2110
2111 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2112
2113 /* Cleanup old maps */
2114 if (dev_maps) {
2115 for_each_possible_cpu(cpu) {
2116 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2117 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2118 if (map && map != new_map)
2119 kfree_rcu(map, rcu);
2120 }
2121
2122 kfree_rcu(dev_maps, rcu);
2123 }
2124
2125 dev_maps = new_dev_maps;
2126 active = true;
2127
2128 out_no_new_maps:
2129 /* update Tx queue numa node */
2130 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2131 (numa_node_id >= 0) ? numa_node_id :
2132 NUMA_NO_NODE);
2133
2134 if (!dev_maps)
2135 goto out_no_maps;
2136
2137 /* removes queue from unused CPUs */
2138 for_each_possible_cpu(cpu) {
2139 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2140 continue;
2141
2142 if (remove_xps_queue(dev_maps, cpu, index))
2143 active = true;
2144 }
2145
2146 /* free map if not active */
2147 if (!active) {
2148 RCU_INIT_POINTER(dev->xps_maps, NULL);
2149 kfree_rcu(dev_maps, rcu);
2150 }
2151
2152 out_no_maps:
2153 mutex_unlock(&xps_map_mutex);
2154
2155 return 0;
2156 error:
2157 /* remove any maps that we added */
2158 for_each_possible_cpu(cpu) {
2159 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2160 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2161 NULL;
2162 if (new_map && new_map != map)
2163 kfree(new_map);
2164 }
2165
2166 mutex_unlock(&xps_map_mutex);
2167
2168 kfree(new_dev_maps);
2169 return -ENOMEM;
2170 }
2171 EXPORT_SYMBOL(netif_set_xps_queue);
2172
2173 #endif
2174 /*
2175 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2176 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2177 */
2178 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2179 {
2180 int rc;
2181
2182 if (txq < 1 || txq > dev->num_tx_queues)
2183 return -EINVAL;
2184
2185 if (dev->reg_state == NETREG_REGISTERED ||
2186 dev->reg_state == NETREG_UNREGISTERING) {
2187 ASSERT_RTNL();
2188
2189 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2190 txq);
2191 if (rc)
2192 return rc;
2193
2194 if (dev->num_tc)
2195 netif_setup_tc(dev, txq);
2196
2197 if (txq < dev->real_num_tx_queues) {
2198 qdisc_reset_all_tx_gt(dev, txq);
2199 #ifdef CONFIG_XPS
2200 netif_reset_xps_queues_gt(dev, txq);
2201 #endif
2202 }
2203 }
2204
2205 dev->real_num_tx_queues = txq;
2206 return 0;
2207 }
2208 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2209
2210 #ifdef CONFIG_SYSFS
2211 /**
2212 * netif_set_real_num_rx_queues - set actual number of RX queues used
2213 * @dev: Network device
2214 * @rxq: Actual number of RX queues
2215 *
2216 * This must be called either with the rtnl_lock held or before
2217 * registration of the net device. Returns 0 on success, or a
2218 * negative error code. If called before registration, it always
2219 * succeeds.
2220 */
2221 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2222 {
2223 int rc;
2224
2225 if (rxq < 1 || rxq > dev->num_rx_queues)
2226 return -EINVAL;
2227
2228 if (dev->reg_state == NETREG_REGISTERED) {
2229 ASSERT_RTNL();
2230
2231 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2232 rxq);
2233 if (rc)
2234 return rc;
2235 }
2236
2237 dev->real_num_rx_queues = rxq;
2238 return 0;
2239 }
2240 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2241 #endif
2242
2243 /**
2244 * netif_get_num_default_rss_queues - default number of RSS queues
2245 *
2246 * This routine should set an upper limit on the number of RSS queues
2247 * used by default by multiqueue devices.
2248 */
2249 int netif_get_num_default_rss_queues(void)
2250 {
2251 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2252 }
2253 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2254
2255 static inline void __netif_reschedule(struct Qdisc *q)
2256 {
2257 struct softnet_data *sd;
2258 unsigned long flags;
2259
2260 local_irq_save(flags);
2261 sd = this_cpu_ptr(&softnet_data);
2262 q->next_sched = NULL;
2263 *sd->output_queue_tailp = q;
2264 sd->output_queue_tailp = &q->next_sched;
2265 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2266 local_irq_restore(flags);
2267 }
2268
2269 void __netif_schedule(struct Qdisc *q)
2270 {
2271 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2272 __netif_reschedule(q);
2273 }
2274 EXPORT_SYMBOL(__netif_schedule);
2275
2276 struct dev_kfree_skb_cb {
2277 enum skb_free_reason reason;
2278 };
2279
2280 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2281 {
2282 return (struct dev_kfree_skb_cb *)skb->cb;
2283 }
2284
2285 void netif_schedule_queue(struct netdev_queue *txq)
2286 {
2287 rcu_read_lock();
2288 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2289 struct Qdisc *q = rcu_dereference(txq->qdisc);
2290
2291 __netif_schedule(q);
2292 }
2293 rcu_read_unlock();
2294 }
2295 EXPORT_SYMBOL(netif_schedule_queue);
2296
2297 /**
2298 * netif_wake_subqueue - allow sending packets on subqueue
2299 * @dev: network device
2300 * @queue_index: sub queue index
2301 *
2302 * Resume individual transmit queue of a device with multiple transmit queues.
2303 */
2304 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2305 {
2306 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2307
2308 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2309 struct Qdisc *q;
2310
2311 rcu_read_lock();
2312 q = rcu_dereference(txq->qdisc);
2313 __netif_schedule(q);
2314 rcu_read_unlock();
2315 }
2316 }
2317 EXPORT_SYMBOL(netif_wake_subqueue);
2318
2319 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2320 {
2321 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2322 struct Qdisc *q;
2323
2324 rcu_read_lock();
2325 q = rcu_dereference(dev_queue->qdisc);
2326 __netif_schedule(q);
2327 rcu_read_unlock();
2328 }
2329 }
2330 EXPORT_SYMBOL(netif_tx_wake_queue);
2331
2332 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2333 {
2334 unsigned long flags;
2335
2336 if (likely(atomic_read(&skb->users) == 1)) {
2337 smp_rmb();
2338 atomic_set(&skb->users, 0);
2339 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2340 return;
2341 }
2342 get_kfree_skb_cb(skb)->reason = reason;
2343 local_irq_save(flags);
2344 skb->next = __this_cpu_read(softnet_data.completion_queue);
2345 __this_cpu_write(softnet_data.completion_queue, skb);
2346 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2347 local_irq_restore(flags);
2348 }
2349 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2350
2351 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2352 {
2353 if (in_irq() || irqs_disabled())
2354 __dev_kfree_skb_irq(skb, reason);
2355 else
2356 dev_kfree_skb(skb);
2357 }
2358 EXPORT_SYMBOL(__dev_kfree_skb_any);
2359
2360
2361 /**
2362 * netif_device_detach - mark device as removed
2363 * @dev: network device
2364 *
2365 * Mark device as removed from system and therefore no longer available.
2366 */
2367 void netif_device_detach(struct net_device *dev)
2368 {
2369 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2370 netif_running(dev)) {
2371 netif_tx_stop_all_queues(dev);
2372 }
2373 }
2374 EXPORT_SYMBOL(netif_device_detach);
2375
2376 /**
2377 * netif_device_attach - mark device as attached
2378 * @dev: network device
2379 *
2380 * Mark device as attached from system and restart if needed.
2381 */
2382 void netif_device_attach(struct net_device *dev)
2383 {
2384 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2385 netif_running(dev)) {
2386 netif_tx_wake_all_queues(dev);
2387 __netdev_watchdog_up(dev);
2388 }
2389 }
2390 EXPORT_SYMBOL(netif_device_attach);
2391
2392 /*
2393 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2394 * to be used as a distribution range.
2395 */
2396 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2397 unsigned int num_tx_queues)
2398 {
2399 u32 hash;
2400 u16 qoffset = 0;
2401 u16 qcount = num_tx_queues;
2402
2403 if (skb_rx_queue_recorded(skb)) {
2404 hash = skb_get_rx_queue(skb);
2405 while (unlikely(hash >= num_tx_queues))
2406 hash -= num_tx_queues;
2407 return hash;
2408 }
2409
2410 if (dev->num_tc) {
2411 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2412 qoffset = dev->tc_to_txq[tc].offset;
2413 qcount = dev->tc_to_txq[tc].count;
2414 }
2415
2416 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2417 }
2418 EXPORT_SYMBOL(__skb_tx_hash);
2419
2420 static void skb_warn_bad_offload(const struct sk_buff *skb)
2421 {
2422 static const netdev_features_t null_features = 0;
2423 struct net_device *dev = skb->dev;
2424 const char *name = "";
2425
2426 if (!net_ratelimit())
2427 return;
2428
2429 if (dev) {
2430 if (dev->dev.parent)
2431 name = dev_driver_string(dev->dev.parent);
2432 else
2433 name = netdev_name(dev);
2434 }
2435 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2436 "gso_type=%d ip_summed=%d\n",
2437 name, dev ? &dev->features : &null_features,
2438 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2439 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2440 skb_shinfo(skb)->gso_type, skb->ip_summed);
2441 }
2442
2443 /*
2444 * Invalidate hardware checksum when packet is to be mangled, and
2445 * complete checksum manually on outgoing path.
2446 */
2447 int skb_checksum_help(struct sk_buff *skb)
2448 {
2449 __wsum csum;
2450 int ret = 0, offset;
2451
2452 if (skb->ip_summed == CHECKSUM_COMPLETE)
2453 goto out_set_summed;
2454
2455 if (unlikely(skb_shinfo(skb)->gso_size)) {
2456 skb_warn_bad_offload(skb);
2457 return -EINVAL;
2458 }
2459
2460 /* Before computing a checksum, we should make sure no frag could
2461 * be modified by an external entity : checksum could be wrong.
2462 */
2463 if (skb_has_shared_frag(skb)) {
2464 ret = __skb_linearize(skb);
2465 if (ret)
2466 goto out;
2467 }
2468
2469 offset = skb_checksum_start_offset(skb);
2470 BUG_ON(offset >= skb_headlen(skb));
2471 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2472
2473 offset += skb->csum_offset;
2474 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2475
2476 if (skb_cloned(skb) &&
2477 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2478 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2479 if (ret)
2480 goto out;
2481 }
2482
2483 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2484 out_set_summed:
2485 skb->ip_summed = CHECKSUM_NONE;
2486 out:
2487 return ret;
2488 }
2489 EXPORT_SYMBOL(skb_checksum_help);
2490
2491 /* skb_csum_offload_check - Driver helper function to determine if a device
2492 * with limited checksum offload capabilities is able to offload the checksum
2493 * for a given packet.
2494 *
2495 * Arguments:
2496 * skb - sk_buff for the packet in question
2497 * spec - contains the description of what device can offload
2498 * csum_encapped - returns true if the checksum being offloaded is
2499 * encpasulated. That is it is checksum for the transport header
2500 * in the inner headers.
2501 * checksum_help - when set indicates that helper function should
2502 * call skb_checksum_help if offload checks fail
2503 *
2504 * Returns:
2505 * true: Packet has passed the checksum checks and should be offloadable to
2506 * the device (a driver may still need to check for additional
2507 * restrictions of its device)
2508 * false: Checksum is not offloadable. If checksum_help was set then
2509 * skb_checksum_help was called to resolve checksum for non-GSO
2510 * packets and when IP protocol is not SCTP
2511 */
2512 bool __skb_csum_offload_chk(struct sk_buff *skb,
2513 const struct skb_csum_offl_spec *spec,
2514 bool *csum_encapped,
2515 bool csum_help)
2516 {
2517 struct iphdr *iph;
2518 struct ipv6hdr *ipv6;
2519 void *nhdr;
2520 int protocol;
2521 u8 ip_proto;
2522
2523 if (skb->protocol == htons(ETH_P_8021Q) ||
2524 skb->protocol == htons(ETH_P_8021AD)) {
2525 if (!spec->vlan_okay)
2526 goto need_help;
2527 }
2528
2529 /* We check whether the checksum refers to a transport layer checksum in
2530 * the outermost header or an encapsulated transport layer checksum that
2531 * corresponds to the inner headers of the skb. If the checksum is for
2532 * something else in the packet we need help.
2533 */
2534 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2535 /* Non-encapsulated checksum */
2536 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2537 nhdr = skb_network_header(skb);
2538 *csum_encapped = false;
2539 if (spec->no_not_encapped)
2540 goto need_help;
2541 } else if (skb->encapsulation && spec->encap_okay &&
2542 skb_checksum_start_offset(skb) ==
2543 skb_inner_transport_offset(skb)) {
2544 /* Encapsulated checksum */
2545 *csum_encapped = true;
2546 switch (skb->inner_protocol_type) {
2547 case ENCAP_TYPE_ETHER:
2548 protocol = eproto_to_ipproto(skb->inner_protocol);
2549 break;
2550 case ENCAP_TYPE_IPPROTO:
2551 protocol = skb->inner_protocol;
2552 break;
2553 }
2554 nhdr = skb_inner_network_header(skb);
2555 } else {
2556 goto need_help;
2557 }
2558
2559 switch (protocol) {
2560 case IPPROTO_IP:
2561 if (!spec->ipv4_okay)
2562 goto need_help;
2563 iph = nhdr;
2564 ip_proto = iph->protocol;
2565 if (iph->ihl != 5 && !spec->ip_options_okay)
2566 goto need_help;
2567 break;
2568 case IPPROTO_IPV6:
2569 if (!spec->ipv6_okay)
2570 goto need_help;
2571 if (spec->no_encapped_ipv6 && *csum_encapped)
2572 goto need_help;
2573 ipv6 = nhdr;
2574 nhdr += sizeof(*ipv6);
2575 ip_proto = ipv6->nexthdr;
2576 break;
2577 default:
2578 goto need_help;
2579 }
2580
2581 ip_proto_again:
2582 switch (ip_proto) {
2583 case IPPROTO_TCP:
2584 if (!spec->tcp_okay ||
2585 skb->csum_offset != offsetof(struct tcphdr, check))
2586 goto need_help;
2587 break;
2588 case IPPROTO_UDP:
2589 if (!spec->udp_okay ||
2590 skb->csum_offset != offsetof(struct udphdr, check))
2591 goto need_help;
2592 break;
2593 case IPPROTO_SCTP:
2594 if (!spec->sctp_okay ||
2595 skb->csum_offset != offsetof(struct sctphdr, checksum))
2596 goto cant_help;
2597 break;
2598 case NEXTHDR_HOP:
2599 case NEXTHDR_ROUTING:
2600 case NEXTHDR_DEST: {
2601 u8 *opthdr = nhdr;
2602
2603 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2604 goto need_help;
2605
2606 ip_proto = opthdr[0];
2607 nhdr += (opthdr[1] + 1) << 3;
2608
2609 goto ip_proto_again;
2610 }
2611 default:
2612 goto need_help;
2613 }
2614
2615 /* Passed the tests for offloading checksum */
2616 return true;
2617
2618 need_help:
2619 if (csum_help && !skb_shinfo(skb)->gso_size)
2620 skb_checksum_help(skb);
2621 cant_help:
2622 return false;
2623 }
2624 EXPORT_SYMBOL(__skb_csum_offload_chk);
2625
2626 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2627 {
2628 __be16 type = skb->protocol;
2629
2630 /* Tunnel gso handlers can set protocol to ethernet. */
2631 if (type == htons(ETH_P_TEB)) {
2632 struct ethhdr *eth;
2633
2634 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2635 return 0;
2636
2637 eth = (struct ethhdr *)skb_mac_header(skb);
2638 type = eth->h_proto;
2639 }
2640
2641 return __vlan_get_protocol(skb, type, depth);
2642 }
2643
2644 /**
2645 * skb_mac_gso_segment - mac layer segmentation handler.
2646 * @skb: buffer to segment
2647 * @features: features for the output path (see dev->features)
2648 */
2649 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2650 netdev_features_t features)
2651 {
2652 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2653 struct packet_offload *ptype;
2654 int vlan_depth = skb->mac_len;
2655 __be16 type = skb_network_protocol(skb, &vlan_depth);
2656
2657 if (unlikely(!type))
2658 return ERR_PTR(-EINVAL);
2659
2660 __skb_pull(skb, vlan_depth);
2661
2662 rcu_read_lock();
2663 list_for_each_entry_rcu(ptype, &offload_base, list) {
2664 if (ptype->type == type && ptype->callbacks.gso_segment) {
2665 segs = ptype->callbacks.gso_segment(skb, features);
2666 break;
2667 }
2668 }
2669 rcu_read_unlock();
2670
2671 __skb_push(skb, skb->data - skb_mac_header(skb));
2672
2673 return segs;
2674 }
2675 EXPORT_SYMBOL(skb_mac_gso_segment);
2676
2677
2678 /* openvswitch calls this on rx path, so we need a different check.
2679 */
2680 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2681 {
2682 if (tx_path)
2683 return skb->ip_summed != CHECKSUM_PARTIAL;
2684 else
2685 return skb->ip_summed == CHECKSUM_NONE;
2686 }
2687
2688 /**
2689 * __skb_gso_segment - Perform segmentation on skb.
2690 * @skb: buffer to segment
2691 * @features: features for the output path (see dev->features)
2692 * @tx_path: whether it is called in TX path
2693 *
2694 * This function segments the given skb and returns a list of segments.
2695 *
2696 * It may return NULL if the skb requires no segmentation. This is
2697 * only possible when GSO is used for verifying header integrity.
2698 *
2699 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2700 */
2701 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2702 netdev_features_t features, bool tx_path)
2703 {
2704 if (unlikely(skb_needs_check(skb, tx_path))) {
2705 int err;
2706
2707 skb_warn_bad_offload(skb);
2708
2709 err = skb_cow_head(skb, 0);
2710 if (err < 0)
2711 return ERR_PTR(err);
2712 }
2713
2714 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2715 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2716
2717 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2718 SKB_GSO_CB(skb)->encap_level = 0;
2719
2720 skb_reset_mac_header(skb);
2721 skb_reset_mac_len(skb);
2722
2723 return skb_mac_gso_segment(skb, features);
2724 }
2725 EXPORT_SYMBOL(__skb_gso_segment);
2726
2727 /* Take action when hardware reception checksum errors are detected. */
2728 #ifdef CONFIG_BUG
2729 void netdev_rx_csum_fault(struct net_device *dev)
2730 {
2731 if (net_ratelimit()) {
2732 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2733 dump_stack();
2734 }
2735 }
2736 EXPORT_SYMBOL(netdev_rx_csum_fault);
2737 #endif
2738
2739 /* Actually, we should eliminate this check as soon as we know, that:
2740 * 1. IOMMU is present and allows to map all the memory.
2741 * 2. No high memory really exists on this machine.
2742 */
2743
2744 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2745 {
2746 #ifdef CONFIG_HIGHMEM
2747 int i;
2748 if (!(dev->features & NETIF_F_HIGHDMA)) {
2749 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2750 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2751 if (PageHighMem(skb_frag_page(frag)))
2752 return 1;
2753 }
2754 }
2755
2756 if (PCI_DMA_BUS_IS_PHYS) {
2757 struct device *pdev = dev->dev.parent;
2758
2759 if (!pdev)
2760 return 0;
2761 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2762 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2763 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2764 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2765 return 1;
2766 }
2767 }
2768 #endif
2769 return 0;
2770 }
2771
2772 /* If MPLS offload request, verify we are testing hardware MPLS features
2773 * instead of standard features for the netdev.
2774 */
2775 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2776 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2777 netdev_features_t features,
2778 __be16 type)
2779 {
2780 if (eth_p_mpls(type))
2781 features &= skb->dev->mpls_features;
2782
2783 return features;
2784 }
2785 #else
2786 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2787 netdev_features_t features,
2788 __be16 type)
2789 {
2790 return features;
2791 }
2792 #endif
2793
2794 static netdev_features_t harmonize_features(struct sk_buff *skb,
2795 netdev_features_t features)
2796 {
2797 int tmp;
2798 __be16 type;
2799
2800 type = skb_network_protocol(skb, &tmp);
2801 features = net_mpls_features(skb, features, type);
2802
2803 if (skb->ip_summed != CHECKSUM_NONE &&
2804 !can_checksum_protocol(features, type)) {
2805 features &= ~NETIF_F_CSUM_MASK;
2806 } else if (illegal_highdma(skb->dev, skb)) {
2807 features &= ~NETIF_F_SG;
2808 }
2809
2810 return features;
2811 }
2812
2813 netdev_features_t passthru_features_check(struct sk_buff *skb,
2814 struct net_device *dev,
2815 netdev_features_t features)
2816 {
2817 return features;
2818 }
2819 EXPORT_SYMBOL(passthru_features_check);
2820
2821 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2822 struct net_device *dev,
2823 netdev_features_t features)
2824 {
2825 return vlan_features_check(skb, features);
2826 }
2827
2828 netdev_features_t netif_skb_features(struct sk_buff *skb)
2829 {
2830 struct net_device *dev = skb->dev;
2831 netdev_features_t features = dev->features;
2832 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2833
2834 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2835 features &= ~NETIF_F_GSO_MASK;
2836
2837 /* If encapsulation offload request, verify we are testing
2838 * hardware encapsulation features instead of standard
2839 * features for the netdev
2840 */
2841 if (skb->encapsulation)
2842 features &= dev->hw_enc_features;
2843
2844 if (skb_vlan_tagged(skb))
2845 features = netdev_intersect_features(features,
2846 dev->vlan_features |
2847 NETIF_F_HW_VLAN_CTAG_TX |
2848 NETIF_F_HW_VLAN_STAG_TX);
2849
2850 if (dev->netdev_ops->ndo_features_check)
2851 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2852 features);
2853 else
2854 features &= dflt_features_check(skb, dev, features);
2855
2856 return harmonize_features(skb, features);
2857 }
2858 EXPORT_SYMBOL(netif_skb_features);
2859
2860 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2861 struct netdev_queue *txq, bool more)
2862 {
2863 unsigned int len;
2864 int rc;
2865
2866 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2867 dev_queue_xmit_nit(skb, dev);
2868
2869 len = skb->len;
2870 trace_net_dev_start_xmit(skb, dev);
2871 rc = netdev_start_xmit(skb, dev, txq, more);
2872 trace_net_dev_xmit(skb, rc, dev, len);
2873
2874 return rc;
2875 }
2876
2877 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2878 struct netdev_queue *txq, int *ret)
2879 {
2880 struct sk_buff *skb = first;
2881 int rc = NETDEV_TX_OK;
2882
2883 while (skb) {
2884 struct sk_buff *next = skb->next;
2885
2886 skb->next = NULL;
2887 rc = xmit_one(skb, dev, txq, next != NULL);
2888 if (unlikely(!dev_xmit_complete(rc))) {
2889 skb->next = next;
2890 goto out;
2891 }
2892
2893 skb = next;
2894 if (netif_xmit_stopped(txq) && skb) {
2895 rc = NETDEV_TX_BUSY;
2896 break;
2897 }
2898 }
2899
2900 out:
2901 *ret = rc;
2902 return skb;
2903 }
2904
2905 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2906 netdev_features_t features)
2907 {
2908 if (skb_vlan_tag_present(skb) &&
2909 !vlan_hw_offload_capable(features, skb->vlan_proto))
2910 skb = __vlan_hwaccel_push_inside(skb);
2911 return skb;
2912 }
2913
2914 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2915 {
2916 netdev_features_t features;
2917
2918 if (skb->next)
2919 return skb;
2920
2921 features = netif_skb_features(skb);
2922 skb = validate_xmit_vlan(skb, features);
2923 if (unlikely(!skb))
2924 goto out_null;
2925
2926 if (netif_needs_gso(skb, features)) {
2927 struct sk_buff *segs;
2928
2929 segs = skb_gso_segment(skb, features);
2930 if (IS_ERR(segs)) {
2931 goto out_kfree_skb;
2932 } else if (segs) {
2933 consume_skb(skb);
2934 skb = segs;
2935 }
2936 } else {
2937 if (skb_needs_linearize(skb, features) &&
2938 __skb_linearize(skb))
2939 goto out_kfree_skb;
2940
2941 /* If packet is not checksummed and device does not
2942 * support checksumming for this protocol, complete
2943 * checksumming here.
2944 */
2945 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2946 if (skb->encapsulation)
2947 skb_set_inner_transport_header(skb,
2948 skb_checksum_start_offset(skb));
2949 else
2950 skb_set_transport_header(skb,
2951 skb_checksum_start_offset(skb));
2952 if (!(features & NETIF_F_CSUM_MASK) &&
2953 skb_checksum_help(skb))
2954 goto out_kfree_skb;
2955 }
2956 }
2957
2958 return skb;
2959
2960 out_kfree_skb:
2961 kfree_skb(skb);
2962 out_null:
2963 return NULL;
2964 }
2965
2966 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2967 {
2968 struct sk_buff *next, *head = NULL, *tail;
2969
2970 for (; skb != NULL; skb = next) {
2971 next = skb->next;
2972 skb->next = NULL;
2973
2974 /* in case skb wont be segmented, point to itself */
2975 skb->prev = skb;
2976
2977 skb = validate_xmit_skb(skb, dev);
2978 if (!skb)
2979 continue;
2980
2981 if (!head)
2982 head = skb;
2983 else
2984 tail->next = skb;
2985 /* If skb was segmented, skb->prev points to
2986 * the last segment. If not, it still contains skb.
2987 */
2988 tail = skb->prev;
2989 }
2990 return head;
2991 }
2992
2993 static void qdisc_pkt_len_init(struct sk_buff *skb)
2994 {
2995 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2996
2997 qdisc_skb_cb(skb)->pkt_len = skb->len;
2998
2999 /* To get more precise estimation of bytes sent on wire,
3000 * we add to pkt_len the headers size of all segments
3001 */
3002 if (shinfo->gso_size) {
3003 unsigned int hdr_len;
3004 u16 gso_segs = shinfo->gso_segs;
3005
3006 /* mac layer + network layer */
3007 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3008
3009 /* + transport layer */
3010 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3011 hdr_len += tcp_hdrlen(skb);
3012 else
3013 hdr_len += sizeof(struct udphdr);
3014
3015 if (shinfo->gso_type & SKB_GSO_DODGY)
3016 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3017 shinfo->gso_size);
3018
3019 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3020 }
3021 }
3022
3023 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3024 struct net_device *dev,
3025 struct netdev_queue *txq)
3026 {
3027 spinlock_t *root_lock = qdisc_lock(q);
3028 bool contended;
3029 int rc;
3030
3031 qdisc_calculate_pkt_len(skb, q);
3032 /*
3033 * Heuristic to force contended enqueues to serialize on a
3034 * separate lock before trying to get qdisc main lock.
3035 * This permits __QDISC___STATE_RUNNING owner to get the lock more
3036 * often and dequeue packets faster.
3037 */
3038 contended = qdisc_is_running(q);
3039 if (unlikely(contended))
3040 spin_lock(&q->busylock);
3041
3042 spin_lock(root_lock);
3043 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3044 kfree_skb(skb);
3045 rc = NET_XMIT_DROP;
3046 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3047 qdisc_run_begin(q)) {
3048 /*
3049 * This is a work-conserving queue; there are no old skbs
3050 * waiting to be sent out; and the qdisc is not running -
3051 * xmit the skb directly.
3052 */
3053
3054 qdisc_bstats_update(q, skb);
3055
3056 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3057 if (unlikely(contended)) {
3058 spin_unlock(&q->busylock);
3059 contended = false;
3060 }
3061 __qdisc_run(q);
3062 } else
3063 qdisc_run_end(q);
3064
3065 rc = NET_XMIT_SUCCESS;
3066 } else {
3067 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
3068 if (qdisc_run_begin(q)) {
3069 if (unlikely(contended)) {
3070 spin_unlock(&q->busylock);
3071 contended = false;
3072 }
3073 __qdisc_run(q);
3074 }
3075 }
3076 spin_unlock(root_lock);
3077 if (unlikely(contended))
3078 spin_unlock(&q->busylock);
3079 return rc;
3080 }
3081
3082 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3083 static void skb_update_prio(struct sk_buff *skb)
3084 {
3085 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3086
3087 if (!skb->priority && skb->sk && map) {
3088 unsigned int prioidx =
3089 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3090
3091 if (prioidx < map->priomap_len)
3092 skb->priority = map->priomap[prioidx];
3093 }
3094 }
3095 #else
3096 #define skb_update_prio(skb)
3097 #endif
3098
3099 DEFINE_PER_CPU(int, xmit_recursion);
3100 EXPORT_SYMBOL(xmit_recursion);
3101
3102 #define RECURSION_LIMIT 10
3103
3104 /**
3105 * dev_loopback_xmit - loop back @skb
3106 * @net: network namespace this loopback is happening in
3107 * @sk: sk needed to be a netfilter okfn
3108 * @skb: buffer to transmit
3109 */
3110 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3111 {
3112 skb_reset_mac_header(skb);
3113 __skb_pull(skb, skb_network_offset(skb));
3114 skb->pkt_type = PACKET_LOOPBACK;
3115 skb->ip_summed = CHECKSUM_UNNECESSARY;
3116 WARN_ON(!skb_dst(skb));
3117 skb_dst_force(skb);
3118 netif_rx_ni(skb);
3119 return 0;
3120 }
3121 EXPORT_SYMBOL(dev_loopback_xmit);
3122
3123 #ifdef CONFIG_NET_EGRESS
3124 static struct sk_buff *
3125 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3126 {
3127 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3128 struct tcf_result cl_res;
3129
3130 if (!cl)
3131 return skb;
3132
3133 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3134 * earlier by the caller.
3135 */
3136 qdisc_bstats_cpu_update(cl->q, skb);
3137
3138 switch (tc_classify(skb, cl, &cl_res, false)) {
3139 case TC_ACT_OK:
3140 case TC_ACT_RECLASSIFY:
3141 skb->tc_index = TC_H_MIN(cl_res.classid);
3142 break;
3143 case TC_ACT_SHOT:
3144 qdisc_qstats_cpu_drop(cl->q);
3145 *ret = NET_XMIT_DROP;
3146 goto drop;
3147 case TC_ACT_STOLEN:
3148 case TC_ACT_QUEUED:
3149 *ret = NET_XMIT_SUCCESS;
3150 drop:
3151 kfree_skb(skb);
3152 return NULL;
3153 case TC_ACT_REDIRECT:
3154 /* No need to push/pop skb's mac_header here on egress! */
3155 skb_do_redirect(skb);
3156 *ret = NET_XMIT_SUCCESS;
3157 return NULL;
3158 default:
3159 break;
3160 }
3161
3162 return skb;
3163 }
3164 #endif /* CONFIG_NET_EGRESS */
3165
3166 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3167 {
3168 #ifdef CONFIG_XPS
3169 struct xps_dev_maps *dev_maps;
3170 struct xps_map *map;
3171 int queue_index = -1;
3172
3173 rcu_read_lock();
3174 dev_maps = rcu_dereference(dev->xps_maps);
3175 if (dev_maps) {
3176 map = rcu_dereference(
3177 dev_maps->cpu_map[skb->sender_cpu - 1]);
3178 if (map) {
3179 if (map->len == 1)
3180 queue_index = map->queues[0];
3181 else
3182 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3183 map->len)];
3184 if (unlikely(queue_index >= dev->real_num_tx_queues))
3185 queue_index = -1;
3186 }
3187 }
3188 rcu_read_unlock();
3189
3190 return queue_index;
3191 #else
3192 return -1;
3193 #endif
3194 }
3195
3196 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3197 {
3198 struct sock *sk = skb->sk;
3199 int queue_index = sk_tx_queue_get(sk);
3200
3201 if (queue_index < 0 || skb->ooo_okay ||
3202 queue_index >= dev->real_num_tx_queues) {
3203 int new_index = get_xps_queue(dev, skb);
3204 if (new_index < 0)
3205 new_index = skb_tx_hash(dev, skb);
3206
3207 if (queue_index != new_index && sk &&
3208 sk_fullsock(sk) &&
3209 rcu_access_pointer(sk->sk_dst_cache))
3210 sk_tx_queue_set(sk, new_index);
3211
3212 queue_index = new_index;
3213 }
3214
3215 return queue_index;
3216 }
3217
3218 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3219 struct sk_buff *skb,
3220 void *accel_priv)
3221 {
3222 int queue_index = 0;
3223
3224 #ifdef CONFIG_XPS
3225 u32 sender_cpu = skb->sender_cpu - 1;
3226
3227 if (sender_cpu >= (u32)NR_CPUS)
3228 skb->sender_cpu = raw_smp_processor_id() + 1;
3229 #endif
3230
3231 if (dev->real_num_tx_queues != 1) {
3232 const struct net_device_ops *ops = dev->netdev_ops;
3233 if (ops->ndo_select_queue)
3234 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3235 __netdev_pick_tx);
3236 else
3237 queue_index = __netdev_pick_tx(dev, skb);
3238
3239 if (!accel_priv)
3240 queue_index = netdev_cap_txqueue(dev, queue_index);
3241 }
3242
3243 skb_set_queue_mapping(skb, queue_index);
3244 return netdev_get_tx_queue(dev, queue_index);
3245 }
3246
3247 /**
3248 * __dev_queue_xmit - transmit a buffer
3249 * @skb: buffer to transmit
3250 * @accel_priv: private data used for L2 forwarding offload
3251 *
3252 * Queue a buffer for transmission to a network device. The caller must
3253 * have set the device and priority and built the buffer before calling
3254 * this function. The function can be called from an interrupt.
3255 *
3256 * A negative errno code is returned on a failure. A success does not
3257 * guarantee the frame will be transmitted as it may be dropped due
3258 * to congestion or traffic shaping.
3259 *
3260 * -----------------------------------------------------------------------------------
3261 * I notice this method can also return errors from the queue disciplines,
3262 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3263 * be positive.
3264 *
3265 * Regardless of the return value, the skb is consumed, so it is currently
3266 * difficult to retry a send to this method. (You can bump the ref count
3267 * before sending to hold a reference for retry if you are careful.)
3268 *
3269 * When calling this method, interrupts MUST be enabled. This is because
3270 * the BH enable code must have IRQs enabled so that it will not deadlock.
3271 * --BLG
3272 */
3273 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3274 {
3275 struct net_device *dev = skb->dev;
3276 struct netdev_queue *txq;
3277 struct Qdisc *q;
3278 int rc = -ENOMEM;
3279
3280 skb_reset_mac_header(skb);
3281
3282 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3283 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3284
3285 /* Disable soft irqs for various locks below. Also
3286 * stops preemption for RCU.
3287 */
3288 rcu_read_lock_bh();
3289
3290 skb_update_prio(skb);
3291
3292 qdisc_pkt_len_init(skb);
3293 #ifdef CONFIG_NET_CLS_ACT
3294 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3295 # ifdef CONFIG_NET_EGRESS
3296 if (static_key_false(&egress_needed)) {
3297 skb = sch_handle_egress(skb, &rc, dev);
3298 if (!skb)
3299 goto out;
3300 }
3301 # endif
3302 #endif
3303 /* If device/qdisc don't need skb->dst, release it right now while
3304 * its hot in this cpu cache.
3305 */
3306 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3307 skb_dst_drop(skb);
3308 else
3309 skb_dst_force(skb);
3310
3311 #ifdef CONFIG_NET_SWITCHDEV
3312 /* Don't forward if offload device already forwarded */
3313 if (skb->offload_fwd_mark &&
3314 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3315 consume_skb(skb);
3316 rc = NET_XMIT_SUCCESS;
3317 goto out;
3318 }
3319 #endif
3320
3321 txq = netdev_pick_tx(dev, skb, accel_priv);
3322 q = rcu_dereference_bh(txq->qdisc);
3323
3324 trace_net_dev_queue(skb);
3325 if (q->enqueue) {
3326 rc = __dev_xmit_skb(skb, q, dev, txq);
3327 goto out;
3328 }
3329
3330 /* The device has no queue. Common case for software devices:
3331 loopback, all the sorts of tunnels...
3332
3333 Really, it is unlikely that netif_tx_lock protection is necessary
3334 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3335 counters.)
3336 However, it is possible, that they rely on protection
3337 made by us here.
3338
3339 Check this and shot the lock. It is not prone from deadlocks.
3340 Either shot noqueue qdisc, it is even simpler 8)
3341 */
3342 if (dev->flags & IFF_UP) {
3343 int cpu = smp_processor_id(); /* ok because BHs are off */
3344
3345 if (txq->xmit_lock_owner != cpu) {
3346
3347 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3348 goto recursion_alert;
3349
3350 skb = validate_xmit_skb(skb, dev);
3351 if (!skb)
3352 goto drop;
3353
3354 HARD_TX_LOCK(dev, txq, cpu);
3355
3356 if (!netif_xmit_stopped(txq)) {
3357 __this_cpu_inc(xmit_recursion);
3358 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3359 __this_cpu_dec(xmit_recursion);
3360 if (dev_xmit_complete(rc)) {
3361 HARD_TX_UNLOCK(dev, txq);
3362 goto out;
3363 }
3364 }
3365 HARD_TX_UNLOCK(dev, txq);
3366 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3367 dev->name);
3368 } else {
3369 /* Recursion is detected! It is possible,
3370 * unfortunately
3371 */
3372 recursion_alert:
3373 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3374 dev->name);
3375 }
3376 }
3377
3378 rc = -ENETDOWN;
3379 drop:
3380 rcu_read_unlock_bh();
3381
3382 atomic_long_inc(&dev->tx_dropped);
3383 kfree_skb_list(skb);
3384 return rc;
3385 out:
3386 rcu_read_unlock_bh();
3387 return rc;
3388 }
3389
3390 int dev_queue_xmit(struct sk_buff *skb)
3391 {
3392 return __dev_queue_xmit(skb, NULL);
3393 }
3394 EXPORT_SYMBOL(dev_queue_xmit);
3395
3396 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3397 {
3398 return __dev_queue_xmit(skb, accel_priv);
3399 }
3400 EXPORT_SYMBOL(dev_queue_xmit_accel);
3401
3402
3403 /*=======================================================================
3404 Receiver routines
3405 =======================================================================*/
3406
3407 int netdev_max_backlog __read_mostly = 1000;
3408 EXPORT_SYMBOL(netdev_max_backlog);
3409
3410 int netdev_tstamp_prequeue __read_mostly = 1;
3411 int netdev_budget __read_mostly = 300;
3412 int weight_p __read_mostly = 64; /* old backlog weight */
3413
3414 /* Called with irq disabled */
3415 static inline void ____napi_schedule(struct softnet_data *sd,
3416 struct napi_struct *napi)
3417 {
3418 list_add_tail(&napi->poll_list, &sd->poll_list);
3419 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3420 }
3421
3422 #ifdef CONFIG_RPS
3423
3424 /* One global table that all flow-based protocols share. */
3425 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3426 EXPORT_SYMBOL(rps_sock_flow_table);
3427 u32 rps_cpu_mask __read_mostly;
3428 EXPORT_SYMBOL(rps_cpu_mask);
3429
3430 struct static_key rps_needed __read_mostly;
3431
3432 static struct rps_dev_flow *
3433 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3434 struct rps_dev_flow *rflow, u16 next_cpu)
3435 {
3436 if (next_cpu < nr_cpu_ids) {
3437 #ifdef CONFIG_RFS_ACCEL
3438 struct netdev_rx_queue *rxqueue;
3439 struct rps_dev_flow_table *flow_table;
3440 struct rps_dev_flow *old_rflow;
3441 u32 flow_id;
3442 u16 rxq_index;
3443 int rc;
3444
3445 /* Should we steer this flow to a different hardware queue? */
3446 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3447 !(dev->features & NETIF_F_NTUPLE))
3448 goto out;
3449 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3450 if (rxq_index == skb_get_rx_queue(skb))
3451 goto out;
3452
3453 rxqueue = dev->_rx + rxq_index;
3454 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3455 if (!flow_table)
3456 goto out;
3457 flow_id = skb_get_hash(skb) & flow_table->mask;
3458 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3459 rxq_index, flow_id);
3460 if (rc < 0)
3461 goto out;
3462 old_rflow = rflow;
3463 rflow = &flow_table->flows[flow_id];
3464 rflow->filter = rc;
3465 if (old_rflow->filter == rflow->filter)
3466 old_rflow->filter = RPS_NO_FILTER;
3467 out:
3468 #endif
3469 rflow->last_qtail =
3470 per_cpu(softnet_data, next_cpu).input_queue_head;
3471 }
3472
3473 rflow->cpu = next_cpu;
3474 return rflow;
3475 }
3476
3477 /*
3478 * get_rps_cpu is called from netif_receive_skb and returns the target
3479 * CPU from the RPS map of the receiving queue for a given skb.
3480 * rcu_read_lock must be held on entry.
3481 */
3482 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3483 struct rps_dev_flow **rflowp)
3484 {
3485 const struct rps_sock_flow_table *sock_flow_table;
3486 struct netdev_rx_queue *rxqueue = dev->_rx;
3487 struct rps_dev_flow_table *flow_table;
3488 struct rps_map *map;
3489 int cpu = -1;
3490 u32 tcpu;
3491 u32 hash;
3492
3493 if (skb_rx_queue_recorded(skb)) {
3494 u16 index = skb_get_rx_queue(skb);
3495
3496 if (unlikely(index >= dev->real_num_rx_queues)) {
3497 WARN_ONCE(dev->real_num_rx_queues > 1,
3498 "%s received packet on queue %u, but number "
3499 "of RX queues is %u\n",
3500 dev->name, index, dev->real_num_rx_queues);
3501 goto done;
3502 }
3503 rxqueue += index;
3504 }
3505
3506 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3507
3508 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3509 map = rcu_dereference(rxqueue->rps_map);
3510 if (!flow_table && !map)
3511 goto done;
3512
3513 skb_reset_network_header(skb);
3514 hash = skb_get_hash(skb);
3515 if (!hash)
3516 goto done;
3517
3518 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3519 if (flow_table && sock_flow_table) {
3520 struct rps_dev_flow *rflow;
3521 u32 next_cpu;
3522 u32 ident;
3523
3524 /* First check into global flow table if there is a match */
3525 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3526 if ((ident ^ hash) & ~rps_cpu_mask)
3527 goto try_rps;
3528
3529 next_cpu = ident & rps_cpu_mask;
3530
3531 /* OK, now we know there is a match,
3532 * we can look at the local (per receive queue) flow table
3533 */
3534 rflow = &flow_table->flows[hash & flow_table->mask];
3535 tcpu = rflow->cpu;
3536
3537 /*
3538 * If the desired CPU (where last recvmsg was done) is
3539 * different from current CPU (one in the rx-queue flow
3540 * table entry), switch if one of the following holds:
3541 * - Current CPU is unset (>= nr_cpu_ids).
3542 * - Current CPU is offline.
3543 * - The current CPU's queue tail has advanced beyond the
3544 * last packet that was enqueued using this table entry.
3545 * This guarantees that all previous packets for the flow
3546 * have been dequeued, thus preserving in order delivery.
3547 */
3548 if (unlikely(tcpu != next_cpu) &&
3549 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3550 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3551 rflow->last_qtail)) >= 0)) {
3552 tcpu = next_cpu;
3553 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3554 }
3555
3556 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3557 *rflowp = rflow;
3558 cpu = tcpu;
3559 goto done;
3560 }
3561 }
3562
3563 try_rps:
3564
3565 if (map) {
3566 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3567 if (cpu_online(tcpu)) {
3568 cpu = tcpu;
3569 goto done;
3570 }
3571 }
3572
3573 done:
3574 return cpu;
3575 }
3576
3577 #ifdef CONFIG_RFS_ACCEL
3578
3579 /**
3580 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3581 * @dev: Device on which the filter was set
3582 * @rxq_index: RX queue index
3583 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3584 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3585 *
3586 * Drivers that implement ndo_rx_flow_steer() should periodically call
3587 * this function for each installed filter and remove the filters for
3588 * which it returns %true.
3589 */
3590 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3591 u32 flow_id, u16 filter_id)
3592 {
3593 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3594 struct rps_dev_flow_table *flow_table;
3595 struct rps_dev_flow *rflow;
3596 bool expire = true;
3597 unsigned int cpu;
3598
3599 rcu_read_lock();
3600 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3601 if (flow_table && flow_id <= flow_table->mask) {
3602 rflow = &flow_table->flows[flow_id];
3603 cpu = ACCESS_ONCE(rflow->cpu);
3604 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3605 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3606 rflow->last_qtail) <
3607 (int)(10 * flow_table->mask)))
3608 expire = false;
3609 }
3610 rcu_read_unlock();
3611 return expire;
3612 }
3613 EXPORT_SYMBOL(rps_may_expire_flow);
3614
3615 #endif /* CONFIG_RFS_ACCEL */
3616
3617 /* Called from hardirq (IPI) context */
3618 static void rps_trigger_softirq(void *data)
3619 {
3620 struct softnet_data *sd = data;
3621
3622 ____napi_schedule(sd, &sd->backlog);
3623 sd->received_rps++;
3624 }
3625
3626 #endif /* CONFIG_RPS */
3627
3628 /*
3629 * Check if this softnet_data structure is another cpu one
3630 * If yes, queue it to our IPI list and return 1
3631 * If no, return 0
3632 */
3633 static int rps_ipi_queued(struct softnet_data *sd)
3634 {
3635 #ifdef CONFIG_RPS
3636 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3637
3638 if (sd != mysd) {
3639 sd->rps_ipi_next = mysd->rps_ipi_list;
3640 mysd->rps_ipi_list = sd;
3641
3642 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3643 return 1;
3644 }
3645 #endif /* CONFIG_RPS */
3646 return 0;
3647 }
3648
3649 #ifdef CONFIG_NET_FLOW_LIMIT
3650 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3651 #endif
3652
3653 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3654 {
3655 #ifdef CONFIG_NET_FLOW_LIMIT
3656 struct sd_flow_limit *fl;
3657 struct softnet_data *sd;
3658 unsigned int old_flow, new_flow;
3659
3660 if (qlen < (netdev_max_backlog >> 1))
3661 return false;
3662
3663 sd = this_cpu_ptr(&softnet_data);
3664
3665 rcu_read_lock();
3666 fl = rcu_dereference(sd->flow_limit);
3667 if (fl) {
3668 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3669 old_flow = fl->history[fl->history_head];
3670 fl->history[fl->history_head] = new_flow;
3671
3672 fl->history_head++;
3673 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3674
3675 if (likely(fl->buckets[old_flow]))
3676 fl->buckets[old_flow]--;
3677
3678 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3679 fl->count++;
3680 rcu_read_unlock();
3681 return true;
3682 }
3683 }
3684 rcu_read_unlock();
3685 #endif
3686 return false;
3687 }
3688
3689 /*
3690 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3691 * queue (may be a remote CPU queue).
3692 */
3693 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3694 unsigned int *qtail)
3695 {
3696 struct softnet_data *sd;
3697 unsigned long flags;
3698 unsigned int qlen;
3699
3700 sd = &per_cpu(softnet_data, cpu);
3701
3702 local_irq_save(flags);
3703
3704 rps_lock(sd);
3705 if (!netif_running(skb->dev))
3706 goto drop;
3707 qlen = skb_queue_len(&sd->input_pkt_queue);
3708 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3709 if (qlen) {
3710 enqueue:
3711 __skb_queue_tail(&sd->input_pkt_queue, skb);
3712 input_queue_tail_incr_save(sd, qtail);
3713 rps_unlock(sd);
3714 local_irq_restore(flags);
3715 return NET_RX_SUCCESS;
3716 }
3717
3718 /* Schedule NAPI for backlog device
3719 * We can use non atomic operation since we own the queue lock
3720 */
3721 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3722 if (!rps_ipi_queued(sd))
3723 ____napi_schedule(sd, &sd->backlog);
3724 }
3725 goto enqueue;
3726 }
3727
3728 drop:
3729 sd->dropped++;
3730 rps_unlock(sd);
3731
3732 local_irq_restore(flags);
3733
3734 atomic_long_inc(&skb->dev->rx_dropped);
3735 kfree_skb(skb);
3736 return NET_RX_DROP;
3737 }
3738
3739 static int netif_rx_internal(struct sk_buff *skb)
3740 {
3741 int ret;
3742
3743 net_timestamp_check(netdev_tstamp_prequeue, skb);
3744
3745 trace_netif_rx(skb);
3746 #ifdef CONFIG_RPS
3747 if (static_key_false(&rps_needed)) {
3748 struct rps_dev_flow voidflow, *rflow = &voidflow;
3749 int cpu;
3750
3751 preempt_disable();
3752 rcu_read_lock();
3753
3754 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3755 if (cpu < 0)
3756 cpu = smp_processor_id();
3757
3758 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3759
3760 rcu_read_unlock();
3761 preempt_enable();
3762 } else
3763 #endif
3764 {
3765 unsigned int qtail;
3766 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3767 put_cpu();
3768 }
3769 return ret;
3770 }
3771
3772 /**
3773 * netif_rx - post buffer to the network code
3774 * @skb: buffer to post
3775 *
3776 * This function receives a packet from a device driver and queues it for
3777 * the upper (protocol) levels to process. It always succeeds. The buffer
3778 * may be dropped during processing for congestion control or by the
3779 * protocol layers.
3780 *
3781 * return values:
3782 * NET_RX_SUCCESS (no congestion)
3783 * NET_RX_DROP (packet was dropped)
3784 *
3785 */
3786
3787 int netif_rx(struct sk_buff *skb)
3788 {
3789 trace_netif_rx_entry(skb);
3790
3791 return netif_rx_internal(skb);
3792 }
3793 EXPORT_SYMBOL(netif_rx);
3794
3795 int netif_rx_ni(struct sk_buff *skb)
3796 {
3797 int err;
3798
3799 trace_netif_rx_ni_entry(skb);
3800
3801 preempt_disable();
3802 err = netif_rx_internal(skb);
3803 if (local_softirq_pending())
3804 do_softirq();
3805 preempt_enable();
3806
3807 return err;
3808 }
3809 EXPORT_SYMBOL(netif_rx_ni);
3810
3811 static void net_tx_action(struct softirq_action *h)
3812 {
3813 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3814
3815 if (sd->completion_queue) {
3816 struct sk_buff *clist;
3817
3818 local_irq_disable();
3819 clist = sd->completion_queue;
3820 sd->completion_queue = NULL;
3821 local_irq_enable();
3822
3823 while (clist) {
3824 struct sk_buff *skb = clist;
3825 clist = clist->next;
3826
3827 WARN_ON(atomic_read(&skb->users));
3828 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3829 trace_consume_skb(skb);
3830 else
3831 trace_kfree_skb(skb, net_tx_action);
3832
3833 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3834 __kfree_skb(skb);
3835 else
3836 __kfree_skb_defer(skb);
3837 }
3838
3839 __kfree_skb_flush();
3840 }
3841
3842 if (sd->output_queue) {
3843 struct Qdisc *head;
3844
3845 local_irq_disable();
3846 head = sd->output_queue;
3847 sd->output_queue = NULL;
3848 sd->output_queue_tailp = &sd->output_queue;
3849 local_irq_enable();
3850
3851 while (head) {
3852 struct Qdisc *q = head;
3853 spinlock_t *root_lock;
3854
3855 head = head->next_sched;
3856
3857 root_lock = qdisc_lock(q);
3858 if (spin_trylock(root_lock)) {
3859 smp_mb__before_atomic();
3860 clear_bit(__QDISC_STATE_SCHED,
3861 &q->state);
3862 qdisc_run(q);
3863 spin_unlock(root_lock);
3864 } else {
3865 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3866 &q->state)) {
3867 __netif_reschedule(q);
3868 } else {
3869 smp_mb__before_atomic();
3870 clear_bit(__QDISC_STATE_SCHED,
3871 &q->state);
3872 }
3873 }
3874 }
3875 }
3876 }
3877
3878 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3879 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3880 /* This hook is defined here for ATM LANE */
3881 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3882 unsigned char *addr) __read_mostly;
3883 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3884 #endif
3885
3886 static inline struct sk_buff *
3887 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3888 struct net_device *orig_dev)
3889 {
3890 #ifdef CONFIG_NET_CLS_ACT
3891 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3892 struct tcf_result cl_res;
3893
3894 /* If there's at least one ingress present somewhere (so
3895 * we get here via enabled static key), remaining devices
3896 * that are not configured with an ingress qdisc will bail
3897 * out here.
3898 */
3899 if (!cl)
3900 return skb;
3901 if (*pt_prev) {
3902 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3903 *pt_prev = NULL;
3904 }
3905
3906 qdisc_skb_cb(skb)->pkt_len = skb->len;
3907 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3908 qdisc_bstats_cpu_update(cl->q, skb);
3909
3910 switch (tc_classify(skb, cl, &cl_res, false)) {
3911 case TC_ACT_OK:
3912 case TC_ACT_RECLASSIFY:
3913 skb->tc_index = TC_H_MIN(cl_res.classid);
3914 break;
3915 case TC_ACT_SHOT:
3916 qdisc_qstats_cpu_drop(cl->q);
3917 case TC_ACT_STOLEN:
3918 case TC_ACT_QUEUED:
3919 kfree_skb(skb);
3920 return NULL;
3921 case TC_ACT_REDIRECT:
3922 /* skb_mac_header check was done by cls/act_bpf, so
3923 * we can safely push the L2 header back before
3924 * redirecting to another netdev
3925 */
3926 __skb_push(skb, skb->mac_len);
3927 skb_do_redirect(skb);
3928 return NULL;
3929 default:
3930 break;
3931 }
3932 #endif /* CONFIG_NET_CLS_ACT */
3933 return skb;
3934 }
3935
3936 /**
3937 * netdev_rx_handler_register - register receive handler
3938 * @dev: device to register a handler for
3939 * @rx_handler: receive handler to register
3940 * @rx_handler_data: data pointer that is used by rx handler
3941 *
3942 * Register a receive handler for a device. This handler will then be
3943 * called from __netif_receive_skb. A negative errno code is returned
3944 * on a failure.
3945 *
3946 * The caller must hold the rtnl_mutex.
3947 *
3948 * For a general description of rx_handler, see enum rx_handler_result.
3949 */
3950 int netdev_rx_handler_register(struct net_device *dev,
3951 rx_handler_func_t *rx_handler,
3952 void *rx_handler_data)
3953 {
3954 ASSERT_RTNL();
3955
3956 if (dev->rx_handler)
3957 return -EBUSY;
3958
3959 /* Note: rx_handler_data must be set before rx_handler */
3960 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3961 rcu_assign_pointer(dev->rx_handler, rx_handler);
3962
3963 return 0;
3964 }
3965 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3966
3967 /**
3968 * netdev_rx_handler_unregister - unregister receive handler
3969 * @dev: device to unregister a handler from
3970 *
3971 * Unregister a receive handler from a device.
3972 *
3973 * The caller must hold the rtnl_mutex.
3974 */
3975 void netdev_rx_handler_unregister(struct net_device *dev)
3976 {
3977
3978 ASSERT_RTNL();
3979 RCU_INIT_POINTER(dev->rx_handler, NULL);
3980 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3981 * section has a guarantee to see a non NULL rx_handler_data
3982 * as well.
3983 */
3984 synchronize_net();
3985 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3986 }
3987 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3988
3989 /*
3990 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3991 * the special handling of PFMEMALLOC skbs.
3992 */
3993 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3994 {
3995 switch (skb->protocol) {
3996 case htons(ETH_P_ARP):
3997 case htons(ETH_P_IP):
3998 case htons(ETH_P_IPV6):
3999 case htons(ETH_P_8021Q):
4000 case htons(ETH_P_8021AD):
4001 return true;
4002 default:
4003 return false;
4004 }
4005 }
4006
4007 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4008 int *ret, struct net_device *orig_dev)
4009 {
4010 #ifdef CONFIG_NETFILTER_INGRESS
4011 if (nf_hook_ingress_active(skb)) {
4012 if (*pt_prev) {
4013 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4014 *pt_prev = NULL;
4015 }
4016
4017 return nf_hook_ingress(skb);
4018 }
4019 #endif /* CONFIG_NETFILTER_INGRESS */
4020 return 0;
4021 }
4022
4023 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4024 {
4025 struct packet_type *ptype, *pt_prev;
4026 rx_handler_func_t *rx_handler;
4027 struct net_device *orig_dev;
4028 bool deliver_exact = false;
4029 int ret = NET_RX_DROP;
4030 __be16 type;
4031
4032 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4033
4034 trace_netif_receive_skb(skb);
4035
4036 orig_dev = skb->dev;
4037
4038 skb_reset_network_header(skb);
4039 if (!skb_transport_header_was_set(skb))
4040 skb_reset_transport_header(skb);
4041 skb_reset_mac_len(skb);
4042
4043 pt_prev = NULL;
4044
4045 another_round:
4046 skb->skb_iif = skb->dev->ifindex;
4047
4048 __this_cpu_inc(softnet_data.processed);
4049
4050 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4051 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4052 skb = skb_vlan_untag(skb);
4053 if (unlikely(!skb))
4054 goto out;
4055 }
4056
4057 #ifdef CONFIG_NET_CLS_ACT
4058 if (skb->tc_verd & TC_NCLS) {
4059 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4060 goto ncls;
4061 }
4062 #endif
4063
4064 if (pfmemalloc)
4065 goto skip_taps;
4066
4067 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4068 if (pt_prev)
4069 ret = deliver_skb(skb, pt_prev, orig_dev);
4070 pt_prev = ptype;
4071 }
4072
4073 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4074 if (pt_prev)
4075 ret = deliver_skb(skb, pt_prev, orig_dev);
4076 pt_prev = ptype;
4077 }
4078
4079 skip_taps:
4080 #ifdef CONFIG_NET_INGRESS
4081 if (static_key_false(&ingress_needed)) {
4082 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4083 if (!skb)
4084 goto out;
4085
4086 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4087 goto out;
4088 }
4089 #endif
4090 #ifdef CONFIG_NET_CLS_ACT
4091 skb->tc_verd = 0;
4092 ncls:
4093 #endif
4094 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4095 goto drop;
4096
4097 if (skb_vlan_tag_present(skb)) {
4098 if (pt_prev) {
4099 ret = deliver_skb(skb, pt_prev, orig_dev);
4100 pt_prev = NULL;
4101 }
4102 if (vlan_do_receive(&skb))
4103 goto another_round;
4104 else if (unlikely(!skb))
4105 goto out;
4106 }
4107
4108 rx_handler = rcu_dereference(skb->dev->rx_handler);
4109 if (rx_handler) {
4110 if (pt_prev) {
4111 ret = deliver_skb(skb, pt_prev, orig_dev);
4112 pt_prev = NULL;
4113 }
4114 switch (rx_handler(&skb)) {
4115 case RX_HANDLER_CONSUMED:
4116 ret = NET_RX_SUCCESS;
4117 goto out;
4118 case RX_HANDLER_ANOTHER:
4119 goto another_round;
4120 case RX_HANDLER_EXACT:
4121 deliver_exact = true;
4122 case RX_HANDLER_PASS:
4123 break;
4124 default:
4125 BUG();
4126 }
4127 }
4128
4129 if (unlikely(skb_vlan_tag_present(skb))) {
4130 if (skb_vlan_tag_get_id(skb))
4131 skb->pkt_type = PACKET_OTHERHOST;
4132 /* Note: we might in the future use prio bits
4133 * and set skb->priority like in vlan_do_receive()
4134 * For the time being, just ignore Priority Code Point
4135 */
4136 skb->vlan_tci = 0;
4137 }
4138
4139 type = skb->protocol;
4140
4141 /* deliver only exact match when indicated */
4142 if (likely(!deliver_exact)) {
4143 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4144 &ptype_base[ntohs(type) &
4145 PTYPE_HASH_MASK]);
4146 }
4147
4148 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4149 &orig_dev->ptype_specific);
4150
4151 if (unlikely(skb->dev != orig_dev)) {
4152 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4153 &skb->dev->ptype_specific);
4154 }
4155
4156 if (pt_prev) {
4157 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4158 goto drop;
4159 else
4160 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4161 } else {
4162 drop:
4163 if (!deliver_exact)
4164 atomic_long_inc(&skb->dev->rx_dropped);
4165 else
4166 atomic_long_inc(&skb->dev->rx_nohandler);
4167 kfree_skb(skb);
4168 /* Jamal, now you will not able to escape explaining
4169 * me how you were going to use this. :-)
4170 */
4171 ret = NET_RX_DROP;
4172 }
4173
4174 out:
4175 return ret;
4176 }
4177
4178 static int __netif_receive_skb(struct sk_buff *skb)
4179 {
4180 int ret;
4181
4182 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4183 unsigned long pflags = current->flags;
4184
4185 /*
4186 * PFMEMALLOC skbs are special, they should
4187 * - be delivered to SOCK_MEMALLOC sockets only
4188 * - stay away from userspace
4189 * - have bounded memory usage
4190 *
4191 * Use PF_MEMALLOC as this saves us from propagating the allocation
4192 * context down to all allocation sites.
4193 */
4194 current->flags |= PF_MEMALLOC;
4195 ret = __netif_receive_skb_core(skb, true);
4196 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4197 } else
4198 ret = __netif_receive_skb_core(skb, false);
4199
4200 return ret;
4201 }
4202
4203 static int netif_receive_skb_internal(struct sk_buff *skb)
4204 {
4205 int ret;
4206
4207 net_timestamp_check(netdev_tstamp_prequeue, skb);
4208
4209 if (skb_defer_rx_timestamp(skb))
4210 return NET_RX_SUCCESS;
4211
4212 rcu_read_lock();
4213
4214 #ifdef CONFIG_RPS
4215 if (static_key_false(&rps_needed)) {
4216 struct rps_dev_flow voidflow, *rflow = &voidflow;
4217 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4218
4219 if (cpu >= 0) {
4220 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4221 rcu_read_unlock();
4222 return ret;
4223 }
4224 }
4225 #endif
4226 ret = __netif_receive_skb(skb);
4227 rcu_read_unlock();
4228 return ret;
4229 }
4230
4231 /**
4232 * netif_receive_skb - process receive buffer from network
4233 * @skb: buffer to process
4234 *
4235 * netif_receive_skb() is the main receive data processing function.
4236 * It always succeeds. The buffer may be dropped during processing
4237 * for congestion control or by the protocol layers.
4238 *
4239 * This function may only be called from softirq context and interrupts
4240 * should be enabled.
4241 *
4242 * Return values (usually ignored):
4243 * NET_RX_SUCCESS: no congestion
4244 * NET_RX_DROP: packet was dropped
4245 */
4246 int netif_receive_skb(struct sk_buff *skb)
4247 {
4248 trace_netif_receive_skb_entry(skb);
4249
4250 return netif_receive_skb_internal(skb);
4251 }
4252 EXPORT_SYMBOL(netif_receive_skb);
4253
4254 /* Network device is going away, flush any packets still pending
4255 * Called with irqs disabled.
4256 */
4257 static void flush_backlog(void *arg)
4258 {
4259 struct net_device *dev = arg;
4260 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4261 struct sk_buff *skb, *tmp;
4262
4263 rps_lock(sd);
4264 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4265 if (skb->dev == dev) {
4266 __skb_unlink(skb, &sd->input_pkt_queue);
4267 kfree_skb(skb);
4268 input_queue_head_incr(sd);
4269 }
4270 }
4271 rps_unlock(sd);
4272
4273 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4274 if (skb->dev == dev) {
4275 __skb_unlink(skb, &sd->process_queue);
4276 kfree_skb(skb);
4277 input_queue_head_incr(sd);
4278 }
4279 }
4280 }
4281
4282 static int napi_gro_complete(struct sk_buff *skb)
4283 {
4284 struct packet_offload *ptype;
4285 __be16 type = skb->protocol;
4286 struct list_head *head = &offload_base;
4287 int err = -ENOENT;
4288
4289 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4290
4291 if (NAPI_GRO_CB(skb)->count == 1) {
4292 skb_shinfo(skb)->gso_size = 0;
4293 goto out;
4294 }
4295
4296 rcu_read_lock();
4297 list_for_each_entry_rcu(ptype, head, list) {
4298 if (ptype->type != type || !ptype->callbacks.gro_complete)
4299 continue;
4300
4301 err = ptype->callbacks.gro_complete(skb, 0);
4302 break;
4303 }
4304 rcu_read_unlock();
4305
4306 if (err) {
4307 WARN_ON(&ptype->list == head);
4308 kfree_skb(skb);
4309 return NET_RX_SUCCESS;
4310 }
4311
4312 out:
4313 return netif_receive_skb_internal(skb);
4314 }
4315
4316 /* napi->gro_list contains packets ordered by age.
4317 * youngest packets at the head of it.
4318 * Complete skbs in reverse order to reduce latencies.
4319 */
4320 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4321 {
4322 struct sk_buff *skb, *prev = NULL;
4323
4324 /* scan list and build reverse chain */
4325 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4326 skb->prev = prev;
4327 prev = skb;
4328 }
4329
4330 for (skb = prev; skb; skb = prev) {
4331 skb->next = NULL;
4332
4333 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4334 return;
4335
4336 prev = skb->prev;
4337 napi_gro_complete(skb);
4338 napi->gro_count--;
4339 }
4340
4341 napi->gro_list = NULL;
4342 }
4343 EXPORT_SYMBOL(napi_gro_flush);
4344
4345 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4346 {
4347 struct sk_buff *p;
4348 unsigned int maclen = skb->dev->hard_header_len;
4349 u32 hash = skb_get_hash_raw(skb);
4350
4351 for (p = napi->gro_list; p; p = p->next) {
4352 unsigned long diffs;
4353
4354 NAPI_GRO_CB(p)->flush = 0;
4355
4356 if (hash != skb_get_hash_raw(p)) {
4357 NAPI_GRO_CB(p)->same_flow = 0;
4358 continue;
4359 }
4360
4361 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4362 diffs |= p->vlan_tci ^ skb->vlan_tci;
4363 diffs |= skb_metadata_dst_cmp(p, skb);
4364 if (maclen == ETH_HLEN)
4365 diffs |= compare_ether_header(skb_mac_header(p),
4366 skb_mac_header(skb));
4367 else if (!diffs)
4368 diffs = memcmp(skb_mac_header(p),
4369 skb_mac_header(skb),
4370 maclen);
4371 NAPI_GRO_CB(p)->same_flow = !diffs;
4372 }
4373 }
4374
4375 static void skb_gro_reset_offset(struct sk_buff *skb)
4376 {
4377 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4378 const skb_frag_t *frag0 = &pinfo->frags[0];
4379
4380 NAPI_GRO_CB(skb)->data_offset = 0;
4381 NAPI_GRO_CB(skb)->frag0 = NULL;
4382 NAPI_GRO_CB(skb)->frag0_len = 0;
4383
4384 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4385 pinfo->nr_frags &&
4386 !PageHighMem(skb_frag_page(frag0))) {
4387 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4388 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4389 }
4390 }
4391
4392 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4393 {
4394 struct skb_shared_info *pinfo = skb_shinfo(skb);
4395
4396 BUG_ON(skb->end - skb->tail < grow);
4397
4398 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4399
4400 skb->data_len -= grow;
4401 skb->tail += grow;
4402
4403 pinfo->frags[0].page_offset += grow;
4404 skb_frag_size_sub(&pinfo->frags[0], grow);
4405
4406 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4407 skb_frag_unref(skb, 0);
4408 memmove(pinfo->frags, pinfo->frags + 1,
4409 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4410 }
4411 }
4412
4413 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4414 {
4415 struct sk_buff **pp = NULL;
4416 struct packet_offload *ptype;
4417 __be16 type = skb->protocol;
4418 struct list_head *head = &offload_base;
4419 int same_flow;
4420 enum gro_result ret;
4421 int grow;
4422
4423 if (!(skb->dev->features & NETIF_F_GRO))
4424 goto normal;
4425
4426 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4427 goto normal;
4428
4429 gro_list_prepare(napi, skb);
4430
4431 rcu_read_lock();
4432 list_for_each_entry_rcu(ptype, head, list) {
4433 if (ptype->type != type || !ptype->callbacks.gro_receive)
4434 continue;
4435
4436 skb_set_network_header(skb, skb_gro_offset(skb));
4437 skb_reset_mac_len(skb);
4438 NAPI_GRO_CB(skb)->same_flow = 0;
4439 NAPI_GRO_CB(skb)->flush = 0;
4440 NAPI_GRO_CB(skb)->free = 0;
4441 NAPI_GRO_CB(skb)->encap_mark = 0;
4442 NAPI_GRO_CB(skb)->is_fou = 0;
4443 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4444
4445 /* Setup for GRO checksum validation */
4446 switch (skb->ip_summed) {
4447 case CHECKSUM_COMPLETE:
4448 NAPI_GRO_CB(skb)->csum = skb->csum;
4449 NAPI_GRO_CB(skb)->csum_valid = 1;
4450 NAPI_GRO_CB(skb)->csum_cnt = 0;
4451 break;
4452 case CHECKSUM_UNNECESSARY:
4453 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4454 NAPI_GRO_CB(skb)->csum_valid = 0;
4455 break;
4456 default:
4457 NAPI_GRO_CB(skb)->csum_cnt = 0;
4458 NAPI_GRO_CB(skb)->csum_valid = 0;
4459 }
4460
4461 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4462 break;
4463 }
4464 rcu_read_unlock();
4465
4466 if (&ptype->list == head)
4467 goto normal;
4468
4469 same_flow = NAPI_GRO_CB(skb)->same_flow;
4470 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4471
4472 if (pp) {
4473 struct sk_buff *nskb = *pp;
4474
4475 *pp = nskb->next;
4476 nskb->next = NULL;
4477 napi_gro_complete(nskb);
4478 napi->gro_count--;
4479 }
4480
4481 if (same_flow)
4482 goto ok;
4483
4484 if (NAPI_GRO_CB(skb)->flush)
4485 goto normal;
4486
4487 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4488 struct sk_buff *nskb = napi->gro_list;
4489
4490 /* locate the end of the list to select the 'oldest' flow */
4491 while (nskb->next) {
4492 pp = &nskb->next;
4493 nskb = *pp;
4494 }
4495 *pp = NULL;
4496 nskb->next = NULL;
4497 napi_gro_complete(nskb);
4498 } else {
4499 napi->gro_count++;
4500 }
4501 NAPI_GRO_CB(skb)->count = 1;
4502 NAPI_GRO_CB(skb)->age = jiffies;
4503 NAPI_GRO_CB(skb)->last = skb;
4504 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4505 skb->next = napi->gro_list;
4506 napi->gro_list = skb;
4507 ret = GRO_HELD;
4508
4509 pull:
4510 grow = skb_gro_offset(skb) - skb_headlen(skb);
4511 if (grow > 0)
4512 gro_pull_from_frag0(skb, grow);
4513 ok:
4514 return ret;
4515
4516 normal:
4517 ret = GRO_NORMAL;
4518 goto pull;
4519 }
4520
4521 struct packet_offload *gro_find_receive_by_type(__be16 type)
4522 {
4523 struct list_head *offload_head = &offload_base;
4524 struct packet_offload *ptype;
4525
4526 list_for_each_entry_rcu(ptype, offload_head, list) {
4527 if (ptype->type != type || !ptype->callbacks.gro_receive)
4528 continue;
4529 return ptype;
4530 }
4531 return NULL;
4532 }
4533 EXPORT_SYMBOL(gro_find_receive_by_type);
4534
4535 struct packet_offload *gro_find_complete_by_type(__be16 type)
4536 {
4537 struct list_head *offload_head = &offload_base;
4538 struct packet_offload *ptype;
4539
4540 list_for_each_entry_rcu(ptype, offload_head, list) {
4541 if (ptype->type != type || !ptype->callbacks.gro_complete)
4542 continue;
4543 return ptype;
4544 }
4545 return NULL;
4546 }
4547 EXPORT_SYMBOL(gro_find_complete_by_type);
4548
4549 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4550 {
4551 switch (ret) {
4552 case GRO_NORMAL:
4553 if (netif_receive_skb_internal(skb))
4554 ret = GRO_DROP;
4555 break;
4556
4557 case GRO_DROP:
4558 kfree_skb(skb);
4559 break;
4560
4561 case GRO_MERGED_FREE:
4562 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4563 skb_dst_drop(skb);
4564 kmem_cache_free(skbuff_head_cache, skb);
4565 } else {
4566 __kfree_skb(skb);
4567 }
4568 break;
4569
4570 case GRO_HELD:
4571 case GRO_MERGED:
4572 break;
4573 }
4574
4575 return ret;
4576 }
4577
4578 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4579 {
4580 skb_mark_napi_id(skb, napi);
4581 trace_napi_gro_receive_entry(skb);
4582
4583 skb_gro_reset_offset(skb);
4584
4585 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4586 }
4587 EXPORT_SYMBOL(napi_gro_receive);
4588
4589 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4590 {
4591 if (unlikely(skb->pfmemalloc)) {
4592 consume_skb(skb);
4593 return;
4594 }
4595 __skb_pull(skb, skb_headlen(skb));
4596 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4597 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4598 skb->vlan_tci = 0;
4599 skb->dev = napi->dev;
4600 skb->skb_iif = 0;
4601 skb->encapsulation = 0;
4602 skb_shinfo(skb)->gso_type = 0;
4603 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4604
4605 napi->skb = skb;
4606 }
4607
4608 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4609 {
4610 struct sk_buff *skb = napi->skb;
4611
4612 if (!skb) {
4613 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4614 if (skb) {
4615 napi->skb = skb;
4616 skb_mark_napi_id(skb, napi);
4617 }
4618 }
4619 return skb;
4620 }
4621 EXPORT_SYMBOL(napi_get_frags);
4622
4623 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4624 struct sk_buff *skb,
4625 gro_result_t ret)
4626 {
4627 switch (ret) {
4628 case GRO_NORMAL:
4629 case GRO_HELD:
4630 __skb_push(skb, ETH_HLEN);
4631 skb->protocol = eth_type_trans(skb, skb->dev);
4632 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4633 ret = GRO_DROP;
4634 break;
4635
4636 case GRO_DROP:
4637 case GRO_MERGED_FREE:
4638 napi_reuse_skb(napi, skb);
4639 break;
4640
4641 case GRO_MERGED:
4642 break;
4643 }
4644
4645 return ret;
4646 }
4647
4648 /* Upper GRO stack assumes network header starts at gro_offset=0
4649 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4650 * We copy ethernet header into skb->data to have a common layout.
4651 */
4652 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4653 {
4654 struct sk_buff *skb = napi->skb;
4655 const struct ethhdr *eth;
4656 unsigned int hlen = sizeof(*eth);
4657
4658 napi->skb = NULL;
4659
4660 skb_reset_mac_header(skb);
4661 skb_gro_reset_offset(skb);
4662
4663 eth = skb_gro_header_fast(skb, 0);
4664 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4665 eth = skb_gro_header_slow(skb, hlen, 0);
4666 if (unlikely(!eth)) {
4667 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4668 __func__, napi->dev->name);
4669 napi_reuse_skb(napi, skb);
4670 return NULL;
4671 }
4672 } else {
4673 gro_pull_from_frag0(skb, hlen);
4674 NAPI_GRO_CB(skb)->frag0 += hlen;
4675 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4676 }
4677 __skb_pull(skb, hlen);
4678
4679 /*
4680 * This works because the only protocols we care about don't require
4681 * special handling.
4682 * We'll fix it up properly in napi_frags_finish()
4683 */
4684 skb->protocol = eth->h_proto;
4685
4686 return skb;
4687 }
4688
4689 gro_result_t napi_gro_frags(struct napi_struct *napi)
4690 {
4691 struct sk_buff *skb = napi_frags_skb(napi);
4692
4693 if (!skb)
4694 return GRO_DROP;
4695
4696 trace_napi_gro_frags_entry(skb);
4697
4698 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4699 }
4700 EXPORT_SYMBOL(napi_gro_frags);
4701
4702 /* Compute the checksum from gro_offset and return the folded value
4703 * after adding in any pseudo checksum.
4704 */
4705 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4706 {
4707 __wsum wsum;
4708 __sum16 sum;
4709
4710 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4711
4712 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4713 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4714 if (likely(!sum)) {
4715 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4716 !skb->csum_complete_sw)
4717 netdev_rx_csum_fault(skb->dev);
4718 }
4719
4720 NAPI_GRO_CB(skb)->csum = wsum;
4721 NAPI_GRO_CB(skb)->csum_valid = 1;
4722
4723 return sum;
4724 }
4725 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4726
4727 /*
4728 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4729 * Note: called with local irq disabled, but exits with local irq enabled.
4730 */
4731 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4732 {
4733 #ifdef CONFIG_RPS
4734 struct softnet_data *remsd = sd->rps_ipi_list;
4735
4736 if (remsd) {
4737 sd->rps_ipi_list = NULL;
4738
4739 local_irq_enable();
4740
4741 /* Send pending IPI's to kick RPS processing on remote cpus. */
4742 while (remsd) {
4743 struct softnet_data *next = remsd->rps_ipi_next;
4744
4745 if (cpu_online(remsd->cpu))
4746 smp_call_function_single_async(remsd->cpu,
4747 &remsd->csd);
4748 remsd = next;
4749 }
4750 } else
4751 #endif
4752 local_irq_enable();
4753 }
4754
4755 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4756 {
4757 #ifdef CONFIG_RPS
4758 return sd->rps_ipi_list != NULL;
4759 #else
4760 return false;
4761 #endif
4762 }
4763
4764 static int process_backlog(struct napi_struct *napi, int quota)
4765 {
4766 int work = 0;
4767 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4768
4769 /* Check if we have pending ipi, its better to send them now,
4770 * not waiting net_rx_action() end.
4771 */
4772 if (sd_has_rps_ipi_waiting(sd)) {
4773 local_irq_disable();
4774 net_rps_action_and_irq_enable(sd);
4775 }
4776
4777 napi->weight = weight_p;
4778 local_irq_disable();
4779 while (1) {
4780 struct sk_buff *skb;
4781
4782 while ((skb = __skb_dequeue(&sd->process_queue))) {
4783 rcu_read_lock();
4784 local_irq_enable();
4785 __netif_receive_skb(skb);
4786 rcu_read_unlock();
4787 local_irq_disable();
4788 input_queue_head_incr(sd);
4789 if (++work >= quota) {
4790 local_irq_enable();
4791 return work;
4792 }
4793 }
4794
4795 rps_lock(sd);
4796 if (skb_queue_empty(&sd->input_pkt_queue)) {
4797 /*
4798 * Inline a custom version of __napi_complete().
4799 * only current cpu owns and manipulates this napi,
4800 * and NAPI_STATE_SCHED is the only possible flag set
4801 * on backlog.
4802 * We can use a plain write instead of clear_bit(),
4803 * and we dont need an smp_mb() memory barrier.
4804 */
4805 napi->state = 0;
4806 rps_unlock(sd);
4807
4808 break;
4809 }
4810
4811 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4812 &sd->process_queue);
4813 rps_unlock(sd);
4814 }
4815 local_irq_enable();
4816
4817 return work;
4818 }
4819
4820 /**
4821 * __napi_schedule - schedule for receive
4822 * @n: entry to schedule
4823 *
4824 * The entry's receive function will be scheduled to run.
4825 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4826 */
4827 void __napi_schedule(struct napi_struct *n)
4828 {
4829 unsigned long flags;
4830
4831 local_irq_save(flags);
4832 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4833 local_irq_restore(flags);
4834 }
4835 EXPORT_SYMBOL(__napi_schedule);
4836
4837 /**
4838 * __napi_schedule_irqoff - schedule for receive
4839 * @n: entry to schedule
4840 *
4841 * Variant of __napi_schedule() assuming hard irqs are masked
4842 */
4843 void __napi_schedule_irqoff(struct napi_struct *n)
4844 {
4845 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4846 }
4847 EXPORT_SYMBOL(__napi_schedule_irqoff);
4848
4849 void __napi_complete(struct napi_struct *n)
4850 {
4851 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4852
4853 list_del_init(&n->poll_list);
4854 smp_mb__before_atomic();
4855 clear_bit(NAPI_STATE_SCHED, &n->state);
4856 }
4857 EXPORT_SYMBOL(__napi_complete);
4858
4859 void napi_complete_done(struct napi_struct *n, int work_done)
4860 {
4861 unsigned long flags;
4862
4863 /*
4864 * don't let napi dequeue from the cpu poll list
4865 * just in case its running on a different cpu
4866 */
4867 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4868 return;
4869
4870 if (n->gro_list) {
4871 unsigned long timeout = 0;
4872
4873 if (work_done)
4874 timeout = n->dev->gro_flush_timeout;
4875
4876 if (timeout)
4877 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4878 HRTIMER_MODE_REL_PINNED);
4879 else
4880 napi_gro_flush(n, false);
4881 }
4882 if (likely(list_empty(&n->poll_list))) {
4883 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4884 } else {
4885 /* If n->poll_list is not empty, we need to mask irqs */
4886 local_irq_save(flags);
4887 __napi_complete(n);
4888 local_irq_restore(flags);
4889 }
4890 }
4891 EXPORT_SYMBOL(napi_complete_done);
4892
4893 /* must be called under rcu_read_lock(), as we dont take a reference */
4894 static struct napi_struct *napi_by_id(unsigned int napi_id)
4895 {
4896 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4897 struct napi_struct *napi;
4898
4899 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4900 if (napi->napi_id == napi_id)
4901 return napi;
4902
4903 return NULL;
4904 }
4905
4906 #if defined(CONFIG_NET_RX_BUSY_POLL)
4907 #define BUSY_POLL_BUDGET 8
4908 bool sk_busy_loop(struct sock *sk, int nonblock)
4909 {
4910 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4911 int (*busy_poll)(struct napi_struct *dev);
4912 struct napi_struct *napi;
4913 int rc = false;
4914
4915 rcu_read_lock();
4916
4917 napi = napi_by_id(sk->sk_napi_id);
4918 if (!napi)
4919 goto out;
4920
4921 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4922 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4923
4924 do {
4925 rc = 0;
4926 local_bh_disable();
4927 if (busy_poll) {
4928 rc = busy_poll(napi);
4929 } else if (napi_schedule_prep(napi)) {
4930 void *have = netpoll_poll_lock(napi);
4931
4932 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4933 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4934 trace_napi_poll(napi);
4935 if (rc == BUSY_POLL_BUDGET) {
4936 napi_complete_done(napi, rc);
4937 napi_schedule(napi);
4938 }
4939 }
4940 netpoll_poll_unlock(have);
4941 }
4942 if (rc > 0)
4943 NET_ADD_STATS_BH(sock_net(sk),
4944 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4945 local_bh_enable();
4946
4947 if (rc == LL_FLUSH_FAILED)
4948 break; /* permanent failure */
4949
4950 cpu_relax();
4951 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4952 !need_resched() && !busy_loop_timeout(end_time));
4953
4954 rc = !skb_queue_empty(&sk->sk_receive_queue);
4955 out:
4956 rcu_read_unlock();
4957 return rc;
4958 }
4959 EXPORT_SYMBOL(sk_busy_loop);
4960
4961 #endif /* CONFIG_NET_RX_BUSY_POLL */
4962
4963 void napi_hash_add(struct napi_struct *napi)
4964 {
4965 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
4966 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
4967 return;
4968
4969 spin_lock(&napi_hash_lock);
4970
4971 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
4972 do {
4973 if (unlikely(++napi_gen_id < NR_CPUS + 1))
4974 napi_gen_id = NR_CPUS + 1;
4975 } while (napi_by_id(napi_gen_id));
4976 napi->napi_id = napi_gen_id;
4977
4978 hlist_add_head_rcu(&napi->napi_hash_node,
4979 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4980
4981 spin_unlock(&napi_hash_lock);
4982 }
4983 EXPORT_SYMBOL_GPL(napi_hash_add);
4984
4985 /* Warning : caller is responsible to make sure rcu grace period
4986 * is respected before freeing memory containing @napi
4987 */
4988 bool napi_hash_del(struct napi_struct *napi)
4989 {
4990 bool rcu_sync_needed = false;
4991
4992 spin_lock(&napi_hash_lock);
4993
4994 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
4995 rcu_sync_needed = true;
4996 hlist_del_rcu(&napi->napi_hash_node);
4997 }
4998 spin_unlock(&napi_hash_lock);
4999 return rcu_sync_needed;
5000 }
5001 EXPORT_SYMBOL_GPL(napi_hash_del);
5002
5003 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5004 {
5005 struct napi_struct *napi;
5006
5007 napi = container_of(timer, struct napi_struct, timer);
5008 if (napi->gro_list)
5009 napi_schedule(napi);
5010
5011 return HRTIMER_NORESTART;
5012 }
5013
5014 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5015 int (*poll)(struct napi_struct *, int), int weight)
5016 {
5017 INIT_LIST_HEAD(&napi->poll_list);
5018 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5019 napi->timer.function = napi_watchdog;
5020 napi->gro_count = 0;
5021 napi->gro_list = NULL;
5022 napi->skb = NULL;
5023 napi->poll = poll;
5024 if (weight > NAPI_POLL_WEIGHT)
5025 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5026 weight, dev->name);
5027 napi->weight = weight;
5028 list_add(&napi->dev_list, &dev->napi_list);
5029 napi->dev = dev;
5030 #ifdef CONFIG_NETPOLL
5031 spin_lock_init(&napi->poll_lock);
5032 napi->poll_owner = -1;
5033 #endif
5034 set_bit(NAPI_STATE_SCHED, &napi->state);
5035 napi_hash_add(napi);
5036 }
5037 EXPORT_SYMBOL(netif_napi_add);
5038
5039 void napi_disable(struct napi_struct *n)
5040 {
5041 might_sleep();
5042 set_bit(NAPI_STATE_DISABLE, &n->state);
5043
5044 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5045 msleep(1);
5046 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5047 msleep(1);
5048
5049 hrtimer_cancel(&n->timer);
5050
5051 clear_bit(NAPI_STATE_DISABLE, &n->state);
5052 }
5053 EXPORT_SYMBOL(napi_disable);
5054
5055 /* Must be called in process context */
5056 void netif_napi_del(struct napi_struct *napi)
5057 {
5058 might_sleep();
5059 if (napi_hash_del(napi))
5060 synchronize_net();
5061 list_del_init(&napi->dev_list);
5062 napi_free_frags(napi);
5063
5064 kfree_skb_list(napi->gro_list);
5065 napi->gro_list = NULL;
5066 napi->gro_count = 0;
5067 }
5068 EXPORT_SYMBOL(netif_napi_del);
5069
5070 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5071 {
5072 void *have;
5073 int work, weight;
5074
5075 list_del_init(&n->poll_list);
5076
5077 have = netpoll_poll_lock(n);
5078
5079 weight = n->weight;
5080
5081 /* This NAPI_STATE_SCHED test is for avoiding a race
5082 * with netpoll's poll_napi(). Only the entity which
5083 * obtains the lock and sees NAPI_STATE_SCHED set will
5084 * actually make the ->poll() call. Therefore we avoid
5085 * accidentally calling ->poll() when NAPI is not scheduled.
5086 */
5087 work = 0;
5088 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5089 work = n->poll(n, weight);
5090 trace_napi_poll(n);
5091 }
5092
5093 WARN_ON_ONCE(work > weight);
5094
5095 if (likely(work < weight))
5096 goto out_unlock;
5097
5098 /* Drivers must not modify the NAPI state if they
5099 * consume the entire weight. In such cases this code
5100 * still "owns" the NAPI instance and therefore can
5101 * move the instance around on the list at-will.
5102 */
5103 if (unlikely(napi_disable_pending(n))) {
5104 napi_complete(n);
5105 goto out_unlock;
5106 }
5107
5108 if (n->gro_list) {
5109 /* flush too old packets
5110 * If HZ < 1000, flush all packets.
5111 */
5112 napi_gro_flush(n, HZ >= 1000);
5113 }
5114
5115 /* Some drivers may have called napi_schedule
5116 * prior to exhausting their budget.
5117 */
5118 if (unlikely(!list_empty(&n->poll_list))) {
5119 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5120 n->dev ? n->dev->name : "backlog");
5121 goto out_unlock;
5122 }
5123
5124 list_add_tail(&n->poll_list, repoll);
5125
5126 out_unlock:
5127 netpoll_poll_unlock(have);
5128
5129 return work;
5130 }
5131
5132 static void net_rx_action(struct softirq_action *h)
5133 {
5134 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5135 unsigned long time_limit = jiffies + 2;
5136 int budget = netdev_budget;
5137 LIST_HEAD(list);
5138 LIST_HEAD(repoll);
5139
5140 local_irq_disable();
5141 list_splice_init(&sd->poll_list, &list);
5142 local_irq_enable();
5143
5144 for (;;) {
5145 struct napi_struct *n;
5146
5147 if (list_empty(&list)) {
5148 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5149 return;
5150 break;
5151 }
5152
5153 n = list_first_entry(&list, struct napi_struct, poll_list);
5154 budget -= napi_poll(n, &repoll);
5155
5156 /* If softirq window is exhausted then punt.
5157 * Allow this to run for 2 jiffies since which will allow
5158 * an average latency of 1.5/HZ.
5159 */
5160 if (unlikely(budget <= 0 ||
5161 time_after_eq(jiffies, time_limit))) {
5162 sd->time_squeeze++;
5163 break;
5164 }
5165 }
5166
5167 __kfree_skb_flush();
5168 local_irq_disable();
5169
5170 list_splice_tail_init(&sd->poll_list, &list);
5171 list_splice_tail(&repoll, &list);
5172 list_splice(&list, &sd->poll_list);
5173 if (!list_empty(&sd->poll_list))
5174 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5175
5176 net_rps_action_and_irq_enable(sd);
5177 }
5178
5179 struct netdev_adjacent {
5180 struct net_device *dev;
5181
5182 /* upper master flag, there can only be one master device per list */
5183 bool master;
5184
5185 /* counter for the number of times this device was added to us */
5186 u16 ref_nr;
5187
5188 /* private field for the users */
5189 void *private;
5190
5191 struct list_head list;
5192 struct rcu_head rcu;
5193 };
5194
5195 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5196 struct list_head *adj_list)
5197 {
5198 struct netdev_adjacent *adj;
5199
5200 list_for_each_entry(adj, adj_list, list) {
5201 if (adj->dev == adj_dev)
5202 return adj;
5203 }
5204 return NULL;
5205 }
5206
5207 /**
5208 * netdev_has_upper_dev - Check if device is linked to an upper device
5209 * @dev: device
5210 * @upper_dev: upper device to check
5211 *
5212 * Find out if a device is linked to specified upper device and return true
5213 * in case it is. Note that this checks only immediate upper device,
5214 * not through a complete stack of devices. The caller must hold the RTNL lock.
5215 */
5216 bool netdev_has_upper_dev(struct net_device *dev,
5217 struct net_device *upper_dev)
5218 {
5219 ASSERT_RTNL();
5220
5221 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5222 }
5223 EXPORT_SYMBOL(netdev_has_upper_dev);
5224
5225 /**
5226 * netdev_has_any_upper_dev - Check if device is linked to some device
5227 * @dev: device
5228 *
5229 * Find out if a device is linked to an upper device and return true in case
5230 * it is. The caller must hold the RTNL lock.
5231 */
5232 static bool netdev_has_any_upper_dev(struct net_device *dev)
5233 {
5234 ASSERT_RTNL();
5235
5236 return !list_empty(&dev->all_adj_list.upper);
5237 }
5238
5239 /**
5240 * netdev_master_upper_dev_get - Get master upper device
5241 * @dev: device
5242 *
5243 * Find a master upper device and return pointer to it or NULL in case
5244 * it's not there. The caller must hold the RTNL lock.
5245 */
5246 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5247 {
5248 struct netdev_adjacent *upper;
5249
5250 ASSERT_RTNL();
5251
5252 if (list_empty(&dev->adj_list.upper))
5253 return NULL;
5254
5255 upper = list_first_entry(&dev->adj_list.upper,
5256 struct netdev_adjacent, list);
5257 if (likely(upper->master))
5258 return upper->dev;
5259 return NULL;
5260 }
5261 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5262
5263 void *netdev_adjacent_get_private(struct list_head *adj_list)
5264 {
5265 struct netdev_adjacent *adj;
5266
5267 adj = list_entry(adj_list, struct netdev_adjacent, list);
5268
5269 return adj->private;
5270 }
5271 EXPORT_SYMBOL(netdev_adjacent_get_private);
5272
5273 /**
5274 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5275 * @dev: device
5276 * @iter: list_head ** of the current position
5277 *
5278 * Gets the next device from the dev's upper list, starting from iter
5279 * position. The caller must hold RCU read lock.
5280 */
5281 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5282 struct list_head **iter)
5283 {
5284 struct netdev_adjacent *upper;
5285
5286 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5287
5288 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5289
5290 if (&upper->list == &dev->adj_list.upper)
5291 return NULL;
5292
5293 *iter = &upper->list;
5294
5295 return upper->dev;
5296 }
5297 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5298
5299 /**
5300 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5301 * @dev: device
5302 * @iter: list_head ** of the current position
5303 *
5304 * Gets the next device from the dev's upper list, starting from iter
5305 * position. The caller must hold RCU read lock.
5306 */
5307 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5308 struct list_head **iter)
5309 {
5310 struct netdev_adjacent *upper;
5311
5312 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5313
5314 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5315
5316 if (&upper->list == &dev->all_adj_list.upper)
5317 return NULL;
5318
5319 *iter = &upper->list;
5320
5321 return upper->dev;
5322 }
5323 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5324
5325 /**
5326 * netdev_lower_get_next_private - Get the next ->private from the
5327 * lower neighbour list
5328 * @dev: device
5329 * @iter: list_head ** of the current position
5330 *
5331 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5332 * list, starting from iter position. The caller must hold either hold the
5333 * RTNL lock or its own locking that guarantees that the neighbour lower
5334 * list will remain unchanged.
5335 */
5336 void *netdev_lower_get_next_private(struct net_device *dev,
5337 struct list_head **iter)
5338 {
5339 struct netdev_adjacent *lower;
5340
5341 lower = list_entry(*iter, struct netdev_adjacent, list);
5342
5343 if (&lower->list == &dev->adj_list.lower)
5344 return NULL;
5345
5346 *iter = lower->list.next;
5347
5348 return lower->private;
5349 }
5350 EXPORT_SYMBOL(netdev_lower_get_next_private);
5351
5352 /**
5353 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5354 * lower neighbour list, RCU
5355 * variant
5356 * @dev: device
5357 * @iter: list_head ** of the current position
5358 *
5359 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5360 * list, starting from iter position. The caller must hold RCU read lock.
5361 */
5362 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5363 struct list_head **iter)
5364 {
5365 struct netdev_adjacent *lower;
5366
5367 WARN_ON_ONCE(!rcu_read_lock_held());
5368
5369 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5370
5371 if (&lower->list == &dev->adj_list.lower)
5372 return NULL;
5373
5374 *iter = &lower->list;
5375
5376 return lower->private;
5377 }
5378 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5379
5380 /**
5381 * netdev_lower_get_next - Get the next device from the lower neighbour
5382 * list
5383 * @dev: device
5384 * @iter: list_head ** of the current position
5385 *
5386 * Gets the next netdev_adjacent from the dev's lower neighbour
5387 * list, starting from iter position. The caller must hold RTNL lock or
5388 * its own locking that guarantees that the neighbour lower
5389 * list will remain unchanged.
5390 */
5391 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5392 {
5393 struct netdev_adjacent *lower;
5394
5395 lower = list_entry(*iter, struct netdev_adjacent, list);
5396
5397 if (&lower->list == &dev->adj_list.lower)
5398 return NULL;
5399
5400 *iter = lower->list.next;
5401
5402 return lower->dev;
5403 }
5404 EXPORT_SYMBOL(netdev_lower_get_next);
5405
5406 /**
5407 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5408 * lower neighbour list, RCU
5409 * variant
5410 * @dev: device
5411 *
5412 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5413 * list. The caller must hold RCU read lock.
5414 */
5415 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5416 {
5417 struct netdev_adjacent *lower;
5418
5419 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5420 struct netdev_adjacent, list);
5421 if (lower)
5422 return lower->private;
5423 return NULL;
5424 }
5425 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5426
5427 /**
5428 * netdev_master_upper_dev_get_rcu - Get master upper device
5429 * @dev: device
5430 *
5431 * Find a master upper device and return pointer to it or NULL in case
5432 * it's not there. The caller must hold the RCU read lock.
5433 */
5434 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5435 {
5436 struct netdev_adjacent *upper;
5437
5438 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5439 struct netdev_adjacent, list);
5440 if (upper && likely(upper->master))
5441 return upper->dev;
5442 return NULL;
5443 }
5444 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5445
5446 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5447 struct net_device *adj_dev,
5448 struct list_head *dev_list)
5449 {
5450 char linkname[IFNAMSIZ+7];
5451 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5452 "upper_%s" : "lower_%s", adj_dev->name);
5453 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5454 linkname);
5455 }
5456 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5457 char *name,
5458 struct list_head *dev_list)
5459 {
5460 char linkname[IFNAMSIZ+7];
5461 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5462 "upper_%s" : "lower_%s", name);
5463 sysfs_remove_link(&(dev->dev.kobj), linkname);
5464 }
5465
5466 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5467 struct net_device *adj_dev,
5468 struct list_head *dev_list)
5469 {
5470 return (dev_list == &dev->adj_list.upper ||
5471 dev_list == &dev->adj_list.lower) &&
5472 net_eq(dev_net(dev), dev_net(adj_dev));
5473 }
5474
5475 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5476 struct net_device *adj_dev,
5477 struct list_head *dev_list,
5478 void *private, bool master)
5479 {
5480 struct netdev_adjacent *adj;
5481 int ret;
5482
5483 adj = __netdev_find_adj(adj_dev, dev_list);
5484
5485 if (adj) {
5486 adj->ref_nr++;
5487 return 0;
5488 }
5489
5490 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5491 if (!adj)
5492 return -ENOMEM;
5493
5494 adj->dev = adj_dev;
5495 adj->master = master;
5496 adj->ref_nr = 1;
5497 adj->private = private;
5498 dev_hold(adj_dev);
5499
5500 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5501 adj_dev->name, dev->name, adj_dev->name);
5502
5503 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5504 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5505 if (ret)
5506 goto free_adj;
5507 }
5508
5509 /* Ensure that master link is always the first item in list. */
5510 if (master) {
5511 ret = sysfs_create_link(&(dev->dev.kobj),
5512 &(adj_dev->dev.kobj), "master");
5513 if (ret)
5514 goto remove_symlinks;
5515
5516 list_add_rcu(&adj->list, dev_list);
5517 } else {
5518 list_add_tail_rcu(&adj->list, dev_list);
5519 }
5520
5521 return 0;
5522
5523 remove_symlinks:
5524 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5525 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5526 free_adj:
5527 kfree(adj);
5528 dev_put(adj_dev);
5529
5530 return ret;
5531 }
5532
5533 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5534 struct net_device *adj_dev,
5535 struct list_head *dev_list)
5536 {
5537 struct netdev_adjacent *adj;
5538
5539 adj = __netdev_find_adj(adj_dev, dev_list);
5540
5541 if (!adj) {
5542 pr_err("tried to remove device %s from %s\n",
5543 dev->name, adj_dev->name);
5544 BUG();
5545 }
5546
5547 if (adj->ref_nr > 1) {
5548 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5549 adj->ref_nr-1);
5550 adj->ref_nr--;
5551 return;
5552 }
5553
5554 if (adj->master)
5555 sysfs_remove_link(&(dev->dev.kobj), "master");
5556
5557 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5558 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5559
5560 list_del_rcu(&adj->list);
5561 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5562 adj_dev->name, dev->name, adj_dev->name);
5563 dev_put(adj_dev);
5564 kfree_rcu(adj, rcu);
5565 }
5566
5567 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5568 struct net_device *upper_dev,
5569 struct list_head *up_list,
5570 struct list_head *down_list,
5571 void *private, bool master)
5572 {
5573 int ret;
5574
5575 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5576 master);
5577 if (ret)
5578 return ret;
5579
5580 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5581 false);
5582 if (ret) {
5583 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5584 return ret;
5585 }
5586
5587 return 0;
5588 }
5589
5590 static int __netdev_adjacent_dev_link(struct net_device *dev,
5591 struct net_device *upper_dev)
5592 {
5593 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5594 &dev->all_adj_list.upper,
5595 &upper_dev->all_adj_list.lower,
5596 NULL, false);
5597 }
5598
5599 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5600 struct net_device *upper_dev,
5601 struct list_head *up_list,
5602 struct list_head *down_list)
5603 {
5604 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5605 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5606 }
5607
5608 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5609 struct net_device *upper_dev)
5610 {
5611 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5612 &dev->all_adj_list.upper,
5613 &upper_dev->all_adj_list.lower);
5614 }
5615
5616 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5617 struct net_device *upper_dev,
5618 void *private, bool master)
5619 {
5620 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5621
5622 if (ret)
5623 return ret;
5624
5625 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5626 &dev->adj_list.upper,
5627 &upper_dev->adj_list.lower,
5628 private, master);
5629 if (ret) {
5630 __netdev_adjacent_dev_unlink(dev, upper_dev);
5631 return ret;
5632 }
5633
5634 return 0;
5635 }
5636
5637 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5638 struct net_device *upper_dev)
5639 {
5640 __netdev_adjacent_dev_unlink(dev, upper_dev);
5641 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5642 &dev->adj_list.upper,
5643 &upper_dev->adj_list.lower);
5644 }
5645
5646 static int __netdev_upper_dev_link(struct net_device *dev,
5647 struct net_device *upper_dev, bool master,
5648 void *upper_priv, void *upper_info)
5649 {
5650 struct netdev_notifier_changeupper_info changeupper_info;
5651 struct netdev_adjacent *i, *j, *to_i, *to_j;
5652 int ret = 0;
5653
5654 ASSERT_RTNL();
5655
5656 if (dev == upper_dev)
5657 return -EBUSY;
5658
5659 /* To prevent loops, check if dev is not upper device to upper_dev. */
5660 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5661 return -EBUSY;
5662
5663 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5664 return -EEXIST;
5665
5666 if (master && netdev_master_upper_dev_get(dev))
5667 return -EBUSY;
5668
5669 changeupper_info.upper_dev = upper_dev;
5670 changeupper_info.master = master;
5671 changeupper_info.linking = true;
5672 changeupper_info.upper_info = upper_info;
5673
5674 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5675 &changeupper_info.info);
5676 ret = notifier_to_errno(ret);
5677 if (ret)
5678 return ret;
5679
5680 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5681 master);
5682 if (ret)
5683 return ret;
5684
5685 /* Now that we linked these devs, make all the upper_dev's
5686 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5687 * versa, and don't forget the devices itself. All of these
5688 * links are non-neighbours.
5689 */
5690 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5691 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5692 pr_debug("Interlinking %s with %s, non-neighbour\n",
5693 i->dev->name, j->dev->name);
5694 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5695 if (ret)
5696 goto rollback_mesh;
5697 }
5698 }
5699
5700 /* add dev to every upper_dev's upper device */
5701 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5702 pr_debug("linking %s's upper device %s with %s\n",
5703 upper_dev->name, i->dev->name, dev->name);
5704 ret = __netdev_adjacent_dev_link(dev, i->dev);
5705 if (ret)
5706 goto rollback_upper_mesh;
5707 }
5708
5709 /* add upper_dev to every dev's lower device */
5710 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5711 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5712 i->dev->name, upper_dev->name);
5713 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5714 if (ret)
5715 goto rollback_lower_mesh;
5716 }
5717
5718 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5719 &changeupper_info.info);
5720 ret = notifier_to_errno(ret);
5721 if (ret)
5722 goto rollback_lower_mesh;
5723
5724 return 0;
5725
5726 rollback_lower_mesh:
5727 to_i = i;
5728 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5729 if (i == to_i)
5730 break;
5731 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5732 }
5733
5734 i = NULL;
5735
5736 rollback_upper_mesh:
5737 to_i = i;
5738 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5739 if (i == to_i)
5740 break;
5741 __netdev_adjacent_dev_unlink(dev, i->dev);
5742 }
5743
5744 i = j = NULL;
5745
5746 rollback_mesh:
5747 to_i = i;
5748 to_j = j;
5749 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5750 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5751 if (i == to_i && j == to_j)
5752 break;
5753 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5754 }
5755 if (i == to_i)
5756 break;
5757 }
5758
5759 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5760
5761 return ret;
5762 }
5763
5764 /**
5765 * netdev_upper_dev_link - Add a link to the upper device
5766 * @dev: device
5767 * @upper_dev: new upper device
5768 *
5769 * Adds a link to device which is upper to this one. The caller must hold
5770 * the RTNL lock. On a failure a negative errno code is returned.
5771 * On success the reference counts are adjusted and the function
5772 * returns zero.
5773 */
5774 int netdev_upper_dev_link(struct net_device *dev,
5775 struct net_device *upper_dev)
5776 {
5777 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5778 }
5779 EXPORT_SYMBOL(netdev_upper_dev_link);
5780
5781 /**
5782 * netdev_master_upper_dev_link - Add a master link to the upper device
5783 * @dev: device
5784 * @upper_dev: new upper device
5785 * @upper_priv: upper device private
5786 * @upper_info: upper info to be passed down via notifier
5787 *
5788 * Adds a link to device which is upper to this one. In this case, only
5789 * one master upper device can be linked, although other non-master devices
5790 * might be linked as well. The caller must hold the RTNL lock.
5791 * On a failure a negative errno code is returned. On success the reference
5792 * counts are adjusted and the function returns zero.
5793 */
5794 int netdev_master_upper_dev_link(struct net_device *dev,
5795 struct net_device *upper_dev,
5796 void *upper_priv, void *upper_info)
5797 {
5798 return __netdev_upper_dev_link(dev, upper_dev, true,
5799 upper_priv, upper_info);
5800 }
5801 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5802
5803 /**
5804 * netdev_upper_dev_unlink - Removes a link to upper device
5805 * @dev: device
5806 * @upper_dev: new upper device
5807 *
5808 * Removes a link to device which is upper to this one. The caller must hold
5809 * the RTNL lock.
5810 */
5811 void netdev_upper_dev_unlink(struct net_device *dev,
5812 struct net_device *upper_dev)
5813 {
5814 struct netdev_notifier_changeupper_info changeupper_info;
5815 struct netdev_adjacent *i, *j;
5816 ASSERT_RTNL();
5817
5818 changeupper_info.upper_dev = upper_dev;
5819 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5820 changeupper_info.linking = false;
5821
5822 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5823 &changeupper_info.info);
5824
5825 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5826
5827 /* Here is the tricky part. We must remove all dev's lower
5828 * devices from all upper_dev's upper devices and vice
5829 * versa, to maintain the graph relationship.
5830 */
5831 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5832 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5833 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5834
5835 /* remove also the devices itself from lower/upper device
5836 * list
5837 */
5838 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5839 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5840
5841 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5842 __netdev_adjacent_dev_unlink(dev, i->dev);
5843
5844 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5845 &changeupper_info.info);
5846 }
5847 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5848
5849 /**
5850 * netdev_bonding_info_change - Dispatch event about slave change
5851 * @dev: device
5852 * @bonding_info: info to dispatch
5853 *
5854 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5855 * The caller must hold the RTNL lock.
5856 */
5857 void netdev_bonding_info_change(struct net_device *dev,
5858 struct netdev_bonding_info *bonding_info)
5859 {
5860 struct netdev_notifier_bonding_info info;
5861
5862 memcpy(&info.bonding_info, bonding_info,
5863 sizeof(struct netdev_bonding_info));
5864 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5865 &info.info);
5866 }
5867 EXPORT_SYMBOL(netdev_bonding_info_change);
5868
5869 static void netdev_adjacent_add_links(struct net_device *dev)
5870 {
5871 struct netdev_adjacent *iter;
5872
5873 struct net *net = dev_net(dev);
5874
5875 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5876 if (!net_eq(net,dev_net(iter->dev)))
5877 continue;
5878 netdev_adjacent_sysfs_add(iter->dev, dev,
5879 &iter->dev->adj_list.lower);
5880 netdev_adjacent_sysfs_add(dev, iter->dev,
5881 &dev->adj_list.upper);
5882 }
5883
5884 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5885 if (!net_eq(net,dev_net(iter->dev)))
5886 continue;
5887 netdev_adjacent_sysfs_add(iter->dev, dev,
5888 &iter->dev->adj_list.upper);
5889 netdev_adjacent_sysfs_add(dev, iter->dev,
5890 &dev->adj_list.lower);
5891 }
5892 }
5893
5894 static void netdev_adjacent_del_links(struct net_device *dev)
5895 {
5896 struct netdev_adjacent *iter;
5897
5898 struct net *net = dev_net(dev);
5899
5900 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5901 if (!net_eq(net,dev_net(iter->dev)))
5902 continue;
5903 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5904 &iter->dev->adj_list.lower);
5905 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5906 &dev->adj_list.upper);
5907 }
5908
5909 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5910 if (!net_eq(net,dev_net(iter->dev)))
5911 continue;
5912 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5913 &iter->dev->adj_list.upper);
5914 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5915 &dev->adj_list.lower);
5916 }
5917 }
5918
5919 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5920 {
5921 struct netdev_adjacent *iter;
5922
5923 struct net *net = dev_net(dev);
5924
5925 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5926 if (!net_eq(net,dev_net(iter->dev)))
5927 continue;
5928 netdev_adjacent_sysfs_del(iter->dev, oldname,
5929 &iter->dev->adj_list.lower);
5930 netdev_adjacent_sysfs_add(iter->dev, dev,
5931 &iter->dev->adj_list.lower);
5932 }
5933
5934 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5935 if (!net_eq(net,dev_net(iter->dev)))
5936 continue;
5937 netdev_adjacent_sysfs_del(iter->dev, oldname,
5938 &iter->dev->adj_list.upper);
5939 netdev_adjacent_sysfs_add(iter->dev, dev,
5940 &iter->dev->adj_list.upper);
5941 }
5942 }
5943
5944 void *netdev_lower_dev_get_private(struct net_device *dev,
5945 struct net_device *lower_dev)
5946 {
5947 struct netdev_adjacent *lower;
5948
5949 if (!lower_dev)
5950 return NULL;
5951 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5952 if (!lower)
5953 return NULL;
5954
5955 return lower->private;
5956 }
5957 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5958
5959
5960 int dev_get_nest_level(struct net_device *dev,
5961 bool (*type_check)(const struct net_device *dev))
5962 {
5963 struct net_device *lower = NULL;
5964 struct list_head *iter;
5965 int max_nest = -1;
5966 int nest;
5967
5968 ASSERT_RTNL();
5969
5970 netdev_for_each_lower_dev(dev, lower, iter) {
5971 nest = dev_get_nest_level(lower, type_check);
5972 if (max_nest < nest)
5973 max_nest = nest;
5974 }
5975
5976 if (type_check(dev))
5977 max_nest++;
5978
5979 return max_nest;
5980 }
5981 EXPORT_SYMBOL(dev_get_nest_level);
5982
5983 /**
5984 * netdev_lower_change - Dispatch event about lower device state change
5985 * @lower_dev: device
5986 * @lower_state_info: state to dispatch
5987 *
5988 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
5989 * The caller must hold the RTNL lock.
5990 */
5991 void netdev_lower_state_changed(struct net_device *lower_dev,
5992 void *lower_state_info)
5993 {
5994 struct netdev_notifier_changelowerstate_info changelowerstate_info;
5995
5996 ASSERT_RTNL();
5997 changelowerstate_info.lower_state_info = lower_state_info;
5998 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
5999 &changelowerstate_info.info);
6000 }
6001 EXPORT_SYMBOL(netdev_lower_state_changed);
6002
6003 static void dev_change_rx_flags(struct net_device *dev, int flags)
6004 {
6005 const struct net_device_ops *ops = dev->netdev_ops;
6006
6007 if (ops->ndo_change_rx_flags)
6008 ops->ndo_change_rx_flags(dev, flags);
6009 }
6010
6011 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6012 {
6013 unsigned int old_flags = dev->flags;
6014 kuid_t uid;
6015 kgid_t gid;
6016
6017 ASSERT_RTNL();
6018
6019 dev->flags |= IFF_PROMISC;
6020 dev->promiscuity += inc;
6021 if (dev->promiscuity == 0) {
6022 /*
6023 * Avoid overflow.
6024 * If inc causes overflow, untouch promisc and return error.
6025 */
6026 if (inc < 0)
6027 dev->flags &= ~IFF_PROMISC;
6028 else {
6029 dev->promiscuity -= inc;
6030 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6031 dev->name);
6032 return -EOVERFLOW;
6033 }
6034 }
6035 if (dev->flags != old_flags) {
6036 pr_info("device %s %s promiscuous mode\n",
6037 dev->name,
6038 dev->flags & IFF_PROMISC ? "entered" : "left");
6039 if (audit_enabled) {
6040 current_uid_gid(&uid, &gid);
6041 audit_log(current->audit_context, GFP_ATOMIC,
6042 AUDIT_ANOM_PROMISCUOUS,
6043 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6044 dev->name, (dev->flags & IFF_PROMISC),
6045 (old_flags & IFF_PROMISC),
6046 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6047 from_kuid(&init_user_ns, uid),
6048 from_kgid(&init_user_ns, gid),
6049 audit_get_sessionid(current));
6050 }
6051
6052 dev_change_rx_flags(dev, IFF_PROMISC);
6053 }
6054 if (notify)
6055 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6056 return 0;
6057 }
6058
6059 /**
6060 * dev_set_promiscuity - update promiscuity count on a device
6061 * @dev: device
6062 * @inc: modifier
6063 *
6064 * Add or remove promiscuity from a device. While the count in the device
6065 * remains above zero the interface remains promiscuous. Once it hits zero
6066 * the device reverts back to normal filtering operation. A negative inc
6067 * value is used to drop promiscuity on the device.
6068 * Return 0 if successful or a negative errno code on error.
6069 */
6070 int dev_set_promiscuity(struct net_device *dev, int inc)
6071 {
6072 unsigned int old_flags = dev->flags;
6073 int err;
6074
6075 err = __dev_set_promiscuity(dev, inc, true);
6076 if (err < 0)
6077 return err;
6078 if (dev->flags != old_flags)
6079 dev_set_rx_mode(dev);
6080 return err;
6081 }
6082 EXPORT_SYMBOL(dev_set_promiscuity);
6083
6084 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6085 {
6086 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6087
6088 ASSERT_RTNL();
6089
6090 dev->flags |= IFF_ALLMULTI;
6091 dev->allmulti += inc;
6092 if (dev->allmulti == 0) {
6093 /*
6094 * Avoid overflow.
6095 * If inc causes overflow, untouch allmulti and return error.
6096 */
6097 if (inc < 0)
6098 dev->flags &= ~IFF_ALLMULTI;
6099 else {
6100 dev->allmulti -= inc;
6101 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6102 dev->name);
6103 return -EOVERFLOW;
6104 }
6105 }
6106 if (dev->flags ^ old_flags) {
6107 dev_change_rx_flags(dev, IFF_ALLMULTI);
6108 dev_set_rx_mode(dev);
6109 if (notify)
6110 __dev_notify_flags(dev, old_flags,
6111 dev->gflags ^ old_gflags);
6112 }
6113 return 0;
6114 }
6115
6116 /**
6117 * dev_set_allmulti - update allmulti count on a device
6118 * @dev: device
6119 * @inc: modifier
6120 *
6121 * Add or remove reception of all multicast frames to a device. While the
6122 * count in the device remains above zero the interface remains listening
6123 * to all interfaces. Once it hits zero the device reverts back to normal
6124 * filtering operation. A negative @inc value is used to drop the counter
6125 * when releasing a resource needing all multicasts.
6126 * Return 0 if successful or a negative errno code on error.
6127 */
6128
6129 int dev_set_allmulti(struct net_device *dev, int inc)
6130 {
6131 return __dev_set_allmulti(dev, inc, true);
6132 }
6133 EXPORT_SYMBOL(dev_set_allmulti);
6134
6135 /*
6136 * Upload unicast and multicast address lists to device and
6137 * configure RX filtering. When the device doesn't support unicast
6138 * filtering it is put in promiscuous mode while unicast addresses
6139 * are present.
6140 */
6141 void __dev_set_rx_mode(struct net_device *dev)
6142 {
6143 const struct net_device_ops *ops = dev->netdev_ops;
6144
6145 /* dev_open will call this function so the list will stay sane. */
6146 if (!(dev->flags&IFF_UP))
6147 return;
6148
6149 if (!netif_device_present(dev))
6150 return;
6151
6152 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6153 /* Unicast addresses changes may only happen under the rtnl,
6154 * therefore calling __dev_set_promiscuity here is safe.
6155 */
6156 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6157 __dev_set_promiscuity(dev, 1, false);
6158 dev->uc_promisc = true;
6159 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6160 __dev_set_promiscuity(dev, -1, false);
6161 dev->uc_promisc = false;
6162 }
6163 }
6164
6165 if (ops->ndo_set_rx_mode)
6166 ops->ndo_set_rx_mode(dev);
6167 }
6168
6169 void dev_set_rx_mode(struct net_device *dev)
6170 {
6171 netif_addr_lock_bh(dev);
6172 __dev_set_rx_mode(dev);
6173 netif_addr_unlock_bh(dev);
6174 }
6175
6176 /**
6177 * dev_get_flags - get flags reported to userspace
6178 * @dev: device
6179 *
6180 * Get the combination of flag bits exported through APIs to userspace.
6181 */
6182 unsigned int dev_get_flags(const struct net_device *dev)
6183 {
6184 unsigned int flags;
6185
6186 flags = (dev->flags & ~(IFF_PROMISC |
6187 IFF_ALLMULTI |
6188 IFF_RUNNING |
6189 IFF_LOWER_UP |
6190 IFF_DORMANT)) |
6191 (dev->gflags & (IFF_PROMISC |
6192 IFF_ALLMULTI));
6193
6194 if (netif_running(dev)) {
6195 if (netif_oper_up(dev))
6196 flags |= IFF_RUNNING;
6197 if (netif_carrier_ok(dev))
6198 flags |= IFF_LOWER_UP;
6199 if (netif_dormant(dev))
6200 flags |= IFF_DORMANT;
6201 }
6202
6203 return flags;
6204 }
6205 EXPORT_SYMBOL(dev_get_flags);
6206
6207 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6208 {
6209 unsigned int old_flags = dev->flags;
6210 int ret;
6211
6212 ASSERT_RTNL();
6213
6214 /*
6215 * Set the flags on our device.
6216 */
6217
6218 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6219 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6220 IFF_AUTOMEDIA)) |
6221 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6222 IFF_ALLMULTI));
6223
6224 /*
6225 * Load in the correct multicast list now the flags have changed.
6226 */
6227
6228 if ((old_flags ^ flags) & IFF_MULTICAST)
6229 dev_change_rx_flags(dev, IFF_MULTICAST);
6230
6231 dev_set_rx_mode(dev);
6232
6233 /*
6234 * Have we downed the interface. We handle IFF_UP ourselves
6235 * according to user attempts to set it, rather than blindly
6236 * setting it.
6237 */
6238
6239 ret = 0;
6240 if ((old_flags ^ flags) & IFF_UP)
6241 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6242
6243 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6244 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6245 unsigned int old_flags = dev->flags;
6246
6247 dev->gflags ^= IFF_PROMISC;
6248
6249 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6250 if (dev->flags != old_flags)
6251 dev_set_rx_mode(dev);
6252 }
6253
6254 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6255 is important. Some (broken) drivers set IFF_PROMISC, when
6256 IFF_ALLMULTI is requested not asking us and not reporting.
6257 */
6258 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6259 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6260
6261 dev->gflags ^= IFF_ALLMULTI;
6262 __dev_set_allmulti(dev, inc, false);
6263 }
6264
6265 return ret;
6266 }
6267
6268 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6269 unsigned int gchanges)
6270 {
6271 unsigned int changes = dev->flags ^ old_flags;
6272
6273 if (gchanges)
6274 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6275
6276 if (changes & IFF_UP) {
6277 if (dev->flags & IFF_UP)
6278 call_netdevice_notifiers(NETDEV_UP, dev);
6279 else
6280 call_netdevice_notifiers(NETDEV_DOWN, dev);
6281 }
6282
6283 if (dev->flags & IFF_UP &&
6284 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6285 struct netdev_notifier_change_info change_info;
6286
6287 change_info.flags_changed = changes;
6288 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6289 &change_info.info);
6290 }
6291 }
6292
6293 /**
6294 * dev_change_flags - change device settings
6295 * @dev: device
6296 * @flags: device state flags
6297 *
6298 * Change settings on device based state flags. The flags are
6299 * in the userspace exported format.
6300 */
6301 int dev_change_flags(struct net_device *dev, unsigned int flags)
6302 {
6303 int ret;
6304 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6305
6306 ret = __dev_change_flags(dev, flags);
6307 if (ret < 0)
6308 return ret;
6309
6310 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6311 __dev_notify_flags(dev, old_flags, changes);
6312 return ret;
6313 }
6314 EXPORT_SYMBOL(dev_change_flags);
6315
6316 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6317 {
6318 const struct net_device_ops *ops = dev->netdev_ops;
6319
6320 if (ops->ndo_change_mtu)
6321 return ops->ndo_change_mtu(dev, new_mtu);
6322
6323 dev->mtu = new_mtu;
6324 return 0;
6325 }
6326
6327 /**
6328 * dev_set_mtu - Change maximum transfer unit
6329 * @dev: device
6330 * @new_mtu: new transfer unit
6331 *
6332 * Change the maximum transfer size of the network device.
6333 */
6334 int dev_set_mtu(struct net_device *dev, int new_mtu)
6335 {
6336 int err, orig_mtu;
6337
6338 if (new_mtu == dev->mtu)
6339 return 0;
6340
6341 /* MTU must be positive. */
6342 if (new_mtu < 0)
6343 return -EINVAL;
6344
6345 if (!netif_device_present(dev))
6346 return -ENODEV;
6347
6348 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6349 err = notifier_to_errno(err);
6350 if (err)
6351 return err;
6352
6353 orig_mtu = dev->mtu;
6354 err = __dev_set_mtu(dev, new_mtu);
6355
6356 if (!err) {
6357 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6358 err = notifier_to_errno(err);
6359 if (err) {
6360 /* setting mtu back and notifying everyone again,
6361 * so that they have a chance to revert changes.
6362 */
6363 __dev_set_mtu(dev, orig_mtu);
6364 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6365 }
6366 }
6367 return err;
6368 }
6369 EXPORT_SYMBOL(dev_set_mtu);
6370
6371 /**
6372 * dev_set_group - Change group this device belongs to
6373 * @dev: device
6374 * @new_group: group this device should belong to
6375 */
6376 void dev_set_group(struct net_device *dev, int new_group)
6377 {
6378 dev->group = new_group;
6379 }
6380 EXPORT_SYMBOL(dev_set_group);
6381
6382 /**
6383 * dev_set_mac_address - Change Media Access Control Address
6384 * @dev: device
6385 * @sa: new address
6386 *
6387 * Change the hardware (MAC) address of the device
6388 */
6389 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6390 {
6391 const struct net_device_ops *ops = dev->netdev_ops;
6392 int err;
6393
6394 if (!ops->ndo_set_mac_address)
6395 return -EOPNOTSUPP;
6396 if (sa->sa_family != dev->type)
6397 return -EINVAL;
6398 if (!netif_device_present(dev))
6399 return -ENODEV;
6400 err = ops->ndo_set_mac_address(dev, sa);
6401 if (err)
6402 return err;
6403 dev->addr_assign_type = NET_ADDR_SET;
6404 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6405 add_device_randomness(dev->dev_addr, dev->addr_len);
6406 return 0;
6407 }
6408 EXPORT_SYMBOL(dev_set_mac_address);
6409
6410 /**
6411 * dev_change_carrier - Change device carrier
6412 * @dev: device
6413 * @new_carrier: new value
6414 *
6415 * Change device carrier
6416 */
6417 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6418 {
6419 const struct net_device_ops *ops = dev->netdev_ops;
6420
6421 if (!ops->ndo_change_carrier)
6422 return -EOPNOTSUPP;
6423 if (!netif_device_present(dev))
6424 return -ENODEV;
6425 return ops->ndo_change_carrier(dev, new_carrier);
6426 }
6427 EXPORT_SYMBOL(dev_change_carrier);
6428
6429 /**
6430 * dev_get_phys_port_id - Get device physical port ID
6431 * @dev: device
6432 * @ppid: port ID
6433 *
6434 * Get device physical port ID
6435 */
6436 int dev_get_phys_port_id(struct net_device *dev,
6437 struct netdev_phys_item_id *ppid)
6438 {
6439 const struct net_device_ops *ops = dev->netdev_ops;
6440
6441 if (!ops->ndo_get_phys_port_id)
6442 return -EOPNOTSUPP;
6443 return ops->ndo_get_phys_port_id(dev, ppid);
6444 }
6445 EXPORT_SYMBOL(dev_get_phys_port_id);
6446
6447 /**
6448 * dev_get_phys_port_name - Get device physical port name
6449 * @dev: device
6450 * @name: port name
6451 * @len: limit of bytes to copy to name
6452 *
6453 * Get device physical port name
6454 */
6455 int dev_get_phys_port_name(struct net_device *dev,
6456 char *name, size_t len)
6457 {
6458 const struct net_device_ops *ops = dev->netdev_ops;
6459
6460 if (!ops->ndo_get_phys_port_name)
6461 return -EOPNOTSUPP;
6462 return ops->ndo_get_phys_port_name(dev, name, len);
6463 }
6464 EXPORT_SYMBOL(dev_get_phys_port_name);
6465
6466 /**
6467 * dev_change_proto_down - update protocol port state information
6468 * @dev: device
6469 * @proto_down: new value
6470 *
6471 * This info can be used by switch drivers to set the phys state of the
6472 * port.
6473 */
6474 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6475 {
6476 const struct net_device_ops *ops = dev->netdev_ops;
6477
6478 if (!ops->ndo_change_proto_down)
6479 return -EOPNOTSUPP;
6480 if (!netif_device_present(dev))
6481 return -ENODEV;
6482 return ops->ndo_change_proto_down(dev, proto_down);
6483 }
6484 EXPORT_SYMBOL(dev_change_proto_down);
6485
6486 /**
6487 * dev_new_index - allocate an ifindex
6488 * @net: the applicable net namespace
6489 *
6490 * Returns a suitable unique value for a new device interface
6491 * number. The caller must hold the rtnl semaphore or the
6492 * dev_base_lock to be sure it remains unique.
6493 */
6494 static int dev_new_index(struct net *net)
6495 {
6496 int ifindex = net->ifindex;
6497 for (;;) {
6498 if (++ifindex <= 0)
6499 ifindex = 1;
6500 if (!__dev_get_by_index(net, ifindex))
6501 return net->ifindex = ifindex;
6502 }
6503 }
6504
6505 /* Delayed registration/unregisteration */
6506 static LIST_HEAD(net_todo_list);
6507 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6508
6509 static void net_set_todo(struct net_device *dev)
6510 {
6511 list_add_tail(&dev->todo_list, &net_todo_list);
6512 dev_net(dev)->dev_unreg_count++;
6513 }
6514
6515 static void rollback_registered_many(struct list_head *head)
6516 {
6517 struct net_device *dev, *tmp;
6518 LIST_HEAD(close_head);
6519
6520 BUG_ON(dev_boot_phase);
6521 ASSERT_RTNL();
6522
6523 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6524 /* Some devices call without registering
6525 * for initialization unwind. Remove those
6526 * devices and proceed with the remaining.
6527 */
6528 if (dev->reg_state == NETREG_UNINITIALIZED) {
6529 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6530 dev->name, dev);
6531
6532 WARN_ON(1);
6533 list_del(&dev->unreg_list);
6534 continue;
6535 }
6536 dev->dismantle = true;
6537 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6538 }
6539
6540 /* If device is running, close it first. */
6541 list_for_each_entry(dev, head, unreg_list)
6542 list_add_tail(&dev->close_list, &close_head);
6543 dev_close_many(&close_head, true);
6544
6545 list_for_each_entry(dev, head, unreg_list) {
6546 /* And unlink it from device chain. */
6547 unlist_netdevice(dev);
6548
6549 dev->reg_state = NETREG_UNREGISTERING;
6550 on_each_cpu(flush_backlog, dev, 1);
6551 }
6552
6553 synchronize_net();
6554
6555 list_for_each_entry(dev, head, unreg_list) {
6556 struct sk_buff *skb = NULL;
6557
6558 /* Shutdown queueing discipline. */
6559 dev_shutdown(dev);
6560
6561
6562 /* Notify protocols, that we are about to destroy
6563 this device. They should clean all the things.
6564 */
6565 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6566
6567 if (!dev->rtnl_link_ops ||
6568 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6569 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6570 GFP_KERNEL);
6571
6572 /*
6573 * Flush the unicast and multicast chains
6574 */
6575 dev_uc_flush(dev);
6576 dev_mc_flush(dev);
6577
6578 if (dev->netdev_ops->ndo_uninit)
6579 dev->netdev_ops->ndo_uninit(dev);
6580
6581 if (skb)
6582 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6583
6584 /* Notifier chain MUST detach us all upper devices. */
6585 WARN_ON(netdev_has_any_upper_dev(dev));
6586
6587 /* Remove entries from kobject tree */
6588 netdev_unregister_kobject(dev);
6589 #ifdef CONFIG_XPS
6590 /* Remove XPS queueing entries */
6591 netif_reset_xps_queues_gt(dev, 0);
6592 #endif
6593 }
6594
6595 synchronize_net();
6596
6597 list_for_each_entry(dev, head, unreg_list)
6598 dev_put(dev);
6599 }
6600
6601 static void rollback_registered(struct net_device *dev)
6602 {
6603 LIST_HEAD(single);
6604
6605 list_add(&dev->unreg_list, &single);
6606 rollback_registered_many(&single);
6607 list_del(&single);
6608 }
6609
6610 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6611 struct net_device *upper, netdev_features_t features)
6612 {
6613 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6614 netdev_features_t feature;
6615 int feature_bit;
6616
6617 for_each_netdev_feature(&upper_disables, feature_bit) {
6618 feature = __NETIF_F_BIT(feature_bit);
6619 if (!(upper->wanted_features & feature)
6620 && (features & feature)) {
6621 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6622 &feature, upper->name);
6623 features &= ~feature;
6624 }
6625 }
6626
6627 return features;
6628 }
6629
6630 static void netdev_sync_lower_features(struct net_device *upper,
6631 struct net_device *lower, netdev_features_t features)
6632 {
6633 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6634 netdev_features_t feature;
6635 int feature_bit;
6636
6637 for_each_netdev_feature(&upper_disables, feature_bit) {
6638 feature = __NETIF_F_BIT(feature_bit);
6639 if (!(features & feature) && (lower->features & feature)) {
6640 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6641 &feature, lower->name);
6642 lower->wanted_features &= ~feature;
6643 netdev_update_features(lower);
6644
6645 if (unlikely(lower->features & feature))
6646 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6647 &feature, lower->name);
6648 }
6649 }
6650 }
6651
6652 static netdev_features_t netdev_fix_features(struct net_device *dev,
6653 netdev_features_t features)
6654 {
6655 /* Fix illegal checksum combinations */
6656 if ((features & NETIF_F_HW_CSUM) &&
6657 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6658 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6659 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6660 }
6661
6662 /* TSO requires that SG is present as well. */
6663 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6664 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6665 features &= ~NETIF_F_ALL_TSO;
6666 }
6667
6668 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6669 !(features & NETIF_F_IP_CSUM)) {
6670 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6671 features &= ~NETIF_F_TSO;
6672 features &= ~NETIF_F_TSO_ECN;
6673 }
6674
6675 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6676 !(features & NETIF_F_IPV6_CSUM)) {
6677 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6678 features &= ~NETIF_F_TSO6;
6679 }
6680
6681 /* TSO ECN requires that TSO is present as well. */
6682 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6683 features &= ~NETIF_F_TSO_ECN;
6684
6685 /* Software GSO depends on SG. */
6686 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6687 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6688 features &= ~NETIF_F_GSO;
6689 }
6690
6691 /* UFO needs SG and checksumming */
6692 if (features & NETIF_F_UFO) {
6693 /* maybe split UFO into V4 and V6? */
6694 if (!(features & NETIF_F_HW_CSUM) &&
6695 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6696 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6697 netdev_dbg(dev,
6698 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6699 features &= ~NETIF_F_UFO;
6700 }
6701
6702 if (!(features & NETIF_F_SG)) {
6703 netdev_dbg(dev,
6704 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6705 features &= ~NETIF_F_UFO;
6706 }
6707 }
6708
6709 #ifdef CONFIG_NET_RX_BUSY_POLL
6710 if (dev->netdev_ops->ndo_busy_poll)
6711 features |= NETIF_F_BUSY_POLL;
6712 else
6713 #endif
6714 features &= ~NETIF_F_BUSY_POLL;
6715
6716 return features;
6717 }
6718
6719 int __netdev_update_features(struct net_device *dev)
6720 {
6721 struct net_device *upper, *lower;
6722 netdev_features_t features;
6723 struct list_head *iter;
6724 int err = -1;
6725
6726 ASSERT_RTNL();
6727
6728 features = netdev_get_wanted_features(dev);
6729
6730 if (dev->netdev_ops->ndo_fix_features)
6731 features = dev->netdev_ops->ndo_fix_features(dev, features);
6732
6733 /* driver might be less strict about feature dependencies */
6734 features = netdev_fix_features(dev, features);
6735
6736 /* some features can't be enabled if they're off an an upper device */
6737 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6738 features = netdev_sync_upper_features(dev, upper, features);
6739
6740 if (dev->features == features)
6741 goto sync_lower;
6742
6743 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6744 &dev->features, &features);
6745
6746 if (dev->netdev_ops->ndo_set_features)
6747 err = dev->netdev_ops->ndo_set_features(dev, features);
6748 else
6749 err = 0;
6750
6751 if (unlikely(err < 0)) {
6752 netdev_err(dev,
6753 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6754 err, &features, &dev->features);
6755 /* return non-0 since some features might have changed and
6756 * it's better to fire a spurious notification than miss it
6757 */
6758 return -1;
6759 }
6760
6761 sync_lower:
6762 /* some features must be disabled on lower devices when disabled
6763 * on an upper device (think: bonding master or bridge)
6764 */
6765 netdev_for_each_lower_dev(dev, lower, iter)
6766 netdev_sync_lower_features(dev, lower, features);
6767
6768 if (!err)
6769 dev->features = features;
6770
6771 return err < 0 ? 0 : 1;
6772 }
6773
6774 /**
6775 * netdev_update_features - recalculate device features
6776 * @dev: the device to check
6777 *
6778 * Recalculate dev->features set and send notifications if it
6779 * has changed. Should be called after driver or hardware dependent
6780 * conditions might have changed that influence the features.
6781 */
6782 void netdev_update_features(struct net_device *dev)
6783 {
6784 if (__netdev_update_features(dev))
6785 netdev_features_change(dev);
6786 }
6787 EXPORT_SYMBOL(netdev_update_features);
6788
6789 /**
6790 * netdev_change_features - recalculate device features
6791 * @dev: the device to check
6792 *
6793 * Recalculate dev->features set and send notifications even
6794 * if they have not changed. Should be called instead of
6795 * netdev_update_features() if also dev->vlan_features might
6796 * have changed to allow the changes to be propagated to stacked
6797 * VLAN devices.
6798 */
6799 void netdev_change_features(struct net_device *dev)
6800 {
6801 __netdev_update_features(dev);
6802 netdev_features_change(dev);
6803 }
6804 EXPORT_SYMBOL(netdev_change_features);
6805
6806 /**
6807 * netif_stacked_transfer_operstate - transfer operstate
6808 * @rootdev: the root or lower level device to transfer state from
6809 * @dev: the device to transfer operstate to
6810 *
6811 * Transfer operational state from root to device. This is normally
6812 * called when a stacking relationship exists between the root
6813 * device and the device(a leaf device).
6814 */
6815 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6816 struct net_device *dev)
6817 {
6818 if (rootdev->operstate == IF_OPER_DORMANT)
6819 netif_dormant_on(dev);
6820 else
6821 netif_dormant_off(dev);
6822
6823 if (netif_carrier_ok(rootdev)) {
6824 if (!netif_carrier_ok(dev))
6825 netif_carrier_on(dev);
6826 } else {
6827 if (netif_carrier_ok(dev))
6828 netif_carrier_off(dev);
6829 }
6830 }
6831 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6832
6833 #ifdef CONFIG_SYSFS
6834 static int netif_alloc_rx_queues(struct net_device *dev)
6835 {
6836 unsigned int i, count = dev->num_rx_queues;
6837 struct netdev_rx_queue *rx;
6838 size_t sz = count * sizeof(*rx);
6839
6840 BUG_ON(count < 1);
6841
6842 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6843 if (!rx) {
6844 rx = vzalloc(sz);
6845 if (!rx)
6846 return -ENOMEM;
6847 }
6848 dev->_rx = rx;
6849
6850 for (i = 0; i < count; i++)
6851 rx[i].dev = dev;
6852 return 0;
6853 }
6854 #endif
6855
6856 static void netdev_init_one_queue(struct net_device *dev,
6857 struct netdev_queue *queue, void *_unused)
6858 {
6859 /* Initialize queue lock */
6860 spin_lock_init(&queue->_xmit_lock);
6861 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6862 queue->xmit_lock_owner = -1;
6863 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6864 queue->dev = dev;
6865 #ifdef CONFIG_BQL
6866 dql_init(&queue->dql, HZ);
6867 #endif
6868 }
6869
6870 static void netif_free_tx_queues(struct net_device *dev)
6871 {
6872 kvfree(dev->_tx);
6873 }
6874
6875 static int netif_alloc_netdev_queues(struct net_device *dev)
6876 {
6877 unsigned int count = dev->num_tx_queues;
6878 struct netdev_queue *tx;
6879 size_t sz = count * sizeof(*tx);
6880
6881 if (count < 1 || count > 0xffff)
6882 return -EINVAL;
6883
6884 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6885 if (!tx) {
6886 tx = vzalloc(sz);
6887 if (!tx)
6888 return -ENOMEM;
6889 }
6890 dev->_tx = tx;
6891
6892 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6893 spin_lock_init(&dev->tx_global_lock);
6894
6895 return 0;
6896 }
6897
6898 void netif_tx_stop_all_queues(struct net_device *dev)
6899 {
6900 unsigned int i;
6901
6902 for (i = 0; i < dev->num_tx_queues; i++) {
6903 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6904 netif_tx_stop_queue(txq);
6905 }
6906 }
6907 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6908
6909 /**
6910 * register_netdevice - register a network device
6911 * @dev: device to register
6912 *
6913 * Take a completed network device structure and add it to the kernel
6914 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6915 * chain. 0 is returned on success. A negative errno code is returned
6916 * on a failure to set up the device, or if the name is a duplicate.
6917 *
6918 * Callers must hold the rtnl semaphore. You may want
6919 * register_netdev() instead of this.
6920 *
6921 * BUGS:
6922 * The locking appears insufficient to guarantee two parallel registers
6923 * will not get the same name.
6924 */
6925
6926 int register_netdevice(struct net_device *dev)
6927 {
6928 int ret;
6929 struct net *net = dev_net(dev);
6930
6931 BUG_ON(dev_boot_phase);
6932 ASSERT_RTNL();
6933
6934 might_sleep();
6935
6936 /* When net_device's are persistent, this will be fatal. */
6937 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6938 BUG_ON(!net);
6939
6940 spin_lock_init(&dev->addr_list_lock);
6941 netdev_set_addr_lockdep_class(dev);
6942
6943 ret = dev_get_valid_name(net, dev, dev->name);
6944 if (ret < 0)
6945 goto out;
6946
6947 /* Init, if this function is available */
6948 if (dev->netdev_ops->ndo_init) {
6949 ret = dev->netdev_ops->ndo_init(dev);
6950 if (ret) {
6951 if (ret > 0)
6952 ret = -EIO;
6953 goto out;
6954 }
6955 }
6956
6957 if (((dev->hw_features | dev->features) &
6958 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6959 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6960 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6961 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6962 ret = -EINVAL;
6963 goto err_uninit;
6964 }
6965
6966 ret = -EBUSY;
6967 if (!dev->ifindex)
6968 dev->ifindex = dev_new_index(net);
6969 else if (__dev_get_by_index(net, dev->ifindex))
6970 goto err_uninit;
6971
6972 /* Transfer changeable features to wanted_features and enable
6973 * software offloads (GSO and GRO).
6974 */
6975 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6976 dev->features |= NETIF_F_SOFT_FEATURES;
6977 dev->wanted_features = dev->features & dev->hw_features;
6978
6979 if (!(dev->flags & IFF_LOOPBACK)) {
6980 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6981 }
6982
6983 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6984 */
6985 dev->vlan_features |= NETIF_F_HIGHDMA;
6986
6987 /* Make NETIF_F_SG inheritable to tunnel devices.
6988 */
6989 dev->hw_enc_features |= NETIF_F_SG;
6990
6991 /* Make NETIF_F_SG inheritable to MPLS.
6992 */
6993 dev->mpls_features |= NETIF_F_SG;
6994
6995 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6996 ret = notifier_to_errno(ret);
6997 if (ret)
6998 goto err_uninit;
6999
7000 ret = netdev_register_kobject(dev);
7001 if (ret)
7002 goto err_uninit;
7003 dev->reg_state = NETREG_REGISTERED;
7004
7005 __netdev_update_features(dev);
7006
7007 /*
7008 * Default initial state at registry is that the
7009 * device is present.
7010 */
7011
7012 set_bit(__LINK_STATE_PRESENT, &dev->state);
7013
7014 linkwatch_init_dev(dev);
7015
7016 dev_init_scheduler(dev);
7017 dev_hold(dev);
7018 list_netdevice(dev);
7019 add_device_randomness(dev->dev_addr, dev->addr_len);
7020
7021 /* If the device has permanent device address, driver should
7022 * set dev_addr and also addr_assign_type should be set to
7023 * NET_ADDR_PERM (default value).
7024 */
7025 if (dev->addr_assign_type == NET_ADDR_PERM)
7026 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7027
7028 /* Notify protocols, that a new device appeared. */
7029 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7030 ret = notifier_to_errno(ret);
7031 if (ret) {
7032 rollback_registered(dev);
7033 dev->reg_state = NETREG_UNREGISTERED;
7034 }
7035 /*
7036 * Prevent userspace races by waiting until the network
7037 * device is fully setup before sending notifications.
7038 */
7039 if (!dev->rtnl_link_ops ||
7040 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7041 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7042
7043 out:
7044 return ret;
7045
7046 err_uninit:
7047 if (dev->netdev_ops->ndo_uninit)
7048 dev->netdev_ops->ndo_uninit(dev);
7049 goto out;
7050 }
7051 EXPORT_SYMBOL(register_netdevice);
7052
7053 /**
7054 * init_dummy_netdev - init a dummy network device for NAPI
7055 * @dev: device to init
7056 *
7057 * This takes a network device structure and initialize the minimum
7058 * amount of fields so it can be used to schedule NAPI polls without
7059 * registering a full blown interface. This is to be used by drivers
7060 * that need to tie several hardware interfaces to a single NAPI
7061 * poll scheduler due to HW limitations.
7062 */
7063 int init_dummy_netdev(struct net_device *dev)
7064 {
7065 /* Clear everything. Note we don't initialize spinlocks
7066 * are they aren't supposed to be taken by any of the
7067 * NAPI code and this dummy netdev is supposed to be
7068 * only ever used for NAPI polls
7069 */
7070 memset(dev, 0, sizeof(struct net_device));
7071
7072 /* make sure we BUG if trying to hit standard
7073 * register/unregister code path
7074 */
7075 dev->reg_state = NETREG_DUMMY;
7076
7077 /* NAPI wants this */
7078 INIT_LIST_HEAD(&dev->napi_list);
7079
7080 /* a dummy interface is started by default */
7081 set_bit(__LINK_STATE_PRESENT, &dev->state);
7082 set_bit(__LINK_STATE_START, &dev->state);
7083
7084 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7085 * because users of this 'device' dont need to change
7086 * its refcount.
7087 */
7088
7089 return 0;
7090 }
7091 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7092
7093
7094 /**
7095 * register_netdev - register a network device
7096 * @dev: device to register
7097 *
7098 * Take a completed network device structure and add it to the kernel
7099 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7100 * chain. 0 is returned on success. A negative errno code is returned
7101 * on a failure to set up the device, or if the name is a duplicate.
7102 *
7103 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7104 * and expands the device name if you passed a format string to
7105 * alloc_netdev.
7106 */
7107 int register_netdev(struct net_device *dev)
7108 {
7109 int err;
7110
7111 rtnl_lock();
7112 err = register_netdevice(dev);
7113 rtnl_unlock();
7114 return err;
7115 }
7116 EXPORT_SYMBOL(register_netdev);
7117
7118 int netdev_refcnt_read(const struct net_device *dev)
7119 {
7120 int i, refcnt = 0;
7121
7122 for_each_possible_cpu(i)
7123 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7124 return refcnt;
7125 }
7126 EXPORT_SYMBOL(netdev_refcnt_read);
7127
7128 /**
7129 * netdev_wait_allrefs - wait until all references are gone.
7130 * @dev: target net_device
7131 *
7132 * This is called when unregistering network devices.
7133 *
7134 * Any protocol or device that holds a reference should register
7135 * for netdevice notification, and cleanup and put back the
7136 * reference if they receive an UNREGISTER event.
7137 * We can get stuck here if buggy protocols don't correctly
7138 * call dev_put.
7139 */
7140 static void netdev_wait_allrefs(struct net_device *dev)
7141 {
7142 unsigned long rebroadcast_time, warning_time;
7143 int refcnt;
7144
7145 linkwatch_forget_dev(dev);
7146
7147 rebroadcast_time = warning_time = jiffies;
7148 refcnt = netdev_refcnt_read(dev);
7149
7150 while (refcnt != 0) {
7151 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7152 rtnl_lock();
7153
7154 /* Rebroadcast unregister notification */
7155 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7156
7157 __rtnl_unlock();
7158 rcu_barrier();
7159 rtnl_lock();
7160
7161 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7162 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7163 &dev->state)) {
7164 /* We must not have linkwatch events
7165 * pending on unregister. If this
7166 * happens, we simply run the queue
7167 * unscheduled, resulting in a noop
7168 * for this device.
7169 */
7170 linkwatch_run_queue();
7171 }
7172
7173 __rtnl_unlock();
7174
7175 rebroadcast_time = jiffies;
7176 }
7177
7178 msleep(250);
7179
7180 refcnt = netdev_refcnt_read(dev);
7181
7182 if (time_after(jiffies, warning_time + 10 * HZ)) {
7183 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7184 dev->name, refcnt);
7185 warning_time = jiffies;
7186 }
7187 }
7188 }
7189
7190 /* The sequence is:
7191 *
7192 * rtnl_lock();
7193 * ...
7194 * register_netdevice(x1);
7195 * register_netdevice(x2);
7196 * ...
7197 * unregister_netdevice(y1);
7198 * unregister_netdevice(y2);
7199 * ...
7200 * rtnl_unlock();
7201 * free_netdev(y1);
7202 * free_netdev(y2);
7203 *
7204 * We are invoked by rtnl_unlock().
7205 * This allows us to deal with problems:
7206 * 1) We can delete sysfs objects which invoke hotplug
7207 * without deadlocking with linkwatch via keventd.
7208 * 2) Since we run with the RTNL semaphore not held, we can sleep
7209 * safely in order to wait for the netdev refcnt to drop to zero.
7210 *
7211 * We must not return until all unregister events added during
7212 * the interval the lock was held have been completed.
7213 */
7214 void netdev_run_todo(void)
7215 {
7216 struct list_head list;
7217
7218 /* Snapshot list, allow later requests */
7219 list_replace_init(&net_todo_list, &list);
7220
7221 __rtnl_unlock();
7222
7223
7224 /* Wait for rcu callbacks to finish before next phase */
7225 if (!list_empty(&list))
7226 rcu_barrier();
7227
7228 while (!list_empty(&list)) {
7229 struct net_device *dev
7230 = list_first_entry(&list, struct net_device, todo_list);
7231 list_del(&dev->todo_list);
7232
7233 rtnl_lock();
7234 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7235 __rtnl_unlock();
7236
7237 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7238 pr_err("network todo '%s' but state %d\n",
7239 dev->name, dev->reg_state);
7240 dump_stack();
7241 continue;
7242 }
7243
7244 dev->reg_state = NETREG_UNREGISTERED;
7245
7246 netdev_wait_allrefs(dev);
7247
7248 /* paranoia */
7249 BUG_ON(netdev_refcnt_read(dev));
7250 BUG_ON(!list_empty(&dev->ptype_all));
7251 BUG_ON(!list_empty(&dev->ptype_specific));
7252 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7253 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7254 WARN_ON(dev->dn_ptr);
7255
7256 if (dev->destructor)
7257 dev->destructor(dev);
7258
7259 /* Report a network device has been unregistered */
7260 rtnl_lock();
7261 dev_net(dev)->dev_unreg_count--;
7262 __rtnl_unlock();
7263 wake_up(&netdev_unregistering_wq);
7264
7265 /* Free network device */
7266 kobject_put(&dev->dev.kobj);
7267 }
7268 }
7269
7270 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7271 * all the same fields in the same order as net_device_stats, with only
7272 * the type differing, but rtnl_link_stats64 may have additional fields
7273 * at the end for newer counters.
7274 */
7275 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7276 const struct net_device_stats *netdev_stats)
7277 {
7278 #if BITS_PER_LONG == 64
7279 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7280 memcpy(stats64, netdev_stats, sizeof(*stats64));
7281 /* zero out counters that only exist in rtnl_link_stats64 */
7282 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7283 sizeof(*stats64) - sizeof(*netdev_stats));
7284 #else
7285 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7286 const unsigned long *src = (const unsigned long *)netdev_stats;
7287 u64 *dst = (u64 *)stats64;
7288
7289 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7290 for (i = 0; i < n; i++)
7291 dst[i] = src[i];
7292 /* zero out counters that only exist in rtnl_link_stats64 */
7293 memset((char *)stats64 + n * sizeof(u64), 0,
7294 sizeof(*stats64) - n * sizeof(u64));
7295 #endif
7296 }
7297 EXPORT_SYMBOL(netdev_stats_to_stats64);
7298
7299 /**
7300 * dev_get_stats - get network device statistics
7301 * @dev: device to get statistics from
7302 * @storage: place to store stats
7303 *
7304 * Get network statistics from device. Return @storage.
7305 * The device driver may provide its own method by setting
7306 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7307 * otherwise the internal statistics structure is used.
7308 */
7309 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7310 struct rtnl_link_stats64 *storage)
7311 {
7312 const struct net_device_ops *ops = dev->netdev_ops;
7313
7314 if (ops->ndo_get_stats64) {
7315 memset(storage, 0, sizeof(*storage));
7316 ops->ndo_get_stats64(dev, storage);
7317 } else if (ops->ndo_get_stats) {
7318 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7319 } else {
7320 netdev_stats_to_stats64(storage, &dev->stats);
7321 }
7322 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7323 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7324 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7325 return storage;
7326 }
7327 EXPORT_SYMBOL(dev_get_stats);
7328
7329 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7330 {
7331 struct netdev_queue *queue = dev_ingress_queue(dev);
7332
7333 #ifdef CONFIG_NET_CLS_ACT
7334 if (queue)
7335 return queue;
7336 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7337 if (!queue)
7338 return NULL;
7339 netdev_init_one_queue(dev, queue, NULL);
7340 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7341 queue->qdisc_sleeping = &noop_qdisc;
7342 rcu_assign_pointer(dev->ingress_queue, queue);
7343 #endif
7344 return queue;
7345 }
7346
7347 static const struct ethtool_ops default_ethtool_ops;
7348
7349 void netdev_set_default_ethtool_ops(struct net_device *dev,
7350 const struct ethtool_ops *ops)
7351 {
7352 if (dev->ethtool_ops == &default_ethtool_ops)
7353 dev->ethtool_ops = ops;
7354 }
7355 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7356
7357 void netdev_freemem(struct net_device *dev)
7358 {
7359 char *addr = (char *)dev - dev->padded;
7360
7361 kvfree(addr);
7362 }
7363
7364 /**
7365 * alloc_netdev_mqs - allocate network device
7366 * @sizeof_priv: size of private data to allocate space for
7367 * @name: device name format string
7368 * @name_assign_type: origin of device name
7369 * @setup: callback to initialize device
7370 * @txqs: the number of TX subqueues to allocate
7371 * @rxqs: the number of RX subqueues to allocate
7372 *
7373 * Allocates a struct net_device with private data area for driver use
7374 * and performs basic initialization. Also allocates subqueue structs
7375 * for each queue on the device.
7376 */
7377 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7378 unsigned char name_assign_type,
7379 void (*setup)(struct net_device *),
7380 unsigned int txqs, unsigned int rxqs)
7381 {
7382 struct net_device *dev;
7383 size_t alloc_size;
7384 struct net_device *p;
7385
7386 BUG_ON(strlen(name) >= sizeof(dev->name));
7387
7388 if (txqs < 1) {
7389 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7390 return NULL;
7391 }
7392
7393 #ifdef CONFIG_SYSFS
7394 if (rxqs < 1) {
7395 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7396 return NULL;
7397 }
7398 #endif
7399
7400 alloc_size = sizeof(struct net_device);
7401 if (sizeof_priv) {
7402 /* ensure 32-byte alignment of private area */
7403 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7404 alloc_size += sizeof_priv;
7405 }
7406 /* ensure 32-byte alignment of whole construct */
7407 alloc_size += NETDEV_ALIGN - 1;
7408
7409 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7410 if (!p)
7411 p = vzalloc(alloc_size);
7412 if (!p)
7413 return NULL;
7414
7415 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7416 dev->padded = (char *)dev - (char *)p;
7417
7418 dev->pcpu_refcnt = alloc_percpu(int);
7419 if (!dev->pcpu_refcnt)
7420 goto free_dev;
7421
7422 if (dev_addr_init(dev))
7423 goto free_pcpu;
7424
7425 dev_mc_init(dev);
7426 dev_uc_init(dev);
7427
7428 dev_net_set(dev, &init_net);
7429
7430 dev->gso_max_size = GSO_MAX_SIZE;
7431 dev->gso_max_segs = GSO_MAX_SEGS;
7432 dev->gso_min_segs = 0;
7433
7434 INIT_LIST_HEAD(&dev->napi_list);
7435 INIT_LIST_HEAD(&dev->unreg_list);
7436 INIT_LIST_HEAD(&dev->close_list);
7437 INIT_LIST_HEAD(&dev->link_watch_list);
7438 INIT_LIST_HEAD(&dev->adj_list.upper);
7439 INIT_LIST_HEAD(&dev->adj_list.lower);
7440 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7441 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7442 INIT_LIST_HEAD(&dev->ptype_all);
7443 INIT_LIST_HEAD(&dev->ptype_specific);
7444 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7445 setup(dev);
7446
7447 if (!dev->tx_queue_len) {
7448 dev->priv_flags |= IFF_NO_QUEUE;
7449 dev->tx_queue_len = 1;
7450 }
7451
7452 dev->num_tx_queues = txqs;
7453 dev->real_num_tx_queues = txqs;
7454 if (netif_alloc_netdev_queues(dev))
7455 goto free_all;
7456
7457 #ifdef CONFIG_SYSFS
7458 dev->num_rx_queues = rxqs;
7459 dev->real_num_rx_queues = rxqs;
7460 if (netif_alloc_rx_queues(dev))
7461 goto free_all;
7462 #endif
7463
7464 strcpy(dev->name, name);
7465 dev->name_assign_type = name_assign_type;
7466 dev->group = INIT_NETDEV_GROUP;
7467 if (!dev->ethtool_ops)
7468 dev->ethtool_ops = &default_ethtool_ops;
7469
7470 nf_hook_ingress_init(dev);
7471
7472 return dev;
7473
7474 free_all:
7475 free_netdev(dev);
7476 return NULL;
7477
7478 free_pcpu:
7479 free_percpu(dev->pcpu_refcnt);
7480 free_dev:
7481 netdev_freemem(dev);
7482 return NULL;
7483 }
7484 EXPORT_SYMBOL(alloc_netdev_mqs);
7485
7486 /**
7487 * free_netdev - free network device
7488 * @dev: device
7489 *
7490 * This function does the last stage of destroying an allocated device
7491 * interface. The reference to the device object is released.
7492 * If this is the last reference then it will be freed.
7493 * Must be called in process context.
7494 */
7495 void free_netdev(struct net_device *dev)
7496 {
7497 struct napi_struct *p, *n;
7498
7499 might_sleep();
7500 netif_free_tx_queues(dev);
7501 #ifdef CONFIG_SYSFS
7502 kvfree(dev->_rx);
7503 #endif
7504
7505 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7506
7507 /* Flush device addresses */
7508 dev_addr_flush(dev);
7509
7510 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7511 netif_napi_del(p);
7512
7513 free_percpu(dev->pcpu_refcnt);
7514 dev->pcpu_refcnt = NULL;
7515
7516 /* Compatibility with error handling in drivers */
7517 if (dev->reg_state == NETREG_UNINITIALIZED) {
7518 netdev_freemem(dev);
7519 return;
7520 }
7521
7522 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7523 dev->reg_state = NETREG_RELEASED;
7524
7525 /* will free via device release */
7526 put_device(&dev->dev);
7527 }
7528 EXPORT_SYMBOL(free_netdev);
7529
7530 /**
7531 * synchronize_net - Synchronize with packet receive processing
7532 *
7533 * Wait for packets currently being received to be done.
7534 * Does not block later packets from starting.
7535 */
7536 void synchronize_net(void)
7537 {
7538 might_sleep();
7539 if (rtnl_is_locked())
7540 synchronize_rcu_expedited();
7541 else
7542 synchronize_rcu();
7543 }
7544 EXPORT_SYMBOL(synchronize_net);
7545
7546 /**
7547 * unregister_netdevice_queue - remove device from the kernel
7548 * @dev: device
7549 * @head: list
7550 *
7551 * This function shuts down a device interface and removes it
7552 * from the kernel tables.
7553 * If head not NULL, device is queued to be unregistered later.
7554 *
7555 * Callers must hold the rtnl semaphore. You may want
7556 * unregister_netdev() instead of this.
7557 */
7558
7559 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7560 {
7561 ASSERT_RTNL();
7562
7563 if (head) {
7564 list_move_tail(&dev->unreg_list, head);
7565 } else {
7566 rollback_registered(dev);
7567 /* Finish processing unregister after unlock */
7568 net_set_todo(dev);
7569 }
7570 }
7571 EXPORT_SYMBOL(unregister_netdevice_queue);
7572
7573 /**
7574 * unregister_netdevice_many - unregister many devices
7575 * @head: list of devices
7576 *
7577 * Note: As most callers use a stack allocated list_head,
7578 * we force a list_del() to make sure stack wont be corrupted later.
7579 */
7580 void unregister_netdevice_many(struct list_head *head)
7581 {
7582 struct net_device *dev;
7583
7584 if (!list_empty(head)) {
7585 rollback_registered_many(head);
7586 list_for_each_entry(dev, head, unreg_list)
7587 net_set_todo(dev);
7588 list_del(head);
7589 }
7590 }
7591 EXPORT_SYMBOL(unregister_netdevice_many);
7592
7593 /**
7594 * unregister_netdev - remove device from the kernel
7595 * @dev: device
7596 *
7597 * This function shuts down a device interface and removes it
7598 * from the kernel tables.
7599 *
7600 * This is just a wrapper for unregister_netdevice that takes
7601 * the rtnl semaphore. In general you want to use this and not
7602 * unregister_netdevice.
7603 */
7604 void unregister_netdev(struct net_device *dev)
7605 {
7606 rtnl_lock();
7607 unregister_netdevice(dev);
7608 rtnl_unlock();
7609 }
7610 EXPORT_SYMBOL(unregister_netdev);
7611
7612 /**
7613 * dev_change_net_namespace - move device to different nethost namespace
7614 * @dev: device
7615 * @net: network namespace
7616 * @pat: If not NULL name pattern to try if the current device name
7617 * is already taken in the destination network namespace.
7618 *
7619 * This function shuts down a device interface and moves it
7620 * to a new network namespace. On success 0 is returned, on
7621 * a failure a netagive errno code is returned.
7622 *
7623 * Callers must hold the rtnl semaphore.
7624 */
7625
7626 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7627 {
7628 int err;
7629
7630 ASSERT_RTNL();
7631
7632 /* Don't allow namespace local devices to be moved. */
7633 err = -EINVAL;
7634 if (dev->features & NETIF_F_NETNS_LOCAL)
7635 goto out;
7636
7637 /* Ensure the device has been registrered */
7638 if (dev->reg_state != NETREG_REGISTERED)
7639 goto out;
7640
7641 /* Get out if there is nothing todo */
7642 err = 0;
7643 if (net_eq(dev_net(dev), net))
7644 goto out;
7645
7646 /* Pick the destination device name, and ensure
7647 * we can use it in the destination network namespace.
7648 */
7649 err = -EEXIST;
7650 if (__dev_get_by_name(net, dev->name)) {
7651 /* We get here if we can't use the current device name */
7652 if (!pat)
7653 goto out;
7654 if (dev_get_valid_name(net, dev, pat) < 0)
7655 goto out;
7656 }
7657
7658 /*
7659 * And now a mini version of register_netdevice unregister_netdevice.
7660 */
7661
7662 /* If device is running close it first. */
7663 dev_close(dev);
7664
7665 /* And unlink it from device chain */
7666 err = -ENODEV;
7667 unlist_netdevice(dev);
7668
7669 synchronize_net();
7670
7671 /* Shutdown queueing discipline. */
7672 dev_shutdown(dev);
7673
7674 /* Notify protocols, that we are about to destroy
7675 this device. They should clean all the things.
7676
7677 Note that dev->reg_state stays at NETREG_REGISTERED.
7678 This is wanted because this way 8021q and macvlan know
7679 the device is just moving and can keep their slaves up.
7680 */
7681 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7682 rcu_barrier();
7683 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7684 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7685
7686 /*
7687 * Flush the unicast and multicast chains
7688 */
7689 dev_uc_flush(dev);
7690 dev_mc_flush(dev);
7691
7692 /* Send a netdev-removed uevent to the old namespace */
7693 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7694 netdev_adjacent_del_links(dev);
7695
7696 /* Actually switch the network namespace */
7697 dev_net_set(dev, net);
7698
7699 /* If there is an ifindex conflict assign a new one */
7700 if (__dev_get_by_index(net, dev->ifindex))
7701 dev->ifindex = dev_new_index(net);
7702
7703 /* Send a netdev-add uevent to the new namespace */
7704 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7705 netdev_adjacent_add_links(dev);
7706
7707 /* Fixup kobjects */
7708 err = device_rename(&dev->dev, dev->name);
7709 WARN_ON(err);
7710
7711 /* Add the device back in the hashes */
7712 list_netdevice(dev);
7713
7714 /* Notify protocols, that a new device appeared. */
7715 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7716
7717 /*
7718 * Prevent userspace races by waiting until the network
7719 * device is fully setup before sending notifications.
7720 */
7721 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7722
7723 synchronize_net();
7724 err = 0;
7725 out:
7726 return err;
7727 }
7728 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7729
7730 static int dev_cpu_callback(struct notifier_block *nfb,
7731 unsigned long action,
7732 void *ocpu)
7733 {
7734 struct sk_buff **list_skb;
7735 struct sk_buff *skb;
7736 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7737 struct softnet_data *sd, *oldsd;
7738
7739 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7740 return NOTIFY_OK;
7741
7742 local_irq_disable();
7743 cpu = smp_processor_id();
7744 sd = &per_cpu(softnet_data, cpu);
7745 oldsd = &per_cpu(softnet_data, oldcpu);
7746
7747 /* Find end of our completion_queue. */
7748 list_skb = &sd->completion_queue;
7749 while (*list_skb)
7750 list_skb = &(*list_skb)->next;
7751 /* Append completion queue from offline CPU. */
7752 *list_skb = oldsd->completion_queue;
7753 oldsd->completion_queue = NULL;
7754
7755 /* Append output queue from offline CPU. */
7756 if (oldsd->output_queue) {
7757 *sd->output_queue_tailp = oldsd->output_queue;
7758 sd->output_queue_tailp = oldsd->output_queue_tailp;
7759 oldsd->output_queue = NULL;
7760 oldsd->output_queue_tailp = &oldsd->output_queue;
7761 }
7762 /* Append NAPI poll list from offline CPU, with one exception :
7763 * process_backlog() must be called by cpu owning percpu backlog.
7764 * We properly handle process_queue & input_pkt_queue later.
7765 */
7766 while (!list_empty(&oldsd->poll_list)) {
7767 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7768 struct napi_struct,
7769 poll_list);
7770
7771 list_del_init(&napi->poll_list);
7772 if (napi->poll == process_backlog)
7773 napi->state = 0;
7774 else
7775 ____napi_schedule(sd, napi);
7776 }
7777
7778 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7779 local_irq_enable();
7780
7781 /* Process offline CPU's input_pkt_queue */
7782 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7783 netif_rx_ni(skb);
7784 input_queue_head_incr(oldsd);
7785 }
7786 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7787 netif_rx_ni(skb);
7788 input_queue_head_incr(oldsd);
7789 }
7790
7791 return NOTIFY_OK;
7792 }
7793
7794
7795 /**
7796 * netdev_increment_features - increment feature set by one
7797 * @all: current feature set
7798 * @one: new feature set
7799 * @mask: mask feature set
7800 *
7801 * Computes a new feature set after adding a device with feature set
7802 * @one to the master device with current feature set @all. Will not
7803 * enable anything that is off in @mask. Returns the new feature set.
7804 */
7805 netdev_features_t netdev_increment_features(netdev_features_t all,
7806 netdev_features_t one, netdev_features_t mask)
7807 {
7808 if (mask & NETIF_F_HW_CSUM)
7809 mask |= NETIF_F_CSUM_MASK;
7810 mask |= NETIF_F_VLAN_CHALLENGED;
7811
7812 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
7813 all &= one | ~NETIF_F_ALL_FOR_ALL;
7814
7815 /* If one device supports hw checksumming, set for all. */
7816 if (all & NETIF_F_HW_CSUM)
7817 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7818
7819 return all;
7820 }
7821 EXPORT_SYMBOL(netdev_increment_features);
7822
7823 static struct hlist_head * __net_init netdev_create_hash(void)
7824 {
7825 int i;
7826 struct hlist_head *hash;
7827
7828 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7829 if (hash != NULL)
7830 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7831 INIT_HLIST_HEAD(&hash[i]);
7832
7833 return hash;
7834 }
7835
7836 /* Initialize per network namespace state */
7837 static int __net_init netdev_init(struct net *net)
7838 {
7839 if (net != &init_net)
7840 INIT_LIST_HEAD(&net->dev_base_head);
7841
7842 net->dev_name_head = netdev_create_hash();
7843 if (net->dev_name_head == NULL)
7844 goto err_name;
7845
7846 net->dev_index_head = netdev_create_hash();
7847 if (net->dev_index_head == NULL)
7848 goto err_idx;
7849
7850 return 0;
7851
7852 err_idx:
7853 kfree(net->dev_name_head);
7854 err_name:
7855 return -ENOMEM;
7856 }
7857
7858 /**
7859 * netdev_drivername - network driver for the device
7860 * @dev: network device
7861 *
7862 * Determine network driver for device.
7863 */
7864 const char *netdev_drivername(const struct net_device *dev)
7865 {
7866 const struct device_driver *driver;
7867 const struct device *parent;
7868 const char *empty = "";
7869
7870 parent = dev->dev.parent;
7871 if (!parent)
7872 return empty;
7873
7874 driver = parent->driver;
7875 if (driver && driver->name)
7876 return driver->name;
7877 return empty;
7878 }
7879
7880 static void __netdev_printk(const char *level, const struct net_device *dev,
7881 struct va_format *vaf)
7882 {
7883 if (dev && dev->dev.parent) {
7884 dev_printk_emit(level[1] - '0',
7885 dev->dev.parent,
7886 "%s %s %s%s: %pV",
7887 dev_driver_string(dev->dev.parent),
7888 dev_name(dev->dev.parent),
7889 netdev_name(dev), netdev_reg_state(dev),
7890 vaf);
7891 } else if (dev) {
7892 printk("%s%s%s: %pV",
7893 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7894 } else {
7895 printk("%s(NULL net_device): %pV", level, vaf);
7896 }
7897 }
7898
7899 void netdev_printk(const char *level, const struct net_device *dev,
7900 const char *format, ...)
7901 {
7902 struct va_format vaf;
7903 va_list args;
7904
7905 va_start(args, format);
7906
7907 vaf.fmt = format;
7908 vaf.va = &args;
7909
7910 __netdev_printk(level, dev, &vaf);
7911
7912 va_end(args);
7913 }
7914 EXPORT_SYMBOL(netdev_printk);
7915
7916 #define define_netdev_printk_level(func, level) \
7917 void func(const struct net_device *dev, const char *fmt, ...) \
7918 { \
7919 struct va_format vaf; \
7920 va_list args; \
7921 \
7922 va_start(args, fmt); \
7923 \
7924 vaf.fmt = fmt; \
7925 vaf.va = &args; \
7926 \
7927 __netdev_printk(level, dev, &vaf); \
7928 \
7929 va_end(args); \
7930 } \
7931 EXPORT_SYMBOL(func);
7932
7933 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7934 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7935 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7936 define_netdev_printk_level(netdev_err, KERN_ERR);
7937 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7938 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7939 define_netdev_printk_level(netdev_info, KERN_INFO);
7940
7941 static void __net_exit netdev_exit(struct net *net)
7942 {
7943 kfree(net->dev_name_head);
7944 kfree(net->dev_index_head);
7945 }
7946
7947 static struct pernet_operations __net_initdata netdev_net_ops = {
7948 .init = netdev_init,
7949 .exit = netdev_exit,
7950 };
7951
7952 static void __net_exit default_device_exit(struct net *net)
7953 {
7954 struct net_device *dev, *aux;
7955 /*
7956 * Push all migratable network devices back to the
7957 * initial network namespace
7958 */
7959 rtnl_lock();
7960 for_each_netdev_safe(net, dev, aux) {
7961 int err;
7962 char fb_name[IFNAMSIZ];
7963
7964 /* Ignore unmoveable devices (i.e. loopback) */
7965 if (dev->features & NETIF_F_NETNS_LOCAL)
7966 continue;
7967
7968 /* Leave virtual devices for the generic cleanup */
7969 if (dev->rtnl_link_ops)
7970 continue;
7971
7972 /* Push remaining network devices to init_net */
7973 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7974 err = dev_change_net_namespace(dev, &init_net, fb_name);
7975 if (err) {
7976 pr_emerg("%s: failed to move %s to init_net: %d\n",
7977 __func__, dev->name, err);
7978 BUG();
7979 }
7980 }
7981 rtnl_unlock();
7982 }
7983
7984 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7985 {
7986 /* Return with the rtnl_lock held when there are no network
7987 * devices unregistering in any network namespace in net_list.
7988 */
7989 struct net *net;
7990 bool unregistering;
7991 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7992
7993 add_wait_queue(&netdev_unregistering_wq, &wait);
7994 for (;;) {
7995 unregistering = false;
7996 rtnl_lock();
7997 list_for_each_entry(net, net_list, exit_list) {
7998 if (net->dev_unreg_count > 0) {
7999 unregistering = true;
8000 break;
8001 }
8002 }
8003 if (!unregistering)
8004 break;
8005 __rtnl_unlock();
8006
8007 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8008 }
8009 remove_wait_queue(&netdev_unregistering_wq, &wait);
8010 }
8011
8012 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8013 {
8014 /* At exit all network devices most be removed from a network
8015 * namespace. Do this in the reverse order of registration.
8016 * Do this across as many network namespaces as possible to
8017 * improve batching efficiency.
8018 */
8019 struct net_device *dev;
8020 struct net *net;
8021 LIST_HEAD(dev_kill_list);
8022
8023 /* To prevent network device cleanup code from dereferencing
8024 * loopback devices or network devices that have been freed
8025 * wait here for all pending unregistrations to complete,
8026 * before unregistring the loopback device and allowing the
8027 * network namespace be freed.
8028 *
8029 * The netdev todo list containing all network devices
8030 * unregistrations that happen in default_device_exit_batch
8031 * will run in the rtnl_unlock() at the end of
8032 * default_device_exit_batch.
8033 */
8034 rtnl_lock_unregistering(net_list);
8035 list_for_each_entry(net, net_list, exit_list) {
8036 for_each_netdev_reverse(net, dev) {
8037 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8038 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8039 else
8040 unregister_netdevice_queue(dev, &dev_kill_list);
8041 }
8042 }
8043 unregister_netdevice_many(&dev_kill_list);
8044 rtnl_unlock();
8045 }
8046
8047 static struct pernet_operations __net_initdata default_device_ops = {
8048 .exit = default_device_exit,
8049 .exit_batch = default_device_exit_batch,
8050 };
8051
8052 /*
8053 * Initialize the DEV module. At boot time this walks the device list and
8054 * unhooks any devices that fail to initialise (normally hardware not
8055 * present) and leaves us with a valid list of present and active devices.
8056 *
8057 */
8058
8059 /*
8060 * This is called single threaded during boot, so no need
8061 * to take the rtnl semaphore.
8062 */
8063 static int __init net_dev_init(void)
8064 {
8065 int i, rc = -ENOMEM;
8066
8067 BUG_ON(!dev_boot_phase);
8068
8069 if (dev_proc_init())
8070 goto out;
8071
8072 if (netdev_kobject_init())
8073 goto out;
8074
8075 INIT_LIST_HEAD(&ptype_all);
8076 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8077 INIT_LIST_HEAD(&ptype_base[i]);
8078
8079 INIT_LIST_HEAD(&offload_base);
8080
8081 if (register_pernet_subsys(&netdev_net_ops))
8082 goto out;
8083
8084 /*
8085 * Initialise the packet receive queues.
8086 */
8087
8088 for_each_possible_cpu(i) {
8089 struct softnet_data *sd = &per_cpu(softnet_data, i);
8090
8091 skb_queue_head_init(&sd->input_pkt_queue);
8092 skb_queue_head_init(&sd->process_queue);
8093 INIT_LIST_HEAD(&sd->poll_list);
8094 sd->output_queue_tailp = &sd->output_queue;
8095 #ifdef CONFIG_RPS
8096 sd->csd.func = rps_trigger_softirq;
8097 sd->csd.info = sd;
8098 sd->cpu = i;
8099 #endif
8100
8101 sd->backlog.poll = process_backlog;
8102 sd->backlog.weight = weight_p;
8103 }
8104
8105 dev_boot_phase = 0;
8106
8107 /* The loopback device is special if any other network devices
8108 * is present in a network namespace the loopback device must
8109 * be present. Since we now dynamically allocate and free the
8110 * loopback device ensure this invariant is maintained by
8111 * keeping the loopback device as the first device on the
8112 * list of network devices. Ensuring the loopback devices
8113 * is the first device that appears and the last network device
8114 * that disappears.
8115 */
8116 if (register_pernet_device(&loopback_net_ops))
8117 goto out;
8118
8119 if (register_pernet_device(&default_device_ops))
8120 goto out;
8121
8122 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8123 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8124
8125 hotcpu_notifier(dev_cpu_callback, 0);
8126 dst_subsys_init();
8127 rc = 0;
8128 out:
8129 return rc;
8130 }
8131
8132 subsys_initcall(net_dev_init);