]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/core/dev.c
Merge branch 'drm-fixes' of git://people.freedesktop.org/~airlied/linux
[mirror_ubuntu-bionic-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 /*
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
150 *
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
153 *
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
159 * --BLG
160 *
161 * 0800 IP
162 * 8100 802.1Q VLAN
163 * 0001 802.3
164 * 0002 AX.25
165 * 0004 802.2
166 * 8035 RARP
167 * 0005 SNAP
168 * 0805 X.25
169 * 0806 ARP
170 * 8137 IPX
171 * 0009 Localtalk
172 * 86DD IPv6
173 */
174
175 #define PTYPE_HASH_SIZE (16)
176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
177
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly; /* Taps */
181
182 /*
183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184 * semaphore.
185 *
186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187 *
188 * Writers must hold the rtnl semaphore while they loop through the
189 * dev_base_head list, and hold dev_base_lock for writing when they do the
190 * actual updates. This allows pure readers to access the list even
191 * while a writer is preparing to update it.
192 *
193 * To put it another way, dev_base_lock is held for writing only to
194 * protect against pure readers; the rtnl semaphore provides the
195 * protection against other writers.
196 *
197 * See, for example usages, register_netdevice() and
198 * unregister_netdevice(), which must be called with the rtnl
199 * semaphore held.
200 */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 while (++net->dev_base_seq == 0);
207 }
208
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
237 {
238 struct net *net = dev_net(dev);
239
240 ASSERT_RTNL();
241
242 write_lock_bh(&dev_base_lock);
243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 hlist_add_head_rcu(&dev->index_hlist,
246 dev_index_hash(net, dev->ifindex));
247 write_unlock_bh(&dev_base_lock);
248
249 dev_base_seq_inc(net);
250
251 return 0;
252 }
253
254 /* Device list removal
255 * caller must respect a RCU grace period before freeing/reusing dev
256 */
257 static void unlist_netdevice(struct net_device *dev)
258 {
259 ASSERT_RTNL();
260
261 /* Unlink dev from the device chain */
262 write_lock_bh(&dev_base_lock);
263 list_del_rcu(&dev->dev_list);
264 hlist_del_rcu(&dev->name_hlist);
265 hlist_del_rcu(&dev->index_hlist);
266 write_unlock_bh(&dev_base_lock);
267
268 dev_base_seq_inc(dev_net(dev));
269 }
270
271 /*
272 * Our notifier list
273 */
274
275 static RAW_NOTIFIER_HEAD(netdev_chain);
276
277 /*
278 * Device drivers call our routines to queue packets here. We empty the
279 * queue in the local softnet handler.
280 */
281
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
284
285 #ifdef CONFIG_LOCKDEP
286 /*
287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288 * according to dev->type
289 */
290 static const unsigned short netdev_lock_type[] =
291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
304 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
305 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
306
307 static const char *const netdev_lock_name[] =
308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
321 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
322 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
323
324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
326
327 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
328 {
329 int i;
330
331 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
332 if (netdev_lock_type[i] == dev_type)
333 return i;
334 /* the last key is used by default */
335 return ARRAY_SIZE(netdev_lock_type) - 1;
336 }
337
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340 {
341 int i;
342
343 i = netdev_lock_pos(dev_type);
344 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
345 netdev_lock_name[i]);
346 }
347
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 int i;
351
352 i = netdev_lock_pos(dev->type);
353 lockdep_set_class_and_name(&dev->addr_list_lock,
354 &netdev_addr_lock_key[i],
355 netdev_lock_name[i]);
356 }
357 #else
358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
359 unsigned short dev_type)
360 {
361 }
362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
363 {
364 }
365 #endif
366
367 /*******************************************************************************
368
369 Protocol management and registration routines
370
371 *******************************************************************************/
372
373 /*
374 * Add a protocol ID to the list. Now that the input handler is
375 * smarter we can dispense with all the messy stuff that used to be
376 * here.
377 *
378 * BEWARE!!! Protocol handlers, mangling input packets,
379 * MUST BE last in hash buckets and checking protocol handlers
380 * MUST start from promiscuous ptype_all chain in net_bh.
381 * It is true now, do not change it.
382 * Explanation follows: if protocol handler, mangling packet, will
383 * be the first on list, it is not able to sense, that packet
384 * is cloned and should be copied-on-write, so that it will
385 * change it and subsequent readers will get broken packet.
386 * --ANK (980803)
387 */
388
389 static inline struct list_head *ptype_head(const struct packet_type *pt)
390 {
391 if (pt->type == htons(ETH_P_ALL))
392 return &ptype_all;
393 else
394 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396
397 /**
398 * dev_add_pack - add packet handler
399 * @pt: packet type declaration
400 *
401 * Add a protocol handler to the networking stack. The passed &packet_type
402 * is linked into kernel lists and may not be freed until it has been
403 * removed from the kernel lists.
404 *
405 * This call does not sleep therefore it can not
406 * guarantee all CPU's that are in middle of receiving packets
407 * will see the new packet type (until the next received packet).
408 */
409
410 void dev_add_pack(struct packet_type *pt)
411 {
412 struct list_head *head = ptype_head(pt);
413
414 spin_lock(&ptype_lock);
415 list_add_rcu(&pt->list, head);
416 spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419
420 /**
421 * __dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * The packet type might still be in use by receivers
430 * and must not be freed until after all the CPU's have gone
431 * through a quiescent state.
432 */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 struct list_head *head = ptype_head(pt);
436 struct packet_type *pt1;
437
438 spin_lock(&ptype_lock);
439
440 list_for_each_entry(pt1, head, list) {
441 if (pt == pt1) {
442 list_del_rcu(&pt->list);
443 goto out;
444 }
445 }
446
447 pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452
453 /**
454 * dev_remove_pack - remove packet handler
455 * @pt: packet type declaration
456 *
457 * Remove a protocol handler that was previously added to the kernel
458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
459 * from the kernel lists and can be freed or reused once this function
460 * returns.
461 *
462 * This call sleeps to guarantee that no CPU is looking at the packet
463 * type after return.
464 */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 __dev_remove_pack(pt);
468
469 synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472
473 /******************************************************************************
474
475 Device Boot-time Settings Routines
476
477 *******************************************************************************/
478
479 /* Boot time configuration table */
480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
481
482 /**
483 * netdev_boot_setup_add - add new setup entry
484 * @name: name of the device
485 * @map: configured settings for the device
486 *
487 * Adds new setup entry to the dev_boot_setup list. The function
488 * returns 0 on error and 1 on success. This is a generic routine to
489 * all netdevices.
490 */
491 static int netdev_boot_setup_add(char *name, struct ifmap *map)
492 {
493 struct netdev_boot_setup *s;
494 int i;
495
496 s = dev_boot_setup;
497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
499 memset(s[i].name, 0, sizeof(s[i].name));
500 strlcpy(s[i].name, name, IFNAMSIZ);
501 memcpy(&s[i].map, map, sizeof(s[i].map));
502 break;
503 }
504 }
505
506 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
507 }
508
509 /**
510 * netdev_boot_setup_check - check boot time settings
511 * @dev: the netdevice
512 *
513 * Check boot time settings for the device.
514 * The found settings are set for the device to be used
515 * later in the device probing.
516 * Returns 0 if no settings found, 1 if they are.
517 */
518 int netdev_boot_setup_check(struct net_device *dev)
519 {
520 struct netdev_boot_setup *s = dev_boot_setup;
521 int i;
522
523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
524 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
525 !strcmp(dev->name, s[i].name)) {
526 dev->irq = s[i].map.irq;
527 dev->base_addr = s[i].map.base_addr;
528 dev->mem_start = s[i].map.mem_start;
529 dev->mem_end = s[i].map.mem_end;
530 return 1;
531 }
532 }
533 return 0;
534 }
535 EXPORT_SYMBOL(netdev_boot_setup_check);
536
537
538 /**
539 * netdev_boot_base - get address from boot time settings
540 * @prefix: prefix for network device
541 * @unit: id for network device
542 *
543 * Check boot time settings for the base address of device.
544 * The found settings are set for the device to be used
545 * later in the device probing.
546 * Returns 0 if no settings found.
547 */
548 unsigned long netdev_boot_base(const char *prefix, int unit)
549 {
550 const struct netdev_boot_setup *s = dev_boot_setup;
551 char name[IFNAMSIZ];
552 int i;
553
554 sprintf(name, "%s%d", prefix, unit);
555
556 /*
557 * If device already registered then return base of 1
558 * to indicate not to probe for this interface
559 */
560 if (__dev_get_by_name(&init_net, name))
561 return 1;
562
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
564 if (!strcmp(name, s[i].name))
565 return s[i].map.base_addr;
566 return 0;
567 }
568
569 /*
570 * Saves at boot time configured settings for any netdevice.
571 */
572 int __init netdev_boot_setup(char *str)
573 {
574 int ints[5];
575 struct ifmap map;
576
577 str = get_options(str, ARRAY_SIZE(ints), ints);
578 if (!str || !*str)
579 return 0;
580
581 /* Save settings */
582 memset(&map, 0, sizeof(map));
583 if (ints[0] > 0)
584 map.irq = ints[1];
585 if (ints[0] > 1)
586 map.base_addr = ints[2];
587 if (ints[0] > 2)
588 map.mem_start = ints[3];
589 if (ints[0] > 3)
590 map.mem_end = ints[4];
591
592 /* Add new entry to the list */
593 return netdev_boot_setup_add(str, &map);
594 }
595
596 __setup("netdev=", netdev_boot_setup);
597
598 /*******************************************************************************
599
600 Device Interface Subroutines
601
602 *******************************************************************************/
603
604 /**
605 * __dev_get_by_name - find a device by its name
606 * @net: the applicable net namespace
607 * @name: name to find
608 *
609 * Find an interface by name. Must be called under RTNL semaphore
610 * or @dev_base_lock. If the name is found a pointer to the device
611 * is returned. If the name is not found then %NULL is returned. The
612 * reference counters are not incremented so the caller must be
613 * careful with locks.
614 */
615
616 struct net_device *__dev_get_by_name(struct net *net, const char *name)
617 {
618 struct hlist_node *p;
619 struct net_device *dev;
620 struct hlist_head *head = dev_name_hash(net, name);
621
622 hlist_for_each_entry(dev, p, head, name_hlist)
623 if (!strncmp(dev->name, name, IFNAMSIZ))
624 return dev;
625
626 return NULL;
627 }
628 EXPORT_SYMBOL(__dev_get_by_name);
629
630 /**
631 * dev_get_by_name_rcu - find a device by its name
632 * @net: the applicable net namespace
633 * @name: name to find
634 *
635 * Find an interface by name.
636 * If the name is found a pointer to the device is returned.
637 * If the name is not found then %NULL is returned.
638 * The reference counters are not incremented so the caller must be
639 * careful with locks. The caller must hold RCU lock.
640 */
641
642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
643 {
644 struct hlist_node *p;
645 struct net_device *dev;
646 struct hlist_head *head = dev_name_hash(net, name);
647
648 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
649 if (!strncmp(dev->name, name, IFNAMSIZ))
650 return dev;
651
652 return NULL;
653 }
654 EXPORT_SYMBOL(dev_get_by_name_rcu);
655
656 /**
657 * dev_get_by_name - find a device by its name
658 * @net: the applicable net namespace
659 * @name: name to find
660 *
661 * Find an interface by name. This can be called from any
662 * context and does its own locking. The returned handle has
663 * the usage count incremented and the caller must use dev_put() to
664 * release it when it is no longer needed. %NULL is returned if no
665 * matching device is found.
666 */
667
668 struct net_device *dev_get_by_name(struct net *net, const char *name)
669 {
670 struct net_device *dev;
671
672 rcu_read_lock();
673 dev = dev_get_by_name_rcu(net, name);
674 if (dev)
675 dev_hold(dev);
676 rcu_read_unlock();
677 return dev;
678 }
679 EXPORT_SYMBOL(dev_get_by_name);
680
681 /**
682 * __dev_get_by_index - find a device by its ifindex
683 * @net: the applicable net namespace
684 * @ifindex: index of device
685 *
686 * Search for an interface by index. Returns %NULL if the device
687 * is not found or a pointer to the device. The device has not
688 * had its reference counter increased so the caller must be careful
689 * about locking. The caller must hold either the RTNL semaphore
690 * or @dev_base_lock.
691 */
692
693 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
694 {
695 struct hlist_node *p;
696 struct net_device *dev;
697 struct hlist_head *head = dev_index_hash(net, ifindex);
698
699 hlist_for_each_entry(dev, p, head, index_hlist)
700 if (dev->ifindex == ifindex)
701 return dev;
702
703 return NULL;
704 }
705 EXPORT_SYMBOL(__dev_get_by_index);
706
707 /**
708 * dev_get_by_index_rcu - find a device by its ifindex
709 * @net: the applicable net namespace
710 * @ifindex: index of device
711 *
712 * Search for an interface by index. Returns %NULL if the device
713 * is not found or a pointer to the device. The device has not
714 * had its reference counter increased so the caller must be careful
715 * about locking. The caller must hold RCU lock.
716 */
717
718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
719 {
720 struct hlist_node *p;
721 struct net_device *dev;
722 struct hlist_head *head = dev_index_hash(net, ifindex);
723
724 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
725 if (dev->ifindex == ifindex)
726 return dev;
727
728 return NULL;
729 }
730 EXPORT_SYMBOL(dev_get_by_index_rcu);
731
732
733 /**
734 * dev_get_by_index - find a device by its ifindex
735 * @net: the applicable net namespace
736 * @ifindex: index of device
737 *
738 * Search for an interface by index. Returns NULL if the device
739 * is not found or a pointer to the device. The device returned has
740 * had a reference added and the pointer is safe until the user calls
741 * dev_put to indicate they have finished with it.
742 */
743
744 struct net_device *dev_get_by_index(struct net *net, int ifindex)
745 {
746 struct net_device *dev;
747
748 rcu_read_lock();
749 dev = dev_get_by_index_rcu(net, ifindex);
750 if (dev)
751 dev_hold(dev);
752 rcu_read_unlock();
753 return dev;
754 }
755 EXPORT_SYMBOL(dev_get_by_index);
756
757 /**
758 * dev_getbyhwaddr_rcu - find a device by its hardware address
759 * @net: the applicable net namespace
760 * @type: media type of device
761 * @ha: hardware address
762 *
763 * Search for an interface by MAC address. Returns NULL if the device
764 * is not found or a pointer to the device.
765 * The caller must hold RCU or RTNL.
766 * The returned device has not had its ref count increased
767 * and the caller must therefore be careful about locking
768 *
769 */
770
771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
772 const char *ha)
773 {
774 struct net_device *dev;
775
776 for_each_netdev_rcu(net, dev)
777 if (dev->type == type &&
778 !memcmp(dev->dev_addr, ha, dev->addr_len))
779 return dev;
780
781 return NULL;
782 }
783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
784
785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 struct net_device *dev;
788
789 ASSERT_RTNL();
790 for_each_netdev(net, dev)
791 if (dev->type == type)
792 return dev;
793
794 return NULL;
795 }
796 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
797
798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
799 {
800 struct net_device *dev, *ret = NULL;
801
802 rcu_read_lock();
803 for_each_netdev_rcu(net, dev)
804 if (dev->type == type) {
805 dev_hold(dev);
806 ret = dev;
807 break;
808 }
809 rcu_read_unlock();
810 return ret;
811 }
812 EXPORT_SYMBOL(dev_getfirstbyhwtype);
813
814 /**
815 * dev_get_by_flags_rcu - find any device with given flags
816 * @net: the applicable net namespace
817 * @if_flags: IFF_* values
818 * @mask: bitmask of bits in if_flags to check
819 *
820 * Search for any interface with the given flags. Returns NULL if a device
821 * is not found or a pointer to the device. Must be called inside
822 * rcu_read_lock(), and result refcount is unchanged.
823 */
824
825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
826 unsigned short mask)
827 {
828 struct net_device *dev, *ret;
829
830 ret = NULL;
831 for_each_netdev_rcu(net, dev) {
832 if (((dev->flags ^ if_flags) & mask) == 0) {
833 ret = dev;
834 break;
835 }
836 }
837 return ret;
838 }
839 EXPORT_SYMBOL(dev_get_by_flags_rcu);
840
841 /**
842 * dev_valid_name - check if name is okay for network device
843 * @name: name string
844 *
845 * Network device names need to be valid file names to
846 * to allow sysfs to work. We also disallow any kind of
847 * whitespace.
848 */
849 bool dev_valid_name(const char *name)
850 {
851 if (*name == '\0')
852 return false;
853 if (strlen(name) >= IFNAMSIZ)
854 return false;
855 if (!strcmp(name, ".") || !strcmp(name, ".."))
856 return false;
857
858 while (*name) {
859 if (*name == '/' || isspace(*name))
860 return false;
861 name++;
862 }
863 return true;
864 }
865 EXPORT_SYMBOL(dev_valid_name);
866
867 /**
868 * __dev_alloc_name - allocate a name for a device
869 * @net: network namespace to allocate the device name in
870 * @name: name format string
871 * @buf: scratch buffer and result name string
872 *
873 * Passed a format string - eg "lt%d" it will try and find a suitable
874 * id. It scans list of devices to build up a free map, then chooses
875 * the first empty slot. The caller must hold the dev_base or rtnl lock
876 * while allocating the name and adding the device in order to avoid
877 * duplicates.
878 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
879 * Returns the number of the unit assigned or a negative errno code.
880 */
881
882 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
883 {
884 int i = 0;
885 const char *p;
886 const int max_netdevices = 8*PAGE_SIZE;
887 unsigned long *inuse;
888 struct net_device *d;
889
890 p = strnchr(name, IFNAMSIZ-1, '%');
891 if (p) {
892 /*
893 * Verify the string as this thing may have come from
894 * the user. There must be either one "%d" and no other "%"
895 * characters.
896 */
897 if (p[1] != 'd' || strchr(p + 2, '%'))
898 return -EINVAL;
899
900 /* Use one page as a bit array of possible slots */
901 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
902 if (!inuse)
903 return -ENOMEM;
904
905 for_each_netdev(net, d) {
906 if (!sscanf(d->name, name, &i))
907 continue;
908 if (i < 0 || i >= max_netdevices)
909 continue;
910
911 /* avoid cases where sscanf is not exact inverse of printf */
912 snprintf(buf, IFNAMSIZ, name, i);
913 if (!strncmp(buf, d->name, IFNAMSIZ))
914 set_bit(i, inuse);
915 }
916
917 i = find_first_zero_bit(inuse, max_netdevices);
918 free_page((unsigned long) inuse);
919 }
920
921 if (buf != name)
922 snprintf(buf, IFNAMSIZ, name, i);
923 if (!__dev_get_by_name(net, buf))
924 return i;
925
926 /* It is possible to run out of possible slots
927 * when the name is long and there isn't enough space left
928 * for the digits, or if all bits are used.
929 */
930 return -ENFILE;
931 }
932
933 /**
934 * dev_alloc_name - allocate a name for a device
935 * @dev: device
936 * @name: name format string
937 *
938 * Passed a format string - eg "lt%d" it will try and find a suitable
939 * id. It scans list of devices to build up a free map, then chooses
940 * the first empty slot. The caller must hold the dev_base or rtnl lock
941 * while allocating the name and adding the device in order to avoid
942 * duplicates.
943 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
944 * Returns the number of the unit assigned or a negative errno code.
945 */
946
947 int dev_alloc_name(struct net_device *dev, const char *name)
948 {
949 char buf[IFNAMSIZ];
950 struct net *net;
951 int ret;
952
953 BUG_ON(!dev_net(dev));
954 net = dev_net(dev);
955 ret = __dev_alloc_name(net, name, buf);
956 if (ret >= 0)
957 strlcpy(dev->name, buf, IFNAMSIZ);
958 return ret;
959 }
960 EXPORT_SYMBOL(dev_alloc_name);
961
962 static int dev_get_valid_name(struct net_device *dev, const char *name)
963 {
964 struct net *net;
965
966 BUG_ON(!dev_net(dev));
967 net = dev_net(dev);
968
969 if (!dev_valid_name(name))
970 return -EINVAL;
971
972 if (strchr(name, '%'))
973 return dev_alloc_name(dev, name);
974 else if (__dev_get_by_name(net, name))
975 return -EEXIST;
976 else if (dev->name != name)
977 strlcpy(dev->name, name, IFNAMSIZ);
978
979 return 0;
980 }
981
982 /**
983 * dev_change_name - change name of a device
984 * @dev: device
985 * @newname: name (or format string) must be at least IFNAMSIZ
986 *
987 * Change name of a device, can pass format strings "eth%d".
988 * for wildcarding.
989 */
990 int dev_change_name(struct net_device *dev, const char *newname)
991 {
992 char oldname[IFNAMSIZ];
993 int err = 0;
994 int ret;
995 struct net *net;
996
997 ASSERT_RTNL();
998 BUG_ON(!dev_net(dev));
999
1000 net = dev_net(dev);
1001 if (dev->flags & IFF_UP)
1002 return -EBUSY;
1003
1004 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1005 return 0;
1006
1007 memcpy(oldname, dev->name, IFNAMSIZ);
1008
1009 err = dev_get_valid_name(dev, newname);
1010 if (err < 0)
1011 return err;
1012
1013 rollback:
1014 ret = device_rename(&dev->dev, dev->name);
1015 if (ret) {
1016 memcpy(dev->name, oldname, IFNAMSIZ);
1017 return ret;
1018 }
1019
1020 write_lock_bh(&dev_base_lock);
1021 hlist_del_rcu(&dev->name_hlist);
1022 write_unlock_bh(&dev_base_lock);
1023
1024 synchronize_rcu();
1025
1026 write_lock_bh(&dev_base_lock);
1027 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1028 write_unlock_bh(&dev_base_lock);
1029
1030 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1031 ret = notifier_to_errno(ret);
1032
1033 if (ret) {
1034 /* err >= 0 after dev_alloc_name() or stores the first errno */
1035 if (err >= 0) {
1036 err = ret;
1037 memcpy(dev->name, oldname, IFNAMSIZ);
1038 goto rollback;
1039 } else {
1040 pr_err("%s: name change rollback failed: %d\n",
1041 dev->name, ret);
1042 }
1043 }
1044
1045 return err;
1046 }
1047
1048 /**
1049 * dev_set_alias - change ifalias of a device
1050 * @dev: device
1051 * @alias: name up to IFALIASZ
1052 * @len: limit of bytes to copy from info
1053 *
1054 * Set ifalias for a device,
1055 */
1056 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1057 {
1058 char *new_ifalias;
1059
1060 ASSERT_RTNL();
1061
1062 if (len >= IFALIASZ)
1063 return -EINVAL;
1064
1065 if (!len) {
1066 if (dev->ifalias) {
1067 kfree(dev->ifalias);
1068 dev->ifalias = NULL;
1069 }
1070 return 0;
1071 }
1072
1073 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1074 if (!new_ifalias)
1075 return -ENOMEM;
1076 dev->ifalias = new_ifalias;
1077
1078 strlcpy(dev->ifalias, alias, len+1);
1079 return len;
1080 }
1081
1082
1083 /**
1084 * netdev_features_change - device changes features
1085 * @dev: device to cause notification
1086 *
1087 * Called to indicate a device has changed features.
1088 */
1089 void netdev_features_change(struct net_device *dev)
1090 {
1091 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1092 }
1093 EXPORT_SYMBOL(netdev_features_change);
1094
1095 /**
1096 * netdev_state_change - device changes state
1097 * @dev: device to cause notification
1098 *
1099 * Called to indicate a device has changed state. This function calls
1100 * the notifier chains for netdev_chain and sends a NEWLINK message
1101 * to the routing socket.
1102 */
1103 void netdev_state_change(struct net_device *dev)
1104 {
1105 if (dev->flags & IFF_UP) {
1106 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1107 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1108 }
1109 }
1110 EXPORT_SYMBOL(netdev_state_change);
1111
1112 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1113 {
1114 return call_netdevice_notifiers(event, dev);
1115 }
1116 EXPORT_SYMBOL(netdev_bonding_change);
1117
1118 /**
1119 * dev_load - load a network module
1120 * @net: the applicable net namespace
1121 * @name: name of interface
1122 *
1123 * If a network interface is not present and the process has suitable
1124 * privileges this function loads the module. If module loading is not
1125 * available in this kernel then it becomes a nop.
1126 */
1127
1128 void dev_load(struct net *net, const char *name)
1129 {
1130 struct net_device *dev;
1131 int no_module;
1132
1133 rcu_read_lock();
1134 dev = dev_get_by_name_rcu(net, name);
1135 rcu_read_unlock();
1136
1137 no_module = !dev;
1138 if (no_module && capable(CAP_NET_ADMIN))
1139 no_module = request_module("netdev-%s", name);
1140 if (no_module && capable(CAP_SYS_MODULE)) {
1141 if (!request_module("%s", name))
1142 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1143 name);
1144 }
1145 }
1146 EXPORT_SYMBOL(dev_load);
1147
1148 static int __dev_open(struct net_device *dev)
1149 {
1150 const struct net_device_ops *ops = dev->netdev_ops;
1151 int ret;
1152
1153 ASSERT_RTNL();
1154
1155 if (!netif_device_present(dev))
1156 return -ENODEV;
1157
1158 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1159 ret = notifier_to_errno(ret);
1160 if (ret)
1161 return ret;
1162
1163 set_bit(__LINK_STATE_START, &dev->state);
1164
1165 if (ops->ndo_validate_addr)
1166 ret = ops->ndo_validate_addr(dev);
1167
1168 if (!ret && ops->ndo_open)
1169 ret = ops->ndo_open(dev);
1170
1171 if (ret)
1172 clear_bit(__LINK_STATE_START, &dev->state);
1173 else {
1174 dev->flags |= IFF_UP;
1175 net_dmaengine_get();
1176 dev_set_rx_mode(dev);
1177 dev_activate(dev);
1178 add_device_randomness(dev->dev_addr, dev->addr_len);
1179 }
1180
1181 return ret;
1182 }
1183
1184 /**
1185 * dev_open - prepare an interface for use.
1186 * @dev: device to open
1187 *
1188 * Takes a device from down to up state. The device's private open
1189 * function is invoked and then the multicast lists are loaded. Finally
1190 * the device is moved into the up state and a %NETDEV_UP message is
1191 * sent to the netdev notifier chain.
1192 *
1193 * Calling this function on an active interface is a nop. On a failure
1194 * a negative errno code is returned.
1195 */
1196 int dev_open(struct net_device *dev)
1197 {
1198 int ret;
1199
1200 if (dev->flags & IFF_UP)
1201 return 0;
1202
1203 ret = __dev_open(dev);
1204 if (ret < 0)
1205 return ret;
1206
1207 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1208 call_netdevice_notifiers(NETDEV_UP, dev);
1209
1210 return ret;
1211 }
1212 EXPORT_SYMBOL(dev_open);
1213
1214 static int __dev_close_many(struct list_head *head)
1215 {
1216 struct net_device *dev;
1217
1218 ASSERT_RTNL();
1219 might_sleep();
1220
1221 list_for_each_entry(dev, head, unreg_list) {
1222 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1223
1224 clear_bit(__LINK_STATE_START, &dev->state);
1225
1226 /* Synchronize to scheduled poll. We cannot touch poll list, it
1227 * can be even on different cpu. So just clear netif_running().
1228 *
1229 * dev->stop() will invoke napi_disable() on all of it's
1230 * napi_struct instances on this device.
1231 */
1232 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1233 }
1234
1235 dev_deactivate_many(head);
1236
1237 list_for_each_entry(dev, head, unreg_list) {
1238 const struct net_device_ops *ops = dev->netdev_ops;
1239
1240 /*
1241 * Call the device specific close. This cannot fail.
1242 * Only if device is UP
1243 *
1244 * We allow it to be called even after a DETACH hot-plug
1245 * event.
1246 */
1247 if (ops->ndo_stop)
1248 ops->ndo_stop(dev);
1249
1250 dev->flags &= ~IFF_UP;
1251 net_dmaengine_put();
1252 }
1253
1254 return 0;
1255 }
1256
1257 static int __dev_close(struct net_device *dev)
1258 {
1259 int retval;
1260 LIST_HEAD(single);
1261
1262 list_add(&dev->unreg_list, &single);
1263 retval = __dev_close_many(&single);
1264 list_del(&single);
1265 return retval;
1266 }
1267
1268 static int dev_close_many(struct list_head *head)
1269 {
1270 struct net_device *dev, *tmp;
1271 LIST_HEAD(tmp_list);
1272
1273 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1274 if (!(dev->flags & IFF_UP))
1275 list_move(&dev->unreg_list, &tmp_list);
1276
1277 __dev_close_many(head);
1278
1279 list_for_each_entry(dev, head, unreg_list) {
1280 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1281 call_netdevice_notifiers(NETDEV_DOWN, dev);
1282 }
1283
1284 /* rollback_registered_many needs the complete original list */
1285 list_splice(&tmp_list, head);
1286 return 0;
1287 }
1288
1289 /**
1290 * dev_close - shutdown an interface.
1291 * @dev: device to shutdown
1292 *
1293 * This function moves an active device into down state. A
1294 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1295 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1296 * chain.
1297 */
1298 int dev_close(struct net_device *dev)
1299 {
1300 if (dev->flags & IFF_UP) {
1301 LIST_HEAD(single);
1302
1303 list_add(&dev->unreg_list, &single);
1304 dev_close_many(&single);
1305 list_del(&single);
1306 }
1307 return 0;
1308 }
1309 EXPORT_SYMBOL(dev_close);
1310
1311
1312 /**
1313 * dev_disable_lro - disable Large Receive Offload on a device
1314 * @dev: device
1315 *
1316 * Disable Large Receive Offload (LRO) on a net device. Must be
1317 * called under RTNL. This is needed if received packets may be
1318 * forwarded to another interface.
1319 */
1320 void dev_disable_lro(struct net_device *dev)
1321 {
1322 /*
1323 * If we're trying to disable lro on a vlan device
1324 * use the underlying physical device instead
1325 */
1326 if (is_vlan_dev(dev))
1327 dev = vlan_dev_real_dev(dev);
1328
1329 dev->wanted_features &= ~NETIF_F_LRO;
1330 netdev_update_features(dev);
1331
1332 if (unlikely(dev->features & NETIF_F_LRO))
1333 netdev_WARN(dev, "failed to disable LRO!\n");
1334 }
1335 EXPORT_SYMBOL(dev_disable_lro);
1336
1337
1338 static int dev_boot_phase = 1;
1339
1340 /**
1341 * register_netdevice_notifier - register a network notifier block
1342 * @nb: notifier
1343 *
1344 * Register a notifier to be called when network device events occur.
1345 * The notifier passed is linked into the kernel structures and must
1346 * not be reused until it has been unregistered. A negative errno code
1347 * is returned on a failure.
1348 *
1349 * When registered all registration and up events are replayed
1350 * to the new notifier to allow device to have a race free
1351 * view of the network device list.
1352 */
1353
1354 int register_netdevice_notifier(struct notifier_block *nb)
1355 {
1356 struct net_device *dev;
1357 struct net_device *last;
1358 struct net *net;
1359 int err;
1360
1361 rtnl_lock();
1362 err = raw_notifier_chain_register(&netdev_chain, nb);
1363 if (err)
1364 goto unlock;
1365 if (dev_boot_phase)
1366 goto unlock;
1367 for_each_net(net) {
1368 for_each_netdev(net, dev) {
1369 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1370 err = notifier_to_errno(err);
1371 if (err)
1372 goto rollback;
1373
1374 if (!(dev->flags & IFF_UP))
1375 continue;
1376
1377 nb->notifier_call(nb, NETDEV_UP, dev);
1378 }
1379 }
1380
1381 unlock:
1382 rtnl_unlock();
1383 return err;
1384
1385 rollback:
1386 last = dev;
1387 for_each_net(net) {
1388 for_each_netdev(net, dev) {
1389 if (dev == last)
1390 goto outroll;
1391
1392 if (dev->flags & IFF_UP) {
1393 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1394 nb->notifier_call(nb, NETDEV_DOWN, dev);
1395 }
1396 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1397 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1398 }
1399 }
1400
1401 outroll:
1402 raw_notifier_chain_unregister(&netdev_chain, nb);
1403 goto unlock;
1404 }
1405 EXPORT_SYMBOL(register_netdevice_notifier);
1406
1407 /**
1408 * unregister_netdevice_notifier - unregister a network notifier block
1409 * @nb: notifier
1410 *
1411 * Unregister a notifier previously registered by
1412 * register_netdevice_notifier(). The notifier is unlinked into the
1413 * kernel structures and may then be reused. A negative errno code
1414 * is returned on a failure.
1415 *
1416 * After unregistering unregister and down device events are synthesized
1417 * for all devices on the device list to the removed notifier to remove
1418 * the need for special case cleanup code.
1419 */
1420
1421 int unregister_netdevice_notifier(struct notifier_block *nb)
1422 {
1423 struct net_device *dev;
1424 struct net *net;
1425 int err;
1426
1427 rtnl_lock();
1428 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1429 if (err)
1430 goto unlock;
1431
1432 for_each_net(net) {
1433 for_each_netdev(net, dev) {
1434 if (dev->flags & IFF_UP) {
1435 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1436 nb->notifier_call(nb, NETDEV_DOWN, dev);
1437 }
1438 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1439 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1440 }
1441 }
1442 unlock:
1443 rtnl_unlock();
1444 return err;
1445 }
1446 EXPORT_SYMBOL(unregister_netdevice_notifier);
1447
1448 /**
1449 * call_netdevice_notifiers - call all network notifier blocks
1450 * @val: value passed unmodified to notifier function
1451 * @dev: net_device pointer passed unmodified to notifier function
1452 *
1453 * Call all network notifier blocks. Parameters and return value
1454 * are as for raw_notifier_call_chain().
1455 */
1456
1457 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1458 {
1459 ASSERT_RTNL();
1460 return raw_notifier_call_chain(&netdev_chain, val, dev);
1461 }
1462 EXPORT_SYMBOL(call_netdevice_notifiers);
1463
1464 static struct static_key netstamp_needed __read_mostly;
1465 #ifdef HAVE_JUMP_LABEL
1466 /* We are not allowed to call static_key_slow_dec() from irq context
1467 * If net_disable_timestamp() is called from irq context, defer the
1468 * static_key_slow_dec() calls.
1469 */
1470 static atomic_t netstamp_needed_deferred;
1471 #endif
1472
1473 void net_enable_timestamp(void)
1474 {
1475 #ifdef HAVE_JUMP_LABEL
1476 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1477
1478 if (deferred) {
1479 while (--deferred)
1480 static_key_slow_dec(&netstamp_needed);
1481 return;
1482 }
1483 #endif
1484 WARN_ON(in_interrupt());
1485 static_key_slow_inc(&netstamp_needed);
1486 }
1487 EXPORT_SYMBOL(net_enable_timestamp);
1488
1489 void net_disable_timestamp(void)
1490 {
1491 #ifdef HAVE_JUMP_LABEL
1492 if (in_interrupt()) {
1493 atomic_inc(&netstamp_needed_deferred);
1494 return;
1495 }
1496 #endif
1497 static_key_slow_dec(&netstamp_needed);
1498 }
1499 EXPORT_SYMBOL(net_disable_timestamp);
1500
1501 static inline void net_timestamp_set(struct sk_buff *skb)
1502 {
1503 skb->tstamp.tv64 = 0;
1504 if (static_key_false(&netstamp_needed))
1505 __net_timestamp(skb);
1506 }
1507
1508 #define net_timestamp_check(COND, SKB) \
1509 if (static_key_false(&netstamp_needed)) { \
1510 if ((COND) && !(SKB)->tstamp.tv64) \
1511 __net_timestamp(SKB); \
1512 } \
1513
1514 static int net_hwtstamp_validate(struct ifreq *ifr)
1515 {
1516 struct hwtstamp_config cfg;
1517 enum hwtstamp_tx_types tx_type;
1518 enum hwtstamp_rx_filters rx_filter;
1519 int tx_type_valid = 0;
1520 int rx_filter_valid = 0;
1521
1522 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1523 return -EFAULT;
1524
1525 if (cfg.flags) /* reserved for future extensions */
1526 return -EINVAL;
1527
1528 tx_type = cfg.tx_type;
1529 rx_filter = cfg.rx_filter;
1530
1531 switch (tx_type) {
1532 case HWTSTAMP_TX_OFF:
1533 case HWTSTAMP_TX_ON:
1534 case HWTSTAMP_TX_ONESTEP_SYNC:
1535 tx_type_valid = 1;
1536 break;
1537 }
1538
1539 switch (rx_filter) {
1540 case HWTSTAMP_FILTER_NONE:
1541 case HWTSTAMP_FILTER_ALL:
1542 case HWTSTAMP_FILTER_SOME:
1543 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1544 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1545 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1546 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1547 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1548 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1549 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1550 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1551 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1552 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1553 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1554 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1555 rx_filter_valid = 1;
1556 break;
1557 }
1558
1559 if (!tx_type_valid || !rx_filter_valid)
1560 return -ERANGE;
1561
1562 return 0;
1563 }
1564
1565 static inline bool is_skb_forwardable(struct net_device *dev,
1566 struct sk_buff *skb)
1567 {
1568 unsigned int len;
1569
1570 if (!(dev->flags & IFF_UP))
1571 return false;
1572
1573 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1574 if (skb->len <= len)
1575 return true;
1576
1577 /* if TSO is enabled, we don't care about the length as the packet
1578 * could be forwarded without being segmented before
1579 */
1580 if (skb_is_gso(skb))
1581 return true;
1582
1583 return false;
1584 }
1585
1586 /**
1587 * dev_forward_skb - loopback an skb to another netif
1588 *
1589 * @dev: destination network device
1590 * @skb: buffer to forward
1591 *
1592 * return values:
1593 * NET_RX_SUCCESS (no congestion)
1594 * NET_RX_DROP (packet was dropped, but freed)
1595 *
1596 * dev_forward_skb can be used for injecting an skb from the
1597 * start_xmit function of one device into the receive queue
1598 * of another device.
1599 *
1600 * The receiving device may be in another namespace, so
1601 * we have to clear all information in the skb that could
1602 * impact namespace isolation.
1603 */
1604 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1605 {
1606 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1607 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1608 atomic_long_inc(&dev->rx_dropped);
1609 kfree_skb(skb);
1610 return NET_RX_DROP;
1611 }
1612 }
1613
1614 skb_orphan(skb);
1615 nf_reset(skb);
1616
1617 if (unlikely(!is_skb_forwardable(dev, skb))) {
1618 atomic_long_inc(&dev->rx_dropped);
1619 kfree_skb(skb);
1620 return NET_RX_DROP;
1621 }
1622 skb->skb_iif = 0;
1623 skb->dev = dev;
1624 skb_dst_drop(skb);
1625 skb->tstamp.tv64 = 0;
1626 skb->pkt_type = PACKET_HOST;
1627 skb->protocol = eth_type_trans(skb, dev);
1628 skb->mark = 0;
1629 secpath_reset(skb);
1630 nf_reset(skb);
1631 return netif_rx(skb);
1632 }
1633 EXPORT_SYMBOL_GPL(dev_forward_skb);
1634
1635 static inline int deliver_skb(struct sk_buff *skb,
1636 struct packet_type *pt_prev,
1637 struct net_device *orig_dev)
1638 {
1639 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1640 return -ENOMEM;
1641 atomic_inc(&skb->users);
1642 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1643 }
1644
1645 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1646 {
1647 if (ptype->af_packet_priv == NULL)
1648 return false;
1649
1650 if (ptype->id_match)
1651 return ptype->id_match(ptype, skb->sk);
1652 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1653 return true;
1654
1655 return false;
1656 }
1657
1658 /*
1659 * Support routine. Sends outgoing frames to any network
1660 * taps currently in use.
1661 */
1662
1663 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1664 {
1665 struct packet_type *ptype;
1666 struct sk_buff *skb2 = NULL;
1667 struct packet_type *pt_prev = NULL;
1668
1669 rcu_read_lock();
1670 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1671 /* Never send packets back to the socket
1672 * they originated from - MvS (miquels@drinkel.ow.org)
1673 */
1674 if ((ptype->dev == dev || !ptype->dev) &&
1675 (!skb_loop_sk(ptype, skb))) {
1676 if (pt_prev) {
1677 deliver_skb(skb2, pt_prev, skb->dev);
1678 pt_prev = ptype;
1679 continue;
1680 }
1681
1682 skb2 = skb_clone(skb, GFP_ATOMIC);
1683 if (!skb2)
1684 break;
1685
1686 net_timestamp_set(skb2);
1687
1688 /* skb->nh should be correctly
1689 set by sender, so that the second statement is
1690 just protection against buggy protocols.
1691 */
1692 skb_reset_mac_header(skb2);
1693
1694 if (skb_network_header(skb2) < skb2->data ||
1695 skb2->network_header > skb2->tail) {
1696 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1697 ntohs(skb2->protocol),
1698 dev->name);
1699 skb_reset_network_header(skb2);
1700 }
1701
1702 skb2->transport_header = skb2->network_header;
1703 skb2->pkt_type = PACKET_OUTGOING;
1704 pt_prev = ptype;
1705 }
1706 }
1707 if (pt_prev)
1708 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1709 rcu_read_unlock();
1710 }
1711
1712 /**
1713 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1714 * @dev: Network device
1715 * @txq: number of queues available
1716 *
1717 * If real_num_tx_queues is changed the tc mappings may no longer be
1718 * valid. To resolve this verify the tc mapping remains valid and if
1719 * not NULL the mapping. With no priorities mapping to this
1720 * offset/count pair it will no longer be used. In the worst case TC0
1721 * is invalid nothing can be done so disable priority mappings. If is
1722 * expected that drivers will fix this mapping if they can before
1723 * calling netif_set_real_num_tx_queues.
1724 */
1725 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1726 {
1727 int i;
1728 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1729
1730 /* If TC0 is invalidated disable TC mapping */
1731 if (tc->offset + tc->count > txq) {
1732 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1733 dev->num_tc = 0;
1734 return;
1735 }
1736
1737 /* Invalidated prio to tc mappings set to TC0 */
1738 for (i = 1; i < TC_BITMASK + 1; i++) {
1739 int q = netdev_get_prio_tc_map(dev, i);
1740
1741 tc = &dev->tc_to_txq[q];
1742 if (tc->offset + tc->count > txq) {
1743 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1744 i, q);
1745 netdev_set_prio_tc_map(dev, i, 0);
1746 }
1747 }
1748 }
1749
1750 /*
1751 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1752 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1753 */
1754 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1755 {
1756 int rc;
1757
1758 if (txq < 1 || txq > dev->num_tx_queues)
1759 return -EINVAL;
1760
1761 if (dev->reg_state == NETREG_REGISTERED ||
1762 dev->reg_state == NETREG_UNREGISTERING) {
1763 ASSERT_RTNL();
1764
1765 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1766 txq);
1767 if (rc)
1768 return rc;
1769
1770 if (dev->num_tc)
1771 netif_setup_tc(dev, txq);
1772
1773 if (txq < dev->real_num_tx_queues)
1774 qdisc_reset_all_tx_gt(dev, txq);
1775 }
1776
1777 dev->real_num_tx_queues = txq;
1778 return 0;
1779 }
1780 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1781
1782 #ifdef CONFIG_RPS
1783 /**
1784 * netif_set_real_num_rx_queues - set actual number of RX queues used
1785 * @dev: Network device
1786 * @rxq: Actual number of RX queues
1787 *
1788 * This must be called either with the rtnl_lock held or before
1789 * registration of the net device. Returns 0 on success, or a
1790 * negative error code. If called before registration, it always
1791 * succeeds.
1792 */
1793 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1794 {
1795 int rc;
1796
1797 if (rxq < 1 || rxq > dev->num_rx_queues)
1798 return -EINVAL;
1799
1800 if (dev->reg_state == NETREG_REGISTERED) {
1801 ASSERT_RTNL();
1802
1803 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1804 rxq);
1805 if (rc)
1806 return rc;
1807 }
1808
1809 dev->real_num_rx_queues = rxq;
1810 return 0;
1811 }
1812 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1813 #endif
1814
1815 /**
1816 * netif_get_num_default_rss_queues - default number of RSS queues
1817 *
1818 * This routine should set an upper limit on the number of RSS queues
1819 * used by default by multiqueue devices.
1820 */
1821 int netif_get_num_default_rss_queues(void)
1822 {
1823 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
1824 }
1825 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
1826
1827 static inline void __netif_reschedule(struct Qdisc *q)
1828 {
1829 struct softnet_data *sd;
1830 unsigned long flags;
1831
1832 local_irq_save(flags);
1833 sd = &__get_cpu_var(softnet_data);
1834 q->next_sched = NULL;
1835 *sd->output_queue_tailp = q;
1836 sd->output_queue_tailp = &q->next_sched;
1837 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1838 local_irq_restore(flags);
1839 }
1840
1841 void __netif_schedule(struct Qdisc *q)
1842 {
1843 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1844 __netif_reschedule(q);
1845 }
1846 EXPORT_SYMBOL(__netif_schedule);
1847
1848 void dev_kfree_skb_irq(struct sk_buff *skb)
1849 {
1850 if (atomic_dec_and_test(&skb->users)) {
1851 struct softnet_data *sd;
1852 unsigned long flags;
1853
1854 local_irq_save(flags);
1855 sd = &__get_cpu_var(softnet_data);
1856 skb->next = sd->completion_queue;
1857 sd->completion_queue = skb;
1858 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1859 local_irq_restore(flags);
1860 }
1861 }
1862 EXPORT_SYMBOL(dev_kfree_skb_irq);
1863
1864 void dev_kfree_skb_any(struct sk_buff *skb)
1865 {
1866 if (in_irq() || irqs_disabled())
1867 dev_kfree_skb_irq(skb);
1868 else
1869 dev_kfree_skb(skb);
1870 }
1871 EXPORT_SYMBOL(dev_kfree_skb_any);
1872
1873
1874 /**
1875 * netif_device_detach - mark device as removed
1876 * @dev: network device
1877 *
1878 * Mark device as removed from system and therefore no longer available.
1879 */
1880 void netif_device_detach(struct net_device *dev)
1881 {
1882 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1883 netif_running(dev)) {
1884 netif_tx_stop_all_queues(dev);
1885 }
1886 }
1887 EXPORT_SYMBOL(netif_device_detach);
1888
1889 /**
1890 * netif_device_attach - mark device as attached
1891 * @dev: network device
1892 *
1893 * Mark device as attached from system and restart if needed.
1894 */
1895 void netif_device_attach(struct net_device *dev)
1896 {
1897 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1898 netif_running(dev)) {
1899 netif_tx_wake_all_queues(dev);
1900 __netdev_watchdog_up(dev);
1901 }
1902 }
1903 EXPORT_SYMBOL(netif_device_attach);
1904
1905 static void skb_warn_bad_offload(const struct sk_buff *skb)
1906 {
1907 static const netdev_features_t null_features = 0;
1908 struct net_device *dev = skb->dev;
1909 const char *driver = "";
1910
1911 if (dev && dev->dev.parent)
1912 driver = dev_driver_string(dev->dev.parent);
1913
1914 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1915 "gso_type=%d ip_summed=%d\n",
1916 driver, dev ? &dev->features : &null_features,
1917 skb->sk ? &skb->sk->sk_route_caps : &null_features,
1918 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1919 skb_shinfo(skb)->gso_type, skb->ip_summed);
1920 }
1921
1922 /*
1923 * Invalidate hardware checksum when packet is to be mangled, and
1924 * complete checksum manually on outgoing path.
1925 */
1926 int skb_checksum_help(struct sk_buff *skb)
1927 {
1928 __wsum csum;
1929 int ret = 0, offset;
1930
1931 if (skb->ip_summed == CHECKSUM_COMPLETE)
1932 goto out_set_summed;
1933
1934 if (unlikely(skb_shinfo(skb)->gso_size)) {
1935 skb_warn_bad_offload(skb);
1936 return -EINVAL;
1937 }
1938
1939 offset = skb_checksum_start_offset(skb);
1940 BUG_ON(offset >= skb_headlen(skb));
1941 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1942
1943 offset += skb->csum_offset;
1944 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1945
1946 if (skb_cloned(skb) &&
1947 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1948 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1949 if (ret)
1950 goto out;
1951 }
1952
1953 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1954 out_set_summed:
1955 skb->ip_summed = CHECKSUM_NONE;
1956 out:
1957 return ret;
1958 }
1959 EXPORT_SYMBOL(skb_checksum_help);
1960
1961 /**
1962 * skb_gso_segment - Perform segmentation on skb.
1963 * @skb: buffer to segment
1964 * @features: features for the output path (see dev->features)
1965 *
1966 * This function segments the given skb and returns a list of segments.
1967 *
1968 * It may return NULL if the skb requires no segmentation. This is
1969 * only possible when GSO is used for verifying header integrity.
1970 */
1971 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1972 netdev_features_t features)
1973 {
1974 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1975 struct packet_type *ptype;
1976 __be16 type = skb->protocol;
1977 int vlan_depth = ETH_HLEN;
1978 int err;
1979
1980 while (type == htons(ETH_P_8021Q)) {
1981 struct vlan_hdr *vh;
1982
1983 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1984 return ERR_PTR(-EINVAL);
1985
1986 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1987 type = vh->h_vlan_encapsulated_proto;
1988 vlan_depth += VLAN_HLEN;
1989 }
1990
1991 skb_reset_mac_header(skb);
1992 skb->mac_len = skb->network_header - skb->mac_header;
1993 __skb_pull(skb, skb->mac_len);
1994
1995 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1996 skb_warn_bad_offload(skb);
1997
1998 if (skb_header_cloned(skb) &&
1999 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2000 return ERR_PTR(err);
2001 }
2002
2003 rcu_read_lock();
2004 list_for_each_entry_rcu(ptype,
2005 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2006 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
2007 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2008 err = ptype->gso_send_check(skb);
2009 segs = ERR_PTR(err);
2010 if (err || skb_gso_ok(skb, features))
2011 break;
2012 __skb_push(skb, (skb->data -
2013 skb_network_header(skb)));
2014 }
2015 segs = ptype->gso_segment(skb, features);
2016 break;
2017 }
2018 }
2019 rcu_read_unlock();
2020
2021 __skb_push(skb, skb->data - skb_mac_header(skb));
2022
2023 return segs;
2024 }
2025 EXPORT_SYMBOL(skb_gso_segment);
2026
2027 /* Take action when hardware reception checksum errors are detected. */
2028 #ifdef CONFIG_BUG
2029 void netdev_rx_csum_fault(struct net_device *dev)
2030 {
2031 if (net_ratelimit()) {
2032 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2033 dump_stack();
2034 }
2035 }
2036 EXPORT_SYMBOL(netdev_rx_csum_fault);
2037 #endif
2038
2039 /* Actually, we should eliminate this check as soon as we know, that:
2040 * 1. IOMMU is present and allows to map all the memory.
2041 * 2. No high memory really exists on this machine.
2042 */
2043
2044 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2045 {
2046 #ifdef CONFIG_HIGHMEM
2047 int i;
2048 if (!(dev->features & NETIF_F_HIGHDMA)) {
2049 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2050 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2051 if (PageHighMem(skb_frag_page(frag)))
2052 return 1;
2053 }
2054 }
2055
2056 if (PCI_DMA_BUS_IS_PHYS) {
2057 struct device *pdev = dev->dev.parent;
2058
2059 if (!pdev)
2060 return 0;
2061 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2062 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2063 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2064 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2065 return 1;
2066 }
2067 }
2068 #endif
2069 return 0;
2070 }
2071
2072 struct dev_gso_cb {
2073 void (*destructor)(struct sk_buff *skb);
2074 };
2075
2076 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2077
2078 static void dev_gso_skb_destructor(struct sk_buff *skb)
2079 {
2080 struct dev_gso_cb *cb;
2081
2082 do {
2083 struct sk_buff *nskb = skb->next;
2084
2085 skb->next = nskb->next;
2086 nskb->next = NULL;
2087 kfree_skb(nskb);
2088 } while (skb->next);
2089
2090 cb = DEV_GSO_CB(skb);
2091 if (cb->destructor)
2092 cb->destructor(skb);
2093 }
2094
2095 /**
2096 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2097 * @skb: buffer to segment
2098 * @features: device features as applicable to this skb
2099 *
2100 * This function segments the given skb and stores the list of segments
2101 * in skb->next.
2102 */
2103 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2104 {
2105 struct sk_buff *segs;
2106
2107 segs = skb_gso_segment(skb, features);
2108
2109 /* Verifying header integrity only. */
2110 if (!segs)
2111 return 0;
2112
2113 if (IS_ERR(segs))
2114 return PTR_ERR(segs);
2115
2116 skb->next = segs;
2117 DEV_GSO_CB(skb)->destructor = skb->destructor;
2118 skb->destructor = dev_gso_skb_destructor;
2119
2120 return 0;
2121 }
2122
2123 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2124 {
2125 return ((features & NETIF_F_GEN_CSUM) ||
2126 ((features & NETIF_F_V4_CSUM) &&
2127 protocol == htons(ETH_P_IP)) ||
2128 ((features & NETIF_F_V6_CSUM) &&
2129 protocol == htons(ETH_P_IPV6)) ||
2130 ((features & NETIF_F_FCOE_CRC) &&
2131 protocol == htons(ETH_P_FCOE)));
2132 }
2133
2134 static netdev_features_t harmonize_features(struct sk_buff *skb,
2135 __be16 protocol, netdev_features_t features)
2136 {
2137 if (!can_checksum_protocol(features, protocol)) {
2138 features &= ~NETIF_F_ALL_CSUM;
2139 features &= ~NETIF_F_SG;
2140 } else if (illegal_highdma(skb->dev, skb)) {
2141 features &= ~NETIF_F_SG;
2142 }
2143
2144 return features;
2145 }
2146
2147 netdev_features_t netif_skb_features(struct sk_buff *skb)
2148 {
2149 __be16 protocol = skb->protocol;
2150 netdev_features_t features = skb->dev->features;
2151
2152 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2153 features &= ~NETIF_F_GSO_MASK;
2154
2155 if (protocol == htons(ETH_P_8021Q)) {
2156 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2157 protocol = veh->h_vlan_encapsulated_proto;
2158 } else if (!vlan_tx_tag_present(skb)) {
2159 return harmonize_features(skb, protocol, features);
2160 }
2161
2162 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2163
2164 if (protocol != htons(ETH_P_8021Q)) {
2165 return harmonize_features(skb, protocol, features);
2166 } else {
2167 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2168 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2169 return harmonize_features(skb, protocol, features);
2170 }
2171 }
2172 EXPORT_SYMBOL(netif_skb_features);
2173
2174 /*
2175 * Returns true if either:
2176 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2177 * 2. skb is fragmented and the device does not support SG, or if
2178 * at least one of fragments is in highmem and device does not
2179 * support DMA from it.
2180 */
2181 static inline int skb_needs_linearize(struct sk_buff *skb,
2182 int features)
2183 {
2184 return skb_is_nonlinear(skb) &&
2185 ((skb_has_frag_list(skb) &&
2186 !(features & NETIF_F_FRAGLIST)) ||
2187 (skb_shinfo(skb)->nr_frags &&
2188 !(features & NETIF_F_SG)));
2189 }
2190
2191 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2192 struct netdev_queue *txq)
2193 {
2194 const struct net_device_ops *ops = dev->netdev_ops;
2195 int rc = NETDEV_TX_OK;
2196 unsigned int skb_len;
2197
2198 if (likely(!skb->next)) {
2199 netdev_features_t features;
2200
2201 /*
2202 * If device doesn't need skb->dst, release it right now while
2203 * its hot in this cpu cache
2204 */
2205 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2206 skb_dst_drop(skb);
2207
2208 if (!list_empty(&ptype_all))
2209 dev_queue_xmit_nit(skb, dev);
2210
2211 features = netif_skb_features(skb);
2212
2213 if (vlan_tx_tag_present(skb) &&
2214 !(features & NETIF_F_HW_VLAN_TX)) {
2215 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2216 if (unlikely(!skb))
2217 goto out;
2218
2219 skb->vlan_tci = 0;
2220 }
2221
2222 if (netif_needs_gso(skb, features)) {
2223 if (unlikely(dev_gso_segment(skb, features)))
2224 goto out_kfree_skb;
2225 if (skb->next)
2226 goto gso;
2227 } else {
2228 if (skb_needs_linearize(skb, features) &&
2229 __skb_linearize(skb))
2230 goto out_kfree_skb;
2231
2232 /* If packet is not checksummed and device does not
2233 * support checksumming for this protocol, complete
2234 * checksumming here.
2235 */
2236 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2237 skb_set_transport_header(skb,
2238 skb_checksum_start_offset(skb));
2239 if (!(features & NETIF_F_ALL_CSUM) &&
2240 skb_checksum_help(skb))
2241 goto out_kfree_skb;
2242 }
2243 }
2244
2245 skb_len = skb->len;
2246 rc = ops->ndo_start_xmit(skb, dev);
2247 trace_net_dev_xmit(skb, rc, dev, skb_len);
2248 if (rc == NETDEV_TX_OK)
2249 txq_trans_update(txq);
2250 return rc;
2251 }
2252
2253 gso:
2254 do {
2255 struct sk_buff *nskb = skb->next;
2256
2257 skb->next = nskb->next;
2258 nskb->next = NULL;
2259
2260 /*
2261 * If device doesn't need nskb->dst, release it right now while
2262 * its hot in this cpu cache
2263 */
2264 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2265 skb_dst_drop(nskb);
2266
2267 skb_len = nskb->len;
2268 rc = ops->ndo_start_xmit(nskb, dev);
2269 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2270 if (unlikely(rc != NETDEV_TX_OK)) {
2271 if (rc & ~NETDEV_TX_MASK)
2272 goto out_kfree_gso_skb;
2273 nskb->next = skb->next;
2274 skb->next = nskb;
2275 return rc;
2276 }
2277 txq_trans_update(txq);
2278 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2279 return NETDEV_TX_BUSY;
2280 } while (skb->next);
2281
2282 out_kfree_gso_skb:
2283 if (likely(skb->next == NULL))
2284 skb->destructor = DEV_GSO_CB(skb)->destructor;
2285 out_kfree_skb:
2286 kfree_skb(skb);
2287 out:
2288 return rc;
2289 }
2290
2291 static u32 hashrnd __read_mostly;
2292
2293 /*
2294 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2295 * to be used as a distribution range.
2296 */
2297 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2298 unsigned int num_tx_queues)
2299 {
2300 u32 hash;
2301 u16 qoffset = 0;
2302 u16 qcount = num_tx_queues;
2303
2304 if (skb_rx_queue_recorded(skb)) {
2305 hash = skb_get_rx_queue(skb);
2306 while (unlikely(hash >= num_tx_queues))
2307 hash -= num_tx_queues;
2308 return hash;
2309 }
2310
2311 if (dev->num_tc) {
2312 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2313 qoffset = dev->tc_to_txq[tc].offset;
2314 qcount = dev->tc_to_txq[tc].count;
2315 }
2316
2317 if (skb->sk && skb->sk->sk_hash)
2318 hash = skb->sk->sk_hash;
2319 else
2320 hash = (__force u16) skb->protocol;
2321 hash = jhash_1word(hash, hashrnd);
2322
2323 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2324 }
2325 EXPORT_SYMBOL(__skb_tx_hash);
2326
2327 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2328 {
2329 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2330 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2331 dev->name, queue_index,
2332 dev->real_num_tx_queues);
2333 return 0;
2334 }
2335 return queue_index;
2336 }
2337
2338 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2339 {
2340 #ifdef CONFIG_XPS
2341 struct xps_dev_maps *dev_maps;
2342 struct xps_map *map;
2343 int queue_index = -1;
2344
2345 rcu_read_lock();
2346 dev_maps = rcu_dereference(dev->xps_maps);
2347 if (dev_maps) {
2348 map = rcu_dereference(
2349 dev_maps->cpu_map[raw_smp_processor_id()]);
2350 if (map) {
2351 if (map->len == 1)
2352 queue_index = map->queues[0];
2353 else {
2354 u32 hash;
2355 if (skb->sk && skb->sk->sk_hash)
2356 hash = skb->sk->sk_hash;
2357 else
2358 hash = (__force u16) skb->protocol ^
2359 skb->rxhash;
2360 hash = jhash_1word(hash, hashrnd);
2361 queue_index = map->queues[
2362 ((u64)hash * map->len) >> 32];
2363 }
2364 if (unlikely(queue_index >= dev->real_num_tx_queues))
2365 queue_index = -1;
2366 }
2367 }
2368 rcu_read_unlock();
2369
2370 return queue_index;
2371 #else
2372 return -1;
2373 #endif
2374 }
2375
2376 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2377 struct sk_buff *skb)
2378 {
2379 int queue_index;
2380 const struct net_device_ops *ops = dev->netdev_ops;
2381
2382 if (dev->real_num_tx_queues == 1)
2383 queue_index = 0;
2384 else if (ops->ndo_select_queue) {
2385 queue_index = ops->ndo_select_queue(dev, skb);
2386 queue_index = dev_cap_txqueue(dev, queue_index);
2387 } else {
2388 struct sock *sk = skb->sk;
2389 queue_index = sk_tx_queue_get(sk);
2390
2391 if (queue_index < 0 || skb->ooo_okay ||
2392 queue_index >= dev->real_num_tx_queues) {
2393 int old_index = queue_index;
2394
2395 queue_index = get_xps_queue(dev, skb);
2396 if (queue_index < 0)
2397 queue_index = skb_tx_hash(dev, skb);
2398
2399 if (queue_index != old_index && sk) {
2400 struct dst_entry *dst =
2401 rcu_dereference_check(sk->sk_dst_cache, 1);
2402
2403 if (dst && skb_dst(skb) == dst)
2404 sk_tx_queue_set(sk, queue_index);
2405 }
2406 }
2407 }
2408
2409 skb_set_queue_mapping(skb, queue_index);
2410 return netdev_get_tx_queue(dev, queue_index);
2411 }
2412
2413 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2414 struct net_device *dev,
2415 struct netdev_queue *txq)
2416 {
2417 spinlock_t *root_lock = qdisc_lock(q);
2418 bool contended;
2419 int rc;
2420
2421 qdisc_skb_cb(skb)->pkt_len = skb->len;
2422 qdisc_calculate_pkt_len(skb, q);
2423 /*
2424 * Heuristic to force contended enqueues to serialize on a
2425 * separate lock before trying to get qdisc main lock.
2426 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2427 * and dequeue packets faster.
2428 */
2429 contended = qdisc_is_running(q);
2430 if (unlikely(contended))
2431 spin_lock(&q->busylock);
2432
2433 spin_lock(root_lock);
2434 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2435 kfree_skb(skb);
2436 rc = NET_XMIT_DROP;
2437 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2438 qdisc_run_begin(q)) {
2439 /*
2440 * This is a work-conserving queue; there are no old skbs
2441 * waiting to be sent out; and the qdisc is not running -
2442 * xmit the skb directly.
2443 */
2444 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2445 skb_dst_force(skb);
2446
2447 qdisc_bstats_update(q, skb);
2448
2449 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2450 if (unlikely(contended)) {
2451 spin_unlock(&q->busylock);
2452 contended = false;
2453 }
2454 __qdisc_run(q);
2455 } else
2456 qdisc_run_end(q);
2457
2458 rc = NET_XMIT_SUCCESS;
2459 } else {
2460 skb_dst_force(skb);
2461 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2462 if (qdisc_run_begin(q)) {
2463 if (unlikely(contended)) {
2464 spin_unlock(&q->busylock);
2465 contended = false;
2466 }
2467 __qdisc_run(q);
2468 }
2469 }
2470 spin_unlock(root_lock);
2471 if (unlikely(contended))
2472 spin_unlock(&q->busylock);
2473 return rc;
2474 }
2475
2476 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2477 static void skb_update_prio(struct sk_buff *skb)
2478 {
2479 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2480
2481 if (!skb->priority && skb->sk && map) {
2482 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2483
2484 if (prioidx < map->priomap_len)
2485 skb->priority = map->priomap[prioidx];
2486 }
2487 }
2488 #else
2489 #define skb_update_prio(skb)
2490 #endif
2491
2492 static DEFINE_PER_CPU(int, xmit_recursion);
2493 #define RECURSION_LIMIT 10
2494
2495 /**
2496 * dev_loopback_xmit - loop back @skb
2497 * @skb: buffer to transmit
2498 */
2499 int dev_loopback_xmit(struct sk_buff *skb)
2500 {
2501 skb_reset_mac_header(skb);
2502 __skb_pull(skb, skb_network_offset(skb));
2503 skb->pkt_type = PACKET_LOOPBACK;
2504 skb->ip_summed = CHECKSUM_UNNECESSARY;
2505 WARN_ON(!skb_dst(skb));
2506 skb_dst_force(skb);
2507 netif_rx_ni(skb);
2508 return 0;
2509 }
2510 EXPORT_SYMBOL(dev_loopback_xmit);
2511
2512 /**
2513 * dev_queue_xmit - transmit a buffer
2514 * @skb: buffer to transmit
2515 *
2516 * Queue a buffer for transmission to a network device. The caller must
2517 * have set the device and priority and built the buffer before calling
2518 * this function. The function can be called from an interrupt.
2519 *
2520 * A negative errno code is returned on a failure. A success does not
2521 * guarantee the frame will be transmitted as it may be dropped due
2522 * to congestion or traffic shaping.
2523 *
2524 * -----------------------------------------------------------------------------------
2525 * I notice this method can also return errors from the queue disciplines,
2526 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2527 * be positive.
2528 *
2529 * Regardless of the return value, the skb is consumed, so it is currently
2530 * difficult to retry a send to this method. (You can bump the ref count
2531 * before sending to hold a reference for retry if you are careful.)
2532 *
2533 * When calling this method, interrupts MUST be enabled. This is because
2534 * the BH enable code must have IRQs enabled so that it will not deadlock.
2535 * --BLG
2536 */
2537 int dev_queue_xmit(struct sk_buff *skb)
2538 {
2539 struct net_device *dev = skb->dev;
2540 struct netdev_queue *txq;
2541 struct Qdisc *q;
2542 int rc = -ENOMEM;
2543
2544 /* Disable soft irqs for various locks below. Also
2545 * stops preemption for RCU.
2546 */
2547 rcu_read_lock_bh();
2548
2549 skb_update_prio(skb);
2550
2551 txq = dev_pick_tx(dev, skb);
2552 q = rcu_dereference_bh(txq->qdisc);
2553
2554 #ifdef CONFIG_NET_CLS_ACT
2555 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2556 #endif
2557 trace_net_dev_queue(skb);
2558 if (q->enqueue) {
2559 rc = __dev_xmit_skb(skb, q, dev, txq);
2560 goto out;
2561 }
2562
2563 /* The device has no queue. Common case for software devices:
2564 loopback, all the sorts of tunnels...
2565
2566 Really, it is unlikely that netif_tx_lock protection is necessary
2567 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2568 counters.)
2569 However, it is possible, that they rely on protection
2570 made by us here.
2571
2572 Check this and shot the lock. It is not prone from deadlocks.
2573 Either shot noqueue qdisc, it is even simpler 8)
2574 */
2575 if (dev->flags & IFF_UP) {
2576 int cpu = smp_processor_id(); /* ok because BHs are off */
2577
2578 if (txq->xmit_lock_owner != cpu) {
2579
2580 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2581 goto recursion_alert;
2582
2583 HARD_TX_LOCK(dev, txq, cpu);
2584
2585 if (!netif_xmit_stopped(txq)) {
2586 __this_cpu_inc(xmit_recursion);
2587 rc = dev_hard_start_xmit(skb, dev, txq);
2588 __this_cpu_dec(xmit_recursion);
2589 if (dev_xmit_complete(rc)) {
2590 HARD_TX_UNLOCK(dev, txq);
2591 goto out;
2592 }
2593 }
2594 HARD_TX_UNLOCK(dev, txq);
2595 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2596 dev->name);
2597 } else {
2598 /* Recursion is detected! It is possible,
2599 * unfortunately
2600 */
2601 recursion_alert:
2602 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2603 dev->name);
2604 }
2605 }
2606
2607 rc = -ENETDOWN;
2608 rcu_read_unlock_bh();
2609
2610 kfree_skb(skb);
2611 return rc;
2612 out:
2613 rcu_read_unlock_bh();
2614 return rc;
2615 }
2616 EXPORT_SYMBOL(dev_queue_xmit);
2617
2618
2619 /*=======================================================================
2620 Receiver routines
2621 =======================================================================*/
2622
2623 int netdev_max_backlog __read_mostly = 1000;
2624 int netdev_tstamp_prequeue __read_mostly = 1;
2625 int netdev_budget __read_mostly = 300;
2626 int weight_p __read_mostly = 64; /* old backlog weight */
2627
2628 /* Called with irq disabled */
2629 static inline void ____napi_schedule(struct softnet_data *sd,
2630 struct napi_struct *napi)
2631 {
2632 list_add_tail(&napi->poll_list, &sd->poll_list);
2633 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2634 }
2635
2636 /*
2637 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2638 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2639 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2640 * if hash is a canonical 4-tuple hash over transport ports.
2641 */
2642 void __skb_get_rxhash(struct sk_buff *skb)
2643 {
2644 struct flow_keys keys;
2645 u32 hash;
2646
2647 if (!skb_flow_dissect(skb, &keys))
2648 return;
2649
2650 if (keys.ports)
2651 skb->l4_rxhash = 1;
2652
2653 /* get a consistent hash (same value on both flow directions) */
2654 if (((__force u32)keys.dst < (__force u32)keys.src) ||
2655 (((__force u32)keys.dst == (__force u32)keys.src) &&
2656 ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]))) {
2657 swap(keys.dst, keys.src);
2658 swap(keys.port16[0], keys.port16[1]);
2659 }
2660
2661 hash = jhash_3words((__force u32)keys.dst,
2662 (__force u32)keys.src,
2663 (__force u32)keys.ports, hashrnd);
2664 if (!hash)
2665 hash = 1;
2666
2667 skb->rxhash = hash;
2668 }
2669 EXPORT_SYMBOL(__skb_get_rxhash);
2670
2671 #ifdef CONFIG_RPS
2672
2673 /* One global table that all flow-based protocols share. */
2674 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2675 EXPORT_SYMBOL(rps_sock_flow_table);
2676
2677 struct static_key rps_needed __read_mostly;
2678
2679 static struct rps_dev_flow *
2680 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2681 struct rps_dev_flow *rflow, u16 next_cpu)
2682 {
2683 if (next_cpu != RPS_NO_CPU) {
2684 #ifdef CONFIG_RFS_ACCEL
2685 struct netdev_rx_queue *rxqueue;
2686 struct rps_dev_flow_table *flow_table;
2687 struct rps_dev_flow *old_rflow;
2688 u32 flow_id;
2689 u16 rxq_index;
2690 int rc;
2691
2692 /* Should we steer this flow to a different hardware queue? */
2693 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2694 !(dev->features & NETIF_F_NTUPLE))
2695 goto out;
2696 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2697 if (rxq_index == skb_get_rx_queue(skb))
2698 goto out;
2699
2700 rxqueue = dev->_rx + rxq_index;
2701 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2702 if (!flow_table)
2703 goto out;
2704 flow_id = skb->rxhash & flow_table->mask;
2705 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2706 rxq_index, flow_id);
2707 if (rc < 0)
2708 goto out;
2709 old_rflow = rflow;
2710 rflow = &flow_table->flows[flow_id];
2711 rflow->filter = rc;
2712 if (old_rflow->filter == rflow->filter)
2713 old_rflow->filter = RPS_NO_FILTER;
2714 out:
2715 #endif
2716 rflow->last_qtail =
2717 per_cpu(softnet_data, next_cpu).input_queue_head;
2718 }
2719
2720 rflow->cpu = next_cpu;
2721 return rflow;
2722 }
2723
2724 /*
2725 * get_rps_cpu is called from netif_receive_skb and returns the target
2726 * CPU from the RPS map of the receiving queue for a given skb.
2727 * rcu_read_lock must be held on entry.
2728 */
2729 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2730 struct rps_dev_flow **rflowp)
2731 {
2732 struct netdev_rx_queue *rxqueue;
2733 struct rps_map *map;
2734 struct rps_dev_flow_table *flow_table;
2735 struct rps_sock_flow_table *sock_flow_table;
2736 int cpu = -1;
2737 u16 tcpu;
2738
2739 if (skb_rx_queue_recorded(skb)) {
2740 u16 index = skb_get_rx_queue(skb);
2741 if (unlikely(index >= dev->real_num_rx_queues)) {
2742 WARN_ONCE(dev->real_num_rx_queues > 1,
2743 "%s received packet on queue %u, but number "
2744 "of RX queues is %u\n",
2745 dev->name, index, dev->real_num_rx_queues);
2746 goto done;
2747 }
2748 rxqueue = dev->_rx + index;
2749 } else
2750 rxqueue = dev->_rx;
2751
2752 map = rcu_dereference(rxqueue->rps_map);
2753 if (map) {
2754 if (map->len == 1 &&
2755 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2756 tcpu = map->cpus[0];
2757 if (cpu_online(tcpu))
2758 cpu = tcpu;
2759 goto done;
2760 }
2761 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2762 goto done;
2763 }
2764
2765 skb_reset_network_header(skb);
2766 if (!skb_get_rxhash(skb))
2767 goto done;
2768
2769 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2770 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2771 if (flow_table && sock_flow_table) {
2772 u16 next_cpu;
2773 struct rps_dev_flow *rflow;
2774
2775 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2776 tcpu = rflow->cpu;
2777
2778 next_cpu = sock_flow_table->ents[skb->rxhash &
2779 sock_flow_table->mask];
2780
2781 /*
2782 * If the desired CPU (where last recvmsg was done) is
2783 * different from current CPU (one in the rx-queue flow
2784 * table entry), switch if one of the following holds:
2785 * - Current CPU is unset (equal to RPS_NO_CPU).
2786 * - Current CPU is offline.
2787 * - The current CPU's queue tail has advanced beyond the
2788 * last packet that was enqueued using this table entry.
2789 * This guarantees that all previous packets for the flow
2790 * have been dequeued, thus preserving in order delivery.
2791 */
2792 if (unlikely(tcpu != next_cpu) &&
2793 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2794 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2795 rflow->last_qtail)) >= 0))
2796 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2797
2798 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2799 *rflowp = rflow;
2800 cpu = tcpu;
2801 goto done;
2802 }
2803 }
2804
2805 if (map) {
2806 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2807
2808 if (cpu_online(tcpu)) {
2809 cpu = tcpu;
2810 goto done;
2811 }
2812 }
2813
2814 done:
2815 return cpu;
2816 }
2817
2818 #ifdef CONFIG_RFS_ACCEL
2819
2820 /**
2821 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2822 * @dev: Device on which the filter was set
2823 * @rxq_index: RX queue index
2824 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2825 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2826 *
2827 * Drivers that implement ndo_rx_flow_steer() should periodically call
2828 * this function for each installed filter and remove the filters for
2829 * which it returns %true.
2830 */
2831 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2832 u32 flow_id, u16 filter_id)
2833 {
2834 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2835 struct rps_dev_flow_table *flow_table;
2836 struct rps_dev_flow *rflow;
2837 bool expire = true;
2838 int cpu;
2839
2840 rcu_read_lock();
2841 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2842 if (flow_table && flow_id <= flow_table->mask) {
2843 rflow = &flow_table->flows[flow_id];
2844 cpu = ACCESS_ONCE(rflow->cpu);
2845 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2846 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2847 rflow->last_qtail) <
2848 (int)(10 * flow_table->mask)))
2849 expire = false;
2850 }
2851 rcu_read_unlock();
2852 return expire;
2853 }
2854 EXPORT_SYMBOL(rps_may_expire_flow);
2855
2856 #endif /* CONFIG_RFS_ACCEL */
2857
2858 /* Called from hardirq (IPI) context */
2859 static void rps_trigger_softirq(void *data)
2860 {
2861 struct softnet_data *sd = data;
2862
2863 ____napi_schedule(sd, &sd->backlog);
2864 sd->received_rps++;
2865 }
2866
2867 #endif /* CONFIG_RPS */
2868
2869 /*
2870 * Check if this softnet_data structure is another cpu one
2871 * If yes, queue it to our IPI list and return 1
2872 * If no, return 0
2873 */
2874 static int rps_ipi_queued(struct softnet_data *sd)
2875 {
2876 #ifdef CONFIG_RPS
2877 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2878
2879 if (sd != mysd) {
2880 sd->rps_ipi_next = mysd->rps_ipi_list;
2881 mysd->rps_ipi_list = sd;
2882
2883 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2884 return 1;
2885 }
2886 #endif /* CONFIG_RPS */
2887 return 0;
2888 }
2889
2890 /*
2891 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2892 * queue (may be a remote CPU queue).
2893 */
2894 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2895 unsigned int *qtail)
2896 {
2897 struct softnet_data *sd;
2898 unsigned long flags;
2899
2900 sd = &per_cpu(softnet_data, cpu);
2901
2902 local_irq_save(flags);
2903
2904 rps_lock(sd);
2905 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2906 if (skb_queue_len(&sd->input_pkt_queue)) {
2907 enqueue:
2908 __skb_queue_tail(&sd->input_pkt_queue, skb);
2909 input_queue_tail_incr_save(sd, qtail);
2910 rps_unlock(sd);
2911 local_irq_restore(flags);
2912 return NET_RX_SUCCESS;
2913 }
2914
2915 /* Schedule NAPI for backlog device
2916 * We can use non atomic operation since we own the queue lock
2917 */
2918 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2919 if (!rps_ipi_queued(sd))
2920 ____napi_schedule(sd, &sd->backlog);
2921 }
2922 goto enqueue;
2923 }
2924
2925 sd->dropped++;
2926 rps_unlock(sd);
2927
2928 local_irq_restore(flags);
2929
2930 atomic_long_inc(&skb->dev->rx_dropped);
2931 kfree_skb(skb);
2932 return NET_RX_DROP;
2933 }
2934
2935 /**
2936 * netif_rx - post buffer to the network code
2937 * @skb: buffer to post
2938 *
2939 * This function receives a packet from a device driver and queues it for
2940 * the upper (protocol) levels to process. It always succeeds. The buffer
2941 * may be dropped during processing for congestion control or by the
2942 * protocol layers.
2943 *
2944 * return values:
2945 * NET_RX_SUCCESS (no congestion)
2946 * NET_RX_DROP (packet was dropped)
2947 *
2948 */
2949
2950 int netif_rx(struct sk_buff *skb)
2951 {
2952 int ret;
2953
2954 /* if netpoll wants it, pretend we never saw it */
2955 if (netpoll_rx(skb))
2956 return NET_RX_DROP;
2957
2958 net_timestamp_check(netdev_tstamp_prequeue, skb);
2959
2960 trace_netif_rx(skb);
2961 #ifdef CONFIG_RPS
2962 if (static_key_false(&rps_needed)) {
2963 struct rps_dev_flow voidflow, *rflow = &voidflow;
2964 int cpu;
2965
2966 preempt_disable();
2967 rcu_read_lock();
2968
2969 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2970 if (cpu < 0)
2971 cpu = smp_processor_id();
2972
2973 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2974
2975 rcu_read_unlock();
2976 preempt_enable();
2977 } else
2978 #endif
2979 {
2980 unsigned int qtail;
2981 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2982 put_cpu();
2983 }
2984 return ret;
2985 }
2986 EXPORT_SYMBOL(netif_rx);
2987
2988 int netif_rx_ni(struct sk_buff *skb)
2989 {
2990 int err;
2991
2992 preempt_disable();
2993 err = netif_rx(skb);
2994 if (local_softirq_pending())
2995 do_softirq();
2996 preempt_enable();
2997
2998 return err;
2999 }
3000 EXPORT_SYMBOL(netif_rx_ni);
3001
3002 static void net_tx_action(struct softirq_action *h)
3003 {
3004 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3005
3006 if (sd->completion_queue) {
3007 struct sk_buff *clist;
3008
3009 local_irq_disable();
3010 clist = sd->completion_queue;
3011 sd->completion_queue = NULL;
3012 local_irq_enable();
3013
3014 while (clist) {
3015 struct sk_buff *skb = clist;
3016 clist = clist->next;
3017
3018 WARN_ON(atomic_read(&skb->users));
3019 trace_kfree_skb(skb, net_tx_action);
3020 __kfree_skb(skb);
3021 }
3022 }
3023
3024 if (sd->output_queue) {
3025 struct Qdisc *head;
3026
3027 local_irq_disable();
3028 head = sd->output_queue;
3029 sd->output_queue = NULL;
3030 sd->output_queue_tailp = &sd->output_queue;
3031 local_irq_enable();
3032
3033 while (head) {
3034 struct Qdisc *q = head;
3035 spinlock_t *root_lock;
3036
3037 head = head->next_sched;
3038
3039 root_lock = qdisc_lock(q);
3040 if (spin_trylock(root_lock)) {
3041 smp_mb__before_clear_bit();
3042 clear_bit(__QDISC_STATE_SCHED,
3043 &q->state);
3044 qdisc_run(q);
3045 spin_unlock(root_lock);
3046 } else {
3047 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3048 &q->state)) {
3049 __netif_reschedule(q);
3050 } else {
3051 smp_mb__before_clear_bit();
3052 clear_bit(__QDISC_STATE_SCHED,
3053 &q->state);
3054 }
3055 }
3056 }
3057 }
3058 }
3059
3060 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3061 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3062 /* This hook is defined here for ATM LANE */
3063 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3064 unsigned char *addr) __read_mostly;
3065 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3066 #endif
3067
3068 #ifdef CONFIG_NET_CLS_ACT
3069 /* TODO: Maybe we should just force sch_ingress to be compiled in
3070 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3071 * a compare and 2 stores extra right now if we dont have it on
3072 * but have CONFIG_NET_CLS_ACT
3073 * NOTE: This doesn't stop any functionality; if you dont have
3074 * the ingress scheduler, you just can't add policies on ingress.
3075 *
3076 */
3077 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3078 {
3079 struct net_device *dev = skb->dev;
3080 u32 ttl = G_TC_RTTL(skb->tc_verd);
3081 int result = TC_ACT_OK;
3082 struct Qdisc *q;
3083
3084 if (unlikely(MAX_RED_LOOP < ttl++)) {
3085 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3086 skb->skb_iif, dev->ifindex);
3087 return TC_ACT_SHOT;
3088 }
3089
3090 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3091 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3092
3093 q = rxq->qdisc;
3094 if (q != &noop_qdisc) {
3095 spin_lock(qdisc_lock(q));
3096 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3097 result = qdisc_enqueue_root(skb, q);
3098 spin_unlock(qdisc_lock(q));
3099 }
3100
3101 return result;
3102 }
3103
3104 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3105 struct packet_type **pt_prev,
3106 int *ret, struct net_device *orig_dev)
3107 {
3108 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3109
3110 if (!rxq || rxq->qdisc == &noop_qdisc)
3111 goto out;
3112
3113 if (*pt_prev) {
3114 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3115 *pt_prev = NULL;
3116 }
3117
3118 switch (ing_filter(skb, rxq)) {
3119 case TC_ACT_SHOT:
3120 case TC_ACT_STOLEN:
3121 kfree_skb(skb);
3122 return NULL;
3123 }
3124
3125 out:
3126 skb->tc_verd = 0;
3127 return skb;
3128 }
3129 #endif
3130
3131 /**
3132 * netdev_rx_handler_register - register receive handler
3133 * @dev: device to register a handler for
3134 * @rx_handler: receive handler to register
3135 * @rx_handler_data: data pointer that is used by rx handler
3136 *
3137 * Register a receive hander for a device. This handler will then be
3138 * called from __netif_receive_skb. A negative errno code is returned
3139 * on a failure.
3140 *
3141 * The caller must hold the rtnl_mutex.
3142 *
3143 * For a general description of rx_handler, see enum rx_handler_result.
3144 */
3145 int netdev_rx_handler_register(struct net_device *dev,
3146 rx_handler_func_t *rx_handler,
3147 void *rx_handler_data)
3148 {
3149 ASSERT_RTNL();
3150
3151 if (dev->rx_handler)
3152 return -EBUSY;
3153
3154 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3155 rcu_assign_pointer(dev->rx_handler, rx_handler);
3156
3157 return 0;
3158 }
3159 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3160
3161 /**
3162 * netdev_rx_handler_unregister - unregister receive handler
3163 * @dev: device to unregister a handler from
3164 *
3165 * Unregister a receive hander from a device.
3166 *
3167 * The caller must hold the rtnl_mutex.
3168 */
3169 void netdev_rx_handler_unregister(struct net_device *dev)
3170 {
3171
3172 ASSERT_RTNL();
3173 RCU_INIT_POINTER(dev->rx_handler, NULL);
3174 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3175 }
3176 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3177
3178 /*
3179 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3180 * the special handling of PFMEMALLOC skbs.
3181 */
3182 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3183 {
3184 switch (skb->protocol) {
3185 case __constant_htons(ETH_P_ARP):
3186 case __constant_htons(ETH_P_IP):
3187 case __constant_htons(ETH_P_IPV6):
3188 case __constant_htons(ETH_P_8021Q):
3189 return true;
3190 default:
3191 return false;
3192 }
3193 }
3194
3195 static int __netif_receive_skb(struct sk_buff *skb)
3196 {
3197 struct packet_type *ptype, *pt_prev;
3198 rx_handler_func_t *rx_handler;
3199 struct net_device *orig_dev;
3200 struct net_device *null_or_dev;
3201 bool deliver_exact = false;
3202 int ret = NET_RX_DROP;
3203 __be16 type;
3204 unsigned long pflags = current->flags;
3205
3206 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3207
3208 trace_netif_receive_skb(skb);
3209
3210 /*
3211 * PFMEMALLOC skbs are special, they should
3212 * - be delivered to SOCK_MEMALLOC sockets only
3213 * - stay away from userspace
3214 * - have bounded memory usage
3215 *
3216 * Use PF_MEMALLOC as this saves us from propagating the allocation
3217 * context down to all allocation sites.
3218 */
3219 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3220 current->flags |= PF_MEMALLOC;
3221
3222 /* if we've gotten here through NAPI, check netpoll */
3223 if (netpoll_receive_skb(skb))
3224 goto out;
3225
3226 orig_dev = skb->dev;
3227
3228 skb_reset_network_header(skb);
3229 skb_reset_transport_header(skb);
3230 skb_reset_mac_len(skb);
3231
3232 pt_prev = NULL;
3233
3234 rcu_read_lock();
3235
3236 another_round:
3237 skb->skb_iif = skb->dev->ifindex;
3238
3239 __this_cpu_inc(softnet_data.processed);
3240
3241 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3242 skb = vlan_untag(skb);
3243 if (unlikely(!skb))
3244 goto unlock;
3245 }
3246
3247 #ifdef CONFIG_NET_CLS_ACT
3248 if (skb->tc_verd & TC_NCLS) {
3249 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3250 goto ncls;
3251 }
3252 #endif
3253
3254 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3255 goto skip_taps;
3256
3257 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3258 if (!ptype->dev || ptype->dev == skb->dev) {
3259 if (pt_prev)
3260 ret = deliver_skb(skb, pt_prev, orig_dev);
3261 pt_prev = ptype;
3262 }
3263 }
3264
3265 skip_taps:
3266 #ifdef CONFIG_NET_CLS_ACT
3267 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3268 if (!skb)
3269 goto unlock;
3270 ncls:
3271 #endif
3272
3273 if (sk_memalloc_socks() && skb_pfmemalloc(skb)
3274 && !skb_pfmemalloc_protocol(skb))
3275 goto drop;
3276
3277 rx_handler = rcu_dereference(skb->dev->rx_handler);
3278 if (vlan_tx_tag_present(skb)) {
3279 if (pt_prev) {
3280 ret = deliver_skb(skb, pt_prev, orig_dev);
3281 pt_prev = NULL;
3282 }
3283 if (vlan_do_receive(&skb, !rx_handler))
3284 goto another_round;
3285 else if (unlikely(!skb))
3286 goto unlock;
3287 }
3288
3289 if (rx_handler) {
3290 if (pt_prev) {
3291 ret = deliver_skb(skb, pt_prev, orig_dev);
3292 pt_prev = NULL;
3293 }
3294 switch (rx_handler(&skb)) {
3295 case RX_HANDLER_CONSUMED:
3296 goto unlock;
3297 case RX_HANDLER_ANOTHER:
3298 goto another_round;
3299 case RX_HANDLER_EXACT:
3300 deliver_exact = true;
3301 case RX_HANDLER_PASS:
3302 break;
3303 default:
3304 BUG();
3305 }
3306 }
3307
3308 /* deliver only exact match when indicated */
3309 null_or_dev = deliver_exact ? skb->dev : NULL;
3310
3311 type = skb->protocol;
3312 list_for_each_entry_rcu(ptype,
3313 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3314 if (ptype->type == type &&
3315 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3316 ptype->dev == orig_dev)) {
3317 if (pt_prev)
3318 ret = deliver_skb(skb, pt_prev, orig_dev);
3319 pt_prev = ptype;
3320 }
3321 }
3322
3323 if (pt_prev) {
3324 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3325 ret = -ENOMEM;
3326 else
3327 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3328 } else {
3329 drop:
3330 atomic_long_inc(&skb->dev->rx_dropped);
3331 kfree_skb(skb);
3332 /* Jamal, now you will not able to escape explaining
3333 * me how you were going to use this. :-)
3334 */
3335 ret = NET_RX_DROP;
3336 }
3337
3338 unlock:
3339 rcu_read_unlock();
3340 out:
3341 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3342 return ret;
3343 }
3344
3345 /**
3346 * netif_receive_skb - process receive buffer from network
3347 * @skb: buffer to process
3348 *
3349 * netif_receive_skb() is the main receive data processing function.
3350 * It always succeeds. The buffer may be dropped during processing
3351 * for congestion control or by the protocol layers.
3352 *
3353 * This function may only be called from softirq context and interrupts
3354 * should be enabled.
3355 *
3356 * Return values (usually ignored):
3357 * NET_RX_SUCCESS: no congestion
3358 * NET_RX_DROP: packet was dropped
3359 */
3360 int netif_receive_skb(struct sk_buff *skb)
3361 {
3362 net_timestamp_check(netdev_tstamp_prequeue, skb);
3363
3364 if (skb_defer_rx_timestamp(skb))
3365 return NET_RX_SUCCESS;
3366
3367 #ifdef CONFIG_RPS
3368 if (static_key_false(&rps_needed)) {
3369 struct rps_dev_flow voidflow, *rflow = &voidflow;
3370 int cpu, ret;
3371
3372 rcu_read_lock();
3373
3374 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3375
3376 if (cpu >= 0) {
3377 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3378 rcu_read_unlock();
3379 return ret;
3380 }
3381 rcu_read_unlock();
3382 }
3383 #endif
3384 return __netif_receive_skb(skb);
3385 }
3386 EXPORT_SYMBOL(netif_receive_skb);
3387
3388 /* Network device is going away, flush any packets still pending
3389 * Called with irqs disabled.
3390 */
3391 static void flush_backlog(void *arg)
3392 {
3393 struct net_device *dev = arg;
3394 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3395 struct sk_buff *skb, *tmp;
3396
3397 rps_lock(sd);
3398 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3399 if (skb->dev == dev) {
3400 __skb_unlink(skb, &sd->input_pkt_queue);
3401 kfree_skb(skb);
3402 input_queue_head_incr(sd);
3403 }
3404 }
3405 rps_unlock(sd);
3406
3407 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3408 if (skb->dev == dev) {
3409 __skb_unlink(skb, &sd->process_queue);
3410 kfree_skb(skb);
3411 input_queue_head_incr(sd);
3412 }
3413 }
3414 }
3415
3416 static int napi_gro_complete(struct sk_buff *skb)
3417 {
3418 struct packet_type *ptype;
3419 __be16 type = skb->protocol;
3420 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3421 int err = -ENOENT;
3422
3423 if (NAPI_GRO_CB(skb)->count == 1) {
3424 skb_shinfo(skb)->gso_size = 0;
3425 goto out;
3426 }
3427
3428 rcu_read_lock();
3429 list_for_each_entry_rcu(ptype, head, list) {
3430 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3431 continue;
3432
3433 err = ptype->gro_complete(skb);
3434 break;
3435 }
3436 rcu_read_unlock();
3437
3438 if (err) {
3439 WARN_ON(&ptype->list == head);
3440 kfree_skb(skb);
3441 return NET_RX_SUCCESS;
3442 }
3443
3444 out:
3445 return netif_receive_skb(skb);
3446 }
3447
3448 inline void napi_gro_flush(struct napi_struct *napi)
3449 {
3450 struct sk_buff *skb, *next;
3451
3452 for (skb = napi->gro_list; skb; skb = next) {
3453 next = skb->next;
3454 skb->next = NULL;
3455 napi_gro_complete(skb);
3456 }
3457
3458 napi->gro_count = 0;
3459 napi->gro_list = NULL;
3460 }
3461 EXPORT_SYMBOL(napi_gro_flush);
3462
3463 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3464 {
3465 struct sk_buff **pp = NULL;
3466 struct packet_type *ptype;
3467 __be16 type = skb->protocol;
3468 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3469 int same_flow;
3470 int mac_len;
3471 enum gro_result ret;
3472
3473 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3474 goto normal;
3475
3476 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3477 goto normal;
3478
3479 rcu_read_lock();
3480 list_for_each_entry_rcu(ptype, head, list) {
3481 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3482 continue;
3483
3484 skb_set_network_header(skb, skb_gro_offset(skb));
3485 mac_len = skb->network_header - skb->mac_header;
3486 skb->mac_len = mac_len;
3487 NAPI_GRO_CB(skb)->same_flow = 0;
3488 NAPI_GRO_CB(skb)->flush = 0;
3489 NAPI_GRO_CB(skb)->free = 0;
3490
3491 pp = ptype->gro_receive(&napi->gro_list, skb);
3492 break;
3493 }
3494 rcu_read_unlock();
3495
3496 if (&ptype->list == head)
3497 goto normal;
3498
3499 same_flow = NAPI_GRO_CB(skb)->same_flow;
3500 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3501
3502 if (pp) {
3503 struct sk_buff *nskb = *pp;
3504
3505 *pp = nskb->next;
3506 nskb->next = NULL;
3507 napi_gro_complete(nskb);
3508 napi->gro_count--;
3509 }
3510
3511 if (same_flow)
3512 goto ok;
3513
3514 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3515 goto normal;
3516
3517 napi->gro_count++;
3518 NAPI_GRO_CB(skb)->count = 1;
3519 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3520 skb->next = napi->gro_list;
3521 napi->gro_list = skb;
3522 ret = GRO_HELD;
3523
3524 pull:
3525 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3526 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3527
3528 BUG_ON(skb->end - skb->tail < grow);
3529
3530 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3531
3532 skb->tail += grow;
3533 skb->data_len -= grow;
3534
3535 skb_shinfo(skb)->frags[0].page_offset += grow;
3536 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3537
3538 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3539 skb_frag_unref(skb, 0);
3540 memmove(skb_shinfo(skb)->frags,
3541 skb_shinfo(skb)->frags + 1,
3542 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3543 }
3544 }
3545
3546 ok:
3547 return ret;
3548
3549 normal:
3550 ret = GRO_NORMAL;
3551 goto pull;
3552 }
3553 EXPORT_SYMBOL(dev_gro_receive);
3554
3555 static inline gro_result_t
3556 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3557 {
3558 struct sk_buff *p;
3559 unsigned int maclen = skb->dev->hard_header_len;
3560
3561 for (p = napi->gro_list; p; p = p->next) {
3562 unsigned long diffs;
3563
3564 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3565 diffs |= p->vlan_tci ^ skb->vlan_tci;
3566 if (maclen == ETH_HLEN)
3567 diffs |= compare_ether_header(skb_mac_header(p),
3568 skb_gro_mac_header(skb));
3569 else if (!diffs)
3570 diffs = memcmp(skb_mac_header(p),
3571 skb_gro_mac_header(skb),
3572 maclen);
3573 NAPI_GRO_CB(p)->same_flow = !diffs;
3574 NAPI_GRO_CB(p)->flush = 0;
3575 }
3576
3577 return dev_gro_receive(napi, skb);
3578 }
3579
3580 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3581 {
3582 switch (ret) {
3583 case GRO_NORMAL:
3584 if (netif_receive_skb(skb))
3585 ret = GRO_DROP;
3586 break;
3587
3588 case GRO_DROP:
3589 kfree_skb(skb);
3590 break;
3591
3592 case GRO_MERGED_FREE:
3593 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3594 kmem_cache_free(skbuff_head_cache, skb);
3595 else
3596 __kfree_skb(skb);
3597 break;
3598
3599 case GRO_HELD:
3600 case GRO_MERGED:
3601 break;
3602 }
3603
3604 return ret;
3605 }
3606 EXPORT_SYMBOL(napi_skb_finish);
3607
3608 void skb_gro_reset_offset(struct sk_buff *skb)
3609 {
3610 NAPI_GRO_CB(skb)->data_offset = 0;
3611 NAPI_GRO_CB(skb)->frag0 = NULL;
3612 NAPI_GRO_CB(skb)->frag0_len = 0;
3613
3614 if (skb->mac_header == skb->tail &&
3615 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3616 NAPI_GRO_CB(skb)->frag0 =
3617 skb_frag_address(&skb_shinfo(skb)->frags[0]);
3618 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3619 }
3620 }
3621 EXPORT_SYMBOL(skb_gro_reset_offset);
3622
3623 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3624 {
3625 skb_gro_reset_offset(skb);
3626
3627 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3628 }
3629 EXPORT_SYMBOL(napi_gro_receive);
3630
3631 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3632 {
3633 __skb_pull(skb, skb_headlen(skb));
3634 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3635 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3636 skb->vlan_tci = 0;
3637 skb->dev = napi->dev;
3638 skb->skb_iif = 0;
3639
3640 napi->skb = skb;
3641 }
3642
3643 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3644 {
3645 struct sk_buff *skb = napi->skb;
3646
3647 if (!skb) {
3648 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3649 if (skb)
3650 napi->skb = skb;
3651 }
3652 return skb;
3653 }
3654 EXPORT_SYMBOL(napi_get_frags);
3655
3656 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3657 gro_result_t ret)
3658 {
3659 switch (ret) {
3660 case GRO_NORMAL:
3661 case GRO_HELD:
3662 skb->protocol = eth_type_trans(skb, skb->dev);
3663
3664 if (ret == GRO_HELD)
3665 skb_gro_pull(skb, -ETH_HLEN);
3666 else if (netif_receive_skb(skb))
3667 ret = GRO_DROP;
3668 break;
3669
3670 case GRO_DROP:
3671 case GRO_MERGED_FREE:
3672 napi_reuse_skb(napi, skb);
3673 break;
3674
3675 case GRO_MERGED:
3676 break;
3677 }
3678
3679 return ret;
3680 }
3681 EXPORT_SYMBOL(napi_frags_finish);
3682
3683 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3684 {
3685 struct sk_buff *skb = napi->skb;
3686 struct ethhdr *eth;
3687 unsigned int hlen;
3688 unsigned int off;
3689
3690 napi->skb = NULL;
3691
3692 skb_reset_mac_header(skb);
3693 skb_gro_reset_offset(skb);
3694
3695 off = skb_gro_offset(skb);
3696 hlen = off + sizeof(*eth);
3697 eth = skb_gro_header_fast(skb, off);
3698 if (skb_gro_header_hard(skb, hlen)) {
3699 eth = skb_gro_header_slow(skb, hlen, off);
3700 if (unlikely(!eth)) {
3701 napi_reuse_skb(napi, skb);
3702 skb = NULL;
3703 goto out;
3704 }
3705 }
3706
3707 skb_gro_pull(skb, sizeof(*eth));
3708
3709 /*
3710 * This works because the only protocols we care about don't require
3711 * special handling. We'll fix it up properly at the end.
3712 */
3713 skb->protocol = eth->h_proto;
3714
3715 out:
3716 return skb;
3717 }
3718
3719 gro_result_t napi_gro_frags(struct napi_struct *napi)
3720 {
3721 struct sk_buff *skb = napi_frags_skb(napi);
3722
3723 if (!skb)
3724 return GRO_DROP;
3725
3726 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3727 }
3728 EXPORT_SYMBOL(napi_gro_frags);
3729
3730 /*
3731 * net_rps_action sends any pending IPI's for rps.
3732 * Note: called with local irq disabled, but exits with local irq enabled.
3733 */
3734 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3735 {
3736 #ifdef CONFIG_RPS
3737 struct softnet_data *remsd = sd->rps_ipi_list;
3738
3739 if (remsd) {
3740 sd->rps_ipi_list = NULL;
3741
3742 local_irq_enable();
3743
3744 /* Send pending IPI's to kick RPS processing on remote cpus. */
3745 while (remsd) {
3746 struct softnet_data *next = remsd->rps_ipi_next;
3747
3748 if (cpu_online(remsd->cpu))
3749 __smp_call_function_single(remsd->cpu,
3750 &remsd->csd, 0);
3751 remsd = next;
3752 }
3753 } else
3754 #endif
3755 local_irq_enable();
3756 }
3757
3758 static int process_backlog(struct napi_struct *napi, int quota)
3759 {
3760 int work = 0;
3761 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3762
3763 #ifdef CONFIG_RPS
3764 /* Check if we have pending ipi, its better to send them now,
3765 * not waiting net_rx_action() end.
3766 */
3767 if (sd->rps_ipi_list) {
3768 local_irq_disable();
3769 net_rps_action_and_irq_enable(sd);
3770 }
3771 #endif
3772 napi->weight = weight_p;
3773 local_irq_disable();
3774 while (work < quota) {
3775 struct sk_buff *skb;
3776 unsigned int qlen;
3777
3778 while ((skb = __skb_dequeue(&sd->process_queue))) {
3779 local_irq_enable();
3780 __netif_receive_skb(skb);
3781 local_irq_disable();
3782 input_queue_head_incr(sd);
3783 if (++work >= quota) {
3784 local_irq_enable();
3785 return work;
3786 }
3787 }
3788
3789 rps_lock(sd);
3790 qlen = skb_queue_len(&sd->input_pkt_queue);
3791 if (qlen)
3792 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3793 &sd->process_queue);
3794
3795 if (qlen < quota - work) {
3796 /*
3797 * Inline a custom version of __napi_complete().
3798 * only current cpu owns and manipulates this napi,
3799 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3800 * we can use a plain write instead of clear_bit(),
3801 * and we dont need an smp_mb() memory barrier.
3802 */
3803 list_del(&napi->poll_list);
3804 napi->state = 0;
3805
3806 quota = work + qlen;
3807 }
3808 rps_unlock(sd);
3809 }
3810 local_irq_enable();
3811
3812 return work;
3813 }
3814
3815 /**
3816 * __napi_schedule - schedule for receive
3817 * @n: entry to schedule
3818 *
3819 * The entry's receive function will be scheduled to run
3820 */
3821 void __napi_schedule(struct napi_struct *n)
3822 {
3823 unsigned long flags;
3824
3825 local_irq_save(flags);
3826 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3827 local_irq_restore(flags);
3828 }
3829 EXPORT_SYMBOL(__napi_schedule);
3830
3831 void __napi_complete(struct napi_struct *n)
3832 {
3833 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3834 BUG_ON(n->gro_list);
3835
3836 list_del(&n->poll_list);
3837 smp_mb__before_clear_bit();
3838 clear_bit(NAPI_STATE_SCHED, &n->state);
3839 }
3840 EXPORT_SYMBOL(__napi_complete);
3841
3842 void napi_complete(struct napi_struct *n)
3843 {
3844 unsigned long flags;
3845
3846 /*
3847 * don't let napi dequeue from the cpu poll list
3848 * just in case its running on a different cpu
3849 */
3850 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3851 return;
3852
3853 napi_gro_flush(n);
3854 local_irq_save(flags);
3855 __napi_complete(n);
3856 local_irq_restore(flags);
3857 }
3858 EXPORT_SYMBOL(napi_complete);
3859
3860 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3861 int (*poll)(struct napi_struct *, int), int weight)
3862 {
3863 INIT_LIST_HEAD(&napi->poll_list);
3864 napi->gro_count = 0;
3865 napi->gro_list = NULL;
3866 napi->skb = NULL;
3867 napi->poll = poll;
3868 napi->weight = weight;
3869 list_add(&napi->dev_list, &dev->napi_list);
3870 napi->dev = dev;
3871 #ifdef CONFIG_NETPOLL
3872 spin_lock_init(&napi->poll_lock);
3873 napi->poll_owner = -1;
3874 #endif
3875 set_bit(NAPI_STATE_SCHED, &napi->state);
3876 }
3877 EXPORT_SYMBOL(netif_napi_add);
3878
3879 void netif_napi_del(struct napi_struct *napi)
3880 {
3881 struct sk_buff *skb, *next;
3882
3883 list_del_init(&napi->dev_list);
3884 napi_free_frags(napi);
3885
3886 for (skb = napi->gro_list; skb; skb = next) {
3887 next = skb->next;
3888 skb->next = NULL;
3889 kfree_skb(skb);
3890 }
3891
3892 napi->gro_list = NULL;
3893 napi->gro_count = 0;
3894 }
3895 EXPORT_SYMBOL(netif_napi_del);
3896
3897 static void net_rx_action(struct softirq_action *h)
3898 {
3899 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3900 unsigned long time_limit = jiffies + 2;
3901 int budget = netdev_budget;
3902 void *have;
3903
3904 local_irq_disable();
3905
3906 while (!list_empty(&sd->poll_list)) {
3907 struct napi_struct *n;
3908 int work, weight;
3909
3910 /* If softirq window is exhuasted then punt.
3911 * Allow this to run for 2 jiffies since which will allow
3912 * an average latency of 1.5/HZ.
3913 */
3914 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3915 goto softnet_break;
3916
3917 local_irq_enable();
3918
3919 /* Even though interrupts have been re-enabled, this
3920 * access is safe because interrupts can only add new
3921 * entries to the tail of this list, and only ->poll()
3922 * calls can remove this head entry from the list.
3923 */
3924 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3925
3926 have = netpoll_poll_lock(n);
3927
3928 weight = n->weight;
3929
3930 /* This NAPI_STATE_SCHED test is for avoiding a race
3931 * with netpoll's poll_napi(). Only the entity which
3932 * obtains the lock and sees NAPI_STATE_SCHED set will
3933 * actually make the ->poll() call. Therefore we avoid
3934 * accidentally calling ->poll() when NAPI is not scheduled.
3935 */
3936 work = 0;
3937 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3938 work = n->poll(n, weight);
3939 trace_napi_poll(n);
3940 }
3941
3942 WARN_ON_ONCE(work > weight);
3943
3944 budget -= work;
3945
3946 local_irq_disable();
3947
3948 /* Drivers must not modify the NAPI state if they
3949 * consume the entire weight. In such cases this code
3950 * still "owns" the NAPI instance and therefore can
3951 * move the instance around on the list at-will.
3952 */
3953 if (unlikely(work == weight)) {
3954 if (unlikely(napi_disable_pending(n))) {
3955 local_irq_enable();
3956 napi_complete(n);
3957 local_irq_disable();
3958 } else
3959 list_move_tail(&n->poll_list, &sd->poll_list);
3960 }
3961
3962 netpoll_poll_unlock(have);
3963 }
3964 out:
3965 net_rps_action_and_irq_enable(sd);
3966
3967 #ifdef CONFIG_NET_DMA
3968 /*
3969 * There may not be any more sk_buffs coming right now, so push
3970 * any pending DMA copies to hardware
3971 */
3972 dma_issue_pending_all();
3973 #endif
3974
3975 return;
3976
3977 softnet_break:
3978 sd->time_squeeze++;
3979 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3980 goto out;
3981 }
3982
3983 static gifconf_func_t *gifconf_list[NPROTO];
3984
3985 /**
3986 * register_gifconf - register a SIOCGIF handler
3987 * @family: Address family
3988 * @gifconf: Function handler
3989 *
3990 * Register protocol dependent address dumping routines. The handler
3991 * that is passed must not be freed or reused until it has been replaced
3992 * by another handler.
3993 */
3994 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3995 {
3996 if (family >= NPROTO)
3997 return -EINVAL;
3998 gifconf_list[family] = gifconf;
3999 return 0;
4000 }
4001 EXPORT_SYMBOL(register_gifconf);
4002
4003
4004 /*
4005 * Map an interface index to its name (SIOCGIFNAME)
4006 */
4007
4008 /*
4009 * We need this ioctl for efficient implementation of the
4010 * if_indextoname() function required by the IPv6 API. Without
4011 * it, we would have to search all the interfaces to find a
4012 * match. --pb
4013 */
4014
4015 static int dev_ifname(struct net *net, struct ifreq __user *arg)
4016 {
4017 struct net_device *dev;
4018 struct ifreq ifr;
4019
4020 /*
4021 * Fetch the caller's info block.
4022 */
4023
4024 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4025 return -EFAULT;
4026
4027 rcu_read_lock();
4028 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4029 if (!dev) {
4030 rcu_read_unlock();
4031 return -ENODEV;
4032 }
4033
4034 strcpy(ifr.ifr_name, dev->name);
4035 rcu_read_unlock();
4036
4037 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4038 return -EFAULT;
4039 return 0;
4040 }
4041
4042 /*
4043 * Perform a SIOCGIFCONF call. This structure will change
4044 * size eventually, and there is nothing I can do about it.
4045 * Thus we will need a 'compatibility mode'.
4046 */
4047
4048 static int dev_ifconf(struct net *net, char __user *arg)
4049 {
4050 struct ifconf ifc;
4051 struct net_device *dev;
4052 char __user *pos;
4053 int len;
4054 int total;
4055 int i;
4056
4057 /*
4058 * Fetch the caller's info block.
4059 */
4060
4061 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4062 return -EFAULT;
4063
4064 pos = ifc.ifc_buf;
4065 len = ifc.ifc_len;
4066
4067 /*
4068 * Loop over the interfaces, and write an info block for each.
4069 */
4070
4071 total = 0;
4072 for_each_netdev(net, dev) {
4073 for (i = 0; i < NPROTO; i++) {
4074 if (gifconf_list[i]) {
4075 int done;
4076 if (!pos)
4077 done = gifconf_list[i](dev, NULL, 0);
4078 else
4079 done = gifconf_list[i](dev, pos + total,
4080 len - total);
4081 if (done < 0)
4082 return -EFAULT;
4083 total += done;
4084 }
4085 }
4086 }
4087
4088 /*
4089 * All done. Write the updated control block back to the caller.
4090 */
4091 ifc.ifc_len = total;
4092
4093 /*
4094 * Both BSD and Solaris return 0 here, so we do too.
4095 */
4096 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4097 }
4098
4099 #ifdef CONFIG_PROC_FS
4100
4101 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4102
4103 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4104 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4105 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4106
4107 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4108 {
4109 struct net *net = seq_file_net(seq);
4110 struct net_device *dev;
4111 struct hlist_node *p;
4112 struct hlist_head *h;
4113 unsigned int count = 0, offset = get_offset(*pos);
4114
4115 h = &net->dev_name_head[get_bucket(*pos)];
4116 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4117 if (++count == offset)
4118 return dev;
4119 }
4120
4121 return NULL;
4122 }
4123
4124 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4125 {
4126 struct net_device *dev;
4127 unsigned int bucket;
4128
4129 do {
4130 dev = dev_from_same_bucket(seq, pos);
4131 if (dev)
4132 return dev;
4133
4134 bucket = get_bucket(*pos) + 1;
4135 *pos = set_bucket_offset(bucket, 1);
4136 } while (bucket < NETDEV_HASHENTRIES);
4137
4138 return NULL;
4139 }
4140
4141 /*
4142 * This is invoked by the /proc filesystem handler to display a device
4143 * in detail.
4144 */
4145 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4146 __acquires(RCU)
4147 {
4148 rcu_read_lock();
4149 if (!*pos)
4150 return SEQ_START_TOKEN;
4151
4152 if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4153 return NULL;
4154
4155 return dev_from_bucket(seq, pos);
4156 }
4157
4158 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4159 {
4160 ++*pos;
4161 return dev_from_bucket(seq, pos);
4162 }
4163
4164 void dev_seq_stop(struct seq_file *seq, void *v)
4165 __releases(RCU)
4166 {
4167 rcu_read_unlock();
4168 }
4169
4170 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4171 {
4172 struct rtnl_link_stats64 temp;
4173 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4174
4175 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4176 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4177 dev->name, stats->rx_bytes, stats->rx_packets,
4178 stats->rx_errors,
4179 stats->rx_dropped + stats->rx_missed_errors,
4180 stats->rx_fifo_errors,
4181 stats->rx_length_errors + stats->rx_over_errors +
4182 stats->rx_crc_errors + stats->rx_frame_errors,
4183 stats->rx_compressed, stats->multicast,
4184 stats->tx_bytes, stats->tx_packets,
4185 stats->tx_errors, stats->tx_dropped,
4186 stats->tx_fifo_errors, stats->collisions,
4187 stats->tx_carrier_errors +
4188 stats->tx_aborted_errors +
4189 stats->tx_window_errors +
4190 stats->tx_heartbeat_errors,
4191 stats->tx_compressed);
4192 }
4193
4194 /*
4195 * Called from the PROCfs module. This now uses the new arbitrary sized
4196 * /proc/net interface to create /proc/net/dev
4197 */
4198 static int dev_seq_show(struct seq_file *seq, void *v)
4199 {
4200 if (v == SEQ_START_TOKEN)
4201 seq_puts(seq, "Inter-| Receive "
4202 " | Transmit\n"
4203 " face |bytes packets errs drop fifo frame "
4204 "compressed multicast|bytes packets errs "
4205 "drop fifo colls carrier compressed\n");
4206 else
4207 dev_seq_printf_stats(seq, v);
4208 return 0;
4209 }
4210
4211 static struct softnet_data *softnet_get_online(loff_t *pos)
4212 {
4213 struct softnet_data *sd = NULL;
4214
4215 while (*pos < nr_cpu_ids)
4216 if (cpu_online(*pos)) {
4217 sd = &per_cpu(softnet_data, *pos);
4218 break;
4219 } else
4220 ++*pos;
4221 return sd;
4222 }
4223
4224 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4225 {
4226 return softnet_get_online(pos);
4227 }
4228
4229 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4230 {
4231 ++*pos;
4232 return softnet_get_online(pos);
4233 }
4234
4235 static void softnet_seq_stop(struct seq_file *seq, void *v)
4236 {
4237 }
4238
4239 static int softnet_seq_show(struct seq_file *seq, void *v)
4240 {
4241 struct softnet_data *sd = v;
4242
4243 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4244 sd->processed, sd->dropped, sd->time_squeeze, 0,
4245 0, 0, 0, 0, /* was fastroute */
4246 sd->cpu_collision, sd->received_rps);
4247 return 0;
4248 }
4249
4250 static const struct seq_operations dev_seq_ops = {
4251 .start = dev_seq_start,
4252 .next = dev_seq_next,
4253 .stop = dev_seq_stop,
4254 .show = dev_seq_show,
4255 };
4256
4257 static int dev_seq_open(struct inode *inode, struct file *file)
4258 {
4259 return seq_open_net(inode, file, &dev_seq_ops,
4260 sizeof(struct seq_net_private));
4261 }
4262
4263 static const struct file_operations dev_seq_fops = {
4264 .owner = THIS_MODULE,
4265 .open = dev_seq_open,
4266 .read = seq_read,
4267 .llseek = seq_lseek,
4268 .release = seq_release_net,
4269 };
4270
4271 static const struct seq_operations softnet_seq_ops = {
4272 .start = softnet_seq_start,
4273 .next = softnet_seq_next,
4274 .stop = softnet_seq_stop,
4275 .show = softnet_seq_show,
4276 };
4277
4278 static int softnet_seq_open(struct inode *inode, struct file *file)
4279 {
4280 return seq_open(file, &softnet_seq_ops);
4281 }
4282
4283 static const struct file_operations softnet_seq_fops = {
4284 .owner = THIS_MODULE,
4285 .open = softnet_seq_open,
4286 .read = seq_read,
4287 .llseek = seq_lseek,
4288 .release = seq_release,
4289 };
4290
4291 static void *ptype_get_idx(loff_t pos)
4292 {
4293 struct packet_type *pt = NULL;
4294 loff_t i = 0;
4295 int t;
4296
4297 list_for_each_entry_rcu(pt, &ptype_all, list) {
4298 if (i == pos)
4299 return pt;
4300 ++i;
4301 }
4302
4303 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4304 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4305 if (i == pos)
4306 return pt;
4307 ++i;
4308 }
4309 }
4310 return NULL;
4311 }
4312
4313 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4314 __acquires(RCU)
4315 {
4316 rcu_read_lock();
4317 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4318 }
4319
4320 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4321 {
4322 struct packet_type *pt;
4323 struct list_head *nxt;
4324 int hash;
4325
4326 ++*pos;
4327 if (v == SEQ_START_TOKEN)
4328 return ptype_get_idx(0);
4329
4330 pt = v;
4331 nxt = pt->list.next;
4332 if (pt->type == htons(ETH_P_ALL)) {
4333 if (nxt != &ptype_all)
4334 goto found;
4335 hash = 0;
4336 nxt = ptype_base[0].next;
4337 } else
4338 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4339
4340 while (nxt == &ptype_base[hash]) {
4341 if (++hash >= PTYPE_HASH_SIZE)
4342 return NULL;
4343 nxt = ptype_base[hash].next;
4344 }
4345 found:
4346 return list_entry(nxt, struct packet_type, list);
4347 }
4348
4349 static void ptype_seq_stop(struct seq_file *seq, void *v)
4350 __releases(RCU)
4351 {
4352 rcu_read_unlock();
4353 }
4354
4355 static int ptype_seq_show(struct seq_file *seq, void *v)
4356 {
4357 struct packet_type *pt = v;
4358
4359 if (v == SEQ_START_TOKEN)
4360 seq_puts(seq, "Type Device Function\n");
4361 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4362 if (pt->type == htons(ETH_P_ALL))
4363 seq_puts(seq, "ALL ");
4364 else
4365 seq_printf(seq, "%04x", ntohs(pt->type));
4366
4367 seq_printf(seq, " %-8s %pF\n",
4368 pt->dev ? pt->dev->name : "", pt->func);
4369 }
4370
4371 return 0;
4372 }
4373
4374 static const struct seq_operations ptype_seq_ops = {
4375 .start = ptype_seq_start,
4376 .next = ptype_seq_next,
4377 .stop = ptype_seq_stop,
4378 .show = ptype_seq_show,
4379 };
4380
4381 static int ptype_seq_open(struct inode *inode, struct file *file)
4382 {
4383 return seq_open_net(inode, file, &ptype_seq_ops,
4384 sizeof(struct seq_net_private));
4385 }
4386
4387 static const struct file_operations ptype_seq_fops = {
4388 .owner = THIS_MODULE,
4389 .open = ptype_seq_open,
4390 .read = seq_read,
4391 .llseek = seq_lseek,
4392 .release = seq_release_net,
4393 };
4394
4395
4396 static int __net_init dev_proc_net_init(struct net *net)
4397 {
4398 int rc = -ENOMEM;
4399
4400 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4401 goto out;
4402 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4403 goto out_dev;
4404 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4405 goto out_softnet;
4406
4407 if (wext_proc_init(net))
4408 goto out_ptype;
4409 rc = 0;
4410 out:
4411 return rc;
4412 out_ptype:
4413 proc_net_remove(net, "ptype");
4414 out_softnet:
4415 proc_net_remove(net, "softnet_stat");
4416 out_dev:
4417 proc_net_remove(net, "dev");
4418 goto out;
4419 }
4420
4421 static void __net_exit dev_proc_net_exit(struct net *net)
4422 {
4423 wext_proc_exit(net);
4424
4425 proc_net_remove(net, "ptype");
4426 proc_net_remove(net, "softnet_stat");
4427 proc_net_remove(net, "dev");
4428 }
4429
4430 static struct pernet_operations __net_initdata dev_proc_ops = {
4431 .init = dev_proc_net_init,
4432 .exit = dev_proc_net_exit,
4433 };
4434
4435 static int __init dev_proc_init(void)
4436 {
4437 return register_pernet_subsys(&dev_proc_ops);
4438 }
4439 #else
4440 #define dev_proc_init() 0
4441 #endif /* CONFIG_PROC_FS */
4442
4443
4444 /**
4445 * netdev_set_master - set up master pointer
4446 * @slave: slave device
4447 * @master: new master device
4448 *
4449 * Changes the master device of the slave. Pass %NULL to break the
4450 * bonding. The caller must hold the RTNL semaphore. On a failure
4451 * a negative errno code is returned. On success the reference counts
4452 * are adjusted and the function returns zero.
4453 */
4454 int netdev_set_master(struct net_device *slave, struct net_device *master)
4455 {
4456 struct net_device *old = slave->master;
4457
4458 ASSERT_RTNL();
4459
4460 if (master) {
4461 if (old)
4462 return -EBUSY;
4463 dev_hold(master);
4464 }
4465
4466 slave->master = master;
4467
4468 if (old)
4469 dev_put(old);
4470 return 0;
4471 }
4472 EXPORT_SYMBOL(netdev_set_master);
4473
4474 /**
4475 * netdev_set_bond_master - set up bonding master/slave pair
4476 * @slave: slave device
4477 * @master: new master device
4478 *
4479 * Changes the master device of the slave. Pass %NULL to break the
4480 * bonding. The caller must hold the RTNL semaphore. On a failure
4481 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4482 * to the routing socket and the function returns zero.
4483 */
4484 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4485 {
4486 int err;
4487
4488 ASSERT_RTNL();
4489
4490 err = netdev_set_master(slave, master);
4491 if (err)
4492 return err;
4493 if (master)
4494 slave->flags |= IFF_SLAVE;
4495 else
4496 slave->flags &= ~IFF_SLAVE;
4497
4498 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4499 return 0;
4500 }
4501 EXPORT_SYMBOL(netdev_set_bond_master);
4502
4503 static void dev_change_rx_flags(struct net_device *dev, int flags)
4504 {
4505 const struct net_device_ops *ops = dev->netdev_ops;
4506
4507 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4508 ops->ndo_change_rx_flags(dev, flags);
4509 }
4510
4511 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4512 {
4513 unsigned int old_flags = dev->flags;
4514 uid_t uid;
4515 gid_t gid;
4516
4517 ASSERT_RTNL();
4518
4519 dev->flags |= IFF_PROMISC;
4520 dev->promiscuity += inc;
4521 if (dev->promiscuity == 0) {
4522 /*
4523 * Avoid overflow.
4524 * If inc causes overflow, untouch promisc and return error.
4525 */
4526 if (inc < 0)
4527 dev->flags &= ~IFF_PROMISC;
4528 else {
4529 dev->promiscuity -= inc;
4530 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4531 dev->name);
4532 return -EOVERFLOW;
4533 }
4534 }
4535 if (dev->flags != old_flags) {
4536 pr_info("device %s %s promiscuous mode\n",
4537 dev->name,
4538 dev->flags & IFF_PROMISC ? "entered" : "left");
4539 if (audit_enabled) {
4540 current_uid_gid(&uid, &gid);
4541 audit_log(current->audit_context, GFP_ATOMIC,
4542 AUDIT_ANOM_PROMISCUOUS,
4543 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4544 dev->name, (dev->flags & IFF_PROMISC),
4545 (old_flags & IFF_PROMISC),
4546 audit_get_loginuid(current),
4547 uid, gid,
4548 audit_get_sessionid(current));
4549 }
4550
4551 dev_change_rx_flags(dev, IFF_PROMISC);
4552 }
4553 return 0;
4554 }
4555
4556 /**
4557 * dev_set_promiscuity - update promiscuity count on a device
4558 * @dev: device
4559 * @inc: modifier
4560 *
4561 * Add or remove promiscuity from a device. While the count in the device
4562 * remains above zero the interface remains promiscuous. Once it hits zero
4563 * the device reverts back to normal filtering operation. A negative inc
4564 * value is used to drop promiscuity on the device.
4565 * Return 0 if successful or a negative errno code on error.
4566 */
4567 int dev_set_promiscuity(struct net_device *dev, int inc)
4568 {
4569 unsigned int old_flags = dev->flags;
4570 int err;
4571
4572 err = __dev_set_promiscuity(dev, inc);
4573 if (err < 0)
4574 return err;
4575 if (dev->flags != old_flags)
4576 dev_set_rx_mode(dev);
4577 return err;
4578 }
4579 EXPORT_SYMBOL(dev_set_promiscuity);
4580
4581 /**
4582 * dev_set_allmulti - update allmulti count on a device
4583 * @dev: device
4584 * @inc: modifier
4585 *
4586 * Add or remove reception of all multicast frames to a device. While the
4587 * count in the device remains above zero the interface remains listening
4588 * to all interfaces. Once it hits zero the device reverts back to normal
4589 * filtering operation. A negative @inc value is used to drop the counter
4590 * when releasing a resource needing all multicasts.
4591 * Return 0 if successful or a negative errno code on error.
4592 */
4593
4594 int dev_set_allmulti(struct net_device *dev, int inc)
4595 {
4596 unsigned int old_flags = dev->flags;
4597
4598 ASSERT_RTNL();
4599
4600 dev->flags |= IFF_ALLMULTI;
4601 dev->allmulti += inc;
4602 if (dev->allmulti == 0) {
4603 /*
4604 * Avoid overflow.
4605 * If inc causes overflow, untouch allmulti and return error.
4606 */
4607 if (inc < 0)
4608 dev->flags &= ~IFF_ALLMULTI;
4609 else {
4610 dev->allmulti -= inc;
4611 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4612 dev->name);
4613 return -EOVERFLOW;
4614 }
4615 }
4616 if (dev->flags ^ old_flags) {
4617 dev_change_rx_flags(dev, IFF_ALLMULTI);
4618 dev_set_rx_mode(dev);
4619 }
4620 return 0;
4621 }
4622 EXPORT_SYMBOL(dev_set_allmulti);
4623
4624 /*
4625 * Upload unicast and multicast address lists to device and
4626 * configure RX filtering. When the device doesn't support unicast
4627 * filtering it is put in promiscuous mode while unicast addresses
4628 * are present.
4629 */
4630 void __dev_set_rx_mode(struct net_device *dev)
4631 {
4632 const struct net_device_ops *ops = dev->netdev_ops;
4633
4634 /* dev_open will call this function so the list will stay sane. */
4635 if (!(dev->flags&IFF_UP))
4636 return;
4637
4638 if (!netif_device_present(dev))
4639 return;
4640
4641 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4642 /* Unicast addresses changes may only happen under the rtnl,
4643 * therefore calling __dev_set_promiscuity here is safe.
4644 */
4645 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4646 __dev_set_promiscuity(dev, 1);
4647 dev->uc_promisc = true;
4648 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4649 __dev_set_promiscuity(dev, -1);
4650 dev->uc_promisc = false;
4651 }
4652 }
4653
4654 if (ops->ndo_set_rx_mode)
4655 ops->ndo_set_rx_mode(dev);
4656 }
4657
4658 void dev_set_rx_mode(struct net_device *dev)
4659 {
4660 netif_addr_lock_bh(dev);
4661 __dev_set_rx_mode(dev);
4662 netif_addr_unlock_bh(dev);
4663 }
4664
4665 /**
4666 * dev_get_flags - get flags reported to userspace
4667 * @dev: device
4668 *
4669 * Get the combination of flag bits exported through APIs to userspace.
4670 */
4671 unsigned int dev_get_flags(const struct net_device *dev)
4672 {
4673 unsigned int flags;
4674
4675 flags = (dev->flags & ~(IFF_PROMISC |
4676 IFF_ALLMULTI |
4677 IFF_RUNNING |
4678 IFF_LOWER_UP |
4679 IFF_DORMANT)) |
4680 (dev->gflags & (IFF_PROMISC |
4681 IFF_ALLMULTI));
4682
4683 if (netif_running(dev)) {
4684 if (netif_oper_up(dev))
4685 flags |= IFF_RUNNING;
4686 if (netif_carrier_ok(dev))
4687 flags |= IFF_LOWER_UP;
4688 if (netif_dormant(dev))
4689 flags |= IFF_DORMANT;
4690 }
4691
4692 return flags;
4693 }
4694 EXPORT_SYMBOL(dev_get_flags);
4695
4696 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4697 {
4698 unsigned int old_flags = dev->flags;
4699 int ret;
4700
4701 ASSERT_RTNL();
4702
4703 /*
4704 * Set the flags on our device.
4705 */
4706
4707 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4708 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4709 IFF_AUTOMEDIA)) |
4710 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4711 IFF_ALLMULTI));
4712
4713 /*
4714 * Load in the correct multicast list now the flags have changed.
4715 */
4716
4717 if ((old_flags ^ flags) & IFF_MULTICAST)
4718 dev_change_rx_flags(dev, IFF_MULTICAST);
4719
4720 dev_set_rx_mode(dev);
4721
4722 /*
4723 * Have we downed the interface. We handle IFF_UP ourselves
4724 * according to user attempts to set it, rather than blindly
4725 * setting it.
4726 */
4727
4728 ret = 0;
4729 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4730 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4731
4732 if (!ret)
4733 dev_set_rx_mode(dev);
4734 }
4735
4736 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4737 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4738
4739 dev->gflags ^= IFF_PROMISC;
4740 dev_set_promiscuity(dev, inc);
4741 }
4742
4743 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4744 is important. Some (broken) drivers set IFF_PROMISC, when
4745 IFF_ALLMULTI is requested not asking us and not reporting.
4746 */
4747 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4748 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4749
4750 dev->gflags ^= IFF_ALLMULTI;
4751 dev_set_allmulti(dev, inc);
4752 }
4753
4754 return ret;
4755 }
4756
4757 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4758 {
4759 unsigned int changes = dev->flags ^ old_flags;
4760
4761 if (changes & IFF_UP) {
4762 if (dev->flags & IFF_UP)
4763 call_netdevice_notifiers(NETDEV_UP, dev);
4764 else
4765 call_netdevice_notifiers(NETDEV_DOWN, dev);
4766 }
4767
4768 if (dev->flags & IFF_UP &&
4769 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4770 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4771 }
4772
4773 /**
4774 * dev_change_flags - change device settings
4775 * @dev: device
4776 * @flags: device state flags
4777 *
4778 * Change settings on device based state flags. The flags are
4779 * in the userspace exported format.
4780 */
4781 int dev_change_flags(struct net_device *dev, unsigned int flags)
4782 {
4783 int ret;
4784 unsigned int changes, old_flags = dev->flags;
4785
4786 ret = __dev_change_flags(dev, flags);
4787 if (ret < 0)
4788 return ret;
4789
4790 changes = old_flags ^ dev->flags;
4791 if (changes)
4792 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4793
4794 __dev_notify_flags(dev, old_flags);
4795 return ret;
4796 }
4797 EXPORT_SYMBOL(dev_change_flags);
4798
4799 /**
4800 * dev_set_mtu - Change maximum transfer unit
4801 * @dev: device
4802 * @new_mtu: new transfer unit
4803 *
4804 * Change the maximum transfer size of the network device.
4805 */
4806 int dev_set_mtu(struct net_device *dev, int new_mtu)
4807 {
4808 const struct net_device_ops *ops = dev->netdev_ops;
4809 int err;
4810
4811 if (new_mtu == dev->mtu)
4812 return 0;
4813
4814 /* MTU must be positive. */
4815 if (new_mtu < 0)
4816 return -EINVAL;
4817
4818 if (!netif_device_present(dev))
4819 return -ENODEV;
4820
4821 err = 0;
4822 if (ops->ndo_change_mtu)
4823 err = ops->ndo_change_mtu(dev, new_mtu);
4824 else
4825 dev->mtu = new_mtu;
4826
4827 if (!err && dev->flags & IFF_UP)
4828 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4829 return err;
4830 }
4831 EXPORT_SYMBOL(dev_set_mtu);
4832
4833 /**
4834 * dev_set_group - Change group this device belongs to
4835 * @dev: device
4836 * @new_group: group this device should belong to
4837 */
4838 void dev_set_group(struct net_device *dev, int new_group)
4839 {
4840 dev->group = new_group;
4841 }
4842 EXPORT_SYMBOL(dev_set_group);
4843
4844 /**
4845 * dev_set_mac_address - Change Media Access Control Address
4846 * @dev: device
4847 * @sa: new address
4848 *
4849 * Change the hardware (MAC) address of the device
4850 */
4851 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4852 {
4853 const struct net_device_ops *ops = dev->netdev_ops;
4854 int err;
4855
4856 if (!ops->ndo_set_mac_address)
4857 return -EOPNOTSUPP;
4858 if (sa->sa_family != dev->type)
4859 return -EINVAL;
4860 if (!netif_device_present(dev))
4861 return -ENODEV;
4862 err = ops->ndo_set_mac_address(dev, sa);
4863 if (!err)
4864 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4865 add_device_randomness(dev->dev_addr, dev->addr_len);
4866 return err;
4867 }
4868 EXPORT_SYMBOL(dev_set_mac_address);
4869
4870 /*
4871 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4872 */
4873 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4874 {
4875 int err;
4876 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4877
4878 if (!dev)
4879 return -ENODEV;
4880
4881 switch (cmd) {
4882 case SIOCGIFFLAGS: /* Get interface flags */
4883 ifr->ifr_flags = (short) dev_get_flags(dev);
4884 return 0;
4885
4886 case SIOCGIFMETRIC: /* Get the metric on the interface
4887 (currently unused) */
4888 ifr->ifr_metric = 0;
4889 return 0;
4890
4891 case SIOCGIFMTU: /* Get the MTU of a device */
4892 ifr->ifr_mtu = dev->mtu;
4893 return 0;
4894
4895 case SIOCGIFHWADDR:
4896 if (!dev->addr_len)
4897 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4898 else
4899 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4900 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4901 ifr->ifr_hwaddr.sa_family = dev->type;
4902 return 0;
4903
4904 case SIOCGIFSLAVE:
4905 err = -EINVAL;
4906 break;
4907
4908 case SIOCGIFMAP:
4909 ifr->ifr_map.mem_start = dev->mem_start;
4910 ifr->ifr_map.mem_end = dev->mem_end;
4911 ifr->ifr_map.base_addr = dev->base_addr;
4912 ifr->ifr_map.irq = dev->irq;
4913 ifr->ifr_map.dma = dev->dma;
4914 ifr->ifr_map.port = dev->if_port;
4915 return 0;
4916
4917 case SIOCGIFINDEX:
4918 ifr->ifr_ifindex = dev->ifindex;
4919 return 0;
4920
4921 case SIOCGIFTXQLEN:
4922 ifr->ifr_qlen = dev->tx_queue_len;
4923 return 0;
4924
4925 default:
4926 /* dev_ioctl() should ensure this case
4927 * is never reached
4928 */
4929 WARN_ON(1);
4930 err = -ENOTTY;
4931 break;
4932
4933 }
4934 return err;
4935 }
4936
4937 /*
4938 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4939 */
4940 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4941 {
4942 int err;
4943 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4944 const struct net_device_ops *ops;
4945
4946 if (!dev)
4947 return -ENODEV;
4948
4949 ops = dev->netdev_ops;
4950
4951 switch (cmd) {
4952 case SIOCSIFFLAGS: /* Set interface flags */
4953 return dev_change_flags(dev, ifr->ifr_flags);
4954
4955 case SIOCSIFMETRIC: /* Set the metric on the interface
4956 (currently unused) */
4957 return -EOPNOTSUPP;
4958
4959 case SIOCSIFMTU: /* Set the MTU of a device */
4960 return dev_set_mtu(dev, ifr->ifr_mtu);
4961
4962 case SIOCSIFHWADDR:
4963 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4964
4965 case SIOCSIFHWBROADCAST:
4966 if (ifr->ifr_hwaddr.sa_family != dev->type)
4967 return -EINVAL;
4968 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4969 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4970 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4971 return 0;
4972
4973 case SIOCSIFMAP:
4974 if (ops->ndo_set_config) {
4975 if (!netif_device_present(dev))
4976 return -ENODEV;
4977 return ops->ndo_set_config(dev, &ifr->ifr_map);
4978 }
4979 return -EOPNOTSUPP;
4980
4981 case SIOCADDMULTI:
4982 if (!ops->ndo_set_rx_mode ||
4983 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4984 return -EINVAL;
4985 if (!netif_device_present(dev))
4986 return -ENODEV;
4987 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4988
4989 case SIOCDELMULTI:
4990 if (!ops->ndo_set_rx_mode ||
4991 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4992 return -EINVAL;
4993 if (!netif_device_present(dev))
4994 return -ENODEV;
4995 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4996
4997 case SIOCSIFTXQLEN:
4998 if (ifr->ifr_qlen < 0)
4999 return -EINVAL;
5000 dev->tx_queue_len = ifr->ifr_qlen;
5001 return 0;
5002
5003 case SIOCSIFNAME:
5004 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
5005 return dev_change_name(dev, ifr->ifr_newname);
5006
5007 case SIOCSHWTSTAMP:
5008 err = net_hwtstamp_validate(ifr);
5009 if (err)
5010 return err;
5011 /* fall through */
5012
5013 /*
5014 * Unknown or private ioctl
5015 */
5016 default:
5017 if ((cmd >= SIOCDEVPRIVATE &&
5018 cmd <= SIOCDEVPRIVATE + 15) ||
5019 cmd == SIOCBONDENSLAVE ||
5020 cmd == SIOCBONDRELEASE ||
5021 cmd == SIOCBONDSETHWADDR ||
5022 cmd == SIOCBONDSLAVEINFOQUERY ||
5023 cmd == SIOCBONDINFOQUERY ||
5024 cmd == SIOCBONDCHANGEACTIVE ||
5025 cmd == SIOCGMIIPHY ||
5026 cmd == SIOCGMIIREG ||
5027 cmd == SIOCSMIIREG ||
5028 cmd == SIOCBRADDIF ||
5029 cmd == SIOCBRDELIF ||
5030 cmd == SIOCSHWTSTAMP ||
5031 cmd == SIOCWANDEV) {
5032 err = -EOPNOTSUPP;
5033 if (ops->ndo_do_ioctl) {
5034 if (netif_device_present(dev))
5035 err = ops->ndo_do_ioctl(dev, ifr, cmd);
5036 else
5037 err = -ENODEV;
5038 }
5039 } else
5040 err = -EINVAL;
5041
5042 }
5043 return err;
5044 }
5045
5046 /*
5047 * This function handles all "interface"-type I/O control requests. The actual
5048 * 'doing' part of this is dev_ifsioc above.
5049 */
5050
5051 /**
5052 * dev_ioctl - network device ioctl
5053 * @net: the applicable net namespace
5054 * @cmd: command to issue
5055 * @arg: pointer to a struct ifreq in user space
5056 *
5057 * Issue ioctl functions to devices. This is normally called by the
5058 * user space syscall interfaces but can sometimes be useful for
5059 * other purposes. The return value is the return from the syscall if
5060 * positive or a negative errno code on error.
5061 */
5062
5063 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5064 {
5065 struct ifreq ifr;
5066 int ret;
5067 char *colon;
5068
5069 /* One special case: SIOCGIFCONF takes ifconf argument
5070 and requires shared lock, because it sleeps writing
5071 to user space.
5072 */
5073
5074 if (cmd == SIOCGIFCONF) {
5075 rtnl_lock();
5076 ret = dev_ifconf(net, (char __user *) arg);
5077 rtnl_unlock();
5078 return ret;
5079 }
5080 if (cmd == SIOCGIFNAME)
5081 return dev_ifname(net, (struct ifreq __user *)arg);
5082
5083 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5084 return -EFAULT;
5085
5086 ifr.ifr_name[IFNAMSIZ-1] = 0;
5087
5088 colon = strchr(ifr.ifr_name, ':');
5089 if (colon)
5090 *colon = 0;
5091
5092 /*
5093 * See which interface the caller is talking about.
5094 */
5095
5096 switch (cmd) {
5097 /*
5098 * These ioctl calls:
5099 * - can be done by all.
5100 * - atomic and do not require locking.
5101 * - return a value
5102 */
5103 case SIOCGIFFLAGS:
5104 case SIOCGIFMETRIC:
5105 case SIOCGIFMTU:
5106 case SIOCGIFHWADDR:
5107 case SIOCGIFSLAVE:
5108 case SIOCGIFMAP:
5109 case SIOCGIFINDEX:
5110 case SIOCGIFTXQLEN:
5111 dev_load(net, ifr.ifr_name);
5112 rcu_read_lock();
5113 ret = dev_ifsioc_locked(net, &ifr, cmd);
5114 rcu_read_unlock();
5115 if (!ret) {
5116 if (colon)
5117 *colon = ':';
5118 if (copy_to_user(arg, &ifr,
5119 sizeof(struct ifreq)))
5120 ret = -EFAULT;
5121 }
5122 return ret;
5123
5124 case SIOCETHTOOL:
5125 dev_load(net, ifr.ifr_name);
5126 rtnl_lock();
5127 ret = dev_ethtool(net, &ifr);
5128 rtnl_unlock();
5129 if (!ret) {
5130 if (colon)
5131 *colon = ':';
5132 if (copy_to_user(arg, &ifr,
5133 sizeof(struct ifreq)))
5134 ret = -EFAULT;
5135 }
5136 return ret;
5137
5138 /*
5139 * These ioctl calls:
5140 * - require superuser power.
5141 * - require strict serialization.
5142 * - return a value
5143 */
5144 case SIOCGMIIPHY:
5145 case SIOCGMIIREG:
5146 case SIOCSIFNAME:
5147 if (!capable(CAP_NET_ADMIN))
5148 return -EPERM;
5149 dev_load(net, ifr.ifr_name);
5150 rtnl_lock();
5151 ret = dev_ifsioc(net, &ifr, cmd);
5152 rtnl_unlock();
5153 if (!ret) {
5154 if (colon)
5155 *colon = ':';
5156 if (copy_to_user(arg, &ifr,
5157 sizeof(struct ifreq)))
5158 ret = -EFAULT;
5159 }
5160 return ret;
5161
5162 /*
5163 * These ioctl calls:
5164 * - require superuser power.
5165 * - require strict serialization.
5166 * - do not return a value
5167 */
5168 case SIOCSIFFLAGS:
5169 case SIOCSIFMETRIC:
5170 case SIOCSIFMTU:
5171 case SIOCSIFMAP:
5172 case SIOCSIFHWADDR:
5173 case SIOCSIFSLAVE:
5174 case SIOCADDMULTI:
5175 case SIOCDELMULTI:
5176 case SIOCSIFHWBROADCAST:
5177 case SIOCSIFTXQLEN:
5178 case SIOCSMIIREG:
5179 case SIOCBONDENSLAVE:
5180 case SIOCBONDRELEASE:
5181 case SIOCBONDSETHWADDR:
5182 case SIOCBONDCHANGEACTIVE:
5183 case SIOCBRADDIF:
5184 case SIOCBRDELIF:
5185 case SIOCSHWTSTAMP:
5186 if (!capable(CAP_NET_ADMIN))
5187 return -EPERM;
5188 /* fall through */
5189 case SIOCBONDSLAVEINFOQUERY:
5190 case SIOCBONDINFOQUERY:
5191 dev_load(net, ifr.ifr_name);
5192 rtnl_lock();
5193 ret = dev_ifsioc(net, &ifr, cmd);
5194 rtnl_unlock();
5195 return ret;
5196
5197 case SIOCGIFMEM:
5198 /* Get the per device memory space. We can add this but
5199 * currently do not support it */
5200 case SIOCSIFMEM:
5201 /* Set the per device memory buffer space.
5202 * Not applicable in our case */
5203 case SIOCSIFLINK:
5204 return -ENOTTY;
5205
5206 /*
5207 * Unknown or private ioctl.
5208 */
5209 default:
5210 if (cmd == SIOCWANDEV ||
5211 (cmd >= SIOCDEVPRIVATE &&
5212 cmd <= SIOCDEVPRIVATE + 15)) {
5213 dev_load(net, ifr.ifr_name);
5214 rtnl_lock();
5215 ret = dev_ifsioc(net, &ifr, cmd);
5216 rtnl_unlock();
5217 if (!ret && copy_to_user(arg, &ifr,
5218 sizeof(struct ifreq)))
5219 ret = -EFAULT;
5220 return ret;
5221 }
5222 /* Take care of Wireless Extensions */
5223 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5224 return wext_handle_ioctl(net, &ifr, cmd, arg);
5225 return -ENOTTY;
5226 }
5227 }
5228
5229
5230 /**
5231 * dev_new_index - allocate an ifindex
5232 * @net: the applicable net namespace
5233 *
5234 * Returns a suitable unique value for a new device interface
5235 * number. The caller must hold the rtnl semaphore or the
5236 * dev_base_lock to be sure it remains unique.
5237 */
5238 static int dev_new_index(struct net *net)
5239 {
5240 static int ifindex;
5241 for (;;) {
5242 if (++ifindex <= 0)
5243 ifindex = 1;
5244 if (!__dev_get_by_index(net, ifindex))
5245 return ifindex;
5246 }
5247 }
5248
5249 /* Delayed registration/unregisteration */
5250 static LIST_HEAD(net_todo_list);
5251
5252 static void net_set_todo(struct net_device *dev)
5253 {
5254 list_add_tail(&dev->todo_list, &net_todo_list);
5255 }
5256
5257 static void rollback_registered_many(struct list_head *head)
5258 {
5259 struct net_device *dev, *tmp;
5260
5261 BUG_ON(dev_boot_phase);
5262 ASSERT_RTNL();
5263
5264 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5265 /* Some devices call without registering
5266 * for initialization unwind. Remove those
5267 * devices and proceed with the remaining.
5268 */
5269 if (dev->reg_state == NETREG_UNINITIALIZED) {
5270 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5271 dev->name, dev);
5272
5273 WARN_ON(1);
5274 list_del(&dev->unreg_list);
5275 continue;
5276 }
5277 dev->dismantle = true;
5278 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5279 }
5280
5281 /* If device is running, close it first. */
5282 dev_close_many(head);
5283
5284 list_for_each_entry(dev, head, unreg_list) {
5285 /* And unlink it from device chain. */
5286 unlist_netdevice(dev);
5287
5288 dev->reg_state = NETREG_UNREGISTERING;
5289 }
5290
5291 synchronize_net();
5292
5293 list_for_each_entry(dev, head, unreg_list) {
5294 /* Shutdown queueing discipline. */
5295 dev_shutdown(dev);
5296
5297
5298 /* Notify protocols, that we are about to destroy
5299 this device. They should clean all the things.
5300 */
5301 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5302
5303 if (!dev->rtnl_link_ops ||
5304 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5305 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5306
5307 /*
5308 * Flush the unicast and multicast chains
5309 */
5310 dev_uc_flush(dev);
5311 dev_mc_flush(dev);
5312
5313 if (dev->netdev_ops->ndo_uninit)
5314 dev->netdev_ops->ndo_uninit(dev);
5315
5316 /* Notifier chain MUST detach us from master device. */
5317 WARN_ON(dev->master);
5318
5319 /* Remove entries from kobject tree */
5320 netdev_unregister_kobject(dev);
5321 }
5322
5323 /* Process any work delayed until the end of the batch */
5324 dev = list_first_entry(head, struct net_device, unreg_list);
5325 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5326
5327 synchronize_net();
5328
5329 list_for_each_entry(dev, head, unreg_list)
5330 dev_put(dev);
5331 }
5332
5333 static void rollback_registered(struct net_device *dev)
5334 {
5335 LIST_HEAD(single);
5336
5337 list_add(&dev->unreg_list, &single);
5338 rollback_registered_many(&single);
5339 list_del(&single);
5340 }
5341
5342 static netdev_features_t netdev_fix_features(struct net_device *dev,
5343 netdev_features_t features)
5344 {
5345 /* Fix illegal checksum combinations */
5346 if ((features & NETIF_F_HW_CSUM) &&
5347 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5348 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5349 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5350 }
5351
5352 /* Fix illegal SG+CSUM combinations. */
5353 if ((features & NETIF_F_SG) &&
5354 !(features & NETIF_F_ALL_CSUM)) {
5355 netdev_dbg(dev,
5356 "Dropping NETIF_F_SG since no checksum feature.\n");
5357 features &= ~NETIF_F_SG;
5358 }
5359
5360 /* TSO requires that SG is present as well. */
5361 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5362 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5363 features &= ~NETIF_F_ALL_TSO;
5364 }
5365
5366 /* TSO ECN requires that TSO is present as well. */
5367 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5368 features &= ~NETIF_F_TSO_ECN;
5369
5370 /* Software GSO depends on SG. */
5371 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5372 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5373 features &= ~NETIF_F_GSO;
5374 }
5375
5376 /* UFO needs SG and checksumming */
5377 if (features & NETIF_F_UFO) {
5378 /* maybe split UFO into V4 and V6? */
5379 if (!((features & NETIF_F_GEN_CSUM) ||
5380 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5381 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5382 netdev_dbg(dev,
5383 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5384 features &= ~NETIF_F_UFO;
5385 }
5386
5387 if (!(features & NETIF_F_SG)) {
5388 netdev_dbg(dev,
5389 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5390 features &= ~NETIF_F_UFO;
5391 }
5392 }
5393
5394 return features;
5395 }
5396
5397 int __netdev_update_features(struct net_device *dev)
5398 {
5399 netdev_features_t features;
5400 int err = 0;
5401
5402 ASSERT_RTNL();
5403
5404 features = netdev_get_wanted_features(dev);
5405
5406 if (dev->netdev_ops->ndo_fix_features)
5407 features = dev->netdev_ops->ndo_fix_features(dev, features);
5408
5409 /* driver might be less strict about feature dependencies */
5410 features = netdev_fix_features(dev, features);
5411
5412 if (dev->features == features)
5413 return 0;
5414
5415 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5416 &dev->features, &features);
5417
5418 if (dev->netdev_ops->ndo_set_features)
5419 err = dev->netdev_ops->ndo_set_features(dev, features);
5420
5421 if (unlikely(err < 0)) {
5422 netdev_err(dev,
5423 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5424 err, &features, &dev->features);
5425 return -1;
5426 }
5427
5428 if (!err)
5429 dev->features = features;
5430
5431 return 1;
5432 }
5433
5434 /**
5435 * netdev_update_features - recalculate device features
5436 * @dev: the device to check
5437 *
5438 * Recalculate dev->features set and send notifications if it
5439 * has changed. Should be called after driver or hardware dependent
5440 * conditions might have changed that influence the features.
5441 */
5442 void netdev_update_features(struct net_device *dev)
5443 {
5444 if (__netdev_update_features(dev))
5445 netdev_features_change(dev);
5446 }
5447 EXPORT_SYMBOL(netdev_update_features);
5448
5449 /**
5450 * netdev_change_features - recalculate device features
5451 * @dev: the device to check
5452 *
5453 * Recalculate dev->features set and send notifications even
5454 * if they have not changed. Should be called instead of
5455 * netdev_update_features() if also dev->vlan_features might
5456 * have changed to allow the changes to be propagated to stacked
5457 * VLAN devices.
5458 */
5459 void netdev_change_features(struct net_device *dev)
5460 {
5461 __netdev_update_features(dev);
5462 netdev_features_change(dev);
5463 }
5464 EXPORT_SYMBOL(netdev_change_features);
5465
5466 /**
5467 * netif_stacked_transfer_operstate - transfer operstate
5468 * @rootdev: the root or lower level device to transfer state from
5469 * @dev: the device to transfer operstate to
5470 *
5471 * Transfer operational state from root to device. This is normally
5472 * called when a stacking relationship exists between the root
5473 * device and the device(a leaf device).
5474 */
5475 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5476 struct net_device *dev)
5477 {
5478 if (rootdev->operstate == IF_OPER_DORMANT)
5479 netif_dormant_on(dev);
5480 else
5481 netif_dormant_off(dev);
5482
5483 if (netif_carrier_ok(rootdev)) {
5484 if (!netif_carrier_ok(dev))
5485 netif_carrier_on(dev);
5486 } else {
5487 if (netif_carrier_ok(dev))
5488 netif_carrier_off(dev);
5489 }
5490 }
5491 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5492
5493 #ifdef CONFIG_RPS
5494 static int netif_alloc_rx_queues(struct net_device *dev)
5495 {
5496 unsigned int i, count = dev->num_rx_queues;
5497 struct netdev_rx_queue *rx;
5498
5499 BUG_ON(count < 1);
5500
5501 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5502 if (!rx) {
5503 pr_err("netdev: Unable to allocate %u rx queues\n", count);
5504 return -ENOMEM;
5505 }
5506 dev->_rx = rx;
5507
5508 for (i = 0; i < count; i++)
5509 rx[i].dev = dev;
5510 return 0;
5511 }
5512 #endif
5513
5514 static void netdev_init_one_queue(struct net_device *dev,
5515 struct netdev_queue *queue, void *_unused)
5516 {
5517 /* Initialize queue lock */
5518 spin_lock_init(&queue->_xmit_lock);
5519 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5520 queue->xmit_lock_owner = -1;
5521 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5522 queue->dev = dev;
5523 #ifdef CONFIG_BQL
5524 dql_init(&queue->dql, HZ);
5525 #endif
5526 }
5527
5528 static int netif_alloc_netdev_queues(struct net_device *dev)
5529 {
5530 unsigned int count = dev->num_tx_queues;
5531 struct netdev_queue *tx;
5532
5533 BUG_ON(count < 1);
5534
5535 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5536 if (!tx) {
5537 pr_err("netdev: Unable to allocate %u tx queues\n", count);
5538 return -ENOMEM;
5539 }
5540 dev->_tx = tx;
5541
5542 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5543 spin_lock_init(&dev->tx_global_lock);
5544
5545 return 0;
5546 }
5547
5548 /**
5549 * register_netdevice - register a network device
5550 * @dev: device to register
5551 *
5552 * Take a completed network device structure and add it to the kernel
5553 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5554 * chain. 0 is returned on success. A negative errno code is returned
5555 * on a failure to set up the device, or if the name is a duplicate.
5556 *
5557 * Callers must hold the rtnl semaphore. You may want
5558 * register_netdev() instead of this.
5559 *
5560 * BUGS:
5561 * The locking appears insufficient to guarantee two parallel registers
5562 * will not get the same name.
5563 */
5564
5565 int register_netdevice(struct net_device *dev)
5566 {
5567 int ret;
5568 struct net *net = dev_net(dev);
5569
5570 BUG_ON(dev_boot_phase);
5571 ASSERT_RTNL();
5572
5573 might_sleep();
5574
5575 /* When net_device's are persistent, this will be fatal. */
5576 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5577 BUG_ON(!net);
5578
5579 spin_lock_init(&dev->addr_list_lock);
5580 netdev_set_addr_lockdep_class(dev);
5581
5582 dev->iflink = -1;
5583
5584 ret = dev_get_valid_name(dev, dev->name);
5585 if (ret < 0)
5586 goto out;
5587
5588 /* Init, if this function is available */
5589 if (dev->netdev_ops->ndo_init) {
5590 ret = dev->netdev_ops->ndo_init(dev);
5591 if (ret) {
5592 if (ret > 0)
5593 ret = -EIO;
5594 goto out;
5595 }
5596 }
5597
5598 dev->ifindex = dev_new_index(net);
5599 if (dev->iflink == -1)
5600 dev->iflink = dev->ifindex;
5601
5602 /* Transfer changeable features to wanted_features and enable
5603 * software offloads (GSO and GRO).
5604 */
5605 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5606 dev->features |= NETIF_F_SOFT_FEATURES;
5607 dev->wanted_features = dev->features & dev->hw_features;
5608
5609 /* Turn on no cache copy if HW is doing checksum */
5610 if (!(dev->flags & IFF_LOOPBACK)) {
5611 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5612 if (dev->features & NETIF_F_ALL_CSUM) {
5613 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5614 dev->features |= NETIF_F_NOCACHE_COPY;
5615 }
5616 }
5617
5618 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5619 */
5620 dev->vlan_features |= NETIF_F_HIGHDMA;
5621
5622 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5623 ret = notifier_to_errno(ret);
5624 if (ret)
5625 goto err_uninit;
5626
5627 ret = netdev_register_kobject(dev);
5628 if (ret)
5629 goto err_uninit;
5630 dev->reg_state = NETREG_REGISTERED;
5631
5632 __netdev_update_features(dev);
5633
5634 /*
5635 * Default initial state at registry is that the
5636 * device is present.
5637 */
5638
5639 set_bit(__LINK_STATE_PRESENT, &dev->state);
5640
5641 dev_init_scheduler(dev);
5642 dev_hold(dev);
5643 list_netdevice(dev);
5644 add_device_randomness(dev->dev_addr, dev->addr_len);
5645
5646 /* Notify protocols, that a new device appeared. */
5647 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5648 ret = notifier_to_errno(ret);
5649 if (ret) {
5650 rollback_registered(dev);
5651 dev->reg_state = NETREG_UNREGISTERED;
5652 }
5653 /*
5654 * Prevent userspace races by waiting until the network
5655 * device is fully setup before sending notifications.
5656 */
5657 if (!dev->rtnl_link_ops ||
5658 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5659 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5660
5661 out:
5662 return ret;
5663
5664 err_uninit:
5665 if (dev->netdev_ops->ndo_uninit)
5666 dev->netdev_ops->ndo_uninit(dev);
5667 goto out;
5668 }
5669 EXPORT_SYMBOL(register_netdevice);
5670
5671 /**
5672 * init_dummy_netdev - init a dummy network device for NAPI
5673 * @dev: device to init
5674 *
5675 * This takes a network device structure and initialize the minimum
5676 * amount of fields so it can be used to schedule NAPI polls without
5677 * registering a full blown interface. This is to be used by drivers
5678 * that need to tie several hardware interfaces to a single NAPI
5679 * poll scheduler due to HW limitations.
5680 */
5681 int init_dummy_netdev(struct net_device *dev)
5682 {
5683 /* Clear everything. Note we don't initialize spinlocks
5684 * are they aren't supposed to be taken by any of the
5685 * NAPI code and this dummy netdev is supposed to be
5686 * only ever used for NAPI polls
5687 */
5688 memset(dev, 0, sizeof(struct net_device));
5689
5690 /* make sure we BUG if trying to hit standard
5691 * register/unregister code path
5692 */
5693 dev->reg_state = NETREG_DUMMY;
5694
5695 /* NAPI wants this */
5696 INIT_LIST_HEAD(&dev->napi_list);
5697
5698 /* a dummy interface is started by default */
5699 set_bit(__LINK_STATE_PRESENT, &dev->state);
5700 set_bit(__LINK_STATE_START, &dev->state);
5701
5702 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5703 * because users of this 'device' dont need to change
5704 * its refcount.
5705 */
5706
5707 return 0;
5708 }
5709 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5710
5711
5712 /**
5713 * register_netdev - register a network device
5714 * @dev: device to register
5715 *
5716 * Take a completed network device structure and add it to the kernel
5717 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5718 * chain. 0 is returned on success. A negative errno code is returned
5719 * on a failure to set up the device, or if the name is a duplicate.
5720 *
5721 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5722 * and expands the device name if you passed a format string to
5723 * alloc_netdev.
5724 */
5725 int register_netdev(struct net_device *dev)
5726 {
5727 int err;
5728
5729 rtnl_lock();
5730 err = register_netdevice(dev);
5731 rtnl_unlock();
5732 return err;
5733 }
5734 EXPORT_SYMBOL(register_netdev);
5735
5736 int netdev_refcnt_read(const struct net_device *dev)
5737 {
5738 int i, refcnt = 0;
5739
5740 for_each_possible_cpu(i)
5741 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5742 return refcnt;
5743 }
5744 EXPORT_SYMBOL(netdev_refcnt_read);
5745
5746 /**
5747 * netdev_wait_allrefs - wait until all references are gone.
5748 * @dev: target net_device
5749 *
5750 * This is called when unregistering network devices.
5751 *
5752 * Any protocol or device that holds a reference should register
5753 * for netdevice notification, and cleanup and put back the
5754 * reference if they receive an UNREGISTER event.
5755 * We can get stuck here if buggy protocols don't correctly
5756 * call dev_put.
5757 */
5758 static void netdev_wait_allrefs(struct net_device *dev)
5759 {
5760 unsigned long rebroadcast_time, warning_time;
5761 int refcnt;
5762
5763 linkwatch_forget_dev(dev);
5764
5765 rebroadcast_time = warning_time = jiffies;
5766 refcnt = netdev_refcnt_read(dev);
5767
5768 while (refcnt != 0) {
5769 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5770 rtnl_lock();
5771
5772 /* Rebroadcast unregister notification */
5773 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5774 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5775 * should have already handle it the first time */
5776
5777 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5778 &dev->state)) {
5779 /* We must not have linkwatch events
5780 * pending on unregister. If this
5781 * happens, we simply run the queue
5782 * unscheduled, resulting in a noop
5783 * for this device.
5784 */
5785 linkwatch_run_queue();
5786 }
5787
5788 __rtnl_unlock();
5789
5790 rebroadcast_time = jiffies;
5791 }
5792
5793 msleep(250);
5794
5795 refcnt = netdev_refcnt_read(dev);
5796
5797 if (time_after(jiffies, warning_time + 10 * HZ)) {
5798 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5799 dev->name, refcnt);
5800 warning_time = jiffies;
5801 }
5802 }
5803 }
5804
5805 /* The sequence is:
5806 *
5807 * rtnl_lock();
5808 * ...
5809 * register_netdevice(x1);
5810 * register_netdevice(x2);
5811 * ...
5812 * unregister_netdevice(y1);
5813 * unregister_netdevice(y2);
5814 * ...
5815 * rtnl_unlock();
5816 * free_netdev(y1);
5817 * free_netdev(y2);
5818 *
5819 * We are invoked by rtnl_unlock().
5820 * This allows us to deal with problems:
5821 * 1) We can delete sysfs objects which invoke hotplug
5822 * without deadlocking with linkwatch via keventd.
5823 * 2) Since we run with the RTNL semaphore not held, we can sleep
5824 * safely in order to wait for the netdev refcnt to drop to zero.
5825 *
5826 * We must not return until all unregister events added during
5827 * the interval the lock was held have been completed.
5828 */
5829 void netdev_run_todo(void)
5830 {
5831 struct list_head list;
5832
5833 /* Snapshot list, allow later requests */
5834 list_replace_init(&net_todo_list, &list);
5835
5836 __rtnl_unlock();
5837
5838 /* Wait for rcu callbacks to finish before attempting to drain
5839 * the device list. This usually avoids a 250ms wait.
5840 */
5841 if (!list_empty(&list))
5842 rcu_barrier();
5843
5844 while (!list_empty(&list)) {
5845 struct net_device *dev
5846 = list_first_entry(&list, struct net_device, todo_list);
5847 list_del(&dev->todo_list);
5848
5849 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5850 pr_err("network todo '%s' but state %d\n",
5851 dev->name, dev->reg_state);
5852 dump_stack();
5853 continue;
5854 }
5855
5856 dev->reg_state = NETREG_UNREGISTERED;
5857
5858 on_each_cpu(flush_backlog, dev, 1);
5859
5860 netdev_wait_allrefs(dev);
5861
5862 /* paranoia */
5863 BUG_ON(netdev_refcnt_read(dev));
5864 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5865 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5866 WARN_ON(dev->dn_ptr);
5867
5868 if (dev->destructor)
5869 dev->destructor(dev);
5870
5871 /* Free network device */
5872 kobject_put(&dev->dev.kobj);
5873 }
5874 }
5875
5876 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5877 * fields in the same order, with only the type differing.
5878 */
5879 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5880 const struct net_device_stats *netdev_stats)
5881 {
5882 #if BITS_PER_LONG == 64
5883 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5884 memcpy(stats64, netdev_stats, sizeof(*stats64));
5885 #else
5886 size_t i, n = sizeof(*stats64) / sizeof(u64);
5887 const unsigned long *src = (const unsigned long *)netdev_stats;
5888 u64 *dst = (u64 *)stats64;
5889
5890 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5891 sizeof(*stats64) / sizeof(u64));
5892 for (i = 0; i < n; i++)
5893 dst[i] = src[i];
5894 #endif
5895 }
5896 EXPORT_SYMBOL(netdev_stats_to_stats64);
5897
5898 /**
5899 * dev_get_stats - get network device statistics
5900 * @dev: device to get statistics from
5901 * @storage: place to store stats
5902 *
5903 * Get network statistics from device. Return @storage.
5904 * The device driver may provide its own method by setting
5905 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5906 * otherwise the internal statistics structure is used.
5907 */
5908 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5909 struct rtnl_link_stats64 *storage)
5910 {
5911 const struct net_device_ops *ops = dev->netdev_ops;
5912
5913 if (ops->ndo_get_stats64) {
5914 memset(storage, 0, sizeof(*storage));
5915 ops->ndo_get_stats64(dev, storage);
5916 } else if (ops->ndo_get_stats) {
5917 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5918 } else {
5919 netdev_stats_to_stats64(storage, &dev->stats);
5920 }
5921 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5922 return storage;
5923 }
5924 EXPORT_SYMBOL(dev_get_stats);
5925
5926 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5927 {
5928 struct netdev_queue *queue = dev_ingress_queue(dev);
5929
5930 #ifdef CONFIG_NET_CLS_ACT
5931 if (queue)
5932 return queue;
5933 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5934 if (!queue)
5935 return NULL;
5936 netdev_init_one_queue(dev, queue, NULL);
5937 queue->qdisc = &noop_qdisc;
5938 queue->qdisc_sleeping = &noop_qdisc;
5939 rcu_assign_pointer(dev->ingress_queue, queue);
5940 #endif
5941 return queue;
5942 }
5943
5944 /**
5945 * alloc_netdev_mqs - allocate network device
5946 * @sizeof_priv: size of private data to allocate space for
5947 * @name: device name format string
5948 * @setup: callback to initialize device
5949 * @txqs: the number of TX subqueues to allocate
5950 * @rxqs: the number of RX subqueues to allocate
5951 *
5952 * Allocates a struct net_device with private data area for driver use
5953 * and performs basic initialization. Also allocates subquue structs
5954 * for each queue on the device.
5955 */
5956 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5957 void (*setup)(struct net_device *),
5958 unsigned int txqs, unsigned int rxqs)
5959 {
5960 struct net_device *dev;
5961 size_t alloc_size;
5962 struct net_device *p;
5963
5964 BUG_ON(strlen(name) >= sizeof(dev->name));
5965
5966 if (txqs < 1) {
5967 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5968 return NULL;
5969 }
5970
5971 #ifdef CONFIG_RPS
5972 if (rxqs < 1) {
5973 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5974 return NULL;
5975 }
5976 #endif
5977
5978 alloc_size = sizeof(struct net_device);
5979 if (sizeof_priv) {
5980 /* ensure 32-byte alignment of private area */
5981 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5982 alloc_size += sizeof_priv;
5983 }
5984 /* ensure 32-byte alignment of whole construct */
5985 alloc_size += NETDEV_ALIGN - 1;
5986
5987 p = kzalloc(alloc_size, GFP_KERNEL);
5988 if (!p) {
5989 pr_err("alloc_netdev: Unable to allocate device\n");
5990 return NULL;
5991 }
5992
5993 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5994 dev->padded = (char *)dev - (char *)p;
5995
5996 dev->pcpu_refcnt = alloc_percpu(int);
5997 if (!dev->pcpu_refcnt)
5998 goto free_p;
5999
6000 if (dev_addr_init(dev))
6001 goto free_pcpu;
6002
6003 dev_mc_init(dev);
6004 dev_uc_init(dev);
6005
6006 dev_net_set(dev, &init_net);
6007
6008 dev->gso_max_size = GSO_MAX_SIZE;
6009 dev->gso_max_segs = GSO_MAX_SEGS;
6010
6011 INIT_LIST_HEAD(&dev->napi_list);
6012 INIT_LIST_HEAD(&dev->unreg_list);
6013 INIT_LIST_HEAD(&dev->link_watch_list);
6014 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6015 setup(dev);
6016
6017 dev->num_tx_queues = txqs;
6018 dev->real_num_tx_queues = txqs;
6019 if (netif_alloc_netdev_queues(dev))
6020 goto free_all;
6021
6022 #ifdef CONFIG_RPS
6023 dev->num_rx_queues = rxqs;
6024 dev->real_num_rx_queues = rxqs;
6025 if (netif_alloc_rx_queues(dev))
6026 goto free_all;
6027 #endif
6028
6029 strcpy(dev->name, name);
6030 dev->group = INIT_NETDEV_GROUP;
6031 return dev;
6032
6033 free_all:
6034 free_netdev(dev);
6035 return NULL;
6036
6037 free_pcpu:
6038 free_percpu(dev->pcpu_refcnt);
6039 kfree(dev->_tx);
6040 #ifdef CONFIG_RPS
6041 kfree(dev->_rx);
6042 #endif
6043
6044 free_p:
6045 kfree(p);
6046 return NULL;
6047 }
6048 EXPORT_SYMBOL(alloc_netdev_mqs);
6049
6050 /**
6051 * free_netdev - free network device
6052 * @dev: device
6053 *
6054 * This function does the last stage of destroying an allocated device
6055 * interface. The reference to the device object is released.
6056 * If this is the last reference then it will be freed.
6057 */
6058 void free_netdev(struct net_device *dev)
6059 {
6060 struct napi_struct *p, *n;
6061
6062 release_net(dev_net(dev));
6063
6064 kfree(dev->_tx);
6065 #ifdef CONFIG_RPS
6066 kfree(dev->_rx);
6067 #endif
6068
6069 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6070
6071 /* Flush device addresses */
6072 dev_addr_flush(dev);
6073
6074 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6075 netif_napi_del(p);
6076
6077 free_percpu(dev->pcpu_refcnt);
6078 dev->pcpu_refcnt = NULL;
6079
6080 /* Compatibility with error handling in drivers */
6081 if (dev->reg_state == NETREG_UNINITIALIZED) {
6082 kfree((char *)dev - dev->padded);
6083 return;
6084 }
6085
6086 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6087 dev->reg_state = NETREG_RELEASED;
6088
6089 /* will free via device release */
6090 put_device(&dev->dev);
6091 }
6092 EXPORT_SYMBOL(free_netdev);
6093
6094 /**
6095 * synchronize_net - Synchronize with packet receive processing
6096 *
6097 * Wait for packets currently being received to be done.
6098 * Does not block later packets from starting.
6099 */
6100 void synchronize_net(void)
6101 {
6102 might_sleep();
6103 if (rtnl_is_locked())
6104 synchronize_rcu_expedited();
6105 else
6106 synchronize_rcu();
6107 }
6108 EXPORT_SYMBOL(synchronize_net);
6109
6110 /**
6111 * unregister_netdevice_queue - remove device from the kernel
6112 * @dev: device
6113 * @head: list
6114 *
6115 * This function shuts down a device interface and removes it
6116 * from the kernel tables.
6117 * If head not NULL, device is queued to be unregistered later.
6118 *
6119 * Callers must hold the rtnl semaphore. You may want
6120 * unregister_netdev() instead of this.
6121 */
6122
6123 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6124 {
6125 ASSERT_RTNL();
6126
6127 if (head) {
6128 list_move_tail(&dev->unreg_list, head);
6129 } else {
6130 rollback_registered(dev);
6131 /* Finish processing unregister after unlock */
6132 net_set_todo(dev);
6133 }
6134 }
6135 EXPORT_SYMBOL(unregister_netdevice_queue);
6136
6137 /**
6138 * unregister_netdevice_many - unregister many devices
6139 * @head: list of devices
6140 */
6141 void unregister_netdevice_many(struct list_head *head)
6142 {
6143 struct net_device *dev;
6144
6145 if (!list_empty(head)) {
6146 rollback_registered_many(head);
6147 list_for_each_entry(dev, head, unreg_list)
6148 net_set_todo(dev);
6149 }
6150 }
6151 EXPORT_SYMBOL(unregister_netdevice_many);
6152
6153 /**
6154 * unregister_netdev - remove device from the kernel
6155 * @dev: device
6156 *
6157 * This function shuts down a device interface and removes it
6158 * from the kernel tables.
6159 *
6160 * This is just a wrapper for unregister_netdevice that takes
6161 * the rtnl semaphore. In general you want to use this and not
6162 * unregister_netdevice.
6163 */
6164 void unregister_netdev(struct net_device *dev)
6165 {
6166 rtnl_lock();
6167 unregister_netdevice(dev);
6168 rtnl_unlock();
6169 }
6170 EXPORT_SYMBOL(unregister_netdev);
6171
6172 /**
6173 * dev_change_net_namespace - move device to different nethost namespace
6174 * @dev: device
6175 * @net: network namespace
6176 * @pat: If not NULL name pattern to try if the current device name
6177 * is already taken in the destination network namespace.
6178 *
6179 * This function shuts down a device interface and moves it
6180 * to a new network namespace. On success 0 is returned, on
6181 * a failure a netagive errno code is returned.
6182 *
6183 * Callers must hold the rtnl semaphore.
6184 */
6185
6186 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6187 {
6188 int err;
6189
6190 ASSERT_RTNL();
6191
6192 /* Don't allow namespace local devices to be moved. */
6193 err = -EINVAL;
6194 if (dev->features & NETIF_F_NETNS_LOCAL)
6195 goto out;
6196
6197 /* Ensure the device has been registrered */
6198 err = -EINVAL;
6199 if (dev->reg_state != NETREG_REGISTERED)
6200 goto out;
6201
6202 /* Get out if there is nothing todo */
6203 err = 0;
6204 if (net_eq(dev_net(dev), net))
6205 goto out;
6206
6207 /* Pick the destination device name, and ensure
6208 * we can use it in the destination network namespace.
6209 */
6210 err = -EEXIST;
6211 if (__dev_get_by_name(net, dev->name)) {
6212 /* We get here if we can't use the current device name */
6213 if (!pat)
6214 goto out;
6215 if (dev_get_valid_name(dev, pat) < 0)
6216 goto out;
6217 }
6218
6219 /*
6220 * And now a mini version of register_netdevice unregister_netdevice.
6221 */
6222
6223 /* If device is running close it first. */
6224 dev_close(dev);
6225
6226 /* And unlink it from device chain */
6227 err = -ENODEV;
6228 unlist_netdevice(dev);
6229
6230 synchronize_net();
6231
6232 /* Shutdown queueing discipline. */
6233 dev_shutdown(dev);
6234
6235 /* Notify protocols, that we are about to destroy
6236 this device. They should clean all the things.
6237
6238 Note that dev->reg_state stays at NETREG_REGISTERED.
6239 This is wanted because this way 8021q and macvlan know
6240 the device is just moving and can keep their slaves up.
6241 */
6242 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6243 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6244 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6245
6246 /*
6247 * Flush the unicast and multicast chains
6248 */
6249 dev_uc_flush(dev);
6250 dev_mc_flush(dev);
6251
6252 /* Actually switch the network namespace */
6253 dev_net_set(dev, net);
6254
6255 /* If there is an ifindex conflict assign a new one */
6256 if (__dev_get_by_index(net, dev->ifindex)) {
6257 int iflink = (dev->iflink == dev->ifindex);
6258 dev->ifindex = dev_new_index(net);
6259 if (iflink)
6260 dev->iflink = dev->ifindex;
6261 }
6262
6263 /* Fixup kobjects */
6264 err = device_rename(&dev->dev, dev->name);
6265 WARN_ON(err);
6266
6267 /* Add the device back in the hashes */
6268 list_netdevice(dev);
6269
6270 /* Notify protocols, that a new device appeared. */
6271 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6272
6273 /*
6274 * Prevent userspace races by waiting until the network
6275 * device is fully setup before sending notifications.
6276 */
6277 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6278
6279 synchronize_net();
6280 err = 0;
6281 out:
6282 return err;
6283 }
6284 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6285
6286 static int dev_cpu_callback(struct notifier_block *nfb,
6287 unsigned long action,
6288 void *ocpu)
6289 {
6290 struct sk_buff **list_skb;
6291 struct sk_buff *skb;
6292 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6293 struct softnet_data *sd, *oldsd;
6294
6295 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6296 return NOTIFY_OK;
6297
6298 local_irq_disable();
6299 cpu = smp_processor_id();
6300 sd = &per_cpu(softnet_data, cpu);
6301 oldsd = &per_cpu(softnet_data, oldcpu);
6302
6303 /* Find end of our completion_queue. */
6304 list_skb = &sd->completion_queue;
6305 while (*list_skb)
6306 list_skb = &(*list_skb)->next;
6307 /* Append completion queue from offline CPU. */
6308 *list_skb = oldsd->completion_queue;
6309 oldsd->completion_queue = NULL;
6310
6311 /* Append output queue from offline CPU. */
6312 if (oldsd->output_queue) {
6313 *sd->output_queue_tailp = oldsd->output_queue;
6314 sd->output_queue_tailp = oldsd->output_queue_tailp;
6315 oldsd->output_queue = NULL;
6316 oldsd->output_queue_tailp = &oldsd->output_queue;
6317 }
6318 /* Append NAPI poll list from offline CPU. */
6319 if (!list_empty(&oldsd->poll_list)) {
6320 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6321 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6322 }
6323
6324 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6325 local_irq_enable();
6326
6327 /* Process offline CPU's input_pkt_queue */
6328 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6329 netif_rx(skb);
6330 input_queue_head_incr(oldsd);
6331 }
6332 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6333 netif_rx(skb);
6334 input_queue_head_incr(oldsd);
6335 }
6336
6337 return NOTIFY_OK;
6338 }
6339
6340
6341 /**
6342 * netdev_increment_features - increment feature set by one
6343 * @all: current feature set
6344 * @one: new feature set
6345 * @mask: mask feature set
6346 *
6347 * Computes a new feature set after adding a device with feature set
6348 * @one to the master device with current feature set @all. Will not
6349 * enable anything that is off in @mask. Returns the new feature set.
6350 */
6351 netdev_features_t netdev_increment_features(netdev_features_t all,
6352 netdev_features_t one, netdev_features_t mask)
6353 {
6354 if (mask & NETIF_F_GEN_CSUM)
6355 mask |= NETIF_F_ALL_CSUM;
6356 mask |= NETIF_F_VLAN_CHALLENGED;
6357
6358 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6359 all &= one | ~NETIF_F_ALL_FOR_ALL;
6360
6361 /* If one device supports hw checksumming, set for all. */
6362 if (all & NETIF_F_GEN_CSUM)
6363 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6364
6365 return all;
6366 }
6367 EXPORT_SYMBOL(netdev_increment_features);
6368
6369 static struct hlist_head *netdev_create_hash(void)
6370 {
6371 int i;
6372 struct hlist_head *hash;
6373
6374 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6375 if (hash != NULL)
6376 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6377 INIT_HLIST_HEAD(&hash[i]);
6378
6379 return hash;
6380 }
6381
6382 /* Initialize per network namespace state */
6383 static int __net_init netdev_init(struct net *net)
6384 {
6385 if (net != &init_net)
6386 INIT_LIST_HEAD(&net->dev_base_head);
6387
6388 net->dev_name_head = netdev_create_hash();
6389 if (net->dev_name_head == NULL)
6390 goto err_name;
6391
6392 net->dev_index_head = netdev_create_hash();
6393 if (net->dev_index_head == NULL)
6394 goto err_idx;
6395
6396 return 0;
6397
6398 err_idx:
6399 kfree(net->dev_name_head);
6400 err_name:
6401 return -ENOMEM;
6402 }
6403
6404 /**
6405 * netdev_drivername - network driver for the device
6406 * @dev: network device
6407 *
6408 * Determine network driver for device.
6409 */
6410 const char *netdev_drivername(const struct net_device *dev)
6411 {
6412 const struct device_driver *driver;
6413 const struct device *parent;
6414 const char *empty = "";
6415
6416 parent = dev->dev.parent;
6417 if (!parent)
6418 return empty;
6419
6420 driver = parent->driver;
6421 if (driver && driver->name)
6422 return driver->name;
6423 return empty;
6424 }
6425
6426 int __netdev_printk(const char *level, const struct net_device *dev,
6427 struct va_format *vaf)
6428 {
6429 int r;
6430
6431 if (dev && dev->dev.parent)
6432 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6433 netdev_name(dev), vaf);
6434 else if (dev)
6435 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6436 else
6437 r = printk("%s(NULL net_device): %pV", level, vaf);
6438
6439 return r;
6440 }
6441 EXPORT_SYMBOL(__netdev_printk);
6442
6443 int netdev_printk(const char *level, const struct net_device *dev,
6444 const char *format, ...)
6445 {
6446 struct va_format vaf;
6447 va_list args;
6448 int r;
6449
6450 va_start(args, format);
6451
6452 vaf.fmt = format;
6453 vaf.va = &args;
6454
6455 r = __netdev_printk(level, dev, &vaf);
6456 va_end(args);
6457
6458 return r;
6459 }
6460 EXPORT_SYMBOL(netdev_printk);
6461
6462 #define define_netdev_printk_level(func, level) \
6463 int func(const struct net_device *dev, const char *fmt, ...) \
6464 { \
6465 int r; \
6466 struct va_format vaf; \
6467 va_list args; \
6468 \
6469 va_start(args, fmt); \
6470 \
6471 vaf.fmt = fmt; \
6472 vaf.va = &args; \
6473 \
6474 r = __netdev_printk(level, dev, &vaf); \
6475 va_end(args); \
6476 \
6477 return r; \
6478 } \
6479 EXPORT_SYMBOL(func);
6480
6481 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6482 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6483 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6484 define_netdev_printk_level(netdev_err, KERN_ERR);
6485 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6486 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6487 define_netdev_printk_level(netdev_info, KERN_INFO);
6488
6489 static void __net_exit netdev_exit(struct net *net)
6490 {
6491 kfree(net->dev_name_head);
6492 kfree(net->dev_index_head);
6493 }
6494
6495 static struct pernet_operations __net_initdata netdev_net_ops = {
6496 .init = netdev_init,
6497 .exit = netdev_exit,
6498 };
6499
6500 static void __net_exit default_device_exit(struct net *net)
6501 {
6502 struct net_device *dev, *aux;
6503 /*
6504 * Push all migratable network devices back to the
6505 * initial network namespace
6506 */
6507 rtnl_lock();
6508 for_each_netdev_safe(net, dev, aux) {
6509 int err;
6510 char fb_name[IFNAMSIZ];
6511
6512 /* Ignore unmoveable devices (i.e. loopback) */
6513 if (dev->features & NETIF_F_NETNS_LOCAL)
6514 continue;
6515
6516 /* Leave virtual devices for the generic cleanup */
6517 if (dev->rtnl_link_ops)
6518 continue;
6519
6520 /* Push remaining network devices to init_net */
6521 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6522 err = dev_change_net_namespace(dev, &init_net, fb_name);
6523 if (err) {
6524 pr_emerg("%s: failed to move %s to init_net: %d\n",
6525 __func__, dev->name, err);
6526 BUG();
6527 }
6528 }
6529 rtnl_unlock();
6530 }
6531
6532 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6533 {
6534 /* At exit all network devices most be removed from a network
6535 * namespace. Do this in the reverse order of registration.
6536 * Do this across as many network namespaces as possible to
6537 * improve batching efficiency.
6538 */
6539 struct net_device *dev;
6540 struct net *net;
6541 LIST_HEAD(dev_kill_list);
6542
6543 rtnl_lock();
6544 list_for_each_entry(net, net_list, exit_list) {
6545 for_each_netdev_reverse(net, dev) {
6546 if (dev->rtnl_link_ops)
6547 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6548 else
6549 unregister_netdevice_queue(dev, &dev_kill_list);
6550 }
6551 }
6552 unregister_netdevice_many(&dev_kill_list);
6553 list_del(&dev_kill_list);
6554 rtnl_unlock();
6555 }
6556
6557 static struct pernet_operations __net_initdata default_device_ops = {
6558 .exit = default_device_exit,
6559 .exit_batch = default_device_exit_batch,
6560 };
6561
6562 /*
6563 * Initialize the DEV module. At boot time this walks the device list and
6564 * unhooks any devices that fail to initialise (normally hardware not
6565 * present) and leaves us with a valid list of present and active devices.
6566 *
6567 */
6568
6569 /*
6570 * This is called single threaded during boot, so no need
6571 * to take the rtnl semaphore.
6572 */
6573 static int __init net_dev_init(void)
6574 {
6575 int i, rc = -ENOMEM;
6576
6577 BUG_ON(!dev_boot_phase);
6578
6579 if (dev_proc_init())
6580 goto out;
6581
6582 if (netdev_kobject_init())
6583 goto out;
6584
6585 INIT_LIST_HEAD(&ptype_all);
6586 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6587 INIT_LIST_HEAD(&ptype_base[i]);
6588
6589 if (register_pernet_subsys(&netdev_net_ops))
6590 goto out;
6591
6592 /*
6593 * Initialise the packet receive queues.
6594 */
6595
6596 for_each_possible_cpu(i) {
6597 struct softnet_data *sd = &per_cpu(softnet_data, i);
6598
6599 memset(sd, 0, sizeof(*sd));
6600 skb_queue_head_init(&sd->input_pkt_queue);
6601 skb_queue_head_init(&sd->process_queue);
6602 sd->completion_queue = NULL;
6603 INIT_LIST_HEAD(&sd->poll_list);
6604 sd->output_queue = NULL;
6605 sd->output_queue_tailp = &sd->output_queue;
6606 #ifdef CONFIG_RPS
6607 sd->csd.func = rps_trigger_softirq;
6608 sd->csd.info = sd;
6609 sd->csd.flags = 0;
6610 sd->cpu = i;
6611 #endif
6612
6613 sd->backlog.poll = process_backlog;
6614 sd->backlog.weight = weight_p;
6615 sd->backlog.gro_list = NULL;
6616 sd->backlog.gro_count = 0;
6617 }
6618
6619 dev_boot_phase = 0;
6620
6621 /* The loopback device is special if any other network devices
6622 * is present in a network namespace the loopback device must
6623 * be present. Since we now dynamically allocate and free the
6624 * loopback device ensure this invariant is maintained by
6625 * keeping the loopback device as the first device on the
6626 * list of network devices. Ensuring the loopback devices
6627 * is the first device that appears and the last network device
6628 * that disappears.
6629 */
6630 if (register_pernet_device(&loopback_net_ops))
6631 goto out;
6632
6633 if (register_pernet_device(&default_device_ops))
6634 goto out;
6635
6636 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6637 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6638
6639 hotcpu_notifier(dev_cpu_callback, 0);
6640 dst_init();
6641 dev_mcast_init();
6642 rc = 0;
6643 out:
6644 return rc;
6645 }
6646
6647 subsys_initcall(net_dev_init);
6648
6649 static int __init initialize_hashrnd(void)
6650 {
6651 get_random_bytes(&hashrnd, sizeof(hashrnd));
6652 return 0;
6653 }
6654
6655 late_initcall_sync(initialize_hashrnd);
6656