]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/core/dev.c
wpan: whitespace fix
[mirror_ubuntu-hirsute-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137
138 #include "net-sysfs.h"
139
140 /* Instead of increasing this, you should create a hash table. */
141 #define MAX_GRO_SKBS 8
142
143 /* This should be increased if a protocol with a bigger head is added. */
144 #define GRO_MAX_HEAD (MAX_HEADER + 128)
145
146 /*
147 * The list of packet types we will receive (as opposed to discard)
148 * and the routines to invoke.
149 *
150 * Why 16. Because with 16 the only overlap we get on a hash of the
151 * low nibble of the protocol value is RARP/SNAP/X.25.
152 *
153 * NOTE: That is no longer true with the addition of VLAN tags. Not
154 * sure which should go first, but I bet it won't make much
155 * difference if we are running VLANs. The good news is that
156 * this protocol won't be in the list unless compiled in, so
157 * the average user (w/out VLANs) will not be adversely affected.
158 * --BLG
159 *
160 * 0800 IP
161 * 8100 802.1Q VLAN
162 * 0001 802.3
163 * 0002 AX.25
164 * 0004 802.2
165 * 8035 RARP
166 * 0005 SNAP
167 * 0805 X.25
168 * 0806 ARP
169 * 8137 IPX
170 * 0009 Localtalk
171 * 86DD IPv6
172 */
173
174 #define PTYPE_HASH_SIZE (16)
175 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
176
177 static DEFINE_SPINLOCK(ptype_lock);
178 static DEFINE_SPINLOCK(offload_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly; /* Taps */
181 static struct list_head offload_base __read_mostly;
182
183 /*
184 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
185 * semaphore.
186 *
187 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
188 *
189 * Writers must hold the rtnl semaphore while they loop through the
190 * dev_base_head list, and hold dev_base_lock for writing when they do the
191 * actual updates. This allows pure readers to access the list even
192 * while a writer is preparing to update it.
193 *
194 * To put it another way, dev_base_lock is held for writing only to
195 * protect against pure readers; the rtnl semaphore provides the
196 * protection against other writers.
197 *
198 * See, for example usages, register_netdevice() and
199 * unregister_netdevice(), which must be called with the rtnl
200 * semaphore held.
201 */
202 DEFINE_RWLOCK(dev_base_lock);
203 EXPORT_SYMBOL(dev_base_lock);
204
205 seqcount_t devnet_rename_seq;
206
207 static inline void dev_base_seq_inc(struct net *net)
208 {
209 while (++net->dev_base_seq == 0);
210 }
211
212 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
213 {
214 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
215
216 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
217 }
218
219 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
220 {
221 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
222 }
223
224 static inline void rps_lock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227 spin_lock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230
231 static inline void rps_unlock(struct softnet_data *sd)
232 {
233 #ifdef CONFIG_RPS
234 spin_unlock(&sd->input_pkt_queue.lock);
235 #endif
236 }
237
238 /* Device list insertion */
239 static int list_netdevice(struct net_device *dev)
240 {
241 struct net *net = dev_net(dev);
242
243 ASSERT_RTNL();
244
245 write_lock_bh(&dev_base_lock);
246 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
247 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
248 hlist_add_head_rcu(&dev->index_hlist,
249 dev_index_hash(net, dev->ifindex));
250 write_unlock_bh(&dev_base_lock);
251
252 dev_base_seq_inc(net);
253
254 return 0;
255 }
256
257 /* Device list removal
258 * caller must respect a RCU grace period before freeing/reusing dev
259 */
260 static void unlist_netdevice(struct net_device *dev)
261 {
262 ASSERT_RTNL();
263
264 /* Unlink dev from the device chain */
265 write_lock_bh(&dev_base_lock);
266 list_del_rcu(&dev->dev_list);
267 hlist_del_rcu(&dev->name_hlist);
268 hlist_del_rcu(&dev->index_hlist);
269 write_unlock_bh(&dev_base_lock);
270
271 dev_base_seq_inc(dev_net(dev));
272 }
273
274 /*
275 * Our notifier list
276 */
277
278 static RAW_NOTIFIER_HEAD(netdev_chain);
279
280 /*
281 * Device drivers call our routines to queue packets here. We empty the
282 * queue in the local softnet handler.
283 */
284
285 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
286 EXPORT_PER_CPU_SYMBOL(softnet_data);
287
288 #ifdef CONFIG_LOCKDEP
289 /*
290 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
291 * according to dev->type
292 */
293 static const unsigned short netdev_lock_type[] =
294 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
295 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
296 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
297 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
298 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
299 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
300 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
301 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
302 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
303 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
304 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
305 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
306 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
307 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
308 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
309
310 static const char *const netdev_lock_name[] =
311 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
312 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
313 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
314 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
315 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
316 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
317 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
318 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
319 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
320 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
321 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
322 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
323 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
324 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
325 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
326
327 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
328 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
329
330 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
331 {
332 int i;
333
334 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
335 if (netdev_lock_type[i] == dev_type)
336 return i;
337 /* the last key is used by default */
338 return ARRAY_SIZE(netdev_lock_type) - 1;
339 }
340
341 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
342 unsigned short dev_type)
343 {
344 int i;
345
346 i = netdev_lock_pos(dev_type);
347 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
348 netdev_lock_name[i]);
349 }
350
351 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
352 {
353 int i;
354
355 i = netdev_lock_pos(dev->type);
356 lockdep_set_class_and_name(&dev->addr_list_lock,
357 &netdev_addr_lock_key[i],
358 netdev_lock_name[i]);
359 }
360 #else
361 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
362 unsigned short dev_type)
363 {
364 }
365 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
366 {
367 }
368 #endif
369
370 /*******************************************************************************
371
372 Protocol management and registration routines
373
374 *******************************************************************************/
375
376 /*
377 * Add a protocol ID to the list. Now that the input handler is
378 * smarter we can dispense with all the messy stuff that used to be
379 * here.
380 *
381 * BEWARE!!! Protocol handlers, mangling input packets,
382 * MUST BE last in hash buckets and checking protocol handlers
383 * MUST start from promiscuous ptype_all chain in net_bh.
384 * It is true now, do not change it.
385 * Explanation follows: if protocol handler, mangling packet, will
386 * be the first on list, it is not able to sense, that packet
387 * is cloned and should be copied-on-write, so that it will
388 * change it and subsequent readers will get broken packet.
389 * --ANK (980803)
390 */
391
392 static inline struct list_head *ptype_head(const struct packet_type *pt)
393 {
394 if (pt->type == htons(ETH_P_ALL))
395 return &ptype_all;
396 else
397 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
398 }
399
400 /**
401 * dev_add_pack - add packet handler
402 * @pt: packet type declaration
403 *
404 * Add a protocol handler to the networking stack. The passed &packet_type
405 * is linked into kernel lists and may not be freed until it has been
406 * removed from the kernel lists.
407 *
408 * This call does not sleep therefore it can not
409 * guarantee all CPU's that are in middle of receiving packets
410 * will see the new packet type (until the next received packet).
411 */
412
413 void dev_add_pack(struct packet_type *pt)
414 {
415 struct list_head *head = ptype_head(pt);
416
417 spin_lock(&ptype_lock);
418 list_add_rcu(&pt->list, head);
419 spin_unlock(&ptype_lock);
420 }
421 EXPORT_SYMBOL(dev_add_pack);
422
423 /**
424 * __dev_remove_pack - remove packet handler
425 * @pt: packet type declaration
426 *
427 * Remove a protocol handler that was previously added to the kernel
428 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
429 * from the kernel lists and can be freed or reused once this function
430 * returns.
431 *
432 * The packet type might still be in use by receivers
433 * and must not be freed until after all the CPU's have gone
434 * through a quiescent state.
435 */
436 void __dev_remove_pack(struct packet_type *pt)
437 {
438 struct list_head *head = ptype_head(pt);
439 struct packet_type *pt1;
440
441 spin_lock(&ptype_lock);
442
443 list_for_each_entry(pt1, head, list) {
444 if (pt == pt1) {
445 list_del_rcu(&pt->list);
446 goto out;
447 }
448 }
449
450 pr_warn("dev_remove_pack: %p not found\n", pt);
451 out:
452 spin_unlock(&ptype_lock);
453 }
454 EXPORT_SYMBOL(__dev_remove_pack);
455
456 /**
457 * dev_remove_pack - remove packet handler
458 * @pt: packet type declaration
459 *
460 * Remove a protocol handler that was previously added to the kernel
461 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
462 * from the kernel lists and can be freed or reused once this function
463 * returns.
464 *
465 * This call sleeps to guarantee that no CPU is looking at the packet
466 * type after return.
467 */
468 void dev_remove_pack(struct packet_type *pt)
469 {
470 __dev_remove_pack(pt);
471
472 synchronize_net();
473 }
474 EXPORT_SYMBOL(dev_remove_pack);
475
476
477 /**
478 * dev_add_offload - register offload handlers
479 * @po: protocol offload declaration
480 *
481 * Add protocol offload handlers to the networking stack. The passed
482 * &proto_offload is linked into kernel lists and may not be freed until
483 * it has been removed from the kernel lists.
484 *
485 * This call does not sleep therefore it can not
486 * guarantee all CPU's that are in middle of receiving packets
487 * will see the new offload handlers (until the next received packet).
488 */
489 void dev_add_offload(struct packet_offload *po)
490 {
491 struct list_head *head = &offload_base;
492
493 spin_lock(&offload_lock);
494 list_add_rcu(&po->list, head);
495 spin_unlock(&offload_lock);
496 }
497 EXPORT_SYMBOL(dev_add_offload);
498
499 /**
500 * __dev_remove_offload - remove offload handler
501 * @po: packet offload declaration
502 *
503 * Remove a protocol offload handler that was previously added to the
504 * kernel offload handlers by dev_add_offload(). The passed &offload_type
505 * is removed from the kernel lists and can be freed or reused once this
506 * function returns.
507 *
508 * The packet type might still be in use by receivers
509 * and must not be freed until after all the CPU's have gone
510 * through a quiescent state.
511 */
512 void __dev_remove_offload(struct packet_offload *po)
513 {
514 struct list_head *head = &offload_base;
515 struct packet_offload *po1;
516
517 spin_lock(&offload_lock);
518
519 list_for_each_entry(po1, head, list) {
520 if (po == po1) {
521 list_del_rcu(&po->list);
522 goto out;
523 }
524 }
525
526 pr_warn("dev_remove_offload: %p not found\n", po);
527 out:
528 spin_unlock(&offload_lock);
529 }
530 EXPORT_SYMBOL(__dev_remove_offload);
531
532 /**
533 * dev_remove_offload - remove packet offload handler
534 * @po: packet offload declaration
535 *
536 * Remove a packet offload handler that was previously added to the kernel
537 * offload handlers by dev_add_offload(). The passed &offload_type is
538 * removed from the kernel lists and can be freed or reused once this
539 * function returns.
540 *
541 * This call sleeps to guarantee that no CPU is looking at the packet
542 * type after return.
543 */
544 void dev_remove_offload(struct packet_offload *po)
545 {
546 __dev_remove_offload(po);
547
548 synchronize_net();
549 }
550 EXPORT_SYMBOL(dev_remove_offload);
551
552 /******************************************************************************
553
554 Device Boot-time Settings Routines
555
556 *******************************************************************************/
557
558 /* Boot time configuration table */
559 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
560
561 /**
562 * netdev_boot_setup_add - add new setup entry
563 * @name: name of the device
564 * @map: configured settings for the device
565 *
566 * Adds new setup entry to the dev_boot_setup list. The function
567 * returns 0 on error and 1 on success. This is a generic routine to
568 * all netdevices.
569 */
570 static int netdev_boot_setup_add(char *name, struct ifmap *map)
571 {
572 struct netdev_boot_setup *s;
573 int i;
574
575 s = dev_boot_setup;
576 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
577 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
578 memset(s[i].name, 0, sizeof(s[i].name));
579 strlcpy(s[i].name, name, IFNAMSIZ);
580 memcpy(&s[i].map, map, sizeof(s[i].map));
581 break;
582 }
583 }
584
585 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
586 }
587
588 /**
589 * netdev_boot_setup_check - check boot time settings
590 * @dev: the netdevice
591 *
592 * Check boot time settings for the device.
593 * The found settings are set for the device to be used
594 * later in the device probing.
595 * Returns 0 if no settings found, 1 if they are.
596 */
597 int netdev_boot_setup_check(struct net_device *dev)
598 {
599 struct netdev_boot_setup *s = dev_boot_setup;
600 int i;
601
602 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
603 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
604 !strcmp(dev->name, s[i].name)) {
605 dev->irq = s[i].map.irq;
606 dev->base_addr = s[i].map.base_addr;
607 dev->mem_start = s[i].map.mem_start;
608 dev->mem_end = s[i].map.mem_end;
609 return 1;
610 }
611 }
612 return 0;
613 }
614 EXPORT_SYMBOL(netdev_boot_setup_check);
615
616
617 /**
618 * netdev_boot_base - get address from boot time settings
619 * @prefix: prefix for network device
620 * @unit: id for network device
621 *
622 * Check boot time settings for the base address of device.
623 * The found settings are set for the device to be used
624 * later in the device probing.
625 * Returns 0 if no settings found.
626 */
627 unsigned long netdev_boot_base(const char *prefix, int unit)
628 {
629 const struct netdev_boot_setup *s = dev_boot_setup;
630 char name[IFNAMSIZ];
631 int i;
632
633 sprintf(name, "%s%d", prefix, unit);
634
635 /*
636 * If device already registered then return base of 1
637 * to indicate not to probe for this interface
638 */
639 if (__dev_get_by_name(&init_net, name))
640 return 1;
641
642 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
643 if (!strcmp(name, s[i].name))
644 return s[i].map.base_addr;
645 return 0;
646 }
647
648 /*
649 * Saves at boot time configured settings for any netdevice.
650 */
651 int __init netdev_boot_setup(char *str)
652 {
653 int ints[5];
654 struct ifmap map;
655
656 str = get_options(str, ARRAY_SIZE(ints), ints);
657 if (!str || !*str)
658 return 0;
659
660 /* Save settings */
661 memset(&map, 0, sizeof(map));
662 if (ints[0] > 0)
663 map.irq = ints[1];
664 if (ints[0] > 1)
665 map.base_addr = ints[2];
666 if (ints[0] > 2)
667 map.mem_start = ints[3];
668 if (ints[0] > 3)
669 map.mem_end = ints[4];
670
671 /* Add new entry to the list */
672 return netdev_boot_setup_add(str, &map);
673 }
674
675 __setup("netdev=", netdev_boot_setup);
676
677 /*******************************************************************************
678
679 Device Interface Subroutines
680
681 *******************************************************************************/
682
683 /**
684 * __dev_get_by_name - find a device by its name
685 * @net: the applicable net namespace
686 * @name: name to find
687 *
688 * Find an interface by name. Must be called under RTNL semaphore
689 * or @dev_base_lock. If the name is found a pointer to the device
690 * is returned. If the name is not found then %NULL is returned. The
691 * reference counters are not incremented so the caller must be
692 * careful with locks.
693 */
694
695 struct net_device *__dev_get_by_name(struct net *net, const char *name)
696 {
697 struct hlist_node *p;
698 struct net_device *dev;
699 struct hlist_head *head = dev_name_hash(net, name);
700
701 hlist_for_each_entry(dev, p, head, name_hlist)
702 if (!strncmp(dev->name, name, IFNAMSIZ))
703 return dev;
704
705 return NULL;
706 }
707 EXPORT_SYMBOL(__dev_get_by_name);
708
709 /**
710 * dev_get_by_name_rcu - find a device by its name
711 * @net: the applicable net namespace
712 * @name: name to find
713 *
714 * Find an interface by name.
715 * If the name is found a pointer to the device is returned.
716 * If the name is not found then %NULL is returned.
717 * The reference counters are not incremented so the caller must be
718 * careful with locks. The caller must hold RCU lock.
719 */
720
721 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
722 {
723 struct hlist_node *p;
724 struct net_device *dev;
725 struct hlist_head *head = dev_name_hash(net, name);
726
727 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
728 if (!strncmp(dev->name, name, IFNAMSIZ))
729 return dev;
730
731 return NULL;
732 }
733 EXPORT_SYMBOL(dev_get_by_name_rcu);
734
735 /**
736 * dev_get_by_name - find a device by its name
737 * @net: the applicable net namespace
738 * @name: name to find
739 *
740 * Find an interface by name. This can be called from any
741 * context and does its own locking. The returned handle has
742 * the usage count incremented and the caller must use dev_put() to
743 * release it when it is no longer needed. %NULL is returned if no
744 * matching device is found.
745 */
746
747 struct net_device *dev_get_by_name(struct net *net, const char *name)
748 {
749 struct net_device *dev;
750
751 rcu_read_lock();
752 dev = dev_get_by_name_rcu(net, name);
753 if (dev)
754 dev_hold(dev);
755 rcu_read_unlock();
756 return dev;
757 }
758 EXPORT_SYMBOL(dev_get_by_name);
759
760 /**
761 * __dev_get_by_index - find a device by its ifindex
762 * @net: the applicable net namespace
763 * @ifindex: index of device
764 *
765 * Search for an interface by index. Returns %NULL if the device
766 * is not found or a pointer to the device. The device has not
767 * had its reference counter increased so the caller must be careful
768 * about locking. The caller must hold either the RTNL semaphore
769 * or @dev_base_lock.
770 */
771
772 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
773 {
774 struct hlist_node *p;
775 struct net_device *dev;
776 struct hlist_head *head = dev_index_hash(net, ifindex);
777
778 hlist_for_each_entry(dev, p, head, index_hlist)
779 if (dev->ifindex == ifindex)
780 return dev;
781
782 return NULL;
783 }
784 EXPORT_SYMBOL(__dev_get_by_index);
785
786 /**
787 * dev_get_by_index_rcu - find a device by its ifindex
788 * @net: the applicable net namespace
789 * @ifindex: index of device
790 *
791 * Search for an interface by index. Returns %NULL if the device
792 * is not found or a pointer to the device. The device has not
793 * had its reference counter increased so the caller must be careful
794 * about locking. The caller must hold RCU lock.
795 */
796
797 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
798 {
799 struct hlist_node *p;
800 struct net_device *dev;
801 struct hlist_head *head = dev_index_hash(net, ifindex);
802
803 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
804 if (dev->ifindex == ifindex)
805 return dev;
806
807 return NULL;
808 }
809 EXPORT_SYMBOL(dev_get_by_index_rcu);
810
811
812 /**
813 * dev_get_by_index - find a device by its ifindex
814 * @net: the applicable net namespace
815 * @ifindex: index of device
816 *
817 * Search for an interface by index. Returns NULL if the device
818 * is not found or a pointer to the device. The device returned has
819 * had a reference added and the pointer is safe until the user calls
820 * dev_put to indicate they have finished with it.
821 */
822
823 struct net_device *dev_get_by_index(struct net *net, int ifindex)
824 {
825 struct net_device *dev;
826
827 rcu_read_lock();
828 dev = dev_get_by_index_rcu(net, ifindex);
829 if (dev)
830 dev_hold(dev);
831 rcu_read_unlock();
832 return dev;
833 }
834 EXPORT_SYMBOL(dev_get_by_index);
835
836 /**
837 * dev_getbyhwaddr_rcu - find a device by its hardware address
838 * @net: the applicable net namespace
839 * @type: media type of device
840 * @ha: hardware address
841 *
842 * Search for an interface by MAC address. Returns NULL if the device
843 * is not found or a pointer to the device.
844 * The caller must hold RCU or RTNL.
845 * The returned device has not had its ref count increased
846 * and the caller must therefore be careful about locking
847 *
848 */
849
850 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
851 const char *ha)
852 {
853 struct net_device *dev;
854
855 for_each_netdev_rcu(net, dev)
856 if (dev->type == type &&
857 !memcmp(dev->dev_addr, ha, dev->addr_len))
858 return dev;
859
860 return NULL;
861 }
862 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
863
864 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
865 {
866 struct net_device *dev;
867
868 ASSERT_RTNL();
869 for_each_netdev(net, dev)
870 if (dev->type == type)
871 return dev;
872
873 return NULL;
874 }
875 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
876
877 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
878 {
879 struct net_device *dev, *ret = NULL;
880
881 rcu_read_lock();
882 for_each_netdev_rcu(net, dev)
883 if (dev->type == type) {
884 dev_hold(dev);
885 ret = dev;
886 break;
887 }
888 rcu_read_unlock();
889 return ret;
890 }
891 EXPORT_SYMBOL(dev_getfirstbyhwtype);
892
893 /**
894 * dev_get_by_flags_rcu - find any device with given flags
895 * @net: the applicable net namespace
896 * @if_flags: IFF_* values
897 * @mask: bitmask of bits in if_flags to check
898 *
899 * Search for any interface with the given flags. Returns NULL if a device
900 * is not found or a pointer to the device. Must be called inside
901 * rcu_read_lock(), and result refcount is unchanged.
902 */
903
904 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
905 unsigned short mask)
906 {
907 struct net_device *dev, *ret;
908
909 ret = NULL;
910 for_each_netdev_rcu(net, dev) {
911 if (((dev->flags ^ if_flags) & mask) == 0) {
912 ret = dev;
913 break;
914 }
915 }
916 return ret;
917 }
918 EXPORT_SYMBOL(dev_get_by_flags_rcu);
919
920 /**
921 * dev_valid_name - check if name is okay for network device
922 * @name: name string
923 *
924 * Network device names need to be valid file names to
925 * to allow sysfs to work. We also disallow any kind of
926 * whitespace.
927 */
928 bool dev_valid_name(const char *name)
929 {
930 if (*name == '\0')
931 return false;
932 if (strlen(name) >= IFNAMSIZ)
933 return false;
934 if (!strcmp(name, ".") || !strcmp(name, ".."))
935 return false;
936
937 while (*name) {
938 if (*name == '/' || isspace(*name))
939 return false;
940 name++;
941 }
942 return true;
943 }
944 EXPORT_SYMBOL(dev_valid_name);
945
946 /**
947 * __dev_alloc_name - allocate a name for a device
948 * @net: network namespace to allocate the device name in
949 * @name: name format string
950 * @buf: scratch buffer and result name string
951 *
952 * Passed a format string - eg "lt%d" it will try and find a suitable
953 * id. It scans list of devices to build up a free map, then chooses
954 * the first empty slot. The caller must hold the dev_base or rtnl lock
955 * while allocating the name and adding the device in order to avoid
956 * duplicates.
957 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
958 * Returns the number of the unit assigned or a negative errno code.
959 */
960
961 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
962 {
963 int i = 0;
964 const char *p;
965 const int max_netdevices = 8*PAGE_SIZE;
966 unsigned long *inuse;
967 struct net_device *d;
968
969 p = strnchr(name, IFNAMSIZ-1, '%');
970 if (p) {
971 /*
972 * Verify the string as this thing may have come from
973 * the user. There must be either one "%d" and no other "%"
974 * characters.
975 */
976 if (p[1] != 'd' || strchr(p + 2, '%'))
977 return -EINVAL;
978
979 /* Use one page as a bit array of possible slots */
980 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
981 if (!inuse)
982 return -ENOMEM;
983
984 for_each_netdev(net, d) {
985 if (!sscanf(d->name, name, &i))
986 continue;
987 if (i < 0 || i >= max_netdevices)
988 continue;
989
990 /* avoid cases where sscanf is not exact inverse of printf */
991 snprintf(buf, IFNAMSIZ, name, i);
992 if (!strncmp(buf, d->name, IFNAMSIZ))
993 set_bit(i, inuse);
994 }
995
996 i = find_first_zero_bit(inuse, max_netdevices);
997 free_page((unsigned long) inuse);
998 }
999
1000 if (buf != name)
1001 snprintf(buf, IFNAMSIZ, name, i);
1002 if (!__dev_get_by_name(net, buf))
1003 return i;
1004
1005 /* It is possible to run out of possible slots
1006 * when the name is long and there isn't enough space left
1007 * for the digits, or if all bits are used.
1008 */
1009 return -ENFILE;
1010 }
1011
1012 /**
1013 * dev_alloc_name - allocate a name for a device
1014 * @dev: device
1015 * @name: name format string
1016 *
1017 * Passed a format string - eg "lt%d" it will try and find a suitable
1018 * id. It scans list of devices to build up a free map, then chooses
1019 * the first empty slot. The caller must hold the dev_base or rtnl lock
1020 * while allocating the name and adding the device in order to avoid
1021 * duplicates.
1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023 * Returns the number of the unit assigned or a negative errno code.
1024 */
1025
1026 int dev_alloc_name(struct net_device *dev, const char *name)
1027 {
1028 char buf[IFNAMSIZ];
1029 struct net *net;
1030 int ret;
1031
1032 BUG_ON(!dev_net(dev));
1033 net = dev_net(dev);
1034 ret = __dev_alloc_name(net, name, buf);
1035 if (ret >= 0)
1036 strlcpy(dev->name, buf, IFNAMSIZ);
1037 return ret;
1038 }
1039 EXPORT_SYMBOL(dev_alloc_name);
1040
1041 static int dev_alloc_name_ns(struct net *net,
1042 struct net_device *dev,
1043 const char *name)
1044 {
1045 char buf[IFNAMSIZ];
1046 int ret;
1047
1048 ret = __dev_alloc_name(net, name, buf);
1049 if (ret >= 0)
1050 strlcpy(dev->name, buf, IFNAMSIZ);
1051 return ret;
1052 }
1053
1054 static int dev_get_valid_name(struct net *net,
1055 struct net_device *dev,
1056 const char *name)
1057 {
1058 BUG_ON(!net);
1059
1060 if (!dev_valid_name(name))
1061 return -EINVAL;
1062
1063 if (strchr(name, '%'))
1064 return dev_alloc_name_ns(net, dev, name);
1065 else if (__dev_get_by_name(net, name))
1066 return -EEXIST;
1067 else if (dev->name != name)
1068 strlcpy(dev->name, name, IFNAMSIZ);
1069
1070 return 0;
1071 }
1072
1073 /**
1074 * dev_change_name - change name of a device
1075 * @dev: device
1076 * @newname: name (or format string) must be at least IFNAMSIZ
1077 *
1078 * Change name of a device, can pass format strings "eth%d".
1079 * for wildcarding.
1080 */
1081 int dev_change_name(struct net_device *dev, const char *newname)
1082 {
1083 char oldname[IFNAMSIZ];
1084 int err = 0;
1085 int ret;
1086 struct net *net;
1087
1088 ASSERT_RTNL();
1089 BUG_ON(!dev_net(dev));
1090
1091 net = dev_net(dev);
1092 if (dev->flags & IFF_UP)
1093 return -EBUSY;
1094
1095 write_seqcount_begin(&devnet_rename_seq);
1096
1097 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1098 write_seqcount_end(&devnet_rename_seq);
1099 return 0;
1100 }
1101
1102 memcpy(oldname, dev->name, IFNAMSIZ);
1103
1104 err = dev_get_valid_name(net, dev, newname);
1105 if (err < 0) {
1106 write_seqcount_end(&devnet_rename_seq);
1107 return err;
1108 }
1109
1110 rollback:
1111 ret = device_rename(&dev->dev, dev->name);
1112 if (ret) {
1113 memcpy(dev->name, oldname, IFNAMSIZ);
1114 write_seqcount_end(&devnet_rename_seq);
1115 return ret;
1116 }
1117
1118 write_seqcount_end(&devnet_rename_seq);
1119
1120 write_lock_bh(&dev_base_lock);
1121 hlist_del_rcu(&dev->name_hlist);
1122 write_unlock_bh(&dev_base_lock);
1123
1124 synchronize_rcu();
1125
1126 write_lock_bh(&dev_base_lock);
1127 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1128 write_unlock_bh(&dev_base_lock);
1129
1130 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1131 ret = notifier_to_errno(ret);
1132
1133 if (ret) {
1134 /* err >= 0 after dev_alloc_name() or stores the first errno */
1135 if (err >= 0) {
1136 err = ret;
1137 write_seqcount_begin(&devnet_rename_seq);
1138 memcpy(dev->name, oldname, IFNAMSIZ);
1139 goto rollback;
1140 } else {
1141 pr_err("%s: name change rollback failed: %d\n",
1142 dev->name, ret);
1143 }
1144 }
1145
1146 return err;
1147 }
1148
1149 /**
1150 * dev_set_alias - change ifalias of a device
1151 * @dev: device
1152 * @alias: name up to IFALIASZ
1153 * @len: limit of bytes to copy from info
1154 *
1155 * Set ifalias for a device,
1156 */
1157 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1158 {
1159 char *new_ifalias;
1160
1161 ASSERT_RTNL();
1162
1163 if (len >= IFALIASZ)
1164 return -EINVAL;
1165
1166 if (!len) {
1167 kfree(dev->ifalias);
1168 dev->ifalias = NULL;
1169 return 0;
1170 }
1171
1172 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1173 if (!new_ifalias)
1174 return -ENOMEM;
1175 dev->ifalias = new_ifalias;
1176
1177 strlcpy(dev->ifalias, alias, len+1);
1178 return len;
1179 }
1180
1181
1182 /**
1183 * netdev_features_change - device changes features
1184 * @dev: device to cause notification
1185 *
1186 * Called to indicate a device has changed features.
1187 */
1188 void netdev_features_change(struct net_device *dev)
1189 {
1190 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1191 }
1192 EXPORT_SYMBOL(netdev_features_change);
1193
1194 /**
1195 * netdev_state_change - device changes state
1196 * @dev: device to cause notification
1197 *
1198 * Called to indicate a device has changed state. This function calls
1199 * the notifier chains for netdev_chain and sends a NEWLINK message
1200 * to the routing socket.
1201 */
1202 void netdev_state_change(struct net_device *dev)
1203 {
1204 if (dev->flags & IFF_UP) {
1205 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1206 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1207 }
1208 }
1209 EXPORT_SYMBOL(netdev_state_change);
1210
1211 /**
1212 * netdev_notify_peers - notify network peers about existence of @dev
1213 * @dev: network device
1214 *
1215 * Generate traffic such that interested network peers are aware of
1216 * @dev, such as by generating a gratuitous ARP. This may be used when
1217 * a device wants to inform the rest of the network about some sort of
1218 * reconfiguration such as a failover event or virtual machine
1219 * migration.
1220 */
1221 void netdev_notify_peers(struct net_device *dev)
1222 {
1223 rtnl_lock();
1224 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1225 rtnl_unlock();
1226 }
1227 EXPORT_SYMBOL(netdev_notify_peers);
1228
1229 /**
1230 * dev_load - load a network module
1231 * @net: the applicable net namespace
1232 * @name: name of interface
1233 *
1234 * If a network interface is not present and the process has suitable
1235 * privileges this function loads the module. If module loading is not
1236 * available in this kernel then it becomes a nop.
1237 */
1238
1239 void dev_load(struct net *net, const char *name)
1240 {
1241 struct net_device *dev;
1242 int no_module;
1243
1244 rcu_read_lock();
1245 dev = dev_get_by_name_rcu(net, name);
1246 rcu_read_unlock();
1247
1248 no_module = !dev;
1249 if (no_module && capable(CAP_NET_ADMIN))
1250 no_module = request_module("netdev-%s", name);
1251 if (no_module && capable(CAP_SYS_MODULE)) {
1252 if (!request_module("%s", name))
1253 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1254 name);
1255 }
1256 }
1257 EXPORT_SYMBOL(dev_load);
1258
1259 static int __dev_open(struct net_device *dev)
1260 {
1261 const struct net_device_ops *ops = dev->netdev_ops;
1262 int ret;
1263
1264 ASSERT_RTNL();
1265
1266 if (!netif_device_present(dev))
1267 return -ENODEV;
1268
1269 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1270 ret = notifier_to_errno(ret);
1271 if (ret)
1272 return ret;
1273
1274 set_bit(__LINK_STATE_START, &dev->state);
1275
1276 if (ops->ndo_validate_addr)
1277 ret = ops->ndo_validate_addr(dev);
1278
1279 if (!ret && ops->ndo_open)
1280 ret = ops->ndo_open(dev);
1281
1282 if (ret)
1283 clear_bit(__LINK_STATE_START, &dev->state);
1284 else {
1285 dev->flags |= IFF_UP;
1286 net_dmaengine_get();
1287 dev_set_rx_mode(dev);
1288 dev_activate(dev);
1289 add_device_randomness(dev->dev_addr, dev->addr_len);
1290 }
1291
1292 return ret;
1293 }
1294
1295 /**
1296 * dev_open - prepare an interface for use.
1297 * @dev: device to open
1298 *
1299 * Takes a device from down to up state. The device's private open
1300 * function is invoked and then the multicast lists are loaded. Finally
1301 * the device is moved into the up state and a %NETDEV_UP message is
1302 * sent to the netdev notifier chain.
1303 *
1304 * Calling this function on an active interface is a nop. On a failure
1305 * a negative errno code is returned.
1306 */
1307 int dev_open(struct net_device *dev)
1308 {
1309 int ret;
1310
1311 if (dev->flags & IFF_UP)
1312 return 0;
1313
1314 ret = __dev_open(dev);
1315 if (ret < 0)
1316 return ret;
1317
1318 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1319 call_netdevice_notifiers(NETDEV_UP, dev);
1320
1321 return ret;
1322 }
1323 EXPORT_SYMBOL(dev_open);
1324
1325 static int __dev_close_many(struct list_head *head)
1326 {
1327 struct net_device *dev;
1328
1329 ASSERT_RTNL();
1330 might_sleep();
1331
1332 list_for_each_entry(dev, head, unreg_list) {
1333 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1334
1335 clear_bit(__LINK_STATE_START, &dev->state);
1336
1337 /* Synchronize to scheduled poll. We cannot touch poll list, it
1338 * can be even on different cpu. So just clear netif_running().
1339 *
1340 * dev->stop() will invoke napi_disable() on all of it's
1341 * napi_struct instances on this device.
1342 */
1343 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1344 }
1345
1346 dev_deactivate_many(head);
1347
1348 list_for_each_entry(dev, head, unreg_list) {
1349 const struct net_device_ops *ops = dev->netdev_ops;
1350
1351 /*
1352 * Call the device specific close. This cannot fail.
1353 * Only if device is UP
1354 *
1355 * We allow it to be called even after a DETACH hot-plug
1356 * event.
1357 */
1358 if (ops->ndo_stop)
1359 ops->ndo_stop(dev);
1360
1361 dev->flags &= ~IFF_UP;
1362 net_dmaengine_put();
1363 }
1364
1365 return 0;
1366 }
1367
1368 static int __dev_close(struct net_device *dev)
1369 {
1370 int retval;
1371 LIST_HEAD(single);
1372
1373 list_add(&dev->unreg_list, &single);
1374 retval = __dev_close_many(&single);
1375 list_del(&single);
1376 return retval;
1377 }
1378
1379 static int dev_close_many(struct list_head *head)
1380 {
1381 struct net_device *dev, *tmp;
1382 LIST_HEAD(tmp_list);
1383
1384 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1385 if (!(dev->flags & IFF_UP))
1386 list_move(&dev->unreg_list, &tmp_list);
1387
1388 __dev_close_many(head);
1389
1390 list_for_each_entry(dev, head, unreg_list) {
1391 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1392 call_netdevice_notifiers(NETDEV_DOWN, dev);
1393 }
1394
1395 /* rollback_registered_many needs the complete original list */
1396 list_splice(&tmp_list, head);
1397 return 0;
1398 }
1399
1400 /**
1401 * dev_close - shutdown an interface.
1402 * @dev: device to shutdown
1403 *
1404 * This function moves an active device into down state. A
1405 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1406 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1407 * chain.
1408 */
1409 int dev_close(struct net_device *dev)
1410 {
1411 if (dev->flags & IFF_UP) {
1412 LIST_HEAD(single);
1413
1414 list_add(&dev->unreg_list, &single);
1415 dev_close_many(&single);
1416 list_del(&single);
1417 }
1418 return 0;
1419 }
1420 EXPORT_SYMBOL(dev_close);
1421
1422
1423 /**
1424 * dev_disable_lro - disable Large Receive Offload on a device
1425 * @dev: device
1426 *
1427 * Disable Large Receive Offload (LRO) on a net device. Must be
1428 * called under RTNL. This is needed if received packets may be
1429 * forwarded to another interface.
1430 */
1431 void dev_disable_lro(struct net_device *dev)
1432 {
1433 /*
1434 * If we're trying to disable lro on a vlan device
1435 * use the underlying physical device instead
1436 */
1437 if (is_vlan_dev(dev))
1438 dev = vlan_dev_real_dev(dev);
1439
1440 dev->wanted_features &= ~NETIF_F_LRO;
1441 netdev_update_features(dev);
1442
1443 if (unlikely(dev->features & NETIF_F_LRO))
1444 netdev_WARN(dev, "failed to disable LRO!\n");
1445 }
1446 EXPORT_SYMBOL(dev_disable_lro);
1447
1448
1449 static int dev_boot_phase = 1;
1450
1451 /**
1452 * register_netdevice_notifier - register a network notifier block
1453 * @nb: notifier
1454 *
1455 * Register a notifier to be called when network device events occur.
1456 * The notifier passed is linked into the kernel structures and must
1457 * not be reused until it has been unregistered. A negative errno code
1458 * is returned on a failure.
1459 *
1460 * When registered all registration and up events are replayed
1461 * to the new notifier to allow device to have a race free
1462 * view of the network device list.
1463 */
1464
1465 int register_netdevice_notifier(struct notifier_block *nb)
1466 {
1467 struct net_device *dev;
1468 struct net_device *last;
1469 struct net *net;
1470 int err;
1471
1472 rtnl_lock();
1473 err = raw_notifier_chain_register(&netdev_chain, nb);
1474 if (err)
1475 goto unlock;
1476 if (dev_boot_phase)
1477 goto unlock;
1478 for_each_net(net) {
1479 for_each_netdev(net, dev) {
1480 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1481 err = notifier_to_errno(err);
1482 if (err)
1483 goto rollback;
1484
1485 if (!(dev->flags & IFF_UP))
1486 continue;
1487
1488 nb->notifier_call(nb, NETDEV_UP, dev);
1489 }
1490 }
1491
1492 unlock:
1493 rtnl_unlock();
1494 return err;
1495
1496 rollback:
1497 last = dev;
1498 for_each_net(net) {
1499 for_each_netdev(net, dev) {
1500 if (dev == last)
1501 goto outroll;
1502
1503 if (dev->flags & IFF_UP) {
1504 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1505 nb->notifier_call(nb, NETDEV_DOWN, dev);
1506 }
1507 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1508 }
1509 }
1510
1511 outroll:
1512 raw_notifier_chain_unregister(&netdev_chain, nb);
1513 goto unlock;
1514 }
1515 EXPORT_SYMBOL(register_netdevice_notifier);
1516
1517 /**
1518 * unregister_netdevice_notifier - unregister a network notifier block
1519 * @nb: notifier
1520 *
1521 * Unregister a notifier previously registered by
1522 * register_netdevice_notifier(). The notifier is unlinked into the
1523 * kernel structures and may then be reused. A negative errno code
1524 * is returned on a failure.
1525 *
1526 * After unregistering unregister and down device events are synthesized
1527 * for all devices on the device list to the removed notifier to remove
1528 * the need for special case cleanup code.
1529 */
1530
1531 int unregister_netdevice_notifier(struct notifier_block *nb)
1532 {
1533 struct net_device *dev;
1534 struct net *net;
1535 int err;
1536
1537 rtnl_lock();
1538 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1539 if (err)
1540 goto unlock;
1541
1542 for_each_net(net) {
1543 for_each_netdev(net, dev) {
1544 if (dev->flags & IFF_UP) {
1545 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1546 nb->notifier_call(nb, NETDEV_DOWN, dev);
1547 }
1548 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1549 }
1550 }
1551 unlock:
1552 rtnl_unlock();
1553 return err;
1554 }
1555 EXPORT_SYMBOL(unregister_netdevice_notifier);
1556
1557 /**
1558 * call_netdevice_notifiers - call all network notifier blocks
1559 * @val: value passed unmodified to notifier function
1560 * @dev: net_device pointer passed unmodified to notifier function
1561 *
1562 * Call all network notifier blocks. Parameters and return value
1563 * are as for raw_notifier_call_chain().
1564 */
1565
1566 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1567 {
1568 ASSERT_RTNL();
1569 return raw_notifier_call_chain(&netdev_chain, val, dev);
1570 }
1571 EXPORT_SYMBOL(call_netdevice_notifiers);
1572
1573 static struct static_key netstamp_needed __read_mostly;
1574 #ifdef HAVE_JUMP_LABEL
1575 /* We are not allowed to call static_key_slow_dec() from irq context
1576 * If net_disable_timestamp() is called from irq context, defer the
1577 * static_key_slow_dec() calls.
1578 */
1579 static atomic_t netstamp_needed_deferred;
1580 #endif
1581
1582 void net_enable_timestamp(void)
1583 {
1584 #ifdef HAVE_JUMP_LABEL
1585 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1586
1587 if (deferred) {
1588 while (--deferred)
1589 static_key_slow_dec(&netstamp_needed);
1590 return;
1591 }
1592 #endif
1593 WARN_ON(in_interrupt());
1594 static_key_slow_inc(&netstamp_needed);
1595 }
1596 EXPORT_SYMBOL(net_enable_timestamp);
1597
1598 void net_disable_timestamp(void)
1599 {
1600 #ifdef HAVE_JUMP_LABEL
1601 if (in_interrupt()) {
1602 atomic_inc(&netstamp_needed_deferred);
1603 return;
1604 }
1605 #endif
1606 static_key_slow_dec(&netstamp_needed);
1607 }
1608 EXPORT_SYMBOL(net_disable_timestamp);
1609
1610 static inline void net_timestamp_set(struct sk_buff *skb)
1611 {
1612 skb->tstamp.tv64 = 0;
1613 if (static_key_false(&netstamp_needed))
1614 __net_timestamp(skb);
1615 }
1616
1617 #define net_timestamp_check(COND, SKB) \
1618 if (static_key_false(&netstamp_needed)) { \
1619 if ((COND) && !(SKB)->tstamp.tv64) \
1620 __net_timestamp(SKB); \
1621 } \
1622
1623 static int net_hwtstamp_validate(struct ifreq *ifr)
1624 {
1625 struct hwtstamp_config cfg;
1626 enum hwtstamp_tx_types tx_type;
1627 enum hwtstamp_rx_filters rx_filter;
1628 int tx_type_valid = 0;
1629 int rx_filter_valid = 0;
1630
1631 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1632 return -EFAULT;
1633
1634 if (cfg.flags) /* reserved for future extensions */
1635 return -EINVAL;
1636
1637 tx_type = cfg.tx_type;
1638 rx_filter = cfg.rx_filter;
1639
1640 switch (tx_type) {
1641 case HWTSTAMP_TX_OFF:
1642 case HWTSTAMP_TX_ON:
1643 case HWTSTAMP_TX_ONESTEP_SYNC:
1644 tx_type_valid = 1;
1645 break;
1646 }
1647
1648 switch (rx_filter) {
1649 case HWTSTAMP_FILTER_NONE:
1650 case HWTSTAMP_FILTER_ALL:
1651 case HWTSTAMP_FILTER_SOME:
1652 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1653 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1654 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1655 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1656 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1657 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1658 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1659 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1660 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1661 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1662 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1663 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1664 rx_filter_valid = 1;
1665 break;
1666 }
1667
1668 if (!tx_type_valid || !rx_filter_valid)
1669 return -ERANGE;
1670
1671 return 0;
1672 }
1673
1674 static inline bool is_skb_forwardable(struct net_device *dev,
1675 struct sk_buff *skb)
1676 {
1677 unsigned int len;
1678
1679 if (!(dev->flags & IFF_UP))
1680 return false;
1681
1682 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1683 if (skb->len <= len)
1684 return true;
1685
1686 /* if TSO is enabled, we don't care about the length as the packet
1687 * could be forwarded without being segmented before
1688 */
1689 if (skb_is_gso(skb))
1690 return true;
1691
1692 return false;
1693 }
1694
1695 /**
1696 * dev_forward_skb - loopback an skb to another netif
1697 *
1698 * @dev: destination network device
1699 * @skb: buffer to forward
1700 *
1701 * return values:
1702 * NET_RX_SUCCESS (no congestion)
1703 * NET_RX_DROP (packet was dropped, but freed)
1704 *
1705 * dev_forward_skb can be used for injecting an skb from the
1706 * start_xmit function of one device into the receive queue
1707 * of another device.
1708 *
1709 * The receiving device may be in another namespace, so
1710 * we have to clear all information in the skb that could
1711 * impact namespace isolation.
1712 */
1713 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1714 {
1715 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1716 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1717 atomic_long_inc(&dev->rx_dropped);
1718 kfree_skb(skb);
1719 return NET_RX_DROP;
1720 }
1721 }
1722
1723 skb_orphan(skb);
1724 nf_reset(skb);
1725
1726 if (unlikely(!is_skb_forwardable(dev, skb))) {
1727 atomic_long_inc(&dev->rx_dropped);
1728 kfree_skb(skb);
1729 return NET_RX_DROP;
1730 }
1731 skb->skb_iif = 0;
1732 skb->dev = dev;
1733 skb_dst_drop(skb);
1734 skb->tstamp.tv64 = 0;
1735 skb->pkt_type = PACKET_HOST;
1736 skb->protocol = eth_type_trans(skb, dev);
1737 skb->mark = 0;
1738 secpath_reset(skb);
1739 nf_reset(skb);
1740 return netif_rx(skb);
1741 }
1742 EXPORT_SYMBOL_GPL(dev_forward_skb);
1743
1744 static inline int deliver_skb(struct sk_buff *skb,
1745 struct packet_type *pt_prev,
1746 struct net_device *orig_dev)
1747 {
1748 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1749 return -ENOMEM;
1750 atomic_inc(&skb->users);
1751 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1752 }
1753
1754 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1755 {
1756 if (!ptype->af_packet_priv || !skb->sk)
1757 return false;
1758
1759 if (ptype->id_match)
1760 return ptype->id_match(ptype, skb->sk);
1761 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1762 return true;
1763
1764 return false;
1765 }
1766
1767 /*
1768 * Support routine. Sends outgoing frames to any network
1769 * taps currently in use.
1770 */
1771
1772 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1773 {
1774 struct packet_type *ptype;
1775 struct sk_buff *skb2 = NULL;
1776 struct packet_type *pt_prev = NULL;
1777
1778 rcu_read_lock();
1779 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1780 /* Never send packets back to the socket
1781 * they originated from - MvS (miquels@drinkel.ow.org)
1782 */
1783 if ((ptype->dev == dev || !ptype->dev) &&
1784 (!skb_loop_sk(ptype, skb))) {
1785 if (pt_prev) {
1786 deliver_skb(skb2, pt_prev, skb->dev);
1787 pt_prev = ptype;
1788 continue;
1789 }
1790
1791 skb2 = skb_clone(skb, GFP_ATOMIC);
1792 if (!skb2)
1793 break;
1794
1795 net_timestamp_set(skb2);
1796
1797 /* skb->nh should be correctly
1798 set by sender, so that the second statement is
1799 just protection against buggy protocols.
1800 */
1801 skb_reset_mac_header(skb2);
1802
1803 if (skb_network_header(skb2) < skb2->data ||
1804 skb2->network_header > skb2->tail) {
1805 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1806 ntohs(skb2->protocol),
1807 dev->name);
1808 skb_reset_network_header(skb2);
1809 }
1810
1811 skb2->transport_header = skb2->network_header;
1812 skb2->pkt_type = PACKET_OUTGOING;
1813 pt_prev = ptype;
1814 }
1815 }
1816 if (pt_prev)
1817 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1818 rcu_read_unlock();
1819 }
1820
1821 /**
1822 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1823 * @dev: Network device
1824 * @txq: number of queues available
1825 *
1826 * If real_num_tx_queues is changed the tc mappings may no longer be
1827 * valid. To resolve this verify the tc mapping remains valid and if
1828 * not NULL the mapping. With no priorities mapping to this
1829 * offset/count pair it will no longer be used. In the worst case TC0
1830 * is invalid nothing can be done so disable priority mappings. If is
1831 * expected that drivers will fix this mapping if they can before
1832 * calling netif_set_real_num_tx_queues.
1833 */
1834 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1835 {
1836 int i;
1837 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1838
1839 /* If TC0 is invalidated disable TC mapping */
1840 if (tc->offset + tc->count > txq) {
1841 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1842 dev->num_tc = 0;
1843 return;
1844 }
1845
1846 /* Invalidated prio to tc mappings set to TC0 */
1847 for (i = 1; i < TC_BITMASK + 1; i++) {
1848 int q = netdev_get_prio_tc_map(dev, i);
1849
1850 tc = &dev->tc_to_txq[q];
1851 if (tc->offset + tc->count > txq) {
1852 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1853 i, q);
1854 netdev_set_prio_tc_map(dev, i, 0);
1855 }
1856 }
1857 }
1858
1859 #ifdef CONFIG_XPS
1860 static DEFINE_MUTEX(xps_map_mutex);
1861 #define xmap_dereference(P) \
1862 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1863
1864 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1865 int cpu, u16 index)
1866 {
1867 struct xps_map *map = NULL;
1868 int pos;
1869
1870 if (dev_maps)
1871 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1872
1873 for (pos = 0; map && pos < map->len; pos++) {
1874 if (map->queues[pos] == index) {
1875 if (map->len > 1) {
1876 map->queues[pos] = map->queues[--map->len];
1877 } else {
1878 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1879 kfree_rcu(map, rcu);
1880 map = NULL;
1881 }
1882 break;
1883 }
1884 }
1885
1886 return map;
1887 }
1888
1889 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1890 {
1891 struct xps_dev_maps *dev_maps;
1892 int cpu, i;
1893 bool active = false;
1894
1895 mutex_lock(&xps_map_mutex);
1896 dev_maps = xmap_dereference(dev->xps_maps);
1897
1898 if (!dev_maps)
1899 goto out_no_maps;
1900
1901 for_each_possible_cpu(cpu) {
1902 for (i = index; i < dev->num_tx_queues; i++) {
1903 if (!remove_xps_queue(dev_maps, cpu, i))
1904 break;
1905 }
1906 if (i == dev->num_tx_queues)
1907 active = true;
1908 }
1909
1910 if (!active) {
1911 RCU_INIT_POINTER(dev->xps_maps, NULL);
1912 kfree_rcu(dev_maps, rcu);
1913 }
1914
1915 for (i = index; i < dev->num_tx_queues; i++)
1916 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1917 NUMA_NO_NODE);
1918
1919 out_no_maps:
1920 mutex_unlock(&xps_map_mutex);
1921 }
1922
1923 static struct xps_map *expand_xps_map(struct xps_map *map,
1924 int cpu, u16 index)
1925 {
1926 struct xps_map *new_map;
1927 int alloc_len = XPS_MIN_MAP_ALLOC;
1928 int i, pos;
1929
1930 for (pos = 0; map && pos < map->len; pos++) {
1931 if (map->queues[pos] != index)
1932 continue;
1933 return map;
1934 }
1935
1936 /* Need to add queue to this CPU's existing map */
1937 if (map) {
1938 if (pos < map->alloc_len)
1939 return map;
1940
1941 alloc_len = map->alloc_len * 2;
1942 }
1943
1944 /* Need to allocate new map to store queue on this CPU's map */
1945 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1946 cpu_to_node(cpu));
1947 if (!new_map)
1948 return NULL;
1949
1950 for (i = 0; i < pos; i++)
1951 new_map->queues[i] = map->queues[i];
1952 new_map->alloc_len = alloc_len;
1953 new_map->len = pos;
1954
1955 return new_map;
1956 }
1957
1958 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index)
1959 {
1960 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1961 struct xps_map *map, *new_map;
1962 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1963 int cpu, numa_node_id = -2;
1964 bool active = false;
1965
1966 mutex_lock(&xps_map_mutex);
1967
1968 dev_maps = xmap_dereference(dev->xps_maps);
1969
1970 /* allocate memory for queue storage */
1971 for_each_online_cpu(cpu) {
1972 if (!cpumask_test_cpu(cpu, mask))
1973 continue;
1974
1975 if (!new_dev_maps)
1976 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1977 if (!new_dev_maps)
1978 return -ENOMEM;
1979
1980 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1981 NULL;
1982
1983 map = expand_xps_map(map, cpu, index);
1984 if (!map)
1985 goto error;
1986
1987 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1988 }
1989
1990 if (!new_dev_maps)
1991 goto out_no_new_maps;
1992
1993 for_each_possible_cpu(cpu) {
1994 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1995 /* add queue to CPU maps */
1996 int pos = 0;
1997
1998 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1999 while ((pos < map->len) && (map->queues[pos] != index))
2000 pos++;
2001
2002 if (pos == map->len)
2003 map->queues[map->len++] = index;
2004 #ifdef CONFIG_NUMA
2005 if (numa_node_id == -2)
2006 numa_node_id = cpu_to_node(cpu);
2007 else if (numa_node_id != cpu_to_node(cpu))
2008 numa_node_id = -1;
2009 #endif
2010 } else if (dev_maps) {
2011 /* fill in the new device map from the old device map */
2012 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2013 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2014 }
2015
2016 }
2017
2018 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2019
2020 /* Cleanup old maps */
2021 if (dev_maps) {
2022 for_each_possible_cpu(cpu) {
2023 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2024 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2025 if (map && map != new_map)
2026 kfree_rcu(map, rcu);
2027 }
2028
2029 kfree_rcu(dev_maps, rcu);
2030 }
2031
2032 dev_maps = new_dev_maps;
2033 active = true;
2034
2035 out_no_new_maps:
2036 /* update Tx queue numa node */
2037 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2038 (numa_node_id >= 0) ? numa_node_id :
2039 NUMA_NO_NODE);
2040
2041 if (!dev_maps)
2042 goto out_no_maps;
2043
2044 /* removes queue from unused CPUs */
2045 for_each_possible_cpu(cpu) {
2046 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2047 continue;
2048
2049 if (remove_xps_queue(dev_maps, cpu, index))
2050 active = true;
2051 }
2052
2053 /* free map if not active */
2054 if (!active) {
2055 RCU_INIT_POINTER(dev->xps_maps, NULL);
2056 kfree_rcu(dev_maps, rcu);
2057 }
2058
2059 out_no_maps:
2060 mutex_unlock(&xps_map_mutex);
2061
2062 return 0;
2063 error:
2064 /* remove any maps that we added */
2065 for_each_possible_cpu(cpu) {
2066 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2067 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2068 NULL;
2069 if (new_map && new_map != map)
2070 kfree(new_map);
2071 }
2072
2073 mutex_unlock(&xps_map_mutex);
2074
2075 kfree(new_dev_maps);
2076 return -ENOMEM;
2077 }
2078 EXPORT_SYMBOL(netif_set_xps_queue);
2079
2080 #endif
2081 /*
2082 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2083 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2084 */
2085 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2086 {
2087 int rc;
2088
2089 if (txq < 1 || txq > dev->num_tx_queues)
2090 return -EINVAL;
2091
2092 if (dev->reg_state == NETREG_REGISTERED ||
2093 dev->reg_state == NETREG_UNREGISTERING) {
2094 ASSERT_RTNL();
2095
2096 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2097 txq);
2098 if (rc)
2099 return rc;
2100
2101 if (dev->num_tc)
2102 netif_setup_tc(dev, txq);
2103
2104 if (txq < dev->real_num_tx_queues) {
2105 qdisc_reset_all_tx_gt(dev, txq);
2106 #ifdef CONFIG_XPS
2107 netif_reset_xps_queues_gt(dev, txq);
2108 #endif
2109 }
2110 }
2111
2112 dev->real_num_tx_queues = txq;
2113 return 0;
2114 }
2115 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2116
2117 #ifdef CONFIG_RPS
2118 /**
2119 * netif_set_real_num_rx_queues - set actual number of RX queues used
2120 * @dev: Network device
2121 * @rxq: Actual number of RX queues
2122 *
2123 * This must be called either with the rtnl_lock held or before
2124 * registration of the net device. Returns 0 on success, or a
2125 * negative error code. If called before registration, it always
2126 * succeeds.
2127 */
2128 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2129 {
2130 int rc;
2131
2132 if (rxq < 1 || rxq > dev->num_rx_queues)
2133 return -EINVAL;
2134
2135 if (dev->reg_state == NETREG_REGISTERED) {
2136 ASSERT_RTNL();
2137
2138 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2139 rxq);
2140 if (rc)
2141 return rc;
2142 }
2143
2144 dev->real_num_rx_queues = rxq;
2145 return 0;
2146 }
2147 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2148 #endif
2149
2150 /**
2151 * netif_get_num_default_rss_queues - default number of RSS queues
2152 *
2153 * This routine should set an upper limit on the number of RSS queues
2154 * used by default by multiqueue devices.
2155 */
2156 int netif_get_num_default_rss_queues(void)
2157 {
2158 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2159 }
2160 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2161
2162 static inline void __netif_reschedule(struct Qdisc *q)
2163 {
2164 struct softnet_data *sd;
2165 unsigned long flags;
2166
2167 local_irq_save(flags);
2168 sd = &__get_cpu_var(softnet_data);
2169 q->next_sched = NULL;
2170 *sd->output_queue_tailp = q;
2171 sd->output_queue_tailp = &q->next_sched;
2172 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2173 local_irq_restore(flags);
2174 }
2175
2176 void __netif_schedule(struct Qdisc *q)
2177 {
2178 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2179 __netif_reschedule(q);
2180 }
2181 EXPORT_SYMBOL(__netif_schedule);
2182
2183 void dev_kfree_skb_irq(struct sk_buff *skb)
2184 {
2185 if (atomic_dec_and_test(&skb->users)) {
2186 struct softnet_data *sd;
2187 unsigned long flags;
2188
2189 local_irq_save(flags);
2190 sd = &__get_cpu_var(softnet_data);
2191 skb->next = sd->completion_queue;
2192 sd->completion_queue = skb;
2193 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2194 local_irq_restore(flags);
2195 }
2196 }
2197 EXPORT_SYMBOL(dev_kfree_skb_irq);
2198
2199 void dev_kfree_skb_any(struct sk_buff *skb)
2200 {
2201 if (in_irq() || irqs_disabled())
2202 dev_kfree_skb_irq(skb);
2203 else
2204 dev_kfree_skb(skb);
2205 }
2206 EXPORT_SYMBOL(dev_kfree_skb_any);
2207
2208
2209 /**
2210 * netif_device_detach - mark device as removed
2211 * @dev: network device
2212 *
2213 * Mark device as removed from system and therefore no longer available.
2214 */
2215 void netif_device_detach(struct net_device *dev)
2216 {
2217 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2218 netif_running(dev)) {
2219 netif_tx_stop_all_queues(dev);
2220 }
2221 }
2222 EXPORT_SYMBOL(netif_device_detach);
2223
2224 /**
2225 * netif_device_attach - mark device as attached
2226 * @dev: network device
2227 *
2228 * Mark device as attached from system and restart if needed.
2229 */
2230 void netif_device_attach(struct net_device *dev)
2231 {
2232 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2233 netif_running(dev)) {
2234 netif_tx_wake_all_queues(dev);
2235 __netdev_watchdog_up(dev);
2236 }
2237 }
2238 EXPORT_SYMBOL(netif_device_attach);
2239
2240 static void skb_warn_bad_offload(const struct sk_buff *skb)
2241 {
2242 static const netdev_features_t null_features = 0;
2243 struct net_device *dev = skb->dev;
2244 const char *driver = "";
2245
2246 if (dev && dev->dev.parent)
2247 driver = dev_driver_string(dev->dev.parent);
2248
2249 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2250 "gso_type=%d ip_summed=%d\n",
2251 driver, dev ? &dev->features : &null_features,
2252 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2253 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2254 skb_shinfo(skb)->gso_type, skb->ip_summed);
2255 }
2256
2257 /*
2258 * Invalidate hardware checksum when packet is to be mangled, and
2259 * complete checksum manually on outgoing path.
2260 */
2261 int skb_checksum_help(struct sk_buff *skb)
2262 {
2263 __wsum csum;
2264 int ret = 0, offset;
2265
2266 if (skb->ip_summed == CHECKSUM_COMPLETE)
2267 goto out_set_summed;
2268
2269 if (unlikely(skb_shinfo(skb)->gso_size)) {
2270 skb_warn_bad_offload(skb);
2271 return -EINVAL;
2272 }
2273
2274 /* Before computing a checksum, we should make sure no frag could
2275 * be modified by an external entity : checksum could be wrong.
2276 */
2277 if (skb_has_shared_frag(skb)) {
2278 ret = __skb_linearize(skb);
2279 if (ret)
2280 goto out;
2281 }
2282
2283 offset = skb_checksum_start_offset(skb);
2284 BUG_ON(offset >= skb_headlen(skb));
2285 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2286
2287 offset += skb->csum_offset;
2288 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2289
2290 if (skb_cloned(skb) &&
2291 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2292 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2293 if (ret)
2294 goto out;
2295 }
2296
2297 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2298 out_set_summed:
2299 skb->ip_summed = CHECKSUM_NONE;
2300 out:
2301 return ret;
2302 }
2303 EXPORT_SYMBOL(skb_checksum_help);
2304
2305 /**
2306 * skb_gso_segment - Perform segmentation on skb.
2307 * @skb: buffer to segment
2308 * @features: features for the output path (see dev->features)
2309 *
2310 * This function segments the given skb and returns a list of segments.
2311 *
2312 * It may return NULL if the skb requires no segmentation. This is
2313 * only possible when GSO is used for verifying header integrity.
2314 */
2315 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2316 netdev_features_t features)
2317 {
2318 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2319 struct packet_offload *ptype;
2320 __be16 type = skb->protocol;
2321 int vlan_depth = ETH_HLEN;
2322 int err;
2323
2324 while (type == htons(ETH_P_8021Q)) {
2325 struct vlan_hdr *vh;
2326
2327 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2328 return ERR_PTR(-EINVAL);
2329
2330 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2331 type = vh->h_vlan_encapsulated_proto;
2332 vlan_depth += VLAN_HLEN;
2333 }
2334
2335 skb_reset_mac_header(skb);
2336 skb->mac_len = skb->network_header - skb->mac_header;
2337 __skb_pull(skb, skb->mac_len);
2338
2339 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2340 skb_warn_bad_offload(skb);
2341
2342 if (skb_header_cloned(skb) &&
2343 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2344 return ERR_PTR(err);
2345 }
2346
2347 rcu_read_lock();
2348 list_for_each_entry_rcu(ptype, &offload_base, list) {
2349 if (ptype->type == type && ptype->callbacks.gso_segment) {
2350 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2351 err = ptype->callbacks.gso_send_check(skb);
2352 segs = ERR_PTR(err);
2353 if (err || skb_gso_ok(skb, features))
2354 break;
2355 __skb_push(skb, (skb->data -
2356 skb_network_header(skb)));
2357 }
2358 segs = ptype->callbacks.gso_segment(skb, features);
2359 break;
2360 }
2361 }
2362 rcu_read_unlock();
2363
2364 __skb_push(skb, skb->data - skb_mac_header(skb));
2365
2366 return segs;
2367 }
2368 EXPORT_SYMBOL(skb_gso_segment);
2369
2370 /* Take action when hardware reception checksum errors are detected. */
2371 #ifdef CONFIG_BUG
2372 void netdev_rx_csum_fault(struct net_device *dev)
2373 {
2374 if (net_ratelimit()) {
2375 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2376 dump_stack();
2377 }
2378 }
2379 EXPORT_SYMBOL(netdev_rx_csum_fault);
2380 #endif
2381
2382 /* Actually, we should eliminate this check as soon as we know, that:
2383 * 1. IOMMU is present and allows to map all the memory.
2384 * 2. No high memory really exists on this machine.
2385 */
2386
2387 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2388 {
2389 #ifdef CONFIG_HIGHMEM
2390 int i;
2391 if (!(dev->features & NETIF_F_HIGHDMA)) {
2392 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2393 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2394 if (PageHighMem(skb_frag_page(frag)))
2395 return 1;
2396 }
2397 }
2398
2399 if (PCI_DMA_BUS_IS_PHYS) {
2400 struct device *pdev = dev->dev.parent;
2401
2402 if (!pdev)
2403 return 0;
2404 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2405 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2406 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2407 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2408 return 1;
2409 }
2410 }
2411 #endif
2412 return 0;
2413 }
2414
2415 struct dev_gso_cb {
2416 void (*destructor)(struct sk_buff *skb);
2417 };
2418
2419 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2420
2421 static void dev_gso_skb_destructor(struct sk_buff *skb)
2422 {
2423 struct dev_gso_cb *cb;
2424
2425 do {
2426 struct sk_buff *nskb = skb->next;
2427
2428 skb->next = nskb->next;
2429 nskb->next = NULL;
2430 kfree_skb(nskb);
2431 } while (skb->next);
2432
2433 cb = DEV_GSO_CB(skb);
2434 if (cb->destructor)
2435 cb->destructor(skb);
2436 }
2437
2438 /**
2439 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2440 * @skb: buffer to segment
2441 * @features: device features as applicable to this skb
2442 *
2443 * This function segments the given skb and stores the list of segments
2444 * in skb->next.
2445 */
2446 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2447 {
2448 struct sk_buff *segs;
2449
2450 segs = skb_gso_segment(skb, features);
2451
2452 /* Verifying header integrity only. */
2453 if (!segs)
2454 return 0;
2455
2456 if (IS_ERR(segs))
2457 return PTR_ERR(segs);
2458
2459 skb->next = segs;
2460 DEV_GSO_CB(skb)->destructor = skb->destructor;
2461 skb->destructor = dev_gso_skb_destructor;
2462
2463 return 0;
2464 }
2465
2466 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2467 {
2468 return ((features & NETIF_F_GEN_CSUM) ||
2469 ((features & NETIF_F_V4_CSUM) &&
2470 protocol == htons(ETH_P_IP)) ||
2471 ((features & NETIF_F_V6_CSUM) &&
2472 protocol == htons(ETH_P_IPV6)) ||
2473 ((features & NETIF_F_FCOE_CRC) &&
2474 protocol == htons(ETH_P_FCOE)));
2475 }
2476
2477 static netdev_features_t harmonize_features(struct sk_buff *skb,
2478 __be16 protocol, netdev_features_t features)
2479 {
2480 if (skb->ip_summed != CHECKSUM_NONE &&
2481 !can_checksum_protocol(features, protocol)) {
2482 features &= ~NETIF_F_ALL_CSUM;
2483 features &= ~NETIF_F_SG;
2484 } else if (illegal_highdma(skb->dev, skb)) {
2485 features &= ~NETIF_F_SG;
2486 }
2487
2488 return features;
2489 }
2490
2491 netdev_features_t netif_skb_features(struct sk_buff *skb)
2492 {
2493 __be16 protocol = skb->protocol;
2494 netdev_features_t features = skb->dev->features;
2495
2496 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2497 features &= ~NETIF_F_GSO_MASK;
2498
2499 if (protocol == htons(ETH_P_8021Q)) {
2500 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2501 protocol = veh->h_vlan_encapsulated_proto;
2502 } else if (!vlan_tx_tag_present(skb)) {
2503 return harmonize_features(skb, protocol, features);
2504 }
2505
2506 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2507
2508 if (protocol != htons(ETH_P_8021Q)) {
2509 return harmonize_features(skb, protocol, features);
2510 } else {
2511 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2512 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2513 return harmonize_features(skb, protocol, features);
2514 }
2515 }
2516 EXPORT_SYMBOL(netif_skb_features);
2517
2518 /*
2519 * Returns true if either:
2520 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2521 * 2. skb is fragmented and the device does not support SG.
2522 */
2523 static inline int skb_needs_linearize(struct sk_buff *skb,
2524 int features)
2525 {
2526 return skb_is_nonlinear(skb) &&
2527 ((skb_has_frag_list(skb) &&
2528 !(features & NETIF_F_FRAGLIST)) ||
2529 (skb_shinfo(skb)->nr_frags &&
2530 !(features & NETIF_F_SG)));
2531 }
2532
2533 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2534 struct netdev_queue *txq)
2535 {
2536 const struct net_device_ops *ops = dev->netdev_ops;
2537 int rc = NETDEV_TX_OK;
2538 unsigned int skb_len;
2539
2540 if (likely(!skb->next)) {
2541 netdev_features_t features;
2542
2543 /*
2544 * If device doesn't need skb->dst, release it right now while
2545 * its hot in this cpu cache
2546 */
2547 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2548 skb_dst_drop(skb);
2549
2550 features = netif_skb_features(skb);
2551
2552 if (vlan_tx_tag_present(skb) &&
2553 !(features & NETIF_F_HW_VLAN_TX)) {
2554 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2555 if (unlikely(!skb))
2556 goto out;
2557
2558 skb->vlan_tci = 0;
2559 }
2560
2561 /* If encapsulation offload request, verify we are testing
2562 * hardware encapsulation features instead of standard
2563 * features for the netdev
2564 */
2565 if (skb->encapsulation)
2566 features &= dev->hw_enc_features;
2567
2568 if (netif_needs_gso(skb, features)) {
2569 if (unlikely(dev_gso_segment(skb, features)))
2570 goto out_kfree_skb;
2571 if (skb->next)
2572 goto gso;
2573 } else {
2574 if (skb_needs_linearize(skb, features) &&
2575 __skb_linearize(skb))
2576 goto out_kfree_skb;
2577
2578 /* If packet is not checksummed and device does not
2579 * support checksumming for this protocol, complete
2580 * checksumming here.
2581 */
2582 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2583 if (skb->encapsulation)
2584 skb_set_inner_transport_header(skb,
2585 skb_checksum_start_offset(skb));
2586 else
2587 skb_set_transport_header(skb,
2588 skb_checksum_start_offset(skb));
2589 if (!(features & NETIF_F_ALL_CSUM) &&
2590 skb_checksum_help(skb))
2591 goto out_kfree_skb;
2592 }
2593 }
2594
2595 if (!list_empty(&ptype_all))
2596 dev_queue_xmit_nit(skb, dev);
2597
2598 skb_len = skb->len;
2599 rc = ops->ndo_start_xmit(skb, dev);
2600 trace_net_dev_xmit(skb, rc, dev, skb_len);
2601 if (rc == NETDEV_TX_OK)
2602 txq_trans_update(txq);
2603 return rc;
2604 }
2605
2606 gso:
2607 do {
2608 struct sk_buff *nskb = skb->next;
2609
2610 skb->next = nskb->next;
2611 nskb->next = NULL;
2612
2613 /*
2614 * If device doesn't need nskb->dst, release it right now while
2615 * its hot in this cpu cache
2616 */
2617 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2618 skb_dst_drop(nskb);
2619
2620 if (!list_empty(&ptype_all))
2621 dev_queue_xmit_nit(nskb, dev);
2622
2623 skb_len = nskb->len;
2624 rc = ops->ndo_start_xmit(nskb, dev);
2625 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2626 if (unlikely(rc != NETDEV_TX_OK)) {
2627 if (rc & ~NETDEV_TX_MASK)
2628 goto out_kfree_gso_skb;
2629 nskb->next = skb->next;
2630 skb->next = nskb;
2631 return rc;
2632 }
2633 txq_trans_update(txq);
2634 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2635 return NETDEV_TX_BUSY;
2636 } while (skb->next);
2637
2638 out_kfree_gso_skb:
2639 if (likely(skb->next == NULL))
2640 skb->destructor = DEV_GSO_CB(skb)->destructor;
2641 out_kfree_skb:
2642 kfree_skb(skb);
2643 out:
2644 return rc;
2645 }
2646
2647 static void qdisc_pkt_len_init(struct sk_buff *skb)
2648 {
2649 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2650
2651 qdisc_skb_cb(skb)->pkt_len = skb->len;
2652
2653 /* To get more precise estimation of bytes sent on wire,
2654 * we add to pkt_len the headers size of all segments
2655 */
2656 if (shinfo->gso_size) {
2657 unsigned int hdr_len;
2658
2659 /* mac layer + network layer */
2660 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2661
2662 /* + transport layer */
2663 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2664 hdr_len += tcp_hdrlen(skb);
2665 else
2666 hdr_len += sizeof(struct udphdr);
2667 qdisc_skb_cb(skb)->pkt_len += (shinfo->gso_segs - 1) * hdr_len;
2668 }
2669 }
2670
2671 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2672 struct net_device *dev,
2673 struct netdev_queue *txq)
2674 {
2675 spinlock_t *root_lock = qdisc_lock(q);
2676 bool contended;
2677 int rc;
2678
2679 qdisc_pkt_len_init(skb);
2680 qdisc_calculate_pkt_len(skb, q);
2681 /*
2682 * Heuristic to force contended enqueues to serialize on a
2683 * separate lock before trying to get qdisc main lock.
2684 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2685 * and dequeue packets faster.
2686 */
2687 contended = qdisc_is_running(q);
2688 if (unlikely(contended))
2689 spin_lock(&q->busylock);
2690
2691 spin_lock(root_lock);
2692 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2693 kfree_skb(skb);
2694 rc = NET_XMIT_DROP;
2695 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2696 qdisc_run_begin(q)) {
2697 /*
2698 * This is a work-conserving queue; there are no old skbs
2699 * waiting to be sent out; and the qdisc is not running -
2700 * xmit the skb directly.
2701 */
2702 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2703 skb_dst_force(skb);
2704
2705 qdisc_bstats_update(q, skb);
2706
2707 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2708 if (unlikely(contended)) {
2709 spin_unlock(&q->busylock);
2710 contended = false;
2711 }
2712 __qdisc_run(q);
2713 } else
2714 qdisc_run_end(q);
2715
2716 rc = NET_XMIT_SUCCESS;
2717 } else {
2718 skb_dst_force(skb);
2719 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2720 if (qdisc_run_begin(q)) {
2721 if (unlikely(contended)) {
2722 spin_unlock(&q->busylock);
2723 contended = false;
2724 }
2725 __qdisc_run(q);
2726 }
2727 }
2728 spin_unlock(root_lock);
2729 if (unlikely(contended))
2730 spin_unlock(&q->busylock);
2731 return rc;
2732 }
2733
2734 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2735 static void skb_update_prio(struct sk_buff *skb)
2736 {
2737 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2738
2739 if (!skb->priority && skb->sk && map) {
2740 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2741
2742 if (prioidx < map->priomap_len)
2743 skb->priority = map->priomap[prioidx];
2744 }
2745 }
2746 #else
2747 #define skb_update_prio(skb)
2748 #endif
2749
2750 static DEFINE_PER_CPU(int, xmit_recursion);
2751 #define RECURSION_LIMIT 10
2752
2753 /**
2754 * dev_loopback_xmit - loop back @skb
2755 * @skb: buffer to transmit
2756 */
2757 int dev_loopback_xmit(struct sk_buff *skb)
2758 {
2759 skb_reset_mac_header(skb);
2760 __skb_pull(skb, skb_network_offset(skb));
2761 skb->pkt_type = PACKET_LOOPBACK;
2762 skb->ip_summed = CHECKSUM_UNNECESSARY;
2763 WARN_ON(!skb_dst(skb));
2764 skb_dst_force(skb);
2765 netif_rx_ni(skb);
2766 return 0;
2767 }
2768 EXPORT_SYMBOL(dev_loopback_xmit);
2769
2770 /**
2771 * dev_queue_xmit - transmit a buffer
2772 * @skb: buffer to transmit
2773 *
2774 * Queue a buffer for transmission to a network device. The caller must
2775 * have set the device and priority and built the buffer before calling
2776 * this function. The function can be called from an interrupt.
2777 *
2778 * A negative errno code is returned on a failure. A success does not
2779 * guarantee the frame will be transmitted as it may be dropped due
2780 * to congestion or traffic shaping.
2781 *
2782 * -----------------------------------------------------------------------------------
2783 * I notice this method can also return errors from the queue disciplines,
2784 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2785 * be positive.
2786 *
2787 * Regardless of the return value, the skb is consumed, so it is currently
2788 * difficult to retry a send to this method. (You can bump the ref count
2789 * before sending to hold a reference for retry if you are careful.)
2790 *
2791 * When calling this method, interrupts MUST be enabled. This is because
2792 * the BH enable code must have IRQs enabled so that it will not deadlock.
2793 * --BLG
2794 */
2795 int dev_queue_xmit(struct sk_buff *skb)
2796 {
2797 struct net_device *dev = skb->dev;
2798 struct netdev_queue *txq;
2799 struct Qdisc *q;
2800 int rc = -ENOMEM;
2801
2802 /* Disable soft irqs for various locks below. Also
2803 * stops preemption for RCU.
2804 */
2805 rcu_read_lock_bh();
2806
2807 skb_update_prio(skb);
2808
2809 txq = netdev_pick_tx(dev, skb);
2810 q = rcu_dereference_bh(txq->qdisc);
2811
2812 #ifdef CONFIG_NET_CLS_ACT
2813 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2814 #endif
2815 trace_net_dev_queue(skb);
2816 if (q->enqueue) {
2817 rc = __dev_xmit_skb(skb, q, dev, txq);
2818 goto out;
2819 }
2820
2821 /* The device has no queue. Common case for software devices:
2822 loopback, all the sorts of tunnels...
2823
2824 Really, it is unlikely that netif_tx_lock protection is necessary
2825 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2826 counters.)
2827 However, it is possible, that they rely on protection
2828 made by us here.
2829
2830 Check this and shot the lock. It is not prone from deadlocks.
2831 Either shot noqueue qdisc, it is even simpler 8)
2832 */
2833 if (dev->flags & IFF_UP) {
2834 int cpu = smp_processor_id(); /* ok because BHs are off */
2835
2836 if (txq->xmit_lock_owner != cpu) {
2837
2838 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2839 goto recursion_alert;
2840
2841 HARD_TX_LOCK(dev, txq, cpu);
2842
2843 if (!netif_xmit_stopped(txq)) {
2844 __this_cpu_inc(xmit_recursion);
2845 rc = dev_hard_start_xmit(skb, dev, txq);
2846 __this_cpu_dec(xmit_recursion);
2847 if (dev_xmit_complete(rc)) {
2848 HARD_TX_UNLOCK(dev, txq);
2849 goto out;
2850 }
2851 }
2852 HARD_TX_UNLOCK(dev, txq);
2853 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2854 dev->name);
2855 } else {
2856 /* Recursion is detected! It is possible,
2857 * unfortunately
2858 */
2859 recursion_alert:
2860 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2861 dev->name);
2862 }
2863 }
2864
2865 rc = -ENETDOWN;
2866 rcu_read_unlock_bh();
2867
2868 kfree_skb(skb);
2869 return rc;
2870 out:
2871 rcu_read_unlock_bh();
2872 return rc;
2873 }
2874 EXPORT_SYMBOL(dev_queue_xmit);
2875
2876
2877 /*=======================================================================
2878 Receiver routines
2879 =======================================================================*/
2880
2881 int netdev_max_backlog __read_mostly = 1000;
2882 EXPORT_SYMBOL(netdev_max_backlog);
2883
2884 int netdev_tstamp_prequeue __read_mostly = 1;
2885 int netdev_budget __read_mostly = 300;
2886 int weight_p __read_mostly = 64; /* old backlog weight */
2887
2888 /* Called with irq disabled */
2889 static inline void ____napi_schedule(struct softnet_data *sd,
2890 struct napi_struct *napi)
2891 {
2892 list_add_tail(&napi->poll_list, &sd->poll_list);
2893 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2894 }
2895
2896 #ifdef CONFIG_RPS
2897
2898 /* One global table that all flow-based protocols share. */
2899 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2900 EXPORT_SYMBOL(rps_sock_flow_table);
2901
2902 struct static_key rps_needed __read_mostly;
2903
2904 static struct rps_dev_flow *
2905 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2906 struct rps_dev_flow *rflow, u16 next_cpu)
2907 {
2908 if (next_cpu != RPS_NO_CPU) {
2909 #ifdef CONFIG_RFS_ACCEL
2910 struct netdev_rx_queue *rxqueue;
2911 struct rps_dev_flow_table *flow_table;
2912 struct rps_dev_flow *old_rflow;
2913 u32 flow_id;
2914 u16 rxq_index;
2915 int rc;
2916
2917 /* Should we steer this flow to a different hardware queue? */
2918 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2919 !(dev->features & NETIF_F_NTUPLE))
2920 goto out;
2921 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2922 if (rxq_index == skb_get_rx_queue(skb))
2923 goto out;
2924
2925 rxqueue = dev->_rx + rxq_index;
2926 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2927 if (!flow_table)
2928 goto out;
2929 flow_id = skb->rxhash & flow_table->mask;
2930 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2931 rxq_index, flow_id);
2932 if (rc < 0)
2933 goto out;
2934 old_rflow = rflow;
2935 rflow = &flow_table->flows[flow_id];
2936 rflow->filter = rc;
2937 if (old_rflow->filter == rflow->filter)
2938 old_rflow->filter = RPS_NO_FILTER;
2939 out:
2940 #endif
2941 rflow->last_qtail =
2942 per_cpu(softnet_data, next_cpu).input_queue_head;
2943 }
2944
2945 rflow->cpu = next_cpu;
2946 return rflow;
2947 }
2948
2949 /*
2950 * get_rps_cpu is called from netif_receive_skb and returns the target
2951 * CPU from the RPS map of the receiving queue for a given skb.
2952 * rcu_read_lock must be held on entry.
2953 */
2954 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2955 struct rps_dev_flow **rflowp)
2956 {
2957 struct netdev_rx_queue *rxqueue;
2958 struct rps_map *map;
2959 struct rps_dev_flow_table *flow_table;
2960 struct rps_sock_flow_table *sock_flow_table;
2961 int cpu = -1;
2962 u16 tcpu;
2963
2964 if (skb_rx_queue_recorded(skb)) {
2965 u16 index = skb_get_rx_queue(skb);
2966 if (unlikely(index >= dev->real_num_rx_queues)) {
2967 WARN_ONCE(dev->real_num_rx_queues > 1,
2968 "%s received packet on queue %u, but number "
2969 "of RX queues is %u\n",
2970 dev->name, index, dev->real_num_rx_queues);
2971 goto done;
2972 }
2973 rxqueue = dev->_rx + index;
2974 } else
2975 rxqueue = dev->_rx;
2976
2977 map = rcu_dereference(rxqueue->rps_map);
2978 if (map) {
2979 if (map->len == 1 &&
2980 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2981 tcpu = map->cpus[0];
2982 if (cpu_online(tcpu))
2983 cpu = tcpu;
2984 goto done;
2985 }
2986 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2987 goto done;
2988 }
2989
2990 skb_reset_network_header(skb);
2991 if (!skb_get_rxhash(skb))
2992 goto done;
2993
2994 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2995 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2996 if (flow_table && sock_flow_table) {
2997 u16 next_cpu;
2998 struct rps_dev_flow *rflow;
2999
3000 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
3001 tcpu = rflow->cpu;
3002
3003 next_cpu = sock_flow_table->ents[skb->rxhash &
3004 sock_flow_table->mask];
3005
3006 /*
3007 * If the desired CPU (where last recvmsg was done) is
3008 * different from current CPU (one in the rx-queue flow
3009 * table entry), switch if one of the following holds:
3010 * - Current CPU is unset (equal to RPS_NO_CPU).
3011 * - Current CPU is offline.
3012 * - The current CPU's queue tail has advanced beyond the
3013 * last packet that was enqueued using this table entry.
3014 * This guarantees that all previous packets for the flow
3015 * have been dequeued, thus preserving in order delivery.
3016 */
3017 if (unlikely(tcpu != next_cpu) &&
3018 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3019 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3020 rflow->last_qtail)) >= 0)) {
3021 tcpu = next_cpu;
3022 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3023 }
3024
3025 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3026 *rflowp = rflow;
3027 cpu = tcpu;
3028 goto done;
3029 }
3030 }
3031
3032 if (map) {
3033 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
3034
3035 if (cpu_online(tcpu)) {
3036 cpu = tcpu;
3037 goto done;
3038 }
3039 }
3040
3041 done:
3042 return cpu;
3043 }
3044
3045 #ifdef CONFIG_RFS_ACCEL
3046
3047 /**
3048 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3049 * @dev: Device on which the filter was set
3050 * @rxq_index: RX queue index
3051 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3052 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3053 *
3054 * Drivers that implement ndo_rx_flow_steer() should periodically call
3055 * this function for each installed filter and remove the filters for
3056 * which it returns %true.
3057 */
3058 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3059 u32 flow_id, u16 filter_id)
3060 {
3061 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3062 struct rps_dev_flow_table *flow_table;
3063 struct rps_dev_flow *rflow;
3064 bool expire = true;
3065 int cpu;
3066
3067 rcu_read_lock();
3068 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3069 if (flow_table && flow_id <= flow_table->mask) {
3070 rflow = &flow_table->flows[flow_id];
3071 cpu = ACCESS_ONCE(rflow->cpu);
3072 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3073 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3074 rflow->last_qtail) <
3075 (int)(10 * flow_table->mask)))
3076 expire = false;
3077 }
3078 rcu_read_unlock();
3079 return expire;
3080 }
3081 EXPORT_SYMBOL(rps_may_expire_flow);
3082
3083 #endif /* CONFIG_RFS_ACCEL */
3084
3085 /* Called from hardirq (IPI) context */
3086 static void rps_trigger_softirq(void *data)
3087 {
3088 struct softnet_data *sd = data;
3089
3090 ____napi_schedule(sd, &sd->backlog);
3091 sd->received_rps++;
3092 }
3093
3094 #endif /* CONFIG_RPS */
3095
3096 /*
3097 * Check if this softnet_data structure is another cpu one
3098 * If yes, queue it to our IPI list and return 1
3099 * If no, return 0
3100 */
3101 static int rps_ipi_queued(struct softnet_data *sd)
3102 {
3103 #ifdef CONFIG_RPS
3104 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3105
3106 if (sd != mysd) {
3107 sd->rps_ipi_next = mysd->rps_ipi_list;
3108 mysd->rps_ipi_list = sd;
3109
3110 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3111 return 1;
3112 }
3113 #endif /* CONFIG_RPS */
3114 return 0;
3115 }
3116
3117 /*
3118 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3119 * queue (may be a remote CPU queue).
3120 */
3121 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3122 unsigned int *qtail)
3123 {
3124 struct softnet_data *sd;
3125 unsigned long flags;
3126
3127 sd = &per_cpu(softnet_data, cpu);
3128
3129 local_irq_save(flags);
3130
3131 rps_lock(sd);
3132 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
3133 if (skb_queue_len(&sd->input_pkt_queue)) {
3134 enqueue:
3135 __skb_queue_tail(&sd->input_pkt_queue, skb);
3136 input_queue_tail_incr_save(sd, qtail);
3137 rps_unlock(sd);
3138 local_irq_restore(flags);
3139 return NET_RX_SUCCESS;
3140 }
3141
3142 /* Schedule NAPI for backlog device
3143 * We can use non atomic operation since we own the queue lock
3144 */
3145 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3146 if (!rps_ipi_queued(sd))
3147 ____napi_schedule(sd, &sd->backlog);
3148 }
3149 goto enqueue;
3150 }
3151
3152 sd->dropped++;
3153 rps_unlock(sd);
3154
3155 local_irq_restore(flags);
3156
3157 atomic_long_inc(&skb->dev->rx_dropped);
3158 kfree_skb(skb);
3159 return NET_RX_DROP;
3160 }
3161
3162 /**
3163 * netif_rx - post buffer to the network code
3164 * @skb: buffer to post
3165 *
3166 * This function receives a packet from a device driver and queues it for
3167 * the upper (protocol) levels to process. It always succeeds. The buffer
3168 * may be dropped during processing for congestion control or by the
3169 * protocol layers.
3170 *
3171 * return values:
3172 * NET_RX_SUCCESS (no congestion)
3173 * NET_RX_DROP (packet was dropped)
3174 *
3175 */
3176
3177 int netif_rx(struct sk_buff *skb)
3178 {
3179 int ret;
3180
3181 /* if netpoll wants it, pretend we never saw it */
3182 if (netpoll_rx(skb))
3183 return NET_RX_DROP;
3184
3185 net_timestamp_check(netdev_tstamp_prequeue, skb);
3186
3187 trace_netif_rx(skb);
3188 #ifdef CONFIG_RPS
3189 if (static_key_false(&rps_needed)) {
3190 struct rps_dev_flow voidflow, *rflow = &voidflow;
3191 int cpu;
3192
3193 preempt_disable();
3194 rcu_read_lock();
3195
3196 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3197 if (cpu < 0)
3198 cpu = smp_processor_id();
3199
3200 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3201
3202 rcu_read_unlock();
3203 preempt_enable();
3204 } else
3205 #endif
3206 {
3207 unsigned int qtail;
3208 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3209 put_cpu();
3210 }
3211 return ret;
3212 }
3213 EXPORT_SYMBOL(netif_rx);
3214
3215 int netif_rx_ni(struct sk_buff *skb)
3216 {
3217 int err;
3218
3219 preempt_disable();
3220 err = netif_rx(skb);
3221 if (local_softirq_pending())
3222 do_softirq();
3223 preempt_enable();
3224
3225 return err;
3226 }
3227 EXPORT_SYMBOL(netif_rx_ni);
3228
3229 static void net_tx_action(struct softirq_action *h)
3230 {
3231 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3232
3233 if (sd->completion_queue) {
3234 struct sk_buff *clist;
3235
3236 local_irq_disable();
3237 clist = sd->completion_queue;
3238 sd->completion_queue = NULL;
3239 local_irq_enable();
3240
3241 while (clist) {
3242 struct sk_buff *skb = clist;
3243 clist = clist->next;
3244
3245 WARN_ON(atomic_read(&skb->users));
3246 trace_kfree_skb(skb, net_tx_action);
3247 __kfree_skb(skb);
3248 }
3249 }
3250
3251 if (sd->output_queue) {
3252 struct Qdisc *head;
3253
3254 local_irq_disable();
3255 head = sd->output_queue;
3256 sd->output_queue = NULL;
3257 sd->output_queue_tailp = &sd->output_queue;
3258 local_irq_enable();
3259
3260 while (head) {
3261 struct Qdisc *q = head;
3262 spinlock_t *root_lock;
3263
3264 head = head->next_sched;
3265
3266 root_lock = qdisc_lock(q);
3267 if (spin_trylock(root_lock)) {
3268 smp_mb__before_clear_bit();
3269 clear_bit(__QDISC_STATE_SCHED,
3270 &q->state);
3271 qdisc_run(q);
3272 spin_unlock(root_lock);
3273 } else {
3274 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3275 &q->state)) {
3276 __netif_reschedule(q);
3277 } else {
3278 smp_mb__before_clear_bit();
3279 clear_bit(__QDISC_STATE_SCHED,
3280 &q->state);
3281 }
3282 }
3283 }
3284 }
3285 }
3286
3287 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3288 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3289 /* This hook is defined here for ATM LANE */
3290 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3291 unsigned char *addr) __read_mostly;
3292 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3293 #endif
3294
3295 #ifdef CONFIG_NET_CLS_ACT
3296 /* TODO: Maybe we should just force sch_ingress to be compiled in
3297 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3298 * a compare and 2 stores extra right now if we dont have it on
3299 * but have CONFIG_NET_CLS_ACT
3300 * NOTE: This doesn't stop any functionality; if you dont have
3301 * the ingress scheduler, you just can't add policies on ingress.
3302 *
3303 */
3304 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3305 {
3306 struct net_device *dev = skb->dev;
3307 u32 ttl = G_TC_RTTL(skb->tc_verd);
3308 int result = TC_ACT_OK;
3309 struct Qdisc *q;
3310
3311 if (unlikely(MAX_RED_LOOP < ttl++)) {
3312 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3313 skb->skb_iif, dev->ifindex);
3314 return TC_ACT_SHOT;
3315 }
3316
3317 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3318 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3319
3320 q = rxq->qdisc;
3321 if (q != &noop_qdisc) {
3322 spin_lock(qdisc_lock(q));
3323 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3324 result = qdisc_enqueue_root(skb, q);
3325 spin_unlock(qdisc_lock(q));
3326 }
3327
3328 return result;
3329 }
3330
3331 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3332 struct packet_type **pt_prev,
3333 int *ret, struct net_device *orig_dev)
3334 {
3335 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3336
3337 if (!rxq || rxq->qdisc == &noop_qdisc)
3338 goto out;
3339
3340 if (*pt_prev) {
3341 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3342 *pt_prev = NULL;
3343 }
3344
3345 switch (ing_filter(skb, rxq)) {
3346 case TC_ACT_SHOT:
3347 case TC_ACT_STOLEN:
3348 kfree_skb(skb);
3349 return NULL;
3350 }
3351
3352 out:
3353 skb->tc_verd = 0;
3354 return skb;
3355 }
3356 #endif
3357
3358 /**
3359 * netdev_rx_handler_register - register receive handler
3360 * @dev: device to register a handler for
3361 * @rx_handler: receive handler to register
3362 * @rx_handler_data: data pointer that is used by rx handler
3363 *
3364 * Register a receive hander for a device. This handler will then be
3365 * called from __netif_receive_skb. A negative errno code is returned
3366 * on a failure.
3367 *
3368 * The caller must hold the rtnl_mutex.
3369 *
3370 * For a general description of rx_handler, see enum rx_handler_result.
3371 */
3372 int netdev_rx_handler_register(struct net_device *dev,
3373 rx_handler_func_t *rx_handler,
3374 void *rx_handler_data)
3375 {
3376 ASSERT_RTNL();
3377
3378 if (dev->rx_handler)
3379 return -EBUSY;
3380
3381 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3382 rcu_assign_pointer(dev->rx_handler, rx_handler);
3383
3384 return 0;
3385 }
3386 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3387
3388 /**
3389 * netdev_rx_handler_unregister - unregister receive handler
3390 * @dev: device to unregister a handler from
3391 *
3392 * Unregister a receive hander from a device.
3393 *
3394 * The caller must hold the rtnl_mutex.
3395 */
3396 void netdev_rx_handler_unregister(struct net_device *dev)
3397 {
3398
3399 ASSERT_RTNL();
3400 RCU_INIT_POINTER(dev->rx_handler, NULL);
3401 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3402 }
3403 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3404
3405 /*
3406 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3407 * the special handling of PFMEMALLOC skbs.
3408 */
3409 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3410 {
3411 switch (skb->protocol) {
3412 case __constant_htons(ETH_P_ARP):
3413 case __constant_htons(ETH_P_IP):
3414 case __constant_htons(ETH_P_IPV6):
3415 case __constant_htons(ETH_P_8021Q):
3416 return true;
3417 default:
3418 return false;
3419 }
3420 }
3421
3422 static int __netif_receive_skb(struct sk_buff *skb)
3423 {
3424 struct packet_type *ptype, *pt_prev;
3425 rx_handler_func_t *rx_handler;
3426 struct net_device *orig_dev;
3427 struct net_device *null_or_dev;
3428 bool deliver_exact = false;
3429 int ret = NET_RX_DROP;
3430 __be16 type;
3431 unsigned long pflags = current->flags;
3432
3433 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3434
3435 trace_netif_receive_skb(skb);
3436
3437 /*
3438 * PFMEMALLOC skbs are special, they should
3439 * - be delivered to SOCK_MEMALLOC sockets only
3440 * - stay away from userspace
3441 * - have bounded memory usage
3442 *
3443 * Use PF_MEMALLOC as this saves us from propagating the allocation
3444 * context down to all allocation sites.
3445 */
3446 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3447 current->flags |= PF_MEMALLOC;
3448
3449 /* if we've gotten here through NAPI, check netpoll */
3450 if (netpoll_receive_skb(skb))
3451 goto out;
3452
3453 orig_dev = skb->dev;
3454
3455 skb_reset_network_header(skb);
3456 if (!skb_transport_header_was_set(skb))
3457 skb_reset_transport_header(skb);
3458 skb_reset_mac_len(skb);
3459
3460 pt_prev = NULL;
3461
3462 rcu_read_lock();
3463
3464 another_round:
3465 skb->skb_iif = skb->dev->ifindex;
3466
3467 __this_cpu_inc(softnet_data.processed);
3468
3469 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3470 skb = vlan_untag(skb);
3471 if (unlikely(!skb))
3472 goto unlock;
3473 }
3474
3475 #ifdef CONFIG_NET_CLS_ACT
3476 if (skb->tc_verd & TC_NCLS) {
3477 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3478 goto ncls;
3479 }
3480 #endif
3481
3482 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3483 goto skip_taps;
3484
3485 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3486 if (!ptype->dev || ptype->dev == skb->dev) {
3487 if (pt_prev)
3488 ret = deliver_skb(skb, pt_prev, orig_dev);
3489 pt_prev = ptype;
3490 }
3491 }
3492
3493 skip_taps:
3494 #ifdef CONFIG_NET_CLS_ACT
3495 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3496 if (!skb)
3497 goto unlock;
3498 ncls:
3499 #endif
3500
3501 if (sk_memalloc_socks() && skb_pfmemalloc(skb)
3502 && !skb_pfmemalloc_protocol(skb))
3503 goto drop;
3504
3505 if (vlan_tx_tag_present(skb)) {
3506 if (pt_prev) {
3507 ret = deliver_skb(skb, pt_prev, orig_dev);
3508 pt_prev = NULL;
3509 }
3510 if (vlan_do_receive(&skb))
3511 goto another_round;
3512 else if (unlikely(!skb))
3513 goto unlock;
3514 }
3515
3516 rx_handler = rcu_dereference(skb->dev->rx_handler);
3517 if (rx_handler) {
3518 if (pt_prev) {
3519 ret = deliver_skb(skb, pt_prev, orig_dev);
3520 pt_prev = NULL;
3521 }
3522 switch (rx_handler(&skb)) {
3523 case RX_HANDLER_CONSUMED:
3524 goto unlock;
3525 case RX_HANDLER_ANOTHER:
3526 goto another_round;
3527 case RX_HANDLER_EXACT:
3528 deliver_exact = true;
3529 case RX_HANDLER_PASS:
3530 break;
3531 default:
3532 BUG();
3533 }
3534 }
3535
3536 if (vlan_tx_nonzero_tag_present(skb))
3537 skb->pkt_type = PACKET_OTHERHOST;
3538
3539 /* deliver only exact match when indicated */
3540 null_or_dev = deliver_exact ? skb->dev : NULL;
3541
3542 type = skb->protocol;
3543 list_for_each_entry_rcu(ptype,
3544 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3545 if (ptype->type == type &&
3546 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3547 ptype->dev == orig_dev)) {
3548 if (pt_prev)
3549 ret = deliver_skb(skb, pt_prev, orig_dev);
3550 pt_prev = ptype;
3551 }
3552 }
3553
3554 if (pt_prev) {
3555 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3556 goto drop;
3557 else
3558 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3559 } else {
3560 drop:
3561 atomic_long_inc(&skb->dev->rx_dropped);
3562 kfree_skb(skb);
3563 /* Jamal, now you will not able to escape explaining
3564 * me how you were going to use this. :-)
3565 */
3566 ret = NET_RX_DROP;
3567 }
3568
3569 unlock:
3570 rcu_read_unlock();
3571 out:
3572 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3573 return ret;
3574 }
3575
3576 /**
3577 * netif_receive_skb - process receive buffer from network
3578 * @skb: buffer to process
3579 *
3580 * netif_receive_skb() is the main receive data processing function.
3581 * It always succeeds. The buffer may be dropped during processing
3582 * for congestion control or by the protocol layers.
3583 *
3584 * This function may only be called from softirq context and interrupts
3585 * should be enabled.
3586 *
3587 * Return values (usually ignored):
3588 * NET_RX_SUCCESS: no congestion
3589 * NET_RX_DROP: packet was dropped
3590 */
3591 int netif_receive_skb(struct sk_buff *skb)
3592 {
3593 net_timestamp_check(netdev_tstamp_prequeue, skb);
3594
3595 if (skb_defer_rx_timestamp(skb))
3596 return NET_RX_SUCCESS;
3597
3598 #ifdef CONFIG_RPS
3599 if (static_key_false(&rps_needed)) {
3600 struct rps_dev_flow voidflow, *rflow = &voidflow;
3601 int cpu, ret;
3602
3603 rcu_read_lock();
3604
3605 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3606
3607 if (cpu >= 0) {
3608 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3609 rcu_read_unlock();
3610 return ret;
3611 }
3612 rcu_read_unlock();
3613 }
3614 #endif
3615 return __netif_receive_skb(skb);
3616 }
3617 EXPORT_SYMBOL(netif_receive_skb);
3618
3619 /* Network device is going away, flush any packets still pending
3620 * Called with irqs disabled.
3621 */
3622 static void flush_backlog(void *arg)
3623 {
3624 struct net_device *dev = arg;
3625 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3626 struct sk_buff *skb, *tmp;
3627
3628 rps_lock(sd);
3629 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3630 if (skb->dev == dev) {
3631 __skb_unlink(skb, &sd->input_pkt_queue);
3632 kfree_skb(skb);
3633 input_queue_head_incr(sd);
3634 }
3635 }
3636 rps_unlock(sd);
3637
3638 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3639 if (skb->dev == dev) {
3640 __skb_unlink(skb, &sd->process_queue);
3641 kfree_skb(skb);
3642 input_queue_head_incr(sd);
3643 }
3644 }
3645 }
3646
3647 static int napi_gro_complete(struct sk_buff *skb)
3648 {
3649 struct packet_offload *ptype;
3650 __be16 type = skb->protocol;
3651 struct list_head *head = &offload_base;
3652 int err = -ENOENT;
3653
3654 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3655
3656 if (NAPI_GRO_CB(skb)->count == 1) {
3657 skb_shinfo(skb)->gso_size = 0;
3658 goto out;
3659 }
3660
3661 rcu_read_lock();
3662 list_for_each_entry_rcu(ptype, head, list) {
3663 if (ptype->type != type || !ptype->callbacks.gro_complete)
3664 continue;
3665
3666 err = ptype->callbacks.gro_complete(skb);
3667 break;
3668 }
3669 rcu_read_unlock();
3670
3671 if (err) {
3672 WARN_ON(&ptype->list == head);
3673 kfree_skb(skb);
3674 return NET_RX_SUCCESS;
3675 }
3676
3677 out:
3678 return netif_receive_skb(skb);
3679 }
3680
3681 /* napi->gro_list contains packets ordered by age.
3682 * youngest packets at the head of it.
3683 * Complete skbs in reverse order to reduce latencies.
3684 */
3685 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3686 {
3687 struct sk_buff *skb, *prev = NULL;
3688
3689 /* scan list and build reverse chain */
3690 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3691 skb->prev = prev;
3692 prev = skb;
3693 }
3694
3695 for (skb = prev; skb; skb = prev) {
3696 skb->next = NULL;
3697
3698 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3699 return;
3700
3701 prev = skb->prev;
3702 napi_gro_complete(skb);
3703 napi->gro_count--;
3704 }
3705
3706 napi->gro_list = NULL;
3707 }
3708 EXPORT_SYMBOL(napi_gro_flush);
3709
3710 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3711 {
3712 struct sk_buff *p;
3713 unsigned int maclen = skb->dev->hard_header_len;
3714
3715 for (p = napi->gro_list; p; p = p->next) {
3716 unsigned long diffs;
3717
3718 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3719 diffs |= p->vlan_tci ^ skb->vlan_tci;
3720 if (maclen == ETH_HLEN)
3721 diffs |= compare_ether_header(skb_mac_header(p),
3722 skb_gro_mac_header(skb));
3723 else if (!diffs)
3724 diffs = memcmp(skb_mac_header(p),
3725 skb_gro_mac_header(skb),
3726 maclen);
3727 NAPI_GRO_CB(p)->same_flow = !diffs;
3728 NAPI_GRO_CB(p)->flush = 0;
3729 }
3730 }
3731
3732 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3733 {
3734 struct sk_buff **pp = NULL;
3735 struct packet_offload *ptype;
3736 __be16 type = skb->protocol;
3737 struct list_head *head = &offload_base;
3738 int same_flow;
3739 int mac_len;
3740 enum gro_result ret;
3741
3742 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3743 goto normal;
3744
3745 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3746 goto normal;
3747
3748 gro_list_prepare(napi, skb);
3749
3750 rcu_read_lock();
3751 list_for_each_entry_rcu(ptype, head, list) {
3752 if (ptype->type != type || !ptype->callbacks.gro_receive)
3753 continue;
3754
3755 skb_set_network_header(skb, skb_gro_offset(skb));
3756 mac_len = skb->network_header - skb->mac_header;
3757 skb->mac_len = mac_len;
3758 NAPI_GRO_CB(skb)->same_flow = 0;
3759 NAPI_GRO_CB(skb)->flush = 0;
3760 NAPI_GRO_CB(skb)->free = 0;
3761
3762 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3763 break;
3764 }
3765 rcu_read_unlock();
3766
3767 if (&ptype->list == head)
3768 goto normal;
3769
3770 same_flow = NAPI_GRO_CB(skb)->same_flow;
3771 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3772
3773 if (pp) {
3774 struct sk_buff *nskb = *pp;
3775
3776 *pp = nskb->next;
3777 nskb->next = NULL;
3778 napi_gro_complete(nskb);
3779 napi->gro_count--;
3780 }
3781
3782 if (same_flow)
3783 goto ok;
3784
3785 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3786 goto normal;
3787
3788 napi->gro_count++;
3789 NAPI_GRO_CB(skb)->count = 1;
3790 NAPI_GRO_CB(skb)->age = jiffies;
3791 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3792 skb->next = napi->gro_list;
3793 napi->gro_list = skb;
3794 ret = GRO_HELD;
3795
3796 pull:
3797 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3798 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3799
3800 BUG_ON(skb->end - skb->tail < grow);
3801
3802 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3803
3804 skb->tail += grow;
3805 skb->data_len -= grow;
3806
3807 skb_shinfo(skb)->frags[0].page_offset += grow;
3808 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3809
3810 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3811 skb_frag_unref(skb, 0);
3812 memmove(skb_shinfo(skb)->frags,
3813 skb_shinfo(skb)->frags + 1,
3814 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3815 }
3816 }
3817
3818 ok:
3819 return ret;
3820
3821 normal:
3822 ret = GRO_NORMAL;
3823 goto pull;
3824 }
3825
3826
3827 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3828 {
3829 switch (ret) {
3830 case GRO_NORMAL:
3831 if (netif_receive_skb(skb))
3832 ret = GRO_DROP;
3833 break;
3834
3835 case GRO_DROP:
3836 kfree_skb(skb);
3837 break;
3838
3839 case GRO_MERGED_FREE:
3840 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3841 kmem_cache_free(skbuff_head_cache, skb);
3842 else
3843 __kfree_skb(skb);
3844 break;
3845
3846 case GRO_HELD:
3847 case GRO_MERGED:
3848 break;
3849 }
3850
3851 return ret;
3852 }
3853
3854 static void skb_gro_reset_offset(struct sk_buff *skb)
3855 {
3856 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3857 const skb_frag_t *frag0 = &pinfo->frags[0];
3858
3859 NAPI_GRO_CB(skb)->data_offset = 0;
3860 NAPI_GRO_CB(skb)->frag0 = NULL;
3861 NAPI_GRO_CB(skb)->frag0_len = 0;
3862
3863 if (skb->mac_header == skb->tail &&
3864 pinfo->nr_frags &&
3865 !PageHighMem(skb_frag_page(frag0))) {
3866 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3867 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3868 }
3869 }
3870
3871 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3872 {
3873 skb_gro_reset_offset(skb);
3874
3875 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3876 }
3877 EXPORT_SYMBOL(napi_gro_receive);
3878
3879 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3880 {
3881 __skb_pull(skb, skb_headlen(skb));
3882 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3883 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3884 skb->vlan_tci = 0;
3885 skb->dev = napi->dev;
3886 skb->skb_iif = 0;
3887
3888 napi->skb = skb;
3889 }
3890
3891 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3892 {
3893 struct sk_buff *skb = napi->skb;
3894
3895 if (!skb) {
3896 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3897 if (skb)
3898 napi->skb = skb;
3899 }
3900 return skb;
3901 }
3902 EXPORT_SYMBOL(napi_get_frags);
3903
3904 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3905 gro_result_t ret)
3906 {
3907 switch (ret) {
3908 case GRO_NORMAL:
3909 case GRO_HELD:
3910 skb->protocol = eth_type_trans(skb, skb->dev);
3911
3912 if (ret == GRO_HELD)
3913 skb_gro_pull(skb, -ETH_HLEN);
3914 else if (netif_receive_skb(skb))
3915 ret = GRO_DROP;
3916 break;
3917
3918 case GRO_DROP:
3919 case GRO_MERGED_FREE:
3920 napi_reuse_skb(napi, skb);
3921 break;
3922
3923 case GRO_MERGED:
3924 break;
3925 }
3926
3927 return ret;
3928 }
3929
3930 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3931 {
3932 struct sk_buff *skb = napi->skb;
3933 struct ethhdr *eth;
3934 unsigned int hlen;
3935 unsigned int off;
3936
3937 napi->skb = NULL;
3938
3939 skb_reset_mac_header(skb);
3940 skb_gro_reset_offset(skb);
3941
3942 off = skb_gro_offset(skb);
3943 hlen = off + sizeof(*eth);
3944 eth = skb_gro_header_fast(skb, off);
3945 if (skb_gro_header_hard(skb, hlen)) {
3946 eth = skb_gro_header_slow(skb, hlen, off);
3947 if (unlikely(!eth)) {
3948 napi_reuse_skb(napi, skb);
3949 skb = NULL;
3950 goto out;
3951 }
3952 }
3953
3954 skb_gro_pull(skb, sizeof(*eth));
3955
3956 /*
3957 * This works because the only protocols we care about don't require
3958 * special handling. We'll fix it up properly at the end.
3959 */
3960 skb->protocol = eth->h_proto;
3961
3962 out:
3963 return skb;
3964 }
3965
3966 gro_result_t napi_gro_frags(struct napi_struct *napi)
3967 {
3968 struct sk_buff *skb = napi_frags_skb(napi);
3969
3970 if (!skb)
3971 return GRO_DROP;
3972
3973 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
3974 }
3975 EXPORT_SYMBOL(napi_gro_frags);
3976
3977 /*
3978 * net_rps_action sends any pending IPI's for rps.
3979 * Note: called with local irq disabled, but exits with local irq enabled.
3980 */
3981 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3982 {
3983 #ifdef CONFIG_RPS
3984 struct softnet_data *remsd = sd->rps_ipi_list;
3985
3986 if (remsd) {
3987 sd->rps_ipi_list = NULL;
3988
3989 local_irq_enable();
3990
3991 /* Send pending IPI's to kick RPS processing on remote cpus. */
3992 while (remsd) {
3993 struct softnet_data *next = remsd->rps_ipi_next;
3994
3995 if (cpu_online(remsd->cpu))
3996 __smp_call_function_single(remsd->cpu,
3997 &remsd->csd, 0);
3998 remsd = next;
3999 }
4000 } else
4001 #endif
4002 local_irq_enable();
4003 }
4004
4005 static int process_backlog(struct napi_struct *napi, int quota)
4006 {
4007 int work = 0;
4008 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4009
4010 #ifdef CONFIG_RPS
4011 /* Check if we have pending ipi, its better to send them now,
4012 * not waiting net_rx_action() end.
4013 */
4014 if (sd->rps_ipi_list) {
4015 local_irq_disable();
4016 net_rps_action_and_irq_enable(sd);
4017 }
4018 #endif
4019 napi->weight = weight_p;
4020 local_irq_disable();
4021 while (work < quota) {
4022 struct sk_buff *skb;
4023 unsigned int qlen;
4024
4025 while ((skb = __skb_dequeue(&sd->process_queue))) {
4026 local_irq_enable();
4027 __netif_receive_skb(skb);
4028 local_irq_disable();
4029 input_queue_head_incr(sd);
4030 if (++work >= quota) {
4031 local_irq_enable();
4032 return work;
4033 }
4034 }
4035
4036 rps_lock(sd);
4037 qlen = skb_queue_len(&sd->input_pkt_queue);
4038 if (qlen)
4039 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4040 &sd->process_queue);
4041
4042 if (qlen < quota - work) {
4043 /*
4044 * Inline a custom version of __napi_complete().
4045 * only current cpu owns and manipulates this napi,
4046 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4047 * we can use a plain write instead of clear_bit(),
4048 * and we dont need an smp_mb() memory barrier.
4049 */
4050 list_del(&napi->poll_list);
4051 napi->state = 0;
4052
4053 quota = work + qlen;
4054 }
4055 rps_unlock(sd);
4056 }
4057 local_irq_enable();
4058
4059 return work;
4060 }
4061
4062 /**
4063 * __napi_schedule - schedule for receive
4064 * @n: entry to schedule
4065 *
4066 * The entry's receive function will be scheduled to run
4067 */
4068 void __napi_schedule(struct napi_struct *n)
4069 {
4070 unsigned long flags;
4071
4072 local_irq_save(flags);
4073 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4074 local_irq_restore(flags);
4075 }
4076 EXPORT_SYMBOL(__napi_schedule);
4077
4078 void __napi_complete(struct napi_struct *n)
4079 {
4080 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4081 BUG_ON(n->gro_list);
4082
4083 list_del(&n->poll_list);
4084 smp_mb__before_clear_bit();
4085 clear_bit(NAPI_STATE_SCHED, &n->state);
4086 }
4087 EXPORT_SYMBOL(__napi_complete);
4088
4089 void napi_complete(struct napi_struct *n)
4090 {
4091 unsigned long flags;
4092
4093 /*
4094 * don't let napi dequeue from the cpu poll list
4095 * just in case its running on a different cpu
4096 */
4097 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4098 return;
4099
4100 napi_gro_flush(n, false);
4101 local_irq_save(flags);
4102 __napi_complete(n);
4103 local_irq_restore(flags);
4104 }
4105 EXPORT_SYMBOL(napi_complete);
4106
4107 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4108 int (*poll)(struct napi_struct *, int), int weight)
4109 {
4110 INIT_LIST_HEAD(&napi->poll_list);
4111 napi->gro_count = 0;
4112 napi->gro_list = NULL;
4113 napi->skb = NULL;
4114 napi->poll = poll;
4115 napi->weight = weight;
4116 list_add(&napi->dev_list, &dev->napi_list);
4117 napi->dev = dev;
4118 #ifdef CONFIG_NETPOLL
4119 spin_lock_init(&napi->poll_lock);
4120 napi->poll_owner = -1;
4121 #endif
4122 set_bit(NAPI_STATE_SCHED, &napi->state);
4123 }
4124 EXPORT_SYMBOL(netif_napi_add);
4125
4126 void netif_napi_del(struct napi_struct *napi)
4127 {
4128 struct sk_buff *skb, *next;
4129
4130 list_del_init(&napi->dev_list);
4131 napi_free_frags(napi);
4132
4133 for (skb = napi->gro_list; skb; skb = next) {
4134 next = skb->next;
4135 skb->next = NULL;
4136 kfree_skb(skb);
4137 }
4138
4139 napi->gro_list = NULL;
4140 napi->gro_count = 0;
4141 }
4142 EXPORT_SYMBOL(netif_napi_del);
4143
4144 static void net_rx_action(struct softirq_action *h)
4145 {
4146 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4147 unsigned long time_limit = jiffies + 2;
4148 int budget = netdev_budget;
4149 void *have;
4150
4151 local_irq_disable();
4152
4153 while (!list_empty(&sd->poll_list)) {
4154 struct napi_struct *n;
4155 int work, weight;
4156
4157 /* If softirq window is exhuasted then punt.
4158 * Allow this to run for 2 jiffies since which will allow
4159 * an average latency of 1.5/HZ.
4160 */
4161 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
4162 goto softnet_break;
4163
4164 local_irq_enable();
4165
4166 /* Even though interrupts have been re-enabled, this
4167 * access is safe because interrupts can only add new
4168 * entries to the tail of this list, and only ->poll()
4169 * calls can remove this head entry from the list.
4170 */
4171 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4172
4173 have = netpoll_poll_lock(n);
4174
4175 weight = n->weight;
4176
4177 /* This NAPI_STATE_SCHED test is for avoiding a race
4178 * with netpoll's poll_napi(). Only the entity which
4179 * obtains the lock and sees NAPI_STATE_SCHED set will
4180 * actually make the ->poll() call. Therefore we avoid
4181 * accidentally calling ->poll() when NAPI is not scheduled.
4182 */
4183 work = 0;
4184 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4185 work = n->poll(n, weight);
4186 trace_napi_poll(n);
4187 }
4188
4189 WARN_ON_ONCE(work > weight);
4190
4191 budget -= work;
4192
4193 local_irq_disable();
4194
4195 /* Drivers must not modify the NAPI state if they
4196 * consume the entire weight. In such cases this code
4197 * still "owns" the NAPI instance and therefore can
4198 * move the instance around on the list at-will.
4199 */
4200 if (unlikely(work == weight)) {
4201 if (unlikely(napi_disable_pending(n))) {
4202 local_irq_enable();
4203 napi_complete(n);
4204 local_irq_disable();
4205 } else {
4206 if (n->gro_list) {
4207 /* flush too old packets
4208 * If HZ < 1000, flush all packets.
4209 */
4210 local_irq_enable();
4211 napi_gro_flush(n, HZ >= 1000);
4212 local_irq_disable();
4213 }
4214 list_move_tail(&n->poll_list, &sd->poll_list);
4215 }
4216 }
4217
4218 netpoll_poll_unlock(have);
4219 }
4220 out:
4221 net_rps_action_and_irq_enable(sd);
4222
4223 #ifdef CONFIG_NET_DMA
4224 /*
4225 * There may not be any more sk_buffs coming right now, so push
4226 * any pending DMA copies to hardware
4227 */
4228 dma_issue_pending_all();
4229 #endif
4230
4231 return;
4232
4233 softnet_break:
4234 sd->time_squeeze++;
4235 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4236 goto out;
4237 }
4238
4239 static gifconf_func_t *gifconf_list[NPROTO];
4240
4241 /**
4242 * register_gifconf - register a SIOCGIF handler
4243 * @family: Address family
4244 * @gifconf: Function handler
4245 *
4246 * Register protocol dependent address dumping routines. The handler
4247 * that is passed must not be freed or reused until it has been replaced
4248 * by another handler.
4249 */
4250 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
4251 {
4252 if (family >= NPROTO)
4253 return -EINVAL;
4254 gifconf_list[family] = gifconf;
4255 return 0;
4256 }
4257 EXPORT_SYMBOL(register_gifconf);
4258
4259
4260 /*
4261 * Map an interface index to its name (SIOCGIFNAME)
4262 */
4263
4264 /*
4265 * We need this ioctl for efficient implementation of the
4266 * if_indextoname() function required by the IPv6 API. Without
4267 * it, we would have to search all the interfaces to find a
4268 * match. --pb
4269 */
4270
4271 static int dev_ifname(struct net *net, struct ifreq __user *arg)
4272 {
4273 struct net_device *dev;
4274 struct ifreq ifr;
4275 unsigned seq;
4276
4277 /*
4278 * Fetch the caller's info block.
4279 */
4280
4281 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4282 return -EFAULT;
4283
4284 retry:
4285 seq = read_seqcount_begin(&devnet_rename_seq);
4286 rcu_read_lock();
4287 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4288 if (!dev) {
4289 rcu_read_unlock();
4290 return -ENODEV;
4291 }
4292
4293 strcpy(ifr.ifr_name, dev->name);
4294 rcu_read_unlock();
4295 if (read_seqcount_retry(&devnet_rename_seq, seq))
4296 goto retry;
4297
4298 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4299 return -EFAULT;
4300 return 0;
4301 }
4302
4303 /*
4304 * Perform a SIOCGIFCONF call. This structure will change
4305 * size eventually, and there is nothing I can do about it.
4306 * Thus we will need a 'compatibility mode'.
4307 */
4308
4309 static int dev_ifconf(struct net *net, char __user *arg)
4310 {
4311 struct ifconf ifc;
4312 struct net_device *dev;
4313 char __user *pos;
4314 int len;
4315 int total;
4316 int i;
4317
4318 /*
4319 * Fetch the caller's info block.
4320 */
4321
4322 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4323 return -EFAULT;
4324
4325 pos = ifc.ifc_buf;
4326 len = ifc.ifc_len;
4327
4328 /*
4329 * Loop over the interfaces, and write an info block for each.
4330 */
4331
4332 total = 0;
4333 for_each_netdev(net, dev) {
4334 for (i = 0; i < NPROTO; i++) {
4335 if (gifconf_list[i]) {
4336 int done;
4337 if (!pos)
4338 done = gifconf_list[i](dev, NULL, 0);
4339 else
4340 done = gifconf_list[i](dev, pos + total,
4341 len - total);
4342 if (done < 0)
4343 return -EFAULT;
4344 total += done;
4345 }
4346 }
4347 }
4348
4349 /*
4350 * All done. Write the updated control block back to the caller.
4351 */
4352 ifc.ifc_len = total;
4353
4354 /*
4355 * Both BSD and Solaris return 0 here, so we do too.
4356 */
4357 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4358 }
4359
4360 #ifdef CONFIG_PROC_FS
4361
4362 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4363
4364 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4365 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4366 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4367
4368 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4369 {
4370 struct net *net = seq_file_net(seq);
4371 struct net_device *dev;
4372 struct hlist_node *p;
4373 struct hlist_head *h;
4374 unsigned int count = 0, offset = get_offset(*pos);
4375
4376 h = &net->dev_name_head[get_bucket(*pos)];
4377 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4378 if (++count == offset)
4379 return dev;
4380 }
4381
4382 return NULL;
4383 }
4384
4385 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4386 {
4387 struct net_device *dev;
4388 unsigned int bucket;
4389
4390 do {
4391 dev = dev_from_same_bucket(seq, pos);
4392 if (dev)
4393 return dev;
4394
4395 bucket = get_bucket(*pos) + 1;
4396 *pos = set_bucket_offset(bucket, 1);
4397 } while (bucket < NETDEV_HASHENTRIES);
4398
4399 return NULL;
4400 }
4401
4402 /*
4403 * This is invoked by the /proc filesystem handler to display a device
4404 * in detail.
4405 */
4406 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4407 __acquires(RCU)
4408 {
4409 rcu_read_lock();
4410 if (!*pos)
4411 return SEQ_START_TOKEN;
4412
4413 if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4414 return NULL;
4415
4416 return dev_from_bucket(seq, pos);
4417 }
4418
4419 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4420 {
4421 ++*pos;
4422 return dev_from_bucket(seq, pos);
4423 }
4424
4425 void dev_seq_stop(struct seq_file *seq, void *v)
4426 __releases(RCU)
4427 {
4428 rcu_read_unlock();
4429 }
4430
4431 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4432 {
4433 struct rtnl_link_stats64 temp;
4434 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4435
4436 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4437 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4438 dev->name, stats->rx_bytes, stats->rx_packets,
4439 stats->rx_errors,
4440 stats->rx_dropped + stats->rx_missed_errors,
4441 stats->rx_fifo_errors,
4442 stats->rx_length_errors + stats->rx_over_errors +
4443 stats->rx_crc_errors + stats->rx_frame_errors,
4444 stats->rx_compressed, stats->multicast,
4445 stats->tx_bytes, stats->tx_packets,
4446 stats->tx_errors, stats->tx_dropped,
4447 stats->tx_fifo_errors, stats->collisions,
4448 stats->tx_carrier_errors +
4449 stats->tx_aborted_errors +
4450 stats->tx_window_errors +
4451 stats->tx_heartbeat_errors,
4452 stats->tx_compressed);
4453 }
4454
4455 /*
4456 * Called from the PROCfs module. This now uses the new arbitrary sized
4457 * /proc/net interface to create /proc/net/dev
4458 */
4459 static int dev_seq_show(struct seq_file *seq, void *v)
4460 {
4461 if (v == SEQ_START_TOKEN)
4462 seq_puts(seq, "Inter-| Receive "
4463 " | Transmit\n"
4464 " face |bytes packets errs drop fifo frame "
4465 "compressed multicast|bytes packets errs "
4466 "drop fifo colls carrier compressed\n");
4467 else
4468 dev_seq_printf_stats(seq, v);
4469 return 0;
4470 }
4471
4472 static struct softnet_data *softnet_get_online(loff_t *pos)
4473 {
4474 struct softnet_data *sd = NULL;
4475
4476 while (*pos < nr_cpu_ids)
4477 if (cpu_online(*pos)) {
4478 sd = &per_cpu(softnet_data, *pos);
4479 break;
4480 } else
4481 ++*pos;
4482 return sd;
4483 }
4484
4485 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4486 {
4487 return softnet_get_online(pos);
4488 }
4489
4490 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4491 {
4492 ++*pos;
4493 return softnet_get_online(pos);
4494 }
4495
4496 static void softnet_seq_stop(struct seq_file *seq, void *v)
4497 {
4498 }
4499
4500 static int softnet_seq_show(struct seq_file *seq, void *v)
4501 {
4502 struct softnet_data *sd = v;
4503
4504 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4505 sd->processed, sd->dropped, sd->time_squeeze, 0,
4506 0, 0, 0, 0, /* was fastroute */
4507 sd->cpu_collision, sd->received_rps);
4508 return 0;
4509 }
4510
4511 static const struct seq_operations dev_seq_ops = {
4512 .start = dev_seq_start,
4513 .next = dev_seq_next,
4514 .stop = dev_seq_stop,
4515 .show = dev_seq_show,
4516 };
4517
4518 static int dev_seq_open(struct inode *inode, struct file *file)
4519 {
4520 return seq_open_net(inode, file, &dev_seq_ops,
4521 sizeof(struct seq_net_private));
4522 }
4523
4524 static const struct file_operations dev_seq_fops = {
4525 .owner = THIS_MODULE,
4526 .open = dev_seq_open,
4527 .read = seq_read,
4528 .llseek = seq_lseek,
4529 .release = seq_release_net,
4530 };
4531
4532 static const struct seq_operations softnet_seq_ops = {
4533 .start = softnet_seq_start,
4534 .next = softnet_seq_next,
4535 .stop = softnet_seq_stop,
4536 .show = softnet_seq_show,
4537 };
4538
4539 static int softnet_seq_open(struct inode *inode, struct file *file)
4540 {
4541 return seq_open(file, &softnet_seq_ops);
4542 }
4543
4544 static const struct file_operations softnet_seq_fops = {
4545 .owner = THIS_MODULE,
4546 .open = softnet_seq_open,
4547 .read = seq_read,
4548 .llseek = seq_lseek,
4549 .release = seq_release,
4550 };
4551
4552 static void *ptype_get_idx(loff_t pos)
4553 {
4554 struct packet_type *pt = NULL;
4555 loff_t i = 0;
4556 int t;
4557
4558 list_for_each_entry_rcu(pt, &ptype_all, list) {
4559 if (i == pos)
4560 return pt;
4561 ++i;
4562 }
4563
4564 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4565 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4566 if (i == pos)
4567 return pt;
4568 ++i;
4569 }
4570 }
4571 return NULL;
4572 }
4573
4574 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4575 __acquires(RCU)
4576 {
4577 rcu_read_lock();
4578 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4579 }
4580
4581 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4582 {
4583 struct packet_type *pt;
4584 struct list_head *nxt;
4585 int hash;
4586
4587 ++*pos;
4588 if (v == SEQ_START_TOKEN)
4589 return ptype_get_idx(0);
4590
4591 pt = v;
4592 nxt = pt->list.next;
4593 if (pt->type == htons(ETH_P_ALL)) {
4594 if (nxt != &ptype_all)
4595 goto found;
4596 hash = 0;
4597 nxt = ptype_base[0].next;
4598 } else
4599 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4600
4601 while (nxt == &ptype_base[hash]) {
4602 if (++hash >= PTYPE_HASH_SIZE)
4603 return NULL;
4604 nxt = ptype_base[hash].next;
4605 }
4606 found:
4607 return list_entry(nxt, struct packet_type, list);
4608 }
4609
4610 static void ptype_seq_stop(struct seq_file *seq, void *v)
4611 __releases(RCU)
4612 {
4613 rcu_read_unlock();
4614 }
4615
4616 static int ptype_seq_show(struct seq_file *seq, void *v)
4617 {
4618 struct packet_type *pt = v;
4619
4620 if (v == SEQ_START_TOKEN)
4621 seq_puts(seq, "Type Device Function\n");
4622 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4623 if (pt->type == htons(ETH_P_ALL))
4624 seq_puts(seq, "ALL ");
4625 else
4626 seq_printf(seq, "%04x", ntohs(pt->type));
4627
4628 seq_printf(seq, " %-8s %pF\n",
4629 pt->dev ? pt->dev->name : "", pt->func);
4630 }
4631
4632 return 0;
4633 }
4634
4635 static const struct seq_operations ptype_seq_ops = {
4636 .start = ptype_seq_start,
4637 .next = ptype_seq_next,
4638 .stop = ptype_seq_stop,
4639 .show = ptype_seq_show,
4640 };
4641
4642 static int ptype_seq_open(struct inode *inode, struct file *file)
4643 {
4644 return seq_open_net(inode, file, &ptype_seq_ops,
4645 sizeof(struct seq_net_private));
4646 }
4647
4648 static const struct file_operations ptype_seq_fops = {
4649 .owner = THIS_MODULE,
4650 .open = ptype_seq_open,
4651 .read = seq_read,
4652 .llseek = seq_lseek,
4653 .release = seq_release_net,
4654 };
4655
4656
4657 static int __net_init dev_proc_net_init(struct net *net)
4658 {
4659 int rc = -ENOMEM;
4660
4661 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4662 goto out;
4663 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4664 goto out_dev;
4665 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4666 goto out_softnet;
4667
4668 if (wext_proc_init(net))
4669 goto out_ptype;
4670 rc = 0;
4671 out:
4672 return rc;
4673 out_ptype:
4674 proc_net_remove(net, "ptype");
4675 out_softnet:
4676 proc_net_remove(net, "softnet_stat");
4677 out_dev:
4678 proc_net_remove(net, "dev");
4679 goto out;
4680 }
4681
4682 static void __net_exit dev_proc_net_exit(struct net *net)
4683 {
4684 wext_proc_exit(net);
4685
4686 proc_net_remove(net, "ptype");
4687 proc_net_remove(net, "softnet_stat");
4688 proc_net_remove(net, "dev");
4689 }
4690
4691 static struct pernet_operations __net_initdata dev_proc_ops = {
4692 .init = dev_proc_net_init,
4693 .exit = dev_proc_net_exit,
4694 };
4695
4696 static int __init dev_proc_init(void)
4697 {
4698 return register_pernet_subsys(&dev_proc_ops);
4699 }
4700 #else
4701 #define dev_proc_init() 0
4702 #endif /* CONFIG_PROC_FS */
4703
4704
4705 struct netdev_upper {
4706 struct net_device *dev;
4707 bool master;
4708 struct list_head list;
4709 struct rcu_head rcu;
4710 struct list_head search_list;
4711 };
4712
4713 static void __append_search_uppers(struct list_head *search_list,
4714 struct net_device *dev)
4715 {
4716 struct netdev_upper *upper;
4717
4718 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4719 /* check if this upper is not already in search list */
4720 if (list_empty(&upper->search_list))
4721 list_add_tail(&upper->search_list, search_list);
4722 }
4723 }
4724
4725 static bool __netdev_search_upper_dev(struct net_device *dev,
4726 struct net_device *upper_dev)
4727 {
4728 LIST_HEAD(search_list);
4729 struct netdev_upper *upper;
4730 struct netdev_upper *tmp;
4731 bool ret = false;
4732
4733 __append_search_uppers(&search_list, dev);
4734 list_for_each_entry(upper, &search_list, search_list) {
4735 if (upper->dev == upper_dev) {
4736 ret = true;
4737 break;
4738 }
4739 __append_search_uppers(&search_list, upper->dev);
4740 }
4741 list_for_each_entry_safe(upper, tmp, &search_list, search_list)
4742 INIT_LIST_HEAD(&upper->search_list);
4743 return ret;
4744 }
4745
4746 static struct netdev_upper *__netdev_find_upper(struct net_device *dev,
4747 struct net_device *upper_dev)
4748 {
4749 struct netdev_upper *upper;
4750
4751 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4752 if (upper->dev == upper_dev)
4753 return upper;
4754 }
4755 return NULL;
4756 }
4757
4758 /**
4759 * netdev_has_upper_dev - Check if device is linked to an upper device
4760 * @dev: device
4761 * @upper_dev: upper device to check
4762 *
4763 * Find out if a device is linked to specified upper device and return true
4764 * in case it is. Note that this checks only immediate upper device,
4765 * not through a complete stack of devices. The caller must hold the RTNL lock.
4766 */
4767 bool netdev_has_upper_dev(struct net_device *dev,
4768 struct net_device *upper_dev)
4769 {
4770 ASSERT_RTNL();
4771
4772 return __netdev_find_upper(dev, upper_dev);
4773 }
4774 EXPORT_SYMBOL(netdev_has_upper_dev);
4775
4776 /**
4777 * netdev_has_any_upper_dev - Check if device is linked to some device
4778 * @dev: device
4779 *
4780 * Find out if a device is linked to an upper device and return true in case
4781 * it is. The caller must hold the RTNL lock.
4782 */
4783 bool netdev_has_any_upper_dev(struct net_device *dev)
4784 {
4785 ASSERT_RTNL();
4786
4787 return !list_empty(&dev->upper_dev_list);
4788 }
4789 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4790
4791 /**
4792 * netdev_master_upper_dev_get - Get master upper device
4793 * @dev: device
4794 *
4795 * Find a master upper device and return pointer to it or NULL in case
4796 * it's not there. The caller must hold the RTNL lock.
4797 */
4798 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4799 {
4800 struct netdev_upper *upper;
4801
4802 ASSERT_RTNL();
4803
4804 if (list_empty(&dev->upper_dev_list))
4805 return NULL;
4806
4807 upper = list_first_entry(&dev->upper_dev_list,
4808 struct netdev_upper, list);
4809 if (likely(upper->master))
4810 return upper->dev;
4811 return NULL;
4812 }
4813 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4814
4815 /**
4816 * netdev_master_upper_dev_get_rcu - Get master upper device
4817 * @dev: device
4818 *
4819 * Find a master upper device and return pointer to it or NULL in case
4820 * it's not there. The caller must hold the RCU read lock.
4821 */
4822 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4823 {
4824 struct netdev_upper *upper;
4825
4826 upper = list_first_or_null_rcu(&dev->upper_dev_list,
4827 struct netdev_upper, list);
4828 if (upper && likely(upper->master))
4829 return upper->dev;
4830 return NULL;
4831 }
4832 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4833
4834 static int __netdev_upper_dev_link(struct net_device *dev,
4835 struct net_device *upper_dev, bool master)
4836 {
4837 struct netdev_upper *upper;
4838
4839 ASSERT_RTNL();
4840
4841 if (dev == upper_dev)
4842 return -EBUSY;
4843
4844 /* To prevent loops, check if dev is not upper device to upper_dev. */
4845 if (__netdev_search_upper_dev(upper_dev, dev))
4846 return -EBUSY;
4847
4848 if (__netdev_find_upper(dev, upper_dev))
4849 return -EEXIST;
4850
4851 if (master && netdev_master_upper_dev_get(dev))
4852 return -EBUSY;
4853
4854 upper = kmalloc(sizeof(*upper), GFP_KERNEL);
4855 if (!upper)
4856 return -ENOMEM;
4857
4858 upper->dev = upper_dev;
4859 upper->master = master;
4860 INIT_LIST_HEAD(&upper->search_list);
4861
4862 /* Ensure that master upper link is always the first item in list. */
4863 if (master)
4864 list_add_rcu(&upper->list, &dev->upper_dev_list);
4865 else
4866 list_add_tail_rcu(&upper->list, &dev->upper_dev_list);
4867 dev_hold(upper_dev);
4868
4869 return 0;
4870 }
4871
4872 /**
4873 * netdev_upper_dev_link - Add a link to the upper device
4874 * @dev: device
4875 * @upper_dev: new upper device
4876 *
4877 * Adds a link to device which is upper to this one. The caller must hold
4878 * the RTNL lock. On a failure a negative errno code is returned.
4879 * On success the reference counts are adjusted and the function
4880 * returns zero.
4881 */
4882 int netdev_upper_dev_link(struct net_device *dev,
4883 struct net_device *upper_dev)
4884 {
4885 return __netdev_upper_dev_link(dev, upper_dev, false);
4886 }
4887 EXPORT_SYMBOL(netdev_upper_dev_link);
4888
4889 /**
4890 * netdev_master_upper_dev_link - Add a master link to the upper device
4891 * @dev: device
4892 * @upper_dev: new upper device
4893 *
4894 * Adds a link to device which is upper to this one. In this case, only
4895 * one master upper device can be linked, although other non-master devices
4896 * might be linked as well. The caller must hold the RTNL lock.
4897 * On a failure a negative errno code is returned. On success the reference
4898 * counts are adjusted and the function returns zero.
4899 */
4900 int netdev_master_upper_dev_link(struct net_device *dev,
4901 struct net_device *upper_dev)
4902 {
4903 return __netdev_upper_dev_link(dev, upper_dev, true);
4904 }
4905 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4906
4907 /**
4908 * netdev_upper_dev_unlink - Removes a link to upper device
4909 * @dev: device
4910 * @upper_dev: new upper device
4911 *
4912 * Removes a link to device which is upper to this one. The caller must hold
4913 * the RTNL lock.
4914 */
4915 void netdev_upper_dev_unlink(struct net_device *dev,
4916 struct net_device *upper_dev)
4917 {
4918 struct netdev_upper *upper;
4919
4920 ASSERT_RTNL();
4921
4922 upper = __netdev_find_upper(dev, upper_dev);
4923 if (!upper)
4924 return;
4925 list_del_rcu(&upper->list);
4926 dev_put(upper_dev);
4927 kfree_rcu(upper, rcu);
4928 }
4929 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4930
4931 static void dev_change_rx_flags(struct net_device *dev, int flags)
4932 {
4933 const struct net_device_ops *ops = dev->netdev_ops;
4934
4935 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4936 ops->ndo_change_rx_flags(dev, flags);
4937 }
4938
4939 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4940 {
4941 unsigned int old_flags = dev->flags;
4942 kuid_t uid;
4943 kgid_t gid;
4944
4945 ASSERT_RTNL();
4946
4947 dev->flags |= IFF_PROMISC;
4948 dev->promiscuity += inc;
4949 if (dev->promiscuity == 0) {
4950 /*
4951 * Avoid overflow.
4952 * If inc causes overflow, untouch promisc and return error.
4953 */
4954 if (inc < 0)
4955 dev->flags &= ~IFF_PROMISC;
4956 else {
4957 dev->promiscuity -= inc;
4958 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4959 dev->name);
4960 return -EOVERFLOW;
4961 }
4962 }
4963 if (dev->flags != old_flags) {
4964 pr_info("device %s %s promiscuous mode\n",
4965 dev->name,
4966 dev->flags & IFF_PROMISC ? "entered" : "left");
4967 if (audit_enabled) {
4968 current_uid_gid(&uid, &gid);
4969 audit_log(current->audit_context, GFP_ATOMIC,
4970 AUDIT_ANOM_PROMISCUOUS,
4971 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4972 dev->name, (dev->flags & IFF_PROMISC),
4973 (old_flags & IFF_PROMISC),
4974 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4975 from_kuid(&init_user_ns, uid),
4976 from_kgid(&init_user_ns, gid),
4977 audit_get_sessionid(current));
4978 }
4979
4980 dev_change_rx_flags(dev, IFF_PROMISC);
4981 }
4982 return 0;
4983 }
4984
4985 /**
4986 * dev_set_promiscuity - update promiscuity count on a device
4987 * @dev: device
4988 * @inc: modifier
4989 *
4990 * Add or remove promiscuity from a device. While the count in the device
4991 * remains above zero the interface remains promiscuous. Once it hits zero
4992 * the device reverts back to normal filtering operation. A negative inc
4993 * value is used to drop promiscuity on the device.
4994 * Return 0 if successful or a negative errno code on error.
4995 */
4996 int dev_set_promiscuity(struct net_device *dev, int inc)
4997 {
4998 unsigned int old_flags = dev->flags;
4999 int err;
5000
5001 err = __dev_set_promiscuity(dev, inc);
5002 if (err < 0)
5003 return err;
5004 if (dev->flags != old_flags)
5005 dev_set_rx_mode(dev);
5006 return err;
5007 }
5008 EXPORT_SYMBOL(dev_set_promiscuity);
5009
5010 /**
5011 * dev_set_allmulti - update allmulti count on a device
5012 * @dev: device
5013 * @inc: modifier
5014 *
5015 * Add or remove reception of all multicast frames to a device. While the
5016 * count in the device remains above zero the interface remains listening
5017 * to all interfaces. Once it hits zero the device reverts back to normal
5018 * filtering operation. A negative @inc value is used to drop the counter
5019 * when releasing a resource needing all multicasts.
5020 * Return 0 if successful or a negative errno code on error.
5021 */
5022
5023 int dev_set_allmulti(struct net_device *dev, int inc)
5024 {
5025 unsigned int old_flags = dev->flags;
5026
5027 ASSERT_RTNL();
5028
5029 dev->flags |= IFF_ALLMULTI;
5030 dev->allmulti += inc;
5031 if (dev->allmulti == 0) {
5032 /*
5033 * Avoid overflow.
5034 * If inc causes overflow, untouch allmulti and return error.
5035 */
5036 if (inc < 0)
5037 dev->flags &= ~IFF_ALLMULTI;
5038 else {
5039 dev->allmulti -= inc;
5040 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5041 dev->name);
5042 return -EOVERFLOW;
5043 }
5044 }
5045 if (dev->flags ^ old_flags) {
5046 dev_change_rx_flags(dev, IFF_ALLMULTI);
5047 dev_set_rx_mode(dev);
5048 }
5049 return 0;
5050 }
5051 EXPORT_SYMBOL(dev_set_allmulti);
5052
5053 /*
5054 * Upload unicast and multicast address lists to device and
5055 * configure RX filtering. When the device doesn't support unicast
5056 * filtering it is put in promiscuous mode while unicast addresses
5057 * are present.
5058 */
5059 void __dev_set_rx_mode(struct net_device *dev)
5060 {
5061 const struct net_device_ops *ops = dev->netdev_ops;
5062
5063 /* dev_open will call this function so the list will stay sane. */
5064 if (!(dev->flags&IFF_UP))
5065 return;
5066
5067 if (!netif_device_present(dev))
5068 return;
5069
5070 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5071 /* Unicast addresses changes may only happen under the rtnl,
5072 * therefore calling __dev_set_promiscuity here is safe.
5073 */
5074 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5075 __dev_set_promiscuity(dev, 1);
5076 dev->uc_promisc = true;
5077 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5078 __dev_set_promiscuity(dev, -1);
5079 dev->uc_promisc = false;
5080 }
5081 }
5082
5083 if (ops->ndo_set_rx_mode)
5084 ops->ndo_set_rx_mode(dev);
5085 }
5086
5087 void dev_set_rx_mode(struct net_device *dev)
5088 {
5089 netif_addr_lock_bh(dev);
5090 __dev_set_rx_mode(dev);
5091 netif_addr_unlock_bh(dev);
5092 }
5093
5094 /**
5095 * dev_get_flags - get flags reported to userspace
5096 * @dev: device
5097 *
5098 * Get the combination of flag bits exported through APIs to userspace.
5099 */
5100 unsigned int dev_get_flags(const struct net_device *dev)
5101 {
5102 unsigned int flags;
5103
5104 flags = (dev->flags & ~(IFF_PROMISC |
5105 IFF_ALLMULTI |
5106 IFF_RUNNING |
5107 IFF_LOWER_UP |
5108 IFF_DORMANT)) |
5109 (dev->gflags & (IFF_PROMISC |
5110 IFF_ALLMULTI));
5111
5112 if (netif_running(dev)) {
5113 if (netif_oper_up(dev))
5114 flags |= IFF_RUNNING;
5115 if (netif_carrier_ok(dev))
5116 flags |= IFF_LOWER_UP;
5117 if (netif_dormant(dev))
5118 flags |= IFF_DORMANT;
5119 }
5120
5121 return flags;
5122 }
5123 EXPORT_SYMBOL(dev_get_flags);
5124
5125 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5126 {
5127 unsigned int old_flags = dev->flags;
5128 int ret;
5129
5130 ASSERT_RTNL();
5131
5132 /*
5133 * Set the flags on our device.
5134 */
5135
5136 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5137 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5138 IFF_AUTOMEDIA)) |
5139 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5140 IFF_ALLMULTI));
5141
5142 /*
5143 * Load in the correct multicast list now the flags have changed.
5144 */
5145
5146 if ((old_flags ^ flags) & IFF_MULTICAST)
5147 dev_change_rx_flags(dev, IFF_MULTICAST);
5148
5149 dev_set_rx_mode(dev);
5150
5151 /*
5152 * Have we downed the interface. We handle IFF_UP ourselves
5153 * according to user attempts to set it, rather than blindly
5154 * setting it.
5155 */
5156
5157 ret = 0;
5158 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
5159 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5160
5161 if (!ret)
5162 dev_set_rx_mode(dev);
5163 }
5164
5165 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5166 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5167
5168 dev->gflags ^= IFF_PROMISC;
5169 dev_set_promiscuity(dev, inc);
5170 }
5171
5172 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5173 is important. Some (broken) drivers set IFF_PROMISC, when
5174 IFF_ALLMULTI is requested not asking us and not reporting.
5175 */
5176 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5177 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5178
5179 dev->gflags ^= IFF_ALLMULTI;
5180 dev_set_allmulti(dev, inc);
5181 }
5182
5183 return ret;
5184 }
5185
5186 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
5187 {
5188 unsigned int changes = dev->flags ^ old_flags;
5189
5190 if (changes & IFF_UP) {
5191 if (dev->flags & IFF_UP)
5192 call_netdevice_notifiers(NETDEV_UP, dev);
5193 else
5194 call_netdevice_notifiers(NETDEV_DOWN, dev);
5195 }
5196
5197 if (dev->flags & IFF_UP &&
5198 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
5199 call_netdevice_notifiers(NETDEV_CHANGE, dev);
5200 }
5201
5202 /**
5203 * dev_change_flags - change device settings
5204 * @dev: device
5205 * @flags: device state flags
5206 *
5207 * Change settings on device based state flags. The flags are
5208 * in the userspace exported format.
5209 */
5210 int dev_change_flags(struct net_device *dev, unsigned int flags)
5211 {
5212 int ret;
5213 unsigned int changes, old_flags = dev->flags;
5214
5215 ret = __dev_change_flags(dev, flags);
5216 if (ret < 0)
5217 return ret;
5218
5219 changes = old_flags ^ dev->flags;
5220 if (changes)
5221 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
5222
5223 __dev_notify_flags(dev, old_flags);
5224 return ret;
5225 }
5226 EXPORT_SYMBOL(dev_change_flags);
5227
5228 /**
5229 * dev_set_mtu - Change maximum transfer unit
5230 * @dev: device
5231 * @new_mtu: new transfer unit
5232 *
5233 * Change the maximum transfer size of the network device.
5234 */
5235 int dev_set_mtu(struct net_device *dev, int new_mtu)
5236 {
5237 const struct net_device_ops *ops = dev->netdev_ops;
5238 int err;
5239
5240 if (new_mtu == dev->mtu)
5241 return 0;
5242
5243 /* MTU must be positive. */
5244 if (new_mtu < 0)
5245 return -EINVAL;
5246
5247 if (!netif_device_present(dev))
5248 return -ENODEV;
5249
5250 err = 0;
5251 if (ops->ndo_change_mtu)
5252 err = ops->ndo_change_mtu(dev, new_mtu);
5253 else
5254 dev->mtu = new_mtu;
5255
5256 if (!err)
5257 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5258 return err;
5259 }
5260 EXPORT_SYMBOL(dev_set_mtu);
5261
5262 /**
5263 * dev_set_group - Change group this device belongs to
5264 * @dev: device
5265 * @new_group: group this device should belong to
5266 */
5267 void dev_set_group(struct net_device *dev, int new_group)
5268 {
5269 dev->group = new_group;
5270 }
5271 EXPORT_SYMBOL(dev_set_group);
5272
5273 /**
5274 * dev_set_mac_address - Change Media Access Control Address
5275 * @dev: device
5276 * @sa: new address
5277 *
5278 * Change the hardware (MAC) address of the device
5279 */
5280 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5281 {
5282 const struct net_device_ops *ops = dev->netdev_ops;
5283 int err;
5284
5285 if (!ops->ndo_set_mac_address)
5286 return -EOPNOTSUPP;
5287 if (sa->sa_family != dev->type)
5288 return -EINVAL;
5289 if (!netif_device_present(dev))
5290 return -ENODEV;
5291 err = ops->ndo_set_mac_address(dev, sa);
5292 if (err)
5293 return err;
5294 dev->addr_assign_type = NET_ADDR_SET;
5295 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5296 add_device_randomness(dev->dev_addr, dev->addr_len);
5297 return 0;
5298 }
5299 EXPORT_SYMBOL(dev_set_mac_address);
5300
5301 /**
5302 * dev_change_carrier - Change device carrier
5303 * @dev: device
5304 * @new_carries: new value
5305 *
5306 * Change device carrier
5307 */
5308 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5309 {
5310 const struct net_device_ops *ops = dev->netdev_ops;
5311
5312 if (!ops->ndo_change_carrier)
5313 return -EOPNOTSUPP;
5314 if (!netif_device_present(dev))
5315 return -ENODEV;
5316 return ops->ndo_change_carrier(dev, new_carrier);
5317 }
5318 EXPORT_SYMBOL(dev_change_carrier);
5319
5320 /*
5321 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
5322 */
5323 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
5324 {
5325 int err;
5326 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
5327
5328 if (!dev)
5329 return -ENODEV;
5330
5331 switch (cmd) {
5332 case SIOCGIFFLAGS: /* Get interface flags */
5333 ifr->ifr_flags = (short) dev_get_flags(dev);
5334 return 0;
5335
5336 case SIOCGIFMETRIC: /* Get the metric on the interface
5337 (currently unused) */
5338 ifr->ifr_metric = 0;
5339 return 0;
5340
5341 case SIOCGIFMTU: /* Get the MTU of a device */
5342 ifr->ifr_mtu = dev->mtu;
5343 return 0;
5344
5345 case SIOCGIFHWADDR:
5346 if (!dev->addr_len)
5347 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
5348 else
5349 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
5350 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
5351 ifr->ifr_hwaddr.sa_family = dev->type;
5352 return 0;
5353
5354 case SIOCGIFSLAVE:
5355 err = -EINVAL;
5356 break;
5357
5358 case SIOCGIFMAP:
5359 ifr->ifr_map.mem_start = dev->mem_start;
5360 ifr->ifr_map.mem_end = dev->mem_end;
5361 ifr->ifr_map.base_addr = dev->base_addr;
5362 ifr->ifr_map.irq = dev->irq;
5363 ifr->ifr_map.dma = dev->dma;
5364 ifr->ifr_map.port = dev->if_port;
5365 return 0;
5366
5367 case SIOCGIFINDEX:
5368 ifr->ifr_ifindex = dev->ifindex;
5369 return 0;
5370
5371 case SIOCGIFTXQLEN:
5372 ifr->ifr_qlen = dev->tx_queue_len;
5373 return 0;
5374
5375 default:
5376 /* dev_ioctl() should ensure this case
5377 * is never reached
5378 */
5379 WARN_ON(1);
5380 err = -ENOTTY;
5381 break;
5382
5383 }
5384 return err;
5385 }
5386
5387 /*
5388 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
5389 */
5390 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
5391 {
5392 int err;
5393 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
5394 const struct net_device_ops *ops;
5395
5396 if (!dev)
5397 return -ENODEV;
5398
5399 ops = dev->netdev_ops;
5400
5401 switch (cmd) {
5402 case SIOCSIFFLAGS: /* Set interface flags */
5403 return dev_change_flags(dev, ifr->ifr_flags);
5404
5405 case SIOCSIFMETRIC: /* Set the metric on the interface
5406 (currently unused) */
5407 return -EOPNOTSUPP;
5408
5409 case SIOCSIFMTU: /* Set the MTU of a device */
5410 return dev_set_mtu(dev, ifr->ifr_mtu);
5411
5412 case SIOCSIFHWADDR:
5413 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
5414
5415 case SIOCSIFHWBROADCAST:
5416 if (ifr->ifr_hwaddr.sa_family != dev->type)
5417 return -EINVAL;
5418 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
5419 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
5420 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5421 return 0;
5422
5423 case SIOCSIFMAP:
5424 if (ops->ndo_set_config) {
5425 if (!netif_device_present(dev))
5426 return -ENODEV;
5427 return ops->ndo_set_config(dev, &ifr->ifr_map);
5428 }
5429 return -EOPNOTSUPP;
5430
5431 case SIOCADDMULTI:
5432 if (!ops->ndo_set_rx_mode ||
5433 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5434 return -EINVAL;
5435 if (!netif_device_present(dev))
5436 return -ENODEV;
5437 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
5438
5439 case SIOCDELMULTI:
5440 if (!ops->ndo_set_rx_mode ||
5441 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5442 return -EINVAL;
5443 if (!netif_device_present(dev))
5444 return -ENODEV;
5445 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
5446
5447 case SIOCSIFTXQLEN:
5448 if (ifr->ifr_qlen < 0)
5449 return -EINVAL;
5450 dev->tx_queue_len = ifr->ifr_qlen;
5451 return 0;
5452
5453 case SIOCSIFNAME:
5454 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
5455 return dev_change_name(dev, ifr->ifr_newname);
5456
5457 case SIOCSHWTSTAMP:
5458 err = net_hwtstamp_validate(ifr);
5459 if (err)
5460 return err;
5461 /* fall through */
5462
5463 /*
5464 * Unknown or private ioctl
5465 */
5466 default:
5467 if ((cmd >= SIOCDEVPRIVATE &&
5468 cmd <= SIOCDEVPRIVATE + 15) ||
5469 cmd == SIOCBONDENSLAVE ||
5470 cmd == SIOCBONDRELEASE ||
5471 cmd == SIOCBONDSETHWADDR ||
5472 cmd == SIOCBONDSLAVEINFOQUERY ||
5473 cmd == SIOCBONDINFOQUERY ||
5474 cmd == SIOCBONDCHANGEACTIVE ||
5475 cmd == SIOCGMIIPHY ||
5476 cmd == SIOCGMIIREG ||
5477 cmd == SIOCSMIIREG ||
5478 cmd == SIOCBRADDIF ||
5479 cmd == SIOCBRDELIF ||
5480 cmd == SIOCSHWTSTAMP ||
5481 cmd == SIOCWANDEV) {
5482 err = -EOPNOTSUPP;
5483 if (ops->ndo_do_ioctl) {
5484 if (netif_device_present(dev))
5485 err = ops->ndo_do_ioctl(dev, ifr, cmd);
5486 else
5487 err = -ENODEV;
5488 }
5489 } else
5490 err = -EINVAL;
5491
5492 }
5493 return err;
5494 }
5495
5496 /*
5497 * This function handles all "interface"-type I/O control requests. The actual
5498 * 'doing' part of this is dev_ifsioc above.
5499 */
5500
5501 /**
5502 * dev_ioctl - network device ioctl
5503 * @net: the applicable net namespace
5504 * @cmd: command to issue
5505 * @arg: pointer to a struct ifreq in user space
5506 *
5507 * Issue ioctl functions to devices. This is normally called by the
5508 * user space syscall interfaces but can sometimes be useful for
5509 * other purposes. The return value is the return from the syscall if
5510 * positive or a negative errno code on error.
5511 */
5512
5513 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5514 {
5515 struct ifreq ifr;
5516 int ret;
5517 char *colon;
5518
5519 /* One special case: SIOCGIFCONF takes ifconf argument
5520 and requires shared lock, because it sleeps writing
5521 to user space.
5522 */
5523
5524 if (cmd == SIOCGIFCONF) {
5525 rtnl_lock();
5526 ret = dev_ifconf(net, (char __user *) arg);
5527 rtnl_unlock();
5528 return ret;
5529 }
5530 if (cmd == SIOCGIFNAME)
5531 return dev_ifname(net, (struct ifreq __user *)arg);
5532
5533 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5534 return -EFAULT;
5535
5536 ifr.ifr_name[IFNAMSIZ-1] = 0;
5537
5538 colon = strchr(ifr.ifr_name, ':');
5539 if (colon)
5540 *colon = 0;
5541
5542 /*
5543 * See which interface the caller is talking about.
5544 */
5545
5546 switch (cmd) {
5547 /*
5548 * These ioctl calls:
5549 * - can be done by all.
5550 * - atomic and do not require locking.
5551 * - return a value
5552 */
5553 case SIOCGIFFLAGS:
5554 case SIOCGIFMETRIC:
5555 case SIOCGIFMTU:
5556 case SIOCGIFHWADDR:
5557 case SIOCGIFSLAVE:
5558 case SIOCGIFMAP:
5559 case SIOCGIFINDEX:
5560 case SIOCGIFTXQLEN:
5561 dev_load(net, ifr.ifr_name);
5562 rcu_read_lock();
5563 ret = dev_ifsioc_locked(net, &ifr, cmd);
5564 rcu_read_unlock();
5565 if (!ret) {
5566 if (colon)
5567 *colon = ':';
5568 if (copy_to_user(arg, &ifr,
5569 sizeof(struct ifreq)))
5570 ret = -EFAULT;
5571 }
5572 return ret;
5573
5574 case SIOCETHTOOL:
5575 dev_load(net, ifr.ifr_name);
5576 rtnl_lock();
5577 ret = dev_ethtool(net, &ifr);
5578 rtnl_unlock();
5579 if (!ret) {
5580 if (colon)
5581 *colon = ':';
5582 if (copy_to_user(arg, &ifr,
5583 sizeof(struct ifreq)))
5584 ret = -EFAULT;
5585 }
5586 return ret;
5587
5588 /*
5589 * These ioctl calls:
5590 * - require superuser power.
5591 * - require strict serialization.
5592 * - return a value
5593 */
5594 case SIOCGMIIPHY:
5595 case SIOCGMIIREG:
5596 case SIOCSIFNAME:
5597 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
5598 return -EPERM;
5599 dev_load(net, ifr.ifr_name);
5600 rtnl_lock();
5601 ret = dev_ifsioc(net, &ifr, cmd);
5602 rtnl_unlock();
5603 if (!ret) {
5604 if (colon)
5605 *colon = ':';
5606 if (copy_to_user(arg, &ifr,
5607 sizeof(struct ifreq)))
5608 ret = -EFAULT;
5609 }
5610 return ret;
5611
5612 /*
5613 * These ioctl calls:
5614 * - require superuser power.
5615 * - require strict serialization.
5616 * - do not return a value
5617 */
5618 case SIOCSIFMAP:
5619 case SIOCSIFTXQLEN:
5620 if (!capable(CAP_NET_ADMIN))
5621 return -EPERM;
5622 /* fall through */
5623 /*
5624 * These ioctl calls:
5625 * - require local superuser power.
5626 * - require strict serialization.
5627 * - do not return a value
5628 */
5629 case SIOCSIFFLAGS:
5630 case SIOCSIFMETRIC:
5631 case SIOCSIFMTU:
5632 case SIOCSIFHWADDR:
5633 case SIOCSIFSLAVE:
5634 case SIOCADDMULTI:
5635 case SIOCDELMULTI:
5636 case SIOCSIFHWBROADCAST:
5637 case SIOCSMIIREG:
5638 case SIOCBONDENSLAVE:
5639 case SIOCBONDRELEASE:
5640 case SIOCBONDSETHWADDR:
5641 case SIOCBONDCHANGEACTIVE:
5642 case SIOCBRADDIF:
5643 case SIOCBRDELIF:
5644 case SIOCSHWTSTAMP:
5645 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
5646 return -EPERM;
5647 /* fall through */
5648 case SIOCBONDSLAVEINFOQUERY:
5649 case SIOCBONDINFOQUERY:
5650 dev_load(net, ifr.ifr_name);
5651 rtnl_lock();
5652 ret = dev_ifsioc(net, &ifr, cmd);
5653 rtnl_unlock();
5654 return ret;
5655
5656 case SIOCGIFMEM:
5657 /* Get the per device memory space. We can add this but
5658 * currently do not support it */
5659 case SIOCSIFMEM:
5660 /* Set the per device memory buffer space.
5661 * Not applicable in our case */
5662 case SIOCSIFLINK:
5663 return -ENOTTY;
5664
5665 /*
5666 * Unknown or private ioctl.
5667 */
5668 default:
5669 if (cmd == SIOCWANDEV ||
5670 (cmd >= SIOCDEVPRIVATE &&
5671 cmd <= SIOCDEVPRIVATE + 15)) {
5672 dev_load(net, ifr.ifr_name);
5673 rtnl_lock();
5674 ret = dev_ifsioc(net, &ifr, cmd);
5675 rtnl_unlock();
5676 if (!ret && copy_to_user(arg, &ifr,
5677 sizeof(struct ifreq)))
5678 ret = -EFAULT;
5679 return ret;
5680 }
5681 /* Take care of Wireless Extensions */
5682 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5683 return wext_handle_ioctl(net, &ifr, cmd, arg);
5684 return -ENOTTY;
5685 }
5686 }
5687
5688
5689 /**
5690 * dev_new_index - allocate an ifindex
5691 * @net: the applicable net namespace
5692 *
5693 * Returns a suitable unique value for a new device interface
5694 * number. The caller must hold the rtnl semaphore or the
5695 * dev_base_lock to be sure it remains unique.
5696 */
5697 static int dev_new_index(struct net *net)
5698 {
5699 int ifindex = net->ifindex;
5700 for (;;) {
5701 if (++ifindex <= 0)
5702 ifindex = 1;
5703 if (!__dev_get_by_index(net, ifindex))
5704 return net->ifindex = ifindex;
5705 }
5706 }
5707
5708 /* Delayed registration/unregisteration */
5709 static LIST_HEAD(net_todo_list);
5710
5711 static void net_set_todo(struct net_device *dev)
5712 {
5713 list_add_tail(&dev->todo_list, &net_todo_list);
5714 }
5715
5716 static void rollback_registered_many(struct list_head *head)
5717 {
5718 struct net_device *dev, *tmp;
5719
5720 BUG_ON(dev_boot_phase);
5721 ASSERT_RTNL();
5722
5723 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5724 /* Some devices call without registering
5725 * for initialization unwind. Remove those
5726 * devices and proceed with the remaining.
5727 */
5728 if (dev->reg_state == NETREG_UNINITIALIZED) {
5729 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5730 dev->name, dev);
5731
5732 WARN_ON(1);
5733 list_del(&dev->unreg_list);
5734 continue;
5735 }
5736 dev->dismantle = true;
5737 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5738 }
5739
5740 /* If device is running, close it first. */
5741 dev_close_many(head);
5742
5743 list_for_each_entry(dev, head, unreg_list) {
5744 /* And unlink it from device chain. */
5745 unlist_netdevice(dev);
5746
5747 dev->reg_state = NETREG_UNREGISTERING;
5748 }
5749
5750 synchronize_net();
5751
5752 list_for_each_entry(dev, head, unreg_list) {
5753 /* Shutdown queueing discipline. */
5754 dev_shutdown(dev);
5755
5756
5757 /* Notify protocols, that we are about to destroy
5758 this device. They should clean all the things.
5759 */
5760 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5761
5762 if (!dev->rtnl_link_ops ||
5763 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5764 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5765
5766 /*
5767 * Flush the unicast and multicast chains
5768 */
5769 dev_uc_flush(dev);
5770 dev_mc_flush(dev);
5771
5772 if (dev->netdev_ops->ndo_uninit)
5773 dev->netdev_ops->ndo_uninit(dev);
5774
5775 /* Notifier chain MUST detach us all upper devices. */
5776 WARN_ON(netdev_has_any_upper_dev(dev));
5777
5778 /* Remove entries from kobject tree */
5779 netdev_unregister_kobject(dev);
5780 #ifdef CONFIG_XPS
5781 /* Remove XPS queueing entries */
5782 netif_reset_xps_queues_gt(dev, 0);
5783 #endif
5784 }
5785
5786 synchronize_net();
5787
5788 list_for_each_entry(dev, head, unreg_list)
5789 dev_put(dev);
5790 }
5791
5792 static void rollback_registered(struct net_device *dev)
5793 {
5794 LIST_HEAD(single);
5795
5796 list_add(&dev->unreg_list, &single);
5797 rollback_registered_many(&single);
5798 list_del(&single);
5799 }
5800
5801 static netdev_features_t netdev_fix_features(struct net_device *dev,
5802 netdev_features_t features)
5803 {
5804 /* Fix illegal checksum combinations */
5805 if ((features & NETIF_F_HW_CSUM) &&
5806 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5807 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5808 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5809 }
5810
5811 /* Fix illegal SG+CSUM combinations. */
5812 if ((features & NETIF_F_SG) &&
5813 !(features & NETIF_F_ALL_CSUM)) {
5814 netdev_dbg(dev,
5815 "Dropping NETIF_F_SG since no checksum feature.\n");
5816 features &= ~NETIF_F_SG;
5817 }
5818
5819 /* TSO requires that SG is present as well. */
5820 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5821 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5822 features &= ~NETIF_F_ALL_TSO;
5823 }
5824
5825 /* TSO ECN requires that TSO is present as well. */
5826 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5827 features &= ~NETIF_F_TSO_ECN;
5828
5829 /* Software GSO depends on SG. */
5830 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5831 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5832 features &= ~NETIF_F_GSO;
5833 }
5834
5835 /* UFO needs SG and checksumming */
5836 if (features & NETIF_F_UFO) {
5837 /* maybe split UFO into V4 and V6? */
5838 if (!((features & NETIF_F_GEN_CSUM) ||
5839 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5840 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5841 netdev_dbg(dev,
5842 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5843 features &= ~NETIF_F_UFO;
5844 }
5845
5846 if (!(features & NETIF_F_SG)) {
5847 netdev_dbg(dev,
5848 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5849 features &= ~NETIF_F_UFO;
5850 }
5851 }
5852
5853 return features;
5854 }
5855
5856 int __netdev_update_features(struct net_device *dev)
5857 {
5858 netdev_features_t features;
5859 int err = 0;
5860
5861 ASSERT_RTNL();
5862
5863 features = netdev_get_wanted_features(dev);
5864
5865 if (dev->netdev_ops->ndo_fix_features)
5866 features = dev->netdev_ops->ndo_fix_features(dev, features);
5867
5868 /* driver might be less strict about feature dependencies */
5869 features = netdev_fix_features(dev, features);
5870
5871 if (dev->features == features)
5872 return 0;
5873
5874 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5875 &dev->features, &features);
5876
5877 if (dev->netdev_ops->ndo_set_features)
5878 err = dev->netdev_ops->ndo_set_features(dev, features);
5879
5880 if (unlikely(err < 0)) {
5881 netdev_err(dev,
5882 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5883 err, &features, &dev->features);
5884 return -1;
5885 }
5886
5887 if (!err)
5888 dev->features = features;
5889
5890 return 1;
5891 }
5892
5893 /**
5894 * netdev_update_features - recalculate device features
5895 * @dev: the device to check
5896 *
5897 * Recalculate dev->features set and send notifications if it
5898 * has changed. Should be called after driver or hardware dependent
5899 * conditions might have changed that influence the features.
5900 */
5901 void netdev_update_features(struct net_device *dev)
5902 {
5903 if (__netdev_update_features(dev))
5904 netdev_features_change(dev);
5905 }
5906 EXPORT_SYMBOL(netdev_update_features);
5907
5908 /**
5909 * netdev_change_features - recalculate device features
5910 * @dev: the device to check
5911 *
5912 * Recalculate dev->features set and send notifications even
5913 * if they have not changed. Should be called instead of
5914 * netdev_update_features() if also dev->vlan_features might
5915 * have changed to allow the changes to be propagated to stacked
5916 * VLAN devices.
5917 */
5918 void netdev_change_features(struct net_device *dev)
5919 {
5920 __netdev_update_features(dev);
5921 netdev_features_change(dev);
5922 }
5923 EXPORT_SYMBOL(netdev_change_features);
5924
5925 /**
5926 * netif_stacked_transfer_operstate - transfer operstate
5927 * @rootdev: the root or lower level device to transfer state from
5928 * @dev: the device to transfer operstate to
5929 *
5930 * Transfer operational state from root to device. This is normally
5931 * called when a stacking relationship exists between the root
5932 * device and the device(a leaf device).
5933 */
5934 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5935 struct net_device *dev)
5936 {
5937 if (rootdev->operstate == IF_OPER_DORMANT)
5938 netif_dormant_on(dev);
5939 else
5940 netif_dormant_off(dev);
5941
5942 if (netif_carrier_ok(rootdev)) {
5943 if (!netif_carrier_ok(dev))
5944 netif_carrier_on(dev);
5945 } else {
5946 if (netif_carrier_ok(dev))
5947 netif_carrier_off(dev);
5948 }
5949 }
5950 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5951
5952 #ifdef CONFIG_RPS
5953 static int netif_alloc_rx_queues(struct net_device *dev)
5954 {
5955 unsigned int i, count = dev->num_rx_queues;
5956 struct netdev_rx_queue *rx;
5957
5958 BUG_ON(count < 1);
5959
5960 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5961 if (!rx)
5962 return -ENOMEM;
5963
5964 dev->_rx = rx;
5965
5966 for (i = 0; i < count; i++)
5967 rx[i].dev = dev;
5968 return 0;
5969 }
5970 #endif
5971
5972 static void netdev_init_one_queue(struct net_device *dev,
5973 struct netdev_queue *queue, void *_unused)
5974 {
5975 /* Initialize queue lock */
5976 spin_lock_init(&queue->_xmit_lock);
5977 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5978 queue->xmit_lock_owner = -1;
5979 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5980 queue->dev = dev;
5981 #ifdef CONFIG_BQL
5982 dql_init(&queue->dql, HZ);
5983 #endif
5984 }
5985
5986 static int netif_alloc_netdev_queues(struct net_device *dev)
5987 {
5988 unsigned int count = dev->num_tx_queues;
5989 struct netdev_queue *tx;
5990
5991 BUG_ON(count < 1);
5992
5993 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5994 if (!tx)
5995 return -ENOMEM;
5996
5997 dev->_tx = tx;
5998
5999 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6000 spin_lock_init(&dev->tx_global_lock);
6001
6002 return 0;
6003 }
6004
6005 /**
6006 * register_netdevice - register a network device
6007 * @dev: device to register
6008 *
6009 * Take a completed network device structure and add it to the kernel
6010 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6011 * chain. 0 is returned on success. A negative errno code is returned
6012 * on a failure to set up the device, or if the name is a duplicate.
6013 *
6014 * Callers must hold the rtnl semaphore. You may want
6015 * register_netdev() instead of this.
6016 *
6017 * BUGS:
6018 * The locking appears insufficient to guarantee two parallel registers
6019 * will not get the same name.
6020 */
6021
6022 int register_netdevice(struct net_device *dev)
6023 {
6024 int ret;
6025 struct net *net = dev_net(dev);
6026
6027 BUG_ON(dev_boot_phase);
6028 ASSERT_RTNL();
6029
6030 might_sleep();
6031
6032 /* When net_device's are persistent, this will be fatal. */
6033 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6034 BUG_ON(!net);
6035
6036 spin_lock_init(&dev->addr_list_lock);
6037 netdev_set_addr_lockdep_class(dev);
6038
6039 dev->iflink = -1;
6040
6041 ret = dev_get_valid_name(net, dev, dev->name);
6042 if (ret < 0)
6043 goto out;
6044
6045 /* Init, if this function is available */
6046 if (dev->netdev_ops->ndo_init) {
6047 ret = dev->netdev_ops->ndo_init(dev);
6048 if (ret) {
6049 if (ret > 0)
6050 ret = -EIO;
6051 goto out;
6052 }
6053 }
6054
6055 if (((dev->hw_features | dev->features) & NETIF_F_HW_VLAN_FILTER) &&
6056 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6057 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6058 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6059 ret = -EINVAL;
6060 goto err_uninit;
6061 }
6062
6063 ret = -EBUSY;
6064 if (!dev->ifindex)
6065 dev->ifindex = dev_new_index(net);
6066 else if (__dev_get_by_index(net, dev->ifindex))
6067 goto err_uninit;
6068
6069 if (dev->iflink == -1)
6070 dev->iflink = dev->ifindex;
6071
6072 /* Transfer changeable features to wanted_features and enable
6073 * software offloads (GSO and GRO).
6074 */
6075 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6076 dev->features |= NETIF_F_SOFT_FEATURES;
6077 dev->wanted_features = dev->features & dev->hw_features;
6078
6079 /* Turn on no cache copy if HW is doing checksum */
6080 if (!(dev->flags & IFF_LOOPBACK)) {
6081 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6082 if (dev->features & NETIF_F_ALL_CSUM) {
6083 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
6084 dev->features |= NETIF_F_NOCACHE_COPY;
6085 }
6086 }
6087
6088 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6089 */
6090 dev->vlan_features |= NETIF_F_HIGHDMA;
6091
6092 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6093 ret = notifier_to_errno(ret);
6094 if (ret)
6095 goto err_uninit;
6096
6097 ret = netdev_register_kobject(dev);
6098 if (ret)
6099 goto err_uninit;
6100 dev->reg_state = NETREG_REGISTERED;
6101
6102 __netdev_update_features(dev);
6103
6104 /*
6105 * Default initial state at registry is that the
6106 * device is present.
6107 */
6108
6109 set_bit(__LINK_STATE_PRESENT, &dev->state);
6110
6111 linkwatch_init_dev(dev);
6112
6113 dev_init_scheduler(dev);
6114 dev_hold(dev);
6115 list_netdevice(dev);
6116 add_device_randomness(dev->dev_addr, dev->addr_len);
6117
6118 /* If the device has permanent device address, driver should
6119 * set dev_addr and also addr_assign_type should be set to
6120 * NET_ADDR_PERM (default value).
6121 */
6122 if (dev->addr_assign_type == NET_ADDR_PERM)
6123 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6124
6125 /* Notify protocols, that a new device appeared. */
6126 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6127 ret = notifier_to_errno(ret);
6128 if (ret) {
6129 rollback_registered(dev);
6130 dev->reg_state = NETREG_UNREGISTERED;
6131 }
6132 /*
6133 * Prevent userspace races by waiting until the network
6134 * device is fully setup before sending notifications.
6135 */
6136 if (!dev->rtnl_link_ops ||
6137 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6138 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6139
6140 out:
6141 return ret;
6142
6143 err_uninit:
6144 if (dev->netdev_ops->ndo_uninit)
6145 dev->netdev_ops->ndo_uninit(dev);
6146 goto out;
6147 }
6148 EXPORT_SYMBOL(register_netdevice);
6149
6150 /**
6151 * init_dummy_netdev - init a dummy network device for NAPI
6152 * @dev: device to init
6153 *
6154 * This takes a network device structure and initialize the minimum
6155 * amount of fields so it can be used to schedule NAPI polls without
6156 * registering a full blown interface. This is to be used by drivers
6157 * that need to tie several hardware interfaces to a single NAPI
6158 * poll scheduler due to HW limitations.
6159 */
6160 int init_dummy_netdev(struct net_device *dev)
6161 {
6162 /* Clear everything. Note we don't initialize spinlocks
6163 * are they aren't supposed to be taken by any of the
6164 * NAPI code and this dummy netdev is supposed to be
6165 * only ever used for NAPI polls
6166 */
6167 memset(dev, 0, sizeof(struct net_device));
6168
6169 /* make sure we BUG if trying to hit standard
6170 * register/unregister code path
6171 */
6172 dev->reg_state = NETREG_DUMMY;
6173
6174 /* NAPI wants this */
6175 INIT_LIST_HEAD(&dev->napi_list);
6176
6177 /* a dummy interface is started by default */
6178 set_bit(__LINK_STATE_PRESENT, &dev->state);
6179 set_bit(__LINK_STATE_START, &dev->state);
6180
6181 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6182 * because users of this 'device' dont need to change
6183 * its refcount.
6184 */
6185
6186 return 0;
6187 }
6188 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6189
6190
6191 /**
6192 * register_netdev - register a network device
6193 * @dev: device to register
6194 *
6195 * Take a completed network device structure and add it to the kernel
6196 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6197 * chain. 0 is returned on success. A negative errno code is returned
6198 * on a failure to set up the device, or if the name is a duplicate.
6199 *
6200 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6201 * and expands the device name if you passed a format string to
6202 * alloc_netdev.
6203 */
6204 int register_netdev(struct net_device *dev)
6205 {
6206 int err;
6207
6208 rtnl_lock();
6209 err = register_netdevice(dev);
6210 rtnl_unlock();
6211 return err;
6212 }
6213 EXPORT_SYMBOL(register_netdev);
6214
6215 int netdev_refcnt_read(const struct net_device *dev)
6216 {
6217 int i, refcnt = 0;
6218
6219 for_each_possible_cpu(i)
6220 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6221 return refcnt;
6222 }
6223 EXPORT_SYMBOL(netdev_refcnt_read);
6224
6225 /**
6226 * netdev_wait_allrefs - wait until all references are gone.
6227 * @dev: target net_device
6228 *
6229 * This is called when unregistering network devices.
6230 *
6231 * Any protocol or device that holds a reference should register
6232 * for netdevice notification, and cleanup and put back the
6233 * reference if they receive an UNREGISTER event.
6234 * We can get stuck here if buggy protocols don't correctly
6235 * call dev_put.
6236 */
6237 static void netdev_wait_allrefs(struct net_device *dev)
6238 {
6239 unsigned long rebroadcast_time, warning_time;
6240 int refcnt;
6241
6242 linkwatch_forget_dev(dev);
6243
6244 rebroadcast_time = warning_time = jiffies;
6245 refcnt = netdev_refcnt_read(dev);
6246
6247 while (refcnt != 0) {
6248 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6249 rtnl_lock();
6250
6251 /* Rebroadcast unregister notification */
6252 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6253
6254 __rtnl_unlock();
6255 rcu_barrier();
6256 rtnl_lock();
6257
6258 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6259 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6260 &dev->state)) {
6261 /* We must not have linkwatch events
6262 * pending on unregister. If this
6263 * happens, we simply run the queue
6264 * unscheduled, resulting in a noop
6265 * for this device.
6266 */
6267 linkwatch_run_queue();
6268 }
6269
6270 __rtnl_unlock();
6271
6272 rebroadcast_time = jiffies;
6273 }
6274
6275 msleep(250);
6276
6277 refcnt = netdev_refcnt_read(dev);
6278
6279 if (time_after(jiffies, warning_time + 10 * HZ)) {
6280 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6281 dev->name, refcnt);
6282 warning_time = jiffies;
6283 }
6284 }
6285 }
6286
6287 /* The sequence is:
6288 *
6289 * rtnl_lock();
6290 * ...
6291 * register_netdevice(x1);
6292 * register_netdevice(x2);
6293 * ...
6294 * unregister_netdevice(y1);
6295 * unregister_netdevice(y2);
6296 * ...
6297 * rtnl_unlock();
6298 * free_netdev(y1);
6299 * free_netdev(y2);
6300 *
6301 * We are invoked by rtnl_unlock().
6302 * This allows us to deal with problems:
6303 * 1) We can delete sysfs objects which invoke hotplug
6304 * without deadlocking with linkwatch via keventd.
6305 * 2) Since we run with the RTNL semaphore not held, we can sleep
6306 * safely in order to wait for the netdev refcnt to drop to zero.
6307 *
6308 * We must not return until all unregister events added during
6309 * the interval the lock was held have been completed.
6310 */
6311 void netdev_run_todo(void)
6312 {
6313 struct list_head list;
6314
6315 /* Snapshot list, allow later requests */
6316 list_replace_init(&net_todo_list, &list);
6317
6318 __rtnl_unlock();
6319
6320
6321 /* Wait for rcu callbacks to finish before next phase */
6322 if (!list_empty(&list))
6323 rcu_barrier();
6324
6325 while (!list_empty(&list)) {
6326 struct net_device *dev
6327 = list_first_entry(&list, struct net_device, todo_list);
6328 list_del(&dev->todo_list);
6329
6330 rtnl_lock();
6331 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6332 __rtnl_unlock();
6333
6334 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6335 pr_err("network todo '%s' but state %d\n",
6336 dev->name, dev->reg_state);
6337 dump_stack();
6338 continue;
6339 }
6340
6341 dev->reg_state = NETREG_UNREGISTERED;
6342
6343 on_each_cpu(flush_backlog, dev, 1);
6344
6345 netdev_wait_allrefs(dev);
6346
6347 /* paranoia */
6348 BUG_ON(netdev_refcnt_read(dev));
6349 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6350 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6351 WARN_ON(dev->dn_ptr);
6352
6353 if (dev->destructor)
6354 dev->destructor(dev);
6355
6356 /* Free network device */
6357 kobject_put(&dev->dev.kobj);
6358 }
6359 }
6360
6361 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6362 * fields in the same order, with only the type differing.
6363 */
6364 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6365 const struct net_device_stats *netdev_stats)
6366 {
6367 #if BITS_PER_LONG == 64
6368 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6369 memcpy(stats64, netdev_stats, sizeof(*stats64));
6370 #else
6371 size_t i, n = sizeof(*stats64) / sizeof(u64);
6372 const unsigned long *src = (const unsigned long *)netdev_stats;
6373 u64 *dst = (u64 *)stats64;
6374
6375 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6376 sizeof(*stats64) / sizeof(u64));
6377 for (i = 0; i < n; i++)
6378 dst[i] = src[i];
6379 #endif
6380 }
6381 EXPORT_SYMBOL(netdev_stats_to_stats64);
6382
6383 /**
6384 * dev_get_stats - get network device statistics
6385 * @dev: device to get statistics from
6386 * @storage: place to store stats
6387 *
6388 * Get network statistics from device. Return @storage.
6389 * The device driver may provide its own method by setting
6390 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6391 * otherwise the internal statistics structure is used.
6392 */
6393 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6394 struct rtnl_link_stats64 *storage)
6395 {
6396 const struct net_device_ops *ops = dev->netdev_ops;
6397
6398 if (ops->ndo_get_stats64) {
6399 memset(storage, 0, sizeof(*storage));
6400 ops->ndo_get_stats64(dev, storage);
6401 } else if (ops->ndo_get_stats) {
6402 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6403 } else {
6404 netdev_stats_to_stats64(storage, &dev->stats);
6405 }
6406 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6407 return storage;
6408 }
6409 EXPORT_SYMBOL(dev_get_stats);
6410
6411 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6412 {
6413 struct netdev_queue *queue = dev_ingress_queue(dev);
6414
6415 #ifdef CONFIG_NET_CLS_ACT
6416 if (queue)
6417 return queue;
6418 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6419 if (!queue)
6420 return NULL;
6421 netdev_init_one_queue(dev, queue, NULL);
6422 queue->qdisc = &noop_qdisc;
6423 queue->qdisc_sleeping = &noop_qdisc;
6424 rcu_assign_pointer(dev->ingress_queue, queue);
6425 #endif
6426 return queue;
6427 }
6428
6429 static const struct ethtool_ops default_ethtool_ops;
6430
6431 void netdev_set_default_ethtool_ops(struct net_device *dev,
6432 const struct ethtool_ops *ops)
6433 {
6434 if (dev->ethtool_ops == &default_ethtool_ops)
6435 dev->ethtool_ops = ops;
6436 }
6437 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6438
6439 /**
6440 * alloc_netdev_mqs - allocate network device
6441 * @sizeof_priv: size of private data to allocate space for
6442 * @name: device name format string
6443 * @setup: callback to initialize device
6444 * @txqs: the number of TX subqueues to allocate
6445 * @rxqs: the number of RX subqueues to allocate
6446 *
6447 * Allocates a struct net_device with private data area for driver use
6448 * and performs basic initialization. Also allocates subquue structs
6449 * for each queue on the device.
6450 */
6451 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6452 void (*setup)(struct net_device *),
6453 unsigned int txqs, unsigned int rxqs)
6454 {
6455 struct net_device *dev;
6456 size_t alloc_size;
6457 struct net_device *p;
6458
6459 BUG_ON(strlen(name) >= sizeof(dev->name));
6460
6461 if (txqs < 1) {
6462 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6463 return NULL;
6464 }
6465
6466 #ifdef CONFIG_RPS
6467 if (rxqs < 1) {
6468 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6469 return NULL;
6470 }
6471 #endif
6472
6473 alloc_size = sizeof(struct net_device);
6474 if (sizeof_priv) {
6475 /* ensure 32-byte alignment of private area */
6476 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6477 alloc_size += sizeof_priv;
6478 }
6479 /* ensure 32-byte alignment of whole construct */
6480 alloc_size += NETDEV_ALIGN - 1;
6481
6482 p = kzalloc(alloc_size, GFP_KERNEL);
6483 if (!p)
6484 return NULL;
6485
6486 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6487 dev->padded = (char *)dev - (char *)p;
6488
6489 dev->pcpu_refcnt = alloc_percpu(int);
6490 if (!dev->pcpu_refcnt)
6491 goto free_p;
6492
6493 if (dev_addr_init(dev))
6494 goto free_pcpu;
6495
6496 dev_mc_init(dev);
6497 dev_uc_init(dev);
6498
6499 dev_net_set(dev, &init_net);
6500
6501 dev->gso_max_size = GSO_MAX_SIZE;
6502 dev->gso_max_segs = GSO_MAX_SEGS;
6503
6504 INIT_LIST_HEAD(&dev->napi_list);
6505 INIT_LIST_HEAD(&dev->unreg_list);
6506 INIT_LIST_HEAD(&dev->link_watch_list);
6507 INIT_LIST_HEAD(&dev->upper_dev_list);
6508 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6509 setup(dev);
6510
6511 dev->num_tx_queues = txqs;
6512 dev->real_num_tx_queues = txqs;
6513 if (netif_alloc_netdev_queues(dev))
6514 goto free_all;
6515
6516 #ifdef CONFIG_RPS
6517 dev->num_rx_queues = rxqs;
6518 dev->real_num_rx_queues = rxqs;
6519 if (netif_alloc_rx_queues(dev))
6520 goto free_all;
6521 #endif
6522
6523 strcpy(dev->name, name);
6524 dev->group = INIT_NETDEV_GROUP;
6525 if (!dev->ethtool_ops)
6526 dev->ethtool_ops = &default_ethtool_ops;
6527 return dev;
6528
6529 free_all:
6530 free_netdev(dev);
6531 return NULL;
6532
6533 free_pcpu:
6534 free_percpu(dev->pcpu_refcnt);
6535 kfree(dev->_tx);
6536 #ifdef CONFIG_RPS
6537 kfree(dev->_rx);
6538 #endif
6539
6540 free_p:
6541 kfree(p);
6542 return NULL;
6543 }
6544 EXPORT_SYMBOL(alloc_netdev_mqs);
6545
6546 /**
6547 * free_netdev - free network device
6548 * @dev: device
6549 *
6550 * This function does the last stage of destroying an allocated device
6551 * interface. The reference to the device object is released.
6552 * If this is the last reference then it will be freed.
6553 */
6554 void free_netdev(struct net_device *dev)
6555 {
6556 struct napi_struct *p, *n;
6557
6558 release_net(dev_net(dev));
6559
6560 kfree(dev->_tx);
6561 #ifdef CONFIG_RPS
6562 kfree(dev->_rx);
6563 #endif
6564
6565 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6566
6567 /* Flush device addresses */
6568 dev_addr_flush(dev);
6569
6570 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6571 netif_napi_del(p);
6572
6573 free_percpu(dev->pcpu_refcnt);
6574 dev->pcpu_refcnt = NULL;
6575
6576 /* Compatibility with error handling in drivers */
6577 if (dev->reg_state == NETREG_UNINITIALIZED) {
6578 kfree((char *)dev - dev->padded);
6579 return;
6580 }
6581
6582 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6583 dev->reg_state = NETREG_RELEASED;
6584
6585 /* will free via device release */
6586 put_device(&dev->dev);
6587 }
6588 EXPORT_SYMBOL(free_netdev);
6589
6590 /**
6591 * synchronize_net - Synchronize with packet receive processing
6592 *
6593 * Wait for packets currently being received to be done.
6594 * Does not block later packets from starting.
6595 */
6596 void synchronize_net(void)
6597 {
6598 might_sleep();
6599 if (rtnl_is_locked())
6600 synchronize_rcu_expedited();
6601 else
6602 synchronize_rcu();
6603 }
6604 EXPORT_SYMBOL(synchronize_net);
6605
6606 /**
6607 * unregister_netdevice_queue - remove device from the kernel
6608 * @dev: device
6609 * @head: list
6610 *
6611 * This function shuts down a device interface and removes it
6612 * from the kernel tables.
6613 * If head not NULL, device is queued to be unregistered later.
6614 *
6615 * Callers must hold the rtnl semaphore. You may want
6616 * unregister_netdev() instead of this.
6617 */
6618
6619 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6620 {
6621 ASSERT_RTNL();
6622
6623 if (head) {
6624 list_move_tail(&dev->unreg_list, head);
6625 } else {
6626 rollback_registered(dev);
6627 /* Finish processing unregister after unlock */
6628 net_set_todo(dev);
6629 }
6630 }
6631 EXPORT_SYMBOL(unregister_netdevice_queue);
6632
6633 /**
6634 * unregister_netdevice_many - unregister many devices
6635 * @head: list of devices
6636 */
6637 void unregister_netdevice_many(struct list_head *head)
6638 {
6639 struct net_device *dev;
6640
6641 if (!list_empty(head)) {
6642 rollback_registered_many(head);
6643 list_for_each_entry(dev, head, unreg_list)
6644 net_set_todo(dev);
6645 }
6646 }
6647 EXPORT_SYMBOL(unregister_netdevice_many);
6648
6649 /**
6650 * unregister_netdev - remove device from the kernel
6651 * @dev: device
6652 *
6653 * This function shuts down a device interface and removes it
6654 * from the kernel tables.
6655 *
6656 * This is just a wrapper for unregister_netdevice that takes
6657 * the rtnl semaphore. In general you want to use this and not
6658 * unregister_netdevice.
6659 */
6660 void unregister_netdev(struct net_device *dev)
6661 {
6662 rtnl_lock();
6663 unregister_netdevice(dev);
6664 rtnl_unlock();
6665 }
6666 EXPORT_SYMBOL(unregister_netdev);
6667
6668 /**
6669 * dev_change_net_namespace - move device to different nethost namespace
6670 * @dev: device
6671 * @net: network namespace
6672 * @pat: If not NULL name pattern to try if the current device name
6673 * is already taken in the destination network namespace.
6674 *
6675 * This function shuts down a device interface and moves it
6676 * to a new network namespace. On success 0 is returned, on
6677 * a failure a netagive errno code is returned.
6678 *
6679 * Callers must hold the rtnl semaphore.
6680 */
6681
6682 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6683 {
6684 int err;
6685
6686 ASSERT_RTNL();
6687
6688 /* Don't allow namespace local devices to be moved. */
6689 err = -EINVAL;
6690 if (dev->features & NETIF_F_NETNS_LOCAL)
6691 goto out;
6692
6693 /* Ensure the device has been registrered */
6694 if (dev->reg_state != NETREG_REGISTERED)
6695 goto out;
6696
6697 /* Get out if there is nothing todo */
6698 err = 0;
6699 if (net_eq(dev_net(dev), net))
6700 goto out;
6701
6702 /* Pick the destination device name, and ensure
6703 * we can use it in the destination network namespace.
6704 */
6705 err = -EEXIST;
6706 if (__dev_get_by_name(net, dev->name)) {
6707 /* We get here if we can't use the current device name */
6708 if (!pat)
6709 goto out;
6710 if (dev_get_valid_name(net, dev, pat) < 0)
6711 goto out;
6712 }
6713
6714 /*
6715 * And now a mini version of register_netdevice unregister_netdevice.
6716 */
6717
6718 /* If device is running close it first. */
6719 dev_close(dev);
6720
6721 /* And unlink it from device chain */
6722 err = -ENODEV;
6723 unlist_netdevice(dev);
6724
6725 synchronize_net();
6726
6727 /* Shutdown queueing discipline. */
6728 dev_shutdown(dev);
6729
6730 /* Notify protocols, that we are about to destroy
6731 this device. They should clean all the things.
6732
6733 Note that dev->reg_state stays at NETREG_REGISTERED.
6734 This is wanted because this way 8021q and macvlan know
6735 the device is just moving and can keep their slaves up.
6736 */
6737 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6738 rcu_barrier();
6739 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6740 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6741
6742 /*
6743 * Flush the unicast and multicast chains
6744 */
6745 dev_uc_flush(dev);
6746 dev_mc_flush(dev);
6747
6748 /* Send a netdev-removed uevent to the old namespace */
6749 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6750
6751 /* Actually switch the network namespace */
6752 dev_net_set(dev, net);
6753
6754 /* If there is an ifindex conflict assign a new one */
6755 if (__dev_get_by_index(net, dev->ifindex)) {
6756 int iflink = (dev->iflink == dev->ifindex);
6757 dev->ifindex = dev_new_index(net);
6758 if (iflink)
6759 dev->iflink = dev->ifindex;
6760 }
6761
6762 /* Send a netdev-add uevent to the new namespace */
6763 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6764
6765 /* Fixup kobjects */
6766 err = device_rename(&dev->dev, dev->name);
6767 WARN_ON(err);
6768
6769 /* Add the device back in the hashes */
6770 list_netdevice(dev);
6771
6772 /* Notify protocols, that a new device appeared. */
6773 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6774
6775 /*
6776 * Prevent userspace races by waiting until the network
6777 * device is fully setup before sending notifications.
6778 */
6779 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6780
6781 synchronize_net();
6782 err = 0;
6783 out:
6784 return err;
6785 }
6786 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6787
6788 static int dev_cpu_callback(struct notifier_block *nfb,
6789 unsigned long action,
6790 void *ocpu)
6791 {
6792 struct sk_buff **list_skb;
6793 struct sk_buff *skb;
6794 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6795 struct softnet_data *sd, *oldsd;
6796
6797 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6798 return NOTIFY_OK;
6799
6800 local_irq_disable();
6801 cpu = smp_processor_id();
6802 sd = &per_cpu(softnet_data, cpu);
6803 oldsd = &per_cpu(softnet_data, oldcpu);
6804
6805 /* Find end of our completion_queue. */
6806 list_skb = &sd->completion_queue;
6807 while (*list_skb)
6808 list_skb = &(*list_skb)->next;
6809 /* Append completion queue from offline CPU. */
6810 *list_skb = oldsd->completion_queue;
6811 oldsd->completion_queue = NULL;
6812
6813 /* Append output queue from offline CPU. */
6814 if (oldsd->output_queue) {
6815 *sd->output_queue_tailp = oldsd->output_queue;
6816 sd->output_queue_tailp = oldsd->output_queue_tailp;
6817 oldsd->output_queue = NULL;
6818 oldsd->output_queue_tailp = &oldsd->output_queue;
6819 }
6820 /* Append NAPI poll list from offline CPU. */
6821 if (!list_empty(&oldsd->poll_list)) {
6822 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6823 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6824 }
6825
6826 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6827 local_irq_enable();
6828
6829 /* Process offline CPU's input_pkt_queue */
6830 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6831 netif_rx(skb);
6832 input_queue_head_incr(oldsd);
6833 }
6834 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6835 netif_rx(skb);
6836 input_queue_head_incr(oldsd);
6837 }
6838
6839 return NOTIFY_OK;
6840 }
6841
6842
6843 /**
6844 * netdev_increment_features - increment feature set by one
6845 * @all: current feature set
6846 * @one: new feature set
6847 * @mask: mask feature set
6848 *
6849 * Computes a new feature set after adding a device with feature set
6850 * @one to the master device with current feature set @all. Will not
6851 * enable anything that is off in @mask. Returns the new feature set.
6852 */
6853 netdev_features_t netdev_increment_features(netdev_features_t all,
6854 netdev_features_t one, netdev_features_t mask)
6855 {
6856 if (mask & NETIF_F_GEN_CSUM)
6857 mask |= NETIF_F_ALL_CSUM;
6858 mask |= NETIF_F_VLAN_CHALLENGED;
6859
6860 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6861 all &= one | ~NETIF_F_ALL_FOR_ALL;
6862
6863 /* If one device supports hw checksumming, set for all. */
6864 if (all & NETIF_F_GEN_CSUM)
6865 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6866
6867 return all;
6868 }
6869 EXPORT_SYMBOL(netdev_increment_features);
6870
6871 static struct hlist_head *netdev_create_hash(void)
6872 {
6873 int i;
6874 struct hlist_head *hash;
6875
6876 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6877 if (hash != NULL)
6878 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6879 INIT_HLIST_HEAD(&hash[i]);
6880
6881 return hash;
6882 }
6883
6884 /* Initialize per network namespace state */
6885 static int __net_init netdev_init(struct net *net)
6886 {
6887 if (net != &init_net)
6888 INIT_LIST_HEAD(&net->dev_base_head);
6889
6890 net->dev_name_head = netdev_create_hash();
6891 if (net->dev_name_head == NULL)
6892 goto err_name;
6893
6894 net->dev_index_head = netdev_create_hash();
6895 if (net->dev_index_head == NULL)
6896 goto err_idx;
6897
6898 return 0;
6899
6900 err_idx:
6901 kfree(net->dev_name_head);
6902 err_name:
6903 return -ENOMEM;
6904 }
6905
6906 /**
6907 * netdev_drivername - network driver for the device
6908 * @dev: network device
6909 *
6910 * Determine network driver for device.
6911 */
6912 const char *netdev_drivername(const struct net_device *dev)
6913 {
6914 const struct device_driver *driver;
6915 const struct device *parent;
6916 const char *empty = "";
6917
6918 parent = dev->dev.parent;
6919 if (!parent)
6920 return empty;
6921
6922 driver = parent->driver;
6923 if (driver && driver->name)
6924 return driver->name;
6925 return empty;
6926 }
6927
6928 static int __netdev_printk(const char *level, const struct net_device *dev,
6929 struct va_format *vaf)
6930 {
6931 int r;
6932
6933 if (dev && dev->dev.parent) {
6934 r = dev_printk_emit(level[1] - '0',
6935 dev->dev.parent,
6936 "%s %s %s: %pV",
6937 dev_driver_string(dev->dev.parent),
6938 dev_name(dev->dev.parent),
6939 netdev_name(dev), vaf);
6940 } else if (dev) {
6941 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6942 } else {
6943 r = printk("%s(NULL net_device): %pV", level, vaf);
6944 }
6945
6946 return r;
6947 }
6948
6949 int netdev_printk(const char *level, const struct net_device *dev,
6950 const char *format, ...)
6951 {
6952 struct va_format vaf;
6953 va_list args;
6954 int r;
6955
6956 va_start(args, format);
6957
6958 vaf.fmt = format;
6959 vaf.va = &args;
6960
6961 r = __netdev_printk(level, dev, &vaf);
6962
6963 va_end(args);
6964
6965 return r;
6966 }
6967 EXPORT_SYMBOL(netdev_printk);
6968
6969 #define define_netdev_printk_level(func, level) \
6970 int func(const struct net_device *dev, const char *fmt, ...) \
6971 { \
6972 int r; \
6973 struct va_format vaf; \
6974 va_list args; \
6975 \
6976 va_start(args, fmt); \
6977 \
6978 vaf.fmt = fmt; \
6979 vaf.va = &args; \
6980 \
6981 r = __netdev_printk(level, dev, &vaf); \
6982 \
6983 va_end(args); \
6984 \
6985 return r; \
6986 } \
6987 EXPORT_SYMBOL(func);
6988
6989 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6990 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6991 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6992 define_netdev_printk_level(netdev_err, KERN_ERR);
6993 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6994 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6995 define_netdev_printk_level(netdev_info, KERN_INFO);
6996
6997 static void __net_exit netdev_exit(struct net *net)
6998 {
6999 kfree(net->dev_name_head);
7000 kfree(net->dev_index_head);
7001 }
7002
7003 static struct pernet_operations __net_initdata netdev_net_ops = {
7004 .init = netdev_init,
7005 .exit = netdev_exit,
7006 };
7007
7008 static void __net_exit default_device_exit(struct net *net)
7009 {
7010 struct net_device *dev, *aux;
7011 /*
7012 * Push all migratable network devices back to the
7013 * initial network namespace
7014 */
7015 rtnl_lock();
7016 for_each_netdev_safe(net, dev, aux) {
7017 int err;
7018 char fb_name[IFNAMSIZ];
7019
7020 /* Ignore unmoveable devices (i.e. loopback) */
7021 if (dev->features & NETIF_F_NETNS_LOCAL)
7022 continue;
7023
7024 /* Leave virtual devices for the generic cleanup */
7025 if (dev->rtnl_link_ops)
7026 continue;
7027
7028 /* Push remaining network devices to init_net */
7029 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7030 err = dev_change_net_namespace(dev, &init_net, fb_name);
7031 if (err) {
7032 pr_emerg("%s: failed to move %s to init_net: %d\n",
7033 __func__, dev->name, err);
7034 BUG();
7035 }
7036 }
7037 rtnl_unlock();
7038 }
7039
7040 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7041 {
7042 /* At exit all network devices most be removed from a network
7043 * namespace. Do this in the reverse order of registration.
7044 * Do this across as many network namespaces as possible to
7045 * improve batching efficiency.
7046 */
7047 struct net_device *dev;
7048 struct net *net;
7049 LIST_HEAD(dev_kill_list);
7050
7051 rtnl_lock();
7052 list_for_each_entry(net, net_list, exit_list) {
7053 for_each_netdev_reverse(net, dev) {
7054 if (dev->rtnl_link_ops)
7055 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7056 else
7057 unregister_netdevice_queue(dev, &dev_kill_list);
7058 }
7059 }
7060 unregister_netdevice_many(&dev_kill_list);
7061 list_del(&dev_kill_list);
7062 rtnl_unlock();
7063 }
7064
7065 static struct pernet_operations __net_initdata default_device_ops = {
7066 .exit = default_device_exit,
7067 .exit_batch = default_device_exit_batch,
7068 };
7069
7070 /*
7071 * Initialize the DEV module. At boot time this walks the device list and
7072 * unhooks any devices that fail to initialise (normally hardware not
7073 * present) and leaves us with a valid list of present and active devices.
7074 *
7075 */
7076
7077 /*
7078 * This is called single threaded during boot, so no need
7079 * to take the rtnl semaphore.
7080 */
7081 static int __init net_dev_init(void)
7082 {
7083 int i, rc = -ENOMEM;
7084
7085 BUG_ON(!dev_boot_phase);
7086
7087 if (dev_proc_init())
7088 goto out;
7089
7090 if (netdev_kobject_init())
7091 goto out;
7092
7093 INIT_LIST_HEAD(&ptype_all);
7094 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7095 INIT_LIST_HEAD(&ptype_base[i]);
7096
7097 INIT_LIST_HEAD(&offload_base);
7098
7099 if (register_pernet_subsys(&netdev_net_ops))
7100 goto out;
7101
7102 /*
7103 * Initialise the packet receive queues.
7104 */
7105
7106 for_each_possible_cpu(i) {
7107 struct softnet_data *sd = &per_cpu(softnet_data, i);
7108
7109 memset(sd, 0, sizeof(*sd));
7110 skb_queue_head_init(&sd->input_pkt_queue);
7111 skb_queue_head_init(&sd->process_queue);
7112 sd->completion_queue = NULL;
7113 INIT_LIST_HEAD(&sd->poll_list);
7114 sd->output_queue = NULL;
7115 sd->output_queue_tailp = &sd->output_queue;
7116 #ifdef CONFIG_RPS
7117 sd->csd.func = rps_trigger_softirq;
7118 sd->csd.info = sd;
7119 sd->csd.flags = 0;
7120 sd->cpu = i;
7121 #endif
7122
7123 sd->backlog.poll = process_backlog;
7124 sd->backlog.weight = weight_p;
7125 sd->backlog.gro_list = NULL;
7126 sd->backlog.gro_count = 0;
7127 }
7128
7129 dev_boot_phase = 0;
7130
7131 /* The loopback device is special if any other network devices
7132 * is present in a network namespace the loopback device must
7133 * be present. Since we now dynamically allocate and free the
7134 * loopback device ensure this invariant is maintained by
7135 * keeping the loopback device as the first device on the
7136 * list of network devices. Ensuring the loopback devices
7137 * is the first device that appears and the last network device
7138 * that disappears.
7139 */
7140 if (register_pernet_device(&loopback_net_ops))
7141 goto out;
7142
7143 if (register_pernet_device(&default_device_ops))
7144 goto out;
7145
7146 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7147 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7148
7149 hotcpu_notifier(dev_cpu_callback, 0);
7150 dst_init();
7151 dev_mcast_init();
7152 rc = 0;
7153 out:
7154 return rc;
7155 }
7156
7157 subsys_initcall(net_dev_init);