]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/core/dev.c
Merge branch 'ioat' into fixes
[mirror_ubuntu-bionic-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130
131 #include "net-sysfs.h"
132
133 /* Instead of increasing this, you should create a hash table. */
134 #define MAX_GRO_SKBS 8
135
136 /* This should be increased if a protocol with a bigger head is added. */
137 #define GRO_MAX_HEAD (MAX_HEADER + 128)
138
139 /*
140 * The list of packet types we will receive (as opposed to discard)
141 * and the routines to invoke.
142 *
143 * Why 16. Because with 16 the only overlap we get on a hash of the
144 * low nibble of the protocol value is RARP/SNAP/X.25.
145 *
146 * NOTE: That is no longer true with the addition of VLAN tags. Not
147 * sure which should go first, but I bet it won't make much
148 * difference if we are running VLANs. The good news is that
149 * this protocol won't be in the list unless compiled in, so
150 * the average user (w/out VLANs) will not be adversely affected.
151 * --BLG
152 *
153 * 0800 IP
154 * 8100 802.1Q VLAN
155 * 0001 802.3
156 * 0002 AX.25
157 * 0004 802.2
158 * 8035 RARP
159 * 0005 SNAP
160 * 0805 X.25
161 * 0806 ARP
162 * 8137 IPX
163 * 0009 Localtalk
164 * 86DD IPv6
165 */
166
167 #define PTYPE_HASH_SIZE (16)
168 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
169
170 static DEFINE_SPINLOCK(ptype_lock);
171 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
172 static struct list_head ptype_all __read_mostly; /* Taps */
173
174 /*
175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
176 * semaphore.
177 *
178 * Pure readers hold dev_base_lock for reading.
179 *
180 * Writers must hold the rtnl semaphore while they loop through the
181 * dev_base_head list, and hold dev_base_lock for writing when they do the
182 * actual updates. This allows pure readers to access the list even
183 * while a writer is preparing to update it.
184 *
185 * To put it another way, dev_base_lock is held for writing only to
186 * protect against pure readers; the rtnl semaphore provides the
187 * protection against other writers.
188 *
189 * See, for example usages, register_netdevice() and
190 * unregister_netdevice(), which must be called with the rtnl
191 * semaphore held.
192 */
193 DEFINE_RWLOCK(dev_base_lock);
194 EXPORT_SYMBOL(dev_base_lock);
195
196 #define NETDEV_HASHBITS 8
197 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
208 }
209
210 /* Device list insertion */
211 static int list_netdevice(struct net_device *dev)
212 {
213 struct net *net = dev_net(dev);
214
215 ASSERT_RTNL();
216
217 write_lock_bh(&dev_base_lock);
218 list_add_tail(&dev->dev_list, &net->dev_base_head);
219 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
220 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
221 write_unlock_bh(&dev_base_lock);
222 return 0;
223 }
224
225 /* Device list removal */
226 static void unlist_netdevice(struct net_device *dev)
227 {
228 ASSERT_RTNL();
229
230 /* Unlink dev from the device chain */
231 write_lock_bh(&dev_base_lock);
232 list_del(&dev->dev_list);
233 hlist_del(&dev->name_hlist);
234 hlist_del(&dev->index_hlist);
235 write_unlock_bh(&dev_base_lock);
236 }
237
238 /*
239 * Our notifier list
240 */
241
242 static RAW_NOTIFIER_HEAD(netdev_chain);
243
244 /*
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
247 */
248
249 DEFINE_PER_CPU(struct softnet_data, softnet_data);
250 EXPORT_PER_CPU_SYMBOL(softnet_data);
251
252 #ifdef CONFIG_LOCKDEP
253 /*
254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255 * according to dev->type
256 */
257 static const unsigned short netdev_lock_type[] =
258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
271 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
272 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
273 ARPHRD_VOID, ARPHRD_NONE};
274
275 static const char *const netdev_lock_name[] =
276 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
277 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
278 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
279 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
280 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
281 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
282 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
283 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
284 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
285 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
286 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
287 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
288 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
289 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
290 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
291 "_xmit_VOID", "_xmit_NONE"};
292
293 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
294 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
295
296 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
297 {
298 int i;
299
300 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
301 if (netdev_lock_type[i] == dev_type)
302 return i;
303 /* the last key is used by default */
304 return ARRAY_SIZE(netdev_lock_type) - 1;
305 }
306
307 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
308 unsigned short dev_type)
309 {
310 int i;
311
312 i = netdev_lock_pos(dev_type);
313 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
314 netdev_lock_name[i]);
315 }
316
317 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
318 {
319 int i;
320
321 i = netdev_lock_pos(dev->type);
322 lockdep_set_class_and_name(&dev->addr_list_lock,
323 &netdev_addr_lock_key[i],
324 netdev_lock_name[i]);
325 }
326 #else
327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
328 unsigned short dev_type)
329 {
330 }
331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
332 {
333 }
334 #endif
335
336 /*******************************************************************************
337
338 Protocol management and registration routines
339
340 *******************************************************************************/
341
342 /*
343 * Add a protocol ID to the list. Now that the input handler is
344 * smarter we can dispense with all the messy stuff that used to be
345 * here.
346 *
347 * BEWARE!!! Protocol handlers, mangling input packets,
348 * MUST BE last in hash buckets and checking protocol handlers
349 * MUST start from promiscuous ptype_all chain in net_bh.
350 * It is true now, do not change it.
351 * Explanation follows: if protocol handler, mangling packet, will
352 * be the first on list, it is not able to sense, that packet
353 * is cloned and should be copied-on-write, so that it will
354 * change it and subsequent readers will get broken packet.
355 * --ANK (980803)
356 */
357
358 /**
359 * dev_add_pack - add packet handler
360 * @pt: packet type declaration
361 *
362 * Add a protocol handler to the networking stack. The passed &packet_type
363 * is linked into kernel lists and may not be freed until it has been
364 * removed from the kernel lists.
365 *
366 * This call does not sleep therefore it can not
367 * guarantee all CPU's that are in middle of receiving packets
368 * will see the new packet type (until the next received packet).
369 */
370
371 void dev_add_pack(struct packet_type *pt)
372 {
373 int hash;
374
375 spin_lock_bh(&ptype_lock);
376 if (pt->type == htons(ETH_P_ALL))
377 list_add_rcu(&pt->list, &ptype_all);
378 else {
379 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
380 list_add_rcu(&pt->list, &ptype_base[hash]);
381 }
382 spin_unlock_bh(&ptype_lock);
383 }
384 EXPORT_SYMBOL(dev_add_pack);
385
386 /**
387 * __dev_remove_pack - remove packet handler
388 * @pt: packet type declaration
389 *
390 * Remove a protocol handler that was previously added to the kernel
391 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
392 * from the kernel lists and can be freed or reused once this function
393 * returns.
394 *
395 * The packet type might still be in use by receivers
396 * and must not be freed until after all the CPU's have gone
397 * through a quiescent state.
398 */
399 void __dev_remove_pack(struct packet_type *pt)
400 {
401 struct list_head *head;
402 struct packet_type *pt1;
403
404 spin_lock_bh(&ptype_lock);
405
406 if (pt->type == htons(ETH_P_ALL))
407 head = &ptype_all;
408 else
409 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
410
411 list_for_each_entry(pt1, head, list) {
412 if (pt == pt1) {
413 list_del_rcu(&pt->list);
414 goto out;
415 }
416 }
417
418 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
419 out:
420 spin_unlock_bh(&ptype_lock);
421 }
422 EXPORT_SYMBOL(__dev_remove_pack);
423
424 /**
425 * dev_remove_pack - remove packet handler
426 * @pt: packet type declaration
427 *
428 * Remove a protocol handler that was previously added to the kernel
429 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
430 * from the kernel lists and can be freed or reused once this function
431 * returns.
432 *
433 * This call sleeps to guarantee that no CPU is looking at the packet
434 * type after return.
435 */
436 void dev_remove_pack(struct packet_type *pt)
437 {
438 __dev_remove_pack(pt);
439
440 synchronize_net();
441 }
442 EXPORT_SYMBOL(dev_remove_pack);
443
444 /******************************************************************************
445
446 Device Boot-time Settings Routines
447
448 *******************************************************************************/
449
450 /* Boot time configuration table */
451 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
452
453 /**
454 * netdev_boot_setup_add - add new setup entry
455 * @name: name of the device
456 * @map: configured settings for the device
457 *
458 * Adds new setup entry to the dev_boot_setup list. The function
459 * returns 0 on error and 1 on success. This is a generic routine to
460 * all netdevices.
461 */
462 static int netdev_boot_setup_add(char *name, struct ifmap *map)
463 {
464 struct netdev_boot_setup *s;
465 int i;
466
467 s = dev_boot_setup;
468 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
469 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
470 memset(s[i].name, 0, sizeof(s[i].name));
471 strlcpy(s[i].name, name, IFNAMSIZ);
472 memcpy(&s[i].map, map, sizeof(s[i].map));
473 break;
474 }
475 }
476
477 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
478 }
479
480 /**
481 * netdev_boot_setup_check - check boot time settings
482 * @dev: the netdevice
483 *
484 * Check boot time settings for the device.
485 * The found settings are set for the device to be used
486 * later in the device probing.
487 * Returns 0 if no settings found, 1 if they are.
488 */
489 int netdev_boot_setup_check(struct net_device *dev)
490 {
491 struct netdev_boot_setup *s = dev_boot_setup;
492 int i;
493
494 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
495 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
496 !strcmp(dev->name, s[i].name)) {
497 dev->irq = s[i].map.irq;
498 dev->base_addr = s[i].map.base_addr;
499 dev->mem_start = s[i].map.mem_start;
500 dev->mem_end = s[i].map.mem_end;
501 return 1;
502 }
503 }
504 return 0;
505 }
506 EXPORT_SYMBOL(netdev_boot_setup_check);
507
508
509 /**
510 * netdev_boot_base - get address from boot time settings
511 * @prefix: prefix for network device
512 * @unit: id for network device
513 *
514 * Check boot time settings for the base address of device.
515 * The found settings are set for the device to be used
516 * later in the device probing.
517 * Returns 0 if no settings found.
518 */
519 unsigned long netdev_boot_base(const char *prefix, int unit)
520 {
521 const struct netdev_boot_setup *s = dev_boot_setup;
522 char name[IFNAMSIZ];
523 int i;
524
525 sprintf(name, "%s%d", prefix, unit);
526
527 /*
528 * If device already registered then return base of 1
529 * to indicate not to probe for this interface
530 */
531 if (__dev_get_by_name(&init_net, name))
532 return 1;
533
534 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
535 if (!strcmp(name, s[i].name))
536 return s[i].map.base_addr;
537 return 0;
538 }
539
540 /*
541 * Saves at boot time configured settings for any netdevice.
542 */
543 int __init netdev_boot_setup(char *str)
544 {
545 int ints[5];
546 struct ifmap map;
547
548 str = get_options(str, ARRAY_SIZE(ints), ints);
549 if (!str || !*str)
550 return 0;
551
552 /* Save settings */
553 memset(&map, 0, sizeof(map));
554 if (ints[0] > 0)
555 map.irq = ints[1];
556 if (ints[0] > 1)
557 map.base_addr = ints[2];
558 if (ints[0] > 2)
559 map.mem_start = ints[3];
560 if (ints[0] > 3)
561 map.mem_end = ints[4];
562
563 /* Add new entry to the list */
564 return netdev_boot_setup_add(str, &map);
565 }
566
567 __setup("netdev=", netdev_boot_setup);
568
569 /*******************************************************************************
570
571 Device Interface Subroutines
572
573 *******************************************************************************/
574
575 /**
576 * __dev_get_by_name - find a device by its name
577 * @net: the applicable net namespace
578 * @name: name to find
579 *
580 * Find an interface by name. Must be called under RTNL semaphore
581 * or @dev_base_lock. If the name is found a pointer to the device
582 * is returned. If the name is not found then %NULL is returned. The
583 * reference counters are not incremented so the caller must be
584 * careful with locks.
585 */
586
587 struct net_device *__dev_get_by_name(struct net *net, const char *name)
588 {
589 struct hlist_node *p;
590
591 hlist_for_each(p, dev_name_hash(net, name)) {
592 struct net_device *dev
593 = hlist_entry(p, struct net_device, name_hlist);
594 if (!strncmp(dev->name, name, IFNAMSIZ))
595 return dev;
596 }
597 return NULL;
598 }
599 EXPORT_SYMBOL(__dev_get_by_name);
600
601 /**
602 * dev_get_by_name - find a device by its name
603 * @net: the applicable net namespace
604 * @name: name to find
605 *
606 * Find an interface by name. This can be called from any
607 * context and does its own locking. The returned handle has
608 * the usage count incremented and the caller must use dev_put() to
609 * release it when it is no longer needed. %NULL is returned if no
610 * matching device is found.
611 */
612
613 struct net_device *dev_get_by_name(struct net *net, const char *name)
614 {
615 struct net_device *dev;
616
617 read_lock(&dev_base_lock);
618 dev = __dev_get_by_name(net, name);
619 if (dev)
620 dev_hold(dev);
621 read_unlock(&dev_base_lock);
622 return dev;
623 }
624 EXPORT_SYMBOL(dev_get_by_name);
625
626 /**
627 * __dev_get_by_index - find a device by its ifindex
628 * @net: the applicable net namespace
629 * @ifindex: index of device
630 *
631 * Search for an interface by index. Returns %NULL if the device
632 * is not found or a pointer to the device. The device has not
633 * had its reference counter increased so the caller must be careful
634 * about locking. The caller must hold either the RTNL semaphore
635 * or @dev_base_lock.
636 */
637
638 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
639 {
640 struct hlist_node *p;
641
642 hlist_for_each(p, dev_index_hash(net, ifindex)) {
643 struct net_device *dev
644 = hlist_entry(p, struct net_device, index_hlist);
645 if (dev->ifindex == ifindex)
646 return dev;
647 }
648 return NULL;
649 }
650 EXPORT_SYMBOL(__dev_get_by_index);
651
652
653 /**
654 * dev_get_by_index - find a device by its ifindex
655 * @net: the applicable net namespace
656 * @ifindex: index of device
657 *
658 * Search for an interface by index. Returns NULL if the device
659 * is not found or a pointer to the device. The device returned has
660 * had a reference added and the pointer is safe until the user calls
661 * dev_put to indicate they have finished with it.
662 */
663
664 struct net_device *dev_get_by_index(struct net *net, int ifindex)
665 {
666 struct net_device *dev;
667
668 read_lock(&dev_base_lock);
669 dev = __dev_get_by_index(net, ifindex);
670 if (dev)
671 dev_hold(dev);
672 read_unlock(&dev_base_lock);
673 return dev;
674 }
675 EXPORT_SYMBOL(dev_get_by_index);
676
677 /**
678 * dev_getbyhwaddr - find a device by its hardware address
679 * @net: the applicable net namespace
680 * @type: media type of device
681 * @ha: hardware address
682 *
683 * Search for an interface by MAC address. Returns NULL if the device
684 * is not found or a pointer to the device. The caller must hold the
685 * rtnl semaphore. The returned device has not had its ref count increased
686 * and the caller must therefore be careful about locking
687 *
688 * BUGS:
689 * If the API was consistent this would be __dev_get_by_hwaddr
690 */
691
692 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
693 {
694 struct net_device *dev;
695
696 ASSERT_RTNL();
697
698 for_each_netdev(net, dev)
699 if (dev->type == type &&
700 !memcmp(dev->dev_addr, ha, dev->addr_len))
701 return dev;
702
703 return NULL;
704 }
705 EXPORT_SYMBOL(dev_getbyhwaddr);
706
707 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
708 {
709 struct net_device *dev;
710
711 ASSERT_RTNL();
712 for_each_netdev(net, dev)
713 if (dev->type == type)
714 return dev;
715
716 return NULL;
717 }
718 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
719
720 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
721 {
722 struct net_device *dev;
723
724 rtnl_lock();
725 dev = __dev_getfirstbyhwtype(net, type);
726 if (dev)
727 dev_hold(dev);
728 rtnl_unlock();
729 return dev;
730 }
731 EXPORT_SYMBOL(dev_getfirstbyhwtype);
732
733 /**
734 * dev_get_by_flags - find any device with given flags
735 * @net: the applicable net namespace
736 * @if_flags: IFF_* values
737 * @mask: bitmask of bits in if_flags to check
738 *
739 * Search for any interface with the given flags. Returns NULL if a device
740 * is not found or a pointer to the device. The device returned has
741 * had a reference added and the pointer is safe until the user calls
742 * dev_put to indicate they have finished with it.
743 */
744
745 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
746 unsigned short mask)
747 {
748 struct net_device *dev, *ret;
749
750 ret = NULL;
751 read_lock(&dev_base_lock);
752 for_each_netdev(net, dev) {
753 if (((dev->flags ^ if_flags) & mask) == 0) {
754 dev_hold(dev);
755 ret = dev;
756 break;
757 }
758 }
759 read_unlock(&dev_base_lock);
760 return ret;
761 }
762 EXPORT_SYMBOL(dev_get_by_flags);
763
764 /**
765 * dev_valid_name - check if name is okay for network device
766 * @name: name string
767 *
768 * Network device names need to be valid file names to
769 * to allow sysfs to work. We also disallow any kind of
770 * whitespace.
771 */
772 int dev_valid_name(const char *name)
773 {
774 if (*name == '\0')
775 return 0;
776 if (strlen(name) >= IFNAMSIZ)
777 return 0;
778 if (!strcmp(name, ".") || !strcmp(name, ".."))
779 return 0;
780
781 while (*name) {
782 if (*name == '/' || isspace(*name))
783 return 0;
784 name++;
785 }
786 return 1;
787 }
788 EXPORT_SYMBOL(dev_valid_name);
789
790 /**
791 * __dev_alloc_name - allocate a name for a device
792 * @net: network namespace to allocate the device name in
793 * @name: name format string
794 * @buf: scratch buffer and result name string
795 *
796 * Passed a format string - eg "lt%d" it will try and find a suitable
797 * id. It scans list of devices to build up a free map, then chooses
798 * the first empty slot. The caller must hold the dev_base or rtnl lock
799 * while allocating the name and adding the device in order to avoid
800 * duplicates.
801 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
802 * Returns the number of the unit assigned or a negative errno code.
803 */
804
805 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
806 {
807 int i = 0;
808 const char *p;
809 const int max_netdevices = 8*PAGE_SIZE;
810 unsigned long *inuse;
811 struct net_device *d;
812
813 p = strnchr(name, IFNAMSIZ-1, '%');
814 if (p) {
815 /*
816 * Verify the string as this thing may have come from
817 * the user. There must be either one "%d" and no other "%"
818 * characters.
819 */
820 if (p[1] != 'd' || strchr(p + 2, '%'))
821 return -EINVAL;
822
823 /* Use one page as a bit array of possible slots */
824 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
825 if (!inuse)
826 return -ENOMEM;
827
828 for_each_netdev(net, d) {
829 if (!sscanf(d->name, name, &i))
830 continue;
831 if (i < 0 || i >= max_netdevices)
832 continue;
833
834 /* avoid cases where sscanf is not exact inverse of printf */
835 snprintf(buf, IFNAMSIZ, name, i);
836 if (!strncmp(buf, d->name, IFNAMSIZ))
837 set_bit(i, inuse);
838 }
839
840 i = find_first_zero_bit(inuse, max_netdevices);
841 free_page((unsigned long) inuse);
842 }
843
844 snprintf(buf, IFNAMSIZ, name, i);
845 if (!__dev_get_by_name(net, buf))
846 return i;
847
848 /* It is possible to run out of possible slots
849 * when the name is long and there isn't enough space left
850 * for the digits, or if all bits are used.
851 */
852 return -ENFILE;
853 }
854
855 /**
856 * dev_alloc_name - allocate a name for a device
857 * @dev: device
858 * @name: name format string
859 *
860 * Passed a format string - eg "lt%d" it will try and find a suitable
861 * id. It scans list of devices to build up a free map, then chooses
862 * the first empty slot. The caller must hold the dev_base or rtnl lock
863 * while allocating the name and adding the device in order to avoid
864 * duplicates.
865 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
866 * Returns the number of the unit assigned or a negative errno code.
867 */
868
869 int dev_alloc_name(struct net_device *dev, const char *name)
870 {
871 char buf[IFNAMSIZ];
872 struct net *net;
873 int ret;
874
875 BUG_ON(!dev_net(dev));
876 net = dev_net(dev);
877 ret = __dev_alloc_name(net, name, buf);
878 if (ret >= 0)
879 strlcpy(dev->name, buf, IFNAMSIZ);
880 return ret;
881 }
882 EXPORT_SYMBOL(dev_alloc_name);
883
884
885 /**
886 * dev_change_name - change name of a device
887 * @dev: device
888 * @newname: name (or format string) must be at least IFNAMSIZ
889 *
890 * Change name of a device, can pass format strings "eth%d".
891 * for wildcarding.
892 */
893 int dev_change_name(struct net_device *dev, const char *newname)
894 {
895 char oldname[IFNAMSIZ];
896 int err = 0;
897 int ret;
898 struct net *net;
899
900 ASSERT_RTNL();
901 BUG_ON(!dev_net(dev));
902
903 net = dev_net(dev);
904 if (dev->flags & IFF_UP)
905 return -EBUSY;
906
907 if (!dev_valid_name(newname))
908 return -EINVAL;
909
910 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
911 return 0;
912
913 memcpy(oldname, dev->name, IFNAMSIZ);
914
915 if (strchr(newname, '%')) {
916 err = dev_alloc_name(dev, newname);
917 if (err < 0)
918 return err;
919 } else if (__dev_get_by_name(net, newname))
920 return -EEXIST;
921 else
922 strlcpy(dev->name, newname, IFNAMSIZ);
923
924 rollback:
925 /* For now only devices in the initial network namespace
926 * are in sysfs.
927 */
928 if (net == &init_net) {
929 ret = device_rename(&dev->dev, dev->name);
930 if (ret) {
931 memcpy(dev->name, oldname, IFNAMSIZ);
932 return ret;
933 }
934 }
935
936 write_lock_bh(&dev_base_lock);
937 hlist_del(&dev->name_hlist);
938 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
939 write_unlock_bh(&dev_base_lock);
940
941 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
942 ret = notifier_to_errno(ret);
943
944 if (ret) {
945 /* err >= 0 after dev_alloc_name() or stores the first errno */
946 if (err >= 0) {
947 err = ret;
948 memcpy(dev->name, oldname, IFNAMSIZ);
949 goto rollback;
950 } else {
951 printk(KERN_ERR
952 "%s: name change rollback failed: %d.\n",
953 dev->name, ret);
954 }
955 }
956
957 return err;
958 }
959
960 /**
961 * dev_set_alias - change ifalias of a device
962 * @dev: device
963 * @alias: name up to IFALIASZ
964 * @len: limit of bytes to copy from info
965 *
966 * Set ifalias for a device,
967 */
968 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
969 {
970 ASSERT_RTNL();
971
972 if (len >= IFALIASZ)
973 return -EINVAL;
974
975 if (!len) {
976 if (dev->ifalias) {
977 kfree(dev->ifalias);
978 dev->ifalias = NULL;
979 }
980 return 0;
981 }
982
983 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
984 if (!dev->ifalias)
985 return -ENOMEM;
986
987 strlcpy(dev->ifalias, alias, len+1);
988 return len;
989 }
990
991
992 /**
993 * netdev_features_change - device changes features
994 * @dev: device to cause notification
995 *
996 * Called to indicate a device has changed features.
997 */
998 void netdev_features_change(struct net_device *dev)
999 {
1000 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1001 }
1002 EXPORT_SYMBOL(netdev_features_change);
1003
1004 /**
1005 * netdev_state_change - device changes state
1006 * @dev: device to cause notification
1007 *
1008 * Called to indicate a device has changed state. This function calls
1009 * the notifier chains for netdev_chain and sends a NEWLINK message
1010 * to the routing socket.
1011 */
1012 void netdev_state_change(struct net_device *dev)
1013 {
1014 if (dev->flags & IFF_UP) {
1015 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1016 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1017 }
1018 }
1019 EXPORT_SYMBOL(netdev_state_change);
1020
1021 void netdev_bonding_change(struct net_device *dev, unsigned long event)
1022 {
1023 call_netdevice_notifiers(event, dev);
1024 }
1025 EXPORT_SYMBOL(netdev_bonding_change);
1026
1027 /**
1028 * dev_load - load a network module
1029 * @net: the applicable net namespace
1030 * @name: name of interface
1031 *
1032 * If a network interface is not present and the process has suitable
1033 * privileges this function loads the module. If module loading is not
1034 * available in this kernel then it becomes a nop.
1035 */
1036
1037 void dev_load(struct net *net, const char *name)
1038 {
1039 struct net_device *dev;
1040
1041 read_lock(&dev_base_lock);
1042 dev = __dev_get_by_name(net, name);
1043 read_unlock(&dev_base_lock);
1044
1045 if (!dev && capable(CAP_NET_ADMIN))
1046 request_module("%s", name);
1047 }
1048 EXPORT_SYMBOL(dev_load);
1049
1050 /**
1051 * dev_open - prepare an interface for use.
1052 * @dev: device to open
1053 *
1054 * Takes a device from down to up state. The device's private open
1055 * function is invoked and then the multicast lists are loaded. Finally
1056 * the device is moved into the up state and a %NETDEV_UP message is
1057 * sent to the netdev notifier chain.
1058 *
1059 * Calling this function on an active interface is a nop. On a failure
1060 * a negative errno code is returned.
1061 */
1062 int dev_open(struct net_device *dev)
1063 {
1064 const struct net_device_ops *ops = dev->netdev_ops;
1065 int ret;
1066
1067 ASSERT_RTNL();
1068
1069 /*
1070 * Is it already up?
1071 */
1072
1073 if (dev->flags & IFF_UP)
1074 return 0;
1075
1076 /*
1077 * Is it even present?
1078 */
1079 if (!netif_device_present(dev))
1080 return -ENODEV;
1081
1082 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1083 ret = notifier_to_errno(ret);
1084 if (ret)
1085 return ret;
1086
1087 /*
1088 * Call device private open method
1089 */
1090 set_bit(__LINK_STATE_START, &dev->state);
1091
1092 if (ops->ndo_validate_addr)
1093 ret = ops->ndo_validate_addr(dev);
1094
1095 if (!ret && ops->ndo_open)
1096 ret = ops->ndo_open(dev);
1097
1098 /*
1099 * If it went open OK then:
1100 */
1101
1102 if (ret)
1103 clear_bit(__LINK_STATE_START, &dev->state);
1104 else {
1105 /*
1106 * Set the flags.
1107 */
1108 dev->flags |= IFF_UP;
1109
1110 /*
1111 * Enable NET_DMA
1112 */
1113 net_dmaengine_get();
1114
1115 /*
1116 * Initialize multicasting status
1117 */
1118 dev_set_rx_mode(dev);
1119
1120 /*
1121 * Wakeup transmit queue engine
1122 */
1123 dev_activate(dev);
1124
1125 /*
1126 * ... and announce new interface.
1127 */
1128 call_netdevice_notifiers(NETDEV_UP, dev);
1129 }
1130
1131 return ret;
1132 }
1133 EXPORT_SYMBOL(dev_open);
1134
1135 /**
1136 * dev_close - shutdown an interface.
1137 * @dev: device to shutdown
1138 *
1139 * This function moves an active device into down state. A
1140 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1141 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1142 * chain.
1143 */
1144 int dev_close(struct net_device *dev)
1145 {
1146 const struct net_device_ops *ops = dev->netdev_ops;
1147 ASSERT_RTNL();
1148
1149 might_sleep();
1150
1151 if (!(dev->flags & IFF_UP))
1152 return 0;
1153
1154 /*
1155 * Tell people we are going down, so that they can
1156 * prepare to death, when device is still operating.
1157 */
1158 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1159
1160 clear_bit(__LINK_STATE_START, &dev->state);
1161
1162 /* Synchronize to scheduled poll. We cannot touch poll list,
1163 * it can be even on different cpu. So just clear netif_running().
1164 *
1165 * dev->stop() will invoke napi_disable() on all of it's
1166 * napi_struct instances on this device.
1167 */
1168 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1169
1170 dev_deactivate(dev);
1171
1172 /*
1173 * Call the device specific close. This cannot fail.
1174 * Only if device is UP
1175 *
1176 * We allow it to be called even after a DETACH hot-plug
1177 * event.
1178 */
1179 if (ops->ndo_stop)
1180 ops->ndo_stop(dev);
1181
1182 /*
1183 * Device is now down.
1184 */
1185
1186 dev->flags &= ~IFF_UP;
1187
1188 /*
1189 * Tell people we are down
1190 */
1191 call_netdevice_notifiers(NETDEV_DOWN, dev);
1192
1193 /*
1194 * Shutdown NET_DMA
1195 */
1196 net_dmaengine_put();
1197
1198 return 0;
1199 }
1200 EXPORT_SYMBOL(dev_close);
1201
1202
1203 /**
1204 * dev_disable_lro - disable Large Receive Offload on a device
1205 * @dev: device
1206 *
1207 * Disable Large Receive Offload (LRO) on a net device. Must be
1208 * called under RTNL. This is needed if received packets may be
1209 * forwarded to another interface.
1210 */
1211 void dev_disable_lro(struct net_device *dev)
1212 {
1213 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1214 dev->ethtool_ops->set_flags) {
1215 u32 flags = dev->ethtool_ops->get_flags(dev);
1216 if (flags & ETH_FLAG_LRO) {
1217 flags &= ~ETH_FLAG_LRO;
1218 dev->ethtool_ops->set_flags(dev, flags);
1219 }
1220 }
1221 WARN_ON(dev->features & NETIF_F_LRO);
1222 }
1223 EXPORT_SYMBOL(dev_disable_lro);
1224
1225
1226 static int dev_boot_phase = 1;
1227
1228 /*
1229 * Device change register/unregister. These are not inline or static
1230 * as we export them to the world.
1231 */
1232
1233 /**
1234 * register_netdevice_notifier - register a network notifier block
1235 * @nb: notifier
1236 *
1237 * Register a notifier to be called when network device events occur.
1238 * The notifier passed is linked into the kernel structures and must
1239 * not be reused until it has been unregistered. A negative errno code
1240 * is returned on a failure.
1241 *
1242 * When registered all registration and up events are replayed
1243 * to the new notifier to allow device to have a race free
1244 * view of the network device list.
1245 */
1246
1247 int register_netdevice_notifier(struct notifier_block *nb)
1248 {
1249 struct net_device *dev;
1250 struct net_device *last;
1251 struct net *net;
1252 int err;
1253
1254 rtnl_lock();
1255 err = raw_notifier_chain_register(&netdev_chain, nb);
1256 if (err)
1257 goto unlock;
1258 if (dev_boot_phase)
1259 goto unlock;
1260 for_each_net(net) {
1261 for_each_netdev(net, dev) {
1262 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1263 err = notifier_to_errno(err);
1264 if (err)
1265 goto rollback;
1266
1267 if (!(dev->flags & IFF_UP))
1268 continue;
1269
1270 nb->notifier_call(nb, NETDEV_UP, dev);
1271 }
1272 }
1273
1274 unlock:
1275 rtnl_unlock();
1276 return err;
1277
1278 rollback:
1279 last = dev;
1280 for_each_net(net) {
1281 for_each_netdev(net, dev) {
1282 if (dev == last)
1283 break;
1284
1285 if (dev->flags & IFF_UP) {
1286 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1287 nb->notifier_call(nb, NETDEV_DOWN, dev);
1288 }
1289 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1290 }
1291 }
1292
1293 raw_notifier_chain_unregister(&netdev_chain, nb);
1294 goto unlock;
1295 }
1296 EXPORT_SYMBOL(register_netdevice_notifier);
1297
1298 /**
1299 * unregister_netdevice_notifier - unregister a network notifier block
1300 * @nb: notifier
1301 *
1302 * Unregister a notifier previously registered by
1303 * register_netdevice_notifier(). The notifier is unlinked into the
1304 * kernel structures and may then be reused. A negative errno code
1305 * is returned on a failure.
1306 */
1307
1308 int unregister_netdevice_notifier(struct notifier_block *nb)
1309 {
1310 int err;
1311
1312 rtnl_lock();
1313 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1314 rtnl_unlock();
1315 return err;
1316 }
1317 EXPORT_SYMBOL(unregister_netdevice_notifier);
1318
1319 /**
1320 * call_netdevice_notifiers - call all network notifier blocks
1321 * @val: value passed unmodified to notifier function
1322 * @dev: net_device pointer passed unmodified to notifier function
1323 *
1324 * Call all network notifier blocks. Parameters and return value
1325 * are as for raw_notifier_call_chain().
1326 */
1327
1328 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1329 {
1330 return raw_notifier_call_chain(&netdev_chain, val, dev);
1331 }
1332
1333 /* When > 0 there are consumers of rx skb time stamps */
1334 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1335
1336 void net_enable_timestamp(void)
1337 {
1338 atomic_inc(&netstamp_needed);
1339 }
1340 EXPORT_SYMBOL(net_enable_timestamp);
1341
1342 void net_disable_timestamp(void)
1343 {
1344 atomic_dec(&netstamp_needed);
1345 }
1346 EXPORT_SYMBOL(net_disable_timestamp);
1347
1348 static inline void net_timestamp(struct sk_buff *skb)
1349 {
1350 if (atomic_read(&netstamp_needed))
1351 __net_timestamp(skb);
1352 else
1353 skb->tstamp.tv64 = 0;
1354 }
1355
1356 /*
1357 * Support routine. Sends outgoing frames to any network
1358 * taps currently in use.
1359 */
1360
1361 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1362 {
1363 struct packet_type *ptype;
1364
1365 #ifdef CONFIG_NET_CLS_ACT
1366 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1367 net_timestamp(skb);
1368 #else
1369 net_timestamp(skb);
1370 #endif
1371
1372 rcu_read_lock();
1373 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1374 /* Never send packets back to the socket
1375 * they originated from - MvS (miquels@drinkel.ow.org)
1376 */
1377 if ((ptype->dev == dev || !ptype->dev) &&
1378 (ptype->af_packet_priv == NULL ||
1379 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1380 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1381 if (!skb2)
1382 break;
1383
1384 /* skb->nh should be correctly
1385 set by sender, so that the second statement is
1386 just protection against buggy protocols.
1387 */
1388 skb_reset_mac_header(skb2);
1389
1390 if (skb_network_header(skb2) < skb2->data ||
1391 skb2->network_header > skb2->tail) {
1392 if (net_ratelimit())
1393 printk(KERN_CRIT "protocol %04x is "
1394 "buggy, dev %s\n",
1395 skb2->protocol, dev->name);
1396 skb_reset_network_header(skb2);
1397 }
1398
1399 skb2->transport_header = skb2->network_header;
1400 skb2->pkt_type = PACKET_OUTGOING;
1401 ptype->func(skb2, skb->dev, ptype, skb->dev);
1402 }
1403 }
1404 rcu_read_unlock();
1405 }
1406
1407
1408 static inline void __netif_reschedule(struct Qdisc *q)
1409 {
1410 struct softnet_data *sd;
1411 unsigned long flags;
1412
1413 local_irq_save(flags);
1414 sd = &__get_cpu_var(softnet_data);
1415 q->next_sched = sd->output_queue;
1416 sd->output_queue = q;
1417 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1418 local_irq_restore(flags);
1419 }
1420
1421 void __netif_schedule(struct Qdisc *q)
1422 {
1423 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1424 __netif_reschedule(q);
1425 }
1426 EXPORT_SYMBOL(__netif_schedule);
1427
1428 void dev_kfree_skb_irq(struct sk_buff *skb)
1429 {
1430 if (atomic_dec_and_test(&skb->users)) {
1431 struct softnet_data *sd;
1432 unsigned long flags;
1433
1434 local_irq_save(flags);
1435 sd = &__get_cpu_var(softnet_data);
1436 skb->next = sd->completion_queue;
1437 sd->completion_queue = skb;
1438 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1439 local_irq_restore(flags);
1440 }
1441 }
1442 EXPORT_SYMBOL(dev_kfree_skb_irq);
1443
1444 void dev_kfree_skb_any(struct sk_buff *skb)
1445 {
1446 if (in_irq() || irqs_disabled())
1447 dev_kfree_skb_irq(skb);
1448 else
1449 dev_kfree_skb(skb);
1450 }
1451 EXPORT_SYMBOL(dev_kfree_skb_any);
1452
1453
1454 /**
1455 * netif_device_detach - mark device as removed
1456 * @dev: network device
1457 *
1458 * Mark device as removed from system and therefore no longer available.
1459 */
1460 void netif_device_detach(struct net_device *dev)
1461 {
1462 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1463 netif_running(dev)) {
1464 netif_tx_stop_all_queues(dev);
1465 }
1466 }
1467 EXPORT_SYMBOL(netif_device_detach);
1468
1469 /**
1470 * netif_device_attach - mark device as attached
1471 * @dev: network device
1472 *
1473 * Mark device as attached from system and restart if needed.
1474 */
1475 void netif_device_attach(struct net_device *dev)
1476 {
1477 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1478 netif_running(dev)) {
1479 netif_tx_wake_all_queues(dev);
1480 __netdev_watchdog_up(dev);
1481 }
1482 }
1483 EXPORT_SYMBOL(netif_device_attach);
1484
1485 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1486 {
1487 return ((features & NETIF_F_GEN_CSUM) ||
1488 ((features & NETIF_F_IP_CSUM) &&
1489 protocol == htons(ETH_P_IP)) ||
1490 ((features & NETIF_F_IPV6_CSUM) &&
1491 protocol == htons(ETH_P_IPV6)) ||
1492 ((features & NETIF_F_FCOE_CRC) &&
1493 protocol == htons(ETH_P_FCOE)));
1494 }
1495
1496 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1497 {
1498 if (can_checksum_protocol(dev->features, skb->protocol))
1499 return true;
1500
1501 if (skb->protocol == htons(ETH_P_8021Q)) {
1502 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1503 if (can_checksum_protocol(dev->features & dev->vlan_features,
1504 veh->h_vlan_encapsulated_proto))
1505 return true;
1506 }
1507
1508 return false;
1509 }
1510
1511 /*
1512 * Invalidate hardware checksum when packet is to be mangled, and
1513 * complete checksum manually on outgoing path.
1514 */
1515 int skb_checksum_help(struct sk_buff *skb)
1516 {
1517 __wsum csum;
1518 int ret = 0, offset;
1519
1520 if (skb->ip_summed == CHECKSUM_COMPLETE)
1521 goto out_set_summed;
1522
1523 if (unlikely(skb_shinfo(skb)->gso_size)) {
1524 /* Let GSO fix up the checksum. */
1525 goto out_set_summed;
1526 }
1527
1528 offset = skb->csum_start - skb_headroom(skb);
1529 BUG_ON(offset >= skb_headlen(skb));
1530 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1531
1532 offset += skb->csum_offset;
1533 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1534
1535 if (skb_cloned(skb) &&
1536 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1537 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1538 if (ret)
1539 goto out;
1540 }
1541
1542 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1543 out_set_summed:
1544 skb->ip_summed = CHECKSUM_NONE;
1545 out:
1546 return ret;
1547 }
1548 EXPORT_SYMBOL(skb_checksum_help);
1549
1550 /**
1551 * skb_gso_segment - Perform segmentation on skb.
1552 * @skb: buffer to segment
1553 * @features: features for the output path (see dev->features)
1554 *
1555 * This function segments the given skb and returns a list of segments.
1556 *
1557 * It may return NULL if the skb requires no segmentation. This is
1558 * only possible when GSO is used for verifying header integrity.
1559 */
1560 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1561 {
1562 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1563 struct packet_type *ptype;
1564 __be16 type = skb->protocol;
1565 int err;
1566
1567 skb_reset_mac_header(skb);
1568 skb->mac_len = skb->network_header - skb->mac_header;
1569 __skb_pull(skb, skb->mac_len);
1570
1571 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1572 struct net_device *dev = skb->dev;
1573 struct ethtool_drvinfo info = {};
1574
1575 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1576 dev->ethtool_ops->get_drvinfo(dev, &info);
1577
1578 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1579 "ip_summed=%d",
1580 info.driver, dev ? dev->features : 0L,
1581 skb->sk ? skb->sk->sk_route_caps : 0L,
1582 skb->len, skb->data_len, skb->ip_summed);
1583
1584 if (skb_header_cloned(skb) &&
1585 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1586 return ERR_PTR(err);
1587 }
1588
1589 rcu_read_lock();
1590 list_for_each_entry_rcu(ptype,
1591 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1592 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1593 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1594 err = ptype->gso_send_check(skb);
1595 segs = ERR_PTR(err);
1596 if (err || skb_gso_ok(skb, features))
1597 break;
1598 __skb_push(skb, (skb->data -
1599 skb_network_header(skb)));
1600 }
1601 segs = ptype->gso_segment(skb, features);
1602 break;
1603 }
1604 }
1605 rcu_read_unlock();
1606
1607 __skb_push(skb, skb->data - skb_mac_header(skb));
1608
1609 return segs;
1610 }
1611 EXPORT_SYMBOL(skb_gso_segment);
1612
1613 /* Take action when hardware reception checksum errors are detected. */
1614 #ifdef CONFIG_BUG
1615 void netdev_rx_csum_fault(struct net_device *dev)
1616 {
1617 if (net_ratelimit()) {
1618 printk(KERN_ERR "%s: hw csum failure.\n",
1619 dev ? dev->name : "<unknown>");
1620 dump_stack();
1621 }
1622 }
1623 EXPORT_SYMBOL(netdev_rx_csum_fault);
1624 #endif
1625
1626 /* Actually, we should eliminate this check as soon as we know, that:
1627 * 1. IOMMU is present and allows to map all the memory.
1628 * 2. No high memory really exists on this machine.
1629 */
1630
1631 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1632 {
1633 #ifdef CONFIG_HIGHMEM
1634 int i;
1635
1636 if (dev->features & NETIF_F_HIGHDMA)
1637 return 0;
1638
1639 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1640 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1641 return 1;
1642
1643 #endif
1644 return 0;
1645 }
1646
1647 struct dev_gso_cb {
1648 void (*destructor)(struct sk_buff *skb);
1649 };
1650
1651 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1652
1653 static void dev_gso_skb_destructor(struct sk_buff *skb)
1654 {
1655 struct dev_gso_cb *cb;
1656
1657 do {
1658 struct sk_buff *nskb = skb->next;
1659
1660 skb->next = nskb->next;
1661 nskb->next = NULL;
1662 kfree_skb(nskb);
1663 } while (skb->next);
1664
1665 cb = DEV_GSO_CB(skb);
1666 if (cb->destructor)
1667 cb->destructor(skb);
1668 }
1669
1670 /**
1671 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1672 * @skb: buffer to segment
1673 *
1674 * This function segments the given skb and stores the list of segments
1675 * in skb->next.
1676 */
1677 static int dev_gso_segment(struct sk_buff *skb)
1678 {
1679 struct net_device *dev = skb->dev;
1680 struct sk_buff *segs;
1681 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1682 NETIF_F_SG : 0);
1683
1684 segs = skb_gso_segment(skb, features);
1685
1686 /* Verifying header integrity only. */
1687 if (!segs)
1688 return 0;
1689
1690 if (IS_ERR(segs))
1691 return PTR_ERR(segs);
1692
1693 skb->next = segs;
1694 DEV_GSO_CB(skb)->destructor = skb->destructor;
1695 skb->destructor = dev_gso_skb_destructor;
1696
1697 return 0;
1698 }
1699
1700 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1701 struct netdev_queue *txq)
1702 {
1703 const struct net_device_ops *ops = dev->netdev_ops;
1704 int rc;
1705
1706 if (likely(!skb->next)) {
1707 if (!list_empty(&ptype_all))
1708 dev_queue_xmit_nit(skb, dev);
1709
1710 if (netif_needs_gso(dev, skb)) {
1711 if (unlikely(dev_gso_segment(skb)))
1712 goto out_kfree_skb;
1713 if (skb->next)
1714 goto gso;
1715 }
1716
1717 /*
1718 * If device doesnt need skb->dst, release it right now while
1719 * its hot in this cpu cache
1720 */
1721 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1722 skb_dst_drop(skb);
1723
1724 rc = ops->ndo_start_xmit(skb, dev);
1725 if (rc == NETDEV_TX_OK)
1726 txq_trans_update(txq);
1727 /*
1728 * TODO: if skb_orphan() was called by
1729 * dev->hard_start_xmit() (for example, the unmodified
1730 * igb driver does that; bnx2 doesn't), then
1731 * skb_tx_software_timestamp() will be unable to send
1732 * back the time stamp.
1733 *
1734 * How can this be prevented? Always create another
1735 * reference to the socket before calling
1736 * dev->hard_start_xmit()? Prevent that skb_orphan()
1737 * does anything in dev->hard_start_xmit() by clearing
1738 * the skb destructor before the call and restoring it
1739 * afterwards, then doing the skb_orphan() ourselves?
1740 */
1741 return rc;
1742 }
1743
1744 gso:
1745 do {
1746 struct sk_buff *nskb = skb->next;
1747
1748 skb->next = nskb->next;
1749 nskb->next = NULL;
1750 rc = ops->ndo_start_xmit(nskb, dev);
1751 if (unlikely(rc != NETDEV_TX_OK)) {
1752 nskb->next = skb->next;
1753 skb->next = nskb;
1754 return rc;
1755 }
1756 txq_trans_update(txq);
1757 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1758 return NETDEV_TX_BUSY;
1759 } while (skb->next);
1760
1761 skb->destructor = DEV_GSO_CB(skb)->destructor;
1762
1763 out_kfree_skb:
1764 kfree_skb(skb);
1765 return NETDEV_TX_OK;
1766 }
1767
1768 static u32 skb_tx_hashrnd;
1769
1770 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1771 {
1772 u32 hash;
1773
1774 if (skb_rx_queue_recorded(skb)) {
1775 hash = skb_get_rx_queue(skb);
1776 while (unlikely(hash >= dev->real_num_tx_queues))
1777 hash -= dev->real_num_tx_queues;
1778 return hash;
1779 }
1780
1781 if (skb->sk && skb->sk->sk_hash)
1782 hash = skb->sk->sk_hash;
1783 else
1784 hash = skb->protocol;
1785
1786 hash = jhash_1word(hash, skb_tx_hashrnd);
1787
1788 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1789 }
1790 EXPORT_SYMBOL(skb_tx_hash);
1791
1792 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1793 struct sk_buff *skb)
1794 {
1795 const struct net_device_ops *ops = dev->netdev_ops;
1796 u16 queue_index = 0;
1797
1798 if (ops->ndo_select_queue)
1799 queue_index = ops->ndo_select_queue(dev, skb);
1800 else if (dev->real_num_tx_queues > 1)
1801 queue_index = skb_tx_hash(dev, skb);
1802
1803 skb_set_queue_mapping(skb, queue_index);
1804 return netdev_get_tx_queue(dev, queue_index);
1805 }
1806
1807 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
1808 struct net_device *dev,
1809 struct netdev_queue *txq)
1810 {
1811 spinlock_t *root_lock = qdisc_lock(q);
1812 int rc;
1813
1814 spin_lock(root_lock);
1815 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1816 kfree_skb(skb);
1817 rc = NET_XMIT_DROP;
1818 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
1819 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
1820 /*
1821 * This is a work-conserving queue; there are no old skbs
1822 * waiting to be sent out; and the qdisc is not running -
1823 * xmit the skb directly.
1824 */
1825 __qdisc_update_bstats(q, skb->len);
1826 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
1827 __qdisc_run(q);
1828 else
1829 clear_bit(__QDISC_STATE_RUNNING, &q->state);
1830
1831 rc = NET_XMIT_SUCCESS;
1832 } else {
1833 rc = qdisc_enqueue_root(skb, q);
1834 qdisc_run(q);
1835 }
1836 spin_unlock(root_lock);
1837
1838 return rc;
1839 }
1840
1841 /**
1842 * dev_queue_xmit - transmit a buffer
1843 * @skb: buffer to transmit
1844 *
1845 * Queue a buffer for transmission to a network device. The caller must
1846 * have set the device and priority and built the buffer before calling
1847 * this function. The function can be called from an interrupt.
1848 *
1849 * A negative errno code is returned on a failure. A success does not
1850 * guarantee the frame will be transmitted as it may be dropped due
1851 * to congestion or traffic shaping.
1852 *
1853 * -----------------------------------------------------------------------------------
1854 * I notice this method can also return errors from the queue disciplines,
1855 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1856 * be positive.
1857 *
1858 * Regardless of the return value, the skb is consumed, so it is currently
1859 * difficult to retry a send to this method. (You can bump the ref count
1860 * before sending to hold a reference for retry if you are careful.)
1861 *
1862 * When calling this method, interrupts MUST be enabled. This is because
1863 * the BH enable code must have IRQs enabled so that it will not deadlock.
1864 * --BLG
1865 */
1866 int dev_queue_xmit(struct sk_buff *skb)
1867 {
1868 struct net_device *dev = skb->dev;
1869 struct netdev_queue *txq;
1870 struct Qdisc *q;
1871 int rc = -ENOMEM;
1872
1873 /* GSO will handle the following emulations directly. */
1874 if (netif_needs_gso(dev, skb))
1875 goto gso;
1876
1877 if (skb_has_frags(skb) &&
1878 !(dev->features & NETIF_F_FRAGLIST) &&
1879 __skb_linearize(skb))
1880 goto out_kfree_skb;
1881
1882 /* Fragmented skb is linearized if device does not support SG,
1883 * or if at least one of fragments is in highmem and device
1884 * does not support DMA from it.
1885 */
1886 if (skb_shinfo(skb)->nr_frags &&
1887 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1888 __skb_linearize(skb))
1889 goto out_kfree_skb;
1890
1891 /* If packet is not checksummed and device does not support
1892 * checksumming for this protocol, complete checksumming here.
1893 */
1894 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1895 skb_set_transport_header(skb, skb->csum_start -
1896 skb_headroom(skb));
1897 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1898 goto out_kfree_skb;
1899 }
1900
1901 gso:
1902 /* Disable soft irqs for various locks below. Also
1903 * stops preemption for RCU.
1904 */
1905 rcu_read_lock_bh();
1906
1907 txq = dev_pick_tx(dev, skb);
1908 q = rcu_dereference(txq->qdisc);
1909
1910 #ifdef CONFIG_NET_CLS_ACT
1911 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
1912 #endif
1913 if (q->enqueue) {
1914 rc = __dev_xmit_skb(skb, q, dev, txq);
1915 goto out;
1916 }
1917
1918 /* The device has no queue. Common case for software devices:
1919 loopback, all the sorts of tunnels...
1920
1921 Really, it is unlikely that netif_tx_lock protection is necessary
1922 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1923 counters.)
1924 However, it is possible, that they rely on protection
1925 made by us here.
1926
1927 Check this and shot the lock. It is not prone from deadlocks.
1928 Either shot noqueue qdisc, it is even simpler 8)
1929 */
1930 if (dev->flags & IFF_UP) {
1931 int cpu = smp_processor_id(); /* ok because BHs are off */
1932
1933 if (txq->xmit_lock_owner != cpu) {
1934
1935 HARD_TX_LOCK(dev, txq, cpu);
1936
1937 if (!netif_tx_queue_stopped(txq)) {
1938 rc = NET_XMIT_SUCCESS;
1939 if (!dev_hard_start_xmit(skb, dev, txq)) {
1940 HARD_TX_UNLOCK(dev, txq);
1941 goto out;
1942 }
1943 }
1944 HARD_TX_UNLOCK(dev, txq);
1945 if (net_ratelimit())
1946 printk(KERN_CRIT "Virtual device %s asks to "
1947 "queue packet!\n", dev->name);
1948 } else {
1949 /* Recursion is detected! It is possible,
1950 * unfortunately */
1951 if (net_ratelimit())
1952 printk(KERN_CRIT "Dead loop on virtual device "
1953 "%s, fix it urgently!\n", dev->name);
1954 }
1955 }
1956
1957 rc = -ENETDOWN;
1958 rcu_read_unlock_bh();
1959
1960 out_kfree_skb:
1961 kfree_skb(skb);
1962 return rc;
1963 out:
1964 rcu_read_unlock_bh();
1965 return rc;
1966 }
1967 EXPORT_SYMBOL(dev_queue_xmit);
1968
1969
1970 /*=======================================================================
1971 Receiver routines
1972 =======================================================================*/
1973
1974 int netdev_max_backlog __read_mostly = 1000;
1975 int netdev_budget __read_mostly = 300;
1976 int weight_p __read_mostly = 64; /* old backlog weight */
1977
1978 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1979
1980
1981 /**
1982 * netif_rx - post buffer to the network code
1983 * @skb: buffer to post
1984 *
1985 * This function receives a packet from a device driver and queues it for
1986 * the upper (protocol) levels to process. It always succeeds. The buffer
1987 * may be dropped during processing for congestion control or by the
1988 * protocol layers.
1989 *
1990 * return values:
1991 * NET_RX_SUCCESS (no congestion)
1992 * NET_RX_DROP (packet was dropped)
1993 *
1994 */
1995
1996 int netif_rx(struct sk_buff *skb)
1997 {
1998 struct softnet_data *queue;
1999 unsigned long flags;
2000
2001 /* if netpoll wants it, pretend we never saw it */
2002 if (netpoll_rx(skb))
2003 return NET_RX_DROP;
2004
2005 if (!skb->tstamp.tv64)
2006 net_timestamp(skb);
2007
2008 /*
2009 * The code is rearranged so that the path is the most
2010 * short when CPU is congested, but is still operating.
2011 */
2012 local_irq_save(flags);
2013 queue = &__get_cpu_var(softnet_data);
2014
2015 __get_cpu_var(netdev_rx_stat).total++;
2016 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2017 if (queue->input_pkt_queue.qlen) {
2018 enqueue:
2019 __skb_queue_tail(&queue->input_pkt_queue, skb);
2020 local_irq_restore(flags);
2021 return NET_RX_SUCCESS;
2022 }
2023
2024 napi_schedule(&queue->backlog);
2025 goto enqueue;
2026 }
2027
2028 __get_cpu_var(netdev_rx_stat).dropped++;
2029 local_irq_restore(flags);
2030
2031 kfree_skb(skb);
2032 return NET_RX_DROP;
2033 }
2034 EXPORT_SYMBOL(netif_rx);
2035
2036 int netif_rx_ni(struct sk_buff *skb)
2037 {
2038 int err;
2039
2040 preempt_disable();
2041 err = netif_rx(skb);
2042 if (local_softirq_pending())
2043 do_softirq();
2044 preempt_enable();
2045
2046 return err;
2047 }
2048 EXPORT_SYMBOL(netif_rx_ni);
2049
2050 static void net_tx_action(struct softirq_action *h)
2051 {
2052 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2053
2054 if (sd->completion_queue) {
2055 struct sk_buff *clist;
2056
2057 local_irq_disable();
2058 clist = sd->completion_queue;
2059 sd->completion_queue = NULL;
2060 local_irq_enable();
2061
2062 while (clist) {
2063 struct sk_buff *skb = clist;
2064 clist = clist->next;
2065
2066 WARN_ON(atomic_read(&skb->users));
2067 __kfree_skb(skb);
2068 }
2069 }
2070
2071 if (sd->output_queue) {
2072 struct Qdisc *head;
2073
2074 local_irq_disable();
2075 head = sd->output_queue;
2076 sd->output_queue = NULL;
2077 local_irq_enable();
2078
2079 while (head) {
2080 struct Qdisc *q = head;
2081 spinlock_t *root_lock;
2082
2083 head = head->next_sched;
2084
2085 root_lock = qdisc_lock(q);
2086 if (spin_trylock(root_lock)) {
2087 smp_mb__before_clear_bit();
2088 clear_bit(__QDISC_STATE_SCHED,
2089 &q->state);
2090 qdisc_run(q);
2091 spin_unlock(root_lock);
2092 } else {
2093 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2094 &q->state)) {
2095 __netif_reschedule(q);
2096 } else {
2097 smp_mb__before_clear_bit();
2098 clear_bit(__QDISC_STATE_SCHED,
2099 &q->state);
2100 }
2101 }
2102 }
2103 }
2104 }
2105
2106 static inline int deliver_skb(struct sk_buff *skb,
2107 struct packet_type *pt_prev,
2108 struct net_device *orig_dev)
2109 {
2110 atomic_inc(&skb->users);
2111 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2112 }
2113
2114 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2115
2116 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2117 /* This hook is defined here for ATM LANE */
2118 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2119 unsigned char *addr) __read_mostly;
2120 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2121 #endif
2122
2123 /*
2124 * If bridge module is loaded call bridging hook.
2125 * returns NULL if packet was consumed.
2126 */
2127 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2128 struct sk_buff *skb) __read_mostly;
2129 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2130
2131 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2132 struct packet_type **pt_prev, int *ret,
2133 struct net_device *orig_dev)
2134 {
2135 struct net_bridge_port *port;
2136
2137 if (skb->pkt_type == PACKET_LOOPBACK ||
2138 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2139 return skb;
2140
2141 if (*pt_prev) {
2142 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2143 *pt_prev = NULL;
2144 }
2145
2146 return br_handle_frame_hook(port, skb);
2147 }
2148 #else
2149 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2150 #endif
2151
2152 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2153 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2154 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2155
2156 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2157 struct packet_type **pt_prev,
2158 int *ret,
2159 struct net_device *orig_dev)
2160 {
2161 if (skb->dev->macvlan_port == NULL)
2162 return skb;
2163
2164 if (*pt_prev) {
2165 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2166 *pt_prev = NULL;
2167 }
2168 return macvlan_handle_frame_hook(skb);
2169 }
2170 #else
2171 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2172 #endif
2173
2174 #ifdef CONFIG_NET_CLS_ACT
2175 /* TODO: Maybe we should just force sch_ingress to be compiled in
2176 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2177 * a compare and 2 stores extra right now if we dont have it on
2178 * but have CONFIG_NET_CLS_ACT
2179 * NOTE: This doesnt stop any functionality; if you dont have
2180 * the ingress scheduler, you just cant add policies on ingress.
2181 *
2182 */
2183 static int ing_filter(struct sk_buff *skb)
2184 {
2185 struct net_device *dev = skb->dev;
2186 u32 ttl = G_TC_RTTL(skb->tc_verd);
2187 struct netdev_queue *rxq;
2188 int result = TC_ACT_OK;
2189 struct Qdisc *q;
2190
2191 if (MAX_RED_LOOP < ttl++) {
2192 printk(KERN_WARNING
2193 "Redir loop detected Dropping packet (%d->%d)\n",
2194 skb->iif, dev->ifindex);
2195 return TC_ACT_SHOT;
2196 }
2197
2198 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2199 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2200
2201 rxq = &dev->rx_queue;
2202
2203 q = rxq->qdisc;
2204 if (q != &noop_qdisc) {
2205 spin_lock(qdisc_lock(q));
2206 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2207 result = qdisc_enqueue_root(skb, q);
2208 spin_unlock(qdisc_lock(q));
2209 }
2210
2211 return result;
2212 }
2213
2214 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2215 struct packet_type **pt_prev,
2216 int *ret, struct net_device *orig_dev)
2217 {
2218 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2219 goto out;
2220
2221 if (*pt_prev) {
2222 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2223 *pt_prev = NULL;
2224 } else {
2225 /* Huh? Why does turning on AF_PACKET affect this? */
2226 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2227 }
2228
2229 switch (ing_filter(skb)) {
2230 case TC_ACT_SHOT:
2231 case TC_ACT_STOLEN:
2232 kfree_skb(skb);
2233 return NULL;
2234 }
2235
2236 out:
2237 skb->tc_verd = 0;
2238 return skb;
2239 }
2240 #endif
2241
2242 /*
2243 * netif_nit_deliver - deliver received packets to network taps
2244 * @skb: buffer
2245 *
2246 * This function is used to deliver incoming packets to network
2247 * taps. It should be used when the normal netif_receive_skb path
2248 * is bypassed, for example because of VLAN acceleration.
2249 */
2250 void netif_nit_deliver(struct sk_buff *skb)
2251 {
2252 struct packet_type *ptype;
2253
2254 if (list_empty(&ptype_all))
2255 return;
2256
2257 skb_reset_network_header(skb);
2258 skb_reset_transport_header(skb);
2259 skb->mac_len = skb->network_header - skb->mac_header;
2260
2261 rcu_read_lock();
2262 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2263 if (!ptype->dev || ptype->dev == skb->dev)
2264 deliver_skb(skb, ptype, skb->dev);
2265 }
2266 rcu_read_unlock();
2267 }
2268
2269 /**
2270 * netif_receive_skb - process receive buffer from network
2271 * @skb: buffer to process
2272 *
2273 * netif_receive_skb() is the main receive data processing function.
2274 * It always succeeds. The buffer may be dropped during processing
2275 * for congestion control or by the protocol layers.
2276 *
2277 * This function may only be called from softirq context and interrupts
2278 * should be enabled.
2279 *
2280 * Return values (usually ignored):
2281 * NET_RX_SUCCESS: no congestion
2282 * NET_RX_DROP: packet was dropped
2283 */
2284 int netif_receive_skb(struct sk_buff *skb)
2285 {
2286 struct packet_type *ptype, *pt_prev;
2287 struct net_device *orig_dev;
2288 struct net_device *null_or_orig;
2289 int ret = NET_RX_DROP;
2290 __be16 type;
2291
2292 if (!skb->tstamp.tv64)
2293 net_timestamp(skb);
2294
2295 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2296 return NET_RX_SUCCESS;
2297
2298 /* if we've gotten here through NAPI, check netpoll */
2299 if (netpoll_receive_skb(skb))
2300 return NET_RX_DROP;
2301
2302 if (!skb->iif)
2303 skb->iif = skb->dev->ifindex;
2304
2305 null_or_orig = NULL;
2306 orig_dev = skb->dev;
2307 if (orig_dev->master) {
2308 if (skb_bond_should_drop(skb))
2309 null_or_orig = orig_dev; /* deliver only exact match */
2310 else
2311 skb->dev = orig_dev->master;
2312 }
2313
2314 __get_cpu_var(netdev_rx_stat).total++;
2315
2316 skb_reset_network_header(skb);
2317 skb_reset_transport_header(skb);
2318 skb->mac_len = skb->network_header - skb->mac_header;
2319
2320 pt_prev = NULL;
2321
2322 rcu_read_lock();
2323
2324 #ifdef CONFIG_NET_CLS_ACT
2325 if (skb->tc_verd & TC_NCLS) {
2326 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2327 goto ncls;
2328 }
2329 #endif
2330
2331 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2332 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2333 ptype->dev == orig_dev) {
2334 if (pt_prev)
2335 ret = deliver_skb(skb, pt_prev, orig_dev);
2336 pt_prev = ptype;
2337 }
2338 }
2339
2340 #ifdef CONFIG_NET_CLS_ACT
2341 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2342 if (!skb)
2343 goto out;
2344 ncls:
2345 #endif
2346
2347 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2348 if (!skb)
2349 goto out;
2350 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2351 if (!skb)
2352 goto out;
2353
2354 type = skb->protocol;
2355 list_for_each_entry_rcu(ptype,
2356 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2357 if (ptype->type == type &&
2358 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2359 ptype->dev == orig_dev)) {
2360 if (pt_prev)
2361 ret = deliver_skb(skb, pt_prev, orig_dev);
2362 pt_prev = ptype;
2363 }
2364 }
2365
2366 if (pt_prev) {
2367 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2368 } else {
2369 kfree_skb(skb);
2370 /* Jamal, now you will not able to escape explaining
2371 * me how you were going to use this. :-)
2372 */
2373 ret = NET_RX_DROP;
2374 }
2375
2376 out:
2377 rcu_read_unlock();
2378 return ret;
2379 }
2380 EXPORT_SYMBOL(netif_receive_skb);
2381
2382 /* Network device is going away, flush any packets still pending */
2383 static void flush_backlog(void *arg)
2384 {
2385 struct net_device *dev = arg;
2386 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2387 struct sk_buff *skb, *tmp;
2388
2389 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2390 if (skb->dev == dev) {
2391 __skb_unlink(skb, &queue->input_pkt_queue);
2392 kfree_skb(skb);
2393 }
2394 }
2395
2396 static int napi_gro_complete(struct sk_buff *skb)
2397 {
2398 struct packet_type *ptype;
2399 __be16 type = skb->protocol;
2400 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2401 int err = -ENOENT;
2402
2403 if (NAPI_GRO_CB(skb)->count == 1) {
2404 skb_shinfo(skb)->gso_size = 0;
2405 goto out;
2406 }
2407
2408 rcu_read_lock();
2409 list_for_each_entry_rcu(ptype, head, list) {
2410 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2411 continue;
2412
2413 err = ptype->gro_complete(skb);
2414 break;
2415 }
2416 rcu_read_unlock();
2417
2418 if (err) {
2419 WARN_ON(&ptype->list == head);
2420 kfree_skb(skb);
2421 return NET_RX_SUCCESS;
2422 }
2423
2424 out:
2425 return netif_receive_skb(skb);
2426 }
2427
2428 void napi_gro_flush(struct napi_struct *napi)
2429 {
2430 struct sk_buff *skb, *next;
2431
2432 for (skb = napi->gro_list; skb; skb = next) {
2433 next = skb->next;
2434 skb->next = NULL;
2435 napi_gro_complete(skb);
2436 }
2437
2438 napi->gro_count = 0;
2439 napi->gro_list = NULL;
2440 }
2441 EXPORT_SYMBOL(napi_gro_flush);
2442
2443 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2444 {
2445 struct sk_buff **pp = NULL;
2446 struct packet_type *ptype;
2447 __be16 type = skb->protocol;
2448 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2449 int same_flow;
2450 int mac_len;
2451 int ret;
2452
2453 if (!(skb->dev->features & NETIF_F_GRO))
2454 goto normal;
2455
2456 if (skb_is_gso(skb) || skb_has_frags(skb))
2457 goto normal;
2458
2459 rcu_read_lock();
2460 list_for_each_entry_rcu(ptype, head, list) {
2461 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2462 continue;
2463
2464 skb_set_network_header(skb, skb_gro_offset(skb));
2465 mac_len = skb->network_header - skb->mac_header;
2466 skb->mac_len = mac_len;
2467 NAPI_GRO_CB(skb)->same_flow = 0;
2468 NAPI_GRO_CB(skb)->flush = 0;
2469 NAPI_GRO_CB(skb)->free = 0;
2470
2471 pp = ptype->gro_receive(&napi->gro_list, skb);
2472 break;
2473 }
2474 rcu_read_unlock();
2475
2476 if (&ptype->list == head)
2477 goto normal;
2478
2479 same_flow = NAPI_GRO_CB(skb)->same_flow;
2480 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2481
2482 if (pp) {
2483 struct sk_buff *nskb = *pp;
2484
2485 *pp = nskb->next;
2486 nskb->next = NULL;
2487 napi_gro_complete(nskb);
2488 napi->gro_count--;
2489 }
2490
2491 if (same_flow)
2492 goto ok;
2493
2494 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2495 goto normal;
2496
2497 napi->gro_count++;
2498 NAPI_GRO_CB(skb)->count = 1;
2499 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2500 skb->next = napi->gro_list;
2501 napi->gro_list = skb;
2502 ret = GRO_HELD;
2503
2504 pull:
2505 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2506 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2507
2508 BUG_ON(skb->end - skb->tail < grow);
2509
2510 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2511
2512 skb->tail += grow;
2513 skb->data_len -= grow;
2514
2515 skb_shinfo(skb)->frags[0].page_offset += grow;
2516 skb_shinfo(skb)->frags[0].size -= grow;
2517
2518 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2519 put_page(skb_shinfo(skb)->frags[0].page);
2520 memmove(skb_shinfo(skb)->frags,
2521 skb_shinfo(skb)->frags + 1,
2522 --skb_shinfo(skb)->nr_frags);
2523 }
2524 }
2525
2526 ok:
2527 return ret;
2528
2529 normal:
2530 ret = GRO_NORMAL;
2531 goto pull;
2532 }
2533 EXPORT_SYMBOL(dev_gro_receive);
2534
2535 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2536 {
2537 struct sk_buff *p;
2538
2539 if (netpoll_rx_on(skb))
2540 return GRO_NORMAL;
2541
2542 for (p = napi->gro_list; p; p = p->next) {
2543 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev)
2544 && !compare_ether_header(skb_mac_header(p),
2545 skb_gro_mac_header(skb));
2546 NAPI_GRO_CB(p)->flush = 0;
2547 }
2548
2549 return dev_gro_receive(napi, skb);
2550 }
2551
2552 int napi_skb_finish(int ret, struct sk_buff *skb)
2553 {
2554 int err = NET_RX_SUCCESS;
2555
2556 switch (ret) {
2557 case GRO_NORMAL:
2558 return netif_receive_skb(skb);
2559
2560 case GRO_DROP:
2561 err = NET_RX_DROP;
2562 /* fall through */
2563
2564 case GRO_MERGED_FREE:
2565 kfree_skb(skb);
2566 break;
2567 }
2568
2569 return err;
2570 }
2571 EXPORT_SYMBOL(napi_skb_finish);
2572
2573 void skb_gro_reset_offset(struct sk_buff *skb)
2574 {
2575 NAPI_GRO_CB(skb)->data_offset = 0;
2576 NAPI_GRO_CB(skb)->frag0 = NULL;
2577 NAPI_GRO_CB(skb)->frag0_len = 0;
2578
2579 if (skb->mac_header == skb->tail &&
2580 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2581 NAPI_GRO_CB(skb)->frag0 =
2582 page_address(skb_shinfo(skb)->frags[0].page) +
2583 skb_shinfo(skb)->frags[0].page_offset;
2584 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2585 }
2586 }
2587 EXPORT_SYMBOL(skb_gro_reset_offset);
2588
2589 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2590 {
2591 skb_gro_reset_offset(skb);
2592
2593 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2594 }
2595 EXPORT_SYMBOL(napi_gro_receive);
2596
2597 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2598 {
2599 __skb_pull(skb, skb_headlen(skb));
2600 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2601
2602 napi->skb = skb;
2603 }
2604 EXPORT_SYMBOL(napi_reuse_skb);
2605
2606 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2607 {
2608 struct net_device *dev = napi->dev;
2609 struct sk_buff *skb = napi->skb;
2610
2611 if (!skb) {
2612 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2613 if (!skb)
2614 goto out;
2615
2616 skb_reserve(skb, NET_IP_ALIGN);
2617
2618 napi->skb = skb;
2619 }
2620
2621 out:
2622 return skb;
2623 }
2624 EXPORT_SYMBOL(napi_get_frags);
2625
2626 int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret)
2627 {
2628 int err = NET_RX_SUCCESS;
2629
2630 switch (ret) {
2631 case GRO_NORMAL:
2632 case GRO_HELD:
2633 skb->protocol = eth_type_trans(skb, napi->dev);
2634
2635 if (ret == GRO_NORMAL)
2636 return netif_receive_skb(skb);
2637
2638 skb_gro_pull(skb, -ETH_HLEN);
2639 break;
2640
2641 case GRO_DROP:
2642 err = NET_RX_DROP;
2643 /* fall through */
2644
2645 case GRO_MERGED_FREE:
2646 napi_reuse_skb(napi, skb);
2647 break;
2648 }
2649
2650 return err;
2651 }
2652 EXPORT_SYMBOL(napi_frags_finish);
2653
2654 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2655 {
2656 struct sk_buff *skb = napi->skb;
2657 struct ethhdr *eth;
2658 unsigned int hlen;
2659 unsigned int off;
2660
2661 napi->skb = NULL;
2662
2663 skb_reset_mac_header(skb);
2664 skb_gro_reset_offset(skb);
2665
2666 off = skb_gro_offset(skb);
2667 hlen = off + sizeof(*eth);
2668 eth = skb_gro_header_fast(skb, off);
2669 if (skb_gro_header_hard(skb, hlen)) {
2670 eth = skb_gro_header_slow(skb, hlen, off);
2671 if (unlikely(!eth)) {
2672 napi_reuse_skb(napi, skb);
2673 skb = NULL;
2674 goto out;
2675 }
2676 }
2677
2678 skb_gro_pull(skb, sizeof(*eth));
2679
2680 /*
2681 * This works because the only protocols we care about don't require
2682 * special handling. We'll fix it up properly at the end.
2683 */
2684 skb->protocol = eth->h_proto;
2685
2686 out:
2687 return skb;
2688 }
2689 EXPORT_SYMBOL(napi_frags_skb);
2690
2691 int napi_gro_frags(struct napi_struct *napi)
2692 {
2693 struct sk_buff *skb = napi_frags_skb(napi);
2694
2695 if (!skb)
2696 return NET_RX_DROP;
2697
2698 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2699 }
2700 EXPORT_SYMBOL(napi_gro_frags);
2701
2702 static int process_backlog(struct napi_struct *napi, int quota)
2703 {
2704 int work = 0;
2705 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2706 unsigned long start_time = jiffies;
2707
2708 napi->weight = weight_p;
2709 do {
2710 struct sk_buff *skb;
2711
2712 local_irq_disable();
2713 skb = __skb_dequeue(&queue->input_pkt_queue);
2714 if (!skb) {
2715 __napi_complete(napi);
2716 local_irq_enable();
2717 break;
2718 }
2719 local_irq_enable();
2720
2721 netif_receive_skb(skb);
2722 } while (++work < quota && jiffies == start_time);
2723
2724 return work;
2725 }
2726
2727 /**
2728 * __napi_schedule - schedule for receive
2729 * @n: entry to schedule
2730 *
2731 * The entry's receive function will be scheduled to run
2732 */
2733 void __napi_schedule(struct napi_struct *n)
2734 {
2735 unsigned long flags;
2736
2737 local_irq_save(flags);
2738 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2739 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2740 local_irq_restore(flags);
2741 }
2742 EXPORT_SYMBOL(__napi_schedule);
2743
2744 void __napi_complete(struct napi_struct *n)
2745 {
2746 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2747 BUG_ON(n->gro_list);
2748
2749 list_del(&n->poll_list);
2750 smp_mb__before_clear_bit();
2751 clear_bit(NAPI_STATE_SCHED, &n->state);
2752 }
2753 EXPORT_SYMBOL(__napi_complete);
2754
2755 void napi_complete(struct napi_struct *n)
2756 {
2757 unsigned long flags;
2758
2759 /*
2760 * don't let napi dequeue from the cpu poll list
2761 * just in case its running on a different cpu
2762 */
2763 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2764 return;
2765
2766 napi_gro_flush(n);
2767 local_irq_save(flags);
2768 __napi_complete(n);
2769 local_irq_restore(flags);
2770 }
2771 EXPORT_SYMBOL(napi_complete);
2772
2773 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2774 int (*poll)(struct napi_struct *, int), int weight)
2775 {
2776 INIT_LIST_HEAD(&napi->poll_list);
2777 napi->gro_count = 0;
2778 napi->gro_list = NULL;
2779 napi->skb = NULL;
2780 napi->poll = poll;
2781 napi->weight = weight;
2782 list_add(&napi->dev_list, &dev->napi_list);
2783 napi->dev = dev;
2784 #ifdef CONFIG_NETPOLL
2785 spin_lock_init(&napi->poll_lock);
2786 napi->poll_owner = -1;
2787 #endif
2788 set_bit(NAPI_STATE_SCHED, &napi->state);
2789 }
2790 EXPORT_SYMBOL(netif_napi_add);
2791
2792 void netif_napi_del(struct napi_struct *napi)
2793 {
2794 struct sk_buff *skb, *next;
2795
2796 list_del_init(&napi->dev_list);
2797 napi_free_frags(napi);
2798
2799 for (skb = napi->gro_list; skb; skb = next) {
2800 next = skb->next;
2801 skb->next = NULL;
2802 kfree_skb(skb);
2803 }
2804
2805 napi->gro_list = NULL;
2806 napi->gro_count = 0;
2807 }
2808 EXPORT_SYMBOL(netif_napi_del);
2809
2810
2811 static void net_rx_action(struct softirq_action *h)
2812 {
2813 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2814 unsigned long time_limit = jiffies + 2;
2815 int budget = netdev_budget;
2816 void *have;
2817
2818 local_irq_disable();
2819
2820 while (!list_empty(list)) {
2821 struct napi_struct *n;
2822 int work, weight;
2823
2824 /* If softirq window is exhuasted then punt.
2825 * Allow this to run for 2 jiffies since which will allow
2826 * an average latency of 1.5/HZ.
2827 */
2828 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2829 goto softnet_break;
2830
2831 local_irq_enable();
2832
2833 /* Even though interrupts have been re-enabled, this
2834 * access is safe because interrupts can only add new
2835 * entries to the tail of this list, and only ->poll()
2836 * calls can remove this head entry from the list.
2837 */
2838 n = list_entry(list->next, struct napi_struct, poll_list);
2839
2840 have = netpoll_poll_lock(n);
2841
2842 weight = n->weight;
2843
2844 /* This NAPI_STATE_SCHED test is for avoiding a race
2845 * with netpoll's poll_napi(). Only the entity which
2846 * obtains the lock and sees NAPI_STATE_SCHED set will
2847 * actually make the ->poll() call. Therefore we avoid
2848 * accidently calling ->poll() when NAPI is not scheduled.
2849 */
2850 work = 0;
2851 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
2852 work = n->poll(n, weight);
2853 trace_napi_poll(n);
2854 }
2855
2856 WARN_ON_ONCE(work > weight);
2857
2858 budget -= work;
2859
2860 local_irq_disable();
2861
2862 /* Drivers must not modify the NAPI state if they
2863 * consume the entire weight. In such cases this code
2864 * still "owns" the NAPI instance and therefore can
2865 * move the instance around on the list at-will.
2866 */
2867 if (unlikely(work == weight)) {
2868 if (unlikely(napi_disable_pending(n))) {
2869 local_irq_enable();
2870 napi_complete(n);
2871 local_irq_disable();
2872 } else
2873 list_move_tail(&n->poll_list, list);
2874 }
2875
2876 netpoll_poll_unlock(have);
2877 }
2878 out:
2879 local_irq_enable();
2880
2881 #ifdef CONFIG_NET_DMA
2882 /*
2883 * There may not be any more sk_buffs coming right now, so push
2884 * any pending DMA copies to hardware
2885 */
2886 dma_issue_pending_all();
2887 #endif
2888
2889 return;
2890
2891 softnet_break:
2892 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2893 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2894 goto out;
2895 }
2896
2897 static gifconf_func_t *gifconf_list[NPROTO];
2898
2899 /**
2900 * register_gifconf - register a SIOCGIF handler
2901 * @family: Address family
2902 * @gifconf: Function handler
2903 *
2904 * Register protocol dependent address dumping routines. The handler
2905 * that is passed must not be freed or reused until it has been replaced
2906 * by another handler.
2907 */
2908 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
2909 {
2910 if (family >= NPROTO)
2911 return -EINVAL;
2912 gifconf_list[family] = gifconf;
2913 return 0;
2914 }
2915 EXPORT_SYMBOL(register_gifconf);
2916
2917
2918 /*
2919 * Map an interface index to its name (SIOCGIFNAME)
2920 */
2921
2922 /*
2923 * We need this ioctl for efficient implementation of the
2924 * if_indextoname() function required by the IPv6 API. Without
2925 * it, we would have to search all the interfaces to find a
2926 * match. --pb
2927 */
2928
2929 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2930 {
2931 struct net_device *dev;
2932 struct ifreq ifr;
2933
2934 /*
2935 * Fetch the caller's info block.
2936 */
2937
2938 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2939 return -EFAULT;
2940
2941 read_lock(&dev_base_lock);
2942 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2943 if (!dev) {
2944 read_unlock(&dev_base_lock);
2945 return -ENODEV;
2946 }
2947
2948 strcpy(ifr.ifr_name, dev->name);
2949 read_unlock(&dev_base_lock);
2950
2951 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2952 return -EFAULT;
2953 return 0;
2954 }
2955
2956 /*
2957 * Perform a SIOCGIFCONF call. This structure will change
2958 * size eventually, and there is nothing I can do about it.
2959 * Thus we will need a 'compatibility mode'.
2960 */
2961
2962 static int dev_ifconf(struct net *net, char __user *arg)
2963 {
2964 struct ifconf ifc;
2965 struct net_device *dev;
2966 char __user *pos;
2967 int len;
2968 int total;
2969 int i;
2970
2971 /*
2972 * Fetch the caller's info block.
2973 */
2974
2975 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2976 return -EFAULT;
2977
2978 pos = ifc.ifc_buf;
2979 len = ifc.ifc_len;
2980
2981 /*
2982 * Loop over the interfaces, and write an info block for each.
2983 */
2984
2985 total = 0;
2986 for_each_netdev(net, dev) {
2987 for (i = 0; i < NPROTO; i++) {
2988 if (gifconf_list[i]) {
2989 int done;
2990 if (!pos)
2991 done = gifconf_list[i](dev, NULL, 0);
2992 else
2993 done = gifconf_list[i](dev, pos + total,
2994 len - total);
2995 if (done < 0)
2996 return -EFAULT;
2997 total += done;
2998 }
2999 }
3000 }
3001
3002 /*
3003 * All done. Write the updated control block back to the caller.
3004 */
3005 ifc.ifc_len = total;
3006
3007 /*
3008 * Both BSD and Solaris return 0 here, so we do too.
3009 */
3010 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3011 }
3012
3013 #ifdef CONFIG_PROC_FS
3014 /*
3015 * This is invoked by the /proc filesystem handler to display a device
3016 * in detail.
3017 */
3018 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3019 __acquires(dev_base_lock)
3020 {
3021 struct net *net = seq_file_net(seq);
3022 loff_t off;
3023 struct net_device *dev;
3024
3025 read_lock(&dev_base_lock);
3026 if (!*pos)
3027 return SEQ_START_TOKEN;
3028
3029 off = 1;
3030 for_each_netdev(net, dev)
3031 if (off++ == *pos)
3032 return dev;
3033
3034 return NULL;
3035 }
3036
3037 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3038 {
3039 struct net *net = seq_file_net(seq);
3040 ++*pos;
3041 return v == SEQ_START_TOKEN ?
3042 first_net_device(net) : next_net_device((struct net_device *)v);
3043 }
3044
3045 void dev_seq_stop(struct seq_file *seq, void *v)
3046 __releases(dev_base_lock)
3047 {
3048 read_unlock(&dev_base_lock);
3049 }
3050
3051 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3052 {
3053 const struct net_device_stats *stats = dev_get_stats(dev);
3054
3055 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3056 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3057 dev->name, stats->rx_bytes, stats->rx_packets,
3058 stats->rx_errors,
3059 stats->rx_dropped + stats->rx_missed_errors,
3060 stats->rx_fifo_errors,
3061 stats->rx_length_errors + stats->rx_over_errors +
3062 stats->rx_crc_errors + stats->rx_frame_errors,
3063 stats->rx_compressed, stats->multicast,
3064 stats->tx_bytes, stats->tx_packets,
3065 stats->tx_errors, stats->tx_dropped,
3066 stats->tx_fifo_errors, stats->collisions,
3067 stats->tx_carrier_errors +
3068 stats->tx_aborted_errors +
3069 stats->tx_window_errors +
3070 stats->tx_heartbeat_errors,
3071 stats->tx_compressed);
3072 }
3073
3074 /*
3075 * Called from the PROCfs module. This now uses the new arbitrary sized
3076 * /proc/net interface to create /proc/net/dev
3077 */
3078 static int dev_seq_show(struct seq_file *seq, void *v)
3079 {
3080 if (v == SEQ_START_TOKEN)
3081 seq_puts(seq, "Inter-| Receive "
3082 " | Transmit\n"
3083 " face |bytes packets errs drop fifo frame "
3084 "compressed multicast|bytes packets errs "
3085 "drop fifo colls carrier compressed\n");
3086 else
3087 dev_seq_printf_stats(seq, v);
3088 return 0;
3089 }
3090
3091 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3092 {
3093 struct netif_rx_stats *rc = NULL;
3094
3095 while (*pos < nr_cpu_ids)
3096 if (cpu_online(*pos)) {
3097 rc = &per_cpu(netdev_rx_stat, *pos);
3098 break;
3099 } else
3100 ++*pos;
3101 return rc;
3102 }
3103
3104 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3105 {
3106 return softnet_get_online(pos);
3107 }
3108
3109 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3110 {
3111 ++*pos;
3112 return softnet_get_online(pos);
3113 }
3114
3115 static void softnet_seq_stop(struct seq_file *seq, void *v)
3116 {
3117 }
3118
3119 static int softnet_seq_show(struct seq_file *seq, void *v)
3120 {
3121 struct netif_rx_stats *s = v;
3122
3123 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3124 s->total, s->dropped, s->time_squeeze, 0,
3125 0, 0, 0, 0, /* was fastroute */
3126 s->cpu_collision);
3127 return 0;
3128 }
3129
3130 static const struct seq_operations dev_seq_ops = {
3131 .start = dev_seq_start,
3132 .next = dev_seq_next,
3133 .stop = dev_seq_stop,
3134 .show = dev_seq_show,
3135 };
3136
3137 static int dev_seq_open(struct inode *inode, struct file *file)
3138 {
3139 return seq_open_net(inode, file, &dev_seq_ops,
3140 sizeof(struct seq_net_private));
3141 }
3142
3143 static const struct file_operations dev_seq_fops = {
3144 .owner = THIS_MODULE,
3145 .open = dev_seq_open,
3146 .read = seq_read,
3147 .llseek = seq_lseek,
3148 .release = seq_release_net,
3149 };
3150
3151 static const struct seq_operations softnet_seq_ops = {
3152 .start = softnet_seq_start,
3153 .next = softnet_seq_next,
3154 .stop = softnet_seq_stop,
3155 .show = softnet_seq_show,
3156 };
3157
3158 static int softnet_seq_open(struct inode *inode, struct file *file)
3159 {
3160 return seq_open(file, &softnet_seq_ops);
3161 }
3162
3163 static const struct file_operations softnet_seq_fops = {
3164 .owner = THIS_MODULE,
3165 .open = softnet_seq_open,
3166 .read = seq_read,
3167 .llseek = seq_lseek,
3168 .release = seq_release,
3169 };
3170
3171 static void *ptype_get_idx(loff_t pos)
3172 {
3173 struct packet_type *pt = NULL;
3174 loff_t i = 0;
3175 int t;
3176
3177 list_for_each_entry_rcu(pt, &ptype_all, list) {
3178 if (i == pos)
3179 return pt;
3180 ++i;
3181 }
3182
3183 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3184 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3185 if (i == pos)
3186 return pt;
3187 ++i;
3188 }
3189 }
3190 return NULL;
3191 }
3192
3193 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3194 __acquires(RCU)
3195 {
3196 rcu_read_lock();
3197 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3198 }
3199
3200 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3201 {
3202 struct packet_type *pt;
3203 struct list_head *nxt;
3204 int hash;
3205
3206 ++*pos;
3207 if (v == SEQ_START_TOKEN)
3208 return ptype_get_idx(0);
3209
3210 pt = v;
3211 nxt = pt->list.next;
3212 if (pt->type == htons(ETH_P_ALL)) {
3213 if (nxt != &ptype_all)
3214 goto found;
3215 hash = 0;
3216 nxt = ptype_base[0].next;
3217 } else
3218 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3219
3220 while (nxt == &ptype_base[hash]) {
3221 if (++hash >= PTYPE_HASH_SIZE)
3222 return NULL;
3223 nxt = ptype_base[hash].next;
3224 }
3225 found:
3226 return list_entry(nxt, struct packet_type, list);
3227 }
3228
3229 static void ptype_seq_stop(struct seq_file *seq, void *v)
3230 __releases(RCU)
3231 {
3232 rcu_read_unlock();
3233 }
3234
3235 static int ptype_seq_show(struct seq_file *seq, void *v)
3236 {
3237 struct packet_type *pt = v;
3238
3239 if (v == SEQ_START_TOKEN)
3240 seq_puts(seq, "Type Device Function\n");
3241 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3242 if (pt->type == htons(ETH_P_ALL))
3243 seq_puts(seq, "ALL ");
3244 else
3245 seq_printf(seq, "%04x", ntohs(pt->type));
3246
3247 seq_printf(seq, " %-8s %pF\n",
3248 pt->dev ? pt->dev->name : "", pt->func);
3249 }
3250
3251 return 0;
3252 }
3253
3254 static const struct seq_operations ptype_seq_ops = {
3255 .start = ptype_seq_start,
3256 .next = ptype_seq_next,
3257 .stop = ptype_seq_stop,
3258 .show = ptype_seq_show,
3259 };
3260
3261 static int ptype_seq_open(struct inode *inode, struct file *file)
3262 {
3263 return seq_open_net(inode, file, &ptype_seq_ops,
3264 sizeof(struct seq_net_private));
3265 }
3266
3267 static const struct file_operations ptype_seq_fops = {
3268 .owner = THIS_MODULE,
3269 .open = ptype_seq_open,
3270 .read = seq_read,
3271 .llseek = seq_lseek,
3272 .release = seq_release_net,
3273 };
3274
3275
3276 static int __net_init dev_proc_net_init(struct net *net)
3277 {
3278 int rc = -ENOMEM;
3279
3280 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3281 goto out;
3282 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3283 goto out_dev;
3284 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3285 goto out_softnet;
3286
3287 if (wext_proc_init(net))
3288 goto out_ptype;
3289 rc = 0;
3290 out:
3291 return rc;
3292 out_ptype:
3293 proc_net_remove(net, "ptype");
3294 out_softnet:
3295 proc_net_remove(net, "softnet_stat");
3296 out_dev:
3297 proc_net_remove(net, "dev");
3298 goto out;
3299 }
3300
3301 static void __net_exit dev_proc_net_exit(struct net *net)
3302 {
3303 wext_proc_exit(net);
3304
3305 proc_net_remove(net, "ptype");
3306 proc_net_remove(net, "softnet_stat");
3307 proc_net_remove(net, "dev");
3308 }
3309
3310 static struct pernet_operations __net_initdata dev_proc_ops = {
3311 .init = dev_proc_net_init,
3312 .exit = dev_proc_net_exit,
3313 };
3314
3315 static int __init dev_proc_init(void)
3316 {
3317 return register_pernet_subsys(&dev_proc_ops);
3318 }
3319 #else
3320 #define dev_proc_init() 0
3321 #endif /* CONFIG_PROC_FS */
3322
3323
3324 /**
3325 * netdev_set_master - set up master/slave pair
3326 * @slave: slave device
3327 * @master: new master device
3328 *
3329 * Changes the master device of the slave. Pass %NULL to break the
3330 * bonding. The caller must hold the RTNL semaphore. On a failure
3331 * a negative errno code is returned. On success the reference counts
3332 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3333 * function returns zero.
3334 */
3335 int netdev_set_master(struct net_device *slave, struct net_device *master)
3336 {
3337 struct net_device *old = slave->master;
3338
3339 ASSERT_RTNL();
3340
3341 if (master) {
3342 if (old)
3343 return -EBUSY;
3344 dev_hold(master);
3345 }
3346
3347 slave->master = master;
3348
3349 synchronize_net();
3350
3351 if (old)
3352 dev_put(old);
3353
3354 if (master)
3355 slave->flags |= IFF_SLAVE;
3356 else
3357 slave->flags &= ~IFF_SLAVE;
3358
3359 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3360 return 0;
3361 }
3362 EXPORT_SYMBOL(netdev_set_master);
3363
3364 static void dev_change_rx_flags(struct net_device *dev, int flags)
3365 {
3366 const struct net_device_ops *ops = dev->netdev_ops;
3367
3368 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3369 ops->ndo_change_rx_flags(dev, flags);
3370 }
3371
3372 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3373 {
3374 unsigned short old_flags = dev->flags;
3375 uid_t uid;
3376 gid_t gid;
3377
3378 ASSERT_RTNL();
3379
3380 dev->flags |= IFF_PROMISC;
3381 dev->promiscuity += inc;
3382 if (dev->promiscuity == 0) {
3383 /*
3384 * Avoid overflow.
3385 * If inc causes overflow, untouch promisc and return error.
3386 */
3387 if (inc < 0)
3388 dev->flags &= ~IFF_PROMISC;
3389 else {
3390 dev->promiscuity -= inc;
3391 printk(KERN_WARNING "%s: promiscuity touches roof, "
3392 "set promiscuity failed, promiscuity feature "
3393 "of device might be broken.\n", dev->name);
3394 return -EOVERFLOW;
3395 }
3396 }
3397 if (dev->flags != old_flags) {
3398 printk(KERN_INFO "device %s %s promiscuous mode\n",
3399 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3400 "left");
3401 if (audit_enabled) {
3402 current_uid_gid(&uid, &gid);
3403 audit_log(current->audit_context, GFP_ATOMIC,
3404 AUDIT_ANOM_PROMISCUOUS,
3405 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3406 dev->name, (dev->flags & IFF_PROMISC),
3407 (old_flags & IFF_PROMISC),
3408 audit_get_loginuid(current),
3409 uid, gid,
3410 audit_get_sessionid(current));
3411 }
3412
3413 dev_change_rx_flags(dev, IFF_PROMISC);
3414 }
3415 return 0;
3416 }
3417
3418 /**
3419 * dev_set_promiscuity - update promiscuity count on a device
3420 * @dev: device
3421 * @inc: modifier
3422 *
3423 * Add or remove promiscuity from a device. While the count in the device
3424 * remains above zero the interface remains promiscuous. Once it hits zero
3425 * the device reverts back to normal filtering operation. A negative inc
3426 * value is used to drop promiscuity on the device.
3427 * Return 0 if successful or a negative errno code on error.
3428 */
3429 int dev_set_promiscuity(struct net_device *dev, int inc)
3430 {
3431 unsigned short old_flags = dev->flags;
3432 int err;
3433
3434 err = __dev_set_promiscuity(dev, inc);
3435 if (err < 0)
3436 return err;
3437 if (dev->flags != old_flags)
3438 dev_set_rx_mode(dev);
3439 return err;
3440 }
3441 EXPORT_SYMBOL(dev_set_promiscuity);
3442
3443 /**
3444 * dev_set_allmulti - update allmulti count on a device
3445 * @dev: device
3446 * @inc: modifier
3447 *
3448 * Add or remove reception of all multicast frames to a device. While the
3449 * count in the device remains above zero the interface remains listening
3450 * to all interfaces. Once it hits zero the device reverts back to normal
3451 * filtering operation. A negative @inc value is used to drop the counter
3452 * when releasing a resource needing all multicasts.
3453 * Return 0 if successful or a negative errno code on error.
3454 */
3455
3456 int dev_set_allmulti(struct net_device *dev, int inc)
3457 {
3458 unsigned short old_flags = dev->flags;
3459
3460 ASSERT_RTNL();
3461
3462 dev->flags |= IFF_ALLMULTI;
3463 dev->allmulti += inc;
3464 if (dev->allmulti == 0) {
3465 /*
3466 * Avoid overflow.
3467 * If inc causes overflow, untouch allmulti and return error.
3468 */
3469 if (inc < 0)
3470 dev->flags &= ~IFF_ALLMULTI;
3471 else {
3472 dev->allmulti -= inc;
3473 printk(KERN_WARNING "%s: allmulti touches roof, "
3474 "set allmulti failed, allmulti feature of "
3475 "device might be broken.\n", dev->name);
3476 return -EOVERFLOW;
3477 }
3478 }
3479 if (dev->flags ^ old_flags) {
3480 dev_change_rx_flags(dev, IFF_ALLMULTI);
3481 dev_set_rx_mode(dev);
3482 }
3483 return 0;
3484 }
3485 EXPORT_SYMBOL(dev_set_allmulti);
3486
3487 /*
3488 * Upload unicast and multicast address lists to device and
3489 * configure RX filtering. When the device doesn't support unicast
3490 * filtering it is put in promiscuous mode while unicast addresses
3491 * are present.
3492 */
3493 void __dev_set_rx_mode(struct net_device *dev)
3494 {
3495 const struct net_device_ops *ops = dev->netdev_ops;
3496
3497 /* dev_open will call this function so the list will stay sane. */
3498 if (!(dev->flags&IFF_UP))
3499 return;
3500
3501 if (!netif_device_present(dev))
3502 return;
3503
3504 if (ops->ndo_set_rx_mode)
3505 ops->ndo_set_rx_mode(dev);
3506 else {
3507 /* Unicast addresses changes may only happen under the rtnl,
3508 * therefore calling __dev_set_promiscuity here is safe.
3509 */
3510 if (dev->uc.count > 0 && !dev->uc_promisc) {
3511 __dev_set_promiscuity(dev, 1);
3512 dev->uc_promisc = 1;
3513 } else if (dev->uc.count == 0 && dev->uc_promisc) {
3514 __dev_set_promiscuity(dev, -1);
3515 dev->uc_promisc = 0;
3516 }
3517
3518 if (ops->ndo_set_multicast_list)
3519 ops->ndo_set_multicast_list(dev);
3520 }
3521 }
3522
3523 void dev_set_rx_mode(struct net_device *dev)
3524 {
3525 netif_addr_lock_bh(dev);
3526 __dev_set_rx_mode(dev);
3527 netif_addr_unlock_bh(dev);
3528 }
3529
3530 /* hw addresses list handling functions */
3531
3532 static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3533 int addr_len, unsigned char addr_type)
3534 {
3535 struct netdev_hw_addr *ha;
3536 int alloc_size;
3537
3538 if (addr_len > MAX_ADDR_LEN)
3539 return -EINVAL;
3540
3541 list_for_each_entry(ha, &list->list, list) {
3542 if (!memcmp(ha->addr, addr, addr_len) &&
3543 ha->type == addr_type) {
3544 ha->refcount++;
3545 return 0;
3546 }
3547 }
3548
3549
3550 alloc_size = sizeof(*ha);
3551 if (alloc_size < L1_CACHE_BYTES)
3552 alloc_size = L1_CACHE_BYTES;
3553 ha = kmalloc(alloc_size, GFP_ATOMIC);
3554 if (!ha)
3555 return -ENOMEM;
3556 memcpy(ha->addr, addr, addr_len);
3557 ha->type = addr_type;
3558 ha->refcount = 1;
3559 ha->synced = false;
3560 list_add_tail_rcu(&ha->list, &list->list);
3561 list->count++;
3562 return 0;
3563 }
3564
3565 static void ha_rcu_free(struct rcu_head *head)
3566 {
3567 struct netdev_hw_addr *ha;
3568
3569 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3570 kfree(ha);
3571 }
3572
3573 static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3574 int addr_len, unsigned char addr_type)
3575 {
3576 struct netdev_hw_addr *ha;
3577
3578 list_for_each_entry(ha, &list->list, list) {
3579 if (!memcmp(ha->addr, addr, addr_len) &&
3580 (ha->type == addr_type || !addr_type)) {
3581 if (--ha->refcount)
3582 return 0;
3583 list_del_rcu(&ha->list);
3584 call_rcu(&ha->rcu_head, ha_rcu_free);
3585 list->count--;
3586 return 0;
3587 }
3588 }
3589 return -ENOENT;
3590 }
3591
3592 static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
3593 struct netdev_hw_addr_list *from_list,
3594 int addr_len,
3595 unsigned char addr_type)
3596 {
3597 int err;
3598 struct netdev_hw_addr *ha, *ha2;
3599 unsigned char type;
3600
3601 list_for_each_entry(ha, &from_list->list, list) {
3602 type = addr_type ? addr_type : ha->type;
3603 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
3604 if (err)
3605 goto unroll;
3606 }
3607 return 0;
3608
3609 unroll:
3610 list_for_each_entry(ha2, &from_list->list, list) {
3611 if (ha2 == ha)
3612 break;
3613 type = addr_type ? addr_type : ha2->type;
3614 __hw_addr_del(to_list, ha2->addr, addr_len, type);
3615 }
3616 return err;
3617 }
3618
3619 static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
3620 struct netdev_hw_addr_list *from_list,
3621 int addr_len,
3622 unsigned char addr_type)
3623 {
3624 struct netdev_hw_addr *ha;
3625 unsigned char type;
3626
3627 list_for_each_entry(ha, &from_list->list, list) {
3628 type = addr_type ? addr_type : ha->type;
3629 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
3630 }
3631 }
3632
3633 static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3634 struct netdev_hw_addr_list *from_list,
3635 int addr_len)
3636 {
3637 int err = 0;
3638 struct netdev_hw_addr *ha, *tmp;
3639
3640 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3641 if (!ha->synced) {
3642 err = __hw_addr_add(to_list, ha->addr,
3643 addr_len, ha->type);
3644 if (err)
3645 break;
3646 ha->synced = true;
3647 ha->refcount++;
3648 } else if (ha->refcount == 1) {
3649 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
3650 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
3651 }
3652 }
3653 return err;
3654 }
3655
3656 static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3657 struct netdev_hw_addr_list *from_list,
3658 int addr_len)
3659 {
3660 struct netdev_hw_addr *ha, *tmp;
3661
3662 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3663 if (ha->synced) {
3664 __hw_addr_del(to_list, ha->addr,
3665 addr_len, ha->type);
3666 ha->synced = false;
3667 __hw_addr_del(from_list, ha->addr,
3668 addr_len, ha->type);
3669 }
3670 }
3671 }
3672
3673 static void __hw_addr_flush(struct netdev_hw_addr_list *list)
3674 {
3675 struct netdev_hw_addr *ha, *tmp;
3676
3677 list_for_each_entry_safe(ha, tmp, &list->list, list) {
3678 list_del_rcu(&ha->list);
3679 call_rcu(&ha->rcu_head, ha_rcu_free);
3680 }
3681 list->count = 0;
3682 }
3683
3684 static void __hw_addr_init(struct netdev_hw_addr_list *list)
3685 {
3686 INIT_LIST_HEAD(&list->list);
3687 list->count = 0;
3688 }
3689
3690 /* Device addresses handling functions */
3691
3692 static void dev_addr_flush(struct net_device *dev)
3693 {
3694 /* rtnl_mutex must be held here */
3695
3696 __hw_addr_flush(&dev->dev_addrs);
3697 dev->dev_addr = NULL;
3698 }
3699
3700 static int dev_addr_init(struct net_device *dev)
3701 {
3702 unsigned char addr[MAX_ADDR_LEN];
3703 struct netdev_hw_addr *ha;
3704 int err;
3705
3706 /* rtnl_mutex must be held here */
3707
3708 __hw_addr_init(&dev->dev_addrs);
3709 memset(addr, 0, sizeof(addr));
3710 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
3711 NETDEV_HW_ADDR_T_LAN);
3712 if (!err) {
3713 /*
3714 * Get the first (previously created) address from the list
3715 * and set dev_addr pointer to this location.
3716 */
3717 ha = list_first_entry(&dev->dev_addrs.list,
3718 struct netdev_hw_addr, list);
3719 dev->dev_addr = ha->addr;
3720 }
3721 return err;
3722 }
3723
3724 /**
3725 * dev_addr_add - Add a device address
3726 * @dev: device
3727 * @addr: address to add
3728 * @addr_type: address type
3729 *
3730 * Add a device address to the device or increase the reference count if
3731 * it already exists.
3732 *
3733 * The caller must hold the rtnl_mutex.
3734 */
3735 int dev_addr_add(struct net_device *dev, unsigned char *addr,
3736 unsigned char addr_type)
3737 {
3738 int err;
3739
3740 ASSERT_RTNL();
3741
3742 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
3743 if (!err)
3744 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3745 return err;
3746 }
3747 EXPORT_SYMBOL(dev_addr_add);
3748
3749 /**
3750 * dev_addr_del - Release a device address.
3751 * @dev: device
3752 * @addr: address to delete
3753 * @addr_type: address type
3754 *
3755 * Release reference to a device address and remove it from the device
3756 * if the reference count drops to zero.
3757 *
3758 * The caller must hold the rtnl_mutex.
3759 */
3760 int dev_addr_del(struct net_device *dev, unsigned char *addr,
3761 unsigned char addr_type)
3762 {
3763 int err;
3764 struct netdev_hw_addr *ha;
3765
3766 ASSERT_RTNL();
3767
3768 /*
3769 * We can not remove the first address from the list because
3770 * dev->dev_addr points to that.
3771 */
3772 ha = list_first_entry(&dev->dev_addrs.list,
3773 struct netdev_hw_addr, list);
3774 if (ha->addr == dev->dev_addr && ha->refcount == 1)
3775 return -ENOENT;
3776
3777 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
3778 addr_type);
3779 if (!err)
3780 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3781 return err;
3782 }
3783 EXPORT_SYMBOL(dev_addr_del);
3784
3785 /**
3786 * dev_addr_add_multiple - Add device addresses from another device
3787 * @to_dev: device to which addresses will be added
3788 * @from_dev: device from which addresses will be added
3789 * @addr_type: address type - 0 means type will be used from from_dev
3790 *
3791 * Add device addresses of the one device to another.
3792 **
3793 * The caller must hold the rtnl_mutex.
3794 */
3795 int dev_addr_add_multiple(struct net_device *to_dev,
3796 struct net_device *from_dev,
3797 unsigned char addr_type)
3798 {
3799 int err;
3800
3801 ASSERT_RTNL();
3802
3803 if (from_dev->addr_len != to_dev->addr_len)
3804 return -EINVAL;
3805 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3806 to_dev->addr_len, addr_type);
3807 if (!err)
3808 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3809 return err;
3810 }
3811 EXPORT_SYMBOL(dev_addr_add_multiple);
3812
3813 /**
3814 * dev_addr_del_multiple - Delete device addresses by another device
3815 * @to_dev: device where the addresses will be deleted
3816 * @from_dev: device by which addresses the addresses will be deleted
3817 * @addr_type: address type - 0 means type will used from from_dev
3818 *
3819 * Deletes addresses in to device by the list of addresses in from device.
3820 *
3821 * The caller must hold the rtnl_mutex.
3822 */
3823 int dev_addr_del_multiple(struct net_device *to_dev,
3824 struct net_device *from_dev,
3825 unsigned char addr_type)
3826 {
3827 ASSERT_RTNL();
3828
3829 if (from_dev->addr_len != to_dev->addr_len)
3830 return -EINVAL;
3831 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3832 to_dev->addr_len, addr_type);
3833 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3834 return 0;
3835 }
3836 EXPORT_SYMBOL(dev_addr_del_multiple);
3837
3838 /* multicast addresses handling functions */
3839
3840 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3841 void *addr, int alen, int glbl)
3842 {
3843 struct dev_addr_list *da;
3844
3845 for (; (da = *list) != NULL; list = &da->next) {
3846 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3847 alen == da->da_addrlen) {
3848 if (glbl) {
3849 int old_glbl = da->da_gusers;
3850 da->da_gusers = 0;
3851 if (old_glbl == 0)
3852 break;
3853 }
3854 if (--da->da_users)
3855 return 0;
3856
3857 *list = da->next;
3858 kfree(da);
3859 (*count)--;
3860 return 0;
3861 }
3862 }
3863 return -ENOENT;
3864 }
3865
3866 int __dev_addr_add(struct dev_addr_list **list, int *count,
3867 void *addr, int alen, int glbl)
3868 {
3869 struct dev_addr_list *da;
3870
3871 for (da = *list; da != NULL; da = da->next) {
3872 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3873 da->da_addrlen == alen) {
3874 if (glbl) {
3875 int old_glbl = da->da_gusers;
3876 da->da_gusers = 1;
3877 if (old_glbl)
3878 return 0;
3879 }
3880 da->da_users++;
3881 return 0;
3882 }
3883 }
3884
3885 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3886 if (da == NULL)
3887 return -ENOMEM;
3888 memcpy(da->da_addr, addr, alen);
3889 da->da_addrlen = alen;
3890 da->da_users = 1;
3891 da->da_gusers = glbl ? 1 : 0;
3892 da->next = *list;
3893 *list = da;
3894 (*count)++;
3895 return 0;
3896 }
3897
3898 /**
3899 * dev_unicast_delete - Release secondary unicast address.
3900 * @dev: device
3901 * @addr: address to delete
3902 *
3903 * Release reference to a secondary unicast address and remove it
3904 * from the device if the reference count drops to zero.
3905 *
3906 * The caller must hold the rtnl_mutex.
3907 */
3908 int dev_unicast_delete(struct net_device *dev, void *addr)
3909 {
3910 int err;
3911
3912 ASSERT_RTNL();
3913
3914 netif_addr_lock_bh(dev);
3915 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
3916 NETDEV_HW_ADDR_T_UNICAST);
3917 if (!err)
3918 __dev_set_rx_mode(dev);
3919 netif_addr_unlock_bh(dev);
3920 return err;
3921 }
3922 EXPORT_SYMBOL(dev_unicast_delete);
3923
3924 /**
3925 * dev_unicast_add - add a secondary unicast address
3926 * @dev: device
3927 * @addr: address to add
3928 *
3929 * Add a secondary unicast address to the device or increase
3930 * the reference count if it already exists.
3931 *
3932 * The caller must hold the rtnl_mutex.
3933 */
3934 int dev_unicast_add(struct net_device *dev, void *addr)
3935 {
3936 int err;
3937
3938 ASSERT_RTNL();
3939
3940 netif_addr_lock_bh(dev);
3941 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
3942 NETDEV_HW_ADDR_T_UNICAST);
3943 if (!err)
3944 __dev_set_rx_mode(dev);
3945 netif_addr_unlock_bh(dev);
3946 return err;
3947 }
3948 EXPORT_SYMBOL(dev_unicast_add);
3949
3950 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3951 struct dev_addr_list **from, int *from_count)
3952 {
3953 struct dev_addr_list *da, *next;
3954 int err = 0;
3955
3956 da = *from;
3957 while (da != NULL) {
3958 next = da->next;
3959 if (!da->da_synced) {
3960 err = __dev_addr_add(to, to_count,
3961 da->da_addr, da->da_addrlen, 0);
3962 if (err < 0)
3963 break;
3964 da->da_synced = 1;
3965 da->da_users++;
3966 } else if (da->da_users == 1) {
3967 __dev_addr_delete(to, to_count,
3968 da->da_addr, da->da_addrlen, 0);
3969 __dev_addr_delete(from, from_count,
3970 da->da_addr, da->da_addrlen, 0);
3971 }
3972 da = next;
3973 }
3974 return err;
3975 }
3976 EXPORT_SYMBOL_GPL(__dev_addr_sync);
3977
3978 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3979 struct dev_addr_list **from, int *from_count)
3980 {
3981 struct dev_addr_list *da, *next;
3982
3983 da = *from;
3984 while (da != NULL) {
3985 next = da->next;
3986 if (da->da_synced) {
3987 __dev_addr_delete(to, to_count,
3988 da->da_addr, da->da_addrlen, 0);
3989 da->da_synced = 0;
3990 __dev_addr_delete(from, from_count,
3991 da->da_addr, da->da_addrlen, 0);
3992 }
3993 da = next;
3994 }
3995 }
3996 EXPORT_SYMBOL_GPL(__dev_addr_unsync);
3997
3998 /**
3999 * dev_unicast_sync - Synchronize device's unicast list to another device
4000 * @to: destination device
4001 * @from: source device
4002 *
4003 * Add newly added addresses to the destination device and release
4004 * addresses that have no users left. The source device must be
4005 * locked by netif_tx_lock_bh.
4006 *
4007 * This function is intended to be called from the dev->set_rx_mode
4008 * function of layered software devices.
4009 */
4010 int dev_unicast_sync(struct net_device *to, struct net_device *from)
4011 {
4012 int err = 0;
4013
4014 if (to->addr_len != from->addr_len)
4015 return -EINVAL;
4016
4017 netif_addr_lock_bh(to);
4018 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
4019 if (!err)
4020 __dev_set_rx_mode(to);
4021 netif_addr_unlock_bh(to);
4022 return err;
4023 }
4024 EXPORT_SYMBOL(dev_unicast_sync);
4025
4026 /**
4027 * dev_unicast_unsync - Remove synchronized addresses from the destination device
4028 * @to: destination device
4029 * @from: source device
4030 *
4031 * Remove all addresses that were added to the destination device by
4032 * dev_unicast_sync(). This function is intended to be called from the
4033 * dev->stop function of layered software devices.
4034 */
4035 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4036 {
4037 if (to->addr_len != from->addr_len)
4038 return;
4039
4040 netif_addr_lock_bh(from);
4041 netif_addr_lock(to);
4042 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
4043 __dev_set_rx_mode(to);
4044 netif_addr_unlock(to);
4045 netif_addr_unlock_bh(from);
4046 }
4047 EXPORT_SYMBOL(dev_unicast_unsync);
4048
4049 static void dev_unicast_flush(struct net_device *dev)
4050 {
4051 netif_addr_lock_bh(dev);
4052 __hw_addr_flush(&dev->uc);
4053 netif_addr_unlock_bh(dev);
4054 }
4055
4056 static void dev_unicast_init(struct net_device *dev)
4057 {
4058 __hw_addr_init(&dev->uc);
4059 }
4060
4061
4062 static void __dev_addr_discard(struct dev_addr_list **list)
4063 {
4064 struct dev_addr_list *tmp;
4065
4066 while (*list != NULL) {
4067 tmp = *list;
4068 *list = tmp->next;
4069 if (tmp->da_users > tmp->da_gusers)
4070 printk("__dev_addr_discard: address leakage! "
4071 "da_users=%d\n", tmp->da_users);
4072 kfree(tmp);
4073 }
4074 }
4075
4076 static void dev_addr_discard(struct net_device *dev)
4077 {
4078 netif_addr_lock_bh(dev);
4079
4080 __dev_addr_discard(&dev->mc_list);
4081 dev->mc_count = 0;
4082
4083 netif_addr_unlock_bh(dev);
4084 }
4085
4086 /**
4087 * dev_get_flags - get flags reported to userspace
4088 * @dev: device
4089 *
4090 * Get the combination of flag bits exported through APIs to userspace.
4091 */
4092 unsigned dev_get_flags(const struct net_device *dev)
4093 {
4094 unsigned flags;
4095
4096 flags = (dev->flags & ~(IFF_PROMISC |
4097 IFF_ALLMULTI |
4098 IFF_RUNNING |
4099 IFF_LOWER_UP |
4100 IFF_DORMANT)) |
4101 (dev->gflags & (IFF_PROMISC |
4102 IFF_ALLMULTI));
4103
4104 if (netif_running(dev)) {
4105 if (netif_oper_up(dev))
4106 flags |= IFF_RUNNING;
4107 if (netif_carrier_ok(dev))
4108 flags |= IFF_LOWER_UP;
4109 if (netif_dormant(dev))
4110 flags |= IFF_DORMANT;
4111 }
4112
4113 return flags;
4114 }
4115 EXPORT_SYMBOL(dev_get_flags);
4116
4117 /**
4118 * dev_change_flags - change device settings
4119 * @dev: device
4120 * @flags: device state flags
4121 *
4122 * Change settings on device based state flags. The flags are
4123 * in the userspace exported format.
4124 */
4125 int dev_change_flags(struct net_device *dev, unsigned flags)
4126 {
4127 int ret, changes;
4128 int old_flags = dev->flags;
4129
4130 ASSERT_RTNL();
4131
4132 /*
4133 * Set the flags on our device.
4134 */
4135
4136 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4137 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4138 IFF_AUTOMEDIA)) |
4139 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4140 IFF_ALLMULTI));
4141
4142 /*
4143 * Load in the correct multicast list now the flags have changed.
4144 */
4145
4146 if ((old_flags ^ flags) & IFF_MULTICAST)
4147 dev_change_rx_flags(dev, IFF_MULTICAST);
4148
4149 dev_set_rx_mode(dev);
4150
4151 /*
4152 * Have we downed the interface. We handle IFF_UP ourselves
4153 * according to user attempts to set it, rather than blindly
4154 * setting it.
4155 */
4156
4157 ret = 0;
4158 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4159 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
4160
4161 if (!ret)
4162 dev_set_rx_mode(dev);
4163 }
4164
4165 if (dev->flags & IFF_UP &&
4166 ((old_flags ^ dev->flags) & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
4167 IFF_VOLATILE)))
4168 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4169
4170 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4171 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4172
4173 dev->gflags ^= IFF_PROMISC;
4174 dev_set_promiscuity(dev, inc);
4175 }
4176
4177 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4178 is important. Some (broken) drivers set IFF_PROMISC, when
4179 IFF_ALLMULTI is requested not asking us and not reporting.
4180 */
4181 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4182 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4183
4184 dev->gflags ^= IFF_ALLMULTI;
4185 dev_set_allmulti(dev, inc);
4186 }
4187
4188 /* Exclude state transition flags, already notified */
4189 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
4190 if (changes)
4191 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4192
4193 return ret;
4194 }
4195 EXPORT_SYMBOL(dev_change_flags);
4196
4197 /**
4198 * dev_set_mtu - Change maximum transfer unit
4199 * @dev: device
4200 * @new_mtu: new transfer unit
4201 *
4202 * Change the maximum transfer size of the network device.
4203 */
4204 int dev_set_mtu(struct net_device *dev, int new_mtu)
4205 {
4206 const struct net_device_ops *ops = dev->netdev_ops;
4207 int err;
4208
4209 if (new_mtu == dev->mtu)
4210 return 0;
4211
4212 /* MTU must be positive. */
4213 if (new_mtu < 0)
4214 return -EINVAL;
4215
4216 if (!netif_device_present(dev))
4217 return -ENODEV;
4218
4219 err = 0;
4220 if (ops->ndo_change_mtu)
4221 err = ops->ndo_change_mtu(dev, new_mtu);
4222 else
4223 dev->mtu = new_mtu;
4224
4225 if (!err && dev->flags & IFF_UP)
4226 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4227 return err;
4228 }
4229 EXPORT_SYMBOL(dev_set_mtu);
4230
4231 /**
4232 * dev_set_mac_address - Change Media Access Control Address
4233 * @dev: device
4234 * @sa: new address
4235 *
4236 * Change the hardware (MAC) address of the device
4237 */
4238 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4239 {
4240 const struct net_device_ops *ops = dev->netdev_ops;
4241 int err;
4242
4243 if (!ops->ndo_set_mac_address)
4244 return -EOPNOTSUPP;
4245 if (sa->sa_family != dev->type)
4246 return -EINVAL;
4247 if (!netif_device_present(dev))
4248 return -ENODEV;
4249 err = ops->ndo_set_mac_address(dev, sa);
4250 if (!err)
4251 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4252 return err;
4253 }
4254 EXPORT_SYMBOL(dev_set_mac_address);
4255
4256 /*
4257 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
4258 */
4259 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4260 {
4261 int err;
4262 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4263
4264 if (!dev)
4265 return -ENODEV;
4266
4267 switch (cmd) {
4268 case SIOCGIFFLAGS: /* Get interface flags */
4269 ifr->ifr_flags = (short) dev_get_flags(dev);
4270 return 0;
4271
4272 case SIOCGIFMETRIC: /* Get the metric on the interface
4273 (currently unused) */
4274 ifr->ifr_metric = 0;
4275 return 0;
4276
4277 case SIOCGIFMTU: /* Get the MTU of a device */
4278 ifr->ifr_mtu = dev->mtu;
4279 return 0;
4280
4281 case SIOCGIFHWADDR:
4282 if (!dev->addr_len)
4283 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4284 else
4285 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4286 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4287 ifr->ifr_hwaddr.sa_family = dev->type;
4288 return 0;
4289
4290 case SIOCGIFSLAVE:
4291 err = -EINVAL;
4292 break;
4293
4294 case SIOCGIFMAP:
4295 ifr->ifr_map.mem_start = dev->mem_start;
4296 ifr->ifr_map.mem_end = dev->mem_end;
4297 ifr->ifr_map.base_addr = dev->base_addr;
4298 ifr->ifr_map.irq = dev->irq;
4299 ifr->ifr_map.dma = dev->dma;
4300 ifr->ifr_map.port = dev->if_port;
4301 return 0;
4302
4303 case SIOCGIFINDEX:
4304 ifr->ifr_ifindex = dev->ifindex;
4305 return 0;
4306
4307 case SIOCGIFTXQLEN:
4308 ifr->ifr_qlen = dev->tx_queue_len;
4309 return 0;
4310
4311 default:
4312 /* dev_ioctl() should ensure this case
4313 * is never reached
4314 */
4315 WARN_ON(1);
4316 err = -EINVAL;
4317 break;
4318
4319 }
4320 return err;
4321 }
4322
4323 /*
4324 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4325 */
4326 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4327 {
4328 int err;
4329 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4330 const struct net_device_ops *ops;
4331
4332 if (!dev)
4333 return -ENODEV;
4334
4335 ops = dev->netdev_ops;
4336
4337 switch (cmd) {
4338 case SIOCSIFFLAGS: /* Set interface flags */
4339 return dev_change_flags(dev, ifr->ifr_flags);
4340
4341 case SIOCSIFMETRIC: /* Set the metric on the interface
4342 (currently unused) */
4343 return -EOPNOTSUPP;
4344
4345 case SIOCSIFMTU: /* Set the MTU of a device */
4346 return dev_set_mtu(dev, ifr->ifr_mtu);
4347
4348 case SIOCSIFHWADDR:
4349 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4350
4351 case SIOCSIFHWBROADCAST:
4352 if (ifr->ifr_hwaddr.sa_family != dev->type)
4353 return -EINVAL;
4354 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4355 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4356 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4357 return 0;
4358
4359 case SIOCSIFMAP:
4360 if (ops->ndo_set_config) {
4361 if (!netif_device_present(dev))
4362 return -ENODEV;
4363 return ops->ndo_set_config(dev, &ifr->ifr_map);
4364 }
4365 return -EOPNOTSUPP;
4366
4367 case SIOCADDMULTI:
4368 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4369 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4370 return -EINVAL;
4371 if (!netif_device_present(dev))
4372 return -ENODEV;
4373 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4374 dev->addr_len, 1);
4375
4376 case SIOCDELMULTI:
4377 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4378 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4379 return -EINVAL;
4380 if (!netif_device_present(dev))
4381 return -ENODEV;
4382 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4383 dev->addr_len, 1);
4384
4385 case SIOCSIFTXQLEN:
4386 if (ifr->ifr_qlen < 0)
4387 return -EINVAL;
4388 dev->tx_queue_len = ifr->ifr_qlen;
4389 return 0;
4390
4391 case SIOCSIFNAME:
4392 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4393 return dev_change_name(dev, ifr->ifr_newname);
4394
4395 /*
4396 * Unknown or private ioctl
4397 */
4398 default:
4399 if ((cmd >= SIOCDEVPRIVATE &&
4400 cmd <= SIOCDEVPRIVATE + 15) ||
4401 cmd == SIOCBONDENSLAVE ||
4402 cmd == SIOCBONDRELEASE ||
4403 cmd == SIOCBONDSETHWADDR ||
4404 cmd == SIOCBONDSLAVEINFOQUERY ||
4405 cmd == SIOCBONDINFOQUERY ||
4406 cmd == SIOCBONDCHANGEACTIVE ||
4407 cmd == SIOCGMIIPHY ||
4408 cmd == SIOCGMIIREG ||
4409 cmd == SIOCSMIIREG ||
4410 cmd == SIOCBRADDIF ||
4411 cmd == SIOCBRDELIF ||
4412 cmd == SIOCSHWTSTAMP ||
4413 cmd == SIOCWANDEV) {
4414 err = -EOPNOTSUPP;
4415 if (ops->ndo_do_ioctl) {
4416 if (netif_device_present(dev))
4417 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4418 else
4419 err = -ENODEV;
4420 }
4421 } else
4422 err = -EINVAL;
4423
4424 }
4425 return err;
4426 }
4427
4428 /*
4429 * This function handles all "interface"-type I/O control requests. The actual
4430 * 'doing' part of this is dev_ifsioc above.
4431 */
4432
4433 /**
4434 * dev_ioctl - network device ioctl
4435 * @net: the applicable net namespace
4436 * @cmd: command to issue
4437 * @arg: pointer to a struct ifreq in user space
4438 *
4439 * Issue ioctl functions to devices. This is normally called by the
4440 * user space syscall interfaces but can sometimes be useful for
4441 * other purposes. The return value is the return from the syscall if
4442 * positive or a negative errno code on error.
4443 */
4444
4445 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4446 {
4447 struct ifreq ifr;
4448 int ret;
4449 char *colon;
4450
4451 /* One special case: SIOCGIFCONF takes ifconf argument
4452 and requires shared lock, because it sleeps writing
4453 to user space.
4454 */
4455
4456 if (cmd == SIOCGIFCONF) {
4457 rtnl_lock();
4458 ret = dev_ifconf(net, (char __user *) arg);
4459 rtnl_unlock();
4460 return ret;
4461 }
4462 if (cmd == SIOCGIFNAME)
4463 return dev_ifname(net, (struct ifreq __user *)arg);
4464
4465 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4466 return -EFAULT;
4467
4468 ifr.ifr_name[IFNAMSIZ-1] = 0;
4469
4470 colon = strchr(ifr.ifr_name, ':');
4471 if (colon)
4472 *colon = 0;
4473
4474 /*
4475 * See which interface the caller is talking about.
4476 */
4477
4478 switch (cmd) {
4479 /*
4480 * These ioctl calls:
4481 * - can be done by all.
4482 * - atomic and do not require locking.
4483 * - return a value
4484 */
4485 case SIOCGIFFLAGS:
4486 case SIOCGIFMETRIC:
4487 case SIOCGIFMTU:
4488 case SIOCGIFHWADDR:
4489 case SIOCGIFSLAVE:
4490 case SIOCGIFMAP:
4491 case SIOCGIFINDEX:
4492 case SIOCGIFTXQLEN:
4493 dev_load(net, ifr.ifr_name);
4494 read_lock(&dev_base_lock);
4495 ret = dev_ifsioc_locked(net, &ifr, cmd);
4496 read_unlock(&dev_base_lock);
4497 if (!ret) {
4498 if (colon)
4499 *colon = ':';
4500 if (copy_to_user(arg, &ifr,
4501 sizeof(struct ifreq)))
4502 ret = -EFAULT;
4503 }
4504 return ret;
4505
4506 case SIOCETHTOOL:
4507 dev_load(net, ifr.ifr_name);
4508 rtnl_lock();
4509 ret = dev_ethtool(net, &ifr);
4510 rtnl_unlock();
4511 if (!ret) {
4512 if (colon)
4513 *colon = ':';
4514 if (copy_to_user(arg, &ifr,
4515 sizeof(struct ifreq)))
4516 ret = -EFAULT;
4517 }
4518 return ret;
4519
4520 /*
4521 * These ioctl calls:
4522 * - require superuser power.
4523 * - require strict serialization.
4524 * - return a value
4525 */
4526 case SIOCGMIIPHY:
4527 case SIOCGMIIREG:
4528 case SIOCSIFNAME:
4529 if (!capable(CAP_NET_ADMIN))
4530 return -EPERM;
4531 dev_load(net, ifr.ifr_name);
4532 rtnl_lock();
4533 ret = dev_ifsioc(net, &ifr, cmd);
4534 rtnl_unlock();
4535 if (!ret) {
4536 if (colon)
4537 *colon = ':';
4538 if (copy_to_user(arg, &ifr,
4539 sizeof(struct ifreq)))
4540 ret = -EFAULT;
4541 }
4542 return ret;
4543
4544 /*
4545 * These ioctl calls:
4546 * - require superuser power.
4547 * - require strict serialization.
4548 * - do not return a value
4549 */
4550 case SIOCSIFFLAGS:
4551 case SIOCSIFMETRIC:
4552 case SIOCSIFMTU:
4553 case SIOCSIFMAP:
4554 case SIOCSIFHWADDR:
4555 case SIOCSIFSLAVE:
4556 case SIOCADDMULTI:
4557 case SIOCDELMULTI:
4558 case SIOCSIFHWBROADCAST:
4559 case SIOCSIFTXQLEN:
4560 case SIOCSMIIREG:
4561 case SIOCBONDENSLAVE:
4562 case SIOCBONDRELEASE:
4563 case SIOCBONDSETHWADDR:
4564 case SIOCBONDCHANGEACTIVE:
4565 case SIOCBRADDIF:
4566 case SIOCBRDELIF:
4567 case SIOCSHWTSTAMP:
4568 if (!capable(CAP_NET_ADMIN))
4569 return -EPERM;
4570 /* fall through */
4571 case SIOCBONDSLAVEINFOQUERY:
4572 case SIOCBONDINFOQUERY:
4573 dev_load(net, ifr.ifr_name);
4574 rtnl_lock();
4575 ret = dev_ifsioc(net, &ifr, cmd);
4576 rtnl_unlock();
4577 return ret;
4578
4579 case SIOCGIFMEM:
4580 /* Get the per device memory space. We can add this but
4581 * currently do not support it */
4582 case SIOCSIFMEM:
4583 /* Set the per device memory buffer space.
4584 * Not applicable in our case */
4585 case SIOCSIFLINK:
4586 return -EINVAL;
4587
4588 /*
4589 * Unknown or private ioctl.
4590 */
4591 default:
4592 if (cmd == SIOCWANDEV ||
4593 (cmd >= SIOCDEVPRIVATE &&
4594 cmd <= SIOCDEVPRIVATE + 15)) {
4595 dev_load(net, ifr.ifr_name);
4596 rtnl_lock();
4597 ret = dev_ifsioc(net, &ifr, cmd);
4598 rtnl_unlock();
4599 if (!ret && copy_to_user(arg, &ifr,
4600 sizeof(struct ifreq)))
4601 ret = -EFAULT;
4602 return ret;
4603 }
4604 /* Take care of Wireless Extensions */
4605 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4606 return wext_handle_ioctl(net, &ifr, cmd, arg);
4607 return -EINVAL;
4608 }
4609 }
4610
4611
4612 /**
4613 * dev_new_index - allocate an ifindex
4614 * @net: the applicable net namespace
4615 *
4616 * Returns a suitable unique value for a new device interface
4617 * number. The caller must hold the rtnl semaphore or the
4618 * dev_base_lock to be sure it remains unique.
4619 */
4620 static int dev_new_index(struct net *net)
4621 {
4622 static int ifindex;
4623 for (;;) {
4624 if (++ifindex <= 0)
4625 ifindex = 1;
4626 if (!__dev_get_by_index(net, ifindex))
4627 return ifindex;
4628 }
4629 }
4630
4631 /* Delayed registration/unregisteration */
4632 static LIST_HEAD(net_todo_list);
4633
4634 static void net_set_todo(struct net_device *dev)
4635 {
4636 list_add_tail(&dev->todo_list, &net_todo_list);
4637 }
4638
4639 static void rollback_registered(struct net_device *dev)
4640 {
4641 BUG_ON(dev_boot_phase);
4642 ASSERT_RTNL();
4643
4644 /* Some devices call without registering for initialization unwind. */
4645 if (dev->reg_state == NETREG_UNINITIALIZED) {
4646 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4647 "was registered\n", dev->name, dev);
4648
4649 WARN_ON(1);
4650 return;
4651 }
4652
4653 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4654
4655 /* If device is running, close it first. */
4656 dev_close(dev);
4657
4658 /* And unlink it from device chain. */
4659 unlist_netdevice(dev);
4660
4661 dev->reg_state = NETREG_UNREGISTERING;
4662
4663 synchronize_net();
4664
4665 /* Shutdown queueing discipline. */
4666 dev_shutdown(dev);
4667
4668
4669 /* Notify protocols, that we are about to destroy
4670 this device. They should clean all the things.
4671 */
4672 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4673
4674 /*
4675 * Flush the unicast and multicast chains
4676 */
4677 dev_unicast_flush(dev);
4678 dev_addr_discard(dev);
4679
4680 if (dev->netdev_ops->ndo_uninit)
4681 dev->netdev_ops->ndo_uninit(dev);
4682
4683 /* Notifier chain MUST detach us from master device. */
4684 WARN_ON(dev->master);
4685
4686 /* Remove entries from kobject tree */
4687 netdev_unregister_kobject(dev);
4688
4689 synchronize_net();
4690
4691 dev_put(dev);
4692 }
4693
4694 static void __netdev_init_queue_locks_one(struct net_device *dev,
4695 struct netdev_queue *dev_queue,
4696 void *_unused)
4697 {
4698 spin_lock_init(&dev_queue->_xmit_lock);
4699 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4700 dev_queue->xmit_lock_owner = -1;
4701 }
4702
4703 static void netdev_init_queue_locks(struct net_device *dev)
4704 {
4705 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4706 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4707 }
4708
4709 unsigned long netdev_fix_features(unsigned long features, const char *name)
4710 {
4711 /* Fix illegal SG+CSUM combinations. */
4712 if ((features & NETIF_F_SG) &&
4713 !(features & NETIF_F_ALL_CSUM)) {
4714 if (name)
4715 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4716 "checksum feature.\n", name);
4717 features &= ~NETIF_F_SG;
4718 }
4719
4720 /* TSO requires that SG is present as well. */
4721 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4722 if (name)
4723 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4724 "SG feature.\n", name);
4725 features &= ~NETIF_F_TSO;
4726 }
4727
4728 if (features & NETIF_F_UFO) {
4729 if (!(features & NETIF_F_GEN_CSUM)) {
4730 if (name)
4731 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4732 "since no NETIF_F_HW_CSUM feature.\n",
4733 name);
4734 features &= ~NETIF_F_UFO;
4735 }
4736
4737 if (!(features & NETIF_F_SG)) {
4738 if (name)
4739 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4740 "since no NETIF_F_SG feature.\n", name);
4741 features &= ~NETIF_F_UFO;
4742 }
4743 }
4744
4745 return features;
4746 }
4747 EXPORT_SYMBOL(netdev_fix_features);
4748
4749 /**
4750 * register_netdevice - register a network device
4751 * @dev: device to register
4752 *
4753 * Take a completed network device structure and add it to the kernel
4754 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4755 * chain. 0 is returned on success. A negative errno code is returned
4756 * on a failure to set up the device, or if the name is a duplicate.
4757 *
4758 * Callers must hold the rtnl semaphore. You may want
4759 * register_netdev() instead of this.
4760 *
4761 * BUGS:
4762 * The locking appears insufficient to guarantee two parallel registers
4763 * will not get the same name.
4764 */
4765
4766 int register_netdevice(struct net_device *dev)
4767 {
4768 struct hlist_head *head;
4769 struct hlist_node *p;
4770 int ret;
4771 struct net *net = dev_net(dev);
4772
4773 BUG_ON(dev_boot_phase);
4774 ASSERT_RTNL();
4775
4776 might_sleep();
4777
4778 /* When net_device's are persistent, this will be fatal. */
4779 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4780 BUG_ON(!net);
4781
4782 spin_lock_init(&dev->addr_list_lock);
4783 netdev_set_addr_lockdep_class(dev);
4784 netdev_init_queue_locks(dev);
4785
4786 dev->iflink = -1;
4787
4788 /* Init, if this function is available */
4789 if (dev->netdev_ops->ndo_init) {
4790 ret = dev->netdev_ops->ndo_init(dev);
4791 if (ret) {
4792 if (ret > 0)
4793 ret = -EIO;
4794 goto out;
4795 }
4796 }
4797
4798 if (!dev_valid_name(dev->name)) {
4799 ret = -EINVAL;
4800 goto err_uninit;
4801 }
4802
4803 dev->ifindex = dev_new_index(net);
4804 if (dev->iflink == -1)
4805 dev->iflink = dev->ifindex;
4806
4807 /* Check for existence of name */
4808 head = dev_name_hash(net, dev->name);
4809 hlist_for_each(p, head) {
4810 struct net_device *d
4811 = hlist_entry(p, struct net_device, name_hlist);
4812 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4813 ret = -EEXIST;
4814 goto err_uninit;
4815 }
4816 }
4817
4818 /* Fix illegal checksum combinations */
4819 if ((dev->features & NETIF_F_HW_CSUM) &&
4820 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4821 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4822 dev->name);
4823 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4824 }
4825
4826 if ((dev->features & NETIF_F_NO_CSUM) &&
4827 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4828 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4829 dev->name);
4830 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4831 }
4832
4833 dev->features = netdev_fix_features(dev->features, dev->name);
4834
4835 /* Enable software GSO if SG is supported. */
4836 if (dev->features & NETIF_F_SG)
4837 dev->features |= NETIF_F_GSO;
4838
4839 netdev_initialize_kobject(dev);
4840 ret = netdev_register_kobject(dev);
4841 if (ret)
4842 goto err_uninit;
4843 dev->reg_state = NETREG_REGISTERED;
4844
4845 /*
4846 * Default initial state at registry is that the
4847 * device is present.
4848 */
4849
4850 set_bit(__LINK_STATE_PRESENT, &dev->state);
4851
4852 dev_init_scheduler(dev);
4853 dev_hold(dev);
4854 list_netdevice(dev);
4855
4856 /* Notify protocols, that a new device appeared. */
4857 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4858 ret = notifier_to_errno(ret);
4859 if (ret) {
4860 rollback_registered(dev);
4861 dev->reg_state = NETREG_UNREGISTERED;
4862 }
4863
4864 out:
4865 return ret;
4866
4867 err_uninit:
4868 if (dev->netdev_ops->ndo_uninit)
4869 dev->netdev_ops->ndo_uninit(dev);
4870 goto out;
4871 }
4872 EXPORT_SYMBOL(register_netdevice);
4873
4874 /**
4875 * init_dummy_netdev - init a dummy network device for NAPI
4876 * @dev: device to init
4877 *
4878 * This takes a network device structure and initialize the minimum
4879 * amount of fields so it can be used to schedule NAPI polls without
4880 * registering a full blown interface. This is to be used by drivers
4881 * that need to tie several hardware interfaces to a single NAPI
4882 * poll scheduler due to HW limitations.
4883 */
4884 int init_dummy_netdev(struct net_device *dev)
4885 {
4886 /* Clear everything. Note we don't initialize spinlocks
4887 * are they aren't supposed to be taken by any of the
4888 * NAPI code and this dummy netdev is supposed to be
4889 * only ever used for NAPI polls
4890 */
4891 memset(dev, 0, sizeof(struct net_device));
4892
4893 /* make sure we BUG if trying to hit standard
4894 * register/unregister code path
4895 */
4896 dev->reg_state = NETREG_DUMMY;
4897
4898 /* initialize the ref count */
4899 atomic_set(&dev->refcnt, 1);
4900
4901 /* NAPI wants this */
4902 INIT_LIST_HEAD(&dev->napi_list);
4903
4904 /* a dummy interface is started by default */
4905 set_bit(__LINK_STATE_PRESENT, &dev->state);
4906 set_bit(__LINK_STATE_START, &dev->state);
4907
4908 return 0;
4909 }
4910 EXPORT_SYMBOL_GPL(init_dummy_netdev);
4911
4912
4913 /**
4914 * register_netdev - register a network device
4915 * @dev: device to register
4916 *
4917 * Take a completed network device structure and add it to the kernel
4918 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4919 * chain. 0 is returned on success. A negative errno code is returned
4920 * on a failure to set up the device, or if the name is a duplicate.
4921 *
4922 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4923 * and expands the device name if you passed a format string to
4924 * alloc_netdev.
4925 */
4926 int register_netdev(struct net_device *dev)
4927 {
4928 int err;
4929
4930 rtnl_lock();
4931
4932 /*
4933 * If the name is a format string the caller wants us to do a
4934 * name allocation.
4935 */
4936 if (strchr(dev->name, '%')) {
4937 err = dev_alloc_name(dev, dev->name);
4938 if (err < 0)
4939 goto out;
4940 }
4941
4942 err = register_netdevice(dev);
4943 out:
4944 rtnl_unlock();
4945 return err;
4946 }
4947 EXPORT_SYMBOL(register_netdev);
4948
4949 /*
4950 * netdev_wait_allrefs - wait until all references are gone.
4951 *
4952 * This is called when unregistering network devices.
4953 *
4954 * Any protocol or device that holds a reference should register
4955 * for netdevice notification, and cleanup and put back the
4956 * reference if they receive an UNREGISTER event.
4957 * We can get stuck here if buggy protocols don't correctly
4958 * call dev_put.
4959 */
4960 static void netdev_wait_allrefs(struct net_device *dev)
4961 {
4962 unsigned long rebroadcast_time, warning_time;
4963
4964 rebroadcast_time = warning_time = jiffies;
4965 while (atomic_read(&dev->refcnt) != 0) {
4966 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4967 rtnl_lock();
4968
4969 /* Rebroadcast unregister notification */
4970 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4971
4972 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4973 &dev->state)) {
4974 /* We must not have linkwatch events
4975 * pending on unregister. If this
4976 * happens, we simply run the queue
4977 * unscheduled, resulting in a noop
4978 * for this device.
4979 */
4980 linkwatch_run_queue();
4981 }
4982
4983 __rtnl_unlock();
4984
4985 rebroadcast_time = jiffies;
4986 }
4987
4988 msleep(250);
4989
4990 if (time_after(jiffies, warning_time + 10 * HZ)) {
4991 printk(KERN_EMERG "unregister_netdevice: "
4992 "waiting for %s to become free. Usage "
4993 "count = %d\n",
4994 dev->name, atomic_read(&dev->refcnt));
4995 warning_time = jiffies;
4996 }
4997 }
4998 }
4999
5000 /* The sequence is:
5001 *
5002 * rtnl_lock();
5003 * ...
5004 * register_netdevice(x1);
5005 * register_netdevice(x2);
5006 * ...
5007 * unregister_netdevice(y1);
5008 * unregister_netdevice(y2);
5009 * ...
5010 * rtnl_unlock();
5011 * free_netdev(y1);
5012 * free_netdev(y2);
5013 *
5014 * We are invoked by rtnl_unlock().
5015 * This allows us to deal with problems:
5016 * 1) We can delete sysfs objects which invoke hotplug
5017 * without deadlocking with linkwatch via keventd.
5018 * 2) Since we run with the RTNL semaphore not held, we can sleep
5019 * safely in order to wait for the netdev refcnt to drop to zero.
5020 *
5021 * We must not return until all unregister events added during
5022 * the interval the lock was held have been completed.
5023 */
5024 void netdev_run_todo(void)
5025 {
5026 struct list_head list;
5027
5028 /* Snapshot list, allow later requests */
5029 list_replace_init(&net_todo_list, &list);
5030
5031 __rtnl_unlock();
5032
5033 while (!list_empty(&list)) {
5034 struct net_device *dev
5035 = list_entry(list.next, struct net_device, todo_list);
5036 list_del(&dev->todo_list);
5037
5038 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5039 printk(KERN_ERR "network todo '%s' but state %d\n",
5040 dev->name, dev->reg_state);
5041 dump_stack();
5042 continue;
5043 }
5044
5045 dev->reg_state = NETREG_UNREGISTERED;
5046
5047 on_each_cpu(flush_backlog, dev, 1);
5048
5049 netdev_wait_allrefs(dev);
5050
5051 /* paranoia */
5052 BUG_ON(atomic_read(&dev->refcnt));
5053 WARN_ON(dev->ip_ptr);
5054 WARN_ON(dev->ip6_ptr);
5055 WARN_ON(dev->dn_ptr);
5056
5057 if (dev->destructor)
5058 dev->destructor(dev);
5059
5060 /* Free network device */
5061 kobject_put(&dev->dev.kobj);
5062 }
5063 }
5064
5065 /**
5066 * dev_get_stats - get network device statistics
5067 * @dev: device to get statistics from
5068 *
5069 * Get network statistics from device. The device driver may provide
5070 * its own method by setting dev->netdev_ops->get_stats; otherwise
5071 * the internal statistics structure is used.
5072 */
5073 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5074 {
5075 const struct net_device_ops *ops = dev->netdev_ops;
5076
5077 if (ops->ndo_get_stats)
5078 return ops->ndo_get_stats(dev);
5079 else {
5080 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5081 struct net_device_stats *stats = &dev->stats;
5082 unsigned int i;
5083 struct netdev_queue *txq;
5084
5085 for (i = 0; i < dev->num_tx_queues; i++) {
5086 txq = netdev_get_tx_queue(dev, i);
5087 tx_bytes += txq->tx_bytes;
5088 tx_packets += txq->tx_packets;
5089 tx_dropped += txq->tx_dropped;
5090 }
5091 if (tx_bytes || tx_packets || tx_dropped) {
5092 stats->tx_bytes = tx_bytes;
5093 stats->tx_packets = tx_packets;
5094 stats->tx_dropped = tx_dropped;
5095 }
5096 return stats;
5097 }
5098 }
5099 EXPORT_SYMBOL(dev_get_stats);
5100
5101 static void netdev_init_one_queue(struct net_device *dev,
5102 struct netdev_queue *queue,
5103 void *_unused)
5104 {
5105 queue->dev = dev;
5106 }
5107
5108 static void netdev_init_queues(struct net_device *dev)
5109 {
5110 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5111 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5112 spin_lock_init(&dev->tx_global_lock);
5113 }
5114
5115 /**
5116 * alloc_netdev_mq - allocate network device
5117 * @sizeof_priv: size of private data to allocate space for
5118 * @name: device name format string
5119 * @setup: callback to initialize device
5120 * @queue_count: the number of subqueues to allocate
5121 *
5122 * Allocates a struct net_device with private data area for driver use
5123 * and performs basic initialization. Also allocates subquue structs
5124 * for each queue on the device at the end of the netdevice.
5125 */
5126 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5127 void (*setup)(struct net_device *), unsigned int queue_count)
5128 {
5129 struct netdev_queue *tx;
5130 struct net_device *dev;
5131 size_t alloc_size;
5132 struct net_device *p;
5133
5134 BUG_ON(strlen(name) >= sizeof(dev->name));
5135
5136 alloc_size = sizeof(struct net_device);
5137 if (sizeof_priv) {
5138 /* ensure 32-byte alignment of private area */
5139 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5140 alloc_size += sizeof_priv;
5141 }
5142 /* ensure 32-byte alignment of whole construct */
5143 alloc_size += NETDEV_ALIGN - 1;
5144
5145 p = kzalloc(alloc_size, GFP_KERNEL);
5146 if (!p) {
5147 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5148 return NULL;
5149 }
5150
5151 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5152 if (!tx) {
5153 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5154 "tx qdiscs.\n");
5155 goto free_p;
5156 }
5157
5158 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5159 dev->padded = (char *)dev - (char *)p;
5160
5161 if (dev_addr_init(dev))
5162 goto free_tx;
5163
5164 dev_unicast_init(dev);
5165
5166 dev_net_set(dev, &init_net);
5167
5168 dev->_tx = tx;
5169 dev->num_tx_queues = queue_count;
5170 dev->real_num_tx_queues = queue_count;
5171
5172 dev->gso_max_size = GSO_MAX_SIZE;
5173
5174 netdev_init_queues(dev);
5175
5176 INIT_LIST_HEAD(&dev->napi_list);
5177 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5178 setup(dev);
5179 strcpy(dev->name, name);
5180 return dev;
5181
5182 free_tx:
5183 kfree(tx);
5184
5185 free_p:
5186 kfree(p);
5187 return NULL;
5188 }
5189 EXPORT_SYMBOL(alloc_netdev_mq);
5190
5191 /**
5192 * free_netdev - free network device
5193 * @dev: device
5194 *
5195 * This function does the last stage of destroying an allocated device
5196 * interface. The reference to the device object is released.
5197 * If this is the last reference then it will be freed.
5198 */
5199 void free_netdev(struct net_device *dev)
5200 {
5201 struct napi_struct *p, *n;
5202
5203 release_net(dev_net(dev));
5204
5205 kfree(dev->_tx);
5206
5207 /* Flush device addresses */
5208 dev_addr_flush(dev);
5209
5210 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5211 netif_napi_del(p);
5212
5213 /* Compatibility with error handling in drivers */
5214 if (dev->reg_state == NETREG_UNINITIALIZED) {
5215 kfree((char *)dev - dev->padded);
5216 return;
5217 }
5218
5219 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5220 dev->reg_state = NETREG_RELEASED;
5221
5222 /* will free via device release */
5223 put_device(&dev->dev);
5224 }
5225 EXPORT_SYMBOL(free_netdev);
5226
5227 /**
5228 * synchronize_net - Synchronize with packet receive processing
5229 *
5230 * Wait for packets currently being received to be done.
5231 * Does not block later packets from starting.
5232 */
5233 void synchronize_net(void)
5234 {
5235 might_sleep();
5236 synchronize_rcu();
5237 }
5238 EXPORT_SYMBOL(synchronize_net);
5239
5240 /**
5241 * unregister_netdevice - remove device from the kernel
5242 * @dev: device
5243 *
5244 * This function shuts down a device interface and removes it
5245 * from the kernel tables.
5246 *
5247 * Callers must hold the rtnl semaphore. You may want
5248 * unregister_netdev() instead of this.
5249 */
5250
5251 void unregister_netdevice(struct net_device *dev)
5252 {
5253 ASSERT_RTNL();
5254
5255 rollback_registered(dev);
5256 /* Finish processing unregister after unlock */
5257 net_set_todo(dev);
5258 }
5259 EXPORT_SYMBOL(unregister_netdevice);
5260
5261 /**
5262 * unregister_netdev - remove device from the kernel
5263 * @dev: device
5264 *
5265 * This function shuts down a device interface and removes it
5266 * from the kernel tables.
5267 *
5268 * This is just a wrapper for unregister_netdevice that takes
5269 * the rtnl semaphore. In general you want to use this and not
5270 * unregister_netdevice.
5271 */
5272 void unregister_netdev(struct net_device *dev)
5273 {
5274 rtnl_lock();
5275 unregister_netdevice(dev);
5276 rtnl_unlock();
5277 }
5278 EXPORT_SYMBOL(unregister_netdev);
5279
5280 /**
5281 * dev_change_net_namespace - move device to different nethost namespace
5282 * @dev: device
5283 * @net: network namespace
5284 * @pat: If not NULL name pattern to try if the current device name
5285 * is already taken in the destination network namespace.
5286 *
5287 * This function shuts down a device interface and moves it
5288 * to a new network namespace. On success 0 is returned, on
5289 * a failure a netagive errno code is returned.
5290 *
5291 * Callers must hold the rtnl semaphore.
5292 */
5293
5294 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5295 {
5296 char buf[IFNAMSIZ];
5297 const char *destname;
5298 int err;
5299
5300 ASSERT_RTNL();
5301
5302 /* Don't allow namespace local devices to be moved. */
5303 err = -EINVAL;
5304 if (dev->features & NETIF_F_NETNS_LOCAL)
5305 goto out;
5306
5307 #ifdef CONFIG_SYSFS
5308 /* Don't allow real devices to be moved when sysfs
5309 * is enabled.
5310 */
5311 err = -EINVAL;
5312 if (dev->dev.parent)
5313 goto out;
5314 #endif
5315
5316 /* Ensure the device has been registrered */
5317 err = -EINVAL;
5318 if (dev->reg_state != NETREG_REGISTERED)
5319 goto out;
5320
5321 /* Get out if there is nothing todo */
5322 err = 0;
5323 if (net_eq(dev_net(dev), net))
5324 goto out;
5325
5326 /* Pick the destination device name, and ensure
5327 * we can use it in the destination network namespace.
5328 */
5329 err = -EEXIST;
5330 destname = dev->name;
5331 if (__dev_get_by_name(net, destname)) {
5332 /* We get here if we can't use the current device name */
5333 if (!pat)
5334 goto out;
5335 if (!dev_valid_name(pat))
5336 goto out;
5337 if (strchr(pat, '%')) {
5338 if (__dev_alloc_name(net, pat, buf) < 0)
5339 goto out;
5340 destname = buf;
5341 } else
5342 destname = pat;
5343 if (__dev_get_by_name(net, destname))
5344 goto out;
5345 }
5346
5347 /*
5348 * And now a mini version of register_netdevice unregister_netdevice.
5349 */
5350
5351 /* If device is running close it first. */
5352 dev_close(dev);
5353
5354 /* And unlink it from device chain */
5355 err = -ENODEV;
5356 unlist_netdevice(dev);
5357
5358 synchronize_net();
5359
5360 /* Shutdown queueing discipline. */
5361 dev_shutdown(dev);
5362
5363 /* Notify protocols, that we are about to destroy
5364 this device. They should clean all the things.
5365 */
5366 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5367
5368 /*
5369 * Flush the unicast and multicast chains
5370 */
5371 dev_unicast_flush(dev);
5372 dev_addr_discard(dev);
5373
5374 netdev_unregister_kobject(dev);
5375
5376 /* Actually switch the network namespace */
5377 dev_net_set(dev, net);
5378
5379 /* Assign the new device name */
5380 if (destname != dev->name)
5381 strcpy(dev->name, destname);
5382
5383 /* If there is an ifindex conflict assign a new one */
5384 if (__dev_get_by_index(net, dev->ifindex)) {
5385 int iflink = (dev->iflink == dev->ifindex);
5386 dev->ifindex = dev_new_index(net);
5387 if (iflink)
5388 dev->iflink = dev->ifindex;
5389 }
5390
5391 /* Fixup kobjects */
5392 err = netdev_register_kobject(dev);
5393 WARN_ON(err);
5394
5395 /* Add the device back in the hashes */
5396 list_netdevice(dev);
5397
5398 /* Notify protocols, that a new device appeared. */
5399 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5400
5401 synchronize_net();
5402 err = 0;
5403 out:
5404 return err;
5405 }
5406 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5407
5408 static int dev_cpu_callback(struct notifier_block *nfb,
5409 unsigned long action,
5410 void *ocpu)
5411 {
5412 struct sk_buff **list_skb;
5413 struct Qdisc **list_net;
5414 struct sk_buff *skb;
5415 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5416 struct softnet_data *sd, *oldsd;
5417
5418 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5419 return NOTIFY_OK;
5420
5421 local_irq_disable();
5422 cpu = smp_processor_id();
5423 sd = &per_cpu(softnet_data, cpu);
5424 oldsd = &per_cpu(softnet_data, oldcpu);
5425
5426 /* Find end of our completion_queue. */
5427 list_skb = &sd->completion_queue;
5428 while (*list_skb)
5429 list_skb = &(*list_skb)->next;
5430 /* Append completion queue from offline CPU. */
5431 *list_skb = oldsd->completion_queue;
5432 oldsd->completion_queue = NULL;
5433
5434 /* Find end of our output_queue. */
5435 list_net = &sd->output_queue;
5436 while (*list_net)
5437 list_net = &(*list_net)->next_sched;
5438 /* Append output queue from offline CPU. */
5439 *list_net = oldsd->output_queue;
5440 oldsd->output_queue = NULL;
5441
5442 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5443 local_irq_enable();
5444
5445 /* Process offline CPU's input_pkt_queue */
5446 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5447 netif_rx(skb);
5448
5449 return NOTIFY_OK;
5450 }
5451
5452
5453 /**
5454 * netdev_increment_features - increment feature set by one
5455 * @all: current feature set
5456 * @one: new feature set
5457 * @mask: mask feature set
5458 *
5459 * Computes a new feature set after adding a device with feature set
5460 * @one to the master device with current feature set @all. Will not
5461 * enable anything that is off in @mask. Returns the new feature set.
5462 */
5463 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5464 unsigned long mask)
5465 {
5466 /* If device needs checksumming, downgrade to it. */
5467 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5468 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5469 else if (mask & NETIF_F_ALL_CSUM) {
5470 /* If one device supports v4/v6 checksumming, set for all. */
5471 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5472 !(all & NETIF_F_GEN_CSUM)) {
5473 all &= ~NETIF_F_ALL_CSUM;
5474 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5475 }
5476
5477 /* If one device supports hw checksumming, set for all. */
5478 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5479 all &= ~NETIF_F_ALL_CSUM;
5480 all |= NETIF_F_HW_CSUM;
5481 }
5482 }
5483
5484 one |= NETIF_F_ALL_CSUM;
5485
5486 one |= all & NETIF_F_ONE_FOR_ALL;
5487 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
5488 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5489
5490 return all;
5491 }
5492 EXPORT_SYMBOL(netdev_increment_features);
5493
5494 static struct hlist_head *netdev_create_hash(void)
5495 {
5496 int i;
5497 struct hlist_head *hash;
5498
5499 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5500 if (hash != NULL)
5501 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5502 INIT_HLIST_HEAD(&hash[i]);
5503
5504 return hash;
5505 }
5506
5507 /* Initialize per network namespace state */
5508 static int __net_init netdev_init(struct net *net)
5509 {
5510 INIT_LIST_HEAD(&net->dev_base_head);
5511
5512 net->dev_name_head = netdev_create_hash();
5513 if (net->dev_name_head == NULL)
5514 goto err_name;
5515
5516 net->dev_index_head = netdev_create_hash();
5517 if (net->dev_index_head == NULL)
5518 goto err_idx;
5519
5520 return 0;
5521
5522 err_idx:
5523 kfree(net->dev_name_head);
5524 err_name:
5525 return -ENOMEM;
5526 }
5527
5528 /**
5529 * netdev_drivername - network driver for the device
5530 * @dev: network device
5531 * @buffer: buffer for resulting name
5532 * @len: size of buffer
5533 *
5534 * Determine network driver for device.
5535 */
5536 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5537 {
5538 const struct device_driver *driver;
5539 const struct device *parent;
5540
5541 if (len <= 0 || !buffer)
5542 return buffer;
5543 buffer[0] = 0;
5544
5545 parent = dev->dev.parent;
5546
5547 if (!parent)
5548 return buffer;
5549
5550 driver = parent->driver;
5551 if (driver && driver->name)
5552 strlcpy(buffer, driver->name, len);
5553 return buffer;
5554 }
5555
5556 static void __net_exit netdev_exit(struct net *net)
5557 {
5558 kfree(net->dev_name_head);
5559 kfree(net->dev_index_head);
5560 }
5561
5562 static struct pernet_operations __net_initdata netdev_net_ops = {
5563 .init = netdev_init,
5564 .exit = netdev_exit,
5565 };
5566
5567 static void __net_exit default_device_exit(struct net *net)
5568 {
5569 struct net_device *dev;
5570 /*
5571 * Push all migratable of the network devices back to the
5572 * initial network namespace
5573 */
5574 rtnl_lock();
5575 restart:
5576 for_each_netdev(net, dev) {
5577 int err;
5578 char fb_name[IFNAMSIZ];
5579
5580 /* Ignore unmoveable devices (i.e. loopback) */
5581 if (dev->features & NETIF_F_NETNS_LOCAL)
5582 continue;
5583
5584 /* Delete virtual devices */
5585 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5586 dev->rtnl_link_ops->dellink(dev);
5587 goto restart;
5588 }
5589
5590 /* Push remaing network devices to init_net */
5591 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5592 err = dev_change_net_namespace(dev, &init_net, fb_name);
5593 if (err) {
5594 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5595 __func__, dev->name, err);
5596 BUG();
5597 }
5598 goto restart;
5599 }
5600 rtnl_unlock();
5601 }
5602
5603 static struct pernet_operations __net_initdata default_device_ops = {
5604 .exit = default_device_exit,
5605 };
5606
5607 /*
5608 * Initialize the DEV module. At boot time this walks the device list and
5609 * unhooks any devices that fail to initialise (normally hardware not
5610 * present) and leaves us with a valid list of present and active devices.
5611 *
5612 */
5613
5614 /*
5615 * This is called single threaded during boot, so no need
5616 * to take the rtnl semaphore.
5617 */
5618 static int __init net_dev_init(void)
5619 {
5620 int i, rc = -ENOMEM;
5621
5622 BUG_ON(!dev_boot_phase);
5623
5624 if (dev_proc_init())
5625 goto out;
5626
5627 if (netdev_kobject_init())
5628 goto out;
5629
5630 INIT_LIST_HEAD(&ptype_all);
5631 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5632 INIT_LIST_HEAD(&ptype_base[i]);
5633
5634 if (register_pernet_subsys(&netdev_net_ops))
5635 goto out;
5636
5637 /*
5638 * Initialise the packet receive queues.
5639 */
5640
5641 for_each_possible_cpu(i) {
5642 struct softnet_data *queue;
5643
5644 queue = &per_cpu(softnet_data, i);
5645 skb_queue_head_init(&queue->input_pkt_queue);
5646 queue->completion_queue = NULL;
5647 INIT_LIST_HEAD(&queue->poll_list);
5648
5649 queue->backlog.poll = process_backlog;
5650 queue->backlog.weight = weight_p;
5651 queue->backlog.gro_list = NULL;
5652 queue->backlog.gro_count = 0;
5653 }
5654
5655 dev_boot_phase = 0;
5656
5657 /* The loopback device is special if any other network devices
5658 * is present in a network namespace the loopback device must
5659 * be present. Since we now dynamically allocate and free the
5660 * loopback device ensure this invariant is maintained by
5661 * keeping the loopback device as the first device on the
5662 * list of network devices. Ensuring the loopback devices
5663 * is the first device that appears and the last network device
5664 * that disappears.
5665 */
5666 if (register_pernet_device(&loopback_net_ops))
5667 goto out;
5668
5669 if (register_pernet_device(&default_device_ops))
5670 goto out;
5671
5672 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5673 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5674
5675 hotcpu_notifier(dev_cpu_callback, 0);
5676 dst_init();
5677 dev_mcast_init();
5678 rc = 0;
5679 out:
5680 return rc;
5681 }
5682
5683 subsys_initcall(net_dev_init);
5684
5685 static int __init initialize_hashrnd(void)
5686 {
5687 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5688 return 0;
5689 }
5690
5691 late_initcall_sync(initialize_hashrnd);
5692