]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/dev.c
net: add recursion limit to GRO
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/sctp.h>
143 #include <linux/crash_dump.h>
144
145 #include "net-sysfs.h"
146
147 /* Instead of increasing this, you should create a hash table. */
148 #define MAX_GRO_SKBS 8
149
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly; /* Taps */
157 static struct list_head offload_base __read_mostly;
158
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161 struct net_device *dev,
162 struct netdev_notifier_info *info);
163
164 /*
165 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
166 * semaphore.
167 *
168 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
169 *
170 * Writers must hold the rtnl semaphore while they loop through the
171 * dev_base_head list, and hold dev_base_lock for writing when they do the
172 * actual updates. This allows pure readers to access the list even
173 * while a writer is preparing to update it.
174 *
175 * To put it another way, dev_base_lock is held for writing only to
176 * protect against pure readers; the rtnl semaphore provides the
177 * protection against other writers.
178 *
179 * See, for example usages, register_netdevice() and
180 * unregister_netdevice(), which must be called with the rtnl
181 * semaphore held.
182 */
183 DEFINE_RWLOCK(dev_base_lock);
184 EXPORT_SYMBOL(dev_base_lock);
185
186 /* protects napi_hash addition/deletion and napi_gen_id */
187 static DEFINE_SPINLOCK(napi_hash_lock);
188
189 static unsigned int napi_gen_id = NR_CPUS;
190 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
191
192 static seqcount_t devnet_rename_seq;
193
194 static inline void dev_base_seq_inc(struct net *net)
195 {
196 while (++net->dev_base_seq == 0);
197 }
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214 spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static void list_netdevice(struct net_device *dev)
227 {
228 struct net *net = dev_net(dev);
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238
239 dev_base_seq_inc(net);
240 }
241
242 /* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
251 list_del_rcu(&dev->dev_list);
252 hlist_del_rcu(&dev->name_hlist);
253 hlist_del_rcu(&dev->index_hlist);
254 write_unlock_bh(&dev_base_lock);
255
256 dev_base_seq_inc(dev_net(dev));
257 }
258
259 /*
260 * Our notifier list
261 */
262
263 static RAW_NOTIFIER_HEAD(netdev_chain);
264
265 /*
266 * Device drivers call our routines to queue packets here. We empty the
267 * queue in the local softnet handler.
268 */
269
270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
271 EXPORT_PER_CPU_SYMBOL(softnet_data);
272
273 #ifdef CONFIG_LOCKDEP
274 /*
275 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276 * according to dev->type
277 */
278 static const unsigned short netdev_lock_type[] =
279 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
291 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294
295 static const char *const netdev_lock_name[] =
296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
328 {
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356
357 Protocol management and registration routines
358
359 *******************************************************************************/
360
361 /*
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
364 * here.
365 *
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
374 * --ANK (980803)
375 */
376
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379 if (pt->type == htons(ETH_P_ALL))
380 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
381 else
382 return pt->dev ? &pt->dev->ptype_specific :
383 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 }
385
386 /**
387 * dev_add_pack - add packet handler
388 * @pt: packet type declaration
389 *
390 * Add a protocol handler to the networking stack. The passed &packet_type
391 * is linked into kernel lists and may not be freed until it has been
392 * removed from the kernel lists.
393 *
394 * This call does not sleep therefore it can not
395 * guarantee all CPU's that are in middle of receiving packets
396 * will see the new packet type (until the next received packet).
397 */
398
399 void dev_add_pack(struct packet_type *pt)
400 {
401 struct list_head *head = ptype_head(pt);
402
403 spin_lock(&ptype_lock);
404 list_add_rcu(&pt->list, head);
405 spin_unlock(&ptype_lock);
406 }
407 EXPORT_SYMBOL(dev_add_pack);
408
409 /**
410 * __dev_remove_pack - remove packet handler
411 * @pt: packet type declaration
412 *
413 * Remove a protocol handler that was previously added to the kernel
414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
415 * from the kernel lists and can be freed or reused once this function
416 * returns.
417 *
418 * The packet type might still be in use by receivers
419 * and must not be freed until after all the CPU's have gone
420 * through a quiescent state.
421 */
422 void __dev_remove_pack(struct packet_type *pt)
423 {
424 struct list_head *head = ptype_head(pt);
425 struct packet_type *pt1;
426
427 spin_lock(&ptype_lock);
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 pr_warn("dev_remove_pack: %p not found\n", pt);
437 out:
438 spin_unlock(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462
463 /**
464 * dev_add_offload - register offload handlers
465 * @po: protocol offload declaration
466 *
467 * Add protocol offload handlers to the networking stack. The passed
468 * &proto_offload is linked into kernel lists and may not be freed until
469 * it has been removed from the kernel lists.
470 *
471 * This call does not sleep therefore it can not
472 * guarantee all CPU's that are in middle of receiving packets
473 * will see the new offload handlers (until the next received packet).
474 */
475 void dev_add_offload(struct packet_offload *po)
476 {
477 struct packet_offload *elem;
478
479 spin_lock(&offload_lock);
480 list_for_each_entry(elem, &offload_base, list) {
481 if (po->priority < elem->priority)
482 break;
483 }
484 list_add_rcu(&po->list, elem->list.prev);
485 spin_unlock(&offload_lock);
486 }
487 EXPORT_SYMBOL(dev_add_offload);
488
489 /**
490 * __dev_remove_offload - remove offload handler
491 * @po: packet offload declaration
492 *
493 * Remove a protocol offload handler that was previously added to the
494 * kernel offload handlers by dev_add_offload(). The passed &offload_type
495 * is removed from the kernel lists and can be freed or reused once this
496 * function returns.
497 *
498 * The packet type might still be in use by receivers
499 * and must not be freed until after all the CPU's have gone
500 * through a quiescent state.
501 */
502 static void __dev_remove_offload(struct packet_offload *po)
503 {
504 struct list_head *head = &offload_base;
505 struct packet_offload *po1;
506
507 spin_lock(&offload_lock);
508
509 list_for_each_entry(po1, head, list) {
510 if (po == po1) {
511 list_del_rcu(&po->list);
512 goto out;
513 }
514 }
515
516 pr_warn("dev_remove_offload: %p not found\n", po);
517 out:
518 spin_unlock(&offload_lock);
519 }
520
521 /**
522 * dev_remove_offload - remove packet offload handler
523 * @po: packet offload declaration
524 *
525 * Remove a packet offload handler that was previously added to the kernel
526 * offload handlers by dev_add_offload(). The passed &offload_type is
527 * removed from the kernel lists and can be freed or reused once this
528 * function returns.
529 *
530 * This call sleeps to guarantee that no CPU is looking at the packet
531 * type after return.
532 */
533 void dev_remove_offload(struct packet_offload *po)
534 {
535 __dev_remove_offload(po);
536
537 synchronize_net();
538 }
539 EXPORT_SYMBOL(dev_remove_offload);
540
541 /******************************************************************************
542
543 Device Boot-time Settings Routines
544
545 *******************************************************************************/
546
547 /* Boot time configuration table */
548 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
549
550 /**
551 * netdev_boot_setup_add - add new setup entry
552 * @name: name of the device
553 * @map: configured settings for the device
554 *
555 * Adds new setup entry to the dev_boot_setup list. The function
556 * returns 0 on error and 1 on success. This is a generic routine to
557 * all netdevices.
558 */
559 static int netdev_boot_setup_add(char *name, struct ifmap *map)
560 {
561 struct netdev_boot_setup *s;
562 int i;
563
564 s = dev_boot_setup;
565 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
566 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
567 memset(s[i].name, 0, sizeof(s[i].name));
568 strlcpy(s[i].name, name, IFNAMSIZ);
569 memcpy(&s[i].map, map, sizeof(s[i].map));
570 break;
571 }
572 }
573
574 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
575 }
576
577 /**
578 * netdev_boot_setup_check - check boot time settings
579 * @dev: the netdevice
580 *
581 * Check boot time settings for the device.
582 * The found settings are set for the device to be used
583 * later in the device probing.
584 * Returns 0 if no settings found, 1 if they are.
585 */
586 int netdev_boot_setup_check(struct net_device *dev)
587 {
588 struct netdev_boot_setup *s = dev_boot_setup;
589 int i;
590
591 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
592 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
593 !strcmp(dev->name, s[i].name)) {
594 dev->irq = s[i].map.irq;
595 dev->base_addr = s[i].map.base_addr;
596 dev->mem_start = s[i].map.mem_start;
597 dev->mem_end = s[i].map.mem_end;
598 return 1;
599 }
600 }
601 return 0;
602 }
603 EXPORT_SYMBOL(netdev_boot_setup_check);
604
605
606 /**
607 * netdev_boot_base - get address from boot time settings
608 * @prefix: prefix for network device
609 * @unit: id for network device
610 *
611 * Check boot time settings for the base address of device.
612 * The found settings are set for the device to be used
613 * later in the device probing.
614 * Returns 0 if no settings found.
615 */
616 unsigned long netdev_boot_base(const char *prefix, int unit)
617 {
618 const struct netdev_boot_setup *s = dev_boot_setup;
619 char name[IFNAMSIZ];
620 int i;
621
622 sprintf(name, "%s%d", prefix, unit);
623
624 /*
625 * If device already registered then return base of 1
626 * to indicate not to probe for this interface
627 */
628 if (__dev_get_by_name(&init_net, name))
629 return 1;
630
631 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
632 if (!strcmp(name, s[i].name))
633 return s[i].map.base_addr;
634 return 0;
635 }
636
637 /*
638 * Saves at boot time configured settings for any netdevice.
639 */
640 int __init netdev_boot_setup(char *str)
641 {
642 int ints[5];
643 struct ifmap map;
644
645 str = get_options(str, ARRAY_SIZE(ints), ints);
646 if (!str || !*str)
647 return 0;
648
649 /* Save settings */
650 memset(&map, 0, sizeof(map));
651 if (ints[0] > 0)
652 map.irq = ints[1];
653 if (ints[0] > 1)
654 map.base_addr = ints[2];
655 if (ints[0] > 2)
656 map.mem_start = ints[3];
657 if (ints[0] > 3)
658 map.mem_end = ints[4];
659
660 /* Add new entry to the list */
661 return netdev_boot_setup_add(str, &map);
662 }
663
664 __setup("netdev=", netdev_boot_setup);
665
666 /*******************************************************************************
667
668 Device Interface Subroutines
669
670 *******************************************************************************/
671
672 /**
673 * dev_get_iflink - get 'iflink' value of a interface
674 * @dev: targeted interface
675 *
676 * Indicates the ifindex the interface is linked to.
677 * Physical interfaces have the same 'ifindex' and 'iflink' values.
678 */
679
680 int dev_get_iflink(const struct net_device *dev)
681 {
682 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
683 return dev->netdev_ops->ndo_get_iflink(dev);
684
685 return dev->ifindex;
686 }
687 EXPORT_SYMBOL(dev_get_iflink);
688
689 /**
690 * dev_fill_metadata_dst - Retrieve tunnel egress information.
691 * @dev: targeted interface
692 * @skb: The packet.
693 *
694 * For better visibility of tunnel traffic OVS needs to retrieve
695 * egress tunnel information for a packet. Following API allows
696 * user to get this info.
697 */
698 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
699 {
700 struct ip_tunnel_info *info;
701
702 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
703 return -EINVAL;
704
705 info = skb_tunnel_info_unclone(skb);
706 if (!info)
707 return -ENOMEM;
708 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
709 return -EINVAL;
710
711 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
712 }
713 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
714
715 /**
716 * __dev_get_by_name - find a device by its name
717 * @net: the applicable net namespace
718 * @name: name to find
719 *
720 * Find an interface by name. Must be called under RTNL semaphore
721 * or @dev_base_lock. If the name is found a pointer to the device
722 * is returned. If the name is not found then %NULL is returned. The
723 * reference counters are not incremented so the caller must be
724 * careful with locks.
725 */
726
727 struct net_device *__dev_get_by_name(struct net *net, const char *name)
728 {
729 struct net_device *dev;
730 struct hlist_head *head = dev_name_hash(net, name);
731
732 hlist_for_each_entry(dev, head, name_hlist)
733 if (!strncmp(dev->name, name, IFNAMSIZ))
734 return dev;
735
736 return NULL;
737 }
738 EXPORT_SYMBOL(__dev_get_by_name);
739
740 /**
741 * dev_get_by_name_rcu - find a device by its name
742 * @net: the applicable net namespace
743 * @name: name to find
744 *
745 * Find an interface by name.
746 * If the name is found a pointer to the device is returned.
747 * If the name is not found then %NULL is returned.
748 * The reference counters are not incremented so the caller must be
749 * careful with locks. The caller must hold RCU lock.
750 */
751
752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753 {
754 struct net_device *dev;
755 struct hlist_head *head = dev_name_hash(net, name);
756
757 hlist_for_each_entry_rcu(dev, head, name_hlist)
758 if (!strncmp(dev->name, name, IFNAMSIZ))
759 return dev;
760
761 return NULL;
762 }
763 EXPORT_SYMBOL(dev_get_by_name_rcu);
764
765 /**
766 * dev_get_by_name - find a device by its name
767 * @net: the applicable net namespace
768 * @name: name to find
769 *
770 * Find an interface by name. This can be called from any
771 * context and does its own locking. The returned handle has
772 * the usage count incremented and the caller must use dev_put() to
773 * release it when it is no longer needed. %NULL is returned if no
774 * matching device is found.
775 */
776
777 struct net_device *dev_get_by_name(struct net *net, const char *name)
778 {
779 struct net_device *dev;
780
781 rcu_read_lock();
782 dev = dev_get_by_name_rcu(net, name);
783 if (dev)
784 dev_hold(dev);
785 rcu_read_unlock();
786 return dev;
787 }
788 EXPORT_SYMBOL(dev_get_by_name);
789
790 /**
791 * __dev_get_by_index - find a device by its ifindex
792 * @net: the applicable net namespace
793 * @ifindex: index of device
794 *
795 * Search for an interface by index. Returns %NULL if the device
796 * is not found or a pointer to the device. The device has not
797 * had its reference counter increased so the caller must be careful
798 * about locking. The caller must hold either the RTNL semaphore
799 * or @dev_base_lock.
800 */
801
802 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
803 {
804 struct net_device *dev;
805 struct hlist_head *head = dev_index_hash(net, ifindex);
806
807 hlist_for_each_entry(dev, head, index_hlist)
808 if (dev->ifindex == ifindex)
809 return dev;
810
811 return NULL;
812 }
813 EXPORT_SYMBOL(__dev_get_by_index);
814
815 /**
816 * dev_get_by_index_rcu - find a device by its ifindex
817 * @net: the applicable net namespace
818 * @ifindex: index of device
819 *
820 * Search for an interface by index. Returns %NULL if the device
821 * is not found or a pointer to the device. The device has not
822 * had its reference counter increased so the caller must be careful
823 * about locking. The caller must hold RCU lock.
824 */
825
826 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
827 {
828 struct net_device *dev;
829 struct hlist_head *head = dev_index_hash(net, ifindex);
830
831 hlist_for_each_entry_rcu(dev, head, index_hlist)
832 if (dev->ifindex == ifindex)
833 return dev;
834
835 return NULL;
836 }
837 EXPORT_SYMBOL(dev_get_by_index_rcu);
838
839
840 /**
841 * dev_get_by_index - find a device by its ifindex
842 * @net: the applicable net namespace
843 * @ifindex: index of device
844 *
845 * Search for an interface by index. Returns NULL if the device
846 * is not found or a pointer to the device. The device returned has
847 * had a reference added and the pointer is safe until the user calls
848 * dev_put to indicate they have finished with it.
849 */
850
851 struct net_device *dev_get_by_index(struct net *net, int ifindex)
852 {
853 struct net_device *dev;
854
855 rcu_read_lock();
856 dev = dev_get_by_index_rcu(net, ifindex);
857 if (dev)
858 dev_hold(dev);
859 rcu_read_unlock();
860 return dev;
861 }
862 EXPORT_SYMBOL(dev_get_by_index);
863
864 /**
865 * netdev_get_name - get a netdevice name, knowing its ifindex.
866 * @net: network namespace
867 * @name: a pointer to the buffer where the name will be stored.
868 * @ifindex: the ifindex of the interface to get the name from.
869 *
870 * The use of raw_seqcount_begin() and cond_resched() before
871 * retrying is required as we want to give the writers a chance
872 * to complete when CONFIG_PREEMPT is not set.
873 */
874 int netdev_get_name(struct net *net, char *name, int ifindex)
875 {
876 struct net_device *dev;
877 unsigned int seq;
878
879 retry:
880 seq = raw_seqcount_begin(&devnet_rename_seq);
881 rcu_read_lock();
882 dev = dev_get_by_index_rcu(net, ifindex);
883 if (!dev) {
884 rcu_read_unlock();
885 return -ENODEV;
886 }
887
888 strcpy(name, dev->name);
889 rcu_read_unlock();
890 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
891 cond_resched();
892 goto retry;
893 }
894
895 return 0;
896 }
897
898 /**
899 * dev_getbyhwaddr_rcu - find a device by its hardware address
900 * @net: the applicable net namespace
901 * @type: media type of device
902 * @ha: hardware address
903 *
904 * Search for an interface by MAC address. Returns NULL if the device
905 * is not found or a pointer to the device.
906 * The caller must hold RCU or RTNL.
907 * The returned device has not had its ref count increased
908 * and the caller must therefore be careful about locking
909 *
910 */
911
912 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
913 const char *ha)
914 {
915 struct net_device *dev;
916
917 for_each_netdev_rcu(net, dev)
918 if (dev->type == type &&
919 !memcmp(dev->dev_addr, ha, dev->addr_len))
920 return dev;
921
922 return NULL;
923 }
924 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
925
926 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
927 {
928 struct net_device *dev;
929
930 ASSERT_RTNL();
931 for_each_netdev(net, dev)
932 if (dev->type == type)
933 return dev;
934
935 return NULL;
936 }
937 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
938
939 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
940 {
941 struct net_device *dev, *ret = NULL;
942
943 rcu_read_lock();
944 for_each_netdev_rcu(net, dev)
945 if (dev->type == type) {
946 dev_hold(dev);
947 ret = dev;
948 break;
949 }
950 rcu_read_unlock();
951 return ret;
952 }
953 EXPORT_SYMBOL(dev_getfirstbyhwtype);
954
955 /**
956 * __dev_get_by_flags - find any device with given flags
957 * @net: the applicable net namespace
958 * @if_flags: IFF_* values
959 * @mask: bitmask of bits in if_flags to check
960 *
961 * Search for any interface with the given flags. Returns NULL if a device
962 * is not found or a pointer to the device. Must be called inside
963 * rtnl_lock(), and result refcount is unchanged.
964 */
965
966 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
967 unsigned short mask)
968 {
969 struct net_device *dev, *ret;
970
971 ASSERT_RTNL();
972
973 ret = NULL;
974 for_each_netdev(net, dev) {
975 if (((dev->flags ^ if_flags) & mask) == 0) {
976 ret = dev;
977 break;
978 }
979 }
980 return ret;
981 }
982 EXPORT_SYMBOL(__dev_get_by_flags);
983
984 /**
985 * dev_valid_name - check if name is okay for network device
986 * @name: name string
987 *
988 * Network device names need to be valid file names to
989 * to allow sysfs to work. We also disallow any kind of
990 * whitespace.
991 */
992 bool dev_valid_name(const char *name)
993 {
994 if (*name == '\0')
995 return false;
996 if (strlen(name) >= IFNAMSIZ)
997 return false;
998 if (!strcmp(name, ".") || !strcmp(name, ".."))
999 return false;
1000
1001 while (*name) {
1002 if (*name == '/' || *name == ':' || isspace(*name))
1003 return false;
1004 name++;
1005 }
1006 return true;
1007 }
1008 EXPORT_SYMBOL(dev_valid_name);
1009
1010 /**
1011 * __dev_alloc_name - allocate a name for a device
1012 * @net: network namespace to allocate the device name in
1013 * @name: name format string
1014 * @buf: scratch buffer and result name string
1015 *
1016 * Passed a format string - eg "lt%d" it will try and find a suitable
1017 * id. It scans list of devices to build up a free map, then chooses
1018 * the first empty slot. The caller must hold the dev_base or rtnl lock
1019 * while allocating the name and adding the device in order to avoid
1020 * duplicates.
1021 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022 * Returns the number of the unit assigned or a negative errno code.
1023 */
1024
1025 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1026 {
1027 int i = 0;
1028 const char *p;
1029 const int max_netdevices = 8*PAGE_SIZE;
1030 unsigned long *inuse;
1031 struct net_device *d;
1032
1033 p = strnchr(name, IFNAMSIZ-1, '%');
1034 if (p) {
1035 /*
1036 * Verify the string as this thing may have come from
1037 * the user. There must be either one "%d" and no other "%"
1038 * characters.
1039 */
1040 if (p[1] != 'd' || strchr(p + 2, '%'))
1041 return -EINVAL;
1042
1043 /* Use one page as a bit array of possible slots */
1044 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1045 if (!inuse)
1046 return -ENOMEM;
1047
1048 for_each_netdev(net, d) {
1049 if (!sscanf(d->name, name, &i))
1050 continue;
1051 if (i < 0 || i >= max_netdevices)
1052 continue;
1053
1054 /* avoid cases where sscanf is not exact inverse of printf */
1055 snprintf(buf, IFNAMSIZ, name, i);
1056 if (!strncmp(buf, d->name, IFNAMSIZ))
1057 set_bit(i, inuse);
1058 }
1059
1060 i = find_first_zero_bit(inuse, max_netdevices);
1061 free_page((unsigned long) inuse);
1062 }
1063
1064 if (buf != name)
1065 snprintf(buf, IFNAMSIZ, name, i);
1066 if (!__dev_get_by_name(net, buf))
1067 return i;
1068
1069 /* It is possible to run out of possible slots
1070 * when the name is long and there isn't enough space left
1071 * for the digits, or if all bits are used.
1072 */
1073 return -ENFILE;
1074 }
1075
1076 /**
1077 * dev_alloc_name - allocate a name for a device
1078 * @dev: device
1079 * @name: name format string
1080 *
1081 * Passed a format string - eg "lt%d" it will try and find a suitable
1082 * id. It scans list of devices to build up a free map, then chooses
1083 * the first empty slot. The caller must hold the dev_base or rtnl lock
1084 * while allocating the name and adding the device in order to avoid
1085 * duplicates.
1086 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1087 * Returns the number of the unit assigned or a negative errno code.
1088 */
1089
1090 int dev_alloc_name(struct net_device *dev, const char *name)
1091 {
1092 char buf[IFNAMSIZ];
1093 struct net *net;
1094 int ret;
1095
1096 BUG_ON(!dev_net(dev));
1097 net = dev_net(dev);
1098 ret = __dev_alloc_name(net, name, buf);
1099 if (ret >= 0)
1100 strlcpy(dev->name, buf, IFNAMSIZ);
1101 return ret;
1102 }
1103 EXPORT_SYMBOL(dev_alloc_name);
1104
1105 static int dev_alloc_name_ns(struct net *net,
1106 struct net_device *dev,
1107 const char *name)
1108 {
1109 char buf[IFNAMSIZ];
1110 int ret;
1111
1112 ret = __dev_alloc_name(net, name, buf);
1113 if (ret >= 0)
1114 strlcpy(dev->name, buf, IFNAMSIZ);
1115 return ret;
1116 }
1117
1118 static int dev_get_valid_name(struct net *net,
1119 struct net_device *dev,
1120 const char *name)
1121 {
1122 BUG_ON(!net);
1123
1124 if (!dev_valid_name(name))
1125 return -EINVAL;
1126
1127 if (strchr(name, '%'))
1128 return dev_alloc_name_ns(net, dev, name);
1129 else if (__dev_get_by_name(net, name))
1130 return -EEXIST;
1131 else if (dev->name != name)
1132 strlcpy(dev->name, name, IFNAMSIZ);
1133
1134 return 0;
1135 }
1136
1137 /**
1138 * dev_change_name - change name of a device
1139 * @dev: device
1140 * @newname: name (or format string) must be at least IFNAMSIZ
1141 *
1142 * Change name of a device, can pass format strings "eth%d".
1143 * for wildcarding.
1144 */
1145 int dev_change_name(struct net_device *dev, const char *newname)
1146 {
1147 unsigned char old_assign_type;
1148 char oldname[IFNAMSIZ];
1149 int err = 0;
1150 int ret;
1151 struct net *net;
1152
1153 ASSERT_RTNL();
1154 BUG_ON(!dev_net(dev));
1155
1156 net = dev_net(dev);
1157 if (dev->flags & IFF_UP)
1158 return -EBUSY;
1159
1160 write_seqcount_begin(&devnet_rename_seq);
1161
1162 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1163 write_seqcount_end(&devnet_rename_seq);
1164 return 0;
1165 }
1166
1167 memcpy(oldname, dev->name, IFNAMSIZ);
1168
1169 err = dev_get_valid_name(net, dev, newname);
1170 if (err < 0) {
1171 write_seqcount_end(&devnet_rename_seq);
1172 return err;
1173 }
1174
1175 if (oldname[0] && !strchr(oldname, '%'))
1176 netdev_info(dev, "renamed from %s\n", oldname);
1177
1178 old_assign_type = dev->name_assign_type;
1179 dev->name_assign_type = NET_NAME_RENAMED;
1180
1181 rollback:
1182 ret = device_rename(&dev->dev, dev->name);
1183 if (ret) {
1184 memcpy(dev->name, oldname, IFNAMSIZ);
1185 dev->name_assign_type = old_assign_type;
1186 write_seqcount_end(&devnet_rename_seq);
1187 return ret;
1188 }
1189
1190 write_seqcount_end(&devnet_rename_seq);
1191
1192 netdev_adjacent_rename_links(dev, oldname);
1193
1194 write_lock_bh(&dev_base_lock);
1195 hlist_del_rcu(&dev->name_hlist);
1196 write_unlock_bh(&dev_base_lock);
1197
1198 synchronize_rcu();
1199
1200 write_lock_bh(&dev_base_lock);
1201 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1202 write_unlock_bh(&dev_base_lock);
1203
1204 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1205 ret = notifier_to_errno(ret);
1206
1207 if (ret) {
1208 /* err >= 0 after dev_alloc_name() or stores the first errno */
1209 if (err >= 0) {
1210 err = ret;
1211 write_seqcount_begin(&devnet_rename_seq);
1212 memcpy(dev->name, oldname, IFNAMSIZ);
1213 memcpy(oldname, newname, IFNAMSIZ);
1214 dev->name_assign_type = old_assign_type;
1215 old_assign_type = NET_NAME_RENAMED;
1216 goto rollback;
1217 } else {
1218 pr_err("%s: name change rollback failed: %d\n",
1219 dev->name, ret);
1220 }
1221 }
1222
1223 return err;
1224 }
1225
1226 /**
1227 * dev_set_alias - change ifalias of a device
1228 * @dev: device
1229 * @alias: name up to IFALIASZ
1230 * @len: limit of bytes to copy from info
1231 *
1232 * Set ifalias for a device,
1233 */
1234 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1235 {
1236 char *new_ifalias;
1237
1238 ASSERT_RTNL();
1239
1240 if (len >= IFALIASZ)
1241 return -EINVAL;
1242
1243 if (!len) {
1244 kfree(dev->ifalias);
1245 dev->ifalias = NULL;
1246 return 0;
1247 }
1248
1249 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1250 if (!new_ifalias)
1251 return -ENOMEM;
1252 dev->ifalias = new_ifalias;
1253
1254 strlcpy(dev->ifalias, alias, len+1);
1255 return len;
1256 }
1257
1258
1259 /**
1260 * netdev_features_change - device changes features
1261 * @dev: device to cause notification
1262 *
1263 * Called to indicate a device has changed features.
1264 */
1265 void netdev_features_change(struct net_device *dev)
1266 {
1267 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1268 }
1269 EXPORT_SYMBOL(netdev_features_change);
1270
1271 /**
1272 * netdev_state_change - device changes state
1273 * @dev: device to cause notification
1274 *
1275 * Called to indicate a device has changed state. This function calls
1276 * the notifier chains for netdev_chain and sends a NEWLINK message
1277 * to the routing socket.
1278 */
1279 void netdev_state_change(struct net_device *dev)
1280 {
1281 if (dev->flags & IFF_UP) {
1282 struct netdev_notifier_change_info change_info;
1283
1284 change_info.flags_changed = 0;
1285 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1286 &change_info.info);
1287 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1288 }
1289 }
1290 EXPORT_SYMBOL(netdev_state_change);
1291
1292 /**
1293 * netdev_notify_peers - notify network peers about existence of @dev
1294 * @dev: network device
1295 *
1296 * Generate traffic such that interested network peers are aware of
1297 * @dev, such as by generating a gratuitous ARP. This may be used when
1298 * a device wants to inform the rest of the network about some sort of
1299 * reconfiguration such as a failover event or virtual machine
1300 * migration.
1301 */
1302 void netdev_notify_peers(struct net_device *dev)
1303 {
1304 rtnl_lock();
1305 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1306 rtnl_unlock();
1307 }
1308 EXPORT_SYMBOL(netdev_notify_peers);
1309
1310 static int __dev_open(struct net_device *dev)
1311 {
1312 const struct net_device_ops *ops = dev->netdev_ops;
1313 int ret;
1314
1315 ASSERT_RTNL();
1316
1317 if (!netif_device_present(dev))
1318 return -ENODEV;
1319
1320 /* Block netpoll from trying to do any rx path servicing.
1321 * If we don't do this there is a chance ndo_poll_controller
1322 * or ndo_poll may be running while we open the device
1323 */
1324 netpoll_poll_disable(dev);
1325
1326 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1327 ret = notifier_to_errno(ret);
1328 if (ret)
1329 return ret;
1330
1331 set_bit(__LINK_STATE_START, &dev->state);
1332
1333 if (ops->ndo_validate_addr)
1334 ret = ops->ndo_validate_addr(dev);
1335
1336 if (!ret && ops->ndo_open)
1337 ret = ops->ndo_open(dev);
1338
1339 netpoll_poll_enable(dev);
1340
1341 if (ret)
1342 clear_bit(__LINK_STATE_START, &dev->state);
1343 else {
1344 dev->flags |= IFF_UP;
1345 dev_set_rx_mode(dev);
1346 dev_activate(dev);
1347 add_device_randomness(dev->dev_addr, dev->addr_len);
1348 }
1349
1350 return ret;
1351 }
1352
1353 /**
1354 * dev_open - prepare an interface for use.
1355 * @dev: device to open
1356 *
1357 * Takes a device from down to up state. The device's private open
1358 * function is invoked and then the multicast lists are loaded. Finally
1359 * the device is moved into the up state and a %NETDEV_UP message is
1360 * sent to the netdev notifier chain.
1361 *
1362 * Calling this function on an active interface is a nop. On a failure
1363 * a negative errno code is returned.
1364 */
1365 int dev_open(struct net_device *dev)
1366 {
1367 int ret;
1368
1369 if (dev->flags & IFF_UP)
1370 return 0;
1371
1372 ret = __dev_open(dev);
1373 if (ret < 0)
1374 return ret;
1375
1376 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1377 call_netdevice_notifiers(NETDEV_UP, dev);
1378
1379 return ret;
1380 }
1381 EXPORT_SYMBOL(dev_open);
1382
1383 static int __dev_close_many(struct list_head *head)
1384 {
1385 struct net_device *dev;
1386
1387 ASSERT_RTNL();
1388 might_sleep();
1389
1390 list_for_each_entry(dev, head, close_list) {
1391 /* Temporarily disable netpoll until the interface is down */
1392 netpoll_poll_disable(dev);
1393
1394 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1395
1396 clear_bit(__LINK_STATE_START, &dev->state);
1397
1398 /* Synchronize to scheduled poll. We cannot touch poll list, it
1399 * can be even on different cpu. So just clear netif_running().
1400 *
1401 * dev->stop() will invoke napi_disable() on all of it's
1402 * napi_struct instances on this device.
1403 */
1404 smp_mb__after_atomic(); /* Commit netif_running(). */
1405 }
1406
1407 dev_deactivate_many(head);
1408
1409 list_for_each_entry(dev, head, close_list) {
1410 const struct net_device_ops *ops = dev->netdev_ops;
1411
1412 /*
1413 * Call the device specific close. This cannot fail.
1414 * Only if device is UP
1415 *
1416 * We allow it to be called even after a DETACH hot-plug
1417 * event.
1418 */
1419 if (ops->ndo_stop)
1420 ops->ndo_stop(dev);
1421
1422 dev->flags &= ~IFF_UP;
1423 netpoll_poll_enable(dev);
1424 }
1425
1426 return 0;
1427 }
1428
1429 static int __dev_close(struct net_device *dev)
1430 {
1431 int retval;
1432 LIST_HEAD(single);
1433
1434 list_add(&dev->close_list, &single);
1435 retval = __dev_close_many(&single);
1436 list_del(&single);
1437
1438 return retval;
1439 }
1440
1441 int dev_close_many(struct list_head *head, bool unlink)
1442 {
1443 struct net_device *dev, *tmp;
1444
1445 /* Remove the devices that don't need to be closed */
1446 list_for_each_entry_safe(dev, tmp, head, close_list)
1447 if (!(dev->flags & IFF_UP))
1448 list_del_init(&dev->close_list);
1449
1450 __dev_close_many(head);
1451
1452 list_for_each_entry_safe(dev, tmp, head, close_list) {
1453 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1454 call_netdevice_notifiers(NETDEV_DOWN, dev);
1455 if (unlink)
1456 list_del_init(&dev->close_list);
1457 }
1458
1459 return 0;
1460 }
1461 EXPORT_SYMBOL(dev_close_many);
1462
1463 /**
1464 * dev_close - shutdown an interface.
1465 * @dev: device to shutdown
1466 *
1467 * This function moves an active device into down state. A
1468 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1469 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1470 * chain.
1471 */
1472 int dev_close(struct net_device *dev)
1473 {
1474 if (dev->flags & IFF_UP) {
1475 LIST_HEAD(single);
1476
1477 list_add(&dev->close_list, &single);
1478 dev_close_many(&single, true);
1479 list_del(&single);
1480 }
1481 return 0;
1482 }
1483 EXPORT_SYMBOL(dev_close);
1484
1485
1486 /**
1487 * dev_disable_lro - disable Large Receive Offload on a device
1488 * @dev: device
1489 *
1490 * Disable Large Receive Offload (LRO) on a net device. Must be
1491 * called under RTNL. This is needed if received packets may be
1492 * forwarded to another interface.
1493 */
1494 void dev_disable_lro(struct net_device *dev)
1495 {
1496 struct net_device *lower_dev;
1497 struct list_head *iter;
1498
1499 dev->wanted_features &= ~NETIF_F_LRO;
1500 netdev_update_features(dev);
1501
1502 if (unlikely(dev->features & NETIF_F_LRO))
1503 netdev_WARN(dev, "failed to disable LRO!\n");
1504
1505 netdev_for_each_lower_dev(dev, lower_dev, iter)
1506 dev_disable_lro(lower_dev);
1507 }
1508 EXPORT_SYMBOL(dev_disable_lro);
1509
1510 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1511 struct net_device *dev)
1512 {
1513 struct netdev_notifier_info info;
1514
1515 netdev_notifier_info_init(&info, dev);
1516 return nb->notifier_call(nb, val, &info);
1517 }
1518
1519 static int dev_boot_phase = 1;
1520
1521 /**
1522 * register_netdevice_notifier - register a network notifier block
1523 * @nb: notifier
1524 *
1525 * Register a notifier to be called when network device events occur.
1526 * The notifier passed is linked into the kernel structures and must
1527 * not be reused until it has been unregistered. A negative errno code
1528 * is returned on a failure.
1529 *
1530 * When registered all registration and up events are replayed
1531 * to the new notifier to allow device to have a race free
1532 * view of the network device list.
1533 */
1534
1535 int register_netdevice_notifier(struct notifier_block *nb)
1536 {
1537 struct net_device *dev;
1538 struct net_device *last;
1539 struct net *net;
1540 int err;
1541
1542 rtnl_lock();
1543 err = raw_notifier_chain_register(&netdev_chain, nb);
1544 if (err)
1545 goto unlock;
1546 if (dev_boot_phase)
1547 goto unlock;
1548 for_each_net(net) {
1549 for_each_netdev(net, dev) {
1550 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1551 err = notifier_to_errno(err);
1552 if (err)
1553 goto rollback;
1554
1555 if (!(dev->flags & IFF_UP))
1556 continue;
1557
1558 call_netdevice_notifier(nb, NETDEV_UP, dev);
1559 }
1560 }
1561
1562 unlock:
1563 rtnl_unlock();
1564 return err;
1565
1566 rollback:
1567 last = dev;
1568 for_each_net(net) {
1569 for_each_netdev(net, dev) {
1570 if (dev == last)
1571 goto outroll;
1572
1573 if (dev->flags & IFF_UP) {
1574 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1575 dev);
1576 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1577 }
1578 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1579 }
1580 }
1581
1582 outroll:
1583 raw_notifier_chain_unregister(&netdev_chain, nb);
1584 goto unlock;
1585 }
1586 EXPORT_SYMBOL(register_netdevice_notifier);
1587
1588 /**
1589 * unregister_netdevice_notifier - unregister a network notifier block
1590 * @nb: notifier
1591 *
1592 * Unregister a notifier previously registered by
1593 * register_netdevice_notifier(). The notifier is unlinked into the
1594 * kernel structures and may then be reused. A negative errno code
1595 * is returned on a failure.
1596 *
1597 * After unregistering unregister and down device events are synthesized
1598 * for all devices on the device list to the removed notifier to remove
1599 * the need for special case cleanup code.
1600 */
1601
1602 int unregister_netdevice_notifier(struct notifier_block *nb)
1603 {
1604 struct net_device *dev;
1605 struct net *net;
1606 int err;
1607
1608 rtnl_lock();
1609 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1610 if (err)
1611 goto unlock;
1612
1613 for_each_net(net) {
1614 for_each_netdev(net, dev) {
1615 if (dev->flags & IFF_UP) {
1616 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1617 dev);
1618 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1619 }
1620 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1621 }
1622 }
1623 unlock:
1624 rtnl_unlock();
1625 return err;
1626 }
1627 EXPORT_SYMBOL(unregister_netdevice_notifier);
1628
1629 /**
1630 * call_netdevice_notifiers_info - call all network notifier blocks
1631 * @val: value passed unmodified to notifier function
1632 * @dev: net_device pointer passed unmodified to notifier function
1633 * @info: notifier information data
1634 *
1635 * Call all network notifier blocks. Parameters and return value
1636 * are as for raw_notifier_call_chain().
1637 */
1638
1639 static int call_netdevice_notifiers_info(unsigned long val,
1640 struct net_device *dev,
1641 struct netdev_notifier_info *info)
1642 {
1643 ASSERT_RTNL();
1644 netdev_notifier_info_init(info, dev);
1645 return raw_notifier_call_chain(&netdev_chain, val, info);
1646 }
1647
1648 /**
1649 * call_netdevice_notifiers - call all network notifier blocks
1650 * @val: value passed unmodified to notifier function
1651 * @dev: net_device pointer passed unmodified to notifier function
1652 *
1653 * Call all network notifier blocks. Parameters and return value
1654 * are as for raw_notifier_call_chain().
1655 */
1656
1657 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1658 {
1659 struct netdev_notifier_info info;
1660
1661 return call_netdevice_notifiers_info(val, dev, &info);
1662 }
1663 EXPORT_SYMBOL(call_netdevice_notifiers);
1664
1665 #ifdef CONFIG_NET_INGRESS
1666 static struct static_key ingress_needed __read_mostly;
1667
1668 void net_inc_ingress_queue(void)
1669 {
1670 static_key_slow_inc(&ingress_needed);
1671 }
1672 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1673
1674 void net_dec_ingress_queue(void)
1675 {
1676 static_key_slow_dec(&ingress_needed);
1677 }
1678 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1679 #endif
1680
1681 #ifdef CONFIG_NET_EGRESS
1682 static struct static_key egress_needed __read_mostly;
1683
1684 void net_inc_egress_queue(void)
1685 {
1686 static_key_slow_inc(&egress_needed);
1687 }
1688 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1689
1690 void net_dec_egress_queue(void)
1691 {
1692 static_key_slow_dec(&egress_needed);
1693 }
1694 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1695 #endif
1696
1697 static struct static_key netstamp_needed __read_mostly;
1698 #ifdef HAVE_JUMP_LABEL
1699 /* We are not allowed to call static_key_slow_dec() from irq context
1700 * If net_disable_timestamp() is called from irq context, defer the
1701 * static_key_slow_dec() calls.
1702 */
1703 static atomic_t netstamp_needed_deferred;
1704 #endif
1705
1706 void net_enable_timestamp(void)
1707 {
1708 #ifdef HAVE_JUMP_LABEL
1709 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1710
1711 if (deferred) {
1712 while (--deferred)
1713 static_key_slow_dec(&netstamp_needed);
1714 return;
1715 }
1716 #endif
1717 static_key_slow_inc(&netstamp_needed);
1718 }
1719 EXPORT_SYMBOL(net_enable_timestamp);
1720
1721 void net_disable_timestamp(void)
1722 {
1723 #ifdef HAVE_JUMP_LABEL
1724 if (in_interrupt()) {
1725 atomic_inc(&netstamp_needed_deferred);
1726 return;
1727 }
1728 #endif
1729 static_key_slow_dec(&netstamp_needed);
1730 }
1731 EXPORT_SYMBOL(net_disable_timestamp);
1732
1733 static inline void net_timestamp_set(struct sk_buff *skb)
1734 {
1735 skb->tstamp.tv64 = 0;
1736 if (static_key_false(&netstamp_needed))
1737 __net_timestamp(skb);
1738 }
1739
1740 #define net_timestamp_check(COND, SKB) \
1741 if (static_key_false(&netstamp_needed)) { \
1742 if ((COND) && !(SKB)->tstamp.tv64) \
1743 __net_timestamp(SKB); \
1744 } \
1745
1746 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1747 {
1748 unsigned int len;
1749
1750 if (!(dev->flags & IFF_UP))
1751 return false;
1752
1753 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1754 if (skb->len <= len)
1755 return true;
1756
1757 /* if TSO is enabled, we don't care about the length as the packet
1758 * could be forwarded without being segmented before
1759 */
1760 if (skb_is_gso(skb))
1761 return true;
1762
1763 return false;
1764 }
1765 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1766
1767 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1768 {
1769 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1770 unlikely(!is_skb_forwardable(dev, skb))) {
1771 atomic_long_inc(&dev->rx_dropped);
1772 kfree_skb(skb);
1773 return NET_RX_DROP;
1774 }
1775
1776 skb_scrub_packet(skb, true);
1777 skb->priority = 0;
1778 skb->protocol = eth_type_trans(skb, dev);
1779 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1780
1781 return 0;
1782 }
1783 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1784
1785 /**
1786 * dev_forward_skb - loopback an skb to another netif
1787 *
1788 * @dev: destination network device
1789 * @skb: buffer to forward
1790 *
1791 * return values:
1792 * NET_RX_SUCCESS (no congestion)
1793 * NET_RX_DROP (packet was dropped, but freed)
1794 *
1795 * dev_forward_skb can be used for injecting an skb from the
1796 * start_xmit function of one device into the receive queue
1797 * of another device.
1798 *
1799 * The receiving device may be in another namespace, so
1800 * we have to clear all information in the skb that could
1801 * impact namespace isolation.
1802 */
1803 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1804 {
1805 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1806 }
1807 EXPORT_SYMBOL_GPL(dev_forward_skb);
1808
1809 static inline int deliver_skb(struct sk_buff *skb,
1810 struct packet_type *pt_prev,
1811 struct net_device *orig_dev)
1812 {
1813 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1814 return -ENOMEM;
1815 atomic_inc(&skb->users);
1816 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1817 }
1818
1819 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1820 struct packet_type **pt,
1821 struct net_device *orig_dev,
1822 __be16 type,
1823 struct list_head *ptype_list)
1824 {
1825 struct packet_type *ptype, *pt_prev = *pt;
1826
1827 list_for_each_entry_rcu(ptype, ptype_list, list) {
1828 if (ptype->type != type)
1829 continue;
1830 if (pt_prev)
1831 deliver_skb(skb, pt_prev, orig_dev);
1832 pt_prev = ptype;
1833 }
1834 *pt = pt_prev;
1835 }
1836
1837 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1838 {
1839 if (!ptype->af_packet_priv || !skb->sk)
1840 return false;
1841
1842 if (ptype->id_match)
1843 return ptype->id_match(ptype, skb->sk);
1844 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1845 return true;
1846
1847 return false;
1848 }
1849
1850 /*
1851 * Support routine. Sends outgoing frames to any network
1852 * taps currently in use.
1853 */
1854
1855 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1856 {
1857 struct packet_type *ptype;
1858 struct sk_buff *skb2 = NULL;
1859 struct packet_type *pt_prev = NULL;
1860 struct list_head *ptype_list = &ptype_all;
1861
1862 rcu_read_lock();
1863 again:
1864 list_for_each_entry_rcu(ptype, ptype_list, list) {
1865 /* Never send packets back to the socket
1866 * they originated from - MvS (miquels@drinkel.ow.org)
1867 */
1868 if (skb_loop_sk(ptype, skb))
1869 continue;
1870
1871 if (pt_prev) {
1872 deliver_skb(skb2, pt_prev, skb->dev);
1873 pt_prev = ptype;
1874 continue;
1875 }
1876
1877 /* need to clone skb, done only once */
1878 skb2 = skb_clone(skb, GFP_ATOMIC);
1879 if (!skb2)
1880 goto out_unlock;
1881
1882 net_timestamp_set(skb2);
1883
1884 /* skb->nh should be correctly
1885 * set by sender, so that the second statement is
1886 * just protection against buggy protocols.
1887 */
1888 skb_reset_mac_header(skb2);
1889
1890 if (skb_network_header(skb2) < skb2->data ||
1891 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1892 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1893 ntohs(skb2->protocol),
1894 dev->name);
1895 skb_reset_network_header(skb2);
1896 }
1897
1898 skb2->transport_header = skb2->network_header;
1899 skb2->pkt_type = PACKET_OUTGOING;
1900 pt_prev = ptype;
1901 }
1902
1903 if (ptype_list == &ptype_all) {
1904 ptype_list = &dev->ptype_all;
1905 goto again;
1906 }
1907 out_unlock:
1908 if (pt_prev)
1909 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1910 rcu_read_unlock();
1911 }
1912 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1913
1914 /**
1915 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1916 * @dev: Network device
1917 * @txq: number of queues available
1918 *
1919 * If real_num_tx_queues is changed the tc mappings may no longer be
1920 * valid. To resolve this verify the tc mapping remains valid and if
1921 * not NULL the mapping. With no priorities mapping to this
1922 * offset/count pair it will no longer be used. In the worst case TC0
1923 * is invalid nothing can be done so disable priority mappings. If is
1924 * expected that drivers will fix this mapping if they can before
1925 * calling netif_set_real_num_tx_queues.
1926 */
1927 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1928 {
1929 int i;
1930 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1931
1932 /* If TC0 is invalidated disable TC mapping */
1933 if (tc->offset + tc->count > txq) {
1934 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1935 dev->num_tc = 0;
1936 return;
1937 }
1938
1939 /* Invalidated prio to tc mappings set to TC0 */
1940 for (i = 1; i < TC_BITMASK + 1; i++) {
1941 int q = netdev_get_prio_tc_map(dev, i);
1942
1943 tc = &dev->tc_to_txq[q];
1944 if (tc->offset + tc->count > txq) {
1945 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1946 i, q);
1947 netdev_set_prio_tc_map(dev, i, 0);
1948 }
1949 }
1950 }
1951
1952 #ifdef CONFIG_XPS
1953 static DEFINE_MUTEX(xps_map_mutex);
1954 #define xmap_dereference(P) \
1955 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1956
1957 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1958 int cpu, u16 index)
1959 {
1960 struct xps_map *map = NULL;
1961 int pos;
1962
1963 if (dev_maps)
1964 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1965
1966 for (pos = 0; map && pos < map->len; pos++) {
1967 if (map->queues[pos] == index) {
1968 if (map->len > 1) {
1969 map->queues[pos] = map->queues[--map->len];
1970 } else {
1971 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1972 kfree_rcu(map, rcu);
1973 map = NULL;
1974 }
1975 break;
1976 }
1977 }
1978
1979 return map;
1980 }
1981
1982 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1983 {
1984 struct xps_dev_maps *dev_maps;
1985 int cpu, i;
1986 bool active = false;
1987
1988 mutex_lock(&xps_map_mutex);
1989 dev_maps = xmap_dereference(dev->xps_maps);
1990
1991 if (!dev_maps)
1992 goto out_no_maps;
1993
1994 for_each_possible_cpu(cpu) {
1995 for (i = index; i < dev->num_tx_queues; i++) {
1996 if (!remove_xps_queue(dev_maps, cpu, i))
1997 break;
1998 }
1999 if (i == dev->num_tx_queues)
2000 active = true;
2001 }
2002
2003 if (!active) {
2004 RCU_INIT_POINTER(dev->xps_maps, NULL);
2005 kfree_rcu(dev_maps, rcu);
2006 }
2007
2008 for (i = index; i < dev->num_tx_queues; i++)
2009 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2010 NUMA_NO_NODE);
2011
2012 out_no_maps:
2013 mutex_unlock(&xps_map_mutex);
2014 }
2015
2016 static struct xps_map *expand_xps_map(struct xps_map *map,
2017 int cpu, u16 index)
2018 {
2019 struct xps_map *new_map;
2020 int alloc_len = XPS_MIN_MAP_ALLOC;
2021 int i, pos;
2022
2023 for (pos = 0; map && pos < map->len; pos++) {
2024 if (map->queues[pos] != index)
2025 continue;
2026 return map;
2027 }
2028
2029 /* Need to add queue to this CPU's existing map */
2030 if (map) {
2031 if (pos < map->alloc_len)
2032 return map;
2033
2034 alloc_len = map->alloc_len * 2;
2035 }
2036
2037 /* Need to allocate new map to store queue on this CPU's map */
2038 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2039 cpu_to_node(cpu));
2040 if (!new_map)
2041 return NULL;
2042
2043 for (i = 0; i < pos; i++)
2044 new_map->queues[i] = map->queues[i];
2045 new_map->alloc_len = alloc_len;
2046 new_map->len = pos;
2047
2048 return new_map;
2049 }
2050
2051 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2052 u16 index)
2053 {
2054 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2055 struct xps_map *map, *new_map;
2056 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2057 int cpu, numa_node_id = -2;
2058 bool active = false;
2059
2060 mutex_lock(&xps_map_mutex);
2061
2062 dev_maps = xmap_dereference(dev->xps_maps);
2063
2064 /* allocate memory for queue storage */
2065 for_each_online_cpu(cpu) {
2066 if (!cpumask_test_cpu(cpu, mask))
2067 continue;
2068
2069 if (!new_dev_maps)
2070 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2071 if (!new_dev_maps) {
2072 mutex_unlock(&xps_map_mutex);
2073 return -ENOMEM;
2074 }
2075
2076 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2077 NULL;
2078
2079 map = expand_xps_map(map, cpu, index);
2080 if (!map)
2081 goto error;
2082
2083 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2084 }
2085
2086 if (!new_dev_maps)
2087 goto out_no_new_maps;
2088
2089 for_each_possible_cpu(cpu) {
2090 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2091 /* add queue to CPU maps */
2092 int pos = 0;
2093
2094 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2095 while ((pos < map->len) && (map->queues[pos] != index))
2096 pos++;
2097
2098 if (pos == map->len)
2099 map->queues[map->len++] = index;
2100 #ifdef CONFIG_NUMA
2101 if (numa_node_id == -2)
2102 numa_node_id = cpu_to_node(cpu);
2103 else if (numa_node_id != cpu_to_node(cpu))
2104 numa_node_id = -1;
2105 #endif
2106 } else if (dev_maps) {
2107 /* fill in the new device map from the old device map */
2108 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2109 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2110 }
2111
2112 }
2113
2114 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2115
2116 /* Cleanup old maps */
2117 if (dev_maps) {
2118 for_each_possible_cpu(cpu) {
2119 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2120 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2121 if (map && map != new_map)
2122 kfree_rcu(map, rcu);
2123 }
2124
2125 kfree_rcu(dev_maps, rcu);
2126 }
2127
2128 dev_maps = new_dev_maps;
2129 active = true;
2130
2131 out_no_new_maps:
2132 /* update Tx queue numa node */
2133 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2134 (numa_node_id >= 0) ? numa_node_id :
2135 NUMA_NO_NODE);
2136
2137 if (!dev_maps)
2138 goto out_no_maps;
2139
2140 /* removes queue from unused CPUs */
2141 for_each_possible_cpu(cpu) {
2142 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2143 continue;
2144
2145 if (remove_xps_queue(dev_maps, cpu, index))
2146 active = true;
2147 }
2148
2149 /* free map if not active */
2150 if (!active) {
2151 RCU_INIT_POINTER(dev->xps_maps, NULL);
2152 kfree_rcu(dev_maps, rcu);
2153 }
2154
2155 out_no_maps:
2156 mutex_unlock(&xps_map_mutex);
2157
2158 return 0;
2159 error:
2160 /* remove any maps that we added */
2161 for_each_possible_cpu(cpu) {
2162 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2163 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2164 NULL;
2165 if (new_map && new_map != map)
2166 kfree(new_map);
2167 }
2168
2169 mutex_unlock(&xps_map_mutex);
2170
2171 kfree(new_dev_maps);
2172 return -ENOMEM;
2173 }
2174 EXPORT_SYMBOL(netif_set_xps_queue);
2175
2176 #endif
2177 /*
2178 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2179 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2180 */
2181 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2182 {
2183 int rc;
2184
2185 if (txq < 1 || txq > dev->num_tx_queues)
2186 return -EINVAL;
2187
2188 if (dev->reg_state == NETREG_REGISTERED ||
2189 dev->reg_state == NETREG_UNREGISTERING) {
2190 ASSERT_RTNL();
2191
2192 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2193 txq);
2194 if (rc)
2195 return rc;
2196
2197 if (dev->num_tc)
2198 netif_setup_tc(dev, txq);
2199
2200 if (txq < dev->real_num_tx_queues) {
2201 qdisc_reset_all_tx_gt(dev, txq);
2202 #ifdef CONFIG_XPS
2203 netif_reset_xps_queues_gt(dev, txq);
2204 #endif
2205 }
2206 }
2207
2208 dev->real_num_tx_queues = txq;
2209 return 0;
2210 }
2211 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2212
2213 #ifdef CONFIG_SYSFS
2214 /**
2215 * netif_set_real_num_rx_queues - set actual number of RX queues used
2216 * @dev: Network device
2217 * @rxq: Actual number of RX queues
2218 *
2219 * This must be called either with the rtnl_lock held or before
2220 * registration of the net device. Returns 0 on success, or a
2221 * negative error code. If called before registration, it always
2222 * succeeds.
2223 */
2224 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2225 {
2226 int rc;
2227
2228 if (rxq < 1 || rxq > dev->num_rx_queues)
2229 return -EINVAL;
2230
2231 if (dev->reg_state == NETREG_REGISTERED) {
2232 ASSERT_RTNL();
2233
2234 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2235 rxq);
2236 if (rc)
2237 return rc;
2238 }
2239
2240 dev->real_num_rx_queues = rxq;
2241 return 0;
2242 }
2243 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2244 #endif
2245
2246 /**
2247 * netif_get_num_default_rss_queues - default number of RSS queues
2248 *
2249 * This routine should set an upper limit on the number of RSS queues
2250 * used by default by multiqueue devices.
2251 */
2252 int netif_get_num_default_rss_queues(void)
2253 {
2254 return is_kdump_kernel() ?
2255 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2256 }
2257 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2258
2259 static void __netif_reschedule(struct Qdisc *q)
2260 {
2261 struct softnet_data *sd;
2262 unsigned long flags;
2263
2264 local_irq_save(flags);
2265 sd = this_cpu_ptr(&softnet_data);
2266 q->next_sched = NULL;
2267 *sd->output_queue_tailp = q;
2268 sd->output_queue_tailp = &q->next_sched;
2269 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2270 local_irq_restore(flags);
2271 }
2272
2273 void __netif_schedule(struct Qdisc *q)
2274 {
2275 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2276 __netif_reschedule(q);
2277 }
2278 EXPORT_SYMBOL(__netif_schedule);
2279
2280 struct dev_kfree_skb_cb {
2281 enum skb_free_reason reason;
2282 };
2283
2284 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2285 {
2286 return (struct dev_kfree_skb_cb *)skb->cb;
2287 }
2288
2289 void netif_schedule_queue(struct netdev_queue *txq)
2290 {
2291 rcu_read_lock();
2292 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2293 struct Qdisc *q = rcu_dereference(txq->qdisc);
2294
2295 __netif_schedule(q);
2296 }
2297 rcu_read_unlock();
2298 }
2299 EXPORT_SYMBOL(netif_schedule_queue);
2300
2301 /**
2302 * netif_wake_subqueue - allow sending packets on subqueue
2303 * @dev: network device
2304 * @queue_index: sub queue index
2305 *
2306 * Resume individual transmit queue of a device with multiple transmit queues.
2307 */
2308 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2309 {
2310 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2311
2312 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2313 struct Qdisc *q;
2314
2315 rcu_read_lock();
2316 q = rcu_dereference(txq->qdisc);
2317 __netif_schedule(q);
2318 rcu_read_unlock();
2319 }
2320 }
2321 EXPORT_SYMBOL(netif_wake_subqueue);
2322
2323 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2324 {
2325 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2326 struct Qdisc *q;
2327
2328 rcu_read_lock();
2329 q = rcu_dereference(dev_queue->qdisc);
2330 __netif_schedule(q);
2331 rcu_read_unlock();
2332 }
2333 }
2334 EXPORT_SYMBOL(netif_tx_wake_queue);
2335
2336 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2337 {
2338 unsigned long flags;
2339
2340 if (likely(atomic_read(&skb->users) == 1)) {
2341 smp_rmb();
2342 atomic_set(&skb->users, 0);
2343 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2344 return;
2345 }
2346 get_kfree_skb_cb(skb)->reason = reason;
2347 local_irq_save(flags);
2348 skb->next = __this_cpu_read(softnet_data.completion_queue);
2349 __this_cpu_write(softnet_data.completion_queue, skb);
2350 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2351 local_irq_restore(flags);
2352 }
2353 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2354
2355 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2356 {
2357 if (in_irq() || irqs_disabled())
2358 __dev_kfree_skb_irq(skb, reason);
2359 else
2360 dev_kfree_skb(skb);
2361 }
2362 EXPORT_SYMBOL(__dev_kfree_skb_any);
2363
2364
2365 /**
2366 * netif_device_detach - mark device as removed
2367 * @dev: network device
2368 *
2369 * Mark device as removed from system and therefore no longer available.
2370 */
2371 void netif_device_detach(struct net_device *dev)
2372 {
2373 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2374 netif_running(dev)) {
2375 netif_tx_stop_all_queues(dev);
2376 }
2377 }
2378 EXPORT_SYMBOL(netif_device_detach);
2379
2380 /**
2381 * netif_device_attach - mark device as attached
2382 * @dev: network device
2383 *
2384 * Mark device as attached from system and restart if needed.
2385 */
2386 void netif_device_attach(struct net_device *dev)
2387 {
2388 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2389 netif_running(dev)) {
2390 netif_tx_wake_all_queues(dev);
2391 __netdev_watchdog_up(dev);
2392 }
2393 }
2394 EXPORT_SYMBOL(netif_device_attach);
2395
2396 /*
2397 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2398 * to be used as a distribution range.
2399 */
2400 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2401 unsigned int num_tx_queues)
2402 {
2403 u32 hash;
2404 u16 qoffset = 0;
2405 u16 qcount = num_tx_queues;
2406
2407 if (skb_rx_queue_recorded(skb)) {
2408 hash = skb_get_rx_queue(skb);
2409 while (unlikely(hash >= num_tx_queues))
2410 hash -= num_tx_queues;
2411 return hash;
2412 }
2413
2414 if (dev->num_tc) {
2415 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2416 qoffset = dev->tc_to_txq[tc].offset;
2417 qcount = dev->tc_to_txq[tc].count;
2418 }
2419
2420 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2421 }
2422 EXPORT_SYMBOL(__skb_tx_hash);
2423
2424 static void skb_warn_bad_offload(const struct sk_buff *skb)
2425 {
2426 static const netdev_features_t null_features;
2427 struct net_device *dev = skb->dev;
2428 const char *name = "";
2429
2430 if (!net_ratelimit())
2431 return;
2432
2433 if (dev) {
2434 if (dev->dev.parent)
2435 name = dev_driver_string(dev->dev.parent);
2436 else
2437 name = netdev_name(dev);
2438 }
2439 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2440 "gso_type=%d ip_summed=%d\n",
2441 name, dev ? &dev->features : &null_features,
2442 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2443 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2444 skb_shinfo(skb)->gso_type, skb->ip_summed);
2445 }
2446
2447 /*
2448 * Invalidate hardware checksum when packet is to be mangled, and
2449 * complete checksum manually on outgoing path.
2450 */
2451 int skb_checksum_help(struct sk_buff *skb)
2452 {
2453 __wsum csum;
2454 int ret = 0, offset;
2455
2456 if (skb->ip_summed == CHECKSUM_COMPLETE)
2457 goto out_set_summed;
2458
2459 if (unlikely(skb_shinfo(skb)->gso_size)) {
2460 skb_warn_bad_offload(skb);
2461 return -EINVAL;
2462 }
2463
2464 /* Before computing a checksum, we should make sure no frag could
2465 * be modified by an external entity : checksum could be wrong.
2466 */
2467 if (skb_has_shared_frag(skb)) {
2468 ret = __skb_linearize(skb);
2469 if (ret)
2470 goto out;
2471 }
2472
2473 offset = skb_checksum_start_offset(skb);
2474 BUG_ON(offset >= skb_headlen(skb));
2475 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2476
2477 offset += skb->csum_offset;
2478 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2479
2480 if (skb_cloned(skb) &&
2481 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2482 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2483 if (ret)
2484 goto out;
2485 }
2486
2487 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2488 out_set_summed:
2489 skb->ip_summed = CHECKSUM_NONE;
2490 out:
2491 return ret;
2492 }
2493 EXPORT_SYMBOL(skb_checksum_help);
2494
2495 /* skb_csum_offload_check - Driver helper function to determine if a device
2496 * with limited checksum offload capabilities is able to offload the checksum
2497 * for a given packet.
2498 *
2499 * Arguments:
2500 * skb - sk_buff for the packet in question
2501 * spec - contains the description of what device can offload
2502 * csum_encapped - returns true if the checksum being offloaded is
2503 * encpasulated. That is it is checksum for the transport header
2504 * in the inner headers.
2505 * checksum_help - when set indicates that helper function should
2506 * call skb_checksum_help if offload checks fail
2507 *
2508 * Returns:
2509 * true: Packet has passed the checksum checks and should be offloadable to
2510 * the device (a driver may still need to check for additional
2511 * restrictions of its device)
2512 * false: Checksum is not offloadable. If checksum_help was set then
2513 * skb_checksum_help was called to resolve checksum for non-GSO
2514 * packets and when IP protocol is not SCTP
2515 */
2516 bool __skb_csum_offload_chk(struct sk_buff *skb,
2517 const struct skb_csum_offl_spec *spec,
2518 bool *csum_encapped,
2519 bool csum_help)
2520 {
2521 struct iphdr *iph;
2522 struct ipv6hdr *ipv6;
2523 void *nhdr;
2524 int protocol;
2525 u8 ip_proto;
2526
2527 if (skb->protocol == htons(ETH_P_8021Q) ||
2528 skb->protocol == htons(ETH_P_8021AD)) {
2529 if (!spec->vlan_okay)
2530 goto need_help;
2531 }
2532
2533 /* We check whether the checksum refers to a transport layer checksum in
2534 * the outermost header or an encapsulated transport layer checksum that
2535 * corresponds to the inner headers of the skb. If the checksum is for
2536 * something else in the packet we need help.
2537 */
2538 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2539 /* Non-encapsulated checksum */
2540 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2541 nhdr = skb_network_header(skb);
2542 *csum_encapped = false;
2543 if (spec->no_not_encapped)
2544 goto need_help;
2545 } else if (skb->encapsulation && spec->encap_okay &&
2546 skb_checksum_start_offset(skb) ==
2547 skb_inner_transport_offset(skb)) {
2548 /* Encapsulated checksum */
2549 *csum_encapped = true;
2550 switch (skb->inner_protocol_type) {
2551 case ENCAP_TYPE_ETHER:
2552 protocol = eproto_to_ipproto(skb->inner_protocol);
2553 break;
2554 case ENCAP_TYPE_IPPROTO:
2555 protocol = skb->inner_protocol;
2556 break;
2557 }
2558 nhdr = skb_inner_network_header(skb);
2559 } else {
2560 goto need_help;
2561 }
2562
2563 switch (protocol) {
2564 case IPPROTO_IP:
2565 if (!spec->ipv4_okay)
2566 goto need_help;
2567 iph = nhdr;
2568 ip_proto = iph->protocol;
2569 if (iph->ihl != 5 && !spec->ip_options_okay)
2570 goto need_help;
2571 break;
2572 case IPPROTO_IPV6:
2573 if (!spec->ipv6_okay)
2574 goto need_help;
2575 if (spec->no_encapped_ipv6 && *csum_encapped)
2576 goto need_help;
2577 ipv6 = nhdr;
2578 nhdr += sizeof(*ipv6);
2579 ip_proto = ipv6->nexthdr;
2580 break;
2581 default:
2582 goto need_help;
2583 }
2584
2585 ip_proto_again:
2586 switch (ip_proto) {
2587 case IPPROTO_TCP:
2588 if (!spec->tcp_okay ||
2589 skb->csum_offset != offsetof(struct tcphdr, check))
2590 goto need_help;
2591 break;
2592 case IPPROTO_UDP:
2593 if (!spec->udp_okay ||
2594 skb->csum_offset != offsetof(struct udphdr, check))
2595 goto need_help;
2596 break;
2597 case IPPROTO_SCTP:
2598 if (!spec->sctp_okay ||
2599 skb->csum_offset != offsetof(struct sctphdr, checksum))
2600 goto cant_help;
2601 break;
2602 case NEXTHDR_HOP:
2603 case NEXTHDR_ROUTING:
2604 case NEXTHDR_DEST: {
2605 u8 *opthdr = nhdr;
2606
2607 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2608 goto need_help;
2609
2610 ip_proto = opthdr[0];
2611 nhdr += (opthdr[1] + 1) << 3;
2612
2613 goto ip_proto_again;
2614 }
2615 default:
2616 goto need_help;
2617 }
2618
2619 /* Passed the tests for offloading checksum */
2620 return true;
2621
2622 need_help:
2623 if (csum_help && !skb_shinfo(skb)->gso_size)
2624 skb_checksum_help(skb);
2625 cant_help:
2626 return false;
2627 }
2628 EXPORT_SYMBOL(__skb_csum_offload_chk);
2629
2630 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2631 {
2632 __be16 type = skb->protocol;
2633
2634 /* Tunnel gso handlers can set protocol to ethernet. */
2635 if (type == htons(ETH_P_TEB)) {
2636 struct ethhdr *eth;
2637
2638 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2639 return 0;
2640
2641 eth = (struct ethhdr *)skb_mac_header(skb);
2642 type = eth->h_proto;
2643 }
2644
2645 return __vlan_get_protocol(skb, type, depth);
2646 }
2647
2648 /**
2649 * skb_mac_gso_segment - mac layer segmentation handler.
2650 * @skb: buffer to segment
2651 * @features: features for the output path (see dev->features)
2652 */
2653 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2654 netdev_features_t features)
2655 {
2656 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2657 struct packet_offload *ptype;
2658 int vlan_depth = skb->mac_len;
2659 __be16 type = skb_network_protocol(skb, &vlan_depth);
2660
2661 if (unlikely(!type))
2662 return ERR_PTR(-EINVAL);
2663
2664 __skb_pull(skb, vlan_depth);
2665
2666 rcu_read_lock();
2667 list_for_each_entry_rcu(ptype, &offload_base, list) {
2668 if (ptype->type == type && ptype->callbacks.gso_segment) {
2669 segs = ptype->callbacks.gso_segment(skb, features);
2670 break;
2671 }
2672 }
2673 rcu_read_unlock();
2674
2675 __skb_push(skb, skb->data - skb_mac_header(skb));
2676
2677 return segs;
2678 }
2679 EXPORT_SYMBOL(skb_mac_gso_segment);
2680
2681
2682 /* openvswitch calls this on rx path, so we need a different check.
2683 */
2684 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2685 {
2686 if (tx_path)
2687 return skb->ip_summed != CHECKSUM_PARTIAL;
2688 else
2689 return skb->ip_summed == CHECKSUM_NONE;
2690 }
2691
2692 /**
2693 * __skb_gso_segment - Perform segmentation on skb.
2694 * @skb: buffer to segment
2695 * @features: features for the output path (see dev->features)
2696 * @tx_path: whether it is called in TX path
2697 *
2698 * This function segments the given skb and returns a list of segments.
2699 *
2700 * It may return NULL if the skb requires no segmentation. This is
2701 * only possible when GSO is used for verifying header integrity.
2702 *
2703 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2704 */
2705 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2706 netdev_features_t features, bool tx_path)
2707 {
2708 if (unlikely(skb_needs_check(skb, tx_path))) {
2709 int err;
2710
2711 skb_warn_bad_offload(skb);
2712
2713 err = skb_cow_head(skb, 0);
2714 if (err < 0)
2715 return ERR_PTR(err);
2716 }
2717
2718 /* Only report GSO partial support if it will enable us to
2719 * support segmentation on this frame without needing additional
2720 * work.
2721 */
2722 if (features & NETIF_F_GSO_PARTIAL) {
2723 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2724 struct net_device *dev = skb->dev;
2725
2726 partial_features |= dev->features & dev->gso_partial_features;
2727 if (!skb_gso_ok(skb, features | partial_features))
2728 features &= ~NETIF_F_GSO_PARTIAL;
2729 }
2730
2731 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2732 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2733
2734 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2735 SKB_GSO_CB(skb)->encap_level = 0;
2736
2737 skb_reset_mac_header(skb);
2738 skb_reset_mac_len(skb);
2739
2740 return skb_mac_gso_segment(skb, features);
2741 }
2742 EXPORT_SYMBOL(__skb_gso_segment);
2743
2744 /* Take action when hardware reception checksum errors are detected. */
2745 #ifdef CONFIG_BUG
2746 void netdev_rx_csum_fault(struct net_device *dev)
2747 {
2748 if (net_ratelimit()) {
2749 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2750 dump_stack();
2751 }
2752 }
2753 EXPORT_SYMBOL(netdev_rx_csum_fault);
2754 #endif
2755
2756 /* Actually, we should eliminate this check as soon as we know, that:
2757 * 1. IOMMU is present and allows to map all the memory.
2758 * 2. No high memory really exists on this machine.
2759 */
2760
2761 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2762 {
2763 #ifdef CONFIG_HIGHMEM
2764 int i;
2765 if (!(dev->features & NETIF_F_HIGHDMA)) {
2766 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2767 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2768 if (PageHighMem(skb_frag_page(frag)))
2769 return 1;
2770 }
2771 }
2772
2773 if (PCI_DMA_BUS_IS_PHYS) {
2774 struct device *pdev = dev->dev.parent;
2775
2776 if (!pdev)
2777 return 0;
2778 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2779 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2780 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2781 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2782 return 1;
2783 }
2784 }
2785 #endif
2786 return 0;
2787 }
2788
2789 /* If MPLS offload request, verify we are testing hardware MPLS features
2790 * instead of standard features for the netdev.
2791 */
2792 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2793 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2794 netdev_features_t features,
2795 __be16 type)
2796 {
2797 if (eth_p_mpls(type))
2798 features &= skb->dev->mpls_features;
2799
2800 return features;
2801 }
2802 #else
2803 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2804 netdev_features_t features,
2805 __be16 type)
2806 {
2807 return features;
2808 }
2809 #endif
2810
2811 static netdev_features_t harmonize_features(struct sk_buff *skb,
2812 netdev_features_t features)
2813 {
2814 int tmp;
2815 __be16 type;
2816
2817 type = skb_network_protocol(skb, &tmp);
2818 features = net_mpls_features(skb, features, type);
2819
2820 if (skb->ip_summed != CHECKSUM_NONE &&
2821 !can_checksum_protocol(features, type)) {
2822 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2823 } else if (illegal_highdma(skb->dev, skb)) {
2824 features &= ~NETIF_F_SG;
2825 }
2826
2827 return features;
2828 }
2829
2830 netdev_features_t passthru_features_check(struct sk_buff *skb,
2831 struct net_device *dev,
2832 netdev_features_t features)
2833 {
2834 return features;
2835 }
2836 EXPORT_SYMBOL(passthru_features_check);
2837
2838 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2839 struct net_device *dev,
2840 netdev_features_t features)
2841 {
2842 return vlan_features_check(skb, features);
2843 }
2844
2845 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2846 struct net_device *dev,
2847 netdev_features_t features)
2848 {
2849 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2850
2851 if (gso_segs > dev->gso_max_segs)
2852 return features & ~NETIF_F_GSO_MASK;
2853
2854 /* Support for GSO partial features requires software
2855 * intervention before we can actually process the packets
2856 * so we need to strip support for any partial features now
2857 * and we can pull them back in after we have partially
2858 * segmented the frame.
2859 */
2860 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2861 features &= ~dev->gso_partial_features;
2862
2863 /* Make sure to clear the IPv4 ID mangling feature if the
2864 * IPv4 header has the potential to be fragmented.
2865 */
2866 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2867 struct iphdr *iph = skb->encapsulation ?
2868 inner_ip_hdr(skb) : ip_hdr(skb);
2869
2870 if (!(iph->frag_off & htons(IP_DF)))
2871 features &= ~NETIF_F_TSO_MANGLEID;
2872 }
2873
2874 return features;
2875 }
2876
2877 netdev_features_t netif_skb_features(struct sk_buff *skb)
2878 {
2879 struct net_device *dev = skb->dev;
2880 netdev_features_t features = dev->features;
2881
2882 if (skb_is_gso(skb))
2883 features = gso_features_check(skb, dev, features);
2884
2885 /* If encapsulation offload request, verify we are testing
2886 * hardware encapsulation features instead of standard
2887 * features for the netdev
2888 */
2889 if (skb->encapsulation)
2890 features &= dev->hw_enc_features;
2891
2892 if (skb_vlan_tagged(skb))
2893 features = netdev_intersect_features(features,
2894 dev->vlan_features |
2895 NETIF_F_HW_VLAN_CTAG_TX |
2896 NETIF_F_HW_VLAN_STAG_TX);
2897
2898 if (dev->netdev_ops->ndo_features_check)
2899 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2900 features);
2901 else
2902 features &= dflt_features_check(skb, dev, features);
2903
2904 return harmonize_features(skb, features);
2905 }
2906 EXPORT_SYMBOL(netif_skb_features);
2907
2908 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2909 struct netdev_queue *txq, bool more)
2910 {
2911 unsigned int len;
2912 int rc;
2913
2914 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2915 dev_queue_xmit_nit(skb, dev);
2916
2917 len = skb->len;
2918 trace_net_dev_start_xmit(skb, dev);
2919 rc = netdev_start_xmit(skb, dev, txq, more);
2920 trace_net_dev_xmit(skb, rc, dev, len);
2921
2922 return rc;
2923 }
2924
2925 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2926 struct netdev_queue *txq, int *ret)
2927 {
2928 struct sk_buff *skb = first;
2929 int rc = NETDEV_TX_OK;
2930
2931 while (skb) {
2932 struct sk_buff *next = skb->next;
2933
2934 skb->next = NULL;
2935 rc = xmit_one(skb, dev, txq, next != NULL);
2936 if (unlikely(!dev_xmit_complete(rc))) {
2937 skb->next = next;
2938 goto out;
2939 }
2940
2941 skb = next;
2942 if (netif_xmit_stopped(txq) && skb) {
2943 rc = NETDEV_TX_BUSY;
2944 break;
2945 }
2946 }
2947
2948 out:
2949 *ret = rc;
2950 return skb;
2951 }
2952
2953 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2954 netdev_features_t features)
2955 {
2956 if (skb_vlan_tag_present(skb) &&
2957 !vlan_hw_offload_capable(features, skb->vlan_proto))
2958 skb = __vlan_hwaccel_push_inside(skb);
2959 return skb;
2960 }
2961
2962 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2963 {
2964 netdev_features_t features;
2965
2966 features = netif_skb_features(skb);
2967 skb = validate_xmit_vlan(skb, features);
2968 if (unlikely(!skb))
2969 goto out_null;
2970
2971 if (netif_needs_gso(skb, features)) {
2972 struct sk_buff *segs;
2973
2974 segs = skb_gso_segment(skb, features);
2975 if (IS_ERR(segs)) {
2976 goto out_kfree_skb;
2977 } else if (segs) {
2978 consume_skb(skb);
2979 skb = segs;
2980 }
2981 } else {
2982 if (skb_needs_linearize(skb, features) &&
2983 __skb_linearize(skb))
2984 goto out_kfree_skb;
2985
2986 /* If packet is not checksummed and device does not
2987 * support checksumming for this protocol, complete
2988 * checksumming here.
2989 */
2990 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2991 if (skb->encapsulation)
2992 skb_set_inner_transport_header(skb,
2993 skb_checksum_start_offset(skb));
2994 else
2995 skb_set_transport_header(skb,
2996 skb_checksum_start_offset(skb));
2997 if (!(features & NETIF_F_CSUM_MASK) &&
2998 skb_checksum_help(skb))
2999 goto out_kfree_skb;
3000 }
3001 }
3002
3003 return skb;
3004
3005 out_kfree_skb:
3006 kfree_skb(skb);
3007 out_null:
3008 atomic_long_inc(&dev->tx_dropped);
3009 return NULL;
3010 }
3011
3012 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3013 {
3014 struct sk_buff *next, *head = NULL, *tail;
3015
3016 for (; skb != NULL; skb = next) {
3017 next = skb->next;
3018 skb->next = NULL;
3019
3020 /* in case skb wont be segmented, point to itself */
3021 skb->prev = skb;
3022
3023 skb = validate_xmit_skb(skb, dev);
3024 if (!skb)
3025 continue;
3026
3027 if (!head)
3028 head = skb;
3029 else
3030 tail->next = skb;
3031 /* If skb was segmented, skb->prev points to
3032 * the last segment. If not, it still contains skb.
3033 */
3034 tail = skb->prev;
3035 }
3036 return head;
3037 }
3038
3039 static void qdisc_pkt_len_init(struct sk_buff *skb)
3040 {
3041 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3042
3043 qdisc_skb_cb(skb)->pkt_len = skb->len;
3044
3045 /* To get more precise estimation of bytes sent on wire,
3046 * we add to pkt_len the headers size of all segments
3047 */
3048 if (shinfo->gso_size) {
3049 unsigned int hdr_len;
3050 u16 gso_segs = shinfo->gso_segs;
3051
3052 /* mac layer + network layer */
3053 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3054
3055 /* + transport layer */
3056 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3057 hdr_len += tcp_hdrlen(skb);
3058 else
3059 hdr_len += sizeof(struct udphdr);
3060
3061 if (shinfo->gso_type & SKB_GSO_DODGY)
3062 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3063 shinfo->gso_size);
3064
3065 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3066 }
3067 }
3068
3069 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3070 struct net_device *dev,
3071 struct netdev_queue *txq)
3072 {
3073 spinlock_t *root_lock = qdisc_lock(q);
3074 struct sk_buff *to_free = NULL;
3075 bool contended;
3076 int rc;
3077
3078 qdisc_calculate_pkt_len(skb, q);
3079 /*
3080 * Heuristic to force contended enqueues to serialize on a
3081 * separate lock before trying to get qdisc main lock.
3082 * This permits qdisc->running owner to get the lock more
3083 * often and dequeue packets faster.
3084 */
3085 contended = qdisc_is_running(q);
3086 if (unlikely(contended))
3087 spin_lock(&q->busylock);
3088
3089 spin_lock(root_lock);
3090 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3091 __qdisc_drop(skb, &to_free);
3092 rc = NET_XMIT_DROP;
3093 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3094 qdisc_run_begin(q)) {
3095 /*
3096 * This is a work-conserving queue; there are no old skbs
3097 * waiting to be sent out; and the qdisc is not running -
3098 * xmit the skb directly.
3099 */
3100
3101 qdisc_bstats_update(q, skb);
3102
3103 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3104 if (unlikely(contended)) {
3105 spin_unlock(&q->busylock);
3106 contended = false;
3107 }
3108 __qdisc_run(q);
3109 } else
3110 qdisc_run_end(q);
3111
3112 rc = NET_XMIT_SUCCESS;
3113 } else {
3114 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3115 if (qdisc_run_begin(q)) {
3116 if (unlikely(contended)) {
3117 spin_unlock(&q->busylock);
3118 contended = false;
3119 }
3120 __qdisc_run(q);
3121 }
3122 }
3123 spin_unlock(root_lock);
3124 if (unlikely(to_free))
3125 kfree_skb_list(to_free);
3126 if (unlikely(contended))
3127 spin_unlock(&q->busylock);
3128 return rc;
3129 }
3130
3131 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3132 static void skb_update_prio(struct sk_buff *skb)
3133 {
3134 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3135
3136 if (!skb->priority && skb->sk && map) {
3137 unsigned int prioidx =
3138 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3139
3140 if (prioidx < map->priomap_len)
3141 skb->priority = map->priomap[prioidx];
3142 }
3143 }
3144 #else
3145 #define skb_update_prio(skb)
3146 #endif
3147
3148 DEFINE_PER_CPU(int, xmit_recursion);
3149 EXPORT_SYMBOL(xmit_recursion);
3150
3151 /**
3152 * dev_loopback_xmit - loop back @skb
3153 * @net: network namespace this loopback is happening in
3154 * @sk: sk needed to be a netfilter okfn
3155 * @skb: buffer to transmit
3156 */
3157 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3158 {
3159 skb_reset_mac_header(skb);
3160 __skb_pull(skb, skb_network_offset(skb));
3161 skb->pkt_type = PACKET_LOOPBACK;
3162 skb->ip_summed = CHECKSUM_UNNECESSARY;
3163 WARN_ON(!skb_dst(skb));
3164 skb_dst_force(skb);
3165 netif_rx_ni(skb);
3166 return 0;
3167 }
3168 EXPORT_SYMBOL(dev_loopback_xmit);
3169
3170 #ifdef CONFIG_NET_EGRESS
3171 static struct sk_buff *
3172 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3173 {
3174 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3175 struct tcf_result cl_res;
3176
3177 if (!cl)
3178 return skb;
3179
3180 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3181 * earlier by the caller.
3182 */
3183 qdisc_bstats_cpu_update(cl->q, skb);
3184
3185 switch (tc_classify(skb, cl, &cl_res, false)) {
3186 case TC_ACT_OK:
3187 case TC_ACT_RECLASSIFY:
3188 skb->tc_index = TC_H_MIN(cl_res.classid);
3189 break;
3190 case TC_ACT_SHOT:
3191 qdisc_qstats_cpu_drop(cl->q);
3192 *ret = NET_XMIT_DROP;
3193 kfree_skb(skb);
3194 return NULL;
3195 case TC_ACT_STOLEN:
3196 case TC_ACT_QUEUED:
3197 *ret = NET_XMIT_SUCCESS;
3198 consume_skb(skb);
3199 return NULL;
3200 case TC_ACT_REDIRECT:
3201 /* No need to push/pop skb's mac_header here on egress! */
3202 skb_do_redirect(skb);
3203 *ret = NET_XMIT_SUCCESS;
3204 return NULL;
3205 default:
3206 break;
3207 }
3208
3209 return skb;
3210 }
3211 #endif /* CONFIG_NET_EGRESS */
3212
3213 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3214 {
3215 #ifdef CONFIG_XPS
3216 struct xps_dev_maps *dev_maps;
3217 struct xps_map *map;
3218 int queue_index = -1;
3219
3220 rcu_read_lock();
3221 dev_maps = rcu_dereference(dev->xps_maps);
3222 if (dev_maps) {
3223 map = rcu_dereference(
3224 dev_maps->cpu_map[skb->sender_cpu - 1]);
3225 if (map) {
3226 if (map->len == 1)
3227 queue_index = map->queues[0];
3228 else
3229 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3230 map->len)];
3231 if (unlikely(queue_index >= dev->real_num_tx_queues))
3232 queue_index = -1;
3233 }
3234 }
3235 rcu_read_unlock();
3236
3237 return queue_index;
3238 #else
3239 return -1;
3240 #endif
3241 }
3242
3243 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3244 {
3245 struct sock *sk = skb->sk;
3246 int queue_index = sk_tx_queue_get(sk);
3247
3248 if (queue_index < 0 || skb->ooo_okay ||
3249 queue_index >= dev->real_num_tx_queues) {
3250 int new_index = get_xps_queue(dev, skb);
3251 if (new_index < 0)
3252 new_index = skb_tx_hash(dev, skb);
3253
3254 if (queue_index != new_index && sk &&
3255 sk_fullsock(sk) &&
3256 rcu_access_pointer(sk->sk_dst_cache))
3257 sk_tx_queue_set(sk, new_index);
3258
3259 queue_index = new_index;
3260 }
3261
3262 return queue_index;
3263 }
3264
3265 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3266 struct sk_buff *skb,
3267 void *accel_priv)
3268 {
3269 int queue_index = 0;
3270
3271 #ifdef CONFIG_XPS
3272 u32 sender_cpu = skb->sender_cpu - 1;
3273
3274 if (sender_cpu >= (u32)NR_CPUS)
3275 skb->sender_cpu = raw_smp_processor_id() + 1;
3276 #endif
3277
3278 if (dev->real_num_tx_queues != 1) {
3279 const struct net_device_ops *ops = dev->netdev_ops;
3280 if (ops->ndo_select_queue)
3281 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3282 __netdev_pick_tx);
3283 else
3284 queue_index = __netdev_pick_tx(dev, skb);
3285
3286 if (!accel_priv)
3287 queue_index = netdev_cap_txqueue(dev, queue_index);
3288 }
3289
3290 skb_set_queue_mapping(skb, queue_index);
3291 return netdev_get_tx_queue(dev, queue_index);
3292 }
3293
3294 /**
3295 * __dev_queue_xmit - transmit a buffer
3296 * @skb: buffer to transmit
3297 * @accel_priv: private data used for L2 forwarding offload
3298 *
3299 * Queue a buffer for transmission to a network device. The caller must
3300 * have set the device and priority and built the buffer before calling
3301 * this function. The function can be called from an interrupt.
3302 *
3303 * A negative errno code is returned on a failure. A success does not
3304 * guarantee the frame will be transmitted as it may be dropped due
3305 * to congestion or traffic shaping.
3306 *
3307 * -----------------------------------------------------------------------------------
3308 * I notice this method can also return errors from the queue disciplines,
3309 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3310 * be positive.
3311 *
3312 * Regardless of the return value, the skb is consumed, so it is currently
3313 * difficult to retry a send to this method. (You can bump the ref count
3314 * before sending to hold a reference for retry if you are careful.)
3315 *
3316 * When calling this method, interrupts MUST be enabled. This is because
3317 * the BH enable code must have IRQs enabled so that it will not deadlock.
3318 * --BLG
3319 */
3320 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3321 {
3322 struct net_device *dev = skb->dev;
3323 struct netdev_queue *txq;
3324 struct Qdisc *q;
3325 int rc = -ENOMEM;
3326
3327 skb_reset_mac_header(skb);
3328
3329 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3330 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3331
3332 /* Disable soft irqs for various locks below. Also
3333 * stops preemption for RCU.
3334 */
3335 rcu_read_lock_bh();
3336
3337 skb_update_prio(skb);
3338
3339 qdisc_pkt_len_init(skb);
3340 #ifdef CONFIG_NET_CLS_ACT
3341 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3342 # ifdef CONFIG_NET_EGRESS
3343 if (static_key_false(&egress_needed)) {
3344 skb = sch_handle_egress(skb, &rc, dev);
3345 if (!skb)
3346 goto out;
3347 }
3348 # endif
3349 #endif
3350 /* If device/qdisc don't need skb->dst, release it right now while
3351 * its hot in this cpu cache.
3352 */
3353 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3354 skb_dst_drop(skb);
3355 else
3356 skb_dst_force(skb);
3357
3358 txq = netdev_pick_tx(dev, skb, accel_priv);
3359 q = rcu_dereference_bh(txq->qdisc);
3360
3361 trace_net_dev_queue(skb);
3362 if (q->enqueue) {
3363 rc = __dev_xmit_skb(skb, q, dev, txq);
3364 goto out;
3365 }
3366
3367 /* The device has no queue. Common case for software devices:
3368 loopback, all the sorts of tunnels...
3369
3370 Really, it is unlikely that netif_tx_lock protection is necessary
3371 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3372 counters.)
3373 However, it is possible, that they rely on protection
3374 made by us here.
3375
3376 Check this and shot the lock. It is not prone from deadlocks.
3377 Either shot noqueue qdisc, it is even simpler 8)
3378 */
3379 if (dev->flags & IFF_UP) {
3380 int cpu = smp_processor_id(); /* ok because BHs are off */
3381
3382 if (txq->xmit_lock_owner != cpu) {
3383 if (unlikely(__this_cpu_read(xmit_recursion) >
3384 XMIT_RECURSION_LIMIT))
3385 goto recursion_alert;
3386
3387 skb = validate_xmit_skb(skb, dev);
3388 if (!skb)
3389 goto out;
3390
3391 HARD_TX_LOCK(dev, txq, cpu);
3392
3393 if (!netif_xmit_stopped(txq)) {
3394 __this_cpu_inc(xmit_recursion);
3395 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3396 __this_cpu_dec(xmit_recursion);
3397 if (dev_xmit_complete(rc)) {
3398 HARD_TX_UNLOCK(dev, txq);
3399 goto out;
3400 }
3401 }
3402 HARD_TX_UNLOCK(dev, txq);
3403 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3404 dev->name);
3405 } else {
3406 /* Recursion is detected! It is possible,
3407 * unfortunately
3408 */
3409 recursion_alert:
3410 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3411 dev->name);
3412 }
3413 }
3414
3415 rc = -ENETDOWN;
3416 rcu_read_unlock_bh();
3417
3418 atomic_long_inc(&dev->tx_dropped);
3419 kfree_skb_list(skb);
3420 return rc;
3421 out:
3422 rcu_read_unlock_bh();
3423 return rc;
3424 }
3425
3426 int dev_queue_xmit(struct sk_buff *skb)
3427 {
3428 return __dev_queue_xmit(skb, NULL);
3429 }
3430 EXPORT_SYMBOL(dev_queue_xmit);
3431
3432 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3433 {
3434 return __dev_queue_xmit(skb, accel_priv);
3435 }
3436 EXPORT_SYMBOL(dev_queue_xmit_accel);
3437
3438
3439 /*=======================================================================
3440 Receiver routines
3441 =======================================================================*/
3442
3443 int netdev_max_backlog __read_mostly = 1000;
3444 EXPORT_SYMBOL(netdev_max_backlog);
3445
3446 int netdev_tstamp_prequeue __read_mostly = 1;
3447 int netdev_budget __read_mostly = 300;
3448 int weight_p __read_mostly = 64; /* old backlog weight */
3449
3450 /* Called with irq disabled */
3451 static inline void ____napi_schedule(struct softnet_data *sd,
3452 struct napi_struct *napi)
3453 {
3454 list_add_tail(&napi->poll_list, &sd->poll_list);
3455 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3456 }
3457
3458 #ifdef CONFIG_RPS
3459
3460 /* One global table that all flow-based protocols share. */
3461 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3462 EXPORT_SYMBOL(rps_sock_flow_table);
3463 u32 rps_cpu_mask __read_mostly;
3464 EXPORT_SYMBOL(rps_cpu_mask);
3465
3466 struct static_key rps_needed __read_mostly;
3467 EXPORT_SYMBOL(rps_needed);
3468
3469 static struct rps_dev_flow *
3470 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3471 struct rps_dev_flow *rflow, u16 next_cpu)
3472 {
3473 if (next_cpu < nr_cpu_ids) {
3474 #ifdef CONFIG_RFS_ACCEL
3475 struct netdev_rx_queue *rxqueue;
3476 struct rps_dev_flow_table *flow_table;
3477 struct rps_dev_flow *old_rflow;
3478 u32 flow_id;
3479 u16 rxq_index;
3480 int rc;
3481
3482 /* Should we steer this flow to a different hardware queue? */
3483 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3484 !(dev->features & NETIF_F_NTUPLE))
3485 goto out;
3486 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3487 if (rxq_index == skb_get_rx_queue(skb))
3488 goto out;
3489
3490 rxqueue = dev->_rx + rxq_index;
3491 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3492 if (!flow_table)
3493 goto out;
3494 flow_id = skb_get_hash(skb) & flow_table->mask;
3495 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3496 rxq_index, flow_id);
3497 if (rc < 0)
3498 goto out;
3499 old_rflow = rflow;
3500 rflow = &flow_table->flows[flow_id];
3501 rflow->filter = rc;
3502 if (old_rflow->filter == rflow->filter)
3503 old_rflow->filter = RPS_NO_FILTER;
3504 out:
3505 #endif
3506 rflow->last_qtail =
3507 per_cpu(softnet_data, next_cpu).input_queue_head;
3508 }
3509
3510 rflow->cpu = next_cpu;
3511 return rflow;
3512 }
3513
3514 /*
3515 * get_rps_cpu is called from netif_receive_skb and returns the target
3516 * CPU from the RPS map of the receiving queue for a given skb.
3517 * rcu_read_lock must be held on entry.
3518 */
3519 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3520 struct rps_dev_flow **rflowp)
3521 {
3522 const struct rps_sock_flow_table *sock_flow_table;
3523 struct netdev_rx_queue *rxqueue = dev->_rx;
3524 struct rps_dev_flow_table *flow_table;
3525 struct rps_map *map;
3526 int cpu = -1;
3527 u32 tcpu;
3528 u32 hash;
3529
3530 if (skb_rx_queue_recorded(skb)) {
3531 u16 index = skb_get_rx_queue(skb);
3532
3533 if (unlikely(index >= dev->real_num_rx_queues)) {
3534 WARN_ONCE(dev->real_num_rx_queues > 1,
3535 "%s received packet on queue %u, but number "
3536 "of RX queues is %u\n",
3537 dev->name, index, dev->real_num_rx_queues);
3538 goto done;
3539 }
3540 rxqueue += index;
3541 }
3542
3543 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3544
3545 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3546 map = rcu_dereference(rxqueue->rps_map);
3547 if (!flow_table && !map)
3548 goto done;
3549
3550 skb_reset_network_header(skb);
3551 hash = skb_get_hash(skb);
3552 if (!hash)
3553 goto done;
3554
3555 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3556 if (flow_table && sock_flow_table) {
3557 struct rps_dev_flow *rflow;
3558 u32 next_cpu;
3559 u32 ident;
3560
3561 /* First check into global flow table if there is a match */
3562 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3563 if ((ident ^ hash) & ~rps_cpu_mask)
3564 goto try_rps;
3565
3566 next_cpu = ident & rps_cpu_mask;
3567
3568 /* OK, now we know there is a match,
3569 * we can look at the local (per receive queue) flow table
3570 */
3571 rflow = &flow_table->flows[hash & flow_table->mask];
3572 tcpu = rflow->cpu;
3573
3574 /*
3575 * If the desired CPU (where last recvmsg was done) is
3576 * different from current CPU (one in the rx-queue flow
3577 * table entry), switch if one of the following holds:
3578 * - Current CPU is unset (>= nr_cpu_ids).
3579 * - Current CPU is offline.
3580 * - The current CPU's queue tail has advanced beyond the
3581 * last packet that was enqueued using this table entry.
3582 * This guarantees that all previous packets for the flow
3583 * have been dequeued, thus preserving in order delivery.
3584 */
3585 if (unlikely(tcpu != next_cpu) &&
3586 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3587 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3588 rflow->last_qtail)) >= 0)) {
3589 tcpu = next_cpu;
3590 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3591 }
3592
3593 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3594 *rflowp = rflow;
3595 cpu = tcpu;
3596 goto done;
3597 }
3598 }
3599
3600 try_rps:
3601
3602 if (map) {
3603 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3604 if (cpu_online(tcpu)) {
3605 cpu = tcpu;
3606 goto done;
3607 }
3608 }
3609
3610 done:
3611 return cpu;
3612 }
3613
3614 #ifdef CONFIG_RFS_ACCEL
3615
3616 /**
3617 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3618 * @dev: Device on which the filter was set
3619 * @rxq_index: RX queue index
3620 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3621 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3622 *
3623 * Drivers that implement ndo_rx_flow_steer() should periodically call
3624 * this function for each installed filter and remove the filters for
3625 * which it returns %true.
3626 */
3627 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3628 u32 flow_id, u16 filter_id)
3629 {
3630 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3631 struct rps_dev_flow_table *flow_table;
3632 struct rps_dev_flow *rflow;
3633 bool expire = true;
3634 unsigned int cpu;
3635
3636 rcu_read_lock();
3637 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3638 if (flow_table && flow_id <= flow_table->mask) {
3639 rflow = &flow_table->flows[flow_id];
3640 cpu = ACCESS_ONCE(rflow->cpu);
3641 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3642 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3643 rflow->last_qtail) <
3644 (int)(10 * flow_table->mask)))
3645 expire = false;
3646 }
3647 rcu_read_unlock();
3648 return expire;
3649 }
3650 EXPORT_SYMBOL(rps_may_expire_flow);
3651
3652 #endif /* CONFIG_RFS_ACCEL */
3653
3654 /* Called from hardirq (IPI) context */
3655 static void rps_trigger_softirq(void *data)
3656 {
3657 struct softnet_data *sd = data;
3658
3659 ____napi_schedule(sd, &sd->backlog);
3660 sd->received_rps++;
3661 }
3662
3663 #endif /* CONFIG_RPS */
3664
3665 /*
3666 * Check if this softnet_data structure is another cpu one
3667 * If yes, queue it to our IPI list and return 1
3668 * If no, return 0
3669 */
3670 static int rps_ipi_queued(struct softnet_data *sd)
3671 {
3672 #ifdef CONFIG_RPS
3673 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3674
3675 if (sd != mysd) {
3676 sd->rps_ipi_next = mysd->rps_ipi_list;
3677 mysd->rps_ipi_list = sd;
3678
3679 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3680 return 1;
3681 }
3682 #endif /* CONFIG_RPS */
3683 return 0;
3684 }
3685
3686 #ifdef CONFIG_NET_FLOW_LIMIT
3687 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3688 #endif
3689
3690 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3691 {
3692 #ifdef CONFIG_NET_FLOW_LIMIT
3693 struct sd_flow_limit *fl;
3694 struct softnet_data *sd;
3695 unsigned int old_flow, new_flow;
3696
3697 if (qlen < (netdev_max_backlog >> 1))
3698 return false;
3699
3700 sd = this_cpu_ptr(&softnet_data);
3701
3702 rcu_read_lock();
3703 fl = rcu_dereference(sd->flow_limit);
3704 if (fl) {
3705 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3706 old_flow = fl->history[fl->history_head];
3707 fl->history[fl->history_head] = new_flow;
3708
3709 fl->history_head++;
3710 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3711
3712 if (likely(fl->buckets[old_flow]))
3713 fl->buckets[old_flow]--;
3714
3715 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3716 fl->count++;
3717 rcu_read_unlock();
3718 return true;
3719 }
3720 }
3721 rcu_read_unlock();
3722 #endif
3723 return false;
3724 }
3725
3726 /*
3727 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3728 * queue (may be a remote CPU queue).
3729 */
3730 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3731 unsigned int *qtail)
3732 {
3733 struct softnet_data *sd;
3734 unsigned long flags;
3735 unsigned int qlen;
3736
3737 sd = &per_cpu(softnet_data, cpu);
3738
3739 local_irq_save(flags);
3740
3741 rps_lock(sd);
3742 if (!netif_running(skb->dev))
3743 goto drop;
3744 qlen = skb_queue_len(&sd->input_pkt_queue);
3745 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3746 if (qlen) {
3747 enqueue:
3748 __skb_queue_tail(&sd->input_pkt_queue, skb);
3749 input_queue_tail_incr_save(sd, qtail);
3750 rps_unlock(sd);
3751 local_irq_restore(flags);
3752 return NET_RX_SUCCESS;
3753 }
3754
3755 /* Schedule NAPI for backlog device
3756 * We can use non atomic operation since we own the queue lock
3757 */
3758 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3759 if (!rps_ipi_queued(sd))
3760 ____napi_schedule(sd, &sd->backlog);
3761 }
3762 goto enqueue;
3763 }
3764
3765 drop:
3766 sd->dropped++;
3767 rps_unlock(sd);
3768
3769 local_irq_restore(flags);
3770
3771 atomic_long_inc(&skb->dev->rx_dropped);
3772 kfree_skb(skb);
3773 return NET_RX_DROP;
3774 }
3775
3776 static int netif_rx_internal(struct sk_buff *skb)
3777 {
3778 int ret;
3779
3780 net_timestamp_check(netdev_tstamp_prequeue, skb);
3781
3782 trace_netif_rx(skb);
3783 #ifdef CONFIG_RPS
3784 if (static_key_false(&rps_needed)) {
3785 struct rps_dev_flow voidflow, *rflow = &voidflow;
3786 int cpu;
3787
3788 preempt_disable();
3789 rcu_read_lock();
3790
3791 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3792 if (cpu < 0)
3793 cpu = smp_processor_id();
3794
3795 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3796
3797 rcu_read_unlock();
3798 preempt_enable();
3799 } else
3800 #endif
3801 {
3802 unsigned int qtail;
3803 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3804 put_cpu();
3805 }
3806 return ret;
3807 }
3808
3809 /**
3810 * netif_rx - post buffer to the network code
3811 * @skb: buffer to post
3812 *
3813 * This function receives a packet from a device driver and queues it for
3814 * the upper (protocol) levels to process. It always succeeds. The buffer
3815 * may be dropped during processing for congestion control or by the
3816 * protocol layers.
3817 *
3818 * return values:
3819 * NET_RX_SUCCESS (no congestion)
3820 * NET_RX_DROP (packet was dropped)
3821 *
3822 */
3823
3824 int netif_rx(struct sk_buff *skb)
3825 {
3826 trace_netif_rx_entry(skb);
3827
3828 return netif_rx_internal(skb);
3829 }
3830 EXPORT_SYMBOL(netif_rx);
3831
3832 int netif_rx_ni(struct sk_buff *skb)
3833 {
3834 int err;
3835
3836 trace_netif_rx_ni_entry(skb);
3837
3838 preempt_disable();
3839 err = netif_rx_internal(skb);
3840 if (local_softirq_pending())
3841 do_softirq();
3842 preempt_enable();
3843
3844 return err;
3845 }
3846 EXPORT_SYMBOL(netif_rx_ni);
3847
3848 static void net_tx_action(struct softirq_action *h)
3849 {
3850 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3851
3852 if (sd->completion_queue) {
3853 struct sk_buff *clist;
3854
3855 local_irq_disable();
3856 clist = sd->completion_queue;
3857 sd->completion_queue = NULL;
3858 local_irq_enable();
3859
3860 while (clist) {
3861 struct sk_buff *skb = clist;
3862 clist = clist->next;
3863
3864 WARN_ON(atomic_read(&skb->users));
3865 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3866 trace_consume_skb(skb);
3867 else
3868 trace_kfree_skb(skb, net_tx_action);
3869
3870 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3871 __kfree_skb(skb);
3872 else
3873 __kfree_skb_defer(skb);
3874 }
3875
3876 __kfree_skb_flush();
3877 }
3878
3879 if (sd->output_queue) {
3880 struct Qdisc *head;
3881
3882 local_irq_disable();
3883 head = sd->output_queue;
3884 sd->output_queue = NULL;
3885 sd->output_queue_tailp = &sd->output_queue;
3886 local_irq_enable();
3887
3888 while (head) {
3889 struct Qdisc *q = head;
3890 spinlock_t *root_lock;
3891
3892 head = head->next_sched;
3893
3894 root_lock = qdisc_lock(q);
3895 spin_lock(root_lock);
3896 /* We need to make sure head->next_sched is read
3897 * before clearing __QDISC_STATE_SCHED
3898 */
3899 smp_mb__before_atomic();
3900 clear_bit(__QDISC_STATE_SCHED, &q->state);
3901 qdisc_run(q);
3902 spin_unlock(root_lock);
3903 }
3904 }
3905 }
3906
3907 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3908 /* This hook is defined here for ATM LANE */
3909 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3910 unsigned char *addr) __read_mostly;
3911 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3912 #endif
3913
3914 static inline struct sk_buff *
3915 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3916 struct net_device *orig_dev)
3917 {
3918 #ifdef CONFIG_NET_CLS_ACT
3919 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3920 struct tcf_result cl_res;
3921
3922 /* If there's at least one ingress present somewhere (so
3923 * we get here via enabled static key), remaining devices
3924 * that are not configured with an ingress qdisc will bail
3925 * out here.
3926 */
3927 if (!cl)
3928 return skb;
3929 if (*pt_prev) {
3930 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3931 *pt_prev = NULL;
3932 }
3933
3934 qdisc_skb_cb(skb)->pkt_len = skb->len;
3935 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3936 qdisc_bstats_cpu_update(cl->q, skb);
3937
3938 switch (tc_classify(skb, cl, &cl_res, false)) {
3939 case TC_ACT_OK:
3940 case TC_ACT_RECLASSIFY:
3941 skb->tc_index = TC_H_MIN(cl_res.classid);
3942 break;
3943 case TC_ACT_SHOT:
3944 qdisc_qstats_cpu_drop(cl->q);
3945 kfree_skb(skb);
3946 return NULL;
3947 case TC_ACT_STOLEN:
3948 case TC_ACT_QUEUED:
3949 consume_skb(skb);
3950 return NULL;
3951 case TC_ACT_REDIRECT:
3952 /* skb_mac_header check was done by cls/act_bpf, so
3953 * we can safely push the L2 header back before
3954 * redirecting to another netdev
3955 */
3956 __skb_push(skb, skb->mac_len);
3957 skb_do_redirect(skb);
3958 return NULL;
3959 default:
3960 break;
3961 }
3962 #endif /* CONFIG_NET_CLS_ACT */
3963 return skb;
3964 }
3965
3966 /**
3967 * netdev_is_rx_handler_busy - check if receive handler is registered
3968 * @dev: device to check
3969 *
3970 * Check if a receive handler is already registered for a given device.
3971 * Return true if there one.
3972 *
3973 * The caller must hold the rtnl_mutex.
3974 */
3975 bool netdev_is_rx_handler_busy(struct net_device *dev)
3976 {
3977 ASSERT_RTNL();
3978 return dev && rtnl_dereference(dev->rx_handler);
3979 }
3980 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3981
3982 /**
3983 * netdev_rx_handler_register - register receive handler
3984 * @dev: device to register a handler for
3985 * @rx_handler: receive handler to register
3986 * @rx_handler_data: data pointer that is used by rx handler
3987 *
3988 * Register a receive handler for a device. This handler will then be
3989 * called from __netif_receive_skb. A negative errno code is returned
3990 * on a failure.
3991 *
3992 * The caller must hold the rtnl_mutex.
3993 *
3994 * For a general description of rx_handler, see enum rx_handler_result.
3995 */
3996 int netdev_rx_handler_register(struct net_device *dev,
3997 rx_handler_func_t *rx_handler,
3998 void *rx_handler_data)
3999 {
4000 ASSERT_RTNL();
4001
4002 if (dev->rx_handler)
4003 return -EBUSY;
4004
4005 /* Note: rx_handler_data must be set before rx_handler */
4006 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4007 rcu_assign_pointer(dev->rx_handler, rx_handler);
4008
4009 return 0;
4010 }
4011 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4012
4013 /**
4014 * netdev_rx_handler_unregister - unregister receive handler
4015 * @dev: device to unregister a handler from
4016 *
4017 * Unregister a receive handler from a device.
4018 *
4019 * The caller must hold the rtnl_mutex.
4020 */
4021 void netdev_rx_handler_unregister(struct net_device *dev)
4022 {
4023
4024 ASSERT_RTNL();
4025 RCU_INIT_POINTER(dev->rx_handler, NULL);
4026 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4027 * section has a guarantee to see a non NULL rx_handler_data
4028 * as well.
4029 */
4030 synchronize_net();
4031 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4032 }
4033 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4034
4035 /*
4036 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4037 * the special handling of PFMEMALLOC skbs.
4038 */
4039 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4040 {
4041 switch (skb->protocol) {
4042 case htons(ETH_P_ARP):
4043 case htons(ETH_P_IP):
4044 case htons(ETH_P_IPV6):
4045 case htons(ETH_P_8021Q):
4046 case htons(ETH_P_8021AD):
4047 return true;
4048 default:
4049 return false;
4050 }
4051 }
4052
4053 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4054 int *ret, struct net_device *orig_dev)
4055 {
4056 #ifdef CONFIG_NETFILTER_INGRESS
4057 if (nf_hook_ingress_active(skb)) {
4058 int ingress_retval;
4059
4060 if (*pt_prev) {
4061 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4062 *pt_prev = NULL;
4063 }
4064
4065 rcu_read_lock();
4066 ingress_retval = nf_hook_ingress(skb);
4067 rcu_read_unlock();
4068 return ingress_retval;
4069 }
4070 #endif /* CONFIG_NETFILTER_INGRESS */
4071 return 0;
4072 }
4073
4074 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4075 {
4076 struct packet_type *ptype, *pt_prev;
4077 rx_handler_func_t *rx_handler;
4078 struct net_device *orig_dev;
4079 bool deliver_exact = false;
4080 int ret = NET_RX_DROP;
4081 __be16 type;
4082
4083 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4084
4085 trace_netif_receive_skb(skb);
4086
4087 orig_dev = skb->dev;
4088
4089 skb_reset_network_header(skb);
4090 if (!skb_transport_header_was_set(skb))
4091 skb_reset_transport_header(skb);
4092 skb_reset_mac_len(skb);
4093
4094 pt_prev = NULL;
4095
4096 another_round:
4097 skb->skb_iif = skb->dev->ifindex;
4098
4099 __this_cpu_inc(softnet_data.processed);
4100
4101 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4102 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4103 skb = skb_vlan_untag(skb);
4104 if (unlikely(!skb))
4105 goto out;
4106 }
4107
4108 #ifdef CONFIG_NET_CLS_ACT
4109 if (skb->tc_verd & TC_NCLS) {
4110 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4111 goto ncls;
4112 }
4113 #endif
4114
4115 if (pfmemalloc)
4116 goto skip_taps;
4117
4118 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4119 if (pt_prev)
4120 ret = deliver_skb(skb, pt_prev, orig_dev);
4121 pt_prev = ptype;
4122 }
4123
4124 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4125 if (pt_prev)
4126 ret = deliver_skb(skb, pt_prev, orig_dev);
4127 pt_prev = ptype;
4128 }
4129
4130 skip_taps:
4131 #ifdef CONFIG_NET_INGRESS
4132 if (static_key_false(&ingress_needed)) {
4133 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4134 if (!skb)
4135 goto out;
4136
4137 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4138 goto out;
4139 }
4140 #endif
4141 #ifdef CONFIG_NET_CLS_ACT
4142 skb->tc_verd = 0;
4143 ncls:
4144 #endif
4145 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4146 goto drop;
4147
4148 if (skb_vlan_tag_present(skb)) {
4149 if (pt_prev) {
4150 ret = deliver_skb(skb, pt_prev, orig_dev);
4151 pt_prev = NULL;
4152 }
4153 if (vlan_do_receive(&skb))
4154 goto another_round;
4155 else if (unlikely(!skb))
4156 goto out;
4157 }
4158
4159 rx_handler = rcu_dereference(skb->dev->rx_handler);
4160 if (rx_handler) {
4161 if (pt_prev) {
4162 ret = deliver_skb(skb, pt_prev, orig_dev);
4163 pt_prev = NULL;
4164 }
4165 switch (rx_handler(&skb)) {
4166 case RX_HANDLER_CONSUMED:
4167 ret = NET_RX_SUCCESS;
4168 goto out;
4169 case RX_HANDLER_ANOTHER:
4170 goto another_round;
4171 case RX_HANDLER_EXACT:
4172 deliver_exact = true;
4173 case RX_HANDLER_PASS:
4174 break;
4175 default:
4176 BUG();
4177 }
4178 }
4179
4180 if (unlikely(skb_vlan_tag_present(skb))) {
4181 if (skb_vlan_tag_get_id(skb))
4182 skb->pkt_type = PACKET_OTHERHOST;
4183 /* Note: we might in the future use prio bits
4184 * and set skb->priority like in vlan_do_receive()
4185 * For the time being, just ignore Priority Code Point
4186 */
4187 skb->vlan_tci = 0;
4188 }
4189
4190 type = skb->protocol;
4191
4192 /* deliver only exact match when indicated */
4193 if (likely(!deliver_exact)) {
4194 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4195 &ptype_base[ntohs(type) &
4196 PTYPE_HASH_MASK]);
4197 }
4198
4199 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4200 &orig_dev->ptype_specific);
4201
4202 if (unlikely(skb->dev != orig_dev)) {
4203 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4204 &skb->dev->ptype_specific);
4205 }
4206
4207 if (pt_prev) {
4208 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4209 goto drop;
4210 else
4211 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4212 } else {
4213 drop:
4214 if (!deliver_exact)
4215 atomic_long_inc(&skb->dev->rx_dropped);
4216 else
4217 atomic_long_inc(&skb->dev->rx_nohandler);
4218 kfree_skb(skb);
4219 /* Jamal, now you will not able to escape explaining
4220 * me how you were going to use this. :-)
4221 */
4222 ret = NET_RX_DROP;
4223 }
4224
4225 out:
4226 return ret;
4227 }
4228
4229 static int __netif_receive_skb(struct sk_buff *skb)
4230 {
4231 int ret;
4232
4233 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4234 unsigned long pflags = current->flags;
4235
4236 /*
4237 * PFMEMALLOC skbs are special, they should
4238 * - be delivered to SOCK_MEMALLOC sockets only
4239 * - stay away from userspace
4240 * - have bounded memory usage
4241 *
4242 * Use PF_MEMALLOC as this saves us from propagating the allocation
4243 * context down to all allocation sites.
4244 */
4245 current->flags |= PF_MEMALLOC;
4246 ret = __netif_receive_skb_core(skb, true);
4247 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4248 } else
4249 ret = __netif_receive_skb_core(skb, false);
4250
4251 return ret;
4252 }
4253
4254 static int netif_receive_skb_internal(struct sk_buff *skb)
4255 {
4256 int ret;
4257
4258 net_timestamp_check(netdev_tstamp_prequeue, skb);
4259
4260 if (skb_defer_rx_timestamp(skb))
4261 return NET_RX_SUCCESS;
4262
4263 rcu_read_lock();
4264
4265 #ifdef CONFIG_RPS
4266 if (static_key_false(&rps_needed)) {
4267 struct rps_dev_flow voidflow, *rflow = &voidflow;
4268 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4269
4270 if (cpu >= 0) {
4271 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4272 rcu_read_unlock();
4273 return ret;
4274 }
4275 }
4276 #endif
4277 ret = __netif_receive_skb(skb);
4278 rcu_read_unlock();
4279 return ret;
4280 }
4281
4282 /**
4283 * netif_receive_skb - process receive buffer from network
4284 * @skb: buffer to process
4285 *
4286 * netif_receive_skb() is the main receive data processing function.
4287 * It always succeeds. The buffer may be dropped during processing
4288 * for congestion control or by the protocol layers.
4289 *
4290 * This function may only be called from softirq context and interrupts
4291 * should be enabled.
4292 *
4293 * Return values (usually ignored):
4294 * NET_RX_SUCCESS: no congestion
4295 * NET_RX_DROP: packet was dropped
4296 */
4297 int netif_receive_skb(struct sk_buff *skb)
4298 {
4299 trace_netif_receive_skb_entry(skb);
4300
4301 return netif_receive_skb_internal(skb);
4302 }
4303 EXPORT_SYMBOL(netif_receive_skb);
4304
4305 DEFINE_PER_CPU(struct work_struct, flush_works);
4306
4307 /* Network device is going away, flush any packets still pending */
4308 static void flush_backlog(struct work_struct *work)
4309 {
4310 struct sk_buff *skb, *tmp;
4311 struct softnet_data *sd;
4312
4313 local_bh_disable();
4314 sd = this_cpu_ptr(&softnet_data);
4315
4316 local_irq_disable();
4317 rps_lock(sd);
4318 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4319 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4320 __skb_unlink(skb, &sd->input_pkt_queue);
4321 kfree_skb(skb);
4322 input_queue_head_incr(sd);
4323 }
4324 }
4325 rps_unlock(sd);
4326 local_irq_enable();
4327
4328 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4329 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4330 __skb_unlink(skb, &sd->process_queue);
4331 kfree_skb(skb);
4332 input_queue_head_incr(sd);
4333 }
4334 }
4335 local_bh_enable();
4336 }
4337
4338 static void flush_all_backlogs(void)
4339 {
4340 unsigned int cpu;
4341
4342 get_online_cpus();
4343
4344 for_each_online_cpu(cpu)
4345 queue_work_on(cpu, system_highpri_wq,
4346 per_cpu_ptr(&flush_works, cpu));
4347
4348 for_each_online_cpu(cpu)
4349 flush_work(per_cpu_ptr(&flush_works, cpu));
4350
4351 put_online_cpus();
4352 }
4353
4354 static int napi_gro_complete(struct sk_buff *skb)
4355 {
4356 struct packet_offload *ptype;
4357 __be16 type = skb->protocol;
4358 struct list_head *head = &offload_base;
4359 int err = -ENOENT;
4360
4361 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4362
4363 if (NAPI_GRO_CB(skb)->count == 1) {
4364 skb_shinfo(skb)->gso_size = 0;
4365 goto out;
4366 }
4367
4368 rcu_read_lock();
4369 list_for_each_entry_rcu(ptype, head, list) {
4370 if (ptype->type != type || !ptype->callbacks.gro_complete)
4371 continue;
4372
4373 err = ptype->callbacks.gro_complete(skb, 0);
4374 break;
4375 }
4376 rcu_read_unlock();
4377
4378 if (err) {
4379 WARN_ON(&ptype->list == head);
4380 kfree_skb(skb);
4381 return NET_RX_SUCCESS;
4382 }
4383
4384 out:
4385 return netif_receive_skb_internal(skb);
4386 }
4387
4388 /* napi->gro_list contains packets ordered by age.
4389 * youngest packets at the head of it.
4390 * Complete skbs in reverse order to reduce latencies.
4391 */
4392 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4393 {
4394 struct sk_buff *skb, *prev = NULL;
4395
4396 /* scan list and build reverse chain */
4397 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4398 skb->prev = prev;
4399 prev = skb;
4400 }
4401
4402 for (skb = prev; skb; skb = prev) {
4403 skb->next = NULL;
4404
4405 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4406 return;
4407
4408 prev = skb->prev;
4409 napi_gro_complete(skb);
4410 napi->gro_count--;
4411 }
4412
4413 napi->gro_list = NULL;
4414 }
4415 EXPORT_SYMBOL(napi_gro_flush);
4416
4417 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4418 {
4419 struct sk_buff *p;
4420 unsigned int maclen = skb->dev->hard_header_len;
4421 u32 hash = skb_get_hash_raw(skb);
4422
4423 for (p = napi->gro_list; p; p = p->next) {
4424 unsigned long diffs;
4425
4426 NAPI_GRO_CB(p)->flush = 0;
4427
4428 if (hash != skb_get_hash_raw(p)) {
4429 NAPI_GRO_CB(p)->same_flow = 0;
4430 continue;
4431 }
4432
4433 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4434 diffs |= p->vlan_tci ^ skb->vlan_tci;
4435 diffs |= skb_metadata_dst_cmp(p, skb);
4436 if (maclen == ETH_HLEN)
4437 diffs |= compare_ether_header(skb_mac_header(p),
4438 skb_mac_header(skb));
4439 else if (!diffs)
4440 diffs = memcmp(skb_mac_header(p),
4441 skb_mac_header(skb),
4442 maclen);
4443 NAPI_GRO_CB(p)->same_flow = !diffs;
4444 }
4445 }
4446
4447 static void skb_gro_reset_offset(struct sk_buff *skb)
4448 {
4449 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4450 const skb_frag_t *frag0 = &pinfo->frags[0];
4451
4452 NAPI_GRO_CB(skb)->data_offset = 0;
4453 NAPI_GRO_CB(skb)->frag0 = NULL;
4454 NAPI_GRO_CB(skb)->frag0_len = 0;
4455
4456 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4457 pinfo->nr_frags &&
4458 !PageHighMem(skb_frag_page(frag0))) {
4459 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4460 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4461 }
4462 }
4463
4464 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4465 {
4466 struct skb_shared_info *pinfo = skb_shinfo(skb);
4467
4468 BUG_ON(skb->end - skb->tail < grow);
4469
4470 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4471
4472 skb->data_len -= grow;
4473 skb->tail += grow;
4474
4475 pinfo->frags[0].page_offset += grow;
4476 skb_frag_size_sub(&pinfo->frags[0], grow);
4477
4478 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4479 skb_frag_unref(skb, 0);
4480 memmove(pinfo->frags, pinfo->frags + 1,
4481 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4482 }
4483 }
4484
4485 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4486 {
4487 struct sk_buff **pp = NULL;
4488 struct packet_offload *ptype;
4489 __be16 type = skb->protocol;
4490 struct list_head *head = &offload_base;
4491 int same_flow;
4492 enum gro_result ret;
4493 int grow;
4494
4495 if (!(skb->dev->features & NETIF_F_GRO))
4496 goto normal;
4497
4498 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4499 goto normal;
4500
4501 gro_list_prepare(napi, skb);
4502
4503 rcu_read_lock();
4504 list_for_each_entry_rcu(ptype, head, list) {
4505 if (ptype->type != type || !ptype->callbacks.gro_receive)
4506 continue;
4507
4508 skb_set_network_header(skb, skb_gro_offset(skb));
4509 skb_reset_mac_len(skb);
4510 NAPI_GRO_CB(skb)->same_flow = 0;
4511 NAPI_GRO_CB(skb)->flush = 0;
4512 NAPI_GRO_CB(skb)->free = 0;
4513 NAPI_GRO_CB(skb)->encap_mark = 0;
4514 NAPI_GRO_CB(skb)->recursion_counter = 0;
4515 NAPI_GRO_CB(skb)->is_fou = 0;
4516 NAPI_GRO_CB(skb)->is_atomic = 1;
4517 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4518
4519 /* Setup for GRO checksum validation */
4520 switch (skb->ip_summed) {
4521 case CHECKSUM_COMPLETE:
4522 NAPI_GRO_CB(skb)->csum = skb->csum;
4523 NAPI_GRO_CB(skb)->csum_valid = 1;
4524 NAPI_GRO_CB(skb)->csum_cnt = 0;
4525 break;
4526 case CHECKSUM_UNNECESSARY:
4527 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4528 NAPI_GRO_CB(skb)->csum_valid = 0;
4529 break;
4530 default:
4531 NAPI_GRO_CB(skb)->csum_cnt = 0;
4532 NAPI_GRO_CB(skb)->csum_valid = 0;
4533 }
4534
4535 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4536 break;
4537 }
4538 rcu_read_unlock();
4539
4540 if (&ptype->list == head)
4541 goto normal;
4542
4543 same_flow = NAPI_GRO_CB(skb)->same_flow;
4544 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4545
4546 if (pp) {
4547 struct sk_buff *nskb = *pp;
4548
4549 *pp = nskb->next;
4550 nskb->next = NULL;
4551 napi_gro_complete(nskb);
4552 napi->gro_count--;
4553 }
4554
4555 if (same_flow)
4556 goto ok;
4557
4558 if (NAPI_GRO_CB(skb)->flush)
4559 goto normal;
4560
4561 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4562 struct sk_buff *nskb = napi->gro_list;
4563
4564 /* locate the end of the list to select the 'oldest' flow */
4565 while (nskb->next) {
4566 pp = &nskb->next;
4567 nskb = *pp;
4568 }
4569 *pp = NULL;
4570 nskb->next = NULL;
4571 napi_gro_complete(nskb);
4572 } else {
4573 napi->gro_count++;
4574 }
4575 NAPI_GRO_CB(skb)->count = 1;
4576 NAPI_GRO_CB(skb)->age = jiffies;
4577 NAPI_GRO_CB(skb)->last = skb;
4578 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4579 skb->next = napi->gro_list;
4580 napi->gro_list = skb;
4581 ret = GRO_HELD;
4582
4583 pull:
4584 grow = skb_gro_offset(skb) - skb_headlen(skb);
4585 if (grow > 0)
4586 gro_pull_from_frag0(skb, grow);
4587 ok:
4588 return ret;
4589
4590 normal:
4591 ret = GRO_NORMAL;
4592 goto pull;
4593 }
4594
4595 struct packet_offload *gro_find_receive_by_type(__be16 type)
4596 {
4597 struct list_head *offload_head = &offload_base;
4598 struct packet_offload *ptype;
4599
4600 list_for_each_entry_rcu(ptype, offload_head, list) {
4601 if (ptype->type != type || !ptype->callbacks.gro_receive)
4602 continue;
4603 return ptype;
4604 }
4605 return NULL;
4606 }
4607 EXPORT_SYMBOL(gro_find_receive_by_type);
4608
4609 struct packet_offload *gro_find_complete_by_type(__be16 type)
4610 {
4611 struct list_head *offload_head = &offload_base;
4612 struct packet_offload *ptype;
4613
4614 list_for_each_entry_rcu(ptype, offload_head, list) {
4615 if (ptype->type != type || !ptype->callbacks.gro_complete)
4616 continue;
4617 return ptype;
4618 }
4619 return NULL;
4620 }
4621 EXPORT_SYMBOL(gro_find_complete_by_type);
4622
4623 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4624 {
4625 switch (ret) {
4626 case GRO_NORMAL:
4627 if (netif_receive_skb_internal(skb))
4628 ret = GRO_DROP;
4629 break;
4630
4631 case GRO_DROP:
4632 kfree_skb(skb);
4633 break;
4634
4635 case GRO_MERGED_FREE:
4636 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4637 skb_dst_drop(skb);
4638 kmem_cache_free(skbuff_head_cache, skb);
4639 } else {
4640 __kfree_skb(skb);
4641 }
4642 break;
4643
4644 case GRO_HELD:
4645 case GRO_MERGED:
4646 break;
4647 }
4648
4649 return ret;
4650 }
4651
4652 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4653 {
4654 skb_mark_napi_id(skb, napi);
4655 trace_napi_gro_receive_entry(skb);
4656
4657 skb_gro_reset_offset(skb);
4658
4659 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4660 }
4661 EXPORT_SYMBOL(napi_gro_receive);
4662
4663 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4664 {
4665 if (unlikely(skb->pfmemalloc)) {
4666 consume_skb(skb);
4667 return;
4668 }
4669 __skb_pull(skb, skb_headlen(skb));
4670 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4671 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4672 skb->vlan_tci = 0;
4673 skb->dev = napi->dev;
4674 skb->skb_iif = 0;
4675 skb->encapsulation = 0;
4676 skb_shinfo(skb)->gso_type = 0;
4677 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4678
4679 napi->skb = skb;
4680 }
4681
4682 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4683 {
4684 struct sk_buff *skb = napi->skb;
4685
4686 if (!skb) {
4687 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4688 if (skb) {
4689 napi->skb = skb;
4690 skb_mark_napi_id(skb, napi);
4691 }
4692 }
4693 return skb;
4694 }
4695 EXPORT_SYMBOL(napi_get_frags);
4696
4697 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4698 struct sk_buff *skb,
4699 gro_result_t ret)
4700 {
4701 switch (ret) {
4702 case GRO_NORMAL:
4703 case GRO_HELD:
4704 __skb_push(skb, ETH_HLEN);
4705 skb->protocol = eth_type_trans(skb, skb->dev);
4706 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4707 ret = GRO_DROP;
4708 break;
4709
4710 case GRO_DROP:
4711 case GRO_MERGED_FREE:
4712 napi_reuse_skb(napi, skb);
4713 break;
4714
4715 case GRO_MERGED:
4716 break;
4717 }
4718
4719 return ret;
4720 }
4721
4722 /* Upper GRO stack assumes network header starts at gro_offset=0
4723 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4724 * We copy ethernet header into skb->data to have a common layout.
4725 */
4726 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4727 {
4728 struct sk_buff *skb = napi->skb;
4729 const struct ethhdr *eth;
4730 unsigned int hlen = sizeof(*eth);
4731
4732 napi->skb = NULL;
4733
4734 skb_reset_mac_header(skb);
4735 skb_gro_reset_offset(skb);
4736
4737 eth = skb_gro_header_fast(skb, 0);
4738 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4739 eth = skb_gro_header_slow(skb, hlen, 0);
4740 if (unlikely(!eth)) {
4741 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4742 __func__, napi->dev->name);
4743 napi_reuse_skb(napi, skb);
4744 return NULL;
4745 }
4746 } else {
4747 gro_pull_from_frag0(skb, hlen);
4748 NAPI_GRO_CB(skb)->frag0 += hlen;
4749 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4750 }
4751 __skb_pull(skb, hlen);
4752
4753 /*
4754 * This works because the only protocols we care about don't require
4755 * special handling.
4756 * We'll fix it up properly in napi_frags_finish()
4757 */
4758 skb->protocol = eth->h_proto;
4759
4760 return skb;
4761 }
4762
4763 gro_result_t napi_gro_frags(struct napi_struct *napi)
4764 {
4765 struct sk_buff *skb = napi_frags_skb(napi);
4766
4767 if (!skb)
4768 return GRO_DROP;
4769
4770 trace_napi_gro_frags_entry(skb);
4771
4772 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4773 }
4774 EXPORT_SYMBOL(napi_gro_frags);
4775
4776 /* Compute the checksum from gro_offset and return the folded value
4777 * after adding in any pseudo checksum.
4778 */
4779 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4780 {
4781 __wsum wsum;
4782 __sum16 sum;
4783
4784 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4785
4786 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4787 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4788 if (likely(!sum)) {
4789 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4790 !skb->csum_complete_sw)
4791 netdev_rx_csum_fault(skb->dev);
4792 }
4793
4794 NAPI_GRO_CB(skb)->csum = wsum;
4795 NAPI_GRO_CB(skb)->csum_valid = 1;
4796
4797 return sum;
4798 }
4799 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4800
4801 /*
4802 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4803 * Note: called with local irq disabled, but exits with local irq enabled.
4804 */
4805 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4806 {
4807 #ifdef CONFIG_RPS
4808 struct softnet_data *remsd = sd->rps_ipi_list;
4809
4810 if (remsd) {
4811 sd->rps_ipi_list = NULL;
4812
4813 local_irq_enable();
4814
4815 /* Send pending IPI's to kick RPS processing on remote cpus. */
4816 while (remsd) {
4817 struct softnet_data *next = remsd->rps_ipi_next;
4818
4819 if (cpu_online(remsd->cpu))
4820 smp_call_function_single_async(remsd->cpu,
4821 &remsd->csd);
4822 remsd = next;
4823 }
4824 } else
4825 #endif
4826 local_irq_enable();
4827 }
4828
4829 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4830 {
4831 #ifdef CONFIG_RPS
4832 return sd->rps_ipi_list != NULL;
4833 #else
4834 return false;
4835 #endif
4836 }
4837
4838 static int process_backlog(struct napi_struct *napi, int quota)
4839 {
4840 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4841 bool again = true;
4842 int work = 0;
4843
4844 /* Check if we have pending ipi, its better to send them now,
4845 * not waiting net_rx_action() end.
4846 */
4847 if (sd_has_rps_ipi_waiting(sd)) {
4848 local_irq_disable();
4849 net_rps_action_and_irq_enable(sd);
4850 }
4851
4852 napi->weight = weight_p;
4853 while (again) {
4854 struct sk_buff *skb;
4855
4856 while ((skb = __skb_dequeue(&sd->process_queue))) {
4857 rcu_read_lock();
4858 __netif_receive_skb(skb);
4859 rcu_read_unlock();
4860 input_queue_head_incr(sd);
4861 if (++work >= quota)
4862 return work;
4863
4864 }
4865
4866 local_irq_disable();
4867 rps_lock(sd);
4868 if (skb_queue_empty(&sd->input_pkt_queue)) {
4869 /*
4870 * Inline a custom version of __napi_complete().
4871 * only current cpu owns and manipulates this napi,
4872 * and NAPI_STATE_SCHED is the only possible flag set
4873 * on backlog.
4874 * We can use a plain write instead of clear_bit(),
4875 * and we dont need an smp_mb() memory barrier.
4876 */
4877 napi->state = 0;
4878 again = false;
4879 } else {
4880 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4881 &sd->process_queue);
4882 }
4883 rps_unlock(sd);
4884 local_irq_enable();
4885 }
4886
4887 return work;
4888 }
4889
4890 /**
4891 * __napi_schedule - schedule for receive
4892 * @n: entry to schedule
4893 *
4894 * The entry's receive function will be scheduled to run.
4895 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4896 */
4897 void __napi_schedule(struct napi_struct *n)
4898 {
4899 unsigned long flags;
4900
4901 local_irq_save(flags);
4902 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4903 local_irq_restore(flags);
4904 }
4905 EXPORT_SYMBOL(__napi_schedule);
4906
4907 /**
4908 * __napi_schedule_irqoff - schedule for receive
4909 * @n: entry to schedule
4910 *
4911 * Variant of __napi_schedule() assuming hard irqs are masked
4912 */
4913 void __napi_schedule_irqoff(struct napi_struct *n)
4914 {
4915 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4916 }
4917 EXPORT_SYMBOL(__napi_schedule_irqoff);
4918
4919 void __napi_complete(struct napi_struct *n)
4920 {
4921 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4922
4923 list_del_init(&n->poll_list);
4924 smp_mb__before_atomic();
4925 clear_bit(NAPI_STATE_SCHED, &n->state);
4926 }
4927 EXPORT_SYMBOL(__napi_complete);
4928
4929 void napi_complete_done(struct napi_struct *n, int work_done)
4930 {
4931 unsigned long flags;
4932
4933 /*
4934 * don't let napi dequeue from the cpu poll list
4935 * just in case its running on a different cpu
4936 */
4937 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4938 return;
4939
4940 if (n->gro_list) {
4941 unsigned long timeout = 0;
4942
4943 if (work_done)
4944 timeout = n->dev->gro_flush_timeout;
4945
4946 if (timeout)
4947 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4948 HRTIMER_MODE_REL_PINNED);
4949 else
4950 napi_gro_flush(n, false);
4951 }
4952 if (likely(list_empty(&n->poll_list))) {
4953 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4954 } else {
4955 /* If n->poll_list is not empty, we need to mask irqs */
4956 local_irq_save(flags);
4957 __napi_complete(n);
4958 local_irq_restore(flags);
4959 }
4960 }
4961 EXPORT_SYMBOL(napi_complete_done);
4962
4963 /* must be called under rcu_read_lock(), as we dont take a reference */
4964 static struct napi_struct *napi_by_id(unsigned int napi_id)
4965 {
4966 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4967 struct napi_struct *napi;
4968
4969 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4970 if (napi->napi_id == napi_id)
4971 return napi;
4972
4973 return NULL;
4974 }
4975
4976 #if defined(CONFIG_NET_RX_BUSY_POLL)
4977 #define BUSY_POLL_BUDGET 8
4978 bool sk_busy_loop(struct sock *sk, int nonblock)
4979 {
4980 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4981 int (*busy_poll)(struct napi_struct *dev);
4982 struct napi_struct *napi;
4983 int rc = false;
4984
4985 rcu_read_lock();
4986
4987 napi = napi_by_id(sk->sk_napi_id);
4988 if (!napi)
4989 goto out;
4990
4991 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4992 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4993
4994 do {
4995 rc = 0;
4996 local_bh_disable();
4997 if (busy_poll) {
4998 rc = busy_poll(napi);
4999 } else if (napi_schedule_prep(napi)) {
5000 void *have = netpoll_poll_lock(napi);
5001
5002 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
5003 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5004 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5005 if (rc == BUSY_POLL_BUDGET) {
5006 napi_complete_done(napi, rc);
5007 napi_schedule(napi);
5008 }
5009 }
5010 netpoll_poll_unlock(have);
5011 }
5012 if (rc > 0)
5013 __NET_ADD_STATS(sock_net(sk),
5014 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5015 local_bh_enable();
5016
5017 if (rc == LL_FLUSH_FAILED)
5018 break; /* permanent failure */
5019
5020 cpu_relax();
5021 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
5022 !need_resched() && !busy_loop_timeout(end_time));
5023
5024 rc = !skb_queue_empty(&sk->sk_receive_queue);
5025 out:
5026 rcu_read_unlock();
5027 return rc;
5028 }
5029 EXPORT_SYMBOL(sk_busy_loop);
5030
5031 #endif /* CONFIG_NET_RX_BUSY_POLL */
5032
5033 void napi_hash_add(struct napi_struct *napi)
5034 {
5035 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5036 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5037 return;
5038
5039 spin_lock(&napi_hash_lock);
5040
5041 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5042 do {
5043 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5044 napi_gen_id = NR_CPUS + 1;
5045 } while (napi_by_id(napi_gen_id));
5046 napi->napi_id = napi_gen_id;
5047
5048 hlist_add_head_rcu(&napi->napi_hash_node,
5049 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5050
5051 spin_unlock(&napi_hash_lock);
5052 }
5053 EXPORT_SYMBOL_GPL(napi_hash_add);
5054
5055 /* Warning : caller is responsible to make sure rcu grace period
5056 * is respected before freeing memory containing @napi
5057 */
5058 bool napi_hash_del(struct napi_struct *napi)
5059 {
5060 bool rcu_sync_needed = false;
5061
5062 spin_lock(&napi_hash_lock);
5063
5064 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5065 rcu_sync_needed = true;
5066 hlist_del_rcu(&napi->napi_hash_node);
5067 }
5068 spin_unlock(&napi_hash_lock);
5069 return rcu_sync_needed;
5070 }
5071 EXPORT_SYMBOL_GPL(napi_hash_del);
5072
5073 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5074 {
5075 struct napi_struct *napi;
5076
5077 napi = container_of(timer, struct napi_struct, timer);
5078 if (napi->gro_list)
5079 napi_schedule(napi);
5080
5081 return HRTIMER_NORESTART;
5082 }
5083
5084 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5085 int (*poll)(struct napi_struct *, int), int weight)
5086 {
5087 INIT_LIST_HEAD(&napi->poll_list);
5088 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5089 napi->timer.function = napi_watchdog;
5090 napi->gro_count = 0;
5091 napi->gro_list = NULL;
5092 napi->skb = NULL;
5093 napi->poll = poll;
5094 if (weight > NAPI_POLL_WEIGHT)
5095 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5096 weight, dev->name);
5097 napi->weight = weight;
5098 list_add(&napi->dev_list, &dev->napi_list);
5099 napi->dev = dev;
5100 #ifdef CONFIG_NETPOLL
5101 spin_lock_init(&napi->poll_lock);
5102 napi->poll_owner = -1;
5103 #endif
5104 set_bit(NAPI_STATE_SCHED, &napi->state);
5105 napi_hash_add(napi);
5106 }
5107 EXPORT_SYMBOL(netif_napi_add);
5108
5109 void napi_disable(struct napi_struct *n)
5110 {
5111 might_sleep();
5112 set_bit(NAPI_STATE_DISABLE, &n->state);
5113
5114 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5115 msleep(1);
5116 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5117 msleep(1);
5118
5119 hrtimer_cancel(&n->timer);
5120
5121 clear_bit(NAPI_STATE_DISABLE, &n->state);
5122 }
5123 EXPORT_SYMBOL(napi_disable);
5124
5125 /* Must be called in process context */
5126 void netif_napi_del(struct napi_struct *napi)
5127 {
5128 might_sleep();
5129 if (napi_hash_del(napi))
5130 synchronize_net();
5131 list_del_init(&napi->dev_list);
5132 napi_free_frags(napi);
5133
5134 kfree_skb_list(napi->gro_list);
5135 napi->gro_list = NULL;
5136 napi->gro_count = 0;
5137 }
5138 EXPORT_SYMBOL(netif_napi_del);
5139
5140 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5141 {
5142 void *have;
5143 int work, weight;
5144
5145 list_del_init(&n->poll_list);
5146
5147 have = netpoll_poll_lock(n);
5148
5149 weight = n->weight;
5150
5151 /* This NAPI_STATE_SCHED test is for avoiding a race
5152 * with netpoll's poll_napi(). Only the entity which
5153 * obtains the lock and sees NAPI_STATE_SCHED set will
5154 * actually make the ->poll() call. Therefore we avoid
5155 * accidentally calling ->poll() when NAPI is not scheduled.
5156 */
5157 work = 0;
5158 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5159 work = n->poll(n, weight);
5160 trace_napi_poll(n, work, weight);
5161 }
5162
5163 WARN_ON_ONCE(work > weight);
5164
5165 if (likely(work < weight))
5166 goto out_unlock;
5167
5168 /* Drivers must not modify the NAPI state if they
5169 * consume the entire weight. In such cases this code
5170 * still "owns" the NAPI instance and therefore can
5171 * move the instance around on the list at-will.
5172 */
5173 if (unlikely(napi_disable_pending(n))) {
5174 napi_complete(n);
5175 goto out_unlock;
5176 }
5177
5178 if (n->gro_list) {
5179 /* flush too old packets
5180 * If HZ < 1000, flush all packets.
5181 */
5182 napi_gro_flush(n, HZ >= 1000);
5183 }
5184
5185 /* Some drivers may have called napi_schedule
5186 * prior to exhausting their budget.
5187 */
5188 if (unlikely(!list_empty(&n->poll_list))) {
5189 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5190 n->dev ? n->dev->name : "backlog");
5191 goto out_unlock;
5192 }
5193
5194 list_add_tail(&n->poll_list, repoll);
5195
5196 out_unlock:
5197 netpoll_poll_unlock(have);
5198
5199 return work;
5200 }
5201
5202 static void net_rx_action(struct softirq_action *h)
5203 {
5204 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5205 unsigned long time_limit = jiffies + 2;
5206 int budget = netdev_budget;
5207 LIST_HEAD(list);
5208 LIST_HEAD(repoll);
5209
5210 local_irq_disable();
5211 list_splice_init(&sd->poll_list, &list);
5212 local_irq_enable();
5213
5214 for (;;) {
5215 struct napi_struct *n;
5216
5217 if (list_empty(&list)) {
5218 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5219 return;
5220 break;
5221 }
5222
5223 n = list_first_entry(&list, struct napi_struct, poll_list);
5224 budget -= napi_poll(n, &repoll);
5225
5226 /* If softirq window is exhausted then punt.
5227 * Allow this to run for 2 jiffies since which will allow
5228 * an average latency of 1.5/HZ.
5229 */
5230 if (unlikely(budget <= 0 ||
5231 time_after_eq(jiffies, time_limit))) {
5232 sd->time_squeeze++;
5233 break;
5234 }
5235 }
5236
5237 __kfree_skb_flush();
5238 local_irq_disable();
5239
5240 list_splice_tail_init(&sd->poll_list, &list);
5241 list_splice_tail(&repoll, &list);
5242 list_splice(&list, &sd->poll_list);
5243 if (!list_empty(&sd->poll_list))
5244 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5245
5246 net_rps_action_and_irq_enable(sd);
5247 }
5248
5249 struct netdev_adjacent {
5250 struct net_device *dev;
5251
5252 /* upper master flag, there can only be one master device per list */
5253 bool master;
5254
5255 /* counter for the number of times this device was added to us */
5256 u16 ref_nr;
5257
5258 /* private field for the users */
5259 void *private;
5260
5261 struct list_head list;
5262 struct rcu_head rcu;
5263 };
5264
5265 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5266 struct list_head *adj_list)
5267 {
5268 struct netdev_adjacent *adj;
5269
5270 list_for_each_entry(adj, adj_list, list) {
5271 if (adj->dev == adj_dev)
5272 return adj;
5273 }
5274 return NULL;
5275 }
5276
5277 /**
5278 * netdev_has_upper_dev - Check if device is linked to an upper device
5279 * @dev: device
5280 * @upper_dev: upper device to check
5281 *
5282 * Find out if a device is linked to specified upper device and return true
5283 * in case it is. Note that this checks only immediate upper device,
5284 * not through a complete stack of devices. The caller must hold the RTNL lock.
5285 */
5286 bool netdev_has_upper_dev(struct net_device *dev,
5287 struct net_device *upper_dev)
5288 {
5289 ASSERT_RTNL();
5290
5291 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5292 }
5293 EXPORT_SYMBOL(netdev_has_upper_dev);
5294
5295 /**
5296 * netdev_has_any_upper_dev - Check if device is linked to some device
5297 * @dev: device
5298 *
5299 * Find out if a device is linked to an upper device and return true in case
5300 * it is. The caller must hold the RTNL lock.
5301 */
5302 static bool netdev_has_any_upper_dev(struct net_device *dev)
5303 {
5304 ASSERT_RTNL();
5305
5306 return !list_empty(&dev->all_adj_list.upper);
5307 }
5308
5309 /**
5310 * netdev_master_upper_dev_get - Get master upper device
5311 * @dev: device
5312 *
5313 * Find a master upper device and return pointer to it or NULL in case
5314 * it's not there. The caller must hold the RTNL lock.
5315 */
5316 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5317 {
5318 struct netdev_adjacent *upper;
5319
5320 ASSERT_RTNL();
5321
5322 if (list_empty(&dev->adj_list.upper))
5323 return NULL;
5324
5325 upper = list_first_entry(&dev->adj_list.upper,
5326 struct netdev_adjacent, list);
5327 if (likely(upper->master))
5328 return upper->dev;
5329 return NULL;
5330 }
5331 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5332
5333 void *netdev_adjacent_get_private(struct list_head *adj_list)
5334 {
5335 struct netdev_adjacent *adj;
5336
5337 adj = list_entry(adj_list, struct netdev_adjacent, list);
5338
5339 return adj->private;
5340 }
5341 EXPORT_SYMBOL(netdev_adjacent_get_private);
5342
5343 /**
5344 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5345 * @dev: device
5346 * @iter: list_head ** of the current position
5347 *
5348 * Gets the next device from the dev's upper list, starting from iter
5349 * position. The caller must hold RCU read lock.
5350 */
5351 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5352 struct list_head **iter)
5353 {
5354 struct netdev_adjacent *upper;
5355
5356 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5357
5358 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5359
5360 if (&upper->list == &dev->adj_list.upper)
5361 return NULL;
5362
5363 *iter = &upper->list;
5364
5365 return upper->dev;
5366 }
5367 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5368
5369 /**
5370 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5371 * @dev: device
5372 * @iter: list_head ** of the current position
5373 *
5374 * Gets the next device from the dev's upper list, starting from iter
5375 * position. The caller must hold RCU read lock.
5376 */
5377 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5378 struct list_head **iter)
5379 {
5380 struct netdev_adjacent *upper;
5381
5382 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5383
5384 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5385
5386 if (&upper->list == &dev->all_adj_list.upper)
5387 return NULL;
5388
5389 *iter = &upper->list;
5390
5391 return upper->dev;
5392 }
5393 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5394
5395 /**
5396 * netdev_lower_get_next_private - Get the next ->private from the
5397 * lower neighbour list
5398 * @dev: device
5399 * @iter: list_head ** of the current position
5400 *
5401 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5402 * list, starting from iter position. The caller must hold either hold the
5403 * RTNL lock or its own locking that guarantees that the neighbour lower
5404 * list will remain unchanged.
5405 */
5406 void *netdev_lower_get_next_private(struct net_device *dev,
5407 struct list_head **iter)
5408 {
5409 struct netdev_adjacent *lower;
5410
5411 lower = list_entry(*iter, struct netdev_adjacent, list);
5412
5413 if (&lower->list == &dev->adj_list.lower)
5414 return NULL;
5415
5416 *iter = lower->list.next;
5417
5418 return lower->private;
5419 }
5420 EXPORT_SYMBOL(netdev_lower_get_next_private);
5421
5422 /**
5423 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5424 * lower neighbour list, RCU
5425 * variant
5426 * @dev: device
5427 * @iter: list_head ** of the current position
5428 *
5429 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5430 * list, starting from iter position. The caller must hold RCU read lock.
5431 */
5432 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5433 struct list_head **iter)
5434 {
5435 struct netdev_adjacent *lower;
5436
5437 WARN_ON_ONCE(!rcu_read_lock_held());
5438
5439 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5440
5441 if (&lower->list == &dev->adj_list.lower)
5442 return NULL;
5443
5444 *iter = &lower->list;
5445
5446 return lower->private;
5447 }
5448 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5449
5450 /**
5451 * netdev_lower_get_next - Get the next device from the lower neighbour
5452 * list
5453 * @dev: device
5454 * @iter: list_head ** of the current position
5455 *
5456 * Gets the next netdev_adjacent from the dev's lower neighbour
5457 * list, starting from iter position. The caller must hold RTNL lock or
5458 * its own locking that guarantees that the neighbour lower
5459 * list will remain unchanged.
5460 */
5461 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5462 {
5463 struct netdev_adjacent *lower;
5464
5465 lower = list_entry(*iter, struct netdev_adjacent, list);
5466
5467 if (&lower->list == &dev->adj_list.lower)
5468 return NULL;
5469
5470 *iter = lower->list.next;
5471
5472 return lower->dev;
5473 }
5474 EXPORT_SYMBOL(netdev_lower_get_next);
5475
5476 /**
5477 * netdev_all_lower_get_next - Get the next device from all lower neighbour list
5478 * @dev: device
5479 * @iter: list_head ** of the current position
5480 *
5481 * Gets the next netdev_adjacent from the dev's all lower neighbour
5482 * list, starting from iter position. The caller must hold RTNL lock or
5483 * its own locking that guarantees that the neighbour all lower
5484 * list will remain unchanged.
5485 */
5486 struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter)
5487 {
5488 struct netdev_adjacent *lower;
5489
5490 lower = list_entry(*iter, struct netdev_adjacent, list);
5491
5492 if (&lower->list == &dev->all_adj_list.lower)
5493 return NULL;
5494
5495 *iter = lower->list.next;
5496
5497 return lower->dev;
5498 }
5499 EXPORT_SYMBOL(netdev_all_lower_get_next);
5500
5501 /**
5502 * netdev_all_lower_get_next_rcu - Get the next device from all
5503 * lower neighbour list, RCU variant
5504 * @dev: device
5505 * @iter: list_head ** of the current position
5506 *
5507 * Gets the next netdev_adjacent from the dev's all lower neighbour
5508 * list, starting from iter position. The caller must hold RCU read lock.
5509 */
5510 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
5511 struct list_head **iter)
5512 {
5513 struct netdev_adjacent *lower;
5514
5515 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5516
5517 if (&lower->list == &dev->all_adj_list.lower)
5518 return NULL;
5519
5520 *iter = &lower->list;
5521
5522 return lower->dev;
5523 }
5524 EXPORT_SYMBOL(netdev_all_lower_get_next_rcu);
5525
5526 /**
5527 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5528 * lower neighbour list, RCU
5529 * variant
5530 * @dev: device
5531 *
5532 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5533 * list. The caller must hold RCU read lock.
5534 */
5535 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5536 {
5537 struct netdev_adjacent *lower;
5538
5539 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5540 struct netdev_adjacent, list);
5541 if (lower)
5542 return lower->private;
5543 return NULL;
5544 }
5545 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5546
5547 /**
5548 * netdev_master_upper_dev_get_rcu - Get master upper device
5549 * @dev: device
5550 *
5551 * Find a master upper device and return pointer to it or NULL in case
5552 * it's not there. The caller must hold the RCU read lock.
5553 */
5554 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5555 {
5556 struct netdev_adjacent *upper;
5557
5558 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5559 struct netdev_adjacent, list);
5560 if (upper && likely(upper->master))
5561 return upper->dev;
5562 return NULL;
5563 }
5564 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5565
5566 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5567 struct net_device *adj_dev,
5568 struct list_head *dev_list)
5569 {
5570 char linkname[IFNAMSIZ+7];
5571 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5572 "upper_%s" : "lower_%s", adj_dev->name);
5573 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5574 linkname);
5575 }
5576 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5577 char *name,
5578 struct list_head *dev_list)
5579 {
5580 char linkname[IFNAMSIZ+7];
5581 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5582 "upper_%s" : "lower_%s", name);
5583 sysfs_remove_link(&(dev->dev.kobj), linkname);
5584 }
5585
5586 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5587 struct net_device *adj_dev,
5588 struct list_head *dev_list)
5589 {
5590 return (dev_list == &dev->adj_list.upper ||
5591 dev_list == &dev->adj_list.lower) &&
5592 net_eq(dev_net(dev), dev_net(adj_dev));
5593 }
5594
5595 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5596 struct net_device *adj_dev,
5597 u16 ref_nr,
5598 struct list_head *dev_list,
5599 void *private, bool master)
5600 {
5601 struct netdev_adjacent *adj;
5602 int ret;
5603
5604 adj = __netdev_find_adj(adj_dev, dev_list);
5605
5606 if (adj) {
5607 adj->ref_nr += ref_nr;
5608 return 0;
5609 }
5610
5611 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5612 if (!adj)
5613 return -ENOMEM;
5614
5615 adj->dev = adj_dev;
5616 adj->master = master;
5617 adj->ref_nr = ref_nr;
5618 adj->private = private;
5619 dev_hold(adj_dev);
5620
5621 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5622 adj_dev->name, dev->name, adj_dev->name);
5623
5624 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5625 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5626 if (ret)
5627 goto free_adj;
5628 }
5629
5630 /* Ensure that master link is always the first item in list. */
5631 if (master) {
5632 ret = sysfs_create_link(&(dev->dev.kobj),
5633 &(adj_dev->dev.kobj), "master");
5634 if (ret)
5635 goto remove_symlinks;
5636
5637 list_add_rcu(&adj->list, dev_list);
5638 } else {
5639 list_add_tail_rcu(&adj->list, dev_list);
5640 }
5641
5642 return 0;
5643
5644 remove_symlinks:
5645 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5646 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5647 free_adj:
5648 kfree(adj);
5649 dev_put(adj_dev);
5650
5651 return ret;
5652 }
5653
5654 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5655 struct net_device *adj_dev,
5656 u16 ref_nr,
5657 struct list_head *dev_list)
5658 {
5659 struct netdev_adjacent *adj;
5660
5661 adj = __netdev_find_adj(adj_dev, dev_list);
5662
5663 if (!adj) {
5664 pr_err("tried to remove device %s from %s\n",
5665 dev->name, adj_dev->name);
5666 BUG();
5667 }
5668
5669 if (adj->ref_nr > ref_nr) {
5670 pr_debug("%s to %s ref_nr-%d = %d\n", dev->name, adj_dev->name,
5671 ref_nr, adj->ref_nr-ref_nr);
5672 adj->ref_nr -= ref_nr;
5673 return;
5674 }
5675
5676 if (adj->master)
5677 sysfs_remove_link(&(dev->dev.kobj), "master");
5678
5679 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5680 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5681
5682 list_del_rcu(&adj->list);
5683 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5684 adj_dev->name, dev->name, adj_dev->name);
5685 dev_put(adj_dev);
5686 kfree_rcu(adj, rcu);
5687 }
5688
5689 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5690 struct net_device *upper_dev,
5691 u16 ref_nr,
5692 struct list_head *up_list,
5693 struct list_head *down_list,
5694 void *private, bool master)
5695 {
5696 int ret;
5697
5698 ret = __netdev_adjacent_dev_insert(dev, upper_dev, ref_nr, up_list,
5699 private, master);
5700 if (ret)
5701 return ret;
5702
5703 ret = __netdev_adjacent_dev_insert(upper_dev, dev, ref_nr, down_list,
5704 private, false);
5705 if (ret) {
5706 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5707 return ret;
5708 }
5709
5710 return 0;
5711 }
5712
5713 static int __netdev_adjacent_dev_link(struct net_device *dev,
5714 struct net_device *upper_dev,
5715 u16 ref_nr)
5716 {
5717 return __netdev_adjacent_dev_link_lists(dev, upper_dev, ref_nr,
5718 &dev->all_adj_list.upper,
5719 &upper_dev->all_adj_list.lower,
5720 NULL, false);
5721 }
5722
5723 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5724 struct net_device *upper_dev,
5725 u16 ref_nr,
5726 struct list_head *up_list,
5727 struct list_head *down_list)
5728 {
5729 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5730 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5731 }
5732
5733 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5734 struct net_device *upper_dev,
5735 u16 ref_nr)
5736 {
5737 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, ref_nr,
5738 &dev->all_adj_list.upper,
5739 &upper_dev->all_adj_list.lower);
5740 }
5741
5742 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5743 struct net_device *upper_dev,
5744 void *private, bool master)
5745 {
5746 int ret = __netdev_adjacent_dev_link(dev, upper_dev, 1);
5747
5748 if (ret)
5749 return ret;
5750
5751 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 1,
5752 &dev->adj_list.upper,
5753 &upper_dev->adj_list.lower,
5754 private, master);
5755 if (ret) {
5756 __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5757 return ret;
5758 }
5759
5760 return 0;
5761 }
5762
5763 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5764 struct net_device *upper_dev)
5765 {
5766 __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5767 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5768 &dev->adj_list.upper,
5769 &upper_dev->adj_list.lower);
5770 }
5771
5772 static int __netdev_upper_dev_link(struct net_device *dev,
5773 struct net_device *upper_dev, bool master,
5774 void *upper_priv, void *upper_info)
5775 {
5776 struct netdev_notifier_changeupper_info changeupper_info;
5777 struct netdev_adjacent *i, *j, *to_i, *to_j;
5778 int ret = 0;
5779
5780 ASSERT_RTNL();
5781
5782 if (dev == upper_dev)
5783 return -EBUSY;
5784
5785 /* To prevent loops, check if dev is not upper device to upper_dev. */
5786 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5787 return -EBUSY;
5788
5789 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5790 return -EEXIST;
5791
5792 if (master && netdev_master_upper_dev_get(dev))
5793 return -EBUSY;
5794
5795 changeupper_info.upper_dev = upper_dev;
5796 changeupper_info.master = master;
5797 changeupper_info.linking = true;
5798 changeupper_info.upper_info = upper_info;
5799
5800 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5801 &changeupper_info.info);
5802 ret = notifier_to_errno(ret);
5803 if (ret)
5804 return ret;
5805
5806 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5807 master);
5808 if (ret)
5809 return ret;
5810
5811 /* Now that we linked these devs, make all the upper_dev's
5812 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5813 * versa, and don't forget the devices itself. All of these
5814 * links are non-neighbours.
5815 */
5816 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5817 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5818 pr_debug("Interlinking %s with %s, non-neighbour\n",
5819 i->dev->name, j->dev->name);
5820 ret = __netdev_adjacent_dev_link(i->dev, j->dev, i->ref_nr);
5821 if (ret)
5822 goto rollback_mesh;
5823 }
5824 }
5825
5826 /* add dev to every upper_dev's upper device */
5827 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5828 pr_debug("linking %s's upper device %s with %s\n",
5829 upper_dev->name, i->dev->name, dev->name);
5830 ret = __netdev_adjacent_dev_link(dev, i->dev, i->ref_nr);
5831 if (ret)
5832 goto rollback_upper_mesh;
5833 }
5834
5835 /* add upper_dev to every dev's lower device */
5836 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5837 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5838 i->dev->name, upper_dev->name);
5839 ret = __netdev_adjacent_dev_link(i->dev, upper_dev, i->ref_nr);
5840 if (ret)
5841 goto rollback_lower_mesh;
5842 }
5843
5844 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5845 &changeupper_info.info);
5846 ret = notifier_to_errno(ret);
5847 if (ret)
5848 goto rollback_lower_mesh;
5849
5850 return 0;
5851
5852 rollback_lower_mesh:
5853 to_i = i;
5854 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5855 if (i == to_i)
5856 break;
5857 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5858 }
5859
5860 i = NULL;
5861
5862 rollback_upper_mesh:
5863 to_i = i;
5864 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5865 if (i == to_i)
5866 break;
5867 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5868 }
5869
5870 i = j = NULL;
5871
5872 rollback_mesh:
5873 to_i = i;
5874 to_j = j;
5875 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5876 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5877 if (i == to_i && j == to_j)
5878 break;
5879 __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5880 }
5881 if (i == to_i)
5882 break;
5883 }
5884
5885 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5886
5887 return ret;
5888 }
5889
5890 /**
5891 * netdev_upper_dev_link - Add a link to the upper device
5892 * @dev: device
5893 * @upper_dev: new upper device
5894 *
5895 * Adds a link to device which is upper to this one. The caller must hold
5896 * the RTNL lock. On a failure a negative errno code is returned.
5897 * On success the reference counts are adjusted and the function
5898 * returns zero.
5899 */
5900 int netdev_upper_dev_link(struct net_device *dev,
5901 struct net_device *upper_dev)
5902 {
5903 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5904 }
5905 EXPORT_SYMBOL(netdev_upper_dev_link);
5906
5907 /**
5908 * netdev_master_upper_dev_link - Add a master link to the upper device
5909 * @dev: device
5910 * @upper_dev: new upper device
5911 * @upper_priv: upper device private
5912 * @upper_info: upper info to be passed down via notifier
5913 *
5914 * Adds a link to device which is upper to this one. In this case, only
5915 * one master upper device can be linked, although other non-master devices
5916 * might be linked as well. The caller must hold the RTNL lock.
5917 * On a failure a negative errno code is returned. On success the reference
5918 * counts are adjusted and the function returns zero.
5919 */
5920 int netdev_master_upper_dev_link(struct net_device *dev,
5921 struct net_device *upper_dev,
5922 void *upper_priv, void *upper_info)
5923 {
5924 return __netdev_upper_dev_link(dev, upper_dev, true,
5925 upper_priv, upper_info);
5926 }
5927 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5928
5929 /**
5930 * netdev_upper_dev_unlink - Removes a link to upper device
5931 * @dev: device
5932 * @upper_dev: new upper device
5933 *
5934 * Removes a link to device which is upper to this one. The caller must hold
5935 * the RTNL lock.
5936 */
5937 void netdev_upper_dev_unlink(struct net_device *dev,
5938 struct net_device *upper_dev)
5939 {
5940 struct netdev_notifier_changeupper_info changeupper_info;
5941 struct netdev_adjacent *i, *j;
5942 ASSERT_RTNL();
5943
5944 changeupper_info.upper_dev = upper_dev;
5945 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5946 changeupper_info.linking = false;
5947
5948 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5949 &changeupper_info.info);
5950
5951 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5952
5953 /* Here is the tricky part. We must remove all dev's lower
5954 * devices from all upper_dev's upper devices and vice
5955 * versa, to maintain the graph relationship.
5956 */
5957 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5958 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5959 __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5960
5961 /* remove also the devices itself from lower/upper device
5962 * list
5963 */
5964 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5965 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5966
5967 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5968 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5969
5970 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5971 &changeupper_info.info);
5972 }
5973 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5974
5975 /**
5976 * netdev_bonding_info_change - Dispatch event about slave change
5977 * @dev: device
5978 * @bonding_info: info to dispatch
5979 *
5980 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5981 * The caller must hold the RTNL lock.
5982 */
5983 void netdev_bonding_info_change(struct net_device *dev,
5984 struct netdev_bonding_info *bonding_info)
5985 {
5986 struct netdev_notifier_bonding_info info;
5987
5988 memcpy(&info.bonding_info, bonding_info,
5989 sizeof(struct netdev_bonding_info));
5990 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5991 &info.info);
5992 }
5993 EXPORT_SYMBOL(netdev_bonding_info_change);
5994
5995 static void netdev_adjacent_add_links(struct net_device *dev)
5996 {
5997 struct netdev_adjacent *iter;
5998
5999 struct net *net = dev_net(dev);
6000
6001 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6002 if (!net_eq(net, dev_net(iter->dev)))
6003 continue;
6004 netdev_adjacent_sysfs_add(iter->dev, dev,
6005 &iter->dev->adj_list.lower);
6006 netdev_adjacent_sysfs_add(dev, iter->dev,
6007 &dev->adj_list.upper);
6008 }
6009
6010 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6011 if (!net_eq(net, dev_net(iter->dev)))
6012 continue;
6013 netdev_adjacent_sysfs_add(iter->dev, dev,
6014 &iter->dev->adj_list.upper);
6015 netdev_adjacent_sysfs_add(dev, iter->dev,
6016 &dev->adj_list.lower);
6017 }
6018 }
6019
6020 static void netdev_adjacent_del_links(struct net_device *dev)
6021 {
6022 struct netdev_adjacent *iter;
6023
6024 struct net *net = dev_net(dev);
6025
6026 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6027 if (!net_eq(net, dev_net(iter->dev)))
6028 continue;
6029 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6030 &iter->dev->adj_list.lower);
6031 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6032 &dev->adj_list.upper);
6033 }
6034
6035 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6036 if (!net_eq(net, dev_net(iter->dev)))
6037 continue;
6038 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6039 &iter->dev->adj_list.upper);
6040 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6041 &dev->adj_list.lower);
6042 }
6043 }
6044
6045 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6046 {
6047 struct netdev_adjacent *iter;
6048
6049 struct net *net = dev_net(dev);
6050
6051 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6052 if (!net_eq(net, dev_net(iter->dev)))
6053 continue;
6054 netdev_adjacent_sysfs_del(iter->dev, oldname,
6055 &iter->dev->adj_list.lower);
6056 netdev_adjacent_sysfs_add(iter->dev, dev,
6057 &iter->dev->adj_list.lower);
6058 }
6059
6060 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6061 if (!net_eq(net, dev_net(iter->dev)))
6062 continue;
6063 netdev_adjacent_sysfs_del(iter->dev, oldname,
6064 &iter->dev->adj_list.upper);
6065 netdev_adjacent_sysfs_add(iter->dev, dev,
6066 &iter->dev->adj_list.upper);
6067 }
6068 }
6069
6070 void *netdev_lower_dev_get_private(struct net_device *dev,
6071 struct net_device *lower_dev)
6072 {
6073 struct netdev_adjacent *lower;
6074
6075 if (!lower_dev)
6076 return NULL;
6077 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6078 if (!lower)
6079 return NULL;
6080
6081 return lower->private;
6082 }
6083 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6084
6085
6086 int dev_get_nest_level(struct net_device *dev)
6087 {
6088 struct net_device *lower = NULL;
6089 struct list_head *iter;
6090 int max_nest = -1;
6091 int nest;
6092
6093 ASSERT_RTNL();
6094
6095 netdev_for_each_lower_dev(dev, lower, iter) {
6096 nest = dev_get_nest_level(lower);
6097 if (max_nest < nest)
6098 max_nest = nest;
6099 }
6100
6101 return max_nest + 1;
6102 }
6103 EXPORT_SYMBOL(dev_get_nest_level);
6104
6105 /**
6106 * netdev_lower_change - Dispatch event about lower device state change
6107 * @lower_dev: device
6108 * @lower_state_info: state to dispatch
6109 *
6110 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6111 * The caller must hold the RTNL lock.
6112 */
6113 void netdev_lower_state_changed(struct net_device *lower_dev,
6114 void *lower_state_info)
6115 {
6116 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6117
6118 ASSERT_RTNL();
6119 changelowerstate_info.lower_state_info = lower_state_info;
6120 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6121 &changelowerstate_info.info);
6122 }
6123 EXPORT_SYMBOL(netdev_lower_state_changed);
6124
6125 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6126 struct neighbour *n)
6127 {
6128 struct net_device *lower_dev, *stop_dev;
6129 struct list_head *iter;
6130 int err;
6131
6132 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6133 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6134 continue;
6135 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6136 if (err) {
6137 stop_dev = lower_dev;
6138 goto rollback;
6139 }
6140 }
6141 return 0;
6142
6143 rollback:
6144 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6145 if (lower_dev == stop_dev)
6146 break;
6147 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6148 continue;
6149 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6150 }
6151 return err;
6152 }
6153 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6154
6155 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6156 struct neighbour *n)
6157 {
6158 struct net_device *lower_dev;
6159 struct list_head *iter;
6160
6161 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6162 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6163 continue;
6164 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6165 }
6166 }
6167 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6168
6169 static void dev_change_rx_flags(struct net_device *dev, int flags)
6170 {
6171 const struct net_device_ops *ops = dev->netdev_ops;
6172
6173 if (ops->ndo_change_rx_flags)
6174 ops->ndo_change_rx_flags(dev, flags);
6175 }
6176
6177 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6178 {
6179 unsigned int old_flags = dev->flags;
6180 kuid_t uid;
6181 kgid_t gid;
6182
6183 ASSERT_RTNL();
6184
6185 dev->flags |= IFF_PROMISC;
6186 dev->promiscuity += inc;
6187 if (dev->promiscuity == 0) {
6188 /*
6189 * Avoid overflow.
6190 * If inc causes overflow, untouch promisc and return error.
6191 */
6192 if (inc < 0)
6193 dev->flags &= ~IFF_PROMISC;
6194 else {
6195 dev->promiscuity -= inc;
6196 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6197 dev->name);
6198 return -EOVERFLOW;
6199 }
6200 }
6201 if (dev->flags != old_flags) {
6202 pr_info("device %s %s promiscuous mode\n",
6203 dev->name,
6204 dev->flags & IFF_PROMISC ? "entered" : "left");
6205 if (audit_enabled) {
6206 current_uid_gid(&uid, &gid);
6207 audit_log(current->audit_context, GFP_ATOMIC,
6208 AUDIT_ANOM_PROMISCUOUS,
6209 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6210 dev->name, (dev->flags & IFF_PROMISC),
6211 (old_flags & IFF_PROMISC),
6212 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6213 from_kuid(&init_user_ns, uid),
6214 from_kgid(&init_user_ns, gid),
6215 audit_get_sessionid(current));
6216 }
6217
6218 dev_change_rx_flags(dev, IFF_PROMISC);
6219 }
6220 if (notify)
6221 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6222 return 0;
6223 }
6224
6225 /**
6226 * dev_set_promiscuity - update promiscuity count on a device
6227 * @dev: device
6228 * @inc: modifier
6229 *
6230 * Add or remove promiscuity from a device. While the count in the device
6231 * remains above zero the interface remains promiscuous. Once it hits zero
6232 * the device reverts back to normal filtering operation. A negative inc
6233 * value is used to drop promiscuity on the device.
6234 * Return 0 if successful or a negative errno code on error.
6235 */
6236 int dev_set_promiscuity(struct net_device *dev, int inc)
6237 {
6238 unsigned int old_flags = dev->flags;
6239 int err;
6240
6241 err = __dev_set_promiscuity(dev, inc, true);
6242 if (err < 0)
6243 return err;
6244 if (dev->flags != old_flags)
6245 dev_set_rx_mode(dev);
6246 return err;
6247 }
6248 EXPORT_SYMBOL(dev_set_promiscuity);
6249
6250 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6251 {
6252 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6253
6254 ASSERT_RTNL();
6255
6256 dev->flags |= IFF_ALLMULTI;
6257 dev->allmulti += inc;
6258 if (dev->allmulti == 0) {
6259 /*
6260 * Avoid overflow.
6261 * If inc causes overflow, untouch allmulti and return error.
6262 */
6263 if (inc < 0)
6264 dev->flags &= ~IFF_ALLMULTI;
6265 else {
6266 dev->allmulti -= inc;
6267 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6268 dev->name);
6269 return -EOVERFLOW;
6270 }
6271 }
6272 if (dev->flags ^ old_flags) {
6273 dev_change_rx_flags(dev, IFF_ALLMULTI);
6274 dev_set_rx_mode(dev);
6275 if (notify)
6276 __dev_notify_flags(dev, old_flags,
6277 dev->gflags ^ old_gflags);
6278 }
6279 return 0;
6280 }
6281
6282 /**
6283 * dev_set_allmulti - update allmulti count on a device
6284 * @dev: device
6285 * @inc: modifier
6286 *
6287 * Add or remove reception of all multicast frames to a device. While the
6288 * count in the device remains above zero the interface remains listening
6289 * to all interfaces. Once it hits zero the device reverts back to normal
6290 * filtering operation. A negative @inc value is used to drop the counter
6291 * when releasing a resource needing all multicasts.
6292 * Return 0 if successful or a negative errno code on error.
6293 */
6294
6295 int dev_set_allmulti(struct net_device *dev, int inc)
6296 {
6297 return __dev_set_allmulti(dev, inc, true);
6298 }
6299 EXPORT_SYMBOL(dev_set_allmulti);
6300
6301 /*
6302 * Upload unicast and multicast address lists to device and
6303 * configure RX filtering. When the device doesn't support unicast
6304 * filtering it is put in promiscuous mode while unicast addresses
6305 * are present.
6306 */
6307 void __dev_set_rx_mode(struct net_device *dev)
6308 {
6309 const struct net_device_ops *ops = dev->netdev_ops;
6310
6311 /* dev_open will call this function so the list will stay sane. */
6312 if (!(dev->flags&IFF_UP))
6313 return;
6314
6315 if (!netif_device_present(dev))
6316 return;
6317
6318 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6319 /* Unicast addresses changes may only happen under the rtnl,
6320 * therefore calling __dev_set_promiscuity here is safe.
6321 */
6322 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6323 __dev_set_promiscuity(dev, 1, false);
6324 dev->uc_promisc = true;
6325 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6326 __dev_set_promiscuity(dev, -1, false);
6327 dev->uc_promisc = false;
6328 }
6329 }
6330
6331 if (ops->ndo_set_rx_mode)
6332 ops->ndo_set_rx_mode(dev);
6333 }
6334
6335 void dev_set_rx_mode(struct net_device *dev)
6336 {
6337 netif_addr_lock_bh(dev);
6338 __dev_set_rx_mode(dev);
6339 netif_addr_unlock_bh(dev);
6340 }
6341
6342 /**
6343 * dev_get_flags - get flags reported to userspace
6344 * @dev: device
6345 *
6346 * Get the combination of flag bits exported through APIs to userspace.
6347 */
6348 unsigned int dev_get_flags(const struct net_device *dev)
6349 {
6350 unsigned int flags;
6351
6352 flags = (dev->flags & ~(IFF_PROMISC |
6353 IFF_ALLMULTI |
6354 IFF_RUNNING |
6355 IFF_LOWER_UP |
6356 IFF_DORMANT)) |
6357 (dev->gflags & (IFF_PROMISC |
6358 IFF_ALLMULTI));
6359
6360 if (netif_running(dev)) {
6361 if (netif_oper_up(dev))
6362 flags |= IFF_RUNNING;
6363 if (netif_carrier_ok(dev))
6364 flags |= IFF_LOWER_UP;
6365 if (netif_dormant(dev))
6366 flags |= IFF_DORMANT;
6367 }
6368
6369 return flags;
6370 }
6371 EXPORT_SYMBOL(dev_get_flags);
6372
6373 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6374 {
6375 unsigned int old_flags = dev->flags;
6376 int ret;
6377
6378 ASSERT_RTNL();
6379
6380 /*
6381 * Set the flags on our device.
6382 */
6383
6384 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6385 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6386 IFF_AUTOMEDIA)) |
6387 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6388 IFF_ALLMULTI));
6389
6390 /*
6391 * Load in the correct multicast list now the flags have changed.
6392 */
6393
6394 if ((old_flags ^ flags) & IFF_MULTICAST)
6395 dev_change_rx_flags(dev, IFF_MULTICAST);
6396
6397 dev_set_rx_mode(dev);
6398
6399 /*
6400 * Have we downed the interface. We handle IFF_UP ourselves
6401 * according to user attempts to set it, rather than blindly
6402 * setting it.
6403 */
6404
6405 ret = 0;
6406 if ((old_flags ^ flags) & IFF_UP)
6407 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6408
6409 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6410 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6411 unsigned int old_flags = dev->flags;
6412
6413 dev->gflags ^= IFF_PROMISC;
6414
6415 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6416 if (dev->flags != old_flags)
6417 dev_set_rx_mode(dev);
6418 }
6419
6420 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6421 is important. Some (broken) drivers set IFF_PROMISC, when
6422 IFF_ALLMULTI is requested not asking us and not reporting.
6423 */
6424 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6425 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6426
6427 dev->gflags ^= IFF_ALLMULTI;
6428 __dev_set_allmulti(dev, inc, false);
6429 }
6430
6431 return ret;
6432 }
6433
6434 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6435 unsigned int gchanges)
6436 {
6437 unsigned int changes = dev->flags ^ old_flags;
6438
6439 if (gchanges)
6440 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6441
6442 if (changes & IFF_UP) {
6443 if (dev->flags & IFF_UP)
6444 call_netdevice_notifiers(NETDEV_UP, dev);
6445 else
6446 call_netdevice_notifiers(NETDEV_DOWN, dev);
6447 }
6448
6449 if (dev->flags & IFF_UP &&
6450 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6451 struct netdev_notifier_change_info change_info;
6452
6453 change_info.flags_changed = changes;
6454 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6455 &change_info.info);
6456 }
6457 }
6458
6459 /**
6460 * dev_change_flags - change device settings
6461 * @dev: device
6462 * @flags: device state flags
6463 *
6464 * Change settings on device based state flags. The flags are
6465 * in the userspace exported format.
6466 */
6467 int dev_change_flags(struct net_device *dev, unsigned int flags)
6468 {
6469 int ret;
6470 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6471
6472 ret = __dev_change_flags(dev, flags);
6473 if (ret < 0)
6474 return ret;
6475
6476 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6477 __dev_notify_flags(dev, old_flags, changes);
6478 return ret;
6479 }
6480 EXPORT_SYMBOL(dev_change_flags);
6481
6482 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6483 {
6484 const struct net_device_ops *ops = dev->netdev_ops;
6485
6486 if (ops->ndo_change_mtu)
6487 return ops->ndo_change_mtu(dev, new_mtu);
6488
6489 dev->mtu = new_mtu;
6490 return 0;
6491 }
6492
6493 /**
6494 * dev_set_mtu - Change maximum transfer unit
6495 * @dev: device
6496 * @new_mtu: new transfer unit
6497 *
6498 * Change the maximum transfer size of the network device.
6499 */
6500 int dev_set_mtu(struct net_device *dev, int new_mtu)
6501 {
6502 int err, orig_mtu;
6503
6504 if (new_mtu == dev->mtu)
6505 return 0;
6506
6507 /* MTU must be positive. */
6508 if (new_mtu < 0)
6509 return -EINVAL;
6510
6511 if (!netif_device_present(dev))
6512 return -ENODEV;
6513
6514 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6515 err = notifier_to_errno(err);
6516 if (err)
6517 return err;
6518
6519 orig_mtu = dev->mtu;
6520 err = __dev_set_mtu(dev, new_mtu);
6521
6522 if (!err) {
6523 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6524 err = notifier_to_errno(err);
6525 if (err) {
6526 /* setting mtu back and notifying everyone again,
6527 * so that they have a chance to revert changes.
6528 */
6529 __dev_set_mtu(dev, orig_mtu);
6530 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6531 }
6532 }
6533 return err;
6534 }
6535 EXPORT_SYMBOL(dev_set_mtu);
6536
6537 /**
6538 * dev_set_group - Change group this device belongs to
6539 * @dev: device
6540 * @new_group: group this device should belong to
6541 */
6542 void dev_set_group(struct net_device *dev, int new_group)
6543 {
6544 dev->group = new_group;
6545 }
6546 EXPORT_SYMBOL(dev_set_group);
6547
6548 /**
6549 * dev_set_mac_address - Change Media Access Control Address
6550 * @dev: device
6551 * @sa: new address
6552 *
6553 * Change the hardware (MAC) address of the device
6554 */
6555 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6556 {
6557 const struct net_device_ops *ops = dev->netdev_ops;
6558 int err;
6559
6560 if (!ops->ndo_set_mac_address)
6561 return -EOPNOTSUPP;
6562 if (sa->sa_family != dev->type)
6563 return -EINVAL;
6564 if (!netif_device_present(dev))
6565 return -ENODEV;
6566 err = ops->ndo_set_mac_address(dev, sa);
6567 if (err)
6568 return err;
6569 dev->addr_assign_type = NET_ADDR_SET;
6570 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6571 add_device_randomness(dev->dev_addr, dev->addr_len);
6572 return 0;
6573 }
6574 EXPORT_SYMBOL(dev_set_mac_address);
6575
6576 /**
6577 * dev_change_carrier - Change device carrier
6578 * @dev: device
6579 * @new_carrier: new value
6580 *
6581 * Change device carrier
6582 */
6583 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6584 {
6585 const struct net_device_ops *ops = dev->netdev_ops;
6586
6587 if (!ops->ndo_change_carrier)
6588 return -EOPNOTSUPP;
6589 if (!netif_device_present(dev))
6590 return -ENODEV;
6591 return ops->ndo_change_carrier(dev, new_carrier);
6592 }
6593 EXPORT_SYMBOL(dev_change_carrier);
6594
6595 /**
6596 * dev_get_phys_port_id - Get device physical port ID
6597 * @dev: device
6598 * @ppid: port ID
6599 *
6600 * Get device physical port ID
6601 */
6602 int dev_get_phys_port_id(struct net_device *dev,
6603 struct netdev_phys_item_id *ppid)
6604 {
6605 const struct net_device_ops *ops = dev->netdev_ops;
6606
6607 if (!ops->ndo_get_phys_port_id)
6608 return -EOPNOTSUPP;
6609 return ops->ndo_get_phys_port_id(dev, ppid);
6610 }
6611 EXPORT_SYMBOL(dev_get_phys_port_id);
6612
6613 /**
6614 * dev_get_phys_port_name - Get device physical port name
6615 * @dev: device
6616 * @name: port name
6617 * @len: limit of bytes to copy to name
6618 *
6619 * Get device physical port name
6620 */
6621 int dev_get_phys_port_name(struct net_device *dev,
6622 char *name, size_t len)
6623 {
6624 const struct net_device_ops *ops = dev->netdev_ops;
6625
6626 if (!ops->ndo_get_phys_port_name)
6627 return -EOPNOTSUPP;
6628 return ops->ndo_get_phys_port_name(dev, name, len);
6629 }
6630 EXPORT_SYMBOL(dev_get_phys_port_name);
6631
6632 /**
6633 * dev_change_proto_down - update protocol port state information
6634 * @dev: device
6635 * @proto_down: new value
6636 *
6637 * This info can be used by switch drivers to set the phys state of the
6638 * port.
6639 */
6640 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6641 {
6642 const struct net_device_ops *ops = dev->netdev_ops;
6643
6644 if (!ops->ndo_change_proto_down)
6645 return -EOPNOTSUPP;
6646 if (!netif_device_present(dev))
6647 return -ENODEV;
6648 return ops->ndo_change_proto_down(dev, proto_down);
6649 }
6650 EXPORT_SYMBOL(dev_change_proto_down);
6651
6652 /**
6653 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6654 * @dev: device
6655 * @fd: new program fd or negative value to clear
6656 *
6657 * Set or clear a bpf program for a device
6658 */
6659 int dev_change_xdp_fd(struct net_device *dev, int fd)
6660 {
6661 const struct net_device_ops *ops = dev->netdev_ops;
6662 struct bpf_prog *prog = NULL;
6663 struct netdev_xdp xdp = {};
6664 int err;
6665
6666 if (!ops->ndo_xdp)
6667 return -EOPNOTSUPP;
6668 if (fd >= 0) {
6669 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6670 if (IS_ERR(prog))
6671 return PTR_ERR(prog);
6672 }
6673
6674 xdp.command = XDP_SETUP_PROG;
6675 xdp.prog = prog;
6676 err = ops->ndo_xdp(dev, &xdp);
6677 if (err < 0 && prog)
6678 bpf_prog_put(prog);
6679
6680 return err;
6681 }
6682 EXPORT_SYMBOL(dev_change_xdp_fd);
6683
6684 /**
6685 * dev_new_index - allocate an ifindex
6686 * @net: the applicable net namespace
6687 *
6688 * Returns a suitable unique value for a new device interface
6689 * number. The caller must hold the rtnl semaphore or the
6690 * dev_base_lock to be sure it remains unique.
6691 */
6692 static int dev_new_index(struct net *net)
6693 {
6694 int ifindex = net->ifindex;
6695 for (;;) {
6696 if (++ifindex <= 0)
6697 ifindex = 1;
6698 if (!__dev_get_by_index(net, ifindex))
6699 return net->ifindex = ifindex;
6700 }
6701 }
6702
6703 /* Delayed registration/unregisteration */
6704 static LIST_HEAD(net_todo_list);
6705 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6706
6707 static void net_set_todo(struct net_device *dev)
6708 {
6709 list_add_tail(&dev->todo_list, &net_todo_list);
6710 dev_net(dev)->dev_unreg_count++;
6711 }
6712
6713 static void rollback_registered_many(struct list_head *head)
6714 {
6715 struct net_device *dev, *tmp;
6716 LIST_HEAD(close_head);
6717
6718 BUG_ON(dev_boot_phase);
6719 ASSERT_RTNL();
6720
6721 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6722 /* Some devices call without registering
6723 * for initialization unwind. Remove those
6724 * devices and proceed with the remaining.
6725 */
6726 if (dev->reg_state == NETREG_UNINITIALIZED) {
6727 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6728 dev->name, dev);
6729
6730 WARN_ON(1);
6731 list_del(&dev->unreg_list);
6732 continue;
6733 }
6734 dev->dismantle = true;
6735 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6736 }
6737
6738 /* If device is running, close it first. */
6739 list_for_each_entry(dev, head, unreg_list)
6740 list_add_tail(&dev->close_list, &close_head);
6741 dev_close_many(&close_head, true);
6742
6743 list_for_each_entry(dev, head, unreg_list) {
6744 /* And unlink it from device chain. */
6745 unlist_netdevice(dev);
6746
6747 dev->reg_state = NETREG_UNREGISTERING;
6748 }
6749 flush_all_backlogs();
6750
6751 synchronize_net();
6752
6753 list_for_each_entry(dev, head, unreg_list) {
6754 struct sk_buff *skb = NULL;
6755
6756 /* Shutdown queueing discipline. */
6757 dev_shutdown(dev);
6758
6759
6760 /* Notify protocols, that we are about to destroy
6761 this device. They should clean all the things.
6762 */
6763 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6764
6765 if (!dev->rtnl_link_ops ||
6766 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6767 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6768 GFP_KERNEL);
6769
6770 /*
6771 * Flush the unicast and multicast chains
6772 */
6773 dev_uc_flush(dev);
6774 dev_mc_flush(dev);
6775
6776 if (dev->netdev_ops->ndo_uninit)
6777 dev->netdev_ops->ndo_uninit(dev);
6778
6779 if (skb)
6780 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6781
6782 /* Notifier chain MUST detach us all upper devices. */
6783 WARN_ON(netdev_has_any_upper_dev(dev));
6784
6785 /* Remove entries from kobject tree */
6786 netdev_unregister_kobject(dev);
6787 #ifdef CONFIG_XPS
6788 /* Remove XPS queueing entries */
6789 netif_reset_xps_queues_gt(dev, 0);
6790 #endif
6791 }
6792
6793 synchronize_net();
6794
6795 list_for_each_entry(dev, head, unreg_list)
6796 dev_put(dev);
6797 }
6798
6799 static void rollback_registered(struct net_device *dev)
6800 {
6801 LIST_HEAD(single);
6802
6803 list_add(&dev->unreg_list, &single);
6804 rollback_registered_many(&single);
6805 list_del(&single);
6806 }
6807
6808 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6809 struct net_device *upper, netdev_features_t features)
6810 {
6811 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6812 netdev_features_t feature;
6813 int feature_bit;
6814
6815 for_each_netdev_feature(&upper_disables, feature_bit) {
6816 feature = __NETIF_F_BIT(feature_bit);
6817 if (!(upper->wanted_features & feature)
6818 && (features & feature)) {
6819 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6820 &feature, upper->name);
6821 features &= ~feature;
6822 }
6823 }
6824
6825 return features;
6826 }
6827
6828 static void netdev_sync_lower_features(struct net_device *upper,
6829 struct net_device *lower, netdev_features_t features)
6830 {
6831 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6832 netdev_features_t feature;
6833 int feature_bit;
6834
6835 for_each_netdev_feature(&upper_disables, feature_bit) {
6836 feature = __NETIF_F_BIT(feature_bit);
6837 if (!(features & feature) && (lower->features & feature)) {
6838 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6839 &feature, lower->name);
6840 lower->wanted_features &= ~feature;
6841 netdev_update_features(lower);
6842
6843 if (unlikely(lower->features & feature))
6844 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6845 &feature, lower->name);
6846 }
6847 }
6848 }
6849
6850 static netdev_features_t netdev_fix_features(struct net_device *dev,
6851 netdev_features_t features)
6852 {
6853 /* Fix illegal checksum combinations */
6854 if ((features & NETIF_F_HW_CSUM) &&
6855 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6856 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6857 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6858 }
6859
6860 /* TSO requires that SG is present as well. */
6861 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6862 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6863 features &= ~NETIF_F_ALL_TSO;
6864 }
6865
6866 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6867 !(features & NETIF_F_IP_CSUM)) {
6868 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6869 features &= ~NETIF_F_TSO;
6870 features &= ~NETIF_F_TSO_ECN;
6871 }
6872
6873 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6874 !(features & NETIF_F_IPV6_CSUM)) {
6875 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6876 features &= ~NETIF_F_TSO6;
6877 }
6878
6879 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6880 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6881 features &= ~NETIF_F_TSO_MANGLEID;
6882
6883 /* TSO ECN requires that TSO is present as well. */
6884 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6885 features &= ~NETIF_F_TSO_ECN;
6886
6887 /* Software GSO depends on SG. */
6888 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6889 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6890 features &= ~NETIF_F_GSO;
6891 }
6892
6893 /* UFO needs SG and checksumming */
6894 if (features & NETIF_F_UFO) {
6895 /* maybe split UFO into V4 and V6? */
6896 if (!(features & NETIF_F_HW_CSUM) &&
6897 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6898 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6899 netdev_dbg(dev,
6900 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6901 features &= ~NETIF_F_UFO;
6902 }
6903
6904 if (!(features & NETIF_F_SG)) {
6905 netdev_dbg(dev,
6906 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6907 features &= ~NETIF_F_UFO;
6908 }
6909 }
6910
6911 /* GSO partial features require GSO partial be set */
6912 if ((features & dev->gso_partial_features) &&
6913 !(features & NETIF_F_GSO_PARTIAL)) {
6914 netdev_dbg(dev,
6915 "Dropping partially supported GSO features since no GSO partial.\n");
6916 features &= ~dev->gso_partial_features;
6917 }
6918
6919 #ifdef CONFIG_NET_RX_BUSY_POLL
6920 if (dev->netdev_ops->ndo_busy_poll)
6921 features |= NETIF_F_BUSY_POLL;
6922 else
6923 #endif
6924 features &= ~NETIF_F_BUSY_POLL;
6925
6926 return features;
6927 }
6928
6929 int __netdev_update_features(struct net_device *dev)
6930 {
6931 struct net_device *upper, *lower;
6932 netdev_features_t features;
6933 struct list_head *iter;
6934 int err = -1;
6935
6936 ASSERT_RTNL();
6937
6938 features = netdev_get_wanted_features(dev);
6939
6940 if (dev->netdev_ops->ndo_fix_features)
6941 features = dev->netdev_ops->ndo_fix_features(dev, features);
6942
6943 /* driver might be less strict about feature dependencies */
6944 features = netdev_fix_features(dev, features);
6945
6946 /* some features can't be enabled if they're off an an upper device */
6947 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6948 features = netdev_sync_upper_features(dev, upper, features);
6949
6950 if (dev->features == features)
6951 goto sync_lower;
6952
6953 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6954 &dev->features, &features);
6955
6956 if (dev->netdev_ops->ndo_set_features)
6957 err = dev->netdev_ops->ndo_set_features(dev, features);
6958 else
6959 err = 0;
6960
6961 if (unlikely(err < 0)) {
6962 netdev_err(dev,
6963 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6964 err, &features, &dev->features);
6965 /* return non-0 since some features might have changed and
6966 * it's better to fire a spurious notification than miss it
6967 */
6968 return -1;
6969 }
6970
6971 sync_lower:
6972 /* some features must be disabled on lower devices when disabled
6973 * on an upper device (think: bonding master or bridge)
6974 */
6975 netdev_for_each_lower_dev(dev, lower, iter)
6976 netdev_sync_lower_features(dev, lower, features);
6977
6978 if (!err)
6979 dev->features = features;
6980
6981 return err < 0 ? 0 : 1;
6982 }
6983
6984 /**
6985 * netdev_update_features - recalculate device features
6986 * @dev: the device to check
6987 *
6988 * Recalculate dev->features set and send notifications if it
6989 * has changed. Should be called after driver or hardware dependent
6990 * conditions might have changed that influence the features.
6991 */
6992 void netdev_update_features(struct net_device *dev)
6993 {
6994 if (__netdev_update_features(dev))
6995 netdev_features_change(dev);
6996 }
6997 EXPORT_SYMBOL(netdev_update_features);
6998
6999 /**
7000 * netdev_change_features - recalculate device features
7001 * @dev: the device to check
7002 *
7003 * Recalculate dev->features set and send notifications even
7004 * if they have not changed. Should be called instead of
7005 * netdev_update_features() if also dev->vlan_features might
7006 * have changed to allow the changes to be propagated to stacked
7007 * VLAN devices.
7008 */
7009 void netdev_change_features(struct net_device *dev)
7010 {
7011 __netdev_update_features(dev);
7012 netdev_features_change(dev);
7013 }
7014 EXPORT_SYMBOL(netdev_change_features);
7015
7016 /**
7017 * netif_stacked_transfer_operstate - transfer operstate
7018 * @rootdev: the root or lower level device to transfer state from
7019 * @dev: the device to transfer operstate to
7020 *
7021 * Transfer operational state from root to device. This is normally
7022 * called when a stacking relationship exists between the root
7023 * device and the device(a leaf device).
7024 */
7025 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7026 struct net_device *dev)
7027 {
7028 if (rootdev->operstate == IF_OPER_DORMANT)
7029 netif_dormant_on(dev);
7030 else
7031 netif_dormant_off(dev);
7032
7033 if (netif_carrier_ok(rootdev)) {
7034 if (!netif_carrier_ok(dev))
7035 netif_carrier_on(dev);
7036 } else {
7037 if (netif_carrier_ok(dev))
7038 netif_carrier_off(dev);
7039 }
7040 }
7041 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7042
7043 #ifdef CONFIG_SYSFS
7044 static int netif_alloc_rx_queues(struct net_device *dev)
7045 {
7046 unsigned int i, count = dev->num_rx_queues;
7047 struct netdev_rx_queue *rx;
7048 size_t sz = count * sizeof(*rx);
7049
7050 BUG_ON(count < 1);
7051
7052 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7053 if (!rx) {
7054 rx = vzalloc(sz);
7055 if (!rx)
7056 return -ENOMEM;
7057 }
7058 dev->_rx = rx;
7059
7060 for (i = 0; i < count; i++)
7061 rx[i].dev = dev;
7062 return 0;
7063 }
7064 #endif
7065
7066 static void netdev_init_one_queue(struct net_device *dev,
7067 struct netdev_queue *queue, void *_unused)
7068 {
7069 /* Initialize queue lock */
7070 spin_lock_init(&queue->_xmit_lock);
7071 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7072 queue->xmit_lock_owner = -1;
7073 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7074 queue->dev = dev;
7075 #ifdef CONFIG_BQL
7076 dql_init(&queue->dql, HZ);
7077 #endif
7078 }
7079
7080 static void netif_free_tx_queues(struct net_device *dev)
7081 {
7082 kvfree(dev->_tx);
7083 }
7084
7085 static int netif_alloc_netdev_queues(struct net_device *dev)
7086 {
7087 unsigned int count = dev->num_tx_queues;
7088 struct netdev_queue *tx;
7089 size_t sz = count * sizeof(*tx);
7090
7091 if (count < 1 || count > 0xffff)
7092 return -EINVAL;
7093
7094 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7095 if (!tx) {
7096 tx = vzalloc(sz);
7097 if (!tx)
7098 return -ENOMEM;
7099 }
7100 dev->_tx = tx;
7101
7102 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7103 spin_lock_init(&dev->tx_global_lock);
7104
7105 return 0;
7106 }
7107
7108 void netif_tx_stop_all_queues(struct net_device *dev)
7109 {
7110 unsigned int i;
7111
7112 for (i = 0; i < dev->num_tx_queues; i++) {
7113 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7114 netif_tx_stop_queue(txq);
7115 }
7116 }
7117 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7118
7119 /**
7120 * register_netdevice - register a network device
7121 * @dev: device to register
7122 *
7123 * Take a completed network device structure and add it to the kernel
7124 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7125 * chain. 0 is returned on success. A negative errno code is returned
7126 * on a failure to set up the device, or if the name is a duplicate.
7127 *
7128 * Callers must hold the rtnl semaphore. You may want
7129 * register_netdev() instead of this.
7130 *
7131 * BUGS:
7132 * The locking appears insufficient to guarantee two parallel registers
7133 * will not get the same name.
7134 */
7135
7136 int register_netdevice(struct net_device *dev)
7137 {
7138 int ret;
7139 struct net *net = dev_net(dev);
7140
7141 BUG_ON(dev_boot_phase);
7142 ASSERT_RTNL();
7143
7144 might_sleep();
7145
7146 /* When net_device's are persistent, this will be fatal. */
7147 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7148 BUG_ON(!net);
7149
7150 spin_lock_init(&dev->addr_list_lock);
7151 netdev_set_addr_lockdep_class(dev);
7152
7153 ret = dev_get_valid_name(net, dev, dev->name);
7154 if (ret < 0)
7155 goto out;
7156
7157 /* Init, if this function is available */
7158 if (dev->netdev_ops->ndo_init) {
7159 ret = dev->netdev_ops->ndo_init(dev);
7160 if (ret) {
7161 if (ret > 0)
7162 ret = -EIO;
7163 goto out;
7164 }
7165 }
7166
7167 if (((dev->hw_features | dev->features) &
7168 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7169 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7170 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7171 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7172 ret = -EINVAL;
7173 goto err_uninit;
7174 }
7175
7176 ret = -EBUSY;
7177 if (!dev->ifindex)
7178 dev->ifindex = dev_new_index(net);
7179 else if (__dev_get_by_index(net, dev->ifindex))
7180 goto err_uninit;
7181
7182 /* Transfer changeable features to wanted_features and enable
7183 * software offloads (GSO and GRO).
7184 */
7185 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7186 dev->features |= NETIF_F_SOFT_FEATURES;
7187 dev->wanted_features = dev->features & dev->hw_features;
7188
7189 if (!(dev->flags & IFF_LOOPBACK))
7190 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7191
7192 /* If IPv4 TCP segmentation offload is supported we should also
7193 * allow the device to enable segmenting the frame with the option
7194 * of ignoring a static IP ID value. This doesn't enable the
7195 * feature itself but allows the user to enable it later.
7196 */
7197 if (dev->hw_features & NETIF_F_TSO)
7198 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7199 if (dev->vlan_features & NETIF_F_TSO)
7200 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7201 if (dev->mpls_features & NETIF_F_TSO)
7202 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7203 if (dev->hw_enc_features & NETIF_F_TSO)
7204 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7205
7206 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7207 */
7208 dev->vlan_features |= NETIF_F_HIGHDMA;
7209
7210 /* Make NETIF_F_SG inheritable to tunnel devices.
7211 */
7212 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7213
7214 /* Make NETIF_F_SG inheritable to MPLS.
7215 */
7216 dev->mpls_features |= NETIF_F_SG;
7217
7218 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7219 ret = notifier_to_errno(ret);
7220 if (ret)
7221 goto err_uninit;
7222
7223 ret = netdev_register_kobject(dev);
7224 if (ret)
7225 goto err_uninit;
7226 dev->reg_state = NETREG_REGISTERED;
7227
7228 __netdev_update_features(dev);
7229
7230 /*
7231 * Default initial state at registry is that the
7232 * device is present.
7233 */
7234
7235 set_bit(__LINK_STATE_PRESENT, &dev->state);
7236
7237 linkwatch_init_dev(dev);
7238
7239 dev_init_scheduler(dev);
7240 dev_hold(dev);
7241 list_netdevice(dev);
7242 add_device_randomness(dev->dev_addr, dev->addr_len);
7243
7244 /* If the device has permanent device address, driver should
7245 * set dev_addr and also addr_assign_type should be set to
7246 * NET_ADDR_PERM (default value).
7247 */
7248 if (dev->addr_assign_type == NET_ADDR_PERM)
7249 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7250
7251 /* Notify protocols, that a new device appeared. */
7252 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7253 ret = notifier_to_errno(ret);
7254 if (ret) {
7255 rollback_registered(dev);
7256 dev->reg_state = NETREG_UNREGISTERED;
7257 }
7258 /*
7259 * Prevent userspace races by waiting until the network
7260 * device is fully setup before sending notifications.
7261 */
7262 if (!dev->rtnl_link_ops ||
7263 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7264 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7265
7266 out:
7267 return ret;
7268
7269 err_uninit:
7270 if (dev->netdev_ops->ndo_uninit)
7271 dev->netdev_ops->ndo_uninit(dev);
7272 goto out;
7273 }
7274 EXPORT_SYMBOL(register_netdevice);
7275
7276 /**
7277 * init_dummy_netdev - init a dummy network device for NAPI
7278 * @dev: device to init
7279 *
7280 * This takes a network device structure and initialize the minimum
7281 * amount of fields so it can be used to schedule NAPI polls without
7282 * registering a full blown interface. This is to be used by drivers
7283 * that need to tie several hardware interfaces to a single NAPI
7284 * poll scheduler due to HW limitations.
7285 */
7286 int init_dummy_netdev(struct net_device *dev)
7287 {
7288 /* Clear everything. Note we don't initialize spinlocks
7289 * are they aren't supposed to be taken by any of the
7290 * NAPI code and this dummy netdev is supposed to be
7291 * only ever used for NAPI polls
7292 */
7293 memset(dev, 0, sizeof(struct net_device));
7294
7295 /* make sure we BUG if trying to hit standard
7296 * register/unregister code path
7297 */
7298 dev->reg_state = NETREG_DUMMY;
7299
7300 /* NAPI wants this */
7301 INIT_LIST_HEAD(&dev->napi_list);
7302
7303 /* a dummy interface is started by default */
7304 set_bit(__LINK_STATE_PRESENT, &dev->state);
7305 set_bit(__LINK_STATE_START, &dev->state);
7306
7307 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7308 * because users of this 'device' dont need to change
7309 * its refcount.
7310 */
7311
7312 return 0;
7313 }
7314 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7315
7316
7317 /**
7318 * register_netdev - register a network device
7319 * @dev: device to register
7320 *
7321 * Take a completed network device structure and add it to the kernel
7322 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7323 * chain. 0 is returned on success. A negative errno code is returned
7324 * on a failure to set up the device, or if the name is a duplicate.
7325 *
7326 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7327 * and expands the device name if you passed a format string to
7328 * alloc_netdev.
7329 */
7330 int register_netdev(struct net_device *dev)
7331 {
7332 int err;
7333
7334 rtnl_lock();
7335 err = register_netdevice(dev);
7336 rtnl_unlock();
7337 return err;
7338 }
7339 EXPORT_SYMBOL(register_netdev);
7340
7341 int netdev_refcnt_read(const struct net_device *dev)
7342 {
7343 int i, refcnt = 0;
7344
7345 for_each_possible_cpu(i)
7346 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7347 return refcnt;
7348 }
7349 EXPORT_SYMBOL(netdev_refcnt_read);
7350
7351 /**
7352 * netdev_wait_allrefs - wait until all references are gone.
7353 * @dev: target net_device
7354 *
7355 * This is called when unregistering network devices.
7356 *
7357 * Any protocol or device that holds a reference should register
7358 * for netdevice notification, and cleanup and put back the
7359 * reference if they receive an UNREGISTER event.
7360 * We can get stuck here if buggy protocols don't correctly
7361 * call dev_put.
7362 */
7363 static void netdev_wait_allrefs(struct net_device *dev)
7364 {
7365 unsigned long rebroadcast_time, warning_time;
7366 int refcnt;
7367
7368 linkwatch_forget_dev(dev);
7369
7370 rebroadcast_time = warning_time = jiffies;
7371 refcnt = netdev_refcnt_read(dev);
7372
7373 while (refcnt != 0) {
7374 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7375 rtnl_lock();
7376
7377 /* Rebroadcast unregister notification */
7378 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7379
7380 __rtnl_unlock();
7381 rcu_barrier();
7382 rtnl_lock();
7383
7384 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7385 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7386 &dev->state)) {
7387 /* We must not have linkwatch events
7388 * pending on unregister. If this
7389 * happens, we simply run the queue
7390 * unscheduled, resulting in a noop
7391 * for this device.
7392 */
7393 linkwatch_run_queue();
7394 }
7395
7396 __rtnl_unlock();
7397
7398 rebroadcast_time = jiffies;
7399 }
7400
7401 msleep(250);
7402
7403 refcnt = netdev_refcnt_read(dev);
7404
7405 if (time_after(jiffies, warning_time + 10 * HZ)) {
7406 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7407 dev->name, refcnt);
7408 warning_time = jiffies;
7409 }
7410 }
7411 }
7412
7413 /* The sequence is:
7414 *
7415 * rtnl_lock();
7416 * ...
7417 * register_netdevice(x1);
7418 * register_netdevice(x2);
7419 * ...
7420 * unregister_netdevice(y1);
7421 * unregister_netdevice(y2);
7422 * ...
7423 * rtnl_unlock();
7424 * free_netdev(y1);
7425 * free_netdev(y2);
7426 *
7427 * We are invoked by rtnl_unlock().
7428 * This allows us to deal with problems:
7429 * 1) We can delete sysfs objects which invoke hotplug
7430 * without deadlocking with linkwatch via keventd.
7431 * 2) Since we run with the RTNL semaphore not held, we can sleep
7432 * safely in order to wait for the netdev refcnt to drop to zero.
7433 *
7434 * We must not return until all unregister events added during
7435 * the interval the lock was held have been completed.
7436 */
7437 void netdev_run_todo(void)
7438 {
7439 struct list_head list;
7440
7441 /* Snapshot list, allow later requests */
7442 list_replace_init(&net_todo_list, &list);
7443
7444 __rtnl_unlock();
7445
7446
7447 /* Wait for rcu callbacks to finish before next phase */
7448 if (!list_empty(&list))
7449 rcu_barrier();
7450
7451 while (!list_empty(&list)) {
7452 struct net_device *dev
7453 = list_first_entry(&list, struct net_device, todo_list);
7454 list_del(&dev->todo_list);
7455
7456 rtnl_lock();
7457 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7458 __rtnl_unlock();
7459
7460 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7461 pr_err("network todo '%s' but state %d\n",
7462 dev->name, dev->reg_state);
7463 dump_stack();
7464 continue;
7465 }
7466
7467 dev->reg_state = NETREG_UNREGISTERED;
7468
7469 netdev_wait_allrefs(dev);
7470
7471 /* paranoia */
7472 BUG_ON(netdev_refcnt_read(dev));
7473 BUG_ON(!list_empty(&dev->ptype_all));
7474 BUG_ON(!list_empty(&dev->ptype_specific));
7475 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7476 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7477 WARN_ON(dev->dn_ptr);
7478
7479 if (dev->destructor)
7480 dev->destructor(dev);
7481
7482 /* Report a network device has been unregistered */
7483 rtnl_lock();
7484 dev_net(dev)->dev_unreg_count--;
7485 __rtnl_unlock();
7486 wake_up(&netdev_unregistering_wq);
7487
7488 /* Free network device */
7489 kobject_put(&dev->dev.kobj);
7490 }
7491 }
7492
7493 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7494 * all the same fields in the same order as net_device_stats, with only
7495 * the type differing, but rtnl_link_stats64 may have additional fields
7496 * at the end for newer counters.
7497 */
7498 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7499 const struct net_device_stats *netdev_stats)
7500 {
7501 #if BITS_PER_LONG == 64
7502 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7503 memcpy(stats64, netdev_stats, sizeof(*stats64));
7504 /* zero out counters that only exist in rtnl_link_stats64 */
7505 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7506 sizeof(*stats64) - sizeof(*netdev_stats));
7507 #else
7508 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7509 const unsigned long *src = (const unsigned long *)netdev_stats;
7510 u64 *dst = (u64 *)stats64;
7511
7512 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7513 for (i = 0; i < n; i++)
7514 dst[i] = src[i];
7515 /* zero out counters that only exist in rtnl_link_stats64 */
7516 memset((char *)stats64 + n * sizeof(u64), 0,
7517 sizeof(*stats64) - n * sizeof(u64));
7518 #endif
7519 }
7520 EXPORT_SYMBOL(netdev_stats_to_stats64);
7521
7522 /**
7523 * dev_get_stats - get network device statistics
7524 * @dev: device to get statistics from
7525 * @storage: place to store stats
7526 *
7527 * Get network statistics from device. Return @storage.
7528 * The device driver may provide its own method by setting
7529 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7530 * otherwise the internal statistics structure is used.
7531 */
7532 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7533 struct rtnl_link_stats64 *storage)
7534 {
7535 const struct net_device_ops *ops = dev->netdev_ops;
7536
7537 if (ops->ndo_get_stats64) {
7538 memset(storage, 0, sizeof(*storage));
7539 ops->ndo_get_stats64(dev, storage);
7540 } else if (ops->ndo_get_stats) {
7541 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7542 } else {
7543 netdev_stats_to_stats64(storage, &dev->stats);
7544 }
7545 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7546 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7547 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7548 return storage;
7549 }
7550 EXPORT_SYMBOL(dev_get_stats);
7551
7552 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7553 {
7554 struct netdev_queue *queue = dev_ingress_queue(dev);
7555
7556 #ifdef CONFIG_NET_CLS_ACT
7557 if (queue)
7558 return queue;
7559 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7560 if (!queue)
7561 return NULL;
7562 netdev_init_one_queue(dev, queue, NULL);
7563 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7564 queue->qdisc_sleeping = &noop_qdisc;
7565 rcu_assign_pointer(dev->ingress_queue, queue);
7566 #endif
7567 return queue;
7568 }
7569
7570 static const struct ethtool_ops default_ethtool_ops;
7571
7572 void netdev_set_default_ethtool_ops(struct net_device *dev,
7573 const struct ethtool_ops *ops)
7574 {
7575 if (dev->ethtool_ops == &default_ethtool_ops)
7576 dev->ethtool_ops = ops;
7577 }
7578 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7579
7580 void netdev_freemem(struct net_device *dev)
7581 {
7582 char *addr = (char *)dev - dev->padded;
7583
7584 kvfree(addr);
7585 }
7586
7587 /**
7588 * alloc_netdev_mqs - allocate network device
7589 * @sizeof_priv: size of private data to allocate space for
7590 * @name: device name format string
7591 * @name_assign_type: origin of device name
7592 * @setup: callback to initialize device
7593 * @txqs: the number of TX subqueues to allocate
7594 * @rxqs: the number of RX subqueues to allocate
7595 *
7596 * Allocates a struct net_device with private data area for driver use
7597 * and performs basic initialization. Also allocates subqueue structs
7598 * for each queue on the device.
7599 */
7600 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7601 unsigned char name_assign_type,
7602 void (*setup)(struct net_device *),
7603 unsigned int txqs, unsigned int rxqs)
7604 {
7605 struct net_device *dev;
7606 size_t alloc_size;
7607 struct net_device *p;
7608
7609 BUG_ON(strlen(name) >= sizeof(dev->name));
7610
7611 if (txqs < 1) {
7612 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7613 return NULL;
7614 }
7615
7616 #ifdef CONFIG_SYSFS
7617 if (rxqs < 1) {
7618 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7619 return NULL;
7620 }
7621 #endif
7622
7623 alloc_size = sizeof(struct net_device);
7624 if (sizeof_priv) {
7625 /* ensure 32-byte alignment of private area */
7626 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7627 alloc_size += sizeof_priv;
7628 }
7629 /* ensure 32-byte alignment of whole construct */
7630 alloc_size += NETDEV_ALIGN - 1;
7631
7632 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7633 if (!p)
7634 p = vzalloc(alloc_size);
7635 if (!p)
7636 return NULL;
7637
7638 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7639 dev->padded = (char *)dev - (char *)p;
7640
7641 dev->pcpu_refcnt = alloc_percpu(int);
7642 if (!dev->pcpu_refcnt)
7643 goto free_dev;
7644
7645 if (dev_addr_init(dev))
7646 goto free_pcpu;
7647
7648 dev_mc_init(dev);
7649 dev_uc_init(dev);
7650
7651 dev_net_set(dev, &init_net);
7652
7653 dev->gso_max_size = GSO_MAX_SIZE;
7654 dev->gso_max_segs = GSO_MAX_SEGS;
7655
7656 INIT_LIST_HEAD(&dev->napi_list);
7657 INIT_LIST_HEAD(&dev->unreg_list);
7658 INIT_LIST_HEAD(&dev->close_list);
7659 INIT_LIST_HEAD(&dev->link_watch_list);
7660 INIT_LIST_HEAD(&dev->adj_list.upper);
7661 INIT_LIST_HEAD(&dev->adj_list.lower);
7662 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7663 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7664 INIT_LIST_HEAD(&dev->ptype_all);
7665 INIT_LIST_HEAD(&dev->ptype_specific);
7666 #ifdef CONFIG_NET_SCHED
7667 hash_init(dev->qdisc_hash);
7668 #endif
7669 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7670 setup(dev);
7671
7672 if (!dev->tx_queue_len) {
7673 dev->priv_flags |= IFF_NO_QUEUE;
7674 dev->tx_queue_len = 1;
7675 }
7676
7677 dev->num_tx_queues = txqs;
7678 dev->real_num_tx_queues = txqs;
7679 if (netif_alloc_netdev_queues(dev))
7680 goto free_all;
7681
7682 #ifdef CONFIG_SYSFS
7683 dev->num_rx_queues = rxqs;
7684 dev->real_num_rx_queues = rxqs;
7685 if (netif_alloc_rx_queues(dev))
7686 goto free_all;
7687 #endif
7688
7689 strcpy(dev->name, name);
7690 dev->name_assign_type = name_assign_type;
7691 dev->group = INIT_NETDEV_GROUP;
7692 if (!dev->ethtool_ops)
7693 dev->ethtool_ops = &default_ethtool_ops;
7694
7695 nf_hook_ingress_init(dev);
7696
7697 return dev;
7698
7699 free_all:
7700 free_netdev(dev);
7701 return NULL;
7702
7703 free_pcpu:
7704 free_percpu(dev->pcpu_refcnt);
7705 free_dev:
7706 netdev_freemem(dev);
7707 return NULL;
7708 }
7709 EXPORT_SYMBOL(alloc_netdev_mqs);
7710
7711 /**
7712 * free_netdev - free network device
7713 * @dev: device
7714 *
7715 * This function does the last stage of destroying an allocated device
7716 * interface. The reference to the device object is released.
7717 * If this is the last reference then it will be freed.
7718 * Must be called in process context.
7719 */
7720 void free_netdev(struct net_device *dev)
7721 {
7722 struct napi_struct *p, *n;
7723
7724 might_sleep();
7725 netif_free_tx_queues(dev);
7726 #ifdef CONFIG_SYSFS
7727 kvfree(dev->_rx);
7728 #endif
7729
7730 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7731
7732 /* Flush device addresses */
7733 dev_addr_flush(dev);
7734
7735 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7736 netif_napi_del(p);
7737
7738 free_percpu(dev->pcpu_refcnt);
7739 dev->pcpu_refcnt = NULL;
7740
7741 /* Compatibility with error handling in drivers */
7742 if (dev->reg_state == NETREG_UNINITIALIZED) {
7743 netdev_freemem(dev);
7744 return;
7745 }
7746
7747 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7748 dev->reg_state = NETREG_RELEASED;
7749
7750 /* will free via device release */
7751 put_device(&dev->dev);
7752 }
7753 EXPORT_SYMBOL(free_netdev);
7754
7755 /**
7756 * synchronize_net - Synchronize with packet receive processing
7757 *
7758 * Wait for packets currently being received to be done.
7759 * Does not block later packets from starting.
7760 */
7761 void synchronize_net(void)
7762 {
7763 might_sleep();
7764 if (rtnl_is_locked())
7765 synchronize_rcu_expedited();
7766 else
7767 synchronize_rcu();
7768 }
7769 EXPORT_SYMBOL(synchronize_net);
7770
7771 /**
7772 * unregister_netdevice_queue - remove device from the kernel
7773 * @dev: device
7774 * @head: list
7775 *
7776 * This function shuts down a device interface and removes it
7777 * from the kernel tables.
7778 * If head not NULL, device is queued to be unregistered later.
7779 *
7780 * Callers must hold the rtnl semaphore. You may want
7781 * unregister_netdev() instead of this.
7782 */
7783
7784 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7785 {
7786 ASSERT_RTNL();
7787
7788 if (head) {
7789 list_move_tail(&dev->unreg_list, head);
7790 } else {
7791 rollback_registered(dev);
7792 /* Finish processing unregister after unlock */
7793 net_set_todo(dev);
7794 }
7795 }
7796 EXPORT_SYMBOL(unregister_netdevice_queue);
7797
7798 /**
7799 * unregister_netdevice_many - unregister many devices
7800 * @head: list of devices
7801 *
7802 * Note: As most callers use a stack allocated list_head,
7803 * we force a list_del() to make sure stack wont be corrupted later.
7804 */
7805 void unregister_netdevice_many(struct list_head *head)
7806 {
7807 struct net_device *dev;
7808
7809 if (!list_empty(head)) {
7810 rollback_registered_many(head);
7811 list_for_each_entry(dev, head, unreg_list)
7812 net_set_todo(dev);
7813 list_del(head);
7814 }
7815 }
7816 EXPORT_SYMBOL(unregister_netdevice_many);
7817
7818 /**
7819 * unregister_netdev - remove device from the kernel
7820 * @dev: device
7821 *
7822 * This function shuts down a device interface and removes it
7823 * from the kernel tables.
7824 *
7825 * This is just a wrapper for unregister_netdevice that takes
7826 * the rtnl semaphore. In general you want to use this and not
7827 * unregister_netdevice.
7828 */
7829 void unregister_netdev(struct net_device *dev)
7830 {
7831 rtnl_lock();
7832 unregister_netdevice(dev);
7833 rtnl_unlock();
7834 }
7835 EXPORT_SYMBOL(unregister_netdev);
7836
7837 /**
7838 * dev_change_net_namespace - move device to different nethost namespace
7839 * @dev: device
7840 * @net: network namespace
7841 * @pat: If not NULL name pattern to try if the current device name
7842 * is already taken in the destination network namespace.
7843 *
7844 * This function shuts down a device interface and moves it
7845 * to a new network namespace. On success 0 is returned, on
7846 * a failure a netagive errno code is returned.
7847 *
7848 * Callers must hold the rtnl semaphore.
7849 */
7850
7851 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7852 {
7853 int err;
7854
7855 ASSERT_RTNL();
7856
7857 /* Don't allow namespace local devices to be moved. */
7858 err = -EINVAL;
7859 if (dev->features & NETIF_F_NETNS_LOCAL)
7860 goto out;
7861
7862 /* Ensure the device has been registrered */
7863 if (dev->reg_state != NETREG_REGISTERED)
7864 goto out;
7865
7866 /* Get out if there is nothing todo */
7867 err = 0;
7868 if (net_eq(dev_net(dev), net))
7869 goto out;
7870
7871 /* Pick the destination device name, and ensure
7872 * we can use it in the destination network namespace.
7873 */
7874 err = -EEXIST;
7875 if (__dev_get_by_name(net, dev->name)) {
7876 /* We get here if we can't use the current device name */
7877 if (!pat)
7878 goto out;
7879 if (dev_get_valid_name(net, dev, pat) < 0)
7880 goto out;
7881 }
7882
7883 /*
7884 * And now a mini version of register_netdevice unregister_netdevice.
7885 */
7886
7887 /* If device is running close it first. */
7888 dev_close(dev);
7889
7890 /* And unlink it from device chain */
7891 err = -ENODEV;
7892 unlist_netdevice(dev);
7893
7894 synchronize_net();
7895
7896 /* Shutdown queueing discipline. */
7897 dev_shutdown(dev);
7898
7899 /* Notify protocols, that we are about to destroy
7900 this device. They should clean all the things.
7901
7902 Note that dev->reg_state stays at NETREG_REGISTERED.
7903 This is wanted because this way 8021q and macvlan know
7904 the device is just moving and can keep their slaves up.
7905 */
7906 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7907 rcu_barrier();
7908 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7909 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7910
7911 /*
7912 * Flush the unicast and multicast chains
7913 */
7914 dev_uc_flush(dev);
7915 dev_mc_flush(dev);
7916
7917 /* Send a netdev-removed uevent to the old namespace */
7918 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7919 netdev_adjacent_del_links(dev);
7920
7921 /* Actually switch the network namespace */
7922 dev_net_set(dev, net);
7923
7924 /* If there is an ifindex conflict assign a new one */
7925 if (__dev_get_by_index(net, dev->ifindex))
7926 dev->ifindex = dev_new_index(net);
7927
7928 /* Send a netdev-add uevent to the new namespace */
7929 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7930 netdev_adjacent_add_links(dev);
7931
7932 /* Fixup kobjects */
7933 err = device_rename(&dev->dev, dev->name);
7934 WARN_ON(err);
7935
7936 /* Add the device back in the hashes */
7937 list_netdevice(dev);
7938
7939 /* Notify protocols, that a new device appeared. */
7940 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7941
7942 /*
7943 * Prevent userspace races by waiting until the network
7944 * device is fully setup before sending notifications.
7945 */
7946 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7947
7948 synchronize_net();
7949 err = 0;
7950 out:
7951 return err;
7952 }
7953 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7954
7955 static int dev_cpu_callback(struct notifier_block *nfb,
7956 unsigned long action,
7957 void *ocpu)
7958 {
7959 struct sk_buff **list_skb;
7960 struct sk_buff *skb;
7961 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7962 struct softnet_data *sd, *oldsd;
7963
7964 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7965 return NOTIFY_OK;
7966
7967 local_irq_disable();
7968 cpu = smp_processor_id();
7969 sd = &per_cpu(softnet_data, cpu);
7970 oldsd = &per_cpu(softnet_data, oldcpu);
7971
7972 /* Find end of our completion_queue. */
7973 list_skb = &sd->completion_queue;
7974 while (*list_skb)
7975 list_skb = &(*list_skb)->next;
7976 /* Append completion queue from offline CPU. */
7977 *list_skb = oldsd->completion_queue;
7978 oldsd->completion_queue = NULL;
7979
7980 /* Append output queue from offline CPU. */
7981 if (oldsd->output_queue) {
7982 *sd->output_queue_tailp = oldsd->output_queue;
7983 sd->output_queue_tailp = oldsd->output_queue_tailp;
7984 oldsd->output_queue = NULL;
7985 oldsd->output_queue_tailp = &oldsd->output_queue;
7986 }
7987 /* Append NAPI poll list from offline CPU, with one exception :
7988 * process_backlog() must be called by cpu owning percpu backlog.
7989 * We properly handle process_queue & input_pkt_queue later.
7990 */
7991 while (!list_empty(&oldsd->poll_list)) {
7992 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7993 struct napi_struct,
7994 poll_list);
7995
7996 list_del_init(&napi->poll_list);
7997 if (napi->poll == process_backlog)
7998 napi->state = 0;
7999 else
8000 ____napi_schedule(sd, napi);
8001 }
8002
8003 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8004 local_irq_enable();
8005
8006 /* Process offline CPU's input_pkt_queue */
8007 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8008 netif_rx_ni(skb);
8009 input_queue_head_incr(oldsd);
8010 }
8011 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8012 netif_rx_ni(skb);
8013 input_queue_head_incr(oldsd);
8014 }
8015
8016 return NOTIFY_OK;
8017 }
8018
8019
8020 /**
8021 * netdev_increment_features - increment feature set by one
8022 * @all: current feature set
8023 * @one: new feature set
8024 * @mask: mask feature set
8025 *
8026 * Computes a new feature set after adding a device with feature set
8027 * @one to the master device with current feature set @all. Will not
8028 * enable anything that is off in @mask. Returns the new feature set.
8029 */
8030 netdev_features_t netdev_increment_features(netdev_features_t all,
8031 netdev_features_t one, netdev_features_t mask)
8032 {
8033 if (mask & NETIF_F_HW_CSUM)
8034 mask |= NETIF_F_CSUM_MASK;
8035 mask |= NETIF_F_VLAN_CHALLENGED;
8036
8037 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8038 all &= one | ~NETIF_F_ALL_FOR_ALL;
8039
8040 /* If one device supports hw checksumming, set for all. */
8041 if (all & NETIF_F_HW_CSUM)
8042 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8043
8044 return all;
8045 }
8046 EXPORT_SYMBOL(netdev_increment_features);
8047
8048 static struct hlist_head * __net_init netdev_create_hash(void)
8049 {
8050 int i;
8051 struct hlist_head *hash;
8052
8053 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8054 if (hash != NULL)
8055 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8056 INIT_HLIST_HEAD(&hash[i]);
8057
8058 return hash;
8059 }
8060
8061 /* Initialize per network namespace state */
8062 static int __net_init netdev_init(struct net *net)
8063 {
8064 if (net != &init_net)
8065 INIT_LIST_HEAD(&net->dev_base_head);
8066
8067 net->dev_name_head = netdev_create_hash();
8068 if (net->dev_name_head == NULL)
8069 goto err_name;
8070
8071 net->dev_index_head = netdev_create_hash();
8072 if (net->dev_index_head == NULL)
8073 goto err_idx;
8074
8075 return 0;
8076
8077 err_idx:
8078 kfree(net->dev_name_head);
8079 err_name:
8080 return -ENOMEM;
8081 }
8082
8083 /**
8084 * netdev_drivername - network driver for the device
8085 * @dev: network device
8086 *
8087 * Determine network driver for device.
8088 */
8089 const char *netdev_drivername(const struct net_device *dev)
8090 {
8091 const struct device_driver *driver;
8092 const struct device *parent;
8093 const char *empty = "";
8094
8095 parent = dev->dev.parent;
8096 if (!parent)
8097 return empty;
8098
8099 driver = parent->driver;
8100 if (driver && driver->name)
8101 return driver->name;
8102 return empty;
8103 }
8104
8105 static void __netdev_printk(const char *level, const struct net_device *dev,
8106 struct va_format *vaf)
8107 {
8108 if (dev && dev->dev.parent) {
8109 dev_printk_emit(level[1] - '0',
8110 dev->dev.parent,
8111 "%s %s %s%s: %pV",
8112 dev_driver_string(dev->dev.parent),
8113 dev_name(dev->dev.parent),
8114 netdev_name(dev), netdev_reg_state(dev),
8115 vaf);
8116 } else if (dev) {
8117 printk("%s%s%s: %pV",
8118 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8119 } else {
8120 printk("%s(NULL net_device): %pV", level, vaf);
8121 }
8122 }
8123
8124 void netdev_printk(const char *level, const struct net_device *dev,
8125 const char *format, ...)
8126 {
8127 struct va_format vaf;
8128 va_list args;
8129
8130 va_start(args, format);
8131
8132 vaf.fmt = format;
8133 vaf.va = &args;
8134
8135 __netdev_printk(level, dev, &vaf);
8136
8137 va_end(args);
8138 }
8139 EXPORT_SYMBOL(netdev_printk);
8140
8141 #define define_netdev_printk_level(func, level) \
8142 void func(const struct net_device *dev, const char *fmt, ...) \
8143 { \
8144 struct va_format vaf; \
8145 va_list args; \
8146 \
8147 va_start(args, fmt); \
8148 \
8149 vaf.fmt = fmt; \
8150 vaf.va = &args; \
8151 \
8152 __netdev_printk(level, dev, &vaf); \
8153 \
8154 va_end(args); \
8155 } \
8156 EXPORT_SYMBOL(func);
8157
8158 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8159 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8160 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8161 define_netdev_printk_level(netdev_err, KERN_ERR);
8162 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8163 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8164 define_netdev_printk_level(netdev_info, KERN_INFO);
8165
8166 static void __net_exit netdev_exit(struct net *net)
8167 {
8168 kfree(net->dev_name_head);
8169 kfree(net->dev_index_head);
8170 }
8171
8172 static struct pernet_operations __net_initdata netdev_net_ops = {
8173 .init = netdev_init,
8174 .exit = netdev_exit,
8175 };
8176
8177 static void __net_exit default_device_exit(struct net *net)
8178 {
8179 struct net_device *dev, *aux;
8180 /*
8181 * Push all migratable network devices back to the
8182 * initial network namespace
8183 */
8184 rtnl_lock();
8185 for_each_netdev_safe(net, dev, aux) {
8186 int err;
8187 char fb_name[IFNAMSIZ];
8188
8189 /* Ignore unmoveable devices (i.e. loopback) */
8190 if (dev->features & NETIF_F_NETNS_LOCAL)
8191 continue;
8192
8193 /* Leave virtual devices for the generic cleanup */
8194 if (dev->rtnl_link_ops)
8195 continue;
8196
8197 /* Push remaining network devices to init_net */
8198 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8199 err = dev_change_net_namespace(dev, &init_net, fb_name);
8200 if (err) {
8201 pr_emerg("%s: failed to move %s to init_net: %d\n",
8202 __func__, dev->name, err);
8203 BUG();
8204 }
8205 }
8206 rtnl_unlock();
8207 }
8208
8209 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8210 {
8211 /* Return with the rtnl_lock held when there are no network
8212 * devices unregistering in any network namespace in net_list.
8213 */
8214 struct net *net;
8215 bool unregistering;
8216 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8217
8218 add_wait_queue(&netdev_unregistering_wq, &wait);
8219 for (;;) {
8220 unregistering = false;
8221 rtnl_lock();
8222 list_for_each_entry(net, net_list, exit_list) {
8223 if (net->dev_unreg_count > 0) {
8224 unregistering = true;
8225 break;
8226 }
8227 }
8228 if (!unregistering)
8229 break;
8230 __rtnl_unlock();
8231
8232 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8233 }
8234 remove_wait_queue(&netdev_unregistering_wq, &wait);
8235 }
8236
8237 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8238 {
8239 /* At exit all network devices most be removed from a network
8240 * namespace. Do this in the reverse order of registration.
8241 * Do this across as many network namespaces as possible to
8242 * improve batching efficiency.
8243 */
8244 struct net_device *dev;
8245 struct net *net;
8246 LIST_HEAD(dev_kill_list);
8247
8248 /* To prevent network device cleanup code from dereferencing
8249 * loopback devices or network devices that have been freed
8250 * wait here for all pending unregistrations to complete,
8251 * before unregistring the loopback device and allowing the
8252 * network namespace be freed.
8253 *
8254 * The netdev todo list containing all network devices
8255 * unregistrations that happen in default_device_exit_batch
8256 * will run in the rtnl_unlock() at the end of
8257 * default_device_exit_batch.
8258 */
8259 rtnl_lock_unregistering(net_list);
8260 list_for_each_entry(net, net_list, exit_list) {
8261 for_each_netdev_reverse(net, dev) {
8262 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8263 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8264 else
8265 unregister_netdevice_queue(dev, &dev_kill_list);
8266 }
8267 }
8268 unregister_netdevice_many(&dev_kill_list);
8269 rtnl_unlock();
8270 }
8271
8272 static struct pernet_operations __net_initdata default_device_ops = {
8273 .exit = default_device_exit,
8274 .exit_batch = default_device_exit_batch,
8275 };
8276
8277 /*
8278 * Initialize the DEV module. At boot time this walks the device list and
8279 * unhooks any devices that fail to initialise (normally hardware not
8280 * present) and leaves us with a valid list of present and active devices.
8281 *
8282 */
8283
8284 /*
8285 * This is called single threaded during boot, so no need
8286 * to take the rtnl semaphore.
8287 */
8288 static int __init net_dev_init(void)
8289 {
8290 int i, rc = -ENOMEM;
8291
8292 BUG_ON(!dev_boot_phase);
8293
8294 if (dev_proc_init())
8295 goto out;
8296
8297 if (netdev_kobject_init())
8298 goto out;
8299
8300 INIT_LIST_HEAD(&ptype_all);
8301 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8302 INIT_LIST_HEAD(&ptype_base[i]);
8303
8304 INIT_LIST_HEAD(&offload_base);
8305
8306 if (register_pernet_subsys(&netdev_net_ops))
8307 goto out;
8308
8309 /*
8310 * Initialise the packet receive queues.
8311 */
8312
8313 for_each_possible_cpu(i) {
8314 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8315 struct softnet_data *sd = &per_cpu(softnet_data, i);
8316
8317 INIT_WORK(flush, flush_backlog);
8318
8319 skb_queue_head_init(&sd->input_pkt_queue);
8320 skb_queue_head_init(&sd->process_queue);
8321 INIT_LIST_HEAD(&sd->poll_list);
8322 sd->output_queue_tailp = &sd->output_queue;
8323 #ifdef CONFIG_RPS
8324 sd->csd.func = rps_trigger_softirq;
8325 sd->csd.info = sd;
8326 sd->cpu = i;
8327 #endif
8328
8329 sd->backlog.poll = process_backlog;
8330 sd->backlog.weight = weight_p;
8331 }
8332
8333 dev_boot_phase = 0;
8334
8335 /* The loopback device is special if any other network devices
8336 * is present in a network namespace the loopback device must
8337 * be present. Since we now dynamically allocate and free the
8338 * loopback device ensure this invariant is maintained by
8339 * keeping the loopback device as the first device on the
8340 * list of network devices. Ensuring the loopback devices
8341 * is the first device that appears and the last network device
8342 * that disappears.
8343 */
8344 if (register_pernet_device(&loopback_net_ops))
8345 goto out;
8346
8347 if (register_pernet_device(&default_device_ops))
8348 goto out;
8349
8350 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8351 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8352
8353 hotcpu_notifier(dev_cpu_callback, 0);
8354 dst_subsys_init();
8355 rc = 0;
8356 out:
8357 return rc;
8358 }
8359
8360 subsys_initcall(net_dev_init);