]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/core/filter.c
UBUNTU: Start new release
[mirror_ubuntu-zesty-kernel.git] / net / core / filter.c
1 /*
2 * Linux Socket Filter - Kernel level socket filtering
3 *
4 * Based on the design of the Berkeley Packet Filter. The new
5 * internal format has been designed by PLUMgrid:
6 *
7 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8 *
9 * Authors:
10 *
11 * Jay Schulist <jschlst@samba.org>
12 * Alexei Starovoitov <ast@plumgrid.com>
13 * Daniel Borkmann <dborkman@redhat.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 *
20 * Andi Kleen - Fix a few bad bugs and races.
21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22 */
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/in.h>
30 #include <linux/inet.h>
31 #include <linux/netdevice.h>
32 #include <linux/if_packet.h>
33 #include <linux/if_arp.h>
34 #include <linux/gfp.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <net/sock.h>
40 #include <net/flow_dissector.h>
41 #include <linux/errno.h>
42 #include <linux/timer.h>
43 #include <linux/uaccess.h>
44 #include <asm/unaligned.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <net/sch_generic.h>
51 #include <net/cls_cgroup.h>
52 #include <net/dst_metadata.h>
53 #include <net/dst.h>
54 #include <net/sock_reuseport.h>
55
56 /**
57 * sk_filter_trim_cap - run a packet through a socket filter
58 * @sk: sock associated with &sk_buff
59 * @skb: buffer to filter
60 * @cap: limit on how short the eBPF program may trim the packet
61 *
62 * Run the eBPF program and then cut skb->data to correct size returned by
63 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
64 * than pkt_len we keep whole skb->data. This is the socket level
65 * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
66 * be accepted or -EPERM if the packet should be tossed.
67 *
68 */
69 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
70 {
71 int err;
72 struct sk_filter *filter;
73
74 /*
75 * If the skb was allocated from pfmemalloc reserves, only
76 * allow SOCK_MEMALLOC sockets to use it as this socket is
77 * helping free memory
78 */
79 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
80 return -ENOMEM;
81
82 err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
83 if (err)
84 return err;
85
86 err = security_sock_rcv_skb(sk, skb);
87 if (err)
88 return err;
89
90 rcu_read_lock();
91 filter = rcu_dereference(sk->sk_filter);
92 if (filter) {
93 unsigned int pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
94 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
95 }
96 rcu_read_unlock();
97
98 return err;
99 }
100 EXPORT_SYMBOL(sk_filter_trim_cap);
101
102 BPF_CALL_1(__skb_get_pay_offset, struct sk_buff *, skb)
103 {
104 return skb_get_poff(skb);
105 }
106
107 BPF_CALL_3(__skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
108 {
109 struct nlattr *nla;
110
111 if (skb_is_nonlinear(skb))
112 return 0;
113
114 if (skb->len < sizeof(struct nlattr))
115 return 0;
116
117 if (a > skb->len - sizeof(struct nlattr))
118 return 0;
119
120 nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
121 if (nla)
122 return (void *) nla - (void *) skb->data;
123
124 return 0;
125 }
126
127 BPF_CALL_3(__skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
128 {
129 struct nlattr *nla;
130
131 if (skb_is_nonlinear(skb))
132 return 0;
133
134 if (skb->len < sizeof(struct nlattr))
135 return 0;
136
137 if (a > skb->len - sizeof(struct nlattr))
138 return 0;
139
140 nla = (struct nlattr *) &skb->data[a];
141 if (nla->nla_len > skb->len - a)
142 return 0;
143
144 nla = nla_find_nested(nla, x);
145 if (nla)
146 return (void *) nla - (void *) skb->data;
147
148 return 0;
149 }
150
151 BPF_CALL_0(__get_raw_cpu_id)
152 {
153 return raw_smp_processor_id();
154 }
155
156 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
157 .func = __get_raw_cpu_id,
158 .gpl_only = false,
159 .ret_type = RET_INTEGER,
160 };
161
162 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
163 struct bpf_insn *insn_buf)
164 {
165 struct bpf_insn *insn = insn_buf;
166
167 switch (skb_field) {
168 case SKF_AD_MARK:
169 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
170
171 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
172 offsetof(struct sk_buff, mark));
173 break;
174
175 case SKF_AD_PKTTYPE:
176 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
177 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
178 #ifdef __BIG_ENDIAN_BITFIELD
179 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
180 #endif
181 break;
182
183 case SKF_AD_QUEUE:
184 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
185
186 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
187 offsetof(struct sk_buff, queue_mapping));
188 break;
189
190 case SKF_AD_VLAN_TAG:
191 case SKF_AD_VLAN_TAG_PRESENT:
192 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
193 BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
194
195 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
196 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
197 offsetof(struct sk_buff, vlan_tci));
198 if (skb_field == SKF_AD_VLAN_TAG) {
199 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
200 ~VLAN_TAG_PRESENT);
201 } else {
202 /* dst_reg >>= 12 */
203 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
204 /* dst_reg &= 1 */
205 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
206 }
207 break;
208 }
209
210 return insn - insn_buf;
211 }
212
213 static bool convert_bpf_extensions(struct sock_filter *fp,
214 struct bpf_insn **insnp)
215 {
216 struct bpf_insn *insn = *insnp;
217 u32 cnt;
218
219 switch (fp->k) {
220 case SKF_AD_OFF + SKF_AD_PROTOCOL:
221 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
222
223 /* A = *(u16 *) (CTX + offsetof(protocol)) */
224 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
225 offsetof(struct sk_buff, protocol));
226 /* A = ntohs(A) [emitting a nop or swap16] */
227 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
228 break;
229
230 case SKF_AD_OFF + SKF_AD_PKTTYPE:
231 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
232 insn += cnt - 1;
233 break;
234
235 case SKF_AD_OFF + SKF_AD_IFINDEX:
236 case SKF_AD_OFF + SKF_AD_HATYPE:
237 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
238 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
239
240 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
241 BPF_REG_TMP, BPF_REG_CTX,
242 offsetof(struct sk_buff, dev));
243 /* if (tmp != 0) goto pc + 1 */
244 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
245 *insn++ = BPF_EXIT_INSN();
246 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
247 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
248 offsetof(struct net_device, ifindex));
249 else
250 *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
251 offsetof(struct net_device, type));
252 break;
253
254 case SKF_AD_OFF + SKF_AD_MARK:
255 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
256 insn += cnt - 1;
257 break;
258
259 case SKF_AD_OFF + SKF_AD_RXHASH:
260 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
261
262 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
263 offsetof(struct sk_buff, hash));
264 break;
265
266 case SKF_AD_OFF + SKF_AD_QUEUE:
267 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
268 insn += cnt - 1;
269 break;
270
271 case SKF_AD_OFF + SKF_AD_VLAN_TAG:
272 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
273 BPF_REG_A, BPF_REG_CTX, insn);
274 insn += cnt - 1;
275 break;
276
277 case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
278 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
279 BPF_REG_A, BPF_REG_CTX, insn);
280 insn += cnt - 1;
281 break;
282
283 case SKF_AD_OFF + SKF_AD_VLAN_TPID:
284 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
285
286 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
287 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
288 offsetof(struct sk_buff, vlan_proto));
289 /* A = ntohs(A) [emitting a nop or swap16] */
290 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
291 break;
292
293 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
294 case SKF_AD_OFF + SKF_AD_NLATTR:
295 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
296 case SKF_AD_OFF + SKF_AD_CPU:
297 case SKF_AD_OFF + SKF_AD_RANDOM:
298 /* arg1 = CTX */
299 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
300 /* arg2 = A */
301 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
302 /* arg3 = X */
303 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
304 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
305 switch (fp->k) {
306 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
307 *insn = BPF_EMIT_CALL(__skb_get_pay_offset);
308 break;
309 case SKF_AD_OFF + SKF_AD_NLATTR:
310 *insn = BPF_EMIT_CALL(__skb_get_nlattr);
311 break;
312 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
313 *insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
314 break;
315 case SKF_AD_OFF + SKF_AD_CPU:
316 *insn = BPF_EMIT_CALL(__get_raw_cpu_id);
317 break;
318 case SKF_AD_OFF + SKF_AD_RANDOM:
319 *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
320 bpf_user_rnd_init_once();
321 break;
322 }
323 break;
324
325 case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
326 /* A ^= X */
327 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
328 break;
329
330 default:
331 /* This is just a dummy call to avoid letting the compiler
332 * evict __bpf_call_base() as an optimization. Placed here
333 * where no-one bothers.
334 */
335 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
336 return false;
337 }
338
339 *insnp = insn;
340 return true;
341 }
342
343 /**
344 * bpf_convert_filter - convert filter program
345 * @prog: the user passed filter program
346 * @len: the length of the user passed filter program
347 * @new_prog: buffer where converted program will be stored
348 * @new_len: pointer to store length of converted program
349 *
350 * Remap 'sock_filter' style BPF instruction set to 'sock_filter_ext' style.
351 * Conversion workflow:
352 *
353 * 1) First pass for calculating the new program length:
354 * bpf_convert_filter(old_prog, old_len, NULL, &new_len)
355 *
356 * 2) 2nd pass to remap in two passes: 1st pass finds new
357 * jump offsets, 2nd pass remapping:
358 * new_prog = kmalloc(sizeof(struct bpf_insn) * new_len);
359 * bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
360 */
361 static int bpf_convert_filter(struct sock_filter *prog, int len,
362 struct bpf_insn *new_prog, int *new_len)
363 {
364 int new_flen = 0, pass = 0, target, i;
365 struct bpf_insn *new_insn;
366 struct sock_filter *fp;
367 int *addrs = NULL;
368 u8 bpf_src;
369
370 BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
371 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
372
373 if (len <= 0 || len > BPF_MAXINSNS)
374 return -EINVAL;
375
376 if (new_prog) {
377 addrs = kcalloc(len, sizeof(*addrs),
378 GFP_KERNEL | __GFP_NOWARN);
379 if (!addrs)
380 return -ENOMEM;
381 }
382
383 do_pass:
384 new_insn = new_prog;
385 fp = prog;
386
387 /* Classic BPF related prologue emission. */
388 if (new_insn) {
389 /* Classic BPF expects A and X to be reset first. These need
390 * to be guaranteed to be the first two instructions.
391 */
392 *new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
393 *new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
394
395 /* All programs must keep CTX in callee saved BPF_REG_CTX.
396 * In eBPF case it's done by the compiler, here we need to
397 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
398 */
399 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
400 } else {
401 new_insn += 3;
402 }
403
404 for (i = 0; i < len; fp++, i++) {
405 struct bpf_insn tmp_insns[6] = { };
406 struct bpf_insn *insn = tmp_insns;
407
408 if (addrs)
409 addrs[i] = new_insn - new_prog;
410
411 switch (fp->code) {
412 /* All arithmetic insns and skb loads map as-is. */
413 case BPF_ALU | BPF_ADD | BPF_X:
414 case BPF_ALU | BPF_ADD | BPF_K:
415 case BPF_ALU | BPF_SUB | BPF_X:
416 case BPF_ALU | BPF_SUB | BPF_K:
417 case BPF_ALU | BPF_AND | BPF_X:
418 case BPF_ALU | BPF_AND | BPF_K:
419 case BPF_ALU | BPF_OR | BPF_X:
420 case BPF_ALU | BPF_OR | BPF_K:
421 case BPF_ALU | BPF_LSH | BPF_X:
422 case BPF_ALU | BPF_LSH | BPF_K:
423 case BPF_ALU | BPF_RSH | BPF_X:
424 case BPF_ALU | BPF_RSH | BPF_K:
425 case BPF_ALU | BPF_XOR | BPF_X:
426 case BPF_ALU | BPF_XOR | BPF_K:
427 case BPF_ALU | BPF_MUL | BPF_X:
428 case BPF_ALU | BPF_MUL | BPF_K:
429 case BPF_ALU | BPF_DIV | BPF_X:
430 case BPF_ALU | BPF_DIV | BPF_K:
431 case BPF_ALU | BPF_MOD | BPF_X:
432 case BPF_ALU | BPF_MOD | BPF_K:
433 case BPF_ALU | BPF_NEG:
434 case BPF_LD | BPF_ABS | BPF_W:
435 case BPF_LD | BPF_ABS | BPF_H:
436 case BPF_LD | BPF_ABS | BPF_B:
437 case BPF_LD | BPF_IND | BPF_W:
438 case BPF_LD | BPF_IND | BPF_H:
439 case BPF_LD | BPF_IND | BPF_B:
440 /* Check for overloaded BPF extension and
441 * directly convert it if found, otherwise
442 * just move on with mapping.
443 */
444 if (BPF_CLASS(fp->code) == BPF_LD &&
445 BPF_MODE(fp->code) == BPF_ABS &&
446 convert_bpf_extensions(fp, &insn))
447 break;
448
449 *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
450 break;
451
452 /* Jump transformation cannot use BPF block macros
453 * everywhere as offset calculation and target updates
454 * require a bit more work than the rest, i.e. jump
455 * opcodes map as-is, but offsets need adjustment.
456 */
457
458 #define BPF_EMIT_JMP \
459 do { \
460 if (target >= len || target < 0) \
461 goto err; \
462 insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0; \
463 /* Adjust pc relative offset for 2nd or 3rd insn. */ \
464 insn->off -= insn - tmp_insns; \
465 } while (0)
466
467 case BPF_JMP | BPF_JA:
468 target = i + fp->k + 1;
469 insn->code = fp->code;
470 BPF_EMIT_JMP;
471 break;
472
473 case BPF_JMP | BPF_JEQ | BPF_K:
474 case BPF_JMP | BPF_JEQ | BPF_X:
475 case BPF_JMP | BPF_JSET | BPF_K:
476 case BPF_JMP | BPF_JSET | BPF_X:
477 case BPF_JMP | BPF_JGT | BPF_K:
478 case BPF_JMP | BPF_JGT | BPF_X:
479 case BPF_JMP | BPF_JGE | BPF_K:
480 case BPF_JMP | BPF_JGE | BPF_X:
481 if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
482 /* BPF immediates are signed, zero extend
483 * immediate into tmp register and use it
484 * in compare insn.
485 */
486 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
487
488 insn->dst_reg = BPF_REG_A;
489 insn->src_reg = BPF_REG_TMP;
490 bpf_src = BPF_X;
491 } else {
492 insn->dst_reg = BPF_REG_A;
493 insn->imm = fp->k;
494 bpf_src = BPF_SRC(fp->code);
495 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
496 }
497
498 /* Common case where 'jump_false' is next insn. */
499 if (fp->jf == 0) {
500 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
501 target = i + fp->jt + 1;
502 BPF_EMIT_JMP;
503 break;
504 }
505
506 /* Convert JEQ into JNE when 'jump_true' is next insn. */
507 if (fp->jt == 0 && BPF_OP(fp->code) == BPF_JEQ) {
508 insn->code = BPF_JMP | BPF_JNE | bpf_src;
509 target = i + fp->jf + 1;
510 BPF_EMIT_JMP;
511 break;
512 }
513
514 /* Other jumps are mapped into two insns: Jxx and JA. */
515 target = i + fp->jt + 1;
516 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
517 BPF_EMIT_JMP;
518 insn++;
519
520 insn->code = BPF_JMP | BPF_JA;
521 target = i + fp->jf + 1;
522 BPF_EMIT_JMP;
523 break;
524
525 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
526 case BPF_LDX | BPF_MSH | BPF_B:
527 /* tmp = A */
528 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
529 /* A = BPF_R0 = *(u8 *) (skb->data + K) */
530 *insn++ = BPF_LD_ABS(BPF_B, fp->k);
531 /* A &= 0xf */
532 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
533 /* A <<= 2 */
534 *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
535 /* X = A */
536 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
537 /* A = tmp */
538 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
539 break;
540
541 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
542 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
543 */
544 case BPF_RET | BPF_A:
545 case BPF_RET | BPF_K:
546 if (BPF_RVAL(fp->code) == BPF_K)
547 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
548 0, fp->k);
549 *insn = BPF_EXIT_INSN();
550 break;
551
552 /* Store to stack. */
553 case BPF_ST:
554 case BPF_STX:
555 *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
556 BPF_ST ? BPF_REG_A : BPF_REG_X,
557 -(BPF_MEMWORDS - fp->k) * 4);
558 break;
559
560 /* Load from stack. */
561 case BPF_LD | BPF_MEM:
562 case BPF_LDX | BPF_MEM:
563 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
564 BPF_REG_A : BPF_REG_X, BPF_REG_FP,
565 -(BPF_MEMWORDS - fp->k) * 4);
566 break;
567
568 /* A = K or X = K */
569 case BPF_LD | BPF_IMM:
570 case BPF_LDX | BPF_IMM:
571 *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
572 BPF_REG_A : BPF_REG_X, fp->k);
573 break;
574
575 /* X = A */
576 case BPF_MISC | BPF_TAX:
577 *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
578 break;
579
580 /* A = X */
581 case BPF_MISC | BPF_TXA:
582 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
583 break;
584
585 /* A = skb->len or X = skb->len */
586 case BPF_LD | BPF_W | BPF_LEN:
587 case BPF_LDX | BPF_W | BPF_LEN:
588 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
589 BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
590 offsetof(struct sk_buff, len));
591 break;
592
593 /* Access seccomp_data fields. */
594 case BPF_LDX | BPF_ABS | BPF_W:
595 /* A = *(u32 *) (ctx + K) */
596 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
597 break;
598
599 /* Unknown instruction. */
600 default:
601 goto err;
602 }
603
604 insn++;
605 if (new_prog)
606 memcpy(new_insn, tmp_insns,
607 sizeof(*insn) * (insn - tmp_insns));
608 new_insn += insn - tmp_insns;
609 }
610
611 if (!new_prog) {
612 /* Only calculating new length. */
613 *new_len = new_insn - new_prog;
614 return 0;
615 }
616
617 pass++;
618 if (new_flen != new_insn - new_prog) {
619 new_flen = new_insn - new_prog;
620 if (pass > 2)
621 goto err;
622 goto do_pass;
623 }
624
625 kfree(addrs);
626 BUG_ON(*new_len != new_flen);
627 return 0;
628 err:
629 kfree(addrs);
630 return -EINVAL;
631 }
632
633 /* Security:
634 *
635 * As we dont want to clear mem[] array for each packet going through
636 * __bpf_prog_run(), we check that filter loaded by user never try to read
637 * a cell if not previously written, and we check all branches to be sure
638 * a malicious user doesn't try to abuse us.
639 */
640 static int check_load_and_stores(const struct sock_filter *filter, int flen)
641 {
642 u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
643 int pc, ret = 0;
644
645 BUILD_BUG_ON(BPF_MEMWORDS > 16);
646
647 masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
648 if (!masks)
649 return -ENOMEM;
650
651 memset(masks, 0xff, flen * sizeof(*masks));
652
653 for (pc = 0; pc < flen; pc++) {
654 memvalid &= masks[pc];
655
656 switch (filter[pc].code) {
657 case BPF_ST:
658 case BPF_STX:
659 memvalid |= (1 << filter[pc].k);
660 break;
661 case BPF_LD | BPF_MEM:
662 case BPF_LDX | BPF_MEM:
663 if (!(memvalid & (1 << filter[pc].k))) {
664 ret = -EINVAL;
665 goto error;
666 }
667 break;
668 case BPF_JMP | BPF_JA:
669 /* A jump must set masks on target */
670 masks[pc + 1 + filter[pc].k] &= memvalid;
671 memvalid = ~0;
672 break;
673 case BPF_JMP | BPF_JEQ | BPF_K:
674 case BPF_JMP | BPF_JEQ | BPF_X:
675 case BPF_JMP | BPF_JGE | BPF_K:
676 case BPF_JMP | BPF_JGE | BPF_X:
677 case BPF_JMP | BPF_JGT | BPF_K:
678 case BPF_JMP | BPF_JGT | BPF_X:
679 case BPF_JMP | BPF_JSET | BPF_K:
680 case BPF_JMP | BPF_JSET | BPF_X:
681 /* A jump must set masks on targets */
682 masks[pc + 1 + filter[pc].jt] &= memvalid;
683 masks[pc + 1 + filter[pc].jf] &= memvalid;
684 memvalid = ~0;
685 break;
686 }
687 }
688 error:
689 kfree(masks);
690 return ret;
691 }
692
693 static bool chk_code_allowed(u16 code_to_probe)
694 {
695 static const bool codes[] = {
696 /* 32 bit ALU operations */
697 [BPF_ALU | BPF_ADD | BPF_K] = true,
698 [BPF_ALU | BPF_ADD | BPF_X] = true,
699 [BPF_ALU | BPF_SUB | BPF_K] = true,
700 [BPF_ALU | BPF_SUB | BPF_X] = true,
701 [BPF_ALU | BPF_MUL | BPF_K] = true,
702 [BPF_ALU | BPF_MUL | BPF_X] = true,
703 [BPF_ALU | BPF_DIV | BPF_K] = true,
704 [BPF_ALU | BPF_DIV | BPF_X] = true,
705 [BPF_ALU | BPF_MOD | BPF_K] = true,
706 [BPF_ALU | BPF_MOD | BPF_X] = true,
707 [BPF_ALU | BPF_AND | BPF_K] = true,
708 [BPF_ALU | BPF_AND | BPF_X] = true,
709 [BPF_ALU | BPF_OR | BPF_K] = true,
710 [BPF_ALU | BPF_OR | BPF_X] = true,
711 [BPF_ALU | BPF_XOR | BPF_K] = true,
712 [BPF_ALU | BPF_XOR | BPF_X] = true,
713 [BPF_ALU | BPF_LSH | BPF_K] = true,
714 [BPF_ALU | BPF_LSH | BPF_X] = true,
715 [BPF_ALU | BPF_RSH | BPF_K] = true,
716 [BPF_ALU | BPF_RSH | BPF_X] = true,
717 [BPF_ALU | BPF_NEG] = true,
718 /* Load instructions */
719 [BPF_LD | BPF_W | BPF_ABS] = true,
720 [BPF_LD | BPF_H | BPF_ABS] = true,
721 [BPF_LD | BPF_B | BPF_ABS] = true,
722 [BPF_LD | BPF_W | BPF_LEN] = true,
723 [BPF_LD | BPF_W | BPF_IND] = true,
724 [BPF_LD | BPF_H | BPF_IND] = true,
725 [BPF_LD | BPF_B | BPF_IND] = true,
726 [BPF_LD | BPF_IMM] = true,
727 [BPF_LD | BPF_MEM] = true,
728 [BPF_LDX | BPF_W | BPF_LEN] = true,
729 [BPF_LDX | BPF_B | BPF_MSH] = true,
730 [BPF_LDX | BPF_IMM] = true,
731 [BPF_LDX | BPF_MEM] = true,
732 /* Store instructions */
733 [BPF_ST] = true,
734 [BPF_STX] = true,
735 /* Misc instructions */
736 [BPF_MISC | BPF_TAX] = true,
737 [BPF_MISC | BPF_TXA] = true,
738 /* Return instructions */
739 [BPF_RET | BPF_K] = true,
740 [BPF_RET | BPF_A] = true,
741 /* Jump instructions */
742 [BPF_JMP | BPF_JA] = true,
743 [BPF_JMP | BPF_JEQ | BPF_K] = true,
744 [BPF_JMP | BPF_JEQ | BPF_X] = true,
745 [BPF_JMP | BPF_JGE | BPF_K] = true,
746 [BPF_JMP | BPF_JGE | BPF_X] = true,
747 [BPF_JMP | BPF_JGT | BPF_K] = true,
748 [BPF_JMP | BPF_JGT | BPF_X] = true,
749 [BPF_JMP | BPF_JSET | BPF_K] = true,
750 [BPF_JMP | BPF_JSET | BPF_X] = true,
751 };
752
753 if (code_to_probe >= ARRAY_SIZE(codes))
754 return false;
755
756 return codes[code_to_probe];
757 }
758
759 static bool bpf_check_basics_ok(const struct sock_filter *filter,
760 unsigned int flen)
761 {
762 if (filter == NULL)
763 return false;
764 if (flen == 0 || flen > BPF_MAXINSNS)
765 return false;
766
767 return true;
768 }
769
770 /**
771 * bpf_check_classic - verify socket filter code
772 * @filter: filter to verify
773 * @flen: length of filter
774 *
775 * Check the user's filter code. If we let some ugly
776 * filter code slip through kaboom! The filter must contain
777 * no references or jumps that are out of range, no illegal
778 * instructions, and must end with a RET instruction.
779 *
780 * All jumps are forward as they are not signed.
781 *
782 * Returns 0 if the rule set is legal or -EINVAL if not.
783 */
784 static int bpf_check_classic(const struct sock_filter *filter,
785 unsigned int flen)
786 {
787 bool anc_found;
788 int pc;
789
790 /* Check the filter code now */
791 for (pc = 0; pc < flen; pc++) {
792 const struct sock_filter *ftest = &filter[pc];
793
794 /* May we actually operate on this code? */
795 if (!chk_code_allowed(ftest->code))
796 return -EINVAL;
797
798 /* Some instructions need special checks */
799 switch (ftest->code) {
800 case BPF_ALU | BPF_DIV | BPF_K:
801 case BPF_ALU | BPF_MOD | BPF_K:
802 /* Check for division by zero */
803 if (ftest->k == 0)
804 return -EINVAL;
805 break;
806 case BPF_ALU | BPF_LSH | BPF_K:
807 case BPF_ALU | BPF_RSH | BPF_K:
808 if (ftest->k >= 32)
809 return -EINVAL;
810 break;
811 case BPF_LD | BPF_MEM:
812 case BPF_LDX | BPF_MEM:
813 case BPF_ST:
814 case BPF_STX:
815 /* Check for invalid memory addresses */
816 if (ftest->k >= BPF_MEMWORDS)
817 return -EINVAL;
818 break;
819 case BPF_JMP | BPF_JA:
820 /* Note, the large ftest->k might cause loops.
821 * Compare this with conditional jumps below,
822 * where offsets are limited. --ANK (981016)
823 */
824 if (ftest->k >= (unsigned int)(flen - pc - 1))
825 return -EINVAL;
826 break;
827 case BPF_JMP | BPF_JEQ | BPF_K:
828 case BPF_JMP | BPF_JEQ | BPF_X:
829 case BPF_JMP | BPF_JGE | BPF_K:
830 case BPF_JMP | BPF_JGE | BPF_X:
831 case BPF_JMP | BPF_JGT | BPF_K:
832 case BPF_JMP | BPF_JGT | BPF_X:
833 case BPF_JMP | BPF_JSET | BPF_K:
834 case BPF_JMP | BPF_JSET | BPF_X:
835 /* Both conditionals must be safe */
836 if (pc + ftest->jt + 1 >= flen ||
837 pc + ftest->jf + 1 >= flen)
838 return -EINVAL;
839 break;
840 case BPF_LD | BPF_W | BPF_ABS:
841 case BPF_LD | BPF_H | BPF_ABS:
842 case BPF_LD | BPF_B | BPF_ABS:
843 anc_found = false;
844 if (bpf_anc_helper(ftest) & BPF_ANC)
845 anc_found = true;
846 /* Ancillary operation unknown or unsupported */
847 if (anc_found == false && ftest->k >= SKF_AD_OFF)
848 return -EINVAL;
849 }
850 }
851
852 /* Last instruction must be a RET code */
853 switch (filter[flen - 1].code) {
854 case BPF_RET | BPF_K:
855 case BPF_RET | BPF_A:
856 return check_load_and_stores(filter, flen);
857 }
858
859 return -EINVAL;
860 }
861
862 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
863 const struct sock_fprog *fprog)
864 {
865 unsigned int fsize = bpf_classic_proglen(fprog);
866 struct sock_fprog_kern *fkprog;
867
868 fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
869 if (!fp->orig_prog)
870 return -ENOMEM;
871
872 fkprog = fp->orig_prog;
873 fkprog->len = fprog->len;
874
875 fkprog->filter = kmemdup(fp->insns, fsize,
876 GFP_KERNEL | __GFP_NOWARN);
877 if (!fkprog->filter) {
878 kfree(fp->orig_prog);
879 return -ENOMEM;
880 }
881
882 return 0;
883 }
884
885 static void bpf_release_orig_filter(struct bpf_prog *fp)
886 {
887 struct sock_fprog_kern *fprog = fp->orig_prog;
888
889 if (fprog) {
890 kfree(fprog->filter);
891 kfree(fprog);
892 }
893 }
894
895 static void __bpf_prog_release(struct bpf_prog *prog)
896 {
897 if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
898 bpf_prog_put(prog);
899 } else {
900 bpf_release_orig_filter(prog);
901 bpf_prog_free(prog);
902 }
903 }
904
905 static void __sk_filter_release(struct sk_filter *fp)
906 {
907 __bpf_prog_release(fp->prog);
908 kfree(fp);
909 }
910
911 /**
912 * sk_filter_release_rcu - Release a socket filter by rcu_head
913 * @rcu: rcu_head that contains the sk_filter to free
914 */
915 static void sk_filter_release_rcu(struct rcu_head *rcu)
916 {
917 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
918
919 __sk_filter_release(fp);
920 }
921
922 /**
923 * sk_filter_release - release a socket filter
924 * @fp: filter to remove
925 *
926 * Remove a filter from a socket and release its resources.
927 */
928 static void sk_filter_release(struct sk_filter *fp)
929 {
930 if (atomic_dec_and_test(&fp->refcnt))
931 call_rcu(&fp->rcu, sk_filter_release_rcu);
932 }
933
934 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
935 {
936 u32 filter_size = bpf_prog_size(fp->prog->len);
937
938 atomic_sub(filter_size, &sk->sk_omem_alloc);
939 sk_filter_release(fp);
940 }
941
942 /* try to charge the socket memory if there is space available
943 * return true on success
944 */
945 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
946 {
947 u32 filter_size = bpf_prog_size(fp->prog->len);
948
949 /* same check as in sock_kmalloc() */
950 if (filter_size <= sysctl_optmem_max &&
951 atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
952 atomic_inc(&fp->refcnt);
953 atomic_add(filter_size, &sk->sk_omem_alloc);
954 return true;
955 }
956 return false;
957 }
958
959 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
960 {
961 struct sock_filter *old_prog;
962 struct bpf_prog *old_fp;
963 int err, new_len, old_len = fp->len;
964
965 /* We are free to overwrite insns et al right here as it
966 * won't be used at this point in time anymore internally
967 * after the migration to the internal BPF instruction
968 * representation.
969 */
970 BUILD_BUG_ON(sizeof(struct sock_filter) !=
971 sizeof(struct bpf_insn));
972
973 /* Conversion cannot happen on overlapping memory areas,
974 * so we need to keep the user BPF around until the 2nd
975 * pass. At this time, the user BPF is stored in fp->insns.
976 */
977 old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
978 GFP_KERNEL | __GFP_NOWARN);
979 if (!old_prog) {
980 err = -ENOMEM;
981 goto out_err;
982 }
983
984 /* 1st pass: calculate the new program length. */
985 err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
986 if (err)
987 goto out_err_free;
988
989 /* Expand fp for appending the new filter representation. */
990 old_fp = fp;
991 fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
992 if (!fp) {
993 /* The old_fp is still around in case we couldn't
994 * allocate new memory, so uncharge on that one.
995 */
996 fp = old_fp;
997 err = -ENOMEM;
998 goto out_err_free;
999 }
1000
1001 fp->len = new_len;
1002
1003 /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1004 err = bpf_convert_filter(old_prog, old_len, fp->insnsi, &new_len);
1005 if (err)
1006 /* 2nd bpf_convert_filter() can fail only if it fails
1007 * to allocate memory, remapping must succeed. Note,
1008 * that at this time old_fp has already been released
1009 * by krealloc().
1010 */
1011 goto out_err_free;
1012
1013 /* We are guaranteed to never error here with cBPF to eBPF
1014 * transitions, since there's no issue with type compatibility
1015 * checks on program arrays.
1016 */
1017 fp = bpf_prog_select_runtime(fp, &err);
1018
1019 kfree(old_prog);
1020 return fp;
1021
1022 out_err_free:
1023 kfree(old_prog);
1024 out_err:
1025 __bpf_prog_release(fp);
1026 return ERR_PTR(err);
1027 }
1028
1029 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1030 bpf_aux_classic_check_t trans)
1031 {
1032 int err;
1033
1034 fp->bpf_func = NULL;
1035 fp->jited = 0;
1036
1037 err = bpf_check_classic(fp->insns, fp->len);
1038 if (err) {
1039 __bpf_prog_release(fp);
1040 return ERR_PTR(err);
1041 }
1042
1043 /* There might be additional checks and transformations
1044 * needed on classic filters, f.e. in case of seccomp.
1045 */
1046 if (trans) {
1047 err = trans(fp->insns, fp->len);
1048 if (err) {
1049 __bpf_prog_release(fp);
1050 return ERR_PTR(err);
1051 }
1052 }
1053
1054 /* Probe if we can JIT compile the filter and if so, do
1055 * the compilation of the filter.
1056 */
1057 bpf_jit_compile(fp);
1058
1059 /* JIT compiler couldn't process this filter, so do the
1060 * internal BPF translation for the optimized interpreter.
1061 */
1062 if (!fp->jited)
1063 fp = bpf_migrate_filter(fp);
1064
1065 return fp;
1066 }
1067
1068 /**
1069 * bpf_prog_create - create an unattached filter
1070 * @pfp: the unattached filter that is created
1071 * @fprog: the filter program
1072 *
1073 * Create a filter independent of any socket. We first run some
1074 * sanity checks on it to make sure it does not explode on us later.
1075 * If an error occurs or there is insufficient memory for the filter
1076 * a negative errno code is returned. On success the return is zero.
1077 */
1078 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1079 {
1080 unsigned int fsize = bpf_classic_proglen(fprog);
1081 struct bpf_prog *fp;
1082
1083 /* Make sure new filter is there and in the right amounts. */
1084 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1085 return -EINVAL;
1086
1087 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1088 if (!fp)
1089 return -ENOMEM;
1090
1091 memcpy(fp->insns, fprog->filter, fsize);
1092
1093 fp->len = fprog->len;
1094 /* Since unattached filters are not copied back to user
1095 * space through sk_get_filter(), we do not need to hold
1096 * a copy here, and can spare us the work.
1097 */
1098 fp->orig_prog = NULL;
1099
1100 /* bpf_prepare_filter() already takes care of freeing
1101 * memory in case something goes wrong.
1102 */
1103 fp = bpf_prepare_filter(fp, NULL);
1104 if (IS_ERR(fp))
1105 return PTR_ERR(fp);
1106
1107 *pfp = fp;
1108 return 0;
1109 }
1110 EXPORT_SYMBOL_GPL(bpf_prog_create);
1111
1112 /**
1113 * bpf_prog_create_from_user - create an unattached filter from user buffer
1114 * @pfp: the unattached filter that is created
1115 * @fprog: the filter program
1116 * @trans: post-classic verifier transformation handler
1117 * @save_orig: save classic BPF program
1118 *
1119 * This function effectively does the same as bpf_prog_create(), only
1120 * that it builds up its insns buffer from user space provided buffer.
1121 * It also allows for passing a bpf_aux_classic_check_t handler.
1122 */
1123 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1124 bpf_aux_classic_check_t trans, bool save_orig)
1125 {
1126 unsigned int fsize = bpf_classic_proglen(fprog);
1127 struct bpf_prog *fp;
1128 int err;
1129
1130 /* Make sure new filter is there and in the right amounts. */
1131 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1132 return -EINVAL;
1133
1134 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1135 if (!fp)
1136 return -ENOMEM;
1137
1138 if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1139 __bpf_prog_free(fp);
1140 return -EFAULT;
1141 }
1142
1143 fp->len = fprog->len;
1144 fp->orig_prog = NULL;
1145
1146 if (save_orig) {
1147 err = bpf_prog_store_orig_filter(fp, fprog);
1148 if (err) {
1149 __bpf_prog_free(fp);
1150 return -ENOMEM;
1151 }
1152 }
1153
1154 /* bpf_prepare_filter() already takes care of freeing
1155 * memory in case something goes wrong.
1156 */
1157 fp = bpf_prepare_filter(fp, trans);
1158 if (IS_ERR(fp))
1159 return PTR_ERR(fp);
1160
1161 *pfp = fp;
1162 return 0;
1163 }
1164 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1165
1166 void bpf_prog_destroy(struct bpf_prog *fp)
1167 {
1168 __bpf_prog_release(fp);
1169 }
1170 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1171
1172 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1173 {
1174 struct sk_filter *fp, *old_fp;
1175
1176 fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1177 if (!fp)
1178 return -ENOMEM;
1179
1180 fp->prog = prog;
1181 atomic_set(&fp->refcnt, 0);
1182
1183 if (!sk_filter_charge(sk, fp)) {
1184 kfree(fp);
1185 return -ENOMEM;
1186 }
1187
1188 old_fp = rcu_dereference_protected(sk->sk_filter,
1189 lockdep_sock_is_held(sk));
1190 rcu_assign_pointer(sk->sk_filter, fp);
1191
1192 if (old_fp)
1193 sk_filter_uncharge(sk, old_fp);
1194
1195 return 0;
1196 }
1197
1198 static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
1199 {
1200 struct bpf_prog *old_prog;
1201 int err;
1202
1203 if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1204 return -ENOMEM;
1205
1206 if (sk_unhashed(sk) && sk->sk_reuseport) {
1207 err = reuseport_alloc(sk);
1208 if (err)
1209 return err;
1210 } else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
1211 /* The socket wasn't bound with SO_REUSEPORT */
1212 return -EINVAL;
1213 }
1214
1215 old_prog = reuseport_attach_prog(sk, prog);
1216 if (old_prog)
1217 bpf_prog_destroy(old_prog);
1218
1219 return 0;
1220 }
1221
1222 static
1223 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1224 {
1225 unsigned int fsize = bpf_classic_proglen(fprog);
1226 struct bpf_prog *prog;
1227 int err;
1228
1229 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1230 return ERR_PTR(-EPERM);
1231
1232 /* Make sure new filter is there and in the right amounts. */
1233 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1234 return ERR_PTR(-EINVAL);
1235
1236 prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1237 if (!prog)
1238 return ERR_PTR(-ENOMEM);
1239
1240 if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1241 __bpf_prog_free(prog);
1242 return ERR_PTR(-EFAULT);
1243 }
1244
1245 prog->len = fprog->len;
1246
1247 err = bpf_prog_store_orig_filter(prog, fprog);
1248 if (err) {
1249 __bpf_prog_free(prog);
1250 return ERR_PTR(-ENOMEM);
1251 }
1252
1253 /* bpf_prepare_filter() already takes care of freeing
1254 * memory in case something goes wrong.
1255 */
1256 return bpf_prepare_filter(prog, NULL);
1257 }
1258
1259 /**
1260 * sk_attach_filter - attach a socket filter
1261 * @fprog: the filter program
1262 * @sk: the socket to use
1263 *
1264 * Attach the user's filter code. We first run some sanity checks on
1265 * it to make sure it does not explode on us later. If an error
1266 * occurs or there is insufficient memory for the filter a negative
1267 * errno code is returned. On success the return is zero.
1268 */
1269 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1270 {
1271 struct bpf_prog *prog = __get_filter(fprog, sk);
1272 int err;
1273
1274 if (IS_ERR(prog))
1275 return PTR_ERR(prog);
1276
1277 err = __sk_attach_prog(prog, sk);
1278 if (err < 0) {
1279 __bpf_prog_release(prog);
1280 return err;
1281 }
1282
1283 return 0;
1284 }
1285 EXPORT_SYMBOL_GPL(sk_attach_filter);
1286
1287 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1288 {
1289 struct bpf_prog *prog = __get_filter(fprog, sk);
1290 int err;
1291
1292 if (IS_ERR(prog))
1293 return PTR_ERR(prog);
1294
1295 err = __reuseport_attach_prog(prog, sk);
1296 if (err < 0) {
1297 __bpf_prog_release(prog);
1298 return err;
1299 }
1300
1301 return 0;
1302 }
1303
1304 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1305 {
1306 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1307 return ERR_PTR(-EPERM);
1308
1309 return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1310 }
1311
1312 int sk_attach_bpf(u32 ufd, struct sock *sk)
1313 {
1314 struct bpf_prog *prog = __get_bpf(ufd, sk);
1315 int err;
1316
1317 if (IS_ERR(prog))
1318 return PTR_ERR(prog);
1319
1320 err = __sk_attach_prog(prog, sk);
1321 if (err < 0) {
1322 bpf_prog_put(prog);
1323 return err;
1324 }
1325
1326 return 0;
1327 }
1328
1329 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1330 {
1331 struct bpf_prog *prog = __get_bpf(ufd, sk);
1332 int err;
1333
1334 if (IS_ERR(prog))
1335 return PTR_ERR(prog);
1336
1337 err = __reuseport_attach_prog(prog, sk);
1338 if (err < 0) {
1339 bpf_prog_put(prog);
1340 return err;
1341 }
1342
1343 return 0;
1344 }
1345
1346 struct bpf_scratchpad {
1347 union {
1348 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1349 u8 buff[MAX_BPF_STACK];
1350 };
1351 };
1352
1353 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1354
1355 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1356 unsigned int write_len)
1357 {
1358 return skb_ensure_writable(skb, write_len);
1359 }
1360
1361 static inline int bpf_try_make_writable(struct sk_buff *skb,
1362 unsigned int write_len)
1363 {
1364 int err = __bpf_try_make_writable(skb, write_len);
1365
1366 bpf_compute_data_end(skb);
1367 return err;
1368 }
1369
1370 static int bpf_try_make_head_writable(struct sk_buff *skb)
1371 {
1372 return bpf_try_make_writable(skb, skb_headlen(skb));
1373 }
1374
1375 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1376 {
1377 if (skb_at_tc_ingress(skb))
1378 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1379 }
1380
1381 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1382 {
1383 if (skb_at_tc_ingress(skb))
1384 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1385 }
1386
1387 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1388 const void *, from, u32, len, u64, flags)
1389 {
1390 void *ptr;
1391
1392 if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1393 return -EINVAL;
1394 if (unlikely(offset > 0xffff))
1395 return -EFAULT;
1396 if (unlikely(bpf_try_make_writable(skb, offset + len)))
1397 return -EFAULT;
1398
1399 ptr = skb->data + offset;
1400 if (flags & BPF_F_RECOMPUTE_CSUM)
1401 __skb_postpull_rcsum(skb, ptr, len, offset);
1402
1403 memcpy(ptr, from, len);
1404
1405 if (flags & BPF_F_RECOMPUTE_CSUM)
1406 __skb_postpush_rcsum(skb, ptr, len, offset);
1407 if (flags & BPF_F_INVALIDATE_HASH)
1408 skb_clear_hash(skb);
1409
1410 return 0;
1411 }
1412
1413 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1414 .func = bpf_skb_store_bytes,
1415 .gpl_only = false,
1416 .ret_type = RET_INTEGER,
1417 .arg1_type = ARG_PTR_TO_CTX,
1418 .arg2_type = ARG_ANYTHING,
1419 .arg3_type = ARG_PTR_TO_STACK,
1420 .arg4_type = ARG_CONST_STACK_SIZE,
1421 .arg5_type = ARG_ANYTHING,
1422 };
1423
1424 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1425 void *, to, u32, len)
1426 {
1427 void *ptr;
1428
1429 if (unlikely(offset > 0xffff))
1430 goto err_clear;
1431
1432 ptr = skb_header_pointer(skb, offset, len, to);
1433 if (unlikely(!ptr))
1434 goto err_clear;
1435 if (ptr != to)
1436 memcpy(to, ptr, len);
1437
1438 return 0;
1439 err_clear:
1440 memset(to, 0, len);
1441 return -EFAULT;
1442 }
1443
1444 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1445 .func = bpf_skb_load_bytes,
1446 .gpl_only = false,
1447 .ret_type = RET_INTEGER,
1448 .arg1_type = ARG_PTR_TO_CTX,
1449 .arg2_type = ARG_ANYTHING,
1450 .arg3_type = ARG_PTR_TO_RAW_STACK,
1451 .arg4_type = ARG_CONST_STACK_SIZE,
1452 };
1453
1454 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1455 {
1456 /* Idea is the following: should the needed direct read/write
1457 * test fail during runtime, we can pull in more data and redo
1458 * again, since implicitly, we invalidate previous checks here.
1459 *
1460 * Or, since we know how much we need to make read/writeable,
1461 * this can be done once at the program beginning for direct
1462 * access case. By this we overcome limitations of only current
1463 * headroom being accessible.
1464 */
1465 return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1466 }
1467
1468 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1469 .func = bpf_skb_pull_data,
1470 .gpl_only = false,
1471 .ret_type = RET_INTEGER,
1472 .arg1_type = ARG_PTR_TO_CTX,
1473 .arg2_type = ARG_ANYTHING,
1474 };
1475
1476 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1477 u64, from, u64, to, u64, flags)
1478 {
1479 __sum16 *ptr;
1480
1481 if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1482 return -EINVAL;
1483 if (unlikely(offset > 0xffff || offset & 1))
1484 return -EFAULT;
1485 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1486 return -EFAULT;
1487
1488 ptr = (__sum16 *)(skb->data + offset);
1489 switch (flags & BPF_F_HDR_FIELD_MASK) {
1490 case 0:
1491 if (unlikely(from != 0))
1492 return -EINVAL;
1493
1494 csum_replace_by_diff(ptr, to);
1495 break;
1496 case 2:
1497 csum_replace2(ptr, from, to);
1498 break;
1499 case 4:
1500 csum_replace4(ptr, from, to);
1501 break;
1502 default:
1503 return -EINVAL;
1504 }
1505
1506 return 0;
1507 }
1508
1509 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1510 .func = bpf_l3_csum_replace,
1511 .gpl_only = false,
1512 .ret_type = RET_INTEGER,
1513 .arg1_type = ARG_PTR_TO_CTX,
1514 .arg2_type = ARG_ANYTHING,
1515 .arg3_type = ARG_ANYTHING,
1516 .arg4_type = ARG_ANYTHING,
1517 .arg5_type = ARG_ANYTHING,
1518 };
1519
1520 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1521 u64, from, u64, to, u64, flags)
1522 {
1523 bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1524 bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1525 __sum16 *ptr;
1526
1527 if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_PSEUDO_HDR |
1528 BPF_F_HDR_FIELD_MASK)))
1529 return -EINVAL;
1530 if (unlikely(offset > 0xffff || offset & 1))
1531 return -EFAULT;
1532 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1533 return -EFAULT;
1534
1535 ptr = (__sum16 *)(skb->data + offset);
1536 if (is_mmzero && !*ptr)
1537 return 0;
1538
1539 switch (flags & BPF_F_HDR_FIELD_MASK) {
1540 case 0:
1541 if (unlikely(from != 0))
1542 return -EINVAL;
1543
1544 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1545 break;
1546 case 2:
1547 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1548 break;
1549 case 4:
1550 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1551 break;
1552 default:
1553 return -EINVAL;
1554 }
1555
1556 if (is_mmzero && !*ptr)
1557 *ptr = CSUM_MANGLED_0;
1558 return 0;
1559 }
1560
1561 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1562 .func = bpf_l4_csum_replace,
1563 .gpl_only = false,
1564 .ret_type = RET_INTEGER,
1565 .arg1_type = ARG_PTR_TO_CTX,
1566 .arg2_type = ARG_ANYTHING,
1567 .arg3_type = ARG_ANYTHING,
1568 .arg4_type = ARG_ANYTHING,
1569 .arg5_type = ARG_ANYTHING,
1570 };
1571
1572 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1573 __be32 *, to, u32, to_size, __wsum, seed)
1574 {
1575 struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1576 u32 diff_size = from_size + to_size;
1577 int i, j = 0;
1578
1579 /* This is quite flexible, some examples:
1580 *
1581 * from_size == 0, to_size > 0, seed := csum --> pushing data
1582 * from_size > 0, to_size == 0, seed := csum --> pulling data
1583 * from_size > 0, to_size > 0, seed := 0 --> diffing data
1584 *
1585 * Even for diffing, from_size and to_size don't need to be equal.
1586 */
1587 if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1588 diff_size > sizeof(sp->diff)))
1589 return -EINVAL;
1590
1591 for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1592 sp->diff[j] = ~from[i];
1593 for (i = 0; i < to_size / sizeof(__be32); i++, j++)
1594 sp->diff[j] = to[i];
1595
1596 return csum_partial(sp->diff, diff_size, seed);
1597 }
1598
1599 static const struct bpf_func_proto bpf_csum_diff_proto = {
1600 .func = bpf_csum_diff,
1601 .gpl_only = false,
1602 .pkt_access = true,
1603 .ret_type = RET_INTEGER,
1604 .arg1_type = ARG_PTR_TO_STACK,
1605 .arg2_type = ARG_CONST_STACK_SIZE_OR_ZERO,
1606 .arg3_type = ARG_PTR_TO_STACK,
1607 .arg4_type = ARG_CONST_STACK_SIZE_OR_ZERO,
1608 .arg5_type = ARG_ANYTHING,
1609 };
1610
1611 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
1612 {
1613 /* The interface is to be used in combination with bpf_csum_diff()
1614 * for direct packet writes. csum rotation for alignment as well
1615 * as emulating csum_sub() can be done from the eBPF program.
1616 */
1617 if (skb->ip_summed == CHECKSUM_COMPLETE)
1618 return (skb->csum = csum_add(skb->csum, csum));
1619
1620 return -ENOTSUPP;
1621 }
1622
1623 static const struct bpf_func_proto bpf_csum_update_proto = {
1624 .func = bpf_csum_update,
1625 .gpl_only = false,
1626 .ret_type = RET_INTEGER,
1627 .arg1_type = ARG_PTR_TO_CTX,
1628 .arg2_type = ARG_ANYTHING,
1629 };
1630
1631 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
1632 {
1633 return dev_forward_skb(dev, skb);
1634 }
1635
1636 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
1637 struct sk_buff *skb)
1638 {
1639 int ret = ____dev_forward_skb(dev, skb);
1640
1641 if (likely(!ret)) {
1642 skb->dev = dev;
1643 ret = netif_rx(skb);
1644 }
1645
1646 return ret;
1647 }
1648
1649 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
1650 {
1651 int ret;
1652
1653 if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
1654 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
1655 kfree_skb(skb);
1656 return -ENETDOWN;
1657 }
1658
1659 skb->dev = dev;
1660
1661 __this_cpu_inc(xmit_recursion);
1662 ret = dev_queue_xmit(skb);
1663 __this_cpu_dec(xmit_recursion);
1664
1665 return ret;
1666 }
1667
1668 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
1669 u32 flags)
1670 {
1671 /* skb->mac_len is not set on normal egress */
1672 unsigned int mlen = skb->network_header - skb->mac_header;
1673
1674 __skb_pull(skb, mlen);
1675
1676 /* At ingress, the mac header has already been pulled once.
1677 * At egress, skb_pospull_rcsum has to be done in case that
1678 * the skb is originated from ingress (i.e. a forwarded skb)
1679 * to ensure that rcsum starts at net header.
1680 */
1681 if (!skb_at_tc_ingress(skb))
1682 skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
1683 skb_pop_mac_header(skb);
1684 skb_reset_mac_len(skb);
1685 return flags & BPF_F_INGRESS ?
1686 __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
1687 }
1688
1689 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
1690 u32 flags)
1691 {
1692 /* Verify that a link layer header is carried */
1693 if (unlikely(skb->mac_header >= skb->network_header)) {
1694 kfree_skb(skb);
1695 return -ERANGE;
1696 }
1697
1698 bpf_push_mac_rcsum(skb);
1699 return flags & BPF_F_INGRESS ?
1700 __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
1701 }
1702
1703 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
1704 u32 flags)
1705 {
1706 if (dev_is_mac_header_xmit(dev))
1707 return __bpf_redirect_common(skb, dev, flags);
1708 else
1709 return __bpf_redirect_no_mac(skb, dev, flags);
1710 }
1711
1712 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
1713 {
1714 struct net_device *dev;
1715 struct sk_buff *clone;
1716 int ret;
1717
1718 if (unlikely(flags & ~(BPF_F_INGRESS)))
1719 return -EINVAL;
1720
1721 dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
1722 if (unlikely(!dev))
1723 return -EINVAL;
1724
1725 clone = skb_clone(skb, GFP_ATOMIC);
1726 if (unlikely(!clone))
1727 return -ENOMEM;
1728
1729 /* For direct write, we need to keep the invariant that the skbs
1730 * we're dealing with need to be uncloned. Should uncloning fail
1731 * here, we need to free the just generated clone to unclone once
1732 * again.
1733 */
1734 ret = bpf_try_make_head_writable(skb);
1735 if (unlikely(ret)) {
1736 kfree_skb(clone);
1737 return -ENOMEM;
1738 }
1739
1740 return __bpf_redirect(clone, dev, flags);
1741 }
1742
1743 static const struct bpf_func_proto bpf_clone_redirect_proto = {
1744 .func = bpf_clone_redirect,
1745 .gpl_only = false,
1746 .ret_type = RET_INTEGER,
1747 .arg1_type = ARG_PTR_TO_CTX,
1748 .arg2_type = ARG_ANYTHING,
1749 .arg3_type = ARG_ANYTHING,
1750 };
1751
1752 struct redirect_info {
1753 u32 ifindex;
1754 u32 flags;
1755 };
1756
1757 static DEFINE_PER_CPU(struct redirect_info, redirect_info);
1758
1759 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
1760 {
1761 struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1762
1763 if (unlikely(flags & ~(BPF_F_INGRESS)))
1764 return TC_ACT_SHOT;
1765
1766 ri->ifindex = ifindex;
1767 ri->flags = flags;
1768
1769 return TC_ACT_REDIRECT;
1770 }
1771
1772 int skb_do_redirect(struct sk_buff *skb)
1773 {
1774 struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1775 struct net_device *dev;
1776
1777 dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
1778 ri->ifindex = 0;
1779 if (unlikely(!dev)) {
1780 kfree_skb(skb);
1781 return -EINVAL;
1782 }
1783
1784 return __bpf_redirect(skb, dev, ri->flags);
1785 }
1786
1787 static const struct bpf_func_proto bpf_redirect_proto = {
1788 .func = bpf_redirect,
1789 .gpl_only = false,
1790 .ret_type = RET_INTEGER,
1791 .arg1_type = ARG_ANYTHING,
1792 .arg2_type = ARG_ANYTHING,
1793 };
1794
1795 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
1796 {
1797 return task_get_classid(skb);
1798 }
1799
1800 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
1801 .func = bpf_get_cgroup_classid,
1802 .gpl_only = false,
1803 .ret_type = RET_INTEGER,
1804 .arg1_type = ARG_PTR_TO_CTX,
1805 };
1806
1807 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
1808 {
1809 return dst_tclassid(skb);
1810 }
1811
1812 static const struct bpf_func_proto bpf_get_route_realm_proto = {
1813 .func = bpf_get_route_realm,
1814 .gpl_only = false,
1815 .ret_type = RET_INTEGER,
1816 .arg1_type = ARG_PTR_TO_CTX,
1817 };
1818
1819 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
1820 {
1821 /* If skb_clear_hash() was called due to mangling, we can
1822 * trigger SW recalculation here. Later access to hash
1823 * can then use the inline skb->hash via context directly
1824 * instead of calling this helper again.
1825 */
1826 return skb_get_hash(skb);
1827 }
1828
1829 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
1830 .func = bpf_get_hash_recalc,
1831 .gpl_only = false,
1832 .ret_type = RET_INTEGER,
1833 .arg1_type = ARG_PTR_TO_CTX,
1834 };
1835
1836 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
1837 {
1838 /* After all direct packet write, this can be used once for
1839 * triggering a lazy recalc on next skb_get_hash() invocation.
1840 */
1841 skb_clear_hash(skb);
1842 return 0;
1843 }
1844
1845 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
1846 .func = bpf_set_hash_invalid,
1847 .gpl_only = false,
1848 .ret_type = RET_INTEGER,
1849 .arg1_type = ARG_PTR_TO_CTX,
1850 };
1851
1852 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
1853 u16, vlan_tci)
1854 {
1855 int ret;
1856
1857 if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
1858 vlan_proto != htons(ETH_P_8021AD)))
1859 vlan_proto = htons(ETH_P_8021Q);
1860
1861 bpf_push_mac_rcsum(skb);
1862 ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
1863 bpf_pull_mac_rcsum(skb);
1864
1865 bpf_compute_data_end(skb);
1866 return ret;
1867 }
1868
1869 const struct bpf_func_proto bpf_skb_vlan_push_proto = {
1870 .func = bpf_skb_vlan_push,
1871 .gpl_only = false,
1872 .ret_type = RET_INTEGER,
1873 .arg1_type = ARG_PTR_TO_CTX,
1874 .arg2_type = ARG_ANYTHING,
1875 .arg3_type = ARG_ANYTHING,
1876 };
1877 EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
1878
1879 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
1880 {
1881 int ret;
1882
1883 bpf_push_mac_rcsum(skb);
1884 ret = skb_vlan_pop(skb);
1885 bpf_pull_mac_rcsum(skb);
1886
1887 bpf_compute_data_end(skb);
1888 return ret;
1889 }
1890
1891 const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
1892 .func = bpf_skb_vlan_pop,
1893 .gpl_only = false,
1894 .ret_type = RET_INTEGER,
1895 .arg1_type = ARG_PTR_TO_CTX,
1896 };
1897 EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
1898
1899 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
1900 {
1901 /* Caller already did skb_cow() with len as headroom,
1902 * so no need to do it here.
1903 */
1904 skb_push(skb, len);
1905 memmove(skb->data, skb->data + len, off);
1906 memset(skb->data + off, 0, len);
1907
1908 /* No skb_postpush_rcsum(skb, skb->data + off, len)
1909 * needed here as it does not change the skb->csum
1910 * result for checksum complete when summing over
1911 * zeroed blocks.
1912 */
1913 return 0;
1914 }
1915
1916 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
1917 {
1918 /* skb_ensure_writable() is not needed here, as we're
1919 * already working on an uncloned skb.
1920 */
1921 if (unlikely(!pskb_may_pull(skb, off + len)))
1922 return -ENOMEM;
1923
1924 skb_postpull_rcsum(skb, skb->data + off, len);
1925 memmove(skb->data + len, skb->data, off);
1926 __skb_pull(skb, len);
1927
1928 return 0;
1929 }
1930
1931 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
1932 {
1933 bool trans_same = skb->transport_header == skb->network_header;
1934 int ret;
1935
1936 /* There's no need for __skb_push()/__skb_pull() pair to
1937 * get to the start of the mac header as we're guaranteed
1938 * to always start from here under eBPF.
1939 */
1940 ret = bpf_skb_generic_push(skb, off, len);
1941 if (likely(!ret)) {
1942 skb->mac_header -= len;
1943 skb->network_header -= len;
1944 if (trans_same)
1945 skb->transport_header = skb->network_header;
1946 }
1947
1948 return ret;
1949 }
1950
1951 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
1952 {
1953 bool trans_same = skb->transport_header == skb->network_header;
1954 int ret;
1955
1956 /* Same here, __skb_push()/__skb_pull() pair not needed. */
1957 ret = bpf_skb_generic_pop(skb, off, len);
1958 if (likely(!ret)) {
1959 skb->mac_header += len;
1960 skb->network_header += len;
1961 if (trans_same)
1962 skb->transport_header = skb->network_header;
1963 }
1964
1965 return ret;
1966 }
1967
1968 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
1969 {
1970 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
1971 u32 off = skb->network_header - skb->mac_header;
1972 int ret;
1973
1974 ret = skb_cow(skb, len_diff);
1975 if (unlikely(ret < 0))
1976 return ret;
1977
1978 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
1979 if (unlikely(ret < 0))
1980 return ret;
1981
1982 if (skb_is_gso(skb)) {
1983 /* SKB_GSO_UDP stays as is. SKB_GSO_TCPV4 needs to
1984 * be changed into SKB_GSO_TCPV6.
1985 */
1986 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
1987 skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV4;
1988 skb_shinfo(skb)->gso_type |= SKB_GSO_TCPV6;
1989 }
1990
1991 /* Due to IPv6 header, MSS needs to be downgraded. */
1992 skb_shinfo(skb)->gso_size -= len_diff;
1993 /* Header must be checked, and gso_segs recomputed. */
1994 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
1995 skb_shinfo(skb)->gso_segs = 0;
1996 }
1997
1998 skb->protocol = htons(ETH_P_IPV6);
1999 skb_clear_hash(skb);
2000
2001 return 0;
2002 }
2003
2004 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2005 {
2006 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2007 u32 off = skb->network_header - skb->mac_header;
2008 int ret;
2009
2010 ret = skb_unclone(skb, GFP_ATOMIC);
2011 if (unlikely(ret < 0))
2012 return ret;
2013
2014 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2015 if (unlikely(ret < 0))
2016 return ret;
2017
2018 if (skb_is_gso(skb)) {
2019 /* SKB_GSO_UDP stays as is. SKB_GSO_TCPV6 needs to
2020 * be changed into SKB_GSO_TCPV4.
2021 */
2022 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
2023 skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV6;
2024 skb_shinfo(skb)->gso_type |= SKB_GSO_TCPV4;
2025 }
2026
2027 /* Due to IPv4 header, MSS can be upgraded. */
2028 skb_shinfo(skb)->gso_size += len_diff;
2029 /* Header must be checked, and gso_segs recomputed. */
2030 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2031 skb_shinfo(skb)->gso_segs = 0;
2032 }
2033
2034 skb->protocol = htons(ETH_P_IP);
2035 skb_clear_hash(skb);
2036
2037 return 0;
2038 }
2039
2040 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2041 {
2042 __be16 from_proto = skb->protocol;
2043
2044 if (from_proto == htons(ETH_P_IP) &&
2045 to_proto == htons(ETH_P_IPV6))
2046 return bpf_skb_proto_4_to_6(skb);
2047
2048 if (from_proto == htons(ETH_P_IPV6) &&
2049 to_proto == htons(ETH_P_IP))
2050 return bpf_skb_proto_6_to_4(skb);
2051
2052 return -ENOTSUPP;
2053 }
2054
2055 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2056 u64, flags)
2057 {
2058 int ret;
2059
2060 if (unlikely(flags))
2061 return -EINVAL;
2062
2063 /* General idea is that this helper does the basic groundwork
2064 * needed for changing the protocol, and eBPF program fills the
2065 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2066 * and other helpers, rather than passing a raw buffer here.
2067 *
2068 * The rationale is to keep this minimal and without a need to
2069 * deal with raw packet data. F.e. even if we would pass buffers
2070 * here, the program still needs to call the bpf_lX_csum_replace()
2071 * helpers anyway. Plus, this way we keep also separation of
2072 * concerns, since f.e. bpf_skb_store_bytes() should only take
2073 * care of stores.
2074 *
2075 * Currently, additional options and extension header space are
2076 * not supported, but flags register is reserved so we can adapt
2077 * that. For offloads, we mark packet as dodgy, so that headers
2078 * need to be verified first.
2079 */
2080 ret = bpf_skb_proto_xlat(skb, proto);
2081 bpf_compute_data_end(skb);
2082 return ret;
2083 }
2084
2085 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2086 .func = bpf_skb_change_proto,
2087 .gpl_only = false,
2088 .ret_type = RET_INTEGER,
2089 .arg1_type = ARG_PTR_TO_CTX,
2090 .arg2_type = ARG_ANYTHING,
2091 .arg3_type = ARG_ANYTHING,
2092 };
2093
2094 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2095 {
2096 /* We only allow a restricted subset to be changed for now. */
2097 if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2098 !skb_pkt_type_ok(pkt_type)))
2099 return -EINVAL;
2100
2101 skb->pkt_type = pkt_type;
2102 return 0;
2103 }
2104
2105 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2106 .func = bpf_skb_change_type,
2107 .gpl_only = false,
2108 .ret_type = RET_INTEGER,
2109 .arg1_type = ARG_PTR_TO_CTX,
2110 .arg2_type = ARG_ANYTHING,
2111 };
2112
2113 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
2114 {
2115 u32 min_len = skb_network_offset(skb);
2116
2117 if (skb_transport_header_was_set(skb))
2118 min_len = skb_transport_offset(skb);
2119 if (skb->ip_summed == CHECKSUM_PARTIAL)
2120 min_len = skb_checksum_start_offset(skb) +
2121 skb->csum_offset + sizeof(__sum16);
2122 return min_len;
2123 }
2124
2125 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
2126 {
2127 return skb->dev->mtu + skb->dev->hard_header_len;
2128 }
2129
2130 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
2131 {
2132 unsigned int old_len = skb->len;
2133 int ret;
2134
2135 ret = __skb_grow_rcsum(skb, new_len);
2136 if (!ret)
2137 memset(skb->data + old_len, 0, new_len - old_len);
2138 return ret;
2139 }
2140
2141 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
2142 {
2143 return __skb_trim_rcsum(skb, new_len);
2144 }
2145
2146 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
2147 u64, flags)
2148 {
2149 u32 max_len = __bpf_skb_max_len(skb);
2150 u32 min_len = __bpf_skb_min_len(skb);
2151 int ret;
2152
2153 if (unlikely(flags || new_len > max_len || new_len < min_len))
2154 return -EINVAL;
2155 if (skb->encapsulation)
2156 return -ENOTSUPP;
2157
2158 /* The basic idea of this helper is that it's performing the
2159 * needed work to either grow or trim an skb, and eBPF program
2160 * rewrites the rest via helpers like bpf_skb_store_bytes(),
2161 * bpf_lX_csum_replace() and others rather than passing a raw
2162 * buffer here. This one is a slow path helper and intended
2163 * for replies with control messages.
2164 *
2165 * Like in bpf_skb_change_proto(), we want to keep this rather
2166 * minimal and without protocol specifics so that we are able
2167 * to separate concerns as in bpf_skb_store_bytes() should only
2168 * be the one responsible for writing buffers.
2169 *
2170 * It's really expected to be a slow path operation here for
2171 * control message replies, so we're implicitly linearizing,
2172 * uncloning and drop offloads from the skb by this.
2173 */
2174 ret = __bpf_try_make_writable(skb, skb->len);
2175 if (!ret) {
2176 if (new_len > skb->len)
2177 ret = bpf_skb_grow_rcsum(skb, new_len);
2178 else if (new_len < skb->len)
2179 ret = bpf_skb_trim_rcsum(skb, new_len);
2180 if (!ret && skb_is_gso(skb))
2181 skb_gso_reset(skb);
2182 }
2183
2184 bpf_compute_data_end(skb);
2185 return ret;
2186 }
2187
2188 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
2189 .func = bpf_skb_change_tail,
2190 .gpl_only = false,
2191 .ret_type = RET_INTEGER,
2192 .arg1_type = ARG_PTR_TO_CTX,
2193 .arg2_type = ARG_ANYTHING,
2194 .arg3_type = ARG_ANYTHING,
2195 };
2196
2197 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
2198 u64, flags)
2199 {
2200 u32 max_len = __bpf_skb_max_len(skb);
2201 u32 new_len = skb->len + head_room;
2202 int ret;
2203
2204 if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
2205 new_len < skb->len))
2206 return -EINVAL;
2207
2208 ret = skb_cow(skb, head_room);
2209 if (likely(!ret)) {
2210 /* Idea for this helper is that we currently only
2211 * allow to expand on mac header. This means that
2212 * skb->protocol network header, etc, stay as is.
2213 * Compared to bpf_skb_change_tail(), we're more
2214 * flexible due to not needing to linearize or
2215 * reset GSO. Intention for this helper is to be
2216 * used by an L3 skb that needs to push mac header
2217 * for redirection into L2 device.
2218 */
2219 __skb_push(skb, head_room);
2220 memset(skb->data, 0, head_room);
2221 skb_reset_mac_header(skb);
2222 }
2223
2224 bpf_compute_data_end(skb);
2225 return 0;
2226 }
2227
2228 static const struct bpf_func_proto bpf_skb_change_head_proto = {
2229 .func = bpf_skb_change_head,
2230 .gpl_only = false,
2231 .ret_type = RET_INTEGER,
2232 .arg1_type = ARG_PTR_TO_CTX,
2233 .arg2_type = ARG_ANYTHING,
2234 .arg3_type = ARG_ANYTHING,
2235 };
2236
2237 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
2238 {
2239 void *data = xdp->data + offset;
2240
2241 if (unlikely(data < xdp->data_hard_start ||
2242 data > xdp->data_end - ETH_HLEN))
2243 return -EINVAL;
2244
2245 xdp->data = data;
2246
2247 return 0;
2248 }
2249
2250 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
2251 .func = bpf_xdp_adjust_head,
2252 .gpl_only = false,
2253 .ret_type = RET_INTEGER,
2254 .arg1_type = ARG_PTR_TO_CTX,
2255 .arg2_type = ARG_ANYTHING,
2256 };
2257
2258 bool bpf_helper_changes_pkt_data(void *func)
2259 {
2260 if (func == bpf_skb_vlan_push ||
2261 func == bpf_skb_vlan_pop ||
2262 func == bpf_skb_store_bytes ||
2263 func == bpf_skb_change_proto ||
2264 func == bpf_skb_change_head ||
2265 func == bpf_skb_change_tail ||
2266 func == bpf_skb_pull_data ||
2267 func == bpf_l3_csum_replace ||
2268 func == bpf_l4_csum_replace ||
2269 func == bpf_xdp_adjust_head)
2270 return true;
2271
2272 return false;
2273 }
2274
2275 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
2276 unsigned long off, unsigned long len)
2277 {
2278 void *ptr = skb_header_pointer(skb, off, len, dst_buff);
2279
2280 if (unlikely(!ptr))
2281 return len;
2282 if (ptr != dst_buff)
2283 memcpy(dst_buff, ptr, len);
2284
2285 return 0;
2286 }
2287
2288 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
2289 u64, flags, void *, meta, u64, meta_size)
2290 {
2291 u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
2292
2293 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
2294 return -EINVAL;
2295 if (unlikely(skb_size > skb->len))
2296 return -EFAULT;
2297
2298 return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
2299 bpf_skb_copy);
2300 }
2301
2302 static const struct bpf_func_proto bpf_skb_event_output_proto = {
2303 .func = bpf_skb_event_output,
2304 .gpl_only = true,
2305 .ret_type = RET_INTEGER,
2306 .arg1_type = ARG_PTR_TO_CTX,
2307 .arg2_type = ARG_CONST_MAP_PTR,
2308 .arg3_type = ARG_ANYTHING,
2309 .arg4_type = ARG_PTR_TO_STACK,
2310 .arg5_type = ARG_CONST_STACK_SIZE,
2311 };
2312
2313 static unsigned short bpf_tunnel_key_af(u64 flags)
2314 {
2315 return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
2316 }
2317
2318 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
2319 u32, size, u64, flags)
2320 {
2321 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
2322 u8 compat[sizeof(struct bpf_tunnel_key)];
2323 void *to_orig = to;
2324 int err;
2325
2326 if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
2327 err = -EINVAL;
2328 goto err_clear;
2329 }
2330 if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
2331 err = -EPROTO;
2332 goto err_clear;
2333 }
2334 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
2335 err = -EINVAL;
2336 switch (size) {
2337 case offsetof(struct bpf_tunnel_key, tunnel_label):
2338 case offsetof(struct bpf_tunnel_key, tunnel_ext):
2339 goto set_compat;
2340 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
2341 /* Fixup deprecated structure layouts here, so we have
2342 * a common path later on.
2343 */
2344 if (ip_tunnel_info_af(info) != AF_INET)
2345 goto err_clear;
2346 set_compat:
2347 to = (struct bpf_tunnel_key *)compat;
2348 break;
2349 default:
2350 goto err_clear;
2351 }
2352 }
2353
2354 to->tunnel_id = be64_to_cpu(info->key.tun_id);
2355 to->tunnel_tos = info->key.tos;
2356 to->tunnel_ttl = info->key.ttl;
2357
2358 if (flags & BPF_F_TUNINFO_IPV6) {
2359 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
2360 sizeof(to->remote_ipv6));
2361 to->tunnel_label = be32_to_cpu(info->key.label);
2362 } else {
2363 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
2364 }
2365
2366 if (unlikely(size != sizeof(struct bpf_tunnel_key)))
2367 memcpy(to_orig, to, size);
2368
2369 return 0;
2370 err_clear:
2371 memset(to_orig, 0, size);
2372 return err;
2373 }
2374
2375 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
2376 .func = bpf_skb_get_tunnel_key,
2377 .gpl_only = false,
2378 .ret_type = RET_INTEGER,
2379 .arg1_type = ARG_PTR_TO_CTX,
2380 .arg2_type = ARG_PTR_TO_RAW_STACK,
2381 .arg3_type = ARG_CONST_STACK_SIZE,
2382 .arg4_type = ARG_ANYTHING,
2383 };
2384
2385 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
2386 {
2387 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
2388 int err;
2389
2390 if (unlikely(!info ||
2391 !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
2392 err = -ENOENT;
2393 goto err_clear;
2394 }
2395 if (unlikely(size < info->options_len)) {
2396 err = -ENOMEM;
2397 goto err_clear;
2398 }
2399
2400 ip_tunnel_info_opts_get(to, info);
2401 if (size > info->options_len)
2402 memset(to + info->options_len, 0, size - info->options_len);
2403
2404 return info->options_len;
2405 err_clear:
2406 memset(to, 0, size);
2407 return err;
2408 }
2409
2410 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
2411 .func = bpf_skb_get_tunnel_opt,
2412 .gpl_only = false,
2413 .ret_type = RET_INTEGER,
2414 .arg1_type = ARG_PTR_TO_CTX,
2415 .arg2_type = ARG_PTR_TO_RAW_STACK,
2416 .arg3_type = ARG_CONST_STACK_SIZE,
2417 };
2418
2419 static struct metadata_dst __percpu *md_dst;
2420
2421 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
2422 const struct bpf_tunnel_key *, from, u32, size, u64, flags)
2423 {
2424 struct metadata_dst *md = this_cpu_ptr(md_dst);
2425 u8 compat[sizeof(struct bpf_tunnel_key)];
2426 struct ip_tunnel_info *info;
2427
2428 if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
2429 BPF_F_DONT_FRAGMENT)))
2430 return -EINVAL;
2431 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
2432 switch (size) {
2433 case offsetof(struct bpf_tunnel_key, tunnel_label):
2434 case offsetof(struct bpf_tunnel_key, tunnel_ext):
2435 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
2436 /* Fixup deprecated structure layouts here, so we have
2437 * a common path later on.
2438 */
2439 memcpy(compat, from, size);
2440 memset(compat + size, 0, sizeof(compat) - size);
2441 from = (const struct bpf_tunnel_key *) compat;
2442 break;
2443 default:
2444 return -EINVAL;
2445 }
2446 }
2447 if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
2448 from->tunnel_ext))
2449 return -EINVAL;
2450
2451 skb_dst_drop(skb);
2452 dst_hold((struct dst_entry *) md);
2453 skb_dst_set(skb, (struct dst_entry *) md);
2454
2455 info = &md->u.tun_info;
2456 info->mode = IP_TUNNEL_INFO_TX;
2457
2458 info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
2459 if (flags & BPF_F_DONT_FRAGMENT)
2460 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
2461
2462 info->key.tun_id = cpu_to_be64(from->tunnel_id);
2463 info->key.tos = from->tunnel_tos;
2464 info->key.ttl = from->tunnel_ttl;
2465
2466 if (flags & BPF_F_TUNINFO_IPV6) {
2467 info->mode |= IP_TUNNEL_INFO_IPV6;
2468 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
2469 sizeof(from->remote_ipv6));
2470 info->key.label = cpu_to_be32(from->tunnel_label) &
2471 IPV6_FLOWLABEL_MASK;
2472 } else {
2473 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
2474 if (flags & BPF_F_ZERO_CSUM_TX)
2475 info->key.tun_flags &= ~TUNNEL_CSUM;
2476 }
2477
2478 return 0;
2479 }
2480
2481 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
2482 .func = bpf_skb_set_tunnel_key,
2483 .gpl_only = false,
2484 .ret_type = RET_INTEGER,
2485 .arg1_type = ARG_PTR_TO_CTX,
2486 .arg2_type = ARG_PTR_TO_STACK,
2487 .arg3_type = ARG_CONST_STACK_SIZE,
2488 .arg4_type = ARG_ANYTHING,
2489 };
2490
2491 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
2492 const u8 *, from, u32, size)
2493 {
2494 struct ip_tunnel_info *info = skb_tunnel_info(skb);
2495 const struct metadata_dst *md = this_cpu_ptr(md_dst);
2496
2497 if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
2498 return -EINVAL;
2499 if (unlikely(size > IP_TUNNEL_OPTS_MAX))
2500 return -ENOMEM;
2501
2502 ip_tunnel_info_opts_set(info, from, size);
2503
2504 return 0;
2505 }
2506
2507 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
2508 .func = bpf_skb_set_tunnel_opt,
2509 .gpl_only = false,
2510 .ret_type = RET_INTEGER,
2511 .arg1_type = ARG_PTR_TO_CTX,
2512 .arg2_type = ARG_PTR_TO_STACK,
2513 .arg3_type = ARG_CONST_STACK_SIZE,
2514 };
2515
2516 static const struct bpf_func_proto *
2517 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
2518 {
2519 if (!md_dst) {
2520 /* Race is not possible, since it's called from verifier
2521 * that is holding verifier mutex.
2522 */
2523 md_dst = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
2524 GFP_KERNEL);
2525 if (!md_dst)
2526 return NULL;
2527 }
2528
2529 switch (which) {
2530 case BPF_FUNC_skb_set_tunnel_key:
2531 return &bpf_skb_set_tunnel_key_proto;
2532 case BPF_FUNC_skb_set_tunnel_opt:
2533 return &bpf_skb_set_tunnel_opt_proto;
2534 default:
2535 return NULL;
2536 }
2537 }
2538
2539 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
2540 u32, idx)
2541 {
2542 struct bpf_array *array = container_of(map, struct bpf_array, map);
2543 struct cgroup *cgrp;
2544 struct sock *sk;
2545
2546 sk = skb_to_full_sk(skb);
2547 if (!sk || !sk_fullsock(sk))
2548 return -ENOENT;
2549 if (unlikely(idx >= array->map.max_entries))
2550 return -E2BIG;
2551
2552 cgrp = READ_ONCE(array->ptrs[idx]);
2553 if (unlikely(!cgrp))
2554 return -EAGAIN;
2555
2556 return sk_under_cgroup_hierarchy(sk, cgrp);
2557 }
2558
2559 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
2560 .func = bpf_skb_under_cgroup,
2561 .gpl_only = false,
2562 .ret_type = RET_INTEGER,
2563 .arg1_type = ARG_PTR_TO_CTX,
2564 .arg2_type = ARG_CONST_MAP_PTR,
2565 .arg3_type = ARG_ANYTHING,
2566 };
2567
2568 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
2569 unsigned long off, unsigned long len)
2570 {
2571 memcpy(dst_buff, src_buff + off, len);
2572 return 0;
2573 }
2574
2575 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
2576 u64, flags, void *, meta, u64, meta_size)
2577 {
2578 u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
2579
2580 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
2581 return -EINVAL;
2582 if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
2583 return -EFAULT;
2584
2585 return bpf_event_output(map, flags, meta, meta_size, xdp, xdp_size,
2586 bpf_xdp_copy);
2587 }
2588
2589 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
2590 .func = bpf_xdp_event_output,
2591 .gpl_only = true,
2592 .ret_type = RET_INTEGER,
2593 .arg1_type = ARG_PTR_TO_CTX,
2594 .arg2_type = ARG_CONST_MAP_PTR,
2595 .arg3_type = ARG_ANYTHING,
2596 .arg4_type = ARG_PTR_TO_STACK,
2597 .arg5_type = ARG_CONST_STACK_SIZE,
2598 };
2599
2600 static const struct bpf_func_proto *
2601 sk_filter_func_proto(enum bpf_func_id func_id)
2602 {
2603 switch (func_id) {
2604 case BPF_FUNC_map_lookup_elem:
2605 return &bpf_map_lookup_elem_proto;
2606 case BPF_FUNC_map_update_elem:
2607 return &bpf_map_update_elem_proto;
2608 case BPF_FUNC_map_delete_elem:
2609 return &bpf_map_delete_elem_proto;
2610 case BPF_FUNC_get_prandom_u32:
2611 return &bpf_get_prandom_u32_proto;
2612 case BPF_FUNC_get_smp_processor_id:
2613 return &bpf_get_raw_smp_processor_id_proto;
2614 case BPF_FUNC_get_numa_node_id:
2615 return &bpf_get_numa_node_id_proto;
2616 case BPF_FUNC_tail_call:
2617 return &bpf_tail_call_proto;
2618 case BPF_FUNC_ktime_get_ns:
2619 return &bpf_ktime_get_ns_proto;
2620 case BPF_FUNC_trace_printk:
2621 if (capable(CAP_SYS_ADMIN))
2622 return bpf_get_trace_printk_proto();
2623 default:
2624 return NULL;
2625 }
2626 }
2627
2628 static const struct bpf_func_proto *
2629 tc_cls_act_func_proto(enum bpf_func_id func_id)
2630 {
2631 switch (func_id) {
2632 case BPF_FUNC_skb_store_bytes:
2633 return &bpf_skb_store_bytes_proto;
2634 case BPF_FUNC_skb_load_bytes:
2635 return &bpf_skb_load_bytes_proto;
2636 case BPF_FUNC_skb_pull_data:
2637 return &bpf_skb_pull_data_proto;
2638 case BPF_FUNC_csum_diff:
2639 return &bpf_csum_diff_proto;
2640 case BPF_FUNC_csum_update:
2641 return &bpf_csum_update_proto;
2642 case BPF_FUNC_l3_csum_replace:
2643 return &bpf_l3_csum_replace_proto;
2644 case BPF_FUNC_l4_csum_replace:
2645 return &bpf_l4_csum_replace_proto;
2646 case BPF_FUNC_clone_redirect:
2647 return &bpf_clone_redirect_proto;
2648 case BPF_FUNC_get_cgroup_classid:
2649 return &bpf_get_cgroup_classid_proto;
2650 case BPF_FUNC_skb_vlan_push:
2651 return &bpf_skb_vlan_push_proto;
2652 case BPF_FUNC_skb_vlan_pop:
2653 return &bpf_skb_vlan_pop_proto;
2654 case BPF_FUNC_skb_change_proto:
2655 return &bpf_skb_change_proto_proto;
2656 case BPF_FUNC_skb_change_type:
2657 return &bpf_skb_change_type_proto;
2658 case BPF_FUNC_skb_change_tail:
2659 return &bpf_skb_change_tail_proto;
2660 case BPF_FUNC_skb_get_tunnel_key:
2661 return &bpf_skb_get_tunnel_key_proto;
2662 case BPF_FUNC_skb_set_tunnel_key:
2663 return bpf_get_skb_set_tunnel_proto(func_id);
2664 case BPF_FUNC_skb_get_tunnel_opt:
2665 return &bpf_skb_get_tunnel_opt_proto;
2666 case BPF_FUNC_skb_set_tunnel_opt:
2667 return bpf_get_skb_set_tunnel_proto(func_id);
2668 case BPF_FUNC_redirect:
2669 return &bpf_redirect_proto;
2670 case BPF_FUNC_get_route_realm:
2671 return &bpf_get_route_realm_proto;
2672 case BPF_FUNC_get_hash_recalc:
2673 return &bpf_get_hash_recalc_proto;
2674 case BPF_FUNC_set_hash_invalid:
2675 return &bpf_set_hash_invalid_proto;
2676 case BPF_FUNC_perf_event_output:
2677 return &bpf_skb_event_output_proto;
2678 case BPF_FUNC_get_smp_processor_id:
2679 return &bpf_get_smp_processor_id_proto;
2680 case BPF_FUNC_skb_under_cgroup:
2681 return &bpf_skb_under_cgroup_proto;
2682 default:
2683 return sk_filter_func_proto(func_id);
2684 }
2685 }
2686
2687 static const struct bpf_func_proto *
2688 xdp_func_proto(enum bpf_func_id func_id)
2689 {
2690 switch (func_id) {
2691 case BPF_FUNC_perf_event_output:
2692 return &bpf_xdp_event_output_proto;
2693 case BPF_FUNC_get_smp_processor_id:
2694 return &bpf_get_smp_processor_id_proto;
2695 case BPF_FUNC_xdp_adjust_head:
2696 return &bpf_xdp_adjust_head_proto;
2697 default:
2698 return sk_filter_func_proto(func_id);
2699 }
2700 }
2701
2702 static const struct bpf_func_proto *
2703 cg_skb_func_proto(enum bpf_func_id func_id)
2704 {
2705 switch (func_id) {
2706 case BPF_FUNC_skb_load_bytes:
2707 return &bpf_skb_load_bytes_proto;
2708 default:
2709 return sk_filter_func_proto(func_id);
2710 }
2711 }
2712
2713 static const struct bpf_func_proto *
2714 lwt_inout_func_proto(enum bpf_func_id func_id)
2715 {
2716 switch (func_id) {
2717 case BPF_FUNC_skb_load_bytes:
2718 return &bpf_skb_load_bytes_proto;
2719 case BPF_FUNC_skb_pull_data:
2720 return &bpf_skb_pull_data_proto;
2721 case BPF_FUNC_csum_diff:
2722 return &bpf_csum_diff_proto;
2723 case BPF_FUNC_get_cgroup_classid:
2724 return &bpf_get_cgroup_classid_proto;
2725 case BPF_FUNC_get_route_realm:
2726 return &bpf_get_route_realm_proto;
2727 case BPF_FUNC_get_hash_recalc:
2728 return &bpf_get_hash_recalc_proto;
2729 case BPF_FUNC_perf_event_output:
2730 return &bpf_skb_event_output_proto;
2731 case BPF_FUNC_get_smp_processor_id:
2732 return &bpf_get_smp_processor_id_proto;
2733 case BPF_FUNC_skb_under_cgroup:
2734 return &bpf_skb_under_cgroup_proto;
2735 default:
2736 return sk_filter_func_proto(func_id);
2737 }
2738 }
2739
2740 static const struct bpf_func_proto *
2741 lwt_xmit_func_proto(enum bpf_func_id func_id)
2742 {
2743 switch (func_id) {
2744 case BPF_FUNC_skb_get_tunnel_key:
2745 return &bpf_skb_get_tunnel_key_proto;
2746 case BPF_FUNC_skb_set_tunnel_key:
2747 return bpf_get_skb_set_tunnel_proto(func_id);
2748 case BPF_FUNC_skb_get_tunnel_opt:
2749 return &bpf_skb_get_tunnel_opt_proto;
2750 case BPF_FUNC_skb_set_tunnel_opt:
2751 return bpf_get_skb_set_tunnel_proto(func_id);
2752 case BPF_FUNC_redirect:
2753 return &bpf_redirect_proto;
2754 case BPF_FUNC_clone_redirect:
2755 return &bpf_clone_redirect_proto;
2756 case BPF_FUNC_skb_change_tail:
2757 return &bpf_skb_change_tail_proto;
2758 case BPF_FUNC_skb_change_head:
2759 return &bpf_skb_change_head_proto;
2760 case BPF_FUNC_skb_store_bytes:
2761 return &bpf_skb_store_bytes_proto;
2762 case BPF_FUNC_csum_update:
2763 return &bpf_csum_update_proto;
2764 case BPF_FUNC_l3_csum_replace:
2765 return &bpf_l3_csum_replace_proto;
2766 case BPF_FUNC_l4_csum_replace:
2767 return &bpf_l4_csum_replace_proto;
2768 case BPF_FUNC_set_hash_invalid:
2769 return &bpf_set_hash_invalid_proto;
2770 default:
2771 return lwt_inout_func_proto(func_id);
2772 }
2773 }
2774
2775 static bool __is_valid_access(int off, int size)
2776 {
2777 if (off < 0 || off >= sizeof(struct __sk_buff))
2778 return false;
2779 /* The verifier guarantees that size > 0. */
2780 if (off % size != 0)
2781 return false;
2782 if (size != sizeof(__u32))
2783 return false;
2784
2785 return true;
2786 }
2787
2788 static bool sk_filter_is_valid_access(int off, int size,
2789 enum bpf_access_type type,
2790 enum bpf_reg_type *reg_type)
2791 {
2792 switch (off) {
2793 case offsetof(struct __sk_buff, tc_classid):
2794 case offsetof(struct __sk_buff, data):
2795 case offsetof(struct __sk_buff, data_end):
2796 return false;
2797 }
2798
2799 if (type == BPF_WRITE) {
2800 switch (off) {
2801 case offsetof(struct __sk_buff, cb[0]) ...
2802 offsetof(struct __sk_buff, cb[4]):
2803 break;
2804 default:
2805 return false;
2806 }
2807 }
2808
2809 return __is_valid_access(off, size);
2810 }
2811
2812 static bool lwt_is_valid_access(int off, int size,
2813 enum bpf_access_type type,
2814 enum bpf_reg_type *reg_type)
2815 {
2816 switch (off) {
2817 case offsetof(struct __sk_buff, tc_classid):
2818 return false;
2819 }
2820
2821 if (type == BPF_WRITE) {
2822 switch (off) {
2823 case offsetof(struct __sk_buff, mark):
2824 case offsetof(struct __sk_buff, priority):
2825 case offsetof(struct __sk_buff, cb[0]) ...
2826 offsetof(struct __sk_buff, cb[4]):
2827 break;
2828 default:
2829 return false;
2830 }
2831 }
2832
2833 switch (off) {
2834 case offsetof(struct __sk_buff, data):
2835 *reg_type = PTR_TO_PACKET;
2836 break;
2837 case offsetof(struct __sk_buff, data_end):
2838 *reg_type = PTR_TO_PACKET_END;
2839 break;
2840 }
2841
2842 return __is_valid_access(off, size);
2843 }
2844
2845 static bool sock_filter_is_valid_access(int off, int size,
2846 enum bpf_access_type type,
2847 enum bpf_reg_type *reg_type)
2848 {
2849 if (type == BPF_WRITE) {
2850 switch (off) {
2851 case offsetof(struct bpf_sock, bound_dev_if):
2852 break;
2853 default:
2854 return false;
2855 }
2856 }
2857
2858 if (off < 0 || off + size > sizeof(struct bpf_sock))
2859 return false;
2860 /* The verifier guarantees that size > 0. */
2861 if (off % size != 0)
2862 return false;
2863 if (size != sizeof(__u32))
2864 return false;
2865
2866 return true;
2867 }
2868
2869 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
2870 const struct bpf_prog *prog)
2871 {
2872 struct bpf_insn *insn = insn_buf;
2873
2874 if (!direct_write)
2875 return 0;
2876
2877 /* if (!skb->cloned)
2878 * goto start;
2879 *
2880 * (Fast-path, otherwise approximation that we might be
2881 * a clone, do the rest in helper.)
2882 */
2883 *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
2884 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
2885 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
2886
2887 /* ret = bpf_skb_pull_data(skb, 0); */
2888 *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
2889 *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
2890 *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
2891 BPF_FUNC_skb_pull_data);
2892 /* if (!ret)
2893 * goto restore;
2894 * return TC_ACT_SHOT;
2895 */
2896 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
2897 *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, TC_ACT_SHOT);
2898 *insn++ = BPF_EXIT_INSN();
2899
2900 /* restore: */
2901 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
2902 /* start: */
2903 *insn++ = prog->insnsi[0];
2904
2905 return insn - insn_buf;
2906 }
2907
2908 static bool tc_cls_act_is_valid_access(int off, int size,
2909 enum bpf_access_type type,
2910 enum bpf_reg_type *reg_type)
2911 {
2912 if (type == BPF_WRITE) {
2913 switch (off) {
2914 case offsetof(struct __sk_buff, mark):
2915 case offsetof(struct __sk_buff, tc_index):
2916 case offsetof(struct __sk_buff, priority):
2917 case offsetof(struct __sk_buff, cb[0]) ...
2918 offsetof(struct __sk_buff, cb[4]):
2919 case offsetof(struct __sk_buff, tc_classid):
2920 break;
2921 default:
2922 return false;
2923 }
2924 }
2925
2926 switch (off) {
2927 case offsetof(struct __sk_buff, data):
2928 *reg_type = PTR_TO_PACKET;
2929 break;
2930 case offsetof(struct __sk_buff, data_end):
2931 *reg_type = PTR_TO_PACKET_END;
2932 break;
2933 }
2934
2935 return __is_valid_access(off, size);
2936 }
2937
2938 static bool __is_valid_xdp_access(int off, int size)
2939 {
2940 if (off < 0 || off >= sizeof(struct xdp_md))
2941 return false;
2942 if (off % size != 0)
2943 return false;
2944 if (size != sizeof(__u32))
2945 return false;
2946
2947 return true;
2948 }
2949
2950 static bool xdp_is_valid_access(int off, int size,
2951 enum bpf_access_type type,
2952 enum bpf_reg_type *reg_type)
2953 {
2954 if (type == BPF_WRITE)
2955 return false;
2956
2957 switch (off) {
2958 case offsetof(struct xdp_md, data):
2959 *reg_type = PTR_TO_PACKET;
2960 break;
2961 case offsetof(struct xdp_md, data_end):
2962 *reg_type = PTR_TO_PACKET_END;
2963 break;
2964 }
2965
2966 return __is_valid_xdp_access(off, size);
2967 }
2968
2969 void bpf_warn_invalid_xdp_action(u32 act)
2970 {
2971 WARN_ONCE(1, "Illegal XDP return value %u, expect packet loss\n", act);
2972 }
2973 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
2974
2975 static u32 sk_filter_convert_ctx_access(enum bpf_access_type type, int dst_reg,
2976 int src_reg, int ctx_off,
2977 struct bpf_insn *insn_buf,
2978 struct bpf_prog *prog)
2979 {
2980 struct bpf_insn *insn = insn_buf;
2981
2982 switch (ctx_off) {
2983 case offsetof(struct __sk_buff, len):
2984 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
2985
2986 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
2987 offsetof(struct sk_buff, len));
2988 break;
2989
2990 case offsetof(struct __sk_buff, protocol):
2991 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
2992
2993 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
2994 offsetof(struct sk_buff, protocol));
2995 break;
2996
2997 case offsetof(struct __sk_buff, vlan_proto):
2998 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
2999
3000 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
3001 offsetof(struct sk_buff, vlan_proto));
3002 break;
3003
3004 case offsetof(struct __sk_buff, priority):
3005 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, priority) != 4);
3006
3007 if (type == BPF_WRITE)
3008 *insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
3009 offsetof(struct sk_buff, priority));
3010 else
3011 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
3012 offsetof(struct sk_buff, priority));
3013 break;
3014
3015 case offsetof(struct __sk_buff, ingress_ifindex):
3016 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, skb_iif) != 4);
3017
3018 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
3019 offsetof(struct sk_buff, skb_iif));
3020 break;
3021
3022 case offsetof(struct __sk_buff, ifindex):
3023 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
3024
3025 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
3026 dst_reg, src_reg,
3027 offsetof(struct sk_buff, dev));
3028 *insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
3029 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, dst_reg,
3030 offsetof(struct net_device, ifindex));
3031 break;
3032
3033 case offsetof(struct __sk_buff, hash):
3034 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
3035
3036 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
3037 offsetof(struct sk_buff, hash));
3038 break;
3039
3040 case offsetof(struct __sk_buff, mark):
3041 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
3042
3043 if (type == BPF_WRITE)
3044 *insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
3045 offsetof(struct sk_buff, mark));
3046 else
3047 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
3048 offsetof(struct sk_buff, mark));
3049 break;
3050
3051 case offsetof(struct __sk_buff, pkt_type):
3052 return convert_skb_access(SKF_AD_PKTTYPE, dst_reg, src_reg, insn);
3053
3054 case offsetof(struct __sk_buff, queue_mapping):
3055 return convert_skb_access(SKF_AD_QUEUE, dst_reg, src_reg, insn);
3056
3057 case offsetof(struct __sk_buff, vlan_present):
3058 return convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
3059 dst_reg, src_reg, insn);
3060
3061 case offsetof(struct __sk_buff, vlan_tci):
3062 return convert_skb_access(SKF_AD_VLAN_TAG,
3063 dst_reg, src_reg, insn);
3064
3065 case offsetof(struct __sk_buff, cb[0]) ...
3066 offsetof(struct __sk_buff, cb[4]):
3067 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
3068
3069 prog->cb_access = 1;
3070 ctx_off -= offsetof(struct __sk_buff, cb[0]);
3071 ctx_off += offsetof(struct sk_buff, cb);
3072 ctx_off += offsetof(struct qdisc_skb_cb, data);
3073 if (type == BPF_WRITE)
3074 *insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
3075 else
3076 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
3077 break;
3078
3079 case offsetof(struct __sk_buff, tc_classid):
3080 ctx_off -= offsetof(struct __sk_buff, tc_classid);
3081 ctx_off += offsetof(struct sk_buff, cb);
3082 ctx_off += offsetof(struct qdisc_skb_cb, tc_classid);
3083 if (type == BPF_WRITE)
3084 *insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg, ctx_off);
3085 else
3086 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg, ctx_off);
3087 break;
3088
3089 case offsetof(struct __sk_buff, data):
3090 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
3091 dst_reg, src_reg,
3092 offsetof(struct sk_buff, data));
3093 break;
3094
3095 case offsetof(struct __sk_buff, data_end):
3096 ctx_off -= offsetof(struct __sk_buff, data_end);
3097 ctx_off += offsetof(struct sk_buff, cb);
3098 ctx_off += offsetof(struct bpf_skb_data_end, data_end);
3099 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), dst_reg, src_reg,
3100 ctx_off);
3101 break;
3102
3103 case offsetof(struct __sk_buff, tc_index):
3104 #ifdef CONFIG_NET_SCHED
3105 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, tc_index) != 2);
3106
3107 if (type == BPF_WRITE)
3108 *insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg,
3109 offsetof(struct sk_buff, tc_index));
3110 else
3111 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
3112 offsetof(struct sk_buff, tc_index));
3113 break;
3114 #else
3115 if (type == BPF_WRITE)
3116 *insn++ = BPF_MOV64_REG(dst_reg, dst_reg);
3117 else
3118 *insn++ = BPF_MOV64_IMM(dst_reg, 0);
3119 break;
3120 #endif
3121 }
3122
3123 return insn - insn_buf;
3124 }
3125
3126 static u32 sock_filter_convert_ctx_access(enum bpf_access_type type,
3127 int dst_reg, int src_reg,
3128 int ctx_off,
3129 struct bpf_insn *insn_buf,
3130 struct bpf_prog *prog)
3131 {
3132 struct bpf_insn *insn = insn_buf;
3133
3134 switch (ctx_off) {
3135 case offsetof(struct bpf_sock, bound_dev_if):
3136 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);
3137
3138 if (type == BPF_WRITE)
3139 *insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
3140 offsetof(struct sock, sk_bound_dev_if));
3141 else
3142 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
3143 offsetof(struct sock, sk_bound_dev_if));
3144 break;
3145
3146 case offsetof(struct bpf_sock, family):
3147 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_family) != 2);
3148
3149 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
3150 offsetof(struct sock, sk_family));
3151 break;
3152
3153 case offsetof(struct bpf_sock, type):
3154 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
3155 offsetof(struct sock, __sk_flags_offset));
3156 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, SK_FL_TYPE_MASK);
3157 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, SK_FL_TYPE_SHIFT);
3158 break;
3159
3160 case offsetof(struct bpf_sock, protocol):
3161 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
3162 offsetof(struct sock, __sk_flags_offset));
3163 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, SK_FL_PROTO_MASK);
3164 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, SK_FL_PROTO_SHIFT);
3165 break;
3166 }
3167
3168 return insn - insn_buf;
3169 }
3170
3171 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type, int dst_reg,
3172 int src_reg, int ctx_off,
3173 struct bpf_insn *insn_buf,
3174 struct bpf_prog *prog)
3175 {
3176 struct bpf_insn *insn = insn_buf;
3177
3178 switch (ctx_off) {
3179 case offsetof(struct __sk_buff, ifindex):
3180 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
3181
3182 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
3183 dst_reg, src_reg,
3184 offsetof(struct sk_buff, dev));
3185 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, dst_reg,
3186 offsetof(struct net_device, ifindex));
3187 break;
3188 default:
3189 return sk_filter_convert_ctx_access(type, dst_reg, src_reg,
3190 ctx_off, insn_buf, prog);
3191 }
3192
3193 return insn - insn_buf;
3194 }
3195
3196 static u32 xdp_convert_ctx_access(enum bpf_access_type type, int dst_reg,
3197 int src_reg, int ctx_off,
3198 struct bpf_insn *insn_buf,
3199 struct bpf_prog *prog)
3200 {
3201 struct bpf_insn *insn = insn_buf;
3202
3203 switch (ctx_off) {
3204 case offsetof(struct xdp_md, data):
3205 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
3206 dst_reg, src_reg,
3207 offsetof(struct xdp_buff, data));
3208 break;
3209 case offsetof(struct xdp_md, data_end):
3210 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
3211 dst_reg, src_reg,
3212 offsetof(struct xdp_buff, data_end));
3213 break;
3214 }
3215
3216 return insn - insn_buf;
3217 }
3218
3219 static const struct bpf_verifier_ops sk_filter_ops = {
3220 .get_func_proto = sk_filter_func_proto,
3221 .is_valid_access = sk_filter_is_valid_access,
3222 .convert_ctx_access = sk_filter_convert_ctx_access,
3223 };
3224
3225 static const struct bpf_verifier_ops tc_cls_act_ops = {
3226 .get_func_proto = tc_cls_act_func_proto,
3227 .is_valid_access = tc_cls_act_is_valid_access,
3228 .convert_ctx_access = tc_cls_act_convert_ctx_access,
3229 .gen_prologue = tc_cls_act_prologue,
3230 };
3231
3232 static const struct bpf_verifier_ops xdp_ops = {
3233 .get_func_proto = xdp_func_proto,
3234 .is_valid_access = xdp_is_valid_access,
3235 .convert_ctx_access = xdp_convert_ctx_access,
3236 };
3237
3238 static const struct bpf_verifier_ops cg_skb_ops = {
3239 .get_func_proto = cg_skb_func_proto,
3240 .is_valid_access = sk_filter_is_valid_access,
3241 .convert_ctx_access = sk_filter_convert_ctx_access,
3242 };
3243
3244 static const struct bpf_verifier_ops lwt_inout_ops = {
3245 .get_func_proto = lwt_inout_func_proto,
3246 .is_valid_access = lwt_is_valid_access,
3247 .convert_ctx_access = sk_filter_convert_ctx_access,
3248 };
3249
3250 static const struct bpf_verifier_ops lwt_xmit_ops = {
3251 .get_func_proto = lwt_xmit_func_proto,
3252 .is_valid_access = lwt_is_valid_access,
3253 .convert_ctx_access = sk_filter_convert_ctx_access,
3254 .gen_prologue = tc_cls_act_prologue,
3255 };
3256
3257 static const struct bpf_verifier_ops cg_sock_ops = {
3258 .get_func_proto = sk_filter_func_proto,
3259 .is_valid_access = sock_filter_is_valid_access,
3260 .convert_ctx_access = sock_filter_convert_ctx_access,
3261 };
3262
3263 static struct bpf_prog_type_list sk_filter_type __read_mostly = {
3264 .ops = &sk_filter_ops,
3265 .type = BPF_PROG_TYPE_SOCKET_FILTER,
3266 };
3267
3268 static struct bpf_prog_type_list sched_cls_type __read_mostly = {
3269 .ops = &tc_cls_act_ops,
3270 .type = BPF_PROG_TYPE_SCHED_CLS,
3271 };
3272
3273 static struct bpf_prog_type_list sched_act_type __read_mostly = {
3274 .ops = &tc_cls_act_ops,
3275 .type = BPF_PROG_TYPE_SCHED_ACT,
3276 };
3277
3278 static struct bpf_prog_type_list xdp_type __read_mostly = {
3279 .ops = &xdp_ops,
3280 .type = BPF_PROG_TYPE_XDP,
3281 };
3282
3283 static struct bpf_prog_type_list cg_skb_type __read_mostly = {
3284 .ops = &cg_skb_ops,
3285 .type = BPF_PROG_TYPE_CGROUP_SKB,
3286 };
3287
3288 static struct bpf_prog_type_list lwt_in_type __read_mostly = {
3289 .ops = &lwt_inout_ops,
3290 .type = BPF_PROG_TYPE_LWT_IN,
3291 };
3292
3293 static struct bpf_prog_type_list lwt_out_type __read_mostly = {
3294 .ops = &lwt_inout_ops,
3295 .type = BPF_PROG_TYPE_LWT_OUT,
3296 };
3297
3298 static struct bpf_prog_type_list lwt_xmit_type __read_mostly = {
3299 .ops = &lwt_xmit_ops,
3300 .type = BPF_PROG_TYPE_LWT_XMIT,
3301 };
3302
3303 static struct bpf_prog_type_list cg_sock_type __read_mostly = {
3304 .ops = &cg_sock_ops,
3305 .type = BPF_PROG_TYPE_CGROUP_SOCK
3306 };
3307
3308 static int __init register_sk_filter_ops(void)
3309 {
3310 bpf_register_prog_type(&sk_filter_type);
3311 bpf_register_prog_type(&sched_cls_type);
3312 bpf_register_prog_type(&sched_act_type);
3313 bpf_register_prog_type(&xdp_type);
3314 bpf_register_prog_type(&cg_skb_type);
3315 bpf_register_prog_type(&cg_sock_type);
3316 bpf_register_prog_type(&lwt_in_type);
3317 bpf_register_prog_type(&lwt_out_type);
3318 bpf_register_prog_type(&lwt_xmit_type);
3319
3320 return 0;
3321 }
3322 late_initcall(register_sk_filter_ops);
3323
3324 int sk_detach_filter(struct sock *sk)
3325 {
3326 int ret = -ENOENT;
3327 struct sk_filter *filter;
3328
3329 if (sock_flag(sk, SOCK_FILTER_LOCKED))
3330 return -EPERM;
3331
3332 filter = rcu_dereference_protected(sk->sk_filter,
3333 lockdep_sock_is_held(sk));
3334 if (filter) {
3335 RCU_INIT_POINTER(sk->sk_filter, NULL);
3336 sk_filter_uncharge(sk, filter);
3337 ret = 0;
3338 }
3339
3340 return ret;
3341 }
3342 EXPORT_SYMBOL_GPL(sk_detach_filter);
3343
3344 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
3345 unsigned int len)
3346 {
3347 struct sock_fprog_kern *fprog;
3348 struct sk_filter *filter;
3349 int ret = 0;
3350
3351 lock_sock(sk);
3352 filter = rcu_dereference_protected(sk->sk_filter,
3353 lockdep_sock_is_held(sk));
3354 if (!filter)
3355 goto out;
3356
3357 /* We're copying the filter that has been originally attached,
3358 * so no conversion/decode needed anymore. eBPF programs that
3359 * have no original program cannot be dumped through this.
3360 */
3361 ret = -EACCES;
3362 fprog = filter->prog->orig_prog;
3363 if (!fprog)
3364 goto out;
3365
3366 ret = fprog->len;
3367 if (!len)
3368 /* User space only enquires number of filter blocks. */
3369 goto out;
3370
3371 ret = -EINVAL;
3372 if (len < fprog->len)
3373 goto out;
3374
3375 ret = -EFAULT;
3376 if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
3377 goto out;
3378
3379 /* Instead of bytes, the API requests to return the number
3380 * of filter blocks.
3381 */
3382 ret = fprog->len;
3383 out:
3384 release_sock(sk);
3385 return ret;
3386 }