]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/core/filter.c
net-sysfs: Fix reference count leak
[mirror_ubuntu-bionic-kernel.git] / net / core / filter.c
1 /*
2 * Linux Socket Filter - Kernel level socket filtering
3 *
4 * Based on the design of the Berkeley Packet Filter. The new
5 * internal format has been designed by PLUMgrid:
6 *
7 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8 *
9 * Authors:
10 *
11 * Jay Schulist <jschlst@samba.org>
12 * Alexei Starovoitov <ast@plumgrid.com>
13 * Daniel Borkmann <dborkman@redhat.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 *
20 * Andi Kleen - Fix a few bad bugs and races.
21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22 */
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/sock_diag.h>
30 #include <linux/in.h>
31 #include <linux/inet.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_packet.h>
34 #include <linux/if_arp.h>
35 #include <linux/gfp.h>
36 #include <net/ip.h>
37 #include <net/protocol.h>
38 #include <net/netlink.h>
39 #include <linux/skbuff.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <asm/cmpxchg.h>
47 #include <linux/filter.h>
48 #include <linux/ratelimit.h>
49 #include <linux/seccomp.h>
50 #include <linux/if_vlan.h>
51 #include <linux/bpf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <linux/bpf_trace.h>
60
61 /**
62 * sk_filter_trim_cap - run a packet through a socket filter
63 * @sk: sock associated with &sk_buff
64 * @skb: buffer to filter
65 * @cap: limit on how short the eBPF program may trim the packet
66 *
67 * Run the eBPF program and then cut skb->data to correct size returned by
68 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
69 * than pkt_len we keep whole skb->data. This is the socket level
70 * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
71 * be accepted or -EPERM if the packet should be tossed.
72 *
73 */
74 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
75 {
76 int err;
77 struct sk_filter *filter;
78
79 /*
80 * If the skb was allocated from pfmemalloc reserves, only
81 * allow SOCK_MEMALLOC sockets to use it as this socket is
82 * helping free memory
83 */
84 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
85 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
86 return -ENOMEM;
87 }
88 err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
89 if (err)
90 return err;
91
92 err = security_sock_rcv_skb(sk, skb);
93 if (err)
94 return err;
95
96 rcu_read_lock();
97 filter = rcu_dereference(sk->sk_filter);
98 if (filter) {
99 struct sock *save_sk = skb->sk;
100 unsigned int pkt_len;
101
102 skb->sk = sk;
103 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
104 skb->sk = save_sk;
105 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
106 }
107 rcu_read_unlock();
108
109 return err;
110 }
111 EXPORT_SYMBOL(sk_filter_trim_cap);
112
113 BPF_CALL_1(__skb_get_pay_offset, struct sk_buff *, skb)
114 {
115 return skb_get_poff(skb);
116 }
117
118 BPF_CALL_3(__skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
119 {
120 struct nlattr *nla;
121
122 if (skb_is_nonlinear(skb))
123 return 0;
124
125 if (skb->len < sizeof(struct nlattr))
126 return 0;
127
128 if (a > skb->len - sizeof(struct nlattr))
129 return 0;
130
131 nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
132 if (nla)
133 return (void *) nla - (void *) skb->data;
134
135 return 0;
136 }
137
138 BPF_CALL_3(__skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
139 {
140 struct nlattr *nla;
141
142 if (skb_is_nonlinear(skb))
143 return 0;
144
145 if (skb->len < sizeof(struct nlattr))
146 return 0;
147
148 if (a > skb->len - sizeof(struct nlattr))
149 return 0;
150
151 nla = (struct nlattr *) &skb->data[a];
152 if (nla->nla_len > skb->len - a)
153 return 0;
154
155 nla = nla_find_nested(nla, x);
156 if (nla)
157 return (void *) nla - (void *) skb->data;
158
159 return 0;
160 }
161
162 BPF_CALL_0(__get_raw_cpu_id)
163 {
164 return raw_smp_processor_id();
165 }
166
167 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
168 .func = __get_raw_cpu_id,
169 .gpl_only = false,
170 .ret_type = RET_INTEGER,
171 };
172
173 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
174 struct bpf_insn *insn_buf)
175 {
176 struct bpf_insn *insn = insn_buf;
177
178 switch (skb_field) {
179 case SKF_AD_MARK:
180 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
181
182 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
183 offsetof(struct sk_buff, mark));
184 break;
185
186 case SKF_AD_PKTTYPE:
187 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
188 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
189 #ifdef __BIG_ENDIAN_BITFIELD
190 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
191 #endif
192 break;
193
194 case SKF_AD_QUEUE:
195 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
196
197 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
198 offsetof(struct sk_buff, queue_mapping));
199 break;
200
201 case SKF_AD_VLAN_TAG:
202 case SKF_AD_VLAN_TAG_PRESENT:
203 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
204 BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
205
206 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
207 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
208 offsetof(struct sk_buff, vlan_tci));
209 if (skb_field == SKF_AD_VLAN_TAG) {
210 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
211 ~VLAN_TAG_PRESENT);
212 } else {
213 /* dst_reg >>= 12 */
214 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
215 /* dst_reg &= 1 */
216 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
217 }
218 break;
219 }
220
221 return insn - insn_buf;
222 }
223
224 static bool convert_bpf_extensions(struct sock_filter *fp,
225 struct bpf_insn **insnp)
226 {
227 struct bpf_insn *insn = *insnp;
228 u32 cnt;
229
230 switch (fp->k) {
231 case SKF_AD_OFF + SKF_AD_PROTOCOL:
232 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
233
234 /* A = *(u16 *) (CTX + offsetof(protocol)) */
235 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
236 offsetof(struct sk_buff, protocol));
237 /* A = ntohs(A) [emitting a nop or swap16] */
238 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
239 break;
240
241 case SKF_AD_OFF + SKF_AD_PKTTYPE:
242 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
243 insn += cnt - 1;
244 break;
245
246 case SKF_AD_OFF + SKF_AD_IFINDEX:
247 case SKF_AD_OFF + SKF_AD_HATYPE:
248 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
249 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
250
251 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
252 BPF_REG_TMP, BPF_REG_CTX,
253 offsetof(struct sk_buff, dev));
254 /* if (tmp != 0) goto pc + 1 */
255 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
256 *insn++ = BPF_EXIT_INSN();
257 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
258 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
259 offsetof(struct net_device, ifindex));
260 else
261 *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
262 offsetof(struct net_device, type));
263 break;
264
265 case SKF_AD_OFF + SKF_AD_MARK:
266 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
267 insn += cnt - 1;
268 break;
269
270 case SKF_AD_OFF + SKF_AD_RXHASH:
271 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
272
273 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
274 offsetof(struct sk_buff, hash));
275 break;
276
277 case SKF_AD_OFF + SKF_AD_QUEUE:
278 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
279 insn += cnt - 1;
280 break;
281
282 case SKF_AD_OFF + SKF_AD_VLAN_TAG:
283 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
284 BPF_REG_A, BPF_REG_CTX, insn);
285 insn += cnt - 1;
286 break;
287
288 case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
289 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
290 BPF_REG_A, BPF_REG_CTX, insn);
291 insn += cnt - 1;
292 break;
293
294 case SKF_AD_OFF + SKF_AD_VLAN_TPID:
295 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
296
297 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
298 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
299 offsetof(struct sk_buff, vlan_proto));
300 /* A = ntohs(A) [emitting a nop or swap16] */
301 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
302 break;
303
304 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
305 case SKF_AD_OFF + SKF_AD_NLATTR:
306 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
307 case SKF_AD_OFF + SKF_AD_CPU:
308 case SKF_AD_OFF + SKF_AD_RANDOM:
309 /* arg1 = CTX */
310 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
311 /* arg2 = A */
312 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
313 /* arg3 = X */
314 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
315 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
316 switch (fp->k) {
317 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
318 *insn = BPF_EMIT_CALL(__skb_get_pay_offset);
319 break;
320 case SKF_AD_OFF + SKF_AD_NLATTR:
321 *insn = BPF_EMIT_CALL(__skb_get_nlattr);
322 break;
323 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
324 *insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
325 break;
326 case SKF_AD_OFF + SKF_AD_CPU:
327 *insn = BPF_EMIT_CALL(__get_raw_cpu_id);
328 break;
329 case SKF_AD_OFF + SKF_AD_RANDOM:
330 *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
331 bpf_user_rnd_init_once();
332 break;
333 }
334 break;
335
336 case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
337 /* A ^= X */
338 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
339 break;
340
341 default:
342 /* This is just a dummy call to avoid letting the compiler
343 * evict __bpf_call_base() as an optimization. Placed here
344 * where no-one bothers.
345 */
346 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
347 return false;
348 }
349
350 *insnp = insn;
351 return true;
352 }
353
354 /**
355 * bpf_convert_filter - convert filter program
356 * @prog: the user passed filter program
357 * @len: the length of the user passed filter program
358 * @new_prog: allocated 'struct bpf_prog' or NULL
359 * @new_len: pointer to store length of converted program
360 *
361 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
362 * style extended BPF (eBPF).
363 * Conversion workflow:
364 *
365 * 1) First pass for calculating the new program length:
366 * bpf_convert_filter(old_prog, old_len, NULL, &new_len)
367 *
368 * 2) 2nd pass to remap in two passes: 1st pass finds new
369 * jump offsets, 2nd pass remapping:
370 * bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
371 */
372 static int bpf_convert_filter(struct sock_filter *prog, int len,
373 struct bpf_prog *new_prog, int *new_len)
374 {
375 int new_flen = 0, pass = 0, target, i, stack_off;
376 struct bpf_insn *new_insn, *first_insn = NULL;
377 struct sock_filter *fp;
378 int *addrs = NULL;
379 u8 bpf_src;
380
381 BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
382 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
383
384 if (len <= 0 || len > BPF_MAXINSNS)
385 return -EINVAL;
386
387 if (new_prog) {
388 first_insn = new_prog->insnsi;
389 addrs = kcalloc(len, sizeof(*addrs),
390 GFP_KERNEL | __GFP_NOWARN);
391 if (!addrs)
392 return -ENOMEM;
393 }
394
395 do_pass:
396 new_insn = first_insn;
397 fp = prog;
398
399 /* Classic BPF related prologue emission. */
400 if (new_prog) {
401 /* Classic BPF expects A and X to be reset first. These need
402 * to be guaranteed to be the first two instructions.
403 */
404 *new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
405 *new_insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
406
407 /* All programs must keep CTX in callee saved BPF_REG_CTX.
408 * In eBPF case it's done by the compiler, here we need to
409 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
410 */
411 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
412 } else {
413 new_insn += 3;
414 }
415
416 for (i = 0; i < len; fp++, i++) {
417 struct bpf_insn tmp_insns[6] = { };
418 struct bpf_insn *insn = tmp_insns;
419
420 if (addrs)
421 addrs[i] = new_insn - first_insn;
422
423 switch (fp->code) {
424 /* All arithmetic insns and skb loads map as-is. */
425 case BPF_ALU | BPF_ADD | BPF_X:
426 case BPF_ALU | BPF_ADD | BPF_K:
427 case BPF_ALU | BPF_SUB | BPF_X:
428 case BPF_ALU | BPF_SUB | BPF_K:
429 case BPF_ALU | BPF_AND | BPF_X:
430 case BPF_ALU | BPF_AND | BPF_K:
431 case BPF_ALU | BPF_OR | BPF_X:
432 case BPF_ALU | BPF_OR | BPF_K:
433 case BPF_ALU | BPF_LSH | BPF_X:
434 case BPF_ALU | BPF_LSH | BPF_K:
435 case BPF_ALU | BPF_RSH | BPF_X:
436 case BPF_ALU | BPF_RSH | BPF_K:
437 case BPF_ALU | BPF_XOR | BPF_X:
438 case BPF_ALU | BPF_XOR | BPF_K:
439 case BPF_ALU | BPF_MUL | BPF_X:
440 case BPF_ALU | BPF_MUL | BPF_K:
441 case BPF_ALU | BPF_DIV | BPF_X:
442 case BPF_ALU | BPF_DIV | BPF_K:
443 case BPF_ALU | BPF_MOD | BPF_X:
444 case BPF_ALU | BPF_MOD | BPF_K:
445 case BPF_ALU | BPF_NEG:
446 case BPF_LD | BPF_ABS | BPF_W:
447 case BPF_LD | BPF_ABS | BPF_H:
448 case BPF_LD | BPF_ABS | BPF_B:
449 case BPF_LD | BPF_IND | BPF_W:
450 case BPF_LD | BPF_IND | BPF_H:
451 case BPF_LD | BPF_IND | BPF_B:
452 /* Check for overloaded BPF extension and
453 * directly convert it if found, otherwise
454 * just move on with mapping.
455 */
456 if (BPF_CLASS(fp->code) == BPF_LD &&
457 BPF_MODE(fp->code) == BPF_ABS &&
458 convert_bpf_extensions(fp, &insn))
459 break;
460
461 if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
462 fp->code == (BPF_ALU | BPF_MOD | BPF_X))
463 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
464
465 *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
466 break;
467
468 /* Jump transformation cannot use BPF block macros
469 * everywhere as offset calculation and target updates
470 * require a bit more work than the rest, i.e. jump
471 * opcodes map as-is, but offsets need adjustment.
472 */
473
474 #define BPF_EMIT_JMP \
475 do { \
476 if (target >= len || target < 0) \
477 goto err; \
478 insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0; \
479 /* Adjust pc relative offset for 2nd or 3rd insn. */ \
480 insn->off -= insn - tmp_insns; \
481 } while (0)
482
483 case BPF_JMP | BPF_JA:
484 target = i + fp->k + 1;
485 insn->code = fp->code;
486 BPF_EMIT_JMP;
487 break;
488
489 case BPF_JMP | BPF_JEQ | BPF_K:
490 case BPF_JMP | BPF_JEQ | BPF_X:
491 case BPF_JMP | BPF_JSET | BPF_K:
492 case BPF_JMP | BPF_JSET | BPF_X:
493 case BPF_JMP | BPF_JGT | BPF_K:
494 case BPF_JMP | BPF_JGT | BPF_X:
495 case BPF_JMP | BPF_JGE | BPF_K:
496 case BPF_JMP | BPF_JGE | BPF_X:
497 if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
498 /* BPF immediates are signed, zero extend
499 * immediate into tmp register and use it
500 * in compare insn.
501 */
502 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
503
504 insn->dst_reg = BPF_REG_A;
505 insn->src_reg = BPF_REG_TMP;
506 bpf_src = BPF_X;
507 } else {
508 insn->dst_reg = BPF_REG_A;
509 insn->imm = fp->k;
510 bpf_src = BPF_SRC(fp->code);
511 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
512 }
513
514 /* Common case where 'jump_false' is next insn. */
515 if (fp->jf == 0) {
516 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
517 target = i + fp->jt + 1;
518 BPF_EMIT_JMP;
519 break;
520 }
521
522 /* Convert some jumps when 'jump_true' is next insn. */
523 if (fp->jt == 0) {
524 switch (BPF_OP(fp->code)) {
525 case BPF_JEQ:
526 insn->code = BPF_JMP | BPF_JNE | bpf_src;
527 break;
528 case BPF_JGT:
529 insn->code = BPF_JMP | BPF_JLE | bpf_src;
530 break;
531 case BPF_JGE:
532 insn->code = BPF_JMP | BPF_JLT | bpf_src;
533 break;
534 default:
535 goto jmp_rest;
536 }
537
538 target = i + fp->jf + 1;
539 BPF_EMIT_JMP;
540 break;
541 }
542 jmp_rest:
543 /* Other jumps are mapped into two insns: Jxx and JA. */
544 target = i + fp->jt + 1;
545 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
546 BPF_EMIT_JMP;
547 insn++;
548
549 insn->code = BPF_JMP | BPF_JA;
550 target = i + fp->jf + 1;
551 BPF_EMIT_JMP;
552 break;
553
554 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
555 case BPF_LDX | BPF_MSH | BPF_B:
556 /* tmp = A */
557 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
558 /* A = BPF_R0 = *(u8 *) (skb->data + K) */
559 *insn++ = BPF_LD_ABS(BPF_B, fp->k);
560 /* A &= 0xf */
561 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
562 /* A <<= 2 */
563 *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
564 /* X = A */
565 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
566 /* A = tmp */
567 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
568 break;
569
570 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
571 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
572 */
573 case BPF_RET | BPF_A:
574 case BPF_RET | BPF_K:
575 if (BPF_RVAL(fp->code) == BPF_K)
576 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
577 0, fp->k);
578 *insn = BPF_EXIT_INSN();
579 break;
580
581 /* Store to stack. */
582 case BPF_ST:
583 case BPF_STX:
584 stack_off = fp->k * 4 + 4;
585 *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
586 BPF_ST ? BPF_REG_A : BPF_REG_X,
587 -stack_off);
588 /* check_load_and_stores() verifies that classic BPF can
589 * load from stack only after write, so tracking
590 * stack_depth for ST|STX insns is enough
591 */
592 if (new_prog && new_prog->aux->stack_depth < stack_off)
593 new_prog->aux->stack_depth = stack_off;
594 break;
595
596 /* Load from stack. */
597 case BPF_LD | BPF_MEM:
598 case BPF_LDX | BPF_MEM:
599 stack_off = fp->k * 4 + 4;
600 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
601 BPF_REG_A : BPF_REG_X, BPF_REG_FP,
602 -stack_off);
603 break;
604
605 /* A = K or X = K */
606 case BPF_LD | BPF_IMM:
607 case BPF_LDX | BPF_IMM:
608 *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
609 BPF_REG_A : BPF_REG_X, fp->k);
610 break;
611
612 /* X = A */
613 case BPF_MISC | BPF_TAX:
614 *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
615 break;
616
617 /* A = X */
618 case BPF_MISC | BPF_TXA:
619 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
620 break;
621
622 /* A = skb->len or X = skb->len */
623 case BPF_LD | BPF_W | BPF_LEN:
624 case BPF_LDX | BPF_W | BPF_LEN:
625 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
626 BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
627 offsetof(struct sk_buff, len));
628 break;
629
630 /* Access seccomp_data fields. */
631 case BPF_LDX | BPF_ABS | BPF_W:
632 /* A = *(u32 *) (ctx + K) */
633 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
634 break;
635
636 /* Unknown instruction. */
637 default:
638 goto err;
639 }
640
641 insn++;
642 if (new_prog)
643 memcpy(new_insn, tmp_insns,
644 sizeof(*insn) * (insn - tmp_insns));
645 new_insn += insn - tmp_insns;
646 }
647
648 if (!new_prog) {
649 /* Only calculating new length. */
650 *new_len = new_insn - first_insn;
651 return 0;
652 }
653
654 pass++;
655 if (new_flen != new_insn - first_insn) {
656 new_flen = new_insn - first_insn;
657 if (pass > 2)
658 goto err;
659 goto do_pass;
660 }
661
662 kfree(addrs);
663 BUG_ON(*new_len != new_flen);
664 return 0;
665 err:
666 kfree(addrs);
667 return -EINVAL;
668 }
669
670 /* Security:
671 *
672 * As we dont want to clear mem[] array for each packet going through
673 * __bpf_prog_run(), we check that filter loaded by user never try to read
674 * a cell if not previously written, and we check all branches to be sure
675 * a malicious user doesn't try to abuse us.
676 */
677 static int check_load_and_stores(const struct sock_filter *filter, int flen)
678 {
679 u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
680 int pc, ret = 0;
681
682 BUILD_BUG_ON(BPF_MEMWORDS > 16);
683
684 masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
685 if (!masks)
686 return -ENOMEM;
687
688 memset(masks, 0xff, flen * sizeof(*masks));
689
690 for (pc = 0; pc < flen; pc++) {
691 memvalid &= masks[pc];
692
693 switch (filter[pc].code) {
694 case BPF_ST:
695 case BPF_STX:
696 memvalid |= (1 << filter[pc].k);
697 break;
698 case BPF_LD | BPF_MEM:
699 case BPF_LDX | BPF_MEM:
700 if (!(memvalid & (1 << filter[pc].k))) {
701 ret = -EINVAL;
702 goto error;
703 }
704 break;
705 case BPF_JMP | BPF_JA:
706 /* A jump must set masks on target */
707 masks[pc + 1 + filter[pc].k] &= memvalid;
708 memvalid = ~0;
709 break;
710 case BPF_JMP | BPF_JEQ | BPF_K:
711 case BPF_JMP | BPF_JEQ | BPF_X:
712 case BPF_JMP | BPF_JGE | BPF_K:
713 case BPF_JMP | BPF_JGE | BPF_X:
714 case BPF_JMP | BPF_JGT | BPF_K:
715 case BPF_JMP | BPF_JGT | BPF_X:
716 case BPF_JMP | BPF_JSET | BPF_K:
717 case BPF_JMP | BPF_JSET | BPF_X:
718 /* A jump must set masks on targets */
719 masks[pc + 1 + filter[pc].jt] &= memvalid;
720 masks[pc + 1 + filter[pc].jf] &= memvalid;
721 memvalid = ~0;
722 break;
723 }
724 }
725 error:
726 kfree(masks);
727 return ret;
728 }
729
730 static bool chk_code_allowed(u16 code_to_probe)
731 {
732 static const bool codes[] = {
733 /* 32 bit ALU operations */
734 [BPF_ALU | BPF_ADD | BPF_K] = true,
735 [BPF_ALU | BPF_ADD | BPF_X] = true,
736 [BPF_ALU | BPF_SUB | BPF_K] = true,
737 [BPF_ALU | BPF_SUB | BPF_X] = true,
738 [BPF_ALU | BPF_MUL | BPF_K] = true,
739 [BPF_ALU | BPF_MUL | BPF_X] = true,
740 [BPF_ALU | BPF_DIV | BPF_K] = true,
741 [BPF_ALU | BPF_DIV | BPF_X] = true,
742 [BPF_ALU | BPF_MOD | BPF_K] = true,
743 [BPF_ALU | BPF_MOD | BPF_X] = true,
744 [BPF_ALU | BPF_AND | BPF_K] = true,
745 [BPF_ALU | BPF_AND | BPF_X] = true,
746 [BPF_ALU | BPF_OR | BPF_K] = true,
747 [BPF_ALU | BPF_OR | BPF_X] = true,
748 [BPF_ALU | BPF_XOR | BPF_K] = true,
749 [BPF_ALU | BPF_XOR | BPF_X] = true,
750 [BPF_ALU | BPF_LSH | BPF_K] = true,
751 [BPF_ALU | BPF_LSH | BPF_X] = true,
752 [BPF_ALU | BPF_RSH | BPF_K] = true,
753 [BPF_ALU | BPF_RSH | BPF_X] = true,
754 [BPF_ALU | BPF_NEG] = true,
755 /* Load instructions */
756 [BPF_LD | BPF_W | BPF_ABS] = true,
757 [BPF_LD | BPF_H | BPF_ABS] = true,
758 [BPF_LD | BPF_B | BPF_ABS] = true,
759 [BPF_LD | BPF_W | BPF_LEN] = true,
760 [BPF_LD | BPF_W | BPF_IND] = true,
761 [BPF_LD | BPF_H | BPF_IND] = true,
762 [BPF_LD | BPF_B | BPF_IND] = true,
763 [BPF_LD | BPF_IMM] = true,
764 [BPF_LD | BPF_MEM] = true,
765 [BPF_LDX | BPF_W | BPF_LEN] = true,
766 [BPF_LDX | BPF_B | BPF_MSH] = true,
767 [BPF_LDX | BPF_IMM] = true,
768 [BPF_LDX | BPF_MEM] = true,
769 /* Store instructions */
770 [BPF_ST] = true,
771 [BPF_STX] = true,
772 /* Misc instructions */
773 [BPF_MISC | BPF_TAX] = true,
774 [BPF_MISC | BPF_TXA] = true,
775 /* Return instructions */
776 [BPF_RET | BPF_K] = true,
777 [BPF_RET | BPF_A] = true,
778 /* Jump instructions */
779 [BPF_JMP | BPF_JA] = true,
780 [BPF_JMP | BPF_JEQ | BPF_K] = true,
781 [BPF_JMP | BPF_JEQ | BPF_X] = true,
782 [BPF_JMP | BPF_JGE | BPF_K] = true,
783 [BPF_JMP | BPF_JGE | BPF_X] = true,
784 [BPF_JMP | BPF_JGT | BPF_K] = true,
785 [BPF_JMP | BPF_JGT | BPF_X] = true,
786 [BPF_JMP | BPF_JSET | BPF_K] = true,
787 [BPF_JMP | BPF_JSET | BPF_X] = true,
788 };
789
790 if (code_to_probe >= ARRAY_SIZE(codes))
791 return false;
792
793 return codes[code_to_probe];
794 }
795
796 static bool bpf_check_basics_ok(const struct sock_filter *filter,
797 unsigned int flen)
798 {
799 if (filter == NULL)
800 return false;
801 if (flen == 0 || flen > BPF_MAXINSNS)
802 return false;
803
804 return true;
805 }
806
807 /**
808 * bpf_check_classic - verify socket filter code
809 * @filter: filter to verify
810 * @flen: length of filter
811 *
812 * Check the user's filter code. If we let some ugly
813 * filter code slip through kaboom! The filter must contain
814 * no references or jumps that are out of range, no illegal
815 * instructions, and must end with a RET instruction.
816 *
817 * All jumps are forward as they are not signed.
818 *
819 * Returns 0 if the rule set is legal or -EINVAL if not.
820 */
821 static int bpf_check_classic(const struct sock_filter *filter,
822 unsigned int flen)
823 {
824 bool anc_found;
825 int pc;
826
827 /* Check the filter code now */
828 for (pc = 0; pc < flen; pc++) {
829 const struct sock_filter *ftest = &filter[pc];
830
831 /* May we actually operate on this code? */
832 if (!chk_code_allowed(ftest->code))
833 return -EINVAL;
834
835 /* Some instructions need special checks */
836 switch (ftest->code) {
837 case BPF_ALU | BPF_DIV | BPF_K:
838 case BPF_ALU | BPF_MOD | BPF_K:
839 /* Check for division by zero */
840 if (ftest->k == 0)
841 return -EINVAL;
842 break;
843 case BPF_ALU | BPF_LSH | BPF_K:
844 case BPF_ALU | BPF_RSH | BPF_K:
845 if (ftest->k >= 32)
846 return -EINVAL;
847 break;
848 case BPF_LD | BPF_MEM:
849 case BPF_LDX | BPF_MEM:
850 case BPF_ST:
851 case BPF_STX:
852 /* Check for invalid memory addresses */
853 if (ftest->k >= BPF_MEMWORDS)
854 return -EINVAL;
855 break;
856 case BPF_JMP | BPF_JA:
857 /* Note, the large ftest->k might cause loops.
858 * Compare this with conditional jumps below,
859 * where offsets are limited. --ANK (981016)
860 */
861 if (ftest->k >= (unsigned int)(flen - pc - 1))
862 return -EINVAL;
863 break;
864 case BPF_JMP | BPF_JEQ | BPF_K:
865 case BPF_JMP | BPF_JEQ | BPF_X:
866 case BPF_JMP | BPF_JGE | BPF_K:
867 case BPF_JMP | BPF_JGE | BPF_X:
868 case BPF_JMP | BPF_JGT | BPF_K:
869 case BPF_JMP | BPF_JGT | BPF_X:
870 case BPF_JMP | BPF_JSET | BPF_K:
871 case BPF_JMP | BPF_JSET | BPF_X:
872 /* Both conditionals must be safe */
873 if (pc + ftest->jt + 1 >= flen ||
874 pc + ftest->jf + 1 >= flen)
875 return -EINVAL;
876 break;
877 case BPF_LD | BPF_W | BPF_ABS:
878 case BPF_LD | BPF_H | BPF_ABS:
879 case BPF_LD | BPF_B | BPF_ABS:
880 anc_found = false;
881 if (bpf_anc_helper(ftest) & BPF_ANC)
882 anc_found = true;
883 /* Ancillary operation unknown or unsupported */
884 if (anc_found == false && ftest->k >= SKF_AD_OFF)
885 return -EINVAL;
886 }
887 }
888
889 /* Last instruction must be a RET code */
890 switch (filter[flen - 1].code) {
891 case BPF_RET | BPF_K:
892 case BPF_RET | BPF_A:
893 return check_load_and_stores(filter, flen);
894 }
895
896 return -EINVAL;
897 }
898
899 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
900 const struct sock_fprog *fprog)
901 {
902 unsigned int fsize = bpf_classic_proglen(fprog);
903 struct sock_fprog_kern *fkprog;
904
905 fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
906 if (!fp->orig_prog)
907 return -ENOMEM;
908
909 fkprog = fp->orig_prog;
910 fkprog->len = fprog->len;
911
912 fkprog->filter = kmemdup(fp->insns, fsize,
913 GFP_KERNEL | __GFP_NOWARN);
914 if (!fkprog->filter) {
915 kfree(fp->orig_prog);
916 return -ENOMEM;
917 }
918
919 return 0;
920 }
921
922 static void bpf_release_orig_filter(struct bpf_prog *fp)
923 {
924 struct sock_fprog_kern *fprog = fp->orig_prog;
925
926 if (fprog) {
927 kfree(fprog->filter);
928 kfree(fprog);
929 }
930 }
931
932 static void __bpf_prog_release(struct bpf_prog *prog)
933 {
934 if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
935 bpf_prog_put(prog);
936 } else {
937 bpf_release_orig_filter(prog);
938 bpf_prog_free(prog);
939 }
940 }
941
942 static void __sk_filter_release(struct sk_filter *fp)
943 {
944 __bpf_prog_release(fp->prog);
945 kfree(fp);
946 }
947
948 /**
949 * sk_filter_release_rcu - Release a socket filter by rcu_head
950 * @rcu: rcu_head that contains the sk_filter to free
951 */
952 static void sk_filter_release_rcu(struct rcu_head *rcu)
953 {
954 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
955
956 __sk_filter_release(fp);
957 }
958
959 /**
960 * sk_filter_release - release a socket filter
961 * @fp: filter to remove
962 *
963 * Remove a filter from a socket and release its resources.
964 */
965 static void sk_filter_release(struct sk_filter *fp)
966 {
967 if (refcount_dec_and_test(&fp->refcnt))
968 call_rcu(&fp->rcu, sk_filter_release_rcu);
969 }
970
971 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
972 {
973 u32 filter_size = bpf_prog_size(fp->prog->len);
974
975 atomic_sub(filter_size, &sk->sk_omem_alloc);
976 sk_filter_release(fp);
977 }
978
979 /* try to charge the socket memory if there is space available
980 * return true on success
981 */
982 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
983 {
984 u32 filter_size = bpf_prog_size(fp->prog->len);
985
986 /* same check as in sock_kmalloc() */
987 if (filter_size <= sysctl_optmem_max &&
988 atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
989 atomic_add(filter_size, &sk->sk_omem_alloc);
990 return true;
991 }
992 return false;
993 }
994
995 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
996 {
997 if (!refcount_inc_not_zero(&fp->refcnt))
998 return false;
999
1000 if (!__sk_filter_charge(sk, fp)) {
1001 sk_filter_release(fp);
1002 return false;
1003 }
1004 return true;
1005 }
1006
1007 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1008 {
1009 struct sock_filter *old_prog;
1010 struct bpf_prog *old_fp;
1011 int err, new_len, old_len = fp->len;
1012
1013 /* We are free to overwrite insns et al right here as it
1014 * won't be used at this point in time anymore internally
1015 * after the migration to the internal BPF instruction
1016 * representation.
1017 */
1018 BUILD_BUG_ON(sizeof(struct sock_filter) !=
1019 sizeof(struct bpf_insn));
1020
1021 /* Conversion cannot happen on overlapping memory areas,
1022 * so we need to keep the user BPF around until the 2nd
1023 * pass. At this time, the user BPF is stored in fp->insns.
1024 */
1025 old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1026 GFP_KERNEL | __GFP_NOWARN);
1027 if (!old_prog) {
1028 err = -ENOMEM;
1029 goto out_err;
1030 }
1031
1032 /* 1st pass: calculate the new program length. */
1033 err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
1034 if (err)
1035 goto out_err_free;
1036
1037 /* Expand fp for appending the new filter representation. */
1038 old_fp = fp;
1039 fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1040 if (!fp) {
1041 /* The old_fp is still around in case we couldn't
1042 * allocate new memory, so uncharge on that one.
1043 */
1044 fp = old_fp;
1045 err = -ENOMEM;
1046 goto out_err_free;
1047 }
1048
1049 fp->len = new_len;
1050
1051 /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1052 err = bpf_convert_filter(old_prog, old_len, fp, &new_len);
1053 if (err)
1054 /* 2nd bpf_convert_filter() can fail only if it fails
1055 * to allocate memory, remapping must succeed. Note,
1056 * that at this time old_fp has already been released
1057 * by krealloc().
1058 */
1059 goto out_err_free;
1060
1061 fp = bpf_prog_select_runtime(fp, &err);
1062 if (err)
1063 goto out_err_free;
1064
1065 kfree(old_prog);
1066 return fp;
1067
1068 out_err_free:
1069 kfree(old_prog);
1070 out_err:
1071 __bpf_prog_release(fp);
1072 return ERR_PTR(err);
1073 }
1074
1075 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1076 bpf_aux_classic_check_t trans)
1077 {
1078 int err;
1079
1080 fp->bpf_func = NULL;
1081 fp->jited = 0;
1082
1083 err = bpf_check_classic(fp->insns, fp->len);
1084 if (err) {
1085 __bpf_prog_release(fp);
1086 return ERR_PTR(err);
1087 }
1088
1089 /* There might be additional checks and transformations
1090 * needed on classic filters, f.e. in case of seccomp.
1091 */
1092 if (trans) {
1093 err = trans(fp->insns, fp->len);
1094 if (err) {
1095 __bpf_prog_release(fp);
1096 return ERR_PTR(err);
1097 }
1098 }
1099
1100 /* Probe if we can JIT compile the filter and if so, do
1101 * the compilation of the filter.
1102 */
1103 bpf_jit_compile(fp);
1104
1105 /* JIT compiler couldn't process this filter, so do the
1106 * internal BPF translation for the optimized interpreter.
1107 */
1108 if (!fp->jited)
1109 fp = bpf_migrate_filter(fp);
1110
1111 return fp;
1112 }
1113
1114 /**
1115 * bpf_prog_create - create an unattached filter
1116 * @pfp: the unattached filter that is created
1117 * @fprog: the filter program
1118 *
1119 * Create a filter independent of any socket. We first run some
1120 * sanity checks on it to make sure it does not explode on us later.
1121 * If an error occurs or there is insufficient memory for the filter
1122 * a negative errno code is returned. On success the return is zero.
1123 */
1124 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1125 {
1126 unsigned int fsize = bpf_classic_proglen(fprog);
1127 struct bpf_prog *fp;
1128
1129 /* Make sure new filter is there and in the right amounts. */
1130 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1131 return -EINVAL;
1132
1133 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1134 if (!fp)
1135 return -ENOMEM;
1136
1137 memcpy(fp->insns, fprog->filter, fsize);
1138
1139 fp->len = fprog->len;
1140 /* Since unattached filters are not copied back to user
1141 * space through sk_get_filter(), we do not need to hold
1142 * a copy here, and can spare us the work.
1143 */
1144 fp->orig_prog = NULL;
1145
1146 /* bpf_prepare_filter() already takes care of freeing
1147 * memory in case something goes wrong.
1148 */
1149 fp = bpf_prepare_filter(fp, NULL);
1150 if (IS_ERR(fp))
1151 return PTR_ERR(fp);
1152
1153 *pfp = fp;
1154 return 0;
1155 }
1156 EXPORT_SYMBOL_GPL(bpf_prog_create);
1157
1158 /**
1159 * bpf_prog_create_from_user - create an unattached filter from user buffer
1160 * @pfp: the unattached filter that is created
1161 * @fprog: the filter program
1162 * @trans: post-classic verifier transformation handler
1163 * @save_orig: save classic BPF program
1164 *
1165 * This function effectively does the same as bpf_prog_create(), only
1166 * that it builds up its insns buffer from user space provided buffer.
1167 * It also allows for passing a bpf_aux_classic_check_t handler.
1168 */
1169 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1170 bpf_aux_classic_check_t trans, bool save_orig)
1171 {
1172 unsigned int fsize = bpf_classic_proglen(fprog);
1173 struct bpf_prog *fp;
1174 int err;
1175
1176 /* Make sure new filter is there and in the right amounts. */
1177 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1178 return -EINVAL;
1179
1180 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1181 if (!fp)
1182 return -ENOMEM;
1183
1184 if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1185 __bpf_prog_free(fp);
1186 return -EFAULT;
1187 }
1188
1189 fp->len = fprog->len;
1190 fp->orig_prog = NULL;
1191
1192 if (save_orig) {
1193 err = bpf_prog_store_orig_filter(fp, fprog);
1194 if (err) {
1195 __bpf_prog_free(fp);
1196 return -ENOMEM;
1197 }
1198 }
1199
1200 /* bpf_prepare_filter() already takes care of freeing
1201 * memory in case something goes wrong.
1202 */
1203 fp = bpf_prepare_filter(fp, trans);
1204 if (IS_ERR(fp))
1205 return PTR_ERR(fp);
1206
1207 *pfp = fp;
1208 return 0;
1209 }
1210 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1211
1212 void bpf_prog_destroy(struct bpf_prog *fp)
1213 {
1214 __bpf_prog_release(fp);
1215 }
1216 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1217
1218 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1219 {
1220 struct sk_filter *fp, *old_fp;
1221
1222 fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1223 if (!fp)
1224 return -ENOMEM;
1225
1226 fp->prog = prog;
1227
1228 if (!__sk_filter_charge(sk, fp)) {
1229 kfree(fp);
1230 return -ENOMEM;
1231 }
1232 refcount_set(&fp->refcnt, 1);
1233
1234 old_fp = rcu_dereference_protected(sk->sk_filter,
1235 lockdep_sock_is_held(sk));
1236 rcu_assign_pointer(sk->sk_filter, fp);
1237
1238 if (old_fp)
1239 sk_filter_uncharge(sk, old_fp);
1240
1241 return 0;
1242 }
1243
1244 static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
1245 {
1246 struct bpf_prog *old_prog;
1247 int err;
1248
1249 if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1250 return -ENOMEM;
1251
1252 if (sk_unhashed(sk) && sk->sk_reuseport) {
1253 err = reuseport_alloc(sk);
1254 if (err)
1255 return err;
1256 } else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
1257 /* The socket wasn't bound with SO_REUSEPORT */
1258 return -EINVAL;
1259 }
1260
1261 old_prog = reuseport_attach_prog(sk, prog);
1262 if (old_prog)
1263 bpf_prog_destroy(old_prog);
1264
1265 return 0;
1266 }
1267
1268 static
1269 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1270 {
1271 unsigned int fsize = bpf_classic_proglen(fprog);
1272 struct bpf_prog *prog;
1273 int err;
1274
1275 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1276 return ERR_PTR(-EPERM);
1277
1278 /* Make sure new filter is there and in the right amounts. */
1279 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1280 return ERR_PTR(-EINVAL);
1281
1282 prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1283 if (!prog)
1284 return ERR_PTR(-ENOMEM);
1285
1286 if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1287 __bpf_prog_free(prog);
1288 return ERR_PTR(-EFAULT);
1289 }
1290
1291 prog->len = fprog->len;
1292
1293 err = bpf_prog_store_orig_filter(prog, fprog);
1294 if (err) {
1295 __bpf_prog_free(prog);
1296 return ERR_PTR(-ENOMEM);
1297 }
1298
1299 /* bpf_prepare_filter() already takes care of freeing
1300 * memory in case something goes wrong.
1301 */
1302 return bpf_prepare_filter(prog, NULL);
1303 }
1304
1305 /**
1306 * sk_attach_filter - attach a socket filter
1307 * @fprog: the filter program
1308 * @sk: the socket to use
1309 *
1310 * Attach the user's filter code. We first run some sanity checks on
1311 * it to make sure it does not explode on us later. If an error
1312 * occurs or there is insufficient memory for the filter a negative
1313 * errno code is returned. On success the return is zero.
1314 */
1315 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1316 {
1317 struct bpf_prog *prog = __get_filter(fprog, sk);
1318 int err;
1319
1320 if (IS_ERR(prog))
1321 return PTR_ERR(prog);
1322
1323 err = __sk_attach_prog(prog, sk);
1324 if (err < 0) {
1325 __bpf_prog_release(prog);
1326 return err;
1327 }
1328
1329 return 0;
1330 }
1331 EXPORT_SYMBOL_GPL(sk_attach_filter);
1332
1333 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1334 {
1335 struct bpf_prog *prog = __get_filter(fprog, sk);
1336 int err;
1337
1338 if (IS_ERR(prog))
1339 return PTR_ERR(prog);
1340
1341 err = __reuseport_attach_prog(prog, sk);
1342 if (err < 0) {
1343 __bpf_prog_release(prog);
1344 return err;
1345 }
1346
1347 return 0;
1348 }
1349
1350 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1351 {
1352 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1353 return ERR_PTR(-EPERM);
1354
1355 return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1356 }
1357
1358 int sk_attach_bpf(u32 ufd, struct sock *sk)
1359 {
1360 struct bpf_prog *prog = __get_bpf(ufd, sk);
1361 int err;
1362
1363 if (IS_ERR(prog))
1364 return PTR_ERR(prog);
1365
1366 err = __sk_attach_prog(prog, sk);
1367 if (err < 0) {
1368 bpf_prog_put(prog);
1369 return err;
1370 }
1371
1372 return 0;
1373 }
1374
1375 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1376 {
1377 struct bpf_prog *prog = __get_bpf(ufd, sk);
1378 int err;
1379
1380 if (IS_ERR(prog))
1381 return PTR_ERR(prog);
1382
1383 err = __reuseport_attach_prog(prog, sk);
1384 if (err < 0) {
1385 bpf_prog_put(prog);
1386 return err;
1387 }
1388
1389 return 0;
1390 }
1391
1392 struct bpf_scratchpad {
1393 union {
1394 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1395 u8 buff[MAX_BPF_STACK];
1396 };
1397 };
1398
1399 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1400
1401 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1402 unsigned int write_len)
1403 {
1404 return skb_ensure_writable(skb, write_len);
1405 }
1406
1407 static inline int bpf_try_make_writable(struct sk_buff *skb,
1408 unsigned int write_len)
1409 {
1410 int err = __bpf_try_make_writable(skb, write_len);
1411
1412 bpf_compute_data_pointers(skb);
1413 return err;
1414 }
1415
1416 static int bpf_try_make_head_writable(struct sk_buff *skb)
1417 {
1418 return bpf_try_make_writable(skb, skb_headlen(skb));
1419 }
1420
1421 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1422 {
1423 if (skb_at_tc_ingress(skb))
1424 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1425 }
1426
1427 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1428 {
1429 if (skb_at_tc_ingress(skb))
1430 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1431 }
1432
1433 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1434 const void *, from, u32, len, u64, flags)
1435 {
1436 void *ptr;
1437
1438 if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1439 return -EINVAL;
1440 if (unlikely(offset > 0xffff))
1441 return -EFAULT;
1442 if (unlikely(bpf_try_make_writable(skb, offset + len)))
1443 return -EFAULT;
1444
1445 ptr = skb->data + offset;
1446 if (flags & BPF_F_RECOMPUTE_CSUM)
1447 __skb_postpull_rcsum(skb, ptr, len, offset);
1448
1449 memcpy(ptr, from, len);
1450
1451 if (flags & BPF_F_RECOMPUTE_CSUM)
1452 __skb_postpush_rcsum(skb, ptr, len, offset);
1453 if (flags & BPF_F_INVALIDATE_HASH)
1454 skb_clear_hash(skb);
1455
1456 return 0;
1457 }
1458
1459 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1460 .func = bpf_skb_store_bytes,
1461 .gpl_only = false,
1462 .ret_type = RET_INTEGER,
1463 .arg1_type = ARG_PTR_TO_CTX,
1464 .arg2_type = ARG_ANYTHING,
1465 .arg3_type = ARG_PTR_TO_MEM,
1466 .arg4_type = ARG_CONST_SIZE,
1467 .arg5_type = ARG_ANYTHING,
1468 };
1469
1470 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1471 void *, to, u32, len)
1472 {
1473 void *ptr;
1474
1475 if (unlikely(offset > 0xffff))
1476 goto err_clear;
1477
1478 ptr = skb_header_pointer(skb, offset, len, to);
1479 if (unlikely(!ptr))
1480 goto err_clear;
1481 if (ptr != to)
1482 memcpy(to, ptr, len);
1483
1484 return 0;
1485 err_clear:
1486 memset(to, 0, len);
1487 return -EFAULT;
1488 }
1489
1490 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1491 .func = bpf_skb_load_bytes,
1492 .gpl_only = false,
1493 .ret_type = RET_INTEGER,
1494 .arg1_type = ARG_PTR_TO_CTX,
1495 .arg2_type = ARG_ANYTHING,
1496 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1497 .arg4_type = ARG_CONST_SIZE,
1498 };
1499
1500 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1501 {
1502 /* Idea is the following: should the needed direct read/write
1503 * test fail during runtime, we can pull in more data and redo
1504 * again, since implicitly, we invalidate previous checks here.
1505 *
1506 * Or, since we know how much we need to make read/writeable,
1507 * this can be done once at the program beginning for direct
1508 * access case. By this we overcome limitations of only current
1509 * headroom being accessible.
1510 */
1511 return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1512 }
1513
1514 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1515 .func = bpf_skb_pull_data,
1516 .gpl_only = false,
1517 .ret_type = RET_INTEGER,
1518 .arg1_type = ARG_PTR_TO_CTX,
1519 .arg2_type = ARG_ANYTHING,
1520 };
1521
1522 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1523 u64, from, u64, to, u64, flags)
1524 {
1525 __sum16 *ptr;
1526
1527 if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1528 return -EINVAL;
1529 if (unlikely(offset > 0xffff || offset & 1))
1530 return -EFAULT;
1531 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1532 return -EFAULT;
1533
1534 ptr = (__sum16 *)(skb->data + offset);
1535 switch (flags & BPF_F_HDR_FIELD_MASK) {
1536 case 0:
1537 if (unlikely(from != 0))
1538 return -EINVAL;
1539
1540 csum_replace_by_diff(ptr, to);
1541 break;
1542 case 2:
1543 csum_replace2(ptr, from, to);
1544 break;
1545 case 4:
1546 csum_replace4(ptr, from, to);
1547 break;
1548 default:
1549 return -EINVAL;
1550 }
1551
1552 return 0;
1553 }
1554
1555 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1556 .func = bpf_l3_csum_replace,
1557 .gpl_only = false,
1558 .ret_type = RET_INTEGER,
1559 .arg1_type = ARG_PTR_TO_CTX,
1560 .arg2_type = ARG_ANYTHING,
1561 .arg3_type = ARG_ANYTHING,
1562 .arg4_type = ARG_ANYTHING,
1563 .arg5_type = ARG_ANYTHING,
1564 };
1565
1566 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1567 u64, from, u64, to, u64, flags)
1568 {
1569 bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1570 bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1571 bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1572 __sum16 *ptr;
1573
1574 if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1575 BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1576 return -EINVAL;
1577 if (unlikely(offset > 0xffff || offset & 1))
1578 return -EFAULT;
1579 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1580 return -EFAULT;
1581
1582 ptr = (__sum16 *)(skb->data + offset);
1583 if (is_mmzero && !do_mforce && !*ptr)
1584 return 0;
1585
1586 switch (flags & BPF_F_HDR_FIELD_MASK) {
1587 case 0:
1588 if (unlikely(from != 0))
1589 return -EINVAL;
1590
1591 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1592 break;
1593 case 2:
1594 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1595 break;
1596 case 4:
1597 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1598 break;
1599 default:
1600 return -EINVAL;
1601 }
1602
1603 if (is_mmzero && !*ptr)
1604 *ptr = CSUM_MANGLED_0;
1605 return 0;
1606 }
1607
1608 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1609 .func = bpf_l4_csum_replace,
1610 .gpl_only = false,
1611 .ret_type = RET_INTEGER,
1612 .arg1_type = ARG_PTR_TO_CTX,
1613 .arg2_type = ARG_ANYTHING,
1614 .arg3_type = ARG_ANYTHING,
1615 .arg4_type = ARG_ANYTHING,
1616 .arg5_type = ARG_ANYTHING,
1617 };
1618
1619 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1620 __be32 *, to, u32, to_size, __wsum, seed)
1621 {
1622 struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1623 u32 diff_size = from_size + to_size;
1624 int i, j = 0;
1625
1626 /* This is quite flexible, some examples:
1627 *
1628 * from_size == 0, to_size > 0, seed := csum --> pushing data
1629 * from_size > 0, to_size == 0, seed := csum --> pulling data
1630 * from_size > 0, to_size > 0, seed := 0 --> diffing data
1631 *
1632 * Even for diffing, from_size and to_size don't need to be equal.
1633 */
1634 if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1635 diff_size > sizeof(sp->diff)))
1636 return -EINVAL;
1637
1638 for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1639 sp->diff[j] = ~from[i];
1640 for (i = 0; i < to_size / sizeof(__be32); i++, j++)
1641 sp->diff[j] = to[i];
1642
1643 return csum_partial(sp->diff, diff_size, seed);
1644 }
1645
1646 static const struct bpf_func_proto bpf_csum_diff_proto = {
1647 .func = bpf_csum_diff,
1648 .gpl_only = false,
1649 .pkt_access = true,
1650 .ret_type = RET_INTEGER,
1651 .arg1_type = ARG_PTR_TO_MEM_OR_NULL,
1652 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1653 .arg3_type = ARG_PTR_TO_MEM_OR_NULL,
1654 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
1655 .arg5_type = ARG_ANYTHING,
1656 };
1657
1658 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
1659 {
1660 /* The interface is to be used in combination with bpf_csum_diff()
1661 * for direct packet writes. csum rotation for alignment as well
1662 * as emulating csum_sub() can be done from the eBPF program.
1663 */
1664 if (skb->ip_summed == CHECKSUM_COMPLETE)
1665 return (skb->csum = csum_add(skb->csum, csum));
1666
1667 return -ENOTSUPP;
1668 }
1669
1670 static const struct bpf_func_proto bpf_csum_update_proto = {
1671 .func = bpf_csum_update,
1672 .gpl_only = false,
1673 .ret_type = RET_INTEGER,
1674 .arg1_type = ARG_PTR_TO_CTX,
1675 .arg2_type = ARG_ANYTHING,
1676 };
1677
1678 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
1679 {
1680 return dev_forward_skb(dev, skb);
1681 }
1682
1683 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
1684 struct sk_buff *skb)
1685 {
1686 int ret = ____dev_forward_skb(dev, skb);
1687
1688 if (likely(!ret)) {
1689 skb->dev = dev;
1690 ret = netif_rx(skb);
1691 }
1692
1693 return ret;
1694 }
1695
1696 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
1697 {
1698 int ret;
1699
1700 if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
1701 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
1702 kfree_skb(skb);
1703 return -ENETDOWN;
1704 }
1705
1706 skb->dev = dev;
1707 skb->tstamp = 0;
1708
1709 __this_cpu_inc(xmit_recursion);
1710 ret = dev_queue_xmit(skb);
1711 __this_cpu_dec(xmit_recursion);
1712
1713 return ret;
1714 }
1715
1716 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
1717 u32 flags)
1718 {
1719 unsigned int mlen = skb_network_offset(skb);
1720
1721 if (mlen) {
1722 __skb_pull(skb, mlen);
1723
1724 /* At ingress, the mac header has already been pulled once.
1725 * At egress, skb_pospull_rcsum has to be done in case that
1726 * the skb is originated from ingress (i.e. a forwarded skb)
1727 * to ensure that rcsum starts at net header.
1728 */
1729 if (!skb_at_tc_ingress(skb))
1730 skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
1731 }
1732 skb_pop_mac_header(skb);
1733 skb_reset_mac_len(skb);
1734 return flags & BPF_F_INGRESS ?
1735 __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
1736 }
1737
1738 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
1739 u32 flags)
1740 {
1741 /* Verify that a link layer header is carried */
1742 if (unlikely(skb->mac_header >= skb->network_header)) {
1743 kfree_skb(skb);
1744 return -ERANGE;
1745 }
1746
1747 bpf_push_mac_rcsum(skb);
1748 return flags & BPF_F_INGRESS ?
1749 __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
1750 }
1751
1752 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
1753 u32 flags)
1754 {
1755 if (dev_is_mac_header_xmit(dev))
1756 return __bpf_redirect_common(skb, dev, flags);
1757 else
1758 return __bpf_redirect_no_mac(skb, dev, flags);
1759 }
1760
1761 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
1762 {
1763 struct net_device *dev;
1764 struct sk_buff *clone;
1765 int ret;
1766
1767 if (unlikely(flags & ~(BPF_F_INGRESS)))
1768 return -EINVAL;
1769
1770 dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
1771 if (unlikely(!dev))
1772 return -EINVAL;
1773
1774 clone = skb_clone(skb, GFP_ATOMIC);
1775 if (unlikely(!clone))
1776 return -ENOMEM;
1777
1778 /* For direct write, we need to keep the invariant that the skbs
1779 * we're dealing with need to be uncloned. Should uncloning fail
1780 * here, we need to free the just generated clone to unclone once
1781 * again.
1782 */
1783 ret = bpf_try_make_head_writable(skb);
1784 if (unlikely(ret)) {
1785 kfree_skb(clone);
1786 return -ENOMEM;
1787 }
1788
1789 return __bpf_redirect(clone, dev, flags);
1790 }
1791
1792 static const struct bpf_func_proto bpf_clone_redirect_proto = {
1793 .func = bpf_clone_redirect,
1794 .gpl_only = false,
1795 .ret_type = RET_INTEGER,
1796 .arg1_type = ARG_PTR_TO_CTX,
1797 .arg2_type = ARG_ANYTHING,
1798 .arg3_type = ARG_ANYTHING,
1799 };
1800
1801 struct redirect_info {
1802 u32 ifindex;
1803 u32 flags;
1804 struct bpf_map *map;
1805 struct bpf_map *map_to_flush;
1806 unsigned long map_owner;
1807 };
1808
1809 static DEFINE_PER_CPU(struct redirect_info, redirect_info);
1810
1811 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
1812 {
1813 struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1814
1815 if (unlikely(flags & ~(BPF_F_INGRESS)))
1816 return TC_ACT_SHOT;
1817
1818 ri->ifindex = ifindex;
1819 ri->flags = flags;
1820
1821 return TC_ACT_REDIRECT;
1822 }
1823
1824 int skb_do_redirect(struct sk_buff *skb)
1825 {
1826 struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1827 struct net_device *dev;
1828
1829 dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
1830 ri->ifindex = 0;
1831 if (unlikely(!dev)) {
1832 kfree_skb(skb);
1833 return -EINVAL;
1834 }
1835
1836 return __bpf_redirect(skb, dev, ri->flags);
1837 }
1838
1839 static const struct bpf_func_proto bpf_redirect_proto = {
1840 .func = bpf_redirect,
1841 .gpl_only = false,
1842 .ret_type = RET_INTEGER,
1843 .arg1_type = ARG_ANYTHING,
1844 .arg2_type = ARG_ANYTHING,
1845 };
1846
1847 BPF_CALL_4(bpf_sk_redirect_map, struct sk_buff *, skb,
1848 struct bpf_map *, map, u32, key, u64, flags)
1849 {
1850 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
1851
1852 /* If user passes invalid input drop the packet. */
1853 if (unlikely(flags))
1854 return SK_DROP;
1855
1856 tcb->bpf.key = key;
1857 tcb->bpf.flags = flags;
1858 tcb->bpf.map = map;
1859
1860 return SK_PASS;
1861 }
1862
1863 struct sock *do_sk_redirect_map(struct sk_buff *skb)
1864 {
1865 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
1866 struct sock *sk = NULL;
1867
1868 if (tcb->bpf.map) {
1869 sk = __sock_map_lookup_elem(tcb->bpf.map, tcb->bpf.key);
1870
1871 tcb->bpf.key = 0;
1872 tcb->bpf.map = NULL;
1873 }
1874
1875 return sk;
1876 }
1877
1878 static const struct bpf_func_proto bpf_sk_redirect_map_proto = {
1879 .func = bpf_sk_redirect_map,
1880 .gpl_only = false,
1881 .ret_type = RET_INTEGER,
1882 .arg1_type = ARG_PTR_TO_CTX,
1883 .arg2_type = ARG_CONST_MAP_PTR,
1884 .arg3_type = ARG_ANYTHING,
1885 .arg4_type = ARG_ANYTHING,
1886 };
1887
1888 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
1889 {
1890 return task_get_classid(skb);
1891 }
1892
1893 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
1894 .func = bpf_get_cgroup_classid,
1895 .gpl_only = false,
1896 .ret_type = RET_INTEGER,
1897 .arg1_type = ARG_PTR_TO_CTX,
1898 };
1899
1900 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
1901 {
1902 return dst_tclassid(skb);
1903 }
1904
1905 static const struct bpf_func_proto bpf_get_route_realm_proto = {
1906 .func = bpf_get_route_realm,
1907 .gpl_only = false,
1908 .ret_type = RET_INTEGER,
1909 .arg1_type = ARG_PTR_TO_CTX,
1910 };
1911
1912 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
1913 {
1914 /* If skb_clear_hash() was called due to mangling, we can
1915 * trigger SW recalculation here. Later access to hash
1916 * can then use the inline skb->hash via context directly
1917 * instead of calling this helper again.
1918 */
1919 return skb_get_hash(skb);
1920 }
1921
1922 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
1923 .func = bpf_get_hash_recalc,
1924 .gpl_only = false,
1925 .ret_type = RET_INTEGER,
1926 .arg1_type = ARG_PTR_TO_CTX,
1927 };
1928
1929 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
1930 {
1931 /* After all direct packet write, this can be used once for
1932 * triggering a lazy recalc on next skb_get_hash() invocation.
1933 */
1934 skb_clear_hash(skb);
1935 return 0;
1936 }
1937
1938 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
1939 .func = bpf_set_hash_invalid,
1940 .gpl_only = false,
1941 .ret_type = RET_INTEGER,
1942 .arg1_type = ARG_PTR_TO_CTX,
1943 };
1944
1945 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
1946 {
1947 /* Set user specified hash as L4(+), so that it gets returned
1948 * on skb_get_hash() call unless BPF prog later on triggers a
1949 * skb_clear_hash().
1950 */
1951 __skb_set_sw_hash(skb, hash, true);
1952 return 0;
1953 }
1954
1955 static const struct bpf_func_proto bpf_set_hash_proto = {
1956 .func = bpf_set_hash,
1957 .gpl_only = false,
1958 .ret_type = RET_INTEGER,
1959 .arg1_type = ARG_PTR_TO_CTX,
1960 .arg2_type = ARG_ANYTHING,
1961 };
1962
1963 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
1964 u16, vlan_tci)
1965 {
1966 int ret;
1967
1968 if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
1969 vlan_proto != htons(ETH_P_8021AD)))
1970 vlan_proto = htons(ETH_P_8021Q);
1971
1972 bpf_push_mac_rcsum(skb);
1973 ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
1974 bpf_pull_mac_rcsum(skb);
1975
1976 bpf_compute_data_pointers(skb);
1977 return ret;
1978 }
1979
1980 const struct bpf_func_proto bpf_skb_vlan_push_proto = {
1981 .func = bpf_skb_vlan_push,
1982 .gpl_only = false,
1983 .ret_type = RET_INTEGER,
1984 .arg1_type = ARG_PTR_TO_CTX,
1985 .arg2_type = ARG_ANYTHING,
1986 .arg3_type = ARG_ANYTHING,
1987 };
1988 EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
1989
1990 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
1991 {
1992 int ret;
1993
1994 bpf_push_mac_rcsum(skb);
1995 ret = skb_vlan_pop(skb);
1996 bpf_pull_mac_rcsum(skb);
1997
1998 bpf_compute_data_pointers(skb);
1999 return ret;
2000 }
2001
2002 const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2003 .func = bpf_skb_vlan_pop,
2004 .gpl_only = false,
2005 .ret_type = RET_INTEGER,
2006 .arg1_type = ARG_PTR_TO_CTX,
2007 };
2008 EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
2009
2010 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2011 {
2012 /* Caller already did skb_cow() with len as headroom,
2013 * so no need to do it here.
2014 */
2015 skb_push(skb, len);
2016 memmove(skb->data, skb->data + len, off);
2017 memset(skb->data + off, 0, len);
2018
2019 /* No skb_postpush_rcsum(skb, skb->data + off, len)
2020 * needed here as it does not change the skb->csum
2021 * result for checksum complete when summing over
2022 * zeroed blocks.
2023 */
2024 return 0;
2025 }
2026
2027 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2028 {
2029 /* skb_ensure_writable() is not needed here, as we're
2030 * already working on an uncloned skb.
2031 */
2032 if (unlikely(!pskb_may_pull(skb, off + len)))
2033 return -ENOMEM;
2034
2035 skb_postpull_rcsum(skb, skb->data + off, len);
2036 memmove(skb->data + len, skb->data, off);
2037 __skb_pull(skb, len);
2038
2039 return 0;
2040 }
2041
2042 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2043 {
2044 bool trans_same = skb->transport_header == skb->network_header;
2045 int ret;
2046
2047 /* There's no need for __skb_push()/__skb_pull() pair to
2048 * get to the start of the mac header as we're guaranteed
2049 * to always start from here under eBPF.
2050 */
2051 ret = bpf_skb_generic_push(skb, off, len);
2052 if (likely(!ret)) {
2053 skb->mac_header -= len;
2054 skb->network_header -= len;
2055 if (trans_same)
2056 skb->transport_header = skb->network_header;
2057 }
2058
2059 return ret;
2060 }
2061
2062 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2063 {
2064 bool trans_same = skb->transport_header == skb->network_header;
2065 int ret;
2066
2067 /* Same here, __skb_push()/__skb_pull() pair not needed. */
2068 ret = bpf_skb_generic_pop(skb, off, len);
2069 if (likely(!ret)) {
2070 skb->mac_header += len;
2071 skb->network_header += len;
2072 if (trans_same)
2073 skb->transport_header = skb->network_header;
2074 }
2075
2076 return ret;
2077 }
2078
2079 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2080 {
2081 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2082 u32 off = skb_mac_header_len(skb);
2083 int ret;
2084
2085 ret = skb_cow(skb, len_diff);
2086 if (unlikely(ret < 0))
2087 return ret;
2088
2089 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2090 if (unlikely(ret < 0))
2091 return ret;
2092
2093 if (skb_is_gso(skb)) {
2094 /* SKB_GSO_TCPV4 needs to be changed into
2095 * SKB_GSO_TCPV6.
2096 */
2097 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2098 skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV4;
2099 skb_shinfo(skb)->gso_type |= SKB_GSO_TCPV6;
2100 }
2101
2102 /* Due to IPv6 header, MSS needs to be downgraded. */
2103 skb_shinfo(skb)->gso_size -= len_diff;
2104 /* Header must be checked, and gso_segs recomputed. */
2105 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2106 skb_shinfo(skb)->gso_segs = 0;
2107 }
2108
2109 skb->protocol = htons(ETH_P_IPV6);
2110 skb_clear_hash(skb);
2111
2112 return 0;
2113 }
2114
2115 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2116 {
2117 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2118 u32 off = skb_mac_header_len(skb);
2119 int ret;
2120
2121 ret = skb_unclone(skb, GFP_ATOMIC);
2122 if (unlikely(ret < 0))
2123 return ret;
2124
2125 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2126 if (unlikely(ret < 0))
2127 return ret;
2128
2129 if (skb_is_gso(skb)) {
2130 /* SKB_GSO_TCPV6 needs to be changed into
2131 * SKB_GSO_TCPV4.
2132 */
2133 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
2134 skb_shinfo(skb)->gso_type &= ~SKB_GSO_TCPV6;
2135 skb_shinfo(skb)->gso_type |= SKB_GSO_TCPV4;
2136 }
2137
2138 /* Due to IPv4 header, MSS can be upgraded. */
2139 skb_shinfo(skb)->gso_size += len_diff;
2140 /* Header must be checked, and gso_segs recomputed. */
2141 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2142 skb_shinfo(skb)->gso_segs = 0;
2143 }
2144
2145 skb->protocol = htons(ETH_P_IP);
2146 skb_clear_hash(skb);
2147
2148 return 0;
2149 }
2150
2151 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2152 {
2153 __be16 from_proto = skb->protocol;
2154
2155 if (from_proto == htons(ETH_P_IP) &&
2156 to_proto == htons(ETH_P_IPV6))
2157 return bpf_skb_proto_4_to_6(skb);
2158
2159 if (from_proto == htons(ETH_P_IPV6) &&
2160 to_proto == htons(ETH_P_IP))
2161 return bpf_skb_proto_6_to_4(skb);
2162
2163 return -ENOTSUPP;
2164 }
2165
2166 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2167 u64, flags)
2168 {
2169 int ret;
2170
2171 if (unlikely(flags))
2172 return -EINVAL;
2173
2174 /* General idea is that this helper does the basic groundwork
2175 * needed for changing the protocol, and eBPF program fills the
2176 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2177 * and other helpers, rather than passing a raw buffer here.
2178 *
2179 * The rationale is to keep this minimal and without a need to
2180 * deal with raw packet data. F.e. even if we would pass buffers
2181 * here, the program still needs to call the bpf_lX_csum_replace()
2182 * helpers anyway. Plus, this way we keep also separation of
2183 * concerns, since f.e. bpf_skb_store_bytes() should only take
2184 * care of stores.
2185 *
2186 * Currently, additional options and extension header space are
2187 * not supported, but flags register is reserved so we can adapt
2188 * that. For offloads, we mark packet as dodgy, so that headers
2189 * need to be verified first.
2190 */
2191 ret = bpf_skb_proto_xlat(skb, proto);
2192 bpf_compute_data_pointers(skb);
2193 return ret;
2194 }
2195
2196 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2197 .func = bpf_skb_change_proto,
2198 .gpl_only = false,
2199 .ret_type = RET_INTEGER,
2200 .arg1_type = ARG_PTR_TO_CTX,
2201 .arg2_type = ARG_ANYTHING,
2202 .arg3_type = ARG_ANYTHING,
2203 };
2204
2205 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2206 {
2207 /* We only allow a restricted subset to be changed for now. */
2208 if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2209 !skb_pkt_type_ok(pkt_type)))
2210 return -EINVAL;
2211
2212 skb->pkt_type = pkt_type;
2213 return 0;
2214 }
2215
2216 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2217 .func = bpf_skb_change_type,
2218 .gpl_only = false,
2219 .ret_type = RET_INTEGER,
2220 .arg1_type = ARG_PTR_TO_CTX,
2221 .arg2_type = ARG_ANYTHING,
2222 };
2223
2224 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
2225 {
2226 switch (skb->protocol) {
2227 case htons(ETH_P_IP):
2228 return sizeof(struct iphdr);
2229 case htons(ETH_P_IPV6):
2230 return sizeof(struct ipv6hdr);
2231 default:
2232 return ~0U;
2233 }
2234 }
2235
2236 static int bpf_skb_net_grow(struct sk_buff *skb, u32 len_diff)
2237 {
2238 u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2239 int ret;
2240
2241 ret = skb_cow(skb, len_diff);
2242 if (unlikely(ret < 0))
2243 return ret;
2244
2245 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2246 if (unlikely(ret < 0))
2247 return ret;
2248
2249 if (skb_is_gso(skb)) {
2250 /* Due to header grow, MSS needs to be downgraded. */
2251 skb_shinfo(skb)->gso_size -= len_diff;
2252 /* Header must be checked, and gso_segs recomputed. */
2253 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2254 skb_shinfo(skb)->gso_segs = 0;
2255 }
2256
2257 return 0;
2258 }
2259
2260 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 len_diff)
2261 {
2262 u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2263 int ret;
2264
2265 ret = skb_unclone(skb, GFP_ATOMIC);
2266 if (unlikely(ret < 0))
2267 return ret;
2268
2269 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2270 if (unlikely(ret < 0))
2271 return ret;
2272
2273 if (skb_is_gso(skb)) {
2274 /* Due to header shrink, MSS can be upgraded. */
2275 skb_shinfo(skb)->gso_size += len_diff;
2276 /* Header must be checked, and gso_segs recomputed. */
2277 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2278 skb_shinfo(skb)->gso_segs = 0;
2279 }
2280
2281 return 0;
2282 }
2283
2284 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
2285 {
2286 return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
2287 SKB_MAX_ALLOC;
2288 }
2289
2290 static int bpf_skb_adjust_net(struct sk_buff *skb, s32 len_diff)
2291 {
2292 bool trans_same = skb->transport_header == skb->network_header;
2293 u32 len_cur, len_diff_abs = abs(len_diff);
2294 u32 len_min = bpf_skb_net_base_len(skb);
2295 u32 len_max = __bpf_skb_max_len(skb);
2296 __be16 proto = skb->protocol;
2297 bool shrink = len_diff < 0;
2298 int ret;
2299
2300 if (unlikely(len_diff_abs > 0xfffU))
2301 return -EFAULT;
2302 if (unlikely(proto != htons(ETH_P_IP) &&
2303 proto != htons(ETH_P_IPV6)))
2304 return -ENOTSUPP;
2305
2306 len_cur = skb->len - skb_network_offset(skb);
2307 if (skb_transport_header_was_set(skb) && !trans_same)
2308 len_cur = skb_network_header_len(skb);
2309 if ((shrink && (len_diff_abs >= len_cur ||
2310 len_cur - len_diff_abs < len_min)) ||
2311 (!shrink && (skb->len + len_diff_abs > len_max &&
2312 !skb_is_gso(skb))))
2313 return -ENOTSUPP;
2314
2315 ret = shrink ? bpf_skb_net_shrink(skb, len_diff_abs) :
2316 bpf_skb_net_grow(skb, len_diff_abs);
2317
2318 bpf_compute_data_pointers(skb);
2319 return ret;
2320 }
2321
2322 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
2323 u32, mode, u64, flags)
2324 {
2325 if (unlikely(flags))
2326 return -EINVAL;
2327 if (likely(mode == BPF_ADJ_ROOM_NET))
2328 return bpf_skb_adjust_net(skb, len_diff);
2329
2330 return -ENOTSUPP;
2331 }
2332
2333 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
2334 .func = bpf_skb_adjust_room,
2335 .gpl_only = false,
2336 .ret_type = RET_INTEGER,
2337 .arg1_type = ARG_PTR_TO_CTX,
2338 .arg2_type = ARG_ANYTHING,
2339 .arg3_type = ARG_ANYTHING,
2340 .arg4_type = ARG_ANYTHING,
2341 };
2342
2343 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
2344 {
2345 u32 min_len = skb_network_offset(skb);
2346
2347 if (skb_transport_header_was_set(skb))
2348 min_len = skb_transport_offset(skb);
2349 if (skb->ip_summed == CHECKSUM_PARTIAL)
2350 min_len = skb_checksum_start_offset(skb) +
2351 skb->csum_offset + sizeof(__sum16);
2352 return min_len;
2353 }
2354
2355 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
2356 {
2357 unsigned int old_len = skb->len;
2358 int ret;
2359
2360 ret = __skb_grow_rcsum(skb, new_len);
2361 if (!ret)
2362 memset(skb->data + old_len, 0, new_len - old_len);
2363 return ret;
2364 }
2365
2366 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
2367 {
2368 return __skb_trim_rcsum(skb, new_len);
2369 }
2370
2371 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
2372 u64, flags)
2373 {
2374 u32 max_len = __bpf_skb_max_len(skb);
2375 u32 min_len = __bpf_skb_min_len(skb);
2376 int ret;
2377
2378 if (unlikely(flags || new_len > max_len || new_len < min_len))
2379 return -EINVAL;
2380 if (skb->encapsulation)
2381 return -ENOTSUPP;
2382
2383 /* The basic idea of this helper is that it's performing the
2384 * needed work to either grow or trim an skb, and eBPF program
2385 * rewrites the rest via helpers like bpf_skb_store_bytes(),
2386 * bpf_lX_csum_replace() and others rather than passing a raw
2387 * buffer here. This one is a slow path helper and intended
2388 * for replies with control messages.
2389 *
2390 * Like in bpf_skb_change_proto(), we want to keep this rather
2391 * minimal and without protocol specifics so that we are able
2392 * to separate concerns as in bpf_skb_store_bytes() should only
2393 * be the one responsible for writing buffers.
2394 *
2395 * It's really expected to be a slow path operation here for
2396 * control message replies, so we're implicitly linearizing,
2397 * uncloning and drop offloads from the skb by this.
2398 */
2399 ret = __bpf_try_make_writable(skb, skb->len);
2400 if (!ret) {
2401 if (new_len > skb->len)
2402 ret = bpf_skb_grow_rcsum(skb, new_len);
2403 else if (new_len < skb->len)
2404 ret = bpf_skb_trim_rcsum(skb, new_len);
2405 if (!ret && skb_is_gso(skb))
2406 skb_gso_reset(skb);
2407 }
2408
2409 bpf_compute_data_pointers(skb);
2410 return ret;
2411 }
2412
2413 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
2414 .func = bpf_skb_change_tail,
2415 .gpl_only = false,
2416 .ret_type = RET_INTEGER,
2417 .arg1_type = ARG_PTR_TO_CTX,
2418 .arg2_type = ARG_ANYTHING,
2419 .arg3_type = ARG_ANYTHING,
2420 };
2421
2422 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
2423 u64, flags)
2424 {
2425 u32 max_len = __bpf_skb_max_len(skb);
2426 u32 new_len = skb->len + head_room;
2427 int ret;
2428
2429 if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
2430 new_len < skb->len))
2431 return -EINVAL;
2432
2433 ret = skb_cow(skb, head_room);
2434 if (likely(!ret)) {
2435 /* Idea for this helper is that we currently only
2436 * allow to expand on mac header. This means that
2437 * skb->protocol network header, etc, stay as is.
2438 * Compared to bpf_skb_change_tail(), we're more
2439 * flexible due to not needing to linearize or
2440 * reset GSO. Intention for this helper is to be
2441 * used by an L3 skb that needs to push mac header
2442 * for redirection into L2 device.
2443 */
2444 __skb_push(skb, head_room);
2445 memset(skb->data, 0, head_room);
2446 skb_reset_mac_header(skb);
2447 }
2448
2449 bpf_compute_data_pointers(skb);
2450 return 0;
2451 }
2452
2453 static const struct bpf_func_proto bpf_skb_change_head_proto = {
2454 .func = bpf_skb_change_head,
2455 .gpl_only = false,
2456 .ret_type = RET_INTEGER,
2457 .arg1_type = ARG_PTR_TO_CTX,
2458 .arg2_type = ARG_ANYTHING,
2459 .arg3_type = ARG_ANYTHING,
2460 };
2461
2462 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
2463 {
2464 return xdp_data_meta_unsupported(xdp) ? 0 :
2465 xdp->data - xdp->data_meta;
2466 }
2467
2468 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
2469 {
2470 unsigned long metalen = xdp_get_metalen(xdp);
2471 void *data_start = xdp->data_hard_start + metalen;
2472 void *data = xdp->data + offset;
2473
2474 if (unlikely(data < data_start ||
2475 data > xdp->data_end - ETH_HLEN))
2476 return -EINVAL;
2477
2478 if (metalen)
2479 memmove(xdp->data_meta + offset,
2480 xdp->data_meta, metalen);
2481 xdp->data_meta += offset;
2482 xdp->data = data;
2483
2484 return 0;
2485 }
2486
2487 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
2488 .func = bpf_xdp_adjust_head,
2489 .gpl_only = false,
2490 .ret_type = RET_INTEGER,
2491 .arg1_type = ARG_PTR_TO_CTX,
2492 .arg2_type = ARG_ANYTHING,
2493 };
2494
2495 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
2496 {
2497 void *meta = xdp->data_meta + offset;
2498 unsigned long metalen = xdp->data - meta;
2499
2500 if (xdp_data_meta_unsupported(xdp))
2501 return -ENOTSUPP;
2502 if (unlikely(meta < xdp->data_hard_start ||
2503 meta > xdp->data))
2504 return -EINVAL;
2505 if (unlikely((metalen & (sizeof(__u32) - 1)) ||
2506 (metalen > 32)))
2507 return -EACCES;
2508
2509 xdp->data_meta = meta;
2510
2511 return 0;
2512 }
2513
2514 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
2515 .func = bpf_xdp_adjust_meta,
2516 .gpl_only = false,
2517 .ret_type = RET_INTEGER,
2518 .arg1_type = ARG_PTR_TO_CTX,
2519 .arg2_type = ARG_ANYTHING,
2520 };
2521
2522 static int __bpf_tx_xdp(struct net_device *dev,
2523 struct bpf_map *map,
2524 struct xdp_buff *xdp,
2525 u32 index)
2526 {
2527 int err;
2528
2529 if (!dev->netdev_ops->ndo_xdp_xmit) {
2530 return -EOPNOTSUPP;
2531 }
2532
2533 err = dev->netdev_ops->ndo_xdp_xmit(dev, xdp);
2534 if (err)
2535 return err;
2536 dev->netdev_ops->ndo_xdp_flush(dev);
2537 return 0;
2538 }
2539
2540 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
2541 struct bpf_map *map,
2542 struct xdp_buff *xdp,
2543 u32 index)
2544 {
2545 int err;
2546
2547 if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
2548 struct net_device *dev = fwd;
2549
2550 if (!dev->netdev_ops->ndo_xdp_xmit)
2551 return -EOPNOTSUPP;
2552
2553 err = dev->netdev_ops->ndo_xdp_xmit(dev, xdp);
2554 if (err)
2555 return err;
2556 __dev_map_insert_ctx(map, index);
2557
2558 } else if (map->map_type == BPF_MAP_TYPE_CPUMAP) {
2559 struct bpf_cpu_map_entry *rcpu = fwd;
2560
2561 err = cpu_map_enqueue(rcpu, xdp, dev_rx);
2562 if (err)
2563 return err;
2564 __cpu_map_insert_ctx(map, index);
2565 }
2566 return 0;
2567 }
2568
2569 void xdp_do_flush_map(void)
2570 {
2571 struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2572 struct bpf_map *map = ri->map_to_flush;
2573
2574 ri->map_to_flush = NULL;
2575 if (map) {
2576 switch (map->map_type) {
2577 case BPF_MAP_TYPE_DEVMAP:
2578 __dev_map_flush(map);
2579 break;
2580 case BPF_MAP_TYPE_CPUMAP:
2581 __cpu_map_flush(map);
2582 break;
2583 default:
2584 break;
2585 }
2586 }
2587 }
2588 EXPORT_SYMBOL_GPL(xdp_do_flush_map);
2589
2590 static void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
2591 {
2592 switch (map->map_type) {
2593 case BPF_MAP_TYPE_DEVMAP:
2594 return __dev_map_lookup_elem(map, index);
2595 case BPF_MAP_TYPE_CPUMAP:
2596 return __cpu_map_lookup_elem(map, index);
2597 default:
2598 return NULL;
2599 }
2600 }
2601
2602 static inline bool xdp_map_invalid(const struct bpf_prog *xdp_prog,
2603 unsigned long aux)
2604 {
2605 return (unsigned long)xdp_prog->aux != aux;
2606 }
2607
2608 static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
2609 struct bpf_prog *xdp_prog)
2610 {
2611 struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2612 unsigned long map_owner = ri->map_owner;
2613 struct bpf_map *map = ri->map;
2614 u32 index = ri->ifindex;
2615 void *fwd = NULL;
2616 int err;
2617
2618 ri->ifindex = 0;
2619 ri->map = NULL;
2620 ri->map_owner = 0;
2621
2622 if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
2623 err = -EFAULT;
2624 map = NULL;
2625 goto err;
2626 }
2627
2628 fwd = __xdp_map_lookup_elem(map, index);
2629 if (!fwd) {
2630 err = -EINVAL;
2631 goto err;
2632 }
2633 if (ri->map_to_flush && ri->map_to_flush != map)
2634 xdp_do_flush_map();
2635
2636 err = __bpf_tx_xdp_map(dev, fwd, map, xdp, index);
2637 if (unlikely(err))
2638 goto err;
2639
2640 ri->map_to_flush = map;
2641 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
2642 return 0;
2643 err:
2644 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
2645 return err;
2646 }
2647
2648 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
2649 struct bpf_prog *xdp_prog)
2650 {
2651 struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2652 struct net_device *fwd;
2653 u32 index = ri->ifindex;
2654 int err;
2655
2656 if (ri->map)
2657 return xdp_do_redirect_map(dev, xdp, xdp_prog);
2658
2659 fwd = dev_get_by_index_rcu(dev_net(dev), index);
2660 ri->ifindex = 0;
2661 if (unlikely(!fwd)) {
2662 err = -EINVAL;
2663 goto err;
2664 }
2665
2666 err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
2667 if (unlikely(err))
2668 goto err;
2669
2670 _trace_xdp_redirect(dev, xdp_prog, index);
2671 return 0;
2672 err:
2673 _trace_xdp_redirect_err(dev, xdp_prog, index, err);
2674 return err;
2675 }
2676 EXPORT_SYMBOL_GPL(xdp_do_redirect);
2677
2678 static int __xdp_generic_ok_fwd_dev(struct sk_buff *skb, struct net_device *fwd)
2679 {
2680 unsigned int len;
2681
2682 if (unlikely(!(fwd->flags & IFF_UP)))
2683 return -ENETDOWN;
2684
2685 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
2686 if (skb->len > len)
2687 return -EMSGSIZE;
2688
2689 return 0;
2690 }
2691
2692 int xdp_do_generic_redirect_map(struct net_device *dev, struct sk_buff *skb,
2693 struct bpf_prog *xdp_prog)
2694 {
2695 struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2696 unsigned long map_owner = ri->map_owner;
2697 struct bpf_map *map = ri->map;
2698 struct net_device *fwd = NULL;
2699 u32 index = ri->ifindex;
2700 int err = 0;
2701
2702 ri->ifindex = 0;
2703 ri->map = NULL;
2704 ri->map_owner = 0;
2705
2706 if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
2707 err = -EFAULT;
2708 map = NULL;
2709 goto err;
2710 }
2711 fwd = __xdp_map_lookup_elem(map, index);
2712 if (unlikely(!fwd)) {
2713 err = -EINVAL;
2714 goto err;
2715 }
2716
2717 if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
2718 if (unlikely((err = __xdp_generic_ok_fwd_dev(skb, fwd))))
2719 goto err;
2720 skb->dev = fwd;
2721 } else {
2722 /* TODO: Handle BPF_MAP_TYPE_CPUMAP */
2723 err = -EBADRQC;
2724 goto err;
2725 }
2726
2727 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
2728 return 0;
2729 err:
2730 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
2731 return err;
2732 }
2733
2734 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
2735 struct bpf_prog *xdp_prog)
2736 {
2737 struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2738 u32 index = ri->ifindex;
2739 struct net_device *fwd;
2740 int err = 0;
2741
2742 if (ri->map)
2743 return xdp_do_generic_redirect_map(dev, skb, xdp_prog);
2744
2745 ri->ifindex = 0;
2746 fwd = dev_get_by_index_rcu(dev_net(dev), index);
2747 if (unlikely(!fwd)) {
2748 err = -EINVAL;
2749 goto err;
2750 }
2751
2752 if (unlikely((err = __xdp_generic_ok_fwd_dev(skb, fwd))))
2753 goto err;
2754
2755 skb->dev = fwd;
2756 _trace_xdp_redirect(dev, xdp_prog, index);
2757 return 0;
2758 err:
2759 _trace_xdp_redirect_err(dev, xdp_prog, index, err);
2760 return err;
2761 }
2762 EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);
2763
2764 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
2765 {
2766 struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2767
2768 if (unlikely(flags))
2769 return XDP_ABORTED;
2770
2771 ri->ifindex = ifindex;
2772 ri->flags = flags;
2773 ri->map = NULL;
2774 ri->map_owner = 0;
2775
2776 return XDP_REDIRECT;
2777 }
2778
2779 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
2780 .func = bpf_xdp_redirect,
2781 .gpl_only = false,
2782 .ret_type = RET_INTEGER,
2783 .arg1_type = ARG_ANYTHING,
2784 .arg2_type = ARG_ANYTHING,
2785 };
2786
2787 BPF_CALL_4(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex, u64, flags,
2788 unsigned long, map_owner)
2789 {
2790 struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2791
2792 if (unlikely(flags))
2793 return XDP_ABORTED;
2794
2795 ri->ifindex = ifindex;
2796 ri->flags = flags;
2797 ri->map = map;
2798 ri->map_owner = map_owner;
2799
2800 return XDP_REDIRECT;
2801 }
2802
2803 /* Note, arg4 is hidden from users and populated by the verifier
2804 * with the right pointer.
2805 */
2806 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
2807 .func = bpf_xdp_redirect_map,
2808 .gpl_only = false,
2809 .ret_type = RET_INTEGER,
2810 .arg1_type = ARG_CONST_MAP_PTR,
2811 .arg2_type = ARG_ANYTHING,
2812 .arg3_type = ARG_ANYTHING,
2813 };
2814
2815 bool bpf_helper_changes_pkt_data(void *func)
2816 {
2817 if (func == bpf_skb_vlan_push ||
2818 func == bpf_skb_vlan_pop ||
2819 func == bpf_skb_store_bytes ||
2820 func == bpf_skb_change_proto ||
2821 func == bpf_skb_change_head ||
2822 func == bpf_skb_change_tail ||
2823 func == bpf_skb_adjust_room ||
2824 func == bpf_skb_pull_data ||
2825 func == bpf_clone_redirect ||
2826 func == bpf_l3_csum_replace ||
2827 func == bpf_l4_csum_replace ||
2828 func == bpf_xdp_adjust_head ||
2829 func == bpf_xdp_adjust_meta)
2830 return true;
2831
2832 return false;
2833 }
2834
2835 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
2836 unsigned long off, unsigned long len)
2837 {
2838 void *ptr = skb_header_pointer(skb, off, len, dst_buff);
2839
2840 if (unlikely(!ptr))
2841 return len;
2842 if (ptr != dst_buff)
2843 memcpy(dst_buff, ptr, len);
2844
2845 return 0;
2846 }
2847
2848 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
2849 u64, flags, void *, meta, u64, meta_size)
2850 {
2851 u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
2852
2853 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
2854 return -EINVAL;
2855 if (unlikely(skb_size > skb->len))
2856 return -EFAULT;
2857
2858 return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
2859 bpf_skb_copy);
2860 }
2861
2862 static const struct bpf_func_proto bpf_skb_event_output_proto = {
2863 .func = bpf_skb_event_output,
2864 .gpl_only = true,
2865 .ret_type = RET_INTEGER,
2866 .arg1_type = ARG_PTR_TO_CTX,
2867 .arg2_type = ARG_CONST_MAP_PTR,
2868 .arg3_type = ARG_ANYTHING,
2869 .arg4_type = ARG_PTR_TO_MEM,
2870 .arg5_type = ARG_CONST_SIZE,
2871 };
2872
2873 static unsigned short bpf_tunnel_key_af(u64 flags)
2874 {
2875 return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
2876 }
2877
2878 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
2879 u32, size, u64, flags)
2880 {
2881 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
2882 u8 compat[sizeof(struct bpf_tunnel_key)];
2883 void *to_orig = to;
2884 int err;
2885
2886 if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
2887 err = -EINVAL;
2888 goto err_clear;
2889 }
2890 if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
2891 err = -EPROTO;
2892 goto err_clear;
2893 }
2894 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
2895 err = -EINVAL;
2896 switch (size) {
2897 case offsetof(struct bpf_tunnel_key, tunnel_label):
2898 case offsetof(struct bpf_tunnel_key, tunnel_ext):
2899 goto set_compat;
2900 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
2901 /* Fixup deprecated structure layouts here, so we have
2902 * a common path later on.
2903 */
2904 if (ip_tunnel_info_af(info) != AF_INET)
2905 goto err_clear;
2906 set_compat:
2907 to = (struct bpf_tunnel_key *)compat;
2908 break;
2909 default:
2910 goto err_clear;
2911 }
2912 }
2913
2914 to->tunnel_id = be64_to_cpu(info->key.tun_id);
2915 to->tunnel_tos = info->key.tos;
2916 to->tunnel_ttl = info->key.ttl;
2917
2918 if (flags & BPF_F_TUNINFO_IPV6) {
2919 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
2920 sizeof(to->remote_ipv6));
2921 to->tunnel_label = be32_to_cpu(info->key.label);
2922 } else {
2923 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
2924 }
2925
2926 if (unlikely(size != sizeof(struct bpf_tunnel_key)))
2927 memcpy(to_orig, to, size);
2928
2929 return 0;
2930 err_clear:
2931 memset(to_orig, 0, size);
2932 return err;
2933 }
2934
2935 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
2936 .func = bpf_skb_get_tunnel_key,
2937 .gpl_only = false,
2938 .ret_type = RET_INTEGER,
2939 .arg1_type = ARG_PTR_TO_CTX,
2940 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
2941 .arg3_type = ARG_CONST_SIZE,
2942 .arg4_type = ARG_ANYTHING,
2943 };
2944
2945 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
2946 {
2947 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
2948 int err;
2949
2950 if (unlikely(!info ||
2951 !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
2952 err = -ENOENT;
2953 goto err_clear;
2954 }
2955 if (unlikely(size < info->options_len)) {
2956 err = -ENOMEM;
2957 goto err_clear;
2958 }
2959
2960 ip_tunnel_info_opts_get(to, info);
2961 if (size > info->options_len)
2962 memset(to + info->options_len, 0, size - info->options_len);
2963
2964 return info->options_len;
2965 err_clear:
2966 memset(to, 0, size);
2967 return err;
2968 }
2969
2970 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
2971 .func = bpf_skb_get_tunnel_opt,
2972 .gpl_only = false,
2973 .ret_type = RET_INTEGER,
2974 .arg1_type = ARG_PTR_TO_CTX,
2975 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
2976 .arg3_type = ARG_CONST_SIZE,
2977 };
2978
2979 static struct metadata_dst __percpu *md_dst;
2980
2981 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
2982 const struct bpf_tunnel_key *, from, u32, size, u64, flags)
2983 {
2984 struct metadata_dst *md = this_cpu_ptr(md_dst);
2985 u8 compat[sizeof(struct bpf_tunnel_key)];
2986 struct ip_tunnel_info *info;
2987
2988 if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
2989 BPF_F_DONT_FRAGMENT)))
2990 return -EINVAL;
2991 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
2992 switch (size) {
2993 case offsetof(struct bpf_tunnel_key, tunnel_label):
2994 case offsetof(struct bpf_tunnel_key, tunnel_ext):
2995 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
2996 /* Fixup deprecated structure layouts here, so we have
2997 * a common path later on.
2998 */
2999 memcpy(compat, from, size);
3000 memset(compat + size, 0, sizeof(compat) - size);
3001 from = (const struct bpf_tunnel_key *) compat;
3002 break;
3003 default:
3004 return -EINVAL;
3005 }
3006 }
3007 if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3008 from->tunnel_ext))
3009 return -EINVAL;
3010
3011 skb_dst_drop(skb);
3012 dst_hold((struct dst_entry *) md);
3013 skb_dst_set(skb, (struct dst_entry *) md);
3014
3015 info = &md->u.tun_info;
3016 info->mode = IP_TUNNEL_INFO_TX;
3017
3018 info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3019 if (flags & BPF_F_DONT_FRAGMENT)
3020 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3021
3022 info->key.tun_id = cpu_to_be64(from->tunnel_id);
3023 info->key.tos = from->tunnel_tos;
3024 info->key.ttl = from->tunnel_ttl;
3025
3026 if (flags & BPF_F_TUNINFO_IPV6) {
3027 info->mode |= IP_TUNNEL_INFO_IPV6;
3028 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3029 sizeof(from->remote_ipv6));
3030 info->key.label = cpu_to_be32(from->tunnel_label) &
3031 IPV6_FLOWLABEL_MASK;
3032 } else {
3033 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
3034 if (flags & BPF_F_ZERO_CSUM_TX)
3035 info->key.tun_flags &= ~TUNNEL_CSUM;
3036 }
3037
3038 return 0;
3039 }
3040
3041 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3042 .func = bpf_skb_set_tunnel_key,
3043 .gpl_only = false,
3044 .ret_type = RET_INTEGER,
3045 .arg1_type = ARG_PTR_TO_CTX,
3046 .arg2_type = ARG_PTR_TO_MEM,
3047 .arg3_type = ARG_CONST_SIZE,
3048 .arg4_type = ARG_ANYTHING,
3049 };
3050
3051 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
3052 const u8 *, from, u32, size)
3053 {
3054 struct ip_tunnel_info *info = skb_tunnel_info(skb);
3055 const struct metadata_dst *md = this_cpu_ptr(md_dst);
3056
3057 if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
3058 return -EINVAL;
3059 if (unlikely(size > IP_TUNNEL_OPTS_MAX))
3060 return -ENOMEM;
3061
3062 ip_tunnel_info_opts_set(info, from, size);
3063
3064 return 0;
3065 }
3066
3067 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
3068 .func = bpf_skb_set_tunnel_opt,
3069 .gpl_only = false,
3070 .ret_type = RET_INTEGER,
3071 .arg1_type = ARG_PTR_TO_CTX,
3072 .arg2_type = ARG_PTR_TO_MEM,
3073 .arg3_type = ARG_CONST_SIZE,
3074 };
3075
3076 static const struct bpf_func_proto *
3077 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
3078 {
3079 if (!md_dst) {
3080 struct metadata_dst __percpu *tmp;
3081
3082 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
3083 METADATA_IP_TUNNEL,
3084 GFP_KERNEL);
3085 if (!tmp)
3086 return NULL;
3087 if (cmpxchg(&md_dst, NULL, tmp))
3088 metadata_dst_free_percpu(tmp);
3089 }
3090
3091 switch (which) {
3092 case BPF_FUNC_skb_set_tunnel_key:
3093 return &bpf_skb_set_tunnel_key_proto;
3094 case BPF_FUNC_skb_set_tunnel_opt:
3095 return &bpf_skb_set_tunnel_opt_proto;
3096 default:
3097 return NULL;
3098 }
3099 }
3100
3101 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
3102 u32, idx)
3103 {
3104 struct bpf_array *array = container_of(map, struct bpf_array, map);
3105 struct cgroup *cgrp;
3106 struct sock *sk;
3107
3108 sk = skb_to_full_sk(skb);
3109 if (!sk || !sk_fullsock(sk))
3110 return -ENOENT;
3111 if (unlikely(idx >= array->map.max_entries))
3112 return -E2BIG;
3113
3114 cgrp = READ_ONCE(array->ptrs[idx]);
3115 if (unlikely(!cgrp))
3116 return -EAGAIN;
3117
3118 return sk_under_cgroup_hierarchy(sk, cgrp);
3119 }
3120
3121 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
3122 .func = bpf_skb_under_cgroup,
3123 .gpl_only = false,
3124 .ret_type = RET_INTEGER,
3125 .arg1_type = ARG_PTR_TO_CTX,
3126 .arg2_type = ARG_CONST_MAP_PTR,
3127 .arg3_type = ARG_ANYTHING,
3128 };
3129
3130 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
3131 unsigned long off, unsigned long len)
3132 {
3133 memcpy(dst_buff, src_buff + off, len);
3134 return 0;
3135 }
3136
3137 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
3138 u64, flags, void *, meta, u64, meta_size)
3139 {
3140 u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3141
3142 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3143 return -EINVAL;
3144 if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
3145 return -EFAULT;
3146
3147 return bpf_event_output(map, flags, meta, meta_size, xdp->data,
3148 xdp_size, bpf_xdp_copy);
3149 }
3150
3151 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
3152 .func = bpf_xdp_event_output,
3153 .gpl_only = true,
3154 .ret_type = RET_INTEGER,
3155 .arg1_type = ARG_PTR_TO_CTX,
3156 .arg2_type = ARG_CONST_MAP_PTR,
3157 .arg3_type = ARG_ANYTHING,
3158 .arg4_type = ARG_PTR_TO_MEM,
3159 .arg5_type = ARG_CONST_SIZE,
3160 };
3161
3162 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
3163 {
3164 return skb->sk ? sock_gen_cookie(skb->sk) : 0;
3165 }
3166
3167 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
3168 .func = bpf_get_socket_cookie,
3169 .gpl_only = false,
3170 .ret_type = RET_INTEGER,
3171 .arg1_type = ARG_PTR_TO_CTX,
3172 };
3173
3174 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
3175 {
3176 struct sock *sk = sk_to_full_sk(skb->sk);
3177 kuid_t kuid;
3178
3179 if (!sk || !sk_fullsock(sk))
3180 return overflowuid;
3181 kuid = sock_net_uid(sock_net(sk), sk);
3182 return from_kuid_munged(sock_net(sk)->user_ns, kuid);
3183 }
3184
3185 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
3186 .func = bpf_get_socket_uid,
3187 .gpl_only = false,
3188 .ret_type = RET_INTEGER,
3189 .arg1_type = ARG_PTR_TO_CTX,
3190 };
3191
3192 BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
3193 int, level, int, optname, char *, optval, int, optlen)
3194 {
3195 struct sock *sk = bpf_sock->sk;
3196 int ret = 0;
3197 int val;
3198
3199 if (!sk_fullsock(sk))
3200 return -EINVAL;
3201
3202 if (level == SOL_SOCKET) {
3203 if (optlen != sizeof(int))
3204 return -EINVAL;
3205 val = *((int *)optval);
3206
3207 /* Only some socketops are supported */
3208 switch (optname) {
3209 case SO_RCVBUF:
3210 val = min_t(u32, val, sysctl_rmem_max);
3211 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
3212 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
3213 break;
3214 case SO_SNDBUF:
3215 val = min_t(u32, val, sysctl_wmem_max);
3216 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
3217 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
3218 break;
3219 case SO_MAX_PACING_RATE:
3220 sk->sk_max_pacing_rate = val;
3221 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
3222 sk->sk_max_pacing_rate);
3223 break;
3224 case SO_PRIORITY:
3225 sk->sk_priority = val;
3226 break;
3227 case SO_RCVLOWAT:
3228 if (val < 0)
3229 val = INT_MAX;
3230 sk->sk_rcvlowat = val ? : 1;
3231 break;
3232 case SO_MARK:
3233 if (sk->sk_mark != val) {
3234 sk->sk_mark = val;
3235 sk_dst_reset(sk);
3236 }
3237 break;
3238 default:
3239 ret = -EINVAL;
3240 }
3241 #ifdef CONFIG_INET
3242 } else if (level == SOL_TCP &&
3243 sk->sk_prot->setsockopt == tcp_setsockopt) {
3244 if (optname == TCP_CONGESTION) {
3245 char name[TCP_CA_NAME_MAX];
3246 bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
3247
3248 strncpy(name, optval, min_t(long, optlen,
3249 TCP_CA_NAME_MAX-1));
3250 name[TCP_CA_NAME_MAX-1] = 0;
3251 ret = tcp_set_congestion_control(sk, name, false,
3252 reinit, true);
3253 } else {
3254 struct tcp_sock *tp = tcp_sk(sk);
3255
3256 if (optlen != sizeof(int))
3257 return -EINVAL;
3258
3259 val = *((int *)optval);
3260 /* Only some options are supported */
3261 switch (optname) {
3262 case TCP_BPF_IW:
3263 if (val <= 0 || tp->data_segs_out > tp->syn_data)
3264 ret = -EINVAL;
3265 else
3266 tp->snd_cwnd = val;
3267 break;
3268 case TCP_BPF_SNDCWND_CLAMP:
3269 if (val <= 0) {
3270 ret = -EINVAL;
3271 } else {
3272 tp->snd_cwnd_clamp = val;
3273 tp->snd_ssthresh = val;
3274 }
3275 break;
3276 default:
3277 ret = -EINVAL;
3278 }
3279 }
3280 #endif
3281 } else {
3282 ret = -EINVAL;
3283 }
3284 return ret;
3285 }
3286
3287 static const struct bpf_func_proto bpf_setsockopt_proto = {
3288 .func = bpf_setsockopt,
3289 .gpl_only = false,
3290 .ret_type = RET_INTEGER,
3291 .arg1_type = ARG_PTR_TO_CTX,
3292 .arg2_type = ARG_ANYTHING,
3293 .arg3_type = ARG_ANYTHING,
3294 .arg4_type = ARG_PTR_TO_MEM,
3295 .arg5_type = ARG_CONST_SIZE,
3296 };
3297
3298 BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
3299 int, level, int, optname, char *, optval, int, optlen)
3300 {
3301 struct sock *sk = bpf_sock->sk;
3302
3303 if (!sk_fullsock(sk))
3304 goto err_clear;
3305
3306 #ifdef CONFIG_INET
3307 if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
3308 if (optname == TCP_CONGESTION) {
3309 struct inet_connection_sock *icsk = inet_csk(sk);
3310
3311 if (!icsk->icsk_ca_ops || optlen <= 1)
3312 goto err_clear;
3313 strncpy(optval, icsk->icsk_ca_ops->name, optlen);
3314 optval[optlen - 1] = 0;
3315 } else {
3316 goto err_clear;
3317 }
3318 } else {
3319 goto err_clear;
3320 }
3321 return 0;
3322 #endif
3323 err_clear:
3324 memset(optval, 0, optlen);
3325 return -EINVAL;
3326 }
3327
3328 static const struct bpf_func_proto bpf_getsockopt_proto = {
3329 .func = bpf_getsockopt,
3330 .gpl_only = false,
3331 .ret_type = RET_INTEGER,
3332 .arg1_type = ARG_PTR_TO_CTX,
3333 .arg2_type = ARG_ANYTHING,
3334 .arg3_type = ARG_ANYTHING,
3335 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
3336 .arg5_type = ARG_CONST_SIZE,
3337 };
3338
3339 static const struct bpf_func_proto *
3340 bpf_base_func_proto(enum bpf_func_id func_id)
3341 {
3342 switch (func_id) {
3343 case BPF_FUNC_map_lookup_elem:
3344 return &bpf_map_lookup_elem_proto;
3345 case BPF_FUNC_map_update_elem:
3346 return &bpf_map_update_elem_proto;
3347 case BPF_FUNC_map_delete_elem:
3348 return &bpf_map_delete_elem_proto;
3349 case BPF_FUNC_get_prandom_u32:
3350 return &bpf_get_prandom_u32_proto;
3351 case BPF_FUNC_get_smp_processor_id:
3352 return &bpf_get_raw_smp_processor_id_proto;
3353 case BPF_FUNC_get_numa_node_id:
3354 return &bpf_get_numa_node_id_proto;
3355 case BPF_FUNC_tail_call:
3356 return &bpf_tail_call_proto;
3357 case BPF_FUNC_ktime_get_ns:
3358 return &bpf_ktime_get_ns_proto;
3359 case BPF_FUNC_trace_printk:
3360 if (capable(CAP_SYS_ADMIN))
3361 return bpf_get_trace_printk_proto();
3362 default:
3363 return NULL;
3364 }
3365 }
3366
3367 static const struct bpf_func_proto *
3368 sock_filter_func_proto(enum bpf_func_id func_id)
3369 {
3370 switch (func_id) {
3371 /* inet and inet6 sockets are created in a process
3372 * context so there is always a valid uid/gid
3373 */
3374 case BPF_FUNC_get_current_uid_gid:
3375 return &bpf_get_current_uid_gid_proto;
3376 default:
3377 return bpf_base_func_proto(func_id);
3378 }
3379 }
3380
3381 static const struct bpf_func_proto *
3382 sk_filter_func_proto(enum bpf_func_id func_id)
3383 {
3384 switch (func_id) {
3385 case BPF_FUNC_skb_load_bytes:
3386 return &bpf_skb_load_bytes_proto;
3387 case BPF_FUNC_get_socket_cookie:
3388 return &bpf_get_socket_cookie_proto;
3389 case BPF_FUNC_get_socket_uid:
3390 return &bpf_get_socket_uid_proto;
3391 default:
3392 return bpf_base_func_proto(func_id);
3393 }
3394 }
3395
3396 static const struct bpf_func_proto *
3397 tc_cls_act_func_proto(enum bpf_func_id func_id)
3398 {
3399 switch (func_id) {
3400 case BPF_FUNC_skb_store_bytes:
3401 return &bpf_skb_store_bytes_proto;
3402 case BPF_FUNC_skb_load_bytes:
3403 return &bpf_skb_load_bytes_proto;
3404 case BPF_FUNC_skb_pull_data:
3405 return &bpf_skb_pull_data_proto;
3406 case BPF_FUNC_csum_diff:
3407 return &bpf_csum_diff_proto;
3408 case BPF_FUNC_csum_update:
3409 return &bpf_csum_update_proto;
3410 case BPF_FUNC_l3_csum_replace:
3411 return &bpf_l3_csum_replace_proto;
3412 case BPF_FUNC_l4_csum_replace:
3413 return &bpf_l4_csum_replace_proto;
3414 case BPF_FUNC_clone_redirect:
3415 return &bpf_clone_redirect_proto;
3416 case BPF_FUNC_get_cgroup_classid:
3417 return &bpf_get_cgroup_classid_proto;
3418 case BPF_FUNC_skb_vlan_push:
3419 return &bpf_skb_vlan_push_proto;
3420 case BPF_FUNC_skb_vlan_pop:
3421 return &bpf_skb_vlan_pop_proto;
3422 case BPF_FUNC_skb_change_proto:
3423 return &bpf_skb_change_proto_proto;
3424 case BPF_FUNC_skb_change_type:
3425 return &bpf_skb_change_type_proto;
3426 case BPF_FUNC_skb_adjust_room:
3427 return &bpf_skb_adjust_room_proto;
3428 case BPF_FUNC_skb_change_tail:
3429 return &bpf_skb_change_tail_proto;
3430 case BPF_FUNC_skb_get_tunnel_key:
3431 return &bpf_skb_get_tunnel_key_proto;
3432 case BPF_FUNC_skb_set_tunnel_key:
3433 return bpf_get_skb_set_tunnel_proto(func_id);
3434 case BPF_FUNC_skb_get_tunnel_opt:
3435 return &bpf_skb_get_tunnel_opt_proto;
3436 case BPF_FUNC_skb_set_tunnel_opt:
3437 return bpf_get_skb_set_tunnel_proto(func_id);
3438 case BPF_FUNC_redirect:
3439 return &bpf_redirect_proto;
3440 case BPF_FUNC_get_route_realm:
3441 return &bpf_get_route_realm_proto;
3442 case BPF_FUNC_get_hash_recalc:
3443 return &bpf_get_hash_recalc_proto;
3444 case BPF_FUNC_set_hash_invalid:
3445 return &bpf_set_hash_invalid_proto;
3446 case BPF_FUNC_set_hash:
3447 return &bpf_set_hash_proto;
3448 case BPF_FUNC_perf_event_output:
3449 return &bpf_skb_event_output_proto;
3450 case BPF_FUNC_get_smp_processor_id:
3451 return &bpf_get_smp_processor_id_proto;
3452 case BPF_FUNC_skb_under_cgroup:
3453 return &bpf_skb_under_cgroup_proto;
3454 case BPF_FUNC_get_socket_cookie:
3455 return &bpf_get_socket_cookie_proto;
3456 case BPF_FUNC_get_socket_uid:
3457 return &bpf_get_socket_uid_proto;
3458 default:
3459 return bpf_base_func_proto(func_id);
3460 }
3461 }
3462
3463 static const struct bpf_func_proto *
3464 xdp_func_proto(enum bpf_func_id func_id)
3465 {
3466 switch (func_id) {
3467 case BPF_FUNC_perf_event_output:
3468 return &bpf_xdp_event_output_proto;
3469 case BPF_FUNC_get_smp_processor_id:
3470 return &bpf_get_smp_processor_id_proto;
3471 case BPF_FUNC_xdp_adjust_head:
3472 return &bpf_xdp_adjust_head_proto;
3473 case BPF_FUNC_xdp_adjust_meta:
3474 return &bpf_xdp_adjust_meta_proto;
3475 case BPF_FUNC_redirect:
3476 return &bpf_xdp_redirect_proto;
3477 case BPF_FUNC_redirect_map:
3478 return &bpf_xdp_redirect_map_proto;
3479 default:
3480 return bpf_base_func_proto(func_id);
3481 }
3482 }
3483
3484 static const struct bpf_func_proto *
3485 lwt_inout_func_proto(enum bpf_func_id func_id)
3486 {
3487 switch (func_id) {
3488 case BPF_FUNC_skb_load_bytes:
3489 return &bpf_skb_load_bytes_proto;
3490 case BPF_FUNC_skb_pull_data:
3491 return &bpf_skb_pull_data_proto;
3492 case BPF_FUNC_csum_diff:
3493 return &bpf_csum_diff_proto;
3494 case BPF_FUNC_get_cgroup_classid:
3495 return &bpf_get_cgroup_classid_proto;
3496 case BPF_FUNC_get_route_realm:
3497 return &bpf_get_route_realm_proto;
3498 case BPF_FUNC_get_hash_recalc:
3499 return &bpf_get_hash_recalc_proto;
3500 case BPF_FUNC_perf_event_output:
3501 return &bpf_skb_event_output_proto;
3502 case BPF_FUNC_get_smp_processor_id:
3503 return &bpf_get_smp_processor_id_proto;
3504 case BPF_FUNC_skb_under_cgroup:
3505 return &bpf_skb_under_cgroup_proto;
3506 default:
3507 return bpf_base_func_proto(func_id);
3508 }
3509 }
3510
3511 static const struct bpf_func_proto *
3512 sock_ops_func_proto(enum bpf_func_id func_id)
3513 {
3514 switch (func_id) {
3515 case BPF_FUNC_setsockopt:
3516 return &bpf_setsockopt_proto;
3517 case BPF_FUNC_getsockopt:
3518 return &bpf_getsockopt_proto;
3519 case BPF_FUNC_sock_map_update:
3520 return &bpf_sock_map_update_proto;
3521 default:
3522 return bpf_base_func_proto(func_id);
3523 }
3524 }
3525
3526 static const struct bpf_func_proto *sk_skb_func_proto(enum bpf_func_id func_id)
3527 {
3528 switch (func_id) {
3529 case BPF_FUNC_skb_store_bytes:
3530 return &bpf_skb_store_bytes_proto;
3531 case BPF_FUNC_skb_load_bytes:
3532 return &bpf_skb_load_bytes_proto;
3533 case BPF_FUNC_skb_pull_data:
3534 return &bpf_skb_pull_data_proto;
3535 case BPF_FUNC_skb_change_tail:
3536 return &bpf_skb_change_tail_proto;
3537 case BPF_FUNC_skb_change_head:
3538 return &bpf_skb_change_head_proto;
3539 case BPF_FUNC_get_socket_cookie:
3540 return &bpf_get_socket_cookie_proto;
3541 case BPF_FUNC_get_socket_uid:
3542 return &bpf_get_socket_uid_proto;
3543 case BPF_FUNC_sk_redirect_map:
3544 return &bpf_sk_redirect_map_proto;
3545 default:
3546 return bpf_base_func_proto(func_id);
3547 }
3548 }
3549
3550 static const struct bpf_func_proto *
3551 lwt_xmit_func_proto(enum bpf_func_id func_id)
3552 {
3553 switch (func_id) {
3554 case BPF_FUNC_skb_get_tunnel_key:
3555 return &bpf_skb_get_tunnel_key_proto;
3556 case BPF_FUNC_skb_set_tunnel_key:
3557 return bpf_get_skb_set_tunnel_proto(func_id);
3558 case BPF_FUNC_skb_get_tunnel_opt:
3559 return &bpf_skb_get_tunnel_opt_proto;
3560 case BPF_FUNC_skb_set_tunnel_opt:
3561 return bpf_get_skb_set_tunnel_proto(func_id);
3562 case BPF_FUNC_redirect:
3563 return &bpf_redirect_proto;
3564 case BPF_FUNC_clone_redirect:
3565 return &bpf_clone_redirect_proto;
3566 case BPF_FUNC_skb_change_tail:
3567 return &bpf_skb_change_tail_proto;
3568 case BPF_FUNC_skb_change_head:
3569 return &bpf_skb_change_head_proto;
3570 case BPF_FUNC_skb_store_bytes:
3571 return &bpf_skb_store_bytes_proto;
3572 case BPF_FUNC_csum_update:
3573 return &bpf_csum_update_proto;
3574 case BPF_FUNC_l3_csum_replace:
3575 return &bpf_l3_csum_replace_proto;
3576 case BPF_FUNC_l4_csum_replace:
3577 return &bpf_l4_csum_replace_proto;
3578 case BPF_FUNC_set_hash_invalid:
3579 return &bpf_set_hash_invalid_proto;
3580 default:
3581 return lwt_inout_func_proto(func_id);
3582 }
3583 }
3584
3585 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
3586 struct bpf_insn_access_aux *info)
3587 {
3588 const int size_default = sizeof(__u32);
3589
3590 if (off < 0 || off >= sizeof(struct __sk_buff))
3591 return false;
3592
3593 /* The verifier guarantees that size > 0. */
3594 if (off % size != 0)
3595 return false;
3596
3597 switch (off) {
3598 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
3599 if (off + size > offsetofend(struct __sk_buff, cb[4]))
3600 return false;
3601 break;
3602 case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
3603 case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
3604 case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
3605 case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
3606 case bpf_ctx_range(struct __sk_buff, data):
3607 case bpf_ctx_range(struct __sk_buff, data_meta):
3608 case bpf_ctx_range(struct __sk_buff, data_end):
3609 if (size != size_default)
3610 return false;
3611 break;
3612 default:
3613 /* Only narrow read access allowed for now. */
3614 if (type == BPF_WRITE) {
3615 if (size != size_default)
3616 return false;
3617 } else {
3618 bpf_ctx_record_field_size(info, size_default);
3619 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
3620 return false;
3621 }
3622 }
3623
3624 return true;
3625 }
3626
3627 static bool sk_filter_is_valid_access(int off, int size,
3628 enum bpf_access_type type,
3629 struct bpf_insn_access_aux *info)
3630 {
3631 switch (off) {
3632 case bpf_ctx_range(struct __sk_buff, tc_classid):
3633 case bpf_ctx_range(struct __sk_buff, data):
3634 case bpf_ctx_range(struct __sk_buff, data_meta):
3635 case bpf_ctx_range(struct __sk_buff, data_end):
3636 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
3637 return false;
3638 }
3639
3640 if (type == BPF_WRITE) {
3641 switch (off) {
3642 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
3643 break;
3644 default:
3645 return false;
3646 }
3647 }
3648
3649 return bpf_skb_is_valid_access(off, size, type, info);
3650 }
3651
3652 static bool lwt_is_valid_access(int off, int size,
3653 enum bpf_access_type type,
3654 struct bpf_insn_access_aux *info)
3655 {
3656 switch (off) {
3657 case bpf_ctx_range(struct __sk_buff, tc_classid):
3658 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
3659 case bpf_ctx_range(struct __sk_buff, data_meta):
3660 return false;
3661 }
3662
3663 if (type == BPF_WRITE) {
3664 switch (off) {
3665 case bpf_ctx_range(struct __sk_buff, mark):
3666 case bpf_ctx_range(struct __sk_buff, priority):
3667 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
3668 break;
3669 default:
3670 return false;
3671 }
3672 }
3673
3674 switch (off) {
3675 case bpf_ctx_range(struct __sk_buff, data):
3676 info->reg_type = PTR_TO_PACKET;
3677 break;
3678 case bpf_ctx_range(struct __sk_buff, data_end):
3679 info->reg_type = PTR_TO_PACKET_END;
3680 break;
3681 }
3682
3683 return bpf_skb_is_valid_access(off, size, type, info);
3684 }
3685
3686 static bool sock_filter_is_valid_access(int off, int size,
3687 enum bpf_access_type type,
3688 struct bpf_insn_access_aux *info)
3689 {
3690 if (type == BPF_WRITE) {
3691 switch (off) {
3692 case offsetof(struct bpf_sock, bound_dev_if):
3693 case offsetof(struct bpf_sock, mark):
3694 case offsetof(struct bpf_sock, priority):
3695 break;
3696 default:
3697 return false;
3698 }
3699 }
3700
3701 if (off < 0 || off + size > sizeof(struct bpf_sock))
3702 return false;
3703 /* The verifier guarantees that size > 0. */
3704 if (off % size != 0)
3705 return false;
3706 if (size != sizeof(__u32))
3707 return false;
3708
3709 return true;
3710 }
3711
3712 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
3713 const struct bpf_prog *prog, int drop_verdict)
3714 {
3715 struct bpf_insn *insn = insn_buf;
3716
3717 if (!direct_write)
3718 return 0;
3719
3720 /* if (!skb->cloned)
3721 * goto start;
3722 *
3723 * (Fast-path, otherwise approximation that we might be
3724 * a clone, do the rest in helper.)
3725 */
3726 *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
3727 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
3728 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
3729
3730 /* ret = bpf_skb_pull_data(skb, 0); */
3731 *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
3732 *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
3733 *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
3734 BPF_FUNC_skb_pull_data);
3735 /* if (!ret)
3736 * goto restore;
3737 * return TC_ACT_SHOT;
3738 */
3739 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
3740 *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
3741 *insn++ = BPF_EXIT_INSN();
3742
3743 /* restore: */
3744 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
3745 /* start: */
3746 *insn++ = prog->insnsi[0];
3747
3748 return insn - insn_buf;
3749 }
3750
3751 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
3752 const struct bpf_prog *prog)
3753 {
3754 return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
3755 }
3756
3757 static bool tc_cls_act_is_valid_access(int off, int size,
3758 enum bpf_access_type type,
3759 struct bpf_insn_access_aux *info)
3760 {
3761 if (type == BPF_WRITE) {
3762 switch (off) {
3763 case bpf_ctx_range(struct __sk_buff, mark):
3764 case bpf_ctx_range(struct __sk_buff, tc_index):
3765 case bpf_ctx_range(struct __sk_buff, priority):
3766 case bpf_ctx_range(struct __sk_buff, tc_classid):
3767 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
3768 break;
3769 default:
3770 return false;
3771 }
3772 }
3773
3774 switch (off) {
3775 case bpf_ctx_range(struct __sk_buff, data):
3776 info->reg_type = PTR_TO_PACKET;
3777 break;
3778 case bpf_ctx_range(struct __sk_buff, data_meta):
3779 info->reg_type = PTR_TO_PACKET_META;
3780 break;
3781 case bpf_ctx_range(struct __sk_buff, data_end):
3782 info->reg_type = PTR_TO_PACKET_END;
3783 break;
3784 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
3785 return false;
3786 }
3787
3788 return bpf_skb_is_valid_access(off, size, type, info);
3789 }
3790
3791 static bool __is_valid_xdp_access(int off, int size)
3792 {
3793 if (off < 0 || off >= sizeof(struct xdp_md))
3794 return false;
3795 if (off % size != 0)
3796 return false;
3797 if (size != sizeof(__u32))
3798 return false;
3799
3800 return true;
3801 }
3802
3803 static bool xdp_is_valid_access(int off, int size,
3804 enum bpf_access_type type,
3805 struct bpf_insn_access_aux *info)
3806 {
3807 if (type == BPF_WRITE)
3808 return false;
3809
3810 switch (off) {
3811 case offsetof(struct xdp_md, data):
3812 info->reg_type = PTR_TO_PACKET;
3813 break;
3814 case offsetof(struct xdp_md, data_meta):
3815 info->reg_type = PTR_TO_PACKET_META;
3816 break;
3817 case offsetof(struct xdp_md, data_end):
3818 info->reg_type = PTR_TO_PACKET_END;
3819 break;
3820 }
3821
3822 return __is_valid_xdp_access(off, size);
3823 }
3824
3825 void bpf_warn_invalid_xdp_action(u32 act)
3826 {
3827 const u32 act_max = XDP_REDIRECT;
3828
3829 WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
3830 act > act_max ? "Illegal" : "Driver unsupported",
3831 act);
3832 }
3833 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
3834
3835 static bool __is_valid_sock_ops_access(int off, int size)
3836 {
3837 if (off < 0 || off >= sizeof(struct bpf_sock_ops))
3838 return false;
3839 /* The verifier guarantees that size > 0. */
3840 if (off % size != 0)
3841 return false;
3842 if (size != sizeof(__u32))
3843 return false;
3844
3845 return true;
3846 }
3847
3848 static bool sock_ops_is_valid_access(int off, int size,
3849 enum bpf_access_type type,
3850 struct bpf_insn_access_aux *info)
3851 {
3852 if (type == BPF_WRITE) {
3853 switch (off) {
3854 case offsetof(struct bpf_sock_ops, op) ...
3855 offsetof(struct bpf_sock_ops, replylong[3]):
3856 break;
3857 default:
3858 return false;
3859 }
3860 }
3861
3862 return __is_valid_sock_ops_access(off, size);
3863 }
3864
3865 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
3866 const struct bpf_prog *prog)
3867 {
3868 return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
3869 }
3870
3871 static bool sk_skb_is_valid_access(int off, int size,
3872 enum bpf_access_type type,
3873 struct bpf_insn_access_aux *info)
3874 {
3875 switch (off) {
3876 case bpf_ctx_range(struct __sk_buff, tc_classid):
3877 case bpf_ctx_range(struct __sk_buff, data_meta):
3878 return false;
3879 }
3880
3881 if (type == BPF_WRITE) {
3882 switch (off) {
3883 case bpf_ctx_range(struct __sk_buff, tc_index):
3884 case bpf_ctx_range(struct __sk_buff, priority):
3885 break;
3886 default:
3887 return false;
3888 }
3889 }
3890
3891 switch (off) {
3892 case bpf_ctx_range(struct __sk_buff, mark):
3893 return false;
3894 case bpf_ctx_range(struct __sk_buff, data):
3895 info->reg_type = PTR_TO_PACKET;
3896 break;
3897 case bpf_ctx_range(struct __sk_buff, data_end):
3898 info->reg_type = PTR_TO_PACKET_END;
3899 break;
3900 }
3901
3902 return bpf_skb_is_valid_access(off, size, type, info);
3903 }
3904
3905 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
3906 const struct bpf_insn *si,
3907 struct bpf_insn *insn_buf,
3908 struct bpf_prog *prog, u32 *target_size)
3909 {
3910 struct bpf_insn *insn = insn_buf;
3911 int off;
3912
3913 switch (si->off) {
3914 case offsetof(struct __sk_buff, len):
3915 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3916 bpf_target_off(struct sk_buff, len, 4,
3917 target_size));
3918 break;
3919
3920 case offsetof(struct __sk_buff, protocol):
3921 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3922 bpf_target_off(struct sk_buff, protocol, 2,
3923 target_size));
3924 break;
3925
3926 case offsetof(struct __sk_buff, vlan_proto):
3927 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3928 bpf_target_off(struct sk_buff, vlan_proto, 2,
3929 target_size));
3930 break;
3931
3932 case offsetof(struct __sk_buff, priority):
3933 if (type == BPF_WRITE)
3934 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
3935 bpf_target_off(struct sk_buff, priority, 4,
3936 target_size));
3937 else
3938 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3939 bpf_target_off(struct sk_buff, priority, 4,
3940 target_size));
3941 break;
3942
3943 case offsetof(struct __sk_buff, ingress_ifindex):
3944 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3945 bpf_target_off(struct sk_buff, skb_iif, 4,
3946 target_size));
3947 break;
3948
3949 case offsetof(struct __sk_buff, ifindex):
3950 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
3951 si->dst_reg, si->src_reg,
3952 offsetof(struct sk_buff, dev));
3953 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
3954 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
3955 bpf_target_off(struct net_device, ifindex, 4,
3956 target_size));
3957 break;
3958
3959 case offsetof(struct __sk_buff, hash):
3960 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3961 bpf_target_off(struct sk_buff, hash, 4,
3962 target_size));
3963 break;
3964
3965 case offsetof(struct __sk_buff, mark):
3966 if (type == BPF_WRITE)
3967 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
3968 bpf_target_off(struct sk_buff, mark, 4,
3969 target_size));
3970 else
3971 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
3972 bpf_target_off(struct sk_buff, mark, 4,
3973 target_size));
3974 break;
3975
3976 case offsetof(struct __sk_buff, pkt_type):
3977 *target_size = 1;
3978 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
3979 PKT_TYPE_OFFSET());
3980 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
3981 #ifdef __BIG_ENDIAN_BITFIELD
3982 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
3983 #endif
3984 break;
3985
3986 case offsetof(struct __sk_buff, queue_mapping):
3987 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3988 bpf_target_off(struct sk_buff, queue_mapping, 2,
3989 target_size));
3990 break;
3991
3992 case offsetof(struct __sk_buff, vlan_present):
3993 case offsetof(struct __sk_buff, vlan_tci):
3994 BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
3995
3996 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
3997 bpf_target_off(struct sk_buff, vlan_tci, 2,
3998 target_size));
3999 if (si->off == offsetof(struct __sk_buff, vlan_tci)) {
4000 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg,
4001 ~VLAN_TAG_PRESENT);
4002 } else {
4003 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 12);
4004 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
4005 }
4006 break;
4007
4008 case offsetof(struct __sk_buff, cb[0]) ...
4009 offsetofend(struct __sk_buff, cb[4]) - 1:
4010 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
4011 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
4012 offsetof(struct qdisc_skb_cb, data)) %
4013 sizeof(__u64));
4014
4015 prog->cb_access = 1;
4016 off = si->off;
4017 off -= offsetof(struct __sk_buff, cb[0]);
4018 off += offsetof(struct sk_buff, cb);
4019 off += offsetof(struct qdisc_skb_cb, data);
4020 if (type == BPF_WRITE)
4021 *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
4022 si->src_reg, off);
4023 else
4024 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
4025 si->src_reg, off);
4026 break;
4027
4028 case offsetof(struct __sk_buff, tc_classid):
4029 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);
4030
4031 off = si->off;
4032 off -= offsetof(struct __sk_buff, tc_classid);
4033 off += offsetof(struct sk_buff, cb);
4034 off += offsetof(struct qdisc_skb_cb, tc_classid);
4035 *target_size = 2;
4036 if (type == BPF_WRITE)
4037 *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
4038 si->src_reg, off);
4039 else
4040 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
4041 si->src_reg, off);
4042 break;
4043
4044 case offsetof(struct __sk_buff, data):
4045 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
4046 si->dst_reg, si->src_reg,
4047 offsetof(struct sk_buff, data));
4048 break;
4049
4050 case offsetof(struct __sk_buff, data_meta):
4051 off = si->off;
4052 off -= offsetof(struct __sk_buff, data_meta);
4053 off += offsetof(struct sk_buff, cb);
4054 off += offsetof(struct bpf_skb_data_end, data_meta);
4055 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
4056 si->src_reg, off);
4057 break;
4058
4059 case offsetof(struct __sk_buff, data_end):
4060 off = si->off;
4061 off -= offsetof(struct __sk_buff, data_end);
4062 off += offsetof(struct sk_buff, cb);
4063 off += offsetof(struct bpf_skb_data_end, data_end);
4064 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
4065 si->src_reg, off);
4066 break;
4067
4068 case offsetof(struct __sk_buff, tc_index):
4069 #ifdef CONFIG_NET_SCHED
4070 if (type == BPF_WRITE)
4071 *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
4072 bpf_target_off(struct sk_buff, tc_index, 2,
4073 target_size));
4074 else
4075 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
4076 bpf_target_off(struct sk_buff, tc_index, 2,
4077 target_size));
4078 #else
4079 *target_size = 2;
4080 if (type == BPF_WRITE)
4081 *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
4082 else
4083 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
4084 #endif
4085 break;
4086
4087 case offsetof(struct __sk_buff, napi_id):
4088 #if defined(CONFIG_NET_RX_BUSY_POLL)
4089 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4090 bpf_target_off(struct sk_buff, napi_id, 4,
4091 target_size));
4092 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
4093 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
4094 #else
4095 *target_size = 4;
4096 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
4097 #endif
4098 break;
4099 case offsetof(struct __sk_buff, family):
4100 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
4101
4102 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
4103 si->dst_reg, si->src_reg,
4104 offsetof(struct sk_buff, sk));
4105 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
4106 bpf_target_off(struct sock_common,
4107 skc_family,
4108 2, target_size));
4109 break;
4110 case offsetof(struct __sk_buff, remote_ip4):
4111 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
4112
4113 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
4114 si->dst_reg, si->src_reg,
4115 offsetof(struct sk_buff, sk));
4116 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4117 bpf_target_off(struct sock_common,
4118 skc_daddr,
4119 4, target_size));
4120 break;
4121 case offsetof(struct __sk_buff, local_ip4):
4122 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
4123 skc_rcv_saddr) != 4);
4124
4125 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
4126 si->dst_reg, si->src_reg,
4127 offsetof(struct sk_buff, sk));
4128 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4129 bpf_target_off(struct sock_common,
4130 skc_rcv_saddr,
4131 4, target_size));
4132 break;
4133 case offsetof(struct __sk_buff, remote_ip6[0]) ...
4134 offsetof(struct __sk_buff, remote_ip6[3]):
4135 #if IS_ENABLED(CONFIG_IPV6)
4136 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
4137 skc_v6_daddr.s6_addr32[0]) != 4);
4138
4139 off = si->off;
4140 off -= offsetof(struct __sk_buff, remote_ip6[0]);
4141
4142 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
4143 si->dst_reg, si->src_reg,
4144 offsetof(struct sk_buff, sk));
4145 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4146 offsetof(struct sock_common,
4147 skc_v6_daddr.s6_addr32[0]) +
4148 off);
4149 #else
4150 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
4151 #endif
4152 break;
4153 case offsetof(struct __sk_buff, local_ip6[0]) ...
4154 offsetof(struct __sk_buff, local_ip6[3]):
4155 #if IS_ENABLED(CONFIG_IPV6)
4156 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
4157 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
4158
4159 off = si->off;
4160 off -= offsetof(struct __sk_buff, local_ip6[0]);
4161
4162 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
4163 si->dst_reg, si->src_reg,
4164 offsetof(struct sk_buff, sk));
4165 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4166 offsetof(struct sock_common,
4167 skc_v6_rcv_saddr.s6_addr32[0]) +
4168 off);
4169 #else
4170 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
4171 #endif
4172 break;
4173
4174 case offsetof(struct __sk_buff, remote_port):
4175 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
4176
4177 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
4178 si->dst_reg, si->src_reg,
4179 offsetof(struct sk_buff, sk));
4180 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
4181 bpf_target_off(struct sock_common,
4182 skc_dport,
4183 2, target_size));
4184 #ifndef __BIG_ENDIAN_BITFIELD
4185 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
4186 #endif
4187 break;
4188
4189 case offsetof(struct __sk_buff, local_port):
4190 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
4191
4192 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
4193 si->dst_reg, si->src_reg,
4194 offsetof(struct sk_buff, sk));
4195 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
4196 bpf_target_off(struct sock_common,
4197 skc_num, 2, target_size));
4198 break;
4199 }
4200
4201 return insn - insn_buf;
4202 }
4203
4204 static u32 sock_filter_convert_ctx_access(enum bpf_access_type type,
4205 const struct bpf_insn *si,
4206 struct bpf_insn *insn_buf,
4207 struct bpf_prog *prog, u32 *target_size)
4208 {
4209 struct bpf_insn *insn = insn_buf;
4210
4211 switch (si->off) {
4212 case offsetof(struct bpf_sock, bound_dev_if):
4213 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);
4214
4215 if (type == BPF_WRITE)
4216 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4217 offsetof(struct sock, sk_bound_dev_if));
4218 else
4219 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4220 offsetof(struct sock, sk_bound_dev_if));
4221 break;
4222
4223 case offsetof(struct bpf_sock, mark):
4224 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_mark) != 4);
4225
4226 if (type == BPF_WRITE)
4227 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4228 offsetof(struct sock, sk_mark));
4229 else
4230 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4231 offsetof(struct sock, sk_mark));
4232 break;
4233
4234 case offsetof(struct bpf_sock, priority):
4235 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_priority) != 4);
4236
4237 if (type == BPF_WRITE)
4238 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4239 offsetof(struct sock, sk_priority));
4240 else
4241 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4242 offsetof(struct sock, sk_priority));
4243 break;
4244
4245 case offsetof(struct bpf_sock, family):
4246 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_family) != 2);
4247
4248 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
4249 offsetof(struct sock, sk_family));
4250 break;
4251
4252 case offsetof(struct bpf_sock, type):
4253 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4254 offsetof(struct sock, __sk_flags_offset));
4255 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
4256 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
4257 break;
4258
4259 case offsetof(struct bpf_sock, protocol):
4260 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4261 offsetof(struct sock, __sk_flags_offset));
4262 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
4263 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
4264 break;
4265 }
4266
4267 return insn - insn_buf;
4268 }
4269
4270 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
4271 const struct bpf_insn *si,
4272 struct bpf_insn *insn_buf,
4273 struct bpf_prog *prog, u32 *target_size)
4274 {
4275 struct bpf_insn *insn = insn_buf;
4276
4277 switch (si->off) {
4278 case offsetof(struct __sk_buff, ifindex):
4279 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
4280 si->dst_reg, si->src_reg,
4281 offsetof(struct sk_buff, dev));
4282 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4283 bpf_target_off(struct net_device, ifindex, 4,
4284 target_size));
4285 break;
4286 default:
4287 return bpf_convert_ctx_access(type, si, insn_buf, prog,
4288 target_size);
4289 }
4290
4291 return insn - insn_buf;
4292 }
4293
4294 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
4295 const struct bpf_insn *si,
4296 struct bpf_insn *insn_buf,
4297 struct bpf_prog *prog, u32 *target_size)
4298 {
4299 struct bpf_insn *insn = insn_buf;
4300
4301 switch (si->off) {
4302 case offsetof(struct xdp_md, data):
4303 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
4304 si->dst_reg, si->src_reg,
4305 offsetof(struct xdp_buff, data));
4306 break;
4307 case offsetof(struct xdp_md, data_meta):
4308 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
4309 si->dst_reg, si->src_reg,
4310 offsetof(struct xdp_buff, data_meta));
4311 break;
4312 case offsetof(struct xdp_md, data_end):
4313 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
4314 si->dst_reg, si->src_reg,
4315 offsetof(struct xdp_buff, data_end));
4316 break;
4317 }
4318
4319 return insn - insn_buf;
4320 }
4321
4322 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
4323 const struct bpf_insn *si,
4324 struct bpf_insn *insn_buf,
4325 struct bpf_prog *prog,
4326 u32 *target_size)
4327 {
4328 struct bpf_insn *insn = insn_buf;
4329 int off;
4330
4331 switch (si->off) {
4332 case offsetof(struct bpf_sock_ops, op) ...
4333 offsetof(struct bpf_sock_ops, replylong[3]):
4334 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) !=
4335 FIELD_SIZEOF(struct bpf_sock_ops_kern, op));
4336 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) !=
4337 FIELD_SIZEOF(struct bpf_sock_ops_kern, reply));
4338 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) !=
4339 FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong));
4340 off = si->off;
4341 off -= offsetof(struct bpf_sock_ops, op);
4342 off += offsetof(struct bpf_sock_ops_kern, op);
4343 if (type == BPF_WRITE)
4344 *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
4345 off);
4346 else
4347 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
4348 off);
4349 break;
4350
4351 case offsetof(struct bpf_sock_ops, family):
4352 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
4353
4354 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4355 struct bpf_sock_ops_kern, sk),
4356 si->dst_reg, si->src_reg,
4357 offsetof(struct bpf_sock_ops_kern, sk));
4358 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
4359 offsetof(struct sock_common, skc_family));
4360 break;
4361
4362 case offsetof(struct bpf_sock_ops, remote_ip4):
4363 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
4364
4365 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4366 struct bpf_sock_ops_kern, sk),
4367 si->dst_reg, si->src_reg,
4368 offsetof(struct bpf_sock_ops_kern, sk));
4369 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4370 offsetof(struct sock_common, skc_daddr));
4371 break;
4372
4373 case offsetof(struct bpf_sock_ops, local_ip4):
4374 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_rcv_saddr) != 4);
4375
4376 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4377 struct bpf_sock_ops_kern, sk),
4378 si->dst_reg, si->src_reg,
4379 offsetof(struct bpf_sock_ops_kern, sk));
4380 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4381 offsetof(struct sock_common,
4382 skc_rcv_saddr));
4383 break;
4384
4385 case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
4386 offsetof(struct bpf_sock_ops, remote_ip6[3]):
4387 #if IS_ENABLED(CONFIG_IPV6)
4388 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
4389 skc_v6_daddr.s6_addr32[0]) != 4);
4390
4391 off = si->off;
4392 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
4393 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4394 struct bpf_sock_ops_kern, sk),
4395 si->dst_reg, si->src_reg,
4396 offsetof(struct bpf_sock_ops_kern, sk));
4397 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4398 offsetof(struct sock_common,
4399 skc_v6_daddr.s6_addr32[0]) +
4400 off);
4401 #else
4402 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
4403 #endif
4404 break;
4405
4406 case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
4407 offsetof(struct bpf_sock_ops, local_ip6[3]):
4408 #if IS_ENABLED(CONFIG_IPV6)
4409 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
4410 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
4411
4412 off = si->off;
4413 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
4414 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4415 struct bpf_sock_ops_kern, sk),
4416 si->dst_reg, si->src_reg,
4417 offsetof(struct bpf_sock_ops_kern, sk));
4418 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
4419 offsetof(struct sock_common,
4420 skc_v6_rcv_saddr.s6_addr32[0]) +
4421 off);
4422 #else
4423 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
4424 #endif
4425 break;
4426
4427 case offsetof(struct bpf_sock_ops, remote_port):
4428 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
4429
4430 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4431 struct bpf_sock_ops_kern, sk),
4432 si->dst_reg, si->src_reg,
4433 offsetof(struct bpf_sock_ops_kern, sk));
4434 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
4435 offsetof(struct sock_common, skc_dport));
4436 #ifndef __BIG_ENDIAN_BITFIELD
4437 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
4438 #endif
4439 break;
4440
4441 case offsetof(struct bpf_sock_ops, local_port):
4442 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
4443
4444 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
4445 struct bpf_sock_ops_kern, sk),
4446 si->dst_reg, si->src_reg,
4447 offsetof(struct bpf_sock_ops_kern, sk));
4448 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
4449 offsetof(struct sock_common, skc_num));
4450 break;
4451 }
4452 return insn - insn_buf;
4453 }
4454
4455 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
4456 const struct bpf_insn *si,
4457 struct bpf_insn *insn_buf,
4458 struct bpf_prog *prog, u32 *target_size)
4459 {
4460 struct bpf_insn *insn = insn_buf;
4461 int off;
4462
4463 switch (si->off) {
4464 case offsetof(struct __sk_buff, data_end):
4465 off = si->off;
4466 off -= offsetof(struct __sk_buff, data_end);
4467 off += offsetof(struct sk_buff, cb);
4468 off += offsetof(struct tcp_skb_cb, bpf.data_end);
4469 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
4470 si->src_reg, off);
4471 break;
4472 default:
4473 return bpf_convert_ctx_access(type, si, insn_buf, prog,
4474 target_size);
4475 }
4476
4477 return insn - insn_buf;
4478 }
4479
4480 const struct bpf_verifier_ops sk_filter_verifier_ops = {
4481 .get_func_proto = sk_filter_func_proto,
4482 .is_valid_access = sk_filter_is_valid_access,
4483 .convert_ctx_access = bpf_convert_ctx_access,
4484 };
4485
4486 const struct bpf_prog_ops sk_filter_prog_ops = {
4487 };
4488
4489 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
4490 .get_func_proto = tc_cls_act_func_proto,
4491 .is_valid_access = tc_cls_act_is_valid_access,
4492 .convert_ctx_access = tc_cls_act_convert_ctx_access,
4493 .gen_prologue = tc_cls_act_prologue,
4494 };
4495
4496 const struct bpf_prog_ops tc_cls_act_prog_ops = {
4497 .test_run = bpf_prog_test_run_skb,
4498 };
4499
4500 const struct bpf_verifier_ops xdp_verifier_ops = {
4501 .get_func_proto = xdp_func_proto,
4502 .is_valid_access = xdp_is_valid_access,
4503 .convert_ctx_access = xdp_convert_ctx_access,
4504 };
4505
4506 const struct bpf_prog_ops xdp_prog_ops = {
4507 .test_run = bpf_prog_test_run_xdp,
4508 };
4509
4510 const struct bpf_verifier_ops cg_skb_verifier_ops = {
4511 .get_func_proto = sk_filter_func_proto,
4512 .is_valid_access = sk_filter_is_valid_access,
4513 .convert_ctx_access = bpf_convert_ctx_access,
4514 };
4515
4516 const struct bpf_prog_ops cg_skb_prog_ops = {
4517 .test_run = bpf_prog_test_run_skb,
4518 };
4519
4520 const struct bpf_verifier_ops lwt_inout_verifier_ops = {
4521 .get_func_proto = lwt_inout_func_proto,
4522 .is_valid_access = lwt_is_valid_access,
4523 .convert_ctx_access = bpf_convert_ctx_access,
4524 };
4525
4526 const struct bpf_prog_ops lwt_inout_prog_ops = {
4527 .test_run = bpf_prog_test_run_skb,
4528 };
4529
4530 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
4531 .get_func_proto = lwt_xmit_func_proto,
4532 .is_valid_access = lwt_is_valid_access,
4533 .convert_ctx_access = bpf_convert_ctx_access,
4534 .gen_prologue = tc_cls_act_prologue,
4535 };
4536
4537 const struct bpf_prog_ops lwt_xmit_prog_ops = {
4538 .test_run = bpf_prog_test_run_skb,
4539 };
4540
4541 const struct bpf_verifier_ops cg_sock_verifier_ops = {
4542 .get_func_proto = sock_filter_func_proto,
4543 .is_valid_access = sock_filter_is_valid_access,
4544 .convert_ctx_access = sock_filter_convert_ctx_access,
4545 };
4546
4547 const struct bpf_prog_ops cg_sock_prog_ops = {
4548 };
4549
4550 const struct bpf_verifier_ops sock_ops_verifier_ops = {
4551 .get_func_proto = sock_ops_func_proto,
4552 .is_valid_access = sock_ops_is_valid_access,
4553 .convert_ctx_access = sock_ops_convert_ctx_access,
4554 };
4555
4556 const struct bpf_prog_ops sock_ops_prog_ops = {
4557 };
4558
4559 const struct bpf_verifier_ops sk_skb_verifier_ops = {
4560 .get_func_proto = sk_skb_func_proto,
4561 .is_valid_access = sk_skb_is_valid_access,
4562 .convert_ctx_access = sk_skb_convert_ctx_access,
4563 .gen_prologue = sk_skb_prologue,
4564 };
4565
4566 const struct bpf_prog_ops sk_skb_prog_ops = {
4567 };
4568
4569 int sk_detach_filter(struct sock *sk)
4570 {
4571 int ret = -ENOENT;
4572 struct sk_filter *filter;
4573
4574 if (sock_flag(sk, SOCK_FILTER_LOCKED))
4575 return -EPERM;
4576
4577 filter = rcu_dereference_protected(sk->sk_filter,
4578 lockdep_sock_is_held(sk));
4579 if (filter) {
4580 RCU_INIT_POINTER(sk->sk_filter, NULL);
4581 sk_filter_uncharge(sk, filter);
4582 ret = 0;
4583 }
4584
4585 return ret;
4586 }
4587 EXPORT_SYMBOL_GPL(sk_detach_filter);
4588
4589 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
4590 unsigned int len)
4591 {
4592 struct sock_fprog_kern *fprog;
4593 struct sk_filter *filter;
4594 int ret = 0;
4595
4596 lock_sock(sk);
4597 filter = rcu_dereference_protected(sk->sk_filter,
4598 lockdep_sock_is_held(sk));
4599 if (!filter)
4600 goto out;
4601
4602 /* We're copying the filter that has been originally attached,
4603 * so no conversion/decode needed anymore. eBPF programs that
4604 * have no original program cannot be dumped through this.
4605 */
4606 ret = -EACCES;
4607 fprog = filter->prog->orig_prog;
4608 if (!fprog)
4609 goto out;
4610
4611 ret = fprog->len;
4612 if (!len)
4613 /* User space only enquires number of filter blocks. */
4614 goto out;
4615
4616 ret = -EINVAL;
4617 if (len < fprog->len)
4618 goto out;
4619
4620 ret = -EFAULT;
4621 if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
4622 goto out;
4623
4624 /* Instead of bytes, the API requests to return the number
4625 * of filter blocks.
4626 */
4627 ret = fprog->len;
4628 out:
4629 release_sock(sk);
4630 return ret;
4631 }