]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/flow_dissector.c
Merge tag 'pm+acpi-3.12-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[mirror_ubuntu-artful-kernel.git] / net / core / flow_dissector.c
1 #include <linux/skbuff.h>
2 #include <linux/export.h>
3 #include <linux/ip.h>
4 #include <linux/ipv6.h>
5 #include <linux/if_vlan.h>
6 #include <net/ip.h>
7 #include <net/ipv6.h>
8 #include <linux/igmp.h>
9 #include <linux/icmp.h>
10 #include <linux/sctp.h>
11 #include <linux/dccp.h>
12 #include <linux/if_tunnel.h>
13 #include <linux/if_pppox.h>
14 #include <linux/ppp_defs.h>
15 #include <net/flow_keys.h>
16
17 /* copy saddr & daddr, possibly using 64bit load/store
18 * Equivalent to : flow->src = iph->saddr;
19 * flow->dst = iph->daddr;
20 */
21 static void iph_to_flow_copy_addrs(struct flow_keys *flow, const struct iphdr *iph)
22 {
23 BUILD_BUG_ON(offsetof(typeof(*flow), dst) !=
24 offsetof(typeof(*flow), src) + sizeof(flow->src));
25 memcpy(&flow->src, &iph->saddr, sizeof(flow->src) + sizeof(flow->dst));
26 }
27
28 bool skb_flow_dissect(const struct sk_buff *skb, struct flow_keys *flow)
29 {
30 int poff, nhoff = skb_network_offset(skb);
31 u8 ip_proto;
32 __be16 proto = skb->protocol;
33
34 memset(flow, 0, sizeof(*flow));
35
36 again:
37 switch (proto) {
38 case __constant_htons(ETH_P_IP): {
39 const struct iphdr *iph;
40 struct iphdr _iph;
41 ip:
42 iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
43 if (!iph)
44 return false;
45
46 if (ip_is_fragment(iph))
47 ip_proto = 0;
48 else
49 ip_proto = iph->protocol;
50 iph_to_flow_copy_addrs(flow, iph);
51 nhoff += iph->ihl * 4;
52 break;
53 }
54 case __constant_htons(ETH_P_IPV6): {
55 const struct ipv6hdr *iph;
56 struct ipv6hdr _iph;
57 ipv6:
58 iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
59 if (!iph)
60 return false;
61
62 ip_proto = iph->nexthdr;
63 flow->src = (__force __be32)ipv6_addr_hash(&iph->saddr);
64 flow->dst = (__force __be32)ipv6_addr_hash(&iph->daddr);
65 nhoff += sizeof(struct ipv6hdr);
66 break;
67 }
68 case __constant_htons(ETH_P_8021AD):
69 case __constant_htons(ETH_P_8021Q): {
70 const struct vlan_hdr *vlan;
71 struct vlan_hdr _vlan;
72
73 vlan = skb_header_pointer(skb, nhoff, sizeof(_vlan), &_vlan);
74 if (!vlan)
75 return false;
76
77 proto = vlan->h_vlan_encapsulated_proto;
78 nhoff += sizeof(*vlan);
79 goto again;
80 }
81 case __constant_htons(ETH_P_PPP_SES): {
82 struct {
83 struct pppoe_hdr hdr;
84 __be16 proto;
85 } *hdr, _hdr;
86 hdr = skb_header_pointer(skb, nhoff, sizeof(_hdr), &_hdr);
87 if (!hdr)
88 return false;
89 proto = hdr->proto;
90 nhoff += PPPOE_SES_HLEN;
91 switch (proto) {
92 case __constant_htons(PPP_IP):
93 goto ip;
94 case __constant_htons(PPP_IPV6):
95 goto ipv6;
96 default:
97 return false;
98 }
99 }
100 default:
101 return false;
102 }
103
104 switch (ip_proto) {
105 case IPPROTO_GRE: {
106 struct gre_hdr {
107 __be16 flags;
108 __be16 proto;
109 } *hdr, _hdr;
110
111 hdr = skb_header_pointer(skb, nhoff, sizeof(_hdr), &_hdr);
112 if (!hdr)
113 return false;
114 /*
115 * Only look inside GRE if version zero and no
116 * routing
117 */
118 if (!(hdr->flags & (GRE_VERSION|GRE_ROUTING))) {
119 proto = hdr->proto;
120 nhoff += 4;
121 if (hdr->flags & GRE_CSUM)
122 nhoff += 4;
123 if (hdr->flags & GRE_KEY)
124 nhoff += 4;
125 if (hdr->flags & GRE_SEQ)
126 nhoff += 4;
127 if (proto == htons(ETH_P_TEB)) {
128 const struct ethhdr *eth;
129 struct ethhdr _eth;
130
131 eth = skb_header_pointer(skb, nhoff,
132 sizeof(_eth), &_eth);
133 if (!eth)
134 return false;
135 proto = eth->h_proto;
136 nhoff += sizeof(*eth);
137 }
138 goto again;
139 }
140 break;
141 }
142 case IPPROTO_IPIP:
143 proto = htons(ETH_P_IP);
144 goto ip;
145 case IPPROTO_IPV6:
146 proto = htons(ETH_P_IPV6);
147 goto ipv6;
148 default:
149 break;
150 }
151
152 flow->ip_proto = ip_proto;
153 poff = proto_ports_offset(ip_proto);
154 if (poff >= 0) {
155 __be32 *ports, _ports;
156
157 ports = skb_header_pointer(skb, nhoff + poff,
158 sizeof(_ports), &_ports);
159 if (ports)
160 flow->ports = *ports;
161 }
162
163 flow->thoff = (u16) nhoff;
164
165 return true;
166 }
167 EXPORT_SYMBOL(skb_flow_dissect);
168
169 static u32 hashrnd __read_mostly;
170
171 /*
172 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
173 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
174 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
175 * if hash is a canonical 4-tuple hash over transport ports.
176 */
177 void __skb_get_rxhash(struct sk_buff *skb)
178 {
179 struct flow_keys keys;
180 u32 hash;
181
182 if (!skb_flow_dissect(skb, &keys))
183 return;
184
185 if (keys.ports)
186 skb->l4_rxhash = 1;
187
188 /* get a consistent hash (same value on both flow directions) */
189 if (((__force u32)keys.dst < (__force u32)keys.src) ||
190 (((__force u32)keys.dst == (__force u32)keys.src) &&
191 ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]))) {
192 swap(keys.dst, keys.src);
193 swap(keys.port16[0], keys.port16[1]);
194 }
195
196 hash = jhash_3words((__force u32)keys.dst,
197 (__force u32)keys.src,
198 (__force u32)keys.ports, hashrnd);
199 if (!hash)
200 hash = 1;
201
202 skb->rxhash = hash;
203 }
204 EXPORT_SYMBOL(__skb_get_rxhash);
205
206 /*
207 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
208 * to be used as a distribution range.
209 */
210 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
211 unsigned int num_tx_queues)
212 {
213 u32 hash;
214 u16 qoffset = 0;
215 u16 qcount = num_tx_queues;
216
217 if (skb_rx_queue_recorded(skb)) {
218 hash = skb_get_rx_queue(skb);
219 while (unlikely(hash >= num_tx_queues))
220 hash -= num_tx_queues;
221 return hash;
222 }
223
224 if (dev->num_tc) {
225 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
226 qoffset = dev->tc_to_txq[tc].offset;
227 qcount = dev->tc_to_txq[tc].count;
228 }
229
230 if (skb->sk && skb->sk->sk_hash)
231 hash = skb->sk->sk_hash;
232 else
233 hash = (__force u16) skb->protocol;
234 hash = jhash_1word(hash, hashrnd);
235
236 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
237 }
238 EXPORT_SYMBOL(__skb_tx_hash);
239
240 /* __skb_get_poff() returns the offset to the payload as far as it could
241 * be dissected. The main user is currently BPF, so that we can dynamically
242 * truncate packets without needing to push actual payload to the user
243 * space and can analyze headers only, instead.
244 */
245 u32 __skb_get_poff(const struct sk_buff *skb)
246 {
247 struct flow_keys keys;
248 u32 poff = 0;
249
250 if (!skb_flow_dissect(skb, &keys))
251 return 0;
252
253 poff += keys.thoff;
254 switch (keys.ip_proto) {
255 case IPPROTO_TCP: {
256 const struct tcphdr *tcph;
257 struct tcphdr _tcph;
258
259 tcph = skb_header_pointer(skb, poff, sizeof(_tcph), &_tcph);
260 if (!tcph)
261 return poff;
262
263 poff += max_t(u32, sizeof(struct tcphdr), tcph->doff * 4);
264 break;
265 }
266 case IPPROTO_UDP:
267 case IPPROTO_UDPLITE:
268 poff += sizeof(struct udphdr);
269 break;
270 /* For the rest, we do not really care about header
271 * extensions at this point for now.
272 */
273 case IPPROTO_ICMP:
274 poff += sizeof(struct icmphdr);
275 break;
276 case IPPROTO_ICMPV6:
277 poff += sizeof(struct icmp6hdr);
278 break;
279 case IPPROTO_IGMP:
280 poff += sizeof(struct igmphdr);
281 break;
282 case IPPROTO_DCCP:
283 poff += sizeof(struct dccp_hdr);
284 break;
285 case IPPROTO_SCTP:
286 poff += sizeof(struct sctphdr);
287 break;
288 }
289
290 return poff;
291 }
292
293 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
294 {
295 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
296 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
297 dev->name, queue_index,
298 dev->real_num_tx_queues);
299 return 0;
300 }
301 return queue_index;
302 }
303
304 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
305 {
306 #ifdef CONFIG_XPS
307 struct xps_dev_maps *dev_maps;
308 struct xps_map *map;
309 int queue_index = -1;
310
311 rcu_read_lock();
312 dev_maps = rcu_dereference(dev->xps_maps);
313 if (dev_maps) {
314 map = rcu_dereference(
315 dev_maps->cpu_map[raw_smp_processor_id()]);
316 if (map) {
317 if (map->len == 1)
318 queue_index = map->queues[0];
319 else {
320 u32 hash;
321 if (skb->sk && skb->sk->sk_hash)
322 hash = skb->sk->sk_hash;
323 else
324 hash = (__force u16) skb->protocol ^
325 skb->rxhash;
326 hash = jhash_1word(hash, hashrnd);
327 queue_index = map->queues[
328 ((u64)hash * map->len) >> 32];
329 }
330 if (unlikely(queue_index >= dev->real_num_tx_queues))
331 queue_index = -1;
332 }
333 }
334 rcu_read_unlock();
335
336 return queue_index;
337 #else
338 return -1;
339 #endif
340 }
341
342 u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
343 {
344 struct sock *sk = skb->sk;
345 int queue_index = sk_tx_queue_get(sk);
346
347 if (queue_index < 0 || skb->ooo_okay ||
348 queue_index >= dev->real_num_tx_queues) {
349 int new_index = get_xps_queue(dev, skb);
350 if (new_index < 0)
351 new_index = skb_tx_hash(dev, skb);
352
353 if (queue_index != new_index && sk &&
354 rcu_access_pointer(sk->sk_dst_cache))
355 sk_tx_queue_set(sk, new_index);
356
357 queue_index = new_index;
358 }
359
360 return queue_index;
361 }
362 EXPORT_SYMBOL(__netdev_pick_tx);
363
364 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
365 struct sk_buff *skb)
366 {
367 int queue_index = 0;
368
369 if (dev->real_num_tx_queues != 1) {
370 const struct net_device_ops *ops = dev->netdev_ops;
371 if (ops->ndo_select_queue)
372 queue_index = ops->ndo_select_queue(dev, skb);
373 else
374 queue_index = __netdev_pick_tx(dev, skb);
375 queue_index = dev_cap_txqueue(dev, queue_index);
376 }
377
378 skb_set_queue_mapping(skb, queue_index);
379 return netdev_get_tx_queue(dev, queue_index);
380 }
381
382 static int __init initialize_hashrnd(void)
383 {
384 get_random_bytes(&hashrnd, sizeof(hashrnd));
385 return 0;
386 }
387
388 late_initcall_sync(initialize_hashrnd);