]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/flow_dissector.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-artful-kernel.git] / net / core / flow_dissector.c
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/ip.h>
8 #include <net/ipv6.h>
9 #include <net/gre.h>
10 #include <net/pptp.h>
11 #include <linux/igmp.h>
12 #include <linux/icmp.h>
13 #include <linux/sctp.h>
14 #include <linux/dccp.h>
15 #include <linux/if_tunnel.h>
16 #include <linux/if_pppox.h>
17 #include <linux/ppp_defs.h>
18 #include <linux/stddef.h>
19 #include <linux/if_ether.h>
20 #include <linux/mpls.h>
21 #include <net/flow_dissector.h>
22 #include <scsi/fc/fc_fcoe.h>
23
24 static void dissector_set_key(struct flow_dissector *flow_dissector,
25 enum flow_dissector_key_id key_id)
26 {
27 flow_dissector->used_keys |= (1 << key_id);
28 }
29
30 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
31 const struct flow_dissector_key *key,
32 unsigned int key_count)
33 {
34 unsigned int i;
35
36 memset(flow_dissector, 0, sizeof(*flow_dissector));
37
38 for (i = 0; i < key_count; i++, key++) {
39 /* User should make sure that every key target offset is withing
40 * boundaries of unsigned short.
41 */
42 BUG_ON(key->offset > USHRT_MAX);
43 BUG_ON(dissector_uses_key(flow_dissector,
44 key->key_id));
45
46 dissector_set_key(flow_dissector, key->key_id);
47 flow_dissector->offset[key->key_id] = key->offset;
48 }
49
50 /* Ensure that the dissector always includes control and basic key.
51 * That way we are able to avoid handling lack of these in fast path.
52 */
53 BUG_ON(!dissector_uses_key(flow_dissector,
54 FLOW_DISSECTOR_KEY_CONTROL));
55 BUG_ON(!dissector_uses_key(flow_dissector,
56 FLOW_DISSECTOR_KEY_BASIC));
57 }
58 EXPORT_SYMBOL(skb_flow_dissector_init);
59
60 /**
61 * skb_flow_get_be16 - extract be16 entity
62 * @skb: sk_buff to extract from
63 * @poff: offset to extract at
64 * @data: raw buffer pointer to the packet
65 * @hlen: packet header length
66 *
67 * The function will try to retrieve a be32 entity at
68 * offset poff
69 */
70 static __be16 skb_flow_get_be16(const struct sk_buff *skb, int poff,
71 void *data, int hlen)
72 {
73 __be16 *u, _u;
74
75 u = __skb_header_pointer(skb, poff, sizeof(_u), data, hlen, &_u);
76 if (u)
77 return *u;
78
79 return 0;
80 }
81
82 /**
83 * __skb_flow_get_ports - extract the upper layer ports and return them
84 * @skb: sk_buff to extract the ports from
85 * @thoff: transport header offset
86 * @ip_proto: protocol for which to get port offset
87 * @data: raw buffer pointer to the packet, if NULL use skb->data
88 * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
89 *
90 * The function will try to retrieve the ports at offset thoff + poff where poff
91 * is the protocol port offset returned from proto_ports_offset
92 */
93 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
94 void *data, int hlen)
95 {
96 int poff = proto_ports_offset(ip_proto);
97
98 if (!data) {
99 data = skb->data;
100 hlen = skb_headlen(skb);
101 }
102
103 if (poff >= 0) {
104 __be32 *ports, _ports;
105
106 ports = __skb_header_pointer(skb, thoff + poff,
107 sizeof(_ports), data, hlen, &_ports);
108 if (ports)
109 return *ports;
110 }
111
112 return 0;
113 }
114 EXPORT_SYMBOL(__skb_flow_get_ports);
115
116 /**
117 * __skb_flow_dissect - extract the flow_keys struct and return it
118 * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
119 * @flow_dissector: list of keys to dissect
120 * @target_container: target structure to put dissected values into
121 * @data: raw buffer pointer to the packet, if NULL use skb->data
122 * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
123 * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
124 * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
125 *
126 * The function will try to retrieve individual keys into target specified
127 * by flow_dissector from either the skbuff or a raw buffer specified by the
128 * rest parameters.
129 *
130 * Caller must take care of zeroing target container memory.
131 */
132 bool __skb_flow_dissect(const struct sk_buff *skb,
133 struct flow_dissector *flow_dissector,
134 void *target_container,
135 void *data, __be16 proto, int nhoff, int hlen,
136 unsigned int flags)
137 {
138 struct flow_dissector_key_control *key_control;
139 struct flow_dissector_key_basic *key_basic;
140 struct flow_dissector_key_addrs *key_addrs;
141 struct flow_dissector_key_arp *key_arp;
142 struct flow_dissector_key_ports *key_ports;
143 struct flow_dissector_key_icmp *key_icmp;
144 struct flow_dissector_key_tags *key_tags;
145 struct flow_dissector_key_vlan *key_vlan;
146 struct flow_dissector_key_keyid *key_keyid;
147 bool skip_vlan = false;
148 u8 ip_proto = 0;
149 bool ret;
150
151 if (!data) {
152 data = skb->data;
153 proto = skb_vlan_tag_present(skb) ?
154 skb->vlan_proto : skb->protocol;
155 nhoff = skb_network_offset(skb);
156 hlen = skb_headlen(skb);
157 }
158
159 /* It is ensured by skb_flow_dissector_init() that control key will
160 * be always present.
161 */
162 key_control = skb_flow_dissector_target(flow_dissector,
163 FLOW_DISSECTOR_KEY_CONTROL,
164 target_container);
165
166 /* It is ensured by skb_flow_dissector_init() that basic key will
167 * be always present.
168 */
169 key_basic = skb_flow_dissector_target(flow_dissector,
170 FLOW_DISSECTOR_KEY_BASIC,
171 target_container);
172
173 if (dissector_uses_key(flow_dissector,
174 FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
175 struct ethhdr *eth = eth_hdr(skb);
176 struct flow_dissector_key_eth_addrs *key_eth_addrs;
177
178 key_eth_addrs = skb_flow_dissector_target(flow_dissector,
179 FLOW_DISSECTOR_KEY_ETH_ADDRS,
180 target_container);
181 memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
182 }
183
184 again:
185 switch (proto) {
186 case htons(ETH_P_IP): {
187 const struct iphdr *iph;
188 struct iphdr _iph;
189 ip:
190 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
191 if (!iph || iph->ihl < 5)
192 goto out_bad;
193 nhoff += iph->ihl * 4;
194
195 ip_proto = iph->protocol;
196
197 if (dissector_uses_key(flow_dissector,
198 FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
199 key_addrs = skb_flow_dissector_target(flow_dissector,
200 FLOW_DISSECTOR_KEY_IPV4_ADDRS,
201 target_container);
202
203 memcpy(&key_addrs->v4addrs, &iph->saddr,
204 sizeof(key_addrs->v4addrs));
205 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
206 }
207
208 if (ip_is_fragment(iph)) {
209 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
210
211 if (iph->frag_off & htons(IP_OFFSET)) {
212 goto out_good;
213 } else {
214 key_control->flags |= FLOW_DIS_FIRST_FRAG;
215 if (!(flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG))
216 goto out_good;
217 }
218 }
219
220 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
221 goto out_good;
222
223 break;
224 }
225 case htons(ETH_P_IPV6): {
226 const struct ipv6hdr *iph;
227 struct ipv6hdr _iph;
228
229 ipv6:
230 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
231 if (!iph)
232 goto out_bad;
233
234 ip_proto = iph->nexthdr;
235 nhoff += sizeof(struct ipv6hdr);
236
237 if (dissector_uses_key(flow_dissector,
238 FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
239 key_addrs = skb_flow_dissector_target(flow_dissector,
240 FLOW_DISSECTOR_KEY_IPV6_ADDRS,
241 target_container);
242
243 memcpy(&key_addrs->v6addrs, &iph->saddr,
244 sizeof(key_addrs->v6addrs));
245 key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
246 }
247
248 if ((dissector_uses_key(flow_dissector,
249 FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
250 (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
251 ip6_flowlabel(iph)) {
252 __be32 flow_label = ip6_flowlabel(iph);
253
254 if (dissector_uses_key(flow_dissector,
255 FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
256 key_tags = skb_flow_dissector_target(flow_dissector,
257 FLOW_DISSECTOR_KEY_FLOW_LABEL,
258 target_container);
259 key_tags->flow_label = ntohl(flow_label);
260 }
261 if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)
262 goto out_good;
263 }
264
265 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
266 goto out_good;
267
268 break;
269 }
270 case htons(ETH_P_8021AD):
271 case htons(ETH_P_8021Q): {
272 const struct vlan_hdr *vlan;
273 struct vlan_hdr _vlan;
274 bool vlan_tag_present = skb && skb_vlan_tag_present(skb);
275
276 if (vlan_tag_present)
277 proto = skb->protocol;
278
279 if (!vlan_tag_present || eth_type_vlan(skb->protocol)) {
280 vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
281 data, hlen, &_vlan);
282 if (!vlan)
283 goto out_bad;
284 proto = vlan->h_vlan_encapsulated_proto;
285 nhoff += sizeof(*vlan);
286 if (skip_vlan)
287 goto again;
288 }
289
290 skip_vlan = true;
291 if (dissector_uses_key(flow_dissector,
292 FLOW_DISSECTOR_KEY_VLAN)) {
293 key_vlan = skb_flow_dissector_target(flow_dissector,
294 FLOW_DISSECTOR_KEY_VLAN,
295 target_container);
296
297 if (vlan_tag_present) {
298 key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
299 key_vlan->vlan_priority =
300 (skb_vlan_tag_get_prio(skb) >> VLAN_PRIO_SHIFT);
301 } else {
302 key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
303 VLAN_VID_MASK;
304 key_vlan->vlan_priority =
305 (ntohs(vlan->h_vlan_TCI) &
306 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
307 }
308 }
309
310 goto again;
311 }
312 case htons(ETH_P_PPP_SES): {
313 struct {
314 struct pppoe_hdr hdr;
315 __be16 proto;
316 } *hdr, _hdr;
317 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
318 if (!hdr)
319 goto out_bad;
320 proto = hdr->proto;
321 nhoff += PPPOE_SES_HLEN;
322 switch (proto) {
323 case htons(PPP_IP):
324 goto ip;
325 case htons(PPP_IPV6):
326 goto ipv6;
327 default:
328 goto out_bad;
329 }
330 }
331 case htons(ETH_P_TIPC): {
332 struct {
333 __be32 pre[3];
334 __be32 srcnode;
335 } *hdr, _hdr;
336 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
337 if (!hdr)
338 goto out_bad;
339
340 if (dissector_uses_key(flow_dissector,
341 FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
342 key_addrs = skb_flow_dissector_target(flow_dissector,
343 FLOW_DISSECTOR_KEY_TIPC_ADDRS,
344 target_container);
345 key_addrs->tipcaddrs.srcnode = hdr->srcnode;
346 key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
347 }
348 goto out_good;
349 }
350
351 case htons(ETH_P_MPLS_UC):
352 case htons(ETH_P_MPLS_MC): {
353 struct mpls_label *hdr, _hdr[2];
354 mpls:
355 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
356 hlen, &_hdr);
357 if (!hdr)
358 goto out_bad;
359
360 if ((ntohl(hdr[0].entry) & MPLS_LS_LABEL_MASK) >>
361 MPLS_LS_LABEL_SHIFT == MPLS_LABEL_ENTROPY) {
362 if (dissector_uses_key(flow_dissector,
363 FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
364 key_keyid = skb_flow_dissector_target(flow_dissector,
365 FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
366 target_container);
367 key_keyid->keyid = hdr[1].entry &
368 htonl(MPLS_LS_LABEL_MASK);
369 }
370
371 goto out_good;
372 }
373
374 goto out_good;
375 }
376
377 case htons(ETH_P_FCOE):
378 if ((hlen - nhoff) < FCOE_HEADER_LEN)
379 goto out_bad;
380
381 nhoff += FCOE_HEADER_LEN;
382 goto out_good;
383
384 case htons(ETH_P_ARP):
385 case htons(ETH_P_RARP): {
386 struct {
387 unsigned char ar_sha[ETH_ALEN];
388 unsigned char ar_sip[4];
389 unsigned char ar_tha[ETH_ALEN];
390 unsigned char ar_tip[4];
391 } *arp_eth, _arp_eth;
392 const struct arphdr *arp;
393 struct arphdr _arp;
394
395 arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
396 hlen, &_arp);
397 if (!arp)
398 goto out_bad;
399
400 if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
401 arp->ar_pro != htons(ETH_P_IP) ||
402 arp->ar_hln != ETH_ALEN ||
403 arp->ar_pln != 4 ||
404 (arp->ar_op != htons(ARPOP_REPLY) &&
405 arp->ar_op != htons(ARPOP_REQUEST)))
406 goto out_bad;
407
408 arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
409 sizeof(_arp_eth), data,
410 hlen,
411 &_arp_eth);
412 if (!arp_eth)
413 goto out_bad;
414
415 if (dissector_uses_key(flow_dissector,
416 FLOW_DISSECTOR_KEY_ARP)) {
417
418 key_arp = skb_flow_dissector_target(flow_dissector,
419 FLOW_DISSECTOR_KEY_ARP,
420 target_container);
421
422 memcpy(&key_arp->sip, arp_eth->ar_sip,
423 sizeof(key_arp->sip));
424 memcpy(&key_arp->tip, arp_eth->ar_tip,
425 sizeof(key_arp->tip));
426
427 /* Only store the lower byte of the opcode;
428 * this covers ARPOP_REPLY and ARPOP_REQUEST.
429 */
430 key_arp->op = ntohs(arp->ar_op) & 0xff;
431
432 ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
433 ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
434 }
435
436 goto out_good;
437 }
438
439 default:
440 goto out_bad;
441 }
442
443 ip_proto_again:
444 switch (ip_proto) {
445 case IPPROTO_GRE: {
446 struct gre_base_hdr *hdr, _hdr;
447 u16 gre_ver;
448 int offset = 0;
449
450 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
451 if (!hdr)
452 goto out_bad;
453
454 /* Only look inside GRE without routing */
455 if (hdr->flags & GRE_ROUTING)
456 break;
457
458 /* Only look inside GRE for version 0 and 1 */
459 gre_ver = ntohs(hdr->flags & GRE_VERSION);
460 if (gre_ver > 1)
461 break;
462
463 proto = hdr->protocol;
464 if (gre_ver) {
465 /* Version1 must be PPTP, and check the flags */
466 if (!(proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
467 break;
468 }
469
470 offset += sizeof(struct gre_base_hdr);
471
472 if (hdr->flags & GRE_CSUM)
473 offset += sizeof(((struct gre_full_hdr *)0)->csum) +
474 sizeof(((struct gre_full_hdr *)0)->reserved1);
475
476 if (hdr->flags & GRE_KEY) {
477 const __be32 *keyid;
478 __be32 _keyid;
479
480 keyid = __skb_header_pointer(skb, nhoff + offset, sizeof(_keyid),
481 data, hlen, &_keyid);
482 if (!keyid)
483 goto out_bad;
484
485 if (dissector_uses_key(flow_dissector,
486 FLOW_DISSECTOR_KEY_GRE_KEYID)) {
487 key_keyid = skb_flow_dissector_target(flow_dissector,
488 FLOW_DISSECTOR_KEY_GRE_KEYID,
489 target_container);
490 if (gre_ver == 0)
491 key_keyid->keyid = *keyid;
492 else
493 key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
494 }
495 offset += sizeof(((struct gre_full_hdr *)0)->key);
496 }
497
498 if (hdr->flags & GRE_SEQ)
499 offset += sizeof(((struct pptp_gre_header *)0)->seq);
500
501 if (gre_ver == 0) {
502 if (proto == htons(ETH_P_TEB)) {
503 const struct ethhdr *eth;
504 struct ethhdr _eth;
505
506 eth = __skb_header_pointer(skb, nhoff + offset,
507 sizeof(_eth),
508 data, hlen, &_eth);
509 if (!eth)
510 goto out_bad;
511 proto = eth->h_proto;
512 offset += sizeof(*eth);
513
514 /* Cap headers that we access via pointers at the
515 * end of the Ethernet header as our maximum alignment
516 * at that point is only 2 bytes.
517 */
518 if (NET_IP_ALIGN)
519 hlen = (nhoff + offset);
520 }
521 } else { /* version 1, must be PPTP */
522 u8 _ppp_hdr[PPP_HDRLEN];
523 u8 *ppp_hdr;
524
525 if (hdr->flags & GRE_ACK)
526 offset += sizeof(((struct pptp_gre_header *)0)->ack);
527
528 ppp_hdr = __skb_header_pointer(skb, nhoff + offset,
529 sizeof(_ppp_hdr),
530 data, hlen, _ppp_hdr);
531 if (!ppp_hdr)
532 goto out_bad;
533
534 switch (PPP_PROTOCOL(ppp_hdr)) {
535 case PPP_IP:
536 proto = htons(ETH_P_IP);
537 break;
538 case PPP_IPV6:
539 proto = htons(ETH_P_IPV6);
540 break;
541 default:
542 /* Could probably catch some more like MPLS */
543 break;
544 }
545
546 offset += PPP_HDRLEN;
547 }
548
549 nhoff += offset;
550 key_control->flags |= FLOW_DIS_ENCAPSULATION;
551 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
552 goto out_good;
553
554 goto again;
555 }
556 case NEXTHDR_HOP:
557 case NEXTHDR_ROUTING:
558 case NEXTHDR_DEST: {
559 u8 _opthdr[2], *opthdr;
560
561 if (proto != htons(ETH_P_IPV6))
562 break;
563
564 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
565 data, hlen, &_opthdr);
566 if (!opthdr)
567 goto out_bad;
568
569 ip_proto = opthdr[0];
570 nhoff += (opthdr[1] + 1) << 3;
571
572 goto ip_proto_again;
573 }
574 case NEXTHDR_FRAGMENT: {
575 struct frag_hdr _fh, *fh;
576
577 if (proto != htons(ETH_P_IPV6))
578 break;
579
580 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
581 data, hlen, &_fh);
582
583 if (!fh)
584 goto out_bad;
585
586 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
587
588 nhoff += sizeof(_fh);
589 ip_proto = fh->nexthdr;
590
591 if (!(fh->frag_off & htons(IP6_OFFSET))) {
592 key_control->flags |= FLOW_DIS_FIRST_FRAG;
593 if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG)
594 goto ip_proto_again;
595 }
596 goto out_good;
597 }
598 case IPPROTO_IPIP:
599 proto = htons(ETH_P_IP);
600
601 key_control->flags |= FLOW_DIS_ENCAPSULATION;
602 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
603 goto out_good;
604
605 goto ip;
606 case IPPROTO_IPV6:
607 proto = htons(ETH_P_IPV6);
608
609 key_control->flags |= FLOW_DIS_ENCAPSULATION;
610 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
611 goto out_good;
612
613 goto ipv6;
614 case IPPROTO_MPLS:
615 proto = htons(ETH_P_MPLS_UC);
616 goto mpls;
617 default:
618 break;
619 }
620
621 if (dissector_uses_key(flow_dissector,
622 FLOW_DISSECTOR_KEY_PORTS)) {
623 key_ports = skb_flow_dissector_target(flow_dissector,
624 FLOW_DISSECTOR_KEY_PORTS,
625 target_container);
626 key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
627 data, hlen);
628 }
629
630 if (dissector_uses_key(flow_dissector,
631 FLOW_DISSECTOR_KEY_ICMP)) {
632 key_icmp = skb_flow_dissector_target(flow_dissector,
633 FLOW_DISSECTOR_KEY_ICMP,
634 target_container);
635 key_icmp->icmp = skb_flow_get_be16(skb, nhoff, data, hlen);
636 }
637
638 out_good:
639 ret = true;
640
641 key_control->thoff = (u16)nhoff;
642 out:
643 key_basic->n_proto = proto;
644 key_basic->ip_proto = ip_proto;
645
646 return ret;
647
648 out_bad:
649 ret = false;
650 key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
651 goto out;
652 }
653 EXPORT_SYMBOL(__skb_flow_dissect);
654
655 static u32 hashrnd __read_mostly;
656 static __always_inline void __flow_hash_secret_init(void)
657 {
658 net_get_random_once(&hashrnd, sizeof(hashrnd));
659 }
660
661 static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
662 u32 keyval)
663 {
664 return jhash2(words, length, keyval);
665 }
666
667 static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
668 {
669 const void *p = flow;
670
671 BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
672 return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
673 }
674
675 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
676 {
677 size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
678 BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
679 BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
680 sizeof(*flow) - sizeof(flow->addrs));
681
682 switch (flow->control.addr_type) {
683 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
684 diff -= sizeof(flow->addrs.v4addrs);
685 break;
686 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
687 diff -= sizeof(flow->addrs.v6addrs);
688 break;
689 case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
690 diff -= sizeof(flow->addrs.tipcaddrs);
691 break;
692 }
693 return (sizeof(*flow) - diff) / sizeof(u32);
694 }
695
696 __be32 flow_get_u32_src(const struct flow_keys *flow)
697 {
698 switch (flow->control.addr_type) {
699 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
700 return flow->addrs.v4addrs.src;
701 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
702 return (__force __be32)ipv6_addr_hash(
703 &flow->addrs.v6addrs.src);
704 case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
705 return flow->addrs.tipcaddrs.srcnode;
706 default:
707 return 0;
708 }
709 }
710 EXPORT_SYMBOL(flow_get_u32_src);
711
712 __be32 flow_get_u32_dst(const struct flow_keys *flow)
713 {
714 switch (flow->control.addr_type) {
715 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
716 return flow->addrs.v4addrs.dst;
717 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
718 return (__force __be32)ipv6_addr_hash(
719 &flow->addrs.v6addrs.dst);
720 default:
721 return 0;
722 }
723 }
724 EXPORT_SYMBOL(flow_get_u32_dst);
725
726 static inline void __flow_hash_consistentify(struct flow_keys *keys)
727 {
728 int addr_diff, i;
729
730 switch (keys->control.addr_type) {
731 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
732 addr_diff = (__force u32)keys->addrs.v4addrs.dst -
733 (__force u32)keys->addrs.v4addrs.src;
734 if ((addr_diff < 0) ||
735 (addr_diff == 0 &&
736 ((__force u16)keys->ports.dst <
737 (__force u16)keys->ports.src))) {
738 swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
739 swap(keys->ports.src, keys->ports.dst);
740 }
741 break;
742 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
743 addr_diff = memcmp(&keys->addrs.v6addrs.dst,
744 &keys->addrs.v6addrs.src,
745 sizeof(keys->addrs.v6addrs.dst));
746 if ((addr_diff < 0) ||
747 (addr_diff == 0 &&
748 ((__force u16)keys->ports.dst <
749 (__force u16)keys->ports.src))) {
750 for (i = 0; i < 4; i++)
751 swap(keys->addrs.v6addrs.src.s6_addr32[i],
752 keys->addrs.v6addrs.dst.s6_addr32[i]);
753 swap(keys->ports.src, keys->ports.dst);
754 }
755 break;
756 }
757 }
758
759 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
760 {
761 u32 hash;
762
763 __flow_hash_consistentify(keys);
764
765 hash = __flow_hash_words(flow_keys_hash_start(keys),
766 flow_keys_hash_length(keys), keyval);
767 if (!hash)
768 hash = 1;
769
770 return hash;
771 }
772
773 u32 flow_hash_from_keys(struct flow_keys *keys)
774 {
775 __flow_hash_secret_init();
776 return __flow_hash_from_keys(keys, hashrnd);
777 }
778 EXPORT_SYMBOL(flow_hash_from_keys);
779
780 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
781 struct flow_keys *keys, u32 keyval)
782 {
783 skb_flow_dissect_flow_keys(skb, keys,
784 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
785
786 return __flow_hash_from_keys(keys, keyval);
787 }
788
789 struct _flow_keys_digest_data {
790 __be16 n_proto;
791 u8 ip_proto;
792 u8 padding;
793 __be32 ports;
794 __be32 src;
795 __be32 dst;
796 };
797
798 void make_flow_keys_digest(struct flow_keys_digest *digest,
799 const struct flow_keys *flow)
800 {
801 struct _flow_keys_digest_data *data =
802 (struct _flow_keys_digest_data *)digest;
803
804 BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
805
806 memset(digest, 0, sizeof(*digest));
807
808 data->n_proto = flow->basic.n_proto;
809 data->ip_proto = flow->basic.ip_proto;
810 data->ports = flow->ports.ports;
811 data->src = flow->addrs.v4addrs.src;
812 data->dst = flow->addrs.v4addrs.dst;
813 }
814 EXPORT_SYMBOL(make_flow_keys_digest);
815
816 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
817
818 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
819 {
820 struct flow_keys keys;
821
822 __flow_hash_secret_init();
823
824 memset(&keys, 0, sizeof(keys));
825 __skb_flow_dissect(skb, &flow_keys_dissector_symmetric, &keys,
826 NULL, 0, 0, 0,
827 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
828
829 return __flow_hash_from_keys(&keys, hashrnd);
830 }
831 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
832
833 /**
834 * __skb_get_hash: calculate a flow hash
835 * @skb: sk_buff to calculate flow hash from
836 *
837 * This function calculates a flow hash based on src/dst addresses
838 * and src/dst port numbers. Sets hash in skb to non-zero hash value
839 * on success, zero indicates no valid hash. Also, sets l4_hash in skb
840 * if hash is a canonical 4-tuple hash over transport ports.
841 */
842 void __skb_get_hash(struct sk_buff *skb)
843 {
844 struct flow_keys keys;
845 u32 hash;
846
847 __flow_hash_secret_init();
848
849 hash = ___skb_get_hash(skb, &keys, hashrnd);
850
851 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
852 }
853 EXPORT_SYMBOL(__skb_get_hash);
854
855 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
856 {
857 struct flow_keys keys;
858
859 return ___skb_get_hash(skb, &keys, perturb);
860 }
861 EXPORT_SYMBOL(skb_get_hash_perturb);
862
863 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
864 {
865 struct flow_keys keys;
866
867 memset(&keys, 0, sizeof(keys));
868
869 memcpy(&keys.addrs.v6addrs.src, &fl6->saddr,
870 sizeof(keys.addrs.v6addrs.src));
871 memcpy(&keys.addrs.v6addrs.dst, &fl6->daddr,
872 sizeof(keys.addrs.v6addrs.dst));
873 keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
874 keys.ports.src = fl6->fl6_sport;
875 keys.ports.dst = fl6->fl6_dport;
876 keys.keyid.keyid = fl6->fl6_gre_key;
877 keys.tags.flow_label = (__force u32)fl6->flowlabel;
878 keys.basic.ip_proto = fl6->flowi6_proto;
879
880 __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
881 flow_keys_have_l4(&keys));
882
883 return skb->hash;
884 }
885 EXPORT_SYMBOL(__skb_get_hash_flowi6);
886
887 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
888 {
889 struct flow_keys keys;
890
891 memset(&keys, 0, sizeof(keys));
892
893 keys.addrs.v4addrs.src = fl4->saddr;
894 keys.addrs.v4addrs.dst = fl4->daddr;
895 keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
896 keys.ports.src = fl4->fl4_sport;
897 keys.ports.dst = fl4->fl4_dport;
898 keys.keyid.keyid = fl4->fl4_gre_key;
899 keys.basic.ip_proto = fl4->flowi4_proto;
900
901 __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
902 flow_keys_have_l4(&keys));
903
904 return skb->hash;
905 }
906 EXPORT_SYMBOL(__skb_get_hash_flowi4);
907
908 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
909 const struct flow_keys *keys, int hlen)
910 {
911 u32 poff = keys->control.thoff;
912
913 /* skip L4 headers for fragments after the first */
914 if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
915 !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
916 return poff;
917
918 switch (keys->basic.ip_proto) {
919 case IPPROTO_TCP: {
920 /* access doff as u8 to avoid unaligned access */
921 const u8 *doff;
922 u8 _doff;
923
924 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
925 data, hlen, &_doff);
926 if (!doff)
927 return poff;
928
929 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
930 break;
931 }
932 case IPPROTO_UDP:
933 case IPPROTO_UDPLITE:
934 poff += sizeof(struct udphdr);
935 break;
936 /* For the rest, we do not really care about header
937 * extensions at this point for now.
938 */
939 case IPPROTO_ICMP:
940 poff += sizeof(struct icmphdr);
941 break;
942 case IPPROTO_ICMPV6:
943 poff += sizeof(struct icmp6hdr);
944 break;
945 case IPPROTO_IGMP:
946 poff += sizeof(struct igmphdr);
947 break;
948 case IPPROTO_DCCP:
949 poff += sizeof(struct dccp_hdr);
950 break;
951 case IPPROTO_SCTP:
952 poff += sizeof(struct sctphdr);
953 break;
954 }
955
956 return poff;
957 }
958
959 /**
960 * skb_get_poff - get the offset to the payload
961 * @skb: sk_buff to get the payload offset from
962 *
963 * The function will get the offset to the payload as far as it could
964 * be dissected. The main user is currently BPF, so that we can dynamically
965 * truncate packets without needing to push actual payload to the user
966 * space and can analyze headers only, instead.
967 */
968 u32 skb_get_poff(const struct sk_buff *skb)
969 {
970 struct flow_keys keys;
971
972 if (!skb_flow_dissect_flow_keys(skb, &keys, 0))
973 return 0;
974
975 return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
976 }
977
978 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
979 {
980 memset(keys, 0, sizeof(*keys));
981
982 memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
983 sizeof(keys->addrs.v6addrs.src));
984 memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
985 sizeof(keys->addrs.v6addrs.dst));
986 keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
987 keys->ports.src = fl6->fl6_sport;
988 keys->ports.dst = fl6->fl6_dport;
989 keys->keyid.keyid = fl6->fl6_gre_key;
990 keys->tags.flow_label = (__force u32)fl6->flowlabel;
991 keys->basic.ip_proto = fl6->flowi6_proto;
992
993 return flow_hash_from_keys(keys);
994 }
995 EXPORT_SYMBOL(__get_hash_from_flowi6);
996
997 __u32 __get_hash_from_flowi4(const struct flowi4 *fl4, struct flow_keys *keys)
998 {
999 memset(keys, 0, sizeof(*keys));
1000
1001 keys->addrs.v4addrs.src = fl4->saddr;
1002 keys->addrs.v4addrs.dst = fl4->daddr;
1003 keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
1004 keys->ports.src = fl4->fl4_sport;
1005 keys->ports.dst = fl4->fl4_dport;
1006 keys->keyid.keyid = fl4->fl4_gre_key;
1007 keys->basic.ip_proto = fl4->flowi4_proto;
1008
1009 return flow_hash_from_keys(keys);
1010 }
1011 EXPORT_SYMBOL(__get_hash_from_flowi4);
1012
1013 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1014 {
1015 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1016 .offset = offsetof(struct flow_keys, control),
1017 },
1018 {
1019 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1020 .offset = offsetof(struct flow_keys, basic),
1021 },
1022 {
1023 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1024 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1025 },
1026 {
1027 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1028 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1029 },
1030 {
1031 .key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
1032 .offset = offsetof(struct flow_keys, addrs.tipcaddrs),
1033 },
1034 {
1035 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1036 .offset = offsetof(struct flow_keys, ports),
1037 },
1038 {
1039 .key_id = FLOW_DISSECTOR_KEY_VLAN,
1040 .offset = offsetof(struct flow_keys, vlan),
1041 },
1042 {
1043 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1044 .offset = offsetof(struct flow_keys, tags),
1045 },
1046 {
1047 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1048 .offset = offsetof(struct flow_keys, keyid),
1049 },
1050 };
1051
1052 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1053 {
1054 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1055 .offset = offsetof(struct flow_keys, control),
1056 },
1057 {
1058 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1059 .offset = offsetof(struct flow_keys, basic),
1060 },
1061 {
1062 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1063 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1064 },
1065 {
1066 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1067 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1068 },
1069 {
1070 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1071 .offset = offsetof(struct flow_keys, ports),
1072 },
1073 };
1074
1075 static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
1076 {
1077 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1078 .offset = offsetof(struct flow_keys, control),
1079 },
1080 {
1081 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1082 .offset = offsetof(struct flow_keys, basic),
1083 },
1084 };
1085
1086 struct flow_dissector flow_keys_dissector __read_mostly;
1087 EXPORT_SYMBOL(flow_keys_dissector);
1088
1089 struct flow_dissector flow_keys_buf_dissector __read_mostly;
1090
1091 static int __init init_default_flow_dissectors(void)
1092 {
1093 skb_flow_dissector_init(&flow_keys_dissector,
1094 flow_keys_dissector_keys,
1095 ARRAY_SIZE(flow_keys_dissector_keys));
1096 skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1097 flow_keys_dissector_symmetric_keys,
1098 ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1099 skb_flow_dissector_init(&flow_keys_buf_dissector,
1100 flow_keys_buf_dissector_keys,
1101 ARRAY_SIZE(flow_keys_buf_dissector_keys));
1102 return 0;
1103 }
1104
1105 core_initcall(init_default_flow_dissectors);