]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/core/neighbour.c
net neigh: neigh_delete() and neigh_add() changes
[mirror_ubuntu-bionic-kernel.git] / net / core / neighbour.c
1 /*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/socket.h>
23 #include <linux/netdevice.h>
24 #include <linux/proc_fs.h>
25 #ifdef CONFIG_SYSCTL
26 #include <linux/sysctl.h>
27 #endif
28 #include <linux/times.h>
29 #include <net/net_namespace.h>
30 #include <net/neighbour.h>
31 #include <net/dst.h>
32 #include <net/sock.h>
33 #include <net/netevent.h>
34 #include <net/netlink.h>
35 #include <linux/rtnetlink.h>
36 #include <linux/random.h>
37 #include <linux/string.h>
38 #include <linux/log2.h>
39
40 #define NEIGH_DEBUG 1
41
42 #define NEIGH_PRINTK(x...) printk(x)
43 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
44 #define NEIGH_PRINTK0 NEIGH_PRINTK
45 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
46 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
47
48 #if NEIGH_DEBUG >= 1
49 #undef NEIGH_PRINTK1
50 #define NEIGH_PRINTK1 NEIGH_PRINTK
51 #endif
52 #if NEIGH_DEBUG >= 2
53 #undef NEIGH_PRINTK2
54 #define NEIGH_PRINTK2 NEIGH_PRINTK
55 #endif
56
57 #define PNEIGH_HASHMASK 0xF
58
59 static void neigh_timer_handler(unsigned long arg);
60 static void __neigh_notify(struct neighbour *n, int type, int flags);
61 static void neigh_update_notify(struct neighbour *neigh);
62 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
63
64 static struct neigh_table *neigh_tables;
65 #ifdef CONFIG_PROC_FS
66 static const struct file_operations neigh_stat_seq_fops;
67 #endif
68
69 /*
70 Neighbour hash table buckets are protected with rwlock tbl->lock.
71
72 - All the scans/updates to hash buckets MUST be made under this lock.
73 - NOTHING clever should be made under this lock: no callbacks
74 to protocol backends, no attempts to send something to network.
75 It will result in deadlocks, if backend/driver wants to use neighbour
76 cache.
77 - If the entry requires some non-trivial actions, increase
78 its reference count and release table lock.
79
80 Neighbour entries are protected:
81 - with reference count.
82 - with rwlock neigh->lock
83
84 Reference count prevents destruction.
85
86 neigh->lock mainly serializes ll address data and its validity state.
87 However, the same lock is used to protect another entry fields:
88 - timer
89 - resolution queue
90
91 Again, nothing clever shall be made under neigh->lock,
92 the most complicated procedure, which we allow is dev->hard_header.
93 It is supposed, that dev->hard_header is simplistic and does
94 not make callbacks to neighbour tables.
95
96 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
97 list of neighbour tables. This list is used only in process context,
98 */
99
100 static DEFINE_RWLOCK(neigh_tbl_lock);
101
102 static int neigh_blackhole(struct sk_buff *skb)
103 {
104 kfree_skb(skb);
105 return -ENETDOWN;
106 }
107
108 static void neigh_cleanup_and_release(struct neighbour *neigh)
109 {
110 if (neigh->parms->neigh_cleanup)
111 neigh->parms->neigh_cleanup(neigh);
112
113 __neigh_notify(neigh, RTM_DELNEIGH, 0);
114 neigh_release(neigh);
115 }
116
117 /*
118 * It is random distribution in the interval (1/2)*base...(3/2)*base.
119 * It corresponds to default IPv6 settings and is not overridable,
120 * because it is really reasonable choice.
121 */
122
123 unsigned long neigh_rand_reach_time(unsigned long base)
124 {
125 return base ? (net_random() % base) + (base >> 1) : 0;
126 }
127 EXPORT_SYMBOL(neigh_rand_reach_time);
128
129
130 static int neigh_forced_gc(struct neigh_table *tbl)
131 {
132 int shrunk = 0;
133 int i;
134
135 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
136
137 write_lock_bh(&tbl->lock);
138 for (i = 0; i <= tbl->hash_mask; i++) {
139 struct neighbour *n, **np;
140
141 np = &tbl->hash_buckets[i];
142 while ((n = *np) != NULL) {
143 /* Neighbour record may be discarded if:
144 * - nobody refers to it.
145 * - it is not permanent
146 */
147 write_lock(&n->lock);
148 if (atomic_read(&n->refcnt) == 1 &&
149 !(n->nud_state & NUD_PERMANENT)) {
150 *np = n->next;
151 n->dead = 1;
152 shrunk = 1;
153 write_unlock(&n->lock);
154 neigh_cleanup_and_release(n);
155 continue;
156 }
157 write_unlock(&n->lock);
158 np = &n->next;
159 }
160 }
161
162 tbl->last_flush = jiffies;
163
164 write_unlock_bh(&tbl->lock);
165
166 return shrunk;
167 }
168
169 static void neigh_add_timer(struct neighbour *n, unsigned long when)
170 {
171 neigh_hold(n);
172 if (unlikely(mod_timer(&n->timer, when))) {
173 printk("NEIGH: BUG, double timer add, state is %x\n",
174 n->nud_state);
175 dump_stack();
176 }
177 }
178
179 static int neigh_del_timer(struct neighbour *n)
180 {
181 if ((n->nud_state & NUD_IN_TIMER) &&
182 del_timer(&n->timer)) {
183 neigh_release(n);
184 return 1;
185 }
186 return 0;
187 }
188
189 static void pneigh_queue_purge(struct sk_buff_head *list)
190 {
191 struct sk_buff *skb;
192
193 while ((skb = skb_dequeue(list)) != NULL) {
194 dev_put(skb->dev);
195 kfree_skb(skb);
196 }
197 }
198
199 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
200 {
201 int i;
202
203 for (i = 0; i <= tbl->hash_mask; i++) {
204 struct neighbour *n, **np = &tbl->hash_buckets[i];
205
206 while ((n = *np) != NULL) {
207 if (dev && n->dev != dev) {
208 np = &n->next;
209 continue;
210 }
211 *np = n->next;
212 write_lock(&n->lock);
213 neigh_del_timer(n);
214 n->dead = 1;
215
216 if (atomic_read(&n->refcnt) != 1) {
217 /* The most unpleasant situation.
218 We must destroy neighbour entry,
219 but someone still uses it.
220
221 The destroy will be delayed until
222 the last user releases us, but
223 we must kill timers etc. and move
224 it to safe state.
225 */
226 skb_queue_purge(&n->arp_queue);
227 n->output = neigh_blackhole;
228 if (n->nud_state & NUD_VALID)
229 n->nud_state = NUD_NOARP;
230 else
231 n->nud_state = NUD_NONE;
232 NEIGH_PRINTK2("neigh %p is stray.\n", n);
233 }
234 write_unlock(&n->lock);
235 neigh_cleanup_and_release(n);
236 }
237 }
238 }
239
240 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
241 {
242 write_lock_bh(&tbl->lock);
243 neigh_flush_dev(tbl, dev);
244 write_unlock_bh(&tbl->lock);
245 }
246 EXPORT_SYMBOL(neigh_changeaddr);
247
248 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
249 {
250 write_lock_bh(&tbl->lock);
251 neigh_flush_dev(tbl, dev);
252 pneigh_ifdown(tbl, dev);
253 write_unlock_bh(&tbl->lock);
254
255 del_timer_sync(&tbl->proxy_timer);
256 pneigh_queue_purge(&tbl->proxy_queue);
257 return 0;
258 }
259 EXPORT_SYMBOL(neigh_ifdown);
260
261 static struct neighbour *neigh_alloc(struct neigh_table *tbl)
262 {
263 struct neighbour *n = NULL;
264 unsigned long now = jiffies;
265 int entries;
266
267 entries = atomic_inc_return(&tbl->entries) - 1;
268 if (entries >= tbl->gc_thresh3 ||
269 (entries >= tbl->gc_thresh2 &&
270 time_after(now, tbl->last_flush + 5 * HZ))) {
271 if (!neigh_forced_gc(tbl) &&
272 entries >= tbl->gc_thresh3)
273 goto out_entries;
274 }
275
276 n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC);
277 if (!n)
278 goto out_entries;
279
280 skb_queue_head_init(&n->arp_queue);
281 rwlock_init(&n->lock);
282 n->updated = n->used = now;
283 n->nud_state = NUD_NONE;
284 n->output = neigh_blackhole;
285 n->parms = neigh_parms_clone(&tbl->parms);
286 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
287
288 NEIGH_CACHE_STAT_INC(tbl, allocs);
289 n->tbl = tbl;
290 atomic_set(&n->refcnt, 1);
291 n->dead = 1;
292 out:
293 return n;
294
295 out_entries:
296 atomic_dec(&tbl->entries);
297 goto out;
298 }
299
300 static struct neighbour **neigh_hash_alloc(unsigned int entries)
301 {
302 unsigned long size = entries * sizeof(struct neighbour *);
303 struct neighbour **ret;
304
305 if (size <= PAGE_SIZE) {
306 ret = kzalloc(size, GFP_ATOMIC);
307 } else {
308 ret = (struct neighbour **)
309 __get_free_pages(GFP_ATOMIC|__GFP_ZERO, get_order(size));
310 }
311 return ret;
312 }
313
314 static void neigh_hash_free(struct neighbour **hash, unsigned int entries)
315 {
316 unsigned long size = entries * sizeof(struct neighbour *);
317
318 if (size <= PAGE_SIZE)
319 kfree(hash);
320 else
321 free_pages((unsigned long)hash, get_order(size));
322 }
323
324 static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries)
325 {
326 struct neighbour **new_hash, **old_hash;
327 unsigned int i, new_hash_mask, old_entries;
328
329 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
330
331 BUG_ON(!is_power_of_2(new_entries));
332 new_hash = neigh_hash_alloc(new_entries);
333 if (!new_hash)
334 return;
335
336 old_entries = tbl->hash_mask + 1;
337 new_hash_mask = new_entries - 1;
338 old_hash = tbl->hash_buckets;
339
340 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
341 for (i = 0; i < old_entries; i++) {
342 struct neighbour *n, *next;
343
344 for (n = old_hash[i]; n; n = next) {
345 unsigned int hash_val = tbl->hash(n->primary_key, n->dev);
346
347 hash_val &= new_hash_mask;
348 next = n->next;
349
350 n->next = new_hash[hash_val];
351 new_hash[hash_val] = n;
352 }
353 }
354 tbl->hash_buckets = new_hash;
355 tbl->hash_mask = new_hash_mask;
356
357 neigh_hash_free(old_hash, old_entries);
358 }
359
360 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
361 struct net_device *dev)
362 {
363 struct neighbour *n;
364 int key_len = tbl->key_len;
365 u32 hash_val;
366
367 NEIGH_CACHE_STAT_INC(tbl, lookups);
368
369 read_lock_bh(&tbl->lock);
370 hash_val = tbl->hash(pkey, dev);
371 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
372 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
373 neigh_hold(n);
374 NEIGH_CACHE_STAT_INC(tbl, hits);
375 break;
376 }
377 }
378 read_unlock_bh(&tbl->lock);
379 return n;
380 }
381 EXPORT_SYMBOL(neigh_lookup);
382
383 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
384 const void *pkey)
385 {
386 struct neighbour *n;
387 int key_len = tbl->key_len;
388 u32 hash_val;
389
390 NEIGH_CACHE_STAT_INC(tbl, lookups);
391
392 read_lock_bh(&tbl->lock);
393 hash_val = tbl->hash(pkey, NULL);
394 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
395 if (!memcmp(n->primary_key, pkey, key_len) &&
396 net_eq(dev_net(n->dev), net)) {
397 neigh_hold(n);
398 NEIGH_CACHE_STAT_INC(tbl, hits);
399 break;
400 }
401 }
402 read_unlock_bh(&tbl->lock);
403 return n;
404 }
405 EXPORT_SYMBOL(neigh_lookup_nodev);
406
407 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
408 struct net_device *dev)
409 {
410 u32 hash_val;
411 int key_len = tbl->key_len;
412 int error;
413 struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
414
415 if (!n) {
416 rc = ERR_PTR(-ENOBUFS);
417 goto out;
418 }
419
420 memcpy(n->primary_key, pkey, key_len);
421 n->dev = dev;
422 dev_hold(dev);
423
424 /* Protocol specific setup. */
425 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
426 rc = ERR_PTR(error);
427 goto out_neigh_release;
428 }
429
430 /* Device specific setup. */
431 if (n->parms->neigh_setup &&
432 (error = n->parms->neigh_setup(n)) < 0) {
433 rc = ERR_PTR(error);
434 goto out_neigh_release;
435 }
436
437 n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
438
439 write_lock_bh(&tbl->lock);
440
441 if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1))
442 neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1);
443
444 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;
445
446 if (n->parms->dead) {
447 rc = ERR_PTR(-EINVAL);
448 goto out_tbl_unlock;
449 }
450
451 for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) {
452 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
453 neigh_hold(n1);
454 rc = n1;
455 goto out_tbl_unlock;
456 }
457 }
458
459 n->next = tbl->hash_buckets[hash_val];
460 tbl->hash_buckets[hash_val] = n;
461 n->dead = 0;
462 neigh_hold(n);
463 write_unlock_bh(&tbl->lock);
464 NEIGH_PRINTK2("neigh %p is created.\n", n);
465 rc = n;
466 out:
467 return rc;
468 out_tbl_unlock:
469 write_unlock_bh(&tbl->lock);
470 out_neigh_release:
471 neigh_release(n);
472 goto out;
473 }
474 EXPORT_SYMBOL(neigh_create);
475
476 static u32 pneigh_hash(const void *pkey, int key_len)
477 {
478 u32 hash_val = *(u32 *)(pkey + key_len - 4);
479 hash_val ^= (hash_val >> 16);
480 hash_val ^= hash_val >> 8;
481 hash_val ^= hash_val >> 4;
482 hash_val &= PNEIGH_HASHMASK;
483 return hash_val;
484 }
485
486 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
487 struct net *net,
488 const void *pkey,
489 int key_len,
490 struct net_device *dev)
491 {
492 while (n) {
493 if (!memcmp(n->key, pkey, key_len) &&
494 net_eq(pneigh_net(n), net) &&
495 (n->dev == dev || !n->dev))
496 return n;
497 n = n->next;
498 }
499 return NULL;
500 }
501
502 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
503 struct net *net, const void *pkey, struct net_device *dev)
504 {
505 int key_len = tbl->key_len;
506 u32 hash_val = pneigh_hash(pkey, key_len);
507
508 return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
509 net, pkey, key_len, dev);
510 }
511 EXPORT_SYMBOL_GPL(__pneigh_lookup);
512
513 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
514 struct net *net, const void *pkey,
515 struct net_device *dev, int creat)
516 {
517 struct pneigh_entry *n;
518 int key_len = tbl->key_len;
519 u32 hash_val = pneigh_hash(pkey, key_len);
520
521 read_lock_bh(&tbl->lock);
522 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
523 net, pkey, key_len, dev);
524 read_unlock_bh(&tbl->lock);
525
526 if (n || !creat)
527 goto out;
528
529 ASSERT_RTNL();
530
531 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
532 if (!n)
533 goto out;
534
535 write_pnet(&n->net, hold_net(net));
536 memcpy(n->key, pkey, key_len);
537 n->dev = dev;
538 if (dev)
539 dev_hold(dev);
540
541 if (tbl->pconstructor && tbl->pconstructor(n)) {
542 if (dev)
543 dev_put(dev);
544 release_net(net);
545 kfree(n);
546 n = NULL;
547 goto out;
548 }
549
550 write_lock_bh(&tbl->lock);
551 n->next = tbl->phash_buckets[hash_val];
552 tbl->phash_buckets[hash_val] = n;
553 write_unlock_bh(&tbl->lock);
554 out:
555 return n;
556 }
557 EXPORT_SYMBOL(pneigh_lookup);
558
559
560 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
561 struct net_device *dev)
562 {
563 struct pneigh_entry *n, **np;
564 int key_len = tbl->key_len;
565 u32 hash_val = pneigh_hash(pkey, key_len);
566
567 write_lock_bh(&tbl->lock);
568 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
569 np = &n->next) {
570 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
571 net_eq(pneigh_net(n), net)) {
572 *np = n->next;
573 write_unlock_bh(&tbl->lock);
574 if (tbl->pdestructor)
575 tbl->pdestructor(n);
576 if (n->dev)
577 dev_put(n->dev);
578 release_net(pneigh_net(n));
579 kfree(n);
580 return 0;
581 }
582 }
583 write_unlock_bh(&tbl->lock);
584 return -ENOENT;
585 }
586
587 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
588 {
589 struct pneigh_entry *n, **np;
590 u32 h;
591
592 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
593 np = &tbl->phash_buckets[h];
594 while ((n = *np) != NULL) {
595 if (!dev || n->dev == dev) {
596 *np = n->next;
597 if (tbl->pdestructor)
598 tbl->pdestructor(n);
599 if (n->dev)
600 dev_put(n->dev);
601 release_net(pneigh_net(n));
602 kfree(n);
603 continue;
604 }
605 np = &n->next;
606 }
607 }
608 return -ENOENT;
609 }
610
611 static void neigh_parms_destroy(struct neigh_parms *parms);
612
613 static inline void neigh_parms_put(struct neigh_parms *parms)
614 {
615 if (atomic_dec_and_test(&parms->refcnt))
616 neigh_parms_destroy(parms);
617 }
618
619 /*
620 * neighbour must already be out of the table;
621 *
622 */
623 void neigh_destroy(struct neighbour *neigh)
624 {
625 struct hh_cache *hh;
626
627 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
628
629 if (!neigh->dead) {
630 printk(KERN_WARNING
631 "Destroying alive neighbour %p\n", neigh);
632 dump_stack();
633 return;
634 }
635
636 if (neigh_del_timer(neigh))
637 printk(KERN_WARNING "Impossible event.\n");
638
639 while ((hh = neigh->hh) != NULL) {
640 neigh->hh = hh->hh_next;
641 hh->hh_next = NULL;
642
643 write_seqlock_bh(&hh->hh_lock);
644 hh->hh_output = neigh_blackhole;
645 write_sequnlock_bh(&hh->hh_lock);
646 if (atomic_dec_and_test(&hh->hh_refcnt))
647 kfree(hh);
648 }
649
650 skb_queue_purge(&neigh->arp_queue);
651
652 dev_put(neigh->dev);
653 neigh_parms_put(neigh->parms);
654
655 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
656
657 atomic_dec(&neigh->tbl->entries);
658 kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
659 }
660 EXPORT_SYMBOL(neigh_destroy);
661
662 /* Neighbour state is suspicious;
663 disable fast path.
664
665 Called with write_locked neigh.
666 */
667 static void neigh_suspect(struct neighbour *neigh)
668 {
669 struct hh_cache *hh;
670
671 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
672
673 neigh->output = neigh->ops->output;
674
675 for (hh = neigh->hh; hh; hh = hh->hh_next)
676 hh->hh_output = neigh->ops->output;
677 }
678
679 /* Neighbour state is OK;
680 enable fast path.
681
682 Called with write_locked neigh.
683 */
684 static void neigh_connect(struct neighbour *neigh)
685 {
686 struct hh_cache *hh;
687
688 NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
689
690 neigh->output = neigh->ops->connected_output;
691
692 for (hh = neigh->hh; hh; hh = hh->hh_next)
693 hh->hh_output = neigh->ops->hh_output;
694 }
695
696 static void neigh_periodic_work(struct work_struct *work)
697 {
698 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
699 struct neighbour *n, **np;
700 unsigned int i;
701
702 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
703
704 write_lock_bh(&tbl->lock);
705
706 /*
707 * periodically recompute ReachableTime from random function
708 */
709
710 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
711 struct neigh_parms *p;
712 tbl->last_rand = jiffies;
713 for (p = &tbl->parms; p; p = p->next)
714 p->reachable_time =
715 neigh_rand_reach_time(p->base_reachable_time);
716 }
717
718 for (i = 0 ; i <= tbl->hash_mask; i++) {
719 np = &tbl->hash_buckets[i];
720
721 while ((n = *np) != NULL) {
722 unsigned int state;
723
724 write_lock(&n->lock);
725
726 state = n->nud_state;
727 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
728 write_unlock(&n->lock);
729 goto next_elt;
730 }
731
732 if (time_before(n->used, n->confirmed))
733 n->used = n->confirmed;
734
735 if (atomic_read(&n->refcnt) == 1 &&
736 (state == NUD_FAILED ||
737 time_after(jiffies, n->used + n->parms->gc_staletime))) {
738 *np = n->next;
739 n->dead = 1;
740 write_unlock(&n->lock);
741 neigh_cleanup_and_release(n);
742 continue;
743 }
744 write_unlock(&n->lock);
745
746 next_elt:
747 np = &n->next;
748 }
749 /*
750 * It's fine to release lock here, even if hash table
751 * grows while we are preempted.
752 */
753 write_unlock_bh(&tbl->lock);
754 cond_resched();
755 write_lock_bh(&tbl->lock);
756 }
757 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
758 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
759 * base_reachable_time.
760 */
761 schedule_delayed_work(&tbl->gc_work,
762 tbl->parms.base_reachable_time >> 1);
763 write_unlock_bh(&tbl->lock);
764 }
765
766 static __inline__ int neigh_max_probes(struct neighbour *n)
767 {
768 struct neigh_parms *p = n->parms;
769 return (n->nud_state & NUD_PROBE) ?
770 p->ucast_probes :
771 p->ucast_probes + p->app_probes + p->mcast_probes;
772 }
773
774 static void neigh_invalidate(struct neighbour *neigh)
775 __releases(neigh->lock)
776 __acquires(neigh->lock)
777 {
778 struct sk_buff *skb;
779
780 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
781 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
782 neigh->updated = jiffies;
783
784 /* It is very thin place. report_unreachable is very complicated
785 routine. Particularly, it can hit the same neighbour entry!
786
787 So that, we try to be accurate and avoid dead loop. --ANK
788 */
789 while (neigh->nud_state == NUD_FAILED &&
790 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
791 write_unlock(&neigh->lock);
792 neigh->ops->error_report(neigh, skb);
793 write_lock(&neigh->lock);
794 }
795 skb_queue_purge(&neigh->arp_queue);
796 }
797
798 /* Called when a timer expires for a neighbour entry. */
799
800 static void neigh_timer_handler(unsigned long arg)
801 {
802 unsigned long now, next;
803 struct neighbour *neigh = (struct neighbour *)arg;
804 unsigned state;
805 int notify = 0;
806
807 write_lock(&neigh->lock);
808
809 state = neigh->nud_state;
810 now = jiffies;
811 next = now + HZ;
812
813 if (!(state & NUD_IN_TIMER)) {
814 #ifndef CONFIG_SMP
815 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
816 #endif
817 goto out;
818 }
819
820 if (state & NUD_REACHABLE) {
821 if (time_before_eq(now,
822 neigh->confirmed + neigh->parms->reachable_time)) {
823 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
824 next = neigh->confirmed + neigh->parms->reachable_time;
825 } else if (time_before_eq(now,
826 neigh->used + neigh->parms->delay_probe_time)) {
827 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
828 neigh->nud_state = NUD_DELAY;
829 neigh->updated = jiffies;
830 neigh_suspect(neigh);
831 next = now + neigh->parms->delay_probe_time;
832 } else {
833 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
834 neigh->nud_state = NUD_STALE;
835 neigh->updated = jiffies;
836 neigh_suspect(neigh);
837 notify = 1;
838 }
839 } else if (state & NUD_DELAY) {
840 if (time_before_eq(now,
841 neigh->confirmed + neigh->parms->delay_probe_time)) {
842 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
843 neigh->nud_state = NUD_REACHABLE;
844 neigh->updated = jiffies;
845 neigh_connect(neigh);
846 notify = 1;
847 next = neigh->confirmed + neigh->parms->reachable_time;
848 } else {
849 NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
850 neigh->nud_state = NUD_PROBE;
851 neigh->updated = jiffies;
852 atomic_set(&neigh->probes, 0);
853 next = now + neigh->parms->retrans_time;
854 }
855 } else {
856 /* NUD_PROBE|NUD_INCOMPLETE */
857 next = now + neigh->parms->retrans_time;
858 }
859
860 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
861 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
862 neigh->nud_state = NUD_FAILED;
863 notify = 1;
864 neigh_invalidate(neigh);
865 }
866
867 if (neigh->nud_state & NUD_IN_TIMER) {
868 if (time_before(next, jiffies + HZ/2))
869 next = jiffies + HZ/2;
870 if (!mod_timer(&neigh->timer, next))
871 neigh_hold(neigh);
872 }
873 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
874 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
875 /* keep skb alive even if arp_queue overflows */
876 if (skb)
877 skb = skb_copy(skb, GFP_ATOMIC);
878 write_unlock(&neigh->lock);
879 neigh->ops->solicit(neigh, skb);
880 atomic_inc(&neigh->probes);
881 kfree_skb(skb);
882 } else {
883 out:
884 write_unlock(&neigh->lock);
885 }
886
887 if (notify)
888 neigh_update_notify(neigh);
889
890 neigh_release(neigh);
891 }
892
893 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
894 {
895 int rc;
896 unsigned long now;
897
898 write_lock_bh(&neigh->lock);
899
900 rc = 0;
901 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
902 goto out_unlock_bh;
903
904 now = jiffies;
905
906 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
907 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
908 atomic_set(&neigh->probes, neigh->parms->ucast_probes);
909 neigh->nud_state = NUD_INCOMPLETE;
910 neigh->updated = jiffies;
911 neigh_add_timer(neigh, now + 1);
912 } else {
913 neigh->nud_state = NUD_FAILED;
914 neigh->updated = jiffies;
915 write_unlock_bh(&neigh->lock);
916
917 kfree_skb(skb);
918 return 1;
919 }
920 } else if (neigh->nud_state & NUD_STALE) {
921 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
922 neigh->nud_state = NUD_DELAY;
923 neigh->updated = jiffies;
924 neigh_add_timer(neigh,
925 jiffies + neigh->parms->delay_probe_time);
926 }
927
928 if (neigh->nud_state == NUD_INCOMPLETE) {
929 if (skb) {
930 if (skb_queue_len(&neigh->arp_queue) >=
931 neigh->parms->queue_len) {
932 struct sk_buff *buff;
933 buff = __skb_dequeue(&neigh->arp_queue);
934 kfree_skb(buff);
935 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
936 }
937 skb_dst_force(skb);
938 __skb_queue_tail(&neigh->arp_queue, skb);
939 }
940 rc = 1;
941 }
942 out_unlock_bh:
943 write_unlock_bh(&neigh->lock);
944 return rc;
945 }
946 EXPORT_SYMBOL(__neigh_event_send);
947
948 static void neigh_update_hhs(struct neighbour *neigh)
949 {
950 struct hh_cache *hh;
951 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
952 = NULL;
953
954 if (neigh->dev->header_ops)
955 update = neigh->dev->header_ops->cache_update;
956
957 if (update) {
958 for (hh = neigh->hh; hh; hh = hh->hh_next) {
959 write_seqlock_bh(&hh->hh_lock);
960 update(hh, neigh->dev, neigh->ha);
961 write_sequnlock_bh(&hh->hh_lock);
962 }
963 }
964 }
965
966
967
968 /* Generic update routine.
969 -- lladdr is new lladdr or NULL, if it is not supplied.
970 -- new is new state.
971 -- flags
972 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
973 if it is different.
974 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
975 lladdr instead of overriding it
976 if it is different.
977 It also allows to retain current state
978 if lladdr is unchanged.
979 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
980
981 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
982 NTF_ROUTER flag.
983 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
984 a router.
985
986 Caller MUST hold reference count on the entry.
987 */
988
989 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
990 u32 flags)
991 {
992 u8 old;
993 int err;
994 int notify = 0;
995 struct net_device *dev;
996 int update_isrouter = 0;
997
998 write_lock_bh(&neigh->lock);
999
1000 dev = neigh->dev;
1001 old = neigh->nud_state;
1002 err = -EPERM;
1003
1004 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1005 (old & (NUD_NOARP | NUD_PERMANENT)))
1006 goto out;
1007
1008 if (!(new & NUD_VALID)) {
1009 neigh_del_timer(neigh);
1010 if (old & NUD_CONNECTED)
1011 neigh_suspect(neigh);
1012 neigh->nud_state = new;
1013 err = 0;
1014 notify = old & NUD_VALID;
1015 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1016 (new & NUD_FAILED)) {
1017 neigh_invalidate(neigh);
1018 notify = 1;
1019 }
1020 goto out;
1021 }
1022
1023 /* Compare new lladdr with cached one */
1024 if (!dev->addr_len) {
1025 /* First case: device needs no address. */
1026 lladdr = neigh->ha;
1027 } else if (lladdr) {
1028 /* The second case: if something is already cached
1029 and a new address is proposed:
1030 - compare new & old
1031 - if they are different, check override flag
1032 */
1033 if ((old & NUD_VALID) &&
1034 !memcmp(lladdr, neigh->ha, dev->addr_len))
1035 lladdr = neigh->ha;
1036 } else {
1037 /* No address is supplied; if we know something,
1038 use it, otherwise discard the request.
1039 */
1040 err = -EINVAL;
1041 if (!(old & NUD_VALID))
1042 goto out;
1043 lladdr = neigh->ha;
1044 }
1045
1046 if (new & NUD_CONNECTED)
1047 neigh->confirmed = jiffies;
1048 neigh->updated = jiffies;
1049
1050 /* If entry was valid and address is not changed,
1051 do not change entry state, if new one is STALE.
1052 */
1053 err = 0;
1054 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1055 if (old & NUD_VALID) {
1056 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1057 update_isrouter = 0;
1058 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1059 (old & NUD_CONNECTED)) {
1060 lladdr = neigh->ha;
1061 new = NUD_STALE;
1062 } else
1063 goto out;
1064 } else {
1065 if (lladdr == neigh->ha && new == NUD_STALE &&
1066 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1067 (old & NUD_CONNECTED))
1068 )
1069 new = old;
1070 }
1071 }
1072
1073 if (new != old) {
1074 neigh_del_timer(neigh);
1075 if (new & NUD_IN_TIMER)
1076 neigh_add_timer(neigh, (jiffies +
1077 ((new & NUD_REACHABLE) ?
1078 neigh->parms->reachable_time :
1079 0)));
1080 neigh->nud_state = new;
1081 }
1082
1083 if (lladdr != neigh->ha) {
1084 memcpy(&neigh->ha, lladdr, dev->addr_len);
1085 neigh_update_hhs(neigh);
1086 if (!(new & NUD_CONNECTED))
1087 neigh->confirmed = jiffies -
1088 (neigh->parms->base_reachable_time << 1);
1089 notify = 1;
1090 }
1091 if (new == old)
1092 goto out;
1093 if (new & NUD_CONNECTED)
1094 neigh_connect(neigh);
1095 else
1096 neigh_suspect(neigh);
1097 if (!(old & NUD_VALID)) {
1098 struct sk_buff *skb;
1099
1100 /* Again: avoid dead loop if something went wrong */
1101
1102 while (neigh->nud_state & NUD_VALID &&
1103 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1104 struct neighbour *n1 = neigh;
1105 write_unlock_bh(&neigh->lock);
1106 /* On shaper/eql skb->dst->neighbour != neigh :( */
1107 if (skb_dst(skb) && skb_dst(skb)->neighbour)
1108 n1 = skb_dst(skb)->neighbour;
1109 n1->output(skb);
1110 write_lock_bh(&neigh->lock);
1111 }
1112 skb_queue_purge(&neigh->arp_queue);
1113 }
1114 out:
1115 if (update_isrouter) {
1116 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1117 (neigh->flags | NTF_ROUTER) :
1118 (neigh->flags & ~NTF_ROUTER);
1119 }
1120 write_unlock_bh(&neigh->lock);
1121
1122 if (notify)
1123 neigh_update_notify(neigh);
1124
1125 return err;
1126 }
1127 EXPORT_SYMBOL(neigh_update);
1128
1129 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1130 u8 *lladdr, void *saddr,
1131 struct net_device *dev)
1132 {
1133 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1134 lladdr || !dev->addr_len);
1135 if (neigh)
1136 neigh_update(neigh, lladdr, NUD_STALE,
1137 NEIGH_UPDATE_F_OVERRIDE);
1138 return neigh;
1139 }
1140 EXPORT_SYMBOL(neigh_event_ns);
1141
1142 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst,
1143 __be16 protocol)
1144 {
1145 struct hh_cache *hh;
1146 struct net_device *dev = dst->dev;
1147
1148 for (hh = n->hh; hh; hh = hh->hh_next)
1149 if (hh->hh_type == protocol)
1150 break;
1151
1152 if (!hh && (hh = kzalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) {
1153 seqlock_init(&hh->hh_lock);
1154 hh->hh_type = protocol;
1155 atomic_set(&hh->hh_refcnt, 0);
1156 hh->hh_next = NULL;
1157
1158 if (dev->header_ops->cache(n, hh)) {
1159 kfree(hh);
1160 hh = NULL;
1161 } else {
1162 atomic_inc(&hh->hh_refcnt);
1163 hh->hh_next = n->hh;
1164 n->hh = hh;
1165 if (n->nud_state & NUD_CONNECTED)
1166 hh->hh_output = n->ops->hh_output;
1167 else
1168 hh->hh_output = n->ops->output;
1169 }
1170 }
1171 if (hh) {
1172 atomic_inc(&hh->hh_refcnt);
1173 dst->hh = hh;
1174 }
1175 }
1176
1177 /* This function can be used in contexts, where only old dev_queue_xmit
1178 worked, f.e. if you want to override normal output path (eql, shaper),
1179 but resolution is not made yet.
1180 */
1181
1182 int neigh_compat_output(struct sk_buff *skb)
1183 {
1184 struct net_device *dev = skb->dev;
1185
1186 __skb_pull(skb, skb_network_offset(skb));
1187
1188 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1189 skb->len) < 0 &&
1190 dev->header_ops->rebuild(skb))
1191 return 0;
1192
1193 return dev_queue_xmit(skb);
1194 }
1195 EXPORT_SYMBOL(neigh_compat_output);
1196
1197 /* Slow and careful. */
1198
1199 int neigh_resolve_output(struct sk_buff *skb)
1200 {
1201 struct dst_entry *dst = skb_dst(skb);
1202 struct neighbour *neigh;
1203 int rc = 0;
1204
1205 if (!dst || !(neigh = dst->neighbour))
1206 goto discard;
1207
1208 __skb_pull(skb, skb_network_offset(skb));
1209
1210 if (!neigh_event_send(neigh, skb)) {
1211 int err;
1212 struct net_device *dev = neigh->dev;
1213 if (dev->header_ops->cache &&
1214 !dst->hh &&
1215 !(dst->flags & DST_NOCACHE)) {
1216 write_lock_bh(&neigh->lock);
1217 if (!dst->hh)
1218 neigh_hh_init(neigh, dst, dst->ops->protocol);
1219 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1220 neigh->ha, NULL, skb->len);
1221 write_unlock_bh(&neigh->lock);
1222 } else {
1223 read_lock_bh(&neigh->lock);
1224 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1225 neigh->ha, NULL, skb->len);
1226 read_unlock_bh(&neigh->lock);
1227 }
1228 if (err >= 0)
1229 rc = neigh->ops->queue_xmit(skb);
1230 else
1231 goto out_kfree_skb;
1232 }
1233 out:
1234 return rc;
1235 discard:
1236 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1237 dst, dst ? dst->neighbour : NULL);
1238 out_kfree_skb:
1239 rc = -EINVAL;
1240 kfree_skb(skb);
1241 goto out;
1242 }
1243 EXPORT_SYMBOL(neigh_resolve_output);
1244
1245 /* As fast as possible without hh cache */
1246
1247 int neigh_connected_output(struct sk_buff *skb)
1248 {
1249 int err;
1250 struct dst_entry *dst = skb_dst(skb);
1251 struct neighbour *neigh = dst->neighbour;
1252 struct net_device *dev = neigh->dev;
1253
1254 __skb_pull(skb, skb_network_offset(skb));
1255
1256 read_lock_bh(&neigh->lock);
1257 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1258 neigh->ha, NULL, skb->len);
1259 read_unlock_bh(&neigh->lock);
1260 if (err >= 0)
1261 err = neigh->ops->queue_xmit(skb);
1262 else {
1263 err = -EINVAL;
1264 kfree_skb(skb);
1265 }
1266 return err;
1267 }
1268 EXPORT_SYMBOL(neigh_connected_output);
1269
1270 static void neigh_proxy_process(unsigned long arg)
1271 {
1272 struct neigh_table *tbl = (struct neigh_table *)arg;
1273 long sched_next = 0;
1274 unsigned long now = jiffies;
1275 struct sk_buff *skb, *n;
1276
1277 spin_lock(&tbl->proxy_queue.lock);
1278
1279 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1280 long tdif = NEIGH_CB(skb)->sched_next - now;
1281
1282 if (tdif <= 0) {
1283 struct net_device *dev = skb->dev;
1284 __skb_unlink(skb, &tbl->proxy_queue);
1285 if (tbl->proxy_redo && netif_running(dev))
1286 tbl->proxy_redo(skb);
1287 else
1288 kfree_skb(skb);
1289
1290 dev_put(dev);
1291 } else if (!sched_next || tdif < sched_next)
1292 sched_next = tdif;
1293 }
1294 del_timer(&tbl->proxy_timer);
1295 if (sched_next)
1296 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1297 spin_unlock(&tbl->proxy_queue.lock);
1298 }
1299
1300 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1301 struct sk_buff *skb)
1302 {
1303 unsigned long now = jiffies;
1304 unsigned long sched_next = now + (net_random() % p->proxy_delay);
1305
1306 if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1307 kfree_skb(skb);
1308 return;
1309 }
1310
1311 NEIGH_CB(skb)->sched_next = sched_next;
1312 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1313
1314 spin_lock(&tbl->proxy_queue.lock);
1315 if (del_timer(&tbl->proxy_timer)) {
1316 if (time_before(tbl->proxy_timer.expires, sched_next))
1317 sched_next = tbl->proxy_timer.expires;
1318 }
1319 skb_dst_drop(skb);
1320 dev_hold(skb->dev);
1321 __skb_queue_tail(&tbl->proxy_queue, skb);
1322 mod_timer(&tbl->proxy_timer, sched_next);
1323 spin_unlock(&tbl->proxy_queue.lock);
1324 }
1325 EXPORT_SYMBOL(pneigh_enqueue);
1326
1327 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1328 struct net *net, int ifindex)
1329 {
1330 struct neigh_parms *p;
1331
1332 for (p = &tbl->parms; p; p = p->next) {
1333 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1334 (!p->dev && !ifindex))
1335 return p;
1336 }
1337
1338 return NULL;
1339 }
1340
1341 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1342 struct neigh_table *tbl)
1343 {
1344 struct neigh_parms *p, *ref;
1345 struct net *net = dev_net(dev);
1346 const struct net_device_ops *ops = dev->netdev_ops;
1347
1348 ref = lookup_neigh_parms(tbl, net, 0);
1349 if (!ref)
1350 return NULL;
1351
1352 p = kmemdup(ref, sizeof(*p), GFP_KERNEL);
1353 if (p) {
1354 p->tbl = tbl;
1355 atomic_set(&p->refcnt, 1);
1356 p->reachable_time =
1357 neigh_rand_reach_time(p->base_reachable_time);
1358
1359 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1360 kfree(p);
1361 return NULL;
1362 }
1363
1364 dev_hold(dev);
1365 p->dev = dev;
1366 write_pnet(&p->net, hold_net(net));
1367 p->sysctl_table = NULL;
1368 write_lock_bh(&tbl->lock);
1369 p->next = tbl->parms.next;
1370 tbl->parms.next = p;
1371 write_unlock_bh(&tbl->lock);
1372 }
1373 return p;
1374 }
1375 EXPORT_SYMBOL(neigh_parms_alloc);
1376
1377 static void neigh_rcu_free_parms(struct rcu_head *head)
1378 {
1379 struct neigh_parms *parms =
1380 container_of(head, struct neigh_parms, rcu_head);
1381
1382 neigh_parms_put(parms);
1383 }
1384
1385 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1386 {
1387 struct neigh_parms **p;
1388
1389 if (!parms || parms == &tbl->parms)
1390 return;
1391 write_lock_bh(&tbl->lock);
1392 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1393 if (*p == parms) {
1394 *p = parms->next;
1395 parms->dead = 1;
1396 write_unlock_bh(&tbl->lock);
1397 if (parms->dev)
1398 dev_put(parms->dev);
1399 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1400 return;
1401 }
1402 }
1403 write_unlock_bh(&tbl->lock);
1404 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1405 }
1406 EXPORT_SYMBOL(neigh_parms_release);
1407
1408 static void neigh_parms_destroy(struct neigh_parms *parms)
1409 {
1410 release_net(neigh_parms_net(parms));
1411 kfree(parms);
1412 }
1413
1414 static struct lock_class_key neigh_table_proxy_queue_class;
1415
1416 void neigh_table_init_no_netlink(struct neigh_table *tbl)
1417 {
1418 unsigned long now = jiffies;
1419 unsigned long phsize;
1420
1421 write_pnet(&tbl->parms.net, &init_net);
1422 atomic_set(&tbl->parms.refcnt, 1);
1423 tbl->parms.reachable_time =
1424 neigh_rand_reach_time(tbl->parms.base_reachable_time);
1425
1426 if (!tbl->kmem_cachep)
1427 tbl->kmem_cachep =
1428 kmem_cache_create(tbl->id, tbl->entry_size, 0,
1429 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1430 NULL);
1431 tbl->stats = alloc_percpu(struct neigh_statistics);
1432 if (!tbl->stats)
1433 panic("cannot create neighbour cache statistics");
1434
1435 #ifdef CONFIG_PROC_FS
1436 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1437 &neigh_stat_seq_fops, tbl))
1438 panic("cannot create neighbour proc dir entry");
1439 #endif
1440
1441 tbl->hash_mask = 1;
1442 tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1);
1443
1444 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1445 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1446
1447 if (!tbl->hash_buckets || !tbl->phash_buckets)
1448 panic("cannot allocate neighbour cache hashes");
1449
1450 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
1451
1452 rwlock_init(&tbl->lock);
1453 INIT_DELAYED_WORK_DEFERRABLE(&tbl->gc_work, neigh_periodic_work);
1454 schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time);
1455 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1456 skb_queue_head_init_class(&tbl->proxy_queue,
1457 &neigh_table_proxy_queue_class);
1458
1459 tbl->last_flush = now;
1460 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1461 }
1462 EXPORT_SYMBOL(neigh_table_init_no_netlink);
1463
1464 void neigh_table_init(struct neigh_table *tbl)
1465 {
1466 struct neigh_table *tmp;
1467
1468 neigh_table_init_no_netlink(tbl);
1469 write_lock(&neigh_tbl_lock);
1470 for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1471 if (tmp->family == tbl->family)
1472 break;
1473 }
1474 tbl->next = neigh_tables;
1475 neigh_tables = tbl;
1476 write_unlock(&neigh_tbl_lock);
1477
1478 if (unlikely(tmp)) {
1479 printk(KERN_ERR "NEIGH: Registering multiple tables for "
1480 "family %d\n", tbl->family);
1481 dump_stack();
1482 }
1483 }
1484 EXPORT_SYMBOL(neigh_table_init);
1485
1486 int neigh_table_clear(struct neigh_table *tbl)
1487 {
1488 struct neigh_table **tp;
1489
1490 /* It is not clean... Fix it to unload IPv6 module safely */
1491 cancel_delayed_work(&tbl->gc_work);
1492 flush_scheduled_work();
1493 del_timer_sync(&tbl->proxy_timer);
1494 pneigh_queue_purge(&tbl->proxy_queue);
1495 neigh_ifdown(tbl, NULL);
1496 if (atomic_read(&tbl->entries))
1497 printk(KERN_CRIT "neighbour leakage\n");
1498 write_lock(&neigh_tbl_lock);
1499 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1500 if (*tp == tbl) {
1501 *tp = tbl->next;
1502 break;
1503 }
1504 }
1505 write_unlock(&neigh_tbl_lock);
1506
1507 neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1);
1508 tbl->hash_buckets = NULL;
1509
1510 kfree(tbl->phash_buckets);
1511 tbl->phash_buckets = NULL;
1512
1513 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1514
1515 free_percpu(tbl->stats);
1516 tbl->stats = NULL;
1517
1518 kmem_cache_destroy(tbl->kmem_cachep);
1519 tbl->kmem_cachep = NULL;
1520
1521 return 0;
1522 }
1523 EXPORT_SYMBOL(neigh_table_clear);
1524
1525 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1526 {
1527 struct net *net = sock_net(skb->sk);
1528 struct ndmsg *ndm;
1529 struct nlattr *dst_attr;
1530 struct neigh_table *tbl;
1531 struct net_device *dev = NULL;
1532 int err = -EINVAL;
1533
1534 ASSERT_RTNL();
1535 if (nlmsg_len(nlh) < sizeof(*ndm))
1536 goto out;
1537
1538 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1539 if (dst_attr == NULL)
1540 goto out;
1541
1542 ndm = nlmsg_data(nlh);
1543 if (ndm->ndm_ifindex) {
1544 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1545 if (dev == NULL) {
1546 err = -ENODEV;
1547 goto out;
1548 }
1549 }
1550
1551 read_lock(&neigh_tbl_lock);
1552 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1553 struct neighbour *neigh;
1554
1555 if (tbl->family != ndm->ndm_family)
1556 continue;
1557 read_unlock(&neigh_tbl_lock);
1558
1559 if (nla_len(dst_attr) < tbl->key_len)
1560 goto out;
1561
1562 if (ndm->ndm_flags & NTF_PROXY) {
1563 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1564 goto out;
1565 }
1566
1567 if (dev == NULL)
1568 goto out;
1569
1570 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1571 if (neigh == NULL) {
1572 err = -ENOENT;
1573 goto out;
1574 }
1575
1576 err = neigh_update(neigh, NULL, NUD_FAILED,
1577 NEIGH_UPDATE_F_OVERRIDE |
1578 NEIGH_UPDATE_F_ADMIN);
1579 neigh_release(neigh);
1580 goto out;
1581 }
1582 read_unlock(&neigh_tbl_lock);
1583 err = -EAFNOSUPPORT;
1584
1585 out:
1586 return err;
1587 }
1588
1589 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1590 {
1591 struct net *net = sock_net(skb->sk);
1592 struct ndmsg *ndm;
1593 struct nlattr *tb[NDA_MAX+1];
1594 struct neigh_table *tbl;
1595 struct net_device *dev = NULL;
1596 int err;
1597
1598 ASSERT_RTNL();
1599 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1600 if (err < 0)
1601 goto out;
1602
1603 err = -EINVAL;
1604 if (tb[NDA_DST] == NULL)
1605 goto out;
1606
1607 ndm = nlmsg_data(nlh);
1608 if (ndm->ndm_ifindex) {
1609 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1610 if (dev == NULL) {
1611 err = -ENODEV;
1612 goto out;
1613 }
1614
1615 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1616 goto out;
1617 }
1618
1619 read_lock(&neigh_tbl_lock);
1620 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1621 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1622 struct neighbour *neigh;
1623 void *dst, *lladdr;
1624
1625 if (tbl->family != ndm->ndm_family)
1626 continue;
1627 read_unlock(&neigh_tbl_lock);
1628
1629 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1630 goto out;
1631 dst = nla_data(tb[NDA_DST]);
1632 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1633
1634 if (ndm->ndm_flags & NTF_PROXY) {
1635 struct pneigh_entry *pn;
1636
1637 err = -ENOBUFS;
1638 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1639 if (pn) {
1640 pn->flags = ndm->ndm_flags;
1641 err = 0;
1642 }
1643 goto out;
1644 }
1645
1646 if (dev == NULL)
1647 goto out;
1648
1649 neigh = neigh_lookup(tbl, dst, dev);
1650 if (neigh == NULL) {
1651 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1652 err = -ENOENT;
1653 goto out;
1654 }
1655
1656 neigh = __neigh_lookup_errno(tbl, dst, dev);
1657 if (IS_ERR(neigh)) {
1658 err = PTR_ERR(neigh);
1659 goto out;
1660 }
1661 } else {
1662 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1663 err = -EEXIST;
1664 neigh_release(neigh);
1665 goto out;
1666 }
1667
1668 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1669 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1670 }
1671
1672 if (ndm->ndm_flags & NTF_USE) {
1673 neigh_event_send(neigh, NULL);
1674 err = 0;
1675 } else
1676 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1677 neigh_release(neigh);
1678 goto out;
1679 }
1680
1681 read_unlock(&neigh_tbl_lock);
1682 err = -EAFNOSUPPORT;
1683 out:
1684 return err;
1685 }
1686
1687 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1688 {
1689 struct nlattr *nest;
1690
1691 nest = nla_nest_start(skb, NDTA_PARMS);
1692 if (nest == NULL)
1693 return -ENOBUFS;
1694
1695 if (parms->dev)
1696 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1697
1698 NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1699 NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1700 NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1701 NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1702 NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1703 NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1704 NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1705 NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1706 parms->base_reachable_time);
1707 NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1708 NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1709 NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1710 NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1711 NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1712 NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1713
1714 return nla_nest_end(skb, nest);
1715
1716 nla_put_failure:
1717 nla_nest_cancel(skb, nest);
1718 return -EMSGSIZE;
1719 }
1720
1721 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1722 u32 pid, u32 seq, int type, int flags)
1723 {
1724 struct nlmsghdr *nlh;
1725 struct ndtmsg *ndtmsg;
1726
1727 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1728 if (nlh == NULL)
1729 return -EMSGSIZE;
1730
1731 ndtmsg = nlmsg_data(nlh);
1732
1733 read_lock_bh(&tbl->lock);
1734 ndtmsg->ndtm_family = tbl->family;
1735 ndtmsg->ndtm_pad1 = 0;
1736 ndtmsg->ndtm_pad2 = 0;
1737
1738 NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1739 NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1740 NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1741 NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1742 NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1743
1744 {
1745 unsigned long now = jiffies;
1746 unsigned int flush_delta = now - tbl->last_flush;
1747 unsigned int rand_delta = now - tbl->last_rand;
1748
1749 struct ndt_config ndc = {
1750 .ndtc_key_len = tbl->key_len,
1751 .ndtc_entry_size = tbl->entry_size,
1752 .ndtc_entries = atomic_read(&tbl->entries),
1753 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1754 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1755 .ndtc_hash_rnd = tbl->hash_rnd,
1756 .ndtc_hash_mask = tbl->hash_mask,
1757 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1758 };
1759
1760 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1761 }
1762
1763 {
1764 int cpu;
1765 struct ndt_stats ndst;
1766
1767 memset(&ndst, 0, sizeof(ndst));
1768
1769 for_each_possible_cpu(cpu) {
1770 struct neigh_statistics *st;
1771
1772 st = per_cpu_ptr(tbl->stats, cpu);
1773 ndst.ndts_allocs += st->allocs;
1774 ndst.ndts_destroys += st->destroys;
1775 ndst.ndts_hash_grows += st->hash_grows;
1776 ndst.ndts_res_failed += st->res_failed;
1777 ndst.ndts_lookups += st->lookups;
1778 ndst.ndts_hits += st->hits;
1779 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1780 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1781 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1782 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1783 }
1784
1785 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1786 }
1787
1788 BUG_ON(tbl->parms.dev);
1789 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1790 goto nla_put_failure;
1791
1792 read_unlock_bh(&tbl->lock);
1793 return nlmsg_end(skb, nlh);
1794
1795 nla_put_failure:
1796 read_unlock_bh(&tbl->lock);
1797 nlmsg_cancel(skb, nlh);
1798 return -EMSGSIZE;
1799 }
1800
1801 static int neightbl_fill_param_info(struct sk_buff *skb,
1802 struct neigh_table *tbl,
1803 struct neigh_parms *parms,
1804 u32 pid, u32 seq, int type,
1805 unsigned int flags)
1806 {
1807 struct ndtmsg *ndtmsg;
1808 struct nlmsghdr *nlh;
1809
1810 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1811 if (nlh == NULL)
1812 return -EMSGSIZE;
1813
1814 ndtmsg = nlmsg_data(nlh);
1815
1816 read_lock_bh(&tbl->lock);
1817 ndtmsg->ndtm_family = tbl->family;
1818 ndtmsg->ndtm_pad1 = 0;
1819 ndtmsg->ndtm_pad2 = 0;
1820
1821 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1822 neightbl_fill_parms(skb, parms) < 0)
1823 goto errout;
1824
1825 read_unlock_bh(&tbl->lock);
1826 return nlmsg_end(skb, nlh);
1827 errout:
1828 read_unlock_bh(&tbl->lock);
1829 nlmsg_cancel(skb, nlh);
1830 return -EMSGSIZE;
1831 }
1832
1833 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1834 [NDTA_NAME] = { .type = NLA_STRING },
1835 [NDTA_THRESH1] = { .type = NLA_U32 },
1836 [NDTA_THRESH2] = { .type = NLA_U32 },
1837 [NDTA_THRESH3] = { .type = NLA_U32 },
1838 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1839 [NDTA_PARMS] = { .type = NLA_NESTED },
1840 };
1841
1842 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1843 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1844 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1845 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1846 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1847 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1848 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1849 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1850 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1851 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1852 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1853 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1854 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1855 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1856 };
1857
1858 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1859 {
1860 struct net *net = sock_net(skb->sk);
1861 struct neigh_table *tbl;
1862 struct ndtmsg *ndtmsg;
1863 struct nlattr *tb[NDTA_MAX+1];
1864 int err;
1865
1866 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1867 nl_neightbl_policy);
1868 if (err < 0)
1869 goto errout;
1870
1871 if (tb[NDTA_NAME] == NULL) {
1872 err = -EINVAL;
1873 goto errout;
1874 }
1875
1876 ndtmsg = nlmsg_data(nlh);
1877 read_lock(&neigh_tbl_lock);
1878 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1879 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1880 continue;
1881
1882 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1883 break;
1884 }
1885
1886 if (tbl == NULL) {
1887 err = -ENOENT;
1888 goto errout_locked;
1889 }
1890
1891 /*
1892 * We acquire tbl->lock to be nice to the periodic timers and
1893 * make sure they always see a consistent set of values.
1894 */
1895 write_lock_bh(&tbl->lock);
1896
1897 if (tb[NDTA_PARMS]) {
1898 struct nlattr *tbp[NDTPA_MAX+1];
1899 struct neigh_parms *p;
1900 int i, ifindex = 0;
1901
1902 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1903 nl_ntbl_parm_policy);
1904 if (err < 0)
1905 goto errout_tbl_lock;
1906
1907 if (tbp[NDTPA_IFINDEX])
1908 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1909
1910 p = lookup_neigh_parms(tbl, net, ifindex);
1911 if (p == NULL) {
1912 err = -ENOENT;
1913 goto errout_tbl_lock;
1914 }
1915
1916 for (i = 1; i <= NDTPA_MAX; i++) {
1917 if (tbp[i] == NULL)
1918 continue;
1919
1920 switch (i) {
1921 case NDTPA_QUEUE_LEN:
1922 p->queue_len = nla_get_u32(tbp[i]);
1923 break;
1924 case NDTPA_PROXY_QLEN:
1925 p->proxy_qlen = nla_get_u32(tbp[i]);
1926 break;
1927 case NDTPA_APP_PROBES:
1928 p->app_probes = nla_get_u32(tbp[i]);
1929 break;
1930 case NDTPA_UCAST_PROBES:
1931 p->ucast_probes = nla_get_u32(tbp[i]);
1932 break;
1933 case NDTPA_MCAST_PROBES:
1934 p->mcast_probes = nla_get_u32(tbp[i]);
1935 break;
1936 case NDTPA_BASE_REACHABLE_TIME:
1937 p->base_reachable_time = nla_get_msecs(tbp[i]);
1938 break;
1939 case NDTPA_GC_STALETIME:
1940 p->gc_staletime = nla_get_msecs(tbp[i]);
1941 break;
1942 case NDTPA_DELAY_PROBE_TIME:
1943 p->delay_probe_time = nla_get_msecs(tbp[i]);
1944 break;
1945 case NDTPA_RETRANS_TIME:
1946 p->retrans_time = nla_get_msecs(tbp[i]);
1947 break;
1948 case NDTPA_ANYCAST_DELAY:
1949 p->anycast_delay = nla_get_msecs(tbp[i]);
1950 break;
1951 case NDTPA_PROXY_DELAY:
1952 p->proxy_delay = nla_get_msecs(tbp[i]);
1953 break;
1954 case NDTPA_LOCKTIME:
1955 p->locktime = nla_get_msecs(tbp[i]);
1956 break;
1957 }
1958 }
1959 }
1960
1961 if (tb[NDTA_THRESH1])
1962 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
1963
1964 if (tb[NDTA_THRESH2])
1965 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
1966
1967 if (tb[NDTA_THRESH3])
1968 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
1969
1970 if (tb[NDTA_GC_INTERVAL])
1971 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
1972
1973 err = 0;
1974
1975 errout_tbl_lock:
1976 write_unlock_bh(&tbl->lock);
1977 errout_locked:
1978 read_unlock(&neigh_tbl_lock);
1979 errout:
1980 return err;
1981 }
1982
1983 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
1984 {
1985 struct net *net = sock_net(skb->sk);
1986 int family, tidx, nidx = 0;
1987 int tbl_skip = cb->args[0];
1988 int neigh_skip = cb->args[1];
1989 struct neigh_table *tbl;
1990
1991 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
1992
1993 read_lock(&neigh_tbl_lock);
1994 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
1995 struct neigh_parms *p;
1996
1997 if (tidx < tbl_skip || (family && tbl->family != family))
1998 continue;
1999
2000 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
2001 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2002 NLM_F_MULTI) <= 0)
2003 break;
2004
2005 for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
2006 if (!net_eq(neigh_parms_net(p), net))
2007 continue;
2008
2009 if (nidx < neigh_skip)
2010 goto next;
2011
2012 if (neightbl_fill_param_info(skb, tbl, p,
2013 NETLINK_CB(cb->skb).pid,
2014 cb->nlh->nlmsg_seq,
2015 RTM_NEWNEIGHTBL,
2016 NLM_F_MULTI) <= 0)
2017 goto out;
2018 next:
2019 nidx++;
2020 }
2021
2022 neigh_skip = 0;
2023 }
2024 out:
2025 read_unlock(&neigh_tbl_lock);
2026 cb->args[0] = tidx;
2027 cb->args[1] = nidx;
2028
2029 return skb->len;
2030 }
2031
2032 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2033 u32 pid, u32 seq, int type, unsigned int flags)
2034 {
2035 unsigned long now = jiffies;
2036 struct nda_cacheinfo ci;
2037 struct nlmsghdr *nlh;
2038 struct ndmsg *ndm;
2039
2040 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2041 if (nlh == NULL)
2042 return -EMSGSIZE;
2043
2044 ndm = nlmsg_data(nlh);
2045 ndm->ndm_family = neigh->ops->family;
2046 ndm->ndm_pad1 = 0;
2047 ndm->ndm_pad2 = 0;
2048 ndm->ndm_flags = neigh->flags;
2049 ndm->ndm_type = neigh->type;
2050 ndm->ndm_ifindex = neigh->dev->ifindex;
2051
2052 NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
2053
2054 read_lock_bh(&neigh->lock);
2055 ndm->ndm_state = neigh->nud_state;
2056 if ((neigh->nud_state & NUD_VALID) &&
2057 nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, neigh->ha) < 0) {
2058 read_unlock_bh(&neigh->lock);
2059 goto nla_put_failure;
2060 }
2061
2062 ci.ndm_used = jiffies_to_clock_t(now - neigh->used);
2063 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2064 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated);
2065 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2066 read_unlock_bh(&neigh->lock);
2067
2068 NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
2069 NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
2070
2071 return nlmsg_end(skb, nlh);
2072
2073 nla_put_failure:
2074 nlmsg_cancel(skb, nlh);
2075 return -EMSGSIZE;
2076 }
2077
2078 static void neigh_update_notify(struct neighbour *neigh)
2079 {
2080 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2081 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2082 }
2083
2084 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2085 struct netlink_callback *cb)
2086 {
2087 struct net * net = sock_net(skb->sk);
2088 struct neighbour *n;
2089 int rc, h, s_h = cb->args[1];
2090 int idx, s_idx = idx = cb->args[2];
2091
2092 read_lock_bh(&tbl->lock);
2093 for (h = 0; h <= tbl->hash_mask; h++) {
2094 if (h < s_h)
2095 continue;
2096 if (h > s_h)
2097 s_idx = 0;
2098 for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next) {
2099 if (!net_eq(dev_net(n->dev), net))
2100 continue;
2101 if (idx < s_idx)
2102 goto next;
2103 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2104 cb->nlh->nlmsg_seq,
2105 RTM_NEWNEIGH,
2106 NLM_F_MULTI) <= 0) {
2107 read_unlock_bh(&tbl->lock);
2108 rc = -1;
2109 goto out;
2110 }
2111 next:
2112 idx++;
2113 }
2114 }
2115 read_unlock_bh(&tbl->lock);
2116 rc = skb->len;
2117 out:
2118 cb->args[1] = h;
2119 cb->args[2] = idx;
2120 return rc;
2121 }
2122
2123 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2124 {
2125 struct neigh_table *tbl;
2126 int t, family, s_t;
2127
2128 read_lock(&neigh_tbl_lock);
2129 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2130 s_t = cb->args[0];
2131
2132 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
2133 if (t < s_t || (family && tbl->family != family))
2134 continue;
2135 if (t > s_t)
2136 memset(&cb->args[1], 0, sizeof(cb->args) -
2137 sizeof(cb->args[0]));
2138 if (neigh_dump_table(tbl, skb, cb) < 0)
2139 break;
2140 }
2141 read_unlock(&neigh_tbl_lock);
2142
2143 cb->args[0] = t;
2144 return skb->len;
2145 }
2146
2147 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2148 {
2149 int chain;
2150
2151 read_lock_bh(&tbl->lock);
2152 for (chain = 0; chain <= tbl->hash_mask; chain++) {
2153 struct neighbour *n;
2154
2155 for (n = tbl->hash_buckets[chain]; n; n = n->next)
2156 cb(n, cookie);
2157 }
2158 read_unlock_bh(&tbl->lock);
2159 }
2160 EXPORT_SYMBOL(neigh_for_each);
2161
2162 /* The tbl->lock must be held as a writer and BH disabled. */
2163 void __neigh_for_each_release(struct neigh_table *tbl,
2164 int (*cb)(struct neighbour *))
2165 {
2166 int chain;
2167
2168 for (chain = 0; chain <= tbl->hash_mask; chain++) {
2169 struct neighbour *n, **np;
2170
2171 np = &tbl->hash_buckets[chain];
2172 while ((n = *np) != NULL) {
2173 int release;
2174
2175 write_lock(&n->lock);
2176 release = cb(n);
2177 if (release) {
2178 *np = n->next;
2179 n->dead = 1;
2180 } else
2181 np = &n->next;
2182 write_unlock(&n->lock);
2183 if (release)
2184 neigh_cleanup_and_release(n);
2185 }
2186 }
2187 }
2188 EXPORT_SYMBOL(__neigh_for_each_release);
2189
2190 #ifdef CONFIG_PROC_FS
2191
2192 static struct neighbour *neigh_get_first(struct seq_file *seq)
2193 {
2194 struct neigh_seq_state *state = seq->private;
2195 struct net *net = seq_file_net(seq);
2196 struct neigh_table *tbl = state->tbl;
2197 struct neighbour *n = NULL;
2198 int bucket = state->bucket;
2199
2200 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2201 for (bucket = 0; bucket <= tbl->hash_mask; bucket++) {
2202 n = tbl->hash_buckets[bucket];
2203
2204 while (n) {
2205 if (!net_eq(dev_net(n->dev), net))
2206 goto next;
2207 if (state->neigh_sub_iter) {
2208 loff_t fakep = 0;
2209 void *v;
2210
2211 v = state->neigh_sub_iter(state, n, &fakep);
2212 if (!v)
2213 goto next;
2214 }
2215 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2216 break;
2217 if (n->nud_state & ~NUD_NOARP)
2218 break;
2219 next:
2220 n = n->next;
2221 }
2222
2223 if (n)
2224 break;
2225 }
2226 state->bucket = bucket;
2227
2228 return n;
2229 }
2230
2231 static struct neighbour *neigh_get_next(struct seq_file *seq,
2232 struct neighbour *n,
2233 loff_t *pos)
2234 {
2235 struct neigh_seq_state *state = seq->private;
2236 struct net *net = seq_file_net(seq);
2237 struct neigh_table *tbl = state->tbl;
2238
2239 if (state->neigh_sub_iter) {
2240 void *v = state->neigh_sub_iter(state, n, pos);
2241 if (v)
2242 return n;
2243 }
2244 n = n->next;
2245
2246 while (1) {
2247 while (n) {
2248 if (!net_eq(dev_net(n->dev), net))
2249 goto next;
2250 if (state->neigh_sub_iter) {
2251 void *v = state->neigh_sub_iter(state, n, pos);
2252 if (v)
2253 return n;
2254 goto next;
2255 }
2256 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2257 break;
2258
2259 if (n->nud_state & ~NUD_NOARP)
2260 break;
2261 next:
2262 n = n->next;
2263 }
2264
2265 if (n)
2266 break;
2267
2268 if (++state->bucket > tbl->hash_mask)
2269 break;
2270
2271 n = tbl->hash_buckets[state->bucket];
2272 }
2273
2274 if (n && pos)
2275 --(*pos);
2276 return n;
2277 }
2278
2279 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2280 {
2281 struct neighbour *n = neigh_get_first(seq);
2282
2283 if (n) {
2284 --(*pos);
2285 while (*pos) {
2286 n = neigh_get_next(seq, n, pos);
2287 if (!n)
2288 break;
2289 }
2290 }
2291 return *pos ? NULL : n;
2292 }
2293
2294 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2295 {
2296 struct neigh_seq_state *state = seq->private;
2297 struct net *net = seq_file_net(seq);
2298 struct neigh_table *tbl = state->tbl;
2299 struct pneigh_entry *pn = NULL;
2300 int bucket = state->bucket;
2301
2302 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2303 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2304 pn = tbl->phash_buckets[bucket];
2305 while (pn && !net_eq(pneigh_net(pn), net))
2306 pn = pn->next;
2307 if (pn)
2308 break;
2309 }
2310 state->bucket = bucket;
2311
2312 return pn;
2313 }
2314
2315 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2316 struct pneigh_entry *pn,
2317 loff_t *pos)
2318 {
2319 struct neigh_seq_state *state = seq->private;
2320 struct net *net = seq_file_net(seq);
2321 struct neigh_table *tbl = state->tbl;
2322
2323 pn = pn->next;
2324 while (!pn) {
2325 if (++state->bucket > PNEIGH_HASHMASK)
2326 break;
2327 pn = tbl->phash_buckets[state->bucket];
2328 while (pn && !net_eq(pneigh_net(pn), net))
2329 pn = pn->next;
2330 if (pn)
2331 break;
2332 }
2333
2334 if (pn && pos)
2335 --(*pos);
2336
2337 return pn;
2338 }
2339
2340 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2341 {
2342 struct pneigh_entry *pn = pneigh_get_first(seq);
2343
2344 if (pn) {
2345 --(*pos);
2346 while (*pos) {
2347 pn = pneigh_get_next(seq, pn, pos);
2348 if (!pn)
2349 break;
2350 }
2351 }
2352 return *pos ? NULL : pn;
2353 }
2354
2355 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2356 {
2357 struct neigh_seq_state *state = seq->private;
2358 void *rc;
2359 loff_t idxpos = *pos;
2360
2361 rc = neigh_get_idx(seq, &idxpos);
2362 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2363 rc = pneigh_get_idx(seq, &idxpos);
2364
2365 return rc;
2366 }
2367
2368 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2369 __acquires(tbl->lock)
2370 {
2371 struct neigh_seq_state *state = seq->private;
2372
2373 state->tbl = tbl;
2374 state->bucket = 0;
2375 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2376
2377 read_lock_bh(&tbl->lock);
2378
2379 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2380 }
2381 EXPORT_SYMBOL(neigh_seq_start);
2382
2383 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2384 {
2385 struct neigh_seq_state *state;
2386 void *rc;
2387
2388 if (v == SEQ_START_TOKEN) {
2389 rc = neigh_get_first(seq);
2390 goto out;
2391 }
2392
2393 state = seq->private;
2394 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2395 rc = neigh_get_next(seq, v, NULL);
2396 if (rc)
2397 goto out;
2398 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2399 rc = pneigh_get_first(seq);
2400 } else {
2401 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2402 rc = pneigh_get_next(seq, v, NULL);
2403 }
2404 out:
2405 ++(*pos);
2406 return rc;
2407 }
2408 EXPORT_SYMBOL(neigh_seq_next);
2409
2410 void neigh_seq_stop(struct seq_file *seq, void *v)
2411 __releases(tbl->lock)
2412 {
2413 struct neigh_seq_state *state = seq->private;
2414 struct neigh_table *tbl = state->tbl;
2415
2416 read_unlock_bh(&tbl->lock);
2417 }
2418 EXPORT_SYMBOL(neigh_seq_stop);
2419
2420 /* statistics via seq_file */
2421
2422 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2423 {
2424 struct neigh_table *tbl = seq->private;
2425 int cpu;
2426
2427 if (*pos == 0)
2428 return SEQ_START_TOKEN;
2429
2430 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2431 if (!cpu_possible(cpu))
2432 continue;
2433 *pos = cpu+1;
2434 return per_cpu_ptr(tbl->stats, cpu);
2435 }
2436 return NULL;
2437 }
2438
2439 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2440 {
2441 struct neigh_table *tbl = seq->private;
2442 int cpu;
2443
2444 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2445 if (!cpu_possible(cpu))
2446 continue;
2447 *pos = cpu+1;
2448 return per_cpu_ptr(tbl->stats, cpu);
2449 }
2450 return NULL;
2451 }
2452
2453 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2454 {
2455
2456 }
2457
2458 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2459 {
2460 struct neigh_table *tbl = seq->private;
2461 struct neigh_statistics *st = v;
2462
2463 if (v == SEQ_START_TOKEN) {
2464 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n");
2465 return 0;
2466 }
2467
2468 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2469 "%08lx %08lx %08lx %08lx %08lx\n",
2470 atomic_read(&tbl->entries),
2471
2472 st->allocs,
2473 st->destroys,
2474 st->hash_grows,
2475
2476 st->lookups,
2477 st->hits,
2478
2479 st->res_failed,
2480
2481 st->rcv_probes_mcast,
2482 st->rcv_probes_ucast,
2483
2484 st->periodic_gc_runs,
2485 st->forced_gc_runs,
2486 st->unres_discards
2487 );
2488
2489 return 0;
2490 }
2491
2492 static const struct seq_operations neigh_stat_seq_ops = {
2493 .start = neigh_stat_seq_start,
2494 .next = neigh_stat_seq_next,
2495 .stop = neigh_stat_seq_stop,
2496 .show = neigh_stat_seq_show,
2497 };
2498
2499 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2500 {
2501 int ret = seq_open(file, &neigh_stat_seq_ops);
2502
2503 if (!ret) {
2504 struct seq_file *sf = file->private_data;
2505 sf->private = PDE(inode)->data;
2506 }
2507 return ret;
2508 };
2509
2510 static const struct file_operations neigh_stat_seq_fops = {
2511 .owner = THIS_MODULE,
2512 .open = neigh_stat_seq_open,
2513 .read = seq_read,
2514 .llseek = seq_lseek,
2515 .release = seq_release,
2516 };
2517
2518 #endif /* CONFIG_PROC_FS */
2519
2520 static inline size_t neigh_nlmsg_size(void)
2521 {
2522 return NLMSG_ALIGN(sizeof(struct ndmsg))
2523 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2524 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2525 + nla_total_size(sizeof(struct nda_cacheinfo))
2526 + nla_total_size(4); /* NDA_PROBES */
2527 }
2528
2529 static void __neigh_notify(struct neighbour *n, int type, int flags)
2530 {
2531 struct net *net = dev_net(n->dev);
2532 struct sk_buff *skb;
2533 int err = -ENOBUFS;
2534
2535 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2536 if (skb == NULL)
2537 goto errout;
2538
2539 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2540 if (err < 0) {
2541 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2542 WARN_ON(err == -EMSGSIZE);
2543 kfree_skb(skb);
2544 goto errout;
2545 }
2546 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2547 return;
2548 errout:
2549 if (err < 0)
2550 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2551 }
2552
2553 #ifdef CONFIG_ARPD
2554 void neigh_app_ns(struct neighbour *n)
2555 {
2556 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2557 }
2558 EXPORT_SYMBOL(neigh_app_ns);
2559 #endif /* CONFIG_ARPD */
2560
2561 #ifdef CONFIG_SYSCTL
2562
2563 #define NEIGH_VARS_MAX 19
2564
2565 static struct neigh_sysctl_table {
2566 struct ctl_table_header *sysctl_header;
2567 struct ctl_table neigh_vars[NEIGH_VARS_MAX];
2568 char *dev_name;
2569 } neigh_sysctl_template __read_mostly = {
2570 .neigh_vars = {
2571 {
2572 .procname = "mcast_solicit",
2573 .maxlen = sizeof(int),
2574 .mode = 0644,
2575 .proc_handler = proc_dointvec,
2576 },
2577 {
2578 .procname = "ucast_solicit",
2579 .maxlen = sizeof(int),
2580 .mode = 0644,
2581 .proc_handler = proc_dointvec,
2582 },
2583 {
2584 .procname = "app_solicit",
2585 .maxlen = sizeof(int),
2586 .mode = 0644,
2587 .proc_handler = proc_dointvec,
2588 },
2589 {
2590 .procname = "retrans_time",
2591 .maxlen = sizeof(int),
2592 .mode = 0644,
2593 .proc_handler = proc_dointvec_userhz_jiffies,
2594 },
2595 {
2596 .procname = "base_reachable_time",
2597 .maxlen = sizeof(int),
2598 .mode = 0644,
2599 .proc_handler = proc_dointvec_jiffies,
2600 },
2601 {
2602 .procname = "delay_first_probe_time",
2603 .maxlen = sizeof(int),
2604 .mode = 0644,
2605 .proc_handler = proc_dointvec_jiffies,
2606 },
2607 {
2608 .procname = "gc_stale_time",
2609 .maxlen = sizeof(int),
2610 .mode = 0644,
2611 .proc_handler = proc_dointvec_jiffies,
2612 },
2613 {
2614 .procname = "unres_qlen",
2615 .maxlen = sizeof(int),
2616 .mode = 0644,
2617 .proc_handler = proc_dointvec,
2618 },
2619 {
2620 .procname = "proxy_qlen",
2621 .maxlen = sizeof(int),
2622 .mode = 0644,
2623 .proc_handler = proc_dointvec,
2624 },
2625 {
2626 .procname = "anycast_delay",
2627 .maxlen = sizeof(int),
2628 .mode = 0644,
2629 .proc_handler = proc_dointvec_userhz_jiffies,
2630 },
2631 {
2632 .procname = "proxy_delay",
2633 .maxlen = sizeof(int),
2634 .mode = 0644,
2635 .proc_handler = proc_dointvec_userhz_jiffies,
2636 },
2637 {
2638 .procname = "locktime",
2639 .maxlen = sizeof(int),
2640 .mode = 0644,
2641 .proc_handler = proc_dointvec_userhz_jiffies,
2642 },
2643 {
2644 .procname = "retrans_time_ms",
2645 .maxlen = sizeof(int),
2646 .mode = 0644,
2647 .proc_handler = proc_dointvec_ms_jiffies,
2648 },
2649 {
2650 .procname = "base_reachable_time_ms",
2651 .maxlen = sizeof(int),
2652 .mode = 0644,
2653 .proc_handler = proc_dointvec_ms_jiffies,
2654 },
2655 {
2656 .procname = "gc_interval",
2657 .maxlen = sizeof(int),
2658 .mode = 0644,
2659 .proc_handler = proc_dointvec_jiffies,
2660 },
2661 {
2662 .procname = "gc_thresh1",
2663 .maxlen = sizeof(int),
2664 .mode = 0644,
2665 .proc_handler = proc_dointvec,
2666 },
2667 {
2668 .procname = "gc_thresh2",
2669 .maxlen = sizeof(int),
2670 .mode = 0644,
2671 .proc_handler = proc_dointvec,
2672 },
2673 {
2674 .procname = "gc_thresh3",
2675 .maxlen = sizeof(int),
2676 .mode = 0644,
2677 .proc_handler = proc_dointvec,
2678 },
2679 {},
2680 },
2681 };
2682
2683 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2684 char *p_name, proc_handler *handler)
2685 {
2686 struct neigh_sysctl_table *t;
2687 const char *dev_name_source = NULL;
2688
2689 #define NEIGH_CTL_PATH_ROOT 0
2690 #define NEIGH_CTL_PATH_PROTO 1
2691 #define NEIGH_CTL_PATH_NEIGH 2
2692 #define NEIGH_CTL_PATH_DEV 3
2693
2694 struct ctl_path neigh_path[] = {
2695 { .procname = "net", },
2696 { .procname = "proto", },
2697 { .procname = "neigh", },
2698 { .procname = "default", },
2699 { },
2700 };
2701
2702 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
2703 if (!t)
2704 goto err;
2705
2706 t->neigh_vars[0].data = &p->mcast_probes;
2707 t->neigh_vars[1].data = &p->ucast_probes;
2708 t->neigh_vars[2].data = &p->app_probes;
2709 t->neigh_vars[3].data = &p->retrans_time;
2710 t->neigh_vars[4].data = &p->base_reachable_time;
2711 t->neigh_vars[5].data = &p->delay_probe_time;
2712 t->neigh_vars[6].data = &p->gc_staletime;
2713 t->neigh_vars[7].data = &p->queue_len;
2714 t->neigh_vars[8].data = &p->proxy_qlen;
2715 t->neigh_vars[9].data = &p->anycast_delay;
2716 t->neigh_vars[10].data = &p->proxy_delay;
2717 t->neigh_vars[11].data = &p->locktime;
2718 t->neigh_vars[12].data = &p->retrans_time;
2719 t->neigh_vars[13].data = &p->base_reachable_time;
2720
2721 if (dev) {
2722 dev_name_source = dev->name;
2723 /* Terminate the table early */
2724 memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14]));
2725 } else {
2726 dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname;
2727 t->neigh_vars[14].data = (int *)(p + 1);
2728 t->neigh_vars[15].data = (int *)(p + 1) + 1;
2729 t->neigh_vars[16].data = (int *)(p + 1) + 2;
2730 t->neigh_vars[17].data = (int *)(p + 1) + 3;
2731 }
2732
2733
2734 if (handler) {
2735 /* RetransTime */
2736 t->neigh_vars[3].proc_handler = handler;
2737 t->neigh_vars[3].extra1 = dev;
2738 /* ReachableTime */
2739 t->neigh_vars[4].proc_handler = handler;
2740 t->neigh_vars[4].extra1 = dev;
2741 /* RetransTime (in milliseconds)*/
2742 t->neigh_vars[12].proc_handler = handler;
2743 t->neigh_vars[12].extra1 = dev;
2744 /* ReachableTime (in milliseconds) */
2745 t->neigh_vars[13].proc_handler = handler;
2746 t->neigh_vars[13].extra1 = dev;
2747 }
2748
2749 t->dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2750 if (!t->dev_name)
2751 goto free;
2752
2753 neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name;
2754 neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name;
2755
2756 t->sysctl_header =
2757 register_net_sysctl_table(neigh_parms_net(p), neigh_path, t->neigh_vars);
2758 if (!t->sysctl_header)
2759 goto free_procname;
2760
2761 p->sysctl_table = t;
2762 return 0;
2763
2764 free_procname:
2765 kfree(t->dev_name);
2766 free:
2767 kfree(t);
2768 err:
2769 return -ENOBUFS;
2770 }
2771 EXPORT_SYMBOL(neigh_sysctl_register);
2772
2773 void neigh_sysctl_unregister(struct neigh_parms *p)
2774 {
2775 if (p->sysctl_table) {
2776 struct neigh_sysctl_table *t = p->sysctl_table;
2777 p->sysctl_table = NULL;
2778 unregister_sysctl_table(t->sysctl_header);
2779 kfree(t->dev_name);
2780 kfree(t);
2781 }
2782 }
2783 EXPORT_SYMBOL(neigh_sysctl_unregister);
2784
2785 #endif /* CONFIG_SYSCTL */
2786
2787 static int __init neigh_init(void)
2788 {
2789 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL);
2790 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL);
2791 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info);
2792
2793 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info);
2794 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL);
2795
2796 return 0;
2797 }
2798
2799 subsys_initcall(neigh_init);
2800