]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/core/neighbour.c
[RTNL]: Validate hardware and broadcast address attribute for RTM_NEWLINK
[mirror_ubuntu-bionic-kernel.git] / net / core / neighbour.c
1 /*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/socket.h>
22 #include <linux/netdevice.h>
23 #include <linux/proc_fs.h>
24 #ifdef CONFIG_SYSCTL
25 #include <linux/sysctl.h>
26 #endif
27 #include <linux/times.h>
28 #include <net/net_namespace.h>
29 #include <net/neighbour.h>
30 #include <net/dst.h>
31 #include <net/sock.h>
32 #include <net/netevent.h>
33 #include <net/netlink.h>
34 #include <linux/rtnetlink.h>
35 #include <linux/random.h>
36 #include <linux/string.h>
37 #include <linux/log2.h>
38
39 #define NEIGH_DEBUG 1
40
41 #define NEIGH_PRINTK(x...) printk(x)
42 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
43 #define NEIGH_PRINTK0 NEIGH_PRINTK
44 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
45 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
46
47 #if NEIGH_DEBUG >= 1
48 #undef NEIGH_PRINTK1
49 #define NEIGH_PRINTK1 NEIGH_PRINTK
50 #endif
51 #if NEIGH_DEBUG >= 2
52 #undef NEIGH_PRINTK2
53 #define NEIGH_PRINTK2 NEIGH_PRINTK
54 #endif
55
56 #define PNEIGH_HASHMASK 0xF
57
58 static void neigh_timer_handler(unsigned long arg);
59 static void __neigh_notify(struct neighbour *n, int type, int flags);
60 static void neigh_update_notify(struct neighbour *neigh);
61 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
62
63 static struct neigh_table *neigh_tables;
64 #ifdef CONFIG_PROC_FS
65 static const struct file_operations neigh_stat_seq_fops;
66 #endif
67
68 /*
69 Neighbour hash table buckets are protected with rwlock tbl->lock.
70
71 - All the scans/updates to hash buckets MUST be made under this lock.
72 - NOTHING clever should be made under this lock: no callbacks
73 to protocol backends, no attempts to send something to network.
74 It will result in deadlocks, if backend/driver wants to use neighbour
75 cache.
76 - If the entry requires some non-trivial actions, increase
77 its reference count and release table lock.
78
79 Neighbour entries are protected:
80 - with reference count.
81 - with rwlock neigh->lock
82
83 Reference count prevents destruction.
84
85 neigh->lock mainly serializes ll address data and its validity state.
86 However, the same lock is used to protect another entry fields:
87 - timer
88 - resolution queue
89
90 Again, nothing clever shall be made under neigh->lock,
91 the most complicated procedure, which we allow is dev->hard_header.
92 It is supposed, that dev->hard_header is simplistic and does
93 not make callbacks to neighbour tables.
94
95 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
96 list of neighbour tables. This list is used only in process context,
97 */
98
99 static DEFINE_RWLOCK(neigh_tbl_lock);
100
101 static int neigh_blackhole(struct sk_buff *skb)
102 {
103 kfree_skb(skb);
104 return -ENETDOWN;
105 }
106
107 static void neigh_cleanup_and_release(struct neighbour *neigh)
108 {
109 if (neigh->parms->neigh_cleanup)
110 neigh->parms->neigh_cleanup(neigh);
111
112 __neigh_notify(neigh, RTM_DELNEIGH, 0);
113 neigh_release(neigh);
114 }
115
116 /*
117 * It is random distribution in the interval (1/2)*base...(3/2)*base.
118 * It corresponds to default IPv6 settings and is not overridable,
119 * because it is really reasonable choice.
120 */
121
122 unsigned long neigh_rand_reach_time(unsigned long base)
123 {
124 return (base ? (net_random() % base) + (base >> 1) : 0);
125 }
126
127
128 static int neigh_forced_gc(struct neigh_table *tbl)
129 {
130 int shrunk = 0;
131 int i;
132
133 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
134
135 write_lock_bh(&tbl->lock);
136 for (i = 0; i <= tbl->hash_mask; i++) {
137 struct neighbour *n, **np;
138
139 np = &tbl->hash_buckets[i];
140 while ((n = *np) != NULL) {
141 /* Neighbour record may be discarded if:
142 * - nobody refers to it.
143 * - it is not permanent
144 */
145 write_lock(&n->lock);
146 if (atomic_read(&n->refcnt) == 1 &&
147 !(n->nud_state & NUD_PERMANENT)) {
148 *np = n->next;
149 n->dead = 1;
150 shrunk = 1;
151 write_unlock(&n->lock);
152 neigh_cleanup_and_release(n);
153 continue;
154 }
155 write_unlock(&n->lock);
156 np = &n->next;
157 }
158 }
159
160 tbl->last_flush = jiffies;
161
162 write_unlock_bh(&tbl->lock);
163
164 return shrunk;
165 }
166
167 static void neigh_add_timer(struct neighbour *n, unsigned long when)
168 {
169 neigh_hold(n);
170 if (unlikely(mod_timer(&n->timer, when))) {
171 printk("NEIGH: BUG, double timer add, state is %x\n",
172 n->nud_state);
173 dump_stack();
174 }
175 }
176
177 static int neigh_del_timer(struct neighbour *n)
178 {
179 if ((n->nud_state & NUD_IN_TIMER) &&
180 del_timer(&n->timer)) {
181 neigh_release(n);
182 return 1;
183 }
184 return 0;
185 }
186
187 static void pneigh_queue_purge(struct sk_buff_head *list)
188 {
189 struct sk_buff *skb;
190
191 while ((skb = skb_dequeue(list)) != NULL) {
192 dev_put(skb->dev);
193 kfree_skb(skb);
194 }
195 }
196
197 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
198 {
199 int i;
200
201 for (i = 0; i <= tbl->hash_mask; i++) {
202 struct neighbour *n, **np = &tbl->hash_buckets[i];
203
204 while ((n = *np) != NULL) {
205 if (dev && n->dev != dev) {
206 np = &n->next;
207 continue;
208 }
209 *np = n->next;
210 write_lock(&n->lock);
211 neigh_del_timer(n);
212 n->dead = 1;
213
214 if (atomic_read(&n->refcnt) != 1) {
215 /* The most unpleasant situation.
216 We must destroy neighbour entry,
217 but someone still uses it.
218
219 The destroy will be delayed until
220 the last user releases us, but
221 we must kill timers etc. and move
222 it to safe state.
223 */
224 skb_queue_purge(&n->arp_queue);
225 n->output = neigh_blackhole;
226 if (n->nud_state & NUD_VALID)
227 n->nud_state = NUD_NOARP;
228 else
229 n->nud_state = NUD_NONE;
230 NEIGH_PRINTK2("neigh %p is stray.\n", n);
231 }
232 write_unlock(&n->lock);
233 neigh_cleanup_and_release(n);
234 }
235 }
236 }
237
238 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
239 {
240 write_lock_bh(&tbl->lock);
241 neigh_flush_dev(tbl, dev);
242 write_unlock_bh(&tbl->lock);
243 }
244
245 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
246 {
247 write_lock_bh(&tbl->lock);
248 neigh_flush_dev(tbl, dev);
249 pneigh_ifdown(tbl, dev);
250 write_unlock_bh(&tbl->lock);
251
252 del_timer_sync(&tbl->proxy_timer);
253 pneigh_queue_purge(&tbl->proxy_queue);
254 return 0;
255 }
256
257 static struct neighbour *neigh_alloc(struct neigh_table *tbl)
258 {
259 struct neighbour *n = NULL;
260 unsigned long now = jiffies;
261 int entries;
262
263 entries = atomic_inc_return(&tbl->entries) - 1;
264 if (entries >= tbl->gc_thresh3 ||
265 (entries >= tbl->gc_thresh2 &&
266 time_after(now, tbl->last_flush + 5 * HZ))) {
267 if (!neigh_forced_gc(tbl) &&
268 entries >= tbl->gc_thresh3)
269 goto out_entries;
270 }
271
272 n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC);
273 if (!n)
274 goto out_entries;
275
276 skb_queue_head_init(&n->arp_queue);
277 rwlock_init(&n->lock);
278 n->updated = n->used = now;
279 n->nud_state = NUD_NONE;
280 n->output = neigh_blackhole;
281 n->parms = neigh_parms_clone(&tbl->parms);
282 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
283
284 NEIGH_CACHE_STAT_INC(tbl, allocs);
285 n->tbl = tbl;
286 atomic_set(&n->refcnt, 1);
287 n->dead = 1;
288 out:
289 return n;
290
291 out_entries:
292 atomic_dec(&tbl->entries);
293 goto out;
294 }
295
296 static struct neighbour **neigh_hash_alloc(unsigned int entries)
297 {
298 unsigned long size = entries * sizeof(struct neighbour *);
299 struct neighbour **ret;
300
301 if (size <= PAGE_SIZE) {
302 ret = kzalloc(size, GFP_ATOMIC);
303 } else {
304 ret = (struct neighbour **)
305 __get_free_pages(GFP_ATOMIC|__GFP_ZERO, get_order(size));
306 }
307 return ret;
308 }
309
310 static void neigh_hash_free(struct neighbour **hash, unsigned int entries)
311 {
312 unsigned long size = entries * sizeof(struct neighbour *);
313
314 if (size <= PAGE_SIZE)
315 kfree(hash);
316 else
317 free_pages((unsigned long)hash, get_order(size));
318 }
319
320 static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries)
321 {
322 struct neighbour **new_hash, **old_hash;
323 unsigned int i, new_hash_mask, old_entries;
324
325 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
326
327 BUG_ON(!is_power_of_2(new_entries));
328 new_hash = neigh_hash_alloc(new_entries);
329 if (!new_hash)
330 return;
331
332 old_entries = tbl->hash_mask + 1;
333 new_hash_mask = new_entries - 1;
334 old_hash = tbl->hash_buckets;
335
336 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
337 for (i = 0; i < old_entries; i++) {
338 struct neighbour *n, *next;
339
340 for (n = old_hash[i]; n; n = next) {
341 unsigned int hash_val = tbl->hash(n->primary_key, n->dev);
342
343 hash_val &= new_hash_mask;
344 next = n->next;
345
346 n->next = new_hash[hash_val];
347 new_hash[hash_val] = n;
348 }
349 }
350 tbl->hash_buckets = new_hash;
351 tbl->hash_mask = new_hash_mask;
352
353 neigh_hash_free(old_hash, old_entries);
354 }
355
356 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
357 struct net_device *dev)
358 {
359 struct neighbour *n;
360 int key_len = tbl->key_len;
361 u32 hash_val = tbl->hash(pkey, dev);
362
363 NEIGH_CACHE_STAT_INC(tbl, lookups);
364
365 read_lock_bh(&tbl->lock);
366 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
367 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
368 neigh_hold(n);
369 NEIGH_CACHE_STAT_INC(tbl, hits);
370 break;
371 }
372 }
373 read_unlock_bh(&tbl->lock);
374 return n;
375 }
376
377 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
378 const void *pkey)
379 {
380 struct neighbour *n;
381 int key_len = tbl->key_len;
382 u32 hash_val = tbl->hash(pkey, NULL);
383
384 NEIGH_CACHE_STAT_INC(tbl, lookups);
385
386 read_lock_bh(&tbl->lock);
387 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
388 if (!memcmp(n->primary_key, pkey, key_len) &&
389 (net == n->dev->nd_net)) {
390 neigh_hold(n);
391 NEIGH_CACHE_STAT_INC(tbl, hits);
392 break;
393 }
394 }
395 read_unlock_bh(&tbl->lock);
396 return n;
397 }
398
399 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
400 struct net_device *dev)
401 {
402 u32 hash_val;
403 int key_len = tbl->key_len;
404 int error;
405 struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
406
407 if (!n) {
408 rc = ERR_PTR(-ENOBUFS);
409 goto out;
410 }
411
412 memcpy(n->primary_key, pkey, key_len);
413 n->dev = dev;
414 dev_hold(dev);
415
416 /* Protocol specific setup. */
417 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
418 rc = ERR_PTR(error);
419 goto out_neigh_release;
420 }
421
422 /* Device specific setup. */
423 if (n->parms->neigh_setup &&
424 (error = n->parms->neigh_setup(n)) < 0) {
425 rc = ERR_PTR(error);
426 goto out_neigh_release;
427 }
428
429 n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
430
431 write_lock_bh(&tbl->lock);
432
433 if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1))
434 neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1);
435
436 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;
437
438 if (n->parms->dead) {
439 rc = ERR_PTR(-EINVAL);
440 goto out_tbl_unlock;
441 }
442
443 for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) {
444 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
445 neigh_hold(n1);
446 rc = n1;
447 goto out_tbl_unlock;
448 }
449 }
450
451 n->next = tbl->hash_buckets[hash_val];
452 tbl->hash_buckets[hash_val] = n;
453 n->dead = 0;
454 neigh_hold(n);
455 write_unlock_bh(&tbl->lock);
456 NEIGH_PRINTK2("neigh %p is created.\n", n);
457 rc = n;
458 out:
459 return rc;
460 out_tbl_unlock:
461 write_unlock_bh(&tbl->lock);
462 out_neigh_release:
463 neigh_release(n);
464 goto out;
465 }
466
467 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
468 struct net *net, const void *pkey,
469 struct net_device *dev, int creat)
470 {
471 struct pneigh_entry *n;
472 int key_len = tbl->key_len;
473 u32 hash_val = *(u32 *)(pkey + key_len - 4);
474
475 hash_val ^= (hash_val >> 16);
476 hash_val ^= hash_val >> 8;
477 hash_val ^= hash_val >> 4;
478 hash_val &= PNEIGH_HASHMASK;
479
480 read_lock_bh(&tbl->lock);
481
482 for (n = tbl->phash_buckets[hash_val]; n; n = n->next) {
483 if (!memcmp(n->key, pkey, key_len) &&
484 (n->net == net) &&
485 (n->dev == dev || !n->dev)) {
486 read_unlock_bh(&tbl->lock);
487 goto out;
488 }
489 }
490 read_unlock_bh(&tbl->lock);
491 n = NULL;
492 if (!creat)
493 goto out;
494
495 ASSERT_RTNL();
496
497 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
498 if (!n)
499 goto out;
500
501 n->net = hold_net(net);
502 memcpy(n->key, pkey, key_len);
503 n->dev = dev;
504 if (dev)
505 dev_hold(dev);
506
507 if (tbl->pconstructor && tbl->pconstructor(n)) {
508 if (dev)
509 dev_put(dev);
510 release_net(net);
511 kfree(n);
512 n = NULL;
513 goto out;
514 }
515
516 write_lock_bh(&tbl->lock);
517 n->next = tbl->phash_buckets[hash_val];
518 tbl->phash_buckets[hash_val] = n;
519 write_unlock_bh(&tbl->lock);
520 out:
521 return n;
522 }
523
524
525 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
526 struct net_device *dev)
527 {
528 struct pneigh_entry *n, **np;
529 int key_len = tbl->key_len;
530 u32 hash_val = *(u32 *)(pkey + key_len - 4);
531
532 hash_val ^= (hash_val >> 16);
533 hash_val ^= hash_val >> 8;
534 hash_val ^= hash_val >> 4;
535 hash_val &= PNEIGH_HASHMASK;
536
537 write_lock_bh(&tbl->lock);
538 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
539 np = &n->next) {
540 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
541 (n->net == net)) {
542 *np = n->next;
543 write_unlock_bh(&tbl->lock);
544 if (tbl->pdestructor)
545 tbl->pdestructor(n);
546 if (n->dev)
547 dev_put(n->dev);
548 release_net(n->net);
549 kfree(n);
550 return 0;
551 }
552 }
553 write_unlock_bh(&tbl->lock);
554 return -ENOENT;
555 }
556
557 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
558 {
559 struct pneigh_entry *n, **np;
560 u32 h;
561
562 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
563 np = &tbl->phash_buckets[h];
564 while ((n = *np) != NULL) {
565 if (!dev || n->dev == dev) {
566 *np = n->next;
567 if (tbl->pdestructor)
568 tbl->pdestructor(n);
569 if (n->dev)
570 dev_put(n->dev);
571 release_net(n->net);
572 kfree(n);
573 continue;
574 }
575 np = &n->next;
576 }
577 }
578 return -ENOENT;
579 }
580
581 static void neigh_parms_destroy(struct neigh_parms *parms);
582
583 static inline void neigh_parms_put(struct neigh_parms *parms)
584 {
585 if (atomic_dec_and_test(&parms->refcnt))
586 neigh_parms_destroy(parms);
587 }
588
589 /*
590 * neighbour must already be out of the table;
591 *
592 */
593 void neigh_destroy(struct neighbour *neigh)
594 {
595 struct hh_cache *hh;
596
597 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
598
599 if (!neigh->dead) {
600 printk(KERN_WARNING
601 "Destroying alive neighbour %p\n", neigh);
602 dump_stack();
603 return;
604 }
605
606 if (neigh_del_timer(neigh))
607 printk(KERN_WARNING "Impossible event.\n");
608
609 while ((hh = neigh->hh) != NULL) {
610 neigh->hh = hh->hh_next;
611 hh->hh_next = NULL;
612
613 write_seqlock_bh(&hh->hh_lock);
614 hh->hh_output = neigh_blackhole;
615 write_sequnlock_bh(&hh->hh_lock);
616 if (atomic_dec_and_test(&hh->hh_refcnt))
617 kfree(hh);
618 }
619
620 skb_queue_purge(&neigh->arp_queue);
621
622 dev_put(neigh->dev);
623 neigh_parms_put(neigh->parms);
624
625 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
626
627 atomic_dec(&neigh->tbl->entries);
628 kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
629 }
630
631 /* Neighbour state is suspicious;
632 disable fast path.
633
634 Called with write_locked neigh.
635 */
636 static void neigh_suspect(struct neighbour *neigh)
637 {
638 struct hh_cache *hh;
639
640 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
641
642 neigh->output = neigh->ops->output;
643
644 for (hh = neigh->hh; hh; hh = hh->hh_next)
645 hh->hh_output = neigh->ops->output;
646 }
647
648 /* Neighbour state is OK;
649 enable fast path.
650
651 Called with write_locked neigh.
652 */
653 static void neigh_connect(struct neighbour *neigh)
654 {
655 struct hh_cache *hh;
656
657 NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
658
659 neigh->output = neigh->ops->connected_output;
660
661 for (hh = neigh->hh; hh; hh = hh->hh_next)
662 hh->hh_output = neigh->ops->hh_output;
663 }
664
665 static void neigh_periodic_timer(unsigned long arg)
666 {
667 struct neigh_table *tbl = (struct neigh_table *)arg;
668 struct neighbour *n, **np;
669 unsigned long expire, now = jiffies;
670
671 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
672
673 write_lock(&tbl->lock);
674
675 /*
676 * periodically recompute ReachableTime from random function
677 */
678
679 if (time_after(now, tbl->last_rand + 300 * HZ)) {
680 struct neigh_parms *p;
681 tbl->last_rand = now;
682 for (p = &tbl->parms; p; p = p->next)
683 p->reachable_time =
684 neigh_rand_reach_time(p->base_reachable_time);
685 }
686
687 np = &tbl->hash_buckets[tbl->hash_chain_gc];
688 tbl->hash_chain_gc = ((tbl->hash_chain_gc + 1) & tbl->hash_mask);
689
690 while ((n = *np) != NULL) {
691 unsigned int state;
692
693 write_lock(&n->lock);
694
695 state = n->nud_state;
696 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
697 write_unlock(&n->lock);
698 goto next_elt;
699 }
700
701 if (time_before(n->used, n->confirmed))
702 n->used = n->confirmed;
703
704 if (atomic_read(&n->refcnt) == 1 &&
705 (state == NUD_FAILED ||
706 time_after(now, n->used + n->parms->gc_staletime))) {
707 *np = n->next;
708 n->dead = 1;
709 write_unlock(&n->lock);
710 neigh_cleanup_and_release(n);
711 continue;
712 }
713 write_unlock(&n->lock);
714
715 next_elt:
716 np = &n->next;
717 }
718
719 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
720 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
721 * base_reachable_time.
722 */
723 expire = tbl->parms.base_reachable_time >> 1;
724 expire /= (tbl->hash_mask + 1);
725 if (!expire)
726 expire = 1;
727
728 if (expire>HZ)
729 mod_timer(&tbl->gc_timer, round_jiffies(now + expire));
730 else
731 mod_timer(&tbl->gc_timer, now + expire);
732
733 write_unlock(&tbl->lock);
734 }
735
736 static __inline__ int neigh_max_probes(struct neighbour *n)
737 {
738 struct neigh_parms *p = n->parms;
739 return (n->nud_state & NUD_PROBE ?
740 p->ucast_probes :
741 p->ucast_probes + p->app_probes + p->mcast_probes);
742 }
743
744 /* Called when a timer expires for a neighbour entry. */
745
746 static void neigh_timer_handler(unsigned long arg)
747 {
748 unsigned long now, next;
749 struct neighbour *neigh = (struct neighbour *)arg;
750 unsigned state;
751 int notify = 0;
752
753 write_lock(&neigh->lock);
754
755 state = neigh->nud_state;
756 now = jiffies;
757 next = now + HZ;
758
759 if (!(state & NUD_IN_TIMER)) {
760 #ifndef CONFIG_SMP
761 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
762 #endif
763 goto out;
764 }
765
766 if (state & NUD_REACHABLE) {
767 if (time_before_eq(now,
768 neigh->confirmed + neigh->parms->reachable_time)) {
769 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
770 next = neigh->confirmed + neigh->parms->reachable_time;
771 } else if (time_before_eq(now,
772 neigh->used + neigh->parms->delay_probe_time)) {
773 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
774 neigh->nud_state = NUD_DELAY;
775 neigh->updated = jiffies;
776 neigh_suspect(neigh);
777 next = now + neigh->parms->delay_probe_time;
778 } else {
779 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
780 neigh->nud_state = NUD_STALE;
781 neigh->updated = jiffies;
782 neigh_suspect(neigh);
783 notify = 1;
784 }
785 } else if (state & NUD_DELAY) {
786 if (time_before_eq(now,
787 neigh->confirmed + neigh->parms->delay_probe_time)) {
788 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
789 neigh->nud_state = NUD_REACHABLE;
790 neigh->updated = jiffies;
791 neigh_connect(neigh);
792 notify = 1;
793 next = neigh->confirmed + neigh->parms->reachable_time;
794 } else {
795 NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
796 neigh->nud_state = NUD_PROBE;
797 neigh->updated = jiffies;
798 atomic_set(&neigh->probes, 0);
799 next = now + neigh->parms->retrans_time;
800 }
801 } else {
802 /* NUD_PROBE|NUD_INCOMPLETE */
803 next = now + neigh->parms->retrans_time;
804 }
805
806 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
807 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
808 struct sk_buff *skb;
809
810 neigh->nud_state = NUD_FAILED;
811 neigh->updated = jiffies;
812 notify = 1;
813 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
814 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
815
816 /* It is very thin place. report_unreachable is very complicated
817 routine. Particularly, it can hit the same neighbour entry!
818
819 So that, we try to be accurate and avoid dead loop. --ANK
820 */
821 while (neigh->nud_state == NUD_FAILED &&
822 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
823 write_unlock(&neigh->lock);
824 neigh->ops->error_report(neigh, skb);
825 write_lock(&neigh->lock);
826 }
827 skb_queue_purge(&neigh->arp_queue);
828 }
829
830 if (neigh->nud_state & NUD_IN_TIMER) {
831 if (time_before(next, jiffies + HZ/2))
832 next = jiffies + HZ/2;
833 if (!mod_timer(&neigh->timer, next))
834 neigh_hold(neigh);
835 }
836 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
837 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
838 /* keep skb alive even if arp_queue overflows */
839 if (skb)
840 skb_get(skb);
841 write_unlock(&neigh->lock);
842 neigh->ops->solicit(neigh, skb);
843 atomic_inc(&neigh->probes);
844 if (skb)
845 kfree_skb(skb);
846 } else {
847 out:
848 write_unlock(&neigh->lock);
849 }
850
851 if (notify)
852 neigh_update_notify(neigh);
853
854 neigh_release(neigh);
855 }
856
857 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
858 {
859 int rc;
860 unsigned long now;
861
862 write_lock_bh(&neigh->lock);
863
864 rc = 0;
865 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
866 goto out_unlock_bh;
867
868 now = jiffies;
869
870 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
871 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
872 atomic_set(&neigh->probes, neigh->parms->ucast_probes);
873 neigh->nud_state = NUD_INCOMPLETE;
874 neigh->updated = jiffies;
875 neigh_add_timer(neigh, now + 1);
876 } else {
877 neigh->nud_state = NUD_FAILED;
878 neigh->updated = jiffies;
879 write_unlock_bh(&neigh->lock);
880
881 if (skb)
882 kfree_skb(skb);
883 return 1;
884 }
885 } else if (neigh->nud_state & NUD_STALE) {
886 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
887 neigh->nud_state = NUD_DELAY;
888 neigh->updated = jiffies;
889 neigh_add_timer(neigh,
890 jiffies + neigh->parms->delay_probe_time);
891 }
892
893 if (neigh->nud_state == NUD_INCOMPLETE) {
894 if (skb) {
895 if (skb_queue_len(&neigh->arp_queue) >=
896 neigh->parms->queue_len) {
897 struct sk_buff *buff;
898 buff = neigh->arp_queue.next;
899 __skb_unlink(buff, &neigh->arp_queue);
900 kfree_skb(buff);
901 }
902 __skb_queue_tail(&neigh->arp_queue, skb);
903 }
904 rc = 1;
905 }
906 out_unlock_bh:
907 write_unlock_bh(&neigh->lock);
908 return rc;
909 }
910
911 static void neigh_update_hhs(struct neighbour *neigh)
912 {
913 struct hh_cache *hh;
914 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
915 = neigh->dev->header_ops->cache_update;
916
917 if (update) {
918 for (hh = neigh->hh; hh; hh = hh->hh_next) {
919 write_seqlock_bh(&hh->hh_lock);
920 update(hh, neigh->dev, neigh->ha);
921 write_sequnlock_bh(&hh->hh_lock);
922 }
923 }
924 }
925
926
927
928 /* Generic update routine.
929 -- lladdr is new lladdr or NULL, if it is not supplied.
930 -- new is new state.
931 -- flags
932 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
933 if it is different.
934 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
935 lladdr instead of overriding it
936 if it is different.
937 It also allows to retain current state
938 if lladdr is unchanged.
939 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
940
941 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
942 NTF_ROUTER flag.
943 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
944 a router.
945
946 Caller MUST hold reference count on the entry.
947 */
948
949 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
950 u32 flags)
951 {
952 u8 old;
953 int err;
954 int notify = 0;
955 struct net_device *dev;
956 int update_isrouter = 0;
957
958 write_lock_bh(&neigh->lock);
959
960 dev = neigh->dev;
961 old = neigh->nud_state;
962 err = -EPERM;
963
964 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
965 (old & (NUD_NOARP | NUD_PERMANENT)))
966 goto out;
967
968 if (!(new & NUD_VALID)) {
969 neigh_del_timer(neigh);
970 if (old & NUD_CONNECTED)
971 neigh_suspect(neigh);
972 neigh->nud_state = new;
973 err = 0;
974 notify = old & NUD_VALID;
975 goto out;
976 }
977
978 /* Compare new lladdr with cached one */
979 if (!dev->addr_len) {
980 /* First case: device needs no address. */
981 lladdr = neigh->ha;
982 } else if (lladdr) {
983 /* The second case: if something is already cached
984 and a new address is proposed:
985 - compare new & old
986 - if they are different, check override flag
987 */
988 if ((old & NUD_VALID) &&
989 !memcmp(lladdr, neigh->ha, dev->addr_len))
990 lladdr = neigh->ha;
991 } else {
992 /* No address is supplied; if we know something,
993 use it, otherwise discard the request.
994 */
995 err = -EINVAL;
996 if (!(old & NUD_VALID))
997 goto out;
998 lladdr = neigh->ha;
999 }
1000
1001 if (new & NUD_CONNECTED)
1002 neigh->confirmed = jiffies;
1003 neigh->updated = jiffies;
1004
1005 /* If entry was valid and address is not changed,
1006 do not change entry state, if new one is STALE.
1007 */
1008 err = 0;
1009 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1010 if (old & NUD_VALID) {
1011 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1012 update_isrouter = 0;
1013 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1014 (old & NUD_CONNECTED)) {
1015 lladdr = neigh->ha;
1016 new = NUD_STALE;
1017 } else
1018 goto out;
1019 } else {
1020 if (lladdr == neigh->ha && new == NUD_STALE &&
1021 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1022 (old & NUD_CONNECTED))
1023 )
1024 new = old;
1025 }
1026 }
1027
1028 if (new != old) {
1029 neigh_del_timer(neigh);
1030 if (new & NUD_IN_TIMER)
1031 neigh_add_timer(neigh, (jiffies +
1032 ((new & NUD_REACHABLE) ?
1033 neigh->parms->reachable_time :
1034 0)));
1035 neigh->nud_state = new;
1036 }
1037
1038 if (lladdr != neigh->ha) {
1039 memcpy(&neigh->ha, lladdr, dev->addr_len);
1040 neigh_update_hhs(neigh);
1041 if (!(new & NUD_CONNECTED))
1042 neigh->confirmed = jiffies -
1043 (neigh->parms->base_reachable_time << 1);
1044 notify = 1;
1045 }
1046 if (new == old)
1047 goto out;
1048 if (new & NUD_CONNECTED)
1049 neigh_connect(neigh);
1050 else
1051 neigh_suspect(neigh);
1052 if (!(old & NUD_VALID)) {
1053 struct sk_buff *skb;
1054
1055 /* Again: avoid dead loop if something went wrong */
1056
1057 while (neigh->nud_state & NUD_VALID &&
1058 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1059 struct neighbour *n1 = neigh;
1060 write_unlock_bh(&neigh->lock);
1061 /* On shaper/eql skb->dst->neighbour != neigh :( */
1062 if (skb->dst && skb->dst->neighbour)
1063 n1 = skb->dst->neighbour;
1064 n1->output(skb);
1065 write_lock_bh(&neigh->lock);
1066 }
1067 skb_queue_purge(&neigh->arp_queue);
1068 }
1069 out:
1070 if (update_isrouter) {
1071 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1072 (neigh->flags | NTF_ROUTER) :
1073 (neigh->flags & ~NTF_ROUTER);
1074 }
1075 write_unlock_bh(&neigh->lock);
1076
1077 if (notify)
1078 neigh_update_notify(neigh);
1079
1080 return err;
1081 }
1082
1083 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1084 u8 *lladdr, void *saddr,
1085 struct net_device *dev)
1086 {
1087 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1088 lladdr || !dev->addr_len);
1089 if (neigh)
1090 neigh_update(neigh, lladdr, NUD_STALE,
1091 NEIGH_UPDATE_F_OVERRIDE);
1092 return neigh;
1093 }
1094
1095 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst,
1096 __be16 protocol)
1097 {
1098 struct hh_cache *hh;
1099 struct net_device *dev = dst->dev;
1100
1101 for (hh = n->hh; hh; hh = hh->hh_next)
1102 if (hh->hh_type == protocol)
1103 break;
1104
1105 if (!hh && (hh = kzalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) {
1106 seqlock_init(&hh->hh_lock);
1107 hh->hh_type = protocol;
1108 atomic_set(&hh->hh_refcnt, 0);
1109 hh->hh_next = NULL;
1110
1111 if (dev->header_ops->cache(n, hh)) {
1112 kfree(hh);
1113 hh = NULL;
1114 } else {
1115 atomic_inc(&hh->hh_refcnt);
1116 hh->hh_next = n->hh;
1117 n->hh = hh;
1118 if (n->nud_state & NUD_CONNECTED)
1119 hh->hh_output = n->ops->hh_output;
1120 else
1121 hh->hh_output = n->ops->output;
1122 }
1123 }
1124 if (hh) {
1125 atomic_inc(&hh->hh_refcnt);
1126 dst->hh = hh;
1127 }
1128 }
1129
1130 /* This function can be used in contexts, where only old dev_queue_xmit
1131 worked, f.e. if you want to override normal output path (eql, shaper),
1132 but resolution is not made yet.
1133 */
1134
1135 int neigh_compat_output(struct sk_buff *skb)
1136 {
1137 struct net_device *dev = skb->dev;
1138
1139 __skb_pull(skb, skb_network_offset(skb));
1140
1141 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1142 skb->len) < 0 &&
1143 dev->header_ops->rebuild(skb))
1144 return 0;
1145
1146 return dev_queue_xmit(skb);
1147 }
1148
1149 /* Slow and careful. */
1150
1151 int neigh_resolve_output(struct sk_buff *skb)
1152 {
1153 struct dst_entry *dst = skb->dst;
1154 struct neighbour *neigh;
1155 int rc = 0;
1156
1157 if (!dst || !(neigh = dst->neighbour))
1158 goto discard;
1159
1160 __skb_pull(skb, skb_network_offset(skb));
1161
1162 if (!neigh_event_send(neigh, skb)) {
1163 int err;
1164 struct net_device *dev = neigh->dev;
1165 if (dev->header_ops->cache && !dst->hh) {
1166 write_lock_bh(&neigh->lock);
1167 if (!dst->hh)
1168 neigh_hh_init(neigh, dst, dst->ops->protocol);
1169 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1170 neigh->ha, NULL, skb->len);
1171 write_unlock_bh(&neigh->lock);
1172 } else {
1173 read_lock_bh(&neigh->lock);
1174 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1175 neigh->ha, NULL, skb->len);
1176 read_unlock_bh(&neigh->lock);
1177 }
1178 if (err >= 0)
1179 rc = neigh->ops->queue_xmit(skb);
1180 else
1181 goto out_kfree_skb;
1182 }
1183 out:
1184 return rc;
1185 discard:
1186 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1187 dst, dst ? dst->neighbour : NULL);
1188 out_kfree_skb:
1189 rc = -EINVAL;
1190 kfree_skb(skb);
1191 goto out;
1192 }
1193
1194 /* As fast as possible without hh cache */
1195
1196 int neigh_connected_output(struct sk_buff *skb)
1197 {
1198 int err;
1199 struct dst_entry *dst = skb->dst;
1200 struct neighbour *neigh = dst->neighbour;
1201 struct net_device *dev = neigh->dev;
1202
1203 __skb_pull(skb, skb_network_offset(skb));
1204
1205 read_lock_bh(&neigh->lock);
1206 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1207 neigh->ha, NULL, skb->len);
1208 read_unlock_bh(&neigh->lock);
1209 if (err >= 0)
1210 err = neigh->ops->queue_xmit(skb);
1211 else {
1212 err = -EINVAL;
1213 kfree_skb(skb);
1214 }
1215 return err;
1216 }
1217
1218 static void neigh_proxy_process(unsigned long arg)
1219 {
1220 struct neigh_table *tbl = (struct neigh_table *)arg;
1221 long sched_next = 0;
1222 unsigned long now = jiffies;
1223 struct sk_buff *skb;
1224
1225 spin_lock(&tbl->proxy_queue.lock);
1226
1227 skb = tbl->proxy_queue.next;
1228
1229 while (skb != (struct sk_buff *)&tbl->proxy_queue) {
1230 struct sk_buff *back = skb;
1231 long tdif = NEIGH_CB(back)->sched_next - now;
1232
1233 skb = skb->next;
1234 if (tdif <= 0) {
1235 struct net_device *dev = back->dev;
1236 __skb_unlink(back, &tbl->proxy_queue);
1237 if (tbl->proxy_redo && netif_running(dev))
1238 tbl->proxy_redo(back);
1239 else
1240 kfree_skb(back);
1241
1242 dev_put(dev);
1243 } else if (!sched_next || tdif < sched_next)
1244 sched_next = tdif;
1245 }
1246 del_timer(&tbl->proxy_timer);
1247 if (sched_next)
1248 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1249 spin_unlock(&tbl->proxy_queue.lock);
1250 }
1251
1252 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1253 struct sk_buff *skb)
1254 {
1255 unsigned long now = jiffies;
1256 unsigned long sched_next = now + (net_random() % p->proxy_delay);
1257
1258 if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1259 kfree_skb(skb);
1260 return;
1261 }
1262
1263 NEIGH_CB(skb)->sched_next = sched_next;
1264 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1265
1266 spin_lock(&tbl->proxy_queue.lock);
1267 if (del_timer(&tbl->proxy_timer)) {
1268 if (time_before(tbl->proxy_timer.expires, sched_next))
1269 sched_next = tbl->proxy_timer.expires;
1270 }
1271 dst_release(skb->dst);
1272 skb->dst = NULL;
1273 dev_hold(skb->dev);
1274 __skb_queue_tail(&tbl->proxy_queue, skb);
1275 mod_timer(&tbl->proxy_timer, sched_next);
1276 spin_unlock(&tbl->proxy_queue.lock);
1277 }
1278
1279 static inline struct neigh_parms *lookup_neigh_params(struct neigh_table *tbl,
1280 struct net *net, int ifindex)
1281 {
1282 struct neigh_parms *p;
1283
1284 for (p = &tbl->parms; p; p = p->next) {
1285 if (p->net != net)
1286 continue;
1287 if ((p->dev && p->dev->ifindex == ifindex) ||
1288 (!p->dev && !ifindex))
1289 return p;
1290 }
1291
1292 return NULL;
1293 }
1294
1295 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1296 struct neigh_table *tbl)
1297 {
1298 struct neigh_parms *p, *ref;
1299 struct net *net;
1300
1301 net = dev->nd_net;
1302 ref = lookup_neigh_params(tbl, net, 0);
1303 if (!ref)
1304 return NULL;
1305
1306 p = kmemdup(ref, sizeof(*p), GFP_KERNEL);
1307 if (p) {
1308 p->tbl = tbl;
1309 atomic_set(&p->refcnt, 1);
1310 INIT_RCU_HEAD(&p->rcu_head);
1311 p->reachable_time =
1312 neigh_rand_reach_time(p->base_reachable_time);
1313
1314 if (dev->neigh_setup && dev->neigh_setup(dev, p)) {
1315 kfree(p);
1316 return NULL;
1317 }
1318
1319 dev_hold(dev);
1320 p->dev = dev;
1321 p->net = hold_net(net);
1322 p->sysctl_table = NULL;
1323 write_lock_bh(&tbl->lock);
1324 p->next = tbl->parms.next;
1325 tbl->parms.next = p;
1326 write_unlock_bh(&tbl->lock);
1327 }
1328 return p;
1329 }
1330
1331 static void neigh_rcu_free_parms(struct rcu_head *head)
1332 {
1333 struct neigh_parms *parms =
1334 container_of(head, struct neigh_parms, rcu_head);
1335
1336 neigh_parms_put(parms);
1337 }
1338
1339 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1340 {
1341 struct neigh_parms **p;
1342
1343 if (!parms || parms == &tbl->parms)
1344 return;
1345 write_lock_bh(&tbl->lock);
1346 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1347 if (*p == parms) {
1348 *p = parms->next;
1349 parms->dead = 1;
1350 write_unlock_bh(&tbl->lock);
1351 if (parms->dev)
1352 dev_put(parms->dev);
1353 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1354 return;
1355 }
1356 }
1357 write_unlock_bh(&tbl->lock);
1358 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1359 }
1360
1361 static void neigh_parms_destroy(struct neigh_parms *parms)
1362 {
1363 release_net(parms->net);
1364 kfree(parms);
1365 }
1366
1367 static struct lock_class_key neigh_table_proxy_queue_class;
1368
1369 void neigh_table_init_no_netlink(struct neigh_table *tbl)
1370 {
1371 unsigned long now = jiffies;
1372 unsigned long phsize;
1373
1374 tbl->parms.net = &init_net;
1375 atomic_set(&tbl->parms.refcnt, 1);
1376 INIT_RCU_HEAD(&tbl->parms.rcu_head);
1377 tbl->parms.reachable_time =
1378 neigh_rand_reach_time(tbl->parms.base_reachable_time);
1379
1380 if (!tbl->kmem_cachep)
1381 tbl->kmem_cachep =
1382 kmem_cache_create(tbl->id, tbl->entry_size, 0,
1383 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1384 NULL);
1385 tbl->stats = alloc_percpu(struct neigh_statistics);
1386 if (!tbl->stats)
1387 panic("cannot create neighbour cache statistics");
1388
1389 #ifdef CONFIG_PROC_FS
1390 tbl->pde = create_proc_entry(tbl->id, 0, init_net.proc_net_stat);
1391 if (!tbl->pde)
1392 panic("cannot create neighbour proc dir entry");
1393 tbl->pde->proc_fops = &neigh_stat_seq_fops;
1394 tbl->pde->data = tbl;
1395 #endif
1396
1397 tbl->hash_mask = 1;
1398 tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1);
1399
1400 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1401 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1402
1403 if (!tbl->hash_buckets || !tbl->phash_buckets)
1404 panic("cannot allocate neighbour cache hashes");
1405
1406 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
1407
1408 rwlock_init(&tbl->lock);
1409 setup_timer(&tbl->gc_timer, neigh_periodic_timer, (unsigned long)tbl);
1410 tbl->gc_timer.expires = now + 1;
1411 add_timer(&tbl->gc_timer);
1412
1413 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1414 skb_queue_head_init_class(&tbl->proxy_queue,
1415 &neigh_table_proxy_queue_class);
1416
1417 tbl->last_flush = now;
1418 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1419 }
1420
1421 void neigh_table_init(struct neigh_table *tbl)
1422 {
1423 struct neigh_table *tmp;
1424
1425 neigh_table_init_no_netlink(tbl);
1426 write_lock(&neigh_tbl_lock);
1427 for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1428 if (tmp->family == tbl->family)
1429 break;
1430 }
1431 tbl->next = neigh_tables;
1432 neigh_tables = tbl;
1433 write_unlock(&neigh_tbl_lock);
1434
1435 if (unlikely(tmp)) {
1436 printk(KERN_ERR "NEIGH: Registering multiple tables for "
1437 "family %d\n", tbl->family);
1438 dump_stack();
1439 }
1440 }
1441
1442 int neigh_table_clear(struct neigh_table *tbl)
1443 {
1444 struct neigh_table **tp;
1445
1446 /* It is not clean... Fix it to unload IPv6 module safely */
1447 del_timer_sync(&tbl->gc_timer);
1448 del_timer_sync(&tbl->proxy_timer);
1449 pneigh_queue_purge(&tbl->proxy_queue);
1450 neigh_ifdown(tbl, NULL);
1451 if (atomic_read(&tbl->entries))
1452 printk(KERN_CRIT "neighbour leakage\n");
1453 write_lock(&neigh_tbl_lock);
1454 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1455 if (*tp == tbl) {
1456 *tp = tbl->next;
1457 break;
1458 }
1459 }
1460 write_unlock(&neigh_tbl_lock);
1461
1462 neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1);
1463 tbl->hash_buckets = NULL;
1464
1465 kfree(tbl->phash_buckets);
1466 tbl->phash_buckets = NULL;
1467
1468 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1469
1470 free_percpu(tbl->stats);
1471 tbl->stats = NULL;
1472
1473 kmem_cache_destroy(tbl->kmem_cachep);
1474 tbl->kmem_cachep = NULL;
1475
1476 return 0;
1477 }
1478
1479 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1480 {
1481 struct net *net = skb->sk->sk_net;
1482 struct ndmsg *ndm;
1483 struct nlattr *dst_attr;
1484 struct neigh_table *tbl;
1485 struct net_device *dev = NULL;
1486 int err = -EINVAL;
1487
1488 if (nlmsg_len(nlh) < sizeof(*ndm))
1489 goto out;
1490
1491 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1492 if (dst_attr == NULL)
1493 goto out;
1494
1495 ndm = nlmsg_data(nlh);
1496 if (ndm->ndm_ifindex) {
1497 dev = dev_get_by_index(net, ndm->ndm_ifindex);
1498 if (dev == NULL) {
1499 err = -ENODEV;
1500 goto out;
1501 }
1502 }
1503
1504 read_lock(&neigh_tbl_lock);
1505 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1506 struct neighbour *neigh;
1507
1508 if (tbl->family != ndm->ndm_family)
1509 continue;
1510 read_unlock(&neigh_tbl_lock);
1511
1512 if (nla_len(dst_attr) < tbl->key_len)
1513 goto out_dev_put;
1514
1515 if (ndm->ndm_flags & NTF_PROXY) {
1516 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1517 goto out_dev_put;
1518 }
1519
1520 if (dev == NULL)
1521 goto out_dev_put;
1522
1523 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1524 if (neigh == NULL) {
1525 err = -ENOENT;
1526 goto out_dev_put;
1527 }
1528
1529 err = neigh_update(neigh, NULL, NUD_FAILED,
1530 NEIGH_UPDATE_F_OVERRIDE |
1531 NEIGH_UPDATE_F_ADMIN);
1532 neigh_release(neigh);
1533 goto out_dev_put;
1534 }
1535 read_unlock(&neigh_tbl_lock);
1536 err = -EAFNOSUPPORT;
1537
1538 out_dev_put:
1539 if (dev)
1540 dev_put(dev);
1541 out:
1542 return err;
1543 }
1544
1545 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1546 {
1547 struct net *net = skb->sk->sk_net;
1548 struct ndmsg *ndm;
1549 struct nlattr *tb[NDA_MAX+1];
1550 struct neigh_table *tbl;
1551 struct net_device *dev = NULL;
1552 int err;
1553
1554 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1555 if (err < 0)
1556 goto out;
1557
1558 err = -EINVAL;
1559 if (tb[NDA_DST] == NULL)
1560 goto out;
1561
1562 ndm = nlmsg_data(nlh);
1563 if (ndm->ndm_ifindex) {
1564 dev = dev_get_by_index(net, ndm->ndm_ifindex);
1565 if (dev == NULL) {
1566 err = -ENODEV;
1567 goto out;
1568 }
1569
1570 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1571 goto out_dev_put;
1572 }
1573
1574 read_lock(&neigh_tbl_lock);
1575 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1576 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1577 struct neighbour *neigh;
1578 void *dst, *lladdr;
1579
1580 if (tbl->family != ndm->ndm_family)
1581 continue;
1582 read_unlock(&neigh_tbl_lock);
1583
1584 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1585 goto out_dev_put;
1586 dst = nla_data(tb[NDA_DST]);
1587 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1588
1589 if (ndm->ndm_flags & NTF_PROXY) {
1590 struct pneigh_entry *pn;
1591
1592 err = -ENOBUFS;
1593 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1594 if (pn) {
1595 pn->flags = ndm->ndm_flags;
1596 err = 0;
1597 }
1598 goto out_dev_put;
1599 }
1600
1601 if (dev == NULL)
1602 goto out_dev_put;
1603
1604 neigh = neigh_lookup(tbl, dst, dev);
1605 if (neigh == NULL) {
1606 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1607 err = -ENOENT;
1608 goto out_dev_put;
1609 }
1610
1611 neigh = __neigh_lookup_errno(tbl, dst, dev);
1612 if (IS_ERR(neigh)) {
1613 err = PTR_ERR(neigh);
1614 goto out_dev_put;
1615 }
1616 } else {
1617 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1618 err = -EEXIST;
1619 neigh_release(neigh);
1620 goto out_dev_put;
1621 }
1622
1623 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1624 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1625 }
1626
1627 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1628 neigh_release(neigh);
1629 goto out_dev_put;
1630 }
1631
1632 read_unlock(&neigh_tbl_lock);
1633 err = -EAFNOSUPPORT;
1634
1635 out_dev_put:
1636 if (dev)
1637 dev_put(dev);
1638 out:
1639 return err;
1640 }
1641
1642 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1643 {
1644 struct nlattr *nest;
1645
1646 nest = nla_nest_start(skb, NDTA_PARMS);
1647 if (nest == NULL)
1648 return -ENOBUFS;
1649
1650 if (parms->dev)
1651 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1652
1653 NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1654 NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1655 NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1656 NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1657 NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1658 NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1659 NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1660 NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1661 parms->base_reachable_time);
1662 NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1663 NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1664 NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1665 NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1666 NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1667 NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1668
1669 return nla_nest_end(skb, nest);
1670
1671 nla_put_failure:
1672 return nla_nest_cancel(skb, nest);
1673 }
1674
1675 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1676 u32 pid, u32 seq, int type, int flags)
1677 {
1678 struct nlmsghdr *nlh;
1679 struct ndtmsg *ndtmsg;
1680
1681 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1682 if (nlh == NULL)
1683 return -EMSGSIZE;
1684
1685 ndtmsg = nlmsg_data(nlh);
1686
1687 read_lock_bh(&tbl->lock);
1688 ndtmsg->ndtm_family = tbl->family;
1689 ndtmsg->ndtm_pad1 = 0;
1690 ndtmsg->ndtm_pad2 = 0;
1691
1692 NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1693 NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1694 NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1695 NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1696 NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1697
1698 {
1699 unsigned long now = jiffies;
1700 unsigned int flush_delta = now - tbl->last_flush;
1701 unsigned int rand_delta = now - tbl->last_rand;
1702
1703 struct ndt_config ndc = {
1704 .ndtc_key_len = tbl->key_len,
1705 .ndtc_entry_size = tbl->entry_size,
1706 .ndtc_entries = atomic_read(&tbl->entries),
1707 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1708 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1709 .ndtc_hash_rnd = tbl->hash_rnd,
1710 .ndtc_hash_mask = tbl->hash_mask,
1711 .ndtc_hash_chain_gc = tbl->hash_chain_gc,
1712 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1713 };
1714
1715 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1716 }
1717
1718 {
1719 int cpu;
1720 struct ndt_stats ndst;
1721
1722 memset(&ndst, 0, sizeof(ndst));
1723
1724 for_each_possible_cpu(cpu) {
1725 struct neigh_statistics *st;
1726
1727 st = per_cpu_ptr(tbl->stats, cpu);
1728 ndst.ndts_allocs += st->allocs;
1729 ndst.ndts_destroys += st->destroys;
1730 ndst.ndts_hash_grows += st->hash_grows;
1731 ndst.ndts_res_failed += st->res_failed;
1732 ndst.ndts_lookups += st->lookups;
1733 ndst.ndts_hits += st->hits;
1734 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1735 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1736 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1737 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1738 }
1739
1740 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1741 }
1742
1743 BUG_ON(tbl->parms.dev);
1744 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1745 goto nla_put_failure;
1746
1747 read_unlock_bh(&tbl->lock);
1748 return nlmsg_end(skb, nlh);
1749
1750 nla_put_failure:
1751 read_unlock_bh(&tbl->lock);
1752 nlmsg_cancel(skb, nlh);
1753 return -EMSGSIZE;
1754 }
1755
1756 static int neightbl_fill_param_info(struct sk_buff *skb,
1757 struct neigh_table *tbl,
1758 struct neigh_parms *parms,
1759 u32 pid, u32 seq, int type,
1760 unsigned int flags)
1761 {
1762 struct ndtmsg *ndtmsg;
1763 struct nlmsghdr *nlh;
1764
1765 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1766 if (nlh == NULL)
1767 return -EMSGSIZE;
1768
1769 ndtmsg = nlmsg_data(nlh);
1770
1771 read_lock_bh(&tbl->lock);
1772 ndtmsg->ndtm_family = tbl->family;
1773 ndtmsg->ndtm_pad1 = 0;
1774 ndtmsg->ndtm_pad2 = 0;
1775
1776 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1777 neightbl_fill_parms(skb, parms) < 0)
1778 goto errout;
1779
1780 read_unlock_bh(&tbl->lock);
1781 return nlmsg_end(skb, nlh);
1782 errout:
1783 read_unlock_bh(&tbl->lock);
1784 nlmsg_cancel(skb, nlh);
1785 return -EMSGSIZE;
1786 }
1787
1788 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1789 [NDTA_NAME] = { .type = NLA_STRING },
1790 [NDTA_THRESH1] = { .type = NLA_U32 },
1791 [NDTA_THRESH2] = { .type = NLA_U32 },
1792 [NDTA_THRESH3] = { .type = NLA_U32 },
1793 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1794 [NDTA_PARMS] = { .type = NLA_NESTED },
1795 };
1796
1797 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1798 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1799 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1800 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1801 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1802 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1803 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1804 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1805 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1806 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1807 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1808 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1809 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1810 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1811 };
1812
1813 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1814 {
1815 struct net *net = skb->sk->sk_net;
1816 struct neigh_table *tbl;
1817 struct ndtmsg *ndtmsg;
1818 struct nlattr *tb[NDTA_MAX+1];
1819 int err;
1820
1821 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1822 nl_neightbl_policy);
1823 if (err < 0)
1824 goto errout;
1825
1826 if (tb[NDTA_NAME] == NULL) {
1827 err = -EINVAL;
1828 goto errout;
1829 }
1830
1831 ndtmsg = nlmsg_data(nlh);
1832 read_lock(&neigh_tbl_lock);
1833 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1834 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1835 continue;
1836
1837 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1838 break;
1839 }
1840
1841 if (tbl == NULL) {
1842 err = -ENOENT;
1843 goto errout_locked;
1844 }
1845
1846 /*
1847 * We acquire tbl->lock to be nice to the periodic timers and
1848 * make sure they always see a consistent set of values.
1849 */
1850 write_lock_bh(&tbl->lock);
1851
1852 if (tb[NDTA_PARMS]) {
1853 struct nlattr *tbp[NDTPA_MAX+1];
1854 struct neigh_parms *p;
1855 int i, ifindex = 0;
1856
1857 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1858 nl_ntbl_parm_policy);
1859 if (err < 0)
1860 goto errout_tbl_lock;
1861
1862 if (tbp[NDTPA_IFINDEX])
1863 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1864
1865 p = lookup_neigh_params(tbl, net, ifindex);
1866 if (p == NULL) {
1867 err = -ENOENT;
1868 goto errout_tbl_lock;
1869 }
1870
1871 for (i = 1; i <= NDTPA_MAX; i++) {
1872 if (tbp[i] == NULL)
1873 continue;
1874
1875 switch (i) {
1876 case NDTPA_QUEUE_LEN:
1877 p->queue_len = nla_get_u32(tbp[i]);
1878 break;
1879 case NDTPA_PROXY_QLEN:
1880 p->proxy_qlen = nla_get_u32(tbp[i]);
1881 break;
1882 case NDTPA_APP_PROBES:
1883 p->app_probes = nla_get_u32(tbp[i]);
1884 break;
1885 case NDTPA_UCAST_PROBES:
1886 p->ucast_probes = nla_get_u32(tbp[i]);
1887 break;
1888 case NDTPA_MCAST_PROBES:
1889 p->mcast_probes = nla_get_u32(tbp[i]);
1890 break;
1891 case NDTPA_BASE_REACHABLE_TIME:
1892 p->base_reachable_time = nla_get_msecs(tbp[i]);
1893 break;
1894 case NDTPA_GC_STALETIME:
1895 p->gc_staletime = nla_get_msecs(tbp[i]);
1896 break;
1897 case NDTPA_DELAY_PROBE_TIME:
1898 p->delay_probe_time = nla_get_msecs(tbp[i]);
1899 break;
1900 case NDTPA_RETRANS_TIME:
1901 p->retrans_time = nla_get_msecs(tbp[i]);
1902 break;
1903 case NDTPA_ANYCAST_DELAY:
1904 p->anycast_delay = nla_get_msecs(tbp[i]);
1905 break;
1906 case NDTPA_PROXY_DELAY:
1907 p->proxy_delay = nla_get_msecs(tbp[i]);
1908 break;
1909 case NDTPA_LOCKTIME:
1910 p->locktime = nla_get_msecs(tbp[i]);
1911 break;
1912 }
1913 }
1914 }
1915
1916 if (tb[NDTA_THRESH1])
1917 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
1918
1919 if (tb[NDTA_THRESH2])
1920 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
1921
1922 if (tb[NDTA_THRESH3])
1923 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
1924
1925 if (tb[NDTA_GC_INTERVAL])
1926 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
1927
1928 err = 0;
1929
1930 errout_tbl_lock:
1931 write_unlock_bh(&tbl->lock);
1932 errout_locked:
1933 read_unlock(&neigh_tbl_lock);
1934 errout:
1935 return err;
1936 }
1937
1938 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
1939 {
1940 struct net *net = skb->sk->sk_net;
1941 int family, tidx, nidx = 0;
1942 int tbl_skip = cb->args[0];
1943 int neigh_skip = cb->args[1];
1944 struct neigh_table *tbl;
1945
1946 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
1947
1948 read_lock(&neigh_tbl_lock);
1949 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
1950 struct neigh_parms *p;
1951
1952 if (tidx < tbl_skip || (family && tbl->family != family))
1953 continue;
1954
1955 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
1956 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
1957 NLM_F_MULTI) <= 0)
1958 break;
1959
1960 for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
1961 if (net != p->net)
1962 continue;
1963
1964 if (nidx++ < neigh_skip)
1965 continue;
1966
1967 if (neightbl_fill_param_info(skb, tbl, p,
1968 NETLINK_CB(cb->skb).pid,
1969 cb->nlh->nlmsg_seq,
1970 RTM_NEWNEIGHTBL,
1971 NLM_F_MULTI) <= 0)
1972 goto out;
1973 }
1974
1975 neigh_skip = 0;
1976 }
1977 out:
1978 read_unlock(&neigh_tbl_lock);
1979 cb->args[0] = tidx;
1980 cb->args[1] = nidx;
1981
1982 return skb->len;
1983 }
1984
1985 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
1986 u32 pid, u32 seq, int type, unsigned int flags)
1987 {
1988 unsigned long now = jiffies;
1989 struct nda_cacheinfo ci;
1990 struct nlmsghdr *nlh;
1991 struct ndmsg *ndm;
1992
1993 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
1994 if (nlh == NULL)
1995 return -EMSGSIZE;
1996
1997 ndm = nlmsg_data(nlh);
1998 ndm->ndm_family = neigh->ops->family;
1999 ndm->ndm_pad1 = 0;
2000 ndm->ndm_pad2 = 0;
2001 ndm->ndm_flags = neigh->flags;
2002 ndm->ndm_type = neigh->type;
2003 ndm->ndm_ifindex = neigh->dev->ifindex;
2004
2005 NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
2006
2007 read_lock_bh(&neigh->lock);
2008 ndm->ndm_state = neigh->nud_state;
2009 if ((neigh->nud_state & NUD_VALID) &&
2010 nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, neigh->ha) < 0) {
2011 read_unlock_bh(&neigh->lock);
2012 goto nla_put_failure;
2013 }
2014
2015 ci.ndm_used = now - neigh->used;
2016 ci.ndm_confirmed = now - neigh->confirmed;
2017 ci.ndm_updated = now - neigh->updated;
2018 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2019 read_unlock_bh(&neigh->lock);
2020
2021 NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
2022 NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
2023
2024 return nlmsg_end(skb, nlh);
2025
2026 nla_put_failure:
2027 nlmsg_cancel(skb, nlh);
2028 return -EMSGSIZE;
2029 }
2030
2031 static void neigh_update_notify(struct neighbour *neigh)
2032 {
2033 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2034 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2035 }
2036
2037 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2038 struct netlink_callback *cb)
2039 {
2040 struct net * net = skb->sk->sk_net;
2041 struct neighbour *n;
2042 int rc, h, s_h = cb->args[1];
2043 int idx, s_idx = idx = cb->args[2];
2044
2045 read_lock_bh(&tbl->lock);
2046 for (h = 0; h <= tbl->hash_mask; h++) {
2047 if (h < s_h)
2048 continue;
2049 if (h > s_h)
2050 s_idx = 0;
2051 for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next) {
2052 int lidx;
2053 if (n->dev->nd_net != net)
2054 continue;
2055 lidx = idx++;
2056 if (lidx < s_idx)
2057 continue;
2058 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2059 cb->nlh->nlmsg_seq,
2060 RTM_NEWNEIGH,
2061 NLM_F_MULTI) <= 0) {
2062 read_unlock_bh(&tbl->lock);
2063 rc = -1;
2064 goto out;
2065 }
2066 }
2067 }
2068 read_unlock_bh(&tbl->lock);
2069 rc = skb->len;
2070 out:
2071 cb->args[1] = h;
2072 cb->args[2] = idx;
2073 return rc;
2074 }
2075
2076 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2077 {
2078 struct neigh_table *tbl;
2079 int t, family, s_t;
2080
2081 read_lock(&neigh_tbl_lock);
2082 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2083 s_t = cb->args[0];
2084
2085 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
2086 if (t < s_t || (family && tbl->family != family))
2087 continue;
2088 if (t > s_t)
2089 memset(&cb->args[1], 0, sizeof(cb->args) -
2090 sizeof(cb->args[0]));
2091 if (neigh_dump_table(tbl, skb, cb) < 0)
2092 break;
2093 }
2094 read_unlock(&neigh_tbl_lock);
2095
2096 cb->args[0] = t;
2097 return skb->len;
2098 }
2099
2100 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2101 {
2102 int chain;
2103
2104 read_lock_bh(&tbl->lock);
2105 for (chain = 0; chain <= tbl->hash_mask; chain++) {
2106 struct neighbour *n;
2107
2108 for (n = tbl->hash_buckets[chain]; n; n = n->next)
2109 cb(n, cookie);
2110 }
2111 read_unlock_bh(&tbl->lock);
2112 }
2113 EXPORT_SYMBOL(neigh_for_each);
2114
2115 /* The tbl->lock must be held as a writer and BH disabled. */
2116 void __neigh_for_each_release(struct neigh_table *tbl,
2117 int (*cb)(struct neighbour *))
2118 {
2119 int chain;
2120
2121 for (chain = 0; chain <= tbl->hash_mask; chain++) {
2122 struct neighbour *n, **np;
2123
2124 np = &tbl->hash_buckets[chain];
2125 while ((n = *np) != NULL) {
2126 int release;
2127
2128 write_lock(&n->lock);
2129 release = cb(n);
2130 if (release) {
2131 *np = n->next;
2132 n->dead = 1;
2133 } else
2134 np = &n->next;
2135 write_unlock(&n->lock);
2136 if (release)
2137 neigh_cleanup_and_release(n);
2138 }
2139 }
2140 }
2141 EXPORT_SYMBOL(__neigh_for_each_release);
2142
2143 #ifdef CONFIG_PROC_FS
2144
2145 static struct neighbour *neigh_get_first(struct seq_file *seq)
2146 {
2147 struct neigh_seq_state *state = seq->private;
2148 struct net *net = state->p.net;
2149 struct neigh_table *tbl = state->tbl;
2150 struct neighbour *n = NULL;
2151 int bucket = state->bucket;
2152
2153 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2154 for (bucket = 0; bucket <= tbl->hash_mask; bucket++) {
2155 n = tbl->hash_buckets[bucket];
2156
2157 while (n) {
2158 if (n->dev->nd_net != net)
2159 goto next;
2160 if (state->neigh_sub_iter) {
2161 loff_t fakep = 0;
2162 void *v;
2163
2164 v = state->neigh_sub_iter(state, n, &fakep);
2165 if (!v)
2166 goto next;
2167 }
2168 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2169 break;
2170 if (n->nud_state & ~NUD_NOARP)
2171 break;
2172 next:
2173 n = n->next;
2174 }
2175
2176 if (n)
2177 break;
2178 }
2179 state->bucket = bucket;
2180
2181 return n;
2182 }
2183
2184 static struct neighbour *neigh_get_next(struct seq_file *seq,
2185 struct neighbour *n,
2186 loff_t *pos)
2187 {
2188 struct neigh_seq_state *state = seq->private;
2189 struct net *net = state->p.net;
2190 struct neigh_table *tbl = state->tbl;
2191
2192 if (state->neigh_sub_iter) {
2193 void *v = state->neigh_sub_iter(state, n, pos);
2194 if (v)
2195 return n;
2196 }
2197 n = n->next;
2198
2199 while (1) {
2200 while (n) {
2201 if (n->dev->nd_net != net)
2202 goto next;
2203 if (state->neigh_sub_iter) {
2204 void *v = state->neigh_sub_iter(state, n, pos);
2205 if (v)
2206 return n;
2207 goto next;
2208 }
2209 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2210 break;
2211
2212 if (n->nud_state & ~NUD_NOARP)
2213 break;
2214 next:
2215 n = n->next;
2216 }
2217
2218 if (n)
2219 break;
2220
2221 if (++state->bucket > tbl->hash_mask)
2222 break;
2223
2224 n = tbl->hash_buckets[state->bucket];
2225 }
2226
2227 if (n && pos)
2228 --(*pos);
2229 return n;
2230 }
2231
2232 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2233 {
2234 struct neighbour *n = neigh_get_first(seq);
2235
2236 if (n) {
2237 while (*pos) {
2238 n = neigh_get_next(seq, n, pos);
2239 if (!n)
2240 break;
2241 }
2242 }
2243 return *pos ? NULL : n;
2244 }
2245
2246 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2247 {
2248 struct neigh_seq_state *state = seq->private;
2249 struct net * net = state->p.net;
2250 struct neigh_table *tbl = state->tbl;
2251 struct pneigh_entry *pn = NULL;
2252 int bucket = state->bucket;
2253
2254 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2255 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2256 pn = tbl->phash_buckets[bucket];
2257 while (pn && (pn->net != net))
2258 pn = pn->next;
2259 if (pn)
2260 break;
2261 }
2262 state->bucket = bucket;
2263
2264 return pn;
2265 }
2266
2267 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2268 struct pneigh_entry *pn,
2269 loff_t *pos)
2270 {
2271 struct neigh_seq_state *state = seq->private;
2272 struct net * net = state->p.net;
2273 struct neigh_table *tbl = state->tbl;
2274
2275 pn = pn->next;
2276 while (!pn) {
2277 if (++state->bucket > PNEIGH_HASHMASK)
2278 break;
2279 pn = tbl->phash_buckets[state->bucket];
2280 while (pn && (pn->net != net))
2281 pn = pn->next;
2282 if (pn)
2283 break;
2284 }
2285
2286 if (pn && pos)
2287 --(*pos);
2288
2289 return pn;
2290 }
2291
2292 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2293 {
2294 struct pneigh_entry *pn = pneigh_get_first(seq);
2295
2296 if (pn) {
2297 while (*pos) {
2298 pn = pneigh_get_next(seq, pn, pos);
2299 if (!pn)
2300 break;
2301 }
2302 }
2303 return *pos ? NULL : pn;
2304 }
2305
2306 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2307 {
2308 struct neigh_seq_state *state = seq->private;
2309 void *rc;
2310
2311 rc = neigh_get_idx(seq, pos);
2312 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2313 rc = pneigh_get_idx(seq, pos);
2314
2315 return rc;
2316 }
2317
2318 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2319 __acquires(tbl->lock)
2320 {
2321 struct neigh_seq_state *state = seq->private;
2322 loff_t pos_minus_one;
2323
2324 state->tbl = tbl;
2325 state->bucket = 0;
2326 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2327
2328 read_lock_bh(&tbl->lock);
2329
2330 pos_minus_one = *pos - 1;
2331 return *pos ? neigh_get_idx_any(seq, &pos_minus_one) : SEQ_START_TOKEN;
2332 }
2333 EXPORT_SYMBOL(neigh_seq_start);
2334
2335 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2336 {
2337 struct neigh_seq_state *state;
2338 void *rc;
2339
2340 if (v == SEQ_START_TOKEN) {
2341 rc = neigh_get_idx(seq, pos);
2342 goto out;
2343 }
2344
2345 state = seq->private;
2346 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2347 rc = neigh_get_next(seq, v, NULL);
2348 if (rc)
2349 goto out;
2350 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2351 rc = pneigh_get_first(seq);
2352 } else {
2353 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2354 rc = pneigh_get_next(seq, v, NULL);
2355 }
2356 out:
2357 ++(*pos);
2358 return rc;
2359 }
2360 EXPORT_SYMBOL(neigh_seq_next);
2361
2362 void neigh_seq_stop(struct seq_file *seq, void *v)
2363 __releases(tbl->lock)
2364 {
2365 struct neigh_seq_state *state = seq->private;
2366 struct neigh_table *tbl = state->tbl;
2367
2368 read_unlock_bh(&tbl->lock);
2369 }
2370 EXPORT_SYMBOL(neigh_seq_stop);
2371
2372 /* statistics via seq_file */
2373
2374 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2375 {
2376 struct proc_dir_entry *pde = seq->private;
2377 struct neigh_table *tbl = pde->data;
2378 int cpu;
2379
2380 if (*pos == 0)
2381 return SEQ_START_TOKEN;
2382
2383 for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) {
2384 if (!cpu_possible(cpu))
2385 continue;
2386 *pos = cpu+1;
2387 return per_cpu_ptr(tbl->stats, cpu);
2388 }
2389 return NULL;
2390 }
2391
2392 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2393 {
2394 struct proc_dir_entry *pde = seq->private;
2395 struct neigh_table *tbl = pde->data;
2396 int cpu;
2397
2398 for (cpu = *pos; cpu < NR_CPUS; ++cpu) {
2399 if (!cpu_possible(cpu))
2400 continue;
2401 *pos = cpu+1;
2402 return per_cpu_ptr(tbl->stats, cpu);
2403 }
2404 return NULL;
2405 }
2406
2407 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2408 {
2409
2410 }
2411
2412 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2413 {
2414 struct proc_dir_entry *pde = seq->private;
2415 struct neigh_table *tbl = pde->data;
2416 struct neigh_statistics *st = v;
2417
2418 if (v == SEQ_START_TOKEN) {
2419 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs\n");
2420 return 0;
2421 }
2422
2423 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2424 "%08lx %08lx %08lx %08lx\n",
2425 atomic_read(&tbl->entries),
2426
2427 st->allocs,
2428 st->destroys,
2429 st->hash_grows,
2430
2431 st->lookups,
2432 st->hits,
2433
2434 st->res_failed,
2435
2436 st->rcv_probes_mcast,
2437 st->rcv_probes_ucast,
2438
2439 st->periodic_gc_runs,
2440 st->forced_gc_runs
2441 );
2442
2443 return 0;
2444 }
2445
2446 static const struct seq_operations neigh_stat_seq_ops = {
2447 .start = neigh_stat_seq_start,
2448 .next = neigh_stat_seq_next,
2449 .stop = neigh_stat_seq_stop,
2450 .show = neigh_stat_seq_show,
2451 };
2452
2453 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2454 {
2455 int ret = seq_open(file, &neigh_stat_seq_ops);
2456
2457 if (!ret) {
2458 struct seq_file *sf = file->private_data;
2459 sf->private = PDE(inode);
2460 }
2461 return ret;
2462 };
2463
2464 static const struct file_operations neigh_stat_seq_fops = {
2465 .owner = THIS_MODULE,
2466 .open = neigh_stat_seq_open,
2467 .read = seq_read,
2468 .llseek = seq_lseek,
2469 .release = seq_release,
2470 };
2471
2472 #endif /* CONFIG_PROC_FS */
2473
2474 static inline size_t neigh_nlmsg_size(void)
2475 {
2476 return NLMSG_ALIGN(sizeof(struct ndmsg))
2477 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2478 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2479 + nla_total_size(sizeof(struct nda_cacheinfo))
2480 + nla_total_size(4); /* NDA_PROBES */
2481 }
2482
2483 static void __neigh_notify(struct neighbour *n, int type, int flags)
2484 {
2485 struct net *net = n->dev->nd_net;
2486 struct sk_buff *skb;
2487 int err = -ENOBUFS;
2488
2489 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2490 if (skb == NULL)
2491 goto errout;
2492
2493 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2494 if (err < 0) {
2495 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2496 WARN_ON(err == -EMSGSIZE);
2497 kfree_skb(skb);
2498 goto errout;
2499 }
2500 err = rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2501 errout:
2502 if (err < 0)
2503 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2504 }
2505
2506 #ifdef CONFIG_ARPD
2507 void neigh_app_ns(struct neighbour *n)
2508 {
2509 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2510 }
2511 #endif /* CONFIG_ARPD */
2512
2513 #ifdef CONFIG_SYSCTL
2514
2515 static struct neigh_sysctl_table {
2516 struct ctl_table_header *sysctl_header;
2517 struct ctl_table neigh_vars[__NET_NEIGH_MAX];
2518 char *dev_name;
2519 } neigh_sysctl_template __read_mostly = {
2520 .neigh_vars = {
2521 {
2522 .ctl_name = NET_NEIGH_MCAST_SOLICIT,
2523 .procname = "mcast_solicit",
2524 .maxlen = sizeof(int),
2525 .mode = 0644,
2526 .proc_handler = &proc_dointvec,
2527 },
2528 {
2529 .ctl_name = NET_NEIGH_UCAST_SOLICIT,
2530 .procname = "ucast_solicit",
2531 .maxlen = sizeof(int),
2532 .mode = 0644,
2533 .proc_handler = &proc_dointvec,
2534 },
2535 {
2536 .ctl_name = NET_NEIGH_APP_SOLICIT,
2537 .procname = "app_solicit",
2538 .maxlen = sizeof(int),
2539 .mode = 0644,
2540 .proc_handler = &proc_dointvec,
2541 },
2542 {
2543 .procname = "retrans_time",
2544 .maxlen = sizeof(int),
2545 .mode = 0644,
2546 .proc_handler = &proc_dointvec_userhz_jiffies,
2547 },
2548 {
2549 .ctl_name = NET_NEIGH_REACHABLE_TIME,
2550 .procname = "base_reachable_time",
2551 .maxlen = sizeof(int),
2552 .mode = 0644,
2553 .proc_handler = &proc_dointvec_jiffies,
2554 .strategy = &sysctl_jiffies,
2555 },
2556 {
2557 .ctl_name = NET_NEIGH_DELAY_PROBE_TIME,
2558 .procname = "delay_first_probe_time",
2559 .maxlen = sizeof(int),
2560 .mode = 0644,
2561 .proc_handler = &proc_dointvec_jiffies,
2562 .strategy = &sysctl_jiffies,
2563 },
2564 {
2565 .ctl_name = NET_NEIGH_GC_STALE_TIME,
2566 .procname = "gc_stale_time",
2567 .maxlen = sizeof(int),
2568 .mode = 0644,
2569 .proc_handler = &proc_dointvec_jiffies,
2570 .strategy = &sysctl_jiffies,
2571 },
2572 {
2573 .ctl_name = NET_NEIGH_UNRES_QLEN,
2574 .procname = "unres_qlen",
2575 .maxlen = sizeof(int),
2576 .mode = 0644,
2577 .proc_handler = &proc_dointvec,
2578 },
2579 {
2580 .ctl_name = NET_NEIGH_PROXY_QLEN,
2581 .procname = "proxy_qlen",
2582 .maxlen = sizeof(int),
2583 .mode = 0644,
2584 .proc_handler = &proc_dointvec,
2585 },
2586 {
2587 .procname = "anycast_delay",
2588 .maxlen = sizeof(int),
2589 .mode = 0644,
2590 .proc_handler = &proc_dointvec_userhz_jiffies,
2591 },
2592 {
2593 .procname = "proxy_delay",
2594 .maxlen = sizeof(int),
2595 .mode = 0644,
2596 .proc_handler = &proc_dointvec_userhz_jiffies,
2597 },
2598 {
2599 .procname = "locktime",
2600 .maxlen = sizeof(int),
2601 .mode = 0644,
2602 .proc_handler = &proc_dointvec_userhz_jiffies,
2603 },
2604 {
2605 .ctl_name = NET_NEIGH_RETRANS_TIME_MS,
2606 .procname = "retrans_time_ms",
2607 .maxlen = sizeof(int),
2608 .mode = 0644,
2609 .proc_handler = &proc_dointvec_ms_jiffies,
2610 .strategy = &sysctl_ms_jiffies,
2611 },
2612 {
2613 .ctl_name = NET_NEIGH_REACHABLE_TIME_MS,
2614 .procname = "base_reachable_time_ms",
2615 .maxlen = sizeof(int),
2616 .mode = 0644,
2617 .proc_handler = &proc_dointvec_ms_jiffies,
2618 .strategy = &sysctl_ms_jiffies,
2619 },
2620 {
2621 .ctl_name = NET_NEIGH_GC_INTERVAL,
2622 .procname = "gc_interval",
2623 .maxlen = sizeof(int),
2624 .mode = 0644,
2625 .proc_handler = &proc_dointvec_jiffies,
2626 .strategy = &sysctl_jiffies,
2627 },
2628 {
2629 .ctl_name = NET_NEIGH_GC_THRESH1,
2630 .procname = "gc_thresh1",
2631 .maxlen = sizeof(int),
2632 .mode = 0644,
2633 .proc_handler = &proc_dointvec,
2634 },
2635 {
2636 .ctl_name = NET_NEIGH_GC_THRESH2,
2637 .procname = "gc_thresh2",
2638 .maxlen = sizeof(int),
2639 .mode = 0644,
2640 .proc_handler = &proc_dointvec,
2641 },
2642 {
2643 .ctl_name = NET_NEIGH_GC_THRESH3,
2644 .procname = "gc_thresh3",
2645 .maxlen = sizeof(int),
2646 .mode = 0644,
2647 .proc_handler = &proc_dointvec,
2648 },
2649 {},
2650 },
2651 };
2652
2653 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2654 int p_id, int pdev_id, char *p_name,
2655 proc_handler *handler, ctl_handler *strategy)
2656 {
2657 struct neigh_sysctl_table *t;
2658 const char *dev_name_source = NULL;
2659
2660 #define NEIGH_CTL_PATH_ROOT 0
2661 #define NEIGH_CTL_PATH_PROTO 1
2662 #define NEIGH_CTL_PATH_NEIGH 2
2663 #define NEIGH_CTL_PATH_DEV 3
2664
2665 struct ctl_path neigh_path[] = {
2666 { .procname = "net", .ctl_name = CTL_NET, },
2667 { .procname = "proto", .ctl_name = 0, },
2668 { .procname = "neigh", .ctl_name = 0, },
2669 { .procname = "default", .ctl_name = NET_PROTO_CONF_DEFAULT, },
2670 { },
2671 };
2672
2673 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
2674 if (!t)
2675 goto err;
2676
2677 t->neigh_vars[0].data = &p->mcast_probes;
2678 t->neigh_vars[1].data = &p->ucast_probes;
2679 t->neigh_vars[2].data = &p->app_probes;
2680 t->neigh_vars[3].data = &p->retrans_time;
2681 t->neigh_vars[4].data = &p->base_reachable_time;
2682 t->neigh_vars[5].data = &p->delay_probe_time;
2683 t->neigh_vars[6].data = &p->gc_staletime;
2684 t->neigh_vars[7].data = &p->queue_len;
2685 t->neigh_vars[8].data = &p->proxy_qlen;
2686 t->neigh_vars[9].data = &p->anycast_delay;
2687 t->neigh_vars[10].data = &p->proxy_delay;
2688 t->neigh_vars[11].data = &p->locktime;
2689 t->neigh_vars[12].data = &p->retrans_time;
2690 t->neigh_vars[13].data = &p->base_reachable_time;
2691
2692 if (dev) {
2693 dev_name_source = dev->name;
2694 neigh_path[NEIGH_CTL_PATH_DEV].ctl_name = dev->ifindex;
2695 /* Terminate the table early */
2696 memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14]));
2697 } else {
2698 dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname;
2699 t->neigh_vars[14].data = (int *)(p + 1);
2700 t->neigh_vars[15].data = (int *)(p + 1) + 1;
2701 t->neigh_vars[16].data = (int *)(p + 1) + 2;
2702 t->neigh_vars[17].data = (int *)(p + 1) + 3;
2703 }
2704
2705
2706 if (handler || strategy) {
2707 /* RetransTime */
2708 t->neigh_vars[3].proc_handler = handler;
2709 t->neigh_vars[3].strategy = strategy;
2710 t->neigh_vars[3].extra1 = dev;
2711 if (!strategy)
2712 t->neigh_vars[3].ctl_name = CTL_UNNUMBERED;
2713 /* ReachableTime */
2714 t->neigh_vars[4].proc_handler = handler;
2715 t->neigh_vars[4].strategy = strategy;
2716 t->neigh_vars[4].extra1 = dev;
2717 if (!strategy)
2718 t->neigh_vars[4].ctl_name = CTL_UNNUMBERED;
2719 /* RetransTime (in milliseconds)*/
2720 t->neigh_vars[12].proc_handler = handler;
2721 t->neigh_vars[12].strategy = strategy;
2722 t->neigh_vars[12].extra1 = dev;
2723 if (!strategy)
2724 t->neigh_vars[12].ctl_name = CTL_UNNUMBERED;
2725 /* ReachableTime (in milliseconds) */
2726 t->neigh_vars[13].proc_handler = handler;
2727 t->neigh_vars[13].strategy = strategy;
2728 t->neigh_vars[13].extra1 = dev;
2729 if (!strategy)
2730 t->neigh_vars[13].ctl_name = CTL_UNNUMBERED;
2731 }
2732
2733 t->dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2734 if (!t->dev_name)
2735 goto free;
2736
2737 neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name;
2738 neigh_path[NEIGH_CTL_PATH_NEIGH].ctl_name = pdev_id;
2739 neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name;
2740 neigh_path[NEIGH_CTL_PATH_PROTO].ctl_name = p_id;
2741
2742 t->sysctl_header = register_sysctl_paths(neigh_path, t->neigh_vars);
2743 if (!t->sysctl_header)
2744 goto free_procname;
2745
2746 p->sysctl_table = t;
2747 return 0;
2748
2749 free_procname:
2750 kfree(t->dev_name);
2751 free:
2752 kfree(t);
2753 err:
2754 return -ENOBUFS;
2755 }
2756
2757 void neigh_sysctl_unregister(struct neigh_parms *p)
2758 {
2759 if (p->sysctl_table) {
2760 struct neigh_sysctl_table *t = p->sysctl_table;
2761 p->sysctl_table = NULL;
2762 unregister_sysctl_table(t->sysctl_header);
2763 kfree(t->dev_name);
2764 kfree(t);
2765 }
2766 }
2767
2768 #endif /* CONFIG_SYSCTL */
2769
2770 static int __init neigh_init(void)
2771 {
2772 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL);
2773 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL);
2774 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info);
2775
2776 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info);
2777 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL);
2778
2779 return 0;
2780 }
2781
2782 subsys_initcall(neigh_init);
2783
2784 EXPORT_SYMBOL(__neigh_event_send);
2785 EXPORT_SYMBOL(neigh_changeaddr);
2786 EXPORT_SYMBOL(neigh_compat_output);
2787 EXPORT_SYMBOL(neigh_connected_output);
2788 EXPORT_SYMBOL(neigh_create);
2789 EXPORT_SYMBOL(neigh_destroy);
2790 EXPORT_SYMBOL(neigh_event_ns);
2791 EXPORT_SYMBOL(neigh_ifdown);
2792 EXPORT_SYMBOL(neigh_lookup);
2793 EXPORT_SYMBOL(neigh_lookup_nodev);
2794 EXPORT_SYMBOL(neigh_parms_alloc);
2795 EXPORT_SYMBOL(neigh_parms_release);
2796 EXPORT_SYMBOL(neigh_rand_reach_time);
2797 EXPORT_SYMBOL(neigh_resolve_output);
2798 EXPORT_SYMBOL(neigh_table_clear);
2799 EXPORT_SYMBOL(neigh_table_init);
2800 EXPORT_SYMBOL(neigh_table_init_no_netlink);
2801 EXPORT_SYMBOL(neigh_update);
2802 EXPORT_SYMBOL(pneigh_enqueue);
2803 EXPORT_SYMBOL(pneigh_lookup);
2804
2805 #ifdef CONFIG_ARPD
2806 EXPORT_SYMBOL(neigh_app_ns);
2807 #endif
2808 #ifdef CONFIG_SYSCTL
2809 EXPORT_SYMBOL(neigh_sysctl_register);
2810 EXPORT_SYMBOL(neigh_sysctl_unregister);
2811 #endif