]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/core/neighbour.c
Merge commit 'v3.1-rc1' into imx-fixes
[mirror_ubuntu-bionic-kernel.git] / net / core / neighbour.c
1 /*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/socket.h>
23 #include <linux/netdevice.h>
24 #include <linux/proc_fs.h>
25 #ifdef CONFIG_SYSCTL
26 #include <linux/sysctl.h>
27 #endif
28 #include <linux/times.h>
29 #include <net/net_namespace.h>
30 #include <net/neighbour.h>
31 #include <net/dst.h>
32 #include <net/sock.h>
33 #include <net/netevent.h>
34 #include <net/netlink.h>
35 #include <linux/rtnetlink.h>
36 #include <linux/random.h>
37 #include <linux/string.h>
38 #include <linux/log2.h>
39
40 #define NEIGH_DEBUG 1
41
42 #define NEIGH_PRINTK(x...) printk(x)
43 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
44 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
45 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
46
47 #if NEIGH_DEBUG >= 1
48 #undef NEIGH_PRINTK1
49 #define NEIGH_PRINTK1 NEIGH_PRINTK
50 #endif
51 #if NEIGH_DEBUG >= 2
52 #undef NEIGH_PRINTK2
53 #define NEIGH_PRINTK2 NEIGH_PRINTK
54 #endif
55
56 #define PNEIGH_HASHMASK 0xF
57
58 static void neigh_timer_handler(unsigned long arg);
59 static void __neigh_notify(struct neighbour *n, int type, int flags);
60 static void neigh_update_notify(struct neighbour *neigh);
61 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
62
63 static struct neigh_table *neigh_tables;
64 #ifdef CONFIG_PROC_FS
65 static const struct file_operations neigh_stat_seq_fops;
66 #endif
67
68 /*
69 Neighbour hash table buckets are protected with rwlock tbl->lock.
70
71 - All the scans/updates to hash buckets MUST be made under this lock.
72 - NOTHING clever should be made under this lock: no callbacks
73 to protocol backends, no attempts to send something to network.
74 It will result in deadlocks, if backend/driver wants to use neighbour
75 cache.
76 - If the entry requires some non-trivial actions, increase
77 its reference count and release table lock.
78
79 Neighbour entries are protected:
80 - with reference count.
81 - with rwlock neigh->lock
82
83 Reference count prevents destruction.
84
85 neigh->lock mainly serializes ll address data and its validity state.
86 However, the same lock is used to protect another entry fields:
87 - timer
88 - resolution queue
89
90 Again, nothing clever shall be made under neigh->lock,
91 the most complicated procedure, which we allow is dev->hard_header.
92 It is supposed, that dev->hard_header is simplistic and does
93 not make callbacks to neighbour tables.
94
95 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
96 list of neighbour tables. This list is used only in process context,
97 */
98
99 static DEFINE_RWLOCK(neigh_tbl_lock);
100
101 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
102 {
103 kfree_skb(skb);
104 return -ENETDOWN;
105 }
106
107 static void neigh_cleanup_and_release(struct neighbour *neigh)
108 {
109 if (neigh->parms->neigh_cleanup)
110 neigh->parms->neigh_cleanup(neigh);
111
112 __neigh_notify(neigh, RTM_DELNEIGH, 0);
113 neigh_release(neigh);
114 }
115
116 /*
117 * It is random distribution in the interval (1/2)*base...(3/2)*base.
118 * It corresponds to default IPv6 settings and is not overridable,
119 * because it is really reasonable choice.
120 */
121
122 unsigned long neigh_rand_reach_time(unsigned long base)
123 {
124 return base ? (net_random() % base) + (base >> 1) : 0;
125 }
126 EXPORT_SYMBOL(neigh_rand_reach_time);
127
128
129 static int neigh_forced_gc(struct neigh_table *tbl)
130 {
131 int shrunk = 0;
132 int i;
133 struct neigh_hash_table *nht;
134
135 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
136
137 write_lock_bh(&tbl->lock);
138 nht = rcu_dereference_protected(tbl->nht,
139 lockdep_is_held(&tbl->lock));
140 for (i = 0; i < (1 << nht->hash_shift); i++) {
141 struct neighbour *n;
142 struct neighbour __rcu **np;
143
144 np = &nht->hash_buckets[i];
145 while ((n = rcu_dereference_protected(*np,
146 lockdep_is_held(&tbl->lock))) != NULL) {
147 /* Neighbour record may be discarded if:
148 * - nobody refers to it.
149 * - it is not permanent
150 */
151 write_lock(&n->lock);
152 if (atomic_read(&n->refcnt) == 1 &&
153 !(n->nud_state & NUD_PERMANENT)) {
154 rcu_assign_pointer(*np,
155 rcu_dereference_protected(n->next,
156 lockdep_is_held(&tbl->lock)));
157 n->dead = 1;
158 shrunk = 1;
159 write_unlock(&n->lock);
160 neigh_cleanup_and_release(n);
161 continue;
162 }
163 write_unlock(&n->lock);
164 np = &n->next;
165 }
166 }
167
168 tbl->last_flush = jiffies;
169
170 write_unlock_bh(&tbl->lock);
171
172 return shrunk;
173 }
174
175 static void neigh_add_timer(struct neighbour *n, unsigned long when)
176 {
177 neigh_hold(n);
178 if (unlikely(mod_timer(&n->timer, when))) {
179 printk("NEIGH: BUG, double timer add, state is %x\n",
180 n->nud_state);
181 dump_stack();
182 }
183 }
184
185 static int neigh_del_timer(struct neighbour *n)
186 {
187 if ((n->nud_state & NUD_IN_TIMER) &&
188 del_timer(&n->timer)) {
189 neigh_release(n);
190 return 1;
191 }
192 return 0;
193 }
194
195 static void pneigh_queue_purge(struct sk_buff_head *list)
196 {
197 struct sk_buff *skb;
198
199 while ((skb = skb_dequeue(list)) != NULL) {
200 dev_put(skb->dev);
201 kfree_skb(skb);
202 }
203 }
204
205 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
206 {
207 int i;
208 struct neigh_hash_table *nht;
209
210 nht = rcu_dereference_protected(tbl->nht,
211 lockdep_is_held(&tbl->lock));
212
213 for (i = 0; i < (1 << nht->hash_shift); i++) {
214 struct neighbour *n;
215 struct neighbour __rcu **np = &nht->hash_buckets[i];
216
217 while ((n = rcu_dereference_protected(*np,
218 lockdep_is_held(&tbl->lock))) != NULL) {
219 if (dev && n->dev != dev) {
220 np = &n->next;
221 continue;
222 }
223 rcu_assign_pointer(*np,
224 rcu_dereference_protected(n->next,
225 lockdep_is_held(&tbl->lock)));
226 write_lock(&n->lock);
227 neigh_del_timer(n);
228 n->dead = 1;
229
230 if (atomic_read(&n->refcnt) != 1) {
231 /* The most unpleasant situation.
232 We must destroy neighbour entry,
233 but someone still uses it.
234
235 The destroy will be delayed until
236 the last user releases us, but
237 we must kill timers etc. and move
238 it to safe state.
239 */
240 skb_queue_purge(&n->arp_queue);
241 n->output = neigh_blackhole;
242 if (n->nud_state & NUD_VALID)
243 n->nud_state = NUD_NOARP;
244 else
245 n->nud_state = NUD_NONE;
246 NEIGH_PRINTK2("neigh %p is stray.\n", n);
247 }
248 write_unlock(&n->lock);
249 neigh_cleanup_and_release(n);
250 }
251 }
252 }
253
254 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
255 {
256 write_lock_bh(&tbl->lock);
257 neigh_flush_dev(tbl, dev);
258 write_unlock_bh(&tbl->lock);
259 }
260 EXPORT_SYMBOL(neigh_changeaddr);
261
262 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
263 {
264 write_lock_bh(&tbl->lock);
265 neigh_flush_dev(tbl, dev);
266 pneigh_ifdown(tbl, dev);
267 write_unlock_bh(&tbl->lock);
268
269 del_timer_sync(&tbl->proxy_timer);
270 pneigh_queue_purge(&tbl->proxy_queue);
271 return 0;
272 }
273 EXPORT_SYMBOL(neigh_ifdown);
274
275 static struct neighbour *neigh_alloc(struct neigh_table *tbl)
276 {
277 struct neighbour *n = NULL;
278 unsigned long now = jiffies;
279 int entries;
280
281 entries = atomic_inc_return(&tbl->entries) - 1;
282 if (entries >= tbl->gc_thresh3 ||
283 (entries >= tbl->gc_thresh2 &&
284 time_after(now, tbl->last_flush + 5 * HZ))) {
285 if (!neigh_forced_gc(tbl) &&
286 entries >= tbl->gc_thresh3)
287 goto out_entries;
288 }
289
290 n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC);
291 if (!n)
292 goto out_entries;
293
294 skb_queue_head_init(&n->arp_queue);
295 rwlock_init(&n->lock);
296 seqlock_init(&n->ha_lock);
297 n->updated = n->used = now;
298 n->nud_state = NUD_NONE;
299 n->output = neigh_blackhole;
300 seqlock_init(&n->hh.hh_lock);
301 n->parms = neigh_parms_clone(&tbl->parms);
302 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
303
304 NEIGH_CACHE_STAT_INC(tbl, allocs);
305 n->tbl = tbl;
306 atomic_set(&n->refcnt, 1);
307 n->dead = 1;
308 out:
309 return n;
310
311 out_entries:
312 atomic_dec(&tbl->entries);
313 goto out;
314 }
315
316 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
317 {
318 size_t size = (1 << shift) * sizeof(struct neighbour *);
319 struct neigh_hash_table *ret;
320 struct neighbour __rcu **buckets;
321
322 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
323 if (!ret)
324 return NULL;
325 if (size <= PAGE_SIZE)
326 buckets = kzalloc(size, GFP_ATOMIC);
327 else
328 buckets = (struct neighbour __rcu **)
329 __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
330 get_order(size));
331 if (!buckets) {
332 kfree(ret);
333 return NULL;
334 }
335 ret->hash_buckets = buckets;
336 ret->hash_shift = shift;
337 get_random_bytes(&ret->hash_rnd, sizeof(ret->hash_rnd));
338 ret->hash_rnd |= 1;
339 return ret;
340 }
341
342 static void neigh_hash_free_rcu(struct rcu_head *head)
343 {
344 struct neigh_hash_table *nht = container_of(head,
345 struct neigh_hash_table,
346 rcu);
347 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
348 struct neighbour __rcu **buckets = nht->hash_buckets;
349
350 if (size <= PAGE_SIZE)
351 kfree(buckets);
352 else
353 free_pages((unsigned long)buckets, get_order(size));
354 kfree(nht);
355 }
356
357 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
358 unsigned long new_shift)
359 {
360 unsigned int i, hash;
361 struct neigh_hash_table *new_nht, *old_nht;
362
363 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
364
365 old_nht = rcu_dereference_protected(tbl->nht,
366 lockdep_is_held(&tbl->lock));
367 new_nht = neigh_hash_alloc(new_shift);
368 if (!new_nht)
369 return old_nht;
370
371 for (i = 0; i < (1 << old_nht->hash_shift); i++) {
372 struct neighbour *n, *next;
373
374 for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
375 lockdep_is_held(&tbl->lock));
376 n != NULL;
377 n = next) {
378 hash = tbl->hash(n->primary_key, n->dev,
379 new_nht->hash_rnd);
380
381 hash >>= (32 - new_nht->hash_shift);
382 next = rcu_dereference_protected(n->next,
383 lockdep_is_held(&tbl->lock));
384
385 rcu_assign_pointer(n->next,
386 rcu_dereference_protected(
387 new_nht->hash_buckets[hash],
388 lockdep_is_held(&tbl->lock)));
389 rcu_assign_pointer(new_nht->hash_buckets[hash], n);
390 }
391 }
392
393 rcu_assign_pointer(tbl->nht, new_nht);
394 call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
395 return new_nht;
396 }
397
398 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
399 struct net_device *dev)
400 {
401 struct neighbour *n;
402 int key_len = tbl->key_len;
403 u32 hash_val;
404 struct neigh_hash_table *nht;
405
406 NEIGH_CACHE_STAT_INC(tbl, lookups);
407
408 rcu_read_lock_bh();
409 nht = rcu_dereference_bh(tbl->nht);
410 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
411
412 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
413 n != NULL;
414 n = rcu_dereference_bh(n->next)) {
415 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
416 if (!atomic_inc_not_zero(&n->refcnt))
417 n = NULL;
418 NEIGH_CACHE_STAT_INC(tbl, hits);
419 break;
420 }
421 }
422
423 rcu_read_unlock_bh();
424 return n;
425 }
426 EXPORT_SYMBOL(neigh_lookup);
427
428 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
429 const void *pkey)
430 {
431 struct neighbour *n;
432 int key_len = tbl->key_len;
433 u32 hash_val;
434 struct neigh_hash_table *nht;
435
436 NEIGH_CACHE_STAT_INC(tbl, lookups);
437
438 rcu_read_lock_bh();
439 nht = rcu_dereference_bh(tbl->nht);
440 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift);
441
442 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
443 n != NULL;
444 n = rcu_dereference_bh(n->next)) {
445 if (!memcmp(n->primary_key, pkey, key_len) &&
446 net_eq(dev_net(n->dev), net)) {
447 if (!atomic_inc_not_zero(&n->refcnt))
448 n = NULL;
449 NEIGH_CACHE_STAT_INC(tbl, hits);
450 break;
451 }
452 }
453
454 rcu_read_unlock_bh();
455 return n;
456 }
457 EXPORT_SYMBOL(neigh_lookup_nodev);
458
459 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
460 struct net_device *dev)
461 {
462 u32 hash_val;
463 int key_len = tbl->key_len;
464 int error;
465 struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
466 struct neigh_hash_table *nht;
467
468 if (!n) {
469 rc = ERR_PTR(-ENOBUFS);
470 goto out;
471 }
472
473 memcpy(n->primary_key, pkey, key_len);
474 n->dev = dev;
475 dev_hold(dev);
476
477 /* Protocol specific setup. */
478 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
479 rc = ERR_PTR(error);
480 goto out_neigh_release;
481 }
482
483 /* Device specific setup. */
484 if (n->parms->neigh_setup &&
485 (error = n->parms->neigh_setup(n)) < 0) {
486 rc = ERR_PTR(error);
487 goto out_neigh_release;
488 }
489
490 n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
491
492 write_lock_bh(&tbl->lock);
493 nht = rcu_dereference_protected(tbl->nht,
494 lockdep_is_held(&tbl->lock));
495
496 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
497 nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
498
499 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
500
501 if (n->parms->dead) {
502 rc = ERR_PTR(-EINVAL);
503 goto out_tbl_unlock;
504 }
505
506 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
507 lockdep_is_held(&tbl->lock));
508 n1 != NULL;
509 n1 = rcu_dereference_protected(n1->next,
510 lockdep_is_held(&tbl->lock))) {
511 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
512 neigh_hold(n1);
513 rc = n1;
514 goto out_tbl_unlock;
515 }
516 }
517
518 n->dead = 0;
519 neigh_hold(n);
520 rcu_assign_pointer(n->next,
521 rcu_dereference_protected(nht->hash_buckets[hash_val],
522 lockdep_is_held(&tbl->lock)));
523 rcu_assign_pointer(nht->hash_buckets[hash_val], n);
524 write_unlock_bh(&tbl->lock);
525 NEIGH_PRINTK2("neigh %p is created.\n", n);
526 rc = n;
527 out:
528 return rc;
529 out_tbl_unlock:
530 write_unlock_bh(&tbl->lock);
531 out_neigh_release:
532 neigh_release(n);
533 goto out;
534 }
535 EXPORT_SYMBOL(neigh_create);
536
537 static u32 pneigh_hash(const void *pkey, int key_len)
538 {
539 u32 hash_val = *(u32 *)(pkey + key_len - 4);
540 hash_val ^= (hash_val >> 16);
541 hash_val ^= hash_val >> 8;
542 hash_val ^= hash_val >> 4;
543 hash_val &= PNEIGH_HASHMASK;
544 return hash_val;
545 }
546
547 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
548 struct net *net,
549 const void *pkey,
550 int key_len,
551 struct net_device *dev)
552 {
553 while (n) {
554 if (!memcmp(n->key, pkey, key_len) &&
555 net_eq(pneigh_net(n), net) &&
556 (n->dev == dev || !n->dev))
557 return n;
558 n = n->next;
559 }
560 return NULL;
561 }
562
563 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
564 struct net *net, const void *pkey, struct net_device *dev)
565 {
566 int key_len = tbl->key_len;
567 u32 hash_val = pneigh_hash(pkey, key_len);
568
569 return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
570 net, pkey, key_len, dev);
571 }
572 EXPORT_SYMBOL_GPL(__pneigh_lookup);
573
574 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
575 struct net *net, const void *pkey,
576 struct net_device *dev, int creat)
577 {
578 struct pneigh_entry *n;
579 int key_len = tbl->key_len;
580 u32 hash_val = pneigh_hash(pkey, key_len);
581
582 read_lock_bh(&tbl->lock);
583 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
584 net, pkey, key_len, dev);
585 read_unlock_bh(&tbl->lock);
586
587 if (n || !creat)
588 goto out;
589
590 ASSERT_RTNL();
591
592 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
593 if (!n)
594 goto out;
595
596 write_pnet(&n->net, hold_net(net));
597 memcpy(n->key, pkey, key_len);
598 n->dev = dev;
599 if (dev)
600 dev_hold(dev);
601
602 if (tbl->pconstructor && tbl->pconstructor(n)) {
603 if (dev)
604 dev_put(dev);
605 release_net(net);
606 kfree(n);
607 n = NULL;
608 goto out;
609 }
610
611 write_lock_bh(&tbl->lock);
612 n->next = tbl->phash_buckets[hash_val];
613 tbl->phash_buckets[hash_val] = n;
614 write_unlock_bh(&tbl->lock);
615 out:
616 return n;
617 }
618 EXPORT_SYMBOL(pneigh_lookup);
619
620
621 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
622 struct net_device *dev)
623 {
624 struct pneigh_entry *n, **np;
625 int key_len = tbl->key_len;
626 u32 hash_val = pneigh_hash(pkey, key_len);
627
628 write_lock_bh(&tbl->lock);
629 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
630 np = &n->next) {
631 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
632 net_eq(pneigh_net(n), net)) {
633 *np = n->next;
634 write_unlock_bh(&tbl->lock);
635 if (tbl->pdestructor)
636 tbl->pdestructor(n);
637 if (n->dev)
638 dev_put(n->dev);
639 release_net(pneigh_net(n));
640 kfree(n);
641 return 0;
642 }
643 }
644 write_unlock_bh(&tbl->lock);
645 return -ENOENT;
646 }
647
648 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
649 {
650 struct pneigh_entry *n, **np;
651 u32 h;
652
653 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
654 np = &tbl->phash_buckets[h];
655 while ((n = *np) != NULL) {
656 if (!dev || n->dev == dev) {
657 *np = n->next;
658 if (tbl->pdestructor)
659 tbl->pdestructor(n);
660 if (n->dev)
661 dev_put(n->dev);
662 release_net(pneigh_net(n));
663 kfree(n);
664 continue;
665 }
666 np = &n->next;
667 }
668 }
669 return -ENOENT;
670 }
671
672 static void neigh_parms_destroy(struct neigh_parms *parms);
673
674 static inline void neigh_parms_put(struct neigh_parms *parms)
675 {
676 if (atomic_dec_and_test(&parms->refcnt))
677 neigh_parms_destroy(parms);
678 }
679
680 static void neigh_destroy_rcu(struct rcu_head *head)
681 {
682 struct neighbour *neigh = container_of(head, struct neighbour, rcu);
683
684 kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
685 }
686 /*
687 * neighbour must already be out of the table;
688 *
689 */
690 void neigh_destroy(struct neighbour *neigh)
691 {
692 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
693
694 if (!neigh->dead) {
695 printk(KERN_WARNING
696 "Destroying alive neighbour %p\n", neigh);
697 dump_stack();
698 return;
699 }
700
701 if (neigh_del_timer(neigh))
702 printk(KERN_WARNING "Impossible event.\n");
703
704 skb_queue_purge(&neigh->arp_queue);
705
706 dev_put(neigh->dev);
707 neigh_parms_put(neigh->parms);
708
709 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
710
711 atomic_dec(&neigh->tbl->entries);
712 call_rcu(&neigh->rcu, neigh_destroy_rcu);
713 }
714 EXPORT_SYMBOL(neigh_destroy);
715
716 /* Neighbour state is suspicious;
717 disable fast path.
718
719 Called with write_locked neigh.
720 */
721 static void neigh_suspect(struct neighbour *neigh)
722 {
723 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
724
725 neigh->output = neigh->ops->output;
726 }
727
728 /* Neighbour state is OK;
729 enable fast path.
730
731 Called with write_locked neigh.
732 */
733 static void neigh_connect(struct neighbour *neigh)
734 {
735 NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
736
737 neigh->output = neigh->ops->connected_output;
738 }
739
740 static void neigh_periodic_work(struct work_struct *work)
741 {
742 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
743 struct neighbour *n;
744 struct neighbour __rcu **np;
745 unsigned int i;
746 struct neigh_hash_table *nht;
747
748 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
749
750 write_lock_bh(&tbl->lock);
751 nht = rcu_dereference_protected(tbl->nht,
752 lockdep_is_held(&tbl->lock));
753
754 /*
755 * periodically recompute ReachableTime from random function
756 */
757
758 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
759 struct neigh_parms *p;
760 tbl->last_rand = jiffies;
761 for (p = &tbl->parms; p; p = p->next)
762 p->reachable_time =
763 neigh_rand_reach_time(p->base_reachable_time);
764 }
765
766 for (i = 0 ; i < (1 << nht->hash_shift); i++) {
767 np = &nht->hash_buckets[i];
768
769 while ((n = rcu_dereference_protected(*np,
770 lockdep_is_held(&tbl->lock))) != NULL) {
771 unsigned int state;
772
773 write_lock(&n->lock);
774
775 state = n->nud_state;
776 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
777 write_unlock(&n->lock);
778 goto next_elt;
779 }
780
781 if (time_before(n->used, n->confirmed))
782 n->used = n->confirmed;
783
784 if (atomic_read(&n->refcnt) == 1 &&
785 (state == NUD_FAILED ||
786 time_after(jiffies, n->used + n->parms->gc_staletime))) {
787 *np = n->next;
788 n->dead = 1;
789 write_unlock(&n->lock);
790 neigh_cleanup_and_release(n);
791 continue;
792 }
793 write_unlock(&n->lock);
794
795 next_elt:
796 np = &n->next;
797 }
798 /*
799 * It's fine to release lock here, even if hash table
800 * grows while we are preempted.
801 */
802 write_unlock_bh(&tbl->lock);
803 cond_resched();
804 write_lock_bh(&tbl->lock);
805 }
806 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
807 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
808 * base_reachable_time.
809 */
810 schedule_delayed_work(&tbl->gc_work,
811 tbl->parms.base_reachable_time >> 1);
812 write_unlock_bh(&tbl->lock);
813 }
814
815 static __inline__ int neigh_max_probes(struct neighbour *n)
816 {
817 struct neigh_parms *p = n->parms;
818 return (n->nud_state & NUD_PROBE) ?
819 p->ucast_probes :
820 p->ucast_probes + p->app_probes + p->mcast_probes;
821 }
822
823 static void neigh_invalidate(struct neighbour *neigh)
824 __releases(neigh->lock)
825 __acquires(neigh->lock)
826 {
827 struct sk_buff *skb;
828
829 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
830 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
831 neigh->updated = jiffies;
832
833 /* It is very thin place. report_unreachable is very complicated
834 routine. Particularly, it can hit the same neighbour entry!
835
836 So that, we try to be accurate and avoid dead loop. --ANK
837 */
838 while (neigh->nud_state == NUD_FAILED &&
839 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
840 write_unlock(&neigh->lock);
841 neigh->ops->error_report(neigh, skb);
842 write_lock(&neigh->lock);
843 }
844 skb_queue_purge(&neigh->arp_queue);
845 }
846
847 /* Called when a timer expires for a neighbour entry. */
848
849 static void neigh_timer_handler(unsigned long arg)
850 {
851 unsigned long now, next;
852 struct neighbour *neigh = (struct neighbour *)arg;
853 unsigned state;
854 int notify = 0;
855
856 write_lock(&neigh->lock);
857
858 state = neigh->nud_state;
859 now = jiffies;
860 next = now + HZ;
861
862 if (!(state & NUD_IN_TIMER)) {
863 #ifndef CONFIG_SMP
864 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
865 #endif
866 goto out;
867 }
868
869 if (state & NUD_REACHABLE) {
870 if (time_before_eq(now,
871 neigh->confirmed + neigh->parms->reachable_time)) {
872 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
873 next = neigh->confirmed + neigh->parms->reachable_time;
874 } else if (time_before_eq(now,
875 neigh->used + neigh->parms->delay_probe_time)) {
876 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
877 neigh->nud_state = NUD_DELAY;
878 neigh->updated = jiffies;
879 neigh_suspect(neigh);
880 next = now + neigh->parms->delay_probe_time;
881 } else {
882 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
883 neigh->nud_state = NUD_STALE;
884 neigh->updated = jiffies;
885 neigh_suspect(neigh);
886 notify = 1;
887 }
888 } else if (state & NUD_DELAY) {
889 if (time_before_eq(now,
890 neigh->confirmed + neigh->parms->delay_probe_time)) {
891 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
892 neigh->nud_state = NUD_REACHABLE;
893 neigh->updated = jiffies;
894 neigh_connect(neigh);
895 notify = 1;
896 next = neigh->confirmed + neigh->parms->reachable_time;
897 } else {
898 NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
899 neigh->nud_state = NUD_PROBE;
900 neigh->updated = jiffies;
901 atomic_set(&neigh->probes, 0);
902 next = now + neigh->parms->retrans_time;
903 }
904 } else {
905 /* NUD_PROBE|NUD_INCOMPLETE */
906 next = now + neigh->parms->retrans_time;
907 }
908
909 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
910 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
911 neigh->nud_state = NUD_FAILED;
912 notify = 1;
913 neigh_invalidate(neigh);
914 }
915
916 if (neigh->nud_state & NUD_IN_TIMER) {
917 if (time_before(next, jiffies + HZ/2))
918 next = jiffies + HZ/2;
919 if (!mod_timer(&neigh->timer, next))
920 neigh_hold(neigh);
921 }
922 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
923 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
924 /* keep skb alive even if arp_queue overflows */
925 if (skb)
926 skb = skb_copy(skb, GFP_ATOMIC);
927 write_unlock(&neigh->lock);
928 neigh->ops->solicit(neigh, skb);
929 atomic_inc(&neigh->probes);
930 kfree_skb(skb);
931 } else {
932 out:
933 write_unlock(&neigh->lock);
934 }
935
936 if (notify)
937 neigh_update_notify(neigh);
938
939 neigh_release(neigh);
940 }
941
942 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
943 {
944 int rc;
945 unsigned long now;
946
947 write_lock_bh(&neigh->lock);
948
949 rc = 0;
950 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
951 goto out_unlock_bh;
952
953 now = jiffies;
954
955 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
956 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
957 atomic_set(&neigh->probes, neigh->parms->ucast_probes);
958 neigh->nud_state = NUD_INCOMPLETE;
959 neigh->updated = jiffies;
960 neigh_add_timer(neigh, now + 1);
961 } else {
962 neigh->nud_state = NUD_FAILED;
963 neigh->updated = jiffies;
964 write_unlock_bh(&neigh->lock);
965
966 kfree_skb(skb);
967 return 1;
968 }
969 } else if (neigh->nud_state & NUD_STALE) {
970 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
971 neigh->nud_state = NUD_DELAY;
972 neigh->updated = jiffies;
973 neigh_add_timer(neigh,
974 jiffies + neigh->parms->delay_probe_time);
975 }
976
977 if (neigh->nud_state == NUD_INCOMPLETE) {
978 if (skb) {
979 if (skb_queue_len(&neigh->arp_queue) >=
980 neigh->parms->queue_len) {
981 struct sk_buff *buff;
982 buff = __skb_dequeue(&neigh->arp_queue);
983 kfree_skb(buff);
984 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
985 }
986 skb_dst_force(skb);
987 __skb_queue_tail(&neigh->arp_queue, skb);
988 }
989 rc = 1;
990 }
991 out_unlock_bh:
992 write_unlock_bh(&neigh->lock);
993 return rc;
994 }
995 EXPORT_SYMBOL(__neigh_event_send);
996
997 static void neigh_update_hhs(struct neighbour *neigh)
998 {
999 struct hh_cache *hh;
1000 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1001 = NULL;
1002
1003 if (neigh->dev->header_ops)
1004 update = neigh->dev->header_ops->cache_update;
1005
1006 if (update) {
1007 hh = &neigh->hh;
1008 if (hh->hh_len) {
1009 write_seqlock_bh(&hh->hh_lock);
1010 update(hh, neigh->dev, neigh->ha);
1011 write_sequnlock_bh(&hh->hh_lock);
1012 }
1013 }
1014 }
1015
1016
1017
1018 /* Generic update routine.
1019 -- lladdr is new lladdr or NULL, if it is not supplied.
1020 -- new is new state.
1021 -- flags
1022 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1023 if it is different.
1024 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1025 lladdr instead of overriding it
1026 if it is different.
1027 It also allows to retain current state
1028 if lladdr is unchanged.
1029 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
1030
1031 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1032 NTF_ROUTER flag.
1033 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
1034 a router.
1035
1036 Caller MUST hold reference count on the entry.
1037 */
1038
1039 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1040 u32 flags)
1041 {
1042 u8 old;
1043 int err;
1044 int notify = 0;
1045 struct net_device *dev;
1046 int update_isrouter = 0;
1047
1048 write_lock_bh(&neigh->lock);
1049
1050 dev = neigh->dev;
1051 old = neigh->nud_state;
1052 err = -EPERM;
1053
1054 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1055 (old & (NUD_NOARP | NUD_PERMANENT)))
1056 goto out;
1057
1058 if (!(new & NUD_VALID)) {
1059 neigh_del_timer(neigh);
1060 if (old & NUD_CONNECTED)
1061 neigh_suspect(neigh);
1062 neigh->nud_state = new;
1063 err = 0;
1064 notify = old & NUD_VALID;
1065 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1066 (new & NUD_FAILED)) {
1067 neigh_invalidate(neigh);
1068 notify = 1;
1069 }
1070 goto out;
1071 }
1072
1073 /* Compare new lladdr with cached one */
1074 if (!dev->addr_len) {
1075 /* First case: device needs no address. */
1076 lladdr = neigh->ha;
1077 } else if (lladdr) {
1078 /* The second case: if something is already cached
1079 and a new address is proposed:
1080 - compare new & old
1081 - if they are different, check override flag
1082 */
1083 if ((old & NUD_VALID) &&
1084 !memcmp(lladdr, neigh->ha, dev->addr_len))
1085 lladdr = neigh->ha;
1086 } else {
1087 /* No address is supplied; if we know something,
1088 use it, otherwise discard the request.
1089 */
1090 err = -EINVAL;
1091 if (!(old & NUD_VALID))
1092 goto out;
1093 lladdr = neigh->ha;
1094 }
1095
1096 if (new & NUD_CONNECTED)
1097 neigh->confirmed = jiffies;
1098 neigh->updated = jiffies;
1099
1100 /* If entry was valid and address is not changed,
1101 do not change entry state, if new one is STALE.
1102 */
1103 err = 0;
1104 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1105 if (old & NUD_VALID) {
1106 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1107 update_isrouter = 0;
1108 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1109 (old & NUD_CONNECTED)) {
1110 lladdr = neigh->ha;
1111 new = NUD_STALE;
1112 } else
1113 goto out;
1114 } else {
1115 if (lladdr == neigh->ha && new == NUD_STALE &&
1116 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1117 (old & NUD_CONNECTED))
1118 )
1119 new = old;
1120 }
1121 }
1122
1123 if (new != old) {
1124 neigh_del_timer(neigh);
1125 if (new & NUD_IN_TIMER)
1126 neigh_add_timer(neigh, (jiffies +
1127 ((new & NUD_REACHABLE) ?
1128 neigh->parms->reachable_time :
1129 0)));
1130 neigh->nud_state = new;
1131 }
1132
1133 if (lladdr != neigh->ha) {
1134 write_seqlock(&neigh->ha_lock);
1135 memcpy(&neigh->ha, lladdr, dev->addr_len);
1136 write_sequnlock(&neigh->ha_lock);
1137 neigh_update_hhs(neigh);
1138 if (!(new & NUD_CONNECTED))
1139 neigh->confirmed = jiffies -
1140 (neigh->parms->base_reachable_time << 1);
1141 notify = 1;
1142 }
1143 if (new == old)
1144 goto out;
1145 if (new & NUD_CONNECTED)
1146 neigh_connect(neigh);
1147 else
1148 neigh_suspect(neigh);
1149 if (!(old & NUD_VALID)) {
1150 struct sk_buff *skb;
1151
1152 /* Again: avoid dead loop if something went wrong */
1153
1154 while (neigh->nud_state & NUD_VALID &&
1155 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1156 struct dst_entry *dst = skb_dst(skb);
1157 struct neighbour *n2, *n1 = neigh;
1158 write_unlock_bh(&neigh->lock);
1159 /* On shaper/eql skb->dst->neighbour != neigh :( */
1160 if (dst && (n2 = dst_get_neighbour(dst)) != NULL)
1161 n1 = n2;
1162 n1->output(n1, skb);
1163 write_lock_bh(&neigh->lock);
1164 }
1165 skb_queue_purge(&neigh->arp_queue);
1166 }
1167 out:
1168 if (update_isrouter) {
1169 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1170 (neigh->flags | NTF_ROUTER) :
1171 (neigh->flags & ~NTF_ROUTER);
1172 }
1173 write_unlock_bh(&neigh->lock);
1174
1175 if (notify)
1176 neigh_update_notify(neigh);
1177
1178 return err;
1179 }
1180 EXPORT_SYMBOL(neigh_update);
1181
1182 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1183 u8 *lladdr, void *saddr,
1184 struct net_device *dev)
1185 {
1186 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1187 lladdr || !dev->addr_len);
1188 if (neigh)
1189 neigh_update(neigh, lladdr, NUD_STALE,
1190 NEIGH_UPDATE_F_OVERRIDE);
1191 return neigh;
1192 }
1193 EXPORT_SYMBOL(neigh_event_ns);
1194
1195 /* called with read_lock_bh(&n->lock); */
1196 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst)
1197 {
1198 struct net_device *dev = dst->dev;
1199 __be16 prot = dst->ops->protocol;
1200 struct hh_cache *hh = &n->hh;
1201
1202 write_lock_bh(&n->lock);
1203
1204 /* Only one thread can come in here and initialize the
1205 * hh_cache entry.
1206 */
1207 if (!hh->hh_len)
1208 dev->header_ops->cache(n, hh, prot);
1209
1210 write_unlock_bh(&n->lock);
1211 }
1212
1213 /* This function can be used in contexts, where only old dev_queue_xmit
1214 * worked, f.e. if you want to override normal output path (eql, shaper),
1215 * but resolution is not made yet.
1216 */
1217
1218 int neigh_compat_output(struct neighbour *neigh, struct sk_buff *skb)
1219 {
1220 struct net_device *dev = skb->dev;
1221
1222 __skb_pull(skb, skb_network_offset(skb));
1223
1224 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1225 skb->len) < 0 &&
1226 dev->header_ops->rebuild(skb))
1227 return 0;
1228
1229 return dev_queue_xmit(skb);
1230 }
1231 EXPORT_SYMBOL(neigh_compat_output);
1232
1233 /* Slow and careful. */
1234
1235 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1236 {
1237 struct dst_entry *dst = skb_dst(skb);
1238 int rc = 0;
1239
1240 if (!dst)
1241 goto discard;
1242
1243 __skb_pull(skb, skb_network_offset(skb));
1244
1245 if (!neigh_event_send(neigh, skb)) {
1246 int err;
1247 struct net_device *dev = neigh->dev;
1248 unsigned int seq;
1249
1250 if (dev->header_ops->cache && !neigh->hh.hh_len)
1251 neigh_hh_init(neigh, dst);
1252
1253 do {
1254 seq = read_seqbegin(&neigh->ha_lock);
1255 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1256 neigh->ha, NULL, skb->len);
1257 } while (read_seqretry(&neigh->ha_lock, seq));
1258
1259 if (err >= 0)
1260 rc = dev_queue_xmit(skb);
1261 else
1262 goto out_kfree_skb;
1263 }
1264 out:
1265 return rc;
1266 discard:
1267 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1268 dst, neigh);
1269 out_kfree_skb:
1270 rc = -EINVAL;
1271 kfree_skb(skb);
1272 goto out;
1273 }
1274 EXPORT_SYMBOL(neigh_resolve_output);
1275
1276 /* As fast as possible without hh cache */
1277
1278 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1279 {
1280 struct net_device *dev = neigh->dev;
1281 unsigned int seq;
1282 int err;
1283
1284 __skb_pull(skb, skb_network_offset(skb));
1285
1286 do {
1287 seq = read_seqbegin(&neigh->ha_lock);
1288 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1289 neigh->ha, NULL, skb->len);
1290 } while (read_seqretry(&neigh->ha_lock, seq));
1291
1292 if (err >= 0)
1293 err = dev_queue_xmit(skb);
1294 else {
1295 err = -EINVAL;
1296 kfree_skb(skb);
1297 }
1298 return err;
1299 }
1300 EXPORT_SYMBOL(neigh_connected_output);
1301
1302 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1303 {
1304 return dev_queue_xmit(skb);
1305 }
1306 EXPORT_SYMBOL(neigh_direct_output);
1307
1308 static void neigh_proxy_process(unsigned long arg)
1309 {
1310 struct neigh_table *tbl = (struct neigh_table *)arg;
1311 long sched_next = 0;
1312 unsigned long now = jiffies;
1313 struct sk_buff *skb, *n;
1314
1315 spin_lock(&tbl->proxy_queue.lock);
1316
1317 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1318 long tdif = NEIGH_CB(skb)->sched_next - now;
1319
1320 if (tdif <= 0) {
1321 struct net_device *dev = skb->dev;
1322 __skb_unlink(skb, &tbl->proxy_queue);
1323 if (tbl->proxy_redo && netif_running(dev))
1324 tbl->proxy_redo(skb);
1325 else
1326 kfree_skb(skb);
1327
1328 dev_put(dev);
1329 } else if (!sched_next || tdif < sched_next)
1330 sched_next = tdif;
1331 }
1332 del_timer(&tbl->proxy_timer);
1333 if (sched_next)
1334 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1335 spin_unlock(&tbl->proxy_queue.lock);
1336 }
1337
1338 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1339 struct sk_buff *skb)
1340 {
1341 unsigned long now = jiffies;
1342 unsigned long sched_next = now + (net_random() % p->proxy_delay);
1343
1344 if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1345 kfree_skb(skb);
1346 return;
1347 }
1348
1349 NEIGH_CB(skb)->sched_next = sched_next;
1350 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1351
1352 spin_lock(&tbl->proxy_queue.lock);
1353 if (del_timer(&tbl->proxy_timer)) {
1354 if (time_before(tbl->proxy_timer.expires, sched_next))
1355 sched_next = tbl->proxy_timer.expires;
1356 }
1357 skb_dst_drop(skb);
1358 dev_hold(skb->dev);
1359 __skb_queue_tail(&tbl->proxy_queue, skb);
1360 mod_timer(&tbl->proxy_timer, sched_next);
1361 spin_unlock(&tbl->proxy_queue.lock);
1362 }
1363 EXPORT_SYMBOL(pneigh_enqueue);
1364
1365 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1366 struct net *net, int ifindex)
1367 {
1368 struct neigh_parms *p;
1369
1370 for (p = &tbl->parms; p; p = p->next) {
1371 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1372 (!p->dev && !ifindex))
1373 return p;
1374 }
1375
1376 return NULL;
1377 }
1378
1379 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1380 struct neigh_table *tbl)
1381 {
1382 struct neigh_parms *p, *ref;
1383 struct net *net = dev_net(dev);
1384 const struct net_device_ops *ops = dev->netdev_ops;
1385
1386 ref = lookup_neigh_parms(tbl, net, 0);
1387 if (!ref)
1388 return NULL;
1389
1390 p = kmemdup(ref, sizeof(*p), GFP_KERNEL);
1391 if (p) {
1392 p->tbl = tbl;
1393 atomic_set(&p->refcnt, 1);
1394 p->reachable_time =
1395 neigh_rand_reach_time(p->base_reachable_time);
1396
1397 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1398 kfree(p);
1399 return NULL;
1400 }
1401
1402 dev_hold(dev);
1403 p->dev = dev;
1404 write_pnet(&p->net, hold_net(net));
1405 p->sysctl_table = NULL;
1406 write_lock_bh(&tbl->lock);
1407 p->next = tbl->parms.next;
1408 tbl->parms.next = p;
1409 write_unlock_bh(&tbl->lock);
1410 }
1411 return p;
1412 }
1413 EXPORT_SYMBOL(neigh_parms_alloc);
1414
1415 static void neigh_rcu_free_parms(struct rcu_head *head)
1416 {
1417 struct neigh_parms *parms =
1418 container_of(head, struct neigh_parms, rcu_head);
1419
1420 neigh_parms_put(parms);
1421 }
1422
1423 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1424 {
1425 struct neigh_parms **p;
1426
1427 if (!parms || parms == &tbl->parms)
1428 return;
1429 write_lock_bh(&tbl->lock);
1430 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1431 if (*p == parms) {
1432 *p = parms->next;
1433 parms->dead = 1;
1434 write_unlock_bh(&tbl->lock);
1435 if (parms->dev)
1436 dev_put(parms->dev);
1437 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1438 return;
1439 }
1440 }
1441 write_unlock_bh(&tbl->lock);
1442 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1443 }
1444 EXPORT_SYMBOL(neigh_parms_release);
1445
1446 static void neigh_parms_destroy(struct neigh_parms *parms)
1447 {
1448 release_net(neigh_parms_net(parms));
1449 kfree(parms);
1450 }
1451
1452 static struct lock_class_key neigh_table_proxy_queue_class;
1453
1454 void neigh_table_init_no_netlink(struct neigh_table *tbl)
1455 {
1456 unsigned long now = jiffies;
1457 unsigned long phsize;
1458
1459 write_pnet(&tbl->parms.net, &init_net);
1460 atomic_set(&tbl->parms.refcnt, 1);
1461 tbl->parms.reachable_time =
1462 neigh_rand_reach_time(tbl->parms.base_reachable_time);
1463
1464 if (!tbl->kmem_cachep)
1465 tbl->kmem_cachep =
1466 kmem_cache_create(tbl->id, tbl->entry_size, 0,
1467 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1468 NULL);
1469 tbl->stats = alloc_percpu(struct neigh_statistics);
1470 if (!tbl->stats)
1471 panic("cannot create neighbour cache statistics");
1472
1473 #ifdef CONFIG_PROC_FS
1474 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1475 &neigh_stat_seq_fops, tbl))
1476 panic("cannot create neighbour proc dir entry");
1477 #endif
1478
1479 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1480
1481 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1482 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1483
1484 if (!tbl->nht || !tbl->phash_buckets)
1485 panic("cannot allocate neighbour cache hashes");
1486
1487 rwlock_init(&tbl->lock);
1488 INIT_DELAYED_WORK_DEFERRABLE(&tbl->gc_work, neigh_periodic_work);
1489 schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time);
1490 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1491 skb_queue_head_init_class(&tbl->proxy_queue,
1492 &neigh_table_proxy_queue_class);
1493
1494 tbl->last_flush = now;
1495 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1496 }
1497 EXPORT_SYMBOL(neigh_table_init_no_netlink);
1498
1499 void neigh_table_init(struct neigh_table *tbl)
1500 {
1501 struct neigh_table *tmp;
1502
1503 neigh_table_init_no_netlink(tbl);
1504 write_lock(&neigh_tbl_lock);
1505 for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1506 if (tmp->family == tbl->family)
1507 break;
1508 }
1509 tbl->next = neigh_tables;
1510 neigh_tables = tbl;
1511 write_unlock(&neigh_tbl_lock);
1512
1513 if (unlikely(tmp)) {
1514 printk(KERN_ERR "NEIGH: Registering multiple tables for "
1515 "family %d\n", tbl->family);
1516 dump_stack();
1517 }
1518 }
1519 EXPORT_SYMBOL(neigh_table_init);
1520
1521 int neigh_table_clear(struct neigh_table *tbl)
1522 {
1523 struct neigh_table **tp;
1524
1525 /* It is not clean... Fix it to unload IPv6 module safely */
1526 cancel_delayed_work_sync(&tbl->gc_work);
1527 del_timer_sync(&tbl->proxy_timer);
1528 pneigh_queue_purge(&tbl->proxy_queue);
1529 neigh_ifdown(tbl, NULL);
1530 if (atomic_read(&tbl->entries))
1531 printk(KERN_CRIT "neighbour leakage\n");
1532 write_lock(&neigh_tbl_lock);
1533 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1534 if (*tp == tbl) {
1535 *tp = tbl->next;
1536 break;
1537 }
1538 }
1539 write_unlock(&neigh_tbl_lock);
1540
1541 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1542 neigh_hash_free_rcu);
1543 tbl->nht = NULL;
1544
1545 kfree(tbl->phash_buckets);
1546 tbl->phash_buckets = NULL;
1547
1548 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1549
1550 free_percpu(tbl->stats);
1551 tbl->stats = NULL;
1552
1553 kmem_cache_destroy(tbl->kmem_cachep);
1554 tbl->kmem_cachep = NULL;
1555
1556 return 0;
1557 }
1558 EXPORT_SYMBOL(neigh_table_clear);
1559
1560 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1561 {
1562 struct net *net = sock_net(skb->sk);
1563 struct ndmsg *ndm;
1564 struct nlattr *dst_attr;
1565 struct neigh_table *tbl;
1566 struct net_device *dev = NULL;
1567 int err = -EINVAL;
1568
1569 ASSERT_RTNL();
1570 if (nlmsg_len(nlh) < sizeof(*ndm))
1571 goto out;
1572
1573 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1574 if (dst_attr == NULL)
1575 goto out;
1576
1577 ndm = nlmsg_data(nlh);
1578 if (ndm->ndm_ifindex) {
1579 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1580 if (dev == NULL) {
1581 err = -ENODEV;
1582 goto out;
1583 }
1584 }
1585
1586 read_lock(&neigh_tbl_lock);
1587 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1588 struct neighbour *neigh;
1589
1590 if (tbl->family != ndm->ndm_family)
1591 continue;
1592 read_unlock(&neigh_tbl_lock);
1593
1594 if (nla_len(dst_attr) < tbl->key_len)
1595 goto out;
1596
1597 if (ndm->ndm_flags & NTF_PROXY) {
1598 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1599 goto out;
1600 }
1601
1602 if (dev == NULL)
1603 goto out;
1604
1605 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1606 if (neigh == NULL) {
1607 err = -ENOENT;
1608 goto out;
1609 }
1610
1611 err = neigh_update(neigh, NULL, NUD_FAILED,
1612 NEIGH_UPDATE_F_OVERRIDE |
1613 NEIGH_UPDATE_F_ADMIN);
1614 neigh_release(neigh);
1615 goto out;
1616 }
1617 read_unlock(&neigh_tbl_lock);
1618 err = -EAFNOSUPPORT;
1619
1620 out:
1621 return err;
1622 }
1623
1624 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1625 {
1626 struct net *net = sock_net(skb->sk);
1627 struct ndmsg *ndm;
1628 struct nlattr *tb[NDA_MAX+1];
1629 struct neigh_table *tbl;
1630 struct net_device *dev = NULL;
1631 int err;
1632
1633 ASSERT_RTNL();
1634 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1635 if (err < 0)
1636 goto out;
1637
1638 err = -EINVAL;
1639 if (tb[NDA_DST] == NULL)
1640 goto out;
1641
1642 ndm = nlmsg_data(nlh);
1643 if (ndm->ndm_ifindex) {
1644 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1645 if (dev == NULL) {
1646 err = -ENODEV;
1647 goto out;
1648 }
1649
1650 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1651 goto out;
1652 }
1653
1654 read_lock(&neigh_tbl_lock);
1655 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1656 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1657 struct neighbour *neigh;
1658 void *dst, *lladdr;
1659
1660 if (tbl->family != ndm->ndm_family)
1661 continue;
1662 read_unlock(&neigh_tbl_lock);
1663
1664 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1665 goto out;
1666 dst = nla_data(tb[NDA_DST]);
1667 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1668
1669 if (ndm->ndm_flags & NTF_PROXY) {
1670 struct pneigh_entry *pn;
1671
1672 err = -ENOBUFS;
1673 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1674 if (pn) {
1675 pn->flags = ndm->ndm_flags;
1676 err = 0;
1677 }
1678 goto out;
1679 }
1680
1681 if (dev == NULL)
1682 goto out;
1683
1684 neigh = neigh_lookup(tbl, dst, dev);
1685 if (neigh == NULL) {
1686 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1687 err = -ENOENT;
1688 goto out;
1689 }
1690
1691 neigh = __neigh_lookup_errno(tbl, dst, dev);
1692 if (IS_ERR(neigh)) {
1693 err = PTR_ERR(neigh);
1694 goto out;
1695 }
1696 } else {
1697 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1698 err = -EEXIST;
1699 neigh_release(neigh);
1700 goto out;
1701 }
1702
1703 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1704 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1705 }
1706
1707 if (ndm->ndm_flags & NTF_USE) {
1708 neigh_event_send(neigh, NULL);
1709 err = 0;
1710 } else
1711 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1712 neigh_release(neigh);
1713 goto out;
1714 }
1715
1716 read_unlock(&neigh_tbl_lock);
1717 err = -EAFNOSUPPORT;
1718 out:
1719 return err;
1720 }
1721
1722 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1723 {
1724 struct nlattr *nest;
1725
1726 nest = nla_nest_start(skb, NDTA_PARMS);
1727 if (nest == NULL)
1728 return -ENOBUFS;
1729
1730 if (parms->dev)
1731 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1732
1733 NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1734 NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1735 NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1736 NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1737 NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1738 NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1739 NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1740 NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1741 parms->base_reachable_time);
1742 NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1743 NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1744 NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1745 NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1746 NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1747 NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1748
1749 return nla_nest_end(skb, nest);
1750
1751 nla_put_failure:
1752 nla_nest_cancel(skb, nest);
1753 return -EMSGSIZE;
1754 }
1755
1756 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1757 u32 pid, u32 seq, int type, int flags)
1758 {
1759 struct nlmsghdr *nlh;
1760 struct ndtmsg *ndtmsg;
1761
1762 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1763 if (nlh == NULL)
1764 return -EMSGSIZE;
1765
1766 ndtmsg = nlmsg_data(nlh);
1767
1768 read_lock_bh(&tbl->lock);
1769 ndtmsg->ndtm_family = tbl->family;
1770 ndtmsg->ndtm_pad1 = 0;
1771 ndtmsg->ndtm_pad2 = 0;
1772
1773 NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1774 NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1775 NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1776 NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1777 NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1778
1779 {
1780 unsigned long now = jiffies;
1781 unsigned int flush_delta = now - tbl->last_flush;
1782 unsigned int rand_delta = now - tbl->last_rand;
1783 struct neigh_hash_table *nht;
1784 struct ndt_config ndc = {
1785 .ndtc_key_len = tbl->key_len,
1786 .ndtc_entry_size = tbl->entry_size,
1787 .ndtc_entries = atomic_read(&tbl->entries),
1788 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1789 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1790 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1791 };
1792
1793 rcu_read_lock_bh();
1794 nht = rcu_dereference_bh(tbl->nht);
1795 ndc.ndtc_hash_rnd = nht->hash_rnd;
1796 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
1797 rcu_read_unlock_bh();
1798
1799 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1800 }
1801
1802 {
1803 int cpu;
1804 struct ndt_stats ndst;
1805
1806 memset(&ndst, 0, sizeof(ndst));
1807
1808 for_each_possible_cpu(cpu) {
1809 struct neigh_statistics *st;
1810
1811 st = per_cpu_ptr(tbl->stats, cpu);
1812 ndst.ndts_allocs += st->allocs;
1813 ndst.ndts_destroys += st->destroys;
1814 ndst.ndts_hash_grows += st->hash_grows;
1815 ndst.ndts_res_failed += st->res_failed;
1816 ndst.ndts_lookups += st->lookups;
1817 ndst.ndts_hits += st->hits;
1818 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1819 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1820 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1821 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1822 }
1823
1824 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1825 }
1826
1827 BUG_ON(tbl->parms.dev);
1828 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1829 goto nla_put_failure;
1830
1831 read_unlock_bh(&tbl->lock);
1832 return nlmsg_end(skb, nlh);
1833
1834 nla_put_failure:
1835 read_unlock_bh(&tbl->lock);
1836 nlmsg_cancel(skb, nlh);
1837 return -EMSGSIZE;
1838 }
1839
1840 static int neightbl_fill_param_info(struct sk_buff *skb,
1841 struct neigh_table *tbl,
1842 struct neigh_parms *parms,
1843 u32 pid, u32 seq, int type,
1844 unsigned int flags)
1845 {
1846 struct ndtmsg *ndtmsg;
1847 struct nlmsghdr *nlh;
1848
1849 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1850 if (nlh == NULL)
1851 return -EMSGSIZE;
1852
1853 ndtmsg = nlmsg_data(nlh);
1854
1855 read_lock_bh(&tbl->lock);
1856 ndtmsg->ndtm_family = tbl->family;
1857 ndtmsg->ndtm_pad1 = 0;
1858 ndtmsg->ndtm_pad2 = 0;
1859
1860 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1861 neightbl_fill_parms(skb, parms) < 0)
1862 goto errout;
1863
1864 read_unlock_bh(&tbl->lock);
1865 return nlmsg_end(skb, nlh);
1866 errout:
1867 read_unlock_bh(&tbl->lock);
1868 nlmsg_cancel(skb, nlh);
1869 return -EMSGSIZE;
1870 }
1871
1872 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1873 [NDTA_NAME] = { .type = NLA_STRING },
1874 [NDTA_THRESH1] = { .type = NLA_U32 },
1875 [NDTA_THRESH2] = { .type = NLA_U32 },
1876 [NDTA_THRESH3] = { .type = NLA_U32 },
1877 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1878 [NDTA_PARMS] = { .type = NLA_NESTED },
1879 };
1880
1881 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1882 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1883 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1884 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1885 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1886 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1887 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1888 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1889 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1890 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1891 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1892 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1893 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1894 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1895 };
1896
1897 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1898 {
1899 struct net *net = sock_net(skb->sk);
1900 struct neigh_table *tbl;
1901 struct ndtmsg *ndtmsg;
1902 struct nlattr *tb[NDTA_MAX+1];
1903 int err;
1904
1905 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1906 nl_neightbl_policy);
1907 if (err < 0)
1908 goto errout;
1909
1910 if (tb[NDTA_NAME] == NULL) {
1911 err = -EINVAL;
1912 goto errout;
1913 }
1914
1915 ndtmsg = nlmsg_data(nlh);
1916 read_lock(&neigh_tbl_lock);
1917 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1918 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1919 continue;
1920
1921 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1922 break;
1923 }
1924
1925 if (tbl == NULL) {
1926 err = -ENOENT;
1927 goto errout_locked;
1928 }
1929
1930 /*
1931 * We acquire tbl->lock to be nice to the periodic timers and
1932 * make sure they always see a consistent set of values.
1933 */
1934 write_lock_bh(&tbl->lock);
1935
1936 if (tb[NDTA_PARMS]) {
1937 struct nlattr *tbp[NDTPA_MAX+1];
1938 struct neigh_parms *p;
1939 int i, ifindex = 0;
1940
1941 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1942 nl_ntbl_parm_policy);
1943 if (err < 0)
1944 goto errout_tbl_lock;
1945
1946 if (tbp[NDTPA_IFINDEX])
1947 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1948
1949 p = lookup_neigh_parms(tbl, net, ifindex);
1950 if (p == NULL) {
1951 err = -ENOENT;
1952 goto errout_tbl_lock;
1953 }
1954
1955 for (i = 1; i <= NDTPA_MAX; i++) {
1956 if (tbp[i] == NULL)
1957 continue;
1958
1959 switch (i) {
1960 case NDTPA_QUEUE_LEN:
1961 p->queue_len = nla_get_u32(tbp[i]);
1962 break;
1963 case NDTPA_PROXY_QLEN:
1964 p->proxy_qlen = nla_get_u32(tbp[i]);
1965 break;
1966 case NDTPA_APP_PROBES:
1967 p->app_probes = nla_get_u32(tbp[i]);
1968 break;
1969 case NDTPA_UCAST_PROBES:
1970 p->ucast_probes = nla_get_u32(tbp[i]);
1971 break;
1972 case NDTPA_MCAST_PROBES:
1973 p->mcast_probes = nla_get_u32(tbp[i]);
1974 break;
1975 case NDTPA_BASE_REACHABLE_TIME:
1976 p->base_reachable_time = nla_get_msecs(tbp[i]);
1977 break;
1978 case NDTPA_GC_STALETIME:
1979 p->gc_staletime = nla_get_msecs(tbp[i]);
1980 break;
1981 case NDTPA_DELAY_PROBE_TIME:
1982 p->delay_probe_time = nla_get_msecs(tbp[i]);
1983 break;
1984 case NDTPA_RETRANS_TIME:
1985 p->retrans_time = nla_get_msecs(tbp[i]);
1986 break;
1987 case NDTPA_ANYCAST_DELAY:
1988 p->anycast_delay = nla_get_msecs(tbp[i]);
1989 break;
1990 case NDTPA_PROXY_DELAY:
1991 p->proxy_delay = nla_get_msecs(tbp[i]);
1992 break;
1993 case NDTPA_LOCKTIME:
1994 p->locktime = nla_get_msecs(tbp[i]);
1995 break;
1996 }
1997 }
1998 }
1999
2000 if (tb[NDTA_THRESH1])
2001 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
2002
2003 if (tb[NDTA_THRESH2])
2004 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
2005
2006 if (tb[NDTA_THRESH3])
2007 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
2008
2009 if (tb[NDTA_GC_INTERVAL])
2010 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
2011
2012 err = 0;
2013
2014 errout_tbl_lock:
2015 write_unlock_bh(&tbl->lock);
2016 errout_locked:
2017 read_unlock(&neigh_tbl_lock);
2018 errout:
2019 return err;
2020 }
2021
2022 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2023 {
2024 struct net *net = sock_net(skb->sk);
2025 int family, tidx, nidx = 0;
2026 int tbl_skip = cb->args[0];
2027 int neigh_skip = cb->args[1];
2028 struct neigh_table *tbl;
2029
2030 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2031
2032 read_lock(&neigh_tbl_lock);
2033 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
2034 struct neigh_parms *p;
2035
2036 if (tidx < tbl_skip || (family && tbl->family != family))
2037 continue;
2038
2039 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
2040 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2041 NLM_F_MULTI) <= 0)
2042 break;
2043
2044 for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
2045 if (!net_eq(neigh_parms_net(p), net))
2046 continue;
2047
2048 if (nidx < neigh_skip)
2049 goto next;
2050
2051 if (neightbl_fill_param_info(skb, tbl, p,
2052 NETLINK_CB(cb->skb).pid,
2053 cb->nlh->nlmsg_seq,
2054 RTM_NEWNEIGHTBL,
2055 NLM_F_MULTI) <= 0)
2056 goto out;
2057 next:
2058 nidx++;
2059 }
2060
2061 neigh_skip = 0;
2062 }
2063 out:
2064 read_unlock(&neigh_tbl_lock);
2065 cb->args[0] = tidx;
2066 cb->args[1] = nidx;
2067
2068 return skb->len;
2069 }
2070
2071 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2072 u32 pid, u32 seq, int type, unsigned int flags)
2073 {
2074 unsigned long now = jiffies;
2075 struct nda_cacheinfo ci;
2076 struct nlmsghdr *nlh;
2077 struct ndmsg *ndm;
2078
2079 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2080 if (nlh == NULL)
2081 return -EMSGSIZE;
2082
2083 ndm = nlmsg_data(nlh);
2084 ndm->ndm_family = neigh->ops->family;
2085 ndm->ndm_pad1 = 0;
2086 ndm->ndm_pad2 = 0;
2087 ndm->ndm_flags = neigh->flags;
2088 ndm->ndm_type = neigh->type;
2089 ndm->ndm_ifindex = neigh->dev->ifindex;
2090
2091 NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
2092
2093 read_lock_bh(&neigh->lock);
2094 ndm->ndm_state = neigh->nud_state;
2095 if (neigh->nud_state & NUD_VALID) {
2096 char haddr[MAX_ADDR_LEN];
2097
2098 neigh_ha_snapshot(haddr, neigh, neigh->dev);
2099 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2100 read_unlock_bh(&neigh->lock);
2101 goto nla_put_failure;
2102 }
2103 }
2104
2105 ci.ndm_used = jiffies_to_clock_t(now - neigh->used);
2106 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2107 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated);
2108 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2109 read_unlock_bh(&neigh->lock);
2110
2111 NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
2112 NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
2113
2114 return nlmsg_end(skb, nlh);
2115
2116 nla_put_failure:
2117 nlmsg_cancel(skb, nlh);
2118 return -EMSGSIZE;
2119 }
2120
2121 static void neigh_update_notify(struct neighbour *neigh)
2122 {
2123 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2124 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2125 }
2126
2127 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2128 struct netlink_callback *cb)
2129 {
2130 struct net *net = sock_net(skb->sk);
2131 struct neighbour *n;
2132 int rc, h, s_h = cb->args[1];
2133 int idx, s_idx = idx = cb->args[2];
2134 struct neigh_hash_table *nht;
2135
2136 rcu_read_lock_bh();
2137 nht = rcu_dereference_bh(tbl->nht);
2138
2139 for (h = 0; h < (1 << nht->hash_shift); h++) {
2140 if (h < s_h)
2141 continue;
2142 if (h > s_h)
2143 s_idx = 0;
2144 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0;
2145 n != NULL;
2146 n = rcu_dereference_bh(n->next)) {
2147 if (!net_eq(dev_net(n->dev), net))
2148 continue;
2149 if (idx < s_idx)
2150 goto next;
2151 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2152 cb->nlh->nlmsg_seq,
2153 RTM_NEWNEIGH,
2154 NLM_F_MULTI) <= 0) {
2155 rc = -1;
2156 goto out;
2157 }
2158 next:
2159 idx++;
2160 }
2161 }
2162 rc = skb->len;
2163 out:
2164 rcu_read_unlock_bh();
2165 cb->args[1] = h;
2166 cb->args[2] = idx;
2167 return rc;
2168 }
2169
2170 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2171 {
2172 struct neigh_table *tbl;
2173 int t, family, s_t;
2174
2175 read_lock(&neigh_tbl_lock);
2176 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2177 s_t = cb->args[0];
2178
2179 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
2180 if (t < s_t || (family && tbl->family != family))
2181 continue;
2182 if (t > s_t)
2183 memset(&cb->args[1], 0, sizeof(cb->args) -
2184 sizeof(cb->args[0]));
2185 if (neigh_dump_table(tbl, skb, cb) < 0)
2186 break;
2187 }
2188 read_unlock(&neigh_tbl_lock);
2189
2190 cb->args[0] = t;
2191 return skb->len;
2192 }
2193
2194 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2195 {
2196 int chain;
2197 struct neigh_hash_table *nht;
2198
2199 rcu_read_lock_bh();
2200 nht = rcu_dereference_bh(tbl->nht);
2201
2202 read_lock(&tbl->lock); /* avoid resizes */
2203 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2204 struct neighbour *n;
2205
2206 for (n = rcu_dereference_bh(nht->hash_buckets[chain]);
2207 n != NULL;
2208 n = rcu_dereference_bh(n->next))
2209 cb(n, cookie);
2210 }
2211 read_unlock(&tbl->lock);
2212 rcu_read_unlock_bh();
2213 }
2214 EXPORT_SYMBOL(neigh_for_each);
2215
2216 /* The tbl->lock must be held as a writer and BH disabled. */
2217 void __neigh_for_each_release(struct neigh_table *tbl,
2218 int (*cb)(struct neighbour *))
2219 {
2220 int chain;
2221 struct neigh_hash_table *nht;
2222
2223 nht = rcu_dereference_protected(tbl->nht,
2224 lockdep_is_held(&tbl->lock));
2225 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2226 struct neighbour *n;
2227 struct neighbour __rcu **np;
2228
2229 np = &nht->hash_buckets[chain];
2230 while ((n = rcu_dereference_protected(*np,
2231 lockdep_is_held(&tbl->lock))) != NULL) {
2232 int release;
2233
2234 write_lock(&n->lock);
2235 release = cb(n);
2236 if (release) {
2237 rcu_assign_pointer(*np,
2238 rcu_dereference_protected(n->next,
2239 lockdep_is_held(&tbl->lock)));
2240 n->dead = 1;
2241 } else
2242 np = &n->next;
2243 write_unlock(&n->lock);
2244 if (release)
2245 neigh_cleanup_and_release(n);
2246 }
2247 }
2248 }
2249 EXPORT_SYMBOL(__neigh_for_each_release);
2250
2251 #ifdef CONFIG_PROC_FS
2252
2253 static struct neighbour *neigh_get_first(struct seq_file *seq)
2254 {
2255 struct neigh_seq_state *state = seq->private;
2256 struct net *net = seq_file_net(seq);
2257 struct neigh_hash_table *nht = state->nht;
2258 struct neighbour *n = NULL;
2259 int bucket = state->bucket;
2260
2261 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2262 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
2263 n = rcu_dereference_bh(nht->hash_buckets[bucket]);
2264
2265 while (n) {
2266 if (!net_eq(dev_net(n->dev), net))
2267 goto next;
2268 if (state->neigh_sub_iter) {
2269 loff_t fakep = 0;
2270 void *v;
2271
2272 v = state->neigh_sub_iter(state, n, &fakep);
2273 if (!v)
2274 goto next;
2275 }
2276 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2277 break;
2278 if (n->nud_state & ~NUD_NOARP)
2279 break;
2280 next:
2281 n = rcu_dereference_bh(n->next);
2282 }
2283
2284 if (n)
2285 break;
2286 }
2287 state->bucket = bucket;
2288
2289 return n;
2290 }
2291
2292 static struct neighbour *neigh_get_next(struct seq_file *seq,
2293 struct neighbour *n,
2294 loff_t *pos)
2295 {
2296 struct neigh_seq_state *state = seq->private;
2297 struct net *net = seq_file_net(seq);
2298 struct neigh_hash_table *nht = state->nht;
2299
2300 if (state->neigh_sub_iter) {
2301 void *v = state->neigh_sub_iter(state, n, pos);
2302 if (v)
2303 return n;
2304 }
2305 n = rcu_dereference_bh(n->next);
2306
2307 while (1) {
2308 while (n) {
2309 if (!net_eq(dev_net(n->dev), net))
2310 goto next;
2311 if (state->neigh_sub_iter) {
2312 void *v = state->neigh_sub_iter(state, n, pos);
2313 if (v)
2314 return n;
2315 goto next;
2316 }
2317 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2318 break;
2319
2320 if (n->nud_state & ~NUD_NOARP)
2321 break;
2322 next:
2323 n = rcu_dereference_bh(n->next);
2324 }
2325
2326 if (n)
2327 break;
2328
2329 if (++state->bucket >= (1 << nht->hash_shift))
2330 break;
2331
2332 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]);
2333 }
2334
2335 if (n && pos)
2336 --(*pos);
2337 return n;
2338 }
2339
2340 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2341 {
2342 struct neighbour *n = neigh_get_first(seq);
2343
2344 if (n) {
2345 --(*pos);
2346 while (*pos) {
2347 n = neigh_get_next(seq, n, pos);
2348 if (!n)
2349 break;
2350 }
2351 }
2352 return *pos ? NULL : n;
2353 }
2354
2355 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2356 {
2357 struct neigh_seq_state *state = seq->private;
2358 struct net *net = seq_file_net(seq);
2359 struct neigh_table *tbl = state->tbl;
2360 struct pneigh_entry *pn = NULL;
2361 int bucket = state->bucket;
2362
2363 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2364 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2365 pn = tbl->phash_buckets[bucket];
2366 while (pn && !net_eq(pneigh_net(pn), net))
2367 pn = pn->next;
2368 if (pn)
2369 break;
2370 }
2371 state->bucket = bucket;
2372
2373 return pn;
2374 }
2375
2376 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2377 struct pneigh_entry *pn,
2378 loff_t *pos)
2379 {
2380 struct neigh_seq_state *state = seq->private;
2381 struct net *net = seq_file_net(seq);
2382 struct neigh_table *tbl = state->tbl;
2383
2384 pn = pn->next;
2385 while (!pn) {
2386 if (++state->bucket > PNEIGH_HASHMASK)
2387 break;
2388 pn = tbl->phash_buckets[state->bucket];
2389 while (pn && !net_eq(pneigh_net(pn), net))
2390 pn = pn->next;
2391 if (pn)
2392 break;
2393 }
2394
2395 if (pn && pos)
2396 --(*pos);
2397
2398 return pn;
2399 }
2400
2401 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2402 {
2403 struct pneigh_entry *pn = pneigh_get_first(seq);
2404
2405 if (pn) {
2406 --(*pos);
2407 while (*pos) {
2408 pn = pneigh_get_next(seq, pn, pos);
2409 if (!pn)
2410 break;
2411 }
2412 }
2413 return *pos ? NULL : pn;
2414 }
2415
2416 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2417 {
2418 struct neigh_seq_state *state = seq->private;
2419 void *rc;
2420 loff_t idxpos = *pos;
2421
2422 rc = neigh_get_idx(seq, &idxpos);
2423 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2424 rc = pneigh_get_idx(seq, &idxpos);
2425
2426 return rc;
2427 }
2428
2429 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2430 __acquires(rcu_bh)
2431 {
2432 struct neigh_seq_state *state = seq->private;
2433
2434 state->tbl = tbl;
2435 state->bucket = 0;
2436 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2437
2438 rcu_read_lock_bh();
2439 state->nht = rcu_dereference_bh(tbl->nht);
2440
2441 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2442 }
2443 EXPORT_SYMBOL(neigh_seq_start);
2444
2445 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2446 {
2447 struct neigh_seq_state *state;
2448 void *rc;
2449
2450 if (v == SEQ_START_TOKEN) {
2451 rc = neigh_get_first(seq);
2452 goto out;
2453 }
2454
2455 state = seq->private;
2456 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2457 rc = neigh_get_next(seq, v, NULL);
2458 if (rc)
2459 goto out;
2460 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2461 rc = pneigh_get_first(seq);
2462 } else {
2463 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2464 rc = pneigh_get_next(seq, v, NULL);
2465 }
2466 out:
2467 ++(*pos);
2468 return rc;
2469 }
2470 EXPORT_SYMBOL(neigh_seq_next);
2471
2472 void neigh_seq_stop(struct seq_file *seq, void *v)
2473 __releases(rcu_bh)
2474 {
2475 rcu_read_unlock_bh();
2476 }
2477 EXPORT_SYMBOL(neigh_seq_stop);
2478
2479 /* statistics via seq_file */
2480
2481 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2482 {
2483 struct neigh_table *tbl = seq->private;
2484 int cpu;
2485
2486 if (*pos == 0)
2487 return SEQ_START_TOKEN;
2488
2489 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2490 if (!cpu_possible(cpu))
2491 continue;
2492 *pos = cpu+1;
2493 return per_cpu_ptr(tbl->stats, cpu);
2494 }
2495 return NULL;
2496 }
2497
2498 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2499 {
2500 struct neigh_table *tbl = seq->private;
2501 int cpu;
2502
2503 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2504 if (!cpu_possible(cpu))
2505 continue;
2506 *pos = cpu+1;
2507 return per_cpu_ptr(tbl->stats, cpu);
2508 }
2509 return NULL;
2510 }
2511
2512 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2513 {
2514
2515 }
2516
2517 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2518 {
2519 struct neigh_table *tbl = seq->private;
2520 struct neigh_statistics *st = v;
2521
2522 if (v == SEQ_START_TOKEN) {
2523 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n");
2524 return 0;
2525 }
2526
2527 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2528 "%08lx %08lx %08lx %08lx %08lx\n",
2529 atomic_read(&tbl->entries),
2530
2531 st->allocs,
2532 st->destroys,
2533 st->hash_grows,
2534
2535 st->lookups,
2536 st->hits,
2537
2538 st->res_failed,
2539
2540 st->rcv_probes_mcast,
2541 st->rcv_probes_ucast,
2542
2543 st->periodic_gc_runs,
2544 st->forced_gc_runs,
2545 st->unres_discards
2546 );
2547
2548 return 0;
2549 }
2550
2551 static const struct seq_operations neigh_stat_seq_ops = {
2552 .start = neigh_stat_seq_start,
2553 .next = neigh_stat_seq_next,
2554 .stop = neigh_stat_seq_stop,
2555 .show = neigh_stat_seq_show,
2556 };
2557
2558 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2559 {
2560 int ret = seq_open(file, &neigh_stat_seq_ops);
2561
2562 if (!ret) {
2563 struct seq_file *sf = file->private_data;
2564 sf->private = PDE(inode)->data;
2565 }
2566 return ret;
2567 };
2568
2569 static const struct file_operations neigh_stat_seq_fops = {
2570 .owner = THIS_MODULE,
2571 .open = neigh_stat_seq_open,
2572 .read = seq_read,
2573 .llseek = seq_lseek,
2574 .release = seq_release,
2575 };
2576
2577 #endif /* CONFIG_PROC_FS */
2578
2579 static inline size_t neigh_nlmsg_size(void)
2580 {
2581 return NLMSG_ALIGN(sizeof(struct ndmsg))
2582 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2583 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2584 + nla_total_size(sizeof(struct nda_cacheinfo))
2585 + nla_total_size(4); /* NDA_PROBES */
2586 }
2587
2588 static void __neigh_notify(struct neighbour *n, int type, int flags)
2589 {
2590 struct net *net = dev_net(n->dev);
2591 struct sk_buff *skb;
2592 int err = -ENOBUFS;
2593
2594 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2595 if (skb == NULL)
2596 goto errout;
2597
2598 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2599 if (err < 0) {
2600 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2601 WARN_ON(err == -EMSGSIZE);
2602 kfree_skb(skb);
2603 goto errout;
2604 }
2605 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2606 return;
2607 errout:
2608 if (err < 0)
2609 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2610 }
2611
2612 #ifdef CONFIG_ARPD
2613 void neigh_app_ns(struct neighbour *n)
2614 {
2615 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2616 }
2617 EXPORT_SYMBOL(neigh_app_ns);
2618 #endif /* CONFIG_ARPD */
2619
2620 #ifdef CONFIG_SYSCTL
2621
2622 #define NEIGH_VARS_MAX 19
2623
2624 static struct neigh_sysctl_table {
2625 struct ctl_table_header *sysctl_header;
2626 struct ctl_table neigh_vars[NEIGH_VARS_MAX];
2627 char *dev_name;
2628 } neigh_sysctl_template __read_mostly = {
2629 .neigh_vars = {
2630 {
2631 .procname = "mcast_solicit",
2632 .maxlen = sizeof(int),
2633 .mode = 0644,
2634 .proc_handler = proc_dointvec,
2635 },
2636 {
2637 .procname = "ucast_solicit",
2638 .maxlen = sizeof(int),
2639 .mode = 0644,
2640 .proc_handler = proc_dointvec,
2641 },
2642 {
2643 .procname = "app_solicit",
2644 .maxlen = sizeof(int),
2645 .mode = 0644,
2646 .proc_handler = proc_dointvec,
2647 },
2648 {
2649 .procname = "retrans_time",
2650 .maxlen = sizeof(int),
2651 .mode = 0644,
2652 .proc_handler = proc_dointvec_userhz_jiffies,
2653 },
2654 {
2655 .procname = "base_reachable_time",
2656 .maxlen = sizeof(int),
2657 .mode = 0644,
2658 .proc_handler = proc_dointvec_jiffies,
2659 },
2660 {
2661 .procname = "delay_first_probe_time",
2662 .maxlen = sizeof(int),
2663 .mode = 0644,
2664 .proc_handler = proc_dointvec_jiffies,
2665 },
2666 {
2667 .procname = "gc_stale_time",
2668 .maxlen = sizeof(int),
2669 .mode = 0644,
2670 .proc_handler = proc_dointvec_jiffies,
2671 },
2672 {
2673 .procname = "unres_qlen",
2674 .maxlen = sizeof(int),
2675 .mode = 0644,
2676 .proc_handler = proc_dointvec,
2677 },
2678 {
2679 .procname = "proxy_qlen",
2680 .maxlen = sizeof(int),
2681 .mode = 0644,
2682 .proc_handler = proc_dointvec,
2683 },
2684 {
2685 .procname = "anycast_delay",
2686 .maxlen = sizeof(int),
2687 .mode = 0644,
2688 .proc_handler = proc_dointvec_userhz_jiffies,
2689 },
2690 {
2691 .procname = "proxy_delay",
2692 .maxlen = sizeof(int),
2693 .mode = 0644,
2694 .proc_handler = proc_dointvec_userhz_jiffies,
2695 },
2696 {
2697 .procname = "locktime",
2698 .maxlen = sizeof(int),
2699 .mode = 0644,
2700 .proc_handler = proc_dointvec_userhz_jiffies,
2701 },
2702 {
2703 .procname = "retrans_time_ms",
2704 .maxlen = sizeof(int),
2705 .mode = 0644,
2706 .proc_handler = proc_dointvec_ms_jiffies,
2707 },
2708 {
2709 .procname = "base_reachable_time_ms",
2710 .maxlen = sizeof(int),
2711 .mode = 0644,
2712 .proc_handler = proc_dointvec_ms_jiffies,
2713 },
2714 {
2715 .procname = "gc_interval",
2716 .maxlen = sizeof(int),
2717 .mode = 0644,
2718 .proc_handler = proc_dointvec_jiffies,
2719 },
2720 {
2721 .procname = "gc_thresh1",
2722 .maxlen = sizeof(int),
2723 .mode = 0644,
2724 .proc_handler = proc_dointvec,
2725 },
2726 {
2727 .procname = "gc_thresh2",
2728 .maxlen = sizeof(int),
2729 .mode = 0644,
2730 .proc_handler = proc_dointvec,
2731 },
2732 {
2733 .procname = "gc_thresh3",
2734 .maxlen = sizeof(int),
2735 .mode = 0644,
2736 .proc_handler = proc_dointvec,
2737 },
2738 {},
2739 },
2740 };
2741
2742 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2743 char *p_name, proc_handler *handler)
2744 {
2745 struct neigh_sysctl_table *t;
2746 const char *dev_name_source = NULL;
2747
2748 #define NEIGH_CTL_PATH_ROOT 0
2749 #define NEIGH_CTL_PATH_PROTO 1
2750 #define NEIGH_CTL_PATH_NEIGH 2
2751 #define NEIGH_CTL_PATH_DEV 3
2752
2753 struct ctl_path neigh_path[] = {
2754 { .procname = "net", },
2755 { .procname = "proto", },
2756 { .procname = "neigh", },
2757 { .procname = "default", },
2758 { },
2759 };
2760
2761 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
2762 if (!t)
2763 goto err;
2764
2765 t->neigh_vars[0].data = &p->mcast_probes;
2766 t->neigh_vars[1].data = &p->ucast_probes;
2767 t->neigh_vars[2].data = &p->app_probes;
2768 t->neigh_vars[3].data = &p->retrans_time;
2769 t->neigh_vars[4].data = &p->base_reachable_time;
2770 t->neigh_vars[5].data = &p->delay_probe_time;
2771 t->neigh_vars[6].data = &p->gc_staletime;
2772 t->neigh_vars[7].data = &p->queue_len;
2773 t->neigh_vars[8].data = &p->proxy_qlen;
2774 t->neigh_vars[9].data = &p->anycast_delay;
2775 t->neigh_vars[10].data = &p->proxy_delay;
2776 t->neigh_vars[11].data = &p->locktime;
2777 t->neigh_vars[12].data = &p->retrans_time;
2778 t->neigh_vars[13].data = &p->base_reachable_time;
2779
2780 if (dev) {
2781 dev_name_source = dev->name;
2782 /* Terminate the table early */
2783 memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14]));
2784 } else {
2785 dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname;
2786 t->neigh_vars[14].data = (int *)(p + 1);
2787 t->neigh_vars[15].data = (int *)(p + 1) + 1;
2788 t->neigh_vars[16].data = (int *)(p + 1) + 2;
2789 t->neigh_vars[17].data = (int *)(p + 1) + 3;
2790 }
2791
2792
2793 if (handler) {
2794 /* RetransTime */
2795 t->neigh_vars[3].proc_handler = handler;
2796 t->neigh_vars[3].extra1 = dev;
2797 /* ReachableTime */
2798 t->neigh_vars[4].proc_handler = handler;
2799 t->neigh_vars[4].extra1 = dev;
2800 /* RetransTime (in milliseconds)*/
2801 t->neigh_vars[12].proc_handler = handler;
2802 t->neigh_vars[12].extra1 = dev;
2803 /* ReachableTime (in milliseconds) */
2804 t->neigh_vars[13].proc_handler = handler;
2805 t->neigh_vars[13].extra1 = dev;
2806 }
2807
2808 t->dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2809 if (!t->dev_name)
2810 goto free;
2811
2812 neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name;
2813 neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name;
2814
2815 t->sysctl_header =
2816 register_net_sysctl_table(neigh_parms_net(p), neigh_path, t->neigh_vars);
2817 if (!t->sysctl_header)
2818 goto free_procname;
2819
2820 p->sysctl_table = t;
2821 return 0;
2822
2823 free_procname:
2824 kfree(t->dev_name);
2825 free:
2826 kfree(t);
2827 err:
2828 return -ENOBUFS;
2829 }
2830 EXPORT_SYMBOL(neigh_sysctl_register);
2831
2832 void neigh_sysctl_unregister(struct neigh_parms *p)
2833 {
2834 if (p->sysctl_table) {
2835 struct neigh_sysctl_table *t = p->sysctl_table;
2836 p->sysctl_table = NULL;
2837 unregister_sysctl_table(t->sysctl_header);
2838 kfree(t->dev_name);
2839 kfree(t);
2840 }
2841 }
2842 EXPORT_SYMBOL(neigh_sysctl_unregister);
2843
2844 #endif /* CONFIG_SYSCTL */
2845
2846 static int __init neigh_init(void)
2847 {
2848 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, NULL);
2849 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, NULL);
2850 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, NULL);
2851
2852 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
2853 NULL);
2854 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, NULL);
2855
2856 return 0;
2857 }
2858
2859 subsys_initcall(neigh_init);
2860